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Abstract 

Many real-world supply chains can be characterised as large and complex multi-echelon systems 

since they consist of several stages incorporating assembly and distribution processes. A challenge 

facing such systems is the efficient management of inventory when demand is uncertain, operating 

costs and customer service requirements are high. This requires specifying the inventory levels at 

different stages that minimise the total cost and meet target customer service levels. In order to 

address this problem, researchers proposed the Stochastic-Service Model and the Guaranteed-Service 

Model (GSM) approaches. These two approaches differ in terms of assumptions with regard to how to 

address demand variations and service times.  

This thesis develops several contributions to the GSM based multi-echelon inventory optimisation 

problem. First of all, we conduct a comprehensive literature review which gives a synthesis of the 

various GSM work developed so far. Then, we study the impact of some specific assumptions of the 

GSM such as bounded demand, guaranteed-service times and common review periods. Our numerical 

analysis shows that the bounded demand assumption may cause a deviation on customer service 

levels while the guaranteed-service times and common review periods assumptions may result in an 

increase on the total cost. In real-world supply chains the impact of these assumptions might be 

significant. Based on the findings presented while investigating the impact of the common review 

periods assumption, we develop an extension of the GSM that enables to simultaneously optimise the 

review periods (reorder intervals) and safety stock levels (order-up-to levels) in general acyclic multi-

echelon systems. We formulate this problem as a nonlinear integer programming model. Then, we 

propose a sequential optimisation procedure that enables to obtain near optimal solutions with 

reasonable computational time. Finally, we focus on the issue of customer service level deviation in 

the GSM and propose two approaches in order to mitigate this deviation. The numerical study shows 

that the first approach outperforms the second one in terms of computational time while the second 

approach provides more accurate solutions in terms of cost. We also present some related issues in 

decentralised supply chain settings. 

Keywords: Inventory control; Multi-echelon system; Guaranteed-service model; Optimisation; 

Supply chain



IV 
 



V 
 

Résumé 

De nombreuses chaînes logistiques peuvent être caractérisées comme de larges systèmes multi-

échelons composés de plusieurs étages qui intègrent des activités d'assemblage et de distribution. L’un 

des enjeux majeurs associé au management de ces systèmes multi-échelons est la gestion efficace de 

stocks surtout dans des environnements où la demande est incertaine, les coûts de stocks sont 

importants et les exigences en termes de niveau de service client sont élevées. Cela nécessite en 

particulier de spécifier les niveaux de stocks aux différents étages afin de minimiser le coût total du 

système global et de satisfaire les niveaux cibles de service client. Pour faire face à ce problème, deux 

approches existent dans la littérature; il s’agit du Modèle de Service Stochastique (SSM) et le Modèle 

de Service Garanti (GSM). Ces deux approches diffèrent en termes d'hypothèses utilisées concernant 

la façon de gérer les variations de la demande et les temps de service.  

Cette thèse amène plusieurs contributions au problème d'optimisation de stocks multi-échelons basé 

sur le GSM. Tout d'abord, nous menons une revue de la littérature internationale qui donne une 

synthèse des différents travaux réalisés à ce jour. Ensuite, nous étudions l'impact de certaines 

hypothèses spécifiques du GSM comme la demande bornée, les temps de service garanti et les 

périodes d’approvisionnement communes. Notre analyse numérique montre que l'hypothèse de 

demande bornée peut causer une déviation sur les niveaux de service client tandis que les hypothèses 

de temps de service garanti et de périodes d’approvisionnement communes peuvent entraîner une 

augmentation du coût total. En pratique, l’impact de ces hypothèses peut être important. En se basant 

sur les résultats présentés lors de l'analyse de l’hypothèse des périodes d'approvisionnement 

communes, nous développons une extension du GSM qui permet d'optimiser simultanément les 

périodes d’approvisionnement (les intervalles de réapprovisionnement) et les niveaux de stocks de 

sécurité (les niveaux de recomplétement) dans les systèmes multi-échelons acycliques généraux. Nous 

formulons ce problème comme un modèle de programmation non-linaire en nombres entiers. Ensuite, 

nous proposons une procédure d'optimisation séquentielle qui permet d'obtenir des solutions proches 

de l’optimal avec un temps de calcul raisonnable. Enfin, nous nous concentrons sur le problème de 

déviation de niveau de service client dans le GSM et nous proposons deux approches afin d'atténuer 

cette déviation. L'étude numérique montre que la première approche est plus performante que la 

deuxième en termes de temps de calcul tandis que la deuxième approche offre des meilleures 

solutions en termes de coût. Nous présentons également des problèmes similaires dans les chaînes 

logistiques décentralisées. 

Mots-clés: Gestion de stocks; Systèmes multi-échelons; Modèle de service garanti; 

Optimisation; Chaîne logistique
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GENERAL INTRODUCTION 

Motivations 

A supply chain is a system that integrates several processes in order to convert the 

raw materials replenished from external suppliers into final products to be delivered to 

external customers. Supply chains may consist of several stages where each stage is 

associated with a process such as the procurement of a raw material, the production of a 

component, the manufacture of a subassembly, the assembly of a final product, its 

transportation from a central distribution centre to a regional warehouse or from a regional 

warehouse to a store (Graves and Willems, 2000). Indeed, many real-world supply chains can 

be characterised as large and complex multi-echelon systems since they may consist of 

thousands of stages incorporating both assembly and distribution processes. Several examples 

of such multi-echelon systems are illustrated by Willems (2008) for industries such as 

computer hard-ware, semiconductor, industrial chemicals, consumer goods and aircraft 

engine. A challenge facing these multi-echelon systems is the efficient management of 

inventory when demand is uncertain, operating costs are important and customer service 

requirements are high. This requires specifying the inventory decisions at different stages that 

minimise the total cost of the whole multi-echelon system and meet target customer service 

levels. In this thesis, we mainly focus on inventory decisions related to safety stock 

optimisation in multi-echelon supply chain systems.  

Safety stock is introduced as a lever to cover uncertainties in inventory systems. In a 

multi-echelon system, the level of safety stock to be held at each stage must be suitably 

optimised in order to reach target customer service levels at the lowest cost. Indeed, the level 

of the local safety stock associated with each stage can be independently determined by using 

single-echelon inventory models which have widely been studied to date (see, e.g., Silver et 

al., 1998; Zipkin, 2000). However, such an approach would consider only the parameters 

associated with the relevant stage (e.g., the local inventory holding cost and processing lead 

time, target customer service levels, demand from the downstream stages, replenishment 

times from the upstream stages etc.). It would therefore lead to redundant safety stocks 



 2 

because of the non-consideration of the interdependencies of cost and service level 

performances of connected stages. The multi-echelon safety stock optimisation approach 

aims at optimising safety stocks through a holistic view of the supply chain considering all 

stages in the supply chain simultaneously, from the external supplier to the external customer. 

Although the multi-echelon approach imposes significant computational challenges, it 

provides better results in comparison with the single-echelon approach in terms of cost and 

customer service level. Figure I illustrates the single- and multi-echelon approaches1. 

Figure I: Single-echelon approach (a), Multi-echelon approach (b) 

 According to Simchi-Levi and Zhao (2012) three reasons have contributed to the 

benefits obtained by a multi-echelon inventory optimisation approach: (1) the availability of 

data concerning demand and lead times, (2) motivations in industry to use scientific methods 

for inventory management, (3) recent developments in modelling and algorithms for the 

control of general multi-echelon structures. The benchmark report of Aberdeen Group (2007) 

also confirms the motivation of companies to use multi-echelon inventory optimisation tools. 

According to this report, in 2007, the 210 respondent companies ranked the inventory 

optimisation top on the list of investment areas where the multi-echelon inventory 

 
1 This figure is inspired from Klosterhalfen (2010) 
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optimisation topic was the top priority. In 2012, the estimated benefit from the 

implementation of multi-echelon inventory optimisation tools is presented as 3.1% service 

level improvement and 15% decrease in cash-to-cash cycle (Aberdeen Group, 2012).   

The use of the multi-echelon inventory optimisation approach in order to allocate 

safety stocks under final customer demand uncertainty is widely studied in the literature. In 

order to deal with this problem, researchers proposed the Stochastic-Service Model (SSM) 

and the Guaranteed-Service Model (GSM) approaches that are introduced by Clark and Scarf 

(1960) and Simpson (1958), respectively. These two approaches differ in terms of 

assumptions made with regard to how to address demand variations and service times. 

Assumptions made in the GSM approach enable the consideration of real-world supply 

chains. However, the SSM approach mostly focuses on serial, assembly or two-echelon 

distribution systems and its deployment in industry is relatively limited. Indeed, the GSM 

approach has gained interest in recent years. The academic extensions of the GSM have 

rendered this approach more realistic. In parallel, efficient solution techniques have enabled 

to deal with the current large and complex multi-echelon structures. Hence, the GSM 

approach has enabled to realise important benefits in practice. For instance,  Billington et al. 

(2004) have showed that savings realised by using the GSM approach for Hewlett-Packard’s 

Digital Camera and Inkjet Supplies business exceeded $130 million. Farasyn et al. (2011) 

have reported that the GSM approach based multi-echelon models produced 7% of average 

inventory reduction at Procter & Gamble’s business units. Wieland et al. (2012) have 

described a multi-echelon inventory optimisation project at Intel and indicated that after its 

implementation, inventory levels are reduced more than 11% providing average service levels 

exceeding 90%. In this thesis, we have a special focus on the GSM approach since both 

academicians and practitioners have recognised the practical, computational and economic 

advantages of this approach. 

Contributions 

This thesis deals with the multi-echelon inventory optimisation problem by using the 

GSM approach. We make several contributions in this direction.  
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Our first contribution is to provide a comprehensive literature review of the GSM 

approach. Indeed, in comparison with the SSM approach which is widely studied in the 

literature, the research on GSM approach has gained interest in the last decade. To the best of 

our knowledge, we did not identify a literature review which gives a synthesis of the various 

works developed so far. We present a comprehensive literature review by classifying the 

relevant papers along three axes: modelling assumptions considered, solution techniques 

developed and results obtained by industrial applications. Our literature review allows us 

identifying some gaps in the GSM literature and leads us to the research questions considered 

in this thesis. We present this literature review in Chapter 2. A preliminary version of this 

work is published in the proceedings of the 14th IFAC Symposium on Information Control 

Problems in Manufacturing, INCOM’12 (Eruguz et al., 2012).  

From our literature review, we notice that the impacts of some specific assumptions of 

the GSM are not elaborately studied. In particular, a comprehensive analysis is required to 

analyse the cost and service level impact of assumptions regarding demand bounds, 

guaranteed-service times and common review periods. Hence, our second contribution in this 

thesis is to provide such an analysis by investigating the impact of each assumption 

separately. To do this, we mostly focus on serial and assembly systems. For the numerical 

analysis of each assumption, we consider the same test problems associated with a five-stage 

serial system presented previously by Schoenmeyr (2008) and a real-world assembly system 

examined by Graves and Willems (2003).  

Concerning the analysis conducted in order to quantify the impact of the GSM 

assumptions, the first assumption examined states that demand is bounded at each stage of 

the supply chain. In practice, the demand bound at a stage represents the maximum amount of 

demand that can be satisfied from the stock of this stage during a certain coverage time. In 

the literature, demand bounds are usually specified using a safety factor that relates to a target 

Cycle-Service-Level (CSL). Our analysis shows that the effectively observed CSL at a stage 

that faces the external customer demand would usually be less than the target one. Under 

different target service levels, the relative service level deviation is 25% on average for the 

considered real-world system.  
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The second assumption examined implies that each stage quotes a guaranteed-service 

time to its customers and provides 100% service for these service times. Hence, backorders 

are not allowed between customer-supplier stages. Indeed, the total safety stock cost obtained 

under this assumption may be significantly higher than a solution obtained by solving a 

model without this assumption. For the real-world system considered in our numerical study, 

the guaranteed-service time assumption causes 42.2% safety stock cost increase.  

The third assumption considered concerns the inventory control policy of the GSM. 

The original GSM assumes that each stage operates with a periodic-review, order-up-to 

policy with a common review period for all stages. In practice, review periods can differ from 

stage to stage considering the economies of scale and/or the availability of resources. We 

show how to incorporate stage-dependent nested review periods into the GSM. This requires 

developing an appropriate expression for the demand bounds of stages. The numerical 

analysis shows that the original GSM may represent a significant cost increase for long 

review periods. Under different review period profiles considered for the numerical study, the 

safety stock cost increase is up to 19.1%. 

We present the results relative to the impact of the bounded demand, guaranteed-

service times and common review periods assumptions in Chapter 3. The first part of this 

study (bounded demand assumption) is published in the proceedings of the 5th International 

Conference on Modeling, Simulation and Applied Optimization, ICMSAO’13 (Eruguz et al., 

2013c). A preliminary version of this study is presented at the 11th ISIR Summer School on 

Research Trends in Inventory Management and Modeling (Eruguz et al., 2013d). The 

consequences associated with the GSM assumptions demonstrate that there is a need for 

further model developments regarding the GSM approach. 

In the GSM literature, existing models consider the review periods of stages as given 

input parameters of the multi-echelon safety stock optimisation problem. Our third 

contribution in this thesis is to provide and extension of the GSM by incorporating fixed 

ordering costs into the model in order to optimise the safety stock levels (order-up-to levels) 

and review periods (reorder intervals) simultaneously. To do this, we focus on nested Power-

of-Two (PO2) reorder intervals due to their significant practical and computational 
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advantages. Under a nested PO2 policy, reorder intervals are power-of-two multiples and the 

reorder interval of a stage cannot be greater than the reorder intervals of its supplier stages. In 

order to compute the demand bound functions under this setting, we are inspired from the 

expression that we have proposed while analysing the common review periods assumption of 

the GSM. Under the existence of these demand bounds, we first propose a deterministic Non 

Linear Integer Programming (NLIP) model that determines nested PO2 reorder intervals and 

order-up-to levels in general acyclic multi-echelon systems. Second, by defining reasonable 

bounds for the decision variables of the NLIP model, we propose an improved direct 

approach that reduces the computational time in obtaining global optimal solutions while 

solving the NLIP model. Third, we propose a Sequential Optimisation Procedure (SOP) to 

obtain near optimal solutions with reasonable computational time. The numerical study 

demonstrates that for a general acyclic multi-echelon system with randomly generated 

parameters, the SOP is able to obtain near-optimal solutions of about 0.46% optimality gap 

on average in a few seconds. We present this contribution in Chapter 4. The relevant work is 

accepted for publication in the International Journal of Production Research (Eruguz et al., 

2014). 

Our final contribution concerns the mitigation of the CSL deviation in the GSM 

setting. Analysis provided for the bounded demand assumption in Chapter 3 shows that the 

effectively observed CSL at a final customer stage may be less than the target one. In the first 

part of this study, we show how to mitigate the CSL deviation by adjusting the safety factors 

applied at different stages of the supply chain. We propose two mitigation approaches and 

compare their performances in terms of total cost and computational time. The numerical 

study conducted on a real-world system shows that the first approach outperforms the second 

one in terms of computational time (30 seconds vs. 25 minutes) while the second approach 

provides better solutions in terms of cost (8.9% vs. 37.3% cost increase). In the second part of 

this study, we focus on decentralised systems where different parts of the supply chain are 

controlled by different actors. In such systems, even the CSL deviation is mitigated for each 

actor, the most downstream actors may still face a CSL deviation due to the demand bounds 

applied at the upstream actor. We show that the CSL deviation may be significant when the 
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real-world assembly system presented by Graves and Willems (2003) is controlled by two 

actors (8.1% on average). This contribution is presented in Chapter 5. A preliminary version 

of this study is accepted for publication in the proceedings of the 5th International 

Conference on Industrial Engineering and Systems Management, IESM’13 (Eruguz et al., 

2013a) and is presented at the 2013 INFORMS Manufacturing and Service Operations 

Management (MSOM) Conference (Eruguz et al., 2013b). 

Structure 

This thesis is divided into 5 chapters. After giving a general introduction in this 

chapter, Chapter 1 outlines fundamentals that form the basis of the upcoming chapters. It 

includes the basic terminology and detailed presentation of the two main models, the GSM 

and the SSM that deal with the multi-echelon safety stock optimisation problem. Chapter 2 

provides a comprehensive literature review of the multi-echelon safety stock optimisation 

approach considering both approaches. Chapter 3 presents the analysis conducted to quantify 

the impact of the bounded demand, guaranteed service times and common review periods 

assumptions of the GSM. Chapter 4 provides an extension of the GSM that enables to 

optimise the reorder intervals and order-up-to levels of stages simultaneously. It also presents 

detailed insights on an optimisation procedure proposed to find a reasonable solution the 

relevant optimisation problem. Chapter 5 deals with the mitigation of the CSL deviation 

under the GSM setting.   
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CHAPTER 1: PRELIMINARIES 

The goal of this chapter is to provide the reader with the basic terminology that forms 

the basis of the upcoming chapters (Section 1.1) and to present the two main models, i.e. the 

Guaranteed-Service Model (GSM) and the Stochastic-Service Model (SSM) that deal with 

the safety stock optimisation problem in multi-echelon systems (Section 1.2). Although the 

main focus of this thesis is the GSM approach, both models are presented in order to be 

complete in terms of existing approaches dealing with the multi-echelon safety stock 

optimisation problem. The reader interested in the SSM approach can find further details in 

Axsäter (2006), Van Houtum (2006) and Simchi-Levi and Zhao (2012). The GSM presented 

in Section 1.2.2 corresponds to the original model on which this thesis’ contributions are 

build.   

 Basic Terminology 1.1

This section introduces the basic terminology, definitions and notations relative to: 1) 

system structure, 2) demand, 3) lead time, 4) cost components, 5) service measures, 6) stock 

components and 7) inventory control policies used in multi-echelon inventory optimisation 

models.  

1.1.1 System Structure 

In a supply chain system, each stage is associated with certain processes such as the 

procurement of raw materials, the manufacturing or the transportation of items. Besides, each 

stage is considered as a potential location for holding the stock of the item processed at this 

stage. 

A single-stage supply chain may typically be represented as a single company where 

input items are replenished from a supplier, processed within the company and then put into 

stock to satisfy a customer demand (Figure 1.1). Such systems have been the primary focus 

of inventory systems and have widely been studied to date (see, e.g., Silver et al., 1998; 

Zipkin, 2000). 
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Figure 1.1: Single-stage system 

In reality, supply chains usually consist of multiple stages and can be characterised as 

multi-echelon systems. A multi-echelon system can be modelled as a network where nodes 

represent stages and directed arcs denote the precedence relationships between stages. There 

exists a directed arc form upstream to downstream between two nodes in the network if an 

upstream stage (a predecessor, an internal supplier) directly supplies a downstream stage (a 

successor, an internal customer). The number of echelons in such systems is the highest 

number of nodes on a path between a most upstream node and a most downstream node.  

Multi-echelon systems can be classified according to their network structures. In a 

serial system (Figure 1.2a), each stage has a single successor and a single predecessor, in an 

assembly system (Figure 1.2b), each stage has at most one successor and in a distribution 

system (Figure 1.2c), each stage has at most one predecessor. Real-world supply chains 

usually represent general multi-echelon systems, i.e. combinations of assembly and 

distribution systems. According to data provided by Willems (2008), most of real-world 

supply chains in industries such as computer hard-ware, semiconductor, industrial chemicals, 

consumer goods and aircraft engine represent such structures. We classify general multi-

echelon systems into two categories, general acyclic systems (Figure 1.2d) and general cyclic 

systems (Figure 1.2e). In general cyclic systems, cycles may represent the returns of used and 

disassembled items to the system. Another example is in chemical or pharmaceutical 

industries where some products are generated together with their outcomes. 

  

Process-Stock 
 

  

Input items Demand 
External 
supplier 

External 
customer 
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Figure 1.2: Network structures for multi-echelon systems 

In a multi-echelon network, we denote the set of nodes by N  and the set of arcs by 

.A  We define a scalar ij  associated with each couple of stages ),( ji  that represents the 

number of input items required from upstream stage i to obtain one output item at 

downstream stage j if there exists a directed path or a directed arc between nodes i and j in 

the network. Besides, we partition the set of nodes (stages) into three disjoint sets: the set of 

supply nodes (supply stages) SN , the set of internal nodes (internal stages) IN  and the set of 

demand nodes (demand stages) DN . The set of supply nodes SN  is the set of nodes without 

predecessors, the set of demand nodes DN  is the set of nodes without successors and the set 

of internal nodes IN  is the set of nodes having at least one predecessor and one successor. 

For each node DNj , we denote )( jDN  as the set of demand nodes which are connected to 

node j with a directed arc or path in the network. In other words, )( jDN  represents the set of 

demand stages that require the item processed at stage j.  

Echelon 1 Echelon 2 Echelon 3 Echelon 1 Echelon 2 Echelon 3 

(a) 

(e) 

(b) 

(c) 

(d) 
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1.1.2 Demand 

In a single-stage system, demand comes from an external customer whereas in a 

multi-echelon system, processed items may be requested by external and/or internal 

customers. Internal demand at different stages of the supply chain can be derived based on 

external demand realisations and precedence relationship between various stages. In reality, 

such demand realisations might be uncertain. That is why for effective decision making in 

inventory management, one needs to forecast demands of future periods. For a single-stage 

system, several procedures are available for forecasting the short term future demand (see, 

e.g. Silver et al., 1998). 

A common approach to model the uncertain demand is to assume a theoretical 

probability distribution function. Important parameters such as the mean and standard 

deviation of demand for a given period can be derived using the available data on previous 

demand realisations. Besides, one can use the information on forecasts and forecast errors 

while determining these parameters (see Babai, 2005). In the literature, items are classified as 

fast and slow moving items according to the size of their demand (Silver et al., 1998). For 

slow-moving items, demand process is often defined considering the inter-arrival process of 

customers and the distribution of their order size. For these items, demand is usually 

modelled as a (compound) Poisson process. For fast moving items, one can assume a 

theoretical probability distribution for the cumulative quantity of items requested within a 

single time period. Typically, a Normal distribution can be used to model the uncertain 

demand in this case. It is also possible to use the empirical demand distribution given by the 

available data. However, the use of the theoretical approach often enables the derivation of 

solution properties for the relevant optimisation problems.  

In multi-echelon systems, we assume that the external demand is propagated to 

upstream stages, i.e. the internal demand at a stage can be derived based on the demands that 

occur at its downstream stages. For a given theoretical probability distribution for the external 

demand at stage DNj , we denote the mean period demand by j , its standard deviation by 

j  and the correlation coefficient between the demands that occur at stages DNj  and 

DNk  by jk . If the correlation coefficient jk  between the demands of two final items 
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associated with demand stages DNj  and DNk  is positive then, the demand of one item 

induces a demand for the other item. If jk  is negative then, one item can be used as a 

substitute for the other one. The correlation coefficient equals zero for two items with 

independent demand. When external demand information is directly transmitted to all 

connected stages and no correlation exists between demands of different time periods, the 

mean and standard deviation of internal demands at non-demand stages may be expressed by 

the following equations: 

SI

A

NN  


i
jij

jiji for 
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D D
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 

i
ij ik

jkkjikiji for 
)( )(

  (1.2) 

One can assume that the internal demand at non-demand stage SI NN i  follows 

the same type of theoretical probability distribution than the associated external demands and 

use (1.1) and (1.2), respectively, to estimate the mean and standard deviation of the internal 

demand at this stage (see, e.g., Minner, 1997; Inderfurth and Minner, 1998).  

1.1.3 Lead Time 

The lead time of a stage represents the duration of the process being realised at this 

stage, given that all necessary input items are available to start the process. The lead time 

may include several components regarding the stage process such as order processing, 

transportation, waiting, manufacturing, packing and storing times. Order processing time 

represents the time required for administrative processes at the relevant stage or at its external 

or internal suppliers. The transportation time is the time required to transport all the input 

items from the external/internal suppliers. The waiting time occurs when items use the same 

resources for the execution of the stage process and should wait until these resources become 

available. The manufacturing time is the duration of all manufacturing operations. The 

packing and the storing time is the time that elapses to put the processed item into inventory. 

The lead time ends when items become available for internal/external customer demand. As 

defined here, we do not include the transportation time to customers into the lead time since 
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this is considered as a part of the lead time of customers. The lead time jL  of stage Nj  

may be characterised as stochastic due to several uncertainties regarding the nature of 

processes being realised (e.g., machine breakdowns, occupation of resources, congestion, 

order processing time variations etc.).  

 Under demand uncertainty, there is a chance of not being able to satisfy some of 

demand immediately. If demand is larger than the amount of stock held at a stage, a stock-out 

occurs. In case of backordering, the customers accept to wait until the out-of-stock items 

become available. In case of lost sales, the unfulfilled demand is lost. When demand is 

uncertain and backorders are allowed, an additional time component to consider is the 

waiting time of stages that stems from the delay in obtaining the backordered items. The 

replenishment time 
jL

~
 of stage Nj  is the sum of its lead time jL  and its waiting time due 

to this stock-out delay. We note that under demand uncertainty, due to occasional stock-outs 

at external/internal suppliers, the replenishment time of a stage becomes stochastic event if its 

lead time is deterministic.  

1.1.4 Cost Components 

There exist several cost components to consider when managing inventories in supply 

chains. These include: stage cost, processed item cost, holding cost, fixed ordering cost and 

shortage cost.  

The stage cost jc  at stage Nj  is the per-unit cost that stems from the stage process. 

For instance, at stage SNj , the stage cost represents the unit purchasing price paid to the 

external supplier plus any cost incurred to make the item available to serve the demand of 

internal customers. For all other stages DI NN j , the stage cost is the cost incurred to 

realise the relevant process at this stage. It can eventually include the mark-up applied by the 

upstream echelon if the considered supply chain involves different companies. The cost of a 

processed item jp  at stage DI NN j  can then be defined as the total amount of money 

that has been spent to make the item available for usage of internal/external customers. 

Hence, the cost of a processed item jp  at stage DI NN j  can be computed by adding the 

cost of all input items involved in the process to jc : 
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The holding cost rate   is the cost of holding one monetary unit (such as one euro, 

dollar, yen etc.) of inventory per period. This is usually made up of the opportunity cost of 

money invested, the costs of handling, special storage requirements, damage, insurance and 

possibly taxes. To make the inventory decision more manageable, usually, a single value of 

  is assumed for all items (Silver et al., 1998) and the following rule is used to derive the 

per-unit holding cost per period jh  at stage j: 

N jph jj   

Under this setting, the per-unit echelon holding cost per period e

jh  at stage j can be 

defined as: 

N jch j

e

j   

The fixed ordering cost jA  is the cost incurred each time input items are ordered from 

external/internal suppliers by stage Nj . It may consist of the setup cost incurred in 

manufacturing and/or other costs such as the cost of order forms, telephone calls, receiving 

and inspection of items etc. We note that the variable ordering cost is included into the stage 

cost. 

There exist several ways of costing a stock-out at a stage. Among well-known 

shortage cost measures, the first one is to apply a fixed shortage cost for each stock-out 

occasion. Hence, the shortage cost at a stage becomes independent of the magnitude or the 

duration of stock-outs. The second measure corresponds to a shortage cost that is charged for 

each unit of out-of-stock item. In this case, the shortage cost is dependent of the magnitude of 

stock-outs and independent of their duration. The third measure is defined as a shortage cost 

that is incurred per each unit of out-of-stock item and per period. This considers both the 

magnitude and the duration of stock-outs. We note that the first and second measures can be 

applied in either backordering or lost sales settings whereas the third measure can only be 

applied in case of backordering.  
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In multi-echelon systems, shortage costs may be considered as given input parameters 

for stages facing external customer demand. However, in practice, choosing the appropriate 

shortage cost measure, estimating the unit-cost value and the expected magnitude of stock-

outs are not easy tasks. If such information is available within an inventory optimisation 

context, one can aggregate all cost components and look for a solution that minimises the 

total cost. If this information is not available, an alternative formulation can be developed 

considering the customer service level constraints. The customer service level of a stage 

refers to the service provided to its customers in fulfilling their demand. The following 

section presents well-known service measures referred in the literature while defining the 

customer service level constraints. 

1.1.5 Service Measures 

In multi-echelon systems, we distinguish between two types of service performances: 

internal and external service performances. The latter are related to the service level provided 

to external customers whereas the former is related to internal customer service. Diks et al. 

(1996) emphasise that in multi-echelon systems, the internal service levels may be irrelevant 

as long as the external service levels reach the exogenously specified targets at the lowest 

cost. There exist two types of service measures frequently used in the literature, the Cycle-

Service-Level (CSL) and the Fill-Rate (FR). 

The CSL j  at stage Nj  is defined as the non-stock-out probability during a cycle 

at this stage. A cycle may be defined as the time between two successive replenishments. In 

this case, the CSL is the fraction of replenishment cycles in which a stock-out does not occur. 

   The FR j  is the fraction of customer demand that is met without backorders or lost 

sales: 

 timeofunit per   demandmean 

 timeofunit per  demand dunsatisfiemean 
1jβ  

The computation of the FR service level is not always straightforward (Minner, 2000). 

An exact method and two approximations are provided by Zhang and Zhang (2007) for a 

single-stage system facing normally distributed demand.  
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For ease of computation, several researchers consider a modified fill-rate service 

measure j  (see, e.g., Johnson et al., 1995;  Silver et al., 1998; Silver and Bischak, 2011): 

 cycleent replenishmarbitrary an  during demandmean 

order  ent replenishm a of arrival before demand dunsatisfiemean 
1j  

Schneider (1981) and Minner (2000) introduce another definition for the modified 

fill-rate service measure j  : 

  timeofunit per  demandmean 

timeofunitper  demanddunsatisfie cumulativemean 
1j  

The difference between these two definitions is that j  is based on the behaviour of 

the stock at the end of a replenishment cycle whereas j   considers the behaviour per time 

unit. We note that for high service levels, i.e. as long as demand is very rarely backordered 

for more than one period the FR and modified fill-rate service measures are almost identical.  

The choice of the service measure to use and the determination of the target service 

levels are decisions that are based on managerial experience and company strategy. Silver et 

al. (1998) summarise the factors that influence such decisions. Indeed, the decision can differ 

from item to item. Several factors such as market competition, customer preferences, their 

behaviour in stock-out situations and the availability of measures to resort in case of stock-

outs influence the relevant decisions. 

1.1.6 Stock Components 

Stocks in supply chains have several components that can be classified regarding their 

motives or the constraints from which they arise.  

If ordering decisions cannot be performed continuously and are placed at certain 

points of time, items should be ordered in batches. In this case, the stock level of a stage 

reaches an upper level just after the arrival of a batch and a lower level just before the arrival 

of the next batch and so forth. Cycle stocks stem from these cycles. The reasons that induce 

cycle stocks may be the existence of fixed ordering costs (i.e. the economies of scale) or the 

incapacity of an information system to continuously monitor the stock status and to place 

orders. 
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The existence of lead times causes another stock component that is called the pipeline 

stock. The pipeline stock at a stage includes all items that are in process at this stage as well 

as those are in transit to this stage. The level of pipeline stock at a stage depends on its lead 

time and mean demand, i.e. on parameters that are often considered as input parameters for 

the inventory decision problems. Therefore, pipeline stocks are usually neglected in the 

considered optimisation problems since they do not affect inventory decisions. 

Safety stock is introduced as a lever against demand and replenishment time 

uncertainties in supply chains. The safety stock at a stage refers to the expected stock level at 

this stage just before an order arrives. Safety stocks are required to remedy stock-outs for 

situations where what is received deviates from what is delivered in quantity and time (Hax 

and Candea, 1984).  

In practice, there exist other motives to hold stock in supply chains such as 

speculation and anticipation. The speculation stock may stem from an expected price increase 

in purchased items from external suppliers. The anticipation stock may be induced by a time 

varying demand pattern (seasonality), rather than expectations. 

1.1.7 Inventory Control Policies 

A number of possible inventory control policies are introduced for single-stage 

systems. These policies are classified into two major categories regarding how the inventory 

status is reviewed: continuous-review policies and periodic-review policies.  

In continuous-review policies, the stock status is continuously monitored and an order 

to replenish items is placed immediately after the stock position of the stage (the sum of all 

its planned orders and its physical stock minus its backorders) drops below a reorder point r. 

If each order size is equal to a fixed quantity Q then the relevant policy is called the order-

point, order-quantity (r, Q) policy. Another popular policy in this category is the order-point, 

order-up-to level policy (r, S) in which the order sizes are such that the stock position at the 

stage returns to a target order-up-to level S just after each order placement. An important 

special case is when 1 Sr  where the policy is called the continuous-review, base-stock 

),1( SS   policy.  
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In periodic-review policies, the stock status is inspected every R units of time and a 

replenishment order can be placed only at these review instants. A popular policy in this 

category is the periodic-review, order-up-to (R, S) policy for which the control procedure is to 

raise the inventory position to the order-up-to level S at each review instant R.  When the 

review period 1R , the relevant policy is also called as the periodic-review, base-stock 

policy. Furthermore, (R, r, S) and (R, r, Q) policies can be seen as periodic-review analogues 

of (r, S) and (r, Q) policies, respectively. 

Inventory control policies presented above are also applicable for multi-echelon 

systems. However, in multi-echelon systems, the inventory control can be executed in two 

manners, using the installation stock or the echelon stock information. The use of installation 

stock information (installation stock policies) leads to a decentralised (local) control in the 

sense that ordering decision at a stage is only based on the inventory position of this stage. In 

this case, available information contains only the locally available inventory status. As a 

consequence, excessive demand may not be identified at upstream stages due to the delay in 

information through the considered ordering policy. The shortcoming of using such local 

information is avoided by echelon stock policies, i.e. by controlling the inventory based on 

the echelon inventory position of a stage. The echelon stock of a stage can be defined as the 

stock on hand at this stage plus all stock in the downstream part minus the backorders at the 

most downstream stages. The echelon inventory position of a stage is the sum of all stock in 

process at or in transit to this stage plus its echelon stock. The echelon stock concept is first 

introduced by Clark and Scarf (1960). Echelon stock policies require a complete knowledge 

of how much stock is at downstream stages and hence, necessitates an appropriate 

information technology.   

We note that a stage that uses an installation stock policy can always raise its stock 

position to a desired level. Hence, under the backordering assumption, one can model each 

stage of the supply chain as a single stage system with random replenishment time. In 

echelon stock policies, the echelon stock position of a stage includes the stock in process at or 

in transit to this stage but does not include the upstream backorders. For these policies, the 

replenishment time of a stage equals to its lead time. However, it is more difficult to 
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determine the echelon stock position, since different stages cannot be regarded as single stage 

systems (Chen and Zheng, 1994a). Axsäter and Rosling (1993) prove that when each stage in 

a supply chain is controlled by a base-stock policy, an installation stock policy can always be 

replaced by an echelon stock policy and vice versa. When each stage is controlled by an 

order-point, order-quantity policy an installation stock can always be replaced by an echelon 

stock policy, but not vice versa. Indeed, echelon stock policies are superior to installation 

stock policies in terms of cost for the latter case (Axsater and Juntti, 1996; Axsäter and Juntti, 

1997). For divergent systems the examples for the superiority of both policies can be found 

(Axsäter, 1997; Axsäter and Juntti, 1997).        

 Safety Stock Optimisation in Multi-Echelon Systems 1.2

The objective of safety stock optimisation problem analysed in either single or multi-

echelon systems is to balance two types of risks, the risk of significant stock-outs for external 

customers and the risk of holding unnecessarily large inventory in the supply chain. The 

safety stock optimisation problem can be formulated either by introducing shortage costs or 

service level constraints. In the first case, one should specify a way of costing stock-outs and 

then search for a solution that minimises the total cost of shortage and holding inventory in 

the supply chain. In the second case, the objective is to minimise the total cost of holding 

inventory subject to target customer service levels (see Section 1.1.5). Indeed, these two 

approaches may lead to equivalent formulations for the considered single (see Silver et al., 

1998) or multi-echelon (see Minner, 2000; Van Houtum and Zijm, 2000) systems. In 

practice, the service level approach may be preferred to the shortage cost approach since 

shortage costs are often hard to estimate. Besides, even in situations where shortage costs are 

explicitly defined (e.g. when there exist contractual specifications regarding the stock-out 

penalties), service measures are still needed to track the service level performance of the 

supply chain (Diks et al., 1996).  

The use of a multi-echelon approach for safety stock optimisation provides better 

results in terms of cost and customer service level performance in comparison to the single-

echelon approach that consists of determining independently the local safety stock associated 
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with each stage in the supply chain. However, the use of a multi-echelon approach is a 

difficult task due to the number of interdependent decision variables and non-linear functions. 

The complexity of this approach is directly related to the considered network structure since 

it depends on the number of stages and the topology of stage connections in the network. 

Indeed, multi-echelon safety stock optimisation represents a computational challenge 

especially for general networks, i.e. for most of real-world supply chains.  

The multi-echelon safety stock optimisation problem is widely studied in the 

literature. In order to address this problem, researchers proposed the Stochastic-Service 

Model (SSM) and the Guaranteed-Service Model (GSM) approaches that are introduced by 

Clark and Scarf (1960) and Simpson (1958), respectively. These two approaches differ in 

terms of assumptions made with regard to how to address demand variations and service 

times. Briefly, in SSM approach, each stage in the supply chain provides an immediate 

service when stock is on hand but entails a stochastic delay in case of stock-out. The GSM 

assumes that after a certain service time which is quoted to the downstream stages, items are 

always available (guaranteed-service time assumption). This is achieved by establishing 

upper bounds for demand at each stage of the supply chain (bounded demand assumption). 

The GSM setting enables to consider real-world supply chains that are usually characterised 

as large and complex multi-echelon systems whereas the SSM approach mostly focuses on 

more simple and smaller supply chain structures such as serial, assembly or two-echelon 

distribution systems (Hwarng et al., 2005).   

In what follows, we first present the most commonly known model pertaining to the 

SSM approach, i.e. the Clark and Scarf (1960) model (Section 1.2.1). Then, we provide a 

detailed presentation of the original GSM (Section 1.2.2). 

1.2.1 Stochastic-Service Model 

The origin of the SSM approach is the seminal work of Clark and Scarf (1960) who 

prove that the cost optimal inventory control policy for all stages of a serial system is an 

echelon order-up-to (base-stock) policy. Since this work, a lot of research has been done to 

consider different network structures and different assumptions concerning external demand 
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process, lead times, ordering policies etc. (Simchi-Levi and Zhao, 2012). However, within the 

SSM approach, a generic model that fits well with any type of supply chain network structure 

does not exist. The models and solution procedures proposed are much different according to 

the network structures and assumptions considered. We provide a literature review of these 

models in Chapter 2. For ease of presentation, we present in this section the model of Clark 

and Scarf (1960) for a two-stage serial system operating on an infinite time horizon. In the 

considered system, Stage 2 replenishes from Stage 1 and Stage 1 replenishes from an external 

supplier (see Figure 1.3). In what follows, we first summarise the assumptions of this model. 

Second, we present the inventory dynamics under the considered assumptions. Third, we give 

the solution method, i.e. the decomposition technique introduced by Clark and Scarf (1960). 

Finally, we provide a numerical example. For more details, we refer to Axsäter (2006) and 

Van Houtum (2006).  

Figure 1.3: Two-stage serial system 

Modelling Assumptions 

The model considers the following assumptions: 

(i) Time is divided into base planning periods, i.e. periods of equal length which can be 

days, weeks, months etc. An infinite time horizon is considered.  

(ii) All stages are allowed to place orders at the beginning of each period (the review 

period equals one period).  

(iii) The lead time of each stage is assumed to be deterministic, constant and an integer 

multiple of the base planning period. Lead time at the most downstream stage 

includes the review period of one period length.  

(iv) There are no capacity constraints in the system regarding physical space or volume of 

work.  

(v) The external supplier has infinite capacity. 

Stage 1 Stage 2 
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(vi) A linear inventory holding cost structure is considered.  

(vii) External demand occurs at the most downstream stage (demand stage) and demands 

in different periods are identically and independently distributed (i.i.d.) on ),0[  . 

We note that the assumptions considered so far are also valid for the GSM. The main 

difference is due to assumptions concerning the external demand modelling. In the SSM that 

we present in this section, external demand can be modelled by a continuous demand 

distribution with an average   and a standard deviation   per period. Demand that cannot 

be met directly from stock is backordered. A per-unit shortage cost 2b  incurs at Stage 2 per 

backordered item and period. Besides, without loss of generality, the number of input items 

required from Stage 1 to obtain one output item at Stage 2 equals one. 

The model presented here is expressed in terms of cost minimisation, i.e. the aim is to 

minimise the total expected holding and backorder costs per period. Indeed, an equivalent 

formulation under service level constraints can be obtained as will be presented in this section 

(page 25). We note that at this stage we do not assume anything about the inventory control 

policy to be applied for the considered system.  

Inventory Dynamics 

All events take place in each period in the following order: (1) an order is placed at 

each stage, (2) orders arrive, (3) demand occurs, (4) costs are evaluated. The first two events 

take place at the beginning of each period. The last event occurs at the end of each period. 

The third event, the demand, may occur anywhere in between for the demand stage. Since we 

assume a periodic-review, for non-demand stages, demand in each period occurs once at the 

beginning of the period. In any case, we assume that demand occurs after the second event, 

i.e. after the arrival of orders.  

We consider that after ordering in period t, Stage 1 has a certain echelon inventory 

position 1y . Because the outside supplier has infinite supply, orders of Stage 1 are always 

satisfied without backorders. Consider then the echelon inventory level )( 11 LtI
e   at Stage 1 

in period 1Lt   just before the period demand. We can express )( 11 LtI
e   as 1y  minus the 

stochastic demand during 1L  periods, 1..,,1, 1  Lttt  denoted by ]1,[ 1  Lttd : 
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]1,[)( 1111  LttdyLtI
e   (1.3) 

We note that ]1,[ 1  Lttd  has mean 1L  and standard deviation .1L  

Next, we consider that the echelon inventory position at Stage 2 after ordering in 

period 1Lt   is equal to some level 2y . By definition, the echelon inventory position at Stage 

2 does not include the backorders at Stage 2 (i.e. the backorders at Stage 2 are deducted from 

its echelon inventory position). Here, whatever policy is followed, the following must be 

held: 

]1,[)( 11112  LttdyLtIy
e   (1.4) 

We use the notation }0,max{)( xx   and }0,max{)( xx  . In case of strict 

inequality in (1.4), the difference represents the positive value of installation stock )( 11 LtI   

at Stage 1 just after the order from Stage 2: 

21111 )())(( yLtILtI
e     (1.5) 

Equation (1.5) gives the installation inventory level at Stage 1 at the end of period 

1Lt  .   

We note that the lead time 2L  of Stage 2 includes the review period. The installation 

inventory level )1( 212  LLtI  at Stage 2 after the demand in period 121  LLt  is 

obtained as 2y  minus the demand in periods 1,...,1, 2111  LLtLtLt : 

]1,[)1( 2112212  LLtLtdyLLtI  (1.6) 

   The installation inventory level at Stage 2 at the end of period 121  LLt  

becomes (1.6) where ]1,[ 211  LLtLtd  has mean 2L  and standard deviation .2L   

Solution Method 

Here, we present the optimality of echelon order-up-to policies and the solution 

method called the decomposition technique to show how to determine the optimal echelon 

order-up-to levels *
1Ŝ  and *

2Ŝ  that minimise the total cost. 
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Using the results presented in the previous subsection, we can present the expected 

cost at Stage 1 at the end of period 1Lt   and the expected cost at Stage 2 at the end of period 

121  LLt . First, using (1.3) and (1.5), we can express the former as: 

21111

211121111

)(

]]1,[[])([

yhLyh

yLttdyEhyLtIEhC
e





 

(1.7) 

Second, due to (1.6) the expected cost at Stage 2 at the end of period 121  LLt  

becomes: 

]])1,[[()()(

]])1,[[(]])1,[[(

211222222

21122211222









LLtLtdyEbhLyh

LLtLtdyEbLLtLtdyEhC


  

If we transfer the last term in (1.7) to 2C  we obtain the following costs: 

)(
~

1111 LyhC    (1.8) 

]])1,[[()(
~

21122222222
 LLtLtdyEbhLhyhC

e   (1.9) 

This reallocation does not affect the total cost. We observe (1.8) is independent of 

.2y  The cost expressed in (1.9) may depend on 1y  due to the relation in (1.4).  

We note that periods 1Lt    and 121  LLt  can be seen as arbitrary periods 

(Axsäter, 2006). Let ignore the dependency between 2

~
C  and 1y  and assume that we can 

choose any value 2Ŝ  for 2y . Hence, we can replace (1.9) by: 

duufSubhLhShSC

S

L

e 



2

2

ˆ
222222222 )()ˆ()(ˆ)ˆ(ˆ   (1.10) 

where )(ufL  is the L -period demand probability density function. It is easy to obtain 

the optimal value *
2Ŝ  from the first order condition: 

22

12
ˆ

0

*
2

2
)(

hb

hb
duuf

S

L 


   (1.11) 

If *
2Ŝ  obtained by solving (1.11) is such that ]1,[ˆ

11
*
2  LttdyS , then 

*
2Ŝ  is the 

optimal solution. But if ]1,[ˆ
11

*
2  LttdyS , then the best possible value of 2y  is 

]1,[ 112  Lttdyy  due to the convexity of (1.10). The optimal policy can be realised if 
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Stage 2 operates with an echelon order-up-to policy where its echelon order-up-to level is 

equal to 
*
2Ŝ . Indeed, there is no difference between echelon stock and installation stock at 

Stage 2.  

If we assume that Stage 2 uses the optimal echelon order-up-to level 
*
2Ŝ , for a given 

level 1Ŝ  of 1y , we can rewrite the total cost of the two-stage serial system using (1.8) and 

(1.10): 

 





*
21

1ˆˆ
*
2212

*
2211111 )()ˆ(ˆ)ˆ(ˆ)ˆ(ˆ)ˆ()ˆ(ˆ

SS
L duufSCuSCSCLShSC   (1.12) 

The last term in (1.12) can be seen as the shortage cost at Stage 1 due to its inability to 

satisfy the demand of Stage 2 on time. It is easy to verify that (1.12) is convex. Hence, from 

the first order condition we can obtain the following: 

22

2
ˆ

0

ˆ

0

*
2

*
1

21
)()(

hb

b
dvduufvf

S uS

LL 
 


  (1.13) 

Since the external supplier has infinite supply it is optimal to apply an echelon order-

up-to policy with echelon order-up-to level equal to *
1Ŝ  at Stage 1. Therefore, it is optimal to 

apply an echelon order-up-to policy for both stages of the considered system.  

We note that the same problem can be modelled under a service level constraint. In 

particular, if there exist a predetermined CSL level   to be ensured towards the external 

customer, the cost parameter 2b   can be obtained from the following equivalence relation: 

22

2

hb

b


   

(1.14) 

As shown in this subsection, the optimal echelon order-op-to levels can be obtained 

by sequentially minimizing one-dimensional convex functions. The relevant procedure is 

called the decomposition technique. In the first step of this technique, the optimal order-up-to 

level of the demand stage is obtained. In the next step, the additional cost due to the stock-

outs at the upstream stage is evaluated and added to the total cost when determining an 

optimal policy for the upstream stage. Under the assumptions considered in this section, the 

decomposition technique leads to the derivation of (1.11) and (1.13). These equations are 
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called the Newsboy equations as they constitute a generalisation of the well-known Newsboy 

equation developed for single-stage systems (see Hadley and Whitin, 1963). The 

decomposition technique is easy to generalise to serial systems with more than two stages 

(see Chapter 2, Section 2.1). 

Numerical Example 

The numerical example developed here is inspired from Axsäter (2006). We assume 

that the external demand at Stage 2 is continuous, normally distributed and independent 

across periods with parameters 10  and 5  per period. Holding cost and lead time data 

of stages are as follows: 11 h , 5.12 h , 51 L  and 62 L  (including the review period at 

Stage 2). The per-unit backordering cost 2b  at Stage 2 is equal to 20.  

Using the decomposition technique, optimal echelon order-up-to levels 7.135ˆ*
1 S  

and 4.84ˆ*
2 S  can be obtained from Newsboy equations (1.11) and (1.13), respectively (we 

use numerical integration). This gives the total cost .0.46SSMC  We note that the installation 

order-up-to level of stages are 
*
2

*
1

*
1

ˆˆ SSS   and 
*
2

*
2 ŜS  . The optimal solution obtained is 

illustrated in Figure 1.4. 

Figure 1.4: The solution obtained by the SSM approach 

1.2.2 Guaranteed-Service Model 

The GSM has been developed first for a single-stage inventory system by Kimball 

(1988), whose paper was originally written in 1955. Simpson (1958) extends this framework 

to a serial system and initiates the research on the GSM for multi-echelon systems. Graves 

and Willems (2000) generalise the GSM formulation to general multi-echelon systems. This 

section presents the modelling assumptions, inventory dynamics and mathematical 

programming formulation of the original GSM in order to introduce the model as it is usually 
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referred in the literature. We also provide a numerical example at the end of this section for 

illustration.   

Modelling Assumptions 

In the GSM, the multi-echelon system can be modelled as a network of any structure. 

The original GSM holds assumptions (i)-(vii) presented for the SSM in Section 1.2.1 (bearing 

in mind that in a general network there may exist several demand stages). The main 

difference of the GSM stems from the inventory policy, the external demand modelling and 

the service time notion. 

In the GSM, it is assumed that each stage Nj  follows a periodic-review ),( jR  

installation order-up-to )( jS  policy. As a result of assumption (ii), all stages have the same 

review period. The length of the review period is equal to the length of the base planning 

period.  

External demand occurs only at nodes without successors, i.e. at demand stages. For 

each demand stage DNj , the external demand comes from a stationary i.i.d. process with 

an average j  and a standard deviation j  per period. For demand stage ,DNj  we denote 

the demand during ],1( tt   by ).(td j  

Non-demand stages (internal or supply stages) have only internal customers that are 

their immediate downstream stages. Hence, the realised demand )(td i  at a non-demand stage 

IS NN i  in period t is the sum of the orders placed by its immediate downstream stages. 

Under the inventory control policy considered, the realised demand )(td i  becomes: 





A),(:

)()(
jij

jiji tdtd   

Therefore, internal demand parameters can be derived using (1.1) and (1.2). 

Demand is assumed to be bounded with an increasing and concave function )( jjD   

for every stage Nj  and for any long period jj M,...,2,1  where jM  is the maximum 

replenishment time, i.e. the maximum time that could elapse between the ordering and the 

reception of items at stage j. The maximum replenishment time at stage j can be calculated 

by:  
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 A ),(:max jiiMLM ijj  

Under this setting, for any period jt   and for any long period 
jj M,...,2,1  we 

assume the following for every stage Nj : 

),()( ttdD jjjj    

where ),( bad j  is the realised demand at stage j over the time interval ],( ba : 

babad j  for 0),(  

 for)(),(
1

batdbad
b

at

jj  


  

In practice, the existence of demand bounds does not imply that the arrival demand 

can never exceed the demand bounds. Instead, it reflects the maximum amount of demand 

that is satisfied from safety stock. When demand exceeds )( jjD   over j , the safety stock is 

regarded as not being adequate to satisfy the excess demand. In this case, the company might 

handle the excess demand by other countermeasures such as subcontracting, overtime 

production and/or express expediting. However, the original GSM does not explicitly model 

what happens in case of excessive demand and does not quantify the cost of such 

extraordinary measures. We note that in most of existing models, demand bounds are 

determined based on a target CSL which is specified according to the company’s policy.    

Furthermore, it is assumed that each stage Nj  promises an outbound guaranteed 

service time 
out

js  to its downstream stages such that the realised demand )(td j  at stage j in 

period t, is totally satisfied (with 100% service) at period 
out

jst  . For all inbound arcs of 

stage j, the inbound service time 
in
js  defines the time necessary for stage j to get all of its 

inputs from stages A),(: jii  and to start its process. Since stage j cannot start the process 

without receiving all inputs, out

i

in

j ss   should be ensured for all arcs A),( ji . We note that 

outbound and inbound service times are decision variables of the GSM. Besides, the service 

times are considered as integer multiples of a base planning period. Without loss of 

generalisation, we consider the base planning period as one unit of time which makes 

.,1 N jR j  Hence, the decision variables can be considered as positive integers. 
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The assumptions regarding demand bounds and services times differentiate the GSM 

from the SSM literature. These assumptions are controversial since they can be judged as 

restrictive and oversimplified. Nevertheless, they are crucial to guarantee a tractable model. 

Indeed, the bounded demand assumption becomes realistic when a manager is able to 

explicitly indicate a preference for the demand range to be covered by safety stocks and when 

the supply chain has sufficient operational flexibility to apply extraordinary measures in case 

of excessive demand. Usually, specifying an appropriate level for the demand range that 

would be covered by safety stocks is not straightforward since it requires a good managerial 

experience. In some contexts external demand can be bounded in the real sense due to the 

capacity constraints of external customers. 

Inventory Dynamics 

Under the assumptions presented in the previous subsection, at the beginning of each 

period t, the realised demand )(td j  at stage j is observed and an order corresponding to this 

demand is placed. The corresponding order is replenished (and available to serve demand) at 

the beginning of period j

in

j Lst  . On the other hand, Stage j is subject to satisfy this 

demand at period 
out

jst  . If demand )(td j  is served first and the replenishment 

corresponding to this demand occurs at a subsequent period, node j has to store the inventory 

that would satisfy this demand. That is, if 
out

jj

in

j sLs  , stage j should have the amount of 

inventory to cover the demand over an interval of length 
out

jj

in

jj sLs  , that is called the 

“net replenishment time” of stage j. 

We assume that the realised demand )(td j  in period t at stage j is equal to 0 for 0t  

and the inventory system starts at time 0 with initial inventory level .0)0(  jj SI  Graves 

and Willems (2000) provide the following balance equation for the net (installation) 

inventory level )(tI j  at stage j at the end of period t: 

),()( out
jj

in
jjjj stLstdStI    (1.15) 

The first argument of (.,.)jd , j

in

j Lst   corresponds to the last replenishment 

received by stage j by time t. The second argument of (.,.)jd , 
out

jst   corresponds to the last 

demand served by stage j by time t. At each time, the inventory is exposed to 
out

jj

in

j sLs   
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periods of demand which is its net replenishment time. In order to achieve guaranteed-service 

with minimum inventory at stage j, the order-up-to level jS  should be set equal to the 

demand bound )( jjD   where 
out

jj

in

jj sLs  . In this way, the net inventory level )(tI j  

at stage j will always be positive and 100% service will be guaranteed to internal/external 

customers within the specified service times. Under this setting, the expected inventory level 

)]([ tIE j  can be expressed as:  

jjjjj DtIE   )()]([   (1.16) 

The expected inventory level expressed in (1.16) represents the safety stock held at 

stage j. As given by assumption (vi), a linear inventory cost structure is considered. 

Mathematical Programming Formulation 

The GSM optimisation problem is the problem of finding optimal outbound and 

inbound service times that minimise the total safety stock cost of the system: 

 



Nj

jjjjj DhP  )(min :0   (1.17) 

s.t.   N jsLs
out

jj

in

jj   (1.18) 

       A ),(, jiss
in

j

out

i  (1.19) 

       DN jss
client

j

out

j ,   (1.20) 

        0,, in

j

out

jj ss  and integer  Nj   (1.21) 

The objective function (1.17) represents the minimisation of the total safety stock 

cost. Constraint (1.18) defines the net replenishment time of each stage. Constraint (1.19) 

ensures that the inbound service time of a stage is no smaller than the outbound service times 

of its upstream stages. Constraint (1.20) ensures that demand stages satisfy their service 

guarantee where client

js  corresponds to the maximum service time that stage DNj  can quote 

for the external customer. Finally, with (1.21) all decision variables are restricted to be 

positive integers. The problem P0 is actually the minimisation of a concave function over a 
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closed, bounded convex set. After having solved the problem P0, the optimal order-up-to 

level 
*
jS  of stage j can be obtained by )( **

jjj DS   where 
*
j  is the optimal net 

replenishment time of stage j. 

Numerical Example 

Let consider the example presented in Section 1.2.1 and use the GSM approach to 

determine the optimal service times and the associated installation order-up-to levels. To do 

this, first, we should specify the demand bound function. The setting proposed by Simpson 

(1958) and Graves and Willems (2000) lead to the following expression for the considered 

example:  

 2,1for )(  jzD jjj    (1.22) 

where z  is the safety factor that relates to a CSL   at Stage 2. For the considered 

example, we have )(1 z  where (.)  denotes the standard normal cumulative 

distribution function. We can obtain the CSL level %0.93  using the equivalence relation 

given in (1.14). We assume that 0client

js , i.e. external demand at Stage 2 is immediately 

satisfied when it occurs. The optimal service times and net replenishment times are obtained 

solving the problem P0: ,521  inout
ss  ,022  clientout

ss  0*
1   and .11*

2   Hence, the optimal 

installation order-up-to levels are: 0*
1 S  and 5.134*

2 S . This solution gives the total cost 

8.36GSMC . Figure 1.5 illustrates the solution obtained by the GSM. 

The first difference between the solutions obtained using the SSM and GSM 

approaches is that in the SSM solution, both stages hold safety stock whereas in the GSM 

solution only Stage 2 holds safety stock. That is, Stage 1 delays the fulfilment of Stage 2’s 

orders so that each order is met when the replenishment associated with this order is received. 

Indeed, in GSM solutions, only stages with strictly positive net replenishment times need to 

hold safety stock. Due to this feature, the GSM optimisation problem is also called the safety 

stock placement problem. The second difference between the two solutions stems from the 

bounded demand assumption. In the GSM, safety stocks are dimensioned to be protected 

against demand variability up to the specified demand bounds. The model does not quantify 

the cost of other countermeasures such as subcontracting, overtime production and/or express 
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expediting to handle the excess demand. In contrast, in the SSM, safety stock is the only 

countermeasure to use for all demand realisations. Indeed, the GSM underestimates the total 

cost of the supply chain since it does not model what happens in case of excessive demand. 

This explains the cost gap between GSMC  and SSMC . In order to choose the best approach for 

the considered system, GSMC  should be considered together with the cost of extraordinary 

measures. It makes financial sense to adopt the GSM approach if the system has sufficient 

flexibility to address extraordinary measures in case of excessive demand and if the cost of 

these measures would be less than the cost gap GSMSSM CC  . 

Figure 1.5: The solution obtained by the GSM approach 

 Conclusion 1.3

In this chapter, we have presented the basic terminology and the main models 

proposed for multi-echelon safety stock optimisation problem, the Clark and Scarf (1960) 

model which has initiated the research on SSM approach and the original GSM which has 

recently triggered several extensions. In the next chapter, we provide a literature review of 

the SSM and GSM approaches. We remind the reader that in this thesis our main 

contributions will concern the GSM approach.   
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CHAPTER 2: LITERATURE REVIEW 

As said earlier, this thesis develops contributions to the multi-echelon inventory 

optimisation problem with a special focus on the GSM approach. In the literature, there exist 

two main approaches that enable to deal with the multi-echelon safety stock optimisation 

problem, the SSM approach and the GSM approach. This chapter presents a complete 

literature review considering both approaches.  

The literatures of the SSM and GSM approaches are not at the same degree of 

maturity. The literature pertaining to the SSM approach is extensive. A lot of research has 

been done since the work of Clark and Scarf (1960). Excellent surveys are also a part of this 

vast literature (see, e.g., Diks et al., 1996; Axsäter, 2003; Simchi-Levi and Zhao, 2012). On 

the other hand, the research on GSM has gained interest only in the last decade. To the best of 

our knowledge, there is no review which gives a synthesis of the various works developed so 

far. The review conducted in this section enables us to reveal the gaps in the GSM literature 

that lead to the research questions considered in this thesis. 

In Section 3.1, we aim at providing a review of the main models pertaining to the 

SSM approach. The purpose of Section 3.2 is to conduct a comprehensive review of the GSM 

approach. Section 2.3 then summarises the contributions that compare, contrast or combine 

the two approaches. Finally, Section 2.4 draws some conclusions by presenting the 

limitations of both approaches and presents the gaps in the GSM literature that are being 

addressed in the upcoming chapters of this thesis.  

 Stochastic-Service Model Approach 2.1

We observe that the models pertaining to the SSM approach mainly differ in terms of 

the multi-echelon system structure considered. Each model focuses on a specific system 

structure and aims at providing appropriate solutions under different assumptions. In this 

literature review, we classify the models pertaining to the SSM approach according to the 

system structure studied. The literature review is conducted over three axes: the models that 

study serial and assembly systems (Section 2.1.1), distribution systems (Section 2.1.2) and 

general systems (Section 2.1.3). We provide more details on the models that are developed 
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for general systems which are not comprehensively presented in the existing surveys of the 

SSM approach.  

2.1.1 Serial and Assembly Systems 

 We remind that the seminal work of Clark and Scarf (1960) proves that the cost 

optimal inventory control policy for all stages of a serial system is an echelon order-up-to 

policy. Federgruen and Zipkin (1984b) extend this work to the infinite time horizon case. For 

this case, easier proofs for the optimality of echelon stock order-up-to policies are provided 

by Langenhoff and Zijm (1990), Chen and Zheng (1994b) and Van Houtum (2006). As 

presented in Section 1.2.1 (Chapter 1), the decomposition technique developed by Clark and 

Scarf (1960) leads to the derivation of Newsboy equations to determine the optimal echelon 

order-up-to levels under some assumptions. The Newsboy equations can generally not be 

solved analytically. However, computational procedures can be developed to determine the 

optimal echelon order-up-to levels. For a two-stage system and normally distributed demand, 

the optimal solution is relatively easy to obtain (see Federgruen and Zipkin, 1984a; 1984b). 

For the general serial case with number of stages greater than 2, the computations may be 

very time consuming. Van Houtum and Zijm (1991) provide approximate procedures among 

which one is exact for mixed Erlang demand distributions. Though these procedures employs 

the shortage cost approach it can alternatively be applied under the service level approach 

(Minner, 2000; Van Houtum and Zijm, 2000). We refer the reader to Van Houtum (2006) for 

a comprehensive review on existing exact and approximate procedures that enable to obtain 

echelon order-up-to levels and the relevant costs.  

There exist several extensions/generalisations of the Clark and Scarf (1960) model. 

This includes the consideration of continuous-review, fixed order quantities (Bodt and 

Graves, 1985; Chen, 2000), capacity constraints (Parker and Kapuscinski, 2004), fixed 

reorder intervals (Van Houtum et al., 2007) and lost sales case (Huh and Janakiraman, 2010). 

Furthermore, Rosling (1989) and Langenhoff and Zijm (1990) demonstrate that an assembly 

system can be replaced by an equivalent serial system. Therefore, results presented for the 
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serial system can also be applied to assembly systems. We refer to the survey paper of Van 

Houtum et al. (1996) for an analysis of assembly systems.  

2.1.2 Distribution Systems 

It is common to use the Clark and Scarf (1960) approach also for distribution systems. 

However, in contrast to serial and assembly systems, additional problems stem from the 

requirement to allocate the available amount of stock among downstream stages in case of 

stock insufficiency at upstream stages. For distribution systems, the optimal echelon order-

up-to policies can be derived under the so-called balance assumption. The balance 

assumption means that an upstream stage is allowed to make negative allocations to its 

downstream stages. In other words, the total stock at the downstream echelon can be 

optimally distributed between the associated stages in any period. Under this assumption, the 

optimal echelon order-up-to levels satisfy the Newsboy equations provided by Diks and De 

Kok (1998). Indeed, the determination of optimal allocation functions would be 

computationally infeasible for realistic problem instances due to its non-linearity. 

Researchers propose different allocation rules (see, e.g., Eppen and Schrage, 1981; De Kok et 

al., 1994; Van der Heijden et al., 1997; Diks and De Kok, 1999) to allocate the available 

stock among downstream stages and to develop approximations under some form of balance 

assumption. Doğru et al. (2009) investigates the effect of the balance assumption with a 

numerical study conducted over a wide range of parameters. We also refer to Axsäter (2003) 

and Gallego et al. (2007) for further discussions of the issue of imbalance.  

In continuous-review installation stock policies, the issue of imbalance and the stock 

allocation problem are not considered since one can typically assume First-Come-First-

Served (FCFS) allocation rule. However, the challenge in this case is to characterise the 

stock-out delay, i.e. the additional waiting time of downstream stages due to eventual stock-

outs at their upstream stages. The classical approach that constitutes the basis for a lot of 

models that consider installation stock policies is the METRIC approach of Sherbrooke 

(1968). He provides a simple approximate approach for repairable items (i.e. items with 

relatively low demand and high holding costs) controlled with continuous-review, base-stock 
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policies. The METRIC approach is extended to consider items with low cost and high 

demand and to systems that operate under different installation stock policies. There has been 

a lot of research in this direction; for surveys see  Diks et al. (1996) and Axsäter (2003). For 

periodic-review installation stock policies, a classical FCFS allocation rule may not be 

relevant since downstream stages can place orders to their upstream echelon at the same time. 

Therefore, the upstream stages face the decisions of stock allocation in case of stock 

insufficiency. We refer the reader to Jackson (1988), Graves (1996) and Marklund and 

Rosling (2012) and references therein for further details on the stock allocation problem in 

periodic-review installation stock policies.  

2.1.3 General Systems 

While serial, assembly and distribution systems are extensively studied by using the 

SSM approach, the number of SSM formulations that consider general supply chain 

structures is relatively limited. This is due to the intractability of the SSM approach for 

general systems unless some specific assumptions and approximations. The optimal policy 

for such systems is unknown and at least as complex as those of distribution systems (Shi and 

Zhao, 2010). In what follows, we provide a comprehensive review of the different models 

that deal with general systems using the SSM approach. 

Lee and Billington (1993) analyse a supply chain structure in Hewlett-Packard 

Company which constitutes a combination of assembly and distribution systems. Each stage 

in the considered supply chain uses a periodic-review, installation order-up-to policy. Under 

given service level targets for each stage, they show how to calculate the order-up-to levels 

by using a single-stage model. To do this, they develop approximate expressions for the 

replenishment time of each stage in the supply chain. The approximation is based on the 

assumption that in each period at most one upstream stage in the system can be out-of-stock. 

Under this assumption, they provide a performance analysis by evaluating various stock 

positioning strategies. Ettl et al. (2000) consider the same assumption for the case where each 

stage uses a continuous-review, installation base-stock policy, external demands follows 

compound Poisson processes, lead times are i.i.d. random variables and the system operates 
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with the FCFS allocation rule. They model the difference between the lead time jL  of stage 

Nj  which is a given data and its replenishment time 
jL

~
 which can be derived taking into 

account the probability of stock-out at upstream stages. The replenishment time 
jL

~
 of stage 

Nj  is a random variable which can be expressed as: 

 A ),(:max
~

jiiLL
ijj

 

where i  is the stock-out delay occasioned by upstream stage i. The stock-out delay 

i  is a quite intractable random variable for an exact characterisation. They derive 

approximations and bounds on these random variables and present an optimisation model that 

minimises the total inventory cost subject to customer service level constraints. This model 

has applied at IBM and their partners as a part of an extended-enterprise supply chain 

analysis tool and has yielded great benefits (see Lin et al., 2000).  

Graves and Willems (2003) present an optimisation model based on the model of Ettl 

et al. (2000). They assume that each stage operates with a periodic-review, installation order-

up-to policy with common review periods equal to one period at all stages, external demands 

follow stationary i.i.d processes and lead times are deterministic and constant. The major 

difference with the model proposed by Ettl et al. (2000) comes from the assumption which 

indicates that if an upstream stage causes a stock-out then its stock-out delay is equal to its 

lead time.  

Simchi-Levi and Zhao (2005) also follow the approach proposed by Ettl et al. (2000) 

considering continuous-review, installation base-stock policies and independent Poisson 

processes for external demands. However, they make a different assumption on lead time of 

stages: while Ettl et al. (2000) consider i.i.d. random lead times, Simchi-Levi and Zhao 

(2005) consider stochastic, sequential and exogenously determined lead times.  Under this 

assumption, orders do not cross in time. They focus on (spanning) tree network structures 

where there is at most one undirected path between every two stages. They develop exact 

recursive equations for stock-out delays at all stages of the supply chain. Guided by the exact 

analysis, they present approximations that improve the computational efficiency for 

optimisation and develop an algorithm based on dynamic programming in order to determine 
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the optimal or near optimal base-stock levels that minimise the total inventory cost subject to 

customer service level constraints. This work is extended by  Zhao (2008) to more general 

supply chains (i.e. networks with at most one directed path between every two stages) facing 

compound Poisson demand. Recently, Shi and Zhao (2010) consider similar assumptions 

with that of Simchi-Levi and Zhao (2005) about lead times and external demand and discover 

some simple yet unique properties for acyclic general networks. They introduce an inventory 

control policy that consists of splitting inventory into multiple stock piles and dedicating each 

to a unique downstream path. This policy is called the dedicated stocking policy. They show 

that under certain assumptions, the best dedicated stocking policy always outperforms the 

best continuous-review, installation base-stock policy. Besides, they show that under certain 

conditions, an acyclic supply chain can be decomposed into a tree network structure without 

increasing its total inventory cost. 

The work of Glasserman and Tayur (1995) is among the first which considers echelon 

stock policies. They assume stochastic and continuous external demands, linear backordering 

costs, limited production capacity at each stage and modified period-review, echelon order-

up-to policies. The policy is modified in the sense that limited production capacity may 

preclude restoring inventories to their order-up-to levels. They show that for various cost and 

performance measures, derivatives with respect to echelon order-up-to levels can be 

consistently estimated from simulation, or even from real data. They illustrate the 

effectiveness of the derivative estimates by incorporating them in an optimisation procedure 

to find optimal order-up-to levels for a PC assembly and distribution system of a major 

computer manufacturer. De Kok and Fransoo (2003) introduce an echelon stock policy by 

extending the optimal policy described for assembly systems by Rosling (1989) to a non-

optimal policy for general multi-echelon systems. They call the proposed policy the 

synchronised base-stock policy. Based on the insights provided for assembly systems, they 

translate the general system into a divergent system. Thus, they propose to apply the solution 

method provided by Diks and De Kok (1999) for divergent systems in order to determine the 

base-stock levels and rationing fractions that satisfy the customer service level constraints. 

This approach has been applied at Philips Electronics and has brought substantial savings that 
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is around $5 million per year from the yearly turnover of $300 million (see De Kok et al., 

2005).  

We have presented in this section detailed insights on models that use the SSM 

approach for general multi-echelon systems. The optimal policy for such systems is 

unknown. The available SSM literature dealing with general systems is relatively limited. 

The majority of papers use standard and simple installation stock policies under different 

assumptions regarding lead times and external demands. Besides, they usually introduce 

simplificative assumptions and approximations to improve the computational efficiency for 

the purpose of system evaluation and optimisation. This may render the model less realistic. 

Indeed, allowing complexity to increase may lead to better performing solutions. However, it 

may cause several issues not only in modelling and solution computation but also in 

implementation due to the complexity of operations regarding the inventory control policy to 

be applied.  

 Guaranteed-Service Model Approach 2.2

In this thesis, we have a special focus on the GSM approach since the relevant models 

may be computationally tractable for general multi-echelon systems and have a great 

potential in terms of improvement in real-world supply chains. Indeed, the research on GSM 

has gained interest in recent years. Although this approach was initiated more than fifty years 

ago with the work of Simpson (1958), almost 80% of the existing works are published in the 

last decade (see Figure 2.1). To the best of our knowledge, there is no literature review which 

gives a synthesis of the various works developed so far. 

In this section, we conducted a literature review over three axes. The first axis 

classifies papers according to the assumptions that are considered while modelling the multi-

echelon system analysed with the GSM approach (Section 2.2.1). The second axis focuses on 

solution techniques developed for different supply chain structures (Section 2.2.2). Finally, 

the third axis presents results obtained by industrial applications (Section 2.2.3). It should be 

noted that when an existing paper falls into more than one of these axes, the major 

contributions of the paper are separately presented in the concerned sections.  



 40 

Figure 2.1: Number of publications on the GSM approach per year 

2.2.1 Modelling Assumptions 

This section reviews the various models that extend the original GSM to enable to 

capture real-world supply chain characteristics. The criteria we use to classify existing 

models are based on the relaxations that have been made to the original model. Indeed, these 

relaxations concern several assumptions used in the model and are relative to:  1) external 

demand, 2) lead times, 3) capacity constraints, 4) service times, 5) inventory control policies, 

6) extraordinary measures and 7) decision makers. Table 2.1 gives a summary of extensions 

developed. The first two columns summarise the assumptions of the original GSM as 

presented in Section 1.2.2 of Chapter 1 while the third column lists the associated relaxations.   
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Original Assumptions Associated Relaxations Reference 

External demand 

Stationary demand 

Non-stationary demand 
Graves and Willems (2008), 
Neale and Willems (2009) 

Consideration of evolving 
demand forecasts 

Schoenmeyr and Graves 
(2009) 

Demand bounds subject to a 
CSL target 

Demand bounds subject to 
a modified fill-rate target 

Inderfurth and Minner (1998) 

Lead times Known and constant Stochastic 
Inderfurth (1993), Minner 
(2000), Humair et al. (2013) 

Capacity 
Constraints 

None 
Consideration of capacity 
constraints 

Sitompul et al. (2008), 
Schoenmeyr (2008) 

Service Times 
Unique for all direct stages 

Customer-specific service 
times 

Graves and Willems (1998), 
Minner (2000) 

Constant Dynamic Graves and Willems (2008) 

Inventory Control 
Policies 

Periodic-review, order-up-to 
policy 

Continuous-review batch 
ordering policy 

Li and Chen (2012), Li et al. 
(2013) 

Common review periods for 
all stages 

Arbitrary and integer Bossert and Willems (2007) 

Extraordinary 
measures 

Non modelled explicitly 
Modelling insights for 
these measures 

Rambau and Schade (2010), 
Klosterhalfen and Minner 
(2010) 

Decision-makers Single decision-maker Several decision-makers 
Schoenmeyr (2008), Egri 
(2012)   

Table 2.1: Classification according to modelling assumptions 

External Demand 

The original version of the GSM assumes that external demand comes from a 

stationary process and demand at each stage Nj  is bounded for any long period 

jj M,...,1  by an increasing and concave function )( jjD  . Most studies adopt a Normal 

Distribution to represent the external demand pattern in their applications (see, e.g., Simpson, 

1958; Inderfurth, 1991; Graves and Willems, 2003) and specify the demand bounds at 

demand stages DNj  as follows: 

jjjjjjj zD  )(   (2.1) 

where jz  is the safety factor of stage j that relates to its CSL j  for a cycle of length 

j . The safety factor jz  verifies )( jj z  where (.)  is the standard normal cumulative 

distribution function. Here, the value of jz  depends only on j .  

For each non-demand stage IS NN j , demand bounds can be set based on 

function (2.1). For instance, if stage i has a single downstream stage j then:   
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)()( ijijii DD    for all ii M,..,1   (2.2) 

If stage i has more than one downstream stage then the risk pooling effect that 

describes a relative reduction in demand variability due to combining demand of multiple 

downstream stages can also be incorporated into the demand bound of stage i (see Graves and 

Willems, 2000). 

Inderfurth and Minner (1998) are the only ones that use another service measure than 

the CSL to derive the safety factor in function (2.1). They consider the modified fill-rate 

service measure j   (see Section 1.1.5). By definition, the safety factor jz  becomes 

dependent on both j   and j . Under this setting, they show that there exists an additional 

coverage potential at stage j that represents the maximum time that can be covered without 

holding any safety stock at stage j. This can be computed based on j  .  

Graves and Willems (2008) assume a non-stationary demand process.  They specify a 

planning horizon of length H and assume that the mean rate )(tj  and the standard deviation 

)(tj  at demand stage DNj  is independent over  0 ≤ t ≤ H. Then, they introduce the 

demand bound function ),( out

jj

in

jj stLstD   defined for the time interval 
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Analogously to the original model, to satisfy the service time guarantee with the 

minimum inventory level the order-up-to level )(tS j  of stage j at time t  is set as follows: 

),()( out

jj

in

jjj stLstDtS    (2.4) 

Using (2.4), Graves and Willems (2008) allow the order-up-to level to vary over time 

and thus propose an adaptative order-up-to policy. They then replace the objective function 

(1.17) of the problem P0 (Section 1.2.2, page 30) with: 
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Graves and Willems (2008) argue that it is reasonable to assume that (2.5) is concave.  
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Neale and Willems (2009) also include a non-stationary demand process in the GSM 

framework. They assume that the planning horizon is divided into different phases. Demand 

within each phase is assumed to be stationary with a known mean and standard deviation. 

Under this assumption, they obtain the discrete time version of demand bound function given 

in (2.3).  

Schoenmeyr and Graves (2009) extend the non-stationary demand process assumption 

to evolving forecasts. Under this assumption, forecasts are regularly updated based on 

observed sales, advanced orders, and market intelligence. As in Graves and Willems (2008), 

they let the order-up-to levels vary over time and they call this replenishment policy as 

“forecast-based ordering policy”. They demonstrate that under the considered setting, the 

concavity property is still valid.  

Regarding the external demand assumption, researchers have so far proposed 

extensions by considering non-stationary and evolving demand patterns. As will be further 

presented in Section 2.2.3, these extensions enable to realise real-world applications since 

many companies experience non-stationary demand because of short product life cycles, 

seasonality, sales-force incentives etc.  

Lead Times 

A second important extension concerns the relaxation of the deterministic lead time 

assumption. Different approaches exist in the literature in order to incorporate stochastic lead 

times into the GSM framework.  

Inderfurth (1993) develops the first approach by considering a general multi-echelon 

system. He assumes that the lead time at every stage Nj  is normally distributed with mean 

jL  and standard deviation 
jL . He proposes to apply a well-known result used in single-

echelon theory (see e.g. Silver et al., 1998) to calculate the safety stock at demand stage 

DNj :  

222

jLjjjj Lz    (2.6) 
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At non-demand stages, he classifies the lead time variability into reasonable and 

extraordinary variations. He then specifies the planned lead time at non-demand stage 

IS NN j  with: 

jj LLjj zLL   

where 
jLz  relates to the service level which denotes the probability that the lead time 

realisation does not exceed the planned lead time jL . The original problem P0 is then 

modified by replacing jL  with jL  for non-demand stages in (1.17) and in (1.18). In this 

setting, the objective function becomes: 

 
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Minner (2000) shows that the approach of Inderfurth (1993) leads to large safety 

stocks. Besides, it requires the specification of two different service levels for both demand 

and lead time. He thus proposes another approach where only one service level has to be 

chosen to dimension safety stocks. He considers a serial system where stages are numbered 

from 1 to n from the most upstream to the most downstream stage. The cumulative net 

replenishment times from stage 1 to stage j are restricted with the sum of average lead times 

plus a safety surplus. In case of independent lead times, the safety surplus of stage Nj  is 

given by: 
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Using this approach, the objective function (1.17) remains the same, whereas safety 

surplus parameters appear in the constraints. The objective function remains concave using 

models proposed by Inderfurth (1993) and Minner (2000).  

Recently, Humair et al. (2013) contributes to the literature with a more sophisticated 

approach to deal with stochastic lead times in general multi-echelon systems. They define the 

shortfall at stage j as the difference between what stage j has shipped out and what it has 

replenished. Because demands and lead times are random, shortfalls and net replenishment 
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times are also random variables. Shortfall of stage j is positive only if the realised net 

replenishment time is positive. They assume that the positive shortfall has an approximately 

normal distribution. Hence, they set the safety stock at stage j as: 

))(())(( 22   in

j

out

jjj

in

j

out

jj ssRssQz    (2.7) 

where }0,{max)( in

j

out

j

in

j

out

j ssss   and functions Q(.) and R(.) are the mean and 

variance of the net replenishment time random variable conditional on being positive. We can 

observe that the safety stock expression in (2.6) and (2.7) are structurally similar. The only 

difference is that lead time parameters are replaced with equivalent functions regarding the 

positive part of the net replenishment time random variable. Furthermore, Humair et al. 

(2013) show that when a stage’s service time exceeds its inbound service time, some lead 

time realisations might cause orders to arrive at the relevant stage before the associated 

downstream demand has shipped. This forces some stages to carry an additional stock that is 

called the early arrival stock. Humair et al. (2013) define the objective function as the total 

cost of safety stock and early arrival stock. This setting might cause that the objective 

function becomes non-concave or non-differentiable.  

Concerning the different approaches proposed to incorporate stochastic lead times 

into the GSM model, we notice that a straightforward modelling approach may lead to 

significant safety stocks whereas a more sophisticated approach may violate the concavity 

property of the objective function and hence increase the computational complexity of the 

problem. Indeed, when implementing these approaches, the objective is to reach the best 

trade-off between the quality of the solution and the computational complexity.  

Capacity Constraints 

In the original GSM, there are no capacity constraints that limit the quantity of items 

which can be processed at stages.  To the best of our knowledge, Sitompul et al. (2008) is 

among the first who take the capacity constraints into account. They define jq  as the 

maximum quantity of items which can be processed at stage j during one period. They 

consider the CSL as the service measure and Normal Distribution as demand pattern. They 
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show that the safety stock level needs to be increased by a correction factor j  which 

depends on the excess capacity )( jjq   over the standard deviation of demand during the 

net replenishment time. Hence, instead of (2.1), they set the demand bound )( jjD   at 

demand stage j as follows: 

jjjjjjjj zD   )(       

They use exponential interpolation to estimate the correction factor j  and test their 

approach with Monte Carlo simulation. However, their work remains approximate and their 

findings are based on a limited set of simulations. 

Schoenmeyr (2008) considers independently the same relaxation and provides an 

exact derivation of demand bounds. He demonstrates that under capacity constraints demand 

bound functions )( jjD   can be defined as: 

 mqmDD jjj
m

jj 


)(max)( 
Ζ

  (2.8) 

where m belongs to the set of non-negative integers Ζ . In (2.8), function )( mD jj   

can be defined as in (2.1) or by using other approaches presented in the “External Demand” 

subsection. Under the order-up-to policy assumption, Schoenmeyr (2008) proposes to replace 

demand bound functions used in (1.17) by (2.8). He proves that the concavity property of the 

objective function is still valid for this extension.  

Schoenmeyr (2008) also suggests an appropriate inventory control policy that is 

called “censored order policy” where a stage does not place a full order to the upstream stage 

if it knows that it will be unable to process such a quantity because of its capacity constraint. 

Therefore, the order-up-to level is set as: 

 
jjjjjj qDS  ),(min)(   

Numerical experiments show that the proposed policy is better than the order-up-to 

policy in terms of cost. However, the censored order policy gives better results even in the 

absence of capacity constraints. This paradox can be explained by the smoothing effect of 

this policy which reduces demand variability at upstream stages. This shows that the order-

up-to policy is not necessarily optimal for a multi-echelon system with guaranteed service.  
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Service Times   

Each stage offers the same service time for its customers in the original GSM. Graves 

and Willems (1998) describe how to transform the model to permit customer-specific service 

times. The main idea is to insert dummy stages (nodes) between downstream-upstream 

stages, so that each stage still quotes the same service time to its downstream stages. Dummy 

stages have zero cost and zero lead time but they are free to quote any valid service time. In 

this approach, the original optimisation model structure does not change whereas the 

considered network is modified inserting dummy nodes. Minner (2000) considers the same 

relaxation for distribution systems and proposes two different model formulations. In the first 

model, he provides a natural extension by allowing stage i to quote different service times 

out

ijs  for all of its direct downstream stages A),(: jij . In the second model, stage i quotes a 

service time 
out

ijs  which is differentiated according to the requests of the demand stage 

DNj  if there is a path between i and j in the network. He then compares these two models 

and shows that the second one dominates the first one in terms of cost performance. 

However, in terms of computational effort and ease of implementation the first model is 

preferred to the second one.         

In the original model, service times are assumed to be constant over time. Neale and 

Willems (2009) justify this assumption since they lead to constant safety stock locations, 

simplify the model and reduce computational requirements. However, Graves and Willems 

(2008) show that constant service times may lead to sub-optimal solutions when demand is 

non-stationary. Their study is based on a chosen example and does not give a general idea 

about the sub-optimality of constant service time solutions.  

Inventory Control Policies 

As presented in the previous subsections, researchers propose different replenishment 

policies for situations that involve non-stationary demand and capacity constraints. In this 

section, we focus on works in which the major contribution is the relaxation of the original 

replenishment policy assumption of the GSM. 

 The original GSM assumes a periodic-review, constant order-up-to level policy with 

a common review period for all stages. Bossert and Willems (2007) extend the GSM to allow 
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review periods to be stage-dependent. They assume that the review period of each stage has 

an arbitrary integer and known value. A simple approach to integrate this assumption would 

be to aggregate the review periods into lead times. However, they propose better 

replenishment policies in terms of cost by examining the cyclic inventory dynamics. Policies 

that are proposed include constant and adaptative order-up-to and constant safety stock 

targets.   

Li and Chen (2012) consider a continuous-review policy in the GSM framework. 

They study a serial system with Poisson external demand. They assume that each stage 

operates with an echelon order point, order quantity policy. Li et al. (2013) extend this work 

to assembly systems. Since they attempt to optimise both order point and order quantity 

parameters, the resulting objective function is neither convex nor concave. They decompose 

the relevant problem into two sub-problems, the order quantity decision sub-problem and the 

order point decision sub-problem. In their setting, the two sub-problems are independent 

where the order point decision sub-problem is equivalent to the original GSM. 

Schoenmeyr (2008) shows that the periodic-review, order-up-to policy is not 

necessarily optimal for multi-echelon systems modelled with the GSM framework. In his 

work, he gives some insights about the sub-optimality of this assumption. He shows that a 

new replenishment policy that sets upper limits for the ordered quantity may lead to a lower 

total inventory cost. Such a policy at demand stages smoothes orders placed to the upstream 

stages and absorbs demand variability. However, he considers the upper limits for ordered 

quantities as given parameters and does not discuss how to specify them in practice if there 

are no evident limits such as capacity constraints in the system. 

Extraordinary Measures 

The original GSM does not explicitly model what happens when demand exceeds the 

demand bounds. The implicit assumption in most of the GSM extensions is that only demand 

within the specified demand bounds is propagated through the system whereas demand in 

excess of these bounds is truncated and handled outside the normal supply chain.  
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Only few results are available regarding the impact of extraordinary measures on the 

considered systems. Klosterhalfen and Minner (2010) assume that the unbounded original 

external demand is propagated through the system. They model the use of express expediting 

as extraordinary measure, i.e. accelerated transportation by speeding up the excess amount 

from the stage’s own pipeline stock. They consider a simplified assumption regarding the 

specification of the cost associated with express expediting. That is, each unit of item 

expedited in express incurs a cost irrespective of the delay to meet the associated demand. 

Their simulation results show the relevancy of this assumption. Besides, they show that the 

use of express expediting decreases the pipeline stock and they include the associated 

reduction in the cost function. Under the proposed setting, they provide an extension with 

concave objective function for given safety factors. Rambau and Schade (2010) include 

extraordinary measure costs for both delays and unmet demand and propose a stochastic 

programming version of the GSM. However, they neither specify what measure among 

express expediting, overtime production, subcontracting etc. is considered nor model the 

eventual impact of these measures on inventory dynamics.  

Decision-Makers 

In the original GSM, it is implicitly assumed that there exists a single decision-maker 

that takes the safety stock placement decision for the whole supply chain. Schoenmeyr (2008) 

argues that the GSM framework is also relevant when different parts of the supply chain are 

controlled by different decision-makers which may have competing and conflicting interests. 

He proposes a simple contract structure in order to facilitate the relationship between two 

decision-makers that control their part according to the GSM approach. Under the proposed 

contract, downstream holding costs are not affected by the non-value added mark-up applied 

by the upstream decision-maker. The proposed contract is incentive compatible, i.e. once the 

decision-makers have agreed on the global optimal service time, it will be in their own best 

interests to operate the supply chain according to the globally optimal solution.  

Similarly, Egri (2012) considers the GSM approach in a decentralised serial supply 

chain involving a number of autonomous stages where each stage represents a different 
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decision-maker. He proposes different mechanisms that facilitate the alignment of conflicting 

goals and achieve the global optimal solution in such systems. Numerical examples provided 

illustrate how the proposed mechanisms enable to achieve the globally optimal solution in 

different ways. 

2.2.2 Solution Methods Developed 

This section aims at classifying the existing literature according to the solution 

methods developed. Table 2.2 gives a summary of the existing works regarding the nature of 

their contribution (column 1), the supply chain network structure considered (column 2), the 

objective function (column 3) and the method used (column 4). 

Simpson (1958) considers a serial network and proves that optimal solutions of the 

problem P0 can only occur on the extreme points of the solution set since this problem is the 

minimisation of a concave function over a closed, bounded convex set. This property is called 

the all-or-nothing property or the extreme point property. In solutions holding this property in 

a serial system, a stage has either no safety stock or has sufficient safety stock to decouple it 

from its downstream stage. Inderfurth (1991) shows the validity of this property for 

distribution networks. Inderfurth and Minner (1998) present the optimal solution properties 

for serial, assembly and distribution networks under different service measures. Lesnaia 

(2004) shows the optimality conditions for spanning tree networks in which there is at most 

one path of arcs between two nodes.  She also extends these results to provide the optimality 

conditions for a special case of general networks called networks with Clusters of 

Commonality (CoC). In such networks, when each cluster is replaced by a single node, the 

resulting network is a spanning tree. Minner (2000) characterises the optimal solution 

properties for general acyclic networks. Finally, Minner (2001) discusses the optimal solution 

properties for general cyclic networks and presents an extended extreme point representation 

with the synchronisation of service times and item returns in such systems. 

Considering the optimal solution properties for different supply chain networks, 

optimal solutions of the problem P0 can be determined by enumeration. However, the 

extreme point property enables the development of more efficient exact solution methods. 
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For instance, Inderfurth (1991) introduces the dynamic programming algorithm for 

distribution systems based on this property (see also Inderfurth, 1992). Similarly, Minner 

(1997) presents dynamic programming algorithms for serial, assembly (Ass.) and distribution 

(Distr.) systems under different service measures. The dynamic programming approach is 

extended by Graves and Willems (2000) to consider spanning tree networks. Indeed, these 

networks represent the most complex type of multi-echelon system to which the single-state 

variable dynamic programming approach can be directly applied. The computational 

complexity of the algorithm proposed by Graves and Willems (2000) is of order 2
nM where 

n is the number of nodes and M is the maximum replenishment time in the system. Lesnaia 

(2004) improves this algorithm by considering the relevant optimal solution properties and 

proposes a dynamic programming algorithm of order n3 for such networks. Besides, she also 

develops a branch and bound algorithm for networks with CoC using the optimal solution 

properties for these networks. Minner (2000) shows that general acyclic networks lead to 

higher dimensional states and decision spaces to use the dynamic programming algorithm. He 

gives insights on both forward recursion and backward recursion dynamic programming 

algorithms for these systems. To minimise the number of state variables, he argues that a 

backward recursion is preferable if the supply chain network represents distribution 

dominance whereas a forward recursion is advantageous in case of assembly dominance. 

Lesnaia (2004) shows that the general acyclic network problem is NP-hard. She develops a 

branch-and-bound algorithm to solve the problem to optimality. Magnanti et al. (2006) 

provide an exact solution method for this problem without referring to the optimal solution 

properties.  They use successive piecewise linear approximation to obtain tight approximation 

to the concave objective function. Hence, the problem is transformed to a Mixed Integer 

Programming problem and is solved by a commercial solver. 

Researchers have also proposed approximate (Appr.) solution approaches in order to 

find near-optimal solutions with less computational effort for general acyclic network 

problem with concave objective function. Minner (2000) investigates several heuristic 

approaches such as Linear Approximation, Simulated Annealing, Threshold Accepting and 

Tabu Search. Shu and Karimi (2009) propose heuristic approaches following the idea of 
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Magnanti et al. (2006). They suggest two efficient heuristics: the first one uses continuous 

approximation while the second one employs a two-piece linear approximation to 

approximate the concave objective function. For large and dense acyclic networks, these 

heuristic algorithms are roughly faster than the exact method proposed by Magnanti et al. 

(2006) and give solutions within 7% and 4% of the optimum on average. Besides, the 

performance of their methods in terms of solution quality is nearly independent from the 

network size. In the same setting, Li and Jiang (2012) propose a heuristic approach 

integrating constraint programming with a genetic algorithm. They compare their solution 

method with heuristics of Shu and Karimi (2009). Their method offers a novel solution 

approach that balances solution speed and quality while heuristics of Shu and Karimi (2009) 

are better in terms of computation efficiency. Besides, they show that the quality of heuristics 

of Shu and Karimi (2009) varies significantly with the maximum service times of demand 

stages. However, their solution method appears robust with respect to these parameters.  

Solution methods that we have presented so far assume a concave form for the 

objective function (1.17). These methods can also be used to solve the extensions presented 

in Section 2.2.1 if the relevant objective function is assumed to be concave (e.g., Inderfurth, 

1993; Graves and Willems, 2008; Neale and Willems, 2009). However, they cannot be used 

when the model includes, e.g., fixed costs associated with holding inventory, non-nested 

review periods or stochastic lead times (as presented in Humair et al., 2013). To study such 

cases, arbitrary cost functions for which there are not any structural limitations such as 

concavity or monotonicity are considered by Humair and Willems (2006). They focus on 

networks with CoC and present an exact solution approach based on dynamic programming. 

Similarly, Humair and Willems (2011) consider arbitrary stage cost functions for general 

acyclic network problem. They provide an exact solution approach extending the dynamic 

programming algorithm developed by Graves and Willems (2000). They also present two 

significantly faster and near-optimal heuristics. They test their approaches on a published 

data set of real-world supply chains (Willems, 2008) in order to demonstrate the performance 

and the consistency of their algorithms. 
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We notice that solution methods for general acyclic networks have been largely 

studied in the literature. However, a complete performance evaluation for these methods has 

not been provided yet. Besides, general cyclic networks have attracted much less attention. 
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Reference 

Nature of the Contribution Supply Chain Network Objective Function 

Method used Optimal 

Solution 

Property 

Exact 

Solution 

Approach 

Appr. 

Solution 

Approach  

Serial Ass. Distr. 
Spanning 

Tree 

Networks 

with CoC 

General 

Acyclic 

General 

Cyclic 
Concave Arbitrary 

Simpson 
(1958) 

x     x             x   
Extreme point 

property 

Inderfurth 
(1991) 

x x       x         x   
Dynamic 

programming  

Minner 
(1997) 

x x 
 

x x x 
    

x 
 

Dynamic 
programming 

under different 
service 

measures 

Inderfurth 
and 

Minner 
(1998) 

x 
 

  x x x         x   

Optimal 
solution 

properties 
under different 

service 
measures 

Graves 
and 

Willems 
(2000) 

  x         x       x   
Dynamic 

programming 

Minner 
(2000) 

x x x x x x     x x x   

Dynamic 
programming, 

linear 
approximation, 

simulated 
annealing etc. 

Table 2.2: Classification according to contributions regarding the optimal solution properties and solution methods 
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Reference 

Nature of the Contribution Supply Chain Network Objective Function 

Method used Optimal 

Solution 

Property 

Exact 

Solution 

Approach 

Appr. 

Solution 

Approach  

Serial Ass. Distr. 
Spanning 

Tree 

Networks 

with CoC 

General 

Acyclic 

General 

Cyclic 
Concave Arbitrary 

Minner 
(2001) 

x                 x x   
Extreme point 

property  

Lesnaia 
(2004) 

 x x         x x x   x   
Branch-and-

bound 
algorithms 

Humair 
and 

Willems 
(2006) 

  x           x       x 
Dynamic 

programming 

Magnanti 
(2006) 

  x             x   x   
Successive 

piecewise linear 
approximation 

Shu and 
Karimi 
(2009) 

    x           x   x   
Linear and two-

piece linear 
approximations 

Humair 
and 

Willems 
(2011) 

  x x           x     x 
Dynamic 

programming  

Li and 
Jiang 

(2012) 
    x           x   x   

A hybrid 
algorithm 
integrating 
constraint 

programming 
and genetic 
algorithm 

Table 2.2: Classification according to contributions regarding the optimal solution properties and solution methods (continued)
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2.2.3 Industrial Applications 

In this section, we focus on papers that apply the GSM approach to real industrial 

settings. In Table 2.3, we present for different industries/companies (columns 1 and 2) results 

obtained (column 5) by the GSM based models. Besides, we distinguish two types of papers 

(column 4). A first category of papers (Type I papers) deals with the practical application of a 

GSM extension in a specific company. Among examples of companies for which successful 

applications are realised, one can cite Eastman Kodak, Hewlett-Packard (HP), Intel and 

Procter & Gamble (P&G). A second category of papers (Type II papers) solves an integrated 

GSM where the multi-echelon inventory optimisation problem is jointly considered with 

another supply chain decision such as the supply chain configuration or production planning 

problems.  

As such, among examples of papers that lie in the first category, Billington et al. 

(2004) show that savings realised by using the GSM approach for Hewlett-Packard’s Digital 

Camera and Inkjet Supplies business exceed $130 million. Farasyn et al. (2011) also report 

that multi-echelon models based on the GSM approach now drive 30% of Procter & 

Gamble’s business and have produced 7% of average inventory reduction. Wieland et al. 

(2012) describe a multi-echelon inventory optimisation project at Intel and indicate that after 

its implementation, inventory levels are reduced more than 11% providing average service 

levels exceeding 90%.  

In the second category of papers (Type II papers), a first example of decisions that are 

jointly studied with the inventory optimisation problem modelled under a GSM approach is 

the supply chain configuration problem. More precisely, this problem consists of 

determining, for a given stage, which option to select among different alternatives (e.g., 

which supplier to choose, which transportation modes to use etc.) where each alternative 

differs in cost and lead time that in turn, impact safety stock related decisions. Graves and 

Willems (2003) is among the first who integrates the GSM approach into the supply chain 

configuration problem. Hence, the proposed model aims at simultaneously determining the 

best options to select as well as the related safety stock placements in the supply chain. The 

global cost formulation considered includes safety stock, pipeline stock and processing costs. 
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They show on a real bulldozer supply chain that by reconfiguring the supply chain, the total 

supply chain cost may be decreased compared to the original GSM solution with predefined 

standard options. Graves and Willems (2005) present a dynamic programming algorithm to 

solve this problem for spanning tree networks. They apply this model to a notebook computer 

supply chain and show that by optimising the supply chain configuration, the company saves 

more than $2.2 million compared to the current policy. Li and Womer (2008) consider also a 

similar problem assuming that each option may also be differentiated by the level of quality 

provided and resource capacities consumed. Hence, they add to model constraints a certain 

threshold of quality level that has to be maintained for the entire supply chain and resource 

capacities regarding materials, budgets, machines, vehicles, personnel etc. They model the 

problem as a project scheduling problem considering the objective function of minimising the 

cycle time of a new final product, i.e. the time required to manufacture and distribute the new 

product to customers. They propose a constraint programming based solution approach to 

solve the problem for general networks. You and Grossmann (2008; 2010) consider a tri-

echelon distribution network and add to the model of Graves and Willems (2005) fixed 

installation costs for certain stages (called distribution centres). They develop decomposition 

algorithms that obtain optimal or near-optimal solutions. You and Grossmann (2008) present 

illustrative examples in industrial chemicals industry to show the trade-offs in this problem 

by considering different parameters for transportation and inventory costs. For a similar 

problem, Nepal et al. (2011) provide a multi-objective optimisation model by considering the 

minimisation of the total supply chain cost and the maximisation of the total compatibility 

index for the selected options (i.e., selected members, firms, partners when configuring the 

supply chain). The compatibility index of different options is a subjective parameter in nature 

and is assumed to be determined regarding the structural, managerial and financial aspects of 

the associated members. Nepal et al. (2011) formulate this problem as a weighted goal 

programming model and propose a genetic algorithm to obtain near-optimal solutions. Funaki 

(2012) extends the work of Graves and Willems (2005) to consider non-stationary demand 

and to include the due-date requirements of customers. They provide an approximate 

optimisation approach to solve this problem and demonstrate its effectiveness on real-world 
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examples. Another related work to that of Graves and Willems (2005) is provided by 

Klosterhalfen (2010). For companies relying on two supply options, he integrates dual-

sourcing into the GSM framework. Instead of choosing only a single supply option, they 

assume that a certain fraction of demand may be allocated to each supplier in every period 

(order-splitting policy). Their findings confirm nevertheless that choosing a single option as 

in Graves and Willems (2005) is often reasonable since the cost advantage of dual sourcing is 

not very significant for the considered problems. 

 A second decision analysed simultaneously with a GSM based multi-echelon 

inventory optimisation problem is the production planning problem. Tian et al. (2011) 

propose an iterative approach to jointly solve the problem of allocating production capacity 

and determining safety stock levels at different stages. They prove the applicability of their 

solution method on industrial-scale problems through real-world examples in the 

semiconductor industry. You and Grossmann (2011) propose another formulation for a 

similar problem in the chemical process industry. The proposed model simultaneously 

determines the optimal purchase amount of each raw material, production levels in each 

process, sale amount of each final product, internal demand of each production process and 

safety stock level of each chemical in the considered network.  To solve efficiently this 

problem for large and complex supply chains, they exploit some model properties and 

propose an exact solution method. 

Papers presented in this section show that the deployment of the GSM approach in 

industry yields great benefits. Nowadays, the company Logility offers a multi-echelon 

inventory optimisation software tool that enables companies to implement some of these 

models. We assume that their tool most probably employs the GSM approach since the 

affiliated scientist for this tool contributes to the GSM literature. Indeed, the benefit from the 

implementation of multi-echelon inventory optimisation tools in companies is estimated as 

3.1% service level improvement and 15% decrease in cash-to-cash cycle (Aberdeen Group, 

2012). Results that we present in this section confirm this estimation for the GSM approach 

based implementations (see also Table 2.3).  
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Industry Company Reference Paper Type Main Results 

Computer Hard-
ware 

Hewlett-
Packard 

Billington et al. 
(2004) 

Type I 
Total supply chain cost reduction of 
over $130 million while maintaining 

high service levels 

Not 
specified 

Graves and 
Willems (2005) 

Type II  
(Supply chain 
configuration)  

Saving of $2.2 million compared to 
the solution obtained by the current 

policy  

Not 
specified 

Li and Womer 
(2008) 

Type II 
(Supply chain 
configuration) 

Same application with Graves and 
Willems (2005), managerial insights  

on understanding the benefit of 
increasing resource capacity and 

system reliability 

Microsoft 
Neal and 

Willems (2009) 
Type I 

18%-20% increase in inventory turns, 
6%-7% increase in fill rates 

Consumer 
Goods 

Procter & 
Gamble 

Farasyn et al. 
(2011) 

Type I 
7% inventory reduction on average 

for 30% of their business 

Not 
specified 

Humair et al. 
(2013) 

Type I 

Simplified assumptions under 
stochastic lead times may 

overestimate (2.4%) or underestimate 
(-3.2%)  total inventory required 

Digital Imaging 
Eastman 
Kodak 

Graves and 
Willems (2000) 

Type I 
Total inventory cost reduction of 
over one third while increasing 

service levels  

Industrial 
Chemicals 

Celanese 
Bossert and 

Willems (2007) 
Type I 

30% decrease in inventory levels 
compared to a simple modelling 

approach in case of stage dependent 
review periods 

Not 
specified 

You and 
Grossmann 

(2008) 

Type II 
(Supply chain 
configuration) 

Illustrative examples to show the 
trade-off results under different cost 

parameters 

Not 
specified 

You and 
Grossmann 

(2011) 

Type II 
(Production 
Planning) 

Case studies to demonstrate the 
performance of the proposed exact 

solution method in terms of 
computational time 

Not 
specified 

Humair et al. 
(2013) 

Type I 

Using simplified assumptions under 
stochastic lead times may 

overestimate (4%) or underestimate 
(-18%)  the total inventory cost 

Machinery 

Not 
specified 

Graves and 
Willems (2003) 

Type II 
(Supply chain 
configuration) 

Total supply chain cost decrease of 
0.38% compared to the original 

solution 
Case New 
Holland 

Neal and 
Willems (2009) 

Type I 
Total supply chain inventory 

reduction of over 20% 

Not 
specified 

Funaki (2010) 
Type II 

(Supply chain 
configuration) 

Examples to illustrate significance of 
the proposed model for practical 

situations and effectiveness of the 
proposed solution approach 

Semiconductor 

Not 
specified 

Tian et al. 
(2011) 

Type II 
(Production 
Planning) 

Illustration of the proposed 
optimisation approach and its 

applicability 

Intel 
Wieland et al. 

(2012) 
Type I 

11% decrease in inventory levels 
while providing service levels 

exceeding 90% 

Electronic Test 
Equipment 

Theradyne 
Schoenmeyr and 
Graves (2009) 

Type I 
Total safety stock cost reduction of 

25% by incorporating the 
forecasting process into the GSM 

Table 2.3. Classification according to industrial applications 
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 Guaranteed-Service vs. Stochastic-Service Approach 2.3

In the literature, only few contributions are provided concerning the comparison of 

the SSM and GSM approaches in terms of cost. Graves and Willems (2003) illustrate the 

contrast between the two approaches on real-world applications. Klosterhalfen and Minner 

(2007) provide a comparison of the two approaches for two-stage serial systems 

incorporating the cost of extraordinary measures into the GSM. They then extend this work to 

two-echelon distribution systems (Klosterhalfen and Minner, 2010). Their simulation results 

show that the cost difference between the two approaches is not very large (4% at most) and 

the GSM approach have a better performance for moderate cost of extraordinary measures, 

large lead times at the upstream echelon and high service level targets at the downstream 

echelon. Recently, Klosterhalfen et al. (2013) develop a hybrid-service approach that 

combines the SSM and GSM approaches. For each stage, they determine the best approach 

between the SSM and the GSM to minimise the total inventory cost. The proposed hybrid-

service approach not only mitigates the risk of choosing the wrong approach but also 

improves solutions that would be obtained using only one of the two approaches.  

Some practical differences are observed in implementation of the two approaches in 

industry. In the SSM approach, backorders may cause variability of deliveries. According to 

Minner (2000), even the inventory control policy for overall system is optimised, due to the 

variability of deliveries at a certain stage, a local manager might feel the need of more safety 

stocks and might deviate from the optimal solution. In the GSM approach, this shortcoming is 

avoided by the guaranteed-service time assumption. According to Graves and Willems (2000) 

managers seem more comfortable with the notion of guaranteed-service time.  

 Conclusion 2.4

In this chapter, we reviewed various works pertaining to the SSM and GSM 

approaches. First, we classified the works pertaining to the SSM approach according to the 

system structure considered since the models and results differ greatly according to this 

aspect. For serial and assembly systems, exact results can be obtained. Some key assumptions 

are required to find exact results for distribution systems. For general systems, the structure 
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of optimal policies is unknown and characterising the optimal policy is at least as complex as 

for those of distribution systems. There exist only few papers that deal with general systems 

using the SSM approach. The majority of these papers consider standard and simple 

installation stock policies under different assumptions regarding lead times and external 

demand.  

Second, we conducted a comprehensive review of the GSM literature by proposing a 

classification along three axes. The first axis is dedicated to models that extend the original 

model by relaxing some of its oversimplified assumptions. The second axis presents solution 

techniques that have evolved in order to be applicable for large and complex systems. The 

third axis presents industrial applications of the GSM as well as the benefits they have 

yielded.  

For the purpose of computational efficiency in general multi-echelon structures, the 

SSM and GSM approaches both introduce several assumptions. However, the nature of 

assumptions used in the GSM is different to those of the SSM approach. The SSM usually 

makes assumptions to approximate the replenishment times, i.e. stock-out delays of stages 

whereas the GSM uses the bounded demand assumption that enables the introduction of 

guaranteed-service time notion and hence renders the stock-out delays equal to zero. A subtle 

point regarding the GSM is the specification of demand bounds. This should be made 

considering several factors such as the behaviour of customers in stock-out situations, the 

availability and the cost of extraordinary measures at different stages. Nevertheless, the 

bounded demand assumption is crucial to obtain a computationally tractable model for 

general multi-echelon systems. Since the GSM enables to deal with large and complex 

structures, it is more frequently applied in real-world supply chain settings. In contrast, the 

SSM research mostly focuses on serial, assembly or two-echelon distribution systems and its 

deployment in industry is relatively limited. 

In this thesis, we aim at providing contributions to the multi-echelon inventory 

optimisation problem using the GSM approach since this approach has a great potential in 

terms of improvement in real-world supply chains. Our review allows us identifying some 

gaps in the GSM literature. First of all, we noticed that the impact of some simplificative 
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assumptions of the GSM is not elaborately studied. In particular, a comprehensive analysis is 

required to understand the cost and service level impact of certain assumptions regarding 

demand bounds, guaranteed-service times and review periods. We provide such an analysis in 

Chapter 3. Second, this review shows that existing models consider review periods as given 

input parameters of the problem. We present in Chapter 4 how to incorporate ordering costs 

into the GSM in order to optimise the safety stock levels (order-up-to levels) and review 

periods (reorder intervals) simultaneously. Third, this review reveals that demand bound of 

each stage is determined based on a safety factor value. However, it is not obvious how to 

specify the safety factors at different stages so that the target service levels are met at the 

most downstream stages. This issue becomes even more important in decentralised supply 

chains. Chapter 5 presents this problem.
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CHAPTER 3: QUANTIFYING THE IMPACTS OF THE 
GUARANTEED-SERVICE MODEL ASSUMPTIONS 

The development of computationally tractable approaches for optimising the 

placement and the amount of safety stocks in multi-echelon inventory systems is a complex 

task. The GSM has some specific assumptions that render the model deterministic and that 

enable the consideration of complex and large multi-echelon systems. Section 2.2.1 of 

Chapter 2 reviews models that attempt to relax some of these assumptions. Among these 

works, we can find models that consider non-stationary external demands, stochastic lead 

times, capacity constraints, different inventory control policies etc. Their main objective is to 

make the GSM more realistic and to capture real-world supply chain characteristics.  After 

all, the literature still lacks some studies that aim at quantifying the consequences associated 

with several underlying assumptions of the GSM such as bounded demand, guaranteed-

service times and common review periods assumptions. In this chapter, we investigate the 

impact of these assumptions on customer service levels or safety stock costs for serial and 

assembly systems. 

The analysis is conducted individually for each assumption; in each section we 

present the results associated with a single assumption. First, we discuss the bounded demand 

assumption and its impact on customer service levels. In the GSM, the demand bound at a 

stage represents the maximum amount of demand that can be satisfied from the stock of this 

stage during its net replenishment time. In the literature, demand bounds are usually specified 

based on a target customer service level. Our analysis shows that the effectively observed 

service level at a demand stage would usually be less than the target one under the GSM 

setting. The gap may be significant in real-world systems. 

Second, we discuss the impact of the guaranteed-service time assumption. This 

assumption implies that each stage quotes a guaranteed-service time to its customers and 

provides 100% service for these service times. Hence, there are no backorders between 

customer-supplier stages. Our analysis shows that the total safety stock cost obtained under 

this assumption may be significantly higher than the one obtained without this assumption.  
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Third, we examine the impact of the common review periods assumption. In practice, 

review periods can be stage-dependent, i.e. they can differ from stage to stage considering the 

economies of scale and/or the availability of resources. We show how to incorporate stage-

dependent nested review periods into the GSM by developing an appropriate expression for 

the demand bounds of stages. The analysis conducted shows that the original GSM may 

cause a significant safety stock cost increase for long review periods. 

For the numerical analysis of each assumption, we use the same test problems. First, a 

five-stage serial system is considered. The impact of each assumption is tested under different 

combinations of lead time, stage cost and target customer service level alternatives. These 

test problems are inspired from Schoenmeyr (2008). Second, a real-world assembly system 

previously presented by Graves and Willems (2003) is considered. Using this test problem, 

we illustrate the consequences of the GSM assumptions in a real-world problem setting. 

This chapter is divided into 4 sections. Section 3.1, Section 3.2 and Section 3.3 

present the analysis conducted for the bounded demand, guaranteed-service times and 

common review periods assumptions, respectively. Section 3.4 draws some conclusions and 

suggests future research directions.  

 Bounded Demand Assumption 3.1

In the GSM, one of the key assumptions indicates that demand is bounded at each 

stage of the supply chain. Indeed, the bounded demand assumption does not imply that 

demand can never exceed the specified demand bounds. The GSM model deals with the 

demand uncertainty by dividing demand variations into two ranges, ordinary and 

extraordinary demand variations. Safety stocks are dimensioned to deal with ordinary 

demand variations, i.e. to cover the demand part that stays within the specified demand 

bounds. Extraordinary demand variations occur when demand exceeds the specified demand 

bounds. Most of existing works does not address what happens in case of extraordinary 

demand variations. These works implicitly assume that only demand within the specified 

demand bounds is propagated through the system whereas demand in excess of these bounds 

is truncated and handled outside the normal supply chain. In this section, we consider this 
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common assumption and examine its impact on customer service levels. In particular, we 

investigate the service level that results from holding safety stocks across the supply chain 

under this assumption. That is, we assess the effectively observed service level at demand 

stages (most downstream stages that faces the external demand) when demand is truncated 

according to the specified demand bounds.  

In the GSM literature, most studies specify the demand bounds in terms of a target 

non-stock-out probability, i.e. based on a target Cycle-Service-Level (CSL). The effectively 

observed CSL in the considered systems can be defined as the probability that the safety 

stocks in the system cover demand variations. Under the existence of demand bounds, the 

effectively observed CSL at demand stages may be less than the one used to define the 

demand bounds. The gap is due to the fact that the CSL at a demand stage is affected by the 

demand bounds applied at its upstream stages. Particularly, this may happen when the net 

replenishment times of upstream-downstream stages are different. This issue is not 

elaborately studied in the GSM literature. 

 In what follows, first, we formalise the satisfied demand function and the effectively 

observed CSL (Section 3.1.1). Second, we illustrate the CSL deviation on a simple example 

and provide an approximation (Section 3.1.2). Third, we present the test problems used in 

numerical analyses along this chapter (Section 3.1.3). Forth, we carry out a simulation study 

in order to assess the service level deviation for the considered test problems (Section 3.1.3).  

3.1.1 Effectively Observed Cycle-Service-Level 

In this section, we formulate the effectively observed CSL and the satisfied demand 

function under the commonly used GSM assumption which indicates that the part of the 

arrival demand in excess of the specified demand bounds is truncated and handled outside the 

normal supply chain. We ignore the effect of extraordinary measures on customer service 

level, i.e. we focus on the service level that results from holding safety stocks across the 

supply chain. First, we provide the formulation of the effectively observed CSL for serial 

systems then; we show how to extend it to more general systems. Besides, by using the 
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results provided in this section, we present a remark on the derivation of expected inventory 

levels in the Appendix of this chapter.  

Let consider an n-stage serial system where stages are increasingly numbered from 

upstream to downstream. Without loss of generality, the coefficient of utilisation 1,1  jj  

for each }.,...,2{ nj  The demand bounds at stages },..,2,1{ nj  are specified by function 

(.)D  based on a target CSL  . Since we have a single demand stage for the considered 

system, we can omit stage indexes of demand bounds for ease of exposition. Hence, the use 

of (2.1) and (2.2) (Chapter 2, pages 41-42) in the considered system leads to the following: 

 njzD jjj ,...,2,1for  )(     (3.1) 

The optimal net replenishment time 
*
j  of each stage },..,2,1{ nj  is obtained by 

solving the problem P0 formulated in Section 1.2.2 of Chapter 1 (page 30). The optimal 

order-up-to levels 
*
jS  correspond to the existing demand bounds )( *

jD   over 
*
j   consecutive 

periods since we have )( **
jj DS  . In practice, it is not necessary to impose a demand bound 

over 0  consecutive periods if 
*
j   for all stages }.,..,2,1{ nj  Hence, we only consider 

the demand bounds )( *
jD   over 

*
j  consecutive periods as the demand bounds applied in the 

system.  

The arrival demand at Stage n is the unbounded external demand that occurs at this 

stage. The satisfied demand at Stage n is the demand that can be satisfied with 100% service 

by the system, i.e. the part of the demand that lies within the demand bounds. At Stage n, the 

satisfied demand )(tv  in period t can be formulated as a recursive function that integrates the 

previous satisfied demands, the unbounded arrival demand )(
~

td  in period t and the demand 

bounds applied at each stage }.,..,2,1{ nj  In what follows, we explain how to formulate the 

satisfied demand function )(tv . 

Let assume that Stage n provides an immediate service to the external customer (i.e. 

0out

ns ) and .0* n  For an internal or supply stage }1,..,2,1{  nj  with 0* j , if satisfied 

demand over 
*
j  periods exceed )( *

jD   at Stage n, stage j will be unable to satisfy demand of 

its downstream stage with 100% service within the quoted guaranteed-service time. Hence, 

the demand satisfied from safety stock should not exceed )( *
jD   over 0* j  for each stage 
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},..,2,1{ nj  at Stage n. The excess demand can be truncated at Stage n in order to remedy 

this issue. Hence, we express the satisfied demand )(tv  in period t at Stage n by the following 

recursive function: 

0)0(
~

)0(  dv   

0for )}1,()(),...,1,()(),(
~

min{)( *
1

*
1

**  tttvDttvDtdtv nn   
(3.2) 

where ),( bav  is the satisfied demand over the time interval ],( ba  with 0),( bav  for 

ba   and ),0(),( bvbav   for 0a . We note that if 0out

ns  for the demand stage, the 

corresponding satisfied demand function can be obtained by setting 0)( tv  for 
out

nst   and 

by replacing )(
~

td  in (3.2) by )(
~ out

nstd   for 
out

nst  . 

We denote the unbounded arrival demand during   consecutive periods at Stage n by 

)(
~ D . For ease of presentation, we use the notation )(V  to denote the satisfied demand 

during   at Stage n. By definition, the target CSL   verifies the following: 

  0    where},..,2,1{:)()(
~ ***  jjj njjDDP    

However, the effectively observed CSL at demand Stage n is: 

   0 where1,...,2,1:)()1(
~

)1()()(
~ *****  jjjnn njjDDVDDP    

 (3.3) 

Clearly, the effectively observed CSL    at demand Stage n is equal to   if there 

exists a unique demand bound )( *
nD   in the system over 

*
n  consecutive periods. This 

happens when safety stocks are solely located at demand Stage n. The effectively observed 

CSL    may be less that the target CSL   if there exist at least two stages with different 

strictly positive net replenishment times. In this case, there exist at least two stages that hold 

safety stocks to cover different net replenishment times and the unbounded arrival demand at 

Stage n should be truncated according to the corresponding demand bounds so that both 

stages guarantee 100% service within the quoted service times. In the latter case, the 

effectively observed CSL    (i.e. the percentage of time that safety stocks cover the demand 

variation) is lower than the target CSL .  
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We note that the satisfied demand function expressed in (3.2) and the effectively 

observed CSL expressed in (3.3) are also valid for assembly systems where each stage has at 

most one downstream stage. In this case, there will be a single demand stage which can be 

indexed by n. However, these expressions cannot be directly used for networks containing 

distribution parts in which internal or supply stages have several downstream stages. First, if 

there exist several demand stages in the network, target CSL values of different demand 

stages should be taken into account while specifying the demand bounds for internal and 

supply stages (stage indexes for demand bounds reappears in this case). Second, when the 

total unbounded arrival demand exceeds the demand bound of an upstream stage having 

several downstream stages, one should define how the arrival demands will be truncated at 

these downstream stages. This is similar to the stock allocation problem encountered in 

installation stock periodic-review policies where downstream stages place orders at the same 

time (see, e.g., Jackson, 1988; Graves, 1996; Marklund and Rosling, 2012). The upstream 

stages face the decision of how to allocate their stock to their downstream stages when the 

total arrival demand exceeds their demand bound. In this case, an allocation rule should be 

incorporated in expression (3.2) to determine the satisfied demand function at each demand 

stage. 

Clearly, it is not straightforward to analytically calculate the effectively observed CSL 

   under the existence of different demand bounds in the system. To the best of knowledge, 

Minner (2000) is the only one who attempts to express the effectively observed CSL    and 

to present the CSL deviation under the GSM setting. This result is based on a three-stage 

serial system facing Mixed Erlang demand. He obtains    by calculating equivalent echelon 

order-up-to levels, i.e. by summing up the optimal installation order-up-to levels 
*
jS  and 

using the service level formulas presented by Van Houtum et al. (1996). Van Donselaar 

(1989) develops similar expressions for two-stage serial systems. The formulas of Van 

Donselaar (1989) and Van Houtum et al. (1996) are derived under the SSM assumptions, i.e. 

in case of unbounded demand and demand backordering. Indeed, under demand truncations 

and guaranteed-service times these formulas may be inappropriate to express   . Section 
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3.1.2 presents an illustrative example and provides an appropriate approximation to calculate 

the value of   . 

3.1.2 An Illustrative Example and an Approximation 

In order to illustrate findings related to Section 3.1.1, we consider an example of two-

stage serial supply chain system (see Figure 3.1). The unbounded arrival demand at Stage 2 is 

normally distributed with an average 10  and a standard deviation 3  per period. The 

number of input items required from upstream Stage 1 to obtain one output item at 

downstream Stage 2 is equal to 1 )1( 12  . We assume immediate service towards external 

customer, i.e. the service time quoted by Stage 2 is equal to 0. The optimal solution obtained 

by solving P0 leads to the net replenishment times 2*
1   and 1*

2   at Stage 1 and 2, 

respectively. In accordance with the GSM literature, we use (3.1) to specify the demand 

bounds at Stage 1 and 2. The target CSL   used to specify these demand bounds leads to the 

safety factor ).(1 z  Hence, demand satisfied from safety stock is assumed to be 

bounded by )2(D  at Stage 1 over two consecutive periods and by )1(D  at Stage 2 over one 

period where 22)2(  zD   and  zD )1( . The corresponding installation order-

up-to levels are: )2(*
1 DS   and ).1(*

2 DS   

Figure 3.1: The two-stage serial system example 

 Under the GSM setting, the maximum amount that Stage 2 can replenish from Stage 

1 during two consecutive periods is equal to D(2). Hence, at Stage 2, the maximum amount 

of demand which can be satisfied from safety stocks during two consecutive periods should 

be truncated by D(2). Otherwise, Stage 1 cannot guarantee a 100% service level to Stage 2 

within its specified service time.  

    

  

 

 

 



 70 

For this example, the satisfied demand at Stage 2 in period 0t  can be expressed as 

follows: 

)0(
~

)0( dv    

 )1(),1(
~

min)1( Ddv    

  2for )1()2(),1(),(
~

min)(  ttvDDtdtv  

(3.4) 

The CSL of this system is measured at Stage 2 where the cycle is equal to one period. 

Hence, the effectively observed CSL    at Stage 2 is equivalent to the probability that the 

satisfied demand )(tv  is equal to the unbounded arrival demand )(
~

td  in period t: 

   )()(
~

)2()1(
~

)1( )1()1(
~

tvtdPDDVDDP   (3.5) 

The service level formulas used by Minner (2000) to calculate    becomes the 

following for the considered example: 

   



)1(

0

)2()1(

0 12 )()()2()1()3(
~

 )1()1(
~ D uDD

Minn
dvduufvfDDDDDP   (3.6) 

where (.)f  is the  -period demand probability density function. The CSL proposed 

by Minner (2000) 
Minn  does not consider the truncations of the unbounded arrival demand. 

He implicitly assumes that the considered system is equivalent to a SSM setting where 

unbounded arrival demand is propagated through the system, unsatisfied demand is 

backordered and stages operate with order-up-to policies with echelon order-up-to levels 

)2()1(ˆ*
1 DDS   and ).1(ˆ*

2 DS   However, this does not reflect the setting that we consider 

under the GSM assumptions. 

For this example, in order to provide a more approximate value Appr  for the 

effectively observed CSL   , we propose the following expression: 

 




)1(

)1()2(

)2(

0 111 )()())1()2((
D

DD

uD
Appr

dvduufvfDDF   (3.7) 

where (.)1F  is the cumulative (normal) distribution function of one-period demand. 

In (3.7), the first term is the probability that the arrival demand does not exceed )1()2( DD   
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in an arbitrary period. The second term is the probability that the arrival demand exceeds 

)1()2( DD   in an arbitrary period but does not exceeds )2(D  during two consecutive 

periods. This represents an approximation as the second term considers the unbounded arrival 

demand during two consecutive periods instead of the arrival demand plus the satisfied 

demand in an arbitrary period. Indeed, the proposed approximation 
Appr  underestimates the 

effectively observed CSL    value.    

In order to estimate the effectively observed CSL   , we simulate the considered 

example generating random values for the unbounded arrival demand in a Microsoft Excel 

sheet. We calculate the satisfied demand in each period using (3.4). We then assess    using 

the probability given in (3.5). We observe that results converge for a simulation length of 

100,000 periods. 

For different target CSL   values, Table 3.1 summarises    obtained by simulation 

and the relative gaps ./)(    Simulation results show that the gap between    and   is 

really small when   tends to 100%. This gap increases up to a certain point when   

decreases. It reaches its maximum value when   is in the interval of (80%, 70%).  Then, the 

gap decreases and reaches zero for %50 . Indeed, when %50 , z equals zero which 

makes ).1(2)2( DD    Since the cycle length equals one period for this example, the 

probability that the satisfied demand is equal to the arrival demand in period t becomes 50% 

under demand bounds )1(D  and )2(D . 

Table 3.2 presents Minn  obtained by (3.6), Appr  obtained by (3.7), the relative gaps 

  /)( Minn  and   /)( Appr . The relative gaps measured between the effectively 

observed CSL    and Minn  points out that the formula proposed by Minner (2000) cannot 

correctly estimates    for low values of target CSL. However, Appr  is quiet appropriate to 

estimate    for this example. The average relative gap between    and Appr  is less than 

1.00%. This approximation may be considered as a basis in estimating the effectively 

observed CSL for more complex systems. 

In what follows, we present an extensive numerical analysis that investigates the gap 

between the effectively observed and the target CSL. The next section (Section 3.1.3) 

presents the test problems used for this numerical analysis. 
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      /)(   

99.00% 98.40% 0.61% 

95.00% 93.11% 1.99% 

90.00% 87.15% 3.17% 

85.00% 81.76% 3.81% 

80.00% 76.56% 4.30% 

75.00% 71.63% 4.49% 

70.00% 67.06% 4.20% 

65.00% 62.63% 3.65% 

60.00% 58.38% 2.70% 

55.00% 54.09% 1.65% 

50.00% 50.00% 0.00% 

Table 3.1: CSL deviation results for the two-stage serial system 

     Minn  Appr    /)( Minn
   /)( Appr

 

99.00% 98.40% 98.92% 98.38% -0.53% 0.02% 

95.00% 93.11% 94.34% 92.75% -1.32% 0.39% 

90.00% 87.15% 88.07% 86.50% -1.06% 0.75% 

85.00% 81.76% 81.42% 80.80% 0.42% 1.17% 

80.00% 76.56% 74.59% 75.52% 2.57% 1.36% 

75.00% 71.63% 67.67% 70.58% 5.53% 1.47% 

70.00% 67.06% 60.77% 65.95% 9.38% 1.66% 

65.00% 62.63% 53.96% 61.60% 13.84% 1.64% 

60.00% 58.38% 47.32% 57.50% 18.94% 1.51% 

55.00% 54.09% 40.90% 53.64% 24.39% 0.83% 

50.00% 50.00% 34.75% 50.00% 30.50% 0.00% 

Table 3.2: Results obtained by using different formulas that estimate the effectively observed 
CSL in the two-stage serial system 

3.1.3 Test Problems 

The test problems presented in this section are used for the numerical analyses 

conducted along Chapter 3. In the first part of each numerical analysis, we test the impact of 

each assumption under different combinations of lead time, stage cost and target customer 

service level alternatives in a five-stage serial system. In the second part, a real-world five-
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echelon assembly system is considered and thus, the consequences associated with each 

assumption are illustrated in a real-world problem setting. 

Five-Stage Serial System 

Test problems presented here are inspired from Schoenmeyr (2008). We consider a 

five-stage serial system (see Figure 3.2) and decreasing, uniform and increasing alternatives 

for stage costs and lead times (see Table 3.3). The terms “increasing” and decreasing” should 

be understood in terms of going downstream starting from the supply stage (Stage 1). The 

stage cost jc  represents the cost added at stage j. Hence, the cumulative stage cost at the 

demand stage (Stage 5) represents the cost of the final product. The per-unit holding cost jh  

at stage j is determined by multiplying the cumulative stage cost at stage j (i.e. the cost of the 

processed item jp  at stage j) by a holding cost rate of %.35  The scalar jj ,1  is assumed 

to be 1 for each }5,..,2,1{j . The maximum service time 
out

s5  at Stage 5 is assumed to be 

zero. External demand in each period is independent and normally distributed with 

parameters )1,10(   , )3,10(    and )3,30(   . The 27 test problems 

considered corresponds to the permutations of these lead time, stage cost and demand process 

alternatives. 

 

Figure 3.2: Five-stage serial supply chain 

Stage Cost / Lead Time 
Stages 

1 2 3 4 5 

Decreasing  36 28 20 12 4 

Uniform 20 20 20 20 20 

Increasing  4 12 20 28 36 

Table 3.3: Stage cost and lead time alternatives for the five-stage serial system 

Real-World Assembly System 

This test problem is previously presented by Graves and Willems (2003). It 

corresponds to a real-world bulldozer assembly and manufacturing supply chain. The relevant 

network is depicted in Figure 3.3. Table 3.4 provides the stage cost and lead time data for this 

Stage 3 Stage 1 Stage 2 Stage 4 Stage 5 
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system. The scalar ji ,  equals 1 for each arc .),( Aji  The company applies an annual 

holding cost rate of %30  when calculating inventory costs (1 year = 260 days).  The 

demand bound at each stage is set using (3.1) based on 95 % target CSL. External demand is 

assumed to be normally distributed. The average daily demand and the daily standard 

deviation parameters considered in Graves and Willems (2003) are 5  and 3 , 

respectively. Clearly, the daily external demand is not well modelled as being from a normal 

distribution under these parameters. However, the assumption of normality seems plausible 

for the demand over the net replenishment time of a stage given the range of lead times listed 

in Table 3.4. We use the assumption of normality for this test problem as it is initially 

considered by Graves and Willems (2003). 

 

Stage Stage Cost ($) Lead Time (days) 

Boggie Assembly 575 11 

Brake Group 3,850 8 

Case 2,200 15 

Case & Frame 1,500 16 

Chassis/Platform 4,320 7 

Common Subassembly 8,000 5 

Dressed-out engine 4,100 10 

Drive Group 1,550 9 

Engine 4,500 7 

Fans 650 12 

Fender Group 900 9 

Final Assembly 8,000 4 

Final Drive & Brake 3,680 6 

Frame Assembly 605 19 

Main Assembly 12,000 8 

Pin Assembly 90 35 

Plant Carrier 155 9 

Platform Group 725 6 

Rollover Group 1,150 8 

Suspension Group 3,600 7 

Track Roller Frame 3,000 10 

Transmission 7,450 15 

Table 3.4: Stage cost and lead time data for the bulldozer supply chain 
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Figure 3.3: The bulldozer supply chain 

3.1.4 Numerical Analysis 

In this section, simulation experiments are carried out to assess the deviation between 

the effectively observed and the target CSL for the test problems pertaining to the five-stage 

serial and the real-world assembly system presented in Section 3.1.3. 
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Five-Stage Serial System 

We determine the optimal solution for each of the 27 test problems presented in 

Section 3.1.3 by solving the problem P0 (given in Section 1.2.2, page 30). We note that the 

optimal net replenishment times are insensitive to the demand parameters ),(  , the safety 

factor value )(z  and the holding cost rate ).(   Given the optimal net replenishment times 

(see Table 3.5, column 3), we calculate the existing demand bounds using (3.1) based on 

different safety factor values that relate to target service levels ranging from 50% to 99%. We 

simulate the five-stage serial system on an Excel sheet by generating random demands that 

correspond to the considered normal distributions. The simulation length is set to 100,000 

periods which is found long enough for convergence. We then determine the satisfied 

demand in each period using (3.2) and the effectively observed CSL using (3.3).  

We observe that the CSL deviations are insensitive to the demand parameters. The 

relative CSL deviations presented in Table 3.5 are calculated by  /)(   for each test 

problem. In accordance with the findings presented in Section 3.1.1, the CSL at Stage 5 is not 

affected if the only demand bound applied in the system is the demand bound of Stage 5, i.e. 

if the safety stock is solely carried at Stage 5. Otherwise, the CSL deviates from its target 

value.  

Differently from the results obtained for the two-stage system example in Section 

3.1.2, in most of the cases, the gap between the target and the effectively observed CSL 

continuously decreases when the target CSL increases. This happens when the net 

replenishment times of the upstream stage is smaller than that of the demand stage (see the 

case of increasing stage costs and decreasing lead times for a counterexample). Besides, the 

CSL at Stage 5 is mostly affected if the net replenishment time of an upstream stage is much 

smaller than its own net replenishment time (see, e.g., the case of increasing stage costs and 

increasing lead times). The relative gap between the target and the effectively observed CSL 

values is 3.4% on average. 
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Stage Cost Lead Time 
Optimal Net Repl. 

Times  
(from Stage 1 to 5) 

Target Cycle-Service-Levels 

80% 85% 90% 95% 99% 

Decreasing 

Decreasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform 

Decreasing (36,0,0,0,64) 3.29% 2.61% 1.91% 1.08% 0.33% 

Uniform (20,0,0,0,80) 5.13% 4.03% 2.92% 1.65% 0.41% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 

Decreasing (36,28,20,0,16) 1.12% 1.08% 1.01% 0.85% 0.35% 

Uniform (20,20,0,0,60) 4.83% 3.86% 2.80% 1.57% 0.38% 

Increasing (4,12,0,0,84) 12.79% 10.27% 7.46% 4.25% 1.08% 

Table 3.5: CSL deviation results for the five-stage serial problems  

Stage Cost Lead Time 
Optimal Net Repl. 

Times  
(from Stage 1 to 5) 

Target Cycle-Service-Levels 

50% 55% 60% 65% 70% 75% 

Decreasing 

Decreasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform 

Decreasing (36,0,0,0,64) 6.55% 6.00% 5.54% 4.98% 4.42% 3.85% 

Uniform (20,0,0,0,80) 10.81% 9.95% 8.98% 8.13% 7.13% 6.17% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 

Decreasing (36,28,20,0,16) 0.90% 0.94% 0.99% 1.06% 1.08% 1.11% 

Uniform (20,20,0,0,60) 10.02% 9.15% 8.27% 7.51% 6.54% 5.73% 

Increasing (4,12,0,0,84) 26.36% 24.09% 21.80% 19.73% 17.46% 15.09% 

Table 3.5: CSL deviation results for the five-stage serial problems (continued) 

Real-World Assembly System 

In this section, we consider the bulldozer assembly and manufacturing supply chain 

presented in Section 3.1.3. The optimal safety stock placements obtained by solving the 

problem P0 is illustrated graphically in Figure 3.3. A triangle within a stage designates that 

the stage holds safety stock. The optimal net replenishment times are given for stages that 

hold safety stock in Table 3.6 (the net replenishment time of other stages equals zero). We 

note that the optimal net replenishment times are independent of the target CSL applied in the 

system. 

As shown in Table 3.6, demand bounds of internal and supply stages are the demand 

bounds of 1, 2, 14, 15 and 19 consecutive periods. The demand bound associated with the 

demand stage corresponds to longest net replenishment time in the system. Using the 



 78 

parameters given in Section 3.1.3, we generate random values for the normally distributed 

arrival demand on an Excel sheet over an interval of 100,000 periods (which is sufficiently 

large for convergence). In each period, if the arrival demand exceeds a demand bound applied 

in the system, we truncate the excess demand using (3.2). Then, we assess the effectively 

observed CSL    using (3.3).  

 

Stage 
Optimal Net Repl.  

Times (days) 
Case 15 

Case & Frame 1 

Fans 2 

Final Assembly 32  

Frame Assembly 19 

Pin Assembly 14 

Table 3.6: Optimal net replenishment times 

Table 3.7 presents the results obtained for different target CSL ( ) values. These 

results show that the gap between the effectively observed and the target CSL may be 

significant in a real-world system. Among different target CSL values from 50% to 99%, the 

relative CSL deviation is 25% on average. In this example, differently from the results 

obtained for the two-stage system example in Section 3.1.2, the CSL deviation continuously 

increases when the target CSL decreases. We note that this happens when the net 

replenishment times associated with the upstream stages are smaller than that of the demand 

stage.  

 

      /)(   

99.00% 96.88% 2.14% 

95.00% 87.67% 7.71% 
90.00% 78.48% 12.80% 
85.00% 70.02% 17.62% 
80.00% 62.45% 21.94% 
75.00% 55.54% 25.94% 
70.00% 48.92% 30.12% 
65.00% 42.89% 34.02% 
60.00% 37.46% 37.56% 
55.00% 32.45% 41.00% 
50.00% 27.79% 44.43% 

Table 3.7: CSL deviation results for the bulldozer supply chain 
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 Guaranteed-Service Times Assumption 3.2

In the GSM, each stage quotes a guaranteed-service time to its internal/external 

customers. Under this assumption, there are no backorders between customer-supplier stages. 

Each stage guarantees to satisfy the realised demand with 100% service within its 

guaranteed-service time. The relaxation of this assumption will cause the variability of 

deliveries, i.e. stages will experience backorders due to occasional stock-outs at their 

upstream stages. However, by relaxing this assumption for internal and supply stages (non-

demand stages), we can find a better solution in terms of cost that still ensures the external 

customer service requirements. To the best of knowledge, the work of Graves and Willems 

(2000) contains the only analysis available in the literature that quantifies the impact of the 

guaranteed-service time assumption. For serial systems, they formulate a model without the 

guaranteed-service time assumption at non-demand stages and provide a limited 

computational study to measure the cost performance of this model. In this section, we extend 

their results to assembly systems and provide a more detailed numerical analysis.  

In what follows, we first present the model which relaxes the guaranteed-service time 

assumption for internal and supply stages (Section 3.2.1). We then examine the cost impact 

of this assumption by comparing the total safety stock costs obtained by using the original 

GSM (with the guaranteed-service time assumption at all stages) and the relaxed model 

(without the guaranteed-service time assumption at non-demand stages). The numerical 

analysis is carried out for five-stage serial systems and for a real-world assembly system 

(Section 3.2.2).  

3.2.1 Relaxed Model 

In the relaxed model, all assumptions of the original model are maintained except the 

guaranteed service time assumption for non-demand stages. The guaranteed-service times 

exist only towards external customers (at demand stages). Hence, upstream stages do not 

quote guaranteed-service times to their internal customers and unsatisfied demands at internal 

and supply stages are backordered. There are no constraints on internal service levels; rather, 

internal service levels depend on order-up-to levels which are chosen to minimise the total 
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safety stock cost of the system. We use this model to compare the performance of the 

solutions obtained with and without the guaranteed-service time assumption at non-demand 

stages. In what follows, we first present the model for serial systems then we show how to 

extend the relevant results to assembly systems. 

Solution for Serial Systems    

In this section, we consider an n-stage serial system for which the optimal policy of 

the relaxed model is provided by Graves and Willems (2000). Stages are increasingly 

numbered from upstream to downstream. Without loss of generality, the service time quoted 

to the external customer is assumed to be zero ( 0out
ns ) and the coefficient of utilisation 

1,1  jj  for each  nj ,...,2 . As in the original GSM, each stage operates with a periodic-

review, (installation) order-up-to policy, i.e. at the beginning of each period, each stage 

observes the external demand and places an order for this amount. We denote the external 

demand in period t by )(td , the external demand over ],( ba  by ),( bad  and the demand 

upper bound during   periods by )(D . We note that the on-hand inventory of stage 

 nj ,...,2,1  at the end of period t is the positive value of its net inventory where  

   0),(max)( tItI jj 
. The backorder )(tB j  at the end of period t is the amount that has 

been ordered by stage j’s internal customer but not yet delivered. This is equivalent to the 

negative part of the net inventory,   )()( tItB jj . We assume that at time 0t , the on-

hand inventory level at stage  nj ,...,2,1  is equal to its order-up-to level jS ,   ,)0( jj SI 
 

and its backorder level is equal to zero, 0)0( jB . For  nj ,...,2,1 , the on-hand inventory 

 )(tI j  and the backorder )(tB j  at the end of period t can be expressed as: 

   
  )(),()( 1 jjjjj LtBtLtdStI   (3.8) 

   jjjjj SLtBtLtdtB )(),()( 1   (3.9) 
 

From (3.8) and (3.9), the net inventory level at stage  nj ,...,2,1  is: 

  )(),()()()( 1 jjjjjjjj LtBtLtdStBtItI  


   

We can write the expected on-hand inventory level at stage j as follows: 
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)]([)]([]))([( 1 tBEtBELStIE jjjjjj 
      (3.10) 

Hence, the total safety stock cost becomes: 

  








1

1
1

1

)]([
n

j

j

e

j

n

j

jjjj tBEhLμSh   (3.11) 

where 1 jj

e

j hhh  is the echelon holding cost. We assume that the holding costs do 

not decrease from upstream to downstream, i.e. 0e

jh  for all },...,2{ nj . 

As in the original model, we assume that external suppliers provide 100% service 

which makes 0)(0 tB  by definition. From (3.9), )(tB j  becomes: 

}...),...(

,...,),(,),(,0max{)(

1111

11

SSStLLLtd

SStLLtdStLtdtB

jjjj

jjjjjjj








 (3.12) 

In order that Stage n provides 100% service level to the external customer for demand 

within the demand bounds, )(tBn
 should be equal to 0 for all t. Hence, the order-up-to levels 

should satisfy the following constraints: 

},..,2,1{ )..(... 11 njLLLDSSS jnnjnn    (3.13) 

We define the relaxed model P1 which minimises (3.11) subject to (3.13) and non-

negativity constraints as: 

  








1

1
1

1

)]([min:1
n

j

j

e

j

n

j

jjjj tBEhLμShP    

s.t. },..,2,1{ )..(... 11 njLLLDSSS jnnjnn      

       njS j ,..,2,1 0     

Graves and Willems (2000) prove that an optimal solution to P1 satisfies all the 

constraints in (3.13) as equalities. Hence, optimal order-up-to levels can be determined by:  

}1,...,2,1{)...()...(

)(

1
*

*





 njLLDLLDS

LDS

jnjnj

nn
 (3.14) 
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It can be shown that the total cost that corresponds to the solution obtained by (3.14) 

is equal to or less than that of any feasible solution of P1. We note that the optimal order-up-

to levels do not depend at all on holding costs.  

Solution for Assembly Systems 

In this section, we will show how the results presented by Graves and Willems (2000) 

for serial systems can be generalised to assembly systems using the transformation given by 

Rosling (1989).   

We consider an assembly system having n stages. We assume that the demand stage is 

indexed by n. We denote the total lead time for stage j and all its downstream stages by jW : 

A


),(:for jiiWLW

LW

jii

nn
 

The internal and supply stages are indexed so that: 

A

NN IS



 

),(

1

jiij

jWW jj
 

According to results presented in Rosling (1989), the optimal policies of the assembly 

system are equivalent to those of a serial system where stage j’s immediate downstream stage 

is stage 1j  and the lead time 
ser
jL  of stage j in the equivalent serial system is: 

}1,...,2,1{1 



 njWWL

LL

jj

ser

j

n

ser

n
 

Using (3.14), the optimal (installation) order-up-to levels for the equivalent serial 

system (
ser
jS ) become: 

}1,...,2,1{)...()...(

)(

1 



 njLLDLLDS

LDS

ser
j

ser
n

ser
j

ser
n

ser
j

ser
n

ser
n

 (3.15) 

The optimal (installation) order-up-to levels for the considered assembly system can 

be determined by: 
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

  and  }1,..,,2,1{...1
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*

 (3.16) 

Equations (3.15) and (3.16) lead to the following:  

A



),(:)...()...(

)(
*

*

jiiLLDLLDS

LDS

jnini

nn
 (3.17) 

Therefore, we can determine the optimal order-up-to levels for an assembly system 

using (3.17). These results can be extended to distribution systems by considering the stock 

allocation issue encountered in periodic-review policies. 

3.2.2 Numerical Analysis 

In this numerical analysis, we compare the cost performance of solutions obtained 

using the original GSM P0 (given in Section 1.2.2, page 30) and the relaxed model P1. We 

use the test problems associated with the five-stage serial and the real-world assembly system 

presented in Section 3.1.3. 

Five-Stage Serial System 

We consider the five-stage serial system presented in Figure 3.2 under the lead time 

and stage cost alternatives given in Table 3.3 (Section 3.1.3), normally distributed demand 

with parameters )1,10(   , )3,10(    and )3,30(    and 90%, 95%, 99% 

target CSL values. By evaluating all combinations (including the target CSL alternatives) we 

have a total of 81 test problems. We note that in (3.11), )]([ tBE j  is a nonlinear function of 

order-up-to levels jSSS ,..,, 21 . Exact values for normally distributed demand are not easy to 

compute for this function. In this study, we use simulation in order to evaluate )]([ tBE j  for 

the considered test problems. We set the simulation length sufficiently large for convergence 

(100,000 periods). 

Our numerical analysis enhances results provided by Graves and Willems (2000). 

They consider a set of 36 test problems pertaining to a three-stage serial system facing 

Poisson demand under different alternatives of lead time, holding cost, demand rate and 

target CSL. They show that the safety stock cost for the model with guaranteed-service times 
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is on average 26% higher than that for the model without this assumption; the range is 

between 7% and 43%. They show that the size of the gap is insensitive to the choice of 

demand process and the target CSL. However, the gap becomes larger as the lead time at 

Stage 5 increases and as the stage cost at Stage 5 increases. They show that the impact on the 

total inventory cost is less dramatic. The total inventory cost corresponds to the sum of the 

safety stock cost and the pipeline stock cost. The difference in total inventory costs is 4% on 

average, with a range from less than 1% to 14%. The gap increases as the pipeline stock cost 

decreases, namely as the lead time at Stage 5 decreases and as the demand rate decreases. 

For the five-stage serial test problems presented in Section 3.1.3, Table 3.8 

summarises the relative safety stock cost gaps 110 /)( ObjObjObj   where 0Obj  is the total 

safety stock cost obtained by solving P0 and 1Obj  is the one obtained by solving P1. These 

results show that the total safety stock cost under the guaranteed-service assumption is 35.9% 

higher on average than the one without this assumption. Hence, the safety stock cost increase 

becomes more significant for the considered test problems compared to the results obtained 

by Graves and Willems (2000). 

 

Stage cost Lead time 
Target Cycle-Service-Levels 

90% 95% 99% 

Decreasing 

Decreasing 34.23% 34.60% 34.06% 

Uniform 21.51% 20.87% 19.48% 

Increasing 11.84% 10.70% 9.26% 

Uniform 

Decreasing 57.83% 58.23% 57.16% 

Uniform 39.47% 38.42% 36.05% 

Increasing 24.88% 23.04% 20.55% 

Increasing 

Decreasing 59.07% 59.47% 57.63% 

Uniform 46.97% 45.39% 41.80% 

Increasing 38.52% 35.70% 31.76% 

Table 3.8: Relative gaps between the total safety stock costs obtained by solving P0 and P1 

Similarly to Graves and Willems (2000), our results confirm that the safety stock cost 

gap increases if the stage cost at Stage 5 increases. However, contrary to the results of Graves 

and Willems (2000), we observe that the gap increases if the lead time at Stage 5 decreases. 

Besides, we cannot say the gap is insensitive to the target CSL levels for the considered test 
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problems; the gap usually decreases when the target CSL increases. Additionally, our results 

show that the safety stock gap is insensitive to demand variability.  

  We calculate the expected pipeline inventory cost at stage j with jjj LhPS  . 

Similarly to Graves and Willems (2000), we notice that the impact of guaranteed-service time 

assumption is less significant when the total inventory cost is considered. We observe that the 

total cost gap depends on the coefficient of variation )/(   and on the target CSL value. 

Table 3.9 summarises the relative inventory cost gaps for different coefficient of variations 

averaging the solutions obtained for different target CSL values. This shows that the total 

cost gap increases when the coefficient of variation increases and lead time at Stage 5 

decreases. 

 

Stage Cost Lead Time 
Coefficient of Variation 

0.1 0.3 

Decreasing 

Decreasing 0.69% 1.99% 

Uniform 0.38% 1.10% 

Increasing 0.18% 0.52% 

Uniform 

Decreasing 1.31% 3.74% 

Uniform 0.77% 2.21% 

Increasing 0.41% 1.19% 

Increasing 

Decreasing 1.69% 4.79% 

Uniform 1.03% 2.94% 

Increasing 0.68% 1.97% 

Table 3.9: Average relative gaps between the total inventory costs obtained by solving P0 
and P1  

Real-World Assembly System 

  In this section, we consider the real-world system presented in Section 3.3.2. We 

obtain the optimal order-up-to level of each stage for the relaxed model P1 using (3.17). The 

backorder levels at internal stages are evaluated by simulation considering these order-up-to 

levels. Resulting safety stock costs are displayed in Table 3.10. Results obtained for this 

system shows that the cost increase due to the guaranteed-service time assumption may be 

significant for a real-world system. This example represents 42.2% safety stock cost increase 

for which the total stock cost increase including the pipeline stock cost is 7.0%.  
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Stage  
Safety Stock Cost 

Obtained Solving P0 ($) 
Safety Stock Cost 

Obtained Solving P1 ($) 
Pipeline Stock 

Cost ($) 

Boggie Assembly - 1,308 9,488 

Brake Group - 6,018 46,200 

Case 12,614 4,823 49,500 

Case & Frame 6,373 10,906 103,320 

Chassis/Platform - 10,678 74,498 

Common Subassembly - 31,214 217,425 

Dressed-out engine - 18,677 138,750 

Drive Group - 2,627 20,925 

Engine - 6,782 47,250 

Fans 1,361 1,407 11,700 

Fender Group - 1,695 12,150 

Final Assembly 607,969 190,034 435,600 

Final Drive & Brake - 10,670 83,115 

Frame Assembly 3,904 1,579 17,243 

Main Assembly - 103,958 688,020 

Pin Assembly 499 483 4,725 

Plant Carrier - 263 2,093 

Platform Group - 1,053 6,525 

Rollover Group - 2,004 13,800 

Suspension Group - 8,701 44,783 

Track Roller Frame - 8,743 45,000 

Transmission - 21,238 167,625 

TOTAL 632,719 444,860 2,239,733 

Table 3.10: Results obtained by solving P0 and P1 for the bulldozer supply chain 

 Common Review Periods Assumption 3.3

In this section, we investigate the impact of the common review periods assumption 

on the total safety stock cost. In the original GSM, each stage operates with a periodic-

review, order-up-to policy with a common review period of one period length. In practice, it 

may be more appropriate to review the stock status (and to place orders) less frequently than 

each period considering the economies of scale and/or the availability of resources. Besides, 

review periods (reorder intervals) to be applied at different stages may be different from each 

other. This requires introducing stage-dependent review periods. A simple approach to 

integrate stage-dependent review periods into the GSM would be to aggregate the review 

period of each stage into its lead time. Hence, one can use the original model P0 to obtain an 
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approximate solution. In this section, we evaluate the safety stock cost increase under such an 

approximation by comparing it with a model that we propose, that incorporate stage-

dependent review periods into the GSM.  

As presented in Chapter 2, Bossert and Willems (2007) provide the only work that 

extends the GSM to allow stage-dependent review periods. They assume that the review 

period of each stage has an arbitrary and integer value. Under this assumption, although the 

external demand processes are stationary, the internal demands might turn into cyclic 

processes. Besides, while expressing the cyclic inventory dynamics, not only the cycle length 

but also the staggering of internal orders should be taken into account. For instance, two 

stages that order every week might order on different days of the week. This complicates the 

evaluation of expected inventory levels at internal stages. Bossert and Willems (2007) 

provide an approximation for this case.  

In this section, differently from the work of Bossert and Willems (2007), we 

particularly focus on nested review periods for which we provide accurate formulations for 

expected inventory and safety stock levels. Under a nested policy, every replenishment epoch 

of an upstream stage coincides with a shipment epoch towards its downstream stage. Indeed, 

stationary nested policies are proven to be optimal for deterministic serial (see Schwarz, 

1973) and assembly systems (Muckstadt and Roundy, 1993). However, they may be 

suboptimal for distribution and general multi-echelon structures (Roundy, 1985b).  

Nevertheless, many researchers assume nested policies for distribution and general multi-

echelon systems because of their significant practical and computational advantages (see, 

e.g., Maxwell and Muckstadt, 1985; Yao and Wang, 2006).  

We first show how to express the expected inventory and safety stock levels under 

nested stage-dependent review periods. Incorporating the proposed formulation into the 

GSM, we develop a model that relaxes the common review periods assumption (Section 

3.3.1). We then compare solutions obtained by the original and the relaxed model using the 

five-stage serial and the real-world assembly test problems presented in Section 3.1.3 under 

different review period profiles (Section 3.3.2).     
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3.3.1 Relaxed Model 

The original GSM does not model the case where review periods are stage-dependent. 

In this section, we first present the demand propagation and inventory dynamics in serial 

systems under nested stage-dependent review periods. Then, we give the corresponding 

mathematical programming formulation. At the end of this section, we show how to extend 

this model to general acyclic systems.  

Inventory Dynamics for Serial Systems 

We consider an n-stage serial system where stages are increasingly numbered from 

upstream to downstream. Without loss of generality, we assume that the coefficient of 

utilisation 1,1  jj  for each },...,2{ nj .  The external demand )(td  is propagated through 

the system where the realised demand over ],( ba  at different stages is represented by 

).,( bad  The expression presented by Bossert and Willems (2007) leads to the following net 

inventory balance equation for 1jR  at stage }...,2,1{ nj : 

)),(()( out
jjj

in
jjj sttxLstdStI    (3.18) 

where )(tx j  reflects the inventory exposure because of review periods. The value of 

)(tx j  cycles in ),0[ jR . The first argument of (.,.)d , )(txLst jj
in
j   corresponds to the 

last demand replenished by the stage’s upstream stage by period t. The second argument of 

(.,.)d , 
out

jst   corresponds to the last demand fulfilled by period t. In what follows, we 

express the expected net inventory and safety stock levels for demand and non-demand 

stages.  

Let consider the demand stage (Stage n) where the external demand is a continuous-

time process. For this stage, the net inventory level )(tI n  is of the saw-tooth form (see Figure 

3.4). Without loss of generality, we assume that Stage n places orders at times nmR  where m 

is a non-negative integer. In this case, )(txn  becomes: 

nn

in

nn RLsttx mod)()(   

The inventory exposure is the largest when  nn Rtx )(  where   is a very small 

positive number. If 
out
nnn

in
n stRLst  , Stage n should have the amount of inventory to 
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cover the demand over an interval of length  
out

nnn

in

nn sRLs    . In order that Stage n 

provides 100% service to its customers, the base stock level nS  should be set to the demand 

upper bound )( nD   during the net replenishment time n : 

)( out
nnn

in
nn sRLsDS    (3.19) 

In (3.19) one can specify the demand bound function as in (3.1). Under the bounded 

demand assumption, (3.19) makes the net inventory level )(tI n  always positive. Hence, the 

net inventory equals the on-hand inventory.   

Since )(txn  cycles in ),0[ nR  with a cycle length of nR , the expected demand during 

this interval can be expressed as: 

   
2

)),((
 nout

nnn
in
n

out
nnn

in
n

R
sRLssttxLstdE   (3.20) 

Using (3.19) and (3.20), we can represent the expected inventory level  )(tIE n  as: 

     
2

)(
 nout

nnn
in
n

out
nnn

in
nn

R
sRLssRLsDtIE   (3.21) 

We note that (3.21) is similar to the approximation provided by Hadley and Whitin 

(1963) where there are two components of stock, the safety stock nSS  and the cycle stock 

nCS : 

   out
nnn

in
n

out
nnn

in
nn sRLssRLsDSS    

2

n
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R
CS   

Let now consider a non-demand stage }1,...,2,1{  nj . Under nested review periods 

1/ jj RR  is an integer for }1,...,2,1{  nj  and it is always possible to synchronise 

replenishments and expeditions. We assume that the reorder epochs are offset by j  to allow 

each stage }1,...,2,1{  nj  to replenish from its immediate upstream stage at the exact 

moment an order arrives (becomes available) at the upstream stage. We assume that stage j 

places orders at times jj mR  where }1,...,2,1{  jj R . Hence, )(tx j  becomes: 

}1,...,2,1{for mod)()(  njRLsttx jjj

in

jj   
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Since orders are placed periodically, demand occurs in discrete-time periods at non-

demand stages. We note that the inventory level )(tI j  at stage }1,...,2,1{  nj  is not of the 

saw-tooth form (see Figure 3.5). The inventory exposure is the largest when 1)(  jj Rtx  

and smallest when 0)( tx j . If ,1 out

jjj

in

j stRLst   stage j should have the amount 

of inventory to cover the demand over an interval of length  .1 out

jjj

in

jj sRLs    

Since the replenishment of stage j is synchronised by the expedition towards stage 

1j , the number of orders j  placed by stage 1j  and observed by stage j during j  can be 

calculated by the following floor function: 


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j

out
jjj

in
j

j
R

sRLs
  

Therefore, at stage }1,...,2,1{  nj  the length of the time interval that should be 

covered by stocks becomes .1jj R  

The order-up-to level at stage }1,...,2,1{  nj  should be set to the demand upper 

bound during :1jj R  

}1,...,2,1{for )( 1   njRDS jjj    (3.22) 

In (3.22) one can specify the demand bound function as in (3.1). In this setting, the 

expected inventory level )]([ tIE j  becomes: 
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jjjjj


  (3.23) 

In (3.23), we distinguish two components of stock, the safety stock jSS  and the cycle 

stock jCS : 

}1,...,2,1{for 
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}1,...,2,1{for )(
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1
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



nj
R

R

R
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njRRDSS

j

j

j

j

jjjjj





 

In the optimisation problem, the cycle stock cost may be ignored since it depends only 

on input parameters and does not affect the optimisation. We note that this does not mean that 

the cycle stock cost is not a significant part of the inventory cost. 



 91 

 

 

 

Figure 3.4: Net (on-hand) inventory evolutions for a demand stage 

 

 

 Figure 3.5: Net (on-hand) inventory evolutions for an internal or supply stage 

Mathematical Programming Formulation for Serial Systems 

The problem of minimising the total safety stock cost in an n-stage serial system 

under nested stage-dependent review periods is formulated as P2:  

    nnn

n

j

jjjjj DhRRDhP 



 )()(min :2

1

1
11  

(3.24) 
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s.t. 
out

nnn

in

nn sRLs    (3.25) 

      }1,...,2,1{1  njsRLs
out
jjj

in
jj  

(3.26) 

      }1,21{01   ...,n,jR jjj   (3.27) 

      }1.,,21{11   n..,jRR jjjj   (3.28) 

       }1,...,2,1{1   njss
in
j

out
j  (3.29) 

       
client
n

out
n ss    (3.30) 

        0,,, j
in
j

out
jj ss  and integer  },...,2,1{ nj  (3.31) 

The difference between P0 and P2 comes from the definition of the coverage and net 

replenishment times of stages. Constraints (3.25) and (3.26) define the net replenishment 

times of stages. Constraints (3.27) and (3.28) give an equivalent representation of the floor 

function to compute the coverage times of non-demand stages (see also Chapter 4).  

Extension to General Acyclic Systems 

For assembly systems, the extension of the problem P2 is straightforward. Since each 

stage has at most one downstream stage in an assembly system, index 1j  in P2 can be 

replaced by index A),(: kjk . However, if the supply chain network contains a distribution 

structure, demand realisations from different downstream stages should be differentiated 

while setting the internal demand bounds. Indeed, in case of several demand stages, the net 

replenishment time of each demand stage DNj  becomes: 

DN jsRLs
out

jjj

in

jj for    (3.32) 

The demand bound function (.)jD  can be specified using (2.1) (Chapter 2, page 41) 

for demand stages. Hence, the order-up-to level jS  at stage DNj  can be set to:  

DN jsRLsDS
out

jjj

in

jjj for )(   (3.33) 
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If an internal or supply stage SI NN j  has several downstream stages 

A),(: kjk , we can define the coverage times associated with each downstream stage k as 

follows:   

A










 
),( :for 

1
kjjRR

R

sRLs
kjkk

k

out

jjj

in

j   (3.34) 

where jk  represents the number of orders placed by stage k observed by stage 

A),(: kjj  during .1 out

jjj

in

jj sRLs   By adapting the expression given in Graves 

and Willems (2000) for the demand bounds of non-demand stages one can set the order-up-to 

level at stage SI NN j  as: 

   SI

AA

NN  


jRRDRS p

kjk

p

kkjkkjkkjk

kjk

kkjkjkj for )(
),(:),(:

  (3.35) 

where 1p  is a given constant that relates to the risk pooling effect. Larger values of 

p correspond to more risk pooling, i.e. larger reduction in demand variability due to 

combining the demands of multiple downstream stages. Setting 2p  equates to combining 

standard deviations of independent demand streams. Setting 1p  models the case of no risk 

pooling. 

Therefore, one can extend the problem P2 to general acyclic systems by replacing the 

order-up-to levels in the objective function by (3.33) and (3.35) and by defining the coverage 

times of non-demand stages by (3.34). We present this extension in more detail in Chapter 4. 

3.3.2 Numerical Analysis 

This numerical analysis is carried out using the five-stage serial and five-echelon 

assembly test problems presented in Section 3.1.3. We add another dimension into these test 

problems by considering different nested review period profiles (see Table 3.11). In 

particular, we consider uniform, ending and decreasing profiles. Since nested review periods 

increase from downstream to upstream, these profiles represent feasible alternatives. The lead 

time of stages given in Table 3.3 and Table 3.4 are considered as the time length 1 jj RL  

for non-demand stages SI NN j  and nn RL   for demand stage n. Thus, in P0, we 

consider that the review periods are included into the lead times. We measure the 
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performance of such an approximation that could be used in the original GSM. In other 

words, we evaluate the safety stock cost increase due to the lack of modelling of stage-

dependent review periods in the original GSM. Optimal solutions are obtained using solver 

BARON (version 9.3.1) by modelling P0 and P2 in GAMS 23.7.  

Five-Stage Serial System 

First, we present the results obtained for the five-stage serial test problems. We denote 

the safety stock cost obtained by solving the problem P2 by 2Obj . Table 3.11 summarises the 

average relative gaps 220 /)( ObjObjObj   under different review period profiles. We note 

that the gaps between the solutions obtained by solving P0 and P2 are insensitive to the 

demand parameters and the target CSL value (since these parameters turn into a factor of the 

total safety stock cost).   

For the considered test problems, we observe that the total safety stock cost decreases 

when review periods increase. The gap becomes larger when the review periods are common 

for all stages (uniform profile). However, starting profiles have no impact on the total safety 

stock cost. This is due to definition of coverage times at supply stages. 

We also notice that the safety stock locations obtained by solving P0 and P2 may be 

different for the same input data. When we take into account the demand propagation under 

stage-dependent review periods, the solution that minimises the total safety stock cost may 

result in different safety stock locations than the solution obtained by P0. For instance, the 

solution obtained by P0 for the test problem that represents the combination of increasing 

stage costs, increasing lead times and uniform review periods profile (4, 4, 4, 4, 4) 

corresponds to a solution where safety stocks are held at Stages 1,2 and 5 (see Table 3.5). 

However, for the same test problem the solution obtained by P2 consolidates all safety stocks 

at Stage 5. 

Another interesting result is that the use common review periods across the supply 

chain may seem reasonable in the sense that the resulting safety stock cost decrease is 

relatively high for uniform profiles in comparison to starting or decreasing profiles. However, 

we cannot say which profile is better considering these results. The impact of different review 
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period profiles on the total safety stock cost must be evaluated together with the associated 

ordering and cycle stock costs.     

 

Review Periods  
(from Stage 1 to 5) 

Average Safety 
Stock Cost Gap 

Uniform 

(2, 2, 2, 2, 2) 2.00% 

(3, 3, 3, 3, 3) 4.32% 

(4, 4, 4, 4, 4) 6.31% 

Starting 

(2, 1, 1, 1, 1) 0.00% 

(3, 1, 1, 1, 1) 0.00% 

(4, 1, 1, 1, 1) 0.00% 

Decreasing 

(2, 2, 2, 1, 1) 0.65% 

(3, 3, 3, 1, 1) 1.45% 

(4, 4, 2, 2, 1) 1.92% 

Table 3.11: Average relative gaps between the total safety stock costs obtained by solving P0 
and P2 for the five-stage serial system 

Real-World Assembly System 

Second, we consider the five-echelon real-world assembly system presented in 

Section 3.1.3. We apply the review period profiles presented in Table 3.11 at different 

echelons.  

Table 3.12 summarises the relative gaps 220 /)( ObjObjObj   between the solutions 

obtained by solving P0 and P2. These results show that the safety stock cost increase of using 

the original model P0 under stage-dependent review periods may be significant in a real-

world supply chain. Similarly to the previous analysis for the five-stage serial systems, the 

gap increases when review periods increase. We notice that the gap becomes more important 

for uniform profiles. This is due to the existence of the floor function term while defining the 

coverage times of non-demand stages. For instance, the sum of review periods in profile (3, 

3, 3, 1, 1) is more than that of (2, 2, 2, 2, 2). However, the cost increase of the later is larger 

than the former one. 
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Review Periods  
(from Echelon 1 to 5) 

Safety 
Stock Cost Gap 

Uniform 

(2, 2, 2, 2, 2) 5.40% 

(3, 3, 3, 3, 3) 10.93% 

(4, 4, 4, 4, 4) 19.11% 

Starting 

(2, 1, 1, 1, 1) 0.00% 

(3, 1, 1, 1, 1) 0.00% 

(4, 1, 1, 1, 1) 0.00% 

Decreasing 

(2, 2, 2, 1, 1) 1.44% 

(3, 3, 3, 1, 1) 3.14% 

(4, 4, 2, 2, 1) 4.46% 

Table 3.12: Relative gaps between the total safety stock costs obtained by solving P0 and P2 
for the bulldozer supply chain 

 Conclusion 3.4

In this chapter, we provided detailed insights on the impacts of the bounded demand, 

guaranteed-service times and common review periods assumptions. 

First, we showed that under the existence of demand bounds, the effectively observed 

CSL at the most downstream stage of the supply chain may be less than the target CSL. The 

gap is due to the fact that the effectively observed CSL at the most downstream stage is 

affected by the demand bounds applied at the upstream stages. The gap between the target 

and the effectively observed CSL increases when the net replenishment time of an upstream 

stage is much smaller than that of the most downstream stage. We assessed this deviation by 

simulation. Simulation studies that we carried out showed that the gap is 25% on average for 

a real-world assembly system. 

Assessing the CSL deviation under the existence of demand bounds over different net 

replenishment times in the system is not straightforward. We propose an approximation for a 

simple case with two different demand bounds. Further research can be conducted to propose 

analytical methods and approximations to calculate this deviation for more general cases. 

Another important research question that arises from this analysis is how to mitigate the CSL 

deviation in the GSM setting. Indeed, in order to achieve the target CSL without 

extraordinary measures at the most downstream stage, the safety factor to be applied at 

different stages should be appropriately defined. An extension of the GSM can be developed 
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by considering the safety factors as decision variables of the problem which are subject to a 

target customer service level constraint. However, finding an optimal solution to this 

extension may be challenging. In Chapter 5, we propose two different approaches that 

mitigate the CSL deviation for supply chains operating under the GSM assumptions. Besides, 

we present some related issues encountered in decentralised supply chains. 

Second, we examined the impact of the guaranteed-service time assumption on the 

total safety stock cost. This analysis enhanced the preliminary results provided by Graves and 

Willems (2000). We showed that the total safety stock cost under the guaranteed-service time 

assumption may be significantly higher than the one without this assumption. The total safety 

stock cost increase may be up to 42.2% for a real-world system. However, in practice, 

managers seem more comfortable with the notion of guaranteed-service time due to its 

practical advantages. The guaranteed-service time assumption prevents the variability of 

deliveries. Indeed, without this assumption, even the inventory control policy for overall 

system is optimised; a local manager at a certain stage may feel the need of more safety 

stocks and may deviate from the optimal solution to reduce the variability (Minner, 2000). In 

order to combine the cost advantage of a solution with backorders and the practical advantage 

of using guaranteed-service times, one can propose a mixed model where some stages are 

allowed to backorder demand and some are subject to the guaranteed-service times. We leave 

this extension as a future work. 

Third, we examined the assumption of common review periods. We proposed a model 

that enables to consider stage-dependent nested review periods. We compared the solution 

obtained by the proposed model with a simple approximation of the original model that 

aggregates the review period of stages into their lead times. The numerical analysis showed 

that this approximation may represent a significant cost increase for long review periods. 

Besides, the cost increase is relatively large when the review periods are common for all 

stages. However, we cannot say which review period profile is more appropriate for 

guaranteed-service supply chains based on these results. The impact of review periods on the 

total safety stock cost must be evaluated together with the associated fixed ordering costs. 

Hence, one potential extension of this work is to enable the GSM to simultaneously 
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determine the optimal review periods (reorder intervals) and safety stock levels (order-up-to 

levels) by incorporating the fixed ordering cost into the total cost function. We provide this 

extension in Chapter 4. 

In this chapter, the analysis regarding the impacts of the bounded demand, guaranteed 

service times and common review periods assumptions are conducted individually. Indeed, 

quantifying the combined effect of these assumptions can be translated as an analysis that 

compares the GSM and a fairly comparable SSM that excludes the GSM assumptions. We 

note that such analyses are conducted by Klosterhalfen and Minner (2007; 2010) for serial 

and two-echelon distribution systems by incorporating the cost of extraordinary measures 

into the GSM (see also Section 2.3 of Chapter 2).  

In this chapter, the results presented for the bounded demand and guaranteed-service 

times assumptions are limited to serial and assembly systems. The extension of these results 

to distribution systems requires the consideration of the stock allocation problem encountered 

in periodic-review policies. We leave the analysis for distribution and general acyclic 

structures as a future research direction. For the common review periods assumption, we 

showed how to extend the relaxed model to general acyclic multi-echelon systems. We will 

recall this result in Chapter 4 while modelling the problem of simultaneously optimising the 

reorder intervals and order-up-to levels in general acyclic systems. 
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Appendix: A Remark on Expected Inventory Levels 

In this appendix, we provide a remark on the derivation of expected inventory levels 

under the setting presented in Section 3.1.1.  

In the original GSM, the inventory balance equation is expressed as (1.15) (see 

Chapter 1, page 29). However, under the setting presented in Section 3.1.1, it is accurate to 

replace the realised demand by the satisfied demand )(tv j  given in (3.2). This leads to the 

following inventory balance equation: 

),()( out
jj

in
jjjj stLstvStI     

Therefore, the expected inventory level )]([ tIE j  becomes:  

)]()(
~

[)()]([ tvtdEDtIE jjjjjj     (A.1) 

In (A.1), the last term corresponds to the expected truncated demand during j  

periods. The expected inventory level given in (1.16) differs from (A.1) due to this term. By 

using (A.1), objective function (1.17) can be modified for an exact representation of the 

considered setting where the truncated demand is lost or handled outside the system.  

The expected truncated demand )]()(
~

[ tvtdE   in an arbitrary period is a non-linear 

function which depends on the net replenishment times of all stages. This makes 

characterising the last term in (A.1) challenging (at least as challenging as characterising the 

effectively observed CSL). Besides, if one considers (A.1) in the objective function, finding a 

solution to the GSM problem would be cumbersome. Consequently, using (1.17) as objective 

function represents an approximation which simplifies the problem. This approximation will 

be accurate enough for high CSL targets since demand will be rarely truncated. In this thesis, 

we consider (1.17) as objective function by referring to the original GSM.  
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CHAPTER 4: OPTIMISING REORDER INTERVALS AND ORDER-UP-
TO LEVELS  

As presented in our literature review in Chapter 2, all models in the GSM literature 

consider the reorder intervals of stages in the supply chain as given input parameters. In this 

chapter, we study the problem of simultaneously optimising the reorder intervals and order-

up-to levels in general acyclic multi-echelon systems facing stochastic demand. Finding an 

optimal policy for this problem would be extremely difficult. Indeed, the structure of the 

optimal policy is unknown even for two-echelon distribution systems under periodic-review 

(Doğru et al., 2009). We build on the Power-of-Two (PO2) and the GSM research to find a 

reasonable solution to this problem. In order to deal with demand variations, we use the 

original assumptions of the GSM that are the guaranteed service times and bounded demand 

assumptions. Besides, we assume that each stage of the supply chain operates with a periodic-

review, order-up-to (R, S) policy with stationary nested PO2 reorder intervals. Under this 

setting, demand bounds are specified using the findings presented in Chapter 3 (Section 3.3).  

This chapter has several contributions. First, we propose a deterministic optimisation 

model for general multi-echelon systems to determine the optimal parameters R and S as well 

as the corresponding service times. This leads to a Non Linear Integer Programming (NLIP) 

problem with a non-convex and non-concave objective function including rational and square 

root terms. Second, we propose a Sequential Optimisation Procedure (SOP) to obtain near 

optimal solutions with reasonable computational time. We measure the performance of this 

procedure on randomly generated instances pertaining to two supply chain structures, a five-

stage serial and a five-echelon general acyclic system. Third, by defining reasonable bounds 

for the decision variables of the NLIP model, we propose an Improved Direct (ID) approach.   

This chapter is organised as follows. Section 4.1 reviews the literature that is 

complementary to Chapter 2. In Section 4.2, we develop the NLIP. We then present the SOP 

in Section 4.3. Section 4.4 establishes the bounds for the decision variables of the NLIP and 

hence, proposes the ID approach. Numerical analysis on the SOP and the ID approach for 
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serial and general acyclic multi-echelon systems are summarised in Section 4.5. Finally, 

Section 4.6 draws some conclusions and suggests potential future research directions.     

 Related Literature 4.1

This work is built upon two research streams which are the problem of safety stock 

optimisation and the problem of determining optimal reorder intervals in multi-echelon 

systems. We refer the reader to Chapter 2 for a literature review of the multi-echelon safety 

stock optimisation problem. In this section, we provide a brief literature review of the 

problem of determining optimal reorder intervals in multi-echelon systems.  

The optimal reorder intervals that minimise the total cost (including fixed ordering 

costs) in a multi-echelon system are often impractical to implement since they can take any 

positive real value. A more realistic problem would then be obtained by assuming the reorder 

intervals as multiples of a base planning period (e.g., a day, a week or a month). This refers to 

a replenishment policy in which the reorder interval of each stage is an integer multiple of the 

base planning period. This policy is known as the integer-ratio policy. Most existing papers 

consider a subset of integer-ratio policies, the so-called PO2 policy. Under a PO2 policy, 

reorder intervals are power-of-two multiples of the base planning period. The practical 

advantages of using a PO2 policy in a multi-echelon inventory system is discussed in 

Muckstadt and Roundy (1993) and Muckstadt and Sapra (2010). They show that PO2 policies 

may considerably reduce time and resource consumption in scheduling operations. 

Furthermore, such policies are efficient for multi-echelon systems facing deterministic 

demand. With available algorithms, an optimal PO2 solution can be found easily and the 

solution is guaranteed to be within 6% of optimality if the base planning period is fixed (see 

Roundy, 1985a) and 2% of optimality if the base planning period is treated as a variable (see 

Roundy, 1985b; Roundy, 1986). 

For serial systems facing stochastic demand, it is observed that the integer-ratio 

policies obtained by solving the deterministic counterpart of the problem can be an effective 

heuristic approach. For instance, numerical studies in Chen and Zheng (1998) and Shang 

(2008) show that the average performance of this deterministic approach is fairly good for 
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serial systems facing stochastic demand. Chu and Shen (2010) study a two-echelon 

distribution system facing stochastic demand and having target service levels. They develop a 

polynomial algorithm to find a PO2 policy whose cost is guaranteed to be no more than 1.26 

times the optimal cost. Shang and Zhou (2010) consider a two-echelon distribution system 

under backordering costs. With a numerical study, they demonstrate that the integer-ratio 

policy is a good candidate for designing heuristics. However, they show that non-nested PO2 

solutions obtained by solving the corresponding deterministic model can perform poorly in 

some cases. In this chapter, we propose a SOP for general multi-echelon systems facing 

stochastic demand.  Similarly, at the first step of this procedure, we solve the deterministic 

counterpart of the problem as in the papers mentioned above. We also discuss the conditions 

under which the quality of our approach deteriorates.     

 Optimisation Model 4.2

This section presents the optimisation model we propose: Section 4.2.1 introduces our 

assumptions, Section 4.2.2 shows how to specify the appropriate demand bounds of stages 

while Section 4.2.3 provides the mathematical programming formulation.  

4.2.1 Assumptions 

We consider a general multi-echelon system modelled as a network as presented in 

Section 1.1.1 of Chapter 1. We assume that external demand occurs only at the most 

downstream stages which we term demand stages. For each demand stage DNj , demand 

follows a stationary i.i.d. process with mean j  and standard deviation j  per base planning 

period. For an internal or supply stage SI NN j , we can compute the mean demand j  

per base planning period using (1.1) (see page 12). We consider the case of no risk pooling. 

Hence, demand variability at stage SI NN j  is equal to the sum of demand variability 

associated with its successors. For SI NN j , we define the standard deviation j  per 

base planning period by: 





A),(: kjk

kjkj   
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We assume that demand satisfied from stock is bounded for any long period j  and 

for every stage j. As in the original GSM, our model does not address what happens when 

arrival demand exceeds the specified demand bounds. We assume that demand bounds are 

defined by the company policy in such a way that the effect of excess demand is tolerated or 

handled by some extraordinary measures such as subcontracting, overtime production, 

express expediting etc. The impact of these extraordinary measures on the company is not 

studied in the GSM neither in our model. 

At each stage j, we assume a deterministic and constant lead time jL  which 

corresponds to the duration of process being realised at this stage. Each stage j operates with 

a stationary ),( jj SR  policy where jR  is the reorder interval and jS  is the base stock level. 

There is no time delay in ordering. We restrict attention to stationary nested PO2 policies. 

Thus, the reorder interval jR  can take the following values:  }2,...,2,1{ jl
 where jl  is a non-

negative integer. Furthermore, since we consider nested policies, the reorder interval of stage 

DI NN j  cannot be greater than the reorder intervals of its upstream stages. We note that 

the reorder epochs are offset to allow each stage to replenish from its immediate upstream 

stages at the exact moment an order arrives at the upstream stages and equidistant times of 

length jR  thereafter. 

As in the original GSM, we assume that each stage j promises a unique guaranteed 

outbound service time 
out
js  to its customers. Demand stages should ensure the maximum 

service time 
client
js  tolerated by the final customer. The inbound service time 

in
js  define the 

time for stage j to get all the inputs from stage A),(: jii  to start the process. We note that 

out
js , 

in
js  are the decision variables of our optimisation problem. These decision variables 

serve to determine the safety stock level and the order-up-to level jS  at each stage j. We 

assume that the outbound and the inbound service times are integer multiples of the base 

planning period likewise the reorder interval. For the sake of simplicity, we will further 

consider the base planning period as one unit of time and the decision variables as positive 

integers.  

Two types of cost are considered in our model: the fixed ordering and the holding 

cost. Let jA  be the fixed ordering cost of stage j and   be the number of base planning 
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periods per year. The Annual Fixed Ordering Cost (AFOC) is calculated similarly to 

Economic Order Quantity model: 





Nj j

j

R

A
AFOC  

The annual holding cost formulation is based on the approximation of Hadley and 

Whitin (1963) which is the sum of cycle stock and safety stock costs. In order to compute the 

cycle stock costs, we use the echelon stock approach. Under periodic-review, the on-hand 

stock evolutions for installation stocks are not of the saw-tooth form at supply and internal 

stages (see Figure 3.5, Chapter 3). However, the on-hand stock evolutions for echelon stocks 

are always of the saw-tooth form at all stages no matter the network topology. Thus, it is 

easier to compute the average echelon stock compared to average on hand stock. Besides, the 

two approaches yield the same cycle stock costs for the multi-echelon system with nested 

PO2 policies (Muckstadt and Roundy, 1993). The (annual) per-unit echelon holding cost of 

stage j is denoted by 
e
jh  (see Section 1.1.4 of Chapter 1 for its definition). The Annual Cycle 

Stock Cost (ACSC) of the system can be calculated by: 





Nj

j

e

jj Rh
2

1
ACSC  

The Annual Safety Stock Cost (ASSC) of stage j is the product of the (annual) per-

unit holding cost jh  and the safety stock level jSS  of stage j: 





Nj

jjSShASSC  

In our mathematical model, the cost of pipeline stock is ignored since it depends only 

on input parameters and does not affect the optimisation. However, this is not to say that the 

pipeline stock is not a significant part of the inventory in a supply chain. Therefore, the 

annual cost function that we aim to minimise is the sum of the AFOC, the ACSC and the 

ASSC. 
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4.2.2 Demand Bound Functions 

The structure of demand bound functions proposed in this section is similar to the one 

of Section 3.3.1 (Chapter 3). In this section, we introduce some additional notations for ease 

of exposition while presenting the NLIP model for general acyclic multi-echelon systems.  

The existence of guaranteed service times assumption implies that if a stage j faces a 

demand )(td j  at time t, the demand within the demand bounds is fully satisfied with 100% 

service at time 
out
jst  . We assume that a replenishment is available to serve demand in its 

period of arrival.  Let consider the replenishment mechanism at an internal or supply stage

SI NN j . Without loss of generality, stage j places orders at times jmR  where m is a non-

negative integer. Let jRnt .  for  jR,..,2,1 . Stage j places an order for )(td j  at 

time  jRt  and the order corresponding to this demand is received at time 

 jj

in

j RLst . In the worst case, 1  and the reception occurs at time 

1 jj

in

j RLst . If a demand is served first and the replenishment corresponding to this 

demand occurs at a subsequent period, stage j has to store the inventory that would satisfy the 

demand within the guaranteed service time. That is, if 
out

jjj

in

j sRLs  1 , stage j should 

have the amount of inventory to cover the demand over an interval of length 

out

jjj

in

jj sRLs  1 , that is called the net replenishment time of stage SI NN j . 

We assume that the external demand occurs continuously over the base planning 

period. Thus, taking into account an additional increase of the net replenishment time by the 

base planning period, the net replenishment time j  for a demand stage DNj  is equal to 

out

jjj

in

j sLRs  . As in Graves and Willems (2000) one can set the demand bound function 

for demand stages as follows: 

DN jzD jjjjjjj for )(   

where jz  is the safety factor of stage j that relates to its non-stock-out probability 

during j .  

For internal and supply stages, the maximum demand which can be observed during 

the net replenishment time depends on the reorder intervals of their immediate downstream 

stages. The average size of an order placed by stage A),(: kjk  is kjkkR  . The number of 
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orders placed by stage k and observed by stage j during the net replenishment time j  can be 

calculated by the floor function ),n( kj R : 

A







 ),(for ),n( kj

R
R

k

j

kj


  

The average demand requested by stage k and observed by stage j during the net 

replenishment time j  is the product of the number of orders placed by stage k during j  and 

the average size of an order placed by stage k. Since we consider the case of no risk pooling, 

the maximum demand ),( kjjk RD   placed by stage k and observed by stage j during j  can 

be calculated by:   

A ),(for ),n(),n(),( kjRRzRRRD kkjkjkjkjkkkjkjjk   

To provide a guaranteed service time at stage j, the order-up-to level jS  should be 

equal to the demand upper bound during its net replenishment time: 

DN jDS jjj for )(  

S

A

I NN  
),(:

for ),(
kjk

kjjkj jRDS   

Thus, the safety stock level jSS  at stage j becomes:  

DN jzSS jjjj for   

SI NN  


jRRzSS
Akjk

kkjkjkjj for ),n(
),(:

  

In the mathematical model, we will represent the safety stock function of internal or 

supply stages without referring to the floor function. Let jk  be the decision variables of the 

mathematical model representing the floor function value ),n( kj R . The variables jk  should 

verify the following constraints: 

A ),(0 kjRkjkj   

A ),( kjRR kkjkj   
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0jk  and integer  A ),( kj  

So considered, the term in the square root can be replaced by kjk R . The safety stock 

level for a stage SI NN j  is then equal to: 

SI

A

NN  


jRzSS
kjk

kjkkjkjj for 
),(:

  

where jk  verifies the constraints above. 

4.2.3 Mathematical Programming Formulation  

The problem P3 of finding the optimal PO2 reorder intervals and guaranteed service 

times in order to minimise the total annual cost of the multi-echelon system can be 

formulated as follows: 

   
   













N NN A NSI Dj j kjk j

jjjjkjkkjkjjj

e

jj

j

j
zhRzhRhu

R

A
P

),(:2

1
min:3   

 (4.1) 

s.t. N jR jl

j 2  
(4.2) 

      A ),( jiRR ji  
(4.3) 

      DN jsRLs
out

jjj

in

jj  
(4.4) 

      SI NN  jsRLs
out

jjj

in

jj 1  (4.5) 

      A ),(0 kjRkjkj   (4.6) 

      A ),( kjRR kkjkj   (4.7) 

       A ),( jiss
out

i

in

j
 

(4.8) 

       DN jss
client

j

out

j
 

(4.9) 

       0,,, j

out

j

in

jj ssl        and integer        Nj  
(4.10) 
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       1jR                         and integer       Nj  
(4.11) 

       0jk                       and integer       A ),( kj  
(4.12) 

The decision variables of this problem are: the reorder intervals ( jR ), the integer 

variables representing the PO2 values ( jl ), the net replenishment times ( j ), the outbound 

service times (
out
js ), the inbound service times (

in
js ) and the number of orders placed by stage 

k to stage j during j  ( jk ) for each A),( kj .  

The problem P3 minimises the total cost function (4.1). Constraint (4.2) restricts the 

reorder intervals to PO2 solutions. Constraint (4.3) is necessary to ensure nestedness. 

Constraints (4.4) and (4.5) give the net replenishment times of stages. The nonlinear 

constraints (4.6) and (4.7) determine the number of orders placed by an internal stage during 

the net replenishment time of its immediate upstream stage. Constraint (4.8) ensures that the 

outbound service time of a stage’s immediate upstream stage is no greater than its inbound 

service time. Constraint (4.9) ensures that the demand stages satisfy their service guarantee. 

With constraints (4.10)-(4.12) decision variables are forced to be positive integers.  

The problem P3 is a NLIP problem with a neither convex nor concave objective 

function on the feasible region (see the Appendix of this chapter) including rational and 

square root terms. 

After having solved the problem P3, the optimal order-up-to levels 
*
jS  of stages can 

be obtained by: 

DN jDS jjj for )( **   

S

A

I NN  
),(:

*** for ),(
kjk

kjjkj jRDS   

where 
*
j  and 

*
jR  are the optimal solutions of the problem P3. 

 Sequential Optimisation Procedure 4.3

For large multi-echelon systems the problem P3 becomes computationally intractable 

with direct solution approaches because of the combinatorial nature of the problem and 
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nonlinear non-convex terms. We thus propose a Sequential Optimisation Procedure (SOP) to 

obtain near optimal solutions with reasonable computational time. Our method consists of 

two optimisation procedures. First, we determine the convenient reorder intervals using 

available optimisation models for nested PO2 policies with deterministic demand. Second, 

we obtain convenient order-up-to levels, guaranteed service times and safety stock 

placements using the results of the first procedure as input parameters. 

The first optimisation procedure aims at determining a nested PO2 solution to the 

deterministic counterpart of this problem. Therefore, we first consider the problem P4: 





Nj

j
e
jj

j

j
Rhu

R

A
P

2

1
min:4   (4.13) 

s.t. N jR jl

j 2  (4.14) 

     A ),( jiRR ji  (4.15) 

     0jl  and integer  Nj  (4.16) 

     1jR and integer Nj  (4.17) 

The problem P4 is studied in the literature for general acyclic multi-echelon systems. 

To find an optimal solution to this problem, one can use the polynomial time algorithm 

presented by Maxwell and Muckstadt (1985) and Muckstadt and Roundy (1993).  

Let 
seq
jR  be the reorder interval of stage j obtained by solving the problem P4. By 

considering reorder intervals as input parameters, reorder interval of stage j, 
seq
jR  can be 

aggregated into its lead time jL .  Hence, lead times of stage j can be replaced by jL  where: 

                                            seq

jjj RLL            DNjfor  

1 seq

jjj RLL        SI NN jfor  

Therefore, the problem P3 can be reduced to the problem P5:  

 
Nj

out

j

in

jj ssCP ,min:5  (4.18) 
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s.t. N jsLs
out

jj

in

j 0  (4.19) 

     A ),( jiss
out

i

in

j
 (4.20) 

     DN jss
client

j

out

j
 (4.21) 

      0, out

j

in

j ss and integer  Nj  (4.22) 

where; 

  DN jsLszhssC
out

jj

in

jjjj

out

j

in

jj for ,   

  SI

A

NN 










 
 



jR
R

sLs
zhssC

kjk

seq

kseq

k

out

jj

in

j

kjkjj

out

j

in

jj for ,
),(:

  

The second procedure aims at finding an optimal solution to the problem P5. The 

problem P5 is a GSM with a non-continuous objective function. The cost function of stages 

only depends on its own service times and is increasing in 
in
js  and decreasing in 

out
js . 

Therefore, considering the multi-echelon system structure, generic solution techniques 

developed by Graves and Willems (2000), Humair and Willems (2006) and Humair and 

Willems (2011) can be used to solve this problem to optimality. In fact, for these techniques 

there are no structural limitations on  out

j

in

jj ssC ,  as long as the cost function of stage j only 

depends on 
in
js  and 

out
js .  

By solving the problem P5, we obtain the best service times for the multi-echelon 

system given reorder intervals 
seq

jR . As presented in Section 4.2.3, we can deduce the safety 

stock and order-up-to levels corresponding to this solution. A feasible solution for the 

problem P3 is then obtained by combining the solutions found for problems P4 and P5.  

 Improved Direct Approach 4.4

A direct approach to obtain a global optimal solution for the problem P4 is to solve it 

by using a global optimiser such as BARON with 0% optimality margin. BARON provides 

global optima for this problem if finite lower and upper bounds on the decision variables are 
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properly specified. When the default decision variable bounds are too large, this approach 

requires significant computational time (see Section 4.5).  Otherwise, if these bounds are too 

tight, global optima may not be obtained. We improve this Default Direct (DD) approach: 

first, we establish the solution obtained by the SOP as an initial solution. Second, we develop 

appropriate decision variable bounds using the solution obtained by the SOP.  

In what follows, we show how to establish the decision variable bounds in order to 

develop an Improved Direct (ID) approach. By solving the problem P4, we obtain for each 

stage j, the reorder interval 
seq
jR  that optimises the convex part of the cost function including 

the annual fixed ordering cost and the annual cycle stock cost. If the optimal reorder interval 

of a supply stage SNj  is greater than 
seq
jR  found by the sequential optimal solution, the 

cost of the convex part increases. However, this also increases the net replenishment time of 

stage SNj  and hence, its annual safety stock cost. Therefore, it is not beneficial for a 

supply stage to set a reorder interval greater than its 
seq
jR . Besides, since we only consider 

nested policies, the reorder interval of a non-supply stage must be smaller than or equal to the 

maximum reorder interval of the supply stages. Hence, we can establish the upper bounds for 

all reorder intervals by: 

  NNS  jjjRR
seq

jj for :|max  (4.23) 

Similarly, the upper bound for the integer decision variable
jl becomes: 

  NNS  jjjll
seq

jj for :|max  (4.24) 

Since an upper bound can be defined for reorder intervals we can deduce upper 

bounds for service times as well. We can define the maximum replenishment time jM  by: 

  SS NN  jjjRLM
seq

jjj for :|max1  

    IS NAN  jjiiMjjRLM i
seq
jjj for ),(:max:|max1  

    DS NAN  jjiiMjjRLM i
seq
jjj for ),(:max:|max  
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The total cost increases when the inbound service times or the net replenishment 

times increase and when the outbound service times decrease. Hence, as in the original GSM, 

there always exists an optimal solution for the problem P3 such that all inbound service times 

of the supply stages are equal to 0 and the inbound service time of each non-supply stage is 

equal to the maximum service time of its upstream stages (see Lesnaia, 2004). Therefore, we 

can establish upper bounds for the inbound and outbound service times as follows: 

N jMs j

out

j for  (4.25) 

  DI NNA  jjiiMs i
in
j for ),(:max  (4.26) 

SN js
in

j for 0  (4.27) 

Hence, upper bounds for j  and jk  become: 

N jM jj for    (4.28) 

A ),(for kjM jjk   (4.29) 

Besides, the natural lower bounds for these decision variables are given by constraints 

(4.10)-(4.12). The ID approach is then obtained by setting the bounds (4.23)-(4.29) to the 

decision variables and by considering the sequential optimal solution as an initial solution.    

 Numerical Analysis 4.5

In this section, computational experiments are carried to test the relevancy of the SOP 

and the direct approaches. Randomly generated five-echelon serial and five-echelon general 

acyclic multi-echelon systems are used. Although the serial system considered has the same 

structure as that of Chapter 3, we consider in this section different data concerning lead times, 

holding and ordering costs in order to conduct an enhanced analysis by considering a much 

richer data set. Besides, since the model is developed for general acyclic structures, we test 

the different solution procedures on a real-world general acyclic supply chain structure. 

These data sets are generated in order to conduct a detailed comparison between the different 
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solution procedures proposed in terms of solution quality and computational time in different 

supply chain structures. 

This section is organised as follows. Section 4.5.1 presents the data generation 

procedure. Section 4.5.2 provides results on the global optimal reorder intervals based on 

illustrative examples. Section 4.5.3 discusses the optimality gap of the SOP and identifies 

conditions under which the SOP performs relatively bad. Finally, Section 4.5.4 compares the 

performance of the SOP and the direct approaches in terms of computational time. 

4.5.1 Data Generation 

For numerical analysis, we consider a five-echelon serial (Figure 3.2, Chapter 3) and a 

five-echelon general acyclic system (Figure 4.1). Common parameters for both structures are 

as follows. The length of the base planning period is a business day and there are 260 

business days in a year. The safety factors for all stages are the same and equal to 1.645 

(which correspond to a 95% service level). The maximum service times at demand stages are 

set to 0.  The parameter jk  is set equal to 1 for all stages A),( kj . Besides, we consider 

different groups as in Bossert and Willems (2007) based on the ordering cost ratios (i.e. the 

ratio jj hA /  for stage j). For the serial five-echelon structure, we define three profiles for 

each group (see Table 4.1). For each echelon of the five-echelon general acyclic system, we 

specify intervals in which the ordering cost ratios are generated randomly if the ratio is not 

set to 0 (see Table 4.2).  

For the five-echelon serial supply chain system, mean and standard deviation of daily 

demand at the demand stage (Stage 5) are respectively 150  and 45 . The (annual) 

per-unit holding cost for Stage 1 is generated randomly in U[0, 20]. Then, the (annual) per-

unit holding costs of other stages are obtained by adding a random number in U[0, 20] to the 

per-unit holding cost of its upstream stage. The lead time value of each stage is an integer, 

generated randomly in U[1, 20]. Following these rules, 15 instances that comprise the lead 

time and the per-unit holding cost data are obtained. The 15 instances (Table 4.3) permuted 

with the 21 ordering cost profiles (Table 4.1) generate the 315 test problems considered. 
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The five-echelon general acyclic system corresponds to the real-world supply chain 

presented by Willems (2008). For this system, we use data provided by Willems (2008) that 

includes the lead times (the average values are considered), the stage costs (holding cost rate 

is set to 10%) and mean and standard deviation of demand at demand stages (see Table 4.4). 

For the ordering costs, we generate 15 instances for each of the 21 ordering cost profiles 

using intervals reported in Table 4.2. Hence, we obtain 315 test problems.  

The SOP and direct approaches are coded in GAMS 23.7 on a VAIO computer with 

Intel Core i3-2310M processor (2.10 GHz) and 4 GB RAM. BARON (version 9.3.1) is used 

for the computational experiments. For all test problems, the global optimal (GO) solutions 

are obtained by the ID approach using the global optimiser BARON. The sequential optimal 

(SO) solutions are the feasible solutions obtained from the SOP. 

Figure 4.1: The five-echelon general acyclic system  
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Ordering Cost Profiles 
Stages 

1 2 3 4 5 

Starting 
4 0 0 0 0 

25 0 0 0 0 

80 0 0 0 0 

Middle 
0 0 4 0 0 

0 0 25 0 0 

0 0 80 0 0 

Ending 
0 0 0 0 4 

0 0 0 0 25 

0 0 0 0 80 

Uniform 
2 2 2 2 2 

25 25 25 25 25 

50 50 50 50 50 

Increasing 
0 2 2 2 25 

0 2 4 25 80 

1 2 16 25 50 

Decreasing 
25 2 2 2 0 

80 25 4 2 0 

50 25 16 2 1 

Random 
11 8 9 0 2 

13 25 0 4 12 

60 10 8 24 11 

Table 4.1: Ordering cost ratios used for the serial system 
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Ordering Cost Profiles 
Echelons 

1 2 3 4 5 

Starting 

U[0, 5] 0 0 0 0 

U[15, 25] 0 0 0 0 

U[65, 80] 0 0 0 0 

Middle 

0 0 U[0, 5] 0 0 

0 0 U[15, 25] 0 0 

0 0 U[65, 80] 0 0 

Ending 

0 0 0 0 U[0, 5] 

0 0 0 0 U[15, 25] 

0 0 0 0 U[65, 80] 

Uniform 

U[5, 10] U[5, 10] U[5, 10] U[5, 10] U[5, 10] 

U[20, 25] U[20, 25] U[20, 25] U[20, 25] U[20, 25] 

U[45, 50] U[45, 50] U[45, 50] U[45, 50] U[45, 50] 

Increasing 

U[0, 5] U[5, 10] U[10, 15] U[15, 20] U[20, 25] 

U[0, 10] U[10, 20] U[20, 30] U[30, 40] U[40, 50] 

U[0, 15] U[15, 30] U[30, 45] U[45, 60] U[60, 75] 

Decreasing 

U[20, 25] U[15, 20] U[10, 15] U[5, 10] U[0, 5] 

U[40, 50] U[30, 40] U[20, 30] U[10, 20] U[0, 10] 

U[60, 75] U[45, 60] U[30, 45] U[15, 30] U[0, 15] 

Random 

U[0, 15] U[0, 15] U[0, 15] U[0, 15] U[0, 15] 

U[0, 30] U[0, 30] U[0, 30] U[0, 30] U[0, 30] 

U[0, 50] U[0, 50] U[0, 50] U[0, 50] U[0, 50] 

Table 4.2: Ordering cost ratio intervals used for the general acyclic system 
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Instance Stage j Lj hj($) Instance Stage j Lj hj($) Instance Stage j Lj hj($) 

1 

1 10 15.9 

6 

1 16 15.6 

11 

1 17 5.3 

2 14 32.3 2 8 22.7 2 15 16.5 

3 2 36.4 3 1 25.1 3 6 23.0 

4 8 55.8 4 15 30.4 4 6 37.1 

5 11 61.1 5 16 43.7 5 6 49.3 

2 

1 16 13.2 

7 

1 20 9.3 

12 

1 8 12.9 

2 5 28.4 2 13 12.3 2 11 20.5 

3 12 36.9 3 15 29.5 3 19 31.7 

4 20 53.4 4 4 42.4 4 1 47.8 

5 13 58.5 5 20 56.7 5 12 49.1 

3 

1 15 10.8 

8 

1 10 14.6 

13 

1 5 8.9 

2 6 15.6 2 9 19.6 2 11 12.9 

3 1 18.7 3 9 29.8 3 4 13.0 

4 12 20.8 4 8 36.4 4 3 21.9 

5 9 24.0 5 8 39.7 5 10 35.3 

4 

1 4 14.8 

9 

1 3 15.3 

14 

1 16 7.0 

2 18 31.6 2 3 21.4 2 14 19.9 

3 18 35.7 3 12 24.5 3 19 28.4 

4 1 43.2 4 2 36.9 4 11 36.9 

5 9 59.6 5 2 43.8 5 13 47.8 

5 

1 20 10.1 

10 

1 13 17.9 

15 

1 12 10.2 

2 19 13.9 2 19 33.2 2 13 26.0 

3 5 25.7 3 8 45.1 3 4 35.5 

4 6 26.0 4 11 50.8 4 5 53.5 

5 16 31.9 5 8 68.6 5 14 69.0 

Table 4.3: Lead time and per-unit holding cost data of the serial test problems 
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Stage  
j 

Lead Time 
Lj 

Holding Cost 
hj ($) 

j   

(External 
Demand) 

j   

(External 
Demand) 

client

j
s  

(Demand 
stages) 

j  

(Demand 
stages) 

1 45 110 - - - - 

2 38 60 - - - - 

3 31 150 - - - - 

4 54 40 - - - - 

5 26 110 - - - - 

6 12 240 - - - - 

7 10 235 - - - - 

8 2 240 - - - - 

9 2 150.3 - - - - 

10 2 150.2 - - - - 

11 2 235 - - - - 

12 10 395.3 - - - - 

13 10 391.2 - - - - 

14 2 410.3 126 132.3 0 95% 

15 5 416.2 57 51.3 0 95% 

16 5 424.7 46 45 0 95% 

17 1 275 70 35 0 95% 

 Table 4.4: Data provided by Willems (2008) for the general acyclic system 

4.5.2 Results 

We observe that when the SO and GO solutions are not the same, the GO solution 

may lead to smaller reorder intervals than the SO solution. In this case, the sum of total 

annual fixed ordering and annual cycle stock costs (AFOCj +ACSCj of stages Nj ) 

increases in comparison with the SO solution. Besides, this may also increase the annual 

safety stock cost ASSCi at the upstream stage(s) A),(: jii  since stage j will order more 

frequently during the net replenishment time of stage i. On the other hand, this leads to a 

potential reduction of the annual safety stock cost at stage j or at the one(s) of its downstream 

stage(s). The additive effect of these deviations may reduce the total cost. To illustrate this 

result, we provide in Table 4.5 the SO and GO solutions for a five-echelon serial test problem 

(obtained by permuting instance 14 with the second decreasing ordering cost profile). For this 

example, the total cost of the SO and GO solutions are respectively $90,100 to $89,208 which 

represents a relative gap of 1%. 
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Another interesting result is the reduction of the total cost when the reorder interval of 

a non-supply stage j is increased over its SO reorder interval. This action may increase the 

sum AFOCj +ACSCj for stage j. However, it may decrease ASSCi at the upstream stage(s) 

.),(: Ajii  This is due to a better order coordination between customer-supplier stages. 

Besides, this may also reduce the safety stock cost at other stage(s) sharing a same supplier 

with stage j since each supplier quotes a unique service time for all of its customers. To 

illustrate this result we provide in Table 4.6 the GO and SO solutions for a general acyclic 

test problem pertaining to the first decreasing ordering cost profile. For this example, the total 

SO and GO costs are respectively $3,180,765 to $3,141,906 and this represents a relative gap 

of 1.24%. 

 

Stage  The SO Solution The GO Solution 

j 
Rj 

(days) 

sj
out

 

(days) 

ASSCj 

($) 

AFOCj+ 

ACSCj ($) 

Rj 

(days) 

sj
out

 

(days) 

ASSCj 

($) 

AFOCj+ 

ACSCj ($) 

1 16 0 2,061 17,451 16 0 2,524 17,451 

2 16 22 - 23,508 8 14 - 23,850 

3 8 45 - 8,829 8 37 - 8,829 

4 4 59 - 7,326 4 51 - 7,326 

5 1 0 30,109 817 1 0 28,411 817 

Total 
 

32,169 57,931  30,935 58,273 

Table 4.5: Solutions obtained for a serial test problem  

Concerning the reorder intervals obtained for different groups of ordering cost ratio 

profiles, ending, uniform and increasing groups lead to the same reorder interval among all 

stages since we only consider nested policies. In this case, decreasing the reorder intervals of 

all stages together may improve the SO solution. In the general acyclic structure, this may 

imply high cost deviations and may significantly reduce the total cost. For decreasing and 

random groups, the total cost of the system may be reduced by increasing or decreasing the 

reorder interval of the SO solution for one or several stages. For the starting group the SO 

solution may be improved by decreasing the reorder interval at supply stages. Similarly for 

the middle group, a better solution than the SO solution may be found by decreasing the 

reorder intervals at the first three upstream echelons. However, for this group, the 
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improvement of the total cost function is restrictive and it usually implies small cost 

deviations.  

 

Stage  The SO Solution The GO Solution 

j 
Rj  

(days) 

sj
out

  

(days) 

ASSCj  

($) 

AFOCj+ 

ACSCj ($) 

Rj  

(days) 

sj
out

  

(days) 

ASSCj 

($) 

AFOCj+ 

ACSCj ($) 

1 16 45 - 152,224  16 45 - 152,224 

2 16 38 - 163,693  16 38 - 163,693 

3 16 31 -  329,261  16 31 - 329,261 

4 16 38  69,373   109,106  16 38 69,373 109,106 

5 16 26 -  188,098  16 26 - 188,098 

6 16 57 -  103,575  16 57 - 103,575 

7 16 48 -  95,483  16 48 - 95,483 

8 16 59 - 45,912  16 59 - 45,912 

9 16 48 -  32,549  16 48 - 32,549 

10 16 48 -  36,358  16 48 - 36,358 

11 16 58 -  54,822  16 50 - 54,822 

12 16 69 -  46,135  16 69 - 46,135 

13 16 80 -  38,300  16 60 - 38,300 

14 16 0 832,814   35,425  16 0 832,814 35,425 

15 16 0  352,945   37,653  16 0 316,074 37,653 

16 4 0  296,591   5,146  16 0 282,947 12,858 

17 8 0 129,588   25,713  16 0 129,588 29,657 

Total    1,681,312   1,499,453   1,630,798 1,511,109 

Table 4.6: Solutions obtained for a general acyclic test problem  

We note that for the considered general acyclic test problems, the GO reorder 

intervals usually tend to be the same among all stages. This stems from the benefit obtained 

due to the order coordination. This benefit is significant since the considered general acyclic 

system represents high demand variability at demand stages. However, the SOP does not 

consider demand variability to compute the SO reorder intervals.  

4.5.3 Optimality Gap 

Table 4.7 summarises the performance of the SOP for both structures and for different 

groups of ordering cost profiles in terms of optimality gap. Optimality gap is computed by 

GOGOSO ObjObjObj /)(   where SOObj  denotes the SO objective value and GOObj  the GO 

objective value. The average (Avr.) and the maximum (Max.) gaps are reported for each 
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ordering cost profile that comprises 45 test problems. The last column (titled “Occ.”) reports 

the number of occurrences where the SO solution is different from the GO solution.  

For the serial structure the SO solution is usually equal to the GO solution. 

Decreasing and random profiles reveal a relatively inferior performance. The SOP is able to 

obtain near optimal solutions of about 0.01% optimality gap on average with an observed 

worst-case of 1.23%. 

 

Ordering Cost Profiles 
Serial System General Acyclic System 

Avr. Gap Max. Gap Occ. Avr. Gap Max. Gap Occ. 

Starting 0.00% 0.00% 0 0.29% 1.27% 31 

Middle 0.00% 0.00% 0 0.01% 0.53% 2 

Ending 0.00% 0.00% 0 0.60% 3.63% 17 

Uniform 0.00% 0.21% 1 0.39% 2.58% 13 

Increasing 0.00% 0.00% 0 0.41% 2.22% 15 

Decreasing 0.05% 1.00% 5 1.07% 4.87% 27 

Random 0.03% 1.23% 1 0.45% 4.61% 14 

Table 4.7: Optimality gap results  

In the general acyclic structure, similarly to the serial one, the gap is important for 

decreasing and random groups. Besides, the gap of ending and increasing groups is higher 

compared to the serial structure. However, the SO solutions are still near optimal with 0.46% 

optimality gap on average and with an observed worst case of 4.87% for the considered 

structure. 

The demand variability considered in the general acyclic system lies between 0.50 

and 1.05. In order to investigate the impact of demand variability on the SOP performance, 

we perform a second set of experiments for the serial structure. When we increase the 

coefficient of variation from 0.30 to 1 for this system, the performance of SO solutions 

deteriorates. Particularly, the performance of the starting, uniform, decreasing and random 

profiles get worst. The observed worst case still belongs to the random profile with 3.41% 

optimality gap. However, the SO solutions still represent an average optimality gap of 0.15% 

for all groups of ordering cost profiles (see Table 4.8). 
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Ordering Cost Profiles 
Serial System 

Avr. Gap Max. Gap Occ. 

Starting 0.01% 0.25% 1 

Middle 0.00% 0.00% 0 

Ending 0.00% 0.00% 0 

Uniform 0.47% 3.36% 12 

Increasing 0.00% 0.00% 0 

Decreasing 0.37% 2.90% 15 

Random 0.22% 3.41% 8 

Table 4.8: Optimality gap results for the serial system with a coefficient of variation equal to1 

4.5.4 Computational Time 

For serial test problems, computational time is less than 1, 2, 6 seconds using 

respectively the SOP, the ID and DD approaches. Therefore, the computational times of these 

approaches are very short and similar for five-stage serial structure. However, the differences 

become significant for the general acyclic structure. 

We notice that the DD approach requires significant computational time when the 

complexity of the supply chain network increases. With the ID approach, the computational 

time may be significantly reduced. For instance, for general acyclic test problems belonging 

to the first starting profile, the DD approach cannot converge within 18000 seconds whereas 

the ID approach provides global optima in 2,785 seconds on average. In this case, the average 

gap between the best feasible solution obtained by the DD approach and the global optima is 

about 15.31%. Therefore, the ID approach clearly dominates the DD approach. 

Besides, we notice that SOP requires significantly shorter computational time than the 

ID approach for all profiles. The SOP provides near optimal solutions within 13 seconds 

whereas the ID approach requires 2,951 seconds on average to provide global optima. Table 

4.9 reports the running times of the SOP and the ID approach for all groups of ordering cost 

profiles.  

We observe that for the starting group, computational time of the ID approach is 

surprisingly long. Using decision variable bounds presented in Section 4.4, decision variable 

bounds of non-supply stages remain too large for the starting group and this prevents a fast 

convergence of BARON to global optima. This also explains the relatively long 
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computational times for middle and decreasing groups. A converse effect is observed in 

ending, increasing and uniform groups.  

 

Ordering Cost Profiles 

SOP ID Approach 

Avr. Time 

(secs) 

Min. Time 

(secs) 

Max. Time 

(secs) 

Avr. Time 

(secs) 

Min. Time 

(secs) 

Max. Time 

(secs) 

Starting 7.57 3.37 12.43 18684.17 161.60 69699.39 

Middle 6.90 4.36 12.18 439.69 102.68 1085.88 

Ending 4.84 2.27 8.96 122.90 2.61 489.28 

Uniform 3.77 2.62 8.36 214.18 13.90 1472.73 

Increasing 2.99 1.91 4.15 105.53 7.41 753.98 

Decreasing 5.25 2.85 11.59 853.43 26.60 4600.47 

Random 4.75 1.81 9.33 243.90 9.27 3041.4 

Table 4.9: Running times of the SOP and ID approaches for the general acyclic test problems  

 Conclusion 4.6

In this chapter, we have presented a NLIP model that determines nested PO2 reorder 

intervals and order-up-to levels in a multi-echelon inventory system. The GSM approach is 

used to model the multi-echelon system facing stochastic demand. Our computational studies 

demonstrate that the performance of the solution procedure may deteriorate when demand 

variability and the complexity of the supply chain network increases. However, for a five-

echelon general acyclic multi-echelon system with 17 stages and 18 arcs facing high demand 

variability, the SOP provides near optimal solutions of about 0.46% optimality gap on 

average within 13 seconds. Besides, we also propose an improved direct approach to reduce 

the computational time when the problem is solved to global optimality using a global 

optimiser. For test problems for which the global optimiser cannot converge within 18000 

seconds, the improved direct approach provides global optima in 2785 seconds on average.     

Some additional relevant issues remain for future consideration. The first one is the 

performance evaluation of the sequential optimisation procedure for more complex and larger 

multi-echelon systems. For those systems, a faster global optimisation method must be 

developed in order to realise this analysis. The second issue is the extension of the model to 

consider non-nested policies which would be more relevant for general supply chain 
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structures. By considering a non-nested policy, a better solution in terms of total supply chain 

cost may be obtained. The third issue concerns the relaxation of the model so that stages are 

allowed to have arbitrary integer reorder intervals. This extension would enable to estimate 

the cost of the PO2 restrictions. In addition, it seems worthwhile to conduct a comparison of 

our model with a model that deals with the same problem by employing the SSM approach. 

However, since the two approaches are based on different settings, how to perform a fair 

comparison remain as an open question. All these extensions represent challenging future 

research directions for general multi-echelon systems facing stochastic demand.   
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Appendix: Neither Convex nor Concave Objective Function 

In order to show that objective function (4.1) given in Section 4.2.3 is neither convex 

nor concave on the feasible region of the problem P3, we consider the Hessian matrix of 

function (4.1) corresponding to the variables jR  where SNj  and to k  where DNk  is: 
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We assume that the input parameters for stage j and k are strictly positive.  The 

determinant of matrix H is then strictly negative when 0jR  and 0k . Therefore, 

function (4.1) is neither convex nor concave with respect to jR  and k  on the feasible region 

of the problem P3. Hence, function (4.1) is neither convex nor concave with respect to all of 

its variables on the feasible region of the problem P3. 
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CHAPTER 5: MITIGATING THE CYCLE-SERVICE-LEVEL 
DEVIATION IN GUARANTEED-SERVICE SUPPLY CHAINS 

Guaranteed-service supply chains represent multi-echelon systems operating under 

the GSM assumptions. In such systems, demand is assumed to be bounded at each stage of 

the supply chain. Most studies in the GSM literature specify the demand bounds using a 

safety factor that relates to a target Cycle-Service-Level (CSL). The effectively observed 

CSL in guaranteed-service supply chains can be defined as the probability that the safety 

stocks in the system cover demand variations. We showed in Chapter 3 (Section 3.1) that 

under the existence of demand bounds, the effectively observed CSL at demand stages may 

be less than the one used to define the demand bounds. The deviation is due to the fact that 

the CSL at a demand stage is affected by the demand bounds applied at its upstream stages. 

This particularly happens when the net replenishment times of upstream-downstream stages 

are different and the demand bounds in the system are incompatible due to the associated 

safety factors.  

The issue regarding the CSL deviation in guaranteed-service supply chains is not 

elaborately studied in the literature. In the first part of this chapter, we show how to specify 

the safety factors to be applied at different stages of the supply chain so that the effectively 

observed CSL at the most downstream stage achieves the target CSL. To do this, we propose 

two approaches that mitigate the CSL deviation in guaranteed-service supply chains. The first 

approach determines a common safety factor value for all stages of the supply chain that 

enables to achieve the target CSL at the most downstream stage while the second approach 

adjusts the safety factors according to the per-unit holding costs and the net replenishment 

times of stages. We focus on serial and assembly systems since we use results presented in 

Chapter 3 (Section 3.1). The numerical study shows that the first approach outperforms the 

second one in terms of computational time while the second approach provides better results 

in terms of solution quality. 

In the second part of this chapter, we study the issue of the CSL deviation in a context 

in which different actors control different parts of the supply chain. Recently, researchers 
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consider the GSM in decentralised supply chains. However, how to specify the safety factors 

at different parts of a decentralised supply chain is not discussed in the existing literature. 

Existing works ignore the conflict that may occur due to the incompatible demand bounds 

used by different actors of the supply chain. Indeed, if each actor mitigates the CSL deviation 

independently, the most downstream actor may still face a deviation in its service level due to 

the demand bounds applied at the upstream actors. We measure the relevant deviation 

considering five-stage serial and five-echelon assembly systems controlled by two actors. 

This chapter is organised as follows. 5.1 presents the mitigation approaches proposed. 

Section 5.2 presents the CSL deviation issue in decentralised supply chains. Section 5.3 

draws conclusions and proposes potential future research directions.  

 Mitigation Approaches 5.1

In this section, we present two approaches in order to mitigate the CSL deviation in 

guaranteed-service supply chains by focusing on serial and assembly systems.  

In the GSM literature, Minner (2000) is the only one who attempts to present the CSL 

deviation under the GSM setting and mitigate this deviation by adjusting the safety stock 

levels of stages. His approach consists of sequentially increasing the safety stock levels 

(which is equivalent to increase the safety factors). Safety stock adjustments are solely 

analysed for stages with strictly positive net replenishment times, i.e. for stages that hold 

safety stocks. Extreme strategies such as increasing only the upstream or only the 

downstream stock level are evaluated considering two-stage service level interactions. He 

illustrates these strategies on a three-stage serial system example. He shows that increasing 

only the downstream safety stock is better in terms of cost compared to increasing only the 

upstream safety stock. However, this result is limited to a single example. Besides, since he 

considers two-stage service level interactions, his approach does not enable to achieve the 

target CSL in our setting when there exist more than two stages holding safety stock in the 

system. In addition, he uses the formulas presented by Van Houtum et al. (1996) in order to 

calculate the effectively observed CSL which are shown in Section 3.1.2 of Chapter 3 to be 



 128 

inappropriate in the setting that we consider where the unbounded demand is truncated and 

handled outside the normal supply chain.   

Our aim is to propose two approaches in order to mitigate the CSL deviation in the 

GSM setting where the effectively observed CSL is defined as the probability that the safety 

stocks in the system cover demand variations. The first approach (Section 5.1.1) consists of 

determining a common safety factor value for all stages of the supply chain that enables to 

achieve the target CSL at the most downstream stage. In the second approach (Section 5.1.2), 

safety factors are adjusted according to the per-unit holding costs and the net replenishment 

times of stages. Hence, each stage may have a different safety factor value after the 

adjustment of safety factors. Besides, several safety stock placement solutions are evaluated 

in order to find a solution that minimises the resulting safety stock cost increase. We compare 

the two approaches in terms of solution quality and computational time using five-stage serial 

and real-world assembly test problems presented in Section 3.1.3 of Chapter 3 (Section 

5.1.3).    

5.1.1 Mitigation Approach I 

In the GSM literature, most researchers apply a common safety factor value to all 

stages of the supply chain while specifying demand bounds in serial and assembly systems. 

As presented in (3.1) (Chapter 3, page 66), this leads to the following demand bound 

function: 

 njzD jjj ,...,2,1for  )(    

 The common safety factor z  used for all stages of the supply chain is an input 

parameter which relates to a target CSL  . As shown in Chapter 3 (Section 3.1), the 

effectively observed CSL at the most downstream stage may deviate from the target CSL 

under this setting. In order to remedy this issue, the common safety factor can be adjusted by 

increasing its value until the target CSL is reached at the most downstream stage. The 

relevant adjustment of the safety factor implies to increase the safety stock levels of all stages 

holding safety stocks.  



 129 

In the first mitigation approach, in accordance with the GSM literature, we propose to 

use a common safety factor for all stages. We apply the following simple rules to determine 

the appropriate common safety factor value ẑ . First, we use the safety factor )(1 z  

that relates to the target CSL   at all stages of the supply chain. As such, we obtain an initial 

solution by solving P0 (Section 1.2.2, page 30). Then, we measure the effectively observed 

CSL    using (3.3) (Section 3.1.1, page 67) under the corresponding demand bounds. If the 

effectively observed CSL is less than the target one for this initial solution, we increase the 

common safety factor until the resulting service level deviation is zero or below a certain 

tolerance level.  

We define max
z  as an input parameter which is sufficiently large so that the resulting 

   is greater than the target one. The appropriate safety factor ẑ  which mitigates the CSL 

deviation can be determined by a bisection method: 

Step 1. Start with the interval ],[ max
zzI   

Step 2. Halve the length of I so that the common safety factor that ensures the target CSL   

is within the new interval.  

Step 3. If the length of I is not below the pre-specified tolerance level go to Step 2. 

Otherwise, go to Step 4. 

Step 4. Re-calculate the safety stock levels and the total safety stock cost for Izˆ . 

The common safety factor ẑ  that ensures the target CSL at the most downstream 

stage is within the interval obtained at the final iteration. Here, the error can be no more than 

the length of the final interval and is restricted considering a certain tolerance level. Under 

the common safety factor ẑ  obtained, we recalculate the safety stock levels and the total 

safety stock cost in the system. The total safety stock cost increases since .ˆ zz   The solution 

obtained under ẑ  ensures    where 0  represents the tolerance level considered 

for the CSL deviation. 

We note that since we consider a common safety factor ẑ  for all stages of the supply 

chain, the solution obtained after mitigation of the CSL deviation leads to the same safety 

stock placements as the initial solution. That is because, when the safety factor is the same at 
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all stages, the optimal safety stock placements and net replenishment times become 

insensitive to the safety factor.  

5.1.2 Mitigation Approach II 

In the second mitigation approach, we first propose a safety stock adjustment 

procedure that takes into account the per-unit holding costs and net replenishment times of 

stages for a given safety stock placement solution. Besides, we evaluate several solutions in 

order to find a good solution that minimises the total safety stock cost increase resulting from 

the mitigation of the CSL deviation. Figure 5.1 gives the flowchart diagram of this mitigation 

approach.    

As in the first approach, we first start with determining an initial solution using the 

safety factor )(1 z  for all stages. We measure the effectively observed CSL    using 

(3.3) under the corresponding demand bounds and net replenishment times. If the effectively 

observed CSL is less than the target one for the initial solution, we apply a safety factor 

adjustment procedure for stages having strictly positive net replenishment times, i.e. for 

stages holding safety stocks. We denote the set of stages with strictly positive net 

replenishment times by T. We assume that the safety factor of a stage cannot be increased 

more than a maximum level .max
z  The safety factor max

z  is sufficiently large so that if the 

safety factor of all stages 0* j  equal max
z  the resulting    is greater than the target CSL 

 . The idea is to increase the safety factor of stages one by one starting from stages with low 

per-unit holding cost and net replenishment time. Hence, we select stages for which the safety 

factor to be increased according to their 
*
jjh   value. This may limit the resulting safety stock 

cost increase after the adjustment of safety factors.  

Since we increase the safety factor of stages one by one, increasing the safety factor 

of a stage to its maximum value max
z  may not be sufficient to reach the target CSL 

(especially at the beginning of this procedure). That is, the effectively observed CSL obtained 

for 
maxˆ zz j   for Tj  may be smaller than the target CSL  . Let the effectively observed 

CSL max   for .ˆ max
zz j   If 

max   is smaller than the target CSL  , i.e. if 

,max    we set the safety factor jẑ  to the smallest value that yields the greatest 
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increase in the effectively observed CSL. In other words, we select the smallest safety factor 

jẑ  which verifies .|| max     

If for 
maxˆ zz j   the effectively observed CSL is greater than the target one, i.e. if  

 max
, then we determine the safety factor which verifies    using a bisection 

method (as presented in Section 5.1.1). The procedure terminates when    under the 

adjusted safety factors. We note that there is at least one feasible solution that satisfies the 

termination criteria since max
z  is sufficiently large.  The relevant safety factor adjustment 

procedure can be described as follows: 

Step 1.  Select stage Tj  such that 
*
jjh   is the smallest among all stages in T .  

Step 2.  Asses the effectively observed CSL 
max   obtained by setting 

maxˆ zz j  .   

 If   max
 then set jẑ  to the smallest value that verifies .|| max     Let  

}{\ jTT   go to Step 1. 

Else set jẑ  to the value that verifies    using a bisection method and go 

to Step 3. 

Step 3. Re-calculate the safety stock levels and the total cost under the adjusted safety factors. 

Let the total cost be Actual Cost. 

After applying the safety factor adjustment procedure, a solution that ensures the 

target CSL at the most downstream stage is obtained. We denote the total safety stock cost 

that corresponds to this solution by MinCost. After the adjustment of safety factors, each 

stage may have a different safety factor value. In this case, if the problem P0 is re-solved 

under the adjusted safety factors, the safety stock placements (hence the net replenishment 

times) obtained may be different from those of the initial solution. If the objective value of 

P0 under the adjusted safety factors is smaller than MinCost, it is possible to obtain a better 

solution than the actual solution by re-adjusting safety factors for this new solution. Hence, 

we can repeat the safety factor adjustment procedure for this new solution and compare the 

cost obtained with MinCost. If Actual Cost is smaller than MinCost, we set MinCost to Actual 

Cost, we re-solve P0 under the adjusted safety factors and then repeat the previous steps. 

Otherwise, MinCost represents the smallest cost obtained and we terminate the mitigation 

procedure (see Figure 5.1).   



 132 

Figure 5.1: Flowchart diagram of Mitigation Approach II  

5.1.3 Numerical Analysis 

In this numerical analysis, we use the five-stage serial and real-world assembly test 

problems presented in Chapter 3 (Section 3.1.3). We compare the performance of Mitigation 

Approaches I and II in terms of computational time and solution quality evaluated based on 

the resulting safety stock cost increase.  

Mitigation Approach I is implemented as follows. First, we model the problem P0 in 

GAMS 23.7 and use the solver BARON (version 9.3.1) to determine the net replenishment 

times and demand bounds associated with the initial solution of each test problem. Then we 
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assess the CSL deviation for this solution using a simulation model in Microsoft Excel. In 

order to determine the common safety factor that ensures the target CSL at the most 

downstream stage in our simulation model, we use the Goal Seek Tool in Microsoft Excel. 

This tool is based on a bisection method for which we set the tolerance level   to 0.0001. It 

does not require specifying a maximum safety factor value max
z  since it is already considered 

in the default settings of the tool. 

In Mitigation Approach II, similarly to the first approach, we use the solver BARON 

to solve the problem P0 modelled in GAMS. We asses the CSL deviation for solutions 

obtained using our simulation model in Microsoft Excel. The safety stock adjustment 

procedure is coded in Microsost Excel VBA integrating the Goal Seek Tool. The tolerance 

level is set as 0001.0  and the maximum safety factor 09.3max z  corresponds to 99.9% 

CSL. For simplification, this numerical analysis is performed considering target service CSL 

values higher than 80%.  

Five-Stage Serial System 

In this subsection, the five-stage serial system with decreasing, uniform and 

increasing stage cost and lead time alternatives given in Section 3.1.3 of Chapter 3 is 

considered. Initial solutions are obtained solving the problem P0 under different safety factor 

values that relate to 80%, 85%, 90%, 95% and 99% target CSL. The CSL deviations are 

assessed using the simulation model under the demand bounds associated with these initial 

solutions. As presented in Section 3.1.4, the gap between the effectively observed and the 

target CSL are insensitive to demand parameters. There is no deviation if the initial solution 

implies that the safety stocks in the system are solely carried at the demand stage (i.e. at 

Stage 5). In this case, there is no need to use the mitigation approaches since the initial 

solution already ensures the target CSL at Stage 5. However, if a CSL deviation occurs for 

the initial solution, we mitigate this deviation applying the mitigation approaches proposed in 

Section 5.1.  

The mitigation of the CSL deviation increases the total safety stock cost if the 

effectively observed CSL is less than the target one for the initial solution. Here, the solution 
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quality of the two mitigation approaches are evaluated in terms of the resulting safety stock 

cost increase. This is measured by 00 /)( ObjObjObjmit   where 0Obj   is the total safety stock 

cost associated with the initial solution and mitObj  is the total cost obtained as the outcome of 

the mitigation approach used. Table 5.1 and Table 5.2 summarise results obtained using 

Mitigation Approach I and Mitigation Approach II, respectively. Solutions that ensure the 

given target CSL at Stage 5, obtained with Mitigation Approach I, represent 6.3% safety 

stock cost increase on average. The cost performance of Mitigation Approach II is better than 

Mitigation Approach I since it leads to 2.6% cost increase on average. However, we cannot 

say that Mitigation Approach II dominates Mitigation Approach I in terms of cost. 

Counterexamples occur, e.g. for combinations of constant stage costs, decreasing lead times 

and 85%-99% target service levels.  

For both approaches, the safety stock cost increase usually decreases when the target 

CSL increases. This may be related to the fact that the CSL deviation decreases for high 

target CSL values (see Section 3.1.4). The only exception is observed for the test problems 

with increasing stage costs and decreasing lead times. We note that this corresponds to the 

unique test problem where the net replenishment time of Stage 5 is the smallest among all 

stages (see Table 5.3 and Table 5.4).  

 

Stage Cost Lead Time 
Target Cycle-Service-Levels 

80.00% 85.00% 90.00% 95.00% 99.00% 

Decreasing 

Decreasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Constant 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Constant 

Decreasing 10.67% 8.61% 7.26% 6.12% 4.28% 

Constant 16.58% 13.31% 10.37% 8.75% 5.20% 

Increasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 

Decreasing 3.59% 3.90% 3.91% 4.75% 5.48% 

Uniform 15.15% 12.41% 10.33% 8.14% 5.08% 

Increasing 37.64% 30.35% 24.22% 19.26% 9.71% 

Table 5.1: Safety stock cost increases that result from applying Mitigation Approach I 
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Stage Cost Lead Time 
Target Cycle-Service-Levels 

80.00% 85.00% 90.00% 95.00% 99.00% 

Decreasing 

Decreasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Uniform 

Decreasing 8.70% 8.70% 8.70% 8.70% 8.70% 

Uniform 1.64% 1.64% 1.64% 1.64% 1.64% 

Increasing 0.00% 0.00% 0.00% 0.00% 0.00% 

Increasing 

Decreasing 1.66% 2.06% 2.30% 2.76% 3.26% 

Uniform 15.74% 15.74% 4.58% 3.53% 2.69% 

Increasing 2.05% 2.05% 2.05% 2.01% 2.00% 

Table 5.2: Safety stock cost increases that result from applying Mitigation Approach II 

The net replenishment times (from Stage 1 to 5) associated with the initial solutions 

used for both approaches are listed in Table 5.2. We remind that a stage with strictly positive 

net replenishment time is a stage that holds safety stock. By the construction of Mitigation 

Approach I, the initial and final safety stock placement solutions are the same, i.e. safety 

stock placements in the system do not change after the mitigation of the CSL deviation. 

However, this is not the case for Mitigation Approach II since we evaluate several solutions 

through this mitigation procedure. Final solutions obtained with Mitigation Approach II are 

given in Table 5.4. This shows that in most of the cases, it is advantageous in terms of cost to 

hold safety stock solely at Stage 5 in order to prevent the CSL deviation. For this solution, the 

net replenishment time of Stage 5 equals its maximum replenishment time (100 periods) 

while the net replenishment time of other stages equals zero. The cost advantage of this 

solution may vanish when the per-unit holding cost is significant at Stage 5, i.e. in case of 

increasing stage costs. 

In terms of computational time, Mitigation Approach I is better than Mitigation 

Approach II for all test problems. The relevant solutions are obtained within 30 seconds with 

the former one while the later one requires 4 minutes on average.  
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Stage Cost Lead Time Initial Solution 

Decreasing 

Decreasing (0,0,0,0,100) 

Uniform (0,0,0,0,100) 

Increasing (0,0,0,0,100) 

Uniform 

Decreasing (36,0,0,0,64) 

Uniform (20,0,0,0,80) 

Increasing (0,0,0,0,100) 

Increasing 

Decreasing (36,28,20,0,16) 

Uniform (20,20,0,0,60) 

Increasing (4,12,0,0,84) 

Table 5.3: Net replenishment times of initial solutions used for Mitigation Approaches I and 
II 

Stage Cost Lead Time 
Final Solution 

80.00% 85.00% 90.00% 95.00% 99.00% 

Decreasing 

Decreasing (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Uniform (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Increasing (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Uniform 

Decreasing (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Uniform (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Increasing (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) 

Increasing 

Decreasing (36,28,0,32,4) (36,28,0,32,4) (36,28,0,32,4) (36,28,0,32,4) (36,28,0,32,4) 

Uniform (0,0,0,0,100) (0,0,0,0,100) (20,0,40,0,40) (20,0,40,0,40) (20,0,40,0,40) 

Increasing (0,0,0,0,100) (0,0,0,0,100) (0,0,0,0,100) (4,0,0,0,96) (4,0,0,0,96) 

Table 5.4: Net replenishment times of final solutions obtained by Mitigation Approach II 

Real-World Assembly System 

In this subsection, we consider the real-world assembly system presented in Section 

3.1.3 of Chapter 3. The CSL deviations under different target CSL values are given in Section 

3.1.4. Here, we mitigate the CSL deviations using Mitigation Approaches I and II. The total 

safety stock costs obtained for different target CSL values ranging from 80% to 99% are 

displayed in Figure 5.2. The upper, middle and lower lines corresponds to solutions obtained 

by Mitigation Approach I, Mitigation Approach II and the original GSM (initial solution 

obtained by solving the problem P0), respectively. 

We notice that for this real-world example, Mitigation Approach II outperforms 

Mitigation Approach I in terms of cost. The average cost increases resulting from Mitigation 

Approaches I and II are 37.3% and 8.9%, respectively. However, Mitigation Approach I is 
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quiet better in terms of computational time than Mitigation Approach II. The time required to 

obtained the relevant solutions with Mitigation Approach I is less than 30 seconds while the 

computational time of Mitigation Approach II is 25 minutes on average. Compared to results 

obtained for the serial test problems, Mitigation Approach II performs better than Mitigation 

Approach I in terms of cost. However, the computational time of Mitigation Approach II 

increases significantly for assembly test problems, i.e. when the complexity of the supply 

chain network increases.  

 

 

Figure 5.2: Total safety stock costs as a function of target CSL for the bulldozer supply chain 

Let illustrate solutions obtained for the test problem with the target CSL of 95% 

which corresponds to the example considered by Graves and Willems (2003). Table 5.5 and 

Table 5.6 give the strictly positive net replenishment times and the safety factors obtained by 

using Mitigation Approaches I and II, respectively. The safety factor applied in the initial 

solution of this test problem is .645.1)95.0(1  
z  The total safety stock cost associated 

with this solution is 632,719$. As presented in Section 3.1.4 of Chapter 3 this solution 

represents a CSL deviation of 7.71%. The solution obtained by Mitigation Approach I 

mitigates the CSL deviation by applying a common safety factor .10.2ˆ z  This leads to an 

increase of 27.9% in the total safety stock cost. The solution obtained by Mitigation 

Approach II adjusts safety factors according to the net replenishment times and per-unit 

holding costs of stages. This leads to different safety factors for different stages. Besides, the 

safety stock placements (and hence the net replenishment times) associated with the final 
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solution is different from the initial solution. This solution represents a safety stock cost 

increase of 4% in comparison with the initial solution. This detailed illustration could be 

presented for any other value of target CSL. 

 

Stage 
Optimal Net 
Repl. Times 

(days) 

Safety 
Factors 

Case 15 2.10 

Case & Frame 1 2.10 

Fans 2 2.10 

Final Assembly 32 2.10 

Frame Assembly 19 2.10 

Pin Assembly 14 2.10 

Table 5.5: The final solution obtained by Mitigation Approach I 

Stage 
Optimal Net 
Repl. Times 

(days) 

Safety 
Factors 

Case 15 3.09 

Fans 1 3.09 

Final Assembly 33 1.67 

Frame Assembly 19 2.43 

Pin Assembly 13 2.81 

Table 5.6: The final solution obtained by Mitigation Approach II 

As said earlier, Minner (2000) mitigates the CSL deviation by adjusting the safety 

stock levels for a three-stage serial system. His approach consists of sequentially increasing 

safety stock levels by focusing on two-stage service level interactions and extreme strategies 

such as increasing only the upstream or only the downstream safety stock level. For his 

illustrative example increasing only the downstream safety stock is better in terms of cost 

compared to increasing only the upstream safety stock. This is because; the safety stock 

increase at the upstream stage cannot be compensated by holding cost advantages for this 

illustrative example. For the test problems that we present in this section, we obtain opposite 

results. The per-unit holding cost at the most downstream stage (Final Assembly) is 

significant compared to those of upstream stages (see Table 3.4, Section 3.1.3). Hence, 
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increasing safety factors at the upstream stages where the per-unit holding costs are quiet low 

gives significantly better results. This shows that the cost performance of different startegies 

proposed depends greatly on the input data. However, it is not obvious how to fairly compare 

the approaches that we propose with those of Minner (2000) since he is based on a different 

setting.  

 Cycle-Service-Level Deviation in Decentralised Supply Chains 5.2

In this section, we present some issues related to the CSL deviation in decentralised 

systems. In a decentralised system, different autonomous actors control different parts of the 

supply chain.  These actors may have competing and conflicting interests and objectives. This 

raises some specific problems of coordination. The literature on the supply chain 

coordination problem in decentralised systems is large and growing (see, e.g., Cachon, 2003; 

Jemai and Karaesmen, 2007; Hennet and Arda, 2008; Hennet, 2009). Recently, researchers 

showed that the GSM is well suited for decentralised systems. For decentralised systems that 

operate according to the GSM setting, researchers are interested in coordinating the service 

time to be applied between different actors and the price paid by a downstream actor for each 

unit ordered to an upstream actor. For instance, Schoenmeyr (2008) proposes a simple 

contract structure in order to facilitate the relationship between two actors. The proposed 

contract may realign the actors’ incentive structures and enable the supply chain to operate 

according to the globally optimal solution. Similarly, Egri (2012) studies the GSM approach 

in a decentralised supply chain involving a number of autonomous stages and presents 

different mechanisms that facilitate the alignment of conflicting goals in order to achieve the 

globally optimal solution. To the best of our knowledge, how to specify the demand bounds 

at different parts of the supply chain is not discussed in the existing literature. Existing works 

ignore the conflict that may occur due to the incompatible demand bounds used by different 

actors of the supply chain. However, the issue of customer service level deviation presented 

in Section 3.1 of Chapter 3 becomes even more important in decentralised supply chains. 

This is because, in a decentralised supply chain, the downstream actors would probably not 

be informed of the demand bounds applied by the upstream actors. Thus, they would not be 
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able to predict and mitigate the resulting CSL deviation at their most downstream stage. 

Indeed, the safety factors (and hence the demand bounds) to be applied by different actors 

should be included into the bargaining process in order to deal with this issue. This section 

presents a first step in understanding the issue related to customer service level deviation in 

decentralised supply chains. 

We mainly base on the results developed by Schoenmeyr (2008) who shows that 

provided that the actors can agree on the right service time between them, it will be in their 

best interest to operate the supply chain according to the globally optimal safety stock 

placement solution. However, he considers safety factors as exogenously specified 

parameters that reflect the external customer service level of the downstream actor. This 

neglects the CSL deviation that would occur in such systems. Indeed, the CSL deviation 

observed at the downstream actor can be mitigated by using the mitigation approaches 

proposed in Section 5.1. However, if both actors apply a mitigation approach independently, 

the downstream actor may still face the CSL deviation issue. In this setting, we aim at 

investigating the CSL deviation faced by the most downstream actor. Section 5.2.1 discusses 

assumptions used for this analysis while Section 5.2.2 summarises our numerical study. 

5.2.1 Assumptions 

We focus on systems that are controlled by two different actors. We assume that both 

actors apply the GSM to their own parts of the supply chain and mitigate the CSL deviation 

for their own parts. As in Schoenmeyr (2008), we assume that both actors agree with the 

service time which corresponds to the optimal solution that is obtained by considering safety 

factors as exogenously specified parameters and by solving the problem P0 for the whole 

supply chain. Based on this initial solution, we assume that both actors mitigate the CSL 

deviation independently using a mitigation approach. That is, both actors guarantee to ensure 

the CSL required by the external customer of the downstream actor considering their own 

demand bounds. We note that the use of Mitigation Approach I by both actors does not affect 

the service time quoted between them since the safety stock placement solution will not 

change after this mitigation. This makes the assumption of Schoenmeyr (2008) still valid. 
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However, if at least one actor uses Mitigation Approach II and observes that the best safety 

stock placement solution is different after mitigation, they might finally agree on a different 

service time than the service time proposed by Schoenmeyr (2008). Since we base on the 

results presented by Schoenmeyr (2008), we only consider the case where both actors use 

Mitigation Approach I.  

5.2.2 Numerical Analysis 

The purpose of this numerical analysis is to measure the CSL deviation observed at 

the downstream actor when both actors mitigate the CSL deviation for their own parts in the 

supply chain.  

We use the five-stage serial and the five-echelon assembly test problems presented in 

Chapter 3 (Section 3.1.3). We consider that these systems are controlled by two actors. We 

investigate cases when the upstream actor (Actor 1) controls the most upstream 1, 2, 3, or 4 

echelons. We consider that the external customer of the downstream actor (Actor 2) asks for 

80%, 85%, 90%, 95% and 99% service levels which define the target CSL of both actors.  

As in Schoenmeyr (2008) we assume that both actors agree with a safety stock 

placement solution that is equivalent to the optimal solution obtained by solving the problem 

P0. Hence, given this safety stock placement solution and the relevant target service levels, 

we apply Mitigation Approach I within the parts of both actors as presented in Section 5.1.3. 

We then asses the CSL deviation at the most downstream stage of Actor 2 under the resulting 

safety factors and demand bounds.     

Five-Stage Serial System 

This subsection presents the results obtained for the five-stage serial test problems. 

After independently applying Mitigation Approach I for both actors, the effectively observed 

CSL at the demand stage (Stage 5) of Actor 2 is denoted by mit . The effectively observed 

CSL mit  is calculated using (3.3) under the demand bounds applied in the whole system. 

Table 5.7 summarises the relative gaps  /)( mit  that are averaged for different target 

CSL values.  
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For these serial test problems, the CSL deviation at Stage 5 increases when the 

number of stages controlled and the number of demand bounds applied by the upstream actor 

increase. In accordance with the solutions obtained in Section 3.1.4, the worst case is 

observed for increasing stage cost and increasing lead time combinations. The CSL deviation 

observed in these serial test problems is 1.4% on average. 

 

Stage cost Lead time 
Initial/Final 

Solution 

Upstream Actors' Most Downstream 
Stage 

1 2 3 4 

Decreasing 

Decreasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 

Uniform (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 

Uniform 

Decreasing (36,0,0,0,64) 1.84% 1.84% 1.84% 1.84% 

Uniform (20,0,0,0,80) 2.82% 2.82% 2.82% 2.82% 

Increasing (0,0,0,0,100) 0.00% 0.00% 0.00% 0.00% 

Increasing 

Decreasing (36,28,20,0,16) 0.16% 0.40% 0.77% 0.77% 

Uniform (20,20,0,0,60) 2.70% 2.70% 2.70% 2.70% 

Increasing (4,12,0,0,84) 4.07% 5.14% 5.14% 5.14% 

Table 5.7: CSL deviation results for the decentralised serial system 

Real-World Assembly System 

We perform the same analysis for the real-world assembly system presented in 

Section 3.1.3. Table 5.8 summarises the relative gaps for different target CSL values. 

Similarly to what is observed in the serial test problems, the CSL deviation usually increases 

when the number of stages controlled and the number of demand bounds applied by the 

upstream actor increase (the case of 99% CSL target represents the only counterexample). 

For these assembly test problems, the relative gap between the effectively observed and the 

target CSL is 8.1% on average.  

This analysis shows that the CSL deviation may represent an important issue in real-

world decentralised supply chains that operate according to the GSM setting. If each actor 

mitigates the CSL deviation by solely considering their own demand bounds, most 

downstream stage can still face a deviation in its service level. This is due to the non-

consideration of the dependencies between the demand bounds applied at the upstream actor 
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and the effectively observed CSL at the most downstream stage that faces final customer 

demand. However, these results present the case where the mitigation of the CSL deviation 

does not affect the initially agreed service time between the actors. Indeed, the safety factors 

to be applied should be considered while bargaining over the service time to be quoted 

between different actors.        

 

Target 
CSL 

Upstream Actors' Most Downstream 
Echelon 

1 2 3 4 

99% 1.25% 0.93% 0.93% 0.93% 

95% 4.23% 4.24% 4.24% 4.24% 

90% 6.62% 8.58% 8.58% 8.58% 

85% 8.31% 12.91% 12.91% 12.91% 

80% 9.66% 17.19% 17.19% 17.19% 

Table 5.8: CSL deviation results for the decentralised assembly system 

 Conclusion 5.3

In the first part of this chapter, we showed how to mitigate the CSL deviation in the 

GSM setting by adjusting the safety factors applied at different stages of the supply chain. 

We proposed two mitigation approaches and compared their performances in terms of total 

cost and computational time. For a real-world assembly system considered for the numerical 

analysis, the first approach is better than the second one in terms of computational time (30 

seconds vs. 25 minutes) while the second approach provides better solutions in terms of cost 

(8.9% vs. 37.3% cost increase). The mitigation of the CSL deviation increases the total safety 

stock cost and the magnitude of this increase depends greatly on the net replenishment time 

of stages. Hence, a better solution in terms of cost can represent a different safety stock 

placement solution than the one initially obtained by solving the problem P0. Further 

research can be conducted in order to take into account the cost impact of the mitigation 

through the solution procedure of the GSM. In other words, the relevant safety stock 

adjustments can be integrated into the solution procedures proposed for the original GSM 

(e.g., Minner, 2000; Graves and Willems, 2000; Humair and Willems, 2011). This would 
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enable to obtain the optimal safety stock placement solution that minimises the total safety 

stock cost while achieving the target service level at the most downstream stage.  

In the second part of this chapter, we focused on decentralised systems where 

different parts of the supply chain are controlled by different actors. In such systems, even the 

CSL deviation is mitigated for each actor, the most downstream actor may still face a 

deviation in its service level due to the demand bounds applied at its upstream actors. We 

measure the relevant deviation considering five-echelon serial and real-world assembly 

systems controlled by two actors. Results presented for the real-world system show that the 

resulting relative deviation is 8.1% on average. This shows that including the safety factors 

into the bargaining process is important since the CSL deviation may be significant when 

different actors mitigate the CSL deviation independently. However, under the proposed 

setting, different actors might not be able to agree with the service time which is considered 

as the best by Schoenmeyr (2008). Our work represents the first step in understanding the 

complications that may arise in decentralised supply chains. A further step is to propose a 

contract structure that facilitates the relationship between different actors that bargain over 

the safety factors to be applied at different parts of the supply chain.
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GENERAL CONCLUSION AND FUTURE RESEARCH 
DIRECTIONS 

Multi-echelon supply chains consist of several stages associated with procurement, 

manufacturing and transportation processes. For supply chains facing external demand 

uncertainty, the development of computationally tractable approaches for dealing with the 

multi-echelon inventory optimisation problem is a complex task. In this thesis, we developed 

several contributions to this problem using the Guaranteed-Service Model (GSM) approach 

due to the economic, computational and practical advantages of this approach. First of all, we 

conducted a comprehensive literature review which gives a synthesis of the various works 

developed so far. Hence, we identified the gaps in the GSM literature that are being 

addressed in this thesis. For instance, we showed that some specific assumptions of the GSM 

may have a significant impact on customer service levels and safety stock costs. In addition, 

we developed an extension of the GSM that enables to simultaneously optimise the reorder 

intervals and order-up-to levels in general acyclic multi-echelon systems and we proposed an 

optimisation procedure that enables to obtain near optimal solutions with reasonable 

computational time for this model. Finally, we studied the issue of Cycle-Service-Level 

(CSL) deviation under the GSM assumptions and proposed two approaches in order to 

mitigate this deviation. Concerning these mitigation approaches, the second approach is 

better than the first in terms of cost performance while the first one outperforms the second 

one in terms of computational time. We also presented some issues related to the CSL 

deviation in decentralised supply chains. 

In addition to the concluding sections of the previous chapters, several interesting 

directions remain for future consideration. 

This thesis considers the common GSM assumption that indicates that when external 

demand exceeds the pre-specified demand bounds; the excess demand is handled outside the 

normal supply chain, by using some extraordinary measures such as overtime production, 

express expediting and subcontracting. However, we do not explicitly model the impact of 

extraordinary measures on the customer service level and total cost. In the literature, only few 
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contributions are provided concerning the integration of extraordinary measures into the 

GSM. Existing models either lost the computational advantages of the GSM that stems from 

its deterministic structure (Rambau and Schade, 2010) or focus on simple supply chain 

structures such as serial, assembly or two-echelon distribution systems introducing express 

expediting as extraordinary measure to use (Klosterhalfen and Minner, 2010; Li, 2013). 

Further research can be pursued in order to integrate the impact of different extraordinary 

measures into the models that we present in this thesis. Besides, similarly to almost all 

models in the GSM literature, we use the CSL service measure while specifying the demand 

bounds. Extensions of these results to other types of service measures commonly used in 

practice (e.g. fill-rate service measures) seems worthwhile.  

In this thesis, external customer demand is assumed to be stationary. In practice, many 

companies experience non-stationary demand due to short product life cycles, seasonality, 

sales-force incentives etc. The extensions of the GSM to non-stationary demand are 

developed in the literature (see, e.g., Graves and Willems, 2008; Neale and Willems, 2009). 

These results can be used to consider non-stationary demand for the models studied in this 

thesis.  However, as demonstrated by Graves and Willems (2008), constant service times may 

result in sub-optimal solutions for this case. In the literature, a general idea on the cost 

performance of constant service time solutions has not been provided yet. The consideration 

of dynamic service times can also be worthwhile in order to determine better solutions for 

systems facing non-stationary demand and to quantify the sub-optimality of constant service 

time solutions. However, from a practical point of view, a dynamic service time model may 

cause several issues since the safety stock locations will change dynamically rendering the 

model and its implementation more complicated. 

This thesis solely focuses on periodic-review, installation order-up-to policies. Taking 

into consideration the specific environment in which the studied systems operate, other 

inventory control policies could be more appropriate for the considered systems. Besides, it is 

shown in the literature that the standard order-up-to policies are not necessarily optimal in 

terms of cost for guaranteed-service supply chains (Schoenmeyr, 2008). Although the 

determination of an optimal inventory control policy is challenging for general multi-echelon 
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systems, other inventory control policies that perform better than periodic-review order-up-to 

policies (in terms of cost) can be developed following for instance the ideas proposed by 

Schoenmeyr (2008) and Shi and Zhao (2010). 

We limit our attention to serial and assembly systems in Chapter 3 and Chapter 5. The 

extension of results provided in these chapters to distribution and general acyclic structures 

requires the consideration of the stock allocation problem encountered in multi-echelon 

systems operating with periodic-review policies (see, e.g., Jackson, 1988; Graves, 1996; 

Marklund and Rosling, 2012). One can incorporate existing approaches that enable to deal 

with the relevant stock allocation problem in order to extend our results. The problem 

presented in Chapter 4 is modelled for general acyclic systems. Further research can be 

conducted to extend the model proposed to even more complex systems. In the literature 

solution techniques for general cyclic multi-echelon systems have not been provided yet 

despite the requirements in real-world applications, e.g., in chemical and pharmaceutical 

industries. The consideration of cycles in the supply chain system reveals additional 

complexity and represents another challenging future research direction. 
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RESUME ETENDU 

Une chaîne logistique est un système qui intègre plusieurs processus pour transformer 

les matières premières approvisionnées auprès de fournisseurs externes en un produit final à 

livrer à des clients externes. De nombreuses chaînes logistiques peuvent être caractérisées 

comme de larges et complexes systèmes multi-échelons, pouvant être constitués de plusieurs 

milliers d'étages (cf. Willems, 2008). Dans ces systèmes multi-échelons, chaque étage est 

associé à un processus tel que l'approvisionnement d'une matière première, la fabrication d'un 

composant, l’assemblage d'un produit final, son transport à partir d'un centre de distribution 

central vers un entrepôt régional ou d'un entrepôt régional vers un magasin (Graves et 

Willems, 2000). L’un des enjeux majeurs associé au management de ces systèmes est la 

gestion efficace des stocks lorsque la demande est incertaine, les coûts de stockage sont 

importants et les exigences en terme de niveau de service client sont élevées. Cela nécessite 

en particulier de spécifier les niveaux de stocks aux différents étages afin de minimiser le 

coût total du système et de satisfaire les niveaux cibles de service client.  

Dans cette thèse, nous nous concentrons principalement sur les problématiques liées à 

l’optimisation de stocks de sécurité dans les systèmes multi-échelons. Le stock de sécurité est 

considéré comme un levier pour couvrir les incertitudes dans les systèmes de stocks. Dans un 

système de stocks multi-échelons, le niveau de stock de sécurité à chaque étage doit être 

optimisé de manière appropriée afin d'atteindre les niveaux cibles de service client à moindre 

coût. En effet, le niveau de stock de sécurité local associés à chaque étage peut être 

déterminée de façon indépendante en utilisant les modèles de stocks mono-échelon qui ont 

été largement étudiés à ce jour (cf. par ex., Silver et al., 1998; Zipkin, 2000). Cependant, une 

telle approche ne considère que les paramètres associés à l’étage correspondant. Elle 

entrainerait donc des stocks de sécurité redondants en raison de la non-prise en compte des 

interdépendances concernant les coûts et les niveaux de service des étages reliés. L'approche 

de l’optimisation de stocks de sécurité multi-échelons vise à optimiser les stocks de sécurité 

avec une vision globale, en considérant simultanément tous les étages de la chaîne logistique, 

du fournisseur externe au client externe. Bien que l'approche multi-échelons impose des défis 
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de calcul importants, elle donne de meilleurs résultats par rapport à l'approche mono-échelon 

en termes de coût et de niveau de service client. La Figure I illustre les approches mono et 

multi-échelons2. 

 

 
Figure I: (a) Approche mono-échelon, (b) Approche multi-échelons 

Selon Simchi-Levi et Zhao (2012), trois raisons ont contribué à l’essor de l’approche 

d'optimisation de stocks multi-échelons: (1) la disponibilité des données relatives à la 

demande et aux délais de réapprovisionnement, (2) les motivations de l'industrie à utiliser les 

méthodes scientifiques pour la gestion de stocks, (3) les développements récents en 

modélisation et en conception d’algorithmes pour traiter les structures multi-échelons 

générales. Le rapport du benchmark du Groupe Aberdeen (2007) confirme également la 

motivation des entreprises à utiliser les outils d’optimisation de stocks multi-échelons. Selon 

ce rapport, en 2007, les 210 entreprises interrogées placent l'optimisation des stocks au 

premier rang comme domaine d'investissement où l'optimisation des stocks multi-échelons 

représente leur priorité absolue. La mise en œuvre des outils d’optimisation de stocks multi-

échelons peut permettre une amélioration du niveau de service de 3,1% et une diminution du 

cycle de trésorerie de 15% (Aberdeen Group, 2012). 

 
2 Cette figure est inspirée de Klosterhalfen (2010) 
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L'approche d'optimisation de stocks multi-échelons a été largement étudiée dans la 

littérature. Les chercheurs ont proposé le Modèle de Service Stochastique (SSM) et le Modèle 

de Service Garanti (GSM) qui sont introduits, respectivement, par Clark et Scarf (1960) et 

Simpson (1958). Ces deux approches diffèrent en termes d'hypothèses utilisées concernant la 

gestion des variations de la demande et les temps de service. L'approche du SSM se concentre 

principalement sur les systèmes du type série, assemblage ou distribution à deux-échelons. 

Par conséquent, le déploiement du SSM dans l'industrie est relativement limité. Cependant, 

les hypothèses simplificatrices faites dans l'approche du GSM, permettent d'étudier les 

chaînes logistiques de taille réelle.  

L'approche du GSM a suscité un grand intérêt au cours de ces dix dernières années. 

Les extensions académiques du GSM ont rendu cette approche plus réaliste. En parallèle, les 

méthodes de résolution efficaces ont permis de faire face aux systèmes multi-échelon actuels 

de grande taille ayant une structure complexe. Ainsi, l'approche du GSM a permis de réaliser 

des bénéfices importants dans l’industrie. Par exemple, Billington et al. (2004) ont montré 

que les économies réalisées en utilisant l'approche du GSM pour les produits de Hewlett-

Packard tels que les appareils photos numériques et les consommables jets d'encre ont 

dépassé 130 M$. Farasyn et al. (2011)  rapportent que les modèles multi-échelons basés sur 

l'approche du GSM produisent 7% de réduction des stocks en moyenne dans les unités 

commerciales de Procter & Gamble. Wieland et al. (2012) décrivent un projet d'optimisation 

de stocks multi-échelons chez Intel et indiquent que, après sa mise en œuvre, les niveaux de 

stocks ont été réduits de plus de 11% tout en fournissant des niveaux de service supérieurs à 

90% en moyenne. Les avantages pratiques, computationnels et économiques de l’approche du 

GSM sont reconnus à la fois par les scientifiques et par les professionnels. 

Dans cette thèse, nous traitons le problème d’optimisation de stocks de sécurité multi-

échelons en se concentrant particulièrement sur l'approche du GSM. Nous fournissons 

plusieurs contributions dans ce sens. Cette thèse est divisée en 5 chapitres. Après une 

introduction générale, le Chapitre 1 présente les fondamentaux qui forment la base des 

chapitres à venir. Il comprend la terminologie de base et la présentation détaillée des deux 
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modèles principaux, le GSM et le SSM proposés afin de traiter le problème d’optimisation de 

stocks de sécurité multi-échelons.   

Notre première contribution dans cette thèse est de fournir une revue de la littérature 

exhaustive sur l’approche du GSM. Cette revue est présentée dans le Chapitre 2. En effet, les 

littératures appartenant à l’approche du SSM et du GSM ne sont pas au même degré de 

maturité. La littérature sur l'approche du GSM est vaste et contient de nombreux travaux 

réalisés depuis celui de Clark et Scarf (1960). D’excellentes revues de littérature sont 

également présentées dans cette littérature (cf. par ex. Diks et al., 1996; Axsäter, 2003; 

Simchi-Levi et Zhao, 2012). D'autre part, en comparaison avec l'approche du SSM qui est 

largement étudiée dans la littérature, la recherche sur l'approche du GSM a suscité un intérêt 

particulier dans la dernière décennie. Au meilleur de notre connaissance, nous n'avons pas 

relevé de revue de littérature proposant une synthèse des différents travaux réalisés à ce jour. 

Nous présentons une revue exhaustive en classant ces travaux en trois axes: les hypothèses de 

modélisation considérées, les méthodes de résolution développées et les applications 

industrielles/résultats obtenus. Notre revue de littérature nous permet d'identifier certaines 

lacunes dans la littérature du GSM et nous mène à des questions de recherche considérées 

dans cette thèse. Une version préliminaire de ce travail est publiée dans les actes de la 

conférence internationale «14th IFAC Symposium on Information Control Problems in 

Manufacturing, INCOM’12 » (Eruguz et al., 2012). 

De notre revue de littérature, nous constatons que l'impact de certaines hypothèses 

spécifiques du GSM sur le coût total et sur le niveau de service client n’est pas étudié de 

manière détaillée. En particulier, une analyse approfondie est nécessaire pour comprendre 

l'impact des hypothèses telles que la demande bornée, les temps de service garanti et les 

périodes d’approvisionnement en communes. Par conséquent, notre deuxième contribution 

dans cette thèse est de fournir une telle analyse en étudiant l'impact de chaque hypothèse 

séparément. Cette analyse est présentée dans le Chapitre 3. Dans cette étude, nous nous 

concentrons principalement sur les systèmes du type série et assemblage. Pour l'analyse 

numérique de chaque hypothèse, nous considérons les mêmes problèmes de test associés à un 
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système de cinq-échelons en série présentés précédemment par Schoenmeyr (2008) et un 

système d’assemblage réel examiné par Graves et Willems (2003). 

La première hypothèse examinée dans le Chapitre 3 indique que la demande est 

bornée à chaque étage de la chaîne logistique. En pratique, la borne de demande dans un 

étage représente la quantité maximale de demande qui peut être satisfaite à partir des stocks 

de cet étage durant un certain temps de couverture. Dans la littérature, les bornes de demande 

sont généralement spécifiées en utilisant un facteur de sécurité qui se rapporte à un Niveau de 

Service-par-Cycle (CSL) ciblé. Notre analyse montre que le CSL effectivement observé dans 

un étage qui fait face à la demande du client externe serait habituellement inférieur à celui 

ciblé. Sous différents CSL ciblés pour le système du monde réel qu’on considère, l'écart 

relatif est de 25% en moyenne. 

La deuxième hypothèse examinée dans le Chapitre 3 implique que chaque étage 

promet un temps de service garanti à ses clients et offre un niveau de service de 100% pour le 

temps de service proposé. Par conséquent, les commandes en attente ne sont pas autorisées 

entre les étages amont-aval. En effet, le coût total de stocks de sécurité obtenus sous cette 

hypothèse peut être considérablement supérieur à une solution que l’on peut obtenir sans 

cette hypothèse. Pour le système du monde réel considéré dans notre analyse numérique, 

l'hypothèse de temps de service garanti entraîne une augmentation de coûts de stocks de 

sécurité de 42,2 %. 

La troisième hypothèse considérée dans le Chapitre 3 concerne la politique 

d’approvisionnement du GSM. Le GSM de base suppose que chaque étage fonctionne avec 

une politique à recomplétement périodique avec une période d’approvisionnement commune 

pour tous les étages. En pratique, les périodes d’approvisionnement peuvent différer d'un 

étage à l’autre du fait des économies d'échelle et/ou des disponibilités des ressources. Nous 

montrons comment intégrer dans le GSM les périodes d’approvisionnement dépendantes et 

imbriquées (« nested » en anglais). Cela nécessite le développement d'une expression 

appropriée pour les bornes de demande. Notre analyse numérique montre que le GSM de 

base peut entrainer une augmentation significative du coût total de stocks quand les périodes 

d’approvisionnement sont longues. Sous différents profils de période d’approvisionnement 
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considérés dans l'analyse numérique, l'augmentation du coût total de stocks de sécurité a pu 

atteindre 19,1%. 

La première partie de l'analyse réalisée afin de quantifier l'impact des hypothèses du 

GSM (hypothèse de la demande bornée) est publiée dans les actes de la conférence 

internationale «5th International Conference on Modeling, Simulation and Applied 

Optimization, ICMSAO’13 » (Eruguz et al., 2013c). Une version préliminaire de cette étude 

est présentée dans l’école d'été « 11th ISIR Summer School on Research Trends in Inventory 

Management and Modeling » (Eruguz et al., 2013d). Les conséquences liées aux hypothèses 

étudiées démontrent qu'il existe un besoin pour de nouveaux développements des modèles 

concernant l'approche du GSM. 

Dans la littérature du GSM, les modèles existants considèrent les périodes 

d'approvisionnement des étages en tant que données d'entrée du problème d’optimisation de 

stocks de sécurité multi-échelons. Notre troisième contribution dans cette thèse est de fournir 

une extension du GSM en intégrant les coûts d’approvisionnement fixes dans le modèle afin 

d'optimiser les niveaux de récomplétement et les périodes d’approvisionnement 

simultanément. Nous présentons cette contribution dans le Chapitre 4. Dans cette étude, 

nous nous concentrons sur les périodes d’approvisionnement imbriquées et en Puissance de 

Deux (PO2) en raison des avantages pratiques et computationnels des politiques associées 

(cf. par ex., Maxwell and Muckstadt, 1985;  Muckstadt et Roundy, 1993; Yao et Wang, 

2006). Sous une politique de PO2 imbriquée, les périodes de réapprovisionnements sont des 

puissances de deux et la période d’approvisionnement d'un étage ne peut pas être plus grande 

que celles de ses étages en amont. Afin de calculer les bornes de demande sous ces 

conditions, nous nous sommes inspirés de l'expression que nous avons proposée lors de 

l'analyse de l’hypothèse des périodes d'approvisionnement communes dans le Chapitre 3. 

Sous l'existence de ces bornes de demande, nous proposons d'abord un modèle déterministe 

de Programmation Non-Linaire en Nombres Entiers (NLIP) qui détermine à la fois les 

niveaux de recomplétement et les périodes d’approvisionnement PO2 dans les systèmes 

multi-échelons acycliques généraux. Deuxièmement, en définissant des bornes raisonnables 

pour les variables de décision du modèle de NLIP, nous proposons une approche directe 
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améliorée qui réduit le temps de calcul tout en résolvant le modèle de NLIP pour obtenir des 

solutions optimales globales. Troisièmement, nous proposons une Procédure d'Optimisation 

Séquentielle (SOP) pour obtenir des solutions proches de l’optimal avec un temps de calcul 

raisonnable. L'analyse numérique montre que pour un système multi-échelons acyclique 

général avec des paramètres générés aléatoirement, le SOP est en mesure d'obtenir des 

solutions proches de l’optimal avec un écart d'optimalité de 0,46 % en moyenne en quelques 

secondes. Ce travail a été publié dans la revue internationale « International Journal of 

Production Research »  (Eruguz et al., 2014) . 

Notre dernière contribution qui porte sur l'atténuation de l'écart de CSL dans le cadre 

du GSM est présentée dans le Chapitre 5. L’analyse sur l'hypothèse de la demande bornée 

dans le Chapitre 3 montre que le CSL effectivement observé par le client final peut être 

inférieur à celui ayant été ciblé. Dans la première partie de cette étude, nous montrons 

comment réduire l'écart de CSL en ajustant les facteurs de sécurité appliqués à différents 

étages de la chaîne logistique. Nous proposons deux approches d'atténuation et comparons 

leurs performances en termes de coût total et temps de calcul. L'étude numérique réalisée sur 

un système du monde réel montre que la première approche est plus performante que la 

seconde en termes de temps de calcul (30 secondes contre 25 minutes) tandis que la seconde 

approche offre des meilleures solutions en termes de coût (augmentation des coûts  de 8,9% 

contre 37,3%). Dans la deuxième partie de cette étude, nous nous concentrons sur les 

systèmes décentralisés où les différentes parties de la chaîne logistique sont contrôlées par 

des acteurs différents. Dans de tels systèmes, même si l'écart de CSL est atténué par chaque 

acteur, les acteurs les plus en aval peuvent encore faire face à un écart de CSL en raison des 

bornes de demande appliquées chez l'acteur en amont. Nous montrons que l'écart de CSL 

peut être important (8,1% d'écart en moyenne pour le système d'assemblage présenté par 

Willems (2003) et contrôlé par deux acteurs). Une version préliminaire de cette étude est 

acceptée pour publication dans les actes de la conférence internationale « 5th International 

Conference on Industrial Engineering and Systems Management, IESM’13 » (Eruguz et al., 

2013a) et présentée à la conférence internationale « MSOM INFORMS Conference 2013 » 

(Eruguz et al., 2013b). 
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En conclusion, cette thèse contribue au problème d’optimisation de stocks multi-

échelons en se basant sur l’approche du GSM. Plusieurs pistes intéressantes restent à explorer 

ultérieurement telles que l’intégration de l’impact des mesures extraordinaires à utiliser en 

cas de demande en excès, la considération de la demande non-stationnaire, des nouvelles 

politiques de gestion de stocks (suivant par ex. les pistes données par Schoenmeyr, 2008  et 

Shi et Zhao, 2010) et des structures encore plus complexes comme les systèmes généraux 

cycliques. Cette thèse ouvre de futures pistes de recherche à la fois intéressantes et difficiles 

méritant d’être explorer. 
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