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Dr. Céline Hudelot Ecole Centrale Paris, France
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Abstract

This thesis deals with multimodal image annotation in the context of social media.

We seek to take advantage of textual (tags) and visual information in order to

enhance the image annotation performances. However, these tags are often noisy,

overly personalized and only a few of them are related to the semantic visual

content of the image. In addition, when combining prediction scores from different

classifiers learned on different modalities, multimodal image annotation faces their

imperfections (uncertainty, imprecision and incompleteness). Consequently, we

consider that multimodal image annotation is subject to imperfections at two

levels: the representation and the decision. Inspired from the information fusion

theory, we focus in this thesis on defining, identifying and handling imperfection

aspects in order to improve image annotation.

To deal with imperfections at the representation level, we start by identifying

and defining these aspects in the context of multimodal image annotation. Once

these imperfections are well identified and defined, we propose two novel tag-

based signatures to handle such imperfections. To tackle the problem of untagged

images, we propose a novel method based on visually similar neighbors and Belief

theory. Afterwards, we propose a compact semantic signature that results from

the combination of textual and visual modalities.

To cope with imperfections at the decision level, we propose two multimodal frame-

works which consist in the combination of classifiers from different modalities. The

first framework is based on the Stack Generalization scheme where imperfection

aspects are handled implicitly in the learning stage. The second one is based on

classifier fusion in the Belief theory based on the Dempster-Shafer rule to handle

explicitly imperfections that may occur while combining different classifiers. Ex-

tensive experimental evaluations show that our approaches achieve state-of-the-art

results on several standard and challenging datasets.

Keywords: Multimodal Image Annotation, Supervised Image Classification, Tag

Imperfections, Uncertainty, Imprecision, Incompleteness, Belief Theory, Dempster

Shafer.



Résumé

La présente thèse s’intéresse à l’annotation multimodale d’images dans le con-

texte des médias sociaux. Notre objectif est de combiner les modalités visuelles et

textuelles (tags) afin d’améliorer les performances d’annotation d’images. Cepen-

dant, ces tags sont généralement issus d’une indexation personnelle, fournissant

une information imparfaite et partiellement pertinente pour un objectif de de-

scription du contenu sémantique de l’image. En outre, en combinant les scores de

prédiction de différents classifieurs appris sur les différentes modalités, l’annotation

multimodale d’image fait face à leurs imperfections: l’incertitude, l’imprécision et

l’incomplétude. Dans cette thèse, nous considérons que l’annotation multimodale

d’image est soumise à ces imperfections à deux niveaux : niveau représentation et

niveau décision. Inspiré de la théorie de fusion de l’information, nous concentrons

nos efforts dans cette thèse sur la définition, l’identification et la prise en compte

de ces aspects d’imperfections afin d’améliorer l’annotation d’images.

Pour traiter les imperfections au niveau de la représentation, nous commençons

par identifier et définir ses aspects dans le contexte de l’annotation multimodale

d’images. Une fois que ces imperfections sont bien identifiées et définies, nous pro-

posons deux nouvelles signatures basées sur l’information textuelle pour prendre

en compte de telles imperfections. Pour aborder le problème d’incomplétude des

tags, nous proposons une nouvelle méthode basée d’une part sur les images vi-

suellement voisines et sur une combinaison de leur contribution utilisant la théorie

des fonctions de croyance. Ensuite, nous proposons une signature sémantique

compacte qui résulte de la combinaison de modalités textuelle et visuelle.

Pour prendre en compte les imperfections au niveau de la décision, nous pro-

posons deux modèles qui consistent à combiner des classifieurs appris sur les

différentes modalités. Le premier modèle est basé sur l’algorithme de ”Stack

Generalization” où les aspects d’imperfections sont traités implicitement dans

l’étape d’apprentissage. Le deuxième modèle est basé sur la fusion de classifieurs

dans la théorie des fonctions de croyance en utilisant la règle de Dempster-Shafer

pour traiter explicitement les imperfections qui peuvent exister en combinant les

différents classifieurs. Les résultats expérimentaux montrent que les méthodes pro-

posées dépassent l’état de l’art tout en restant moins coûteuses en calculs que les

travaux récents dans le domaine.

Mots Clés: Annotation multimodale d’images, Classification supervisée d’images,

Imperfections, Tags, Incertitude, Imprécision, Incomplétude, Théorie de Croy-

ances, La règle de Dempster-Shafer.
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Chapter 1

Introduction

Recent years have witnessed the transition from a Web where the content was

generated mainly by website owners to a more open and social Web where users are

not only information consumers but also producers [Tapscott and Williams, 2006].

With the rapid development of this new age of the Web, also known as Web 2.0, a

large number of community contributed multimedia contents have been produced

and shared on the Web. Social media repositories (such as Flickr1, YouTube2 and

Picasa3) allow users to upload and share their personal photos or videos. For

example, Flickr reaches more than eight billion photos in 2013, uploaded from

more than 87 million users. In particular, more than 3.5 million new images are

uploaded daily4. An important feature of online social media services is that users

can annotate their photos with their own keywords called tags , without relying

on a controlled vocabulary. This voluntary activity of users who are annotating

resources with tags is called Tagging .

This plethora of multimedia contents raised the imperative need to address the

challenge of their storage, organization and indexing for future search and access.

Image annotation, which represents a way to address this problem, has become

a core research for content-based image indexing and retrieval [Duygulu et al.,

2002; He et al., 2004; Carneiro and Vasconcelos, 2005; Nowak and Huiskes, 2010;

Semenovich and Sowmya, 2010; Moser and Serpico, 2013]. It consists in automati-

cally assigning a set of keywords (also called labels or concepts) from a predefined

vocabulary to describe the semantic visual content of the image. A recent review

about image annotation is proposed in [Zhang et al., 2012a]. The problem of

image annotation can be viewed as a learning problem and in particular a super-

vised classification problem [Carneiro et al., 2007], where semantic concepts are

1http://www.flickr.com/
2http://www.youtube.com/
3http://picasa.google.com/
4http://expandedramblings.com/index.php/resource-how-many-people-use-the-top

-social-media/

1

http://www.flickr.com/
http://www.youtube.com/
http://picasa.google.com/
http://expandedramblings.com/index.php/resource-how-many-people-use-the-top
-social-media/
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(a) (b) 

(c) 

(d) 

(e) 

Figure 1.1: An illustration of the semantic gap problem. Images (a) and (b)
have similar color histograms but different meanings. Images (a) and (c) have

the same meaning but different perceptual contents.

learned from low-level features. In this thesis, we consider the supervised image

classification scheme as the appropriate framework to study the image annotation

problem in the context of social media. The problem of supervised image classi-

fication is posed as a set of classification tasks, where keywords are processed as

classes and a set of classifiers are learned from low-level features to annotate an

input image based on classification prediction scores. The supervised classifica-

tion scheme consists of two steps: image description and concept learning. Images

are commonly described using low-level features extracted from the image such

as the Bag-of-Visual-Words (BOVW) representation [Sivic and Zisserman, 2003;

Csurka et al., 2004]. However, these descriptions do not directly convey human

understandable meaning and an important gap remains between visual descriptors

and the semantic content of images. This problem is known as the semantic gap

defined in [Smeulders et al., 2000] as “the lack of coincidence between the infor-

mation that one can extract from the visual data and the interpretation that the

same data have for an user in a given situation”. In Figure 1.1, we illustrate the

semantic gap problem with a simple example in which the perceptual content is

represented by color histograms. Images (a) and (b) have similar color histograms

but different meanings (flower vs bird). Images (a) and (c) have the same meaning

(flower) but different color histograms. Although the current state-of-the-art in

content-based image annotation is progressing, it has not yet succeeded in bridg-

ing the semantic gap between semantic concepts and low-level visual features that

are extracted from images. In particular, one of the main reasons is that these

work have considered visual descriptors, i.e. the perceptual manifestation of the

semantics, as sufficient to tackle the image annotation through supervised image

classification. It seems that this is not the case.
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As mentioned before, in community contributed collections, images do not appear

alone but associated with various forms of textual descriptions such as tags. Tags

are, as a consequence, a rich additional information to organize and access these

shared multimedia contents. As opposed to pixels which do not convey semantic

interpretations, tags which are directly issued from human language are notably

useful when considering the semantic gap. However, these tags are generally noisy,

overly personalized and only a few of them are really related to the semantic visual

content of the image [Ames and Naaman, 2007]. Thus, the information extracted

from tags is also not sufficient alone to narrow the semantic gap.

In the context of social media, images have, intrinsically, a multimodal nature

(visual and textual). The two modalities are complementary and combining them

to improve image annotation seems an appealing idea, in particular, in order to

bridge the semantic gap. By the following, this will be referred by multimodal

image annotation. Nevertheless, the two identified modalities are heterogeneous

and of different nature. The main difference is related to the information vehicu-

lated by both information sources regarding the image content. We assume that

pixels can only bring information related to the visual content which is not the case

of tag information that can be related to the user attention and tagging motiva-

tion. The main challenge is to take advantages of these two modalities to enhance

multimodal image annotation performances.

An originality of this thesis is to consider the multimodal image annotation prob-

lem as an information fusion process. The latter was first defined in late

80’s [F. E. White, 1987] as “a process dealing with the association, correlation, and

combination of data and information from single and multiple sources to achieve

refined position and identity estimates, and complete and timely assessments of

situations and threats, and their significance”. Later, [Bostrom and al., 2007] re-

viewed definitions proposed in the literature between 1987 and 2007 and proposed a

new definition : “Information fusion is the study of efficient methods for automat-

ically or semi-automatically transforming information from different sources and

different points in time into a representation that provides effective support for hu-

man or automated decision making”. According to the latter definition, we define

multimodal annotation as the process of combining visual and tag modalities in

order to improve image annotation performances. Moreover, it is common to con-

sider that three fusion levels initially occurred in information processing namely,

information/data fusion (low-level), feature fusion (intermediate-level), and

decision fusion (high-level). Data fusion combines several sources of raw data

to produce a new one that is expected to be more informative and synthetic than

inputs. Feature fusion combines features extracted from different sources into an

unique feature vector. Decision fusion uses a set of classifiers to provide a better

and unbiased result. As highlighted by [Bloch, 2001], one important characteristic

of information in fusion is its imperfection. This imperfection is always present

and is the main reason of the fusion process. Thus, a main issue in this domain is
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to define and handle the different types of imperfections (imprecision, uncertainty

and incompleteness) that occur at different levels and to cope with them.

In the case of the multimodal image annotation viewed as a classification problem,

according to the information fusion theory, two levels need to be considered: the

representation level (description of multimodal data) and the decision level

(fusion of classifiers). At the representation level, our sources of information are

data descriptions of both modalities while at the decision level, prediction scores

issued from classifiers are considered as sources of information.

In a perspective of data fusion, considering the fundamental difference in the na-

ture of visual and textual information, it seems that there is no sense to perform

fusion at data level (i.e. raw data). It is worth considering information imperfec-

tions at both representation and decision levels and handling them:

• At the representation level, we argue and demonstrate that only tags related

to the visual content of the image are relevant for image annotation. Others

are considered as imperfect in the perspective of information fusion process at

the representation level. Handling such imperfections seems to be interesting

to reduce the semantic gap, thus enhancing multimodal image annotation

performances. However, there is no exact definition and identification of

noisy tags in the state-of-the-art approaches dealing with multimedia anno-

tation. Consequently, to handle such imperfections some definitions need

to be stated clearly. Once these imperfections are well defined and identi-

fied, we focus on how to take them into account while designing tag-based

signatures at the representation level.

• At the decision level, multimodal image annotation faces the problem of

imperfections introduced by machine learning algorithms, when combining

score predictions from different classifiers learned on different features and

modalities.

1.1 Motivations

Recently, multimodal fusion has received an increasing attention in the multime-

dia analysis community [Kludas and Marchand-Maillet, 2011; Souvannavong et al.,

2005; Marchand-Maillet et al., 2010; Niaz and Mérialdo, 2013]. A recent review

can be found in [Atrey et al., 2010]. In social media collections, some sources

of information, especially tags, offer the possibility to involve semantic evidence

during the analysis of visual content in image collections. Therefore, the com-

bination of these data sources with visual characteristics of images has received

an increasing attention from the research community in multimedia fusion. Many
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Figure 1.2: A snapshot of the social media Website Flickr. A typical image is
associated with comments, tags and ratings (mark as a favorite).

efforts have been devoted in the literature to enhance multimodal image annota-

tion by leveraging user tags [Guillaumin et al., 2010; Kawanabe et al., 2011]. The

joint use of tag-based features with visual descriptions has consistently improved

image annotation performances on challenging datasets compared to visual-only

approaches. However, these approaches seem to be insufficient to narrow the se-

mantic gap between tags and the actual visual content of the images due to the

problem of tag imperfections which was partially considered. These imperfections

are essentially related to the user tagging motivations which are numerous and di-

verse. They are not necessarily intended to precisely describe the image content.

Moreover, tags are essentially personal keywords which impose a soft organiza-

tion on data. As opposed to taxonomies and thesauri that are restricted by rigid

definitions and relationships, tags are continuously influenced by popular trends

and colloquial vocabulary. Moreover, tags are contributed from personal and often

unknown motivations. They are not directed towards specific tasks such as image

annotation and retrieval. Considered as one of the earliest and most popular so-

cial media sharing web sites, Flickr has been intensively studied in recent years,
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especially on tagging characteristics and motivations [Marlow et al., 2006; Golder

and Huberman, 2006; Ames and Naaman, 2007; Sigurbjörnsson and van Zwol,

2008]. We consider Flickr as an example to study social tagging characteristics

for multimodal image annotation in the context of social media. The most salient

characteristic of image collections in Flickr is that they come with a wide vari-

ety of associated data, such as text descriptions, tags, ratings and user comments

as depicted in Figure 1.2. In 2004, Vander Wal5 coined the term Folksonomy to

describe the new structure of users, tags and objects (anything with a URL such

as images, videos, books...). Folksonomy is defined as “the user-created bottom-up

categorical structure development with an emergent thesaurus”.

We assume that user motivations and tag characteristics would have broad im-

plications on the design of multimodal image annotation algorithms. Thus, it is

useful to understand and identify what are the motivations of tagging in social

media networks and which are the characteristics of tags in such collections.

1.1.1 Tagging Motivation

Tagging Motivation which aims at understanding why users tag their photos, has

remained largely elusive until the first studies on this subject were conducted

by [Golder and Huberman, 2006]. The authors investigate the structure of collab-

orative tagging systems of two snapshots taken from the del.icio.us6 system. They

found regularities in user activities, tag frequencies, tag uses and other aspects. In

addition, it has been shown that user motivations strongly affect the level and the

usefulness of tags in tag-based applications [Nov and Ye, 2010] such as retrieving

images in Flickr using tags. [Ames and Naaman, 2007] developed a taxonomy for

the revealed set of user motivations. There are two dimensions along which they

place the different incentives for tagging images. The first dimension, “sociality,”

relates to whether the tag intended usage is by the user who took and uploaded

the photo or by others, including friends/family and strangers. The second dimen-

sion, “function,” refers to the tag’s intended uses. They found that users tagged

their pictures either to facilitate later organization and retrieval or to communicate

some additional context to viewers of the image (whether themselves or others).

A recent study by [Strohmaier et al., 2012] suggests that a distinction between

at least two fundamental types of user motivations for tagging are important,

including Categorization and Description.

5http://vanderwal.net/folksonomy.html
6http://delicious.com

http://vanderwal.net/folksonomy.html
http://delicious.com
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• Categorization : tagging is used as a tool to categorize resources according

to some shared high-level characteristics. The main motivation is to build

and maintain a navigational aid to the resources for later browsing 7.

• Description : tagging is used as a tool to accurately and precisely describe

resources. The main motivation is to produce annotations that are useful

for later searching.

This distinction has been found to be important because, for example, tags as-

signed by describers might be more useful for information retrieval (because these

tags focus on the visual content of resources) as opposed to tags assigned by

categorizers, which might be more useful to capture a rich variety of possible in-

terpretations of a resource (because they focus on user-specific views on resources).

1.1.2 Tag characteristics

Many studies show that tags provided by Flickr users are highly “noisy” in the

sense that only around 50% of them are actually related to the image visual con-

tent [Kennedy et al., 2006; Chua et al., 2009; Sigurbjörnsson and van Zwol, 2008].

An example of images from Flickr website with their associated user tags is pre-

sented in Figure 1.3. Tags which are related to the image visual content are

marked in bold. Obviously, only a few tags are relevant to describe accurately the

image semantic content. Let’s take the example of Figure 1.3(a). If tags such as

“flowers, red, butterfly” are relevant to describe the image content, other tags like

“zebra” is ambiguous since it is polysemous. The tag “zebra” for example is surely

present in Figure 1.3(a) as a pattern but is not related to the common sense of the

word “zebra” as a horse with vivid dark brown-and-white stripes. The rest of tags

are user-specific such as “d80, shieldofexcellence, flickrestrellas, anawesomeshot,

Theunforgettablepictures”. Since there is no restriction or boundary on selecting

words for tagging images, user provided tags are free-style and thus are subject to

many problems such as semantic ambiguity which means that the same tag has

different meanings (for example the tag “zebra” in Figure 1.3(a), “tiger” in Fig-

ure 1.3(d) and “wolf ” in Figure 1.3(b)), tag synonymy which means that different

tags actually have the same meaning such as the tag “flower” in Figure 1.3(b) and

the tag “blossom” in Figure 1.3(d).

Meanwhile, several other tags that can be visually significant, such as “grass,

garden”, are missing in Figure 1.3(a). Many social image search engines are based

on keyword/tag matching. Ideally, all images would have a reasonable number

7Photo browsing consists in the visualization of photos by their owners who upload it which
is different from photo searching which consists in visualizing photos of others as a response for
a query.
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 Tags : 

flowers red butterfly dof zebra 

soe naturesfinest blueribbon 

longwing d80 flickrestrellas 

shieldofexcellence 

anawesomeshot winner  

Theunforgettablepictures 

(a)

 Tags : 

flowers flower garden mexico 

backyard nikon wolf jalisco 

 d200 ajijic chapala 

lovelyflowers bestofpink 

(b)

 Tags : 

 trash train dead 50mm sauvée 

Dof sad bokeh mort Virela  

Clown suicide rail steam  

Triste manuel gore f18 virela9 

Temps troisrivières benoitp 

cadran stillplaying sauvé 

 
(c)

 Tags : 

orange plant flower floral  

petals dof lily blossom tiger  

daylily highkey pollen tigerlily 

shallowdof orangeblossom 

iloveit pistils intensecolor 

18200mm nikond300 floweria  

(d)

Figure 1.3: An example of images from the Flickr website with their associated
user tags. Most of tags are noisy for image annotation and only few tags are

related to image visual content (marked in bold).

of user generated tags, which would then enable other users to find and retrieve

them. Unfortunately, in practice, only a fraction of the uploaded pictures are

tagged with useful tags. This problem is referred as tag incompleteness.

Another serious problem of tags is that nearly 60% of tags are personal tags that

are only used by one user [Sen et al., 2009]. According to [Cantador et al., 2011],

only a set of social tags are related to the semantic visual content of images. Tags

can be categorized into four categories:

• Content-based: Social tags that describe the visual content of the image,

such as the objects and living things that appear in an image. Some examples

of tags belonging to this category are “flower, butterfly” in Figure 1.3(a) and

“clown , rail” in Figure 1.3(c).

• Context-based: Social tags that provide contextual information about the

image, such as the place or the date where and when a photo was taken

and camera characteristics. Examples of this kind of tags are “mexico” in

Figure 1.3(a) and “nikon, d200” in Figure 1.3(b).

• Subjective: Social tags that express opinions and qualities of images. Some

examples of these tags are “shieldofexcellence, Theunforgettablepictures” in

Figure 1.3(a).

• Organizational: Social tags that define personal usages and tasks, or indi-

cate self-references.
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In this thesis, only tags that are included in the content-based category are consid-

ered as useful. Others are considered as noisy and a source of imperfection which

need to be handled in order to enhance multimodal image annotation. The prob-

lem of noisy tags is assumed by [Suchanek et al., 2008]. The authors show that

user-generated tags present more semantic noise than the terms extracted from

Web page content usually used for image indexing and retrieval. Indeed, when tag-

ging, users introduce not only misspellings (“new york, new yok”), use different

synonyms (“car, automobile”), acronyms (“nyc, new york city”) and morphologi-

cal derivations (“play, players, playing”) for a given concept, but also include tags

that express personal assessments (“funny, sad”) [Suchanek et al., 2008].

To summarize, the main observations on using provided user tags to improve image

annotation in social media are:

• Tags are often noisy;

• Tags are often not related to the semantic visual content and they are overly

personalized;

• The choice of words with large variability among different users is sponta-

neous which causes the problem of polysemy and synonymy;

• Meaningful tags are missing;

• Concerning tag frequency, community contributed collections contain a set

of most frequent tags which consists of a set of too generic tags with a high

frequency. It contains also the infrequent tags with incidentally occurring

terms such as misspellings and complex phrases with a low frequency.

1.1.3 Imperfection Aspects

The main challenge in this thesis is to improve multimodal image annotation per-

formances by taking advantages of textual information issued from the tag modal-

ity. Consequently, we focus on how to identify imperfections both at representation

and decision levels and to cope with them.

In the literature, the problem of tag imperfections has been partially considered

in the context of multimodal image annotation, in the sense intended in this the-

sis. However, a wealth of research has been proposed to enhance the quality

of tags in the context of social media for other applications. The existing work

mainly focus on the following two tasks: (a) tag ranking and relevance, which aims

at ranking and differentiating tags associated with images with various levels of

relevance [Liu et al., 2009a; Li et al., 2009a; Sun and Bhowmick, 2009]; (b) tag re-

finement and suggestion with the purpose to refine the unreliable human-provided
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tags by dropping the inappropriate tags and adding the missing ones [Jin et al.,

2005; Weinberger et al., 2008; Xu et al., 2009].

Most of the state-of-the-art approaches address the problem of imperfections only

through the notion of relevancy or tag ranking which is not sufficient. In particular,

these approaches have not been interested in the different nature of imperfections.

Based on such noisy and incomplete tags, existing approaches exhibit lower results

than expected. Thus handling tag imperfections seems to be interesting and crucial

to improve tag ranking and suggestion performances. The tag incompleteness issue

in social media tagging is almost well identified in the literature [Liu et al., 2009b;

Tang et al., 2009; Wang et al., 2010a]. Incomplete tags are defined as tags that

describe the semantic visual content of the image but are missing in initial user

tag list. However, there is no precise identification and definition of noisy tags. To

handle such imperfections, an original aspect of our work is to identify and define

clearly the different aspects of imperfections.

Once these imperfections are well identified and defined, we focus on how to han-

dle them in order to build robust tag-based and multimodal signature. The next

challenge is how to combine both tag and visual modalities in order to enhance

multimodal image annotation performances. Since we formulate the problem of

image annotation as a supervised classification problem, the fusion process, at the

decision level, can be viewed as a classifier fusion problem: the predictions of the

class label of images from the different classifiers are considered as information

sources to be combined to make a final decision. Combining various sources of

information (image and tags) for multimodal image annotation based on classifier

combination allows on the fly integration of classification modules, specific to a sin-

gle modality, in a classification process. These modular and extensible approaches

do not require that a single method copes with every eventuality, but combine

existing specialized methods to overcome their weaknesses. In the literature, the

use of multiple classifiers trained on different modalities (tags and image) usually

leads to better image annotation performances, due to the complementarity of

the classification models [Escalante et al., 2008; Wang et al., 2009a; Xioufis et al.,

2011]. However, most of the state-of-the-art approaches do not take into account

imperfection aspects despite that they represent an important characteristic of

information in fusion process [Bloch, 2001].

Imperfection aspects have been studied by [Bloch, 2003] who defined some of their

types in the field of data and sensor fusion as follows:

• Uncertainty is related to the truth of some information, characterizing its

adequacy to reality [Dubois and Prade, 1988]. It refers to the nature of the

considered object, to its quality, or to its occurrence.
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• Imprecision concerns the content of information and describes a quantita-

tive defect of knowledge or measure [Dubois and Prade, 1988]. It concerns

the lack of precision in quantity.

• Incompleteness of information issued from each source is one of the reason

that motivated the fusion. Information provided by a source is generally

partial, and gives only one point of view or one aspect of the observed phe-

nomenon.

This thesis is motivated by the assumption that taking into account, explicitly,

imperfection aspects both at the representation and the decision levels in the

multimodal image annotation process should improve the performance of the an-

notation. In fact, machine learning is inseparably connected with uncertainty.

To begin with, data presented to learning algorithms is imprecise, incomplete or

noisy most of the time. It is especially the case of tags in social media as detailed

before. Moreover, the generalization beyond that data, the process of induction,

is still afflicted with uncertainty. Another form of imperfections is the incom-

pleteness of data. This is currently an issue faced in social media where a large

number of images is untagged. One primary concern of classifier learning is predic-

tion accuracy. Handling incomplete data (images without tags) is an important

issue for classifier learning since incomplete data in either the training data or

test data may not only impact interpretations of the data or the models created

from the data but may also affect the prediction accuracy of learned classifiers.

Regarding imprecision, learning a classifier on uncertain and incomplete data

leads to a decision function which is imprecise to decide on the real statement of

an object (it belongs to a certain class or not). Unlike most of the state-of-the

art approaches, the originality of the contributions in this thesis is to take into

account these imperfections at both the representation and the decision levels.

To sum up, multimodal image annotation, which consists in assigning automati-

cally keywords to describe the image semantic content by combining both tag and

visual modalities, is a very promising solution for social media collection indexing.

Nevertheless, most of existing state-of-the-art approaches are still insufficient due

to the following problems:

• Tag imperfections: Tags are often noisy, overly personalized and only a

few of them are related to the semantic visual content of the image. In

fact, since tags are contributed from personal, often unknown motivations

they are not directed towards specific tasks such as image annotation. As

it is impractical for general users to annotate comprehensively their images,

many potentially useful tags may be missed. Therefore, the user-provided

tags are imprecise, uncertain, and incomplete for describing the semantic

visual content of the image.
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• Semantic gap problem: In community contributed collections, a multime-

dia document is described with two modalities (tags and image) which are

heterogeneous and complementary. Consequently, multimodal image anno-

tation faces two views of the semantic gap problem. On one hand, the well-

known semantic gap between low-level features and high concepts. On the

other hand, the gap between the information extracted from user-provided

tags and annotation concepts.

• Imperfections are introduced by machine learning algorithms at the deci-

sion level. When combining score predictions from different classifiers learned

on different features and modalities, multimodal fusion faces the problem of

their imperfections.

1.2 Goals

In this dissertation, our objective is to make advances in the field of multimodal

image annotation by taking advantages of textual and visual information at the

same time. Specifically, we address the following issues:

• Fusing mono-media in order to reduce imperfection aspects (uncertainty,

imprecision and incompleteness): we are interested in judging the importance

of document description and the potential complementarity of descriptors

that are extracted from different modalities.

• Characterizing the uncertainty and imprecision on data (tags) as well as

its incompleteness in order to reduce the semantic gap between extracted

information and annotation concepts.

• Proposing models for multimedia fusion that exploit highly heterogeneous

data in order to enrich the multimedia document description and thus en-

hance the performance of image annotation.

• Taking into account the available information to relate the documents at a

semantic level: propose a fusion model that infers the semantic properties

of a document using different modalities.

• Designing scalable methods: it is important to describe a multimedia docu-

ment as compactly as possible and to develop efficient indexing strategies.
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1.3 Contributions

Inspired from the information fusion theory, the originality of this thesis is to de-

fine, identify and handle imperfection aspects in order to improve image annotation

performances. In the context of social media, we consider that image annotation

is subject to imperfections at two levels: the Representation and the Decision

levels. Thus, we define multimodal image annotation as “the process of combin-

ing information from several modalities having different confidence levels while

handling uncertainty, imprecision and incompleteness aspects at repre-

sentation and decision levels; to obtain a consistent description and improve

the accuracy of image annotation.” Based on this definition, our contributions are

the following:

1.3.1 Identifying tag imperfections at the representation

level

Our first contribution deals with the definition of imperfection aspects at the repre-

sentation level. First of all in Chapter 2, we present a survey of the state-of-the-art

approaches that identify these imperfections in the context of multimodal image

annotation and other related applications such as tag ranking and suggestion. In

the context of image annotation, we identify and define clearly three kinds of

imperfections: Uncertainty, Imprecision and Incompleteness in Chapter 3-

Section 3.2.

1.3.2 Handling imperfections at the representation level

Once these aspects are well identified and defined, we propose in Chapter 3, two

novel models to handle such imperfections for tag-based image annotation. Both

models are extensions of the Bag-of-Words (BOW) model [Salton and McGill,

1983]. In order to build robust BOW based tag-signatures, we rely on the locality-

constrained coding method [Liu et al., 2011b] that has proved to be effective for

visual features when paired with max-pooling aggregation. Extensive experimental

evaluation on five challenging datasets [Chua et al., 2009; Everingham et al., 2010;

Nowak and Huiskes, 2010; Nowak et al., 2011; Thomee and Popescu, 2012], shows

that the first model outperforms the state-of-the-art methods on three out of five

datasets and the second proposed model outperforms the state-of-the-art methods

on the five considered datasets on a tag-based image annotation task. Both models

handle a part of imperfection aspects of tags. This contribution has been published

in [Znaidia et al., 2012d, 2013b].
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In a second contribution presented in Chapter 4, we address the problem of tag

incompleteness. We distinguish two types of incompleteness: partial and full.

Partial incompleteness is the case where the image has some tags and others

are missing while full incompleteness represents the case where the image has no

tag. The former has been considered in the above models, thus in this second

contribution, we focus on the latter type of incompleteness. We propose a novel

method named Tag Completion based on similarly visual neighbors and Belief

theory [Shafer, 1976] to handle full tag incompleteness. Hence, this model supports

a scheme to tackle with imprecision and uncertainty that are inherent to tag

information in a social media context. Image annotation is evaluated on two well

known datasets [Everingham et al., 2010; Nowak et al., 2011], on which we obtain

similar or better results than the state-of-the-art. For tag suggestion, we manually

annotated 241 queries to propose a new benchmark to the multimedia community.

As well, we obtain competitive results on this task. This contribution has been

published in [Znaidia et al., 2013a].

In a third contribution presented in Chapter 5, we propose a more integrated and

compact semantic signature of multimedia documents, called Bag-of-Multimedia-

Words (BOMW), than the BOVW and the Bag-of-Tag-Words (BOTW), that re-

sults from a combination of textual and visual information. It is based on multime-

dia codewords that allow the cross-coding of textual tag-words over visual-words

extracted from a document. This cross-coding is used to design BOMW signa-

tures. We exploit the recent advances in BOVW design methods [Yu et al., 2009;

Boureau et al., 2010; Wang et al., 2010b; Liu et al., 2011b] in order to provide

discriminative BOMW vectors suited to multimodal document classification with

efficient linear classifiers. Experiments have been conducted on two well-known

challenging benchmarks [Everingham et al., 2010; Thomee and Popescu, 2012].

Obtained results show the competitive performances of the BOMW, ensuring a

trade-off between classification accuracy and computation cost. This work has

been published in [Znaidia et al., 2012c].

1.3.3 Handling imperfections at the decision level

To deal with imperfections at the decision level, we propose two approaches. In

a first contribution presented in Chapter 6, we propose a multimodal framework

for semantic image classification which consists in the combination of the BOVW

representation and the Local Soft Tag Coding (LSTC) model based on the Stack

Generalization algorithm [Wolpert, 1992]. This scheme mainly includes two stages:

a training stage and a testing stage. The training dataset is split into training and

validation sets. The training stage consists in training classifiers through a learning

algorithm on the training set and in evaluating it on the validation set. The process

is repeated using cross-validation procedure. The output prediction scores from
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different classifiers on validation sets are concatenated and used as input features

to learn a new classifier. Extensive experimental evaluation on four challenging

datasets [Chua et al., 2009; Everingham et al., 2010; Nowak and Huiskes, 2010;

Nowak et al., 2011; Thomee and Popescu, 2012] shows that our framework achieves

comparable and better results compared to more sophisticated state-of-the-art

approaches as summarized in Table 1.1. This contribution has been published

in [Znaidia et al., 2012d].

In a second contribution presented in Chapter 7, we propose a multimodal frame-

work for image classification based on classifier combination using the Dempster-

Shafer theory [Shafer, 1976]. It enables to handle the uncertainty and the conflict

that can exist between different classifiers and to assess the discrepancy between

them. First, we convert the classifier output probabilities into consonant mass

functions using the inverse pignistic transform [Dubois et al., 2001]. Secondly,

these mass functions are combined using the Dempster’s rule [Shafer, 1976]. Ex-

perimental results on two challenging datasets [Nowak and Huiskes, 2010; Nowak

et al., 2011] show the effectiveness of the proposed framework. This work has been

published in [Znaidia et al., 2012a].

1.4 Organization of the Dissertation

This dissertation is organized as follows.

In Chapter 2, we present a thorough survey on relevant research topics on image

annotation in the context of social media. The covered topics include multimodal

image annotation and the handling of tag imperfections in social media tasks.

Finally, we present an overview of the datasets of the state-of-the-art, created

within evaluation campaigns, and used to evaluate models proposed in this thesis.

Table 1.1: Comparison of our results, based on the proposed multimodal
framework based on Stack Generalization, to the best state-of-the-art classifi-

cation performances in terms of mAP.

Dataset Approach Textual Visual Multimodal
PASCAL VOC’07 [Guillaumin et al., 2010] 53.1 43.3 66.7

Our method 52.1 51.8 68.3
ImageClef’11 [Zhang et al., 2012b] 37.4 34.7 45.3

Our method 31.2 38.0 44.8
ImageClef’12 [Liu et al., 2012] 34.8 33.3 43.6

Our method 29.4 34.1 43.1
NUS-WIDE [Gao et al., 2010] 26.12 18.89 29.88

Our method 42.0 18.81 49.5
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In Chapter 3, we identify and define tag imperfections in the context of social me-

dia. Thereafter, we propose two tag-based signatures for image annotation. Both

proposed approaches deal with tag imperfections: uncertainty, imprecision and

incompleteness at the representation level. In these approaches only the textual

information issued from the tag modality is used.

In Chapter 4, we address the problem of tag incompleteness. We are interested

in suggesting tags for untagged images. We propose a novel method named Tag

Completion based on similar visual neighbors and Belief theory [Shafer, 1976] to

solve this problem introduced in Section 3.2. Based on Belief theory, this model

supports a scheme to tackle with imprecision and uncertainty that are inherent

to tag information in a social media context. In this approach, only the tag

modality is used for tag completion. However, the visual information is used only

for searching for similarly visual neighbors.

In Chapter 5, we focus on the combination of both visual and tag modalities into

an unique and compact representation that describes well a multimedia document.

We propose a more integrated and compact semantic signature for multimedia

documents, that results from a combination of textual and visual information in

a fusion scheme where image and tag modalities are combined at feature level

(representation). It is based on multimedia codewords that allow the cross-coding

of textual tag-words over visual-words extracted from a document. This cross-

coding is used to design BOMW signatures.

To deal with imperfections at the decision level, we propose, in Chapter 6, a mul-

timodal framework for semantic image classification which consists in combining

visual information and tag-based signature (presented in Chapter 3) based on the

Stack Generalization algorithm [Wolpert, 1992]. The Stack Generalization scheme

deals implicitly with imperfections that exist at the decision level.

In Chapter 7, we propose a multimodal framework for image classification based

on classifier combination in the Dempster-Shafer theory [Shafer, 1976]. It enables

to handle the uncertainty and the conflict that can exist between different classi-

fiers and to assess the discrepancy between them. This combination operates at

decision level and permits to handle explicitly imperfection aspects based on the

Belief theory formalism.

Finally, this dissertation is concluded in Chapter 8 with a recall on our contri-

butions and a discussion on the directions that can be inspired by the presented

research topics.
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2.1 Introduction

In this chapter, we review some of the most indicative work in the literature of

multimodal image annotation in the context of social media. (i.e. we consider two

modalities: a visual modality and a textual modality which consists of a set of

tags). First, we propose a comprehensive study of the state-of-the-art approaches

on multimodal image annotation focusing at first on the representation of differ-

ent modalities and secondly on the strategy of fusion used to combine these two

modalities. Afterward, we are interested in the handling imperfection aspects both

at the representation level for the textual information and at the decision level.

Since, we are interested in classifier combination to achieve the multimodal image

annotation task, we review theories that are used in the literature to deal with

such imperfections at decision level aiming at highlighting the weaknesses of the

existing theories.

The rest of this chapter is organized as follows. We start by a formalization of the

problem of image annotation in the context of social media, in Section 2.2. In Sec-

tion 2.3, we are interested in the state-of-the-art of multimodal-based approaches

for image annotation. We present a review of the tag-based features used in the

state-of-the-art approaches. We focus on fusion strategies used to combine both

visual and tag modalities. We show that most of the state-of-the-art approaches

in multimodal image annotation do not take into account imperfections neither at

the representation nor at the decision levels. Thus, Section 2.4 reviews the most

representative work that handle tag imperfections in other social media applica-

tions such as tag ranking and tag suggestion at representation level. In Section 2.5,

we present theories that exist for reasoning with these imperfections at decision

level. Finally, datasets used to evaluate the effectiveness and the robustness of the

proposed approaches are presented in Section 2.6.

2.2 The Problem of Multimodal Image Annota-

tion

In this dissertation, we are interested in the problem of multimodal image anno-

tation in the context of social media where both visual and textual modalities are

combined. Image annotation consists in assigning a set of keywords (called also

labels or concepts) to an unknown image from a predefined vocabulary in order

to describe its visual content from a high level perspective [Duygulu et al., 2002;

He et al., 2004; Carneiro and Vasconcelos, 2005; Nowak and Huiskes, 2010; Se-

menovich and Sowmya, 2010; Zhang et al., 2012a; Moser and Serpico, 2013]. We

consider the supervised image classification scheme as the appropriate framework
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to tackle the image annotation problem in the context of social media. The su-

pervised classification scheme is based on two steps: modality representation and

concept learning.

Terminology. For a sake of clarity, we define in this section the terms used in

the following and their meaning. Thereby, we refer to:

• Label or Concept : is a word used to annotate images. In the rest of this

dissertation, label and concepts are interchangeably used. These labels are

added by experts (annotators) from a predefined and controlled vocabulary

to describe the semantics of image content. Labels or concepts reflect the

actual visual content of the image.

• Tags : is a word freely associated to the image by users in social media

context without relying on a controlled vocabulary. Some labels can be

present among the tags but this is not mandatory;

• Visual features : is the set of low-level descriptors used to describe the visual

content of images;

• Textual features : is the set of high-level descriptors extracted from the tex-

tual information (tags);

• Signature: is a vector of features extracted from the visual or textual infor-

mation to represent their content;

• Codebook : is a set of predefined words extracted from the dataset and used

to extract the image signature (visual or textual). In this thesis, codebook

and dictionary are interchangeably used.

Problem Formalization

Given a multimodal dataset composed of two subsets: a training set L and a

testing set T , where:

• L =
{

(

(I1,T1),y1

)

, ...,
(

(IN ,TN),yN

)

}

,

• T =
{

(IN+1,TN+1), ..., (IN ′ ,TN ′)
}

,

• I =
{

I1, ..., IN

}

is the set of training images,

• I ′ =
{

IN+1, ..., IN ′

}

is the set of testing images,

• Ti = {t1i, t2i, ...tli} is the set of tags associated with the image Ii which can

be empty for untagged images,
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• W t =
(

wt
1, ...,w

t
M

)

is a textual codebook,

• Wv =
(

wv
1, ...,w

v
M ′

)

is a visual codebook learned from I,

• Xt
i =

(

xt
1, ...,x

t
M

)

is a textual signature of the image Ii of size M ,

• Xv
i =

(

xv
1, ...,x

v
M ′

)

is a visual signature of the image Ii of size M
′,

• C =< C1, C2, ..., Ck > is the set of labels used to annotate images, where k

is the number of labels,

• yi =
[

y1i , ..., y
k
i

]

, yji ∈ {−1,+1} is the set of labels of the image Ii, y
j
i = 1 if

the image Ii is annotated with the label Cj, otherwise y
j
i = −1 .

• Y = {−1,+1}k is the set of all possible label sets.

Our goal is to build a multimodal classifier with a decision function defined as

follows:
f : T → Y

f(Xt
l ,X

v
l ) = ŷl

(2.1)

f associates a label set ŷl to each unseen image Il from the test dataset T by

combining both textual and visual information as illustrated in Figure 2.1.

2.3 Multimodal Image Annotation

In this section, we are interested in the state-of-the-art of Multimodal-based ap-

proaches for image annotation in the context of social media. Many approaches

have been proposed to solve the problem of image annotation. As depicted in Fig-

ure 2.2, these approaches can be categorized into three groups: Content-based

where only visual information is used, Tag-based which exploit the tag modality

alone and Multimodal-based approaches that leverage both modalities to im-

prove image annotation performances. We focus in this chapter on Multimodal-

based approaches.

First, we briefly review the monomedia descriptions: textual and visual. For

the visual description, the BOVW approach [Sivic and Zisserman, 2003; Csurka

et al., 2004] has established itself, in the last ten years, as the state-of-the-art

representation for visual content description in image and video classification.

Thus, in this thesis, in Section 2.3.1 we focus on the BOVW representation and

their recent advances.

For the textual description, we identify two types of relations that are exploited

to generate tag-based signatures. The first one, named Tag-to-Concept relation,

relies on semantic relations between image tags and annotation concepts. The
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Prediction Multimodal Classifier 

Predicted Labels 

Figure 2.1: Illustration of the problem of multimodal image annotation for-
mulated as a set of binary classification tasks. For example, to learn the concept
“cat”, we use a training dataset comprising of both positive (in green box) and
negative (in red box) examples to learn a classifier that predicts the presence
or the absence of this concept in each image of the testing dataset (images in

black box).

second one, named Tag-to-Tag relation, is based on semantic relations between

image tags and a predefined dictionary of tags. These textual descriptions are

reviewed in Section 2.3.2.

Finally, as far as multimodal image annotation approaches are concerned, they

require a strategy to combine information from multiple modalities and features.

Accordingly, in the literature, there have been many approaches covering text/im-

age information fusion. Most of techniques developed in that context fall in three

different categories: early fusion, late fusion and transmedia fusion as suggested

by [Clinchant et al., 2011].

• Early fusion consists in combining both visual and textual features in a

joint representation at the feature level.

• Late fusion consists in combining decisions (predictions) from different clas-

sifiers at the decision level.

• Transmedia fusion consists in using diffusion processes that act as a trans-

media pseudo-relevance mechanisms. The key idea is to use one modali-

ty/feature to gather relevant documents and then to switch to the other

modality and aggregate their features.
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Image Annotation  

In Social Media 

Tag-based 

Approaches 

Multimodal-based 

Approaches 

Content-based 

Approaches 

Early Fusion 

Approaches 

Transmedia Fusion 

Approaches 

Late Fusion 

Approaches 

Figure 2.2: Categorization of image annotation approaches in the context of
social media.

These approaches are presented and discussed in Section 2.3.3.

2.3.1 Visual Description: Bag-Of-Visual-Words

The BOVW approach [Sivic and Zisserman, 2003; Csurka et al., 2004] has now

established itself as one of the state-of-the-art representation for visual content

description. It is probably the most popular and effective image representation in

supervised classification framework in the recent literature [Huang et al., 2013]. It

has been inspired by the success of the BOW model for text categorization [Salton

and McGill, 1983], that represents a textual document by a vector of the occur-

rences of each word in the document. Extended to image description, the usual

BOVW design pipeline consists in learning a codebook from a large collection of

local features extracted from a training dataset, then creating the global features

of visual signature through coding, pooling and spatial layout. Recent work ad-

dressing this problem [Lazebnik et al., 2006; Yang et al., 2009; Boureau et al., 2010;

Wang et al., 2010b; Liu et al., 2011b] proved the importance of tuning each of these

steps to improve scene classification and object recognition accuracy on different

benchmarks. Several extensions to the basic Bag-of-Visual-Words (BOVW) repre-

sentation have been proposed including the Fisher Vector [Perronnin and Dance,

2007], the Super Vector [Zhou et al., 2010] and the Vector of Locally Aggregated

Descriptors [Jégou et al., 2012].

The first step in the BOVW scheme is the visual codebook learning. A visual

codebook Wv, as introduced in Section 2.2, is learned on a training subset of
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Figure 2.3: The flowchart of the BOVW generation scheme. (1) Codebook
learning, and then given an image, its visual features are built in two steps (2)

local features coding and (3) pooling.

local features extracted from the learning dataset. An example of these local

features is dense SIFT [Lowe, 2004] descriptors. We denote by X the set of SIFT

descriptors extracted from a given image in a d-dimensional feature space, i.e.

X =
{

x1, ...,xP

}

∈ ℜd×P where P represents the number of SIFT descriptors

extracted from the image.

Once the visual codebook is learned, given an image, its visual features are built

in two steps (i) local feature coding and (ii) pooling, as illustrated in Figure 2.3

and Figure 2.4 . In the following, we review relevant work for each one of these

steps.

2.3.1.1 Codebook Learning

The codebook, which entries are named codewords, is a collection of basic patterns

used to reconstruct the input local features. A simple way to generate the code-

book is to use clustering based methods such as K-means [Sivic and Zisserman,

2003; Csurka et al., 2004] or GMM (Gaussian Mixture Models) [Dork and Schmid,

2005]. [Jurie and Triggs, 2005] propose a scalable acceptance-radius method for
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Figure 2.4: Illustration of the coding and pooling steps.

clustering where a local feature is assigned to the center that lies within a fixed

radius. An alternative is sparse coding which has consistently yielded better re-

sults on some object recognition benchmarks [Yang et al., 2009; Boureau et al.,

2010]. Even if improving the codebook generation might seem central in BOVW

approaches, recent studies have shown that it turns out to be less critical than

the next stages: coding, pooling and spatial layout. For instance, [Coates and

Ng, 2011] empirically observed that randomly sampled local features yield to a

perfectly usable codebook for object recognition challenges.

2.3.1.2 Coding

Different methods have been investigated in the literature in order to map local

features to codes over the codebook. In the original BOVW model, hard assign-

ment [Csurka et al., 2004] is adopted to describe an image with a frequency of

codewords. It is the simplest coding scheme which assigns a local feature xi to the

closest codeword, i.e.,

zi,j =







1 if j = argmin
j∈{1,...,M ′}

||xi −wv
j ||

2
2 ,

0 otherwise,
(2.2)

with zi = {zi,1, ..., zi,M ′} the code of size M ′ related to the local descriptor xi and

||.||2 represents the l2-norm.

However, this coding often introduces large quantization errors. To alleviate this

drawback, soft coding has been proposed in [van Gemert et al., 2009], assigning

a local feature to codewords depending on the distance of a descriptor to the jth

codeword, i.e.,

zi,j =
exp (−β||xi −wv

j ||
2
2)

∑M ′

k=1 exp (−β||xi −wv
k||

2
2)
, (2.3)
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with β the assignment softness parameter. Even if soft coding has reduced quan-

tization errors, there is no proof that the use of the entire codebook is optimal.

Yet another alternative to soft assignment is sparse coding [Yang et al., 2009]. It

is generally performed by solving the l1-norm regularized approximation problem:

zi = argmin
z∈ℜM′

||xi − zWv||22 + λ||z||1 , (2.4)

with λ the trade-off parameter between the reconstruction error and the sparsity

of the coding and ||.||1 represents the l1-norm. Even if sparse coding has improved

state-of-the-art classification rates, it remains computationally demanding because

of the optimization procedure. Additionally, recent studies [Wang et al., 2010b;

Gao et al., 2011] show its non-consistency to encode similar descriptors since it

might select different basis for similar descriptors to favor sparsity.

Unlike sparsity, locality, which is a property introduced in [Yu et al., 2009] and

investigated in several recent work [Wang et al., 2010b; Liu et al., 2011b; Huang

et al., 2011], leads to reliable sparse codes while being computationally fast. Un-

der the assumption that descriptors approximately reside on a lower dimensional

manifold in an ambient descriptor space, the use of Euclidean distances for the

assignment of descriptors to codewords is only meaningful within a local region

of the feature space. Hence, local bases are selected to perform the coding. For

efficient implementations, authors of [Wang et al., 2010b] propose to approximate

the original formulation by solving a linear system derived from their proposed

criteria:

zi = argmin
z∈ℜM′

||xi − zWv||22 + λ||di ⊙ z||22 ,

s.t. 1Tzi = 1 , (2.5)

with di = exp(dist(xi,Wv)
σ

) a vector of Euclidean distances computed between xi

and the basis vectors, i.e., dist(xi,W
v) = [dist(xi,w

v
1), ..., dist(xi,w

v
M ′)]T and σ a

parameter controlling the weight decay speed of the locality constraint. In prac-

tice, to solve the problem rapidly, the basis vectors are the L-nearest-codewords

of the local feature.

In [Liu et al., 2011b], authors propose another efficient implementation of

the locality-constrained coding by restricting the probabilistic soft coding ap-

proach (2.3) to only the L-nearest-codewords to a local feature, i.e.,

zi,j =







exp (−β||xi−w
v
j ||

2

2
)

∑L
k=1

exp (−β||xi−wv
k
||2
2
)

if wv
j ∈ NL(xi) ,

0 otherwise,
(2.6)

where NL(xi) denotes the L-nearest neighborhood of xi, under the Euclidean dis-

tance for instance. Recently, [Shabou and Le Borgne, 2012] propose a coding
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scheme that takes into account the local spatial context of an image into the usual

coding strategies proposed in the state-of-the-art. For this purpose, given an im-

age, dense local features are extracted and structured in a lattice. The latter is

endowed with a neighborhood system and pairwise interactions. An objective func-

tion is proposed to encode local features, which preserves locality constraints both

in the feature space and the spatial domain of the image. An appropriate efficient

optimization algorithm is provided, inspired from the graph-cut framework [Zabih

and Kolmogorov, 2004].

2.3.1.3 Pooling

Given the coding coefficients of all local features within one image, a pooling oper-

ation has to be performed to obtain a compact visual signature Xv
k =

(

xv
1, ...,x

v
M ′

)

for an image Ik, while preserving important information and discarding irrelevant

details. This operation can be formulated as the following:

xv
j = g

(

{

zi,j ; i ∈ {1, ..., P}
}

)

; ∀j ∈ {1, ...,M ′} , (2.7)

with g a pooling function such as the average, the sum or the maximum functions.

P represents the number of SIFT descriptors extracted from the image and M ′

denotes the size of the visual codebook. The sum-pooling is the sum of the coding

coefficients obtained on local features while the average-pooling is its normalized

form. Both pooling functions have been usually considered in the original BOW

model. Recent work [Boureau et al., 2010; Liu et al., 2011b] show, both theo-

retically and empirically, that max-pooling is best suited to the recognition task.

Max-pooling is obtained by selecting the maximum coding coefficient (or codeword

response) over local features for each codeword. Recently, [Avila et al., 2013] pro-

pose a new pooling scheme called BossaNova which enhances image representation

by keeping an histogram of distances between the local descriptors of the image

and those in the codebook, preserving thus important information about the dis-

tribution of the local descriptors around each codeword. Instead of compacting

all information pertaining to a codeword into a single scalar, the proposed pooling

scheme produces a distance distribution.

2.3.2 Textual Description

In this section, we review the state-of-the-art approaches that have been proposed

for image annotation based on the tag modality. Two types of relations are ex-

ploited to generate tag-based features. The first category, called Tag-to-Concept

approaches, relies on a semantic relation between image tags and annotation con-

cepts. The second category, called Tag-to-Tag approaches, is based on a semantic
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relation between image tags and a predefined dictionary of tags. A comparison

of these approaches is presented in Table 2.1. Let’s note that other tag represen-

tations which deal with tag imperfections in other social applications such as tag

ranking and tag suggestion, are presented in Section 2.4.

2.3.2.1 Tag-to-Concept Approaches

These approaches propose to exploit a semantic relation between tags and an-

notation concepts. Most of the time, the semantic relation is defined using the

co-occurrence between tags and concepts. Starting from the hypothesis that “tags

and concepts co-occurrences are strong for certain tags, yet weak for other noisy or

related tags”, [Gao et al., 2010] propose to use this co-occurrence information to

predict the probability of an image to belong to a particular concept. The concept-

tag co-occurrence matrix is computed on the training dataset. To avoid the use of

tags unrelated/misspelled to concepts, they consider those words which appear in

WordNet as the representative tags. However, by considering only tags that ap-

pear in WordNet, many tags which have useful information are discarded. [Wang

et al., 2010a; Li et al., 2010b] approaches are based on an expansion procedure

of both tags and annotation concepts and a comparison on the expanded repre-

sentations. [Wang et al., 2010a] propose an approach to build Semantic Fields for

annotating the web images. The main idea is that the images are more likely to

be relevant to a given concept, if several tags of the image belong to the same

Semantic Field as the target concept. Semantic Fields are determined by a set

of highly semantically associated terms with high tag co-occurrences in the im-

age database and in different corpora and lexica such as WordNet and Wikipedia.

The obtained Semantic Field is used as annotation for the image. [Li et al., 2010b]

propose a method based on a document expansion procedure which assigns ad-

ditional content to concepts and image tags by consulting external information

resources, such as DBpedia1. After that, expanded textual metadata is compared

to expanded concepts in order to make concept assumptions. Finally, additional

concepts are considered by inferring affiliations and opposite relations among them.

Different from the above models, other approaches [Nagel et al., 2011; Liu et al.,

2013] are based on the the BOW representation [Salton and McGill, 1983]. [Nagel

et al., 2011] employ a supervised approach which learns tag frequencies on the

concepts of the training set. Concept-based TF-IDF weights are assigned to each

tag. A tag term frequency is detected by counting the number of times the tag

occurs in images annotated with a certain concept. The document frequency term

is equivalent to the number of concepts that co-occur with a tag. Finally, for

each concept, the TF-IDF values of image tags are accumulated. The size of

the obtained BOW feature vector is equal to the number of annotation concepts.

1http://dbpedia.org
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Recently, [Liu et al., 2013] propose the Histogram of Textual Concepts (HTC)

model to capture the semantic relatedness of semantic concepts. The HTC model

is based on the BOW representation. It is defined as an histogram of textual

concepts towards a dictionary, and each bin of this histogram represents a concept

of a dictionary of concepts. The bin value is the accumulation of the contribution

of each tag toward the underlying concepts according to a WordNet semantic

similarity [Wu and Palmer, 1994]. Let’s note that this method is not based on a

co-occurrence relation.

2.3.2.2 Tag-to-Tag Approaches

These approaches propose to exploit a semantic relation between image tags and a

predefined dictionary of tags to generate the tag-based signature. In this category,

all reported approaches are based on the BOW representation.

[Guillaumin et al., 2010] proposed a model based on the classic BOW represen-

tation where the textual signature is defined as a binary vector representing the

presence or the absence of image tags towards a predefined dictionary. This dic-

tionary is built by keeping the most frequent tags. However, as properties of tag

data are completely different from those of text documents, the chosen BOW rep-

resentation is not convenient for tag representation due to the number of tags

which is very small compared to that of words in a document, which introduces

the problem of sparse feature representation.

In order to overcome this shortcoming, [Kawanabe et al., 2011] were interested in

improving the tag-based signature generation step through a new smoothing tech-

nique of the final tag-signature. This approach relies on Markov random walks

on a graph of tags. [Xioufis et al., 2011] propose a textual signature based on a

binary BOW representation including word stemming, stop words removal, and

feature selection using the chi-squared-max method in order to remove irrelevant

or redundant features. The learning step is achieved with an Ensemble of Clas-

sifier Chains (ECC) [Read et al., 2009] using Random Forests as base classifier.

[Zhang et al., 2012b] propose the semantic BOW model in order to capture the

semantic information between tags which is hardly described with a classic BOW

model. WordNet-based distance between tags is used for dictionary construction

and histogram assignment.

2.3.2.3 Discussion

In most of these approaches, BOWmodel represents the dominant approach for tag

representation using different variants of word frequency (TF, TF-IDF...), using
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Table 2.1: A Summary of the state-of-the-art approaches on Tag-based image annotation.

Method Principle Relation BOW Dictionary Learning Knowledge Resource Handling Imperfections

[Wang et al.,
2010a]

Semantic Fields based
on the tag-concept co-
occurrence.

. Tag-Concept No No No
WordNet, Wikipedia and
the training set.

No

[Gao et al., 2010]
Probability based on
the tag-concept co-
occurrence.

Tag-Concept No No No The training set. No

[Li et al., 2010b]
Compare Tag and anno-
tation concepts expansion
vectors.

Tag-Concept No No No DBpedia. No

[Nagel et al., 2011]
BOW based on the tf-idf
values of tags.

. Tag-Concept Yes
Annotation
concepts

SVM The training set. No

[Liu et al., 2013]
Histogram of Textual
Concepts based on the
Tag-to-Concept similarity.

Tag-Concept Yes
Annotation
concepts

SVM WordNet.
The incomplete
data problem.

[Guillaumin et al.,
2010]

Binary BOW representa-
tion representing the pres-
ence/absence of tags.

Tag-Tag Yes
Frequent
tags.

SVM No No

[Kawanabe
et al., 2011]

Binary BOW represent-
ing the presence/absence
of tags with random walks
over tags.

Tag-Tag Yes
Frequent
tags

SVM No
The incomplete
data problem.

[Xioufis et al.,
2011]

Binary BOW representa-
tion with feature selection.

Tag-Tag Yes
Frequent
tags.

ECC No No

[Zhang et al.,
2012b]

Semantic BOW based on
the Tag-to-Tag similarity.

Tag-Tag Yes
Frequent
tags

SVM WordNet.
The incomplete
data problem.

[Romberg et al.,
2012]

Probabilistic latent se-
mantic analysis on tags
co-occurrence matrix.

Tag-Tag Yes
Frequent
tags

PLSA No No
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some pre-processing techniques (stemming, stop words removal ..) or smoothing

techniques such as the random walks over a graph of tags. We identify two main

differences between the BOW-based approaches. The first difference concerns the

considered dictionary. In the first family of approaches, concept annotations are

used as entries of the dictionary, however, the second type of approaches opts for

frequent tags to build the dictionary. Certainly, the size of the BOW representation

with annotations concepts as a dictionary is more compact, whereas, the obtained

signature with a BOW on frequent tags is richer and seems to be more suitable

for tags. The second difference concerns the histogram assignment step in the

BOW representation. As introduced in the previous chapter, tags and annotation

concepts are different and a simple Tag-to-Concept matching, called also hard

coding, is not the best coding scheme in the histogram assignment step. Thus,

using external knowledge resource such as WordNet can be useful as shown in [Liu

et al., 2013]. In [Xioufis et al., 2011; Guillaumin et al., 2010; Kawanabe et al., 2011]

approaches, the mapping of image tags and dictionary tags is a simple Tag-to-Tag

matching, however, [Zhang et al., 2012b] exploit semantic similarity using WordNet

in order to match more tags, called also soft coding. However, considering the

contribution of all tags, and specifically those with small similarities, in the BOW

representation introduces much noise. In [Kawanabe et al., 2011] approach, the

smoothing step handles a part of the incomplete data problem. In fact, the random

walk on a graph of tags enables to add semantically tags in the tag representation.

A similar effect is obtained in both [Zhang et al., 2012b; Liu et al., 2013] by

using the soft coding scheme in the histogram assignment. As most of these tag

representations are based on classic BOW model, they do not take into account

tag imperfections and fail to capture semantic tag relatedness.

2.3.3 Fusion Strategy

In this section, we are interested in the fusion strategy used to combine both

textual and visual modalities. We focus on the combination of both tag and im-

age modalities in the context of multimodal image annotation. Let’s note that

the combination of different mono-media features are out of the scope of this dis-

sertation. The work of [Snoek, 2005] was the first to introduce and identify two

general fusion strategies within the machine learning trend to semantic video anal-

ysis: early fusion and late fusion. We refer the reader to a review on multimodal

fusion strategies for multimedia analysis in [Atrey et al., 2010]. As introduced

in Section 2.1, multimodal approaches can be categorized into three categories

depending on the level of fusion.
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2.3.3.1 Early fusion

This category of fusion is performed at the feature level. After processing of

both visual and textual modalities, the extracted features are combined into a

single representation. The general scheme of early fusion strategy is illustrated

in Figure 2.5. We categorize most of approaches that fall in early fusion strat-

egy into three groups: Concatenation-based, Dictionary-based and Topic-based

approaches. The taxonomy of the work based on early fusion strategy for image

annotation is presented in Figure 2.6.

• Concatenation-based approaches

The simple and widely used method in the early fusion is the concatenation

of both visual and tag features. This method has been used by [Li et al.,

2009b] for landmark annotation, where visual and tag features are simply

concatenated. A Support vector machine (SVM) is then learned on the

combined feature vector. Nevertheless, this simple concatenation do not

take into account the correlation that may occur between visual and textual

modalities.

• Dictionary-based approaches

These approaches are based on the learning of the correlation between vi-

sual features and textual words. The translation model [Duygulu et al.,

2002] is a representative work in which images are segmented into regions.

Then the words and blobs (segmented regions) are considered as two equiv-

alent languages. After training, the translation model can attach words to a

Images

Tags

Visual 
Features

Tag 
Features

Feature
Combination

Multimodal 
Model

Final 
predictions

Figure 2.5: The general scheme of the early fusion strategy. After analysis of
both visual and textual modalities, the extracted features are combined into a

single representation.
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( Monay and Gatica-Perez, 2003) 
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Figure 2.6: Taxonomy of work based on early fusion strategy for image anno-
tation in social media.

new image region through learning the correlations using Estimation Max-

imization (EM) algorithm. Similarly, [Barnard et al., 2003] discuss several

models to represent the joint distribution of words and blobs. Once the joint

distribution has been learned, the annotation problem is converted into a

likelihood problem relating blobs to words. However, the performance of

these models is strongly affected by the quality of image segmentation.

[Wang et al., 2009b] propose to construct a visual tag dictionary by mining

community-contributed media corpus. For each specific tag, a Gaussian

Mixture Model (GMM) is built based on the images annotated with it and

their visual-word representations. A set of GMM parameters needs to be

learnt.

• Topic-based approaches

These approaches rely on the use of aspect or topic models and the definition

of a latent semantic space. The key idea in latent semantic analysis is to map

high-dimensional count vectors, such as term frequency vectors arising in the

vector space representation of text documents [Salton and McGill, 1983], to

a lower dimensional representation, a so-called latent semantic space. This

latter is composed of a set of variables called hidden aspects or topics that

bridges the semantic gap between high-level concepts that human perceives

and low-level features that usually describe images. Probabilistic Latent
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Semantic Analysis (pLSA) [Hofmann, 1999a] and Latent Dirichlet Allocation

(LDA) [Blei and Jordan, 2003] are the popular techniques in this direction.

For instance, [Blei and Jordan, 2003] employ correspondence LDA model to

build a language-based correspondence between words and the whole image.

This model assumes that a Dirichlet distribution can be used to generate

a mixture of latent factors. This latter is then used to generate words and

regions. EM algorithm is used to estimate this model.

The key concept of the pLSA model is to map high dimensional word distri-

bution vector of a document to a lower dimensional topic vector or aspect

vector. Thus, it introduces an unobservable latent topic between documents

and words. Each document consists of mixture of multiple topics and thus

the occurrences of words is a result of the topic mixture. One of the aspects

of this model is that word occurrences are conditionally independent from

the document given the unobservable aspect.

Both pLSA and LDA are topic-based approaches but have some differences.

In LDA, each document may be viewed as a mixture of various topics. This

is similar to pLSA, except that in LDA the topic distribution is assumed to

have a Dirichlet prior. In practice, this results in more reasonable mixtures

of topics in a document. It has been noted, however, that the pLSA model

is equivalent to the LDA model under an uniform Dirichlet prior distribu-

tion [Girolami and Kabán, 2003]. A graphical illustration of the various

generative pLSA models is presented in 2.7. [Monay and Gatica-Perez, 2003]

apply a pLSA on a concatenated representation of the textual and the visual

modalities of a set of annotated images. Using a concatenated represen-

tation, this approach attempts to simultaneously model visual and textual

modalities. Assuming that no particular importance is given to any modal-

ity, the amount of visual and textual information need to be balanced in

the concatenated representation of an annotated image which can limit the

size of the visual representation. [Lienhart et al., 2009] use a pLSA-based

model to support multi-modal image retrieval in Flickr, using both visual

content and tags. They propose to extend the standard single-layer pLSA

model to multiple layers by introducing not just a single layer of topics, but

a hierarchy of topics. First pLSA is applied to each modality (image and

tags) separately, and then the derived topic vectors of each modality are

concatenated. pLSA is applied on the top of the derived vectors to learn

the final document concept relation. This is equivalent to forming an al-

ternative dictionary of concepts, one for each modality, and merging them

into a single dictionary on which pLSA is performed. This approach has the

intrinsic problem of having to merge dictionaries of the different modalities.

This method does not place importance to interactions between the different

modalities and suffers from a high computational complexity.
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Figure 2.7: Graphical illustrations of the various generative pLSA models. (a)
Standard monomodal pLSA [Hofmann, 1999b], (b) pLSA on a concatenated rep-
resentation [Monay and Gatica-Perez, 2003], (c) multilayer monomodal pLSA
of [Lienhart et al., 2009], (d) multimodal pLSA of [Chandrika and Jawahar,
2010]. (e) High order pLSA of [Nikolopoulos et al., 2013]. N (resp. K) is the
number of observed documents d (resp. words w), z corresponds to topic and
v (resp. t) denotes the visual (resp. textual) mode. Gray color indicates an

observed (non-latent) variable.

To overcome this shortcoming, [Chandrika and Jawahar, 2010] propose a

multimodal pLSA that captures the patterns between images (i.e. text words

and visual words) using the EM algorithm to determine the hidden layers

connecting them. Although the authors goal is to exploit the interactions

between the different modes when defining the latent space, they eventually

implement a simplified model where they assume that a pair of different

words are conditionally independent given the respective image.

Recently, [Nikolopoulos et al., 2013] propose an extension of pLSA to become

applicable for more than two observable variables. Then, by processing im-

ages, visual features and tags as the three observable variables of an aspect

model, a space of latent topics is learnt such that it incorporates the seman-

tics of both visual and tag information. This approach is based on using the

cross-modal dependencies learned from a corpus of images to approximate
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the joint distribution of the observable variables. In [Chandrika and Jawa-

har, 2010] approach, hidden topics generated from visual and tag words are

considered separately, whereas, in [Nikolopoulos et al., 2013] images, visual

and tag words are considered as the three observable variables of pLSA.

2.3.3.2 Late fusion

The late fusion is performed at the decision level. Approaches that use late fusion

strategies also start with the extraction of unimodal features. In contrast to early

fusion, where features are combined into a multimodal representation, late fusion

approaches learn models directly from unimodal features. The general scheme of

the late fusion strategy is illustrated in Figure 2.8.

Most of these approaches fall into two categories: Rule-based and Classification-

based approaches. The taxonomy of the work based on late fusion strategy for

image annotation is presented in Figure 2.9.

• Rule-based approaches

This category of approaches is based on the application of a rule to com-

bine information from different modalities. In Rule-based approaches, we

distinguish two categories: Statistical-based and Dempster-Shafer-based ap-

proaches.

– Statistical-based approaches

In this category of approaches, rules used for combining multimodal

information are statistical rules such as linear weighted fusion (sum,

average), MAX, MIN, AND, OR, majority voting. Linear weighted

Images

Tags

Visual 
Features

Tag 
Features

Multimodal 
Model

Visual 
Model

Final 
predictions

Tag 
Model

Figure 2.8: The general scheme of the late fusion strategy. Each modality is
processed separately and then combined at decision level.
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Figure 2.9: Taxonomy of the work based on the late fusion strategy for image
annotation in social media.

fusion rule represents one of the simplest and most widely used methods

for image annotation. In [Escalante et al., 2008], predictions obtained

from different classifiers learned on both textual and visual modalities

are combined in a linear way. Similarly, [Xioufis et al., 2011] propose

a multimodal scheme based on a hierarchical late fusion. In a first

stage, predictions obtained from different classifiers learned on several

visual features are averaged. At a second stage, obtained scores from

the visual modality are averaged with textual predictions obtained from

tag-based signatures.

– Dempster-Shafer-based approaches

Although statistical rule-based approaches are simple and give good

performances in most of cases on multimodal image annotation, some

researchers have chosen to use the Dempster-Shafer (DS) evidence the-

ory [Shafer, 1976], that is particularly interesting to handle the uncer-

tainty and the conflict that can exist between different classifiers. This

theory will be introduced in details in Section 2.5.4.

In this vein, [Liu et al., 2011] propose to combine textual and visual

classifier predictions based on the Dempster’s rule of combination to im-

prove the classification accuracy. Each feature was used to train a clas-

sifier, which produces a measurement vector as a degree of belief that

the input image belongs to different classes. Classifiers were trained



Chapter 2. State-of-the-art 37

based on adjusting the evidence of different classifiers, by minimizing

the Mean Square Error (MSE) of training data according to [Al-Ani

and Deriche, 2002]. In our knowledge, this is the first attempt to apply

Dempster-Shafer theory to combine both visual and tag information for

image annotation in the context of social media. However, this theory

has been applied in many other research fields.

Although the Dempster-Shafer fusion method has been found more suit-

able for combining both visual and textual classifiers compared to sim-

ple rule-based approaches, this method suffers from the combinatorial

explosion when the number of frames of discernment is large. This

latter corresponds to the number of annotation labels for the image an-

notation task. This point will be discussed in details in Section 2.5.4.

• Classification-based approaches

In this category of approaches, the optimal combination of different modali-

ties and features is learned using a range of classification techniques. There

have been many classification-based approaches in the literature. We catego-

rize these approaches in two groups: Support Vector Machines-based (SVM)

and Feature selection-based approaches as shown in the taxonomy presented

in Figure 2.9. SVM-based approaches include both linear SVM classifiers

(called Paire-wise SVM) and MKL classifiers.

Support Vector Machines-based approaches

SVM [Cortes and Vapnik, 1995] have become increasingly popular for data

classification and related tasks. More specifically, SVMs are being used to

combine different modalities for multimedia annotation.

– Paire-wise SVM

From the perspective of multimodal fusion, SVM is used to solve image

classification problem, using different modalities, where the input of

this classifier are the scores given by the individual classifiers. In this

way, [Wang et al., 2009a] propose to build two separate classifiers, one

for the text features and the other one for the visual features. A third

classifier is then trained to combine the confidence values of the two

initial classifiers into a final prediction. This final classifier uses logistic

regression and is trained on a validation set.

– Multiple Kernel Learning

The basic SVM method is extended to create a non-linear classifier by

using the kernel concept, where every dot product in the basic SVM

formalism is replaced using a non-linear kernel function. In this vein,

one representative method is to consider the features as multiple kernel

matrices and then combine them in the kernel space. One of the most

successful feature fusion methods is MKL [Lanckriet et al., 2004], which
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learns the optimal kernel mixture and the model parameters of the SVM

simultaneously. Many approaches have been proposed in the literature

to combine different modalities using the MKL framework [Guillaumin

et al., 2010; Kawanabe et al., 2011; Zhang et al., 2012b].

[Guillaumin et al., 2010] propose a semi-supervised learning approach

to leverage the information contained in tags associated with unlabeled

images in a two-step process. First, labeled images are used to learn

a strong classifier that uses both the image content and tags as fea-

tures. The MKL framework (more precisely, the simple MKL method

of [Rakotomamonjy et al., 2008]) is adopted to combine a kernel based

on the image content with a second kernel that encodes the tags asso-

ciated with each image. This MKL classifier is used to predict labels

of unlabeled training images with associated tags to obtain additional

examples to train a classifier. In the second step, both the labeled data

and the output of the classifier on unlabeled data are used to learn a

second classifier, that uses only visual features as input.

A similar approach is used in [Kawanabe et al., 2011]. However, for

simplicity, authors deployed uniform kernel weights and trained SVMs

with the averaged kernels, which achieved comparable results to MKL.

Based on a tag refinement step using markov random walk on the tag

graph, this method outperforms the one of [Guillaumin et al., 2010].

The same framework has been applied by [Zhang et al., 2012b] to com-

bine two kernels learned on both visual and textual features.

Feature selection-based approaches

Feature selection is a technique commonly used in machine learning to find

the best subset of features or experts in classifier combination that enhance

classification performances. It was applied to combine tag and visual features

for image annotation.

By studying the characteristics of tag and visual features, [Gao et al., 2010]

propose the Grouping-Based-Precision & Recall-Aided (GBPRA) feature se-

lection strategy for concept annotation. More specifically, authors define the

Grouping Semantic Depth as the mode of semantic depth of all concepts

in WordNet belonging to this grouping. Based on the level of Grouping

Semantic Depth, a selection is performed to decide either to use tag or vi-

sual features for concept annotation. By studying the tag distribution, they

adopt precision and recall as a complementary indicator for feature selection.

[Liu et al., 2013] proposed a fusion scheme, called Selective Weighted Late

Fusion (SWLF), that selectively chooses and weights the best discriminative

features for each visual concept to be predicted in optimizing the overall

mean average precision. The proposed approach mainly includes two stages:

a training stage and a testing stage. The training stage consists of training
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Figure 2.10: The general scheme of the transmedia fusion strategy for image
annotation in social media.

experts through SVM for each pair of concept and type of features using a

training set. These experts are then evaluated using a validation set to learn

SWLF. The testing stage proceeds to extract various types of features (tex-

tual and visual) from an input image, and then to apply the corresponding

fusion scheme learned by SWLF for each concept to obtain a recognition

decision.

2.3.3.3 Transmedia fusion

This level of fusion is also called cross-media or intermediate level fusion. This

kind of approaches views image annotation as a process of transferring tags from

nearest neighbors. The basic idea is to use visual features to gather relevant images

(visually nearest neighbors) and then to switch to the textual modality to aggre-

gate tag features of these neighbors. We call these methods nearest neighbor-based

approaches. The general scheme of the transmedia fusion strategy is illustrated in

Figure 2.10.

Recently, nearest neighbor approaches have been investigated in the annotation

community with promising results. Notably, [Torralba et al., 2008] collected about

80 million tiny images, each of which is labeled with one of the 75, 062 abstract

nouns from WordNet. By fully leveraging on the redundancy of information on

the Web, they claimed that with sufficient number of samples, the simple near-

est neighbor classifier can achieve reasonable performance for several object/scene

detection tasks, when compared with the more sophisticated state-of-the-art tech-

niques.

In the same vein, [Makadia et al., 2008] have developed the joint equal contri-

bution (JEC) technique, where they used a combination of multiple features and
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distance metrics to find the nearest neighbors of the input image and used a greedy

algorithm for transferring tags from visually similar images. Although these meth-

ods [Makadia et al., 2008; Torralba et al., 2008] show good performances, they do

not allow the integration of metric learning. This latter defines the nearest neigh-

bors in order to maximize the predictive performance of the model.

[Guillaumin et al., 2009] have proposed the tag propagation (TagProp), a dis-

criminative metric learning approach, to annotate an input image by propagating

tags of weighted nearest neighbors of that input image. Neighbor weights are

determined based on the neighbor rank or its distance, and set automatically by

maximizing the likelihood of annotations in a set of training images. The weighted

nearest neighbors were identified by optimally integrating several image similarity

metrics.

In the same direction, [Li et al., 2009a] proposed an algorithm that learns tag

relevancy by accumulating votes from visually similar neighbors. This approach

relies on the intuition that if different persons label visually similar images using

the same tags, these tags are likely to reflect the objective aspects of the visual

content. In fact, given an user-tagged image, they first perform a kNN search to

find its visual neighbors. The tag relevance is determined as the probability that

this tag is used to annotate the neighborhood images minus the probability of that

tag used in the entire collection.

2.3.3.4 Discussion

This section provides a critical look on the fusion strategies presented in Sec-

tion 2.3.3. A summary of the most related work using the early fusion strategy

described above is provided in Table 2.2. While some approaches such as the one

proposed by [Li et al., 2009b] are straightforward and simply consist in concate-

nating the features extracted from both visual and tag modalities into a single

representation, their disadvantage is also well known: the fusion of features usu-

ally results into a large feature vector, which becomes a bottleneck for the learning

task. This is known as the curse of dimensionality [Bellman, 1961]. It suffers also

from the difficulty in combining features of different natures into a common homo-

geneous representation. To overcome this shortcoming, many approaches propose

to process the image annotation problem as a translation task from image in-

stances to tags, and it is usually accomplished based on some models that exploit

the co-occurrence of images and tags [Duygulu et al., 2002; Barnard et al., 2003].

However, the performance of these models is strongly affected by the quality of

image segmentation. Topic-based approaches [Blei and Jordan, 2003; Monay and

Gatica-Perez, 2003; Lienhart et al., 2009; Chandrika and Jawahar, 2010] repre-

sent an alternative to LDA-based approach. However, most of these approaches

do not consider the correlation between both visual and tag modalities. Thus,
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Table 2.2: A summary of the most related and representative work based
on the early fusion strategy for multimodal image annotation in the context of

social media.

The work Fusion method Fusion level Handling Imperfections

[Li et al., 2009b]
Simple concatenation of
visual and tag representa-
tions.

Early Fusion No

[Duygulu et al., 2002]
Translation model to link
tags and blobs.

Early Fusion No

[Barnard et al., 2003]
Learn the joint distribu-
tion of tags and blobs.

Early Fusion No

[Blei and Jordan, 2003] LDA on tags and images. Early Fusion No

[Monay and Gatica-
Perez, 2003]

pLSA on a concatenation
of tag and image features.

Early Fusion No

[Lienhart et al., 2009]
Multilayer and multi-
modal pLSA.

Early Fusion No

[Chandrika and Jawa-
har, 2010]

Multimodal pLSA Early Fusion No

[Nikolopoulos et al.,
2013]

High Order pLSA. Early Fusion No

[Wang et al., 2009b]
Visual tag dictionary us-
ing GMM.

Early Fusion No

some topic-based approaches [Nikolopoulos et al., 2013], that exploit cross-modal

dependencies learned from a corpus of images to approximate the joint distribu-

tion of the observable variables, give better results and seem to be more adapted

to multimodal data. However, most of the early fusion approaches do not take

into account tag imperfections at the feature level (uncertainty, imprecision and

incompleteness) that have been introduced in Chapter 1.

Contrary to early fusion approaches where the combination process is performed

at the feature level, late fusion approaches process each modality separately and

combine them at the decision level. A summary of work using the late fusion strat-

egy described above is provided in Table 2.3. It is clear that many fusion methods

such as Linear weighted fusion and SVM have been used more often in compari-

son to the other methods. Linear weighted fusion method has been used due its

simplicity as well as it is computationally less expensive than other approaches

and it can be easily used to prioritize one modality or the other. This method

performs well if the weights of different modalities are appropriately determined,

which has been a major issue. Feature selection-based methods [Gao et al., 2010;

Liu et al., 2013] have been proposed as an alternative to learn which modality is

more discriminative for each concept. Among others, MKL has been used recently
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to combine image and tag features. Although, state-of-the-art MKL-based fusion

approaches [Guillaumin et al., 2010; Kawanabe et al., 2011; Zhang et al., 2012b]

show good results, they still suffers from high computational complexity, compared

to the pair-wise SVM approach [Wang et al., 2009a]. To reduce the computational

cost of MKL-based approaches, [Kawanabe et al., 2011] show that uniform kernel

weights and a SVM trained with the averaged kernels, achieve comparable results

to MKL. Although these approaches give good overall performances, imperfection

aspects at decision level (uncertainty, imprecision and incompleteness), that have

been introduced in Chapter 1, are occasionally considered. In fact, the decision

cannot be estimated with absolute certainty using the classification models. Most

of the above methods consider the fusion as a score aggregation task, except the

work of [Liu et al., 2011]. In this approach the Dempster-Shafer (DS) evidence

theory [Shafer, 1976] seems to be particularly interesting to handle the uncertainty

and the conflict that can exist between different classifiers. However, in [Liu et al.,

2011] approach, Dempster-Shafer theory was applied for a small dataset (≈ 1, 200

images) and only for six classes of emotions. Although, the Dempster-Shafer the-

ory has been found to be effective in combining different classifiers, this method

suffers from the combinatorial explosion in particular when the number of anno-

tation concepts (i.e the frames of discernment) is large. Unfortunately, this is

precisely the case one must handle for the considered multimedia collections. A

review of some representative work that have used Dempster-Shafer theory for

various multimedia analysis tasks such as segmentation of satellite images, video

classification and finger print classification can be found in [Atrey et al., 2010].

A summary of work using the transmedia fusion strategy described above is pro-

vided in Table 2.4. These approaches are based on a classic neighbor voting

algorithm that uses information from the nearest neighbors to predict tags. Un-

fortunately, in the context of social tagging, tags are freely assigned by users, with

various motivations and different judgments on the relevance between a tag and

an image. Consequently, tags in social tagging setting are much more uncertain

compared to labels in traditional classification problems. In the original voting

kNN algorithm, the image is assigned to the majority class according to its k-

nearest neighbors, independently of the relevance of each neighbor. Moreover, the

classical kNN methods does not deal with ambiguous and imprecise information

because of the limitation of the probabilistic framework. Moreover, there is no

explicit use of a formalism which is able to handle neighbors conflict and to deal

with tag imperfections.

To the best of our knowledge, handling imperfections both in representation and

decision levels has never been explicitly considered in image annotation methods in

the context of social media. Nevertheless, these imperfections have been identified

and studied in other related fields. In Section 2.4, we review the most representa-

tive work that consider the relatively low quality of tags in tag-based applications
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Table 2.3: A summary of the most related and representative work based on
the late fusion strategy for multimodal image annotation in the context of social

media.

The work Fusion method Fusion level Handling Imperfections

[Escalante et al., 2008]
Linear combination of
classifier predictions.

Late Fusion No

[Xioufis et al., 2011]
Hierarchical late fusion us-
ing average rule.

Late Fusion No

[Wang et al., 2009a]
SVM classifier using the
concatenation of predic-
tions as input feature.

Late Fusion No

[Guillaumin et al., 2010] Multiple Kernel Learning. Late Fusion No

[Kawanabe et al., 2011] Multiple Kernel Learning. Late Fusion No

[Zhang et al., 2012b] Multiple Kernel Learning. Late Fusion No

[Gao et al., 2010]
Grouping-Based-Precision
& Recall-Aided (GBPRA)
feature selection.

Late Fusion No

[Liu et al., 2013]
Selective weighted late fu-
sion.

Late Fusion No

[Liu et al., 2011]
Dempster’s rule to com-
bine classifier predictions

Late Fusion Yes

Table 2.4: A summary of the most related and representative work based on
the transmedia fusion strategy for multimodal image annotation in the context

of social media.

The work Fusion method Fusion level Handling Imperfections

[Makadia et al., 2008]
Joint Equal Contribution
of nearest neighbors and
tag transfer.

Transmedia
fusion

No

[Torralba et al., 2008]
Leveraging tags from
neighbors.

Transmedia
fusion

No

[Guillaumin et al., 2009]
Tag propagation using
metric learning.

Transmedia
fusion

No

[Li et al., 2009a]
Tag relevance by accumu-
lating votes from neigh-
bors.

Transmedia
fusion

No

such as tag ranking and suggestion. In Section 2.5, we review the state-of-the-

art theories related to classifier combination that handle imperfections at decision

level.
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Tags : 

1. Abu  
2. Dhabi 
3. International 
4. Tennis 
5. Complex 
6. Zayad 
7. Sports 
8. City 
9. Capitala 
10. World 
11. Nadal 
12. Canon 
13. EOS 
14. 450D 
… 

Figure 2.11: An example of image from Flickr and its associated tag list. The
most relevant tags such as “Tennis, Sport, Nadal” are not at the top positions.

2.4 Handling Tag Imperfections

As introduced in Chapter 1, many online media repositories, such as Flickr, sup-

port tag-based multimedia search. However, since these tags are freely assigned by

users, they are often noisy and incomplete and there is still a gap between these

tags and the actual visual content of images [Kennedy et al., 2006; Liu et al.,

2011a].

Recently, many research efforts have been proposed to enhance the quality of tags

in the context of social media. The existing work mainly focus on the following two

social media applications: (a) tag ranking and relevance, which aims to re-order

tags associated with images with various levels of relevance; (b) tag refinement and

suggestion which aims at refining the unreliable human-provided tags by dropping

inappropriate tags and adding new missing tags.

2.4.1 Tag Ranking & Relevance

The relevance levels of tags associated with a social image cannot be distinguished

from the tag list. An example is illustrated in Figure 2.11, from which we can

see that the most relevant tags to describe the visual content are “Tennis, Sport,

Nadal”. Their relevance can not be discovered from the tag list directly, by con-

sidering the order of the tags for instance. Indeed, the order of the different tags

in the tag list is just based on the manual input and carries little information

about their importance or relevance. Further, this limits the effectiveness of tags

in search-based applications.

Tag ranking is defined as the process of assigning the right order or weight to each

tag associated to an image. Many approaches have been devoted to solve this
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problem. As suggested by [Liu et al., 2011a; Ballan et al., 2013], these approaches

can be distinguished into two broad categories: Statistical modeling and Data-

driven approaches.

2.4.1.1 Statistical modeling approaches

These approaches consist in learning a statistical model used to determine tag

relevance. As a pioneering work, [Liu et al., 2009a] propose a tag ranking scheme,

aiming at automatically ranking tags associated with a given image according to

their relevance to the image content. First, initial relevance scores for tags are

estimated based on probability density estimation, and then a random walk over

a tag similarity graph is performed to refine the relevance scores. Although, this

method achieves a better result than the initial rank order given by users, it is

limited in several aspects. The proposed method has to be trained on a very

large database to construct a convenient tag similarity graph. Moreover, each

tag graph is used for only one corresponding image. A new tag graph has to

be learned for ranking tags of another image. In addition, the method of [Liu

et al., 2009a] works in a transductive manner and only the already tagged images

can be tag ranked, thus it is unable to deal with untagged images. To overcome

this shortcoming, [Wang et al., 2010c] propose a semi-supervised learning model,

called Learning To Rank Tags, which learns a ranking projection from visual word

distribution to the relevant tag distribution using a simple linear regression model,

and then use it for ranking new image tags. Similarly, [Feng et al., 2010] propose

a novel tag saliency ranking scheme, which aims at automatically ranking tags

associated with a given image according to their saliency to the image content.

The proposed method combines both visual attention model and multi-instance

learning algorithm to investigate the saliency ranking order information of tags

with respect to the given image. Specifically, tags annotated on the image-level are

propagated to the region-level via an efficient multi-instance learning algorithm.

Then, visual attention model is used to measure the importance of regions in the

given image. And finally, tags are ranked according to the saliency values of the

corresponding regions.

2.4.1.2 Data-driven approaches

These approaches consist in using an external data collection to determine tag

relevance. As a pioneering work, [Li et al., 2009a] proposed an algorithm that

learns tag relevancy by accumulating votes from visually similar neighbors. In

fact, given a user-tagged image, they first perform a kNN search to find its visual

neighbors. The tag relevance is determined as the probability that this tag being
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used to annotate the neighborhood images minus the probability of the tag be-

ing used in the entire collection. [Sun and Bhowmick, 2009] propose a method to

calculate the Normalized Image Tag Clarity score that evaluates the effectiveness

of a tag in describing the visual content of its annotated images. It is measured

by computing the zero-mean normalized distance between the tag language model

estimated from images annotated by this tag and the collection language model.

[Zhuang and Hoi, 2011] propose a two-view learning approach to discover the re-

lationship between tags and images by exploiting both textual and visual contents

of social images. The tag ranking task is formulated as a problem of learning

a tag weighting matrix that encodes the relevance relationship between images

and tags. Similarly, [Li et al., 2012] propose a two-view learning approach for tag

ranking scheme through a two-stage graph-based relevance propagation approach.

The first stage builds a tag graph on each image and implements a random walk

process on it in order to get the initial relevance of each tag for one image and

the second stage builds a kNN-sparse image graph and propagates the relevance

of tags among the web images. [Sun et al., 2013] propose a tag ranking scheme to

automatically rank tags with respect to given images by taking into account both

the irrelevance to the image visual content and their relationships. First, given a

tag query, a set of web images is collected from multiple searching engines to cover

the semantic space. Second, initial relevance scores of tags with respect to a given

image visual content are estimated in a Bayesian framework, in which a fused

visual similarity is adopted. Third, tag graph is build by mining the relationship

among tags.

2.4.1.3 Discussion

Most of tag ranking approaches assume that tags are noisy and the quality of

tags associated with images is still far from satisfactory. The common goal of

current work is to re-order the tag position (tag rank) according to the related-

ness between each tag and an image. As highlighted in Chapter 1, tagging is not

controlled, thus some initially assigned tags on the image may not be relevant to

the image visual content. Therefore, the performance of tag ranking approaches

using initially assigned tags without handling tag imperfections may not be sat-

isfactory. Statistical-based approaches achieve good results but suffer from the

drawback that the learning and the building of tag graph must be applied pe-

riodically as new images and tags are added, which is someway impractical in

large-scale evolving collections such as the case of Flickr collections. Moreover,

most of these approaches usually ignore the tag imperfection issue. Data-driven

approaches have shown to be easier to apply than statistical-based approaches.

Similarly to statistical-based approaches, most of the Data-driven approaches do

not take into account tag imperfections while collecting tags from visually near-

est neighbors. In fact, as introduced in Chapter 1, the original tags associated
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Figure 2.12: An example of tag refinement and suggestion: some tags are not
related to the visual content of the image such as “dogs, dog”, some other are
missing such as “bench, chick, animal, garden” and should be added (bold).

with images in social media websites are expected to be incomplete. Based on

such noisy and incomplete tags, existing approaches can hardly acquire satisfying

results. Thus, handling tag imperfections both for tag correlation and neighbor

voting steps seems to be interesting and crucial to improve tag ranking perfor-

mances.

2.4.2 Tag Refinement & Suggestion

Tag refinement and enrichment methods are proposed to refine unreliable human-

provided tags by dropping inappropriate tags and adding new missing ones. These

approaches deal with tag imperfection problem, especially tag incompleteness. An

example in Figure 2.12 illustrates the tag refinement and suggestion task. We

can see that some tags such as “dogs, dog” are not related to the image content,

however, other are missing such as “chick, bench, garden, animal”. Numerous

research efforts have been devoted to solve such a problem. As suggested by [Liu

et al., 2011a], these approaches can be distinguished into two broad categories:

Statistical modeling and Data-driven approaches.

2.4.2.1 Statistical modeling approaches

These approaches are based on the statistics of tags (tag co-occurrence) from

knowledge resources or data collections. As a pioneering work, [Jin et al., 2005]

used WordNet [Fellbaum, 1998] to estimate the semantic correlation among the an-

notated keywords and then those weakly-correlated ones are removed. To identify

irrelevant keywords, they investigate various semantic similarity measures between

keywords and fuse outcomes of all these measures together to make a final decision
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using Dempster-Shafer evidence combination. [Weinberger et al., 2008] proposed

a method that measures tag ambiguity, and suggests new tags that best reduce

this ambiguity. This ambiguity is based on the co-occurrence of a tag set in two

different contexts. [Xu et al., 2009] propose to solve the problem of tag refinement

from the angle of topic modeling and present a novel graphical model, regular-

ized Latent Dirichlet Allocation (rLDA). Both tag similarity and tag relevance

are jointly estimated in an iterative manner, so that they can benefit from each

other, and the multi-wise relationships among tags are explored. Moreover, both

the statistics of tags and visual affinities of images in the corpus are explored to

help topic modeling. However, similar to other topic-based analysis approaches,

iterative estimation of probabilities for topic modeling requires high computational

costs. [Wang et al., 2010a] propose an approach to build Semantic Fields for anno-

tating the web images. The main idea is that images are more likely to be relevant

to a given concept, if several tags of the image belong to the same Semantic Field

as the target concept. Semantic Fields are determined by a set of highly seman-

tically associated terms with high tag co-occurrences in the image corpus and in

different corpora and lexica such as WordNet and Wikipedia.

2.4.2.2 Data-driven approaches

These approaches rely on visually similar images from external data collections in

order to refine initial tag list or to suggest new ones. [Liu et al., 2009b] propose

a scheme to improve poorly annotated tags associated with social images. Two

properties are exploited and integrated in an unified optimization framework: (1)

consistency between visual and semantic similarities, where the semantic similar-

ity is estimated using tags; (2) compatibility of tags before and after improvement,

since the initial user provided tags carry valuable information. This is posed as

an optimization problem and an iterative bound method is derived to solve it.

[Kennedy et al., 2009] propose a framework for gathering reliable image tags. In

this work, authors consider as reliable tags that are related to the image visual

content. They leverage a large database of tagged photographs and discover pairs

of visually similar images. [Tang et al., 2009] propose a tag refinement strategy

within a graph based learning framework to handle the noise in tags, by bringing in

a dual regularization for both the quantity and sparsity of the noise. In addition,

a compact concept space with small semantic gap to infer the semantic concepts is

constructed. The sparse graph is build by datum-wise. A one-vs-all sparse recon-

structions of all samples can remove most of the concept-unrelated links among

data. [Liu et al., 2010] propose a social image “retagging” scheme that aims at

assigning images with better content descriptors. The refining process, including

denoising and enriching, is formulated as an optimization framework based on the

consistency between visual similarity and semantic similarity in social images, that

is, the visually similar images tend to have similar semantic descriptors, and vice
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versa. In the same way, [Zhu et al., 2010] propose a tag refinement approach which

is referred as low-rank and error sparsity approximation. This method is based on

several assumptions: visually similar images are similarly tagged; tags are often

correlated and interact at the semantic level; the semantic space spanned by all

tags can be approximated by a smaller subset of them; user tags are sufficiently

accurate so that the image tag matrix has error sparsity condition. Following

these assumptions tag refinement was cast into the problem of decomposing the

user-provided tag matrix into a low-rank refined matrix and a sparse error matrix.

[Yang et al., 2011] propose an automatic scheme called tag tagging to supplement

semantic image descriptions by associating a group of property tags with each

existing tag. The tagging scheme mainly consists of two steps: tag to region and

property tag generation. Tag to region consists in finding each tag corresponding

image region through lazy diverse density. Property tag generation consists in

deriving property tags based on the image regions found in the first step. Re-

cently, [Wu et al., 2012] proposed a framework for tag refinement and suggestion.

They represent the image-tag relation by a tag matrix, and search for the optimal

tag matrix consistent with both the observed tags and the pairwise visual simi-

larity between images. This optimization problem is solved using a sub-gradient

descent based approach. Although this approach shows to give good results, it

still suffer from the computational complexity due to the matrix optimization step

and thus the scalability to large datasets can be a problem.

Table 2.5: A summary of terms used to describe tag imperfections in repre-
sentative work in the context of social media.

The work Terms used for tag imperfections

[Jin et al., 2005] Noisy

[Weinberger et al., 2008] Noisy, Ambiguous

[Xu et al., 2009] Noisy, Ambiguous

[Wang et al., 2010a] Noisy, Ambiguous, Incomplete

[Liu et al., 2009b] Noisy, Imprecise, Incomplete

[Kennedy et al., 2009] Noisy, Unreliable

[Tang et al., 2009] Noisy, Incomplete, Incorrect

[Liu et al., 2010] Imprecise, Biased, Incomplete

[Zhu et al., 2010] Noisy

[Yang et al., 2011] Noisy, Ambiguous

[Wu et al., 2012] Noisy, Unreliable, Inconsistent, Incomplete
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2.4.2.3 Discussion

There has been a rich state-of-the-art on Tag refinement and suggestion. These

approaches have been proposed to solve the problem of noisy and incomplete tags.

The tag incompleteness issue in social media tagging is almost well identified in

the literature [Liu et al., 2009b; Tang et al., 2009; Wang et al., 2010a]. However,

there is no precise identification and definition of noisy tags. Table 2.5 presents a

summary of the most used terms in the literature that try to handle tag imper-

fections. In fact, this notion of noise covers many aspects. Some authors consider

as noisy tags those who are ambiguous [Weinberger et al., 2008; Xu et al., 2009;

Wang et al., 2010a; Yang et al., 2011], due to the well-known polysemy and syn-

onymy nature of words (tags). To the best of our knowledge, [Weinberger et al.,

2008] was the only work where authors define ambiguity and underly the intuition

that “a tag set is ambiguous if it can appear in at least two different tag contexts.

These could be defined by geographic locations, word senses, languages or tempo-

ral events, etc.”. Other work consider as noisy, tags that are unreliable [Kennedy

et al., 2009; Yang et al., 2011; Wu et al., 2012]. [Kennedy et al., 2009] define unre-

liable tags as “tags that are not related to the image visual content”. To describe

noisy tags other terms have been used in the literature such as Imprecise, Biased

and Inconsistent, however there are no explicit definitions of these notions. To

handle such imperfections some definitions need to be stated clearly.

2.5 Handling Imperfections at the decision level

It has been theoretically and empirically demonstrated that combining multiple

classifiers can substantially improve the classification performances. In the context

of social media, the use of multiple classifiers trained on different modalities and

several types of features usually leads to better performances in image annotation

task, due to the complementarity of the classification models [Guillaumin et al.,

2010; Kawanabe et al., 2011; Duin, 2002]. In this thesis, we consider the problem

of classifier combination as an information fusion process where predictions from

different classifiers can be viewed as information sources to be combined to make

a final decision. Thus, a particular attention must be paid to the fusion process,

in order to take advantage of the complementarity while minimizing potential

issues due to the conflict between the sources of information (different classifier

predictions).

In the literature, different frameworks exist for reasoning with imperfections of

information at the decision level. In this section, as highlighted in [Bellenger, 2013],

we list the most well-known ones: the Probability theory, the Fuzzy-Set theory, the

Possibility theory and the Dempster-Shafer theory. Other theories dealing with
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such imperfections can be mentioned such as Imprecise Probability theory [Walley,

1991] or Rough set theory [Pawlak et al., 1995]. In the following, we present only

the principle of each theory and its advantages as well as its limitations. In this

thesis, we choose to use the Dempster-Shafer theory as a formalism in order to

deal with imperfections in multimodal image annotation. Thus, Section 2.5.4.1 is

devoted to give more in depth details about the fundamentals of the Dempster-

Shafer theory.

2.5.1 Probability theory

The Probability theory is surely the most well known mathematical theory dealing

with imperfections such as uncertainty. Input data are modeled using probabili-

ties or likelihood numbers which allow to model measurement of the uncertainties.

More precisely, as highlighted by [Dubois, 2007], the roles of probabilities are two

folds. On one hand, through repeated observations, probabilities are capturing

variability and randomness. Thus, probabilities can be considered as objective

quantities that can be interpreted as frequencies. On the other hand, probabilities

are considered as subjective quantities that have to be interpreted as degrees of be-

lief. Let us recall that often degrees of belief in classifier combination are provided

by classifiers learned on imperfect data and thus may be erroneous. A major draw-

back of the probability theory resides in the requirement of a perfect knowledge

of the probabilities and especially the apriori probabilities as stated in [Bellenger,

2013]. Unfortunately, when knowledge on the problem is imperfect which is the

case of different classifier predictions, probabilities can not be estimated correctly.

At the core of the probability theory lies the “Bayesian fusion” which uses the

Bayes rule to combine decisions from different classifiers. The Bayesian inference

fusion method is briefly described as follows. Let (s1, s2, ..., sn) a set of decisions

scores obtained from n different classifiers to be combined. Assuming that these

classifiers are statistically independent, the joint probability of an hypothesis A

based on the fused decisions can be computed as suggested in [Papandreou et al.,

2009]:

p(A|s1, s2, ..., sn) =
1

N

n
∏

k=1

p(sk|A)
wk (2.8)

where N is used to normalize the posterior probability estimate p(A|s1, s2, ..., sn).

The term wk is the weight of the kth classifier, and
∑n

j=1wj = 1. This posterior

probability is computed for all the possible hypotheses, Ω. The hypothesis that has

the maximum probability is determined using the maximum aposteriori probability

rule defined as follows:

Â = argmax
A∈Ω

p(A|s1, s2, ..., sn) (2.9)
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Bayesian fusion method has been successfully used to fuse multimodal information

at the decision level for performing various multimedia tasks. For instance, [Meyer

et al., 2004] and [Xu and Chua, 2006] have used the Bayesian inference method ,

respectively, for spoken digit recognition and sports video analysis.

2.5.2 Fuzzy Set theory

The Fuzzy set theory has been introduced by [Zadeh, 1965] as an extension of the

classic notion of sets. It allows the representation and the gradual assessment of

truth about vague information. In classic set theory, the membership of elements

in a set is assigned in a binary way (1 or 0), i.e. it belongs or not to the considered

set. By extension, Fuzzy set theory allows the fuzzy assessment of the membership

of an element in a set through a membership function valued in the real unit

interval
[

0, 1
]

. As in the Probability theory, the degree of truth is a value between

0 and 1. However, the degree of truth in Fuzzy sets represents a membership of

elements in vaguely defined set, whereas a probability represents the likelihood

of the membership itself. Formally, a fuzzy set F ⊆ Ω is defined by the gradual

membership function µF (A) in the interval
[

0, 1
]

as follows:

µF (A) ∈
[

0, 1
]

∀ A ∈ Ω (2.10)

where the higher the membership degree is, the more A belongs to F . Fuzzy

information can be combined using fuzzy rules to produce fuzzy fusion outputs.

Examples of fusion rules for two fuzzy sets F1 and F2, are the following:

µF1,F2
(A) = min[µF1

(A), µF2
(A)] ∀ A ∈ Ω (2.11)

µF1,F2
(A) = max[µF1

(A), µF2
(A)] ∀ A ∈ Ω (2.12)

A general framework for combining information from several individual classifiers

for the classification of urban remote sensing images have been proposed by [Fau-

vel et al., 2006]. It is based on the definition of two measures of accuracy. The

first one is a point-wise measure which estimates for each pixel the reliability of

the information provided by each classifier. By modeling the output of a classifier

as a fuzzy set, this point-wise reliability is defined as the degree of the fuzzy set

uncertainty. The second measure estimates the global accuracy of each classifier.

Finally, the results are aggregated with an adaptive fuzzy operator rule by these

two accuracy measures. [Fakhar et al., 2012] propose a multi-biometric identifi-

cation system based on fusion at the decision level using fuzzy set theory. The

fusion system is based on face and iris modalities where output classifiers from

each modality are modeled as a fuzzy set.
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2.5.3 Possibility theory

The Possibility theory has been introduced by [Zadeh, 1978] as a generalization

of the Fuzzy Set theory. The aim was to enable the management of imperfections

by defining the concept of a possibility distribution as a fuzzy restriction which

acts as an elastic constraint on the values that may be assigned to a variable [Bel-

lenger, 2013]. It does not model a degree of belief or truth, but rather the reference

we have for a hypothesis. Contrary to the probability theory, which associates a

unique probability to each statement, in Possibility theory we have a possibility

distribution πB(A) ∈
[

0, 1
]

∀A ∈ Ω. This possibility distribution characterizes the

uncertain membership of an element A in a well-defined class B. Given the possi-

bility distribution π(U), the possibility measure Π(U) and the necessity measure

N(U) of an event U are defined as follows:

Π(U) = maxA∈U {πB(A)} ∀ U ⊆ Ω (2.13)

N(U) = minA∈U {1− πB(A)} ∀ U ⊆ Ω (2.14)

As stated in [Khaleghi et al., 2013], a possibility degree Π(U) quantifies to what

extent the event U is plausible, while the necessity measure N(U) quantifies the

uncertainty of U , in the face of incomplete information expressed by a possibility

distribution π(A) [Destercke et al., 2009]. The possibility and the necessity mea-

sures can be also interpreted as a special case of upper and lower probabilities,

in connection with the probability theory [Dubois and Prade, 1992]. Although

possibility theory has not been commonly used in data fusion applications, its

performance has been compared to probabilistic and evidential fusion approaches

for active object recognition [Borotschnig et al., 1999]. Possibilistic fusion is ar-

gued to be most appropriate in poorly informed environments as well as in fusion

of heterogeneous data sources [Dubois and Prade, 1994]. [Oussalah et al., 2001]

propose a fusion framework based on the possibility theory applied to a robotic

application. This latter deals with a mobile robot equipped with ultrasonic sensors

and odometry whose measurements are combined using the possibility theory.

2.5.4 Dempster-Shafer theory

The Dempster-Shafer (DS) theory has been introduced by [Shafer, 1976] taking

support on the work made by [Dempster, 1967]. The Dempster-Shafer theory,

also known as Evidential theory or Belief theory, offers a theoretical framework

for modeling uncertainty, and provides a method for combining distinct items of

evidence collected from different sources. It is based on two ideas: obtaining de-

grees of belief for one question from subjective probabilities for a related question,

and Dempster’s rule for combining such degrees of belief when they are based on
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independent items of evidence. This evidence combination rule provides an in-

teresting operator to integrate multiple pieces of evidence from different sources.

Thus, it is very useful when combining multiple pieces of information that come

from different classifiers, as in classifier combination task.

The advantage of Dempster-Shafer theory is that it allows coping with absence

of preference, due to limitations of the available information. The theory is often

viewed as a generalization of the Probability theory, by providing a coherent rep-

resentation for ignorance (lack of evidence) and also by discarding the insufficient

reasoning principle. However, these two approaches differ significantly and the ex-

tent of their applicability to data fusion is still being debated [Braun, 2000]. The

Probability theory is based on the classical ideas of probability, while Dempster-

Shafer theory allows more interpretation of what uncertainty is all about. One of

the major advantages of the Dempster-Shafer theory over probability is thus to

allow one to specify a degree of ignorance in a situation instead of being forced

to supply prior probabilities. Moreover, probabilistic approaches reason only on

singletons while Dempster-shafer theory enables not only to affect belief on el-

ementary hypothesis but also on composite ones. The Dempster-Shafer theory

contains two new ideas that are foreign to the Probability theory. These are the

notions of belief and plausibility.

As pointed by [Dubois, 2007], the Dempster-Shafer theory can be considered as an

extension of both Probability theory, Possibility and the Sets theory. As a matter

of fact, DS theory includes extensions of probabilistic notions (conditioning), of

the possibility theory and the set-theoretic notions (intersection, union ...).

Considering the advantages presented above, we have chosen to rely on the

Dempster-Shafer theory of evidence as a framework to handle imperfections for

image annotation. The following section is devoted to give more in depth details

about the fundamentals of the Dempster-Shafer theory. In Dempster-Shafer the-

ory, evidence is represented in terms of evidential functions and ignorance. These

functions include mass functions (or basic belief assignment function), belief and

plausibility functions [Shafer, 1976].

2.5.4.1 Belief functions on finite domains

In Dempster-Shafer (DS) theory [Shafer, 1976], a frame of discernment Ω is defined

as the set of all hypothesis in a certain domain. A basic belief assignment (BBA),

called also mass function, is a function m that defines the mapping from the power

set of Ω to the interval [0, 1] and verifies:

m : 2Ω → [0, 1] (2.15)
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Uncertainty

Figure 2.13: Relation of belief and plausibility and their negation.

∑

A∈Ω

m(A) = 1, m(∅) = 0 (2.16)

The quantity m(A) can be interpreted as a measure of the belief that is committed

exactly to A, given the available evidence. A subset A ∈ Ω with m(A) > 0 is called

a focal element of m. The major difficulty relies on assigning belief masses to

each hypothesis. The objective is to model expert opinions (in our case classifier

predictions) using belief functions. Most of existing modeling depends on the

considered application.

In DS theory, two functions of evidence can be deduced from m and its associated

focal elements, belief function Bel and plausibility function Pl.

The belief function, called also credibility, is defined as a mapping Bel : 2Ω → [0, 1]

that satisfies Bel(∅) = 0, Bel(Ω) = 1 and for each focal element A, we have:

Bel(A) =
∑

∅6=B⊆A

m(B) (2.17)

Bel(A) represents the measure of the total belief committed to a set A. The

plausibility of A, Pl(A), represents the amounts of belief that could potentially be

placed in A and defined as: The plausibility of A, Pl(A), represents the amounts

of belief that could potentially be placed in A and defined as:

Pl(A) =
∑

A∩B 6=∅

m(B) (2.18)

The duality between belief and plausibility is depicted through the following equa-

tion and graphically illustrated in Figure 2.13:

Pl(A) = 1− Bel(Ā) ∀ A ⊆ Ω (2.19)

The difference Pl(A) − Bel(A) quantifies the uncertainty about a specific hy-

pothesis A. The belief can be considered as a kind of loose lower limit to the

uncertainty. On the other hand, the plausibility is viewed as a loose upper limit

to the uncertainty.
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2.5.4.2 Combination process

The Dempster-Shafer theory offers a framework to combine different items of ev-

idence from different sources. We propose in the following the major rules devel-

oped and used in the fusion community working with belief functions. We refer

the reader to the survey of [Martin et al., 2008] for other combination rules.

Unnormalized Dempster’s combination rule

Let m1 and m2 be two mass functions on Ω induced by two independent items

of evidence. We denote m1−2 = m1 ⊕m2, the combined mass distribution issued

from the combination of the two distributions m1 and m2 and defined as follows:

m1−2(A) = m1 ⊕m2 =
∑

B∩C=A

m1(B)m2(C) (2.20)

Normalized Dempster’s combination rule

The mass functions m1 and m2 are combined under the normalized Dempster’s

combination rule [Shafer, 1976] as follows:

m1−2(A) = m1 ⊕m2 =

{ ∑
B∩C=A m1(B)m2(C)

1−k
, ∀ A ⊆ Ω, A 6= ∅

0 if A = ∅
(2.21)

where k =
∑

B∩C=∅m1(B)m2(C) represents the degree of conflict between the two

sources. If k is close to 0, the two sets of masses are not in conflict, while if k is

close to 1, they are almost in conflict and they can not be combined.

2.5.4.3 Decision making

Main decision processes are through the maximum of credibility or the maximum

of plausibility. In the first case, we choose the hypothesis whose credibility (belief)

is the higher. In other words, we choose subsets whose implications for this subset

are maximal. In the second case, we choose the hypothesis with the highest plau-

sibility. That’s to say, we choose the subset that contradicts the less the whole

available information.

Another possibility is to choose the hypothesis with the maximum of pignistic

probability proposed by [Smets, 1989]. Let m be a mass function, its pignistic

probability distribution is defined as follows:

Pm(A) =
∑

∅6=B⊆Ω

m(B)
|A ∪B|

B
∀ A ⊆ Ω (2.22)



Chapter 2. State-of-the-art 57

2.5.4.4 Discussion

The Dempster-Shafer (DS) theory provides an interesting and useful computa-

tional scheme for representing and integrating (or fusing) uncertain information.

DS theory has been widely used in many applications, e.g., information fusion and

pattern recognition [Atrey et al., 2010]. However, high computational cost of evi-

dence combination is a drawback which is often raised against the Dempster-Shafer

theory. It is well known that the computational cost of evidence combination

increases exponentially with respect to cardinality of the frame of discernment.

Unfortunately, this is precisely the case one must handle for the considered mul-

timedia collections. To encounter this limitation, authors in [Younes et al., 2009]

proposed a method to reduce the complexity of manipulating and combining mass

functions, when belief functions are defined over a suitable subset of the frame

of discernment equipped with a lattice structure. This approach was applied for

multi-label classification based on the Evidential KNN classifier [Denoeux, 1995].

For a problem with k classes, this method reduces the complexity from 22
k

to

3k + 1. Although such a reduction is impressive, the problem remains intractable

when k is above 10, that is quite common for a multimedia classification prob-

lem, for which k can reach 100 or 1000. To the best of our knowledge, there is

no attempt to apply Dempster theory for a multimodal image annotation in the

context of social media for a large dataset (≈ 20k images) and a large variety of

categories simultaneously (scene, event, objects, image quality and emotions ≈ 99

classes).

2.6 Image Databases & Evaluation Campaigns

In this section, we describe the datasets used to evaluate the effectiveness and

the robustness of the proposed approaches for multimodal image annotation in

the context of social media. We employ real-world social images with human

annotated tags. Images and their associated user tags are downloaded from the

photo sharing website Flickr2. All the datasets used for evaluation, except NUS-

WIDE dataset [Chua et al., 2009], are created within photo annotation challenges

in evaluation campaigns.

2.6.1 Evaluation Campaigns

Often, multimedia annotation systems are evaluated on different test collections

with different performance measures, which makes the comparison to state-of-the-

art approaches limited. Benchmarking campaigns counteract these tendencies and

2http://www.flickr.com
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establish an objective comparison among the performance of different approaches

by posing challenging tasks and by distributing test collections and measures. In

this thesis, we focus on multimodal image annotation. In the following, we present

in details two evaluation campaigns for image annotation: ImageCLEF [Clough

et al., 2010] and PASCAL VOC [Everingham et al., 2010].

• Image Retrieval in Cross-Language Evaluation Forum

(ImageCLEF) [Clough et al., 2010] is an initiative for evaluating

cross-language image retrieval systems in a standardized manner. It was

launched for the first time in 2003 as part of the Cross-Language Evaluation

Forum (CLEF). The main goal of ImageCLEF is to support the advances

of the field of visual media analysis, indexing, classification, and retrieval,

by developing the necessary infrastructure for the evaluation of visual

information retrieval systems operating in both monolingual, cross-language

and language-independent contexts. A major outcome of ImageCLEF has

been the creation of a number of publicly accessible evaluation resources.

These benchmarks have helped researchers to develop new approaches

to visual information retrieval and automatic annotation by enabling the

performance of various approaches to be assessed. Tasks and datasets

used in ImageCLEF changed over the years while the objectives broadly

remained the same:

– To investigate the effectiveness of combining textual and visual features

for crosslingual image retrieval.

– To collect and provide resources for benchmarking image retrieval sys-

tems.

– To promote the exchange of ideas to help improve the performance of

future image retrieval systems.

To meet these objectives a number of tasks have been organized by Image-

CLEF within two main domains: (1) medical image retrieval and (2) non

medical image retrieval, including historical archives, news photographic col-

lections and Wikipedia pages. Broadly speaking the tasks fell within the

following categories: ad-hoc retrieval, object and concept recognition, and

interactive image retrieval.

– Ad-hoc retrieval. This simulates a classic document retrieval task:

given a query describing an user information need, find as many relevant

documents as possible and rank the results by relevance. In the case

of cross-lingual retrieval the language of the query is different from the

language of the metadata used to describe the image.

– Object and concept recognition. Although ad-hoc retrieval is a

core image retrieval task, a common precursor is to identify whether
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an object is contained in an image (object recognition), assign labels

to an image (automatic image annotation) or classify images into one

or many classes (image classification). In this thesis, we are specifi-

cally interested in the Visual Concept Detection Task (VCDT)

which is a multi-label classification challenge. It aims at the automatic

annotation of a large number of images with multiple annotations.

– Interactive image retrieval. Image retrieval systems are commonly

used by people interacting with them. Interaction in image retrieval

can be studied with respect to how effectively the system supports users

with query formulation, query translation (in the case of crosslingual

IR), document selection and document examination.

A major contribution of ImageCLEF has been to collect a variety of datasets

for use in the different tasks. Since 2003, ImageCLEF has created (and/or

acquired and adapted) almost a dozen document collections to support its

various evaluation tasks. Some collections are freely available for download

from the ImageCLEF website3, while others are subject to signing an end-

user agreement with the task organizers and/or original copyright holders.

We describe, in Section 2.6.2, the collections which are used to evaluate our

methods.

• The Pattern Analysis Statistical Modeling and Computational Learning Vi-

sual Object Classes (PASCAL VOC) challenge [Everingham et al., 2010]

is a benchmark in visual object category recognition and detection, provid-

ing the vision and machine learning communities with a standard dataset

of images and annotations, and standard evaluation procedures. Organized

annually from 2005 to present, the challenge and its associated dataset has

become accepted as the benchmark for object detection. The PASCAL4

Visual Object Classes (VOC) Challenge consists of two components: (i) a

publicly available dataset of images and annotation, together with standard-

ized evaluation software; and (ii) an annual competition and workshop.

2.6.2 Image Databases

Specifically, five publicly available Flickr image datasets are used to evaluate the

proposed approaches. Although all these datasets are collected from Flickr website,

they differ significantly based on many criterion summarized in Table 2.6. In

the following, we present a brief description of each dataset considered in this

dissertation.

3http://www.imageclef.org/
4PASCAL stands for pattern analysis, statistical modeling and computational learning. It is

an EU Network of Excellence funded under the IST Program of the European Union.
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race

Figure 2.14: PASCAL VOC’07 dataset example images with their associated
user tags (below) and labels (on top).

• The PASCAL VOC’07 dataset contains around 10, 000 images annotated

according to 20 concepts. These concepts describe vehicles (car, bus, bi-

cycle...), animals (cat, dog, horse...), household (sofa, tv/monitor, chair ...)

and persons. In the PASCAL VOC challenge, this dataset is not multimodal

and only images are available. [Guillaumin et al., 2010] adapt the PASCAL

VOC’07 dataset to be used in multimodal image annotation. Using the im-

age identifiers, they downloaded the user tags for the 9, 587 images that were

still available on Flickr at time of download, and assumed complete absence

of tags for the remaining ones. By keeping the tags that appear at least

8 times (a minimum of 4 times in the training and test sets), the dataset

results with a list of 804 unique tags. Example images with their associated

user tags and class labels are given in Figure 2.14.

• ImageClef’105 is used to refer to the subset of the MIR-Flickr that was

used within the ImageCLEF 2010 photo annotation challenge [Nowak and

Huiskes, 2010]. The dataset consists of 8, 000 images for training and 10, 000

for testing belonging to 93 concepts. The concepts describe the scene (in-

door, outdoor, landscape, mountains ...), objects (dog, car, animal, person,

building..), event (holidays, sport, work ...) and image quality (overexposed,

underexposed, blurry).

5This dataset is available at: http://www.idmt.fraunhofer.de/de/projects/expired_

publicly_financed_research_projects/photo_annotation.html#tabpanel-4

http://www.idmt.fraunhofer.de/de/projects/expired_publicly_financed_research_projects/photo_annotation.html#tabpanel-4
http://www.idmt.fraunhofer.de/de/projects/expired_publicly_financed_research_projects/photo_annotation.html#tabpanel-4
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Figure 2.15: ImageCLEF’11 dataset example images with their associated
user tags and labels.

• ImageClef’11 is the same dataset used within the ImageCLEF 2010 photo

annotation challenge [Nowak et al., 2011] with a small difference is that im-

ages are annotated with 99 concepts. In 2011, nine novel sentiment concepts

were added to the test collection (happy, funny, euphoric, nice, cute ..). In

this collection there are 1, 386 tags which occur at least in 20 images, with

an average total number of 8.94 tags per image.

• ImageClef’12 is used to refer to the subset of the MIR-Flickr that was

used within the ImageCLEF 2012 photo annotation challenge [Thomee and

Popescu, 2012]. It consists of 15, 000 images for training and 10, 000 for

testing belonging to 94 concepts. The concepts are very diverse and range

across categories such as people (e.g. teenager, female), scenery (e.g. lake,

desert), weather (e.g. rainbow, fog) and even impressions (e.g. unpleasant,

euphoric). The dataset contains 45, 408 unique tags.

Concepts in ImageCLEF datasets are variable. They contain both well de-

fined objects such as ”lake, river, plants, trees, flowers”, as well as many

rather ambiguously defined concepts such as ”winter, boring, architecture,

macro, artificial, motion blur”, however, those concepts might not always be

connected to objects present in an image. This makes it highly challenging

for any recognition system.
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Figure 2.16: ImageCLEF’12 dataset example images with their associated
user tags and labels.

• The NUS-WIDE dataset includes 269, 648 images crawled from Flickr, and

about 425, 000 unique original tags. Authors [Chua et al., 2009] of this

dataset set several rules to filter the original tag set. They delete tags with

too low frequency (number of occurrence in the dataset is less than a thresh-

old). The low frequency threshold is set to 100. They also remove tags that

does not exist in WordNet. At the end, they provide a list of 5, 018 unique

tags. Let’s note that original tags are also available. Images in NUS-WIDE

corpus are manually labeled to provide ground-truth for 81 concepts. This

forms 161, 789 images for training, and 107, 859 images for testing. The 81

concepts are divided into six categories: people, objects, scene or location,

event or activities, program and graphics.

A summary of dataset statistics is presented in Table 2.6. Considered datasets are

very challenging because of the large variation on view size, illumination, scale,

deformation and clutter, as well as complex backgrounds. As we can see, all

images were collected from Flickr but they differ significantly. For instance, the

number of classes and unique tags varies from a dataset to another. Moreover,

PASCAL VOC’07 dataset contains only object classes (e.g. dog, car, sofa, train

...) while ImageClef and NUS-WIDE concepts are very diverse and range across

different categories. In fact, ImageClef contains classes such as people (e.g. male,

female), quality issues (e.g. overexposed, underexposed, blurry...), nature (e.g.
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Tags :
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Figure 2.17: NUS-WIDE dataset example images with their associated user
tags and labels.

lake, beach), weather (e.g. rainbow, fog) and even sentiments (e.g. unpleasant,

euphoric).

2.7 Conclusions

In this chapter, we presented a survey of the state-of-the-art approaches on mul-

timodal image annotation. Our aim was not to provide an exhaustive survey of

the state-of-the-art approaches, nor to state that an approach is better than the

others, but to introduce the different categories of approaches for image annota-

tion in the context of social media. We underlined the benefits and limits of each

of them. Indeed, handling imperfections in multimodal image annotation seems

to be crucial to enhance annotation performances. Although, the problem of tag

Table 2.6: Dataset statistics: number of images (train/test), tags, labels and
untagged images for both PASCAL VOC’07 and NUS-WIDE datasets.

# images # unique tags # labels # Untagged images
PASCAL VOC’07 5k/5k 804 20 3,764
NUS-WIDE 160k/100k 425k 81 0
ImageClef’10 8k/10k 21k 93 1,740
ImageClef’11 8k/10k 21k 99 1,740
ImageClef’12 15k/10k 45k 94 2,128
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imperfection is known in community contributed collections, it still not well ex-

ploited to enhance tag-based applications. In fact, most of the state-of-the-art tag

representations based on classic BOW representation do not take into account tag

imperfections and fail to capture semantic tag relatedness. Moreover, even if a

wealth of research has been proposed to enhance the quality of tags in other tasks

such as tag ranking and refinement, there is no precise identification and definition

of noisy tags. We believe that to handle such imperfections, some definitions need

to be stated clearly. Most of approaches do not take into account explicitly imper-

fections at decision level while combining different classifier predictions. From the

state-of-the-art theories that deal with imperfections in data fusion process, the

Dempster-Shafer (DS) theory seems to be an interesting framework. It provides an

interesting and rigorous computational an theoretical scheme for representing and

integrating (or fusing) imperfect information. DS theory has been widely used in

many applications, e.g., information fusion and pattern recognition [Atrey et al.,

2010]. However, high computational cost of evidence combination is a drawback

which is often raised against the Dempster-Shafer theory. It is well known that the

computational cost of evidence combination increases exponentially with respect

to cardinality of the frame of discernment. Unfortunately, this is precisely the case

one must handle for the considered multimedia collections.
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3.1 Introduction

As introduced in Chapter 1, the textual information issued from the tag modality

in the context of social media, represents an interesting source of information for

semantic image annotation. However, many studies have shown that tags represent

an interesting source of information for semantic image annotation but subject to

many imperfections [Kennedy et al., 2006; Chua et al., 2009; Sigurbjörnsson and

van Zwol, 2008; Cantador et al., 2011].

This thesis aims at annotating multimedia content and images in particular. Tags

that will be considered as relevant are those that are directly related to the visual

content for multimedia image annotation and others are considered as imperfect

and noisy. Our first objective is to clearly identify and define these imperfections

in the context of image annotation. Second, our goal is to handle these aspects

at the representation level in order to enhance image annotation performances.

In this context, we propose two novel signatures to handle such imperfections

for tag-based image annotation. Both signatures are based on the BOW repre-

sentation [Salton and McGill, 1983] with the same coding scheme. This latter

consists in three steps: Tag modeling, feature coding and pooling. In order to

build robust BOW based tag-signatures, we rely on the locality-constrained cod-

ing method [Liu et al., 2011b] that has proved to be effective for visual features

when paired with max-pooling aggregation. These tag-based signatures have been

published in [Znaidia et al., 2012b,d, 2013b]. We rely on semantic similarities to

achieve the coding step for tag-based signature generation. Computing seman-

tic similarities requires the use of external knowledge resources. In our work,

we consider two knowledge resources: WordNet and Flickr to compute semantic

similarities between words.

The rest of this chapter is organized as follows. In Section 3.2, we identify and

define different tag imperfections in the context of content-based annotations of

social media. A review of the state-of-the-art on semantic similarities between

words is presented in Section 3.3. We introduce respectively, in Section 3.5 and

Section 3.6, the Soft Bag-of-Concepts signature and the Local Soft Tag Coding

signature, to handle tag imperfections and improve tag-based image annotation.

Adopted semantic similarity measures for our models are detailed in Section 3.7.

Section 3.8 reports our experimental results on several publicly datasets. The

chapter is concluded in Section 3.9.
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3.2 Textual Imperfections in the context of Mul-

timedia Annotation

As introduced in Chapter 1, tags in online social media services, such as Flickr1,

represent an important resource for facilitating multimedia information processing

and management for future search and sharing. The main purpose of the users

being to make their picture popular to the public, it conflicts with an objective

description of image semantics [Ames and Naaman, 2007]. Consequently, only

a few set of user generated tags are related to the image semantic visual con-

tent [Kennedy et al., 2006]. Indeed, as explained in Chapter 1, the motivations of

tagging are multiple and can be classified according to the ‘sociality,” and the

“function,” of the incentives for tagging images as shown in Figure 3.1. This is

consistent with the categorization of tags presented in [Cantador et al., 2011]. Tags

can be categorized into four categories: Content-based, Context-based, Subjective

and Organizational. In our case, only tags that are Content-based are considered

as relevant for semantic image annotation.

In order to identify and define tag imperfections, we present in Figure 3.2 an

example of images from Flickr and their associated user tags. Let’s take the ex-

ample in Figure 3.2(a). If tags such as “bear, panda, baby, endengeredspecies”

are relevant to describe the image content, other tags like “giant, precious” are

ambiguous. Meanwhile, several other tags that can be useful, such as “tree, an-

imal”, are missing. In Figure 3.2(b), only the tag “lotus” actually describes the

image visual content while others such as “confucianism, buddha, breathtaking,

taoism” are noisy. Moreover, if we consider the concepts lexical variability and

the hierarchy of semantic expressions, tags such as “flower, leaf ” also need to be

added. In Figure 3.2(c), tags such as “religious, god, pray, jesus” are noisy. In

Figure 3.2(d), tags such as “longexposure, efs1022, abigfave” are actually related

1http://www.flickr.com/

Figure 3.1: A taxonomy of tagging motivations in Flickr [Ames and Naaman,
2007].

http://www.flickr.com/
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california bear usa baby 
public giant zoo cub panda 
sandiego bears zhen 
precious debut pandas 
endangeredspecies

(a)

china easter southafrica 
christ lotus buddha xian 
christianity soe breathtaking
 stellenbosch taoism 
tangdynasty naturesfinest
 bluelotus confucianism 
alopen nelumbonucifera 
macromania budhhism
 fineartphotos platinumphoto 
anaweomeshot 
flickrdiamond
onlythebestare 
excellentphotographeraward
s theperfectphotographer

(b)

white art love church girl 
beautiful saint point religious 
photography peace child veil 
dress god pray jesus dana 
first holy gloves taylor 
edwards communion tracie 
diamondclassphotographer

(c)

sanfrancisco longexposure 
bridge light sunset cars fog 
clouds twilight stream 
goldengate efs1022 abigfave

(d)

Figure 3.2: An example of images from Flickr website with their associated
user tags. Most of tags are noisy and only few tags are related to image visual

content.

to the user subjectivity. Based on consensual definitions of the different forms

of information imperfections [Bloch, 2008], we identify and define three types of

textual imperfections in the context of content-based image annotation:

• Imprecision: Imprecision is related to the lack of knowledge and accuracy

on the available textual information. In our case, it corresponds to tags for

which there is no precise definition and thus can be interpreted differently

depending on the context where they appear. In the case of textual informa-

tion, the imprecision is highly related to linguistic issues such as homonymy,

synonymy, different lexical forms of alternate spellings, and misspellings of

tags. For example, tags such as “giant, precious” in Figure 3.2(a) are im-

precise.

• Uncertainty: Uncertainty is related to the degree of truth of a piece of

information. In our case, it is related to the relevancy of a given tag to

describe the image content. Indeed, many tags are irrelevant to describe

the image content due to the motivation and the subjectivity of the users

during the tagging process which leads to the problem of uncertainty about

the relevance of the tag in describing the image visual content. For example

tags such as “sandiego” in Figure 3.2(a) are uncertain.

• Incompleteness: Incompleteness is related to the absence of a piece of in-

formation. In our case, it corresponds to missing tags, i.e. tags that are
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relevant to the visual content but does not appear in the user tag list. For

example tags such as “animal, tree” are missing in Figure 3.2(a). We distin-

guish two types of incompleteness: partial and full. Partial incompleteness

corresponds to the case where the image has some tags and others are miss-

ing while full incompleteness represents the case where the image has no tag.

In this chapter, only the partial incompleteness is considered while the full

incompleteness will be handled in Chapter 4.

To improve the accuracy of social media retrieval and management systems, these

textual imperfections need to be taken into account. Imprecise and uncertain

tags will introduce false positives into user’s search results and thus degrading

precision and recall rates in tag-based applications, while incomplete tags will

make the actually related images inaccessible.

In this chapter, we propose two novel tag-based signatures bearing such imperfec-

tions. Both proposed methods need a coding step of a given tag over a codebook

which requires a word semantic similarity measure. Given two input words (tags

or concepts), our objective is to automatically derive a score that indicates their

similarity at a semantic level, thus going beyond the simple word matching method

traditionally used in the classic BOW model.

3.3 Semantic Similarity between Words

Measures of semantic similarity between words are widely used in Natural Lan-

guage Processing. Measuring the semantic similarity (or distance) between words

is a process of quantifying the relatedness between the words and which often im-

plies the use of background knowledge (external resources of information). These

information sources can be: (i) lexical resources such as dictionaries, thesauri and

semantic networks (e.g. WordNet); (ii) collections of documents such as corpus

(e.g. Wikipedia), and (iii) the web.

In the literature on semantic similarity, some authors [Budanitsky and Hirst, 2006]

emphasize a difference between measures of semantic similarity and measures

of semantic relatedness. Semantic relatedness is a more general notion of the

relatedness of concepts, while similarity is a special case of relatedness that is tied

to the likeness of the concepts. Semantic relatedness refers to human judgments

of the degree to which a given pair of concepts is related. For example, “cars” and

“gasoline” would seem to be more closely related than, say, “cars” and “bicycles”,

but the latter pair are certainly more similar because both are “wheeled vehicle”.

There exists a significant body of literature on semantic similarity measures [Meng

et al., 2013; Panchenko, 2013]. Most approaches use an external source of infor-

mation to derive a similarity score between words. Prior research suggests that
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Figure 3.3: Categorization of the state-of-the-art methods on semantic simi-
larity measures.

measures based on these sources of information are complementary [Heylen et al.,

2008; Panchenko, 2013]. According to the type of the source of information, we

categorize them into two groups: Knowledge-based and Corpus-based measures

(presented in Figure 3.3).

3.3.1 Knowledge-Based Measures

Knowledge-based measures, also called thesaurus-based, use the structure of se-

mantic networks in order to compute semantic similarity measures between words.

An example of semantic network is WordNet, which is organized in such a way

that synsets2 and word-senses are the nodes of the network, and relations among

the synsets and word-senses are the edges of the network. WordNet has been com-

monly used to measure semantic similarity among words since it has the inherent

advantages of being structured in the way of simulating human recognition behav-

iors [Fellbaum, 1998]. On the whole, similarity measures based on WordNet can

be grouped into four categories: Path length based, Information Content based,

Feature based and Hybrid based measures as presented in Table 3.1. Based on

the difference between similarity and relatedness, knowledge based measures are

categorized into two groups: measures of semantic relatedness and Pure seman-

tic similarity measures. The first group includes Feature based measures while

the second includes the rest of semantic similarity measures detailed in Table 3.1.

Path based approaches are based on the path length linking both concepts in the

“IS-A” taxonomy of WordNet. Although these approaches are simple they are not

so accurate and ignore most of the structure of WordNet. Information content

approaches attempt to avoid problems of path-based approaches by incorporating

2The basic object in WordNet is a set of strict synonyms called a synset. By definition, each
synset in which a word appears has a different sense of that word.
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an additional, and qualitatively different, knowledge source, namely information

from a corpus. These approaches depend on the amount of information that both

concepts have in common. These approaches are based on the intuition of [Resnik,

1995] that states that “the more information two concepts share in common, the

more similar they are, and the information shared by two concepts is indicated by

the information content of the concepts that subsume them in the taxonomy”. The

information content of a concept c can be quantified as the negative of the log

likelihood,−log(p(c)), where p(c) is the probability of encountering an instance of

concept c. Feature-based approaches are based on the assumption that “concepts

with more common features and less non common features are more similar”. For

example, [Banerjee and Pedersen, 2003] define common features by counting the

number of shared words (overlaps) in the word senses of the concepts, as well as in

the glosses of words that are related to those concepts according to the dictionary.

These related concepts are explicitly encoded in WordNet as relations, but can be

found in any dictionary via synonyms, antonyms, or also references provided for

a word sense.

3.3.2 Corpus-Based Measures

Corpus-based measures try to identify the degree of similarity between words using

statistical information derived from a large corpus. Since the creation of corpus

databases is expensive, labor-intensive and time-consuming, the Web which is

an information resource with virtually unlimited potential sometimes used as a

corpus. Thus, in Figure 3.3, we distinguish two types of Corpus-based similarities:

corpus-based and web-based similarities. They are computed differently but both

are based on the distributional hypothesis [Harris, 1954] which states that “words

that appear in the same contexts tend to be semantically similar”. As a pioneering

work, [Schutze, 1993] presented a word as a vector in a multidimensional space of

its context in a corpus. For example, the word “Tennis” can be represented as a

vector composed of its context defined with words such as “ball, player, racket,

sport ...”. The meaning of words in this vector is modeled using spatial word

proximity. In the simplest case, the distributional analysis relies on the context

of window approach. It is based on the hypothesis that words are semantically

similar if they appear within similar context windows. In fact, for each word w in

the dataset, each window W centered around this word is collected and added to

the vector together with its frequency (the total number of times we saw a window

W around the word w on the whole corpus).
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3.3.2.1 Distributional Corpus-Based Measures

Corpus-based measures compute the similarity between words based on statistics

derived from a specific corpus. The most successful approaches in this category are

based on the Vector Space Model (VSM) [Salton and McGill, 1983] and include the

Syntactic Distributional Analysis (SDA) proposed by [Grefenstette, 1994] based

on the hypothesis that “Words are semantically similar if they appear in similar

syntactic contexts”. Syntactic analysis allows to know which words modify other

words and to develop contexts from this information. Starting from the hypothesis

that “Words with similar meaning repeatedly occur closely”, [Lund and Burgess,

1996] propose the Hyperspace Analogue to Language model (HAL). The basic

idea is to develop a matrix of word co-occurrence values for a given vocabulary.

A “window” of a certain size ( e.g. ten words) is defined which is slided over the

corpus. The co-occurrence values are inversely proportional to the number of words

separating a specific pair of words. The Latent Semantic Analysis (LSA) [Landauer

and Dutnais, 1997] is based on the idea that the totality of information about

all the word contexts in which a given word does and does not appear provides

a set of mutual constraints that largely determine the similarity of meaning of

words and set of words to each other. Recently, several prominent approaches

based on Wikipedia were proposed. In [Strube and Ponzetto, 2006], a measure

is proposed by exploiting the article abstracts and the network from Wikipedia

categories. In fact, given a word pair, the Wikipedia pages which they refer to

are retrieved. By extracting the categories the pages belong to, the category

tree is determined. Finally, the semantic similarity between words is computed

based on the extracted page and the found paths along the category taxonomy.

In [Gabrilovich and Markovitch, 2007], authors proposed the Explicit Semantic

Analysis (ESA) where a concept is represented in a vector space of all Wikipedia

articles. Specifically, in ESA, a word is represented as a column vector in the TD-

IDF matrix of Wikipedia article text. The semantic similarity between two words

can be obtained using the cosine similarity between their corresponding vectors. A

comprehensive comparison of some corpus-based measures can be found in [Ferret,

2010].

3.3.2.2 Distributional Web-Based Measures

Web-based measures use the Web as a corpus in order to compute semantic simi-

larity measures. They use Web text search engines in order to compute the similar-

ities. They rely on the number of times words co-occur in the documents indexed

by an information retrieval system. Many web-based similarities have been pro-

posed in the literature including the Point-wise Mutual Information Information

Retrieval (PMI IR) [Turney, 2001], Normalized Google Distance (NGD) [Cilibrasi

and Vitanyi, 2007], WebJaccard, WebDice and WebOverlap [Bollegala et al., 2007].
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Table 3.1: Classification of measures of semantic similarity and relatedness based on WordNet and their relative advantages/disad-
vantages.

Type Method Principle Advantages/disadvantages

Path based

[Rada et al., 1989], [Wu
and Palmer, 1994], [Lea-
cock and Chodorow, 1998]

Function of path length
linking concepts in the
“IS-A” taxonomy of
WordNet

(+) simplicity,
(−) “IS-A” relations only,
(−) No so accurate and ignore
most of the structure of Word-
Net.

Information Content (IC)
based

[Resnik, 1995], [Lin, 1998],
[Jiang and Conrath, 1997]

Depends on the amount
of information that both
concepts have in common.
The more common the
concepts share, the more
they are similar.

(+) Uses empirical information
from corpora,
(−) “IS-A” relations only,
(−) Need an additional corpus.

Hybrid based [Zhou et al., 2008]

Takes the path length be-
tween two concepts and IC
value of each concept as its
metric.

(−) Weights of both metrics need
to be settled.

Feature based
(Relatedness)

[Tversky, 1977], [Hirst
and St Onge, 1998],
[Banerjee and Pedersen,
2003], [Patwardhan, 2003]

Concepts with more com-
mon features and less non
common features are more
similar.

(+) Measures relatedness of all
parts of speech more than IS-A
relations,
(+) Uses empirical knowledge
implicit in a corpus of data,
(−) Needs complete attribute
features.
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In particular, web-based measures rely on the number of documents (hits) hi
returned by the system for the query “wi”, the number of hits hij returned by

the query “wi AND wj” and M the number of documents indexed by the system.

The Point-wise Mutual Information using data collected by information retrieval

(PMI-IR) was suggested by [Turney, 2001] as an unsupervised measure for the

evaluation of the semantic similarity of words. It is based on word co-occurrence

using counts collected over very large corpora (e.g. the Web). Given two words

wi and wj, the PMI-IR is measured as:

PMI − IR(wi, wj) = log
p(wi, wj)

p(wi) ∗ p(wj)
= log

hij∑
i,j hij

hi∑
i,j hij

∗ hj∑
i,j hij

≈
hij

hi ∗ hj
(3.1)

where p(wi, wj) is the joint probability (the probability that wi and wj co-occur),

and p(wi) and p(wj) represents respectively the probability that wi and wj occur

in the documents returned as a result to the query.

[Cilibrasi and Vitanyi, 2007] propose the Normalized Google Distance (NGD)

based on Google page counts and it is defined as:

NGD(wi, wj) =
max(log(hi); log(hj))− log(hij)

log(|M |)−min(log(hi); log(hj))
(3.2)

where hi denotes the number of pages containing wi, and hij denotes the number

of pages containing both wi and wj, as reported by Google results. Words with

the same or similar meanings in a natural language sense tend to be “close” in

the sense of Normalized Google Distance, while words with dissimilar meanings

tend to be farther apart. [Bollegala et al., 2007] propose three similarity measures

based on search engine, defined as follows:

WebJaccard(wi, wj) =

{

0 if hi,j ≤ c ,
hi,j

hi+hj−hi,j
otherwise,

(3.3)

Given the scale and noise in Web data, it is possible that two words may appear on

some pages purely accidentally. In order to reduce the adverse effects attributable

to random co-occurrences, [Bollegala et al., 2007] set the WebJaccard coefficient

to zero if the page count for the query (wi and wj) is less than a threshold c.

WebDice(wi, wj) =

{

0 if hi,j ≤ c
2∗hi,j

hi+hj
otherwise,

(3.4)

WebOverlap(wi, wj) =

{

0 if hi,j ≤ c
hi,j

min(hi,hj)
otherwise,

(3.5)
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A comprehensive study of web-based similarity measures is presented in [Lindsey

et al., 2007]. Recently, [Popescu and Grefenstette, 2011] proposed to apply the

ESA approach (see Section 3.3.2.1) for Flickr website. In fact, this approach uses

Flickr as a corpus and each Flickr tag is considered as a concept and thus can be

represented as a vector of co-occurring Flickr tags.

3.3.3 Discussion

As we have seen, there is a significant literature on semantic similarity measures.

Both models proposed in this chapter require a semantic similarity for the tag

modeling step. For that, we rely on the use of two different knowledge resources:

WordNet and Flickr to define two semantic similarities. WordNet is used to derive

a Knowledge-based similarity measure while Flickr is exploited to derive a distri-

butional Web-based measure. Both knowledge sources are different in the nature

of the language used and the type of conceptual relations that we can extract.

In fact, WordNet offers a variety of different semantic relations to weave its word-

senses together. Although the vocabulary of WordNet is very extensive, most of

tags used to annotate social media are not included in WordNet. Consequently, it

has important limitations due to the resource limited coverage. Moreover, in some

WordNet-based semantic similarities, important semantic relations are discarded.

In order to overcome this shortcoming, Flickr is exploited. Since tags are added by

users in Flickr Website, this second data source covers a larger panel of concepts

than WordNet and is inherently multilingual.

As presented in Section 3.3, many similarity measures have been proposed in the

literature to determine the semantic relation between two words. The question is

how can we reason about and evaluate the superiority of a semantic measure over

other ones?

Generally, there is no standard to evaluate the effectiveness of a semantic similarity

measure. On the whole, three kinds of methods are identified in the literature to

evaluate semantic similarities [Meng et al., 2013].

• The first one is a theoretical examination of a semantic measure for those

mathematical properties thought desirable, such as whether it is a metric,

whether its parameter projections are smooth functions, and so on.

• The second one is to compare measures by calculating their coefficients of

correlation with human judgments [Zhou et al., 2008; Seco et al., 2004a].

Insofar as human judgments of similarity and relatedness are deemed to be

correct by definition.
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• The third approach is to evaluate the measures with respect to their perfor-

mance in the framework of a particular application [Budanitsky and Hirst,

2006]. In other words, if we have a framework which requires a measure

of semantic similarity, we compare the performance of different measures to

find the most effective one, while holding all other aspects of the system

unchanged.

While comparison with human judgments is the ideal way to evaluate a measure

of similarity or semantic relatedness, it is difficult in practice to obtain a large set

of reliable and objective judgments and it is extremely time-consuming and labor-

intensive. It is especially true in the context of social media where there exists

a huge number of tags and obtaining human judgments on such data would be a

very large task. The third approach seems to be an alternative in our tag-based

annotation system which requires a semantic similarity to compute Tag Models.

An experimental evaluation of WordNet based similarities is conducted to evaluate

the most effective similarity for multimodal image annotation and presented in

Section 3.8.2.1.

3.4 Problem Formalization

Once tag imperfections are well identified and defined clearly in the context of

social media, we focus on how to handle these imperfections to improve image

annotation. The problem posed in this chapter is an instance of the problem

formulated in Chapter 2-Section 2.2 where only the tag modality is exploited.

Our goal is thus to build a tag-based classifier with a decision function defined as

follows:
f : T → Y

f(Xt
l) = ŷl

(3.6)

f associates a label set ŷl to each unseen image Il from the test dataset T using

only textual information issued from the tag modality.

In this chapter, only textual features are used for training and testing. Therefore,

we propose two approaches to compute tag-based signature, Xt
i =

(

xt
1, ...,x

t
M

)

,

while handling tag imperfections. The first model, called Soft Bag-of-Concepts

(Soft-BoC), represents a new variant of the TF-IDF of the Vector Space Model

(VSM) [Salton and McGill, 1983], where term weights are computed using a thresh-

olded semantic similarity between tags and annotation concepts. The second

model is based on the BOW model [Salton and McGill, 1983] with a locality-

constrained coding method [Liu et al., 2011b] for tags.

Given an image with its associated tags, tag-based signatures for both approaches

are built in three steps as shown in Figure 3.4.
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Figure 3.4: Overview of the proposed approaches: Soft-BoC and LSTC. Given
an image with its associated tags, tag-based signatures for both models are built

in three steps: (1) tag modeling, (2) coding and (3) pooling.

1. Tag Modeling

Let’s note that tag modeling is different from tag signature and it consists

in representing each tag from the dataset as a weighted vector of dictionary

words. This vector is called a Tag Model where weights represent seman-

tic similarity scores between the tag and dictionary words using an external

knowledge resource as illustrated in Figure 3.5. Given a textual codebook

W t =
(

wt
1, ...,w

t
M

)

, each tag tk from the dataset is represented with a vector

Sk =< s(tk,w
t
1), ..., s(tk,w

t
M) >, where s(tk,w

t
i) is the semantic similarity

score between the tag tk and the ith word wt
i in the textual codebook. In

our case, the semantic similarity designates a pair <Information resource,

similarity measure>. An example of semantic similarity used in our mod-

els is <WordNet, Wu&Palmer> by using WordNet as knowledge resource

and Wu&Palmer [Wu and Palmer, 1994] as a similarity measure. The two

signatures are generic in the sense they can rely on any semantic similarity.

2. Coding

Once similarity measures are computed, we perform a coding for each tag

in order to achieve an assignment step which consists in activating only

dictionary words which are semantically similar to the considered tag and

others are set to zero. Given an image Ii with a set of associated tags

Ti = {t1i, t2i, ...tli}, each tag from the set Ti is transformed into a Tag
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Model vector as presented above. The process is repeated for all the tags

associated with the image. The number of words in the dictionary which

are semantically similar to a given tag is fixed differently in each model.

For the Soft-BoC approach, the number of similar tags is determined with a

threshold (diameter of the neighborhood) on the semantic similarity scores

while for the LSTC signature, this number is set to a neighborhood window

size. Both are optimally determined with a cross-validation on the training

dataset. The obtained vectors after the coding step are called Tag-related

codes.

3. Pooling

In order to obtain the final tag-signature vector, all the tag-related codes

within one image are aggregated with a pooling function such as the average,

the sum or the maximum functions.

In our case, separate signatures are generated considering each similarity measure.

Knowledge Resource 

     0,5 ...   0,2     ….....         0 

     0,7 ...    0       ….....      0,4 

       

 

      0   ...  0,3    ….....      0,8 

 

……
 

Compute semantic similarity between 

Tags and codebook entries 

Collection’s Tags  Tag Models 

Codebook  

…......... 

…......... .. 

.. 

Figure 3.5: Illustration of the Tag Modeling process. Each tag from the
collection is represented with a vector of scores defined as the semantic similarity

measures between the tag and the codebook words.
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3.5 Soft Bag-of-Concepts Signature

In this section, we propose a novel textual signature, namely the Soft Bag-of-

Concepts (Soft-BoC) illustrated in Figure 3.6. The model represents a new vari-

ant of the TF-IDF of the Vector Space Model (VSM) [Salton and McGill, 1983],

where term weights are computed using a thresholded semantic similarity measure

between tags and annotation concepts. This model is inspired from a model that

we can call componential space model, such as conceptual vector [Schwab et al.,

2002], which describes the meaning of a word by its atoms, components, attributes,

behavior, related ideas. Specifically, the proposed Soft-BoC signature of an image

is defined as an histogram of annotation concepts. Each bin of this histogram

represents the accumulation of the contribution of each tag from the image tags

toward the underlying concept according to a predefined semantic similarity. In

the rest of this section, we give a detailed description of this tag-based signature

by describing the three steps described before: tag modeling, coding and pooling.
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Figure 3.6: Illustration of the Soft-BoC signature which represents a new
variant of the the TF-IDF, where term weights are computed using a thresholded

semantic similarity between tags and annotation concepts.
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Figure 3.7: An example of image with its associated tags. Tags such as “straw-
berry, sugar, spoon, frutella, fresa” will be associated with the concept “food”

which will be relevant to describe the image content. The Term Frequency is
illustrated with the histogram in the bottom. The bin value for the concept
“food” is higher than others. The image will be described with this concept.

3.5.1 Tag Modeling

In this approach, the words of the codebook W t =
(

wt
1, ...,w

t
M

)

, introduced in

Chapter 2-Section 2.2, are the annotation concepts (labels). Consequently, each

tag is represented with a vector whose size is the number of annotation concepts

of the considered dataset. The key idea is to project the tags of a given image in

the annotation concept space using a semantic similarity measure. Each tag will

be associated with one or more concepts according to its semantic similarity with

the concepts. As illustrated in Figure 3.7, tags such as “strawberry, sugar, spoon,

frutella, fresa” will be associated with the concept ”food” which will be relevant

to this image. In this manner, the concept voted by several tags is then considered

appropriate to describe the image content. This is in clear contrast to the classic

BOW approaches where the relatedness of textual concepts is simply ignored as

word terms are statistically counted using simple word matching.

3.5.2 Coding/Pooling

As detailed in Chapter 2, in the classic TF-IDF, an hard assignment is performed

to determine the presence or the absence of a concept (1 or 0) in order to com-

pute TF and IDF values. This hard assignment is generally achieved using simple
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word-to-word matching. Nevertheless, tags are different from traditional classi-

fication labels. In fact, tags are in different languages, with different spellings

and meanings. This idea has been investigated in the literature on the differences

between folksonomies and traditional taxonomies or ontologies, e.g, [Quintarelli,

2005]. In general, tags are freely chosen keywords leading to a big variability

in the set of user tags. Therefore, it is more appropriate to proceed on a soft

assignment in which a tag is matched to a concept with some confidence value.

This confidence value represents the semantic similarity between a tag tk and a

concept Ci. Ideally, if the user tagged his photo with a concept included in the

set of classification concepts, this value is equal to 1. Else, it is a value between

1 and 0 depending on how similar they are. In this way, we take into account

the similarity score between tags and annotation concepts. We introduce the soft

Term Frequency (soft-TF) and the soft Inverse Document Frequency (soft-IDF)

which are computed as follows:

soft− TFi,j =

∑

tk∈Tj
Fα(s(tk, Ci))

∑

Ci∈C

∑

tk∈Tj
Fα(s(tk, Ci))

(3.7)

soft− IDFi = log(
|I|

∑

Ij∈I

∑
tk∈Tj

Fα(s(tk,Ci))

ni,j

) (3.8)

where Tj represents the set of tags associated with an image Ij. C and I represent

respectively the set of annotation concepts and images in the dataset, ni,j is the

number of occurrences of the considered concept Ci in image Ij. And Fα represents

a strictly increasing function defined by:

Fα : [0, 1] −→ [0, 1]

s(tk, Ci) 7−→

{

0 if s(tk, Ci) < α

s(tk, Ci) if s(tk, Ci) ≥ α

(3.9)

where s(tk, Ci) represents the semantic similarity between a tag tk and a concept

Ci. For an image Ij with a set of user provided tags Tj, the tag-based signature

vector Xt
j =

(

xt
1, ...,x

t
M

)

, called soft − TF − IDF , is obtained by the product

of the soft Term Frequency (soft-TF) and the soft Inverse Document Frequency

(soft-IDF) values, as follows:

xt
i = (soft− TFi,j) ∗ (soft− IDFi) (3.10)

In case Fα(s(tk, Ci)) is equal to 1, we found the same formula as the classic

TF − IDF . To compute the Soft-BoC signature, we consider only concepts that

are similar to the considered tag in a neighborhood defined with a threshold. α

represents the diameter of this neighborhood and is determined by cross-validation.
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Jaguar, XJ Nadal, 2007 US Open obama 

Figure 3.8: An example of images with sparse Flickr user tags.

3.6 Local Soft Tag Coding Signature

In this section, we propose a novel textual descriptor, namely the Local Soft Tag

Coding (LSTC), based on the BOW model [Salton and McGill, 1983]. This ap-

proach is motivated by the fact that images have only a set of few tags which

needs to be completed to enrich the image content description. In fact, authors

in [Sigurbjörnsson and van Zwol, 2008] studied a representative snapshot of Flickr

consisting of 52 million photos to analyze how users tag their photos and what type

of tags they are providing. Looking at the photo-tag distribution, they observed

that the majority of photos is being annotated with only a few tags: more than

64% of photos have only 2 or 3 tags. An example of images with sparse Flickr user

tags is presented in Figure 3.8. As we can see, only few tags are used to tag images

which make them inaccessible in tag-based retrieval systems. In order to overcome

this shortcoming, we propose the LSTC based on the locality constraint coding

which allows to enrich the image description even with few tags. For example

the tag “Nadal” co-occurs frequently with tags such “tennis, play, match ...” in

social media such as Flickr. By exploiting this information, images tagged with

“Nadal” can be enriched with their semantically similar tags and make them more

accessible for tag-based search and management. As illustrated in Figure 3.9, the

LSTC signature is obtained in three steps: Tag Modeling, Coding and Pooling.

3.6.1 Tag Modeling

Contrary to the Soft-BoC signature where dictionary entries represent the set of

annotation concepts, the LSTC signature is based on a predefined dictionary build

with the most frequent tags in the collection (tags that appear at least N times).
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The idea is to enrich image content description by expanding initial tag list using

tags from the collection. Thus, the Tag Modeling step consists in mapping each tag

in the collection to the tag dictionary using semantic similarity measures. Once

Tag Models for all tags in the collection are computed, we perform a coding step

to map a tag to only its semantically related tags.
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Figure 3.9: Illustration of the LSTC signature.
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Figure 3.10: Illustration of the tag coding process. Only semantically similar
tags to the tag “panda” , such as “panda, zoo, animal”, are kept while others

are set to zero.
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3.6.2 Coding/pooling

Contrary to the classic BOW representation where an hard assignment is used,

we rely on the locality-constrained coding method [Liu et al., 2011b] in order to

activate only semantically related tags and set others to zero. Given an image Ij
with its associated tags, each tag tk is mapped to only its L-nearest tags under a

similarity measure.

zk,i =

{

s(tk,w
t
i) if wt

i ∈ N t
L(tk) ,

0 otherwise,
(3.11)

wherewt
i represents the dictionary entries andN t

L(tk) denotes the L-nearest neigh-

bor tags of tk, under the considered semantic similarity denoted by s(tk,w
t
i).

L represents the window size of this neighborhood and is determined by cross-

validation on the training dataset. Figure 3.10 illustrates the coding step. In this

example, only semantically similar tags of the tag “panda”, such as “panda, zoo,

animal”, are activated while others are set to zero.

Given the tag-related codes within one image, a max-pooling is performed in

order to obtain the final tag-signature vector. The superiority of max-pooling

over other pooling methods, combined with such coding scheme, can be explained

probabilistically as being the lower bound of the probability of occurrence of a tag

with the image [Liu et al., 2011b].

For the pooling step, for an image Ij with a set of user provided tags Tj, the

element of the tag-based feature vector Xt
j =

(

xt
1, ...,x

t
M

)

are defined as follows:

xt
i = max

tk∈Tj

zk,i ∀ i = 1, ...,M (3.12)

In our case, separate signatures are generated considering each similarity measure.

3.7 Adopted Semantic Similarities

Both similarity measures used to compute Tag Models are detailed below.

WordNet-based Similarity

WordNet concepts are structured as synsets (sets of synonyms) that are arranged

as a hierarchy whose main structural axis is defined by conceptual inheritance. Wu-

Palmer measure [Wu and Palmer, 1994] gives a similarity between two concepts

as their distance in the WordNet hierarchy as shown in Figure 3.11. Given two
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Root

Figure 3.11: The Wu&Palmer
similarity.

Figure 3.12: The “maximum
sense pair” illustration.

concepts C1 and C2, this similarity measure considers the position of these two

concepts in the taxonomy relatively to the position of the most specific common

concept C3. As there may be multiple parents for each concept, two concepts can

share parents by multiple paths. The most specific common concept C3 is the

common parent related with the minimum number of ‘IS-A‘ links with concepts

C1 and C2 .

simwup(C1, C2) =
2 ∗N3

N1 +N2 + 2 ∗N3

(3.13)

where N1 and N2 is the number of ‘IS-A‘ links from C1 and C2 respectively to the

most specific common concept C3, and N3 is the number of ‘IS-A‘ links from C3

to the root of the taxonomy. It scores between 1 (perfect similarity) and 0 (no

similarity).

A word may have several senses, so it may appear in multiple synsets. While

computing similarity between two words w1 and w2, all the senses for a word are

considered against all the senses of the second. An example is given in Figure 3.12,

where w1 has two senses S11 and S12; w2 has three senses S21, S22 and S23. Given

all the senses of w1 are considered against all the senses of w2, we will get 6 sense

pairs similarity values. The sense pair with the maximum similarity value is called

the “maximum sense pair” and the similarity is computed as follows:

simWordNet(w1, w2) = max
{

simwup(s1, s2) ; (s1, s2) ∈ syns(w1) × syns(w2)
}

,

(3.14)

where simwup is the Wu-Palmer similarity.
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Flickr-based Similarity

In [Popescu and Grefenstette, 2011], an adaptation of the TF-IDF model to the

social space is proposed in order to compute the social relatedness of two tags.

Let S be the matrix of size N ×M defined by:

S(i, j) = users(ti, tj)× log(
userscollection

userscollection(tj)
) , (3.15)

where ti is the target tag, tj is an element of the codebook, users(ti, tj) is the

number of distinct users who associate the tag ti to the tag tj among the top

results returned by the Flickr API for ti; userscollection(tj) is the number of distinct

users from a pre-fetched subset of Flickr users that have tagged photos with tag

tj, and N is the number of unique tags associated to photos of the dataset and M

is the size of the codebook. Note that some of the tags can have entries on both

dimensions of matrix S. In the current work, we consider a fixed set of tags, that

is a tag-codebook.

Relying on this matrix, a Flickr model for a given tag ti is proposed in [Popescu

and Grefenstette, 2011] as the following vector of weights:

wi = [wi,1, wi,2, ..., wi,M ]T , (3.16)

with wi,j the normalized social weight defined by:

wi,j =
S(i, j)

max{S(i, k) , k = 1, ...,M}
. (3.17)

Thereby, given two tag-Flickr models wi and wj, we compute the contextual

similarities between their related tags ti and tj using the cosine similarity:

simFlickr(ti, tj) =
wT

i wj

||wi||||wj||
. (3.18)

3.8 Experimental Evaluation

As part of this chapter, we evaluate both proposed models for tag-based image

annotation. Only the tag modality is used here to generate tag-based features.

Multimodal-based image annotation experiments within a multimodal framework

combining visual and textual features, are presented in Chapter 6 and Chapter 7.

To evaluate the effectiveness and the robustness of the proposed methods on user-

provided noisy/missing tags, we employ the real-world social images with human
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annotated tags. Specifically, five publicly available Flickr3 image datasets are used

for the experiments. We refer the reader back to Section 2.6.2 for dataset statistic

details (number of images, number of labels, number of tags...).

Our tag models depend on two parameters: the WordNet similarity and the neigh-

borhood window/diameter which need to be studied. First, we evaluate different

WordNet similarity, in Section 3.8.2.1, to choose empirically the best one for our

tag-based image annotation task. In Section 3.8.2.2, we study the influence of the

neighborhood window/diameter on tag-based image annotation performance. Sec-

ond, we present results obtained using the Soft-BoC signature in Section 3.8.2.3

and those of the LSTC signature in Section 3.8.2.4. Finally, a comparison to the

state-of-the-art is presented in Section 3.8.2.5.

3.8.1 Experimental Setup

For the Soft-BoC approach, the tag signature size is equal to the number of class

labels. For the LSTC approach, the textual codebook is obtained by keeping

only the N most frequent tags in each dataset. For all datasets except for the

NUS-WIDE, we do not perform any pre-processing to clean tags.

For PASCAL VOC’07 dataset, we use the experimental setting of [Guillaumin

et al., 2010]. A dictionary of size 804 is obtained by keeping only tags that appear

at least eight times. In the case of ImageClef’10 and ImageClef’11 datasets, we

keep tags that were used at least three times in the collection, resulting in a

textual codebook of 2, 500 tags. For the ImageClef’12 dataset, we keep only tags

that appear at least four times leading to a tag dictionary of size 5, 134.

For the NUS-WIDE dataset, among the 425, 059 unique tags, there are 9, 325 tags

that appear more than 100 times. Authors of [Chua et al., 2009] propose to check

these tags against WordNet and keep only tags that exist resulting in a dictionary

of size 5, 018.

Dataset dictionary sizes are summarized in Table 3.2. Tag frequency represents the

minimum tag frequency (number of occurrences of a tag in the whole dataset) used

as a threshold to build the dictionary. Tag models are computed for each dataset

using the two chosen similarities detailed in Section 3.7. The tag-based signature

vector of an untagged image is set to zero. Let xi be a signature vector of an

image Ii, we train for each concept Cj a classifier that can associate this concept

with its feature vector. For this, we use N binary linear kernel based Support

Vector Machines (SVM) [Cortes and Vapnik, 1995] (One-Versus-All). Given a

training dataset L = {(xi, yi) | yi ∈ {−1,+1}}Ni=1 where the yi is either +1 or −1,

3http://www.flickr.com/
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indicating the class to which the point xi belongs. We want to find the maximum-

margin hyperplane that divides the points having yi = +1 from those having

yi = −1. Any hyperplane can be written as the set of points x satisfying

w · x− b = 0, (3.19)

where (·) denotes the dot product and w the normal vector to the hyperplane.

The parameter b
‖w‖

determines the offset of the hyperplane from the origin along

the normal vector w. The distance between these two hyperplanes is equal to
2

‖w‖
. So to find the optimal hyperplane we need to minimize ‖w‖, i.e, to solve the

following optimization problem which deals with the parameters w and b:

arg min
(w,b)

1

2
‖w‖2 subject to yi(w · xi − b) ≥ 1 (i = 1, . . . , n) (3.20)

This optimization problem is known as the primal problem formulation.

3.8.2 Experimental Results

In our experiments, we measure performance using the Average Precision (AP)

criterion for each class, and also using the mean AP (mAP) which computes the

mean over the average precision of the image ranking per label.

3.8.2.1 Evaluation of WordNet semantic similarities

In this section, we aim at comparing the performance of the tag-based image an-

notation using different WordNet similarities in order to choose the one which

gives better performance score. We use WordNet::Similarity [Pedersen et al.,

Table 3.2: Summary of dictionary size for the considered datasets. Tag fre-
quency represents the minimum tag frequency threshold used to build the dic-

tionary.

PASCAL VOC’07 NUS-WIDE
Dictionary size 804 5,018
Tag frequency 8 100

ImageClef’10 ImageClef’11 ImageClef’12
Dictionary size 2,500 2,500 5,134
Tag frequency 3 3 4
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Table 3.3: Comparison for WordNet similarities on the ImageClef’12 dataset
using the LSTC signature in terms of mean Average Precision (mAP).

path lch wup res lin jcn hso lesk vector
mAP 27.7 28.3 31.0 26.3 27.1 26.2 27.5 27.9 28.2

2004] and WordNet-3.04 to construct a semantic similarity measure between words.

Specifically, we consider three measures based on path lengths: lch [Leacock and

Chodorow, 1998], wup [Wu and Palmer, 1994] and path [Rada et al., 1989], three

based on additional information content: res [Resnik, 1995], lin [Lin, 1998] and

jcn [Jiang and Conrath, 1997] and three other feature-based measures: hso [Hirst

and St Onge, 1998], lesk [Banerjee and Pedersen, 2003] and vector [Patward-

han, 2003]. We choose, the ImageClef’12 dataset for comparison using the LSTC

signature.

From the results presented in Table 3.3 for the nine considered similarities, we

can see that the Wu&Palmer similarity (wup), surprisingly, performs better than

other similarity measures. This is not the case in some evaluations [Sebti and

Barfroush, 2008; Seco et al., 2004b] where semantic similarities are compared to

human judgment. Performances of similarity measures are highly related to the

concerned task such as word sense disambiguation [Altintas et al., 2005] or the

domain of application such as biomedical [Garla and Brandt, 2012]. Given these

results, we select the Wu&Palmer similarity for the WordNet-based similarity for

the rest of this dissertation.

3.8.2.2 Influence of the neighborhood diameter/window

In this section, our goal is to study the influence of the neighborhood diameter

(respectively window) in the classification accuracy for the Soft-BoC (respectively

for the LSTC) signature.

We choose the ImageClef’10 dataset to study the influence of the neighborhood

diameter corresponding to the parameter α defined in Equation 3.9. We split

training data into 20-fold with cross-validation. Figure 3.13 shows the classifica-

tion accuracy in terms of mean Average Precision (mAP) on the ImageClef’10

while varying the neighborhood diameter size from 0.6 to 0.95 with a step of 0.05.

The bottom curve is obtained with a cross validation on the training dataset to

determine the optimal diameter value. The top curve represents the obtained

scores on the testing dataset. As we can see the best classification score on the

training dataset (the bottom curve) reaches 28.5% of mAP score and is obtained

with a value of diameter equal to 0.8. This value achieves the best classification

score (32% mAP) on the test dataset.

4http://wordnet.princeton.edu/wordnet/download/

http://wordnet.princeton.edu/wordnet/download/
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The number of semantically similar tags in the LSTC signature is an important

parameter. Our goal in this experiment is to analyze the impact of neighborhood

window size. We tried various values of L ∈ {1, 5, 10, 50, 100, 1000} on the Im-

ageClef’11 dataset. Figure 3.14 shows the influence of the neighborhood size for

locality coding in classification accuracy on ImageClef’11 dataset. The top curve

represents results obtained with Flickr similarity while the bottom one corresponds

to WordNet similarity. Clearly, restricting the neighborhood leads to better tag

coding results than considering the nearest neighbor for hard assignment or all

the codewords for the soft assignment. The optimal size of the neighborhood has

been estimated by cross-validation on the training dataset leading to a number of

5 (respectively 50) neighboring codewords for the WordNet (respectively Flickr)

tag-based similarity measures and is also empirically validated in Figure 3.14.

3.8.2.3 Evaluation of the Soft Bag-of-Concepts Approach

In this section, we evaluate the performance of the Soft-BoC signature for tag-

based image annotation. As a baseline, we consider the TF-IDF model [Salton

and McGill, 1983] to evaluate the effectiveness of handling tag imperfections. A

separate tag-based signature is obtained using each of the two considered semantic

similarities detailed in Section 3.7. Our first set of experimental results, presented

Figure 3.13: Classification accuracy in terms of mean Average Precision
(mAP) on the ImageClef’10 while varying the neighborhood diameter size based
on the Soft-BoC signature. The bottom curve is obtained with a cross valida-
tion on the training dataset to determine the optimal diameter value. The top

curve represents the obtained scores on the testing dataset.
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Figure 3.14: Performances of the LSTC signature when changing the neigh-
borhood window size in the tag-feature-space on the ImageClef’11.

Table 3.4: Evaluation of the Soft-BoC signature for tag-based image anno-
tation in terms of mean Average Precision (mAP%) on PASCAL VOC’07 and

NUS-WIDE datasets.

Method PASCAL VOC’07 NUS-WIDE

TF-IDF(WordNet) 26.6 11.5
TF-IDF(Flickr) 46.8 37.4

Soft-BoC(WordNet) 32.9 21.9
Soft-BoC(Flickr) 49.3 38.7

Soft-BoC(WordNet&Flickr) 49.6 39.4

in Table 3.4 compares the classification performances based on tag-signatures in

terms of mean Average Precision (mAP) on PASCAL VOC’07 and NUS-WIDE

datasets. Results on the ImageCLEF datasets (ImageClef’10, ImageClef’11 and

ImageClef’12) are presented in Table 3.5. For the five considered datasets, we

can observe that the Soft-BoC signature outperforms the classic TF-IDF. For the

PASCAL VOC’07, the mAP score increases by more than 6% (respectively 3%)

with WordNet (respectively with Flickr) similarity. The effectiveness of this model

is confirmed with the NUS-WIDE dataset with which we obtain a gain of 10% in

terms of mAP scores using WordNet and an improvement of 2% by exploiting

Flickr similarity.

As one can observe, on the ImageCLEF datasets (ImageClef’10, ImageClef’11

and ImageClef’12), the Soft-BoC signature obtains better results than the classic

TF-IDF. For ImageClef’10 dataset, an improvement of 10% in terms of mAP
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Table 3.5: Evaluation of the Soft-BoC signature for tag-based image annota-
tion in terms of mean Average Precision (mAP%) on the ImageCLEF datasets

(ImageClef’10, ImageClef’11 and ImageClef’12).

Method ImageClef’10 ImageClef’11 ImageClef’12

TF-IDF (WordNet) 14.1 14.7 16.3
TF-IDF (Flickr) 15.3 13.6 23.9

Soft-BoC (WordNet) 24.2 29.2 20.8
Soft-BoC (Flickr) 26.8 32.8 27.2

Soft-BoC (WordNet&Flickr) 29.6 34.6 27.9

scores is achieved with WordNet similarity and 11% with Flickr similarity. For

ImageClef’11 dataset, we obtain a gain of 15% (respectively 19%) with WordNet

(respectively Flickr). An improvement of about 4% is obtained both with WordNet

and Flickr for the ImageClef’12 dataset.

In this experiment, our goal is to illustrate the effectiveness of the Soft-BoC signa-

ture. We show in Figure 3.15 several images with their associated user tags on the

left and the Soft-BoC signature on the right. In the first example, concepts such

as “reflection, water, city, night”, which are relevant to describe the image visual

content, are successfully captured. The obtained signature shows a high value for

the bin associated with these concepts. In the second image, most of tags are

subjective, however our approach is able to predict some relevant concepts such as

“portrait”. In the third example, again the proposed model successfully discovers

most of the relevant concepts such as “sun, flower, reflection” and even “plant”

concept is inferred by exploiting Flickr similarity.

To summarize, the Soft-BoC signature outperforms the classic TF-IDF with a

superiority of the Flickr similarity compared to the WordNet similarity. This can

be explain by the limitations of WordNet due to the resource’s limited coverage, to

its availability in English only. In fact, although the vocabulary of WordNet is very

extensive, lots of tags are not included in WordNet. To show the complementarity

of WordNet and Flickr resources we present, in the last row of Tables 3.4 and 3.5,

the obtained results with their combination. The latter is computed by averaging

the classification predictions obtained using WordNet and Flickr. Obviously, we

can observe that the combination of both resources gives better results than using

only WordNet or Flickr for all the considered datasets. Obtained results confirm

our hypothesis that both knowledge sources enable the capture of complementary

facets of tags and their combination improves the quality of predicted tags.
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Tags :

 365days, day316,
Selfportrait, candy, 
Closeup, mouth, 
a piece of me, christ
mas Holiday, christm
as candy, red 
lipstick, green, white

Tags :

light, dark, 
sun, flower, gerbera, 
macro, yellow, 
orange, FlickrsBest

Tags :

 London, uk, night, 
skyline, river, thames
, lights, Bridge, 
Southwark Millenium
,city, skyscraper, hig
hrise, England, 
longexposure, 
15 secs ...

Figure 3.15: Several images with their associated user tags on the left and
the Soft-BoC signature on the right

3.8.2.4 Evaluation of the Local Soft Tag Coding Approach

In this section, we evaluate the performance of the LSTC signature for tag-based

image annotation. We compare our model to various coding scheme: hard coding,

Soft coding (WordNet) and Soft coding (Flickr). In the hard coding, only tags

which are present in the codebook are set to one, while others are set to zero. It

corresponds to a tag-to-tag matching process. In the case of the soft coding, all

codebook entries have values which are the similarity between tags and codewords.

There is no selection of semantically similar tags and the size of the neighborhood

window is set to the size of the considered tag dictionary. Table 3.6 presents a

comparison between various coding scheme for the PASCAL VOC 07 and NUS-

WIDE datasets. Obtained results on the ImageCLEF datasets (ImageClef’10,
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ImageClef’11 and ImageClef’12) are presented in Table 3.7. As shown, our method

based on local soft tag coding strategy outperforms both the hard coding and the

soft assignment coding, indicating the effectiveness of the “early cut-off ” strategy,

which removes the adverse impact of unreliable tags that are semantically far and

thus decreasing tags uncertainty.

For the PASCAL VOC 07 dataset, we observe that our two tag-versions (WordNet

and Flickr) relying on the local soft assignment coding outperform the hard assign-

ment based coding scheme (51.1% vs 43.3% of mAP scores). For the NUS-WIDE

dataset, our model gives again better results than the other coding schemes. We

obtain a gain of 10% of mAP scores compared to the hard coding and improve-

ment of 12 to 15% of mAP compared to the soft assignment. The effectiveness

of our model is confirmed on the ImageCLEF datasets. For the ImageClef’10

dataset, our model gives better results than the other coding schemes. For the

ImageClef’11 dataset, the LSTC approach outperforms both the hard and soft

coding. As shown in Table 3.7, a gain of ≈ 15% of mAP is achieved compared

to the hard coding. The proposed LSTC signature using WordNet improves the

obtained mAP score of the soft coding by ≈ 9%. An improvement of 2% of mAP

is obtained for the ImageClef’12.

To summarize, our LSTC signature outperforms both the hard coding and soft

coding schemes for the five considered datasets. Unlike the classic BOW coding

where a tag is mapped to only itself (tag-to-tag matching), the LSTC approach

allows the soft contribution of its L-semantic nearest tags in a dictionary under a

similarity measure. Consequently, the initial user’s tag list can be enriched with

semantically related tags which tackle the incomplete tag problem. Moreover,

considering only the L-nearest tags produces a selection effect, which removes the

adverse impact of unreliable tags that are semantically far and thus decreasing tag

uncertainty. Our tag representation is based on a predefined dictionary built with

the most frequent tags. Thereby, we eliminate rare, misspelled and subjective tags

to handle a part of the imprecision and uncertainty aspects of tags.

Table 3.6: Evaluation of the LSTC signature for tag-based image annotation
in terms of mean Average Precision (mAP%) on PASCAL VOC’07 and NUS-

WIDE datasets.

Coding Scheme PASCAL VOC’07 NUS-WIDE

Hard assignment 43.3 30.1
Soft assignment (WordNet) 43.0 25.4
Soft assignment (Flickr) 51.0 28.3

LSTC (WordNet) 49.4 40.4
LSTC (Flickr) 51.6 39.2

LSTC (WordNet&Flickr) 51.8 42.0
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Table 3.7: Evaluation of the LSTC signature for tag-based image annota-
tion in terms of mean Average Precision (mAP%) on the ImageCLEF datasets

(ImageClef’10, ImageClef’11 and ImageClef’12).

Coding Scheme ImageClef’10 ImageClef’11 ImageClef’12
Hard assignment 22.5 21.3 30
Soft assignment (WordNet) 27.9 25.9 25
Soft assignment (Flickr) 35.8 23.8 28.0

LSTC (WordNet) 35.4 34.7 31
LSTC (Flickr) 37.6 37.0 32.9

LSTC (WordNet&Flickr) 38.8 38.1 34.1

3.8.2.5 Comparison to the state-of-the-art

In this section, we compare our two models to the state-of-the-art approaches on

the five considered datasets with an uniform experimental setup. Detailed results

are shown in Table 3.8, the best mAP score for each dataset is marked in bold.

Obviously, we can observe that for the five considered datasets, our models give

in most cases better results than the state-of-the-art methods with a superiority

for the LSTC approach.

On the PASCAL VOC’07, both proposed tag models outperform the state-of-

the-art methods [Guillaumin et al., 2010; Wang et al., 2009a]. These methods

are based on classic BOW representation where the textual features are defined

as an histogram of occurrences of image tags towards a predefined dictionary, as

detailed in Chapter 2. The BOW representation has shown to be effective in text

categorization which is not the case in the context of social media. In fact, images

generally have only few tags [Sigurbjörnsson and van Zwol, 2008] which need to

be enriched. Thus, the use of external knowledge resources is crucial and effective

to expand the initial tag list of the image and to enrich its semantic description.

Moreover, we introduce the locality coding constraint in the BOW representation

which shows to be more suitable than the hard coding for tags in the context of

social media.

On the NUS-WIDE dataset, the proposed method in [Gao et al., 2010], gives a low

mAP score compared to both proposed models and the one of [Wang et al., 2010a].

Our results on the NUS-WIDE dataset are in line with those of [Wang et al., 2010a]

(41.9 vs 42 of mAP %) which confirms the advantage of using knowledge resources

such as WordNet, Flickr andWikipedia to handle tag imperfections. While authors

of [Wang et al., 2010a] combine information from WordNet, Flickr, Wikipedia and

co-occurrence, we use only two resources which make our signatures more simple

and efficient.
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On the ImageClef’10 dataset, our signatures outperform the method proposed

in [Li et al., 2010b]. We obtain a gain of 7% of mAP using the Soft-BoC signa-

ture. An improvement of 16% of mAP score is obtained with the LSTC approach.

Certainly, [Li et al., 2010b] uses an external knowledge resource to expand initial

tag list as we do, however these expanded tags are compared directly to concepts

to predict final concepts. This is not the case of the proposed methods where a tag-

signature is extracted and used as an input feature for an SVM classifier. Again,

handling tag imperfections shows the effectiveness of the proposed signatures.

On the ImageClef’11 dataset, our signatures outperform the state-of-the-art meth-

ods [Liu et al., 2011; Xioufis et al., 2011; Nagel et al., 2011]. The obtained results

using the proposed Soft-BoC model are in line with [Zhang et al., 2012b]. An

improvement of 4% of mAP score is achieved using the proposed LSTC signature.

The Histogram of Textual Concepts (HTC) [Liu et al., 2011] is closely related to

our Soft-BoC approach that uses WordNet as an external knowledge to capture

semantic tag relatedness. The difference is that we apply a selection procedure to

keep only semantically similar concepts to a given tag and others are discarded.

Again, we confirm the importance of the local soft coding of tags in the BOW

representation. Both [Xioufis et al., 2011; Nagel et al., 2011] are based on classic

BOW representation. There is no exploitation of an external knowledge resource

to enrich initial tag list.

On the ImageClef’12, authors in [Liu et al., 2012] use the Histogram of Textual

Concepts model. This approach outperforms our Soft-BoC signature. It consists

of a combination of 6 textual features for each concept based on the selective

weighted late fusion (SWFL) scheme, while we combine only two textual features

(WordNet and Flickr). However, we obtain the best score on this dataset using

our LSTC signature.

To summarize, the BOW model represents the dominant approach for tag repre-

sentation in the state-of-the-art methods using different variants of word frequency

(TF, TF-IDF, BOW..) and some pre-processing techniques (stemming, stop words

removal ..). As most of these tag representations are based on classic BOW model,

they do not take into account tag imperfections and fail to capture semantic tag

relatedness. In addition, the shortcoming in the classic BOW representations lies

in the valuable semantic information can not be captured. The classic BOW ap-

proach has two main drawbacks: (1) The BOW is sensitive to the changes in

vocabulary, that occur when training data can not be reasonably expected to be

representative of all the potential testing data; (2) The BOW considers only the

word frequency information, thus disregards tag semantic information.
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3.9 Conclusion and Discussion

In this chapter, we considered the problem of tag imperfections in tag-based im-

age annotation. We have introduced two novel textual signatures for tag-based

image annotation in the context of social media. We reported extensive experi-

mental results on five challenging datasets. From these results, we conclude that

the Soft-BoC signature outperforms the state-of-the-art methods on three out of

five datasets. The size of the obtained tag-signature with the Soft-BoC signature

is very compact (the number of annotation labels). Thus, this model seems to be

suitable for large scale datasets. The second proposed signature, LSTC, outper-

forms the state-of-the-art methods on the five considered datasets on the tag-based

image annotation task.

It seems interesting to focus on the resemblance and differences between the two

models of tags presented in this chapter in order to interpret how they handle

tag imperfections. Both signatures are based on the BOW representation with

a coding step for each tag in order to achieve the assignment step. This latter

consists in activating only dictionary entries which are semantically similar to the

considered tag. These neighbor tags are with a fixed window represented by the

L-nearest neighbor for the LSTC signature and represented by a diameter value

for the Soft-BoC signature.

In both approaches, considering only the L-nearest words from the textual code-

book produces an “early cut-off ” effect, which removes the impact of unreliable

tags/concepts that are semantically far and thus handling a part of the tag un-

certainty problem. Moreover, the soft contribution of nearest neighbors allows to

the initial user tag list to be enriched by adding semantically related tags. This

tackles a part of the problem of partial incompleteness.

In the LSTC approach, the tag modeling step is based on a predefined dictionary

built with the high frequent tags. In this manner, we eliminate rare, misspelled

and subjective tags to handle a part of the imprecision and uncertainty aspects

of tags. In the case of polysemy, the Soft-BoC model helps disambiguate textual

concepts according to the context. For instance, the concept of “jaguar” can

refer not only to car manufacturer but also to the “Panthera” species. However,

when the tag “jaguar” comes with a photo showing a car, correlated tags such as

“car”, “automobile” and “industry”, are very likely to be used, thereby, clearly

distinguishing the concept “jaguar” in automobile industry from that of an animal

where correlated tags can be “animal”, “panthera”, “tiger”, etc. Similarly, in the

case of synonyms, the Soft-BoC signature will reinforce the concept related to the

synonym as far as the semantic similarity measurement takes into account the

phenomenon of synonyms. Note that the introduction of the threshold in the TF-

IDF model allows, in comparison with the classic TF-IDF model, to ”share” the

weights of a tag on the word dictionary, but not all of them.
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Table 3.8: Comparison of the two proposed signatures to the state-of-the-art for image annotation, in terms of mean Average Precision
(mAP) on the five considered datasets.

Method PASCAL VOC’07 NUS-WIDE ImageClef’10 ImageClef’11 ImageClef’12

[Guillaumin et al., 2010] 43.5 – – – –
[Wang et al., 2009a] 43.5 – – – –
[Gao et al., 2010] – 18.8 – – –
[Wang et al., 2010a] – 41.9 – – –
[Li et al., 2010b] – – 22.8 – –
[Liu et al., 2011] – – – 32.1 –
[Xioufis et al., 2011] – – – 32.5 –
[Nagel et al., 2011] – – – 32.6 –
[Zhang et al., 2012b] – – – 34.7 –
[Liu et al., 2012] – – – – 33.3
Soft-BoC(WordNet&Flickr) 49.6 39.4 29.6 34.6 27.9
LSTC (WordNet&Flickr) 51.8 42.0 38.8 38.1 34.1
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In this chapter only the problem of partial incompleteness was taken into account.

The problem of full incompleteness is not yet handled and the tag-based feature

vector of an untagged image is set to zero. Thus, untagged images are considered as

belonging to the same cluster in the SVM classifier which can decrease classification

performances. To handle missing features, we can ignore untagged images from

the training set or using a process generally referred to as imputation. A simple

imputation method is just to use the average value of feature vectors of the dataset,

but there are more robust techniques based on nearest neighbors that can be

used. A novel method is presented in the next chapter in order to predict tags for

untagged images based on nearest neighbors and Belief theory.
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4.1 Introduction

Ideally, images in social media websites would have a reasonable number of user

generated tags, which would then enable other users to find and retrieve them.

Unfortunately, in practice, only a part of the uploaded pictures are tagged with

useful tags, others are not tagged at all, making a huge number of images unavail-

able in tag-based search applications. This problem is presented in both Chapter 1

and Chapter 3 as tag incompleteness. We distinguish two types of incompleteness:

partial and full. Partial incompleteness is the case where the image has some

tags and others are missing while full incompleteness represents the case where

the image has no tag. The former has been studied in Chapter 3, thus in this

chapter, we focus on the latter type of incompleteness. We are interested in the

problem of tag completion defined as the process that automatically assigns a set

of tags to an untagged image without any contribution from humans. We propose

a novel method named Tag Completion based on similar visual neighbors and Be-

lief theory to handle full tag incompleteness introduced in Chapter 3-Section 3.2.

In this chapter, we demonstrate that local tag coding is an effective coding scheme

for handling tag imperfections. We use the same coding scheme to enrich visual

neighbors tag description. Our approach differs from existing techniques on two

main points. The first difference and novelty is that we use tag corpus knowledge

(Flickr) to enrich nearest neighbors description from existing tags. The second

and most important difference is that we explicitly use the Belief theory, which is

able to handle neighbors conflict and deal with tag imperfections. This work has

been published in [Znaidia et al., 2013a].

The rest of this chapter is structured as follows. First, in Section 4.2, we present

a formalization of the problem of image tagging. In Section 4.3, we introduce the

proposed method to handle full tag incompleteness. We present the tag suggestion

dataset building in Section 4.4. Experimental results for both image classification

and tag suggestion are presented in Section 4.5. The chapter is concluded in

Section 4.6.

4.2 Problem Formalization

Automatic image tagging is defined as the process that automatically assigns a

set of tags to an untagged image. The problem of automatic tagging is usually

posed as a tag propagation procedure from visually similar images. An overview of

image tagging problem that we consider in this chapter is presented in Figure 4.1.

In the following, we introduce some notations used in the rest of this chapter.



Chapter 4. Handling Full Textual Incompleteness 103

Image

Tags

Nearest neighbors
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Tags
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Tags

Tags

Figure 4.1: An overview of image tagging problem that we consider in this
chapter. For an untagged image, given the set of its nearest neighbors with
their associated tags, our goal is to predict a set of tags that describe its visual

content.

• N v = {I1, . . . Ik} is the set of images that are the nearest visual neighbors

of an image Is,

• Ti = {ti1, t
i
2, ...t

i
l} is the set of tags associated with the neighbor image Ii,

• d(Is, I
i) is a metric to determine the similar visual neighbors,

• W t =
(

wt
1, ...,w

t
M

)

is a textual codebook.

Our goal is to predict a set of tags to describe the image content of an untagged

image Is using tag information from its nearest neighbors. The visual feature is

used for the determination of the set of visual neighbors. Moreover, the set of

visual neighbors (N v) is searched in an image dataset different from the training

dataset L introduced in Chapter 2-Section 2.2.

4.3 Proposed Tag Completion Method

Tags provided by users reflect the personal perspective and context that are im-

portant to the photo owner as introduced in Chapter 3-Section 3.2. This implies

that if another user tags the same photo, it is possible that he will use different

tags. In Flickr, one can find many photos on the same subject from many differ-

ent users, which are described by a wide variety of tags. An example of images

from Flickr on the same subject from two different users with their associated user

tags is shown in Figure 4.2. The first photo is described by its owner using the

tags “la dame de fer, paris, Tour Eiffel” while the second is tagged with “b&W,

architecture, tour, towe, paris, autumn, city, europe, france...”. Using the collec-

tive knowledge that resides in Flickr community, we can extend the description

of these photos with tags such as “Tourism, France, Landmark”. This extension



Chapter 4. Handling Full Textual Incompleteness 104

Figure 4.2: An example of images from Flickr on same subject from two
different users with their associated user tags.

provides a rich semantic description of photos. Last trends to generate tags for

images without any annotation rely on the idea that “if many distinct users use

the same tags to label visually similar images, then these tags are likely to reflect

the visual content of the annotated images”. Starting from this intuition, classic

neighbor voting algorithms use information from the nearest neighbors to predict

tags. In the original voting kNN algorithm, an image is assigned to the majority

class according to its k-nearest neighbors, independently of the relevance of each

neighbor. Moreover, the classical kNN method does not deal with ambiguity and

imprecise information due to the limitation of the probabilistic framework. We

propose a method named Tag Completion to tackle these problems of robustness

and effectiveness.

The flowchart of the proposed method using visually similar images is presented

in Figure 4.3. It consists in two main steps: (1) creating a list of “candidate

tags” from the visual neighbors of the untagged image and then (2) using them as

pieces of evidence to be combined to provide the final list of predicted tags. More

precisely, given an untagged image Is, we start by searching the k-nearest neighbors

using visual information (color, texture). Then, we compute a BOW signature for

each neighbor based on the LSTC approach presented in Chapter 3-Section 3.6.

Second, a sum-pooling operation across the BOW of the k-nearest neighbors is
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 Status  0.99 

Liberty  0.98 

NewYork 0.97 
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Figure 4.3: Overview of our Tag Completion approach based on local soft
coding and Belief theory. First, we compute a BOW signature for each neighbor
based on LSTC presented in Chapter 3-Section 3.6. Second, a sum-pooling
operation across the BOW of the k-nearest neighbors is performed to obtain
the list of the candidate tags. Finally, pieces of evidence from neighbors are

combined using Dempster’s rule to obtain the set of predicted tags.

performed to obtain the list of “candidate tags” (the high frequent). Finally, basic

belief masses are obtained for each nearest neighbor using the distances between

this pattern and its neighbors. Their fusion leads to the list of final predicted tags.

4.3.1 Finding candidate tags

Let Is be an untagged image and N v = {I1, . . . Ik} the set of its k-nearest neigh-

bors according to a given measure d, within an image database. These resources

(image database, visual features and similarity function) are not specified at this

point but their importance will be discussed later (Section 4.5.3). Each neigh-

bor image Ir has a set of tags T r = {tr1 . . . t
r
l }. Let consider as well a textual

codebook W t =
(

wt
1, ...,w

t
M

)

that has been built previously (detailed in Chap-

ter 3-Section 3.8). Each tag trp ∈ T r is then coded according to its L-nearest

neighbors in the codebook:

zp,q =

{

simFlickr(t
r
p,w

t
q) if wt

q ∈ N t
L(t

r
p) ,

0 otherwise,
(4.1)
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where N t
L(t

r
p) denotes the L-nearest neighbors of the tag trp, using the Flickr-based

similarity detailed in Chapter 3-Section 3.7. This step is motivated by the fact

that images have only a set of few tags which need to be completed to enrich their

content description. The final tag-signature vector cr = [cr1 . . . c
r
M ] of the neighbor

image Ir results from an aggregation of the maximal values of the coded tags as

follows:

crq = max
Card(T r)
p=1 (zp,q) (4.2)

Figure 4.4 shows an example which illustrates this step.

To obtain the list of “candidate tags”, a sum-pooling operation is performed on

the tag signature of the visual neighbors. For a given image, according to its k

nearest visual neighbors, we obtained the following vector C = [C1 . . . CM ] where

Cq is defined as follows:

Cq =
k

∑

r=1

(crq) ∀ q = 1 . . .M (4.3)

The tags corresponding to the entries of C = [C1 . . . CM ] with the highest values

constitutes the list of “candidate tags” that we note Ω in the next section. The

number of “candidate tags” retained is empirically set to 10 in our experiments.

Figure 4.5 illustrates with an example how to obtain the list of “candidate tags”.

0 …..    0.82  . . . . . .    1    . . . . . . . .  0.64 

0 …..    0.6   . . . . . .   0.5   . . . . . . .    0.99 

0 …..   0.58  . . . . .  . 0.98  . . . . . . . .  0.7 
 

Tags: 

 

Tennis 

Challenger 

Tennista 

 Final signature 0 . . . .  0.82  . . . . . . . . 1 . . . . . .. . .  0.99 
 

M
a

x
-P

o
o

lin
g

 

women Sport Tennis challenge 

Textual Codebook 

Figure 4.4: An example to illustrate the local soft tag coding to enrich image
description. Tags such as “Sport, Challenge” are added.
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 Candidate tags 
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Figure 4.5: An example to illustrate the aggregation of nearest neighbor tag
descriptions to obtain the list of “candidate tags”.

4.3.2 Predicting final tags

We use Belief theory to predict the final tag list. We refer the reader back to

Chapter 2-Section 2.5.4 for details about fundamentals of this theory. In the

following, we denote Ω the set of “candidate tags”. Ω represents the frame of

all possible hypotheses, called frame of discernment in Belief theory. Each pair

(I i, tj), where I
i ∈ N v, tj ∈ Ω, constitutes a distinct item of evidence regarding

the relevance of the tag tj to describe the visual content of the untagged image

Is. If Is is “close” to I i according to the relevant metric d, then one will be

inclined to believe that both images can be tagged with the same tag. On the

contrary, if d(Is, I
i) is very large, then the consideration of I i will leave us in a

situation of almost complete ignorance concerning the tag tj. Consequently, this

item of evidence may be postulated to induce a Basic Belief Assignment (BBA)

m(.|I i) over the k-nearest neighbors. mj({tj}|I
i) represents the degree of belief

associated to the tag tj, induced from the image I i, about its relevancy in

describing the image content of the untagged image. mj(Ω|I
i) represents the

degree of belief associated to the whole frame of discernment (other candidate

tags). The BBA function m(.|I i) is defined as follows:

mj({tj}|I
i) = αφj(d

i) (4.4)

mj(Ω|I
i) = 1− αφj(d

i) = 1−mj({tj}|I
i) (4.5)

where di = d(Is, I
i) is the distance between the untagged image Is and a neigh-

bor I i, α is a parameter such that 0 < α < 1. The strength of this evidence,

mj({tj}|I
i), decreases with the distance di and thus φj is chosen as a decreasing
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function verifying φj(0) = 1 and limd→∞φj(d) = 0. As presented in [Denoeux,

1995], one possible choice for the function φj can be :

φj(d) = exp(−γjd
2) (4.6)

In [Denoeux, 1995], it was proposed to set α = 0.95 and γj to the inverse of the

mean distance between images tagged with the tag tj. This heuristic yields good

results on average. These parameters can be determined also by optimizing a

performance criterion as shown in [Denoeux, 1995]. For simplicity, we choose the

first alternative. For each nearest neighbor of Is, a BBA depending on both the

tag tj and the distance between I i and Is can therefore be defined resulting in a

set of k BBAs. In order to make a decision regarding the tag assignment of Is,

these BBA can be combined using Dempster’s rule to form a final BBA for each

tag contained in this neighborhood. We note N v
j the subset of neighbors from N v

tagged with the tag tj. Let us first consider two neighbors I i and I i
′
from N v

j .

The BBA resulting from the combination of mj(.|I
i) and mj(.|I

i′), using equations

(4.4) and (4.5), is given by:

mj({tj|(I
i, I i

′

)}) = 1− (1− αφj(d
i))(1− αφj(d

i′)) (4.7)

mj(Ω|(I
i, I i

′

)) = mj(Ω|I
i) ∗mj(Ω|I

i′) = (1− αφj(d
i))(1− αφj(d

i′)) (4.8)

Considering the set N v
j of neighbors tagged with tj, the combination of the corre-

sponding BBAs can be done as follows:

mj({tj|N
v
j }) = 1−

∏

i∈N v
j

(1− αφj(d
i)) (4.9)

mj(Ω|N
v
j ) =

∏

i∈N v
j

(1− αφj(d
i)) (4.10)

Now that the BBAs are obtained from each subset of neighbors, a global BBA

for all ”candidate tags” can be obtained using the normalized Dempsters’s rule of

combination presented in equation (2.21), as follows:

m({tj}) =
1

K
(1−

∏

i∈N v
j

(1− αφj(d
i)))

∏

l 6=j

∏

i∈N v
l

(1− αφl(d
i)) (4.11)

m(Ω) =
1

K

n
∏

l=1

∏

i∈N v
l

(1− αφl(d
i)) (4.12)

where n the cardinality of Ω and K is a normalization factor. m({tj}) represents

the degree of belief associated to the tag tj, induced from all nearest neighbor

images. This step is illustrated in Figure 4.6.
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Figure 4.6: The k nearest neighbors BBA for each tag are combined using
Dempster’s rule of combination to form a final BBA for each tag.

Consequently, the credibility and the plausibility can be defined as follows:

Bel({tj}) = m({tj}) (4.13)

Pl({tj}) = m({tj}) +m(Ω) (4.14)

Let’s note A the hypothesis “that the tag tj is relevant to describe the image

content”. The credibility Bel({tj}) quantifies the total amount of justified specific

support given to the hypothesis A. We say “justified” because we include in

Bel({tj}) only the basic belief masses given to A. The plausibility Pl({tj}) can

be viewed as the maximum amount of potential specific support that could be

given to the hypothesis A. These two functions can be used to decide if the tag

is relevant to describe the image content. In our case, for fair comparison with

the state-of-the-art, we choose to sort the list of “candidate tags” by decreasing

credibility values and keep only the p tags with highest values.
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4.4 Tag Suggestion Dataset Construction

For tag suggestion task, we want to evaluate our method on the dataset used

in [Sigurbjörnsson and van Zwol, 2008; Li et al., 2009a]. It consists of 331 images

downloaded from Flickr. The selected photos are based on a series of high level

topics, for example “basketball”, “Iceland”, and “sailing”, that were chosen by the

assessors to ensure that they have the necessary expertise to judge the relevancy of

the recommended tags in the photo context. This dataset is created by manually

assessing the relevance of user tags with respect to images. Four relevance scale

are fixed: very good, good, not good, and don’t know.

An example of images, given in Figure 4.7, shows that the proposed ground truth

do not reflect perfectly the image visual content and thus former evaluation of

some systems lead to quite poor results (e.g [Li et al., 2009a] obtained below 0.15

mAP and 0.1 Precision@5). Thus, we decide to manually re-annotate the dataset

to better reflect the image visual content. For this, we follow a protocol inspired

from the collaborative annotation tool of TrecVid [Ayache and Quénot, 2007]

showing that annotating a small part of carefully chosen samples of a collection is

enough to achieve similar performance (or even better) compared to those obtained

with the entire collection. We downloaded all images available on Flickr among

the 331, resulting in a collection of 241 images. We run our method as well as

two recent ones [Wang et al., 2009a; Li et al., 2009a] on these queries to collect

potential tags. Then, we manually annotated the queries by keeping tags that

reflect the image visual content.

4.5 Experimental Evaluation

The proposed automatic image tagging approach is evaluated in the context of

two applications: image classification and tag suggestion. In the former, predicted

tags for untagged images are used to compute tag signature based on the LSTC

approach presented in Chapter 3-Section 3.6, to learn a SVM classifier. In the

latter, tags are used directly to evaluate the method performances. We start by

studying the influence of the neighborhood size in Section 4.5.3.1. For image

classification, we report results based on two widely used datasets: the PASCAL

VOC’07 and ImageClef’11. As part of this chapter, we evaluate only the tag-based

feature for the classification task in Section 4.5.3.2. For tag suggestion, a third

database is derived from the one used in [Sigurbjörnsson and van Zwol, 2008; Li

et al., 2009a] for which we created a new ground truth1, by manually annotating

241 queries as explained in Section 4.4. The database used for visual neighbors

1http://perso.ecp.fr/~znaidiaa/dataset.html

http://perso.ecp.fr/~znaidiaa/dataset.html
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Figure 4.7: Example of images from the dataset of [Sigurbjörnsson and van
Zwol, 2008]. First row represents ground truth proposed by [Sigurbjörnsson and
van Zwol, 2008] and the second row represents our annotations used as ground

truth for tag suggestion evaluation.

search contains 1.2 million socially tagged images2 extracted from Flickr. Tag

suggestion experiments are presented in Section 4.5.3.3.

4.5.1 Datasets

Both the PASCAL VOC’07 [Everingham et al., 2010] and ImageClef’11 [Nowak

et al., 2011] datasets were collected from Flickr but they differ significantly. Ta-

ble 4.1 gives an overview of the proportion of untagged images. As we can see about

38% (respectively 10%) images are not tagged at all in the PASCAL VOC’07 (re-

spectively ImageClef’11) dataset. We refer the reader back to Section 2.6.2 for

dataset statistic details (number of images, number of labels, number of tags...).

Flickr 1.2 million consists of 1.2 million socially tagged images downloaded from

Flickr having no overlap with the untagged images used for test. This collection

is used for visual neighbors searching.

4.5.2 Experimental Setup

We compared our method, for both image classification and tag suggestion exper-

iments, with two approaches: the Tag Frequency [Wang et al., 2009a] and the Tag

2http://staff.science.uva.nl/~xirong/software/tagrel/

http://staff.science.uva.nl/~xirong/software/tagrel/
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Table 4.1: Number and proportion of untagged images in training and test
sets, for the PASCAL VOC’07 and ImageClef’11 datasets.

Dataset # untagged Train # untagged Test

PASCAL VOC’07 1917 1847
(prop. total) (38.3%) (37.3%)
ImageClef’11 812 930
(prop. total) (10.1%) (9.3%)

Relevancy [Li et al., 2009a].

• Tag Frequency [Wang et al., 2009a]: for a query image, its k-nearest

neighbor images are retrieved from the auxiliary dataset (Flickr 1.2 million

dataset) using visual features. Tags associated with these nearest neighbors

are treated as an individual item in the text representation. The text sig-

nature is a normalized histogram of tag counts from the k-nearest neighbor

images.

• Tag Relevancy [Li et al., 2009a]: this approach consists in accumulating

votes from visually similar neighbors. In fact, given user-tagged image, they

first perform a kNN search to find its visual neighbors. The tag relevance

is determined as the probability that this tag being used to annotate the

neighborhood images minus the probability of the tag being used in the

entire collection. These probabilities are based on the number of occurrence

that the tag appears in the neighborhood, respectively, in the whole dataset.

For the sake of fair comparison, the same processing chain is considered, following

literature settings to ensure consistency.

Searching Visual Neighbors: The visual similarity between two images is mea-

sured by the similarity between their corresponding visual features. Though nu-

merous work have been done for visual feature representation, it is still a chal-

lenging problem for content-based image retrieval [Torralba et al., 2008]. For fair

comparison, the set of k-nearest neighbors used as a starting point of our method

is determined according to the visual similarity computed between the same visual

features as in [Li et al., 2009a]. These visual features are used in our method and

those of [Li et al., 2009a; Wang et al., 2009a] to search for visual neighbors. It

consists in a combined 64-dimensional global feature for its empirically success

in searching millions of web images [Wang et al., 2008]. It is consists of a 44-

dimensional color correlogram in the 44-bin HSV color space [Huang et al., 1997],

14-dimensional color texture moments [Yu et al., 2003], and 6-dimensional RGB

color moments. The three features are normalized to unit length and concatenated

into a final 64−dimensional signature. The dissimilarity between images is mea-

sured using the Euclidean distance between signature vectors. To look for visual
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neighbors, we adopt K-means clustering. First for indexing, the whole dataset

is divided into a set of smaller blocks by K-means clustering. Then for a query,

we find neighbors within fewer blocks closest to the query. The search space is

reduced and thus we decrease the computation cost. For both visual feature ex-

traction and neighbors searching, we use the implementation of [Li et al., 2009a].

We fixed the number of visual neighbors to 100 for both applications (this number

is discussed in Section 4.5.3.1).

BOW-signature: For the PASCAL VOC’07 textual codebook, we kept only tags

that appear at least 8 times, leading to a dictionary of size 804, following the same

setting used in [Guillaumin et al., 2010]. In the case of ImageClef’11, we kept tags

used at least 3 times, resulting into a textual codebook of 2500 tags. For local soft

coding, the neighborhood in the tag feature space was set to 50. The number of

tag neighbors has been studied in Chapter 3-Section 3.8.2.2.

Tag suggestion experiment: for each method, we select the top 5 tags as final

suggestion for each untagged image. For tag suggestion, we evaluate directly the

performance on these tags using the precision at rank 5.

Image classification experiment: we built a BOW based signature as explained

above. A one-versus-all linear kernel based SVM classifier is learned for each

method and we compare their performances in terms of mAP.

4.5.3 Experimental Results

Before presenting results to both targeted applications (image classification and

tag suggestion), we present one experiment to study how results may vary accord-

ing to the number of visual neighbors considered.

4.5.3.1 Impact of visual neighborhood size

The number of nearest neighbors is an important parameter in tag suggestion

methods based on nearest neighbors. To analyze the impact of the neighborhood

size, we tried various values of k ∈ {50, 100, 200, 500} on the PASCAL VOC’07

dataset. We compare the performances of different methods on tag-based image

classification in terms of mAP. As shown in Figure 4.8, our method outperforms the

two considered methods for all neighborhood size. Both considered methods tend

to suggest tags occurring frequently in the neighborhood and treat all neighbors

equally while the distances between the image and its neighbors are ignored. By

contrast, our method starts by predicting new tags by the LSTC approach to

enrich neighbors description and uses the distances to promote the most closed

neighbors. In fact, our method reaches the best score (55.2% mAP) with only
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Mean Average Precision (mAP) on the PASCAL VOC’07 dataset. 
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Figure 4.8: Performance on the PASCAL VOC’07 dataset in terms of mean
Average Precision with respect to the number of nearest neighbors.

100 neighbors and remains stable while varying the neighborhood size. Hence, our

method is more effective and stable.

4.5.3.2 Image classification

To show the effectiveness of the tag completion method, we compare in Table 4.2

the classification performances with and without tag completion in terms of mAP

for the PASCAL VOC’07 dataset. Results on the ImageClef’11 dataset are shown

in Table 4.3. As we can see, the proposed method improves the classification

performances for the PASCAL VOC’07 dataset with a gain of 4% in terms of

mAP while for the ImageClef’11 we observe that there is no significant improve-

ment. It can be explained by the proportion of untagged images in the PASCAL

VOC’07 dataset which reaches 38% of the whole dataset against only 10% for the

ImageClef’11 dataset. In fact, on one hand if the number of untagged images is

high it can damage the classification performances and thus suggesting tags for

untagged images helps to improve the overall classification performances. On the

other hand, we admit that not all suggested tags are relevant and far to be perfect.

Consequently, if the number of untagged images is small (only 10% of the dataset),

we can not improve significantly the classification scores, since we introduce also

some noisy tags.

Table 4.4 presents the Average Precision (AP) scores on the PASCAL VOC’07

dataset per concept, without tag completion (Baseline) and with tag completion
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Table 4.2: Classification performances on PASCAL VOC’07 in terms of mAP
with and without tag completion.

Method mAP

Without tag completion 51.6
With tag completion 55.2

Table 4.3: Classification performances on the ImageClef’11 dataset in terms
of mAP with and without tag completion.

Method mAP

Without tag completion 37.0
With tag completion 37.2

Table 4.4: The Average Precision (AP) scores on the PASCAL VOC’07
dataset per concept, without tag completion (Baseline) and with tag completion
(Our model). The best classification results for each class are marked in bold.

aeroplane bicycle bird boat bottle bus car

Baseline 75.2 52.0 66.6 47.9 26.5 48.6 61.0

Our model 82.0 52.1 69.2 54.6 26.9 54.7 64.5

cat chair cow diningtable dog horse motorbike

Baseline 68.0 23.6 50.7 13.7 65.1 73.1 62.6

Our model 68.0 26.7 55.5 20.3 68.3 76.7 64.0

person pottedplant sheep sofa train tvmonitor average

Baseline 70.8 34.3 54.7 24.5 74.6 38.2 51.6

Our model 74.1 37.7 60.8 26.9 78.3 42.0 55.2

(Our model). The best classification results for each class are marked in bold.

As we can see, our model improves the classification performances for all classes.

Only for some classes such as “bicycle, cat”, there is no improvement compared

to the baseline.

In Table 4.5, we compare the results of the textual classifier based on suggested

tags for the three methods on the PASCAL VOC’07 dataset. Results on the Im-

ageClef’11 dataset are shown in Table 4.6. By comparing results on both datasets,

we can see that the proposed method based on LSTC signature and Belief theory

gives better results than the considered methods based on only tag frequency. Our

method leads to scores 3% (respectively 1%) better than the considered methods

on ImageClef’11 (respectively PASCAL VOC’07) dataset. Over the two datasets,

our method clearly dominates the considered methods.

4.5.3.3 Tag Suggestion

In Table 4.7, we report the precision at rank 5 (P@5) on the manually annotated

241 queries. Precision at rank k is defined as the proportion of suggested tags
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Table 4.5: Classification performances on PASCAL VOC’07 in terms of mAP,
for different methods.

Method mAP

Tag Relevancy [Li et al., 2009a] 53.4
Tag Frequency [Wang et al., 2009a] 54.2
Our method 55.2

Table 4.6: Classification performances on the ImageClef’11 dataset in terms
of mAP, for different methods.

Method mAP

Tag Relevancy [Li et al., 2009a] 33.7
Tag Frequency [Wang et al., 2009a] 34.3
Our method 37.2

Table 4.7: Comparison of our system to the state-of-the-art methods on the
tag suggestion task.

Method Average Precision@5

Tag Relevancy [Li et al., 2009a] 0,349
Tag Frequency [Wang et al., 2009a] 0,387
Our method 0,413

that is relevant, averaged over all photos. We consider a predicted tag as rele-

vant with respect to a test image if the tag is from the ground truth tags of the

image. As well, we obtain competitive results in tag suggestion task. The tag

frequency [Wang et al., 2009a] results are surprisingly better than those of tag

relevancy [Li et al., 2009a] on average. It can be explained by the accuracy of

visual search which is query-dependent as observed in [Li et al., 2009a] .

An example of images with suggested tags by the three methods is illustrated

in Figure 4.9. As we can see, original tags are imperfect and most of them are

subjective. Let’s note that these tags are not used in the three methods. Obviously,

we can observe that tags predicted by our method are more relevant than those

predicted by the two considered methods. Our approach is more likely to rank

relevant tags ahead of irrelevant ones (shown in bold in Figure 4.9) which is not

the case for both tag relevancy and tag frequency methods.

4.6 Conclusion and Discussion

In this Chapter, we introduced a novel approach for tag suggestion based on

LSTC approach and Belief theory. First, a list of “candidate tags” is created

from the visual neighbors of the untagged image, using both local soft coding and
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Figure 4.9: Examples of tag suggestion by different methods. The bold font
indicates irrelevant suggested tags. Original tags are not used.

two consecutive pooling steps. Then, these tag-signatures are used as pieces of

evidence to be combined to provide the final list of predicted tags. This fusion is

based on the Dempster’s rule of combination, in accordance with the Evidential

kNN framework. Hence, both steps support a scheme to tackle with imprecision

and uncertainty, that are inherent to this type of information in a social media

context. The experiments that we carried out for image classification on two

publicly available datasets show that we obtain comparable or better results than

the state-of-the-art methods: on PASCAL VOC’07, results are improved of 3.5% of

mAP for textual-only descriptions. On ImageClef’11, our method leads to scores

that are above recent state-of-the-art methods. For tag suggestion, we manually

annotated 241 queries to propose a new benchmark to the community. For that

application as well, we obtained competitive results, with a score 2% of mAP

better than the best recent state-of-the-art method.

In fact, in the considered methods, an image is assigned to the tags with the

majority votes according to its nearest neighbors, independently of the relevance
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of each neighbor. When nearest neighbors have been tagged subjectively by users,

noisy tags will be inevitably assigned to the untagged image due to conflicts or

lack of knowledge. First, in the local soft coding step, our method gives a degree

of confidence about each tag. Second, by exploiting the distance between the

untagged image and its nearest neighbors based on Belief theory, we are able to

reduce the risk of assigning wrongly some tags to an image when the degrees of

confidence are not high. That explains the good performances of our method.

In summary, all experiments show the effectiveness and the robustness of the pro-

posed algorithm for tag-based image classification and automatic tag suggestion

for untagged images. Predicting tags for untagged images enables to tackle the

problem of full incompleteness making them accessible in tag-based image applica-

tions. So far, only tag information is used to handle tag imperfections. The visual

information is only used to search for similar visual neighbors. In the next chapter,

pixel-based information will be integrated in order to improve image annotation

performance while taking into account tag imperfections.
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5.1 Introduction

As introduced in Chapter 1, images in social media do not appear alone but asso-

ciated to various forms of textual metadata such as tags, as shown in Figure 5.1.

Our objective in this chapter is to propose a compact multimodal representation

which combines both tag and visual information. This representation need to be

more appropriate to describe a multimedia document than individual modalities,

by taking into account tag characteristics and imperfection aspects.

Describing a document containing both text and pixel-based information faces

the problem of their heterogeneous nature. The textual modality is mapped to

a dictionary that reflects a language or a sub-part of it in a particular domain,

while the visual modality is usually transformed to feature vectors that form a low-

level visual description. As presented in Chapter 2, a common approach to tackle

the problem of information heterogeneity is to process each modality separately

and combine them at the decision level (late fusion). An alternative is to work

on the description to make it more homogeneous (early fusion). A popular

representation for document description is the BOW model, introduced in the

text community [Salton and McGill, 1983]. In its simplest form, it consists in

making an histogram of occurrences of words within a document (term counts).

Many refinements have been proposed, such as taking into account the occurrences

of words within the collection (inverse document frequency), the length of each

document, and so on. This model has been introduced in the image community

Tags: 

Pussy, young pussy, cute pussy 

Tags: 

New York, bridge,brooklyn bridge, 

Manhattan, Bronx, Hudson river, 

East river, helicopter. 

Tags: 

Roger Federer, popular, tennis, 

Player, Swiss, ranking. 

Figure 5.1: An example of multimedia documents from Flickr composed with
images and their associated user tags.
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ten years ago [Sivic and Zisserman, 2003], and its numerous extensions make it

one of the most efficient representations used in image classification and retrieval.

Visual words are then derived from local features such as SIFT [Lowe, 2004], and

the model is then named BOVW. Nevertheless, these descriptions do not directly

convey human understandable meaning and a gap remains between them and the

semantic content of images [Smeulders et al., 2000].

In this chapter, we propose a semantic signature, called Bag-of-Multimedia-Words

(BOMW), for multimedia documents. This signature results from the combination

of textual and visual modalities. It is based on multimedia codewords that allow

on the one hand the cross-coding textual tag-words over visual-words extracted

from a document; and on the other hand designing BOMW signature. We exploit

the recent advances in BOVW design methods [Yu et al., 2009; Boureau et al.,

2010; Wang et al., 2010b; Liu et al., 2011b] in order to provide discriminative

BOMW vectors appropriate to multimodal document classification with efficient

linear classifiers. This work has been published in [Znaidia et al., 2012c].

The rest of this chapter is organized as follows. Section 5.2 presents a comparison of

tags vs visual words. The proposed BOMW signature is presented in Section 5.3.

Section 5.4 reports our experimental results on several publicly datasets. The

chapter is concluded in Section 5.5.

5.2 Tag vs. Visual words

A multimedia document, such as images with their associates user tags in social

media, specifically consists of two sources of information: pixel-based and tag-

based information. Both information can be used to describe the semantics of

image content.

Tags provide contextual and semantic information which can be used to improve

the accuracy of image classification [Wang et al., 2009a; Guillaumin et al., 2010].

Such improvements, however, depend on the availability and the quality of tags. As

introduced in Chapter 1, tags in community contributed collections are imperfect.

An example of images from Flickr website is given in Figure 5.2. As we can see

all the images are associated with the tag “zebra” while having different visual

content and different semantic meanings. In the first image, the tag “zebra” is

related to the concept “animal” while the rest of images are related to the concept

zebra as “a striped or cross-hatch pattern”.

Among the recent advances made in image classification, perhaps the most sig-

nificant one is the representation of images by the statistics of local features, in

particular through the BOVW representation [Sivic and Zisserman, 2003]. In the

BOVW model, local features extracted from images are first mapped to a set
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life wild beautiful animals 
stripes safari zebra

 babys picnik

bw canon photography 
eos 350d stripe testing 
zebra remotecontrol 
kneesocks selfshot 
celiathompson

japan crossing walk
 delete4 zebra 

yokohama save10 
Savedbythe
Deltemeuncensored
group 
interestingness80 
i500 delviking

light shadow white black 
face silent stripes 
makeup silence zebra 
365 mime
 act ewa day162 cwd
 365days evaxebra 
pruska cwdweek26 
cwd262 ewapruska

Figure 5.2: An illustration of the tag imperfections. All images are associated
with the tag “zebra” while having different visual content and different semantic

meanings.

of visual words obtained by a clustering of local feature descriptors (e.g. with

k-Means). An image is then represented as an histogram of visual word occur-

rences. Visual words provide a low-level information to design BOVW signatures.

However, the size of a visual-word vocabulary involves a trade-off between the

discriminatory power and the computation cost. Indeed, with a small vocabu-

lary, BOVW signature would not be discriminative enough because of assignment

ambiguities of local features to codewords. As the size of the learned vocabulary

increases, the signature becomes more discriminative, but meanwhile less genera-

tive and forgiving to noise, since similar descriptors would be mapped to different

codewords. Furthermore, the computational cost for designing BOVW signatures

and classifying them grow. Currently, there is no consensus to the appropriate

size of a visual vocabulary which varies from several hundreds [Lazebnik et al.,

2006], to tens of thousands [Zhao et al., 2006] and even more. Moreover, the same

visual word, no matter how local it is, is likely to exhibit quite different visual ap-

pearances under different lighting conditions, views, scales and partial occlusions.

Although a visual dictionary of a finite collection of visual words may be forcefully

obtained by clustering those primitive visual features (e.g., by vector quantization

or k-Means clustering), such visual words tend to be much more ambiguous than

texts. Specifically, the ambiguity lies in two aspects: synonymy and polysemy as

highlighted in [Yuan et al., 2007]. A synonymous visual word shares the same se-

mantic meaning with other visual words, because the corresponding semantics is

split and represented by multiple visual words. On the other hand, a polysemous
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Figure 5.3: An illustration of polysemous visual words: single visual word
occurring on different (but locally similar) parts on different object categories

visual word may mean different things under different contexts. This is the case of

the “zebra pattern” in Figure 5.2 which is related to the concept “animal” in the

first image and related to the pattern of the “socks”, “road” and “the background”

respectively for the other images. An illustration of polysemous visual words is

presented in Figure 5.3. As we can see, single visual word occurs in different (but

locally similar) parts of different object categories.

Let’s note that we do not take into account visual word imperfections and we

focus on the problem of tag imperfections. We define a multimedia word as the

elementary part of a multimedia document similar to visual and tag words as

elementary parts of an image and its corresponding caption.

5.3 Bag-of-Multimedia Words Model

In this section, we propose a more integrated semantic signature for multimedia

documents, called Bag-of-Multimedia-Words (BOMW), that results from a combi-

nation of textual and visual information. Given an image and its associated tags,

its BOMW signature is built in two steps (i) a Multimedia codebook learning, (ii)

a Multimedia signature generation.

5.3.1 Multimedia codebook learning

The multimedia codebook, which entries are named multimedia words, is a collec-

tion of basic patterns used to reconstruct the input local features. A simple way

to build the multimedia codebook is to perform two steps (1) a tag-coding and (2)

a clustering.
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5.3.1.1 Multimedia word

We denote by Ti the set of textual tags associated with an image Ii and T is the

set of all textual tags of the training dataset, with Ti ⊂ T for each image Ii.

The first step of the multimedia codebook learning consists in expressing each

tag of W t over a discrete visual codebook Wv. This mapping, that we call tag-

coding , relies on the fact that textual tag-words are semantically more consistent

than visual-words, as it has also been observed in [Monay and Gatica-Perez, 2004].

With a few exceptions [Blei and Jordan, 2003], most previous work assume that

words and visual features should have the same importance [Barnard et al., 2003;

Wang et al., 2009b]. There are limitations with this assumption. First, the seman-

tic level of textual words is much higher than the one of visual features. Second, in

practice, visual feature co-occurrences across images often do not imply a semantic

relation between them. This results in a severe degree of visual ambiguity that in

general cannot be well handled by existing joint models. Therefore, coding tags

over the visual codebook is much more interesting and coherent than the opposite

way.

Formally, let V be the visual word occurrence matrix learned on the training

dataset L composed of N images. V is of size M ′ × N , with M ′ is the size of a

visual codebook Wv. The tag-coding matrix X has the size M ′ ×M , with M is

the size of the textual tag-codebook W t. To build X, we sum for each textual tag

the visual word occurrences across the list of images tagged with it, i.e.,

X(i, j) =
∑

Ik∈L , tj∈Tk

V(i, k), (5.1)

with Ik is the kth image in the training dataset L, tj a tag in Tk and V(i, k) is

the occurrence of the ith visual word in the image Ik. This step is illustrated in

Figure 5.4. For example, to construct the tag-code for the tag “cat”, we sum the

occurrences of visual words of images tagged with “cat”.

The obtained Tag-Codes matrix is then l1 column normalized, expressing the fre-

quency of a visual word relatively to a tag within the whole training dataset.

The second step, depicted in Figure 5.5, consists in clustering column vectors

of the tag-coding matrix X, using K-means for instance, in order to generate the

multimedia codebook (M-codebook), which is formed of relevant multimedia words.

This step results in the following M-codebook :

Wm =
{

mi ; mi ∈ ℜM ′

; i = 1, ..., Km
}

, (5.2)
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Visual Codebook 

Training dataset 

. . 

Tag Codebook 

car paris cat 
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            . 
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Tag-Codes Matrix 
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        …    

 

Figure 5.4: An overview of Tag-coding procedure. For example to code the
tag “cat”, visual word occurrences of images tagged with “cat” are aggregated

with a sum-pooling.

. .  

  0       0    …      

             …      

             …     6  

   . 

   . 

             …      

 
K-means 

Clustering ..     
 

 Multimedia Codebook:     Tag-Codes Matrix:     

0,      0,     …    0,    
0,      0,     …    0,    
0,      0,     …    0,    
 

0,      0,     …    0,    

. 

. 
. 

. 

car cat paris 
m1 m2 mK 

Figure 5.5: An overview of the clustering step which consists of clustering
column vectors of the tag-codes matrix using K-means in order to generate
the multimedia codebook (M-codebook), which is formed of relevant multimedia

words.

with Km is the size of the M-codebook (Km ≤M).

5.3.2 Multimedia signature

From the obtained Multimedia codebook, we generate the BOMW signature in

two steps: coding and pooling, as shown in Figure 5.6.
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1. Tag-codes :   

… 

: 

12             35    ….           90 

 

11               67    ….            0 

 

 

165             22    ….          12 

Clustering 

(K-means) 

 
: 

0.15      0.02      ….            0 

 

0 .03      0.06    ….           0.7 

 

 

  0         0.54      ….        0.09 

2. Multimedia Codebook :     

Funny Funny Babies Babies Picture Picture 

Image 

Tags 

Coding 

 

      Funny 

     Babies 

     Picture 

   0.04    0.05      ….        0.02 

   0.0     0.01       ….          0.0 

   0.02    0.0        ….        0.08 
 

Pooling 

m1       m2         …..         mK 

 

  0.04   0.05      ….          0.08 4. BoMW 

3. Codes :    Z 
Input Image 

..     
 

m1 m1 m2 m2 mK mK car car cat cat paris paris 

Multimedia codebook construction Multimedia codebook construction 

Figure 5.6: BOMW signature generation consists in two steps: coding and
pooling. Given an image with its associated tags, each tag is represented with
its tag-code using the tag coding matrix X and coded based on the locality
constraint coding using the learned multimedia codebook. Finally, given the
coding coefficients of all tags within one image, a pooling operation is performed

to obtain the BOMW signature.

5.3.2.1 Coding

As introduced in Chapter 2-Section 2.3.1, different methods have been investigated

in the literature in order to map local features to codes over the visual codebook,

preserving some interesting properties such as sparsity [Yang et al., 2009], locality

in the feature space [Yu et al., 2009], saliency [Huang et al., 2011], etc. These

coding schemes alleviate the main drawbacks of classic coding ones, namely hard

and soft assignments [Sivic and Zisserman, 2003; van Gemert et al., 2009]. The

locality based coding is currently the most interesting technique in terms of trade-

off between robustness and computational complexity. In [Liu et al., 2011b] for

instance, authors propose an efficient implementation of the locality-constrained

coding presented in [Yu et al., 2009] by restricting the probabilistic soft coding

of the approach of [van Gemert et al., 2009] to the L-nearest-codewords to a

descriptor in the feature space.
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In our case, a tag-code xk (a column of X) of a given image is the descriptor to

be coded over the M-codebook Wm as the following:

zk,i =







exp (−β||xk−mi||22)∑L
r=1

exp (−β||xk−mr||22)
if mi ∈ NL(xk) ,

0 otherwise,
(5.3)

where zk is a vector of size Km. It is the obtained code associated to the tag-

code xk, NL(xk) denotes the set of L-nearest neighbors to the vector xk within

the tag-code set of column vectors in tag-coding matrix X and β is a parameter

controlling the weight decay speed of the locality. An illustration of the BOMW

coding step is presented in Figure 5.7. The “Dog” tag-code represents the column

vector corresponding to the tag “Dog” and obtained from the tag-coding matrix

X. In this example, we consider the number of neighbors equal to three. Thus,

only the three nearest multimedia words are activated and the rest are set to zero.

Dog 

 

austin 

6th street 

decorated 

animal  

Tags : 
m1 m2 mk 

Multimedia Codebook 

0.        0.  ... 0.   0.  … 0.  0.  

 

  0        0.5 ... 0.7   0   …  0.  0 

 

 

 

 

 

0.          0  ...   0    0.6 … 0 0.   
  

…
…

…
…

…
…

…
…

. 

…
…

…
…

…
…

…
…

. 

« Dog » tag-code 

Figure 5.7: Illustration of the BOMW coding step. In this example only the
three nearest multimedia words are activated and the rest are set to zero.

5.3.2.2 Pooling

Given the coding coefficients of all tags within an image Ij, the pooling step is

performed to obtain the BOMW signature Xm
j =

(

xm
1 , ...,x

m
Km

)

. The element of

the BOMW signature are defined as follows:

xm
i = max

tk∈Tj

zk,i ∀ i = 1, ..., Km (5.4)

where Tj is the set of user tags associated to the image Ij. Recent work [Boureau

et al., 2010; Liu et al., 2011b] show, theoretically and empirically, that max-pooling

is well suited to the recognition task. It is performed by selecting the maximum
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coding coefficient (or the salient codeword response) over tag-codes for each mul-

timedia word as shown in Figure 5.6.

5.4 Experimental Evaluation

The proposed method is evaluated in the context of image classification. We report

results based on two widely used datasets: PASCAL VOC’07 and ImageClef’12

described in Section 2.6.2.

Classification performances of the proposed method on the considered datasets

are evaluated in terms of three criterion: 1) classification performance (mAP),

2) computation cost for both signature design and classifier training and testing

and 3) stability of results toward codebook size. These three issues are the most

challenging ones in the classification task, since they involve robustness of the

recognition system and its scalability on large scale datasets.

5.4.1 Experimental Setup

We consider the following setup. Dense SIFT features are extracted from images

within a regular spatial grid at only one scale. The step-size is fixed to 6 pixels

and the patch size to 16× 16 pixels. Visual codebooks of various sizes have been

generated using the K-means clustering method on randomly selected SIFTs from

the training set. For the PASCAL VOC’07 dataset, a textual codebook is also

generated using the same experiment setting of [Guillaumin et al., 2010] leading

to a dictionary of size 804. For the ImageClef’12 dataset, we keep only tags that

appear at least 4 times leading to a textual dictionary of size 5, 134. For each

dataset, once the tag-coding matrix has been created, the multimedia codebook

(M-codebook) is generated by clustering columns of the tag-codes matrix using

K-means. In order to analyze the robustness of the BOMW signature toward

codebook size, we tried different visual and multimedia codebook sizes. When

designing BOMW, coding tag-codes over the M-codebook is performed using the

locality-constrained soft assignment with a neighborhood of size 5 and the softness

parameter β is set to 10, as it has been also considered in [Liu et al., 2011b]. Finally,

we used linear SVM for classification.

As a baseline, we consider two models: the BOTW and the BOVW models.

• Bag-of-Tag Words (BOTW) represents an histogram of occurrences of

each tag according to a fixed textual dictionary. Generally, in the case of tags

associated with images, a tag is present once. Consequently, this histogram

is reduced to a binary vector which encodes the presence or the absence of
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each tag in a fixed vocabulary. This BOTW signature has the same size as

the textual codebook. This vector is used as an input vector for a linear

SVM classifier.

• Bag-of-Visual Words (BOVW) represents the image with an histogram

of visual words. In our case, we use the locality-constrained soft assignment

with a neighborhood of size 5 for the coding step. The max-pooling oper-

ation is performed to aggregate the obtained codes and a spatial pyramid

decomposition into 3 levels (1× 1; 2× 2; 4× 4;) is adopted to generate the

visual signature. The size of the BOVW signature is equal to (4096 × 21).

This vector is used as an input vector for a linear SVM classifier.

5.4.2 Experimental Results

In this section, we present classification performances obtained for each model

(BOTW, BOVW and BOMW) in terms of mAP. We choose the PASCAL VOC’07

dataset to show the stability of our BOMW model towards the size of both visual

and multimedia codebooks.

5.4.2.1 Experiments on the PASCAL VOC’07 dataset

In Table 5.1, we compare the classification performances of our method to the

two considered baselines in terms of mAP on the PASCAL VOC’07 dataset. We

observe that the proposed BOMW model outperforms both the BOTW and the

BOVW models. We obtain a gain of 12% in terms of mAP compared to the

textual modality. An improvement of 6% of mAP scores is achieved compared

to the visual modality. The signature size in Table 5.1 shows that our BOMW

signature is more compact than the two other BOWs (tags and image).

To show the stability of the proposed BOMW model towards the size of the

visual and multimedia codebooks, we tried various values of the visual code-

book size Kv ∈ {256, 512, 1024, 4096} and the multimedia codebook size Km ∈

{128, 256, 512} on the PASCAL VOC’07. We compare the performances of differ-

ent methods in terms of mAP. Figure 5.8 shows classification performances using

Table 5.1: Classification performances on the PASCAL VOC’07 dataset in
terms of mean Average Precision (mAP).

Method mAP Signature size

Bag-of-Tag Words (BOTW) 43.3 804
Bag-of-Visual Words (BOVW) 49.3 4096*21
Bag-of-Multimedia Words (BOMW) 55.5 512
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either BOVW or BOMW, while changing the sizes of both visual and multimedia

codebooks. For the BOVW, we note that the spatial pyramid matching technique

of [Lazebnik et al., 2006] is additionally performed with three pyramid levels, as

often done in the literature to take into account the spatial information.

We note that for all codebook sizes, classification results using BOMW outperform

by about 6% ∼ 10% those obtained with BOVW (depicted in Figure 5.8) or by

the BOTW obtained by [Guillaumin et al., 2010] which is 43.3%. This is expected

since the proposed multimedia words are semantically higher than the low-level

visual local features and the tag words separately. Multimedia words are more

consistent to encode the content of a multimedia document through an effective

fusion of visual and text modes.

The important point is that contrary to classic BOW signatures, classification

results remain stable, with a very low fluctuation, when changing sizes of both

visual or multimedia codebooks. This is an interesting property useful to reduce

the complexity of the classification system in both training and testing, which is

obtained at the cost of a small pre-processing step for signature design (building

tag-coding matrix and clustering it). The best classification scores obtained with

the BOVW and BOTW are 49.36% and 43.3% respectively, using visual signatures

of size 86, 016 and textual signatures of size 804. The best classification score

obtained with the BOMW is 55.54% using a signature of size 512 (see Figure 5.8).

The performance gain is due to the fact that the proposed multimedia signatures

lie on a structured space, well appropriate to describe multimedia documents.

Therefore, BOMW are probably much more class-discriminative than other types

of BOW.

The proposed multimedia signature could also be integrated in late fusion classi-

fiers as it captures complementary information to those already used in the lit-

erature. Let’s note that once the tag-coding matrix and the M-codebook are

generated, the proposed BOMW signature is obtained using only tags. Thus, we

choose to combine it with visual features (BOVW). Obtained results with late

fusion, by averaging classifier predictions, are presented in Figure 5.9. Obviously,

we observe that the combination of BOMW with BOVW outperforms the best

scores reported on the state-of-the-art by [Guillaumin et al., 2010; Durand et al.,

2013] on the PASCAL VOC’07 dataset.

5.4.2.2 Experiments on the ImageClef’12 dataset

Table 5.2 shows a comparison of the proposed BOMW model and the two con-

sidered baselines: BOTW using only tags and the BOVW using only visual infor-

mation. We can see that the BOMW outperforms both the BOTW and BOVW

models. An improvement of 10% in terms of mAP scores is achieved compared to
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Figure 5.8: Classification performances in terms of mAP on the PASCAL
VOC’07 dataset while varying the sizes of visual and multimedia codebooks.
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Figure 5.9: Classification performances in terms of mAP on the PASCAL
VOC’07 dataset.
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the textual modality only. We obtain a gain of 11% compared to the BOVWmodel

which uses only visual information. In addition the proposed BOMW signature is

more compact than the BOTW and BOVW models.
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Figure 5.10: Comparison of the mAP on the ImageClef’12 dataset for the
BOTW and the BOVW vs the proposed BOMW.

As presented in Figures 5.10, 5.11 and 5.12, the proposed BOMW outper-

forms both BOTW and BOVW models on the classification performances on

80 concepts out of 94. Only for 14 concepts, it fails to improve the Average

Precision score. These concepts are “ celestial stars, weather overcastsky,

combustion fireworks, lighting shadow, water underwater, water seaocean,

water lake, water riverstream, water other, fauna spider, age teenager,

age elderly, quality completeblur, style pictureinpicture, style circularwarp,

transport truckbus”. Six of these concepts are not visual concepts such as “wa-

ter other, style pictureinpicture, age teenager, age elderly, quality completeblur,

style circularwarp”. Our BOMW signature is based on the visual representation

of images tagged with a certain tag, thus, it can fail for this kind of concepts.

Table 5.2: Classification performances on the ImageClef’12 dataset in terms
of mAP score.

Method mAP Signature size

Bag-of-Tag Words (BOTW) 30.0 5134
Bag-of-Visual Words (BOVW) 29.4 4096*21
Bag-of-Multimedia Words (BOMW) 40.8 2500
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Figure 5.11: Comparison of the mAP on the ImageClef’12 dataset for the
BOTW and the BOVW vs the proposed BOMW.
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Figure 5.12: Comparison of the mAP on the ImageClef’12 dataset for the
BOTW and the BOVW vs the proposed BOMW.
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5.5 Conclusion and Discussion

We introduced a new BOW based signature, called BOMW, that is appropriate to

describe multi-modal documents. It represents a more integrated semantic signa-

ture for multimedia documents than the classic BOW signatures, that results from

a combination of textual and visual information. It is based on multimedia code-

words that allow on the one hand cross-coding textual tag-words over visual-words

extracted from a document; and on the other hand designing BOMW signature.

We exploit the recent advances in BOVW design methods in order to provide

discriminative BOMW vectors well suited to multimodal document classification

with efficient linear classifiers.

Experiments have been conducted on two well-known challenging benchmarks:

PASCAL VOC’07 and ImageClef’12. Obtained results show the competitive per-

formances of the BOMW, ensuring a trade-off between classification accuracy and

computation cost. In opposition to classic BOW signatures, classification results

remain stable, with a very low fluctuation, when changing sizes of the visual or mul-

timedia codebooks. This is an interesting property useful to reduce the complexity

of the classification system in both training and testing, which is obtained at the

cost of a small pre-processing step for signature design (building tag-coding matrix

and clustering it). The performance gain is due to the fact that the proposed mul-

timedia signature lies on a structured space, well appropriate to describe multime-

dia documents. Therefore, BOMW are probably much more class-discriminative

than other types of BOW. The tag-coding matrix step is based on a predefined

dictionary built with the high frequent tags. In this manner, we eliminate rare,

misspelled and subjective tags to handle a part of the imprecision and uncertainty

aspects of tags. The clustering step to obtain the multimedia codebook can be

seen as a reduction of the space of tags into topics as in the pLSA model [Monay

and Gatica-Perez, 2004]. In fact, tags in different languages such as “cat” in En-

glish and “chat” in French will have similar tag-codes. Thus, the clustering step is

very useful to reduce the tag-codes space by gathering similar tag-codes together.

This step tackles also a part of the uncertainty and imprecision problems.

The difference between our BOMW approach and some recent state-of-the-art

approaches [Li et al., 2010a; Torresani et al., 2010], is that we apply an early fusion

to combine both modalities and only tags are used in the test stage which is not the

case of Object Bank approach [Li et al., 2010a] and Classemes method [Torresani

et al., 2010]. In fact, in [Li et al., 2010a], authors propose a high-level image

representation where an image is represented as a scale-invariant response map

of a large number of pre-trained generic object detectors. In [Torresani et al.,

2010], authors propose a visual descriptor which is the output of a large number

of weakly trained object category classifiers on the image. Both methods are based

on a learning stage of concepts.
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Up to now, only tag imperfections have been handled at the representation level by

using either the tag modality alone or by combining both tag and visual modalities.

As introduced in the Chapter 1, image annotation is subject to other type of

imperfections at the decision level. These imperfections need to be handled to

improve the image annotation performances.



Part II

Decision Level
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6.1 Introduction

As introduced in Chapter 1, multimodal image annotation is subject to imper-

fection at two possible levels: representation and decision. Up to now, only im-

perfection aspects at the representation level are handled. In this chapter, we are

interested in handling imperfections at the decision level, that can exist at the

fusion process when combining information from different classifiers. Although,

tags represent an important resource to improve multimodal image annotation,

they are generally imperfect and only a few of them are really related to the visual

content of the image. These “imperfections” recovers different problems includ-

ing imprecision, uncertainty and incompleteness. In fact, learning from imperfect

tags can decrease classification performances. But even if observations are per-

fect, the generalization beyond that data and the process of induction, are still

afflicted with uncertainty. Another form of imperfection is incompleteness

of data. Handling incomplete data (images without tags) is an important issue

for classifier learning since incomplete data may affect the prediction accuracy of

learned classifiers. Regarding imprecision, learning a classifier on uncertain and

incomplete data leads to an imprecise decision function.

In this chapter, we introduce an unified multimodal framework for semantic image

classification based on a two novel textual representations presented in Chapter 3

along with visual features through an effective and robust scheme of late fusion

based on the Stack Generalization algorithm [Wolpert, 1992].

The rest of this Chapter is organized as follows. In Section 6.2, we present the

proposed method for classifier combination based on the Stack Generalization al-

gorithm. Section 6.3 reports our experimental results on several publicly datasets

compared to the state-of-the-art approaches. The chapter is concluded in Sec-

tion 6.4.

6.2 Proposed Multimodal Framework for Image

Annotation using Stack Generalization

Figure 6.1 depicts the flowchart of the proposed multimodal framework for im-

age annotation using Stack Generalization algorithm, which mainly includes two

stages: a training stage and a testing stage. The training dataset is split into train-

ing and validation sets. The training stage consists in training classifiers through

a learning algorithm on the training set and in evaluating it on the validation set.

The process is repeated using a cross-validation procedure. The output prediction

scores from different classifiers on validation sets are concatenated and used as

input features to learn a new classifier. This latter is represented with multimodal
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Figure 6.1: The flowchart of the proposed multimodal framework for image
annotation using Stack Generalization.

classifier in Figure 6.1. Classifiers using the whole training set are also learned

and used in the testing stage to provide predictions from different modalities. Fi-

nally, obtained predictions from different classifiers are concatenated and used as

a test feature in the multimodal classifier to obtain the final predicted labels. This

scheme of combining classifiers is called Stack Generalization or Stacking [Wolpert,

1992]. Stack generalization represents a general method of using a high-level model

to combine lower-level models to improve accuracy of single classifiers.

6.2.1 Visual Features

As introduced in Chapter 2-Section 2.3.1, the BOVW approach [Sivic and Zisser-

man, 2003; Csurka et al., 2004] has now established itself as the state-of-the-art for

generic image classification. It commonly consists of feature extraction, codebook

creation, feature coding, and feature pooling.
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First, a visual codebook is constructed using K-means algorithm. Then, for each

image, dense local descriptors (such as SIFT [Lowe, 2004]), are extracted and

mapped to codes. Recent research shows for a given visual codebook, how to code

each local feature and how to pool the coding coefficient to obtain an image-level

representation, have a significant impact on classification performance. Following

these observations, we chose to implement the locality-constraint coding based on

local soft coding [Liu et al., 2011b], because of its effectiveness and robustness

against quantization errors. Final codes result from a max-pooling aggregation.

The superiority of max-pooling over other pooling methods, combined with such

coding scheme, can be explained probabilistically as being the lower bound of the

probability of occurrence of a visual word in the image [Liu et al., 2011b].

For the coding step, we use the locality-constrained coding which restricts the

probabilistic soft coding approach [Liu et al., 2011b] to only the L-nearest-

codewords to a local feature.

Furthermore, since the classic BOVW is an orderless signature that disregards

the location of the visual words in the image, the spatial pyramid matching

(SPM) [Lazebnik et al., 2006] is an interesting way to incorporate some global

spatial contextual information into the signature. An image Ik is divided into P

different regions and a pooling is conducted in each of them. The final signature

Xv
k, is then obtained by a concatenation of all the region-relative Ri signatures, as

follows:

Xv
k = [Xv

(k,R1)
,Xv

(k,R2)
, ...,Xv

(k,RP )] (6.1)

whereXv
(k,Ri)

is the BOVW signature of the image Ik in the region Ri. A schematic

illustration of the spatial pyramid representation is depicted in Figure 6.2.

6.2.2 Textual Features

In this chapter, we use the LSTC signature presented in Chapter 3 to produce

two tag-based signatures using two external knowledge resources: WordNet and

Flickr. We refer the reader back to Section 3.6 for more details.

6.2.3 Stack Generalization

Stacked Generalization or stacking was introduced by [Wolpert, 1992] as an ap-

proach for combining multiple classifiers. The key idea is to learn a meta-level (or

level-1) classifier based on the output of base-level (or level-0) classifiers, estimated

via cross-validation as follows.



Chapter 6. Multimodal Late Fusion for Image Annotation 141

Level 0 Level 1 Level 2 

Figure 6.2: A schematic illustration of the spatial pyramid representation. A
spatial pyramid is a collection of order-less feature histograms computed over
cells defined by a multi-level recursive image decomposition. At level 0, the
decomposition consists of just a single cell, and the representation is equivalent
to a standard BOVW. At level 1, the image is subdivided into four quadrants,

yielding four feature histograms, and so on.

Given a dataset D = {(xi, yi), i = 1, ..., n}, also referred to as level-0 data, where

xi is a vector representing the attribute values of the ith instance and yi is the

associated class label, the algorithm operates as follows:

• A K-fold cross-validation process randomly splits D into K disjoint parts of

almost equal size D1, ..., DK . At each k
th fold, Dk and D(−k) = D −Dk are

used as the test part and the training part, respectively.

• N learning algorithms L1, ..., LN , are applied to the training part D(−k) to

induce N level-0 classifiers C1(k), ..., CN(k). The concatenated predictions

of the N level-0 classifiers on each sample in Dk, together with the original

class label, form a new set MDk of meta-level vectors.

• At the end of the entire cross-validation process, the unionMD = ∪K
k=1MDk

constitutes the full meta-level dataset, also referred to as level-1 data, which
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Figure 6.3: Flowchart of the Stack Generalization approach. Left part is
the illustration of the K-fold cross-validation process for creating the meta-level
training dataset, and the right part is the stacking framework in the testing

stage.

is used for applying a learning algorithm LM and inducing the meta-level

classifier CM .

• At meta-level, the learning algorithm LM could be one of L1, ..., LN or a dif-

ferent one. It is worth noting that, after forming the full meta-level dataset,

the learning algorithms L1, ..., LN are trained on the entire dataset D to in-

duce the final base-level classifiers C1, ..., CN to be used in the testing stage.

In order to classify a new instance, the concatenated predictions of all level-0 clas-

sifiers form a meta-level vector, which has N components. Then, the vector will

be assigned a class label by the level-1 classifier. The class label is the final classi-

fication result of the input instance. The left part of Figure 6.3 is the illustration

of the K-fold cross-validation process for creating the meta-level training dataset,

while the right part is the stacking framework in the testing stage.

Figure 6.4 depicts the flowchart of the Stack Generalization in our context of image

classification using both visual and tag-based features. We use one visual feature

detailed in Section 6.2.1 and two tag signatures based on the LSTC signature pre-

sented in Chapter 3-Section 3.6. As learning algorithm for both level-0 and level-1

classifiers, a one-versus-all linear kernel based SVM classifier is used. At each kth

fold, three linear SVMs are applied to D(−K) giving three level-0 confidence ma-

trix for the visual and the two tag-based features, denoted by Ck
V isual,C

k
WordNet

and Ck
F lickr respectively. At the end of the cross-validation process, the union

MD = ∪K
k=1MDk constitutes the meta-level dataset that is used to train the

meta-level classifier CM . The three based linear SVMs are now trained on the

entire dataset to induce the final base-classifiers CV isual,CWordNet and CF lickr re-

quired by the classification task. Finally, given a new instance, the concatenated
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Figure 6.4: Flowchart of the proposed multimodal framework based on the
Stack Generalization algorithm. Left part is the illustration of the K-fold cross-
validation process for creating the meta-level training dataset, and the right

part is the stacking framework at runtime.

predictions of all level-0 classifiers are used as input for the level-1 classifier CM

to compute the final prediction scores. As presented in [Ting and Witten, 1999],

we propose to use class probabilities instead of the single predicted class as input

attributes for higher level learning.

6.3 Experimental Evaluation

To evaluate the effectiveness and the robustness of the proposed methods on user-

provided noisy/missing tags, we employ the real-world social images with human

annotated tags. Specifically, four publicly available Flickr image datasets are used

for the experiments. We refer the reader back to Section 2.6.2 for dataset statistic

details (number of images, number of labels, number of tags...).

First, the pipeline used to compare our system to the state-of-the-art approaches is

detailed. Then we present results of the proposed approach on the four considered

benchmarks. Finally, we discuss the effectiveness and robustness of the proposed

method.

6.3.1 Experimental Setup

For all datasets, the same processing chain is considered, following the literature

settings to ensure consistency. The pipeline is as follows:



Chapter 6. Multimodal Late Fusion for Image Annotation 144

• Local visual descriptors: dense SIFTs of size 128 are extracted within a

regular spatial grid and only one scale. The patch size is fixed to 16 × 16

pixels and the step size for dense sampling to 6 pixels;

• Visual Codebook: a visual codebook of size 4, 000 is created using the

K-means clustering method on a randomly selected subset of SIFTs from

the training dataset (∼ 105 SIFTs).

• Textual codebook: for PASCAL VOC’07 dataset, we use the same exper-

imental setting as in [Guillaumin et al., 2010]. A dictionary of size 804 is

obtained by keeping only tags that appear at least 8 times. In the case of

ImageClef’11 datasets, we kept only tags that were used at least 3 times in

the collection, resulting in a textual codebook of 2, 500 tags. For the Im-

ageClef’12 dataset, we keep only tags that appear at least 4 times leading

to a tag dictionary of size 5, 134. For the NUS-WIDE dataset, among the

425, 059 unique tags, there are 9, 325 tags that appear more than 100 times.

Authors of [Chua et al., 2009] propose to check these tags using WordNet

and keep only tags that exist resulting in a dictionary of size 5, 018.

• Coding/pooling: for coding the local visual descriptors SIFTS, we fix the

patch size to 16× 16 pixels and the step size for dense sampling to 6 pixels.

Then for the extracted visual (respectively tags) descriptors associated to

one image, we consider a neighborhood in the visual (respectively tag) fea-

ture space of size 5 (respectively 50 in Flickr and 5 in Wordnet) for local soft

coding and the softness parameter β is set to 10. The max-pooling operation

is performed to aggregate the obtained codes. A spatial pyramid decompo-

sition into 3 levels (1× 1, 2× 2, 3× 3) is adopted for the visual-signature.

• Base classifier: for each modality, a one-versus-all linear kernel based

SVM classifier is used, since it has shown good performances in scene cat-

egorization task when paired with the max-pooling operation on local fea-

tures [Wang et al., 2010b; Liu et al., 2011b].

• Classifier fusion: base classifiers are trained on the considered modali-

ties (visual, WordNet and Flickr) and combined by the stack generalization

approach using five-cross-validations on the training set.

We use the mAP to evaluate the classification performances.

6.3.2 Experimental Results

In this section, we report the obtained results based on the mAP score for mul-

timodal image annotation. We present separately each dataset, to compare our

results to the best obtained classification score in the state-of-the-art.
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6.3.2.1 Experiments on the PASCAL VOC 07 dataset

In Table 6.1, we compare the obtained results of our multimodal image annota-

tion to the state-of-the-art approaches. We notice that our two tag-based feature

relying on the local soft assignment coding outperform the hard assignment based

coding scheme (51.8% vs 43.3% of mAP). Combined with a BOVW feature, these

tag features reach better performances than that reported in [Guillaumin et al.,

2010] (itself already significantly better than [Wang et al., 2009a]), while reducing

drastically the computational complexity of the learning system, both in terms of

the number of generated features and the learning algorithm. Our learning system

is a simple combination of linear SVM based output classifiers, less computation-

ally demanding than the Multiple Kernel Learning (MKL) one. The performances

of our visual signature are slightly below those reported in the state-of-the-art sys-

tem while the performances of the tag based classification are consistently better.

The fusion of both modalities improves the state-of-art of about 2% in terms of

mAP (68.3% vs. 66.7%).

Table 6.1: Comparison of our system to previous work for PASCAL VOC’07
classification challenge in terms of mAP.

Approach Visual Textual Multimodal

[Wang et al., 2009a] 45.4 43.5 49.0
[Guillaumin et al., 2010] 53.1 43.3 66.7
Our method 52.1 51.8 68.3

6.3.2.2 Experiments on the ImageClef’11 dataset

In Table 6.2, we compare results of our multimodal method and that of [Binder

et al., 2011] and [Liu et al., 2013]. We notice that our multimodal classification

results outperforms those of [Liu et al., 2013] and are similar to those of [Binder

et al., 2011]. The authors of [Binder et al., 2011] do not report separate results

for textual annotation, focusing on visual representation. Their visual annota-

tion framework clearly outperforms ours but this gain is obtained mainly through

the use of significantly much complex visual signature. In particular, they use 5

different local color features (size 2048) while we use only classical SIFTs (size

128). Their BOVW has a size 160, 000 while ours is 60, 000. Above all, we use

simple linear SVMs when they use a complex MKL. The authors of [Liu et al.,

2013] use a SWLF scheme to automatically select and weight scores from the best

features. Their visual annotation outperforms ours by ≈ 4% of mAP. This can

be explained by the number of visual feature used which is fixed to 34 signatures

including local and global descriptors. In the textual annotation, they make use

of 10 textual features. Our textual model which relies on the combination of only

two textual features achieved a gain of 6% of mAP compared to those of [Liu
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Table 6.2: Comparison of our system to previous work for ImageClef’11 clas-
sification challenge in terms of mAP.

Method Visual Textual Multimodal

[Xioufis et al., 2011] 31.1 32.5 40.16
[Liu et al., 2013] 35.5 32.1 43.6
[Binder et al., 2011] 38.2 - - 44.3
[Zhang et al., 2012b] 37.4 34.7 45.3
Our method 31.2 38.0 44.8

et al., 2013]. Finally, our strategy enhances the relevance of our textual modeling,

that compensates the performance loss of visual modeling while maintaining a low

computational complexity. The best score for this dataset is obtained by [Zhang

et al., 2012b]. Their visual model outperforms our visual features by 6% of mAP

score. This can be explained by the number and the size of visual features used.

While we use only a BOVW, [Zhang et al., 2012b] opt for a combination of more

than 5 global and local features. However, our textual models outperform textual

models of all considered approaches. We obtain a gain of 4% of mAP score com-

pared the textual model of [Zhang et al., 2012b]. We obtain approximately the

same performances for the fusion (0.5% of difference on mAP score). Our learning

system is a simple combination of linear SVM based output classifiers, less com-

putationally demanding than the MKL one used in [Zhang et al., 2012b]. Again,

we show that even if our visual model score is below the best visual models, our

framework based on the stacked generalization algorithm gives similar results to

the best results on the state-of-the-art while reducing the computational cost of

learning.

6.3.2.3 Experiments on the ImageClef’12 dataset

In Table 6.3, we compare results of our multimodal method to that of [Liu et al.,

2012]. We observe that the multimodal performance scores are similar. The vi-

sual model of [Liu et al., 2012] outperforms ours by 5% of mAP. This is due to

the number of visual feature used which reaches 24. Five groups of features have

been considered: color, texture, shape, local descriptor and mid-level features [Liu

et al., 2011]. We obtain a gain of 1% of mAP by using only 2 textual features

whereas [Liu et al., 2012] use a combination of 11 textual features. Similar to

the previous experiments, the performances of our visual signature are slightly

below those reported in the state-of-the-art system while the performances of the

tag based classification are consistently better. The textual modality compensates

the performance loss of visual modeling while maintaining a low computational

complexity. This confirms the effectiveness and the robustness of the stack gener-

alization scheme on the combination of different features and modalities.
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Table 6.3: Our system compared to the ImageClef12 Photo Annotation best
performing system [Liu et al., 2012].

Method Visual Textual Multimodal

[Liu et al., 2012] 34.8 33.3 43.6
Our method 29.4 34.1 43.1

6.3.2.4 Experiments on the NUS-WIDE dataset

Table 6.4 shows the obtained results for the NUS-WIDE dataset. We compare our

results to the approach of [Gao et al., 2010] which is based on feature selection

aided with precision and recall scores of both tag and visual modalities. Our

visual model gives similar results, however, it is obvious that our textual model

gives better performances in term of mAP scores. We obtain a gain of 16% of

mAP score compared to [Gao et al., 2010]. As highlighted in Chapter 2, it can

be explained by the fact that the tag model of [Gao et al., 2010] is based on a

simple tag-concept co-occurrence and do not take into account tag imperfections.

The combination using Stack Generalization algorithm shows its effectiveness and

robustness compared to other fusion strategies.

Table 6.4: Our system compared to multimodal image annotation state-of-
the-art approaches on the NUS-WIDE dataset.

Method Visual Textual Multimodal

[Gao et al., 2010] 18.89 26.12 29.88
Our method 18.81 42.0 49.5

6.4 Conclusion and discussions

We introduced a novel multimedia feature generation framework which makes use

of different modalities in order to obtain efficient image classification. Feature

generation is performed in an unified manner and the framework is easy to extend

to other potentially useful image representations. Also, we applied computer vision

techniques to text modeling, showing that inspiration between these two domains

can be reciprocal. The experiments that we carried on four publicly available

datasets show that we obtain comparable or better results than the state-of-the-

art methods while decreasing the complexity of image representations and concept

learning.

First of all, we have to stress that our visual representation is simple compared

to those presented in related work, since our focus here is to introduce a scalable

multimodal fusion framework. We are using only one BOVW feature based on

simple SIFTs, while results reported in [Guillaumin et al., 2010] or [Binder et al.,
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2011] are obtained thanks to the use of 15, respectively 72, different features.

Global features such as GIST [Oliva and Torralba, 2001] and BOVW based features

similar to the one we are using are combined in [Guillaumin et al., 2010; Binder

et al., 2011]. We chose to focus on the generation of textual features from two

complementary sources and on their combination with a relatively compact BOVW

description of the images. We show that an appropriate combination of textual and

visual features, based on the Stack Generalization scheme, produces competitive

results when compared to much more complex state-of-the-art frameworks which

focus on the visual aspect. The Stack Generalization framework shows to be

interesting to deal with imperfections and the conflict that can exist in the classifier

combination process.

From a computational point of view, the benefits of our approach are twofold.

First, we introduce complementary information sources early in the text features

extraction process. This allows us to exploit much simple visual features than

those of the state-of-the-art, while obtaining comparable overall classification per-

formances. Second, the generation of robust signatures for tag and content rep-

resentation, allows us to replace classifier with high computational complexity

classifier (such as MKL), used in the state-of-the-art, with a linear SVM classifier

that has a lower complexity. The proposed learning system is easier to scale for

large-scale datasets. In spite of the attention given to scalability, it remains a hard

research problem and we show that a good trade-off between performances can be

obtained through appropriate modality fusion.

Although, the proposed model in this chapter achieves good results, imperfection

aspects are handled implicitly in the learning stage. As highlighted in Chapter 2,

another interesting alternative to deal with these imperfections explicitly is to use

Belief theory which is the subject of the model presented in the next chapter.
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7.1 Introduction

As presented in the last chapter, learning based approaches such as Stacking show

to be effective and robust approaches to enhance multimodal image annotation

performances. However, imperfection aspects at the decision level are not han-

dled explicitly. As highlighted in Chapter 2, Belief theory allows to deal with

such imperfections. However, high computational cost of evidence combination is

a drawback which is often raised against the Dempster-Shafer theory. It is well

known [Smets, 1999; Smarandache and Dezert, 2009] that the computational cost

of evidence combination increases exponentially with respect to the frame of dis-

cernment cardinality. Unfortunately, this is precisely the case one must handle for

the considered multimedia collections.

In this Chapter, we propose a multimodal framework for image classification based

on classifier fusion relying on the Dempster-Shafer theory to handle the uncer-

tainty and the conflict that can exist between different classifiers and to assess

the conflict between various sources of information. First, we convert the classi-

fier output probabilities into consonant mass functions using the inverse pignistic

transform [Dubois et al., 2001]. Secondly, these mass functions are combined in

the Belief theory using Dempster’s rule [Shafer, 1976]. To encounter the limitation

of Belief theory due to its complexity cost, we focus on only the most probable

hypothesis instead of considering all the power set of the frame of discernment.

This work has been published in [Znaidia et al., 2012a].

The remainder of this Chapter is organized as follows. The proposed approach for

large scale multi-label image classification is presented in Section 7.2, and exper-

imental results are reported and discussed in Section 7.3. Section 7.4 concludes

this Chapter.

7.2 Belief Theory for Large-Scale Multi-Label

Image Classification

In this section, we propose a multimodal framework for image classification based

on classifier fusion relying on the Dempster-Shafer theory to handle imperfection

aspects at the decision level. In fact, a classifier is learned on each modality or

signature. We aim at combining prediction scores from different classifiers in order

to make a final decision. To deal with imperfection aspects at the decision level,

we rely on the Dempster-Shafer theory. We refer the reader back to Chapter 2-

Section 2.5.4 for details about fundamentals of this theory. To make a decision that

an image can be annotated with a given label/concept, the frame of discernment

is defined as Ω = {C1, C2, ..., Ck}, the set of annotation concepts. The frame of
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Tags: 
 Tierna, sweet, happy, girl,  

Amor, bebe, top, preciosa ... 

Visual Classifier 
Semantic 

Classifier 

Contextual 

Classifier 

Building mass 

functions 

Building mass 

functions 

Building mass 

functions 

Dempster’s Rule 
Combination 

Decision making 

Figure 7.1: Flowchart of the proposed system. First, the classifier output
scores ψi are normalized to sum to one. Secondly, the obtained probabilities
are transformed into mass function using the inverse pignistic transform. A
combination is performed to obtain the final mass function, used to compute

the plausibility for decision making.

discernment of the multi-label extended Dempster Shafer theory is not the set of

all possible single hypotheses but its power set Θ = 2Ω. Thus, Dempster-Shafer

theory suffers from a high computational cost, due to the frames of discernment

cardinality. Unfortunately, this is precisely the case one need to handle for the

considered multimedia collections. To overcome this limitation, we focus on only

the most probable hypothesis instead of considering all the power set of the frame

of discernment. The flowchart of the proposed system is presented in Figure 7.1.

The proposed model consists in three steps:

1. Building mass functions: This step consists in transforming classifier

output prediction scores into mass functions. First, the classifier output

scores are normalized to sum to one. Secondly, the obtained probabilities are

transformed into mass function using the inverse pignistic transform [Dubois

et al., 2001].
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2. Combination using Dempster’s rule: The obtained mass functions need

to be combined to produce a final mass function. Many rules of combination

can be used. In our model, we use the Dempster’s rule [Shafer, 1976] of

combination.

3. Decision making: To decide on the image label set, obtained final mass

function from the combination step is used to compute plausibility function.

7.2.1 Building mass functions

Assume that we have a set of Q classifiers, denoted by Ψ = {ψ1, ψ2, ...ψQ} to be

combined. Given an unseen image I, each classifier ψi produced an output ψi(I)

defined as :

ψi(I) = [si1, ..., sik] (7.1)

where sij indicates the degree of confidence in stating that “the image I belongs

to the class Cj according to the classifier ψi”.

First, classifier outputs are normalized to obtain a probability distribution pi over

Ω as follows:

pi(Cj) =
sij

∑k

j=1 sij
, for j = 1, ..., k (7.2)

For each classifier ψi, the element of Ω are ranked by decreasing probabilities

to obtain an ordered frame of discernment Ωord =
{

w1, w2, ..., w|Ω|

}

where w1

corresponds to the concept with the highest probability value.

The class label of an unseen image I may be represented by a variable ŷ taking

values in Θ = 2Ω. Thus, expressing partial knowledge of ŷ in the Dempster-

Shafer framework may imply storing 22
|Ω|

numbers. Given an image I, based on

this ordering, instead of considering the whole power set of Ω, we will focus on a

smaller subset R(Ω) defined by:

R(Ω) = {∪|Ω|−1
j=0 Rj(Ωord)} (7.3)

Rj(Ωord) = {w1, ..., wj+1}, ∀ j = 0, ..., |Ω| − 1 (7.4)

The size of this subset is equal to |Ω|, it is thus much smaller than 22
|Ω|

while

being rich enough to express evidence because we consider only the most probable

subsets.

We take an example of a multi-label classification problem with three classes where

Ω = {dog, baby, f lower}. The frame of discernment is not the set of all possible

single hypotheses but its power set Θ = {∅, {dog}, {baby}, {flower},

{dog, baby}, {dog, flower}, {baby, flower}, {dog, baby, f lower}}. For a test image,

the classifier outputs are normalized to obtain the following probabilities:
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p(dog) = 0.3, p(baby) = 0.5 and p(flower) = 0.2. Based on the ordering of

these probabilities (p(baby) ≥ p(dog) ≥ p(flower)), we obtain an ordered frame of

discernment Ωord = {baby, dog, f lower}. Instead of considering the whole power

set Θ, we focus on only a small subset R(Ω) = {A0 = {baby}, A1 = {baby, dog},

A2 = {baby, dog, f lower}} which represents the most possible hypothesis.

Secondly, we convert the obtained probabilities into consonant mass functions

using the inverse pignistic transform [Dubois et al., 2001]. The consonant mass

function derived from these probabilities verifies :

m : R(Ω) → [0, 1],
∑

Rj(Ωord)∈R(Ω)

m(Rj(Ωord)) = 1 (7.5)

m({w1, w2, ..., wi}) = i× [p(wi)− p(wi+1)] ∀ i < |Ω|

m({w1, w2, ..., w|Ω|}) = |Ω| × p(w|Ω|)

m(X) = 0 ∀ X /∈ R(Ω).

(7.6)

We take the above example with Ω = {baby, dog, f lower}, the mass functions for

the considered subset R(Ω), based on the probability ordering, are computed as

follows:

m({baby}) = 1× [p(baby)− p(dog)] = 1× [0.5− 0.3] = 0.2

m({baby, dog}) = 2× [p(dog)− p(flower)] = 2× [0.3− 0.2] = 0.2

m({baby, dog, f lower}) = 3× p(flower) = 3× 0.2 = 0.6

7.2.2 Dempster’s Combination Rule

In the proposed method, we choose to combine the obtained consonant mass func-

tions from different classifiers using the normalized Dempster’s rule [Shafer, 1976].

Other combination rules can be used [Quost et al., 2011]. Let mi be the mass

function of the source i, the combination of n mass functions (corresponding to n

classifiers) is defined according to Dempster’s combination rule as follows:

m1−n(A) =















∑

∩n
k=1

bk=A

n
∏

i=1

mi(bi)

1−K
, ∀A ⊆ Ω, A 6= ∅, bk ∈ Rk(Ω)

0 if A = ∅

(7.7)

where

K =
∑

∩n
k=1

bk=∅

n
∏

i=1

mi(bi) (7.8)

K is the degree of conflict between the combined mass functions, assumed to be

strictly smaller than one. This rule is commutative and associative.
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7.2.3 Decision Making

After the combination step, several decision rules can be used to make a decision.

We choose to use the plausibility function to make an optimistic decision since it

can be viewed as a loose upper limit to the uncertainty which is not the case of the

credibility function that represents a pessimistic decision. Let Ŷ be the predicted

label set for an instance x. To decide whether to classify a given image into a class,

we compute the degree of plausibility Pl(wj) that the true label set Y contains

the label wj, and the degree of plausibility Pl(w̄j) that it does not contain the

label wj. We then define Ŷ as:

Ŷ = {wj ∈ Ω|Pl(wj) ≥ Pl(w̄j)} (7.9)

7.3 Experimental Evaluation

To evaluate the effectiveness and the robustness of the proposed methods on user-

provided noisy/missing tags, we employ the real-world social images with human

annotated tags. Specifically, two publicly available datasets are used for the ex-

periments. We refer the reader back to Section 2.6.2 for dataset statistic details

(number of images, number of labels, number of tags...).

First, the pipeline used to compare our system to other ones is detailed. Then

we present results of the proposed approach over the two considered benchmarks.

Finally, we discuss the effectiveness and robustness of the proposed method.

7.3.1 Experimental Setup

The number of classifiers Q introduced in Section 7.2.1 is equal to three: we used

two textual descriptors and one visual descriptor to learn three classifiers using

Linear SVM. The number of annotation concepts k is equal to 93 (respectively

99) for the mageClef’10 (respectively ImageClef’11) dataset. The textual descrip-

tor used for the experiments is the Soft-Bag-of-Concepts (soft-BoC) presented in

Chapter 3. Each feature vector is of size 93 (respectively 99) for the ImageClef’10

(respectively ImageClef’11) dataset. For the visual signature, images are described

using five various global features, including color and edge features:

• Color: We use two color histograms in the RGB space. The first one is

quantified on three levels (size 43 = 64) and the second one on five levels

(size 53 = 125). A third histogram is computed in the HSV space and

quantified on three levels (size 53 = 125). Another color descriptor taking

into account the spatial coherence is considered [Stehling et al., 2002].
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• Texture: We use the local edge pattern (LEP) [Cheng and Chen, 2003]

leading to an histogram of size 512.

The visual signature is the concatenation of these five descriptors. The resulting

feature vector is of size 890. Each feature vector was used to train a classifier

using the Fast Shared Boosting algorithm [Le Borgne and Honnorat, 2010]. In

the rest of this chapter, we call Contextual Classifier, the classifier learned using

Flickr similarity and Semantic Classifier learned using WordNet similarity detailed

in Chapter 3.

7.3.2 Experimental Results

We present results of two experiments. In the first experiment, we evaluate the

performance of individual classifiers on the ImageClef’11 dataset. Then, we com-

pare the performance of the proposed method to several rules of combination for

classifier fusion. In the second experiment, we perform the same experiment on

the ImageClef’10 dataset.

7.3.2.1 Experiments on the ImageClef’11 dataset

Table 7.1 displays the performances of individual classifiers in terms of mean Av-

erage Precision (mAP) for the ImageClef’11 dataset. These results show that

individual classifiers exhibit similar performances with a small superiority to the

contextual classifier.

We use the Majority voting, Average, Maximum, Minimum and Product rules as

baselines for comparison. By comparing results presented in Table 7.2, we can

see that the combination of classifiers for both Dempster’s rule and average rule

Table 7.1: Comparative Performance of individual classifiers in terms of mAP
for the ImageClef’11 dataset.

Classifier Visual
Classifier

Contextual
Classifier

Semantic
Classifier

mAP 29.86 32.13 29.24

Table 7.2: Comparative Performance of different combination strategies in
terms of mean Average Precision (mAP) for the ImageClef’11 dataset. The

best results are marked in bold.

Strategy Maximum
rule

Minimum
rule

Product
rule

Majority
voting

Dempster’s
rule

Average
rule

mAP 36.39 31.93 33.59 40.01 39.05 40.21



Chapter 7. Combining Classifiers Based on Belief theory 156

Table 7.3: Comparative Performance of individual classifiers, Dempster, Av-
erage and the ImageClef 2011 Winner [Binder et al., 2011] for some challenging

classes in terms of mean Average Precision (mAP).

Classes Visual
classi-
fier

Context
classifier

Semantic
classi-
fier

Dempster
rule

Average
rule

[Binder
et al.,
2011]

Travel 18.85 14.78 17.55 22.12 14.57 16.72
Technical 08.19 06.37 04.52 12.85 07.24 08.51
Boring 07.28 07.78 07.63 15.88 08.79 09.94
Bird 17.55 51.71 56.08 61.52 58.77 58.71
Insect 14.26 47.84 46.44 58.08 53.12 45.21
Airplane 05.36 44.36 42.53 61.66 59.32 22.93
Skate 00.27 10.29 21.54 28.42 11.46 00.56
Scary 18.46 08.31 14.10 19.02 11.29 16.39

gives better results than the best individual classifier. We obtain a gain of ≈

10% in terms of classification accuracy (mAP). For this dataset, we observe that

the average rule achieves slightly better performances than the Dempster’s rule.

These results may be explained by the performance of the individual classifiers

which exhibit both identical performances and correlations between estimation

errors. In addition, we train individual classifiers with unbalanced data over classes

which can generate unreliable confidences (e.g. caused by a small training set or

by over training).

The average rule is hardly ever theoretically optimal, but performs sometimes sur-

prisingly good except for some classes as shown in Table 7.3. For these challeng-

ing classes, Dempster’s rule performs much better than the average rule especially

when considering ensembles of “good” and “bad” classifiers, then using the average

rule to combine the classification results will not be a good choice. We compare

Dempster’s rule to the ImageClef 2011 Winner [Binder et al., 2011] for these chal-

lenging classes. The proposed method outperforms the-state-of-art [Binder et al.,

2011] for such type of classes. These results are confirmed by the evaluation of the

proposed method for the ImageClef’10 dataset in the next section.

7.3.2.2 Experiments on the ImageClef’10 dataset

Table 7.4 displays the performances of individual classifiers in terms of mean Aver-

age Precision (mAP) on the ImageClef’10 dataset. By comparing results presented

in Table 7.5, we can observe that the Dempster combination rule performs better

than the average rule. This can be explained by the nature of the classifier to be

combined which represent a larger diversity in performances. This diversity may

cause uncertainty and conflict between base classifiers.
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We can notice that the Belief theory seems to offer a significant advantage to such

situations. It is particularly interesting to handle the uncertainty and the conflict

that can exist between different classifiers.

In order to illustrate how the proposed method based on the Dempster Theory

achieves better predictions, we included example images in Figure 7.2. We com-

pared here the Dempster’s rule only with the Average rule and listed the concepts

which the two methods returned. The correct ones are marked with green checks,

while the wrong ones are indicated by red crosses.

Table 7.4: Comparative Performance of individual classifiers in terms of mean
Average Precision (mAP) for the ImageClef’10 dataset.

Classifier Visual
Classifier

Contextual
Classifier

Semantic
Classifier

mAP 31.45 38.58 31.97

Figure 7.2: A qualitative comparison between individual classifiers, the pro-
posed method and the average rule. Predicted labels are shown in each column.
The correct ones are marked with green checks, while the wrong ones are indi-

cated by red crosses.
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Table 7.5: Comparative Performance of different combination strategies in
terms of mean Average Precision (mAP) for the ImageClef’10 dataset. The

best results are printed in bold.

Strategy Maximum
rule

Minimum
rule

Product
rule

Majority
voting

Dempster’s
rule

Average
rule

mAP 32.80 33.02 33.59 20.58 43.19 36.58

It can be seen that in most of the cases, the proposed method performs better than

the Average rule. The Average rule is not able to predict the whole set of labels

and most of the predicted ones are wrong. There are many missing labels with

this rule. Whereas, the proposed method removes most of wrong labels predicted

by individual classifiers and predict some other correct labels .

7.4 Conclusion and Discussions

In this paper, we presented a system for combining classifiers using Belief theory

for large-scale multi-label image classification. The exponential complexity of op-

erations in the theory of belief functions has long been seen as a shortcoming of this

approach, and has prevented its application to very large frames of discernment.

We have shown in this chapter that the complexity of the Dempster-Shafer calculus

can be drastically reduced from (22
|Ω|
) to |Ω|, while retaining sufficient expressive

power, if belief functions are defined over a suitable subset of the power set. The

major difference between our work and the state-of-the-art approaches [Liu et al.,

2011; Younes et al., 2009] is that we address the problem of combination in a

multi-label classification task for a large problem: to the best of our knowledge,

this is the first attempt to apply Dempster-Shafer theory for a multimodal multi-

label image classification for a large dataset (≈ 18k images) and a large variety

of categories simultaneously (scene, event, objects, image quality and emotions

≈ 100 concepts). When individual classifiers present similar performances, ex-

perimental results have shown that using simple rules such as averaging can be

a good choice. While, for conflicting classifiers, the Belief theory seems to be an

interesting framework to handle the uncertainty and the conflict that can exist

between different classifiers.
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Conclusions and Future Research

Directions

In this dissertation, we address the problem of imperfections in multimodal image

annotation in the context of social media. We distinguish two levels of imperfec-

tions: Representation and Decision. The first level is related to tag imperfec-

tions. In fact, we consider as imperfect, tags that are noisy and not related to the

image semantic visual content. Our first goal is to identify and define these imper-

fection aspects at the representation level. Thereafter, we focus on handling such

imperfections in order to enhance multimodal image annotation performances.

At the decision level, we are interested in handling imperfections that can exist

while combining classifiers from different modalities and learned on imperfect data

(tags).

8.1 Contributions

• To deal with tag imperfections at the representation level, we started by

identifying and defining clearly these imperfections in the context of image

annotation. Thereafter, we have introduced two novel textual signatures for

tag-based image annotation in the context of social media. We reported ex-

tensive experimental results on five datasets. From these results, we conclude

that both signatures give similar or better results than the state-of-the-art

approaches on the five considered datasets on the tag-based image annota-

tion task. Unlike classic BOW models, our both signatures permitted to

handle a part of imperfection aspects of tags.

• To deal with the problem of tag incompleteness, we introduced a novel ap-

proach for tag suggestion based on local soft coding and Belief theory. First,

a list of “candidate tags” is created from the visual neighbors of the untagged

159
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image, using both local soft coding and two consecutive pooling steps. Then,

these tag-signatures are used as pieces of evidence to be combined to provide

the final list of predicted tags. This fusion is based on the Dempster’s rule

of combination, in accordance with the Evidential kNN framework. Hence,

both steps support a scheme to tackle with imprecision and uncertainty that

are inherent to this type of information in a social media context. The exper-

iments that we carried out for image classification on two publicly available

datasets show that we obtain comparable or better results than the state-of-

the-art methods. For tag suggestion, we manually annotated 241 queries to

propose a new benchmark1 to the community. For that application as well,

we obtained competitive results, with a score two points better than the best

recent state-of-the-art method.

• We proposed a new BOW based signature, called Bag-of-Multimedia Words

(BOMW), that results from a combination of textual and visual information.

It is based on multimedia codewords that allow on the one hand cross-coding

textual tag-words over visual-words extracted from a document; and on the

other hand designing BOMW signatures. Experiments have been conducted

on two well-known challenging benchmarks: PASCAL VOC’07 and Image-

Clef’12. Obtained results show the competitive performances of the BOMW,

ensuring a trade-off between classification accuracy and computation cost.

In opposition to classic BoW signatures, classification results remain stable,

with a very low fluctuation, when changing sizes of the visual or multimedia

codebooks. This is an interesting property useful to reduce the complexity of

the classification system in both training and test, which is obtained at the

cost of a small pre-processing step for signature design (building tag-coding

matrix and clustering it). The performance gain is due to the fact that the

proposed multimedia signature lies on a structured space, well appropriate

to describe multimedia documents. Therefore, BOMW are probably much

more class-discriminative than other types of BOW. The proposed frame-

work is generic and, thus it is possible to exploit it in other application

domains (video classification, robotics etc.), with data that include other

modes than textual and visual ones.

• To handle imperfections at the decision level, we introduced a novel multi-

media feature generation framework which makes use of different modalities

in order to obtain efficient image classification. Feature generation is per-

formed in an unified manner and the framework is easy to extend to other

potentially useful image representations. The combination of both tag and

visual features is performed automatically via the Stack Generalization algo-

rithm. Stacking represents a scheme for minimizing the generalization error

rate of one or more models. Stacking classifiers is done by collecting the

1http://perso.ecp.fr/~znaidiaa/dataset.html

http://perso.ecp.fr/~znaidiaa/dataset.html
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outputs of so called level-0 classifiers into a new dataset and to train one

or more level-1 classifiers on the outputs of the level-0 classifiers to improve

learning generalization capacities. The experiments that we carried on four

publicly available datasets show that we obtain comparable or better results

than the state-of-the-art methods while decreasing the complexity of image

representations and concept learning.

• We presented a multimodal framework for combining classifiers using Belief

theory for large-scale multi-label image classification. When individual clas-

sifiers present similar performances, results have shown that using simple

rules such as averaging can be a good choice. While, for conflicting classi-

fiers, the Belief theory seems to be an interesting framework to handle the

uncertainty and the conflict that can exist between different classifiers. Our

approach ensured that the fusion scheme remained robust in the presence

of noise arising from poor classification results due either to the classifiers

themselves or to the nature of data (tags) fed to the classifiers. The com-

putational complexity, which limits the use of Belief theory, is reduced by

considering only a subset of the frame of discernment.

8.2 Perspectives for future research

Many contributions were proposed in this dissertation to deal with imperfections

in multimodal image annotation problem in the context of social media. These

contributions are in no way complete solutions, and could be improved in several

manners. In the following, we propose potential directions that can be explored

further.

• To deal with tag imperfections, we relied in the proposed models on two

external resources: WordNet and Flickr. In the future, a promising research

direction would be to include other knowledge resources such as Wikipedia

for tag refinement and noise removing. For example, a similarity based

on Wikipedia can be used in our LSTC signature to derive a new tag-based

signature. This latter can be combined with the two proposed tag signatures

based on Flickr and WordNet.

• Since the proposed BOMW signature shows to be more compact and dis-

criminative than classic BOW representations (visual or tag), it seems inter-

esting to build multimodal pLSA models with BOMW, while being simple

and efficient for parameter learning. Instead of considering each modality

separately, we argue that combining visual and tag modalities in a same

signature, which is more appropriate for multimedia documents, represents

an interesting step to apply pLSA. Another possible direction is to extend
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recent works addressing the visual Fisher vector [Perronnin and Dance, 2007;

Perronnin et al., 2010] and its approximate variant [Jégou et al., 2012] to

the proposed BOMW, taking advantages of merging generative models with

discriminative classifiers to put in place competitive recognition systems.

• To deal with tag completion, we proposed a method based on visual neigh-

bors which were obtained from an image database containing 1.2 million

images extracted from Flickr. This resource is crucial to obtain good raw

results for the considered application. Even if our method obtains better

results than other recent ones, all of them would benefit from an improved

resource. A first direction to improve it is to use a potentially better visual

signature to get the neighbors. However, we must keep a certain efficiency in

practice to avoid prohibitive time responses to find neighbors. For this, we

may search them into a compressed domain that allows to fit large databases

into memory [Jégou et al., 2012]. A more difficult direction of research will

be the improvement of the annotation of the resource itself. As we explained,

a lot of the current annotations are far from being perfect (it is one of the

reason we re-annotated the queries to evaluate the work). Hence, this work

can naturally be continued into the process of cleaning large multimedia

resources.

• To improve the classifier combination based on Belief theory, one direction

for future research is to take into account the classifier reliability while com-

bining output scores from different classifiers. In the proposed approaches,

classifiers are considered as equal and their reliability are not taken into ac-

count. Consequently, an estimation of the classifiers reliability seems to be

interesting to improve classifier combination performances. Another inter-

esting direction is to measure the conflict degree between different classifiers

and to exploit this measure in classifier combination. An additional direction

is to construct mass functions directly in the classifiers.

• One direction is to use tag completion and local soft tag coding approaches

for a personalized and interactive tag recommendation system in social me-

dia. While a user enters new tags for a particular photo, the system suggests

related tags to her, based on the local soft tag coding approach. If no tag

is entered, the tag completion approach can be used to suggest a set of tags

and give free choice to the user to keep the most relevant ones.

• Based on the BOMW approach, one perspective is to develop an automatic

illustration system supported by multimedia information retrieval, that an-

alyzes text and presents a list of candidate images to illustrate it, called

”story picturing”. This system can be used to illustrate children stories or

to describe a newspaper article in order to provide enhanced visual compre-

hension.
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Appendix A

Evaluation measures

To assess the performance of the performances of the proposed approaches in this

thesis, we use the following evaluation measures:

Mean Average Precision (mAP)

Among evaluation measures, mAP has been shown to have especially good dis-

crimination and stability. This evaluation measure first ranks the images by their

confidence scores, from high to low, for each concept separately. This produces

a result vector V =< v1, ..., vn >, where s(vi) ≥ s(vi+1) for all 1 ≤ i ≤ n. We

note by rel(vi) the relevance of an image; rel(vi) is equal to 1 if vi is relevant to

this concept and 0 otherwise. The images are inspected one by one and each time

a relevant image is encountered the precision and recall values are computed as

follows.

• Precision The precision measure is based on the observation that users of

an Information Retrieval system tend to examine only the first k results of a

search. It measures what fraction of these k results is relevant to the query

on average. The value k is commonly called the document cut-off value. The

precision at k is defined as:

P (@)k(V ) =
1

k

k
∑

i=1

rel(vi) (A.1)

• Recall The recall measure quantifies what fraction of all the relevant results

was ranked to fall within the first k documents. The recall at k is defined

as:

R(@)k(V ) =

∑k

i=1 rel(vi)
∑n

i=1 rel(vi)
(A.2)
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In case of ties we consider all the images with the same confidence score together

at once and produce only a single precision and recall value for them using a tie-

aware ranking approach [McSherry and Najork, 2008]. We then interpolate the

values so that the recall measurements range from 0.0 to 1.0 with steps of 0.1;

the precisions at these recall levels are obtained by taking the maximum precision

obtained at any non-interpolated recall level equal or greater to the interpolated

recall step level under consideration. Formally, the interpolated precision Pinterp

at a certain recall level R is defined as the highest precision found for any recall

level R′ ≥ R:

Pinterp(R) = max
R′≥R

P (R′) (A.3)

• Average Interpolated Precision

The average interpolated precision, called also 11-point average precision, is

defined as follows:

APinterp =
1

11

1
∑

R=0.1

Pinterp(R) (A.4)

where R ∈ [0.1, 1.0] with steps of 0.1.

To obtain the overall interpolated mAP (mAP), called also 11-point Mean Inter-

polated Average Precision, we average the average interpolated precisions over all

concepts as follows:

mAP =
1

C

C
∑

i=1

APinterp (A.5)

where C is the number of annotation concepts.
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