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Introduction

Applications of quantum mechanics can now be found everywhere. Computers, cell phones
and light emitting diodes would not be there without the quantum description of solids.
Internet and its fiber optics communications, DVDs and eye surgery rely on laser physics.
Metrology and the Global Positioning System (GPS) depend on atomic clocks. With so
many applications already, it may seem surprising that quantum mechanics still appears
counterintuitive to many. Arguably, this may be due to a missing convenient language, and
it seems to me that the current perspective of quantum information makes it much clearer.
We are the fortunate witnesses and actors of the second wave of applications of quantum
mechanics, which directly benefits from this new point of view. Several physical systems are
indeed good candidates to encode and manipulate quantum information directly. Trapped
ions, superconducting circuits, atoms, photons, spins, mechanical resonators, quantum dots
and other systems all currently face the same challenge: their coherence time needs to be
extended, in particular by error correction, for applications to appear. Several hundreds
of groups worldwide are currently tackling these issues. The quantum machines based on
these systems are still to be found, and it sure is hard to predict what will come out of
them. But the already envisioned quantum computers, communications and simulators are
certainly fascinating enough to pursue this enterprise.

In this manuscript, I present my contribution to the rise of superconducting circuits as
the basis of quantum information systems. The macroscopic variables of electrical circuits,
such as voltages and currents, obey quantum mechanics as long as they are protected
enough from their environment. Since the first qubits based on a superconducting circuit
were realized 15 years ago [1], their coherence time has already increased by 5 orders
of magnitude [2] thanks to a better control of the electromagnetic environment of the
Josephson junctions. We have performed experiments on these remarkable systems, which
illustrate some of the most non-classical aspects of quantum information.

Quantum information differs from classical information by the purification postulate
only [3], which states that the ignorance about a part is always compatible with the maximal
knowledge of the whole. Several consequences of this postulate contradict classical wisdom
and are worth exploring.

• Quantum variables fluctuate even at zero temperature. These zero point fluctuations
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imply lower bounds on the noise added by a detector. In chapter 1, we explore
the quantum limits on amplification for propagating microwave signals, and show a
concrete superconducting circuit, the Josephson mixer, able to reach this limit.

• Contrarily to classical information, quantum information can be stored in a spatially
delocalized manner thanks to entanglement. In chapter 2, we demonstrate the first
circuit able to entangle two propagating microwave modes at different frequencies and
on separate transmission lines. We also present a device able to store a microwave
field that is entangled with a propagating one.

• Measurement of a quantum system results in an inherent back action, with no classical
equivalent. In chapter 3, we present how to correct for decoherence by measurement
feedback on a superconducting qubit, in order to stabilize a desired quantum trajec-
tory. This experiment makes clear the central role of measurement back action in
quantum feedback, and thus in quantum error correction.

• Weak measurements provide partial information on a system. Because quantum
measurement have an inherent back action, one needs to modify the classical Bayes
rule predicting the probability of finding a given outcome assuming some outcome in
the future. In chapter 4, we show an experiment where the fluorescence emitted by a
qubit is recorded in time, which can be viewed as a weak measurement of the qubit.
The influence of past and future information is explored.
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Chapter 1

Amplifiers for microwave quantum

optics

The decoherence of a quantum system results from the measurements performed by its
environment [4]. In most experiments so far, only a tiny fraction of these measurements
produce outcomes that are accessible to the observer. If the observer is able to extract more
information than the rest of the environment, it becomes possible to record the evolution
of a quantum system on a single realization and not only averaged traces. Many quantum
systems couple well to microwave signals [5, 6, 7, 2], and can therefore be measured using
microwave modes as a probe. Yet, several orders of magnitude divide the tiny power of
quantum microwave signals and the detection threshold of usual measuring apparatus.
Linear amplifiers are used to fill that gap.

In the last decade, the community of superconducting circuits has provided a strong
push towards improving the efficiency of microwave amplifiers, so that most of the informa-
tion extracted on these quantum systems can now be recorded. In this section, we present
the limitations imposed by quantum mechanics on the efficiency of linear amplifiers. Then,
we will show how we managed to reach up to 80% efficiency with concrete circuits.

1.1 Linear amplifiers

Propagating microwaves on transmission lines are described as modes of finite bandwidth
∆ωa [8]. Let us consider a mode centered on frequency ωa which is described by a ladder
operator âin. The mode quadratures1 are defined as

X̂ain = Re(âin) =
âin + â†in

2
and Ŷain = X̂−iain = Im(âin) =

âin − â†in
2i

. (1.1)

1Many notations and definitions can be found in the literature, where the quadratures can be defined as√
2 or 2 times our definition. We use the notations X and Y in order to avoid confusion with distributions

P , W and Q. In the literature, X is often called P or I and Y is often called P or Q.

9



10 Amplifiers for microwave quantum optics

1.1.1 Scattering relations

It is tempting to define a linear amplifier of power gain G as an amplifier that transforms âin
into an amplified version of another mode operator âout such as âout =

√
Gâin. However,

this equality does not hold except for G = 1 as can be seen from the commutation relations

[âout, â
†
out] = [âin, â

†
in] = 1. (1.2)

An extra mode operator b̂in, called the idler, which commutes with âin, is then introduced
so that the following relation holds for all gains G and input state:

âout =
√
Gâin +

√
G− 1b̂†in. (1.3)

With this operating principle2, the commutation relations (1.2) are valid for all gain G.
Linear amplifiers come in two main flavors depending on the choice of b̂in.

• Phase-preserving amplifiers

This kind of amplifiers correspond to an identical gain
√
G on both quadratures

〈âout〉 =
√
G〈âin〉. (1.4)

It is the case when b̂in verifies 〈b̂in〉 = 0 and [b̂in, â
†
in] = 0.

• Phase-sensitive amplifiers

This kind of device amplify one quadrature but attenuate the other. The output
mode hence obeys

âout =
√

GsX̂e−iϕain +
i√
Gs
Ŷe−iϕain , (1.5)

for a certain phase ϕ. For instance, if ϕ = 0, it corresponds to b̂in = âin. In this case,√
Gs =

√
G+

√
G− 1.

1.1.2 Quantum limit on linear amplification

In 1962, Haus and Mullen [10] discovered the minimal noise that a linear amplifier has to
add, and this limit was later reformulated by Caves [11] in 1982. To put it simply, the
extra mode necessary to phase-preserving amplifiers adds the equivalent of half a photon
of noise at the input in the case of large gains. On the contrary, phase-sensitive amplifiers

2It is possible to perform noiseless phase-preserving amplification if one is willing to post-select the
experiments on a control observable [9]. In this case, a coherent state |γ〉 is transformed into |

√
Gγ〉 each

time a control observable is measured in a particular state. The improvement in signal to noise ratio is
then balanced by a lower success rate. Up to now, the implementations of this kind of amplifiers use
photodetectors as a way to measure the presence of a control photon. It would be very interesting to build
the equivalent in the microwave domain, where photodetectors are an ongoing project for the community.
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do not have to add any noise. This quantum limit is formally expressed by a lower bound
on the sum of both output quadrature variances3

〈∆X2
aout〉+ 〈∆Y 2

aout〉
G

&
G→∞

〈∆X2
ain〉+ 〈∆Y 2

ain〉+
1

2
(1.7)

for a phase-preserving amplifier. The minimum is reached for b̂in in the vacuum.
This half quantum of added noise does not reveal properly the limitations of linear

amplifiers as measurement apparatuses. In fact, both kinds of amplifiers can be non-
information degrading when measuring the physical quantity they are matched to. In order
to illustrate this point, let us consider the case of homodyne and heterodyne detection.

Homodyne measurement

Homodyne measurement consists in measuring only one quadrature Xeiθain of the field ain.
In the microwave domain, it can be done by first mixing the field aout with a powerful tone at
frequency ωa and phase θ. Then, by measuring the average value of the output voltage using
a proper low-pass filter (typically averaged over 2π/∆ωa), one gets an outcome proportional
to Xeiθain . We then define the signal to noise ratio of a homodyne measurement as SNR ≡
〈X〉2

Var(X) . As we already noticed, a phase sensitive amplifier is perfectly suited to homodyne
detection as it does not add any noise while amplifying the homodyne signal. For a phase
preserving amplifier, one finds in the large gain limit that (see Appendix)

SNRout =
SNRin

1 +
〈∆X2

bin
〉

〈∆X2
ain

〉

. (1.8)

The least possible degradation would then be obtained for a squeezed idler mode, but
perfect efficiency is reached only asymptotically on the squeezing parameter of idler.

Heterodyne measurement

Heterodyne measurement consists in measuring simultaneously both quadratures Xain and
Yain . It can be done by first mixing the field aout with a powerful tone at frequency
ωa + ωh, where ωh is larger than the propagating mode bandwidth ∆ωa but smaller than
the bandwidth of the detector. It is then possible to record the resulting signal and nu-
merically demodulate it at frequency ωh in order to extract its quadratures Xain and Yain .
A phase sensitive amplifier is useless for that kind of measurement since it attenuates one
quadrature.

3

〈∆X
2

aout
〉 ≡

〈(

âout + â
†
out

2

)2〉

−
〈

âout + â
†
out

2

〉2

. (1.6)
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Figure 1.1: In the quadrature phase-space, a disk represents the area where the distribution
is larger than its maximum divided by e. Top row: Wigner functions of a coherent state
before (left) and after (right) amplification by a quantum-limited phase-preserving amplifier
with the vacuum state at the idler input. Bottom row: Husumi Q functions of the same
states. The signal to noise ratio is degraded for homodyne measurement (SNR related to
the Wigner function) but not for heterodyne measurement (SNR related to the Q function).

In order to understand the degradation in signal to noise ratio for a heterodyne measure-
ment, let us consider the distribution probability P(x, y) to measure both quadratures in x
and y. This distribution is in fact the Husumi Q distribution (see Fig. A.3) [12, 13, 14, 15].

P(x, y) = Q(x+ iy). (1.9)

The proper signal to noise ratio to consider is therefore SNR ≡ |〈X+iY 〉|2
VarQ

, where VarQ
is the variance of the Q distribution. If one uses a phase-preserving amplifier with the
idler in the unsqueezed vacuum state (Fig. 1.1), the variance of the Husumi Q function
VarQ(aout) =

∫

C
Qout(α)∆α

2dα at the output is

VarQ(aout) = GVarQ(ain) + (G− 1) (VarQ(bin)− 1) = GVarQ(ain). (1.10)

Therefore, the noise of heterodyne measurement scales as the signal itself, by the gain
of the amplifier. It is thus physically possible not to degrade the signal to noise ratio of
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a heterodyne measurement using a phase preserving amplifier. This property translates
quantitatively in the possibility to keep a qubit in a pure state during a weak heterodyne
measurement of the field in a circuit-QED architecture, as was shown in Ref. [16] last year.

1.2 Microwave amplifiers based on superconducting circuits

In this section, we briefly describe several implementations of linear microwave amplifiers
operating close to the quantum limit. One of them, the Josephson mixer, is a multipurpose
tool for microwave quantum optics and will be described in detail. When referring to
microwave frequencies, we actually mean the 2 to 20 GHz range. Within this range, the
vacuum state can be prepared by simply cooling down the fields at dilution refrigerator
temperatures (~ω/kB > 100 mK ≫ Tdil) and the wavelength is larger than 10 mm, which
makes the wave propagation more tolerant to small imperfections in the measurement setup
and gives access to high precision apparatus unavailable at larger frequencies.

Superconducting circuits offer an easy way to perform quantum operations on mi-
crowave fields. Indeed, they are nearly lossless conductors4, have a gap larger than mi-
crowave photon energies and their tunnel junctions — the Josephson junctions — are
nonlinear element. With the recent development of circuit-Quantum ElectroDynamics
(circuit-QED), where superconducting circuits are coupled to microwave resonators, the
need for quantum limited microwave amplifiers has been pressing. Building up on the
earlier efforts of Yurke and coworkers [20] in the late 1980’s, the community has developed
several kinds of low noise parametric amplifiers based on Josephson circuits.

Caves and coworkers have shown recently that any phase-preserving linear amplifier
behaves like a parametric amplifier with an idler mode in a given state [21]. A parametric
amplifier couples the signal mode âin to an idler mode b̂in via a pump p̂ at frequency
ωp = ωa + ωb. The coupling term in the Hamiltonian reads i~χabp(â

†b̂†p̂ − âb̂p̂†). In the
stiff pump regime, p̂ can be replaced by a scalar number so that, in the interaction picture,
one gets the parametric down-conversion Hamiltonian [22]

Hpd = i~χab(â
†b̂†eiϕ − âb̂e−iϕ), (1.11)

where χabe
iϕ = χabp〈p̂eiωpt〉. This Hamiltonian can be integrated during the interaction

time τi in order to give the evolution operator, also called two-mode squeezing operator

S = ere
iϕâ†b̂†−re−iϕâb̂, (1.12)

where reiϕ = χabτie
iϕ is called the complex squeezing parameter. The scattering relations

4At nonzero frequency, a superconductor has an inductive behavior. An oscillating current hence induces
an electric field which accelerates quasiparticles, a source of power dissipation [17, 18]. Yet, in most circuits,
this dissipation is negligible compared to other parasitic sources of loss such as defects in the dielectric
medium [19].
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Figure 1.2: Top: Degenerate amplifier. The pumped SQUID array can be modeled as an
inductance oscillating at frequency ωp = ωa + ωb. In the degenerate case, both signal a
and idler b modes share a single resonance bandwidth. Besides, they evolve on the same
physical transmission line. Bottom: Non-degenerate amplifier. In this case, signal and
idler modes are localized on different resonators. They can be non-degenerate in space
and/or frequency, with arbitrarily separated mode frequencies.

of a non-degenerate amplifier hence read as Eq. (1.3)

âout = S†âinS = cosh(r)âin + eiϕP sinh(r)b̂†in
b̂†out = S†b̂†inS = cosh(r)b̂†in + e−iϕP sinh(r)âin

. (1.13)

Experimentally, several kinds of parametric amplifiers were implemented as discussed
below. A possible distinction between them consists in the fact that signal and idler modes
share a single resonator (degenerate) or not (non-degenerate) as detailed on Fig. 1.2.



1.2 Microwave amplifiers based on superconducting circuits 15

1.2.1 Degenerate amplifiers

Josephson parametric amplifiers consist in a serial array of at least one SQUID contributing
to the inductance of a superconducting LC resonator [20, 23, 24, 25, 26, 27]. In most
realizations, the resonance mode is the fundamental mode of a λ/4 resonator terminated
by the array of SQUIDs on one side and capacitively coupled to the input/output port on
the other. Single Josephson junctions could be used instead of SQUIDs at the expense of
frequency tunability. The Hamiltonian of the circuit is up to fourth order given by

Hdeg = ~ωcĉ
†ĉ+ ~χĉ†ĉ†ĉĉ. (1.14)

Let us now define modes â and b̂ with frequencies ωa = ωc − δω and ωb = ωc + δω so that
the detuning δω is smaller than the resonator bandwidth but larger than the bandwidth
of modes â and b̂. The amplifier operates by sending a pump microwave tone at ωc. In
this case, one indeed finds the phase-preserving scattering relations Eq. (1.13). It is also
possible to realize a phase sensitive amplifier in the limit where δω = 0, i.e. â = b̂. There,
the scattering relations Eq. (1.5) are verified.

Note that degenerate microwave amplifiers can be realized differently than Josephson
parametric amplifier. For instance, one may use a weak link instead of the SQUID [28] or
even the nonlinearities of the superconducting film itself [29, 30]. It is also possible to use
a Josephson Parametric amplifier by pumping its flux at twice the signal frequency [31]. A
different class of amplifiers based on SQUIDs amplify the oscillating magnetic flux threading
them [32, 33, 34, 35] and were used at high-frequencies already in the late 1990’s.

1.2.2 Non-degenerate amplifiers

Non-degenerate amplifiers correspond to the case where modes â and b̂ do not share a
single resonator. They avoid any overlap in space and/or frequency. Such an amplifier
based on superconducting circuits was first proposed and realized by Bergeal and coworkers
in 2008 [36, 37]. It is called the Josephson mixer and based on a ring of four Josephson
junctions coupling two resonators and a microwave pump tone. As we have shown in
Ref. [38], its behavior can be modeled by the simplified circuit shown at the bottom of
Fig. 1.2. We will describe this circuit in detail in the next section.

Let us note that another non-degenerate parametric amplifier was proposed by Kamal
and coworkers in 2009 [39]. It is based on a single junction or SQUID pumped by two
tones.

1.2.3 Nonlinear amplifiers

There also exists superconducting circuits that amplify a signal in a non-linear way. They
are well suited to amplify binary responses like in the measurement of a qubit state. They
are based on the bifurcation of a nonlinear oscillator [40, 41, 42, 43, 44]. Close to threshold,
a tiny variation of the signal can lead to the jump into a different state of the oscillator.
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1.3 Josephson mixer

1.3.1 Josephson ring
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Figure 1.3: a) Device schematic: four linear inductances L cross-link a ring of four Joseph-
son junctions. Each sub-loop is biased by a magnetic flux ϕextϕ0. For L < L0

J/4, the
current through the inductances is zero and the external flux phase-biases the junctions to
ϕext on average. b. The device is embedded at the intersection of four transmission lines
and couples to spatial modes X, Y and Z represented as arrows.

First, let us describe the core of the mixer which is a ring of four identical Josephson
junctions. Actually, as we have shown in Ref. [45], it is more convenient to consider
additional linear inductances cross-linking the ring like the pokes of a wheel as shown in
Fig. 1.3. One can then define the normal mode5 phase degrees of freedom of the ring (see
Fig. 1.3) by ϕX = ϕ1 − ϕ3, ϕY = ϕ4 − ϕ2 and ϕZ = ϕ2 + ϕ4 − ϕ1 − ϕ3. The Hamiltonian
of the ring then reads

H = −4EJ sin (ϕX) sin (ϕY ) sin (ϕZ) sin (ϕext)
−4EJ cos (ϕX) cos (ϕY ) cos (ϕZ) cos (ϕext)
+1

2EL/2
(
ϕX

2 + ϕY
2 + ϕZ

2/2
)

, (1.15)

5The four currents exiting the ring are related to the four node phases by an inductance matrix. Diag-
onalizing this matrix leads to finding the normal mode phase combinations.
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which can be approximated for small variations by

H ≈ −1
2EJ sin (ϕext)ϕXϕY ϕZ

+1
2 (EL/2 + EJ cosϕext)

(
ϕX

2 + ϕY
2
)
+ 1

2 (EL/4 + EJ cosϕext)ϕZ
2 . (1.16)

Here, EL = ϕ0
2/L is the energy associated with each of the inductances L, and EJ =

ϕ2
0/L

0
J = ϕ0I0 is the Josephson energy of each tunnel junction (I0 being their critical

current). We also define the reduced flux quantum ϕ0 = ~/2e and the dimensionless flux
ϕext = Φext/4ϕ0 threading each of the nominally identical 4 loops of the device. The
first term of the Hamiltonian is a pure 3-wave mixing term, while the two others are
quadratic terms determining the effective inductance of modes X, Y and Z: L−1

X,Y,Z =

ϕ−2
0 ∂2H/∂ϕ2

X,Y,Z . The value ϕext =π/2 maximizes the strength of the mixing term.

1.3.2 Coupling the ring to resonators

In order to use the 3-wave mixing term of the Josephson ring, one has to couple X, Y
and Z to microwave modes â, b̂ and p̂. This is done by connecting the ring to open
microwave resonators as shown in Fig. 1.4. Several possible designs [37, 46, 47] can realize
this coupling. One common feature of these circuits is the non-resonant behavior of the
p̂ mode, which will allow us to consider it as a classical variable (stiff pump regime). In
these designs, X is proportional to a quadrature of â and so are related Y to b̂ and Z to
p̂. For the geometry of Fig. 1.4, it can be shown that

X̂ = (â+ â†)
ωres
a Lring

a√
Zah/e2

√
4π and Ŷ = (b̂+ b̂†)

ωres
b Lring

b√
Zbh/e2

√
4π, (1.17)

where Zi is the characteristic impedance of mode i, Lring
i is the effective inductance relating

the current and flux of mode i and ωres
i is the resonance frequency of mode i. The 3-wave

mixing term can now be written in terms of the mode operators

Hmix = i~χabp(â+ â†)(b̂+ b̂†)(p̂− p̂†). (1.18)

Two important cases can be distinguished by the rotating wave approximation depend-
ing on the pump frequency ωp.

• Sum mode: if ωp = ωa + ωb, then the mixing Hamiltonian can be approximated to

be Hmix = i~χabp(â
†b̂†p̂− âb̂p̂†), which we have shown above leads to the parametric-

down conversion Hamiltonian (1.11)

Hpd = i~χab(â
†b̂†eiϕ − âb̂e−iϕ). (1.19)

This is therefore the phase-preserving parametric amplification regime. We have used
this regime in order to perform near quantum limited amplification (see below), para-
metric oscillation and the generation and witnessing of entangled pairs of microwave
radiation (section 2).
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Figure 1.4: Top: Schematics of the Josephson mixer. The ring is placed at the crossing of
two λ/2 resonators of frequency ωa and ωb. Mode b, whose quadrature is proportional to
Y , is single ended and its input and output signals are spatially separated by a commercial
circulator. Mode a, whose quadrature is proportional to X, is connected to a 180◦-hybrid
coupler so as to address the Z and X modes of the ring via two separate ports. The input
and output signals on a are also separated by a circulator. Bottom: Physical implemen-
tation of the Josephson mixer corresponding to the one reported in Ref. [45]. The whole
circuit is made in one step of electronic lithography followed by evaporation of Aluminum
on an oxidized silicon chip. The Josephson junctions are artificially colored in blue on the
picture. The resonators are made using microstrip geometry and the circuit is shielded and
anchored at the base temperature of a dilution refrigerator.
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• Difference mode: if ωp = ωa − ωb, then the mixing Hamiltonian can be approxi-

mated to be Hmix = i~χabp(â
†b̂p̂ − âb̂†p̂†). This is the frequency conversion regime

which has recently been explored experimentally in Ref. [48]. We have used this mode
in order to realize a quantum memory for microwave signals as described in section
2.2.

1.4 Characteristics of the Josephson mixer as an amplifier

The performances of a phase preserving microwave amplifier are characterized by five
parameters:

• the power gain G is the ratio of the output power to the input power.

• the dynamical bandwidth ∆ω sets the scale of the shortest temporal features that
can be amplified without distortion.

• the frequency tunability ωmax−ωmin corresponds to the spectrum of continuous tones
that can be amplified. Note that, slow varying parameters can be tuned so as to cover
this full spectrum so that ∆ω ≤ ωmax − ωmin.

• the efficiency η (equivalently added noise A, noise temperature TN or noise factor F
as described in section A.3) describe by how much the amplifier misses the quantum
limit.

• the compression point P1dB gives the amount of input power beyond which the am-
plifier power gain decreases by 1 dB.

1.4.1 Gain vs bandwidth tradeoff

Resonators a and b are coupled to two transmission lines at a characteristic rate κa and
κb. The reflection coefficient at the mixer input port then reads [36]

ra =
1 + C + i(δωa + δωb)− δωaδωb

1− C − i(δωa − δωb) + δωaδωb
(1.20)

where the cooperativity is

C =
4χ2

abp|p|2
κaκb

, (1.21)

and δωa,b are dimensionless detunings between the probe frequency and the resonance
frequency, which is shifted by the Kerr termsThe magnitude of this reflection coefficient
for a typical device is shown in Fig. 1.5. The power gain G of the amplifier is defined by
|ra|2 at resonance for small intra resonator fields. Hence, for C < 1 (below threshold)

G =

(
1 + C

1− C

)2

. (1.22)
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Figure 1.5: a) Magnitude of the reflection coefficient |ra|2 represented as a function of the
pump power (measured at the level of the generator, with about A−1 ≈ 60 − 70 dB of
power attenuation) and as a function of the input frequency ωain . The pump frequency is
ωp/2π = 14.071 GHz. b) Cuts of the density plot in a) taken at pump powers indicated
by the colored arrows. c) Bandwidth of the amplifier as a function of gain. The dot colors
correspond to the pump powers pointed by color arrows in a). d) Same as c) for the red
curve and similar curve for mode b plotted in green.

The bandwidth of the amplifier ∆ωa, from which we define the input/output mode
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bandwidth, is defined by the frequency interval over which |ra|2 is larger than G/2.

|ra(δωa = −δωb)|2 ≥
G

2
for |δωa| ≤

∆ωa

2
. (1.23)

For large gains, as we describe in Ref. [38],

∆ωa

√
G ≈ 2

(
1

κa
+

1

κb

)−1

≤ 2min(κa, κb). (1.24)

Thus, we find that the bandwidth of the amplifier is limited by the smallest coupling rate
between resonators and transmission lines. On Fig. 1.5, one can check how well this law is
reproduced.

1.4.2 Participation ratio and design guidelines

From the above description, it seems that in order to maximize the bandwidth of the ampli-
fier, one simply needs to maximize the coupling rate of the resonators to their transmission
lines κa,b. Let us now see why these rates are limited.

An essential parameter of the amplifier is the participation ratio ζ of the Josephson
junctions [49]. It quantifies the fraction of energy stored in the Josephson junctions com-
pared to the total circuit energy. In case of the Josephson mixer, the participation ratios
of the junctions to each resonator are (see supplementary material of Ref. [50])

ζa,b =
2

|tan(ϕext)|
1

ωa,b

∣
∣
∣
∣

∂ωa,b

∂ϕ

∣
∣
∣
∣
, (1.25)

where ϕ is the phase difference across the junction and ωa,b the resonator frequency of
mode a (b) [51].

As was shown in Ref. [36], the cooperativity is related to the pump current Ip going
into the pump mode by

C =
ζaQaζbQb

Ξ

Ip
I0
, (1.26)

where Ξ is a number of order 1, I0 the critical current of the Josephson junctions and
Qa,b = ωa,b/κa,b is the quality factor of resonator a (resp. b). In order for the amplifier
to operate with a reasonable gain, one needs to reach C ≈ 1 while ensuring the condition
Ip < I0. One then arrives at the important design criterion that limits the bandwidth of
the mixer

ζaQaζbQb > Ξ. (1.27)
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1.4.3 Dynamical range

Another characteristics of an amplifier is the dynamical range, expressed as the maximal
power P1dB one can provide at the input without losing more than 1 dB of gain. The
dynamical range may be limited by pump depletion or by the Kerr terms shifting the
resonance frequency of the resonators while the pump and signal are increased [46, 47].
The dynamical range of a typical amplifier is shown in Fig. 1.7b. A detailed study of
dynamical range limitations in the case of degenerate parametric amplifiers can be found
in Ref. [52].

100 μm
5 μm

Figure 1.6: Top: Schematic of the experimental setup. Normal Modes are addressed in
reflection through two 180o hybrid couplers. Bottom: Optical microscope image of the
device showing the capacitors (Al/SiN/Al) and the Josephson junction ring.

Given the various constraints on dynamical range and bandwidth, the optimal design
for the Josephson mixer consists in maximizing the participation ratio by minimizing the
inductance of the resonators. We have designed and measured such an amplifier, in which
the resonators are made of the Josephson ring and lumped capacitors (Fig. 1.6). In this
device, we have demonstrated a dynamical range of P1dB = −104 dBm for a gain of 20 dB
with a dynamical bandwidth of 50 MHz, which is an order of magnitude better than the
device shown in Fig. 1.4 in all respects.
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1.4.4 Flux tunability
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Figure 1.7: a. Dots: Measured resonance frequency ωa of the signal mode as a function
of flux applied to the ring modulator without pump. Solid line: fit of ωa with ω0

a/2π =
8.82 GHz, L = 49 pH, EJ = ϕ0 × 1.9 µA and including the known stray inductance
around the loop 4LS = 200 pH see [45]. b. Reflection gain measured on the signal port
as a function of frequency for various values of the flux indicated by the color lines in a.
Pump parameters are optimized for each curve. The numbers on top represent the 1 dB
compression point (maximum input power) expressed in input photon rate per dynamical
bandwidth for six different working frequencies coded by color.

Adding the central inductances to the ring of Josephson junctions (Fig. 1.3) allows
to tune the frequencies ωa,b by changing the magnetic flux without fear of instabilities in
the ring’s working point. On Fig. 1.7a, we show the measured resonance frequency as
a function of flux. The resonance frequency is determined from the dependence of the
reflection coefficient on probe frequency. With this sample, we hence get about 500 MHz
of tunability through the flux. The measurement is also perfectly described by a simple
model. Besides, as the pump power is increased, the reflection gain increases and can reach
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more than 30 dB. On Fig. 1.7b, the pump frequency and power have been optimized for
each flux so as to reach about 20-25 dB of gain.

1.4.5 How close to the quantum limit is it?

We used several ways to probe the efficiency of the Josephson mixer as an amplifier. One
way consists in measuring the output noise for a variable and well determined noise at
its input. We generated this noise using either a voltage biased tunnel junction [45] or
a temperature controlled load [53]. The other way consists in measuring directly the Q
distribution at the output while the input Q function is that of a known coherent state.
In order to determine the coherent state at the input we used the measurement induced
dephasing rate of a qubit state due to this field [54].

Technique
Demonstrated ef-
ficiency

Likely dominant imperfection

Amplifying the noise of a tun-
nel junction [45]

η > 0.3

Impedance mismatch between
the junction and the 50 Ω
transmission lines because of
a parasitic capacitive coupling

Amplifying the noise of a
heated load impedance [53]

η > 0.7

Losses between the noise
source and the amplifier in-
put, where there were a
switch, circulators, a hybrid
coupler and several cables.

Amplifying a coherent state
calibrated using measure-
ment induced dephasing of a
qubit [54]

η > 0.8

Losses between the cavity of
the qubit and the amplifier in-
put, where there were two cir-
culators and a hybrid coupler.

Table 1.1: Summary of the measurement degradation observed using various techniques in
different samples made using the microstrip geometry shown in Fig. 1.4.

Note that the currently most efficient commercially available amplifiers [55] based on
High-Electron-Mobility Transistors are about 30 times less efficient than the Josephson
amplifiers in the experiments. Part of it comes from the inefficiency of the device itself but
most of it comes from the several dB of unwanted attenuation between the sample at base
temperature and the amplifier on the 4 K stage of the dilution refrigerator. However, what
they lack in efficiency is compensated by their impressive dynamical bandwidth of a few
octaves.



Chapter 2

Generating entanglement between

microwave fields

Entanglement is a purely quantum resource, which is essential to the speed up of com-
putation and communication by quantum information. For two qubits, the maximally
entangled states are the Bell states of the form (|00〉 + |11〉)/

√
2. Their entanglement is

maximal in the sense that dismissing the information about one qubit of the pair (tracing
it out) results in a maximally entropic state for the other qubit. Instead of using qubit
registers, it is possible to use continuous variables to encode quantum information [56]. In
this paradigm, the maximally entangled states are revised. Considering two modes a and
b described by harmonic oscillators, the maximally entangled state for an average photon
number N in each mode is the two-mode squeezed state and reads

|Sq(N)〉 = cosh(r)−1
∑

tanh(r)n |n〉a |n〉b , (2.1)

where N = sinh(r)2. When both modes are spatially separated, this state describes an
Einstein-Podolsky-Rosen (EPR) pair, named after the famous eponymous thought experi-
ment.

While these states are routinely generated in the optical domain, they had remained elu-
sive in the microwave domain. Earlier attempts by Yurke and coworkers in 1988 [57] showed
how to generate single mode squeezed states in the microwave domain using superconduct-
ing circuits. However, the field needed the strong advances in microwave engineering and
nanofabrication that occurred during the following 20 years in order to push forward these
techniques. In 2008, the Boulder group presented a degenerate amplifier able to produce
single mode squeezed states less than 10 dB below vacuum fluctuations [24, 58]. Using two
sidebands of degenerate parametric amplifiers, one can then produce two-mode squeezed
states [27, 59]. In order to produce an EPR pair, delocalized on two transmission lines,
one needs to go a step further.

One route consists in sending a single-mode squeezed vacuum state and an unsqueezed

25
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Figure 2.1: Scheme of the production of an EPR pair using a Josephson mixer.

vacuum state towards a beam-splitter. This strategy was demonstrated after our work
in Ref. [60]. We chose instead to use a non-degenerate amplifier, which is the Josephson
mixer described in section 1.3. By applying a pump signal to this mixer (which we call the
”entangler”) while starting from the vacuum state, a two-mode squeezed state is produced
at its output (Fig. 2.1). Using Eq. (1.12), it is straightforward to show that

S |0〉a |0〉b = |Sq(N)〉. (2.2)

There are several ways to demonstrate entanglement between two modes. A straight-
forward method consists in performing simultaneous heterodyne measurements of the two
modes and checking whether or not the cross-correlations between modes are larger than
classically allowed [27, 15, 60]. We have used this technique for demonstrating entangle-
ment between a quantum memory and a transmission channel (see section 2.2.3). Here,
we have used yet another method, which consisted in building a quantum circuit able to
witness entanglement. Therefore our experiment not only demonstrates entanglement be-
tween two remote microwave fields at different frequencies, but also demonstrates how it
can be used as a resource in a quantum circuit.

2.1 Josephson mixer as an entanglement detector

2.1.1 Destructing coherent fields with a Josephson mixer

The key ingredient of this quantum circuit is the use of another Josephson mixer (which we
call the ”analyzer”) to recombine the two modes which are supposedly entangled (Fig. 2.2).
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From the scattering relations Eq. (1.13), one gets for large analyzer gain cosh2(rA)

âout,A ≈ cosh(rA)(âin,A + eiϕP,A b̂†in,A) (2.3)

where ϕP,A is the phase of the pump. Therefore, when properly choosing the coherent fields

incoming on a and b ports such that 〈âin,A〉 = −eiϕP,A〈b̂in,A〉∗, destructive interferences
between incoming fields cancel the output field on a. This effect was advertised in Ref. [61]
as an anti laser. Instead of generating two such coherent fields using two microwave gener-
ators, we can generate them using another Josephson mixer (the ”entangler” in Fig. 2.2a).
By sending a coherent field at the input bin,E of the entangler, it outputs two signals that
depend on the entangler pump phase ϕP,E as

〈âout,E〉 ≈ eiϕP,Ecosh(rE)〈b̂in,E〉∗ and 〈b̂out,E〉 = cosh(rE)〈b̂in,E〉, (2.4)

where we have used the large gain approximation cosh(rE) ≈ sinh(rE). When these two
signals are sent at the input of the analyzer, one gets an outgoing amplitude on the a mode
of the analyzer given by

〈âout,A〉 ≈ cosh(rE) cosh(rA)e
iϕP,E 〈b̂in,E〉∗

(
1 + ei∆ϕ

)

︸ ︷︷ ︸
,

interfere
(2.5)

with ∆ϕ = ϕP,A − ϕP,E the phase difference between both pumps. When the two pump
signals are opposite, the analyzer indeed suppresses all the incoming signals1.

In Fig. 2.2b is shown the measured amplitude |〈âout,A〉|2 (normalized by |〈b̂in,E〉|2) as
a function of phase difference ∆ϕ for various entangler gains cosh2 rE . As expected from
the interference term in Eq. (2.5), the output signal amplitude nearly cancels for ∆ϕ = π.
Last year, Schackert and coworkers have investigated the energy conservation involved in
this signal cancellation by measuring the extra energy found in the output of the pump
mode [62].

2.1.2 Entanglement witness

Now, it is important to note that the destructive interference we have just discussed only
concerns the mean value of the fields but not their fluctuations. In fact, when two non-
entangled coherent fields destructively interfere with the Josephson mixer, their average
value cancel but their fluctuations are on the contrary amplified by the gain of the mixer.

We have shown that, if the two input modes are non-entangled, the level of noise at
the output of one mode of the mixer is always larger than the level of amplified vacuum

1Note that on the b output port, at the most destructive phase difference (∆ϕ = π), the field amplitude
is not zero but equal to 〈b̂in,E〉. From the point of view of the second mixer though, it corresponds to a
reduction by a factor cosh(rE) between input and output.
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Figure 2.2: a Scheme of the circuit demonstrating the cancellation of two coherent states
using a Josehpson mixer. Each diamond represents one Josephson mixer, nicknamed the
entangler (E) or the analyzer (A). It has two inputs and two outputs: orange for mode
a at 5.6 GHz and blue for mode b at 8.8 GHz. Losses are modeled as beam splitters of
transparency α2 and β2 coupling a cold load to the signals. b. Color traces: measured
intensity of the output field |〈aout,A〉|2 in units of the intensity |〈bin,E〉|2 of the coherent
field sent on the b input mode, plotted as a function of the phase difference ∆ϕ between
the pump signals. Here, the input of a is in the vacuum state. The gain of the analyzer is
set to GA = cosh2 rA = 10 (solid gray line). Each trace and color corresponds to a different
gain for the entangler GE = cosh2 rE = 0.2, 0.8, 1.8, 3.2, 5, 7.2, 9.8 dB. Dashed lines: fits to
the data using equation (3) in Ref. [53] and the single fit parameter (1−β)/(1−α) = 0.945.

fluctuations. This can be viewed by calculating the output noise on port a for a non-

entangled pair of incoming fields. Assume that ρin =
∑

i piρ
(i)
a ⊗ ρ

(i)
b . Let us also assume

that 〈ain〉 = 〈bin〉 = 0 for simplicity. Then, the level of noise referred to the input (divided
by the gain cosh(r)2 is (see Fig. A.3 for the definition of VarW )

VarW (aout)

cosh(r)2
=

1

2

〈{

âin + eiϕP b̂†in, â
†
in + e−iϕP b̂in

}〉

. (2.6)

Hence,

VarW (aout)

cosh(r)2
=
〈

â†inâin
〉

+
〈

b̂†inb̂in
〉

+ 2Re
(

eiϕP 〈âinb̂in〉
)

+ 1. (2.7)
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Then, from the expression of ρin, one gets the inequality

VarW (aout)

cosh(r)2
≥
∑

i

pi

∣
∣
∣〈âin〉i + eiϕP 〈b̂†in〉i

∣
∣
∣

2
+ 1 ≥ 1. (2.8)
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Figure 2.3: a. Color traces: variance of the output mode VarW (aout) referred to the case
of vacuum input on the analyzer (divided by cosh(2rA)/2) as a function of phase difference
∆ϕ, determined by measuring the spectral density of the noise at the analyzer a output
when only quantum noise enters the entangler. Each color corresponds to the same gain
of the entangler GE as in Fig 2.2b with a fixed gain on the analyzer GA = cosh2 rA = 10.
The horizontal line at σ2 = 1 represents the measured noise for amplified vacuum at the
output of the analyzer (rE = 0). For ∆ϕ close to π, the measured noise goes below this
level, an evidence of entanglement. Dashed lines: predicted variance using α = 0.37 and
β = 0.40.

This shows that for any separable state at the input (non entangled a and b modes),
the noise at the output of a cannot be smaller than the amplified vacuum noise (which
is 1). In the experiment, we show that the noise goes below this threshold for ∆ϕ = π,
hence demonstrating the entangled nature of the fields produced by the Josephson mixer
A (Fig. 2.3). In practice, the noise level was 3.4 dB lower than the threshold, which
corresponds to the production of 6 millions of equivalent entangled bits per second given
the rather large bandwidth of the mixer. This value is here limited by the losses introduced
by the reflections on the various commercial components used to connect the first Josephson
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mixer to the second. In theory, without any loss, one would have got close to 12 dB of
noise compression with the pump amplitudes used in the experiment.

After our work, this experiment was reproduced in the optical domain in Ref. [63] where
similar noise cancellation was observed.

2.2 Quantum node for entanglement and storage of microwave

radiation

Once coupled to various quantum systems [5, 6, 7, 2], microwave fields could realize quan-
tum networks, in which entangled information is processed by quantum nodes and dis-
tributed through photonic channels [64, 65]. The quantum nodes should generate and
distribute microwave entangled fields while controlling their emission and reception in
time. We have seen in the previous section that superconducting circuits are able to gen-
erate entanglement. On the other hand, quantum memories provide control in time as
demonstrated in emerging implementations in the microwave domain using spin ensem-
bles [66, 67, 68], superconducting circuits [69, 70] or mechanical resonators [71, 72]. In this
section, we present a promising device for storing and manipulating microwave radiation
based on the Josephson mixer. Our device offers the advantage of having a large storage
efficiency (80 %) and the ability to generate entanglement shared between a memory and
a propagating mode of a transmission line.

2.2.1 Time control of the coupling to a cavity

Contrary to the perspective of building an amplifier or a fast entanglement generator, for
which the coupling rates of both ports a and b are maximized, we consider here the case
where one of the resonators of the Josephson mixer is as closed as possible κb ≪ κa. In this
case, the b mode becomes a storage medium while the a mode becomes a buffer cavity that
provides an input/output port to the memory. In order to maximally close the b mode, we
used a superconducting 3D cavity [73] (see Fig. 2.4). The principle of this memory consists
in turning on or off the coupling between a and b modes using a pump field. In this sense,
it is similar to the circuit demonstrated in Refs. [69, 70].

Effectively, it is possible to transfer what is stored in mode a at frequency ωa into
the memory mode b at frequency ωb. This is realized in the conversion mode of the
Josephson mixer, when the pump frequency is not the sum of both resonator frequencies
as in sections 1.4 and 2.1, but their difference ωp = ωa − ωb. The mixing Hamiltonian can
then be approximated to

Hmix = i~χabp(â
†b̂p̂− âb̂†p̂†). (2.9)

This regime has recently been explored experimentally in Ref. [48], in the context of fast
frequency conversion with large coupling rates on each resonator. In the stiff pump regime,
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Figure 2.4: (a) Schematic of the experimental setup. A high-Q memory mode b̂ is paramet-
rically coupled to a low-Q buffer mode â, hence to input/output propagating modes âin and
âout, depending on the pump amplitude p. (b),(c) Schematics and picture of the device.
The on-chip circuit couples to a 3D superconducting cavity via antennas. The blue arrows
represent the polarization of the fundamental mode TE 110 in the cavity. The Josephson
ring and buffer resonator are on-chip. The differential mode (∆) couples with the buffer
mode while the common mode (Σ) is used for addressing the pump. (d) Picture of the
aluminum circuit fabricated on a c-plane sapphire substrate. The antennas (blue) and the
buffer microstrip resonator (orange) are highlighted in false color. (e) Optical microscope
image of the Josephson ring at the crossing between antennas and buffer resonator. The
Josephson junctions are circled in white.

the pump operator p̂ can be replaced by a scalar number so that we introduce

χabe
iϕ = χabp〈p̂eiωpt〉 (2.10)

and thus

Hmix = i~χab(â
†b̂eiϕ − âb̂†e−iϕ). (2.11)
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Input/output rate

For a given pump amplitude, one defines the input/output coupling rate γio of the node
as the inverse characteristic decay time of the memory mode. Its expression can be found
by solving the Langevin equations for the memory mode b and for the fields coming in and
out of the buffer resonator a [50]. We get

γio ≈
κa
2
Re



1−
√

1− 4
|χabpp|2
κ2a



 . (2.12)

For larger pump power χabp|p| > κa/2, the system enters the strong coupling regime.
The coupling rate overcomes the output losses κa, thus the two modes hybridize. Conse-

quently, the input/output rate saturates to γio(χabp|p| > κa/2) =
κa
2
. The input/output

rate being only limited by the largest coupling rate of both resonators a and b, one can
reach rather large writing times for the memory.

Reflection measurements

We have tested our understanding of the input/output relations leading to Eq. (2.12) by
measuring the reflection coefficient Raa = aout/ain as a function of frequency for various
pump powers in a preliminary device with coplanar resonators (Fig. 2.5). The input/output
formalism gives the following approximate expression for Raa close to resonance

Raa =
κa − κa→b + 2iδωa

κa + κa→b − 2iδωa
. (2.13)

Here, δωa is the detuning between the probe field and resonance frequency of mode a, and
κa→b is given by

κa→b = κaC

(

1− 2
iδωa + iδωp

κb

)−1

(2.14)

with C = 4χ2
abp|p|2/(κaκb) the cooperativity – see Eq. (1.21) – and δωp the detuning

between the pump frequency and the difference ωa − ωb. In figure 2.5, one can see the
following regimes of power accessed experimentally.

• For C < κb/κa, the usual characteristics of a single resonator measured in reflec-
tion are observed: a 2π phase shift with increasing probe frequency and a constant
amplitude.

• For κb/κa < C < 1, the coupling between resonators a and b becomes effective so that
an extra loop appears in the quadrature phase space (Fig. 2.5c). This loop translates
into a slope change in the phase shift and the appearance of a dip in the reflected
amplitude.
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Figure 2.5: Reflection coefficient Raa on port a as a function of frequency for various values
of the pump power (cooperativity C encoded in color). (a) Measured phase. (b) Measured
amplitude. (c) Measured reflection coefficient in polar coordinates. (d) Expected behavior
of Raa using Langevin equations.

• For C = 1, the conversion rate κa→b is equal to κa at resonance so that the reflection
goes to zero. At this point, a continuous wave incoming on a is entirely converted
into the b mode and exits through the b losses.
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• For 1 < C < κa/κb, a 4π phase shift develops in reflection.

• For κa/κb < C, the 4π phase shift decomposes into two 2π phase shifts, each indicat-
ing a resonance. This is the strong coupling regime, where the conversion rate lifts
the effective degeneracy between the two hybridized resonators.

2.2.2 Storage and retrieval
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Figure 2.6: (a) Capture, store and release protocol. Pulse sequences for the pump field
p (green) at the difference frequency fp = fa − fb, the input field ain and the resulting
output field aout (orange). The temporal shape of the input field is chosen in order to
optimize the capture efficiency. (b) Time traces of the amplitude of the output field down
converted to 40MHz and averaged 6× 104 times. The top trace is measured without pump
and reveals the optimized input signal. The following traces correspond to the sequence
of (a) with increasing delay τ between capture and retrieval from 0 µs to 8 µs. (c) Dots:
retrieval efficiency η as function of delay τ . η is defined as the ratio of the retrieved energy
normalized to the input energy. Plain line: exponential decay η0e

−τ/τm characterizing the
memory lifetime. Best fit obtained for η0 = 80 % and τm = 3.3 µs.

In a practical quantum network, the temporal shape of the transmitted fields plays a
crucial role in the efficiency of the coupling to the node. Given the shape of the incoming
pulse, the pump temporal shape needs to be optimized in order to most efficiently catch
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the pulse. Reciprocally, one may use a square shape for the pump amplitude and optimize
the temporal shape of the incoming wave packet using techniques such as in Ref. [74].

This optimal envelope is shown in Fig. 2.6a. It is the time-reverse of the pulse released
by the memory when applying a square pump, that is close to a rising exponential with
characteristic time γio, similar to what was demonstrated in Refs. [69, 70]. The amplitude
〈âout〉 of the mode coming back from the device is measured for several pump pulse se-
quences (Fig. 2.6b). In a first control measurement (top trace), the pump is kept turned
off such that the measurement corresponds to the directly reflected incoming pulse. In the
following measurements (traces below) the pump is turned on before time 0 and after time
τ (Fig. 2.6a). Only 5 % of the incoming pulse energy is reflected while it is sent at t < 0
indicating the efficient absorption of this pulse shape. When the pump is turned back on
after a delay τ , the device releases the captured state back in the transmission line as can
be seen in Fig. 2.6b.

Calculating the memory efficiency η, which is the ratio between the retrieved pulse
energy and the incoming pulse energy leads to an exponential decay as a function of delay
time η(τ) = η0e

−τ/τm (Fig. 2.6c). The memory lifetime τm = 3.3 µs is much larger than
γ−1
io but limited by unidentified losses in the 3D cavity coupled to the antennas. The much

smaller decay rates achieved in similar 3D cavities [75, 73] leave room for improvement in
the future. Besides the outgoing phase is identical to that of the incoming pulse, demon-
strating that the memory preserves phase coherence. Finally, the number of operations
that can be performed by the memory within its lifetime is limited by the time-bandwidth
product γioτm = 30. This combination of large memory efficiency and time-bandwidth
product makes this device a state of the art quantum memory [76].

2.2.3 Entanglement between the node and a communication channel

Up to now, we have presented the circuit mostly as a quantum memory such as the one
in Ref. [69, 70]. In fact, using the flexibility of the Josephson mixer, we can also generate
a pair of entangled states (similar to what was done in section 2.1) shared between the
memory and a propagating mode of the transmission line. This is done by applying a pump
pulse at the sum frequency fp = fa + fb with both modes initially in the vacuum. At a
later time, the content of the memory mode b can be released using the protocol described
in the previous section (Fig. 2.7a).

We have performed a full tomography of the system made of the propagating wave
packet on transmission line aout and of the memory mode b by performing repeated hetero-
dyne measurements of the mode aout and of the later released memory mode b [15]. The
second-order correlations between the measured quadratures of the two modes characterize
the Gaussian state completely and are summarized in the covariance matrix (Fig. 2.7b).
In practice, we have used an FPGA board (see Ref.[15]) to pre-process the measurements
and extract the covariance matrix out of 40 millions pulse sequences in only 5 minutes.

The entanglement between the 3D cavity mode b and the propagating mode aout re-
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Figure 2.7: Entanglement between memory and propagating mode. (a) Scheme of the
pulse sequence. Top: pump amplitude p is shown in red for fp = fa + fb and in green for
fp = fa− fb. Bottom: output noise amplitude in time. (b) Measured two-mode covariance
matrix. The convention used is such that the vacuum state corresponds to the unity matrix.
The 2 × 2 block-diagonal matrices in orange and blue represent the single mode â and b̂
covariance matrices. The off-diagonal matrices in red represent the correlations between
modes. Correlations go beyond the greyed regions which demonstrates entanglement.

sult in stronger cross-correlations between modes than allowed by classical systems. The
corresponding entanglement threshold in the cross-correlator 〈XaPb〉 is indeed experimen-
tally exceeded as can be seen in (Fig. 2.7b). The number of equivalent entangled bits
(logarithmic negativity) is here close to 1.4.

In the end, we have developed and characterized a set of devices able to manipulate
and entangle microwave fields in time. The versatility of these circuits paves the way for
complex quantum communication protocols in the microwave domain such as continuous
variable quantum teleportation [77, 78, 79, 80]. Besides, it provides a useful resource for
3D cavities where the on-demand extraction of a field quantum state was needed. This
could be used to implement readout and feedback in cavity networks or even quantum
computation with the memory field itself [81]. Finally, superconducting qubits can easily
be embedded in this device, which could lead to protected quantum memories [2] and even
protected quantum computing with microwave fields [81, 82].



Chapter 3

Controlling a quantum system by

feedback

Error correction was developed in order to preserve or transmit data reliably despite the
possible flaws of the support of information. These effective protocols work well for classical
information. In a quantum system, two elementary assumptions used in classical error
correction break down. First, the state of a quantum bit does not span only two values
but a bi-dimensional vector space. Second, the sole fact of measuring the state of a system
modifies it. In these circumstances, it is outstanding that a quantum state may still be
preserved from decoherence, control and measurement errors using correction codes, as
Shor first discovered in 1995 [83, 84, 85, 86].

The practical requirements for implementing quantum error corrections are still out of
reach of current technologies, but various systems are getting closer every year [2]. There-
fore, the dynamical control of quantum systems needs to be developed in this perspective.

The simplest way to control a quantum system consists in sending classical driving
signals to modify its state. Yet, this open-loop control strategy has no grasp on the fact that
the environment measures the system, which leads to decoherence. Only feedback control
can fight decoherence efficiently. Two complementary feedback strategies coexist [87]:

• measurement based feedback consists in measuring the quantum system and modi-
fying the driving signals depending on the measurement record,

• autonomous feedback consists in coupling the quantum system of interest to another
driven quantum device able to stabilize it.

In this chapter, we present experiments on superconducting circuits that fall in one of
the two categories. First, we have used measurement based feedback to stabilize a desired
evolution of a quantum bit. Second, we have used autonomous feedback to cool down a
quantum bit.

37
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3.1 Stabilizing a quantum trajectory by measurement feed-

back

Few experiments have demonstrated the stabilization of a state (dynamic or not) by mea-
surement feedback. In 2011, a first experiment [88] demonstrated the stabilization of a cho-
sen number of photons in a microwave cavity. Weak measurements of the photon number
were repeatedly performed using flying Rydberg atoms. Depending on the measurement
record, a digital feedback loop tunes a classical driving input field, which preserves the
desired number of photons. The classical driving field was later replaced by single photon
excitations for better efficiency [89, 90].

Instead of controlling the state of a cavity, a single qubit can be controlled and mea-
sured using a circuit-QED architecture. It is therefore possible to control a qubit state
dynamically by measurement based feedback. In 2012, Vijay and coworkers [91] used an
analog feedback loop to stabilize the Rabi oscillations of a qubit permanently. When the
superconducting qubit is non-resonantly coupled to the cavity, the phase of the transmitted
field at cavity frequency depends on qubit state. The continuous monitoring of the trans-
mitted field hence provides a weak QND (quantum non demolition) measurement of the
qubit. The principle behind the stabilization of Rabi oscillations at 3 MHz is simple. The
feedback loop needs to increase (decrease) the drive amplitude when the measured qubit
trajectory is behind (ahead of) schedule. In Ref. [91], this was done by multiplying the
3 MHz reference with the weak measurement output and adding this signal to the resonant
driving field amplitude.

This protocol works but is suboptimal in terms of efficiency. Indeed, continuous mea-
surement exerts a constant dephasing rate in time, which can only degrade quantum purity
when the state of the qubit is not in measurement basis. In order to maximize the feed-
back efficiency, one needs to adjust the measurement strength in time as we demonstrate
in Ref. [92]. In our experiment, we use stroboscopic measurements that enable varying this
dephasing rate in time. For trajectories like Rabi oscillations that go through eigenstates of
the measurement observable (poles of the Bloch sphere), we turn on the measurement only
close to the ground state which is insensitive to measurement induced dephasing, hence
better preserving coherence over the whole trajectory. Besides, the stroboscopic method
allows to stabilize trajectories like Ramsey oscillations, which never reach measurement
eigenstates, by rotating periodically the measurement basis.

3.1.1 Experimental constraints

Several features were required to realize measurement feedback. First, we engineered a
superconducting qubit in cavity with a large decoherence time (T2 > 10 µs)., benefiting
from the recent development of the 3D transmon by Paik and coworkers [75]. Second,
we used an amplifier close to the quantum limit (see Table 1.1) so that the efficiency of
the detection setup is 82 % (which is still a world record). Finally, we programmed a
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fast electronics board (Field Programmable Gate Arrays) in order to implement digital
feedback so that the total delay between measurement and correction was only 500 ns
including propagation along the cables (Fig. 3.1).
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Figure 3.1: Illustration of the delays added by the various steps of the feedback loop (see
Ref. [54] for details). The qubit is a transmon circuit (green) in a 3D aluminum cavity
(purple). The transmitted field at cavity frequency is amplified using a Josephson mixer
(triangle) and processed using an FPGA controller. Depending on the result a fast π pulse
is sent or not at the qubit frequency.

3.1.2 Cooling down a qubit by measurement based feedback

Before discussing the stabilization of a quantum trajectory in time, let us focus on the
deterministic stabilization of a given qubit state. This was first done by Ristè and coworkers
in 2012 [93, 94] and we used a similar protocol in our experiment. The transmitted part
of a pulse sent at cavity frequency realize a single shot measurement of the qubit state. If
the qubit is found in the excited state, the FPGA board sends a fast π-pulse in order to
put it in the ground state. Using this protocol, we could lower the qubit population from
50 % down to 3.6 % when starting from a maximally entropic state, and from 2.4 % down
to 0.7 % when starting from thermal equilibrium.

3.1.3 Stabilizing Rabi and Ramsey oscillations

Without feedback, a constant driving field at qubit frequency produces Rabi oscillations
of the qubit in the σX , σZ plane of the Bloch sphere (Fig. 3.2a). Due to decoherence,
the oscillations decay in a characteristic time, which is here TR = 15.5 µs. The goal of
feedback control is to preserve the oscillations despite decoherence. To do so, a strong
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measurement is performed each time the qubit is supposed to reach the ground state. If
it is found in the ground state, the oscillations go on with the right phase. If not, a fast
π-pulse is applied, so that the qubit goes back on the right track. The resulting measured
oscillations in the Bloch sphere are shown in Fig. 3.2b. The average purity Tr(ρ2) of the
density matrix ρ is calculated to be 80%, the time averaged fidelity F = 〈ψtarg|ρ(t)|ψtarg〉
to the target trajectory |ψtarg〉 is F = 85% and the average preserved information quantity
1−Tr(−ρlogρ) = 0.50 bit. This is indeed more efficient than for continuous feedback where
only 0.15 bit was preserved on average in Ref. [91].

(a) (b)

0 100

t (μs)

Figure 3.2: (a) Measured decaying Rabi oscillations represented in the Bloch sphere. Here,
the Rabi period is 6.284 µs and they decay in TR = 15.5 µs. Time is encoded in color. (b)
Similar representation of the measured stabilized Rabi oscillations.

Similarly, it was possible to stabilize Ramsey oscillations. These oscillations can be
observed by first preparing the qubit in state (|g〉 + |e〉)/

√
2 and then realizing a qubit

tomography as a function of time. In order to connect to the usual representation of Ramsey
fringes at a given frequency ωRy, we can rotate linearly in time the measurement axis so that
〈σX〉maps onto 〈cos(ωRyt)σX+sin(ωRyt)σY 〉 and 〈σY 〉 onto 〈− sin(ωRyt)σX+cos(ωRyt)σY 〉.

Without measurement based feedback, the Bloch vector of the qubit decays exponen-
tially both in Z (T1 = 28 µs) and in the X,Y plane (T2 = 11.5 µs) as shown in Fig. 3.3a.
The stabilization by feedback works as follows. Every 4 µs, the qubit is rotated by π/2
and measured. The rotation axis is chosen so that the qubit should be found in state |g〉
if it follows the targeted trajectory. Therefore, if it is found in |e〉, a fast actuation π pulse
puts it back in the desired state |g〉. It is then rotated back by −π/2 to go back to the
Ramsey trajectory, with the right phase. Using this stroboscopic measurement based feed-
back, Ramsey oscillations are indeed preserved indefinitely (Fig 3.3b). The average purity
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Figure 3.3: (a) Measured evolution of the qubit initially prepared in state (|g〉+ |e〉)/
√
2 at

time 0 represented in the Bloch sphere with a Ramsey frequency ωRy/2π = 100 kHz. At
each time (color as in Fig. 3.2), the outcome of qubit tomography is represented as a dot
in the Bloch sphere and in the three orthogonal projection planes. The large black circles
set the scale of the Bloch sphere extrema. (b) Same evolution as in (a) with stroboscopic
measurement feedback every 4 µs. The Ramsey frequency is chosen at ωRy/2π = 10 kHz
instead of 100 kHz for a clearer observation of the trajectory. State tomography is only
performed outside of the sensing and actuation periods. The simulated trajectory is rep-
resented as a line during a 6 µs interval. (c) Evolution of the qubit with the same process
as in (b) but without actuation. An average persistent coherence of 18 % remains without
any actuation. Here, ωRy/2π = 100 kHz.
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Tr(ρ2) of the density matrix ρ is calculated to be 85%, the time averaged fidelity F = 76%
and the average information quantity 0.60 bit. Note that the measured trajectories shown
in Figs. 3.3 and 3.2 are perfectly reproduced by a resolution of the Bloch equations in a
piecewise manner (see Ref. [54]).

3.2 Autonomous feedback

Interestingly, the sole effect of stroboscopically measuring the qubit, without any measure-
ment feedback, induces persistent Ramsey oscillations, even though with less purity (52%),
fidelity (56%) and information quantity (0.03 bit) (Fig 3.3c). This is due to the relaxation
of the qubit during the measurement period towards state |g〉 making it more probable
to reinitiate in state (|g〉 + |e〉)/

√
2 than in state (|g〉 − |e〉)/

√
2 after the measurement

ends. This stabilization without actuation enters in the domain of autonomous feedback
or reservoir engineering. Indeed, the control fields resulting in the successive rotations and
measurements use the natural dissipation in the environment of the qubit/cavity system so
that relaxation can be steered towards any chosen state. This kind of reservoir engineering
was investigated in depth by Murch and coworkers in 2012 [95]. By continuous wave control
fields, they were able to engineer dissipation so that the qubit relaxes in state |g〉+ |e〉/

√
2

with a state purity of 70%.

Figure 3.4: Scheme of the cooling of a qubit by reservoir engineering following Ref. [96].
Two continuous waves at the qubit frequency νq and at cavity frequency νc are applied.
These fields induce transitions respectively only when the cavity is in the vacuum and when
the qubit is in the ground state.

Autonomous feedback can also be used to cool down a qubit without resorting to
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measurement feedback as in section 3.1.2. In Ref. [97], we have used such a protocol to
cool down a qubit before each experiment. This protocol, first demonstrated in Ref. [96],
uses the cavity as the quantum system performing the reset on the qubit. Under the effect
of two control fields (see Fig. 3.4), the qubit/cavity system relaxes into the state |g〉 ⊗ |α〉,
where |α〉 is the stationary coherent state in the cavity under excitation at νc. Thermal
excitations of the qubit are countered by the fast relaxation of the cavity when the qubit
is in the excited state. In the experiments reported in Ref. [97], this protocol allowed us
to cool down the qubit from 30% excitations to 10% excitations.

3.3 What’s next?

More and more experiments on circuit-QED use quantum feedback control now. In 2013,
measurement based feedback was used to deterministically reach a given entangled state
between two qubits [98], and to perform teleportation [99], and earlier this year, measure-
ment based feedback was used to correct for the dephasing induced by measurement in real
time [100]. On the side of autonomous feedback, an entangled state between two qubits
was stabilized last year in circuit-QED [101] and in ion traps [102]. Autonomous feedback
can also be a way to interpret complex quantum networks as has been demonstrated with
superconducting circuits and mechanical resonators [103, 104].

Another exciting prospect for quantum control is the quantum Zeno blockade. It is a
kind of autonomous feedback for which the qubit is used to tailor dynamically the Hamil-
tonian of a harmonic oscillator. It consists in measuring repeatedly whether or not a cavity
has N photons (where N can be chosen freely). By Zeno effect, the cavity is then fixed into
either state |N〉 or the subspace orthogonal to |N〉 [105, 106]. In Ref. [107], the coherent
dynamics of a 51-level atom blocked by Zeno effect was explored. We are currently seeing
a very similar dynamics in a circuit-QED architecture.

As a final note, we see now two promising and fascinating quantum error correction
schemes using superconducting circuits. A first approach, actively pursued by the UCSB
group [108, 109] and by IBM Yorktown[110, 111], consists in using thousands to millions
of physical qubits in order to create one protected qubit using surface codes. Another
approach, actively pursued by the Yale groups, consists in using protected Schrdinger cats
of the field inside of a cavity as a computational basis [82]. In this picture, one logical qubit
is encoded in a single mode of a field, which is much simpler to achieve technically. It seems
to me that this second approach, if fully validated, is much more attractive, certainly in
large parts because it remains a project that is accessible to a small research group. I’m
very curious to see what will emerge as the first scalable protected quantum bit in the near
future.



Chapter 4

Quantum measurement with past

and future information

Quantum measurement theory aims at predicting the statistics of results found when mea-
suring a quantity on many realizations of a quantum system in a given state. The state of
the system is defined here by the recipe of everything that happened to the system before
the measurement occurs at time t. It is described most efficiently by a density matrix
ρ(t). The measurement itself is defined by an ensemble of operators {Mm} where m spans

all measurement results [5], and such that
∑

mM
†
mMm = 1. The probability to get the

outcome m is then simply given by

pm = Tr(Mmρ(t)M
†
m). (4.1)

Recently, a generalization of quantum measurement theory was proposed in order to include
the information on the future of the system [112, 113]. Indeed, on top of assuming a given
past ρ(t) for the preparation of a system, one may select only the experiments for which
a set of future measurement outcomes will be found. It turns out that the full set of
conditions on the future can be efficiently encoded as an effect matrix E(t), which has the
same dimension as the density matrix. The probability to get an outcome m then becomes

pm =
1

N Tr(Mmρ(t)M
†
mE(t)). (4.2)

where N =
∑

mTr(Mmρ(t)M
†
mE(t)) is a normalization factor.

In this chapter, we present an experiment illustrating these new concepts on the simplest
open quantum system: a qubit in presence of a relaxation channel. We have measured the
average resonance fluorescence signal of a superconducting qubit for various initial states
and final measured states.

44
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4.1 Superconducting circuits: a testbed for quantum mea-

surement theory

Before describing in detail our experiment, let us discuss recent experiments on supercon-
ducting circuits, which demonstrate properties of measurement theory. Key advantages
are offered by superconducting circuits in the prospect of probing quantum measurement
theory:

• long coherence times can now be reached with up to 104 logical operations per error [2]

• they easily couple to quantum detectors like other qubits or propagating microwave
fields

• in circuit-QED, measurements can be repeated (QND).

• the detectors are more and more efficient (see section 1.4.5) so that thousands of bits
of information can be extracted within the qubit lifetime [2].
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Figure 4.1: Measured histogram of the time before a relaxation event is observed for the
qubit presented in Ref. [54]. The relaxation event is identified by the sign change of the
I quadrature of the transmitted field through the cavity of the transmon. The red line is
an exponentially decreasing function with characteristic time T1 = 26 µs. Insets show two
particular measurement records.

A nice illustration of the single shot and QND nature of the measurements in circuit-
QED consists in continuously measuring a quantum bit starting in the excited state. At
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some time, the qubit relaxes which can be seen directly on the time trace of the measure-
ment record. In Fig. 4.1 is shown the histogram of quantum jumps we obtained during
one of our experiments on 3D transmons similarly to what was measured in Ref. [114].
Similarly, the discrete loss of photons can be followed in time by measuring the parity of
the cavity photon number [115].

Superconducting qubits can be measured with a tunable measurement strength. For
strong measurements, the qubit jumps into one of the two eigenstates of the observable.
Instead, for weak measurements, only partial information is extracted so that the qubit
state evolves by small steps. Interestingly, the measurement back action on the qubit
state depends on the detector, and so do the measurement operators Mm. In 2006, Katz
and coworkers watched the effect of a detector producing a click with a finite probability
when the qubit is excited [116, 117]. The backaction is very different when the probe
is one quadrature of the field transmitted through a coupled cavity at its frequency as
demonstrated in Ref. [118], and again different when both quadratures are measured si-
multaneously [16]. In an experiment still in 2013 by Groen and coworkers, another qubit
was used as a detector resulting in yet another kind of measurement backaction [119]. In
all these experiments, the measurement strength can be tuned in situ. More recently, it
was shown that one can track the effect of a joint measurement on a system of two distant
qubits [98, 120].

4.2 Fluorescence of a superconducting qubit

g

e

Figure 4.2: Scheme of the fluorescence signal emitted by a superconducting qubit in a
cavity. The cavity is out of resonance with the qubit, weakly coupled to the b port, and
even more weakly coupled to the a port. When a coherent drive is sent through port a at
the qubit frequency νq, the qubit endures Rabi oscillations between ground |g〉 and excited
state |e〉. A field is then reemitted by the qubit on port b, with an imprint of the qubit
dynamics.

In our experiment, a superconducting qubit at frequency νq = 5.19 GHz is enclosed in
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a 3D cavity whose first mode is at νc = 7.76 GHz (see Fig. 4.2). The cavity is connected
to two transmission lines. Line a is coupled as weakly as the internal cavity losses with
a rate Γa = 2 kHz. It is used as a channel for resonant driving of the qubit. Since the
fundamental cavity mode is far detuned from νq, almost all the resonant incoming signal is
reflected. The cavity is coupled more strongly to line b, with a rate Γb = 0.25 MHz. When
a coherent tone at frequency νq is sent through port a, the qubit rotates in the Bloch sphere
at the Rabi frequency νR. One may then wonder what is the qubit dynamics imprint on
the field that is reemitted. Using quantum Langevin equations in a similar model as in
Ref. [121], we were able to show that the fluorescence signal can be seen as an oscillation
at the Rabi frequency νR in both the amplitude and photon number of the outgoing fields.
Using Pauli operators σz = |e〉〈e|− |g〉〈g|, σx = |g〉〈e|+ |e〉〈g| and σ− = |g〉〈e|, we find that
the field amplitudes oscillate as

{ 〈bout〉ρ(t) = 〈bout〉0 −√
γ1b〈σ−〉ρ(t)

〈aout〉ρ(t) = 〈aout〉0 −√
γ1a〈σ−〉ρ(t)

(4.3)

whereas the photon rates oscillate as
{

〈b†outbout〉ρ(t) = γ1b
(
1 + 〈σz〉ρ(t)

)
/2

〈a†outaout〉ρ(t) = |ain|2 + 2πνR〈σx〉ρ(t)/2
(4.4)

assuming the phase of the drive is such that the qubit evolves in the (x, z) plane, that is,
rotates around σy. Here, we have introduced the spontaneous emission rates γ1a ≪ γ1b ≈
(0.1 ms)−1 into line a (or b) set by the Purcell effect in the cavity. Interestingly, we remark
that the stimulated emission goes entirely into line a (where the drive field is incoming)
while the spontaneous emission goes mostly into line b (which is more open than a). In the
experiment, we chose to perform a homodyne measurement of mode bout. Experimentally,
we could subtract the qubit independent term 〈bout〉0, which mostly comes from a leak of
the drive through the cavity. Besides, since the qubit rotates around σy (this can be chosen
freely as long as the phase of the drive does not vary in time), only one quadrature of the
heterodyne measurement oscillates in time. We hence define the fluorescence signal s−(t)
as the measurement outcome of the observable Re (〈bout〉0 − bout) /

√
γ1b at time t. Given

Eq. (4.3), one gets that

s−(t) = Re
(
〈σ−〉ρ(t)

)
=

1

2
〈σx〉ρ(t). (4.5)

4.3 Past and future information

4.3.1 Past information

The evolution of the qubit density matrix in presence of a relaxation channel is captured
by the master equation

dρ

dt
= − i

~
[H, ρ] + γ1

(

σ−ρσ+ − 1

2
[σ+σ−ρ+ ρσ+σ−]

)

. (4.6)
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Figure 4.3: Average value of the fluorescence signal s− as a function of both time and
Rabi frequency (tuned by varying the drive amplitude), for a qubit either prepared in |e〉
(a) or post-selected in g (b). Both measured and predicted averages of s− are shown in
separate regions. Absolute values remain well bellow 0.5, as expected for the measurement
of Re [〈σ−〉] = 〈σx〉 /2.

The first term describes the Hamiltonian evolution of the qubit in presence of a drive,
with H = hνqσz/2 + hνRσy/2. The second term takes into account relaxation with a rate
γ1 = (16 µs)−1, part of which is due to the spontaneous emission rate γ1b introduced in
Eq. (4.3). This is rather usual and allows to predict the average signal fluorescence s−(t)
over time for a given initial qubit state ρ(0). In Fig. 4.3a, one finds a good agreement
between the measured average fluorescence and the prediction for 〈σx〉ρ(t)/2 coming from
the master equation (4.6).

4.3.2 Future information

Decoherence leads to a continuous increase of the qubit entropy, which diminishes the
contrast of the oscillations. Which set of experiments do one has to consider in order
to get the time-symmetric version of the oscillations shown in Fig. 4.3a for the average
fluorescence signal? Up to now, we only considered information about the system at times
smaller than the measurement time t and assumed nothing on the future. Let us now
reciprocally assume nothing about the past but something about the future. We prepare
the qubit at time 0 in the most entropic state by performing half the experiments in the
equilibrium state at time 0 and the other half with a fast π pulse at time 0. Then, at a final
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time T = 2.5 µs, we measure the qubit in a single shot manner along σz and select only
the experiments indicating that the qubit is in the ground state at time T . The resulting
average fluorescence signal is then indeed time-symmetric to the former experiment as can
be seen on Fig. 4.3b. In particular, the contrast of the oscillations increases with time.

Using the formalism developed in Refs. [122, 112, 113], one can model the information
about the future as an operator E(t) evolving according to a master equation similar but
different from (4.6).

dE

dt
= − i

~
[H,E]− γ1

(

σ+Eσ− − 1

2
[σ+σ−E + Eσ+σ−]

)

. (4.7)

The information about ending up in the ground state at time T is simply described by the
boundary condition E(T ) = (1− pT )|g〉〈g|+ pT |e〉〈e|, where pT ≪ 1 takes into account the
imperfection of the final measurement. Then, using Eq. (4.2) in the case where ρ(t) = 1/2,
one gets the following prediction for the fluorescence signal

s−(t) = Tr [E(t)σ−] /Tr [E(t)] if ρ(t) = 1/2. (4.8)

As can be seen on Fig. 4.3b, the agreement between measurement and theory is very good
indeed.

4.3.3 Past and future information

How are time traces of fluorescence modified when using knowledge of both past and
future? The conditional average of the fluorescence signal is represented on Fig. 4.4 for
both a preparation in excited state (as in Fig. 4.3d) and a postselection in ground state (as
in Fig. 4.3e). This fluorescence signal, which probes the weak values 〈σ−〉w, is dramatically
changed. Schematically, Fig. 4.4a exhibits interferences between the oscillations of Fig. 4.3d
and of Fig. 4.3e, with the appearance of negative (blue) and positive (red) pockets. There
are times t and Rabi frequencies νR in these pockets for which the weak values go beyond
the conventional range of unconditional averages, set by |Re(〈σ−〉)| ≤ 1/2. In Fig. 4.4, plain
lines represent the contours within which this boundary is violated. Quantitatively, the
largest weak value we could obtain is 2.6 times larger than the unconditional average. This
purely quantum effect, first predicted in 1988 [123] and observed already in quantum optics
in 1991 [124], is a complementary evidence to the irrelevancy of macro realism [125, 126].
In superconducting circuits, out of bound weak values have already been demonstrated
in connection with the Leggett-Garg inequalities [127] on the autocorrelation spectrum of
σz(t) [51] and for discrete weak measurements performed by another artificial atom [119].

Special features develop when past and future information disagree, which is for Rabi
frequencies such that the qubit rotates by an even amount of π in a time T (Fig. 4.4).
There, the weak values go to zero but a small shift in Rabi frequency results in a dramatic
change of the signal as evidenced in Fig. 4.4b, where the weak value of the fluorescence
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Figure 4.4: Interferences between past and future states. a, Average value of the
measured fluorescence signal s− as a function of both time and Rabi frequency, for a qubit
prepared in |e〉 and post-selected in |g〉. Plain lines surround regions with weak values
beyond the range allowed by macro realism. b, Dots: cuts of a as a function of νR for
times t = 0.99 µs (green) and t = 1.44 µs (red). Plain lines: prediction for the same curves
using Eq (4.9). Dashed lines: cuts of Fig. 4.3d at the same times. The gray region delimits
the range of possible unconditional average values, like the contours in (a). c, Theoretical
counterpart of a assuming that the average of s− is a measure of Re(〈σ−〉w) and using
Eq. 4.9. d, Theoretical counterpart of a assuming that the average of s− is a measure of
〈Reσ−〉w).
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signal is shown as dots as a function of νR at times t = 0.99 µs and t = 1.44 µs. At the
sign change, the slope of the weak value is much stiffer than the one of the unconditional
signal (dashed line), which illustrates the amplifying abilities of weak values [128, 129].
Indeed, this could be used for better parameter estimation or even feedback in case of the
stabilization of a drive amplitude. For instance, this curve was the most sensitive way to
determine the measurement fidelity in the experiment.

The conditional average of fluorescence signals can be quantitatively understood using
the same formalism as described above. The weak value for σ− at any time t can indeed
be obtained from the operators ρ(t) from the past and E(t) from the future, and is given
by [122, 112, 113].

〈σ−〉w = Tr(ρ̃σ−), where ρ̃(t) =
ρ(t)E(t)

Tr(ρ(t)E(t))
. (4.9)

The experiment offers a quantitative test of this simple expression, since the post-selected
fluorescence signal is given by Re(〈σ−〉w). As can be seen on Fig. 4.4b, the resulting
prediction (plain lines) agrees well with the data (dots). The agreement is good for all
measurements as can be seen between Figs. 4.4a and 4.4c where both prediction and mea-
surements are compared as a function of time t and Rabi frequency νR. The predicted
contours surrounding the regions where macro realism is violated are represented as plain
lines and they indeed match well their experimental counterpart. The agreement was
excellent for any conditions we considered on preparation and post-selection [97].

Interestingly, the operator σ− probed by the conditional averaged s− is not an observ-
able as it is not hermitian. This illustrates the ability of weak values to probe complex
quantities [130]. Here, the measured observable leading to s− is the field quadrature

Re(bout) = (b†out + bout)/2. For averages prepared only or post-selected only, Eq. (4.3)
leads to s− = Re〈σ−〉 or s− = 〈Reσ−〉 = 〈σx/2〉, which are formally identical. This is not
the case anymore for pre and post-selected measurements for which Re〈σ−〉w and 〈σx/2〉w
differ and indeed give very different predictions as can be seen in Figs 4.4c and 4.4d. It
is clear that the experiment matches only the prediction associated with Re〈σ−〉w, which
cannot be interpreted as the weak value of the observable σx/2.



Perspectives

Superconducting circuits and microwave fields are amazingly controllable systems. We now
have a large set of tools to pursue various projects I find particularly interesting.

First, we need to find a way to implement quantum error correction with these systems.
As discussed at the end of section 3, I’m very excited about the possibility of encoding
and protecting quantum information using superpositions of Schrödingier cat states of a
microwave mode. I believe that the quantum node we have developed will be a great tool
for that purpose and I think it makes sense to go in this direction.

Our systems are also good candidates to explore the fascinating link between infor-
mation and energy. We can perform enlightening thought experiments illustrating ther-
modynamics of quantum information with superconducting circuits. For instance, we are
working on the implementation of a quantum version of the Maxwell demon using qubits
and cavities. The link between work and entanglement should also be possible to explore.
Another interesting aspect concerns the statistics of measured quantum trajectories using
close to unit efficiency quantum detectors.

On a broad picture, I think that superconducting circuits and microwave signals will
soon prove to be the best quantum processor for any local operations but not for operations
on a distance, due to the large attenuation of microwave signals in cables. We need to find a
good way to convert efficiently and rapidly quantum information encoded in these systems
into quantum information encoded on traveling light in optical fibers. A lot of groups
show promising results in this direction using mechanical oscillators as an interface and
I’m excited to see these devices coming to life.
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[98] D. Ristè, M. Dukalski, C. a. Watson, G. de Lange, M. J. Tiggelman, Y. M. Blanter,
K. W. Lehnert, R. N. Schouten and L. DiCarlo. Deterministic entanglement of
superconducting qubits by parity measurement and feedback. Nature 502, 350–4
(2013).

[99] L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G.
Puebla-Hellmann, a. Fedorov and a. Wallraff. Deterministic quantum teleportation
with feed-forward in a solid state system. Nature 500, 319–22 (2013).

[100] G. de Lange, D. Ristè, M. Tiggelman, C. Eichler, L. Tornberg, G. Johansson, a.
Wallraff, R. Schouten and L. DiCarlo. Reversing Quantum Trajectories with Analog
Feedback. Physical Review Letters 112, 080501 (2014).

[101] S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, A. Narla, U. Vool, S. M. Girvin,
L. Frunzio, M. Mirrahimi and M. H. Devoret. Autonomously stabilized entanglement
between two superconducting quantum bits. Nature 504, 419–22 (2013).

[102] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sø rensen, D. Leibfried
and D. J. Wineland. Dissipative production of a maximally entangled steady state
of two quantum bits. Nature 504, 415–8 (2013).

[103] J. Kerckhoff and K.W. Lehnert. Superconducting Microwave Multivibrator Produced
by Coherent Feedback. Physical Review Letters 109, 153602 (2012).

[104] J. Kerckhoff, R. W. Andrews, H. S. Ku, W. F. Kindel, K. Cicak, R. W. Simmonds
and K. W. Lehnert. Tunable Coupling to a Mechanical Oscillator Circuit Using a
Coherent Feedback Network. Physical Review X 3, 021013 (2013).

[105] J. M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune, S. Haroche, P. Facchi
and S. Pascazio. Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno
Dynamics. Physical Review Letters 105, 213601 (2010).

[106] J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S.
Gleyzes, M. Brune and S. Haroche. Quantum Zeno dynamics of a field in a cavity.
Physical Review A 86, 032120 (2012).



62 BIBLIOGRAPHY

[107] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche, J.-M. Raimond, M.
Brune and S. Gleyzes. Confined quantum Zeno dynamics of a watched atomic arrow.
arxiv:1402.0111 (2014).

[108] A. G. Fowler, M. Mariantoni, J. M. Martinis and A. N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Physical Review A 86, 032324
(2012).

[109] R. Barends et al. Logic gates at the surface code threshold: Superconducting qubits
poised for fault-tolerant quantum computing. arXiv:1402.4848 (2014).

[110] D. P. DiVincenzo. Fault-tolerant architectures for superconducting qubits.
Physica Scripta T137, 014020 (2009).

[111] J. M. Chow, J. M. Gambetta, E. Magesan, S. J. Srinivasan, A. W. Cross, D. W.
Abraham, N. A. Masluk, B. R. Johnson, C. A. Ryan and M. Steffen. Implementing
a strand of a scalable fault-tolerant quantum computing fabric. arXiv:1311.6330
(2013).

[112] M. Tsang. Optimal waveform estimation for classical and quantum systems via time-
symmetric smoothing. Physical Review A 80, 033840 (2009).

[113] S. r. Gammelmark, B. Julsgaard and K. Mø lmer. Past Quantum States of a Moni-
tored System. Physical Review Letters 111, 160401 (2013).

[114] Vijay, Slichter and Siddiqi. Observation of Quantum Jumps in a Superconducting
Artificial Atom. Physical Review Letters 106, 110502 (2011).

[115] L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa, A. Narla,
M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H. Devoret and
R. J. Schoelkopf. Tracking Photon Jumps with Repeated Quantum Non-Demolition
Parity Measurements. arxiv:1311.2534 (2013).

[116] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott, M. Neeley, M.
Steffen, E. M. Weig, a. N. Cleland, J. M. Martinis and a. N. Korotkov. Coher-
ent state evolution in a superconducting qubit from partial-collapse measurement.
Science (New York, N.Y.) 312, 1498–500 (2006).

[117] N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A.
O’Connell, H. Wang, A. N. Cleland, J. M. Martinis and A. N. Korotkov. Reversal
of the Weak Measurement of a Quantum State in a Superconducting Phase Qubit.
Physical Review Letters 101, 200401 (2008).

[118] K. W. Murch, S. J. Weber, C. Macklin and I. Siddiqi. Observing single quantum
trajectories of a superconducting quantum bit. Nature 502, 211–4 (2013).



BIBLIOGRAPHY 63
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Appendix A

Some results on linear amplifiers

A.1 Representing mode states

Figure A.1: Propagating mode in the Shannon basis occupied by a coherent state |α〉.
Here, we represent a mode ain(t) = 〈ain〉

√
∆ωa
2π sinc[(t− n∆t)∆ωa/2]e

im∆ωat

65
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Figure A.2: Probability density P for the outcomes Re(ain(t)) of a homodyne measurement
when the signal is in a coherent state |αin〉 of the Shannon mode of Fig. A.1. The four
panels correspond to coherent states αin = 0, 0.3, 1 and 3. The corresponding Wigner
function is represented on each panel (see Fig. A.3).
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Figure A.3: Few properties of distribution functions P , W and Q. On the left of each
table, in the quadrature phase-space, a disk represents the area where the distribution of
a coherent state is larger than its maximum divided by e. Note that the surface of the
disk is here π|∆α|2. In the tables are given the distribution function for coherent state,
the average value of (α∗)mαn weighted by the distribution function and the variance of the
distribution. Note that, by definition, ∆a = a− 〈a〉.



68 Some results on linear amplifiers

A.2 Quantum limit

A.2.1 Noise added on mode quadratures

The variance of the output quadrature X̂aout is

〈∆X2
aout〉 ≡

〈(

âout + â†out
2

)2〉

−
〈

âout + â†out
2

〉2

. (A.1)

For a phase-preserving amplifier, this gives
{ 〈∆X2

aout〉 = G〈∆X2
ain〉+ (G− 1)〈∆X2

bin
〉

〈∆Y 2
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Since 〈∆X2
bin

〉+〈∆Y 2
bin

〉 ≥ 2
√

〈∆X2
bin

〉〈∆Y 2
bin

〉 ≥ 1
2 , the sole participation of an extra mode

b̂in adds noise to the quadratures so that
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The minimum is reached for the unsqueezed vacuum in b̂in and corresponds to half
a photon of extra noise at the input of the amplifier [11]. On the contrary, for a phase-
sensitive amplifier, there is no limit on the added noise. Indeed,

{ 〈∆X2
aout〉 = Gs〈∆X2

ain〉
〈∆Y 2

aout〉 = 1
Gs

〈∆Y 2
ain〉

. (phase-sensitive) (A.5)

A.2.2 Degradation of the signal to noise ratio

As can be seen from the quantum limit above, a phase-preserving amplifier necessarily
adds noise to the quadratures. However, one should not jump to the conclusion that the
signal to noise ratio is always degraded by an amplifier. It depends on what the signal
is! In order to illustrate this point, let us consider the case of homodyne and heterodyne
detection. First, we will discuss the link between these measurement schemes and the
distribution functions for the field.

The state of a mode can always be described by a density matrix ρ. It can also
conveniently be represented by real-valued distribution functions in the quadrature phase
space [131, 132]. The Glauber-Sudarshan P function is uniquely defined by

ρ =

∫

C

dαP (α)|α〉〈α|. (A.6)
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From its convolutions with Gaussian distributions, one defines a whole class of distribution
functions. Two of them, the Wigner function W and the Husumi Q function, are directly
related to homodyne and heterodyne measurements. A summary of these functions is given
in Fig. A.3.

Homodyne measurement

Homodyne measurement consists in measuring only one quadrature Xeiθain of the field ain.
In the microwave domain, it can be done by first mixing the field aout with a powerful tone
at frequency ωa and phase θ. Then, by measuring the average value of the output voltage
using a proper low-pass filter (typically averaged over 2π/∆ωa), one gets an outcome
proportional to Xeiθain . The Wigner function gives a direct prediction of the probability
to find a given outcome in homodyne measurement. Indeed, the probability Pθ that the
measurement of Xeiθain gives the outcome x is simply the integral of the Wigner function
on all complex outcomes sharing that quadrature value.

Pθ(x) =

∫ ∞

−∞
dyW

[

(x+ iy)e−iθ
]

. (A.7)

Let us consider the case of an amplified coherent state. The variance of the Wigner function
is then |∆αin|2 = 1

2 . If one uses a phase-preserving amplifier with the idler bin in the
unsqueezed vacuum state (Fig. 1.1), the variance of the Wigner function VarW (aout) =
∫

C
Wout(α)∆α

2dα at the output is

VarW (aout) = G− 1

2
→

G→∞
2GVarW (ain). (A.8)

The factor 2 indicates that the output noise of a phase-preserving amplifier is twice as
large as the input noise when considering homodyne measurement for large gains [21].
This limited efficiency can be seen directly on the signal to noise ratio. In the case of

homodyne measurement, we define it as SNR ≡ 〈X〉2
Var(X) . Therefore,

SNRout =
〈Xaout〉2

Var(Xaout)
=

〈Xain〉2
〈∆X2

ain〉+ (1− 1/G)〈∆X2
bin

〉 →
G→∞

SNRin

1 +
〈∆X2

bin
〉

〈∆X2
ain

〉

. (A.9)

The least possible degradation would then be obtained for a squeezed idler mode, but
perfect efficiency is reached only asymptotically on the squeezing parameter of idler. Note
that a phase sensitive amplifier is perfectly suited to homodyne detection as it does not
add any noise while amplifying the homodyne signal.

Heterodyne measurement

Heterodyne measurement consists in measuring simultaneously both quadratures Xain and
Yain . It can be done by first mixing the field aout with a powerful tone at frequency
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ωa+ωh, where ωh is larger than the propagating mode bandwidth ∆ωa but smaller than the
bandwidth of the detector. It is then possible to record the resulting signal and numerically
demodulate it at frequency ωh in order to extract its quadratures Xain and Yain . The
Husumi Q distribution gives a direct prediction of the probability to find a given outcome
in heterodyne measurement [12, 13, 14, 15]. The probability to find x and y is then

P(x+ iy) = Q(x+ iy). (A.10)

If one uses a phase-preserving amplifier with the idler in the unsqueezed vacuum state
(Fig. 1.1), the variance of the Husumi Q function VarQ(aout) =

∫

C
Qout(α)∆α

2dα at the
output is

VarQ(aout) = GVarQ(ain) + (G− 1) (VarQ(bin)− 1) = GVarQ(ain). (A.11)

Therefore, the noise of heterodyne measurement scales as the signal itself, by the gain of
the amplifier. Therefore, it is physically possible not to degrade the signal to noise
ratio of a heterodyne measurement using a phase preserving amplifier. This
property translates quantitatively in the possibility to keep a qubit in a pure state during
a weak heterodyne measurement of the field in a circuit-QED architecture, as was shown
in Ref. [16] last year.

A.2.3 Quantifying the degradation of the signal to noise ratio in practice

There are several ways to quantify the noise added by an amplifier (see section A.3). From
the perspective of quantum measurement, the most relevant is the efficiency η, which is
related to the increase in variance of the Q distribution

η =
GVarQ(âin)

VarQ(âout)
. (A.12)

In case of a quantum limited phase preserving amplifier, the efficiency is unity η = 1. An
imperfect amplifier adds more noise than required by quantum mechanics and leads to a
smaller efficiency.

A.3 Quantifying the degradation of the signal to noise ratio

in practice

There are several ways to quantify the noise added by an amplifier.

• Efficiency

The efficiency η is related to the increase in variance of the Q distribution

η =
GVarQ(âin)

VarQ(âout)
. (A.13)
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In case of a quantum limited phase preserving amplifier, the efficiency is unity η = 1.
An imperfect amplifier adds more noise than required by quantum mechanics and
leads to a smaller efficiency.

• Added noise

The added noise number A is defined by the increase in the variance of the Wigner
function referred to the input

VarW (âout)

G
≡ VarW (âin) +A.

The quantum limit for large gains is thus

Amin −−−−−→
G→+∞

1

2
.

• Noise figure

The noise figure F is defined as the ratio between signal to noise ratios of a homo-
dyne measurement at the input and at the output

F ≡ SNRin

SNRout
=

1

G

VarW (âout)

VarW (âin)
= 1 +

A
VarW (âin)

Thus, if the input is occupied by a coherent state |α〉, we have the simple relation
F = 1 + 2A.

• Noise temperature

The noise temperature TN is the increase in temperature that would explain the
output noise if it was simply due to a thermal state. If the input state of âin is a
thermal field at temperature T , then

VarW (âout)

G
=

1

2
coth

(
~ω

2kT

)

+A ≡ 1

2
coth

(
~ω

2k(T + TN )

)

.

This definition leads to the relation (if T → 0)

TN =
~ω

k

1

ln
(
1 + 1

A
)
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A.4 Reflection coefficient on the Josephson mixer

We consider the following Hamiltonian for the Josephson mixer in the stiff pump regime
(p is a scalar complex number describing the amplitude of the pump at ωa + ωb + δp)

H/~ = −iχabpabp
∗ + iχabpa

†b†p
+(ωa − χap|p|2 − χaaa

†a)a†a
+(ωb − χbp|p|2 − χbbb

†b)b†b
−χabb

†ba†a

(A.14)

Quantum Langevin equations then read

{ −iωa = i[H/~, a]− κa
2 a+

√
κaãin

−iωb = i[H/~, b]− κb
2 b+

√
κbb̃in

(A.15)

thus,
{ −iωa = χabpb

†p− i(ωa − χap|p|2 − χabb
†b)a+ 2iχaa(a

†a+ 1
2)a− κa

2 a+
√
κaãin

−iωb = χabpa
†p− i(ωb − χbp|p|2 − χaba

†a)b+ 2iχbb(b
†b+ 1

2)b−
κb
2 b+

√
κbb̃in

(A.16)
Let us solve these equations in the classical case now (a† → a∗).

{ −iδωaa = χabpb
∗p+ iχab|b|2a+ 2iχaa|a|2a− κa

2 a+
√
κaãin

−iδωbb = χabpa
∗p+ iχab|a|2b+ 2iχbb|b|2b− κb

2 b+
√
κbb̃in

(A.17)

where δωa = ω − ωa + χap|p|2 + χaa and δωb = ω − ωb + χbp|p|2 + χbb. Hence,

{
(κa

2 − iδωa − iχab|b|2 − 2iχaa|a|2)a = χabpb
∗p+

√
κaãin

(κb
2 − iδωb − iχab|a|2 − 2iχbb|b|2)b = χabpa

∗p+
√
κbb̃in

(A.18)

We now use the large gain assumption

|bin|2 ≪ κb|b|2 ≈ |bout|2 ≈ |aout|2 ≈ κa|a|2 ≫ |ain|2. (A.19)

The validity of this assumption will be checked in the end. Therefore,






a =
χabpb

∗p+
√
κaãin

κa
2
−iδωa−i[χabκa/κb+2χaa]|a|2

b =
χabpa

∗p+
√
κbb̃in

κb
2
−iδωb−i[χab+2χbbκa/κb]|a|2

(A.20)

Replacing the second equation in the first one, we get

a =
χ2

abp|p|2

(κa
2
−iδωa−i[χabκa/κb+2χaa]|a|2)(κb

2
+iδωb+i[χab+2χbbκa/κb]|a|2)

a

+
√
κaãin

κa
2
−iδωa−i[χabκa/κb+2χaa]|a|2

+
χabpp

√
κbb̃in

(κa
2
−iδωa−i[χabκa/κb+2χaa]|a|2)(κb

2
+iδωb+i[χab+2χbbκa/κb]|a|2)

(A.21)
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Now introducing the cooperativity C = 4χ2
abp|p|2/(κaκb), the adimensionless frequency

shifts δω′
a = 2δωa/κa+2[χab/κb+2χaa/κa]|a|2 and δω′

b = 2δωb/κb+2[χab/κb+2χbb/κb]|a|2.

a

[

1− C

(1− iδω′
a)(1 + iδω′

b)

]

=
2ãin/

√
κa

1− iδω′
a

+ αb̃in (A.22)

Thus, if the reflection coefficient on a is

ra =
ãout
ãin

∣
∣
∣
∣
b̃in=0

=

√
κaa

ãin

∣
∣
∣
∣
b̃in=0

− 1 =
2 + 2iδω′

b

(1− iδω′
a)(1 + iδω′

b)− C
− 1 (A.23)

and

ra =
1 + C + i(δω′

a + δω′
b)− δω′

aδω
′
b

1− C − i(δω′
a − δω′

b) + δω′
aδω

′
b

(A.24)
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We present the first experimental realization of a widely frequency tunable, nondegenerate three-wave

mixing device for quantum signals at gigahertz frequency. It is based on a new superconducting building

block consisting of a ring of four Josephson junctions shunted by a cross of four linear inductances. The

phase configuration of the ring remains unique over a wide range of magnetic fluxes threading the loop. It

is thus possible to vary the inductance of the ring with flux while retaining a strong, dissipation-free, and

noiseless nonlinearity. The device has been operated in amplifier mode, and its noise performance has

been evaluated by using the noise spectrum emitted by a voltage-biased tunnel junction at finite frequency

as a test signal. The unprecedented accuracy with which the crossover between zero-point fluctuations and

shot noise has been measured provides an upper bound for the noise and dissipation intrinsic to the device.
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Three-wave mixing devices, i.e., nonlinear circuits con-

verting power among three microwave signals, are key

elements of analog information processing in the

microwave domain [1]. However, they are based on dis-

sipative components such as semiconductor diodes or

superconductor-insulator-superconductor tunnel junctions

biased near the superconducting gap [2]. The loss of signal

limits their operation and also introduces noise above the

minimum required by quantum mechanics [3,4]. A non-

degenerate mixing device with noise close to that mini-

mum level was demonstrated recently [5,6]. However, the

hysteresis preventing flux tunability for this four-junction

circuit limited possible applications to analog quantum

signal processing. In this Letter, we show that, by adding

four inductances to the four-junction loop, we can fully

suppress the hysteresis and reach a 500 MHz frequency

tunability while operating close to the quantum limit. Our

improvement of the device tunability by an order of mag-

nitude is obtained without jeopardizing other advantages of

nondegenerate three-wave mixing.

An ideal nondegenerate three-wave mixing device in the

microwave domain absorbs three signals at frequencies

such that !X þ!Y ¼ !Z with complex amplitudes Ain
X ,

Ain
Y , and Ain

Z , respectively, and reemits signals at the same

frequencies with amplitudes Aout
X , Aout

Y , and Aout
Z such that

jAout
X j2 þ jAout

Y j2 þ jAout
Z j2 ¼ jAin

X j2 þ jAin
Y j2 þ jAin

Z j2, that

is, without internal dissipation. The device can operate in

two power amplification modes: (i) the photon gain mode,

for which jAin
Z j2 � jAin

X j2; jAin
Y j2 is the pump power provid-

ing the extra photon numbers in the reemitted signals at

frequencies !X and !Y , and (ii) the pure up-conversion

mode for which jAin
Y j2 � Ain

X ; A
in
Z is the pump power pro-

viding the energy difference between photons at !Z and

photons at !X. The Josephson parametric converter (JPC)

[6], consisting of a ring of four Josephson junctions, can

perform both functions. However, its operation has little

tunability, since the flux �ext applied through the ring has

to be adjusted in the close vicinity of the value�0=2, where
�0 ¼ h=2e is the flux quantum. In the present work, we

consider a more general three-wave mixing device in

which four linear inductances are cross-linking the ring

modulator like the spokes of a wheel [see Fig. 1(a)]. The

Hamiltonian of the ring is

H ¼ �1
2
EJ sinð’extÞ’X’Y’Z

þ 1
2
ðEL=2þ EJ cos’extÞð’X

2 þ ’Y
2Þ

þ 1
2
ðEL=4þ EJ cos’extÞ’Z

2 þOð’X;Y;Z
4Þ; (1)

where the three spatial mode amplitudes ’X ¼ ’1 � ’3,

’Y ¼ ’2 � ’4, and ’Z ¼ ’1 þ ’3 � ’2 � ’4 are gauge-

invariant, orthogonal linear combinations of the supercon-

ducting phases of the four nodes of the Josephson junction

ring [Fig. 1(b)].

We will see below how these standing wave modes can

be excited by the propagating mode amplitudes Ain
X , A

in
Y ,

and Ain
Z and emit the amplitudes Aout

X , Aout
Y , and Aout

Z . In the

Hamiltonian (1), EL ¼ �0
2=L is the energy associated

with each of the inductances L, and EJ ¼ �2
0=L

0
J is the

Josephson energy of each tunnel junction. We also define

the reduced flux quantum �0 ¼ @=2e and the dimension-

less flux ’ext ¼ �ext=4�0 threading each of the nominally

identical four loops of the device. The first term of the

Hamiltonian is a pure three-wave mixing term, while the

two others are quadratic terms determining the effective

inductance of modes X, Y, and Z: L�1
X;Y;Z¼��2

0 @2H=

@’2
X;Y;Z. The value ’ext ¼ �=2 maximizes the strength of
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the mixing term. Provided that EL=2> EJ, modes X and Y
can be tuned by varying ’ext while retaining their stability:

L�1
X;Y > 0 on the whole range of variation. However, there is

a range of fluxes for which L�1
Z < 0 where the device

departs from h’Zi ¼ 0 so that the expansion (1) is inap-

propriate. If the inductances are lowered even more such

that EL=4>EJ, then all three modes of the device are

stable for every value of ’ext but at the expense of signifi-

cant dilution of the nonlinear term. In contrast, as EL is

lowered below 2EJ, dilution of nonlinearity is minimized

but at the expense of the stability of the three modes. This

is why the JPC, for which EL ¼ 0, can operate only within
a small range of values of ’ext forbidding any tunability of

the device.

We have tested this new, tunable, mixing element de-

sign, by inserting the ring into a resonant structure consist-

ing of two �=2 transmission line resonators coupled to the

X and Y modes [Fig. 1(d)] as in Ref. [7]. The Z mode is

nonresonant and excited through resonator X using a

hybrid coupler [Fig. 1(d)]. By varying the externally

applied flux, it is possible to adjust the X and Y resonator

frequencies given by

!X;Y ¼ !0
X;Y

�2L�=2
X;Y=2

�2L�=2
X;Y=2þ LX;Yð’extÞ

; (2)

where !0
X;Y is the resonance frequency of the bare �=2

resonator without a ring, L�=2
X;Y ¼ 2Z0=ð�!0

X;YÞ its lumped-

element equivalent inductance [1], and Z0 its characteristic

impedance. As long as EL=4þ EJ cos’ext > 0, the ring

inductance LX;Y is given by

LX;Yð’extÞ ¼ �2
0

�

EL

2
þ EJ cos’ext

��1

: (3)

The device presented in Fig. 1(c) is realized in a single

e-beam lithography step. The critical current of the

Al=Al2O3=Al Josephson junctions was designed to be in

the microampere range. The wide geometric linear induc-

tances cross-linking the ring are approximately given by

�0l, where l ¼ 100 �m is the length of each of the four

meanders. According to theory, they should present negli-

gible kinetic inductance [8]. The value of the ratio

EL=EJ ¼ 3� 2 should favor the stability of the X and Y
modes.

b

dc

FIG. 1 (color online). (a) Device schematic: four linear induc-

tances L cross-link a ring of four Josephson junctions. Each

subloop is biased by a magnetic flux ’ext�0. For L < L0
J=4, the

current through the inductances is zero, and the external flux

phase biases the junctions to ’ext. (b) The device is embedded at

the intersection of four transmission lines and couples to spatial

modes X, Y, and Z represented as arrows. (c) Optical microscope

image of the ring modulator. The meanders in the center of the

ring implement the four linear inductances from (a). The stripes

on the meanders are due to the fabrication process based on

shadow evaporation. (d) Simplified schematic of the setup used

to characterize three-wave mixing operation. The idler resonator

(X) is excited through a 180� hybrid coupler, while the signal

resonator (Y) is single-ended. The noise emitted by the voltage-

biased tunnel junction in its normal state is amplified through the

signal port.
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FIG. 2 (color online). (a) Dots: Measured resonance frequency

!Y of the signal cavity as a function of flux applied to the ring

modulator without the pump. Solid line: Fit of !Y using Eq. (2)

with !0
Y=2� ¼ 8:82 GHz, L ¼ 49 pH, and EJ ¼ �0 � 1:9 �A

and including the known stray inductance around the loop 4LS ¼
200 pH (see Ref. [9]). (b) Reflection gain measured on the signal

port as a function of frequency for various values of the flux

indicated by the color lines in (a). Pump parameters are opti-

mized for each curve. The numbers on top represent the 1 dB

compression point (maximum input power) expressed in input

photon rate per dynamical bandwidth for six different working

frequencies coded by color.
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The device was operated in the photon gain mode. The

phase and amplitude of the waves Aout
X and Aout

Y , relative to

those of Ain
X and Ain

Y , are measured with a vector network

analyzer, for a whole set of pump tones Ain
Z . Turning off the

pump tone first, we obtained the resonance frequency of

both resonators as a function of flux [see Fig. 2(a)] as well

as their half-maximum bandwidths BX ¼ 39 MHz and

BY ¼ 29 MHz. Unlike in the JPC, no hysteresis was found
in the dependence of the resonance frequency on applied

flux, confirming the stability of our device. However, two

regimes must be distinguished in the data: that of the wide

arches obeying (2) with a ring inductance given by (3) and

that of the narrow arches for which EL=4þ EJ cos’ext < 0
and where the ring inductance depends precisely on the

nonzero value of h’Zi emerging from the broken symmetry

along the Z mode. It is interesting to note that the two

possible opposite values for h’Zi in this regime give ex-

actly the same resonance frequency. Besides, the fit of

Fig. 2(a) does not take into account the perturbative effect

of the parasitic inductances in series with the junctions. By

using the full Hamiltonian and these stray inductances, a

complete agreement with the data can be obtained over the

full flux variation range [9].

The power gain G of the device is defined as the

ratio of the reflected power with the pump on and off.

The dependence of the gain on the pump power is

shown in Fig. 3. Note, in particular, that a dynamical

bandwidth B ¼ 3:2 MHz is obtained for a gain of 20 dB.

We checked that the parametric amplifier relation
ffiffiffiffi

G
p

BðGÞ ¼ 2ðB�1
X þ B�1

Y Þ�1 holds to less than 1 MHz of

deviation for any pump power yielding a gain greater than

5 dB, for both signal and idler waves, as theory predicts [5].

As illustrated in Fig. 2(b), the amplifier center frequency

can be flux-tuned over 400 MHz, which represents a range

2 orders of magnitude greater than the bandwidth at 20 dB.

Indeed, for each center frequency, we can find a reproduc-

ible set of applied flux, pump power, and pump frequency

yielding a gain higher than 20 dB and a dynamical

bandwidth of B ¼ 3 MHz [Fig. 2(b)]. No amplification

was found in the domain of the narrow arches. While this

observation cannot be explained directly by the expansion

(1), it is consistent with the full Hamiltonian that predicts

the nonlinear term to be significantly spoiled by spurious

terms when h’Zi � 0. The key point of our experiment is

that we can still benefit, outside the range of the narrow

arches, from a comfortable tunable three-wave nonlinear-

ity. The tunability of this nondegenerate amplifier can

therefore compete with the state-of-the-art degenerate

Josephson amplifiers [10–15] with the added benefits of

pump-signal separation.

We now turn to dynamical range measurements which

further characterize the nonlinear operation of our device.

For these measurements, we first calibrated the attenuation

of the line named ‘‘signal in’’ [Fig. 1(d)] with an accuracy

of 3 dB [16]. We then measured the so-called 1 dB com-

pression point of the amplifier mode of our device, which is

the input power for which the gain is reduced by 1 dB. As

presented in Fig. 2(b), this maximal power ranges between

�133 and�118 dBm, corresponding to 3 and 95 photons

per inverse dynamical bandwidth. The reduction in maxi-

mal allowed power occurs at lower frequencies where we

have also observed that the pump power needed for a given

gain is �30 dB lower than at higher frequencies. We

believe that it could be explained by the pump frequency

becoming, at lower signal frequencies, resonant with a

mode of the crossed resonators. The device would hence

depart from the stiff pump condition needed for parametric

amplification with maximal dynamic range.

In a last series of experiments, the noise of our devicewas

assessed by using the noise emitted by a voltage-biased

normal-insulator-normal (n-i-n) tunnel junction as input

signal. This noise, which is well-understood and therefore

of predictable amplitude, plays the role of an in situ

calibrated signal. At small electronic temperatures

(kBTe � @!S), the noise from a tunnel junction presents

two regimes as a function of voltage. For eV < @!S, zero-

point fluctuations across the junction dominatewith a power

spectral density Spð!SÞ¼ @!S

2
, while for eV>@!S, elec-

trons in the junction produce nonequilibrium shot noise and

Spð!SÞ ¼ eV
2
. The electronic temperature Te in the elec-

trodes of the junction sets the sharpness of the crossover

between these two regimes [17,18] as Sp ¼ Sþp þ S�p with

S�p ð!Þ ¼ 1

4
ðeV � @!Þ cotheV � @!

2kBTe

: (4)

Our experiment was performed by using an aluminum

junction kept in its normal state by permanent magnets

close by. We measured in situ a normal resistance of

43:9 � [measurement lines not shown in Fig. 1(b)]. The

output spectral density was recorded with a spectrum

analyzer and averaged over a 2 MHz bandwidth around

the center frequency of the amplifier [see Fig. 4(a)]. Its

dependence with bias voltage was obtained [Fig. 4(b)] for

ba
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FIG. 3 (color online). Reflection gain of the phase-preserving

Josephson amplifier observed on the signal Y (a) and the idler

X (b) modes. The color bar indicates the pump power referred to

the output of the generator. The pump frequency is !Z=2� ¼
14:071 GHz, and the flux is set to ’ext=2� � 0:3125.
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an amplifier gain of 23 dB with the same settings as in

Fig. 3. The measured power spectral density is remarkably

well described by an expression of the form

Smp ð!SÞ ¼ GsysðSp þ Nadd@!SÞ: (5)

In the shot noise regime, it is possible to calibrate the

system gain Gsys ¼ dSmp =dðeV=2Þ ¼ 94:6 dB from the

n-i-n tunnel element to the spectrum analyzer including a

possible attenuation from the element to the input port of

the amplifier. Without any additional calibration, we ex-

tracted the apparent system-added noise Nadd ¼ 2:8 at the

plateau [Fig. 4(b)]. This number of quanta can be thought

of as the standard half quantum attributable to the unavoid-

able quantum noise of the load at the idler port, and 2.3

quanta left, which can be seen as an upper bound on the

extra noise generated inside the device. On the other hand,

an electronic temperature Te equal to the refrigerator mix-

ing chamber temperature of 35 mK describes perfectly the

crossover. It is worth emphasizing that the noise power of

the total measurement setup is presented in Fig. 4 without

any background subtraction and is therefore the full abso-

lute system noise. In fact, there is a finite attenuation

between the junction and the amplifier leading to an under-

estimation of the gain counted from the input of amplifier

and hence to the actual noise added by the device. Besides

the unwanted insertion loss inherent to our type of low

temperature measurement setup, the complex impedance

of the junction itself is imperfectly matched [19]. Given the

size of the junction ( ’ 10 �m2) and previous experiments

on similar junctions, we estimated its capacitance to be in

the 0.7–1 pF range. Using the resistance of the junction and

the characteristic impedance of the amplifier, we calcu-

lated that the loss of signal due to the RC filtering of the

junction noise leads to an apparent added noise between

1.3 and 2.1 photons. Our measurement thus improves the

Nadd found by Bergeal et al. in that the measurement

frequency and bandwidth are substantially higher [5]. It

is straightforward to compare the noise measurement with

and without our device. Turning off the pump tone, the

same noise measurement using only a state-of-the-art high-

electron-mobility transistor amplifier at 4 K [20] yielded an

apparent added noise 20 times larger than with the pump

on. This translates into an acquisition time 400 times

longer, keeping the same bandwidth.

In conclusion, we have shown that it is possible to

realize with Josephson tunnel junctions a widely tunable,

dissipationless, nondegenerate three-wave mixing element

which processes microwave signals, adding a level of noise

not significantly greater than the level of unavoidable

quantum noise. Such an element could be useful in a

certain number of analog quantum signal processing

applications, like the feedback control of the state of a

quantum bit [21].
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FIG. 4 (color online). (a) Power spectral density as a function of frequency measured at the output of signal out for three settings:

pump off and V ¼ 0, pump on and V ¼ 0, or V ¼ 100 �V. The colored area represents the averaging range used in the right panel.

(b) Average power spectral density over a 2MHz bandwidth around the center frequency of the amplifier as a function of bias voltage V.
The solid line shows what is expected by using Eq. (5) and fitting an overall gain Gsys ¼ 94:6 dB and an extra noise Nadd of 2.8 quanta

coming from both the unavoidable quantum noise of the idler port (0.5 quanta) and the unwanted losses between the tunnel junction

and the amplifier (2.3 quanta). The gain Gsys allows us to express this power spectral density in units of photon number or quantum.
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Using a superconducting circuit, the Josephson mixer, we demonstrate the first experimental realization

of spatially separated two-mode squeezed states of microwave light. Driven by a pump tone, a first

Josephson mixer generates, out of quantum vacuum, a pair of entangled fields at different frequencies on

separate transmission lines. A second mixer, driven by a �-phase shifted copy of the first pump tone,

recombines and disentangles the two fields. The resulting output noise level is measured to be lower than

for the vacuum state at the input of the second mixer, an unambiguous proof of entanglement. Moreover,

the output noise level provides a direct, quantitative measure of entanglement, leading here to the

demonstration of 6 Mebit � s�1 (mega entangled bits per second) generated by the first mixer.

DOI: 10.1103/PhysRevLett.109.183901 PACS numbers: 42.65.Lm, 03.67.�a, 84.40.Dc, 85.25.�j

Pairs of entangled electromagnetic fields propagating on

physically separated channels constitute an essential re-

source in quantum information processing, communica-

tion, and measurements [1,2]. They can be realized by

squeezing a vacuum state shared by two spatially separated

modes. This entanglement is revealed in the cross correla-

tions between well chosen quadratures of the two fields

which fall below the level of quantum vacuum noise. Given

the considerable development of microwave quantum op-

tics, these Einstein-Podolsky-Rosen (EPR) states, or spa-

tially separated two-mode squeezed vacuum states, have

become highly desirable at such frequencies. At optical

frequencies, EPR states are usually prepared by parametric

down-conversion of a pump tone using a �ð2Þ nonlinear
medium [3,4]. At microwave frequencies, only single-

mode squeezing and two-mode squeezing between side-

bands of a single transmission line have been demonstrated

thus far, using degenerate Josephson parametric amplifiers

[5–9]. Recently, a dissipationless, nondegenerate, three-

wave mixer for microwave signals based on Josephson

junctions was developed [10–12] (see Figs. 1 and 2).

Strong correlations between the spontaneously emitted

radiations from two ports have been observed in the para-

metric down-conversion mode [13], but the experiment did

not directly prove the presence of entanglement in the

separated output fields.

Here, we describe an interference experiment demon-

strating that nondegenerate Josephson mixers can entangle

and disentangle usable EPR states of microwave light

(Fig. 1). A first mixer, called the ‘‘entangler,’’ is driven

by a pump tone while its two input ports are terminated by

cold loads ensuring that only vacuum quantum noise enters

the device. The two entangled output ports feed the input

ports of a second mixer called the ‘‘analyzer.’’ The role of

the analyzer is to recombine and disentangle the two

microwave fields before sending them to a standard micro-

wave amplification and detection chain. As the phase

difference between both pumps varies, the noise at the

output of the analyzer exhibits interference fringes which

pass under the level of amplified vacuum. Remarkably, the

measurement of the noise at the output of the analyzer

directly quantifies entanglement between its two input

fields without resorting to two homodyne detection chan-

nels and the analysis of their correlations.

The Josephson mixer [10–12] is a superconducting

circuit parametrically coupling two superconducting reso-

nators (Fig. 2) at distinct frequenciesfa andfb via a pump at

their sum frequency fP ¼ fa þ fb. Each resonator has only
one access port, but input and output signals are spatially

separated by cryogenic microwave circulators (Fig. 2 and

[14]) so that the entangler output can be exclusively sent to

the analyzer input. Each mixer performs a reversible trans-

form of the wave function of the field via the unitary two-

mode squeeze operator S ¼ expðrei’Payby � re�i’PabÞ,
where rei’P is the complex squeezing parameter anda andb
are the field operators of the two modes [15]. The input and

output canonical field operators are related by the scattering

relations

aout ¼ SyainS ¼ coshðrÞain þ ei’P sinhðrÞbyin;
byout ¼ SybyinS ¼ coshðrÞbyin þ e�i’P sinhðrÞain;

(1)

where ’P is the phase of the pump and G ¼ cosh2r ¼
ðPth þ PÞ2=ðPth � PÞ2 is the power direct gain which in-

creases with pump power P below the parametric

self-oscillation threshold Pth. With the pump on, the vac-

uum state at the input is converted into a two-mode

squeezed vacuum state jSqi ¼ Sj0iaj0ib ¼ coshðrÞ�1 �
P

tanhðrÞnjniajnib. Note that this entangled state can

be understood as the superposition of twin photons with
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different frequencies and propagating on spatially separated

transmission lines. Nonlocal two-mode squeezing directly

appears in the combinations of output fields

aout � ei’Pbyout ¼ e�rðain � ei’PbyinÞ; (2)

which, for ’P ¼ 0, implies cross correlations between

ReðaÞ and ReðbÞ on one hand and ImðaÞ and �ImðbÞ on
the other hand, beating the Heisenberg limit of vacuum

quantum noise, as shown in Fig. 1. In optics, these correla-

tions have been observed by double balanced homodyne

detection techniques in several systems [16]. The present

experiment describes the first demonstration at microwave

frequencies of these quantum correlations between signals

on spatially separated transmission lines. The Josephson

mixer here serves two functions. First, the entangler pro-

duces EPR states of microwave light at incommensurate

frequencies and on spatially nondegenerate modes with

squeezing parameter rE. Second, the analyzer recombines

input fields as shown in Eq. (1), with squeezing parameter

rA and relative pump phase �’, in order to reverse the

transformation and disentangle the field state (Fig. 1).

The output noise of the entangler can be measured

on each mode independently by turning off the analyzer

(rA ¼ 0). The noise power spectrum measured by a spec-

trum analyzer is proportional to the symmetrized variance

of the field operator [17]

ð�aout;EÞ2 ¼
hfaout;E; ayout;Egi

2
� jhaout;Eij2 ¼

cosh2rE
2

: (3)

The variance of this ‘‘amplified vacuum’’ is always larger

than that of the vacuum state, for which ð�aÞ2 ¼ 1=2
(Fig. 1). Discarding the information from the other mode,

each output field is in a thermal state [18]. Yet, since the

combined two-field state jSqi is a pure state with no

entropy, it is possible, ideally, to reverse the squeezing

with a second mixer and reobtain a vacuum state on each

port. The analyzer can perform this inversion if operated

with opposite squeezing parameter rA ¼ �rE. In practice,

unavoidable losses between the two mixers prevent the

exact recovery of the vacuum.

Losses are modeled as field splitters coupling uncorre-

lated cold thermal baths to each mode (Fig. 3) so that

ain;A ¼
ffiffiffiffi

��
p

aout;Eþ
ffiffiffiffi

�
p

ath and bin;A ¼
ffiffiffiffi

��
q

bout;Eþ
ffiffiffiffi

�
p

bth;

where ath and bth describe bosonic modes of thermal baths

at frequencies fa and fb, and �� ¼ 1� �, �� ¼ 1� �.
Additionally, microwave photons propagate for a finite

amount of time �a and �b between the two mixers leading

to a correction of the phase difference entering the scatter-

ing terms �’0 ¼ �’� 2�fa�a � 2�fb�b. The temporal

extent of the twin photons exiting the entangler is given by

the inverse of the bandwidth �f ¼ �f0= coshrE [13]. In

Entangler Analyzer

Pump

a b

Pump

Mixer

amplified vacuumvacuum

EPR state

measured

noise level

FIG. 1 (color online). Principle of the experiment. (a) When pumped with a microwave tone at frequency fP ¼ fa þ fb, a Josephson
mixer (black diamond) transforms incoming quantum vacuum noise (left) on modes a and b into an EPR state (right). The field states

are represented by their standard deviation contours in the single-mode phase space of a (top), b (bottom), and in the bipartite phase

space (middle) spanned by ðReðaÞ;ReðbÞÞ and ðImðaÞ; ImðbÞÞ, where ReðaÞ ¼ ðaþ ayÞ=2 and ImðaÞ ¼ ða� ayÞ=2i are the in-phase

and out-of-phase quadratures of mode a. In each plot, a solid black circle sets the scale of vacuum noise and a dashed circle sets the

scale of amplified vacuum noise. Quantum entanglement in the output fields is observed in the bipartite phase space where cross

correlations go beyond quantum uncertainty by a squeezing factor e�r. (b) In order to demonstrate entanglement at the output of this

mixer named ‘‘entangler,’’ a second, identical mixer named ‘‘analyzer’’ is placed in series and pumped by the same tone with phase

difference�’. Entanglement at the input of the analyzer is revealed by measuring, at the analyzer output (dashed frame), a lower noise

level on mode a or b than for amplified vacuum (dashed circle) for a given phase �’. The smallest (largest) output noise level occurs

for opposite (equal) squeezing factor at �’ ¼ �ð0Þ, and can ideally go as low as the vacuum noise level.
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the experiment, the travel times �a and �b of order 2 ns are
much smaller than this temporal extent since �f0 ¼
28 MHz, so that microwave photons do interfere even if

their travel durations may slightly differ between modes. It

is then straightforward to calculate the scattering coeffi-

cients of the full circuit. For instance, the a output mode is

given by

aout;A ¼ ta!aain;E þ tb!ab
y
in;E

þ ffiffiffiffi

�
p

coshrAath þ ei�’
ffiffiffiffi

�
p

sinhrAb
y
th;

where

ta!a ¼
ffiffiffiffi

��
p

coshrE coshrA þ ei�’
ffiffiffiffi

��
q

sinhrE sinhrA;

tb!a ¼
ffiffiffiffi

��
p

sinhrE coshrA þ ei�’
ffiffiffiffi

��
q

coshrE sinhrA: (4)

These scattering coefficients were measured using a

nonlinear four-port vector network analyzer as a function

of the phase difference �’ for various values of the gains

cosh2rE;A ranging from 1 to 40, a subset of which is shown

in Fig. 3. The special cases where one or both of the

converters is not pumped (r ¼ 0) offer the opportunity

to calibrate each converter gain independently. The

only fit parameter for this whole set of measurements is

the ratio between transmissions on both arms, found to be
��= �� ¼ 0:945.

In Fig. 3, only mean values of the output field amplitudes

are measured. Yet, truly quantum features appear in their

correlations. Consider the case of a cold load setting the

vacuum quantum state at the input of the entangler, which

is reached in our experiment at 45 mK since hfb=k >
hfa=k ¼ 260 mK [14]. When the entangler is turned off

(rE ¼ 0), the analyzer is fed by vacuum fluctuations and

the output noise reads the amplified vacuum level

ð�aout;AÞ2 ¼ coshð2rAÞ=2 as in Eq. (3). In general, the

output noise �2, normalized to that reference level, on

both output ports can be calculated from Eq. (4) and

oscillates with phase �’ as

�2ð�’Þ � 2ð�aout;AÞ2= coshð2rAÞ
¼ ��ðcosh2rE þ sinh2rE tanh2rA cos�’Þ þ �:

(5)

For simplicity, this expression is only given in the case of

balanced losses � ¼ �, but the general case can be treated
without much difficulty. The maximal and minimal values

of �2, corresponding to the extrema of cross correlation

between quadratures of the EPR state [ellipses in Fig. 1(a)],

are obtained, respectively, for �’ ¼ 0 and �’ ¼ �

�2
max;min ¼ ð1� �Þ coshð2rE � 2rAÞ

coshð2rAÞ
þ �: (6)

The existence of a phase �’ for which the output noise �2

goes below 1, which demonstrate correlations beyond

a b

AE

Pump

FIG. 3 (color online). (a) Protocol of the scattering coefficient

measurements by a vector network analyzer connected between

the a; b input and the a; b output ports. The setup is calibrated by

turning on and off each Josephson mixer separately. Losses are

modeled as field splitters of transparency �2 and �2 coupling a

cold load to the signals. (b) Color traces: Transmission measure-

ments of jta!aj2 as a function of phase difference �’ between

both pump signals. The gain of the analyzer is set to GA ¼
cosh2rA ¼ 10 (solid gray line). Each trace and color corresponds
to a different gain for the entangler GE ¼ cosh2rE ¼
0:2; 0:8; 1:8; 3:2; 5; 7:2; 9:8 dB. Dashed lines are fits to the data

using Eq. (4) and the single fit parameter ��= �� ¼ 0:945. Together
with an independent, in situ noise calibration, this value leads to

� ¼ 0:33� 0:05 and � ¼ 0:36� 0:05 [14].

Pump E

E A

Pump A

FIG. 2 (color online). Schematics of the experimental setup.

Each Josephson mixer consists of a ring of Josephson junctions

coupling two �=2 superconducting resonators addressed via a

180� hybrid coupler or a single ended port. Both mixers are

designed with the same geometry as in Ref. [12], and their

resonance frequencies are matched at fa ¼ 5:578 GHz and fb ¼
8:812 GHz using two independent flux biases. The pump fre-

quencies are set to fP ¼ 14:390 GHz. Microwave circulators

separate the input and output of the entangler and analyzer. Input

ports are represented as open circles, and at each output port the

double triangle symbolizes the low-noise amplifying measure-

ment setup with total gain GLNA.
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quantum uncertainty, is a sufficient evidence of entangle-

ment [14,19,20].

The normalized noise power �2 is obtained by measur-

ing the spectral density Sa (detailed in the Supplemental

Material [14]),

�2ð�’Þ ¼ 2

coshð2rAÞ

�

Sað�’Þ � Soff
hfaGLNA

þ 1

2

�

; (7)

where the noise background due to the following amplifiers

Soff is small enough to be precisely subtracted. The spectral

densities SaðfaÞ and SbðfbÞ of both modes at the output of

the analyzer were measured using a microwave spectrum

analyzer behind a cryogenic low-noise preamplifier on a

0.5 MHz bandwidth. This bandwidth was chosen to be

smaller than that of the mixers for all combinations of

gains GE;A ¼ cosh2rE;A and phase differences �’.
Importantly, it was possible to calibrate the total gain of

the measurement setup GLNA, so that the normalized noise

power �2 is measured with at most �2:5% relative error

[14]. This calibration was performed by turning on a single

mixer at a time and varying the temperature of a thermally

decoupled input load on mode ain;E. As a side result, the

calibration provides the loss � ¼ 0:33� 0:05 between

mixers on mode a which, together with the ratio ��= �� ¼
0:945 from Fig. 3, leaves no unknown parameters in the

experiment.

As can be seen in Fig. 4(a), the noise does pass below the

threshold of amplified vacuum noise, hence proving the

existence of entanglement. Note that measurements on

mode b (not shown) gave similar results, as expected.

Note also that minimum noise �2
min occurs at jrEj< jrAj

and not at exactly opposite squeezing parameters. This

deviation may be due to the beginning of a saturation of

the analyzer mixer, corroborated by the slight deviations of

the fits in Fig. 3. For each squeezing parameter rE, it is
possible to extract the extrema of noise �2

min;max from the

curves of Fig. 4(a). These extremal noise measurements

[Fig. 4(b)] are well described by Eq. (6) generalized

to unbalanced losses between modes with � ¼ 0:37 and

� ¼ 0:40, consistently with the calibration. It is even

possible to account for the whole dependence of the mea-

sured noise on phase difference�’ by generalizing Eq. (5)

using the same parameters [Fig. 4(b)]. The overall mini-

mum for the measured noise is reached at cosh2rE � 5 and
reads �2

min ¼ 0:45� 0:01 with a corresponding maximum

�2
max ¼ 11:9� 0:1.
It is remarkable that the amount of noise at the output

of a single port of the analyzer directly measures

the entanglement between the two input fields. In particu-

lar, the minimum of output noise is linked to the logarith-

mic negativity EN ¼ �log2ð�2
minÞ ¼ 1:15� 0:04 and to

the entropy of formation EF ¼ 0:69� 0:03 entangled

bits (ebits, see [14]) [14,21–25]: the deeper the noise

fringes, the larger the entanglement. The purity of the

entangled state is also related to both extrema trð�2Þ ¼

ð�2
min�

2
maxÞ�1 ¼ 0:186� 0:09. These quantities of entan-

glement are within a factor of 2 from the state of the art in

optics [21,26–28]. Given the bandwidth of the mixers, the

analyzer receives a usable rate of 6 Mebits � s�1 (mega

entangled bits per second) from the entangler.

In conclusion, we have demonstrated the production of

EPR states of microwave radiation. Vacuum noise at the

input of a first mixer is converted into two entangled fields.

A second mixer is used to recombine and disentangle the

two fields. Using an absolute calibration, the minimal noise

b

Antisqueezing

Squeezing

c

a

FIG. 4 (color online). (a) Color traces: Variance of the output

mode ð�aoutAÞ2 referred to the case of vacuum input on the

analyzer [divided by cosh 2rA=2ð Þ] as a function of phase differ-

ence �’, determined by measuring the spectral density of the

noise at the analyzer a output when only quantum noise enters

the entangler a; b inputs. An absolute calibration allows exact

conversion between both quantities with an error of at most

�2:5% [14]. Each color corresponds to the same gain of the

entangler GE as in Fig. 3 with a fixed gain on the analyzer GA ¼
cosh2rA ¼ 10. The horizontal line at �2 ¼ 1 represents the

measured noise for amplified vacuum at the output of the

analyzer (rE ¼ 0). For �’ close to �, the measured noise

goes below this level, an evidence of entanglement. Dashed

lines: Predicted variance using Eq. (5) extended to the unbal-

anced loss case using � ¼ 0:37 and � ¼ 0:40. (b) Dots: Noise
level measured at �’ ¼ 0 (antisqueezing) and �’ ¼ �
(squeezing) as a function of gain GE for GA ¼ 10. The size of

the dots is larger than the error bar. Solid lines: Prediction using

Eq. (6), extended to unbalanced losses as in (a). Colored

area: Consistent values of the noise using the uncertainty

in the calibration of the losses � and � [14]. Dashed

lines: Same prediction but without losses, � ¼ � ¼ 0.
(c) Solid dots: Logarithmic negativity measure of entanglement,

with errors bars. Solid squares: Entanglement purity.

Lines: Theoretical predictions using the parameters of (b).
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intensity at the output of the second mixer, when the phase

difference �’ is varied, constitutes a direct measure of the

entanglement between the twin fields. Our measurements

are limited by the finite losses between mixers but still

show that a rate of 6 Mebits � s�1 travel between the en-

tangler and the analyzer. This first implementation of

spatially separated two-mode squeezed states in the micro-

wave domain opens novel experiments on quantum

teleportation or superdense coding in the fields of nano-

mechanical resonators and superconducting qubits.

Moreover, by inserting a ‘‘circuit QED’’ readout cavity in

one arm of the vacuum quantum noise interferometer

described in this Letter, one would achieve a maximally

efficient measurement, for a given photon number, of the

phase shift associated with a change of qubit state.
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Making a system state follow a prescribed trajectory despite fluctuations and errors commonly consists

of monitoring an observable (temperature, blood-glucose level, etc.) and reacting on its controllers (heater

power, insulin amount, etc.). In the quantum domain, there is a change of paradigm in feedback, since

measurements modify the state of the system, most dramatically when the trajectory goes through

superpositions of measurement eigenstates. Here, we demonstrate the stabilization of an arbitrary

trajectory of a superconducting qubit by measurement-based feedback. The protocol benefits from the

long coherence time (T2 > 10 �s) of the 3D transmon qubit, the high efficiency (82%) of the phase-

preserving Josephson amplifier, and fast electronics that ensure less than 500 ns total delay. At discrete time

intervals, the state of the qubit is measured and corrected in case an error is detected. For Rabi oscillations,

where the discrete measurements occur when the qubit is supposed to be in the measurement pointer states,

we demonstrate an average fidelity of 85% to the targeted trajectory. For Ramsey oscillations, which do not

go through pointer states, the average fidelity reaches 76%. Incidentally, we demonstrate a fast reset

protocol that allows us to cool a 3D transmon qubit down to 0:6% in the excited state.

DOI: 10.1103/PhysRevX.3.021008 Subject Areas: Condensed Matter Physics, Quantum Physics,

Quantum Information

I. INTRODUCTION

The coupling of a quantum object to an environment

is essential to enable its observation and manipulation.

Yet, the mere existence of this coupling induces deco-

herence toward pointer states that are stable under moni-

toring of the environment [1]. There is thus a limiting

time scale for the faithful preparation of a qubit in an

arbitrary state or its control along a given trajectory in

Hilbert space. As a part of the environment, an observer

extracts information on the object and contributes to this

time scale. However, if the observer acquires informa-

tion faster than the uncontrolled part of the environment,

it is possible to use it through a feedback process and

permanently stabilize a given trajectory or state [2–5].

Superconducting qubits in cavities offer a test bed for

these concepts, as well as good candidates for practical

applications [6,7]. Recently, persistent Rabi oscillations

have been demonstrated via analog measurement-based

feedback using continuous weak measurement of a qubit

[8], and qubit reset via digital measurement-based feed-

back using projective measurements has been performed

[9]. In this work, we demonstrate a simple protocol to

stabilize any trajectory of a single qubit by using a

stroboscopic digital feedback based on strong measure-

ment [10]. During the manipulation of the qubit, its state

is measured in a nearly projective manner at specific

time intervals and a correcting control sequence is trig-

gered conditionally on the outcome, so as to correct

its trajectory from the errors that occur due to decoher-

ence and relaxation. The efficiency of the trajectory

stabilization relies on the rapidity to measure and react,

compared to decoherence. In order to minimize these

time scales, we use a phase-preserving quantum-limited

amplifier (see Fig. 1) [11–13] and a field-programmable

gate array (FPGA), adding a delay of only 360 ns when

outputting a drive pulse that is conditioned on readout

(see the Supplemental Material [14] and references

therein [15–19]).

II. FAST AND NONDEMOLITION

PROJECTIVE MEASUREMENT

The superconducting qubit follows the design of the 3D

transmon developed in Ref. [20]. A single aluminum

Josephson junction, connected to two antennas of 0.4 mm

by 1 mm each, on a sapphire substrate, is embedded in an

empty bulk aluminum cavity, whose first coupled modes

are at !c=2� ¼ 7:748 and 13 GHz when the qubit is in

its ground state. External coupling rates to the first

mode �in=2� ¼ 0:34 MHz and �out=2� ¼ 1:49 MHz are

chosen to be of the same order of magnitude as the inverse

feedback delay (500 ns), and internal losses are negligible

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
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on these scales. The cavity is anchored to a dilution fridge

below 30 mK [14]. Spectroscopic measurements give a

qubit frequency !eg ¼ !c � � ¼ 2�� 3:576 GHz that

differs from the next transition by an anharmonicity

ð!eg �!feÞ=2� ¼ 198 MHz. The relaxation time T1 ¼
28 �s corresponds to the Purcell limit [21], and the pure

dephasing time is T� ¼ 14:5 �s [Fig. 2(a)].

In the dispersive limit !eg �!fe � � [22], the cavity

resonance frequency decreases by 2� when the qubit goes

from the ground to the excited state, and the dispersive

shift here is �=2� ¼ 0:78 MHz. The transmission mea-

surement is strongest at readout frequency !r ¼ !c � �,
which minimizes the overlap between the two coherent

states that correspond to the jgi and jei qubit states

(Fig. 1). In the experiment, square measurement pulses

of 1:2 �s are sent through the cavity. The amplitude of

the readout field inside the cavity can be calibrated from

the measurement-induced dephasing as a function of

readout power, leading to 1.4 photons, on average [14].

The outgoing signal is amplified during these 1:2 �s by

using a Josephson parametric converter (JPC) [11–13]

with 22 dB of gain over 6 MHz (Fig. 1 and Ref. [14])

and following amplifiers before being down-converted

and digitalized by using the FPGA board input. Note

that the JPC is only turned on during measurement peri-

ods, so as to minimize decoherence that occurs due to

backaction [14]. The board averages numerically both

quadratures of the signal during the steady part of the

outgoing pulse only [see Fig. 3(a)], which corresponds to

about Nm ¼ Tmeasð�in þ �outÞ ¼ 11 temporal modes of

1.4 photons. States jgi and jei for the qubit lead to two

almost nonoverlapping coherent states for the average

intracavity fields j�e�i�i and j�ei�i, with � � 40� as

expected from tanð�Þ ¼ 2�=ð�in þ �outÞ [Fig. 1(b)].

With an ideal setup measuring both quadratures of the

average complex field a in the cavity, the variance on a

FIG. 1. (a) Schematics of the experiment. The state of a 3D transmon qubit is entangled with the phase of a coherent field transmitted

through the cavity at frequency !r ¼ !c � �. It is amplified by a Josephson parametric converter (JPC), and its complex amplitude a
is measured and averaged by digital demodulation using an FPGA board (sensing and control). The drive at qubit transition frequency

!eg is modulated by the sum of a predetermined waveform and of a conditional one generated by the FPGA board (actuation). If the

transmission measurement points toward state jei, the actuator generates a � pulse to get the qubit back in jgi. (b) Expected complex

amplitude of the field in the cavity averaged over the measurement time Tmeas represented as the rod of a lollypop in the Fresnel space

for both qubit states. The typical deviation due to vacuum fluctuations of the field in the Nm ¼ 11 averaged modes is represented by the

lollypop radius. The limited measurement efficiency (� ¼ 67%) only slightly increases the observed deviations by ��1=2 � 1 ¼ 22%
(purple rings). (c),(d) Probability density with the JPC (c) off and (d) on, extracted from 106 measurement outcomes when the qubit is

prepared in state jgi or jei with equal probability. Each outcome is the complex averaged amplitude of the field inside the transmon

cavity at !r. The halved probability density that corresponds to the preparation of jgi only (respectively, jei) is plotted in blue

(orange), together with the projections along the real and imaginary axes. Turning on the pump of the amplifier as in (d) results in a

great enhancement of the measurement fidelity, compared to the case without (c).
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should be given by 1=
ffiffiffiffiffiffiffi

Nm

p
[23]. In the experiment, the

19% loss of signal through the input of the cavity

(�in=�tot) and the efficiency of the detection setup

(82%) degrade the signal by only 67% beyond this vari-

ance (Fig. 1). Therefore, measuring ImðaÞ> 0 on the

readout field indicates a qubit in the excited state jei
with a fidelity beyond 99:8%, taking aside the expected

false counts due to relaxation events during readout. All

measurement pulses in this article are performed accord-

ing to this procedure, and the 0:2% infidelity is neglected

throughout. Using this setup, it is possible to perform

almost projective and quantum nondemolition measure-

ments of the qubit state much faster than decoherence

[24,25], a crucial ingredient of measurement-based feed-

back. An illustration of the discriminating power of the

setup is shown as a histogram of measurement outcomes

(average complex amplitude in the cavity) with the JPC

amplifier on or off [Figs. 1(c) and 1(d)] for a qubit

starting randomly in state jgi or jei.

III. COOLING A QUBIT USING MEASUREMENT-

BASED FEEDBACK

As a benchmark of our feedback hardware, we actively

cool down the qubit to its ground state, similarly to what

was demonstrated by Ristè et al. with a phase-sensitive

amplifier and digital controller [9,26]. Quantum informa-

tion processing requires such removal of entropy during

initialization or when correcting for errors [27]. This

method allows us to do so without fast frequency tuning

[28–31], postselection [24,25], or limited coupling rate

� < � [32]. An initial measurement determines the qubit

state. If the outcome points toward the excited state

[ImðaÞ> 0], the FPGA controller emits a square pulse

(Fig. 1), so as to apply a � pulse around Y on the qubit

only 500 ns after the first readout pulse exits the cavity

(see Ref. [14] for details). As an illustration, the qubit

is first prepared in the most entropic mixed state 	 ¼
ðjgihgj þ jeihejÞ=2 by either applying a � pulse or not,

FIG. 2. (a) Evolution of h
Zi (filled dots) and of the coherence jh
X þ i
Yij (open circles) when the qubit is prepared in state

ðjgi þ jeiÞ=
ffiffiffi

2
p

at time 0. The color encodes the time identically in all panels. The lines are exponential fits that use coherence time

T2 ¼ 11:5 �s and relaxation time T1 ¼ 28 �s. (b) Same evolution represented in the Bloch sphere with a Ramsey frequency

!Ry=2� ¼ 100 kHz. At each time (color), the outcome of qubit tomography is represented as a filled dot in the Bloch sphere and

in the three orthogonal projection planes. The large open black circles set the scale of the Bloch sphere extrema. (c) Same

evolution as in (a), with stroboscopic measurement feedback every 4 �s. State tomography is only performed outside of the

sensing and actuation periods. The lines represent the results of a simulation without extra fit parameters. When the conditional �
pulse occurs (actuation), the average purity increases so that the coherences are permanently preserved, on average. (d) Same

evolution represented in the Bloch sphere with a Ramsey frequency !Ry=2� ¼ 10 kHz, instead of 100 kHz for a clearer

observation of the trajectory. The simulated trajectory is represented as a line only for the time interval chosen in (c) for clarity.

(e) Evolution of the qubit with the same process as in (c),(d) but without actuation. The exponential fit, using the same T2 as in (a),

indicates an average persistent coherence of 18% without any actuation. (f) In the Bloch sphere, the Ramsey frequency is chosen

to be !Ry=2� ¼ 100 kHz.
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and averaging the outcomes over these two possibilities.

The probability Pjei for the qubit to be in state jei is then
measured following zero, one, or more resets by feedback.

We found that starting from Pjei ¼ 50%, a single reset

brings this level down to Pjei ¼ 3:6%, which would require

it to thermalize during 110 �s without feedback. Yet,

events where the qubit relaxes between the middle of the

measurement pulse and the feedback pulse limit the effi-

ciency of a single reset. Doing a second reset immediately

after the first brings the qubit much closer to the ground

state with Pjei ¼ 1:1%. This value does not improve with

additional feedback and is limited mostly by the excitation

of higher qubit states during the first reset [9]. These higher

states are almost empty (0:06%) when starting from a

thermalized qubit at Pjei ¼ 2:4%, and two consecutive

resets by feedback cool the qubit further down to Pjei ¼
0:6%. These results are summarized in Table I. Note

that this reset allows us to prepare any state with similar

purity by using rotations of the qubit once the qubit is in

state jgi and to increase the repetition rates of quantum

algorithms [26].

IV. STABILIZING A QUANTUM TRAJECTORY

USING STROBOSCOPIC FEEDBACK

A. Ramsey oscillations

It is also possible to stabilize a state like ðjgi þ jeiÞ=
ffiffiffi

2
p

,

which is not an eigenstate of the measurement operator.

First, a �=2 pulse is applied to the qubit, so as to prepare it

in ðjgi þ jeiÞ=
ffiffiffi

2
p

with a drive frequency !eg. At any time

t, it is possible to realize the full tomography of the qubit.

Indeed, h
Zi is directly given by the average of the mea-

surement outcomes, while h
Xi (respectively, h
Yi) is

given by the same averaging, preceded by a rotation

of the measurement axis using a 64-ns-long Rabi �=2
pulse around Y (respectively, X), where 
X;Y;Z are the

Pauli matrices. In order to connect to the usual representa-

tion of Ramsey fringes at a given frequency !Ry, we can

rotate the measurement axis linearly in time so that h
Xi
maps onto hcosð!RytÞ
X þ sinð!RytÞ
Yi and h
Yi onto

h� sinð!RytÞ
X þ cosð!RytÞ
Yi.
Without measurement-based feedback, the Bloch vector

of the qubit decays exponentially both in Z and in the X, Y
plane [Figs. 2(a) and 2(b)]. The decay in Z is described by

time scale T1 ¼ 28 �swhile the decay in X, Y is described

by time scale T2 ¼ 11:5 �s. In order to stabilize persistent

Ramsey oscillations, a measurement of the qubit is per-

formed after a�=2 rotation every 4 �s. The rotation axis is

chosen so that the measurement outcome should point to

FIG. 3. (a) Pulse sequence for stabilizing Rabi oscillations.

For a typical period of 4 �s, the green line represents the

drive amplitude and the purple line the expected occupation of

the cavity. The complex amplitude a of the measurement

field is recorded only during the steady part of the occupation

(red areas). When ImðaÞ> 0, a fast � pulse is applied after a

total delay of 500 ns (actuation). These steps are illustrated with

the usual symbols for a media player. (b) The black line

represents the decaying Rabi oscillation around 
Y with fre-

quency !R ¼ 250 kHz and measured decay time TR ¼ 15:5 �s.
The dots on the line represent persistent Rabi oscillations mea-

sured using the pulse sequence described in (a). (c) Same

measurement as in (b) shown on a smaller span for h
Zi (filled
dots) and h
Xi (open circles). The targeted Rabi trajectory is

shown as two lines, a dashed black line for h
Zi and a solid gray

one for h
Xi.

TABLE I. Error in the preparation of jgi using zero, one, or

two resets by feedback when starting in the most entropic state or

in the thermalized state (effectively at 46 mK).

Reset number 0 1 2

From ðjgihgj þ jeihejÞ=2 50% 3:6% 1:1%

From thermalized state 2:4% 0:7% 0:6%
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state jgi in the targeted trajectory and the qubit is rotated

back to its original state by a ��=2 pulse. Each time the

qubit is found to be in the jei state, the FPGA controller

performs a fast � pulse (actuation) with a delay of 500 ns

after the measurement ends, which occurs after the ��=2
pulse. Using this stroboscopic measurement-based feed-

back, Ramsey oscillations are indeed preserved indefi-

nitely [Figs. 2(c) and 2(d)]. Using optical Bloch

equations [14], one can calculate the predicted qubit tra-

jectory that corresponds to this protocol [Fig. 2(c)], which

is consistent with the experiment. Deviations from the

experiment likely originate from the change in

measurement-induced dephasing when the JPC is turned

off. The average purity Trð	2Þ of the density matrix 	 is

calculated to be 85% from these simulations; the time-

averaged fidelity F ¼ hc targj	ðtÞjc targi to the target tra-

jectory jc targi ¼ ðjgi þ ei!RytjeiÞ=
ffiffiffi

2
p

is F ¼ 76%, and the

average information quantity 1� Trð�	 log	Þ ¼ 0:60 bit.

Interestingly, the sole effect of stroboscopically measuring

the qubit, without any measurement feedback, induces

persistent Ramsey oscillations, except with less purity

(52%), fidelity (56%), and information quantity (0.03 bit)

[Figs. 2(e) and 2(f)]. This stabilization is due to the

relaxation of the qubit during the measurement period

toward state jgi that makes it more probable to reinitiate

in state ðjgi þ jeiÞ=
ffiffiffi

2
p

than in state ðjgi � jeiÞ=
ffiffiffi

2
p

after

the measurement ends. It can be seen as a kind of reservoir

engineering similar to Ref. [33], where the natural qubit

decay is used as the dissipation source.

B. Rabi oscillations

In order to illustrate further the flexibility of strobo-

scopic projective measurement-based feedback, we have

also stabilized Rabi oscillations. Although it is possible to

perform this stabilization by using analog feedback on a

weak, continuous measurement [8], we demonstrate here

that discrete feedback events are more efficient [10].

Without feedback, a constant microwave signal at !eg

induces a Rabi oscillation of the qubit around 
Y with

decay time TR ¼ 15:5 �s [Fig. 3(b)] and frequency set to

!R ¼ 250 kHz. In order to make the Rabi oscillations

persistent, a measurement is performed each time the qubit

is supposed to be in state jgi [Fig. 3(a)]. The FPGA

controller then sends a fast correcting � pulse (actuation)

at the qubit frequency !eg each time the measurement

reveals that the qubit is in the excited state. In order to

optimize the fidelity of the feedback-controlled trajectory

to the targeted Rabi oscillation, the precession angle that is

left idle during the measurement—with the Zeno effect

freezing the trajectory anyway—is briefly accelerated

before and after measurement to compensate exactly for

that pause [see Fig. 3(a)]. As can be seen in Fig. 3(b), the

Rabi oscillations are indeed stabilized permanently with

this protocol. Their average fidelity to the targeted Rabi

oscillation is F ¼ 85%, their average purity 80%, and

their average information quantity 0.50 bit. The discrete

correction events lead to visible discontinuities in the

trajectories, restoring the purity lost during the last Rabi

period because of decoherence.

V. CONCLUSION

The differences between continuous [8] and strobo-

scopic measurement feedback are enlightening. Although

both methods allow the stabilization of a dynamical

quantum state, continuous measurement exerts a constant

dephasing rate, while stroboscopic measurement allows

variations of this rate in time. For trajectories like

Rabi oscillations that go through eigenstates of the mea-

surement observable (poles of the Bloch sphere), we bene-

fit here from the versatility of stroboscopic feedback by

measuring only close to state jgi, which is insensitive to

measurement-induced dephasing, hence better preserving

coherence over the whole trajectory. Besides, the strobo-

scopic method enables us to stabilize trajectories like

Ramsey oscillations, which never reach measurement ei-

genstates, by periodically rotating the measurement basis.

This work illustrates the possibilities offered by

measurement-based feedback for circuit quantum electro-

dynamics in the case of a single qubit in a cavity. We have

shown here that fast digital electronics combined with

efficient detection allow us to realize elaborate quantum

control protocols on these systems. Future error-correction

codes will benefit from the malleability of a numerical

approach where complex filters need to be used to protect

a quantum algorithm from errors. Extending these proto-

cols to multiqubit architectures should enable the prepara-

tion and stabilization of more complex entangled states and

trajectories.
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Superconducting circuits and microwave signals are good candidates to realize quan-
tum networks, which are the backbone of quantum computers. We have realized a uni-
versal quantum node based on a 3D microwave superconducting cavity parametrically
coupled to a transmission line by a Josephson ring modulator. We first demonstrate
the time-controlled capture, storage and retrieval of an optimally shaped propagating
microwave field, with an efficiency as high as 80 %. We then demonstrate a second
essential ability, which is the timed-controlled generation of an entangled state dis-
tributed between the node and a microwave channel.

Microwave signals are a promising resource for quan-
tum information processing. Coupled to various quan-
tum systems [1–4] they could realize quantum networks,
in which entangled information is processed by quantum
nodes and distributed through photonic channels [5, 6].
The quantum nodes should generate and distribute mi-
crowave entangled fields while controlling their emission
and reception in time. Superconducting circuits are able
to generate entanglement [7–10] and quantum memories
provide control in time as demonstrated in emerging im-
plementations in the microwave domain using spin en-
sembles [11–13], superconducting circuits [14, 15] or me-
chanical resonators [16, 17]. Here, we present a supercon-
ducting device both able to store and generate entangled
microwave radiations shared between a memory and a
propagating mode. It is based on the Josephson ring
modulator [18, 19] that enables to switch dynamically
on or off the coupling between a low-loss cavity and a
transmission line by frequency conversion. We demon-
strate the time-controlled capture, storage and retrieval
of a propagating coherent state in a long lived electro-
magnetic mode. Exploiting the versatility of this circuit,
we then demonstrate the timed-controlled generation of
an Einstein-Podolsky-Rosen (EPR) state distributed be-
tween the quantum memory and a propagating wave-
packet. These new capabilities pave the way for complex
quantum communication and quantum computing pro-
tocols by means of photonic channels in the microwave
domain.

The superconducting node is made of three compo-
nents: a memory, a buffer and a parametric coupler
linking them. The memory is the fundamental mode
m̂ at frequency fm = 7.80 GHz of a low-loss 3D su-
perconducting cavity cooled down to 40 mK (Fig. 1).
The buffer is the fundamental mode â at frequency fa
of an on-chip resonator and is the only component di-
rectly coupled to the network channels with propagating
modes âin/out. The large coupling rate κa = (20 ns)−1

between buffer and channel ensures fast communication
compared to decoherence. The memory and buffer are

(a)

(e)

(d)

(c)

 

 

in

out

(b)

Figure 1: (a) Schematic of the experimental setup. A high-Q
memory mode m̂ is parametrically coupled to a low-Q buffer
mode â, hence to input/output propagating modes âin and
âout, depending on the pump amplitude p. (b),(c) Schemat-
ics and picture of the device. The on-chip circuit couples to
a 3D superconducting cavity via antennas. The blue arrows
represent the polarization of the fundamental mode TE 110
in the cavity. The Josephson ring and buffer resonator are on-
chip. The differential mode (∆) couples with the buffer mode
while the common mode (Σ) is used for addressing the pump.
(d) Picture of the aluminum circuit fabricated on a c-plane
sapphire substrate. The antennas (blue) and the buffer mi-
crostrip resonator (orange) are highlighted in false color. (e)
Optical microscope image of the Josephson ring at the cross-
ing between antennas and buffer resonator. The Josephson
junctions are circled in white.

parametrically coupled through a ring of four Josephson
junctions pumped with a classical control field p at fre-



2

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8

t �Μs�

Capture Retrieval

Transfer OFF

Transfer ON

(a)

(b)

(c)

Figure 2: (a) Capture, store and release protocol. Pulse se-
quences for the pump field p (green) at the difference fre-
quency fp = fa − fm, the input field ain and the resulting
output field aout (orange). The temporal shape of the in-
put field is chosen in order to optimize the capture efficiency.
(b) Time traces of the amplitude of the output field down
converted to 40MHz and averaged 6 × 104 times. The top
trace is measured without pump and reveals the optimized
input signal. The following traces correspond to the sequence
of (a) with increasing delay τ between capture and retrieval
from 0 µs to 8 µs. (c) Dots: retrieval efficiency η as function
of delay τ . η is defined as the ratio of the retrieved energy
normalized to the input energy. Plain line: exponential de-
cay η0e

−τ/τm characterizing the memory lifetime. Best fit
obtained for η0 = 80 % and τm = 3.3 µs.

quency fp. The magnetic flux through the ring allows
to tune fa between 8.7 and 9.6 GHz. As described in
previous works [20], the ring performs three-wave-mixing
and Hmix = ~χ(â+ â†)(m̂+ m̂†)(p+p∗). The device can
be operated in two distinct ways depending on the pump
frequency. For fp = |fa − fm|, the device operates as
a converter [18, 21]. In the rotating wave approximation
(RWA) and with p > 0 the termHconv = ~χp(â†m̂+âm̂†)
provides a tunable coupling rate χp with frequency con-
version between the buffer and memory modes. Con-
versely, for fp = fa+fm, the RWA leads to the paramet-
ric down-conversion HamiltonianHpd = ~χp(â†m̂†+âm̂).
The device then operates as an entanglement genera-
tor [9]. Starting from the vacuum state, an EPR state
is distributed between the propagating mode âout and
memory mode m̂. These properties offer a striking re-
semblance with memories based on mechanical resonators
whose input/output rates and frequencies are two to
three orders of magnitude smaller [16, 17].

In order to demonstrate the performances of the mem-

ory, one can first capture and retrieve a propagating clas-
sical field. Depending on its temporal shape, the pump
amplitude has to be shaped appropriately in order to
maximize the capture efficiency [22]. In this experiment,
we used the dual approach of optimizing the temporal
shape of an incoming coherent state so that it is cap-
tured by a square pump pulse turning off at time t = 0
(Fig. 2a). The optimal shape corresponds almost to the
time-reverse of a signal retrieved from an initially occu-
pied memory [15, 23]. It depends on the input/output
rate γio as [23] ain(t) ∝ θ(−t)(eγiot/2−e(κa−γio)t/2). The
first term ensures absorption without reflection, while
the second term permits the complete transfer of the
absorbed pulse from the buffer to the memory cavity.
The amplitude of the pump pulse was chosen in order to
maximize the input/output rate to γ0io. Indeed, for large
enough pump powers such that χp > κa/2 the modes
â and m̂ hybridize and the input/output rate saturates
to [23] γ0io = κa(1 −

√

1− (2κc/κa)2)/2 ≈ (110 ns)−1.
Note that it corresponds to the fully hybridized in-
put/output rate κa/2 reduced by the antenna coupling
rate κc, which is defined by the exit rate κc ≈ (50 ns)−1

of the 3D mode if the antennas are directly connected to
a transmission line through ∆ port (Fig. 1). It is worth-
while to note that, although the memory has a finite life-
time, the frequency conversion between modes m and a
ensures that the input/output rate is exactly zero γio = 0
when the pump is turned off, leading to an infinite on/off
ratio. Besides, the device being non-resonant with the
conversion operating frequency fp = fa − fm ≈ 1.5 GHz,
the transfer rate can be varied much faster than κa.

The amplitude 〈âout〉 of the mode coming back from
the device is measured for several pump pulse sequences
(Fig. 2b). In a first control measurement (top trace), the
pump is kept turned off such that the measurement cor-
responds to the directly reflected incoming pulse. Note
that there are about 10 photons on average in the incom-
ing wavepacket. In the following measurements (traces
below) the pump is turned on before time 0 and after
time τ (Fig. 2a). Only 5 % of the incoming pulse energy
is reflected while it is sent at t < 0 indicating the effi-
cient absorption of this pulse shape. When the pump is
turned back on after a delay τ , the device releases the
captured state back in the transmission line as can be
seen in Fig. 2b. Note that the chosen temporal shape of
the incoming signal is indeed the time reverse of these
pulses up to an amplitude rescaling, which corresponds
to the efficiency of the memory. Calculating the memory
efficiency η, which is the ratio between the retrieved pulse
energy and the incoming pulse energy leads to an expo-
nential decay as a function of delay time η(τ) = η0e

−τ/τm

(Fig. 2c). The memory lifetime τm = 3.3 µs is much
larger than γ−1

io but limited by unidentified losses in the
3D cavity coupled to the antennas. The much smaller de-
cay rates achieved in similar 3D cavities [24] leave room
for improvement in the future. Note that the anoma-
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lously large efficiency at zero delay η(0) > η0 = 80 %
can be explained by a still occupied buffer cavity at time
t = 0. Besides the outgoing phase is identical to that of
the incoming pulse, demonstrating that the memory pre-
serves phase coherence. Finally, the number of operations
that can be performed by the memory within its lifetime
is limited by the time-bandwidth product γioτm = 30.
This combination of large memory efficiency and time-
bandwidth product makes this device a state of the art
quantum memory [25].

Promisingly, the device cannot only be used as a mem-
ory but also as an entanglement generator. In a second
experiment, we demonstrate the generation of an EPR
state distributed between the propagating mode âout and
the memory mode. Note that this experiment has been
performed during another cooldown of the same device
for which the memory lifetime was slightly degraded to
τm = 2.3 µs. Starting from the vacuum state both in
the memory and in the mode âout, a pulse at pump
frequency fp = fa + fm = 17.28 GHz produces a two-
mode squeezed vacuum state |Sq〉 = eiHpdτ/~|0〉a|0〉m =
cosh(r)−1

∑
tanh(r)n |n〉a |n〉m where the squeezing pa-

rameter r increases with the pump pulse amplitude [9].
The entanglement between memory and propagating
modes can be demonstrated by measuring the correla-
tions between the fluctuations of their mode quadratures,
and showing that there is more correlation than allowed
by classical physics [7, 8, 10]. The quadratures of both
modes can be measured using the same detector on line
a provided that the memorized field is released into the
transmission line at a later time.

The pulse sequence used in the experiment (Fig. 3a)
starts by a square pump pulse at fp = fa + fm =
17.28 GHz during 500 ns that generates an EPR state.
While one part of the pair is stored in the memory, the
other part propagates in the transmission line, is am-
plified by a low-noise amplifying detection setup and
recorded using fast digital heterodyne detection based on
a Field Programmable Gate Array (FPGA) [8, 26]. After
a delay τ = 200 ns, a square pulse is applied on the pump
field at fp = fa−fm with an amplitude such that the out-
put rate is γio and lasting for 500 ns. This pulse releases
the memory field which is then amplified and measured
using the heterodyne detection setup. At the end of a
sequence, the four mode quadratures X̂a, P̂a, X̂m and
P̂m have been measured (defining X̂m ≡ (m̂+ m̂†)/2 and
P̂m ≡ (m̂− m̂†)/2i).

The correlations can be calibrated using the known
variance of the single mode quadratures. Indeed, for
mode a, the thermal state corresponds to amplified vac-
uum fluctuations with a power gain cosh(2r) resulting
in a variance for both quadratures ∆X2

a = ∆P 2
a =

cosh(2r)/4. Note that we assume that the field is in
the vacuum at thermal equilibrium with the refrigerator
temperature 45 mK ≪ hf/kB ≈ 0.4 K. The calibration
then comes down to determining the gain cosh(2r) pre-
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Figure 3: Entanglement between memory and propagating
mode. (a) Scheme of the pulse sequence. Top: pump am-
plitude p is shown in red for fp = fa + fm and in green for
fp = fa − fm. Bottom: output noise amplitude in time.
(b) Measured two-mode covariance matrix. The convention
used is such that the vacuum state corresponds to the unity
matrix. The 2 × 2 block-diagonal matrices in orange and
blue represent the single mode â and m̂ covariance matrices.
The off-diagonal matrices in red represent the correlations
between modes. Correlations go beyond the greyed regions
which demonstrates entanglement.

cisely. This can be done by storing a small coherent field
(about 1 photon on average) in the memory and measur-
ing the output amplitudes with and without applying the
entangling 500 ns pump tone at fp = 17.28 GHz before
release [9]. The entangling pulse effectively amplifies the
coherent field with an amplitude gain cosh(r) which is
here found to be equal to 1.51.

One can then calculate the covariance matrix V of the
two mode state (Fig. 3b), which fully characterizes the
EPR state since it is Gaussian with zero mean [27]. The
FPGA processes 4× 107 pulse sequences in 5 minutes so
that V is calculated with minimal post-processing [8, 23,
28]. In a coordinate system where x = {X̂a, P̂a, X̂m, P̂m},
one defines Vij = 2(〈xixj+xjxi〉−2〈xi〉〈xj〉). Physically,
it is meaningful to decompose it in four 2× 2 block ma-
trices.

V =

(
α χ

χ
T

µ

)

. (1)

The diagonal blocks α and µ are the single-mode covari-
ance matrices for â and m̂ respectively. Since an EPR
state is thermal when disregarding the other mode, there
is no correlation between quadratures X and P for a sin-
gle mode and the variances ∆X2 and ∆P 2 are almost
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Figure 4: Covariance matrix and entanglement as a function
of the storage time τ . (a) Pulse sequence with tunable storage
time τ . (b) Dots: diagonal terms of the covariance matrix V
giving the energy of each mode. Lines: average value (for α)
and exponential fit (for β). The decay rate of the terms in β

gives the energy relaxation time T1 = 2.3± 0.1 µs. (c) Dots:
Off-diagonal amplitudes in V representing the coherence be-
tween memory and propagating modes. Line: exponential
fit, whose rate sets the decoherence time T2 = 4.5 ± 0.1 µs.
Correlations above the entanglement threshold (EN = 0)
demonstrate entanglement between memory and propagating
modes. (d) Dots: Logarithmic negativity EN measuring the
entanglement between modes. Line: prediction [23].

equal. For mode a, by definition of the calibration pro-
cess, one gets V11 ≈ V22 ≈ cosh(2r)/4 = 3.66 (Fig. 3b).
The memory mode is less occupied because of losses at a
rate τ−1

m during the entanglement pulse and the waiting
time τ = 200 ns so that V33 ≈ V44 ≈ 2.55. Conversely,
the off-diagonal blocks χ correspond to the correlations
between modes. In each block, the phase of the pump
field was optimized to put all the weight of the correla-
tions in the two terms V14 ≈ V23 ≈ 2.79. The amount
of entanglement in the two mode state can be measured
by the logarithmic negativity EN . It corresponds to an
upper bound for distillable entanglement [28]. Here, the
memory and the propagating modes share EN = 1.36
entangled bits (e-bits), which indeed demonstrates the
ability of the device to generate and preserve entangle-
ment between modes.

The experiment was repeated for various storage times
τ (Fig. 4a). The typical amplitude

√

|detµ| of the
memory mode terms in V decrease exponentially with
τ (Fig. 4b) as expected from the experiment with coher-
ent states in Fig. 2c. This leads to a relaxation time for
the memory of T1 = 2.3 ± 0.1 µs in agreement with the

memory lifetime τm measured using coherent states in
the same cool down of the device. The small variations
in the amplitude of the propagating mode

√

|detα| with
τ give a sense of the measurement uncertainty (Fig. 4b).
Interestingly, the two-mode correlations also decay expo-
nentially (Fig. 4c). The corresponding characteristic time
is the decoherence time T2 = 4.5± 0.1 µs of the memory.
The fact that T2 ≈ 2T1 demonstrates that energy relax-
ation dominates all decoherence mechanisms during the
storage of a quantum state. The logarithmic negativity
also decreases with τ as shown in Fig. 4d.

In conclusion, we have realized quantum node based
on an hybrid 2D/3D superconducting circuit. The ef-
ficient capture, storage and retrieval of a coherent state
was demonstrated. Moreover, the device permits the gen-
eration and storage of entangled states distributed be-
tween the node and photonics channels. The versatility
of the device paves the way for complex quantum com-
munication protocols in the microwave domain such as
continuous variable quantum teleportation. Besides, it
provides a useful resource for 3D cavities where the on-
demand extraction of a field quantum state was needed.
This could be used to implement readout and feedback in
cavity networks or even quantum computation with the
memory field itself [29]. Finally, superconducting qubits
can easily be embedded in this device, which could lead
to protected quantum memories [4] and even protected
quantum computing with microwave fields [29, 30].
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The fluorescence of a resonantly driven superconducting qubit is measured in the time domain,
providing a weak probe of the qubit dynamics. Prior preparation and final, single-shot measurement
of the qubit allows to average fluorescence records conditionally on past and future knowledge. The
resulting interferences reveal purely quantum features characteristic of weak values. We demon-
strate conditional average that exceed the classical range and probing of a non-hermitian operator.
The experimental results are remarkably captured by a recent theory, which generalizes quantum
mechanics to open quantum systems whose past and future are known.

In quantum physics, measurement results are ran-
dom but their statistics can be predicted assuming some
knowledge about the system in the past. Additional
knowledge from a future measurement [1] deeply changes
the statistics in the present and leads to purely quan-
tum features [2, 3]. In particular conditioned average
outcomes of a weak measurement, revealing the so-called
weak values, were shown to go beyond the conventional
range and give a way to directly measure complex quan-
tities [4]. Recently, these concepts have been considered
in the general case of open quantum systems where de-
coherence occurs [5–7]. Then, what are the properties
of weak values for the unavoidable measurement associ-
ated to decoherence, the one performed by the environ-
ment? Here, we answer this question in the simplest open
quantum system: a quantum bit in presence of a relax-
ation channel. We continuously monitor the fluorescence
emitted by a superconducting qubit driven at resonance.
Conditioned on initial preparation and final single shot
measurement outcome of the qubit state, we probe weak
values displaying all the above properties. The fluores-
cence signal exhibits interferences between oscillations as-
sociated to past and future quantum states [5–7]. The
measured data are in complete agreement with theory.

A two-level system irradiated at resonance undergoes
Rabi oscillations between ground state |g〉 and excited
state |e〉. Conversely, these oscillations leave a footprint
in the emitted fluorescence field. In the spectral domain,
two side peaks appear around resonance frequency, con-
stituting the Mollow triplet [8]. They were first observed
in quantum optics and more recently in the microwave
range [9]. If the detection setup allows monitoring flu-
orescence in the time domain, one gets a weak probe of
the qubit. To access weak values of the associated qubit
operator, one additionally needs to post-select the experi-
ments depending on qubit state, which therefore needs to

∗These two authors contributed equally to this work

be measured in a single-shot manner. Superconducting
qubits in cavity are fit for this task [10–12]. The princi-
ple of our experiment is described in Fig. 1. A transmon
qubit with frequency νq = 5.19 GHz is enclosed in a non-
resonant superconducting 3D cavity [13], connected to
two transmission lines. Line a is coupled as weakly as the
internal cavity losses with a rate Γa = 2 kHz. It is used
as a channel for resonant driving of the qubit. Since the
fundamental cavity mode is far detuned from the qubit
frequency by νc−νq = 2.57 GHz, almost all the resonant
incoming signal is reflected. The cavity is coupled more
strongly to line b, with a rate Γb = 0.25 MHz. With
such an asymmetric coupling, most of the resonance flu-
orescence is emitted in the outgoing mode bout and the
fluorescence signal is not blinded by the large incoming
drive.

Fluorescence is due to transitions from excited |e〉 to
ground state |g〉. The amplitude of the emitted field is
then proportional to the average of the lowering oper-
ator σ− = |g〉〈e| of the qubit. Using the input/output
formalism and eliminating the non resonant intracavity
field operator, one can show [14] that the average field
outgoing on line b is given by

〈bout〉 = 〈bout〉0 −
√
γ1b〈σ−〉. (1)

The first term does not depend on qubit state and oscil-
lates at the resonant drive frequency νq. In the experi-
ment, it is mostly due to an external parasitic cross-talk
(-50 dB) dominating the expected finite transmission of
the cavity at frequency νq. The second term corresponds
to the field radiated by the qubit, whose amplitude os-
cillates at the Rabi frequency νR (see Fig. 1). The pref-
actor γ1b is the spontaneous emission rate into line b set
by Purcell effect and is estimated to be of the order of
(0.1 ms)−1 [15].

The fluorescence signal was measured using a hetero-
dyne detection setup (see [15]). It records in time two
voltage traces VRe(t) and VIm(t) that are respectively pro-
portional to the quadratures of the outgoing field on line b
at frequency νq. In Fig. 2a, the average traces are plotted
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Figure 1: Principle of the experiment. A resonant field (blue on line a) drives a qubit via a weakly coupled line a. While
the off-resonant cavity reflects most of the driving field back on line a, the fluorescence signal (green) mostly exits through
the strongly coupled line b with an amplitude proportional to σ−, and oscillating at the Rabi frequency νR. Due to nonzero
transmission from line a, it is displaced by a resonant field independent of the qubit state (blue on line b). This signal is
then measured at time t with a heterodyne detection setup including a phase-preserving quantum limited amplifier (triangle).
At final time T , the qubit state is measured with high fidelity using a pulse at the bare cavity frequency (purple), enabling
conditional averaging of the fluorescence signal depending on the measured state. In the quadrature phase space rotating at νq
(right panel), resonance fluorescence is revealed by the time oscillation (green) of the voltage VRe, shifted by a constant value
(blue).

in the Fresnel plane for three different drive amplitudes,
with initial qubit states either in the ground |g〉 (pur-
ple line) or excited state |e〉 (orange line). As expected
from Eq. (1), the measured amplitude is the sum of a
time-independent offset proportional to the drive ampli-
tude and of a fluorescence term oscillating at the Rabi
frequency. With our choice of phase reference, it oscil-
lates along the real quadrature only. The fluorescence
signal s−(t) ∝ VRe(t) − V 0

Re can now be defined as the
oscillating part of the real quadrature (Fig. 2b). A sin-
gle proportionality factor is fixed for the whole set of
measurements so that the average s−(t) matches in am-
plitude the predicted value of 〈σ−(t)〉, which is here a
real number. Note that the finite bandwidth 1.6 MHz of
the phase-preserving amplifier needs to be taken into ac-
count when calculating the fluorescence signal from the
predicted time trace of 〈σ−〉 (plain lines in Fig. 2c), re-
sulting in a temporally deformed version of the theory,
which matches well the measured s− (Fig. 2b). In addi-
tion to the measurement of the fluorescence signal, a com-
plementary probing of the qubit dynamics can be realized
by the measurement of the qubit population 〈σz〉. The
corresponding time trace taken in a separate measure-
ment is shown in Fig.2c. It is obtained using the high-
power readout technique [16, 17], which uses a final mi-
crowave tone at the bare cavity resonance frequency. As
expected, initial preparation in ground |g〉 (purple line)
or excited state |e〉 (orange line) lead to opposite mod-
ulations at the Rabi frequency νR = 1 MHz. Note that
the reduced contrast of the oscillations is due to a finite
thermal population of the qubit, leading to p0 = 15.4%
in state |g〉 when preparing state |e〉 [15]. Thus, two
non-commutating qubit operators can be probed using
the fluorescence signal and the conventional qubit pop-
ulation measurement. While the latter is a single-shot,
discrete measurement, s− is a weak, continuous measure-
ment whose strength can be characterized [18] by the
measurement rate γ1b, which is of the order of 0.1 % of
the detector bandwidth.

According to Eq. (1), the observed fluorescence traces
can be predicted by calculating the real part of the av-
erage value Tr [ρ(t)σ−] of the lowering operator, where ρ
is the density operator of the qubit. Its evolution can be
predicted from the preparation ρ(0) = (1 − p0)|e〉〈e| +
p0|g〉〈g| and using the master equation in the Lindblad
form [19]

dρ

dt
= − i

~
[H, ρ] + γ1

(

σ−ρσ+ − 1

2
[σ+σ−ρ+ ρσ+σ−]

)

.

(2)
The first term describes the Hamiltonian evolution of
the qubit in presence of a drive, with H = hνqσz/2 +
hνRσy/2. We use the standard Pauli operators σz =
|e〉〈e| − |g〉〈g|, σx = (σ− + σ+) and σy = i (σ− − σ+).
The second term takes into account relaxation with a
rate γ1 = (16 µs)−1, part of which is due to the sponta-
neous emission rate γ1b introduced in Eq. (1). The ex-
cellent agreement between these predictions (lower half)
and data (upper half) is shown in Fig. 2d, where the av-
erage fluorescence signal s− is represented as a function
of both time and Rabi frequency, for a qubit prepared at
time 0 close to the excited state. The Rabi oscillations
of the qubit are apparent both in time and drive ampli-
tude. Here, relaxation only leads to a slight fading of the
oscillation contrast since the duration T = 2.5 µs of the
experiment is much smaller than γ−1

1 .
Figure 2d represents the fluorescence signal averaged

on a large set of experiments with identical initial state
at time 0. Dually, one can perform the averaging on all
experiments where the qubit is measured at time T in an
identical final state, given by the outcome of σZ . One can
ensure that there is no prior knowledge by preparing the
qubit in the maximally entropic state, half experiments
starting with the qubit in the ground state and half in
the excited state. Such an averaging conditioned on the
future only is shown in Fig. 2e for a qubit post-selected in
the ground state at time T . Clearly, Fig. 2e is the time-
reversed of Fig. 2d which reflects the duality between
preparation and postselection.
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Figure 2: Resonance fluorescence in time domain. a,
Average time traces of the heterodyned outgoing field on line
b represented in the Fresnel plane (VRe, VIm), for driving am-
plitudes corresponding to νR = 0.6 MHz, 1 MHz and 1.4 MHz
(blue arrow represents increasing drive amplitudes). The unit
of voltage V0 corresponds to an average emitted photon rate
equal to γ1b. Purple (resp. orange) lines correspond to a
qubit prepared in |g〉 (resp. |e〉) at t = 0. Each trace is
the sum of a term proportional to the drive amplitude and
an oscillating part in VRe which corresponds to the resonance
fluorescence. The finite bandwidth (1.6 MHz) of the detection
setup deforms the time traces (finite rise time and diminished
oscillation amplitude). b, Dots: Average fluorescence signal
s− as a function of time t for a Rabi frequency νR = 1 MHz.
Lines: corresponding predicted fluorescence signal filtered by
detection setup. c, Dashed lines: measured values of 〈σz〉 for
νR = 1 MHz. Plain lines: predicted 〈σ−〉 leading to plain
lines in (b). d,e, Average value of the fluorescence signal s−
as a function of both time and Rabi frequency, for a qubit
either prepared in |e〉 (d) or post-selected in |g〉 (e). Both
measured and predicted averages of s− are shown in separate
regions. Absolute values remain well bellow 0.5, as expected
for the measurement of Re [〈σ−〉] = 〈σx〉 /2.

The final measurement outcome used as a post-
selection criterion can be modeled by a positive opera-
tor valued measure E(T ) [20]. For instance, when the
measurement of σz indicates that the qubit is in the
ground state, E(T ) = (1 − pT )|g〉〈g| + pT |e〉〈e|, where
pT ≪ 1 takes into account the imperfection of the mea-
surement. The post-selected average value of the low-

ering operator is then given at any time t before T by
Tr [E(t)σ−] /Tr [E(t)] [5–7]. Here, we have used a time
dependent post-selection operator E(t), which obeys a
similar equation to Eq. (2) valid for times t ≤ T

dE

dt
= − i

~
[H,E]−γ1

(

σ+Eσ− − 1

2
[σ+σ−E + Eσ+σ−]

)

.

(3)
The corresponding prediction for the post-selected aver-
age value of s− is in perfect agreement with the measured
one as shown in Fig. 2e. Note that the slightly better
contrast of the post-selected oscillations compared to the
preselected ones is explained by a more efficient measure-
ment than preparation (p0 > pT ).

How are time traces of fluorescence modified when us-
ing knowledge of both past and future? The conditional
average of the fluorescence signal is represented in Fig. 3
for both a preparation in excited state (as in Fig. 2d)
and a postselection in ground state (as in Fig. 2e). This
fluorescence signal, which probes the weak values 〈σ−〉w,
is dramatically changed. Schematically, Fig. 3a exhibits
interferences between the oscillations of Fig. 2d and of
Fig. 2e, with the appearance of negative (blue) and posi-
tive (red) pockets. There are times t and Rabi frequencies
νR in these pockets for which the weak values go beyond
the conventional range of unconditional averages, set by
|Re(〈σ−〉)| ≤ 1/2. In Fig. 3, plain lines represent the
contours within which this boundary is violated. Quan-
titatively, the largest weak value we could obtain is 2.6
times larger than the unconditional average. This purely
quantum effect, first predicted in 1988 [2] and observed
already in quantum optics in 1991 [21], is a complemen-
tary evidence to the irrelevancy of macro realism [22].
In superconducting circuits, out of bound weak values
have already been demonstrated in connection with the
Leggett-Garg inequalities on the autocorrelation spec-
trum of σz(t) [11] and for discrete weak measurements
performed by another artificial atom [12].

Special features develop when past and future infor-
mation disagree, which is for Rabi frequencies such that
the qubit rotates by an even amount of π in a time T
(Fig. 3). There, the weak values go to zero but a small
shift in Rabi frequency results in a dramatic change of
the signal as evidenced in Fig. 3b, where the conditioned
average of the fluorescence signal is shown as dots as a
function of νR at times t = 0.99 µs and t = 1.44 µs.
At the sign change, the slope of the weak value is much
stiffer than the one of the unconditional signal (dashed
line), which is characteristic of the amplifying abilities
of weak values [23, 24]. This curve was the most sen-
sitive way to determine the measurement fidelity of the
qubit population at time T in our experiment. Note that
it does not mean that other post-processing techniques
than the conditional average would not result in an even
better parameter estimation [25–28].

The conditional average of fluorescence signals can be
quantitatively understood using the same formalism as
described above. The weak value for σ− at any time t
can indeed be obtained from the operators ρ(t) from the
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Figure 3: Interferences between past and future states.
a, Average value of the measured fluorescence signal s− as a
function of both time and Rabi frequency, for a qubit prepared
in |e〉 and post-selected in |g〉. Plain lines surround regions
with weak values beyond the range allowed by macro realism.
b, Dots: cuts of a as a function of νR for times t = 0.99 µs
(green) and t = 1.44 µs (red). Plain lines: prediction for
the same curves using Eq (4). Dashed lines: cuts of Fig. 2d
at the same times. The gray region delimits the range of
possible unconditional average values, like the contours in (a).
c, Theoretical counterpart of a assuming that the average of
s− is a measure of Re(〈σ−〉w) and using Eq. 4. d, Theoretical
counterpart of a assuming that the average of s− is a measure
of 〈Reσ−〉w).

past and E(t) from the future, and is given by [5–7].

〈σ−〉w = Tr(ρ̃σ−), where ρ̃(t) =
ρ(t)E(t)

Tr(ρ(t)E(t))
. (4)

The experiment offers a quantitative test of this simple
expression, since the post-selected fluorescence signal is
given by Re(〈σ−〉w). As can be seen on Fig. 3b, the re-
sulting prediction (plain lines) agrees well with the data
(dots). The agreement is good for all measurements as
can be seen between Figs. 3a and 3c where both predic-
tion and measurements are compared as a function of
time t and Rabi frequency νR. The predicted contours
surrounding the regions where macro realism is violated

are represented as plain lines and they indeed match well
their experimental counterpart. The agreement was ex-
cellent for any conditions we considered on preparation
and post-selection [15].

Interestingly, the operator σ− probed by the condi-
tional averaged s− is not an observable as it is not her-
mitian. This illustrates the ability of conditional averages
of weak measurements to probe complex quantities [29].
Here, the measured observable leading to s− is the field

quadrature Re(bout) = (b†out+ bout)/2. For averages with
either pre-selection or post-selection only, Eq. (1) leads
to s− = Re〈σ−〉 or s− = 〈Reσ−〉 = 〈σx/2〉, which are
formally identical. This is not the case anymore for pre
and post-selected measurements for which Re〈σ−〉w and
〈σx/2〉w differ and indeed give very different predictions
as can be seen in Figs 3c and 3d. It is clear that the
experiment matches only the prediction associated with
Re〈σ−〉w, which cannot be interpreted as the weak value
of the observable σx/2.

In conclusion, we demonstrated that detecting reso-
nance fluorescence radiated by a superconducting qubit
out of a cavity corresponds to a weak continuous monitor-
ing of the σ− operator of the qubit. Using conditional av-
eraging on the fluorescence signal depending on the mea-
sured final state of the qubit, we observed interferences
between Rabi oscillations associated to past and future
states. The experiment offers a quantitative demonstra-
tion of the accuracy of recent theoretical works [5–7] able
to predict the conditional average of continuous record-
ing in open quantum systems. Fluorescence tracking il-
lustrates several key aspects of weak values: violation
of macro realism, improvement of parameter estimation
and non-hermitian operator measurement. Besides, by
recording efficiently the fluorescence signal, one should
be able to fully estimate the qubit trajectory. It may
be a way to correct for relaxation in real time by feed-
back [30–33] as long as decoherence is limited by emission
into a transmission line.
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