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ABSTRACT

Robust blood vessel surface reconstruction for interactive simulations from patient
data

Abstract: In the context of interactive simulation, the lack of patient specific geometrical
models remains one of the major limitations of simulators. Current commercial simula-
tors proposed no or a limited number of cases. However, a vast literature on the subject
has been introduced in the past twenty years. Nevertheless, the proposed methods are
not adapted to an interactive context, especially when dealing with vascular networks.

In this work, we address the problem of blood vessel segmentation and reconstruc-
tion from 3DRA patient data. To this end, we propose two novel algorithms for segmen-
tation and reconstruction. First, the vessel tree is built by tracking the vessel centerline.
Our dedicated tracking process also extracts points on the vessel surface in a robust way.
Second, those points are fitted by an implicit surface (a blobby model) that is iteratively
refined. Tracking and reconstruction results are reported on synthetic and patient data.
Simulations within an interventional tool navigation context showed that the resulting
geometrical model complies with interactive simulation requirements: fast collision de-
tection and prediction, topology information, smoothness and availability of differential
quantities for contact response computation.

Keywords: Interactive medical simulation, Segmentation, Vessel tracking, Scattered
data reconstruction, RANSAC, Blobby models
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RÉSUMÉ

Reconstruction robuste des vaisseaux sanguins pour les simulations médicales
interactives à partir de données patients

Résumé: Dans le cadre des simulations interactives, le manque de modèles
géométriques reste une des limitations majeurs des simulateurs. Actuellement, les sim-
ulateurs commerciaux ne propose pas ou un tout cas, un nombre limité de cas. Un grand
nombre des travaux abordent cependant ce sujet tout au long de ces deux dernières dé-
cennies. Malgré une vaste littérature, les méthodes ne sont pas adaptées à un contexte
interactive, plus particulièrement quand il s’agit des réseaux vasculaires.

Dans cette thèse, nous considérons le problème de la segmentation et la reconstruc-
tion des vaisseaux sanguins à partir de données patients en 3DRA. Pour ce faire, nous
proposons deux nouveaux algorithmes, un pour la segmentation et un autre, pour la
reconstruction. Tout d’abord, le réseau vasculaire est construit grâce à un algorithme
de suivi de la ligne centrale des vaisseaux. De plus, notre procédure de suivi extrait des
point à la surface des vaisseaux de manière robuste. Deuxièmement, ces points sont
estimés par une surface implicite (un blobby model) qui est raffinée de façon itérative.
Les résultats du suivi et de la reconstruction sont produit à partir de données synthé-
tiques et réelles. Lors de la simulation de la navigation d’outils interventionnels, notre
modèle géométrique remplit les exigences des simulations interactives: une prédiction
et détection rapide des collisions, l’accès à l’information topologique, une surface lisse
et la mise à disposition de quantités différentilles pour la résolution des contacts.

Mots-clés: Simulations médicales interactives, Segmentation, Suivi des vaisseaux,
Reconstruction à partir de nuages des points, RANSAC, Blobby models
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INTRODUCTION

1.1 Context

An estimated 17.3 million people died from Cardiovascular diseases (CDV) in 2008, rep-
resenting 30% of all global deaths1. Of these deaths, an estimated 7.3 million were due
to coronary heart disease and 6.2 million were due to stroke 2. Globally, stroke is the
second leading cause of death. It is a disease that predominantly occurs in mid-age and
older adults who represent 85% of deaths due to stroke3. Around 9.4 million deaths each
year can be attributed to high blood pressure. This includes 51% of deaths due to strokes
and 45% of deaths due to coronary heart disease4. The number of people who die from
CDV, mainly from heart disease and stroke, will increase to reach 23.3 million by 2030;
this trend will let CDV and stroke to remain the leading causes of death. The patholog-
ical background for stroke may either be ischemic, i.e. occlusion of arteries supplying
the brain due to a thrombus or blood clot; or haemorrhagic, i.e. bleeding, disturbances
of the cerebral blood circulation. Among haemorrhagic strokes, we find intracerebral
haemorrhage, i.e. bleeding from one of the brain arteries into the brain tissue; and
Subarachnoid Haemorrhage (SAH), i.e. arterial bleeding in the space between the pia
mater and arachnoidea meninges.

Heart diseases and stroke cause billions of dollars in losses of national income each
year in the world’s most populous nations. Causes of this cost are: large numbers of pre-
mature deaths, ongoing disability in many survivors, impact on families/caregivers and
on health services. To lessen these figures, two main streams are candidate solutions:
first, prevention – i.e. education and food regulation laws – but it’s difficult to put it in
practice due to lack of political commitment worldwide; and second, improved health
care, early detection and timely treatment is another effective approach for reducing
the impact of vascular diseases. However, appropriate treatment is a challenging task
due to the human morphology complexity and high level techniques are needed for this
purpose.

For instance, many cerebrovascular pathologies like ischemic strokes, aneurysms5,

1Global status report on noncommunicable diseases 2010. Geneva, World Health Organization, 2011
2Global atlas on cardiovascular disease prevention and control. Geneva, World Health Organization, 2011
3 ❤tt♣✿✴✴✇✇✇✳✇❤♦✳✐♥t✴❝❤♣✴st❡♣s✴❙❡❝t✐♦♥✶❴■♥tr♦❞✉❝t✐♦♥✳♣❞❢
4The global burden of disease: 2004 update. Geneva, World Health Organization, 2008
5A cerebral aneurysm is an area where a blood vessel in the brain weakens, resulting in a bulging or ballooning out
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Arteriovenous Malformations (AVM)6, etc. are now often treated using Interventional
Neuroradiology (IN) therapies which rely on the insertion and navigation of a catheter
(long flexible thin tube) inside the vessels. Instead of open surgery, it allows to reach the
lesion with surgical tools through a catheter. The treatment is delivered directly within
the closed brain, using only image-based guidance.

The archetype of this high-level technique is the endovascular treatment of
aneurysms, also known as (a.k.a) coil embolization or coiling, which involves the in-
troduction of a catheter into a large blood vessel (Seldinger technique7). Typically it is
inserted into the femoral artery (groin) and injected with a radio-opaque dye (contrast
agent) that can be seen on live X-ray or fluoroscopy. A micro-catheter or a guide-wire is
manipulated – placed inside the catheter along the length of the blood vessel – to reach
the bulge area of the aneurysm. A small and thin wire (width of a human hair), i.e. a
coil, made of soft platinum and presenting different shapes – e.g. a spring like shape –
is inserted through the micro-catheter and when this latter has reached the collar (zone
of insertion of the bulge on the artery), a coil is deployed. More than one coil is often
packed into the aneurysm for preventing blood flow from entering it. Finally, the coil is
detached from the guide-wire, e.g. an electrical current is used for this purpose when
manipulating Guglielmi Detachable Coil (GDC)8.

Put another way, the dedicated skill of instrument navigation and the thorough un-
derstanding of vascular anatomy are critical to avoid devastating complications. Fur-
thermore, these procedures require an intricate combination of visual and tactile feed-
back; a good comprehension of each individual pathology; and extensive training pe-
riods. Besides, recent studies have demonstrated that risks diminish with the skill of
neuroradiologist (Singh et al. (2002)). Whereas no animal has a brain structure close to
humans, classical curricula – such as training on cadavers – do not reflect a real experi-
ence since no blood flow comes into play.

Nowadays, a huge interest has arisen for educational simulations. These provide a
boot strap between classroom learning and real-life clinical experience. Sophisticated
simulations, similar to aviation courses, may rely on computerized mannequins provid-
ing the basis for medical simulations.

1.2 Medical simulations

According to the Society for Simulation in Healthcare9: “Simulation is the imitation or

representation of one act or system by another. Healthcare simulations can be said to have

four main purposes – education, assessment, research, and health system integration in

facilitating patient safety”.

of part of the vessel wall (❤tt♣✿✴✴✇✇✇✳❛❛♥s✳♦r❣). Most cerebral aneurysms are present without any symptoms and
are small in size (less than 10 millimeters in diameter). Smaller aneurysms may have a lower risk of rupture. A ruptured
cerebral saccular aneurysm is the most common cause of SAH

6An AVM is a tangle of blood vessels in the brain or on its surface which bypasses normal brain tissue and directly
diverts blood from the arteries to the veins

7 ❤tt♣✿✴✴❡♥✳✇✐❦✐♣❡❞✐❛✳♦r❣✴✇✐❦✐✴❙❡❧❞✐♥❣❡r❴t❡❝❤♥✐q✉❡
8It was invented by Italian interventional neuroradiologist Dr. Guido Guglielmi. (❤tt♣✿✴✴❡♥✳✇✐❦✐♣❡❞✐❛✳♦r❣✴

✇✐❦✐✴●✉❣❧✐❡❧♠✐❴❞❡t❛❝❤❛❜❧❡❴❝♦✐❧)
9❤tt♣✿✴✴ss✐❤✳♦r❣

http://www.aans.org
http://en.wikipedia.org/wiki/Seldinger_technique
http://en.wikipedia.org/wiki/Guglielmi_detachable_coil
http://en.wikipedia.org/wiki/Guglielmi_detachable_coil
http://ssih.org
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diagnosis treatment prognosis

patient simulation

Figure 1.1: Medical pipeline: first, the pathology is diagnosed (diagnosis); then it is treated (treatment)
and finally, the physician follows the patient during its convalescence (prognosis). Medical simulations
may help the physician to rehearse before the intervention (green arrow), to transfer his/her knowledge to
residents (cyan arrow) and to predict possible complications after the intervention (purple arrow).

It is true that simulation based learning is fast becoming an important tool to teach
the integration of the knowledge of human anatomy and physiology with clinical skills in
a safe environment and reproducible challenges. This approach allows for the early ap-
plication and evaluation of techniques and skills in a less threatening environment be-
fore the patient factor comes into play. This increasing interest for medical simulations
is due to several reasons: medical simulations may be used to train medical profession-
als to reduce accidents during surgery, prescription, and general practice; educational
purpose in healthcare since the practitioner is free to make mistakes and to learn from
them; big firms see medical simulations as a friendly way to disseminate techniques;
Singh et al. (2002) showed – in an aneurysm coiling context – that the success of the
intervention increases with the physician’s skill and consequently, the by-product is a
reduction of time for operation and hospitalization.

Important considerations should be taken when designing a simulator for a specific
application (Fig. 1.1). For the education purpose, the simulation must be realistic but
not necessarily predictive, whereas the need for an absolute Real-Time (RT) execution
is compulsory. In the area of planning, the simulation must be accurate enough to be
predictive and its computation must be fast enough to be compatible with the medical
pipeline but not necessarily RT. In contrast, when considering intra-operative guidance,
the simulation must be also both accurate and RT. In fact, when referring to planning
and intra-operative guidance, the simulation must take into account real patient data
which is sometimes obtained in RT on the patient. Further interest on patient data sim-
ulators are found in the context of education where real cases offer real life challenges
but above all, increase proficiency of trainees (Singh et al. (2002)).

In these three cases, the common denominator is models – for the interventional
tools (i.e. guide-wire, catheter or micro-catheter) and the vasculature – complying to
the application’s specific constraints. Besides, not only the modeling of virtual objects
is a challenging task; other key-points such as user-interaction, interaction between vir-
tual objects, and the patient-specific geometrical model availability bring about further
problematics.

In the next sections, we briefly review current commercial simulators for IN for pro-
viding then a current state of challenges related to medical simulations in IN.
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1.2.1 Endovascular procedure simulators

Many procedures start with a needle insertion into the vascular system but current com-
mercial simulators skip this step to reduce complexity and build cost (Coles et al. (2011)).
The navigation through the vascular anatomy is done using fluoroscopic guidance and
tactile process, sensing small axial forces and torques at the fingertips while manipu-
lating the interventional tools. Hereafter, we briefly survey current state-of-the-art on
endovascular simulators. Table 1.1 recaps the existing products as well as works allow-
ing their development.

Early prototypes for IN simulators were the Dawson-Kaufman for practicing an-
gioplasty (Meglan (1996)) and the daVinci/ICard simulator (Anderson and Raghavan
(1998); Anderson et al. (2002)). Mentice AB developed Vascular Intervention Simulation
Trainer (VIST) from the called Interventional Cardiology Training System (ICTS) (Cotin
et al. (2000)). Luboz et al. (2009) proposed a more recent simulator, the so-called
Vascular Surgical Platform (VSP) device from Mentice for catheter and guide-wire ma-
nipulation coupled with a hydraulic system for palpation. Its purpose aimed at train-
ing the Seldinger Technique for catheter insertion, which covers the initial steps of in-
troducing a guide-wire and catheter into the patient. In Li et al. (2001), NeuroCath is
presented as a three component system: vascular extraction and modeling, instrument
navigational simulations (further treated in Cai et al. (2003)), and human-computer in-
terfaces. NeuroCath addresses the training and patient-specific planning of IN proce-
dures and was further improved in Ma (2007). Lately, Wu et al. (2005) introduced Real-
time EndovascularSimulator (EVE) as a neuroradiology training simulation framework
(Wu et al. (2013)). Some features of the simulator include interactive fluid dynamics
of blood flow (Wu et al. (2007)); and RT collision detection and collision response (De-
quidt et al. (2007)). A branch of EVE was further developed by Inria under the Simulation
Open Framework Architecture (SOFA) platform as an Endovascular Embolization Simu-
lator (EVE) (Duriez et al. (2006)). Efforts were mainly focused on computation efficiency
and improving contact response with the blood vessel surface (Dequidt et al. (2009)).
In Wei et al. (2012), fluid dynamics of blood flow coupled to coiling were explored in
near RT. Incidentally, commercial simulators such as CathLabVR10, ANGIO mentor11,
VIST12, and COMPASS13 propose similar fluoroscopic guidance for interventional en-
dovascular procedures. Last but not least, the HERMES project (Raspolli et al. (2005)),
formerly created for coronary stent implants training, proposes soft-tissue modeling of
the artery (Aloisio et al. (2006), catheter insertion (Aloisio et al. (2004)) based on the
Catheter Instruction System (CathI) (Höfer et al. (2002); Rebholz et al. (2004)), and a
mannequin on an operating table.

1.2.2 Challenges

Medical simulators have experienced a rapid development for the past 10 years but are
still not enough advanced to tackle all the existing challenges related to computer-based

10CAE healthcare (❤tt♣✿✴✴❝❛❡❤❡❛❧t❤❝❛r❡✳❝♦♠)
11Simbionix (s✐♠❜✐♦♥✐①✳❝♦♠).
12Mentice AB (♠❡♥t✐❝❡✳❝♦♠).
13Simsuite (♠❡❞s✐♠✉❧❛t✐♦♥✳❝♦♠)

http://caehealthcare.com
simbionix.com
mentice.com
medsimulation.com
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Simulator Manufacturer Works
Dawson-Kaufman HT Medical Meglan (1996)

daVinci/ICard Intuitive Surgical
Lim et al. (1998)

Anderson and Raghavan (1998)
Anderson et al. (2002)

Vascular Surgical

Mentice AB

Luboz et al. (2009)
Platform (VSP)

Vascular Intervention Cotin et al. (2000) (Interventional
Simulation Trainer Cardiology Training

(VIST) System (ICTS))

NeuroCath
Nowinski and Chui (2001)

Li et al. (2001); Cai et al. (2003)
Ma (2007)

RT Endovascular
SIM group

Wu et al. (2005, 2007, 2011)
Simulator Cotin et al. (2005)

(EVE)
Lenoir et al. (2006)

Dequidt et al. (2007)
SOFA Endovascular

Inria
Duriez et al. (2006)

Embolization Simulator Dequidt et al. (2009)
(SOFAEVE) Wei et al. (2012)

HERMES HERMES project

Raspolli et al. (2005)
Höfer et al. (2002) (CathI)

Rebholz et al. (2004) (CathI)
Aloisio et al. (2004)
Aloisio et al. (2006)

Table 1.1: A brief summary of current endovascular procedure simulators and related works.

simulations. An ideal medical simulator is supposed to provide interaction between the
physician and the patient’s anatomy in a clinical realistic manner. A bad simulator is
worse than no simulator at all, and one that imparts bad habits is dangerous (Dawson
(2006)). Realism means not only the visual aspect of virtual objects but also haptics
which leads to modeling the mechanical properties, texture, color and even the appear-
ance of real/soft objects.

The targeted application of this work is the aneurysm embolization simulation.
Therefore, we orient related challenges toward this direction. Thereafter, we briefly re-
view particular points in physical and geometrical modeling, as well as visualization and
virtual object interaction to conclude by evaluation and validation of simulators.

Physical modeling

No matter in which aspect the problem is addressed, human body is complicated. The
task is even more complex when its mechanical properties are needed to be known.
More precisely, there exists a technical challenge when measuring kinematics, biome-
chanical, physiological and physical parameters. Furthermore, even if we measure these
quantities, every human being will present different measures. Nowadays, patient-
specific data is considered as a synonym of realism in numerical simulations (Gould
et al. (2012)). However, realism is just merely subjective since it translates our impres-
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sion about emulation of reality. In this domain, its quantification remains a difficult task.
New trends lead to solutions addressing the problem as a comparison between virtual
and clinical outcomes, followed by a correction of the simulation parameters but these
solutions still reside at embryonic stage. Besides, it is always possible to improve real-
ism by introducing a finer granularity in the modeling to detriment of computational
efficiency.

No decision has a more profound impact on the eventual usefulness of a system
than the concept of physics based design (Dawson (2006)). From a practical stand-
point, a large part of the realism of a simulation, in particular for surgical simulation
relies upon the ability to describe soft tissue response during the simulated intervention
(Duriez (2013)). More specifically, for simulating interventional radiology interventions,
the interventional instruments (needle, catheter, coils...) must also be modeled as de-
formable. Considerations about the availability of geometrical models are discussed in
the following section.

Geometrical modeling

Despite a vast literature on the subject (Lesage et al. (2009)), patient-specific geometrical
model recovery is still an active area of research and remains one of the major limitations
of simulators. For instance, current commercial simulators such as ANGIO mentor and
CathLabVR propose limited number of cases (respectively 100 and 30 cases) whereas
VIST only provides a VIST Case-It as a segmentation integration tool for certifying home-

made patient specific three-Dimensional (3D) reconstructions14. Effective simulation
creates more than a sophisticated video game where the level of difficulty is fixed. To
this point, the human arterial network puts forth extremely complex patient morphol-
ogy and thus, complicated cases for treatment. Owing to this complexity, brain vascula-
ture segmentation algorithms may fail at capturing pathologies, like cerebral aneurysms
due to their small size and complexity of the neighboring arterial network; and tortuous
and tiny vessels. This difficulty is stressed by the IN simulation context, particular re-
quirements must be met by geometrical models such as, the availability of topological
information (Li et al. (2012)). Procedural simulations must evolve from training to more
elaborated stages such as planning and prognosis. For this purpose, there is a need to
provide accurate representations of the vasculature to increase the fidelity and predic-
tion of simulation when compared against real interventions. Every physician has the
same 24-hours day, so procedure rehearsal will have to prove its worth to many skeptical
users before it becomes a routine clinical event (Dawson (2006)).

Visualization

Challenging task for the visualization field are mainly rendering and the visual immer-
sion. The rendering speed of one image is directly related to the complexity of the virtual
scene and consequently, to interactivity; for example, zoom and camera rotation must
be executed in RT, which could happen in the navigation of medical instruments and

14✇✇✇✳♠❡♥t✐❝❡✳❝♦♠✴✈✐st✲❝❛s❡✲✐t

www.mentice.com/vist-case-it
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other simulated processes. When deformations of the vascular model are also consid-
ered, a naive rendering refreshement of the whole vasculature may imperil this RT con-
straint. Therefore, an increasing need of dedicated rendering algorithms is ineluctable.
Furthermore, efforts must be made to create high-quality visuals that effectively convey
the real world to the user. Realism could be achieved in the field of data visualization by
using appropriate rendering, including colors, textures, brightness, shadows, reflection,
transparency, refraction, diffraction, etc.

Interaction

In the case of aneurysm coiling and most simulations, other than producing an appeal-
ing rendering, interactions between medical devices and anatomical structures are the
core of the simulation. By this, we mean that detection of collisions; and response to
deformation and collision are to be handled for all the objects composing the virtual
scene. Once these steps managed, the final state of the virtual objects are visually and
haptically rendered. Furthermore, it is sometimes compulsory to add a user-interaction
to all these computations. Besides, the acute training of rod guidance and the response
to the fine forces felt while advancing a rod is crucial for efficient IN procedures. An
overexertion of force can have serious consequences and correct training to prevent this
must be included in any IN training simulation (Coles et al. (2011)). Against this back-
ground, a (near or) RT computation is required which cannot always be guaranteed by
modern calculators with both limited working frequency and memory. Otherwise, com-
putation speed gain in collision detection and contact response computation demand
optimized algorithms fully exploiting the actual hardware capabilities. Each of the above
mentioned steps is an area of research by itself.

Evaluation and validation

Evaluation of procedural simulations is nontrivial. The availability and development of
tactile interfaces is still in its infancy. The question of appropriate simulator metrics
for the use of haptics remains open. Formal validation studies that focus on the use of
haptics in medical simulation are scarce (Coles et al. (2011)). Haptic validation must fill
this gap by fully understanding the perceptual mechanism of the human body.

1.3 Outline and contributions

In this work, we address the problem of the availability of geometrical models from pa-
tient data for RT or near RT computer-based simulations. More precisely, this work aims
at providing accurate geometrical model that may be further used for planing or intra-
operative guidance purposes. Against a coil embolization background, the proposed
geometrical model alleviates computational burden during interactions between medi-
cal devices and the blood vessel surface.

We explore existing methods for capturing the vascular geometry whether recon-
structing directly or segmenting the vasculature with regard to a RT simulation context
(Chapter 2). After this brief review of state-of-the-art, we conclude that for capturing
correctly the complex vasculature, the best geometrical model that fits our application
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is implicit surfaces. However, methods providing such a model often relies on discrete
grids for computation leading to local inaccuracies when considering a global recon-
struction. At the end of our analysis of the current literature, we opt to capture locally
the blood vessel as light models for computation efficiency (compact representation)
and improving accuracy (precise description of the blood vessel surface). For that, we
decide to rely on tracking algorithms which have the advantage of capturing locally the
vessel surface while retrieving the vascular topology. This latter is capital for correctly
handling and speeding up collision detections (Li et al. (2012); Wu et al. (2013)) since it
provides a natural decomposition of the vasculature. Finally, we decompose the prob-
lem of geometrical reconstruction from image data in two steps: segmentation and then
reconstruction.

The segmentation of the blood vessel surface relies on a novel tracking algorithm
(Chapter 3). This paradigm uses cylinders to locally estimate the local vesselness (grav-
ity center, local width and direction of the vessel) and points at the vessel surface are
extracted via a robust stochastic filtering process. Therefore, our proposal provides a
dense sampling of the vessel surface and a cylinder chain list as the centerline of vas-
cular tree. The robustness, tracking capability and accuracy of our tracking procedures
are compared against state-of-the-art Multiple Hypothesis Tracking (MHT) on 10 3D
Rotational Angiography (RA) patient data.

The reconstruction algorithm (Chapter 4) provides an implicit surface representa-
tion for the previously extracted tree. For each cylinder on the centerline, a local recon-
struction – driven by an energy minimization formulation – is fulfilled which provides
an accurate implicit representation of the local blood vessel surface grounded upon the
extracted points. Consequently, the blood vessel surface is reconstructed as tree of local
implicit surfaces. The strength of the modeling process is shown on synthetic and real
data.

In order to assess the efficiency of the proposed geometrical model, we applied our
rigid geometrical model to the SOFA framework15 (Chapter 5). Synthetic as well as real
data was modeled with our reconstruction algorithm, thus producing a dedicated geo-
metrical model for RT simulation. Computation efficiency tests and realism assessment
were carried out with the proposed geometrical model and a classical triangular meshes.

Finally, we derive our conclusion and discuss about future efforts to further the state
of our research (Chapter 6). Among our perspectives, we explore new methods for our
tracking algorithm to handle missing bifurcations automatically, the local reconstruc-
tion of the blood vessel surfaces directly from image data, the deformation of the tree of
local implicit models and inherent discontinuity issues to our local modeling.

Our contributions are registered to two different research areas, namely the segmen-
tation and the surface reconstruction fields. To this end, we introduce several improve-
ments to the state-of-the-art literature.

Geometrical model suited to RT simulation. We propose a novel geometrical
model for blood vessels which presents nice properties for computer-based simulations:
smoothness, fast collision detection, geometric distance function approximation and its
gradient (for the contact response direction and amplitude computation).

15❤tt♣✿✴✴✇✇✇✳s♦❢❛✲❢r❛♠❡✇♦r❦✳♦r❣✴

http://www.sofa-framework.org/
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RT Simulation validation. In addition, all these features were tested in real patient
data and synthetic data against the well-established polyhedral model coupled with up-
to-date collision detection algorithms.

Computation efficiency. The outcome reveals that the proposed model excels in
computation efficiency and allows realistic interventional motion.

Novel robust tracking algorithm. Our tracking procedure improves upon the state-
of-the-art MHT. A detailed analysis and comparison with MHT are performed to under-
stand the robustness and accuracy of our proposal. Within this context, we extensively
carry out both a quantitative and qualitative assessment on 744 vessels.

Improved modeling framework. In the context of surface reconstruction, we
present a new framework for surface fitting driven by energy minimization. This frame-
work improves upon similar works (Muraki (1991); Bittar et al. (1995) and Tsingos et al.
(1995)) in the area through an automatic paradigm which resolves the problem based
on geometrical criteria.

A novel geometrical model for blood vessels. We propose a novel geometrical model
based on parametric implicit functions – namely Blobby Models (BMs) – which grant the
ability to analytically express the blood vessel surface (closed-form expressions). Fur-
thermore, our proposal’s ability to fine capture the vessel surface is easily regulated by
modulating the number of parameters controlling the implicit function or its geometric
precision. The by-product is a rigid model of the vascular tree which is presented as a
tree of local implicit surface and well-suited for RT simulations.
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In this chapter, we provide a short review of existing geometrical model recovery algo-

rithms. In this study, we consider blood vessel segmentation algorithms and visualiza-

tion models. Our analysis is driven by interactive simulation constraints for assessing the

characteristics of vascular models proposed in the literature. To this end, two classes of

shape recovery algorithms are studied: those algorithms recovering the vascular tree from

the centerline and their counterparts which directly recover the vessel boundaries. A brief

summary of routinely employed modalities for Interventional Neuroradiology (IN) prog-

nosis, detection and treatment of vascular diseases is also provided.
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The segmentation of vascular structures from three-Dimensional (3D) images, and
subsequently the reconstruction, is particularly a challenging task. Segmentation con-
sists of partitioning an image into an object – i.e. a structure of interest – and a back-
ground – i.e. the remainder of the image volume. The challenge in performing vessel
segmentation is due to the sparseness of data, and the possible presence of irrelevant
signal (other tissues, artifacts or noise). Furthermore, anatomical properties of vessels
are highly variable in size, appearance, geometry and topology, specially in patholog-
ical cases such as aneurysms, stenoses, calcifications or Arteriovenous Malformations
(AVM). The choice of a segmentation method is usually closely related to three major
concerns:

1. the modality considered for acquisition, since there exist several kinds of angio-
graphic data with different quality levels and resolution, and consequently with
heterogeneous types of artifacts;

2. the type of vessels being delineated – i.e. arterial or venous networks differ de-
pending on organs and their surround;

3. and the clinical purpose.

In this chapter, we briefly review the state-of-the-art in segmentation and recon-
struction algorithms for vascular networks. Following a globally similar classification
presented in Suri et al. (2002), we decompose roughly our guideline in two families of ap-
proaches for blood vessel segmentation and reconstruction: boundary and centerline-
based reconstructions. Recent surveys for lumen vessel segmentation are given in Kir-
bas and Quek (2004); Lesage et al. (2009). Attention is also paid to the relative perfor-
mance of various surface modeling methods for vascular segmentation in Bühler et al.
(2003); Wu et al. (2013). Together with the segmentation of the vessel anatomy, we also
explore visualization techniques of vasculature Preim and Oeltze (2008).

For the remainder of this analysis, we drive our argumentation according to interac-
tive simulation constraints and requirements. As stated in Teschner et al. (2005), high
level of performances at interactive rates in numerical simulations may be obtained with
suitable geometrical models. Henceforth, we also give importance to the resulting geo-
metrical model or representation.

Recent works (Dequidt et al., 2009) and Wu et al. (2011) attest the feasibility of Real-
Time (RT) or near RT simulators for Interventional Neuroradiology (IN) procedures. Ac-
cording to its future use, the geometrical model should meet the following characteris-
tics to comply with interactive simulations:

1. collision detection needs to be accurate, fast and efficient without hampering the
computation time (Teschner et al. (2005) and Kockara et al. (2007));

2. smoothness is compulsory to prevent jerky motions and to ensure realism (De-
quidt et al. (2009));

3. for solving collisions, the model should facilitate a rapid computation of contact
forces, as well as a prediction of possible collisions by supplying respectively the
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Figure 2.1: Two cut planes through 3DRA data exhibiting the Kissing Vessel (KV) issue: (left) A vessel runs
along an aneurysm. (right) Three locally tangent vessels.

gradient and the distance to the surface (Teschner et al. (2005) and Kockara et al.
(2007));

4. and the model must encode the topology information to disambiguate problem-
atic cases (Jin et al. (2001); Wu et al. (2011) and Luboz et al. (2013)).

Problematic cases are situations where two vessels may happen to be locally tan-
gent, or a vessel may run along a dense structure, e.g. an aneurysm or bone. Hereafter
we refer to them as the Kissing Vessel (KV) issue. Fig. 2.1 displays sample images illus-
trating these cases. To understand the impact of KV cases on the simulation process,
we must dive into an elementary simulation time step. During a simulation time step
(Dequidt et al. (2009)), mechanical forces are applied to the catheter, modeled as a set
of connected points, in a contact-free environment. Then the vessel geometry is added
to detect points that crossed the vessel wall. Contact forces are then applied to these
points before a new resolution loop is performed. No contact is detected at a point on
the catheter if it is inside the vasculature at two consecutive simulation time steps al-
though it could jump in between from two KVs as illustrated in Fig 2.2. Increasing the
simulation step will slow down computation but may be useless when facing up to small
gaps between KVs. In short, a simple inclusion/exclusion test is insufficient to detect the
contact. Conversely, topology informs whether the catheter remains in the same branch
or glide into a topologically far vessel.

Time t Time t+ 1

Figure 2.2: Toy scenario of a problematic case for two consecutive simulation time steps. The catheter is
represented as five connected points where red color is related to possible/detected collision, otherwise
points are in black. All points remain inside the same vessel (left). All points lay inside the vasculature but
in two different vessels (right).
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2.1 Boundary-based reconstructions

Boundary-based reconstruction techniques compute the vessel geometry directly from
image data or segmentation results – e.g. a voxel soup. This kind of reconstruction is
typical of deformable models. Among them, one of the most popular models is active
contours. Active contours are curves or surfaces that deform within image data. They
are classified as either parametric or geometric according to their representation and
implementation (Xu et al. (2000)).

Parametric active contours or snakes have been used extensively over the last twenty
years due to their simplicity (Kass et al. (1988); Klein et al. (1997); Mille and Cohen (2009);
Mohan et al. (2010) and Wang et al. (2011)). The main advantage is that segmentation
can be fulfilled without a great definition of the object boundary which can be com-
puted iteratively (Suhuai Luo (2014). Besides, they can capture both concave and con-
vex features. However, they have two main limitations. First, when the targeted object
and the initial contour differ greatly in size and shape, the model has to be dynami-
cally reparametrized (Hegadi et al. (2010)). Second, one major downside of this model
is that it has difficulty to deal with topological modifications such as splitting or merg-
ing (Delingette and Montagnat (2001)). To handle topological changes, McInerney and
Terzopoulos (1999) introduced a sophisticated heuristic for reparametrizing a meshed
contour/surface – namely T-snakes – in the area of retinal blood vessel segmentation.
Klein et al. (1997) deformed a spline-based contour to detect coronary boundaries. Ac-
tive contours were used by Mille and Cohen (2009) and Mohan et al. (2010) who pro-
posed to combined shape-prior based snakes with minimal paths. The method relied
on deformable cylindrical models which naturally fit to the boundaries while estimat-
ing the medial axis of vessels. A mesh-bashed active contour was used to smooth the
resulting stack of cylinders and obtain the vascular tree segmentation. By the same to-
ken, Wang et al. (2011) used generalized cylinders coupled to a snake evolution scheme.
Generalized cylinders were discretized into snaxels which in turn evolved according to
vesselness energies.

Geometrical active contours or level set methods basic idea is to represent a contour
as the zero level set of a higher dimensional function – the so-called level set function
– the motion of the contour is formulated as the evolution of the level set function (Yan
and Kassim (2006)). Level set frameworks based rely heavily on regular discrete grids
for calculating their evolution (Gomes and Faugeras (1999) and Hegadi et al. (2010))
where the segmented object is encompassed by the zero level set. The main advan-
tage of these methods is that they handle automatically topological changes. Due to this
feature, these methods have been applied to the segmentation of cerebral pathologies
(Hernandez and Frangi (2007); Scherl et al. (2007); Piccinelli et al. (2009); Bogunovic et al.
(2011)) and blood vessel segmentation (Lorigo et al. (1999); Yan and Kassim (2006); Law
and Chung (2007); Shang et al. (2011)). However, the computation of the level set evolu-
tion is time and memory consuming, and the segmentation may lead to false positives
(Lingrand and Montagnat (2005)). For alleviating these issues, these methods are often
initialized by a pre-processing step and when possible constrained with some prior. For
example, in Manniesing et al. (2007) a level set was run twice. The first time, it provided
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a rough estimation of the vasculature which served to compute the centerline. The sec-
ond time, the level set used the centerline as a prior to further segment the vascular tree
and avoid false positives. By the same token, Frangi et al. (1999); Brian Mohr (2012) and
Wang et al. (2012) used the central vessel axis to constrain the evolution of the level set.
In Cebral et al. (2005), a region growing segmentation and iso-surface extraction were
used for initializing a deformable model for segmenting cerebral aneurysms and their
neighboring vessels.

Discrete representations are heavily used in computer vision. Inherently, discrete
representations are loose and allow to model complex geometries and arbitrary topol-
ogy with no connectivity. Voxel soups (binary segmentation results) make up the most
simple representation since they are closely related to the way data is represented – i.e.
image or volume data are regular grids and the structure of interest is described by pix-
els/voxels composing it. In this context, morphological methods relying on basic oper-
ations (namely erosion, dilation, opening, closing), involving geometric patterns (struc-
turing elements), allowed to segment 3D vessel vasculature (Zana and Klein (2001)) or
served as pre-processing stages for other segmentation methods (Alhonnoro et al. (2010)
and Wu et al. (2011)). High-level image processing techniques, based on these mathe-
matical morphology operations, have been developed, e.g. watersheds have been em-
ployed for 3D vessel segmentation (Passat et al. (2007)). Dufour et al. (2013) presented an
up-to-date survey on current mathematical morphology advances in 3D angiographic
segmentation. Also exploiting the elementary information, one can find region growing
approaches (Masutani et al. (1996); Quek and Kirbas (2001); Flasque et al. (2001); Hoyos
et al. (2006) and Carrillo et al. (2007)). Region growing algorithms have small calculation
complexity and high speed which make them a widely used method in medical image
segmentation (Gómez et al. (2007); Bock et al. (2008); Freiman et al. (2009); Alhonnoro
et al. (2010); Jiang et al. (2013)). The basic idea of traditional growth region is to collect
pixels/voxels that have similar properties together to form a region. However, its per-
formance depends largely on the position of seed points and growth conditions. Seed
points are often manually supplied (Freiman et al. (2009)) but automated processes for
vascular structures have been introduced in Bock et al. (2008) and Jiang et al. (2013).

2.1.1 Discussion on geometrical models

Boundary-based reconstructions algorithms often produce voxel soups or mesh-based
structures of the vessel walls.

Voxel soups offer a loose representation of an object and could be interesting for pre-
dicting collisions during simulation via distance fields. The evaluation of distances and
normals needed for collision and response is extremely fast and independent of the ge-
ometric complexity of the object (Cornea et al. (2007)). Collisions could be solved by
embedding the binary mask in a discrete regular grid of the space. On the other hand,
a mere estimation of the vessel boundaries is inconceivable in our context because a
coarse staircase-shape representation leads to jagged surfaces and subsequently to un-
realistic simulations. To alleviate this issue, interpolation methods can be employed in
a post-processing stage which are discussed in the following paragraphs.
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Other methods based on Delaunay triangulation, require an initial voxel soup or a
centerline coordinate image, local radius and connectivity, provided pleasant results.
Typically, these procedures work in a two step fashion. First, a pre-processing stage is
necessary to reconstruct a rough approximation of the vasculature. These approaches
routinely produce a coarse mesh. Here, topology problems, i.e. branches correspon-
dence, are managed. Finally, this mesh is procedurally smoothed and refined using
mesh-based subdivisions such as Catmull-Clark (Felkel et al. (2004); Wu et al. (2011);
Hijazi et al. (2010)) which ensures a C 2 continuous surface almost everywhere. Other
refinement algorithms were successfully employed for generating pleasant results. Ou
and Bin (2005) used Loop subdivisions and Bornik et al. (2005) drove an iterative sim-
plex mesh deformation based on Newtonian laws. The main advantages of subdivisions
surfaces is that they yield smooth surfaces and simple heuristics.

Meshed representations owe their notoriety to an impressive power evolution of
hardware graphics. Indeed, it appears that a vast literature on collision detection is
grounded on meshed representations since most Graphics Processing Units (GPUs) are
capable of handling millions of triangles for display. However, performing collision de-
tection with a huge amount of objects still is an active area of research (Kockara et al.
(2007); Avril et al. (2009)). In an IN simulation background, the interventional tools, e.g.
guide-wire, are line-shaped and they tend to follow the valleys formed by successive
edges, hence producing unwanted friction and jerky motions. Conferring smoothness –
using subdivisions schemes – on polyhedral representations helps but at the expense of
a high number of polygons which may put at risk the real-time performances.

Special consideration must be giving to the KV issue. In fact, there is no way to disam-
biguate this scenario while using voxel soups or meshed representations unless resort-
ing to dedicated machinery. A major disadvantage of these representations is the lack
of global topology information, at least without having recourse to a post-processing
step. Even still, vessels may actually physically touch, leaving absolutely no hint of a
gap between KV in the image data. Genuine topology retrieval algorithms cannot han-
dle such case without further priors. Last but not least, the interventional tool may lie
outside the vasculature during simulation. Whereas these representations allow differ-
ential estimations only on the vessel boundary, the gradient of the distance is required
for finding a direction and a recall force in order to bring back the tool or part of it inside
the vasculature while computing collision responses.

Implicit surfaces are smooth and provide high modeling capabilities when dealing
with a high variety of topologies. Implicitation methods providing an implicit repre-
sentation from voxel soups or polygonal surfaces have gained increasing interest (Preim
and Oeltze (2008)). Implicit representations may enable fast collision detection through
cheap inclusion/exclusion tests. To this end, many valuable methods employ convolu-
tion surfaces (Bloomenthal (1985); Oeltze and Preim (2005)), Multi-level Partion of Unity
(MPU) implicits (Braude et al. (2007); Schumann et al. (2008)), and Poisson surfaces (Wu
et al. (2010)). Nevertheless, the blood vessel surface is over-smoothed when using con-
volution surfaces. With this in mind, Schumann et al. (2008) proposed to use MPUs for a
precise delineation of the vessel borders. However, Bounding Volume Herarchies (BVH)
are inefficient for detecting KVs and thereby, branches tended to merge. In that area,
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Poisson surfaces may be resilient to these situations but point-sets provided with nor-
mals are mandatory. Therefore, a normal estimation from voxel soups is one possible
solution which may however lead to inaccuracies during reconstruction.

2.2 Centerline-based reconstructions

A vessel can be seen as a 1D curve that is centered inside the vessel and coated with
“skin”. Indeed, the vasculature centerline encodes significant vessel features: curvature,
torsion, tortuosity and topology (Piccinelli et al. (2009)). Furthermore, the main interest
for the centerline is that it reduces the problem to a one-dimensional clean and noise-
less representation for blood vessels. Axis-based vascular segmentation algorithms pro-
vide an alternative means to kill two birds with one stone: vessel topology is extracted
segment-by-segment while the vessel boundary associated with each segment is delin-
eated (Wong and Chung (2007)).

Although, this representation of the vasculature seems natural, centerline extraction
from image data or voxel soups is an extensive area of research and has bred a vast liter-
ature (Cornea et al. (2007)): topological thinning (Frangi et al. (1999); Bouix et al. (2005)),
distance maps (Li et al. (2009); Mohan et al. (2010)), Voronoi diagrams (Piccinelli et al.
(2009)) and tracking methods ((La Cruz et al., 2004; Tyrrell et al., 2007; Worz and Rohr,
2007; Friman et al., 2010)).

Tracking procedures follow the vessel centerline directly on image data. Overall,
tracking methods perform from a given position on the centerline, a prediction step – i.e.
the next candidate position on the centerline is predicted – and a correction step – i.e.
the estimated positions of the centerline are recentered through model-based and/or
image-based features.

Variants in the input have been required for different frameworks. In Wink et al.
(2000); Wesarg and Firle (2004); Li and Yezzi (2006) and Gülsün and Tek (2008), the user
supplied two seed points and the tracking computed the minimal path between these
two points; whereas Quek and Kirbas (2001) and Deschamps and Cohen (2002) propa-
gated a wave that follows a manual path from one starting point in the root of the vascu-
lar tree. Others, like Tek et al. (2001); Hoyos et al. (2006); Carrillo et al. (2007); Manniesing
et al. (2007) and Wong and Chung (2007), employed a single seed for initializing the
tracking procedure which can be provided by a dedicated method (Tyrrell et al. (2007);
Jiang et al. (2007); Zambal et al. (2008); Yedidya and Hartley (2008)). Besides, the start-
point may be enriched with further information to constrain the vessel-axis search, e.g.
a vessel radius estimate (Schaap et al. (2007)) and/or a tracking direction (Flasque et al.
(2001); Worz and Rohr (2007); Yedidya and Hartley (2008); Friman et al. (2010)).

Model-based estimations employ geometric analysis to determine directly the vessel
shape (center, radius and direction). For instance, Tyrrell et al. (2007) and La Cruz et al.
(2004) fitted superellipsoids and cylinders to image data. Gaussian assumptions were
successfully integrated for characterizing the vessel lumen as a cylindrical profile (Worz
and Rohr (2007); Schaap et al. (2007); Jiang et al. (2007); Yedidya and Hartley (2008);
Friman et al. (2010)), while the Hessian matrix of clustered voxels (inertia moments and
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curvature), belonging to the vessel, mimicked a cylindrical model (Flasque et al. (2001);
Hoyos et al. (2006) and Carrillo et al. (2007)).

Image-based methods exploit image features such as the gradient and Hessian of the
image intensity. In this family, the correction step may be dissociated from the predic-
tion step. Indeed, Wink et al. (2000); Tek et al. (2001); Wesarg and Firle (2004); Gülsün
and Tek (2008) and Zambal et al. (2008) used ray-casting grounded on the gradient to
capture the vessel walls, coupled with medialness filter response to compute the vessel
center along cross-sections. The prediction step may take different forms to compute
the direction for translating the current position: Hessian matrix analysis (Aylward and
Bullitt (2002); Wong and Chung (2007); Alhonnoro et al. (2010) and Bauer et al. (2010)),
depth search (Zambal et al. (2008) and Friman et al. (2010)) or the reuse of the current
estimated direction (Wink et al. (2000) and Jiang et al. (2007)).

Solutions for recovering the vessel walls while tracking the vessel axis have been pre-
sented in (Flasque et al. (2001); Carrillo et al. (2007)) where the vessel segmentation re-
sult is composed of clustered voxels belonging to the vessel of interest. Owing to its sim-
plicity, another idea that have received much interest is ray-casting. In 2D, ray-casting
was used for characterizing the vessel cross-section (Wink et al. (2000); Tek et al. (2001);
Wong and Chung (2007); Gülsün and Tek (2008)). First, contour points are selected and
then, instead of relying on a circular or elliptic model, they assume a regular, compact
cross-sectional contour for estimating vesselness measures. The major advantage of
ray-casting is that it reduces the detection problem to a 1-D analysis along the ray and
in practice, it breeds fast computational algorithms. Threshold over the image intensity
value (Wesarg and Firle (2004)) or its gradient (Wink et al. (2000); Tek et al. (2001)) are the
basis for probing points at the vessel boundaries. Nonetheless, ray-casting-based tech-
niques do not prune candidates points at the lumen boundaries. Instead, they tend to
minimize the centerline position estimation error while increasing the number of rays.
An alternative to averaging is to use a filtering technique to prune candidate points, e.g.
Tek et al. (2001) employed mean-shift filtering; Schaap et al. (2007) and Yedidya and
Hartley (2008) used Kalman filters.

2.2.1 Discussion on geometrical models

A classical approach in this family of models is to represent the vessel walls as 2D cross-
sectional contours sweeping along the centerline. A strong common form of extraction
assumes that the vessel can locally be described as a tubular segment, and thereby the
centerline curve serves to model the vessel surface as a generalized cylinder. For in-
stance, Bloomenthal (1985), Oeltze and Preim (2005), Gerig et al. (1993) and Tian et al.
(2006) considered the surface as a tree of generalized cylinders with a circular cross-
section (disk) of varying radii. Following the same idea, Hahn et al. (2001) represented
each position on the centerline as a cone. However, these assumptions result in un-
faithful representations of the underlying vascular structures (Worz and Rohr (2007)),
especially pathological structures whose cross-sections present irregular shapes.

More precise implicit representations of the vessel cross-section have been studied
in Hong et al. (2012) and Kretschmer et al. (2013). The overall idea is to describe finely
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the cross-sectional lumen contour and then sweep all contours along the centerline. As
a result, the blood vessel surface maintains a 3D coherence while capturing the true
variations of the vessel surface. The small downside of the approach is that only the
segmented contour for each image slice is regarded. In contrast, Pizaine et al. (2011)
performs interpolation in between with regard to patient data.

2.3 Model choice

Boundary-based reconstructions put forth algorithms representing the global vascular
surface. These algorithms often produce voxel soups and meshed representation of the
blood vessel surface. In this context, many sound algorithms exist for detecting collision
(Kockara et al. (2007); Avril et al. (2009)). Furthermore, topology information – namely
the centerline – can be retrieved from these models for KV issues disambiguation (Frangi
et al. (1999); Cornea et al. (2007); Piccinelli et al. (2009); Wu et al. (2013)). However, one
major downside of these representations resides on smoothness; whereas a precise con-
tact response is required for ensuring high realistic motions. Despite a high number of
subdivisions methods, they only consider geometric criteria for the refinement process
such as Catmull-Clark, thus no precise description with respect to (w.r.t) the patient data
is ensured. Besides, increasing the number of polyhedra assuredly increases smooth-
ness but at the expense of a high computational collision detection.

Implicit representations of the vasculature authorizes cheap inclusion/exclusion
tests during collision detection. Furthermore, implicit surfaces may provide at least
C 1 continuous description of the blood vessel surface. High order continuity is desir-
able for handling friction. When the implicit representation provides at least first or-
der continuity, methods following the gradient descent of the implicit function gradient
can retrieve the medial-axis (Ma (2007)). However, manipulation of implicit surfaces
brings about blending issues which can lead to merge branches in the presence of KVs.
Controlling blending – while preserving continuity of the scalar field – has proven to be
extremely complex when more than two objects are merging (Bernhardt et al. (2010);
Gourmel et al. (2012)). In a boundary-based reconstruction context, constraining a level
set framework with the centerline may avoid unwanted blending but it may also lead to
under segmentation of the vasculature. Thereby, a correction step may be necessary.

In this area, centerline-based methods are well-suited since prior shapes increase ro-
bustness against KV issues (Worz and Rohr (2007); Wong and Chung (2007) and Friman
et al. (2010)). However, tracking methods consider the vessel cross-section as circular
which leads to over smoothed representations of the vascular tree (Preim and Oeltze
(2008)). Nevertheless, local modeling while tracking the vessel cross-section seems to
provide accurate descriptions for visualization and quantification (Wink et al. (2000);
La Cruz et al. (2004); Friman et al. (2010); Hong et al. (2012); Kretschmer et al. (2013)).
The resulting surface can be obtained through sweep surfaces of each cross-sectional
contour along the centerline (Hong et al. (2012); Kretschmer et al. (2013)). Despite a
precise description of the cross-sectional vessel lumen, these methods do not consider
image data in between cross-sections since they often rely on generalized cylinders for
reconstruction. Moreover, they provide a global representation of the vascular network.
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In an interactive context, global representations often come hand in hand with space
partitioning machinery. Since interventional tools are slender, their motion can be de-
fined by that of longitudinal nodes. With this in mind, one can benefit from a local
description to handle independently each node during collision detection. To this end,
we believe that a tracking algorithm providing the centerline and a local description of
the blood vessel surface is the best approach that fits our purpose. In this area, ray-
casting algorithms provide such a representation. Nevertheless, the local description –
i.e. point-sets – of the blood vessel surface is not exploitable during simulation. Im-
plicit surfaces put forth sound features in an interactive context and consequently, we
decided to fit implicits to these local point-sets. By this mean, the centerline produced
with a tracking procedure is enriched with an implicit description of the local vessel
surface. BVH machinery is not necessary since the centerline positions provides auto-
matically such a space partitioning. Moreover, topological information encoded on the
centerline may be used to handle KV issues.

2.4 Modality choice

Hereafter, we propose to review some major modalities in a clinical environment.
Point in fact, we explore two-Dimensional (2D) Digital Substraction Angiography (DSA),
Computed Tomography Angiography (CTA), Magnetic Resonance Angiography (MRA)
and 3D Rotational Angiography (RA) in the area of aneurysm diagnosis, prognosis and
treatment. We drive this analysis to expose the main reasons leading our work to focus
on 3DRA modality.

In the context of coil embolization, 2D DSA was traditionally considered as gold stan-
dard (McKinney et al. (2008); Hiratsuka et al. (2008)). This technique uses fluoroscopy
and iodine-based intra-vascular contrast material that is injected via a catheter into the
femoral artery through the abdominal aorta and thoracic aorta, and into the carotid. A
major limitation is the necessity of repeated injections of contrast material which leads
to a higher radiation dose to the patient. Last but not least, the procedure requires highly
skilled and experienced operators.

In clinical practice, CTA and MRA have been the most frequently used non invasive
diagnostic technique for the detection of intra-cranial aneurysms. One major advantage
over DSA is the generation of three-dimensional information on the geometries of intra-
cranial arteries and cerebral aneurysms. However, compared to DSA, CTA and MRA have
a lower spatial resolution.

Recently, there has been growing interest in utilizing 3DRA for the detection of intra-
cranial aneurysms (Anxionnat et al. (2001) and van Rooij et al. (2008)). When compared
to DSA, 3DRA uses lower contrast material and produces much less radiation dose to
the patient (Pedicelli et al. (2007)). Tomycz et al. (2011) showed that 3DRA provides ad-
ditional information in the case of small aneurysms (e.g. 1 – 3 mm) for which the sen-
sitivity of CTA and MRA is lesser. Besides, Tomycz et al. (2011) claimed that 3DRA still
is the main tool to disambiguate erroneous image interpretations. For instance, situa-
tions where part of vessels diagnosed, in CTA or MRA, as aneurysms appeared to be loop
vessels in 3DRA. 3DRA is clearly of higher quality than MRA and CTA, and continues to
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appeal to practitioners for the diagnosis, assessment, treatment and prognosis stages of
intra-cranial aneurysms.

As a result, this work copes with the segmentation and reconstruction of blood ves-
sels from 3DRA image data. We ground our choice of this modality in the fact that 3DRA
patient data is often acquired before, during and after the neuroradiological interven-
tion. Last but not least, it provides the most accurate representation of the vascular
network among other angiographic modalities.
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Blood Vessel Surface Reconstruction
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BLOOD VESSEL SEGMENTATION

In this chapter, we propose our blood vessel tracking algorithm that 1) detects the ves-

sel centerline; 2) provides a local radius estimate; and 3) extracts a dense set of points

at the blood vessel surface. This algorithm is based on a RANdom SAmple Consensus

(RANSAC) based robust fitting of successive cylinders along the vessel. Our method was

validated against the Multiple Hypothesis Tracking (MHT) algorithm on 10 patients

three-Dimensional (3D) Rotational Angiography (RA) data. Over 744 blood vessel of var-

ious sizes were considered for each patient. Our results demonstrated a greater ability

of our algorithm to track small, tortuous and touching vessels (94% Success Rate (SR)),

compared to MHT (65% SR). The computed centerline precision was below 1 voxel when

compared to MHT. Moreover, our results were obtained with the same set of parameters for

all patients and all blood vessels. Tracking results on Magnetic Resonance Angiography

(MRA) also exhibited the strength and robustness of our method.
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3.1 Introduction

In the former part of this work, we revisited the state-of-the-art techniques for accurately
capturing the lumen variations and recovering the topology of the arterial network. At
the end of our analysis, we opted to use a tracking procedure – coupled with an implicit
modeling approach – to recover both topology and geometry.

Our aim is to recover a representation of the arterial network walls and its topol-
ogy from three-Dimensional (3D) Rotational Angiography (RA) patient data. The seg-
mentation task, however, remains difficult when dealing with tiny vessels, whose radius
is about the image resolution, Kissing Vessel (KV) issues, where no image gradient is
available since they are physically close, and the complex vascular morphology, which
exhibits complex topology that loops in a highly random fashion. In this section, we
propose a geometric method for retrieving the vessel properties. The algorithm can be
classified as a tracking vessel-axis algorithm.

The overall work flow of our algorithm is described in (Sec. 3.2, Fig. 3.1). Our method
exploits ray-casting techniques (Sec. 3.3) based on gradient intensity to extract a set of
points capturing the vessel local shape (Fig. 3.1b). The ray-casting stage presents a set
of candidate points which presents points corrupted with noise and outliers1. Then, the
candidate points are robustly, geometrically filtered using RANdom SAmple Consensus
(RANSAC) (Fischler and Bolles (1981)) and a cylinder model (Sec 3.4, Fig. 3.1d). In this
fashion, the cylinder robustly fitted furnishes a local estimate of the center, radius and
direction of the vessel and in the end, a dense sampling of the vessel surface. Section 3.5
describes the usage of our RANSAC-Based Tracking (RBT) algorithm for tracking a single
vessel and section 3.6 exemplifies the handling of bifurcations in order to segment the
whole vascular tree. Besides, section 3.7 informs about the tracking of aneurysms while
in section 3.8, technical details about the implementation of the ray casting procedure
is given. RBT’s strength is quantitatively and qualitatively evaluated on 10 3DRA patient
data (Sec. 3.9 and Sec. 3.10). Finally, we discuss (Sec. 3.11) and conclude (Sec. 3.12) about
our work.

3.2 RANSAC-based tracking (RBT) algorithm

In general, by setting a start-point provided with a possible direction of the vessel center-
line, tracking algorithms refine this position as the point with the highest “likehood-of-
being-center” in the plane perpendicular to this direction. The direction may be simul-
taneously determined (La Cruz et al. (2004); Worz and Rohr (2007); Tyrrell et al. (2007);
Jiang et al. (2007)), retrieved from image/geometric features (Flasque et al. (2001); Ayl-
ward and Bullitt (2002); Hernandez and Frangi (2007); Carrillo et al. (2007); Wong and
Chung (2007); Yedidya and Hartley (2008)), pruning directions (Schaap et al. (2007);
Zambal et al. (2008); Friman et al. (2010)) or supplied by another method which pro-
vides orthogonal planes in the vessel lumen (Tek et al. (2001)). Then, they predict the
next candidate point in this direction (Bühler et al. (2003); Lesage et al. (2009)). Thus,
the tracking progresses by successive estimation and prediction steps.

1Points that do not lie on the vessel of interest
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(a) Original data (b) Candidate points

(c) Test cylinder axes (d) Final cylinder and points

Figure 3.1: Outline of RBT vessel tracking algorithm. (a) Cut plane through the original 3DRA data; (b) Pa-
rameter update: Starting from C0 (green dot) and ~d0 (white arrow), the new center C (red dot) is found.
~d = ~d0. Candidate points (white dots) are extracted at the vessel surface by casting rays in the volume, from
C . Only the points around the displayed cut plane are shown. (c) Nd directions are tested for the cylinder
axes (yellow arrows). One fitting cylinder is found using RANSAC, per axis. (d) Best cylinder found, together
with its consensus set (green dots) and the final points used to set the cylinder height.

Our RBT algorithm also alternates between an estimation and a prediction step. The
estimation step assumes that an estimate for the center C , axis direction ~d and radius r

of the cylinder are available. Candidate points are extracted at the vessel surface in the
vicinity of C using a ray-casting procedure (Sec. 3.3). Then, a RANSAC estimation of the
cylinder – that robustly fits this set of points – is performed (Sec. 3.4). The output of the
estimation step is an updated cylinder of center C⋆, axis direction ~d⋆, radius ρ⋆, and
height h⋆. The set of points fitted by the estimated cylinder (inliers) is also furnished
as an output. Finally, the prediction step considers C⋆, ~d⋆, ρ⋆ and h⋆ to compute new
values for C , ~d and ρ for restarting the procedure (Sec. 3.5).

3.3 Ray casting

In 3DRA data, the vessels are relative bright tubular-shaped objects, on a dark back-
ground. Let’s consider a single ray cast from inside the vessel lumen (refer to Fig. 3.2).
Then, along the ray, we compute the directional gradient. Looking closely, we observe
that the minimum along the ray yields a location at the vessel border while the max-
imum exhibits a position on a neighboring structure. This simple technique avoids
the usage of thresholds over the image intensity (Wesarg and Firle (2004)) or its gra-
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Figure 3.2: (left) A ray – of length four times the estimated vessel radius – is cast from inside the vessel lumen
(blue dot). (center) The directional gradient along the ray is computed with central differences method.
(right) In 3DRA data, the minimum along the ray characterizes the vessel wall.

dient (Wink et al. (2000); Tek et al. (2001)) and alleviates the problem of arterial signal
variations. In other words, a ray-casting procedure combined with a minimum search
along the directional gradient of each ray may provide points mostly at the boundaries of
the vessel of interest. This extraction scheme is very similar to taking the points of min-
imal gradient along the columns of a Bounded Spherical Projection (BSP) image (Wong
and Chung (2007)). As depicted in Fig. 3.1b, Nr rays, sampling evenly the space, cast
from a point C , inside the vessel, yield points at the vessel borders and points inside the
vessel. These latter positions exemplify outliers which might be whether inside the ves-
sel, due to variations in the image intensity, or at neighboring structures. Nonetheless,
an estimate of the vessel radius is compulsory to restrict the length of the ray. As pointed
out by Gülsün and Tek (2008), large values of the ray length may produce strong bound-
ary responses at locations which are outside the vessel. In this area, Carrillo et al. (2007)
considered a maximal area of search of twice the radius of the vessel, in contrast to Wong
and Chung (2007) who used 1.5 the current estimate of the vessel radius. However, sit-
uations where the radiation focus is close to a vessel wall, e.g. along an acute bend of
the vessel, a length L of twice the current vessel radius may be insufficient to recover
points on the opposite wall (Fig. 3.3). In our case, to alleviate cases where the minimum
along the ray yields positions on the neighboring structures or the ray-casting center is
badly positioned at curved vessels, we bound the length of rays to 3 times the current

Figure 3.3: Two radiation focus and their extracted points (blue) on vessel of width ρ: rays have length
L = 3ρ (left) and L = 2ρ (right). A ray length of twice the local vessel radius is insufficient to capture
points at the opposite wall when the ray-casting center is close to a vessel wall.
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vessel radius. This value is sufficient for RBT to adapt to abrupt changes in the vessel
direction and width, i.e. pathologies and bifurcations, and to reduce the amount of out-
liers. Furthermore, Worz and Rohr (2007) and Gülsün and Tek (2008) used a maximum
and minimum vessel radius to constrain the boundary search. Indeed, intensity varia-
tions may occur close to the vessel ridge (flow artifacts), hence we used a minimal bound
to prevent points from agglomerating in the vicinity of the ray-casting focus. We deem
that candidate points at the vessel wall should be at least at quarter of the current vessel
radius estimate (L /12). Similarly, maxima located further than 80% L seem to indi-
cate the presence of a neighboring structure (KV issue). Even though a closer minimum
might correctly fit the vessel wall, the situation is avoided and the ray is discarded. There
are obviously circumstances where this simple thresholding process discards inliers (see
Fig. 3.3 where the most upper points are thus discarded) but in practice, the quality of
the resulting point-set was consistent across a large panel of cases and enabled the sub-
sequent RANSAC estimation to use a constant set of parameters (see Section 3.9 and
3.10).

In summary, RBT casts Nr rays of length L from C . Then, the directional gradient
along the ray is computed. Next, the minimum among the Np points composing the ray
is retrieved. Finally, points lying between L /12 and 8L /10 make up the raw point-set
P (Alg. 1). Since variations in the image intensity are ubiquitous, the ray casting proce-
dure may yield points inside the vessel lumen or points that do not belong to the vessel
of interest, on both cases outliers. Unlike Wink et al. (2000) and Gülsün and Tek (2008)
who constrained the ray casting directly on the image, we opted to filter the raw point-
set according to a geometric criterion, namely RANSAC. This robust filtering technique
is treated in the next section.

Algorithm 1 Tracking

Require: Cylinder (C ,
−→
d , ρ).

1: Cast Nr rays of length L = 3ρ from C .
2: Constitute the candidate points P (minima along each ray and exclude points on extremi-

ties).

3: {P ′, C ′,
−→
d ′, ρ′} = CYLINDERESTIMATION( P , Nd , ρ, pi nl ) ⊲ P

′: set of inliers.

4: if (C ′,
−→
d ′, ρ′) is valid then

5: (C⋆, ~d⋆,ρ⋆) ← Refine parameters (Powell optimization).
6: Cast Nr rays of length L = 3ρ from C⋆. Keep inliers as P

⋆

7: Set h⋆ so as to encompass 75% of P
⋆ and update P

⋆ accordingly.
8: end if
9: Stop if (C ′,

−→
d ′, ρ′) is not valid or tracking turns back.

10: save(C⋆, ~d⋆,ρ⋆,h⋆,P ⋆)
11: Prediction of (C =C⋆+ (h⋆/2) ~d⋆, ~d = ~d⋆,ρ = ρ⋆). Go to step 1.

3.4 Estimation step: cylinder estimation

In this section, we describe the filtering process of points produced by our ray-casting
procedure. First, we give a brief description about cylinders and their parametriza-
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tion (Sec. 3.4.1). Second, robust cylinder fitting methodologies are presented and dis-
cussed (Sec. 3.4.2). Lastly, our geometric filtering approach is addressed (Sec. 3.4.3).

3.4.1 Cylinder parametrization

There are many definitions for the concept cylinder:

• right circular cylinder whose base is a circle and the centers of the sections form
a straight line perpendicular to the base of the cylinder (Huysmans et al. (2005)).
The length of the straight line is called height and the vector describing this line is
designated by axis. When its height happens to be infinite, then it is called infinite

cylinder and conversely, finite cylinder when the height is finite. For example, the
infinite right circular cylinder whose axis is the z-axis is given by the equation on
the xy-plane perpendicular to the z-axis: (x/a)2 + (y/a)2 = 1 where a ∈ R is the
radius;

• oblique cylinder is a right circular cylinder whose top and bottom sections are dis-
placed from one another, i.e. they are parallel but not orthogonal to the axis;

• elliptic cylinder, also called cylindroid, is a quadric surface and a generalization of
the ordinary circular cylinder (a=b) (Tyrrell et al. (2007)): (x/a)2 + (y/b)2 = 1 where
(a,b) ∈R

2;

• generalized cylinders are cylinders whose cross-sections can be any curve sweep-
ing along an axis (a space curve) (Shafer and Kanade (1983)).

In this work, we choose the right circular cylinder to model the local shape of a blood
vessel. It is represented by a center C , a unit-length direction ~d , a radius ρ for the infi-
nite version. An infinite cylinder can be described by 5 parameters, 4 parameters for the
axis (any point sweeping along the axis is a valid center) and one for the radius. Fitting
a cylinder to a set of points thus requires that at least five points – i.e. one point per pa-
rameter – are provided. To our knowledge, direct solutions to the case of 5 given points
are unknown due to the lack of linear independent constraints (Christian Beder and
Wolfgang Förstner (2006)). In circumstances where the cylinder axis is parallel to one
coordinate plane, e.g. when it is vertical, the number of parameters decreases to 4, 3
parameters for the axis and one for the radius. A direct solution is proposed in Christian
Beder and Wolfgang Förstner (2006). In case the cylinder axis is axis-aligned with one
coordinate axis, e.g. the z-axis, the number drops to 3, two parameters for the position of
the axis and one for the radius. This latter scenario can be seen as another problem, the
one of finding a circle (center and radius) in a two-Dimensional (2D) plane. Christian
Beder and Wolfgang Förstner (2006) resolved this problem by projecting three points
onto the plane π orthogonal to the axis ~d ,which provides 3 2D points{(X j ,Y j )} j∈{1,··· ,3}.

Then the cylinder radius ρ =
√

c2
x + c2

y −u and the center C = (cx ,cy ) in π, are provided
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by the following linear system:






2X1 2Y1 −1
2X2 2Y2 −1
2X3 2Y3 −1











cx

cy

u




=






X1
2 +Y1

2

X2
2 +Y2

2

X3
2 +Y3

2




 (3.1)

A classical strategy to tackle the problem of fitting a cylinder to a set of points is to,
first, determine the direction of the cylinder (3D problem) and then, the position and
radius of the cylinder axis (2D problem).

In our segmentation context, we are interested in finite cylinders, hence an extra
parameter corresponding to the height h is also required. Eberly (2008) proposed a
formal representation of a finite cylinder:

(X −C )T (I − ~d · ~d T )

ρ2
(X −C ) = 1; with |~d · (X −C )| ≤ h/2 (3.2)

where I is the identity matrix.

3.4.2 Cylinder fitting

Our ray-casting procedure extracts at most one point per ray. Most of such points lie
at the local vessel surface, even though this location is corrupted with noise. But a few
points are outliers, either lying on the interface of a neighboring structure or thus em-
anating from inhomogeneities in the vascular signal intensity. Again, we desire to keep
candidate points located at the vessel boundaries. Therefore, we may state the prob-
lem as finding two different populations: points considered as defining a vessel wall,
the so-called inliers, and points lying elsewhere, designated as outliers. One applica-
ble solution to our case, is to resort to a geometrical model since the blood vessels
can be considered as tubes (Schaap et al. (2007); Carrillo et al. (2007); Worz and Rohr
(2007); Tyrrell et al. (2007); Zambal et al. (2008) and Friman et al. (2010)). Indeed, our
hypothesis involves that the vessel lumen can locally be assimilated to a cylinder of fi-
nite height. By considering this, the problem may be interpreted as finding the best
cylinder that best fits the point-set. In a set of 3D points, one can find cylinders by sur-
face fitting (Lukács et al. (1998)), i.e. a cylinder can be fitted using common nonlinear
estimation techniques, e.g. the Levenberg-Marquardt algorithm (La Cruz et al. (2004)).
Initial estimates are required, and the final results highly rely on the initial guess and the
quality of the input data to overcome local minima. In our application where outliers are
ineluctable, however, these methods are inconsistent with our purpose. In fact, classical
techniques such as least squares (Eberly (2008)) – which optimize the parameters ac-
cording to a specified cost function and all points – may fail since they have no internal
mechanism for rejecting gross errors and instead, they tend to average it. Despite the
fact that M-estimators have been introduced to counterbalance the light performances
of least-squares, the outcomes heavily depend on the choice of the objective functions
and without mentioning that in presence of outliers Least Median of Squares method is
preferable but computationally expensive Zhang (1995).

In the field of primitive shape detection from range data, the extraction of cylinders is
a common task (Vosselman et al. (2004) and Schnabel et al. (2007)). The two most widely



34 Chapter 3. Blood vessel segmentation

known robust estimators for this purpose are the Hough transform (Hough (1962)) and
the RANSAC paradigm (Fischler and Bolles (1981)). Both have proven to be robust even
in the presence of a high amount of outliers.

Owing to the discretization of the parameter space, a major drawback of the Hough
Transform is its time and space complexity. In the case of a cylinder, proposed solutions
demand a point-set provided with normals (Vosselman et al. (2004)) and the Hough
transform possesses five dimensions in the parametric space but solutions for reducing
the complexity have been proposed in (Rabbani and Heuvel (2005)). The idea is to de-
compose the problem in two stages (see Sec. 3.4.1). First, the axis is detected assuming
that the cylinder normals form a circle on the Gaussian sphere (Gauss map). Second, by
projecting all the point-set to the plane passing through the origin and orthogonal to the
axis direction, the position and radius are computed as a regular 3D-Hough Transform.

The RANSAC paradigm is a stochastic approach. For estimating a cylinder, a min-
imal number of points – depending on the parametrization – are randomly selected
which define an instance of a cylinder. The so constructed cylinder serves to count
the number of points that are located within a certain distance rt and then, suggest
their compatibility. The random selection is repeated Nmax number of trials or until a
user-defined threshold pi nl – used to imply that the correct cylinder has been found –
is reached. RANSAC is usually combined with a refinement method and once it stops,
the parameters and the set of compatible points are passed to a smoothing technique
to compute an improved estimate of the parameters (Bolles and Fischler (1981)). In this
context, Chaperon and Goulette (2001) used a similar framework as Rabbani and Heuvel
(2005) but adapted to RANSAC. Nonetheless, the cylinder axis estimation from normals
at input points may fail at curved sections for example. Also in our case, normals would
be estimated as the image gradient at input points. Hence, such a procedure can lead to
untrustful cylinder directions.

Though, both aforementioned robust techniques compute the direction and then,
the complete cylinder. The determination of the cylinder direction remains a difficult
task. Against this background, Lozano-Perez et al. (1987) explored the axis estimation,
knowing the radius of the wanted cylinder and four to five points on the cylinder surface.
Recently, Zambal et al. (2008) and Friman et al. (2010) offered an interesting strategy for
finding a vessel direction that can be applied to our situation. They suggested to evenly
sample the area of search – in front of the current tracking position and relative to the
current vessel direction – and score all the directions for pruning them afterward. As a
result, only a random sampling technique accommodates well with a pruning strategy
of the cylinder directions. At this level, we opt to fit a cylinder using a similar strategy
to Zambal et al. (2008) and Friman et al. (2010), and coupled with RANSAC for its ro-
bustness, simplicity and efficiency. In this fashion, one cylinder per direction is to be
fitted but since the cylinder axis is provided, the next stage involves finding the center
and radius from three points. This design authorizes a high computational efficiency
of the cylinders parameters when complied to a pruning scheme. The main difference
with the former proposals is that, instead of exhaustively scoring all directions by fitting
a cylinder – which is cumbersome – we stop the process when a user-defined score is
reached.



3.4.3. Geometrical filtering 35

3.4.3 Geometrical filtering

Hereafter, we decompose the geometrical filtering in three parts. First, we describe the
proceeding for fitting cylinders through RANSAC. Next, we talk about the stopping cri-
teria involved in the cylinder fitting procedure. Finally, we present our paradigm for fine
tuning the cylinders parameters.

RBT casts Nd directions, equi-distributed on a half-unit sphere from C a. Each direc-
tion is associated by RANSAC to a cylinder knowing its direction following Alg. 2. RBT
reviews the Nd directions with increasing angleb, i.e. the angle formed with respect to
(w.r.t) direction ~d . Hereafter, we explain the way RBT filters the points bred by the ray-
casting procedure for one direction ~di .

aThe plane passing by C and perpendicular to ~d separates the two halves of the sphere. RBT uses the half sphere
falling in direction ~d .

bOne can sort the directions according to their decreasing dot product with ~d .

Algorithm 2 RANSAC

1: function RANSAC(P , ~di , pi nl )
2: Select randomly three points.
3: Rotate the three points so that ~di is parallel to the z-axis.
4: Project the three points onto the xy-plane (2D problem).
5: Compute the center and the radius.
6: Compute the euclidean distance of P to the cylinder and the inlier rate.
7: Save the parameters if the inlier rate is improved.
8: If the number of iterations N or the inlier rate respectively exceed Nmax or pi nl , then re-

turn the cylinder with the best inlier rate.
9: If N < Nmin, then go to 2.

10: end function

RANSACing cylinders First of all, RANSAC selects randomly three points (stochastic se-
lection). These points are rotated so that the z-axis is aligned to direction ~di (Rabbani
and Heuvel (2005)). Then, equations provided in section 3.4.1, combined with the in-
verse rotation, supply the center C⋆ and the radius r⋆ in the 2D-plane passing by C and
perpendicular to ~di (cylinder characterization).

Later on, RBT computes the Euclidean distance from P to the generated infinite
cylinder and counts the number of inliers. In 2D, as displayed in Fig. 3.4, this can be seen
either as only considering points located between two concentric – an interior (green)
and an exterior (blue) – circles or within a distance rt to the cylinder (red). The ratio of
inliers w.r.t the cardinal of P qualifies how well the cylinder fits the data. This stochas-
tic procedure for selection, cylinder characterization and inliers count are repeated at
least Nmi n iterations. We subject the fitting procedure to fulfill Nmin iterations in order
to explore a minimum number of candidate solutions. Once the cylinder found, it is
considered as valid when its radius r⋆ is within [ρ/2,3ρ/2]. Otherwise, the cylinder is
labeled as invalid.

Stopping criteria As soon as a maximum number of iterations Nmax is reached or a
threshold over the inlier rate pi nl is reached, the fitting stops. Once a cylinder presents
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with an acceptable inlier rate above pi nl and is valid, the cylinder estimation procedure
stops and returns the cylinder with no further exploration of the remaining directions.
In case of failure, the next direction is treated. Up to this level, RBT prunes directions
in the vicinity of direction ~d (pruning strategy), however, a complete exploration of all
directions may be sometimes necessary. Consequently, once all directions have been
explored and no cylinder satisfies pi nl , the cylinder estimation algorithm returns the
valid cylinder with the maximum inlier rate if it is at least pi nl /2 or otherwise, the al-
gorithm returns that no valid cylinder could be found. Algorithm 2 recaps the cylinder
fitting.

Algorithm 3 Cylinder estimation

Ensure: {P ′,C ′,~d ′,ρ′}
1: function CYLINDERESTIMATION(P , ~d , ρ, pi nl )
2: Generate {~di }{i=1...Nd } and sort them according to their angle relative to ~d

3: for all {~di } do
4: (P i ,Ci , ρi ) = RANSAC(P , ~di , pi nl ).
5: If the i nl i er s_r atei is above pi nl and ρi ∈ [ρ/2,3ρ/2], save the corresponding cylinder

with its inliers (P ′,C ′,~d ′,ρ′).
6: If no cylinder is above pi nl , the best cylinder with ri ∈ [ρ/2,3ρ/2] and presenting at

least pi nl /2 is saved.
7: If no cylinder is above pi nl /2, no valid cylinder is returned.
8: end for
9: end function

Refinement The above algorithm finds a valid cylinder and a point-set capturing the
vessel surface. When in fact, the tracking direction was computed from a discrete set of
directions and other parameters inferred from it, we noticed that when the chain list of
cylinders is stirred, this lack of smoothness sometimes produced tracking errors (pre-
maturely stop). As a result, the returned cylinder parameters (center, radius and direc-
tion) are refined, taking account of inliers, through Powell’s optimization algorithm. The

Cylinder

Vessel
rtrt

Figure 3.4: 2D representation of the proposed geometric criterion. The vessel lumen varies within a 2D-
torus spanned with a cylinder (red dashed contour) and with minor radius rt (green and blue circle). The
circular hypothesis is insufficient for capturing the vessel cross-section (black dotted contour).
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Figure 3.5: Influence of Powell refinement in the resulting cylinders. The corresponding cylinders for both
centerlines produced without (middle) and with (right) Powell optimization on one vessel (left). Smooth
transitions between cylinders are noticed at curved sections when using the refinement procedure.

centerline of a vessel tracked with a refinement procedure is, assuredly, smoother than
without, specially at curved sections of the vessel (Fig. 3.5). Subsequently, the center
C⋆ is refined as the median of the inliers point-set along the axis ~di . Next, a new set of
points is extracted by ray casting from the newly tuned cylinder center and the inliers
points P

′ are returned with the cylinder. Its height is adjusted so that 75% of P
′ points

are encompassed (Fig. 3.1d). The estimation algorithm is summarized in Algorithm 3
and the RBT parameters and their descriptions are condensed in Table 3.1.

3.5 Tracking a whole branch: Initialization, prediction step and stopping
criteria

In general, RBT requires only one point inside the vessel lumen (Sec. 3.6). However, the
user supplies a starting point C , a rough estimation of the radius r and a vessel direc-
tion estimate ~d for the first tracking instance. In practice, the vascular tree is tracked
by starting the procedure in the carotid or vertebral artery (the vascular tree stem ves-
sels). The user defines a point inside the vessel and supplies an estimation of the local
vessel radius. Most vessels irrigating the brain are vertical, the tracking starts in the up-
ward direction. The parameters are refined by fitting a finite cylinder (C⋆, ~d⋆,ρ⋆,h⋆)
using the cylinder estimation algorithm described above. The next cylinder is predicted
as (C = C⋆ + s ·h⋆ · ~d⋆, ~d = ~d⋆,ρ = ρ⋆), where s is the step size. The cylinder estima-

(a) Parent vessel cen-
terline

(b) A point is placed
on the new vessel

(c) The point is pro-
jected onto the parent
centerline

(d) A new position
closer to the parent
vessel is found

(e) The new tracked
vessel is tied to the
parent vessel

Figure 3.6: Tracking a new vessel.
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Figure 3.7: Influence of the step distance on the dense sampling. Resulting points for the prediction step
C = C⋆ + s ·h⋆ · ~d⋆: (top left) s = 0.25, (top right) s = 0.5, (bottom left) s = 0.75 and (bottom right) s = 1.
Interpenetration of point-sets is almost inexistent for s = 1, while on the contrary a value of s = 0.25 exhibits
point-sets covering the same area of the blood vessel. A step size ranging from s = 0.5 to s = 0.75 offers a
good trade-off between interpenetration and distance between predictions.

tion algorithm is applied and thus the tracking progresses in the direction of the current
cylinder direction. Fig. 3.7 displays the differences and influence of the step sizes on the
resulting dense sampling of a vessel. We aim at producing point-sets exhibiting inter-
penetration so that holes, in the global dense sampling of the vessel, are limited. A step
size ranging from 0.5-0.75 gave a sound trade-off between the step prediction and inter-
penetration. Heretofore, we chose a step size s = 0.5. RBT halts when the tracking turns
back, i.e. the center of the new cylinder is closer than ρ/10 to the already collection of
segments, or no valid cylinder is returned from the cylinder estimation procedure.
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Figure 3.8: Pseudo-automatic seed generation from a parent vessel (red). (From top to bottom) The first
three rows exhibit instances of tracking initialized with seeds proposed by RBT (Fig. 3.6) for three different
vessels width: 2mm (top), 1mm (center) and 0.6mm (bottom). (From left to right) First column displays the
parent vessel and the target vessel lumen. Second column puts forth the corresponding seed. Third column
shows the resulting point-set. The last row evinces the segmented vascular tree (left), a new user-defined
seed – only the seed’s radius was manually modified – for the third-row case (middle) and the corresponding
points for the tracking (right).
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3.6 Tracking branches

A point is placed manually on the new vessel, roughly close to the bifurcation (green
point Fig. 3.6b). The vector linking this point to the nearest point on the parent vessel
centerline (purple point on Fig. 3.6c) provides the direction for the new vessel ~d . The ra-
dius ρ is initialized with the value computed by the parent vessel tracking, at the purple
point location. The manual position of the initial point inside the vessel branch is rough
and might be either too far from the parent vessel (and thus it could create a disconti-
nuity on the vessel sampling) or too close to the parent vessel (and thus potentially the
parent vessel could be tracked again). This rough positioning is automatically tuned by
placing the actual initial seed at a distance of 1.25ρ (blue point on Fig. 3.6d) along the
estimated tracking direction ~d . RBT is run with the new seed, the tracking direction ~d

and the radius ρ provided by the parent vessel. Finally, once the new vessel is tracked,
the resulting centerline is tied to the parent vessel (blue squares on Fig. 3.6e).

Figure 3.9: RBT robustness against rough tracking directions. Trackings of Fig. 3.8 – where seeds were
automatically generated – were inspected. Directions were manually modified for the three former cases
and the stem vessel (carotid) was included in the inspection : the largest vessel (1st row), a large vessel (2nd
row), a medium size vessel (3rd row) and a small size vessel (4rd row). (From left to right) First column
displays the parent vessel, except for the first row, and the target vessel lumen. Second column puts forth
the modified direction of the seed. Third column shows the resulting point-set. The last column evinces
the adaptation of cylinders to capture the vessel lumen.

The pseudo-automatic seed generation for furcations works fine for most cases.
Fig. 3.9 and Fig. 3.8 display three instances of tracking for three different widths. Above
all, RBT algorithm is robust to initialization concerning the tracking direction as de-
picted in Fig. 3.9. The first two rows in Fig. 3.8 display cases for medium and large width.
In these two configurations, RBT successfully tracked the aimed vessel. Yet, in cases
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where the ratio between parent and children vessels widths exceed 50%, the proposi-
tion for the local vessel width is largely overestimated which can lead to issues, such as
the tracking of the parent vessel (Fig. 3.8, third row). In this circumstances, user inter-
vention is mandatory for correcting this estimate (Fig. 3.8, last row). Nonetheless, these
situations are rare and happen only with small vessels rooted on the carotid artery (red
vessel in Fig. 3.8), elsewhere, no gross variations on the vessel width were noticed such
that RBT had no problems.

3.7 Capturing aneurysms

Aneurysms clearly do not comply with our hypothesis of tubularity and our tracking al-
gorithm may not provide an accurate description. Our main concern, when pondering
aneurysms in our framework, is to obtain the topology and points at its surface. While
dealing with volumetric data – such as Magnetic Resonance Angiography (MRA) and
Computed Tomography Angiography (CTA) – with contrast enhanced vessels, Neuge-
bauer et al. (2010) stated that a basic segmentation, like thresholding combined with a
Connected Component Analysis, was sufficient to extract aneurysms. Generally speak-
ing, 3DRA is of even greater quality than MRA and CTA. Due to good contrast, a sim-
ple ray-casting technique followed by a user-defined threshold (Wink et al. (2000)) may
yield points at the aneurysm surface. Nevertheless, an open issue remains the loca-
tion and number of ray-casting focuses when resorting to ray-casting-based procedures
for capturing aneurysm. A more profound question arises when ray-casting focuses
should be related to topology which is compulsory for producing compatible segmen-
tation outcomes with RBT. In our framework, aneurysms are interactively captured: the
user places one point C inside the aneurysm and sets the approximate distance from
the point to the vessel wall ρ. Next, rays are cast from C using the same technique as
described in Sec. 3.4 and thanks to a user-defined threshold over the gradient inten-
sity, points are extracted. When the resulting point-set is correct, the user reiterates the
transaction by placing another point. The reason for repeating this procedure is that
aneurysms might have a very complex shape, specially saccular aneurysms, and one
single ray-casting instance may be insufficient to capture the whole surface. For in-
stance, Fig. 3.18 exhibits a classical saccular aneurysm whereas Fig. 3.17 put forth one
formed by two lobes.

Until now, only points were extracted. The topology is inferred by connecting the
centers for each transaction in the order they were created. The tracking direction ~d and
the height h are respectively given by the direction and distance between two consecu-
tive centers. Then for each center, a cylinder is defined. The direction of the last trans-
action is set to its predecessor tracking direction. The resultant centerline is the ordered
linked list of these cylinders and their corresponding point-sets. However, the user has
the possibility to modify the proposed topology by merging centers and point-sets or
changing the connection order of centers if needed. Finally, the generated centerline is
tied to the closest position on the parent vessel centerline.
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3.8 Implementation details

In this section, we discuss some technical details about the implementation of our algo-
rithm. Important attention is paid to the ray casting procedure. More precisely, we focus
on the interpolation methods and gradient computation along rays and the technique
used for casting evenly sampled rays in the image data.

3.8.1 Ray-casting

During the ray-casting procedure, we want points at the vessel surface but relatively
well-distributed in the vicinity of a point. Furthermore, the quantization of the direc-
tion space, during the cylinder estimation, shares the same needs. For this purpose,
a geodesic shape is the most efficient way to cover a given volume of space. The RBT
algorithm employs a geodesic dome construction algorithm. A geodesic dome is a tri-
angulation of a Platonic solid or other polyhedron to produce a close approximation to a
sphere (or hemisphere)2. The only difference between the ray-casting procedure and the
cylinder direction pruning is that for the former process is grounded on the geodisation
of a unit sphere while the latter one, considers only the half of this sphere as candidate
directions.

The geodisation heuristic starts from an icosahedron3 and subsequently, divides its
edges. For a better understanding of this tessellation process, Fig. 3.10 illustrates a first
subdivision of one facet of the icosahedron (yellow). First, the midpoints for each edge –
constructed from the three vertices (white) – are computed. These three points (green)
help to generate four triangles over the facet. Finally, each vertex of the triangle is pro-
jected onto the unit sphere. Generally speaking, the n-th tessellation frequency or geodi-
sation order divides each edge of the polyhedron in 2n−1 edges and projects each edge
onto the circumsphere (Fekete (1990)). For a given geodisation order 1,2,3 and 4 turns
out to be respectively 12, 41, 161 and 654 vertices (Fig. 3.11). One ray for the ray-casting
is cast in the direction from the center of unit-sphere and one vertex of the geodisation.
RBT proceeds analogously for providing the Nd directions during the cylinder estima-
tion step but restricted to half of the vertices.

2 Weisstein, Eric W. "Geodesic Dome." From MathWorld–A Wolfram Web Resource. ❤tt♣✿✴✴♠❛t❤✇♦r❧❞✳✇♦❧❢r❛♠✳

❝♦♠✴●❡♦❞❡s✐❝❉♦♠❡✳❤t♠❧
3 ❤tt♣✿✴✴❣ts✳s♦✉r❝❡❢♦r❣❡✳♥❡t

Parameter Description Value
pi nl inlier rate threshold 70%

rt relative threshold w.r.t local cylinder radius 10%
Nr number of rays thrown to extract points 162
Nd number of axis direction tested 81
Np number of points per ray 128

Nmi n minimum number of tests for RANSAC 220
Nmax maximum number of tests for RANSAC 500

Table 3.1: Parameter values for the RBT algorithm.

http://mathworld.wolfram.com/GeodesicDome.html
http://mathworld.wolfram.com/GeodesicDome.html
http://gts.sourceforge.net
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Figure 3.10: Geodisation principle on one facet of an icosahedron. (left) First, the midpoints (green) of the
facets (yellow) are computed. Then the facet is subdivided in 4 triangles. (right) Finally, the vertex of each
triangle (yellow) are projected onto the unit sphere.

Figure 3.11: Four geodisation orders of an icosahedron from left to right: order 1, 2, 3 and 4. The white dots
represent the vertices of the resulting tessellation.

3.8.2 Interpolation

RBT computes the directional gradient along a ray to find the vessel wall (characterized
by the strongest minimum). Therefore, it needs to interpolate the image data during the
ray-casting procedure. The quality of the resultant point-set and hence, the accuracy
of the cylinder estimation are impacted by both the choice of the interpolation method
and the way the gradient is computed. In this specific aspect, the computation of the
minimum of the directional gradient can be approached in two different fashions. First,
intensity values along the ray are extracted and then, the one-Dimension (1D) gradient
along the ray is estimated with a finite difference method. Second, the 2D (or 3D) gradi-
ent in the image is directly computed in the image (or volume ) data and subsequently,
an interpolation process is carried out to compute the directional gradient along the
ray. The main differences between both techniques is the problem dimensionality for
the directional gradient computation.

For the interpolation process, three well-known interpolation methods were tested:
Bi-Linear (L), Bi-Cubic (C) and Bi-cubic Spline (BS) interpolation. The finite differ-
ences were ensured by Central Differences (CD) and Forward Difference (FD) meth-
ods. Finally, the direct computation of the multidimensional gradient was entrusted to
Alvarez’s Method (AM) (Alvarez (1996)) which has the property to be rotational and scale
invariant as well as unconditionally stable. Also AM was chosen for its fast computation
when compared to a Gaussian-based computation. With this in mind, 9 configurations
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were set for assessment. Six configurations for intensity values extraction through an
interpolation method and coupled to a finite difference method and the search for the
minimum along the ray (1 to 6 with in the following list) and 3 configurations for AM,
followed by an interpolation process and the search for the minimum along the ray (1 to
9 in the following list):

1. L + FD: Intensity value extraction with Linear interpolation coupled to a Forward
Difference method for the 1D gradient computation;

2. L + CD: Intensity value extraction with Linear interpolation coupled to a Central
Differences method for the 1D gradient computation;

3. C + FD: Intensity value extraction with Cubic interpolation coupled to a Forward
Difference method for the 1D gradient computation;

4. C + CD: Intensity value extraction with Cubic interpolation coupled to a Central
Differences method for the 1D gradient computation;

5. BS + FD: Intensity value extraction with Bicubic Spline interpolation coupled to a
Forward Difference method for the 1D gradient computation;

6. BS + CD: Intensity value extraction with Bicubic Spline interpolation coupled to a
Central Differences method for the 1D gradient computation;

7. AM + L: Alvarez’s Method for the 2D gradient computation, then the directional
gradient along the ray is computed through Linear interpolation;

8. AM + C: Alvarez’s Method for the 2D gradient computation, then the directional
gradient along the ray is computed through Cubic interpolation;

9. AM + BS: Alvarez’s Method for the 2D gradient computation, then the directional
gradient along the ray is computed through Bicubic Spline interpolation.

Synthetic data

In order to quantify the accuracy of each configuration, we mimicked our real data. Dur-
ing the cylinder estimation, RBT turns the 3D problem into a 2D problem by finding the
center and radius of the cylinder for a known direction. Consequently, a vessel can be
seen as a circle in 2D whose center C and radius ρ are to be characterized. For this pur-
pose, a known unit circle C (green circle in Fig. 3.12) was used.

Without loss of generality, ρ was set to 1 for the entire experiments. The circle C was
discretized. An Npx xNpx image was generated which discretized the space from −5ρ
to 5ρ in both directions ( Fig. 3.12 ). The discretization procedure worked as follows:
for each pixel on the image, a mean filter provided the intensity value (in grayscale) for
each pixel. The spacial resolution of the image S in both directions was given by the
number of pixels Npx sampling the diameter of circle C and computed as S = 2ρ/Npx ,
where Npx ∈ [2,10] (with step of 1). Npx ensures the discretization level of the circle and
also mimics vessels having widths ranging from 0.4 mm to 2mm given a usual 3DRA
resolution of 0.2 mm.
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C was placed at (0,0) and allowed to move within [0,0.5S]× [0,0.5S] (with step 0.1).
Owing to the symmetry of the circle and the periodicity of digitization artifacts, only
positive values were considered. In summary, one image was generated for each posi-
tion of circle C and at different levels of digitization. In the end, 324 images (9 cases for
Npx and 36 for C ) were thus generated.

C

ρ

S
S

−5ρ

5ρ

−5ρ 5ρF

L
=
2.5ρ

Figure 3.12: A unit circle (green) of center C and radius ρ is discretized by Npx = 2 pixels along its diameter.
The spatial discretization process of the circle starts by, first, computing spatial resolution S = 2ρ/Npx in
both directions. Finally, a mean filter is used for assigning to each pixel an intensity value (grayscale). In
the end, an image is thus generated. Within the image, the ray-casting focus F is allowed to evolve inside
the circle and from which, rays are cast evenly sampled with length L = 2.5ρ.

Protocol

For one image in the data set, the ray-casting focus F was authorized to move inside
circle C (green disk in Fig. 3.12). F evolved from −ρ to ρ in both direction with step
size ρ/10 but the position was accounted if |F −C | < ρ. From this location, Nd = 128
rays were evenly cast and Np = 128 points sampled the ray along its length L = 2.5ρ.
Afterwards, the minimum along the directional gradient was computed according to
one of the 9 techniques. The resulting point-set was fed to RANSAC for finding the center
C⋆ and radius ρ⋆ of the estimated circle C

⋆. The relative threshold rt , for considering
the points as inliers, in the fitting procedure was set to 10%ρ and the inlier rate was
fixed to 70%. Note that these values are the same as those used by RBT (compare with
Tab. 3.1). As a result, 102060 instances were accounted per configuration.

Metrics

RANSAC supplies an estimate C
⋆ = (C⋆,ρ⋆) of the reference circle C = (C ,ρ) and a

point-set P
⋆. Firstly, we evaluated the precision of the 9 techniques with regard to

their accuracy on the characterization of C . For that, we used the Root Mean Square
(RMS) computation. The precision on the estimation of the center C was computed as
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L+FD

L+CD

C+FD

C+CD

BS+FD

BS+CD

AM+L

AM+C

AM+BS

Figure 3.13: (Rows) Each row corresponds to one configuration in the interpolation experiment. The blue
dot point is the center C of the blue unit circle C . The red square indicates the ray-casting focus F which
extracts the green points. Experiments were run with C = F = (0,0): the unit circle was discretized with
Npx = 3 (1st column) and Npx = 7 pixels (2nd column). In the last two columns, the center was placed at
(0.5,0.4) and the ray-casting focus was positioned at (−0.3,0.4): the unit circle was sampled by Npx = 3 (3rd
column) and Npx = 7 pixels (4th column).
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followed:

RMSC⋆ =
√

1

N

∑

|C −C⋆|2 (3.3)

and similarly, the RMS error made while estimating ρ:

RMSρ⋆ =
√

1

N

∑

(ρ−ρ⋆)2 (3.4)

Secondly, we assessed the RMS distance of the extracted point-set P
⋆ with respect to

the estimated circle C
⋆:

RMSC ⋆ =
√

1

N

∑

P⋆∈P ⋆

d 2(P⋆,C ⋆) (3.5)

and w.r.t the reference circle C :

RMSC =
√

1

N

∑

P⋆∈P ⋆

d 2(P⋆,C ) (3.6)

where the squared distance between one point P⋆ of point-set P
⋆ and circle C (alike

for C
⋆) was given by:

d 2(P⋆,C ) = |P⋆−C |2 −ρ2 (3.7)

Finally, the quality of point-set P
⋆ was appraised by computing the inlier rate pi nl w.r.t

the reference circle and within a distance of ρ/10 = 0.1.
Besides, we coupled the metrics with two statistical values: the mean and the stan-

dard deviation. Last but not least, we took 34020 cases from the 102060 instances – i.e.
those that correspond to data created with Npx = 2,3,4 – and recompute the statistical
values. The idea behind this approach was to provide a finer view on cases considered
of low resolution (Low) while on the contrary, a global view of metrics was supplied with
all the instances (All).

Paradigm choice

Table 3.2 recaps the outcomes on the accuracy of the circle estimation (RMSρ⋆ and
RMSC⋆), i.e. radius and center computation from the extracted points, on the quality
of the extracted points (RMSC ⋆ and RMSC ), i.e. how far the points lie from the unit
circle, and on the inlier rate pi nl , i.e. how well the points comply to the hypothesis of
circularity, for the 9 configurations.

A word about circle estimation, it turned out that worst rates – i.e. gross error values
– for the radius RMSρ⋆ and center RMSC⋆ characterization were undoubtedly obtained
with configuration L + FD. In contrast, the best figures – i.e. low error values – for RMSC⋆

were shared with BS + FD, BS + CD and AM + BS configurations. Indeed, similar val-
ues were achieved with the common denominator: Bicubic Spline interpolation. Once
again, BS interpolation is one of the reasons explaining the success of BS + FD and BS +
CD when contending with the radius estimation. In contrast, AM + BS produced higher
error values on approximating the real radius and especially at low resolution (Fig. 3.13
compare 1st column for configurations BS + FD and AM + BS). This first analysis unrav-
eled that linear interpolation bred staircase point-sets of the unit circle – thus leading to
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wrong parameter estimation (Fig. 3.13 1st and 2nd rows) – while on the contrary, Bicubic
Spline interpolation handles nicely the changes in resolution but still dependent of the
gradient computation (Fig. 3.13 5th, 6th and 9th rows).

The quality of the extracted points w.r.t the estimated circle RMSC ⋆ and to the refer-
ence circle RMSC put clearly forth that linear interpolation prevails, independent of the
resolution and gradient computation technique, at producing points far from a circular
shape. Assuming that BS interpolation excels the two others, let focus our survey in the
three paradigms using BS interpolation: BS + FD, BS + CD and AM + BS). Regardless
of the resolution, similar figures for RMSC ⋆ were observed for these configurations. In
other words, RMSC ⋆ values granted that the resulting points had a likely circular shape.
Conversely, when considering RMSC w.r.t the reference circle, AM + BS brought forth
points far from the unit circle. This is the resultant of the fact that AM + BS had hard
times, as aforementioned, at supplying correct points for radius estimation (see RMSρ⋆

in Table 3.2). As a result, BS + FD and BS + CD configurations excels with similar fig-
ures in this field. This latter statement supports our assumption that BS interpolation
provides the best results among the three interpolation methods. Furthermore, when
combined with 1D gradient computation, BS interpolation yielded the best rates for cir-
cle estimation and point-set extraction quality. The inlier rate pi nl also sustained our
claim that BS interpolation and 1D gradient computation where BS + FD and BS + CD
displayed highest pi nl values with same magnitude for standard deviations.

A final word on BS + FD and BS + CD configurations, CD-based paradigms per-
formed better in all the assessed features – i.e. circle estimation, quality of the extraction
and compliance of point-set to the hypothesis of circularity – than FD-based configura-
tions.

In conclusion, the BS + CD scheme was implemented during the ray-casting proce-
dure for its high accuracy in a low resolution context, as well as in high resolution, good
compliance to our circular hypothesis and computational cost (inexpensive).
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Scenario
RMSC⋆ RMSρ⋆

RMSC ⋆ RMSC pi nl

All Low All Low All Low
All Low All Low µ σ µ σ µ σ µ σ µ σ µ σ

L + FD 0.309 0.528 0.180 0.307 0.190 0.182 0.368 0.222 0.156 0.100 0.267 0.100 0.681 0.142 0.538 0.084
L + CD 0.269 0.459 0.170 0.291 0.179 0.171 0.347 0.209 0.150 0.100 0.262 0.099 0.697 0.152 0.538 0.087
C + FD 0.108 0.180 0.080 0.135 0.083 0.074 0.149 0.097 0.080 0.053 0.136 0.056 0.894 0.121 0.759 0.101
C + CD 0.107 0.179 0.075 0.128 0.082 0.073 0.149 0.096 0.079 0.052 0.135 0.054 0.894 0.120 0.760 0.100
BS + FD 0.064 0.098 0.042 0.064 0.053 0.039 0.085 0.053 0.058 0.038 0.097 0.040 0.949 0.102 0.860 0.135
BS + CD 0.062 0.095 0.040 0.061 0.052 0.038 0.084 0.051 0.055 0.041 0.095 0.045 0.952 0.099 0.865 0.133
AM + L 0.168 0.282 0.082 0.134 0.114 0.101 0.211 0.124 0.114 0.081 0.205 0.081 0.808 0.168 0.616 0.096
AM + C 0.070 0.110 0.069 0.114 0.057 0.043 0.097 0.052 0.068 0.061 0.132 0.066 0.932 0.117 0.815 0.134

AM + BS 0.062 0.093 0.091 0.153 0.053 0.038 0.086 0.045 0.075 0.076 0.149 0.090 0.940 0.107 0.847 0.131

Table 3.2: Outcomes for the 9 configurations. Each one was run 102060 times for different positions of the unit circle C (ground truth) and the ray-casting focus. Five
metrics were evaluated at two different scales of discretization of the unit circle: (All) all levels Npx ∈ [2, · · ·10] and (Low) discretizations ranging from 2 to 4 pixels (34020

instances per configuration). Each discretization scale computation may present its mean value µ and standard deviation σ. The first metric RMSC⋆ measures the average
root mean square error of the estimated center C⋆ to the center of unit circle C . Likewise, RMSρ⋆ informs about the average root mean square error of the estimated

radius ρ⋆ to ground truth radius ρ = 1. RMSC ⋆ ( respectively RMSC ) computes the root mean square distance of the extracted point-set P
⋆ to the estimated circle

C
⋆ (to the ground truth C ). Finally, the inlier rate pi nl qualifies how well the point-set P

⋆ complies with C within a distance of ρ/10. Pink and green cells indicate
respectively the worst and the best values for each column.
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3.9 Validation protocol

In this section, we show the strength, robustness and accuracy of our RBT algorithm
when tracking and extracting the centerline in real data. A large number of methods
have been evaluated qualitatively (Wink et al. (2000); Tek et al. (2001); Flasque et al.
(2001); Wesarg and Firle (2004); Carrillo et al. (2007); Schaap et al. (2007); Hernandez
and Frangi (2007); Jiang et al. (2007)). In these works, detection, extraction or segmen-
tation correctness have been visually determined. Other works present a quantitative
evaluation of their performance (Li and Yezzi (2006); Tyrrell et al. (2007); Yedidya and
Hartley (2008); Gülsün and Tek (2008)). Barely few algorithms have been compared to
another (La Cruz et al. (2004); Worz and Rohr (2007); Wong and Chung (2007)) and only
few algorithms in the literature have been subject to a standardized comparison (Schaap
et al. (2009)). Benefiting from this latter, serious assessment of state-of-the-art Multiple
Hypothesis Tracking (Friman et al. (2010)) (Multiple Hypothesis Tracking (MHT)) algo-
rithm’s performance, we quantify RBT’s strength and accuracy with respect to it. MHT
is available on MevisLab software4 under the TubularTracking module. It achieved the
highest score among 13 algorithms, both fully automatic as well as semi-automatic, in
the 3D segmentation in the clinic: A Grand Challenge II - Coronary Artery Tracking com-

petition (Schaap et al. (2009)). Hereafter, we describe the main steps involved in the
MHT proceeding.

Given a start-point provided with a tracking direction and an estimate of the vessel
radius. The MHT algorithm proceeds in two phases that are iterated during the track-
ing: building the search tree and evaluating the tree to determine the next tracking step.
In order to build the tree, MHT produces a number of predictions for the next vessel
segment by placing trial positions, evenly spaced on a half-sphere, ahead of the cur-
rent position (search step). Then, MHT scores all the trials according to a vesselness
criterion. Next, positions that do not comply with a pruning threshold are discarded.
Later on, each surviving position becomes the center of a new search step until a certain
search-depth is attained. The resulting positions form a tree-like structure that keeps
the most plausible hypotheses where vessels can be found. Finally, the evaluation of
the search tree is fulfilled: leaves not surviving a termination threshold, are discarded; if
leaves survived, bifurcations are detected – to be pursued later – and the tracking moves
toward the leaf with the highest score, otherwise the tracking is terminated.

In the beginning, we intended to reconstruct the vascular tree using a multi-branch
approach, however, we remarked that MHT provided wrong trackings which would
certainly make the comparison task even more difficult. Consequently, we adopted a
mono-branch tracking which corresponds to the same paradigm as RBT. When com-
paring tracking results, three principal questions arise: 1) how to handle furcations and
branches of varied length? (see Sec. 3.9.1) 2) how to ensure that no tracking algorithm is
favored during the essays, in particular by the initial conditions? (see Sec. 3.9.1) 3) how
to evaluate the accuracy of a tracking instance? (see Sec. 3.9.1)

4❤tt♣✿✴✴✇✇✇✳♠❡✈✐s❧❛❜✳❞❡

http://www.mevislab.de
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(a) Bifurcation (b) Tracking path gen-
erated by RBT

(c) Tracking path gen-
erated by MHT

Figure 3.14: RBT and MHT algorithms tracking a vessel (left). RBT (center) follows a different path than
MHT (right).

3.9.1 Correspondence between trackings

Vascular trees exhibit a complex morphology, i.e. kissing vessels and pathologies
(aneurysms), and wherefore a direct comparison of tracking outcomes may lead to er-
rors. Concerns are different when facing a particular type of tracking: multi-branch
and mono-branch (one single vessel at a time). In a multi-branch context, for instance,
tracking algorithms may track a different number of vessels from one seed point. There-
fore, a tree matching procedure of tracking outcomes at furcations is necessary to dis-
ambiguate false and true positives, and to look for missing branches. In our case of sin-
gle branch tracking, algorithms may follow different branches at bifurcations (Fig. 3.14).
Here again, a matching procedure is compulsory to detect common portions for evalua-
tion since errors may be introduced at furcations. A common denominator for matching
trackings, in both situations, is furcations which beacon the end of common portions or
safe comparisons. Along this philosophy, only sections in-between bifurcations or sin-
gle branches presenting no furcations at their distal extremity were considered during
the comparison of outcomes produced with MHT and RBT. We called hereafter these
sections vessels.

3.9.2 Initial conditions

It is mandatory to set both algorithms in the same initial tracking conditions. It is im-
portant to note that MHT was not designed to track vessels of large width. Therefore,
the stem vessels (carotid or vertebral arteries) of the vascular tree were excluded. Gen-
erally speaking, both algorithms are interactive extraction methods (Schaap et al. (2009))
since they use more than one point per vessel as input. With this consideration in mind,
the algorithms were both initialized with the same information: an initial position, a
tracking direction and a local estimate of the vessel radius. Four points were provided
and placed manually on each vessel section in a reformatted cut plane (Fig. 3.15): one
seed point C0 was placed at the proximal end of the vessel; the vessel direction ~d0 was
estimated by placing a second point along the vessel axis, a little distal from C0; the ves-
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(a) Four points inside the vessel lumen (b) Center, direction and radius estimation

Figure 3.15: Four points placed manually inside the vessel at the proximal end of the vessel (left) providing
an initial tracking position, a tracking direction and an estimate of the vessel radius (right).

Patient 1 2 3 4 5 6 7 8 9 10 Total
MHT 1 7 3 3 0 0 1 6 3 6 30
RBT 1 6 1 0 1 0 0 7 5 6 27
60 477

Table 3.3: The number of excluded vessels per patient for both algorithms. Due to bad initialization, a
certain number of vessels were excluded from the data-set. Similar figures were accounted for both algo-
rithms.

sel radius r0 was estimated as the distance between two diametrically opposed points
placed on the vessel surface, in the cut plane showing the vessel cross-section around
C0. Besides, when one of the algorithm did not start, the corresponding tracking for
both algorithms was discarded from the evaluation set. Table 3.3 accounts the number
of vessels per patient excluded from the validation set. It turned out that similar num-
ber of discarded vessels were counted for both algorithms (in total 30 for MHT and 27
for RBT).

3.9.3 Centerline evaluation

As well as former works, we intended to evaluate our tracking accuracy by consider-
ing the MHT results successfully tracked as the gold standard. At first, we quantified the
performances of our method against MHT brought forward by the visual inspection. For
this, we explored the success rate, i.e. the number of trackings that delineated correctly
the vessels manually selected and used for validation (details are given in Sec. 3.9.4).
The outcome of this visual analysis revealed that MHT produced results below our ex-
pectations in terms of tracking capability when compared to RBT. MHT could not act as
a gold standard.

Previous works usually investigate two principal aspects of centerline evaluation:
qualitative and/or quantitative. In essence, we followed the same outline. Besides the
above visual inspection, we scanned the extraction ability, i.e. how much of the cen-
terline can be extracted by both methods, and the accuracy, i.e. how accurately can
our method locate the centerline with respect to MHT. Further details on these mea-
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sures are given in Section 3.9.7. In this analysis, the vessel width assessment was not
integrated since no validation, in this field, regarding MHT was carried out in previous
works (Schaap et al. (2009) and Friman et al. (2010)).

3.9.4 Clinical data

A set of 10 patient data was used for validation. Each patient data set consisted of a 3DRA
acquired on a vascular C-arm (Innova 4100, GE Healthcare) during the intra-arterial in-
jection of the internal carotid artery. 3DRA volumes presented as a 5123 isotropic voxel
cubes, between 0.18-0.22 mm voxel size.

A vessel – section in-between bifurcations or branch with no further furcation – was
included in the validation set if it could be tracked visually through successive cut planes
in the 3DRA volume data. Despite the fact that RBT produces excellent results on the
carotid artery, it was excluded because its radius is too large for the MHT algorithm. A
total of 744 vessels and between 55-96 vessels per patient were examined.

3.9.5 Parametrization of the reference method: MHT

In one patient (Patient 1), we randomly selected 15 vessels of different sizes. The manual
seed C0 and direction ~d0 were used to track each branch (Fig. 3.15). Following a trial and
error method, the parameters were tuned so that the algorithm produced satisfactory
trackings in most of the vessels. A visual assessment was carried out, focused on a cor-
rect delineation of the targeted vessel centerline, for determining the pertinence of the
parameters set. The best configuration was kept and used for validation.

MHT algorithm proved to be quite sensitive to the allowable bounds set onto the
radius. To have MHT work on the most possible vessels, the radius was allowed to vary
between 0.25 to 1.25 times the estimated initial radius r0.

The single hypothesis tracking option was set (one single vessel to track). The track-
ing step was set to 0.1 the radius of current tracking radius in the MHT, the maximum
search angle angle between 2 tracking steps to 85◦ and the number of search angles was
5. A maximum of 2000 iterations were allowed and all other parameters initialized to
default values.

3.9.6 Parametrization of our algorithm: RBT

Our aim was to find the best configuration for RBT, that is the parameters set that works
in almost all cases. First of all, an initial candidate set of parameters was retrieved. The
RBT parameters were tuned on the same 15 vessels as for MHT. The resulting centerlines
as well as the points at the vessel surface were inspected visually for each configuration.
When no errors – segmentation leakage or small tracked lengths – were observed, the
configuration was taken into account. Among all the configurations, the best config-
uration was selected and this procedure led to the initial values in Table 3.4. A brief
description of the parameters is also given in Table 3.1.

Secondly, following the same outline as mentioned previously, interest was paid to
the optimality of these values. Since a visual assessment was also involved, we reduced
our batch of study to 20 vessels (two per patient) from the data-set. Representative
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Parameter pi nl (%) rt (%) Nr Nd Np Nmi n Nmax

Initial 70 10 162 81 128 220 500

Table 3.4: RBT initial configuration: values tuned on twenty vessels from the data set.

cases were chosen according to different criteria: length, possible perturbations which
could mislead the tracking (fuzziness, kissing vessels, gaps and tortuosity as displayed
in Fig. 3.16) and vessels width. Six parameters were considered in this evaluation: Nr ,
Nd , Np , rt , pi nl , and Nmi n . Only Nmax was excluded and set to 500, except for Nmi n

evaluation where it was set to 1000.

Figure 3.16: Four of the twenty vessels used for tuning the RBT parameters which exhibit kissing vessel
issues (top left), fuzziness (top right), tortuosity (bottom left) and drops in image intensity (bottom right).

To find out which parameters have a significant impact on our algorithm’s perfor-
mance, the idea was to change one degree of freedom (one parameter) from a stable
(initial) configuration and analyze its impact on the resulting centerline by visually in-
specting and counting the number of successful trackings. A tracking was accounted
as successful if the extracted centerline and points at the vessel surface delineated the
targeted vessel from the seed point to the end of the vessel. Otherwise, trackings were
considered as failures. One test case consisted of a tracking instance where five param-
eters were set to initial values in Table 3.4 and the remaining parameter took its values
within a pre-computed set of values. This set was depended on the parameter of inter-
est as follows: Nr ∈ {42,162,642}, Nd ∈ {21,81,321}, Np ∈ [32,256] (step of 32), rt ∈ [3,30]



3.9.7. Evaluation measures 55

Parameter pi nl (%) rt (%) Nr Nd Np Nmi n Nmax

Proposed ranges 65-75 10-15 82-161 82-321 128-192 300-350 600-700
Optimal 65 12 162 321 128 300 600

Table 3.5: Proposed ranges for RBT parameters according to the success rate scored in 20 vessels from the
data-set. An optimal configuration is made up from this ranges.

Patient 1 2 3 4 5 6 7 8 9 10 avg (%)
Time % 53 40 34 20 34 23 17 23 14 52 31
Length % 16 0 -2 4 14 -3 5 -2 13 23 7

Table 3.6: Vascular tree of ten patients tracked with the initial (Table 3.4) and optimal (Table 3.5) configu-
rations. Increase percentage in time and length between both configurations. In average, optimal values
increase length and time tracking by 7% and 31% respectively.

(step of 3), pi nl ∈ [50,100] (step of 5), and Nmi n ∈ [25,500] (step of 25). This evaluation
on the success rate of RBT to track the 20 vessels with different configurations put forth
the ranges in Table 3.5. Besides, we also noted that Nr , Nd and the pi nl had a significant
impact on the computation time.

Finally, we evaluated the performance of the optimal configuration (Table 3.5) with
that of the initial configuration (Table 3.4). For this study, we used the entire data-set
and recomputed the success rate for both configurations. Moreover, the time and the
tracked length were also considered in this assessment. The length was measured as the
cumulative length of segments composing the detected centerline and the time repre-
sented the quantity in seconds needed to produce the result. Table 3.6 summarizes the
increase in time and tracked length brought about by the optimal configuration w.r.t the
initial configuration. The increase percentage in time and length was respectively 31%
and 7%, in average. This raise in computation time was explained by the fact that the
main difference between both configuration resides solely in the values for Nd and Nr .
Note that Nmin and consequently Nmax, do not reflect this augmentation. For the test
case with the twenty vessels, configuration with Nmin set to 220 and 300 – Nmax was set
to 1000 iterations – put forth no significant differences in the computation time.

In final consideration, the performances produced with the initial configuration of
parameters displayed similar results on the entire data-set for less computational effort.
Henceforth, we favored the initial set of values (Tab. 3.4 or Tab. 3.1) for the remainder of
the evaluation. Finally, RBT was run with the manually annotated C0, ~d0 and r0 for each
vessel and the aforementioned configuration.

3.9.7 Evaluation measures

Three different measures were applied to each vessel of the annotated data-set: success
rate which quantifies the number of vessels successfully tracked by a particular method,
the tracked length which accounts for the capability of an algorithm to track a vessel,
and the accuracy which informs how different is the RBT centerline with respect to the
reference method (MHT).
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Success Rate (SR). The first experiment covered the qualitative assessment, we visually
appraised the tracking success. A tracking was considered as successful if the resulting
centerline remained inside the vessel of interest. Otherwise, the result was considered
as a failure. A successful tracking was not necessary one that tracked the entire vessel.
For instance, the first row of Fig. 3.17 depicts a situation where RBT tracked successfully
the vessel and stopped at a correct location. Despite the fact that MHT tracked until the
end of the vessel, it produced a segmentation leakage and the tracking was considered
as a failure. This first evaluation resulted in a Success Rate (SR) in percent.

However, the first examination was tough for MHT. In some cases, rated as failures,
the MHT successfully tracked the proximal section of the vessel, but astray trackings – or
leakage – were commonly observed where neighboring dense structures locally misled
the tracking (Fig.3.18). In contrast, RBT rather stopped than produced segmentation
leakage. But this property of RBT produced a certain number of instances where only a
small portion of the visually inspected vessel length was tracked.

Tracked Length (TL). In a second experiment, these MHT tracking results, considered
as failures in a first place, were visually, manually cut before the problem occurred (refer
to Fig. 3.17). No such cut was ever required for RBT. Then, according to the length of the
detected centerline, results, both for MHT and RBT, were classified as: short, medium,
long if the centerline was respectively correct along less than 33%, 33-66%, more than
66% of the visually estimated length of the targeted vessel. A second evaluation was
therefore performed, recomputing the success rate, while only taking into account the
medium and long trackings. The tracking considered as short were discarded since we
aimed at reporting significant figures. Moreover, tracking lengths were computed and
compared.

Accuracy (Ac). A third evaluation was carried out, focusing on a quantitative assess-
ment of the centerline detection accuracy with respect to MHT centerline. For this study,
all trackings – regardless of whether they were considered as failures or too short for both
algorithms – were used for accuracy evaluation. The reason for reintroducing failures is
that though MHT may go astray, it sometimes came back to the right vessel of interest
and tracked until its end, as illustrated in the last row of Fig. 3.17.

Figure 3.17: Top: (left) Maximum Intensity Projection of one patient data. Centerline delineation produced
by MHT (middle) and RBT (right). Bottom: (left) When the MHT centerline (red) does not remain inside the
vessel wall, it is cut – during the tracked length computation – before the problem arises (green). (middle)
The whole MHT centerline (red) and the points on this centerline (cyan) selected for ASSD computation
(w = ρ̄). (right) The resulting points for MHT (red) and RBT (blue) involved in the ASSD computation.

The accuracy measure was based on a point-to-point correspondence between the
reference (MHT) and our evaluated centerline. To avoid including errors that may be
due to leakage, for example, its computation required to find the centerline sections that
were potentially common to both. To cope with this condition, a variant of the Average
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Symmetric Surface Distance (ASSD) Schaap et al. (2009) was used. More precisely, we
added a threshold condition on the distance. The ASSD measure translates the mean
error between two centerlines (refer to the last row of Fig. 3.17).

Let P = {Pi }i=1,...,N and Q = {Q j } j=1,...,M be respectively the set of points composing
the centerline of MHT and RBT. Firstly, the closest point Pi in Q is computed using the
Euclidean distance d(., .):

d(Pi ,Q) = min
j

d(Pi ,Q j ) (3.8)

d(Pi ,Q) is accounted if it is less than a threshold distance w , designated as the re-
stricted distance:

dw (Pi ,Q) =
{

d(Pi ,Q) if d(Pi ,Q) < w

0 else
(3.9)

Symmetrically, the same procedure is conducted on the other centerline leading to
dw (Q j ,P ), in order to find the closest point to Q j . Lastly, both restricted distances are
averaged: MHT selects N ′ = |{Pi /d(Pi ,Q) < w}|, where |{.}| is the cardinal, points on the
RBT centerline and in turn, RBT selects M ′ = |{Qi /d(Qi ,P ) < w}| on the MHT center-
line. The last row of Fig. 3.17 exemplifies the selected points for both centerlines. The
ASSD was thereafter computed as follows:

ASSD =
1

N ′+M ′

{
N∑

i

dw (Pi ,Q)+
M∑

j

dw (Q j ,P )

}

(3.10)

A major concern in measuring the centerline detection accuracy is to distinguish
between correct and wrong portions of a tracked vessel. On one hand, MHT centerline
is considered as the reference but we noticed that it might produce wrong trackings for
certain portions of a vessel (Fig. 3.17 bottom row). Therefore, it is compulsory to select
the correct portions for validation. On the other hand, RBT’s centerline detection is to
be assessed and wrong portions are not to be discarded.

RBT does not produce false positives (no leakage) and it was extensively assessed
(see below, Section 3.10 (SR)), as well as its tracking capability, in the previous exper-
iments. Owing to these remarks, ASSD works well in our context since RBT suggests
wrong portions produced by MHT. Therefore, the RBT precision validation turned out
to be the accuracy of its centerline w.r.t a reference centerline that potentially contained
false positives. The usage of different values for w allows us to verify that RBT centerline
does not hold false positives, at least not in a significant rate. Lets consider a fixed value
for w = 3 voxels. This threshold is not suited for small vessels (vessel width of 4-6 voxels)
since portions on RBT centerline corrupted by leakage, or some part of it, are accounted
during ASSD computation. In fact, a more adapted threshold to the vessel width is the
average radius of the vessel w = ρ. With an adaptive threshold, risks of accounting cor-
rupted portions by leakage are dramatically reduced.

As a result, two ASSD measures were carried out with different distance thresholds :
w = 3 voxels, which is suitable for large vessels, and w = ρ, which is a more appropriate
choice when considering the scale of vessels and avoid taking into account erroneous
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(a) MHT result (b) RBT result

Figure 3.18: Comparison of MHT (left) and our algorithm (right) with regard to a KV case on Patient 1: a
blood vessel runs along the aneurysm sack. Our RBT algorithm successfully handles this case, while MHT
is perturbed by the aneurysm lumen which misleads the tracking.

centerlines at leaking portions on small vessels. For the latter measure, the estimation
of the mean radius ρ̄ of the targeted vessel was given by our algorithm, since it visually
appeared more trustful than MHT’s estimation (see radius estimation issue with MHT
on Fig. 3.22). Last but not least, if the comparison between both thresholds leads to
similar figures and in addition, they are below the voxel size, we can assuredly conclude
that RBT produces a centerline as accurate as MHT.

3.10 Results

Success Rate (SR). For the visual assessment, the overall performance of RBT algorithm
was 94%, confirming its efficiency and strength. In contrast, the MHT algorithm reached
a SR of 65%. Table 3.8 reports the respective SR for this experiment. This rather poor per-
formance for MHT is the resultant of a lack of efficient mechanism for rejecting strong
vesselness responses in unrelated vessels (kissing vessels). Leakages, due to neighbor-
ing structures, were the cause of many failures. On the contrary, the RBT procedure dealt
well with this kissing vessel problem. Fig. 3.18 illustrates the difficulty for MHT to some-
times handle the kissing vessel problem and the robustness of RBT to such topological
difficulties. The RBT success when striving with kissing vessels dwells simultaneously on
two principles: first, the vesselness relies on the existence of a valid cylinder that locally
fits the vessel and second, the cylinder should be relatively similar to its predecessor on
the centerline. In contrast, MHT constructs a hypothesis tree where each branch repre-
sents a possible path. Then, it solely discriminates the hypothesis by thresholding the
averaged score – i.e. vesselness response – of a branch. This pruning technique is in-
sufficient to distinguish kissing vessels since neighboring structures may display high
vesselness response, and subsequently, leading MHT to choose amiss paths. In other
words, MHT disregards the information encoded on the already tracked centerline to
improve robustness and only relies on thresholding in incoming vesselness information.

Tracked Length (Tracked Length (TL) & Common path Length (CL)). For the sec-
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ond experiment, Table 3.9 summarizes the SR regarding the actual tracked length. In
particular, short trackings that were accounted as successes in the visual assessment,
were here discarded. As expected, MHT increased its performance up to 69%, since
some trackings were previously rated as failures due to leakage issues, though they
were correct on the proximal vessel section. On the contrary, RBT performance slightly
dropped to 89%. This abatement could be mostly explained by RBT stopping prema-
turely due to drops in image intensity or to a high inlier rate threshold which was not
suitable for some situations, as illustrated in Fig. 3.21. When both algorithms succeeded,
on average, RBT went further (CL = 725.5 mm) than MHT (CL = 680.9 mm). Nonethe-
less, MHT definitively delivered a lesser number of successful trackings which impacted
negatively the average tracked length per patient down to 778.6 mm against 1446.1 mm
for RBT.

Accuracy (Ac). Finally, table 3.9 also reports quantitative ASSD measures. The av-
erage ASSD between both centerlines, with both 3 voxels and the mean radius of the
targeted vessel, was below one voxel for all patients. This showed that the proposed
method produced similar results as the MHT.

Time. As an illustration, we computed the time and the number of instances needed
by RBT to track an entire vascular tree. The user manually placed a seed at the stem
vessel of the vascular tree and branches were added as described in Section 3.6. For this
purpose, a dedicated user interface was used which is further introduced in Appendix A.
Furthermore, no aneurysms were introduced in the segmentation process. In average, it
took roughly 30 minutes per patient to fulfill only the tracking computation (Table 3.7).
No quantification was carried out on the time spent during user-interaction transac-
tions. Based on our own experience, the user spends significant time depending on
his/her experience and on the targeted vessel. Indeed, small vessels are more difficult

Figure 3.19: (left) Original image data for three kissing vessels (top) and a vessel running along an aneurysm
(bottom). (right) The corresponding segmentation with RBT (same case as in Fig. 3.18).
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Patient 1 2 3 4 5 6 7 8 9 10 Average
Time (min) 31.8 33.3 27.9 24.0 40.7 22.2 23.1 17.8 35.7 26.4 28.3

Number of instances 40 39 44 37 39 60 25 57 33 42 41.6

Table 3.7: Time, in minutes, and number of RBT instances needed to track a complete vascular tree. Overall,
one cylinder computation took around 0.01 – 0.3 seconds.

Figure 3.20: (left) A tortuous banch of the posterior choroidal artery (0.6 – 0.7 mm of diameter) in Patient
3. (middle) MHT is misled by neighboring structures whereas (right) RBT tracks the tortuous vessel.

to locate than large vessels.

3.11 Discussion

The results presented in the last section confirm our expectations that a bounded ray-
casting procedure coupled with geometrical prior and a robust estimator allowed RBT
to handle nicely the kissing vessel problem (Fig. 3.19). In contrast, the lack of a consis-
tent pruning – while considering several strong vesselness responses – impedes MHT to
strike these issues.

When handling vessels of varied diameters, RBT puts forth its robustness to tackle
these scenarios with the same set of parameters. Technically speaking, MHT was not
designed to handle vessels of different sizes since it is grounded on a finite set of filters.
In other words, a large range of vessel widths demands a higher number of filters without
mentioning a higher computational burden. In contrast, the computation time for RBT
does not hold on the vessel size but in the complexity of the local morphology of the
vessel. For instance, the tracking of the main stem vessel of Patient 4 (carotid artery) was
run in 16 seconds for a tracked length of 165 mm while the tortuous vessel in Fig. 3.20 of
the same patient was achieved in 69 seconds for a tracked length of 64 mm. Besides, RBT
is robust to bad initialization on the vessel width which is not the case for MHT. A propos
this limitation, the user-defined radius estimation bound could lead to a saturation of
the radius estimation and ineluctably to a wrong estimation of the centerline (Fig. 3.22).
On the contrary, RBT incorporates automatically radius variations along the vessel by
considering the last estimated radius in the centerline to restrain the estimate and softly
adjust to these changes.

The RBT algorithm reached its limits when struggling with drops in image inten-
sity (Fig. 3.21). Incidentally, RBT explores the vessel surface within a limited area. In-
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Figure 3.21: MHT deals well with drops in image intensity. (left) A cut plane along a vessel presenting
drops in image intensity; (right top) RBT result: the tracking stops too early. (right bottom) The resulting
centerline for MHT.

Patient 1 2 3 4 5 6 7 8 9 10 Average
Number of vessels 59 57 75 69 82 80 55 95 76 96 74.4

MHT % 67 72 66 74 60 59 48 67 74 62 65
RBT % 97 90 99 81 100 96 85 92 96 99 94

Table 3.8: Success rates of MHT and RBT on a data set of 10 patients. A total of 744 test vessels were used to
evaluate both algorithms. The average success rate for MHT and for our algorithm is respectively 65% and
94%.

stead, the MHT algorithm coped especially well with gaps thanks to its search-depth
scheme for inspecting further positions in the centerline.

One of the other reasons we identified as potentially impeding MHT performances
is the fixed tracking step that it uses. The increase in resolution in 3DRA implies that we
try to track very small vessels (0.5 mm in diameter or less). Such vessels present with a
very high tortuosity and potentially acute bends Fig. 3.20. RBT defines the tracking step
as the quarter of the height of the last fitted cylinder. But since the height is adapted to
the longitudinal extension of the inlier point set, fitted cylinders are shorter in twisted
and bent portions of the blood vessels, thus naturally adapting the tracking step.

Last but not least, the reference method was very sensitive to bad initialization since
some instances in the validation data-set did not breed any tracking or the tracking
started inside neighboring structures. Conversely, RBT was as yet robust to bad initial-
ization when the initial radius was scaled to the targeted vessel as illustrated in past
Section 3.5 (Fig. 3.8). Then whence the possibility to manually add a new branch with
just one user-defined point.
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Figure 3.22: (Top) Influence of user-defined radius estimation bound on MHT tracking where underesti-
mation of the vessel radius leads to an inaccurate outcome on Patient 5: (left) the upper bound is reached
leading to leakage issues and (middle) computation with larger values avoid this problem. (right) Our RBT
algorithm successfully tracks the vessel without resorting to this information. (Bottom) Plane views: the de-
tection of the centerline for the MHT on a fuzzy portion of 0.8 mm of diameter, with saturation of the radius
(left) and without saturation (middle), is disturbed whereas our algorithm detects correctly the centerline

Patient 1 2 3 4 5 6 7 8 9 10
MHT
M & L (%) 75 71 73 75 65 65 57 67 77 63
TL (mm) 765.2 601.5 758.7 726.5 818.7 1086.9 555.4 906.1 688.1 879.0
CL (mm) 620.7 523.3 697.5 512.4 810.2 1074.1 389.0 834.1 581.8 766.3
RBT
M & L (%) 94 79 97 77 99 95 82 84 89 91
TL (mm) 1120.4 1063.6 1383.3 1097.6 1752.7 2373.6 833.9 2121.3 1420.6 1294.0
CL (mm) 662.9 540.5 731.2 515.9 915.2 1164.7 403.6 914.2 644.7 782.6
ASSD
w = 3 (mm) 0.20 0.21 0.16 0.17 0.16 0.16 0.18 0.19 0.16 0.20
w = ρ (mm) 0.20 0.20 0.16 0.17 0.16 0.16 0.19 0.19 0.16 0.20

Table 3.9: Success rate of MHT and RBT algorithms with tracking results classified as medium and long

(M & L). The mean success rates for MHT and for our RBT algorithm are respectively 69% and 89%. Fur-
thermore, the mean ASSD, with a distance threshold of 3 voxels (w = 3) and the mean radius of the targeted
vessel (w = ρ), between the extracted centerlines by both methods is below one voxel (0.17-0.18 mm). The
CL corresponds to the total length of centerline used to compute ASSD on vessels successfully tracked by
both methods. On average the total tracked lengths (TL) for MHT and RBT are respectively 778.6 mm and
1446.1 mm.

3.12 Conclusion

The general context of our work is interventional neuroradiology. While most previous
works present segmentation results on Computed Tomography Angiography (CTA) or
Magnetic Resonance Angiography (MRA) data, we only addressed the segmentation of
3DRA volume. Indeed, 3DRA is the modality of choice for interventional radiologists
that routinely acquire 3DRA data before, during and after the treatment. While 3DRA
is arguably of a higher quality than CTA and MRA, which would supposedly ease the
segmentation task, noise and artifacts are still present. Moreover, even in 3DRA, and as
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in MRA and CTA, our aim remains the segmentation of vessels whose radius downs to
the voxel size.

State-of-the-art MHT vessel segmentation algorithm (Friman et al. (2010)) was used
as a reference for validation. The MHT performances were below our expectations,
when applied to 3DRA. This supports our claim that 3DRA presents with specific issues
regarding blood vessel segmentation: improved blood vessel visibility implies more kiss-
ing vessels, and vessels with a much stronger tortuosity.

In this chapter, we proposed a novel algorithm for blood vessel segmentation, called
RBT, which builds a vessel tree structure in two steps. First, an estimation step which
comprehends a ray-casting procedure coupled with a RANSAC-based cylinder fitting
process to handle outliers in candidate points at the local vessel surface. Second, a pre-
diction step of the next point on the centerline which adapts the tracking to the local
morphology of the vessel.

A large part of the work was dedicated to the validation framework and effort to fairly
compare RBT against MHT. A considerable lot of effort was dedicated to manually edit-
ing MHT results, visual assessment and user-interaction. It is worth pointing out that
744 vessels on 10 3DRA patient data were manually annotated. Three measures were
presented in our centerline evaluation pipeline: SR, centered on successful tracking, TL
& CL, concentrated on the extraction capability of both algorithms and ASSD, focused
on the accuracy of RBT w.r.t the MHT centerline. The results demonstrated the strength
of the proposed method as well as its ability to accurately detect centerlines. In partic-
ular, RBT proved to be able to capture very complex vascular topologies and to be very
robust to the kissing vessel issue. In addition, it tracked very tortuous tiny blood vessels.
As such, it improves upon previous blood vessel tracking algorithms.

Besides, RBT is also able to continue vessel tracking past bifurcations and is also very
robust to poor initialization when the radius estimation is well-scaled. After tracking a
vessel, a child vessel is segmented by providing a seed point on the parent vessel. This
point is connected to its closest point on the centerline of the parent vessel, which pro-
vides an initial direction for the tracking. The initial radius is the same as that of the
parent vessel at the connecting point. This paradigm to add new branches did not work
with MHT, that required tighter initial parameter values. Furthermore, RBT was even
robust enough for us to use the same set of parameters (aside from center, direction and
radius) for all patients and vessels. These characteristics of our method minimize user
interaction, allow for segmentation of vessels of interest to the user and counterbalance
the fact that RBT does not automatically handles bifurcations. We would even argue that
it is a clinical advantage since the radiologist is often interested in only a part of the vas-
culature (the one related to the pathology), that he/she would probably like to choose
and control. Anyway, user interaction would be necessary, even with a so-called fully
automated procedure, to correct for potential errors. Our expectations were proved in
practice by developing a dedicated user interface allowing the user to easily segment a
vascular tree with one click per branch (refer to Appendix. A for a brief overview).

The proposed segmentation algorithm seems to be easily applicable to other modal-
ities by taking in consideration a pre-processing step with regard to the targeted modal-
ity, e.g. a skull removal process for CTA and MRA. This technique was also employed
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Figure 3.23: Our RBT algorithm applied to MRA data (left). The dense sampling produced on 37 vessels
(middle) and the tracked vessels superimposed upon the original data (right).

by Friman et al. (2010) when applying MHT to CTA data. Preliminary outcomes showed
a promising behavior of our algorithm on CTA and MRA (Fig. 3.23).

A path to improve RBT relies on a recognized strength of MHT. MHT allows the track-
ing to locally degrade the fitting score, as long as a raise occurs. As a result, MHT resists
to local drops in the density along a vessel. However, this strategy prevents MHT from
stopping per se as it too greedily follows hints of vesselness on the data. Our method
stops as soon as no cylinder is found with the minimum percentage of inliers and may
occasionally stops prematurely. In order to increase the robustness of our proposal, we
need to integrate an exploration phase during the tracking procedure. A difficult com-
promise would have to be found between our stopping criteria and a greedy MHT ex-
ploration.

A final word should be said on the segmentation characteristic of RBT. It is a track-
ing algorithm since the vessel centerlines are extracted, building a vessel tree with little
manual interaction. But, as MHT, the local vessel radius is also estimated. However, RBT
goes further since it also provides a set of points that reliably lie on the local vessel sur-
face. These points provide a rather dense sampling of the vessel surface. The centerline
produced by RBT serves as input data for our reconstruction algorithm which locally re-
constructs the blood vessel surface. This dedicated algorithm is treated extensively in
the next chapter.
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BLOOD VESSEL RECONSTRUCTION

In the context of computer-based simulation, contact management requires an accurate,

smooth, but still efficient surface model for the blood vessels. In this chapter, we propose

a new blood vessel surface model provided by a novel paradigm, namely Local Implicit

Modeling (LIM). LIM locally reconstructs the blood vessel surface thanks to information

provided by its centerline and a dense sampling of the vessel surface (point-set). In other

words, LIM locally performs the point-set reconstruction by fitting a skeleton-based im-

plicit function – i.e. Blobby Model (BM) – through energy minimization, alternating with

an original selection and subdivision scheme of BM primitives (iterative process). The

idea of LIM is to enrich the blood vessel centerline by attaching a BM to a point on the

centerline that locally reconstructs the vessel surface. The resulting blood vessel surface is

supplied as a tree of local implicit surfaces generated by BMs. Our proposal is very effi-

cient for simulation and was shown to provide a compact representation and a sub-voxel

approximation of the vessel surface on 10 patients.

65
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4.1 Introduction

In the previous chapter, we explored a new paradigm for retrieving the topology of the
vasculature and a local scattered representation of the blood vessel surface. This was
achieved through a RANSAC-Based Tracking (RBT) procedure which uses cylinders as
priors for the vessel shape. However, this scattered representation is insufficient for
our simulation purpose. Indeed, a point-set representation should be further treated
to ensure key features during simulation: realism, fast collision detection and contact
response computation.

From a geometrical stand point of view, realism – during simulation – is ensured by
an accurate and smooth representation of the blood vessel surface. Topology should
also be available e.g. for Kissing Vessel (KV) issues disambiguation. Furthermore, the
geometrical model – during simulation – should guarantee a fast and robust collision
detection: access to in/out test and differential quantities for contact response com-
putation such as the normal to the surface and the gradient of the distance function
(Dequidt et al. (2007)).

In this chapter, we present a Local Implicit Modeling (LIM) technique for reach-
ing these goals. Surface reconstruction from scattered data with implicit functions has
proven effective in dealing with noisy and/or incomplete data (Carr et al. (2001); Ohtake
et al. (2006); Kazhdan et al. (2006) and Mullen et al. (2010)). Despite a large num-
ber of sound methods for reconstructing scattered data with implicit functions, no di-
rect method is applicable to our situation. Among all models, skeleton-based implicit
surfaces were chosen for their compelling characteristics in our context. Implicit sur-
faces generated by skeletons are particularly well-suited for modeling smooth free-form
shapes in a very compact way (Bittar et al. (1995)). Besides, they present a nice feature
designated as locality which means that objects that are far apart should have no – or
at least negligible – influence on each other (Dekkers et al. (2004)). Last but not least,
skeletal surfaces also confer high shape modeling flexibility (Bittar et al. (1995)).

One of the most common approaches for reconstruction consists in deforming a sur-
face or a volume in order to fit an input point-set. The idea has been widely used and
developed in late 20 years. Following the seminal work of Muraki (1991) in surface re-
construction from scattered data, LIM defines the surface fitting – or model fitting –
as an energy minimization problem, alternating with a model refinement as in Tsingos
et al. (1995), but improving over this latter work. The idea of LIM is to provide an im-
plicit, local representation of the blood vessel surface for each point on the centerline
(Fig. 4.1). As a result, our algorithm requires that the vessel centerline is extracted as a
tree (Fig. 4.1a), not necessarily dense, and that a local vessel radius estimate is available
at each point on this centerline.

Our aim is to fit each local point-set P with an implicit surface generated by a point-
set skeleton (Fig. 4.1f). Within this vista, we explore theoretical and technical choices in
our implicit formulation for satisfying simulation requirements (Sec. 4.2 and 4.3). Fur-
thermore, each local model refinement is the resultant of an accuracy pursuit during
reconstruction (Sec. 4.4). Besides, the resulting local models are organized under the
same tree structure as the point centerline (Sec. 4.5). Solving contact constraints at each
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point of the interventional tool, is performed using the appropriate local implicit model
as the blood vessel surface (Sec. 4.6).

Three main reasons led our proceeding to propose a LIM paradigm. First, a straight-
forward reconstruction of the vasculature with implicit functions brings about an en-
demic issue, namely blending issues (Oeltze and Preim (2005); Schumann et al. (2008)).
Whereas blending is a nice property of implicit functions, KVs tend to merge in a sin-
gle surface. To control the blending, local strategies were adopted so that the scalar
field is only modified at desired zones (Bernhardt et al. (2010); Gourmel et al. (2012)).
Despite this procedure handles objects that are physically in contact (no space in-
between), it remains difficult to be fulfilled when more than two objects are merging;
user-interaction is required for tuning the blending function and thus avoiding extra
artifacts. In the particular case of blood vessel reconstruction, Hong et al. (2012) pro-
posed to reconstruct vessels’ cross-sections with generalized cylinders and to use a
global blending function to reconstruct the whole vascular tree. This approach presents
an endemic issues when dealing with collisions. Indeed, the interventional tool may
jump from one vessel to another between two simulation steps (see Chapter 2, Fig. ??).
Second, direct collision detection with a complete geometrical model will be time con-
suming and not efficient. Efficiency may be gained by introducing extra machinery
– like state-of-the-art Bounding Volume Herarchies (BVH) (Teschner et al. (2005)) but
these techniques are not well-suited to tree-like structures since the bounding volume
is a poor approximation of the enclosed vessels, but at the finest resolution. As a by-
product, a small ratio of the bounding volume is occupied by the vessel. Increasing the
depth helps but induces a loss of efficiency. This latter remark leads us to our third ar-
gument. Even if we can perform fast inclusion/exclusion test (whether a point is inside
or outside the surface) this procedure does not resolve the KV issue during simulation.
One way to tackle this problem is to introduce the topology into play. Besides, topologi-
cal information finds its capital gain during collision detection and its management (Li
et al. (2012)). As a result, we follow the seminal idea of Bittar et al. (1995) who locally
reconstruct organs by means of the medial-axis. Such a strategy confers LIM to handle
undesired blending and improve collision detection efficiency during simulation.

For sake of clarity, we define a node as a given position on the vascular tree cen-
terline. For instance, the red dot in Fig. 4.1b represents a node equipped with a local
point-set P and a cylinder (center, radius, direction). We also define the topological dis-

tance T as the lowest number of consecutive positions on the centerline that separate
two nodes. As displayed in Fig. 4.1c, the topological distance from the bifurcation node
(central node) to its closest neighbors (colored nodes) is 1.

Fig. 4.1 displays the main steps in the reconstruction process. LIM’s central idea is
the local reconstruction of the blood vessel surface. For a given node – or reconstruction
node – in the centerline, we aim at providing an implicit surface that locally depicts the
blood vessel surface. The extent of this local depiction should be long enough to cor-
rectly handle collisions. Section 4.2 details the mathematical formulation of the implicit
function and discusses it. At first time, we only consider the reconstruction from a local
point-set P associated to a reconstruction node. The resulting implicit surface – for this
node – is the white surface in Fig. 4.1f (further described in Sections 4.3 and 4.4). In fur-
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(a) Tracking result (b) Node for reconstruction (c) Neighboring nodes

(d) Points for reconstruction (e) Initial Blobby Model (BM) (f ) Final result

Figure 4.1: Outline of the local reconstruction of the vessel walls. (a) Tracking results for two arteries on
three-Dimensional (3D) Rotational Angiography (RA) data: Centerlines and extracted points at the arter-
ies surface; (b) Choose one node for reconstructions: in this case, it represents a node at the bifurcation.
(c) Neighboring nodes are selected with respect to (w.r.t) a topological distance of one. (d) Points belonging
to neighboring nodes and the node of interest constitute the point cloud for local reconstruction. (e) Two
blobs with width equal to the estimated radius serve as initial BMs. (f) Final reconstruction is achieved
after fissionning one blob at a time. Thirty subdivisions were necessary to produce the resulting implicit
surface.

ther sections (Sec. 4.5), we detail the proceeding for recovering the whole geometrical
model of the vascular tree.

4.2 Implicit formulation

4.2.1 Implicit function

From a mathematical standpoint, an implicit iso-surface generated by a point-set skele-
ton is expressed as the T-level set S of a function f , a sum of implicit spheres:

f (X ; p) =
Nb∑

j=1
α jΦ

( |X −C j |
ρ j

)

(4.1)

where X ∈ R
3, T ∈ R

+ is the iso-surface threshold, {α j } are weights, and {C j } is the
point-set skeleton. Each implicit sphere # j is defined by a symmetric spherical function,
centered on C j , of width ρ j and following a radial profile. This profile – or kernel – is a
function Φ : R→R

+, rapidly and monotonically decreasing to 0 (Sherstyuk (1999)). pT =
{C T

j
,ρ j } j=1...Nb

is the vector – of dimension 4Nb – gathering centers and widths of the Nb

implicit spheres composing the implicit function. For a depiction of this formulation,
let’s consider a Gaussian kernel Φ(x) = exp(− x2

2 ) and three blobs. Fig. 4.2 illustrates the
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resulting implicit function and its associated T-level S in one-Dimension (1D) and two-
Dimensional (2D).

Blinn (1982) presented this family of functions as a generalization of quadrics sur-
faces. Subsequently, Muraki (1991) was the first to use a Gaussian-based model in the
context of object reconstruction. Such models were called differently depending on the
kernel used (Sherstyuk (1999)). Following the seminal work of Muraki (1991), we shall
use the terms blob for an implicit sphere, and Blobby Models (BMs) as a generic name
for the implicit models.

4.2.2 Kernel choice

Two families of kernels exist: compact and infinite support kernels. The former drops
to zero at a certain threshold distance while the latter decreases to 0 at infinity. In our
application, we are interested in continuous and continuously derivable kernels since
the implicit function f depends entirely on the continuity and derivability of the kernel;
recall that we aim at providing the gradient of the approximated distance function at
any point in space. Owing to their definition – scalar fields drop to 0 after a certain dis-
tance – compact support kernels present nice features: computation efficiency and ray-
casting rendering affinity (Kanamori et al. (2008); Rouiller (2011)). However, the gradient
vanishes after a certain distance which implies that no trustful gradient of the distance
function is available there and subsequently, no recall force can be provided during sim-
ulation. On the other hand, infinite support kernels exhibit extra computational burden
when evaluating the function value and need more sophisticated algorithms for render-
ing, e.g. Marching cubes algorithm. Nonetheless, the gradient is available at any point
in space, thus providing the sought force during simulation. Since all kernels exhibit a
similar bell-shaped profile, one can imagine to take advantage of both types of kernels –
namely compact and infinite support kernels – and thus, provide a double representa-
tion of the same underlying implicit function.

Sherstyuk (1999) presented a comparative study of kernels applied to convolu-
tion surfaces and focused on computational efficiency. Point-based implicit surfaces,

|X−Cj |
ρj

f(X; p)

T

ρ = 0.3, α = 1.2
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Figure 4.2: Implicit function as a sum of 3 Gaussian kernels in (left) 1D and (right) 2D. The implicit contour
S is defined as the locus of points where f (X ; p) = T .
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r

Φ(r) = exp(−a2 · r2)

Gaussian
r

Φ(r) = 1
(1+s2·r2)2

Cauchy
r

Φ(r) = 1/|r|

Inverse

r

Φ(r) = 1/r2

Squared

r

Φ(r) =

{

(1− r2)2 |r| ≤ 1
0 |r| > 1

Quartic polynomial
r

Φ(r) =

{

1− 4/9 · r6 + 17/9 · r4 − 22/9 · r2 |r| ≤ 1
0 |r| > 1

Soft Objects

r

Φ(r) =







1− 3r2 0 ≤ |r| ≤ 1
3

3
2 (1− r)2 1

3 < |r| ≤ 1
0 |r| > 1

Metaballs

Figure 4.3: Kernels expression and shape.

namely BMs, can be seen as a particular case of convolution surfaces. Put another way,
BMs are skeleton-points or point-based primitives when one refers to convolution sur-
faces (Bloomenthal and Shoemake (1991) and Bittar et al. (1995)). In this study, five
different kernels were revisited within a point primitive context: Gaussian, Cauchy, In-
verse, Squared, polynomial – i.e. Quartic polynomial, Soft objects and Metaballs – ker-
nels (Fig. 4.3). Inverse and Squared kernels exhibit singularities at r = 0 leading also
to discontinuities in their derivatives. Aside from these kernels, polynomial, Gaussian
and Cauchy kernels are at least C

1. As a matter of fact, Sherstyuk (1999) concluded that
Gaussian kernel – in the context of point primitives – is the most expensive kernel for
function evaluation. Cauchy kernel turned out to be the second most expensive. In
contrast, polynomial kernels were the cheapest among these five kernels. In conclu-
sion, Cauchy kernel is the best choice when considering infinite support kernels, mean-
while polynomial kernel remains the best choice with regard to finite support kernels
and computation efficiency.

A final word on kernels, let’s dissect the usage of kernels Φ(r ) – introduced in Fig. 4.3
– in Eq. 4.1. Let r be equal to |P −C |. We are interested in kernels derivative w.r.t P

which is needed during the collision handling (contact force computation). Besides, the
same reasoning applies to C which is required during the optimization process. When
deriving this equation, one can observe that a singularity exists at P =C (r = 0):

∂

∂P
Φ(r ) =Φ

′(r )
∂

∂P
r =Φ

′(r )

(
P −C

|P −C |

)

(4.2)

To avoid singularities, one can define an auxiliary function φ as φ(r 2) = Φ(r ). In this
case, its derivative w.r.t P turns out to be:

∂

∂P
φ(r 2) = 2φ′(r 2)(P −C ) (4.3)

Table 4.1 compares both Φ(r ) and φ(r 2) expressions and their respective derivatives w.r.t
P . For the remainder of this work, we use the form φ(r 2) =Φ(r ) where neither φ nor φ′
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|X−Cj |

ρj

f(X; p)

T

ρ = 0.6, α = 1

ρ = 0.9, α = 0.25

|X−Cj |

ρj

f(X; p)

T

ρ = α = 1

ρ = α = 0.25

Figure 4.4: Two blobs scalar field functions (solid lines), generated with Gaussian kernels, and their cor-
responding gradient functions (dashed lines). (left) Blobs with α j 6= ρ j exhibit highly different gradient
profiles due to scaling factor α j /ρ j . (right) Blobs with α j = ρ j display similar height variation on their
respective gradient functions, i.e. the scalar field shows a constant variation with disregard of blobs width.

present with any singularities at 0. As a result, the new implicit function f is defined as:

f (X ; p) =
Nb∑

j=1
α jφ

(

|X −C j |2

ρ2
j

)

(4.4)

where φ is either one of Gaussian, Cauchy, Quartic polynomial or Soft objects kernels.

Kernel Φ(r ) φ(x) (x = r 2) Φ
′(r ) φ′(x)

Gaussian exp(−a2r 2) exp(−a2x) −2a2exp(−a2r 2) −a2exp(−a2x)

Cauchy 1
(1+s2r 2)2

1
(1+s2x)2 − 4s2r

(1+s2r 2)3 − 2s2

(1+s2x)3

Inverse 1/r 1/
p

x − 1
r 2 − 1

2
p

x3

Square 1/r 2 1/x − 2
r 3 − 1

x2

Quartic polynomial
|r | ≤ 1 (1− r 2)2 (1−x)2 −4r (1− r 2) −2(1−x)
r > 1 0 0 0 0

Soft objects
r ≤ 1

1−4/9 · r 6+ 1−4/9 · x3+ 2/9 · r (−12 · r 4+ 2/9(−12 · x2+
17/9 · r 4 −22/9 · r 2 17/9 · x2 −22/9 · x 34 · r 2 −22) 34 · x −22)

r > 1 0 0 0 0

Metaballs
0 ≤ r ≤ 1

3 1−3r 2 1−3x −6r −3
1
3 < r ≤ 1 3

2 (1− r )2 3
2 (1−

p
x)2 −3(1− r ) − 3p

x
(1−

p
x)

r > 1 0 0 0 0

Table 4.1: Comparative table of Φ(r ) and φ(x) (x = r 2) kernel expressions of Fig. 4.3 with r = |P −C |.

4.2.3 Parameters and locality

In the previous section, we described in details the kernel function φ. Eq. 4.4 puts forth
five parameters to be tuned per blob (height, width and the center). Now, we analyze the
role of these parameters. More precisely, we study the usage of 2 parameters: the height
and the width. This study is encouraged by a computational reason since each blob
is controlled by 5 degrees of freedom in 3D. Let’s dissect the expression of the implicit
function and its associated gradient function:

∇ f (X ; p) = 2
Nb∑

j=1

α j

ρ j
· (X−C j )

ρ j
·φ′

(
|X−C j |2

ρ2
j

)

(4.5)
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Height α j and width ρ j are dual in their role with regard to the implicit function.
However, redundancy in parameters can be dismissed by setting α j = ρ j . By this mean,

the gradient vector is independent of α j , thus vector
−−→
C j X is normalized w.r.t the size of

blobs, i.e. a unique parameter, the width ρ j . Moreover, the scalar field benefits from
a constant variation driven by the width. Fig. 4.4 depicts the gradient normalization of
two blobs when setting α j = ρ j , meanwhile blobs with α j 6= ρ j put forth high variations
on their respective gradient profiles.

Incidentally, the same impact is noticeable in the derivative of f w.r.t C j :

∂

∂C j
f (X ; p) =−2

α j

ρ j
·
(

X −C j

)

ρ j
·φ′

(

|X −C j |2

ρ2
j

)

(4.6)
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Figure 4.5: Two scalar field functions representing the same surface at T = 0.4 and generated with 3 Gaus-
sian kernels: (left) α = {0.6715,1.2006,0.8681} and ρ = {0.3722,0.3258,1.0863} takes different values which
exhibit high variations in the scalar field, while on the contrary, (right) the scalar field height is smoothed –
i.e. even variations – by setting α= ρ = {0.3722,0.3258,1.0863}.

A tangible example is the contour S generated with α j 6= ρ j and α j = ρ j in Fig. 4.5.
In contrast to the formulation with α j = ρ j , the scalar field α j 6= ρ j is hilly which hin-
ders the work during the parameter optimization process. A practical effect due to this
redundancy dismissal is the algorithm stabilization during the fine tuning of parame-
ters. Owing to the aforementioned reasons, we set α j = ρ j for the remainder of this
work. Therefore, the implicit function f is written as:

f (X ; p) =
Nb∑

j=1
ρ jφ

(

|X −C j |2

ρ2
j

)

(4.7)

Eq. 4.7 presents mathematically a nice property of BMs, namely, locality. Locality
may be translated by the fact that any subset of blobs may still be a good local approxi-
mation of the BM. This feature of BMs is displayed in Fig. 4.6, where a BM – composed of
3 blobs – may represent a certain contour composed of two parts: a main shape on the
right with a small bump on the left(Fig. 4.6 left); one can locally preserve the shape on
the right – in the vicinity of the selected blobs – by selecting the rightmost blobs (Fig. 4.6
right).
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Figure 4.6: (left) A BM – based on Gaussian kernel – composed of three blobs: we set α j = ρ j and values
were the same as in Fig. 4.2). (right) Local shape preservation is achieved when selecting two blobs within
the BM (locality).
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Figure 4.7: An interventional tool – composed of points A and B – interacting with the implicit surface S.
(left) During simulation, two different T-values may be considered for predicting collisions: T and T + ǫ.
One defining the actual implicit surface S which is used as the constraint surface for computing contact
forces. Another defining an implicit surface Sǫ inside S . No point A inside S is in collision. A prediction
zone is created between S and Sǫ where any candidate point B is regarded as a candidate point for collision.
(right) When a point B of the interventional tool is outside the surface, it is projected onto the surface – at
location B ′ – along the implicit function gradient.

4.2.4 Distance function approximation

In the previous section, we studied the advantages of setting α j = ρ j and in the end, we
proposed a new formulation of the implicit function and its gradient:

f (X ; p) =
Nb∑

j=1
ρ jφ

(

|X −C j |2

ρ2
j

)

(4.8)

∇ f (X ; p) = 2
Nb∑

j=1

(

X −C j

)

ρ j
·φ′

(

|X −C1|2

ρ2
1

)

(4.9)

In this section, we analyze our implicit formulation from a practical standpoint in
the context of collision detection and contact handling. In our particular simulation
context, in order to help predict collisions, and have the function give a valid contact
force direction, we would ideally like to have f ≡D(.,S )) where D(.,S )) is the geometric
distance function to the T-level set surface S .
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As illustration of collision detection and contact handling, consider the case of an
interventional tool composed of points A and B (Fig. 4.7). Two different situations are
possible: no collision (Fig. 4.7 left) or a collision (Fig. 4.7 right) has been detected.

First, points A and B are inside the vessel surface S . For predicting collisions, one
can define a prediction zone within which any point is regarded as a possible candidate
for collision; for instance, point B is a candidate. The prediction zone can be seen as the
zone encompassed by two surfaces, namely S and Sǫ. Their desired distances to the
vessel surface should be respectively D(.;S ) = 0 and D(.;Sǫ) =−ǫ.

Second, once point B is outside the vessel surface S , following the gradient of D, one
can bring back this point to its closest peer B ′ on the vessel surface through a gradient
descent strategy such as Newton-Raphson and accordingly, compute the required recall
force to apply at the interventional tool. As a matter of fact, we can rely on f if it veri-
fies f = g (D); with g a monotonous function: both the point pre-selection for collision
and the outside point reprojection process are unconstrained. Nevertheless, our model
doesn’t ensure such a relationship. For instance, consider a point-set describing a circle,
and we look for a BM whose 0.1-level produces the sought representation. As depicted
in Fig. 4.8 (left), a BM composed of blobs distributed around the center of the circle may
be sufficient to obtain the sought S . However, if we take a look at the scalar field of the
resulting BM, one observes that the scalar field is no longer representative of the dis-
tance function inside S (Fig. 4.8 right). Indeed, the scalar field presents a valley around
the center circle which is not noticeable during the 0.1-level set computation. But the
sought relation remains valid in a narrow band around the T-level set. Our aim is to en-
large this zone as much as possible for enhancing collision prediction and contact force
computations.

Now, let’s consider the case of a single blob. Against this context, the implicit func-
tion f is clearly monotonously related to the distance function and therefore, the im-
plicit function gradient is aligned with the distance function gradient. Meanwhile, the
prediction zone is vast, authorizing the extensive usage of an approximate geometric
distance to the surface such as Taubin (1991) (further details are given in Sec. 4.4.1). Al-
though in the case of one blob, our implicit formulation guarantees desired features for
simulation, these features are not respected when considering more than one blob as
aforementioned. In practice, we follow a strategy by letting a first BM captures roughly
the point-set through placing blobs on the medial axis; and then capturing the details
(Bittar et al. (1995)). In next chapters, we outline our paradigm for ensuring the required
features for predicting collisions and handling collisions.

A final word on the choice ρ j = α j , note that negative weights {α j } allow implicit
spheres to generate concavities in their neighborhood (Muraki (1991) and Bittar et al.
(1995)). If we considered concavities in our formulation, assuredly more flexibility in
the fitting process would be granted, but the distance function approximation would
hardly or not be obtained with the proposed formulation. Fig. 4.9 illustrates the effect
of a negative weight on the scalar field. A valley is formed in the scalar field leading to a
carved surface. However, the gradient of the implicit function is no more to be trusted to
indicate the direction of the recall force. Another side effect of allowing negative weights
would be the extra computational burden due to redundancy, a larger range for {α j }
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Figure 4.8: A BM estimating a circle of 2cm radius. (left) Blobs with α = ρ – and their corresponding con-
tours at 0.1-level – composing the BM. (right) The associated scalar field.
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Figure 4.9: Scalar field function generated with one negative height value for the Gaussian kernels: α =
{−1.2006,0.8681} and ρ = {0.3258,1.0863}. The negative height produces a valley in the scalar field. Con-
sider the line y = 0, ∇ f gives the right direction for the recall force if x > 0, no force at all for x = 0 and on
opposite, repulsive force for x < 0.

would ineluctably increase this burden during optimization.

4.3 Energy formulation

Against an object reconstruction background, Muraki (1991) proposed a method driven
by an energy minimization. The energy translated the fitting problem of BMs to range
data. Later on, a similar methodology was utilized by Tsingos et al. (1995) and Bittar
et al. (1995). Likewise, we opt to employ an energy-based formulation to fit a surface to
Np points P = {Pi }1≤i≤Np

.

The idea of an energy-based framework is to translate the fitting problem as a sum of
external and internal constraints. In other words, the global energy E is a weighted sum
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of constraints, for example, E = αE1 +βE2 +γE3 where α, β and γ are positive hyper-
parameters balancing the interaction of constraints E1, E2 and E3. For computing the
BM that minimizes a certain E , one needs to derive positions and widths of each blob
which requires computing ∂

∂C j
E and ∂

∂ρ j
E , and feed them to a gradient-based minimiza-

tion algorithm, e.g. gradient descent.

Before diving into the energy minimization process, we make a detour by discussing
about input data at our disposal.

4.3.1 Input data considerations

We assume that our input point-sets do not present outliers – or at least a small amount
of outliers – and are unoriented. Nevertheless, orientation for point-sets may be ob-
tained thanks to image gradient in 3DRA patient data. Input data may however present
holes (missing data) and noise which makes the reconstruction task more difficult
(Fig. 4.10). In practice, input data for LIM is provided by RBT.

1. Noise. Input points are corrupted by noise since no segmentation algorithm pro-
vides noise-free results. Accordingly, smoothing constraints must be utilized for
minimizing the impact of noise on the quality of the reconstruction. One classical
solution is to use the squared algebraic distance – i.e. the quadratic error min-
imization between the implicit surface and the input point-set – as proposed in
Muraki (1991). Another classical approach for imposing smoothness consists in
relying on curvature or area of the implicit surface (Lempitsky (2010) and Mullen
et al. (2010)).

2. Missing data. Implicit functions are well-suited for interpolating missing data.
Without a notion of inside/outside for the fitting process, blob placement may
lead to ill-posed configurations and consequently, to wrong reconstructions (Mu-
raki (1991)). In the case where data are missing, blobs can easily slide into these

holes. Once a blob has slid, ambiguity is introduced in the fitting process. To al-
leviate this issue, a constraint can be defined to align the normal to the implicit
surface with the normal provided at input points (Muraki (1991)). Literature puts
forth another way for addressing this problem, namely, guarantee a cohesion be-
tween blobs. This latter solution may be qualified as an internal constraint while
the former is an external constraint which requires that input points are provided
with normals (Kazhdan et al. (2006)). However, normal-based algorithms rely on a
consistent orientation of the normals to perform correctly. Unless reliable normals
are provided, finding such an orientation has been recognized to be an ill-posed
problem when the sampling is sparse and noisy (Alliez et al. (2007)) which is defini-
tively our case (Fig. 4.10). In our case, one can estimate the normal orientation at
input points by considering the 3DRA image gradient at input points.

We review here five classical energy terms used in the literature and introduce two
novel terms in order to alleviate the aforementioned issues with input data. Our review
is based on the evaluation of their performance on the following test scenario.
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Figure 4.10: (left) Point-set extracted at the surface of a small and tortuous vessel with RBT. (right) For a
better depiction, three RBT cylinders and their corresponding point-sets are displayed. Owing to the high
curvature of the vessel, the point-set exhibits unbalanced density of points (top vs bottom points). Besides,
point-set displays holes at its extremities.

Figure 4.11: (left) Input point-set of a synthetic aneurysm to be reconstructed from a BM composed of 4
blobs in red. (right) The noise-free point-set is displaced along the normal direction with a normal distri-
bution (noise corruption).

4.3.2 Test scenarios

Henceforth, we describe the synthetic data at our disposal, initialization conditions and
the optimization framework used for assessing the impact of several energy terms in
the reconstruction outcome. In order to facilitate the study of energy constraints, we
mimicked our input data as 2D input point-set. Thereafter, we detail the different shapes
and the fitting process used for producing the associated implicit contours in Fig. 4.13,
Fig. 4.14, Fig. 4.15 and Fig. 4.16.

Data

Two different shapes were considered: an aneurysm (closed contour) and a vessel (open
contour at extremities). Furthermore, we analyzed the 2D resulting point-set – for each
shape – in a noise-free and noisy configuration.

Aneurysm. This synthetic case was produced for assessing reconstructions from closed
point-sets with concavities. We first used a 2D manually created aneurysm point-set
which was composed of 200 points (Fig. 4.11 left). Normals were computed using finite
differences. Second, we considered the same reconstruction case but this time, from
noisy input data (Fig. 4.11 right). Points were displaced along their normal direction
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using a normal distribution (null mean and 2 pixels for the standard deviation) and the
noise-free normal for each point was used when required.

Vessel. Besides, we intended to show the strength of each energy term when dealing
with holes or open point-sets which reflected our input data (Fig. 4.10). To this end, we
employed an open noisy point-set of a vessel contour – composed of 200 points and 30
pixels wide – to which we added 6 extra points outside the vessel walls so that outliers
were mimicked (Fig. 4.12 left). Following the same guideline as for previous reconstruc-
tion cases, Gaussian noise (null mean and 0.5 pixels for the standard deviation) was
added to the point-set. The normal was computed from the noise-free point-set using
finite differences. A second test point-set was built, where the same 6 extra points were
placed inside the corrupted point-set vessel (Fig. 4.12 right).

Figure 4.12: Open noisy point-set which represents a vessel contour. (left) 6 points were placed outside
the vessel so that outliers are mimicked. Outliers normal was randomly affected. (right) This time, 6 points
were placed inside the vessel and their normal was randomly assigned.

Initialization

Depending on the shape of the aimed point-set, the BM was composed of 4 blobs – for
the aneurysm point-set (Fig. 4.11) – and of 3 blobs (Fig. 4.12) – for the noisy vessel point-
sets – placed inside the point-set.

Optimization framework

The optimization framework alternates between BM fitting and blob fission. First, the
initial BM is fine tuned over all centers and widths. Then, the point farthest from the
surface, P⋆

i
, is computed. Next, the blob, contributing the most to the square function

value f (P⋆

i
)2 at this point, is split. Further details about P⋆

i
selection and the subdivision

of its associated blob, are respectively given in Section 4.4.1 and 4.4.2. Up to here, the
BM refinement strategy described herein is similar to our proposal in Section 4.4. Since
the number of blobs may dramatically increase due to fissionning, we opt for reducing
the number of blobs to be fine tuned at each iteration. With this in mind, the set of
blobs M

⋆

i
, responsible for 90% of f (P⋆

i
)2, is afterward retrieved. Then, thanks to the

locality property of BMs, M
⋆

i
is fine tuned with a representative neighborhood around

P⋆

i
. This latter point-set gathers the points Pi whose Mi presents at least one of the
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blobs in M
⋆

i
. Finally, the subdivision process is stopped when no significant drop on

the energy value is attained as proposed in Tsingos et al. (1995). The same optimization
process was used for all test scenarios. Furthermore, normals were provided with data
and used only when required (not all energy terms need this information).

Evaluation criteria

The Implicit Contour (IC) was discretized in Nq points Q = {Qk }1≤k≤N ′
p

and compared
to the Np points of P . To this end, we used the following metrics – expressed in pixels –
based on the distance from a point A to a discrete contour (point-set) B = {Bk } :

d(A,B) = min
k

||A−Bk || (4.10)

The first one, the Hausdorff Distance (HD) was defined as:

HD(P ,Q) = max{ max
1≤i≤Np

d(Pi ,Q), max
1≤k≤Nq

d(Qk ,P )} (4.11)

which is a classical metric for comparing two point-sets. But the HD is sensitive to gross
localized errors. Subsequently, we completed HD with the Average Symmetric Surface
Distance (ASSD) (Schaap et al. (2009)) :

ASSD(P ,Q) =
1

Np +Nq

(
Np∑

i=1
d(Pi ,Q)+

Nq∑

k=1
d(Qk ,P )

)

(4.12)

which is more representative of what is visually perceived. Note that this measure was
introduced in Section 3.9.7 to evaluate the precision of the centerline location in RBT.
Furthermore, these metrics were computed with the noise-free point-set P and the re-
sulting IC Q, even when considering noisy configurations. For all configurations, 200
points equi-distributed at the IC were used for discretization.

4.3.3 Framework

Remind that our input data are composed of noisy points and may present missing data
(not necessarily at extremities) at the vessel surface. These two issues – missing and
noisy input data – have been recurrently addressed in the literature. Therefore, we re-
view classical energy terms which may fit to our purpose. First, we revisit two energy
terms proposed in Muraki (1991). Then, we introduce two other energy terms from the
literature since the former two constraints were insufficient to produce sound outcomes
in our case.

Data attachment

The squared algebraic distance to the surface, Ed , translates the raw problem of fitting a
surface to scattered data. It is defined as:

Ed =
1

Np

∑

i

(T − f (Pi ; p))2 (4.13)
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Normal alignment

The normal alignment of the implicit surface with the input point-set normals is ex-
pressed through:

En =
1

Np

∑

i

∣
∣
∣
∣ni −

(

−
∇ f (Pi ; p)

|∇ f (Pi ; p)|

)∣
∣
∣
∣

2

(4.14)

where ∇ f (Pi ; p) is the implicit function gradient evaluated at Pi . It translates the com-
pliance of the unit normal to the implicit surface with the unit normal n at the input
points. It forces the normalized gradient of the implicit surface at Pi to coincide with
the normal vector provided at this point.

Cohesion between blobs

To this point, no internal energy was introduced. In the presence of missing data, it turns
out that one can try to enforce a certain cohesion between blobs to impede them from
falling apart and thus generating extra contours/surfaces. In this area, physics bring
about sound models for cohesion, namely the Van der Waals force. In our case, blobs
can be seen as particles located at {C j } and with radii {ρ j }. Hereafter, we define the Van
der Waals energy as:

Ec =
1

Nb(Nb −1)

∑

j 6=k

(
ρ j

|C j −Ck |

)2

(4.15)

This term imposes an attractive force between neighboring blobs. Note that Ec is an
internal energy which relies only on the BM parameters.

Surface smoothing

A side issue of fitting a surface with implicit spheres is the so-called blobby effect; that
is the wavy contour/surface bred when a small number of blobs are employed, for in-
stance, the parent vessel of Fig. 4.14 (left) depicts this issue. Since the interventional tool
often glides along the vessel wall, a blobby contour/surface may introduce jerky motion
which hinders the simulation realism. To alleviate this issue, one can introduce internal
constraints acting directly on the T-level set.

Four smoothness constraints – such as the classical squared Laplacian minimization
– were explored in Lempitsky (2010). Among these internal energies, an efficient term
based on the implicit surface area was revisited which improves upon classical regular-
ization constraints:

Ea =
1

Np

∑

i

(
∂2

∂2
x

f (Pi ; p)

)2

+
(

∂2

∂2
y

f (Pi ; p)

)2

+
(
∂2

∂2
z

f (Pi ; p)

)2

(4.16)

It smoothes the surface according to the minimal area criterion. Note, however, that this
term cannot be considered as purely internal with regard to the implicit surface since it
is evaluated at input points.
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Figure 4.13: Point-set of a synthetic aneurysm to be reconstructed from a BM composed of 4 blobs. Recon-
struction fulfilled through successive subdivision of one blob using the Ed (left) and Ed +10−4

En (right).
The resulting IC is supplied by the green curve while the centers of the blobs composing the final BM are
located by the red crosses.

4.3.4 Configurations

We distinguished two reconstruction situations: reconstructions from closed
(aneurysm) and open (vessel) contours. Both configurations presented a global
energy of the form E = Ed +αEn + βEc + γEa . For each configuration, energy term
weights were tuned so as to produce the best outcomes. Moreover, weights were chosen
so that energy values were of the same magnitude. Several reconstruction trials with
different weights were performed; the best result was chosen according to its visual
correctness, its HD and ASSD scores. Besides, the optimization process was stopped
when the drop on the energy value was respectively below 10−3 and 5 · 10−3 for the
closed and open contour.

Closed contour

A first reconstruction was performed on the noise-free point-set of Fig. 4.13 with two en-
ergy configurations. The left side exhibits the reconstruction using only Ed meanwhile,
the right figure shows the outcome for E = Ed +αEn (α= 10−4).

A second reconstruction was executed on the aneurysm noisy point-set as depicted
in Fig. 4.14. Once again, former configurations – Ed and Ed +αEn – were run in addition
to Ed +αEn +γEa combination. In this situation, α and γ were respectively set to 10−3

and 10−5. Note that α is increased in the noisy configuration so as to enforce regulariza-
tion on the normals.

Table 4.2 sums up both configurations w.r.t HD and ASSD, as well as the number of
blobs required for producing the final IC in Fig. 4.13 and Fig. 4.14.

Open contour

By the same token, we used two cases for validation. Nevertheless, only reconstruction
from noisy point-sets were regarded. For both reconstruction cases, the energy weights
were α= 10−3, β= 10−7 and γ= 10−8. A first case involved the open vessel with 6 outliers
outside the shape (Fig. 4.15). In this situation, we evaluated three energy configurations:
Ed +αEn , Ed +αEn +βEc and Ed +αEn +βEc +γEa .
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Figure 4.14: Same case as those presented in Fig. 4.13 but point-set is corrupted by noise. Reconstruction
is fulfilled through successive subdivision of one blob using the Ed (left), Ed +10−3

En (middle) and Ed +
10−3

En + 5 · 10−3
Ea (right). The resulting IC is given by the green curve while the centers of the blobs

composing the final BM are located by the red crosses.

Configuration HD ASSD # Blobs
Fig. 4.13 left 2.00 0.91 30
Fig. 4.13 right 2.08 0.94 20
Fig. 4.14 middle 224.32 2.07 14
Fig. 4.14 right 8.89 1.76 14

Table 4.2: Two distances measures Hausdorff Distance (HD) and Average Symmetric Surface Distance
(ASSD) – measured in pixels – and the resulting BMs compacity – i.e. the number of blobs (# Blobs) –
for the aneurysm configurations. The first two rows belong to the noise-free point-set while the last two
rows pertain to the noisy configuration.

In the same way, the second reconstruction case referred to the open vessel but
equipped with 6 outliers inside the contour as illustrated in Fig. 4.16. With this intention,
only two energy configurations were appraised since we aiming at showing the action of
Ec and Ea on the IC. In other words, we compared the outcomes for Ed +αEn +βEc and
Ed +αEn +βEc +γEa .

Together with Table 4.2 for the closed contour experiments, Table 4.3 encompasses
figures for HD, ASSD and the number of blobs composing the final BMs in Fig. 4.15
Fig. 4.16.

4.3.5 Preliminary discussion

Fig. 4.13 (left) displays the final IC produced with Ed when considering the noise-free
aneurysm point-set. This energy constraint – as expected – works well in a noise-free
context demonstrating the sub-pixel accuracy obtained, i.e. 0.91 pixels for ASSD as pre-
sented in Table 4.2. The same configuration in a noisy background performed well but
it may be sensitive to variations in the point-set density as depicted in Fig. 4.14 around
the neck of the aneurysm. Moreover, Ed was coupled to En – in Fig. 4.13 (right) – leading
to a more compact BM (smaller number of blobs) due to the alignment induced on the
implicit contour w.r.t to input point-set orientation. Table 4.2 evinces this compacity for
a similar outcome with regard to HD and ASSD.

In the case of the aneurysm noisy point-set, the Ed +αEn configuration introduced a
visible effect, namely discontinuity around the neck of the aneurysm which was trans-
lated by a large value of HD in contrast to a lesser score of ASSD (Table 4.2). This discon-
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Figure 4.15: Open noisy point-set which represents a vessel contour. 6 points were placed outside the
vessel so that outliers are mimicked. Outliers orientation was randomly affected. Reconstruction fulfilled
through successive subdivision of one blob using the Ed + 10−3

En (left), Ed + 10−3
En + 10−7

Ec (middle)
and Ed +10−3

En +10−7
Ec +10−8

Ea (right). The resulting IC is giving by the green curve while the centers
of the blobs composing the final BM are located by the red crosses.

tinuity might be the by-product of the fact that normals were no more consistent with
the input points which led the minimization algorithm to wrong outcomes. Although
one can evoke a problem of weighting in a noisy reconstruction context, configuration
Ed +10−3

En gave birth to another problem when considering missing data and a small
amount of outliers – as illustrated in Fig. 4.15 (left) – that is extra iso-contours. More pre-
cisely, the contour was split in two since outlier points could not be reached from inside
the vessel walls. As a matter of fact, the minimization algorithm tried to take into con-
sideration outliers and their orientation thus leading to expelling blobs and creating and
extra surface (leakage). A final consideration, Ed and En were strongly biased in prac-
tice by even a small amount of outliers (Fig. 4.15). As a result, we needed to introduce
regularization terms.

Against this background, our expectations were confirmed when coupling Ec to
Ed +αEn since blobs stayed inside the shape (Fig. 4.15 middle). On the contrary, when
outliers were inside the vessel walls with the same configuration (Fig. 4.16 left), two ICs
were bred, thus leading to a high value for HD (Table 4.3). Indeed, the IC splitting was
provoked by two facts, namely input data weighting in the data attachment term and
normal vectors inconsistency. During the optimization process, points force equally the
IC to pass through them and align the implicit function gradient with their normals.
Normals inform of the IC interior/exterior which, in the presence of outliers inside the
shape, induces the optimization algorithm to cleave the IC for minimizing both con-
straints. Note that alike situations respect the cohesion constraint, thus suppressing its
effect.

To alleviate this issue in Fig. 4.16 (left), Ea comes into play. The difference in the
outcome was flagrant at first sight (Fig. 4.16 right) and second, HD and ASSD put forth
lower scores in favor of Ea configuration (Table 4.3). Ea prevented the creation of a sec-
ond IC which demanded higher energy. Besides, Ea was applied to the aneurysm noisy
point-set and coupled to Ed and En (Fig. 4.14 right). The benefit of this energy on the re-
sulting IC was a higher smoothness and more resilience to noise. These characteristics
were highlighted around the aneurysm neck and on the bulge where the IC was much
rounder when compared to other configurations. Last but not least, when dealing with
an open contour exhibiting outliers placed outside the vessel, similar outcomes were
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Figure 4.16: (left) Open noisy point-set which represents a vessel contour. 6 points were placed out-
side the vessel so that outliers are mimicked. Outliers orientation was randomly affected. Reconstruc-
tion fulfilled through successive subdivision of one blob using the Ed + 10−3

En + 10−7
Ec (middle), and

Ed +10−3
En +10−7

Ec +10−8
Ea (right). The resulting IC is giving by the green curve while the centers of the

blobs composing the final BM are located by the red crosses.

Configuration HD ASSD # Blobs
Fig. 4.15 middle 23.93 5.15 7
Fig. 4.15 right 23.93 5.13 20
Fig. 4.16 left 1004.00 6.18 8
Fig. 4.16 right 22.05 4.69 9

Table 4.3: Two distances measures Hausdorff Distance (HD) and Average Symmetric Surface Distance
(ASSD) – measured in pixels – and the resulting BMs compacity – i.e. the number of blobs (# Blobs) –
for the vessel. The first two rows belong to the configuration with 6 outliers outside the point-set and the
last two rows pertain to that exhibiting 6 outliers inside the point-set.

observed – as those bred by configuration Ed +αEn +βEc – when this configuration was
combined with Ea (Fig. 4.15 right). Table 4.3 evinces quantitatively similar measures for
HD and ASSD for both configurations.

As a result, four energy terms may be needed in our application when dealing with
noisy point-sets and missing data, that is to say E = Ed +αEn +βEc +γEa . However, the
number of constraints may be further reduced. Indeed, the constraint En was not reli-
able when point-set normals were inconsistent and in particular, didn’t influence the re-
sult (either positively or negatively) when normals were computed from the 3DRA image
gradients. Consequently, we eliminated this constraint without altering the efficiency of
the other constraints, this is to say a global energy : E = Ed +αEc +βEa .

A final word on Ed . It draws the implicit function via the algebraic distance whereas
the implicit surface and the point-set may present a low algebraic error; at some points
where a gross geometric error exists, especially at locations where the implicit function
gradient varies little. Instead, one can imagine employing a geometric criterion that ap-
proximates the geometric distance of the input point-set to the surface. By this mean,
a much accurate fitting of the implicit function may be achieved. Against this back-
ground, Taubin (1991) provides the approximate distance from a point X to the T-level
set S :

di st (X ,S )2 ≈
(T − f (X , p))2

| f (X , p)|2
(4.17)

With this in mind, we tried a novel energy term based on this approximate geometric
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distance:
Eg =

1

Np

∑

i

di st (Pi ,S )2 (4.18)

which translates the geometric distance relation between data points and the T-level
set S . Nonetheless, it uprose that Eg becomes unstable when large distances between
points and the implicit function were considered. In other words, it happened when
the gradient of the implicit function became small, leading to situations where blobs
were placed outside the targeted object due to bad estimation of the geometric distance.
Indeed, Taubin’s approximation formula is a priori only valid within a narrow band of the
T-level set of the implicit.

4.3.6 Our energy-based framework

The current energy formulation seems to tackle the expected challenges with input data.
Yet, one can address several critiques regarding energy terms. First, the internal energy
for cohesion Ec tended to agglomerate blobs (Fig. 4.15 middle and Fig. 4.16 left). Accord-
ingly, it is also compulsory to introduce a repulsive force to counterbalance the attractive
force so that compacity is ameliorated. In this context, Szeliski et al. (1993) proposed a
potential term presenting both attractive, at long range, and repulsive, at close range,
forces in a particle system modeling framework. This is the Lennard-Jones potential
function which has the following expression when considering particles of equal sizes:

ΦLJ (r ) =
[σ

r

]n
−λ

[σ

r

]m
(4.19)

λ is a constant; r is the distance between particle centers C j and Ck ; σ is the finite dis-
tance at which the inter-particle potential is zero (λ = 1). Furthermore, n and m are
physical constants; e.g. in physics, n and m are respectively equal to 12 and 6 with λ= 2.
The former term stands for the repulsive action whereas the latter stands for the attrac-
tive term. Within a physical context, ΦLJ models the attractive Van der Waals force and
the repulsive Pauli force. However, the proposed energy only considered particles of
similar sizes.

In order to take into account blobs of different sizes, the energy term was modified
to suit our purpose as follows:

ELJ =
1

Nb(Nb −1)

∑

j 6=k

(
s
p
ρ jρk

|C j −Ck |

)12

−2

(
s
p
ρ jρk

|C j −Ck |

)6

(4.20)

In our case, σ should be representative of the pair of blobs influence zone, that is to say
their own ρ j . However, the question arises as whose width to pick up. Furthermore, this
distance should vary according to both widths since the inter-particle action is symmet-
ric. For preserving it, we use the geometric mean between both blobs width. Conse-
quently, we set σ to be s times the geometric mean, hence each term is minimal (with
value -1) for |C j −Ck | = s

p
ρ jρk , being repulsive for blobs closer than this distance, and

attractive for blobs further away. It imposes some cohesion between neighboring blobs
to avoid leakage – or expelling blobs – where data points are missing, while preventing
blobs from accumulating within the model.
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Second, the expression of Ea corresponds to the sum of squared diagonal elements
of the Hessian matrix of f . Put another way, Ea is the minimization of the curvature
along privileged directions. Instead of restraining the curvature minimization process
to some directions, one can extent this to the implicit function curvature. For triangular
meshes, mean curvature estimation has brought a vast number of methods (Surazhsky
et al. (2003)). In contrast, a closed form computation at any point in space from an
implicit formulation exists and is given as follows (Goldman (2005)):

κ(P ) =
∇ f t H f ∇ f −|∇ f |2tr ace(H f )

2|∇ f |3
(4.21)

where H f is the Hessian matrix of f , computed at point P . Instead of Ea , we propose to
minimize the square mean curvature κ(P ) as follows:

Eκ =
1

Np

∑

i

κ(Pi )2 (4.22)

This curvature dependent energy is a classical energy term used in active contours
frameworks (Kass et al. (1988) and Angelini et al. (2005)) where κ is mostly provided
by approximation formulae (Williams and Shah (1992)). In this work, we propose to use
the closed-form which is well-suited for implicit surfaces. Eκ reduces the wavy effect
that could stem from modeling a tubular shape with implicit spheres.

In conclusion, we propose to combine these 3 energy terms: E = Ed +αELJ +βEκ.
Behind the rather classical form given above for the energy terms, it is important to no-
tice that the whole energy is known under a closed-form expression. As a consequence,
closed-form expressions were derived for its gradients w.r.t the BM parameters {ρ j } and
{C j }. Equations are given in Appendix B.

In the next section, we describe in details the BM optimization and refinement which
correspond to steps in-between Fig. 4.1e and Fig. 4.1f.

4.4 Blobby model refinement

Muraki (1991) presented an automatic method for generating an implicit shape descrip-
tion from range data, i.e. scattered points supplied with normal vectors. The model was
iteratively refined by subdividing some blobs into two new ones, and optimizing their
parameters according to the energy function. However, with no clue about which blob to
select for subdivision, Muraki (1991) made exhaustive trials composed of: select a blob,
split it in two new blobs and fine tune their parameters. At the end of this process, the
best trial leading to the minimal energy was kept. No efficient heuristic was proposed to
select a blob for fissionning, leading to a very expensive computational process. More-
over, since kernels of infinite support were employed, the reconstruction process was
not localized. Adding a new blob to the BM modified the shape everywhere, even in
areas that were already reconstructed well.

Tsingos et al. (1995) introduced a semi-automatic paradigm in this context. Like-
wise, blobs were progressively subdivided to refine the surface. The presented selection
criterion was based on locality: measuring the contribution of each blob to the data at-
tachment term (Ed ) in a user-defined window, and choosing the main contributor for
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fissionning. Initialization was interactively performed by the user who had to define an
initial set of blobs and a number of slightly overlapping windows. User input is not an
option in our context where thousands of BMs are handled (see Section 4.8). Moreover,
we experimentally noted that this technique was prone to favor small blobs, thus focus-
ing on details, before dealing with areas roughly approximated by one large blob. This
behavior is caused by this selection mechanism using the algebraic distance to the im-
plicit surface. Bittar et al. (1995) addressed the initialization and refinement issue by
proposing to select the position and width of blobs according to a pre-computed medial
axis of the object to reconstruct. In other words, blobs were placed along the medial
axis and initialized with information encoded in it, e.g. the width of the object at the
targeted location. A new blob was placed on unused locations in the medial axis. The
location in the medial axis was selected according to the measure of Ed at data points
located within an spherical window, i.e. the influence range of blobs only available with
compact support kernels. In our case, this heuristic may be reduced to place blobs along
the centerline of vessels. However, this procedure may fail or at least demand significant
effort at capturing details on the vessel surface. A better representation of the blood ves-
sel surface may intuitively be obtained by first placing blobs along the centerline and
then, placing new ones for capturing details, e.g. in the vicinity of the desired area to be
captured. To our knowledge, no heuristic for selection have been proposed based on a
geometrical criterion.

4.4.1 Selection-Subdivision

To correct the poor performance of the selection mechanism based on the algebraic
distance (Tsingos et al. (1995)), our criterion relies upon the geometric distance approx-
imation proposed by Taubin (1991). The idea is to increase the number of blobs where
the BM worst estimates the input points. In essence, details need a finer representation,
thus an increase number of blobs. This paradigm relies upon three steps. First, we find
the point in the input point-set which is farthest to the surface. Next, we find the blob
that is for the most responsible for its estimation. Finally, this blob is replaced with two
new blobs. Henceforth, we describe in details our selection-subdivision heuristic.

The point Pi⋆ farthest to the surface is such that:

i⋆ = arg max
1≤i≤Np

|T − f (Pi ; p)|
|∇ f (Pi ; p)|

(4.23)

Next, the blob # j⋆ where:

f j (Pi⋆) = ρ jφ

(

|Pi⋆ −C j |2

ρ2
j

)

(4.24)

whose iso-surface is the closest to Pi⋆ , is selected, according to Taubin’s distance (see
Fig 4.17c for depiction):

# j⋆ = arg max
1≤ j≤Nb

|T − f j (Pi⋆)|
| f j (Pi⋆)|

(4.25)

Note that these criteria – based on Taubin’s distance – are valid in large areas be-
cause we set α j = ρ j in the definition of f whose expression provides a BM function
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graph without bumps. The subdivision step then replaces this blob with two new ones
(Fig 4.17d). Their width ρ′

j⋆
is chosen such that two blobs, centered on C j⋆ , of width

ρ′
j⋆

would have the same iso-surface as one blob centered on C j⋆ , with width ρ j⋆ (the
formula depends on the kernel). That is to find r such that:

ρ j⋆φ

(

r 2

ρ2
j⋆

)

= T (4.26)

Then find ρ′
j⋆

so that:

2ρ′
j⋆φ




r 2

ρ′
j⋆

2



= T (4.27)

where r is the Euclidean distance from C j⋆ to the iso-surface.
Incidentally, the cohesion energy ELJ may become large w.r.t other energy terms,

when two blobs occupy the same location. Therefore, the optimization process tends to
expel one of the blobs, thus suppressing the effect of the subdivision process. As a rule
of thumb, the first new blob is centered on C j⋆ , while the second is translated by ρ j⋆/10
towards Pi⋆ . This heuristic copes with singularities with ELJ and guides the process
towards better fitting Pi⋆ .

4.4.2 Optimization

Such a gradual subdivision procedure may lead to a dramatic increase in the number
of blobs, and hence the size of the optimization problem. The locality of the kernel
φ allows us to focus the optimization onto the newly created pair of blobs (Fig 4.17e).
More exactly, only the new blob, that is slightly misplaced, is optimized; the other blobs
remain constant. By this way, we intend to reflect the impact of adding a new blob only
in the newly created blob and not on the already fitted surface. The energy is minimized
using Polak-Ribiere conjugate gradient (PR) algorithm, taking advantage of the closed-
form expressions of both the energy and its gradients. Partial derivatives of energy w.r.t
changes in width and positions are given in Appendix B. A single minimization loop
consists in one PR minimization over the center (3 variables), followed by one on the
width (1 variable). In practice, a maximum of 5 loops proved sufficient.

4.5 Implicit Modeling

In this section, we explain the overall implicit modeling algorithm (Alg. 4). To this end,
we decompose the process in two phases: the overall implicit modeling and the Local
Implicit Modeling.

4.5.1 Overall implict modeling

The vascular tree segmentation result (RBT) is input to our algorithm as a tree of cen-
terlines. Every centerline node {Nl }1≤l≤L is equipped with a cylinder Cl = (Ol ,rl ,

−→
d l )

(where Ol , rl and
−→
d l are respectively the cylinder center, radius and direction) – that lo-

cally estimates the vessel radius and direction – and a sampling of the blood vessel sur-
face P

0
l

. The idea is to enrich each centerline node with a local implicit representation of
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(a) Initial BM (b) All blobs are fined tuned

(c) A blob is selected for subdi-
vision

(d) The selected blob is split in
two new close blobs

(e) One new blob (initial posi-
tion in cyan, final in green)

(f ) The BM is updated and go
to to Fig. 4.17c

Figure 4.17: The elementary reconstruction step in 2D. (a) Points (black) are to be reconstructed with two
blobs (red contour). (b) First, all blobs are fined tuned over the positions and then, over the widths. (c) Sec-
ond, find the point farthest to the contour (cyan) and the blob closest to it (purple). (d) Third, replace this
blob with two blobs. The first (black contour) is placed at the same position (black) and the second (cyan
contour) is translated in the direction of the farthest point (cyan). Widths are calculated so that both blobs
centered at the black point generate the same iso-surface as the fissioned blob (purple). (e) Fourth, the
translated blob (cyan) is tuned over its center and width. (f) Finally, the BM is updated by integrating the
recently tuned blob.
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the local blood vessel surface. Next section addresses the production of these local im-
plicit surfaces. In order to ensure smooth transitions between adjacent BMs (Fig. 4.1d),
the local data point P

0
l

sets are concatenated so as to overlap with their neighbors, e.g.
neighboring nodes typically located at a topological distance T = 2 are used. We thus
equip each node Nl with a point-set P l =

⋃
Pk so that T (Nl ,Nk ) ≤ 2.

The main steps are given in Algorithm 4. First, the algorithm places two blobs – which
constitute the initial BM – at reconstruction node on the centerline. These two blobs are
placed along the vessel direction ~dl so that an elongated shape is formed, and the radius
ρl is scaled so it matches the vessel radius rl (Fig. 4.1e and Algorithm 4.2). That is:

ρlφ

(

r 2
l

ρ2
l

)

= T (4.28)

Second, an implicit surface which fits P l is produced through subdivision and fine
tuning of the initial BM blobs. Once the whole vasculature is locally reconstructed, the
final BMs are tied to their respective point on the centerline (Alg. 4.4). As a result, each
node Nl encompasses a cylinder (Ol ,rl , ~dl ), a point-set P l and a BM Bl , thus describing
the local blood vessel surface in its vicinity. In this algorithm, each local BM is treated
independently of others, thus enabling parallel computation.

Algorithm 4 Overall implicit modeling

Require: {Nl }, T , Ns and tg .
1: for all Nl do
2: Initialization: Bl : place 2 blobs with diameter adapted to the vessel width, along the

vessel direction. P l : concatenate local data points.
3: Fitting process: Bl = LIM(Bl , P l , Ns , tg ) (Alg. 5)
4: Centerline enrichment: Associate Bl to Nl .
5: end for

4.5.2 Local implicit modeling

In this section, we describe the mechanism for generating a final implicit surface which
fits each one of the {P l } point-sets – as defined in the previous section – from an initial
BM (Algorithm. 4.2). This process involves selection (Alg. 5.3), subdivision (Alg. 5.4) and
optimization (Alg. 5.5) stages which are repeated until a number of subdivisions Ns or
threshold accuracy tg is attained (Alg. 5.6) The following three steps are thus applied on
the initial BM:

1. A first energy minimization is performed over the full BM (Fig 4.17a-4.17b), with a
single minimization step, i.e. all centers (6 parameters) then all widths (2 parame-
ters) of its two blobs (Alg. 5.2) (repeated 5 times).

2. The subdivision process is applied, as described in Section 4.4.1 (Fig. 4.17c-4.17f
and Alg. 5.3-5.5). The process is stopped when a maximum number Ns of subdi-
visions is reached, or the distance between Pi⋆ – i.e. the point farthest from the
surface – and blob # j⋆ drops below a threshold tg (Alg. 5.6).
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Figure 4.18: Implicit modeling of an aneurysm. The points {Pi } are in red. (From left to right) Initialization
with a single blob ; after the first minimization ; after 25 subdivisions ; final result (100 subdivisions)

3. The model is fine tuned by a single energy minimization step over the full BM (3Nb

parameters for the centers and then Nb parameters for the widths), repeated 5
times as in step 1 (Alg. 5.7).

Algorithm 5 Local Implicit Modeling

Require: Centerline node = Cylinder and point-set P .
1: function LIM(B,P ,Ns ,tg )
2: Global energy minimization: Single minimization over all centers and then over all

widths of B (5 loops).
3: Selection: find the point farthest to the surface Pi⋆ and then the blob # j⋆ closest to it

(Eq. 4.23).
4: Subdivision: replace it with two new blobs (B is updated). The first is centered at C j and

the second is displaced towards Pi⋆ .
5: Optimization: The translated blob is to be optimized, the others remain constant,

through a single energy minimization step (5 loops).
6: Stopping criteria: Stop the process if the maximum number of subdivisions Ns is reached

or the distance between Pi⋆ and blob # j⋆ is below a threshold accuracy tg . Else repeat from
step 3.

7: Final optimization: Fine tune over all centers and then all widths of B (as in step 2, 5
loops).

8: end function

Redundant blobs are either ejected far away from the surface during the optimiza-
tion over the centers, or their widths are reduced to almost zero during the minimization
over the widths. A simple clean-up procedure is applied after each single or full mini-
mization step: blobs relatively far from the node position (Ol ), and blobs whose widths
are below a certain distance are removed from the BM. In combination with the subdivi-
sion process, this clean-up enables the algorithm to simulate large blob displacements,
which is hardly possible with the local minimization, thereby adding robustness to poor
initialization: the clean-up procedure removes blobs meanwhile the split process adds
blobs back at another place. Figure 4.18 illustrates the essential steps of this fitting algo-
rithm and its capacity to model complex shapes, such as aneurysms, even from rough
initialization (one blob at the aneurysm entrance).
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Figure 4.19: Selection of a local BM during simulation. The current local BM surface used to solve the
constraints at the tool tip is displayed in wire-frame for 4 simulation steps. The overall vessel surface is
shown in transparent red. Discrepancies with the BMs might occur, due to this surface being simplified in
order to minimize the CPU load devoted to visualization.

4.6 Using the local implicit models for simulation

Most of the interventional tools are slender and their motion can be defined by that of
longitudinal nodes. During a simulation step, contact with the vessel surface must be
detected and solved for each point on the tool. Our first approach for solving collisions
was to link each tool point to its closest point on the centerline and use the associated
local BM as the surface constraint. In order to take into account the topology and avoid
jumps into KVs, only the neighbors of the current centerline node are considered as
candidates to update the surface constraint during the motion of the tool (see Fig. 4.19).
However, this approach may fail at situations where tiny vessels stem from large vessels.

For sake of clarity, let’s consider two nodes of a vascular tree as depicted in Fig. 4.20
(left). A tool point P sliding on the surface of the largest vessel becomes associated to
node NA when facing the tiny vessel at time t . Then P becomes unable to reach node
NB and continue its smooth motion. Indeed, point P during simulation is treated with
regard to the implicit surface (SA) of NA . Since at t +1, P lies outside SA as in Fig. 4.20,
it is projected back onto it due to contact force computation. This projection is repeated
indefinitely unless P crosses the median plane – i.e. the locus of points X defining the
plane passing through point m:

d(X ,O A) = |X −O A| = d(X ,OB ) = |X −OB | (4.29)

A solution to this issue is to translate this frontier – along the segment [O AOB ] – pro-
portionally to the two implicated nodes radii, r A and rB . It turns out to be the same as
considering the power diagram – also known as (a.k.a) weighted Voronoi diagram – of
the current associated node and the candidate node. In this particular case, the power
diagram consists of two half-planes separated by a line where both circles have equal
power:

d⋆(X ,C A) = |X −O A|− r 2
A = d⋆(X ,OB ) = |X −OB |− r 2

B (4.30)

The locus of points X respecting Eq. 4.30 are represented by the cyan line in Fig. 4.20
(right). In summary, the frontier position – for relaying a tool point from one node to
another – is dependent of the vessel width.
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Figure 4.20: A tiny vessel stems from a portal vessel. In this situation, a tool point P using the local implicit
surface SA (dashed contour) associated to node NA needs to attain a certain distance – i.e. a plane – to
be associated to node NB in order to employ implicit surface SB (filled region). The plane position varies
whether relying on the Euclidean distance – i.e. the Voronoi diagram – (left) or on a Power diagram (right)
– i.e. the weighted Voronoi diagram.

The interest of the weighted Voronoi diagram is to keep the planar decomposition of
the space which generates polyhedral cells. Indeed, these latter are helpful for visualiza-
tion as described in the next section.

4.7 Visualization

We have to show visual results of our model. However, our model is adapted to sim-
ulation, but not to visualization. We translated the above BM selection procedure to
give a visual impression of the result in the next section: each local iso-surface was first
extracted with marching cubes, and was then cut by the radical planes separating the
current centerline point from each of its neighbors, i.e. intersect the surface with the
cell associated to the current node in the power diagram. No blending was performed
between adjacent BMs. The final surface presents as a stack of individual surfaces.

4.8 Experimental validation

In this section, we evaluate the proposed geometrical model bred with LIM. To this end,
we first present the patient data at our disposal and the synthetic data specially created
for exhibiting the strength of our LIM algorithm. After this short introduction to our
input data, we explain our proceedings for parametrizing our algorithm as well as tech-
nical choices taken for this evaluation. Afterwards, we describe the evaluation measures
used for appraising robustness, modeling capability and efficiency of our proposal. Fi-
nally, we present the experiments carried out for this purpose.

4.8.1 Clinical data

Patient data was the same as that used to validate RBT in Chapter 3. The set of 10 patient
data thereto was used for validation. Each patient data set consisted of a 3DRA acquired
on a vascular C-arm (Innova 4100, GE Healthcare) during the intra-arterial injection of
the internal carotid artery. 3DRA volumes presented as a 5123 isotropic voxel cubes,
between 0.18-0.22 mm voxel size.
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Input data was provided by RBT algorithm which was first run on the carotid artery
(the stem vessel of the vascular tree) and subsequently, all vessels were tracked. A total of
379 instances of RBT were needed and between 26-56 instances per patient were exam-
ined. Moreover, a total of 11 aneurysms were segmented with the algorithm described
in Chapter 3.7. Table 4.4 reports in detail these values for each patient.

4.8.2 Synthetic data

We intended to provide cases close to those found in clinical data. For that, four 3D
shapes were considered which mimicked possible reconstruction instances: arc (A), bi-
furcation (B), capsule (C) and capsule opened at extremities (Co). In order to provide
a smooth and continuous representation of these shapes, shapes were generated using
convolution surfaces from point-based skeletons with Cauchy kernel (see Fig. 4.21 for a
depiction). Point-based skeletons were created as follows:

A. The arc was created using the following formula which gave the skeleton point
location:

C =C0 + r ∗






cos(t0 + t · t1)
si n(t0 + t · t1)

0




 (4.31)

where r = 4, t0 = 0, C0 =~0, t1 =π and t ∈ [0,1.0] (step 1/100). A total of 100 blobs of
width ρ = 0.2 were necessary for generating the convolution surface in Fig. 4.21a.

B. The bifurcation was the resultant of two arcs summation: the first was computed
with r = 4, t0 = −π/6, C0 =~0, t1 = 8π/9, t ∈ [0,1.0] (step 1/100) and 100 blobs
of width ρ = 0.2; and the second generated with r = 4, t0 = π/6, C0 = [2,−4,0]T ,
t1 = π/3 and t ∈ [0,1.0] (step 1/100) and 100 blobs of width ρ = 0.15. Blending is-
sues were limited as follows: the two arcs were separately polygonalized; their cor-
responding meshes were subsequently merged thanks to MeshLab1; and finally,
the widths of both skeletons were fine tuned so that the vertices of the resulting
mesh were correctly approximated by the convolution surface (Fig. 4.21b).

C, Co. The capsule skeleton was provided by a line segment along the x-axis from -4 to
0. 11 blobs of width ρ = 0.2 were placed along the line segment to produce the
shape in Fig. 4.21c and Fig. 4.21d.

1First, the meshes (visible layers) were flatten and then, we applied a Poisson surface reconstruction filter with octree
depth of 10, the solver divide was set to 9, and the remaining parameters were set to default. This software is available
under ❤tt♣✿✴✴♠❡s❤❧❛❜✳s♦✉r❝❡❢♦r❣❡✳♥❡t

Patient 1 2 3 4 5 6 7 8 9 10 Total
Instances 32 39 23 25 36 56 26 51 26 34 348

Aneurysms 1 2 1 1 1 3 1 0 1 0 11

Table 4.4: Number of RBT instances per patient and the number of aneurysms segmented for 10 3DRA
patient data.

http://meshlab.sourceforge.net
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(a) Arc (b) Bifurcation (c) Capsule (d) Open capsule

Figure 4.21: Synthetic data: four convolution surfaces (blue) generated with point-based skeletons (red).
300 points evenly spaced where placed on the surface.

For all shapes, an iso-value of 0.1 was used and the distance from the surface to one
skeleton point was 1.0 mm. This distance is representative of a medium vessel width in
our clinical data-set.

For providing input data to LIM, we employed an equi-distributed point-based sam-
pling technique (Witkin and Heckbert (1994)). This way, 300 points were placed for
each shape (Fig. 4.21) which served as a scattered representation of each input shape
– thus breeding input point-set P . For the open capsule, we placed 500 points on
the surface and once all the points homogeneously placed, a bounding box (Cmi n =
[−4.1,−1.6,−1.6]T and Cmax = [0,1.6,1.6]T ) was utilized for clipping to 300 points and
providing an open scattered representation (Fig. 4.21d). This synthetic data was used to
evaluate the Local Implicit Modeling algorithm (Alg. 5).

4.8.3 Parametrization

The algorithm parameters were tuned on one node of the carotid artery of one patient.
The tuning process was executed on this node (initial BM fitting its own and neighbor
points), and thereafter the resulting parameters were used for all both patient and syn-
thetic data. The energy weights were tuned so the energy values are of the same order
of magnitude. For Lennard-Jones energy, s was set to 2 so that the natural distance be-
tween two blobs is twice the geometric mean of their width. The iso-level value T was
chosen to be approximately half the voxel size. To ensure smooth transitions, a topolog-
ical distance T = 2 was used for generating the local point-sets P l for each node.

We chose “Cauchy” kernel for its computational efficiency and infinite support. All
results were produced with following Cauchy kernel: φ(x) = (1+ x2/5)−2 (dividing fac-
tor 5 normalizes the kernel such that φ′′(1) = 0). Note that our method is not kernel-
dependent, and was successfully used with the computationally expensive Gaussian
kernel.

During the clean-up procedure, blobs further than 20 mm from the node (5 times
the diameter of the largest artery), and blobs whose width was below 0.02 mm (10% of
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Parameter Description Value
α hyper-pameter for the Lennard-Jones energy 10−5

β hyper-pameter for the mean curvature-based energy 10−3

s controls the repulsive distance in Lennard-Jones energy 2
T iso-level value 0.1
Ns maximum number of subdivisions 100
tg accuracy threshold (distance of a point to the surface) 0.3 mm

Table 4.5: Parameter values for the proposed vessel tracking and reconstruction algorithms.

the voxel size) were removed from the BM. Indeed, since we set the weight of each blob
equal to its width, blobs whose width is below T do not generate any iso-surface (per se
the maximum function value is ρ j < T ). Values are summarized in Table 4.5.

4.8.4 Evaluation measures

In order to quantify the error of fit, we would ideally have to compute the geometric
distance between the ground truth surface Sr and the implicit surface produced by LIM,
hereafter the test surface St . We first sampled St using the same sampling technique
as for synthetic data (Witkin and Heckbert (1994)), into a point set Q. In the synthetic
case, Sr is available. For each point Q in Q, we computed its Geometric Distance (GD)
to Sr by projecting Q onto Sr resulting in Q ′. We thus define:

GD(Q,Sr ) = |Q −Q ′| (4.32)

However, no Sr surface is available with patient data and we have to resort to other
means of evaluating the error of fit. We here took advantage of Taubin’s approximate
Geometric Distance (TaGD):

TaGD(St ,P ) =
|T − f (P ; p)|
|∇ f (P ; p)|

(4.33)

to qualify how close the implicit surface St – defined as the T -isosurface of function f –
fit an input point P .

Simple statistics (min, max, mean) on TaGD values could be used to quantify the
error of fit onto a whole input point-set P . However, P is noisy, and contains a few
outliers, such that the mean value of TaGD could be biased. We resorted to computing
a robust statistic: the error of fit dB M for a given BM is defined as the 90th percentile of
TaGD over input point-set P . The same error of fit is used with GD on synthetic data.
Note that this criterion is very strict and much harder to meet than the usual mean or
even median value.

A different distance is used for synthetic data and patient data. In order to validate
the use of TaGD, we also computed it on synthetic data and compared it with ground
truth criterion GD.

4.8.5 Validation protocol

We aim at providing figures characterizing compacity, accuracy and robustness to noise
of LIM. To this end, we decomposed this assessment in two parts. First, we investigated
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the accuracy, resilience to noise and compacity of LIM when applied to synthetic data
where ground truth is available. Second, our LIM algorithm was applied to patient data.
In this second study, we first visually assessed the outcomes produced by LIM. Next, we
evaluated its accuracy w.r.t the threshold accuracy tg and the number of subdivisions
Ns .

In one hand, Ns influences the compacity of the resulting BM since it controls the
maximum number of subdivisions. The by-product of this is also an impact on the ca-
pability of LIM to capture complex shapes. Put another way, a lower number of blobs
authorizes simpler shapes while on the contrary, a raise in the number of blobs allows
for more complex shapes. On the other hand, tg has a direct impact on the accuracy of
the reconstruction since it stops the reconstruction process when all points are at a dis-
tance threshold to the BM. We also provided figures for time computation on the entire
data-set. Last but not least, we quantified the compacity of our model.

4.9 Results

4.9.1 Reconstruction on synthetic data

In a first step, we considered synthetic data – i.e. the four shapes described in 4.8.2 –
as ground-truth. Hereafter, we designate the four shapes as the reference surfaces Sr .
Surface reconstruction was performed under two situations: noise-free reconstruction
and reconstruction from noisy scattered data.

Noise-free reconstruction

We observed the evolution of Ns and how it affected the resulting BM. This study aimed
at providing figures for LIM compacity and accuracy. tg was set to 10−3 mm which is a
sufficient value not to be responsible for stopping the reconstruction process. Ns took
values ranging from 1 to 100 and for each value of Ns a BM was produced. Fig. 4.22 ex-
hibits the dbmfor these BMs. Finally, we selected the BM presenting the lowest figure –
among the 100 BMs – regarding the GD (corresponding Ns values are given in Fig. 4.22).
Fig. 4.23 displays the selected BMs for each reference surface. By the same token, Ta-
ble 4.6 recaps the minimum and maximum distances for these BMs, as well as the Ns

providing such result from Nbi initial blobs.

Robustness to noise

We virtually corrupted noise-free data with noise in order to provide significant figures
which translated LIM robustness to noise and accuracy w.r.t Sr . Gaussian noise with
standard deviation varying from 0.025 to 0.25 mm (step 0.025) was used for corrupting
Sr dense sampling whose positions were accordingly translated along the normal di-
rection to the surface, measured at each noise-free data point P . The resulting noisy
points constituted P which was fed to LIM. tg was set to three times the noise standard
deviation and Ns was set to 100. 1K points (Q) sampled homogeneously the resulting
BM – obtained with the method described in Witkin and Heckbert (1994) – and were uti-
lized for computing both GD and TaGD. Reconstruction, sampling of the final BM and



98 Chapter 4. Blood Vessel Reconstruction

20 40 60 80 100

5 · 10
−2

0.1

0.15

0.2

100

Ns

G
D

Arc

20 40 60 80 100

0.1

0.2

0.3

0.4

62

Ns

G
D

Bifurcation

20 40 60 80 100

2

4

6

·10−2

13

Ns

G
D

Cylinder

20 40 60 80 100

8 · 10
−2

0.1

0.12

0.14

99

Ns

G
D

Open Cylinder

Figure 4.22: The maximal GD value for 100 BMs reconstructed from Sr sampling. For sake of clarity, values
1 and 2 for Ns were excluded from charts. The BM with the lowest figure was selected (see Fig. 4.23) and
quantitatively further detailed in Table 4.6. However, we can see that all the shapes were very well modeled
with no more than 20 blobs.

(a) Arc (A) (b) Bifurcation (B) (c) Cylinder (C) (d) Open cylinder (Co)

Figure 4.23: Fitting of 300 points (white) from initial BMs (red) and producing the blue surface.

computation of both distances were repeated 300 times for each reference surface, more
precisely 30 times per noise standard deviation. For assessing the geometric precision,
we measured the fit error dbm (in mm) with both the GD and TaGD. In practice, dbm was
computed between Sr and Q for a given noise level.

Table 4.7 reports the minimum, median and maximum of the dbm distribution for
the 300 tests, as well as the corresponding distribution of the Ns carried out.
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Shape A B C Co

TaGD
mi n 10−5 2 ·10−4 2 ·10−5 1 ·10−4

med 0.007 0.01 0.006 0.016
max 0.027 0.051 0.016 0.063

GD
mi n 10−4 2 ·10−4 3 ·10−4 3 ·10−4

med 0.007 0.01 0.006 0.016
max 0.028 0.048 0.017 0.060

Nb 100 62 13 99
Nbi 5 5 2 2

Nbr 101 202 11 11

Table 4.6: Minimum (min), median (med) and maximum (max) distances (mm) computed between the
original shape and the BM with the lowest geometric error to noiseless input points. Metrics are computed
with Taubin’s approximate Geometric Distance (TaGD) and the Geometric Distance (GD). The initial BM
was composed of Nbi . The reference surface was modeled by Nbr blobs, meanwhile the resulting BM with
the lowest GD presents Nb blobs. Four shapes were considered (see Fig. 4.23): arc (A), bifurcation (B),
cylinder (C), open cylinder at extremities (Co).

Shape A B C Co

dbm TaGD
mi n 0.016 0.046 0.015 0.038

medi an 0.064 0.079 0.041 0.103
max 0.146 0.211 0.164 0.175

dbm GD
mi n 0.016 0.048 0.015 0.039

medi an 0.063 0.078 0.042 0.119
max 0.174 0.334 0.189 0.233

Nb

mi n 8 12 5 5
medi an 15 15 7 9

max 102 15 89 83

Table 4.7: Four shapes were considered: arc (A), bifurcation (B), cylinder (C), open cylinder at extremities
(Co). All shapes have a radius of 1.0 mm. Gaussian noise was added along the normal to the surface to
300 points on the reference surface. The standard deviation σ varied from 0.025 to 0.25 mm (step 0.025),
300 tests per shape were run with tg = 3σ and other values set to values in Table 4.5. The minimum (min),
median (med) and maximum (max) values of the error fit distribution dbm (in mm) and computed with
Taubin’s approximate Geometric Distance (TaGD) and the Geometric Distance (GD) for the 300 noise con-
figurations. For comparison with Table 4.6, the distribution of the resulting BM number of blobs Nb distri-
bution is also given.
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(a) Arc (b) Bifurcation (c) Cylinder (d) Open cylinder

Figure 4.24: Reference surface (blue) and the resulting BMs (purple) for maximal values in Table 4.7.

Discussion

Table 4.6, our local implicit modeling framework confers to LIM a high robustness to
bad initialization. As a result, a rough initialization of LIM with two blobs per node were
enough when contending with real patient data. LIM can capture complex shapes from
a few number of blobs. For instance, 5 blobs were necessary to initialize our modeling
procedure for capturing a bifurcation composed of 202 blobs as illustrated in Fig. 4.23.
In contrast to other point-based approaches – such as Radial Basis Function (RBF) (Buh-
mann (2003)) – which usually treat the problem of centers collocation by using a com-
plete set/pruned version of point data (Turk and O’brien (2002); Mouat and Beatson
(2002); Carr et al. (2003) and Macêdo et al. (2009)) or utilizing a dedicated approach to
provide them (Samozino et al. (2006); Chen and Lai (2007) and Gelas et al. (2007)).Then,
they adjust the implicit function weights to input data; we let the BM centers move
which confers LIM robustness to bad initialization.

In a noise-free context, LIM displays a precision ranging from 0.01-60·10−3 mm (Ta-
ble 4.6) which represents 0.05·10−3-3% of the shape thickness (2mm). In average, 50%
of input points lies at less than 0.01·10−3 mm from the resulting implicit surface. A pal-
pable increase in both distance maxima is noticed in a noisy context. In general, these
values remain below the maximal noise standard deviation (0.25 mm) as Table 4.7 sum-
marizes. Fig. 4.24 shows visually good surfaces which correspond to the resulting BMs
for maximal values in Table 4.7. A word about Nb , Fig. 4.22 evinces that after a certain
Ns , the precision of the fitting is degraded. For example, consider the open cylinder
case with Ns = 18 (with value 0.061) against Ns = 97 (with value 0.060 in Table 4.6). In-
deed, LIM attains an optimal Nb which is suited to the shape complexity. Although lower
figures can be achieved, it implies to increase Nb which may hinder accuracy and inci-
dentally, compacity. Besides, LIM will need more than one iteration to propagate and
correct this deterioration. Note that LIM possesses a mean to counterbalance this prob-
lem through tg .

When noise can be characterized (assuming a Gaussian model), LIM produces – in
average – compact representations where a smaller number of blobs are required for the
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same reconstruction complexity. For instance, the average ratio between the number of
blobs producing the lowest GD values in Table 4.6 with the median number of blobs in
Table 4.7 is 5. This feature of LIM confers to the final BM a low dbm since it prevents
the reconstruction process from pursuing levels of detail drowned in noise. It turns out
that low values for Nb in Table 4.7 were the by-product of an adapted tg for the shape
complexity. For instance, the bifurcation required between 12 to 15 blobs. We believe
that LIM used a lesser Nb since input points covered a larger area when compared to
other cases. Consequently, LIM had more space for placing blobs without producing
small fluctuations on the resulting implicit surface which could produce large fit errors.
In which case, LIM may demand more blobs for propagating this error.

To evince the correctness of TaGD, we used both GD and TaGD for appraisal. It turns
out that figures with both metrics were always similar for minimum and median values.
Nevertheless, TaGD tends to slightly underestimate GD when further away from the sur-
face but still of the same order of magnitude. With this in mind, we reckoned that TaGD
could be used for computing dbm for evaluating LIM results on real patient data.

4.9.2 Reconstruction on patient data

We also applied the LIM algorithm to real data. We used the same hyper-parameters as
before (see Table 4.5). Only Ns and tg remained to be fixed. We let Ns = {30,50,100} and
tg = 0.2,0.3,0.5 mm vary for recording their impact on the accuracy of the reconstruc-
tion, the computation time and compacity of the model. Thereby, 9 algorithm configu-
rations were investigated depending on parameters tg and Ns .

4.9.3 Visual assessment

For providing a triangulated surface of our geometrical model, we used the method pre-
sented in Section 4.7. For this purpose, a volumetric representation of each local BM
was produced (on a grid of the same voxel size as the 3DRA data) and used to drive a
Marching Cubes algorithm. Finally, each triangulated surface was cut with regard to its
neighbors and assembled as a stack of individual surfaces. Accordingly, a triangulated
surface was computed for each algorithm configuration. A sample result on patient 10
for Ns = 100 is shown on Fig. 4.25. One can observe the impact of tg on the volumet-
ric representation: for tg = 0.2 mm, variations on the main vessel surface are visible; in
contrast, tg = 0.5 mm smoothes them; tg = 0.3 mm displays a good trade-off between
accuracy and smoothness.

4.9.4 Accuracy

As already stated, ground-truth for comparing the resulting local BMs with the vascular
surface is unavailable. Consequently, we only relied on the TaGD – validated on syn-
thetic data – and used it for computing dbm . We looked at how tg impacted the recon-
struction quality by including 4 classes for dbm over all gathered patients: dbm < 0.5 · vs ,
0.5 · vs < dbm < vs , vs < dbm < 2 · vs and 2 · vs < dbm ; where vs is the voxel size. We used
vs because it was different for each patient and is related to the point extraction error.
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Figure 4.25: Geometrical model for patient 10 at different values for tg : (From left to right) 0.2mm, 0.3mm
and 0.5 mm. The top row displays the whole geometrical model while the bottom row presents their respec-
tive close-ups to the stem vessel. tg = 0.2 mm presents variations in the stem vessel surface. On the other
hand, tg = 0.5 mm smoothes these variations. tg = 0.3 mm displays a fair trade-off between smoothness
and accuracy.

tg 0.5mm 0.3mm 0.2mm
Ns 100 50 30 100 50 30 100 50 30

dbm < 0.5 · vs 51.37 51.37 51.37 88.65 88.63 88.54 97.15 96.96 96.58
0.5 · vs < dbm < vs 47.67 47.64 47.61 11.00 10.96 10.97 2.60 2.73 3.01
vs < dbm < 2 · vs 0.84 0.85 0.86 0.25 0.28 0.34 0.15 0.20 0.26
2 · vs < dbm 0.12 0.14 0.16 0.10 0.12 0.15 0.09 0.11 0.14

Table 4.8: Distribution in % of the BMs according to the error of fit (dbm , in voxel) in 4 classes (left column).
vs is the voxel size of the 3DRA data which ranges from 0.18 to 0.22 mm. 9 algorithm configurations were
investigated depending on parameters tg (targeted accuracy of fit) and Ns (maximum model complexity).

Table 4.8 reports the distribution, in percents, of dbm measured on all 87564 BMs (for
each configuration).

4.9.5 Computation time

For each configuration, i.e. given tg and Ns , we measured the time – in minutes and
seconds (min:sec) – required for reconstructing a patient. For a given tg , we compared
all Ns configurations against their time magnitudes. Since time magnitudes for Ns con-
figurations were similar for a given patient, we exploited the average computation time
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Patient 1 2 3 4 5 6 7 8 9 10

tg
0.2

µ (min:sec) 27:59 23:30 15:36 11:14 15:37 32:46 17:40 25:27 12:27 18:22
σ (min:sec) 05:14 04:12 02:58 01:10 01:25 04:15 03:12 01:21 00:47 01:02

0.3
µ (min:sec) 16:25 13:58 10:30 06:29 10:32 22:43 11:44 16:42 08:45 12:42

(mm)
σ (10−4 sec) 4.7 6.9 8.5 0.8 6.1 13.2 7.3 1.4 3.7 1.9

0.5
µ (min:sec) 09:09 07:59 06:56 03:20 05:49 12:40 07:01 08:10 04:48 06:14
σ (10−4 sec) 1.5 3.3 6.2 0.4 5.3 4.6 2.9 1.0 3.2 0.6

Nb 9341 8307 4630 5260 8930 14042 5487 13866 6961 10740

Table 4.9: Time computation for 9 configurations grounded on the threshold accuracy tg = {0.2,0.3,0.5}
(mm) and the number of subdivisions Ns = {30,50,100} for each patient data. For each tg configuration, the
average computation timeµ and its standard deviationσwere computed on all Ns configuration outcomes.
Green and red colored cells respectively represent the lowest and the highest values for a tg row. Nb gives
the number of BMs modeling patient’s vasculature.

tg (mm) 0.2 0.3 0.5

Nb

N s = 30 766021 532831 325799
Ns = 50 810056 546509 330852

Ns = 100 857332 563953 339302
N̄b (for one patient) 81114 54776 33198
σNb

(for one patient) 4570.3 1562.1 683.3
Γ 9.5 6.4 3.9

Table 4.10: Compacity assessment for 9 algorithm configurations depending on parameters tg (targeted
accuracy of fit) and Ns (maximum model complexity). A total number of 87564 BMs for 10 patients were
considered. The total number of blobs Nb per configuration is provided. For a given tg and a patient,
compacity Γ was computed as the ratio between its average number of blobs – computed on all Ns – and
the total amount of BMs for this patient. The average compacity Γ is supplied – as the mean of all compacity
ratios at the same tg .

µ and its standard deviation σ. Table 4.9 accounts for these outcomes for all tg configu-
rations.

4.9.6 Compacity

First, we aimed at surveying the influence of tg and Ns on the total number of blobs Nb

composing all 10 patient implicit models. Therefore, we counted Nb for all 9 reconstruc-
tion configurations on the data-set. The number of BMs (number of nodes) needed to
represent the 10 patients, were fixed by the tracking algorithm (87654 BMs). Nb didn’t
depend much on Ns (see Table 4.10 first row). Therefore, we computed compacity Γ:
for a given tg and a patient, it was furnished as the ratio between its average number of
blobs – computed on all Ns – and the total amount of BMs for this patient. The average
compacity Γ is supplied – as the mean of all ratios compacity ratios at the same tg . Table
4.10 summarizes these figures regarding the influence of tg on the model compacity.

Second, we focused our surveying on the compacity of the proposed geometrical
model w.r.t a triangular model. A rule of thumb to measure the compacity of our model,
is to count the number of primitives used. For each patient, we compared the total
number of blobs Nb to the number of triangles #△ in a vessel iso-surface mesh of a sim-
ilar visual quality (see e.g. Fig. 4.26, left). Triangulated surfaces generated for the visual
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tg (mm) Ns

#△
Nb

min med max

0.2
30 52 66 82
50 48 62 79

100 44 58 77

0.3
30 83 109 142
50 78 107 141

100 73 104 138

0.5
30 171 244 318
50 166 240 314

100 159 234 308

Table 4.11: For each configuration, a triangulated surface was generated from the final geometrical model
reconstructed with LIM. The number of triangles #△ for the triangulated surface and the number of blobs
Nb composing the local implicit model were recorded. Distribution of the minimum (min), median (med)
and maximum (max) ratio between #△ and Nb for all patients is given.

inspection were also considered for this assessment. Table 4.11 reports the minimum,
median and maximum distribution of ratios between the #△ and Nb for all patients and
configurations.

4.10 Discussion

When visually assessing outcomes produced with LIM, these demonstrate the strength
of our proposal at producing geometrical models presenting very good vessel resolu-
tion and smooth transitions between neighboring BMs (Fig. 4.25). Furthermore, LIM
confers the possibility to capture tiny vessels, as well as different blood vessel sizes and
widths; without mentioning its modeling capability at capturing complex topology. As
depicted in the last row of Fig. 4.25, LIM possesses the ability to fine tune the detail
level encoded in the geometrical model through one single parameter, i.e. the thresh-
old accuracy tg . Besides, a visual comparison between a geometrical model produced
with a classical Marching Cubes algorithm and LIM reveals that more vessels are visible
with our proposal (see Fig. 4.26 top row). Furthermore, vessels are correctly represented
when considering KV issues, in other words, no blending issues (see Fig. 4.26 bottom
left). In addition, LIM correctly modeled bifurcations which exhibited smooth transi-
tions despite gaps between stem and branching vessels.

As a matter of fact, two parameters primarily control LIM: the number of subdivi-
sions Ns and the threshold accuracy tg . Together with synthetic data, LIM is capable
of reducing the impact of noise on the final outcome. Table 4.8 shows that 99% of BMs
present sub-voxel dbm for all configurations. Besides, the lower tg is set, the more BMs
are below 0.5 voxel regardless Ns value. In essence, tg regulates the precision of the BM
w.r.t input data. Conversely, Ns has very little impact on this control.

Speaking about computation time, LIM takes between 3-33 min to model one pa-
tient. This time is dependent on the patient morphological complexity and the aimed
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Figure 4.26: Visual assessment on patient 6 (from left to right): iso-surface from the raw data set ; iso-
surface from the BMs (13956 models, 51272 blobs, tg = 0.3, Ns = 100): much more vessels are visible; close-
up showing smooth transitions between models ; close-up on a small artery branching onto the carotid:
the connection is difficult to model

precision (tg ). For instance, patient 4 presented the lowest time figures among all pa-
tients (Table 4.9), meanwhile patient 3 possess the lowest Nb . This evinces that for a
given LIM parametrization, the time for reconstruction is merely driven by patient mor-
phology. As a rule of thumb, we can say that – for a given patient – time computation
doubles when considering a certain tg configuration to its lower counterpart. Besides,
computation time for tg equals 0.3 and 0.5mm displays similar figures regardless the
value for Ns . On the contrary, we believe that tg = 0.2mm shows remarkable variations
on time scores LIM modeling noise at this precision level (see Table 4.10), hence it di-
rectly impacts the time spent on optimization. We deem that the best trade-off between
time computation and accuracy for our data-set is tg = 0.3mm. Note that these figures
were generated with 3 cores and it may be further reduced by using multi-cores frame-
works.

In average, LIM implicit models – for all 87564 BMs – produced similar number of
blobs Nb regardless Ns and compacity ranges from 4 to 9.5 blobs as Table 4.10 recaps.
A noticeable difference in Nb is observed for tg = 0.2mm. Since this value is closed to
voxel size, LIM was driven to model also the noise. When comparing a triangular model
with our implicit model, the ratio #△/Nb ranged from 44 to 318, with an average of 134
(Table 4.11). Ratios are slightly similar for a given tg regardless Ns . In conclusion, Ns

has very little influence on the result. Therefore, we chose Ns = 100 to confer LIM high
modeling capabilities without restrictions on the number of blobs. The best trade-off
between compacity and precision remains for tg = 0.3mm with 6.4 blobs and a ratio of
100 triangles to 1 blob per BM.
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4.11 Conclusion

In this chapter, we proposed a novel reconstruction method called LIM and dedicated
to blood vessel modeling which produces a suited implicit model for numerical simula-
tions. In practice, LIM relied on RBT input data but many other valuable methods can
provide this initial structure (Lesage et al. (2009)). Generally speaking, LIM demands a
set of points, located on the local blood vessel surface, should be associated with each
point on the centerline as input data. However, should the vessel surface be available
as a mesh; selecting the vertices in the vicinity of each point on the centerline should
also provide such a point-set. In this case, our method could be seen as a mesh im-
plicitization. LIM aims at enriching this centerline with an implicit surface fitting the
blood vessel surface local dense sampling. This implicit surface satisfies simulation re-
quirements: it provides a continuous scalar field, representative of the distance function
for predicting collisions; and the implicit function gradient is aligned with the distance
function gradient so as to give a valid recall force outside the implicit surface. For re-
trieving such an implicit surface, LIM proceeds in three steps. First, local data points are
concatenated according to a topological distance T = 2 and an initial BM composed of
two blobs is created. Second, for each node on the centerline, the BM is iteratively fis-
sioned and fine tuned so as it fits the local point-set. During the fitting process, centers
are allowed to move, thus authorizing LIM to be particularly resilient to bad initializa-
tion. Third, the resulting BM is associated to its corresponding node on the centerline.
Finally, the resulting set of local implicit surfaces is supplied under the same tree struc-
ture.

Results on synthetic and patient data showed the strength of LIM when dealing with
noise and a small amount of outliers. To this end, we used the fit error dbm based on
two different distances: Geometric Distance (GD) and Taubin’s approximate Geometric
Distance (TaGD). Besides, the minimum, median and maximum statistical values were
also employed. First, we evaluated LIM on typical shapes such as curved and straight
vessel portions; and bifurcations. Within this context, LIM exhibited its robustness
against bad initialization – 2-5 blobs were utilized as initial BM during the reconstruc-
tion process. Our assessment was centered on robustness to noise, accuracy and com-
pacity. The LIM algorithm produced watertight surfaces. When dealing with noisy
point-sets, it was able to create – in average – compact representations which presented
a fit error below noise level. In a second stage, LIM was applied to real patient data on
which we evaluated the visual quality, accuracy, computation time and compacity of the
resulting BMs. For this purpose, we let tg and Ns vary leading to 9 configurations. Note
that the ten patients were reconstructed thanks to 87564 BMs. These outcomes dis-
played smooth transitions and high modeling capabilities at reconstructing tortuous,
tiny vessels; bifurcations and aneurysms. Besides, our local reconstruction approach
allowed to handle nicely KV issues and thus avoid unwanted blending. Moreover, 99%
of all BMs presented a fit error below voxel-size for a small amount of blobs (4 to 9.5)
per BM. In a final assessment, we compared our proposal outcomes with classical tri-
angulated surfaces for each patient and it turns out that LIM model was a very compact
representation of the vascular tree (in average the ratio #△/Nb was 134).
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Previously, ten patient specific implicit models were generated using an infinite sup-
port kernel, i.e. a Cauchy kernel. Nevertheless, the proposed modeling method is
generic and can make usage of compact support kernels. A double representation of
the same underlying implicit function brings about a tremendous interest for collision
detection and management. The usage of the compact kernel-based representation is
preferred for inside/outside tests and for handling collisions when the interventional
device is inside or close to the vasculature; meanwhile the infinite support kernel-based
representation provides a mean to compute recall forces far outside the vasculature –
e.g. after a sudden and strong motion whereas the implicit function gradient is null with
the compact support kernel. Besides, a compactly supported kernel-based geometrical
model may be easily obtained from an infinite support kernel representation. Indeed,
one can easily translate blobs width into the new kernel domain and then resort to a
single tuning iteration of all widths.

Despite good transitions on the final implicit model, discontinuities between models
are present. These discontinuities are not kernel dependent, but are mostly sensitive to
inhomogeneities in the point-set density. Although discontinuities are below voxel size,
we believe they prohibit using our model for blood flow simulation using Computational
Fluid Dynamics (CFD) at the present time.

A word on Eκ constraint which is an external energy term in our current implemen-
tation. More precisely, it is computed at each data point:

Eκ =
1

Np

∑

i

κ(Pi )2 (4.34)

whereas its continuous counterpart is calculated over the entire implicit surface leading
to a purely internal energy term:

Eκ =
∫

κ(A)2d A (4.35)

It turns out that Eκ evaluation of Eq.4.34 is scale invariant. For illustration, consider
the case of a single blob centered at the origin and fitting a unit circle which in turn, is
sampled by {Pi } points. The mean curvature of this blob is expressed as follows:

κ=−
1

r
(4.36)

where r is the constant distance from points {Pi } to the blob center. The fact of changing
the blob’s width has no impact on the evolution of Ea value. That is because the points
are fixed and not located on the T-level set.

With this in mind, a correct computation of Eκ may demand a discretization or equi-
distributed sampling of the implicit surface so that the integral term is better approxi-
mated. To this end, one can resort to similar sampling techniques as proposed in Witkin
and Heckbert (1994). This energy presents a double interest. First, Eκ smoothes the sur-
face according to the minimal area criterion when correctly computed. Indeed, surface
area minimization is analogous to the square of mean curvature minimization (Joshi
and Séquin (2007)). Incidentally, it turns out that this energy term has the same mini-
mizer as the Willmore energy since its minimization is reduced to the square of mean
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curvature minimization over the surface (Joshi and Séquin (2007)):

Willmore Energy =
∫

1

4
(κ1 −κ2)2 d A (4.37)

=
∫(κ1 +κ2

2

)2
d A−

∫

κ1κ2d A

Bending Energy =
∫

(

κ2
1 +κ2

2

)

d A (4.38)

=
∫

4
(κ1 +κ2

2

)2
d A−

∫

2κ1κ2d A

=
∫

4κ2d A−
∫

2Gd A

=
∫

κ2d A+C (4.39)

where κ1, κ2 are the principal curvatures; G is the Gaussian curvature; and C is a topo-
logical constant when the surface topology does not change during optimization. Sec-
ond, it may lessen discontinuities introduced by inaccuracies due to bad calculation
during the minimization process of Eκ.

It is worth to point out that a lot of effort was dedicated at providing sound energy
constraints with closed-form expressions. Moreover, we improved upon previous works
(Muraki (1991); Bittar et al. (1995) and Tsingos et al. (1995)) since – to our knowledge –
no subdivision process relying on a geometric criterion was introduced. A path for im-
proving LIM points toward a correct computation of energy constraints, together with
a method for better ensuring smooth transitions between BMs; and a proposal for the
clean-up procedure as an energy constraint. In the next chapter, we quantify the effi-
ciency of our implicit model created with LIM and compare it against classical meshed
geometrical models routinely used in a real-time simulation context.
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✺
APPLICATIONS: COIL EMBOLIZATION SIMULATION

In this chapter, we review the simulation framework presented in Dequidt et al. (2007) and

further detailed in Dequidt et al. (2009). Within this framework, we apply our dedicated

geometrical model to an interactive simulation context. For this purpose, we consider

validation of the computational efficiency and realistic behavior against synthetic data

as well as clinical data. Furthermore, we quantify the increase in performance and in

realism with the proposed model when compared to triangulated surfaces.
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5.1 Introduction

In previous chapters of this work, we described a series of algorithms to model the arte-
rial vasculature from patient data, as a tree of local implicit surfaces.

A large part of simulation realism, in particular for surgical simulation, relies upon
the ability to describe soft tissue response during the simulated intervention. This for-
mulation is unquestionably related to the nature and the purpose of simulation. In our
application of coil embolization, we believe that realism is essentially grounded on a
sound mechanical formulation of the interventional tools, the smoothness and accu-
racy of geometrical models for soft tissue and above all, the interaction between these
two constituents. In this chapter, we aim at showing the strength and the affinity of
the proposed implicit model in the interactive simulation context of aneurysm coil em-
bolization. For this purpose, we compare our dedicated surface model with a classical
polyhedral surface, namely a Triangular Mesh (TM), within the deformation framework
presented in both Dequidt et al. (2007) for convolution surfaces/implicit surfaces and
Dequidt et al. (2009) for the case of polyhedral models. Both paradigms are available un-
der the state-of-the-art deformation platform Simulation Open Framework Architecture
(SOFA) 1 and are clearly not part of our contributions.

First of all, we expose the needs for a coil embolization simulation (Section 5.2). In
section 5.3, generally speaking, an elementary step during simulation is distilled. Next,
we describe the general outline of the deformation framework (Section 5.4). Later on,
we describe the data at our disposal and the experiments we carried on (Section 5.5).
Finally, we discuss about our outcomes (Section 5.6) and conclude (Section 5.7).

5.2 What do we need for a coil embolization simulation?

In the context of interactive coil embolization simulation, a user is integrated in the sim-
ulation process who may change the course of it. Indeed, the physician manipulates
interventional tools such as guide-wires, coils and catheters; and he/she reacts to the
behavior and shape of the tool during the simulation when navigating through the vas-
culature, as seen in fluoroscopy. This reaction is very difficult to model model but is a
crucial input. The calculation thus has to be interactive. Against this interactive back-
ground, it is often admitted that only a few milliseconds are available for computation
so as to have the feeling of interactivity. For instance, refreshment rates for visualiza-
tion should be at least 25 Hz; and for haptic feedback, a computation frequency of 300
Hz (1 kHz when possible) should at least be met (Duriez (2013)). The simulation must
be realistic or accurate but above all, the simulation needs to adapt – in real-time – to
the patient’s data and to take into account the user’s feedback. The interaction between
the geometrical model and the interventional tool is ensured by the deformation frame-
work. Therefore, the simulation realism is translated by two facts: the geometrical model
for blood vessels should be as accurate as possible and the deformation of the simulated
medical devices should allow similar motion to that observed in a real intervention (e.g.
gliding, looping, etc). No deformation of the vascular model is intended since our pro-

1❤tt♣✿✴✴✇✇✇✳s♦❢❛✲❢r❛♠❡✇♦r❦✳♦r❣✴

http://www.sofa-framework.org/


5.2.1. Time integration and numerical choices 111

posed geometrical model currently does not handle deformations (perspectives in this
area are provided in Chapter 6). Besides, deformation of the vasculature assuredly im-
proves realism but also introduces extra computational burden. As a result, the vascula-
ture is considered as a rigid object for the remainder of this work. Despite this lack, we
demonstrate the effectiveness and efficiency of our implicit model in a interactive con-
text. Regarding the mechanical device deformations – in our simulations – we aim at
modeling the global behavior of interventional devices, e.g. catheter, coil, guide, etc. In
conclusion, the simulation is composed of two models: one for the mechanical devices
and another for the vasculature.

5.2.1 Time integration and numerical choices

Before speaking about a plausible mechanical model, we briefly describe numerical
choices concerning time integration utilized in the SOFA platform. Deformable mod-
els are often modeled as second order mechanical systems with non-linear equations.
Moreover, these models are often constrained by complex boundary conditions. In our
case, user interaction comes into play and consequently, we do not have a perfect con-
trol of these boundary conditions and variable simulation parameters such as gesture
delays (virtuality against reality) and intensity of solicitations. To alleviate this issue,
implicit integration schemes provide unconditional stability at the expense of solving a
large system of equations. Indeed, such schemes support constant and large time steps
while maintaining the computations as simple as possible. As a result, an integration
approach based on implicit Euler and coupled with a linearization per time step is em-
ployed.

Let’s consider Newton’s second law in the case of a generic dynamic deformable
model:

M(u(t ))v̇ =P(t )−F(u, v, t )+H T λ (5.1)

where u ∈ R
n is the vector of generalized Degrees of Freedoms (DoFs), M(u) : Rn 7→

M
n×m is the inertia matrix, v ∈ R

n is the velocity vector. F represents internal forces
applied to the simulated object depending on the current state and P gathers external
forces (user inter-action). H T λ ∈ R

m is the vector gathering the m constraint forces.
H T is the matrix containing the constraint directions and λ ∈R

m is the vector gathering
the constraint forces intensities. M(u) and F(u, v) are derived from the physics-based
deformable model.

We aim at providing a linear time-stepping implicit integration of Eq. 5.1. To this
end, let’s consider the time interval [ti , t f ] whose length is h = t f − ti . Therefore, Eq. 5.1
becomes:

M(v f − vi ) =
∫t f

ti

(P(t )−F(u, v, t ))dt +hH T λ (5.2)

u f = ui +
∫t f

ti

vdt (5.3)
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Figure 5.1: Forces acting on a beam element whose axis is defined by points 0 and 1 (left): axial forces F1
and F7; shearing forces F2, F3, F8 and F9; bending moments F5, F6, F11 and F12; and twisting moments
(torques) F4 and F10. The local Frenet frame F0 = [n0, t0,b0] located at extremity 0 helps for expressing
displacements induced by these twelve forces (right).

To evaluate integrals, the following implicit Euler integration scheme is adopted:

M(v f − vi ) = h
(

P(t f )−F(u f , v f , t f )
)

+hH T λ f (5.4)

u f = ui +hv f (5.5)

But still, F is a non-linear function, subsequently, we calculate its first order Taylor series
expansion:

F(ui +du, vi +dv) = Fi +
∂F

∂u
du +

∂F

∂v
dv (5.6)

where Fi is the value of function F at time ti . We set du = u f −ui = hv f (Eq. 5.5) and
dv = v f − vi . Next, we replace them in Eq. 5.6:

F(u f , v f ) = Fi +
∂F

∂u
h(dv + vi )+

∂F

∂v
dv (5.7)

Finally, we substitute Eq. 5.7 in Eq. 5.4 and obtain the following linear approximation:

(

M+h
∂F

∂v
+h2 ∂F

∂u

)

︸ ︷︷ ︸

A

dv
︸︷︷︸

x

=−h2 ∂F

∂u
vi −h(Fi −P f )

︸ ︷︷ ︸

b

+hH T λ f (5.8)

where P f is the value of function P at time t f . Before solving the linear system Ax =
b+hH T λ f , we need to find the intensity of the constraint forces at time t f – i.e. λ f . The
mechanism for retrieving this unknown is provided in Section 5.3.

5.2.2 Mechanical model

Against a coil embolization background, medical devices are wire-like structures which
behave like deformable rods or tubes. Interventional devices have a common denomi-
nator, their cross-section is negligible when compared to the device length. When this
applies, interventional devices meet sound models grounded on beam theory. With this
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in mind, the catheter, guide-wire and coil models consist of a series of non-linear de-
formable beam elements. As Fig. 5.1 illustrates, a beam element is a straight bar of uni-
form cross-section, length l , cross-section area A, having two extremities – designated
by 0 and 1 in Fig. 5.1 – and capable of resisting axial forces F1 and F7; shearing forces
F2, F3, F8 and F9; bending moments F5, F11, F6 and F12 about the two principal axes
in the plane of its cross-section, and twisting moments or torques F4 and F10 about its
centroidal axis (Przemieniecki (1985)). Axial, and shearing forces produce 3 translations
x1, x2 and x3 along the local Frenet frame F0 = [n0, t0,b0] on the extremity where they
are exerted. By the same token, bending and twisting moments produce 3 rotations
with respect to (w.r.t) the extremity – i.e. θ1, θ2 and θ3. More precisely, a beam element
possesses twelve DoFs – i.e. 6 translations and 6 rotations due to both extremities –
which are gathered in vector X = [x1, x2, x3,θ1,θ2,θ3, x4, x5, x6,θ4,θ5,θ6]T and expressed
according to F0. The variation of these twelve quantities between two simulation steps
ti and t f – e.g. the positions of the beam – represents the displacement vector δX in-
duced to the beam:

δX = X (t f ) −X (ti ) (5.9)

For the remainder of this chapter, we call node the extremity or common extremities
of the N beams composing the medical device (Fig. 5.2 left). Let F (i ) = [F1

(i ), . . . ,F12
(i )]T

and δX (i ) = [x1
(i ), . . . , x12

(i )]T be respectively the vector gathering all the forces acting on
a single beam i = 1, . . . , N and the vector encompassing the displacement originated in
the same beam. Note that forces {F (i )} represent the internal forces derived from the
physics-based model in Eq. 5.8 but expressed in their corresponding frame Fi . Beam
theory assumes that deformations remain small at the level of each element. When it is
the case, the relation between the forces and displacements in the local frame is stated
as follows:

δF (i ) = K (i ) ·δX (i ) (5.10)

where K (i ) is the stiffness matrix of beam i . K (i ) matrix is symmetric and composed
of four 6x6 matrices (Przemieniecki (1985) and Duriez (2013)):

K (i ) =
[

K00
(i ) K01

(i )

K (i )
10 K (i )

11

]

(5.11)

with matrix K01
(i ) = K10

(i )T
. Hereafter, we give the expressions for matrices K00

(i ), K10
(i ),

and K11
(i ) :

K00
(i ) =

E

l















A

0 12Iz

l 2(1+Φy )

0 0
12Iy

l 2(1+Φz ) s ymmetr i c

0 0 0 G J
E

0 0 −6Iz

l (1+Φy ) 0
(4+Φz )Iy

1+Φz

0 6Iz

l (1+Φy ) 0 0 0
(4+Φz )Iy

1+Φz















(5.12)
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with G = E
2(1+ν) ; where E is the Young’s modulus and ν is the Poisson’s ratio; Iy and Iz

are the cross-section moments of inertia; Φy = 12E Iy

G As y l 2 and Φz = 12E Iy

G As y l 2 denote shear de-
formation parameters with As y and Asz the shear area in the y and z directions. These
matrices relate the DoFs with the exerted forces over one beam on its local frame. Con-
sequently, we need to describe the deformations undergone by the whole tool.

Accordingly, we need a matrix relationship between the variation of the position in
the local coordinate system δX and the variation of the node position in the global co-
ordinate system δQ. This relationship is expressed by the matrix equation:

δX (i ) =Λ(i )δQ(i ) (5.15)

where Λ(i ) is a diagonal matrix allowing the change of basis between the local and global
coordinate systems.

As a result, the linearization of the element force-displacement equation is obtained
in the global frame:

δF(i ) = [ΛT
(i )K

(i )
Λ(i )]δQ(i ) (5.16)

where δF= [δF(1), · · · ,δF(N )]T is the vector encompassing the associated forces. Likewise
as Eq. 5.10 locally relates forces {F (i )} to beams displacements {δX (i )} in their respective
frames {Fi }, it is mandatory to define a common reference frame for all beam elements
so that local displacements are referred to their vector force in this global coordinate
system. Indeed, internal forces F are added to external forces P which are defined in
a common reference frame (Eq. 5.8). The idea is to only work in a global coordinate
system by using both the node position before deformation and the computed variation
of its position after deformation. The sought relation expressing F w.r.t displacements
δQ in a global coordinate system is written as follows:

δF= KδQ (5.17)
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Figure 5.2: The medical device is modeled as a series of N = 4 beam elements B (i )/i = {1, · · · , N }. (left) The
mechanical device’s stiffness matrix K – of dimension (6(N +1)×6(N +1)) – represented in a global frame
has rank 6N . (right) Meanwhile, the proximal extremity 0 in the mechanical device is fixed so that matrix K

– of dimension 6N ×6N and rank 6N – becomes invertible.

With this in mind, the stiffness matrix K of all beam elements is of the form:
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and of dimension 6(N +1)×6(N +1) and rank 6N – i.e. not invertible.
Note that there are forces summation at beam connections (common extremities)

which is translated by the interpenetration of individual stiffness beam matrices (col-
ored squares) in Eq. 5.18 and intuitively observed at nodes of two beams (Fig. 5.2 left).

One important feature of this model is that computation is performed segment by
segment between only two local coordinate systems and then, deformations of the me-
chanical tool are retrieved automatically in a common frame.

A final word, the interventional tool is described by a curve which in turn is dis-
cretized in N beams as already stated. For computing an overall physics-based behav-
ior, N is consequential which may hinder the interactive context. One can think about
a possible trade-off between N and the realistic behavior. However, realism is our main
concern. One important player in this area, is the interaction between the tool and the
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blood vessel surface – i.e. the contact response. In order to leverage computation ef-
ficiency and contact response accuracy, each beam is in turn discretized in M points.
As a result, the interventional tool is composed of N ×M points for the collision detec-
tion phase and of N beams for the physical behavior computation. When one of these M

points collides, the resulting force exerted at this point is distributed to its corresponding
beam extremities (0 and 1). By this mean, a small number of beams presenting this tech-
nique are required for ensuring similar outcomes when compared to a classical beam
approach.

5.2.3 Geometrical model

In this section, we review some of the interesting features for the models involved in this
application: our Blobby Model (BM), presented in Chapter 4; and a classical Triangular
Mesh (TM). Our stand point for this theoretical comparison, is the main characteristics
of both models, in particular, applied to the specific context of coil embolization simula-
tion. With this in mind, five points are to be revisited: accuracy of the object representa-
tion, efficiency for collision detection in a real-time context, smoothness and continuity
of the model, higher derivatives computation and topology availability.

First of all, Blobby Models (BMs) are continuous representations of a desired object
and whose analytical expression is available. In contrast, TMs are discrete models that
parametrically represent a surface. As a result, one major difference between both mod-
els is smoothness. BMs – depending on the selected kernel – may be C∞ continuous
, while TMs are basically C 0 continuous but they may be promoted to C 2 continuous
surfaces almost everywhere through a Catmull-Clark technique. One downside is that
these techniques pursue a geometric criterion for interpolation without considering im-
age data.

In one hand, BMs have proven to achieve sub-voxel accuracy for a relatively small
number of blobs (Chapter 4). On the other hand, TMs are just an approximation of the
true geometry and need to increase the number of triangles – to the detriment of the
model compacity – to improve precision in the representation.

Regarding collision detection, implicit surfaces, and so BMs, supply an easy way to
test whether a point is inside or outside the surface by probing the function value sign at
the point position. In contrast, more sophisticated machinery is necessary when han-
dling collision detection for triangular meshed objects but for which, a vast literature
in this field is at hand (Teschner et al. (2005) and ?). Incidentally, Bounding Volume
Herarchies (BVH) have proven to be among the most efficient data structures in this
area. Beyond that, these techniques may benefit from hardware acceleration and dedi-
cated architectures (Avril et al. (2009)). Nevertheless, we deem that these methods may
fail when dealing with Kissing Vessels (KVs). Indeed, BVH only encodes the object ge-
ometry which – in this case – may be insufficient for detecting collisions since vessels
are physically in contact.

Another key point to be highlighted is the availability of certain differential quanti-
ties, e.g. the normal. BMs provide the surface normal through the normalized gradient
to the surface and TMs estimate the normal by computing the plane passing through
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the triangle vertices. In the first case, normals are continuously, smoothly defined over
the surface while in the second case, normals – for a patch of the true object covered by a
triangle – turns out to be unique. When normal refinement is required, this ineluctably
falls into the interpolation domain.

Our Local Implicit Modeling (LIM) procedure also provides the topology of the re-
constructed vascular tree. More precisely, the topology encoding is automatically in-
tegrated during the tracking procedure with RANSAC-Based Tracking (RBT). Whereas
TMs exclude the topology in the parametrical representation, dedicated algorithms for
retrieving the topology information and more precisely for centerline extraction (Pic-
cinelli et al. (2009)) from meshed surfaces, exist (Cornea et al. (2007)). However, we
believe that user inter-action is still required for correcting wrong outcomes, specially
when dealing with KVs.

5.3 Elementary step simulation

In our case, the coil embolization simulation can be seen as two objects: one de-
formable, i.e. the medical device or tool; and the other rigid, i.e. the vascular geometry
or patient data. For the sake of clarity, we rewrite Eq. 5.8 as Eq. 5.19 which – without loss
of generality – applies to both objects:

(

M+h
∂F

∂v
+h2 ∂F

∂X

)

︸ ︷︷ ︸

A

dv =−h2 ∂F

∂X
vi −h(Fi −P f )

︸ ︷︷ ︸

b

+hH T λ (5.19)

A1dv1 = b1 +hH T
1 λ

A2dv2 = b2 +hH T
2 λ

(5.20)

As already stated, λ is unknown and can be seen as Lagrange Multipliers that place con-
straints on both objects so that a certain physical behavior is obtained. To solve these
equations, we consider one simulation time step as follows: the tool is only driven by
user supplied forces to a particular position – the so-called free motion; and then, the
geometry is taken into account during the mechanical behavior computation of colli-
sions between the tool and the vasculature. Up to this point, we have a set of potential
contact spots α= {α j }1≤ j≤Nα

and their associated Frenet frames Fα. Once the collisions
are identified, contact responses of the tool are computed – the so-called correction step.

5.3.1 Free motion

The mechanical tool is subject to forces P induced from user interaction. To evaluate
the new position of nodes, we first compute the velocities complying to Eq. 5.20 with no
constraint – i.e. with λ= 0:

dv
free
1 = A−1

1 b1

dv
free
2 = A−1

2 b2
(5.21)

In order to compute Eq. 5.21, matrix A needs to be invertible. However, it turns out that
one needs to compute the force variation δF w.r.t the variation of the node position δX

which involves the stiffness matrix K (Eq. 5.10 and 5.17). As aforementioned, matrix K is
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however not invertible. For this reason, we fix/neglect the first beam’s proximal extrem-
ity displacements so the first six columns/rows of matrix K – due to its symmetry – are
removed (Fig. 5.2 right). This approach leads to an invertible version of K . Accordingly,
forces are applied. Beyond that, displacements in free motion are thus computed from
Eq. 5.7:

X
free
1 = Xi1 +h(vi1 +dv

free
1 )

X
free
2 = Xi2 +h(vi2 +dv

free
1 )

(5.22)

5.3.2 Correction step

Once the user action on the mechanical device is accounted (free motion), the geometri-
cal model is added to the simulation for considering possible interpenetration of objects
and thus, correct the mechanical model behavior w.r.t the vasculature (correction step).
The correction is addressed in two parts.

First, collision/interpenetration detection is performed and the way it is carried out,
is dependent upon the targeted geometrical model. Recall that a beam is made of N

beams which in turn are discretized in M points. Therefore, N ×M points are possible
candidates for collision. Function H transposes the forces exerted on the M points to
their corresponding beam extremities. Besides, the idea is to have a fixed mapping over
time so that an interpolation procedure is avoided per iteration and collision. In prac-
tice, matrix H of Eq. 5.19 encodes this constant mapping. In essence, when the point
α j happens to be in collision/interpenetration with the blood vessel surface, the asso-
ciated BM to this point can inform about its position w.r.t the surface by evaluating the
implicit function value at α j . On the contrary, TM relies only on dedicated techniques
for speeding up the collision detection – for instance, in our simulation process, BVH
are employed for spatial partitioning – since all the triangles may be inspected for one
contact point.

Second, forces are applied to the mechanical device for correcting its position with
regard to its contact responses and mechanical properties.

Hereafter, we briefly introduce the laws behind the contact formulation and then, we
detail the paradigm for solving contacts.

Contact formulation

In our case of a rigid body and a deformable model, the contact is modeled as a uni-
lateral constraint applied to contact point α. By unilateral constraint, we mean that
there exists a surface through which α cannot pass. The α point is free to move in any
direction on one side of the surface, but cannot pass through the surface. It is mathe-
matically expressed as the inequality provided by the signed distance function from the
contact point to the surface. Generally speaking, for each contact point α of the inter-
ventional tool, a peer point α′ on the vasculature exists – i.e. the closest. Let f (1)

−→
nα

(α)

be the force applied to the mechanical tool at α in the direction of the contact −→nα by
the blood vessel surface. By the same token, we define f (2)

−→
nα

(α′) as the force applied to

the blood vessel surface at α′ by the interventional tool. The action/reaction principle
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gives: f (1)
−→
nα

(α) = − f (2)
−→
nα

(α′). For the sake of simplicity, we use λ−→
nα

= f (1)
−→
nα

(α). The gap be-

tween both objects at α is δnα
(α) =

−−→
α′α ·−→nα and further shorten as δ−→nα

.

Hereafter, two friction laws are reviewed for complying with a realistic simulation.

Signorini’s law In a few words, this law prohibits two objects to interpenetrate. The
condition of contact are given for contact point α as:

0 ≤ δ−→nα
⊥‖λ−→

nα
‖ ≥ 0 (5.23)

⊥ stands for a complementary relation – between the distance δ−→nα
and the contact force

λ−→
nα

– imposing that one value must be null. In other words, the contact force is null if
the points are not strictly in contact. Note that Signorini’s law simulates a friction-less
response along−→

nα (Fig. 5.3). In other words no sticking is accounted. Dynamic problems
often use a velocity formulation of this law, only valid during the time of contact:

0 ≤ δ̇−→nα
⊥λ−→

nα
≥ 0 if δ−→nα

(t ) = 0 (5.24)

because finding the associated acceleration is even harder since it is undefined at the
time of contact.

Coulomb’s friction law In contrast to Signorini’s law, Coulomb’s law fills in the lack of
friction and for that, it describes the macroscopic behavior in the tangent contact space.
The reaction force is included in a cone which height and direction is given by the nor-
mal component. If the reaction force is strictly included inside the cone, objects stick
together, otherwise, the reaction force is on the cone’s border and objects slip along the
tangential direction~t . In this last case, the friction force must be directed along the di-
rection of motion. The angle µ ∈R is a simulation-dependent parameter:

δ̇−→
tα
=~0 ⇒‖λ−→

tα
‖ < µ‖λ−→

nα
‖ (stick)

δ̇−→
tα
6=~0 ⇒λ−→

tα
= −µ‖λ−→

nα
‖

δ̇−→
tα

‖δ̇−→
tα
‖ =−µ‖λ−→

nα
‖−→tα (slip)

(5.25)

Considerations. During three-Dimensional (3D) motion, the tangential direction is un-
known. The only known fact is that the tangential force and the tangential velocity are
opposite along a certain direction (to be found) – the problem is non-linear. Signorini’s
law and Coulomb’s law are valid in multi-contact scenarios. For applying both laws to
every contact we have to consider their coupling and their mechanical foundations. In
other words, force exertion to a point on the interventional tool induces displacements
in its neighboring points. Besides, when a contact response is computed, points not
producing collisions may drive others to a collision state – i.e. new constraints in the
resolution process – afterwards. This latter remark points out that the addressed prob-
lem is combinatorially complex.

For the sake of brevity, we simplify the expression of the relative displacement as
follows:

δnα
=Anα

(X1, t )−Anα
(X2, t ) (5.26)
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where Anα
is a mapping applied on the contact point for positions X1 and X2 of both

colliding objects.

Same as before, we reduce the expression of the relative displacement velocity to:

δ̇α =Hα(X1, t )v1(t )−Hα(X2, t )v2(t ) (5.27)

that accounts for the velocity along −→
nα and

−→
tα at contact point α. Hα corresponds to the

direction of contact based on the positions at the beginning of the time step. Further-
more, we suppose that this matrix does not change during the contact response process,
leading to the constant matrix H of Eq. 5.19.

α′ α

δ−→nα

Slip

Stick

−→nα

−→
tα

α

Figure 5.3: Unilateral contact formulation for one collision point α – pertaining to the interventional tool –
of associated frame Fα = [ ~nα, ~tα]. (left) Signorini’s law: the closest peer of α on the vasculature is retrieved
– i.e. α′. The gap δ ~nα

between α and α′ must be null to avoid interpenetration. Coulomb’s law: The force
exerted at α is decomposed into normal and tangential components. There is respectively sticking and
slipping along ~tα when the resultant vector is inside the cone and over the cone.

Solving contacts

Herein, we expose how the laws of contact (Eq. 5.23) and friction (Eq. 5.25) are solved
while taking into account the mechanical behavior. We introduced Eq. 5.21 and 5.22 for
node position and velocity computation. These translated the user’s action exerted on
the mechanical device which in turn moved freely in space. Indeed, this process was
fulfilled under the assumption that no correction was required (λ= 0).

Now, we are interested in finding the corrective forces to be applied at contact points.
To this end, we compute the corrective motions in Eq. 5.20 with b1 and b2 set to null:

dvcor
1 = h A−1

1 H T
1 λ

dvcor
2 = h A−1

2 H T
2 λ

X cor
1 = Xi1 +h(vi1 +dvcorr

1 )
X cor

2 = Xi2 +h(vi2 +dvcorr
1 )

(5.28)

Until now, no link with the free motion was made. Thereby, the correction phase
and the free motion must be coupled. Note that the free motion may produce a cer-
tain number of contact points which present different interpenetration distances. Such
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distances must be minimized so that interpenetrations are eliminated (Signorini’s law).
Accordingly, the constraint laws are linearized as follows:

δ=Aα(X
free
1 )−Aα(X

free
2 )

︸ ︷︷ ︸

δfree

+hH1dvcor
1 +hH2dvcor

2 (5.29)

and gathering Eq. 5.29 and 5.28 in a single equation2:

δ= δfree +h2 [

H1 A−1
1 H T

1 +H2 A−1
2 H T

2

]

︸ ︷︷ ︸

w

λ (5.30)

When only considering Signorini’s law, Eq. 5.30 leads to a Linear Complementary
Problem (LCP). Together with Signorini’s law, this problem becomes a Non-Linear
Complementary Problem (NLCP) when coupled to Coulomb’s law. Besides, the same
relation stands for a velocity-based approach which is more stable for discrete collision
algorithms (grounded on interpenetration detection):

δ̇= H1v
free
1 −H1v

free
2

︸ ︷︷ ︸

δ̇free

+wλ (5.31)

Accordingly, λ is obtained through a Gauss-Seidel algorithm dedicated to NLCP – i.e.
involving contact frictions. Finally, the corrective motions are recomputed and applied:

X1,t+h = X
free
1 +hdvcor

1 with dvcor
1 = A−1

1 H T
1 λ

X2,t+h = X
free
2 +hdvcor

2 with dvcor
2 = A−1

1 H T
2 λ

(5.32)

5.4 Overall simulation workflow

Three steps are required to solve Eq. 5.19. First, we compute displacement X free in free
motion from Eq. 5.21. Second, we perform collision detection leading toα contact spots.
For each α, the interpenetration distance δ

free

j
is evaluated and its matrix H j is updated

according to the direction of the contact. Third, we compute λ by solving Eq. 5.31 (or
Eq. 5.30). Nevertheless, some values for λ may indicate that not all constraints are nec-
essarily required. Redundant constraints (for which the corresponding value in λ is neg-
ative) are deactivated. This is the so called status method. At this point, we find the
sought corrective motions through Eq. 5.32. However, some contacts may not satisfy
the interpenetration constraint since we use a linear approximation of the local shape
at the point contact. That is, the plane defined by the contact point α and the the normal
vector ~nα (Fig. 5.3 and Fig. 5.4). As a consequence, collision detection is performed on
the new configuration to check if some contact constraints are still violated (lines 20 to
25 in Alg. 6). When it is the case, a new evaluation of H is carried out, and new corrective
motions are computed. This iterative procedure is repeated until all current contacts
are solved. Practically speaking, the number of iterations is dependent upon the appli-
cation and the number of contacts. Up to this point, all contacts initially detected are
solved. However, as was previously stated, it is likely that new contacts appear while

2which represents the Delassus operator
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solving them. This behavior is typical of any collision response algorithm. In this case,
all contacts are solved within a given time step (lines 9 to 26 in Alg. 6), rather than the
next time step. Checking for new contacts within the same time step adds a compu-
tational overhead but ensures a more consistent configuration at the beginning of the
following time step.

Algorithm 6 Simulation pipeline

1: Find X free

2: ❝♦♥t❛❝t ❂ ✭✮✱ ❞♦♥❡ ❂ tr✉❡

3: for j = 1 → Nα do
4: if DETECTCOLLISION(α j (X free)) then
5: ❝♦♥t❛❝t+= (H j ,δ j

cor)
6: ❞♦♥❡ ❂ ❢❛❧s❡

7: end if
8: end for
9: while !done do

10: repeat
11: Solve δ̇= δ̇free +wλ ⊲ // I) Constraints deactivation using status method
12: ❞♦♥❡ ❂ tr✉❡

13: if ∃ j /(λ j < 0) then
14: Remove from contact: ❝♦♥t❛❝tk /(λk = min(λ j ))
15: ❞♦♥❡ ❂ ❢❛❧s❡

16: end if
17: until done
18: X t+h = X free +hdvcor

⊲ // II) Constraints activation
19: ❞♦♥❡ ❂ tr✉❡

20: for j = 1 → Nα do
21: if DETECTCOLLISION(α j (X t+h)) then
22: ❝♦♥t❛❝t+= (H j ,δ j

cor)
23: ❞♦♥❡ ❂ ❢❛❧s❡

24: end if
25: end for
26: end while

5.4.1 Collision detection

Local implicit model

A final word on collision detection, the collision detection consists in finding the in-
tersection between the T-level set of the implicit function f and a point α within two
time steps t and t + 1. This is to find from α the closest point α′ on the surface S .
Technically speaking, one can employ a gradient descent approach such as a Newton-
Raphson algorithm. For computation efficiency, we employ a heuristic grounded on
Taubin’s approximate Geometric Distance (TaGD) (Taubin (1991)):

d⋆(α,S ) =
| f (α)|
|∇ f (α)|

(5.33)
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where ∇ f (α) is the implicit function gradient evaluated at α. With this in mind, the
sought point is retrieved as follows:

α′ =−d⋆(α,S )
∇ f (α)

|∇ f (α)|
(5.34)

The above equation informs that α′ is located at distance d⋆(., .) from α in the gra-
dient descent direction. For using this estimation, we assume that points between two
simulation steps move very little or that the time step is small. Moreover, we reckoned
Taubin’s distance was a good approximate of the geometric distance in Chapter 4.

Once α′ computed, we compute a linear approximation of the surface, i.e. the plane
passing through α′ and perpendicular to vector nα′ . This vector is provided by the nor-
malized implicit gradient evaluated at point α′. From this point, we can easily retrieve
the associated Frenet frame Fα′ = [nα′ , tα′ ,bα′ ]. Since this plane is only a valid approx-
imation of the surface around α′, the corrected motion α⋆ may not lead to an actual
position on S . Under those circumstances, the above steps are reiterated.

From a mathematical vista, this method is close to the secant method algorithm to
find the root of a function. Indeed, in convex cases, the distance between the corrected
position of α⋆ and S decreases through the successive iterations and finally, it leads to
a point lying on the surface. Such method is proved to converge in convex cases.

Figure 5.4: From left to right and top to bottom: six simulation steps from 0.06–0.011 ms (time step 0.001
ms). Only collision detection for the tool tip is displayed. For each time step, the tip initial position (before
correction) in magenta and the corrected position in black (superimposed in all cases aside for 0.06 ms)
are shown. The normal vector (red), the tangential vector (blue), the binormal vector (green) and the linear
representation of the surface (plane in light blue) at the corrected position are also displayed.

Triangular mesh

For computing collision detection with a TM of the blood vessel surface, we used BVH,
namely Axis Aligned Bounding Box (AABB). Let a AABB O =∪Ci=1...Nc

be a collection of
Nc cells which encompass the vasculature triangles – i.e. Ci = {△ j }1≤ j≤Nt

. Similar as
for the implicit surface case, the idea is to determine the closest point α′ on the TM. To
this end, we look for cell Ci ′ containing point α. We compute the Euclidean distance
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d(α, {△′
j
}) from α to all the triangles contained in this cell. A triangle – presenting a dis-

tance d(α,△⋆

j
) below an alarm distance da – is considered as a potential candidate for

collision and afterwards, stored for further processing. These candidate triangles {△⋆

j
}

are a local representation of the vessel surface, and consequently, potential spots for
placing mechanical constraints. As a result, constraints are placed at their vertices and
their corresponding Frenet frames are computed. However, a single resultant force is
built, by weighting all contributions forces of the neighboring {△⋆

j
} triangles, and ex-

erted on the closest triangle to α. These steps are repeated until no more contact viola-
tions are evaluated.

Note that this approach leads to an increase in the number of constraints per contact
point which is cumbersome. Whereas no continuous description of the surface is avail-
able, it is mandatory to store triangles {△⋆

j
} for preventing a tool point from leaving the

vasculature. Indeed, one way to achieve this is by placing constraints on the local sur-
face of the vessel. Nevertheless, if the distance d(α, {△′

j
}) is above da , there is no mean to

bring back the point to the surface without resorting to curve interpenetration analysis
of the tool. In short, the choice of da is capital for avoiding these problematic situations
and challenging to fix in advance.

5.5 Experimental details

Expected benefits of LIM from a simulation standpoint are related to the computation
efficiency of the collision detection, the overall robustness of the collision treatment and
improve realism. The evaluation of these benefits was conducted using synthetic test
scenarios as well as models gathered from actual data such as a silicon phantom or pa-
tient data-sets. These scenarios are based on the same principle: a wire-like surgical tool
is progressively deployed in a closed surface. During the deployment, the tool is touch-
ing, colliding and sliding on the surface; meanwhile the tool motion, simulation metrics
and timings are recorded. The tool was modeled using serially-linked beams with 200
elements. The mechanical properties of the surgical tool were chosen to match tools en-
countered in actual interventional radiology procedures such as catheters (mainly com-
posed of silicone rubber), guidewires and coils (which are both composed of titanium or
alloys). Therefore the Young’s modulus of tools ranges from 0.05 to 100 GPa. We chose a
very stiff medical device of 100 GPa for the Young’s Modulus and 0.48 for the Poisson’s ra-
tio. The time step was fixed to (1 ms), for all simulations, which is a plausible magnitude
in an interactive context.

5.5.1 User-interaction

We opted for a simple scheme by imposing speed (50 mm/s) and direction at the fixed
node of the mechanical device. By this way, tools were allowed to freely evolve within
the geometrical model and slide according to the geometrical model surface.
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Figure 5.5: The silicon vascular network used for validation.

5.5.2 Data

We present the input data that was at our disposal and the guideline followed for re-
trieving the geometrical models. Geometrical models were obtained from two sources:
synthetic data and real data.

Synthetic data

We aimed at providing similar cases to those pertaining to real data. Blood vessels are
locally cylindrical and may exhibit high curvature. As a result, we generated a cylindri-
cal shape (capsule) and a spiral which mimicked both characteristics of the vasculature
(Fig. 5.6). In order to provide a smooth and continuous representation of both shapes,
we used convolution surfaces coupled with Cauchy kernels. The capsule skeleton or
centerline (white line Fig. 5.6 left) was provided by a line segment (along the x-axis from
0 to 10). The skeleton of the spiral was constructed using the Archimedean formulation:

P =
(

ρ

θ

)

=
(

15.75+ (15.75+π)θ
θ

)

(5.35)

where points P of the skeleton were given in the x-y plane with θ ∈ [3.14,540].

Triangular mesh The scalar value for both shapes was computed using a rectangular
grid and then, a marching cubes algorithm was applied to the grid. For the capsule,
we considered a highly detailed mesh (12K triangles), while in contrast, 3 level of details
(2.74K, 11.3K and 45K triangles) were obtained for the spiral in order to test the influence
of the number of triangles in the same shape complexity. Since the resultant vertices
of the TM might not be on the surface, a Newton-Raphson projection technique was
carried out. At the end of the projection step, vertices laid in average within a distance
of 10−7 mm to the surface (Fig. 5.6 middle). Note that the projection step was done along
the normal to the surface, and did not modify the mesh topology.



126 Chapter 5. Applications: coil embolization simulation

Figure 5.6: Capsule (left) and spiral (right) surfaces; and their corresponding skeleton (white). Both shapes
presented respectively dimensions (width×height×depth) in mm: 11.9×2.5×2.5 and 52.3×39.9×7.2. A
primitive was placed at each red dot composing the skeleton.

LIM We mimicked RBT output data in order to reconstruct both shapes with our LIM
algorithm. Recall that RBT furnishes a stack of cylinders (center, direction, radius and
height) and a dense sampling. For both capsule and spiral shapes, we used the above
generated TM. We aimed at providing a dense and equi-distributed sampling of the
shape of interest (mimicking RBT output dense sampling). For this purpose, the ver-
tices of the generated triangulated surfaces where fed to a particle system (Witkin and
Heckbert (1994)). A total of 3K particles were aimed. After 2000 iterations, the resulting
position of particles was used as a dense sampling of the shape of interest. The skeleton
became the RBT tracked centerline – directly encoding the topology – for both shapes.
Every particle position was associated to its closest point on the centerline (Fig. 5.7). The
direction was provided by the difference of positions between two consecutive points
on the centerline and whose norm supplied a local estimate for the height. The radius
was set to the distance between the center position and a closest point on the surface.
Finally, both shapes were reconstructed with LIM algorithm using parameters in Table
5.1, a topological distance of 2 and Cauchy Kernels.

Figure 5.7: (left) Convolution surface for a line segment created with a Cauchy kernel. (middle) Projected
vertices generated from a marching cubes algorithm. Their projection on the implicit surface is carried out
via a Newton Raphson technique. (right) Points evenly spaced on the implicit surface that are associated
(colored dots) to their closest node in the centerline.

Silicon phantom

A silicon phantom (Elastrat, Geneva) was used for representing the vascular network.
The rigid phantom holds three aneurysms (Fig. 5.5). 3D Rotational Angiography (RA)
acquisition of the phantom was obtained in a C-Arm (Innova 4100, GE Healthcare) –
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Parameter Description Value
RBT

pi nl inlier rate threshold 70%
rt relative threshold w.r.t local cylinder radius 10%
Nr number of rays thrown to extract points 162
Nd number of axis direction tested 81
Np number of points per ray 128

Nmi n minimum number of tests for RANSAC 220
Nmax maximum number of tests for RANSAC 500
LIM

α hyperpameter for the Lennard-Jones energy 10−5

β hyperpameter for the mean curvature-based energy 10−3

s controls the repulsive distance in Lennard-Jones energy 2
T isolevel value 0.1
Ns maximum number of subdivisions 100
tg accuracy threshold (distance of a point to the surface) 0.3 mm

Table 5.1: Parameter values for tracking (RBT) and reconstruction (LIM) algorithms.

presenting as a 5123 isotropic voxel cube with 0.2 mm voxel size – at the CHU Nancy,
department of neuroradiology.

Triangular mesh The 3DRA data was segmented with a classical algorithm: a first trian-
gulated surface was extracted by a marching cube algorithm, the main connected com-
ponent was kept, and the surface was refined by an active surface algorithm using the
gradient norm as data energy term (Lachaud and Montanvert (1999)). The resulting tri-
angulated surface was composed of 100k triangles.

LIM The 3DRA volume was first tracked with RBT and then modeled with LIM. Config-
uration values for both algorithms are given in Table 5.1. A topological distance of 2 and
Cauchy Kernels were chosen for reconstructing the silicon geometry. The tracked cen-
terline was composed of 558 cylinders and 310K points which produced a geometrical
model of 9.5K blobs.

5.5.3 Validation criteria

For assessing the efficiency of LIM against TM models, the assessment was threefold.
First, we compared the simulation outcomes in terms of realism. To this end, the mo-
tion of medical devices were visually inspected. Second, we evaluated the theoretical
trajectory – that the interventional tip should present – with those produced by both
geometrical models. Third, we compared the time required for detecting collision.

Visual assessment

We considered the surface smoothness during the visual inspection of the tip trajectory.
Indeed, the tip may slide on the surface with more or less difficulty depending on the
surface quality. Roughness on the surface produces artificial friction which may induce
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Figure 5.8: Tool tip trajectory for both LIM (left) and TM (right) models. Points utilized for computing L :
points leaving and not colliding with the surface are excluded (red). The first colliding pointP0 (green)
and its normal vector define plane P. The selected points P (gray) are projected onto P and the resulting
positions are used for fitting line L (top). Motion smoothness was quantified by computing the distance
from the tip positions to the surface (bottom).

non-linear movements on the tool such as bending, kinetic energy accumulation and
sudden damping.

Deployment accuracy

Together with the visual inspection, we compared the tip trajectory of the medical device
when interacting with both LIM and TM models. Tip positions were stored during 2s.
The direction of the tool being imposed, a theoretical trajectory was computed for the
tip. In this assessment, only the capsule shape was used for its calculation simplicity.
With this in mind, the tip should describe a path line L when sliding along the surface.
L was found as follows. First, the first tip position, Pt0 , and the last, PtN

, colliding with
the surface are retrieved. Consecutive positions between Pt0 and PtN

described the tip
trajectory P . It was compulsory to find the last position on the surface because the tool
tip left the surface after a certain number of time steps when interacting with the TM
(see Fig. 5.8). Next, the plane Φ defined by Pt0 and its normal ~nP0 – provided by the
convolution surface – was calculated. P was projected onto this plane. That is a view
from above as depicted in Fig. 5.8 (top row) Finally, the corresponding projection P

⋆

was fed to a linear regression algorithm so that the equation of line L and its associated
Root Mean Square (RMS) error were computed.

A second assessment was centered on the distance from P to the surface since the tip
should slide on the surface. TaGD was used in this accuracy inspection. To this end, we
provided statistical information about this distance – i.e. min, median, 90th-percentile
and max values.

Computational Efficiency

Computational Efficiency was evaluated by measuring the computation time of the col-
lision detection process using LIM. This computation time was compared with the time
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Model

LIM

NP 329
Nu 249

L





0.1903
0.2101
0.2323



+





−0.5050
−0.5716
−0.6466



 · t

RMS error 1.1 ·10−5

TaGD

min 7.1 ·10−6

median 0.006
90th 0.019
max 0.031

TM

NP 335
Nu 191

L
0.172





1
1
1



−0.5774





1
1
1



 · t

RMS error 1.6 ·10−17

TaGD

min 3.5 ·10−3

median 0.167
90th 0.336
max 0.465

Table 5.2: Accuracy computation of the tool tip trajectory when interacting with a capsule shape modeled
with LIM and TMs. NP and Nu respectively represent the total number and the number of used tip po-
sitions. L provides the line fitted to the trajectory and its corresponding Root Mean Square (RMS) error.
Finally, statistical information – minimal, medial, 90th-percentile and maximal values – of the distance
between tip positions and the surface during the slip motion.

required to detect collision with a TM at different level of details. The collision detection
process with meshes was based on state-of-the-art techniques: broad phase spatial par-
titioning and AABB for the narrow phase (the reader may refer to Teschner et al. (2005)
for an overview of collision detection techniques with meshes).

5.6 Results and discussion

The tip trajectory visually displayed frictionless behavior for LIM against the capsule
shape. On the contrary, TM put forth jerky motions (Fig. 5.8 bottom). Table 5.2 encom-
passes figures quantifying the tool motion for both LIM and TM models. The trajectory
with TM presented the the lowest RMS error but both remained very close to a path
line. In a second stage, we accounted the distance between the tip position and the sur-
face. It turns out that LIM configuration provided the best figures for TaGD in Table 5.2.
Indeed, the tool tip described oscillatory motions when sliding on the TM at interactive
rates whereas, simulation with LIM produce frictionless motions as depicted in Fig. 5.8).

Results for the computational efficiency of the collision detection process are dis-
played in Table 5.3 and illustrate that collision detection on LIM is significantly faster
(about two orders of magnitude) than collision detection on triangular meshes. Even
for dense data-sets, the topological locality of LIM allows to limit the computational
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# of primitives Comp. time (msec) # of contacts
Capsule (Mesh) 12k triangles 4.89 51
Capsule (LIM) 1k blobs 0.0232 50
Spiral (Mesh) 2.74k triangles 1.09 79
Spiral (Mesh) 11.3k triangles 1.84 80
Spiral (Mesh) 45k triangles 5.58 80
Spiral (LIM) 10k blobs 0.0219 80

Phantom (Mesh) 100k triangles 16.23 80
Phantom (LIM) 9.5k blobs 0.133 82

Table 5.3: Computation timings for collision detection on various deployment scenarios. For a compara-
ble amount of primitives, collision detection on LIM outperforms collision detection on triangular meshes
even whit the systematical use of state-of-the-art acceleration techniques. Thanks to the topological local-
ity, the computational requirement for collision detection on LIM remains low even for large data-sets (e.g.

more than 10k blobs).

burden of collision detection, making it suitable for interactive simulations.

Implicit modeling also offers greater accuracy for the simulation. During interven-
tional radiology procedures, the navigation of the neurosurgical device involves touch-
ing contacts and sliding of the device against blood vessels. Contacts are usually defined
as holonomic constraints between the tool and the surface. The constrained mechan-
ical system is then solved using direct or iterative solvers. In order to be suitable for
real-time simulations, two simplifications are usually performed: only a local part of the
surface is considered and this local part of the surface is often linearly approximated.
This local linear approximation of the surface is an infinite plane that the device must
not cross. While this approach is fast and relevant for bouncing collisions, it does not
provide accurate simulations when sliding contacts occur because the corrected mo-
tion computed by the solver, may be outside the surface (Fig. 5.4 top left). Strategies to
solve that issue are first, to increase the quality of the approximation as a union of planes
inducing more constraints added in the system or second, to update the local approxi-
mation of the surface by firing again the collision detection process. When dealing with
TMs, the latter strategy is not relevant since the computation time that is needed is too
high to target interactive simulations. The former strategy implies a heavier computa-
tion burden but is still compatible with interactive application Dequidt et al. (2009). The
main drawback is that the approximation is defined as a union of planes. The used local
surface constraint is thereby not smooth, leading to bumpy/friction motion when slid-
ing on the surface. This gives the impression that the surface the device is sliding on, is
not smooth. This phenomenon is displayed on Figure 5.9 (left) where a neurosurgical
device was deployed in the capsule shape and contacts were frictionless. The tip of the
device got stuck due to the artificial friction induced by the approximation of the contact
surface. This drawback can be attenuated by increasing the mesh resolution but it sig-
nificantly increases the time to perform the collision detection as well as the resolution
of the system. When dealing with LIM, the time needed to perform collision detection is
very small and therefore the second strategy (collision updates) is suitable for real-time
applications. Figure 5.9 (right) illustrates the same simulation using LIM and collision



5.6. Results and discussion 131

Figure 5.9: Simulation of catheter deployment inside a capsule-like shape. The collision is handled with
a triangular mesh (left) and LIM (right). Even with a fine resolution mesh (12k triangles) artificial friction
appears that eventually creates a loop in the catheter. LIM (12k blobs) enables the catheter to smoothly
slide along the surface.

updates in the solver which produced a smooth motion without artificial friction.

Finally LIM also increases the robustness of the simulation. When using a discrete
collision pipeline, collisions may be missed during two successive time-steps because
simulated objects move too fast. Having a cheaper interior/exterior evaluation as well
as an approximation of the geometric distance to the surface helps setting constraints to
correct the simulation due to the missed collisions. While doable on triangular meshes,
this approach is however costly and scarcely used. In the context of interactive simula-
tion, the computation time should be close to Real-Time (RT) but the use of an iterative
solver makes this constraint hard to reach. Thanks to the constraints robustness pro-
vided by the implicit modeling, a maximum number of iterations may be set for the
iterative solver allowing to control the execution time. Even if the maximum number
of iterations is reached and the error is not inferior to the desired threshold (possibly
inducing points outside the surface), the aforementioned mechanism helps to reach a
good solution (for the solver) at the next time-step. This feature is illustrated with the
simulation used in figure 5.9 where when the catheter was very stiff (Young’s modulus
= 100 GPa), a really high number of iterations is required to ensure solver convergence
when the surface was a TM (more than 200 iterations per simulation time step). Clamp-
ing the maximum number of iterations at 100, in order to have a computation time be-
low 20 ms per simulation time step, made the simulation diverge and the catheter move
outside the capsule. Using LIM and more generally, constraints that can be set with im-
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Figure 5.10: Numerical simulation at non interactive rates on a surface generated with LIM. The tip of the
tool experiencing bumps at transitions between two implicit surfaces when sliding on the surface.

plicit surfaces, the same catheter remained inside and the solver was able to recover the
simulation from a non-optimal solution at the previous time-step.

5.7 Conclusion

In this chapter, we described the deformation algorithms implemented in the platform
SOFA within our local implicit model was tested. Within an interactive context, our
proposal was compared against classical TMs. Both models were applied to situations
where a medical device is interacting with them. More precisely, we assessed qualita-
tively and quantitatively the outcomes of these numerical simulations. First, we visually
inspected the tool motion – i.e. smooth and realistic. Numerical simulations with the
implicit model put forth slipping and smooth motions when the device was sliding along
its surface. Conversely, outcomes on TMs evinced artificial frictions and situations were
the medical device left the surface. A second assessment was carried out on the tool mo-
tion. For that, we considered the tip position during 2s when sliding along the surface
of a capsule shape. Figures showed that both models produced similar outcomes when
considering the trajectory of the tip. Nevertheless, the tool tip displayed jerky motions
during navigation on a TM which was not the case with LIM. Finally, we evaluated com-
putation time during the collision detection phase with both models. It turned out that
the usage of LIM improved computation efficiency by two orders of magnitude when
compared to collision detection with state-of-the-art BVH associated with TM.

Despite discontinuities in our model are present, no jerky motions were observed
during the tests. We believe that in order to notice their impact on the tool motion,
one has to employ small time steps below interactive rates. As a result, a better estima-
tion of contacts is achieved which produces jumps at transitions between two BMs (see
Fig. 5.10). Further discussion and possible solutions on this subject, are provided in the
perspectives – at the end of this manuscript.

Numerical simulations on different scenarios showed the strength and adequacy of
our model to interactive contexts. That is to say, realistic motions as those seen on fluo-
roscopy were achieved such as slide and loops. Major contributions of LIM during col-
lision detection are cheap inclusion/exclusion evaluations, easiness of computing the
distance to the surface and last but not least, the availability of a gradient direction re-
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lated to the distance function gradient. This latter feature increases the robustness of the
simulation, especially when objects are moving fast; and provides accurate constraints
which stabilize the iterative solver and authorize to fix a maximum number of iterations
for complying with an interactive context.
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CONCLUSION AND PERSPECTIVES

In this section, we conclude about our work and explore new perspectives. A brief sum-

mary of our main contributions reported along this manuscript is also provided. Four

new paths of exploration are investigated: a multi-branch scenario for RANSAC-Based

Tracking (RBT), direct reconstruction from image data with Local Implicit Modeling

(LIM), deformations of the implicit model and reduction of discontinuities between lo-

cal implicit surfaces.
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6.1 Contributions

In the context of Interventional Neuroradiology (IN) simulations, we addressed the
problem of the availability of patient specific geometrical models for Real-Time (RT) or
near RT computer-based simulations. We explored existing methods for capturing the
vascular geometry with regard to an interactive simulation context. After this, we con-
cluded that implicit surfaces fit the best a simulation background. However, methods
providing such a model often rely on discrete structures for computation which may
lead to local inaccuracies when considering a global reconstruction. Besides, a global
description of the brain vasculature is inefficient when performing collision detection
whereas only certain portions of the geometrical model are involved in this task. Fur-
thermore, the availability of topological information is capital for correctly handling and
speeding up collision detection (Li et al. (2012)) since it provides a natural decomposi-
tion of the vascular tree, specially when dealing with Kissing Vessel (KV) issues. Fur-
ther considerations were surveyed when choosing an implicit model: compacity of the
model, modeling capabilities (ability to capture complex shapes) and input data re-
quirements. Despite the fact that methods based on implicit reconstruction from ori-
ented scattered data present sound modeling capabilities and resilience to noise, they
were discarded since the normal estimation at input data points – in our case – would be
estimated from three-Dimensional (3D) Rotational Angiography (RA) image data. Un-
less reliable normals are provided, finding a consistent orientation of the normals has
been recognized to be an ill-posed problem when sampling is sparse and noisy (Alliez
et al. (2007)); two issues that are met in our case. Among the existing implicit mod-
els, we chose Blobby Models (BMs) for their compacity, locality (Dekkers et al. (2004)),
and complex shape modeling capabilities (Muraki (1991); Bittar et al. (1995) and Tsin-
gos et al. (1995)). To this point, we opted to capture locally the blood vessel to attain a
precise representation and increase the computational efficiency during collision detec-
tion. For that, we relied on a two-folded framework: vessel tracking with RANSAC-Based
Tracking (RBT) and local surface reconstruction with Local Implicit Modeling (LIM).

In this work, we presented a novel tracking algorithm RBT which provides a local de-
scription of the blood vessel surface: cylinders – which encode the local vesselness – and
a dense sampling of the vessel surface. State-of-the-art Multiple Hypothesis Tracking
(MHT) vessel segmentation algorithm (Friman et al. (2010)) was used – as reference – for
validation on 744 vessels of a 10 3DRA patient data-set. MHT is the leading algorithm
in the Rotterdam Coronary Artery Algorithm Evaluations Framework1. RBT algorithm
was extensively evaluated on its tracking success, centerline extraction capability and
its extraction accuracy with respect to (w.r.t) the MHT centerline. The outcomes showed
the ability of RBT to precisely detect centerlines, its ability to capture very complex vas-
cular topology and tiny tortuous blood vessels, and its robustness to handle KVs thanks
to its RANdom SAmple Consensus (RANSAC)-based cylinder fitting process. As such, it
improved upon MHT in all these areas: 89% of success rate (vs 69% for MHT), doubled
tracked length w.r.t MHT and same accuracy as MHT.

Next, the segmented vascular tree with RBT was entrusted to our LIM procedure.

1❤tt♣✿✴✴❝♦r♦♥❛r②✳❜✐❣r✳♥❧✴

http://coronary.bigr.nl/
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For each position on the centerline, a BM ensures a local description of the blood ves-
sel surface. The resulting BM complies with simulation requirements. In essence, the
implicit function approximates the distance function and its gradient – both features
playing a major role during collision prediction, detection and handling. For providing
such an implicit surface, the BM fitting process was expressed as an energy minimiza-
tion problem. To this end, energy constraints in the literature were revisited by assessing
their pertinence with regard to input data. At the end of this analysis, we proposed new
formulations suited to our BM fitting context. Together with (Muraki (1991); Bittar et al.
(1995) and Tsingos et al. (1995)), a subdivision heuristic was employed for increasing the
number of blobs in the BM but improving upon these previous works. The novelty on
this approach was to automatically choose blobs for fissioning, according to a geomet-
ric criterion. As a result, our LIM procedure first captures a rough estimation of input
data and subsequently, captures details. RBT centerline was thereby enriched with BMs.
Following a thorough evaluation on both synthetic and patient data, BMs were shown to
precisely describe the vessel surface (sub-voxel precision). Such a scheme also provided
compact representations. Moreover, LIM put forth smooth transitions at bifurcations
and modeling capabilities at capturing tiny, tortuous vessels and aneurysms. Last but
not least, LIM showed its strength when dealing with noise and a small amount of out-
liers.

Third, we applied LIM outcomes to an interactive context within the Simulation
Open Framework Architecture (SOFA) platform. We aimed at assessing qualitatively and
quantitatively LIM efficiency. To this end, we compared our model against a state-of-
the-art configuration – i.e. a Triangular Mesh (TM) model coupled with Axis Aligned
Bounding Box (AABB) for collision detection. On both synthetic and patient data, the
catheter displayed realistic and smooth motions when interacting with LIM. On the
other hand, jerky motions and artificial friction were noticed when sliding on TMs. Fig-
ures for the trajectory of the tip confirmed our observations where LIM provided smooth
sliding meanwhile the scores of the TM configuration evinced oscillations induced in
the catheter tip. Special features of the LIM implicit function conferred to our geometri-
cal model an overwhelming computation efficiency dividing by two orders of magnitude
the computation time for collision management when compared to AABB. Incidentally,
it turned out that LIM induced robustness during the simulation process – especially
when objects were moving fast – and stabilization in the iterative solver through precise
constraints. All these features of LIM make it suited to interactive numerical simula-
tions.

6.2 Perspectives

In this work, we presented an efficient framework for modeling the arterial network with
application to interactive numerical simulations. Despite good behavior on several sit-
uations, we recognize that RBT and LIM can be further polished. A path to walk for
improving our framework points toward four different directions: the automatic bifur-
cation handling of RBT, the direct reconstruction from image data, the integration of
deformations of our geometrical model and the inherent problem of discontinuities be-
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tween implicit surfaces.

Bifurcation handling

We recognize one weak point to our RBT procedure. It is true that tracking relies on
manual interaction, while solid works on this area exist which handle bifurcations au-
tomatically such as La Cruz et al. (2004); Tyrrell et al. (2007); Wong and Chung (2007)
and Friman et al. (2010). Nonetheless, the tracking with RBT is very fast, and physicians
may find it more user-friendly to manually select the vessels of interest. This selection
of vessels of interest is especially true in the context of IN; where neuroradiologists work
on a specific part of the arterial network – that is, around the pathology. As a result,
we believe that two modes should be available for RBT: single branch and multi-branch
tracking.

In the case of multi-branch tracking, RBT needs to use an automatic process for de-
tecting bifurcations. In the current state of our tracking procedure, this detection is hard
to be achieved due to the fact that RANSAC is a single model detector. It means that
in the presence of point-sets depicting two vessels, one single cylinder is retrieved. In
the research field of shape retrieval from range data, one possible approach for fitting
more than one model to data, is to sequentially use RANSAC (Chaperon and Goulette
(2001); Kanazawa and Kawakami (2004); Rabbani and Heuvel (2005); Schnabel et al.
(2007) and Gallup et al. (2010)): first, find one model fitting the point-set, then delete
this points from the data-set and run again the fitting process. For implementations like
in Kanazawa and Kawakami (2004) and Gallup et al. (2010), the number models must
be known in advance. Nevertheless, experiments with our input data revealed that this
heuristic fails at correctly fitting a second model. The reason for this failure is that point-
sets extracted in the ray-casting stage are not dense. Increasing the number of rays does
not enhance initial conditions for this method.

Parallel implementations of multi-model RANSAC exist (Zuliani et al. (2005)). Re-
cently, J-linkage clustering (Toldo and Fusiello (2008)) was introduced as a method for
fitting multiple instances of a model to data corrupted by noise and outliers. The algo-
rithm is based on random sampling – as RANSAC – and a clustering method. First, the
input data points are represented with feature vectors that indicate the set of random
models consistent with every point. In this feature space, J-linkage clustering is used to
group the points belonging to the same model. Results have shown better performance
than RANSAC or Hough-based approaches.

In conclusion, RBT fitting process should evolve towards multi-model fitting for han-
dling multi-branch trackings. High expectations for J-Linkage in this process are put.

Reconstruction from image data

We reckon that LIM relies heavily on point-sets and consequently, LIM reconstruction is
dependent on the method precision and robustness of the point extraction method. A
desired evolution for LIM, is the appealing idea that the local implicit surface fitting be
made with regard to image data.
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Two different scenarios may be conceivable. First, the resulting implicit function is
fine tuned statically – i.e. over its widths without moving centers. In a second situation,
BMs are authorized to change their blobs positions and widths, –i.e. a dynamic fitting.

In a static fitting case, Gelas et al. (2007) used compactly supported Radial Basis
Functions (RBFs) distributed on a regular grid and coupled to a level-set formulation
for medical segmentation. The RBF was employed for solving a differential equation
expressing the level set evolution. By the same token, Xie and Mirmehdi (2011) used
a level-set approach grounded on RBFs for segmentation but extended to 3D. In a dy-
namic scenario, Morse et al. (2005) segmented the left-ventricular chamber of the heart
with snakes. In this work, the contour was evenly discretized by a set of charged parti-
cles which in turn, where the centers for a RBF. The particles positions were advected
through image-based and smoothing energies. This method also accounted for a user
defined force to drive the segmentation process.

The work introduced in Morse et al. (2005) is the closest to our scenario for both static
and dynamic fitting. In essence, the BM should be able to move w.r.t image forces. How-
ever, the main difference between our implicit formulation and that supplied for RBFs is
the center placement. In our case, there is no direct formulation linking deformation at
the surface with the BM parameters; meanwhile RBFs centers are given by the particles
position in Morse’s method.

Computational Fluid Dynamics (CFD) community brings about a possible solution,
namely particle level-set methods (Foster and Fedkiw (2001); Enright et al. (2002) and
Mihalef et al. (2007)). These methods combine a level set function with a particle sys-
tem for providing a dual representation of a surface. During evolution of the level set
function, the particle system is employed as a sampling of the zero level set. Moreover,
particles provide information about the motion characteristics of this surface. Besides,
both descriptions update each other during evolution computation which leads to a pre-
cise and robust computation of the evolutionary equations. The idea of using particle
systems to sample surfaces is not novel. Szeliski et al. (1993) introduced them for sam-
pling triangulated surfaces and Witkin and Heckbert (1994) provided a sound particle
system for implicit surfaces. There is a vast literature pursuing Witkin’s seminal work
(Levet et al. (2006); Nesme and Bouthors (2006) and Meyer et al. (2007)).

To get back to LIM, one can use Witkin’s approach for sampling a BM in order to pro-
vide a better estimation of energy values, in particular the mean square curvature Eκ,
and use the particle system to control the BM. Indeed, Witkin provided formulae linking
the implicit surface parameters and the particle system. With this in mind, one can think
about a framework computing internal and external energy values and accordingly, de-
form the BM so that these energies are minimized.

This procedure may also alleviate a recognized weakness of our framework, the mod-
eling of pathologies. At the current state, the user is requested to place seeds roughly at
the medial axis of pathologies so that topology is retrieved from these seeds, as well
as, points at the vessel surface. In the case of LIM working directly on the image, blob
positions may directly inform about the pathology medial axis which can be estimated
by applying a gradient descent strategy to particle positions along the implicit function
gradient (Ma (2007)).
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Geometrical model deformation

In Chapter 5, we applied a surface produced with LIM to an interactive simulation. In
this context, the geometrical model was considered as rigid. Two different paths may
be followed for taking into account deformations. Spatially and physically based de-
formations. The former technique deforms the whole space in which the objects are
embedded (Jin et al. (2000) and Yoon and Kim (2006)). The latter produces very realistic
deformations of objects by solving physically-grounded differential equations (Cani and
Desbrun (1997) and Amrani et al. (2001)).

In our context of interactive simulation, deformations of the scalar field function may
hinder LIM dedicated features for simulation. Indeed, this kind of techniques manipu-
lates the implicit function scalar field with no guarantee of at least a C 1-continuity (Jin
et al. (2000)).

Physically-based deformations are preferable given our application field. Cani
and Desbrun (1997) introduced a double representation technique for animating de-
formable implicit surfaces. For instance, an object provided as a mesh was coated with
an implicit surface which was used during collision detection and contact response
computation. Same as for particle level-set methods, the implicit surface was evenly
sampled for computing collisions and numerical integration of forces. Once the contact
response was computed with the implicit surface, the object was accordingly adapted.
Visualization was achieved by meshing the particle positions. By the same token, Am-
rani et al. (2001) used a skeletal representation of implicits coupled to a particle sys-
tem evolving on its zero level set. During simulation, particle positions are tracked by
a mesh; and skeletal points are linked together by a mass-spring system. The anima-
tion process is decomposed in four steps: rigid motion of objects, collision detection,
deformation of the surface in contact and accordingly, deformation of the skeleton.

Once again, particle systems seem to be an asset when dealing with deformations.
Indeed, reconstruction from image data can also be seen as deforming a BM so that it
fulfills minimal energy criteria. Let’s consider the usage of particle systems within LIM.
Generally speaking, deformations may be achieved through: first, detect interpenetra-
tion and particles involved; reaction forces are next applied to colliding particles; and
finally, modify blobs properties according to particles motion.

During interactive simulation of deformable objects, visualization becomes crucial
and cumbersome since objects need to be updated at near RT rates. Recent advances in
point-based and Graphics Processing Unit (GPU) based techniques have proven to be
a valuable alternative to polygonal meshes, especially when dynamic models are to be
processed (Kobbelt and Botsch (2004)).

Discontinuities

Due to our local approach, discontinuities between local implicit surfaces are inevitable.
We beliefs that image data reconstruction may lessen this issue but not efface it. Our be-
lieves are grounded on the fact that for a node on the centerline, LIM concatenates local
data points to a certain topological distance. As a result, some data points are shared
with neighboring nodes which happens to induce small differences in the resulting BM
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within this common region. With this in mind, an ideal solution would be to locally re-
fit/adjust BMs within a common portion. To this end, one can use the radical planes
(Weighted Voronoi diagram) between consecutive nodes for defining this zone. Within
it, blobs – of BMs participating to its modeling – are to be optimized and the other blobs
remain fixed. An optimization over the widths may be sufficient to further lessen discon-
tinuities. Along the same outline, one can use a particle system on the surface, bounded
to this region. Subsequently, it is possible to evaluate the distance between surfaces in
this portion and minimize it according to a geometrical or image-based criterion. Note
that both procedures may also work at bifurcations.
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APPENDIX A

Herein, we present our dedicated Graphical User Interface (GUI) for tracking with
RANSAC-Based Tracking (RBT), the so-called RANSAC-based Tracking Interface
(RTrackingIT). This GUI is composed of four parts: the mayavi window, the menu bar,
the configuration and the labeling sections (see Fig. A.1).

A.1 RANSAC-based Tracking InTerface (RTrackingIT)

RTrackingIT is based on the open library PyQt1 which provides a vast number of widgets
for rapid prototyping. Furthermore, this software also relies on Mayavi22 which is a

1❤tt♣✿✴✴✇✇✇✳r✐✈❡r❜❛♥❦❝♦♠♣✉t✐♥❣✳❝♦✳✉❦✴s♦❢t✇❛r❡✴♣②qt✴✐♥tr♦
2❤tt♣✿✴✴❞♦❝s✳❡♥t❤♦✉❣❤t✳❝♦♠✴♠❛②❛✈✐✴♠❛②❛✈✐✴✐♥❞❡①✳❤t♠❧★

Figure A.1: The overall window of RANSAC-based Tracking Interface (RTrackingIT) GUI. Four sections
compose RTrackingIT: the menu bar (top), the mayavi widget (left), the configuration (middle) and the
labeling sections (right).
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http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://docs.enthought.com/mayavi/mayavi/index.html#
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visualization software – entirely written in Python. The VTK library, originally written
in C++, is entirely available under Mayavi2 which delivers ready-to-use filters in a few
clicks. With this in mind, we first introduce the mayavi window.

A.1.1 Mayavi widget

Mayavi serves to visually inspect volumetric images and to place seed points for the
tracking procedure. When clicking with the mouse wheel on the volume, a red axis ap-
pears, indicating its coordinate. This picking process helps RTrackingIT to define the po-
sition, radius and direction of the tracking seed. Furthermore, The versatility of Mayavi
authorizes to use home-made python scripts. Generally speaking, operations executed
with a mouse can be automatize by importing the python package of Mayavi.

For instance, run RTrackingIT and click on . A new window appears, right click
over the first entry in the scene. Select ❋✐❧t❡rs→❆❞❞❋✐❧t❡r→■s♦❙✉r❢❛❝❡. An iso-
surface of the volumetric data is automatically created.

A.1.2 Menu bar

The menu bar is composed of several action buttons:

• exit RTrackingIT ;

• place the position of the seed , one single click on the volume is necessary;

• provide the direction of the seed , two points on the volume are required;

• set the radius of the seed ; this is provided by the Euclidean distance between
two positions on the volumetric data;

• add a new leaf on the tree . Tracking is automatically run after adding the label
of the leaf on the Labeling section. The configuration file loaded in the Configu-
ration section is used for RBT;

• add an instance of tracking without adding to the tree . Similar to add a new
leaf;

• provide the tree topology . It writes on the configuration section the labels of
each tracking instance as: P❛r❡♥t ❈❤✐❧❞r❡♥✶ ❈❤✐❧❞r❡♥✷ ✳✳✳.

Note that all actions are also available on the windows menu under the names ❋✐❧❡,
❆❝t✐♦♥ and ❚r❛❝❦✐♥❣.

A.1.3 Configuration section

The configuration section shows the text file with configuration arguments of parame-
ters. RTrackingIT stores internally this configuration file which can be loaded by clicking

on . In this section, all RBT parameters can be changed. One can manually modify
this configuration file by directly writing in this section and then, save modifications to
the selected configuration file. Otherwise, one can let RTrackingIT do it automatically.
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Figure A.2: RTrackingIT in action. Three instances of tracking with RBT combined with a triangulated mesh
produced with Mayavi Isosurface filter. In the labeling section, vessels CID (red), ACA (cyan) ANE (lime) are
respectively root, leaf and trial instances.

Indeed, every time an action on the menu bar is executed, it updates the values for a
tracking instance.

A.1.4 Labeling section

Herein, a list of all tracked vessels is provided. A vessel instance can be root and leaf
in the tree. Another class of vessel exists which was especially created for trials –

i.e. those prefixed by . For depiction, Fig. A.2 illustrates this three types of tracking
instances.

Right click on one label pop-ups filters for loading (❱✐❡✇✳✳✳), hiding (❍✐❞❡✳✳✳),
showing (❙❤♦✇✳✳✳), changing color (❈♦❧♦r✳✳✳) and deleting (❈❧❡❛r✳✳✳) the blood ves-
sel dense sampling (●❧②♣❤s), centerline (▼❡❞✐❛❧ ❆①✐s) and tracking seed (❙❡❡❞).
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In this appendix, the partial derivatives of Blobby Models (BMs) and energies Ed , Ec

and Eκ with respect to (w.r.t) changes in width (ρ j ) and positions C j are derived. This
derivatives are required in the fitting process described in Chapter 4.

Before starting to drive equations. We introduce some notations for the sake of clar-
ity:

• 1st-order tensors are underlined once –i.e t – and 2nd-order tensors are underlined
twice – i.e. v . For instance, the null vector is denoted as 0 and the identity matrix
is denoted by 1.

• scalars are zero-order tensors and not underlined 0.

• Einstein’s summation convention is used.

B.1 Fomulae for a blob

A blob B – of center C and width ρ – is defined at point P as:

B(P ) = ρφ(|δ|2) (B.1)

where φ is the kernel function – considered as C∞ – and δ= P−C

ρ . Derivatives w.r.t scalar
ρ and vectors C and P are to be calculated. For the sake of brevity, we use B = B(P ),
φ=φ(|δ|2) and their corresponding derivatives. H denote the hessian matrix of B .

Let’s derive useful derivatives before presenting results for Eq. B.1.

• δ

∂ρδ=−
1

ρ
δ (B.2) ∂Cδ=−

1

ρ
1 (B.3) ∂Pδ=

1

ρ
1 (B.4)

• |δ|2 ∂ρ|δ|2 =−
2

ρ
|δ|2 (B.5) ∂C |δ|2 =−

2

ρ
δ2 (B.6) ∂P |δ|2 =

2

ρ
δ2 (B.7)

• φ

∂ρφ=φ′∂ρ|δ|2 =−
2

ρ
φ′|δ|2

(B.8)
∂Cφ=−

2

ρ
φ′δ (B.9) ∂Pφ=

2

ρ
φ′δ (B.10)
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• B = ρφ

∂ρB =φ+ρ∂ρφ=φ−2φ′|δ|2

(B.11)
∂C B = ρ∂Cφ=−2φ′δ

(B.12)
∂P B = ρ∂Pφ= 2φ′δ

(B.13)

• Hessian matrix

H = ∂P∂P B = 2∂P (φ′δ)

Note that

∂P (φ′δ) = δ(∂Pφ
′)t +φ′∂Pδ

where

∂Pφ
′ =

2

ρ
φ′′δ

then we have

H =
2

ρ

(

2φ′′δδt +φ′1
)

(B.14)

From this, we can deduce that

tr(H) =
2

ρ

(

2φ′′|δ|2 +3φ′)

We define matrix γ= H − tr(H)1, further employed

γ= H − tr(H)1 =
4

ρ

[

φ′′(δδt −|δ|21)−φ′1
]

(B.15)

B.2 Formulae for blobby models

A BM is a sum of Nb blobs. We use subscripts for indicating blobs in the BM: blob
#i ∈ {1, . . . , Nb} is defined by its center C i and its width ρi . The following notations are
used for point P :

•δi =
P −C i

ρi
•φi =φ(|δi |

2) •Bi = ρiφi

Note that j 6= i :

∂ρ j
δi = 0 (B.16) ∂C j

δi = 0 (B.17)

B.2.1 Implicit function, gradient, Hessian matrix

The implicit function for a BM is defined as:

B =
Nb∑

i=1
Bi B =

∑Nb

i=1ρiφi (B.18)

whose gradient is provided by (B.13):

G =
Nb∑

i=1
∂P Bi

G = 2
Nb∑

i=1
φ′

iδi (B.19)
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Using (B.14), its Hessian matrix is:

H =
Nb∑

i=1
∂P∂P Bi

H = 2
Nb∑

i=1

1

ρi

(

2φ′′
i δiδ

t
i +φ′

i 1
)

(B.20)

and using (B.15) with Γ=H − tr(H )1, one obtains:

Γ= 4
Nb∑

i=1

1

ρi

[

φ′′
i

(

δiδ
t
i −|δi |

21
)

−φ′
i 1

]

(B.21)

B.2.2 Energies and their derivatives

We use three energy terms:

• the data attachment term (T is the iso value, and {P k }k∈{1,...,Np
are the Np points to

fit)

Ed =
1

Np

∑

k

(

T −B(P k )
)2 (B.22)

For the sake of brevity, we denoted by a semicolon (;), a quantity evaluated at point
P k . For instance, we have:

δn;k =
P k −C n

ρn
(B.23) B;k =B(P k ) (B.24)

Therefore, we write

Ed =
1

Np

∑

k

(

T −B;k
)2 (B.25)

Ed has the following derivatives:

–
∂ρn

Ed =−
2

Np

∑Np

k=1

[

T −B;k
](

φn;k −2φ′
n;k |δn;k |

2
)

(B.26)

–
∂C n

Ed =
4

Np

∑Np

k=1

[

T −B;k
]

φ′
n;kδn;k (B.27)

• the Lennard-Jones energy:

ELJ =
(rm

r

)12
−2

(rm

r

)6
=

(
r 2

m

r 2

)3 [(
r 2

m

r 2

)3

−2

]

(B.28)

where r is the distance between two blob centers. In our case, we set r 2
m = ρiρ j

and we introduce a scaling factor s. As a result, we have:

ELJ =
1

Nb(Nb −1)

∑

i 6= j

(

s2ρiρ j

|C i −C j |2

)3 [(

s2ρiρ j

|C i −C j |2

)3

−2

]

(B.29)

We denote σi j =
s2ρiρ j

|C i −C j |2
, and we obtain :

ELJ =
1

Nb(Nb −1)

∑

i 6= j σ
3
i j

(

σ3
i j
−2

)

(B.30)

ELJ has the following derivatives:
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–
∂ρn

Ec =
12

Nb(Nb −1)

1

ρn

∑Nb

i=1
i 6=n

σ3
ni

(

σ3
ni

−1
)

(B.31)

–

∂C n
Ec =−

24

Nb(Nb −1)

∑Nb

i=1
i 6=n

σ2
ni

s2ρnρi

(

σ3
ni

−1
)(

C n −C i

)

(B.32)

• the mean square curvature:

Eκ =
1

Np

∑Np

k=1κ
2
;k (B.33)

with derivatives:

–

∂ρn
Eκ =

2

Np

Np∑

k=1

κ;k

|G ;k |3

[

−
4

ρn

(

2φ′′
n;k |δn;k |

2 +φ′
n;k

)

G
t
;kΓ;k

δn;k −
1

ρn
|G ;k |

3κ;k

−
4

ρ2
n

(

φ′′′
n;k |δn;k |

2 +φ′′
n;k

)(

G
t
;kδn;k

)2

+
4

ρ2
n

(

φ′′′
n;k |δn;k |

2 +2φ′′
n;k

)

|δn;k |
2|G ;k |

2

+
6

ρn
κ;k |G ;k |

(

2φ′′
n;k |δn;k |

2 +φ′
n;k

)(

G
t
;kδn;k

)]

(B.34)

–

∂C n
Ea =

2

Np

Np∑

k=1

κ;k

|G ;k |3

{

−
8

ρn
φ′′

n;k

(

G
t
;nΓ;k

δn;k

)

δn;k −
4

ρn
Γ

;k
G ;n

−
8

ρ2
n

[

φ′′′
n;k

(

G t
;kδn;k

)2
−

(

φ′′′
n;k |δn;k |

2 +2φ′′
n;k

)

|G ;k |
2
]

δn;k

−
8

ρ2
n

(

G t
;kδn;k

)

G ;k

+
6

ρn
κ;k |G ;k |

[

2φ′′
n;k

(

G
t
;kδn;k

)

δn;k +φ′
n;kG ;k

]}

(B.35)

with

δn;k =
P k −C n

ρn
(B.36)

φn;k =φ(|δn;k |
2) (B.37)

φ′
n;k =φ′(|δn;k |

2) (B.38)

φ′′
n;k =φ′′(|δn;k |

2) (B.39)

φ′′′
n;k =φ′′′(|δn;k |

2) (B.40)

G;k = 2
Nb∑

i=1
φ′

i ;kδi ;k (B.41)

Γ
:k
=

Nb∑

i=1

4

ρi

[

φ′′
i ;k (δi ;k δ

t
i ;k −|δi ;k |

21)−φ′
i ;k 1

]

(B.42)

C;k =
G

t
;kΓ;k

G ;k

|G ;k |3
(B.43)
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