

Quantum information with superconducting circuits

Benjamin Huard Quantum Electronics group LPA - Ecole Normale Supérieure de Paris, France

Quantum information

					JEAN	JEAN MICHEL JARRE EN CONCERT LYON	
10 ⁶ 10 ⁹		10 ¹²	opti	optics 10 ¹⁵		Frequency (Hz)	
radio	μwaves	THz	IR	U	V		

Superconducting circuits

Superconducting circuits

dissipationless LC circuit...

....canonically quantized

ħω0

1st mode : 7.63 GHz $Q\approx 10^6$

Superconducting circuits with Josephson junctions

dissipation-less non linear LC circuit

$$\hat{H} = \frac{\hat{q}^2}{2C_J} - E_J \cos \frac{\hat{\phi}}{\hbar/2e} = \frac{\hat{q}^2}{2C_J} + \frac{\hat{\phi}^2}{2L_J} + H_{\text{non-lin}}(\hat{\phi})$$

transitions observed in 1980's [Berkeley & Saclay] strong coupling regime of CQED in 2004 [Yale]

Superconducting circuits with non linear systems

Rydberg atoms

[pic from CQED group at ENS]

NV centers

Organic quantum dots

Piezoelectric oscillator

[pic from UCSB group]

Metallic membrane

[pic from Boulder group]

Semiconductor quantum dots

[pic from ETH group]

Superconducting circuits with Josephson junctions

dissipation-less non linear LC circuit

$$\hat{H} = \frac{\hat{q}^2}{2C_J} - E_J \cos \frac{\hat{\phi}}{\hbar/2e} = \frac{\hat{q}^2}{2C_J} + \frac{\hat{\phi}^2}{2L_J} + H_{\text{non-lin}}(\hat{\phi})$$

Non-linear superconducting circuits

Non-linear superconducting circuits

Degenerate parametric amplification

$$H = \hbar \omega_0 p^{\dagger} p - \hbar \alpha p^{\dagger} p^{\dagger} p p / 2$$

$$\hat{a}_{out} = \sqrt{G'} \operatorname{Re}(\hat{a}_{in}) + \frac{i}{\sqrt{G'}} \operatorname{Im}(\hat{a}_{in})$$

[Bell Labs, 1989] [Boulder, 2007] [Chalmers, 2010] [ETH Zurich, 2011] [Berkeley, 2011]

• • •

Ne partez pas en vacances sans un SUPERHÉTÉRODYNE

 $\hbar(\omega_0 - 2\alpha) \\ \hbar(\omega_0 - \alpha)$

 $\hbar\omega_0$

Three wave mixing at micro-wave frequencies

$$\hat{H}_{\text{mix}} = \hbar \chi (\hat{p} + \hat{p}^{\dagger}) (\hat{a} + \hat{a}^{\dagger}) (\hat{b} + \hat{b}^{\dagger})$$

Three wave mixing at micro-wave frequencies

Central inductor enables to operate the device on a larger flux range

→ frequency tunability

[Roch, Flurin et al., PRL (2012)]

improvement on

[Bergeal *et al.*, Nature (2010)] [Bergeal *et al.*, Nature Physics (2010)]

Realization

Parametric down-conversion mode

$$\hat{H}_{\text{mix}} = \hbar \chi (\hat{p} + \hat{p}^{\dagger}) (\hat{a} + \hat{a}^{\dagger}) (\hat{b} + \hat{b}^{\dagger})$$

Unitary evolution

2-mode squeezing operator
$$\hat{S} = e^{r \hat{a}^{\dagger} \hat{b}^{\dagger} - r^{*} \hat{a} \hat{b}}$$

Josephson mixer

Josephson mixer

$$\begin{aligned} \hat{a}_{out} &= \hat{S}^{\dagger} \hat{a}_{in} \hat{S} = \cosh(r) \hat{a}_{in} + e^{i\theta_p} \sinh(r) \hat{b}_{in}^{\dagger} \\ \hat{b}_{out}^{\dagger} &= \hat{S}^{\dagger} \hat{b}_{in}^{\dagger} \hat{S} = \cosh(r) \ \hat{b}_{in}^{\dagger} + e^{-i\theta_p} \sinh(r) \hat{a}_{in} \end{aligned}$$

with
$$\hat{S} = e^{r\hat{a}^{\dagger}\hat{b}^{\dagger} - r^{*}\hat{a}\hat{b}}$$

Josephson mixer as an amplifier

 $\left\{ \begin{array}{l} \text{Quantum limited phase preserving amplifier} \\ \left\langle \hat{a}_{out} \right\rangle = \cosh(r) \left\langle \hat{a}_{in} \right\rangle \quad \text{for} \quad \left\langle \hat{b}_{in}^{\dagger} \right\rangle = 0 \end{array} \right\}$

$$\begin{cases} \hat{a}_{out} = \hat{S}^{\dagger} \hat{a}_{in} \hat{S} = \cosh(r) \hat{a}_{in} + e^{i\theta_p} \sinh(r) \hat{b}_{in}^{\dagger} \\ \hat{b}_{out}^{\dagger} = \hat{S}^{\dagger} \hat{b}_{in}^{\dagger} \hat{S} = \cosh(r) \hat{b}_{in}^{\dagger} + e^{-i\theta_p} \sinh(r) \hat{a}_{in} \end{cases}$$

Josephson mixer as an amplifier

Quantum limited phase preserving amplifier $\langle \hat{a}_{out} \rangle = \cosh(r) \langle \hat{a}_{in} \rangle$ for $\langle \hat{b}_{in}^{\dagger} \rangle = 0$

Gain = 20dB Bandwidth = 10 MHz Tunability > 400 MHz [Roch et al., PRL (2012)]

System efficiency > 80% [Campagne et al., PRX (2013)]

Lumped version

Gain = 20 dB Bandwidth > 50 MHz P1dB = -104 dBm Tunability = 1 GHz[Pillet et al., in prep. (2014)]

EPR state generation

EPR state generation

EPR state generation

Spatially degenerate case done in 2011 at ETH Zurich

Entanglement measurement

Generation and measurement of entangled beams

Josephson Mixer as Entanglement witness

EPR: Entanglement measurement

[E. Flurin *et al.*, PRL (2012)]

Can we do something useful of CV-entanglement?

quantum network

Quantum memory for microwaves

Quantum memory for microwaves

Quantum memory for microwaves

Entanglement generation

Retrieval

Covariance matrix and entanglement

Non-linear superconducting circuits

Circuit-QED

Measurement based feedback

Measurement based feedback

Cavity state: CQED group at ENS (2011) Qubit state: Berkeley (2011) & Delft (2012)

What is needed for measurement based feedback?

Decrease actuation delay

Dispersive readout

What is needed for quantum feedback?

Isolate the system $\Gamma \searrow$ best < 10 kbit/s

Improve measurement rate

Decrease actuation delay

closing the feedback loop: FPGA board

Stabilizing $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

76% purity on average 92% purity right after feedback

[Campagne-Ibarcq et al., PRX 2013 (Paris)]

 $R_{\pm \frac{\pi}{2}}$

Stabilizing Rabi oscillations

[Campagne-Ibarcq et al., PRX 2013, ENS Paris]

Fluorescence with past and future information

[Campagne et al., PRL 2014]

Fluorescence with past and future information

- Monitoring fluorescence in time
- Time-reversal symmetry between preparation and post-selection even with decoherence

- Interference between past and future quantum states
 - Non-classical weak values
 - Direct probing of a non-Hermitian operator

[Campagne et al., PRL 2014]

Summary

Ongoing projects

Thanks

François Nguyen

Vlad Manucharyan (JQI Maryland)

Mazyar Mirrahimi (INRIA)

Pierre Rouchon (Mines)

Alexia Auffèves (Grenoble)

Alain Sarlette (Gent, INRIA), Ananda Roy (Yale, ENS), Joachim Cohen (INRIA, ENS), Pierre Six (Mines)

Thanks

LPA admin and technical services

Pascal Morfin David Darson Jean-Charles Dumont Anne Matignon Fabienne Renia Anne Denis Philippe Pace Jules Silembo Claude Delalande Jean-Marc Berroir

ENS admin and technical services

Jack Olejnik Michael Rosticher et Jose Palomo Didier Courtiade et son équipe Jean-Marc Jusseau et son équipe Equipe Info Equipe Cryogénique Jean-Michel Isaac et son équipe Audrey Caradec Radya El Ayachi Stéphanie Troufflard Ada Coronado Jean-Michel Raimond Werner Krauth All the LPA and especially Takis Kontos, Matthieu Delbecq, Jérémie Viennot, Matthieu Dartiailh and the rest of the HQC team, Bernard Placais, Gwendal Feve, Christophe Mora, Gérald Bastard, Christos Flytzanis and Sukhdeep Dhillon.

All the Quantronics group at Saclay

and also ...

Aleksandra Walczak, Jean-Michel Raimond, Pierre-François Cohadon, Leticia Cugliandolo, Benoît Douçot, Fabien Portier, Max Hofheinz, Patrice Roche, Nicolas Bergeal, Jérôme Lesueur, Pascal Degiovanni, Maxime Clusel, Dominique Mailly, Stephan Suffit, Roland Lefevre, Olivier Arcizet, Jérôme Cayssol, Denis Bernard, Antoine Tilloy, Patrick Pari, Philippe Forget, Matthieu de Combarieu...

Yale

Rob Schoelkopf, Steve Girvin, Zaki Leghtas, Flavius Schakert, Archana Kamal, Hanhee Paik

Interns

Pierre Heidmann, Cyprien Poirier, Yael Gagnepain, Jules Denier, Lauriane Contamin, Nathanael Cottet, Lola El Sahmarany, Florent Baboux, Elisabeth Bonnefoy

The committee members

Karin and Bethsabée

