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Abstract

Software is now a key component of majority of devices and it is responsible for their
safety and reliability. By safety we mean that the system must ensure that “bad things
never happen”. This type of property can be seen as a reachability problem: to prove the
property, it suffices to prove that states designated as “bad” cannot be reached. This is
particularly important for critical systems: systems whose failure can jeopardize human
life, or economic liability.

We present two verifcation methods for AltaRicas models. First, a CEGAR algo-
rithm that prunes away abstract states and therefore uses an underapproximation of
the system state space is proposed. The use of our underapproximation of the abstract
state space allow us to accelerate the algorithm. With our framework, we can pinpoint
obvious feasible counterexamples, use reductions techniques to discard useless abstract
states, minimize the cost of counterexample analysis, and guide the exploration of the
abstraction towards counterexamples that are more likely to be feasible. We have imple-
mented this framework in the model checker Mec 5, and experimental results confirmed
the expected improvements.

We also propose a CEGAR algorithm for a subset of the AltaRica language: we
consider the situation where we want to apply CEGAR algorithm to a hierarchical tran-
sition system. We want to do this without calculating the semantics of the hierarchical
system. We propose to use hierarchical abstractions where each component is abstracted
independently despite the presence of priorities in the model. This has three advantages:
an abstraction is represented in a succinct way, it is easy to verify if an abstract path is
spurious, the abstraction reflects the logical structure of the system.

Finally, we present the implementation our prunning algorithm in Mec 5. Benchmarks
on a set of academic models, and on a large industrial case study illustrate the expected
gain of our algorithm.
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Résumé

Les logiciels sont désormais un des composants essentiels des équipements modernes. Ils
sont responsables de leur sûreté et fiabilité. Par sûreté, nous entendons que le système
garantit que “rien de dangereux n’arrive jamais”. Ce type de propriété peut se réduire
à un problème d’accessibilité: pour démontrer la propriété il suffit de démontrer qu’un
ensemble d’états “dangereux” ne sont pas atteignables. Ceci est particulièrement impor-
tant pour les systèmes critiques: les systèmes dont une défaillance peut mettre en jeu
des vies humaines ou l’économie d’une entreprise.

Afin de garantir un niveau de confiance suffisant dans nos équipements modernes, un
grand nombre de méthodes de vérification ont étaient proposées. Ici nous nous intéres-
sons au model checking: une méthode formelle de vérification de système. L’utilisation
de méthodes de model checking et de model checker permet d’améliorer les analyses de
sécurité des systèmes critiques, car elles permettent de garantir l’absence de bug vis-à-vis
des propriétés spécifiées. De plus, le model checking est une méthode automatique, ceci
permet à des utilisateurs non-spécialistes d’utiliser ces outils. Ceci permet l’utilisation
de cette méthode à une grande communauté d’utilisateur dans différents contextes in-
dustriels. Mais le problème de l’explosion combinatoire de l’espace des états reste une
difficulté qui limite l’utilisation de cette méthode dans un contexte industriel.

Nous présentons deux méthodes de vérification de modèle AltaRica. La première
méthode présente un algorithme CEGAR qui élague des états de l’abstraction, ce qui
permet d’utiliser une sous-approximation de l’espace des états d’un système. Grâce
à l’utilisation de cette sous-approximation, nous pouvons détecter des contre-exemples
simples, utiliser des méthodes de réduction pour éliminer des états abstraits, ce qui nous
permet de minimiser le coût de l’analyse des contre-exemples, et guider l’exploration de
l’abstraction vers des contre-exemples qui sont plus pertinents. Nous avons développé cet
algorithme dans le model checker Mec 5, et les expérimentations réalisées ont confirmé
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les améliorations attendues.

AltaRica

Le projet AltaRica [AGPR00] a débuté en 1996 du désir de partenaires industriels (Das-
sault Aviation, Total Fina Elf, Schneider Electric, AIRBUS) et académiques (LaBRI
et ONERA) de créer un lien entre les méthodes formelles, et les analyses du fonction-
nement et du dysfonctionnement des systèmes, et de développer des outils qui permettent
de modéliser ces systèmes. AltaRica a récemment été utilisé pour obtenir la certification
du système de contrôle de commande du jet Falcon 7X. Le langage AltaRica permet
également de décrire des systèmes dès leurs premières phases de conception. Les outils
industriels d’analyse de modèle AltaRica tel que Safety Designer [Das] et Simfia [Sim]
permettent d’analyser des modèles finis mais contenant des milliers de variables booléens.

Dans un modèle AltaRica chaque composant est un noeud (un automate à con-
traintes) qui décrit le comportement d’une partie du système. Un noeud AltaRica peut
contenir des sous-noeuds (un ensemble de noeuds AltaRica) et interagir avec eux. Deux
model checker ont été développés pour AltaRica: Mec 5 et Arc [GV04, Vin03]. Mec 5
utilise des Binary Decision Diagrams pour représenter l’ensemble des états ainsi que la
relation de transition. Arc utilise une représentation explicite de l’espace des états ainsi
que des Decision Diagrams.

Réduction d’Abstraction

CEGAR. CounterExample Guided Abstraction Refinement est une méthode très ef-
ficace de vérification de propriétés d’atteignabilité. Cette méthode est basée sur le raf-
finement automatique de l’abstraction du système que l’on veut vérifier(e.g., [CGJ+03,
HJMS02, SG04]). Ceci permet en particulier d’éviter la construction de l’ensemble des
états du système. Donc, on peut à priori éviter le problème de l’explosion des états.

L’algorithme CEGAR peut se résumer ainsi: A chaque itération une abstraction du
système est analysée. Si l’abstraction satisfait la propriété alors l’algorithme s’arrête et
retourne “modèle sûr”. Sinon, un contre-exemple abstrait est exhibé, et est analysé sur le
système concret. S’il est exécutable sur le système concret, alors l’algorithme s’arrête et
retourne “modèle non sûr”. Sinon, si le contre-exemple n’est pas exécutable l’abstraction
est raffinée afin d’éliminer le contre-exemple et l’algorithme reprend. Cette étape de
raffinement est complexe et dépend de l’abstraction utilisée.

L’analyse de contre-exemples abstraits ainsi que le raffinement d’abstractions requiert
le calcul coûteux d’un ensemble d’états accessibles dans le modèle concret. Ici nous
présentons une méthode qui permet d’augmenter l’abstraction avec des informations sur
les états accessibles concrets pour améliorer l’algorithme CEGAR.

Afin de pouvoir réduire l’abstraction et d’accélérer l’algorithme CEGAR, nous intro-
duisons la notion de pair certifié: une extension de l’abstraction existentielle classique où
certains états d’abstraction peuvent être identifiés comme ne représentant que des états
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concrets accessibles ou coaccessibles. La principale contribution ici est la méthode de
réduction basée sur les approximations certifiées. Cette méthode permet d’identifier des
états abstraits inutiles et de les éliminer de l’abstraction. Cette réduction de l’espace des
états permet de réduire les ressources nécessaires (temps et mémoire) à la construction
et l’exploration des abstractions. De plus, cette réduction permet de d’éviter des raffine-
ments inutiles (ceci permet d’accélérer l’algorithme CEGAR), et concentre l’algorithme
sur des contre-exemples plus judicieux. Les approximations certifiées ne sont pas conser-
vatives dans le sens classique étant donné que leur états abstraits représentent une sous
approximation de l’espace des états concrets. Malgré cela nous montrons que l’on peut
utiliser les approximations certifiées dans un algorithme CEGAR de façon sûre.

Afin d’augmenter l’ensemble des états certifiés, nous proposons différentes méthodes.
Une première méthode basée sur les must transitions [LT88, BKY05] permet de d’obtenir
facilement des états certifiés. Nous proposons également des méthodes basées sur la
méthode de raffinement, et l’analyse de contre-exemples abstraits. Nous montrons égale-
ment que l’ordre des opérations d’extension des états certifiés que l’on propose dans
l’algorithme est optimale.

L’implémentation de l’algorithme de réduction d’abstractions dans le model checker
Mec 5 est présentée ainsi qu’une analyse des expérimentations sur des modèles académiques
et un modèle industriel.

CEGAR Hiérarchique

Les systèmes de transition sont rarement décrits explicitement. Ils sont souvent représen-
tés comme la composition parallèle de systèmes de transitions basiques. La représentation
modulaire amène ce concept plus loin: elle permet d’appliquer cette composition de façon
hiérarchique. La sémantique de tels systèmes hiérarchiques est un simple système de tran-
sition. Il est aisé de voir que la sémantique peut être exponentiellement plus grande que
sa représentation hiérarchique. Ici nous présentons des méthodes d’abstractions de ces
systèmes de transitions hiérarchiques. L’objectif est d’éviter de calculer la sémantique du
système hiérarchique, et surtout de tirer avantage de cette représentation d’un système
sous forme de modules afin de trouver de “bonnes” abstractions rapidement.

La représentation hiérarchique est basée sur la composition parallèle. Nous consid-
érons le produit synchrone de systèmes de transitions avec des vecteurs de synchronisa-
tion [AN82]. Dans la version la plus simple du produit synchrone, le produit de deux
systèmes peut effectuer une action si les deux systèmes le peuvent. Dans un produit
synchronisé plus élaboré avec des vecteurs de synchronisation une action d’un système
peut être synchronisée avec une action d’un ou de plusieurs autres systèmes. Cette ex-
tension permet un produit synchrone plus flexible, et très utile dans une représentation
hiérarchique d’un système.

Les priorités sont une autre possibilité que l’on considère. Une relation de priorité
est un ordre partiel sur les actions. Si deux actions a et b sont possibles à partir d’un
état, mais que b est plus prioritaire que a, alors ce sera b qui sera exécutée. Autrement
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dit, l’action a sera bloquée. Vu ainsi, les priorités sont relativement simples. Elles
deviennent plus puissantes lorsqu’elles sont utilisées conjointement avec la composition
parallèle. Supposons que les actions a et b requièrent une synchronisation pour pouvoir
être exécutées: par exemple a est synchronisée avec une action c, et b avec une action
d. Si les autres composants permettent d’effectuer l’action c mais pas l’action d alors
la synchronisation de a avec c sera exécutée malgré que b soit plus prioritaire. Mais
si les autres composants permettaient d’exécuter les actions c et d, alors seule la syn-
chronisation b et d serait possible. Les priorités ont un aspect temporisé et arborescent:
elles permettent de détecter qu’une action n’est pas possible. Elles sont donc très utiles
pour la modélisation (nous pouvons simplifier la description du modèle grâce à elles).
Mais elles posent problème lorsque l’ont veut appliquer une méthode CEGAR sur des
systèmes hiérarchiques contenant des priorités. D’un côté elles ajoutent des transitions
dans la sémantique et en même temps elles en éliminent d’autres.

Notre objectif est d’étendre la méthode CEGAR au système hiérarchique. La méthode
la plus simple est de calculer la sémantique du système hiérarchique et d’y appliquer
n’importe quel algorithme CEGAR. A cause de la taille de la sémantique ceci n’est
pas toujours possible. Nous proposons d’appliquer un algorithme CEGAR sans calculer
la sémantique du système hiérarchique. Nous allons même plus loin en utilisant une
abstraction hiérarchique qui reprend la hiérarchie du système que l’on veut analyser.
Cette abstraction nous permet d’abstraire chaque système de transition séparément. Ceci
nous permet de représenter l’abstraction d’une manière succincte.

La première difficulté de cette approche est qu’en général la composition des ab-
stractions des différents composants n’est pas une abstraction du système original. Nous
montrons que la notion d’abstraction par couverture s’adapte bien lorsque le système
hiérarchique ne contient pas de priorités. De plus, nous montrons que lorsque le système
ne contient pas de priorités, il est aisé de vérifier un contre-exemple abstrait: il suffit de
vérifier la projection du contre-exemple sur chacun des composants.

Lorsque le système hiérarchique contient des priorités, la situation est plus complexe.
A cause de l’impact des priorités ils n’est pas évident de garantir que la composition
d’abstractions reste une abstraction. Pour contrecarrer cette situation, nous introduisons
le concept de neat cover abstraction. Nous montrerons que grâce à cette notion nous
retrouvons toutes les propriétés des systèmes hiérarchiques sans priorités.
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❈❤❛♣t❡r 1
Introduction

1.1 Context & Motivations

In our modern society, software is now everywhere, from coffee machines to satellites
navigation systems. The software implemented in a device is usually in charge of its
functional behavior: it pilots the hardware in order to perform the task associated to a
given input. The omnipresence of software has been made possible thanks to advances in
the microchip, and computer, industry. This also allowed to implement more and more
complex functions to widen the possibilities of devices. Software is now a key component
of majority of devices and it is responsible for their safety and reliability. By safety we
mean that the system must ensure that “bad things never happen”. This type of property
can be seen as a reachability problem: to prove the property, it suffices to prove that
states designated as “bad” cannot be reached. This is particularly important for critical
systems: systems whose failure can jeopardize human life, or economic liability.

Due to the size and complexity of modern systems it is impossible to verify them
by inspection or test. Modern systems are no longer the product of a few engineers
that designed and implemented the entire system. They are the product of a large
number of actors: system architects, development/integration engineers that can work
in different countries with different methods and perspective. A modern system can
be the result of successive evolution. It can also be the result of integration of various
independent systems put together for a particular task. In such situations there is person
or a team that pilots the entire development of the system. Often despite human effort
it is impossible to completely grasp the behavior of such a multi-layered system. This
makes its verification a particularly complex and tedious task that nevertheless needs to
be done in order to ensure it safety.

Formal methods appeared as an answer to the need for a verification method capa-
ble to prove safety of systems. These methods are based on a mathematical approach
of the problem verification. On the bright side, formal methods ensure completeness:
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a property of a systems is said “valid/proved/...” if and only if the systems satisfies
the property, and otherwise a counterexample is exhibited. Model checking is a formal
method approach for this task. The model checking problem can be formulated as fol-
lows: Given a model M and a property ϕ does M satisfies ϕ classically denoted M |= ϕ.
The model M is a formal representation of a system, it can be given in various formalism
from automaton to computer programming languages. A model checking algorithm (or
method) is a procedure that can automatically decide if M |= ϕ by an exhaustive search
of the system state space. If M 6|= ϕ the algorithm can return a counterexample that
refutes ϕ in M . One of the advantages of model checking is it automatic approach to the
verification problem. But, this method suffers from the state explosion problem: even if
each individual module of a system has a modest size, the overall system has a size that
is exponential in the number of modules. This issue makes the exhaustive exploration of
the state space close to impossible for large systems.

In order to ensure a sufficient level of confidence in our modern systems, a number of
pragmatic approaches have been proposed. One of them is the “V-Model” software de-
velopment process has been introduced. This process is decomposed into five successive
steps: system requirements, system specification, system architecture, detailed concep-
tion, and implementation. Each of this step is verified using tests: Unitary tests for each
implemented function, integration tests to verify the interactions between functions, and
finally validation tests to verify the specification. Despite this well structure process, a
system developed according to the “V-Model” the may yet contains bugs. This is the
drawback of tests: they can be easily implemented and executed, but they cannot prove
the absence of bugs: at best test can only prove their presence. This is particularly
problematic for critical systems that must satisfy safety properties.

The use of model checking methods and tools (model-checkers) improves the safety
analysis of critical systems, because it guarantees that a system is “bug free” for the the
specified properties. Moreover, the automatic verification approach offered by the model
checking methods, makes it possible to employ model checkers by non-specialists. This
widens the possible community of users and contexts where formal methods can help
the development of safe systems. Yet the state explosion problem limits and sometimes
forbids the use of model checking in an industrial context.

Continued efforts of the academic and industrial communities allowed to widen the
scope of application of formal methods. These efforts, allowed an on-growing adoption
of formal methods in the industry: formal methods are now “strongly recommended” in
the CENELEC EN 50128 railway European norm for the safety analysis and validation
of railway equipments, and have been introduced in the new DO 178 C, airborne systems
and equipment certification norm.

Motivations

While model checking techniques are gaining popularity and are being more and more
adopted in the industry, it becomes crucial for model-checkers to manage larger and
larger systems. Yet due to the state explosion problem this is a challenging task on the
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technical and theorical levels. The main issue is to verify with a model checker systems
composed of a great number of modules.

Over time model checking methods have evolved from explicit state model checking,
to symbolic model checking, and more recently to abstraction-based model checking
techniques. Each of these methods has been build upon its predecessor in order to
scale up the capabilities of model checkers to manage larger and larger systems. The
explicit model checking approach explores the system in an efficient way in order to
verify a property by testing all possible behaviors. This method reaches its limit when
the system’s state space is too large to be represented. The symbolic approach deals
with the state space and exploration problem by different approaches: binary decision
diagrams have been used to represent the state space and the transition relation of a
system. With this concise representation that permits the use of efficient algorithms for
logical operations it is possible to explore the system using only BDDs. Another popular
symbolic approach to model checking is the formula based methods. Theses methods
explore the model in order to find a counterexample by transforming the system into
a (large) formula that represents its transition relation. The model checking problem
is then “reduced” to a satisfiability problem. Both of these methods try to explore the
system in search for a counterexample. The abstraction based methods tackle with the
model checking problem differently: instead of exploring the system to verify a property,
the property is verified on an abstraction of the system. The abstraction of the system
is a smaller system that behaves as the original system, but can also introduce new
behaviors. The advantage of the use of an abstraction is the possibility to manipulate
a coarser representation of the original system, but the new behaviors introduced by
the abstraction can induce spurious counterexample to the property under verification.
Yet, this approach scales up once again the possibilities of model checkers to verify large
systems, even if a the model checking problem gains in complexity due to the spurious
counterexamples.

Among the abstraction-based methods the most successful approach is the well know
CEGAR (CounterExample Guided Abstraction Refinement) method. This method, as
suggested by its name, refines abstractions using counterexamples. The abstraction is
indeed refined automatically in order to eliminate spurious counterexample discovered
during the verification of a property on the abstraction. With this verification scheme
it is now possible to model check large programs and models. The CEGAR method is
tailored to determine the reachability properties. This makes it also a suitable verification
method for safety properties.

The AltaRica language is a system description language. It is a popular modeling
language that permits description of a system from its early stages of design to its im-
plementation. It allows for instance the description of a system with non deterministic
behavior in a modular and hierarchical way. Moreover, in AltaRica the modules can com-
municate using different methods like synchronization or dataflow. This flexibility offered
by the language makes it possible to verify using model checking techniques a system at
different stages of development: from its early specifications to implementation.
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The existing AltaRica model checkers ARC and Mec 5 are explicit and symbolic
model checkers using decision diagrams and binary decision diagrams respectively. Im-
plementing a CEGAR model checker for the AltaRica language is a challenging task,
that allows current AltaRica model checker to scale up to industrial models. This thesis
presents this CEGAR extension of AltaRica. It offers also improvements of the CEGAR
method on its key structure: the abstraction.

1.2 Contributions

The abstraction and the refinement methods are key steps of any CEGAR model checker.
The first contribution of this thesis are abstraction methods allowing to build a sound and
complete CEGAR algorithm that can prune abstract states even if they belong to abstract
counterexamples. The second contribution is an abstraction scheme allowing to soundly
abstract hierarchical transition systems with priorities. We propose a CEGAR algorithm
that can analyze abstract counterexamples by projecting them on each element of the
hierarchy even in the presence of priorities. The third contribution, is the implementation
of the abstraction pruning CEGAR algorithm. This implementation is evaluated on
academic models and a large industrial model.

For verification of AltaRica models, we first show how to enrich an exploit reacha-
bility information that is already available during the execution of the classical CEGAR
loop in order build our CEGAR algorithm with pruning, PCegar. This algorithm relies
on the use of certified approximations, our first abstraction scheme, that permits sound
use of under-approximations of a system state space. Similar approaches referred to as
“slicing” methods have been proposed by Jhalka et al. in [JM05] and Brückner et al.
in [BDFW08]. Compared to our method, these methods are syntax-based, whereas our
pruning method is semantic-based, and can therefore be applied to a larger variety of
models. Certified approximations take advantage of certified states (abstract states that
represent only reachable or coreachable concrete states) to prune away abstract states.
Doing so, permits the CEGAR algorithm to focus on factors of abstract counterexamples.
This permits to verify in a single iteration of the loop a set of abstract counterexamples.
This pruning has many benefits: the (useless) refinements of pruned abstract states is
avoided, the abstract counterexamples are shorter and more likely to be feasible since
they represent one or more abstract counterexample of the corresponding non-pruned ab-
straction. Certified state inference methods are proposed and integrated in the CEGAR
loop in order to maximize the pruning. Must transitions are used in order to statically
infer certified states. The conjoint use of must transitions and certified pairs allows to
solve the reachability problem by testing a simple condition that subsumes the one pro-
posed in [BKY05]. This algorithm has been implemented in Mec 5, and the expected
benefits have been observed on a set of academic benchmark models, as well as on an
industrial model.

The second contribution is a compositional CEGAR algorithm for hierarchical tran-
sition systems: the modular mechanism of the AltaRica language. The key issue in this
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model is the use of priorities (as in AltaRica) in transition systems. The presence of
priorities makes it difficult to obtain an abstraction of a system even if we abstract it
component-wise. We first present our HierarchicalCegar algorithm for the case when there
are no priorities in the hierarchical transition system. We show how to verify abstract
counterexample efficiently in this case. The introduction of priorities in the hierarchical
transition system generates many problems: abstracting separately each component does
not guarantee to obtain an abstraction of the hierarchical transition system, and more-
over, it is not even possible to verify abstract counterexample efficiently. A notion of neat
cover is proposed to solve these issues. Neat covers are a particular type of abstraction
that permits the use of the generic compositional CEGAR algorithm HierarchicalCegar

even when the hierarchical transition system contains priorities. Moreover, thanks to
neat covers it is even possible to efficiently verify abstract counterexamples by project-
ing them on each component of the hierarchy. In [COYC03] Chacki et al. proposed a
compositional CEGAR algorithm for C programs. The algorithm verified concurrent C
programs using two levels of abstractions in order to reduce the abstract state space to
manipulate. The method proposed in this thesis applies to hierarchical systems that can
define local priorities, whereas the CEGAR algorithm proposed [COYC03] verifies C
program without the hierarchical setting and without priorities.

As the last contribution of this thesis, we present the implementation of PCegar algo-
rithm in Mec 5, and compare it to the classical Cegar algorithm. The expected benefits
of the use of the pruning steps are illustrated by the benchmarks and discussed. This
CEGAR extension is now part of Mec 5 publicly available at [Mec10].

Outline

This thesis is organized as follows: Chapter 2 presents the AltaRica language. A review
of the model checking techniques is given in Chapter 3. Chapter 4 presents our CEGAR
with pruning method, and Chapter 5 presents our CEGAR algorithm for hierarchical
transition systems. The implementation of PCegar and a detailed presentation of some
benchmarks model is the focus of Chapter 6. The conclusion of this thesis is presented
in Chapter 7.

1.3 Preliminary Definitions & Notations

Given a set A, we write P+(A) = P(A) \ {∅} for the set of non-empty subsets of A. For
a binary relation R ⊆ A × A, we write xR y when (x, y) ∈ R. We denote by R∗ the
reflexive and transitive closure of R, and we write R−1 for its inverse. Given a subset
B ⊆ A, the forward image of B by R is defined as R[B] = {y ∈ A | ∃x ∈ B : xR y}.

1.3.1 Transition Systems & Labeled Transition Systems

Transition systems are a classical representation of a system semantics.
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Definition 1.1. A transition system is a 4-tuple S = 〈Q,→, I, F 〉 where Q is a set of
states, → ⊆ (Q×Q) is a transition relation, I ⊆ Q is a set of initial states, and F ⊆ Q
is a set of final states. A labeled transition system is a 5-tuple S = 〈Q,Σ,→, I, F 〉,
where likewise where Q is a set of states, Σ is an alphabet, → ⊆ (Q × Σ × Q) is a
transition relation, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states.

Given a transition system S = 〈Q,→, I, F 〉, we define the classical functions postS ,
preS , post∗S and pre∗S from P+(Q) to P+(Q) by:

postS(X) = (→)[X] post∗S(X) =
⋃

i∈N post
i
S(X)

preS(X) = (→)−1[X] pre∗S(X) =
⋃

i∈N pre
i
S(X)

The safety verification problem we address here can be seen as the search for the
existence of a particular path in a transition system. The following definition formalizes
the notions of paths and runs for (labeled) transitions systems.

Definition 1.2. A path in a transition system S is a non-empty finite sequence of states
q0, . . . , qn such that qi → qi+1 for all 0 ≤ i < n. A run is a path q0, . . . , qn with q0 ∈ I
and qn ∈ F . The set of all paths (resp. runs) of S is denoted by Path(S) (resp. Run(S)).
We extend the definition of paths and runs to labeled transition systems by replacing the
qi → qi+1 condition by qi

ai→ qi+1.

Definition 1.3. A word over an alphabet Σ, is a sequence of letters of Σ. Given a
labeled transition system S, a word w = a0, a1, . . . , an is accepted by S if there exists
a run q0, q1, . . . , qn such that for every i = 0, . . . , n we have qi

ai→ qi+1, and moreover
q0 ∈ I, qn ∈ F .

The set of words accepted by a labeled transition system S is its language and is
denoted by L(S).
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AltaRica

The AltaRica project [AGPR00] started in 1996 from the wish of industrial partners (Das-
sault Aviation, Total Fina Elf, Schneider Electric, AIRBUS) and academic researchers
(LaBRI, and ONERA) to link formal methods, reliability, risk assessment, quantitative
analysis of dysfunctions and the qualitative analysis of functional behaviors, and to build
tools and methods for the modeling of systems. It have recently been successfully used
to certify the Falcon 7X turbojet flight controls commands. The AltaRica formal lan-
guage is also well-suited to the description of early design models. Industrial AltaRica
models, such as the ones obtained with the commercial tools Safety Designer [Das] and
Simfia [Sim], are finite-state, but may contain over thousand boolean variables. Each
component is an AltaRica node (basically a constraint automata) that describes the
behavior of a part of the system. An AltaRica node may contain sub-nodes (a set of Al-
taRica nodes) and interact with those nodes. Two model checkers have been developed
for AltaRica: Mec 5, and Arc [GV04, Vin03]. Mec 5 uses Binary Decision Diagrams
(BDD for short) to represent sets of states, whereas Arc works with an explicit state
representation as well as with DDs.

2.1 The AltaRica Description Language

The AltaRica language allows to describe a system in terms of constraint automata
called nodes. Nodes are composed hierarchically. The hierarchy is represented by a finite
unordered tree.

The AltaRica language distinguishes itself from other popular description languages
such as Lustre, Promela, and SMV. Lustre is a synchronous flow oriented language
where processes are linked using data flows. Promela (PROcess MEta LAnguage) is
more oriented toward protocol modelization. It allows one to model a set of processes
that communicate through channels. SMV is parallel process oriented language, where
one can define a set of “modules” that evolve synchronously, and without a hierarchical
structure of the processes. In comparison AltaRica is a less specialized asynchronous
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modeling language. It is well suited to model protocols, processes. Moreover, despite its
genericity, the modeling of systems is relatively direct.

An AltaRica leaf node is basically a constraint automaton which is usually modeled
as a tuple containing:

• A set of variables to define a set of configurations as the product of variables
domain,

• a set of events to define the labels of transitions,

• a set of labeled and guarded transitions,

• an initial condition on variables,

• an assertion to constrain the set of configurations, and

• a priority relation between events to restrict the set of transitions.

In a hierarchical AltaRica setting, the following elements are added:

• A set of subnodes to define a hierarchy, and

• a set of synchronization vectors.

Also note that in a hierarchical AltaRica node, the assertion and initial condition
of a node can refer to its subnode’s variables. Doing so, the node restrains its subnode
configurations. Also, in order to simplify modeling in the language, implicit objects and
default values have been introduced in the language.

In this chapter, we will start by presenting briefly the language features and its se-
mantic. The former will be presented more precisely in a second part of this chapter. We
do not intend to give an in-depth presentation of the language, for a detailed presentation
of the AltaRica language see [AGPR00, Poi00, Vin03].

2.1.1 Leaf AltaRica Nodes

The Minimal Node

To begin our presentation of an AltaRica node, let us consider the simplest possible
AltaRica node: The Minimal node. The AltaRica description of this node is given in
Figure 2.1(a). This example allows us to introduce the first two basic keywords: node
and edon. These keywords are the delimiters of an AltaRica node description. The
description starts with the keyword node immediately followed by an identifier that is
the name of the node. The description ends with the keyword edon.

Next to the AltaRica description of the node Minimal in Figure 2.1(b) we have
depicted its semantic. Classically, the semantic is given as a transition system. Observe
that despite the “emptiness” of the AltaRica description, in the semantic we yet have a
state and a transition. This state is implicitly declared when an AltaRica description
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node Minimal

edon

(a) (b)

Figure 2.1: A simple AltaRica node: (a) the node Minimal, (b) the semantic of Minimal.

does not define any variable. It corresponds to an “idle” state of the AltaRica node. The
transition that loops on the state is called an ε-transition, and likewise it can be seen as
an “idle” transition. Note that ε-transitions are declared implicitly: they induce at least
a loop on each state of the semantic. Note that as convention we will write ε label when
drawing ε-transitions.

Now we can start building more complex nodes by introducing each element of an
AltaRica node. In this chapter to illustrate the AltaRica language we will use as a
running example a stack model.

States Variables & Initial Condition

An AltaRica node can manipulate two disjoint sets of variables: states, and flow variables.

State Variables. State variables as suggested by their name, describe the internal
states of an AltaRica node. These variables can be seen as the internal (or local) variables
of a node: they can be read and modified at will by the node. A state variable must be
typed, and the AltaRica language predefines the following types:

• Boolean using the keyword bool.

• Integer using the keyword integer.

• Interval using an interval definition of the form [x, y], where x and y are integers.

• Enumeration using a set definition of the form {a, . . . , z}.

Their declaration in an AltaRica description is preceded by the keyword state. Each
variable is defined using an identifier followed by a colon and the type. They are given
as a semicolon separated list. In Figure 2.2(a), we have our first stack cell given as the
AltaRica node Stack1. A state variable object is defined and its type is an enumeration:
{no, a, b}. This state variable represent the content of the stack: it is either empty when
object is set to no, or contains an object a or b.

Initial Condition. An AltaRica node can specify an initial condition that define the
initial states of its semantic. The initial condition is given as a list of semicolon separated
assignments. The list is introduced by the keyword init.
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node Stack1

state object : {no, a, b};

init object := no;

edon

(a)

object  = no

(b)

Figure 2.2: A stack cell: (a) the node Stack1, (b) the semantic of Stack1.

The Stack1 AltaRica node of Figure 2.2(a) for example sets the state variable object
to the value no as its initial condition. In Figure 2.2(b) we have the semantic of Stack1.
Note that we only represent states that are reachable from the initial states, here the
state where the value of object is no.

Flow Variables & Assertions

Flow Variables. Flow variables, like state variables can be defined in an AltaRica
node. But these variables serve a different purpose: they usually represent the environ-
ment of an AltaRica node (or in some cases its parameters), and are an input and output
interface with the environment as well. Flow variables cannot be modified directly by
a node, they are constraint by the node and its environment. As state variables they
must be typed using the same syntax. They are introduced by the keyword flow and are
declared like state variables.

Flow variables are not free variables since with the help of an assertion one can
constrain their values.

Assertion. An assertion is a semicolon separated list of boolean expressions that should
be always satisfied by an AltaRica node. More formally, the assertion is the conjunction
of the expressions. The assertion of an AltaRica node allows us to constrain the values
of flow variables as well as state variables. Implicitly when no assertion is declared, its
value is set to the truth value true. A valuation of state and flow variables that satisfy
the assertion is called a configuration of a given AltaRica node.

In Figure 2.3(a) we added to the Stack1 node a flow boolean variable isEmpty. We
want this variable to be true only when the cell does not hold an object. To this end, we
define the assertion isEmpty = (object = no). Note that the configuration associated to
the state is its label.

Events & Transitions

We have described the static part of an AltaRica node. As we have seen there exist
two types of variables: state variables, and flow variables. We also saw how to define
an initial condition over the state variables, and to constrain flow variables. Now, we
can turn our focus to the dynamic aspects of an AltaRica node, and go over events and
transitions.
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node Stack1

state

object : {no, a, b};

flow

isEmpty : bool;

init

object := no;

assert

isEmpty = ( object = no )

edon

(a)

object  = no,
isEmpty = true

(b)

Figure 2.3: A stack cell: (a) the node Stack1 extend with a flow variable, (b) the semantic
of Stack1.

Events. A set of events can be specified for an AltaRica node. Events are primarily
used to label transitions. They are introduced with the keyword event, and are given as
a list of identifiers. Recall that the ε event is implicitly declared for all AltaRica nodes.

Going back to our running example, recall that a stack cell is a container that can
hold elements. Here we model a stack cell that can contain two type of objects: an object
of type a, and another one of type b. Classically, one can either push an element or pop
an element that has been previously pushed. These actions are modeled in our AltaRica
Stack1 node in Figure 2.4(a) by the events push, and pop.

Now that we have events to model these actions, we need to define transitions that
will do perform the desired actions.

Transitions. We now have all the necessary ingredients to present AltaRica transitions.
An AltaRica transition is a triplet made of a guard, an event, and an update. The guard
is an expression over the variables of the node (state and flow variables). An event must
label a transition. The update of a transition is a coma separated list of assignments.
The updated variables can only be state variables, the update can be any arithmetic or
boolean expression over the node variables (state and flow variables). When multiple
updates are specified, the semantic imposes that they occur in parallel.

Given a configuration ~c, a transition can be fired if and only if ~c satisfies the guard
and there exists a configuration ~c′ whose values reflect the application update of the
transition with respect to ~c. Note that we do not require the guards of different transi-
tions to be mutually exclusive. This allows us to have AltaRica nodes that describe a
non-deterministic system. Also note that when a transition is fired, non updated state
variables can not have their value changed.

Syntactically, in an AltaRica node description transitions are introduced using the
keyword trans. They are given as a semicolon separated list. A transition starts with
a guard immediately followed by the base sign: |−. After the base, a non empty coma
separated list of events must be declared. Each declared event will label the transition,
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node Stack1

state object : {no, a, b};

flow isEmpty : bool;

init object := no;

assert isEmpty = ( object = no )

event push, pop;

trans

object = no |− push −> object := a;

object = no |− push −> object := b;

object = a |− pop −> object := no;

object = b |− pop −> object := no;

edon

(a)

object = no,
isEmpty = true

object = a,
isEmpty = false

push

object = b,
isEmpty = false

pushpop pop

(b)

Figure 2.4: A complete stack cell: (a) the node Stack1 that model a simple stack cell,
(b) the semantic of Stack1.

or put differently a copy of the transition will be added for each event. The event list
is followed by the trans sign: ->. An optional coma separated list of updates can be
declared at this point.

We have introduced the events push and pop to model the classical actions that a
stack cell can do. Now we need to guarantee that we can push an object only when
the stack cell is empty, and pop an object from an non-empty cell. With the help of
transition, this is easily done.

In Figure 2.4(a) we have our final Stack1 cell. Observe that we added transitions
to manage the behavior of our stack cell. The first two transitions push an object in our
stack. The guard of these transitions is object = no, the associated event is push, and the
update assigns a or b to the object state variable. The guard guarantees that we can fire
the transition labeled push only when the stack cell is empty: the state variable object
has the value no. Note that these two transitions allow a non-deterministics choice: the
push event inserts either an object a or b. The remaining two transitions allow us to pop
out an object from the stack cell. Their guard guarantees that there is an object in the
stack: the value of the variable object must be a or b. These transitions are naturally
labeled with the pop event, and update the state variable object to the value no which
empties the stack. Note, that we could have used the flow variable isEmpty as the guard
of these transitions to factorize them into a single one by using the guard: ∼ isEmpty.
The semantic of our final Stack1 node is given in Figure 2.4(b).

We have presented the local features of an AltaRica node. The AltaRica language
allows to describe systems in a hierarchical manner. We now present the hierarchical
aspects of AltaRica nodes.
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2.1.2 The AltaRica Hierarchy

One of main advantages of AltaRica is its hierarchical description mechanism. In the
following we will present the tree structure of an AltaRica node, and the interaction
between a node an its subnodes.

Subnodes

An AltaRica node can define subnodes that are its successors, the node is their prede-
cessor. Successors of an AltaRica node are called siblings. A node that does not define
subnodes is called a leaf node. Subnodes are introduced by the keyword sub. They
must be given as a semicolon separated list. A subnode declaration is a unique identifier
that names the subnode followed by a colon, and a previously declared AltaRica node
name. As in object oriented programming languages, an AltaRica node can be viewed
as a generic object. A subnode declaration allows to instantiate a given AltaRica node.
An illustration of an AltaRica node with two subnodes is given in Figure 2.5(a).

The AltaRica node Stack2 of Figure 2.5(a) declares two subnodes namely Top and
Stack as its subnodes, both are Stack1 nodes. Two siblings are independent: by default
in an AltaRica hierarchy, only a single node can fire a non ε transition at each step. The
set of global events can be viewed as the collection of the events of all the nodes (the
node and its subnodes) together with a global ε event. To understand this, observe the
semantic of Stack2 given in Figure 2.6. As expected the semantic of Stack2 is the
product of the semantic of its subnodes with its own “local” semantic which is a single
state transition system that can fire an ε labeled loop. Transitions are labeled with the
events fired by the nodes, except that ε-transitions are not denoted explicitly. Observe
that no transition is labeled with an event of both Top and Stack subnodes. In fact when
a node fires a non ε-transition, the remaining nodes fire an ε-transition1. This restriction
can be relaxed with the help of synchronization vectors [AN82]. We will present them
bit later.

Yet our Stack2 node does not behave like a proper stack. As it is defined for now,
it is a simple container that holds two cells. This is due to the independence of our two
Stack1 subnodes. For instance we do not have control over the local push or pop events:
they can occur in either the Top or Stack subnode. Another issue is the “user interface”:
we want our Stack2 node to be the unique interface that masks the underlying system.
Yet here in order to push or pop an object in our stack model the Stack2 node must
fire the ε transition.

Shared Variable Constraints

The AltaRica language allows us to define two types of interactions between a node and
its subnodes. The first is shared variable constraints, and the second is synchronization
of events.

1The ε event of each node serves as its “no operation” event and allows it to “wait”.
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node Stack2

sub

Top : Stack1;

Stack : Stack1;

edon

Figure 2.5: A basic two cell stack: the node Stack2.

Top.object = no,
Stack.object = no

Top.object = a,
Stack.object = no

Top.push

Top.object = b,
Stack.object = no

Top.push

Top.object = no,
Stack.object = a

Stack.push

Top.object = no,
Stack.object = b

Stack.push

Top.pop

Top.object = a,
Stack.object = a

Stack.push

Top.object = a,
Stack.object = b

Stack.push

Top.pop

Top.object = b,
Stack.object = a

Stack.push

Top.object = b,
Stack.object = b

Stack.push

Stack.pop

Top.push

Top.push

Stack.pop

Top.push

Top.push

Stack.pop Top.pop

Stack.pop

Top.pop

Stack.pop

Top.pop

Stack.popTop.pop

Figure 2.6: The semantic of Stack2.
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node Stack2

sub

Top : Stack1;

Stack : Stack1;

assert

~(Stack.object = no) | Top.object = no;

edon

Figure 2.7: A basic two cell stack with a shared variable constraint, (a) the node Stack2.

Stack2

Stack.object = no, Top.object = no

Stack.object = a, Top.object = no

Stack.push

Stack.object = b, Top.object = no

Stack.pushStack.pop

Stack.object = a, Top.object = a

Top.push

Stack.object = a, Top.object = b

Top.push

Stack.pop

Stack.object = b, Top.object = a

Top.push

Stack.object = b, Top.object = b

Top.pushTop.pop Top.pop Top.pop Top.pop

Figure 2.8: The semantic of Stack2.

A method to interact with a subnodes is shared variables constraints. An AltaRica
node can use its subnodes flow variables in its assertion. Doing so, it can restrain the
possible valuation (i.e. the configurations) of used subnodes variables. Moreover, we can
use this to correlate subnodes variables between siblings, and/or between a node and its
subnodes.

An illustration of the usage of subnode’s variables in an assertion is given in Figure 2.7,
and its semantic is given in Figure 2.8. In this example the node Stack2 ensures that
whenever the Stack subnode is empty the Top subnode is empty too. First, note that to
refer to a subnode variable, we use a classical dot notation: the name of the subnode and
its element we refer to are separated by a dot. More importantly, this simple assertion
ensure a proper stack behavior of our container. Indeed, enforcing the emptiness of the
Top subnode when the Stack subnode is empty guarantees that object will be inserted in
a bottom up manner. In a way, this assertion is the specification of a proper stack model,
and not a direct implementation. In the following, we will remodel our stack without this
assertion using instead the order features offered by the AltaRica language. Moreover,
even if this modelization is correct in terms of behavior, it still does not provide a proper
user interface: from the Stack2 node point of view we only fire ε transitions.

Synchronization

The AltaRica language implements another communication mechanism between a node
and its subnodes: synchronization vectors. We have seen that by default all subnodes
events are independent. However, we can specify synchronization vectors that link a
node event with some of its subnodes events. An event that appear in a synchronization
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node Stack2

sub

Top : Stack1;

Stack : Stack1;

event

pushT, pushS;

popT, popS;

trans

true |− pushT, pushS, popT, popS −> ;

sync

<pushT, Top.push>;

<pushS, Stack.push>;

<popT, Top.pop>;

<popS, Stack.pop>;

edon

Figure 2.9: The Stack2 extend with events and synchronization vectors.

vector is referred to as a synchronized event. A synchronized event can only occur2 if all
the events it is synchronized with can occur at the same time.

A synchronization vector defines a relation between the set of events of an AltaRica
node and its subnodes. Theses vectors are introduced by the keyword sync. Synchro-
nization vectors are given as a semicolon separated list. A synchronization vector is a
coma separated list of events (local or subnodes events) enclosed within the “<” and “>”
marks. A vector synchronizes one event from every subnode. By convention ε events are
not written explicitly.

Thanks to synchronization vectors, we can now improve our Stack2 node. First, we
add four events: pushT , and pushS for “push Top” and “push Stack” respectively, and
their dual events: popT , and popS for “pop Top” and “pop Stack” respectively. Then we
synchronize these events with the subnodes Top and Stack. For instance we synchronize
the pushT event with the push event of the subnode Top, and the popT event with the
pop event of the Top subnode. Likewise we synchronize the pushS and popS with there
counterparts of the Stack node. This Stack2 node is given in Figure 2.9.

The modified Stack2 node now behaves like a nice and practical container. The
pushT and pushS events allow us to insert an object, and the popT and popS events allow
us to pop the inserted objects. Since every event of Stack2 and its subnodes appears
in a synchronization vector, the set of global events is composed of the synchronization
vectors together with a global ε event. The semantic of the Stack2 node is given in
Figure 2.10.

2We say that an event can occur, if a transition labeled with the event can be fired.
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Figure 2.10: the semantic of Stack2.
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Priorities

Our improved Stack2 node still does not behave like a stack: we can for example pop
an object from the tail of our stack (the subnode Stack) while having an object in the
head (e.g. the transition from the state (Top.object = b, Stack.object = a) to the state
(Top.object = b, Stack.object = no) labeled (popS, Stack.pop) in Figure 2.10). In order
to tackle this last issue, we now introduce priorities which are another facility offered by
the AltaRica language.

With priorities we can use a “preferred action” mechanism. This allows us to eliminate
transitions whose labels have smaller priority. Here, we want our Stack2 container to
push an object into its Stack subnode instead of its Head subnode whenever it can, and
pop an object from its Head subnode instead of its Stack subnode whenever it can. More
precisely we want to forbid (or eliminate) the pushT event whenever the pushS event is
possible. Likewise we want to forbid the popS event when the popT event possible. This
behavior can be easily implemented using priorities. With priorities we only need to give
a higher priority to the pushS event over the pushT event. To do so, we can simply
write pushS > pushT . Likewise, we also write popT > popS to pop objects in the right
manner.

More formally, in an AltaRica node, a partial order can be defined over the set of
events. This partial order is called a priority relation. In an AltaRica node declaration,
the priorities are introduced together with events. While defining events, using the less
operator < or greater operator > as a separator we can define our priorities. Note that
the partial order is not explicitly given. The priority relation associated to an AltaRica
node description is the smallest partial order generated by the given pairs of priorities.

Priorities, operate at the semantic level: when a state has outgoing transitions labeled
with comparable events, the transitions labeled with the events of lower priority are
eliminated. Therefore, the priority relation can be viewed as a transition’s “elimination”
method. An important point about priorities is the moment of their evaluation: as we
have seen they operate on the semantic level. In a leaf node predicting their impact on the
transition is easy. But in a hierarchical node, some transitions are eliminated beforehand
due to synchronizations, so the impact of priorities is harder to predict without computing
all possible synchronizations.

Now let us go back to our Stack2 node. In our last improvement, we have seen that
Stack2 can push or pop from any location of the stack. With the help of priorities we
can now finalize our AltaRica model of a stack. The undesired behaviors we want to get
rid of are the following:

1. Do not insert in the head if the stack is empty.

2. Do not pop from the stack if the head contains an object.

To deal with the first point we only need to specify that inserting in the stack has
a higher priority than inserting in the head. The second issue is solved using the same
scheme. The modified AltaRica description of Stack2 is given in Figure 2.11.
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node Stack2

sub

Top : Stack1;

Stack : Stack1;

event

pushT < pushS;

popT > popS;

trans

true |− pushT, pushS,

popT, popS −> ;

sync

<pushT, Top.push>;

<pushS, Stack.push>;

<popT, Top.pop>;

<popS, Stack.pop>;

edon

Figure 2.11: An AltaRica model of a Stack of two elements, the node Stack2.

Now our stack model is correct: new objects are inserted bottom-up, and objects are
popped in a top-down manner. We can observe this in the semantic of Stack2 given in
Figure 2.12. Before going over the semantic, we would like to emphase once again the
conciseness of the model we get thanks to priorities. Indeed, without priorities, we would
need to keep track of the current state of the stack in order to insert and pop an element
in the desired manner.

2.1.3 Examples

We have seen an overview of an AltaRica language. Its modularity is extremely handy
and powerfull. Before presenting the semantic of an AltaRica node in more details, we
present a few examples that allow us to illustrate different possibilities of the AltaRica
language.

Stacks.

We have built for now a two cell stack, this model can easily be extended with more
cells. In Figure 2.13(a) we have an AltaRica description of a three cell stack. This node
is almost identical to our two cell stack AltaRica node of Figure 2.11(a). There are two
differences: the Stack subnode is now a Stack2 AltaRica node, and new synchronization
vectors are added. Using a Stack2 instead of a Stack1 subnode type for the Stack
element simply allows us to obtain a larger container. In order to have a proper stack
behavior of our new node, we need to adapt and extend the synchronization vectors (in
comparison with the Stack2 node). We first need to adapt the synchronization vectors
because the Stack2 node does not define the same set of events as the Stack1 node:
the Stack2 node distinguishes insert (pushT, pushS), and pop (popT, popS) events with
respect to their locations, whereas the Stack1 node does not. As in the Stack2 node,
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Top.object = no,
Stack.object = no,
Top.isEmpty=true,
Stack.isEmpty=true

Top.object = no,
Stack.object = a,

Top.isEmpty=true,
Stack.isEmpty=false
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(popT,
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Figure 2.12: The semantic of Stack2.

inserting and popping an element in the top of the stack is simply managed by a direct
synchronization of these with the Top subnode. Managing the Stack related events is
slightly more tricky: since the Stack2 node can insert objects either in its Top or Stack
subnodes (in a stack way) we need to synchronize the pushS (resp. popS) event of
Stack3 sometimes with the pushT (resp. popT ) and sometimes with the pushS (resp.
popS) of the Stack subnode. The subnode Stack which is a Stack2 node guarantees
that the object will be inserted and popped in the correct way. It is easily seen that the
AltaRica node Stack3 is a model of a three cell stack.

With our Stack3 node, we have a model that is now sufficiently generic to allow us
to extend it with one or more cells in a parametric way. In Figure 2.13(b) we have a
“parametrized” version of our AltaRica model of a stack. Observe that we only need to
modify the node name, and the type of the subnode Stack to obtain a parametric version
of our stack model. Here the parameter is the “variable” N , and for example a Stack5

node will define a Stack subnode which will be a Stack4 AltaRica node that is defined
similarly: its Stack subnode is the Stack3 AltaRica node that we have presented. Note
that, the AltaRica language does not at present support parametric models: we need to
fix the maximal height of the stack in advance.

FIFO containers.

We present another classical container: the FIFO (First In First Out) container. Com-
pared to stack, we propose here a slightly more dynamic modelization of FIFO container:
in our stack model objects where popped “in place”, in the model of a FIFO container its



2.1.3 – Examples 21

node Stack3

sub

Top : Stack1;

Stack : Stack2;

event

pushT < pushS;

popT > popS;

trans

true |− pushT, pushS,

popT, popS −> ;

sync

<pushT, Top.push>;

<popT, Top.pop>;

<pushS, Stack.pushT>;

<pushS, Stack.pushS>;

<popS, Stack.popT>;

<popS, Stack.popS>;

edon

(a)

node StackN

sub

Top : Stack1;

Stack : StackN−1;
event

pushT < pushS;

popT > popS;

trans

true |− pushT, pushS,

popT, popS −> ;

sync

<pushT, Top.push>;

<popT, Top.pop>;

<pushS, Stack.pushT>;

<pushS, Stack.pushS>;

<popS, Stack.popT>;

<popS, Stack.popS>;

edon

(b)

Figure 2.13: AltaRica models of a stack, (a) An AltaRica model of a three cell stack, (b)
An AltaRica model of a N cell stack.

elements “move” toward its head whenever they can. Another difference with our stack
model is the basic container that we use, here we will use a modified container that allows
us to distinguish (with events) the objects it contains.

In Figure 2.14(a) we have given the AltaRica description of our basic cell container
named Cell. This node differs from our stack container: the Stack1 node of Fig-
ure 2.4(a). The first difference is the absence of the flow variable isEmpty and its
associated assertion that kept track of the presence of an object in the container. The
second difference is the use of named events: pusha, popa and pushb, popb that allow
us to distinguish the pushed and popped objects (an object of type a or b) into the cell.
The semantic of Cell is given in Figure 2.14(b).

Equipped with our Cell node, we can now build our FIFO container. We start by
a small two cell FIFO, and then see how to extend this container. In Figure 2.15(a) we
have the AltaRica description of our Fifo2 node. This node manipulates two subnodes
named Head and Queue that are Cell AltaRica nodes. The Head subnode serves as
the head of our FIFO, and the Queue subnode serves as the remaining of our FIFO.
Like the Cell node, our Fifo2 declares a pair of events to insert and get the objects a
and b, but it also declares an extra event called shift that will allow us to move objects
(from the queue to the head) in the FIFO. The shift event when declared is also given
a higher priority than the put(a/b) and get(a/b) events. This ensures that whenever a
shift labeled transition can be fired, it will be. A single transition labeled with all the
events is defined, this transition allows us to fire any event at any time (at least in the
local view of Fifo2). The synchronization vectors are elements of our Fifo2 node.
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node Cell

state object : {no, a, b};

init object := no;

event puta, geta, putb, getb;

trans

object = no |− puta −> object := a;

object = no |− putb −> object := b;

object = a |− geta −> object := no;

object = b |− getb −> object := no;

edon

(a)

object  = no

object  = b

putb

object  = a

putagetb geta

(b)

Figure 2.14: A container cell: (a) the node Cell, (b) the semantic of Cell.

Notice that the get events get(a/b) are synchronized with their related get(a/b) events
of the subnode Head, and likewise the insert events put(a/b) are synchronized with their
related put(a/b) events of the Queue subnode. These synchronizations are quite different
from the ones we used in our Stack3 node: here the head of the container is fixed and is
the only location where we can get objects, and we can only insert objects in the queue.
In contrast, the Stack3 model allowed us to insert and get from any location as long
as it was done according to a stack behavior. In the Fifo node in order to get objects
previously inserted in the queue, we need to move them into the head (when the head
is empty). To do this, we define the last two synchronization vectors, that synchronize
the shift event of Fifo2 with the put(a/b) of Head and the related get(a/b) of Queue.
These vectors allow us to get an object from the queue and insert it into the head (one
vector is defined for each object a and b). This “move” action must be performed every
time that it is possible. This is ensured by the priority given to the shift event.

To illustrate the behavior of Fifo2 suppose that we want to insert and object a.
This action is modeled (and performed) by the transition 〈puta, ε, puta〉. This transition
inserts an a object into to Queue subnode of Fifo2. Now since the Head subnode
is empty, thanks to the priority given to the shift event we can only fire the transition
labeled 〈shift, puta, geta〉 that inserts an a object into Head while getting it from Queue.
Once this is done, we can either get the object a, or insert another object.

Extending this FIFO container with extra cells is straightforward: in order to get a
FIFO container of N elements we only need to use an “N − 1” FIFO container for the
Queue subnode. A parametric node that does this modification is given Figure 2.15(b).

2.2 AltaRica Model Semantics

As we have seen, the semantic of an AltaRica node is given as a labeled transition system.
Before going over the description of the semantics, we start by a brief presentation of the
formal model associated to an AltaRica node.
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node Fifo2

sub

Head : Cell;

Queue : Cell;

event

{puta, geta} < shift;

{putb, getb} < shift;

trans

true |− puta, putb,

geta, getb, shift

−> ;

sync

<geta, Head.geta>;

<getb, Head.getb>;

<puta, Queue.puta>;

<putb, Queue.putb>;

<shift, Head.puta,

Queue.geta>;

<shift, Head.putb,

Queue.getb>;

edon

(a)

node FifoN

sub

Head : Cell;

Queue : FifoN−1;
event

{puta, geta} < shift;

{putb, getb} < shift;

trans

true |− puta, putb,

geta, getb, shift

−> ;

sync

<geta, Head.geta>;

<getb, Head.getb>;

<puta, Queue.puta>;

<putb, Queue.putb>;

<shift, Head.puta,

Queue.geta>;

<shift, Head.putb,

Queue.getb>;

edon

(b)

Figure 2.15: An AltaRica model of a FIFO of three cells

Formally, an AltaRica node is a tuple N = 〈V,Σ, G,4, δ, I, A,N0, . . . , Nn〉, where V
is a set of variables (both state variables S and flow variables F ), Σ is a set of events,
G = {(gi, ei, ui)} is a set of guarded transitions, 4 is a partial order over Σ that defines
a priority relation, δ is a set of synchronization vectors, I is an initial condition, A is an
assertion over the variables of V , and N0, . . . , Nn are sub AltaRica nodes.

An AltaRica node description define a formal AltaRica node. Some of the elements
are explicitly given, others are induced by the description. The state and flow variables of
an AltaRica node description define the set of variables V , and their associated domain.
Likewise, the declared events together with the ε event define the set Σ.

The assertion in an AltaRica node description is a list of boolean expressions. The
conjunction of these expressions defines our formal assertion A (when no assertion is
specified, A is set to the value true). Recall that, a configuration ~c is a valuation of
the variables in V (i.e., an element of D(V )), that satisfies the assertion A. The initial
condition I is defined as a set of assignments of the state variables. It is composed of the
expressions from init clauses of the AltaRica node description. All configurations ~c that
are consistent with I are initial configurations. Note that, if a variable is not assigned
in the initial condition, then it is consistent with the initial condition regardless of its
value.

The macro transitions declared with multiple events are duplicated in order to get a
copy for each event (and the update list is interpreted as a set of assignments like the



24 Chapter 2 – AltaRica

initial condition). Recall that the transition whose guard is set to true, labeled ε, and
does not update the state variables is implicitly declared for all AltaRica nodes. More
formally, a guarded transition is a triplet (g, e, u) where g is a guard, e is an event, and u
is an update. Given two configurations ~c1, and ~c2 we say that the couple (~c1, ~c2) satisfies
the guarded transition if the variable valuation of ~c1 satisfies g (denoted g(~c1)) and the
configuration ~c2 reflects the assignments of u w.r.t. ~c1 (denoted ~c2 ∈ u(~c1)). Observe that
the update u(~c1) defines a set of valuations. This is because of flow variables: their values
can change to any value that satisfies the assertion. As we have seen in Section 2.1.1
the assignments defined in u can only update state variables. On the other hand, flow
variables are constrained by the assertion but otherwise they may change arbitrary with
a transition. This generates a set of possible target configurations.

Additionally, the priority relation 4 and the synchronization vectors δ are induced by
the description. In an AltaRica node description, we only define a priority between events.
The priority relation 4 is the smallest partial order generated by these pairs of priorities.
For instance, when no priority is specified, the partial order 4 reduces to the equality
relation. The synchronization vectors δ are elements of Σ×Σ1× . . .Σn. Therefore, each
synchronization vector of a description must be extended (when necessary) to synchronize
an event of the node and an event for each subnode. The ε event will be used as the
synchronized event if the node (or a subnode) is not explicitly synchronized in a vector.

Now we can present the semantics of an AltaRica node. First we go over the simplest
setting: the semantics of a leaf node. Then we present the semantics of a hierarchical
AltaRica node. For hierarchical nodes, we will briefly present two distinct methods: a
classical approach that relies on the product of automata. Then we will give a rewriting
method that flattens a hierarchical AltaRica node into a leaf node. The equivalence of
both approaches is then discussed. Finally, we present a restriction on AltaRica nodes
and its impact on the semantic computation.

2.2.1 Semantic of a Leaf Node

The semantic of a leaf node is relatively straightforward. Given an AltaRica node N =
〈V,Σ, G,4, δ, I, A〉 the semantic of N is the labeled transition system S = 〈Q,Σ,→, I〉
defined as follows:

As said previously, Q = {qc}, where ~c is a configuration of the AltaRica node. Put
differently, for each configuration ~c their exists a state qc ∈ Q that represents it. The
set of events of the transition system is exactly the set of events of the AltaRica node.
The transition relation is obtained as follows: for each guarded transition (g, e, u) of N
if there exists a pair of configurations (~c1, ~c2) such that ~c1 satisfies the guard g and ~c2
satisfies the update u w.r.t. ~c1 (i.e., ~c2 ∈ u(~c1)), then we add the transition (qc1 , e, qc2) to
the transition relation → of S. When such a tuple (~c1, ~c2) exists, we say that ~c2 satisfies
the post condition of the transition w.r.t. ~c1. Finally, for each state of S we eliminate
all of the outgoing transitions for which there exists another transition labeled with an
event of higher priority. This defines the configuration semantic of the node. The initial
states of S are the states of Q whose configuration satisfy the initial condition of N . The
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reachable states, from these initial states, are called in the sequel the semantic of the
node N .

2.2.2 Semantic of a Hierarchical Node

The first way of computing the semantics for a hierarchical AltaRica node is semantic
composition. This is a classical method based on automata product. Here we just give
an overview of the method, and refer the reader to the theses [Poi00, Vin03] where this
method is presented at length.

In this setting, in order to obtain the semantic of a node we proceed as follows: first,
we start by computing the semantics of the leafs nodes. Once we have the semantic (i.e.,
transition systems) of the leaf nodes, we can go one step up in the hierarchy and compute
the semantics of their predecessors.

Consider a node N , and assume that we already have the semantics of its subnodes
N0, . . . , Nn. Say that these are transition systems S0, . . . , Sn. We are going to compute
the semantics of N that will be the transition system S. We will need to take into account
the following elements:

1. The assertion of the node,

2. the synchronization vectors to determine the events of the semantic,

3. the priorities in order to refine the transition relation, and

4. the initial condition to be able to determine the “reachable” semantic.

States and Assertion

We start with the set of states of S. This set is easily obtained, it suffices to compute
Q as the product of the sets Q0, . . . , Qn with the set {qv} where ~v ∈ D(VN ) (i.e., a set
where each state represent a valuation of the variable of N). Then we eliminate from
Q the states whose valuation does not satisfy the assertion of N3. Again, we obtain
Q = {qc} where ~c is a configuration of N .

Events, Transitions, and Priorities

Unlike a leaf node, the semantics of a hierarchical node does not use the set of events of
the AltaRica node directly as its set events. Instead, almost like states, the set of events
Σ of S is defined as a particular product as proposed by Arnold and Nivat [AN82].

3Recall that the assertion of a node can range over its subnodes variables.
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Event & Synchronization vectors The set of events Σ of S (also referred to as
flat events) is obtained in two steps: We start by extending each synchronization vector
with the ε event of each unspecified node. For example the synchronization vector <
geta,Head.geta > of the Fifo2 node in Figure 2.15(a) becomes < geta,Head.geta,
Queue.ε >. This vector becomes an event of Σ; it is called flat event since it determines
an event in every subnode of the node. Some events of a node (or its subnodes) are not
synchronized: they are not part of any synchronization vector. For each of these events
e, we create an ε synchronization vector that synchronizes e with the ε event of all other
nodes. For example, in Figure 2.15(b) we have a parametric FIFO, suppose that N = 3,
its Queue subnode is a Fifo2 AltaRica node that defines a shift event. This event
is unsynchronized, and therefore a new flat event < ε,Head.ε,Queue.shift > will be
added to Σ.

The AltaRica language describe a synchrone system, where each node must fire a
transition simultaneously. In order to model asynchronous systems, a “no operation”
action: the ε event have been introduced. This allow a node to fire a ε transitions and
behave asynchronously. This is why the synchronization vectors are extended with ε
events of unsynchronized nodes.

Transitions. The transition relation of S is induced by the local variables of the node,
its flat event, and its subnodes semantic. Consider QN = {qc} where ~c is a configuration
of N . The transition relation →N is defined as follows: for each (qc1 , qc2) of QN (two
states representing the configurations (~c1, ~c2)), if there exists a transition (g, e, u) in N
such that c1 satisfies g, and ~c2 = u(~c1) then we have qc1

e
→N qc2 . Put differently, the

→N transition relation is the transition relation of the semantic of N when stripped off
its subnodes and its priority.

Equipped with the →N transition relation, and the set of flat events of N that we
denote Σ′ we can now define the transition relation of S. Before going into more details,
we need to introduce the following notation: given a state q of D(VN )×Q0 × . . .×Qn,
we denote by q[i] the projection of q the projection of q on its ith component. Now
consider a flat event (e, (e0, . . .), . . . , (en . . .)) of Σ, and every two states q1, q2 of Q such

that we have q1[N ]
e
→N q2[N ] and q1[i]

(ei...)
−→ Si

q2[i] for each subnode Ni of N we add

the transition q1
(e,(e0,...),...,(en...))

−→ Si
q2 to → the transition relation of S. The transition

relation obtained need to be pruned using the priority relation of the node.

Priorities. Applying priorities to eliminate some transitions in S is done as in the leaf
node case. The only difference is the labeling of the transitions: in S the transition
are labeled with flat events. Since the partial order in N talks only about events of N ,
only events of N are used to determine the order between flat events. In fact, the order
between flat events (e, (e0, . . .), . . . , (en . . .)) and (e′, (e′0, . . .), . . . , (e

′
n . . .)) is determined

by the order between e and e′ given in N . With this approach we can eliminate transitions
according to their priority in the same way as for the leaf case (cf. Section 2.2.1).



2.2.3 – Syntaxic Flattening 27

Initial Condition

The initial states of S are defined as in leaf nodes: they are the states of S whose
configuration satisfy the initial conditions of the node N and of its subnodes. Note
that a node can overwrite its subnode initial condition. Recall that, a node (in this
case a subnode), can assign a value to its state variables in its initial condition, as we
have seen in Section 2.1.1. One or more of these assignments, can be overwritten by its
predecessor. To overwrite this assignment the predecessor specifies a new assignment to
the states variables of its subnode in its initial condition. As an example the node Fifo2
of Figure 2.15(a), can with its init clause, set its Queue subnode state variable object to
the value a with the following expression: Queue.object := a. This would overwrite the
original initial condition of the Queue Cell node: object := no.

2.2.3 Syntaxic Flattening

Another approach to define semantics of AltaRica model is syntaxic flattening. This
method transforms an AltaRica model into one leaf node. This is done with the help of
rewriting rules that allow to flatten level by level an AltaRica hierarchy into a single leaf
node. This method was proposed by Gérald Point in [Poi00]. As for the composition
method above, we here only go over the main points of the method, and refer the reader
to [Poi00] for a more detailed presentation.

Leaf Nodes Preparation (Priorities Elimination). Before presenting the flatten-
ing of a hierarchical node, we need to prepare the leaf nodes to be lifted into their parent.
This preparation will allow us to eliminate the priorities defined in theses nodes.

The idea is to modify the guards of the transition labeled with an event of lower
priority. The goal is to be able to fire them only when the transition of higher priority
cannot be fired. There are two issues to take into account: the guard and the update of
the transitions. In order to fire a transition (g, e, u) from a configuration ~c the guard g
must be satisfied in ~c and there must exist another configuration ~c′ such that ~c′ ∈ u(~c).
In order to determine if such a pair of configurations exits, we use the post condition
predicate pc((g, e, u)) that is true if and only if for a configuration ~c that satisfies g their
exist ~c′ such that ~c′ ∈ u(~c) , and false otherwise.

Now, to eliminate priorities we proceed as follows: for each transition, the guard is
extended with the conjunction of the negation of the guards of any transition labeled
with an event of a higher priority together with the negation of its post condition. For
example, given two transitions t0 = (g0, e0, u0) and t1 = (g1, e1, u1) such that we have
e0 ≺ e1, the transition t0 is rewritten as: t′0 = (g0∧ (¬g1∨ (g1∧¬pc((g1, e, u1)) )), e0, u0).
The new transition t′0 can be fired only if the transition t1, whose label has higher priority,
cannot be fired. This allows us to manage the priorities defined in the node directly in
the guard of the transition.

Consider an AltaRica node N that has a subnode N0. We will now propose a method
that allows us to obtain a flat AltaRica node with the same semantics. As expected, we
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want to “lift up” the subnode N0 into the node N . Before, importing the elements of
N0 into N , we need to prepare the subnode N0. In order to keep track of the subnode’s
variables, we prefix them with the subnode’s name using a dot as a separator in the
subnode (yet, when it is clear from the context we simply write the subnode variable
name). This renaming is also done for the events of the subnode. With our variables
and events renamed, the transitions (guard, events, and updates), and initial condition
are rewritten with the new variables and events names.

States, Flows, Initial Condition, and Assertion

Now that our subnode N0 is ready we proceed as follows. First we import the state
and flow variables of N0 into N . We then replace every reference to the variables of
N0 in N by their imported counterparts. The initial condition of N is then extended
with the initial condition of N0. The new initial condition is the “overwrite union” of the
initial conditions of both N and N0: recall that a node can overwrite its subnode initial
condition. We denote this particular union ⊎, here for instance I = IN ⊎ I0. Likewise
the assertion of N is extended with the assertion of N0.

Events, Transitions, and Priorities

The set of events is redefined as in the semantic composition method (described in Sec-
tion 2.2.2) in order to obtain flat events. The synchronization vectors of N are then
eliminated since they are already integrated into the flat events.

Transitions. With the flat events, we can now write the new transitions for each flat
event using the transitions of N and N0. Given a flat event 〈e, e0〉, for each transition t =
(g, e, u) of N and t0 = (g0, e0, u0) of N0 we create a new transition (g∧g0, 〈e, e0〉, (u, u0)).
These transitions once computed replace the transitions of N .

Priorities. To finalize our rewritten AltaRica node N , we rewrite the transition in
order to manage the priorities in their guards. This is done as in the case of the leaf
node discussed above.

2.2.4 Equivalence of Both Approaches

The semantic composition method and the syntaxic flattening approach are equivalent.
The proof is presented in [Poi00]. These two methods still coexist since each approach
has its advantage and drawbacks.

The syntactic flattening method is well suited for large hierarchical AltaRica nodes
that do not define complex event synchronizations: complex events synchronizations may
lead to a large number of flat events (in some cases exponentially larger). The syntactic
method allows “on the fly” exploration of the flatten AltaRica node, which cannot be
realized with the compositional method.
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On the other hand, the composition method can eliminate useless events while com-
posing the nodes, but can suffer from the state space explosion at an intermediate stage
of the semantic computation. This can occur even if the final semantics is of a tractable
size.

2.2.5 AltaRica without Flow and Assertions

We are now turning our focus towards the computation of the semantics of a subset of
the AltaRica language. We consider AltaRica nodes that contain no flow variables, and
no assertions. This subset will be the formal model used by our upcoming hierarchical
CEGAR algorithm of Chapter 5.

This restriction allows us to simplify the semantic computation of our AltaRica nodes.
Without flow variables and assertions, computing the post condition of a AltaRica tran-
sition is easier: we do not need to find a valuation of the flow variable that satisfies
the assertion and the transition guard. The method we propose is based on a flattening
algorithm. The restriction we impose, allows us to modify slightly the original syntactic
flattening method.

The flattening algorithm Flatten given in Figure 2.16, is a recursive method applied
bottom up on the structure of the AltaRica hierarchy, that returns a leaf AltaRica node
N ′ without priorities semantically equivalent to the hierarchical AltaRica node N .

Leaf Nodes

In the Flatten algorithm the leaf nodes and hierarchical nodes are treated separately. Leaf
nodes are treated in the Lines 1 to 11. The algorithm simply eliminates the priorities
from these nodes (as presented in the Section 2.2.3). To do so, it modifies the guards of
transitions. The modification extends the guard with the formula saying that an event of
higher cannot be executed. This allows to preprocess the priorities: for instance consider
two transitions t = (g, e, u) and t′ = (g′, e′, u′) such that e ≺ e′, and let (c1, c2) be a couple
of configurations such that c1 satisfies both g and g′, and c2 satisfies the post condition
of both t and t′. Once the transition (g, e, u) is processed by the Flatten algorithm the
transition becomes (g ∧ (¬g′ ∨ (g′ ∧ ¬pc((g′, e′, u′))), e, u). Now c1 does not satisfy the
modified guard, and no transition from c1 to c2 labeled with e will be present in the
semantics. Hence we have eliminated the transitions according to the priorities. Once
the transitions are rewritten, the priorities of the node are eliminated and the algorithm
returns in Line 11 the new AltaRica node.

Hierarchical Nodes

In the case of an hierarchical AltaRica node, the Flatten (Lines 13 to 27) proceeds differ-
ently: it will construct a new AltaRica node out of the node and its flatten subnodes.

In it first steps, Lines 13 through 15, the algorithm flattens the node subnodes, sums
the node’s and flattened subnode’s variables, and computes an initial condition based
on the node and on its flattened subnodes initial conditions. This new set of variables
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Flatten (N)
Input: N an AltaRica Node.

1 if (N is a leaf node) then

2 G′ ← ∅
3 for each (g, e, u) ∈ G do

4 g′ ← g
5 for each (g′′, e′′, u′′) ∈ G do

6 if (e ≺ e′′) then
7 g′ ← g′ ∧ (¬g′′ ∨ (g′′ ∧ ¬pc((g′′, e′′, u′′))))
8 done

9 G′ ← G′ ∪ {(g′, e, u)}
10 done

11 return 〈V,Σ, G′,=, ∅, I, true〉
12 else

13 N ′

0, . . . , N
′

n ← Flatten(N0), . . . ,Flatten(Nn)
14 V ′ ← V ∪ V ′

0 ∪ . . . ∪ V ′

n

15 I ′ ← I ⊎ (I ′0 ∪ . . . ∪ I ′n)
16 Σ′ ← FlattenEvents(N,N ′

0, . . . , N
′

n)
17 G′ ← ∅
18 for each ((e, (e0, . . .), . . . , (en, . . .)) ∈ Σ′ do

19 for each (g, e, u) ∈ G, (g0, (e0, . . .), u0) ∈ G′

0, . . . , (gn, (en, . . .), gn) ∈ G′

n

20 G′ ← G′ ∪ {(g ∧ g0 ∧ · · · ∧ gn, ((e, (e0, . . .), . . . , (en, . . .)), u ∪ u0 ∪ · · · ∪ un)}
21 done

22 for each (e, e′) ∈ (Σ× Σ) such that e ≺ e′ do
23 for each ((e, . . .), (e′, . . .)) ∈ (Σ′ × Σ′) do
24 set ((e, . . .) ≺′ (e′, . . .)
25 done

26 done

27 return Flatten(〈V ′,Σ′, G′,4′, ∅, I ′, true〉)

Figure 2.16: Flatten algorithm

and initial condition will be part of the flattened version of the input node N . The
algorithm then computes the new set of events (flatten events) with the help of the
function FlattenEvents given in Figure 2.17.

The FlattenEvents algorithm computes the set of flat events (denoted Σ′) of a given
AltaRica node N . The algorithm computes this set in two steps: first it computes ε
synchronization vectors for unsynchronized events (of the node, then of its subnodes),
afterwards it computes the flat events induced by synchronization vectors. The unsyn-
chronized events of the node are treated in the algorithm Lines 3 through 5. For each
unsynchronized event an ε synchronization vector is created. This vector synchronizes
the event with the ε events of the subnodes. Likewise, the algorithm extends the new set
of synchronization vectors δX with an ε synchronization vectors for each unsynchronized
events of the subnodes Lines 6 through 10. Once the set δX extended with these new
synchronization vectors we can compute the nodes flat events. The flat events, induced
by the new set of synchronization vectors δX are treated in the algorithm in the Lines 11
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FlattenEvents (N,N0, . . . , Nn)
Input: N an AltaRica Node, N0, . . . , Nn the flatten subnodes of N .

1 Σ′ ← ∅
2 δX ← δ
3 for each e ∈ Σ such that (e, . . .) 6∈ δ do

4 δX ← δX ∪ {(e, ε0, . . . , εn)}
5 done

6 for each i = 0 to n do

7 for each ei ∈ Σi such that (. . . , ei, . . .) 6∈ δ do

8 δX ← δX ∪ {(ε, . . . , ei, . . . , εn)}
9 done

10 done

11 for each (e, e0, . . . , en) ∈ δX do

12 for each ((e0, . . .) ∈ Σ0, . . . , (en, . . .) ∈ Σn) do
13 Σ′ ← Σ′ ∪ {(e, (e0, . . .), . . . , (en, . . .))}
14 done

15 done

16 return Σ′

Figure 2.17: FlattenEvents algorithm

through 15. Basically, the algorithm will iterate over the set of synchronization vectors,
and add for each synchronization vector one or more new flat events into the set Σ′. For
a given synchronization vector (e, e0, . . . , en) of δn, the algorithm will create a new flat
event of N using the flat events of its subnodes N0, . . . , Nn that are of the form (ei, . . .).

Once the flat events are computed, the Flatten algorithm computes a new set of tran-
sitions using the flat events. In more details, for each flat event ((e, (e0, . . .), . . . , (en, . . .))
the algorithm identifies the transitions of N labeled with the event e, and identifies the
transitions of the flatten subnodes N0, . . . , Nn labeled with (e0, . . .), . . . , (en, . . .) and cre-
ates a new transition combining the guards and the updates into a new transitions4. A
new priority relation 4′ is also computed. This new priority relation 4′ allows us to keep
track of the priority defined over the events of the node on the flatten events. Finally
in order to eliminate the priorities of the node the Flatten is called with the new sets
computed and the new priority relation: 〈V ′,Σ′, G′,4′, ∅, I ′, true, ∅〉 which put together
form an AltaRica leaf node.

Example

To illustrate the Flatten algorithm, consider Fifo2 node of Figure 2.15(a) and let us apply
the Flatten algorithm to it. When invoked with the AltaRica node Fifo2, the algorithm
starts by determining if Fifo2 is a leaf node (Line 1). This node defines two subnodes
therefore the algorithm jumps to the Line 11. Then it flattens the two subnodes Head
and Queue by calling Flatten(Head) and Flatten(Queue). These subnodes are both Cell

AltaRica nodes (see Figure 2.14(a)). The Cell node is a leaf node that do not define a

4If no transition exist labeled with the given (flatten) event then, the tuple is discarded.
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priority relation over its events. Therefore, the execution of both Flatten(Head) and Flat-

ten(Queue) returns the nodes unchanged. Then the new set of variables is computed5 and
is V ′ = {Head.object,Queue.object}, and the initial condition is I ′ ≡ Head.object =
no ∧ Queue.object = no. In its next step the algorithm calls the FlattenEvents algo-
rithm with Fifo2, Head, and Queue as its arguments. FlattenEvents will return flatten
events of Fifo2 which is exactly the flat events induced by the synchronization vector of
Fifo2 together with the event: (ε, (Head.ε), (Queue.ε)). For example the synchroniza-
tion vector 〈geta,Head.geta〉 generates the flat event: (geta, (Head.geta), (Queue.ε)).
The algorithm continues and computes the new set of transitions G′. For the Fifo2

node, it will generate the following transitions:

• (Head.object = a, (geta, (Head.geta), (Queue.ε)), Head.object = no)

• (Head.object = b, (getb, (Head.getb), (Queue.ε)), Head.object = no)

• (Queue.object = no, (puta, (Head.ε), (Queue.puta)), Queue.object = a)

• (Queue.object = no, (putb, (Head.ε), (Queue.putb)), Queue.object = b)

• (Head.object = no∧Queue.object = a, (shift, (Head.puta), (Queue.geta)), Head.object :=
a, Queue.object := no)

• (Head.object = no,Queue.object = b, (shift, (Head.putb), (Queue.getb)), Head.object :=
b, Queue.object := no)

• (true, (ε, (Head.ε), (Queue.ε)), ∅)

Now that the new transition relation is computed, the algorithm goes on and defines
the 4′ partial order. This is done from Line 22 to Line 26. The priority 4′ is defined
using the nodes priority 4. The algorithm identifies all comparable pairs of events e and
e′ of Σ such that e ≺ e′. Such pairs of events are used to define the new order 4′ on newly
constructed flat events by putting (e, . . .) 4′, (e′, . . .). For the example of the Fifo2

node, the algorithm will generate for the flat event (shift, (Head.puta), (Queue.geta))
the following priorities:

• (geta, (Head.geta), (Queue.ε)) ≺′ (shift, (Head.puta), (Queue.geta))

• (puta, (Head.ε), (Queue.puta))) ≺′ (shift, (Head.puta), (Queue.geta))

• (getb, (Head.getb), (Queue.ε)) ≺′ (shift, (Head.puta), (Queue.geta))

• (putb, (Head.ε), (Queue.putb))) ≺′ (shift, (Head.puta), (Queue.geta))

Similar priorities will be defined for the (shift, (Head.puta), (Queue.geta)) event.
Note that, as usual, the 4′ relation is the is the smallest partial order generated by the
listed pairs of events.

5Observe that the subnodes variables are prefixed with there respective subnode id.
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The algorithm has at this point computed all of the elements need to eliminate the
subnodes. The final recursive call is done Line 27 to eliminate the priorities from the
new node. As previously discussed, the Flatten algorithm eliminates the priorities of
leaf nodes using a rewriting method that modifies the guards of events of low priority.
For our Fifo2 node the transition labeled (putb, (Head.ε), (Queue.putb)) will have its
guard updated to the following expression: Queue.object = no ∧ ¬(Head.object = no ∧
Queue.object = a) ∧ ¬(Head.object = no ∧ Queue.object = b). This does not change
the transition guard since the expression can be simplified to the original guard. In this
example, the negation of the post condition does not modify the guard, and for the sake
of clarity we left out the expression produced by this negation. However, consider a
Fifo system of more than two cells Fifo3 for example. In this case the rewriting will
produce a guard that forbids the insertion of a new object into the cell until any object
present in the middle cell (the Queue.Head.object variable) have been shifted to the
head to the Fifo (the Head.object variable). Going back to our Fifo2 example, once
the algorithm terminates, the leaf AltaRica node obtained is an priority free AltaRica
node semantically equivalent to the Fifo2 node.
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State of the Art

3.1 Model Checking

Formal verification appeared as an answer to the growing demand of safety in the design
of critical systems. Critical systems are more and more present in our today’s society. By
critical system, we mean any system whose failure can jeopardize human life, or economic
liability. In the recent history, many examples of critical systems failures have caused
human loss, as well as economical threats to businesses. One of the most compelling
examples is the Ariane 5 launch that due to a register overflow forced the operating
center to destroy the space shuttle a few seconds after takeoff. Examples of buggy design
can be found in various industries from medical equipment (e.g. Therac-25) to the
microchip industry (e.g. Pentium Pro and Pentium II FPU bug). To tackle this issue,
model checking [CGP99, Cla08, BK08, RCB, WLBF09] has been proposed to improve the
confidence one can have in a system by introducing formal verification in the production
process of critical systems.

3.1.1 Explicit Model Checking

Explicit state model checking is a first example of formal verification methodology. In
the simplest variant, the goal is to verify that a given set of faulty behaviors cannot
occur by testing all possible behaviors of the system. To this end, the system is usually
represented as a transition system and the task is to explore it an efficient way taking into
account the property to be verified. Many tools performing explicit state model checking
have been implemented. Two examples are Spin [Hol97], and ARC [Poi00, Arc10]. The
first is one the most popular model checkers, the second is the standard explicit and
symbolic model checker for AltaRica.
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State Space Explosion

Explicit-state model checking, is a verification method where the system states are rep-
resented individually: each state and transition is represented as a separate object. This
permits to use efficient graph exploration algorithms to check the existence of a coun-
terexample.

The main issue to handle when dealing with explicit-state model checking is comput-
ing and maintaining a concrete representation of the state space and of the transition
relation of the overall system. In many languages such as Promela, NuSMV, and AltaRica
(see Chapter 2) the models are described by modules/components and their interactions.
Even if a given module taken separately has a modest size, the overall system has a
size that is exponential in the number of modules. Industrial models are usually made
of a many small modules. Their number often renders explicit-state model checking
impossible.

An approach to alleviate this state-explosion problem is to represent the state space
in a compressed form. This approach is commonly called “Symbolic Model Checking”.
The remainder of this section presents two symbolic approaches to model checking.

3.1.2 Symbolic Model Checking

Symbolic model checking [BCM+92] intends to tackle the state space representation
issues by different approaches. One technique is the use of a compact representation
of the set of states. For examples, binary decision diagrams (BDD for short) are often
used to represent sets of states, and even transition relations. With the use of BDDs
it is possible to manipulate a system of more than 1020 states. Another approach to
the model checking problem is the symbolic exploration of the model. In this type of
setting, instead of keeping track of the model’s states, the model is transformed into a
SAT problem [BCC+03]. This permits the use of a SAT solver to symbolically explore
the state space of the model.

BDDs

Binary Decision Diagrams [Bry86] are concise representations of boolean formulas. Prac-
tically, a BDD is a rooted directed acyclic graph where each non-terminal state represents
a variable, and the two terminal states represent the truth values true, and false. BDDs
can be reduced and ordered (ROBDD for short). A ROBDDs is a canonical representa-
tion of sets of values. More importantly, there exists efficient algorithms for ROBDDs
composition (union, intersection, negation, ...) see [Bry86, And97]. In the following, by
a slight abuse of notation we use BDD for ROBDD

In the context of model checking, BDDs are commonly used to represent a set of
states as well as the transition relation of a model. Doing so, it is possible to compute
the set of reachable states (w.r.t. some initial states), and determine if these states satisfy
a given property. Thanks to BDDs, it is possible to keep track of the reachable states,
in a concise way.
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Formula Based Approachs & Bounded Model Checking

The formula based approach tackles state space exploration issue differently. Instead
of keeping track of the reachable states, the intent here is to explore the state space
symbolically. Since the goal of a model checking method is to determine if a model
satisfies a property or not, it suffices to determine the existence of a counterexample.
This decision problem can be reduced to (and implemented as) a satisfiability problem
of a propositional formula. Biere et al. present a survey of these methods in [BCC+03].

These methods gained in popularity as the performance of SAT solvers grew. Yet,
the use of a formula to explore the state space induced a completeness issue: A formula
symbolically explores the system until a certain depth (referred to as a threshold). An
arbitrary threshold k cannot guarantee completeness: a counterexample of length k + 1
may exist. Determining a completeness threshold is however possible, and discussed
in [BCC+03], but in the worst case it can be as large as the number of states of the
system.

An induction method proposed by Sheeran et al. [SSS00] also relies on the formula
transformations and SAT solvers. Intuitively, the idea is to prove with the help of a
SAT solver, that the property is satisfied in initial states, and if a state satisfies the
property, then all its successors also satisfy the property. In other words, to show that
the property is an inductive invariant. This method guarantees completeness, but may
require strengthening inductive invariants by the user, when the inductive step is not
verified.

The use of abstractions, in model checking, has then emerged to tackle the state-space
explosion issue when BDD and formula based approaches reached their limits. This ap-
proach takes its root in the abstract interpretation scheme proposed by Cousot [CC77]
in 1977. This work set the foundation of an abstraction-based approach, as system (pro-
grams,...) where not directly interpreted, but instead “projected” against the property
under verification. The next section of this chapter, is dedicated to the presentation of a
prominent abstraction based verification method: CEGAR.

3.2 CEGAR

CEGAR. CounterExample Guided Abstraction Refinement is a successful method for
verification of safety properties. It is based on automatic refinement of abstractions of
the system under verification (e.g., [CGJ+03, HJMS02, SG04]). It means in particular
that construction of the whole state space is not needed. Thus, a priory, the method can
help to avoid the state explosion problem, and can be applied to infinite state systems.

The CEGAR algorithm for verification of a safety property is a loop that can be
described as follows (see Figure 3.2 page 42). At each iteration of the loop there is some
abstraction of the model. If this abstraction verifies the property then the loop terminates
returning “model safe”. Otherwise a counterexample is found in the abstraction, and this
counterexample is executed in the model. If the counterexample is feasible, the loop
terminates returning “model unsafe”. If it is not feasible then the abstraction is refined
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to eliminate the counterexample and the loop is restarted. The refinement step is a subtle
point of the algorithm, and depends very much on the abstraction that is used.

3.2.1 Abstraction

An abstraction of a transition system is another transition system that has all the be-
haviors of the original one.

Given two transition systems Sc and Sa, a simulation relation [Mil71] ρ from Sc to
Sa is any relation ρ ⊆ (Qc ×Qa) satisfying: for all (qc0 , qa0) ∈ ρ and qc0 →c qc1 there is
a state qa1 s.t. qa0 →a qa1 and (qc1 , qa1) ∈ ρ. Using a simulation relation between two
transition systems, an abstraction relation is defined as follows:

Definition 3.1. Given two transition systems Sc and Sa, we say that S′
a is an abstraction

of Sc (Sc � Sa), iff there is a simulation relation ρ from Sc to Sa, and the following two
properties hold:

• For every state qc of Ic, there exists a state qa in Ia such as (qc, qa) ∈ ρ.

• For every (qc, qa) in ρ: if qc belongs to F then qa belongs to Fa.

Observe that it is possible to have finite abstractions of infinite transition systems.
Thus, one can hope to model check properties of systems that explicit model checking
fails to manipulate. An abstraction Ŝ of a transition system S satisfies, by definition,
Path(S) ⊆ Path(Ŝ), and consequently, it also satisfies Run(S) ⊆ Run(Ŝ) (see Defini-
tion 1.2). Therefore, abstractions are suitable (and practical) for verification of safety
properties.

Boolean Predicate Abstraction

A framework for the automatic generation of abstractions using a set of predicates has
been proposed by Graf and Saidi [GS97]. In their framework a system consists of a set of
processes where each process has a set of variables, a set of guarded transitions, and an
initial condition. The global system is the parallel composition of the set of processes. Its
set of variables (resp. guarded transitions) is the union of the processes variables (resp.
guarded transitions), and the initial condition is the conjunction of all initial conditions.

The semantics of the global system is a transition system, where the set of states
represents the valuations of each variable. The initial states are those who satisfy the
initial condition. The transitions are induced by the guarded transitions.

For a given transition system S, an abstract transition system Ŝ is defined using a
set of predicates Φ = {ϕ1, . . . , ϕn} on S. The set of states Q̂ of Ŝ is the set of subsets of
Φ. We can then define

• α(q) = {ϕi ∈ Φ | ϕi(q)},

• γ(q̂) = {q ∈ Q | α(q) = q̂}.
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This way (α : P(Q) → Q̂, γ : Q̂ → P(Q)) is a Galois connection, and it satisfies the
following properties:

• I ⊆ γ(Î),

• If q → q′ then q̂ → q̂′.

The abstract system is Ŝ = 〈Q̂,→, Î〉. The abstract system exhibits all behaviors of the
original system, but may introduce some new behaviors too. Note that the transitions
of the abstract system are called may transitions, because a transition between two
abstract states exists if there are two representatives in the respective states for which
the transition exists. One can also consider must transitions that we will present in the
sequel of this section.

Cartesian Predicate Abstraction Cartesian predicate abstraction is another method
to obtain an abstraction of a model. Also introduced in [GS97], cartesian abstractions
further abstract boolean abstraction with a 3-valued logic whose values are true, false,
and ∗ for “don’t care”. This permits generation of smaller and coarser abstractions since
the state space is no longer partitioned. This particular type of abstractions have been
used for the verification of C programs in the SLAM project [BPR03, BR01].

3.2.2 Verification of Abstract Counterexamples

As we have noted in the previous section, the non-existence of an abstract counterex-
ample implies the safety of the abstracted model. In contrast, existence of an abstract
counterexample is not conclusive, and requires further analysis. An abstract counterex-
ample is a symbolic representation of a sequence of concrete states and events. The
analysis of an abstract counterexample has to determine if the counterexample is feasible
or spurious. We say that a counterexample is feasible if it induces a path in the concrete
model, and otherwise the counterexample is called spurious.

In [CGJ+03], Clarke et al. propose a straightforward method based on the computa-
tion of the iterated concrete post operator over the abstract states and transitions that
form the abstract counterexample. For the simplicity of presentation we assume that
states of the abstract system are sets of states of the concrete system. The proposed
algorithm is given in Figure 3.1. Intuitively, at each step, the algorithm determines
which concrete states from the abstract state are indeed reachable by the path under
consideration. For example, after the first iteration of the loop, the set X of reachable
states is equal to post(q̂0 ∩ I)∩ q̂1. In the next iteration X is post(post(q̂0 ∩ I)∩ q̂1)∩ q̂2,
and so on. If at some point X is empty, the algorithm terminates and returns “spurious
counterexample”. Otherwise, the algorithm returns “feasible counterexample”.

The algorithm can be viewed as a bounded and restricted model checking proce-
dure: The concrete state space is explored for defined threshold, and the exploration is
restricted to the concrete states abstracted by the abstract counterexample.
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VerifyPath (S, π̂)

Input: A transition system S, an abstract counterexample π̂.

1 X = q̂0 ∩ I
2 i = 0
3 while i < |π| ∧X 6= ∅ do
4 i = i+ 1
5 X = post(X) ∩ q̂i
6 done

7 if X 6= ∅
8 return ‘‘ feasible counterexample’’
9 else

10 return ‘‘spurious counterexample’’

Figure 3.1: The algorithm VerifyPath.

Another classical approach to abstract counterexample verification is based on SAT/SMT
solvers. In this case, the sequence of abstract states and transitions is written as a for-
mula (using the states predicates and/or the variable updates labeling the abstract tran-
sitions). This later approach have been successfully implemented in popular tools such
as BLAST [HJMS02] and SLAM [BR01].

3.2.3 Abstraction Refinement

When a spurious counterexample is identified in an abstraction, it is necessary to elim-
inate it in order to go on with the verification process. The elimination step is referred
to as “abstraction refinement”.

Recall that a spurious counterexample is an abstract path that does not represent
a concrete one. Yet, some prefixes of the abstract counterexample remain “feasible”.
This means that until some point it is possible to find a concrete path that induced the
abstract one. The usual method to refine an abstraction is to identify the longest feasible
prefix, and refine its last state (referred to as the failure state).

In a spurious counterexample, there always exists a failure state, since otherwise the
counterexample would be feasible. The VerifyPath of Figure 3.1 presented in Section 3.2.2
permits the identification of the longest feasible prefix, and more importantly the iden-
tification of the failure state. The failure state of a spurious abstract counterexample, is
the first state q̂i along the counterexample such that the algorithm VerifyPath(S, q̂0 . . . q̂i)
returns “feasible”, and VerifyPath(S, q̂0 . . . q̂i+1) returns “spurious”. Note that the algo-
rithm VerifyPath can be easily modified to return the failure state: It suffices to modify
the algorithm so it returns the last non-empty set of concrete states X together with its
index i− 1.

In [CGJ+03] Clarke et al. proposed a partition of the set of concrete states abstracted
by a failure state. They identify three types of concrete states: deadend states, bad states,
and irrelevant states. These sets of concrete states are defined as follows:
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• The deadend states : states that are reachable from concrete initial states along the
path of the abstract counterexample. These states do not have outgoing transitions
to the states abstracted by the next state of the counterexample.

• The bad states: states that have an outgoing transition to the next state of the
counterexample.

• The irrelevant states : every state that is neither a deadend nor a bad state.

To eliminate the spurious counterexample, it suffices to abstract the deadend and bad
states by two distinct abstract states. This will eliminate the abstract counterexample.
Yet, finding the coarsest refinement that separates the deadend states from the bad states
is NP-hard (the proof is given in [CGJ+03]). To tackle this problem, various refinement
heuristics have been proposed.

Two “direct” methods have been proposed by Clark et al. in [CGJ+03] and Shoham
et al. in [SG04]. We say that these methods are direct because they split the failure state
so that the deadend states (resp. bad states) are abstracted by one abstract state, and
the remaining concrete states are abstracted together by another abstract state. These
two refinement heuristics are implemented in our CEGAR tool, and will be discussed in
more details later.

Another approach to this set separation problem has been proposed by McMil-
lan [McM04]. The method relies on Craig interpolants [Cra57]: given two formulas f1
and f2 such that f1∧f2 is unsatisfiable, an interpolant for (f1, f2) is a formula f expressed
over the common variables of f1 and f2 such that f1 ⇒ f and f ∧ f2 is unsatisfiable.
For refinement purpose, McMillan proposed in [McM04] an interpolant based predicate
generation method that ensures the separation of deadend states from bad states.

3.2.4 The CEGAR Verification Method

Equipped with our abstraction methods, abstract counterexample verification method,
and refinement heuristics methods we can now present the CEGAR scheme in more
detail. In Figure 3.2 we have represented the CEGAR scheme. On the left hand side we
have the system to analyze S and a reachability property ϕ. The system S is abstracted
by an abstraction method that can be one of the methods presented in Section 3.2.1.
The model-checker is run on the abstracted system Ŝ. The only thing required from the
model-checker is that it can decide reachability properties and return a witness path if
it exists. Depending on the answer from the model-checker the loop can either stop and
decide that S |= ϕ, or analyze the abstract counter-example. In Section 3.2.2 we have
presented a classical abstract path verification algorithm that can be used to verify the
feasibility of the abstract path π̂ given by the model checker. If the path is feasible,
then S 6|= ϕ, otherwise the abstraction is refined using a refinement heuristic as those
presented in Section 3.2.3.
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Figure 3.2: A schematic representation of the CEGAR method.

Lazy Abstraction: an Implementation of the CEGAR Loop

Lazy Abstraction [HJMS02, McM06] is a particular implementation of the CEGAR loop.
In this setting, instead of generating a complete abstraction of the system (usually a C
program), the abstraction is generated while exploring the program structure. In more
details, a depth first search is performed on the program structure to determine some
possible counterexample. The example is analyzed and if proved spurious invariants
will be generated to label the control locations of the program. This will be the first
abstraction. As the process continues, new counterexamples will be analyzed and used
to update this “on the fly” generated abstraction.

3.2.5 Improvements of the basic techniques

The original CEGAR loop can be accelerated and improved using different methods. We
now describe some of these methods.

Modal Transition Systems As Abstraction

Modal transition systems [LT88, Lar89, LX90, LSC95] have been proposed as an ex-
tension of Kripke structures since the 80’s. Modal transition systems extend classical

transition systems with a set of “Must” transitions (classically denoted
+
→) that were

intended to enforce a given behavior at various points (in the context of process algebra
when dealing with specifications).

When dealing with abstractions, a must transition is a transition between two ab-
stract states such that every concrete state from the source abstract state has a concrete
successor in the target abstract state. In [SG04] Shoham and Grumberg proposed a CE-
GAR method that takes advantage of these transitions. In particular they where able to
extend CEGAR to checking CTL properties.
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In [BKY05, BKS07], Ball et al. proposed to extend modal transition systems with

another set of must transitions (denoted
−
→) that are the dual of the

+
→ must transitions.

With the help of these two sets of must transitions they defined the notion of “weak
reachability” which entails the existence of a concrete path from a particular sequence of
must transitions.

In Chapter 4 Section 4.2, we will present another method that can also take advantage
of these must transitions.

Abstraction Slicing

In [BDFW08], Brückner et al. formalized and extended some possible reductions that can
be performed on an abstraction that are sound with respect to a given safety property.

The first slicing process is abstract states elimination. In [BDFW08], two types of
abstract states are eliminated: “Inconsistent Nodes” that are abstract states that do not
represent at least one concrete state, and “Unreachable Nodes” that are abstract states
that are not reachable nor coreachable from initial and the error abstract states.

Another classical slicing approach is also exploited in [BDFW08]: live variables prun-
ing. In their setting, transitions are guarded with expressions (as AltaRica nodes see
Chapter 2 Section 2.1.1). With the help of live variables computation, the guards of
the transitions are simplified: each clause defined over non live variables is eliminated.
Another abstraction simplification method proposed is “Bypass Transitions”. New transi-
tions are added between two states to bypass an intermediate state that separates them.
The corresponding incoming and outgoing transitions of the intermediate state are elimi-
nated (this helps abstract states elimination). To ensure soundness, the bypass transition
added reflects the guards of the eliminated transitions.

Path Slicing.

Path slicing [JM05] is yet another approach to the verification of an abstract counterex-
ample. It is a static analysis method that prunes away irrelevant parts of a program
path (here viewed as an abstract counterexample). The analysis is done backward from
the final state (error location) to the initial state (program entry point). The goal is to
determine a set of “live” variables, whose values determine whether or not the abstract
counterexample is feasible. Starting at the error location with the variables characteriz-
ing it (the live variables at this point), the process goes one step back to the previous
location. Then it determines if the operation performed at this location has an impact
(modifies) the live variables. If it does, the variables implicated in the operation are
added to the live variables set, otherwise they are not added. The process continues
until it reaches the initial state of the path. Once these live variables are computed, the
abstract path is separated into sub paths whose feasibility will determine the feasibility
of the abstract path. In more details, any subsequence of the path that does not modify a
live variable is pruned away. This pruning method minimizes the size of counterexample
and simplifies analysis of its feasibility.
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3.2.6 CEGAR Model Checkers

BLAST. BLAST [BHJM07] (Berkeley Lazy Abstraction Software Verification Tool),
is a model checker for C programs that verifies safety properties (reachability of label in
a C program). BLAST is also a “mix” model checker as it uses both BDDs and theorem
provers to implement a CEGAR loop. A particularity of BLAST is the use of Lazy
Abstractions [HJMS02]: the abstraction is constructed “on demand” as the program is
analyzed. In fact, the abstraction is an abstract reachability tree, where each node of
the tree is labeled with a program location, a list of predicates, and a boolean formula
over the predicates. The list of predicates is extended to eliminate as needed spurious
counterexamples. The BDDs are used to represent the concrete states abstracted by
the nodes (the boolean formula of the node), and two theorem provers are used: one to
compute the abstract post of a node, and another (interpolating) one to generate new
predicates to refine the abstraction.

Yasm. Yasm [GWC06] (Yet Another Software Model-checker), is a CTL model checker
for C programs. One of the advantages of Yasm is that it can “prove and disprove
properties with equal effectiveness”. Yasm is a “mix” model checker as it uses both
BDDs and theorem provers to implement a CEGAR loop. The abstraction is a Mixed
Transition System [GC06], that combines may and must transitions. A BDD library
is used to encode the transition relations, and the theorem prover is used to mine new
predicates that will refine the abstraction when a spurious counterexample is discovered.

3.3 Compositional Model Checking

The modelization of a system is often given by a set components, and specification of in-
teractions between components. Compositional model checking exploits this component
based description in order to prove or disprove a property of the model. This approach
relies on analysis of the individual constituents of a model in order to decide if the model
satisfies a given property. In other words, the issue here is to deduce if a given model
M = M1 ‖ M2 ‖ . . . ‖ Mn satisfies a property ϕ from properties of the components
M1, . . . ,Mn.

3.3.1 Compositional Reachability Analysis

A CEGAR apprach to compositional reachability analysis have been proposed by Chacki
et al. in [COYC03]. In this work, the goal is to perform safety verification on concurent C
programs. The problem is presented as a language theoretic property: L(C1 ‖ C2 ‖ . . . ‖
Cn) ⊆ L(ϕ) where C1, . . . , Cn are programs, and ϕ is a safety property. In otherwords,
we intend to verify automatically that the behaviours of a system composed of concurent
C programs remains within a set of “allowed” behaviours.

The framework proposed relies on two orthogonal levels of abstraction namely pred-
icate abstraction, and action-guided abstraction. The verification is performed on the
abstractions: instead of computing the product automata of the C programs (represented
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as transition systems), a product automata for the two level of abstraction is used. Since
the abstractions have a significantly smaller state space, the product automata can be
computed. Yet the abstraction introduces spurious behaviors that need to be eliminated.
To this end, some abstractions are identified and refined when a spurious counterexample
is exhibited.

The programs C1, . . . , Cn are each abstracted, as transition systems, using predicate
abstraction [GS97] (see Section 3.2.1). The sets of predicates used to abstraction each
program are denoted P1, . . . ,Pn. Classically, in these abstractions an abstract state is a
representation of a set of concrete states, and a existentiel transition relation is computed
over the abstract states. As refinement is performed to eliminate spurious behaviors of
some abstraction, the number of predicates may grow and lead to abstraction with a large
state space: exponential in the number of predicates. To further reduce the abstract state
space, an action-guided abstraction of each abstraction induced by the sets of predicates
P1, . . . ,Pn is computed. We denote Ĉ1, . . . , Ĉn the predicate abstractions of C1, . . . , Cn

induced by the sets of predicates P1, . . . ,Pn.

Given a transition system S, an action-guided abstraction of S is a partition based
abstraction A. The partition is induced by an equivalence relation over the set of out-
going actions, such that two states are equivalent if and only if they share the same
set of ougoing events. In [COYC03] an action-guided abstraction Ai of each predicate
abstraction Ĉi is computed. The initial action-guided abstraction can at most carry as
many abstract states as its predicate counterpart. Yet this only applies to the initial
action-guided abstraction, when it is refinemed its state space may grow larger than its
predicate counterpart.

The two-level CEGAR algorithm starts with a set of C programs C1, . . . , Cn, and
a safety property ϕ. First it computes a set of predicates abstractions using the sets
P1, . . . ,Pn for each C1, . . . , Cn. Then, an action-guided abstraction A1, . . . , An of each
predicate abstraction Ĉ1, . . . , Ĉn is computed. If no counterexample for ϕ is found in
A1 ‖ . . . ‖ An then the algorithm terminates and returns true to the user. Otherwise
a counterexample is generated, and analyzed as follows: If the counterexample is not a
behavior of Ĉ1 ‖ . . . ‖ Ĉn then the action-guided abstractions A1, . . . , An are refined in
order to remove this spurious behavior. Otherwise, if the counterexample is a behavior
of C1 ‖ . . . ‖ Cn it is returned to the user. If the counterexample is found not feasible
the predicate abstraction Ĉ1, . . . , Ĉn are refined and the action-guided abstractions are
adjusted in consequence. Then the process starts over. So, this algorithm can be seen as
a two level abstraction/refinement algorithm.

This approach have been implemented in a tool called MAGIC, experiemental results
of the tools are given in [COYC03].

3.3.2 Assume-Guarantee Methods

In 1985, Pnueli [Pnu85] proposed and advocated the use of compositional reasoning in
model checking. In this work, he proposed the now well known, and widely used “Assume-
Guarantee” paradigm for the verification of safety properties. This assume-guarantee
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paradigm is given as this inference rule:

(Step 1) 〈A〉M1〈ϕ〉
(Step 2) 〈true〉X〈A〉

〈true〉M1 ‖ X 〈ϕ〉

This rule can be rephrased by: if there exists an assumption A under which M1

satisfies ϕ, and such that X satisfies A, then the composition of M1 and X satisfies ϕ. The
component X is viewed as the “environment” of M1: usually it is the composition of all of
the model components but M1. The verification of the second precondition 〈true〉X〈A〉
can be performed by reapplying the rule recursively. Let us note by Xi = Mi ‖ . . . ‖Mn,
and A0 = ϕ we get:

(Step 1) 〈Ai〉Mi〈Ai−1〉
(Step 2) 〈true〉Xi+1〈Ai〉

〈true〉M1 ‖ X 〈ϕ〉

The main challenge in this approach is an automatic generation of the assumptions
A1, . . . , An. To this end, we will present a framework that automatically generates the
assumptions. This framework uses a learning algorithm (L∗).

3.3.3 Learning based methods

Automatic learning has been proposed to generate proof assumptions. The methods
presented below are based on the L∗ algorithm that learns a finite automaton from the
series of examples and tests.

The L∗ Algorithm

The L∗ algorithm [Ang87, RS89] builds a minimal deterministic finite automaton recog-
nizing a particular regular language U (over an alphabet Σ fixed in advance) from queries
and counterexamples. The algorithm acts as a “Learner”, and requires a “Minimal Ad-
equate Teacher” who knows the language U that the learner has to learn. The teacher
can answer two questions that the learner can ask:

Membership queries Does a word w ∈ Σ∗ belong to U?

Conjectures Does the automaton C recognize the language U? If L(C) 6= U the oracle
returns a counterexample in the symmetric difference of U and L(C).

The learner in the L∗ algorithm builds a set of prefixes S, and suffixes E over Σ, who
are used to test if their concatenations belongs to U . These tests are used to build an
observation table.

An observation table is a mapping T : (S ∪ (S × Σ))× E → {true, false} such that
for any s ∈ S, a ∈ Σ, and e ∈ E, the table entry T (sae) is true if sae ∈ U . That is the
table stores answers of membership queries. This table is classically represented with the
values of S ∪ (S × Σ) for row entries and the values of E as columns entries.
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Definition 3.2. An observation table is closed if the following holds:

∀s ∈ S, ∀a ∈ Σ, ∃s′ ∈ S, ∀e ∈ E : T (sae) = T (s′e)

Intuitively, the property says that for every prefix s and letter a there is a prefix s′

representing sa.

Definition 3.3. An observation table is consistent if the following holds:

∀s1, s2 ∈ S, ∃e ∈ E : T (s1e) 6= T (s2e)

This property says that every two prefixes can be distinguished by some suffix.

Once the observation table is closed and consistent, an automaton is generated that
is conjectured to recognize U . This automaton is C = 〈Q,Σ,→, q0, F 〉 where:

• Q = S

• →= {(s, a, s′) ∈ (S × Σ× S) | ∀e ∈ E, T (sae) = T (s′e)}

• q0 = λ

• F = {s ∈ S | T (s) = true}

Since the conjecture is generated from a closed observation table, the existence of a
successor for any prefix and any letter is guaranteed. Moreover, since the observation
table is consistent there exists a unique successor for each prefix and letters, and therefore
the automaton C is deterministic.

The L∗ algorithm works as follows: it starts with the sets S and E containing only
the empty word λ. Then it extends the set of prefixes as long as the observation table
is not closed. Once the table is closed, it generates a conjecture C that is passed to the
teacher. If the teacher concludes that C is correct, the algorithm stops and returns C.
Otherwise, the counterexample returned by the teacher is analyzed, used to extend E,
and the algorithm starts over.

In more details, the L∗ algorithm starts by populating its observation table T until
it is closed (Lines 3-7 of Figure 3.3). To do so, it looks for a prefix s and a letter a such
that no other prefix s′ satisfies T (sae) = T (s′e) for all e ∈ E. If no such s and a exists, it
follows from Definition 3.2 that the table is closed. Otherwise, the set S is extended with
the word sa, updated by membership queries (Lines 8-11), and the loop starts again.

Once the table is closed, a conjecture DFA C is constructed from T and is passed
to the oracle. If the oracle concludes that C is correct, the algorithm returns Line 16.
Otherwise, a counterexample w returned by the oracle is analyzed to extract its longest
suffix w′ that if added to E would render T not closed. This suffix is added to E, and
the algorithm starts over.

Observe that L∗ presented here does not require consistency testing of the observation
table. This is due to the fact that by construction any prefix added in Line 6 generates
a new row whose valuation with respect to E differ from all of the preexisting prefixes.
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L∗ (O)

Input: a Minimal Adequate Teacher O.

1 S = E = {λ}
2 while true do

3 while T is not closed do

4 foreach s ∈ S, a ∈ Σ, and e ∈ E do

5 if there does not exists s′ ∈ S such that T (sae) = T (s′e) then
6 S ← S ∪ {sa}
7 done

8 foreach s ∈ S, a ∈ Σ, and e ∈ E do

9 Ask O if sae belong to U
10 Update T (sae) with the answer
11 done

12 done

13 Construct C from T
14 Ask O if C is correct
15 if (C is not correct)
16 return C
17 else

18 extract a suffix w′ from the counterexample w
19 E ← E ∪ {w′}
20 done

Figure 3.3: The L∗ algorithm

The suffix added Line 19 obviously cannot render the observation table inconsistent if it
was previously consistent.

The algorithm complexity is O(n2|Σ| + n logm) where n is the number of states of
the output DFA, and m is the size of the longest counterexample.

Learning Assumptions

The assume-guarantee method (see Section 3.3.2) requires the “discovery” of a suitable as-
sumption. This assumption must satisfy the assume-guarantee preconditions: 〈A〉M1〈ϕ〉,
and 〈true〉X〈A〉. To this end, the L∗ algorithm has been successfully used [CGP03] to
iteratively build assumptions that will discharge the first step of the assume-guarantee
rule, and satisfy the second step of the rule.

In this context, the models are viewed as prefix-closed regular languages, and the
property ϕ is a particular regular language. In a language theoretic formulation, the
problem is to find an automaton A such that

L(A) ∩ L(M1) ⊆ L(ϕ), and L(M2) ⊆ L(A). (3.1)

To this end, the L∗ algorithm is used to generate conjectures in order to finally find A
satisfying the properties above.
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The framework proposed [CGP03] is based on a particular implementation of the or-
acle used in L∗ algorithm. Every conjecture A generated by the L∗ algorithm is supposed
to be an assumption in the assume-guarantee rule. If it satisfies the two conditions above
then the algorithm terminates with success. Otherwise a counterexample is given and
analyzed. To some extend, the framework can be viewed as a particular implementation
of an L∗ with oracle who does not refer to just one unknown language U but to all
assumptions that satisfy the rule. This oracle is implemented as follows:

Membership queries. Membership queries are performed in order to satisfy the first
step of the assume-guarantee rule. Hence, the oracle returns true if the word w belongs
both to M1 and ϕ.

Conjecture testing is performed in the following the sequence of distinct phases:

• The conjecture A is checked to verify if 〈A〉M1〈ϕ〉 holds. If it does not hold, false
is returned, and a counterexample is provided to the L∗ algorithm.

• The conjecture is now checked against 〈true〉M2〈A〉. If this property holds, the
framework returns M1 ‖ M2 |= ϕ to the user. Otherwise, π a counterexample to
〈true〉M2〈A〉 is generated and analyzed.

• The counterexample π is analyzed against 〈A〉M1〈ϕ〉. If π is not a word of L(M1)∩
L(ϕ) then, the framework returns M1 ‖ M2 6|= ϕ with π as a counterexample.
Otherwise, the conjecture A is rejected, and π is provided to the L∗ algorithm.

Remark 3.1. Here we have skipped over language projection issues (i.e. translating a
word of a model to another model using synchronization). This point is not crucial to
the understanding of the overall framework.

Alphabet Refinement.

In the following, we turn our attention to optimization proposed to the learning based
assume-guarantee method we have presented above. Note that the models (and the
property) in the following are defined over separate alphabets and synchronize on common
events.

We now focus on the minimal alphabet needed to define an assumption. Given two
models M1, M2, and a property ϕ, the interface alphabet for the verification problem
M1 ‖ M2 |= ϕ is ΣI = (Σ1 ∪ Σϕ) ∩ Σ2. This interface alphabet is the maximal subset
of the universal alphabet Σ = Σ1 ∪ Σ2 ∪ Σϕ needed to generate an suitable assumption
for the assume-guarantee rule. Yet, an assumption may not need the entire interface
alphabet to be conclusive.

In the context of learning assumption, improvements to the L∗ algorithm have been
proposed. Alphabet refinement have been introduced to limit the computational cost of
the L∗ algorithm. Recall that the complexity of the algorithm is O(n2|Σ|+n logm) (see
Section 3.3.3 for further details). As presented above, the alphabet can be restricted from
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the universal alphabet Σ, to the interface alphabet ΣI = (Σ1 ∪ Σϕ) ∩ Σ2. This reduces
the computational cost of updating the observation table since we use ΣI instead of
Σ. Yet, a method based on an underapproximation of the interface alphabet have been
proposed to further reduce the computational cost. Alphabet Refinement [GGP07, CS07]
techniques manipulate a “smaller” alphabet Σ′ ⊂ ΣI as the alphabet of the assumption.
Since the interface alphabet is the maximal subset of Σ needed to define the assumption,
the objective here is to find a suitable subset of ΣI .

In more details, the L∗ algorithm starts with an empty alphabet and generates an
assumption that is tested against the assume-guarantee rule as presented Section 3.3.3. If
a counterexample is found, it is analyzed. If the counterexample is due to the coarseness
of the used alphabet, the alphabet is refined by adding to it some letters. Various
heuristics are proposed in [GGP07, CS07] to select some letters to add to the alphabet.
Once the alphabet refined the process starts over.

3.3.4 Abstraction & Assume-Guarantee Reasoning

An abstraction based method have been proposed in the context of assume-guarantee
reasoning [BPG08]. The assumption A of the assume guarantee-rule is computed as an
abstraction of M2. Since, the abstraction A of a model M maintains all behaviors of M ,
the second step of the rule is trivially satisfied (see Section 3.2.1).

In this approach, a partition abstraction of M2 is computed, and used to verify the
first step of the assume-guarantee rule. If the first step of the rule does not hold, a
counterexample is generated. This counterexample is then analyzed to determine if it is
spurious or not. If the counterexample is not spurious the algorithm stops and returns
“false” with the counterexample to the user. Otherwise, the counterexample is used to
refine the abstraction A, in order to eliminate this spurious behavior.

Initially, the abstraction is a single state representing all concrete states, and the
transition relation is a single “loop” labeled with the alphabet. This abstraction is then
used to check the first step of the assume guarantee loop. If the first step is verified,
then the framework returns true, otherwise a counterexample is analyzed as follows. The
counterexample is simulated on M2, if it is feasible, then the framework returns false, and
provides the counterexample. If spurious, the counterexample is passed together with A
and M2 to a CEGAR procedure that refines A in order to eliminate the counterexample.
Once the CEGAR procedure returned a refined abstraction the process starts over.

In [BPG08] alphabet refinement (see Section 3.3.2) methods are also used to reduce
the alphabet of the assumption.

3.3.5 Language separation

Language separation [GMF07, CFC+09] is yet another approach to the assumption gener-
ation in the assume-guarantee paradigm. Given two disjoint regular languages L1, and L2

a separating DFA is a DFA A such that L(L1) ⊆ L(A), and L(A)∩L(L2) = ∅. In this con-
text, the assumption A is viewed as a separating language for L(M1), and L(M2)∩L(¬ϕ).
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More precisely, the assumption A is computed so that it satisfies L(M1) ⊆ L(A), and
L(A) ∩ L(M2) ∩ L(¬ϕ) = ∅.

We present here an approach to language separation, proposed by Chen et al. in [CFC+09]
that is based on three-valued deterministic finite automata and an algorithm Lsep. For
notational convenience, we will use the notation L(M ′

2) for L(M2) ∩ L(¬ϕ).

Recall that we are here searching for a minimal separating automaton for L(M1) and
L(M ′

2) when it exists. When such an automaton does not exists we deduce that the
assume-guarantee rule cannot be satisfied and conclude that the safety verification failed
(and a counterexample is generated).

Three-Valued Deterministic Finite Automata & Lsep

A Three-Valued Deterministic Finite Automata (3DFA for short), is a tuple C = 〈Q,Σ,→
, q0, F,R,D〉, where 〈Q,Σ,→, q0, F 〉 is a deterministic finite automata, R ⊆ Q is a set of
rejecting states, D ⊆ Q is a set of “don’t care” states, and the set {F,R,D} is a partition
of Q. A word u ∈ Σ∗ is accepted by a 3DFA C if the transition sequence q0

u
→ q satisfies

q ∈ F , it is rejected if q ∈ R, and is a don’t care string if q ∈ D. The notation C+ for a
3DFA stands for C = 〈Q,Σ,→, q0, F ∪D〉, and C− = 〈Q,Σ,→, q0, F,R ∪D〉. A DFA A
is consistent with a 3DFA C if it satisfies L(C−) ⊆ L(A) ⊆ L(C+). A 3DFA C is sound
with respect to L1, and L2 if any DFA consistent with C is a separating DFA for L1, and
L2. Finally, a 3DFA is complete with respect to L1, and L2 if any separating DFA for
L1, and L2 is consistent with C. The problem is here reduced to finding a minimal DFA
consistent with a 3DFA which is sound and complete with respect to L(M1) and L(M ′

2).

The framework proposed in [CFC+09] to compute a separating DFA for two regular
languages L1, and L2 is composed of the four following steps:

Candidate Generation. A candidate 3DFA C is generated by the Lsep algorithm.

Completeness Checking The 3DFA C is tested for completeness. If not complete, a
counterexample is returned to the Lsep algorithm to get a new candidate.

Minimal Consisting DFA A minimal consisting DFA A is generated from the candi-
date 3DFA C.

Soundness Checking The DFA A is tested for soundness against L1, and L2. If a
counterexample is found it is passed to the candidate generator and the process
starts over.

We now present in more details these steps. The completeness checking is tested by
verifying that L(C−) ⊆ L1, and ¬L2 ⊆ L(C

+) hold. Soundness checking is tested by
verifying that L1 ⊆ L(A), and A  L2 hold.
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Candidate Generation. An extension of the L∗ algorithm is proposed to generate
3DFAs as conjectures: the Lsep algorithm. The algorithm extends the classical L∗ al-
gorithm with a addition of a third possible value to a word query: the “?” value which
stands for “don’t care” words. The Lsep algorithm goes as L∗: when the observation
table is closed and consistent a candidate 3DFA is generated and tested as a conjecture.
Counterexamples to the conjecture can come from completeness checking or soundness
checking.

Minimal Consistent DFA. Given a complete 3DFA C a consistent DFA A is gen-
erated as the third step of the framework. To this end, the 3DFA C is viewed as an
incompletely specified machine, and the algorithm proposed in [PU59] is invoked to gen-
erate A.

In the context of verification by application of the assume-guarantee rule, the above
framework is used to search for a suitable assumption. The problem is therefore reduced
to the search of a DFA A such that L(M1) ⊆ L(A) ⊆ ¬(L(M2)∩L(¬ϕ)). Note that the
algorithm is modified to return “fail” when the property is violated. The modifications
are:

• While performing a membership query, if a word w belongs both to L1, and L2

then the algorithm returns “fail” together with the word w.

• When a counterexample w is returned to the Lsep algorithm, the counterexamples
is passed to the oracle for a membership query as described above.

Note that, Gupta et al. in [GMF07] proposed another language separation approach
based on incomplete deterministic finite automaton.
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CEGAR with Pruning

Introduction

Abstract counterexample analysis and refinement often requires the computation of pre-
cise and costly reachability information on the concrete model. In this chapter, we show
how to enrich and exploit this reachability information in order to improve the classical
CEGAR paradigm for safety verification. To this end, we introduce the notion of certi-
fied approximation: an extension of standard existential abstraction where some abstract
states are additionally identified as containing only reachable (or co-reachable) concrete
states. The main contribution here is a reduction method, based on certified approxi-
mations, to identify useless abstract states and prune them from the abstraction. This
pruning reduces the set of abstract states, which reduces the computational resources
(time and memory) required to build and explore the abstraction. Moreover, it also
helps to avoid useless refinements (which in turn accelerates the CEGAR loop), and it
focuses the algorithm on counterexamples that are shorter and more likely to be feasible.
Certified approximations are not conservative in the classical sense, since their abstract
state space is an under-approximation of the concrete state space. However, we show
that it sound to use them in a CEGAR algorithm for safety verification. In Chapter 6 we
describe experiments performed with our implementation of this approach on top of the
BDD-based Mec 5 model-checker. The results confirmed the above-mentioned expected
improvements.

Motivating Example. Consider the program with control flow graph given in Fig-
ure 4.1(a). The variables x and y range over Z. Its set of (control) locations is L =
{A, . . . , G}, its initial location is A and its error location is G. We assume a standard
operational semantics for the program, given as a transition system S whose state set Q
is the set of triples (l, x, y) where l ∈ L is a location and (x, y) ∈ Z2 is a valuation of the
program’s variables, and whose transition relation is induced by the program statements.
The set of initial states of S is {A}×Z2. Here, we want to verify that no state in {G}×Z2
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Figure 4.1: Motivating example: (a) control flow graph, (b) initial partition abstraction and must
transitions, (c) resulting certified abstraction, (d) certified approximation after pruning.

is reachable.

Let us apply the classical CEGAR approach [CGJ+03] to check whether the error
location G is reachable or not. We choose as initial abstraction the partition Q̂ =
{Â, B̂, . . . , Ĝ} of Q induced by the control locations (l̂ = {l} × Z2 for each l ∈ L).
The CEGAR algorithm explores this abstraction (in a breadth-first manner) and re-
turns, for instance, the abstract counterexample Â Ĉ D̂ F̂ Ĝ. This counterexample is
obviously spurious, and the abstraction is refined by splitting the abstract state D̂ into
D̂= = {(D,x, y) | x = y} and D̂ 6= = D̂ \ D̂=. Iterating the CEGAR loop, the next
counterexample is Â B̂ D̂ 6= F̂ Ĝ. Likewise, it is spurious, and the abstraction is refined
by splitting the abstract state B̂ into B̂= and B̂ 6=. Finally, the third counterexample is
Â Ĉ Ê D̂ 6= F̂ Ĝ, which is feasible, and the algorithm returns that G is reachable.

The approach that we propose in this chapter performs a pruning step at each CE-
GAR iteration to reduce the abstract state space. To this end, we identify a certified pair
(Q̂−, Q̂+) of sets of abstract states that contain only reachable and co-reachable concrete
states, respectively. In our example, we can obviously put Â into Q̂− and Ĝ into Q̂+.

Must transitions (
+
→) and their dual (

−
→) can be used to enlarge certified pairs. The

+
→ transition proposed by Larsen in [Lar89], and used in the context of abstraction by
Shoham et al in [SG04], identifies a reachability property between two abstract states.

When we have a
+
→ transition between two abstract states: q̂

+
→ r̂, it follows that each

state abstracted by q̂ is a predecessor of some state abstracted by r̂. Put differently, we
say that the states of q̂, are co-reachable from the states of r̂. The dual must transition
−
→ proposed by Ball et al. in [BKY05] uses the dual property: each state of r̂ is reachable
from some state of q̂. Figure 4.1(b) depicts these must transitions for the initial partition
abstraction. We deduce from them that Ĉ, Ê and D̂ can be added to Q̂−. The resulting
certified abstraction (i.e., the abstraction equipped with this certified pair) is presented
in Figure 4.1(c). It is now clear that this certified abstraction can be reduced to the
abstract states D̂, F̂ , Ĝ without any loss of precision regarding the reachability question.
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Thus, we remove all other abstract states, and obtain the certified approximation de-
picted in Figure 4.1(d). After this pruning, our algorithm performs a classical CEGAR
step (and then jumps back to pruning). The exploration of the certified approximation
returns the counterexample D̂ F̂ Ĝ, which is feasible, and our algorithm returns that G
is reachable. This example demonstrates the expected benefits of our approach: the
abstract state space is reduced, counterexamples are shorter and have better chances of
proving unsafety. Experimental results confirm these expectations.

This notion of abstraction pruning has been studied from different angles. Path slic-
ing [JM05] is a well-known, and widely used static analysis method that prunes away
irrelevant parts of a program path when checking its feasibility. More recently, a related
method has been proposed for abstractions [BDFW08] in order to reduce and simplify
their analysis in a CEGAR fashion. In more detail, a data-flow analysis is performed to
identify a set of live variables which are used to optimize the feasibility checking [JM05],
and the computation of the abstract transition relation [BDFW08]. These slicing meth-
ods are syntax-based, whereas our pruning technique is semantics-based, and, thus can
be applied to a wider collection of model representations.

Must transitions (
+
→) and their dual (

−
→) have been used by Ball et al. in the context

of LTL model-checking with cartesian predicate abstraction [BKY05] (see Section 3.2.1).
In particular, they obtain a sufficient condition for unsafety based on these must tran-
sitions. We also use these must transitions, but our objective is different: we exploit
them to enlarge certified pairs, which leads to better state space reduction. Moreover,
our algorithm tests a sufficient condition for unsafety based on certified pairs as well as
must transitions. This sufficient condition subsumes the one proposed in [BKY05].

The chapter is organized as follows. In Section 4.1, we define cover abstractions
of transition systems. Section 4.2 presents certified approximations, and our reduction
technique. Section 4.3 discusses inference methods for certified pairs. Our pruning-
based CEGAR algorithm is the focus of Section 4.4. Section 4.5 presents results on the
optimality of our pruning-based CEGAR algorithm, and some experimental results are
presented in Section 4.6. Conclusions and perspectives are given in Section 4.7.

4.1 Transition Systems and Cover Abstractions

This section presents basic definitions and recalls the main concepts underlying counter-
example guided abstraction refinement [CGJ+03]. Instead of working with partitions of
the state space, we prefer a more general setting using covers.

4.1.1 Cover Abstractions

A cover of a set A is a subset C ⊆ P+(A) of nonempty subsets of A, such that A =
⋃
C.

Put differently a cover of a set is a collection of its subsets whose union forms the
set. Here, our intent is to use covers of the state space in order to define conservative
abstractions that are used to solve the safety verification problem.
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The safety verification problem that we address in this chapter amounts to checking,
for a given transition system S = 〈Q,→, I, F 〉, the emptiness of the set Run(S) of all
runs of S, where F is the set of “bad” states (see Definition 1.1 and Definition 1.2).
We will present two (semi)-algorithms that take as input a transition system S and
decide whether Run(S) is empty or not. These algorithms return either “Run(S) = ∅”
or “Run(S) 6= ∅” when they terminate, and they will be called correct if the returned
answer (if any) is always correct.

Definition 4.1. Let S = 〈Q,→, I, F 〉 be a transition system. Given Q̂ ⊆ P+(Q), the
approximation of S induced by Q̂ is the transition system S[Q̂] = 〈Q̂,→, Î, F̂ 〉 defined
by: 




q̂ → r̂ ⇔ → ∩(q̂ × r̂) 6= ∅

q̂ ∈ Î ⇔ q̂ ∩ I 6= ∅

q̂ ∈ F̂ ⇔ q̂ ∩ F 6= ∅

If Q̂ is a cover of Q, we call S[Q̂] a cover abstraction of S.

In the remainder of this chapter, we fix a transition system S = 〈Q,→, I, F 〉. By
a slight abuse of notation, we will simply write Run(Q̂) for Run(S[Q̂]). To prevent
confusion, states, transitions, and paths of S or S[Q̂] will be called concrete or abstract,
respectively.

A cover abstraction S[Q̂] is an abstraction of S in the classical sense, i.e. there exists a
simulation relation [Mil71] from S to S[Q̂] that maps the initial states and final states of
S to the initial states and final states of S[Q̂], respectively. Conversely, every simulation
relation-based abstraction can be viewed as a cover abstraction (but not necessarily
as a partition abstraction). Thus our definition captures abstract interpretation-based
abstractions [DGG97], such as cartesian predicate abstractions [GS97].

The concretization of an abstract path π̂ = q̂0, . . . , q̂n in an approximation S[Q̂]
is the set of all finite sequences q0, . . . , qn of concrete states such that qi ∈ q̂i for all
0 ≤ i ≤ n. Notice that the concretization of an abstract path may contain sequences
of concrete states that are not concrete paths. An abstract run π̂ is called feasible if its
concretization contains a run of S, and is called spurious otherwise. Observe that if S[Q̂]
is a cover abstraction, then every run of S is in the concretization of some abstract run.

4.1.2 Cover Abstractions and CEGAR

Equipped with our abstraction method, we now turn our attention to the next step of
the CEGAR [CGJ+03] loop: refinement of abstractions. Various refinements techniques
have been proposed (see Chapter 3.2.3) to eliminate spurious counterexamples. This
chapter investigates improvements of the CEGAR loop that are orthogonal to classical
refinement techniques. Hence, we adopt a generic and abstract view of refinement: we
see refinement as a black-box operation that splits an abstract state into several smaller
ones. Formally, given an approximation S[Q̂], a split is a pair (x̂, X̂) in (Q̂×P(P+(Q)))
such that x̂ 6∈ X̂ and x̂ =

⋃
X̂.



4.1.2 – Cover Abstractions and CEGAR 57

We are now equipped with the main ingredients to present Cegar, the classical CE-
GAR algorithm. In Section 3.2.4 we have presented the CEGAR method as a parameter-
ized algorithm where choices had to be made to select an abstraction method, a model
checker (or at least a model checking technique), an abstract counter-example verification
method, and refinement method. Here, we present a CEGAR algorithm that uses cover
abstraction, and requires a decision procedure that determines the emptiness of the set
of runs of the abstraction. Note that we still leave unspecified the refinement method
and the abstract counter-example verification method, as they are not the subject of this
chapter.

The Cegar algorithm starts with an initial cover abstraction, e.g., the one induced
by the cover {Q} of the set Q of concrete states. At each iteration of the while loop,
an abstract run π̂ is picked in the abstraction. If π̂ is feasible, i.e., its concretization
contains a concrete run, then Cegar returns “Run(S) 6= ∅”. Otherwise, π̂ is spurious,
and a refinement is performed (lines 6–7) on the abstraction (a priory to eliminate π̂).
Note that the existence of a split pair is guaranteed, since π̂ is spurious. This process is
iterated until no abstract run remains in S[Q̂], in which case “Run(S) = ∅” is returned.
Even though our theoretical approach does not require it, in practice, implementations
of Cegar choose a split (at line 6) that ensures elimination of the spurious abstract run π̂.

It is readily seen that, at each iteration of the while loop, S[Q̂] is a cover abstraction.
This entails the correctness of Cegar. However, termination of Cegar for finite transition
systems is less obvious. Indeed, since we work with covers instead of partitions, an
abstract state that is split and removed may appear again at a later iteration (as part of
X̂). Still, if Q is finite, each abstract state may only reappear finitely many times. We
obtain the following proposition.

Proposition 4.1. Given a cover Q̂ ⊆ P+(Q), Cegar(S, Q̂) is correct, and it terminates
if Q is finite.

Proof. Let us first prove correctness. Is is routinely checked, by induction, that Q̂ is a
cover of Q at each iteration of the while loop. If Cegar(S, Q̂) returns “Run(S) 6= ∅” from
Line 4, then the abstract run π̂ is feasible, hence, there exists a run in S. Suppose, on the
contrary, that Cegar(S, Q̂) returns “Run(S) = ∅” from Line 9. The while loop condition

Cegar (S, Q̂)

Input: a transition system S, a cover Q̂ of Q.

1 while Run(Q̂) 6= ∅ do

2 Pick an abstract run π̂ in Run(Q̂)
3 if π̂ is feasible then

4 return ‘‘Run(S) 6= ∅’’
5 else // π̂ is spurious

6 Pick a split (x̂, X̂)

7 Q̂← (Q̂ \ x̂) ∪ X̂
8 done

9 return ‘‘Run(S) = ∅’’
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is not satisfied, hence, Run(Q̂) = ∅. This entails that Run(S) = ∅ since every run of S
is in the concretization of some abstract run in Run(Q̂).

To prove termination, assume that Q is finite. We introduce the ranking function
f : Q̂ → N|Q| defined by: f(Q̂) = (c|Q|, . . . , c1) where ci = |{q̂ ∈ Q̂ | |q̂| = i}|. Let

≤ denote the usual lexicographic order over N|Q|. We prove that f(Q̂′) < f(Q̂) when
Q̂′ = (Q̂ \ x̂) ∪ X̂ is the refinement of Q̂ induced by a split (x̂, X̂). By definition of
splits, since x̂ 6∈ X̂ and x̂ =

⋃
X̂, it holds that |ŷ| < |x̂| for every ŷ ∈ X̂. Let us write

f(Q̂) = (c|Q|, . . . , ci, . . . , c1), where i = |x̂|, and f(Q̂′) = (c′|Q|, . . . , c
′
i, . . . , c

′
1). We get

that c′i = ci − 1 and, for every j from |Q| to i + 1, c′j = cj . Thus f(Q̂′) < f(Q̂). We

have shown that f(Q̂) strictly decreases at each iteration of the while loop. Since ≤ is
well-founded on N|Q|, we derive that Cegar(S, Q̂) terminates.

4.2 Pruning of Cover Abstractions

In this chapter we modify the classical Cegar algorithm by storing some additional infor-
mation about reachable and co-reachable states (cf. the notion of certified pair). We will
show that this information, that is computed by classical CEGAR tools anyway, can be
used to speed-up the Cegar loop. In particular, termination can be detected sooner, and
some useless abstract states can be pruned from the abstraction.

4.2.1 Certified Pairs & Certified Approximations

Definition 4.2. Given a subset Q̂ of P+(Q), a certified pair (for Q̂) is a pair (Q̂−, Q̂+)
of subsets of Q̂ satisfying:

• if q̂ ∈ Q̂− then q̂ ⊆ post∗S(I),

• if q̂ ∈ Q̂+ then q̂ ⊆ pre∗S(F ).

The triple (Q̂, Q̂−, Q̂+) is called a certified approximation.

In a CEGAR context, we suppose that the post∗ and pre∗ are prohibitively expensive,
this is why we only have implications and not equivalences in the definition of certified
pairs. In particular, the pair of empty sets (∅, ∅) is a certified pair. We will see in
Section 4.3 how to populate certified pairs. Two methods will be proposed. The first one
is based on approximation analysis, namely closure under must transitions. The second
one relies on spurious abstract run analysis, and will be discussed in the context of two
well-known refinement heuristics.

The first advantage of certified approximations is that they allow to conclude existence
of a run in an easy way.

Proposition 4.2. Let (Q̂, Q̂−, Q̂+) be a certified approximation. The set Run(S) is
non-empty if the following condition holds:

Î ∩ Q̂+ 6= ∅ or F̂ ∩ Q̂− 6= ∅ or Q̂− ∩ Q̂+ 6= ∅ or (Q̂− × Q̂+)∩ → 6= ∅ (W)
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Proof. Recall that q̂ is non-empty for every q̂ ∈ Q̂. If Î ∩ Q̂+ 6= ∅ then there exists q̂ ∈ Î
such that q̂ ⊆ pre∗S(F ). This entails that I intersects pre∗S(F ), hence, Run(S) 6= ∅. The

proof that F̂ ∩ Q̂− 6= ∅ implies Run(S) 6= ∅ is similar. If Q̂− ∩ Q̂+ 6= ∅ then post∗S(I) and

pre∗S(F ) intersect, hence, Run(S) 6= ∅. For the last case, suppose that (Q̂− × Q̂+) has

a non-empty intersection with the abstract transition relation →. There exists q̂− ∈ Q̂−

and q̂+ ∈ Q̂+ such that q̂− → q̂+. By Definition 4.1, we obtain that q− → q+ for some
concrete states q− ∈ q̂− and q+ ∈ q̂+. This entails that Run(S) 6= ∅ since q− ∈ post∗S(I)
and q+ ∈ pre∗S(F ).

4.2.2 Kernel Paths

The second and main advantage of certified approximations is that they allow to introduce
a stricter notion of abstract run, and, in consequence, eliminate states that are not on
these runs.

Definition 4.3. Given a certified approximation (Q̂, Q̂−, Q̂+), a kernel path is an ab-
stract path π̂ = q̂0, . . . , q̂n satisfying the following property:

q̂0 ∈ (Î ∪ Q̂−) ∧ q̂n ∈ (F̂ ∪ Q̂+) ∧
n−1∧

i=1

q̂i 6∈ (Q̂− ∪ Q̂+)

We write KerPath(Q̂, Q̂−, Q̂+) for the set of all kernel paths.

Observe that Run(Q̂) = KerPath(Q̂, ∅, ∅). Compared to runs, kernel paths can start
from states in Q̂− and end in states of Q̂+. The last condition not only enforces the
absence of redundant parts in a kernel path, but also permits state pruning as described
later.

We now explain why it is enough to look at kernel paths instead of abstract runs.
But first, feasibility of abstract runs must be generalized to kernel paths. A kernel path
q̂0, . . . , q̂n is feasible if there exists a path q0, . . . , qn in S satisfying:

(q̂0 6∈ Q̂− ⇒ q0 ∈ I) ∧ (q̂n 6∈ Q̂+ ⇒ qn ∈ F ) ∧
n∧

i=0

qi ∈ q̂i

Recall that the definition of kernel paths requires that q̂0 belongs to Î or Q̂−. In
the above condition for feasibility, we ask, in addition, that q0 ∈ I when q̂0 6∈ Q̂−. This
comes from Definition 4.1: q̂0 ∈ Î only guarantees that q̂0 ∩ I 6= ∅, whereas q̂0 ∈ Q̂−

entails that q̂0 ⊆ post∗S(I). Therefore, we ask that q0 ∈ I in order to be able to extract a
concrete run from a feasible kernel path. For the same reason, we ask that qn ∈ F when
q̂n does not belong to Q̂+. The extraction of concrete runs from feasible kernel paths is
formalized in the following lemma.

Lemma 4.1. Let (Q̂, Q̂−, Q̂+) be a certified approximation. If there exists a feasible
kernel path in (Q̂, Q̂−, Q̂+) then Run(S) 6= ∅.
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Proof. Assume that (Q̂, Q̂−, Q̂+) contains a feasible kernel path q̂0, . . . , q̂n. By definition,
there exists a path q0, . . . , qn in S such that q̂0 6∈ Q̂− ⇒ q0 ∈ I, q̂n 6∈ Q̂+ ⇒ qn ∈ F , and
qi ∈ q̂i for all i ∈ {0, . . . , n}. The first condition entails that q0 ∈ post∗S(I). Likewise, the
second condition entails that qn ∈ pre∗S(F ). Since q0, . . . , qn is a path in S, we conclude
that Run(S) 6= ∅.

The previous lemma provides a sufficient condition for non-emptiness of Run(S),
based on feasibility of kernel paths. The converse does not hold, in general, for certified
approximations. But in the particular case of certified cover abstractions, we obtain a
necessary and sufficient condition.

Remark 4.1. Let (Q̂, Q̂−, Q̂+) be a certified cover abstraction, i.e., a certified approxi-
mation where Q̂ is a cover. It is routinely checked that every kernel path is a factor of
some abstract run, and, conversely, every abstract run contains a kernel path among its
factors. We obtain that Run(S) = ∅ if and only if KerPath(Q̂, Q̂−, Q̂+) = ∅.

The previous remark implies that it is enough to consider states that appear on kernel
paths.

4.2.3 Kernel States

Definition 4.4. Given a certified approximation (Q̂, Q̂−, Q̂+), a kernel state is an ab-
stract state occurring on some kernel path. The set of all kernel states is denoted by
Ker(Q̂, Q̂−, Q̂+).

It is not difficult to compute kernel states. We can compute the set of states A
reachable in S[Q̂] from Î ∪ Q̂− without going through a state of Q̂+; and the set of states
B co-reachable from F̂ ∪ Q̂+ without passing through Q̂−. This can be done in linear
time using a simple graph exploration of the, finite, transition system S[Q̂]. We then
derive Ker(Q̂, Q̂−, Q̂+) = A ∩B.

It follows from Remark 4.1 that, in a certified cover abstraction, it is sufficient to
analyze kernel paths. Therefore, we can safely restrict the approximation to its kernel
states.

Definition 4.5. The reduction of a certified approximation (Q̂, Q̂−, Q̂+), denoted by
Red(Q̂, Q̂−, Q̂+), is the certified approximation (Q̂r, Q̂r

−, Q̂
r
+) where Q̂r = Ker(Q̂, Q̂−, Q̂+),

Q̂r
− = Q̂− ∩ Q̂r and Q̂r

+ = Q̂+ ∩ Q̂r.

As an illustration of the reduction operation, consider our example given in Figure 4.1.
A certified cover abstraction (Q̂ = {Â, B̂, Ĉ, D̂, Ê, F̂ , Ĝ}, Q̂− = {Â, Ĉ, D̂, Ê}, Q̂+ = {Ĝ})
of the program is given in Figure 4.1(c). Its unique kernel path is D̂ F̂ Ĝ, thus its
kernel states are D̂, F̂ and Ĝ. The reduction of this cover abstraction is the certified
approximation shown in Figure 4.1(d).

Our intention is to apply reduction at each iteration of the Cegar loop. However, after
an application of reduction, the set of abstract states may not be a cover anymore, and,
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therefore, Remark 4.1 cannot be applied. We will show that the certified approximations
computed by our upcoming PCegar algorithm are complete, in the sense that they still
satisfy the property of Remark 4.1 even though they are not cover abstractions.

4.3 Inference of Certified Pairs

In this section we present different methods to extend certified pairs by means of approx-
imation analysis, and refinement.

4.3.1 Abstraction & Must Transitions

One way to extend certified pairs is to use must transitions in addition to the preexisting
may transitions. We write

q̂
+
→ r̂ ⇔ q̂ ⊆ preS(r̂).

for a must transition between two abstract states. We will also need dual transitions:

q̂
−
→ r̂ ⇔ r̂ ⊆ postS(q̂)

Observe that, since we impose ∅ 6∈ Q̂, each must transition is a may transition:
−
→ ⊆ →

and
+
→ ⊆ →. These notions allow us to enlarge the sets Q̂− and Q̂+ by taking their

closure under appropriate transitions.

Definition 4.6. Given a certified approximation (Q̂, Q̂−, Q̂+), the closure of (Q̂, Q̂−, Q̂+),
written Clo(Q̂, Q̂−, Q̂+), is the tuple (Q̂c, Q̂c

−, Q̂
c
+) where:





Q̂c = Q̂

Q̂c
− = (

−
→)∗[Q̂− ∪ (Î ∩ P(I))]

Q̂c
+ =

(
(
+
→)

−1
)∗

[Q̂+ ∪ (F̂ ∩ P(F ))]

By definition, it is clear that the closure of a certified approximation is a certified
approximation.

As an illustration of the closure operation, consider the cover abstraction depicted
in Figure 4.1(b). Pick for instance the abstract transition Â → Ĉ. Clearly, for all
(x, y) ∈ Z2, it holds that (x, y) is a successor of (x, y−1) under the assignment y := y+1.

This entails that Ĉ ⊆ postS(Â), hence, Â
−
→ Ĉ. Similarly, we get that there are

8 must transitions:
−
→ = {(Â, Ĉ), (Ĉ, Ê), (Ê, D̂)} and

+
→ = {(Â, B̂), (Â, Ĉ), (Ĉ, D̂),

(Ĉ, Ê), (Ê, D̂)}. The application of closure leads to the certified cover abstraction de-
picted in Figure 4.1(c).

Remark 4.2. Testing the W condition of Proposition 4.2 after an application of closure
captures the sufficient condition for unsafety presented in [BKY05]. In our setting, this
condition can be expressed as follows: Run(S) 6= ∅ if there exists an abstract state q̂
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that is reachable from û ⊆ I using
−
→ transitions, and co-reachable from v̂ ⊆ F using

+
→

transitions. Clearly, the abstract state q̂ belongs to Q̂c
− ∩ Q̂c

+, hence, the closure of the
certified approximation satisfies the W condition.

4.3.2 Refinement of a Certified Approximation

We have seen how to populate certified pairs by a graph exploration based on must
transitions. However, this may not be sufficient in practice since there is no guarantee
that (useful) must transitions exist in the approximation. Therefore, we now propose
methods to enlarge certified pairs during the refinement process. Indeed, in a CEGAR
approach, the analysis of an abstract run often involves the computation of the iterated
concrete post or pre operation along it. When the abstract run is spurious, the “failure
state” (i.e., the abstract state that will be split) holds information about post∗S(I) or
pre∗S(F ). This information is usually discarded, which is a pity since it is both costly
and precise. We demonstrate, in the context of two well-known refinement schemes,
how to use this information to extend certified pairs. To this end, the notion of split is
extended with two sets of abstract states that are suitable to enlarge certified pairs.

Definition 4.7. Given a certified approximation (Q̂, Q̂−, Q̂+), a certified split is a tuple
(x̂, X̂, X̂−, X̂+) where (x̂, X̂) is a split, and (X̂−, X̂+) is a certified pair for Q̂.

Let us point out that in the definition of a certified split, we do not impose X̂− ⊆
X̂ nor X̂+ ⊆ X̂. This allows us to take into account reachability (or co-reachability)
information that can be extracted during the refinement process. For instance, during
the analysis of an abstract run, the iterated concrete post (or pre) operation can identify
some abstract states that only contain reachable (or co-reachable) concrete states. These
abstract states can then be added to the set X̂− (or X̂+).

Observe that for every split (x̂, X̂) the tuple (x̂, X̂, ∅, ∅) is a certified split. We first
show how to augment a certified split from the preexisting information held by the
certified approximation. Given a certified approximation (Q̂, Q̂−, Q̂+), we can extend a
certified split (x̂, X̂, X̂−, X̂+) by adding the set Ŷ− = {ŷ ∈ X̂ | ŷ ⊆

⋃
Q̂−} to X̂−, and

the set Ŷ+ = {ŷ ∈ X̂ | ŷ ⊆
⋃
Q̂+} to X̂+. In general the computation of these sets could

be expensive. Let us remark though that we can obtain a weaker certified split at no
cost by simply adding X̂ to X̂− (resp. to X̂+) if x̂ belongs to Q̂− (resp. to Q̂+). This
weaker extension of certified splits is enough, and in fact necessary (as we must not lose
certified states by refinement), to ensure correctness of our upcoming PCegar algorithm
(it is performed at lines 15–16). We also observe that, when Q̂ is a partition, this weaker
extension is equivalent to the previously proposed full extension with the sets Ŷ− and
Ŷ+.

The above extensions of certified splits only use the information that is already avail-
able in the certified approximation. We now discuss the enlargement of certified splits in
the context of two well-known refinement schemes. We do not present all details of each
scheme, and we limit ourselves to our simpler setting of safety verification. For more
details, the reader is referred to the respective papers.
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First, let us start with the original CEGAR refinement scheme proposed by Clarke et
al. [CGJ+03]. In their setting, the abstraction is induced by an equivalence relation over
the concrete states (i.e., they consider cover abstractions where the cover is a partition).
The abstract counterexample π̂ (picked at line 3 of our Cegar algorithm) is analyzed
by an iterated concrete post computation along the abstract path (algorithm SplitPath

in [CGJ+03]). If π̂ is spurious, a “failure state” x̂ occurring in π̂ is identified together
with two disjoint subsets B,D ⊆ x̂ where B is the set of “bad” states, and D is the set
of “dead-end” states. The set of “dead-end” states is the last non-empty set of concrete
states computed by the SplitPath algorithm, and the set of “bad” states is the set of
concrete predecessors in x̂ of the next abstract state in π̂. Then the abstraction is refined
by a split pair that separates B from D (algorithm PolyRefine in [CGJ+03]). In fact,
the implementation reported in [CGJ+03] uses a heuristic that simply refines x̂ with the
split (x̂, {D, x̂ \ D}). Notice that D ⊆ post∗S(I). Therefore, in our setting, we obtain
the certified split (x̂, {D, x̂ \D}, {D}, ∅). We use this scheme in our implementation to
obtain certified splits.

Now consider the refinement scheme proposed by Shoham et al. for CTL model-
checking [SG04]. In their setting, the abstraction is induced by a total concretization
function mapping each abstract state to a set of concrete states (i.e., they consider cover
abstractions). Moreover, their abstraction carries both may transition as well as must

transitions (the
+
→ transitions that we use for the closure operation). Let us summarize

the verification of the CTL formula EFerror following the approach of [SG04]. To fit
our setting let F denote the set of concrete states that satisfy error, and define F̂+ as
the set of abstract states that are contained in F . First, they compute the set F̂ ∗

+ of

co-reachable abstract states from F̂+ via must transitions. If F̂ ∗
+ contains a concrete

initial state then EFerror holds. In our setting, theW condition is satisfied. Otherwise,
if F̂ ∗

+ cannot be extended using may transitions, then EFerror does not hold. Likewise,
in our setting, the set of kernel states becomes empty after closure. If no conclusive
answer was obtained, a “may-predecessor” of some abstract state in F̂ ∗

+ is split so as to

introduce a new must transition to an abstract state in F̂ ∗
+. In other worlds, an abstract

state x̂ is split in order to introduce a set B ⊆ x̂ that satisfies B
+
→ q̂ with q̂ ∈ F̂ ∗

+,

and the split is (x̂, {B, x̂ \ B}). Since q̂ belongs to F̂ ∗
+ we have q̂ ⊆ pre∗S(F ). Hence, by

definition of
+
→, we get B ⊆ pre∗S(F ). Therefore, in our setting, we obtain the certified

split (x̂, {B, x̂ \B}, ∅, {B}).

4.4 CEGAR with Abstraction Pruning

We now present our PCegar algorithm, that extends the classical CEGAR paradigm with
abstract state pruning. This pruning not only reduces the computational resources to
maintain and explore the abstraction, but also leads to fewer refinements and focuses the
algorithm on abstract counterexamples that are shorter and more likely to be feasible.
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PCegar (S, Q̂)

Input: a transition system S, a cover Q̂ of Q.

1 (Q̂−, Q̂+)← (∅, ∅)
2 while true

3 (Q̂, Q̂−, Q̂+)← Clo(Q̂, Q̂−, Q̂+)

4 if (Q̂, Q̂−, Q̂+) satisfies the W condition then

5 return ‘‘Run(S) 6= ∅’’

6 (Q̂, Q̂−, Q̂+)← Red(Q̂, Q̂−, Q̂+)

7 if Q̂ = ∅ then
8 return ‘‘Run(S) = ∅’’
9 else

10 Pick a kernel path π̂ in KerPath(Q̂, Q̂−, Q̂+)
11 if π̂ is feasible then

12 return ‘‘Run(S) 6= ∅’’
13 else // π̂ is spurious

14 Pick a certified split (x̂, X̂, X̂−, X̂+)

15 if x̂ ∈ Q̂− then X̂− ← X̂

16 if x̂ ∈ Q̂+ then X̂+ ← X̂

17 Q̂← (Q̂ \ x̂) ∪ X̂

18 Q̂− ← (Q̂− \ x̂) ∪ X̂−

19 Q̂+ ← (Q̂+ \ x̂) ∪ X̂+

4.4.1 The PCegar algorithm

Intuitively, the PCegar algorithm is similar to the Cegar algorithm, except that certified
approximations are used in place of cover abstractions. The initial certified pair is set
to (∅, ∅) at line 1. Each iteration of the while loop starts with an application of closure
to enlarge the certified pair. If the W condition of Proposition 4.2 holds (at line 4),
then the algorithm returns “Run(S) 6= ∅”. Otherwise, reduction is applied at line 6 to
remove non-essential abstract states. If all abstract states have been eliminated, then
“Run(S) = ∅” is returned. Otherwise, Q̂ 6= ∅, which entails that there exists a kernel path
(since reduction preserves kernel paths). The algorithm picks a kernel path at line 10.
If this kernel path is feasible then Run(S) 6= ∅ is returned. Otherwise, a certified split
is chosen at line 14, and is enlarged at lines 15–16. This enlargement step is crucial for
correctness: without it, kernel paths may be lost after refinement, which could lead the
algorithm to falsely return “Run(S) = ∅” at the next iteration. Next, refinement of the
certified approximation is performed at lines 17–19, and the loop is iterated. Remark
that the existence of a certified split at line 14 is guaranteed by the following observation:
in a certified approximation, every spurious kernel path contains some abstract state x̂
with |x̂| ≥ 2, which entails that the tuple (x̂, {{q} | q ∈ x̂}, ∅, ∅) is a certified split.

In the PCegar algorithm, the closure, the test of the W condition, and the reduction
are performed in an order that maximizes the possible gain of each operation. Observe
that larger certified pairs lead to less kernel states. Therefore, we start by computing
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the closure of the certified approximation, as this operation enlarges the certified pair,
which benefits both the W test and the reduction. We then immediately test the W
condition in order to shortcut the loop as soon as possible. If the W test fails, we apply
reduction and then proceed along the same lines as Cegar. As shown by Proposition 4.4,
any further combination of closure and reduction would be useless.

Before proving the correctness of PCegar, we first compare it with the classical Cegar

algorithm. Let us consider an execution of Cegar, and try to inductively mimic it with
PCegar (on the same input). To simplify the presentation, we assume that (a) each
abstract run π̂ (picked by Cegar at line 2) is among the shortest ones (e.g., it was obtained
by a breadth-first search of the cover abstraction), and (b) each refined abstract state
x̂ (picked by Cegar at line 6) belongs to π̂. Suppose that both algorithms are at the
beginning of their while loop, and that the abstract state space Q̂ of Cegar contains the
abstract state space Q̂p of PCegar. This is a reasonable assumption as both algorithms
start with the same cover, and Q̂p was obtained by mimicking Cegar, but with reductions.
If Cegar exits the loop, i.e., there is no abstract run, then PCegar exits at line 8 since,
according to Remark 4.1, applied on the certified cover abstraction (Q̂, Q̂p

−, Q̂
p

+) there is
no kernel path. Otherwise, Cegar picks some abstract run π̂, and checks its feasibility.
This abstract run may not exist in the certified approximation maintained by PCegar at
line 10. To mimic Cegar, it seems natural and fair to pick a kernel path π̂p that is a factor
of π̂ (i.e., a contiguous subsequence of π̂). If such a kernel path does not exist, then it
follows from the correctness proof of PCegar (see below) that π̂ is spurious. Hence, Cegar

refines its cover abstraction with some split (x̂, X̂), and iterates its loop. Observe that
x̂ 6∈ Q̂p, so we simply let PCegar ignore this iteration. Suppose now that PCegar picked a
kernel path π̂p that is a factor of π̂. If this kernel path is feasible, then PCegar returns
at line 12. Remark that this may happen even though π̂ is spurious, in which case Cegar

continues. If, on the contrary, π̂p is spurious, then the abstract run π̂ is also necessarily
spurious, and Cegar picks a split (x̂, X̂) to refine its cover abstraction. To mimic Cegar,
it seems again natural and fair to pick a certified split that is an extension of (x̂, X̂).
However, this is not always possible, since Cegar may choose x̂ 6∈ Q̂p. In that case, we
simply let PCegar ignore this iteration.

To conclude this comparison, the pruning performed by our PCegar algorithm has the
following advantages:

• Some useless refinements can be avoided : Cegar may refine an abstract state that
has been eliminated in PCegar. Put differently, each refinement performed by PCe-

gar may remove, in a single step, several spurious abstract runs that would be
considered by Cegar (see, for instance, the introduction’s motivating example).

• Counterexamples are shorter : PCegar’s counterexamples are factors of Cegar’s coun-
terexamples.

• Counterexamples are more likely to be feasible: Cegar may pick a counterexample
that is spurious even though the corresponding counterexample of PCegar is feasi-
ble (or, worse, Cegar’s spurious counterexample has been completely eliminated in
PCegar).
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• Computational resources are reduced : The abstract state space is reduced, which
impacts the computation of the transition relation as well as the counterexample
search. Moreover, counterexample feasibility analysis benefits from their shorter
length.

In order to prove the correctness of PCegar, we will show that the certified approxi-
mations manipulated by the algorithm are “conservative” in the sense that they preserve
non-emptiness of Run(S), which is formalized as follows.

Definition 4.8. A certified approximation (Q̂, Q̂−, Q̂+) is complete if for each run
q0, . . . , qn of S there exists 0 ≤ k ≤ l ≤ n and a kernel path q̂k, . . . , q̂l such that:

(k > 0⇒ q̂k ∈ Q̂−) ∧ (l < n⇒ q̂l ∈ Q̂+) ∧
l∧

i=k

qi ∈ q̂i (4.1)

Intuitively, in a complete certified approximation, each concrete run π of S is repre-
sented by some (feasible) kernel path π̂, in the sense that the concretization of π̂ contains
a factor of π. Obviously, the same kernel path may represent several runs of S. Notice
that every complete certified approximation satisfies the properties of Remark 4.1 (even
if Q̂ is not a cover). The proof that PCegar is correct will use the following technical
lemma.

Lemma 4.2. Let (Q̂1, Q̂1
−, Q̂

1
+) and (Q̂2, Q̂2

−, Q̂
2
+) be two certified approximations satis-

fying (
⋃
Q̂1) ⊆ (

⋃
Q̂2), (

⋃
Q̂1

−) ⊆ (
⋃
Q̂2

−), and (
⋃
Q̂1

+) ⊆ (
⋃
Q̂2

+). If (Q̂1, Q̂1
−, Q̂

1
+) is

complete then so is (Q̂2, Q̂2
−, Q̂

2
+).

Proof. Let q0, . . . , qn be a run of S. Since (Q̂1, Q̂1
−, Q̂

1
+) is complete, there exists a kernel

path q̂1k, . . . , q̂
1
l satisfying Equation 4.1, where 0 ≤ k ≤ l ≤ n. For every k ≤ i ≤ l, it

holds that qi ∈ q̂1i . By assumption, (
⋃
Q̂1) ⊆ (

⋃
Q̂2). Therefore, there exists q̂2k, . . . , q̂

2
l

in Q̂2 such that qi ∈ q̂2i for all k ≤ i ≤ l. If k > 0 then q̂1k ∈ Q̂1
−. Since (

⋃
Q̂1

−) ⊆ (
⋃
Q̂2

−),

it follows that qk ∈ (
⋃
Q̂2

−), hence, we may choose q̂2k such that q̂2k ∈ Q̂2
−. Similarly, if

l < n then we may choose q̂2l such that q̂2l ∈ Q̂2
+. It is readily seen that q̂2i−1 → q̂2i for

every k < i ≤ l. We have shown, so far, that there exists an abstract path q̂2k, . . . , q̂
2
l

satisfying Equation 4.1. However, this abstract path is not necessarily a kernel path for
(Q̂2, Q̂2

−, Q̂
2
+). Let us define h and m, with 0 ≤ h ≤ m ≤ n, as follows:

h = max
(
{0} ∪ {i | k ≤ i ≤ l ∧ q̂2i ∈ Q̂2

−}
)

m = min
(
{n} ∪ {i | h ≤ i ≤ l ∧ q̂2i ∈ Q̂2

+}
)

By construction, the abstract path q̂2h, . . . , q̂
2
m belongs to KerPath(Q̂2, Q̂2

−, Q̂
2
+) and sat-

isfies Equation 4.1.

Proposition 4.3. Given a cover Q̂ ⊆ P+(Q), PCegar(S, Q̂) is correct, and it terminates
if Q is finite.
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Proof. It is readily seen that (Q̂, Q̂−, Q̂+) remains a certified approximation inside the
while loop (except, possibly, at lines 18–19). Therefore, if PCegar returns “Run(S) 6= ∅” (at
line 5 or 12), we derive from Proposition 4.2 and Lemma 4.1 that this answer is correct.
Assume now that PCegar returns “Run(S) = ∅” at line 8. To prove that this answer
is correct, we show by induction that, at each iteration, the certified approximation
(Q̂, Q̂−, Q̂+) is complete at lines 3 and 7. Before the first iteration of the loop, since
Q̂ is a cover of Q, each run of S is in the concretization of some abstract run, and it
follows that (Q̂, ∅, ∅) is complete. For the induction step, we observe that Lemma 4.2
entails that completeness is preserved under closure (line 3) and refinement (lines 15–
19). Moreover, completeness is also preserved under reduction (line 6), since reduction
obviously preserves kernel paths. This concludes the proof of the induction step, as
well as the proof of correctness of PCegar. The proof of termination of PCegar for finite
transition systems uses the same argument as for Cegar.

4.5 On Optimality of Repeated Closures and Reductions

We now turn our attention to two aspects of our pruning method: the loss of kernel
paths, and the benefit of different combination of the closure and reduction operations.
We will start by the presentation of an example that highlights the impact of the closure
operation, and then we discuss the impact of repeated reductions.

4.5.1 Loss of Kernel Paths by Reduction

In our PCegar algorithm, the closure operation (Line 3) is always performed before the
application of the reduction operation (Line 6). As mentioned previously, this order
maximizes the possible gain of each operation.

In particular, this order allows us to avoid the loss of kernel paths that could be elimi-
nated by the reduction operation. These kernel paths could satisfy theW condition, and,
therefore, let PCegar conclude earlier. For instance, the example given in Figure 4.2 illus-
trates the loss of a kernel path by reduction when Ker(Clo(Q̂, Q̂−, Q̂+)) is not equal to
Ker(Q̂, Q̂−, Q̂+). Indeed observe that Clo(Q̂, Q̂−, Q̂+) and Red(Clo(Q̂, Q̂−, Q̂+)) contain
the witness path Â→ B̂ whereas Red(Q̂, Q̂−, Q̂+) does not. On the other hand, extend-
ing the sets Q̂−, and Q̂+ by closure (or any certified pair inference method) may weaken
the impact of the reduction. Indeed, on the same example, the certified approximation
Red(Q̂, Q̂−, Q̂+) contains less states that Red(Clo(Q̂, Q̂−, Q̂+)).

4.5.2 Closure and Reduction Ordering

Recall that closure and reduction are operations that improve the “quality” of certified
approximations: they lead to larger certified pairs and smaller abstract state spaces.
These operations are idempotent. But one may be tempted to alternate closure and
reduction several times instead of just once (lines 3–6) at each iteration. The following
proposition shows that the certified approximation Red(Clo(Q̂, Q̂−, Q̂+)) obtained at
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Q
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(Q̂, Q̂−, Q̂+)

Â
+
B̂

−
Ĉ D̂ Ê

Clo(Q̂, Q̂−, Q̂+) −
Â

+
B̂

−
Ĉ D̂ Ê

Red(Q̂, Q̂−, Q̂+)

Â B̂
−
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Red(Clo(Q̂, Q̂−, Q̂+))) −
Â

+
B̂

−
Ĉ D̂ Ê

Figure 4.2: An example that illustrate the loss of kernel paths by reduction.

line 6 of PCegar is optimal in the sense that applying reduction and closure multiple
times and in any order would produce the same result. Note that the loss of kernel paths
by reduction (before closure) jeopardize the correction of the algorithm.

Proposition 4.4. Let (Q̂, Q̂−, Q̂+) be a certified approximation. If Clo(Q̂, Q̂−, Q̂+) does
not satisfy the W condition, then it holds that:

Red(Clo(Q̂, Q̂−, Q̂+)) = Clo(Red(Clo((Q̂, Q̂−, Q̂+)))

= Red(Clo(Red((Q̂, Q̂−, Q̂+)))

The remaining of this section is dedicated to the proof of this proposition.
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Consider a certified approximation (Q̂, Q̂−, Q̂+). We will use the following notations:

(Q̂c, Q̂c
−, Q̂

c
+) = Clo(Q̂, Q̂−, Q̂+)

(Q̂r, Q̂r
−, Q̂

r
+) = Red(Q̂, Q̂−, Q̂+)

(Q̂cr, Q̂cr
− , Q̂cr

+ ) = Clo(Red(Q̂, Q̂−, Q̂+))

(Q̂rc, Q̂rc
− , Q̂rc

+ ) = Red(Clo(Q̂, Q̂−, Q̂+))

(Q̂crc, Q̂crc
− , Q̂crc

+ ) = Clo(Red(Clo(Q̂, Q̂−, Q̂+)))

(Q̂rcr, Q̂rcr
− , Q̂rcr

+ ) = Red(Clo(Red(Q̂, Q̂−, Q̂+)))

We first prove that (Q̂crc, Q̂crc
− , Q̂crc

+ ) = (Q̂rc, Q̂rc
− , Q̂rc

+ ). It follows from the definition

of closure (Definition 4.6) that Q̂crc = Q̂rc, Q̂crc
− ⊇ Q̂rc

− and Q̂crc
+ ⊇ Q̂rc

+ . Moreover, every

q̂ ∈ Q̂crc
− is reachable in S[Q̂rc] from Q̂rc

− ∪ (Îrc ∩ P(I)) by must
−
→ transitions, which

entails that q̂ ∈ Q̂c
−, hence, q̂ ∈ Q̂rc

− . We get that Q̂crc
− ⊆ Q̂rc

− , and, similarly, Q̂crc
+ ⊆ Q̂rc

+ .

Let us now assume that (Q̂c, Q̂c
−, Q̂

c
+) does not satisfy the W condition of Proposi-

tion 4.2. The proof that (Q̂rcr, Q̂rcr
− , Q̂rcr

+ ) = (Q̂rc, Q̂rc
− , Q̂rc

+ ) will follow from the following
technical lemmas.

Lemma 4.3. For every q̂ ∈ Q̂c
−, there is a path p̂0, . . . , p̂m in S[Q̂], with p̂0 ∈ (Q̂−∪ (Î ∩

P(I))) and p̂m = q̂, such that, for all 0 < i ≤ m, we have p̂i 6∈ (Q̂−∪ Q̂+) and p̂i−1
−
→ p̂i.

Proof. If q̂ ∈ Q̂− then we simply take the path consisting of q̂. Suppose now that
q̂ ∈ (Q̂c

− \ Q̂−). We derive from the definition of closure (Definition 4.6) that there is a

path p̂0, . . . , p̂m in S[Q̂], with p̂0 ∈ (Q̂− ∪ (Î ∩ P(I))) and p̂m = q̂, such that p̂i−1
−
→ p̂i

for all 0 < i ≤ m. Furthermore, we may obviously assume w.l.o.g. that p̂i 6∈ Q̂− for
all 0 < i ≤ m. Observe that p̂i ∈ Q̂c

− for all 0 ≤ i ≤ m. It follows that p̂i 6∈ Q̂+ for

all 0 ≤ i ≤ m, as otherwise (Q̂c, Q̂c
−, Q̂

c
+) would satisfy the W condition. We get that

p̂i 6∈ (Q̂− ∪ Q̂+) for all 0 < i ≤ m.

Lemma 4.4. For every q̂ ∈ Q̂c
+, there is a path p̂0, . . . , p̂m in S[Q̂], with p̂0 = q̂ and

p̂m ∈ (Q̂+ ∪ (F̂ ∩ P(F ))), such that, for all 0 ≤ i < m, we have p̂i 6∈ (Q̂− ∪ Q̂+) and

p̂i
+
→ p̂i+1.

Proof. Similar to the proof of Lemma 4.3.

Lemma 4.5. Every kernel path of (Q̂c, Q̂c
−, Q̂

c
+) is a factor of some kernel path of

(Q̂, Q̂−, Q̂+).

Proof. Let π̂ = q̂0, . . . , q̂n be a kernel path of (Q̂c, Q̂c
−, Q̂

c
+). Since Q̂− ⊆ Q̂c

− and

Q̂+ ⊆ Q̂c
+, it holds that q̂i 6∈ (Q̂− ∪ Q̂+) for all 0 < i < n. We show that there exists two

paths µ̂, ν̂ such that µ̂ · π̂ · ν̂ is a kernel path in (Q̂, Q̂−, Q̂+). If q̂0 ∈ (Î ∪ Q̂−) then we
set µ̂ to the empty path. Otherwise, we set µ̂ to the path obtained with Lemma 4.3. We
proceed symmetrically for ν̂ (with Lemma 4.4), and we obtain that µ̂ · π̂ · ν̂ is a kernel
path in (Q̂, Q̂−, Q̂+).
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Lemma 4.6. It holds that Q̂cr
− = Q̂r ∩ Q̂c

− and Q̂cr
+ = Q̂r ∩ Q̂c

+.

Proof. We only show the equality Q̂cr
− = Q̂r ∩ Q̂c

−, the proof that Q̂cr
+ = Q̂r ∩ Q̂c

+ is

similar. The inclusion Q̂cr
− ⊆ Q̂r ∩ Q̂c

− directly follows from the definitions of reduction
(Definition 4.5) and closure (Definition 4.6). Let us prove the reverse inclusion. Let
q̂ ∈ Q̂r ∩ Q̂c

−. If q̂ ∈ Q̂− then we get that q̂ ∈ Q̂r
−, which entails that q̂ ∈ Q̂cr

− . Assume

now that q̂ 6∈ Q̂−. Let π̂ = p̂0, . . . , p̂m denote the path obtained with Lemma 4.3. Since
q̂ ∈ Q̂r, there exists a kernel path ρ̂ = r̂0, . . . , r̂n in (Q̂, Q̂−, Q̂+) such that r̂k = q̂ for
some 0 ≤ k ≤ n. We have r̂i 6∈ (Q̂− ∪ Q̂+) for all k < i < n. It follows that the path
π̂ · (r̂k, . . . , r̂n) is also a kernel path, which entails that p̂i ∈ Q̂r for all 0 ≤ i ≤ m. We
conclude that π̂ is a path in S[Q̂r], hence, q̂ ∈ Q̂cr

− .

Lemma 4.7. It holds that Q̂rcr = Q̂rc.

Proof. We show that (Q̂cr, Q̂cr
− , Q̂cr

+ ) and (Q̂c, Q̂c
−, Q̂

c
+) have the same kernel paths. Let

q̂0, . . . , q̂n be a kernel path in (Q̂cr, Q̂cr
− , Q̂cr

+ ). Note that Q̂cr = Q̂r. Hence, q̂i ∈ Q̂r for all

0 ≤ i ≤ n. It follows from Lemma 4.6 that q̂0, . . . , q̂n is a kernel path in (Q̂c, Q̂c
−, Q̂

c
+).

Conversely, let q̂0, . . . , q̂n be a kernel path in (Q̂c, Q̂c
−, Q̂

c
+). We derive from Lemma 4.5

that q̂i ∈ Q̂r for all 0 ≤ i ≤ n. Note that Q̂cr = Q̂r. It follows from Lemma 4.6 that
q̂0, . . . , q̂n is a kernel path in (Q̂cr, Q̂cr

− , Q̂cr
+ ).

To complete the proof of the proposition, it remains to show that Q̂rcr
− = Q̂rc

− and

Q̂rcr
+ = Q̂rc

+ . Recall from Lemma 4.7 that Q̂rcr = Q̂rc. Let q̂ ∈ Q̂rcr. Since Q̂rcr ⊆ Q̂cr =

Q̂r, we get that q̂ ∈ Q̂r. We obtain that:

q̂ ∈ Q̂rcr
− ⇔ q̂ ∈ Q̂cr

− (q̂ ∈ Q̂rcr)

⇔ q̂ ∈ Q̂c
− (Lemma 4.6)

⇔ q̂ ∈ Q̂rc
− (q̂ ∈ Q̂rc)

This entails that Q̂rcr
− = Q̂rc

− . The proof that Q̂rcr
+ = Q̂rc

+ is similar.

4.6 Implementation and Experimentation

We now briefly present our implementation of the PCegar algorithm, and compare it with
Cegar on a suite of finite-state systems. In Chapter 6 we will present with more details
our implementation of the PCegar algorithm, and analyze the behavior of both algorithm
on some benchmark models.

We have implemented Cegar and PCegar as an extension of the Mec 5 model checker [GV04,
Mec10]. Mec 5 manages finite relations with BDDs. The search for abstract counterex-
amples is performed in a breadth-first manner.

In general the computation of the closure operation may require “expensive” opera-
tions due to the must transition relations. In our experiments, the extra pruning obtained
with the closure did not compensate these extra BDD computations. Therefore, we dis-
abled the closure operation for the experimentations presented below.
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For both algorithms, refinement of abstract transitions is done locally: given a split
(x̂, X̂), we decide for each ŷ ∈ X̂ and q̂ → x̂ (resp. x̂ → q̂) whether q̂ → ŷ (resp.
ŷ → q̂). For the PCegar algorithm, another optimization is allowed by the use of kernel
paths: incoming transitions to states in Q̂− can be discarded as they will never be part
of a kernel path, and likewise outgoing transitions from Q̂+ states can be discarded.
This allows us to avoid useless computations of abstract transitions when refinement is
performed.

For feasibility checking, our prototype analyses an abstract counterexample by com-
puting the iterated concrete post or pre along it. The main refinement heuristics im-
plemented in our tool are Post and Pre. The heuristic Post is the adaptation of the
refinement proposed in [CGJ+03] as discussed in Section 4.3. The Pre heuristic is the
dual of Post.

For a meaningful comparison of Cegar and PCegar, as discussed in Section 4.4, we
forced PCegar to pick a kernel path that is a factor of an abstract run that would be
picked by Cegar. Therefore, the kernel path picked by PCegar is not necessarily among
the shortest ones. However, we will see that, on many examples, PCegar is still capable
to conclude with less loop iterations. Notice that the actual splits computed by PCegar

may be different from those of Cegar, as the iterated post (or pre) computation along
the counterexample starts from a different abstract state. We also applied the classical
abstraction reduction to Cegar, which removes abstract states that are not reachable or
not co-reachable. Observe that this minimal reduction is a particular instance of PCegar

(without closure) where the sets Q̂− and Q̂+ remain empty during its execution.
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Time (s) Memory (MiB) Loops Average |π̂| C.E. Analysis Average |Q̂| Trans. Analysis
C PC C PC C PC C PC C PC C PC C PC

Burns 2
Post 13 3 165 80 465 249 21 5 8784 762 258 54 102706 10876
Pre 7 1 65 57 476 382 20 5 8551 1221 254 68 31538 11402

Burns 3
Post 247 122 2989 1265 2857 1076 21 4 57913 3261 1540 218 1228572 55262
Pre × 25 × 188 × 5182 × 6 × 16251 × 1028 × 330342

Lamport 2
Post 4 3 68 54 213 137 16 7 2702 461 147 51 3696 2252
Pre 3 2 50 52 213 196 21 10 2759 732 70 63 3330 2996

Lamport 3
Post × × × × × × × × × × × × × ×
Pre 1366 1406 3944 3975 8563 8385 53 30 185520 29830 724 696 214426 196826

Lift 5
Post 20 9 87 83 124 124 13 3 1585 372 68 15 6432 2958
Pre 1788 8 3358 79 2777 92 736 3 1243076 279 1394 13 259254 2362

Lift 6
Post 95 46 163 164 182 182 14 3 2605 546 98 18 10872 4652
Pre × 24 × 126 × 135 × 3 × 409 × 15 × 4088

Lift 7
Post 400 208 303 288 250 250 16 3 3950 750 133 22 16694 6670
Pre × 82 × 286 × 186 × 3 × 563 × 18 × 6508

Lift 8
Post 1540 857 540 540 328 328 17 3 5662 984 173 25 24042 9004
Pre × 290 × 538 × 245 × 3 × 741 × 21 × 9750

Peterson 2
Post 0 0 8 8 19 19 8 6 104 70 27 20 254 230
Pre 0 0 8 8 19 17 14 6 176 63 26 21 256 206

Peterson 3
Post 7 7 131 119 416 405 14 5 4916 1291 264 94 14668 11134
Pre 10 5 120 81 416 404 108 16 24859 1432 257 88 16112 10700

Table 4.1: Comparison of Cegar (C) and PCegar (PC) on a suite of finite state examples. These experiments have been performed
on an Intel Xeon 2.33 GHz. Computation time in seconds, memory usage in mebibytes, number of CEGAR loop iterations,
average size of abstract state space, average length of abstract counterexample, total number of post/pre computations for
(a) abstract counterexample analysis, and (b) abstract transition refinement. The sign × means that the verification did not
terminate within 1800 seconds or required more than 5 GiB of memory.
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Experimentations have been performed using two types of models [PLA10]: classical
mutual exclusion algorithms on which we checked the mutual exclusion property, and
a classical lift model, on which we checked that floor doors can be opened only if the
elevator is there. The models are parameterized with the number of processes in the
case of mutual exclusion algorithms, and with the number of floors for the lift. We use,
as initial abstraction, the partition abstraction induced by the control locations of each
process.

Table 4.1 presents the results obtained with our implementation. As expected, PCegar

outperforms (or is equivalent in some cases) Cegar on loop iterations, counterexample
analysis, and transition refinements. The loop iterations criterion shows a great benefit
on many cases, the gain ranges from a few iterations to a factor of 42 times less loop
iterations. Yet on some examples, PCegar requires as many loop iteration as Cegar, but this
comes from our choice that forces PCegar to select counterexamples that would be picked
by Cegar. Pruning reduces dramatically the average size of the abstractions: the state
space reduction goes up to two orders of magnitude. This has a direct impact on the cost
of abstract transition refinement (total number of post/pre operations) which exhibits
similar gains. Likewise, the use of kernel paths as counterexamples allows PCegar to pick
counterexamples that are, in average, much smaller (up to two orders of magnitude) than
those selected by Cegar. This translates into a similar improvement for counterexample
analysis (number of post/pre operations).

We also report on time and memory requirements of both algorithms. Regarding
computation times, PCegar outperforms Cegar which is quite natural due to the avoided
operations. Comparing memory requirements is less significant due to the BDD manager
implemented in Mec 5, that uses a lazy garbage collector. Nevertheless, we observe that
PCegar uses, in general, less memory than Cegar. Again, this comes from the abstract
state pruning that discards useless BDDs.

4.7 Concluding Remarks

In this chapter, we have presented an improvement of the classical CEGAR paradigm
with abstract state pruning. Our goal was to accelerate the CEGAR loop in a generic
way that takes advantage of the computation performed by a CEGAR model checker. To
this end we have presented certified pairs. This allows to introduce pruning abstractions,
and the use of certified approximations. This pruning not only reduces the computational
resources to maintain and explore the abstraction, but also leads to fewer refinement steps
and focuses the algorithm on abstract counterexamples that are shorter and more likely to
be feasible. The experimentations that we performed with a BDD-based model checker,
demonstrated the expected gain over the standard Cegar algorithm. In Chapter 6.3 we
will detail the results, and present the benefits of pruning during the execution of a
CEGAR loop.

We have experimented on finite-state models, but our abstraction pruning technique
also applies to infinite-state systems, and we expect improvements for these systems too.
Extending our certified pair inference method at the syntax level, is a challenging and
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promising direction. This will widen the scope of our PCegar algorithm to a larger variety
of model checkers.



❈❤❛♣t❡r 5
Compositional CEGAR

Introduction

Transition systems are rarely given explicitly. Instead, they are often presented as some
form of parallel composition of basic transition systems. Modular presentation takes this
idea one step further, it allows to apply parallel compositions in a hierarchical manner.
The semantics of such a hierarchical system is just a standard transition system. It is
easy to see though that the semantics can be exponentially bigger than its hierarchical
representation. In this section we investigate methods of doing CEGAR abstractions of
transition systems presented in a hierarchical way. The objective is to avoid calculating
semantics of the hierarchical system, and moreover to take advantage of the presentation
of a system in the form of modules in order to find useful abstractions quicker.

Hierarchical representation is based on parallel composition. Here we consider syn-
chronous product of transition systems with synchronization vectors [AN82]. In the
simplest version of the synchronous product, the product of two systems can do an
action if both components can do it. In a more elaborate synchronous product with
communication vectors an action of one system can be synchronized with another action
of the other system if there is a synchronization vector containing the two actions. This
extension allows for a more flexible product, and it is very useful especially in hierarchical
representation (cf. the example of stack in Chapter 2.1.2).

Priorities are another powerful feature we consider in this section. A priority relation
is a partial order on actions. If both actions a and b are possible from a state, but
b has higher priority than a then it is b that will be executed. In other words action
a will be blocked. Seen like this, priorities are quite trivial. Their power shows up
when used together with parallel composition. Suppose that both a and b demand some
synchronization to be executed: say a needs to be synchronized with c, and b with d,
respectively. If the other component proposes c but not d then the synchronization of
a and c will be executed even though b has higher priority. In contrast if the other



76 Chapter 5 – Compositional CEGAR

system proposes both c and d then only synchronization of b and d will be executed.
So priorities have also somehow branching-time flavor: they allow to detect that some
action is not possible. Priorities are very useful for modeling (with their help we can
simplify the model description, for more details, see Chapter 2.1.2), but they pose real
theoretical challenges in particular for CEGAR method. This can be attributed in part
to their contravariant nature: adding more transitions in one component can eliminate
some transitions in the other.

The objective of this chapter is to extend CEGAR approach to hierarchical systems.
The simplest method is to calculate the semantics of a hierarchical system and then to
apply any of standard CEGAR algorithms. For the reasons of size explosion this may
not always be feasible. Instead we study methods of applying CEGAR approach without
calculating the semantics of the hierarchical system. We go one step further and suppose
that the abstract system itself should be hierarchical: it should reflect the hierarchy of the
analyzed system. This gives an interesting situation when each component is abstracted
separately, so the abstract system is represented in a succinct way too. The first obstacle
in this approach is that in general a hierarchical composition of abstractions may not be
an abstraction. We show that the notion of cover abstraction adapts well to hierarchical
setting without priorities. We show moreover that in this case it is easy to verify if an
abstract path is feasible: it is enough to look at the projection of this path into each of
the components.

In the presence of priorities the situation is much more complicated. Due to above
mentioned contravariant nature of priorities, it is not even clear how to guarantee that a
hierarchical composition of abstractions is an abstraction. To circumvent this problem,
we introduce a concept of neat cover abstraction. We show that it allows to recover most
of the properties of the setting without priorities.

Finally, we will also discuss symbolic representations of hierarchical transition sys-
tems. We will show how to use AltaRica formalism to represent hierarchical transition
systems, construct initial abstractions, and do abstraction refinement.

5.1 Hierarchical Transition Systems

A hierarchical transition system is a tree of transition systems together with synchro-
nization vectors telling what synchronizations between those systems are possible. We
have chosen to single out the hierarchical structure with a help of a notion of hierarchical
schema. This way, later we will be able to consider abstractions that are instances of the
same schema as the original system. As it will turn out, in the presence of priorities the
semantics of a hierarchical transition system is quite subtle. For the reasons of composi-
tionality, priorities need to be resolved at each level of the hierarchy. We will show that
it is not a priory possible to remove priorities, or to delay them by moving them up in
the hierarchy.
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5.1.1 Hierarchical representation and its semantics

Hierarchical Schema

A hierarchical schema is a tree labeled with signatures of transition systems. A tree t is
a prefix closed subset of N∗ satisfying the property that if vi is in t then vj is in t for
all j < i. The root of the tree is the empty sequence denoted by λ. A sequence vi is a
successor of a sequence v. Two nodes vi, vj, namely the nodes that differ only in the
last element, are called siblings. The order on siblings is inherited from that on N. We
will consider only finite trees.

A hierarchical schema is a tuple S = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t〉 where for every
node v of the tree t:

• Σv is a finite alphabet of events,

• 4v is a partial order on Σv,

• δv ⊆ Σv × Σv0 × · · · × Σvk is a set of synchronization vectors; here v0, . . . , vk are
all the successors of v in t.

We call the partial order 4v the priority relation of v, and if 4v is the equality for
all v in t then S is called priority free. We use the notion ≺ for the strict version of 4.

In Figure 5.1(a) we have depicted a hierarchical schema. The nodes of the tree t are
represented as follows: the name of the node, and below in a box we have from left to
right: an alphabet, a priority relation, and synchronization vectors of the node. The
priority relation is supposed to be the smallest partial order generated by the displayed
pairs of actions. The node λ for instance defines an alphabet made of a single event
a, the trivial priority relation, and the synchronization vector saying that the a event
synchronizes with ε event of its 0 successor and b even of its 1 successor. In 1 node we
can see a nontrivial priority relation b ≺ a.

Hierarchical Transition System

Hierarchical schema gives us a skeleton of a hierarchical transition system. The later is
given by simply providing for each node of a hierarchy tree a transition system over an
appropriate alphabet. Formally hierarchical transition system is a tuple

H = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Sv}v∈t〉

where 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t〉 is a hierarchical schema, and Sv = 〈Qv,Σv,→v

, Iv, Fv〉 is a transition system over the alphabet of actions Σv; i.e., the alphabet given
by the schema

Graphically, we use two representations of hierarchical transition systems. The first
representation is a hierarchical schema as in Figure 5.1(a) together with transition sys-
tems, and a mapping that define the transition system associated to a node (see Fig-
ure 5.5).
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a ≺ b

a

a

ε ε

b

Sλ

S0

S00 S01

S1

S

λ

{a}, ∅, {(a, ε, b)}

0

{a, ε}, ∅, ∅

1

{a, b}, b ≺ a, ∅

00

{ε}, ∅, ∅

01

{ε}, ∅, ∅

(a)

(b)

Figure 5.1: A hierarchical transition system, (a) the hierarchical schema S, (b) an asso-
ciated hierarchical transition system.

The second is inspired of the AltaRica nodes (see Chapter 2.2.5), and an example is
given in Figure 5.1(b). This hierarchical transition system is associated to the hierarchical
schema S Figure 5.1(a). Observe that the tree structure in the hierarchical transition
system is depicted using englobing boxes containing its transition system, and its sub
hierarchical schemata. In the upcoming examples using this representation, we will only
represent graphically the priority relation of each node when it has one: for instance the
node S1 defines the priority a ≺ b.

Semantics of a Hierarchical Transition System

The semantics of a hierarchical system is a standard transition system obtained as the
synchronized product of its components. The meaning is a part of the complete syn-
chronous product as synchronizations are limited by synchronization vectors. Moreover
there are priorities that come into play forbidding some actions to happen. The interplay
of these phenomena makes the semantics of a hierarchical system quite complex.

By induction on the height of a node v in the hierarchy we define the semantics of
the hierarchical system determined by the subtree t↓v of t:

S♭
v = 〈Q♭

v,Σ
♭
v, →֒v, I

♭
v, F

♭
v〉.

If v is a leaf then S♭
v is just Sv, the system assigned to v, with some actions removed due

to the synchronization vectors and priorities. This means that Σ♭
v = δv, and instead of
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→v we take →֒v defined by q
e
→֒v q′ if:

• q
e
→v q′ and for no e′′ 6= e such that e 4v e′′ we have q

e′′
→v q′′.

Suppose now that v is an internal node of the hierarchy and suppose that we know
the semantics of hierarchical systems determined by the successors v0, . . . , vk of of v in
t. The semantic S♭

v is a transition system over the set of states

• Q♭
v = Qv ×Q♭

v0 × · · · ×Q♭
vk,

Observe that an element of Q♭
v can be seen as a function from the subtree rooted in v,

namely t↓v, to sets of states of respective components. So we can write q(λ) for the state
labeling the root of this subtree, that is a state of Qv. Given a node u of the tree we can
write q↓u for the restriction of q to t↓u. We write q(u) for the state of the component u,
or to say it differently, for the state in the root of q↓u.

The set of initial states is easy to define:

• I♭v = Iv × I♭v0 × · · · × I♭vk,

it is just a set of tuples consisting of initial states only.
The set of final states is a bit more difficult to describe. This comes from our view

of final states as being error states. So the whole system is in an error state if one of its
components is in an error state:

• F ♭
v = {q ∈ Q♭

v : exists u in t↓v such that q(u) ∈ Fu}.

The alphabet Σ♭
v will be also a product: Σ♭

v ⊆ Σv × Σ♭
v0 × · · · × Σ♭

vk. But this time
we take into account allowed synchronization vectors:

• Σ♭
v = {e : (e(v), e(v0), . . . , e(vk)) ∈ δv}

In order to define the transition relation →֒v we will first define auxiliary relation
❀v. This relation will ignore priorities in v but it will take into account priorities in
subcomponents of v. We say that q

e
❀v q′ if

• q(λ)
e(λ)
→ v q′(λ), and

• q↓i
e↓i
→֒vi q

′ ↓i.

The relation →֒v takes into account the priorities in v. We say that q
e
→֒v q′ if

• q
e
❀v q′ and

• for no e′′ such that e(λ) ≺v e′′(λ) we have q
e′′
❀v q′′.

In other words a transition on e is possible, if it is possible without looking at the priorities
in v, and moreover no action with higher priority is possible.
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Sλ

H

(a)

a, b

b ≺ a

a ≺ b

S0

a, b

qλ0
, q00 qλ1

, q01

qλ0
, q01 qλ1

, q00

a

[[H]]

(b)

Figure 5.2: (a) a hierarchical transition system H, (b) the semantic of H .

Definition 5.1. Let H be a hierarchical transition system, and let S♭
v for very node v of

the hierarchy tree be the transition system as defined above. The semantics of H, denoted
[[H]], is S♭

λ where λ is the root of the hierarchy tree.

Consider the hierarchical transition systemH given in Figure 5.2(a). H is composed of
two nodes: λ and 0, the 0 node has the priority b ≺ a. The node λ has the priority a ≺ b,
and the synchronization vectors of the λ node are: {(a, a), (b, b)}. The transition system
Sλ is defined as follows: Sλ = 〈{q0, q1}, {ε, a, b},→λ, {q0}, ∅〉, the transition relation is
→λ= {(q0, ε, q0); (q1, ε, q1); (q0, a, q1); (q0, b, q1)}. The transition system S0 is defined as
follows: S0 = 〈{q0, q1}, {ε, a, b},→0, {q0}, ∅〉. Let us now compute the semantic of H. By
definition we have [[H]] = 〈Q,Σ, →֒, I, F 〉 where: Q = Qλ×Q♭

0, I = Iλ×I♭0, F = Fλ×F ♭
0 ,

and the transition relation →֒ is defined as:

• →֒ = {q
e
❀λ q′ | e′ ∈ out(q)⇒ e′ 4 e}

We therefore need the relation ❀λ that is defined as:

• ❀λ = {q(λ)
e
→0 q

′(λ) | q↓0
e↓0
→֒0 q↓

′
0}

Observe that we need the transition relation →֒0, and therefore the relation ❀0.
Finally, in order to get the →֒λ relation we solve the following relation in the given order:

1. ❀0 = {(q0, a, q1); (q0, b, q1)},

2. →֒0 = {(q0, a, q1)},
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3. ❀λ = {((qλ0
, q00), a, (qλ1

, q01))}

4. →֒ = {((qλ0
, q00), a, (qλ1

, q01))}

The semantic of H is given in Figure 5.2(b).

Remark 5.1. The semantics of hierarchical transition system is compositional, in other
words it is calculated from the leaves to the root of the hierarchy. In consequence, the
meaning of a node depends only on its subtree and not on its ancestors in the hierarchy.

For the sake of clarity, in the forecoming examples of this chapter, we will only repre-
sent reachable states (from the initial states) of the semantic of a hierarchical transition
system.

Paths

We extend the notion of paths (see Chapter 4) to labeled transition system in the natural
way: A path in a labeled transition system is any non-empty finite sequence of states
and events q0, e1, q1 . . . , en, qn such that qi

ei→ qi+1 for 0 ≤ i < n. Such a path is called a
run if q0 ∈ I and qn ∈ F . The set of all paths (resp. runs) of S is denoted by Path(S)
(resp. Run(S)). If H is a hierarchical transition system then we simply write Path(H)
instead of Path([[H]]).

Given a hierarchical transition system H a projection of a path π♭ ∈ Path(H) onto a
transition system Sv for some node v of the hierarchy tree t is denoted by π♭(v) and is
defined componentwise: π♭(v) = q♭0(v), e

♭
1(v), q

♭
1(v) . . . , q

♭
n(v).

5.1.2 Issues related to priorities

We now discuss the issues that arise when priorities are present in a hierarchical transition
system. We will show that we cannot remove priorities. It is not even possible to move
them upwards to the root node of the hierarchy.

Consider the hierarchical transition system H given in Figure 5.3(a), which contains
two nodes λ and 0, and their associated transition systems Sλ, and S0. The inner node 0
has a nontrivial priority relation: b 4 a. We will show that this priority relation cannot
be replaced by a relation in the λ node. Both transition systems use the same alphabet
Σλ = Σ0 = {a, b, ε}, but the transition system Sλ has no transition labeled with a. The
set of synchronizations vectors of the λ node is: {(a, a); (b, b); (ε, ε)}. In other words, the
events a, b, and ε of the λ node are synchronized respectively with the events a, b, and ε
of the 0 node. The node 0 define the priority: b ≺ a. In Figure 5.3(b) we have an almost
identical hierarchical transition system where we just moved the priority of the node 0 to
the node λ. This modification has an immediate effect on semantics (cf. n Figure 5.3(c)
and Figure 5.3(d)). This example illustrates that priority resolution when determining
the semantic of a hierarchical transition system cannot be delayed in a sense that they
cannot be moved to higher nodes.

One could argue, that on this example we can define a new priority relation for the λ
node of H′ that would allow us to obtain the desired semantic. For instance the priority
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Sλ

H

b

ε ε

b ≺ a

S0

a, b

ε ε

(a)

[[H]]

ε

(c)

Sλ

H′

b

ε ε

b ≺ a

S0

a, b

ε ε

(b)
b

ε ε

(d)

[[H′]]

Figure 5.3: An example illustrating the result of delaying priority resolution on a hier-
archical transition system, (a) the hierarchical transition system H, (b) the hierarchical
transition system H′, (c) [[H]] the semantic of H, (d) [[H′]] the semantic of H′.

relation could be b ≺ ǫ. However, in general we can not always find a suitable priority
relation.

Sometimes it is not possible to determine a “global” priority (i.e. a priority relation on
the λ node) in order to delay priority resolution. To illustrate this statement consider the
hierarchical transition system given in Figure 5.4(a). This hierarchical transition system
H, has its counterpart H′ Figure 5.4(b) that we will use to try to determine a global
priority (the box containing “? 4 ?” is the priorities we want to determine) so that we
have [[H]] equal to [[H′]]. The λ nodes of the hierarchical transition systems synchronize
on common events. In Figure 5.4(c) we have given the semantic of H, and below in
Figure 5.4(d) the semantic of H′ without applying any priority.

Consider now [[H′]], let us examine all possible priorities that could be applied in order
to have [[H]] = [[H′]]. Note that by construction we only need to determine a priority to
apply to [[H′]] to replace the “? ≺ ?” box. First lets try b ≺ c but applying such priority
would prune away the bottom of the transition system. Moreover, it is easily seen that
any other priority could not prune away the outgoing transition of the initial state labeled
with b. We therefore conclude that there does not exists a global priority that gives us
[[H]] = [[H′]] (up to an isomorphism). This shows that we need to allow priorities on each
level of a hierarchical systems.

Also note, that we could try to modify the synchronization vectors, in order to elimi-
nate the undesired transition. For instance by deciding that the event b of the λ node of
H′ now synchronizes with the c event of the node 0, and we can use b ≺ c (or any other
priority relation) for ? ≺ ?. This would eliminate the undesired transition, but would
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Figure 5.4: An example illustrating the non existence of a priority over the flattened hier-
archical transition system, (a) a hierarchical transition system H, (b) H′ the counterpart
of H with a global priority to be determined, (c) the semantic of H, (d) the semantic of
H′ before applying any priority relation.
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also prune away the bottom part of the semantic of H′.

Even if our setting appears to be quite complicated, it offers a big flexibility and
modeling power. In the following we go over some examples presenting usefulness of
hierarchical transition system for modular presentation of models.

5.1.3 Advantages of Modular Representation

Modular representations of systems are nowadays a standard in the software industry
as well as many other industries. One of the reasons modular representation became a
standard is the ever-growing size of modern systems (e.g., railways systems, airplanes,...).
Overtime, dividing a system into components, that are responsible for a single function-
ality became crucial. Such a decomposition allows one to have a better grasp of a the
overall system. Yet these much smaller components, once put together still describe a
huge system, and need to communicate with each other as well as with their environment.
Before presenting our approach to the verification of hierarchical transition systems, we
discuss some examples showing advantages of hierarchical transition systems.

Succinctness of Representation

Let us start by a classical example: the counting wheels. The modelization we consider is
given as a hierarchical transition system in Figure 5.5. The hierarchical transition system
models a three wheels binary counter, where the least significant bit is the rightmost bit.
The hierarchical schema S (Figure 5.5(a)) is the skeleton of our wheel counter and is
composed of two types of nodes: wheel nodes: 0, 10, 11, and interface nodes: λ, 1.

Wheel nodes simply define an alphabet {inc, reset, ε} where inc stands for the in-
crement event, reset is the reset event, and ε is our “no operation” event. They do not
define any priorities between their events, and dot not synchronize their events with any
successor (they do not have successors). The transition system associated to the wheel
node is Sb and is given in Figure 5.5(b) (i.e. we have S0 = S10 = S11 = Sb). The
transition system models a bit counter, one state represents the 0 value, and the other
represents the 1 value. The inc event changes the state from 0 to 1, reset is the dual
transition, and the ε event labels the loops, and allows the system to “nothing” (these
transitions are need to allow an asynchronous behavior of the model).

The interface nodes use the same alphabet {inc, reset, ε}, do not define a priority
relation over their events, but define four synchronization vectors. Before presenting the
synchronization vectors, and their impact, let us first introduce the transition system used
for these nodes. The nodes λ, and 1 use the transition system Sa given in Figure 5.5(a)
(i.e., we have Sλ = S1 = Sa). The transition system is simple, it is just a single (initial)
state on which all events loop. Now let us go back to the synchronization vectors.

The interface define the following four synchronization vectors:

1. (ε, ε, ε)

2. (ε, ε, inc)
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3. (inc, inc, reset)

4. (reset, reset, reset)

In order to explain these vectors, consider the 1 node (i.e., we are restricting ourselves
to H↓1). This node synchronizes its successors 10 and 11. The first vector (ε, ε, ε)
synchronize all ε events. As previously stated, this allows the system to simply do
nothing: the ε event of S1, S10, and S11 always loops on their current state. The
second vector (ε, ε, inc) ensures that when the rightmost counter (least significant bit)
increments, the transition systems S1, and S10 must fire an ε labeled transition. The
third vector (inc, inc, reset), synchronizes the increment event of the bit of higher order,
with the reset event of the lower order bit. Observe, that this synchronization ensures
that the low order bit has the value 1, since the unique transition in Sb labeled with reset
has for source the state we use to model the value 1. This do not force the low order bit
to take the value 1, but forbids the high order bit to increment if the low order bit has
not the value 1. Finally, the last vector (reset, reset, reset) forces all transition systems
to reset all together. Yet, as previously remarked, each of the synchronized transition
systems must be in a state where they can fire a transition labeled reset.

It is easily seen that the semantic of H↓1 describes a two bit counter. Now to extend
our counter with an extra bit, it is sufficient to treat H↓1 as a least significant bit, and
interface it with a sibling counter node. This is the three wheels binary counter of
Figure 5.5.

Continuing this way we can construct n-wheel counter in a modular way. To add
one wheel we will need to add two nodes: a wheel itself and a link. Of course each
wheel doubles the state space of the whole system. This shows that the semantics of a
hierarchical system can be exponentially bigger than its description.

Communicating with Synchronization Vectors

Another feature of our hierarchical transition system, is the inter-node communication by
synchronization vectors. The use of synchronization vectors allows us to have a succinct
representation of a large communication scheme. Note that the underlying setting was
originally proposed by Arnold and Nivat: synchronous product of transition systems with
synchronization vectors [AN82].

To illustrate this communication mechanism, let us go back to our counting wheel
example. In the example our counting wheel behaves without any possible dysfunctions.
In Figure 5.6 we have extend our counting wheels with nodes that model the dysfunction
of a wheel.

Dysfunction nodes 00, 100, and 110 define an alphabet {ok, f1, f2, r1, r2, ε} where ok
represents the absence of dysfunction, f1 and f2 represent two failures that the system can
encounter, r1, r2 are the corresponding reparations, and ε stands for the “no operation”
event. No priority is defined between the events, and do not synchronize their events.
The transition system associated to the node is Sc and is given in Figure 5.6(d). The
transition system models the impact of failures and reparations: when a failure occurs the
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S

λ

{inc, reset, ε}, ∅, {

(ε, ε, ε);
(ε, ε, inc);

(inc, inc, reset);
(reset, reset, reset)

}

0

{inc, reset, ε}, ∅, ∅

1

{inc, reset, ε}, ∅, {

(ε, ε, ε);
(ε, ε, inc);

(inc, inc, reset);
(reset, reset, reset)

}

10

{inc, reset, ε}, ∅, ∅

11

{inc, reset, ε}, ∅, ∅

(a)

0 1

inc

reset

ε ε

(c)

Sb

inc, reset, ε

(b)

Sa

Node Transition System
λ

Sa1
0

Sb10
11

(d)

Figure 5.5: A counting wheels system, (a) The hierarchical schema S, (b) the transition
system Sa for a whell link, (c) the transition system Sb modeling a counting wheel, (d)
the mapping table matching nodes of t to transition systems.
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“ok” labeled transition cannot be fired, and a reparation allows the transition system to
reach a state where the “ok” labeled transition can be fired. In our hierarchical transition
system we added for each wheel node a dysfunction node as it successor. This will allow
us to disable a wheel node whenever a “failure” event occurs. To manage this behavior,
wheel nodes have been modified to define two synchronization vectors: (inc, ok) and
(reset, ok). These synchronization vectors forbid the wheel node to increment or reset if
its associated dysfunction node does not fire an ok labeled transition. Note that these
synchronization vectors have a global impact on our counting wheel system. For instance,
if the wheels 10 or 11 are dysfunctioning the entire system is blocked: it will only be
able to fire the ε transition synchronized with the (ε, ε, ε) vector in the λ node. On the
other hand if the 0 wheel is dysfunctioning, it will still be possible to fire the ε transition
synchronized with the (ε, ε, ε) or (ε, ε, inc) vectors in the λ node.

Moreover, the events f1, f2, r1, and r2 of a dysfunction node are synchronized in
a wheel node with the local ε event. This allows us to “mask” the failure events in
the predecessor of wheel node. For instance in the 1 node, the synchronization vector
(ε, ε, inc) will be mapped with each ε synchronization of its 10 successor (e.g. (ε, f1),
(ε, f2), (ε, r1), (ε, r2), and (ε, ε)). Likewise the (ε, ε, ε) will be mapped with each ε
synchronization of its 10 and 11 successors, this will generate 25 new events in H↓1 .
Continuing this way, when we had 5 events in the semantic of our dysfunction free
counting wheel system (i.e., in H↓λ), we now have 157 events that are induced by a small
set of synchronization vectors.

Using Priorities

To illustrate the use of priorities, let us present our queue model1. The hierarchical
transition system given in Figure 5.7 is our model of a queue. The queue can hold three
objects of type a, or b. The hierarchical schema S (Figure 5.7(a)) is the skeleton of our
queue and is composed of two types of nodes: cell nodes: 0, 10, 11, and interface nodes:
λ, 1.

Cell nodes simply define an alphabet {puta, geta, putb, getb, ε} where puta (resp. putb)
represents the action of inserting an object of type a (resp. b) into the cell. The event
geta (resp. getb) is the dual action: removing an object of type a (resp. b) from the
cell. The ε is the “no operation” event. Cell nodes do not define any priorities between
their events, and do not synchronize their events with any successor (they do not have
successors). The transition system associated to the cell nodes (see Figure 5.7(d)) is
Sb and is given in Figure 5.7(b) (i.e. we have S0 = S10 = S11 = Sb). The transition
system models a cell, one state represents the cell containing the object a, another state
represents the cell containing the object b, and the initial state represents the cell when
it is empty. The events label the transitions in the normal way: to put an object in the
cell, it has to be empty. You can only get an object that is present is the cell, and the ε
event labels a loop on each state of the transition system.

1The model is an hierarchical transition system version of the AltaRica node FIFO2 given in Fig-
ure 2.15(a).
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Figure 5.6: A dysfunctionnal counting wheels system, (a) The hierarchical schema S,
(b) the transition system Sa for a whell link, (c) the transition system Sb modeling a
counting wheel, (d) the transition system Sc modeling a dysfunctional mode, (e) the
mapping table matching nodes of t to transition systems.
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Interface nodes use the alphabet of the cell nodes together with an extra event: shift.
We will use this event to move objects from the tail of the queue to its head. Before
detailing the priority relation, and synchronization vectors, let us look at the transition
system we associated to an interface node. The nodes λ, and 1 use the transition system
Sa given in Figure 5.7(a) (i.e., we have Sλ = Σ1 = Sa). The transition system is simple,
it is a single (initial) state on which all events loop.

A queue is a FIFO (First In First Out) container. When an element is taken out
of the queue, the remaining elements of the queue move one step higher (i.e., closer to
the head of the queue). Therefore, in our model, we need to ensure that the content
of a cell is shifted one step higher as soon as possible (i.e., before any other event can
occur). Thanks to priorities we can enforce this behavior of our model using a simple
statement: {puta, geta, putb, getb} ≺ shift2. Of course, one could ensure this desired
behavior without the use of priorities, but this would require a more complex transition
system for the interface node: one that would store the current global state of the queue,
and enforce shifting object at the right moments.

To finish presentation of our model, we discuss the synchronization vectors. We only
present the synchronization vectors related to the objects of type a. The synchronization
vectors are:

1. (puta, ε, puta)

2. (geta, geta, ε)

3. (shift, puta, geta)

In order to explain these vectors, consider the 1 node (i.e., we are restricting ourselves
to H↓1). This node synchronizes its successors 10 and 11. Recall that, 10 and 11 are
both cell nodes. As expected, the first vector (puta, ε, puta) ensures that a new element
is inserted into the tail of the queue (here the rightmost cell). Note that if the tail of
the queue is not empty, then it is not possible to insert an element in the queue (even
if the head is empty). Likewise, popping an object of the queue is done on the head
of the queue and this is ensured by the vector (geta, geta, ε). The last vector performs
the shift operation of the queue: (shift, puta, geta). In other words, if the head cell is
empty and the tail cell holds an object, then the shift operation inserts the object into
the head cell while popping it from the tail cell. Now, recall that in the interface node 1
we have {puta, geta} ≺ shift. This priority forces the model to shift as soon as possible:
suppose that we insert an object into the queue, the first synchronization vector ensures
that the object is inserted into the tail cell. Since at this point the head cell is empty, the
interface node forces the shift event to occur (more precisely, it is the only possible event
in that state). This behavior is enforced by the priority {puta, geta} ≺ shift. Thanks to
this priority, the object is moved to the head of the queue, and can be popped.

Note we can easily extend our queue with a new cell, it suffices to treat H↓1 as the
tail of a queue, and interface it with a new cell node. Doing so we obtain the hierarchical
transition system given in Figure 5.7.

2Here we use the notation {puta, geta, putb, getb} ≺ shift for puta ≺ shift, . . . , getb ≺ shift.
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}, ∅, ∅
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Figure 5.7: An hierarchical transition system modeling a queue, (a) the hierarchical
schema S, (b) the transition system Sa linking two queues, (c) the transition system Sb

modeling a queue that can contain an object a or an object b, (d) the mapping table
that matching nodes of t to transition systems.
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5.2 Abstractions for Priority Free Hierarchical Transition

Systems

Till now we have used modular representation as a convenient and succinct way of repre-
senting transition systems. Usually, a decomposition into modules represents also logical
structure of the system. It is tempting then to exploit this structure in CEGAR approach.
We make this idea precise by assuming that abstraction should have the same modular
structure as the analyzed system. This means that each component of the system is
abstracted separately: decomposition reflects the structure of the system.

As we have already seen, priorities are a source of significant complications. These
are even more acute in case of hierarchical abstractions. For this reason we first consider
priority-free case where the hierarchical approach works smoothly.

The idea is to cover each transition system in the hierarchy separately and hope that
the result is still an abstraction. This will be indeed the case if there are not priorities.
In order to construct a CEGAR procedure it is also crucial to be able to detect if a path
from an abstract system is spurious or not. We show that a hierarchical covering allow
to do this without calculating the semantics of the system.

5.2.1 Hierarchical Covering

Since we will work with covers and abstractions we will briefly recall their definitions and
properties. The definition of hierarchical covering will be then an easy generalization.

Abstraction, Covers & Refinement

As we have seen in Chapter 3.2.1, the notion of abstraction is usually expressed in
terms of simulation [Mil71, LGS+95]. Formally, given two transition systems Sc and
Sa, a simulation relation from Sc to Sa is any relation ρ ⊆ (Qc × Qa) satisfying, for all
qc, q

′
c ∈ Q, qa ∈ Qa and e ∈ Σc:

for all (qc, qa) ∈ ρ and qc
e
→ q′c there is q′a ∈ Qa such that (qa, q

′
a) ∈ ρ and qa

e
→ q′a

Definition 5.2. A transition system Sa is an abstraction of a transition system Sc if
there is a simulation relation ρ from Sc to Sa satisfying the two following properties:

• for every qc ∈ Ic, there is qa ∈ Ia with (qc, qa) ∈ ρ,

• for every qc ∈ Fc, if (qc, qa) ∈ ρ then qa ∈ Fa.

In this case we will also say that Sa is an abstraction of Sc through ρ.

Let us first recall some notions that were defined in Chapter 4.1.1. Given a set A,
we write P+(A) = P(A) \ {∅} for the set of non-empty subsets of A. A cover of A is
any subset C of P+(A) such that A =

⋃
C. A covering of a labeled transition system

S = 〈Q,Σ,→, I, F 〉 is a labeled transition system

Ŝ = 〈Q̂,Σ,→, Î, F̂ 〉
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such that Q̂ is a cover of Q and, for every q̂, r̂ ∈ Q̂ and e ∈ Σ:

• q̂
e
→ r̂ iff q

e
→ r for some q ∈ q̂ and r ∈ r̂,

• q̂ ∈ Î iff q̂ ∩ I 6= ∅,

• q̂ ∈ F̂ iff q̂ ∩ F 6= ∅.

Hence every state of a covering is a set of states of the original system, and the
existence of transition between two states is determined by the elements contained in
these states.

Lemma 5.1. Every covering Ŝ of a transition system S is an abstraction of S. The
relation witnessing this is the membership relation {(q, q̂) ∈ Q× Q̂ | q ∈ q̂}.

Proof. Let q ∈ Q, q̂ ∈ Q̂. Assume that q ∈ q̂ and q
e
→ r. Since Q̂ is a cover of Q, there

exists r̂ ∈ Q̂ such that r ∈ r̂. It follows from the definition of coverings that q̂
e
→ r̂. We

have thus shown that the membership relation is a simulation relation from S to Ŝ. Let
us prove that it also satisfies the conditions of Definition 5.2. Let q ∈ I. Since Q̂ is a
cover of Q, there exists q̂ ∈ Q̂ such that q ∈ q̂. As q̂∩ I 6= ∅, we get that q̂ ∈ Î. Similarly,
let q ∈ F and q̂ ∈ Q̂ with q ∈ q̂. As q̂ ∩ F 6= ∅, we get that q̂ ∈ F̂ .

Since the membership relation is a simulation relation from S to Ŝ satisfying the
conditions of Definition 5.2, we conclude that Ŝ is an abstraction of S.

Remark 5.2. To emphasize the fact that coverings are abstractions, we will sometimes
use the term cover abstraction.

The above lemma shows that, in the case of cover abstractions, the membership
relation is a simulation relation. In other words, if q ∈ q̂ then q̂ simulates q. This justifies
the use of the membership relation in the following definition.

Definition 5.3. Let S be a transition system S, and let Ŝ be a cover abstraction of
S. A path π = q0, e1, q1, . . . , en, qn ∈ Path(S) is an instantiation of a path π̂ =
q̂0, e1, q̂1, . . . , en, q̂n ∈ Path(Ŝ) if qi ∈ q̂i for all i = 0, . . . , n. A path π̂ ∈ Path(Ŝ) is
feasible if there is an instantiation of it. Otherwise, π̂ is spurious.

Next lemma implies that if there is run, i.e. a path from an initial to a final state, in
a concrete system then there is one in its cover.

Lemma 5.2. If Ŝ is a cover abstraction of S, then every path of S is an instantiation
of a path of Ŝ.

Proof. Consider a path π = q0, e1, q1, . . . , en, qn of S. Since Q̂ is a cover of S, there
exists, for every 0 ≤ i ≤ n, an abstract state q̂i ∈ Q̂ such that qi ∈ q̂i. It follows from the
definition of coverings that q̂i−1

ei→ q̂i for all 0 < i ≤ n. Therefore, π̂ = q̂0, e1, q̂1, . . . , en, q̂n
is a path of Ŝ. Furthermore, π is obviously an instantiation of π̂.
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Yet a cover abstraction may contain spurious paths. A spurious path is a path of an
abstraction that is not an instance of any path of the concrete system. If we discover a
spurious path in the abstraction, it is necessary to refine it (i.e., compute a less coarse
abstraction) in order to eliminate the spurious path.

As a cover abstraction is completely defined by a cover of the set of states, refinement
of a cover abstraction is defined in terms of a refinement of covers. The refinement via
split pairs, that is introduced in Chapter 4 Section 4.1.2, is a particular instance of the
following definition.

Definition 5.4. A cover Q̂r of Q refines a cover Q̂a of Q, written Q̂r ✂ Q̂a, if for every
q̂r ∈ Q̂r \ Q̂a, there exists q̂a ∈ Q̂a \ Q̂r such that q̂r ⊂ q̂a.

Definition 5.5. Consider two cover abstractions Ŝa, Ŝr of a transition system S. Let
Q̂a and Q̂r be the sets of states of the two systems. We say that Ŝr refines Ŝa, written
Ŝr ✂ Ŝa, if Q̂r refines Q̂a.

Very similar argument as that in Lemma 5.1 shows:

Lemma 5.3. Given two cover abstractions Ŝa, Ŝr of S, if Ŝr refines Ŝa, then Ŝa is an
abstraction of Ŝr. The simulation witness is the containment relation ⊆.

For finite-state transition systems, refinement enjoys additional properties that are
useful for termination analysis of algorithms based on iterative abstraction refinement.
The next proposition, may be seen as a generalization of the proof that Cegar and PCegar

algorithms from Chapter 4 terminate.

Proposition 5.1. If S is finite-state, then the refinement relation ✂ on cover abstractions
of S is a well-founded partial order.

Proof. We show that the refinement relation ✂ on covers of Q is a well-founded partial
order. The relation ✂ is obviously reflexive. To prove antisymmetry, assume that Q̂2 ✂

Q̂1 ✂ Q̂2. For every i, j ∈ {1, 2}, it holds, by definition, that:

∀q̂i ∈ Q̂i \ Q̂j · ∃q̂j ∈ Q̂j \ Q̂i · q̂i ⊂ q̂j

Since Q is finite, (P(Q),⊆) satisfies the ascending chain condition. We derive that
Q̂1 \ Q̂2 = Q̂2 \ Q̂1 = ∅, which entails that Q̂1 = Q̂2.

The proof that ✂ is transitive is similar to the antisymmetry proof. Assume that
Q̂3 ✂ Q̂2 ✂ Q̂1. It holds, by definition, that:

{
∀q̂ ∈ Q̂2 \ Q̂1 · ∃r̂ ∈ Q̂1 \ Q̂2 · q̂ ⊂ r̂

∀q̂ ∈ Q̂3 \ Q̂2 · ∃r̂ ∈ Q̂2 \ Q̂3 · q̂ ⊂ r̂

Observe that Q̂i \ Q̂j ⊆ (Q̂i \ Q̂k) ∪ (Q̂k \ Q̂j) for every i, j, k ∈ {1, 2, 3}. It follows that:



∀q̂ ∈ Q̂2 \ Q̂1 · ∃r̂ ∈

(
(Q̂1 \ Q̂3) ∪ (Q̂3 \ Q̂2)

)
· q̂ ⊂ r̂

∀q̂ ∈ Q̂3 \ Q̂2 · ∃r̂ ∈
(
(Q̂1 \ Q̂3) ∪ (Q̂2 \ Q̂1)

)
· q̂ ⊂ r̂
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Since (P(Q),⊆) satisfies the ascending chain condition, the following assertions follows:

∀q̂ ∈
(
(Q̂2 \ Q̂1) ∪ (Q̂3 \ Q̂2

)
· ∃r̂ ∈ (Q̂1 \ Q̂3) · q̂ ⊂ r̂

The observation that Q̂1\Q̂3 ⊆ (Q̂2\Q̂1)∪(Q̂3\Q̂2) entails that Q̂3✂Q̂1. This concludes
the proof that ✂ is a partial order on the set of all covers of Q. Furthermore, since this
set is finite, we obtain that ✂ is well-founded.

Covers for Hierarchical Transition Systems

Since covers are practical abstractions for transition systems, we are going to generalize
their definition to hierarchical systems. We will simply cover a hierarchical system com-
ponentwise. It turns out that, when there are no priorities, this straightforward approach
preserves all good properties of covers. For the remainder of this section, we consider a
hierarchical transition system H = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Sv}v∈t〉.

Definition 5.6. A hierarchical covering of H = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Sv}v∈t〉
is a hierarchical transition system Ĥ = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Ŝv}v∈t〉, such that
Ŝv covers Sv for each v ∈ t.

We also say that Ĥ hierarchically covers H when Ĥ is a hierarchical covering of H.
The semantics ofH and Ĥ are given, according to Definition 5.1, by the transition systems
S♭
v = 〈Q♭

v,Σ
♭
v, →֒v, I

♭
v, F

♭
v〉 and Ŝ♭

v = 〈Q̂♭
v,Σ

♭
v, →֒v, Î

♭
v, F̂

♭
v〉. Remark that an abstract state

q̂ ∈ Q̂♭
v is not a subset of Q♭

v. However, it will be convenient to view it as such. So we
shall identify q̂ with the set {q ∈ Q♭

v | ∀u ∈ t↓v · q(u) ∈ q̂(u)}. With this view, Q̂♭
v is a

cover of Q♭
v.

Analogously to the abstraction of hierarchical systems, we refine hierarchical cov-
erings componentwise. A refinement of a hierarchical covering Ĥa = 〈t, {Σv}v∈t, {4v

}v∈t, {δv}v∈t, {Ŝav}v∈t〉 is the hierarchical covering Ĥr = 〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Ŝrv}v∈t〉

where Ŝrv refines Ŝav for each node v of the three t.

One would expect that hierarchical covering gives a cover abstraction. This may not
be the case in the presence of priorities (cf. example in Section 5.3). Fortunately, when
a hierarchical system is priority-free everything works out nicely.

Lemma 5.4. If H is priority-free then for every v ∈ t, q, r ∈ Q♭
v and e ∈ Σ♭

v:

q
e
→֒v r iff ∀u ∈ t↓v · (q(u)

e(u)
→ vu r(u))

Proof. Since H is priority-free, the transition relation
e
→֒v of its semantics [[H]], given in

Definition 5.1, may be reformulated as follows:

q
e
→֒v r iff q(λ)

e(λ)
→ v r(λ) and ∀i ∈ N · (vi ∈ t⇒ q↓i

e↓i
→֒vi r↓i)

The lemma follows by structural induction on the tree t.
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Lemma 5.5. If Ĥ is a hierarchical covering of H, and H is priority-free, then [[Ĥ]] is a
cover abstraction of [[H]].

Proof. Recall that [[Ĥ]] is Ŝ♭
λ, and similarly [[H]] is S♭

λ. Since Ĥ is a hierarchical covering

of H, Ŝv is a cover abstraction of Sv, for every v ∈ t. Recall that Q̂♭
λ is a cover of Q♭

λ.

Let us first prove that the initial abstract states of [[Ĥ]] are those of the cover abstraction
induced by Q̂♭

λ. For every q̂ ∈ Q̂♭
λ, it holds that:

q̂ ∈ Î♭λ ⇔ ∀v ∈ t · (q̂(v) ∈ Îv)

⇔ ∀v ∈ t · ∃qv ∈ q̂(v) · (qv ∈ Iv)

⇔ ∃q ∈ q̂ · ∀v ∈ t · (q(v) ∈ Iv)

⇔ ∃q ∈ q̂ · q ∈ I♭λ

We obtain that q̂ ∈ Î♭λ if and only if q̂ ∩ I♭λ 6= ∅. This shows that initial abstract states

of [[Ĥ]] are those of the cover abstraction induced by Q̂♭
λ. A similar proof, but with an

existential quantification ∃v ∈ t instead of the universal quantification ∀v ∈ t, shows that
final abstract states of [[Ĥ]] are those of the cover abstraction induced by Q̂♭

λ.

To conclude the proof of the lemma, we must show that the transition relation
e
→֒λ

of [[Ĥ]] satisfies q̂
e
→֒λ r̂ if and only if q

e
→֒λ r for some q ∈ q̂ and r ∈ r̂. When H is

priority-free, this is easily shown with Lemma 5.4, as follows. For every q̂, r̂ ∈ Q̂♭
λ and

e ∈ Σ♭
v,

q̂
e
→֒λ r̂ ⇔ ∀v ∈ t · (q̂(v)

e(v)
→ v r̂(v))

⇔ ∀v ∈ t · ∃(qv, rv) ∈ (q̂(v)× r̂(v)) · (qv
e(v)
→ v rv)

⇔ ∃(q, r) ∈ (q̂ × r̂) · ∀v ∈ t · (q(v)
e(v)
→ v r(v))

⇔ ∃(q, r) ∈ (q̂ × r̂) · q
e
→֒λ r

This concludes the proof that [[Ĥ]] is a cover abstraction of [[H]].

This lemma implies that every path of [[H]] is an instantiation of a path of [[Ĥ]].
Hence, if [[H]] has a run then so does [[Ĥ]]. Naturally, we will need also to understand the
converse situation: when an abstract path has an instantiation.

5.2.2 Abstract path feasibility

As we have noted above, not every path in a hierarchical covering is necessarily feasible.
It may be spurious: may not correspond to any path in the concrete system. To check
if an abstract path is feasible we can of course calculate the semantics of a hierarchical
transition system and play the path in this semantics. Calculating the semantics is
however an expensive operation. The advantage of doing CEGAR on hierarchical systems
is precisely to avoid computing the semantics explicitly. The following lemma will allow
us to check if a path is spurious just by looking separately at each component of the
hierarchical transition system.
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VerifyHierarchicalPath (H, π̂)
Input: H a Hierarchical Transition System,

π̂ a path of an abstraction of H.
1 X ← ∅
2 for each node v of H do

3 if π̂(v) is spurious for Sv then

4 X ← X ∪ {v}
5 done

6 return X

Figure 5.8: The algorithm VerifyHierarchicalPath.

Lemma 5.6. If Ĥ is a hierarchical covering of H, and H is priority-free, then for every
abstract path π̂ in [[Ĥ]], it holds that π̂ is feasible in [[H]] if and only if π̂(v) is feasible in
Sv for every node v of H.

Proof. Consider an abstract path π̂ = q̂0, e1, q̂1, . . . , en, q̂n in [[Ĥ]] that is feasible in [[H]].
There exists a path q0, e1, q1, . . . , en, qn in [[H]] such that qi ∈ q̂i for all 0 ≤ i ≤ n. Since
H is priority-free, Lemma 5.4 entails that, for every 0 < i ≤ n and for every node v of

H, (qi−1(v)
ei(v)
→ v qi(v)). This means that π̂(v) is feasible in Sv, for every node v of H.

Conversely, assume that, for every node v of H, π̂(v) is feasible in Sv. For each node
v of H, there exists a path qv,0, e1(v), qv,1, . . . , en(v), qv,n in Sv such that qv,i ∈ q̂i(v) for
all 0 ≤ i ≤ n. Let us define qi ∈ Q♭

v, for 0 ≤ i ≤ n, by qi(v) = qv,i. Observe that qi ∈ q̂i

for all 0 ≤ i ≤ n. Lemma 5.4 entails that qi−1
ei
→֒λ qi for every 0 < i ≤ n. It follows that

π̂ is feasible in [[H]].

Corollary 5.1. If Ĥ is a hierarchical covering of H, and H is priority-free, then for
every abstract path π̂ in [[Ĥ]], it holds that π̂ is spurious in [[H]] if and only if for some
node v of H, the path π̂(v) is spurious in Sv.

This corollary can be translated directly into algorithm VerifyHierarchicalPath presented
in Figure 5.8. This algorithm determines the feasibility of an abstract path π̂. To do so,
the algorithm tests the feasibility of the projection of π̂ on each node of H. This test in
Line 3 can be done using the methods described in Chapter 3.2.2, like for instance the
algorithm VerifyPath of Figure 3.1. The set X keeps track of each node v on which the
path π̂(v) is spurious. The algorithm returns the set of nodes for which their projection
on π̂ is spurious. If the algorithm returns ∅ then the abstract path π̂ is feasible on H,
otherwise it is spurious.

These observations are summarized in the following proposition.

Proposition 5.2. VerifyHierarchicalPath algorithm is correct and terminates.

Observe that it is enough to return a single node that satisfy the test Line 3 and still
have a correct algorithm.We will use it as a part of our CEGAR loop that we are going
to present next.
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HierarchicalCegar
(
H, Ĥ

)

Input: H a Hierarchical Transition System,
Ĥ a Hierarchical Transition System that covers H.

1 while Run([[Ĥ]]) 6= ∅ do

2 Pick π̂ in Run([[Ĥ]])
3 if π̂ is feasible then

4 return Run([[H]]) 6= ∅
5 else

6 Pick Ŝv such that π̂(v) is spurious

7 Refine Ŝv

8 done

9 return ‘‘Run([[H]]) = ∅’’

Figure 5.9: Hierarchical CEGAR algorithm

5.2.3 Hierarchical CEGAR

We now present our CEGAR framework for hierarchical transition systems. Given a
hierarchical system H we want to check if it has a run, i.e., if Run([[H]]) is not empty.
We will assume that we are given an initial hierarchical covering Ĥ of H. The algorithm
first checks if there is a run in [[Ĥ]]. If not then by Lemma 5.5 there is no run in [[H]]
too. Otherwise an abstract run π̂ is picked from Run([[Ĥ]]). Then π̂ is analyzed to
determine if it is feasible or spurious. If it is feasible the procedure terminates and
returns “Run([[Ĥ]]) 6= ∅”. Otherwise, if π̂ is spurious then thanks to Corollary 5.1 it
is spurious in one of the components. In this case one of the transition systems Ŝu of
Ĥ for which π̂(u) is spurious is chosen. This abstraction is then replaced by one of its
refinement who does not contain π̂(u) as one of its runs. For this we can use any of the
standard methods c.f. Chapter 3.2.3. Having eliminated a potential counter-example we
repeat the loop. The algorithm is presented in Figure 5.9.

Correctness of the HierarchicalCegar procedure follows from the fact that the semantics
of a hierarchical covering is indeed an abstraction of the semantics of the concrete system
(Lemma 5.5). This means that if there is no run in the semantics of the hierarchical
covering then there is none in the semantics of the concrete hierarchical system either.

Termination of the HierarchicalCegar procedure is straightforward for finite hierarchical
transition systems thanks to Proposition 5.1. Since each component of the hierarchy
is finite, a sufficiently long sequence of refinements will lead to an abstraction that is
isomorphic to the initial transition system. When this hierarchical abstraction is reached
the procedure will terminate in a single pass through the main loop.

These observations are summarized in the following proposition.

Proposition 5.3. HierarchicalCegar algorithm is correct and terminates.

Summarizing, if a hierarchical transition system does not have priorities then cover
abstractions allow a smooth implementation of the CEGAR method. We not only avoid
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S

λ

{a, b}, a ≺ b, ∅

(a)

q1, q3 q2

q4

a

b

(c)

Ŝλ

q1 q2

q3 q4

a

b

(b)

Sλ

Figure 5.10: Unsoundness of cover abstraction in the presence of priorities, (a) The
hierarchical schema S, (b) the transition systems Sλ, (c) Ŝλ a cover abstraction of Sλ.

computing the semantics of the hierarchical system but we are also able to do refinements
and feasibility checks locally.

5.3 Hierarchical Transition Systems with priorities

In this section we focus on the impact of priorities in hierarchical transition systems. Our
objective is to give a CEGAR algorithm that does not need to calculate complete seman-
tics of a hierarchical system. Recall from Section 5.1.2 that priorities cannot be simply
eliminated or moved to the root node of the hierarchy. Of course every transition system
can be in fine presented as such, so neither hierarchy nor priorities are indispensable.
Yet, as the examples in Section 5.1.3 show, in some cases priorities allow for succinct and
elegant presentations. This said the semantics of hierarchical system with priorities is
quite involved and one can expect that hierarchical coverings may not work in this case.

After giving an example of problems caused by priorities we will revisit the semantics
of hierarchical transition systems. We give a characterization when a hierarchical system
is an abstraction of another. Unfortunately the conditions of the characterization will
be not easy verify. This is not surprising given the complexity priorities may induce. In
the next subsection we follow another route and give a simple sufficient condition in the
form of the concept of neat cover. This condition on hierarchical coverings allows us to
recover most of the good properties from the priority-free case. After stating necessary
properties we will present a CEGAR approach using neat covers. It will turn out that
the same algorithm as in hierarchy-free case works, provided we start from a neat cover
abstraction.

To motivate this section we give a simple example showing why hierarchical coverings
cannot be directly used in the presence of priorities.

Recall that, for “flat” transition systems, coverings are abstractions (cf, Section 5.2.1).
However, this is not the case for hierarchical coverings, due to priorities. Consider for
instance the hierarchical transition system H consisting of a single node λ, with alpha-
bet {a, b}, priority a ≺ b and local transition system Sλ = 〈{q1, q2, q3, q4}, {a, b}, {q1

a
→

q2, q3
b
→ q4}, {q1}, {q2}〉 given in Figure 5.10(a) and Figure 5.10(b). The semantics ofH is
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isomorphic to Sλ, and, in particular, it contains the run q1, a, q2. Now, consider the parti-
tion {q̂13, q̂2, q̂4} where q̂13 = {q1, q3}, q̂2 = {q2} and q̂4 = {q4}. The hierarchical covering
Ĥ is obtained by replacing Sλ by its cover abstraction Ŝλ = 〈{q̂13, q̂2, q̂4}, {a, b}, {q̂13

a
→

q̂2, q̂13
b
→ q̂4}, {q̂13}, {q̂2}〉 given in Figure 5.10(c). Due to the priority a ≺ b, the transi-

tion q̂13
a
→ q̂2 disappears in the semantics, and, therefore, [[Ĥ]] contains no run. We have

thus shown the following proposition.

Proposition 5.4. There exists a hierarchical transition system H and a hierarchical
covering Ĥ of H such that [[Ĥ]] is not an abstraction of [[H]].

In this example we have not even used the hierarchy, but one can imagine that this
example is a part of a hierarchical system. As we have seen in Section 5.1.2, there does
not seem to be an easy way to eliminate priorities. In consequence there seem to be no
easy way to avoid the problem presented here.

5.3.1 A sufficient condition for being an abstraction

Let us revisit the semantics of hierarchical transition systems with priorities. We will see
that its complexity can be captured in the problem of determining the set of outgoing
actions from every state. From this we will deduce a sufficient condition for a hierarchical
system to be an abstraction of another.

Given a transition system S = 〈Q,Σ,→, I, F 〉 and a state q ∈ Q, the set of outgoing
actions from q in S is

outS(q) = {e ∈ Σ | ∃r ∈ Q. q
e
→ r}.

We shall simply write out(q) when the transition system S is understood from the context.

For the remainder of this section, we consider a hierarchical transition system H =
〈t, {Σv}v∈t, {4v}v∈t, {δv}v∈t, {Sv}v∈t〉. According to Definition 5.1 its semantics is given
by the family of transition systems S♭

v = 〈Q♭
v,Σ

♭
v, →֒v, I

♭
v, F

♭
v〉, for v ∈ t. We introduce

the preorder 4♭
v on Σ♭

v defined by:

e 4♭
v f iff e(λ) 4v f(λ)

Observe that 4♭
v compares only the parts of the labels coming from Σv. In particular

it coincides with 4v when v is a leaf. If X is a set of actions from Σ♭
v, we will write

Max4♭
v
(X) for the set of maximal elements in this preorder:

Max4♭
v
(X) = {e ∈ X : ∀e′ ∈ X. e 4♭

v e′ ⇒ e′ 4♭
v e}

Recall (cf. Definition 5.1) that the semantics of a hierarchical systems is defined

using
e
→֒v relation. It in turn refers to →v relation that is the transition relation of the



100 Chapter 5 – Compositional CEGAR

system in node v, and to auxiliary relation
e
❀v. Using the notion of maximal elements

the definition of the transition relation
e
→֒v may be reformulated as follows:

q
e
→֒v r iff q

e
❀v r and e ∈ Max4♭

v

{
d ∈ Σ♭

v

∣∣∣ ∃p ∈ Q♭
v · q

d
❀v p

}
(5.1)

q
e
❀v r iff q(λ)

e(λ)
→ v r(λ) and ∀i ∈ N · (vi ∈ t⇒ q↓i

e↓i
→֒vi r↓i) (5.2)

Maximal elements can be also used to give a direct characterization of the set outS♭
v
(q) =

{e ∈ Σ♭
v | ∃p ∈ Q♭

v · q
e
→֒v p} of outgoing actions from q ∈ Q♭

v.

Lemma 5.7. For every v ∈ t and q ∈ Q♭
v:

outS♭
v
(q) = Max4♭

v

{
d ∈ Σ♭

v

∣∣∣ ∃p ∈ Q♭
v · q

d
❀v p

}

= Max4♭
v

{
d ∈ Σ♭

v

∣∣∣ d(λ) ∈ outSv
(q(λ)) ∧ ∀i ∈ N · (vi ∈ t⇒ d↓i ∈ outS♭

vi

(q↓i))
}

Proof. It follows from (5.1) that, for every e ∈ Σ♭
v,

e ∈ outS♭
v
(q) ⇔ ∃p ∈ Q♭

v · q
e
→֒v p

⇔ (∃p ∈ Q♭
v · q

e
❀v p) ∧ e ∈ Max4♭

v

{
d ∈ Σ♭

v

∣∣∣ ∃p ∈ Q♭
v · q

d
❀v p

}

⇔ e ∈ Max4♭
v

{
d ∈ Σ♭

v

∣∣∣ ∃p ∈ Q♭
v · q

d
❀v p

}

Furthermore, we derive from (5.2) that, for every d ∈ Σ♭
v and p ∈ Q♭

v,

∃p ∈ Q♭
v · q

d
❀v p ⇔ ∃p ∈ Q♭

v ·

(
q(λ)

d(λ)
→ v p(λ) ∧ ∀i ∈ N · (vi ∈ t⇒ q↓i

e↓i
→֒vi p↓i)

)

⇔ d(λ) ∈ outSv
(q(λ)) ∧ ∀i ∈ N · (vi ∈ t⇒ d↓i ∈ outS♭

vi

(q↓i)

This concludes the proof of the lemma.

Corollary 5.2. For every v ∈ t and q1, q2 ∈ Q♭
v, if outSvu

(q1(u)) = outSvu
(q2(u)) for all

u ∈ t↓v, then outS♭
v
(q1) = outS♭

v
(q2).

Proof. By structural induction on the tree t. Both the basis and the induction step follow
from Lemma 5.7.

Remark 5.3. It follows from Lemma 5.7 that equivalence (5.1) may be written as:

q
e
→֒v r iff e ∈ outS♭

v
(q) and q

e
❀v r. (5.3)

The main difficulty in the semantics of hierarchical transition systems comes from
priorities. Indeed, without priorities (i.e., when each partial order 4v is the equality

over Σv), we may determine whether q
e
→֒v q′ by looking at each node of the hierarchy

t ↓v independently. The following lemma shows that we recover this property when the
hierarchical event e is known to be an outgoing action. In other words, the complexity
in the semantics is captured by the sets outS♭

v
(q).
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Lemma 5.8. For every v ∈ t, q, r ∈ Q♭
v and e ∈ Σ♭

v:

q
e
→֒v r iff e ∈ outS♭

v
(q) and ∀u ∈ t↓v · (q(u)

e(u)
→ vu r(u))

Proof. By structural induction on the tree t. First, observe that (5.2) and (5.3) entail
the following equivalence:

q
e
→֒v r ⇔ e ∈ outS♭

v
(q) ∧ q(λ)

e(λ)
→ v r(λ) ∧ ∀i ∈ N · (vi ∈ t⇒ q↓i

e↓i
→֒vi r↓i)

If v is a leaf of t, then t↓v = {λ} and the lemma follows. Now, consider a non-leaf node
v of t, and assume that the lemma holds for every child of v in t. We get that for every
i ∈ N with vi ∈ t,

q↓i
e↓i
→֒vi r↓i ⇔ e↓i ∈ outS♭

vi

(q↓i) ∧ ∀u ∈ t↓vi · (q↓i(u)
e↓i(u)
→ viu r↓i(u))

⇔ e↓i ∈ outS♭
vi

(q↓i) ∧ ∀u ∈ t↓vi · (q(iu)
e(iu)
→ viu r(iu))

Moreover, Lemma 5.7 entails that:

e ∈ outS♭
v
(q) ⇒ ∀i ∈ N · (vi ∈ t⇒ e↓i ∈ outS♭

vi

(q↓i))

We arrive at:

q
e
→֒v r ⇔ e ∈ outS♭

v
(q) ∧ q(λ)

e(λ)
→ v r(λ) ∧ ∀u ∈ t↓v · (u 6= λ⇒ q(u)

e(u)
→ vu r(u))

This concludes the proof of the lemma.

We are ready to provide a simple sufficient condition, in terms of outgoing actions,
for a hierarchical covering Ĥ to be an abstraction of H in the sense of Definition 5.2.

Proposition 5.5. If out [[H]](q) ⊆ out
[[Ĥ]]

(q̂) for all q ∈ q̂ ∈ Q̂♭
λ, then [[Ĥ]] is an abstraction

of [[H]].

Proof. Recall that [[Ĥ]] is Ŝ♭
λ, and similarly [[H]] is S♭

λ. Let q̂ ∈ Q̂♭
λ and q ∈ q̂, and suppose

that outS♭
λ

(q) ⊆ out
Ŝ♭
λ

(q̂). Pick a transition q
e
→֒λ r in S♭

λ. Since Q̂♭
λ is a cover of Q♭

λ, there

exists r̂ ∈ Q̂♭
λ such that r ∈ r̂, meaning that r(u) ∈ r̂(u) for all u ∈ t. For every u ∈ t,

since Ŝu is a cover abstraction of Su, it holds that (q(u)
e(u)
→ u r(u)) ⇒ (q̂(u)

e(u)
→ u r̂(u)).

It follows from Lemma 5.8 that

q
e
→֒λ r ⇒ e ∈ outS♭

λ

(q) ∧ ∀u ∈ t · (q(u)
e(u)
→ u r(u))

⇒ e ∈ out
Ŝ♭
λ

(q̂) ∧ ∀u ∈ t · (q̂(u)
e(u)
→ u r̂(u))

⇒ q̂
e
→֒λ r̂

Furthermore, it is readily seen that q ∈ I♭v ⇒ q̂ ∈ Î♭v and q ∈ F ♭
v ⇒ q̂ ∈ F̂ ♭

v . Therefore the
membership relation is a simulation relation from S♭

λ to Ŝ♭
λ.
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The converse of Proposition 5.5 doesn’t hold in general. Consider for instance the
hierarchical transition system H given in Figure 5.10(a) and Figure 5.10(b), and the
hierarchical covering [[Ĥ]] induced by the cover {q̂13, q̂1, q̂2, q̂3, q̂4} where q̂13 = {q1, q3}
and q̂i = {qi} for i in {1, 2, 3, 4}. Obviously, [[Ĥ]] is an abstraction of [[H]], through the
simulation relation {(qi, q̂i) | 1 ≤ i ≤ 4}. Because of the priority a ≺ b, out

[[Ĥ]]
(q̂13) = {b}.

Hence, out
[[Ĥ]]

(q̂13) does not contain out [[H]](q1) = {a}, even though q1 ∈ q̂13.

The condition given by the above proposition is not easy to verify as it involves
quantification over all states. Even worse, it is not preserved by refinement: if an abstract
state is split in two then it may be well the case that one of the smaller states has smaller
set of outgoing actions. In the next section we will give a simple sufficient condition that
is much easier to verify and maintain.

5.3.2 Neat covers

We present one additional requirement sufficient to guarantee that a hierarchical covering
is an abstraction. As the example at the beginning of the section shows, in the presence
of priorities an action can prevent some other action to happen. Intuitively this means
that when grouping states together in an abstract state we should look at actions that
are enabled from these states.

Consider a cover abstraction Ŝ of a (non-hierarchical) transition system S. Since a
transition exists between two states of Ŝ if it exists between some of their elements, the
set of outgoing actions in Ŝ is just out(q̂) =

⋃
q∈q̂ out(q). In the previous section, we

saw that, in a hierarchical setting with priorities, sets of outgoing actions capture the
complexity of the semantics arising from priorities. It is therefore natural to consider
cover abstractions that preserve sets of outgoing actions.

Remark 5.4. In general, Ŝ♭
λ is not a cover abstraction of S♭

λ, even if we require that

out
Ŝ♭
λ

(q̂) =
⋃

q∈q̂ outS♭
λ

(q). Indeed, it may be the case that q̂
e
→֒λ r̂ even though ¬(q

e
→֒λ r)

for all q ∈ q̂ and r ∈ r̂.

To illustrate this remark, consider the hierarchical transition system H given in Fig-
ure 5.11(a), composed of the schema S and the transition systems associated to its nodes:
Sλ, S0, and S00. Note that the node 00 defines the priority c ≺ b, and the node 0 defines
the priority a ≺ c. We will see that, even though out

Ŝ♭
λ

(q̂) =
⋃

q∈q̂ outS♭
λ

(q), the transi-

tion system Ŝ♭
λ is not a cover abstraction of S♭

λ. The semantics S♭
λ of Sλ is depicted in

Figure 5.11(b). To simplify notation, we name the states of Q♭
λ using the names of Q00.

Observe that the transition q3
a
→ q6 has been eliminated due to the priority a ≺ c in

the 0 node, and the transition q3
c
→ q7 has been eliminated due to the synchronization

vectors of the λ node. Now consider the partition Q̂00 = {q̂, p̂, r̂} where q̂ = {q1, q2, q3},
p̂ = {q4, q5}, and r̂ = {q6, q7}. The cover abstraction Ŝ00 of S00 is represented in Fig-
ure 5.11(a) with the dashed boxes. Now let us go back to the eliminated transitions
of S00. With our cover abstraction, the state q̂ has four outgoing transition, and more
importantly, one labeled b, and one labeled c. As the priority relation of the node 00 is
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c ≺ b, the transition q̂
c
→ r̂ is eliminated in Ŝ♭

00. Continuing with the flattening of this
hierarchical transition system, the priority of the 0 node does not modify the transitions,
and neither does the synchronization vectors of the λ node. We obtain Ŝ♭

λ depicted in
Figure 5.11(c). Notice that out

Ŝ♭
λ

(q̂) =
⋃

q∈q̂ outS♭
λ

(q), and the same holds for p̂ and r̂.

Still, Ŝ♭
λ is not a cover abstraction of S♭

λ. Indeed, Ŝ♭
λ contains a transition q̂

a
→ r̂, but

this transition is not induced by a transition of S♭
λ. However, Ŝ♭

λ is an abstraction of S♭
λ

in the sense of Definition 5.2, which is consistent with Proposition 5.5.

Definition 5.7. Given a transition system S = 〈Q,Σ,→, I, F 〉, a cover abstraction Ŝ =
〈Q̂,Σ,→, Î, F̂ 〉 of S is neat if for every q̂ ∈ Q̂ and q1, q2 ∈ q̂, we have out(q1) = out(q2).
A hierarchical covering is neat if it is a neat cover component-wise.

Put differently, Ŝ is neat if out(q̂) = out(q) for all q ∈ q̂ ∈ Q̂. The notion of neat cover
abstraction extends to the hierarchical setting as expected. Recall that a hierarchical
covering Ĥ of a hierarchical transition system H is obtained from H by replacing each
local transition system Sv by a cover abstraction Ŝv of Sv. So Ĥ is neat when each Ŝv is
a neat cover of Sv. Our goal is to show that [[Ĥ]] is a cover abstraction of [[H]] when Ĥ
is neat.

The following proposition shows that there is a strong relationship between the se-
mantics of H and Ĥ when the latter is neat. In particular, as shown in Corollary 5.3,
the semantics of a neat hierarchical covering is a neat cover abstraction.

Proposition 5.6. If Ĥ is a neat hierarchical covering of H, then for every v ∈ t, q̂, r̂ ∈
Q̂♭

v, q ∈ q̂, and r ∈ r̂ we have:

• outS♭
v
(q) = out

Ŝ♭
v

(q̂);

• for every e ∈ Σ♭
v: q

e
→֒v r iff q̂

e
→֒v r̂ and ∀u ∈ t↓v · (q(u)

e(u)
→ vu r(u)).

Proof. Consider the hierarchical transition system K with the same hierarchical schema
as H and Ĥ, but where the local transition system of each node v is the disjoint union
of those of H and Ĥ. Since Ĥ is neat, we obtain from Corollary 5.2, applied on K, that
outS♭

v
(q) = out

Ŝ♭
v

(q̂). Moreover, according to Lemma 5.8, the two following equivalences
hold:

q
e
→֒v r ⇔ e ∈ outS♭

v
(q) ∧ ∀u ∈ t↓v · (q(u)

e(u)
→ vu r(u))

q̂
e
→֒v r̂ ⇔ e ∈ out

Ŝ♭
v

(q̂) ∧ ∀u ∈ t↓v · (q̂(u)
e(u)
→ vu r̂(u))

The observation that q(u)
e(u)
→ vu r(u) entails q̂(u)

e(u)
→ vu r̂(u) concludes the proof.

We are now ready to show the desired result

Corollary 5.3. If Ĥ is a neat hierarchical covering of H, then [[Ĥ]] is a neat cover
abstraction of [[H]].
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S

λ

{a, b}, ∅, {(a, a); (b, b)}

0

{a, b, c}, a ≺ c, {(a, a); (b, b); (c, c)}

00

{a, b, c}, c ≺ b, ∅

(a)

a, b

Sλ

a, b, c

S0

q1

q2

q3

q4

q5

q6

q7

a

b

a

c

S00

q1

q2

q3

q4

q5

q6

q7

a

b

(b)

S♭
λ

q̂ p̂

r̂

a, b

a

(c)

Ŝ♭
λ

q̂

p̂

r̂

Figure 5.11: A hierarchical transition system that illustrate Remark 5.4, (a) The hier-
archical schema S, (b) the semantics S♭

λ of Sλ, (c) the semantics Ŝ♭
λ of Sλ when S00 is

replaced by the cover abstraction Ŝ00 induced by the partition {q̂, p̂, r̂}.
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Proof. Recall that Q̂♭
λ is a cover of Q♭

λ. The proof that the initial and final abstract states

of [[Ĥ]] are those of the cover abstraction induced by Q̂♭
λ is the same as in Lemma 5.5.

It remains to show that the transition relation
e
→֒λ of [[Ĥ]] satisfies q̂

e
→֒λ r̂ if and only if

q
e
→֒λ r for some q ∈ q̂ and r ∈ r̂. Consider a transition q̂

e
→֒λ r̂ in Ŝ♭

λ. For every u ∈ t,

we get from Lemma 5.8 that q̂(u)
e(u)
→ u r̂(u), hence, since Ŝu is a cover abstraction of Su,

there exists qu ∈ q̂(u) and ru ∈ r̂(u) such that qu
e(u)
→ u ru. Let q ∈ Q♭

λ and r ∈ Q♭
λ be

such that q(u) = qu and r(u) = ru for all u ∈ t. Observe that q ∈ q̂ and r ∈ r̂. We obtain

from Proposition 5.6 that q
e
→֒λ r. It follows that:

q̂
e
→֒λ r̂ ⇔ ∃(q, r) ∈ (q̂ × r̂) · q

e
→֒λ r

which entails that Ŝ♭
λ is the cover abstraction of S♭

λ induced by the cover Q̂♭
λ. Neatness

of Ŝ♭
λ follows from Proposition 5.6.

5.3.3 CEGAR algorithm for neat covers

By the result of the previous section neat hierarchical coverings are a suitable basis for a
CEGAR algorithm. Actually we will show that the same algorithm as in the priority-free
case works. For this we need to understand how to refine neat covers, and how to find if
an abstract path is spurious.

It turns out that refinement is completely unproblematic for neat covers.

Lemma 5.9. If Ĥ is a neat hierarchical covering of H, then every refinement of Ĥ is
neat.

Proof. Given two cover abstractions Ŝ1, Ŝ2 of a transition system S, if Ŝ2 refines Ŝ1 then
every abstract state of Ŝ2 is contained in some abstract state of Ŝ1. Hence, neatness of Ŝ1

entails neatness of Ŝ2. This property obviously carries over to hierarchical coverings.

The other good news is that verifying feasibility of a path is as easy as in priority-free
cases

Lemma 5.10. Let π̂ = q̂0, e1, q̂1, . . . , en, q̂n be an abstract path in [[Ĥ]]. If Ĥ is neat, then
π̂ is feasible in [[H]] if and only if3 π̂(v) is feasible in Sv for all v ∈ t.

Proof. Assume that π̂ is feasible in S♭
λ. There exists a path q0, e1, q1, . . . , en, qn in S♭

λ

such that qi ∈ q̂i for all 0 ≤ i ≤ n. It follows from Lemma 5.8 that, for every 0 < i ≤ n

and v ∈ t, (qi−1(v)
ei(v)
→ v qi(v)). This means that π̂(v) is feasible in Sv for all v ∈ t.

Conversely, assume that π̂(v) is feasible in Sv for all v ∈ t. For every v ∈ t, there
exists a path qv,0, e1(v), qv,1, . . . , en(v), qv,n in Sv such that qv,i ∈ q̂i(v) for all 0 ≤ i ≤ n.
Let us define qi ∈ Q♭

v, for 0 ≤ i ≤ n, by qi(v) = qv,i. Observe that qi ∈ q̂i for all

0 ≤ i ≤ n. It follows from Proposition 5.6 that qi−1
ei
→֒λ qi for every 0 < i ≤ n. This

means that π̂ is feasible in Sλ.

3Recall that π̂(v) = q̂0(v), e1(v), q̂1(v), . . . , en(v), q̂n(v).
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These two lemmas show that we can simply use the same algorithm as in priority-free
case.

Proposition 5.7. If the initial abstraction is neat then HierarchicalCegar algorithm in
Figure 5.9 is correct and terminates.

In conclusion, once we get an initial abstraction that is neat the CEGAR algorithm in
the general case is as simple and efficient as in the priority-free case. In the next section
we will see how to manipulate abstractions on systems represented symbolically.

5.4 Hierarchical abstractions in AltaRica

In this section we discuss how to represent and manipulate abstractions in AltaRica (see
Chapter 2). We start by describing a method that allows us to go from an AltaRica
node to a hierarchical transition system and vice versa. We also propose two practical
methods to obtain a neat abstraction from a AltaRica node description. Finally we
discuss possible refinement methods.

Here we restrict ourselves to AltaRica nodes whose assertion does not refer to the
variables of its subnodes. This restriction simplifies the translation of an AltaRica node
into a hierarchical transition system. When an assertion of a node constrains variables
of subnodes, then the assertion influences the semantics of subnodes. This feature would
complexify substantially our translation method while its usefulness is limited.

5.4.1 AltaRica Nodes Viewed as Hierarchical Transition Systems

An AltaRica node is hierarchical, thus viewing an AltaRica node as a hierarchical tran-
sition system is quite natural. Recall that an AltaRica node is a (6 + n + 1)-tuple
N = 〈V,Σ, G,4, δ, I, A,N0, . . . , Nn〉, where V is a set of variables, Σ is a set of events, G
is a set of guarded transitions, 4 is a partial order over Σ that defines a priority relation,
δ is a set of synchronization vectors, I is an initial condition, A is an assertion over the
variables of V , and N0, . . . , Nn are AltaRica subnodes (see Chapter 2 Section 2.2).

Our goal is to obtain a hierarchical transition system whose semantics is identical
to the original AltaRica node semantics. To this end, we need to define a suitable
hierarchical schema S together with transition systems that we attach to the nodes of S.

Extracting a hierarchical schema S from an AltaRica node N is straightforward. Yet
some issues need to be taken care of in order to obtain a proper hierarchical transi-
tion system: the naming of the nodes in the hierarchical schema, and defining proper
synchronization vectors.

Given an AltaRica node N , we do a depth-first traversal of the AltaRica node, and
we define, for each encountered AltaRica node, an associated node in the hierarchical
schema S under construction as follows:

1. Create a node λ in S

2. Set v = λ
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3. Set Σv = ΣN , 4v = 4N , and δv = δN

4. For each subnode Ni of N create a node vi in S

5. For each subnode Ni of N , set N = Ni, v = vi, and go to back Step 3.

The construction method is simple, it generates a schema with the same hierarchical
structure as an AltaRica node N . The first two steps create the λ node of the schema, and
set it as the current node (v) to generate. The third step sets the elements of the schema
node v to their corresponding counterparts of the AltaRica node N . Then successors
to v are added for each subnode of the AltaRica node N . Finally, step 5 updates the
schema node v and the AltaRica node N to continue the schema generation process.

To obtain a hierarchical transition system that is similar to our AltaRica node N ,
we need to label each node of the hierarchical schema with a suitable transition system.
This is done as follows. Let Nv = 〈Vv,Σv, Gv,4v, δv, Iv, Av, N0, . . . , Nn〉 be the AltaRica
node that gave rise to the node v in S. The transition system Sv that labels v is defined
as the semantics Sv = [[Ñv]] of the detached AltaRica node Ñv given by:

Ñv = 〈Vv,Σv, Gv,=, ∅, Iv, Av〉.

In other words, we isolate the AltaRica node by removing its subnodes, and synchro-
nization vectors. We also remove its priority relation in order to maintain all possible
transitions at the local level, useless transition (those that will be eliminated due to the
priority relation) will be eliminated when computing the semantics of the hierarchical
transition system.

Example

To illustrate the translation method we just proposed, let us apply it to the AltaRica
running example of Chapter 2: the AltaRica node description of a Stack of three cells
given in Figure 2.13(a).

The hierarchical schema S that we associate to our Stack3 AltaRica node is built as
follows. We create a λ node and set Σλ to ΣStack3∪{ε}, and 4λ to 4Stack3 (steps 1 through
3). The nodes 0 and 1 are added to S as the successors of λ and represent respectively
the AltaRica sub nodes of Stack3, Stack1, and Stack2 (step 4). The synchronization
vectors of the λ node are created with respect to the synchronization vectors of Stack3.
For instance 〈pushT, Top.push〉 becomes (pushT, push, ε). The current AltaRica node
becomes Stack1, and the node of S becomes 0 and the procedure goes back to step 3.
Once done we obtain the resulting hierarchical schema S given in Figure 5.12(a). The
nodes λ, 0, 1, 10, 11 represent respectively the AltaRica nodes: Stack3, Stack1, Stack2,
Stack1, and Stack1.

To finish the construction of our hierarchical transition system we need to associate
to each node of S a transition system. Note that when isolated as presented above the
AltaRica nodes Stack3 and Stack2 describe an identical transition system Sa that is given
in Figure 5.12(b). This transition system will label the nodes λ and 1. The AltaRica node
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Stack1 describes the transition system Sb and is given Figure 5.12(c). This transition
system labels the nodes 0, 10, and 11. This assignment is given in Figure 5.12(d).

We have seen how we can obtain an hierarchical transition system from an AltaRica
node. We now turn our attention to abstraction methods for AltaRica nodes.

5.4.2 Abstracting a Leaf AltaRica Node

Predicate abstraction [GS97] is a particular instance of cover abstraction, where the cover
is the partition induced by a finite collection of subsets of the state space. In practice, the
partition is not constructed explicitly. Instead, each equivalence class is represented by a
bit vector, and, accordingly, predicate abstractions are constructed and explored symbol-
ically. In this section, we show how to compute neat predicate abstractions of AltaRica
nodes. Encoding these abstractions by AltaRica nodes themselves isn’t straightforward,
since assignments in AltaRica are deterministic. So we first present predicate abstrac-
tions in terms of boolean transition systems, and then we discuss their representation by
AltaRica nodes.

Consider a leaf AltaRica node N = 〈V,Σ, G,=, ∅,A, I〉 and a finite set P of first-
order formulas over the variables V of N . Recall that the semantics of the AltaRica node
N (see Chapter 2.2.1) is given by the transition system [[N ]] = 〈Q,Σ,→, I〉 where each
state of Q is a configuration of the AltaRica node N . Each predicate p ∈ P defines a
subset of Q, namely the set {q ∈ Q | q |= p}. Therefore, the set of predicates P induces,
in a natural way, a partition of the state space Q. This partition corresponds to the
equivalence relation ≡ on Q defined by q ≡ q′ if q and q′ satisfy the same predicates of P .
As mentioned before, the predicate abstraction of N with predicates P is nothing more
than the cover abstraction of [[N ]] induced by this partition. Observe that the number
of states of the predicate abstraction is, in the worst case, exponential in the size of P .
Therefore, predicate abstractions must be computed (and explored) in a symbolic way.

Following the classical approach of [GS97], we introduce a (fresh) boolean variable bp
for each predicate p ∈ P . Intuitively, each bp represents the truth value of p (i.e., bp is
true when p holds, and is false otherwise). Let BP denote the set BP = {bp | p ∈ P}.

An element of the above-mentioned partition induced by P is, therefore, a valuation ~b
of the variables in BP (i.e., a function from BP to {true, false}). The abstraction of a
concrete configuration ~v is the valuation ~b that maps each bp to the truth value of p in
~v. This abstraction relationship is expressed by the following first-order formula:

α(~v,~b) ,
∧

p∈P

bp ⇔ p(~v)

Recall that covers of Q may not contain the empty set. Correspondingly, we restrict
the state space of the predicate abstraction to those valuations that are the abstraction
of some concrete configuration. This condition is formally expressed by the first-order
formula AP defined by:

AP (~b) , ∃~v · (A(~v) ∧ α(~v,~b))
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S

λ

{

pushT ;
popT ;
pushS ;
popS ; ε

},
pushT ≺ pushS

popS ≺ popT
, {

(pushT , push, ε); (popT , pop, ε);
(pushS , ε, pushT ); (pushS , ε, pushS);

(popS , ε, popT ); (popS , ε, popS)
}

0

{push; pop; ε}, ∅, ∅

1

{

pushT ;
popT ;
pushS ;
popS ; ε

},
pushT ≺ pushS

popS ≺ popT
, {

(pushT , push, ε);
(pushS , ε, push);
(popT , pop, ε);
(popS , ε, pop);

}

10

{push; pop; ε}, ∅, ∅

11

{push; pop; ε}, ∅, ∅

(a)

ba

push

pop

ε εε

pop

push

(c)

Sb

pushT , pushS , popT , popS , ε

(b)

Sa

Node Transition System
λ

Sa1
0

Sb10
11

(d)

Figure 5.12: An hierarchical transition system that models a stack, (a) The hierarchical
schema S, (b) the transition systems Sa links two stacks, (c) the transition system Sb

that models a stack that can contain an object a or an object b, (d) the mapping table
that matches each node of t to a transition system.
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Similarly, initial abstract states are the valuations that are the abstraction of some con-
crete initial configuration. This condition is formally expressed by the first-order formula
IP defined by:

IP (~b) , ∃~v · (A(~v) ∧ I(~v) ∧ α(~v,~b))

To complete the symbolic representation of the predicate abstraction, we express its
labeled transition relation by the first-order formula TP as follows:

TP (~b, e,~b
′) ,

∨

(g,e,u)∈G

∃~v ∃~v′ · (A(~v) ∧ A(~v′) ∧ g(~v) ∧ ~v′ = u(~v) ∧ α(~v,~b) ∧ α(~v′,~b′))

Put differently, given two valuations ~b,~b′ : BP → {true, false} and an event e of Σ,
the triple (~b, e,~b′) satisfies the formula TP if and only if there exists an AltaRica transition
(g, e, u) of G and two valuations ~v,~v′ : V → D(V ) that satisfy following conditions:

• ~v and ~v′ are configurations of N ,

• ~v satisfies the guard g,

• ~v′ satisfies the post condition of the transition w.r.t. ~v, and

• ~v and ~v′ are abstracted by ~b and ~b′, respectively.

The quintuple NP = 〈BP ,Σ, TP ,AP , IP 〉 is what we meant previously by symbolic
representation of the predicate abstraction. Indeed, the obvious labeled transition system
providing the operational semantics of NP is readily seen to be “isomorphic” to the
predicate abstraction of N with predicates P . Note that NP is not an AltaRica node
per se, since the formula TP expressing the transition relation is not deterministic. In
order to use existing model-checking tools for AltaRica, it is desirable to have abstraction
techniques that produce abstractions expressible in AltaRica. So we now address this
issue and present two methods for encoding symbolic predicate abstractions as AltaRica
nodes.

Transition Decomposition

The first method decomposes the transition relation TP so that we only get determin-
istic assignments. To this end, we iterate over all possible updates of the boolean vari-
ables BP , and construct AltaRica transitions for each update. Formally, the AltaR-
ica node produced by the transition decomposition method is the quintuple NTrans

P =
〈BP ,Σ, G

Trans
P ,=, ∅,AP , IP 〉 where all variables are state variables and the set of AltaR-

ica transitions GTrans
P is defined by:

GTrans
P ,

⋃

~b′:BP→{true,false}

{(TP (~b, e,~b
′) ∧ ~b′ = ~b′, e,~b := ~b′) | e ∈ Σ}

Unfortunately, this method leads to an exponential blow-up in the number of AltaRica
transitions.
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Flow Decomposition

The second method overcomes the limitation of deterministic assignments with the help
of flow variables. Here, the boolean variables BP will be flow variables, and the assertion
of the constructed AltaRica node will guarantee that changes of these flow variables are
legitimate. Formally, the AltaRica node produced by the flow decomposition method is
the quintuple NF low

P = 〈BP ∪ {ap | p ∈ P} ∪ {last},Σ, GF low
P ,=, ∅,AF low

P , IP 〉 where
BP are flow variables and all other variables are state variables. The ap and bp variables
are boolean, and last ranges over the set of events Σ. The ap variables are used to
maintain the previous value of the bp variables, and the variable last keeps track of the
event labeling the last fired transition. With these variables, we can use the assertion to
express the transition relation TP . The AltaRica transitions GF low

P and assertion AF low
P

are defined as follows:

GF low
P , {(true, e,~a := ~b, last := e) | e ∈ Σ}

AF low
P ,

∧

e∈Σ

last = e⇒ TP (~a, e,~b)

Remark that the additional variables ap and last are not constrained by the initial
condition IP . Compared to the first method, the flow decomposition method is more
succinct. However, the semantics [[NF low

P ]] is not isomorphic to the predicate abstraction
anymore. This is due to the additional variables that lead to a duplication of the abstract
states. This kind of redundancy cannot be captured by our cover abstraction formalism,
but the latter could be easily generalized to manage such duplications.

Elimination of Existential Quantifications

In the transition decomposition and flow decomposition methods, existential quantifiers
may appear in the guard and the assertion of a node due to the use of the formulas
TP ,AP , and Ip. The AltaRica language does not support quantifiers and, therefore, we
need to eliminate them. This task can be performed in various ways:

• With the help of a SAT solver, we can compute all boolean valuations satisfying the
existentially quantified formula, and compute an equivalent propositional formula,

• When the formula falls in a class that admits quantifier elimination, such as Pres-
burger arithmetic, we can simply use an external dedicated tool for this task.

5.4.3 Neat Covers

We now define a set of predicates that will allow us to generate a neat cover abstraction of
an AltaRica node using our transition decomposition and flow decomposition abstraction
methods.

The abstraction we intend to use, is an AltaRica node obtained by the transition,
or flow decomposition methods. These methods generate an AltaRica node based on a
predicate abstraction. We therefore need to define a set of predicates whose predicate
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abstraction will induce a neat cover abstraction. From its definition, it is clear that
to this end, we need to characterize with our predicates the configurations that can
fire a transition labeled with the same events. More formally, given an AltaRica node
N = 〈V,Σ, G,=, ∅,A, I〉, for each event e ∈ Σ we define a predicate pe as follows:

pe(~v) = A ∧
∨

(g,e,u)∈G

g ∧ [~v := u(~v)]A

Such a predicate is called event predicate, and the set all event predicates is written PΣ.
As the name suggest it, such a predicate says if there is an outgoing transition labeled
with the associated event. This is quite natural since from Definition 5.7, neatness is
defined with respect to outgoing transitions. So each event predicate pe characterizes the
configurations of the AltaRica node (that is valuations of D(V ) that satisfy the assertions
A) that can fire a transition labeled with the event e (i.e., that satisfy the guard g, and
whose update u is a configuration). With the help of these predicates obtaining an neat
cover abstraction of the semantic of a AltaRica node is straightforward. Summarizing
we obtain:

Given an AltaRica node N , and PΣ its set of transition predicates. The predi-
cate abstraction of [[N ]] with predicates PΣ is a neat cover abstraction of [[N ]].

It follows that with the help of event predicates, we can easily obtain a neat cover
abstraction of an AltaRica node. Now equipped with a abstraction method that can
give us our initial abstraction, we can turn our attention to the refinement of these
abstractions.

5.4.4 Refinement of Abstract Detached AltaRica Nodes

We have seen how to translate an AltaRica hierarchical node into a hierarchical transition
system, and how to abstract detached AltaRica nodes. When a hierarchical transition
system is verified by the HierarchicalCegar algorithm, a refinement of one of the transition
systems is required when a spurious abstract path has been detected. We now turn our
attention to this refinement step, when HierarchicalCegar algorithm is used to verify an
AltaRica hierarchical node.

Let us go back to the HierarchicalCegar algorithm given in Figure 5.9. In this algorithm,
when a spurious abstract run π̂ is detected Line 3, with the help VerifyHierarchicalPath

algorithm a transition system Ŝu in the hierarchy is selected to be refined Lines 6-7.
Thanks to VerifyHierarchicalPath we know that the abstract path π̂(u) is a spurious abstract
path of Ŝu. We therefore need to refine this neat cover abstraction.

First note that the refinement methods presented in Chapter 4.3.2 can be applied, but
when dealing with an hierarchical transition system induced by a hierarchical AltaRica
node, we can go one step further an delegate this step to an external tool. As we have
seen previously in this section, it is possible to abstract an AltaRica node description into
another AltaRica node description with the help of a set of predicates. Recall that each
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AltaRica node of the hierarchy is abstracted with its own predicates. The refinement we
propose here is the “usual” extension of this set of predicates Pu with one or more new
predicates that eliminates π̂(u) from Run(Ŝu). Extending a predicate abstraction with
new predicates clearly falls into our refinement setting presented in Section 5.2.1.

Various tools and methods to discover such predicates are available (see Chapter 3.2.3),
a particularly suitable approach was proposed by McMillan in [McM04] where invariants
where generated with the help of Craig interpolants and a theorem prover out of a spuri-
ous abstract run. Another similar approach is the the path invariants method [BHMR07]
proposed by Beyer et al. Once the new boolean predicate is discovered, we can abstract
once again the AltaRica hierarchical node an resume the verification process of Hierar-

chicalCegar. As a final remark, note that thanks to our boolean abstraction method, we
can translate the abstraction of the AltaRica node directly into the formalism of external
tools like NuSMV [CCG+02] and FOCI [McM04].

5.5 Concluding remarks

In this section we have considered the situation where we want to apply CEGAR algo-
rithm to a hierarchical transition system. We wanted to do this without calculating the
semantics of the hierarchical system. We have proposed to use hierarchical abstractions.
This has three advantages: an abstraction is represented in a succinct way, it is easy to
verify if an abstract path is spurious, the abstraction reflects the logical structure of the
system.

One may ask what happens if we would like to use standard, not hierarchical, ab-
stractions. For this we need to be able to provide an initial abstraction, and verify if
an abstract path is spurious. In case of priority-free systems this would be rather easy:
the same algorithm presented in Section 5.2.2 can be used to test if a path is spurious.
Calculating initial abstraction is relatively simple too. In the presence of priorities the
task is much more difficult. In particular, it is not clear how to efficiently calculate the
initial abstraction. By definition, this should be one state system with all transitions
that exist in a real system. At present, we do not know an easier way to calculate it than
to essentially calculate the semantics of the system.
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Implementation

Introduction

The standard Cegar algorithm and our PCegar algorithm have been implemented in Mec
5.3 (Mec 5 for short). This implementation served to us to benchmark the algorithms on
a set of test models. We have also applied our CEGAR algorithms on a large industrial
model. This chapter is dedicated to the presentation of Mec 5, and the implementation
of the CEGAR algorithms. We start in Section 6.1 by a presentation of Mec 5. The
implementation of the CEGAR algorithms is the focus of Section 6.2. A detailed analysis
of the benchmarks is given in Section 6.3. The same section presents an industrial model
we have treated using our tools.

6.1 Mec 5

Mec 5 [Vin03, GV04] is a relation computation tool usually used as an AltaRica model
checker. Mec 5 have been developed by Aymeric Vincent as part of his PhD thesis [Vin03].
Since its original release in 2003, Mec 5 have been used in many research projects.
Among them, Claire Pagetti [Pag04] implemented in Mec 5 verification methods for the
timed extension of AltaRica she proposed. Romain Bernard [Ber09] used Mec 5 for
RAMS (Reliability Availability Mutability and Security) studies. More recently, Nicolas
Aucouthurier tested a BDD interpolation based CEGAR refinement method [Auc08] in
our CEGAR extension of Mec 5.

AltaRica nodes are the standard input of Mec, but a user can also define an n-array
relation with the Mec specification language. This specification language, allows the user
to define relations using first-order logic together with the µ-calculus least fix point (µ)
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and greatest fix point (ν) operators1. Thanks to these operators, it is simple to perform
a model checking tasks with Mec 5. Most often it is done as follows: An AltaRica node is
loaded in Mec 5, and a property P is specified (in most cases, it is a unary relation over
the set of configurations of the node). The AltaRica node defines a transition system
model M together with the set of initial states of the model. The objective of verification
is to check if P holds in all states reachable from the initial states of the model. This
can be done in two ways:

Forward verification Compute all the reachable configurations from the initial states
of the model.

Backward verification Compute the coreachable configurations from the “error” states
(the configurations not satisfying P ).

Once one of these two sets is calculated by Mec 5 a simple set intersection test permits
to conclude. We now present in more details the use of Mec 5 with AltaRica nodes.

6.1.1 AltaRica Nodes & Mec 5

As we have said, Mec 5 is a relation computation tool. Relations in Mec 5 are managed
with the help of a custom BDD package. We refer the interested reader, to the PhD thesis
of Aymeric Vincent [Vin03] for a detailed presentation of this BDD package. Relations
are the basic objects of Mec 5. They are used to represent the semantic of an AltaRica
node. The semantic of an AltaRica node is obtained using the semantic composition
method presented in Chapter 2 Section 2.2.2. In Mec an AltaRica node defines data
types accessible to the user, among them we have the configurations, and the transition
relation. The following listing illustrates the use of Mec 5:

[mec] :ar-load ./Stack3.alt // Load
[mec] configurations(s : Stack3!c) := true;

configurations: (Stack3!c) -> bool
[mec] :rel-cardinal configurations

cardinal of configurations: 27
[mec] :rel-cardinal Stack3!t

cardinal of Stack3!t: 91

In this Mec 5 session, we start by loading the AltaRica node Stack3 of Figure 2.13(a)
of Chapter 2 with the ar-load command. Once the node is loaded, we then define the
relation configurations that represents the configurations of Stack3. Then with the
help of the command rel-cardinal we obtain the cardinal the relation configurations,
and the relation Stack3!t that represents the transition relation of Stack3. In our
example we have 27 configurations and 91 transitions.

Continuing with this Mec 5 session, we can compute the reachable configurations of
our Stack3 node as follows:

1This logic is also known as the Park’s µ-calculus.
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[mec] PostStarOfInit(s:Stack3!c) += Stack3!init(s) |
<x>( PostStarOfInit(x) & <e>(Stack3!t(x,e,s)));

Stack3!init: (Stack3!c) -> bool
Stack3!t: (Stack3!c, Stack3!ev, Stack3!c) -> bool
PostStarOfInit: (Stack3!c) -> bool

[mec] :rel-cardinal PostStarOfInit
cardinal of PostStarOfInit: 15

The relation PostStarOfInit characterizes the reachable configurations of Stack3
from its initial configurations (obtained with the predicate Stack3!init(s)). This relation
is defined in a standard way with the help of the least fix point operator +=, and the
transition relation of the AltaRica node: Stack3!t. The set of reachable configurations
of Stack3 is not empty, more precisely there are 15 reachable configurations. We can
check a property on our Stack3 AltaRica node. For example, we will verify (model
check) that in Stack3 the Top subnode cannot hold an element if the Stack subnode is
empty. To do so, we define in Mec the relation Err as follows:

[mec] Err(s : Stack3!c) := s.Top.object != no &

(s.Stack.Top.object = no & s .Stack.Stack.object = no);
Err: (Stack3!c) -> bool

[mec] :rel-cardinal Err
cardinal of Err: 2

[mec] ReachErr(s : Stack3!c) := PostStarOfInit(s) & Err(s);
ReachErr: (Stack3!c) -> bool

[mec] :rel-cardinal ReachErr
cardinal of ReachErr: 0

The Err relation characterizes the undesired configurations of our Stack3 node:
the subnode Top is not empty (the clause s.Top.object! = no), but the Stack subnode
is empty (the clause s.Stack.Top.object = no& s.Stack.Stack.object = no). The Err
relation contains two configurations: the Top subnode holding an object of type a or
b, and the objects of the Stack subnode set of no. The ReachErr relation is defined
in order to determine the configurations that belongs to the PostStarOfInit and Err
relations (a set intersection). Finally, the command rel-cardinal allows us to conclude
that these undesired configurations are not reachable. Hence, the Stack3 node satisfies
the property.

Now that we have seen Mec 5 in use, we will briefly go over its implementation, and
describe our CEGAR extension.

6.1.2 Mec 5 & CEGAR

Mec 5 is written in C. The code is organized in modules that manage each of its data types
or functions. The basic component of Mec 5 is the relation type. Relations are managed
in Mec 5 with the help of an custom BDD module. AltaRica nodes for instance are defined
with the help of relations. For a given AltaRica node, three relations are defined: the
set of configurations, the set of events, and the transition relation. Once these relations
are defined, Mec 5 allows us to compute user defined expressions over these relations.
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Another point of interest of Mec 5 is its memory management: a garbage collector is
implemented within Mec 5. This is classical in based BDD tools since large amount
of memory can be allocated and freed often. The use of a garbage collector minimizes
system calls, and speeds the application. On the other hand, garbage collectors may
maintain unused memory (until a certain threshold is reached) and artificially increase
memory need.

As all BDD tools Mec 5.2 (the latest release before its extension with our CEGAR
methods) may of course not terminate on large models: it could be that the representation
of the set of reachable configurations of the model is simply too big. In this case, while
computing PostStarOfInit relation from our running example MEC would report an
insufficient memory message. This is a well-known BDD-blowup problem (see [Vin03]
for examples). Indeed, the number of nodes of a BDD can grow exponentially, due to
the conjunction and disjunction operation occurring during the computation of the fix
point.

Our CEGAR extension of Mec 5 is intended to mitigate this blowup problem. The
CEGAR algorithms are build upon the preexisting modules of Mec 5 (BDDs, AltaRica...).
The algorithms take advantage of the concise representation offered by the BDDs, while
avoiding (as much as possible) the computation of the reachable configurations of the
model under analysis.

The CEGAR Extension

The CEGAR extension implemented in Mec 5 is composed of about 4000 lines of code. Its
modular decomposition permits a simple and quick extension of the algorithm in a “plu-
gin” way. Naturally, the decomposition of the data structure: abstractions, and abstract
counterexamples, and its functional aspect: abstract counterexample search methods, ab-
stract counterexample verification methods, and abstraction refinement methods follow
the CEGAR scheme (see Figure 3.2).

This decomposition allowed us to implement the Cegar and PCegar algorithms of Chap-
ter 4 in a generic way: the CEGAR loop is a single method parameterized with the prun-
ing (and certified pairs inference) steps to perform. The method implementing the loop
calls the different modules implementing the functional aspect of the CEGAR loop. Each
module defines a clear input/output interface that must be implemented by the functions
performing the task. The various functions implementing a module are registered and
can be selected by the CEGAR loop wrt user specified options. This clear decomposition
and interface definition ease the extension of the CEGAR algorithms. We now present
the different steps of our CEGAR algorithm for the verification of AltaRica nodes.

Abstractions. An abstraction of an AltaRica node is represented with the help of an
explicit transition system: Unlike the configurations and the transition relation of an
AltaRica node that are represented as relations, the set of states and transitions are
implemented as a collection of objects. The set of states is induced by the abstraction
method: Either a boolean predicate abstraction (see Chapter 3 Section 3.2.1) or a cover
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abstraction (see Chapter 4 Section 4.1.1). Each state of the abstraction is associated to a
Mec 5 relation that represents a set of configurations (given by the abstraction method).
The transition relation is the classical existential ∃∃ transition relation induced by the
abstract state space (see Chapter 4 Section 4.1.1). Once computed the abstraction is
used by the counterexample search method.

CounterExamples Verification. A counterexample is a sequence of states and tran-
sitions that forms a path in the abstraction. The feasibility verification of an abstract
counterexample extends this path with the reachable (or coreachable) configurations
computed during the verification of the path. If proven spurious, the counterexample
together with the abstraction are sent to the refinement method.

Abstraction Refinement. The goal of the abstraction refinement methods is to elim-
inate the spurious counterexample found be the counterexample search method. Classi-
cally, the refinement methods modify the set of states of the abstraction. In our imple-
mentation, once the set of states modified, the refinement methods return to a transition
relation refinement method the “removed” state, and the new ones.

Transition Relation Refinement. The refinement of the transition relation is per-
formed as follows: The incoming and outgoing transitions of the eliminated state, are
redistributed over the new states. This optimization allows us to avoid useless computa-
tions of a new transition relation for our abstraction.

6.2 The CEGAR Implementation in Mec 5

First, we have extended Mec with the classical CEGAR framework as presented in Sec-
tion 3.2. Our implementation of the CEGAR framework allows to compute an abstraction
of a AltaRica model for a given safety property. Then, the CEGAR loop is implemented
classically: extraction of an abstract counterexample, verification of the abstract coun-
terexample, and if proven spurious the abstraction is refined to eliminate the abstract
counterexample.

6.2.1 Abstraction

For a given AltaRica model, a set of initial states, a safety property, and a set of predi-
cates, an initial abstraction is computed using the command ar-cegar-init. The syntax
of the command is:

:ar-cegar-init <AltaRica Node> <Initial States> <Error States> [P1, . . . , Pn]
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The arguments are:
Argument Description

AltaRica Node Name of the AltaRica node to analyze.

Initial States A predicate that defines the set of concrete initial states
to consider.

Error States A predicate that defines the set of concrete states that
violate the safety property.

P1, . . . , Pn A list of predicates.

The command produces either a boolean predicate abstraction (see Section 3.2.1), or
a cover abstraction (see Section 4.1.1).

When set to generate a boolean predicate abstraction, the ar-cegar-init computes
the set of abstract states as a partition of the concrete state space. As in [GS97] the
predicates P1, . . . , Pn are used to induce equivalence classes over the AltaRica node con-
figurations: two configurations are abstracted by the same abstract state if they cannot
be distinguished w.r.t. the input predicates (i.e. they satisfy the same set of predicates).

When set to generate a cover abstraction, the ar-cegar-init command computes
the set of abstract states as follows: for every predicate Pi an abstract state is defined
which represents all configurations satisfying the predicate. Additionally, if the union of
all abstract states does not cover the AltaRica node configurations, a new abstract state
is added and is defined as the complement of all previously defined abstract states.

By default, a boolean predicate abstraction is computed by the ar-cegar-init com-
mand. To generate a cover abstraction the option: cegar-use-cover-abstraction must
be set prior to any call of the ar-cegar-init command.

:set cegar-use-cover-abstraction
:ar-cegar-init Node Init Error P1, . . . , Pn

The transition relation of the abstraction is a classical existential abstract transition
relation.

Mec 5 defines two transition relations: a standard transition relation, and a “super”
transition relation. The super transition relation does not take into account the node
assertion. Yet it is sound to manipulate the super transition relation as long as the
AltaRica node does not use priorities. For more details about the super transition relation
the reader is referred to Mec 5 documentation [Mec10].

By default, the ar-cegar-init command will use the classical transition relation to
compute the abstract transition relation. In order to use the super transition relation
instead, the option cegar-use-super-transition must be set prior to any call of the
ar-cegar-init command.

:set cegar-use-super-transition
:ar-cegar-init Node Init Error P1, . . . , Pn

A method is also available to automatically generate predicates from an AltaRica
node. This generates all the predicates that occur in the guards of transitions of the
AltaRica node. For moderately complicated models this can give of an order of a hun-
dred predicates. Note that when ar-cegar-init command computes a boolean pred-
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icate abstraction with n predicates, there is up to 2n abstract states that are gener-
ated. Hence, if n is large it is preferable to use cover abstractions. To use this option
cegar-use-guards-as-predicates must be set prior to any call of the ar-cegar-init

command.

:set cegar-use-guards-as-predicates
:ar-cegar-init Node Init Error

6.2.2 Counterexample extraction

At each iteration of the CEGAR loop, an abstract counterexample is extracted. This
counterexample is extracted from the abstraction using a graph search algorithm. We
have implemented in our CEGAR framework two classical graph search algorithms:
breadth first search (BFS) and depth first search (DFS). To select a counterexample
search algorithm the option cegar-search-algorithm must be set. The default value is
BFS, to use DFS instead the option must be set to DFS as follows:

:set cegar-search-algorithm DFS

6.2.3 Counterexample analysis

Once an abstract counterexample have been selected, it has to be analyzed in order to
determine if it is spurious or not. The forward analysis algorithm VerifyPath (see Chapter 3
Section 3.2.2) have been implemented to this end. The pseudo code of the implemented
algorithm is given in Figure 6.1. A dual algorithm, that performs a backward analysis
of the abstract counterexample: from the final state back to the initial state has also
been implemented (the pseudo code is given in Figure 6.2). In our implementation, these
algorithms return the position of the failure state within the abstract counterexample,
as well as the set of concrete reachable (resp. coreachable) states for each abstract state
from the initial (resp. final) abstract state to the failure state when using the forward
(resp. backward) counterexample analysis algorithm.

CE-Forward-analysis (S, π̂)

Input: A transition system S, an abstract counterexample π.

1 T [0] = q̂0 ∩ I
2 i = 1
3 while i ≤ |π| ∧X 6= ∅ do
4 i = i+ 1
5 T [i] = post(T [i− 1]) ∩ q̂i
6 done

7 if i = |π|
8 return (−1,T)
9 else

10 return (i,T)

Figure 6.1: The forward counterexample analysis pseudo code.
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CE-Forward-analysis (S, π̂)

Input: A transition system S, an abstract counterexample π.

1 T [n] = q̂n ∩ F
2 i = n
3 while i > 0 ∧X 6= ∅ do
4 i = i− 1
5 T [i] = pre(T [i+ 1]) ∩ q̂i
6 done

7 if i = 0
8 return (−1,T)
9 else

10 return (i,T)

Figure 6.2: The backward counterexample analysis pseudo code.

To select a counterexample analysis algorithm the option cegar-ce-analysis must
be set. The default value is FORWARD, to use backward algorithm instead the option must
be set to BACKWARD as follows:

:set cegar-ce-analysis BACKWARD

6.2.4 Abstraction Refinement Heuristics

Once a counterexample is exhibited, the user can automatically refine the current ab-
straction. The current release of the CEGAR framework implemented in Mec 5 proposes
two refinement heuristics: the direct, and sigma heuristics. These heuristics split the
failure state identified by the counterexample analysis algorithm into two new abstract
states. The new abstract states form a partition of the failure state.

Abstract States Refinement Heuristics

In order to present the refinement heuristics, we consider a spurious abstract counterex-
ample π̂ = q̂0, q̂1, . . . , q̂n. The failure state of this counterexample is q̂i, and the set of
reachable (resp. coreachable) concrete states is denoted by F (resp. B). Hence, our for-
ward (resp. backward) analysis algorithm returned (i, F ) (resp. (i, B)) when analyzing
π̂. We will also denote by d̂ the dead end concrete states of the failure state. Hence we
have d̂ = F [i] if π̂ was analyzed using the forward counterexample algorithm, or d̂ = B[i]
if π̂ was analyzed using the backward counterexample algorithm.

The direct refinement heuristic splits the failure state q̂i into two new abstract states:
q̂′ and q̂′′ such that q̂′ = d̂ and q̂′′ = q̂i \ q̂

′. The abstract state space is then re-
fined by eliminating q̂i and adding q̂′ and q̂′′ to Q̂ the set of abstract states. Observe
that the resulting abstraction is dependent on counterexample analysis algorithm. In-
deed, the set of dead end concrete states differs if the counterexample analysis algo-
rithm used performs a forward analysis or a backward analysis. Hence, the direct re-
finement heuristic will generate different refined abstraction depending on the abstract
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counterexample analysis algorithm used. To use direct refinement algorithm the option
cegar-abstraction-refinement-algorithm must be set to DIRECT as follows:

:set cegar-abstraction-refinement-algorithm DIRECT

The sigma refinement heuristic splits the failure state q̂i into two new abstract states:
q̂′ and q̂′′. As for the direct refinement heuristic, the computed abstraction depends
on the abstract counterexample analysis algorithm. If the abstract counterexample was
analyzed using the forward algorithm the new abstract states are defined as follows:
q̂′ = pre(q̂i+1) ∩ q̂i, and q̂′′ = q̂i \ q̂

′. If the backward analysis algorithm was used, the
new abstract states are computed as: q̂′ = post(q̂i−1) ∩ q̂i, and q̂′′ = q̂i \ q̂

′.
To use sigma refinement algorithm the option

cegar-abstraction-refinement-algorithm must be set to SIGMA as follows:

:set cegar-abstraction-refinement-algorithm SIGMA

Abstract Transition Relation Refinement

Once the failure states have been “split” as described above the abstract transition relation
has to be updated. The abstract transition relation is recomputed locally by distributing
the incoming and outgoing transitions of the failure state on the new abstract states.
Hence, we minimize the cost of abstract transition refinement. The pseudo code of the
Distribute algorithm is given in Figure 6.3.

6.2.5 Certified Pairs Inference Methods

In order to infer certified pairs for our PCegar algorithm (see Section 4.4), we implemented
the options presented below. Observe that one does not need to enable all of the following
options in order to see the benefit of our PCegar algorithm.

Initial Certification

A simple method to infer certified pairs is called initial certification. The method relies
on the obvious fact that we have I ⊆ post∗(I) and F ⊆ pre∗(F ). Therefore, for a given
set of abstract states Q̂ we test if an abstract state q̂ ∈ Q̂ satisfies q̂ ⊆ I. If this is the
case, we add q̂ to X̂−. Likewise, if we have q̂ ⊆ F we add q̂ to X̂+.

To enable this certified pair inference method, the option initial-certification

must be set as follows:
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Distribute (S, q̂, q̂′, q̂′′)

Input: A transition system S, the failure state q̂, the new abstract states q̂′, and
q̂′′.

1 in = incoming_transitions(q̂)
2 out = outgoing_transitions(q̂)

3 for each transition →̂ in in do

4 ŝ = source(→̂)
5 if there exists s ∈ ŝ and q′ ∈ q̂′ such that s→ q′ do
6 add a transition from ŝ to q̂′ in the abstraction
7 done

8 if there exists s ∈ ŝ and q′′ ∈ q̂′′ such that s→ q′′ do
9 add a transition from ŝ to q̂′′ in the abstraction

10 done

11 done

12 for each transition →̂ in in do

13 t̂ = target(→̂)

14 if there exists t ∈ t̂ and q′ ∈ q̂′ such that q′ → t do

15 add a transition from q̂′ to t̂ in the abstraction
16 done

17 if there exists t ∈ t̂ and q′′ ∈ q̂′′ such that q′′ → t do

18 add a transition from q̂′′ to t̂ in the abstraction
19 done

20 done

Figure 6.3: The abstract transition relation refinement pseudo code.

:set initial-certification

Split Certification

Another method to infer certified pairs for our PCegar algorithm is called split certifi-
cation. In order to extend certified pairs, this method relies on the current abstraction
refinement heuristic. As discussed in Section 4.3.2 the direct refinement heuristic can
be used to infer certified pairs. For instance a new abstract state can be added to X̂−

when direct refinement is used together with the forward counterexample analysis algo-
rithm. Likewise, a new abstract state can be added to X̂+ when direct refinement is used
together with the backward counterexample analysis algorithm.

To enable this certified pair inference method, the option
split-certification must be set as follows:

:set split- certification



6.2.6 – Running the CEGAR Loop 125

Feasibility Certification

During the analysis of an abstract counterexample, subsets of reachable concrete states
(from the concrete initial states), and subsets of the coreachable concrete states (from the
concrete final states) are computed. The forward (resp. backward) analysis algorithm can
be modified to test the abstract states at each step. More precisely, after the execution of
the instruction Line 5 in both forward, and backward counterexample analysis algorithms
Figure 6.1, and Figure 6.2 respectively, we have q̂i = F [i] we can add q̂i to X−, or X+

respectively.

To enable this certified pair inference method, the option
feasibility-certification must be set as follows:

:set feasibility - certification

Must Transitions & Closure

In Section 4.3.1 we have discussed the inference of certified pairs with the help of must
transitions and the closure operation. This method has been implemented and can
be enabled using the cegar-use-must-and-clo option. To enable this certified pair
inference method the option must be set of follows:

:set cegar-use-must-and-clo

6.2.6 Running the CEGAR Loop

Once an abstraction of an AltaRica node have been computed, the CEGAR loop can
be triggered to start the verification process. The CEGAR loop is started using the
command ar-cegar-verify. The syntax of the command is:

:ar-cegar-verify <AltaRica Node> [count]

The arguments are:
Argument Description

AltaRica Node Name of the AltaRica node to analyze.

count The maximal number of iteration to perform.

If the argument count is not specified, the loop will continue until a decision is made:
either the error states are not reachable from the initial states, or they are reachable and
an abstract trace is returned. If the argument count is specified, the loop will stop when
it has performed “count” iterations (or a decision has been made before). If the cegar
loop did not conclude the options (refinement heuristics, . . .) can be modified and the
ar-cegar-verify can be relaunched.

6.2.7 Other CEGAR Commands

For benchmarks and analysis purpose we implemented the following options:

• cegar-print-iteration-stats
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• cegar-abstraction-print

The cegar-print-iteration-stats when enabled prints to the user statistics at
each iteration of the CEGAR loop. The statistics are the following:
Abstraction states Description

Trimming Name of the AltaRica node to analyze.

CounterExample The maximal number of iteration to perform.

State Refinement The maximal number of iteration to perform.

Transition Refinement The maximal number of iteration to perform.

The cegar-abstraction-print command output to a file (using the dot format) the
abstraction obtained at each iteration of the CEGAR loop.

6.3 Benchmarks

Now that the have presented our implementation of the Cegar and PCegar algorithm, we
present in more details the benchmarks proposed in Chapter 4.6, and also present another
set of benchmarks we have performed on a satellite navigation system.

6.3.1 The Burns Model

We start by going over a benchmark model of the Chapter 4.6: the Burns model. This
model is an AltaRica modelization of the Burns mutual exclusion algorithm. We have
seen in Chapter 4 that on this example the PCegar algorithm outperformed the Cegar

algorithm using the Post and Pre refinement methods.

Direct Forward Analysis

The direct forward analysis refinement method is our implementation of the Post refine-
ment heuristic presented in Chapter 4.6. In Mec 5 this refinement heuristic is set using
the following options:

:set cegar-abstraction-refinement-algorithm Direct
:set cegar-ce-analysis Forward

In this setting Mec 5 will execute the Cegar algorithm with the Post refinement
heuristic. To enable the use of certified approximations and use the PCegar algorithm the
following options have been set:

:set cegar-use-must-and-clo
:set split- certification
:set feasibility - certification
:set initial-certification

Abstract State Space. In Figure 6.4 we have represented the evolution of the state
space of the abstractions manipulated by the Cegar and PCegar algorithms. As expected
the use of certified approximations (the PCegar algorithm) reduces the abstract state space
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Figure 6.4: Abstraction state space evolution of the abstract Burns model with the Post

refinement method .

required by the algorithm. Note that, we also applied the classical abstraction reduction
to Cegar, which removes abstract states that are not reachable or not co-reachable. Yet
the PCegar algorithm thanks to certified approximations sees its abstraction state space
increase less rapidly. Moreover after 110 iterations, the PCegar algorithm reached its
largest abstraction, and the following abstractions are continually smaller. On the other
hand we observe that the Cegar algorithm does not prune abstract states until its last
iteration when it can conclude.

Abstract CounterExample Length. A direct consequence (and advantage) of the
reduced abstract state space is the length of the abstract counterexamples manipulated
by our verification algorithms. This is illustrated in Figure 6.5 where the Y-axis stands
for the number of abstract states in a counterexample, and the X-axis represents the
successive iterations. An important observation is the length of the counterexamples
produced by the Cegar algorithm: as we can see they increase similary to the abstract state
space. We can observe a BMC (bounded model checking) behavior: counterexamples
of a given length are analyzed before longer counterexamples. This comes from the
BFS counterexample search algorithm. However, we observe that PCegar using the same
setting manipulates counterexamples that are, and remain, smaller. Likewise, this is
clearly an advantage the pruning enabled by certified approximations.
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Figure 6.5: Abstract counter example length of the Burns model during verification with
the Post refinement method.

Direct Backward Analysis

The direct backward analysis method is our implementation of the Pre refinement heuris-
tic the dual of Post presented in Chapter 4.6. This refinement heuristic is set in Mec
using the following options:

:set cegar-abstraction-refinement-algorithm Direct
:set cegar-ce-analysis Backward

To enable the use of certified approximations the options given in the previous section
are set.

In Figure 6.6 we have represented the evolution of the abstraction state space during
the execution of the Cegar and PCegar algorithms. Here we observe that in the first
few iterations both algorithms generate refined abstractions of similar size, yet after 15
iterations the PCegar algorithm is able to prune away abstract states that Cegar cannot.
Here we once again observe that Cegar can sometimes prune away abstract states but less
frequently and in a smaller proportion that PCegar.

In Figure 6.7 we also represented the abstract counterexample length obtained by
our algorithm during the verification process. We observe the same “stairway” behavior
of the Cegar algorithm whereas the PCegar algorithm keeps analyzing counterexample of
a stable length.
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Figure 6.6: Abstraction state space evolution of the abstract Burns model with the Pre

refinement method.

This example clearly exhibits the advantages of the PCegar algorithm discussed in
Chapter 4.4:

• Some useless refinements can be avoided.

• Counterexamples are shorter.

In order to illustrate the behavior of PCegar when there is a feasible counterexample,
we present a case study.

6.3.2 Satellite Formation Flying Case Study

During ANR Spacify project, an AltaRica modelization of a (simplified) satellite naviga-
tion system was developed and verified. This “satellite formation flying” model manages
two satellites that can, as the name suggests, fly in formation. One of the satellites is
the master, and the other one is the slave satellite. The master satellite communicates
with the ground station, and relays navigation commands to the slave satellite. The
navigation system of each satellite is composed of the flight control software along with
hardware components such as: a star tracker, an inertial measurement unit, and a cold
gaz propulsion system. There is an additional component that models the communica-
tion between the master and slave satellites. Each hardware component can be in various
states from Off to Failed. All of these components are duplicated, and a failure injec-
tion component is introduced in the model in order to simulate physical or logical errors.
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Figure 6.7: Abstract counter example length of the Burns model during verification with
the Pre refinement method.

The flight control software switches navigation modes upon reception of commands from
the ground station. It may also automatically switch to a degraded mode depending
on the status of the hardware components. The complete modelization of this satellite
formation flying system comprises 15 AltaRica nodes, for a total of 700 lines of code.
The state space of the semantics of the model has 4.31022 states, and the reachable part
(from the initial configurations) contains 8.1107 states.

The case study was limited to the verification of five safety properties on the satel-
lite formation flying model. These safety properties express relationships between the
navigation modes and the status of hardware components. Among these five safety
properties, four are satisfied by the model, and one isn’t. The property that is vio-
lated is the following: If the cold gaz propulsion system has completely failed (i.e., there
is no redundancy available anymore for this component), then the navigation mode is
CollisionAvoidance. This invariant ensures that the navigation system is in a safe
mode when the gaz propulsion system is down.

We benchmarked the Cegar and PCegar algorithms on this invariant in order to de-
termine their respective behavior when a counterexample existed in the model. Using
the Post refinement heuristic both algorithms failed to find the bug, but using the Pre

refinement heuristic PCegar was able to determine the existence of a counterexample in
26 iterations whereas the Cegar algorithm was inconclusive after 80 iterations2.

2At this point the allocated memory was exhausted and Mec stopped.
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In Figure 6.8, we have represented the abstract state space of the abstraction used
by Cegar and PCegar. Surprisingly we note that no pruning was performed by either
algorithm, and yet PCegar was conclusive. In Figure 6.9, we illustrate the evolution of
the Q̂+ states during the execution of PCegar. We observe that at each iteration a (new)
single abstract state is added to this set. Yet, despite this continuous extension of the
Q̂+ set, no pruning is performed.

In Figure 6.10, we illustrate the evolution of the length of the abstract counterexam-
ples obtained during the verification process performed by Cegar and PCegar. Here we
can observe that PCegar keeps analyzing abstract counterexamples of length 3 whereas
Cegar analyzes counterexamples of increasing length.

The counterexample in the model is of length 14, and PCegar could determine its
existence using an abstract counterexample of length 3. This is due to two advantages
of PCegar:

• Counterexamples are shorter : PCegar’s counterexamples are factors of Cegar’s coun-
terexamples.

• Counterexamples are more likely to be feasible: Cegar may pick a counterexample
that is spurious even though the corresponding counterexample of PCegar is feasi-
ble (or, worse, Cegar’s spurious counterexample has been completely eliminated in
PCegar).

Here, PCegar takes advantage of the factorization induced by certified pairs: for in-
stance when we can reach an abstract state of Q̂+ we know that there exists a path from
this state to a “bad” state, and we can conclude, but Cegar has to find the entire path to
conclude.

6.4 Concluding Remarks

In this chapter, we have presented our implementation of the Cegar and PCegar algorithms
in Mec 5, and detailed some benchmarks on academic models as well as an industrial
one. The benchmarks confirmed the expected gain, but more importantly showed that
PCegar algorithm manipulates certified approximations that are much smaller than their
standard counterparts. These results, validate our pruning methods, and our efforts to
implement our CEGAR algorithms.

We should note that it is possible to treat our examples with other tools. For ex-
ample, ARC [Poi00, Arc10] outperformed our CEGAR algorithms (particularly on the
Spacify model). This comes from the efficient symbolic representation of states used in
ARC: Decision Diagrams. Experiments showed that this structure is in many cases more
concise than the BDDs used in Mec 5. The objective of our experiments was to compare
methods and not implementations. We have seen that PCegar algorithm finds shorter
counterexamples and needs less iterations than Cegar. So the comparison would be the
same if we implemented the two algorithms in a more efficient model-checker.
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Figure 6.8: Abstraction state space evolution of the abstract Spacify model with the Pre
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❈❤❛♣t❡r 7
Conclusion

Formal verification appeared as an answer to the growing demand of safety in the de-
sign of critical systems. Among other methods, model checking became a popular and
competitive method as it permits the automatic verification of systems. Over time, dif-
ferent approaches to model checking where proposed to tackle the state-space explosion
problem. Explicit-state exploration methods, symbolic methods, and abstraction-based
methods, each approach built upon it predecessor a new paradigm that improved the
possibilities of model checkers. CEGAR is one of the most successful abstraction-based
methods that permits model checkers to scale up and verify large pieces of software, and
models.

This thesis presents improvements of the CEGAR method on its key structure: ab-
stractions. The improvements proposed are of two kinds. First is an abstraction pruning
method that eliminates abstract states during the execution of the CEGAR loop. The
second is an abstraction method for hierarchical transition systems.

The PCegar algorithm presented in Chapter 4 is the first contribution of this thesis.
It permits the use of an under-approximation of the system state space to determine the
reachability of “bad” states of the system, without loosing soundness (Proposition 4.3).
This is possible because, we take advantage of abstract states proved to hold only reach-
able (or coreachable) concrete states: certified pairs. Certified pairs allow a large pruning
of abstractions. As a consequence the counterexample search algorithm focuses on coun-
terexamples that are more likely to be feasible: kernel paths. The kernel paths are in fact
factors of an abstract counterexample, more importantly, a kernel path can be a factor of
many abstract counterexamples. Therefore, verifying a kernel path proves spurious one
or more abstract counterexamples of a usual abstraction. Certified pairs also provide an
easy way to determine reachability (the W condition page 58). This condition can be
tested directly on the structure of our certified approximation efficiently. We also pro-
posed methods for the inference of certified pairs (Chapter 4 Section 4.3) that profit from
the computations done by a CEGAR algorithm and the abstraction analysis method. Fi-
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nally, experiments validated our method as the PCegar algorithm outperformed the Cegar

algorithm on a variety of academic models and an industrial one.

In Chapter 5 we have considered modular aspects of the AltaRica language that we
have abstracted in the form of hierarchical transition systems. This model permits a
modular representation of a system, that is now a standard way to implement industrial
systems. First we have considered the case without priorities. We have given an ab-
straction method for this model using cover abstraction of each component. With this
abstraction we have seen that we can verify an abstract counterexamples locally on each
transition system using the VerifyHierarchicalPath algorithm. Equipped with our abstrac-
tion and this efficient abstract counterexample verification method, we could obtain a
HierarchicalCegar algorithm. We then turned our attention to hierarchical transition sys-
tems with priorities. In this setting, even the abstraction step is complex since the use
of cover abstractions may result in an unsound abstraction once priorities are applied
(see Chapter 5 Section 5.3). To tackle this issue, we have introduced a concept of neat
covers. This particular type of cover abstraction is sensitive to outgoing transitions of
states: only states with the same set outgoing events can be abstracted by the same
abstract state. With this kind of abstractions, we can use again the VerifyHierarchicalPath

algorithm to verify a hierarchical transition system. Finally, we proposed two methods
to obtain neat covers of AltaRica nodes.

Perspectives

The work we have presented here opens many perspective. We now list and discuss some
of them.

Certified Pairs Inference

The efficiency of the PCegar algorithm increases as certified pairs are discovered. The
methods we proposed are semantic-based. The advantage of this semantic approach
is its genericity: it can be applied to any model whose semantic is represented by a
transition system. On the other-hand, this inference method can be costly, and does
not take advantage of the structure of the model. Syntactic refinement methods such as
interpolation can take advantage of this model structure. Combining both approaches
would greatly benefit our algorithm and widen its applicability to a larger set of model
checkers. To this end, we need to find an interpolation method that allows us to infer
reachability (or coreachability) properties from the predicates it generates.

Abstraction of Hierarchical Transition Systems

Our hierarchical abstraction method of a hierarchical transition system preserves its
schema. Being able to modify the schema would give more flexibility to our Hierarchi-

calCegar algorithm. For instance, it would be interesting to abstract a subtree of the
hierarchy by a single node labeled with a suitable transition system. Deciding which
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subtree should be abstracted is already a challenging task. But finding a suitable tran-
sition system is even more difficult for hierarchical transition systems with priorities.

Generalizing Abstraction of Hierarchical Transition Systems

In Chapter 5 a abstraction method have been defined for priority free hierarchical tran-
sitions systems, and another one for hierarchical transitions systems with priorities. The
first relies on the use of cover abstractions (see Chapter 4 Section 4.1), and the second
requires the use of neat covers (see Chapter 5 Section 5.3). We have looked at the parallel
composition of non-hierarchical components, that is one of the simplest instances of a
hierarchical system. In this case it is possible to work with a weaker condition than neat
covers. In short, we have considered an equivalence relation where two states are equiva-
lent, if and only if, their outgoing transitions are labeled with incomparable events (w.r.t.
the priority relation). This abstraction method is not sound for arbitrary hierarchical
transition systems. Yet, we believe that a weaker condition that captures both priority
free setting and neat covers condition can be found.

Pruning of Hierarchical Transition Systems Abstractions

A natural extension of the work we presented here is a pruning extension of the ab-
straction of hierarchical transition systems. Priorities once again make this task difficult,
but even without priorities some challenges remain. As pruning may eliminate abstract
states, it becomes difficult to ensure soundness. Intuitively, one must be able to asso-
ciate different feasible kernel paths to determine if they represent at least one common
abstract counterexample.

Applicability of Hierarchical Transition Systems

A hierarchical transition system is a modular and concise representation of a system.
An advantage of this model is its potential applicability to verification of industrial
systems. A concrete example is a the interlocking device controlling train traffic in a
station. Such a device manages the signals and switches of a railway track, in order
to guarantee safe movements of trains. Recently, formal methods have been used to
verify this type of equipment [BMM+08, Bou11]. The MatLab Simulink StateFlows
and the Scade Suite, are (and have been) used to develop the software for this device.
The hierarchical transition systems model considered in this thesis is suitable and easily
adaptable to MatLab Simulink StateFlows. We believe that our hierarchical approach of
CEGAR can be applied to such models. This is a challenging task, but very motivating
as it can benefit both the industrial and academic communities.
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