
HAL Id: tel-01010756
https://theses.hal.science/tel-01010756

Submitted on 20 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Intentional Process Models
Ghazaleh Khodabandelou

To cite this version:
Ghazaleh Khodabandelou. Mining Intentional Process Models. Machine Learning [stat.ML]. Univer-
sité Panthéon-Sorbonne - Paris I, 2014. English. �NNT : �. �tel-01010756�

https://theses.hal.science/tel-01010756
https://hal.archives-ouvertes.fr

UNIVERSITY of Paris 1 PANTHEON-SORBONNE

DOCTORAL SCHOOL EMPS
Applied Mathematics and Informatics

Ph.D. T H E S I S
to obtain the title of

Ph.D. of Science

of the University of Paris 1 Panthéon-Sorbonne

Specialty: Computer Science

by

Ghazaleh KHODABANDELOU

Mining Intentional Process
Models

Thesis Supervisor: Prof. Camille Salinesi

Thesis Co-supervisors: Dr. Charlotte Hug

and Dr. Rebecca Deneckère

prepared at Centre de Recherche en Informatique

defended on June 13, 2014

Jury:

Supervisor: Prof. Camille Salinesi - University of Paris 1 Panthéon-Sorbonne

Co-supervisors: Dr. Charlotte Hug - University of Paris 1 Panthéon-Sorbonne

Dr. Rebecca Deneckère - University of Paris 1 Panthéon-Sorbonne

Reporters: Prof. Judith Barrios - University of Los Andes - Venezuela

Dr. HDR. Samira Si-said Cherfi - CNAM Paris

Examiner: Prof. Régine Laleau - University of Paris-Est Créteil

Remerciement

Mes remerciements vont tout d’abord au professeur Camille Salinesi et aux docteurs

Charlotte Hug et Rebecca Deneckère qui m’ont guidée et soutenue tout au long de

cette thèse.

Je remercie le professeur Jane Cleland pour m’avoir accueillie dans une équipe

formidable et pour ses conseils enrichissants durant mon séjour à Chicago. Je remer-

cie également Mehdi Mirakhorli pour ses conseils très constructifs et sa présence.

Je remercie le professeur Judith Barrios et le docteur Samira Si-Säıd Cherfi pour

leur conseils qui m’ont permis d’améliorer la qualité de cette thèse.

Je remercie tous les permanents du laboratoire de Centre de Recherches en

Informatique, que j’ai eu le plaisir de côtoyer, notamment les professeurs Collette

Rolland, Bénédicte Le Grand, Carine Souveyet. Je remercie Raul et Daniel pour

leur soutien.

Je remercie le directeur du laboratoire des Signaux et Systèmes, Silviu Niculescu

qui m’a toujours soutenue et m’a donné l’occasion de débuter cette thèse.

Je ne peux bien sûr pas oublier tous les doctorants et futurs docteurs du labo-

ratoire : Sana, Cosmin, Amina, Salma, Dany, Ali.

Je remercie l’équipe de l’incubateur IncubAlliance, les sociétés Spraed, LiXoft,

WiN MS, DeXXon et plus particulièrement François, Jakob, Eric, Laurent, Jean-

François, Chatel et Armand pour leur collaboration.

Enfin, je remercie mes parents et ma sœur pour leur amour et leur présence

indéfectible.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Research Questions and Hypothesis 4

1.4 Research Method . 5

1.5 Contributions of this Thesis . 6

1.6 Outline . 8

2 State of the Art 9

2.1 Common Characteristics . 10

2.1.1 Input Elements . 10

2.1.2 Users’ Sources . 11

2.1.3 Mathematical Models . 11

2.1.4 Techniques . 12

2.1.5 Objectives . 13

2.1.6 Output Elements . 13

2.2 Process mining . 14

2.2.1 Typology . 14

2.2.1.1 Activity-oriented Process Notations 15

2.2.1.2 Product-oriented Process Notations 15

2.2.1.3 Decision-oriented Process Notations 15

2.2.1.4 Context-oriented Process Notations 16

2.2.1.5 Strategy-oriented Process Notations 16

2.2.1.6 Synthesis on the Different Process Notations 17

2.2.2 Process Mining Objectives . 19

2.2.3 Process Mining Techniques 20

2.2.4 Metamodels Used in Process Mining 22

2.2.5 Process Mining Open Issues 24

2.2.6 Process Mining Tools . 31

2.3 Intention Mining . 32

2.3.1 Typology . 32

2.3.1.1 Intention in Information Systems Context 32

2.3.1.2 Intentions in the Requirements Engineering Context 33

2.3.1.3 Intentions in Information Retrieval Context 34

2.3.1.4 Miscellaneous . 35

2.3.2 Intention Mining Objectives 36

2.3.3 Intention Mining Techniques 36

2.3.4 Metamodels for Intention Mining 37

2.3.5 Intention Mining Open Issues 38

iv Contents

2.3.6 Intention Mining Tools . 38

2.4 Synthesis of Process Mining and Intention Mining Approaches 39

3 Overview of the Proposed Approach 43

3.1 Introduction . 43

3.1.1 Intention in Map Miner Method 44

3.1.2 Map Miner Method Process Model Formalism 44

3.1.3 Map Metamodel . 45

3.1.3.1 Map Process Model 46

3.1.3.2 Map Section . 47

3.1.4 Map Process Model Advantages 48

3.2 Contributions of this Thesis . 48

3.2.1 Map Miner Method Input Elements 49

3.2.2 Map Miner Method Mathematical Model 50

3.2.3 Map Miner Method Techniques 52

3.2.4 Map Miner Method Objectives 52

3.2.5 Map Miner Method Output Elements 55

3.2.6 Map Miner Tool . 55

3.3 Summary of the Position of the Proposed Approach 55

4 Proposed Method: Map Miner Method 59

4.1 Presentation of the Example . 59

4.2 The Products of the Method . 60

4.2.1 Input of MMM . 60

4.2.2 Users’ Activity . 61

4.2.3 Strategies, Intentions . 62

4.2.4 Pseudo-Maps and Sub-intentions 63

4.2.5 Transition and Emission Matrices 64

4.2.6 Fitness and Precision Metric 65

4.3 The Proposed Method . 66

4.3.1 Applying Hidden Markov Models 66

4.3.1.1 Mathematical Definition of HMMs 67

4.3.1.2 Hidden Markov Models Adapted to MMM 68

4.3.1.3 Topology of HMM in MMM Framework 68

4.3.1.4 Hidden process: users’ strategies 69

4.3.1.5 Observed process: users’ activities 69

4.3.2 Estimating Model Parameters 70

4.3.2.1 Supervised Learning 71

4.3.2.2 Unsupervised Learning 72

4.3.2.3 Summary of the Two Learning Approaches 74

4.3.2.4 Determining the Number of Strategies 75

4.3.3 Developing Deep Miner Algorithm 76

4.3.3.1 Proposed Metrics of Fitness and Precision 76

4.3.3.2 Optimization problem 78

Contents v

4.3.3.3 An Example for the Construction of a Map 79

4.3.4 Developing Map Miner Algorithm 83

4.3.4.1 Determining the Level of Abstraction for the Inten-

tions . 84

4.3.4.2 Sub-intentions Representation in the Space 84

4.3.4.3 Clustering sub-intentions into high-level intentions . 86

4.3.4.4 Rebuilding the Map 86

4.4 Method for the Discovery of Map Path 87

4.5 Method Exemplification . 88

4.5.1 MMM Using Supervised Learning 88

4.5.1.1 Estimating Model Parameters 88

4.5.1.2 Applying Deep Miner Algorithm 90

4.5.1.3 Applying Map Miner Algorithm 90

4.5.2 MMM Using Unsupervised Learning 92

4.5.2.1 Estimating Model Parameters 92

4.5.2.2 Applying Deep Miner Algorithm 93

4.5.2.3 Applying Map Miner Algorithm 93

4.5.3 Discussion and Threats to Validity 99

4.6 Validating the Method for the Discovery of Map Path 102

4.7 Conclusion . 108

5 Validation of the Proposed Method 109

5.1 Case Study: Usage Data Collector of Eclipse 109

5.1.1 Presentation of the Case Study 109

5.1.1.1 Usage Data Collector Event logs 109

5.1.1.2 Developers’ Activities 110

5.1.2 Applying MMM on the Traces 110

5.1.2.1 Strategies and Intentions Naming Procedure 111

5.1.3 Analysis of Eclipse Developers’ Behavior 111

5.2 Qualitative Evaluation of the Discovered Map 118

5.2.1 Context of the Experiment 118

5.2.2 Description of the Protocol 119

5.2.3 Results Analysis . 119

5.2.3.1 Assessment of work habits 119

5.2.3.2 Assessment of Map process model 120

5.2.3.3 Assessment of The Eclipse Map 121

5.2.3.4 Synthesis . 123

5.3 Threats to Validity . 124

5.4 Conclusion . 124

6 Map Miner Tool 127

6.1 Format of Input Files for Map Miner Tool 127

6.2 Map Miner Tool Interface . 128

6.3 Inputs Parameters . 129

vi Contents

6.4 Outputs of Map Miner Tool . 132

6.5 The Programming Languages of Map Miner Tool 134

6.6 Limitations of Map Miner Tool . 135

7 Conclusions and Open Issues 137

7.1 Conclusions . 137

7.2 Open Issues . 140

8 Appendix A : Particular Classes 143

9 Appendix B : Developers’ Questionnaire 151

10 Appendix C : Journal and Conference Publications 153

Bibliography 155

List of Figures

2.1 A process modeled with a Petri net [Van der Aalst 2004c] 23

2.2 The process model represented by a BPMN 24

2.3 A process with two hidden tasks [Van der Aalst 2004c] 25

2.4 A process with duplicate tasks [Van der Aalst 2004c] 25

2.5 A process model with a non-free-choice construct [Van der Aalst 2004c] 26

2.6 A process with a loop [Van der Aalst 2004c] 27

3.1 The Map metamodel [Rolland 2007] 46

3.2 Prescribed Map process model for construction of E/R dia-

grams [Assar 2000] . 47

3.3 Overview of Map Miner Method Framework 54

3.4 Discovery of Map path with supervised learning 55

4.1 Strategies, sub-intentions, and intentions 63

4.2 An example for a Map process model enacted with 2 strategies

(above) and an HMM realized with 2 hidden states (below) 67

4.3 Example of the relationships between hidden states, observations,

transition matrix T, and emission matrix E 70

4.4 Overview of supervised Map Miner Method 71

4.5 Overview of unsupervised Map Miner Method 73

4.6 An example showing the effect of threshold on the transitions 77

4.7 Overview of Deep Miner Algorithm 79

4.8 Assigning intention labels to each existing strategy 81

4.9 Relating strategy S1 to strategies S3 and S4 81

4.10 Relating strategy S2 to strategies S1, S3, and S5 82

4.11 Relating strategy S3 to strategies S4 82

4.12 Relating strategy S4 to strategies S5 83

4.13 Determining Start and Stop intentions 83

4.14 Overview of Map Miner Algorithm. 84

4.15 A fragment of a pseudo-Map with 8 sub-intentions 86

4.16 Overview of Map path discovery . 87

4.17 Prescribed Map Process Model for construction of E/R diagrams . . 89

4.18 Map Process Model discovered by Deep Miner algorithm and super-

vised learning (ε ✏ 0.05) . 91

4.19 High-level of granularity for Map Process model discovered by Map

Miner algorithm and supervised learning. 91

4.20 Number of strategies discovered by the heuristic method 93

4.21 Map Process Model discovered by Deep Miner algorithm and unsu-

pervised learning (ε ✏ 0.05) . 94

viii List of Figures

4.22 High-level of granularity for Map process model discovered by Map

Miner algorithm and unsupervised learning 94

4.23 Comparison of the likelihood of the prescribed Map, the discovered

Map, and the unsupervised parameters 95

4.24 Likelihood and number of sections of the discovered Map with regards

to ε for the E/R traces . 96

4.25 Log-likelihood and number of sections of the discovered Maps with

regards to ε for the example . 100

4.26 Log-likelihood of supervised and unsupervised 101

4.27 Recall for Strategies S1, S3, S4, S5, and S8. 104

4.28 Recall for Strategies S2, S6, S7, S9, and S10. 104

4.29 Precision for Strategies S1, S3, S4, S5 and S8. 105

4.30 Precision for Strategies S2, S6, S7, S9, and S10. 105

4.31 F-score for Strategies S1, S3, S4, S5 and S8. 106

4.32 F-score for Strategies S2, S6, S7, S9, and S10. 106

4.33 Mean value over all the strategies . 107

5.1 Likelihood and Number of Sections of the Discovered Map with re-

spect to ε for the Eclipse Traces. 114

5.2 The obtained pseudo-Map for Eclipse UDC by MMM. 115

5.3 The obtained Map process model for Eclipse UDC by MMM. 116

5.4 Usage probabilities of different Eclipse elements for each strategy. . . 117

6.1 A fragment of Excel file that can be used in Map Miner tool 128

6.2 A fragment of the embedded database used in Map Miner tool . . . 129

6.3 An overview of Map Miner Tool . 130

6.4 Verbose outputs of Map Miner tool 131

6.5 Traces information and section of pseudo-Map 132

6.6 An example of the construction of pseudo-Map 132

6.7 Discovered strategies and related activities 133

6.8 Sections of Map process model . 133

6.9 An example of the construction of Map process model 134

List of Tables

2.1 Research works dealing with process mining issues 29

2.2 Research works dealing with process mining issues (following) 30

2.3 An overview of process mining approaches 40

2.4 An overview of process mining approaches (following) 41

2.5 An overview of intention mining approaches 42

3.1 Summary of process mining, intention mining approaches, and Map

Miner Method . 57

4.1 Profile of the Students . 60

4.2 A fragment of the trace for the example 60

4.3 A fragment of activities for the example 62

4.4 Strategies and related activities . 62

4.5 Theoretical comparison of supervised and unsupervised learning . . . 74

4.6 Activities and their labels for E/R diagrams 89

4.7 Map strategies and related activities of the example 90

4.8 Strategies topic discovered by matrix E for unsupervised learning of

the example . 95

4.9 Strategies of the prescribed Map (left) and the discovered Map (right)

for the example . 98

4.10 Practical comparison of supervised and unsupervised learning on the

traces of the example . 101

4.11 Prediction of the strategies by VA 102

4.12 Recall, Precision, F-score for all the mined strategies 103

5.1 Strategies index and related activities for UDC Eclipse 112

5.2 Strategies index, topics and inferred strategies names for UDC Eclipse113

5.3 Profile of the developers . 119

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Problem Statement . 2

1.3 Research Questions and Hypothesis 4

1.4 Research Method . 5

1.5 Contributions of this Thesis 6

1.6 Outline . 8

1.1 Context

Process models play an important role in organizations. Process models are used

for a variety of reasons when designing, redesigning, improving processes and intro-

ducing new information systems [Van der Aalst 2011c]. They are used to view the

process from various angles, to structure stakeholders’ discussions, to document,

to find errors in systems or procedures, to understand the factors influencing re-

sponse times, to configure a system, to play out different scenarios and thus provide

feedback to the designer, etc [Van der Aalst 2011c].

Process modeling often follows a traditional top-down methodology, starting

from the requirements, up to the configuration and redesigning [Van der Werf 2011].

The architecture of such systems also must evolve with the system. However, ar-

chitecture and realization often do not concur. In other words, process models are

not aligned with reality, i.e., what really happens in processes; thus, they cannot

provide valuable information for stakeholders. As a consequence, there is a gap

between the implemented systems that support the processes and those that are

enacted in the real world. Thus, the systems become difficult to maintain. Indeed,

in most organizations the changes in the systems are often not documented in a

systematic and continuous manner [Van der Aalst 2011c].

Nowadays, the impressive growth of event logs makes it possible to analyze them.

These event logs recorded by information systems contain precious information

about the actual enacted processes. They can be used to provide an insight into

the actual processes; deviations can be analyzed, and the quality of models can

be improved. However, most of the recorded event logs are not well-structured,

which cause problems while exploiting such enormous quantities of data. One of

2 Chapter 1. Introduction

the main challenges in organizations is to extract information and value from event

logs recorded in information systems [Van der Werf 2011, Van der Aalst 2011c].

Given the growth of event logs in organizations, the advantages of process mod-

eling, and the restricted quality of hand-made process models, it seems advanta-

geous to relate event logs produced while enacting the process to process mod-

els. Therefore, the actual processes can be discovered to understand what users

really do and existing process models can be evaluated and enhanced. The pro-

cess mining field has emerged to bridge the gap between event logs and process

models [Van der Aalst 2011c]. Process mining idea initially appeared in the soft-

ware engineering field with Cook and Wolf [Cook 1998a], and has been applied

on workflow logs for the first time by Agrawal [Agrawal 1998]. Process mining

establishes links between the actual processes and process models. This research

discipline sits between machine learning and data mining on the one hand and

process modeling and model analysis on the other hand [Van der Aalst 2011c].

The basic idea is to extract knowledge from event logs recorded by informa-

tion systems that contain precious information about all the interactions of the

users with information systems. Process mining approaches aim at modeling

users’ behaviors in terms of sequences of tasks and branching in an automatic

way [Rozinat 2007, Van der Aalst 2004a, Van der Aalst 2011c]. Mining processes

from logs can be useful for understanding how people really work (individually

or collectively), analyzing how actual processes differ from the prescribed process

models, and thereby improve the quality of the enacted processes and increase the

productivity. However, process mining approaches are rigid because they only take

into account the process from the activities and their relationships point of view. In-

deed, due to the rigidities of process mining approaches, they encounter a number of

issues such as noise, hidden tasks, duplicate tasks, loops, etc [Van der Aalst 2004c].

1.2 Problem Statement

So far, the mined process models are activity oriented models. According to Dow-

son [Dowson 1987], the process models can be classified into three groups of mod-

els: activity-oriented, product-oriented and decision-oriented models. Activity-

oriented process models [Rolland 2005a] concentrate on the activities and tasks

performed in producing artifacts and their ordering. Product-oriented process

models [Rolland 2005a] are concerned about the successive product transforma-

tions. Decision-oriented process models [Jarke 1992] introduce the concept of

reasoning, choice and decision-making, the processes are then seen as teleologi-

cal [Veblen 1898, Ralph 2008]. A teleological process is a process that takes into

account the teleological behaviors of process enactment (behaviors attached to the

notion of goal). It describes the intentions (goals, objectives) associated with a

result that an individual wants to obtain. Taylor proposes a classification of behav-

iors focused either on goal-oriented (teleological behaviors) or on the response to

stimuli [Taylor 1964]. A teleological behavior is defined as follows: when a specific

1.2. Problem Statement 3

behavior is needed to meet a goal, then this behavior occurs [Malcolm 1967]. In-

deed, the behaviors can be changed during the process enactment to meet the goal,

according to the situation changes. Teleological principles of Veblen [Veblen 1898]

incorporate actors’ intentions in the process, which defines a teleological process

as “a dynamic equilibrium in which the rules are determined endogenously, as a

relationship between the behavior of the system and its intentions”.

In the late 90s, Rolland introduced a new category for the process models,

called intentional process model [Rolland 1999], which takes into account the

notions of intention and strategy to model the process enactment. A strategy is

an approach, a manner or a means to achieve an intention [Rolland 2007]. Speci-

fying intentions and strategies has proved a powerful tool to better understand the

deep nature of processes, to see how processes interweave and combine, to abstract

processes and visualize them under man-manageable form, even when they are ex-

tremely complex [Rolland 2005b]. Intention-oriented process models have emerged

to offer a flexible structure to process models. Many research works in intention-

oriented process modeling demonstrate that the fundamental nature of processes

is mostly intentional and the process should be modeled from an intentional point

of view [Davis 1989, Plihon 1996, Rolland 1999]. According to these approaches,

an enacted process is a reflection of humans’ intention performed as a sequence

of activities. Therefore, it is not possible to model humans’ cognitive operators,

e.g., thinking, deciding, and acting process only in terms of a simple sequence of

activities. Indeed, an intention is a goal that a user wants to achieve regarding

the context in which he/she is working [Plihon 1996]. The notion of context plays

a key role for the intention, since a given intention emerges in a given context,

which not only promotes its appearance, but also influences the realization of this

intention [Rolland 2005b]. In the method engineering context [Janković 2013], to

understand methods used by stakeholders and their ways of working, it is essential

to capture intentions that led to the implementation of activities.

Intentions are a first class concept of information systems engineer-

ing [Rolland 2005b]. In the early 80s, intention models have been proposed in

information systems community [Swanson 1974, Christie 1981] as a potential the-

oretical foundation to determine user’s behavior [Davis 1989]. Intention models

take root in a former work Technology Acceptance Model (TAM) [Davis 1989]

one of the extensions of Theory of Reasoned Action (TRA) [Ajzen 1975] designed

to model humans’ behavioral intention, specially for computer usage behavior.

The TRA has proven effective in predicting and explaining humans’ behavior

through various domains. Since the early 90s, intention-oriented software pro-

cess specification have been promoted as a driving paradigm to study strategic

alignment [Thevenet 2007b, Etien 2006], to define actors and roles, to specify the

outcome of business process models [Salinesi 2003] and name them, to analyze,

to support guidance [Rolland 1993, Deneckère 2010], to describe intentional ser-

vices [Rolland 2010], to handle traceability issues [Jarke 1993], to express pervasive

information systems [Najar 2011], to define systems requirements [Ralyté 1999], to

study users’ behavior to identify and name use cases, to tailor methods [Ralyté 2003]

4 Chapter 1. Introduction

or to make more flexible methods [Mirbel 2006], etc. Further, research on guidance

in method engineering shows that many method engineering issues, such as rigidity

or lack of adaptation, are solved more effectively when intentions and strategies are

explicitly specified [Rolland 2005b].

Many works on intention-oriented modeling indicate how to express them, for-

malize them in models, relate them with other concepts, analyze them to solve

a series of information systems engineering issues such as, several scenario-based

techniques [Rolland 1998b]. However many questions still remain: are all inten-

tions identified in this kind of approaches? Do the theoretical intentions in models

fit with the actual real life intentions, and how to check this? Where do inten-

tions come from if not from scenario analysis? As process mining approaches aim

at discovering and modeling activity process models from event logs, in the same

manner, intentions could be identified and modeled using event logs. To the best of

our knowledge, event logs have been neglected to model intentional process models

so far. Therefore, the main challenge of this thesis is how to identify and formalize

intentions from event logs?

1.3 Research Questions and Hypothesis

The lack of an automatic method to identify and formalize user’s intentions from

event logs motivates the contribution of this thesis. This thesis aims at developing

a semi-automatic framework for the construction of intentional process models from

event logs. To realize this, the following questions are addressed:

• Q1 How can dependencies within activities be discovered to estimate the

strategies? Event logs reflect which activities are really performed by users

while enacting a process. The dependencies within activities can express dif-

ferent ways of process enactment.

– H1.1 It is possible to discover the dependencies within activities from

event logs.

– H1.2 A strategy consists in a set of activities.

• Q2 How can the intentions can be identified from the estimated strategies?

Once the strategies are estimated, the link between these strategies and in-

tentions must be discovered.

– H2 A strategy is followed to fulfill a given intention.

• Q3 How can the processes be modeled at different levels of abstraction? The

nature of granularity that is needed to model a process can be defined regard-

ing the situation at hand.

– H3 Clustering techniques can be used to abstract the discovered inten-

tions.

1.4. Research Method 5

• Q4 How can process mining techniques be adapted to automate process dis-

covery to support variability and flexibility taking into account the users’

intentions and strategies? Process mining enables the design of process from

event logs resulting from information systems.

– H4.1 Process mining approaches only consider activity-oriented process

models.

– H4.2 Process mining algorithms can be adapted to discover intention-

oriented process models.

1.4 Research Method

The research method followed in this thesis consists of allowed making four phases:

1. Problem identification: as a first step of the research process, a systematic

analysis of the existing literature was established to create the theoretical

background of the current thesis. This allowed making a firm foundations of

the research topic and the research methodology and finally outlined what are

the contributions of this research to the existing body of knowledge. These

sequential steps that were followed to find lacks within the literature consist

of: searching the relevant literature, understanding the literature, analyzing

the literature, synthesizing the literature, and evaluating the literature. To

do so, among the more recent publications the peer-reviewed and non peer-

reviewed publications were scanned in the digital library such as ACM, Else-

vier, Springer, IEEE, in Google Scholar search engine, and many more. The

scanning of the relevant literature allowed the identification of the problem.

This revealed the lack of flexibility in actual mined process models, while em-

pirical research shows integrating the flexibility in the processes is mandatory

to maintain their alignment with the organizations’ goals. During the prob-

lem statement phase, the main problem was fragmented into sub-problems

that could be solved separately.

2. Determination of objectives: the main objective of this thesis focuses on the

discovery of the intentions from event logs. This gives rise to the above-

mentioned research questions. Therefore, the main objective can be divided

into four sub-objectives. The first is obtaining different ways (strategies) to

achieve the intention from event logs. The second consists in obtaining the

intention from the obtained strategies. The third is automating intentional

process discovery from event logs. The fourth is obtaining intentions in dif-

ferent levels of abstraction.

3. Design and development: the first research sub-question was addressed by

adapting existing mining technique to the concept of the intentional process

model. The second research sub-question was addressed by developing the

new algorithms to discover intentions in different level of abstraction. All

6 Chapter 1. Introduction

the proposed solutions are developed in a tool. This tool allows obtaining

intentional process models from event logs.

4. Demonstration and Evaluation: to demonstrate the proposed approach in

practice, it is applied first on a example and then on a case study. This

provides a systematic and rigorous manner of analyzing event logs, and re-

porting the results. This allowed investigating several phenomena in depth.

According to [Yin 2009] there are several types of case study: exploratory, ex-

planatory, and descriptive. The chosen case study for this thesis is descriptive

and explanatory. The case study allows illustrating events and their specific

context and linking an event with its effects and it is suitable for investigating

causality among events. Regarding the objectives established in advance the

generated outputs of the proposed approach are evaluated by a rigorous ap-

proach through well-known statistical metrics. The results of case study are

then presented to the Eclipse developers to have feedback on their perception

about the results. To do so, a detailed questionnaire is established which

contains the questions about the developers’ work habits, the obtained Map

comprehension, etc.

1.5 Contributions of this Thesis

This thesis proposes a novel approach for process mining, called Map Miner Method

(MMM) that mines users’ activities within a given process using users’ trace. A

trace is considered as a set of events ordered by their timestamps and grouped by

users. MMM stands out from process mining approaches by modeling the process

in terms of users’ intentions and strategies instead of users’ activities. MMM takes

users’ traces as input to find users’ intentions and strategies and constructs semi-

automatically a Map process model [Rolland 1999]. More precisely, MMM consists

in inferring the implicit users’ intentions and strategies from users’ traces recorded

during the enactment of a given process. The discovery of intentions and strategies

allows constructing a Map process model and thereby rebuilding the actual process

model, i.e., the model followed by users.

MMM is a generic approach, which can be useful at different stages of process

model life-cycle, for instance: (i) at the requirements level, to semi-automatically

construct the actual processes enacted by users in organization, from their daily

traces recorded in traces; and (ii) at the project management level, to check the

alignment between a prescribed process model and what users actually do, (iii) and

possibly adapt and improve them to actual practice, (iv) at the application level,

to monitor users and provide run-time recommendations.

MMM generates intentional process model specified with the Map formal-

ism [Rolland 2005b]. In this thesis, this formalism is chosen rather than

other goal-oriented formalisms such as i* [Yu 2011] or KAOS [Dardenne 1993]

since, (a) it has already proven effective for specifying software engineering pro-

cesses [Rolland 1993], (b) it supports process variability and multi-process specifi-

1.5. Contributions of this Thesis 7

cation [Rolland 1999], (c) it combines intentions and strategies at multiple levels

of abstraction [Rolland 2005b], and (d) it scales well to large and complex pro-

cesses [Rolland 2009].

Discovering intentions from event logs is not limited to MMM. Mining humans’

goals is a challenging issue that is widely studied today in different areas of research

in computer science, engineering services, method engineering, security, sales, infor-

mation retrieval, etc. This new discipline is called Intention Mining. The intention

mining approaches have many applications for instance in the context of information

retrieval [Outmazgin 2013, Yu 1987, Hashemi 2008, Baeza-Yates 2006, Chen 2002].

Intention mining approaches usually identify individual intentions for individ-

ual activities. Analyzing single activities leads to low-level intentions, also called

basic intentions or action-intentions [Chen 2002], which are closer to activities than

proper intentions. On the contrary, MMM offers a model that integrates the con-

cept of high-level intentions by developing a new method that is based on extracting

the information out of users’ traces. This information (intentions and strategies of

users) is then modeled by an intentional process model. Analyzing a sequence of

activities allows determining the high-level intentions, e.g., organizational goals.

Indeed, intentions in a process are related to each other to reach the ultimate goal;

thus intentions cannot be considered as independent entities resulting from a single

activity.

From a technical point of view, MMM consists of three stages:

• Modeling users’ activities: MMM uses Hidden Markov Models

(HMMs) [Rabiner 1989] to model users’ activities into a multi-level

topology of users’ activities and corresponding strategies. Then using dif-

ferent techniques of learning, the users’ strategies can be estimated. Mining

the intentions needs the design of new algorithms and tools to generate Map

process models. In this perspective, two algorithms are developed:

• Deep Miner algorithm: from estimated users’ strategies, Deep Miner algo-

rithm identifies users’ intentions and consequently it discovers Map process

models with higher precisions and low-level intentions, which is called pseudo-

Maps.

• Map Miner algorithm: starting from pseudo-Maps, Map Miner algorithm con-

structs Map process models by clustering low-level intentions into high-level

intention with respect to the definition of intention in the Map formalism.

The entire proposed method was applied and validated on practical datasets,

first in a laboratory context where a example was conducted with Master students of

University of Paris 1 Panthéon-Sorbonne for Entity-Relationship diagrams creation.

Second, MMM was applied, in a large-scale experiment, on event logs of developers

of Eclipse UDC (Usage Data Collector) [Eclipse 2013] which demonstrates scalabil-

ity of MMM. The resulting Map process models provide a precious understanding of

the processes followed by the developers. A qualitative experiment was conducted

8 Chapter 1. Introduction

which allows evaluating of the case study. This evaluation provided the developers’

feedback on the perception, effectiveness and usability of MMM in practical use. A

tool, called Map Miner Tool, was also designed and developed to automate MMM.

It enables practicing the proposed approach to obtain the personalized Map process

model only from users’ traces by adjusting some parameters.

1.6 Outline

The thesis is organized as follows:

• Chapter 2 provides a theoretical background of the related works in process

mining and intention mining fields. At the end on the chapter a synthesis of

existing approaches of these fields is given.

• Chapter 3 introduces the proposed approach and defines the position of the

thesis regarding the literature.

• Chapter 4 describes in detail different parts of the proposed method. The

entire of the method is then applied on a example.

• Chapter 5 presents the validation of the proposed approach by applying MMM

on a large-scale case study.

• Chapter 6 describes the tool that is implemented from MMM.

• Chapter 7 concludes the thesis and expresses the perspectives of the thesis.

Chapter 2

State of the Art

Contents

2.1 Common Characteristics . 10

2.1.1 Input Elements . 10

2.1.2 Users’ Sources . 11

2.1.3 Mathematical Models . 11

2.1.4 Techniques . 12

2.1.5 Objectives . 13

2.1.6 Output Elements . 13

2.2 Process mining . 14

2.2.1 Typology . 14

2.2.2 Process Mining Objectives . 19

2.2.3 Process Mining Techniques 20

2.2.4 Metamodels Used in Process Mining 22

2.2.5 Process Mining Open Issues 24

2.2.6 Process Mining Tools . 31

2.3 Intention Mining . 32

2.3.1 Typology . 32

2.3.2 Intention Mining Objectives 36

2.3.3 Intention Mining Techniques 36

2.3.4 Metamodels for Intention Mining 37

2.3.5 Intention Mining Open Issues 38

2.3.6 Intention Mining Tools . 38

2.4 Synthesis of Process Mining and Intention Mining Ap-

proaches . 39

This chapter gives a review of the literature for process mining and intention

mining approaches categorized according to their typology, objectives, techniques,

metamodels, open problems, and tools. At the end of the chapter a synthesis of

these approaches presented.

10 Chapter 2. State of the Art

2.1 Common Characteristics

Process mining and intention mining fields are two research domains related to this

thesis. In this section several common characteristics of process mining and inten-

tion mining are investigated. This allows better understanding the divergence and

convergence points of these fields. These characteristics are investigated according

to several axes: input elements, users’ sources, mathematical models, developed

algorithms, ontologies, classification approaches, objectives, and output elements.

2.1.1 Input Elements

Some mainstream process modeling notations specify a process as a col-

lection of activities such that the life-cycle of a single instance is de-

scribed [Van der Aalst 2011c]. A process discovery is based on a fundamental ele-

ment: event logs. Note that the assumption is that one event log corresponds to

one process, which means only event logs relevant for the process under study are

captured by the information systems.

Process mining and intention mining techniques aim at discovering process mod-

els out of event logs. Event logs are the starting point of both mining approaches.

Event logs are generated by interactions of users with the information systems while

enacting a process. The information systems logs provide accurate and valuable in-

formation about the underlying processes. Usually, an event log keeps information

such as, the activities, the users, the timestamps, and the properties of the objects

in use [Clauzel 2009]. Each event in process mining is assumed to be an activity

carried out by a given user. An activity describes a well-structured step in a process.

Event logs provide useful information for diagnostics and auditing. They help

to build theories of the user’s cognition, to design better user interfaces, to have

a precise model of the actual processes, to predict the user’s behavior in specific

conditions, to improve training techniques, or even to improve users’ understanding

of their activities [Georgeon 2012].

Event logs may have several quality levels according to their reliabil-

ity, completeness and structure. Some possible levels are categorized as fol-

lows [Van der Aalst 2012]:

• First level: these kinds of event logs are of excellent quality, i.e., reliable and

complete and well-structured [Van der Aalst 2012]. In addition, event logs are

recorded in an automatic, systematic (i.e., an approach is followed to decide

which events are recorded), reliable and secured manner. Security and privacy

concerns are appropriately addressed. Moreover, these event logs have clear

semantics, which implies the existence of one or more ontologies.

• Second level: these kinds of event logs are of less quality than those at the

first level. They are recorded automatically and in a complete, systematic and

reliable manner. Security and privacy concerns are moderately addressed.

2.1. Common Characteristics 11

• Third level: these kinds of event logs are recorded automatically, but not

systematically. The event logs are trustworthy but not necessarily complete.

• Forth level: these kinds of event logs are also recorded automatically, but not

systematically. Hence, some event logs are may be missing or not recorded

correctly.

• Fifth level: these kinds of event logs are of poor quality. The event logs

recorded by hand and may not correspond to reality and some events are may

be missing.

Some authors also consider event logs as the users’ activities enriched by the con-

text of their enactment [Laflaquière 2006]. In this case, a trace is defined as a tem-

poral sequence of observed items or, more precisely, a set of recorded data that are

generated by users’ interactions to complete their instrumented activities. A trace

can be defined as a sign that an event has happened or existed [Cambridge 2013] or

as a set of multiple streams of quantitative or symbolic data that record (at least

partially) an activity performed by a user [Georgeon 2012]. There are ontology-

based techniques that help to define transformation rules to process the raw traces

into abstract traces [Georgeon 2012].

2.1.2 Users’ Sources

Process mining and intention mining approaches can be applied for one user (in-

dividual) or many users (collective). The recorded logs can be mined for only one

individual. In this case, the mined logs only represent the point of view of one user

(obtained from his own logs). If logs are mined for many users, they will represent

the point of view of a group of users or crowd (obtained from the logs of all the

users).

2.1.3 Mathematical Models

Generally, the literature of process mining and intention mining suggests several

sorts of mathematical models such as Bayesian Network (BN) [Friedman 1997],

Dynamic Bayesian Network (DBN) [Murphy 2002], Markov chain [Martin 1967],

Finite-State Machine (FSM) [Chow 1978], and Hidden Markov Models

(HMMs) [Juang 1991].

A BN [Friedman 1997], also known as belief networks or Bayes nets for short,

belongs to the family of probabilistic graphical models. These graphical models are

used to represent knowledge about an uncertain phenomenon. A BN consists of

several nodes and edges. Each node represents a random variable, and each edge

between two nodes represents probabilistic dependencies among the corresponding

random variables. These conditional dependencies in the graph are often estimated

by using well-known statistical and computational methods [Jensen 1996a].

A DBN [Murphy 2002] is a BN, which models time series data and relates vari-

ables to each other over adjacent time steps. This is often called a two-time slice

12 Chapter 2. State of the Art

BN because at any point in time t, the value of a variable can be calculated from the

immediate prior value (time t ✁ 1). DBN simplifies the design of BN by assuming

that an event can cause another event in the future and not in the past.

A stochastic process with the Markov property among a finite or countable

number of possible states is named a Markov chain [Martin 1967]. A Markov chain

should satisfy the Markov property - it should be a memoryless process, i.e., the

future state depends only on the current state and not on the previous one. In

other words, the history of the process (all information of the previous states) is

encapsulated in the current state. Another characteristic of a Markov chain is that

the variables are discrete-time. The transitions are the changes of the system from

one state to another and the related probabilities are called transitions probabilities.

The transition matrix describes the transitions probabilities between all the states

in a given process.

FSM [Chow 1978] is a mathematical model of computation used to design both

computer programs and sequential logic circuits. It is conceived as an abstract

machine that can be in one of a finite number of states. The machine is in only

one state at a time; which is called the current state. The state of the machine can

change from one to another when an event or condition is triggered; this is called

a transition. A particular FSM is defined by a list of its states, and the triggering

condition for each transition.

A HMM [Juang 1991] is a statistical signal modeling formalism that allows mod-

eling a sequence by a finite number of states. HMMs are very flexible due to latent

data that allows modeling the structure of complex temporal dependencies. The

systems modeled by HMMs are based on two complementary Markov processes:

hidden process and observed process. The hidden states are not observable, how-

ever they generate observations with different probabilities.

2.1.4 Techniques

Several techniques are used in process mining and intention mining approaches to

discover intentions. These approaches may use ontologies, classification techniques,

particular algorithms or a mixture of them. Hereafter, these techniques are briefly

defined:

• Ontology-based: Some approaches use ontology. An ontology formally repre-

sents knowledge as a set of concepts within a domain, using a shared vocabu-

lary to denote the types, properties and interrelationships of those concepts.

Ontologies are the structural frameworks for organizing information and are

used in artificial intelligence, the Semantic Web, systems engineering, software

engineering, biomedical informatics, library science, enterprise bookmarking,

and information architecture as a form of knowledge representation about the

world or some part of it. The main principles for constructing ontologies in

Computer Science are found by [Gruber 1995]. These principles are such as

classes, relations, functions, or other objects. Hereafter several definition are

2.1. Common Characteristics 13

given for an ontology: for instance, in Computer Science an ontology is de-

fined as “the capture of the recognized and conceived in a knowledge domain

for the purpose of their representation and communication” [Rebstock 2008].

An ontology is also considered as a novel and distinct method for scientific

theory formation and validation [Akkermans 2006].

• Classification-based: Classification is the problem of identifying to which cat-

egory a new observation belongs, on the basis of a training set of data contain-

ing observations whose category membership is known. In the terminology of

machine learning, classification is considered as a type of supervised learning,

i.e., learning where a training set of correctly identified observations is avail-

able. The corresponding unsupervised procedure is known as clustering (or

cluster analysis), and involves grouping data into categories based on some

measure of inherent similarity.

• Learning-based: some approaches use well-known algorithms such as Baum-

Welch algorithm [Baum 1970]. Others developed and designed either their

own algorithms or a mixture of well-known and particular algorithms to dis-

cover the pattern underlying logs.

2.1.5 Objectives

The process mining and intention mining approaches focus on discovery of infor-

mation from logs. Process mining approaches aim at discovering activities from

logs and represent them in process models. However, process mining approaches

may tackle with conformance (i.e., verifying the gap between the prescribed model

and the discovered model), enhancement (i.e., improving the prescribed model) or

recommendation (i.e., providing the recommendations to users). Intention mining

existing approaches mainly focus on intention discovery from logs. Nevertheless, a

few propose recommendation techniques from discovered users’ intentions.

2.1.6 Output Elements

The process mining approaches may generate either activity-oriented process

models (instance of a defined process metamodel). It is then important to highlight

the metamodeling concept. A model that represents a modeling language is

called a metamodel. The model is an instantiation based on the metamodel. The

relationship between a model and metamodel is called an instance of relation-

ship [Group 2013]. Existing intention mining approaches allow discovering a single

output: an individual intention.

Next section investigates the process mining field under different aspects.

14 Chapter 2. State of the Art

2.2 Process mining

Fueled by the growing presence of event logs in software and software engineering

platforms, process mining idea has initially emerged in the software engineering

field with Cook and Wolf [Cook 1998a] and then has been applied on workflow

log for the first time by Agrawal [Agrawal 1998]. Process mining gathers infor-

mation about the processes as they are actually enacted, by making the assump-

tion that it is possible to record events along with the order in which they are

executed [Van der Aalst 2004c]. Indeed, retrieving event logs containing informa-

tion about the actual process allows having an insight into the followed process

model [Van der Aalst 2011c]. Process mining aims to fill the gap between activity

traces obtained from event logs and process models.

Van der Aalst defines “the idea of process mining is to discover, monitor and im-

prove real processes, (i.e. not assumed processes) by extracting knowledge from event

logs readily available in today’s systems”. He defines process mining as a bridge be-

tween data mining and process modeling and analysis [Van der Aalst 2011c].

Process mining uses data mining techniques to mine data logs containing process

enactment data to reconstruct actual business processes [Tiwari 2008]. Data mining

techniques allow extracting knowledge from large data sets through identification of

patterns within the data. They were developed and adapted to create the process

mining techniques. Furthermore, several customized algorithms have also been

developed specifically to address the needs of process mining [Tiwari 2008].

2.2.1 Typology

The term process is defined as “a set of partially ordered steps intended to reach a

goal” [Feiler 1993]. It is also defined as a collection of related, structured activities

or tasks that produces a specific service or product (i.e., a manner to reach the goal

determined by products) [Olle 1988]. The process allows knowing: “what really

happened in the past, why did it happen, what is most likely to happen in the future,

when and why do organizations and people deviate, how to control a process better,

how to redesign a process to improve its performance” [Rozinat 2010].

A process is expressed in terms of a process model. According to Rol-

land [Rolland 2005a], “a process model prescribes a way to make a methodological

approach to achieve the desired target. It describes an abstract level and ideally how

to organize the production of the product: steps, activities along with their schedul-

ing, and sometimes the criteria for moving from one stage to another. It acts as a

mold for engineering process”. Process models describe the common characteristics

of a category of processes having the same nature [Rolland 1998a].

The first classification of process models was made by Dowson [Dowson 1987].

It comprises three types of process models: activity-oriented, product-oriented and

decision-oriented. Later on, two other categories have been added to this topology:

context-oriented [Rolland 1994] and strategy-oriented [Rolland 1999].

The next sections present the different types of existing process in chronological

2.2. Process mining 15

order. Each type represents a process notation.

2.2.1.1 Activity-oriented Process Notations

Activity-oriented process models concentrate on the activities and tasks performed

in producing artifacts and their ordering. They represent the activities and their

scheduling for the realization of a product [Rolland 2005a].

Early models of activity-oriented process models appeared in the 70s

with linear models such as, the V model [MacDermid 1984], the Cascade

model [Royce 1970], which have evolved toward iterative models such as, the

Fontaine model [Henderson-Sellers 1990], and also the Spiral model [Boehm 1988].

Thereafter, the iterative and incremental process models were introduced with

Rapid Application Development (RAD) [Martin 1991] then with unified processes

such as, the Rational Unified Process (RUP) [Kruchten 2004], 2 Track Unified Pro-

cess (2TUP) [Roques 2004], and Symphony [Hassine 2002]. The processes using

agile methods are also activity-oriented such as, SCRUM [Schwaber 2002], and

XP [Beck 2001].

2.2.1.2 Product-oriented Process Notations

Product-oriented process models are similar to activity-oriented process models.

They link the products states to the activities that generat these states. They

focus on products rather than activities. They are comparable to state-transition

diagrams [Rolland 2005a]. Indeed, the state of a product models its situation at a

given instant of the process. Transitions are defined between these states to model

the order in which the states may change. Transitions are relationships between

a source state and a target state, which are triggered by an event. The product-

oriented process models are created as required, when some products have specific

and complex conditions that must be specified.

The template ViewPoints [Finkelstein 1991], the metamodel of State-

charts [Harel 1987], state machines in UML [Group 2013] as well as the metamodel

of Entity Process Model (EPM) [Humphrey 1989] are some of the metamodels of

product-oriented process models.

2.2.1.3 Decision-oriented Process Notations

Decision-oriented process models introduce the concept of reasoning, choice and

decision-making, the processes are then seen as teleological. Decision-oriented pro-

cess models represent transformations of products or successive elicitations due to

decisions [Rolland 2005a].

In information systems engineering context, it is important to know why an

activity was performed rather than another. Moreover, it is important to keep

track of interactions between the various users. On the one hand, this allows bet-

ter understanding the reasons for which the choices are made, and on the other

hand, permits monitoring whether decisions taken during the information systems

16 Chapter 2. State of the Art

engineering process are rational [Jarke 1992]. Regarding the problems complexity

or situation feature in each project, different models of decision-oriented processes

could be created.

The notion of decision-oriented process was introduced for the first time in Issue-

Based Information Systems (IBIS) [Kunz 1970]. This model was implemented in a

tool called gIBIS 1 to manage the discussions, the problems encountered during the

upstream phases of the system design. It was then enriched by [Potts 1988]. The

project European ESPRIT DAIDA has also developed a decision-oriented process

model, called CAD 2.

2.2.1.4 Context-oriented Process Notations

Context-oriented process models are composed of a situation and an intention of a

user at a given time of the project [Rolland 2005a].

A situation is any part of the product under development that may be subject to

a decision [Plihon 1996]. Contextual process models relate the context of a decision

to the decision itself [Rolland 1998a]. They allow changing the current situation to

a new one by applying decisions to the situation.

The metamodel of context-oriented process NATURE was initialized by

Rolland [Rolland 1994], then was extended by Plihon [Plihon 1996] and Rol-

land [Rolland 2000]. The PRIME environment [Pohl 1999] was inspired by the

planning paradigm, which is used in Artificial Intelligence GRAPPLE [Huff 1987].

The concept of metamodel for context-oriented process models was extended for

modeling strategy-oriented process models, which provide different ways to fulfill

intentions.

2.2.1.5 Strategy-oriented Process Notations

Strategy-oriented process models (Map [Rolland 1999]) are an extension of context-

oriented process models that intend to represent several levels of abstraction in the

same process model. This multi-level of abstraction provides several possible ways

to develop the product. It is based on the concepts of intention and engineer-

ing strategy to achieve these intentions [Rolland 2005a]. According to this process

model an intention is defined as a goal that can be achieved by the performance of

a process [Rolland 2007], and a strategy is defined as an approach, a manner or a

mean to achieve an intention [Rolland 2007].

We consider that there is only one strategy-oriented process model, which is

called CREWS-L’Écritoire [Ralyté 1999]. It allows discovering and identifying re-

quirements in information systems context. Strategy-oriented process models are

also used in other cases. For instance, they are used to model a method for similar-

ity analysis between the business requirements of an organization and the functional

1graphical IBIS [Conklin 1989]
2Conversation among Agents on Decisions over objects [Jarke 1992, Rose 1991]

2.2. Process mining 17

requirements of an information system [Zoukar 2005]. They are used to model the

alignment between business processes and information systems [Etien 2006].

2.2.1.6 Synthesis on the Different Process Notations

This section discusses some advantages and drawbacks of the process notations

described in the previous section with a process mining perspective.

Activity-oriented process notations have as the advantage [Arbaoui 1994] to pro-

vide precise and unambiguous process models. Indeed, in a given activity-oriented

process all the activities as well as their order are prescribed and detailed in the

model. This perfectly fits the structure of event logs. In other words, it is possible

to extract activities, since they can be directly found in event logs.

However, activity-oriented process notations often fail in supporting real in-

dustrial process due to several drawbacks in modeling and performance sup-

port [Arbaoui 1994, Rolland 1998a]. Some of these drawbacks are described as

follows:

• They are based on task or activity performance. This makes them rigid and

inflexible. Indeed, process enactment is very restrictive and limited to pre-

established model. They provide a frame for manual management of projects

developed in a linear manner [Rolland 1998a]. They are most often treated as

linear sequences where crucial aspects of the process such as feedback loops

and iteration are not represented [Boehm 1988, Curtis 1988, Curtis 1992].

The linear view of activity decomposition seems inappropriate to model mined

event logs of creative processes, since it does not permit considering all even-

tualities and consequences [Rolland 1998a].

• They overlook underlying users’ intentions and do not allow reflecting about

different choices made during the process enactment, since the information

about users’ intentions are not directly observable from event logs. Therefore,

it is not possible to predict users’ intentions in the future or to reason about

their intentions and the different ways that users have selected to achieve their

intentions.

• They require that all particular situations that may occur during the process

enactment should be found in event logs. However, this information is not

usually available in event logs. In this case, the mined processes do not reflect

the actual ones.

• They emphasize only on activity, which can omit the impact of product struc-

ture on the mined process.

• They are inappropriate for modeling the mined event logs of processes that

have to support parallel engineering, backtracking and reuse of previous con-

ceptions, due to their linear vision of process models [Rolland 1998a].

18 Chapter 2. State of the Art

Product-oriented process models, in a similar manner to activity-oriented ones,

are centered around the notion of product state and link the product states to the

activities that generate these states. They have several advantages: they are useful

for tracing the transformations that occurred and their resulting products, they are

also useful for tracing the transition between states of the products [Rolland 1998a].

However, since they adopt the notion of activity in their structure they have the

same limitations and obstacles as the activity-oriented process models. Further, it

is very difficult to mine product-oriented process models from event logs which are

sufficiently realistic, since there is not sufficient information about the states and

transitions of products in event logs.

The decision-oriented process models take into account more aspects of a

process than product-oriented and activity-oriented process models, since they

take into account the reasons why decision are made and how they trigger ac-

tivities [Plihon 1996]. Decision-oriented process models have several characteris-

tics [Rolland 1998a] such as:

• Supporting strategy-oriented processes for explanatory tracing and prescrip-

tive guidance.

• Supporting the rationale underlying the decision process.

• Assisting in reasoning about the rationale underlying decisions.

• Directing the decision-making process.

• Preserving a history of the events that occurred in a process along with their

reasoning.

Similarly to product-oriented process models, mining decision-oriented process

models is not trivial, since it is necessary to have the information about decisions

made by users in event logs. However, this kind of information is not usually

available in event logs.

The decision-oriented process models have been completed for taking into ac-

count the situation in which a decision is made. These new process models are so-

called context-oriented process models [Plihon 1996, Souveyet 2006]. The context-

oriented process models adopt the notion of decision; thus they have all the prop-

erties (advantages and disadvantages) of decision-oriented process models. In ad-

dition, due to the strong correlations among the couple situation-decision, context-

oriented process models take into account the situation in which adequate decisions

are made. This allows tracing, providing guidance and explaining specific process

situations. However, from a mining point of view, event logs usually contain basic

information about the context of a process such as timestamps, date, etc. Therefore,

mining such processes becomes more difficult.

In the strategy-oriented process models, the notion of intention has a funda-

mental place; thus, they can also be called intention-oriented process models. The

main focus of such process models is on what the process is intended to achieve,

2.2. Process mining 19

which implies providing a justification for why the process is enacted. The concept

of strategy only belongs to this type of process models. The key idea of intention-

oriented process models is to pursue the users’ intention during the fulfillment of

a goal as a force that guides the process. As a consequence, goals to be achieved

are explicitly represented in the process model with the different alternative ways

to achieve them, i.e., strategies [Soffer 2005]. These strategies are composed of one

or several activities. This property allows mining such process models from event

logs. In other words, event logs naturally contain activities. These activities can be

mined to find the strategies by using an appropriate technique. Once the strategies

are found the intentions can be then found, since according to intention-oriented

process models, there is a strong link between intentions and strategies.

2.2.2 Process Mining Objectives

Process mining techniques excerpt knowledge from event logs commonly available

in information systems. The extracted information is then represented under the

activity-oriented process models. These techniques provide new means to discover,

monitor, and enhance processes in various application domains. They are able to

provide detailed information about the history of processes to support and enhance

business processes in competitive and rapidly changing environments. Mining pro-

cesses from logs can be useful for understanding how people really work, analyzing

how actual processes differ from the prescribed ones, and thereby improve the qual-

ity of information systems.

Van der Aalst classifies process mining techniques into three cate-

gories [Van der Aalst 2011c]: Discovery, Conformance and Enhancement. Later

on, Recommendation techniques have emerged in some works [Schonenberg 2008,

Mulyar 2008]. Hereafter, the four objectives of process mining are defined briefly:

• Discovery: the discovery techniques aim at discovering process models by an-

alyzing event logs. There is no a priori information about actual process

models. For instance, event logs may be studied by α-algorithm that auto-

matically transforms them into a Petri net model [Van der Aalst 2011a]. This

represents the users’ behaviors as recorded in the event logs.

• Conformance: the conformance checking techniques use an a priori model

to check the degree of alignment between the actual process model, i.e., the

model followed by users, and the prescribed process model. These techniques

can detect the deviations from the prescribed model [Van der Aalst 2005a].

• Enhancement: the enhancement techniques use information recorded in event

logs to improve and enrich the prescribed process model using methods of

repair and extension [De Medeiros 2007]. Repair has a mirror effect, which

means it tries to reshape the model to better illustrate reality. Extension

allows widening the process model with new aspect by cross-correlating it

with event logs.

20 Chapter 2. State of the Art

• Recommendation: some techniques push forward the study of processes by

using event logs to predict which activity may follow a current activity. For

instance, [Mobasher 2000] proposes recommendations based on URL traces.

Schonenberg et al. propose and experiment an approach based on recommen-

dations. This approach shows the more history of process is used, the better

is the quality of the recommendation [Schonenberg 2008].

2.2.3 Process Mining Techniques

The idea to apply process mining was introduced by Agrawal [Agrawal 1998]. At

the same time, Datta proposed to discover business process models [Datta 1998]

by using their own process mining technique. Cook et al. investigated sim-

ilar issues in the context of software engineering processes [Cook 1998a]. The

majority of the process mining techniques focus on process models discovery

based on observed event logs [Van der Aalst 2004a, Agrawal 1998, Cook 1998a,

Datta 1998, van Dongen 2004b, Weijters 2003, Herbst 2000b]. However, the pro-

cess mining techniques are not limited to only process models discovery, for in-

stance, social networks and other organizational models can be discovered from

event logs [Van der Aalst 2005d, Song 2008]. An overview of the early work in

this domain is given in [Van der Aalst 2003]. The most important process mining

techniques are described as follows:

• Inference methods: these methods infer process models with a tradeoff be-

tween results accuracy and noise 3 robustness. Cook compares in [Cook 1995]

three inference algorithms of RNet [Das 1994b], Ktail [Biermann 1972] and

Markov models [Baum 1966] for process discovery. The latter two are con-

sidered as the most promising approaches. RNet [Das 1994a] is a statisti-

cal approach that characterizes a state depending on the past behaviors.

RNet generates a Deterministic Finite State Machine (DFSM), i.e., each

state has only one transition for each possible input. Although it is robust

to noise it is very time-consuming in the training phase, the size of the net

increases with the number of token types, and it requires to evaluate many

parameters. Ktail [Biermann 1972] is an algorithmic approach that evalu-

ates the current state depending on future behavior. The input is a set of

sample strings and the output is a Finite State Machine. The complexity

of the algorithm can be controlled when the number of states increases by

DFSM. The disadvantage of this method is that it is not very robust to noise.

Markov models is a hybrid approach (i.e., a statistical and algorithmic ap-

proach), which looks at the neighboring past behavior to define the future

state. It has a DFSM and it is robust to noise with a controllable complex-

ity. Cook and Wolf in [Cook 1998b, Cook 1999] proposed some techniques

for concurrency detection and a measure to quantify the variance between

behaviors and process models. Some other works use a Markov Chain Monte

3The deviation of the observed value from the inferred value

2.2. Process mining 21

Carlo [Gilks 1996] technique for the discovery of frequent episodes in event

sequences [Mannila 1997, Mannila 2001]. Metrics such as periodicity, entropy,

event type counts and causality are proposed to discover models from event

streams without generating explicit process models.

• α-algorithm [Van der Aalst 2004a]: this algorithm was proposed by Van der

Aalst et al. to rebuild the causality in the Petri nets workflow from the existing

relations in the event log. α-algorithm takes the event logs as input, rebuilds

process models by using simple XOR, AND splits and joins; thereby creates

the workflow nets as output. α-algorithm cannot handle noise and certain

complicated routing constructs of workflow nets such as, loops and long-term

dependencies, particularly during complex situations [Rozinat 2010]. A more

robust but less precise approach was then proposed to deal with the issues

of α-algorithm [van Dongen 2004b]. To overcome this difficulty an extended

algorithm, α ++ algorithm [Wen 2006], was introduced to generate new rela-

tionships between event logs to handle long-term or implicit dependencies.

• Directed acyclic graphs [Agrawal 1998]: this approach proposes to transform

events into dependency graphs or workflow graphs using directed acyclic

graph, representing events and their causal relations without loop. These

workflow graphs are influenced by workflow management products such as,

IBM MQSeries [IBM 1999] workflow and InConcert [Tibco 2000]. The ap-

proach of Agrawal deals with problems of finding a workflow graph, creating

event logs, and defining the edge conditions. However, using this kind of

graphs to model the processes is delicate due to the existing loops in process

models. To overcome this issue, the work tries to count the tasks frequencies

and then fold the graph. Nevertheless, the results are only partially satisfying

as the model does not completely fit the actual process [Tiwari 2008].

• Inductive workflow acquisition [Herbst 1998, Herbst 2000a, Herbst 2000b,

Herbst 2004a, Herbst 1999]: in the context of workflow management,

this technique aims at finding the best Hidden Markov Models

(HMMs) [Rabiner 1989] that reflect the process models acquisition out of

workflow models as well as their adaptation to requirements changes. This

consists of two steps: induction and transformation steps. In the induction

step, it is possible to find the HMMs by merging or splitting models to dis-

cover the underlying process. Each state of HMMs corresponds to a task node.

The event logs can be observed and generated into workflow nets by induc-

tive learning. The approach, described in the aforementioned works, also uses

stochastic task graphs to generate a workflow model (transformation step)

expressed in the ADONIS modeling language. This approach supports oc-

currence of the same tasks several times in the model (duplicate tasks). It is

similar to the approach of directed acyclic graphs due to the presence of the

splits and joins in the transformation step. This approach allows for concur-

rency. A notable difference of this technique with others is that the same task

22 Chapter 2. State of the Art

can appear multiple times in the workflow model, i.e., the approach allows

for duplicate tasks. However, some works using this approach are limited to

sequential models [Herbst 1998, Herbst 1999, Herbst 2000b].

• Hierarchical clustering [Greco 2005b, Song 2009]: this technique separates a

set of event logs for a given process into clusters and finds the dependency

graph for each log. It structures the clusters of event logs into a hierarchy tree.

For each cluster, a workflow model is constructed and finally all the models are

merged into a single one. Some clustering techniques use theory of regions to

discover processes [Van der Aalst 2010, Van der Werf 2008, Carmona 2008].

The advantage of the theory of regions is that the characteristics of the

resulting model can be influenced before the mining starts (e.g., the num-

ber of places in the Petri net or the number duplicate task can be deter-

mined in advance). A mining tool has been developed for discovering hi-

erarchically structured workflow processes that need to balance splits and

joins [Schimm 2003, Schimm 2004].

• Genetic algorithm [De Medeiros 2005b]: this technique provides process mod-

els (Petri nets) built on causal matrix, i.e., input and output dependencies

for each activity. This technique tackles problems such as, noise, incomplete

data, non-free-choice constructs 4, hidden activities, concurrency, and dupli-

cate activities. Nevertheless, it requires the configuration of many parameters

to deal with irrelevant data, which is a complex task.

• Heuristic algorithm [Weijters 2003, Van der Aalst 2002b, Weijters 2001]: this

technique is based on α-algorithm. It calculates the frequencies of relations

between the tasks, e.g., causal dependency, loops, etc, and construct depen-

dency/frequency tables and dependency/frequency graphs. This technique

can detect irrelevant logs. However, like the Genetic algorithm, Heuristic al-

gorithm needs a complex configuration phase. More recently, to deal with

less structured, i.e., very diverse or flexible processes, dynamically adaptive

process simplification algorithms have been proposed [Günther 2007]. The

approach [Van der Aalst 2002b] demonstrates that for some subclasses, it is

possible to discover the accurate workflow model using α-algorithm. In an-

other work, an extended version of α-algorithm is used to include the timing

information [Van der Aalst 2002a].

2.2.4 Metamodels Used in Process Mining

There are several metamodels for representing activity-oriented process models

such as, declarative process models [Pesic 2006], Event-driven Process Chains

(EPCs) [Van der Aalst 1999], Petri Nets [Peterson 1981], Business Process Model

and Notation (BPMN) [Object Management Group 2013].

4Free-choice Petri nets are Petri nets in which there are not two transitions consuming from the

same input place but there is an input place, which is not an input place of the other [Desel 1995]

2.2. Process mining 23

Declarative models specify what should be done without specifying how it should

be done [Pesic 2006]. This approach proposes the ConDec language for modeling

and enacting dynamic business processes. ConDec is based on temporal logic rather

than some imperative process modeling language. In declarative process models

approach a fundamental paradigm for flexible process management are proposed.

EPCs are the ordered graphs of events and functions providing various connec-

tors that allow alternative and parallel execution of processes. Furthermore, they

are specified by the usages of logical operators, such as OR, AND, and XOR. Ac-

cording to [Tsai 2006], “a major strength of EPCs is claimed to be its simplicity

and easy-to-understand notation. This makes EPCs widely acceptable technique to

denote business processes.”

The most used metamodels in process mining are Petri nets and BPMN, which

are described hereafter:

Petri Nets. Petri nets [Peterson 1981] are mathematical modeling lan-

guages allowing to model concurrency and synchronization in distributed sys-

tems. They are used as a visual communication aid to model the system behav-

iors [Van der Aalst 2011a] and to represent the process mining results. A Petri net

is a directed graph composed of three types of components: places, transitions,

and arcs. Each place represents a possible system state; when events or activities

occur, transitions allow going from a place to another. Arcs maintain the relations

between transitions and places.

A

B

FH

DC

Figure 2.1: A process modeled with a Petri net [Van der Aalst 2004c]

Figure 2.1 illustrates a process model by a Petri net. The sequence of activities

(places) are shown by A, B, C, D, F, and H.

Business Process Model and Notation (BPMN). BPMN [White 2004]

is a graphical diagram to model business processes; it aims at providing an easy

graphical way to model business procedures that are understandable by all business

users. Furthermore, one can model complex business process readily by map it to

other languages such as, BPML (Business Process Modeling Language), BPEL4WS

24 Chapter 2. State of the Art

(Business Process Execution Language for Web Services) or UML. Figure 2.2 depicts

a process model by BPMN.

Receive

Credit Report
Approval

Include

Standard Text

Include

History of

Transactions

No

Yes

Payment OK?

Figure 2.2: The process model represented by a BPMN

BPMN creates a standardized link to fill the gap between business process mod-

eling and implementation procedures. It improves the possibilities of traditional

notations by managing the complex nature of internal and business-to-business

processes interactions by providing a standard notation readily understandable by

all business stakeholders.

2.2.5 Process Mining Open Issues

Process mining still encountered a number of issues [Van der Aalst 2004c].

Whereas, several works attempt to address many of these problems, others require

extra research to be solved. The main issues still unresolved are outlined as follows:

• Noise: it is possible that the event logs contain noise. This could

be incomplete, incorrect logged information, unrecorded event, etc.

The process mining techniques should be robust to noise, for instance

by determining a threshold value to avoid exceptional or incorrectly

logged behavior. Several works try to deal with noise [Weijters 2001,

Maruster 2001, Weijters 2003, Cook 1998a, de Medeiros 2004, Gaaloul 2005,

van Dongen 2004b, Agrawal 1998, De Medeiros 2005b, Cook 1998a].

• Hidden tasks: process mining techniques can only find information about

tasks for which related event logs are recorded. However, it is possi-

ble to have hidden task in a process, which are not recorded in data

logs. Finding hidden task is more difficult for more complicated pro-

cesses. This issue is related to unobservable behaviors and branching or bi-

simulation issues [Van Glabbeek 1996]. Some works try to deal with hidden

tasks [De Medeiros 2005b, Van der Aalst 2005b, Van der Aalst 2005c]

However, in very simple process it is possible to find hidden task. For in-

stance, let us consider a process with tasks A, B, C, D, F, H. Figure 2.1

2.2. Process mining 25

A

B

AND-

join

And-

split

DC

Figure 2.3: A process with two hidden tasks [Van der Aalst 2004c]

depicts this process modeled with a Petri net. Now, let us consider a case

in which all event logs referring to task H are eliminated from recorded

data [Van der Aalst 2004c]. The new discovered process is shown in Fig-

ure 2.3. In this particular case, it is still possible to model a similar process.

As found on the figure, tasks A and B are executed in parallel, which means

there has to be an AND-split. Moreover, for the same reason, if all the event

logs referring to task F are also eliminated from recorded data, there has to

be an AND-join.

• Duplicate tasks: this problem happens when two process nodes may re-

fer to the same process model, which means an occurrence task in a given

case [Van der Aalst 2004c]. Duplicate tasks are related to hidden tasks in the

sense that a given process with hidden tasks but with no duplicate tasks can

be modified into equivalent process with duplicate tasks but with no hidden

tasks [Van der Aalst 2004c].

A

C

DC

H F

Figure 2.4: A process with duplicate tasks [Van der Aalst 2004c]

An example of duplicate task is shown in Figure 2.4. In this case task

B is renamed to C. Obviously, it is not possible to differentiate task

26 Chapter 2. State of the Art

B from C. Several works propose some solutions to overcome the dupli-

cate tasks problem [Herbst 2004b, Van der Aalst 2005c, Van der Aalst 2005b,

De Medeiros 2005b, Agrawal 1998].

• Non-free choice constructs: this problem happens in Petri nets where there

are no two transitions consuming from the same input place but where one has

an input place which is not an input place of the other [Desel 1995]. They are

controlled choices that depend on choices made in other part of the process

model. This excludes the possibility to merge choice and synchronization into

one construct. Non-free-choice constructs are difficult to model. For instance,

Figure 2.1 depicts a free-choice Petri net, since synchronization (task F) is

separated from the choice between F and C. Figure 2.5 shows a non-free-

choice construct. After executing task B there is a choice between task F

and task C. However, the choice between F and C is controlled by the earlier

choice between H and A. Note that tasks F and C are involved in a choice

but also synchronize two flows. Clearly such constructs are difficult to mine

since the choice is non-local and the mining algorithm has to remember earlier

events [Van der Aalst 2004c]. Some research works tackle the non-free-choice

issue [Van der Aalst 2002b, De Medeiros 2005b, Van der Aalst 2005b].

B

CA

H F

Figure 2.5: A process model with a non-free-choice construct [Van der Aalst 2004c]

• Mining loops: a process may be executed multiple times, this case refers to a

loop, which may be simple or complex, i.e. involving one or more events. In

the case of complex loops, mining is not a trivial task since, there are multiple

occurrences of the same task in a given instance of process. Let us consider

a simple example with a loop depicted in Figure 2.6. As found in this figure,

task A can be executed several times after task H.

In other words, the possible sequences are HAF, HAAF, HAAAF,

HAAAAAF, and so forth. However, in complex processes, mining

loops is a challenging issue particularly for the cases with backward

loops. Several works attempt to overcome or to mitigate the prob-

lem of mining loops [Weijters 2003, de Medeiros 2005c, de Medeiros 2004,

2.2. Process mining 27

FH

DC

A

Figure 2.6: A process with a loop [Van der Aalst 2004c]

Medeiros 2005, Herbst 2004b, Van der Aalst 2004b, Van der Aalst 2005c,

Van der Aalst 2005b, Weijters 2001, Schimm 2003].

• Incompleteness: this problem, related to the noise issue, occurs when event

logs contain insufficient information to drift the process. For instance, when

some activities are missing in recorded logs. To tackle this problem heuris-

tics are used. These heuristics are typically based on Occam’s Razor or the

Minimum Description Length (MDL) principle [Rissanen 1978].

• Different perspectives: process mining mainly based on the control flow per-

spective fueled by the ordering of timestamped-tasks. However, further infor-

mation may be append to the events such as, the organization perspective,

the information perspective, and the application perspective. For instance,

the application perspective deals with the applications being used to perform

tasks. Therefore, it is challenging to mine the processes with different per-

spectives [Van der Aalst 2004b].

• Delta analysis: The results of process mining are the process models. There-

fore, it is interesting to compare the prescribed models with the models re-

sulting from process mining. Delta analysis is used to compare the prescribed

process models with the discovered process models and then to check simi-

larity or disparity between them. There are few techniques of delta analy-

sis, which use behavioral inheritance [Van der Aalst 2001] or quantitatively

measuring [Cook 1999] to discover differences and commonalities of process

models [Van der Aalst 2005a].

• Visualizing results: the results of process mining approaches should

be presented in a graphical way to make easier the understanding

of process. However, visualizing the complete control flow perspec-

tive or other perspectives is more difficult and requires further research.

ARIS PPM [Fischer 2008] is a commercial tool, which enables visual-

izing the complete control flow and allows focusing on the flow time

28 Chapter 2. State of the Art

and work in progress to measure and to analyze the performance and

structure of business processes. Several other works in this domain

are [van Dongen 2005c, Cook 1998a, de Medeiros 2005c, van Dongen 2004a,

Herbst 2004b, Dustdar 2005, Van der Aalst 2005b, Hammori 2004].

• Heterogeneous results: the required information for process mining ap-

proaches is dispersed over information systems. Therefore, the event logs,

which are input of process mining, are not readily accessible. This prob-

lem is more complex when information systems are based on different plat-

forms [van Dongen 2005b]. One approach is to use a data warehouse which

extract the information from these logs [Eder 2002].

• Concurrent processes: sometimes processes occur at the same time. Min-

ing such processes is then challenging. Some works focus on concurrent be-

haviors of processes [Cook 1998b, Herbst 2000a, Weijters 2001, Cook 1998a,

Schimm 2004, Van der Aalst 2005b, Cook 1998b, Golani 2003, Zhang 2003,

de Medeiros 2005c, de Medeiros 2004]. They present some techniques to dis-

cover patterns of concurrent behavior out of workflow traces. The techniques

are based on a probabilistic analysis of the traces.

• Local/Global dimension: Mining algorithms aims at discovering the most

appropriate process model among the potential candidate process models.

There are different strategies to discover the most suitable process model:

local and global strategies. Local strategies build step by step the optimal

process model using local information. Global strategies build the optimal

process model by one strike search. Some works try to deal with this is-

sue [Greco 2004, Van der Aalst 2005b].

Tables 2.1 and 2.2 indicate the process mining issues and the research works

dealing with them.

2
.2
.

P
ro

c
e
ss

m
in
in
g

2
9

Research Works M
in
in
g
L
o
o
p
s

H
id
d
e
n

ta
sk

s

D
e
lt
a
A
n
a
ly
si
s

N
o
n
-f
re

e
C
h
o
ic
e
C
o
n
st
ru

c
ts

V
is
u
a
li
z
in
g
R
e
su

lt
s

H
e
te
ro

g
e
n
e
o
u
s
D
a
ta

S
o
u
rc
e

L
o
c
a
l/
G
lo
b
a
l
S
e
a
rc
h

P
ro

c
e
ss

R
e
d
is
c
o
v
e
ry

D
iff
e
re

n
t
P
e
rs
p
e
c
ti
v
e
s

D
u
p
li
c
a
te

T
a
sk

s

N
o
is
e

C
o
n
c
u
rr
e
n
t
P
ro

c
e
ss
e
s

[Van der Aalst 2005a] ✂

[Greco 2004] ✂

[Cook 1998b] ✂

[Van der Aalst 2002b] ✂ ✂

[van Dongen 2005c] ✂

[Weijters 2003] ✂ ✂ ✂

[Golani 2003] ✂

[Cook 1998a] ✂ ✂

[de Medeiros 2005c] ✂ ✂ ✂

[Zhang 2003] ✂

[de Medeiros 2004] ✂ ✂

[Gaaloul 2005] ✂ ✂

[van Dongen 2004b] ✂

[van Dongen 2004a] ✂

[Medeiros 2005] ✂

[van Dongen 2005a] ✂

[Agrawal 1998] ✂ ✂

[De Medeiros 2005b] ✂ ✂ ✂

T
ab

le
2.
1:

R
es
ea
rc
h
w
or
k
s
d
ea
li
n
g
w
it
h
p
ro
ce
ss

m
in
in
g
is
su
es

30 Chapter 2. State of the Art

R
e
se
a
rch

W
o
rk

s

Mining Loops

Hidden tasks

Delta Analysis

Non-free Choice Constructs

Visualizing Results

Heterogeneous Data Source

Local/Global Search

Process Rediscovery

Different Perspectives

Duplicate Tasks

Noise

Concurrent Processes

[C
o
ok

1998b
]

✂

[H
erb

st
2004b

]
✂

✂
✂

[D
u
std

ar
2005

]
✂

[V
an

d
er

A
alst

2004b
]
✂

✂

[H
w
an

g
2004

]
✂

[V
an

d
er

A
alst

2005c]
✂

✂
✂

✂

[V
an

d
er

A
alst

2005b
]
✂

✂
✂

✂
✂

✂
✂

✂

[S
ch
im

m
2004]

✂

[van
D
on

gen
2005b

]
✂

[H
am

m
ori

2004
]

✂

[S
ch
im

m
2003]

✂

[W
eijters

2001
]
✂

✂
✂

[C
o
ok

2004
]

✂
✂

Table 2.2: Research works dealing with process mining issues (following)

2.2. Process mining 31

2.2.6 Process Mining Tools

Several tools exist to support the process mining techniques such as,

ProM [Van der Aalst 2009], CPN tools [Jensen 2007], EMiT [van Dongen 2004a],

Disco tool [Disco 2014], InWoLvE [Herbst 2004b], etc.

The ProM framework is a pluggable framework that supports various plug-

ins for different techniques of process mining such as, α- algorithm and its exten-

sions. This framework encourages a unified approach to be adopted in the design

of process mining software. The framework is flexible with respect to the input

ad output format, and it allows reusing code during implementation of new con-

cepts [Van der Aalst 2009]. ProM has a generic interface capable of hosting a range

of process mining and modeling activities.

CPN tools allow modeling and analyzing CPN models [Jensen 1996b] and sim-

ulating processes to analyze and check them. A combination of CPN tools and

ProM framework plug-in is implemented to improve business processes model-

ing [De Medeiros 2005a, Rozinat 2008a]. Disco tool allows mapping automatically

the event logs with CSV and XLS extensions to the appropriate XES or MXML

notations, which are supported by ProM. This permits having an insight into the

processes from event logs very quickly. It optimizes performance, controls devia-

tions and explores variations. However, it is a commercial tool and does not provide

information about the used algorithms. EMiT is able to integrate timing informa-

tion using an extended version of α-algorithm. This tool transforms the event logs

of commercial systems to XML format. It tries to find the causal relations among

logs and based on that, rebuilds a Petri net represented in a graphical model.

InWoLvE workflow is a mining tool, which deals with four classes of workflow

models [Herbst 2004b]: injective sequential, injective parallel, non-injective sequen-

tial and non-injective parallel. The term injective relates to the uniqueness of the

activity nodes of the process models. An injective problem class means that each

node of the process is unique (there are no repetitions of nodes in the process

model). A sequential problem class (process model) does not contain any splits

of joins, unlike a parallel problem class. The ability of this tool to mine process

models with non-unique nodes is an advantage.

Some tool such as, ARIS [Scheer 2014], PISA tool [Zur Muehlen 2000], and

SPM [Staffware 2014] do not extract the process model, but they aim at clustering

and analyzing the performance rather than causal relations. ARIS [Scheer 2014]

tool designed to manage the process performance. Staffware Process Mon-

itor (SPM) [Staffware 2014] is customized to mining Staffware logs. PISA

tool [Zur Muehlen 2000] can extract performance metrics from workflow logs.

Next section investigates intention mining field according to different aspects.

32 Chapter 2. State of the Art

2.3 Intention Mining

Mining humans’ intention is a challenging issue in a wide range of domains. They

define intention in different ways, use them for various objectives, apply different

techniques to discover intentions, etc. This give rise to a new discipline of research,

so-called Intention Mining.

Intention is widely used in different areas of research in computer sci-

ence: engineering services [Rolland 2010], method engineering [Rolland 1993,

Deneckère 2010, Salinesi 2003, Mirbel 2006, Najar 2011], for context adapta-

tion [Ralyté 2003, Mirbel 2006], business process [Outmazgin 2013], requirements

definition [Yu 1987, Van Lamsweerde 2001], information retrieval [Hashemi 2008,

Baeza-Yates 2006, Chen 2002].

In the broad sense, intention mining refers to all approaches that aim at discov-

ering intentions from interactions of users with information systems. This refers to

uncover users’ intentions from users’ activities (e.g., logs, traces, etc).

Next section investigates a review of intention mining approaches in different

aspects.

2.3.1 Typology

The notion of intention is a common word in an everyday context. From a psy-

chological point of view, intention is defined as: “our common sense psychological

scheme admits of intentions as states of mind; and it also allows us to characterize

actions as done intentionally, or with a certain intention” [Bratman 1999]. Another

definition considers an intention as: “a determination to act in a certain way; a

concept considered as the product of attention directed to an object or knowledge

[☎ ☎ ☎]” [Gove 1981].

Intentions are defined as the stable goals and of higher-order entities

that function as abstract, organizing structures and remain fairly stable over

time [Chulef 2001].

Beside of the humans’ cognitive context, the intention is a manifold notion in

a wide rang of domains. Hereafter, the notion of intention is presented from points

of view of some salient computer science disciplines such as information systems,

requirements engineering, and information retrieval.

2.3.1.1 Intention in Information Systems Context

In information systems context, the concept of purpose, goal or intention is essential

for any organization since, information systems are created to fulfill the organization

needs. An intention is considered as a property of an active component that has

choice of behavior opposed to passive component [Feather 1987, Fickas 1992].

In the middle 90s, Jackson defines an intention as an optative statement, a state

or a result expected to be reached or maintained in the future [Jackson 1995]. A

goal is also defined as an objective the system under consideration should achieve;

2.3. Intention Mining 33

thus goal formulations refer to intended properties to be ensured; they are bounded

by the subject-matter expert [Zave 1997].

Intentions, also referred to as goals, objectives, or even mission, purpose, intents

are a first class concept of information systems engineering [Rolland 2005b]. The

notion of intention can also be seen as a goal that a user wants to achieve without

saying it [Rolland 2007].

Some approaches do not explicitly deal with intention notion but with the sim-

ilar concepts such as, workarounds [Outmazgin 2013], which are non-compliant be-

haviors. The notion of workarounds could be considered as intentions since, they

express the desire of a user to perform a specific task. Business process workarounds

situations are the circumstances that users are aware of the required internal pro-

cedures and intentionally decide to act differently. They can be observed when

people deviate, in full knowledge, from the processes they are supposed to follow.

The driving idea is that detecting and understanding workarounds make it pos-

sible to improve process models. The concept of workaround draws a clear link

between process models and intentions. First, workaround patterns point out to

implicit intentions. Second, the method relates these actual implicit intentions,

i.e., from peoples’ behavior observations, with theoretical explicit intentions, i.e.,

from process models.

2.3.1.2 Intentions in the Requirements Engineering Context

In the requirements engineering context, intention captures at different levels of ab-

straction, the various intentions the system under consideration such as, achieving

requirements completeness [Yu 1987], avoiding irrelevant requirements [Yu 1987],

explaining requirements to stakeholders [Mostow 1985, Lee 1991], structuring com-

plex requirements documents, providing many alternatives for engineers, managing

conflicts, separating stable from more volatile information, for eliciting, elaborat-

ing, structuring, specifying, analyzing, negotiating, documenting, and modifying

requirements [Van Lamsweerde 2001].

In the requirements engineering goal is beneficial as it allows supporting

heuristic, qualitative or formal reasoning schemes during requirements engineer-

ing [Van Lamsweerde 2001]. Goals may be formulated at different levels of ab-

straction: high-level such as, strategic concerns and low-level such as, technical

concerns. Goal also cover different types of concerns: functional concerns such as,

the services to be provided, and non-functional concerns such as, quality of ser-

vice, e.g., safety, security, accuracy, performance, etc). The system to which a

goal refers is the current one or the system-to-be; both of them are involved in

the requirements engineering process. High-level goals often refer to both systems.

Two types of goal-oriented modeling are described in [Thevenet 2007a]: models of

operational goals that describes goals considering business processes and systems

functionalities, and models of strategic intentions that describe the organization

strategy. A distinction is made between soft goals, which cannot satisfy clear-cut

criteria [Mylopoulos 1992] and hard goals, which can be satisfied via inspection tech-

34 Chapter 2. State of the Art

niques [Dardenne 1993]. Soft goals are especially useful for comparing alternative

goal refinements and choosing one that contributes the best to them.

2.3.1.3 Intentions in Information Retrieval Context

In the information retrieval context, the key idea is better understanding the ra-

tionale behind the users’ activities through Web engine. This can be useful to

deal with a range of issues such as, recognizing users’ intentions, reasoning about

them, or generating plans to help users to achieve their intentions [Strohmaier 2012,

Hashemi 2008, Baeza-Yates 2006, Park 2010, Jethava 2011, González-Caro 2011].

Most of the intention mining techniques focus on mining individual intentions out

of Web engine queries. This research area is extremely dynamic with new contri-

butions continuously published.

An intention is called user intent and presents a taxonomy of Web search ac-

cording to the intent of the Web users [Broder 2002]:

• Navigational: the intent is to reach a particular site, when the users have an

a priori information about the website such as the name of the website,

• Informational: the intent is to acquire some information assumed to be present

on one or more Web pages,

• Transactional: the intent is to perform some Web-mediated activity, when the

search leads to shopping websites or service-provider websites.

Later, the mentioned taxonomy has been used and adapted in the context of

Web search [Baeza-Yates 2006]. This approach considers three categories:

• Informational: the intention is to acquire some kind of knowledge, informa-

tion, data, etc, within the query Web,

• Not informational: the intention is to get other resources or to perform par-

ticular process, task, transaction, action, activity, etc.

• Ambiguous: the intention cannot be defined precisely in neither informational

nor clearly in non-informational since, there is no clear-cut definition of it.

As explained in this approach, informational and non-informational intentions

are not disconnected: achieving some non-informational intention, e.g., cooking,

may require to search for information, e.g., a recipe, and the other way round,

achieving a higher informational intention, e.g., getting the list of ingredients, may

involve some lower level non-informational intention, e.g., converting weights from

the imperial to the metric system.

The salient feature of Strohmaier and Kröll’s approach is that, it differentiates

between implicit and explicit intentions [Strohmaier 2012]. Implicit intentions un-

derlie what is expressed by people or can be observed from them. Contrary to

2.3. Intention Mining 35

explicit intentions, implicit intentions are neither expressed nor specified, nor in-

dicated. They must therefore be labeled to become explicit, which is the purpose

of this approach. For instance, they can be expressed in natural language for the

predication of a sentence with an intention verb. As this work is applied to Web

search query, a search query is regarded to contain an explicit goal whenever the

query contains at least one verb and describes a plausible state of affairs that the

user may want to achieve or avoid in a recognizable way.

An intention is also defined as a concept considered as the product of attention

directed to an object of knowledge [Hashemi 2008]. This work aims at discovering

users’ intentions through the analysis of visited sites and distinguishes an intention

as a single word (uni-token) or several words (multi-token).

Two sorts of intentions are defined as action intentions and the semantic in-

tentions [Chen 2002]. The action intentions are low-level intentions, which are

performed by basic actions on a computer such as, mouse click, keyboard typing,

etc. The semantic intentions are high-level intentions and correspond to what the

user wants to achieve at high-level, which may involve several basic actions on a

computer to accomplish it.

The user’s intention is also defined as personal and situational meanings that

can satisfy a user’s information need or goal in an exact way [Park 2010]. It con-

sists of what to search, semantically-related word set, word set that represents a

user’s search target, personal/situational meaning that expresses a user’s search

need clearly and specifically. An intention map as defined in [Park 2010] is a set

of situational meanings that can fully satisfy information needs of a user who uses

queries with the same meaning. This map is inspired from the cognitive psycho-

logical knowledge representation method Schemata [Rousseau 2001]. It takes into

account the intentions of the user, the query, and the corresponding relevant queries.

2.3.1.4 Miscellaneous

Some other areas try to discover intentions for various reasons; for instance, they

are used to deal with the problem of why end-users accept or reject computers, to

better predict, explain, and increase user acceptance [Davis 1989]. Understanding

why people accept or reject computers has proven to be one of the most challenging

issues in information systems research [Davis 1989, Swanson 1974]in which mining

the intentions plays a key role. These works address the ability to predict humans’

computer acceptance from a measure of their intentions, and the ability to explain

their intentions in terms of their attitudes, subjective norms, perceived usefulness,

perceived ease of use, and related variables.

Kelly et al. propose an approach allowing a robot to detect humans’ inten-

tions based on experience acquired through its own sensory-motor capabilities.

This takes into account the perspective of the agent whose intent should be rec-

ognized [Kelley 2008]. Another work in the domain of home video content analy-

sis [Mei 2005] proposes to capture the user’s intention while using camcorders.

36 Chapter 2. State of the Art

2.3.2 Intention Mining Objectives

The objectives of intention mining approaches are classified as follows:

• Discovery: intention mining techniques mainly deal with the intention discov-

ery problem [Strohmaier 2012, Hashemi 2008, Baeza-Yates 2006, Park 2010,

Jethava 2011, González-Caro 2011]. Discovery of intentions allows under-

standing how humans’ think, how humans’ brains work, identifying the users’

intents behind their activities. The aim of intention mining techniques can

also be discovering intentional process models from the users’ activities or

users’ logs.

• Recommendation: logs repository and the discovered intentions allow provid-

ing recommendations to users at run-time. This is based on the supposed

reasoning behind their activities. Several works exist in this category such

as [Kumar 2006, Lee 2012].

2.3.3 Intention Mining Techniques

Different techniques have been implemented to discover intentions or to classify

them. Some of these techniques are cited as follows:

• Classification techniques: several works use classification techniques

to manipulate the Web search queries and to determine intention

classes. Some of these techniques are such as, support Vector

Machine [Baeza-Yates 2006, González-Caro 2011, Strohmaier 2012], Naive

Bayes Classifier [Chen 2002, Strohmaier 2012], FastQ [Jethava 2011] based

on Belief Propagation (BP) among others, Lucene similarity mea-

sure [Kröll 2009], Complete-link clustering [Sadikov 2010], Cosine similar-

ity [Sadikov 2010], the WEKA [Witten 2005], and the Natural Language

Toolkit (NLTK) [Strohmaier 2012]. Some techniques are used to refine the ob-

tained classification, such as Information Gain [Chen 2002], Error-Correcting

Output Coding (ECOC) [Baeza-Yates 2006].

• Ontologies techniques: several approaches of intention mining use ontolo-

gies techniques. The most common ontologies-based techniques are Concept-

Net [Liu 2004] and WordNet [Miller 1995]. ConceptNet is an ontological sys-

tem for lexical knowledge and common sense knowledge representation and

processing. The encoded knowledge in ConceptNet includes lexical concepts

and common sense knowledge. The knowledge base is a semantic network

consisting of over 1.6 million assertions of common sense knowledge encom-

passing the spatial, physical, social, temporal, and psychological aspects of

everyday life. WordNet is a lexical database for the English language. It

groups English words into sets of synonyms, provides short, general defi-

nitions, and records the various semantic relations between the sets. The

purpose is twofold: to produce a combination of dictionary and thesaurus

2.3. Intention Mining 37

that is more intuitively usable, and to support automatic text analysis and

artificial intelligence applications. Some research do not use ontologies but

predefined categories as the Open Directory Project (ODP) which categorizes

websites [Baeza-Yates 2006].

• Text-analysis techniques: Some approaches of intention mining use text-

analysis techniques to extract intentions from queries such as, Prob-

abilistic Latent Semantic Analysis (PLSA) [Baeza-Yates 2006], Word

unigram and Part-of-Speech Trigrams [Strohmaier 2012], Porter Algo-

rithm [Hashemi 2008], TD/IDF [Park 2010].

2.3.4 Metamodels for Intention Mining

If intentions are referred to as goals, then intentional process modeling refers to

modeling the goals underlying the studied processes [Kaabi 2007]. Notations used

in intentional process modeling, and therefore intentional process mining are thus

goal modeling notations [Nurcan 2005, Yu 2011]. The three salient goal modeling

formalisms, i* [Yu 2011], KAOS [Dardenne 1993], and Map [Rolland 1999], that can

be used to model processes in terms of users’ intentions are described as follows:

• KAOS: the notion of intention in KAOS is considered as goal. It is based on

a goal diagram where goals are related together through AND/OR decom-

position links, which refine high-level goals identified by users’ into thinner

particle of goals. This refinement requires classifying goals according to their

level of abstractions and linking the goals at the same level of abstraction.

KAOS proposes to specify the system and its environment by requirements

model (instance of a metamodel) to support the goals, actors, and alterna-

tives. KAOS uses goals to specify, to analyze, to negotiate, to document and

to modify the systems requirements. This approach supports variability and

have a well-structured semantic.

• i*: the i* modeling language aims at analyzing information systems and the

environments of organizations to model processes by focusing on the relation-

ships between actors and theirs goals. Actors are autonomous entities with

uncontrollable and non-cognizable behaviors. They are different and indepen-

dent in their ways of reasoning and consequently have diverse goals. i* consists

in two main models: the strategic dependency model (SD) and the strategic

rational model (SR). The SD describes external relationships between actors,

so-called strategic actors. The SR describes the internal relationships between

actors. i* is able to assess the functional or non-functional requirements of

systems using soft goals identified as evaluation criteria; thus it can capture

what, how and why a software component is developed.

• Map: the Map formalism introduces explicitly the notion of intention. An

intention is a goal that can be achieved by the performance of a pro-

cess [Rolland 2007]. This model allows describing high-level organizational

38 Chapter 2. State of the Art

and operational intentions. Map metamodel is used to formalize flexible pro-

cesses. A Map process model (instance of Map metamodel) is presented as

a graph, which nodes represent intentions and edges represent strategies. An

edge is defined between two nodes where its related strategy can be used to

achieve the intended target node. Map metamodel supports variability for

the goals and offers the possibility to follow different strategies by focusing

on the intentional aspect when enacting methodological processes. Map pro-

cess models guide the actors by proposing dynamic choices according to their

intentions. Concretely, Map metamodel formalizes an intention as a state-

ment expressed in natural language. It usually starts with a verb, which may

comprise several parameters, where each parameter plays a different role with

respect to the verb [Rolland 2007, Rolland 1999]. Map uses a linguistic ap-

proach to define a template for formulating an intention, which is inspired by

Fillmore’s case grammar [Fillmore 1967] and its extension by Dik [Dik 1989].

The structure of an intention is: Intention: Verb ➔Target→ [➔Parameter→]*.

2.3.5 Intention Mining Open Issues

Intention mining field is a new research field; thus the issues that intention mining

approaches try to deal with are not as well-known and well-documented as process

mining approaches. However, some common issues can be distinguished among the

intention mining approaches:

• Ambiguity: the intention is difficult to find since, several intentions in princi-

ple match. In other words, it is possible to discover the ambiguous intentions.

For instance, an intention discovery technique may confuse a discovered in-

tention with another similar intention [Baeza-Yates 2006].

• Too generic: the intention is vague and many intentions match it. In other

words, it is possible to have several intentions that may be categorized into

the same class. For instance, a user can perform the similar tasks to fulfill

very similar intentions [Baeza-Yates 2006].

In both cases (ambiguity and too generic) the intentions can be Several and

they should be categorized into a special category.

• Too specialized: the intention is so specific that will outside the general

categories and has to be categorized as Others, that is, an unknown cate-

gory [Baeza-Yates 2006].

2.3.6 Intention Mining Tools

Some approaches use tools to mine intentions. The tool LIBSVM [Chang 2011] is

used to implement the Support Vector Machine algorithm [González-Caro 2011].

PennAspect tool [Schein 2001] is used to implement a model to retrieve the users’

intentions from the queries and the predefined ODP categories [Baeza-Yates 2006].

2.4. Synthesis of Process Mining and Intention Mining Approaches 39

Actual workarounds are detected using the Disco tool [Van der Aalst 2011c] that

generates models specified using the Business Process Model Notation [Group 2011].

The Natural Language ToolKit (NLTK) is used to manipulate language data

and the WEKA data mining toolkit [Witten 2005] for the classification of inten-

tions [Strohmaier 2012].

2.4 Synthesis of Process Mining and Intention Mining

Approaches

Tables 2.3, 2.4, and 2.5 indicate panoramas of different process mining and inten-

tion mining approaches. These approaches are synthesized in terms of input, users’

sources, mathematical model, algorithm, classification techniques, ontologies tech-

niques, objective, and output. Note that the techniques such as, algorithms or

ontologies that are not well-known are only specified by a cross.

4
0

C
h
a
p
te
r
2
.

S
ta

te
o
f
th

e
A
rt

T
ab

le
2
.3:

A
n
overv

iew
of

p
ro
cess

m
in
in
g
ap

p
roach

es

Research Works Input Users’

sources

Mathematics

Model

Learning Classification Ontologies Objective Output

[van Dongen 2004a] Logs Collective Extended α-

algorithm

Discovery Petri net

[Dustdar 2005] Logs Collective α-algorithm Discovery Petri net

[Van der Aalst 2011b] Logs Individual Recommendation Petri net

[Maruster 2001] Traces Collective ✂ Discovery Petri net

[Van der Aalst 2004b] Logs Individual Discovery Petri net

[De Medeiros 2006] Traces Individual Genetic algo-

rithms

Discovery Petri net

[Agrawal 1998] Logs Individual ✂ Discovery Acyclic

Graph

[Van der Aalst 2004a] Logs Collective α-algorithm Discovery Petri net

[Schimm 2004] Logs Collective ✂ Discovery

[van Dongen 2005c] Logs Individual ✂ Discovery Petri net

[Maruster 2002] Traces Collective ✂ Discovery Petri net

[Gaaloul 2005] Logs Collective ✂ Discovery Workflow

[de Medeiros 2003] Logs Collective Extended α-

algorithm

Discovery Petri net

[Weijters 2003] Traces Collective Heuristic ap-

proach

Discovery Petri net

[van Dongen 2005b] Logs Collective ✂ Discovery Petri net

[van Dongen 2004b] Logs Individual ✂ Discovery Petri

net/EPCs

[Hammori 2004] Logs Collective ✂ Discovery Petri net

[Golani 2003] Logs Collective ✂ Discovery Workflow

graph

[Van der Aalst 2005a] Logs Collective Conformance Petri net

[Cook 2004] Traces Individual Finite State

Machines

✂ Discovery Petri net

[Herbst 1998] Traces Collective HMMs ✂ Discovery Workflow

model

2
.4
.

S
y
n
th

e
sis

o
f
P
ro

c
e
ss

M
in
in
g
a
n
d

In
te
n
tio

n
M

in
in
g
A
p
p
ro

a
ch

e
s

4
1

Research Works Input Users’

sources

Mathematics

Model

Learning Clustering Ontologies Objective Out

put

[Hwang 2004] Logs Collective ✂ ✂ Discovery Temporal

Graphs

[Mannila 2001] Traces Collective Markov Chain Discovery Events

[Herbst 1998] Traces Collective Hidden

Markov Model

Discovery Workflow

model

[De Medeiros 2005b] Logs Individual Genetic algo-

rithms

Discovery Petri net

[van Dongen 2005d] Logs Collective ✂ Discovery Petri

net/EPCs

[Medeiros 2005] Traces Individual Genetic algo-

rithm

✂ Discovery Petri net

[Weijters 2001] Logs Collective ✂ Discovery Petri net

[Greco 2005a] Traces Collective ✂ Workflow

graph

[Schimm 2003] Traces Collective ✂ ✂ Discovery Workflow

model

[Van der Aalst 2005c] Traces Individual α-algorithm Conformance Petri net

[Herbst 2004b] Logs Collective ✂ Discovery Workflow

model

[Zhang 2003] Logs Collective ✂ Discovery Workflow

model

[Van der Aalst 2002b] Traces Collective ✂ Discovery Petri net

[Greco 2004] Traces Collective ✂ ✂ Discovery Petri net

[Chen 2003] Traces Individual ✂ Discovery Directed

graph

[de Medeiros 2005c] Traces Individual α+-algorithm Discovery Petri net

[Cook 1998a] Logs Individual Markov Chain ✂ Discovery

T
ab

le
2
.4:

A
n
overv

iew
of

p
ro
cess

m
in
in
g
ap

p
roach

es
(follow

in
g)

4
2

C
h
a
p
te
r
2
.

S
ta

te
o
f
th

e
A
rt

Research Works Input Users’

sources

Mathematics

Model

Learning Clustering Ontologies Objective Out put

[Baeza-Yates 2006] Logs Individual Classification Discovery Intentions

[Strohmaier 2012] Logs Individual Classification ✂ Discovery Intentions

[González-Caro 2011] Logs Individual ✂ Classification ✂ Discovery Intentions

[Kröll 2009] Logs Individual Classification Discovery Intentions

[Lee 2012] Logs Individual ✂ Recommendation Intentions

[Jethava 2011] Logs Individual ✂ Classification Discovery Intentions

[Ashkan 2009] Logs Individual Classification Discovery Intentions

[Shen 2011] Logs Individual Classification ✂ Discovery Intentions

[Baeza-Yates 2005] Logs Individual ✂ ✂ Discovery Intentions

[Yi 2007] Logs Individual Classification Discovery Intentions

[Park 2010] Logs Individual ✂ ✂ Discovery Intentions

[Sadikov 2010] Logs Individual ✂ ✂ Discovery Intentions

[Kathuria 2010] Logs Individual ✂ ✂ Discovery Intentions

[Jansen 2007] Logs Individual ✂ Classification Discovery Intentions

[Strohmaier 2009] Logs Individual ✂ Classification Discovery Intentions

[Kumar 2006] Logs Individual ✂ Recommendation Intentions

[Outmazgin 2013] Logs Collective Classification Discovery Intentions

T
a
b
le

2.5
:
A
n
overv

iew
of

in
ten

tion
m
in
in
g
ap

p
roach

es

Chapter 3

Overview of the Proposed

Approach

Contents

3.1 Introduction . 43

3.1.1 Intention in Map Miner Method 44

3.1.2 Map Miner Method Process Model Formalism 44

3.1.3 Map Metamodel . 45

3.1.4 Map Process Model Advantages 48

3.2 Contributions of this Thesis 48

3.2.1 Map Miner Method Input Elements 49

3.2.2 Map Miner Method Mathematical Model 50

3.2.3 Map Miner Method Techniques 52

3.2.4 Map Miner Method Objectives 52

3.2.5 Map Miner Method Output Elements 55

3.2.6 Map Miner Tool . 55

3.3 Summary of the Position of the Proposed Approach 55

3.1 Introduction

So far, in chapter 2 process mining and intention mining have been introduced

and detailed with a deep review in the literature. This thesis proposes a novel

process mining approach called Map Miner Method (MMM), which aims at

inferring underlying users’ intentions and strategies from users’ traces recorded

during the process enactment. Therefore, it is important to clarify the position of

MMM regarding the literature of process mining and intention mining fields with

respect to some essential aspects: input elements, mathematical model, techniques

(algorithms, classification, ontologies), objective, and output elements.

As a first step into this direction, since intention play an axial role in the MMM,

it is then worthwhile to clarify its nature in the context of this thesis

44 Chapter 3. Overview of the Proposed Approach

3.1.1 Intention in Map Miner Method

In MMM scope, an intention is defined as an objective or a motivation to achieve

a goal with clear-cut criteria of satisfaction, which users have in mind at a given

time that can be fulfilled by the enactment of a process [Soffer 2005]. The intention

is of high-level of abstraction in the sense that it expresses what users want to

achieve, a state or a result that they want to accomplish. From a technical point

of view, the notion of intention in MMM highly depends on the definition of the

intention in the Map formalism, since MMM formalizes the intentions by using this

formalism. In Map formalism, intentions can be fulfilled with different alternative

ways, i.e., strategies, which facilitate the selection of the appropriate alternative

for achieving the desired goal [Soffer 2005]. According to this formalism, strategies

must lead to intentions. MMM uses this rule to discover the intentions. Indeed,

MMM first estimates the strategies, this part will be explained later in this chapter,

and it uses the relationships between the strategies and intentions defined in the

Map formalism to discover the intentions.

The behaviors of users widely depend on their intentions but not all of these

intentions are detectable; thus, it is important to model the level of precision for

intentions. MMM generates the high-level intentions to obtain the Map process

model and also the low-level intentions to obtain pseudo-Map. These low-level

intentions are so-called sub-intentions. They are the finest intentional objects, which

are associated to a parent intention, and an intention is fulfilled if at least one of

its sub-intention is fulfilled.

Indeed, this multi-level topology is due to the deep architecture of the brain. The

extensive studies on the visual cortex show each sequence of cortex zones contains a

representation of the input and also signals flow from one to the other [Bengio 2009].

In other words, each level of this feature hierarchy represents the input at a dif-

ferent level of abstraction, with more abstract features further up in the hierarchy,

defined in terms of the lower-level ones. Therefore, cognitive processes have a

deep structure and humans organize their ideas and concepts hierarchically. First,

they learn simpler concepts and then compose them to represent more abstract

ones [Bengio 2009].

The relationships between users characterize the hierarchy of their intentions.

Indeed, the intentions could emanate from an individual user or a group of users

when delegating a task from a user to another one or to a group of users (nested

delegation of the tasks). In this case, related intentions are also delegated. However,

these relationships are not detectable directly by event logs. MMM assumes that

each user tends to fulfill own intention in a given process.

3.1.2 Map Miner Method Process Model Formalism

Process mining approaches mainly use Petri nets or BPMN to design process mod-

els. These formalisms have a rigid structure and they do not support unstructured

processes when a sequence of activities vary in different situation or when a process

3.1. Introduction 45

is executed in non-sequential ways. Moreover, they cannot support variability and

flexibility, which makes impossible the adaptability to the context of each user.

The literature suggests several intentional model formalisms, such as

KAOS [Dardenne 1993], Map [Rolland 1999], i* [Yu 2011, Dardenne 1993], Tro-

pos [Bresciani 2004] and GRL [Amyot 2009] among others.

KAOS has a rigid task-decomposition - Refinement cannot be separated from

OR decomposition and AND decomposition, which introduces artificial complexity

in the goal hierarchy; therefore, modeling complex intentional processes is difficult.

Another issue of KAOS is to sort goals according to their level of abstraction and

relate goals when they belong to the same level of abstraction. Furthermore, KAOS

is less involved in the intentional aspect of information systems actors since, it does

not support strategic/organizational goals.

i* modeling language has an operational semantic for the tasks but not for the

goals and it is not used to model strategic goals. i* is not designed to be a variable

framework therefore, it does not afford a high flexibility. The main difficulties

with i* is that it lacks (i) systematic goal refinement mechanisms (all the goals are

defined in the same level), and has no (ii) goal-strategy couple to help clarifying

the multiple ways in which a goal can be achieved. i* models find their limits when

the situation gets complex.

Note that Tropos is an agent-oriented software engineering methodology that

includes i*; GRL is an intentional modeling language based on a subset of i*. Thus,

they both have the same limits as i*.

In short, the aforementioned formalisms do not use an intention as an integral

part of the model due to the fact that these models internalize how the process

is performed and externalize what the process is intended to accomplish in the

goal [Dietz 2005, Rolland 2007].

The Map modeling language is an intentional process metamodel used to

formalize flexible processes. The intentional Map metamodel has been intro-

duced in the information systems engineering domain [Rolland 1999] and was val-

idated in several works: requirement engineering [Prakash 2006], method engi-

neering [Kornyshova 2007], and enterprise knowledge development [Barrios 2004].

Further, it has proved to be effective to specify business processes, user require-

ments, systems functionality, engineering methods, software engineering processes,

etc [Rolland 1999].

Next section will explain the Map metamodel and the Map process model.

3.1.3 Map Metamodel

A Map metamodel allows representing strategy-oriented processes. The Map meta-

model permits specifying processes according to users’ intentions, and different ways

to achieve them, so-called Strategies. The strategies in the Map metamodel provide

the means to capture variability in intention achievement. Thereby confronted to

a specific situation and a particular intention of the user, the process model reveals

the alternative strategies to follow the intentions, and the intentions to pursue.

46 Chapter 3. Overview of the Proposed Approach

Figure 3.1 illustrates the Map metamodel.

Section

0..1Map

Intention

Strategy

StopStart

Target IntentionSource Intention

Thread

Bundle

Path

** *

Is refined by

1

2..*

1 11
00 1 1

has for source has for target

Figure 3.1: The Map metamodel [Rolland 2007]

3.1.3.1 Map Process Model

Map process model is an instance of the Map metamodel presented as a directed

graph (see Figure 3.2). The nodes specify intentions and the edges specify strategies.

Map process model provides a navigational structure that supports the dynamic

selection of the next intention to be achieved and the appropriate strategy to achieve

it. This Map process model is used in Section 4.5 for method validation.

According to this model, users can select ten strategies to fulfill four intentions.

These intentions are Start, Specify an entity, Specify an association and

Stop. Each edge represents a strategy that a user can select to fulfill an intention

(represented as a node) according to his/her situation. For instance, if the cur-

rent situation is Start and the user’s intention is to Specify an entity, there is

only one strategy by completeness of the model to fulfill this intention. When the

current situation and the intention is Specify an entity, there are four strategies

by completeness, by generalization, by specialization, by normalization to fulfill the

3.1. Introduction 47

Specify an

Entity

Start
S1

S2

S3S4
S5

S6

S7
S8

S9
S10

By completeness

of the model

By completeness

of the entity

By generalization By specialization

By normalization

By reference

By completeness of

the association

By completeness

(model correct,

complete,

coherent)

By normalization

By decomposition

Stop

Specify an

Association

Figure 3.2: Prescribed Map process model for construction of E/R dia-

grams [Assar 2000]

same intention. It is possible to continue progressing in the process by selecting

the strategies that lead to the considered intentions but once the Stop intention is

achieved, the enactment of the process is finished.

3.1.3.2 Map Section

A section is a key element of a Map process model, which can be seen as an assembly

of sections [Rolland 2007]. A Map section highlights a consistent characteristic of

the system that stakeholders want to implement through some functionality. A

Map process model is composed of at least two sections. A section can be refined

by another Map process model. It allows decomposing a section to detail it. A

section is composed of ➔Source Intention, Target Intention, Strategy→ for

linking the source to the intended target by a strategy. There are three types of

links between sections [Rolland 2007]: thread, path, and bundle (see Figure 3.1).

Hereafter, they are briefly described:

• Multi-thread: two sections are multi-thread if they have the same source and

target intentions and different complementary strategies such as, strategies

S2 and S4 in Figure 3.2.

• Multi-path: represents a sequence of several sections having the same source

and target intention but defining different paths in the Map. A possible

path can be the sections: ➔ Start, Specify an entity, By completeness of the

model→, ➔Specify an entity, Specify an association, By reference→, ➔Specify

an association, Stop, By completeness→.

48 Chapter 3. Overview of the Proposed Approach

• Bundle: two sections form a bundle if they have the same source and target

intentions but different exclusive strategies such as, strategies S4 and S5.

3.1.4 Map Process Model Advantages

In MMM framework, Map process model is chosen rather than other intentional

process models for several reasons:

• The Map topology: combining intentions and strategies, at different abstrac-

tion levels, allows handling large-scale and complex processes [Rolland 2005b].

Indeed, during its enactment, a process is not limited to linear activities; users,

according to their context, have a variety of choices to perform an activity.

Map process models (instances of Map metamodel) guide the users by propos-

ing dynamic choices according to their intentions. The Map strategies can be

executed non-sequentially and be followed until the fulfillment of intentions.

Thereby, Map process models offer a better adaptability to the context of

each user. Moreover, fulfilling a specific intention with a particular strategy

can be related to a specific guideline defining the activities to perform.

• The Map formalism: it is intuitive and easy to apply and to understand. This

formalism is particularly suitable for representing unstructured processes,

whose sequence of activities may vary according to the situations, or pro-

cesses including variability whose sequence of activities is selected at run time

depending on the situation at hand.

• The Map metamodel supports process variability and flexibility by defining

different strategies to fulfill a given intention. New information systems need

to meet the multi-purposes of several organizations and not only a single

one [Rolland 2007]. Therefore, capturing variability among the intention is

essential. Integrating strategies as an integral part of a process model changes

a system from a mono-purpose to a multi-purpose. This property is unique

to the Map process model.

• Last but not least, the Map process model drives the process by pursuing the

users’ intention to achieve a goal. As a result, goals are explicitly represented

in the process model along with the alternative ways for achieving them.

Thereby, it allows variability in goal achievement and facilitate the selection

of the appropriate alternative for achieving the goal during process enactment.

3.2 Contributions of this Thesis

MMM derives the essential principle of process mining field, which means mining

event logs to find users’ behaviors pattern within a process. However, contrary

to process mining approaches, MMM models users’ behaviors in terms of their in-

tentions and strategies. It adopts intention-oriented process model to design the

3.2. Contributions of this Thesis 49

processes while process mining approaches specify users’ behaviors in terms of se-

quences of tasks and branching. Indeed, intention-oriented process models are an

adequate formalism to guide users through the enactment of their activities since,

the fundamental nature of processes is mostly intentional [Rolland 1998a]. They

allow modeling processes in a flexible way (the notion of sequence does not exist),

variability can be introduced (alternatives path can be followed, different strategies

can be used to achieve the same intention). This kind of process model allows more

creativity than process mining approaches [Rolland 2005b].

Process mining approaches adopt an operational view focusing on how the pro-

cess is performed. In contrast, MMM focus on what the process is intended to

achieve, thus providing the rationale underlying the process, i.e. why the process is

performed. In other words, MMM follows the humans’ intentions during the process

enactment as the force that drives the process, and concentrate on what the process

must do, i.e., on its rationale. Intentions are fundamental to human behavior, play-

ing a central role in both its enactment and its understanding [Chulef 2001]. The

intentions of an individual as well as his/her interactions with computer systems

are essential for understanding and predicting the behavior in which individuals

engage.

Due to the intention-oriented process models properties, some problems iden-

tified in process mining such as hidden tasks, duplicate tasks and loops do not

hinder the intentional process models discovered by MMM. Indeed, the activities

are of less importance with a representation on a higher level (i.e., intentions and

strategies). In contrast, in process mining approaches activities play an axial role

in the process modeling, which makes the discovered process models vulnerable in

the presence of a hidden or duplicated activity in the data logs. MMM framework

supports duplicated activities in the sense that a given activity may exist in differ-

ent strategies/intentions. Regarding hidden activities, they do not impact strongly

the discovered process models, since even though an activity is missing, MMM can

estimate the strategies and discover the intentions. This is due to the nature of

strategies and intentions comprising several activities; if one or even several activi-

ties are missing, others can indicate the right strategies/intentions. Whereas loops

are often a difficult problem to handle in process mining, they are a usual concept

in MMM as in Map process models, a section can be enacted several times, until

the desired intention is achieved.

3.2.1 Map Miner Method Input Elements

The input of MMM, like several process mining approaches, is the temporal set

of users’ activities - interactions of users with a information systems tool during

a time slice ∆ ✏ tN ✁ t0, where t0 is the beginning of the activity performance

and tN is the end. During a time ∆ one or several sequences of activities are

recorded by a tool. These sequences are a trace of activities for that user. The

input of MMM, like several process mining approaches, is the temporal set of users’

activities - interactions of users with a information systems tool during a time slice

50 Chapter 3. Overview of the Proposed Approach

∆ ✏ tN ✁ t0, where t0 is the beginning of the activity performance and tN is the

end. During a time ∆ one or several sequences of activities are recorded by a tool.

These sequences are a trace of activities for that user.

In the MMM, the entire users’ traces that occurred during a process enactment

are analyzed. Note that a process in information systems context is defined as

a sequence of activities linked to each other by a common goal [Rozinat 2010].

Therefore, there are strong correlation and dependency between users’ traces and

they cannot be considered as a single, independent and uncorrelated entity. A

sequence of activities contains more enriched information about users’ intention

than a single activity, and this from both semantic and abstraction level points of

view. Indeed, analyzing a sequence of activities allows determining the high-level

intentions (e.g., organizational goal), while analyzing single activities leads to less

informative low-level intentions, also called basic intentions or action intentions,

which are closer to activities than intentions.

The inputs of intention mining approaches are the single query or activity (indi-

vidual entities) and they do not take into account the logical dependencies between

each input element (see Section 4.2.1 for further information).

Process mining and intention mining approaches are applied for the logs/traces

of one or many users. The MMM analyzes the traces of a group of users realized

while enacting a process.

3.2.2 Map Miner Method Mathematical Model

The mathematical model used in MMM is Hidden Markov Models

(HMMs) [Rabiner 1989]. Among the techniques to model different aspects

of humans’ behavior [Gray 1992], Hidden Markov Models (HMMs) have been

proven to be appropriate for modeling the real world process, particularly unob-

servable cognitive processes [Hayashi 2003, Hoey 2007]. HMMs are stochastic finite

automaton and a special kind of Bayesian Network [Friedman 1997]. HMMs offer

all the properties of the stochastic model in both statistical and probabilistic frame-

work. HMMs have been used in a wide variety of contexts and have proven valuable

in diverse fields such as speech recognition [Juang 1991, Gales 1998, Rabiner 1989],

financial data prediction [Zhang 2004], signal processing [Kil 1996], generic tem-

poral data clustering [Li 1999] and later applied widely in the bioinformatics

field [Martelli 2002, Delorenzi 2002]. Several reasons motivate this choice, which

are described hereafter.

The real-world processes generate a sequence of signals - observable discrete

or continuous symbols (representation of a physical phenomenon) [Rabiner 1989].

Existing physical signals in nature are generally analog or continuous. A signal is

continuous when it is a continuous function of time, such as a speech, an image,

etc. Digital or discrete signals are set of values collected at regularly spaced in-

stants, such as alphabet symbols. The observed signals can be modeled to explain

and characterize their occurrence. This modeling can be used later to identify or

recognize other sequences of observations.

3.2. Contributions of this Thesis 51

The modeled observations could have different forms: linear or non-linear, time-

variant or time-invariant. A linear system has only one dimension (length) and

models the observed symbols as output. A non-linear system has more than one

dimension and the output is not directly proportional to the input. The time-

invariant system output does not explicitly depend on time, contrary to a time-

variant system. By analogy, since traces are random variables, the realization of

traces of activities is not deterministic and follows a stochastic process. Moreover,

the multi-levels topology of users’ activities, strategies and intentions are a time-

variant and non-linear system. Due to the nature of input data - the users’ activities

- and output data - the users’ intentions and strategies - a stochastic model should

be chosen because it allows:

• Describing a given system as a theoretical statistical model, e.g., knowing the

significance of the observed sequences,

• Analyzing the observed sequences over time,

• Modeling and predicting the latent states of these observed sequences,

• Extracting the characteristics of observed and latent sequences.

Intentions express what users intend to perform during the enactment of a

process [Rolland 1999]. More precisely, the enactment of a process is a sequence

of intentions which are fulfilled by several strategies. The activities executed

by a user to fulfill his/her intention are a consequence of the target intention and

the selection of the strategy to fulfill it. These intentions, strategies, and activi-

ties represent the top-down reasoning and acting structure of cognitive processes

of humans’ brain. However, only the low-level part of this structure, i.e., users’

activities, is observable. The middle and high-level part, respectively strategies and

intentions, are abstract notions and therefore unobservable directly. According to

the fuzzy mechanism of a cognitive process, an intention causes one or more ac-

tivities to be performed at time t. A set of activities that is realized to fulfill a

given intention is a strategy. Furthermore, the topology of HMMs is appropriate

to model hidden users’ strategies from observable users’ interactions with the sys-

tem. On the one hand, this is similar to the HMM structure, i.e., hidden states

and observed process. On the another hand, according to the HMM assumption an

event can cause another event in the future and not in the past. This assumption

fits perfectly the prospective structure of intentions since, an intention can cause

another intention in the future but the opposite is not true.

Some process mining approaches use HMMs to reflect the process model on

another level [Herbst 1998]. Their works combine HMMs with another algorithm

to extract workflow models. It does not address the intentional dimension of pro-

cesses. Van der Aalst considers HMMs as versatile and relevant for process mining

but HMMs unsupervised approaches are complicated, since: (a) there are com-

putational challenges due to time consuming iterative procedures, (b) the number

of states (as algorithm inputs) should be known, (c) the result of HMMs is not

52 Chapter 3. Overview of the Proposed Approach

very understandable for the end-user [Van der Aalst 2011c]. Although the first

point is a valid statement, if one overcomes the other issues, it seems worthwhile

to use unsupervised learning of HMMs that is proven to converge to a local op-

timum [Rabiner 1989]. Regarding the second point, there are different techniques

to find the number of states (see Chapter 4). Finally, unlike many other works,

in this thesis HMMs are used to estimate users’ strategies. The notion of strategy

has an understandable semantic for the end-user. Another work uses HMMs as a

conformance checking technique by measuring similarities between Markov models

using a distance metric [Rozinat 2008b]. It enables the stakeholders to evaluate the

quality of mined processes. The workflows modeled in Petri nets are mapped to

HMMs but the hidden states of processes are not taken into account. This thesis

proposes to model the hidden states of an HMM as users’ strategies. However, none

of the aforementioned techniques considers the hidden states of HMMs as humans’

cognitive process (e.g., users’ strategies). The proposition of this thesis to thereby

model an HMM makes a huge difference of the application of HMMs on the logs to

model users’ behaviors.

3.2.3 Map Miner Method Techniques

The process mining approaches use many well-known or particular algorithms, clas-

sification or clustering techniques, ontologies-based techniques, etc. For instance,

they mainly use α-algorithm to model event logs. However, α-algorithm cannot han-

dle noise and certain complicated routing constructs of workflow nets such as loops

and long-term dependencies, particularly during complex situations [Rozinat 2010].

The intention mining approaches use mainly classification techniques to classify a

single input into a class of intention. The choice of classification techniques seems

accurate since, these works try to infer an intention related to a query and then

classify it into a category. They do not consider users’ intentions as a part of the

process enactment. Whereas, in this thesis, due to the multi-levels structure of

MMM (users’ activities, strategies and intentions), there has to be a mathematical

model to set up, at least, a two-level topology for the users’ activities and strategies.

Two tailored algorithms are developed to reconstruct the Map process models in

different levels of precision. The developed algorithms are the Deep Miner algo-

rithm and the Map Miner algorithm. They are briefly explained in Section 3.2.4.

3.2.4 Map Miner Method Objectives

The aim of process mining approaches is to discover the process models, to check the

conformance between the prescribed process model and the discovered one, and to

improve the process models. Most approaches of process mining deal with process

discovery challenge [Rozinat 2010]. However, all of these objectives are based on

discovering the users’ tasks sequences (activities).

MMM tackles mainly the process discovery challenge, which is essential for con-

formance checking and process enhancement. Therefore, MMM takes as inputs

3.2. Contributions of this Thesis 53

users’ traces to generate an intentional model based on users’ intentions and strate-

gies, which differentiates it from process mining approaches in terms of outputs.

The MMM purposes are then defined below:

• Map Discovery: MMM aims at inferring underlying users’ intentions and

strategies with respect to the Map formalism through users’ activities recorded

during process enactment. This allows constructing Map process model.

Chapter 4 discusses in detail the different stages of MMM. Figure 3.3 de-

picts an overview of MMM. The phases of MMM are described as follows:

– Estimation of parameters: this phase aims at estimating the HMMs pa-

rameters. The parameters of an HMM must be estimated by supervised

or unsupervised learning:

∗ Supervised learning allows estimating the parameters of an HMM

by Maximum Likelihood Expectation. It takes as inputs users’ ac-

tivities along with related strategies and the outputs are transition

and emission matrices. Therefore, the supervised learning require-

ment to the traces of strategies makes it a costly technique, since

the users’ should label their activities. However, supervised learning

has some advantages: it allows validating the proposed hypothesis

from a practical point of view. The supervised learning also allows

checking the conformity of the prescribed models and the discovered

models.

∗ Unsupervised learning allows estimating the parameters of an HMM

by Baum-Welch algorithm. It takes as inputs users’ activities and

number of strategies and the outputs are transition and emission

matrices. Unsupervised learning has some advantages: it do not re-

quire the traces of strategies related to the traces of activities. This

makes it an easy technique to use and to automate the method.

In addition, unsupervised learning is more efficient than supervised

learning. In other words, the results obtained by unsupervised learn-

ing are more likely to reflect actual relations between traces than

supervised learning.

HMMs use transition and emission matrices to model observed ac-

tivities in terms of hidden strategies.

– Deep Miner algorithm: this algorithm is developed to discover sub-

intentions and thereby reconstructs pseudo-Maps. Deep Miner algorithm

uses the new metric of fitness and precision, which has the interesting

property of taking into account both fitness and precision to optimize

the Map process models. Deep Miner uses Map formalism to define the

topology of a Map.

– Map Miner algorithm: this algorithm groups sub-intentions into

high-level intentions and thereby reconstructs Map process model.

54 Chapter 3. Overview of the Proposed Approach

Deep Miner Algorithm

Pseudo-Map

Activities and

 related Strategies

S1

. . .

Hidden Markov Models

Estimated

Strategies

Maximum Likelihood

Expectation
Baum-Welch Algorithm

Supervised Learning Unsupervised Learning

Map Miner Algorithm

Discovered

Map Process Model

Estimated

Emission and Transition

 Matrices

Estimated

Emission and Transition

 Matrices
Phase 1 : HMM Parameters

 Estimation

Users

. . . Intentions

Activities

S2 SN

A1 A2 AN

Estimated

Strategies

Phase 2 : Deep Miner

Phase 3 : Map Miner

Activities

Traces

Base

Intentions

Traces

Base

Figure 3.3: Overview of Map Miner Method Framework

To do so, Map Miner algorithm uses a clustering algorithm, K-

means [Hartigan 1979] to group the sub-intentions into the intentions.

As explained earlier, this multi-level topology is due to the deep archi-

tecture of the brain and the fact that humans organize their ideas and

concepts hierarchically. An algorithm is also developed to rebuild the

3.3. Summary of the Position of the Proposed Approach 55

Map process model from clustered sub-intentions.

• Discovery of Map path: the event logs repository from the enactment of pro-

cess allows finding the most likely sequence of strategies related to a sequence

of activities. This sequence of strategies is a path in the Map process model

(see Figure 3.4).

Users

Traces.

.

. Hidden Markov Models

Estimated Strategies

Sequence Viterbi

Algorithm

Maximum Likelihood

Intentions

Strategies related to

the traces

Discovered Map Path

Intentions

Figure 3.4: Discovery of Map path with supervised learning

3.2.5 Map Miner Method Output Elements

The outputs of process mining approaches are generally process models or work-

flows. The output of intention mining approaches are single intentions. Whereas in

MMM context, the output is a Map process model discovered from traces.

3.2.6 Map Miner Tool

Map Miner is a tool developed to automate the construction of Map process models.

It is a portable tool since it is implemented in Java; thus, it can be plugged into

other platforms such as ProM. The Map Miner tool can be customized to gener-

ate the tailored Map process models. This is possible by adjusting different inputs

parameters. Map Miner has a simple interface, which enables users readily manipu-

lating the parameters, the input files and allows visualizing the Map process models

in different levels of abstraction. Map Miner is also equipped with a DataBase Man-

agement System (DBMS). This embedded database allows importing directly the

traces from another database. Map Miner tool is described in chapter 6.

3.3 Summary of the Position of the Proposed Approach

Table 3.1 gives a summarized synthesis of process mining, intention mining ap-

proaches and MMM over different aspects. As found in this table, the input of

process mining and intention mining approaches are either users’ traces or users’

logs. The input of MMM is the traces of users, which contain users’ activities. While

56 Chapter 3. Overview of the Proposed Approach

the process mining approaches analyze data from either individual user or the group

of users. The intention mining approaches make an individual processing. MMM

analyzes data from group of users enacting a given process. Some process min-

ing approaches use mathematical models to design the logs. The intention mining

approaches generally do not use mathematical model. MMM uses also a mathe-

matical model, which diverges from other approaches in the proposed conception.

The process mining approaches use mainly α-algorithm and also many other par-

ticular algorithms developed for each approach. The intention mining approaches

also use algorithms designed for special needs of a particular approach or the algo-

rithms related to machine learning techniques. The process mining and intention

mining approaches use the classification (or clustering) techniques to classify the

extracted logs. MMM also uses a clustering technique to classify sub-intentions into

high-level intentions. Whereas the process mining approaches rarely use ontologies

(see Chapter 2), the approaches of intention mining use them more often. MMM

does not use ontologies to infer the names of strategies and intentions, this part is

manually done. The objectives of process mining is discovery, conformance check-

ing, enhancement, and recommendation. So far, the intention mining approaches

mainly have focused on intention discovery and providing recommendations for the

end-user. MMM mainly focuses on Map process model discovery. The outputs

of the process mining approaches are activity-oriented process models or workflow

models. The intention mining approaches outputs are mainly single users’ inten-

tions. They do not generate intentional models. MMM generates intention-oriented

process models (Map process model).

3
.3
.

S
u
m
m
a
ry

o
f
th

e
P
o
sitio

n
o
f
th

e
P
ro

p
o
se
d

A
p
p
ro

a
ch

5
7

Research Works Input Users’

Sources

Mathematics

Model

Learning Classification Ontologies Objective Output

MapMinerMethod Traces Collective HMMs Baum-Welch,

MLE, Viterbi

K-means Discovery Map

process

model

Process Mining ap-

proaches

Logs,

Traces

Collective,

Individual

HMMs α-algorithm,

Many others

✂ ✂ Discovery,

Recom-

mendation,

Confor-

mance,

Enhance-

ment

Petri

nets,

BPMN,

EPCs,

etc

Intention Mining

approaches

Logs,

Traces

Individual ✂ ✂ ✂ Discovery,

Recommen-

dation

Intentions

T
a
b
le

3.1
:

S
u
m
m
a
ry

of
p
ro
cess

m
in
in
g,

in
ten

tion
m
in
in
g
ap

p
roach

es,
an

d
M
ap

M
in
er

M
eth

o
d

Chapter 4

Proposed Method: Map Miner

Method

Contents

4.1 Presentation of the Example 59

4.2 The Products of the Method 60

4.2.1 Input of MMM . 60

4.2.2 Users’ Activity . 61

4.2.3 Strategies, Intentions . 62

4.2.4 Pseudo-Maps and Sub-intentions 63

4.2.5 Transition and Emission Matrices 64

4.2.6 Fitness and Precision Metric 65

4.3 The Proposed Method . 66

4.3.1 Applying Hidden Markov Models 66

4.3.2 Estimating Model Parameters 70

4.3.3 Developing Deep Miner Algorithm 76

4.3.4 Developing Map Miner Algorithm 83

4.4 Method for the Discovery of Map Path 87

4.5 Method Exemplification . 88

4.5.1 MMM Using Supervised Learning 88

4.5.2 MMM Using Unsupervised Learning 92

4.5.3 Discussion and Threats to Validity 99

4.6 Validating the Method for the Discovery of Map Path . . . 102

4.7 Conclusion . 108

This chapter presents in detail the different parts of the proposed method Map

Miner Method (MMM). The method is exemplified through a single example that

is presented in the next section.

4.1 Presentation of the Example

A single example will be used throughout this chapter to exemplify the validation of

the proposed method step-by-step. To do so, a tailored experiment was conducted

60 Chapter 4. Proposed Method: Map Miner Method

with 66 Master students in computer science of the University Paris 1 Panthéon-

Sorbonne. Table 4.1 presents the profile of the students. In this example, the

students were asked to follow a prescribed Map process model (prescribed Map in

short) presented in the Figure 3.2. This prescribed Map guides users through the

creation of Entity/Relationship (E/R) diagrams (The original Map was proposed

in [Assar 2000]). A web application developed in HTML, PHP, JavaScript and

MySQL to record the users’ traces. This application records traces of executions

carried out by the students during the creation of their diagrams in a database.

Total Average age Sex Master degree

male female 1st year 2nd year

66 24,4 49 17 48 18

Table 4.1: Profile of the Students

4.2 The Products of the Method

This section gives the definition of the products used and produced by the method.

4.2.1 Input of MMM

Raw data is hidden in all kinds of data sources. Nevertheless, this does not mean

that data is well-structured. The event logs are typically distributed over data

sources and often some efforts are required to filter the relevant data. In other words,

the most interested parts of event logs for mining process (i.e., users’ activities)

should be extracted from non-filtered event logs. Indeed, non-filtered event logs

contain not only the users’ activities but also the other information depending

upon the context. The data that can be used as input of MMM must be a well-

structured and filtered (i.e., users’ activities). The process of filtering the relevant

data involves extracting users’ activities from non-filtered event logs, which contains

users’ identifier, users’ activities, and timestamps, etc. This stage could be done

manually or by using code Snippets. In this thesis this part is done manually.

Table 4.2 depicts a fragment of non-filtered event logs, for the example.

UserID TraceID Timestamps MapSIDActivities ☎ ☎ ☎

45 7 31/10/2012 14:54:00 1 Create entity ☎ ☎ ☎

22 1 31/10/2012 15:14:00 4 Create generalization link ☎ ☎ ☎

61 2 23/10/2012 08:54:00 10 Create attribute ☎ ☎ ☎

12 8 31/10/2012 14:54:00 7 Create association ☎ ☎ ☎

45 7 23/10/2012 09:41:00 2 Link attribute to entity ☎ ☎ ☎

38 4 23/10/2012 09:45:00 8 Delete association ☎ ☎ ☎

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

Table 4.2: A fragment of the trace for the example

4.2. The Products of the Method 61

This table illustrates the typical information related to a single process in logs

data. Each line represents an event containing data such as, UsersID, TraceID,

Timestamps, MapSID (MapSectionID), Activity. These event logs can be enriched

with some more information, i.e., with annotations of the user while performing an

activity in the system or after the completion of the activity, which give informa-

tion about the rationale underlying the activities. For instance, in the example, the

students annotated their executions. Some additional information is also recorded

per event. For example, MapSID is recorded for each event log in this particular

example (see Section 3.1.3.2 for the definition of the Map section). The event also

contains a userID that identifies the user who is performing the activity. More-

over, all events have timestamps, which means date and time information such as,

’23/10/2012 09:41:00’. This information plays a key role for MMM since it deter-

mines when exactly a given user performs an activity and what are his/her next

activities. This allows knowing about the ordering and dependencies of activities,

which are essential for the modeling phase. These temporal set of activities per-

formed by a given user are the trace of activities of that user. A trace of activities is

result of interactions of a user with an information system tool during a time slice

∆ ✏ tN ✁ t0, where t0 is the beginning of the activity performance and tN is the

end. During a time ∆ one or several sequences of activities are recorded by a tool.

The properties of trace in MMM context are given as follows:

• A trace consists of events such that each event relates to the enactment of an

activity.

• Events within a trace are ordered.

• Traces may belong to different instances of a process.

• The events within a user’s trace must be ordered in terms of timestamps to

discover causal dependencies in the process enacted by users.

The input of MMM is the users’ traces.

4.2.2 Users’ Activity

The activities are the interactions of a user with an information system software

recorded by a tool. To fulfill a given intention, users have to carry out one or several

activities through an information system tool. There are different kind of activities

with respect to the users’ relationships, intentions and environments: intentional

or accidental activities. The intentional activities result from an intentional deci-

sion made by a user while accidental activities are outcomes of a non-intentional

user’s behavior. The accidental activities are probably produced by mishandling of

keyboard, internal system tools interactions, errors of OS, errors of IDE, etc.

In MMM, the assumption is that an activity is the result of interactions of a user

with an information system. Thus, there is neither task delegation between users

nor nested-intention. Therefore, all kind of recorded activities are performed by

62 Chapter 4. Proposed Method: Map Miner Method

a user on information system with his/her own intentions. This definition encom-

passes intentional actions of users. The non-intentional and accidental activities are

overlooked by MMM. Table 4.3 represents a fragment of activities related to the

example. As it can be noted in this table, the activities appear with an index such

as a1, which represents the ’Create an entity’ activity.

Index Related activities

a1 Create an entity

a2 Link attribute to entity

a3 Create an association

Table 4.3: A fragment of activities for the example

In MMM context, the following associations and cardinalities exist between

activities and traces within every process:

• Every process may have an arbitrary number of activities.

• Every trace belongs to precisely one process.

• Every event refers to precisely one trace.

• Every activity has attributes such as a name that makes it human-

understandable.

4.2.3 Strategies, Intentions

The definition of a strategy, a sub-intention, and an intention in this thesis, are

given in Chapter 3. Here, they are investigated from a technical point of view.

A strategy is a set of activities performed together. These activities are intercor-

related and dependent to each other. For instance, in Table 4.2.3 the set of activities

a1 and a3 constitutes the strategy by generalization and the set of activities a1 and

a4 constitutes the strategy by specialization. As the activity a1 is defined common

to two strategies, which means an activity can be mixed with other activities to

constitute different strategies. Note that the order of strategies is not important in

MMM. For instance, to select the strategy by specialization the user can perform

first the a1 activity and then the a4 activity or vice versa.

Strategies Related Activities Activities

Index

4 by generalization
Create entity, Create generalization link

a1, a3

5 by specialization Create entity, Create specialization link a1, a4

Table 4.4: Strategies and related activities

4.2. The Products of the Method 63

According to the Map semantic, the strategies must lead to the intentions.

Therefore, once the topology of the strategies is discovered, intentions can be in-

ferred as the targets of the strategies. For instance, the strategies by generalization

and by specialization both lead to the intention Specify an entity (see Figure 3.2).

Consequently, if these strategies are discovered, it is possible to find the node to

which they lead, which means the intention Specify an entity. The intentions are

shown by the large nodes in Figure 4.1.

4.2.4 Pseudo-Maps and Sub-intentions

By using MMM with the traces of the example it occurs that the intentions that

MMM discovers have a higher degree of precision in the sense that they are more

precise than the prescribed intentions. The notion of sub-intentions does not exist

in the Map semantic. This led us to creation of a new concept in Map formalism:

sub-intentions. Therefore, this notion can be considered as an extension of the

Map metamodel. As defined in Chapter 3, sub-intentions are the finest intentional

objects, which are associated to a parent intention, and an intention is fulfilled if

at least one of its children sub-intention is fulfilled. They are shown with small

nodes in Figure 4.1 and indexed by SI1, SI2, ☎ ☎ ☎. A process model containing the

sub-intentions, the strategies, Start intention and Stop is called a pseudo-Map.

MMM first discovers the sub-intentions and then it clusters sub-intentions into

high-level intentions to obtain a Map process model.

Start Stop

SI-1 SI-9

SI-7

SI-4 SI-8

SI-3

SI-2

SI-6SI-5

S1

S1

S1

S2S3
S2

S4
S4

S4

S5

S6

S6

S7
S7

S7

S8

S8

S9

Intention Sub-intentionsIntention

S10

S10

Strategy

Figure 4.1: Strategies, sub-intentions, and intentions

The relationships between users’ activities, strategies, and intentions are defined

as: performing one or several activities relates to the enactment of a strategy and

consequently to the fulfillment of an intention. The relationships between users’

activities and strategies are defined in the matrices. This is explained in the next

section.

64 Chapter 4. Proposed Method: Map Miner Method

4.2.5 Transition and Emission Matrices

The relationships between users’ activities and strategies as well as the correlation

within strategies are the parameters of a Hidden Markov Model (HMM), which can

be estimated from data and expressed by two matrices:

• Emission matrix: it describes the occurrence of activities in strategies of a

process. In other words, emission matrix elements allow knowing how many

times a given activity appears in a given strategy. The related probabilities

are called emission probabilities.

• Transition matrix: it describes the transitions probabilities between all the

strategies in a process. The transitions are the changes of strategies from one

to another and the related probabilities are called transitions probabilities.

The probability distribution of the initial state (strategy), defined by π, must

also be initialized. It is essential to compute the emission and transition matrices.

For instance, let us assume the initial probability of the transition matrix is: π ✏

t1, 0, 0, 0✉. Each value corresponds to an intention of the example. The first value

expresses the probability that a user at time step t has the intention Start is

one. The second value expresses the probability that a user at time step t has the

intention Specify an entity is zero, and so forth. This assumption is rational

since according to the prescribed Map (Figure 3.2) the intention Stop cannot be

achieved unless Specify an association is already achieved and this latter can

only be achieved if Specify an entity have been achieved earlier.

To illustrate the relationships between activities and strategies, let us consider

a case with three strategies tS1, S2, S3✉ and three activities ta1, a2, a3✉. The MMM

parameters are described by the probability distribution of the initial strategy and

by two matrices of emission and transition:

A 3 ✂ 3 matrix for the emission probabilities of activities for each strategy,

denoted by E:

E ✏

☎
✆E1♣a1q E1♣a2q E1♣a3q

E2♣a1q E2♣a2q E2♣a3q

E3♣a1q E3♣a2q E3♣a3q

☞
✌

A 3✂ 3 matrix for the transition probabilities of strategies denoted by T:

T ✏

☎
✆T♣S1, S1q T♣S1, S2q T♣S1, S3q

T♣S2, S1q T♣S2, S2q T♣S2, S3q

T♣S3, S1q T♣S3, S2q T♣S3, S3q

☞
✌

For instance, the value associated to T♣S1, S2q expresses the probability of tran-

sition from the strategy S1 to the strategy S2 or the value associated to E3♣a2q

4.2. The Products of the Method 65

expresses the probability that the activity a2 appears in the strategy S2 (the sec-

ond column represents strategy S2). Note that the auto-transitions (loops) such as

T♣S1, S1q signifies the probability that a user continues to perform the activities

related to the strategy S1.

Note that the emission and transition matrices must be initialized for the first

execution. This initialization is arbitrary. In this thesis the initialization of these

matrices are realized as follows:

E ✏

☎
✆1④3 1④3 1④3

1④3 1④3 1④3

1④3 1④3 1④3

☞
✌

T ✏

☎
✆0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8

☞
✌

In the emission matrix, each element of the matrix takes a value equal to
1

Numberofcolumns
. The rationale behind this initialization is that it is assumed that

all the activities existing in the traces can be presented in each strategy.

For the transition matrix, the procedure of initialization is different. The diago-

nal elements have higher values than other elements. The diagonal values represent

the transitions of each strategy to it-self. In other words, the time taken to real-

ize completely the strategy. This is due to the structure of the strategies that are

composed of activities. Indeed, the realization of a given strategy involves the real-

ization of all the activities that belong to it. The realization of a strategy takes then

more time than the realization of a single activity. Therefore, the value assigned

to the diagonal elements should be higher than other elements. In this thesis, the

assumption is an arbitrary value of 0.8 for the diagonal elements and 0.1 to the

other elements.

4.2.6 Fitness and Precision Metric

The discovered Map process models are supposed to reflect what really happened

during a process enactment. An ideal discovered Map process model contains inten-

tions and strategies coinciding with the frequent intentions and strategies as they

really happened in a process.

Assuming that a given process would be observed ad infinitum:

• A non-fitting model is unable to characterize the process as it is actually

enacted. This kind of model is not even able to reflect the traces used to

estimate the model parameters.

66 Chapter 4. Proposed Method: Map Miner Method

• An over-fitting model lacks generalization, which means some traces do not

fit into this kind of model.

• An under-fitting model suffer from the opposite problem, which leads to a

lack of precision and allows behavior that would never occur.

Therefore, a good balance between over-fitting and under-fitting is of the utmost

importance for Map process model discovery.

While there have been some research and progress in the process mining field to

improve the quality of process models, a common framework to assess the quality

of produced process model results is still lacking [Rozinat 2007]. However, the

need for a framework that allows comparing the performance of the algorithms and

evaluating the validity of the process model results seems fundamental.

This metric has the interesting property of taking into account both Fitness and

Precision to optimize the Map process model, whereas classical metrics in process

modeling address either fitness or precision (see [Rozinat 2007] for an overview of

the existing metrics). The fitness refers to how many intentions and strategies in

the traces are correctly captured (or can be reproduced) by the Map process model.

The precision refers to how many more intentions and strategies are captured in

the Map process model than was observed in the traces.

This metric will be detailed in Section 4.3.3, in which the question of How

to extract a Map process model that is not underfit, overfit, nor non-fit? will be

addressed.

4.3 The Proposed Method

4.3.1 Applying Hidden Markov Models

An HMM can be considered as the simplest Dynamic Bayesian network

(DBN) [Murphy 2002]. The framework of HMMs in MMM context raises the fol-

lowing questions:

• Given a sequence of activities, how to estimate the transition and emission

probabilities of the HMM model?

• What is the probability that the model of HMM generates a given activities

sequence?

• What are the most likely strategies associated to a given activities sequence?

As explained in chapter 3, HMMs have proven to be appropriate for modeling

the real world processes, particularly unobservable cognitive states [Hayashi 2003]

such as underlying users’ strategies. Beside, it turns out that the topology of HMMs

is particularly adapted to model the relations between strategies and activities in

the Map formalism. To make it clear, let us consider an example for a Map process

model enacted with 2 strategies and an HMM realized with 2 hidden states (see

4.3. The Proposed Method 67

Figure 4.2). As shown in this figure, strategies are used to move from one intention

to another and are made of one or several activities. For instance, the strategy 1

allows moving from intention a to intention b and it is made of activities a1, a3
and a4 (the order is not important). The same structure can be found in an HMM,

where hidden states generate observations. In other words, hidden state 1 generates

the activities a1, a3 and a4. This similar topology motivates using HMMs to model

hidden states as strategies and the transitions between the strategies as intentions.

The Section 4.3.3 will describe how to obtain the intentions from the transitions.

Hidden

State1

Intention bIntention a
Strategy1 Strategy2

a1

a1

a4

a4

a3

a3

a4 a7

a7a4

Hidden

State2

Enactment of a

process with Map

Realization of

 an HMM

Figure 4.2: An example for a Map process model enacted with 2 strategies (above)

and an HMM realized with 2 hidden states (below)

There are several algorithms that allow estimating the model parameters as

explained in Section 4.3.2.

4.3.1.1 Mathematical Definition of HMMs

HMMs are stochastic Markov chains used for modeling a hidden sequence by a finite

number of states. HMMs allow modeling the structure of complex temporal depen-

dencies. In order to use HMMs, one needs to determine their topology and estimate

their statistical parameters. The flexible nature of HMMs, due to their topological

structure, allows defining dependencies between hidden states and observed data

from the past to the future ones, according to the context.

HMM consists of two complementary Markov processes: hidden and observed

processes. The states of hidden processes generate the symbol of observed processes.

The states in hidden processes are not visible but the probability of being in a given

state can be inferred by computing the Maximum Likelihood (ML) of symbols in

68 Chapter 4. Proposed Method: Map Miner Method

observed process. Thus, there are two probability parameters: probabilities of the

symbol emission and the probabilities of the states transition.

Let X be a stationary and discrete source which generates a random observable

sequence ♣xℓ, ☎ ☎ ☎ , xℓq, of length ℓ. The generation process follows a Markov chain

of order m (or with memory m), where m is finite, if the transition probability from

one state to another depends on the m previous states. The choice of the order of

Markov process (m) allows determining how far in the past one has to look to know

the probability of the next state. The generation process can be written as follows:

Pr♣Xℓ ✏ xℓ⑤X♣ℓ✁1q ✏ x♣ℓ✁1q, X♣ℓ✁2q ✏ x♣ℓ✁2q, ☎ ☎ ☎ , X1 ✏ x1q ✏

Pr♣Xℓ ✏ xℓ⑤X♣ℓ✁1q ✏ x♣ℓ✁1q, X♣ℓ✁2q ✏ x♣ℓ✁2q, ☎ ☎ ☎ , X♣ℓ✁mq ✏ x♣ℓ✁mqqforℓ → m

(4.1)

4.3.1.2 Hidden Markov Models Adapted to MMM

Hereafter, the formal definition of HMM and different learning approaches to com-

pute their parameters are discussed.

On the one hand, in the Map metamodel, strategies are used to move from

one intention to another. A strategy is made of one or several activities; conse-

quently, intentions are not directly related to activities. Furthermore, activities

are observable through event logs while strategies are hidden and must be inferred

from observations. On the other hand, the topology of HMM permits modeling

observed process (observations) in terms of hidden states (hidden part of obser-

vations). Therefore, to model the relationships between activities and strategies,

HMM models activities as observed process and strategies as hidden states. Inter-

estingly, this model also allows inferring intentions since once a strategy is inferred

from activities, according to the Map formalism, a strategy leads to a target inten-

tion.

For this reason in this framework, the hidden states of HMM are modeled as

users’ strategies and the observed process as users’ activities. The set of possible

strategies is denoted as S and A as the set of possible activities.

For both Markov processes of an HMM, i.e., hidden and observed processes, the

topology (the order of the Markov process) is defined next.

4.3.1.3 Topology of HMM in MMM Framework

For each Markov process of an HMM, i.e., for the hidden and the observed process,

the topology (the order of process) must be defined. When the transition to the

next state depends only on the current state, the Markov chain is of order 1 (model

M1). When the transition to the next state does not depend on any state, the

Markov chain is of order 0 (model M0). The M1M0 topology is chosen to model

activities and related strategies. M1 is chosen to model the users’ strategies and

M0 is chosen to model the users’ activities. This choice is justified by the fact that

strategies are performed in a logical order by users; thus a strategy in step ℓ impacts

the transition to the next strategy in the step ℓ� 1. Even though the chosen model

4.3. The Proposed Method 69

for users’ activities is M0, an activity in a given step depends indirectly on the

previous performed activity.

4.3.1.4 Hidden process: users’ strategies

Let s ✏ ♣s1, . . . , sLq P SL be a temporal sequence of users’ strategies of length L.

The topology M1 is chosen for hidden process, which means that the strategy sl at

step l only depends on the strategy at step ℓ ✁ 1. A homogeneous Markov chain,

which parameters are denoted by T and π, models the hidden process of strategies

with:
T♣u, vq ✏ Pr ♣sℓ ✏ v⑤sℓ✁1 ✏ uq ❅u, v P S, ℓ P r2, Ls ,

π♣uq ✏ Pr ♣s1 ✏ uq ❅u P S.
(4.2)

The vector π contains the probabilities of strategy at the initial state and the

matrix T contains the transition probabilities for the following strategies, i.e., the

transition probabilities from any strategy at step ℓ✁1 to any other strategy at step

ℓ (including itself).

4.3.1.5 Observed process: users’ activities

Let a ✏ ♣a1, . . . , aLq P AL be the temporal sequence of users’ activities of length L.

The model M0 is chosen for observed process, meaning that the emission of aℓ, at a

given step ℓ, does not depend on any previous observation. It only depends on the

hidden strategy at the same time step. The emission probability of an observation

a P A for a given strategy u P S is given by:

E♣a, uq ✏ Pr ♣a⑤uq . (4.3)

The matrix E contains the emission probabilities of any activity for any strategy.

Assuming that S, A and π are known, the HMM model is fully described by H ✏

tE,T✉, which represents the core information about the HMM behavior.

The transition probabilities are the probabilities of a hidden state at step ℓ to

reach another hidden state at step ℓ� 1 (or to stay in the same state). Let N ✏ ⑤S⑤

and M ✏ ⑤A⑤ be the cardinals of S and A, i.e. the total number of hidden states

and observed data, respectively. The following constraints must be verified by the

parameters of an HMM:

N➳
v✏1

T♣u, vq ✏ 1,
M➳
a✏1

Eu♣aq ✏ 1,❅u P S (4.4)

where

T♣u, vq ↕ 1,❅♣u, vq P S;Eu♣aq ↕ 1,❅u P S,❅a P A (4.5)

From an initial hidden state given by π, an observation is generated according to

E, then and for each step of the process a new hidden state is generated according

to T and a new observation is generated according to E.

70 Chapter 4. Proposed Method: Map Miner Method

Figure 4.3 illustrates an example of the relationships between hidden states,

observations as well as transition matrix T, and emission matrix E in an HMM.

For instance, T♣State3, State2q represents the transition probability from State3

to State2 and E3♣a2q represents the emission probability of observation a2 in the

state State3. As mentioned earlier in MMM, the observations represent the users’

activities and the hidden states represent users’ strategies. Henceforth in this thesis,

the activities and the strategies are used instead of observations and hidden states,

respectively.

State2 State3

State1

T(State1,State1)

T(State2,State2) T(State3,State3)

T
(S

tate1,S
tate3)

T
(S

tate3,S
tate1)

T
(S

ta
te

2
,S

ta
te

1
)

T
(S

ta
te

1
,S

ta
te

2
)

T(State3,State2)

T(State2,State3)

E1(a1)

a1

a2

a3

E1(a2)

E1(a3)

E3(a3)

E2(a3)

E2(a2)

E3(a2)
E3(a1)

E2(a1)

a1

a2

a3
a1

a2

a3

Figure 4.3: Example of the relationships between hidden states, observations, tran-

sition matrix T, and emission matrix E

4.3.2 Estimating Model Parameters

As discussed in Section 4.3.1.2, MMM highly relies on the emission matrix E and

the transition matrix T to respectively characterize the occurrence of activities in

each strategy and the transition probabilities from one strategy to another. For

these reasons, it is extremely important that these two matrices precisely match

the process under study. Therefore, it is essential to choose a learning approach to

estimate the model parameters (H = {T and E}) which fit process model optimally.

Estimating the parameters of an HMM depends on the learning approach.

As mentioned in Section 3.2.4, there are two learning approaches for estimating

these matrices: Supervised or Unsupervised learning. These approaches, their condi-

tions of use as well as their respective performances are discussed in sections 4.3.2.1

and 4.3.2.2. Figures 4.4 and 4.5 depict an overview of supervised and unsupervised

learning.

4.3. The Proposed Method 71

4.3.2.1 Supervised Learning

Supervised learning aims at learning E andT. If a sequence of activities ♣a1, . . . , aLq

is available and the corresponding strategies are known, using the Maximum-

Likelihood Estimation (MLE) [Myung 2003], this approach estimates the parame-

ters T♣u, vq and Eu♣aq such that they analytically maximize the likelihood of having

simultaneously the strategies ♣s1, . . . , sLq and the sequence of activities ♣a1, . . . , aLq.

Figure 4.4 depicts an overview of supervised learning.

Users Discovered Map

Supervised

Learning of

HMM

Emission and Transition

 matrices

Activities
Deep

Miner

Map

Miner

Estimated

Strategies

Related

Strategies

Figure 4.4: Overview of supervised Map Miner Method

Conditions of Use:

The conditions under which supervised learning can be used are very restrictive

and the results might be biased. The application of this approach requires the

knowledge of:

• The sets activities A and strategies S,

• Some sequence of activities ♣a1, . . . , aLq and their associated sequences of

strategies ♣s1, . . . , sLq.

While the knowledge of A and ♣a1, . . . , aLq is generally not an issue (the possible

activities of a given process are usually known and are recorded in traces), the

knowledge of S and ♣s1, . . . , sLq is more problematic. Indeed, since strategies are

the cognitive operators, the usual way to obtain the set S is to refer to experts. Since

human judgment is involved, the obtained set S can be biased. The argument is

that in a cognitive context such as a human’s strategy and intention, it is impossible

to properly label the training data, because this information is not observable.

Moreover, human bias [Tversky 1974] is unavoidably introduced into training data

labeling, which significantly impacts the learning process and may produce incorrect

or uninformative process models. Moreover, strategies are usually not recorded in

traces [Khodabandelou 2013]. Applying this learning method implies to conduct

experiments specially designed to record traces of activities and traces of strategies.

This condition highly restricts the range of use of this method in large-scale.

72 Chapter 4. Proposed Method: Map Miner Method

Performance:

Given N sequences of activities ♣a1, . . . , aLq and their associated N sequences of

strategies ♣s1, . . . , sLq, the aim of supervised learning is to find the couple ♣E✝,T✝q

which maximizes the likelihood of generating ♣a1, . . . , aLq and ♣s1, . . . , sLq:

♣E✝,T✝q ✏ argmax
E,T

N➵
n✏1

Pr ♣an⑤sn,E,Tq (4.6)

Obtaining the coefficient of T✝ amounts to counting the number of transitions from

one strategy to another and obtaining the coefficients of E✝ amounts to counting

the number of occurrences of each activity during each strategy, as shown below:

T✝♣u, vq ✏
Num♣u, vq➦

wPS Num♣u,wq
, ❅♣u, vq P S2, (4.7)

E✝♣u, aq ✏
Num♣a⑤uq

Num♣aq
, ❅u P S, ❅a P A, (4.8)

where Num♣u, vq denotes the number of transitions from strategy u to strategy

v in the traces ♣s1, . . . , sN q, Num♣aq denotes the number of occurrences of activity a

in ♣a1, . . . ,aN q and Num♣a⑤uq denotes the number of occurrences of activity a while

the strategy is u, in ♣s1, . . . , sN q and ♣a1, . . . ,aN q. The computation complexity of

this method is very low since all the coefficients of E✝ and T✝ can be directly

computed from the traces used for learning with (4.7) and (4.8).

The set of training sequences ♣a1, . . . ,aN q and ♣s1, . . . , sN q, is extremely impor-

tant for the accuracy of the estimation of E✝ and T✝. If the set contains few traces,

or they are not fully representative of all the traces that can be produced by the

process, the HMM model learned out of it might suffer underfitting issues. From

a practical point of view, this issue is common since the conditions to get usable

training traces are complex (resulting in few usable traces).

4.3.2.2 Unsupervised Learning

Unsupervised learning estimates the matrices E and T based only on traces of

activities. Since there is no prior knowledge on the strategies set S, this method is

significantly less biased than supervised learning but the associated computational

complexity is high. Figure 4.5 depicts an overview of unsupervised learning.

The Baum-Welch algorithm (BWA) [Baum 1970] is the most commonly used

algorithm in HMM framework to estimate the model parameters E and T. Given N

observed sequences of activities ♣a1, . . . ,aN q, the BWA finds the HMM parameters

that locally maximize the probability of having these sequences generated by the

HMM. More precisely, the BWA maximizes the likelihood of H.

BWA makes use of the Expectation Maximization (EM) algo-

rithm [Dempster 1977]. The aim of the EM algorithm is to estimate the

MLE or maximum a posteriori of the statistical models (with latent variables)

4.3. The Proposed Method 73

Users Discovered Map

Unsupervised

Learning of

HMM

Emission and Transition

 matrices

Activities
Deep

Miner

Map

Miner

Estimated

Strategies

Figure 4.5: Overview of unsupervised Map Miner Method

parameters in an iterative way. The EM algorithm consists in two steps that

alternate between an expectation (E-Step) and a maximization step (M-step).

The E-step consists in evaluating the log-likelihood of observations given the

current HMM parameters. The M-step consists in updating the parameters of the

HMM to increase the log-likelihood found in the E-step. The parameters found in

the M-step are then used as the starting point of a new phase of E-step to determine

the distribution of the latent variables. The iterations stop when the parameters of

the HMM have converged. The E-step of the EM algorithm requires initial model

parameters, arbitrarily chosen. Through this iterative procedure, it is proven that

the BWA converges to a local optimum [Rabiner 1986]. This property ensures that

the parameters found by the BWA are locally the parameters with the highest

probability of generating the observed activities.

Conditions of Use:

For unsupervised learning, the required knowledge includes the set of activ-

ities A, some traces of activities ♣a1, . . . , aLq and the cardinality of the set ⑤S⑤,

i.e., the number of possible strategies. Regarding strategies, neither the set S nor

some traces of strategies ♣s1, . . . , sLq should be known, only the number of possible

strategies is required. This parameter can be chosen by experts (e.g, as a way to

set the level of complexity of the model) or can be set with techniques such as

BIC [Burnham 2002] (see 4.3.2.4 for more details). Similarly to supervised learn-

ing, this choice introduces a bias, but given that only the number of strategies is

set and not the strategies themselves, this bias is less important. The advantage

of unsupervised learning is being applicable on traces comprising only activities

traces.

Performance:

Given a trace made of N observed sequences of activities ♣a1, . . . , aLq, the BWA

finds the HMM matrices Ẽ and T̃ that locally maximize the probability of having

these sequences generated by the HMM. More precisely, the BWA maximizes the

74 Chapter 4. Proposed Method: Map Miner Method

likelihood of E and T:

✁
Ẽ, T̃

✠
✏ argmax

E,T

N➵
n✏1

Pr ♣an⑤E,Tq (4.9)

As it is mentioned earlier, the number of strategies is required to know the dimen-

sions of matrices Ẽ and T̃ since the BWA could not run without Ẽ and T̃ being

initialized.

What is interesting to note here is the fact the likelihood is not maximized

depending on some traces of strategies s1, . . . , sN , as it was the case for supervised

learning. It means that the space in which the likelihood is maximized is larger

than the space for supervised learning. As a consequence,

max
E,T

N➵
n✏1

Pr ♣an⑤E,Tq ➙ max
E,T

N➵
n✏1

Pr ♣an⑤sn,E,Tq . (4.10)

In other words, the maximum likelihood of unsupervised learning is always higher

than the maximum likelihood obtained by supervised learning since the latter comes

from a constrained space. Unfortunately, the BWA cannot be guaranteed to con-

verge to the global maximum likelihood since it is only proved to converge to a local

optimum [Rabiner 1989]. The limit of convergence depends on the initialization of

the matricesT and E and it is verified by experimental results (see Section 4.5), that

a simple initialization of T and E leads to a maximum likelihood of unsupervised

learning higher than supervised learning.

4.3.2.3 Summary of the Two Learning Approaches

In Table 4.5, a theoretical comparison of the two learning approaches is presented,

based on the properties defined in Sections 4.3.2.1 and 4.3.2.2. Regarding the

Traces for

learning

A-priori

knowl-

edge

Convergence

speed (com-

plexity)

Likelihood

of the

estimated

parame-

ters

Supervised

learning

Activities,

Strategies

Set of activ-

ities, Set of

strategies

Fast (one itera-

tion)

Maximum

over a re-

strained

set

Unsupervised

learning

Activities Set of ac-

tivities,

Number of

strategies

Slow (several iter-

ations)

Local maxi-

mum

Table 4.5: Theoretical comparison of supervised and unsupervised learning

4.3. The Proposed Method 75

conditions of use, unsupervised learning can be applied on any trace comprising

traces of activities, contrary to supervised learning which can be applied under

more restrictive conditions. This makes unsupervised learning the most convenient

method for practical use. However, since unsupervised learning is only proved to

converge to a local maximum, it is not guaranteed to provide an estimated model

with a better likelihood than supervised learning. In order to investigate this point,

both approaches are compared on the same traces in Section 4.5.

4.3.2.4 Determining the Number of Strategies

The BWA requires the sets A and S to be known or at least, their cardinality, i.e.

⑤S⑤ and ⑤A⑤ for the algorithm to run. Regarding the set of activities A, it can simply

be obtained by identifying the different activities in the trace. However, obtaining

the set of strategies S is impossible since there is no information about strategies

in the trace. There are three ways to obtain the number of strategies:

• This parameter can be chosen by experts. This is interesting since it allows

setting the level of complexity of the model, to meet some a priori expecta-

tions of the model. However, as this choice involves human intervention, it

introduces a bias.

• Several criteria exist to determine the number of hidden states, such as

Bayesian Information Criterion (BIC) [Burnham 2002]. This metric allows

the comparison of HMM models with different numbers of hidden states,

trained on the same underlying data. BIC penalizes the likelihood of the

model by a complexity factor proportional to the number of parameters θ in

the model and the number of training observations R:

BIC ✏ ✁2 log ♣Pr♣A⑤Hqq � θ log ♣Rq , (4.11)

where θ ✏ ♣J2�J✂F q, and J2 and J✂F represent the number of parameters

in transition matrix and emission matrix, respectively.

Although BIC can ensure a result for every sequence of activities, this trade-

off does not allow generating the model with the best likelihood when the

model has a high complexity factor.

• The method that is used in the thesis (see Section 4.5.2) to set the right num-

ber of strategies is heuristic. It consists in generating several HMM models

with different numbers of strategies and observing the associated emission

matrices. It occurs that as the number of possible strategies increases, the

number of different strategies obtained in the emission matrices reaches a

threshold. It means that when the number of possible strategies is too high,

the BWA produces an emission matrix with several identical strategies. Con-

sequently, to set the right number of strategies of the model, this observed

76 Chapter 4. Proposed Method: Map Miner Method

threshold is chosen. This method has the advantage of being adaptable for

different traces. The drawback of this method is its computation complexity.

4.3.3 Developing Deep Miner Algorithm

Once the strategies are estimated, a Map process model can be extracted from these

matrices generated by the BWA. This can be realized by Deep Miner algorithm

that especially developed to construct the sections of Map process model out of

the transition matrix. However, the question of measuring the quality of this Map

remains. We recall that the matrices generated by the BWA are:

• An emission matrix E, giving the probabilities of generating any activity while

performing a strategy. In other words, for any strategy s P S, it gives the

activities the strategy is composed of.

• A transition matrix T, giving the probabilities of transition between any cou-

ple of strategies ♣s, s✶q P S2.

Clearly, there is a strong link between the transition matrix and the topology of

the Map process model to be extracted. However, in the general case, it is a difficult

task to manually extract a Map from a transition matrix while verifying the two

following constraints: (i) any transition between possible strategies in the transition

matrix should be possible on the Map, (ii) any transition between possible strategies

in the Map should be possible in the transition matrix.

The first constraint can be seen as a criterion for fitness since it ensures that all

the transitions learned from the trace are present in the Map. The second constraint

corresponds to a criterion of precision since it aims at avoiding introducing extra-

transitions in the Map that are not learned from the trace. Our goal is to find the

Map that best satisfies both of them. Additionally, transitions probabilities in T

have different values according to their respective importance for the model. This

means that some transitions are more important than others and in consequence,

the fitness and the precision are also more important for these transitions. In the

next part, a metric is defined which is a trade-off between fitness and precision and

also captures the relative importance of transitions.

4.3.3.1 Proposed Metrics of Fitness and Precision

The topology of a Map m can be defined by the set of its sections, each one compris-

ing a source sub-intention, a strategy and a target sub-intention. It can be formally

written as:

m ✏ ♣mkqkPt1,...,K✉, (4.12)

where k denotes the index of a section and K is the total number of sections of the

Map. For each k P t1, . . . ,K✉, mk ✏ ♣i, j, sq P I ✂ S ✂ I. The component mk♣1q is

the source sub-intention of section k, mk♣2q is the target sub-intention, and mk♣3q

is the strategy of section k. On the Map m, a transition from strategy s to strategy

4.3. The Proposed Method 77

s✶ is possible if and only if there exist ♣k, k✶q P t1, . . . ,K✉2 such that mk♣3q ✏ s,

mk✶♣3q ✏ s✶, and mk♣2q ✏ mk✶♣1q. In the following, the symbol α is used to denote

if a transition is possible or not in the Map:

αs,s✶ ✏

✩✫
✪

1 if ❉♣k, k✶q P t1, . . . ,K✉2 such that mk♣3q ✏ s,

mk✶♣3q ✏ s✶, and mk♣2q ✏ mk✶♣1q,

0 otherwise.

(4.13)

In the transition matrix T, the only valid transitions is considered with a prob-

ability above a given threshold ε. The value of ε has to be chosen heuristically, to

counter the effects of noise and artifacts in the trace. Figure 4.6 depicts an example

showing the effect of threshold (ε ✏ 0.2) before and after applying it on the tran-

sition matrix. As shown on the right of the figure, all the transitions lower than

0.2 are eliminated. Therefore, according to the value of ε, Deep Miner takes into

account certain transitions.

S2 S3

S1

0.6

0.7
0.5

0.2

0.4

0.1

0.2

0.1

0.2

0

0.2

0.8

0.07

0.3

0

0.03
0.9

0.7 S2 S3

S1

0.6

0.7
0.5

0.4
0.2

0.2

0

0.2

0.8

0.07

0.3

0

0.03
0.9

0.7

Ɛ = 0.2

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

0.2

Figure 4.6: An example showing the effect of threshold on the transitions

This can be defined as follows:

ωs,s✶ ✏

✧
1 if T♣s, s✶q ➙ ε,

0 if T♣s, s✶q ➔ ε.
(4.14)

Classically, the criteria of fitness and precision between T and m can be ex-

pressed by the expressions known as recall and precision. In our context, these two

expressions are defined as :

Rec♣T,mq ✏

➦
s,s✶ ωs,s✶αs,s✶➦

s,s✶ ωs,s✶

, (4.15)

Pre♣T,mq ✏

➦
s,s✶ ωs,s✶αs,s✶➦

s,s✶ αs,s✶

. (4.16)

The numerator of both expressions is the number of significant transitions in T that

are present on the Map m, while the denominators are the number of significant

transitions in T and the number of transitions on m, respectively.

78 Chapter 4. Proposed Method: Map Miner Method

Since our goal is to find a Map that fits best the transition matrix with respect

to both recall and precision, the classical F-measure can be used which expression

is:

F1♣T,mq ✏ 2
Pre♣T,mqRec♣T,mq

Pre♣T,mq � Rec♣T,mq
. (4.17)

4.3.3.2 Optimization problem

Once the proper metric has been defined, a Map that maximizes this metric must

be found. The solution of this problem belongs to the set

M ✏ argmax
m

F1♣T,mq. (4.18)

Since the goal is obtaining a Map with the simplest structure, the solution with the

lowest number of sections is chosen. In other words, the solution is

m✝ ✏ argmPMmin ⑤m⑤, (4.19)

where ⑤m⑤ stands for the number of sections in m. However, finding m✝ is a

difficult task since m generally belongs to a high-dimension space. Indeed, it can be

shown that there are 2⑤S⑤2 possible Maps for ⑤S⑤ different strategies. Consequently,

computing all the possible Maps with a brute force 1 method then comparing their

F-measures is not an option. Instead, an algorithm is developed that solves (4.19)

with a complexity bounded by ⑤S⑤ ✝ ♣⑤S⑤ ✁ 1q. This algorithm is detailed below.

Algorithm 1 How to obtain a Map from S, T, and ε.

Data: strategy set S, transition matrix T, threshold ε

Result: Pseudo-Map m✝

for each strategy s P S do
associate to s a target sub-intention is

end

for each strategy s P S do

for each strategy s✶ P S, s✶ ✘ s do

if T♣s, s✶q ➙ ε then
create a section from is to is✶ with strategy s✶

end

end

end

The first part of algorithm 1 associates a target sub-intention to each strategy

of S. In the second part, if a transition probability from strategy s to strategy s✶ is

above the threshold ε, a section is added to the Map from the target sub-intention

1Brut force is a method of mathematical proof in which the statement to be proved is split into a

finite number of cases and each case is checked to see if the proposition in question holds [Inglis 2011]

4.3. The Proposed Method 79

of s to the target sub-intention of s✶. This section ensures that the transition given

by T is also present in the Map. With this algorithm, recall and precision, defined

in (4.15) and (4.16), have the advantage of being equal to 1. Indeed, ε defines the

granularity of the Map. When ε is close to 0, almost all the transitions from the

unsupervised model are present in the obtained Map. Consequently, the likelihood

of the obtained Map is high but the Map is hardly understandable by humans

since it has too many sections. However when ε increases, the number of sections,

as well as the likelihood of the obtained Map, decrease. The Map gets more easily

understandable by humans but it is not as accurate in terms of transition. Figure 4.7

depicts an overview of the Deep Miner algorithm. Its input is estimated strategies

and output is a pseudo-Map.

Deep Miner

Algorithm

Pseudo-Map

Estimated

Strategies

Figure 4.7: Overview of Deep Miner Algorithm

4.3.3.3 An Example for the Construction of a Map

Let us consider a transition matrix T as follows:

T ✏

☎
✝✝✝✝✝✆
0.6 0 0.2 0.2 0

0.2 0.2 0.2 0 0.4

0 0 0.6 0.4 0

0 0.1 0 0.2 0.7

0 0 0 0 1

☞
✍✍✍✍✍✌

Each row represents a strategy: the first row corresponds to S1, the second row

corresponds to S2, and so forth. This procedure is the same for the column: the

first column refers to S1, the second column refers to S2, and so forth. For example,

the third element of the first row of the matrix expresses the transition from S1 to

S3. The probability of this transition is 0.2 as mentioned in the matrix. The second

element of the first row, for instance, expresses the transition from S1 to S2. The

probability of this transition is equal to 0, which means there is no transition from

80 Chapter 4. Proposed Method: Map Miner Method

S1 to S2. On the contrary, there is a transition from S2 to S1 (the first element

of the second row) since the probability of this transition is not equal to zero (it is

0.2).

The first step of the construction of a Map from this transition matrix consists

in eliminating all the diagonal values, which means the couples (S1,S1), (S2,S2),

(S3,S3), (S4,S4), and (S5,S5). Indeed, the diagonal values indicate the time needed

to execute a strategy. For example, the transition (S1,S1) represents the time

for executing the strategy S1. These strategies are then not interesting for the

construction of a Map, as only the transition between two different strategies are

interesting. Therefore, all these values must be deleted from the matrix. Note

that after each elimination the values must be normalized. The left values must

be divided by the sum of the left values of the row. The modified matrix is shown

below:

T ✏

☎
✝✝✝✝✝✆

0 0 0.2④0.4 0.2④0.4 0

0.2④0.8 0 0.2④0.8 0 0.4④0.8

0 0 0 0.4④0.4 0

0 0.1④0.8 0 0 0.7④0.8

0 0 0 0 0

☞
✍✍✍✍✍✌

The second stage consists in eliminating the elements of this matrix which are

smaller than the threshold (ε). For instance, if this threshold is adjusted to 0.2, all

the elements smaller than 0.2 must be eliminated. Note that each row should be

normalized after an elimination. In the above mentioned transition matrix, only

one element is smaller than 0.2 (the second element of the fourth row).

T ✏

☎
✝✝✝✝✝✆

0 0 0.5 0.5 0

0.25 0 0.25 0 0.5

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

☞
✍✍✍✍✍✌

Third stage consists in assigning to each strategy existing in the matrix a

target sub-intention. In other words, this stage consists in constructing a cou-

ple, ➔Strategy,Target sub-Intention→. Indeed, according to the Map formalism

each strategy leads to an intention. This definition can be extended for the sub-

intentions. Therefore, each estimated strategy in the matrix must lead to a target

sub-intention. This procedure is illustrated in Figure 4.8. As shown in this figure

the five strategies are related to a target sub-intention index, for each row/column

of the matrix. For readability reasons, the sub-intention are labeled with the same

index of its related strategy.

Fourth stage consists in constructing the relationships between strategies ac-

cording to the transition matrix. To do so, the starting point is the first row. As

4.3. The Proposed Method 81

1
5

4

2

3

S1
S2

S3
S4

S5

Figure 4.8: Assigning intention labels to each existing strategy

mentioned earlier this row corresponds to strategy S1. This strategy is followed

by the strategies S3 and S4 since there are transition probabilities between these

strategies (0.5 for both of them). Therefore, S1 is followed by S3 or S4. Figure 4.9

depicts the construction of the second part of the Map.

1

4

3
S1

S4

S3

Figure 4.9: Relating strategy S1 to strategies S3 and S4

The second row of the transition matrix corresponds to strategy S2. This strat-

egy is followed by the strategies S1, S3, and S5. Therefore, strategy S2 should be

connected to S1, S3, and S5. Figure 4.10 depicts the construction of this part of

the Map.

The third row of the transition matrix corresponds to strategy S3. This strategy

is followed by strategy S4. Therefore, strategy S3 should be linked to strategy S4.

Figure 4.11 depicts the construction of this part of Map.

The fourth row of the transition matrix corresponds to strategy S4. This strat-

egy is followed by strategy S5. Once again there is only one arrow that goes from

S4 to strategy S5. Figure 4.12 depicts the construction of this part of Map.

The final stage consists in determining Start and Stop intentions. According

to the Map formalism, the intention Start corresponds to the beginning of the

process; consequently there is no incoming transition that goes in it. According to

this formalism Stop intention corresponds to the end of the process; consequently

there is no outgoing transition that goes out of it. Respecting these definitions,

82 Chapter 4. Proposed Method: Map Miner Method

1

4

3

S4

S3

2

5

S2 S5

S3

S1

Figure 4.10: Relating strategy S2 to strategies S1, S3, and S5

1

4

3

S4

S3

2

5

S2 S5

S3
S1

S4

Figure 4.11: Relating strategy S3 to strategies S4

to determine Start intention, we should look for the strategies with no incoming

strategies. The strategy S2 respects this definition. To determine the Stop inten-

tion, we should look for the strategies with no outgoing strategies. The strategy

S5 respects this definition. Figure 4.13 illustrates the Map process model with the

Start and Stop intentions.

As shown here, the Deep Miner algorithm constructs the sections of a Map

from the estimated transition matrix. These sections lead to the sub-intentions. To

construct a Map process model with high-level intentions respecting the sections

defined with Deep Miner algorithm, Map Mainer is proposed.

4.3. The Proposed Method 83

1

4

3

S4

S3

2

5

S2 S5

S3
S1

S4

S5

Figure 4.12: Relating strategy S4 to strategies S5

1

4

3

S4

S3

2S2

S5

S3
S1

S4

S5
Start

Stop

Figure 4.13: Determining Start and Stop intentions

4.3.4 Developing Map Miner Algorithm

Granularity refers to the level of detail of a process model. While a Map process

model with a coarse-grained granularity represents high-level of abstraction for

intentions (e.g., organizational intentions), a Map process model with a fine-grained

granularity, called a pseudo-Map, provides low-level of abstraction for intentions,

called sub-intentions. Depending on the situation at hand, one can define the nature

of granularity that is needed. This affects the kind of guidance and explanation that

the model can provide [Rolland 1998a].

For instance, project managers or middle managers require rather coarse-grained

84 Chapter 4. Proposed Method: Map Miner Method

process description as they want to gain an overview of time, budget, and resource

planning for their decisions. In contrast, software engineers, users, testers, analysts,

or software system architects will prefer a fine-grained process model where the

details of the model can provide them with instructions and important execution

dependencies such as the dependencies between people. Hybrid formalisms such

as Process Weaver [Fernstrom 1991] uses different notations for coarse-grained and

fine-grained aspects of process.

4.3.4.1 Determining the Level of Abstraction for the Intentions

Given that the pseudo-Map obtained from Deep Miner algorithm has a high degree

of granularity (in terms of sub-intentions and sections), it can be useful to extract

some higher-level Maps of the same process from this pseudo-Map. An algorithm

has been developed to automatically perform this task and is presented in this

section. It falls into three main parts:

1. The sub-intentions from the pseudo-Map are represented in a space in which

they can be classified into clusters.

2. A clustering algorithm, namely K-means, is applied on the sub-intentions in

order to group them into clusters of intentions. This allows determining the

level of abstraction for the intentions. Note that the number of intentions

is a parameter that has to be chosen. The choice of this parameter allows

researchers obtaining Maps with different level of granularity.

3. Finally, a Map process model is rebuilt from the new groups of intentions with

updated sections.

Figure 4.14 represents an overview of Map Miner Algorithm.

Map Miner

Algorithm

 Map process modelPseudo-Map

Figure 4.14: Overview of Map Miner Algorithm.

4.3.4.2 Sub-intentions Representation in the Space

Before clustering sub-intentions into groups of intentions, one needs to represent

each sub-intention in a space that trustfully accounts for the topology around the

4.3. The Proposed Method 85

sub-intention in the pseudo-Map. Given that each sub-intention is connected to

other sub-intentions by strategies, a proper way to represent sub-intentions is to

indicate to which other sub-intentions it is connected. Since the Map is an oriented

graph, a difference is made between sub-intentions from which there is a strategy

going to the sub-intention to be represented and sub-intentions that can be fulfilled

with strategies from the sub-intention to be represented.

From a formal perspective, let us consider a pseudo-Map with N sub-intentions.

The sub-intention in P I is represented by a vector vn in a space of dimension 2N

such that the first N coefficients correspond to the sub-intentions from which there

is a strategy going to in, and the finalN coefficients correspond to the sub-intentions

that can be fulfilled from in.

• For all n✶ P r1, N s, if there is a section from in✶ to in then vn♣n
✶q ✏ 1, otherwise

vn♣n
✶q ✏ 0.

• For all n✶ P r1, N s, if there is a section from in to in✶ then vn♣2n
✶q ✏ 1,

otherwise vn♣2n
✶q ✏ 0.

• Since in is implicitly considered to be connected to itself, then vn♣nq ✏ 1 and

vn♣2nq ✏ 1.

Let us consider a fragment of a pseudo-Map with 8 sub-intentions (Figure 4.15).

The sub-intentions ’SI-1’, ’SI-2’, ☎ ☎ ☎ ,’SI-8’ are respectively represented by the vec-

tors v1, v2,☎ ☎ ☎ , v8 in the space. For instance, the vectors v3 represents ’SI-3’.

v3 ✏ ♣01110000 00100110q

This vectors is composed of the values ’0’ or ’1’. The vector size is equal to 16;

this size is due to possibilities of 8 incoming sub-intentions SI-1, SI-2, ☎ ☎ ☎ , SI-8 and

8 outgoing sub-intentions SI-1, SI-2, ☎ ☎ ☎ , SI-8 (comprising the sub-intention it-self).

The left side of the vector defines the incoming sub-intentions and the right side

defines the outgoing sub-intentions. For instance, in v3 the incoming sub-intentions

are SI-2 and SI-4 and the outgoing sub-intentions are SI-6 and SI-7. Therefore, in

v3 the value of ’1’ is assigned to the incoming sub-intentions SI-2 and SI-4 (at the

left side) and the outgoing sub-intentions SI-6 and SI-7 (at the right side). The

value ’0’ is assigned to the other sub-intentions.

With this representation, two sub-intentions connected to similar sub-intentions

will be represented with a short distance between them, while two sub-intentions

connected to different sub-intentions will be represented with an important distance

between them. This way, the clustering algorithm that is applied on the sub-

intentions can group sub-intentions efficiently.

86 Chapter 4. Proposed Method: Map Miner Method

SI-5

SI-3

SI-4 SI-7

SI-2

SI-6

SI-8

SI-1

Figure 4.15: A fragment of a pseudo-Map with 8 sub-intentions

4.3.4.3 Clustering sub-intentions into high-level intentions

Once the sub-intentions are represented in the space described in Section 4.3.4.2,

a clustering algorithm can be applied to group them into clusters of intentions. In

this work, the K-means [Hartigan 1979] algorithm is applied to perform this task.

This algorithm works as the following way: given a number K of clusters and a set

of points ♣vnqnPr1,Ns, the algorithm determines the gravity center ck of each cluster

k, such that the sum of the distances from the points to the center of their cluster

is minimized. In other words, it minimizes the sum,

➳
1:N

d ♣vn, c♣vnqq , (4.20)

where c♣vnq is the center of gravity which is the closest to vn. For example, if vn is

closer to ck, c♣vnq ✏ ck. And d♣., .q is a distance between two points.

Said in another way, the K-means algorithm finds K groups of sub-intentions

such that in each group, sub-intentions are in a same area of the Map process model.

The mapping between the sub-intentions and the intentions are called g , such that

g♣nq is the intention of sub-intention n.

4.3.4.4 Rebuilding the Map

To obtain a new Map from the clusters of intentions, all the previous sub-intentions

are replaced by the intention of their group. The sections also need to be updated

to take into account the simplified topology of the Map. We recall that the pseudo-

Map discovered by the Deep Miner algorithm is denoted by m✝. Note that the

identical sections have to be removed from the discovered Map. Algorithm 2 shows

how to rebuild a Map process model from K clusters of intentions given that the

mapping from sub-intentions to intentions obtained from K-means is denoted by g.

4.4. Method for the Discovery of Map Path 87

Algorithm 2 Rebuilding a Map from K clusters of intentions.

Data: Map m✝, mapping g

Result: Map rm
for each section m✝

u, u P r1, U s dormu♣1q :✏ g ♣m✝
u♣1qqrmu♣2q :✏ g ♣m✝
u♣2qq

end

Remove identical sections in rm
4.4 Method for the Discovery of Map Path

Once the parameters of HMMs (matrices E and T) are estimated, it is possible

to find the most likely strategies related to a given sequence of activities through

Viterbi Algorithm (VA) [Forney Jr 1973] (see Figure 4.16). This means identifying

the path (i.e., a sequence of strategies) fulfilled by users.

Users

Traces.

.

. Hidden Markov Models

Estimated Strategies

Sequence Viterbi

Algorithm

Maximum Likelihood

Intentions

Strategies related to

the traces

Discovered Map Path

Intentions

Figure 4.16: Overview of Map path discovery

This section describes VA from a theoretical point of view and Section 4.6

presents its application on the example.

Given a sequence of activityA1:N of lengthN , one could generate all the possible

strategies of length N . Then, for each strategy S1:N , one could compute the prob-

ability Pr ♣A1:N ⑤S1:N q. However, this is a brute-force search and it cannot be used

to compare all the possible strategies for complexity reasons. For instance, if the

number of strategies is C, the complexity will be CN , which increases exponentially

with N .

Instead, the VA is used to obtain, from a given observed sequence, the most likely

hidden sequence of strategies that might generate it. The VA is commonly used

in the context of HMM; this algorithm is able to calculate the probability that an

observation has been changed into another, and radically simplifies the complexity of

the search for the most likely hidden sequence. Thereby, the exponential complexity

becomes linear.

To use the VA, it is necessary to know the estimated model parameters, E and

88 Chapter 4. Proposed Method: Map Miner Method

T. Note that a given sequence of activities, with length N , may be generated by

many related strategies with the same length; nevertheless, one sequence among all

has the highest probability of emergence. In other words, this sequence is the most

likely sequence of strategies, which generates the related sequence of activities. The

mathematical description of this phase is presented hereafter:

Given a sequence of activities A1:N , the estimated parameters Êu♣aq and T̂♣u, vq

and the initial probabilities for each strategy, let δN ♣Sq be the highest probability

path through all hidden states. The VA tries to find the hidden associated sequence

of strategies S̄1:N which maximizes:

Pr ♣S1:N ⑤A1:N q (4.21)

The problem can also be written as:

δT ♣Sq ✏ argmax
1:N

Pr ♣S1:N ⑤A1:N q (4.22)

iteratively, and then uses a backtracking process to decode the sequence of hidden

states taken along the path of maximum likelihood. VA enables to account for the

history of the users’ activities.

4.5 Method Exemplification

To evaluate the proposed method, as well as comparing the supervised and unsuper-

vised learning, MMM is applied on the E/R diagrams traces example, introduced in

Section 4.1. We recall that, according to the prescribed Map (Figure 4.17), students

can select ten strategies (represented as edges of the prescribed Map) to fulfill four

intentions, Start ♣I1q, Specify an entity ♣I2q, Specify an association ♣I3q and

Stop ♣I4q (represented as nodes on the prescribed Map). To select a strategy, stu-

dents have to carry out activities. There are 12 activities related to the prescribed

Map. Table 4.6 gives the names of all the activities and Table 4.7 shows in detail

the link between strategies and related activities in the prescribed Map. Note that,

since the students should follow the instructions, the prescribed Map process model

may introduce a bias regarding the results that will be obtained by applying MMM

on the students’ traces.

In Section 4.5.3 the results of the two learning approaches for the example are

compared in terms of human effort requirement, convergence speed, computation

complexity, and likelihood.

4.5.1 MMM Using Supervised Learning

4.5.1.1 Estimating Model Parameters

First, supervised learning is applied on activities traces to obtain the model pa-

rameters defined in Section 4.3.2. Note that the traces have to be compatible with

supervised learning approach. Indeed, they have to comprise traces of activities

and corresponding traces of strategies. Since we set up the experiment, we were

4.5. Method Exemplification 89

Specify an

Entity

Start
S1

S2

S3S4
S5

S6

S7
S8

S9
S10

By completeness

of the model

By completeness

of the entity

By generalization By specialization

By normalization

By reference

By completeness of

the association

By completeness

(model correct,

complete,

coherent)

By normalization

By decomposition

Stop

Specify an

Association

Figure 4.17: Prescribed Map Process Model for construction of E/R diagrams

Index Related activities

a1 Create an entity

a2 Link attribute to entity

a3
Create an entity

Create generalization link

a4
Create an entity

Create specialization link

a5 Delete an entity

a6 Delete link attribute to entity

a7 Define primary key

a8
Delete link attribute to entity

Create an entity

Link association to entity

a9
Create an association

Link association to entity

a10
Delete an association

Delete link attribute to association

a11 Link attribute to association

a12 Check the model

Table 4.6: Activities and their labels for E/R diagrams

able to record students’ strategies sequences in addition to their activity sequences.

This procedure is so-called labeling process. This allows estimating the model pa-

rameters by supervised learning. After modeling the activities traces by HMM and

90 Chapter 4. Proposed Method: Map Miner Method

Index Name of strategies Related activities (activities index)

S1 By completeness (model) Create entity (a1)

S2 By completeness (entity) Link attribute to entity (a2)

S3 By normalization Delete Link attribute to entity (a6), Delete

entity (a5), Define primary key (a7)

S4 By generalization Create entity (a1), Create generalization

link (a3)

S5 By specialization Create entity (a1), Create specialization

link (a4)

S6 By reference Delete link attribute to entity, Create en-

tity, Create association, Link association to

entity (a8), Create association, Link associ-

ation to entity (a9)

S7 By decomposition {Create association, Link association to en-

tity} (a9)

S8 By normalization {Delete association,Delete Link attribute to

association}(a10)

S9 By completeness (assoc.) Link attribute to association (a11)

S10 By completeness (final) Check the model (a12)

Table 4.7: Map strategies and related activities of the example

applying supervised learning, the model parameters are estimated.

4.5.1.2 Applying Deep Miner Algorithm

Deep Miner algorithm using the transition matrix T thereby computed, generates

a pseudo-Map (Figure 4.18) with a threshold adjusted to ε ✏ 0.05. This threshold

is obtained by heuristics. Generally, this threshold is an arbitrary value and can be

determined by the subject-matter expert.

4.5.1.3 Applying Map Miner Algorithm

The sub-intentions are denoted by tSI-1, ☎ ☎ ☎ , SI-9✉. Map miner algorithm groups

them into 4 high-level intentions. This choice for the number of intentions allows

comparing the discovered Map with the prescribed Map in the same level. Fig-

ure 4.19 provides the discovered Map at the same granularity level as the prescribed

Map. Since the assumption of supervised learning is that for a given activity, the

related strategy and intention are known. Therefore, the names of strategies and

the intentions of the discovered Map are the same as the prescribed Map.

In Figure 4.19, the strategies discovered by Map Miner algorithm that match

the prescribed Map sections are represented with continuous arrows. However,

MMM also detects that the students deviated from the prescribed Map, since some

4.5. Method Exemplification 91

Start

Stop

SI-1 SI-8

SI-7

SI-3 SI-6

SI-4

SI-2

SI-5

S1 S1

S2
S2

S7

S3

S7

S7

S10

Specify an Entity Specify an Association Sub-intentions

S2

S3

S1

S5

S7

S2

S2

S1

S1

S7

S6

S6

SI-9S9

S9

S2

S10

S10

S7

S8

S7

S1

S1

Figure 4.18: Map Process Model discovered by Deep Miner algorithm and super-

vised learning (ε ✏ 0.05)

Specify an

Entity

Start

S1

S2

S3

S4
S5

S10By completeness of

the modelBy completeness of

the entity

By specialization
By normalization

By completeness of

the association
By completeness

 (model correct,

 complete, coherent)

By normalizationBy completeness of

the entity

S7

By decomposition
By generalization

By reference

By decomposition

S7

S6 S9

S8

Stop

Specify an

Association

S12

S11

By completeness of

the model

Figure 4.19: High-level of granularity for Map Process model discovered by Map

Miner algorithm and supervised learning.

92 Chapter 4. Proposed Method: Map Miner Method

strategies are not used as they were prescribed. By analyzing and comparing the

discovered Map with the prescribed Map, the observations are the following :

• The first ascertainment concerns the matches between the prescribed and dis-

covered Maps. The students chose strategy S1 to achieve the intention Spec-

ify an entity and they continued to try to reach this intention by choosing

strategies S2, S3 and S5. To fulfill the intention Specify an association,

they chose strategy S7, S8 and S9. Finally, they chose strategy S10 to Stop

the process.

• The second ascertainment shows there are one mismatch between the pre-

scribed and discovered Maps. The students never enacted S4: by general-

ization and S7 is chosen in the wrong section. Indeed, the strategy S7 must

be selected only in the section ➔Specify an association, Specify an associa-

tion, By decomposition→. However, this strategy is also selected between the

intentions Specify an entity and Specify an association.

• Some strategies shown in Figure 4.18 raise some issues. The section ➔Specify

an association, Specify an entity, By completeness of the association→ is not

coherent as the target intention completely differs from what is implied by

the strategy. This section does not represented in Figure 4.19. The section

➔Specify an association, Specify an entity, By completeness of the model→

was kept in Figure 4.19 as users can complete the model by creating a new

entity after specifying an association. In this case, the situation takes into

account the modified product (the E/R diagram), on the contrary of the sec-

tion ➔Start, Specify an entity, By completeness of the model→ which implies

no existing product to take into account. However, it is not possible to tell

from the traces if the users properly followed these strategies according to the

product situation (existing E/R diagram or not). With the same reasoning,

the section ➔Specify an association, Specify an entity, By completeness of the

entity→ is taken in Figure 4.19 allowing users to add attributes to an entity

of their diagram after specifying an association.

4.5.2 MMM Using Unsupervised Learning

4.5.2.1 Estimating Model Parameters

By applying unsupervised learning on the same activities traces a different Map

process model is discovered. We recall that in this case, no labeling process for the

strategies is necessary to run the learning algorithm. Consequently, only the traces

of activities are used as inputs of BWA. However, as mentioned earlier, the BWA

must be initialized with a number of possible strategies. Here, the right number

of strategies is found by the proposed heuristic method detailed in Section 4.3.2.4.

Figure 4.20 shows that above ten possible strategies, BWA always gives the same

ten strategies. This is because the BWA produces an emission matrix with several

identical strategies when the number of possible strategies is too high. Hence, 10

4.5. Method Exemplification 93

is the number of strategies for the model with the highest probability to generate

the observed traces. Once that the number of strategies is fixed, the BWA can be

executed to learn the model parameters.

2 4 6 8 10 12

2

4

6

8

10

Number of strategies allowed

N
u
m
b
er

o
f
d
iff
er
en
t
st
ra
te
g
ie
s
o
b
ta
in
ed

Figure 4.20: Number of strategies discovered by the heuristic method

4.5.2.2 Applying Deep Miner Algorithm

Deep Miner algorithm generates the pseudo-Map by maximizing the metric fitness

and precision (4.17). Indeed, the transition matrix allows knowing the position of

each strategy on the Map, i.e. what is the source intention and the target intention

of each strategy. The Map obtained by Deep Miner algorithm with ε ✏ 0.05 is

depicted on Figure 4.21.

4.5.2.3 Applying Map Miner Algorithm

To obtain a Map process model, Map Miner algorithm groups the sub-intentions

into 4 high-level intentions as shown on Figure 4.22 and the discovered strategies

are detailed in the right side of Table 4.5.2.3.

On the contrary to supervised learning, since no prior information about strate-

gies is available, the names of strategies and intentions are not known. However,

from the emission matrix E, each strategy discovered by MMM can be associated

to some activities. Based on the names of activities, it is then possible to infer the

main topics of the strategies through a semantic analysis (see Table 4.8). In the

same way, the intentions names can be inferred by analyzing the strategies leading

to each intention.

94 Chapter 4. Proposed Method: Map Miner Method

Start Stop

SI’-1 SI'-9

SI’-7

SI’-4 SI’-8

SI’-3

SI’-2

SI’-6SI’-5

S’1

S’1

S’1

S’1

S’2S’3
S’2

S’4
S’4

S’4

S’5

S’6

S’6

S’7
S’7

S’7

S’8

S’8

S’8

S’9

S’9

S’10

 (I’2) (I’3) Sub-intentions

S’10

S’10

Figure 4.21: Map Process Model discovered by Deep Miner algorithm and unsuper-

vised learning (ε ✏ 0.05)

S’1

S’2

S’3S’4
S’5

S’8

S’9
S’10

S’4

I’2
S’6

S’8

S’9

S’10

S’1

S’7

I’3

Start Stop

Figure 4.22: High-level of granularity for Map process model discovered by Map

Miner algorithm and unsupervised learning

Figure 4.23 depicts a comparison of the likelihood (4.11) of the prescribed Map,

the Map discovered by maximizing (4.17), and the unsupervised parameters (i.e.,

the parameters directly obtained from of the emission and transition matrices using

BWA). The likelihood of a Map represents the probability that the Map gener-

ates the observed traces. The likelihood of unsupervised parameters represents the

probability that the parameters estimated by unsupervised learning generates the

observed traces. A first observation is that the likelihood of the unsupervised pa-

rameters is higher than the prescribed Map or the discovered Map. This means the

probability that the estimated parameters generate the observed traces is higher

than the prescribed Map. This phenomenon is normal since, by definition, the re-

sult of BWA maximizes the likelihood. A second observation is that the likelihood

of the discovered Map is lower than the matrices generated by BWA. This is due

4.5. Method Exemplification 95

Strategies

Index

Strategies Topics discovered by Matrix E

S✶
1

entity, creation, specify

S✶
1

entity, creation, specify

S✶
2

attribute, entity, creation

S✶
3

entity, delete, creation, specialize

S✶
4

delete, creation, attribute, entity, association

S✶
5

primary key, creation, entity

S✶
6

creation, entity, attribute, link

S✶
8

association, entity, link, attribute, creation

S✶
9

creation, association, entity, attributes

S✶
4

delete, creation, attribute, entity, association

S✶
7

link, creation, delete, entity, association

S✶
8

association, entity, link, attribute, creation

S9 creation, association, entity, attributes

S✶
10

check, model, coherent

S✶
10

check, model, coherent

Table 4.8: Strategies topic discovered by matrix E for unsupervised learning of the

example

to the constraints of the structure imposed by the topology of a Map (e.g., the

transition from Stop to the Start is not allowed). However, the discovered Map

has a higher likelihood than the prescribed Map, which is a convincing result since

it means that in terms of fitness of the observed activities, the discovered Map is a

better Map than the prescribed Map.

-500

-1000

-1500

-2000

-2500

-3000

0

Prescribed Map

Discovered Map

Unsupervised Parameters

Figure 4.23: Comparison of the likelihood of the prescribed Map, the discovered

Map, and the unsupervised parameters

96 Chapter 4. Proposed Method: Map Miner Method

Finally, Figure 4.24 shows the effect of the choice of ε on the likelihood and

the number of sections of the discovered Map. When ε is close to 0, almost all

the transitions from the unsupervised model are present in the discovered Map.

Consequently, the likelihood of the discovered Map is high but the Map is hardly

understandable by humans since it has too many sections. However, when ε in-

creases, the number of sections, as well as the likelihood of the discovered Map,

decrease. The Map gets more easily understandable by humans but it is not as

accurate in terms of transitions. This study demonstrates that the value of ε has to

be set to obtain a trade-off between granularity of the Map and its understanding.

0.02 0.04 0.06 0.08 0.1
−2410

−2400

−2390

−2380

−2370

−2360

L
o
g
-l
ik
el
ih
o
o
d

ε

0.02 0.04 0.06 0.08 0.1
20

22

24

26

28

30

N
u
m
b
er

o
f
se
ct
io
n
s
in

th
e
o
b
ta
in
ed

M
a
p

Likelihood of the obtained Map

Likelihood of the unsupervised model

Number of sections in the obtained Map

Figure 4.24: Likelihood and number of sections of the discovered Map with regards

to ε for the E/R traces

By analyzing and comparing the prescribed Map and the pseudo-Map discovered

by unsupervised learning, some observations are:

• There is a number of matches between the new groups of strategies and the

groups of strategies in the prescribed Map, such as S1 and S✶
1
, which both

start the process and are made of activity a1. The Strategy S10 and S✶
10

are also similar in both Maps. They end the process and are made of a12.

Another match is between S2 and S✶
2
, which are made of activity a2. This

was expected since the students had to follow the prescribed Map.

• The few mismatches between the prescribed and discovered strategies indi-

cate that some prescribed strategies were not followed as intended by the

students. The discovered strategies permit learning how the students pre-

ferred to behave. For instance, in the prescribed Map, activity a2 is only

4.5. Method Exemplification 97

present in strategy S2 for intention I2 whereas in the discovered Map, it is

present in many strategies: S✶
1
, S✶

4
, S✶

6
, S✶

7
, and S✶

8
for intentions I ✶

2
, and I ✶

3
.

The same phenomenon is true for activity a1. It means that these particular

activities are used by students during the entire process and not only for a

single intention. This knowledge can be used to (i) improve the software used

by the students to make the prescribed model easier to follow, (ii) modify the

prescribed model by taking into account to the process the students actually

followed.

• Most activities are related to the same intentions in the prescribed and the

discovered Maps. This is true for activities a3, a4, a6, and a7 which are only

related to I2 and I ✶
2
. This is also true for activities a9 and a11 which are

related to I3 and I ✶
3
. However, a10 is very seldom used by students and does

not appear in the discovered strategies.

Note that Ii Ñ Ij expresses the transition from the intention Ii to the intention

Ij .

9
8

C
h
a
p
te
r
4
.

P
ro

p
o
se
d

M
e
th

o
d
:
M

a
p

M
in
e
r
M

e
th

o
d

Prescribed Map Process Model Discovered Map process Model

Intentions Index Name of Strategies Activities Intentions Index Activities

I1 Ñ I2 S1 By completeness (model) a1
I ✶
1
Ñ I ✶

2
S✶
1

a1 (0.94)

I ✶
2

S✶
1

a1 (0.94)

I2

S2 By completeness (entity) a2 S✶
2

a2 (0.88), a1♣0.09q

S3 By specialization a6, a5, a7 S✶
3

a5 (0.1), a6 (0.63), a7 (0.28)

S4 By generalization a1, a3 S✶
4

a1 (0.11), a2 (0.54), a8 (0.25)

S5 By normalization a1, a4 S✶
5

a2 (0.09), a3 (0.13), a4 (0.39), a5 (0.40)

I2 Ñ I3 S6 By reference a8, a9
I ✶
2
Ñ I ✶

3

S✶
6

a1 (0.15), a2 (0.79)

S✶
8

a1 (0.09), a2 (0.81), a9 (0.08)

S✶
9

a1 (0.37), a9 (0.19), a11 (0.34)

I ✶
3
Ñ I ✶

2
S✶
4

a1 (0.11), a2 (0.54), a8 (0.25)

I3

S7 By decomposition a9

I ✶
3

S✶
7

a9 (0.83), a1 (0.05), a2 (0.05)

S8 By normalization a10 S✶
8

a1 (0.09), a2 (0.81), a9 (0.08)

S9 By completeness (asso.) a11 S✶
9

a1 (0.37), a9 (0.19), a11♣0.34q

I3 Ñ I4 S10 By completeness (final) a12
I ✶
3
Ñ I ✶

4
S✶
10

a12 (0.87), a9 (0.08)

I ✶
2
Ñ I ✶

4
S✶
10

a12 (0.87), a9 (0.08)

T
ab

le
4.9

:
S
tra

teg
ies

of
th
e
p
rescrib

ed
M
ap

(left)
an

d
th
e
d
iscovered

M
ap

(righ
t)

for
th
e
ex
am

p
le

4.5. Method Exemplification 99

4.5.3 Discussion and Threats to Validity

It is interesting to discuss the results discovered in the previous section from both

quantitative (models likelihood, algorithm convergence, complexity) and qualitative

(models interpretation) points of view.

• Adopting a qualitative point of view, although some strategies from the

prescribed Map and the Map discovered by unsupervised learning are similar

(S1 and S✶
1
, S2 and S✶

2
, S10 and S✶

10
, S7 and S✶

7
), most strategies from

unsupervised learning cannot be exactly identified to prescribed strategies.

It is not due to a poor compliance of the Map discovered by unsupervised

learning but due to the supervised learning assumption, i.e., the prescribed

Map is actually followed by students. This assumption is not true. Indeed,

during the enactment of the process, students may deliberately or acci-

dentally not follow the prescribed Map. Consequently, assuming that the

prescribed model is followed by students, this creates a bias in the definition

of strategies and intentions. In addition, there is no ground truth for labeling

the activities sequences. Consequently, the labeling could be flawed as it is

a subjective process. Moreover, assigning the labels to the strategies and

intentions constrains the discovered Map to a limited space which leads to

poor performance of supervised learning. This phenomenon can be verified

with the deviations of students detected by discovered Maps. Whereas the

Map discovered by supervised learning detected only two deviations (S4 and

S7), the Map discovered by unsupervised learning detected five deviations

which are not the same as the supervised learning ones (S✶
1
, S✶

4
, S✶

8
, S✶

9
, S✶

10
).

• The log-likelihood of the parameters estimated by unsupervised learning in

the experiment is higher than supervised learning. This phenomenon remains

true when Maps are extracted from the estimated parameters: Figures 4.25

and 4.26 provide the log-likelihood of Maps discovered with unsupervised

learning with regards to the probability threshold ε, while the log-likelihood

of Maps discovered with supervised learning is equal to ✁✽. In other words,

Maps discovered by supervised learning cannot generate all the traces of ac-

tivities in both trace under study, while Maps discovered by unsupervised

learning do. Interestingly, the number of sections of the Maps discovered by

unsupervised learning is also lower than the Maps discovered by supervised

leaning, which makes the Maps structure simple and easier to understand by

human.

• From a cost-benefit and human-centric point of view, cognitive tasks are time-

consuming and labor intensive. Thus, the cost of labeling the data for super-

vised learning approach is quite high as it involves the students’ commitment

to label and comment their activities at each step of the process. In compari-

son, the only human effort for unsupervised learning is to choose the number

100 Chapter 4. Proposed Method: Map Miner Method

of strategies for the intentional process model. Nevertheless, the unsupervised

learning requires a minimal human intervention to learn the parameters and

it allows obtaining intentional process models that match the actual enacted

process. The drawbacks of unsupervised learning are a higher computation

complexity and the need to automate the naming of discovered strategies and

intentions.

• The BWA cannot guarantee to converge to the global maximum likelihood (see

Section 4.3.2.2). The convergence depends on the initialization of the matrices

T and E and it converges at 9, 986 learning iterations for the example. The

supervised algorithm converges in the first iteration. These iterations make

unsupervised learning a more expensive method than supervised learning.

• While the complexity of the BWA is high due to its requirement to several

iterations until the convergence to a local optimum, complexity of supervised

learning is very low.

Figure 4.25: Log-likelihood and number of sections of the discovered Maps with

regards to ε for the example

Table 4.10 presents a practical comparison of both learning approaches for the

example. The supervised learning takes as input 66 traces of activities and 66

related labeled strategies. The unsupervised learning takes as input only 66 traces

of activities. Whereas the convergence speed of supervised learning is very fast, since

it requires only 1 iteration, the convergence speed of unsupervised learning is slow,

since it requires 9,986 iterations. The likelihood of supervised learning is ✁2.54e3

4.5. Method Exemplification 101

-500

-1000

-1500

-2000

-2500

-3000

0

Supervised MMM

 Unsupervised MMM

Figure 4.26: Log-likelihood of supervised and unsupervised

(logarithmic scale), which is lower than the likelihood of unsupervised learning

(✁2.36e3), which demonstrates the results provided by unsupervised learning reflect

most likely the actual process.

Learning

Approach

Traces for

learning

A-priori

knowledge

Convergence

speed

(complex-

ity)

The es-

timated

parame-

ters Log-

likelihood

Supervised

learning

66 traces of

activities,

66 traces of

strategies

set of activ-

ities, set of

strategies

1 iteration ✁2.54e3

Unsupervised

learning

66 traces of

activities

set of activi-

ties, number of

strategies

9, 986

iterations

✁2.36e3

Table 4.10: Practical comparison of supervised and unsupervised learning on the

traces of the example

102 Chapter 4. Proposed Method: Map Miner Method

4.6 Validating the Method for the Discovery of Map

Path

In order to evaluate the results that are provided by application of the VA on the

example data, the Recall, Precision and F-score (i.e., a combination of recall and

precision) measures [Goutte 2005] are chosen. Before explaining these measures, a

brief overview of some terms is necessary:

• The True Positive (TP) represents the number of strategies correctly assigned

by the VA as belonging to the right class of strategy.

• The False Negative (FN) represents the number of strategies, which were not

assigned to the right class of strategy.

• The False Positive (FP) represents the number of strategies incorrectly as-

signed to the class of strategy. The accuracy of the VA prediction can be

evaluated by checking if the prediction matches to the actual strategies.

• The True Negative (TN) represents the number of strategies correctly assigned

to the right class of strategy.

Table 4.11 shows these definitions.

Strategies

True False

Prediction

True
True Positive (TP)

(Correct result)

False Positive (FP)

(Unexpected result)

False
False Negative (FN)

(Missing result)

True Negative (TN)

(Absence of correct result)

Table 4.11: Prediction of the strategies by VA

Recall is the ratio between the number of strategies correctly identified by the

VA and the number of strategies in the trace. Note that it does not take into account

the number of strategies falsely identified by the algorithm. Recall is defined by the

following expression:

Recall ✏
TP

TP � FN
(4.23)

Precision denotes the ratio between the number of strategies correctly identified

by the VA and the number of strategies identified by the algorithm. Precision is

defined by:

Precision ✏
TP

TP � FP
(4.24)

In general, it is possible to increase recall to reduce precision and vice versa.

F-score is a combination of precision and recall:

Fscore ✏
2✂ Precision✂Recall

Precision�Recall
(4.25)

4.6. Validating the Method for the Discovery of Map Path 103

This is also known as F1 measure, because precision and recall are weighted

equally. F1 measures the effectiveness of strategy recovery, considering the same

importance for recall and precision.

The recall, precision and F-score of the Supervised Map Miner method is calcu-

lated for all strategies. Six strategies S1, S2, S6, S7, S9, and S10 had a score almost

near 100%, which mean they could systematically be correctly retrieved from ob-

servations of students’ activities. These strategies are shown in Figures 4.28, 4.30,

and 4.32.

The first observation is that recall and precision are stabilized when the estima-

tion sequence length reaches its maximum value. It means that for a length of 66,

the VA provides stable results. Table 4.12 shows recall, precision and F-score for all

the mined strategies from the 66 traces. For example, the algorithm finds 99% of

activities related to strategy S1. This means that almost all the activities associated

to strategy S1 were identified. Now the question is: does the algorithm associate

several activities to the strategies while, in fact, they belong to other strategies?

This question could be addressed using the precision ratio. For example, the preci-

sion result stabilizes at 99% for strategy S1, which means only 1% of the activities

are associated to strategy S1 while they should not.

Strategy Recall Precision F-score

1 99% 99% 0.99

2 100% 100% 1

3 95% 92% 0.94

4 72% 65% 0.68

5 87% 92% 0.90

6 96% 94% 0.95

7 98% 100% 0.99

8 73% 78% 0.75

9 96% 100% 0.98

10 100% 100% 1

Table 4.12: Recall, Precision, F-score for all the mined strategies

Figures 4.27, 4.29, and 4.31 depict respectively, recall, precision and F-score in

terms of number of training traces for strategies S1, S3, S4, S5, and S8. The same

measures were taken for all the strategies and reported in Figure 4.33, which shows

the global performance of traces estimation. In this experiment, the curve of recall

starts from 0.9114 and its value increases until reaching the maximum value at

0.9240. The curves of precision and F-score start from 0.9120 and 0.8869 and stop

at 0.9194 and 0.9207, respectively. These results demonstrate that the accuracy

of retrieval for the ten strategies is 0.9207, which indicates that the algorithm has

found the right strategies corresponding to the traces of activities with a reliability

of 92%.

104 Chapter 4. Proposed Method: Map Miner Method

Figure 4.27: Recall for Strategies S1, S3, S4, S5, and S8.

Figure 4.28: Recall for Strategies S2, S6, S7, S9, and S10.

4.6. Validating the Method for the Discovery of Map Path 105

Figure 4.29: Precision for Strategies S1, S3, S4, S5 and S8.

Figure 4.30: Precision for Strategies S2, S6, S7, S9, and S10.

106 Chapter 4. Proposed Method: Map Miner Method

Figure 4.31: F-score for Strategies S1, S3, S4, S5 and S8.

Figure 4.32: F-score for Strategies S2, S6, S7, S9, and S10.

4.6. Validating the Method for the Discovery of Map Path 107

Figure 4.33: Mean value over all the strategies

108 Chapter 4. Proposed Method: Map Miner Method

4.7 Conclusion

This chapter presented in detail MMM, which allows semi-automating the construc-

tion of Map process models from users’ traces. MMM consists of three main stages:

(i) first, it estimates the users’ strategies from users’ traces, (ii) second, it constructs

a pseudo-Map from the estimated strategies, (iii) third, it clusters sub-intentions

in the pseudo-Map into a Map. The parameters of an HMM, i.e., the estimated

strategies (T) and the occurrence of each activity in each estimated strategies (E),

can be estimated either by supervised learning or unsupervised learning. The theo-

retical and practical synthesis of both learning approaches demonstrates their pros

and cons. On the one hand, several issues hinder the application of supervised

learning in modeling humans’ cognitive process, such as considerable humans’ in-

volvement in terms of data labeling, introducing inherent humans’ biases and lack

of accurate ground truth. Moreover, the likelihood of estimated strategies obtains

by supervised learning is lower than the likelihood of unsupervised learning. On

the other hand, unsupervised learning offers a higher likelihood, which means the

estimated parameters match better the reality (what really happened in the trace).

Furthermore, unsupervised learning requires lower humans’ involvement since it

does not need the labeling procedure. The application of unsupervised learning on

an example validates all the aforementioned points. Therefore, to automate the

construction of Map process models, unsupervised learning seems a more promising

approach.

Both Deep Miner and Map Miner algorithms are applied on the example with

students. The likelihood of the produced Map process models are evaluated. The

likelihood (4.11) of the different HMM models studied in this example to generate

the traces of the students: the prescribed Map, the Map obtained by maximiz-

ing (4.17), and the unsupervised Map, directly made of the emission and transition

matrices using BWA. A first observation is that the likelihood of the unsupervised

model (i.e., the model parameters obtained by unsupervised learning) is higher than

the prescribed Map or the obtained Map. This is normal since, by definition, the

result of BWA maximizes the likelihood. A second observation is that the likelihood

of the obtained Map is lower than the matrices generated by BWA. This is due to

the constraints of structure imposed by the topology of a Map. However, the ob-

tained Map has a higher likelihood than the prescribed Map, which is a satisfying

result since it means that in terms of fitness of the observed activities, the obtained

Map is a better Map than the prescribed Map.

As mentioned in Section 4.4 once the parameters of HMMs (matrices E and

T) are estimated, it is possible to find the most likely strategies related to a given

sequence of activities by VA. This allows identifying the path taken by users. The

results of the application of VA on the example show the efficiency of the algorithm.

It can find the right strategies corresponding to the traces of activities with a high

reliability.

The proposed method will be applied on a case study in next Chapter 5.

Chapter 5

Validation of the Proposed

Method

Contents

5.1 Case Study: Usage Data Collector of Eclipse 109

5.1.1 Presentation of the Case Study 109

5.1.2 Applying MMM on the Traces 110

5.1.3 Analysis of Eclipse Developers’ Behavior 111

5.2 Qualitative Evaluation of the Discovered Map 118

5.2.1 Context of the Experiment 118

5.2.2 Description of the Protocol 119

5.2.3 Results Analysis . 119

5.3 Threats to Validity . 124

5.4 Conclusion . 124

5.1 Case Study: Usage Data Collector of Eclipse

5.1.1 Presentation of the Case Study

This case study demonstrates the capability of MMM to handle the large-scale data

along with providing comprehensive and reliable results.

Eclipse Usage Data Collector (UDC) [Eclipse 2013] is a system which collects

information about how developers use the Eclipse platform. The Eclipse Foundation

provides these data to help committers and organizations to better understand

how the community makes use of Eclipse [UDC 2013]. In this perspective, this

case study aims at modeling the UDC developers’ activities in terms of intentions

and strategies by constructing automatically a Map process model that is actually

followed by developers. The discovered Map process model is useful to analyze

developers’ behaviors (see 5.1.3).

5.1.1.1 Usage Data Collector Event logs

The event logs of this case study are event logs of developers who committed their

activities to Usage Data Collector (UDC) of Eclipse [Eclipse 2013]. The event logs

110 Chapter 5. Validation of the Proposed Method

are uploaded to servers hosted by the Eclipse Foundation. The event logs contains

1, 048, 576 event logs from developers who agreed to send their data back to the

Eclipse Foundation. These data aggregate activities from over 10, 000 Java devel-

opers between September 2009 and January 2010. The activities are recorded by

timestamps for each developer, which allows knowing when and by whom, activities

were committed.

5.1.1.2 Developers’ Activities

In order to apply MMM, it is important to prepare the event logs. The number

of unique developers’ activities per month exceeds 500 activities. This number

contains both the recurring activities and the non-recurring activities (i.e., activities

which are not frequently performed by developers). The non-recurring activities

activities are not representative of the developers’ behavior characteristics because

they have not been repeated enough to be a behavioral-pattern. For this reason,

and also for readability, the case study is limited to the 130 most frequent activities

performed by developers. Table 5.1 contains the list of these activities. Some

of these activities are the commands performed directly by developers; some of

them are the frameworks, plug-ins or built-in features of Eclipse used by developers

during their development process. For readability reasons, the prefix org.eclipse of

the activities is removed. The plug-ins and frameworks are shown in bold letters

and the related activities are inside brackets. For each developer who submitted

his/her trace of activities to UDC, the trace containing only activities among the

130 most frequent is extracted. In this way, the event logs is prepared to apply

MMM.

5.1.2 Applying MMM on the Traces

Once the traces is ready, BWA estimates the transition matrix (developers’ strate-

gies). Note that, once again the number of strategies obtained by the heuristic

method for this case study is 10. The strategies are represented in Table 5.1 with

their corresponding groups of activities. Figure 5.1 depicts the effect of the choice

of the threshold ε on the likelihood and the number of sections of the obtained Map.

As mentioned earlier, ε expresses the level of granularity for a Map. An expert can

choose the value of ε regarding the expected level of granularity. In this case study,

the value of ε is set to 0.06 to have a good trade-off between having a likelihood

with a relative high value and a reasonable number of sections. Finally, the Map

obtained by Deep Miner and Map Miner algorithms is shown on Figure 5.2 and 5.3,

respectively.

Regarding the obtained Map, 22 sub-intentions are grouped by Map Miner al-

gorithm into 7 groups of high-level intentions. Note that MMM can discover accu-

rately the beginning and the end of a process; thus the intentions Start and Stop

are clearly determined on the obtained Map. The transition probabilities from one

intention to a strategy are annotated on the arrows. These values correspond to

5.1. Case Study: Usage Data Collector of Eclipse 111

the probabilities that the developers selected a strategy from a given intention.

The values on the loops indicate, the probabilities that the developers continued to

perform the activities related to the looped strategies.

5.1.2.1 Strategies and Intentions Naming Procedure

MMM discovers the strategies and where that lead to intentions. In other words,

MMM reconstructs the topology of the Map process model from traces; the names

of the strategies and intentions are not fully automatically generated. Nevertheless,

it is possible to infer the names of strategies and intentions from the emission matrix

E. Indeed, E specifies the activities associated to each strategy discovered by the

MMM (see Table 5.1). Therefore, based on the names of the activities grouped into

a strategy, it is then possible to manually infer the names of the strategies through a

semantic analysis of their properties and interrelationships. In the same way, since

the strategies lead to intentions, the names of intentions can be inferred by analyzing

the strategies leading to each intention. For instance, the main activities grouped

into the strategy S5 are ’refactoring.commands’, ’jdt.junit’, ’debug.ui.commands’,

etc. From these activities one can infer the developers wanted to debug, to refactor

and to test the code; thus, the name inferred for this strategy is by refactoring,

testing and debugging. Further, the main activities for strategy S6 are ’delete’,

’paste’, ’copy’, ’undo’, etc. This means the developers wanted to modify a code or a

file; the name inferred for this strategy is by file modification. Since both strategies

lead to an intention, it is possible to infer that the developers who performed S5

and S6 intended to Fix a bug. By applying this procedure, the names of all

strategies (denoted on the arrows) and intentions are inferred. Table 5.2 represents

the topics obtained by E and the inferred strategies names. The inferred names of

intentions are Start, Initiate the development, Manage tasks, Fix a bug,

Improve the code, Commit the code. This naming protocol remains to be

fully automated by building sophisticated ontologies.

5.1.3 Analysis of Eclipse Developers’ Behavior

Discovering the Map for developers of Eclipse UDC allows understanding the de-

velopers’ behaviors during the development process. As shown in Figure 5.3, they

have selected different paths (sequences of strategies) with different probabilities to

fulfill their intentions. An expert can analyze these behaviors in order to understand

how, why and with which probabilities developers make use of different components

or plug-ins of Eclipse: where they follow the best practice of software development

projects and where they deviate from these rules, which components or plug-ins are

more involved than the others, which paths are more/less taken or where are the

system problems, etc. The Map can also be used to provide recommendations to

developers in order to choose the best path to fulfill his/her intentions. In this case

study, there is no prior model to compare with the obtained Map. Hereafter, some

observations are detailed to address some of the aforementioned claims in practice.

112 Chapter 5. Validation of the Proposed Method

Table 5.1: Strategies index and related activities for UDC Eclipse
Strategies

Index

Activities Names

S1 mylyn.tasks.ui.commands.[OpenTask, Ad-

dTaskRepository, ActivateTask, SearchForTask], my-

lyn.context.ui.commands.[Open.context.dialog, Attach-

Context, interest.Increment, interest.Decrement], my-

lyn.monitor.ui, mylyn.team.ui

S2 core.[jobs, net, filesystem, resource, runtime, variables, content-

type, databinding.observable], equinox.p2.ui.sdk.install

S3 mylyn.context.ui.commands.[Open.context.dialog,

AttachContext, interest.Increment, inter-

est.Decrement],team.cvs.ui.[branch, replace, GenerateDiff,

ShowHistory, Add, Tag,merg, compareWithTag], jsch.core,

mylyn.[monitor.ui, team.ui, commons.ui, bugzilla.ui]

S4 pde.ui.EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update,

equinox.[ds, simpleconfigurator.manipulator, frameworkad-

min, app, common, directorywatcher, engine, core, meta-

data.repository, garbagecollector, ui.sdk.scheduler, repository,

preferences, exemplarysetup, registry, updatechecker]

S5 core.[databinding.observable, core.net, core.filesystem,

core.resource, core.runtime, core.variables, core.contenttype],

debug.ui.commands.[RunLast, Debuglast, eof, StepOver,

TerminateAndRelaunch, execute, AddBreakPoint, Tog-

glebreakPoint], jdt.debug.ui. [commands.Execute,

commands.Inspect], jdt.junit.[junitShortcut.rerunLast, go-

toTest,junitShortcut.debug], ltk.ui.refactoring.commands.

[deleteResources, renameresources, moveResources], com-

pare.selectPreviousChange

S6 ui.edit.[delete, paste, copy undo, text.goto.lineEnd,

text.contentAssist.proposals, text.goto.wordNext], ui.file.save

S7 cdt.ui.editor, jdt.junit.[junitShortcut.rerunLast, gotoTest, ju-

nitShortcut.debug], team.cvs.ui.[CompareWithRevision, Com-

pareWithLatestRevisionCommand, CompareWithWorkingCopy-

Command],ui.edit.[delete, paste, copy undo, text.goto.lineEnd,

text.contentAssist.proposals, text.goto.wordNext]

S8 team.ui.[synchronizeLast, TeamSynchroniz-

ingPerspective, synchronizeAll, applyPatch],

ltk.core.refactoring.refactor.[create.refactoring.script,

show.refactoring.history]

S9 mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui,

team.cvs.ui.[commitAll, Commit, CompareWithRemote, Sync]

S10 mylyn.monitor.ui, mylyn.bugzilla.core, mylyn.bugzilla.ui,

team.cvs.ui.[commitAll, Commit, CompareWithRemote, Sync]

5.1. Case Study: Usage Data Collector of Eclipse 113

Table 5.2: Strategies index, topics and inferred strategies names for UDC Eclipse
Strategies

labels

Topics obtained by E Inferred

strategies

names

S1 OpenTask, AddTaskRepository, ActivateTask, Search-

ForTask, Open.context.dialog, AttachContext, in-

terest.Increment, interest.Decrement, mylyn.monitor.ui,

mylyn.team.ui

By project

tracking

and team

planning

S2 jobs, net, filesystem, resource, runtime, vari-

ables, contenttype, databinding.observable,

equinox.p2.ui.sdk.install

By regular

program-

ming

activities

S3 Open.context.dialog,AttachContext, interest.Increment,

interest.Decrement, branch, replace, GenerateD-

iff, ShowHistory, Add, Tag,merg, compareWithTag,

jsch.core, monitor.ui, team.ui, commons.ui, bugzilla.ui

By code/task

sharing

S4 EquinoxLaunchShortcut.run, equinox.p2.ui.sdk.update,

simpleconfigurator.manipulator, frameworkadmin, app,

common, directorywatcher, engine, core, meta-

data.repository, garbagecollector, ui.sdk.scheduler,

repository, preferences, exemplarysetup, registry, updat-

echecker

ByOSGI-

based

design

S5 databinding.observable, core.net, core.filesystem,

core.resource, core.runtime, core.variables,

core.contenttype, RunLast, Debuglast, eof, StepOver,

TerminateAndRelaunch, execute, AddBreakPoint,

TogglebreakPoint, debug.commands.Execute, com-

mands.Inspect, junitShortcut.rerunLast, gotoTest,

ltk.ui.refactoring.commands. deleteResources, renamere-

sources, moveResources, compare.selectPreviousChange

By refac-

toring,

testing and

debugging

S6 delete, paste, copy, undo, text.goto.lineEnd,

text.contentAssist.proposals, text.goto.wordNext,

ui.file.save

By file

modifica-

tion

S7 cdt.ui.editor, junitShortcut.rerunLast, gotoTest,

delete, paste, copy, undo, text.goto.lineEnd,

text.contentAssist.proposals, junitShortcut.debug,

CompareWithWorkingCopyCommand,

team.cvs.ui.CompareWithRevision, CompareWith-

LatestRevisionCommand

By review-

ing and

testing

S8 synchronizeLast, TeamSynchronizingPerspective, syn-

chronizeAll, applyPatch, create.refactoring.script,

show.refactoring.history

By patch

applying

S9 mylyn.monitor.ui, mylyn.context.ui, mylyn.commons.ui,

team.cvs.ui.commitAll, Commit, CompareWithRemote,

Sync

By CVS

committing

S10 mylyn.monitor.ui, mylyn.bugzilla.core, my-

lyn.bugzilla.ui, team.cvs.ui.commitAll, Com-

mit, CompareWithRemote, Sync

Updating

issue track-

ing

114 Chapter 5. Validation of the Proposed Method

0.01 0.02 0.03 0.04 0.05 0.06
−6250

−6200

−6150

L
o
g
-l
ik
el
ih
o
o
d

ε

0.01 0.02 0.03 0.04 0.05 0.06
20

40

60

N
u
m
b
er

o
f
se
ct
io
n
s
in

th
e
o
b
ta
in
ed

M
a
p

Likelihood of the obtained Map

Likelihood of the unsupervised model

Number of sections in the obtained Map

Figure 5.1: Likelihood and Number of Sections of the Discovered Map with respect

to ε for the Eclipse Traces.

Observation 1. The developers’ activities involve the usage of frameworks

and plug-ins such as Mylyn, Equinox, team/CVS, Junit, built-in features of

Eclipse such as Eclipse Core, Debug and API such as ltk (Language Toolkit).

Figure 5.4 depicts the usage probabilities of these frameworks in each strategy. It

is possible to observe the usage frequency of each framework/plugin/tools among

the strategies. For instance, the usage frequency of Mylyn framework is 4 times

among 10 strategies and its usage probabilities for strategy S1 is 1 whereas for

strategy S5 it is 0. These values help detecting if any of these frameworks or tools

is underused. For instance, one observation is that the refactoring tool ltk is

underused since it has a low usage probability (see also observation 4).

Observation 2. The developers who start a development process choose one

of the 4 first strategies i.e., S1, S2, S7, S9. If they already have an ongoing program

at hand, they tend to adopt either the strategy S7: by reviewing and testing to

Improve the code or the strategy S9: by CVS committing to Commit the

code. On the other side, the developers who start a new development choose either

the S2 strategy: by regular programming activities to Initiate the develop-

ment or choose the strategy S1: by project tracking and team planning to

Manage tasks with probability 0.39 and 0.12 respectively. This observation sug-

gests that the developers of this case study tend to start programming by building

first the baselines for software architecture through dividing the programs into dif-

ferent modules/packages using OSGI-based design. After decomposing the soft-

5
.1
.

C
a
se

S
tu

d
y
:
U
sa

g
e
D
a
ta

C
o
lle

c
to

r
o
f
E
c
lip

se
1
1
5

S7

S8

S9

S9

S5

S7

Stop

Start

S1

SI-1

SI-3

SI-2

SI-4
SI-8

SI-6

SI-7

SI-5

SI-9

SI-11

SI-12

SI-13

SI-10

SI-15

SI-19

SI-16
SI-14

SI-17

SI-18

SI-20

SI-21

SI-22
S1 S3

S3
S1

S1

S3

S1

S1

S2

S2

S4

S4
S4S4

S4

S4

S2S2

S2

S7

S8

S8

S7

S7

S7
S7 S8

S8

S8

S8

S7

S9

S5

S5
S5

S5

S4

S4

S4

S4
S4

S6

S6

S9

S9

S10

S9

S9

S10

S4

F
igu

re
5
.2:

T
h
e
o
b
ta
in
ed

p
seu

d
o-M

ap
for

E
clip

se
U
D
C

b
y
M
M
M
.

1
1
6

C
h
a
p
te
r
5
.

V
a
lid

a
tio

n
o
f
th

e
P
ro

p
o
se
d

M
e
th

o
d

0.39

 0.13

By reviewing and testing

By review
ing and testing

 By OSGI-based design
By OSGI-based design

B
y

 c
o

d
e

/t
a

sk
 s

h
a

ri
n

g

 By refactoring, testing and debugging

B
y

re
fa

ct
o

ri
n

g,

 t
es

ti
n

g
an

d
 d

eb
u

gg
in

g

B
y

re
vi

ew
in

g
an

d

te
st

in
g

By
patc

h a
pply

in
g

By patch applying

 By regular

 programming activities

 By regular program
m

ing activities

By patch applying

By
CVS

co
m

m
itt

in
g

By
CVS

co
m

m
itt

in
g

By code/task sharing

 By file

 modification

 By refactoring,

 testing and debugging

S1

S3

S2

S3

S7

 S7

S7

S8

S8

S8

S9

S9

S9

S5

S5

S5

S2

S4S4

S6

 By project tracking

 and team planning

By review
ing and testing S7

Stop

Updating issue

tracking

By CVS committing

Start

By project tracking and team planning

0.47

0.11

0.36

0.51 0.10

0.19

0.17

0.19

0.
07

0.
05

0.09

0.30

0.
41

0.2
0

0.53

0.22
0.33

0.49

0.06

0.51

 S10

S1

0.12

Initiate the

development Improve code

Fix a bug

Manage tasks

Commit code

SI-1 SI-3

SI-2

SI-4
SI-7

SI-5

SI-6

SI-8

SI-9 SI-11

SI-12
SI-13

SI-10

SI-15

SI-19

SI-16
SI-14

SI-17

SI-18

SI-20 SI-22

SI-21

F
igu

re
5.3

:
T
h
e
o
b
ta
in
ed

M
a
p
p
ro
cess

m
o
d
el

for
E
clip

se
U
D
C

b
y
M
M
M
.

5.1. Case Study: Usage Data Collector of Eclipse 117

S1 S9S8S7S6S5S4S3S2 S10

0

0.1

0.4

0.8

0.2

M
yl

yn

Team

1

0.6

Core

Core

M
yl

yn

Equin
ox

U
sa

g
e

 p
ro

b
a

b
il

it
ie

s

Strategies

Equin
ox

C
o

re
Ju

n
it

lt
k

Ju
n

it

Te
am

Edito
r

D
eb

u
g

M
yl

yn

Te
am

M
yl

yn

lt
k

Team

Figure 5.4: Usage probabilities of different Eclipse elements for each strategy.

ware into sub-modules, the developers utilize strategy S3: by code/task sharing

which involves mainly Mylyn framework (described in observation 3) which can be

integrated with the Bugzilla bugtracker system and issue system. Therefore, tasks

and the content of these tasks can be shared among developers. The high transition

probability of this strategy means the developers tend to share code/task in order

to fulfill Manage tasks.

Observation 3. The developers who have the intention to Manage tasks

choose the strategies S1 and S3. Regarding Table 5.1, the activities related to

these strategies involve Mylyn framework which is the task and application life-

cycle management (ALM) framework for Eclipse. It helps the developers to work

efficiently with many different tasks such as bugs, problem reports or new features.

It monitors users’ activities and preserve the context of the task-at-hand to focus

the Eclipse UI on the related information. For instance, while working on a current

task, if the developers have to work on another task, e.g. an occurred bug, Mylyn

preserves the context of the current task. Thus, the developers can work on another

task without losing the context of previous task. This procedure is discovered in

the obtained Map of Eclipse. The activities of the developers while they Manage

tasks are interrupted (e.g., for an urgent bug) and they choose the strategy S5 to

Fix a bug. To switch to the previous task, they first commit and report the bug

then they continue managing tasks. This means the Mylyn framework has reliable

and relevant functionalities for developers and it is not underused since they work

with it 47% (transition probability of 0.47) of their time and they use it frequently

(Figure 5.4).

118 Chapter 5. Validation of the Proposed Method

Observation 4. When the activities of the developers during Manage tasks

are interrupted, they choose strategy S5 to Fix a bug. The procedure of fixing a

bug may involve refactoring existing code, writing unit tests, editing and modifying

involved code and finally fixing the affected code. The strategy S5: by refactor-

ing, testing and debugging represents this procedure. This strategy is defined

as a best practice to fix a bug, which means the developers who adopt this strat-

egy respect the guidelines of software development. However, they perform this

strategy with probability 0.22 whereas they prefer to Fix a bug by file modifi-

cation with a higher transition probability (0.33). Moreover, Figure 5.4 shows a

low usage frequency and usage probability for ltk (Language Toolkit) which is an

API for automated refactoring in Eclipse-based IDEs. This means the developers

prefer refactoring manually instead of using the refactoring and debugging tools of

Eclipse provided for this purpose. This confirms some results of empirical research

[Murphy-Hill 2008, Vakilian 2012, Fowler 1999, Xing 2006] that refactoring tools

are seldom used and that they are not developers-friendly enough.

Observation 5. Bug fixing includes debugging and refactoring of different soft-

ware modules. Once developers have fixed a set of bugs, they choose either strategy

S8: by patch applying with probability 0.05 or strategy S7: by reviewing and

testing with probability 0.07 to fulfill the intention of Improve the code. This

observation means when debugging and refactoring have an impact on different

parts of the program, the developers improve their code by patch applying. If

debugging and refactoring change the program locally, they manually changes the

code and send it for reviewing and testing. The probabilities describe that the

developers tend to modify the code manually.

Observation 6. The Map can be used as a behavioral pattern to build rec-

ommender system for assisting developers in their daily development tasks. For

example, this recommender system can suggest developers to avoid some problem-

atic paths/strategies which might deviate from organizational best practices and

to take some more effective paths/strategies. For instance, since the procedure of

refactoring and debugging might affect the code in different parts of the program,

it is recommended to check the coherence integrity of the program. To do so, after

fixing a bug, the developers can be recommended to take the strategy S4: by

OSGI-based design to Initiate the development, to check if the refactoring

and debugging have been impacted the OSGI-based design (e.g. if the depen-

dencies between the modules are changed, etc).

5.2 Qualitative Evaluation of the Discovered Map

5.2.1 Context of the Experiment

To validate and evaluate the proposed method (MMM) with potential users, an

experiment was conducted with 7 professionals in software development. This ex-

periment consisted in individual qualitative interviews to collect their perception

5.2. Qualitative Evaluation of the Discovered Map 119

Number Average Age Sex Functions

7 33 (Min. 28 and Max. 38) Male 1 CEO, 1 CTO,

5 Engineers of de-

velopment

Table 5.3: Profile of the developers

and points of view on the Map process model obtained for Eclipse traces. This

qualitative study aims at collecting different ideas and opinion, it is not made to

quantify the use or usability of the tool or method. Table 5.3 summarizes the profile

of the subjects. These subjects are developers from companies which have differ-

ent activities such as mobile application, security, pharmacology software, aircraft

software and Media wholesaler. All of them have more than 10 years seniority in

development.

5.2.2 Description of the Protocol

At first, the definition of Map process models through an example is given to the

subjects. Then the Map process model obtained by the MMM for Eclipse traces

(Figure 5.3) is presented and explained to the subjects. Once they have become fa-

miliar with Map process model, the questionnaire given in Appendix B was followed

to interview them. The questions are inspired by [Hug 2009]. The first part of the

questionnaire is about their work habits. This allows better understanding their

profile as well as the context in which the developers work and thereby better eval-

uate and analyze their answers to the questions about the Eclipse Map. The second

part of the questionnaire is about Map process model, in order to understand their

comprehension, perception and points of view regarding the Map process model.

The final part of the questionnaire focuses on the Eclipse Map, described in Sec-

tion 5.1. The goal of this part is to gather their opinions about the names of the

strategies and the intentions, the relation between the activities and the discovered

strategies, the transitions between the strategies and the topology of the Eclipse

Map.

5.2.3 Results Analysis

5.2.3.1 Assessment of work habits

Regarding their development methods, 4 over 7 subjects said that they go through

some development steps. However, 3 over 7 subjects said that they skip the develop-

ment steps. “We often pass through integration testing, unit testing and planning”

(subject 2), “We do specifications phase after the development while it should be in

other way, we try to correct this habit” (subject 3), “We pass through testing step”

(subject 5).

Only 3 over 7 subjects rigorously use design methods to develop software. “We

use UML diagrams because it is graphic and simple to use” (subject 1), “We use

120 Chapter 5. Validation of the Proposed Method

DesignPattern. First we analyze the requirements to use DesignPattern, we do not

use UML diagrams. We use the design method of software development to reuse

external library” (subject 1), “I am inspired by DesignPattern for Eclipse but I

do not really follow it. It gives me some ideas. I do not use design methods to

develop software because either they are not formal or they are not adapted to the

requirements” (subject 3), “We do not use them because it is very difficult to apply

the pure method on practice, for example the UML diagrams are very difficult to

implement while we can easily do the things manually” (subject 5), “We organize

the development of our software with SCRUM, by dividing it to the modules, then

we prioritize the modules from the most important to the less important one, then

we start the development phase” (subject 6), “I used to use DesignPattern but now,

I do not use any method” (subject 7).

The majority of subjects (5 over 7 subjects) monitor their methods. “We use

sub-version tools to monitor software evolution, this allows stepping back to chose

the best version of code, but we do not have a specific monitoring” (subject 1),

“We have a meeting once per week and we discuss with each other by sharing what

we are doing” (subject 2), “We have a deposit system, it means for each step of

development, we commit our code. Therefore we can see the different modifications

regarding ancient version and we ensure that the ancient functionally are preserved

by predefined tests or functionality tests. We use SVN for this” (subject 3), “We

only monitor the quality of our code with JSLint” (subject 4), “Since we work with

SCRUM, before the development we estimate the complexity of the each module

which corresponds to the development time, and we will check the real time that the

module took after development. By comparing these times we can have a feedback on

the real time that it takes. We also test each module to ensure that the functionality

has been correctly implemented” (subject 6).

All subjects (7 over 7 subjects) said that they do not respect design methodology

to the letter and they adapt the methods to their requirements.

Only 1 over 7 subjects said he presents his methods to other people. “In our

company, we try to have the same method to be consistent with each other. We try

to have the certification of ISO 9001 for quality, therefore we try to construct [our

code] well to have it” (subject 3).

Only 3 over 7 subjects said they document their method. “We try to com-

ment our code, we try also to document the report of specifications in Word and we

schematize it in Powerpoint” (subject 3), “We document the method first manu-

ally then we use Oxygen tool, we have both internal and external documentations”

(subject 5), “I use Github for documentation” (subject 6).

5.2.3.2 Assessment of Map process model

Regarding process modeling, 5 over 7 subjects said they have never heard about it.

However all subjects (7 over 7 subjects) believe that Map process model is easy to

understand and it is fairly intuitive. All subject believe that Map process model

can be learned quickly (around one hour).

5.2. Qualitative Evaluation of the Discovered Map 121

The first impression of the developers on Map process model is generally counter-

intuitive. “We are a little company and it is particularly interesting for large com-

panies, but Map process model can be useful for optimization of methods” (subject

1), “I do not know what it offers to me [Map process model]” (subject 3),“I cannot

see how Map process model can help us model our process” (subject 4), “I cannot

see immediately the interest of Map process model” (subject 7).

After some explanations, they understood the benefits of Map process model.

“I think by modeling [developers] with this kind of model [Map process model] it

is possible to extract the best path which are the best practice, this allows realizing

that the best path is not always what is prescribed. It is a significant gain of time”

(subject 1),“It allows avoiding the oversights of steps. We can skip some steps but

it should be voluntary. It can highlight some tools we did not know, or to find them

out efficiently” (subject 2), “When we try to execute a task, since we always do it

in the same manner, Map allows extracting the things” (subjects 3), “Since I am

bad at organizing my tasks, [Map process model] can be help me to be organized”

(subject 6).

Regarding the disadvantages of Map process model, all subject said one dis-

advantage is that it should be applied on several developers to have enough data

and then extract a more interesting good behavioral pattern. Other disadvantages

were also expressed. “The first disadvantage for me is following the succession of

the steps too automatically which may cause wasting time, for example, if we want

to solve bugs with another solutions by skipping some steps” (subject 2), “I cannot

see the time on the transitions. It would be interesting to know how much time is

necessary for a transition” (subject 3).

4 over 7 subjects said they are ready to recommend using Map process model

for large companies. One subject emphasizes that: “It must be transparent for user,

it means it should not create an overhead for user, for example, it should run on a

plug-in” (subject 3).

5.2.3.3 Assessment of The Eclipse Map

As a first impression, all subjects (7 over 7 subjects) found that the Eclipse Map is

interesting, since it generally illustrates the typical developers’ behaviors and their

daily habits.

All subjects (7 over 7 subjects) believe that the Eclipse Map reflects most of

typical developers’ behaviors. “You cannot log everything that happens during pro-

cess development, for example when you log only Eclipse, when a developer jump to

another software you do not have access to the latter logs, it is more interesting if

you can log every activity of the developers” (subject 1), “The intentions are very

significant for me, I identify right away my daily tasks in the Map, particularly

improve code and fix a bug. Regarding the strategies, I generally find them relevant

with my habits, but I would like to add some strategies such as the interactions with

users, because when we fix a bug we communicate with the users by email” (subject

2), “Generally I can see our daily tasks. I cannot see regression test and conformity,

122 Chapter 5. Validation of the Proposed Method

i.e. to test if something we have done before still works. But I do not know if I

would still agree with these concepts on a more detailed level” (subject 3), “What

I cannot see is consulting the manual. Personally I check the documentation a lot,

another thing is testing, we test the code permanently. I cannot see this in the Map

directly”(subject 4), “I can find out all the steps in the development, the transitions

between intentions make definitely sense, I can even trace my usual path but maybe

not with the same probabilities” (subject 6).

All subjects (7 over 7 subjects) found that the Eclipse Map can help developers

who are already initiated to Eclipse. “I think that the Eclipse Map can help to

train the beginners of Eclipse platform, some strategies seem definitely helpful to

initiate the development process, since it is interesting to have the same habits

work in the same company” (subject 1), “It is helpful for somebody who is novice

in tasks organization but more experimented on Eclipse” (subject 2), “The Map

allows developers comparing them-self to others” (subject 3), “I think it is helpful

to formalize the best practice of developers or monitoring the activities of a given

developer” (subject 4), “The Map can be helpful to assist any developer (Eclipse or

not)” (subject 5), “I do not think a novice developer can use the Map. It is for a

non-beginner developer” (subjects 7).

4 over 7 subjects said that the Eclipse Map can be useful to improve the quality

of the development method. “It can be useful by proposing the best path to choose

which is not already mentioned in a manual” (subject 1), “It can help avoiding

the oversights or to have the new ways to do something, but I think this highly

depends on company dimension, if it is automated we can use it to improve the

development process” (subject 2), “The Map can be useful if it is automated, it

can be useful for real-time recommendation” (subject 3), “I think the Map can help

avoiding oversights of some tasks such as test and optimization phases” (subject 5),

“If the really Map reflects the best practice the developers, we can use it to improve

our code otherwise it would be difficult” (subject 6).

All subjects generally found the inferred name of strategies and intentions rele-

vant. However, they suggested some names for some strategies. “For a developer,

the names of intentions and strategies definitely make sense. The activities seem

grouped into the right classes of strategies” (subject 1), “The names of the intentions

are general enough which helps understanding, I would like to add some strategies

such as interactions with client” (subject 2), “The names of the intentions and

the strategies seem consistent. I would like to add the strategy of by comparing for

the intention improve code. And for the same intention, I do not agree with by

patch applying, I would put something like by refactoring. I do not know for the

first strategy, and I agree with the names of the other strategies” (subject 3), “The

names of the strategies and the intentions seem consistent to me” (subject 6).

4 over 7 subjects found it is interesting to have the transitions probabilities

on the strategies. “[observation 1] I agree with this because it allows having some

feedback about the usage probabilities, for example to find out if the tools are adapted

or not, it is indirect usage [of the Map]. For the observation 5, I think the intention

can be refined. If we have a local bug or a bug that can impact the software, maybe

5.2. Qualitative Evaluation of the Discovered Map 123

we do not have the same probability” (subject 2), “I agree with observation 2, since

the developers tend to start the development by dividing it in different modules. The

observation 3 seems consistent too. For observation 5, one should change the name

of by patch applying to by refactoring” (subject 3), “The probabilities help finding

the best path on the Map to improve the development”(subject 4), “I think the name

of the strategies are very close to the activities. For me, a strategy is an intellectual

concept. I would like to see an applicative sense in the name of the strategies”

(subject 6).

Almost all subjects found that it is highly necessary to have the detailed level

of the Map. “At first, it is interesting to have a generic view but then it is more

interesting to focus on some parts [intentions], particularly if it is possible to navi-

gate through the Map via a tool” (subject 1), “I think we can refine the intention fix

a bug into two sub-intentions of fix a major bug and fix a minor bug. Then we do

not have the same strategies, we will have something like safe-strategy and testing”

(subject 2), “I wish I could see the more detailed level. That would make more

sense to me” (subject 3), “In this level of the Map, I cannot find out some inten-

tions such as initiate the functionality. For me, it could be somewhere in initiate

the development, therefore I think if we have a more detailed level of the Map, we

can find some sub-intentions in the intentions” (subject 4), “For us, it is important

to have the clients feedback to fix a bug or improve it, but this part does not exist

on the Map” (subject 5).

All subjects found that the Eclipse Map can be used to formalize problems.

Three of them precised their thoughts. “I do not know if the Map can be useful to

formalize problems, I can see the path that lead to fix a bug but I cannot see how

the bug is created” (subject 1), “For me, managing a task is difficult and the Map

may guide me to overcome this problem” (subject 2), “The Map could help me for

committing the code that I usually forget” (subject 6).

5.2.3.4 Synthesis

These qualitative interviews with developers helped to highlight several points:

• The topology of the Eclipse Map is consistent with the experiences of the

developers. They found it relevant with their daily activities.

• The names of the strategies and the intentions have generally been validated

by the developers, although some of them have suggestions to improve them.

• They would need an effective tool for modeling intentional processes auto-

matically. They wish they could have an interactive model in each step of

development. This should not create an overhead for the developers.

• The level of abstraction (sub-intentions) should be available for each intention

since the developers need to see what are the components of intentions. This

is interesting to better understand the deep nature of a process.

124 Chapter 5. Validation of the Proposed Method

• Map process models are particularly useful to model the behaviors of many

developers in large companies.

• The developers generally pass through the step of testing or they do it an

informal way. This may be the reason why in the Eclipse Map, this step is

not very highlighted.

• The obtained Map can help developers avoiding the oversights in each steps

of development process.

• Many of the developers mentioned that they would like to see the interactions

and feedback of the clients. Therefore, it would be interesting to trace these

interactions along with the development traces and generate a Map process

model from both of these traces.

5.3 Threats to Validity

There are four main issues that threats the validity of the proposed approach.

First, the mined Map may suffer from under-fitting problems if the number of

activities traces used to estimate the parameters of the HMM is not high enough.

Indeed, these traces have to capture all the possible behaviors while enacting the

process under study to produce an accurate Map.

Second, the BWA requires an important number of iterations to converge to

a result. For instance, it converges at 20, 237 learning iterations for the Eclipse

case study. Moreover, it cannot always be guaranteed to converge to the global

maximum likelihood.

Third, although the MMM automatically discovers the topology of the Map

process model, the names of strategies and intentions are still inferred semi-

automatically. The manual part of this naming procedure introduces a human

bias. However, the logical relations between activities, strategies and intentions

established in the obtained Map could be exploited to build an ontology to fully

automate the process of inferring the names of strategies and intentions.

Fourth, the M1M0 topology chosen for the HMM is the most sophisticated

topology allowing the use of an algorithm such as BWA or equivalent algorithms.

More complex topologies may actually be more appropriate to model some pro-

cesses. However, there is no known algorithm to estimate the parameters of these

topologies, as BWA does for M1M0. For this reason, the scope of MMM is limited

to the M1M0 topology.

5.4 Conclusion

This chapter presented the application of MMM on a large-scale and real world

case study. The results are convincing from both theoretical and practical points of

view. As a criterion for evaluation of the method, the likelihood that is a well-known

5.4. Conclusion 125

criterion for statistical model is used. The results demonstrate that the likelihood of

the unsupervised parameters is higher than the discovered Map. This phenomenon

demonstrates that the results directly obtained by BWA have higher probabilities to

generate a model that the best corresponds to the observed traces (i.e., what really

happened during process enactment). However, the likelihood of the discovered

Map is lower than the model parameters generated by BWA due to the constraints

of the structure imposed by the topology of a Map. The observations obtained from

the discovered Map are useful for an analyst, a software designer to improve the

software usability [Bass 2003]. The Map can help the novice or unfamiliar users

learning system features by using the Map obtained from previous development

process as a guideline. For instance, when their intentions are known, they can be

recommended which strategies and activities that might be useful to fulfill their

intentions. Since the intentional topology of a Map makes it user-friendly, it can

help software designers designing systems that enable users to be more efficient in

their operations. This can be done by adapting the system to the users’ needs or

by assisting the users step by step during the process enactment. Using a Map

increases also the users’ confidence and satisfaction in the enactment of a process.

All these points contribute to improving the usability of the software products or

information systems.

Chapter 6

Map Miner Tool

Contents

6.1 Format of Input Files for Map Miner Tool 127

6.2 Map Miner Tool Interface . 128

6.3 Inputs Parameters . 129

6.4 Outputs of Map Miner Tool 132

6.5 The Programming Languages of Map Miner Tool 134

6.6 Limitations of Map Miner Tool 135

This chapter presents the Map Miner tool, which automates different modules

of MMM :These modules are (i) estimating the emission and transition matrices by

unsupervised learning, (ii) discovering the pseudo-Map by Deep Miner algorithm,

and (iii) discovering the Map process model by Map Miner algorithm. Note that

Map Miner tool does not automate neither inferring the names of strategies and

intentions nor generating the graphic Map process models (e.g., with nodes and

arcs). The Maps will be generated as the text and they should be design by the

user.

Map Miner tool allows discovering Map process model from traces using unsu-

pervised learning. Map Miner tool allows visualizing the Map process models in

different levels of abstraction. It is easy to manipulate and to understand for an

end-user.

The Map Miner tool takes as inputs an trace comprising timestamped users’

activities. Then it loads the data into the embedded database. Several parame-

ters must be adjusted to run the Map Miner tool, such as strategies number, the

threshold ε for obtaining pseudo-Map and the number of high-level intentions for

obtaining the Map process model. Map Miner tool is developed in large part in

Java programming language.

6.1 Format of Input Files for Map Miner Tool

Map Miner tool can take as inputs either an Excel spreadsheet files or data loaded

already in a external database since external database can directly loaded into the

Map Miner tool database. However, in both cases the files must be ordered as

depicted on Figure 6.1.

128 Chapter 6. Map Miner Tool

The first column contains the UserID, which can be any kind of identifier such as

numbers or names. The second column contains the timestamps, which determine

the time and date of activities execution. The third column contains the activities

that users performed while enacting a given process.

The order of the columns must be respected but the order of rows is not impor-

tant since Map Miner tool orders them by timestamps and users ID. It is important

to note that Map Miner tool is sensitive to inputs types, which means it does not

support a cell of Excel file containing the value ”NULL”, empty, with quotes, space

or any other kind of characters except numbers and letters.

Figure 6.1: A fragment of Excel file that can be used in Map Miner tool

6.2 Map Miner Tool Interface

Map Miner tool can be executed directly in command-line. To make it more in-

teractive for end-user, a graphical user interface is also designed (see Figure 6.3).

This interface allows opening the file containing traces by selecting the tab ”File”

in the left corner of the interface windows. Then the desired file with the extension

of *.xls can be chosen.

As shown in the figures, a user can adjust the parameters of Map Miner. These

parameters are explained in the next section.

6.3. Inputs Parameters 129

Figure 6.2: A fragment of the embedded database used in Map Miner tool

6.3 Inputs Parameters

There are several parameters to be adjusted for both generation of pseudo-Map

and Map process models. This makes Map Miner very flexible and user-friendly

since the user can customized the parameters according to the context at hand or

to obtain some tailored results. The parameters that can be adjusted in Map Miner

are as follows:

• The value of ε (minimum probability): as described in chapter 4, when ε

is close to 0, almost all the transitions are present in the discovered Map.

However, when ε increases, the number of sections, as well as the likelihood

of the discovered Map, decrease. The Map gets more easily understandable

by humans but it is not as accurate in terms of transition. Therefore, the

value of ε has to be set regarding the desirable accuracy of the Map and its

understanding. For instance, we adjust the minimum probability to 0.1, which

means all the transitions lower than this value will not be taken into account

by Map Miner tool.

• Number of strategies: as found in Section 4.3.2.4, the number of strategies in

MMM framework was obtained by a heuristic method. This method is a brute-

force method since it consists in generating all models with different numbers

of strategies and observing the associated emission matrices until that the

number of different strategies obtained in the emission matrices reaches a

130 Chapter 6. Map Miner Tool

Figure 6.3: An overview of Map Miner Tool

threshold. Therefore, although this heuristic method is more adapted to the

context of each trace, however it is a time-consuming method. For this reason,

in Map Miner tool users can determine the number of strategies manually.

When the number of possible strategies is too high, the BWA produces an

emission matrix with several identical strategies. Consequently, the right

number of strategies corresponds to the observed threshold. For instance, if

the number of strategies is adjusted to 10, and the discovered Map shows two

identical sections, this means the right number of strategies is 9.

• Number of high-level intentions: this parameter needs to be adjusted to obtain

a Map process model. The Start and Stop intentions are excluded from

it. For instance, if one adjusts the number of high-level intentions as 4, the

resulted Map will contains 6 intentions in total, i.e., the Start and Stop

intentions and 4 high-level intentions.

6.3. Inputs Parameters 131

• Number of iterations: The convergence of the BWA used in Map Miner de-

pends on the initialization of the matrices T and E. Therefore, the higher the

value of the number of iterations is, the BWA converges more to a local max-

imum. The user can set up this value to a lower value to stop more quickly

the algorithm.

• Tolerance: The number of iterations of the BWA depends on a stopping

criterion. This criterion is the minimal difference between the likelihood of

the estimated HMM at two consecutive iteration of BWA.

Note that the number of iterations and tolerance are set up in advance. How-

ever, one can change it regarding the expected results.

Figure 6.4 illustrates an example of adjustment of the parameters in the Map Miner

tool interface.

Figure 6.4: Verbose outputs of Map Miner tool

132 Chapter 6. Map Miner Tool

6.4 Outputs of Map Miner Tool

The outputs of Map Miner tool appear: (1) on the bottom of interface windows:

these outputs are verbose and contain all the information about the dataset, such as

number of users, traces, time, etc and also all outputs of Map Miner Method, such

as emission and transition matrices, etc(see Figure 6.4); and (2) into a new windows:

these outputs report only the necessary information to construct pseudo-Map and

Map process models as well as the activities related to discovered strategies (see

Figures 6.5, 6.7, 6.8).

Figure 6.5: Traces information and section of pseudo-Map

SI-1

SI-3

SI-4SI-2

SI-6

SI-5

5

3

4

2

6

Figure 6.6: An example of the construction of pseudo-Map

Map Miner generates pseudo-Maps at different level of accuracy depending on

6.4. Outputs of Map Miner Tool 133

Figure 6.7: Discovered strategies and related activities

Figure 6.8: Sections of Map process model

134 Chapter 6. Map Miner Tool

the number of strategies and the value of minimum probability (ε). The closer to

0 is ε, the higher the number of sections on the Map are. Another output of Map

Miner is a Map process model with high-level intentions. To obtain a Map process

model, first there has to be a pseudo-Map. Indeed, Map Miner takes the sections

generated out of the pseudo-Map and the number of intentions adjusted by the

user.

In Figure 6.5, pseudo-Map is presented by some index for source sub-intentions,

strategies, and target sub-intentions. The index of Start and Stop are also indicated.

The results discovered by Map Miner tool reads as follows: the elements of source

sub-intentions must be related to the elements of target sub-intentions through the

corresponding strategies. For instance, the first element of source sub-intention ”1”

must be related to the first element of target sub-intention ”2” through strategy

”2” or the second element of source sub-intention ”1” must be related to the second

element of target sub-intention ”3” through strategy ”3”, and so forth. These results

can be designed by user in a graphical way. Figure 6.6 depicts a graphical example

for the first five sections discovered in the pseudo-Map (Figure 6.5).

In the same manner, the Map process model can be read (see Figure 6.8).

For instance, the first element of source intention ”2” must be related to the first

element of target intention ”1” through strategy ”4” or the second element of source

intention ”1” must be related to the second element of target intention ”1” through

strategy ”4”, and so forth. Note that the index of Start and Stop remain the same as

before. Figure 6.9 depicts a graphical example for the first five sections discovered

in the Map process model (Figure 6.8).

2

3

1

4

1

4

1
5

Figure 6.9: An example of the construction of Map process model

6.5 The Programming Languages of Map Miner Tool

MMM has been initially developed in MATLAB. All the experiments and case

studies of chapters 5 and 4 have been treated in MATLAB.

6.6. Limitations of Map Miner Tool 135

MATLAB is a computer program that provides the user with a convenient

environment for performing many types of calculations. Besides, an effective, quick

and easy way to solve differential equations. Moreover, it allows easy numerical

calculation and visualization of the results without advanced and time consuming

programming. MATLAB is an interpreted language. This implies that the source

code is not compiled but interpreted on the fly: it can be slow, especially when bad

programming practices are applied.

Nevertheless, the ultimate goal of MMM is to be a tool available for the commu-

nity. This allows, on the one hand, checking its robustness, relevance and reliability;

on the other hand, it enables users to study processes under an intentional angle.

In this perspective, MMM is also implemented in Java programming language

(see Appendix A). The advantages of Java are as follows [IBM 2014]:

• Java is easy to learn. Java was designed to be easy to use and is therefore

easier to write, compile, debug, and learn than other programming languages.

This characteristic makes the MMM code easy to understand and expendable

in the future.

• Java is object-oriented. This allows creating modular programs and reusable

code. Thereby the MMM code is reusable and improvable to be adapted to

the context of projects at hand.

• Java is platform-independent. One of the most significant advantages of Java

is its ability to move easily from one computer system to another. The ability

to run the same program on many different systems is crucial to World Wide

Web software, and Java succeeds at this by being platform-independent at

both the source and binary levels. This allows Map Miner tool be pluggable

to different platform such as ProM [EUT 2013].

Because of Java’s robustness, ease of use, cross-platform capabilities and security

features, it has chosen for the implementation of Map Miner tool.

6.6 Limitations of Map Miner Tool

There are some limitations that hinder the Map process Models generated by Map

Miner.

First, the number of activities in the traces has to be high enough to capture

all the possible behaviors while enacting the process under study. This allows

producing an accurate Map, which does not suffer from underfitting problems. In

other words, the number of unique activities in traces has to be proportional to the

number of all activities in traces.

Second, for complex datasets, Map Miner requires an important number of

iterations to converge to a result. This can be time-consuming in the case of complex

dataset. For instance, it took about 30 minutes for the Eclipse UDC. However, it is

136 Chapter 6. Map Miner Tool

possible to set up the number of iterations to a smaller value to decrease the time

of algorithm execution, which leads to poor results.

Third, although the Map Miner automatically discovers the topology of the Map

process model, the names of strategies and intentions are still inferred manually.

The manual part of this naming procedure introduces a human bias. However,

the logical relations between activities, strategies and intentions established in the

obtained Map could be exploited to build ontologies to fully automate the process

of inferring the names of strategies and intentions.

Fourth, although the parameters of Map Miner allow customizing the discovered

Map, the adjustment of these parameters needs some expertise.

Chapter 7

Conclusions and Open Issues

Contents

7.1 Conclusions . 137

7.2 Open Issues . 140

7.1 Conclusions

This thesis proposed a new vision of process mining by focusing on the intentional

angle. This means discovering the actual processes from event logs and modeling

them using intentional process model (Map). This method is called Map Miner

Method (MMM), which models processes automatically in terms of users’ inten-

tions and strategies. Intention-oriented process models permit modeling humans’

cognition operators, i.e., thinking, reasoning, deciding creative process, which is

not possible with activity-oriented process models. The discovered Map process

model answers to the problems of why a process is enacted. Although MMM is

not designed to answer to the process mining problems, the case study presented

in chapter 5 shows that the discovered Map process model is not hampered by the

same problems identified in process mining, such as hidden tasks, duplicate tasks or

the problem of loops. This is due to the fact that Map process models are flexible

and activities are of less importance with a representation on a higher level, i.e.,

intention level. On the other hand, Map process model can handle the loops as its

sections can be enacted several times, until the desired intention is achieved.

Apart from Map process models discovering, the results of this thesis will enable

checking the conformance, improving the models and providing the recommenda-

tions :

• Conformance checking: formalizing the models followed in practice allows

comparing them to the original models prescribed by the organization and

possibly adapt and improve prescribed models to actual practice and finally

provide recommendations for stakeholders.

• Enhancement: discovering Maps are useful for an analyst, a software designer

to improve the product or method usability. Since the intentional topology of

a Map makes it user-friendly, it can help software designers designing systems

that enable users to be more efficient in their operations.

138 Chapter 7. Conclusions and Open Issues

• Recommendation: provide better guidance for computer systems users,

through recommender systems for assisting them in their daily development

tasks. This guideline is adapted to the users’ context taking into account the

experiences of previous users and actual users’ intentions. The Map can also

help the novice or unfamiliar users learning system features by using the Map

obtained from previous development process as a guideline.

In this last chapter, first, the contributions of this thesis will be summarized

by mapping them to the research questions raised in the introduction. Then, the

limitations of the thesis will be pointed out. Finally, the outlook of the thesis for

future research will be indicated.

• Q1 How can dependencies within activities be discovered to estimate the

strategies? Event logs reflect which activities are really performed by users

while enacting a process. The dependencies within activities can express dif-

ferent ways of process enactment.

– H1.1 It is possible to discover the dependencies within activities from

event logs.

– H1.2 A strategy consists in a set of activities.

The dependencies within activities logs are discovered and thereby the users’

strategies are estimated. Discovering the strategies allows understanding the

different ways of working to achieve a goal (the intention). The strategies are

estimated in both supervised and unsupervised learning.

Supervised and unsupervised learning approaches of HMMs are compared

from both theoretical and practical points of view, to discover process mod-

els. This allows determining which learning approach is more appropriate

to the situation at hand. To run supervised learning it is necessary to have

the traces of strategies related to the traces of activities. Therefore, it is a

costly technique, since the users’ should label their activities. In contrast,

unsupervised learning can be run without such information. In fact, the cost

of labeling the activities by the strategies for supervised learning is quite high

as it involves the users’ commitment at each step of the process. In compari-

son, unsupervised learning requires no users’ effort. This characteristic makes

unsupervised learning a method easy-to-use. Therefore, only unsupervised

learning can be used to automate MMM. In addition, regarding theoretical

and practical results, the likelihood of unsupervised learning is higher than

supervised learning. This means that the results obtained by unsupervised

learning reflect better the real users’ behaviors (i.e., users’ strategies and in-

tentions) than supervised learning. For these reasons, unsupervised learning

of HMM is highly recommended to estimate users’ strategies during the en-

actment of a process. However, supervised learning is useful to validate the

hypothesis in practical manner. The supervised learning also allows checking

the alignment between the prescribed models and the discovered models.

7.1. Conclusions 139

• Q2 How can the intentions be identified from the estimated strategies? Once

the strategies are estimated, the link between these strategies and intentions

have to be discovered.

– H2 A strategy is followed to fulfill a given intention.

For the estimated strategies the intentions are discovered regarding the Map

formalism constraints. Indeed, in this formalism, the strategies lead to the

nodes, which are the intentions. Therefore, once the strategies are discovered,

it is possible to detect where they lead, i.e., the intentions. This allows

reconstructing the topology of a Map process model.

• Q3 How can the processes be modeled at different levels of abstraction? The

nature of granularity that is needed to model a process can be defined regard-

ing the situation at hand.

– H3 Clustering techniques can be used to abstract the discovered inten-

tions.

Deep Miner algorithm is developed to discover the pseudo-Map from traces.

In this perspective, a new metric of fitness-precision is proposed to avoid the

overfitting or underfitting problems. Therefore, the Map process models are

obtained by optimizing the precision-fitness metric, which guarantees discov-

ering a model that fits the actual process. This kind of Map process model

provides different levels of details for the actual process (regarding the chosen

parameters). This is helpful for analysts or process designers to visualize and

to analyze the processes in various aspects.

Map Miner algorithm is developed to generate the Map process models from

pseudo-Maps. This algorithm uses the clustering technique to group low-level

intentions into high-level intentions. The low-level intentions are represented

in a space in which they can be classified into clusters. This allows visu-

alizing the processes in terms of high-level intentions, which makes it more

understandable by domain experts.

• Q4 How can process mining techniques be adapted to automate process dis-

covery to support variability and flexibility taking into account the users’

intentions and strategies? Process mining enables the design of process from

event logs resulting from information systems.

– H4.1 Process mining approaches only consider activity-oriented process

models.

– H4.2 Process mining algorithms can be adapted to discover intention-

oriented process models.

A tool, called Map Miner Tool, was designed and developed to automate

MMM. It enables applying the proposed approach to obtain the personalized

Map process model only from users’ traces, by adjusting some parameters.

140 Chapter 7. Conclusions and Open Issues

• Another contribution of this thesis is discovering the most likely sequences

of strategies related to the sequence of activities for a given user. In other

words, discovering a path in the Map process model comprising a sequence of

strategies executed one after the other by a given user. In the future, this will

enables to provide a recommender system and assist users in each step of the

process enactment.

The entire method is applied on a laboratory context to validate the method

and on a real-life traces to demonstrate the scalability of the proposed approach.

A qualitative experiment was conducted on the case study to evaluate the per-

ception, effectiveness and usability of MMM in practical use. Some analysis on

the discovered process models are also investigated, such as conformance checking

and users’ behaviors analysis to enhance prescribed models. This show the wide

range of usability for the discovered Map and the possibilities of extensions of its

performance.

7.2 Open Issues

This thesis focused on the reconstruction of Map process models in an semi-

automatic way. In other words, the proposed method finds the relationships between

activities to discover the strategies and where they lead, i.e. the intentions. How-

ever, the names of these strategies and intentions are still inferred manually in the

sense that the proposed method is able to extract automatically some topics related

to each strategy. This establishes a preliminary base to infer manually the names

of strategies and intentions. In the future, this procedure can be fully automated

by building sophisticated ontologies from these discovered topics. These ontologies

should take into account the context in which the processes are enacted as well as

the situation at hand. This will make the discovered Map more context-sensitive.

This thesis mainly focused on the discovery of intentional process models. How-

ever, the usefulness of the MMM is not only limited to process discovery. In the

future the discovered process models can be useful for multiple concerns. For in-

stance, at the project management level, it allows checking the alignment between

prescribed process models and what stakeholders actually do; or at the application

level, monitoring users and providing run-time recommendations. This will help

improving the software usability by using anterior developers’ activities as a guide-

line by assisting the novice or unfamiliar users. For example, when users’ intentions

are known, they can be recommended which strategies and activities that might be

useful to fulfill their intentions. This guideline is adapted to the users’ context tak-

ing into account the experiences of previous users and the actual users’ intentions.

These phases can be automated and integrated as modules of MMM. Furthermore,

the discovered Map enables users to be more efficient in their tasks by adapting

the system to the users’ needs. Assisting users step by step using a Map increases

their confidence and satisfaction in the enactment of a process. All these points

contribute to improving the usability of the software products.

7.2. Open Issues 141

New applications of intention mining will be found in the near future: mining

intentions might also help improving guidance, provide better recommendations,

facilitate process modeling, identify the gap between a prescribed business require-

ments and actual information systems users’ goals, help users in a pro-active way,

to monitor the intentions of users, and many more.

Chapter 8

Appendix A : Particular Classes

In this Appendix, we present some important snippets, which show how different

parts of Map Miner tool are developed : as the snippets for the initialization of the

transition and emission matrices. The initialization of these matrices is important as

it affects the convergence of BWA. These snippets illustrate partly the construction

of pseudo-Map sections by Deep Miner algorithm from BWA results, and Map

process model from sections of pseudo-Map.

A snippet of Java code displaying the initialization of transition

matrix:

System.out.println(”∗∗∗∗∗∗∗∗∗∗∗∗∗Init transition matrix∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”);

double T_init[][] = new double[Nb_Hs][Nb_Hs];

for (int i = 0; i < Nb_Hs; i++) {

for (int j = 0; j < Nb_Hs; j++) {

if (i == j) {

if (i == Nb_Hs ✁ 1) {

T_init[i][j] = 1;

} else {

T_init[i][j] = 0.8;

}

} else {

if (i == Nb_Hs ✁ 1) {

T_init[i][j] = 0;

} else {

T_init[i][j] = 0.2 / (Nb_Hs ✁ 1);

}

}

System.out.print(” ” + T_init[i][j] + ” ”);

}

System.out.println();

}

A snippet of Java code displaying the initialization of emission matrix:

144 Chapter 8. Appendix A : Particular Classes

System.out.println(”∗∗∗∗∗∗∗∗∗∗∗∗∗Init emission matrix∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”);

// Init emission matrix

double E_init[][] = new double[Nb_Hs][Nb_Act + 2];

for (int i = 0; i < Nb_Hs; i++) {

for (int j = 0; j < Nb_Act + 2; j++) {

if ((i == 0) || (i == Nb_Hs ✁ 1)) {

E_init[i][j] = 0;

} else {

E_init[i][j] = 1.0 / (Nb_Act + 2);

}

if (((i == 0) && (j == 0)) || ((i == Nb_Hs ✁ 1) && (j ==

Nb_Act + 1))) {

E_init[i][j] = 1;

}

System.out.print(” ” + E_init[i][j] + ” ”);

}

System.out.println();

}

A snippet of Java code displaying the beggining of the construction of

the sections with repect to the minimum probability:

System.out.println(”∗∗∗∗∗∗∗∗∗∗∗∗∗∗target∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”);

System.out.println(target);

int nbRowSections = 0;

for (int x = 0; x < Nb_Strat; x++) {

for (int y = 0; y < Nb_Strat; y++) {

if (TransReshape.get(x, y) > proba_min) {

nbRowSections++;

}

}

}

SimpleMatrix sections = new SimpleMatrix(nbRowSections, 3);

int rowIdx = 0;

for (int i = 0; i < Nb_Strat; i++) {

for (int j = 0; j < Nb_Strat; j++) {

if (TransReshape.get(i, j) > proba_min) {

145

double[] sectionsRow = {target.transpose().get(i), j + 1,

target.transpose().get(j)};

for (int k = 0; k < sectionsRow.length; k++) {

System.out.print(sectionsRow[k] + ” ”);

}

System.out.println();

sections.setRow(rowIdx, 0, sectionsRow);

rowIdx++;

}

}

}

A snippet of Java code displaying the construction of the sections (

following):

System.out.println(”∗∗∗∗∗∗∗∗∗∗∗∗∗∗Sections∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”);

System.out.println(sections);

//Second step of algorithm : refine identical intentions // get all the source

intentions

int sections_before = 0;

int sections_now = 1;

double[][] source_intentionDouble = zeros(1, sections.numRows());

while (sections_before != sections_now) {

int nb_sections = sections.numRows();

int cols = sections.numCols();

for (int i = 0; i < nb_sections; i++) {

// source intention [i][i] = sections.get(i,1);

source_intentionDouble[0][i] = sections.get(i, 0);

}

A snippet of Java code displaying the comparison the sets of exiting

sections:

if (rowsa == rowsb) {

int Ba = 0;

Ba = ((SimpleMatrix) exit_from[i]).numRows();

SimpleMatrix exit_fromDiff = compareMTX(((SimpleMatrix) exit_from[

i]), ((SimpleMatrix) exit_from[j]));

146 Chapter 8. Appendix A : Particular Classes

double exit_fromSum = sum(exit_fromDiff);

if (exit_fromSum == rowsa ∗ rowsb) {

SimpleMatrix MTX = compareMTXDouble(getCol(sections, 1),

source_intention_unique.get(i));

System.out.println(MTX);

int[] MTXFind = find(MTX, 1);

for (int m = 0; m < MTXFind.length; m++) {

if (MTXFind[m] != 0) {

sections.set(m, 0, source_intention_unique.get(j)

);

}

}

SimpleMatrix MTX2 = compareMTXDouble(getCol(sections, 3),

source_intention_unique.get(i));

System.out.println(”MTX2”);

System.out.println(MTX2);

int[] MTX2Find = find(MTX2, 1);

for (int m = 0; m < MTX2Find.length; m++) {

if (MTX2Find[m] != 0) {

sections.set(m, 2, source_intention_unique.get(j)); }

} } } } } }

A snippet of Java code displaying the construction of a pseudo✁Map from

BWA:

source_intentions = getCol(sections, 1).transpose();

SimpleMatrix source_intention_unique = unique(

source_intentions);

// System.out.println(source intention unique.numCols());

int cpt = 0;

while (new_number_of_sections < previous_number_of_sections) {

previous_number_of_sections = new_number_of_sections;

for (int i = 1; i < source_intention_unique.numCols(); i++) {

for (int j = 1; j < source_intention_unique.numCols(); j++)

{

temp_sections = sections.copy();

//temp sections(find(temp sections(:,1) == source intentions

(i)),1) = source intentions(j);

findRes = find(getCol(temp_sections, 1),

source_intention_unique.get(i));

for (int k = 0; k < findRes.length; k++) {

147

if (findRes[k] != 0) {

temp_sections.set(findRes[k] ✁ 1, 0,

source_intention_unique.get(j));

}

}

cpt++;

findRes = find(getCol(temp_sections, 3), source_intention_unique.

get(i));

for (int k = 0; k < findRes.length; k++) {

if (findRes[k] != 0) {

temp_sections.set(findRes[k] ✁ 1, 2, source_intention_unique.get

(j));

}

}

SimpleMatrix Trans_temp = TransMatrixFromSections(temp_sections,

Trans);

if (Trans_BWA == Trans_temp) {

sections = temp_sections.copy();

new_number_of_sections = length(sections);

} } } }

A snippet of Java code displaying the classification of sub✁intentions

into groups of intention:

System.out.println(”∗∗∗∗∗∗subIntention∗∗∗∗∗∗”);

System.out.println(subIntention);

int numberSections = sections.numRows();

int cols = sections.numCols();

int indexOfStartSubIntention[] = null;

int indexOfEndSubIntention[] = null;

for (int i = 2; i < numberSections; i++) {

indexOfStartSubIntention = find(subIntentionIndexExcluded.

transpose(), sections.get(i, 0));

System.out.print(indexOfStartSubIntention[0] + ” /// ”);

indexOfEndSubIntention = find(subIntentionIndexExcluded.

transpose(), sections.get(i, 2));

System.out.println(indexOfEndSubIntention[0]);

int sum = numberSubIntentions + indexOfEndSubIntention[0];

subIntention.set(indexOfStartSubIntention[0] ✁ 1, sum ✁ 1, 1);

subIntention.set(indexOfEndSubIntention[0] ✁ 1,

indexOfStartSubIntention[0] ✁ 1, 1);

148 Chapter 8. Appendix A : Particular Classes

}

for (int i = 0; i < numberSubIntentions; i++) {

subIntention.set(i, i, 1);

subIntention.set(i, numberSubIntentions + i, 1);

}

System.out.println(”∗∗∗∗∗∗∗∗subIntention∗∗∗∗∗∗∗∗∗”);

System.out.println(subIntention);

// %% Classify sub✁intentions in groups of intention with K✁mean

algorithm

double[][] subIntentionDoubledd = SimpleMatrix2doubleMD(

subIntention);

MWNumericArray subIntentionIn = null;

subIntentionIn = new MWNumericArray(subIntentionDoubledd);

Object[] Result = null;

MWNumericArray intentionForSubIntention = null;

kmeansJavaClass x = new kmeansJavaClass();

Result = x.kmeansJava(1, subIntentionIn, numberOfIntentions,

1000);

intentionForSubIntention = (MWNumericArray) Result[0];

System.out.println(”∗∗∗∗∗∗∗intentionForSubIntention∗∗∗∗∗∗∗∗”);

System.out.println(intentionForSubIntention);

//%% Generate the new map

for (int i = 0; i < numberSections; i++) {

indexOfStartSubIntention = find(subIntentionIndexExcluded.

transpose(), sections.get(i, 0));

indexOfEndSubIntention = find(subIntentionIndexExcluded.

transpose(), sections.get(i, 2));

System.out.println(”i = ” + i);

for (int h = 0; h < indexOfStartSubIntention.length; h++) {

System.out.print(”indexOfStartSubIntention = ” +

indexOfStartSubIntention[0] + ” ”);

}

System.out.println();

for (int h = 0; h < indexOfEndSubIntention.length; h++) {

System.out.print(”indexOfEndSubIntention = ” +

indexOfEndSubIntention[0] + ” ”);

}

149

System.out.println();

if (indexOfStartSubIntention[0] != 0) {

//sections(i,1) = intentionForSubIntention(

indexOfStartSubIntention);

sections.set(i, 0, intentionForSubIntention.getInt(

indexOfStartSubIntention[0]));

}

if (indexOfEndSubIntention[0] != 0) {

sections.set(i, 2, intentionForSubIntention.getInt(

indexOfStartSubIntention[0]));

}

}

Chapter 9

Appendix B : Developers’

Questionnaire

This Appendix presents the questions that were asked during the interviews with

developers.

• Questions about work habits

1. Can you briefly describe the activities of your company and yourself?

2. When you develop software or system what are the steps you pass

through?

3. What are the design methods that you implement in your team?

4. Do you use design methods of software development? Why are you using

them? Why do you not use them?

5. In which contexts or for which types of projects do you use design meth-

ods?

6. How do you implement the monitoring of your method?

7. When using a design methodology, do you apply it to the letter? Do you

customize it regarding your needs?

8. Do you present, even partially, your methods to other people?

9. Do you describe, even partially, your own methods?

• Questions about Map process model

1. Have you heard about process modeling so far? If so, in which contexts?

Did you use it before?

2. What do you think about Map process model? What might be the

benefits of modeling the development processes by Map process model

regarding your work habits? What are the disadvantages?

3. Do you think the use of Map process model requires a learning phase?

Is that clear and easy to understand? Is that an intuitive model?

4. How long takes the appropriation of the learning phase of Map?

5. Are you ready to describe the operation of Map process model to a third

party?

152 Chapter 9. Appendix B : Developers’ Questionnaire

6. Would you wish using Map process model in your development environ-

ment? Would you recommend using this process model?

• Questions about the Eclipse Map

1. What is your first impression of the Map?

2. Do you think that the Map reflects the developers’ behaviors?

3. Do you think that the Map is useful for a novice developer of Eclipse?

4. Do you think that the Map is helpful to improve the quality of the

development method and the best practices of developers?

5. Does the Map help you understanding the development process? Why?

For which kind of application would you use it?

6. What is your perception of the concepts represented on the Map?

7. What do you think about the relations between activities and strategies?

What about the intentions?

8. What is your perception about the name of strategies and intentions?

Are they comprehensive? Do they represent the developers’ habits?

9. What do you think about the observations?

10. Do you think that the Map can help you to avoid making mistakes?

Why?

11. What do you think of the level of abstraction for the intentions?

12. Do you think the Map is consistent with the usual development method?

13. Is the Map easy to use?

14. Do you need any help to use the Map?

15. Does the Map help you to formalize problems? Which are these prob-

lems?

Chapter 10

Appendix C : Journal and

Conference Publications

• G. Khodabandelou, C. Hug, C. Salinesi, “A Novel Approach to Process Min-

ing: Intentional Process Models Discovery”, long paper, Proc. of the 8th

IEEE International Conference on Research Challenges in Information Sys-

tems (RCIS), May 2014, Marrakesh, Morocco.

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, “Supervised vs. Un-

supervised Learning for Intentional Process Models Discovery”, BPMDS in

conjunction with 26th International Conference on Advanced Information Sys-

tems Engineering (CAiSE), June 2014, Thessaloniki, Creek.

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, “Unsupervised Dis-

covery of Intentional Process Model from Event Logs”, MSR/ICSE (the 36st

International Conference on Software Engineering), June 2014, Hyderabad,

India.

• R. Deneckère, C. Hug, G. Khodabandelou, C. Salinesi, “Intention Mining:

Process Model Discovery Using Supervised Learning”, International Journal

of Information System Modeling and Design (IJISMD), 2014.

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, “Supervised Inten-

tional Process Models Discovery using Hidden Markov Models”, Proc. of the

Seventh IEEE International Conference on Research Challenges in Informa-

tion Science (RCIS), May 2013, Paris, France. Best Paper Award

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, M. Bajec, E. Ko-

rnyshova, M. Jankovic, “COTS Products to Trace Method Enactment: Re-

view and Selection”, long paper, Proc. of the 21st European Conference on

Information Systems (ECIS), June 2013, Utrecht, Netherlands.

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, “Process Mining ver-

sus Intention Mining”, Proc. of Exploring Modelling Methods for Systems

Analysis and Design (EMMSAD), June 2013, Valencia, Spain.

• G. Khodabandelou, “Contextual Recommendations using Intention Mining

on Process Traces”, doctoral consortium, Proc. of the Seventh IEEE Inter-

national Conference on Research Challenges in Information Science (RCIS),

May 2013, Paris, France.

154 Chapter 10. Appendix C : Journal and Conference Publications

• Jankovic, M., Bajec, M., G. Khodabandelou, R. Deneckère, C. Hug, C.

Salinesi, “Intelligent Agile Method Framework”, Proc. of the 8st Interna-

tional Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE), July 2013, Angers, France.

• G. Khodabandelou, C. Hug, R. Deneckère, C. Salinesi, “Découverte Super-

visée des Modèles de Processus Intentionnels Basée sur les Modèles de Markov

Cachés”, Proc. of the trente-et-unième congrès INFORSID, May 2013, Paris,

France.

Bibliography

[Agrawal 1998] Rakesh Agrawal, Dimitrios Gunopulos and Frank Leymann. Mining

process models from workflow logs. Springer, 1998. (Cited on pages 2, 14,

20, 21, 24, 26, 29 and 40.)

[Ajzen 1975] Icek Ajzen and Martin Fishbein. Belief, Attitude, Intention, and Be-

havior: An Introduction to Theory and Research by Martin Fishbein; Icek

Ajzen. 1975. (Cited on page 3.)

[Akkermans 2006] Hans Akkermans and Jaap Gordijn. Ontology engineering, sci-

entific method and the research agenda. In Managing Knowledge in a World

of Networks, pages 112–125. Springer, 2006. (Cited on page 13.)

[Amyot 2009] Daniel Amyot, Jennifer Horkoff, Daniel Gross and Gunter Muss-

bacher. A lightweight GRL profile for i* modeling. In Advances in Con-

ceptual Modeling-Challenging Perspectives, pages 254–264. Springer, 2009.

(Cited on page 45.)

[Arbaoui 1994] Selma Arbaoui and Flavio Oquendo. Goal oriented vs. activity ori-

ented process modelling and enactment: Issues and perspectives. In Software

Process Technology, pages 171–176. Springer, 1994. (Cited on page 17.)

[Ashkan 2009] Azin Ashkan, Charles LA Clarke, Eugene Agichtein and Qi Guo.

Classifying and characterizing query intent. In Advances in Information

Retrieval, pages 578–586. Springer, 2009. (Cited on page 42.)

[Assar 2000] Säıd Assar, Camille Ben Achour, Samira Si-Saidet al. Un Modèle

pour la spécification des processus d’analyse des Systèmes d’Information. In

INFORSID, pages 287–301, 2000. (Cited on pages vii, 47 and 60.)

[Baeza-Yates 2005] Ricardo Baeza-Yates. Applications of web query mining. In

Advances in Information Retrieval, pages 7–22. Springer, 2005. (Cited on

page 42.)

[Baeza-Yates 2006] Ricardo Baeza-Yates, Liliana Calderón-Benavides and Cristina

González-Caro. The intention behind web queries. In String processing and

information retrieval, pages 98–109. Springer, 2006. (Cited on pages 7, 32,

34, 36, 37, 38 and 42.)

[Barrios 2004] Judith Barrios and Selmin Nurcan. Model driven architectures for

enterprise information systems. In Advanced Information Systems Engi-

neering, pages 3–19. Springer, 2004. (Cited on page 45.)

[Bass 2003] Len Bass, Paul Clements and Rick Kazman. Software Architecture

in Practice, 2nd edn. SEI Series in software engineering, 2003. (Cited on

page 125.)

156 Bibliography

[Baum 1966] Leonard E Baum and Ted Petrie. Statistical inference for probabilis-

tic functions of finite state Markov chains. The annals of mathematical

statistics, vol. 37, no. 6, pages 1554–1563, 1966. (Cited on page 20.)

[Baum 1970] Leonard E Baum, Ted Petrie, George Soules and Norman Weiss. A

maximization technique occurring in the statistical analysis of probabilistic

functions of Markov chains. The annals of mathematical statistics, vol. 41,

no. 1, pages 164–171, 1970. (Cited on pages 13 and 72.)

[Beck 2001] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward

Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew

Hunt, Ron Jeffrieset al. Manifesto for agile software development. 2001.

(Cited on page 15.)

[Bengio 2009] Yoshua Bengio. Learning deep architectures for AI. Foundations and

trends R© in Machine Learning, vol. 2, no. 1, pages 1–127, 2009. (Cited on

page 44.)

[Biermann 1972] Alan W Biermann and Jerome A Feldman. On the synthesis

of finite-state machines from samples of their behavior. Computers, IEEE

Transactions on, vol. 100, no. 6, pages 592–597, 1972. (Cited on page 20.)

[Boehm 1988] Barry W. Boehm. A spiral model of software development and en-

hancement. Computer, vol. 21, no. 5, pages 61–72, 1988. (Cited on pages 15

and 17.)

[Bratman 1999] Michael E Bratman. Intention, plans, and practical reason. 1999.

(Cited on page 32.)

[Bresciani 2004] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia

and John Mylopoulos. Tropos: An agent-oriented software development

methodology. Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3,

pages 203–236, 2004. (Cited on page 45.)

[Broder 2002] Andrei Broder. A taxonomy of web search. In ACM Sigir forum,

volume 36, pages 3–10. ACM, 2002. (Cited on page 34.)

[Burnham 2002] Kenneth P Burnham and David R Anderson. Model selection and

multi-model inference: a practical information-theoretic approach. Springer,

2002. (Cited on pages 73 and 75.)

[Cambridge 2013] University Press Cambridge. Cambridge Ad-

vanced Learner’s Dictionary and Thesaurus. url-

http://dictionary.cambridge.org/dictionary/british/, December 2013.

(Cited on page 11.)

[Carmona 2008] Josep Carmona, Jordi Cortadella and Michael Kishinevsky. A

region-based algorithm for discovering Petri nets from event logs. In Business

Process Management, pages 358–373. Springer, 2008. (Cited on page 22.)

Bibliography 157

[Chang 2011] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support

vector machines. ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 2, no. 3, page 27, 2011. (Cited on page 38.)

[Chen 2002] Zheng Chen, Fan Lin, Huan Liu, Yin Liu, Wei-Ying Ma and Liu

Wenyin. User intention modeling in web applications using data mining.

World Wide Web, vol. 5, no. 3, pages 181–191, 2002. (Cited on pages 7, 32,

35 and 36.)

[Chen 2003] Kevin CW Chen and David YY Yun. Discovering process models from

execution history by graph matching. In Intelligent Data Engineering and

Automated Learning, pages 887–892. Springer, 2003. (Cited on page 41.)

[Chow 1978] Tsun S. Chow. Testing software design modeled by finite-state ma-

chines. IEEE Trans. Software Eng., vol. 4, no. 3, pages 178–187, 1978.

(Cited on pages 11 and 12.)

[Christie 1981] Bruce Christie. Face to File Communication: A Psychological Ap-

proach to Information Systems. 1981. (Cited on page 3.)

[Chulef 2001] Ada S Chulef, Stephen J Read and David A Walsh. A hierarchical

taxonomy of human goals. Motivation and Emotion, vol. 25, no. 3, pages

191–232, 2001. (Cited on pages 32 and 49.)

[Clauzel 2009] Damien Clauzel, Karim Sehaba and Yannick Prié. Modelling and

visualising traces for reflexivity in synchronous collaborative systems. In

Intelligent Networking and Collaborative Systems, 2009. INCOS’09. Inter-

national Conference on, pages 16–23. IEEE, 2009. (Cited on page 10.)

[Conklin 1989] Jeff Conklin and Michael L Begeman. gIBIS: A tool for all reasons.

Journal of the American Society for Information Science, vol. 40, no. 3, pages

200–213, 1989. (Cited on page 16.)

[Cook 1995] Jonathan E Cook and Alexander L Wolf. Automating process discovery

through event-data analysis. In Software Engineering, 1995. ICSE 1995. 17th

International Conference on, pages 73–73. IEEE, 1995. (Cited on page 20.)

[Cook 1998a] Jonathan E Cook and Alexander L Wolf. Discovering models of soft-

ware processes from event-based data. ACM Transactions on Software En-

gineering and Methodology (TOSEM), vol. 7, no. 3, pages 215–249, 1998.

(Cited on pages 2, 14, 20, 24, 28, 29 and 41.)

[Cook 1998b] Jonathan E Cook and Alexander L Wolf. Event-based detection of

concurrency, volume 23. ACM, 1998. (Cited on pages 20, 28, 29 and 30.)

[Cook 1999] Jonathan E Cook and Alexander L Wolf. Software process validation:

quantitatively measuring the correspondence of a process to a model. ACM

Transactions on Software Engineering and Methodology (TOSEM), vol. 8,

no. 2, pages 147–176, 1999. (Cited on pages 20 and 27.)

158 Bibliography

[Cook 2004] Jonathan E Cook, Zhidian Du, Chongbing Liu and Alexander L Wolf.

Discovering models of behavior for concurrent workflows. Computers in In-

dustry, vol. 53, no. 3, pages 297–319, 2004. (Cited on pages 30 and 40.)

[Curtis 1988] Bill Curtis, Herb Krasner and Neil Iscoe. A field study of the software

design process for large systems. Communications of the ACM, vol. 31,

no. 11, pages 1268–1287, 1988. (Cited on page 17.)

[Curtis 1992] Bill Curtis, Marc I Kellner and Jim Over. Process modeling. Commu-

nications of the ACM, vol. 35, no. 9, pages 75–90, 1992. (Cited on page 17.)

[Dardenne 1993] Anne Dardenne, Axel Van Lamsweerde and Stephen Fickas. Goal-

directed requirements acquisition. Science of computer programming, vol. 20,

no. 1, pages 3–50, 1993. (Cited on pages 6, 34, 37 and 45.)

[Das 1994a] Sreerupa Das and Michael C Mozer. A uni ed gradient descent/clus-

tering architecture for finite state machine induction. Advances in neural in-

formation processing systems, vol. 6, pages 19–26, 1994. (Cited on page 20.)

[Das 1994b] Sreerupa Das and Michael C. Mozer. A Unified Gradient-

Descent/Clustering Architecture for Finite State Machine Induction. In

NIPS, pages 19–26. Morgan Kaufmann, 1994. (Cited on page 20.)

[Datta 1998] Anindya Datta. Automating the Discovery of AS-IS Business Process

Models: Probabilistic and Algorithmic Approaches. Information Systems

Research, vol. 9, no. 3, pages 275–301, 1998. (Cited on page 20.)

[Davis 1989] Fred D Davis, Richard P Bagozzi and Paul R Warshaw. User accep-

tance of computer technology: a comparison of two theoretical models. Man-

agement science, vol. 35, no. 8, pages 982–1003, 1989. (Cited on pages 3

and 35.)

[de Medeiros 2003] Ana Karla A de Medeiros, Wil MP Van der Aalst and AJMM

Weijters. Workflow mining: Current status and future directions. In On the

move to meaningful internet systems 2003: Coopis, doa, and odbase, pages

389–406. Springer, 2003. (Cited on page 40.)

[de Medeiros 2004] AK Alves de Medeiros, Boudewijn F van Dongen, Wil MP

Van der Aalst and AJMM Weijters. Process mining: Extending the α-

algorithm to mine short loops. Eindhoven University of Technology, Eind-

hoven, vol. 19, 2004. (Cited on pages 24, 27, 28 and 29.)

[De Medeiros 2005a] AK Alves De Medeiros and Christian W Günther. Process

mining: Using CPN tools to create test logs for mining algorithms. In Pro-

ceedings of the sixth workshop on the practical use of coloured Petri nets

and CPN tools (CPN 2005), volume 576, 2005. (Cited on page 31.)

Bibliography 159

[De Medeiros 2005b] AK Alves De Medeiros and AJMM Weijters. Genetic process

mining. In Applications and Theory of Petri Nets 2005, volume 3536 of

Lecture Notes in Computer Science. Citeseer, 2005. (Cited on pages 22, 24,

26, 29 and 41.)

[de Medeiros 2005c] Ana Karla A de Medeiros, Boudewijn F van Dongen, Wil MP

Van der Aalst and AJMM Weijters. Process mining for ubiquitous mobile

systems: an overview and a concrete algorithm. In Ubiquitous Mobile Infor-

mation and Collaboration Systems, pages 151–165. Springer, 2005. (Cited

on pages 27, 28, 29 and 41.)

[De Medeiros 2006] AK Alves De Medeiros, AJMM Weijters and Wil MP Van der

Aalst. Genetic process mining: a basic approach and its challenges. In

Business Process Management Workshops, pages 203–215. Springer, 2006.

(Cited on page 40.)

[De Medeiros 2007] AK Alves De Medeiros, Carlos Pedrinaci, Wil MP Van der

Aalst, John Domingue, Minseok Song, Anne Rozinat, Barry Norton and

Liliana Cabral. An outlook on semantic business process mining and mon-

itoring. In On the Move to Meaningful Internet Systems 2007: OTM 2007

Workshops, pages 1244–1255. Springer, 2007. (Cited on page 19.)

[Delorenzi 2002] Mauro Delorenzi and Terry Speed. An HMM model for coiled-coil

domains and a comparison with PSSM-based predictions. Bioinformatics,

vol. 18, no. 4, pages 617–625, 2002. (Cited on page 50.)

[Dempster 1977] Arthur P Dempster, Nan M Laird and Donald B Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society. Series B (Methodological), pages 1–38, 1977. (Cited on

page 72.)

[Deneckère 2010] Rébecca Deneckère and Elena Kornyshova. Process line configu-

ration: An indicator-based guidance of the intentional model MAP. In Enter-

prise, Business-Process and Information Systems Modeling, pages 327–339.

Springer, 2010. (Cited on pages 3 and 32.)

[Desel 1995] Jörg Desel. Free-choice petri nets, volume 40. Cambridge university

press, 1995. (Cited on pages 22 and 26.)

[Dietz 2005] Jan LG Dietz and Antonia Albani. Basic notions regarding business

processes and supporting information systems. Requirements Engineering,

vol. 10, no. 3, pages 175–183, 2005. (Cited on page 45.)

[Dik 1989] Simon C Dik. The theory of functional grammar. Walter de Gruyter,

1989. (Cited on page 38.)

[Disco 2014] Disco. urlhttp://www.fluxicon.com/disco/, January 2014. (Cited on

page 31.)

160 Bibliography

[Dowson 1987] Mark Dowson. Iteration in the software process; review of the 3rd

International Software Process Workshop. In Proceedings of the 9th inter-

national conference on Software Engineering, pages 36–41. IEEE Computer

Society Press, 1987. (Cited on pages 2 and 14.)

[Dustdar 2005] Schahram Dustdar, Thomas Hoffmann and Wil Van der Aalst. Min-

ing of ad-hoc business processes with TeamLog. Data & Knowledge Engi-

neering, vol. 55, no. 2, pages 129–158, 2005. (Cited on pages 28, 30 and 40.)

[Eclipse 2013] Eclipse. Filtered UDC Data. url-

http://archive.eclipse.org/projects/usagedata/, 2013. (Cited on pages 7

and 109.)

[Eder 2002] Johann Eder, Georg E Olivotto and Wolfgang Gruber. A data ware-

house for workflow logs. In Engineering and Deployment of Cooperative

Information Systems, pages 1–15. Springer, 2002. (Cited on page 28.)

[Etien 2006] Anne Etien. Ingénierie de l’alignement: concepts, modèles et proces-

sus: la méthode ACEM pour l’alignement d’un système d’information aux

processus d’entreprise. PhD thesis, Paris 1, 2006. (Cited on pages 3 and 17.)

[EUT 2013] EUT. ProM. urlhttp://www.processmining.org/prom/start, Novem-

ber 2013. (Cited on page 135.)

[Feather 1987] Martin S Feather. Language support for the specification and de-

velopment of composite systems. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 9, no. 2, pages 198–234, 1987. (Cited

on page 32.)

[Feiler 1993] Peter H Feiler and Watts S Humphrey. Software process development

and enactment: Concepts and definitions. In Software Process, 1993. Con-

tinuous Software Process Improvement, Second International Conference on

the, pages 28–40. IEEE, 1993. (Cited on page 14.)

[Fernstrom 1991] Christer Fernstrom and Lennart Ohlsson. Integration needs in

process enacted environments. In Software Process, 1991. Proceedings. First

International Conference on the, pages 142–158. IEEE, 1991. (Cited on

page 84.)

[Fickas 1992] Stephen Fickas and B Robert Helm. Knowledge representation and

reasoning in the design of composite systems. Software Engineering, IEEE

Transactions on, vol. 18, no. 6, pages 470–482, 1992. (Cited on page 32.)

[Fillmore 1967] Charles J Fillmore. The case for case. 1967. (Cited on page 38.)

[Finkelstein 1991] Anthony Finkelstein, Jeff Kramer and Michael Goedicke. View-

point oriented software development. Citeseer, 1991. (Cited on page 15.)

Bibliography 161

[Fischer 2008] Markus Fischer. ARIS Process Performance Manager. In Measur-

ing, Modelling and Evaluation of Computer and Communication Systems

(MMB), 2008 14th GI/ITG Conference-, pages 1–3. VDE, 2008. (Cited on

page 27.)

[Forney Jr 1973] G David Forney Jr. The viterbi algorithm. Proceedings of the

IEEE, vol. 61, no. 3, pages 268–278, 1973. (Cited on page 87.)

[Fowler 1999] Martin Fowler. Refactoring: improving the design of existing code.

Addison-Wesley Professional, 1999. (Cited on page 118.)

[Friedman 1997] Nir Friedman, Dan Geiger and Moises Goldszmidt. Bayesian net-

work classifiers. Machine learning, vol. 29, no. 2-3, pages 131–163, 1997.

(Cited on pages 11 and 50.)

[Gaaloul 2005] Walid Gaaloul and Claude Godart. Mining workflow recovery from

event based logs. In Business Process Management, pages 169–185. Springer,

2005. (Cited on pages 24, 29 and 40.)

[Gales 1998] Mark JF Gales. Maximum likelihood linear transformations for HMM-

based speech recognition. Computer speech & language, vol. 12, no. 2, pages

75–98, 1998. (Cited on page 50.)

[Georgeon 2012] Olivier L Georgeon, Alain Mille, Thierry Bellet, Benoit Math-

ern and Frank E Ritter. Supporting activity modelling from activity traces.

Expert Systems, vol. 29, no. 3, pages 261–275, 2012. (Cited on pages 10

and 11.)

[Gilks 1996] Walter R Gilks, Sylvia Richardson and David J Spiegelhalter. Markov

chain monte carlo in practice, volume 2. CRC press, 1996. (Cited on

page 21.)

[Golani 2003] Mati Golani and Shlomit S Pinter. Generating a process model from a

process audit log. In Business Process Management, pages 136–151. Springer,

2003. (Cited on pages 28, 29 and 40.)

[González-Caro 2011] Cristina González-Caro and Ricardo Baeza-Yates. A multi-

faceted approach to query intent classification. In String Processing and

Information Retrieval, pages 368–379. Springer, 2011. (Cited on pages 34,

36, 38 and 42.)

[Goutte 2005] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of

precision, recall and F-score, with implication for evaluation. In Advances in

Information Retrieval, pages 345–359. Springer, 2005. (Cited on page 102.)

[Gove 1981] Philip Babcock Gove. Webster’s third new international dictionary of

the english language, unabridged: A merriam-webster’s, volume 1. Merriam-

Webster, 1981. (Cited on page 32.)

162 Bibliography

[Gray 1992] Wayne D Gray, Bonnie E John and Michael E Atwood. The precis of

Project Ernestine or an overview of a validation of GOMS. In Proceedings

of the SIGCHI conference on Human factors in computing systems, pages

307–312. ACM, 1992. (Cited on page 50.)

[Greco 2004] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri and Domenico

Sacca. Mining expressive process models by clustering workflow traces. In

Advances in Knowledge Discovery and Data Mining, pages 52–62. Springer,

2004. (Cited on pages 28, 29 and 41.)

[Greco 2005a] Gianluigi Greco, Antonella Guzzo, Giuseppe Manco and Domenico

Sacca. Mining and reasoning on workflows. Knowledge and Data Engineer-

ing, IEEE Transactions on, vol. 17, no. 4, pages 519–534, 2005. (Cited on

page 41.)

[Greco 2005b] Gianluigi Greco, Antonella Guzzo and Luigi Pontieri. Mining hierar-

chies of models: From abstract views to concrete specifications. In Business

Process Management, pages 32–47. Springer, 2005. (Cited on page 22.)

[Group 2011] Object Management Group. usiness Process Model and Nota-

tion. urlhttp://www.omg.org/spec/BPMN/2.0/, December 2011. (Cited

on page 39.)

[Group 2013] Object Management Group. Business Process Model and Nota-

tion. urlhttp://www.omg.org/spec/BPMN/2.0/, December 2013. (Cited

on pages 13 and 15.)

[Gruber 1995] Thomas R Gruber. Toward principles for the design of ontologies

used for knowledge sharing? International journal of human-computer stud-

ies, vol. 43, no. 5, pages 907–928, 1995. (Cited on page 12.)

[Günther 2007] Christian W Günther and Wil MP Van der Aalst. Fuzzy mining–

adaptive process simplification based on multi-perspective metrics. In Busi-

ness Process Management, pages 328–343. Springer, 2007. (Cited on

page 22.)

[Hammori 2004] Markus Hammori, Joachim Herbst and Niko Kleiner. Interactive

workflow mining. Springer, 2004. (Cited on pages 28, 30 and 40.)

[Harel 1987] David Harel. Statecharts: A visual formalism for complex systems.

Science of computer programming, vol. 8, no. 3, pages 231–274, 1987. (Cited

on page 15.)

[Hartigan 1979] John A Hartigan and Manchek A Wong. Algorithm AS 136: A k-

means clustering algorithm. Journal of the Royal Statistical Society. Series C

(Applied Statistics), vol. 28, no. 1, pages 100–108, 1979. (Cited on pages 54

and 86.)

Bibliography 163

[Hashemi 2008] Ray Hashemi, Azita Bahrami, James LaPlant and Kenneth

Thurber. Discovery of Intent through the Analysis of Visited Sites. In

Hamid R. Arabnia and Ray R. Hashemi, editeurs, IKE, pages 417–422.

CSREA Press, 2008. (Cited on pages 7, 32, 34, 35, 36 and 37.)

[Hassine 2002] I Hassine, D Rieu, F Bounaas and O Seghrouchni. Symphony: a

conceptual model based on business components. In Systems, Man and Cy-

bernetics, 2002 IEEE International Conference on, volume 3, pages 6–pp.

IEEE, 2002. (Cited on page 15.)

[Hayashi 2003] Miwa Hayashi. Hidden markov models to identify pilot instrument

scanning and attention patterns. In Systems, Man and Cybernetics, 2003.

IEEE International Conference on, volume 3, pages 2889–2896. IEEE, 2003.

(Cited on pages 50 and 66.)

[Henderson-Sellers 1990] Brian Henderson-Sellers and Julian M Edwards. The

object-oriented systems life cycle. Communications of the ACM, vol. 33,

no. 9, pages 142–159, 1990. (Cited on page 15.)

[Herbst 1998] Joachim Herbst and Dimitris Karagiannis. Integrating machine learn-

ing and workflow management to support acquisition and adaptation of work-

flow models. In Database and Expert Systems Applications, 1998. Proceed-

ings. Ninth International Workshop on, pages 745–752. IEEE, 1998. (Cited

on pages 21, 22, 40, 41 and 51.)

[Herbst 1999] Joachim Herbst and D Karagiannis. An inductive approach to the

acquisition and adaptation of workflow models. In Proceedings of the IJCAI,

volume 99, pages 52–57. Citeseer, 1999. (Cited on pages 21 and 22.)

[Herbst 2000a] Joachim Herbst. Dealing with concurrency in workflow induction. In

European Concurrent Engineering Conference. SCS Europe. Citeseer, 2000.

(Cited on pages 21 and 28.)

[Herbst 2000b] Joachim Herbst. A machine learning approach to workflow manage-

ment. In Machine Learning: ECML 2000, pages 183–194. Springer, 2000.

(Cited on pages 20, 21 and 22.)

[Herbst 2004a] Joachim Herbst. Ein induktiver ansatz zur akquisition und adaption

von workflow-modellen. Tenea Verlag Ltd., 2004. (Cited on page 21.)

[Herbst 2004b] Joachim Herbst and Dimitris Karagiannis. Workflow mining with

InWoLvE. Computers in Industry, vol. 53, no. 3, pages 245–264, 2004. (Cited

on pages 26, 27, 28, 30, 31 and 41.)

[Hoey 2007] Jesse Hoey and James J Little. Value-directed human behavior analysis

from video using partially observable markov decision processes. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, no. 7,

pages 1118–1132, 2007. (Cited on page 50.)

164 Bibliography

[Huff 1987] Karen Huff and Victor R Lesser. The GRAPPLE plan formalism. 1987.

(Cited on page 16.)

[Hug 2009] Charlotte Hug. Méthode, modèles et outil pour la méta-modélisation

des processus d’ingénierie de systèmes d’information. PhD thesis, Université

Joseph-Fourier-Grenoble I, 2009. (Cited on page 119.)

[Humphrey 1989] Watts S Humphrey and Marc I Kellner. Software process mod-

eling: principles of entity process models. In Proceedings of the 11th in-

ternational conference on Software engineering, pages 331–342. ACM, 1989.

(Cited on page 15.)

[Hwang 2004] San-Yih Hwang, Chih-Ping Wei and Wan-Shiou Yang. Discovery of

temporal patterns from process instances. Computers in Industry, vol. 53,

no. 3, pages 345–364, 2004. (Cited on pages 30 and 41.)

[IBM 1999] IBM. Getting Started With Buildtime. IBM MQSeries Workflow, 1999.

(Cited on page 21.)

[IBM 2014] IBM. urlhttp://publib.boulder.ibm.com/, January 2014. (Cited on

page 135.)

[Inglis 2011] Matthew Inglis. Proof in mathematics education: research, learning

and teaching. Research in Mathematics Education, vol. 13, no. 3, pages

316–320, 2011. (Cited on page 78.)

[Jackson 1995] Michael Jackson. Software requirements and specifications: A lex-

icon of practice, principles and prejudices, volume 1. ACM Press, 1995.

(Cited on page 32.)

[Janković 2013] Marko Janković, Marko Bajec, Ghazaleh Khodabandelou, Rebecca

Deneckere, Charlotte Hug, Camille Salinesiet al. Intelligent Agile Method

Framework. In Proceedings of 8th International Conference on Evaluation

of Novel Approaches to Software Engineering, pages 1–6, 2013. (Cited on

page 3.)

[Jansen 2007] Bernard J Jansen, Danielle L Booth and Amanda Spink. Determining

the user intent of web search engine queries. In Proceedings of the 16th

international conference on World Wide Web, pages 1149–1150. ACM, 2007.

(Cited on page 42.)

[Jarke 1992] Matthias Jarke, John Mylopoulos, Joachim W. Schmidt and Yannis

Vassiliou. DAIDA: An environment for evolving information systems. ACM

Transactions on Information Systems (TOIS), vol. 10, no. 1, pages 1–50,

1992. (Cited on pages 2 and 16.)

[Jarke 1993] Matthias Jarke and Klaus Pohl. Establishing visions in context: to-

wards a model of requirements processes. In ICIS, pages 23–34, 1993. (Cited

on page 3.)

Bibliography 165

[Jensen 1996a] Finn V Jensen. An introduction to bayesian networks, volume 210.

UCL press London, 1996. (Cited on page 11.)

[Jensen 1996b] Kurt Jensen. Coloured petri nets: basic concepts, analysis methods

and practical use, volume 1. Springer, 1996. (Cited on page 31.)

[Jensen 2007] Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured Petri

Nets and CPN Tools for modelling and validation of concurrent systems.

International Journal on Software Tools for Technology Transfer, vol. 9,

no. 3-4, pages 213–254, 2007. (Cited on page 31.)

[Jethava 2011] Vinay Jethava, Liliana Calderón-Benavides, Ricardo A Baeza-

Yates, Chiranjib Bhattacharyya and Devdatt P Dubhashi. Scalable multi-

dimensional user intent identification using tree structured distributions. In

SIGIR, pages 395–404, 2011. (Cited on pages 34, 36 and 42.)

[Juang 1991] Biing Hwang Juang and Laurence R Rabiner. Hidden Markov models

for speech recognition. Technometrics, vol. 33, no. 3, pages 251–272, 1991.

(Cited on pages 11, 12 and 50.)

[Kaabi 2007] Rim Samia Kaabi, Carine Souveyetet al. Capturing intentional ser-

vices with business process maps. In 1rst IEEE International Conference on

Research Challenges in Information Science, 2007. (Cited on page 37.)

[Kathuria 2010] Ashish Kathuria, Bernard J Jansen, Carolyn Hafernik and

Amanda Spink. Classifying the user intent of web queries using¡ IT¿ k¡/IT¿-

means clustering. Internet Research, vol. 20, no. 5, pages 563–581, 2010.

(Cited on page 42.)

[Kelley 2008] Richard Kelley, Monica Nicolescu, Alireza Tavakkoli, C King and

G Bebis. Understanding human intentions via hidden markov models in

autonomous mobile robots. In Human-Robot Interaction (HRI), 2008 3rd

ACM/IEEE International Conference on, pages 367–374. IEEE, 2008. (Cited

on page 35.)

[Khodabandelou 2013] Ghazaleh Khodabandelou, Charlotte Hug, Rebecca De-

neckere, Camille Salinesiet al. Supervised Intentional Process Models Discov-

ery using Hidden Markov Models. In Proceedings of Seventh International

Conference on Research Challenges in Information Science, 2013. (Cited on

page 71.)

[Kil 1996] D. H. Kil and F. B. Shin. Pattern Recognition and Prediction with Appli-

cations to Signal Characterization. Modern Acoustics and Signal Processing,

vol. XVI, page 418, 1996. (Cited on page 50.)

[Kornyshova 2007] Elena Kornyshova, Rébecca Deneckère and Camille Salinesi.

Method Chunks Selection by Multicriteria Techniques: an Extension of the

166 Bibliography

Assembly-based Approach. In Situational Method Engineering: Fundamen-

tals and Experiences, pages 64–78. Springer, 2007. (Cited on page 45.)

[Kröll 2009] Mark Kröll and Markus Strohmaier. Analyzing human intentions in

natural language text. In Proceedings of the fifth international conference on

Knowledge capture, pages 197–198. ACM, 2009. (Cited on pages 36 and 42.)

[Kruchten 2004] Philippe Kruchten. The rational unified process: an introduction.

Addison-Wesley Professional, 2004. (Cited on page 15.)

[Kumar 2006] Nanda Kumar and Izak Benbasat. Research note: the influence of

recommendations and consumer reviews on evaluations of websites. Infor-

mation Systems Research, vol. 17, no. 4, pages 425–439, 2006. (Cited on

pages 36 and 42.)

[Kunz 1970] Werner Kunz and Horst WJ Rittel. Issues as elements of informa-

tion systems, volume 131. Institute of Urban and Regional Development,

University of California Berkeley, California, 1970. (Cited on page 16.)

[Laflaquière 2006] Julien Laflaquière, Lotfi S Settouti, Yannick Prié and Alain

Mille. Trace-based framework for experience management and engineering.

In Knowledge-Based Intelligent Information and Engineering Systems, pages

1171–1178. Springer, 2006. (Cited on page 11.)

[Lee 1991] Jintae Lee. Extending the Potts and Bruns model for recording design

rationale. In Software Engineering, 1991. Proceedings., 13th International

Conference on, pages 114–125. IEEE, 1991. (Cited on page 33.)

[Lee 2012] Sangkeun Lee. A generic graph-based multidimensional recommendation

framework and its implementations. In Proceedings of the 21st international

conference companion on World Wide Web, pages 161–166. ACM, 2012.

(Cited on pages 36 and 42.)

[Li 1999] Cen Li and Gautam Biswas. Finding behavior patterns from temporal data

using hidden markov model based unsupervised classification. Proceedings

of the 1999 CIMA: Computational Intelligence Methods and Applications

(Rochester, NY, June 22-25), pages 266–272, 1999. (Cited on page 50.)

[Liu 2004] Hugo Liu and Push Singh. ConceptNet—a practical commonsense rea-

soning tool-kit. BT technology journal, vol. 22, no. 4, pages 211–226, 2004.

(Cited on page 36.)

[MacDermid 1984] John A MacDermid and Knut Ripken. Life cycle support in the

ada environment. CUP Archive, 1984. (Cited on page 15.)

[Malcolm 1967] Norman Malcolm. Explaining behavior. The Philosophical Review,

pages 97–104, 1967. (Cited on page 3.)

Bibliography 167

[Mannila 1997] Heikki Mannila, Hannu Toivonen and A Inkeri Verkamo. Discov-

ery of frequent episodes in event sequences. Data Mining and Knowledge

Discovery, vol. 1, no. 3, pages 259–289, 1997. (Cited on page 21.)

[Mannila 2001] Heikki Mannila and Dmitry Rusakov. Decomposition of event se-

quences into independent components. In Proceedings of the 1st SIAM

ICDM, Chicago, IL. Citeseer, 2001. (Cited on pages 21 and 41.)

[Martelli 2002] Pier Luigi Martelli, Piero Fariselli, Anders Krogh and Rita Casadio.

A sequence-profile-based HMM for predicting and discriminating β barrel

membrane proteins. Bioinformatics, vol. 18, no. suppl 1, pages S46–S53,

2002. (Cited on page 50.)

[Martin 1967] James John Martin. Bayesian decision problems and Markov chains.

1967. (Cited on pages 11 and 12.)

[Martin 1991] James Martin. Rapid application development. Macmillan Publish-

ing Company, 1991. (Cited on page 15.)

[Maruster 2001] Laura Maruster, WMP Van der Aalst, AJMM Weijters, Antal

van den Bosch and Walter Daelemans. Automated discovery of workflow

models from hospital data. In Proceedings of the 13th Belgium-Netherlands

Conference on Artificial Intelligence (BNAIC 2001), pages 183–190, 2001.

(Cited on pages 24 and 40.)

[Maruster 2002] Laura Maruster, AJMM Ton Weijters, WMP Wil Van der Aalst

and Antal van den Bosch. Process mining: Discovering direct successors in

process logs. In Discovery Science, pages 364–373. Springer, 2002. (Cited on

page 40.)

[Medeiros 2005] AK Alves Medeiros, Antonius Jozef Martha Maria Weijters and

Willibrordus Martinus Pancratius Aalst. Using genetic algorithms to mine

process models: representation, operators and results. Beta, Research School

for Operations Management and Logistics, 2005. (Cited on pages 27, 29

and 41.)

[Mei 2005] Tao Mei, Xian-Sheng Hua and He-Qin Zhou. Tracking users’ capture

intention: a novel complementary view for home video content analysis. In

Proceedings of the 13th annual ACM international conference on Multime-

dia, pages 531–534. ACM, 2005. (Cited on page 35.)

[Miller 1995] George A Miller. WordNet: a lexical database for English. Communi-

cations of the ACM, vol. 38, no. 11, pages 39–41, 1995. (Cited on page 36.)

[Mirbel 2006] Isabelle Mirbel and Jolita Ralyté. Situational method engineering:

combining assembly-based and roadmap-driven approaches. Requirements

Engineering, vol. 11, no. 1, pages 58–78, 2006. (Cited on pages 4 and 32.)

168 Bibliography

[Mobasher 2000] Bamshad Mobasher, Robert Cooley and Jaideep Srivastava. Au-

tomatic personalization based on Web usage mining. Communications of the

ACM, vol. 43, no. 8, pages 142–151, 2000. (Cited on page 20.)

[Mostow 1985] Jack Mostow. Toward better models of the design process. AI mag-

azine, vol. 6, no. 1, page 44, 1985. (Cited on page 33.)

[Mulyar 2008] Nataliya Mulyar, Maja Pesic, Wil MP Van der Aalst and Mor Pe-

leg. Declarative and procedural approaches for modelling clinical guidelines:

addressing flexibility issues. In Business Process Management Workshops,

pages 335–346. Springer, 2008. (Cited on page 19.)

[Murphy-Hill 2008] Emerson Murphy-Hill and Andrew Black. Breaking the bar-

riers to successful refactoring. In Software Engineering, 2008. ICSE’08.

ACM/IEEE 30th International Conference on, pages 421–430. IEEE, 2008.

(Cited on page 118.)

[Murphy 2002] Kevin Patrick Murphy. Dynamic bayesian networks: representation,

inference and learning. PhD thesis, University of California, 2002. (Cited

on pages 11 and 66.)

[Mylopoulos 1992] John Mylopoulos, Lawrence Chung and Brian Nixon. Repre-

senting and using nonfunctional requirements: A process-oriented approach.

Software Engineering, IEEE Transactions on, vol. 18, no. 6, pages 483–497,

1992. (Cited on page 33.)

[Myung 2003] In Jae Myung. Tutorial on maximum likelihood estimation. Journal

of Mathematical Psychology, vol. 47, no. 1, pages 90–100, 2003. (Cited on

page 71.)

[Najar 2011] Salma Najar, Manuele Kirsch-Pinheiro and Carine Souveyet. Towards

semantic modeling of intentional pervasive information systems. In Proceed-

ings of the 6th International Workshop on Enhanced Web Service Technolo-

gies, pages 30–34. ACM, 2011. (Cited on pages 3 and 32.)

[Nurcan 2005] Selmin Nurcan, Anne Etien, Rim Kaabi, Iyad Zoukar and Colette

Rolland. A strategy driven business process modelling approach. Business

Process Management Journal, vol. 11, no. 6, pages 628–649, 2005. (Cited

on page 37.)

[Object Management Group 2013] Inc. Object Management Group. BMPN. url-

http://www.bpmn.org, December 2013. (Cited on page 22.)

[Olle 1988] TWilliam Olle and TWilliam Olle. Information systems methodologies:

a framework for understanding, volume 8. Addison-Wesley Reading, 1988.

(Cited on page 14.)

Bibliography 169

[Outmazgin 2013] Nesi Outmazgin and Pnina Soffer. Business Process

Workarounds: What Can and Cannot Be Detected by Process Mining. In

Enterprise, Business-Process and Information Systems Modeling, pages 48–

62. Springer, 2013. (Cited on pages 7, 32, 33 and 42.)

[Park 2010] Kinam Park, Taemin Lee, Soonyoung Jung, Heuiseok Lim and Sangyep

Nam. Extracting Search Intentions from Web Search Logs. In Information

Technology Convergence and Services (ITCS), 2010 2nd International Con-

ference on, pages 1–6. IEEE, 2010. (Cited on pages 34, 35, 36, 37 and 42.)

[Pesic 2006] Maja Pesic and Wil MP Van der Aalst. A declarative approach for

flexible business processes management. In Business Process Management

Workshops, pages 169–180. Springer, 2006. (Cited on pages 22 and 23.)

[Peterson 1981] James L Peterson. Petri net theory and the modeling of systems.

1981. (Cited on pages 22 and 23.)

[Plihon 1996] V Plihon. Un environnement pour l’ingénierie des méthodes. PhD

thesis, Université Paris 1 Panthéon-Sorbonne, 1996. (Cited on pages 3, 16

and 18.)

[Pohl 1999] Klaus Pohl, Klaus Weidenhaupt, Ralf Dömges, Peter Haumer,

Matthias Jarke and Ralf Klamma. PRIME—toward process-integrated mod-

eling environments: 1. ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 8, no. 4, pages 343–410, 1999. (Cited on

page 16.)

[Potts 1988] Colin Potts and Glenn Bruns. Recording the reasons for design de-

cisions. In Proceedings of the 10th international conference on Software

engineering, pages 418–427. IEEE Computer Society Press, 1988. (Cited on

page 16.)

[Prakash 2006] Naveen Prakash and Colette Rolland. Systems Design for Require-

ments Expressed as a Map. In Emerging Trends and Challenges in Informa-

tion Technology Management, page 3, 2006. (Cited on page 45.)

[Rabiner 1986] Lawrence Rabiner and B Juang. An introduction to hidden Markov

models. ASSP Magazine, IEEE, vol. 3, no. 1, pages 4–16, 1986. (Cited on

page 73.)

[Rabiner 1989] Lawrence R Rabiner. A tutorial on hidden Markov models and se-

lected applications in speech recognition. Proceedings of the IEEE, vol. 77,

no. 2, pages 257–286, 1989. (Cited on pages 7, 21, 50, 52 and 74.)

[Ralph 2008] Paul Ralph and Yair Wand. A teleological process theory of software

development. 2008. (Cited on page 2.)

170 Bibliography

[Ralyté 1999] Jolita Ralyté. Reusing scenario based approaches in requirement en-

gineering methods: CREWS method base. In Database and Expert Systems

Applications, 1999. Proceedings. Tenth International Workshop on, pages

305–309. IEEE, 1999. (Cited on pages 3 and 16.)

[Ralyté 2003] Jolita Ralyté, Rébecca Deneckère and Colette Rolland. Towards a

generic model for situational method engineering. In Advanced Informa-

tion Systems Engineering, pages 95–110. Springer, 2003. (Cited on pages 3

and 32.)

[Rebstock 2008] Michael Rebstock, Janina Fengel and Heiko Paulheim. Ontologies-

based business integration. Springer, 2008. (Cited on page 13.)

[Rissanen 1978] Jorma Rissanen. Modeling by shortest data description. Automat-

ica, vol. 14, no. 5, pages 465–471, 1978. (Cited on page 27.)

[Rolland 1993] Colette Rolland. Modeling the requirements engineering process. In

Information Modelling and Knowledge Bases V: Principles and Formal Tech-

niques: Results of the 3rd European-Japanese Seminar, Budapest, Hungary,

May, pages 85–96, 1993. (Cited on pages 3, 6 and 32.)

[Rolland 1994] Colette Rolland and N Prakash. A contextual approach for the

requirements engineering process. In SEKE, pages 28–35. Citeseer, 1994.

(Cited on pages 14 and 16.)

[Rolland 1998a] Colette Rolland. A comprehensive view of process engineering.

In Advanced Information Systems Engineering, pages 1–24. Springer, 1998.

(Cited on pages 14, 16, 17, 18, 49 and 83.)

[Rolland 1998b] Colette Rolland, C Ben Achour, Corine Cauvet, Jolita Ralyté, Al-

istair Sutcliffe, Neil Maiden, Matthias Jarke, Peter Haumer, Klaus Pohl,

Eric Duboiset al. A proposal for a scenario classification framework. Re-

quirements Engineering, vol. 3, no. 1, pages 23–47, 1998. (Cited on page 4.)

[Rolland 1999] Colette Rolland, Naveen Prakash and Adolphe Benjamen. A multi-

model view of process modelling. Requirements Engineering, vol. 4, no. 4,

pages 169–187, 1999. (Cited on pages 3, 6, 7, 14, 16, 37, 38, 45 and 51.)

[Rolland 2000] Colette Rolland, Selmin Nurcan and Georges Grosz. A decision-

making pattern for guiding the enterprise knowledge development process.

Information and software technology, vol. 42, no. 5, pages 313–331, 2000.

(Cited on page 16.)

[Rolland 2005a] Colette Rolland. L’ingénierie des méthodes: une visite guidée. e-

TI, vol. 1, 2005. (Cited on pages 2, 14, 15 and 16.)

[Rolland 2005b] Colette Rolland and Camille Salinesi. Modeling goals and reasoning

with them. In Engineering and Managing Software Requirements, pages 189–

217. Springer, 2005. (Cited on pages 3, 4, 6, 7, 33, 48 and 49.)

Bibliography 171

[Rolland 2007] Colette Rolland. Capturing system intentionality with maps. In

Conceptual modelling in Information Systems engineering, pages 141–158.

Springer, 2007. (Cited on pages vii, 3, 16, 33, 37, 38, 45, 46, 47 and 48.)

[Rolland 2009] Colette Rolland and Camille Salinesi. Supporting requirements elici-

tation through goal/scenario coupling. In Conceptual Modeling: Foundations

and Applications, pages 398–416. Springer, 2009. (Cited on page 7.)

[Rolland 2010] Colette Rolland, Manuele Kirsch-Pinheiro and Carine Souveyet. An

intentional approach to service engineering. Services Computing, IEEE

Transactions on, vol. 3, no. 4, pages 292–305, 2010. (Cited on pages 3

and 32.)

[Roques 2004] Pascal Roques and Franck Vallée. UML 2 en action. De l’analyse

des besoins ı́*** la conception J2EE, 3ème édition Eyrolles, 2004. (Cited on

page 15.)

[Rose 1991] Thomas Rose, Matthias Jarke, Michael Gocek, Carlos Maltzahn and

Hans W Nissen. A decision based configuration process environment. Soft-

ware Engineering Journal, vol. 6, no. 5, pages 332–346, 1991. (Cited on

page 16.)

[Rousseau 2001] Denise M Rousseau. Schema, promise and mutuality: The building

blocks of the psychological contract. Journal of occupational and organiza-

tional psychology, vol. 74, no. 4, pages 511–541, 2001. (Cited on page 35.)

[Royce 1970] Winston W Royce. Managing the development of large software sys-

tems. In proceedings of IEEE WESCON, volume 26. Los Angeles, 1970.

(Cited on page 15.)

[Rozinat 2007] Anne Rozinat, AK Alves de Medeiros, ChristianWGünther, AJMM

Weijters and Wil MP Van der Aalst. Towards an evaluation framework for

process mining algorithms. Beta, Research School for Operations Manage-

ment and Logistics, 2007. (Cited on pages 2 and 66.)

[Rozinat 2008a] Anne Rozinat, RS Mans, Minseok Song and Wil MP Van der Aalst.

Discovering colored Petri nets from event logs. International Journal on

Software Tools for Technology Transfer, vol. 10, no. 1, pages 57–74, 2008.

(Cited on page 31.)

[Rozinat 2008b] Anne Rozinat, M Veloso andWil MP Van der Aalst. Evaluating the

quality of discovered process models. In 2nd Intl. Workshop on the Induction

of Process Models, Antwerp, Belgium, pages 45–52. Citeseer, 2008. (Cited

on page 52.)

[Rozinat 2010] Anne Rozinat. Process Mining Conformance and Extension. PhD

thesis, Technische Universiteit Eindhoven, 2010. (Cited on pages 14, 21, 50

and 52.)

172 Bibliography

[Sadikov 2010] Eldar Sadikov, Jayant Madhavan, Lu Wang and Alon Halevy. Clus-

tering query refinements by user intent. In Proceedings of the 19th interna-

tional conference on World wide web, pages 841–850. ACM, 2010. (Cited on

pages 36 and 42.)

[Salinesi 2003] Camille Salinesi and Colette Rolland. Fitting business models to

system functionality exploring the fitness relationship. In Advanced Informa-

tion Systems Engineering, pages 647–664. Springer, 2003. (Cited on pages 3

and 32.)

[Scheer 2014] I.D.S. Scheer. urlhttp://www.ids-scheer.com, January 2014. (Cited

on page 31.)

[Schein 2001] Andrew I Schein, Alexandrin Popescul and Lyle H Ungar. Pen-

nAspect: Two-way aspect model implementation. 2001. (Cited on page 38.)

[Schimm 2003] Guido Schimm. Mining most specific workflow models from event-

based data. In Business process management, pages 25–40. Springer, 2003.

(Cited on pages 22, 27, 30 and 41.)

[Schimm 2004] Guido Schimm. Mining exact models of concurrent workflows. Com-

puters in Industry, vol. 53, no. 3, pages 265–281, 2004. (Cited on pages 22,

28, 30 and 40.)

[Schonenberg 2008] Helen Schonenberg, Barbara Weber, Boudewijn van Dongen

and Wil Van der Aalst. Supporting flexible processes through recommen-

dations based on history. In Business Process Management, pages 51–66.

Springer, 2008. (Cited on pages 19 and 20.)

[Schwaber 2002] Ken Schwaber and Mike Beedle. Agile software development with

scrum, volume 1. Prentice Hall Upper Saddle River, 2002. (Cited on

page 15.)

[Shen 2011] Yan Shen, Yuefeng Li, Yue Xu, Renato Iannella, Abdulmohsen Al-

garni and Xiaohui Tao. An ontology-based mining approach for user search

intent discovery. In ADCS 2011: Proceedings of the Sixteenth Australasian

Document Computing Symposium, pages 39–46, 2011. (Cited on page 42.)

[Soffer 2005] Pnina Soffer and Colette Rolland. Combining intention-oriented and

state-based process modeling. In Conceptual Modeling–ER 2005, pages 47–

62. Springer, 2005. (Cited on pages 19 and 44.)

[Song 2008] Minseok Song and Wil MP Van der Aalst. Towards comprehensive

support for organizational mining. Decision Support Systems, vol. 46, no. 1,

pages 300–317, 2008. (Cited on page 20.)

[Song 2009] Minseok Song, Christian W Günther and Wil MP Van der Aalst. Trace

clustering in process mining. In Business Process Management Workshops,

pages 109–120. Springer, 2009. (Cited on page 22.)

Bibliography 173

[Souveyet 2006] Carine Souveyet. Contributions à l’amélioration de l’ingénierie

des SI. PhD thesis, Habilitation à diriger les Recherches, Université Paris 1

Panthéon-Sorbonne, 2006. (Cited on page 18.)

[Staffware 2014] Staffware. url http://www.staffware.com, January 2014. (Cited

on page 31.)

[Strohmaier 2009] Markus Strohmaier and Mark Kröll. Studying databases of inten-

tions: do search query logs capture knowledge about common human goals?

In Proceedings of the fifth international conference on Knowledge capture,

pages 89–96. ACM, 2009. (Cited on page 42.)

[Strohmaier 2012] Markus Strohmaier and Mark Kröll. Acquiring knowledge about

human goals from search query logs. Information Processing & Management,

vol. 48, no. 1, pages 63–82, 2012. (Cited on pages 34, 36, 37, 39 and 42.)

[Swanson 1974] E Burton Swanson. Management information systems: apprecia-

tion and involvement. Management Science, vol. 21, no. 2, pages 178–188,

1974. (Cited on pages 3 and 35.)

[Taylor 1964] Charles Taylor. The explanation of behaviour. Humanities Press,

1964. (Cited on page 2.)

[Thevenet 2007a] Laure-Hélène Thevenet, Ines Gam, Camille Salinesiet al. Strate-

gic Alignment Documentation. In RCIS, pages 331–342, 2007. (Cited on

page 33.)

[Thevenet 2007b] Laure-Hélène Thevenet and Camille Salinesi. Aligning IS to orga-

nization’s strategy: the INSTAL method. In Advanced Information Systems

Engineering, pages 203–217. Springer, 2007. (Cited on page 3.)

[Tibco 2000] Tibco. TIB/InConcert Process Designer Users’ Guide. 2000. (Cited

on page 21.)

[Tiwari 2008] A Tiwari, CJ Turner and B Majeed. A review of business process

mining: state-of-the-art and future trends. Business Process Management

Journal, vol. 14, no. 1, pages 5–22, 2008. (Cited on pages 14 and 21.)

[Tsai 2006] Anni Tsai, Jiacun Wang, William Tepfenhart and Daniela Rosea. EPC

Workflow model to WIFA model conversion. In Systems, Man and Cyber-

netics, 2006. SMC’06. IEEE International Conference on, volume 4, pages

2758–2763. IEEE, 2006. (Cited on page 23.)

[Tversky 1974] Amos Tversky and Daniel Kahneman. Judgment under uncertainty:

Heuristics and biases. science, vol. 185, no. 4157, pages 1124–1131, 1974.

(Cited on page 71.)

[UDC 2013] Eclipse UDC. Filtered UDC Data. url-

http://www.eclipse.org/org/usagedata/, 2013. (Cited on page 109.)

174 Bibliography

[Vakilian 2012] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Ra-

jkumar, Brian P Bailey and Ralph E Johnson. Use, disuse, and misuse of

automated refactorings. In Software Engineering (ICSE), 2012 34th Inter-

national Conference on, pages 233–243. IEEE, 2012. (Cited on page 118.)

[Van der Aalst 1999] Wil MP Van der Aalst. Formalization and verification of

event-driven process chains. Information and Software technology, vol. 41,

no. 10, pages 639–650, 1999. (Cited on page 22.)

[Van der Aalst 2001] Wil MP Van der Aalst and Twan Basten. Identifying com-

monalities and differences in object life cycles using behavioral inheritance.

In Applications and Theory of Petri Nets 2001, pages 32–52. Springer, 2001.

(Cited on page 27.)

[Van der Aalst 2002a] Wil MP Van der Aalst and Boudewijn F van Dongen. Dis-

covering workflow performance models from timed logs. In Engineering and

Deployment of Cooperative Information Systems, pages 45–63. Springer,

2002. (Cited on page 22.)

[Van der Aalst 2002b] Wil MP Van der Aalst, AJMMWeijters and Laura Maruster.

Workflow mining: Which processes can be rediscovered. Rapport technique,

Citeseer, 2002. (Cited on pages 22, 26, 29 and 41.)

[Van der Aalst 2003] Wil MP Van der Aalst, Boudewijn F van Dongen, Joachim

Herbst, Laura Maruster, Guido Schimm and AJMM Weijters. Workflow

mining: a survey of issues and approaches. Data & knowledge engineering,

vol. 47, no. 2, pages 237–267, 2003. (Cited on page 20.)

[Van der Aalst 2004a] Wil Van der Aalst, Ton Weijters and Laura Maruster. Work-

flow mining: Discovering process models from event logs. Knowledge and

Data Engineering, IEEE Transactions on, vol. 16, no. 9, pages 1128–1142,

2004. (Cited on pages 2, 20, 21 and 40.)

[Van der Aalst 2004b] Wil MP Van der Aalst and Minseok Song. Mining Social

Networks: Uncovering interaction patterns in business processes. In Business

Process Management, pages 244–260. Springer, 2004. (Cited on pages 27,

30 and 40.)

[Van der Aalst 2004c] Wil MP Van der Aalst and AJMM Weijters. Process mining:

a research agenda. Computers in industry, vol. 53, no. 3, pages 231–244,

2004. (Cited on pages vii, 2, 14, 23, 24, 25, 26 and 27.)

[Van der Aalst 2005a] Wil MP Van der Aalst. Business alignment: using process

mining as a tool for Delta analysis and conformance testing. Requirements

Engineering, vol. 10, no. 3, pages 198–211, 2005. (Cited on pages 19, 27, 29

and 40.)

Bibliography 175

[Van der Aalst 2005b] Wil MP Van der Aalst, AK Alves de Medeiros and AJMM

Weijters. Genetic process mining. In Applications and Theory of Petri Nets

2005, pages 48–69. Springer, 2005. (Cited on pages 24, 26, 27, 28 and 30.)

[Van der Aalst 2005c] Wil MP Van der Aalst and Ana Karla A de Medeiros. Process

mining and security: Detecting anomalous process executions and checking

process conformance. Electronic Notes in Theoretical Computer Science,

vol. 121, pages 3–21, 2005. (Cited on pages 24, 26, 27, 30 and 41.)

[Van der Aalst 2005d] Wil MP Van der Aalst, Hajo A Reijers and Minseok Song.

Discovering social networks from event logs. Computer Supported Coopera-

tive Work (CSCW), vol. 14, no. 6, pages 549–593, 2005. (Cited on page 20.)

[Van der Aalst 2009] Wil MP Van der Aalst, Boudewijn F van Dongen, Chris-

tian W Günther, Anne Rozinat, Eric Verbeek and Ton Weijters. ProM: The

Process Mining Toolkit. BPM (Demos), vol. 489, 2009. (Cited on page 31.)

[Van der Aalst 2010] Wil MP Van der Aalst, Vladimir Rubin, HMW Verbeek,

Boudewijn F van Dongen, Ekkart Kindler and Christian W Günther. Process

mining: a two-step approach to balance between underfitting and overfitting.

Software & Systems Modeling, vol. 9, no. 1, pages 87–111, 2010. (Cited on

page 22.)

[Van der Aalst 2011a] Wil Van der Aalst and Christian Stahl. Modeling business

processes: a petri net-oriented approach. The MIT Press, 2011. (Cited on

pages 19 and 23.)

[Van der Aalst 2011b] Wil MP Van der Aalst, MH Schonenberg and Minseok Song.

Time prediction based on process mining. Information Systems, vol. 36, no. 2,

pages 450–475, 2011. (Cited on page 40.)

[Van der Aalst 2011c] Wil MP Van der Aalst and Wil Van der Aalst. Process

mining: discovery, conformance and enhancement of business processes.

Springer, 2011. (Cited on pages 1, 2, 10, 14, 19, 39 and 52.)

[Van der Aalst 2012] Wil Van der Aalst, Arya Adriansyah, Ana Karla Alves

de Medeiros, Franco Arcieri, Thomas Baier, Tobias Blickle, Jagadeesh Chan-

dra Bose, Peter van den Brand, Ronald Brandtjen, Joos Buijset al. Process

mining manifesto. In Business process management workshops, pages 169–

194. Springer, 2012. (Cited on page 10.)

[Van der Werf 2008] Jan Martijn EM Van der Werf, Boudewijn F van Dongen,

Cor AJ Hurkens and Alexander Serebrenik. Process discovery using integer

linear programming. In Applications and Theory of Petri Nets, pages 368–

387. Springer, 2008. (Cited on page 22.)

176 Bibliography

[Van der Werf 2011] J.M.E.M. Van der Werf. Compositional Design and Verifica-

tion of Component Based Information Systems. 2011. (Cited on pages 1

and 2.)

[van Dongen 2004a] Boudewijn F van Dongen and Wil MP Van der Aalst. EMiT:

A process mining tool. In Applications and Theory of Petri Nets 2004, pages

454–463. Springer, 2004. (Cited on pages 28, 29, 31 and 40.)

[van Dongen 2004b] Boudewijn F van Dongen and Wil MP Van der Aalst. Multi-

phase process mining: Building instance graphs. In Conceptual Modeling–

ER 2004, pages 362–376. Springer, 2004. (Cited on pages 20, 21, 24, 29

and 40.)

[van Dongen 2005a] Boudewijn F van Dongen, Ana Karla A de Medeiros, HMW

Verbeek, AJMM Weijters and Wil MP Van der Aalst. The ProM framework:

A new era in process mining tool support. In Applications and Theory of

Petri Nets 2005, pages 444–454. Springer, 2005. (Cited on page 29.)

[van Dongen 2005b] Boudewijn F van Dongen and Wil MP Van der Aalst. A Meta

Model for Process Mining Data. EMOI-INTEROP, vol. 160, 2005. (Cited

on pages 28, 30 and 40.)

[van Dongen 2005c] Boudewijn F van Dongen and Wil MP Van der Aalst. Multi-

phase process mining: Aggregating instance graphs into EPCs and Petri

nets. In Proceedings of the 2nd International Workshop on Applications of

Petri Nets to Coordination, Workflow and Business Process Management

(PNCWB). Citeseer, 2005. (Cited on pages 28, 29 and 40.)

[van Dongen 2005d] Boudewijn F van Dongen, Wil MP Van der Aalst and Hen-

ricus MW Verbeek. Verification of EPCs: Using reduction rules and

Petri nets. In Advanced Information Systems Engineering, pages 372–386.

Springer, 2005. (Cited on page 41.)

[Van Glabbeek 1996] Rob J Van Glabbeek and W Peter Weijland. Branching time

and abstraction in bisimulation semantics. Journal of the ACM (JACM),

vol. 43, no. 3, pages 555–600, 1996. (Cited on page 24.)

[Van Lamsweerde 2001] Axel Van Lamsweerde. Goal-oriented requirements engi-

neering: A guided tour. In Requirements Engineering, 2001. Proceedings.

Fifth IEEE International Symposium on, pages 249–262. IEEE, 2001. (Cited

on pages 32 and 33.)

[Veblen 1898] Thorstein Veblen. Why is economics not an evolutionary science?

The Cambridge, 1898. (Cited on pages 2 and 3.)

[Weijters 2001] AJMM Weijters and WMP Van der Aalst. Process mining: dis-

covering workflow models from event-based data. In Proceedings of the 13th

Bibliography 177

Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2001),

pages 283–290, 2001. (Cited on pages 22, 24, 27, 28, 30 and 41.)

[Weijters 2003] Anton JMM Weijters and Wil MP Van der Aalst. Rediscover-

ing workflow models from event-based data using little thumb. Integrated

Computer-Aided Engineering, vol. 10, no. 2, pages 151–162, 2003. (Cited

on pages 20, 22, 24, 27, 29 and 40.)

[Wen 2006] Lijie Wen, Jianmin Wang and Jiaguang Sun. Detecting implicit de-

pendencies between tasks from event logs. In Frontiers of WWW Research

and Development-APWeb 2006, pages 591–603. Springer, 2006. (Cited on

page 21.)

[White 2004] Stephen A White. Introduction to BPMN. IBM Cooperation, vol. 2,

no. 0, page 0, 2004. (Cited on page 23.)

[Witten 2005] Ian H Witten and Eibe Frank. Data mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2005. (Cited on pages 36

and 39.)

[Xing 2006] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How it is and

how it should be supported-an eclipse case study. In Software Maintenance,

2006. ICSM’06. 22nd IEEE International Conference on, pages 458–468.

IEEE, 2006. (Cited on page 118.)

[Yi 2007] Ji Soo Yi, Youn ah Kang, John T Stasko and Julie A Jacko. Toward a

deeper understanding of the role of interaction in information visualization.

Visualization and Computer Graphics, IEEE Transactions on, vol. 13, no. 6,

pages 1224–1231, 2007. (Cited on page 42.)

[Yin 2009] Robert K Yin. Case study research: Design and methods, volume 5.

sage, 2009. (Cited on page 6.)

[Yu 1987] Eric SK Yu. What Does It Mean to Say that a Specification is Complete?

In Software Specification and Design, Proceeding of IWSSD-4, Fourth In-

ternational Workshop on. IEEE, 1987. (Cited on pages 7, 32 and 33.)

[Yu 2011] Eric Yu. Modelling strategic relationships for process reengineering. Social

Modeling for Requirements Engineering, vol. 11, page 2011, 2011. (Cited on

pages 6, 37 and 45.)

[Zave 1997] Pamela Zave and Michael Jackson. Four dark corners of requirements

engineering. ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 6, no. 1, pages 1–30, 1997. (Cited on page 33.)

[Zhang 2003] Shao-hua Zhang, Ning Gu, Jie-Xin Lian and Sai-Han Li. Workflow

process mining based on machine learning. In Machine Learning and Cyber-

netics, 2003 International Conference on, volume 4, pages 2319–2323. IEEE,

2003. (Cited on pages 28, 29 and 41.)

178 Bibliography

[Zhang 2004] Yingjian Zhang. Prediction of financial time series with Hidden

Markov Models. PhD thesis, Simon Fraser University, 2004. (Cited on

page 50.)

[Zoukar 2005] Iyad Zoukar. MIBE: Méthode d’Ingénierie des Besoins pour

l’implantation d’un progiciel de gestion intégré (ERP). PhD thesis, Paris

1, 2005. (Cited on page 17.)

[Zur Muehlen 2000] Michael Zur Muehlen and Michael Rosemann. Workflow-based

process monitoring and controlling-technical and organizational issues. In

System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International

Conference on, pages 10–pp. IEEE, 2000. (Cited on page 31.)

180 Bibliography

Abstract

Abstract: So far, process mining techniques suggested to model processes in

terms of tasks that occur during the enactment of a process. However, research

on process modeling has illustrated that many issues, such as lack of flexibility

or adaptation, are solved more effectively when intentions are explicitly specified.

This thesis presents a novel approach of process mining, called Map Miner Method

(MMM). This method is designed to automate the construction of intentional

process models from traces. MMM uses Hidden Markov Models to model the

relationship between users’ activities and the strategies (i.e., the different ways

to fulfill the intentions). The method also includes two specific algorithms

developed to infer users’ intentions and construct intentional process model (Map),

respectively. MMM can construct Map process models with different levels of

granularity (pseudo-Map and Map process models) with respect to the Map

metamodel formalism. The entire proposed method was applied and validated

on practical traces in a large-scale experiment, on event logs of developers of

Eclipse UDC (Usage Data Collector). The resulting Map process models provide

a precious understanding of the processes followed by the developers, and also

provide feedback on the effectiveness and demonstrate scalability of MMM in terms

of traces. Map Miner tool has been developed to enable practicing the proposed

approach. This permits users to obtain the pseudo-Map and Map process model

out of traces.

Keywords: Intentional Process Models, Machine Learning, Process Mining,

Hidden Markov Models

Résumé : Jusqu’à présent, les techniques de fouille de processus ont modélisé

les processus en termes des séquences de tâches qui se produisent lors de l’exécution

d’un processus. Cependant, les recherches en modélisation du processus et de

guidance ont montré que de nombreux problèmes, tels que le manque de flexi-

bilité ou d’adaptation, sont résolus plus efficacement lorsque les intentions sont

explicitement spécifiées. Cette thèse présente une nouvelle approche de fouille de

processus, appelée Map Miner méthode (MMM). Cette méthode est conçue pour

automatiser la construction d’un modèle de processus intentionnel à partir des

traces d’activités des utilisateurs. MMM utilise les modèles de Markov cachés pour

modéliser la relation entre les activités des utilisateurs et leurs stratégies (i.e., les

différentes façons d’atteindre des intentions). La méthode comprend également

deux algorithmes spécifiquement développés pour déterminer les intentions des

utilisateurs et construire le modèle de processus intentionnel de la Carte. MMM

peut construire le modèle de processus de la Carte avec différents niveaux de

précision (pseudo-Carte et le modèle du processus de la carte) par rapport au

formalisme du métamodèle de Map. L’ensemble de la méthode proposée a été

appliqué et validé sur des ensembles de données pratiques, dans une expérience à

grande échelle, sur les traces d’événements des développeurs de Eclipse UDC.

Bibliography 181

Les modèles de processus obtenus fournissent une compréhension précieuse des

processus suivis par les développeurs, et fournissent également des informations

sur l’efficacité et démontrent l’évolutivité de MMM. L’outil de Map Miner tool

a été développé pour permettre la pratique de l’approche proposée. Cela permet

aux utilisateurs d’obtenir la pseudo-Carte et le modèle du processus de la Carte à

partir des traces.

Mots Clés : Modèles de processus intentionnels, Apprentis-

sage automatique, Fouille de processus, Modèles de Markov cachés

	Introduction
	Context
	Problem Statement
	Research Questions and Hypothesis
	Research Method
	Contributions of this Thesis
	Outline

	State of the Art
	Common Characteristics
	Input Elements
	Users' Sources
	Mathematical Models
	Techniques
	Objectives
	Output Elements

	Process mining
	Typology
	Activity-oriented Process Notations
	Product-oriented Process Notations
	Decision-oriented Process Notations
	Context-oriented Process Notations
	Strategy-oriented Process Notations
	Synthesis on the Different Process Notations

	Process Mining Objectives
	Process Mining Techniques
	Metamodels Used in Process Mining
	Process Mining Open Issues
	Process Mining Tools

	Intention Mining
	Typology
	Intention in Information Systems Context
	Intentions in the Requirements Engineering Context
	Intentions in Information Retrieval Context
	Miscellaneous

	Intention Mining Objectives
	Intention Mining Techniques
	Metamodels for Intention Mining
	Intention Mining Open Issues
	Intention Mining Tools

	Synthesis of Process Mining and Intention Mining Approaches

	Overview of the Proposed Approach
	Introduction
	Intention in Map Miner Method
	Map Miner Method Process Model Formalism
	Map Metamodel
	Map Process Model
	Map Section

	Map Process Model Advantages

	Contributions of this Thesis
	Map Miner Method Input Elements
	Map Miner Method Mathematical Model
	Map Miner Method Techniques
	Map Miner Method Objectives
	Map Miner Method Output Elements
	Map Miner Tool

	Summary of the Position of the Proposed Approach

	Proposed Method: Map Miner Method
	Presentation of the Example
	The Products of the Method
	Input of MMM
	Users' Activity
	Strategies, Intentions
	Pseudo-Maps and Sub-intentions
	Transition and Emission Matrices
	Fitness and Precision Metric

	The Proposed Method
	Applying Hidden Markov Models
	Mathematical Definition of HMMs
	Hidden Markov Models Adapted to MMM
	Topology of HMM in MMM Framework
	Hidden process: users' strategies
	Observed process: users' activities

	Estimating Model Parameters
	Supervised Learning
	Unsupervised Learning
	Summary of the Two Learning Approaches
	Determining the Number of Strategies

	Developing Deep Miner Algorithm
	Proposed Metrics of Fitness and Precision
	Optimization problem
	An Example for the Construction of a Map

	Developing Map Miner Algorithm
	Determining the Level of Abstraction for the Intentions
	Sub-intentions Representation in the Space
	Clustering sub-intentions into high-level intentions
	Rebuilding the Map

	Method for the Discovery of Map Path
	Method Exemplification
	MMM Using Supervised Learning
	Estimating Model Parameters
	Applying Deep Miner Algorithm
	Applying Map Miner Algorithm

	MMM Using Unsupervised Learning
	Estimating Model Parameters
	Applying Deep Miner Algorithm
	Applying Map Miner Algorithm

	Discussion and Threats to Validity

	Validating the Method for the Discovery of Map Path
	Conclusion

	Validation of the Proposed Method
	Case Study: Usage Data Collector of Eclipse
	Presentation of the Case Study
	Usage Data Collector Event logs
	Developers' Activities

	Applying MMM on the Traces
	Strategies and Intentions Naming Procedure

	Analysis of Eclipse Developers' Behavior

	Qualitative Evaluation of the Discovered Map
	Context of the Experiment
	Description of the Protocol
	Results Analysis
	Assessment of work habits
	Assessment of Map process model
	Assessment of The Eclipse Map
	Synthesis

	Threats to Validity
	Conclusion

	Map Miner Tool
	Format of Input Files for Map Miner Tool
	Map Miner Tool Interface
	Inputs Parameters
	Outputs of Map Miner Tool
	The Programming Languages of Map Miner Tool
	Limitations of Map Miner Tool

	Conclusions and Open Issues
	Conclusions
	Open Issues

	Appendix A : Particular Classes
	Appendix B : Developers' Questionnaire
	Appendix C : Journal and Conference Publications
	Bibliography

