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Résumé

C
ette thèse a pour but d’étudier la théorie des premiers instants d’une collision d’ions
lourds. Juste après cette collision, il a été démontré que la matière produite – appe-
lée Plasma de Quarks et de Gluons (PQG) – est très loin de l’équilibre thermique.
On voudrait donc savoir si le PQG thermalise, et quelle est l’échelle de temps carac-

téristique pour cela. Démontrer la thermalisation du PQG permettrait par ailleurs de justifier
l’utilisation de l’hydrodynamique pour décrire l’évolution ultérieure d’une collision d’ions
lourds. Après avoir rappelé quelques concepts essentiels au traitement théorique du PQG, le
manuscrit expose l’étude de ces questions dans deux sortes de théories.

Dans un premier temps, on étudie une théorie scalaire. En initialisant cette dernière dans
un état hors équilibre, on peut étudier l’approche de l’équilibre pour un système de volume
fixe ou un système en expansion unidimensionnelle. Dans les deux cas, des preuves d’une
possible thermalisation peuvent être observées : une équation d’état se forme, le tenseur des
pressions devient isotrope et le nombre d’occupation tend vers une distribution d’équilibre
thermique classique. Ces résultats sont obtenus à l’aide de l’approximation classique statis-
tique (ACS), qui permet d’inclure des contributions au-delà de l’ordre dominant de la théorie
des perturbations.

Dans un second temps, le "Color Glass Condensate", une théorie effective basée sur la
Chromodynamique quantique adaptée à l’étude des premiers instants suivant la formation du
PQG, est utilisé pour étudier de manière plus réaliste l’approche de l’équilibre thermique dans
les collisions d’ions lourds. Après avoir établi quelques prérequis pour l’utilisation de l’ACS,
les simulations numériques effectuées avec les équations de Yang-Mills semblent indiquer
une rapide approche du PQG vers un régime hydrodynamique. Le PQG devient rapidement
isotrope, tandis que son rapport viscosité sur entropie est très petit, ce qui est la caractéristique
d’un fluide quasi idéal.

Mots-Clés

C
hromodynamique quantique
Collision d’ions lourds, Comportement Hydrodynamique
Color Glass Condensate
Approximation Classique Statistique, Simulations sur réseau
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Abstract

T
his thesis deals with the theory of the early stages of a heavy ion collision. Just after
such a collision, the matter produced – called the Quark-Gluon-Plasma (QGP) – has
been shown to be far out of thermal equilibrium. One would like to know whether
the QGP thermalizes, and what is the typical time scale for this. Proving that the

QGP thermalizes would also justify from first principles the hydrodynamical treatment of the
subsequent evolution of a heavy ion collision. After having recalled some essential theoretical
concepts, the manuscript addresses these questions in two different theories

In a first part, we study a scalar field theory. Starting from an out of equilibrium initial
condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional
expanding system. In both cases, clear signs of thermalization are obtained: an equation of
state is formed, the pressure tensor becomes isotropic and the occupation number approaches
a classical thermal distribution. These results are obtained thanks to the classical statisti-
cal approximation (CSA), that includes contributions beyond the Leading Order perturbative
calculation.

In a second part, the Color Glass Condensate – a quantum chromdynamics (QCD) effective
theory well suited to describe the early life of the QGP – is used to treat more realistically the
approach to thermalization in heavy ion collisions. After having derived some analytical
prerequisites for the application of the CSA, the numerical simulations performed with the
Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the
QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy
ratio is very small, which is characteristic of a quasi perfect fluid.

Keywords

Q
uantum Chromodynamics
Heavy Ion Collisions, Hydrodynamical behavior
Color Glass Condensate
Classical Statistical Approximation, Lattice Simulations
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1.1 Understanding the effectiveness of hydrodynamics in heavy ion

collisions

I
n the past years, heavy ion collisions performed at the RHIC and the LHC have
produced a huge amount of data, that theorists try to understand [1–11]. The matter
produced in these collisions, called the Quark Gluon Plasma (QGP), is the first
realization in a laboratory of a deconfined strongly interacting matter that existed

briefly during the first instants after the Big-Bang. Understanding the QGP properties has
been a very active topic in the past years.

All this theoretical work has led to a paradox. On the one hand, one of the most successful
models to reproduce the RHIC and LHC data has proved to be relativistic viscous hydrody-
namics, with a small value of the shear viscosity over entropy ratio [12–21]. This suggests that
the QGP behaves as a nearly perfect fluid. In addition, hydrodynamical simulations require
a very small starting time of the order of 0.1− 1 f m/c in order to successfully fit the exper-
imental data. The onset of the hydrodynamical behavior of the QGP therefore seems to be
very fast. On the other hand, models based on QCD have shown that the QGP produced in
a heavy ion collision is initially very far from thermal equilibrium – a state called the Glasma
[22–24]. Since one of the prerequisites for hydrodynamics is that the system should be nearly
thermal, it seems difficult to reconcile the out equilibrium nature of the Glasma with the early
hydrodynamical behavior of the QGP.

This approach to thermal equilibrium has received a lot of attention [25–41] since the
original bottom-up scenario [42], but a definitive answer has not yet been reached. One of
the models used to study the transition from the Glasma to the thermalized QGP is the Color
Glass Condensate (CGC) [43, 44]. This effective theory of the strong interaction takes into
account gluon saturation [45, 46] and the non-linear effects that happens at high energies.

At Leading Order (LO), the CGC just amounts to solving the classical Yang-Mills equation
with a classical initial condition [22, 47–50]. CGC at LO does not explain the early onset of
the hydrodynamical behavior of the QGP since the anisotropy of the pressure tensor persists
indefinitely [22–24]. This fact is easily understood: quantum corrections can qualitatively alter
the picture due to plasma instabilities [51–54], that enhance small perturbations to the classical
solution [55–57]. But taking into account these quantum corrections in a plain loop expansion
leads to secular divergences. One way to cure this problem is a resummation [58] that collects

13
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all leading unstable terms at each order of the perturbative expansion. This resummation
can be implemented with the so-called classical statistical method (CSA) [59–65]. The CSA
solves the classical equation of motion starting from a coherent state, that can be viewed as a
Gaussian distribution of the initial classical field. The variance of this Gaussian is dictated by
a one loop calculation. But this one-loop term had never been derived from first principles so
far.

The objective of this thesis is therefore to apply the CSA to the CGC theory, in order to
assess whether the QGP thermalizes. After having studied several simpler models in order to
test this theoretical framework [66–69], we will derive the Next to Leading Order spectrum of
fluctuations that enters into the initial condition of the CSA [70]. This allows us to perform
the first realistic numerical simulation that goes beyond the LO CGC computations [71], and
we will observe several hints for an early "hydrodynamization" of the Glasma.

1.2 How to read this thesis?

The manuscript is divided in three parts that are not independent. A chronological reading
is therefore strongly advised. The first part I presents all the specific technical tools needed
in order to describe at a microscopic level the collision of two heavy ions. In chapter 2, a
non-technical presentation of heavy ion collision physics is done. The reader familiar with
this material may skip this chapter and go directly to chapter 3, where the various tools
to describe the Quark Gluon Plasma are presented, culminating with the introduction of the
Color Glass Condensate. Chapters 4 cover specific technical points that allow one to go beyond
the Leading Order perturbative calculation. This eventually leads to the introduction of the
classical statistical approximation.

The second part II of the manuscript focuses on several scalar toy models. Studying these
models, that are much simpler than QCD, is an interesting thing to do in a first time, since they
can provide us a proof of concept that the framework that we have described in part I leads
to the expected physical results. These scalar models will be considered in two situations:
one where the volume is fixed and one where the system expands in one dimension. In the
first two chapters of this part, both analytical and numerical aspects of the problem will be
covered. The concluding chapter of part 2 will address some theoretical limitations of our
framework.

Part III of the manuscript will finally address the main problem: the approach to equilib-
rium in heavy ion collisions, using the CGC model as well as numerical simulations based
on the classical statistical approximation. Firstly, some key additional analytical tools are
presented in the chapter 8. Secondly, the chapter 9 describes the first realistic numerical sim-
ulations performed in the CGC framework beyond Leading Order. A conclusion will end the
manuscript, while more technical details are relegated in several appendices located at the
end of the chapters they are referring to.
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2.1 The strong interaction

T
he aim of physics is twofold: description and prediction. One would like to be

able to describe all the phenomena observed in nature, and given a certain context
(launching a ball, looking at a nucleus...), being able to predict what will happen.
To do so, physicists have been able to express all the interactions in nature in terms

of forces. There are four forces in nature, recalled in figure 2.1.

Figure 2.1: The four forces in nature.

The ones that we daily experience are gravity and electromagnetism. The ones we do not
necessarily know about are the weak and the strong forces (also called the weak and strong
interactions). Among its actions, the weak force is responsible for the radioactive decays.
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The strong force is the one that binds the components of an atom nucleus together. Those
components are the proton and the neutron, themselves formed by quarks, called valence
quarks. There are six families of quarks in nature (sorted here from the lightest to the heaviest):
the up quark u, the down quark d, the strange quark s, the charmed quark c, the bottom quark
b and the top quark 1 t. This strong force is "strong" in the sense that it is able to counterbalance
the electromagnetic repulsive force between the positive charges of the protons inside the
nucleus. The strong force is the one that will keep us busy in all the following.

2.2 Looking inside a proton, first part

Our story begins with a close look of a proton at rest. This proton at rest is formed by
three quarks (2 u and 1 d), as illustrated in figure 2.2.

Figure 2.2: A proton at rest. It is formed by two up quarks u and one down quark d. The
colors are here to differentiate the nature of the quarks, and have nothing to do with their
actual color charges.

Those quarks are confined: they can’t be observed traveling freely without their two fel-
lows. This is a specificity of the strong interaction discovered by Wilson in 1974 [72] that is
called the "quark confinement". This means that the attractive force between the quarks is
indeed very strong at low energy. Physicists quantify this strength with a coupling constant
- called αS for the strong interaction, where the S stands for strong - which is an energy de-
pendent quantity. Unfortunately, the theory that describes the strong force - called quantum
chromodynamics, or QCD - is well understood only in its weak coupling sector, which means
for αS much smaller than 1. This allows to do a small coupling expansion of the theory and is
the basis of pretty much all the perturbative techniques that are one of the main tools on the
theoretical treatment of QCD. To compare it with experiment, one therefore has to make such
experiments in the weak coupling sector of the strong interaction. Surprisingly, this sector
is at very high energy. This could be counter intuitive: When one thinks about gravity, one
expects that the further away two object are, the weaker the gravitational interaction is. The
opposite happens for the strong force. A good analogy can be done with a string: when a
string is pulled, it is subject to a restoring force that will tend to move closer the two end-
points of the string, and this force is stronger when the string is pulled more and more 2. This
property is called "asymptotic freedom": at infinite energy, the confinement property does not
hold anymore and the quarks can indeed move freely. This surprising feature of the strong
interaction was discovered in 1973-74 by Gross, Wilczek and Politzer [73–76], and is illustrated
with recent experimental outputs in figure 2.3.

1. Predicted more than 40 years ago and discovered less than 15 years ago.
2. It is interesting to know that "string theory", a very active field in theoretical physics which consider all

objects to be formed by infinitesimal strings, was first developed in order to describe QCD and more precisely this
striking feature of the energy dependence of the strong force.
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Figure 2.3: The value of the coupling constant αS in function of the energy [77]. αS seems to
decrease as the energy increases.

2.3 Heavy Ion collisions

As we just discussed, theorists only know well the weak regime of the strong force. Since
they still want to compare their predictions with experiments, people have built very large
colliders (see figure 2.4 and 2.6), to reach an energy scale sufficiently high so that the strong
interaction is probed in its weakly coupled sector (the typical energy scale being much greater
than Λ

QCD
, the QCD confinement scale)

Figure 2.4: The Large Hadron Collider (LHC) built between France and Switzerland.

In these colliders, proton and heavy ion beams are accelerated to reach almost the speed
of light, in order to be subsequently collided.
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Figure 2.5: The protons and heavy ions inside the LHC are traveling at more than 99% of
the speed of light, which means that they travel 11.000 times in one second the LHC ring of
diameter 27km.

The experiments performed in those colliders serve two purposes. The first family of
experiment was designed to search the Higgs boson, the only missing particle of the standard
model. This search proved to be fruitful, as the Higgs boson was finally discovered in 2012
[78, 79] – more than forty years after its theoretical prediction [80, 81] – and led to a Nobel
prize in 2013.

The second family of experiment currently performed at the RHIC [1–4] and the LHC [5–
11] is looking at collisions between heavy ions, in order to understand better the QCD matter
at weak coupling.

LHC RHIC

Figure 2.6: The coupling scale (corresponding to very high energies) that the Relativistic
Heavy Ion Collider (RHIC, American collider) and the LHC try to approach. So far the best
that the LHC can do is to reach an energy such that αS is of the order ∼ 0.3.

This is the topic that interests us, and what will be the main subject of this thesis.

2.4 Looking at a proton, second part

We go back to our proton (the same is true for a heavy ion, but to keep things simple only
protons are drawn so far) of figure 2.2, but now consider it highly accelerated, as it is truly in
the RHIC and LHC rings. It turns out that in this case, the picture given in figure 2.2 is too
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simplistic: it is in fact only valid when the proton is at rest. When the proton is moving at
almost the speed of light, the picture is drastically changed. There are indeed other partons
(a generic term regrouping the gluons and the quarks) that appear inside the proton. They
are the sea quarks 3 and the gluons, which are the mediators of the strong interaction, as the
photons are the mediators of the electromagnetic force. Why is it so? This is related to one of
the most important principles in quantum theory called the Heisenberg uncertainty principle.
What this principle essentially states is that it is not possible to know exactly at the same time
the position and the speed of a particle, nor is it possible to know exactly its energy at a given
time. This last uncertainty implies that on sufficiently small time scales - and in a heavy ion
collisions, we are talking about a few times 10−24 seconds - the uncertainty on the energy
triggers incredibly high fluctuations of its intensity at any point of space so that sometimes,
the vacuum can acquire sufficiently high energy so that a pair of particles is created. This is
called vacuum fluctuations, and is one of the explanation for such a rich content of a proton
at high energy. Figure 2.7 illustrates the part of momentum which is carried by the different
constituents of the protons in function of the momentum scale.

Figure 2.7: Fraction of the total momentum of the proton carried by the gluons xg, the sea
quarks xS, the valence quarks u xuv and v xdv (adapted from HERA data [82]).

Physicists quantify the momentum of a parton with a quantity called 4 x and which is
inversely proportional to E. At very high energy, we therefore speak about small x physics.
At low energy (large x), one expects that only the valence quarks carry the proton momentum
if we are to trust what we saw in figure 2.2. This is what is indeed observed: one can read on
figure 2.7 that at large x, approximately 2/3 of the momentum of the proton is carried by u
quarks and 1/3 for the d quark 5. At very high energy, most of the momentum is carried by
the gluons and gluon dynamics is therefore (mostly) the one of interest at very small x. This
is the physics that we will want to describe in the present manuscript, and we will come back
in more technical details on figure 2.7 later on. Let us end this part by showing in figure 2.8
what a highly energetic proton may look like.

3. in opposition to the valence quarks, the sea quarks are quarks that are not the fundamental constituent of
the proton and only appear at high energy.

4. The use of this variable x was introduced in Deep Inelastic Scattering studies (see [83–86]).
5. Obviously because they are twice as many u quarks as d quarks inside the proton.
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Figure 2.8: A proton at high energy. The balls are representing quarks and the lines gluons.

2.5 The quark-gluon-plasma: experimental evidences

When two heavy ions that look at figure 2.8 collide at very high energy, one can anticipate
that the matter produced out of their collision is extremely complicated to describe. Indeed,
gluons from one nucleus can interact with those from the other. The matter formed by this
collision is called the Quark-Gluon-Plasma (QGP).

Figure 2.9: The formation of the quark-gluon-plasma (or QGP) in a heavy ion collision.

What are the evidences for this new form of matter? The best one is the observation in
the experimental detectors of very energetic fluxes, corresponding to very located in space
particles. The latter are called "jets". The reasoning is the following: let’s assume for the
time being that the QGP exists. In a heavy ion collision, as already mentioned, products
are observed in the detectors of the RHIC and the LHC. But out of these products, some of
them are much more energetic than others. Those are the result of the collisions of the most
energetic objects in the nuclei – the collisions that imply the valence quarks for instance. When
such collisions happen in the center of the QGP, one will usually observe two "back-to-back"
jets, which means two very energetic beams of produced particles that cross both half of the
QGP and then go hit the detector in opposite directions. Because those jets travel in opposite
direction, they are correlated: the probability of finding the second jet at 180 degrees of the
first one is very high. Now, consider again a very energetic collision, but happening this time
at the edge of the QGP. In this situation one of the jet will only have to cross a tiny region
of the QGP before escaping and hitting the detector, while the other has to cross most of the
QGP. During this crossing, the jet will interact with the QGP and loose most of its energy 6.
So if the QGP exists, one should sometimes observe in heavy ion collisions two correlated
back-to-back jets, but with one being much more energetic than the other. Our expectation is
illustrated in figure 2.10.

6. By successive gluon emission. Studying this energy loss (also called jet quenching [87]) is a lively field in
particle physics [88–96].
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Figure 2.10: Evidence for the existence of the QGP. On the left, a central energetic collision
that produces two back-to-back jets that will hit the detector with almost the same energy. On
the right, a non-central collision that will produce two back-to-back jets, one (on top) being
much more energetic and collimated than the other (on bottom).

These tests have been performed and what has been obtained by the CMS group (one of
the experimental team working at the LHC) is shown in figure 2.11. This neat confirmation of
a theoretical prediction is a strong argument in favor of the existence of the QGP.

Figure 2.11: Evidence for the existence of the QGP. Left part: two back-to-back jets with very
asymmetric energies hit the CMS detector (the two peaks). The most energetic jet has more
than twice the energy of the other. Right part: The subleading jet (on top) is less collimated.

2.6 Has the QGP ever existed in the history of the universe?

Since the heavy ion collisions are so energetic, they are sometimes referred to as the "little-
bangs". The different phases of the little-bang are illustrated in figure 2.12.
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Figure 2.12: The little bang. phase 1 to 5 (from left to right, top to bottom): two very energetic
heavy ion approach each other at almost the speed of light. They collide and form a new state
of matter called QGP. As we will see later on, this QGP is out of equilibrium (and is in this case
sometimes referred to as the glasma) at the initial time after the collision. Nevertheless, this
glasma is assumed to equilibrate very fast, and the products of the collision can be described
as an ideal or viscous fluid (as we will see later on, this puts some strong constraints on the
system: the latter should not be too far from equilibrium). This fluid then form particles (a
process named "hadronization") that reach the detectors.

This analogy in name between the little-bang and its older (and bigger) brother the big-
bang is due to the fact that the early stages of a heavy ion collisions can probe the first instants
of the life of our own universe. This is why some theoretical physicists study the little-bangs
in order to learn more about the big-bang, from which a cartoon picture is given in figure
2.13.

Figure 2.13: Schematic view of the big-bang.

In particular, an hypothetic phase during the creation of the universe called the inflation
has attracted a lot of attention recently. Inflation is an expansion of the structure of the uni-
verse itself at a speed way faster that the speed of light during a very short time. The inflation
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scenario has been introduced in the 80’s [97], when people discovered a relic of the formation
of the universe called the Cosmic Microwave Background (or CMB). This radiation has the
specificity to have a black body temperature of 2.8 Kelvin (with only 10−5 variations) every-
where in the universe 7, even in regions that are not causally related today 8. The inflation,
and especially the thermalization that occurred at the end of it, is able to explain this paradox.
This thermalization shares a lot with the one that happens in the little-bangs.

2.7 Quark-gluon-plasma: the puzzle

Theoretical models trying to describe this quark-gluon-plasma have been intensively de-
veloped in the past twenty years. The conclusion of all these models is that the QGP should
experienced an initial phase where it is very far from being at thermal equilibrium. If such
an equilibrium was reached, it would imply some strong constraints for the QGP at both the
macroscopic and microscopic level. At the macroscopic level, there should be a one to one
relation between the energy density and the pressure of the system: a relation called equation
of state (EOS). At the microscopic level, the distribution of the particle given their energy
should be dictated by a specific function. This specific function, called the occupation num-
ber (or distribution function) should follow a Bose-Einstein statistics for bosonic particles like
gluons 9.

Meanwhile, other less fundamental theories such as macroscopic models have been used
in order to try to reproduce the outcome of the collisions. The one that is best able to do so
is relativistic hydrodynamics. This theory relies on the Navier-Stokes equations, that describe
the motion of a relativistic fluid. It can be either ideal or viscous. It is a macroscopic theory
as it describes the system with a very limited amount of parameters: the energy density of
the fluid, its pressure and velocity. It turns out that relativistic hydrodynamics has been so
successful in describing the outcome of the experiments that this is a puzzle for the heavy-ion
community.

The issue is the following: in order for relativistic hydrodynamics to work, it requires some
postulates, and one of the most important is a very rapid thermal equilibration 10 of the QGP.
But as already mentioned, more fundamental theoretical models that adopt a microscopic
description of the QGP fail to predict such a short thermalization time.

A lot of work has been done in order to try to understand why a short transition from
an out-of-thermal equilibrium QGP (also called Glasma) to a thermalized QGP is possible.
The holy grail of the field is therefore the understanding of the assumed to be fast transition
illustrated in figure 2.14.

7. This temperature is time dependent: it was much warmer when the CMB was effectively produced when
the universe was about 300.000 years old. But its striking feature is that it is not space dependent.

8. Nothing –nor forces neither information – could have traveled from one region to another because their
mutual distance is bigger that the lifetime of the universe multiplied by the speed of light. And one of the
postulates of special relativity is that nothing can travel faster than the speed of light.

9. For quarks, it would be the Fermi-Dirac statistics.
10. As we will discuss at length in the subsequent part of this manuscript, full thermalization (EOS, Bose-

Einstein distribution) is not really required in order for hydrodynamics to work.
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Figure 2.14: One of the current puzzles on the theoretical side of heavy ion collisions. The
acronym CGC, standing for "Color Glass Condensate" indicates that the latter is one of the
promising theoretical models that could describe the transition. This is the one that we will
be using in this manuscript. The CGC will be introduced in the section 3.6.

One of the best models to study the microscopic properties of the pre-QGP state is called
the Color Glass Condensate. It is a QCD effective theory: it deals with the usual tools of QCD
but do some approximations that can be performed because of the specific kinematics of a
heavy ion collision. The description of this model will be done in the next chapter.
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T
his chapter aims at introducing the main theoretical tools that can describe the

Quark-Gluon-Plasma, and explain why we will be using the Color Glass Conden-
sate theory throughout this thesis. It will be complemented by the more technical
considerations in the chapter 4.

3.1 Kinetic Theory

One of the tools to study the Quark-Gluon-Plasma is kinetic theory. Kinetic theory assumes
that the QGP is formed by particles and it describes how these particles interact with each
other. Different kind of interactions – elastic, inelastic – could be involved. They are all
described by a collision term. The collision term forms the right hand side of the Boltzmann
equation, that aims at computing the time dependence of the occupation number in an out of
equilibrium system (as the QGP is, see section 3.8). The Boltzmann equation takes the form

∂ f
∂t

= C[ f ] , (3.1)

29
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where f is the occupation number of the QGP constituents (as we will see in section 3.5.1,
these are mostly gluons) and C[ f ] the collision term. Kinetic theory has been very successful
in studying the late time behaviour of the QGP, and numerous works have been performed in
that direction [33, 41, 98].

But the key problem in using the kinetic theory in order to describe the QGP time evolution
lies in its very first postulate. Indeed, as we will see in section 3.5.1, the QGP is the siege
of very large fields after the collision, rendering in principle impossible a particle picture
of the QGP at these instants. We will therefore not consider kinetic theory in the present
manuscript 1.

3.2 Hydrodynamics

As it name suggests, hydrodynamics is the theory that governs the motion of a fluid. This
theory is macroscopic: it does not seek to describe fully a system at the microscopic level
(like QCD would), but rather study a few macroscopic quantities: the energy density ǫ, the
pressure p, and the velocity of the fluid uµ, where from now on Greek letters stand for Lorentz
indices that go from 0 (time dimension) to 3 (1, 2 and 3 being the spatial indices). This means
5 independent variables, since uµuµ = 1. In order to determine these unknown quantities, one
therefore needs five equations. If the fluid is ideal (meaning that it is not viscous), the laws
that govern the fluid movements have been derived more than 250 years ago (in 1755 to be
precise) by Leonhard Euler. There are the Euler equations. We will not repeat them here as
we are more interested in the non-ideal case. Indeed, as we will see, the QGP is viscous 2.

3.2.1 Relativistic viscous hydrodynamics

If the fluid if viscous 3, then the equations that govern the fluid motion are the Navier-
Stokes equations. They are a consequence of Energy momentum conservation ∂µTµν. The first
one reads

(ǫ + p)Duα −∇α p + ∆α
ν∂µΠµν = 0 , (3.2)

where the different operators that appear in (3.2) are defined by

D = uµ∂µ , ∇α = ∆µα∂µ = ∆α
µ∂µ , ∆µν = gµν − uµuν . (3.3)

Πµν is the viscous tensor

Πµν = η∇<µuν>

︸ ︷︷ ︸
πµν

+∆µν ζ∇αuα

︸ ︷︷ ︸
Π

, (3.4)

where η is the shear viscosity of the fluid and ζ the bulk one. We denote

∇<µuν> = 2∇(µuν) − 2

3
∆µν∇αuα , ∇(µuν) =

1

2
(∇µuν +∇νuµ) . (3.5)

Πµν characterizes the deviation of the fluid from an ideal one. For the energy-momentum
tensor of the theory it means that

Tµν
visc = Tµν

ideal + Πµν , (3.6)

1. Here it is worth mentioning that the hard momentum sector of the QGP could in principle be described by
particles, as we will argue in section 3.5.1 that the fields are only large in magnitude up to a momentum scale
called the saturation scale QS. Some recent studies [25, 32, 99, 100] have therefore coupled the Yang-Mill equations
to describe the soft sector of the QGP with a Vlasov equation (Boltzmann equation with vanishing collision term)
to treat the hard sector [101] and got promising results. A lot remains to be done in this direction, since very
drastic assumptions were performed on both side until so far (Vlasov instead of Boltzmann equation, unrealistic
initial condition for the soft sector...).

2. To be more precise the shear viscosity η is very large for the QGP [102–105], but the dimensionless shear
viscosity over entropy ratio

η
s is very small [106].

3. Reviews on viscous hydrodynamics can be found in [107–109].
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where

Tµν
ideal = (ǫ + p)uµuν − pgµν =




ǫ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 , (3.7)

is the energy-momentum tensor of an ideal fluid at rest in the comoving frame (uµ = (1, 0, 0, 0)):
diagonal and traceless (i.e. p = ǫ

3 . This will be used in the chapters 6 and 9). (3.2) only stands
for 3 equations, as it gives 0 when contracted with uα. From the energy momentum conserva-
tion one can also deduce the conservation law 4

Dǫ + (ǫ + p)∂µuµ −Πµν∇(µuν) = 0 , (3.8)

To close the system, we need one additional equation, as (3.2-3.8) stand for 4 equations while
we have five unknowns. This last equation is the so-called equation of state 5, that relates the
energy and the pressure of the system

ǫ = f (p) . (3.9)

This equation cannot be derived inside hydrodynamics: it is a postulate. In addition, both (3.4)
and (3.8) have been derived by doing a gradient expansion, and it turns out that this expansion
is not valid if the system is too anisotropic. If the pressures in the various spatial directions are
not equal, they should not be too different 6. Finally, to perform a hydrodynamical simulation,
i.e. to solve numerically 7 the Navier-Stokes equations, one needs an initial condition. This
means knowing at an initial time the energy density, as well as the pressures and the fluid
four-velocity. One also needs to know the values of the viscous tensor parameters 8: the shear
viscosity η and the bulk viscosity ζ that appear in the viscous tensor 3.4. The latter is often
taken equal to 0, as it is not present in conformally invariant systems, which the QGP is
often assumed to be. With all this in mind, let us shortly illustrate one of the hydrodynamics
greatest success: the reproduction of the large elliptic flow observed in heavy-ion collisions.

3.2.2 Hydrodynamical simulations can reproduce the RHIC and LHC data

Since the start of RHIC, hydrodynamical simulations have managed to reproduce very
successfully the outcome of heavy-ion collisions. Many works have been performed in this
framework (see for instance [12, 14–21]), and we will only discuss here one of these stud-
ies [13], that will serve our purpose later on: the large elliptic flow observed in heavy-ion
collisions. The measurement of the elliptic flow v2 is explained in [112] 9, and one can also
understand there why the measured v2 is larger than one may naively expect. The numerical
results obtained by Luzum and Romatschke in [13] are reproduced in the figure 3.1

4. That will prove useful to derive Bjorken’s law in the appendix 3.A.
5. Note that this equation is satisfied by construction for an ideal fluid at rest in the comoving frame.
6. As we will see later on in section 3.8, this is the case in the Color Glass Condensate Effective Theory at its

Leading Order.
7. Actually, the equations that are solved numerically are not exactly the Navier-Stokes equations (3.4) and

(3.8) presented here,because they violate causality. To restore causality in the Navier-Stokes equations, one has to
include new terms. This is the essence of the Israel-Stewart theory [110], the framework in which the equations
that are truly solved numerically can be derived. For a good reference on this see [108]. Latest improvements of
this framework can be found in [111].

8. In Israel-Stewart theory there are additional parameters.
9. The main idea is to measure correlations between particles in the final state. More on the elliptic flow can

be found in [112–114].
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Figure 3.1: The elliptic flow obtained by viscous hydrodynamical simulations, using CGC-
like initial conditions (to be defined in the section 3.8), represented here as a function of the
number of participants in the collision.

Several important conclusions can be drawn from this figure. The first one is that rela-
tivistic viscous hydrodynamics simulations (color lines, corresponding to different values of
the shear viscosity over entropy ratio

η
s ) can successfully reproduce the experimental data

(black points). In addition, they work for a very small value of
η
s , very close to its conjectured

lower bound 1
4π ∼ 0.08 computed using AdS/CFT techniques (see [115]). The second impor-

tant fact for the simulations to reproduce the experimental data is that the hydrodynamical
simulations must be started very early after the collision. If we call the time at which hy-
drodynamical simulations are initialized τ0, we therefore need Qsτ0 . 5− 10 (here Qs is the
saturation momentum that will be defined later). The system must therefore hydrodynamize
very fast, while it does not behave at all like hydrodynamics just after the collision, as we will
argue in the section 3.8. The success of the work shown in the figure 3.1, among with numer-
ous other achievements of viscous hydrodynamics therefore suggests that the conditions on

η
s

and τ0 that we have just presented are fulfilled. But can this be justified from first principles?

3.2.3 Are hydrodynamics postulates satisfied in the QGP?

To summarize, in order for hydrodynamics to work, several assumptions must be satisfied

Hydrodynamics Prerequisites (1)

0) The pressure and the energy are related by an equation of state (EOS).
I) At the initialization time τ0, we should know the macroscopic variables: ǫ, p, uµ.
II) At all times, we should know the viscosity parameters η and ζ (if the latter is not
taken to be 0).

η
s should be small, very close to its conjectured lower bound 1

4π .
III) The initialization time should be small. In realistic simulations reproducing the LHC
data, τ0 . 0.5− 1 f m/c.
IV) At the initialization time τ0 (and during the whole evolution of the system), the
anisotropy of the pressure tensor should be small.

As we will see in the section 3.8, postulate 0 is satisfied by construction in gauge theories.
It is nevertheless not fulfilled at all times in scalar theories, and we will need to prove it
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there. This will be one of the goals of the chapters 5 and 6. Postulates I − IV should be
derived from a more fundamental microscopic theory: QCD in the high energy limit (that is
reached at the RHIC and the LHC). To be more precise, we will see in the section 3.8 that the
pressure tensor is very anisotropic just after the collision. IV could therefore be rephrased as:
"Between the collision and the initialization time τ0, the pressure tensor should have become
nearly isotropic". In addition, during the whole evolution of the system the anisotropy in the
pressure tensor should remain small.

Hydrodynamics Prerequisites (2)

IV’) The pressure tensor should isotropize very fast after the collision .

As we saw in the section 3.2.2, hydrodynamics has been very successful in reproducing
the RHIC and LHC data. Therefore the fact that its postulates are satisfied very shortly after
the collision seems natural. But as we will see in the next sections, none of those prerequisites
are easy to derive from a QCD point of view. The aim of this thesis is to address this central
yet unanswered question.

Are the postulates of hydrodynamics I)-IV’) satisfied
during the early stages of a heavy-ion collision?

It turns out that this is a very difficult question to answer. Using weakly-coupled QCD
techniques at Leading Order, one would be tempted to conclude that those postulate are not
fulfilled at all. In this microscopic theory, the pressure anisotropy remains huge during several
f m/c, voiding the validity of IV ′ [22–24]. In addition,

η
s is predicted to be much larger than

1
4π in this framework [103], which invalidates the postulate I I. Does this mean that weakly
coupled techniques cannot describe the QGP? This is the point of view adopted by several
works using AdS/CFT techniques (see [116]), that assume that the QGP is in fact strongly
coupled. We will present their findings in the next section. Another possibility could be that
hydrodynamics postulates are indeed not fulfilled? Could other theories, relaxing some of the
postulates I − IV ′, still be able to reproduce successfully heavy-ion data? This is the starting
point of anisotropic hydrodynamics, which has been recently developed [117–119] and that
shows promising results. Finally, it might also be that Leading Order perturbation theory
does not give the correct qualitative results, and that the Next to Leading Order corrections
bring new physical effects on the system, that have qualitative consequences on isotropization
and the value of

η
s ? This is the point of view that we will adopt in this thesis, for reasons that

will be explained throughout this manuscript.
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3.3 Strongly coupled techniques: fast "hydrodynamisation"

Figure 3.2: A schematic view of the AdS/CFT setup.

The strongly coupled techniques that are used in order to describe the early life of the
out of equilibrium QGP rely on the AdS/CFT conjecture [116], illustrated in figure 3.2. This
conjecture establishes a link between supersymmetric gauge theories (which QCD is not) and
string theories in a five dimensional Anti de-Sitter curved space time. In the limit where
the gauge coupling becomes infinite, the string theory reduces to general relativity, and one
therefore just needs to solve Einstein’s equations to calculate the quantities of interest in the
theory. This is what has been done in [29], where Einstein’s equations have been solved for
various initial conditions. The results are reproduced in the figure 3.3

Figure 3.3: Left: comparison between first order (green), second order (blue) and third or-
der (red) hydrodynamical simulations with the resolution of Einstein’s equation with various
initial conditions (gray). Right: momentum anisotropy.
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We see that the out-of-equilibrium AdS/CFT calculations very rapidly coincide with the
viscous hydrodynamical simulations. This is illustrated in the left plot (where w plays the
role of the time τ), where the agreement between the two theories is compatible with the
τ0 ∼ 1 f m/c mentioned in the previous sections. The surprise comes from the right plot,
where we see that this agreement already happens when the system is rather far from being
isotropic. Does this means that the range of applicability of hydrodynamics is broader than
we may expect given the postulates I − IV ′? More realistic initial conditions (colliding shock
waves in the AdS space in order to mimic the heavy-ions) are currently investigated in order
to answer in a more definitive way this question at strong coupling [34].

Another important result found within the AdS/CFT framework is the fact that hydrody-
namics – as perturbation theories – is based on an asymptotic expansion [120]. The radius of
convergence of the gradient expansion is in fact 0. This comparison between hydrodynamics
and AdS/CFT techniques has been very fruitful. The AdS/CFT framework is an interesting
playground to understand what is happening in heavy-ion collisions, but should not be con-
sidered as more than a toy model. Indeed, the assumption that the QGP is infinitely strongly
coupled seems extreme, as one can see on figure 2.3. At the scale Qs ≈ 1− 2GeV, the strong
coupling constant αs is of the order of 0.3. In addition, QCD is pretty different from a super-
symmetric gauge theory. This is what motivates our choice to stay within a weakly coupled
description of the QGP in the remaining parts of this manuscript.

3.4 Quantum Chromodynamics

Quantum Chromodynamics is the theory that governs the strong interaction. It shares
many similarities with quantum electrodynamics (QED) and even more with the electroweak
interaction (EW). But unlike QED, it is a non-abelian interaction: its symmetry group is
SU(3) 10. Unlike electroweak theory, its boson mediator – the gluon – is massless 11. The
QCD Lagrangean reads

L = − 1

4
Fa

µνFµνa + ∑
f

ψa
f (i /D−m f )ψ̄

a
f . (3.10)

Here the latin letters a, b stand for the color indices 12, while f denotes the quark flavor. For
reasons that will be explained in the section 3.5.1, we will only consider the gluonic sector
of QCD in the remaining parts of this manuscript. As it is well known, the gauge symmetry
prevents one to directly derive the propagator without first fixing a gauge. We will use the
axial gauge throughout this thesis, which involves the addition of the following term to the
Lagrangean

∆L =
1

2ξ
(nµ Aa

µ)
2 ; (3.11)

where one sets ξ = 0 at the end. Among its advantages, this gauge choice prevents the
appearance of the unphysical ghost particles. The calculations of chapter 8 will also be sim-
plified thanks to this gauge choice. To summarize, the QCD Lagrangean that we consider is

10. While for QED it is the abelian group U(1) and for the EW interaction it is SU(2). To reduce the computation
time, the numerical simulations performed in chapter 9 are done using SU(2) and not SU(3) gauge group. This
is not a drastic approximation, as it has been shown previously that this does not affect too much the numerical
results [121].

11. The W± and the Z are massive because of the spontaneous EW symmetry breaking.
12. That plays the same role as the electrical charge in QED, and is called the color charge.
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the following one

L = − 1

4
(∂µ Aa

ν − ∂ν Aa
µ)

2 +
1

2ξ
(nµ Aa

µ)(n
ν Aa

ν)

︸ ︷︷ ︸
free Yang-Mills theory

− g f abc(∂µ Aa
ν)Aµb Aνc

︸ ︷︷ ︸
3-vertex

+
g2

4
f eab f ecd Aa

µ Ab
ν Aµc Aνd

︸ ︷︷ ︸
4-vertex

. (3.12)

The Feynman rules associated with this Lagrangean are

• the gluon propagator :

a
µ

b
ν

= − iδab
(

gµν

k2 + ik0ǫ
− kµkν

(n.k + iǫ)2

(
ξ − n2

k2 + ik0ǫ

)

− kµnν + kνnµ

(k2 + ik0ǫ)(n.k + iǫ)

)
. (3.13)

• the 3 gluon vertex :

a
α

b
β

c
γ

k1
k2

k3

= g f abc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

. (3.14)

• the 4 gluon vertex :

b
βa

α

d
δ c

γ

= − ig2




f abe f cde
(

gαγgβδ − gαδgβγ
)

+ f ace f bde
(

gαβgγδ − gαδgγβ
)

+ f ade f bce
(

gαβgδγ − gαγgβδ
)


 . (3.15)

This gives a perturbative framework where analytical calculations can be performed. Unfortu-
nately, usual Feynman diagrammatic techniques will prove impractical in the context of heavy
ion collisions. Why is it so is related to the saturation phenomenon.

3.5 Specificities of heavy-ion collisions

3.5.1 Gluon saturation

Consider a proton at rest. It is only made of its three valence quarks, as illustrated in the
figure (3.4)
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Figure 3.4: A proton at rest.

Now, increase the energy of this proton. The quarks emit gluons by bremsstrahlung. At
higher energies, more and more gluons (that could later decay into sea quarks) can be emitted,
as can be seen in the figure (3.5)

Figure 3.5: More and more gluons are emitted at higher energies. The color dots on the right
part of the figures are either gluons or quarks.

But this process cannot go on forever. Indeed, when the room inside the proton is not
sufficient to accommodate new gluons, they will start to recombine, as illustrated in the figure
(3.6)

Figure 3.6: The gluon recombination phenomenon.

At high energy, a saturation phenomenon occurs [46]: there will be as many emissions
as recombinations. This is characterized by a specific momentum: the saturation scale Qs.
Following Gribov, Levin and Ryskin [45], one can roughly estimate it as follows: denoting the
gluon distribution xG(x, Q2), the number of gluons per unit are is

ρ ∼ xG(x, Q2)

πR2
A

, (3.16)

where RA is the radius of the nucleus involved 13. The recombination cross-section of two
gluons into one gluons scales as [45]

σgg→g ∼
αs

Q2
, (3.17)

13. A = 1 for a proton, A = 197 for gold and A = 208 for Lead (isotopes used at RHIC and LHC).
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Saturation is reached when ρσgg→g ∼ 1, which means

Q2
s ∼

αsxG(x, Q2)

πR2
A

(3.18)

Phenomenologically, this parametric estimate scales as

Q2
s ∼

A
1
2

x0.3
. (3.19)

This is illustrated 14 in the figure (3.7)

Figure 3.7: Left side: the limit between the domain of gluon saturation and the dilute partonic
matter. Right side: a slice of the left panel at fixed A, with the schematic picture of what the
nucleus looks like.

The other very important conclusion that can be drawn from the parametric estimate of
equation (3.18) is that in the saturated regime, the gluon occupation number is

f (x, Q2) ∼ xG(x, Q2)

πR2
AQ2

s
∼ 1

αs
. (3.20)

In other words, the gluon occupation is very large at weak coupling. Because of the Pauli
exclusion principle, the occupation number of the quarks in contrast cannot be bigger than
1. It therefore made sense to neglect them in (3.10). This high gluon occupancy – meaning
that even if the QGP is weakly coupled it is strongly interacting – is one of the key physical
features behind the the Color Glass Condensate effective theory.

3.5.2 Time dilation for highly boosted nuclei

To understand what are the phenomenological consequences of the time dilation phe-
nomenon, consider again a proton at rest. We would like to probe this proton during a finite
amount of time (the time length of the probe being for instance the duration of a collision).
This probe would see the three valence quarks, as illustrated in the figure (3.8)

14. Here one should not be deceived by the reversed Q-x axis between the two plots, meaning that the saturation
regime is at the bottom on the left figure and at the top in the right one.
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Figure 3.8: A proton at rest probed during a finite amount of time (represented by the blue
band. Only the three valence quarks are visible.

Now, if we increase energy, the valence quarks radiate gluons by bremsstrahlung and the
probe sees a much denser configuration of gluons and quarks, illustrated in the figure (3.9)

Figure 3.9: A proton at high energy, radiating gluons. Some of the gluons appear as free
gluons with respect to the probe length.

At modest energies, most of the gluons probed are either emitted or reabsorbed during the
interaction with the probe. These gluons therefore do not appear as free particles. Only a few
of them do appear as free gluons. Consider now a proton at much higher energies. Firstly, due
to Lorentz space contraction, the proton looks like a pancake localized in the plane transverse
to the collision axis. Secondly, due to Lorentz time dilation, the time between the emission
and absorption of a gluon is considerably increased. The schematic picture would therefore
be the one of the figure (3.10)

Figure 3.10: A proton at very high energy.
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More and more gluons appear as free gluons. These are the gluons that move the fastest
(hence those who suffer the most from the Lorentz time dilation). The dynamics of these
gluons appears to be frozen. This is the other key ingredient of the Color Glass Condensate
(CGC).

3.6 The Color Glass Condensate (CGC) effective theory

In the McLerran-Venugopalan model [43, 44] that gave birth to the modern version of the
CGC, a momentum separation scale 15 Λ± is introduced between slow and fast gluons. Slow
gluons are treated as usual gauge fields Aa

µ, while fast gluons are described as static color
sources Ja

µ. They are considered to be moving at the speed of light. In light cone coordinates

(z being taken to be the direction of the collision axis throughout this manuscript) x± = x+±x−√
2

,

the two color currents Jµ
n modeling the fast partons of the two projectiles (the n = 1, 2 index

either standing for projectile one or two) are located on the light-cone axes. Schematically, the
CCC picture looks like the figure (3.11)

x
+

x
−

CGC

J
µ

1 J
µ

2

Aµ

Figure 3.11: CGC picture. The slow gluons are described by the gauge field Aµ while the fast

ones are described by the sources Jµ
n .

More precisely, these sources have the following form

Jµa
1 = δµ−δ(x+)ρa

1(x⊥) , Jµa
2 = δµ+δ(x−)ρa

2(x⊥) , (3.21)

where the δ(x±) is due to the time dilation. Both currents are conserved 16 Dab
µ Jµb

n = 0. Finally,
we need to specify the ρn. This will be the topic of the next section. For the moment, it suffices
to give their parametric scaling. For dimensionality reasons (because J has dimension mass3),
we have ρn ∼ Q2

s . In the gluon saturation regime, it turns out that

ρn ∼
Q2

s

g
(3.22)

where g is related to the strong coupling constant through αs = g2

4π . The Lagrangean of the
CGC [122–124] is

L = −1

4
Fa

µνFµνa + Aa
µ

(
Jµa
1 + Jµa

2

)
. (3.23)

Now we are armed to understand why naive perturbation theory fails to compute observ-
ables in this framework. Indeed, since J ∼ 1

g adding more sources to a tree diagram does not

change the power counting in terms of g. To illustrate this, look at the three diagrams that all
contribute at leading order in g to the observable 〈Aµ〉 (each green blob corresponding to a
source J)

1
g ,

g

1
g

1
g

,
g2

1
g

1
g

1
g . (3.24)

15. Λ+ (resp. Λ−) being the momentum separation scale for the nucleus flying in the x+ (resp. x−) direction.
16. This requires taking two different axial gauge for the two nuclei. This is not the choice that we will adopt in

the chapter 8 and the gauge fields will induce a precession of the current.
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Despite having a different number of three and four gluon vertices, these three diagrams are
of the same order. The following graph has also the same order in g

. (3.25)

As one can see, there are five 4-gluon and five 3-gluon vertices for 16 sources, which gives an
overall power of g10g5g−16 = 1

g as before. The conclusion is that all tree diagrams contribute

to the leading order (LO) of any observable. Therefore, one cannot rely on usual diagram-
matic techniques to compute this infinite sum of contributions. We will see in the chapter 4
the other tools at our disposal to do calculations in the CGC framework (the bottom line being
that the LO can be computed by solving the classical equation of motions with retarded initial
conditions).

3.7 JIMWLK equation

In the previous section, we saw that an arbitrary momentum scale Λ± was introduced for
each nucleus in order to separate the slow gluons from the fast ones. As a consequence, we
can expect that physical observables computed with the Lagrangean (3.23) will depend on
Λ±. This is an issue because a physical observable should not depend on these unphysical
parameters. The way to circumvent the problem is the following. Firstly, we have not been
very specific on how to choose the color sources ρn. The best way to describe them is through
a distribution function W[ρn], meaning that we have only a probabilistic knowledge of the
fast gluons. The key idea behind the JIMWLK renormalization group equation [125–131] is
then to make W depends on the momentum cutoff in such a way that it precisely cancels the
Λ± dependence of the physical observable. To be able to do so, one has to prove that the Λ±

dependence can be factorized [58], i.e. that the unphysical dependence coming from the two
nuclei do not mix. The JIMWLK equation then reads

Λ±
∂WΛ± [ρn]

∂Λ±
= −HWΛ± [ρn] , (3.26)

where H is the JIMWLK Hamiltonean.

3.8 LO CGC results: Impossible matching with hydrodynamics

To calculate physical observables after the collision we need to know what are the gauge
fields at that time. It turns out that one can compute them analytically [22, 47–50] in the
proper time/rapidity coordinate system

τ =
√

t2 − z2 , η =
1

2
ln

t + z
t− z

. (3.27)

There are two ways to do so: a matching of the singular terms in the Yang-Mills equation
above and below the light cone axes [22, 47–49], and a second method [50] which we will
present in the chapter 8, as it will prove very useful there in order to go beyond LO. In the
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temporal axial gauge Aτ = 0 called the Fock-Scwhinger gauge, the solution at a small proper
time Qsτ ≪ 1 reads

E η(τ, x⊥, η) ∼ F(x⊥) , E i(τ, x⊥, η) ∼ τ2

Aη(τ, x⊥, η) ∼ τ2 , Ai(τ, x⊥, η) ∼ G(x⊥) , (3.28)

where Eµ = −τgµν∂τAν are the electric fields. The precise form of the functions F and G will
be given in the chapter 8. Here one can notice that the fields are rapidity independent. How
these field evolve after Qsτ ≪ 1 is not known analytically, and one has to rely on numerical
simulations in order to compute them. In order to answer to points I− IV ′,recall that we need
to know if the transverse and longitudinal pressures converge towards the same value. From
the canonical definition of the energy-momentum tensor in gauge theories

Tµν =
1

4
gµνF a

ρσF ρσa −Fµa
ρ F ρνa , (3.29)

and the magnetic fields

Bµ =
1

2
ǫµνρFνρ , (3.30)

we find that

ǫ = Tττ =
1

2

(
E iaE ia + E ηaE ηa + BiaBia + BηaBηa

)

PT =
Txx + Tyy

2
=

1

2
(E ηaE ηa + BηaBηa)

PL = Tηη =
1

2

(
E iaE ia − E ηaE ηa + BiaBia −BηaBηa

)
. (3.31)

From (3.28), we get

Bia(τ, x⊥, η) ∼ τ2 Bηa(τ, x⊥, η) ∼ H(x⊥) . (3.32)

At τ = 0+, only the longitudinal electric and magnetic fields are not zero. This implies that
the energy density is equal to the transverse pressure, and is the opposite of the longitudinal
one.

ǫ ≈ PT ≈ −PL . (3.33)

By solving numerically the classical Yang-Mills equations, one can obtain PT and PL at later
times τ > 0, as illustrated in the figure 3.12
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Figure 3.12: τPT and τPL as a function of the proper time. µ is related to the saturation scale
Qs through Qs = µg2.

As one can see, the transverse and longitudinal pressures start at opposite values, to later
evolve into a stage where PL ≈ 0. This is in contradiction with postulate IV ′, so here one has
two choices: either abandon the weak-coupling description of the QGP, or try to understand
whether there are large corrections beyond LO in the CGC. We will adopt the second point
of view throughout this manuscript. It is also worth mentioning that the initial anisotropy is
not specific to the CGC. It is in fact a consequence of energy-momentum conservation, that
implies

∂τǫ +
ǫ + PL

τ
= 0 . (3.34)

For the energy-density to remain finite as the proper time goes to 0+, one must have, as
written in the figure 3.12,

lim
τ→0

PL = −ǫ . (3.35)

In addition, one can check on (3.31) that Tµν is traceless in the Yang-Mills theory, which gives

ǫ = 2PT + PL . (3.36)

As a consequence

lim
τ→0

PT = ǫ . (3.37)

So the fact that at τ = 0 the pressure tensor is anisotropic is not a peculiarity of the CGC. But
the fact that this anisotropy remains large indefinitely (as will be shown to be in the chapter
9) is a limitation of the Leading Order CGC calculation, which is missing some important
physical mechanisms.

3.9 NLO CGC results: Weibel instabilities and secular divergences

Since the LO CGC is not compatible with the assumptions of hydrodynamics, one can
try to extend this QCD effective description by computing higher order corrections. As we
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will show in the section 4.2, the Next to Leading Order (NLO) can be computed by starting
with plane waves in the remote past and by propagating them on top of the classical fields
(3.28) with the linearized equation of motion. How can this have a sizable effect, since the
quantum corrections are αs corrections to the fields of (3.28)? This has to do with instabilities.
Indeed, it turns out that the Yang-Mills equations are subject to Weibel 17 instabilities [51–54]
in anisotropic systems. These instabilities happen for modes that are rapidity dependent. So
if one initializes the Yang-Mills numerical simulations with rapidity dependent fluctuations,
the following happens [55–57]
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Figure 3.13: The longitudinal pressure as a function of proper-time for a system initialized
with rapidity dependent fluctuations.

As one can see in this figure, initially tiny fluctuations grow exponentially as e#
√

Qsτ. Start-
ing from a NLO magnitude which is αs smaller than the LO, it takes a time

QsτNLO
∼ ln2 1

αs
, (3.38)

for the NLO corrections to reach the magnitude of the classical background field. Therefore,
it is important to include these NLO corrections into the CGC framework. Unfortunately, this
is not the end of the story. Indeed, we will see in the section 5.3.3 that the NLO term alone
grows forever, leading to unphysical divergences in the pressure at late times. To cure this
problem of secular divergences, a resummation is necessary, that we will present in the section
4.2. This leads to the classical-statistical method, that will be used throughout this thesis (see
the chapters 5, 6 and 9 for numerical results, the chapter 7 for its theoretical limitations and
the chapter 8 for its initial condition in the Yang-Mills case), to be introduced in the section
4.3.

17. First derived in QED [132]. For a qualitative analytic analysis of Weibel instabilities, see [133–136].



3.10. SUMMARY 45

3.10 Summary

• The Quark-Gluon Plasma can be very succesfully described by nearly ideal hydrody-
namics.
• Deriving the hydrodynamical prerequisites from QCD has proved to be very difficult
so far.
• One of the best QCD effective theory to describe the QGP is the CGC. It takes into ac-
count the specific kinematics (gluon saturation, time dilation) of a heavy ion collisions.
• The CGC at its LO cannot account for the early onset of a hydrodynamical behavior
of the QGP. Going beyond LO CGC in a satisfactory manner in order to account for this
possible early hydrodynamization is the aim of this manuscript.

Appendix

3.A Bjorken’s law for an ideal fluid

In the proper time/rapidity coordinate system, the four velocity of a fluid at rest in the
comoving frame reads

uµ = (uτ , ux, uy, uη) = (1, 0, 0, 0) . (3.39)

In the Minkowskian coordinates, this trivially gives

uµ̃ = (ut, ux, uy, uz) =
1

τ
(t, 0, 0,−z) , (3.40)

from which one can deduce

∇αuα =
1

τ
. (3.41)

Therefore, the conservation law (3.8) for an ideal fluid

Dǫ + (ǫ + p)∂µuµ = 0 (3.42)

becomes

∂τǫ +
ǫ + p

τ
= 0 . (3.43)

This is the famous Bjorken’s law [137].
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T
his chapter aims at describing techniques that go beyond the standard perturbation
theory approach. The first section will introduce a formalism that is more suited to
study real time evolution processes. The second section introduces one important
tool that will be later used numerically: a resummation technique that allows one

to account for a subset of quantum correction at any order of the perturbative expansion of
an inclusive observable. Finally, the third section re-express in a different way the final result
of the second section, by introducing the so-called Classical Statistical Approximation (CSA).

4.1 Schwinger-Keldysh formalism

In this section, we present an alternative formalism to the usual Feynman perturbation
theory. The reason is that while the latter allows to compute transition amplitudes such as
〈p′ q′out|p qin〉 (amplitude for two particles of momenta p , q in the initial state to become two
other particles of momenta p′, q′ in the final state), it is not ideal when it comes to evalu-
ate 〈in| |in〉 quantities such as

〈
in
∣∣a†

out(p) aout(p)
∣∣in
〉
, that counts the number of particles of

momentum p in the final state. After having recalled some general principles of perturba-
tion theory in the first part of this section, we will introduce the Schwinger-Keldysh [138,
139] formalism to deal with correlators of the form

〈
in
∣∣φ(x1) · · · φ(xn)φ(y1) · · · φ(yp)

∣∣in
〉
. The

47
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Schwinger-Keldysh formalism is the adapted framework to describe out of equilibrium sys-
tems and time evolving processes as the ones we will encounter in the chapters 5-6-9. To keep
things simple, we will do this for a Lagrangean of the form

L[φ] = 1

2

(
∂µφ

)
(∂µφ)

︸ ︷︷ ︸
Lvac

− g2

4!
φ4

︸ ︷︷ ︸
Lint

, (4.1)

that is, a Lagrangean that describes a massless scalar field theory with a quartic coupling.

4.1.1 Feynman Formalism: Notations, properties

Here we will recall some standard technique of perturbation theory in the Feynman for-
malism. To do so, we will consider operators of the form 〈p1out · · · pnout|0in〉, where 0in is the
initial vacuum state. We start with some notations. We will denote (omitting the hat on the
operators to lighten a bit the notations)

φin = lim
x0→−∞

φ , φout = lim
x0→+∞

φ . (4.2)

In Heisenberg representation, one has the following definition for φ

φ(x) = U(−∞, x0)φin(x)U(x0,−∞) , (4.3)

where U is the usual evolution operator , defined by the following first order differential
equation

∂

∂x0
U(x0,−∞) = i

[∫
d3xLint [φin(x0,~x)]

]
U(x0,−∞) . (4.4)

The initial condition is trivially found by imposing that there are no interactions at x0 = −∞

lim
x0→−∞

U(x0,−∞) = I . (4.5)

by solving (4.4), U can therefore be written as

U(x0,−∞) = Tei
∫ x0
−∞

dz0

∫
d3zLint[φin(z0 ,z)] , (4.6)

where T is the time ordering operator

T(A(y0)B(z0)) = θ(y0 − z0)A(y0)B(z0) + θ(z0 − y0)B(z0)A(y0) . (4.7)

Some properties of the evolution operator include

U(x0, y0)U(y0, z0) = U(x0, z0) U(x0, y0) = U−1(y0, x0) = U†(y0, x0) . (4.8)

Now, recalling the usual expressions for φin and φout in term of creation and annihilation
operator

φin =
∫

d3k

2|k|(2π)3

(
ain(k)e−ikx + a†

in(k)e
ikx
)

,

φout =
∫

d3k

2|k|(2π)3

(
aout(k)e−ikx + a†

out(k)e
ikx
)

. (4.9)

and noticing that because of (4.3)

φout(x) = U(−∞,+∞)φin(x)U(+∞,−∞) , (4.10)
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we must have

a†
out(x) = U(−∞,+∞)a†

in(x)U(+∞,−∞) , aout(x) = U(−∞,+∞)ain(x)U(+∞,−∞) ,
(4.11)

and since

ain(k) |0in〉 = 0 , aout(k) |0out〉 = 0 , |kin〉 = a†
in(k) |0in〉 , |kout〉 = a†

out(k) |0out〉 , (4.12)

one has

U(+∞,−∞)aout(x)U(−∞,+∞) |0in〉 = 0 , (4.13)

and

|0out〉 = U(−∞,+∞) |0in〉 , |0in〉 = U(+∞,−∞) |0out〉 , (4.14)

so

|p1..pn out〉 = U(−∞,+∞) |p1..pn in〉 , 〈0in| = 〈0out|U(−∞,+∞) . (4.15)

Finally, a very useful property concerning the creation and annihilation operator can be ob-
tained by inverting (4.9)

a(p) = i
∫

d3x eipx
↔
∂0 φ(x) , a†(p) = − i

∫
d3x e−ipx

↔
∂0 φ(x) , (4.16)

Armed with all those definitions and properties, we can present what is the one particle
production in the final state.

〈pout|0in〉 = i
∫

d4x eipx �x 〈0out|φ(x)|0in〉 . (4.17)

This result is easily extendable to the multi-particle production case, up to one subtlety, which
is the time ordering. The result is the Lehmann–Symanzik–Zimmermann formula [140]

〈
pn · · · p1,out|0in

〉
= in

∫
d4x1 · · ·d4xn ei(p1x1+···+pnxn)�xn · · ·�x1 〈0out|Tφ(xn) · · · φ(x1)|0in〉 .

(4.18)

It is now time to use (4.12-4.15) to express

I = 〈0out|Tφ(x1) · · · φ(xn)|0in〉 , (4.19)

in term of free operators. To do so, we will make the following choice on the dummy variables
x1 · · · xn

−∞ +∞xn · · · x1 , (4.20)

so that

I = 〈0out|U(−∞, x0
1)φin(x1)U(x0

1,−∞)U(−∞, x0
2)φin(x1)U(x0

2,−∞)

U(−∞, x0
n)φin(xn)U(x0

n,−∞) |0in〉 . (4.21)

Using (4.8), we get

I = 〈0out|U(−∞,+∞)U(+∞, x0
1)φin(x1)U(x1

0, x0
2)φin(x1) · · ·U(x0

n,−∞ |0in〉
=
〈

0in|U(+∞, x0
1)φin(x1)U(x1

0, x0
2)φin(x1)U(x0

2, x3
0) · · · φin(xn)U(x0

n,−∞)|0in

〉
, (4.22)
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Reintroducing the time ordering operator T, we obtain

〈0out|Tφ(x1)..φ(xn)|0in〉 =
〈

0in|Tφin(x1)..φin(xn)ei
∫
Lint(φin(z))d4z|0in

〉
. (4.23)

One can then introduce the following generating functional

Z [η] =
〈

0in|Tei
∫ +∞

−∞
[Lint(φin(z))+η(z)φin(z)]d4z|0in

〉
. (4.24)

This is the central tool of perturbation theory since from it we can easily derive

〈
0in|Tφin(x1)..φin(xn)ei

∫
Lint(φin(z))d4z|0in

〉
=

δZ [η]
iδη(x1)..iη(xn)

∣∣∣
η=0

. (4.25)

Thanks to the property

F(
d

idx
)eiax = F(a)eiax , (4.26)

obtained by Taylor expanding F, Z can be rewritten as

Z [η] = ei
∫ +∞

−∞
Lint

(
δ

iδη(z)

)
d4z
〈

0in|Tei
∫ +∞

−∞
η(z)φin(z)d4z|0in

〉
. (4.27)

Finally, a standard result in perturbation theory tells us that

Z0[η] =
〈

0in|Tei
∫ +∞

−∞
η(z)φin(z)d4z|0in

〉
, (4.28)

can be rewritten as

Z0[η] = e−
1
2

∫
d4x d4y η(x)GF(x,y)η(y) (4.29)

with (see [140] for a standard derivation of the Feynman propagator)

GF(x, y) = 〈0in|Tφin(x)φin(y)|0in〉 = i
∫

d4 p
(2π)4

eip(x−y)

p2 + iǫ
, (4.30)

GF being the Feynman propagator. Z can therefore be written as

Z [η] = ei
∫ +∞

−∞
Lint

(
δ

iδη(z)

)
d4ze−

1
2

∫
d4x d4y η(x)GF(x,y)η(y)

(4.31)

This generating functional is the central tool of Feynman formalism and is the perfect tool
to compute the multi-particle production in the final state. Unfortunately, some of the sim-
plifications that we used for its derivation cannot be used anymore when it comes to the
computation of the number of particles with momentum p in the final state. This is the reason
why we introduce Schwinger-Keldysh formalism in the next section.

4.1.2 The problem of in-in correlators: Schwinger-Keldysh formalism

We now introduce the Schwinger-Keldysh formalism in order to compute

〈
0in

∣∣∣a†
pap
∣∣∣0in

〉
, (4.32)

which is just the number of particle in the final state with the momentum p. As we will see,
the Feynman formalism presented in the previous section is not well suited for computing
such a quantity. To see this, let us try to apply the same tricks that the ones already used in
section 4.1.1. We start from

ap = i
∫

d4x eipx �φ(x) , a†
p = − i

∫
d4x e−ipx �φ(x) , (4.33)
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which gives very similarly 1 to (4.18)

〈
0in

∣∣∣a†
pap
∣∣∣0in

〉
=
∫

d4y d4x e−ipx+ipy �x�y 〈0in|φ(x)φ(y)|0in〉 . (4.34)

We write

φ(x) = U(−∞, x0)φin(x)U(x0,−∞) (4.35)

φ(x)φ(y) = U(−∞, x0)φin(x)U(x0, y0)φin(y)U(y0,−∞) . (4.36)

But now things start to be different. There are two reasons for that: the first one is that we
have an 〈0in| state instead of an 〈0out| one, and the second reason is the lack of the T product
in the previous expression. The first one implies that we can’t reorganize the U evolution
operators as we did before. The trick in the Schwinger-Keldysh formalism will therefore be
different, and consists in artificially duplicating the time contour in the following way

−∞ +∞

+ branch

− branch , (4.37)

where the separation between the + and − has been exaggerated for readability. This is
the main specificity of the Schwinger-Keldysh formalism. By analogy with the Feynman

formalism, we call P the path ordering along the blue contour C. P is equal to T if both x0

and y0 belong to the + branch, opposite to T if they belong to the − branch and proportional
to a θ function if the two times don’t belong to the same branch. Thus, calling φ(±) the field
on the ± branch, we get

〈
0in

∣∣∣a†
pap
∣∣∣0in

〉
=
∫

d4y d4x e−ipx+ipy �x�y

〈
0in

∣∣∣Pφ
(−)
in (x)φ(+)

in (y)ei
∫
C×R3 Lint(φin(z))d4z

∣∣∣0in

〉
,

(4.38)

with

ei
∫
C×R3 Lint(φin(z))d4z = ei

∫
R×R3 Lint(φ

(+)
in (z))d4ze−i

∫
R×R3 Lint(φ

(−)
in (z))d4z. (4.39)

The generating functional of this formalism is

Z [η+, η−] =
〈

0in

∣∣∣Pei
∫
C×R3 (Lint(φin(z))+η(z)φin(z))d4z

∣∣∣0in

〉
, (4.40)

and therefore

〈
0in

∣∣∣Pφǫ1
in(x1)..φ

ǫn
in (xn)ei

∫
C×R3 Lint(φin(z))d4z

∣∣∣0in

〉
=

δZ [η+, η−]
iδηǫ1(x1)..iηǫn(xn)

∣∣∣
η±=0

. (4.41)

as in the Feynman formalism, Z can be rewritten as

Z [η+, η−] = ei
∫
C×R3 Lint

(
δ

iδη(z)

)
d4ze−

1
2

∫
C×R3 d4x d4y η(x)G(x,y)η(y) , (4.42)

with

G(x, y) = 〈0in|Pφin(x)φin(y)|0in〉 , (4.43)

with G(x, y) such that

- if x, y ∈ +, then P = T and

G(p) = G++(p) =
i

p2 + iǫ
. (4.44)

1. But the devil (and the Schwinger-Keldysh formalism) is in the details.
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- if x, y ∈ −, then P = T and

G(p) = G−−(p) =
−i

p2 − iǫ
. (4.45)

- if x ∈ −, y ∈ +, then

G(p) = G−+(p) = 2πθ(p0)δ(p2) . (4.46)

- if x ∈ +, y ∈ −, then

G(p) = G+−(p) = 2πθ(−p0)δ(p2) . (4.47)

G±± are the Schwinger-Keldysh propagators. It is trivial to check

G++ + G−− = G+− + G−+ , (4.48)

obtained thanks to the following property of the delta function 2

πδ(x) =
i

x + iǫ
− iP

(
1

x

)
. (4.49)

it will be useful for the future developments to define a new propagator

G++ − G+− = θ(x0 − y0) 〈0in|φin(x)φin(y)|0in〉+ (θ(y0 − x0)− 1) 〈0in|φin(y)φin(x)|0in〉
= θ(x0 − y0) 〈0in|[φin(x)φin(y)]|0in〉 = GR(x, y) , (4.50)

which is the retarded propagator. By looking at the definition of the G±± and using again
(4.49), it is easy to find that

GR(p) =
i

p2 + ip0ǫ
. (4.51)

The Schwinger-Keldysh formalism allows for an important simplification. Indeed, since
for a physical source we have η(+) = η(−) = η, one can show that in Schwinger-Keldysh

formalism, vacuum diagrams do not participate to the amplitude 〈0in|φin(x)φin(y)|0in〉. Feyn-
man rules in the Schwinger-Keldysh formalism are the following: to each propagator we
associate

x
ǫ = ±

y
ǫ′ = ±

⇒Gǫǫ′(x, y), (4.52)

to each source (indicated by a blue dot )

ǫ = ±
yx ⇒iǫ

∫
d4x η(x) (4.53)

and to each vertex

y
ǫ′ = ± ⇒− iλǫ (4.54)

2. P(x) indicates the principal value of x.
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Let us notice here the main difference between the two propagators GF and GR of the two
formalisms presented so far: their poles are not located in the same place in the complex
plane 3. Indeed, since

GF(p) =
i

p2 + iǫ
GR(p) =

i
p2 + ip0ǫ

, (4.55)

we have in the complex plane

GF

GR

. (4.56)

The other main difference between Feynman and Schwinger-Keldysh has already been in-
dicated: the latter does not contain vacuum-vacuum diagrams. But besides these differences,
there is a functional identity that strongly relates the two formalisms. With what we already
saw, it is indeed possible to rewrite the Schwinger-Keldysh generating functional thanks to
the one of the Feynman formalism

Z [η(+), η(−)] = e
∫

d4x d4y G+−(x,y)�x�y
δ2

δη(−)(x)δη(+)(y)Z [η(+)]Z∗[η(−)] . (4.57)

If this property holds for Z0 (without Lint), then it is simple to see that it is also true for the Z.
The demonstration being tedious, it is derived in the appendix 4.A. To conclude this section,
we present an alternate basis of the Schwinger-Keldysh formalism which is closer to what is
done in numerical simulations: the retarded-advanced basis. This will serve our interests in
the chapter 7.

4.1.3 The retarded-advanced formalism

It turns out that the ± basis presented so far is not the most convenient one to use for
numerical computation. Indeed, one can try to take advantage of (4.48) to find a basis where
one of the four propagators cancel. Among these bases, the most famous one is the retarded-
advanced basis, obtained by a simple rotation of the ± basis. Denoting the propagators in this
new basis Gαβ with α, β ∈ 1, 2, we have

Gαβ = ∑
ǫ,ǫ′=±

ΩαǫGǫǫ′Ω
†
ǫ′β , (4.58)

with the rotation matrix defined as

Ω =

(
1 −1
1
2

1
2

)
. (4.59)

Performing the trivial calculation gives

G =

(
G11 G12

G21 G22

)
=

(
0 G++ − G−+

G++ − G+− 1
2 (G−+ + G+−)

)
. (4.60)

For reasons that will appear clear in a moment, we will denote

GA = G12 , GR = G21 , GS = G22 . (4.61)

3. This will have crucial consequences in chapter 7.



54 CHAPTER 4. BEYOND STANDARD PERTURBATION THEORY

Indeed, in momentum space, one can deduce from (4.44-4.47) that

GA(p) =
i

p2 − ip0ǫ
, GR(p) =

i
p2 + ip0ǫ

, GS(p) = πδ(p2) . (4.62)

and the first two equations give in coordinate space after having performed the integral over
p0 in the complex plane

GR(x, y) = −θ(x0 − y0)
∫

d3p

2|p|(2π)3
eip(x−y)

(
ei|p|(x0−y0) − e−i|p|(x0−y0)

)
(4.63)

GA(x, y) = −θ(y0 − x0)
∫

d3p

2|p|(2π)3
eip(x−y)

(
ei|p|(x0−y0) − e−i|p|(x0−y0)

)
. (4.64)

We now clearly see why one of the two propagator is called retarded while the other is named
advanced: the θ function causes GR to be 0 if y0 > x0 while the opposite is true for GA. The
inverse relations will also prove helpful

(
G++ G+−
G−+ G−−

)
=

(
1
2 (G12 + G21) + G22

1
2 (G12 − G21) + G22

− 1
2 (G12 − G21) + G22 − 1

2 (G12 + G21) + G22

)
. (4.65)

4.2 Resummation formula

In this section, we will present the resummation technique [141, 142] that allows one to
go beyond the Leading Order CGC results presented in section 3.8. Let us mention from
the start that this formula only works for inclusive observables, meaning observables that
do not require the complete knowledge of the final state. As a warm-up, and since it will
prove useful in the scalar field theory chapters 5-6-7, we will start by computing at Leading
Order (LO) and Next to Leading Order (NLO) the expectation value of the fields φ± in the
Schwinger-Keldysh formalism. We will then explain what characterizes the resummation
technique, its main ingredient being a formal relation that exists between the LO and the
NLO. The adaptation of the content of this section to the gauge case can be found in [58].

4.2.1 Leading Order: the classical level

At Leading Order, as explained in section 3.7 for the gauge case, only tree diagrams are
involved in the calculation of inclusive observables. In order to fix the ideas, let us consider
again our scalar field Lagrangean with a quartic coupling and an additional coupling to a
source term η

L =
1

2

(
∂µφ

)
(∂µφ)− g2

4!
φ4 + ηφ . (4.66)

As already mentioned, in order to mimic a heavy ion collision the source has to be very
intense, inversely proportional to the coupling constant η ∼ 1

g . This gives the same scaling

for the field φ ∼ 1
g at the classical level. If we want to compute the connected contribution

to the expectation values
〈

φ(±)
〉

at Leading Order, that we shall denote ϕ(±), we have to

compute at leading order the first derivative of the connected generating functional of the
Schwinger-Keldysh formalismW [η(+), η(−)], where

Z [η(+), η(−)] = eW [η(+) ,η(−)] . (4.67)

This means

ϕ(±)(x) =
δW [η(+), η(−)]

iδη(±)(x)

∣∣∣∣∣
η(±)=η

=
1

Z [η(+), η(−)]

δZ [η(+), η(−)]

iδη(±)(x)

∣∣∣∣∣
η(±)=η

. (4.68)
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In terms of graphs, it corresponds as announced to all the tree diagrams. To be more precise
we can write the following (exact) diagrammatic expression

ϕ(+) =
+

=
+ + − + −

+ + + − + − (4.69)

ϕ(−) =
−

=
− + − − −

+ − + − − − , (4.70)

where the green and red blobs respectively denote ϕ(+) and ϕ(−), and the blue blob the strong
physical source η = η(+) = η(−). At the leading order, all the propagators are bare ones and
we can therefore write the following equations

ϕ(ǫ)(x) = ∑
ǫ′=±1

i
∫

d4y Gǫǫ′(x, y) η(y)− i ∑
ǫ′=±1

g2

6

∫
d4y Gǫǫ′(x, y)

(
ϕ(ǫ′)(y)

)3
. (4.71)

If one takes the d’Alembertian of this expression, since (one can check those properties by
Fourier transforming (4.44-4.47)

�G++(x, y) = �G−−(x, y) = −iδ(x− y) �G+−(x, y) = �G−+(x, y) = 0 , (4.72)

this implies that

�ϕ(ǫ)(x) = η(x)− g2

6

(
ϕ(ǫ)(x)

)3
, (4.73)

and so

�ϕ(ǫ)(x) + V ′(ϕ(ǫ)(x)) = η(x) . (4.74)

We therefore just showed that the fields ϕ(ǫ) obey the classical equation of motion. We now
need to find the corresponding boundary conditions. Taking a field which obeys to

�ϕ(+)(y) + V ′(ϕ(+)(y)) = η(y) , (4.75)

multiplying on the left by G++(x, y) and integrating on y
∫

d4y G++(x, y)�y ϕ(+)(y) +
∫

d4y G++(x, y)V ′(ϕ(+)(y)) =
∫

d4y G++(x, y)η(y) , (4.76)

in addition

G++(x, y)
←
�y= − iδ(x− y)

∫
d4y G++(x, y)

←
�y ϕ(+)(y) = − iϕ(+)(x) . (4.77)

We subtract these two equations to get

∫
d4y G++(x, y)

↔
�y ϕ(+)(y) +

∫
d4y G++(x, y)V ′(ϕ(+)(y))−

∫
d4y G++(x, y)η(y) = iϕ(+)(x) ,

(4.78)

where

A
↔
� B = A

→
� B− A

←
� B . (4.79)
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By analogy for ϕ(−)(y), combining it with G+−(x, y)

i
∫

d4y G+−(x, y)
↔
�y ϕ(−)(y) + i

∫
d4y G+−(x, y)V ′(φ(−)(y))− i

∫
d4y G+−(x, y)η(y) = 0 .

(4.80)

Using (4.71), we get the following relations

∫
d4y G++(x, y)

↔
�y ϕ(+)(y)−

∫
d4y G+−(x, y)

↔
�y ϕ(−)(y) = 0

∫
d4y G−+(x, y)

↔
�y ϕ(+)(y)−

∫
d4y G−−(x, y)

↔
�y ϕ(−)(y) = 0 . (4.81)

Thanks to the identity

A
↔
� B = ∂µ(A

↔
∂µ B) , (4.82)

we obtain
∫

d4y G++(x, y)
↔
�y ϕ(+)(y) =

∫
d4y ∂0(G++(x, y)

↔
∂0 ϕ(+)(y)) + ∂i(G++(x, y)

↔
∂i ϕ(+)(y))

=
∫

d3y

[
G++(x, y)

↔
∂0 ϕ(+)(y)

]y0=+∞

y0=−∞

, (4.83)

where we have assumed that the fields vanish at the spatial boundaries. Doing the same for
the other terms, we get

0 =
∫

d3y

[
G++(x, y)

↔
∂0 ϕ(+)(y)− G+−(x, y)

↔
∂0 ϕ(−)(y)

]y0=+∞

y0=−∞

0 =
∫

d3y

[
G−+(x, y)

↔
∂0 ϕ(+)(y)− G−−(x, y)

↔
∂0 ϕ(−)(y)

]y0=+∞

y0=−∞

. (4.84)

Writing φ(±) in terms of its Fourier components

ϕ(±)(y) =
∫

d3p

2|p|(2π)3

(
f (±)−,y0

(p)e−ipy + f (±)+,y0
(p)eipy

)
, (4.85)

together with the formula

∫
d3y eiǫp(x−y)

↔
∂0 eiǫ′kx = ieiǫpx(ǫp0 + ǫ′k0)

∫
d3y eiy(ǫ′k−ǫp) = 2i|p|δǫǫ′e

iǫ′kx(2π)3δ(|p| − |k|) ,

(4.86)

we obtain

f (±)±,−∞(p) = 0 f (±)∓,+∞(p) = f (∓)∓,+∞(p) . (4.87)

which means that at y0 = +∞,

ϕ(+) = ϕ(−) ϕ̇(+) = ϕ̇(−) . (4.88)

Since ϕ(+) and ϕ(−) satisfy the same EOM and are equal at y0 = +∞, they are equals every-

where. In addition f (±)±,−∞(p) = 0 at y0 = −∞ leads to

ϕ(+) = ϕ(−) = ϕ = 0 ϕ̇(+) = ϕ̇(−) = ϕ̇ = 0. (4.89)

We have therefore been able to show that ϕ obeys to the classical EOM, and we rigorously
justified the retarded boundary conditions (meaning that the field ϕ and its derivative vanish
at −∞).
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4.2.2 NLO corrections

In this section, we will focus on the computation of the expectation value of the two point

function
〈

φ(+)φ(−)(y)
〉

. This is equal to

〈
φ(+)φ(−)(y)

〉
=

1

Z [η(+), η(−)]

δ2Z [η(+), η(−)]

δη(+)(x)δη(−)(y)

∣∣∣∣∣
η(±)=η

=
δ2W[η(+), η(−)]

δη(+)(x)δη(−)(y)

∣∣∣∣∣
η(±)=η

+
δW[η(+), η(−)]

δη(+)(x)

∣∣∣∣∣
η(+)=η

δW[η(+), η(−)]

δη(−)(y)

∣∣∣∣∣
η(−)=η

.

(4.90)

The last term is just the product of
〈

φ(+)
〉 〈

φ(−)
〉

. The first term is the connected two point

function G+−, that we now denote G instead of G not to confound with the free propaga-

tor. The computation at LO of
〈

φ(+)φ(−)(y)
〉

is straightforward. Given what we did in the

previous section, and realizing that G ∼ 1 +O(g2), we get

〈
φ(+)(x)φ(−)(y)

〉
LO

=
〈

ϕ(+)(x)
〉 〈

ϕ(−)(y)
〉
∼ 1

g2
. (4.91)

Calling
〈

ϕ(±)
〉

NLO
= ψ(±) and GLO = G, we therefore need to compute at NLO

〈
φ(+)(x)φ(−)(y)

〉
NLO

= ϕ(+)(x)ψ(−)(y) + ψ(+)(x)ϕ(−)(y) + G+−(x, y) . (4.92)

Before starting the computation of the different terms in this equation, let’s make two formal
analysis that will prove to be very useful.

4.2.2.1 Green’s formula

In this section, the Green’s formula that will appear in many places in this manuscript
makes its first appearance. Let’s consider the classical field ϕ that obeys the Klein-Gordon
equation, and a propagator G (which could be Feynman , retarded or other depending on the
formalism considered) that obeys the usual propagator equation

�y ϕ(y) + V ′(ϕ(y)) = 0 �xG(x, y) = �yG(x, y) = −iδ(x− y) . (4.93)

Then, by multiplying the first equation by G(x, y), subtracting to it the second multiplied by
ϕ(y) and integrating on a space Ω which admits has one of its boundary a space like surface
Σ, the other boundaries being located at infinity, we obtain

ϕ(x) = − i
∫

Ω
d4y G(x, y)

↔
�y ϕ(y)− i

∫

Ω
d4y G(x, y)V ′(ϕ(y)) . (4.94)

Using again the identity (4.82), and recalling the fact that the integral of a divergence is 0 we
get

ϕ(x) = − i
∫

Σ
d3

Σy G(x, y)
(

n.
↔
∂y ϕ(y)

)
− i

∫

Ω
d4y G(x, y)V ′(ϕ(y)) (4.95)

where nµ is a unitary vector normal to Σ and dΣy the measure on Σ. This is the announced
Green’s formula. By expanding in powers of the coupling constant g (which plays a role
through the second term that contains V ′(ϕ)), it allows to express ϕ(x) at any space-time
point in the domain Ω as a function of the value of ϕ on the surface Σ. As we will see
later, this surface will play the role of the initial time of the numerical computation (x0 = 0 in
Minkowskian coordinate system and Qsτ0 ≪ 1 in the proper-time rapidity coordinate system).
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4.2.2.2 Small perturbations as a differential operator action on Σ

In this section, we will use the fact that given a first order differential operator L̂ acting on
ϕ, we have

L̂ f (ϕ) = f ′(ϕ)L̂ϕ . (4.96)

Starting from (4.95) and taking a = L̂ϕ we can then deduce

a(x) = − i
∫

Ω
d4y G(x, y)V ′′(ϕ(y))a(y)− i

∫

Σ
dΣy d3

Σy G(x, y)(n.
↔
∂y)a(y), (4.97)

We thus have that a satisfies the following EOM and boundary conditions

[
�x + V ′′(ϕ(x))

]
a(x) = 0 a, (n.∂)a known on Σ , (4.98)

provided that L̂ is defined as

L̂ =
∫

Σ
dΣz

[
a(z)

δ

δϕ(z)
+ (n.∂z)a(z)

δ

δ(n.∂z)ϕ(z)

]
. (4.99)

As a last remark, let us notice that taking an a as we did is equivalent to study a small
perturbation a on top of a background field ϕ. Calling φ = ϕ + a, a ≪ ϕ and ϕ, φ satisfying
the classical EOM, we have

0 = �φ + V ′(φ) = �ϕ +�a + V ′(ϕ) + aV ′′(ϕ) +O(a2) = �a + aV ′′(ϕ) +O(a2) , (4.100)

which as announced is equivalent to the linear EOM (4.98).

4.2.2.3 Propagator at LO

We start our NLO computation with the study of δ2W
δη(+)(x)δη(−)(y)

. To calculate it, one has to

consider the following tree diagrams (where the last diagram is just one example taken in the
infinite set of contributing diagrams)

G+−(x, y) = x
+ y− = x+ y− (4.101)

Diagrammatically, we can also write the following (exact) equations

G+−(x, y) = x
+ y− = x

+

z

+ y−

ϕ ϕ

− x
+

z

− y−

ϕ ϕ

(4.102)

= x
+

z

+ y−

ϕ ϕ

− x
+

z

− y−

ϕ ϕ

. (4.103)

Considering the first expression

G+−(x, y) =
∫

d4z (−iV ′′(ϕ(z))) (G++(x, z)G+−(z, y)− G+−(x, z)G−−(z, y)) , (4.104)

and taking the d’Alembertian with respect to x, we obtain

�xG+−(x, y) = −V ′′(ϕ(x))G+−(x, y) . (4.105)



4.2. RESUMMATION FORMULA 59

By analogy, for the second expression

�yG+−(x, y) = −V ′′(ϕ(y))G+−(x, y) . (4.106)

Let’s recall here that when x0, y0 7→ −∞, we have

G+−(x, y) = G+−(x, y) . (4.107)

Knowing in addition that in the free case, we can write (v stands for vacuum)

G+−(x, y) =
∫

d3k

2|k|(2π)3
av
+k(x)av

−k(y), (4.108)

with

�av
±k(x) = 0 , lim

x0 7→−∞
av
±k(x) = e±ikx , lim

x0 7→−∞
ȧv
±k(x) = ± i|k|e±ikx , (4.109)

then it is easy to extend this form to the interacting case

G+−(x, y) =
∫

d3k

2|k|(2π)3
a+k(x)a−k(y) , (4.110)

with

[
(�+ V ′′(ϕ(x))

]
a±k(x) = 0 , lim

x0 7→−∞
av
±k(x) = e±ikx , lim

x0 7→−∞
ȧv
±k(x) = ± i|k|e±ikx . (4.111)

Now, given what we saw in section 4.2.2.2, this implies that if we call

a±k(u)T̂(u) = a±k(u)
δ

δϕ(u)
+ (n.∂z)a±k(u)

δ

δ(n.∂u)ϕ(u)
, (4.112)

then at lowest order, because

a±k(x) = L̂±k ϕ(x) =
∫

Σ
dΣu

[
a±k(u)T̂(u)

]
ϕ(x) , (4.113)

we have

G+−(x, y) = −
∫

d3k

2|k|(2π)3

∫

bmΣ
dΣ dΣ

([
a+k(u)T̂(u)

]
ϕ(x)

) ([
a−k(v)T̂(v)

]
ϕ(y)

)
,

(4.114)

and the same holds for G−+.

4.2.2.4 Expectation value of the field at NLO

We now want to calculate ψ(±). For this, one has to consider the following diagrammatic
(exact) equations

ψ(+)(x) = x + zǫ ψ(−)(x) = x− zǫ (4.115)

Not forgetting the 1
2 symmetric factor, we have

ψ(+)(x) = ∑
ǫ=±

ǫ
∫

d4z G+ǫ(x, z)
[
− i

2
V ′′′(ϕ(z))

]
Gǫǫ(z, z), (4.116)
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and a similar formula holds for ψ(−)(x), with

G++(x, y) = θ(x0 − y0)G−+(x, y) + θ(y0 − x0)G+−(x, y)

G−−(x, y) = θ(x0 − y0)G+−(x, y) + θ(y0 − x0)G−+(x, y) , (4.117)

We can notice that

G++(z, z) = G−−(z, z) = G−+(z, z) = G+−(z, z) =
∫

d3k

2|k|(2π)3
a+k(z)a−k(z) , (4.118)

and therefore

ψ(x) = ψ(+)(x) = ψ(−)(x) =
∫

d4z
[
− i

2
V ′′′(ϕ(z))

]
GR(x, z)G++(z, z) (4.119)

=
∫

d4z
∫

d3k

2|k|(2π)3

[
− i

2
V ′′′(ϕ(z))

]
GR(x, z)a+k(z)a−k(z) . (4.120)

Knowing that

[
�x + V ′′(ϕ(x))

]
GR(x, y) = −iδ(x− y) , (4.121)

we have

[
�x + V ′′(ϕ(x))

]
ψ = − V ′′′(ϕ(x))

2

∫
d3k

2|k|(2π)3
a+k(x)a−k(x) = σ(x)

lim
x0 7→−∞

ψ, ψ̇ = 0 , (4.122)

Where the boundary conditions follow from the presence of a retarded propagator. We will
try to find a new Green’s formula to help us. Since

GR(x, y)
( ←
�y +V ′′(ϕ)(y)

)
ψ(y) = − iδ(x− y)ψ(y)

GR(x, y)
( →
�y +V ′′(ϕ)(y)

)
ψ(y) = GR(x, y)σ(y) . (4.123)

We can deduce

ψ(x) = i
∫

Ω
d4y GR(x, y)σ(y)

︸ ︷︷ ︸
ψ1(x)

−i
∫

Σ
dΣu GR(x, y)(n.

↔
∂u)ψ(y)

︸ ︷︷ ︸
ψ2(x)

. (4.124)

Concerning ψ2, since x does not belong to Σ, we have

[
�+ V ′′(ϕ(x))

]
ψ2(x) = 0 lim

x∈Σ
ψ2(x) = ψ(x) , (4.125)

and we can use the results of section 4.2.2.2, from which we obtain

ψ2(x) = i
∫

Σ
dΣu

(
ψ(u)T̂(u)

)
ϕ(x) . (4.126)

Concerning ψ1

[
�+ V ′′(ϕ(x))

]
ψ1(x) = σ(x) lim

x∈Σ
ψ1(x) = 0 . (4.127)

It will be useful to write another Green’s formula for ψ1, but now with the free propagator
GR(x, y). Since

�yGR(x, y) = − iδ(x− y) , (4.128)
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we have that

ψ1(x) = − i
∫

Ω
d4y GR(x, y)

(
V ′′(ϕ(y))ψ1(y)− σ(y)

)
− i

∫

Σ
dΣu GR(x, y)(n.

↔
∂u)ψ1(y) ,

(4.129)

and the second term is 0, since ψ1 is the part of ψ that does not belong to Σ. Considering

the operator D̂ =
∫

Σ
dΣv

[
a−k(v)T̂(v)

]
acting on a+k, we thus have (still using the results of

section 4.2.2.2)

D̂a+k(x) = − i
∫

Ω
d4y GR(x, y)D̂

[
V ′′(ϕ(y))a+k(y)

]
− i

∫

Σ
dΣu GR(x, u)(n.

↔
∂u)D̂a+k(u)

= − i
∫

Ω
d4y GR(x, y)

[
V ′′′(ϕ(y))

[
D̂ϕ(y)

]
a+k(y) + V ′′(ϕ(y))D̂a+k(y)

]
. (4.130)

On the first line, the action of D̂ on a+k(y) with y ∈ Σ gives 0 because this boundary term
does not depend on the value of the classical field ϕ. Finally, calling

ξ(x) = − 1

2

∫
d3k

2|k|(2π)3

∫∫
dΣu dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)
ϕ(x)

]
, (4.131)

we will prove that ξ(x) = ψ1(x). First

ξ(x) =
i
2

∫
d3k

2|k|(2π)3

∫

Σ
dΣv

(
a−k(v)T̂(v)

)
a+k(x) =

i
2

∫
d3k

2|k|(2π)3
D̂a+k(x) , (4.132)

and given (4.130) we can write

ξ(x) =
1

2

∫
d3k

2|k|(2π)3

∫

Ω
d4y GR(x, y)

[
V ′′′(ϕ(y))

[
D̂ϕ(y)

]
a+k(y) + V ′′(ϕ(y))D̂a+k(y)

]

=
−i
2

∫
d3k

2|k|(2π)3

∫

Ω
d4y GR(x, y)V ′′′(ϕ(y))a−k(y)a+k(y)− i

∫

Ω
d4y GR(x, y)V ′′(ϕ(y))ξ(y)

= − i
∫

Ω
d4y GR(x, y)

(
V ′′(ϕ(y))ξ(y)− σ(y)

)
, (4.133)

which is the same equation than for ψ1. In addition, because ξ(y) = 0 if y ∈ Σ. We can
therefore deduce ξ = ψ1. We thus have

ψ(x) =
∫

Σ
dΣu

[
i
(

ψ(u)T̂(u)
)
− 1

2

∫
d3k

2|k|(2π)3

∫
dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)]]
ϕ(x) .

(4.134)

4.2.2.5 Full Next To Leading Order for the two point function

Let us notice here that result of section 4.2.2.3

G+−(x, y) =
δ2W

[
η(+), η(−)

]

δη(+)(x)δη(−)(y)

∣∣∣∣∣∣

LO

η±=0

= −
∫

d3k

2|k|(2π)3

∫∫

Σ
dΣu dΣv

[[
a+k(u)T̂(u)

]
ϕ(x)

] [[
a−k(v)T̂(v)

]
ϕ(y)

]
,

(4.135)

can be rewritten as

G+−(x, y) = − 1

2

∫
d3k

2|k|(2π)3

∫∫

Σ
dΣu dΣv

([[
a+k(u)T̂(u)

]
ϕ(x)

] [[
a−k(v)T̂(v)

]
ϕ(y)

]

+
[[

a−k(u)T̂(u)
]

ϕ(x)
] [[

a+k(v)T̂(v)
]

ϕ(y)
])

. (4.136)
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Starting back from (4.92), we write for the part the does not involve G
(〈

φ(+)(x)
〉 〈

φ(−)(y)
〉)

NLO
=

δW[η(+), η(−)]

δη(+)(x)

∣∣∣∣∣
η(+)=0

δW[η(+), η(−)]

δη(−)(y)

∣∣∣∣∣
η(−)=0

= ψ1(x)ϕ(y) + ϕ(x)ψ1(y) + ψ2(x)ϕ(y) + ϕ(x)ψ2(y) . (4.137)

Since

A = ψ2(x)ϕ(y) + ϕ(x)ψ2(y) = i
∫

Σ
dΣu

[(
ψ(u)T̂(u)

)]
ϕ(x)ϕ(y) , (4.138)

and

B = ψ1(x)ϕ(y) + ϕ(x)ψ1(y) + G+−(x, y)

= − 1

2

∫
d3k

2|k|(2π)3

∫∫
dΣu dΣv

([
a+k(u)T̂(u)

] [
a−k(v)T̂(v)

])
ϕ(x)ϕ(y) . (4.139)

we can rewrite the full NLO as

〈
φ(+)(x)φ(−)(y)

〉
NLO

=

[
i
∫

Σ
dΣu

(
ψ(u)T̂(u)

)
− 1

2

∫
d3k

2|k|(2π)3

∫∫
dΣu dΣv

[
a+k(u)T̂(u)

] [
a−k(v)T̂(v)

]]
ϕ(x)ϕ(y) . (4.140)

4.2.3 Resummation

Let us summarize what we have seen so far. At LO
〈

φ(+)(x)φ(−)(y)
〉

LO
= ϕ(x)ϕ(y) , (4.141)

where
[
�+ V ′(ϕ(x))

]
ϕ(x) = 0 , lim

x0 7→−∞
ϕ, ϕ̇ = 0 . (4.142)

At NLO, calling

Ô =

[
i
∫

Σ
dΣu

(
ψ(u)T̂(u)

)
− 1

2

∫
d3k

2|k|(2π)3

∫∫
dΣu dΣv

[
a+k(u)T̂(u)

] [
a−k(v)T̂(v)

]]
,

(4.143)

we have
〈

φ(+)(x)φ(−)(y)
〉

NLO
= Ôϕ(x)ϕ(y) = Ô

〈
φ(+)(x)φ(−)(y)

〉
LO

. (4.144)

Considering the quantity

〈
φ(+)(x)φ(−)(y)

〉
resum

=
∞

∑
n=0

Ôn

n!

〈
φ(+)(x)φ(−)(y)

〉
LO

= eÔ
〈

φ(+)(x)φ(−)(y)
〉

LO
, (4.145)

we trivially see by Taylor expanding the exponential that it fully contains the LO and the NLO

of
〈

ϕ(+)(x)ϕ(−)(y)
〉

, but also a subset of every higher order corrections. The analogous for-

mulas for Tµν and fk, respectively the energy-momentum tensor and the occupation number
of the scalar theory, to be defined later in chapter 5, will be the formulas of crucial importance.
Splitting Ô into a linear and quadratic part in T̂

Ô1 = i
∫

Σ
dΣu

(
ψ(u)T̂(u)

)

Ô2 = − 1

2

∫
d3k

2|k|(2π)3

∫∫
dΣu dΣv

[
a+k(u)T̂(u)

] [
a−k(v)T̂(v)

]
, (4.146)
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we will re-express (4.145) in a less formal way. First, since

ea∂x f (x) = f (x + a) , (4.147)

we have

eÔ1

〈
φ(+)(x)

〉
LO

= ϕ(x) + ψ(x) . (4.148)

Secondly, by performing the equivalent of a Fourier transform of eÔ2 that we can formally

see as a Gaussian e−
αx2

2 in the variable x = T̂, with α =
∫

d3k
2|k|(2π)3 a+ka−k = G+−, we can

re-express 4

˜
e−

kx2

2 (b) =
∫

dxeibxe−
b2

2k , (4.149)

and therefore, in our case this gives

ẽÔ2 =
∫

[D a] ei
∫

Σ
dΣu a(u)T̂(u)e−

1
2

∫∫
dΣu dΣva(u)G−1

+−(u,v)a(v) , (4.150)

and calling 5 F[ϕin] =
〈

φ(+)(x)φ(−)(y)
〉

LO
one can finally write the central result of this section

eÔF[ϕin] =
∫
[D a] e−

1
2

∫∫
dΣu dΣva(u)G−1

+−(u,v)a(v)F[ϕ + a + ψ]
(4.151)

This result allows us to evaluate in a relatively simple way The
〈

φ(+)(x)φ(−)(y)
〉

resum
. This

formula is equivalent to the classical-statistical approximation.

4.3 The Classical-statistical approximation: a path integral approach

The final formula of the previous section is useful when it comes to numerical compu-
tations, but it is difficult so see diagrammatically what it contains. We already know that it
corresponds to a resummation for inclusive observables that fully includes the LO, the NLO
and a subset of higher order corrections. But to what kind of truncation does it correspond
to? To answer this question, let us consider the Schwinger-Keldysh Lagrangean of a scalar
field with a strong physical source (η(+) = η(−) = η)

L[φ(+), φ(−)] = L[φ(+)]−L[φ(−)]

=

[
1

2

(
∂µφ(+)

) (
∂µφ(+)

)
− m2

2

(
φ(+)

)2
− g2

4!

(
φ(+)

)4
+ ηφ(+)

]

−
[

1

2

(
∂µφ(−)

) (
∂µφ(−)

)
− m2

2

(
φ(−)

)2
− g2

4!

(
φ(−)

)4
+ ηφ(−)

]
. (4.152)

The expectation value of some local observable O(φ(x)) can be expressed as a path integral
in the Schwinger-Keldysh formalism

〈O(φ(x))〉 =
∫ [

Dφ
(+)
i (x)

] [
Dφ

(−)
i (x)

]
ρ
[
φ
(+)
i (x), φ

(−)
i (x)

]

×
∫

φ(±)(x0
i ,x)=φ

(±)
i (x)

[
Dφ(+)(x)

] [
Dφ(−)(x)

]
e

i
∫ x0

x0
i
L[φ(+) ,φ(−)]O(φ(+)(x)) . (4.153)

4. The Fourier transform of a Gaussian f (x) = e−
αx2

2 being a Gaussian f̃ (p) = e−
p2

2α .
5. The in standing for the fact that F only depends on the initial value of ϕ on the surface Σ.
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Here several clarifications are in order. Firstly, ρ
[
φ
(+)
i (x), φ

(−)
i (x)

]
is the initial density oper-

ator, that characterizes the system at the initial time xi
0. Secondly, the upper time boundary

for the integration on the Lagrangean is x0 and not +∞ because of causality: a measurement
done at the time x0 cannot depend on the future. To go further, we can introduce new fields
that are respectively the half sum and the difference of the ± fields

ϕ(x) =
φ(+)(x) + φ(−)(x)

2
, σ(x) = φ(+)(x)− φ(−)(x) . (4.154)

The fields correspond to different paths in the amplitude and in the complex conjugate 6. Since
at the classical level the system follows a deterministic trajectory (the one that minimizes the
action), it means that at the classical level φ(+)(x) = φ(−)(x) = ϕ(x). We had already seen this
in the section 4.2.1. This means that in the classical limit σ = 0. With that in mind, we rewrite
the Lagrangean (4.152) in terms of the ϕ and σ fields

L[ϕ, σ] =
(
∂µ ϕ

)
(∂µσ)−m2ϕσ− g2

3!
ϕ3σ− g2

4!
ϕσ3 + ησ . (4.155)

Here all the terms are linear in σ except the term
g2

4! ϕσ3. The classical-statistical approxima-

tion consists in discarding the
g2

4! ϕσ3 vertex [59–64]. Let us define

L
CSA

[ϕ, σ] =
(
∂µ ϕ

)
(∂µσ)−m2 ϕσ− g2

3!
ϕ3σ + ησ . (4.156)

To see the consequences of this approximation, it is simpler to deal with a Hamiltonian
formulation of the problem. To do so, we introduce the conjugate momenta π(±) of the fields,
so that

L[φ(+), π(+)] =
1

2
π(+)φ̇(+) − 1

2

(
∇φ(+)

) (
∇φ(+)

)
− m2

2

(
φ(+)

)2
− g2

4!

(
φ(+)

)4
+ ηφ(+)

H[φ(+), π(+)] = φ(+)π(+) −L[φ(+), π(+)]

=
1

2
π(+)φ̇(+) +

1

2

(
∇φ(+)

) (
∇φ(+)

)
+

m2

2

(
φ(+)

)2
+

g2

4!

(
φ(+)

)4
− ηφ(+)

(4.157)

and in addition

L[φ(±), π(±)] = L[φ(+), π(+)]−L[φ(−), π(−)]

H[φ(±), π(±)] = π(+)φ̇(+) − π(−)φ̇(−) −L[φ(±), π(±)] . (4.158)

In the ϕ, σ basis, we define

πϕ =
π(+) + π(−)

2
, πσ = π(+) − π(−) . (4.159)

This leads to

L
CSA

[ϕ, πϕ, σ, πσ] = πσ ϕ̇ + πϕσ̇− πσπϕ − (∇ϕ)(∇σ)−m2ϕσ− g2

3!
ϕ3σ + ησ . (4.160)

First rewriting (4.153) as

〈O(φ(x))〉 =
∫ [

Dφ
(+)
i (x)

] [
Dφ

(−)
i (x)

]
ρ
[
φ
(+)
i (x), φ

(−)
i (x)

] ∫

φ(±)(x0
i ,x)=φ

(±)
i (x)

[
Dφ(+)(x)

] [
Dφ(−)(x)

]

×
[

Dπ(+)(x)
] [

Dπ(−)(x)
]

e
i
∫ x0

x0
i
L

CSA
[φ(±) ,π(±)]O(φ(+)(x)) , (4.161)

6. Here it is instructive to recall the equivalence between the Schwinger-Keldysh generating functional and
the product of two Feynman ones.
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we obtain

〈O(φ(x))〉 =
∫

[Dϕi(x)] [Dσi(x)] ρ

[
ϕi(x) +

σi(x)

2
, ϕi(x)− σi(x)

2

] ∫

ϕ(x0
i ,x)=ϕi(x)

σ(x0
i ,x)=σi(x)

[Dϕ(x)] [Dσ(x)]

×
[
Dπϕ(x)

]
[Dπσ(x)] e

i
∫ x0

x0
i

σ

(
πσ ϕ̇+πϕσ̇−πσπϕ−(∇ϕ)(∇σ)−m2 ϕσ− g2

3! ϕ3σ+ησ

)

O(ϕ(x)) .
(4.162)

To go further, we need to re-express the terms

∫ x0

x0
i

d4x
[
πϕ(x)σ̇(x)− (∇ϕ(x))(∇σ(x))

]
. (4.163)

For the first one, an integration by part gives

∫ x0

x0
i

d4xπϕ(x)σ̇(x) = −
∫ x0

x0
i

d4xπ̇ϕ(x)σ(x) +
∫

d3x πϕ,i(x)σi(x) . (4.164)

For the second term, one uses the fact that

−(∇ϕ(x))(∇σ(x)) = −∇ [σ(x)∇ϕ(x)] + σ(x)∆ϕ(x) . (4.165)

The first term being a total derivative, it vanishes after the spatial
∫

d3x integration. We are
left with

〈O(φ(x))〉 =
∫

[Dϕi(x)] [Dσi(x)] ρ

[
ϕi(x) +

σi(x)

2
, ϕi(x)− σi(x)

2

]
ei
∫

d3x σi(x)πϕ,i(x)
∫

ϕ(x0
i ,x)=ϕi(x)

σ(x0
i ,x)=σi(x)

[Dϕ(x)]

× [Dσ(x)]
[
Dπϕ(x)

]
[Dπσ(x)] e

i
∫ x0

x0
i

σ

(
−π̇ϕ+∆ϕ−m2 ϕ− g2

3! ϕ3−η

)

e
i
∫ x0

x0
i

πσ(ϕ̇−πϕ)O(ϕ(x)) .
(4.166)

Now one can easily do the functional integrations on σ (this would not have been true if we
had kept the ϕσ3 vertex) and on πσ

∫
[Dπσ(x)] e

i
∫ x0

x0
i

πσ(ϕ̇−πϕ)
= δ

(
ϕ̇− πϕ

)

∫
[Dσ(x)] e

i
∫ x0

x0
i

σ

(
−�ϕ+m2 ϕ+ g2

3! ϕ3+η

)

= δ

(
π̇ϕ − ∆ϕ + m2 ϕ +

g2

3!
ϕ3 − η

)
. (4.167)

One can also recognize the Wigner distribution [143, 144] of the ρ density operator

W
[
ϕi, πϕ,i

]
=
∫

[Dσi(x)] ρ

[
ϕi(x) +

σi(x)

2
, ϕi(x)− σi(x)

2

]
ei
∫

d3x σi(x)πϕ,i(x) , (4.168)

so that (4.152) can finally be rewritten as

〈O(φ(x))〉
CSA

=
∫

[Dϕi(x)]
[
Dπϕ,i(x)

]
W
[
ϕi, πϕ,i

]
×

∫

ϕ(x0
i ,x)=ϕi(x)

πϕ,i(x0
i ,x)=πϕ,i(x)

[Dϕ(x)]
[
Dπϕ(x)

]
δ
(

ϕ̇− πϕ

)
δ

(
π̇ϕ − ∆ϕ + m2ϕ +

g2

3!
ϕ3 − η

)
O(ϕ(x)) .

(4.169)

The meaning of this formula is the following: starting from an initial state characterized by
the Wigner distribution W

[
ϕi, πϕ,i

]
, the system evolves with the classical equation of motion
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until the time at which the physical observable O is evaluated. Schematically, one therefore
has

〈O(φ(x))〉
CSA

= quantum initial condition× classical evolution
(4.170)

This is the equivalent to the formula (4.151) except that in (4.151) the variance of the
initial Gaussian distribution was known in terms of the spectrum of fluctuations ak of (4.111).
Here, this would correspond to a Gaussian Wigner distribution [145]. This has the precise
meaning in quantum mechanics that the initial state is a coherent state. A coherent state is
an eigenvector of the creation operator of the free Hamiltonian, but it can also be viewed
as a quantum state centered around a classical value with the minimal variance allowed by
Heisenberg’s uncertainty principle. A coherent state is however not an eigenvector of the
interacting Hamiltonian, and letting the system evolve with the classical non linear equation
of motion will lead this initial state to decohere (see the sections 5.3.5.3-5.3.5.4). We have just
explained the last physical building block that will prove useful when it comes to understand
the outcome of the CSA simulations performed in the chapters 5, 6 and 9. The following
figures illustrate what the CSA is, can do and what it cannot do.
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Figure 4.1: Classical world: the initial Wigner distribution is a δ function, and the system
evolves with the classical equation of motion. For inclusive observables this gives the LO re-
sult, but nothing more. As shown in the sections 3.8 and 5.3.2, important physical mechanisms
(instabilities, decoherence) are missing.
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Figure 4.2: Classical-statistical approximation. Here the initial condition has quantum fluc-
tuations. It corresponds to a Gaussian Wigner distribution with a variance of order h̄. The
system still evolves classically. For inclusive observables this gives the LO and NLO results, as
well as a subset of higher order corrections. This approximation captures the relevant physics
at intermediate time scales, but does not lead to the full thermal equilibrium.
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Figure 4.3: The quantum evolution is only accessible with other resummation techniques (e.g.
the 2PI resummation technique [146]). These quantum corrections arise only at NNLO.

To conclude, let us recall that the CSA requires that ϕ ≫ σ. This has the following
consequence on the occupation number [65]

fk ≫ 1 . (4.171)
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4.3.1 Summary

• The Feynman formalism is designed to compute 〈out||in〉 correlators
• The essence of perturbation theory in the Feynman formalism is the generating func-
tional Z , that depends on the Feynman propagator GF.
• To compute 〈in||in〉 expectation values, one needs to introduce a new formalism: the
Schwinger-Keldysh formalism, that involves the generating functional Z and the prop-
agators G±±.
• Z can be formally related to Z , stressing the connection between the Feynman and
the Schwinger-Keldysh formalisms.
• Several bases can encode the Schwinger-Keldysh formalism. The retarded-advanced
basis uses the relation between the propagators in the original ± basis in order to elim-
inate one of the four components of the propagator matrix. This is the one that will be
considered at length later in this manuscript.
• In the Schwinger-Keldysh formalism, the fields at LO obeys the classical EOM with
retarded boundary conditions: lim

x0→−∞
ϕ, ϕ̇ = 0

• Thanks to a Green’s formula, one can formally relate a field at any space-time point to
its value on an initial space-like surface.
• The NLO of any inclusive quantity can be related to its LO value, via a differential
operator that acts on the value of the fields on some initial space-like surface.
• Exponentiating this operator and letting it act on the LO value gives a resummed
quantity that contains the LO, the NLO and a subset of higher order corrections.
• Re-expressing in a less formal way this resummed quantity leads to the classical-
statistical method.
• The CSA consists in solving the classical equation of motion with as initial condition
a quantum state centered around the classical value. Its variance is the minimal one al-
lowed by Heisenberg’s uncertainty principle.

Appendix

4.A Relation between Schwinger-Keldysh and Feynman generating

functionals

In this section we derive a relation between the generating functionals of the Feynman

and Schwinger-Keldysh formalism by proving the following formula

Z [η(+), η(−)] = e
∫

d4xd4yG+−(x,y)✷x✷y
δ2

δη(−)(x)δη(+)(y)Z [η(+)]Z∗[η(−)] (4.172)

with

Z [η] = ei
∫
Lint

(
δ

iδη(z)

)
d4zZ0[η] , Z [η(+), η(−)] = ei

∫
C×R3 Lint

(
δ

iδη(z)

)
d4zZ0[η

(+), η(−)] (4.173)

and

Z0[η] = e−
1
2

∫
d4x d4y η(x)GF(x,y)η(y) , Z0[η

(+), η(−)] = e−
1
2

∫
C×R3 d4x d4y η(x)Ḡ(x,y)η(y) . (4.174)

Given these definitions, it is easy to see that if the result holds for Z0[η(+), η(−)], it will also
hold for Z [η(+), η(−)]. Expanding the argument of the exponential in Z0[η(+), η(−)], we get

Z0[η
(+), η(−)] = e−

1
2

∫
d4x d4y (η(+)(x)G++(x,y)η(+)(y)+η(−)(x)G−−(x,y)η(−)(y)−2η(+)(x)G+−(x,y)η(−)(y)) ,

(4.175)
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and noticing that GF = G++, we see that we formally need to prove an identity that looks like

e−
1
2 (Ax2+By2−2C′xy) = eC∂x∂y e−

1
2 (Ax2+By2) , (4.176)

where by analogy with (4.172) x, y play respectively the role of η(+), η(−), A, B those of
G++, G−− and C, C′ are free parameters proportional to G+−, that we will try to adjust in
function of A and B. Using the following identities obtained by Taylor expansions

ea∂y f (y) = f (y + a) , f (∂x)eikx = f (ik)eikx , (4.177)

we get

I = eC∂x∂y e−
1
2 (Ax2+By2) = e−

1
2 B(y+C∂x)2

e−
1
2 Ax2

. (4.178)

performing a Fourier transform of e−
1
2 Ax2

∫
dx e−ikx− 1

2 Ax2
= e−

k2

2 A−1
∫

dxe−
A
2 (x+ikA−1)2

=
√

2πA−1e−
1

2A k2
, (4.179)

so

I = e−
1
2 B(y+C∂x)2

∫
dk
2π

√
2πA−1e−

k2

2 A−1
eikx =

√
2πA−1

∫
dk
2π

e−
k2

2 A−1
e−

1
2 B(y+iCk)2

eikx

=
√

2πA−1

∫
dk
2π

e−
A−1

2 (k2+ABy2+2iABCyk−ABC2k2−2iAxk) . (4.180)

We now try to complete the square for k2

I =
√

2πA−1e−
1
2 By2

∫
dk
2π

e−
A−1(1−ABC2)

2 (k+iA(1−ABC2)−1(BCy−x))e−
A(1−ABC2)−1

2 (BCy−x)2

=
√
(1− ABC2)−1e−

1
2 By2

e−
A(1−ABC2)−1

2 (BCy−x)2

=
√
(1− ABC2)−1e−

(1−ABC2)−1

2 (Ax2+By2−2ABCxy) .

(4.181)

Calling C′ = ABC, we can rewrite the previous expression as follows 7

I = e−
1
2 (Ax2+By2−2C′xy) . (4.182)

Taking C′ = G+− and C = p4G+− = A−1B−1G+− therefore gives the desired result.

7. Noticing that A−1B−1C′2 = 0 since C′ ∝ G+− which is a function of δ(p2) while A−1 = ip2.
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Chapter 5

Scalar field theory in a fixed volume
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5.1 Setup of the problem, specificities of the scalar model

W
e start our toy model studies with a scalar field theory with a quartic potential.

In addition, in order to mimic the CGC model, we will add a strong source to the
theory. Its Lagrangean therefore reads

L =
1

2

(
∂µφ

)
(∂µφ)− g2

4!
φ4 + Jφ , (5.1)

where as stated in section 3.6 the source is intense, which means inversely proportional to the
coupling which is assumed to be weak

J(x) ∼ θ(−x0)
Q3

g
. (5.2)

73
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To pursue the analogy with the CGC (where we recall that the sources are located on the light
cone, meaning that they are 0 for positive proper-times), we took a heavyside function in J,
meaning that it is non-zero only for negative times. Its effective role is to drive the value of the
classical background field ϕ (see the section 4.2.1) to its initial value at x0 = 0. In the numerical
simulations the prefactor in J will be taken such that it asymptotically vanishes at x0 = −∞.
The scale Q mimics the saturation scale Qs of the CGC and is the only dimensionful parameter
of the model. Our task within this model will be to study the macroscopic and microscopic
evidences of a possible thermal equilibration of the system. It is an interesting question even if
this theory is pretty far from the CGC, because as we will see along the way the scalar model
shares some features with QCD. After a brief presentation on the physics of instabilities in the
section 5.2, followed by a quick description of the numerical implementation, we will study
in the section 5.3 and the subsequent ones the energy-momentum tensor, and see that an
equation of state (EOS) forms. We then look at the microscopic properties of the theory in the
section 5.4, where the spectral function and the occupation number are studied. All this will
allow us to conclude that the system indeed seems to thermalize.

5.2 The physics of instabilities

Imagine a swing that oscillates at a fixed frequency. Now what would happens if each
time that the swing is at its highest altitude (its speed being therefore 0), someone pushes it a
little higher? There would be an amplification of the oscillations, leading to an instability in
the swing oscillations (of course for a swing this is limited by the fact that at some point the
swing will do a full 2π rotation). The analogy between this swing instability and the one that
concerns us is the following: in the scalar field theory with the quartic coupling presented in

(5.1), the oscillations of the φ amplitude inside the potential well
g2

4! φ4 are limited by the initial
condition. If one starts with (φ, φ̇) = (ϕ0, 0), then the amplitude of φ can never go higher
than ϕ0. But there are instabilities that affect the linearized Klein Gordon equation, that could
induce an exponential growth of small perturbations to the classical solution. This is the topic
of this section.

5.2.1 Parametric resonance band

The equation of motion (EOM) of the scalar theory is obtained from the Euler-Lagrange
equation

∂µ
δL

δ(∂µφ)
=

δL
δφ

, (5.3)

which gives the Klein-Gordon (KG) EOM

�φ +
g2

3!
φ3 = J . (5.4)

Assuming that we are interested in what happens at positive times, we look at small pertur-
bations around a solution ϕ. Writing φ = ϕ + a with both φ and ϕ satisfying the KG EOM
(5.4), we find for the small fluctuation a, keeping only the linear terms in the latter (a being a
small correction to ϕ, the terms that are in O(a2) can be neglected in a first approximation)

(
�+

g2

2
ϕ2

)
a = 0 . (5.5)

To pursue the analytical study further, we will assume in this section that the classical back-
ground field depends only on time. Therefore (5.4) reads at positive times for the classical
background field

ϕ̈(x0) +
g2

3!
ϕ3(x0) = 0 , (5.6)
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and one can perform a Fourier transform of the small fluctuations, leading to

äk(x0) +

(
k2 +

g2

2
ϕ2(x0)

)
ak(x0) = 0 . (5.7)

To find whether there are instabilities in the scalar theory, we ask the following question: are

there some solution to (5.7) that exponentially grow as time increases? The technical steps
are relegated to the appendix 5.A. The result is that for

m0

2
1
2

< k <
m0

3
1
4

, (5.8)

where m2
0 =

g2 ϕ2
0

2 , one finds exponentially growing modes ak. There are therefore instabilities
in the scalar φ4 theory.

5.2.2 Saturation of the instabilities

Given the form of the source J that drives the field ϕ, one has for the latter the same
parametric estimate as in the gauge case (see section 3.6-3.8), namely

ϕ ∼ Q
g

. (5.9)

From the previous section, we know that some modes ak with k in the resonance band increase
exponentially with time. After a finite time xsat, they will therefore also reach

ak(xsat) ∼ Q
g

. (5.10)

What happens after this time? One can see that (5.7) is no longer a good approximation of the
a behaviour, since the terms neglected

ϕa2
k(xsat), a3

k(xsat) ∼ ϕ2ak(xsat) (5.11)

are of the same order as the linear term we kept in (5.7). This means that after xsat one should
not use (5.7) as the EOM for the fluctuation. We will see that this will have some important
effects later on when we discuss the behaviour of the energy-momentum tensor at different
orders.

5.3 Macroscopic observables: the formation of an EOS

5.3.1 The energy-momentum tensor: definition, parametric estimates

The canonical energy-momentum tensor is defined as

Tµν = Πµ∂νφ− gµνL , (5.12)

where the conjugate momentum Π is

Πµ =
δL

δ(∂µφ)
= ∂µφ . (5.13)

This gives at positive times

Tµν = ∂µφ∂νφ− gµν

2

(
∂ρφ
)
(∂ρφ) + gµν g2

4!
φ4 . (5.14)

Since φ obeys the KG EOM (5.4), it is trivial to check that the energy-momentum is conserved

∂µTµν = 0 . (5.15)
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Given what we saw in section 3.8 and chapter 4, we know that we can perform a perturbative
expansion of Tµν in term of the coupling constant. This expansion reads

Tµν = Tµν
LO

+ Tµν
NLO

+ ... =
Q4

g2

[
cµν

0 + g2cµν
1 + g4cµν

2 + ...
]

. (5.16)

In the next section we will be interested in computing numerically Tµν
LO , Tµν

NLO and the Tµν
resum

that
can be deduced from formula (4.151).

5.3.2 The energy momentum tensor at Leading Order (LO)

Given what was explained in section 3.6, the coefficients cµν should be infinite series in the
combination gJ, and since J ∼ g−1 all the terms in the series contribute to the same order in
g. What this means is that as already stated in section 3.6, Leading Order quantities receive
contributions from all the tree diagrams, while Next to Leading Order receives contributions
from all the 1−loop diagrams, and so on... Given the work performed in chapter 4.2, we
know that the sum of all the tree diagrams can be re-expressed as the solution of the classical
equation of motion with retarded initial conditions

�ϕ +
g2

6
ϕ3 = J lim

t→−∞
ϕ, ϕ̇ = 0 , (5.17)

and Tµν at leading order therefore reads (at positive times)

Tµν
LO

= cµν
0

Q4

g2
= ∂µ ϕ∂ν ϕ− gµν

2

(
∂ρ ϕ

)
(∂ρ ϕ) + gµν g2

4!
ϕ4 . (5.18)

The Q4

g2 behaviour of Tµν at leading order can now easily be understood from (5.18) since

ϕ ∼ Q
g . To keep things simple here, we take J spatially homogeneous. Therefore so is ϕ, and

Tµν
LO has the following form

Tµν
LO
(x) =




ǫ
LO

0 0 0
0 p

LO
0 0

0 0 p
LO

0
0 0 0 p

LO


 , (5.19)

with the leading order energy density and pressure given by

ǫ
LO

=
1

2
ϕ̇2 +

g2

4!
ϕ4 , p

LO
=

1

2
ϕ̇2 − g2

4!
ϕ4 . (5.20)

Given these equations, on can easily check that the energy is conserved at positive times
(where the source J is turned off) thanks to the classical KG EOM. But this is not so the case
for the pressure of the system : it indeed indefinitely oscillates between ǫ and −ǫ as one can
see on the figure 5.1
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Figure 5.1: The various components of the energy-momentum tensor at Leading Order Tµν
LO .

Here the external source has be taken to be spatially uniform: J = θ(−x0)Q3

g ebQx0
(with

g = 1, b = 0.1 and Q = 2.5) so that it vanishes adiabatically in the remote past.

This was to be expected. Indeed since

ṗ
LO

= − g2

3
ϕ3 ϕ̇ , (5.21)

one can see that ṗ
LO

= 0 either if ϕ = 0 and in this case

p
LO

= ǫ
LO

=
1

2
ϕ̇2 , (5.22)

or if ϕ̇ = 0 and in this case

p
LO

= −ǫ
LO

= − g2

4!
ϕ4 . (5.23)

There is therefore no equation of state at Leading Order.

5.3.3 Energy momentum tensor at Next to Leading Order

As we saw in section 3.8 in the QCD case, we should have anticipated that because of the
presence of instabilities in the theory, the NLO contribution 1 has a sizable effect on the system
after a finite time, and should therefore be taken into account. Recalling the result of section
4.2.2.5, the NLO is given by

Tµν
NLO

= Ô Tµν
LO

, (5.24)

and replacing Ô with equation (4.143), we find (calling k = |k|)

Tµν
NLO

= (∂µa)(∂ν ϕ) + (∂µ ϕ)(∂νa)− gµν

(
(∂ρ ϕ)(∂ρa)− g2

6
aφ3

)

+
∫

d3k

(2π)32k

[
(∂µa+k)(∂

νa−k)−
1

2
gµν

(
(∂ρa+k)(∂ρa−k)−

g2

2
ϕ2a+ka−k

)]
, (5.25)

1. And in fact every higher contribution. This is why we will come to use Tµν
resum

.
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with

�ϕ +
g2

6
ϕ3 = J lim

t→−∞
ϕ, ϕ̇ = 0

(
�+

g2

2
ϕ2

)
a±k = 0 lim

t→−∞
a±k = e±ikx

(
�+

g2

2
ϕ2

)
a = − g2

2
ϕ
∫

d3k

(2π)32|k| a−ka+k lim
t→−∞

a = 0 . (5.26)

Using the three EOM for a, ak and ϕ, it is trivial to check that 2 the energy-momentum tensor
is conserved at NLO

∂µTµν
NLO

= 0 , (5.27)

as it should be. Since J is spatially homogeneous, a, ϕ only depend on x0

ä +
g2

2
ϕ2a = − g2

2
ϕ
∫

d3k

(2π)32k
a−ka+k , ϕ̈ +

g2

2
ϕ3 = J , (5.28)

while the EOM for the small fluctuations ak simplifies into the one that we already encoun-
tered (5.7)

äk +

(
k2 +

g2

2
ϕ2(x0)

)
a±k = 0 . (5.29)

The energy density and the pressure 3 at NLO read

ǫ
NLO

= ϕ̇ȧ +
g2

6
aϕ3 +

1

2

∫
d3k

(2π)32k

[
ȧ+k ȧ−k +

(
k2 +

g2

2
ϕ2

)
a+ka−k

]

p
NLO

= ϕ̇ȧ− g2

6
aϕ3 +

1

2

∫
d3k

(2π)32k

[
ȧ+k ȧ−k −

(
k2 − 2k2

x +
g2

2
ϕ2

)
a+ka−k

]
. (5.30)

Using (5.28) and (5.29), it is a trivial matter to check that the energy density is conserved
for positive times ǫ̇

NLO
= 0. Note that this expression of the pressure is not rotationally

invariant, but the three pressures are equal. Solving numerically (5.28) and (5.29) with the
initial conditions depicted in (5.26) gives what is represented on the figure (5.2).

2. Since this property is satisfied for the full energy-momentum tensor, it should obviously be satisfied at each
order of the perturbative expansion in g2.

3. The pressures are still equal since the system is isotropic.
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Figure 5.2: Components of Tµν
NLO for a spatially uniform external source.

Here we see that ǫ
NLO

is indeed conserved. In addition, one can observe that ǫ
NLO

=
0.014ǫ

LO
. A perturbative expansion for ǫ seems therefore justified 4. This is not the case for the

pressure. After a finite time where the NLO contribution is indeed very small in comparison
to the LO one, we see that p

NLO
starts to increase exponentially, voiding the validity of the

pertubative expansion of p after a finite time. In some sense, the situation is even worse when
one takes into account the NLO corrections in our framework. This is the secular divergence
phenomenon, already described for QCD in section 3.8.

5.3.4 The instabilities at work

As we have explained in section 5.2, a resonance band in the theory causes some modes ak
to grow exponentially with time. The consequence of this is that integrals such as

I(x0) =
∫

d3k

(2π)32k
ȧ+k ȧ−k , (5.31)

that appears in (5.28) are divergent when the time x0 goes to infinity. This causes the ex-
ponential growth observed in the pressure – but not in the energy, since it is protected by
conservation laws. One can check this by plotting I(x0), as was done in the figure 5.3.

4. At least at this order. The perturbative expansion for ǫ could be an asymptotic series.
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Figure 5.3: Numerical evaluation of the integral defined in eq. (5.31). The line denotes an
exponential fit to the envelope.

Here the envelope of the oscillations grows exponentially with time, with a growth rate
λ = 2µmax , where µmax is the maximum Lyapunov exponent in the resonance band (see the
appendix 5.A for more details on the resonance band and the Lyapunov exponent). Inter-
estingly, if one used an upper cutoff on the previous integral (5.31) to exclude the resonance
band, one would only observe a linear growth of I(x0), presumably caused by the remaining
modes that grow linearly with time (the mode k = 0 for instance). The remaining question
is: is the exponential growth of p

NLO
physical? And if not, how to cure it? It turns out that

we have already answered to both parts of this question. Firstly, this exponential growth that
happens when x0 → ∞ is not physical: this is due to the fact that we are still solving the linear
EOM (5.28) for ak even after it becomes large, despite the parametric estimate (5.11). Secondly,
a possible way to cure this issue could be to compute the resummed Tµν given by formula
(4.151)

Tµν
resum

= eÔTµν
LO

, (5.32)

which can be calculated with the Classical-Statistical Approximation (CSA), depicted in the
section 4.3. In this method, the full non-linear – but classical – EOM are solved, so that the
exponential growth observed in 5.2 should therefore saturate at some point.

5.3.5 The spatially uniform case

5.3.5.1 The model, analytical considerations

Before dealing with the full 3 + 1D theory, it is interesting to focus on a much simpler yet
illuminating example: the spatially uniform theory. This will allow us to understand the effect
of the fluctuating term on the energy-momentum tensor. Recalling that (5.32) is equivalent
to 5

∫
[D a] e−

1
2

∫
d3ud3v a(0,u)G−1

+−(u,v)a(0,v)Tµν
LO
[ϕ + a] , (5.33)

5. The shift term ψ has been absorbed in ϕ (section 4.2.3).
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where the initial surface is at x0 = 0. The functional integral reduces to an ordinary integral
if the fluctuations are spatially homogeneous. One can therefore generate Tµν

resum
as 6

∫
da dȧ e−

(
a2

2σ1
+ ȧ2

2σ2

)

Tµν
LO
[ϕ + a, ϕ̇ + ȧ] . (5.34)

Here σ1,2 are two real parameters that control the size of the fluctuations around the back-
ground field. If we take σ1,2 → 0, we recover the result of the figure 5.1. But before doing
so, let us notice that thanks to this simplistic model, the equation of motion reduces to an
ordinary differential equation and can be solved analytically. Indeed, starting from an initial
condition (ϕ0, 0) one can integrate (5.28) at positive times

ϕ̈ +
g2

6
ϕ3 = 0 , (5.35)

and this gives

ϕ̇

ϕ0
=

m0√
6

√
1− ϕ4

ϕ4
0

, (5.36)

Therefore

x0 − cst =

√
6

m0

∫ ϕ(x0)

0

dξ√
1− ξ4

ϕ4
0

, (5.37)

which is an elliptic integral, therefore

ϕ(x0) = ϕ0 cn 1
2

(
m0√

12
+ cst

)
, (5.38)

where cn 1
2

is the Jacobi elliptic function of the first kind with the elliptic modulus k = 1
2 [147].

It is important to note here that this function is periodic, with a period

T = K
(

1

2

) √
48

m0
, (5.39)

where K
(

1
2

)
≈ 1.85 is the compete elliptic function of the first kind. The prefactor is not of

any particular interest, but the fact that T ∝ ϕ0, meaning that the period depends on the

amplitude of the background field will play a crucial role in the physical interpretation of
our numerical results.

5.3.5.2 Numerical study

In this simple model, the energy density and the pressure read

ǫresum =

〈
1

2
ϕ̇2 +

g2

4!
ϕ4

〉

a,ȧ
, presum =

〈
1

2
ϕ̇2 − g2

4!
ϕ4

〉

a,ȧ
, (5.40)

where the bracket denotes the average over all the possible values a, ȧ in the initial condition
of equation (5.34), and where ϕ satisfies the classical spatially homogeneous EOM (5.28). If
we take the limit σ1,2 → 0, then as announced we recover the same pattern as the Leading
Order result of the full theory (see figure 5.1).

6. Not forgetting that one also needs the value of ϕ̇ on the initial surface.
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Figure 5.4: The various components of Tµν
LO for the simplistic spatially homogeneous model.

No quantum fluctuations are included (σ1,2 → 0).

Notice here that we have plotted
ǫresum

3 in figure 5.4 instead of ǫresum for reasons that will be
clear shortly. Indeed, performing now the same simulation but with non-zero σ1,2 we find a
qualitatively completely different result, depicted in figure 5.5
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Figure 5.5: The various components of Tµν
resum obtained with to formula (5.34).

Here, the pressure oscillations are damped and one finds that there is a one-to-one relation
between presum and ǫresum after a time x0 ≥ 80

presum =
ǫresum

3
. (5.41)

This is the first macroscopic hint of an equilibration taking place into the system, as this
relation confirms the formation of an equation of state, precisely the one expected for a scale
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invariant 3 + 1D theory. How to interpret this result? What made the pressure oscillations
decrease?

5.3.5.3 The physics of decoherence: intuitive explanation

Given (5.39), we know that the period of the oscillations of ϕ depends on their amplitude
ϕ0. This is illustrated in the next figure 5.6.

ϕ

ϕ̇

Figure 5.6: Different initial conditions oscillate with a different period.

So, what would happen to a system initialized as the superposition of several (ϕ0, 0)
configurations, as the one shown in 5.7?

ϕ

ϕ̇

Figure 5.7: A system formed by the superposition of several (ϕ0, 0) configurations (red band).

Because of the spread in the periods, the initial condition will start to expand in the con-
stant energy shell between ϕmin

0 and ϕmax
0 . This can be seen in 5.8.
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ϕ

ϕ̇

ϕ

ϕ̇

ϕ

ϕ̇

ϕ

ϕ̇

Figure 5.8: The constant energy shells between ϕmin
0 and ϕmax

0 are populated at different
rhythms because of the ϕ0 dependent period.

After a finite time, the shell between ϕmin
0 and ϕmax

0 will be completely occupied. This is
the phenomenon of phase decoherence, illustrated in figure 5.9.

ϕ

ϕ̇

Figure 5.9: Decoherence phenomenon: the inner shell between ϕmin
0 and ϕmax

0 is completely
occupied.

It turns out that the initial state from which we start in the full theory (see equation (5.34))
is a coherent state. In simple physical terms it is a quantum state that has the minimal width
in phase-space (ϕ, ϕ̇) allowed by Heisenberg uncertainty principle. But this state is not an
eigenstate of the interacting theory, hence the decoherence phenomenon that is observed in
the figure 5.5.

5.3.5.4 Numerical confirmation

One can plot as a function of time the phase-space density ρt(ϕ, ϕ̇) of the points (ϕ, ϕ̇) as
the system evolves. The result is shown on the figure 5.10.
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Figure 5.10: ρt(ϕ, ϕ̇) at different times.

At the initial time, a Gaussian profile centered around (ϕ0, 0) was taken as initial condition,
as the orange blob indicates. Then, as time increases, the decoherence phenomenon described
in the previous section takes place. After a time ∼ 200 the system has completely decohered,
the only reminiscence of the initial condition being through the narrow dispersion of the radial
coordinate. One can understand this from the Liouville equation

∂ρt

∂t
+ {ρt, H} = 0 , (5.42)

where {., .} = is the Poisson bracket

{A, B} = ∂A
∂ϕ̇

∂B
∂ϕ
− ∂B

∂ϕ̇

∂A
∂ϕ

, (5.43)

and H is the Hamiltonian H = 1
2 ϕ̇2 + g2

4! ϕ4. Looking at the Liouville equation, we see that a sta-
tionary solution can only depend on (ϕ, ϕ̇) through H – therefore making the Poisson bracket
vanish. The asymptotic behaviour of ρt is therefore a uniform distribution on a constant en-
ergy shell. In micro-canonical equilibrium language, this means that all the micro-states that
have the same energy are equally likely. Finally, we can estimate the decoherence time thanks
to formula (5.39). Complete decoherence can be said to happen when the angular spread of
the points on the previous figure reaches 2π. For one field configuration, the angular variable
is (up to a phase that depends on the initial condition) θ = ωx0, where given (5.39)

ω =
2π

T
= 0.346gϕ0 . (5.44)

If we now take two field configurations, their angular variable difference ∆θ is ∆θ = x0 ∆ω,
where ∆ω is the difference between their angular velocities. Thus

∆θ ≈ 0.346 gx0 ∆ϕ0 , (5.45)

where ∆ϕ0 is the difference between the maximal amplitude of the two configurations. This
reaches 2π for

x0
decoh
≈ 18.2

g∆ϕ0
, (5.46)
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Interestingly, this time is inversely proportional to the coupling constant g: the stronger the
interaction is, the faster decoherence will happen. x0

decoh
is also inversely proportional to the

difference of the field amplitudes: a narrow initial Gaussian distribution will decohere slower
than a broader one.

5.3.5.5 Why do an equation of state form?

If we look at the trace of the energy momentum tensor, which is nothing but ǫ− 3p in the
spatially homogeneous case, we get

Tµ
µ = −

(
∂µ ϕ

)
(∂µ ϕ) +

g2

6
ϕ4 . (5.47)

Using the fact that ∂µ (ϕ∂µ ϕ) = ϕ�ϕ +
(
∂µ ϕ

)
(∂µ ϕ), we get

Tµ
µ = ϕ

(
�ϕ +

g2

6
ϕ3

)
− ∂µ (ϕ∂µ ϕ) . (5.48)

The fact that the first term – using the EOM – of the right hand side is zero comes from the fact
that the scalar field theory with a quartic coupling is a scale invariant theory in 4 dimensions

g2

6
ϕ3 = V ′(ϕ) = 4

V(ϕ)

ϕ
. (5.49)

Therefore, we have

Tµ
µ = − d (ϕϕ̇)

dx0
, (5.50)

which is a total derivative. This means that, even for a single field configuration, this quantity
vanishes when it is averaged over one period

Tµ
µ =

∫ x0+T

x0
dt Tµ

µ [ϕ(t), ϕ̇(t)] = −
∫ x0+T

x0
dt

d (ϕϕ̇)

dt
= 0 . (5.51)

This will prove useful for the computation of the resummed Tµ
µ, which is related to the

phase-space density ρt(ϕ, ϕ̇) by the following ensemble average

〈
Tµ

µ

〉
a,ȧ =

∫
dϕ dϕ̇ ρt(ϕ, ϕ̇) Tµ

µ(ϕ, ϕ̇) , (5.52)

where the time dependence of the left hand side comes completely from ρt. To go further, we
perform the change of variables (ϕ, ϕ̇)→ (E, θ) where the latter are the energy and the angle
of one field configuration

〈
Tµ

µ

〉
a,ȧ =

∫
dEdθ ρ̃t(E, θ) Tµ

µ(E, θ) , (5.53)

here ρ̃t is the phase-space density in the (E, θ) coordinate system. Since we have shown in the
previous section that ρ̃t(E, θ) −→ ρ̃t(E) at late times, we have

〈
Tµ

µ

〉
a,ȧ

x0→∞≈
∫

dE ρ̃t(E)
∫

dθ Tµ
µ(E, θ) . (5.54)

The last integral in the right hand side is related to the trace of Tµ
µ for a single field configu-

ration averaged over one period, already computed in equation (5.51)
∫

dθ Tµ
µ(E, θ) =

2π

T

∫ x0+T

t
dt Tµ

µ(ϕ(t), ϕ̇(t)) = 0 . (5.55)

We have therefore proved

ǫ− 3p =
〈

Tµ
µ

〉
a,ȧ

x0→∞≈ 0 , (5.56)

in agreement with the late time behaviour of figure (5.5). Given how we obtained this equality,
the time at which (5.56) is satisfied should be the same as the one found in (5.46), e.g. the time
at which ρ̃t becomes independent θ.
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5.3.6 The full 3+1D case

5.3.6.1 Resummed energy-momentum tensor

To compute the resummed energy-momentum tensor in the full theory, one needs to solve
at positive time the classical equation of motion for the field φ

�φ +
g2

6!
φ3 = 0 . (5.57)

φ is formed at the initial time t = 0 by the superposition of the classical background field ϕ
and the spectrum of fluctuations ak weighted by random Gaussian numbers ck

φ(0,x) = ϕ0 +
∫

d3k

(2π)3
√

2ωk
Re [ck ak(0,x)] ,

φ̇(0,x) =
∫

d3k

(2π)3
√

2ωk
Re [ck ȧk(0,x)] , (5.58)

where ωk =
√

k2 + m2
0 and

〈ckc∗l 〉 = (2π)3δ3(k− l) , 〈ckcl〉 = 〈c∗k c∗l 〉 = 0 . (5.59)

To find ak, we need to solve the linear equation of motion (5.29) from x0 = −∞ starting with
plane waves initial conditions, jointly with the classical EOM for ϕ (5.28). To summarize, at
negative times we solve

�ϕ +
g2

6
ϕ3 = J ,

(
�+

g2

2
ϕ2

)
ak(x) = 0 . (5.60)

5.3.6.2 Numerical implementation

The numerical implementation is performed in the following way
— Time is kept as a continuous variable, meaning that the time step can be taken as

small as necessary in order to reach the desired numerical accuracy. The latter can be
tested thanks to the energy conservation. In practice we use a fourth order low storage
Runge-Kutta algorithm, described in [148].

— all the spatial dimensions are discretized on L3 lattice, and the discrete spatial indices
i, j, k range from 0 to L− 1. We take periodic boundary conditions.

Given those choices, one easily extend all the continuum equations (5.57-5.60) to the discrete
case. the discrete momenta read

kkx ,ky ,kz =
1

a

√
2

(
3− cos

[
2πkx

L

]
− cos

[
2πky

L

]
− cos

[
2πkz

L

])
, (5.61)

where a is the lattice step. The biggest momentum included in our numerical simulation is
therefore

Λ =

√
12

a
. (5.62)

5.3.6.3 Numerical results

In the following, the numerical computations are performed on a 123 lattice. The re-
summed energy-momentum tensor is computed thanks to the functional integration of equa-
tion (5.33), that we approximate by a Monte-Carlo average over 1000 configurations. The
numerical outcome for g = 0.5 is represented in figure the 5.11.
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Figure 5.11: Time evolution of the resummed energy-momentum tensor given by (5.33) and
computed thanks to the average over the fluctuating initial conditions (5.58). The resonance
band is completely included in the simulation. The coupling constant is g = 0.5.

Here the lattice cutoff Λ in (5.62) has been chosen such that the resonance band is com-

pletely included in the simulation (i.e. Λ > 3−
1
4 m0). All the previous quantities are repre-

sented in lattice units, meaning that x0 really reads a−1x0 while ǫ and p should read a4ǫ and
a4 p. Finally, let us mention that a second average over the lattice volume is performed for
Tµν

resum
. So what is really plotted is

〈〈
Tµν

resum

〉
a,ȧ

〉

lattice volume

(5.63)

Here, as in the figure 5.5 we observe the dampening of the oscillations of the pressure and
its relaxation towards the expected value in order for an equation of state to form: p = ǫ

3 .
Qualitatively, this relaxations happens through two distinct stages: the first one (x0 ≤ 50
for the g = 0.5 result of the previous plot) experiences a quick dampening of the pressure
oscillations, while for the second stage (x0 ≥ 50) this relaxation is slower. figure 5.11 is the
central result of this section, and the first hint of a possible equilibration of the system. We
will conclude this macroscopic study by looking at how the previous result depends on the
resonant modes and the coupling constant, while this section will be followed by a first look
at what happens locally in the theory, by studying the local energy density profile.

5.3.6.4 How do the resonant modes affect the figure 5.11?

Given the study that we have performed in the section 5.2 and in the appendix 5.A on the
stability of the modes ak, one could ask what happens if we exclude the resonance band from
our simulation. Would we loose the result of the figure 5.11? It turns out that this is not the
case, as illustrated in the figure 5.12
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Figure 5.12: Time evolution of the resummed energy-momentum tensor. The resonance band
is completely excluded in this simulation. The coupling constant is g = 0.5.

Here what we see is that while the relaxation process takes longer to start, is still happens
and the final result at late times is unchanged: one still observes the formation of an equation
of state. The two stages for this relaxation to take place are now the two followings: on a first
part (x0 ≤ 75 for the g = 0.5 result of the previous plot) the pressure oscillates as in figure
(5.1), while during the second stage the decrease of the oscillation is way faster than for 5.11.
The conclusion of this short study is that while the final result of the macroscopic study of
Tµν does not depend on the resonant band, the intermediate stages are strongly affected by it.

5.3.6.5 How does the strength of the interactions affect figure 5.11?

What happens if we now change the value of the coupling constant g? Is there some transi-
tion between a regime where an EOS do form and a regime where it doesn’t for some critical
g? Is there some scaling between the EOS formation time x0

EOS
and g? We have performed

several numerical simulations for g ranging from 0.5 to 8 (of course the last value should not

be taken too seriously, as it corresponds to a
g2

4! > 1 where perturbative techniques may not
be valid. This is presumably the reason why the last point of figure 5.14 is so off the fit), and
the outcome is shown in the figure 5.13.
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Figure 5.13: Time evolution of the resummed energy-momentum tensor for various values of
the coupling constant: g = 0.5, 1, 2, 4, 8. The resonance band is completely included in the
simulations.

Here we performed all the computations for the same energy density. This can be done
since ǫ ∝ Q4/g2 with Q being the only dimensionful parameter of our theory. The latter can
therefore be adjusted (through the choice of J) in order to have the same ǫ for all the values of
g studied, which is the only way to make a meaningful comparison. What figure 5.13 teaches
us is therefore that the stronger the interaction is, the faster the pressure relaxes towards its
equilibrium value. To confirm this fact in a more quantitative way, we defined x0

EOS
in the

different simulations as the time at which the pressure amplitude has been divided by four

presum

(
x0

EOS

)
=

presum(0)

4
. (5.64)

The different x0
EOS

obtained for the different values of g that we considered are represented in
figure 5.14
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Figure 5.14: x0
EOS

defined through equation (5.64) as a function of the coupling g. The line
represents the power law fit of equation (5.65)

As we can see, a power law fit seems to work pretty well for all the coupling that we used
except the strongest one, possibly for the reasons explained before. The fit reads

x0
EOS

=
const

g
2
3 ǫ

1
4

, (5.65)

in contrast with the result of equation (5.46) obtained in the previous simplistic spatially
homogeneous model.

5.3.6.6 Local energy-density fluctuations

So far we have only looked at average quantities over the lattice volume. But we know that
the equilibration of the system requires much more stringent conditions at the microscopic
level. Since we are no longer in the spatially uniform case of the section 5.3.5, we cannot
look at the phase-space density anymore, since it is now an infinite dimensional object. We
could however look at the local energy-density fluctuations and seek there the first hints of
local equilibration. Indeed, even if the energy is globally conserved, there are local energy
fluctuations that could teach us how a subvolume exchanges energy with the rest of the
system that acts as a heat bath. In particular, if the system is in local equilibrium, then the
energy fluctuations should be those of a canonical ensemble with a density operator ρ = e−βH

(where β = 1
T ). We have therefore studied the smallest subsystem achievable on a lattice: a

single lattice site. The first thing that we looked at is the energy-density distribution at several
times, shown on figure 5.15.
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Figure 5.15: Distribution of ǫ at one lattice site, at different x0 in the evolution. Here we have
used g = 0.5.

These histograms are the probability distributions for the value of the energy-density on
one lattice site. We see that the probability distribution at x0 = 0 is completely dictated by
the fluctuating spectrum (5.58) and (5.59). More precisely, the distribution of ǫ is a Gaussian

centered on the mean energy density (
g2

4! ϕ4
0 given our initial condition) with a width deter-

mined by (5.58) and (5.59). During the first stages of this evolution (three following times),
the distribution of ǫ remains Gaussian-like, but its width tends to increase. Around t ≈ 36 in
lattice units, a drastic change occurs: the peak shifts towards smaller energies, its amplitude
decreases and the tail of the distribution extends towards higher energies. After this change,
the evolution is much slower, and a stationary distribution seems to be obtained at the latest
times considered. This is in agreement with the decoherence of the pressure already dis-
cussed. Another study that can be performed on the energy-density is to look at its moments,
defined as

Cn =
〈ǫn〉
〈ǫ〉n . (5.66)

These moments are increasingly (with n) sensitive to changes in the shape of the distribution,
as shown in the figure 5.16
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Figure 5.16: Cn defined as (5.66) as a function of time on one lattice site, for n ranging from 2
to 6. Here we have used g = 0.5.

At early stages, all the moments are comparable, in agreement with the narrow Gaussian
shape for the local energy-density distribution observed in figure 5.15. Around x0 ≈ 30 a
rapid change occurs and the moments start to become different, their amplitude being higher
for higher n. After x0 ≈ 70, no subsequent change is observed and the moments seem to reach
a plateau. This ends our study of the energy-momentum tensor of the fixed volume scalar
field theory, and we will now consider other microscopic properties, like the spectral function
and the occupation number.

5.4 Microscopic properties of fixed volume scalar field theory

We now consider some microscopic quantities that will tell us more about a possible equi-
libration of the scalar theory. We will study two quantities: the spectral function of the system
and its the occupation number. The shape of the spectral function will teach us whether
quasi-particles exist in the system, while the occupation number is an indication of a possible
thermal equilibration (for which we expect a Bose-Einstein distribution, since scalar fields are
spin 0 bosons). This section will be divided in three parts. Firstly, we will derive the ana-
lytical formulas necessary to numerically compute the spectral function ρ and the occupation
number fk. Secondly, we will compute these quantities and analyze the outcome of our sim-
ulations. We will in a third part make some side-remarks and compute other quantities like
the entropy.

5.4.1 Analytical derivation of the spectral function and the occupation number

5.4.1.1 Spectral function

The spectral function is related to the retarded propagator in the following way

ρ(ω,k, y0) = 2Im
∫ +∞

0
dx0

∫
d3x eiωx0

e−ik.xGR(x0 + y0,x, y0, 0) , (5.67)

where GR is the dressed retarded propagator, related to the G±± that we described in great
detail in the section 4.2

GR = G++ − G+− . (5.68)
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Diagrammatically at leading order, it also looks like equation (4.101)

GLO
R (x, y) = x y = x y . (5.69)

This should also be improved by the same resummation as the one used for Tµν. How-
ever, Tµν

NLO was of order 1, whereas GLO
R is of order 1, and GNLO

R is of order g2. The computa-
tion of GNLO

R is therefore in a sense very similar to the computation 7 we would perform for〈
φ(+)(x)φ(−)(y)

〉

NNLO

. There are three kind of topologies that contribute to GNLO
R

GNLO
R = x y + x y + x y

= GNLO
1 + GNLO

2 + GNLO
3 . (5.70)

Given the section 4.2, it is easy to relate those diagrams to the operator Ô. Firstly, one can see
that the operator that gave ψ is exactly the one which gives GNLO

1 if it acts on one of the ϕ of
the previous figure. Therefore

GNLO
1 (x, y) =

∫

Σ
dΣu

[
i
(

ψ(u)T̂(u)
)

−1

2

∫
d3k

2|k|(2π)3

∫
dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)]]

same ϕ

GLO
R (x, y) . (5.71)

Here same ϕ means that the operators T̂(u)T̂(v) should act on the same ϕ, i.e.

[
T̂(u)T̂(v)

]
same ϕ

ϕ(x1) · · · ϕ(xn) =
n

∑
i=1

ϕ(x1) · · · ϕ(xi−1)
[

T̂(u)T̂(v)ϕ(xi)
]

ϕ(xi+1) · · · ϕ(xn) .

(5.72)

Secondly, we have

GNLO
2 =

[
−1

2

∫

Σ
dΣu

∫
d3k

2|k|(2π)3

∫
dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)]]

same V′′(ϕ)

GLO
R

(5.73)

Here same V ′′(ϕ) means that the operators T̂(u)T̂(v) act on one V ′′(ϕ), one T on each ϕ.
Diagrammatically this operator removes the two ϕ’s of the same insertion, and puts G+−
instead (see equation (4.101)). Finally, Things are a bit more complicated for the last diagram.
First, we rewrite it as

GNLO
3 (x, y) =

∫
d4w d4z GLO

R (x, w)Σ
1−loop

R (w, z) GLO
R (z, y) . (5.74)

7. This makes sense since
〈

φ(+)(x)φ(−)(y)
〉

at lowest order is the sum of two disconnected diagrams and gives

ϕ(x)ϕ(y) ∼ 1
g2 , while this cannot be the case for

GR ∼
〈[

φ(+)(x), φ(−)(y)
]〉

,

which gives [ϕ, ϕ] = 0 at order 1
g2 . All the orders are therefore shifted between GR and

〈
φ(+)(x)φ(−)(y)

〉
.
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In the language of the 1− 2 basis, we know (see chapter 7) that since ϕ is attached to 2 and
GR = G21, Σ

1−loop

R receives only one contribution 8

Σ
1−loop

R (w, z) =
1

2
V ′′′(ϕ(w))V ′′′(ϕ(z))GLO

R (w, z) (G−+(w, z) + G+−(w, z)) . (5.75)

Using the result of equation (4.114) for G+−, this gives

GNLO
3 =

[
−1

2

∫

Σ
dΣu

∫
d3k

2|k|(2π)3

∫
dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)]]

distinct ϕ′s
GLO

R .

(5.76)

Here distinct ϕ′s means that the two T’s in the operator of the previous formula must act
on ϕ′s that live on different space-time points. Putting everything together, (5.71), (5.73) and
(5.76) gives the expected result

GNLO
R (x, y) =

∫

Σ
dΣu

[
i
(

ψ(u)T̂(u)
)

−1

2

∫
d3k

2|k|(2π)3

∫
dΣv

[(
a+k(u)T̂(u)

) (
a−k(v)T̂(v)

)]]
GLO

R (x, y) , (5.77)

which is nothing but

GNLO
R (x, y) = Ô GLO

R (x, y) . (5.78)

We will therefore define G resum
R (x, y) as

G resum
R (x, y) = eÔ GLO

R (x, y) , (5.79)

which can also be re-expressed (as shown in the case of Tµν) as

G resum
R =

∫
[D a] e−

1
2

∫∫
d3ud3v a(0,u)G−1

+−(u,v)a(0,v)GLO
R [ϕ + a, ϕ̇ + ȧ] . (5.80)

Numerically, it is more involved to compute it as it depends on two space-time points. But
even if the system that we consider is (at least initially) out of equilibrium, meaning that time
translation invariance of GLO

R is broken, it is not the case for translation invariance in space.
We can therefore limit ourselves to the computation of GLO

R (x0,x, y0, 0). And there is a simple
way to obtain this quantity. Firstly, recall that (see the section 4.2.2.1)

[
�y + V ′′(ϕ(y))

]
GLO

R (x, y) = − iδ(x− y) (5.81)

Secondly, considering a small fluctuation a propagating on top of ϕ
[
�y + V ′′(ϕ(y))

]
a(y) = 0 , (5.82)

we easily get the following Green’s formula, following the same steps as in the section 4.2.2.1

a(x) = −i
∫

y0
d3y

[
GLO

R (x, y)∂0
ya(y)− a(y)∂0

yGLO
R (x, y)

]
. (5.83)

Therefore, if we initialize a by defining

a(y0, y) = 0 , ∂0
ya(y0, y) = iδ(y) , (5.84)

we get

a(x) = GLO
R (x0,x, y, 0) , (5.85)

Numerically we will therefore use this trick and compute a(x) with the linearized EOM (5.82)
initialized at y0 with (5.84) in order to have access to GLO

R (x0,x, y, 0), from which we get
G resum

R (x0,x, y, 0) thanks to the resummation technique (5.80).

8. From the closed loop G22(w, z)G21(w, z), where G22 = 1
2 (G−+ + G+−) has been replaced in (5.75).
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5.4.1.2 Occupation number

The occupation number fk "counts" the number of particle with a given momentum k. It
is therefore related to the creation and annihilation operators that we have introduced in the
section 4.1. We can write for fk

2ωkV(1 + 2 fk) =
〈

a†
kak + aka†

k

〉
, (5.86)

where 9 ωk =
√

k2 + m2, V is the volume and 〈〉 stands for the average over field initial
conditions. Using equation 4.16, we can rewrite the right hand side as

〈
a†
kak + aka†

k

〉
=
∫

d3xd3y

[
eik(x−y)

↔
∂0

x

↔
∂0

y
〈
φ+(x)φ−(y) + φ−(x)φ+(y)

〉]

x0=y0

, (5.87)

where the x0 = y0 equality is only taken after the derivatives have acted on the fields. The
field dependent term of the right hand side is nothing but

〈
φ+(x)φ−(y) + φ−(x)φ+(y)

〉
= G+−(x, y) + G−+(x, y) = 2G22(x, y) , (5.88)

where we recall that G22 is the symmetric propagator. It can be treated exactly in the same

way as
〈

φ(+)(x)φ(−)(y)
〉

was in section 4.2 to get the same resummation formula. Knowing

that

GLO
22 (x, y) = ϕ(x)ϕ(y) , (5.89)

One gets the result

f resum
k (x0) =

1

2ωkV

〈∣∣∣∣
∫

d3x eikx
↔
∂0

x φ(x)
∣∣∣∣
〉
− 1

2
=

1

2ωkV

〈
|φ̇k(x0)|2 + ω2

k|φk(x0)|2
〉
− 1

2
,

(5.90)

where φk is the 3D Fourier transform of φ

φk =
∫

d3x eikx φ(x) , (5.91)

and as usual φ is the solution of the classical EOM for the initial condition depicted in formula
5.58. Evaluating numerically fk is therefore an easier task than evaluating ρ.

5.4.2 Numerical results

5.4.2.1 Formation of quasi-particles

A trivial assertion is that if the retarded propagator is very close from the one of a free
massive theory, then since

GR(p2) =
i

p2 −m2 + ip0ǫ
, (5.92)

using the equality (where pv stands for principal value)

i
x + iǫ

= pv

(
1

x

)
+ πδ(x) , (5.93)

we would have

GR(p2) ≈ πǫ(p0)δ(
(

p0
)2 − |p|2 −m2) + ipv

(
1

(p0)2 − |p|2 −m2

)
, (5.94)

9. We will see later on that even if we start with a massless scalar field theory, a thermal mass develops during
the time evolution of the system.
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and plugging this into (5.67) would give

ρ(ω,k, y0) ∼ δ
(
ω2 − |k|2 −m2

)
. (5.95)

Numerically, we cannot reproduce this δ function even if it was present: indeed, we cannot

do the
∫ +∞

0 dx0 integration, as it would imply to follow the evolution of the system during an
infinite time. What we really compute is therefore

ρ(ω,k, y0) = 2Im
∫ +∞

0
dx0

∫
d3x eiωx0

e−
(x0)2

σ2 e−ik.xGR(x0 + y0,x, y0, 0) , (5.96)

where σ is chosen in such a way that we only have to follow the evolution of the system during
a finite – numerically manageable – amount of time, as the integrand goes to 0 for x0 ≫ σ.
The price to pay for this simplification is that the width that will appear in the (ω, k) plane
for the spectral function will be unphysical, related to the value of σ. In the figure 5.17, we
have represented ρ(ω, k, y0 = 0) for a coupling constant g = 1.
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Figure 5.17: Spectral function ρ(ω, k; y0 = 0) at the initial time. The computation is performed
on a 203 lattice, and the coupling constant is g = 1.

We observe a branch (ω, k) along a curve ω2 = k2 + m2. But this is not the only structure
that emerges. There are also higher mass excitations with a smaller magnitude for ρ. This
picture is qualitatively modified during the time evolution of the system, as one can see on
the following two plots
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Figure 5.18: Spectral function ρ(ω, k; y0) at the times y0 = 400 (left) and y0 = 3000 (right). The
numerical simulation corresponds to the same parameters as in the figure 5.17.
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At a time y0 = 400, the higher mass excitations have almost completely decayed, and
nothing is left but the lower mass excitation at a time y0 = 3000. This means that the system
can be correctly described by a collection of quasi-particles of mass 10 m. The transient regime
during which this quasi-particle description is not valid approximately corresponds to the
regime before the formation of an EOS. The remaining question to be answered here is what
is the quasi-particle mass, and more importantly, can we understand it theoretically? We have
fitted at various times the peak of the main branch as ω =

√
k2 + m2. The result that we got

from here is the green curve of the following figure 5.19.
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Figure 5.19: Mass of the quasi-particles. The green line was obtained by a fit of the main

dispersion branch with a function of the form ω =
√

k2 + m2. The blue line is the outcome of
a 1-loop analytic calculation from the occupation number, while the orange one is the result
of a 1-loop gap equation that resums recursively all the daisy diagrams.

As one can see, the result for this m is not stable until y0 ∼ 100− 400, and evolves smoothly
afterwards. In addition, one can see on this curve that after this time, the mass of the quasi-
particles slowly decreases. One can relate this with a change in the occupation number.
Indeed, a naive estimate for m can be made within the hard thermal loop (HTL) framework
[149, 150]

m2
HTL

=
∫

d3k

(2π)32k
fk . (5.97)

This m gives qualitatively the same behaviour as the one numerically extracted form the spec-
tral function, but differs by an almost constant offset. Nevertheless, it allows us to interpret
the global decrease of the mass as a transfer of energy from soft modes to hard modes – this
interpretation is correct only if the number of quasi-particles N ∼

∫
d3k fk is approximately

conserved during the time evolution. This will be discussed in the next subsection, as well as
the origin of the orange line that seems to agree much better.

5.4.2.2 Classical thermal equilibration with overpopulated initial conditions

We now turn our attention to the occupation number, defined in equation (5.90). A good
numerical check can first be performed by taking J = 0, which leads to ϕ = 0. In this case, the

10. See the appendix 5.B for the effective Hamiltonian that would account for this hypothesis.
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small fluctuations which were plane waves in the remote past stay plane waves during their
whole evolution at negative times, where they follow the vacuum linearized equation

�ak = 0 . (5.98)

At x0 = 0, the initial condition therefore reads

φ(0,x) =
∫

d3k

(2π)3
√

2|k|
Re
[
ck eik.x

]
,

φ̇(0,x) =
∫ √

|k|d3k

(2π)3
√

2
Re
[
i ck eik.x

]
, (5.99)

which means

φk(0) =
ck + c∗k√

2|k|
φ̇k(0) = i|k| ck − c∗k√

2|k|
. (5.100)

Since in the discrete case

〈
ckc∗

k′
〉
= Vδkk′ , (5.101)

by plugging (5.100) into (5.90) we obtain

f resum
k (x0) =

1

2|k|V
〈
|φ̇k(x0)|2 + ω2

k|φk(x0)|2
〉
− 1

2
= 0 . (5.102)

Therefore, in the vacuum case the occupation number is zero. Note that this would not be
the case if the 1

2 term was not present (the latter coming from the non vanishing commutator
between the creation a†

k and the annihilation akoperators). We have performed a simulation
with (5.100) as initial conditions and we have obtained fk = 0 up to statistical error (that scale
as 1√

Nconf
, with Nconf the number of initial configuration in the Monte-Carlo simulation) until

very late times, even larger than those presented in the following 11. Let us now see what we
obtain for non-zero J, i.e. a non-zero ϕ. We first considered a spatially homogeneous J. In
this case, ϕ0 does not depend on position, and ϕk(0) is therefore localized at k = 0. Since
the spectrum of fluctuations is just an order 1 correction compared to the background field
ϕ0 ∼ 1

g , the occupation number should be localized at k = 0 at the initial time 12. This is

indeed the case, as can be seen on the figure 5.20.

11. Let us note here that this may no longer be true in classical Yang-Mills simulations, where a phenomenon
called vacuum thermalization takes place [151]. This phenomenon appears faster than in the scalar theory, espe-
cially if one increases the coupling.

12. Of course the hierarchy between the background field and the small fluctuations is less obvious for g ∼ 1,
but the prefactor 1

4! plays an important role in this case and g ∼ 1 still corresponds to a weakly coupled scalar
interaction. This hierarchy is therefore still respected at g = 1.
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Figure 5.20: Time evolution of the occupation number fk. The gray band represents a fit by
a Bose-Einstein distribution. The dashed red band is a fit by a pure power law k−5/3 (5.103).
The thin black line is a fit by a distribution of the form given in eq. (5.108).

As expected, f0 is five orders of magnitude above its value for k 6= 0 at the initial time. But
as time increases, the picture for fk is modified: is stops being localized at zero momentum
and starts to expand towards higher momentum. This is in complete agreement with the
decoherence explained in the section 5.3. The peak in the occupation number that appears in
the previous plot at quite early times around k = 1.1 also has a well understood explanation:
it corresponds to the resonance band given our set of parameters. At later times, the evolution
of fk is slower, and not much happens after a time x0 ∼ 104. An equilibrium distribution
function seems to be reached. To find what it is, we have performed several fits, explained in
the legend of the figure 5.20. The first idea is to fit fk as

fk = a kb , (5.103)

with a and b two free parameters. This scaling distribution function is inspired from the
physics of turbulence [31, 37, 38, 152–156]. Indeed, our system shares some features with the
Kolmogorov cascade process [157, 158], where energy is constantly injected into the soft modes
and cascades towards higher momenta at a given rate kb. In our simulation, we have found the
best fit for b ∼ 5

3 , and we have observed that while a band of soft modes are well-fitted, nor
the zero-mode neither the hardest modes of the simulation are well described. In addition,
this fit should not work at infinitely late times, since in our system the energy is injected once
and for all at the start of the time evolution, and is then conserved. If a Kolmogorov cascade
phenomenon was to happen in our system, it could therefore only be a transient process: it
would cease after the energy of the soft modes is depleted. The second fit that we have tried
was with a Bose-Einstein distribution function

f BE
k =

1

e
ωk−µ

T − 1
. (5.104)

An interesting fact is that the best fit was achieved with a non-zero chemical potential. Even if
the particle number is not exactly conserved, this seems to suggest that the particle number-
changing processes are slow compared to the ones that conserve it. But this should not be
a surprise in a weakly coupled scalar field theory. Indeed, since ∼ g2, the cross-section
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of elastic collisions (that do conserve the particle number and that are 2 to 2 processes in the
quartic scalar field theory) is of the order

σel ∼ g4 , (5.105)

while the first particle changing process is ∼ g4, which gives a cross-section of the order
of

σinel ∼ g8 . (5.106)

The bottom line of this hand waving argument is that we can understand the presence of
µ 6= 0 since the number-changing inelastic processes are much slower than the elastic ones
(but µ should decrease as time goes to infinity since the particle number is not conserved).
The particle number should therefore only experience slow changes. This is confirmed in the
figure 5.21
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Figure 5.21: Time evolution of the quasi-particle density in the system. Gray band: fit of the
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4 .

where we have plotted

n =
∫

d3k

(2π)3
fk . (5.107)

After a first stage where n is ill-defined (expected since the quasi-particles are not yet formed
in the system), it starts to very slowly decay. Let us now discuss the sign of the chemical
potential. We find it positive, meaning that there is an excess of particles in the system, that
a Bose-Einstein distribution cannot accommodate. Let us conclude the analysis of this Bose-
Einstein fit by saying that although it describes correctly a wider band of modes than the
power law fit, it still fails to describe the zero-mode and the hard tail of the spectrum. The
best fit that we have found is a classical fit, obtained by Taylor-expanding the Bose-Einstein
distribution function and keeping only the first two terms

f clas
k =

T
ωk − µ

− 1

2
. (5.108)
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The 1
2 is crucial in order to correctly reproduce the hard tail of the distribution function at late

times. Since we are using the classical-statistical framework, where we know from section 4.3
that fk should be much larger than 1, it should not really matter to keep it or not. But there
are three reasons to do so. Firstly, since the CSA completely takes into account the LO and the
NLO of the full theory, it makes sense to keep the first two terms (and not only the leading one)
when Taylor-expanding f BE

k . Secondly, in the derivation of fk, one can track the origin of this
1
2 and in formula (5.86) we see that it comes from the canonical commutation relation between
creation and annihilation operators. Thirdly, one would not obtain a vanishing occupation for
vacuum fluctuations if this 1

2 is was neglected. We therefore keep it, even if in this hard mode
region where fk ≤ 1 the result of the CSA should not be trusted. Indeed, in the the full theory
fk should converge towards f BE

k , that differs from f clas
k precisely in this region. With f clas

k , all
the modes except k = 0 are perfectly fitted at late time. In addition, it should be noted that
the best fit is achieved for µ ≈ m. This is the maximal value that µ can take, otherwise the
occupation number would be negative at soft momentum. When a chemical potential reaches
its maximal value and one still observes a particle excess in the zero mode, this is a strong
evidence of the formation of a Bose-Einstein condensate. Consider for a moment that both ǫ0

and n0 are conserved by the time evolution. If the classical equilibrium is reached at some
point (assuming that µ = m), then at this time one has

ǫ =
∫

d3k

(2π)3
ωk

(
T

ωk −m
− 1

2

)
= ǫ0 , (5.109)

from which one deduces T. If

n0 > n =
∫

d3k

(2π)3

(
T

ωk −m
− 1

2

)
, (5.110)

then the system cannot accommodate all the particles that are present at the initial time. In
order to still conserve the energy, the excess is stored in the zero-mode. This is Bose-Einstein
condensation. In our case this should only be a transient state as n is not conserved: the Bose-
Einstein condensate should decay at very late times. This will be confirmed in the figure 5.24.
We have thus shown that the (transient in the sense just explained) equilibrium distribution
function is not just f clas

k but instead

f class = n0 δ(k) +
T

ωk − µ
− 1

2
. (5.111)

With this in mind, one can compute what fraction of energy is stored in which modes during
the time evolution, and do the same for the fraction of particle number. The results are shown
in the figure 5.22.
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Figure 5.22: Left: fraction of particles contained in the modes |l| ≤ |k|, at various stages of the
time evolution. Right: fraction of energy contained in the modes |l| ≤ |k|.

At early times (up to x0 ∼ 100), all the particles and all the energy are stored in the zero
mode, as a consequence of our initial condition ϕk ∝ δ(k). At subsequent times (x0 = 200), a
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large fraction of the energy is still in the zero mode, while the remainder is almost entirely in
the resonance band. At the latest times represented in the previous figures (x0 = 104 in lattice
units), the zero mode still contains about 35% of the particles and 15% of the energy.

One objection could be made on the existence of the Bose-Einstein condensate: since we
have initialized the system with ϕk(0) = ϕ0δ(k), one could be tempted to say that the excess
in fk that we observe at late times is just a remaining feature of our initial condition. The
following figure 5.23 disproves this argument.
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Figure 5.23: Time evolution of the occupation number fk for a system initialized in the modes
(kx, ky, kz) = (1, 1, 0) and (−1,−1, 0). In the top right inset, the behavior at short times is
shown.

In this simulation, J has been chosen so that

ϕk(0) = cos(k1.x) (5.112)

with (recalling 5.61)

k2
1 = k2

1,1,0 =
2

a

[
2− 2 cos

(
2π

L

)]
. (5.113)

Even if the occupation at k = 0 is 0 at the initial time, one sees in the inset of the figure
5.23 a rapid build up of f0. At very late times, the behaviour of fk is exactly the same as in
the simulation of figure 5.20 where ϕk(0) was spatially homogeneous. Namely, the best fit is
still achieved by a classical distribution with a non-zero chemical potential µ. Last evidence

in favor of the existence of a Bose-Einstein condensate: given equation (5.111), the ratio
f0

V
should not depend on the size of the lattice considered. We have performed three simulations
with three different lattice sizes (L = 20, 30, 40), and the outcome is shown in the figure 5.24
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Figure 5.24: Time evolution of the ratio
f0

V for three different lattice sizes.

Here, one can see that after a short transient regime, the three curves reach a plateau
where they are all equal, confirming the volume scaling of a Bose-Einstein condensate. The
slow decay of this plateau is due to the already explained fact that the particle number is not
conserved exactly, and therefore the Bose-Einstein condensate should disappear at asymptot-
ically large times.

5.4.3 Deeper analysis of the quasi-particle picture

The reader may refer to the appendix 5.B for more details on the quasi-particle description
in term of an effective Hamiltonian. Now that we understand the origin and the importance of
the 1

2 term in our simulations, we can try to fit the mass of the quasi-particles by the following
adaptation of the HTL formula

m2
1−loop =

∫
d3k

(2π)32ωk

(
fk +

1

2

)
. (5.114)

This gives a gap equation (that one cannot solve analytically, as the right hand side also
depends on m through ωk =

√
k2 + m2), that we solve numerically in order to obtain the

orange curve of the figure 5.19. As one can see, the agreement with the mass extracted from
the spectral function is much better. Another test that can be performed on the quasi-particle
picture is to compare the energy-density that it predicts

ǫqp =
∫

d3k

(2π)3
ωk fk (5.115)

with the true energy-density. This gives the figure 5.25.
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Figure 5.25: Time evolution of the quasi-particle energy-density (in green), compared to the
true energy-density (in orange).

As one can see, the energy-density of the quasi particles is always above the true energy-
density of the system. This means that the residual interaction (the H′int of appendix 5.B) is
attractive. This is a standard result in φ4 theory 13. In addition, the difference between ǫ and
ǫqp decreases as time increases, and becomes almost negligible. This is another evidence in
favor of the description by a collection of free quasi-particles. The last one comes from the
computation of the entropy-density predicted by the quasi-particle description

sqp =
∫

d3k

(2π)3
(1 + fk) ln(1 + fk)− fk ln fk , (5.116)

that we can compare with the entropy of a free gas of massive bosons

sBE =
∫

d3k

(2π)3
(1 + f BE

k (µ = 0)) ln(1 + f BE
k (µ = 0))− f BE

k (µ = 0) ln f BE
k (µ = 0) (5.117)

with the mass extracted from the fit of the spectral function and with the temperature ex-
tracted from the energy-density, knowing that for a free gas of bosons

ǫBE =
∫

kd3k

(2π)3
f BE
k (µ = 0) =

π2T4

30
. (5.118)

The result is shown in the figure 5.26

13. See [159] for recent developments.
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Figure 5.26: Time evolution of the quasi-particle entropy-density (in green), compared to the
entropy-density of a free gas of massive bosons.

Two important observations can be made here. Firstly, the entropy computed thanks to
(5.116) (green line) increases by approximately a factor 20. This goes along with the decoher-
ence picture already advocated several times. Secondly, the quasi-particle entropy approaches
the one of a free gas of bosons (orange line) at late times, confirming the validity of the
quasi-particle approximation at late times.

5.5 Summary

• The purely classical φ4 scalar theory does not have an EOS.
• A naive loop expansion leads to secular divergences.
• Secular divergences can be cured by the use of the classical statistical approximation,
which also correctly accounts for the instabilities.
• The CSA leads to an EOS, and thermalization. In addition, a Bose-Einstein Condensate
may be formed for certain initial conditions.
• After a transient time corresponding to the formation of the EOS, the system can be
correctly described by weakly interacting quasi-particles.

Appendix

5.A Instabilities in the fixed-volume case

5.A.1 Analytical study

In this appendix we determine the resonance band for the fixed volume scalar field theory.
We start with a massive Lagrangean, as this does not forbid us to perform the analytical study
all the way down to the resonance band. The Lagrangean therefore reads

L =
1

2

(
∂µφ

)
(∂µφ)− g2

4!
φ4 +

m2

2
φ2 (5.119)
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Assuming as explained in section 5.2 that the background field is space independent, the EOM
is therefore

ϕ̈ +
g2

6
ϕ3 + m2ϕ = 0 . (5.120)

We now consider a small perturbation of momentum k propagating on top of this background
field. The linearized EOM reads

äk +
(
k2 +

g2

2
ϕ2 + m2

)
ak = 0 . (5.121)

To go further,we first integrate (5.120), recalling that the initial condition at x0 = 0 is (ϕ, ϕ̇) =
(ϕ0, 0):

ϕ̇ =

√
g2

12

(
ϕ4

0 − ϕ4
)
+ m2

(
ϕ2

0 − ϕ2
)

, (5.122)

and then perform the change of variable ϕ = ϕ0
√

z, which gives

ż =
√

z(1− z)

√
g2ϕ2

0

3
(1 + z) + 4m2 . (5.123)

We also need

z̈ż =
1

2

[
4m2(1− 2z) +

g2ϕ2
0

3
(1− 3z2)

]
. (5.124)

We now want to re-express the EOM for ak(x0) as an EOM for a(z). Starting from (5.121),
we obtain

z(1− z)
(

g2ϕ2
0

3
(1 + z) + 4m2

)
a′′ +

1

2

[
4m2(1− 2z) +

g2ϕ2
0

3
(1− 3z2)

]
a′

+

(
g2ϕ2

0

2
z + m2 + k2

)
a = 0 , (5.125)

where the prime denotes a derivative with respect to z. Taking m2
0 =

g2 ϕ2
0

2 , ξ = m
m0

and κ = k
m0

,
this gives

z(1− z)
(
2(1 + z) + 12ξ2

)
a′′ +

[
6ξ2(1− 2z) + (1− 3z2)

]
a′ + 3

(
z + ξ2 + κ2

)
a = 0 . (5.126)

Given two solutions a, b, and looking at M = ab, we have

M′ = a′b + ab′

M′′ = a′′b + 2a′b′ + ab′′

M′′′ = a′′′b + 3a′′b′ + 3a′b′′ + ab′′′ . (5.127)

Differentiating (5.126) with respect to z, we obtain

z(1− z)
(
2(1 + z) + 12ξ2

)
a′′′ +

[
3(1− 3z2) + 18ξ2(1− 2z)

]
a′′ + 3

(
κ2 − 3ξ2 − z

)
a′ + 3a = 0 .

(5.128)

We now multiply (5.128) by b, (5.126) by 3b′, and add these quantities together with the same
ones with a↔ b to obtain

(
2z(1− z2) + 12z(1− z)ξ2

)
M′′′ + 3

[
(1− 3z2) + 6ξ2(1− 2z)

]
M′′ + 6(z + 2κ2)M′ + 6M = 0 .

(5.129)
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If we search a polynomial solution of degree n to this equation, then n satisfies

(n− 2)(n + 3)(2n + 1) = 0 , (5.130)

which implies that n = 2. We are thus looking for a solution of the form

M = z2 + αz + β . (5.131)

Inserting this in (5.129) gives

M = z2 − 2(κ2 − 3ξ2)z + 4k4 − 1− 6ξ2(2k2 + 1) . (5.132)

Now, looking at the Wronskian W = a′b− ab′, we see that

W ′ = a′′b− ab′′ = − 6ξ2(1− 2z) + (1− 3z2)

2z(1− z2) + 12z(1− z)ξ2
W , (5.133)

which can be integrated into

W =
w0√

z(1− z)(6ξ2 + 1 + z)
. (5.134)

Since we are looking for an exponentially growing solution, and since M = ab is a degree 2
polynomial, we must have a 6= b. Assuming that a is the growing solution, we have

W = a′b− ab′ =
(

a′

a
− b′

b

)
M =

w0√
z(1− z)(6ξ2 + 1 + z)

a
b
= exp

(∫

z

w0 dx

M(x)
√

x(1− x)(6ξ2 + 1 + x)

)
. (5.135)

Finally, multiplying by M and taking the square root gives

a =
√

M(z) exp

(
w0

2

∫

z

dx

M(x)
√

x(1− x)(6ξ2 + 1 + x)

)

b =
√

M(z) exp

(
−w0

2

∫

z

dx

M(x)
√

x(1− x)(6ξ2 + 1 + x)

)
. (5.136)

To find the value of ω0, one has to insert these expressions into (5.126). To have an exponential
behaviour for a, we should have

−κ2
(
1 + 2κ2

) [
6κ6 − 3(1 + 10ξ2)κ4 + 2(9ξ4 − 3ξ2 − 1)κ2 + (1 + 3ξ2)2(1 + 6ξ2)

]
> 0 . (5.137)

so that

√
1 + 6ξ2

2
< κ <

√

ξ2 +

√
1 + 6ξ2 + 12ξ4

3
. (5.138)

As ξ increases, this band shrinks very fast. Indeed, we have for ξ ≫ 1
√

ξ2 +

√
1 + 6ξ2 + 12ξ4

3
−
√

1 + 6ξ2

2
≈ ξ−3

96
√

3
+O(ξ−4) (5.139)

If we want the period of the oscillations of ϕ, using (5.120) we find

φ̇ =

√
g2

12

(
ϕ4

0 − ϕ4
)
+ m2

(
ϕ2

0 − ϕ2
)

T
4
=
∫ ϕ0

0

dϕ√
g2

12

(
ϕ4

0 − ϕ4
)
+ m2

(
ϕ2

0 − ϕ2
) =

√
6

m0

√
1 + 6ξ2

K(− 1

1 + 6ξ2
) , (5.140)
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where

K(k) =
∫ 1

0

dx√
(1− x2)(1− kx2)

. (5.141)

The conclusion of this analytical study is that the fixed volume scalar field theory is affected
by instabilities. The nature of these instabilities is parametric resonance, and the resonance
band shrinks as the mass increases. Going back to the massless case, the resonance band is

√
1

2
< κ <

√√
1

3
. (5.142)

5.A.2 Numerical confirmation: trace of the monodromy matrix

Given what we did in the previous section, we have for ξ = 0,

0.707107 < κ < 0.759836 , (5.143)

There is a simple way to check this numerically. Take a1(t, k) and a2(t, k) two independent
solutions of (5.121) and let Mk ∈ M2R being the so-called monodromy matrix, i.e. the matrix
that relates a1,2 from one time t to the time t + T.

(
a1(T, k) a2(T, k)
ȧ1(T, k) ȧ2(T, k)

)
= Mk

(
a1(0, k) a2(0, k)
ȧ1(0, k) ȧ2(0, k)

)
. (5.144)

Our aim is to study the stability of the pair (a1, a2) thanks to Mk. The conservation of the
Wronskian implies that

det(Mk) = λ1λ2 = 1 , (5.145)

where λ1,2 are the two eigenvalues of Mk. These two eigenvalues are therefore the inverse of
one another. One can thus write the trace of Mk as

tr (Mk) = λ + λ−1 . (5.146)

Since
(

a1(nT, k) a2(nT, k)
ȧ1(nT, k) ȧ2(nT, k)

)
= Mn

k

(
a1(0, k) a2(0, k)
ȧ1(0, k) ȧ2(0, k)

)
, (5.147)

there are three distinct cases for the stability of (a1, a2)

• λ ∈ R and |λ| > 1, i.e. tr (M) > 2. In this case, one of the solutions is exponentially
growing and one exponentially decreasing.

• λ ∈ R and |λ| = 1, i.e. tr (M) = 2. In this case Mk can be written as

Mk = P−1

(
1 α
0 1

)
P , (5.148)

so that

Mn
k = P−1

(
1 nα
0 1

)
P , (5.149)

which implies that one of the solutions is stable while the other is linearly increasing.

• λ ∈ C/R. In this case since Mk ∈ M2(R) this implies that the two eigenvalues are on
the unit circle and complex conjugates of one another, therefore tr (Mk) = 2 cos θ < 2.
The two solutions are thus stable.
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One can evaluate numerically what is tr (Mk). The result is shown on the figure (5.27)

Figure 5.27: The trace of the monodromy matrix computed numerically. The two solutions
a1,2 are initialized such that they are independents from one another: a1 = (1, 0) and a2 =
(0, 1). This study has been performed with m0 = 1.

As one can see, the resonance band (where tr (Mk) > 2) is located where we expect it to
be. From this study we also see that two modes are linearly growing (for k = 0 and k = 0.4),
while all the other modes are stable.

One can also compare the value of the Lyapunov exponent µ given by the two approaches,
µ being such that for the increasing solution a1(T, k) = eµ(k,m0)a1(0, k). For ξ = 0 one finds the
following analytical result for µ

µ(k, m0) = 2m0

√
κ2

(
1

3
− κ4

)(
κ4 −

1

4

)∫ 1
0

dx
(z2−2κ2z+4κ4−1)

√
z(1−z2)

∫ 1
0

dx√
1−x4

, (5.150)

and µ can also be extracted from the monodromy matrix in the following way

µ(k, m0) =
1

T
ln (max λ1,2) . (5.151)

The comparison between (5.150) and (5.151) is shown in the figure 5.28.

Figure 5.28: The Lyapunov exponent computed numerically thanks to (5.151) and analytically
thanks to formula (5.150).

Since µ = 0 when k /∈ [ 1√
2
, 1

31/4 ], ak cannot increase faster than linearly. On the following

figures are represented some modes as a function of time, to give a final evidence of the
correctness of out analytical computation. To observe a mode that experiences a linear growth
one can refer to the following figure 5.29.
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Figure 5.29: k = 0 mode, linear growth

One of the stable mode is shown on the figure 5.30.

Figure 5.30: k = 0.3 mode, stability

Finally, one of the unstable mode is represented in the figure 5.31.

Figure 5.31: k = 0.735 mode, exponential growth
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5.B Appendix: Effective Hamiltonian

In this section we want to derive an effective Hamiltonean that describes the quasi-particle
picture observed in section 5.4. To do so, we start with the usual Hamiltonian.

H =
∫

d3x
1

2

(
ϕ̇2 + (∇ϕ)2

)
+

g2

4!
ϕ4 . (5.152)

Given what we saw in section 5.4, we know that after a finite time the system behaves as if
it contains massive quasi-particles, their mass being m. One could therefore do the following
operation on the Hamiltonian

H =
∫

d3x
1

2

(
ϕ̇2 + (∇ϕ)2 + m2ϕ2

)

︸ ︷︷ ︸
H0

+
g2

4!
ϕ4 − 1

2
m2 ϕ2

︸ ︷︷ ︸
H′int

. (5.153)

This operation is for the moment trivial: we have just added and subtracted a mass term by
hand, and the parameter m2 is still arbitrary. Things become interesting when one tries to
reduce the residual interaction term H′int. In order to do so, one can choose the mean field
value for m2,

m2 =
g2

2

〈
ϕ2(x)

〉
, (5.154)

where as usual the angle brackets denote an ensemble average 14. By performing a Fourier
transform of the fields inH0, one can rewrite it as a sum of independent harmonic oscillators 15

H0 =
∫

d3k

(2π)3

1

2

∣∣ϕ̇k

∣∣2 + 1

2
ω2

k

∣∣ϕk

∣∣2
︸ ︷︷ ︸

hk

, (5.155)

where as defined in the core of the manuscript in section 5.4.2.1 ωk ≡ (k2 + m2)1/2 and where
ϕk is the spatial Fourier transform of ϕ. Assuming

H′int ≪ H0 (5.156)

and one gets an effective Hamiltonian meant to describe a system formed by the collection of
– almost free – massive particles.

14. One can check numerically that this mean field expression of the mass is in very good agreement with the
measured mass of the quasi-particles through the spectral function (figure 5.19).

15. Even if the following momentum integral appears strongly ultraviolet divergent, it is naturally regularize on
the lattice, where Λ plays the role of an upper bound on the integral over the k modulus.
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6.1 Expanding scalar theory

6.1.1 Generalities

G
iven the work performed in the previous chapter, we now know that the quartic
scalar theory in a fixed volume and initial conditions mimicking those of a heavy-
ion collision tends to thermalize. Before turning our attention to the realistic case
of QCD, it is interesting to study another toy model, namely the same scalar field

with one dimensional expansion. Indeed, a heavy-ion-collision is more properly described as
a three dimensional system expanding in the direction of the collision axis (taken to be the z
direction in the following), as described in the figure 6.1

113
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Figure 6.1: Left side: the two heavy-ions after they have collided. The system is expanding in
the direction of the collision axis. Right side: asymmetric grid with a smaller lattice spacing
in the longitudinal direction, to cope with the expansion.

The appropriate coordinate system to describe this expanding scalar theory is no longer
the Cartesian one. Indeed, since the two nuclei are traveling at the speed of light, the system
(at the classical level) is boost invariant (as was explained in the section 3.8 in the gauge case).
This has a simple expression in the proper-time/rapidity coordinate system: the classical
background field is rapidity independent (for reasons explained in ??). The expression of the
new coordinates (τ, x⊥, η) in terms of the Cartesian (t, x, y, z) ones is

τ =
√

t2 − z2 η =
1

2
ln

t + z
t− z

, (6.1)

t = τ cosh η z = τ sinh η . (6.2)

and the classical background field will therefore only depend on τ and x⊥. The following
figure 6.2 illustrates constant τ and η surfaces

η = cst
τ = cst

τ0

x+x−

Figure 6.2: Constant τ and η surfaces in the (τ, η) coordinate system. The blue area is a fixed
interval in η, corresponding to an expansion in the z direction.

As one can see, if one describes the scalar theory in a volume (x⊥, η) grid – such as the
one depicted in the figure 6.1 – this corresponds to an expanding volume in (x, y, z) space –
blue surface of the figure 6.2. In this new system of coordinates, the d’Alembertian reads

� =
∂2

∂τ2
+

1

τ

∂

∂τ
−∇

2
⊥ −

1

τ2

∂2

∂η2
. (6.3)

The metric is

gµν = diag(1,−1,−1,−τ2) . (6.4)

The Fourier conjugate variables to (x⊥, η) will be denoted (k⊥, ν).
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6.1.2 The spectrum of fluctuations

For this study we used a different way for computing the spectrum of small fluctuations.
Indeed, since the proper-time rapidity coordinate system is only meant for describing the
forward light cone (τ cannot be negative), it is not possible to perform the evolution in the
other regions of the light cone in the same coordinate system. We will therefore directly
start our numerical simulations at positive proper-times. How to find the spectrum of small
fluctuations propagating on top of the classical background field then? We know the small
fluctuations in the remote past (x0 → −∞ )

ak(x) = eikx , ȧk(x) = ikeikx , (6.5)

and the following scalar product is conserved during the time evolution 1

(ak|ak′) = i
∫

d3x
(
ak(x)ȧ∗

k′(x)− ȧk(x)a∗
k′(x)

)
= (2π)32|k|δ(k− k′) . (6.6)

It is trivial to obtain this scalar product in the proper-time/rapidity coordinate system

(ak⊥ ,ν|ak′⊥ ,ν′) = iτ
∫

d2x⊥ dη
(

a∗k⊥ ,ν(τ, x⊥, η)ȧk′⊥ ,ν′(τ, x⊥, η)− ȧ∗k⊥ ,ν(τ, x⊥, η)ak′⊥ ,ν′(τ, x⊥, η)
)

.

(6.7)

We will therefore look for a set of mode functions ak⊥ ,ν(τ, x⊥, η) that obey the linearized
equation of motion at τ = 0+, and normalized in such a way that they have the right scalar
product. As we will see in the chapter 8, this procedure is at best approximate. It can be justi-
fied if the background field ϕ is turned on adiabatically, but not in the situation encountered
in heavy-ion collisions. Given the expression of the D’Alembertian, we therefore need to solve

(
∂2

∂τ2
+

1

τ

∂

∂τ
−∇

2
⊥ −

1

τ2

∂2

∂η2
+

g2

2
ϕ2(τ, x⊥)

)
a(τ, x⊥, η) = 0 . (6.8)

This equation is also subject to instabilities (see [160] for instance for an analytical analysis)
and we therefore expect the same physical mechanisms than those that appeared in the section
5.2: exponential amplification of the NLO, decoherence... To solve (6.8), we first assume that
the variations of ϕ are slow compared to those of a. As in section 5.2, we therefore define

ϕ0(x⊥) = lim
τ→0

ϕ(τ, x⊥) . (6.9)

The fact that ϕ is well behaved in the vicinity of the origin can be explained in the following
way: taking the classical Klein-Gordon equation

(
∂2

∂τ2
+

1

τ

∂

∂τ
−∇

2
⊥

)
ϕ(τ, x⊥) +

g2

6
ϕ3(τ, x⊥) = 0 (6.10)

we see that the term 1
τ

∂
∂τ (specific to the expanding problem) dominates the term

g2

6 ϕ3(τ, x⊥).
In other words, for τ sufficiently small, the expansion rate dominates the interaction rate. In
this range of τ ( taking k⊥ = |k⊥|), we have

(
∂2

∂τ2
+

1

τ

∂

∂τ
+ k2
⊥

)
ϕ(τ, x⊥) = 0 , (6.11)

which admits the solution J0(k⊥τ) and Y0(k⊥τ). Since only the further is well-defined as
τ → 0+, we can assume

lim
τ→0

ϕ(τ, x⊥) ∝ J0(k⊥τ) , lim
τ→0

ϕ̇(τ, x⊥) = 0 . (6.12)

1. This is just a consequence of the fact that the derivative of the Wronskian is zero in the Minkowskian
coordinate system.
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So ϕ is indeed well-behaved in the vicinity of the origin. Performing the Fourier transform of
the η variable (since ϕ does not depend on η), we write the small fluctuations as

aν(τ, x⊥, η) = eiνη bν(τ, x⊥) , (6.13)

and the function bν satisfies

(
∂2

∂τ2
+

1

τ

∂

∂τ
−∇

2
⊥ +

ν2

τ2
+

g2

2
ϕ2

0(x⊥)
)

bν(τ, x⊥) = 0 . (6.14)

The operator −∇2
⊥ + g2

2 ϕ2
0(x⊥) is real and symmetric, it can therefore be diagonalized over a

basis of orthogonal eigenfunctions χk⊥(x⊥), with eigenvectors ωk⊥

(
−∇2

⊥ +
g2

2
ϕ2

0(x⊥)
)

χk⊥(x⊥) = ω2
k⊥χk⊥(x⊥) . (6.15)

The fact that the solution are orthonormal means that
∫

d2x⊥ χk⊥(x⊥)χ
∗
p⊥
(x⊥) = δk⊥p⊥ , (6.16)

where δk⊥p⊥ is such that

∫
dµk⊥δk⊥p⊥ = 1 . (6.17)

dµk⊥ is the measure corresponding to the Fourier conjugates variables of x⊥. If we take

dµk⊥ = d2k⊥
(2π)2 , then δk⊥p⊥ reads (2π)2δ2(k⊥ − p⊥). Writing

bνk⊥(τ, x⊥) = χk⊥(x⊥)αν(τ) , (6.18)

we should have
(

∂2

∂τ2
+

1

τ

∂

∂τ
+

ν2

τ2
+ ω2

k⊥

)
αν(τ) = 0 . (6.19)

This is a Bessel equation, whose solutions are linear combinations of Bessel functions Jiν
and Yiν. But it turns out that the Jiν and Yiν functions mix positive and negative frequency
solutions. To avoid this, we take the Hankel basis, and only keep the positive frequency

solutions 2 H(2)
iν (k⊥τ). We therefore have

aνk⊥(τ, x⊥, η) = βνk⊥ eiνηχk⊥(x⊥)H(2)
iν (k⊥τ) , (6.20)

βνk⊥ being an overall normalization constant such that the scalar product is orthonormal. To
find it, we inject back the expression of aνk⊥ into (6.7)

(aνk⊥ |aν′k′⊥
) = i(2π)δk⊥k′⊥

δ(ν− ν′)|βνk⊥ |2τ

(
H(2)∗

iν (k⊥τ)
←→
∂τ H(2)

iν (k⊥τ)

)
, (6.21)

and using the fact that [147, 161]

H(2)∗
iν (k⊥τ)

←→
∂τ H(2)

iν (k⊥τ) =
−4ie−νπ

πτ
, (6.22)

we obtain

(aνk⊥ |aν′k′⊥
) = (2π)δk⊥k′⊥

δ(ν− ν′)
4e−νπ|βνk⊥ |2

π
. (6.23)

2. This can be seen by looking at the asymptotic expression of the Hankel functions.
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To get an orthonormal spectrum of fluctuations, we therefore need

βνk⊥ =

√
πe

νπ
2

2
, (6.24)

which leads to

aνk⊥(τ, x⊥, η) =

√
πe

νπ
2

2
eiνηχk⊥(x⊥)H(2)

iν (k⊥τ) . (6.25)

Armed with this result, we can now turn our attention to the numerical implementation of
the classical-statistical method to compute the energy-momentum tensor and the occupation
number in this expanding scalar field theory.

6.2 Numerical implementation

Given (6.25), we get as an initial condition of the classical-statistical method for τ → 0+

φ(τ, x⊥, η) = ϕ0(x⊥) +

√
πe

νπ
2

2
Re

(∫
dν

2π
dµk⊥ eiνη cνk⊥ χk⊥(x⊥)H(2)

iν (k⊥τ)

)
, (6.26)

with
〈

cνk⊥c∗
ν′k′⊥

〉
= (2π)δ(ν− ν′)δk⊥k′⊥

. (6.27)

A quick look at (6.26) indicates that φ is not well behaved as τ → 0+, as H(2)
iν (k⊥τ) behaves as

τ±iν in this limit. This forces us to start our numerical simulations at some small but non-zero
proper-time τ0. But as we will show in section 6.3, the physical observables will not depend
on this τ0. One can see the τ0 dependence of the spectrum (6.25) as in a renormalization group
procedure: this τ0 dependence of the ak⊥ν is such that the physical observables do not depend
on τ0. It is important to stress that this property would not hold had we chosen an arbitrary
spectrum of fluctuations.

Numerically, we discretize space-time in the following way (see the figure 6.1 for the
details):

— Time is kept as a continuous variable. Numerically this means that the time steps can
be chosen as small as necessary, and can be dynamically changed in order to obtain the
desired accuracy.

— The transverse coordinates x⊥ are encoded on a L× L lattice. The different lattice sites
are characterized by a pair of integers ij (each one ranging from 0 to (L − 1)). aT is
the transverse lattice spacing, and we use periodic boundary conditions. This can be
justified if one recalls that the system that we are dealing with is meant to mimic a
small part of the interaction region in a heavy-ion collision (as depicted in the figure
6.1).

— The rapidity η is discretized on a lattice of size N (N > L to cope with the longitudinal
expansion). The different lattice sites are characterized by an integer n (ranging from 0
to (N − 1)). aL is the longitudinal lattice spacing. The grid also has periodic boundary
conditions.

— The transverse Laplacian and the second derivative in η become

∂2
ηφ→ 1

a2
L
(φn+1ij + φn−1ij − 2φnij) ,

∇
2
⊥ →

1

a2
T
(φni+1j + φni−1j + φnij+1 + φnij−1 − 4φnij) . (6.28)

If we express all the quantities in units of the transverse lattice spacing, we can take
aT = 1. If we want the rapidity to be between 0 and 1, then we should take aL = 1

N .
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The next step is to diagonalize −∇2
⊥ + V ′′(ϕ), whose action on a eigenvector is

(Dχ)ij = 4χij − χi+1j − χi−1j − χij+1 − χij−1 + V ′′(ϕij)χij . (6.29)

Thus we have to diagonalize a L2 × L2 matrix that has the form

Dij,kl = (4 + V ′′(ϕij))δikδjl − δjl(δi+1k + δi−1k)− δik(δj+1l + δj−1l) . (6.30)

This provides us a set of L2 eigenvectors χ
(p)
ij such that

∑
kl

Dij,klχ
(p)
kl = ω2

(p)χ
(p)
ij ∑

ij

(
χ
(p)
ij

)(
χ
(q)
ij

)∗
= L2δpq . (6.31)

We can finally write the discrete analogue of (6.26)

φnij(τ) = ϕij(τ) +

√
π

4hNL2

N−1

∑
u=0

e
πν(u)

2

L2−1

∑
p=0

Re
(

cupe
2iπu

N χ
(p)
ij H(2)

iν (ω(p)τ)
)

. (6.32)

where ν(u) is the modulus of the η Fourier conjugate variable

ν(u) =
1

aL

√
2

(
1− cos

2πu
N

)
, (6.33)

and cup are random Gaussian numbers of variance one (given how the prefactor in (6.32) has
been chosen)

〈
cupcu′p′

〉
= δuu′δpp′ . (6.34)

Before going any further, let us state the obvious fact that for the vacuum, ϕij = 0, the trans-
verse index p can be decomposed in two indices that range from 0 to L − 1: k and l. The
eigenvectors and eigenvalues read

χ
(kl)
ij = ei 2π(ki+l j)

L , ω(kl) =

√
2

(
2− cos

2πk
L
− cos

2πl
L

)
(6.35)

If the background field in non-zero but homogeneous, then χ
(kl)
ij is unchanged and ω2

(kl) is

shifted by a constant mass term m2 = g2 ϕ0

2 .

6.3 Independence with respect to the initial time

In the previous section we explained that we must start at a non-zero initial time τ0, but
argued that with the use of (6.32) physical observables would not depend on τ0. In the figure
6.3, the time evolution of the transverse pressure and of the energy density (to be defined more
precisely in the section 6.6) are shown for two different initial times τ0 = 0.01 and τ′0 = 0.1.
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Figure 6.3: Transverse pressure and energy-density for two different initial times τ0 = 0.01
(solid lines) and τ′0 = 0.1 (dots).

As one can see, the two simulations agree perfectly after τ0 = 0.1. Note that in order to
obtain the two ϕ(τ0, x⊥), we took ϕ(10−8, x⊥) = ϕ0 and ϕ̇(10−8, x⊥) = 0, and then evolved it
with the classical Klein-Gordon equation up to τ0 and τ′0 respectively.

6.4 Resonance band

As we showed in the previous chapter, a mode k is resonant in the fixed volume scalar
field theory if

1√
2
≤ κ ≤ 1

3
1
4

,
g2ϕ2

0

2
κ2 = k2 (6.36)

In the present case, we will see that the resonance band is not fixed, and is in fact moving
from low ν towards high ν as time increases. This statement can be checked as follows:

i. Initializing each fluctuation mode as follows 3

aνk(τ) =

√
π

2
e

πν
2 H(2)

iν (

√
g2 ϕ2

0

2
+ k2
⊥τ) . (6.37)

Here we have taken a homogeneous background field for simplicity.
ii. Solve the non-linear EOM for ϕ and the linearized EOM for each aνk⊥,ν. Because ϕ is

homogeneous, this reduces to

ϕ̈ +
ϕ̇

τ
+ V ′(ϕ) =0 ,

äνk⊥ +
ȧνk⊥

τ
+

(
ν2

τ2
+ k2
⊥ + V ′′(ϕ)

)
aνk⊥ = 0 . (6.38)

3. These fluctuations are initialized in such a way that they are normalized to 1 at all times, with respect to the
scalar product defined before, if there is no background field.
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iii. Calculate the quantity

τ |aνk|2 , (6.39)

at each time of interest, for each mode. The prefactor τ is here because non-resonant
modes are supposed to behave at late time as

aνk ≈
1√
τ

, (6.40)

This is due to the asymptotic expression of the Hankel functions:

lim
τ→∞

H(2)
iν (τ) ≈

√
2

πτ
e−i(τ−i πν

2 − π
4 ) . (6.41)

If the quantity calculated in (6.39) is greater than 1, then the mode has been amplified
by instabilities between the initial time and the time of interest.

Our numerical results are summarized in the figure 6.4.
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Figure 6.4: Resonance band during the time evolution of the system.

The colored areas indicate the modes that have been amplified by parametric resonance
between the initial time and the time of interest. One way to qualitatively understand how
the resonance behaves in this model is the following: in the fixed volume case, as recalled in
(6.36), the resonance band is for modes that are between

R− < k2
⊥ + k2

z < R+ , (6.42)

where R−,+ ∝ ϕ2
0. Since η ∼ z

τ , we have that ν ∼ kzτ and the previous condition becomes in
term of the Fourier variables introduced in this section

R− < k2
⊥ +

ν2

τ2
< R+ . (6.43)

Therefore, the effect of the expansion is to shift the resonance band toward higher ν. The
modes that are resonant at the time of interest are located on the front of the colored bands,
which is indicated in the figure 6.4 by the dashed k2

⊥ + ν2

τ2 = const line. As can be seen in this
figure, this interpretation works quite well.
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6.5 Occupation Number

6.5.1 Analytical expression

To compute the occupation number, one starts from the field operator φ̂ expressed in terms
of the creation and annihilation operators, introduced in the section 4.1 and used in the section
5.4.1.2 to derive the occupation number of the fixed volume scalar field theory. But since the
system of coordinates has changed, one should use the following decomposition for the field

φ̂(τ, x⊥, η) =

√
π

2

∫
d2k⊥
(2π)2

dν

2π
e

πν
2 H(2)

iν (k⊥τ)âk⊥νeiνηeik⊥.x⊥ + h.c. , (6.44)

where h.c. stands for Hermitian conjugate, and the choice that we did for the overall normal-
ization factor will become clear in a moment. Given the work done in the section 6.1, it easy
to see that φ̂ is a solution of the free equation of motion. We can invert this formula to obtain
(equivalent to the formula 4.16 in the fixed volume case)

âk⊥ν = iτ
√

πe
πν
2

2

∫
d2x⊥dηe−iνηe−ik⊥.x⊥H(2)∗

iν (k⊥τ)
←→
∂τ φ̂(τ, x⊥, η) , (6.45)

and thanks to the normalization factor, we have (in order to satisfy the canonical commutation

relation between φ̂ and ˙̂φ)

[
âk⊥ν, â†

k′⊥ν′

]
= (2π)3δ(ν− ν′)δ(k⊥ − k′⊥) . (6.46)

Using (6.45) we get

âk⊥ν â†
k⊥ν =

τ2πeπν

4

∣∣∣∣
∫

d2x⊥dηe−iνηe−ik⊥.x⊥H(2)∗
iν (k⊥τ)

←→
∂τ φ̂(τ, x⊥, η)

∣∣∣∣
2

(6.47)

and following the reasoning as in the section 5.4.1.2 we obtain the following resummed occu-
pation number

fk⊥ν = − 1

2
+

τ2πeπν

4L2N

〈∣∣∣∣
∫

d2x⊥dηe−iνηe−ik⊥.x⊥H(2)∗
iν (k⊥τ)

←→
∂τ φ(τ, x⊥, η)

∣∣∣∣
2
〉

. (6.48)

This is the quantity that we compute in the next section.

6.5.2 Numerical results

In all the following, the initial background field ϕ0(x⊥) is taken such that only one k0
⊥

mode is populated

ϕ0(x⊥) = ϕ0 cos(k0
⊥.x⊥) . (6.49)

In the simulations we took a 40× 40× 320 grid with the arguably large g = 4 value, along with
k0
⊥ = 0.77 and ϕ0 = 15. We started the simulation at τ0 = 0.01, but verified that the physical

results do not depend on τ0. The following four plots 6.5 show the occupation number in
ν, k⊥ space at various times.
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Figure 6.5: Occupation number computed from eq. (6.48) at various times.

As one can see, at time τ = 0.1 a harmonic of the initial mode has already been populated
(its frequency being a multiple of k0

⊥). But the other modes, especially the ν 6= 0 modes are still
very small. Indeed, since the background field is rapidity independent, and the fluctuating
term is small in comparison at the initial time, one expects this ν = 0 localization at early
times. As time increases, the occupation number expands towards higher ν values. At later
times (τ ∼ 300 for the grid that we are using in this section), the occupation number reaches
the UV cutoff in the longitudinal direction νmax = 2

N . This illustrates a serious limitation
of the expanding simulations. Indeed, after fk⊥ν has reached νmax, the results are affected
by lattice artifacts. The only way to circumvent this issue is to take rather large lattices in
the longitudinal direction, in order to get results valid up to τ ∼ 300 (we did several tests
with smaller lattices and the time at which νmax was reached was proportional to N). This
behavior of fk⊥ν is not surprising. Indeed, let us imagine for a moment that we are at thermal

equilibrium. Then ǫ ∼ τ−
4
3 , and the temperature of the system evolves as τ−

1
3 . This is also

the momentum scale, and

kx ∼ ky ∼ kz ∼ τ−
1
3 . (6.50)

Now, since η ∼ z
τ , we have

ν ∼ τkz ∼ τ
2
3 . (6.51)

Therefore if the system is thermal, this expansion of the distribution function towards higher
ν is expected. Nevertheless, this prevents us from reaching a definitive conclusion on the
late time behavior of the distribution function, as well as the formation of a Bose-Einstein
condensate in the system 4.

4. Even if its presence seems plausible given the fast build-up of the zero mode as time increases in the figure
6.5.
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6.6 Energy-momentum tensor

6.6.1 Definition, expectations

The usual definition of the canonical energy momentum tensor reads

Tττ =

〈
1

2
(∂τφ)2 +

1

2
(∂xφ)2 +

1

2
(∂yφ)2 +

1

2τ2
(∂ηφ)2 +

g2

4!
φ4

〉

Txx =

〈
1

2
(∂τφ)2 +

1

2
(∂xφ)2 − 1

2
(∂yφ)2 − 1

2τ2
(∂ηφ)2 − g2

4!
φ4

〉

Tyy =

〈
1

2
(∂τφ)2 − 1

2
(∂xφ)2 +

1

2
(∂yφ)2 − 1

2τ2
(∂ηφ)2 − g2

4!
φ4

〉

τ2Tηη =

〈
1

2
(∂τφ)2 − 1

2
(∂xφ)2 − 1

2
(∂yφ)2 +

1

2τ2
(∂ηφ)2 − g2

4!
φ4

〉
, . (6.52)

Since there is a one dimensional expansion, the space is not isotropic, but the transverse plane
still is and we can therefore expect

〈
(∂xφ)2

〉
=
〈
(∂yφ)2

〉
. (6.53)

What we will compute numerically will thus be the energy-density, the transverse and the
longitudinal pressures, defined as

ǫ = Tττ , PT =
Txx + Tyy

2
, PL = τ2Tηη . (6.54)

As we have already discussed when we proved that the classical field ϕ is well-behaved in
the vicinity of the origin, the classical KG EOM in the proper-time rapidity system contains

two terms that have opposite effects. The expansion term E(φ) = φ̇
τ tends to dilute the

system in the longitudinal direction, which means that the expansion makes the system more

anisotropic. In contrast, the interaction term V(φ) = g2

4! φ4 tends to redistribute the momentum
in an isotropic way. How these two terms compete explain whether the system anisotropizes
or isotropizes. This is summarized in the figure 6.6.

V (φ) > E(φ)

PT

PL

E(φ) > V (φ)

PT

PL

Figure 6.6: Effect of the expansion and interaction on the pressures. On both plots the ellipse
at the second plan characterizes the initial anisotropic pressure profile. Left plot: as time
evolves, the interaction term dominates over the expansion. Right plot: the opposite situation.
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The key questions are therefore: what happens in the system under consideration? Is
the answer time dependent? Answering these questions will be the aim of the following
subsections.

6.6.2 The formation of an equation of state

The first study that we have performed on the energy-momentum tensor was to check
whether or not an EOS forms, as it was the case in the fixed volume theory. Given the
behavior of fk⊥ν, one can expect that this is indeed the case. This is confirmed in the figure
6.7, that represents ǫ and the trace of the pressure tensor 2PT + PL in a log-log plot:
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Figure 6.7: ǫ and 2PT + PL as a function of the proper time. Two fits are performed on the

energy density: the gray band corresponds to a τ−1 behavior, while the orange one is τ−
4
3 .

Interestingly, one can observe three stages in the previous figure

— τ < 50. The trace of the pressure tensor oscillates: the pressure is not related to ǫ by an
EOS. In addition, the energy density is well fitted by τ−1, a clear sign of free streaming
if one recalls Bjorken’s law (which has been checked numerically 5 in the figure 6.8).

∂τǫ +
ǫ + PL

τ
= 0 , (6.55)

provided that PL ≪ ǫ.

5. This can be viewed as an accuracy check of our numerical computation since Bjorken’s law is a consequence
of energy-momentum conservation (recall 3.6), a property which must hold in the continuum case as well as on
the lattice.
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Figure 6.8: Numerical check of Bjorken’s law.

— 50 < τ <∼ 150. The pressure tensor has stopped oscillating, and an equation of state
has formed. But unlike in the fixed volume case, the system is still very anisotropic,
since ǫ still behaves as τ−1.

— τ & 150. Here, one observes a drastic change in the behavior of the energy-density, that

starts scaling as τ−
4
3 , implying that PL ∼ ǫ

3 .

The physical process behind the formation of an equation of state is the same as the one
described in the section 5.3.5: the presence of instabilities in the theory causes the trace of the
pressure tensor to relax towards ǫ. But first the system is still very anisotropic. Then, at later
times, it seems to isotropize.

6.6.3 Isotropization

In the next figure 6.9, the pressures PL (red), PT (green), the energy density ǫ (black) as
well as trace 2PT + PL (blue) are represented.
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Figure 6.9: Components of the energy-momentum tensor. See the text for more details.

Here again we see the rather fast formation of an EOS at a time around τ ∼ 50. But at
this time, the system is still far from being isotropic. Since we are considering a fixed slice in
rapidity (recall the figure 6.2), and because the system is expanding, the particles are flying
out of this slice and the system dilutes in the longitudinal direction. This explains the fast
drop of PL at early time. But then, the instabilities start to redistribute efficiently the momenta
of the particles in all directions and this triggers in a second stage a raise in PL, which becomes
comparable to PT at a time around τ ∼ 200. When this happens and because the EOS has

already been formed, then PL ≈ ǫ
3 and as explained in the previous section ǫ behaves as τ−

4
3 .

This can also be understood from a kinetic description [162–164] of the pressures

PT ∼
∫

d2k⊥
dν

τ

k2
⊥√

k2
⊥ + ν2

τ2

fk⊥ν PL ∼
∫

d2k⊥
dν

τ

ν2

τ2
√

k2
⊥ + ν2

τ2

fk⊥ν . (6.56)

At early times, by looking at fk⊥ν one can see that the ν ∼ 0 modes dominate in the previous
formula and therefore PL ≪ PT. But as we approach equilibrium, fk⊥ν starts to expand in the

ν direction at a τ
2
3 pace while on dimensional ground k⊥ is expected to shrink at a τ−

1
3 one,

and this leads to PL ∼ PT ∼ τ−
4
3 . The conclusion of this part is the following: the resummed

pressures, computed in the classical-statistical approximation, evolve towards the formation

of an EOS and later on isotropize. The resummed energy density exhibits a τ−
4
3 behavior at

late times. All of these features suggest that the postulates of hydrodynamics 3.2 are satisfied
at late times.

6.7 Hydrodynamical behavior

6.7.1 Hydronamical model

To compare the outcome of the classical statistical simulations with viscous hydrodynam-
ics, we use a very simple implementation of hydrodynamics. As briefly explained in the
chapter 3 (and in more details in [108, 109]), the energy-momentum tensor of a viscous fluids
reads

Tµν
visc = Tµν

ideal + Πµν , (6.57)
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where Πµν characterizes the deviation of the fluid from an ideal one. Tµν
ideal reads

Tµν
ideal = (ǫh + ph)u

µuν − phgµν =




ǫh 0 0 0
0 ǫh

3 0 0
0 0 ǫh

3 0
0 0 0 ǫh

3


 , (6.58)

where the h index stands for hydrodynamics. To make the comparison easier, we will choose
a boost invariant hydrodynamical model where uµ = (1, 0, 0, 0) and

Πµν = η




0 0 0 0

0 2
3τ 0 0

0 0 2
3τ 0

0 0 0 − 4
3τ


 . (6.59)

In this model, one therefore has

Ph
T =

ǫh

3
+

2η

τ
, Ph

L =
ǫh

3
− 4η

τ
, (6.60)

and there are two unknowns ǫh and η. We start from Bjorken’s law, in which we replace the
longitudinal pressure

∂τǫh +
4

3

ǫh

τ
− 4η

3τ2
= 0 . (6.61)

To close the hydrodynamical model, one must make some assumptions on η. Firstly, we
truncate the hydrodynamical expansion at first order, i.e. we assume that

η =
η0

τ
. (6.62)

Then, we introduced the entropy by writing η = η
s s. To determine s, we assumed that the

system is not far from local thermal equilibrium, where the occupation number follows Bose-
Einstein statistics

nB(k) =
1

e
k
T − 1

. (6.63)

Neglecting interactions, this leads to

ǫe =
∫

d3k

(2π)3
k nB(k) =

Γ(4)ζ(4)

2π2
T4 =

π2T4

30

se =
∫

d3k

(2π)3
([1 + nB(k)] ln[1 + nB(k)]− nB(k) ln nB(k)) =

2π2T3

45
. (6.64)

Therefore, at thermal equilibrium

se =
4

3

(
π2ǫe

30

) 3
4

. (6.65)

We assume that this relation also holds in our case. Now, since ǫ behaves as τ−
4
3 , therefore

s ∼ τ−1 and this implies

η

s
=

η0

s0
= const . (6.66)

To summarize, our simplistic hydrodynamical model makes the following assumptions
— The flow is boost invariant
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— Tµν is the ideal term plus a viscous term proportional to η described in the equation
(6.59).

— The shear-viscosity behaves as τ−1

— The system is not so far from thermal, and therefore s ≈ 4
3

(
π2ǫh

30

) 3
4
.

—
η
s is a constant

and one is left with

∂τǫh +
4

3

ǫh

τ
− η0

s0

16

9

(
π2

30

) 3
4 ǫ

3
4

h

τ2
= 0 . (6.67)

We need to specify the initial values ǫ0
h,

η0

s0
at some initial time τ0. Since our aim is to compare

with the classical-statistical simulations, we initialize the hydrodynamical parameters so that
PL and PT agree with the statistical simulation at τ0

η(τ0) =
τ0(PT − PL)0

2
. (6.68)

6.7.2 Hydronamical evolution

6.7.2.1 Pressure

Since hydrodynamics needs an EOS, it only makes sense to do the comparison at τ0 > 50.
We have done so for three different τ0 as one can see in the next figure 6.10.
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Figure 6.10: Comparison between a simplistic hydrodynamical model (6.67) and the the clas-
sical statistical simulations.

When the classical-statistical pressure tensor is still very anisotropic – τ0 = 70 (filled black
dots for the hydrodynamical simulation) and τ0 = 100 (purple dots) – the hydrodynamical
simulation leads to a slower isotropization. But once the classical statistical pressure tensor
has almost isotropized – τ0 = 200 (black dots for the hydrodynamical simulation) – then the
two models give very similar results. This would imply that isotropization is a prerequisite
for hydrodynamics – a property that seems specific to a weakly coupled theory 6

6. As recalled in the section 3.3 and as can be found in [29], Ads/Cft suggests that the opposite happens at
strong coupling: namely hydrodynamical behavior starts before full isotropization.
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6.7.2.2 Viscosity over entropy ratio

As we saw in the figure 6.10, the isotropization happens at different pace in classical-
statistical simulations and in first order hydrodynamics. Indeed, for the latter one expects

Ph
T − Ph

L

ǫh
=

2η

τǫh
∼ τ−

2
3 . (6.69)

In the figure 6.11, we have computed this ratio in the classical statistical framework .
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Figure 6.11: Approach to isotropization in classical statistical simulations.

As one can see, the approach to isotropization is much faster than a τ−
4
3 power law, as one

can fit the ratio (6.69) (green band) with a e−
τ2

2a2 term (red line). But as the system approaches

complete isotropization, the fit can be improved by adding an additional τ−
2
3 to the red fit

(black line). Presumably what it means is that the instabilities speed up the isotropization
until a point where hydrodynamical behavior – the additional term in the fit – is observed.

This term in τ−
2
3 can give us some insight on the fixed

η
s value that is reached when the

hydrodynamical behavior sets in

η

s
∼ 0.26 , (6.70)

i.e. a very small value of the viscosity over entropy ratio. To confirm this trend, on could also
compute

η

s
∼ τ(PT − PL)

2ǫ
3
4

, (6.71)

as a time dependent quantity. This is the black line in the following figure 6.12



130 CHAPTER 6. EXPANDING SYSTEM

 0.1

 1

 10

 100

 0  50  100  150  200  250  300

η
 /

 s

τ

effective   η / s

perturbation theory

η / s from b / τ
2/3

AdS/CFT bound

Figure 6.12: Different ways of extracting
η
s in the classical classical simulations, compared

with the Leading order perturbative result (blue band, extracted from [102]) and the AdS/CFT
conjectured lower bound (brown) 1

4π [115].

On this figure one should not take seriously what happens before τ ∼ 50 since there is no
EOS yet, nor what happens after τ ∼ 280 when lattice artifacts start plaguing the simulation.
In the range 50 . τ . 280, the ration

η
s decreases, and is always much smaller than the LO

perturbative result. It is also rather close to the lower bound 1
4π conjectured from AdS/CFT

calculations. This smaller than expected
η
s ratio has been called anomalous viscosity in the

past, and have been predicted to happen in systems subject to unstable fields in [165, 166].

6.8 Summary

• For a φ4 scalar field theory in an 3 + 1D space expanding in one spatial direction, the
CSA also leads to an EOS.
• When the EOS is formed, the system is still very anisotropic due to the longitudinal
expansion. But the instabilities are able to redistribute efficiently the momenta in all the
spatial directions and one observes isotropization at later stages.
• One can compare the outcome of the CSA with a very simple first order hydrodynam-
ical model. The two behave similarly as the system approaches full isotropization.
• The

η
s ratio crudely extracted from the CSA at the latest times considered when the

system is almost isotropic is smaller (by orders of magnitude) than the LO perturbative
calculation. It is close the conjectured lower bound 1

4π
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Appendix

6.A Numerical considerations

6.A.1 Parallelization with OpenMP and MPI

As mentioned in the section 6.5.2, we had to use larger lattices in this chapter compared
to the ones used in the fixed volume study, in order to cope with the longitudinal expansion
of the system. Therefore, we were no longer able to run the program on a local computer,
and we adapted our code to run on a cluster 7. Running on a cluster saves a huge amount
of time, as the Monte-Carlo method is trivially parallelizable. Let us recall here the structure
of our algorithm, and see how we choose to implement it. There are three main steps in the
numerical procedure:
• Diagonalization of the matrix of equation (6.30), which is a matrix of size L2 × L2.

Since we need the complete set of eigenvalues and eigenvectors, this is an operation
that scales as L6. This can be done with the LAPACK library. For larger transverse
lattice sizes, we could have also used its parallelized version SCALAPACK. Even if
these libraries cannot exploit the fact that we are diagonalizing a sparse matrix, they
are sufficient for the values of L that we have considered.
• Generate the initial conditions thanks to equation (6.26). This step scales as L2N× L2N,

since for each spatial point we have to perform a loop over the momenta. In addition,
we need to perform this step for each of the Ncon f initial configurations of the Monte
Carlo method. This step is easily parallelizable with MPI, as each node Nnode can deal

with its
Ncon f

Nnode
initial conditions.

• Perform the time evolution. Numerically, we implement this step by splitting the Klein-
Gordon (second order partial differential equation) into two first order equations

φijk,n+1 = f (φ̇ijk,n, φijk,n) , φ̇ijk,n+1 = g(φ̇ijk,n, φijk,n) , (6.72)

where the details of f and g depend on the algorithm. Naively, this step scales as
2L2N, but the actual cost is higher because of intermediate computations. It turns out
that high degree precision algorithms (like Runge-Kutta methods of order 8: Dormand-
Prince, Fehlberg, Cash-Karp) have the default of requiring many intermediate compu-
tations (time cost) and an important quantity of intermediate storage arrays. A good
compromise is the recently developed low storage Runge-Kutta method described in
[148]. While this is only an order 4 method, it has the advantage of only requiring one
additional intermediate array. This is the method that we have implemented.

Our algorithm can be used in two different ways:
• The first version trivially parallelizes the Monte-Carlo method by dividing the Ncon f

configurations on the Nnode nodes at our disposal on a cluster with MPI. Each subset

of
Ncon f

Nnode
configurations is then split with OpenMP on the Ncore of each node. One just

needs to use MPI_REDUCE at the end of the evolution to gather on the master node
all the quantities of interest.
• The second version also trivially parallelizes the Ncon f configurations on the Nnode

nodes with MPI. But then each of the
Ncon f

Nnode
is assigned to a single node. A further

parallelization is done with OpenMP by dividing the spatial domain in Ncore slices.
This allows one to use larger lattices without being limited by memory issues.

6.A.2 Performance tests

We have performed several tests of the two versions of our algorithm on a local computer
and on the cluster TITANE. Our results are summarized in the figures 6.13 and 6.14.

7. We have submitted an application to GENCI (Grand Equipement National de Calcul Intensif) and obtained
100.000 hours on the TITANE cluster.
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Figure 6.13: Computation time as a function of the longitudinal lattice size. This study has
been performed on a single i7 CPU (4 cores, 8 MB cache, 3.4 GHz), where 8 initial configura-
tions have been evolved. The upper horizontal scale indicates the required memory for one
configuration.
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Figure 6.14: Computation time as a function of the longitudinal lattice size. This study has
been performed on one TITANE node (2× 4 cores, 2× 8 MB cache, 2.93 GHz), where 16 initial
configurations have been evolved.

In the figure 6.13, 8 initial configurations have been evolved on a local computer with a
single i7 CPU (4 cores). In the figure 6.13, 16 initial configurations (twice as many as in the
previous test in order to have the same number of configurations per core) have been evolved
on a TITANE node (8 cores). The execution time on the vertical axis has been divided by the
longitudinal size of the lattice, a flat curve therefore corresponding to a linearly increasing
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execution time. We have tested the following configurations:
• One configuration per core. This is the most naive and simple implementation. As

one can see, the time execution increases linearly with the lattice size until the size
of one configuration cannot be fit in cache memory anymore (2MB). Before this, the
speed of the execution depends on the CPU frequency, and after that on the bandwidth
memory 8

• Four configurations per core. For small lattices sizes, there is a penalty of around 20%.
This is presumably due to synchronization issues, as well as data exchange on the edges
of the lattice slices (remember that OpenMP is used here to divide the spatial domain
into several slices assigned to the available cores. The Laplacian operator involving
nearest neighbors, the corresponding points can be on different cores for the edges of
a slice). The advantage of this parallelization choice is that one is not limited by the
bandwidth until 8 MB, which means that the cache of one node can fit a four times
larger lattice size. In addition, larger lattice sizes (> 8 MB) only suffer from a few
percent penalty compared with the one configuration per core implementation.
• Eight configurations per core. This test can obviously be performed only on the 8

core TITANE nodes. Here two implementations were considered. The first one naively
increases the Ncore value. If one does so, the performance is significantly worse than
with four configurations per core. This is due to the fact that each node is made of two
four-core CPUs, each with its own memory bank, and that nothing ensures that the
data treated by a core located on the first CPU is stored in the memory bank handled
by this CPU. One can force this by letting each core write on its assigned slice just after
the memory has been allocated. To ensure that a given core will always deal with the
same lattice slice, one should also set the following environment variables:
OMP_PROC_BIND=true

GOMP_CPU_AFFINITY="0-7"

With this implementation, one gets the desired scaling: a penalty for small lattice sizes, but a
larger lattice size that can be fitted in the cache.

8. This is why the execution time is shorter on the i7 core (higher frequency and better set of vector instructions)
for small lattice sizes. Nevertheless, the TITANE node is more efficient for large lattice sizes, since its memory
bandwidth is larger.
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I
n the previous chapters we did not pay much attention to renormalization. Our
aim was to study the appearance of the hydrodynamical behavior (formation of
an EOS, isotropization). All the calculations were done on a lattice that provides
an ultraviolet cutoff, and no attempt was made to take the continuum limit. This

chapter aims at studying this issue.

7.1 Renormalization of Green’s functions

In this chapter we consider for simplicity the fixed volume scalar field theory – this time
with a mass, whose Lagrangean is

L =
1

2

(
∂µφ

)
(∂µφ)− m2

2
φ2 − g2

4!
φ4 + Jφ . (7.1)

135
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The usual renormalization procedure implies that L is unphysical, with m and g "bare" param-
eters. In other words, physical observables are not directly functions of these bare quantities,
but rather functions of renormalized ones. Renormalizing L require that one introduces a
finite number of counterterms in it: a mass counterterm δm, a coupling constant counterterm
δg and a field amplitude counterterm δZ. After one has done so, all the Green’s function
become finite.

7.2 Renormalization of composite operators

The previous procedure is insufficient to renormalize local composite operators. For in-
stance, even after doing the renormalization of the mass, coupling constant and field ampli-
tude, there are still divergences in the energy-momentum tensor – a local composite operator
of dimension 4

Tµν
div = d0Λ4 + d1(φ)Λ

2 + d2(φ) ln Λ , (7.2)

where Λ is the UV cutoff. In the results of the sections 5.3.6.3 and 6.6.3, the Λ4 has already
been subtracted by performing two simulations: a first one with a non-zero background field
ϕ and a second with ϕ = 0 (d0 is the same in both simulations, and d1 = d2 = 0 in the vacuum
simulations). These results were therefore (denoting Q the only dimensionful parameter of
the theory)

Tµν − Tµν
vac ∼

Q4

g2
+ d1(φ)Λ

2 + d2(φ) ln Λ . (7.3)

To completely renormalize Tµν, one should perform a special renormalization for composite
operators (see for instance [167] for more details). A composite operator can mix with any
operator of dimension m ≤ n provided they have the same quantum numbers. There are 6
rank 2 operators of dimension four or less

O1 = gµνφ2 , O2 = gµνφ4 , O3 = gµνφ�φ ,

O4 = gµν(∂µφ)∂µφ) , O5 = (∂µφ)(∂νφ) , O4 = φ∂µ∂νφ . (7.4)

The composite operator renormalization procedure aims at computing the mixing matrix Z ij

Orenor
i = Z ijObare

j , (7.5)

The method to compute Z ij is explained in [167]. But all of this only applies to a renormal-
izable theory. What if the classical-statistical theory is not renormalizable? a key ingredient
in the proof of the renormalizability of a theory is the Weinberg theorem 1. The Weinberg
theorem states that if all the subdivergences of a given diagram have been subtracted, then
the remaining divergence is a polynomial of at most degree ω in the external momenta, where
ω is the superficial degree of divergence of the diagram. From power counting, it is enough
to investigate the two and four-point functions. To do so, we will reformulate the Lagrangean
(7.1) in terms of the retarded-advanced basis.

7.3 The retarded-advanced basis

The key ingredient behind the CSA is the Schwinger-Keldysh formalism, whose La-
grangean (7.1) is

L[φ(+), φ(−)] =
[

1

2

(
∂µφ(+)

) (
∂µφ(+)

)
− m2

2

(
φ(+)

)2
− g2

4!

(
φ(+)

)4
+ Jφ(+)

]

−
[

1

2

(
∂µφ(−)

) (
∂µφ(−)

)
− m2

2

(
φ(−)

)2
− g2

4!

(
φ(−)

)4
+ Jφ(−)

]
. (7.6)

1. First derived in [168]. The derivation was simplified in [169–172].
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The associated free propagators (direct adaptation of those presented in formula (4.44-4.47))

G++ =
i

p2 −m2 + iǫ
, G−− =

−i
p2 −m2 − iǫ

,

G−+ = 2πθ(p0)δ(p2 −m2) , G+− = 2πθ(−p0)δ(p2 −m2) . (7.7)

As explained in the section 4.1.3, we can perform a rotation of this basis to the more convenient
retarded-advanced basis Gαβ with α, β ∈ 1, 2

Gαβ = ∑
ǫ,ǫ′=±

ΩαǫGǫǫ′Ω
†
ǫ′β , (7.8)

with the rotated matrix defined as

Ω =

(
1 −1
1
2

1
2

)
. (7.9)

This lead to G11 = 0 and

G12 = GA =
i

p2 −m2 − ip0ǫ
, G21 = GR =

i
p2 −m2 + ip0ǫ

, G22 = GS = πδ(p2 −m2) .

(7.10)

Following the section 4.3, we define 2 φ2 = φ(+)+φ(−)

2 and φ1 = φ(+) − φ(−), and we get

L[φ1, φ2] =
(
∂µφ1

)
(∂µφ2)−m2φ1 φ2 −

g2

3!
φ1 φ3

2 −
g2

4!
φ3

1 φ2 + Jφ1 . (7.11)

Denoting iΓαβγδ the vertices, this implies that (not forgetting the 3! symmetry factor in Γ1222

and Γ1112)

Γ1111 = Γ1122 = Γ2222 = 0 Γ1222 = − ig2 , Γ1112 = − i
g2

4
. (7.12)

Finally, calling J1,2 the sources that couple to φ1, φ2, we get

Jφ2 = 0 , Jφ1
= J . (7.13)

7.4 Eliminating the source term

As we have seen in the section 4.2.1, at leading order φ(−) = φ(−) = ϕ which is just the
solution of the classical Klein-Gordon equation

(�+ m2)ϕ +
g2

6
ϕ3 = J , (7.14)

with retarded initial conditions

lim
x0→−∞

ϕ, ϕ̇ = 0 . (7.15)

The Green’s formula for ϕ reads

ϕ(x) = − i
(∫

y0=0
d3y

(
G21(x, y)

←−
∂0

y ϕ(y)
)
+
∫

y0>0
d4y G21(x, y)V ′(ϕ(y))

)
, (7.16)

2. There we had used the notation φ1 = σ and φ2 = ϕ.
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and one can see that ϕ can only be attached to an index of type 2 in the Γ vertices. Therefore
the J source can be eliminated by adding the following interacting terms to Lagrangean

Lϕ int =
g2

2

[
ϕ2 φ1 φ2 +

1

2
ϕφ1 φ2

2 +
1

3!
ϕ φ3

1

]
, (7.17)

and therefore

L =
(
∂µφ1

)
(∂µφ2)−

m2

2
φ1 φ2 −

g2

3!
φ1 φ3

2 −
g2

4!
φ3

1 φ2 −
g2

2

[
ϕ2 φ1 φ2 +

1

2
ϕ φ1 φ2

2 +
1

3!
ϕ φ3

1

]
.

(7.18)

Thanks to this Lagrangean, let us study the ultraviolet power counting of both the full theory
and the CSA, whose Lagrangean is now

L =
(
∂µφ1

)
(∂µφ2)−

m2

2
φ1 φ2 −

g2

3!
φ1 φ3

2 −
g2

2

[
ϕ2 φ1 φ2 +

1

2
ϕ φ1 φ2

2

]
. (7.19)

7.5 Ultraviolet power counting in the full theory

In the full theory, the Lagrangean is (7.18). Considering generic connected graph

G =

2 2

1

1

1

1

2

1

2

22

1

1 2

1

1
, (7.20)

We denote (see [173] for instance):
— E the number of external legs (6 in the previous diagram)
— I the number of internal lines (5 in the previous diagram)
— L the number of independent loops (1 in the previous diagram)

— Vclass the number of
g2

3! φ1 φ3
2 vertices (one in the previous diagram)

— Vquant the number of
g2

4! φ3
1 φ2 vertices (one in the previous diagram)

— V1 the number of
g2

2 ϕ2 φ1 φ2 vertices (one in the previous diagram)

— V2 the number of
g2

4 ϕ φ1 φ2
2 vertices (one in the previous diagram)

— V3 the number of
g2

4! ϕ φ3
1 vertices (one in the previous diagram)

Our aim is to compute the superficial degree of divergence of this graph ω(G). To do so, two
relations will prove helpful. Firstly, each of the four legs of every vertex must be attached to
the endpoint of a propagator, which leads to

E + 2I = 4
(
Vclass + Vquant

)
+ 3(V2 + V3) + 2V1 , (7.21)

and in our example one indeed has 6 + 5× 2 = 4× (1 + 1) + 3× (1 + 1) + 2× 1. A second
relation can be found by counting the number of independent momenta that can circulate into
the loops of the diagram G. It reads

L = I − (Vclass + Vquant + V1 + V2 + V3) + 1 , (7.22)

and in our case indeed 1 = 5− (1 + 1 + 1 + 1 + 1) + 1. The superficial degree of divergence
of the graph G is given by

ω(G) = 4L− 2I . (7.23)
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Indeed, each loop induces a
∫

d4 p ∼ p4 factor and each internal propagator 3 a factor p−2.
From the two equalities that we have just derived, we obtain

ω(G) = 4− E− (V2 + V3)− 2V1 = 4− E− Nϕ , (7.24)

with Nϕ = V2 + V3 + 2V1 corresponding to the numbers of external fields ϕ in G (in our
previous example Nϕ = 4). The 4− E term is the usual result obtained in a four dimensional
φ4 scalar field theory without an external source. We now understand why we do not need
to go beyond 4−point functions in order to study the validity of the Weinberg theorem and
the renormalizability of the theory. the Nϕ can only decrease ω(G), therefore improving the
convergence of Feynman graphs. This should have been expected since V1, V2 and V3 are
super-renormalizable interactions: all these vertices have a positive mass dimension.

7.6 Ultraviolet power counting in the CSA

An interesting fact that can be noticed in the formula (7.24) is that the superficial degree
of divergence of a graph does not depend on the number of quantum vertices. As we know
(section 4.3), the only difference between the CSA and the full theory is precisely that Vquant =
0 in the CSA. Therefore the power counting is the same in the CSA and in the full theory. One
could therefore expect that if the full theory is renormalizable – and it obviously is, as is well
known [173] – then so is the CSA. But as we will see in the following, this is unfortunately not
true, as a consequence of the fact that Weinberg’s theorem is violated in the CSA. The latter
being a necessary condition for renormalizability, this will prove the non-renormalizability
of the CSA. To understand why Weinberg’s theorem is satisfied in the full theory but not in
the CSA, one must closely inspect the divergences that appear in the 2 and 4-point functions.
We will restrict ourselves to one loop diagrams, as this is sufficient to disprove Weinberg’s
theorem.

7.7 Ultraviolet divergences in the CSA

In this section, we assume that m = 0 for simplicity.

7.7.1 Two-point functions

Let us start by the renormalization of the two-point functions at one loop. Only one
topology contributes: the tadpole. We thus have (all the external legs are amputated)

−iΣ11 =
1 2

1 1
= 0 , (7.25)

since a closed loop made of a retarded propagator is obviously 0. This diagram was not
contributing to Σ11 in the CSA anyway, since it involves the quantum vertex. Next, we have

−iΣ22 =
1 2

2 2
= 0 , (7.26)

for the same reason as before. Finally,

−iΣ12 =
2 2

2 1
= − i

g2Λ2

16π2
, (7.27)

3. We will see later that this estimate is to naive in the classical approximation.
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which is the usual tadpole divergence, that can be renormalized by adding a mass counterterm
in the Lagrangean, whose only quadratic term is precisely of the form φ1φ2. There is therefore
no issues in the renormalization procedure of the CSA for the two point functions at one loop,
that amounts to adding a mass counterterm to the Lagrangean (7.19).

7.7.2 Four-point functions

7.7.2.1 Vanishing four-point functions

At one loop, some of the four-point functions are zero. This is the case of

−iΓ1111 =

1

1

1

1

1

2

2

1
= 0 (in the CSA and in the full theory) , (7.28)

which: (i) does not exist in the CSA, (ii) is 0 in the full theory because it is formed by a closed
loop made of two retarded propagators. One can therefore close the contour when doing the
complex plane integration without encircling any poles. Other vanishing four point-functions
in the CSA are

−iΓ1112 =

1

1

1

2

1

2

2

2
= 0 (in the CSA) , (7.29)

this is a good thing, since as we have discarded the Γ1112 vertex in the CSA, we would not have
been able to renormalize a divergence appearing in this function by adding a counterterm in
the CSA Lagrangean (7.19). The calculation of Γ1112 in the full theory is done is the appendix
7.A. Finally, we have

−iΓ2222 =

2

2

2

2

1

2

2

1
= 0 (in the CSA and in the full theory) , (7.30)

for the same reason that Γ1111 was zero.

7.7.2.2 Logarithmically divergent four-point function

Thing starts to be non-trivial for Γ2221 at one loop

−iΓ1222 =

1

2

2

2

2

2

2

1
. (7.31)

As one can see, this loop is the same as the one in Γ1112. The complete calculation is performed
in the appendix 7.A and one finds

−iΓ1222 ∼ g4 ln Λ (in the CSA and in the full theory) , (7.32)

which is the usual coupling constant renormalization. Since Γ1222 is present in the CSA La-
grangean (7.19), renormalizing it just implies to add the proper δg counterterm, proportional
to the logarithmic divergence that we have just found. This term therefore does not forbid us
to renormalize the theory.
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7.7.2.3 Linear divergence in four-point functions: violation of Weinberg’s theorem

What happens for Γ1122? First, one can see that the following contribution to Γ1122 is zero

−iΓ1122 =

1

1

2

2

1

2

2

1
= 0 (in the CSA and in the full theory) . (7.33)

The non-zero diagrams therefore have 1− 2 legs on each side of the loop. To do the com-
putation of Γ1122 properly, it is useful to label the external momenta p1,2,3,4. We attach p1,2

to 1 indices and p3,4 to 2 indices. We also assume that all the momenta are incoming, which
implies that

4

∑
i=1

pi = 0 . (7.34)

Γ1122 therefore reads

−iΓ1122 =

p3

p1

p4

p2

2

2

2

2
+

p3

p1

p4

p2

1

1

2

2
+

p3

p1

p4

p2

2

2

1

1

+

p4

p1

p3

p2

2

2

2

2
+

p4

p1

p3

p2

1

1

2

2
+

p4

p1

p3

p2

2

2

1

1
.

(7.35)

The diagrams of the first line are t-channel contributions, while the diagrams of the second
line are u-channel contributions. The s-channel contribution is 0 as proved in (7.33). Let us
first recall than since there is no Γ1122 vertex in the full Lagrangean (nor in the CSA), equation
(7.35) should be finite in the full theory. But without performing the computation, one cannot
know whether each individual diagram is finite or whether some cancellation occurs between
diagrams present in the CSA and diagrams not included in the CSA. The diagrams present in
the CSA read

−iΓCSA
1122 =

p3

p1

p4

p2

2

2

2

2
+

p4

p1

p3

p2

2

2

2

2
. (7.36)

The detailed calculation is done in the appendix 7.B. Denoting

t = (p1 + p3)
2 , u = (p1 + p4)

2 , (7.37)

we obtain 4

−iΓCSA
1122 = − g4

64π

[
ǫ(t) + ǫ(u) + 2Λ

(
θ(−t)
|p1 + p3|

+
θ(−u)
|p1 + p4|

)]
. (7.39)

Despite the fact that ω(ΓCSA
1222) = 0, we have just found that ΓCSA

1222 contains a linear divergence
for space-like configurations. It turns that for loops formed by the product of two symmetric

4. ǫ is the sign function:

ǫ(a) =
a
|a| . (7.38)



142CHAPTER 7. NON RENORMALIZABILITY OF THE CLASSICAL STATISTICAL APPROXIMATION

propagators, the superficial degree of divergence is misleading. Indeed, an individual GS(p)
behaves at p−2. But the contribution that comes from the product of two GS in a closed loop
of momentum K is of the form (here P2 is either t or u)

GS(P + K)GS(K) = π2δ((P + K)2)δ(K2) , (7.40)

and by expanding the first δ function one finds

GS(P + K)GS(K) = π2δ(P2 + 2P.K)δ(K2) , (7.41)

and now the first δ function gives only a contribution that scales as K−1 instead of K−2.
This is the intuitive reason why Weinberg’s theorem is violated in the CSA. At a deeper
level, Weinberg’s theorem requires to perform a Wick rotation of the loop momenta. For GF

propagators that have one pole on each side of the real axis in the complex plane, this Wick
rotation can be performed without encountering the poles

k0

k0

GF

. (7.42)

But one cannot perform this rotation when the integrand contains δ functions or retarded/advanced
propagators that have all their poles on the same side of the real axis, since the poles cannot
be avoided.

k0

?

GR

. (7.43)

In the full theory, things are easier to understand in the +− basis. The corresponding prob-
lematic four-point function is Γ−−++ (Γ−−−+ and Γ−+++ are trivially zero given the vertices
present in the Lagrangean: Γ++++ and Γ−−−−. The latter can be renormalized without any
problem, like Γ1112). Here, everything works as in the 1− 2 basis except that one has addi-
tional θ functions in front of the δ’s in G−+ and G+−. This constraints the energy k0 to flow in
one direction of the diagram, and it cannot grow up to the cutoff

+

+

−

−

+

+

-

-

θ(k0)

θ(p0 + k0)

2

1

2

1

2

2

2

2

Figure 7.1: Potentially problematic four-point function of the full theory (left side) and of the
CSA (right side). In the former, the θ function prevents the modulus of the loop momentum
from reaching the UV cutoff. In the latter, nothing prevents |k| from reaching Λ.
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Therefore, in the full theory, the momentum of the internal leg is bounded. In the CSA,
nothing prevents the momentum of one legs from reaching Λ. To see how the cancellations
occur in the full theory in the 12 basis, we have also computed the remaining diagrams that
contributed to the t and u channels (see the appendix 7.B) and found

−i
(
Γ1122 − ΓCSA

1222

)
= − g4

32π

[
1−Λ

(
θ(−t)
|p1 + p3|

+
θ(−u)
|p1 + p4|

)]
. (7.44)

By adding (7.39) and (7.44) one sees that

−iΓ1122 = − g4

32π
(θ(t) + θ(u)) , (7.45)

which is finite, in agreement with the renormalizability of the full theory. The conclusion of
this calculation is therefore that the classical-statistical approximation is not renormalizable.

7.8 Impact of the non-renormalizability of the CSA on Tµν

The function Γ1122 appears as a subdiagram of NNLO contributions to Tµν
resum. Indeed,

focusing on the quadratic part of Tµν, that only implies type 2 fields, one has (where the black
lines now denote dressed propagators)

Tµν
LO

=
2 2

Tµν
NLO

=
2 2

, (7.46)

with Tµν
LO ∼ Q4

g2 , Tµν
NLO ∼ Q4 and one of the contributing diagram to Tµν

NNLO ∼ Q4g2 is

Tµν
NNLO

=

1 1

2 2

2

2

2

2

22

, (7.47)

The problematic ΓCSA
1122 subdiagram is the one delimited by the four black legs. This diagram

behaves as

Tµν
NNLO
∼ Q4

g2
× g4 Λ

Q
∼ g2Q3Λ , (7.48)

to be compared with the leading contribution ∼ Q4

g2 . This means that as long as

Λ≪ Q
g4

, (7.49)

this diagram is a small correction (at a fixed time). If one wants to obtain at least NLO accuracy
(as the CSA contains fully the next to leading order contribution), the problematic divergent
term in the vertex Γ1122 should be small compared to the bare 4−gluon vertex g2. This gives

g4 Λ

Q
≪ g2 → Λ≪ Q

g2
. (7.50)

This inequality is satisfied for a broad range of Λ at weak coupling.
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7.9 Cumulative effects of the non-renormalizability

At late times and moderate couplings, a kinetic description (see the section 3.1 for a brief
introduction, and reference [174] for more details) may be used, since quasi-particles have
been formed (see the chapter 5). The Boltzmann equation for a spatially homogeneous system
reads

∂x0 fk = C[ fk] . (7.51)

The collision term can be deduced can be expressed in terms of the two loops self energies
Σ11, Σ21 and Σ12 in the retarded-advanced basis. More precisely [175]

∂x0 fk =
−i

2|k|

(
Σ11(k)−

[
1

2
+ fk

]
[Σ21(k)− Σ12(k)]

)
. (7.52)

One can show that, in the CSA, for massless particles (P2 = 0 and p0 > 0)

−iΣCSA,2 loops

11 = 2 21 1
2

2

2

2
= − g4

1024π3

(
Λ2 − 2

3
|p|2

)
,

Im Σ
CSA ,2 loops

12 = 2 22 1
2

2

2

1
= − g4

1024π3

(
Λ2 − 2

3
|p|2

)
. (7.53)

The origin of the divergence is the presence of a ΓCSA
1122 sub-diagram 5. One can see from these

formulas that the collision term vanishes 6 in the vacuum, but diverge if fk 6= 0. This spurious

contribution to the collision term is of order
g4

2048π3
Λ2

Q , where Q is some typical momentum
scale in the problem. Therefore, after a time

x0
renor ∼

2048π3

g4

Q
Λ2

, (7.54)

these unphysical terms will have a sizable effect on the particle distribution. By comparing the
solution of the Boltzmann equation with the full collision term, and the one with a classical
approximation where one keeps only the leading terms in fk, one can assess the time evolution
of the artifacts generated by the CSA. This remains to be done and will be the subject of a
future study.

7.10 Possible partial cure

A natural question after this somehow negative result obtained in the section 7.7 is whether
the linear term in Λ that appears in NNLO contributions to physical observables can be
removed. For instance, we saw in the section 7.8 that the problematic 4−point function enters
into Tµν

NNLO . This linear divergence is canceled in the full theory when one takes into account
the other contributions that involve the quantum vertex

1 1

2 2

2

2

2

2

22

+

1 1

2 2

1

1

2

2

22

+

1 1

2 2

2

2

1

1

22

= finite . (7.55)

The question is therefore the following one: is there a way to reintroduce in the CSA the
divergent part of the second and third diagram in order to eliminate the linear divergence

5. One can notice that this sub-diagram only enters once in Σ12 while entering 3 times in Σ11. This will have
some consequences on the outcome of section 7.11.

6. This is a consequence of the KMS relation, see [176, 177].
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that appears in the CSA term (first diagram)? To understand what it would take to do so, it
is convenient to look at the previous diagrams in space-time, starting from some initial time
surface. For the CSA contribution, this gives

initial time

time
, (7.56)

where the lines with an arrow retarded propagators. Here, all the vertices are classical ones,
of type Γ1222. In terms of this time oriented representation, we see that the loop correction is
coming entirely from the initial condition, as it is expected to be the case in the CSA. For the
other two diagrams, things are different. Indeed, in this representation, they look like

initial time

time

initial time

time
. (7.57)

Here, some of the vertices (circled in blue) are quantum Γ1112 vertices. In terms of this time
oriented representation, it means that the CSA neglects loop corrections arising after the initial
time, as we are already aware of (see the section 4.3). The divergent part of these diagrams
can be read from (7.44). In coordinate space, a straightforward calculation shows that it is
proportional to

1

|x− y|δ
(
(x0 − y0)2 − |x− y|2

)
, (7.58)

where x and y are the space-time positions of the two vertices. Therefore, this divergent term,
although non-local, has its support on the light-cone, as illustrated in the following cartoons

initial time

time

initial time

time
. (7.59)

This somewhat simplifies the structure of those divergent terms. But multiple loops of that
kind can appear in higher order diagrams, at every space-time position. For this reason, one
cannot subtract them locally. If something may be done, it has to be at the Lagrangean level.
Since the divergent part of all these diagrams always comes from the Γ1122 vertex, one could
try to add to the Lagrangean a counterterm of the form φ2

1φ2
2, which means

∆S =
i
2

∫
d4x d4y [φ1(x)φ2(x)] v(x, y) [φ1(y)φ2(y)] . (7.60)

The coefficient v(x, y) should be tuned in order to cancel the linear divergence in Γ1122. To do
so, one should take

v(x, y) =
g4

64π3

Λ

|x− y|δ
(
(x0 − y0)2 − |x− y|2

)
. (7.61)

Using the Hubbard-Stratonovitch [178, 179] transformation, the functional equivalent of the
simple identity

e−
x2

2 =
√

2π
∫

dy e
y2

2 eiyx , (7.62)
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one can re-express the additional term in the action as

ei∆S =
∫
[Dξ] e

1
2

∫
d4x d4y ζ(x)v(x,y)ζ(y) ei

∫
d4x ζ(x)φ1(x)φ2(x) . (7.63)

This formulation allows one to perform the functional integration over φ1 as was done in the
CSA (see section 4.3) in order to recover a "classical" equation of motion for the field ϕ

�ϕ +
g2

6
ϕ3 + ζ ϕ = j , (7.64)

which is almost identical to the usual classical KG EOM, except for the additional ζ ϕ term.
In order to get a positive definite variance for this random Gaussian noise, we redefine ζ as
ζ = iξ. Therefore

�ϕ +
g2

6
ϕ3 + iξ ϕ = j , (7.65)

with

〈ξ(x)〉 = 0 , 〈ξ(x)ξ(y)〉 = v(x, y) . (7.66)

Thanks to the additional term in the action, for every Γ1122 subdiagram that appears in a
physical observable, another diagram similar to those of (7.59) will also be present, and the
combination of the two will be free of the linear Λ divergence.

7.11 Could the cure be implemented numerically?

In the previous section, we have presented a possible way to get rid of the linear Λ diver-
gences that come from Γ1122 subdiagrams. But can this method be used in practice? It turns
out that there are difficulties to do so

— Firstly, one needs to generate the noise term ξ. This is easy in momentum space, as it
is diagonal there. But the problem is that the correlation between two ξ is non-local in
time. One should therefore compute the noise configurations before starting to evolve
the field ϕ, and store this noise for all space-time points.

— Secondly, and perhaps even worse than the previous point, the noise term is imaginary.
Even if every Hermitian observable will remain real because ξ has a zero mean, this
means that (7.65) is a complex Langevin equation. The latter has been studied on
numerous occasions [180–183], and can suffer from a lack or convergence or even a
convergence to the wrong solution. It is therefore unclear if the method proposed here
offers any gain in comparison to considering the CSA as an effective field theory with
the constraint (7.50).

As a final remark, let us notice that even if the subtraction procedure advocated in the previous
subsection was to be applicable, this would not completely renormalized the theory (it would
do so at NLO, but not at higher orders). One can see this by inspecting the symmetry factor
of the Γ1122 sub-diagram that enters into Σ12 and Σ11 at two loops. Since it is not the same,
one cannot renormalize both of those diagrams by the renormalization of Γ1122 at one loop.
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7.12 Summary

• Despite having the same degree of divergence than the full quantum scalar field the-
ory, the CSA is non-renormalizable.
• Some cancellations that happen in the full theory between diagrams with the same
topology do not happen in the CSA because the quantum vertex φ3

1φ2 has been dis-
carded.
• In practice, the cutoff should not be too large compared to the physical scales.
• One may improve the range of validity of the CSA by promoting the classical Klein-
Gordon EOM to a Langevin equation, but implementing the latter seems difficult in
practice.

Appendix

7.A Calculation of Γ1112 and Γ1222

We want to calculate (with only incoming momentum)

−iΓ1222 =

1

2

2

2

2

2

2

1
. (7.67)

Labeling as in section 7.7 the four momenta p1,2,3,4 with p1 always associated to the 1 leg,
this amounts to compute three different diagrams

−iΓ1222 =

p2

p1

p4

p3

2

2

2

1
+

p3

p1

p4

p2

2

2

2

1
+

p4

p1

p3

p2

2

2

2

1

= − i (I(p1 + p2) + I(p1 + p3) + I(p1 + p4)) . (7.68)

where (P standing either for p1 + p2, p1 + p3 or p1 + p4)

I(P) = − g4
∫

d4k
(2π)4

GR(k + P)GS(k) (7.69)

Similarly, one has for Γ1112, with now p1 attached to the unique leg of type 2

−iΓ1222 =

p2

p1

p4

p3

2

2

2

1
+

p3

p1

p4

p2

2

2

2

1
+

p4

p1

p3

p2

2

2

2

1

= − i
4
(I(p1 + p2) + I(p1 + p3) + I(p1 + p4)) , (7.70)

where the 1
4 is coming from the quantum vertex. Γ1112 is therefore 0 in the CSA as it always

involves a quantum vertex at one loop. Using 7

i
x + iǫ

= πδ(x) + ipv

(
1

x

)
, (7.71)

7. pv standing for principal value.
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a straightforward yet tedious calculation leads to (P =
√
(p0)2 − |p|2)

I(P) =
g4

32π2

(
iπ
[

ǫ(p0)θ(P2)− θ(−P2)
p0

|p|

]
+ 4 ln

∣∣∣∣
P
2Λ

∣∣∣∣+
p0

|p| ln

∣∣∣∣
p0 + |p|
p0 − |p|

∣∣∣∣
)

, (7.72)

which is logarithmically divergent as announced in section 7.7.2.

7.B Calculation of Γ1122

7.B.1 CSA contribution

Let us give a flavor of a detailed one-loop computation in the CSA. Here

−iΓCSA
1122 =

p3

p1

p4

p2

2

2

2

2
+

p4

p1

p3

p2

2

2

2

2

= i
g4

2
(J(p1 + p3) + J(p1 + p4)) , (7.73)

with (P standing either for p1 + p3 or p1 + p4)

J(P) =
∫

d4k
(2π)4

GS(P− k)GS(k) . (7.74)

Then one has

J(P) =
π

2

∫
dk0

∫
d3k

2|k|(2π)3

(
δ(k0 + |k|) + δ(k0 − |k|)

)
δ(P2 − 2P.k)

=
1

8π

∫ π

0
sin θ dθ

∫ Λ

0

kdk
2

(
δ(P2 − 2kp0 + 2k|p| cos θ) + δ(P2 + 2kp0 + 2k|p| cos θ)

)

=
1

8π

∫ 1

−1
dx
∫ Λ

0

dk
4|p|

(
δ

( P2

2k|p| −
p0

|p| + x
)
+ δ

( P2

2k|p| +
p0

|p| + x
))

=
1

32|p|π
∫ Λ

0
dk
(

θ

( P2

2k|p| −
p0

|p| + 1

)
θ

(
1− P2

2k|p| +
p0

|p|

)

+θ

( P2

2k|p| +
p0

|p| + 1

)
θ

(
1− P2

2k|p| −
p0

|p|

))
. (7.75)

This expression is symmetric in the change p0 → −p0, we can therefore take p0 > 0. Let us
first assume that P2 > 0, which means |p0| > |p|. Therefore, the first two θ functions give
p0−|p|

2 < k <
p0+|p|

2 . The fourth one implies 0 > |p| − p0 >
p2

2k > 0, and is therefore identically
0. The final result thus is

1

32|p|π
∫ p0+|p|

2

p0−|p|
2

dk =
1

32π
. (7.76)

If we now assume P2 < 0, then the first two θ functions give k >
p0+|p|

2 > 0 >
p0−|p|

2 . The

fourth one implies |p| − p0 > 0 >
P2

2k and is therefore always satisfied. One is thus left with

the third θ which implies k >
|p|−p0

2 . The final result is therefore

1

32|p|π
∫ Λ

p0+|p|
2

dk +
1

32|p|π
∫ Λ

|p|−p0

2

dk =
Λ

16π
− 1

32π
. (7.77)

The final answer is

J(P) =
ǫ(P2)

32π
+

Λθ(−P2)

16|p|π . (7.78)
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7.B.2 Non-CSA contribution

as explained in the section 7.7.2.3, the diagrams not included in ΓCSA
1122 are

−iΓ1122 =

p3

p1

p4

p2

1

1

2

2
+

p3

p1

p4

p2

2

2

1

1

+

p4

p1

p3

p2

1

1

2

2
+

p4

p1

p3

p2

2

2

1

1

= − g4

8

∫
d4k
(2π)4

(GR(k)GR(p1 + p3 − k) + GA(k)GA(p1 + p3 − k)

+GR(k)GR(p1 + p4 − k) + GA(k)GA(p1 + p4 − k)) . . (7.79)

One can observe that exchanging k for −k in the terms containing GA gives those that contain
GR provided that one also exchanges P to −P (P standing for either p1 + p3 or p1 + p4). Calling

K(P) =
1

4

∫
d4k
(2π)4

GR(k)GR(P− k) , (7.80)

we therefore only need to keep the odd P part of this quantity. First performing the k0

integration in the complex plane, we get

K(P) =
i

32π2

∫ 1

−1
dx
∫ Λ

0
kdk

(
1

P2 − 2k(p0 − |p|x) + i(p0 − k)ǫ

− 1
2 + 2k(p0 + |p|x) + i(p0 + k)ǫ

)
. (7.81)

Using

i
x + iǫ

= πδ(x) + ipv

(
1

x

)
, (7.82)

we obtain for the real part

KR(P) =
1

32π

∫ 1

−1
dx
∫ Λ

0
kdk

(
ǫ(p0 − k)δ(P2 − 2k(p0 − |p|x))− ǫ(p0 + k)δ(P2 + 2k(p0 + |p|x))

)

=
1

64|p|π
∫ 1

−1
dx
∫ Λ

0
dk
(

ǫ(p0 − k)δ(
P2

2k|p| −
p0

|p| + x))− ǫ(p0 + k)δ(
P2

2k|p| +
p0

|p| + x)
)

= − 1

2
J(P) +

1

32|p|π
∫ 1

−1
dx

(
θ(p0)

∫ p0

0
dkδ(

P2

2k|p| −
p0

|p| + x))

+θ(−p0)
∫ −p0

0
dkδ(

P2

2k|p| +
p0

|p| + x)

)
. (7.83)

Focusing on the sum pf the two integrals, we see that it is symmetric under the transformation
p0 → −p0, and we can therefore compute it by assuming that p0 > 0.

1

32|p|π
∫ p0

0
dk θ

( P2

2k|p| −
p0

|p| + 1

)
θ

(
1− P2

2k|p| +
p0

|p|

)
=

θ(P2)

32|p|π . (7.84)

The real part of K is then

1

64π
− Λθ(−P2)

32|p|π . (7.85)
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We are now left with the computation of the imaginary part of K

KI(P) =
i

32π

∫ 1

−1
dx
∫ Λ

0
kdk

(
pv

(
1

P2 − 2k(p0 − |p|x)

)
− pv

(
1

P2 + 2k(p0 + |p|x)

))
.

(7.86)

which is antisymmetric in p0. It therefore vanishes when one takes into account all the pos-
sible combinations for the incoming momentum. Putting this result in (7.79) gives what was
announced in the section 7.7.2.3.
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Chapter 8

Spectrum of fluctuations above the
light cone
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I
n this chapter, we will try to derive the spectrum of fluctuations in the forward light
cone at τ = 0+, as this is a necessary step in order perform the realistic CSA sim-
ulations that will be the topic of next chapter 9. This spectrum have received some
attentions in the past 1 [185–187], but has never been derived from first principles

in a completely satisfactory manner.

8.1 Spectrum of fluctuations: a new derivation

Following the work of section 4.2, we write a formula analogous to 4.110 for the propagator

Gµνab
+− in the gauge theory 2

Gµνab
+− (x, y) =

1

2 ∑
λ,c

∫
d3k

2|k|(2π)3
aµa

kλc(x)aνb∗
kλc(y). (8.1)

1. See also [184] for the quark case.

2. Where the fact that aνb
−kλc = aνb∗

kλc was used.
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As one recall, this formula entered into the resummation formula in a crucial way (through
the Gaussian distribution function). We therefore see that in the gauge case, one also need to
know the aµa

kλc. based on 4.2, we can state that those aµa
kλc are the solution of the linear Yang-

Mills equations with plane wave initial condition in the remote past (the analogous of 4.111).
In this section, we will therefore use the linear equation of motion for the small fluctuations
in order to derive the form of the initial condition just after the collision, which is function of
these small fluctuations and the classical field Aµa presented in section 3.8. While an attempt
was made in [187] to obtain those mode functions, we will start here by explaining why this
derivation suffers from an important caveat. Indeed, the spectrum found in [187] was derived
thanks to the conservation of the following scalar product

Sk⊥νλc,k′⊥ν′λ′d = − i
∫

d2x⊥ dη gµν

(
aµa∗

k⊥νλceµa
k′⊥ν′λ′d

− eµa∗
k⊥νλcaµa

k′⊥ν′λ′d

)
. (8.2)

Here eµ(τ, x⊥, η) = −gµντ∂τaν(τ, x⊥, η) is the electric field. The (τ, η) coordinates are defined
as usual (z being chosen to be the collision axis)

τ =
√

τ2 − z2 η =
1

2
ln

t + z
t− z

, (8.3)

λ labels the polarization of the fluctuations, and (k⊥, ν) are the conjugate momenta associated
to (x⊥, η). The color indices will be denoted by latin letters a, b, c... in all the following. The
reasoning in [187] was that if one knows a set of orthonormal small fluctuations (aµa

kλc, eµa
kλc) at

τ = 0+, then it can be related (up to a unitary transformation) to the one at t = −∞, where
the small fluctuations are known to be plane waves. We now shortly explain why this can be
uncorrect in some cases 3. The scalar product (8.2) is just a complex version of what is called
a symplectic form. A symplectic form conserves the volume in phase-space. For example,
given two pairs (a1, e1) and (a2, e2), their symplectic product is the shaded area of the left part
of figure 8.1. Unfortunately, some set of solutions that are orthonormal with respect to (8.2)
cannot be related to the correct set of fluctuations (that evolved from −∞) by an orthogonal 4

transformation. This can be easily seen geometrically: an orthogonal transformation Ω is just
a rotation in phase-space (middle part of figure 8.1).

a

e

(a1, e1)

(a2, e2)

a

e

Ω action

a

e

V action

Figure 8.1: Left part: symplectic product of two pairs (a1, e1) and (a2, e2) Middle part: Orthog-
onal transformation of two pairs (a1, e1) and (a2, e2). Right part: symplectic transformation of
two pairs (a1, e1) and (a2, e2)

But there are many more transformations V that conserve the volume in phase space 5.
For example, dividing by 2 the a and multiplying by 2 the e gives the figure of the right part
of 8.1. Here the two colored domains have the same area, but the pair (Va, Ve) cannot be
related anymore to the original (a, e). Therefore the correct way to construct the spectrum of

3. Let us note here that this method gives the correct result for the vacuum fluctuations, but not for the
interacting spectrum.

4. Real version of a unitary transformation.
5. These are the symplectic transformations.
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fluctuations in the forward light cone requires more than just imposing the orthonormality of
the (aµa

kλc, eµa
kλc) with respect to (8.2). What we will do instead in this section is the complete

evolution of the real solution from the remote past to the forward light cone, as this is the
only method that unambiguously relates the spectrum of fluctuations just after the collision
to the one at −∞.

8.2 Known results for the background field

The way we derive the spectrum of small fluctuations in the forward light cone takes
advantage of the gauge choice used in [50], that was used there to re-derive the formulas for
the background field generated by two intense sources that are located into two infinitesimal
strips along the x± axis (recall section 3.6)

Jµa
1 (x+, x⊥) = δµ−ρa

n(x+, x⊥) , Jµa
2 (x−, x⊥) = δµ+ρa

n(x−, x⊥) , (8.4)

The ρ are as usual in this context random color sources described by a probability distribution
W[ρ], that we have discussed in section 3.7. One usually takes the high energy limit, which
implies (the index n labels the two nuclei) ρa

n(x±, x⊥) = δ(x±)ρa
n(x⊥). Here we will only take

this limit at the end of the calculation, and consider the support of the sources to have a small
width of size ǫ in the variables x±. The formulas for the background field induced by these
sources, first obtained in [188], states that in (τ, η, x, y) coordinate system and in the so-called
Fock-Schwinger gauge Aτ = 0, the background field on the τ = 0+ surface reads

Aia(x⊥) = Aia
1 (x⊥) +Aia

2 (x⊥) Aηa(x⊥) =
ig
2
Aiab

1 (x⊥)Aib
2 (x⊥) , (8.5)

where the fields Aa
n that a priori depend on (x±, x⊥) are pure gauges formed by the Wilson

lines Un

Aab
n (x±, x⊥) =

i
g
U ac†

n (x±, x⊥)∂
iU cb

n (x±, x⊥) Un(x±, x⊥) = T± eig
∫ x±
−∞

dz± A∓n (z± ,x⊥) , (8.6)

where T± are the time ordering operators along x±, and the fields A±a
n are solutions of the

2-dimensional Poisson equation

−∇2
⊥A±a

n = J±a
n . (8.7)

The fields A±a
1,2 in equation (8.5) are obtained by taking the limit x± → +∞ in the Wilson

lines, reducing the spatial dependence of all the object considered to a transverse one. In
order to apply the procedure developed in [50] to derive the spectrum of small fluctuations
propagating on top of the background field A, we briefly recall its key aspects here 6.

8.3 The axial gauge

The key idea introduced in [50] is to work in the same axial gauge for the whole system
formed by the two nuclei. What was done before was to work in the covariant gauge ∂µAµ

n = 0,

which implies that Aµ
1 ∝ δµ− and Aµ

2 ∝ δµ+. Since we will consider the A− = 0 gauge in all
this section, this implies that the nucleus 2 is so to say in the correct gauge, since it only has
a non-zero A+

2 component, but not the nucleus 1, which only has a non-zero A−1 component.
To get rid of it, one has to perform a gauge transform Ω1 = U1. The gauge transform of the
A1 field reads

Aµab
1 7→ Ωac

1 A
µcd
1 Ω†db

1 +
i
g

Ωac
1 ∂µΩcb†

1 (8.8)

6. The technical details are relegated to the appendix 8.A and 8.B.
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and the only non-zero components after this gauge transformation are the transverse ones,
which are equal to a pure gauge. Figure (8.2) clarifies the different notations.

x−

A
−
1 , J

−
1

x+

A
+

2 , J
+

2

Aµ = 0 Aµ = 0
Ω1

x− x+

Ai
1 =

i
g
U

†
1∂

iU1

A
+

2

Figure 8.2: The gauge transformation that transforms A−1 into a pure gauge Ai
1. The second

nucleus is unaffected by this transformation.

One could be tempted to choose the gauge in such a way that the two nuclei are repre-
sented by pure gauges, hence a symmetric treatment of the problem. The reason for not doing
so is only technical: it turns out that the calculations are a lot simpler in this mixed gauge,
and we will therefore stick with it. To determine the field just after the collision (blue line
on the right side of figure (8.2)), one can independently study its left and right branches, for
obvious causality reasons 7. The result found is the same on the two branches and is 8, for x+

or x− equal to ǫ.

∂−A+a(x⊥) =
(

∂iU ab
2 (x⊥)

)
Aib

1 (x⊥) Aia(x⊥) = U ab
2 (x⊥)Aib

1 (x⊥) A±a(x⊥) = 0 . (8.9)

which means that A only depends on x⊥ on the blue surface of figure (8.2). The ǫ → 0 limit
is then taken.

8.4 Going to Fock-Schwinger gauge

Since it is more natural to use the τ, η coordinates to describe the evolution of the fields
in the forward light cone, and since in this coordinate system the usual gauge choice is the
temporal Fock-Schwinger gauge

Aτ = x−A+ + x+A− = 0 , (8.10)

one needs to perform a new gauge transform that leads to this condition. In this gauge, the
field before the collision is made of two pure gauges, and the first step is then to perform a
gauge transform Ω2 = U †

2 to modify A+
2 7→ Ai

2. After this gauge transform, (8.9) now reads

∂−A+a(x⊥) = − igAiab
2 (x⊥)Aib

1 (x⊥) Aia(x⊥) = Aib
1 (x⊥) +Aib

2 (x⊥) A±a(x⊥) = 0 . (8.11)

As explained in [50], the last step to go from the light-cone gauge A− = 0 to the Fock-
Schwinger gauge is to perform a gauge transform Ω such that

Aabµ
LC = ΩacAcdµ

FS Ωdb† +
i
g

Ωac∂µΩcb† , (8.12)

where A−LC = 0. Using the definition A±FS = ±x±Aη
FS and A+

LC = x+Aη
LC, one then finds

Ω(τ, x⊥) = e
igτ2

2 Aη(x⊥) and one recovers the known result from [22, 47–49]

Aηa
FS =

1

2
∂−A+a

LC(x⊥) =
ig
2
Aiab

2 (x⊥)Aib
1 (x⊥) Aia

FS(x⊥) = Aib
1 (x⊥) +Aib

2 (x⊥) . (8.13)

The final steps will be identical when we consider the small fluctuations.

7. The left (right) branch of the blue line is not causally related to the right (left) part of the light cone.
8. See [50].
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8.5 Small fluctuations in the forward light cone

We now turn to the problem of computing analytically the small fluctuations a on top of
the background field in the axial gauge A− = 0. The setup is described in the figure 8.3

Ai
1(x⊥) = i

g
U

†
1 (x⊥)∂iU1(x⊥)







A±(x⊥) = 0
∂−A+(x⊥) =

(

∂iU2(x⊥)
)

Ai
1(x⊥)

Ai(x⊥) = U2(x⊥)Ai
1(x⊥)

A
+

2 (x
−,x⊥) = −

1

∇2

⊥

J+

2 (x−,x⊥)

x−

A
µ
2 = 0

x+

Aµ = 0

Figure 8.3: Structure of the background field in the light-cone gauge A− = 0.

This implies several steps that have to be performed in chronological order. They are
summarized in the figure 8.4. As already mentioned, what happens on the left side of the
light cone is independent from what happens on the right side (for the same causal argument
that was presented for the background field). We will therefore treat the right part and deduce
by symmetry the result for the left part.

x
−

x
+(i) x

−

x
+(ii) x

−

x
+(iii) x

−

x
+(iv)

Figure 8.4: The four steps that one has to perform in order to derive the small fluctuations in
the forward light cone. See in order sections 8.5.1, 8.5.2, 8.5.3 and 8.5.4

There are four steps to perform

— (i) evolve in the x± < 0 region.
— (ii) cross the first nucleus.
— (iii) evolve on top of A1 (x+ > 0, x− < 0 region).
— (iv) cross the second nucleus.

We will start with a plane wave aµa
kλc at −∞, that have a color c, a polarization vector ǫ

µ
kλ,

which satisfies ǫkλ
µ ǫ

µ
kλ′ = δλλ′ as well as kµǫ

µ
kλ = 0 and a momentum k = (kx, ky, kz)

lim
t→−∞

aµa
kλc(x+, x−, x⊥) = δa

c ǫkλ
µ eikx . (8.14)
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8.5.1 Step 1: evolution in the backward light cone

From now on we will work in light-cone coordinate system 9. In a− = 0 gauge, the physical
solution in the region 10 x+, x− < 0 of the YM equation of motion, recalled here for the
vacuum,

[gµν�− ∂µ∂ν] aµa
kλc(x) = 0 , (8.15)

can be written as

aia
kλc = δc

aǫi
kλeikx a+a

kλc = δa
c

kiǫi
kλ

k−
eikx a−a

kλc = 0 , (8.16)

the ǫ satisfying ǫi
kλǫi

kλ′ = δλλ′ . This means that the mode k at −∞ with the c color and
polarization ǫi keeps the same form until it crosses the first nucleus. Gauss’s law, ∂µaµa = 0,

is satisfied thanks to the fact that kµǫ
µ
kλ = 0.

8.5.2 Step 2: crossing the first nucleus

We now want to determine what becomes the a for x+ > 0 and x− < 0 (still in a− = 0
gauge). The useful quantities and notations are illustrated in figure 8.5. But before doing
so, we also need to now what is the form of the classical YM equations and the current
conservation equations in this region

Dab
1µF

µνb
1 = Jν

1 Dab
1ν Jνb

1 = 0 . (8.17)

The solution to the second of these equations can be

Jia
1 = J+a

1 = 0 J−a
1 (x+, x⊥) = U †ab

1 (x+, x⊥)ρ
b(x+, x⊥) . (8.18)

Here, one could be tempted to use the result from [188], which gives the crossing formulas for
a small fluctuation passing through a nucleus of infinitesimal width. However, two subtleties
prevent us to do so. The first one is that the background field has only a finite step when we
go from x = 0− to x = 0+ while [188] studied the case of an infinite discontinuity (through a
δ function). The second is that we are not in the same gauge as the a+ = 0 used in [188], and
things would be simpler in this gauge. Indeed in the a− = 0 gauge there is a precession of a+

on J−, that will produce an induced current j−. More precisely, because we still want

(∂+δab − iga+ab)(J−b
1 + j−b

1 ) = 0 , (8.19)

we must have (since J−1 does not depend on x−)

j−a
1 = − igJ−ab

1 (x+, x⊥)
1

∂+
a+b(x+ = 0) . (8.20)

Because of these complications, we have to re-derive the crossing formulas for the small fluc-
tuations when they go through the first nucleus. For that purpose, we have to look at the
linearized YM equations

Dab
µ

(
Dµbcaνc −Dνbcaµc

)
− igF νµabab

µ = jνa , (8.21)

9. We will go back in (τ, η) coordinate system only in section 8.5.6, after having studying the whole history of
the small fluctuations.

10. Which means the two physical polarizations, as for massless gluons there is a pure gauge polarization.
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x+ = ǫ

x+ = 0

{

U1(x⊥)

Ai
1(x⊥) = i

g
U

†
1 (x⊥)∂iU1(x⊥)

Aµ = 0

U1(x
+,x⊥)

Figure 8.5: Crossing the first nucleus.

recalling that Fµν = 0 for x+ > ǫ and F νµa = δjµδijδ−ν∂−Aja
1 . For x+ ∈ [0, ǫ], this allows

the following simplifications in the EOM

−Dab
1µ(∂

−aµb)− ig(∂−Aab
1µ)aµb = j−a

1(
δab2∂−∂+ −Diac

1 Dicb
1

)
a+b − ∂+

(
∂−a+a −Diab

1 aib
)
= 0

(
2δab∂−∂+ −Diac

1 Dicb
1

)
ajb − ∂−D jab

1 a+b +Diac
1 D

jcb
1 aib + ig(∂−Ajab

1 )a+b = 0 . (8.22)

To further simplify these equations, we recall that there is a θ(x+) term in Ai and therefore
a singularity δ(x+) in ∂−Ai. The first equation has no ∂+ derivatives and can be seen as a
constraint: it is nothing but Gauss’s law for the small fluctuations in this gauge. It gives

∂−
(

∂−a+a −Diab
1 aib

)
= 2ig(∂−Aiab

1 )aib − j−a
1 , (8.23)

which implies that ∂−a+a −Diabaib has only a finite jump when going from x+ = 0 to x+ = ǫ.
Taking this fact into account in the second equation implies that a+a varies continuously.
Knowing that, we can simplify all the continuous terms into the third equation to get

∂−∂+aja = − ig(∂−Ajab
1 )a+b , (8.24)

which can be integrated over x+ from 0 to ǫ, and since a+ is continuous it can be taken out of
the integral. We are left with

aja(x+ = ǫ) = aja
0 − igAjab

1 (ǫ)
1

∂+
a+b

0 , (8.25)

where we have used again the fact that Aj does not depend on x−, and noted the components
of a at x+ = 0 with the label a0. All we have to do now is determine the jump of ∂−a+. For
that, we use Gauss’s law integrated over x+ from 0 to ǫ

[
∂−a+a]ǫ

x+=0
=
∫ ǫ

0
dx+

[
Diab

1 ∂−aib + ig(∂−Aiab
1 )aib − j−a

1

]
. (8.26)

Using (8.25) the EOM for the background field Diab
1 ∂−Aib

1 = J−a
1 , we obtain the following

result

[
∂−a+a]ǫ

x+=0
=
∫ ǫ

0
dx+ ig(∂−Aiab

1 (x+))
(

aib
0 −

∂i

∂+
a+b

0

)
= igAiab

1 (ǫ)

(
aib

0 −
∂i

∂+
a+b

0

)
. (8.27)

Equations (8.25) and (8.27), together with the continuity of a+ through the crossing are the
central result of this part. We can check Gauss’s law at this point, as this is a good way to test
the validity of our results at the various intermediate steps

∂−
(

∂−a+a −Diabaib
)

x+=ǫ
= ∂−

(
igDiac

1 Aicb
1

1

∂+
a+b

0 + igAiab
1 aib

0

)
= 0 . (8.28)
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8.5.3 Step 3: propagation in the region x+ > ǫ, x− < 0

In this section, we perform the evolution of the small fluctuation on top of the pure gauge
Ai

1. Since the calculation is quite tedious, we will perform several consistency checks in
appendix 8.B. To perform the evolution on top of the pure gauge, one has to realize first that
the linearized EOM (8.21) for the small fluctuations become 11

U †ac
1 (x⊥) (gµν�− ∂µ∂ν)U1(x⊥)

cb(x⊥)ab
µ(x) = 0 , (8.29)

which means that ãa
µ(x) = U1(x⊥)ab(x⊥)ab

µ(x) propagates on top of the vacuum. One can

therefore write the following Green’s formula for it 12

ãρ(x) = i
∫

y+=0+

dy− d2y⊥
{
−
[
∂

y
µDρµ

0,R(x, y)
]

ã+(y) + Dρ+
0,R(x, y)

[
∂

µ
y ãµ(y)

]

+ Dρi
0,R(x, y)

↔
∂+y ãi(y)

}
, (8.30)

where Dµν
0,R is the free retarded propagator in the a− gauge

Dµν
0,R = − i

1

k2 + ik0ǫ

(
gµν − kµnν + kνnµ

n.k + iǫ

)
, (8.31)

with n+ = 1, n− = ni = 0. The following formulas, derived in appendix 8.A, will prove useful

∂x
µDµν

0,R(x, y) = − iδν+θ(x+ − y+) δ(x− − y−) δ(x⊥ − y⊥)

∂
y
ν∂x

µDµν
0,R(x, y) = iδ(x+ − y+) δ(x− − y−) δ(x⊥ − y⊥) . (8.32)

The Green’s formula (8.30) is valid everywhere in the region x+ > ǫ and x− < 0. In particular,
it preserves Gauss’s law. Indeed, since above the x+ = ǫ line U1 does not depend on x+

Gauss’s law (8.23) becomes

∂−(Dµab
1 aµb) = U †ab

1 (x⊥)∂
−
(

∂− ã+a − ∂i ãia
)
= 0 , (8.33)

which implies that ∂µ ãµ is independent of x+.This can be easily checked thanks to (8.30) and
(8.32)

∂x
ρ ãρ(x) = i

∫

y+=0+

dy− d2y⊥
{ [
−∂

y
µ∂x

ρDρµ
0,R(x, y)

]
ã+(y) + ∂x

ρDρ+
0,R(x, y)

[
∂

µ
y ãµ(y)

]

+ ∂x
ρDρi

0,R(x, y)
↔
∂+y ãi(y)

}

= δ(x+ − y+)ã+(y) + θ(x+ − y+)
[
∂

y
µ ãµ(y)

]
, (8.34)

and using the fact that x+ > y+ we get what was announced. To calculate ã(x) for x+ > ǫ, we

need the results of appendix 8.A. Defining ǫ̃
j
kλ =

(
δjk − 2kjkk

k2

)
ǫk
kλ, we obtain 13

ãia
kλc(x) = eik+x−

∫

p⊥
eip⊥.x⊥

(
ei p2

2k+
x+
(

δij − 2pi pj

p2

)
+ 2pi

(
pj

p2
+

kj

k2

))
Ũ ac

1 (p⊥ + k⊥)ǫ̃
j
kλ

ã+a
kλc(x) = 2k+eik+x−

∫

p⊥
eip⊥.x⊥

(
ei p2

2k+
x+ pi

p2
−
(

pi

p2
+

ki

k2

))
Ũ ac

1 (p⊥ + k⊥)ǫ̃
i
kλ . (8.35)

11. Since now U1x⊥) only depends on x⊥ and A1 is truly a pure gauge.
12. The derivation of this Green’s formula can be found in [58].

13. Calling from now on k = |k⊥|, ǫ−
kλ =

kjǫ
j
kλ

k ,
∫

p⊥
=
∫ d2 p⊥

(2π)2 , using the fact that ∂i = −∂i and 2k+k− − k2 = 0.
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Introducing the notation

V ia
1k⊥λc(x⊥, p⊥) = U ab†

1 (x⊥)Ũ bc
1 (p⊥ + k⊥)ǫ̃

i
kλ , (8.36)

with

Ũ bc
1 (k⊥) =

∫
d2x⊥ e−ik⊥.x⊥U bc

1 (x⊥) , (8.37)

we obtain for the a

aia
kλc(x) = eik+x−

∫

p⊥
eip⊥.x⊥

(
ei p2

2k+
x+
(

δij − 2pi pj

p2

)
+ 2pi

(
pj

p2
+

kj

k2

))
V ja

1k⊥λc(x⊥, p⊥) , (8.38)

ã+a
kλc(x) = 2k+eik+x−

∫

p⊥
eip.x⊥

(
ei p2

2k+
x+ pi

p2
−
(

pi

p2
+

ki

k2

))
V ia

1k⊥λc(x⊥, p⊥) . (8.39)

At this point, several constraints can be checked in order to confirm that we have the correct
result. These consistency checks are performed in appendix 8.B. The last thing to do before
going further is to take the ǫ = 0 limit for the first nucleus (and therefore recovering the δ
functions for J1, j1).

8.5.4 Step 4: crossing the second nucleus

Performing the second crossing would be trivial thanks to [188] if Ai was 0. Here it is not
the case, and we should thus re-derive the crossing formulas. The notations are recalled on
figure (8.6)

x− = ǫ
x− = 0

Ai
1(x⊥) = i

g
U

†
1 (x⊥)∂iU1(x⊥)

Ai
1(x⊥) = i

g
U2(x⊥)U†

1 (x⊥)∂iU1(x⊥)

{

A
+

2 (x
−,x⊥) = −

1

∇2

⊥

J+

2 (x−,x⊥)

Ai
1(x

−,x⊥) = i
g
U2(x

−,x⊥)U†
1 (x⊥)∂iU1(x⊥)

Figure 8.6: Crossing the second nucleus.

Here by opposition to the first crossing we are in the gauge where there is no precession
of Jµ due to aµ. The linearized YM equations therefore take the form

Dab
µ

(
Dµbcaνc −Dνbcaµc

)
− igF νµabab

µ = 0 , (8.40)

which gives Gauss’s law for ν = − (since A1 does not depend on x+)

∂−
(

∂−a+a −Diab
1 aib

)
= 0 . (8.41)

For ν = j, neglecting all the non-dominant terms reduces to ∂−D+ab
2 ajb = 0. The solution is

therefore

aia
kλc(x− = ǫ) = U ab

2 (x−, x⊥)aib
kλc(x− = 0−) , (8.42)

and finally, for ν = +

0 =
(

2∂−D+ab
2 −Diac

1 Dicb
1

)
a+b −

(
∂−D+ab

2 a+b −Diac
1 D+cb

2 aib
)

+ g f abc(∂+Aic
1 − igA+cd

2 Aid
1 − ∂iA+c

2 )aib . (8.43)
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Since ∂+Aic
1 = igA+cd

2 Aid
1 in the 0 < x− < ǫ region, the previous equation can be simplified

into

D+ab
2 a+b = ig(∂iA+ab

2 )
1

∂−
aib , (8.44)

from which the solution is known (see [188] again). The final form of a therefore is (at x− = ǫ)

a+a
kλc(x− = ǫ) = U ab

2 (x⊥)a+b
kλc(x− = 0−) + (∂iU ab

2 (x⊥)
1

∂−
aib
kλc(x− = 0−) (8.45)

aib
kλc(x− = ǫ) = U ab

2 (x⊥)aib
kλc(x− = 0−) . (8.46)

The crossing formula of [188] are therefore not affected by the presence of a non-vanishing
Ai

1. One can check that Gauss’s law is still satisfied. We can now take the ǫ = 0 limit for the
second nucleus.

8.5.5 Going to Fock-Schwinger gauge

We should first go to the A− = 0 gauge with two pure gauges on both sides of the light
cone. To do so, we first have to perform a gauge transform Ω2 = U †

2 which trivially affects the
small fluctuations: a→ U2aU †

2 . After this gauge transform we therefore have

a+a
kλc(x− = ǫ) = a+b

kλc(x− = 0−)− igAiab
2 (x⊥)

1

∂−
aib
kλc(x− = 0−)

aia
kλc(x− = ǫ) = aib

kλc(x− = 0−)

A±a
LC(x⊥) = 0

∂−A+a
LC(x⊥) = igAiab

1 (x⊥)Aib
2 (x⊥)

Aia
LC(x⊥) = Aia

1 (x⊥) +Aia
2 (x⊥) . (8.47)

Let’s also notice that the covariant derivative Di is now ∂i − igAi = ∂i − ig(Ai
1 +Ai

2). To go
to Fock-Schwinger gauge, we finally have to perform a gauge transform W in analogy with
what was done in section 8.4. Nevertheless W 6= Ω since now the a depends on the rapidity η.
We will assume that W = Ω + igω, which means that the action of this gauge transformation
on the background field and on the small fluctuations can be split. Ω is already known, and
has no effect on the a (since its limit is I when τ 7→ 0). We then just need to determine ω such
that





aai
LC = aai

FS +Dabi
FS ωb

aa−
LC = aa−

FS +Dab−
FS ωb = 0

aa+
LC = aa+

FS +Dab+
FS ωb

.

Taking the same ansatz as for the background field we assume in addition that the small
fluctuations in the two different gauges are related through a±FS = ±x±aη

FS and a+LC = x+bLC =

x+aη
LC. From the second equation we get x−aaη

FS = ∂−ωa − igAab−
FS ωb, and in terms of τ, η, we

obtain

τaaη
FS = ∂τωa +

1

τ
∂ηωa + igτAabη

FS ωb . (8.48)

Injecting this back into the third equation gives

ωa(τ, η, x⊥) =
∫ τ

0
dτ′

τ′

2
aaη

LC(τ
′, η, x⊥) . (8.49)

So the final formula for the infinitesimal gauge transform are (replacing the background field
in the LC gauge thanks to the result of section 8.4)

aai
FS = aai

LC −Dabi
LCωb aaη

FS =
1

2
aaη

LC +
ig
2
Aabη

LC ωb +
1

τ2
∂ηωa . (8.50)

It turns out that the Dabi
LCωb and

ig
2 A

abη
LC ωb do not contribute at lowest non-zero order in τ.
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8.5.6 Transformation kz 7→ ν

The last thing that we need to do is to go to the τ, η coordinate system, with the (kx, ky, ν)
momenta,where ν is the Fourier conjugate of the rapidity η. For that, one has to calculate ω.
First, choosing the integration constant for the 1

∂− ai to be such that it gives 0 in x+ = 0 gives
(denoting with a 0 index the small fluctuations given by formula (8.38-8.39))

1

2x+∂−
aai

0,LC = − i
key−η

τ

∫

p
eip⊥.x⊥V ia

1k⊥λc(x⊥, p⊥)
(

ei τp2eη−y

2k − 1

)(
δij − 2pi pj

p2

)
1

p2

+
∫

p⊥
eip⊥.x⊥ pi

(
pj

p2
+

kj

k2

)
V ja

1k⊥λc(x⊥, p⊥) . (8.51)

We will also need

aa+
0,LC

2x+
=

key−η

τ

∫

p
eip.x⊥V ia

1k⊥λc(x⊥, p)

(
ei τp2eη−y

2k
pi

p2
−
(

pi

p2
+

ki

k2

))

aai
0,LC =

∫

p
eip.x⊥V ia

1k⊥λc(x⊥, p)

(
ei τp2eη−y

2k

(
δij − 2pi pj

p2

)
+ 2pi

(
pj

p2
+

kj

k2

))
,

ωa =
∫ τ

0
dτ′

τ′

2x+

(
a+a

0,LC − igAiab
2 (x⊥)

1

∂−
aib

0,LC

)
. (8.52)

The last thing we need to know is how to transform

IR =
∫

dy eiνyey−ηei τp
2

p
k eη−y

, (8.53)

and this can be done if we perform the change of variable y 7→ y = y′+ δ + η with δ = ln
(

k
p

)
,

which gives

IR = eiνη
( p

k

)iν+1
∫

dy e(iν+1)yei τp
2 e−y

= −ieiνη
( p

k

)iν+1
Γ(−1− iν)e

νπ
2

(τp
2

)1+iν
, (8.54)

The rest is just a tedious calculation, that leads to the following result on the right branch

aR,FS
η (τ, η, x⊥) = −

τ2

2 + iν
Diab FR,ia

k⊥νλc(τ, η, x⊥) , aR,FS
i (τ, η, x⊥) = − FR,ia

k⊥νλc(τ, η, x⊥) ,

eη
R,FS(τ, η, x⊥) = −Diab FR,ia

k⊥νλc(τ, η, x⊥) , ei
R,FS(τ, η, x⊥) = − iνFR,ia

k⊥νλc(τ, η, x⊥) ,

(8.55)

were

FR,ia
k⊥νλc(τ, η, x⊥) = eiνηΓ(−iν)e

νπ
2

∫

p⊥
eip⊥.x⊥

(
p2τ

2k

)iν (
δij − 2pi pj

p2

)
V ja

1k⊥λc(x⊥, p⊥) . (8.56)

Formulas (8.55) are the central result of this section. They give analytically the spectrum of
fluctuations on top a non-zero background field in the forward light cone, in a convenient
gauge choice (Fock-Schwinger), in the more adapted coordinate system to describe a heavy
ion collision (proper time-pseudo rapidity) and in terms of the momenta (kx, ky, ν). One should
add now that (8.55) has been derived by evolving the small fluctuations in the right side of
the light cone (crossing first the nucleus 1, then evolving on top of A1 and finally crossing the
nucleus 2). We are therefore missing at time τ the contribution that evolved in the other part
of the light cone (crossing first the nucleus 2, then evolving on top of A2 and finally crossing
the nucleus 1). To get it, one has to be careful with some small changes. First, the convenient
axial gauge for negative times is now the a+ = 0 gauge. This changes the definition of Aη :
one has to exchange the 1↔ 2 indices. Nevertheless, this does not affect the final result. What
does is the change in the gauge transform LC → FS. (8.50) is still valid but the definition of
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aη
LC (and therefore the value of ω) is affected: it is now aη

LC = − a−LC
2x− . The other thing that

changes is the form of the integrals that appear

IL =
∫

dy eiνyeη−yei τp
2

p
k ey−η

, (8.57)

and performing the change of variable y 7→ y = y′ + δ + η with now δ = ln
( p

k

)
, gives

IL = eiνη

(
k
p

)iν+1 ∫
dy e(iν−1)yei τp

2 ey
= ieiνη

(
k
p

)iν+1

Γ(−1 + iν)e−
νπ
2

(τp
2

)1−iν
. (8.58)

We finally obtain

aL,FS
η (τ, η, x⊥) =

τ2

2− iν
Diab FL,ia

k⊥νλc(τ, η, x⊥) , aL,FS
i (τ, η, x⊥) = − FL,ia

k⊥νλc(τ, η, x⊥)

eη
L,FS(τ, η, x⊥) = Diab FL,ia

k⊥νλc(τ, η, x⊥) , ei
L,FS(τ, η, x⊥) = iνFL,ia

k⊥νλc(τ, η, x⊥) , (8.59)

where

FL,ia
k⊥νλc(τ, η, x⊥) = eiνηΓ(iν)e

−νπ
2

∫

p⊥
eip⊥.x⊥

(
p2τ

2k

)−iν (
δij − 2pi pj

p2

)
V ja

2k⊥λc(x⊥, p⊥) . (8.60)

8.5.7 Final checks on (8.55) and (8.59)

A convincing check that we can perform on our solution is to check Gauss’s law. We
indeed find

∂ηeη
FS −Di

FSei
FS = 0 . (8.61)

In fact, both FL,R parts of the solution satisfy independently Gauss’s law, as they should since
both evolved independently. Another check passed independently by those two parts is that
they satisfy the EOM at lowest order

1

τ
∂τ

(
1

τ
∂τ

)
aa

η +
iν
τ2
Dab

i ab
i = 0 ,

[
1

τ
∂τ (τ∂τ) +

ν2

τ2

]
aa

j = 0 . (8.62)

Finally, one can again compute the scalar product for the sum of (8.55)-(8.59). One finds that
the a∗ηeη − eη∗aη term does not contribute at lowest order in τ, and therefore it reads

Sk⊥νλc,k′⊥ν′λ′d = − i
∫

d2x⊥

∫
dη
(

ak⊥νλc
ia∗ eia

k′⊥ν′λ′d − eia∗
k⊥νλca

k′⊥ν′λ′d
ia

)
, (8.63)

and using the fact that ν|Γ(iν)|2(eπν − e−πν) = 2π, we find

PS = 4πδ(ν− ν′)δ(2)(k⊥ − k′⊥)δλλ′δ
cd . (8.64)

To convince ourselves that this is the correct answer, we can compare with what we obtain for
this scalar product in light cone coordinates (8.77). Using

2k0(2π)3δ2(k⊥ − k′⊥)δ(k
z − k

′z) = 2(2π)3δ2(k⊥ − k′⊥)δ(y− y′) , (8.65)

and the fact that the transformation kz 7→ ν that we performed was normalized without a
factor 1

2π , we find that (8.77) and (8.64) are equivalent 14.

14. The limit ǫ→ 0 has now been taken, and therefore the j± do not contribute anymore.



8.6. SUMMARY 165

8.6 Summary

To conclude this section, let us state the final result for the spectrum of fluctuations at
τ = 0+

aFS
η = τ2Diab

(
FL,ia

k⊥νλc(τ,η,x⊥)

2−iν − FR,ia
k⊥νλc(τ,η,x⊥)

2+iν

)
, aFS

i = −
(

FL,ia
k⊥νλc(τ, η, x⊥) + FR,ia

k⊥νλc(τ, η, x⊥)
)

,

eη
FS = Diab

(
FL,ia

k⊥νλc(τ, η, x⊥)− FR,ia
k⊥νλc(τ, η, x⊥)

)
ei

FS = iν
(

FL,ia
k⊥νλc(τ, η, x⊥)− FR,ia

k⊥νλc(τ, η, x⊥)
)

(8.66)

where

FRL,ia
k⊥νλc(τ, η, x⊥) = eiνηΓ(∓iν)e

±νπ
2

∫
d2 p⊥
(2π)2

eip⊥.x⊥

(
p2τ

2k

)±iν (
δij − 2pi pj

p2

)
V ja

1,2k⊥λc(x⊥, p⊥) ,

(8.67)

and

V ja
1,2k⊥λc(x⊥, p⊥) = U ab†

1,2 (x⊥)
∫

d2y⊥ e−i(p⊥+k⊥).y⊥ U bc
1,2(y⊥)

(
δij − 2kikj

k2

)
ǫi
kλ . (8.68)

Formula (8.66) will be one of the key ingredients of the initial conditions of our numerical
simulations, the results of which are described in the next chapter.

Appendix

8.A Useful formulas to derive (8.35)

This section is devoted to a quick explanation of the intermediate results (8.35). First, we
need all the combinations that enter in (8.30). They are deduced from formula (8.25)-(8.27)

ãia
kλc(x+ = ǫ) =

[
U ac

1 (x⊥)ǫ
i
kλ − 2i(∂iU ac

1 (x⊥))
ǫ−
kλ

k

]
eikx

ã+a
kλc(x+ = ǫ) = U ac

1 (x⊥)
kiǫi

kλ

k−
eikx

∂− ã+a
kλc(x+ = ǫ) =

[
i U ac

1 (x⊥)k
iǫi

kλ − (∂iU ax
1 (x⊥))

(
ǫi
kλ −

2kikj

k2
ǫ

j
kλ

)]
eikx

∂i ãia
kλc(x+ = ǫ) =

[
iU ac

1 (x⊥)k
j + (∂iU ac

1 (x⊥))
(

δij + 2
kikj

k2

)
− 2i(∂i∂iU ac

1 (x⊥))
kj

k

]
ǫ

j
kλeikx

∂µ ãµa
kλc(x+ = ǫ) = 2

[
i(∂i∂iU ac

1 (x⊥))
ǫ−
kλ

k
− (∂iU ac

1 (x⊥))ǫ
i
kλ

]
eikx . (8.69)
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We also need the following integrals 15

i
∫

y+=0+

dy− d2y⊥Dji
0,R(x, y)

↔
∂+y eikyα(y⊥) = δijeik+x−

∫

p⊥
α̃(p⊥ + k⊥)e

ip⊥.x⊥ei p2

2k+
x+ ,

i
∫

y+=0+

dy− d2y⊥Di+
0,R(x, y)eikyα(y⊥) = − ieik+x−

∫

p⊥
α̃(p⊥ + k⊥)e

ip⊥.x⊥ pi

p2

(
1− ei p2

2k+
x+
)

,

i
∫

y+=0+

dy− d2y⊥D+i
0,R(x, y)

↔
∂+y eikyα(y⊥) = 2k+eik+x−

∫

p⊥
α̃(p⊥ + k⊥)e

ip⊥.x⊥ pi

p2

(
1− ei p2

2k+
x+
)

,

−i
∫

y+=0+

dy− d2y⊥
[
∂

y
µD+µ

0,R(x, y)
]

ã+(y) = ã+(x+ = 0+)

i
∫

y+=0+

dy− d2y⊥D++
0,R (x, y)eikyα(y⊥) = ieik+x−

∫

p⊥
α̃(p⊥ + k⊥)e

ip⊥.x⊥ 2k+

p2

(
1− ei p2

2k+
x+
)

.

(8.70)

Putting everything together gives the desired result.

8.B Several checks on the step 3

The first check is Gauss’s law (8.28). As one can clearly see from (8.38)-(8.39)

∂µ ãµa
kλc(x) = 2eik+x−e−ik⊥.x⊥

(
i
∂i∂ikjǫ

j
kλ

k2
− ∂iǫi

kλ

)
U ac

1 (x⊥) . (8.71)

and using (8.33), we find (8.28) again 16. Another convincing test passed by our solution is that
we recover the vacuum limit when we turn off the background field. If U ab†

1 (x⊥) = δab, then
Ũ bc

1 (p⊥+ k⊥) = (2π)2δ(p⊥+ k⊥)δbc, and therefore aµa
kλc = aµa

0kλc. We can also check that when
x+ goes to 0+, we indeed recover a+ = a+0 (continuity of a+ through the first crossing) and
ai = ai

0 − igAi
1

1
∂+ a+0 (formula (8.25)). Finally, we can check the scalar product on the x− = 0−

surface

Skλc,k′λ′d = − i
∫

x−=0
d2x⊥

+∞∫

−∞

dx+ aia∗
kλc

←→
∂− aia

k′λ′d . (8.73)

That is calculated by cutting the integral on x+ in three parts: ǫ < x+ < +∞,−∞ < x+ < 0
and 17 0 < x+ < ǫ. This calculation is tedious but straightforward. The following properties
are used in the process

i
x + iǫ

= πδ(x) + iP
(

1

x

)
, (8.74)

∫

p⊥
Ũ cb†

1 (p⊥ + k⊥)Ũ bd
1 (p⊥ + k′⊥) = δcd(2π)2δ2(k⊥ − k′⊥) , (8.75)

15. Derived thanks to the residue theorem.

16. A property that will turn useful is the fact that Diac
1 (x⊥)U cb†

1 (x⊥) = 0, and therefore

Diac
1 (x⊥)Aicb

1 (x⊥) =
i
g
U ac†

1 (x⊥)∂
i∂iU cb

1 (x⊥) . (8.72)

This also implies that Dµac
1 (x⊥)aµc = ∂µ ãµa.

17. Which gives a contribution despite its infinitesimal size because ∂−Ai
1 has a δ(x+).
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and also, since k2 = k
′2, k0 =

√
k2 + (kz)2, k+ = k0+kz√

2

k+δ(k+ − k
′+) = k−δ(k− − k

′−) = k0δ(kz − kz′) . (8.76)

The final answer is

Skλc,k′λ′d = δλλ′δcd(2π)32k0δ3(k− k)

+ 4g
ǫ−
kλǫ−

k′λ′

kk′

ǫ∫

0

dx+
∫

d2x⊥ei(k⊥−k′⊥).x⊥ J−cd
1 (x+,x⊥) . (8.77)

The origin of the second term, proportional to J−1 , should be clarified. In order to do so, one
should go back the derivation of the scalar product, from the EOM for the small fluctuations
(8.21), recalling that an induced current j− has been created by the precession of a+. Following
[187], we find

(akλc|ak′λ′d) = − i
∫

x−=0
d2x⊥

ǫ∫

0

dx+ aia∗
kλc

←→
∂− aia

k′λ′d

+ i
∫

Ω
d4x

[
a+a∗
kλc (x)j−a

k′λ′d(x)− j−a∗
kλc (x)b+a

k′λ′d(x)
]

, (8.78)

and the second term is exactly the additional term of (8.77).
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Numerical results
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9.1 Numerical implementation of the Yang-Mills Equations

I
n this chapter, we will present the first numerical computation performed in the
Yang-Mills case with a realistic set of initial conditions based on the quantum cor-
rections described in the sections 4.2 and 4.3. But before doing so, let us introduce
the discretized formulation of the YM EOM (in the forward light cone)

Dab
µ Fµνb = 0 , (9.1)

that is used in practice. The Yang-Mills equations are usually not implemented in the form
of equation 9.1. A more practical formulation is the Hamiltonian one, where the dynamical
variables are the gauge potentials and the conjugate electric fields.

9.1.1 Hamiltonian formulation of the Yang-Mills Equations: continuous case

To find Hamilton’s formulation of the Yang-Mills equations, we start from the Yang-Mills
action (derived from 3.10, with Tr [AB] = Aa AbTr

[
tatb
]
)

S = − 1

2

∫
d4xTr

[
FµνFµν

]
=
∫

d4xL . (9.2)

169
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In the proper time-rapidity/coordinate system, we have

S = − 1

2

∫
τdτ dη dx⊥ Tr

[
FµνgαµgβνFαβ

]
, (9.3)

which means that the Lagrangean density is

L = − τ

2
Tr
[
FµνgαµgβνFαβ

]
= τ Tr

(
F 2

τη

τ2
+F 2

τi −
F 2

ηi

τ2
−F 2

xy

)
. (9.4)

In the Fock-Schwinger Aτ = 0 gauge, we get

L = τ Tr

(
(∂τAη)2

τ2
+ (∂τAi)

2 −
F 2

ηi

τ2
−F 2

xy

)
. (9.5)

Finally, since in the fundamental representation of SU(N) we have

Tr
(

tatb
)
=

δab

2
, (9.6)

we can write

L =
τ

2




(
∂τAa

η

)2

τ2
+ (∂τAa

i )
2 −

(
F a

ηi

)2

τ2
−
(
F a

xy

)2


 . (9.7)

In order to derive Hamilton’s equations, we first need the Hamiltonian. Its derivation starts
with the computation the conjugate momenta of the gauge fields: the electric fields,

E ia =
∂L

∂
(
∂τAa

i

) = τ ∂τAa
i , E ηa =

∂L
∂
(

∂τAa
η

) =
∂τAa

η

τ
. (9.8)

We thus find

H = Eµa
(

∂τAa
µ

)
−L =

1

2


τ (E ηa)2 +

(
E ia
)2

τ
+

(
F a

ηi

)2

τ
+ τ

(
F a

xy

)2


 , (9.9)

and Hamilton’s equations read

∂H
∂Eµa = ∂τAa

µ ,
∂H
∂Aa

µ

= − ∂τEµa . (9.10)

The first equation just gives (9.8), and the second equation leads to

−∂τE ηa =
Dab

i F b
ηi

τ
, −∂τE ia =

Dab
η F b

iη

τ
+ τDab

j F b
ij . (9.11)

Finally, we observe that we did not use the Yang-Mills equation for ν = τ

Dab
µ Fµτb = 0 , (9.12)

which gives Gauss’s law

Dab
i E ib +Dab

η E ηb = 0 . (9.13)
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9.1.2 Hamiltonian formulation of Yang-Mills Equations: discretized case

Numerically, we represent space by

aT aL

L

N

L

x⊥

x⊥
z

Figure 9.1: The asymmetric lattice used for numerical simulations.

Here aT is the lattice spacing in the transverse directions and aL the spacing in the rapidity
η direction. In the following we will take aT = 1, which means that dimensionful quantities
are expressed in units of aT. This grid is asymmetric in order to cope with the longitudinal
expansion of the system: it is better to have a finer discretization in the longitudinal direction.
In order to preserve gauge invariance despite the discretization, it is necessary to introduce
link variables, defined as the exponential of a gauge field A on the link that connects two
neighboring sites

Uµ(x) = e−igaAµ(x) = e−igaAa
µ(x)ta

= x x + aµ̂ . (9.14)

In terms of these link variables and the electric fields, the Hamiltonian as well as all the
physical observables are invariant under gauge transformations Ω(x) that has the following
action

Uµ(x)→ Ω(x)Uµ(x)Ω†(x + aµ̂) , Eµ(x)→ Ω(x)Eµ(x) . (9.15)

The differential equations satisfied by the Uµ are deduced from (9.11). From

∂τUµ(x) =
(
∂τAµ(x)

) ∂Uµ(x)
∂Aµ(x)

, (9.16)

we obtain

∂τUi = −
i g aT

τ
E i(x)Ui(x) , ∂τUη = − i g aL τ E η(x)Uη(x) . (9.17)

Note that (9.17) is a differential equation on 2× 2 matrices 1. We will be more explicit about
this representation when we present the leap-frog algorithm in the section 9.3. To derive the
discretized equations of motion for Eµ we will first derive the discretized Hamiltonian and
then use the discretized Hamilton’s equations. To do so, we need the expression of Fµν in
terms of the gauge links. It turns out that 2

Uµν(x) = e−iga2Fµν(x) + O
(

a4
)

, (9.18)

1. In this chapter, the computations are performed for a gauge group SU(2).
2. To prove this, one needs to apply the Baker-Campbell-Hausdorff formula.
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where Uµν is called a plaquette variable, defined as

Uµν(x) = Uµ(x)Uν(x + µ̂)U†
µ(x + ν̂)U†

ν (x) =

x x + aµ̂

x + aν̂ + aµ̂x + aν̂

. (9.19)

Using Fµν = F a
µνta and the fact that for SU(2)

eianata
= cos

(
a
√

nana

2

)
I +

2i√
nana

sin

(
a
√

nana

2

)
nata , (9.20)

we find (with |Fµν| =
√
F a

µνF a
µν)

2 Tr
[
Re Uµν(x)

]
= Tr

[
Uµν(x) + U †

µν(x)
]
= 4 cos

(
ga2

2
|Fµν|

)
= 4

(
1− g2a4

8

(
F a

µν

)2
)
+ O

(
a4
)

,

(9.21)

which means that the discrete Hamiltonian is

H = ∑
x,y,η∈lattice

1

2

(
τ (E ηa)2 +

(
E ia
)2

τ
+

4

g2a2
Lτ

∑
i

(
2− Tr Uηi

)
+

4τ

g2

(
2− Tr Uxy

)
)

. (9.22)

We can now derive the equation of motion of Eµ. For that, we just apply Hamilton’s equa-

tions, which implies to calculate terms like
∂Uµν

∂Aρ
. To see how this works, consider a 2D slice of

the grid, assuming that we want to calculate
∂Uηi

∂Aη
(x)

Uηi(x)Uη−i(x)

U †
ηi(x)U †

η−i(x)

x− aT î + aLη̂

x− aT î x x + aT î

x + aT î + aLη̂x + aLη̂

•

(9.23)

therefore, eight plaquettes contribute to
∂Uηi(x)
∂Aη(x) :

Uηx, U †
ηx, Uη−x, U †

η−x, Uηy, U †
ηy, Uη−y, U †

η−y , (9.24)

and taking the derivative with respect to Aη(x) will introduce a ±iaL in front of all those
terms. Keeping track of all the signs 3, we get

∂τE η = − i
2gaLτ ∑

i

[(
Uηi(x) + Uη−i(x)− U †

ηi(x)− U †
η−i(x)

)]
. (9.25)

Similarly

∂τE i = − i
ga2

Lτ

[
Uiη − U †

iη + Ui−η − U †
i−η

]
− i

τ

2
g ∑

i 6=j

[
Uij − U †

ij + Ui−j − U †
i−j

]
. (9.26)

3. With the notation U−µ(x) = U †
µ(x− µ̂).
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Equations (9.25-9.26) are also two differential equations on 2× 2 matrices. Finally, we need the
discretized Gauss’s law. One has the freedom to take either forward or backward covariant
derivatives

Dµ,B(x)A(x) =
A(x)− U †

µ(x− µ̂)A(x− µ̂)Uµ(x− µ̂)

aµ
,

Dµ,F(x)A(x) =
Uµ(x)A(x + µ̂)U †

µ(x)− A(x)

aµ
, (9.27)

for the one that enters in (9.13). But once this choice is made, all the derivatives that appear in
other places are constrained to be either forward or backward 4. In the rest of this manuscript
we implement Gauss’s law with a backward derivative

Eµ(x)− U †
µ(x− µ̂)Eµ(x− µ̂)Uµ(x− µ̂)

aµ
= 0 . (9.28)

9.2 Matrix multiplication on the lattice

Given (9.20), 3 real numbers are sufficient to characterize Uµ: these are the different color
components of the gauge fields Aa

µ. But this choice implies the numerical evaluation of many
trigonometric functions. Since this is very costly, we will prefer to encode Uµ with 4 real
numbers (u0

µ, ua
µ):

Uµ = u0
µI + iua

µta . (9.29)

In the section 9.1.2, a frequent operation is the multiplication of two matrices U . With the
representation for the gauge links, the result of this multiplication is

UV =

(
u0v0 − uava

4

)
I + i

(
u0va + uav0 − 1

2
ǫabcubvc

)
ta . (9.30)

In the following, we will write 5

U = u0
I + iuata =

(
u0

ua

)
, U † = u0

I− iuata =

(
u0

−ua

)
, E = E ata , (9.31)

and the matrix product becomes

U V =

(
u0v0 − uava

4

u0va + uav0 − 1
2 ǫabcubvc

)
, E U = i

(
1
4E aua

1
2 ǫabcE buc − E au0

)
. (9.32)

Gauss’s law can therefore be written as

Dµ,BE
µ(x) =

E
µ(x)−U†

µ(x− µ̂) E
µ(x− µ̂) Uµ(x− µ̂)

a
= 0 . (9.33)

Since one needs to know Ux,y,η and E x,yη at each point of the lattice, and given our choice for
encoding the U , all the information is therefore encoded in 21 real numbers at each point of
the lattice.

4. See for instance the covariant derivative that enters into the formulas for the spectrum of fluctuations (8.66).
If one takes the derivative in Gauss’s law to be backward, then the one for aη must be backward. This will play a
role in the section 9.7.

5. Notice that we have not included the factor i in the components a = 1, 2, 3 in this notation.



174 CHAPTER 9. NUMERICAL RESULTS

9.3 Leap-frog algorithm

We use the Leap-frog algorithm to perform numerically the time evolution of the dis-
cretized Hamilton equations. In its most basic implementation, which is the one used here,
the error made at each step ∆τ is of order ∆τ2. It is therefore less precise that the Runge-Kutta
method used in chapters 5 and 6 for the scalar theory, which was of order 4. It is neverthe-
less advantageous to use it, since it is a symplectic solver. This implies that quantities like
the phase space volume, Gauss’s law... are exactly conserved. In addition, it is faster that
the Runge-Kutta method, which is a good thing since one would naively expect the gauge
simulations to be at least 10 time slower than the scalar ones 6. In our case, the EOM become

E i
(

τ +
∆τ

2

)
= E i

(
τ − ∆τ

2

)
− i ∆τ

2g
Ui (τ, x)

[
1

a2
Lτ

Viη (τ, x) + τ ∑
j 6=i

Vij (τ, x)

]
, (9.34)

E η

(
τ +

∆τ

2

)
= E η

(
τ − ∆τ

2

)
− i ∆τ

2gaLτ
Uη (τ, x) ∑

i
Vηi (τ, x) , (9.35)

Ui (τ + ∆τ, x) = exp

[
− ig∆τ

τ + ∆τ
2

E
i
(

τ +
∆τ

2
, x
)]

Ui (τ, x) , (9.36)

Uη (τ + ∆τ, x) = exp

[
−ig∆τ aL

(
τ +

∆τ

2

)
E

η

(
τ +

∆τ

2
, x
)]

Uη (τ, x) . (9.37)

where (9.36)-(9.37) have been modified in order to preserve unitarity. Here several notations
have to be clarified

Vµν (τ, x) = Sµν (τ, x)− S†
µν (τ, x) + Sµ−ν (τ, x)− S†

µ−ν (τ, x)

Sµν (τ, x) = Uν (τ, x + µ̂) U †
µ (τ, x + ν̂) U †

ν (τ, x) . (9.38)

9.4 Initial conditions for the background field

Following [24], we generate the initial conditions for the background field in the following
way: first we generate random color sources ρn(x⊥) (where n = 1, 2 labels the two nuclei)
Gaussian distributed

〈ρn(x⊥)ρn′(y⊥)〉 =
Q2

s

g2
δnn′δ

(2)(x⊥ − y⊥) , (9.39)

where the saturation scale Qs is the only dimensionful parameter of the problem (as we know
from 3.5.1). Then we define Un

i (x⊥) to be the classical field in the MV model for a single color
source.

Un
i (x⊥) = Vn(x⊥) Vn†(x⊥ + î) , (9.40)

with

Vn(x⊥) = e−iΛn(x⊥) , (9.41)

and Λn(x⊥) the solution of the 2D Poisson equation

∇⊥Λn(x⊥) = − ρn(x⊥) . (9.42)

At τ = 0+, two initial conditions are trivial (see [49])

E i(x⊥, η) = 0 Uη(x⊥, η) = I . (9.43)

6. This estimate is just based on the amount of data that needs to be manipulated. In the scalar case, one needs
to know the field and its derivative at each point of the lattice.
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The transverse links are

Ui(x⊥, η) =
(

U1
i (x⊥) + U2

i (x⊥)
) (

U1†
i (x⊥) + U2†

i (x⊥)
)−1

, (9.44)

and the longitudinal chromo-electric field is

E η(x⊥, η) =
−i
4g ∑

i

[
(Ui(x⊥)− I)

(
U1†

i (x⊥)−U2†
i (x⊥)

)

+
(

U†
i (x⊥ − î)− I

) (
U1

i (x⊥ − î)−U2
i (x⊥ − î)

)

−
(

U1
i (x⊥)−U2

i (x⊥)
) (

U†
i (x⊥)− I

)

−
(

U1†
i (x⊥ − î)−U2†

i (x⊥ − î)
) (

Ui(x⊥ − î)− I
)]

. (9.45)

9.5 Discretized form of the energy-momentum tensor

Given our discrete Hamiltonian, we define the transverse and longitudinal chromo-electric
and chromo-magnetic fields as follow:

E2
L =

(
E η

a
)2

E2
T =

(E x
a )

2 +
(
E y

a
)2

τ2
, (9.46)

B2
L =

4

g2

(
2− Tr Uxy

)
B2

T =
4

g2 a2
L τ2 ∑

i

(
2− Tr Uηi

)
, (9.47)

Which gives the following expressions for the Tµν components

ǫ =
E2

L + E2
T + B2

T + B2
L

2
, (9.48)

PT =
E2

L + B2
L

2
, (9.49)

PL =
E2

T + B2
T − E2

L − B2
L

2
. (9.50)

9.6 Numerical checks

Several checks can be performed on our algorithm. First, we can check that it conserves
the unitarity of the link variables and Gauss’s law. With the initial conditions of the previous
section, this is the case up to machine precision 7. Another test passed by our code is that
ǫ and PL averaged over the lattice volume obey Bjorken’s law (recall section 3.A and 6.6.2).
Indeed, because of the conservation of energy and momentum, we expect

dǫ

dτ
+

ǫ + PL

τ
= 0 . (9.51)

This is exactly what we obtain numerically

7. This is not the most general initial condition. Indeed, since the classical initial condition is rapidity indepen-
dent, the longitudinal degrees of freedom are not checked with this initial condition. For the full initial condition
(sum of the background field and the rapidity dependent fluctuations), Gauss’s law and unitarity are nevertheless
also preserved with very good accuracy in all our simulations.
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Figure 9.2: Bjorken’s law is satisfied in our computation.

A final test is to compute a gauge invariant quantity in two different gauges, and check
that the result is the same in both gauges. We performed two simulations: in one we do not
fix the residual gauge freedom of the initial condition and in the other we constrain it with
Coulomb gauge condition 8. At later times, the discrepancy in the energy density is always

∆ǫ

ǫ
< 10−10 , (9.52)

at all times in our simulations

9.7 Initial conditions for the small fluctuations

9.7.1 Discretized version for each mode of equation (8.66)

In this section, we want to find the discretized version of equation (8.66).We first need
the discrete momenta. Calling them (kx, ky, kz), the norms of the transverse and longitudinal
momentum 9 read

ν(kz) =
1

aL

√
2

[
1− cos

(
2πkz

N

)]
k(kx, ky) =

√
2

[
2− cos

(
2πkx

L

)
− cos

(
2πky

L

)]
, (9.53)

that we will simply denote ν and k from now on. We also need the definition of the backward
and forward momenta ki

B, ki
F and νB, νF. They can be obtained by applying backward or

forward derivatives on a discrete plane wave

∂x
B,Fei 2πki

L = ∓
(

e∓i 2πk
L − 1

)
ei 2πki

L (9.54)

which implies

ki
B = − i

(
1− e−

2πi
L ki

)
, ki

F = i
(

1− e
2πi

L ki

)
,

νB = − i
aL

(
1− e−

2πi
N n
)

, νF =
i

aL

(
1− e

2πi
N n
)

. (9.55)

Note that ki
Fki

B = k2 and νFνB = ν2. Given our choice of a backward covariant derivative in
Gauss’s law, we have, denoting

F̃(ν) = FT [F] (ν) = ∑
k

e−
2πi
N kkz F(η) , F̃(k⊥) = FT [F] (k⊥) = ∑

i,j
e−

2πi
L (ikx+jky)F(x⊥) ,

F(η) = F̃T
[
F̃
]
(η) = ∑

kz

e
2πi
N kkz F̃(ν) , F(x⊥) = F̃T

[
F̃
]
(x⊥) = ∑

kx ,ky

e
2πi
N (ikx+jky) F̃(k⊥) , (9.56)

8. Fixed thanks to the algorithm presented in [189, 190].
9. Discretized equivalents of ν and k of the section 8.5.6.
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we have 10

FRL,ia
k⊥νλc(τ, x⊥) = Γ(∓iν)e

±νπ
2 U ab†

1,2 (x⊥) F̃T

[(
p2τ

2k

)±iν
(

δij − 2pi
F pj

B

p2

)
V ja

1,2k⊥λc(p⊥)

]
(x⊥) ,

(9.57)

and

V ja
1,2k⊥λc(p⊥) =

(
δij − 2ki

Fkj
B

k2

)
ǫi
kλFT

[
U bc

1 (y⊥)
]
(k⊥ + p⊥) . (9.58)

Finally,

aνk⊥λc
η =

νFτ2

ν
Diab

B (x⊥)

(
FL,ia

k⊥νλc(τ, x⊥)

2− iν
−

FR,ia
k⊥νλc(τ, x⊥)

2 + iν

)
,

aνk⊥λc
i = −

(
FL,ia

k⊥νλc(τ, x⊥) + FR,ia
k⊥νλc(τ, x⊥)

)
,

eη
νk⊥λc =

νF

ν
Diab

B (x⊥)
(

FL,ia
k⊥νλc(τ, x⊥)− FR,ia

k⊥νλc(τ, x⊥)
)

ei
νk⊥λc = iν

(
FL,ia

k⊥νλc(τ, x⊥)− FR,ia
k⊥νλc(τ, x⊥)

)
. (9.59)

The linearized Gauss’s law

Dab
i,B(x⊥)e

ib(τ, x⊥) + iνBeηb(τ, x⊥) = 0 , (9.60)

has been checked numerically up to machine precision for each mode at each point of the
lattice and for each color. The final change with the continuum version of the system has
to do with the sign of ν. Indeed, because ν varies between −∞ and +∞ in the continuum
case, this means that either the nucleus 1 or 2 dominates depending on the sign of ν, because

of the factor Γ(∓iν)e
±πν

2 . This property should be reproduced for the discretized modes, but

ν = 1
aL

√
2
(

1− cos 2kzπ
N

)
is always positive. To circumvent this problem, because |ν(kz)| =

|ν(N − kz)| and ν could be either ±√νBνF, one can take positive values of ν for kz <
N
2 and

negative ones for kz >
N
2 .

9.7.2 Numerical implementation of (9.59)

To obtain the spectrum of fluctuation that enters in the initial condition of the classical-
statistical method, we need to generate complex random Gaussian numbers ccνkλ of variance
1

〈
ccνkλc∗dν′k′λ′

〉
= δνν′δkk′δλλ′δcd , (9.61)

if one chooses the overall normalization factor in front of the spectrum of fluctuations in the
following way (calling V = aLNL2 the volume of the box)

Aµa(τ, η, x⊥) = Aµa(x⊥) +

√
1

4πV
Re ∑

λk⊥νc

eiνηccνk⊥λ acνk⊥λ
µa (τ, x⊥)

Eµa(τ, x⊥) = Eµa(x⊥) +

√
1

4πV
Re ∑

λk⊥νc

eiνηccνk⊥λ eµa
cνk⊥λ(τ, x⊥) . (9.62)

10. Note that the eiνη factor has been removed from the definition of the F. The reason why we did so will be
clearer in the next section.
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With a naive implementation„ there are 10 entangled loops in the code in order to compute

aµa(τ, η, x) =

√
1

4πV
Re ∑

λk⊥νc

ccνk⊥λ acνk⊥λ
µa (τ, η, x⊥) , (9.63)

for a total dimension 11 of 6N2
c × (L2 × N)2 . But since the longitudinal part of the fluctuation

is trivial – it is just the plane wave eiνη – one can reduce the numbers of loops to 9, getting rid
of a factor N by performing the sum over ν by the Fast Fourier Transform algorithm. Let us
mention here a problem specific to the discretized case. On a lattice, one should exclude all
the modes that have k = 0 or ν = 0 in order to avoid a division by 0 (see formula 9.59). This
implies that relations like

∫
d2 p⊥
(2π)2

Ũ cb†
1 (p⊥ + k⊥)Ũ bd

1 (p⊥ + k′⊥) = δcd(2π)2δ2(k⊥ − k′⊥) , (9.64)

are not exactly satisfied on the lattice. Two trivial solutions appear in order to solve this
issue. One could add a mass term to replace p by

√
p2 + m2, but this would break the gauge

invariance. We therefore simply ignore this small violation of orthonormality on a lattice.
After all, one only neglects N + L2 out of L2 × N modes. We can see this when we check the
orthonormality of the small fluctuations by computing the scalar product

Sνk⊥λc,ν′k′⊥λ′d = − i ∑
η,x⊥ ,a

(
a∗νk⊥λc

ia (τ, x⊥, η)eia
ν′k′⊥λ′d(τ, x⊥, η)− eia

∗νk⊥λc(τ, x⊥, η)a
ν′k′⊥λ′d
ia (τ, x⊥, η)

)

= 4πδλλ′ δcd Vδ(k ⊥ −k′⊥) δνν′ . (9.65)

Numerically, we obtain the δλλ′ and the δ(ν− ν′) up to machine precision, but there are small
violations 12 of the 4πδcd δ(k⊥ − k′⊥) for the reason just explained.

9.8 Monte-Carlo: speed versus storage

To perform the Monte-Carlo sampling implied by the CSA, one needs repeat the time evo-
lution (i.e. solving the classical YM equations) with different initial conditions. These initial
conditions differ only by the Gaussian random numbers ccνk⊥λ, that we will label from now
on ccνk⊥λ(l), the index l labeling the lmax different initial conditions (1 < l < lmax). Instead of

recalculating the complicated objects bνk⊥λc
µa (τ, x⊥) for each ccνk⊥λ(l), we will compute instead

bν(l)
µa (τ, x⊥) = ∑

λk⊥c

aνk⊥λc
µa (τ, x⊥)c

c
νk⊥λ(l) , (9.66)

and then perform for each l the 1 dimensional inverse fft as before

a(l)µa (τ, η, x⊥) =

√
1

4πV
Re ∑

ν

eiνη bν(l)
µa (τ, x⊥) . (9.67)

Then we add the MV background field, to get

A(l)
µa (τ, η, x⊥) = Aµa(x⊥) + a(l)µa (τ, η, x⊥) , Eµa

(l)(τ, η, x⊥) = Eµa(x⊥) + eµa
(l)(τ, η, x⊥) . (9.68)

By doing this, one avoids to replicate the lengthy computation of aνk⊥λc
µa (τ, x⊥), which in effect

reduces significantly the execution time. The only issue with this procedure is the storage of

bν(l)
µa (τ, x), which is 13 a 12 Nc× L2×N× lmax array of real number . For the 642× 128 grid that

we have used, this means ∼ 150MB for each initial configuration stored in double precision.

11. The initial state is characterized by 2Nc × L2 × N indices that correspond to L2 × N modes (kx , ky , kz), 2

polarizations and Nc initial color. To this we should add the spatial dependence of dimension L2 × N, 3 Lorentz
indices and Nc colors.

12. Of the order of 0.1% for the lattice size we have used.
13. 12 = 3× 2× 3 (3 Lorentz indices, 2 for complex numbers and 2 for the a and the e).
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9.9 Enforcing the non-linear Gauss’s law

In order to initialize our classical-statistical simulations, we start with (9.68) for the electric
fields. But for the gauge fields, one needs to use gauge links in order to have exact gauge
invariance on the lattice. We define the complete gauge link as

Uµ = e−iga(l)µ (τ,η,x⊥)e−igAµa(x⊥)ta
. (9.69)

But this way of introducing the a into the U leads to a g2 violation of Gauss’s law. Therefore
we must restore Gauss’s law. This is done with the relaxation algorithm described in [191].
The main idea is to update the electric fields as follows

EIa(x)→ EIa(x) + γ
(

U(x)C(x + Î)U†(x)− C(x)
)

, (9.70)

where we denote

C(x) = DB
I EI . (9.71)

The parameter γ can be adjusted to speed up the convergence, while preserving stability.

9.10 Renormalization

As explained in the section 7.2, the energy-momentum tensor contains up to quartic terms
in the ultraviolet cutoff. Since we are on an asymmetric lattice, there are two cutoffs, that can
be deduced from (9.53)

kmax =

√
8

aT
, kz

max ∼
νmax

τ
=

2

aLτ
, (9.72)

respectively the transverse and the longitudinal cutoffs. The τ factor in the second longitudi-
nal cutoff can be understood on dimensional grounds, since τkz ∼ ν. The divergent part of
Tµν can be written as

Tµν
div = cµν

0

4

∑
m=0

k4−m
max

(νmax

τ

)m
+ cµν

2 (Qs)
2

∑
m=0

k2−m
max

(νmax

τ

)m
+ log . (9.73)

As we have seen in the chapter 7, the CSA is non-renormalizable due to spurious terms that
are linear in the cutoff. Therefore, there is no point in trying to remove the log terms of (9.73).
Nevertheless, we should still be able to subtract the c0,2 terms. The first one is easy, since cµν

0

cannot depend on Qs (the dimension 4 of Tµν is completely given by the cutoffs). As explained
in the section 7.2, we should perform two CSA simulations: one with the background field
(9.43)-(9.45) that gives a non-zero Qs and one for the vacuum. Subtracting the result of the
second simulation from the first one the cµν

0 term and nothing else since cµν
2 vanishes if Qs = 0.

The second term cµν
2 is quadratic in the cutoff as one can read from (9.73). It should not be

there in the continuum limit since there are no local operators of dimension two that are gauge
invariants. However, since Fµν is slightly non-local on the lattice (through the plaquette
variables), such terms can exist in the discretized theory, provided that they vanish in the
continuum limit.

So far we have not been able to derive analytically the precise form of the cµν
2 coefficient,

but general arguments can constrain its form. Firstly, simple kinetic arguments similar to
those presented in the section 6.6.3 lead to

c⊥⊥2 ∼ k2
max ∼ τ0 cηη

2 ∼ cττ
2 ∼

ν2
max

τ2
∼ τ−2 . (9.74)
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Therefore, new divergences proportional to τ−2 can arise in ǫ and PL but not in PT. This is
confirmed numerically in figure 9.3.

Figure 9.3: Divergences in ǫ, PL and PT. The three lines on top are before the vacuum subtrac-
tion. The three lines on the bottom are after the vacuum subtraction and before subtracting
the additional cηη

2 term in PL and ǫ. As one can see, PT is finite when τ → 0, but PL and ǫ
behave as τ−2.

Since we must have ǫ = 2PT + PL in Yang-Mills theory at this order, we have

cηη
2 = cττ

2 . (9.75)

In addition, since this divergent term should also satisfy Bjorken’s law ∂τǫ+ ǫ+PL
τ = 0, its time

dependence can only be τ−2. As already stated we are at the moment unable to analytically
compute the coefficient cττ

2 , and we have fitted it in order to obtain finite ǫ, PL when τ → 0+.
This can be seen in the figures 9.5 and 9.6. Further justification for this subtraction is the fact
that the leading order result is recovered when τ → 0+, as it should be since it takes time for
the instabilities to deviate the system from its LO behavior.

9.11 Numerical results: isotropization, anomalous viscosity

The ingredients of our numerical simulation are summarized in the next plot 9.4.
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Nucleus 1

x−

Nucleus 2

x+

Aµa = 0
aµa
kλc = ǫ

µ
kλδa

c eikx

t = −∞

Uµ, Eµ given by (9.68) τ0 surface:
Initial Condition

Time evolution
with (9.34)

Tµν
resum(τ) thanks to the CSA

Figure 9.4: Schematic picture of what is done in the gauge case.

We have used this procedure on a 64× 64× 128 lattice 14. This is arguably a small lattice
size 15, but this is because the initial condition algorithm depicted in sections 9.7-9.8 scales
poorly with the transverse lattice size (like L4). But as explained in the chapter 7, since the
CSA is non-renormalizable, we do expect the CSA results to depend on the cutoff anyway after
some time. Ensuring that the cutoff is in the range advocated in (7.50) should be enough 16.
The result for g = 0.1 is presented in the figure 9.5.

Figure 9.5: Pressure to energy density ratios for g = 0.1. 200 initial conditions were used in
the Monte-Carlo average.

On this plot the ratios PT
ǫ (in green) and PL

ǫ (in red) are shown, as well as for the pure LO
result with initial condition of equations given by (9.43)-(9.45) (black dots). Several important

14. Recall the figure 9.1. N has been chosen larger than L to cope with the longitudinal expansion of the system,
as explained in the section 6.1.

15. To be compared for instance with the sizes of [37, 38]
16. In the gauge theory the prefactor is not known. The largest coupling constant we have used is g = 0.5.
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conclusions can be drawn from the figure 9.5. Firstly, the purely classical result and the
resummed one are almost the same for g = 0.1, meaning that at the latest stages considered
here the pressure anisotropy in the system is still large since PL ∼ 0. One can fit ǫ by a power
of τ and the free streaming behavior τ−1 is found to work quite well. Presumably, the Weibel
instabilities mentioned in the section 3.9 did not develop on the time scales studied here for
such a tiny value of the coupling constant 17. Concerning the time scale, the bottom one is
expressed in units of Q−1

s , while the upper one is a more physical time scale corresponding
to a value of Qs = 2GeV, the one that is presumably reached at the LHC. To conclude on
this plot, let us discuss the statistical error, shown as a red band for PL

ǫ and a green one for
PT
ǫ . As one can see, it is quite big at early time. One can understand this as follows: the

physical contribution behaves as Q4
s

g2 while as explained in the previous section we have to

subtract terms that behave as
(

νmax
τ

)2
. Therefore we are subtracting two large numbers when

τ → 0+, compared to the physical result ∼ Q4
s

g2 . We therefore need many initial conditions in

the Monte-Carlo in order to reduce the statistical error. The next plot 9.6 was obtained for a
larger coupling g = 0.5, , however still to small in comparison with the realistic value g = 2
reached at the LHC.

Figure 9.6: Pressure to energy density ratios for g = 0.5. 2000 initial conditions were used in
the Monte-Carlo average.

Here, one observes drastic qualitative change when compared to the figure 9.5. After a
transient regime of the order of 0.1 f m/c where the resummed Tµν follows the LO one (black
dots), it starts to significantly deviate. At around 1 f m/c, the pressure anisotropy seems to
reach a constant value, but this time PL 6= 0 anymore. One can measure a fixed 1− PL

PT
∼

30− 40% anisotropy in the system after ∼ 1 f m/c. While this is still a significant anisotropy,
it is much easier to accommodate within hydrodynamics than PL ≈ 0. In addition, one may
conjecture that increasing the coupling would speed up the Weibel instabilities and increase
their effect, leading to a smaller anisotropy.

As a further evidence that our system starts to behave as a fluid, we can compute the di-
mensionless viscosity over entropy ratio for the g = 0.5 simulation with the method advocated

17. Indeed, since αs =
g2

4π it corresponds to αs ∼ 8.10−4, to be compared with the ∼ 0.3 value reached at the
LHC.
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in the section 6.7.2.2. After τ ∼ 1 f m/c we find that

η

s

∣∣∣
CSA

. 1 . (9.76)

For g = 0.5, this can be compared to the LO perturbative result of [103]

η

s

∣∣∣
LO,pert

∼ 300 . (9.77)

Therefore, it seems that instabilities, properly resummed by including quantum fluctuations,
may be an alternative to the strong coupling scenarios that also lead to a small

η
s .

To conclude this section, we also observe that the statistical error is much larger for g = 0.5
simulation at short times when compared to the g = 0.1. This is one of the reason that
prevents us from taking g = 2, as the statistical error would be to important even with 2000
initial configurations. The other reason has to do with a phenomenon called thermalization of
the vacuum fluctuations [151], that induces an unphysical feedback of the hard modes on the
soft modes, that one wants to resolve properly since there are the modes subject to the Weibel
instabilities [32, 51–54]. Thermalization of the vacuum fluctuations happens too fast for g = 2,
voiding too rapidly the validity of the CSA.

9.12 Summary

• As for the scalar models, the CSA applied in the CGC framework shows hints of hy-
drodynamization.
• For already small values of the coupling (αs = 0.02), the Weibel instabilities can coun-
terbalance the dilution of the system in the longitudinal direction, leading to a fixed
anisotropy PL

PT
≈ 0.6. This isotropization happens on time scales . 1 f m/c, compatible

with the early onset of hydrodynamics.
• For αs = 0.02, the system has an anomalously small

η
s . 1 ratio compared to the LO

perturbative result (see [103] that gives
η
s ∼ 300).



184 CHAPTER 9. NUMERICAL RESULTS



Chapter 10

Conclusion

I
n this thesis, we have studied the approach to equilibrium in both scalar and

gauge theories thanks to the the classical statistical method (CSA), that amounts
to classically evolve a system whose initial condition is a coherent state centered
around a classical value (the variance being given by a one loop calculation).

In the chapters 5 and 6, we focused our attention on scalar models. In the chapter 5, we
considered a system with a fixed volume, and we showed good evidence for the onset of a
hydrodynamical behavior in the system: the formation of an Equation of State (EOS) as well
as a (classical) thermal equilibration of the occupation number. This can be understood as the
decoherence of the initial coherent state when evolved with the classical yet fully non linear
Klein-Gordon equation. In the chapter 6, we studied a one-dimensional expanding geometry,
that mimics more realistically the expansion of the Quark Gluon Plasma along the collision
axis. Here also we saw signs of a hydrodynamical behavior : the formation of an EOS and the
isotropization of the pressure tensor (this expanding system is anisotropic at the beginning).

The chapter 7 was devoted to a discussion of the non-renormalizability of the CSA, due
to the violation of the Weinberg’s theorem. Even if the power counting is the same in the
CSA and in the full quantum theory, the quantum vertex that has been discarded in the CSA
appears to be essential for the cancellations of some ultraviolet divergences. This put some
constraints on how the ultraviolet cutoff should be chosen in the CSA.

The chapters 8 and 9 finally tackled with the problem of the approach to equilibrium
of the QGP, by applying the CSA in the Color Glass Condensate framework. After having
derived the spectrum of fluctuations that enters in the initial condition of the CSA, we have
performed the first realistic numerical simulations that go beyond the Leading Order CGC
computations. There again we found evidences for an early onset of hydrodynamical behavior,
even at relatively weak coupling (αs = 2 10−2): rapid isotropization of the pressure tensor, that
leads to a fixed anisotropy, in addition to a very small viscosity over entropy ratio

η
s . 1.

A lot remains to be done until a final proof for the complete thermalization of the QGP
can be given. Firstly, it would be interesting to study how the momentum distribution equili-
brates. This is however rendered difficult by the fact that there is no gauge invariant definition
of the occupation number in QCD. Secondly, since the validity of the CSA stops when quan-
tum corrections coming from the time evolution qualitatively alter the physics, it would be
important to be able to include them in order to obtain full quantum thermalization – in con-
trast to the classical thermalization obtained in the chapter 5. Finally, the inclusion of the
quarks may be important in order to give more quantitative statements. Indeed, even if the
occupation number of the quarks never reaches non perturbatively large values due to the
Pauli exclusion principle, they may affect the thermalization time scale [40].
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