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be from Numerical Recipes.
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Abstract

The satellite system of a large galaxy represents the ideal laboratory for the study of galactic
evolution. Whether that evolution has been dominated by past mergers or in situ formation,
clues abound within the structure of the satellite system. This study utilizes recent photomet-
ric data obtained for the halo of M31 via the Pan-Andromeda Archaeological Survey (PAn-
dAS), to undertake an analysis of the spatial distribution of the M31 satellite system. To do
this, a new Bayesian algorithm is developed for measuring the distances to the satellites from
the tip of their Red Giant Branch. The distances are obtained in the form of posterior prob-
ability distributions, which give the probability of the satellite lying at any given distance
after accounting for the various spatial and photometric characteristics of the component
stars. Thus robust distances are obtained for M31 and 27 of its satellite galaxies which are
then transformed into three-dimensional, M31-centric positions yielding a homogenous sam-
ple of unprecedented size in any galaxy halo. A rigorous analysis of the resulting distribution
is then undertaken, with the homogeneity of the sample fully exploited in characterizing the
effects of data incompleteness. This analysis reveals a satellite distribution which as a whole,
is roughly isothermal and no more planar than one would expect from a random distribution

of equal size. A subset of 15 satellites is however found to be remarkably planar, with a

+0.75

root-mean-square thickness of just 12.347 3

kpc. Of these satellites, 13 have subsequently
been identified as co-rotating. This highly significant plane is all the more striking for its
orientation. From the Earth we view it perfectly edge on and it is almost perpendicular to the
Milky Way’s disk. Furthermore, it is roughly orthogonal to the disk-like structure commonly
reported for the Milky Way’s satellite galaxies. The distribution is also found to be highly

asymmetric, with the majority of satellites lying on the near side of M31. These findings

point to a complex evolutionary history with possible links to that of our own galaxy.

XV



Xvi ABSTRACT




Résumé de These

Etude de la structure tridimensionnelle du systéme de satellites de M31 au moyen d’une

méthode Bayesienne de localisation de la pointe de la branche des Géantes Rouges

Les étoiles de basse masse pauvres en métaux qui ont consommeé tout I’hydrogene présent
dans leur noyau et dont celui-ci n’a plus une densité suffisante pour fusionner de 1’hélium,
entrent dans la phase de la branche des géantes rouges (RGB). Apres un certain temps,
I’étoile devient plus lumineuse et les cendres dhélium produites par cette réaction retombent
sur le noyau, accroissant sa densité jusqu’a celle-ci soit suffisante pour remettre en marche
la fusion de I’hélium. L’étoile, qui n’appartiendra bientdt plus a la branche d’étoiles RGB
est dite du tip of the Red Giant Branch (TRGB) . Du fait des propriétés similaires du noyau
de toutes les étoiles qui arrivent a ce state de leur évolution dans une gamme spécifique de
masse et de métallicité (voir Iben and Renzini 1983), leur radiation énergétique et donc leur
luminosité est constante. Le TRGB pour de telles populations stellaires donne donc une

mesure de la distance a cette population.

Avant le développement de la méthode de la détection d’un bord de Lee et al. (1993),
la TRGB était déterminée par des Diagrammes Couleur-Magnitude (CMD) a I’oeil nu et les
distances dérivées manquaient donc de précision et d’uniformité requis pour une utilisation
fiable pour de nombreux objets. On a développé de nombreuses méthodes depuis celle-ci
mais elles se basent toutes sur I’idée de convoluer la fonction de luminosité (LF) du RGB
avec un kernel de détection de bord, afin de créer un maximum a la magnitude correspondant
a la plus grande discontinuité dans la LF, qui devrait correspondre a la magnitude du TRGB.
Malheureusement, de telles méthodes donnent de mauvais résultats dans la présence de bruits
— notamment lorsque le RGB est noyé par des étoiles contaminantes. Pour cette raison,

plusieurs alternatives d’ajustement de modeles qui utilisent toute la LF ont été proposées

Xvil
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(par exemple Méndez et al. 2002). Malgré cela, pour ces méthodes, les incertitudes de
mesures sont souvent tres grandes et mal définies et n’ont pas la possibilité d’incorporer nos
informations a priori sur le systeme étudié. C’est pour cela que la premiere grande partie
de cette these aura pour but de créer un algorithme robuste et versatile pour mesurer des

distances en utilisant la magnitude du TRGB.

Les premiers chapitres décrivent le développement d’un algorithme Bayesien qui utilise
une approche de maximum de vraisemblance. Les parametres du modele (magnitude du
TRGB, pente de la LF, propriétés de contamination) sont ajustés par 1’algorithme suivant une
simulation Markov Chain Monte Carlo (MCMC). Cela donne acces aussi aux incertitudes sur
ces parametres. Malgré sa simplicité, cette méthode est robuste, et donne des sorties intu-
itives et visuelles des probabilités de parametres et il reste facile d’ajouter de I'information
a priori. La premiere version de cet algorithme a été publiée dans le Astrophysical Journal
(Paper 1), et est a la base du chapitre 3. Cette publication présente €¢galement des tests qui
caractérisent la performance de cette méthode pour des LFs de différentes qualités, ainsi que
son application a trois galaxies naines sphéroidales, satellites de M31, et donne les meilleures

incertitudes de toutes les méthodes basées sur le TRGB publiées jusqu’a ce jour.

Les données physiques analysées dans cette these viennent du Pan-Andromeda Archae-
ological Survey (PAndAS — McConnachie et al. 2009), un relevé ambitieux qui couvre plus
de 300 degrés carrés autour de la galaxie d’Andromedre, la galaxie géante la plus proche
de la Voie Lactée. Ce relevé donne acces a la photométrie profonde en bande g’ (centré sur
487 nm) et la bande i’ (centré sur 770 nm), et qui couvre plus de 25 satellites galactiques
qui sont idéaux pour des mesures de distance par la méthode TRGB. L’algorithme présenté
en chapitre 3 a été amélioré pour utiliser ces donnes spécifiques. La contamination du fond
étant la plus grande source du détriment de la qualité des distances TRGB, j’ai mis au point
une routine << matched filter >> (voir Rockosi et al. 2002) pour donner des poids a chaque
étoile en fonction de sa position spatiale dans le profil de densité du satellite. L’effet de
I’application de cet algorithme sur la LF est de réduire la contamination du fond et ainsi
d’augmenter le contraste de la troncature du RGB au TRGB. Visuellement, le changement
du LF est souvent suffisant pour révéler de facon treés claire la position du TRGB qui était

avant a peine plus que du bruit Poissonnien.
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Cette méthode améliorée, appliquée a tous les satellites (27 en total) détectés dans le
relevé PAndAS est présentée dans un deuxieme article soumis a 1’ Astrophysical Journal et
constitue I’essentiel du chapitre 4 (Paper II). Cet article apporte les premieres mesures de dis-
tances pour une grande partie de ces satellites et se révele €tre 1’analyse la plus compréhensive
des distances du systeme de satellites de M31. Cette investigation contient également une
analyse breve du profil de la densité du halo en utilisant ces nouvelles distances, que nous
avons comparées aux valeurs trouvées avec 1’aide d’autres méthodes.

Le grand nombre de satellites autour de M31 pour lesquels j’ai obtenu de bonnes mesures
de distances donne ainsi une excellente occasion d’analyser le degré de planarité et d’asymétrie
du systeme de satellites. Cela a des fortes répercussions sur la distribution de matire dans le
halo de la galaxie hote ainsi que sur I’histoire de formation des satellites mémes. Plusieurs
études du systeme satellitaire de la Voie Lactée (par exemple Lynden-Bell 1982; Zentner
et al. 2005; Pawlowski et al. 2012b), trouvent des plans fortement significatifs, souvent in-
clinés par rapport au disque Galactique. Des résultats similaires ont été publiés pour le
systeme de M31 (par exemple Koch and Grebel 2006). Les études du systeme de M31 ont
été faits avec de petits €chantillons de satellites et les mesures de distances proviennent donc
de plusieurs auteurs (et méthodes) différentes. C’est ainsi que le chapitre 5 et une troisieme
publication donnent a voir une analyse détaillée du systeme de satellites de M31 en se basant
sur les données du chapitre 4. La planarité du systeme de satellites est explorée par le biais
du plan de meilleur ajustement en utilisant plusieurs méthodes (moindre rms, moindre dis-
tance, ajustement a un modele Gaussien). La vraisemblance de ces alignements est analysée
a I’aide de simulations ou chaque satellite est tiré au hasard a partir de sa distribution de dis-
tance. L’analyse de I’asymétrie est effectuée de fagon similaire, en utilisant des statistiques
d’asymétrie, notamment le nombre de satellites qui se trouvent sur un hémisphere du halo.
Les positions 3-D présentées au chapitre 4 montrent que le pole du plan d’asymétrie maxi-
mal se trouve tres pres du vecteur Terre-M31 ; la probabilité d’un tel alignement est étudiée

dans cette these.
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“I do not feel obliged to believe that the same God who has endowed
us with sense, reason, and intellect has intended us to forgo their

use.”

Galileo Galilei (1564-1642)

An Introduction to Galactic Archaeology

1.1 Overview

Large galaxies like the Milky Way and it’s neighbor the Andromeda Galaxy (M31) are com-
plex, evolved structures when studied on any scale. They are a plethora of countless billions
of stars and the condensing clouds of gas and dust from which they form, all in motion, all
evolving since time immemorial. But far removed though their origins may be, their very
structure preserves their past. However, even the structure of the Milky Way, our own galaxy,
is not obvious from our vantage point deep within it and while the general structure of its
basic components have been constrained, there is an underlying labyrinth of substructure
remaining to be identified and interpreted with respect to its bearing on Galactic Evolution.

Hence we must begin our study with an overview of the large scale structure of our own



2 AN INTRODUCTION TO GALACTIC ARCHAEOLOGY

galaxy a structure which, as might be expected, is shared by many of our galactic neigh-

bours and indeed by nearly all those galaxies near and far of a similar type.

1.2 A portrait of a Galaxy

The Milky Way (henceforth ‘the Galaxy’) is a late-type barred spiral galaxy. It is known to
consist of both a thin and a thick disk component, a central bulge and an enormous halo,
encompassing the whole system (Freeman and Bland-Hawthorn, 2002). The thin disk has
been determined to have a scale length of 2600 pc and a scale height of 300 pc (Juri¢ et al.,
2008) with an overall radius of 15 + 2 kpc (Ruphy et al., 1996). It is within the thin disk that
both the solar neighbourhood and the spiral arms reside. The spiral arms have been traced
by various methods, notably by Georgelin and Georgelin (1976), who used HII regions to
trace their extent. They found two symmetrical pairs of arms with a pitch angle of 12°.
The four arms in total were identified as the Sagittarius-Carina Arm, the Scutum-Crux Arm,
the Norma Arm and the Perseus Arm, with the Sun residing in a spur between the inner
Sagittarius-Carina Arm and the outer Perseus Arm. This is represented schematically in
Figure 1.1. Based on their findings they suggest a morphological type for the Galaxy closest
to Sc.

Enveloping the thin disk is a somewhat more diffuse, ancient haze of stars termed the
Galactic ‘thick disk’ (Gilmore and Reid, 1983). It has been calculated from the Sloan Digital
Sky Survey I (SDSS I) to have a scale length of 3600 pc and a scale height of 900 pc (Juric¢
et al., 2008). Freeman and Bland-Hawthorn (2002) describe it as a ‘snap frozen relic of the
heated early disk’ and allocate some 10% of the Galaxy’s baryonic matter to its confines. A
metallicity of -2.2 < [Fe/ H] < -0.5 is quoted for the thick disk stars in contrast to the -0.5
< [Fe/ H] < 0.3 determined for the younger thin disk, and its luminosity is specified as 10%
that of the thin disk.

In the inner regions of the Galaxy is a denser conglomeration of what are generally con-
sidered to be older, metal poor stars termed ‘the bulge.” Freeman and Bland-Hawthorn (2002)

caution however that a study of bulge red giant stars (McWilliam and Rich, 1994) suggests
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Ficure 1.1: A Schematic of the observable portion of the Milky Way’s spiral arms. (Vallée, 2005)

a metallicity much closer to the older stars of the thin disk than to the truly ancient stars in
the Galactic halo. They further describe the Milky Way’s bulge as appearing significantly
smaller than that of M31 and somewhat ‘boxy,” typical of an Sb to Sc spiral. Also of partic-
ular note, the Galaxy has long been suspected of containing a bar at its centre which has, as
of 2005, been proven. Benjamin et al. (2005) find the bar to have a length of 8.8 + 1.0 kpc
with orientation such that it is rotated 44 + 10° from a line connecting the Sun and Galactic

Centre.

Finally, the halo of the Milky Way is easily its largest and arguably its oldest major
constituent. It is an enormous, roughly spherical (Ibata et al., 2001b) cocoon of ancient
field stars, and approximately 150 similarly ancient globular clusters (Freeman and Bland-
Hawthorn, 2002). It is also known to extend out well beyond the Small Magellanic Cloud to
a distance of 100 kpc from Galactic centre and it contains at least 10 known satellite galaxies
(van den Bergh, 2006). Perhaps most remarkable is that it contains 1.0%03 x 10'*M,, (Xue

et al., 2008) of dark matter, which amounts to at least 90 % of the total mass of the Galaxy
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(Freeman and Bland-Hawthorn, 2002). The substructure within this dark matter halo is of
great interest as it lies at the heart of our current understanding of galaxy formation.

Our current knowledge of the Galaxy as presented in the above paragraphs represents
some of the fruits of Galactic Archaeology. This knowledge is however fairly coarse in
scope and Galactic Archaeology may still be regarded as a burgeoning field. Nevertheless, it

is our means to unravel the Galaxy’s past and our best hope for predicting its future.

1.3 Galactic Archaeology - The Means and the Motives

The field of Galactic Archaeology is in a sense a toolkit providing the necessary tools to wind
back the cosmic clock and provide us with a high resolution view of our Galaxy and its im-
mediate neighbours in a way that might otherwise have been restricted to the poorly resolved
galaxies of the high-redshift universe. It is not a single method but rather a collection of
techniques making use of large sky photometric, astrometric and kinematic surveys to study
the positions, motions and chemical compositions of groups of stars in an effort to link them
to ancient progenitor structures and then simulate the evolution of these structures through
time to the present and beyond. In other words, if stars are found to be grouped together
in 6D phase space (i.e. 3 dimensions in position and 3 dimensions of velocity) they may
be members of a present day cluster whereas stars grouped together only in velocity space
may be termed a moving group and be members of a since-dispersed cluster. Stars grouped
together in chemical space might similarly be ‘tagged’ to an ancient progenitor structure.
Some of these possibilities are further investigated in the following paragraphs.

With the advent of Galactic Archaeology, the discovery of moving groups has become
common. In an early example, Eggen and Sandage (1959) identified the nearby moving
group Groombridge 1830 and associated it with the Galaxy’s globular clusters, providing
an early detection of nearby halo stars. In the intervening decades, numerous further exam-
ples have been discovered associated with the halo alone, but Freeman and Bland-Hawthorn
(2002) caution that the validity of some of these groups is questionable.

The tagging of stars to progenitor groups based on their chemical composition is per-

haps an even more powerful technique. It relies on the assumption that the progenitor cloud
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be uniformly well mixed before the formation of the surviving stars (Freeman and Bland-
Hawthorn, 2002) which is conceivable if McKee and Tan (2002)’s model of cluster forma-
tion is accepted whereby all stars form at a similar time. Such a method has interesting
implications not only for the origins of structure formation in the Galaxy at large, but also at
a more local level, as it presents the real possibility of identifying Solar siblings — those stars
that formed out of the same cloud as our Sun. Indeed Reipurth (2005) lists possible evidence
supporting the idea that the Sun did in fact form in a cluster and Portegies Zwart (2009) goes
so far as to provide mass and radius constraints for the cluster of 500 — 3000 Mg, and 1 —
3 pc respectively. They further concur that with accurate chemical abundances and phase
space information, the identity of the cluster members may be recovered. A direct test of the
feasibility of chemical abundance tagging is seen in De Silva et al. (2007) where of the 18
supposed members of the commoving group HR1614, 14 were found to have very little scat-
ter in chemical abundances across a wide range of elements with the non-conforming stars
conceivably ‘pollution’ from the non-cluster background. Thus it seems that, at least in some

cases, this powerful technique proposed for Galactic Archaeology should be applicable.

So far we have encountered the means to re-construct ancient Galactic components but
the question remains —how ancient? A time frame is needed to accurately model the Galaxy’s
evolution, as evolution is after all time dependent. There are various methods proposed to
fulfill this function, all relating to the determination of stellar age, of which Freeman and
Bland-Hawthorn (2002) gives a concise summary. Since we are generally concerned with
stars long since removed from their parent clusters, determining age from the main sequence
turnoft is obviously not an option. Instead, such methods as nucleo-cosmochronology,
astero-seismology and age-metallicity relations are suggested. Nucleo-cosmochronology is
concerned with ageing the elements in a star based on their remaining radioactive isotope
strengths, given a certain radioactive decay rate. Since the original elemental abundances
are not known, the method compares the radioactive isotope strengths to stable r-process el-
ements. Some studies based on this technique have already been highly successful. Astero-
seismology takes advantage of the evolving mean molecular weight in the cores of stars to

ascertain age and has been used to provide an age for the Sun of 4.57 Gyr + 0.12 Gyr (Gough,
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Ficure 1.2: An example of the Age-Luminosity Relation. Here, the ages of the oldest globular
clusters have been plotted as a function of the absolute visual magnitude of component RR Lyrae
stars. The best fit median is represented by the solid line while the dashed lines represent 1o limits.
(Chaboyer et al., 1998)

2001), which matches well with the ages determined for the oldest meteorites by more di-
rect means. An age-metallicity relationship would provide a more direct measure of stellar
age, if indeed one could be established but alas, such a relationship only applies to a small
subset of stars. Freeman and Bland-Hawthorn (2002) find such a relationship to exist only
for a small range of young, hot, metal-rich stars. More useful however is the age-luminosity
relationship (Figure 1.2) found to apply to the much older RR Lyrae stars, provided their dis-
tances may be accurately determined. This principle has been applied to constrain the ages
of the Galaxy’s globular clusters (Chaboyer et al., 1996). Still, there is a large age interval
over which the latter two methods are not applicable, thus emphasizing the importance of

the former two methods.

Having discussed the tools of Galactic Archaeology, what are its goals and to what extent

have these goals already been met? The ultimate goal of Galactic Archaeology is to be able to
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trace the current structures of the Galaxy back to their progenitor structures in the protocloud
from which it formed. In so doing, the histories of the various components of the Galaxy are
uncovered, spanning from the epoch of formation to the present day. As outlined in section 1,
the basic structure of the Galaxy has already been established and based on the stellar ages
and metallicities/ elemental abundances across the various components an hypothesis for
galaxy formation has been formulated, again summarized in Freeman and Bland-Hawthorn
(2002). It is suggested that the Galactic Protocloud began to form at a similar time to the
epoch of reionization. At this time the Galaxy, like those around it, appeared in the form of a
dark matter halo, with its central black hole and possibly its stellar bulge forming first. The
prominent disk structure where most of the baryons reside did not develop until the beginning
of the main epoch of baryon dissipation at a redshift of z ~ 1 — 5. This also coincides with
the ages of the thick disk and the globular clusters. The populating of the halo with globulars
and field stars is thought to have also begun very early in the formation process, the result
of tidal interactions with small neighbouring dwarf galaxies. The thin disk comprises the
youngest stars of the Galaxy while the thick disk is likely the dynamically heated remnant
of an ancient thin disk — in fact, Galactic Archaeology may provide some clue as to the
particular interaction responsible. One popular theory is that the globular cluster w Cen is
the remnant core of a small galaxy, stripped of its outer stars in an interaction precipitating
the heating of the original thin disk (Bekki and Freeman, 2003). It is also believed that the
current galactic bulge is not of the ancient origin of more pronounced bulges such as that
found in M31, but rather a later formation in the established inner disk. This is consistent
with the relatively high metallicities in the galactic core, although it must be stressed that
metallicity is a better measure of the number of supernova events rather than of actual age

and the density of the galactic core is bound to influence this number profoundly.

The formation sequence presented above owes little to observations of high-redshift
galaxies or even to computer simulations based on Cold Dark Matter (CDM) Cosmology,
but rather it is a construction based on observations of our own galaxy and those nearby. Our
focus has so far been centered on the Milky Way, but it must be stressed that any galaxies

close enough to have their individual stars mapped into phase space or chemical space are
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within the reach of Galactic Archaeology. It should also be stressed that the methods as-
sociated with Galactic Archaeology described above form the basis for such study but such
methods provide for mere data acquisition — the possible applications for the data are enor-
mous, and hence so to is the scope of Galactic Archaeology. These points should be kept
in mind as some of the various sky surveys available to the ‘Galactic Archaeologist’ are

discussed in the next section.

1.4 Completed and Future Surveys - What can they tell us?

Modern Galactic Archaeology draws heavily on a small number of ambitious, wide field
surveys focused, at least in part, on the acquisition of either photometric, astrometric or
kinematic data for large numbers of stars. While there are many smaller data sets such as
Hubble Space Telescope (HST) pointings and those from major ground telescopes which are

also utilized, our focus here shall be limited to these major surveys.

1.4.1 Photometric

Among those surveys with the broadest scope are the photometric surveys, although the data
they include is often more restrictive for Galactic Archaeology than that from the astrometric
and kinematic surveys. Photometry is of particular usefulness in determining the distance to
large numbers of objects. The two most recent major photometric catalogues are those from
the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS). SDSS
is an ongoing survey, begun in 2000, using the dedicated 2.5 m wide-field, modified Ritchey-
Chrétien telescope at Apache Point Observatory and an array of 30 X 4 megapixel CCDs.
The survey provides photometry in the u, g, r, i and z bands (see York et al. 2000 for a
technical summary) as well as spectroscopy of select targets. As of the ninth data release
(SDSS-III Collaboration et al., 2012), the survey had covered some 14555 square degrees
of sky or more than % of the entire celestial sphere, with spectra obtained for 668054 stars.
The survey also features stellar positions accurate to within 150 mas for each coordinate
and metallicity as well as phase space information are determinable for the observed stars.

The stellar coverage is however, relatively small owing to the survey’s greater emphasis on
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obtaining photometry for galaxies.

The 2MASS survey (Skrutskie et al., 2006) in contrast covers an enormous quantity of
stars, with some 471 million point sources extracted from the data. The survey covers the
entire sky and includes photometry in the J, H and Ks near-infrared bandpasses. For entire
sky coverage, two ground based telescopes were required, one in each hemisphere, and hence
two 1.3 m telescopes were constructed for the task, one at Mount Hopkins, Arizona and the
other at Cerro Tololo in Chile. The 7.8 second exposure for each field results in limiting
magnitudes of 15.8, 15.1 and 14.3 in the J, H and K bands respectively. A 1o error of
< 0.03 magnitudes is determined for the photometry with an estimated error of 100 mas
in the source positions. With stellar positions as well as metallicity being determinable
from the data, stellar tagging is a possibility from this data set. Indeed, this survey is a
useful archive of data for isolating ancient structures, especially since such structures may
be expected to be delineated by luminous red giant stars which would remain visible out to
great distances due to their strong emission in the near infra-red. This merit of the survey has
in fact been exploited by previous studies, as exemplified by Ibata et al. (2002a) where M
giants were used to trace substructure in the outer Galactic halo. Still, the lack of kinematic
data obtainable from the survey does present some limitations for reconstructing ancient

structures that have since dispersed.

The Skymapper Telescope (see Keller et al. 2007) is currently working to improve on the
2MASS data set, at least for the southern celestial hemisphere. Skymapper is a 1.33 m tele-
scope operated by the Australian National University (ANU) at Siding Spring mountain. It
features an array of 32x8 megapixel CCDs mounted at the Cassegrain focus of the telescope
to provide a 5.7 square degree field of view. Six coloured glass filters allow photometry in
the u, v, g, r, 1 and z bands with peak throughput in the r band at around 650 nm. A proposed
‘Five-Second Survey’ consisting of at least 3 images of every field per filter is capable of
providing photometry for stars of magnitude 8.5 through to 15.5 with a minimum accuracy
in the g and r bands of o = 0.1 mag, thus providing comparable sensitivity and accuracy to
the 2MASS survey but with a wider wavelength coverage. With 36 observation epochs over
a five year period, astrometry will also be possible from the Skymapper data, with proper

motions as small as 4 mas year™' detectable and position information accurate to within 50
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mas. Hence in using the Skymapper data, Galactic Archaeologists have at their disposal 5
dimensions of phase space data as well as basic metallicity information for each surveyed
star. It might therefore be argued that Skymapper represents one of the greatest leaps for-
ward in the field of Galactic Archaeology to date and indeed the probing of the evolution and

structure of the Galaxy ranks highly as one of the projects chief science goals.

1.4.2 Astrometric

Astrometry is essentially concerned with the determination of the 5 dimensions of phase
space excluding radial velocity. Two data sets stand out as major contributions to the bulk
of astrometry information currently available — that from the HIPPARCOS mission (ESA,

1997) and the data contained in the United States Naval Observatory (USNO) catalogues.

HIPPARCOS is actually an acronym for HIgh Precision PARallax COllecting Satellite,
chosen in honour of the Greek astronomer Hipparchus whose main contribution to astron-
omy was astrometry, albeit in only two dimensions of phase space! The satellite operated
from 1989 to 1993 providing high precision positional and proper motion data for more than
100000 stars. The final HIPPARCOS Catalogue consists of 118218 stars within a limiting
magnitude of 12.4. The stars’ positions on the celestial sphere, parallaxes and proper mo-
tions were determined to within median precisions of 0.77 mas, 0.97 mas and 0.88 mas yr~!
respectively. Additionally, photometry was determined for each star using an HIPPARCOS-
specific visible pass band. The measurements were based on ~ 110 independent observations
and are accurate to a mean value of 0.0015 mag. Based on these parameters, it is clear that the
HIPPARCOS Catalogue represents an extraordinarily high precision source for phase space
information and some photometry applications. The fundamental drawback to the data for
Galactic Archaeology however is the small number of surveyed stars. This is remedied to
some extent by the addition of the Tycho Catalogue (named in honour of Tycho Brahe’s sig-
nificant contributions to astrometry) wherein phase space data and photometry are presented
for 1 058 332 stars with a median astrometric precision of 25 mas for all stars and photome-
try accurate to within 0.07 mag for B band photometry and 0.06 mag for V band photometry

for all stars. It should also be noted that a new catalogue, Tycho 2 (Hgg et al., 2000) has been
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released, based on the same raw data as the original Tycho Catalogue but with astrometry
available for 2.5 million stars and slightly higher parameter accuracy owing to a different
reduction technique, yielding proper motions as small as 2.5 mas yr~! detectable. In sum-
mary, the quality of the proper motion data from these three surveys distinguish them from
other surveys, yet still, astrometric parallax — the particular specialty of these surveys — is
inevitably limited by distance, so this dimension of phase space is not going to be available

for far-flung structures of the Galaxy or extragalactic targets.

One of the largest astrometric catalogues available to date is the United States Naval Ob-
servatory A2.0 (USNO-A2.0) Catalogue (Monet, 1998). The catalogue is based on the same
raw data as the USNO-A1.0 Catalogue (Monet et al., 1998) which was compiled using mea-
surements of the Palomar Observatory Sky Survey I (POSS I) O and E plates for declinations
north of -35? and the UK Science Research Council (SRC-J) and European Southern Obser-
vatory (ESO-R) survey plates for declinations south of -35°. The plates were scanned using
the Precision Measuring Machine (PMM) at the U. S. Naval Observatory Flagstaff Station
with precisions of 150 mas in positional information and 0.15 mag in the b and r band pho-
tometry afforded by using the ACT Catalogue over the Guide Star Catalogue (GSC) — as was
used for USNO-A1.0 — for astrometric calibration. The ACT catalogue is based on the com-
bination of the Astrographic Catalogue and the Tycho Catalogue and provides proper motion
information about an order of magnitude more accurate than that contained in the original
Tycho Catalogue (Urban et al., 1998). The final product is a catalogue of some 526 280 881
stars with RA, DEC and b and r band photometry to the accuracies already specified. The
data is hence limited to the 3 positional coordinates of phase space (assuming distances are
obtained from the photometry) and minimal photometric information but nevertheless, the
sheer bulk of stars covered warrants the inclusion of the USNO-A2.0 Catalogue as a major

source of raw data for Galactic Archaeology.

In addition to these surveys, there have been some noteworthy astrometry surveys in
the intervening years, such as that utilized for the Second US Naval Observatory CCD As-
trograph Catalogue or UCAC2 (Zacharias et al., 2004) wherein are presented position and
proper motion data for 48 330 571 sources — mostly stars — with declination between -90°

and +40°. The precision in position is estimated between 15 and 70 mas, depending on
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source magnitude, and proper motions are determined to within 1 — 3 mas yr~! for stars
brighter than 12th magnitude and 4 — 7 mas yr~! for those between 12th and 16th magnitude.
Another, more restrictive survey, is the Southern Proper Motion Program III (Girard et al.,
2004) which has catalogued ~ 10.7 million objects in an area 3700° or 1/11 of the entire sky,

with proper motions determined in some cases accurate to 4 mas yr'.

The future for the collection of astrometric data is potentially an exciting one, but alas
there are many setbacks faced by would-be missions. Already, two particularly promising,
~ 40 million star surveys — the Full-sky Astrometric Mapping Explorer (FAME) and the
German Interferometer for Multichannel Photometry and Astrometry (DIVA) — have been
cancelled due to escalating costs and logistic difficulties. Disappointingly, this leaves some
time until a new major astrometric survey is released. Nevertheless, two even more ambi-
tious missions are scheduled for the next decade, one — JASMINE (the Japanese Astrometry
Satellite Mission for INfrared Exploration) — is purely astrometric with regard to the dimen-
sions of phase space it is intended to explore, the other, Gaia, will provide a measure of radial
velocity as well and so is discussed amongst the ‘kinematic’ surveys in the next sub-section.
The JASMINE mission (see Gouda et al. 2005), due for launch around 2014, is a 1.5 m space-
based telescope under preparation by JAXA (the Japanese Aerospace Exploration Agency),
designed to peer through the gas and dust of the galactic disk at a wavelength of 0.9 microns.
The telescope will be sent into a Lissajous orbit around the Sun-Earth Lagrange point L2
from where it shall undertake astrometry of some 100 million Galactic disk and bulge stars
(or such stars brighter than magnitude 14 in the z band) in the Galactic Latitude range |b| <
4.0. As such it is not an all sky survey and it is of limited use for studying any other Galactic
structures but nevertheless, with an accuracy of 10 uas for position and parallax data and 10
uas yr~! for proper motions, the mission has the potential to produce a substantial catalogue

of data, so far unequaled in depth, for the appropriate Galactic Archaeology work.

1.4.3 Kinematic

Kinematic surveys are perhaps the most useful survey type to the Galactic Archaeologist as

they provide a complete description of each star’s location in phase space and provide the
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best chance for the identification of those structures sharing a similar evolutionary history.
When this information is coupled with elemental abundance data, which is sometimes avail-
able from the same survey, the Galactic Archaeologist is endowed with the astronomical
equivalent of the Rosetta Stone — the key to piece together the ancient lives of the Galactic
populace. The only concern then is that the ‘Galactic census’ is far enough reaching to regis-
ter enough substructure to give a representative view of the Galaxy in its entirety. Kinematic
surveys are a relatively recent addition to the available data but, as we shall see, plans are
afoot to see the kinematic dataset explode by the end of the next decade. Bland-Hawthorn
and Freeman (2006) identify the Geneva-Copenhagen Survey of the Solar Neighbourhood
(Nordstrom et al., 2004) as the first major kinematic survey — a study featuring kinematic data
for 16682 nearby K and G dwarfs, with full 6D phase space data available for 14139 stars
after combination with HIPPARCOS parallax data and Tycho 2 proper motions. Combined
with photometry and metallicity data, the survey represents the means to study the precise
structure of the local stellar neighbourhood and perhaps even identify any solar siblings that
have migrated along similar paths to the Sun. Still, if enough data is to be had for the Galaxy
on the broadest scales, the surveyed stars are going to have to be much more numerous and

include those much less luminous!

Several such projects have either been completed or are in their final or preparatory
stages. The most important completed to date is SEGUE — the Sloan Extension for Galactic
Understanding and Exploration (Yanny et al., 2009). It is a moderate-resolution (R = 1800)
spectroscopic survey of 240000 stars, spanning the spectral range from 390 nm to 900 nm,
with the principal aim of aiding the study of the kinematics and populations of the Galaxy.
The survey concentrates on fainter Milky Way stars of various spectral and luminosity classes
with g band magnitudes between 14.0 and 20.3. The spectra it contains are from 212 regions
of sky covering a total of 3500 square degrees, scattered over three quarters of the celestial
sphere, though with an emphasis on low galactic latitudes. From the spectra, radial veloc-
ities have been obtained accurate to 4 kms™! for stars brighter than g = 18 and better than
15 kms™! for those brighter than g = 20. Photometries are also provided for u, g, r, i and z
bands, as are astrometry data (accurate to 100 mas), and determinations of metallicity and

other stellar atmosphere parameters where an SNR exceeding 10 per resolution element is
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available. All things considered, the SEGUE data represent an excellent resource for Galac-
tic Archaeology in all of the major Galactic substructures and may be used as a stand-alone
resource with 6 dimensions of phase space as well as metallicity data all available from the
one dataset. Still the number of stars included and the region of sky surveyed are still quite
restrictive, and particularly in the Galactic halo or in cases where rare spectral types are used
as tracers, there may simply not be enough coverage to properly identify and characterize

substructure.

The RAdial Velocity Experiment (RAVE — see Steinmetz et al. 2006) should provide
a substantial compliment to the SEGUE data at least for Southern Hemisphere stars. The
project aims to obtain mid-resolution (R = 7500) spectra of up to one million stars using the
Six Degree Field Multi-Object Spectrograph on the 1.2 m UK Schmidt Telescope at Siding
Spring. The spectra are concentrated on the Ca-triplet region (841.0 nm — 879.5 nm) in an
effort to determine metallicity as well as temperature and surface gravity for the surveyed
stars, which will be chosen to have a magnitude in / band in the range from 9 to 12. Radial
velocities will be determined to better than 3.4 kms~!, marking a small improvement over
the SEGUE data, while proper motions are included from external sources such as Tycho-2.
As of the third data release (Siebert et al., 2011), 77461 individual stars had been surveyed,

so the quantity of data is still considerably smaller than that available from SEGUE.

As the ‘crescendo’ to this review of stellar surveys, one particular project in the prepara-
tory stages is set to supersede all the others — the ambitious Gaia space mission. A review
of the Gaia mission is found in de Bruijne (2012), wherein the basic capabilities of the Gaia
satellite are discussed. Gaia is set to measure the parallaxes, positions and proper motions of
the one billion brightest stars in the sky — a truly astronomic endeavor! The stellar parallax
measurements obtained by the satellite are expected to be accurate to within 25 uas for stars
brighter than 15th magnitude. Accompanying this astrometric data will be low-resolution
spectroscopic (R ~ 11500) and photometric data covering the range from 330 nm to 1000
nm allowing the radial velocity to be measured to within 1 — 15 kms™! and metallicity and
other parameters of the stellar atmospheres to be determined. The mission is planned to
launch in 2013 with final results expected by 2021. By comparison to the other surveys

already discussed, this mission represents a new generation for Galactic Archaeology. Not
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only will cooler main sequence stars comparable to the Sun be visible out to beyond 10 kpc
but more luminous stars will be visible throughout the Local Group and even in external
galaxy clusters, taking Galactic archaeology to new places quite literally. This data will pro-
vide the representative survey of the Galaxy really needed to unravel its past and to study
galactic evolution in a more general sense. In closing, it should however be cautioned that
2021 is almost a decade away and budget restraints may yet curtail the ambitious scale of
Gaia, and even if they do not, the next ten years should be ones of productivity in Galac-
tic Archaeology. Hence the more immediate, albeit less ambitious surveys will be the raw

material utilized to push forward the boundary of knowledge in the mean time.

1.5 Dark Matter and the Predictions of ACDM Cosmology

The requirement for the existence of dark matter was first identified observationally by Fritz
Zwicky (Zwicky, 1933). Upon studying the high velocities of member galaxies of the Coma
Cluster, he realized that their orbits must enclose substantially more matter than could be
attributed to visible galaxies alone in order for them to remain bound, hence implying the ex-
istence of some unseen, yet significant component of matter (Sahni, 2004). Rotation curves
for individual galaxies were also subsequently shown to imply significant amounts of mat-
ter not associated with the luminous component of the galaxies (see Figure 1.3). Studies
of the Cosmic Microwave Background (CMB) and the Universe’s abundance of deuterium
have indicated that ordinary baryonic matter — matter made up of baryons (i.e. protons and
neutrons) — constitute a mere 4% of the total mass/energy content of the Universe and that
non-baryonic matter must contribute a much larger fraction, ~ 30% (Sahni, 2004). Various
properties and forms have been suggested for the elusive dark matter, of which the A Cold
Dark Matter (ACDM - A being the cosmological constant) model has been the most success-
ful at explaining the primordial ‘power spectrum of density fluctuations’ and its evolution to

its present state.

In ACDM Cosmology, the dark matter’s constituent particles exhibit a small, non-relativistic

velocity dispersion (hence they are termed cold), having decoupled from baryonic matter and
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Ficure 1.3: A schematic conveying the disparity between observed and expected galaxy rotation
curves (Sahni, 2004)

energy after they had slowed to non-relativistic speeds (Sahni, 2004). Associated with the
particles is a ‘free-streaming distance’ Ay, that relates the mean distance traveled by the
particles while still relativistic, before they slow to non-relativistic velocities. Since CDM
cosmology already assumes ‘cool’ particles, this distance is not very long and so free stream-
ing can only disrupt the primordial density distribution on small scales — hence giving rise
to small-scale structure soon after the big bang. The opposite to this scenario is borne out by
the Hot Dark Matter model, in which density inhomogeneities first appear on larger scales
before fragmenting into the building blocks of individual galaxies — i.e. a top-down cos-
mology. CDM Cosmology in contrast is a bottom-up or hierarchical cosmology in which
smaller structures appear first in the Universe and over time undergo gravitational cluster-
ing into larger structures such as clusters and eventually into the super-cluster-filament/ void
frothy structure observed today. ACDM cosmology differs from the earlier standard CDM
cosmology in that the mass density €, is chosen to be 0.3 of the total mass-energy density
(as opposed to 1) with Hubble constant (at z = 0) h ~ 70 kms™'Mpc~!, thus providing for a

better fit to the shape of the current observed power spectrum.
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With regard to the actual form of the dark matter, several possibilities have been proposed
which can generally be summarized into two fundamental categories — the non-baryonic
WIMPs (Weakly Interacting Massive Particles) and the baryonic MACHOs (MAssive Com-
pact Halo Objects). In particular, the neutralino particle has been put forward as a strong
contender for the CDM particle. The proposed neutralino is a WIMP with energy in the 100
— 1000 GeV range and is both stable and neutral so that it does not scatter light. Jungman
et al. (1996) describes the neutralino as “the best motivated and most theoretically devel-
oped” of the WIMP particles and goes on to outline how it might be detected and how its
abundance might be determined. Indeed, schemes are underway aimed at the direct detection
of neutralinos on the Earth via their gamma-ray emitting interaction with nuclei in a detector
— similar to the generation of x-rays in an x-ray tube. At least some of the missing mat-
ter however, is going to exist in the form of MACHOs such as distant white dwarfs, brown
dwarfs and other low-luminosity bodies in the halo but there are theoretical and observational
constraints on the percentage of dark matter made up of such baryonic matter. Theoretically,
baryonic matter is not particularly successful at ‘growing substructure’ from the small pri-
mordial density fluctuations in the universe due to its strong coupling with radiation. On the
other hand, if most of the dark matter is non-baryonic and thus not coupled to the radiation,
this matter can clump together much earlier so that the comparatively small percentage of
baryons simply fall into these ready made over-densities shortly afterward (Sahni, 2004). An
example of observational constraints on the size of the baryonic component of dark matter
is found in Alcock et al. (2000) where the low count rate of micro-lensing events in the di-
rection of the Large Magellanic Cloud over a 5.7 year period is used to constrain the halo
mass tied up in MACHOs to ~ 20%. Whether MACHO or WIMP, the fact remains that the
matter is dark and will not be directly observable to the astronomer — with the exception
of the odd MACHO as more sensitive telescopes become available. Hence it would appear
that, at least for the time being, the study of the Galactic dark matter will be restricted to
the astronomical indirect measurement of the halo mass distribution (with several methods
described in the next section) and the independent detection of WIMPs by particle physicists

in the laboratory.

Before leaving this discussion of the ACDM cosmology, it must be noted that this model
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is a ‘best-fit” model only and is not without its own shortcomings. Two principal examples
are outlined in Sahni (2004). Firstly, the model predicts an over abundance of halo substruc-
ture or subhalos which, if assumed to be accompanied by a luminous baryonic component,
are not currently observed. Secondly, CDM predicts a so-called ‘cuspy core,” with N-body
simulations producing a halo density dropping off more steeply in the central regions than

is observed such that p is proportional to r!.

With regard to the first problem, Diemand
et al. (2007) describes the results of “Via Lactea,” the highest resolution simulation of the
Galaxy to date, which predicts that the Milky Way halo should possess 124 subhaloes with
masses comparible to the Galaxy’s dwarf satellite galaxies, yet according to van den Bergh
(2006), only ~ 10 such galaxies have been observed. This begs the question: where are the
missing satellites? Diemand et al. (2007) goes on however to identify two studies which
may hold the answer to this. A local group model by Kravtsov et al. (2004) suggests that
galaxy formation will only initiate in the most massive (> 10°M,) subhalos while Moore
et al. (2006) find that only those subhalos forming very early on in the galaxy assembly pro-
cess (at redshifts z > 12 + 2 i.e. before the epoch of reionization) with masses above the
atomic cooling mass ! Diemand et al. (2007) subsequently found that when the “Via Lactea”
simulation was run backward through time only two subhalos were found to comply with
each of Krastov and Moore’s requirements — the same two in each case — which is a much
better match to the number of satellites found to date in the Milky Way halo. Furthermore,
Sahni (2004) highlights the fact that powerful winds from star formation and early super-
novae may be responsible for clearing potential low mass satellites of what baryonic matter
they might of had initially. With regard to the ‘cuspy core’ problem, Sahni (2004) goes on to
draw attention to the fact that complex processes in galactic cores such as bar formation and

baryon-dark-matter interactions are not treated adequately in the simulations to date.

'The atomic cooling mass My is the critical mass above which gas can cool efficiently allowing for conden-
sation and subsequent fragmentation via excitation of the Lyman « transition of hydrogen. Assuming a virial
temperature above 10°K, My ~ 108[(1 + z)/10]73/> M, which gives M > 0.067 x 10° M, at z = 12 in order for

a luminous component to develop (ref: Madau and Silk (2005))
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1.6 Resolving the Matter - Methods for Measuring the Dark
Matter Distribution

There are a variety of methods available to ascertain a broad picture of the dark matter
distribution in galactic halos, of which three principal techniques are now discussed. The
first method is that of gravitational lensing. In the last section, discussion was made of the
use of microlensing to determine the percentage of dark matter attributable to MACHO:s.
Here we are concerned with strong lensing, where for instance a quasi-stellar object (QSO)
is lensed by a foreground galaxy, and the contribution of substructure in the lense galaxy to
the resulting flux distribution. Lense galaxy substructure in the form of dark subhalos will
manifest itself as flux anomalies and milliarcsecond distortions in the image of the source
object (Metcalf and Madau, 2001). A study into the feasibility of using such phenomena to
map the subhalo distribution in the halos of lens galaxies is made in Riehm et al. (2008).
Here, a test is proposed where a QSO is already known to be lensed on the arc second
scale so as to ensure a suitably well-aligned, massive halo as the lensing object. Conditions
are then favourable for the detection of subhalos in the 10° — 10'°M,, range based on the
milliarcsecond distortions to the imaged QSO. Still, the study finds that the most realistic
models currently available for the density distribution within typical subhalos do not bode
well for the likelihood of their detection. Their density drops off with distance from the core
at a more gradual rate than earlier models, yielding separations in the source image too small
to resolve with the current generation of telescopes. Even if some subhalos are detectable,
this method is not strictly in the realm of local cosmology, with inferences having to be
drawn from the distant lensing galaxies as to how the halos of more local galaxies should be

structured.

A much more direct method is proposed in the detection of gamma rays from annihi-
lation of WIMPs such as from the chief contender — the neutralino. Diemand et al. (2007)
goes so far as to produce an all sky map of the possible annihilation flux based on the “Via
Lactea” simulation. They find that halo substructure should provide an overall boost to the
annihilation signal from a galaxy when compared to a smooth halo distribution. Since the

annihilation rate is proportional to the square of the density, a map of halo substructure may
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soon be possible with the upcoming Gamma Ray Large Area Telescope (GLAST) which
has a field of view covering approximately one sixth of the sky and sub-degree resolution at
energies greater than 1 GeV. Based on the “Via Lactea” run, subhalo luminosity is predicted
to be directly proportional to the mass of the subhalo, with even comparatively small exam-
ples visible to such a telescope when they are close to the Sun. The background noise from
the Galactic centre is expected to hinder observations toward Sagittarius and in the Galac-
tic Plane in general so observations may be best made looking away from these regions.
Whatever the simulations may show, however, studies such as this are based heavily on as-
sumptions and so, until such a time as observational evidence is available to support such
ideas, it is important to focus on those methods that are independent of the precise nature of

dark matter, relying only on its gravitational effects.

Such a method is found in the kinematic study of currently detectable halo structures such
as the stellar streams found in the Andromeda halo and that of our own galaxy. Studies have
been made into the feasibility of such methods for constraining the distribution of massive
subhalos, notably by Ibata et al. (2002b) and Johnston et al. (2002) with some success pre-
dicted upon the availability of deeper 6D-phasespace surveys such as will be undertaken by
Gaia. Ibata et al. (2002b) presents the results of N-body simulations and their implications
for the possibility of inferring the presence of dark matter clumps from their heating effects
on stellar streams. Specifically, a 10°M,, globular cluster is modeled with 10* particles and
placed in a variety of smooth and lumpy galactic potentials both spherical and oblate. It is
found that, assuming a spherical potential, the tidal stream from the cluster after a 10 Gyr
period remains dynamically cold if the potential is smooth, with a width at its narrowest
similar to the tidal radius of the initial cluster model. If the smooth halo is populated with
subhalos so that a mere 1 % of the halo mass is tied up in this substructure, the emergent
stream from the model cluster over the same time interval becomes significantly dynami-
cally heated and hence physically wider and more diffuse. If, contrary to an earlier study
(Ibata et al., 2001b) that will be discussed shortly, the Galactic halo is not spherical, but
rather significantly oblate, the effect of the resulting precession of the cluster orbit can be
distinguished from that of heating from subhalo disruption when the integrals of motion of

the stream — the total energy and angular momentum (particularly the z-component) per unit
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mass — are plotted with respect to each other. As a result, this particular method is indeed
a possibility whatever the structure of the halo, but as is statistically determined using the
2MASS survey (Ibata et al., 2002a), too few stream members per disrupted globular cluster
are available in the presently available data — and with incomplete phase space information
— to make such streams detectable, with the stream from the disrupted Sgr Dwarf being the
only one discernable from the data. Alas, the Sgr Dwarf is too large, with stellar velocities
too dispersed for the subtle effects of heating from Galactic subhalos to be easily distinguish-
able within its stream. Hence, it is concluded that this method must wait for the Gaia data
before the level of halo substructure can reasonably be determined. Johnston et al. (2002)
concur with this conclusion but they do find that data for the Sgr Stream is sufficient to isolate
some dynamical heating due to ‘lumpiness’ in the halo, although they point out that the ob-
served scattering may be accounted for by the effects of the Large Magellanic Cloud (LMC)
alone. Further, they predict that even an improved data sample for the stream is unlikely to
improve on the deductive possibilities of the technique due to the alignments of the orbits
of the two progenitor satellites. It is pointed out however, that future deep halo surveys may
allow detection of colder extended streams from other Milky Way satellites that are relatively

unaffected by the LMC and ideal for probing the halo substructure.

Whilst a study of the subhalo distribution in the Galactic halo may not yet be practical,
initial investigations regarding the overall shape of the Milky Way halo and mass of the M31
halo have already taken place. Ibata et al. (2001b) determines with a high level of confidence
that the Milky Way halo cannot be significantly oblate. The study used the Automatic Plate
Measuring Facility halo carbon star (APM) survey (Totten and Irwin, 1998), which utilized
Palomar Sky Survey plates and those from the UK Schmidt Telescope, to examine the dis-
tribution of carbon stars and their possible association with known halo structures. Carbon
stars were chosen as the structure tracers of choice owing to their high intrinsic luminosity,
rarity, distinct photometry and intermediate age, all of which act to make such stars easily
identifiable and useful markers of recent Galactic accretion. Of the 75 carbon stars identified,
38 were found to lie within 10° of the great circle on the celestial sphere corresponding to the
predicted Sgr Dwarf orbit and a further 28 within a similar proximity to the projected orbit

of the Magellanic Clouds as represented in Figure 1.4 using a pole-count analysis. These
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represent 60~ and 40~ overdensities respectively with regard to the statistically expected value
of ~10 counts. To further illustrate the significance of these results, simulations were run
which factored in the sky coverage of the survey plates employed and randomly positioned
stars accordingly, and despite 1000 runs, no such overdensities were produced. Because the
Sagittarius Stream delineated by these stars is observed as an approximate great circle, Ibata
et al. (2001b) suggest that the orbit traced by the Sgr Dwarf must occupy a region of spher-
ically symmetric gravitational potential since orbital precession must otherwise take place
with orbital angular momentum no longer conserved. To better understand the evolution of
the Sgr Dwarf responsible for the presently observed stream, the team represented the pro-
genitor galaxy first as compact and then as a more loosely bound structure, evolving it each

time within a Galactic potential with mass distribution:

2
PR 2) = pol ) (1 + =) e

where ry is the core radius, r; is the truncation radius and y and § are the power law indices
for in and outside of the core respectively. Two particular halo models were investigated
based on observational constraints, each with slightly different parameters input into the
mass distribution equation. Further to this, each of these halos was simulated for 3 different
circular velocities (v, — determined at 50 kpc) and 11 different values of the halo density
flattening (g,,). In short, both progenitor models were evolved in 66 different versions of the
Galactic potential in order to find the combination best fitting observations. It was found that
those models with low flattening (e.g. ¢,, > 0.9) are a much better match to the observed
carbon star distribution whilst those halos with ¢g,, < 0.7 are refuted with high confidence.
Hence Ibata et al. (2001b) conclude that the galaxy cannot be significantly oblate throughout
the Galactocentric radii occupied by the orbit.

As a further example of the utility afforded by the study of halo stream kinematics, Ibata
et al. (2004) uses the detection of ‘giant stellar stream’ stars in a kinematic survey using the
DEep Imaging Multi-Object Spectrograph (DEIMOS) on Keck?2 to obtain a mass estimate
for the dark matter halo of the Andromeda Galaxy (M31). The measurement is made using

a realistic galaxy model (Klypin et al., 2002) incorporating the disc and bulge components
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Ficure 1.4: A pole-count analysis of the APM survey carbon stars where the number of carbon
stars lying within 10° of a given great circle are represented at the pole of the respective great circle
using contour lines. The poles of the Sgr Dwarf stream are at 1 = 90°/ 270°, b = 15°/-15° and those
for the Magellanic stream are at 1 = 170°/ 350°, b = -59/5°. (Ibata et al., 2001b)

of the galaxy in addition to the dark halo. From the radial velocity gradient of stream stars
in the 9 surveyed fields with confirmed stream components, a mass of 7.5*%3 x 10" M, is

obtained for the halo component located within 125 kpc of galactic centre.

1.7 The Pan-Andromeda Archaeological Survey

Up to this point we have concentrated our discussion of Galactic Archaeology on the Milky
Way Galaxy. Due to our position within it, it has long been the only galaxy for which
deep, comprehensive survey data has been available. But this is no longer the case, with the
completion in 2011 of the Pan-Andromeda Archaeological Survey (PAndAS).

The origins of the PAndAS survey lie in the 25-square-degree survey of the disk and inner
halo of M31 undertaken with the 2.5 m Isaac Newton Telescope (INT). The survey sought to

identify the transition between the disk and inner halo, but identified extensive substructure
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and culminated in the discovery of the Giant Stellar Stream (Ibata et al., 2001a). A compre-
hensive study of the stellar density and metallicity was undertaken by Ferguson et al. (2002)
on a field-by-field basis using the INT data. In an effort to map the full spatial extent of
the Giant Stellar Stream, the whole southern quadrant of the M31 halo out to 150 kpc was
mapped using the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, with an
extension out to M33 more than 200 kpc from M31 (Ibata et al., 2007). With the wealth of
substructure discovered, and given the large window of the M31 halo already covered, it was
then decided to map the the remaining three quadrants out to 150 kpc with CFHT. This major
undertaking marked the official birth of the PAndAS survey, with the initial results published
in Nature in 2009 (McConnachie et al., 2009). In total, the survey incorporates some 400
square-degrees of sky covering most of the constellation of Andromeda, with extensions into
Cassiopeia and Triangulum. It covers the entire halo of M31 out to 150 kpc as well as that
of M33 out to 50 kpc. A map of the survey showing the extent of its coverage just prior to

completion is presented in Fig. 1.5.

PAndAS is a deep photometric survey which has been undertaken in two bands, g and i
using CFHT with the MegaCam instrument. MegaCam is an array of 36, 2048 x 4612 pixel
CCD chips, covering approximately one square degree on the sky with a resolution perfectly
matched to the 0.7 median seeing atop Mauna Kea. The MegaCam g and i band filters have
a very similar throughput to the SDSS filters, with g spanning from approximately 4000A
to 5700A and i from 6700A to 8500A see Gwyn (2010). A comparison of the two filter
sets with the corresponding SDSS filters is illustrated in Fig 1.6. Each of the PAndAS fields
reaches a depth of approximately magnitude 25.5 in g band and 24.5 in i band, though data

incompletion is noticeable at these magnitudes.

Since the first PAndAS data has become available, a great many studies have been un-
dertaken across a diverse range of topics concerning the structure of the M31 halo system.
Possible tidal interactions have been investigated and numerous satellite galaxies, globular
clusters and streams have been detected. McConnachie et al. (2009) details the discovery of
“stars and coherent structures” that are very likely the remains of ancient dwarf galaxies long

since cannibalized. They also identify the remnants of a recent encounter between M31 and
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Ficure 1.5: The Pan-Andromeda Archaeological Survey. This map of the PAndAS survey was
generated just prior to its completion. It is generated from the most metal poor stars only and thus
highlights the location of the various satellite dwarf galaxies. Also visible is the complex network of
tidal streams marking the trails of past galaxy interactions. (McConnachie, 2010)

M33, and conclude that the wealth of halo structure present in the survey provides excellent
evidence for the validity of hierarchical galaxy formation. The globular cluster system of the
outer halos of both M31(Mackey et al., 2010) and M33 (Cockcroft et al., 2011) have been
investigated, with a strong correlation identified between prominent streams and the loca-
tions of the known globular clusters. The presence of a large number of dark matter haloes
has also been suggested by Carlberg et al. (2011), after a study of the 120 kpc long North
West Stream found density fluctuations that should not arise in a smooth galactic potential.
The locations and masses of known dwarf galaxies are also insufficient to explain the density
variations. Many new satellites have also been discovered from the PAndAS survey, includ-
ing Andromedas XVIII, XIX and XX (McConnachie et al., 2008), XXI and XXII (Martin
et al., 2009) XXIII-XXVII (Richardson et al., 2011) and XXX (Irwin, 2012).
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Figure 1.6: MegaCam Filter Set response compared with corresponding SDSS filter responses.
(Gwyn, 2010)

In summary, PAndAS represents our first opportunity to study an entire galaxy halo sys-
tem from an unobstructed view point outside the galaxy. Though the survey is now complete,

its legacy has just begun as the many studies underway continue to unravel the secrets of

Galaxy formation.

1.8 The Importance of Position

Due to the enormous distances separating us from all astronomical objects, with out consid-
erable effort, the Universe remains a purely two-dimensional realm. For the local universe,
we can use the Earth’s orbit as a base line to measure the angular parallax of an object, and
derive a distance accordingly. Further afield at the distance of M31 however, even the 300
million km diameter of the Earth’s orbit is of little use in gaging distances, and hence we
must turn to indirect means. Nevertheless, the prospect of PAndAS in three-dimensions is

an exciting one which would allow us to constrain orbits much more accurately and fully
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explore the matter distribution of the M31 halo.

At the distance of M31, there are several Standard Candles that could potentially be used
as our distance gage. Two that are commonly invoked are Cepheid Variable and RR Lyrae
stars. Indeed it was the Cepheid Variable that provided the first measure of the distance
to the “Spiral Nebulae” thus establishing them as “Island Universes” external to our own
Milky Way. The “Spiral Nebulae” targeted were of course M31 and M33 (Hubble, 1925).
Nevertheless, Cepheid Variable stars are rare and require multiple epochs of observation
to determine their light curves and hence use the Period-Luminosity relation to derive a
distance. RR Lyrae stars are much more common than Cepheids but also much fainter and
still require multiple observation epochs for distance measurements. Hence we turn our

attention to the Tip of the Red Giant Branch (TRGB) standard candle.

The Red Giant Branch forms the backbone of the average metal poor galaxy and at the
distance of M31, given the photometric depth of the PAndAS survey, it accounts for almost
all of the stars observed to form any given structure. The TRGB standard candle is therefore
applicable to even the most sparsely populated object and can even be used to gage distances
at multiple points along streams. It also requires only one epoch of observation and hence
is readily applicable to a large scale survey such as PAndAS. A study by Salaris and Cassisi
(1997) has shown that Cepheid and RR Lyrae determined distances are consistant with those
obtained using the TRGB to within 5%.

The TRGB standard candle arises due to the properties common to all Red Giant Branch
stars in a particular mass and luminosity range as they approach the onset of core helium
fusion. Such stars first enter the Red Giant Branch toward the end of their life when their
source of core hydrogen is depleted. To fuse the helium ash left over in their core requires an
immense pressure which the core density is as yet insufficient to produce, and so hydrostatic
equilibrium is instead maintained by hydrogen fusion in a shell around the core. This process
continues for the duration of the star’s life on the Red Giant Branch, with the star gradually
becoming more luminous as more and more energy is produced in the hydrogen fusion shell.
Due to a relationship between the core helium mass and the luminosity of the star, the rate at
which the luminosity increases grows as the star continues it’s evolution (Salaris et al. 2002;

Zoccali and Piotto 2000). This means that more stars will be observed at the fainter end of
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the Red Giant Branch than at the brighter end, with the result that the luminosity function of

a particular object is observed to follow a power law trend (Méndez et al., 2002).

As the star continues its evolution toward the bright end of the Red Giant Branch, the
increasing buildup of helium ash in the core steadily increases the core density. In the par-
ticular mass range applicable to the TRGB standard candle, the stellar core succumbs to
electron degeneracy before helium fusion can ignite and so all such stars have very similar
core properties which in turn yields very similar energy outputs in the surrounding hydrogen
fusion shell (see Iben and Renzini 1983, particularly Fig. 7). At the very instant of core
helium fusion, the stars are at their most luminous and hence lie at the bright #ip of the Red
Giant Branch before undergoing the Helium Flash as the core pressure becomes sufficient for
helium fusion to ignite. At this point, the stars contract and their luminosity diminishes as
they enter life on the horizontal branch, resulting in a sudden truncation at the bright end of
the luminosity function - i.e. the TRGB. One of the earliest detailed studies of the evolution
of Population II stars toward the TRGB can be found in Hoyle and Schwarzschild (1955). A

schematic summarizing this evolution is presented in Fig. 1.7.

In order to make use of the near-constant luminosity of the TRGB as a distance gage, it
is usual to take measurements in the near infra-red region of the spectrum where dependence
on metallicity is minimal. Indeed, Lee et al. (1993) show that for metallicities in the range
-2.2 < [Fe/H] < —0.7, the absolute magnitude of the TRGB in Johnson-Cousins / band is
constant to within 0.1 magnitudes, where in V band it varies by 1.3 magnitudes. This small
variation is a consequence of the near-constant absorption in the stellar atmosphere in near-
infrared wavelengths. Using very accurate / band photometry for the globular cluster wCen,
Bellazzini et al. (2001) derived the absolute magnitude of the TRGB as M; as —4.04 £ 0.12.
The MegaCam i bandpass is however significantly different to Johnson-Cousins / band and
so for our PAndAS photometry, it is more suitable to use M; = —3.44 + 0.12 as derived in
Bellazzini (2008) for SDSS i band. This is justified given the similar throughputs of the
MegaCam and SDSS i band filters as illustrated in Fig. 1.6.

At this point, having now introduced the burgeoning field of Galactic Archaeology, the

PAndAS survey and the unique opportunity it has provided to explore galaxy evolution in
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Ficure 1.7: Schematic showing the evolution in temperature and luminosity of an intermediate
mass, metal poor star. The star ‘turns off” the Main Sequence onto the Red Giant Branch (RGB) after
exhausting its core supply of hydrogen. The star expands and cools as it fuses hydrogen in a shell
surrounding the core. At the onset of core helium fusion, the star has reached the Tip of the Red Giant
Branch (TRGB) from which point it cools and contracts and enters life as a Horizontal Branch (HB)
star. When it exhausts its core supply of helium it continues to fuse helium in a shell around the core
once again becoming more luminous and following a path approaching the RGB asymptoticly. At
this stage in its evolution the star is hence known as an Asymptotic Giant Branch (AGB) star. Note
that stars spend only a tiny fraction of their life time as an AGB star in comparison to the time they
spend as RGB stars and hence AGB stars are much rarer and so do little to diminish the contrast of
the TRGB in an object’s luminosity function.

action, we come to the specific aims of the research contained in this thesis. The highest
ambition any research thesis can aspire to, is to make an original and significant contribution
to the field furnished with clear and accurate results. This is indeed a major underlying
motivation for this thesis, though of course, the contribution must inevitably be a specialized
one in a field with such enormous scope. To this end, the focus is concentrated on the satellite
system of M31. With the known satellite population of the M31 halo so greatly increased in
the last 5 years, largely thanks to the PAndAS survey, the time is ripe for a renewed study of

the three-dimensional spatial structure of the system. Such a study has the potential to shed
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light on the past evolution of the satellite system as well as the distribution of matter within
the M31 halo. It will also provide for a much needed comparison with the satellite system
of the Milky Way and, when combined with velocity information, will facilitate a new, more
accurate determination of the M31 halo mass. But before such a study can be undertaken,
accurate satellite positions derived consistently via a single method are paramount. Hence,
we turn our attention toward the development of a brand new algorithm for locating the
TRGB - in particular, one that takes into full account all prior information available about

the object’s luminosity function.



“Remember that all models are wrong; the practical question is how

wrong do they have to be to not be useful.”

George E. P. Box (1987)

Building the Framework for a new TRGB
Algorithm

2.1 The RGB Tip Finding Problem

Given the broad applicability of the Red Giant Branch tip magnitude as a standard candle,
it is not surprising to find that it is invoked frequently for distance measurements within the
Local Group. Identifying the magnitude of the TRGB accurately however is not without its
challenges, and hence many have resorted to simple “eyeball” measurements, read off from
the Luminosity Function (LF) of the object in question. Such an approach is acceptable
perhaps for distance measurements to a single, well populated object, but it falls short of the
task when a consistent measurement is desired for numerous objects within the same group,

or when the LF is poorly populated and the bright edge of the Red Giant Branch (RGB) is

31
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not clear-cut. There is also the problem of ascribing an accurate measurement uncertainty
to such an approach. It is therefore desirable to have an automated routine which, given
the object LF, returns the most likely position of the RGB truncation with a measure of the
uncertainty in this position.

The development of such a TRGB-finding algorithm is not without its difficulties how-
ever. Binned luminosity functions by their very nature suffer from Poisson noise, and thus
star counts in two neighboring bins may differ by a significant factor. This is a serious prob-
lem when the primary task of our algorithm is to locate a sudden jump in star counts that
might signal the bright edge of the RGB. It is however, less problematic for those objects
exhibiting well populated RGBs. There is also the question of how the LF is effected by
the stellar “background” contribution. After all, if the background LF contribution can be
isolated perfectly and subtracted from the net LF for the object field, the RGB tip magnitude

is simply the brightest non-zero bin remaining.

These issues have been approached in various ways over the years, and a more detailed
literature review is provided in Chapter 3 (see Paper I Introduction), but relevant develop-

mental landmarks are discussed below.

The first attempt at an automated tip-finding routine was introduced by Lee et al. (1993),
who employed what is essentially an edge-finding technique, similar to what one might
encounter in image processing. Instead of a 2D matrix however, the ‘image’ is the one-
dimensional, binned luminosity function and the edge finding kernel is a one-dimensional
Sobel kernel. The LF is convolved with this kernel, and peaks are produced at the loca-
tions where the discontinuity in star counts is greatest. With this method, they find that they
can regularly recover the location of the tip, accurate to within 0.2 of a magnitude. Whilst
this approach represents the first automated, repeatable TRGB finding method, the size of
the uncertainties limits its usefulness. At the distance of M31 for instance, an uncertainty
of 0.2 magnitudes corresponds to an uncertainty of approximately +70 kpc in the distance.
The edge-finding method of Sakai et al. (1996) improves on this technique significantly by
addressing the luminosity function binning issue via Gaussian smoothing, so that stars no

longer fall in one single bin but rather contribute to all bins.

As shall be seen in the next section, some similar techniques to these were experimented
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with in the earliest days of the work contained in this thesis. Nevertheless, even with the
inclusion of Gaussian smoothing of the LF, the issue of the Poisson noise is still a major
concern with any pure edge-finding algorithm. Such techniques also ignore the distinction
between object and background contributions to the LF and in so doing, throw away valuable
information that might be used to constrain the location of the tip. Hence it is arguable that
a model-fitting approach is superior to simple edge-fitting, in that it is less susceptible to
the effects of Poisson noise, and more versatile with respect to the incorporation of prior
knowledge.

The base method introduced in Chapter 3; Paper I makes use of these advantages by mod-
eling both the background LF and signal or RGB LF separately. The RGB component of the
model, whereby the RGB is approximated by a truncated power law, is inspired by Méndez
et al. (2002). As in the base method of Chapter 3, they employ a maximum likelihood ap-
proach where the model parameters are updated at each iteration, and the likelihood of the
model being correct given the data is evaluated. They assume a fixed functional form for the
background bright-ward of the tip however, as well as a fixed value for the RGB slope. A
more sophisticated approach is to fit the functional form of the background on a case-by-case
basis using a suitable (and separate) background field. Likewise, the RGB slope can be set

as a separate free parameter.

2.2 Early Trials of TRGB Finding Algorithms

During the preliminary, “pathfinding” phase of the development of the base algorithm of
Chapter 3, various edge-finding algorithms were experimented with, some of which are now
discussed. The relevant code can be found in Appendix A (‘EdgeFinder7.f95° and ‘RGB-
PeakFinder6.f95”).

The very first algorithms tested made use of artificial luminosity functions, where a de-
liberate ‘kink’ could be placed in the LF, and various algorithms used to recover the location
of that kink. The kink was generated by summing two luminosity functions together, one
displaced toward fainter magnitudes relative to the first such that the brightest non-zero bin

in the second LF would mark the beginning of the RGB. In effect, the first LF simulated
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the ‘background’ contamination whilst the second represented the luminosity function of the
actual RGB. The prominence of the discontinuity at the beginning of the RGB could be con-
trolled by adding a constant value to the RGB component of the LF. With the model LF set

up in this way, it can then be populated with the desired number of stars.

The first edge detecting algorithms implemented on this artificial data were comparable
to the kernel convolution method of Lee et al. (1993). Starting from the bright edge of
the luminosity function, the gradient between each consecutive pair of magnitude bins was
measured and stored. Once the whole LF had been scanned, the magnitude of the induced
kink (i.e. the TRGB) was taken to be the fainter of the two consecutive bins for which the
maximum gradient was recorded. An equivalent method replaced the measure of gradient
with that of the angle subtended by each consecutive set of three magnitude bins. The central
bin of the set producing the smallest angle was then taken as the magnitude of the TRGB.
Both of these approaches are of course susceptible to confusing a noise spike in the LF for

the “TRGB’ if the RGB truncation is not suitably prominent.

In an effort to lessen the sensitivity of the algorithm to Poisson noise, the possibility
of fitting either a single polynomial or polynomial splines to the LF was investigated. If
a suitable polynomial interpolation of the LF magnitude bins could be found, one would
effectively have a smoothed LF, hopefully devoid of problematic noise spikes. The location
of the tip could then be determined from the turning points in the second derivative of the
fitted polynomial. This approach is fraught with difficulties however, as the degree of the
polynomial or number of splines required depends on how smooth the LF is to begin with.
If the TRGB truncation lies amidst noise spikes of comparable prominence, it will be very
difficult to choose a polynomial which preserves the discontinuity in star counts at the TRGB
whilst simultaneously smoothing out the surrounding noise spikes. Furthermore, such an
approach inevitably requires a case-specific setup by the user and thus introduces significant

biases into the measurement process.

In addition to the above tests carried out on artificial data, further experimentation was
carried out on the luminosity functions of real objects. One fairly successful test incorporated
a Gaussian smoothing, similar to that employed by Sakai et al. (1996). The dependence of

the LF on binning was removed by replacing each star with a normalized Gaussian of some
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user-specified width and summing all Gaussians together. The width of the Gaussian was
chosen so as to produce the desired level of smoothing in the resulting LF, but in practice,
this value should be dependent on the photometric error at the magnitude in question (as is the
case in the base method of Chapter 3). Having produced this smoothed version of the LF, the
magnitudes at which significant star-count discontinuities occurred could be identified from
the function’s second derivative. The results of applying this process to the colour-magnitude
diagram of the M31 satellite galaxy Andromeda I (illustrated in Fig. 2.1) is presented in Fig.
2.2. It shows the smoothed Andromeda I luminosity function, created by replacing each star
with a Gaussian of width'0.2 magnitudes. The superimposed function in red is the second
derivative of the LF, weighted by the star counts at that magnitude. It denotes inflection
points in the LF gradient. It is clear to the eye that the inflection point corresponding to the
TRGB is that identified at iy = 20.77, which would correspond to a distance to Andromeda I
of 695 kpc. This is roughly consistent with the distances in the literature, though as shall be
clear from later measurements, the degree of smoothing applied to the LF has shifted the tip
brightward by (predictably) ~ 0.1 magnitudes.

As is clear from Fig. 2.2, this approach does provide a useful compliment to a simple
“eyeball” measurement, providing the user with a computationally based readout of the most
likely tip locations. Precisely which location is the correct location is left to the discretion
of the user, and hence the method stumbles when the onset of the RGB is not clear to the
naked eye. As was the case for the polynomial fitting, there also remains the problem that
the degree of smoothing required will vary from object to object, and the measurement is
thus biased by the user’s choices and lacks consistency.

The results of all of these trials culminated in the realization that any method that is to
perform consistently across all luminosity functions, will need to abandon the hope that the
effects of Poisson noise can somehow be eliminated from the luminosity function. If the
method is to perform consistently across all luminosity functions that might be encountered,
the data contained therein should be accepted for what it is in its raw form, and a suitable

model developed that best explains it. In this way, we can incorporate our expectations of

I'Specifically the width between the two inflection points of the Gaussian
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Figure 2.1: Colour-Magnitude Diagram for the dwarf spheroidal galaxy Andromeda I. It contains
all stars in the PAndAS survey with i-band magnitude iy in the range 18 < ip < 26, located within a
circular field of radius 0.1° centered on Andromeda I. The red lines indicate the colour-cut imposed
on the data in order to improve the contrast between the RGB and background stars. The Red Giant
Branch of the M31 Giant Stellar Stream is visible as a second, faint RGB on the red side of the
Andromeda I RGB. It can be seen much more prominently in Paper I, Fig. 2 where a larger field size
is plotted.

what form the LF might take were it so well populated that Poisson noise was no longer an

issue, and then let the data decide which version of the model approximates it best.

2.3 A Simple Maximum Likelihood Test

In order to gain a thorough understanding of how the RGB tip magnitude might be ascer-
tained via model fitting, it is essential to ““start simple.” As the primary objective of any such
algorithm is to locate a sharp discontinuity in star counts, we can begin by approximating
the luminosity function with a simple step function, normalized so as to contain unit area.
We can then set the ‘step’ at a particular location, populate the resulting LF with the desired

number of star magnitudes and then attempt to recover the position of the step from those
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Ficure 2.2: A smoothed version of the Andromeda I luminosity function, built using the stars
plotted in Fig. 2.1 after rejecting those stars outside of the colour-cut indicated. The superimposed
function in red is the second derivative of the smoothed LF, divided by the LF height, and indicates
the location of inflection points in the LF gradient. A blue arrow points out the inflection point at
io = 20.77 corresponding to the RGB tip. Note that the falloff in star counts faint-ward of iy = 23.5 is
due to data incompleteness.

star magnitudes. The code pertaining to this section can be found in the program ‘spikes.f95’
in Appendix A.

In using a maximum likelihood approach, we note that our model LF - i.e. our nor-
malized step function - can actually be considered a probability distribution. It tells us the
probability of finding a star at any given magnitude. Bright-ward of the step where we have
only background stars, the probability of finding a star is lower but faint-ward of the step we
have both background stars and stars from the object’s RGB and so we expect more counts
at a given magnitude. We can make use of this probability distribution both to generate
our random sample of stellar magnitudes, and to recover the original state of the model that

produced them.

To produce our random magnitude sample, we make use of a random number generator -

but weight the likelihood of drawing a particular magnitude by our step function. This can be
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Figure 2.3: Random realization of a model luminosity function. It contains 1000 stars whose
magnitudes were drawn at random from a step function probability distribution (shown as a red dashed
line). The step is located at a magnitude of 0.4 and the signal and background components are in the
ratio 0.7 : 0.3 respectively.

done by taking the integral of the step function, which gives us the cumulative area under the
step function. This is equivalent to the probability of finding a star bright-ward of a particular
magnitude. We then multiply the total area under the step function by a number between 0
and 1 generated by the random number generator and then find the magnitude corresponding
to this value of the integral. In so doing we generate a ‘random realization’ of the step
function in question. In practice, any number of random realizations can be generated from
a single step function but the larger the sample, the better it will resemble the model that
was used to produced it. Fig. 2.3 shows one such random realization. It contains 1000 stars
and was produced from a step function where the fraction of stars contained in the RGB and
background components were 0.7 and 0.3 respectively. The step was located at a magnitude
of 0.4.

To recover the state of the model luminosity function which produced our artificial data,

we need to test the likelihood of the model reproducing that data for a range of different
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Ficure 2.4: Schematic showing the scaling of the normalized step function as the step location is
moved to fainter magnitudes.

step positions. Since our model LF is a probability distribution, the likelihood of the model
producing a star at a particular magnitude is simply the value of the model at that magnitude.
Thus if we are given a single star at a particular magnitude, we can find the version of the
model that is most likely to have produced it by sliding the step location from the bright to
the faint end of the LF and then noting which step location produced a maximum likelithood

at the magnitude of the star. This process is illustrated in Fig. 2.4.

As can be seen in the figure, it is critical to the procedure that an equal area is preserved
under the model for all step positions tried. The model represents all possible magnitudes
at which a star can be observed and so the area underneath it should be unity. Likewise, the
ratio of the background and RGB contributions to the model should remain constant. Given
these requirements, the form of the probability distribution for the location of the step, as
determined from a luminosity function containing a single star can be understood. As the step
slides to fainter magnitudes, the RGB height rises to preserve equal area under the model.
Hence the likelihood of the model producing the star at the observed magnitude grows at an

increasing rate. Eventually however, the step slides past the magnitude at which the star is
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observed and the likelihood for any subsequent step positions being correct therefore drops

immediately to the background height.

In reality of course, one star does not constitute a useful luminosity function. We must
therefore understand how probability distributions for the step location are produced when
more than one star is present. To determine the likelihood of a particular state of the model
producing two or more stars at their specifically observed magnitudes, we multiply together
the likelihoods of the model separately producing each star. Equivalently, the final proba-
bility distribution for the step location is simply the product of the individual distributions

generated for each star. This result is illustrated in Fig. 2.5 for a 10 star luminosity function.

Whilst the probability distribution of Fig. 2.5 (b) reveals a large uncertainty in the loca-
tion of the step, little else can be expected from such a poorly populated luminosity function.
More important is the fact that we have a reliable measure of the uncertainty in the most likely
step position identified, assuming of course that our chosen model is a good approximation
for the mechanisms responsible for producing the LF, as is the case here. Nevertheless, for
well populated luminosity functions, the step location is generally locatable with consider-
able precision, as can be seen in Fig. 2.6 which has been generated from the luminosity

function of Fig. 2.3.

From the simple tests presented in this section, the power, as well as the relative simplic-
ity of the maximum likelihood model-fitting approach begin to emerge. Such an approach
is particularly robust, as every single data point is taken into account every time a possible
RGB tip location is considered. This greatly desensitizes any algorithm that implements it
against the localized effects of Poisson noise. The approach is also versatile, being appli-
cable to any model no matter how simple or complex. If we are to advance from a simple

‘step’ luminosity function however, we shall also need other tools at our disposal.
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Ficure 2.5: Probability distributions for the location of the step (i.e. RGB tip) in a 10 star, ‘step’
luminosity function. Fig. (a) shows the individual probability distributions resulting from each star
whilst Fig. (b) shows the product of these individual distributions which forms the probability dis-
tribution given the whole luminosity function. As in Figures 2.3 and 2.4, the model which produced
the stars consisted of RGB and background contributions in the ratio of 0.7 : 0.3 and the step was
located at a magnitude of 0.4. Note that the total area under all distributions in both (a) and (b) is

unity, with all possible locations of the step position represented. This follows from the normalization
of the model for all step positions.
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FiGure 2.6: Probability distribution for the location of the step in the 1000 star ‘step’ luminosity
function of Fig. 2.3.

2.4 The Markov Chain Monte Carlo Method

The tests of §2.3 approximated an object’s luminosity function with a single-parameter step
function. All possible states of such a model are obtainable by changing only the step loca-
tion. As such, it was not computationally intensive to calculate the likelihood for the model
at every possible step location, even for very small increments in the step location and for
very densely populated luminosity functions. A better model however, would take into con-
sideration other aspects of the LF, such as the background to RGB contribution ratio and
the slope of the RGB component. But the number of possible states of the model increases
exponentially with the number of free parameters, and hence so too does the computation
time. Hence the deterministic approach used above quickly becomes impractical as we add
increased complexity to our model. For this reason it is advantageous to adopt a Monte Carlo
method, which builds up a picture of the likelihood of the state space of the model by taking
samples of the model likelihood at randomly chosen parameter values. Our method of choice

is the Markov Chain Monte Carlo (MCMC) Method.
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The MCMC works via the construction of a Markov Chain. Named for the Russian
Mathematician Andrey Markov, it is essentially a statistically representative sample of all
possible states of a model, given a specific set of data. The sample is a chain, in the sense
that each newly chosen parameter set is affected by the previous. The creation of the chain
is however a ‘memoryless’ procedure, with each newly chosen state having no dependence
on past states in the chain, with the exception of the state that immediately preceded it. To
properly represent the differing likelihoods of various states, the chain should be created in
such a way as not to prohibit the possible recurrence of certain states. The extent to which
the chain explores the full state space of the model is of course dependent on the length
of the chain. One must therefore be careful to insure that the chain is indeed long enough
to be a true representation of the model states and their likelihoods. A detailed overview
of Markovian models with examples can be found in the online reference work Meyn and

Tweedie (1993).

There are various ways that a Markov Chain can be constructed, but the one employed
for the analysis contained in this thesis makes use of the Metropolis-Hastings algorithm
(Metropolis et al. 1953, Hastings 1970). An excellent introduction to this algorithm, with
examples can be found in Gregory (2005). The algorithm essentially provides an ‘intelligent’
random walk through the state space of the model by preferentially choosing steps toward
model parameter sets that have a higher likelihood. To initiate the algorithm, one must first
choose a ‘jumping distribution’ as well as a starting value, for each of the model parameters.
The jumping distribution is a probability distribution that defines how likely a jump to any
given parameter value is, given the present value of the parameter. For our implementation of
the MCMC, a Gaussian jumping distribution is chosen due to its symmetry and preference
for jumps to nearby parameter values. The appropriate width of the distribution for each

parameter is chosen through experimentation.

With the jumping distributions and initial parameter values defined, new parameter val-
ues are proposed and the model likelihood for those values is calculated. If the likelihood is
greater with these new parameter values than the current model likelihood, the proposed pa-

rameter values are automatically accepted and thus define the next model state in the chain.
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Figure 2.7: The random walk in the RGB tip magnitude over 1000 iterations, resulting from the
application of the MCMC to the Andromeda I luminosity function. The model LF being sampled
consisted of two free parameters, the RGB tip magnitude and the slope a of the power law chosen
to approximate the RGB component of the LF. (Generated using ‘BayesianT RGB_ANDI.f95 - see
Appendix B)

If the model likelihood is smaller with these new parameter values, the probability of accept-
ing them is weighted by the ratio r of the two likelihoods, with r = LLP—”:' Specifically, a
random number d is drawn between 0 and 1 and the proposed step is taken only if d < r.
An example of the random walk that results from many iterations of this process is provided
in Fig. 2.7, which shows the sampled values of the RGB tip parameter in the Andromeda I
LF in a Markov Chain of 1000 iterations. Note that this figure has been generated with prior
knowledge of the approximate magnitude of the tip, and hence there is no obvious lead-in
period. In practice, it is advantageous to excise the first thousand or so iterations (depending

on the step size and initial starting value) from the sample, to remove the initial walk to the

general location of the best-fit parameter value.

The single-parameter random walk exemplified by Fig. 2.7 is of course, only a partial

description of the Markov Chain. It ignores what any other parameters are doing at each
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iteration. It is therefore useful to plot each pair of parameters against each other to observe
any correlation between them. This said, whilst many parameters might be coupled, our ulti-
mate goal is to obtain the absolute probability of particular values of each parameter without
regard for what any other parameters are doing, thus creating a probability distribution for
the parameter. This is achieved by marginalizing over the other parameters. If our model
were to have n free parameters, the probability of one of the parameters having some partic-
ular value is equal to the integral under the n — 1 dimensional surface relating the probability
distributions of all the other parameters at that value. In practice, it is actually very straight-
forward to create the probability distributions of individual parameters of a Markov Chain,
by simply representing the number of occurrences of each parameter value as a histogram.

This process is illustrated in Fig. 2.8.

It is clear from Fig. 2.8 (b) that 1000 iterations of our MCMC algorithm is insufficient to
fully explore the likelihoods of the various model states. Indeed, for the probability distribu-
tions presented in Papers I and II, hundreds of thousands of iterations were found necessary
before the distributions were as smooth as one would expect to achieve via a deterministic
approach. With the underlying model luminosity function used for the analysis in each of
these papers being defined by only two free parameters, the MCMC approach might be de-
scribed as ‘overkill” for the model used. It must be stressed however that this approach has
been built into the algorithm from the outset in order to facilitate added model complexity

with only minimal coding changes.

2.5 The Bayesian and the Frequentist

Statisticians are of two minds with regard to the nature of probability and how it should be
calculated. The traditional ‘Frequentist’ view, as the name suggests, holds that the proba-
bility of an event is related to the frequency with which it occurs over a large number of
samples. Strictly speaking, it is the limit in that frequency as the number of samples goes
to infinity and therefore it can never be calculated exactly. Frequentists hence speak of con-

fidence intervals, an interval over which they have some degree of confidence that an event
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Ficure 2.8: Generating the probability distribution for a single parameter via marginalization. Both
Figures (a) and (b) are generated from the same Markov Chain as Fig. 2.7. Fig. (a) shows the value of
the RGB slope a corresponding to each value of the RGB tip. As the fitted model LF is defined solely
by these two parameters, the figure portrays all information contained in the Markov Chain. Fig. (b)
portrays the binned probability distribution in the RGB tip position. The height of each bin reflects
the number of data points in Fig. (a) recorded in the magnitude range represented by each bin. It is
clear that a longer chain is warranted if it is to form a truly representative sample of the state space of
the model. (Generated using ‘BayesianT RGB_ANDI.f95’ - see Appendix B)
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will be observed. Beginning with the work of the mathematician Thomas Bayes (Bayes and
Price, 1763), a new perspective on the nature of probability began to emerge however. It
essentially regarded probability as a subjective construct, the distribution of which depended
on the prior knowledge available to the investigator. Herein lies the power of the Bayesian
technique. The probability of an event can be weighted by our knowledge of the laws that
govern it, thus producing a probability distribution which characterizes the credibility of the
measurement.

Central to Bayesian Inference is Bayes theorem. The modern form of Bayes Theorem
has it’s origin in the work of Pierre-Simon Laplace (Laplace, 1812). It is commonly written

as follows:
P(B|A) X P(A)

P(A|B) = 5B 2.1)

where P(A|B) is the probability of A being true, given observation B; P(BJA) is the proba-
bility of B being true, given A; and P(A) and P(B) are the absolute probabilities of A and B
respectively. As an example, suppose someone comes across a set of 10 old coins in the attic,
apparently all identical. Upon closer inspection however, they note that one of them has a
particular mintmark. After some investigation they determine this mintmark to be quite rare,
being found on only 1% of coins of that type. They also learn however, that 30% of all coins
of the type are fakes, and that 90% of the fakes bear the mintmark. So what is the probability
that they have found an authentic example? We have

P(mintmark | real) X P(real)

P(mintmark)
0-01 >< 0.7 (2'2)

T 0.01x07+09%03
= 2.5%.

P(real | mintmark) =

Note however that if the finder of the coin had not done their research, they would have
had to assume that approximately 1 in 10 coins of the type bear the mintmark, and that the
authenticity of the coin was not in question. Prior knowledge has thus completely changed
their perspective.

We can equally well apply Bayes Theorem to our model-fitting RGB tip finding algorithm
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thus:
f(D| Mp,)x f(M,)
f(D) ’

where f(M,|D) is the ‘posterior’ distribution in model parameter p after taking into account

fM, | D)= (2.3)

the data D. The function f(D|M,) is the distribution of likelihoods obtained from the model
for the various values of p, f(M,) is our ‘prior’ or initial assumption as to the distribution in
p before accounting for the data, and f(D) is the probability distribution for the data points
- i.e. the luminosity function. Since f(D) is constant regardless of the model parameters, it
scales all probabilities by the same amount and hence is dealt with the by the normalization
of the posterior distribution. In the examples of §2.3 and §2.4, a ‘uniform’ prior has always
been assumed, such that f(M,) = c, a constant. If we are to better constrain our posterior
distributions however, we should incorporate all prior information we have on the object

studied.

2.6 Prior Information

As shall be seen in the next two chapters, prior information has been incorporated into our
TRGB algorithm in a variety of ways. Some of our prior knowledge of the objects under
study has been applied in the form of an independent ‘prior’ distribution which is multiplied
by the likelihood distribution as per Eq. 2.3, while other prior information has been built
into the model luminosity function directly. The model LF by it’s very nature reflects our
assumptions as to the form it would take were it populated with an infinite number of stars,
thereby eradicating any Poisson noise. We assume a truncated power law for the RGB and
fit the background component directly with a polynomial. This process is discussed in detail
in Paper I, but it is important to realize that the model LF applied to each object is ‘custom
built’ for that object. The likelihood distribution generated for each parameter thus already
incorporates prior information we have for the object.

To expand on this, it shall be seen in the next two chapters that the areas under the RGB
and background components of the model LF are set based on the average stellar density in
the object field as compared with that of a suitable ‘background’ field. The background field

is chosen so that it lies very close to the object field, and is usually in the form of a large
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rectangle centered on the object, but with the object field subtracted so that the object RGB
contributes negligibly to the LF of the background field . In so doing, we are effectively
assigning a prior constraint on how many stars we expect to find at a given magnitude on
either side of the RGB tip. If the average stellar density in the background field is very low
compared with that of the object field, than we do not expect to find very many stars that are
not true members of the object RGB.

With the base method presented in Paper I, the ratio of the RGB to background model
contributions is held constant for all stars. When the density matched filter is applied in
Paper II however, individual stars are assigned a weight that reflects our prior expectation as
to the probability of their being true object members. Using this information, we can tailor
our model LF not only to the object in question, but to the specific star in question. The ratio
of the RGB to background model contributions is calculated for each star individually, based
on its position within the object’s density profile.

In addition to the prior information that has been incorporated directly into the model
LF, additional prior information has been incorporated in the conventional sense, i.e. as a
prior probability distribution. The default prior distribution is a uniform prior, an assumption
of equal probability for all parameter values. Various prior distributions were experimented
with in the initial development of the base algorithm, each one devised so as to put some
constraint on the distance at which the object can be found. A Gaussian distribution could be
chosen for example, with the center of the distribution corresponding to the distance of M31
and the width reflecting our assumptions as to the extent of the halo. Alternatively, a flattened
Gaussian could be chosen so as to yield equal probability over some desired distance range
whilst cutting off sharply outside of that range. The priors on the tip magnitude mygsp and
RGB slope a for both papers have been simple top hat functions, such that 19.5 < myrggp <
23.5 and 0 < a < 2 are predicted with equal probability whilst values outside of those

ranges are assumed impossible. A more subjective prior is assumed in Paper II for the object

ZNote that in Paper I, the background fields used were long stripes running along the Galactic Latitude of
the object, as can be seen in Paper I, Fig. 3. It was later determined however that smaller fields provided a
better approximation to the localized background contained in the object field. Hence, the background fields
used for Paper II were rectangles of approximately 2° X 1° oriented as before with the longer axis parallel to

lines of equal Galactic Latitide.
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distance however, namely the density profile of a simple spherical halo along the line of sight
passing through the object (see Paper II, Fig. 6).

The net result of the inclusion of the prior information discussed above, is that we trans-
form our simple maximum likelihood technique of §2.3 into an ‘educated’ tip finding algo-
rithm. We effectively combine the best of both worlds by automating the tip finding process,
but at the same time imparting some of the intuition to the tip finding algorithm that we
would use if estimating the tip magnitude from the LF by eye. Such is the power of Bayesian
Inference, that we can combine the information obtainable from one lone data sample with

all other knowledge we can possibly infer about the circumstances which produced it.



“Every statistician would be a Bayesian if he took the trouble to read

the literature thoroughly...”

D. V. Lindley (1986)

Paper I: A Bayesian Approach to Locating
the Red Giant Branch Tip Magnitude. 1.
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Paper I Preface

This chapter presents the first of three papers which, together, represent the very heart of the
thesis. They are perhaps best thought of as a ‘trilogy,” as each one flows naturally into the
next and, though written to stand as independent contributions in their own right they are
best understood in the light of their companion papers. Unlike papers II and III however,
Paper [ is primarily a ‘methods’ paper. It lays the foundations for a new approach to the long
standing Tip of the Red Giant Branch problem which is further developed in Paper II where
it is applied to the majority of the M31 satellites. A preliminary analysis of the satellite
distribution is provided in that paper with a study of the halo density profile but the real
“fruits of the labour’ follow in Paper III which contains a thorough analysis of the satellite
spatial distribution which has led to some very interesting results. Whilst papers II and II1
shall likewise be introduced with their own preface, chapters 1 and 2 arguably form the real
‘preface’ for this paper and hence it seemed apt that this paper should be introduced with a
discussion of its place within a broader picture. Note also that the principal programing code

pertinent to the material presented in this paper can be found in Appendix B.
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ABSTRACT

We present a new approach for identifying the tip of the red giant branch (TRGB) which, as we show, works
robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the
stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the
derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an
outline of the development of the algorithm and present the results of tests designed to characterize its capabilities
and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II, and the
fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive
their distances as 73151?;_1187 kpc, 6345122);_1154 kpc, and 733Et1131);'_2§2 kpc, respectively, where the errors appearing in
parentheses are the components intrinsic to the method, while the larger values give the errors after accounting
for additional sources of error. These results agree well with the best distance determinations in the literature and
provide the smallest uncertainties to date. This paper is an introduction to the workings and capabilities of our
new approach in its basic form, while a follow-up paper shall make full use of the method’s ability to incorporate
priors and use the resulting algorithm to systematically obtain distances to all of M31’s satellites identifiable in the

doi:10.1088/0004-637X/740/2/69

PAndAS survey area.

Key words: galaxies: general — galaxies: stellar content — Local Group

Online-only material: color figures

1. INTRODUCTION

The tip of the red giant branch (TRGB) is a very useful
standard candle for gauging distances to extended, metal-poor
structures. The tip corresponds to the very brightest members
of the first ascent red giant branch (RGB), at which point
stars are on the brink of fusing helium into carbon in their
cores and hence contracting and dimming to become horizontal
branch stars. The result is a truncation to the RGB when the
color-magnitude diagram (CMD) for an old stellar population
is generated, beyond which lie only the comparatively rare
asymptotic giant branch (AGB) stars and sources external to the
system of interest. The (highly variable) contamination from
such objects provides the principal obstacle to simply “reading
off” the tip position from the RGB’s luminosity function (LF)
and the truncation of the AGB can even masquerade as the
TRGB in certain instances. The / band is the traditionally favored
region of the spectrum for TRGB measurements, minimizing the
interstellar reddening that plagues shorter wavelengths, while
keeping dependence on metallicity lower than it would be
at longer IR wavelengths. It should also be remembered that
stars approaching the TRGB generally exhibit peak emission in
this regime. Iben & Renzini (1983) determined that low-mass
(<1.6 M, for Population I, <1 M, for Population II), metal-
poor ([Fe/H] < —0.7 dex) stars older than 2 Gyr produce a
TRGB magnitude that varies by only 0.1 mag. More recently,

Bellazzini et al. (2001) determined the tip magnitude to lie at
an /I-band magnitude of Myrgp = —4.04 £ 0.12. This low
variation can be attributed to the fact that all such stars have
a degenerate core at the onset of helium ignition and so their
cores have similar properties regardless of the global properties
of the stars. The result is a standard candle that is widely
applicable to the old, metal-poor structures that occupy the halos
of major galaxies. Distances derived from the TRGB, unlike
those from a Cepheid variable or RR Lyrae star, for example,
can be determined from a single epoch of observation, making
it very useful for wide-area survey data. Furthermore, Salaris &
Cassisi (1997) confirmed agreement between Cepheid and RR
Lyrae distances and TRGB distances to within ~5%.

Until Lee et al. (1993) published their edge-finding algorithm,
the tip had always been found by eye, but clearly if the wide-
reaching applications of the TRGB standard candle were to
be realized, a more consistent, repeatable approach was in
order. The aforementioned paper shows that, if a binned LF
for the desired field is convolved with a zero sum Sobel kernel
[—2, 0, +2], a maximum is produced at the magnitude bin
corresponding to the greatest discontinuity in star counts, which
they attribute to the tip. Using this method, they were able to
obtain accuracies of better than 0.2 mag. Sakai et al. (1996) set
out to improve on this approach by replacing the binned LF and
kernel with their smoothed equivalents. To do this, they equate
each star with a Gaussian probability distribution whose FWHM
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is determined by the photometric error at the magnitude actually
recorded for the star. Then, rather than each star falling within a
particular bin, it contributes to all bins via a normalized Gaussian
centered on the magnitude recorded for it. This is illustrated in
Equation (1):

N
®(m) = Z
i=1

L 2
L [Jmm)] )

2
27 O.i2 20i

where m is the magnitude of the bin in question and m; and
o are the central magnitude and variance, respectively, of the
Gaussian probability distribution for the ith star. This method
halved the error associated with the non-smoothed version of the
algorithm and an identical smoothing is hence just incorporated
into the model LF for our Bayesian approach.

In a more recent variation on the edge detection methods,
Madore et al. (2009) once again applied a Sobel kernel, but
fit to an LF built from composite stellar magnitudes 7 =
I — BI(V — I)o — 1.50] where B is the slope of the TRGB
as a function of color. This, they argued, results in a sharper
output response from the filter, and allows all stars, regardless
of color, to contribute equally to the derived tip position. Rizzi
et al. (2007) derived a value of 0.22 4 0.02 for g after a study of
five nearby galaxies, and showed that it is quite consistent from
one galaxy to another.

Meéndez et al. (2002) made a departure from the simple “edge-
finding” algorithms above by adapting a maximum likelihood
model fitting procedure into their technique. They pointed out
that the LF faintward of the tip is well modeled as a power law:

L(m > mrrgp) = 10°"~"mwow), (2)

where m > myrgp and a is fixed at 0.3. They then ascribed
the location of the tip to the magnitude at which this power law
truncates, i.e., m = mrrgg. Brightward of the tip they assumed
a functional form

L(m < mrrgp) = 107"=mon =, 3)

where b is the slope of the power law brightward of the tip and
¢ is the magnitude of the step at the RGB tip.

Such a model, though simplistic, is robust against the strong
Poisson noise that is inevitable in more sparsely populated LFs,
making it a significant improvement over the previous, purely
“edge-finding” methods.

Makarov et al. (2006) followed in a similar vein, demonstrat-
ing the proven advantages of a maximum likelihood approach
over simple edge detection techniques, despite a model depen-
dence. Unlike Méndez et al. (2002) however, they allowed a
as a free parameter, arguing its notable variance from 0.3, and
importantly, they smoothed their model LF using a photomet-
ric error function deduced from artificial star experiments. One
shortcoming of both of these methods, however, is that the most
likely parameter values alone are obtained, without their respec-
tive distributions or representation of their dependence on the
other parameters. Also, with regard to the background contam-
ination, the RGB LF in fact sits on top of non-system stars in
the field and so rather than model the background exclusively
brightward of the TRGB, the truncated power law of Equation
(2) can be added onto some predefined function of the contam-
ination.

Arguably the most successful method developed so far has
been that devised by McConnachie et al. (2004). It has been

CONN ET AL.

used to ascertain accurate distances to 17 members of the Local
Group (McConnachie et al. 2005). It combines aspects of both
“edge-finding” and model fitting to zero in more accurately on
the tip. They argued that as the precise shape of the LF at the
location of the tip is not known, a simple Sobel Kernel approach
that assumes a sharp edge to the RGB does not necessarily
produce a maximum at the right location. They instead used
a least-squares model-fitting technique that fits to the LF in
small windows searching for the portion best modeled by a
simple slope function. This, they reasoned, marks the location
of the steepest decline in star counts which is attributable to the
tip location. This method is capable of finding the tip location
accurate to better than 0.05 mag, although is still susceptible to
being thrown off by noise spikes in a poorly populated LF.

Despite the merits of previous methods such as these, none
of them work particularly well when confronted with the high
levels of Poisson noise that abound in the more poorly popu-
lated structures of galaxy halos. Furthermore, in such condi-
tions as these where the offset between detected and true tip
position will likely be at its greatest, it is of great use to have
a full picture of likelihood space, as opposed to merely the
determined, most probable value. This has led us to develop
a new, Bayesian approach to locating the TRGB, specifically,
one that incorporates a Markov Chain Monte Carlo (MCMC)
algorithm. As shall become apparent in the next section, such
a method is very robust against noise spikes in the LF and al-
lows all prior knowledge about the system to be incorporated
into the tip-finding process—something lacking in the previous
approaches. Further to this, the MCMC provides for a remark-
ably simple, yet highly accurate error analysis. It also makes
it possible to marginalize over parameters to provide posterior
probability distributions (PPDs) of each parameter, or to obtain
plots of the dependence of each parameter on every other. In
Section 2, a detailed explanation of our approach and its limi-
tations is given. Section 2.1 introduces the method by applying
the algorithm to one of M31’s brightest dwarf spheroidals, An-
dromeda I. Section 2.2 discusses the nature of systematic errors
that apply to the method. Section 2.3 investigates the accu-
racy that the basic method (before addition of priors) is capable
of given the number of stars populating the LF for the field
and the strength of the non-RGB background while Section 2.4
deals with its performance when faced with a composite LF.
Section 3 then applies our new approach to two additional M31
dwarf satellite galaxies and Section 4 summarizes the advan-
tages of the method and outlines the expected applicability of
the method in the immediate future.

2. METHOD
2.1. The MCMC Method

The MCMC method is an iterative technique that, given some
model and its associated parameters, rebuilds the model again
and again with different values assigned to each parameter, in
order that a model be found that is the best fit to the data at
hand. It does this by comparing the likelihood of one model,
built from newly proposed parameter values, being correct for
the data, as opposed to the likelihood for the model built from
the previously accepted set of model parameters. The MCMC
then accepts or rejects the newly proposed parameter values
weighted by the relative likelihoods of the current and proposed
model parameter values. At every iteration of the MCMC, the
currently accepted value of each parameter is stored so that the
number of instances of each value occurring can be used to build
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Figure 1. Position of Andromeda I relative to the M31 disk. The saturated disk
dominates the northwest corner of the field while Andromeda I itself appears
as an overdensity within the Giant Stellar Stream (GSS). The GSS in actuality
lies well behind Andromeda I, as is evidenced by the CMD in Figure 2. A strict
color-cut was imposed on the data to highlight the location of the satellite and
the extent of the stream with greatest contrast.

(A color version of this figure is available in the online journal.)

alikelihood distribution histogram—which can be interpreted as
a PPD—for each model parameter. Hence, the MCMC is a way
of exploring the likelihood space of complicated models with
many free parameters or possible priors imposed, where a pure
maximum likelihood method would be quickly overwhelmed.
With the PPD generated, the parameter values that produce the
best-fit model to the data can simply be read off from the peak
of the PPD for each parameter. Similarly, the associated error
can be ascertained from the specific shape of the distribution. A
detailed description of the MCMC with worked examples can
be found in Gregory (2005, Chap. 12).

To illustrate the precise workings of our MCMC tip-finding
algorithm, its application to a well-populated dwarf galaxy in the
M31 halo is described. Andromeda I was discovered by van den
Bergh (1971) and at a projected distance of ~45 kpc from M31
(Da Costa et al. 1996), it is one of its closest satellites. Da Costa
et al. (1996) ascribed to it an age of ~10 Gyr and a relatively
low metallicity of (Fe/H) =— 1.45 £ 0.2 dex which is clearly
exemplified in the CMD for Andromeda I presented in Figure 2.
Here the RGB of Andromeda I lies well to the blue side of that of
the Giant Stellar Stream (GSS) which lies behind Andromeda I
but in the same field of view. Mould & Kristian (1990) provide
the first TRGB-based distance measurement to Andromeda I,
which they deduce as 790 &+ 60 kpc, based solely on a visual
study of the RGB. McConnachie et al. (2004) improve on
this significantly, producing a distance determination of 735 +
23 kpc, based on a tip magnitude of 20.4Ot%%32 in the 7 band.

Andromeda I’s position with respect to M31 and the GSS is
presented in Figure 1, where the red circle indicates the precise
field area fed to our MCMC algorithm. An object-to-background

CONN ET AL.

G

Figure 2. Color—magnitude diagram for a circular field of radius 0°2 centered
on Andromeda I. Two red giant branches are clearly visible, that of Andromeda
I (within the red rectangle color-cut) and that of the Giant Stellar Stream which
lies behind Andromeda I in the same line of sight.

(A color version of this figure is available in the online journal.)

ratio (OBR) of 11.0 was recorded for this field with the color-cut
applied, based on comparisons of the signal field stellar density
with that of an appropriate background field. The data presented
in this figure, as with all other data discussed in this paper,
were obtained as part of the Pan-Andromeda Archaeological
Survey (PAndAS; McConnachie 2009), undertaken by the
3.6 m Canada—France-Hawaii Telescope (CFHT) on Mauna
Kea equipped with the MegaCam imager. CFHT utilizes its own
unique photometric bandpasses i and g based on the AB system.
We work directly with the extinction-corrected CFHT i and g
magnitudes and it is these that appear in all relevant subsequent
figures. The extinction-correction data applied to each star have
been interpolated using the data from Schlegel et al. (1998).

At the heart of our tip-finding algorithm is the model LF
that the MCMC builds from the newly chosen parameters at
every iteration. The LF is a continuous function which we
subsequently convolve with a Gaussian kernel to account for
the photometric error at each magnitude. This is achieved by
discretizing both functions on a scale of 0.01 mag. Like Méndez
et al. (2002), we assume the LF faintward of the tip to follow a
simple power law, of the form given in Equation (2); however,
we set a as a free parameter. The bin height at each magnitude is
then calculated by integrating along this function setting the bin
edges as the limits of integration. The value for the bin which is
set to contain the RGB tip for the current iteration is calculated
by integrating along the function from the precise tip location
to the faint edge of the bin. All other bins are then set at 0. A bin
width of 0.01 mag for our model was found to provide a good
balance between magnitude resolution, which is limited by the
photometric error in the MegaCam data (~0.01 mag at m =
20.5), and the computational cost for a higher number of bins.
We stress here, however, that each star’s likelihood is calculated
from the model independently, so that the actual data LF is “fed”
to the MCMC in an unbinned state. A faint edge to the model
LF was imposed at m = 23.5 to remove any significant effects
from data incompletion and increasing photometric error.

Further to this, we add a background function to this truncated
power law. While the scaling of the background strength
relative to the RGB signal strength could be set as another
free parameter, and indeed was initially, it makes better use
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of our prior information to instead determine the fraction of
background stars or “background height” (f) manually. This is
achieved simply by calculating the average density of stars in
the background field Dpg and in the “signal” field Dgjg with f
then being the ratio of the two, i.e., f = Dgg/Dsig. Note that
this is not directly the inverse of the object-to-background star
ratio, OBR = (Dsig — Dgg)/ Dgg, as frepresents the percentage
of all stars lying inside the signal field that can be expected to be
external to the object of interest. Hence, when we normalize the
area under the model LF so that it may be used by the MCMC as
a probability distribution, the background component will have
area f while the RGB component will have area 1 — f. Now,
with fknown, what we then have is a simplified two-parameter
model, allowing for faster convergence of the MCMC algorithm.

We have thus devised our model so that the MCMC is tasked
with the problem of finding just two parameters, namely the
slope of the RGB LF (a) and of course the location of the
RGB tip magnitude (mrrgp). For simplicity in this first paper,
we impose uniform priors on each of these parameters, where
19.5 < m1rge < 23.5 and 0 < a < 2. We also do not account
for the color dependence of the tip magnitude which is only
slight in the / band (see Rizzi et al. 2007) and for the metal-
poor targets examined here, but these effects will be dealt with
in future publications. While it is true that two parameters are
tractable analytically, we apply the numerical MCMC in order
to set the framework for computationally more challenging
models with non-uniform priors that will become necessary
for the more sparsely populated structures presented in future
contributions. There are, however, several more complexities
to the model that have yet to be discussed. First, the choice of
background function is not arbitrary. It has been found that the
best way to model the background is to fit it directly by taking
the LF of an appropriate “background” field. The best choice
of background field is arguably one that is at similar galactic
latitude to the structure of interest, as field contamination is
often largely Galactic in origin, and hence closely dependent
on angular distance from the Galactic plane. Furthermore, the
field should be chosen so that the presence of any substructure
is minimal, so as to prevent the signature of another halo object
interfering with the LF for the structure of interest.

In addition to these constraints, owing to the low stellar
density of the uncontaminated halo, it is preferable that the
background field be as large as possible to keep down the
Poisson noise and hence it will of necessity be much larger
than that of the field of interest. As a result, the main error in
the background fit will arise from background mismatching and
is not random. In addition, the large background field size may
inevitably contain some substructure, requiring removal. This
may be done by physically subtracting contaminated portions of
the background area, but this is often unnecessary as the CMD
color-cut imposed on the signal field must also be applied to the
background field, usually ridding the sample of any substantial
substructure that may be present. In the case of our Andromeda I
background field, however, we have removed a large 2°4
portion crossing numerous streams (as shown in Figure 3)
as these streams do trespass into the chosen Andromeda I color-
cut. Nevertheless, this is just a precaution, because for well-
populated systems such as Andromeda I and Andromeda II, the
algorithm is impervious to small discrepancies in the functional
form of the background.

Once an appropriate background field has been selected, its
LF can be fitted by a high-order polynomial. This polynomial
then becomes the function added to our model and scaled
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Figure 3. Map of the entire PAndAS survey area, with color-cut chosen to
favor the low metallicities exhibited by many of M31’s satellite galaxies. The
three dwarf spheroidal companions of M31 studied in this paper are labeled,
along with the signal fields (small circles of radius 0°2) and their respective
background fields fed to our algorithm. Note that the background fields are
chosen to be as narrow as possible in Galactic latitude while retaining as large
an area as possible. In each case, the signal field areas are subtracted from their
respective background fields to prevent contamination.

(A color version of this figure is available in the online journal.)

by f as described earlier. Our choice of background field for
Andromeda I (along with Andromeda IT and Andromeda XXIII)
and the polynomial fit to its LF are presented in Figures 3 and
4, respectively.

The other major consideration that has yet to be addressed
is the effect of photometric error on the LF. This is dealt
with by convolving the initial binned model with a normalized
Gaussian whose width is adjusted as a function of magnitude
in accordance with the error analysis conducted on the PAndAS
data. This is equivalent to the method of Sakai et al. (1996)
described in Equation (1). As described earlier, this procedure
has the added advantage of making the model independent of
binning. It is also important in this stage, as it is at every stage,
that the model and all constituent parts are normalized so that
the model can be used as a probability distribution.

With these issues addressed, the MCMC algorithm can be
set in motion. The i-band magnitudes and (g — i)y data for
the desired field is read into data arrays, spurious sources
are rejected, and a color-cut is imposed to remove as many
non-members of the structure’s RGB as possible. The same
constraints are of course applied to the background field as
well. The MCMC then applies preset starting values of a@ and
mrrgp and builds the corresponding model for the first iteration.
Within this iteration, the MCMC proposes new values for each
parameter, displaced by some random Gaussian deviate from the
currently set values and re-constructs the appropriate model.
The step size, or width of the Gaussian deviate is chosen so
as to be large enough for the MCMC to explore the entire
span of probability space, while small enough to provide a
high-resolution coverage of whatever features are present. The
ratio of the likelihoods of the two models is then calculated
(the Metropolis Ratio r) and a swap of accepted parameter
values made if a new, uniform random deviate drawn from the
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Figure 4. Top: CMD for the Andromeda I background field (see Figure 3). The
same color-cut is applied as in the CMD for the signal field (Figure 2). Bottom:
The binned luminosity function for the background with the fitted polynomial
superimposed. A polynomial of degree seven was found adequate to represent
the luminosity function.

(A color version of this figure is available in the online journal.)

interval [0,1], is less than or equal to r. The calculation of the
Metropolis Ratio for our model is exemplified in Equations (4)
and (5):

;= »Cproposed ( 4)
‘CCUI’I‘CHt
with the value for each of the likelihoods £ being calculated
thus

ndata

L= 1_[ M(mrrcs, a, my) 5)
n=1
with
M(m, > mtrgs) = RGB(m,,) + BG(n,)
M(m, < mrtrgs) = BG(m,,)
where RGB(m,) = 10%(ma—m1rae) (6)

m=23.5
and / RGBdm=1—-f

M=MTRGB

m=23.5
and / BGdm = f,

m=19.5
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Figure 5. Posterior probability distribution for three million iterations of the
MCMC on the Andromeda I CMD color-cut presented in Figure 2. The peak
probability is located at ip = 20.88. The distribution is color coded, with red
indicating tip magnitudes within 68.2% (Gaussian 1o) on either side of the
distribution mode, green those within 90%, and blue those within 99%.

(A color version of this figure is available in the online journal.)

where myrgp and a are the parameters currently chosen for the
model by the MCMC, ndata is the number of stars and m,, is
the i-band magnitude of the nth star. BG represents the fitted
background function (see Figure 4). The MCMC then stores the
new choice for the current parameter values and cycles to the
next iteration. In order to ascertain a reasonable number of
iterations, the chains for each parameter were inspected to insure
that they were well mixed, resulting in posterior distributions
that appeared smooth (by eye).

When the MCMC has finished running, the PPD for each pa-
rameter is generated. By binning up the number of occurrences
of each parameter value over the course of the MCMC'’s itera-
tions, the probability of each value is directly determined and
the most probable value can be adopted as the correct model
value for the data. If one assumes a Gaussian probability distri-
bution, then the 1o errors associated with each parameter value
can be obtained simply by finding the value range centered on
the best-fit value that contains 68.2% of the data points. As our
PPDs are not always Gaussian, our quoted 1o errors in the tip
magnitude represent more strictly a 68.2% credibility interval.
We do not fit a Gaussian to our PPDs to obtain 1o errors. Our 1o
errors in tip magnitude are obtained by finding the magnitude
range spanning 68.2% of the PPD data points, on one side of
the distribution mode and then the other. It must be stressed that
these quoted errors are merely an indicator of the span of the
parameter likelihood distribution and are no substitute for ex-
amining the PPDs themselves. Figures 5 and 6 present the PPD
for the RGB tip magnitude based on the Andromeda I CMD
(Figure 2) and the best-fit model to the LF for the field, respec-
tively. The PPD for the LF slope a is presented in Figure 7 and
a contour map of the distribution of the tip magnitude versus a
is presented in Figure 8.

Upon the completion of the algorithm, the RGB tip for

Andromeda I was identified at m = 20.879*%%\%. This cor-

responds to an extinction-corrected distance of 731Ef4))tl ?7 kpc,

where the final errors include contributions from the extinction
and the uncertainty in the absolute magnitude of the TRGB (see
Section 2.2). The i-band extinction in the direction of
Andromeda I is taken as A, = 0.105 mag (Schlegel et al.
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Figure 6. Four-magnitude segment of the Andromeda I luminosity function
fitted by our MCMC algorithm. It is built from 3355 stars. The best-fit model is
overlaid in red. The bin width for the LF is 0.01 mag.

(A color version of this figure is available in the online journal.)
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Figure 7. Posterior probability distribution obtained for the slope a of the

Andromeda I luminosity function. The distribution is a clean Gaussian with the
distribution mode at 0.273.
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Figure 8. Contour map of the distribution of the tip magnitude vs. the LF slope
a. It is noteworthy that there is little correlation between the two parameters,
with the peak of the distribution of @ more or less independent of tip magnitude.
Regardless of any correlation, the respective PPDs of each parameter are the
result of marginalizing over the other parameter, and thus take into account any
covariance between parameters.
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Figure 9. Plot of the distribution of possible distances to Andromeda I obtained
through the application of our method. Once again, the colors red, green, and blue
denote distances within 68.2%, 90%, and 99% credibility intervals, respectively.

(A color version of this figure is available in the online journal.)

1998). The parameters a and f were derived as 0.273 +
0.011 and 0.083, respectively. This distance measurement
is in excellent agreement with the distance determined by
McConnachie et al. (2004). It is noteworthy, however, that
our method searches for the TRGB itself as distinct from
the RGB star closest to the TRGB as sort out by the
method of McConnachie et al. (2004), which would con-
tribute to our slightly smaller distance measurement. A sim-
ilar discrepancy arises in the case of Andromeda II (see
Section 3).

2.2. A Note on Distance Errors

Despite the small errors in the tip magnitude afforded by
our approach, there are a number of factors that contribute to
produce a somewhat larger error in the absolute distance. These
arise due to uncertainties both in the extinction corrections
applied and in the absolute magnitude of the TRGB in the i
band. Both of these contributions are assumed to be Gaussian,
where the 1o error in the extinction correction, A{A,}, is taken
as 10% of the correction applied, and the error in the absolute
magnitude of the tip is expressed in Equation (7) below

A{MTRGB }

= \/Az{m;rRGB}wCen + A2{A)‘}’Ucen + AZ{m - M}wCen

= 1/10.04)2 + {0.03}2 + {0.11}2
= +0.12. @)

As we are working in the native CFHT i and g bands, we
adopt this magnitude as M ROB = —3.44 + 0.12, where the
conversion from M}R® is based on the absolute magnitude
for the TRGB identified for the Sloan Digital Sky Survey
(SDSS) i band (Bellazzini 2008). This is justified by the color
equations applying to the new MegaCam i-band filter (Gwyn
2010). Noting that the largest contribution to this error is that
from the distance modulus to wCen, (m — M),cen, derived
from the eclipsing binary OGLEGC 17, we consider only the
contributions from the extinction {A; },cen, Which is taken as
10% of the Schlegel et al. (1998) values, and the apparent
tip magnitude determination {m R} ., and note that our
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derived distance modulus may be systematically displaced
by up to 0.1 of a magnitude. This then gives us MR®B =

—3.44 + +/0.04% + 0.032 = —3.44 4+ 0.05. Since our principal
motive is to obtain relative distances between structures within
the M31 halo rather than the absolute distances to the structures,
this offset is not important. Furthermore, as measurements for
the wCen distance modulus improve, our distances are instantly
updatable by applying the necessary distance shift.

While these external contributions to our distance uncertain-
ties may be taken as Gaussian, the often non-Gaussian profile of
our TRGB (m[R%B) posterior distributions necessitates a more
robust treatment then simply adding the separate error compo-
nents in quadrature. Hence to obtain final distance uncertainties,
we produce a distance distribution obtained by sampling com-
binations of m RB, A; and MRS from their respective likeli-
hood distributions, thus giving us a true picture of the likelihood
space for the distance. The result of this process for Andromeda I
is illustrated in Figure 9. From this distribution, we determine
not only the quoted 1o errors but also that Andromeda I lies at
a distance between 703 and 761 kpc with 90% credibility and
between 687 and 778 kpc with 99% credibility.

2.3. Initial Tests

In order to gain a better understanding of the capabilities of
our method when faced with varying levels of LF quality, a se-
ries of tests were conducted on artificial “random realization”
data, as well as on sub-samples of the Andromeda I field uti-
lized above. There are two major factors that affect the quality
of LF available to work with, namely, the number of stars from
which it is built and the strength of the background component
relative to the RGB component. Hence to simulate the varying
degrees of LF quality that are likely to be encountered in the
M31 halo, artificial LFs were built for 99 combinations of back-
ground height versus number of stars. Specifically, background
heights of f = 0.1,0.2,...,0.9 were tested against each of
ndata = 10,20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000,
and 20,000 stars populating the LF.

To achieve this, a model was built as discussed in Section 2.1,
with a constant tip magnitude and RGB slope of mtrgg = 20.5
and a = 0.3, respectively, and a background height f set to
one of the nine levels given above. The functional form of the
background was kept as a horizontal line for the sake of the
tests. An LF was then built from the model, using one of the 11
possible values for the number of stars listed above. This was
achieved by assigning to each of the ndata stars a magnitude
chosen at random, but weighted by the model LF probability
distribution—a “random realization” of the model. The MCMC
algorithm was then run on this artificial data set as described in
the previous subsection with mrgp and a as free parameters to
be recovered. The tests also assume the photometric errors of
the PAndAS survey and further assume that incompleteness is
not an issue in the magnitude range utilized. The error in the
recovered tip position and the offset of this position from the
known tip position in the artificial data (I = 20.5) were then
recorded. The results are presented in Figures 10 and 11 below.
Each pixel represents the average result of ten 200,000 iteration
MCMC runs for the given background height versus number of
stars combination. Note that the kpc distances given correlate to
an object distance of 809 kpc—i.e., mR® = 20.5—which is
in keeping with distances to the central regions of the M31 halo.
Furthermore, all stars of the random realization were generated
within a 1 mag range centered on this tip value.
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Figure 10. Gray-scale map of the 1o error in tip magnitude obtained for different
combinations of background height and number of sources. The actual value
recorded for the error (in kpc) is overlaid on each pixel in red. For these tests,
we approximate the lo error as the half-width of the central 68.2% of the PPD
span.

(A color version of this figure is available in the online journal.)

Figures 10 and 11 are intended to serve as a reference for
future use of the basic method, with regard to the number
of stars required to obtain the distance to within the desired
uncertainty for the available signal-to-noise ratio. The results
follow the inevitable trend of greater performance when the
background height is small and there are many stars populating
the LF. There are some minor deviations from this trend but
these result from single outlying values whose effects would
diminish if a higher number of samples were averaged. It is
also noteworthy that the offsets recorded clearly correlate with
the 1o errors and are consistently less than their associated
errors.

The results of these random realization tests are borne out
by similar tests conducted on subsamples of the Andromeda I
field. Random samples were drawn containing 335 (10% of
the total sample), 200, 100, and 50 stars. These correspond
approximately to 10, 20, 50, and 100 stars in the 1 mag range
centered on the tip. In no case was the derived tip location more
than 80 kpc from that identified from the full sample, and the of-
fset grew steadily less as the number of stars in the sample was
increased. Furthermore, the offsets were almost always less than
the 1o errors.

2.4. Algorithm Behavior for Composite Luminosity Functions

When a field is fed to any RGB tip finding algorithm, it
must be remembered that field is in fact three dimensions of
space projected onto two, and therefore it is possible that two
structures at very different distances may be present within it.
Such a scenario becomes especially likely when dealing with the
busy hive of activity that the PAndAS Survey has come to reveal
around M31. The result of such an alignment along the line of
sight is an LF built from two superimposed RGBs with two
different—possibly widely separated—tip magnitudes. Hence
it is important to understand how the TRGB algorithm applied
to such a field will respond.

Unlike other algorithms that have been developed, our
Bayesian approach provides us with a measure for the probabil-
ity of the tip being at any given magnitude (the PPD). But this
also leads to an important caveat—the selection criteria imposed
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Figure 11. Gray-scale map of the offset from the true tip magnitude obtained
for different combinations of background height and number of sources. The
actual (absolute) value recorded for the offset (in kpc) is overlaid on each pixel
inred. These values convey the discrepancy between the true object distance and
that recovered by the MCMC. It was necessary to remove the direction of the
individual offsets before averaging as the values would otherwise largely cancel
out. Examination of the individual offsets shows no significant bias toward either
direction however.

(A color version of this figure is available in the online journal.)

on the data that is fed to the algorithm biases it strongly toward
the structure whose distance we are trying to measure. Taking
the Andromeda I measurement of Section 2.1 for example, this
satellite sits on top of the GSS which contributes prominently to
the field CMD, yet its contribution to the LF fed to the MCMC
is almost eradicated by our choice of color-cut. Yet if this strin-
gent color-cut is removed, the algorithm remains surprisingly
insensitive to the GSS tip. This is because of another prior con-
straint we impose on the routine—the background height. With
this fixed background imposed on our fitted model, the MCMC
looks for the first consistent break of the data from the back-
ground—i.e., the tip of the Andromeda I RGB. It is therefore
necessary to reinstate the background height as a free param-
eter of the MCMC to give it any chance of finding the tip of
the GSS’s RGB. By this stage, enough of our prior constraints
have been removed to give the method freedom to choose the
best fit of the unrestricted model to the entire data set from
the field. Nevertheless, the more (correct) prior information we
can feed the algorithm, the better the result we can expect to
receive.

Still, while the method has not been tailored toward composite
LFs, it is worth noting that it can be used successfully to identify
more than one object in the line of sight—a useful ability when
the two structures are poorly separated in color-magnitude
space. The model used assumes only one RGB and thus one
tip; to do otherwise would increase computation times. If two
distinct structures are identified by this method and cannot
be separated using an appropriate color-cut or altered field
boundaries, an appropriate double RGB model should be built
to accurately locate the tip for each structure. But even with
the basic single-RGB model (which will suffice for the vast
majority of cases), at least the presence of a second structure
is indicated. If we take the example of Andromeda I again, the
ideal way to obtain a distance measurement to the portion of the
GSS that sits behind it would be to make a color-cut that favors
it and removes Andromeda I, but we can force the algorithm
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Figure 12. Posterior probability distribution for the cold sampler chain of a four-
chain parallel-tempering regime. The MCMC was run for 1.5 million iterations.
The strong peak at m = 20.93 results from the tip of the Andromeda I RGB,
but it has been shifted faintward by the presence of the Giant Stellar Stream,
responsible for the peaks at m = 21.29 and m = 21.35. Without the addition of
parallel tempering, the MCMC is liable to spend an inordinate amount of time
stuck in the first major probability peak it encounters.

to consider both structures to demonstrate the extreme case of
what might be encountered in a general halo field. The result
is two broad bumps in the PPD well separated in magnitude.
The nature of the MCMC however is to converge straight onto
the nearest major probability peak, seldom venturing far from
that peak. This is remedied by the addition to the algorithm of
Parallel Tempering.

While an infinite number of iterations of the MCMC would
accurately map probability space in its entirety, Parallel Temper-
ing is a way of achieving this goal much more quickly. Parallel
Tempering involves a simple modification to the MCMC algo-
rithm, whereby multiple chains are run in parallel. One chain,
the “cold sampler” runs exactly as before, but additional chains
have their likelihoods weighted down producing a flatter PPD
that is more readily traversed by the MCMC. The further the
chain is from the cold sampler chain, the heavier the weight that
is applied. Every so many iterations, a swap of parameters is
proposed between two random but adjacent chains so that even
the “hottest” chains eventually affect the cold sampler chain and
allow it to escape any local maximum it may be stuck in. The
result is a cold sampler chain PPD that is more representative
of the full extent of the LF (see Gregory 2005, Chap. 12 for a
more detailed discussion). The result of applying a four-chain
MCMC to the region of Andromeda I is summarized in the PPD
of Figure 12.

While the Andromeda I TRGB is found much less accurately
by this method as a result of the removal of our prior constraints
for illustrative purposes, it is nevertheless clear that the addition
of Parallel Tempering adds to our algorithm the facility to
identify other structures in the field that may require separate
analysis. Even given a properly constrained model and data set,
the safeguard it provides against a poorly explored probability
space arguably warrants its inclusion.

3. DISTANCES TO TWO MORE SATELLITES

To further illustrate the capabilities of our basic method as
outlined in Section 2, we have applied it to two more of M31’s
brighter satellites, whose distances have been determined in
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Figure 13. CMD for a circular field of radius 022 centered on Andromeda II. It
is more densely populated than the Andromeda I CMD (Figure 2) and is very
well defined against the stellar background. The RGB tip is clearly visible at
ip ~ 20.6.

(A color version of this figure is available in the online journal.)
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Figure 14. Posterior probability distribution for three million iterations of the
MCMC on a4 mag interval (see Figure 15) of the Andromeda IT CMD selection
presented in Figure 13. The peak probability of the distribution is well defined
at ip ~ 20.57. The distribution is again color coded as in Figure 5, with red,
green, and blue corresponding to 68.2%, 90%, and 99% credibility intervals,
respectively.

(A color version of this figure is available in the online journal.)

past measurements using a range of methods, including TRGB-
finding algorithms. The additional satellites chosen for this
study are the relatively luminous dwarf spheroidal Andromeda II
and the somewhat fainter, newly discovered Andromeda XXIII
dwarf. The location of both satellites within the M31 halo can
be seen in Figure 3.

3.1. Andromeda I1

Andromeda II was discovered as a result of the same survey
as Andromeda I using the 1.2 m Palomar Schmidt telescope (van
den Bergh 1971). Da Costa et al. (2000) deduce a similar age
for Andromeda II as for Andromeda I but with a wider spread
of metallicities centered on (Fe/H) =— 1.49 4+ 0.11 dex. Our
Andromeda II LF was built from a circular field of radius 072
centered on the dwarf spheroidal with an OBR of 34.0 recorded.
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Figure 15. Four-magnitude segment of the Andromeda II luminosity function
fitted by our MCMC algorithm. It is built from 4409 stars. The best-fit model is
overlaid in red. The bin width for the LF is again 0.01 mag.

(A color version of this figure is available in the online journal.)
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Figure 16. Color—magnitude diagram for a circular field of radius 071 centered
on Andromeda XXIII. It is much more sparsely populated than those of
Andromeda I and Andromeda II. The RGB tip appears to lie just brightward of
ip =21.

(A color version of this figure is available in the online journal.)

This high OBR is not unexpected with Andromeda II arguably
the best populated of M31’s dwarf spheroidal satellites. The
CMD for this field is presented in Figure 13.

Application of our algorithm to Andromeda II yields a tip
magnitude of ip = 20.572*%% for the RGB which corre-
sponds to an extinction-corrected distance to Andromeda II
of 634(+2)+l14 kpc, where the i-band extinction is taken as

A, = 0 121 mag (Schlegel et al. 1998). This is in good agree-
ment with McConnachie et al.’s (2004) derived distance of
645419 kpc. Values for a and f were recovered as 0.2764+0.009
and 0.028, respectively. The mR°® PPD and best-fit model
found by our method are illustrated in Figures 14 and 15, re-
spectively.

3.2. Andromeda XXIII

Despite its relative brightness among the other satellites of the
M31 system, Andromeda XXIII was only discovered with the
undertaking of the outer portion of the PAndAS survey in 2009/
2010, being too faint at My = —10.2 & 0.5 to identify from
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Figure 17. Posterior probability distribution for three million iterations of the
MCMC on a 4 magnitude interval (see Figure 18) of the Andromeda XXIII
CMD selection presented in Figure 16. There are several probability peaks in
this instance but the preferred peak lies at 20.885. The distribution is again color
coded as in Figure 5, with red, green, and blue corresponding to 68.2%, 90%,
and 99% credibility intervals, respectively.

(A color version of this figure is available in the online journal.)
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Figure 18. Four-magnitude segment of the Andromeda XXIII luminosity
function fitted by our MCMC algorithm. It is built from 328 stars. The best-fit
model is overlaid in red. While the model LF tested by the MCMC retained the
resolution of 100 bins per magnitude described in Section 2.1, the data LF is
re-produced here at the lower resolution of 0.04 mag per bin to better reveal its
structure to the eye.

(A color version of this figure is available in the online journal.)

the SDSS (Richardson et al. 2011). The said paper presents its
vital statistics along with those for the other newly discovered
satellites Andromeda XXIV-XXVIIL. It is a dwarf spheroidal
galaxy and has the lowest recorded metallicity of the satellites
we present with (Fe/H) =— 1.8 4+ 0.2. Making use of the
deeper coverage of PAndAS in the g band, Richardson et al.
(2011) obtain a distance measurement of 767 & 44 kpc from the
horizontal branch of the CMD.

Andromeda XXIII is a more challenging target for our
algorithm in its current form, with less than ~50 stars lying
within the 1 mag range centered on the tip and an OBR of
8.4 for the field and color-cut employed. The CMD for this
circular field of radius 0?1 is presented in Figure 16. We find
the RGB tip at an i-band magnitude of 20.885"%%%,, which,
given an i-band extinction of 0.112 mag in the direction of
Andromeda XXIII (Schlegel et al. 1998), corresponds to a

10
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distance of 7332i1131);_232 kpc. We derive the values of a and f as
0.270 £ 0.039 and 0.105, respectively. Curiously, the MCMC
finds several peaks very close to the major peak in the PPD (see
Figure 17), but these are attributable to the lower star counts
available in the LF around the tip. This has the effect of creating
large magnitude gaps between the stars that are just brightward
of the tip so that each individual star can mimic the sudden
increase in star counts associated with the beginning of the
RGB. As aresult, there is a range of likely locations for the tip,
but the PPD shows that the object cannot be more distant than
802 kpc nor closer than 601 kpc with 99% confidence. The best
fit model determined by the MCMC is overlaid on the LF in red
in Figure 18.

4. CONCLUSIONS

The versatility and robustness of our new method can be
appreciated from Section 2 and its high level of accuracy is
evident from the measurement errors which are consistently
smaller than those in the literature to date. In addition, it is our
hope that with the correct priors imposed, this new approach
carries with it the ability to gauge distances to even the most
poorly populated substructures, bringing a whole new range of
objects with in reach of the TRGB standard candle. In the case of
the M31 halo alone, it will be possible to obtain distances to all
of the new satellites discovered by the PAndAS survey—a feat
previously impractical using the TRGB. Furthermore, PAndAS
has revealed a complicated network of tidal streams that contain
valuable information as to the distribution of dark matter within
the M31 halo. With our new method, it will be possible to
systematically obtain distances at multiple points along these
streams, thus providing vital information for constraining their
orbits.

The great advantage of our new Bayesian method over a
pure maximum likelihood method is the ease with which prior
information may be built into the algorithm, making it more
sensitive to the tip. Herein lies the great power of the Bayesian
approach, whereby the addition of a few carefully chosen priors
can reduce the measurement errors 10 fold. The result is an
algorithm that is not only very accurate but highly adaptable
and readily applicable to a wide range of structures within the
distance (and metallicity) limitations of the TRGB standard
candle. With instruments such as the 6.5 m infrared James
Webb Space Telescope and the 42 m European Extremely Large
Telescope expected to be operational within the decade, these
distance limitations will soon be greatly reduced. This will bring
an enormous volume of space within reach of the TRGB method,
including the region of the Virgo Cluster. A tool with which it is
possible to apply the TRGB standard candle to small, sparsely
populated structures and small subsections of large structures
alike is hence, needless to say, invaluable.
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“Theories crumble, but good observations never fade.”

Harlow Shapey (1885 - 1972)

Paper II: A Bayesian Approach to Locating
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66 DISTANCES TO THE SATELLITES OF M31

Paper II Preface

The first tip of the red giant branch paper (Paper I) was written with the intention that a
second paper would soon follow which would further develop the method and apply it to the
entire satellite sample of M31!. As it came to pass, Paper II would not be accepted as an
Astrophysical Journal publication until one year and three days after the acceptance of the
first paper, despite being begun well before the first paper was accepted. This paper therefore
represents a significant portion of my PhD candidature.

The method employed to gain the satellite distance distributions presented in Paper 11,
differs from that introduced in Paper I, chiefly in the way that prior information is taken into
account. Most notably, ‘matched filtering’ is introduced to weight stars in accordance with
their likelihood of being true object members. The object’s density profile (as a function
of radius) is treated as a probability distribution of object membership such that stars found
in the densest central regions of the object are given more weight when fitting the object’s
luminosity function. In many cases, the contrast between the luminosity function with and
without the matched filtering switched on is profound, with the RGB tip becoming clearly
visible to the eye where before it was lost in a mass of masquerading background stars. In
addition to the matched filtering, a prior is also imposed on the expected object distance in
the form of a halo density prior. A cross-section through the (expected) M31 halo density
profile along the line of sight to the object is used to weight the probability of finding the
object at any distance along its distance probability distribution.

The reason for the rather lengthy time interval between the publication of the two papers
was not due to any major issues with the method in this new paper, but rather the amount
of feedback I received from those interested in the satellite distances. It became clear very
early on that a lot of people had a vested interest in having access to accurate distances
accompanied by accurate uncertainty distributions in those distances. It was also clear that
many held clear-cut views as to how the distances should be obtained and presented. As a

result I had to incorporate a particularly large amount of changes into the method and in turn

'Due to the advantages of using a single data set for all measurements, only those satellites contained within
the PAndAS survey were actually included in the paper. An inner cutoff ellipse around the M31 disk was also

necessary due to its obscuring effects (see Fig. 10 (c)).
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the draft of the paper which inevitably meant a large number of complete re-runs on all of
the data and analysis it contained. After making the necessary changes to the method and
re-writting various parts of the paper, it was finally ready for submission to Astrophysical
Journal. All of this said, there is no doubt that the method is more robust as a result of this

lengthy process.

One of the most important changes that arose from this scrutiny concerned the way the
density profiles of the target objects were generated. Originally, the density profiles were be-
ing produced simply be drawing a series of evenly spaced concentric circles (or bands) about
the object center and determining the density of stars in each band. The resulting binned
profile was then fit in log space by a straight line (i.e. approximating the profiles as expo-
nential). This of course assumes spherical symmetry which is not always a fair assumption,
with some of M31’s satellites being strongly elliptical. It was therefore decided to take this
ellipticity fully into account which required a substantial re-write of the code for the density
matched filter. These changes also warranted a second look at the luminosity function of
each object and extra care was taken to insure that the CMD colour-cuts and the inner and
outer cutoff radii for each object combined to produce luminosity functions with the great-
est tip contrast possible. Other shortcomings in the algorithm code (see ‘MF_TRGB.f95’ in
Appendix C) were also subsequently identified as the need arose for faster processing times
and so provisions were made for feeding in the necessary object parameters in the command
line and other portions of the code were altered to run more efficiently. Improvements to the
PAndAS photometry calibration at the beginning of 2012 also required another re-run on the

M31 satellites which further improved the quality of the distance measurements.

In many respects, the real climax of Paper Il is the application of the distances to produce
a new 3D view of the M31 system, as is presented in Fig. 10. This represents the true be-
ginning of our study of the three dimensional structure of the satellite system, at the heart of
which is the trigonometry necessary to convert the earth distances into an M3 1-centric coor-
dinate system. Fig. 4.1 was created to aid in the determination of the necessary conversions.
The coordinate system used here is that which arises most naturally from an Earth based
perspective, with z pointing along the line of site to the center of M31, and x and y point-

ing along lines of constant Declination and Right Ascension respectively. A more typical
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orientation of the coordinate system is later adapted in Paper III by implimenting rotations
about the x and z axes so that z points toward the M31 Galactic north pole, with the Earth at
a longitude of 0°.

Now, with M31 and its satellites represented by a series of points in three dimensions,
we are in a position to begin an analysis of the distribution. This analysis is begun in Paper II
with a study of the satellite density profile within the M31 halo. Of particular note, this study
takes into full account the uneven coverage of the PAndAS survey, whereby certain radii from
the center of M31 receive better coverage than others. The study also gives full account to
the distance uncertainty distributions for each satellite by sampling possible positions from
each distribution over many iterations. A more thorough study of the satellite distribution
then follows in Paper III. Note that all of the principal code used throughout the analysis in
Paper II can be found in Appendix C, along with a brief summary of what each program

does.
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Ficure 4.1: Conversion of Earth-to-object distances into an M31-centric cartesian coordinate sys-
tem. This figure was created to help visualize the geometry of Earth-M31-object alignments. The top
part of the diagram shows the projection of the target object (satellite) on to the M31 tangent plane
and the x,y,z of the coordinate system used. Positive x points East (toward increasing &), positive y
points North (toward increasing 1) and positive z points along the line of sight (to M31) away from
Earth. The three triangles in the lower half of the figure show how each coordinate can be determined
from the Earth-to-M31 (a) and Earth-to-object (b) distances.



THE ASTROPHYSICAL JOURNAL, 758:11 (19pp), 2012 October 10
© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/758/1/11

A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. II.
DISTANCES TO THE SATELLITES OF M31

A.R.ConN'?3 R. A.IBaTA?, G. F. LEwis*, Q. A. PARKER" >, D. B. ZUCKER'%>®, N. F. MARTIN®, A. W. MCCONNACHIE®,

M. J. IRwIN’, N. TANVIR®, M. A. FARDAL’, A. M. N. FErGUsON'?, S. C. CHAPMAN, AND D. VALLS-GABAUD'!
! Department of Physics & Astronomy, Macquarie University, NSW 2109, Australia
2 Research Centre in Astronomy, Astrophysics, and Astrophotonics (MQAASTRO), Macquarie University, NSW 2109, Australia
3 Observatoire Astronomique, Universite de Strasbourg, CNRS, F-67000 Strasbourg, France
4 Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, Sydney, NSW 2006, Australia
5 Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 2121, Australia
6 NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia VOE 2E7, Canada
7 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 O0HA, UK
8 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
9 University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 N. Pleasant Street, Amherst, MA 01003-9305, USA
10 nstitute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
1 Observatoire de Paris, LERMA, 61 Avenue de I’Observatoire, F-75014 Paris, France
Received 2012 March 1; accepted 2012 July 18; published 2012 September 20

ABSTRACT

In “A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I),” a new technique was introduced
for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful
complement to the technique with the potential to further reduce the uncertainty in our distance measurements
by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars
are weighted according to their probability of being true object members. We then re-test our modified algorithm
using random-realization artificial data to verify the validity of the generated posterior probability distributions
(PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional
view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite
distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single
publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is
presented, encompassing the dwarf spheroidals Andromedas I-III, V, IX-XXVII, and XXX along with NGC 147,
NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV-XXVII and Andromeda XXX have
never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude
posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these
distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as
well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned
prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented
size and photometric depth of the Pan-Andromeda Archaeological Survey. Finally, a preliminary investigation into
the satellite density distribution within the halo is made using the obtained distance distributions. For simplicity,
this investigation assumes a single power law for the density as a function of radius, with the slope of this power
law examined for several subsets of the entire satellite sample.

Key words: galaxies: general — galaxies: stellar content — Local Group

Online-only material: color figures, machine-readable table

1. INTRODUCTION

The tip of the red giant branch (TRGB) is a well-established
standard candle for ascertaining distances to extended, metal-
poor structures containing a sufficient red giant population.
Its near constant luminosity across applicable stellar mass and
metallicity ranges (see Iben & Renzini 1983) arises due to the
prevailing core conditions of these medium-mass stars as core
helium fusion ensues. Their cores lack the necessary pressure
to ignite immediate helium fusion on the depletion of their
hydrogen fuel and so they continue to fuse hydrogen in a shell
around an inert, helium ash core. This core is supported by
electron degeneracy and grows in mass as more helium ash
is deposited by the surrounding layer of hydrogen fusion. On
reaching a critical mass, core helium fusion ignites, and the
star undergoes the helium flash before fading from its position
at the TRGB, to begin life as a horizontal branch star. Due to
the very similar core properties of the stars at this point, their
energy output is almost independent of their total mass, resulting

in a distinct edge to the RGB in the color—magnitude diagram
(CMD) of any significant red giant population.

With the TRGB standard candle applicable wherever there
is an RGB population, it is an obvious choice for obtaining
distances to the more sparsely populated objects in the Local
Group and other nearby groups where Cepheid variables seldom
reside. Even when Cepheids are available, the TRGB often
remains a more desirable alternative, requiring only one epoch
of observation, and facilitating multiple distance measurements
across an extended structure. Good agreement between TRGB-
obtained distances and those obtained using Cepheid variables
as well as the much fainter RR Lyrae variables have been
confirmed by Salaris & Cassisi (1997), with discrepancies
of no more than ~5% (see also Tammann et al. 2008 for
an extensive list of distance comparisons utilizing the three
standard candles). Of the satellites of M31, many are very faint
and poorly populated and thus have poorly constrained distances
which propagate on into related measurements concerning the
structure of the halo system. Hence, a technique for refining
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the distances that can be applied universally to all halo objects,
while accurately conveying the associated distance errors has
been a long sought goal.

In “A Bayesian Approach to Locating the Red Giant Branch
Tip Magnitude (Part I)”—Conn et al. (2011), hereafter Paper I,
we reviewed the challenges of identifying the TRGB given
the contamination to the pure RGB luminosity function (LF)
typically encountered. We also outlined some of the methods
that have been devised to meet these challenges since the
earliest approach, put forward by Lee et al. (1993). We then
introduced our own unique Bayesian approach, incorporating
Markov Chain Monte Carlo (MCMC) fitting of the LFs. This
approach was essentially the base algorithm, designed to easily
incorporate priors to suit the task at hand. Here we present
the results of an adaptation of that algorithm, intended for use
on small, compact objects—specifically the dwarf spheroidal
companions of M31. Once again, we utilize the data of the Pan-
Andromeda Archaeological Survey (PAndAS; McConnachie
et al. 2009), a two-color (i’ = 770 nm, g’ = 487 nm) panoramic
survey of the entire region around M31 and M33 undertaken
using the Canada—France—Hawaii Telescope (CFHT). The tip
is measured in the i band where dependence on metallicity is
minimal. Following a recap of the base method in Section 2, we
introduce the aforementioned new adaptations to the method in
Section 3.1 and in Section 3.2 we describe the results of tests
intended to characterize the modified algorithms performance as
well as check the accuracy of its outputs. In addition, Section 3.3
outlines the application of a further prior on the satellite
distances. Section 4.1 presents the results of applying the
modified algorithm to the companions of M31, while Section 4.2
details the method by which the object-to-M31 distances are
obtained and Section 4.3 uses the obtained distances to analyze
the density profile of these objects within the halo. Conclusions
follow in Section 5.

2. A RECAP OF THE BASE METHOD

In Paper I, we introduced our “base” method, whereby the LF
of a target field was modeled by a single, truncated power law
(the RGB of the object of interest) added to a representative
background polynomial. The location of the truncation (the
TRGB) and the slope of the power law were set as free
parameters of the model, with the best fit derived using an
MCMC algorithm. The functional form of the background
component was modeled by directly fitting a polynomial to
the LF of an appropriate background field, and then scaling the
polynomial to reflect the expected number of background stars
in the target field. The resulting model was then convolved with
a Gaussian of width increasing in proportion to the photometric
error as a function of magnitude. The posterior distribution in
the tip magnitude returned by the MCMC, which thus already
incorporates the photometric error, is then sampled together
with Gaussian distributions representing the distribution in
the absolute magnitude of the tip (MR°® = —3.44 + 0.05)
and the distribution in the extinction (A, £ 0.1A,) to give a
final posterior distribution in the distance. The mode of this
distribution is then adopted as the distance to the object, with
the =10 error calculated from the portion of the distribution
lying on the far and near side of the mode, respectively.

A more detailed discussion of the assumptions and ratio-
nale behind the base method is provided in paper I, but the
reader should again be made aware of the most fundamen-
tal assumptions it entails. At the heart of the calculations of
course is the choice of the absolute magnitude of the tip and its
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associated uncertainty. We adopt the values of this parameter
stated above based on the value derived for the SDSS 7 band in
Bellazzini (2008), noting the near-identical bandpass charac-
teristics of the MegaCam i-band filter as detailed by Gwyn
(2010). We adopt somewhat smaller uncertainties than those
derived by Bellazzini (2008) following the same argument as
McConnachie et al. (2004) that the quoted uncertainty in the ab-
solute magnitude of the tip is conservative and it is a systematic
error effecting all distance measurements in an identical way.
As almost all applications of the distances to the satellites are
concerned with their relative positions to one another and M31,
this component of the error is of minimal importance. Never-
theless, it often forms the major component of the quoted errors
in our distances.

Mention should also be made as to the effects of metallic-
ity and internal reddening within the objects under study as
well as the zero-point uncertainty in the PAndAS photome-
try. While there is a metallicity dependence of MR (though
minimal when compared with other bands), it is only really
an issue for more metal-rich targets (e.g., [Fe/H] > —1; see
Bellazzini 2008, Figure 6) and thus will primarily affect mea-
surements to the large, diverse systems such as M31 itself and
M33. But the TRGB for more metal-rich populations is fainter
than that for their metal-poor counterparts and thus it is this
metal-poor population component which dominates the mea-
surement. A similar situation is encountered with the internal
reddening present in the objects under study, where the vast
majority of objects, chiefly the dwarf spheroidal galaxies, are
almost completely devoid of such effects. Those objects most
strongly affected are the large, well-populated systems which
will provide ample signal from the least affected stars on the
near side of the system, for a good distance determination. The
uncertainty in the zero point of the photometry is consistent
throughout the survey at approximately 0.02 mag. (R. A. Ibata
et al. 2012, in preparation).

Lastly, a brief discussion of the distance posterior distribu-
tions themselves is warranted. As noted above, they are pro-
duced by the sampling of the distribution of possible tip posi-
tions (as generated by the MCMC and with photometric errors
incorporated) along with sampling of the Gaussian distributions
representing the uncertainties in the foreground extinction (A;)
and in the absolute magnitude of the tip (M R%B). Specifically,
500,000 possible distances are drawn to form the distance PPD,
where for each draw «, the distance modulus w is

pi) = mRPBc) — As () — MRPB ), (1)

where each of miTRGB(K), A, (k), and MiTRGB(K) is the values
drawn from the uncertainty distributions in the tip position,
foreground extinction, and absolute magnitude of the tip, re-
spectively. The foreground extinction and its uncertainty vary
from object to object but the error in the absolute magnitude of
the tip is a systematic error as already discussed. In using this
method, there are two situations that can be encountered. The
first is that the object is very well populated and the tip position
is thus well constrained with a narrow PPD. In such instances,
the uncertainty in M;"R® far outweighs any other contributions
to the error budget and is almost solely responsible for the width
of the distance PPD. In the second situation, the object is poorly
populated and the tip position PPD is very wide and typically
asymmetric. If the LF population is not extremely low, the un-
certainty in MR will contribute noticeably to the distance
PPD, otherwise the distance PPD will essentially depend solely
on the uncertainty in the determined tip positions. Hence while
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some of the smaller contributions to the distance uncertainties
are omitted from the calculations, their overall effects will be
washed out by the contributions from these two principal sources
of error.

3. ADDITION OF A MATCHED FILTER
3.1. Matched Filtering using Radial Density Profiles

With the introduction of our method in Paper I, it was stressed
that one of its greatest attributes was its adaptability to the prior
knowledge available for the object of interest. When applying
the method to compact satellites, there is one very conspicuous
attribute that can be incorporated into the prior information
constraining the model fit—namely, the object’s density as a
function of radius. The simplest way to achieve this is with
the addition to the algorithm of a matched-filter weighting
scheme, wherein the weighting is matched to the specific data
by accounting for the data within the filter itself.

The successes of Rockosi et al. (2002) using a matched filter
in color—-magnitude space to identify member stars of globular
cluster Palomar 5 amidst the stellar background provide the
inspiration for our technique. They make use of the characteristic
RGB of the globular cluster to weight stars as to their likelihood
of being cluster members. To achieve such a goal, a matched
filter can be created by binning the CMD of the field in which
the cluster lies into a two-dimensional matrix and then dividing
that matrix by a similarly created background matrix. Stars
found in the densest regions of the resulting matched filter
CMD are then assigned the highest weight, being the most
likely cluster members. In this way, they can greatly improve the
signal-to-noise ratio (S/N) with respect to that of their original,
unmodified data and are able to trace tidal streams from the
globular cluster well into the surrounding background. Hence
we have applied a similar approach to weight field stars fed to the
MCMC in terms of their probability of being object members.
In our case, however, the stars proximity to the object’s center
provides the basis for the weighting scheme, with the innermost
stars being the most likely to be actual object members as
opposed to background stars, and so a one-dimensional matched
filter is sufficient.

The first step in implementing our weighting scheme is to
ascertain a model of stellar density as a function of radius
specific to the object of interest. For this purpose, we employ the
best fits presented in N. F. Martin et al. (2012a, in preparation)
for the dwarf spheroidal satellites, wherein the optimal ellipticity
€, position angle (P.A.), half-light radii (7;,), and object centers
are given for exponential density profiles fitted to each satellite.
For the two dwarf ellipticals, in the case of NGC 147 we assume
€ = 0.44 and P.A. = 28° as specified by Geha et al. (2010) and
we derive the r;, manually as 10', which produces the best-fit
profile to the data when coupled with the other two parameters.
For NGC 185, we adopt € = 0.26 and P.A. = 41° based on the
findings of Hodge (1963) and once again derive the r;, manually,
this time as 6. For both NGC 147 and 185, we employ the object
centers derived from the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006). With the ellipticity, P.A., half-light radius
and object center know, we can proceed to produce a weighting
scheme proportional to the density profile p of the object, where
p is of the form

plre) = e, )

where R = (r,/1.678) is the scale radius and 7, is the elliptical
radius at which the star lies, as now defined. With the P.A. and
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object center of the object known, a rotation of coordinates is
used to define each star’s position (x’, y) with respect to the
center of the ellipse. The projected elliptical radius r. of the
ellipse on which the star lies is then

, 2 1/2
X
re= ((y’>2+<1_€) ) , 3)

where the y’ axis is assumed as the major axis of the ellipse.

While Equation (2) gives us the functional form of our
weighting scheme, it is further necessary to define the absolute
values of the weights given to each star, so as to scale them
appropriately with respect to the background density py,. This
is achieved by insuring that the area under the function p(r.)
between any imposed inner and outer radius limits is set equal
to the number of signal stars in the observed region. Hence, our
weighting scheme is ultimately defined by

W(r) = Se® 4)
with

(ptotal - pbg) x A
—rinner Touter

S =
27TR(1 - 6)[(6 R )(R + rinner) - (8‘ R

)R + Fouer)]
(5)

where po 18 the density of stars in the observed region before
subtraction of the background density and A is the area of the
observed region which is either an ellipse in the (usual) case that
Fimer = 0 or an elliptical annulus otherwise. Fipner and royeer are
the inner and outer cutoffs respectively of the range of r. values
observed.

In Figure 1, the result of our fitting procedure as applied to the
sparsely populated dwarf spheroidal Andromeda X is presented.
In this case, stars out to . = 0715 are fitted, with no inner cutoff
radius imposed. While most of the satellites are too poorly
populated for blending to be an issue, in the case of several,
the stellar density counts at the innermost radii drop off in spite
of the predicted counts from the fitted density profile. This is a
good indicator of blending or overcrowding in those radii which
can hinder the accuracy of the photometry for the affected stars
and so in such cases, these inner radii are omitted. This was
the case with Andromeda III (rjper = 0°0175), Andromeda V
(Fimner = 02011), and Andromeda X VI (ripner = 0°005). For the
dwarf ellipticals NGC 147 and NGC 185, it was found beneficial
to avoid the inner regions altogether, with the presence of a wider
range of metallicities in these regions degrading the contrast of
the RGB tip. Similarly, an outer cutoff radius was chosen for
these objects inside of 3 r;, to help sharpen the tip discontinuity,
so that for NGC 147, rimer = 0928 and royer = 0933 and for
NGC 185, rimer = 0218 and rouer = 0°26. M31 and M33 are
treated similarly to the dwarf ellipticals but with still thinner
annuli so that any weighting is unnecessary. They are discussed
in more detail in Section 4.1.

With regard to the actual likelihood calculations used at each
iteration of the MCMC, these are undertaken not by simple
multiplication of the likelihood for each star by the respective
weight, but by physically adjusting the relative proportions of
the RGB and background components of the LF. Up until now,
we have assumed a generic LF and calculated the likelihood
contributions from each star from this single LF. But in reality,
the outer regions of the field are more accurately represented
by a shallow-signal/high-background LF while the innermost
stars obey an LF which has almost no background component.



THE ASTROPHYSICAL JOURNAL, 758:11 (19pp), 2012 October 10

CONN ET AL.

1.5%10°
T

Object stars per sq. degree

f £ > e ) |
(I e e e ==

0.1 0.12 0.14 0.16

Elliptical Radius (degrees)

Figure 1. Radial density profile (proportional to object membership probability) for Andromeda X. The error bars represent the Poisson error in the density for each
bin, with each bin representing an elliptical annulus at the stated radius. Hence the innermost annuli have the smallest areas and thus the largest error bars. Note that
this binned density distribution is for comparison only and has no bearing on the fit. The background level is marked “BG.”

(A color version of this figure is available in the online journal.)

Hence using the radial density profile obtained above, we can
essentially build an individual LF for each star, tailored to
suit its position within the object. In practice, this is achieved
with almost no extra computational effort, as the background
and signal can be normalized separately and only the signal
component is changed by the MCMC at each iteration so that
the background component need only be generated once. The
two components are normalized to contain an area of unity
and then the bin of each corresponding to the star’s magnitude
is scaled according to the ratios of the star’s weight and the
background level when its contribution to the model likelihood
is calculated by the MCMC.

The result of the incorporation of this extra prior information
is a marked improvement in the performance of the algorithm
for the more sparsely populated targets. In such objects, the
RGB component is typically overwhelmed by non-system stars,
even with the most carefully chosen field size. This can greatly
diminish the prospects of obtaining a well-constrained tip
measurement. This is apparent from Figures 2 and 3 which
show the LF and corresponding posterior distributions before
and after the application of the matched filter to the dwarf
spheroidal Andromeda X. With the matched filtering applied,
the great majority of non-system stars are severely suppressed,
revealing clearly the RGB component, which in turn provides
much stronger constraints on the location of the tip, as evidenced
by Figure 3. Herein lies an example of the power of the Bayesian
approach, where a single prior can cast the available data in a
completely different light.

3.2. A Test for the Refined Algorithm

In Section 2.3 of Paper I, the results of a series of tests were
presented that characterized the performance of our original
algorithm given a range of possible background density levels

and LF populations. Here we present the results of similar tests
applied to our new, matched-filter-equipped algorithm, but with
some important differences. Most fundamentally, the way our
artificial test data are generated is quite different. As we are now
concerned with the position of each star in the field, a distance
from field center must be generated for each star. To do this,
we have randomly assigned a radial distance to each star, but
weighted by a circularly symmetric (¢ = 0) exponential density
profile. Further to this, the magnitudes of our stars are now
generated directly from our convolved LF, so that photometric
error as a function of stellar magnitude is incorporated.

The other important change from the previous tests concerns
the way in which the artificial LFs are populated. Whereas in
the former tests all of the sampled stars were drawn from the
model LF within the one magnitude range 20 < mgy, < 21,
in the current tests the stars are drawn from within the much
larger magnitude range actually utilized for our satellite mea-
surements, namely 19.5 < mg, < 23.5. Hence a 100 star
LF in these tests for example corresponds to a much smaller
sample of stars than in the tests described in Section 2.3 of
Paper 1. Aside from these critical differences, the current tests
are undertaken and presented as per the previous publication,
with measurements of the average sigma and tip offset given
for each combination of background level (f) versus number
of stars (ndata) where f = 0.1,0.2,...,0.9 and ndata =
10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000.
The results are presented in Figures 4 and 5, respectively.

Examination of the figures reveals the expected trend of
increased lo error and tip offset with increasing background
height and decreasing LF population levels. Once again, there is
very good agreement between the derived errors and the actual
offsets obtained. Most importantly, it is clear by comparing
these results with those of Paper I that the matched filtering has
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Figure 2. Best-fit model to the luminosity function of Andromeda X, obtained with the addition of matched filtering. The top figure shows the best fit overlaid on
the unmodified LF (i.e., histogram created without the weighting afforded by the matched filter). The bottom figure shows the same best-fit model after applying the
weighting. A field radius of 0215 was used to generate the LF histograms, wherein each star contributes between 0 and 1 “counts,” depending on its proximity to the

field center and the density profile of the object.
(A color version of this figure is available in the online journal.)

greatly diminished the effects of the background contamination,
as exemplified by the much gentler increase in 1o errors and
offsets with increasing background star proportion.

3.3. An Additional Prior

In addition to our density matched filter, a further prior may
be devised so as to constrain our distance posterior probability

distributions (PPDs) in accordance with our knowledge of
the M31 halo dwarf density profile. The expected falloff in
density of subhalos within an M31-sized galaxy halo is not
well constrained. The largest particle simulation of an M31-
sized dark matter halo to date, the Aquarius Project (Springel
et al. 2008), favored the density of subhalos to fall off following
an Einasto profile with r_, = 200 kpc and o« = 0.678,
and furthermore identified no significant dependence of the
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Figure 3. Posterior distributions obtained for Andromeda X before (top) and after (bottom) the application of the matched filter. For the “before” case, a circular field
of radius 0205 (2.143 x rj) has been chosen, specifically to provide the most possible signal with the least possible background contamination. For the “after” case,

the same LF as presented in Figure 2 is used.
(A color version of this figure is available in the online journal.)

relationship on subhalo mass. For the specific case of the
satellites within the M31 halo, Richardson et al. (2011) found a
relation of p o r~* where « = 1 a better fit to the data, drawing
largely from the PAndAS survey, although this does not take into
account the slightly irregular distribution of the survey area. We
adopt this more gentle density falloff with radius giving us a

more subtle prior on the satellite density distribution and note
that o« may be changed significantly without great effect on our
measured distances.

So in effect, we assume a spherical halo centered on M31,
such that p(sat) o »—! and integrate along a path through the
halo at an angle corresponding to the angular displacement on
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Figure 4. Gray-scale map of the 1o error in tip magnitude obtained for different combinations of background height and number of sources. The actual value recorded
for the error (in kpc) is overlaid on each pixel in red. Each value is the average of twenty 50,000 iteration runs for the given background height/LF population

combination.

(A color version of this figure is available in the online journal.)
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sources. The actual value recorded (in kpc) is overlaid on each pixel in red. Each value is the average of twenty 50,000 iteration runs for the given background

height/LF population combination.

(A color version of this figure is available in the online journal.)
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Figure 6. Distance prior applied to Andromeda XIII (solid line; @ = 1). The distribution gives the likelihood of the satellite existing at a particular distance, given an
angular separation on the sky of 875 from M31 (the halo center) and assuming a distance of 779 kpc for M31. The distribution peaks where the line of sight traverses
the innermost region of the halo, and flattens out at large distances due to the increasing volume of the halo subtended by the unit of solid angle observed. The same
prior with @ = 2 is shown as a dashed line for reference. While this value for alpha is in closer agreement with the results of Section 4.3, we deliberately adopt the

less restrictive o = 1 prior, so as not to suppress the probability of satellites in the outer halo too greatly.

the sky of the satellite from M31. This yields an equation of the
form
d2

. (6
((d? +779% — 2d x 779 x cos(9))*)!/2 ©

P(d)

where @« = 1,779 kpc is the distance to M31, and P(d)
is the relative probability of the satellite lying at distance d
(in kpc) given an angular separation of 6 degrees from M31.
Note that this produces a peak where the line of sight most
closely approaches M31, and that P(d >> 779) is approximately
proportional to d. The equation is normalized between limits
appropriate to the size of the halo.

We thus generate a separate prior for the probability as a
function of distance for each satellite, tailored to its specific
position with respect to M31. The effect of the prior is to sup-
press unlikely peaks in the multi-peaked posterior distributions
obtained for certain satellites, while leaving the peak positions
unaffected. As such, the prior has very little effect on single-
peaked distributions, whatever the angular position and dis-
tance of the satellite it represents. The distance prior applied
to the Andromeda XIII distance PPD is shown in Figure 6 for

illustration.

4. A NEW PERSPECTIVE ON THE COMPANIONS OF M31
4.1. Galaxy Distances

The PAndAS survey provides us with a unique opportunity
to apply a single method to a homogeneous data sample
encompassing the entire M31 halo out to 150 kpc. The data
encompass many dwarf spheroidals, along with the dwarf

ellipticals NGC 147 and NGC 185, and of course the M31
disk itself with additional fields bridging the gap out to the
companion spiral galaxy M33, some 15° distant. Of these
objects, the vast majority have metallicities [Fe/H] < —1, so
that any variation in the absolute magnitude of the tip is slight.
Indeed, Bellazzini (2008) suggests that for such metallicities, the
variation in the region of the spectrum admitted by the CFHT
i’ filter is perhaps less than in Cousins’ I. Perhaps of greatest
concern are the cases of M31 and M33, which will contain
substructure at a variety of metallicities. In this case, however,
the more metal-rich portions will exhibit a fainter TRGB than
those in the regime [Fe/H] < —1, such that the brightest RGB
stars will fall within this regime.

In this section we present distance measurements to these
many halo objects, culminating in Figure 10 below, a three-
dimensional map of the satellite distribution, and Table 2, which
presents the satellite data pertinent to our distance measure-
ments. Figures 11 and 12 below present the distance posterior
distributions obtained for every object in this study. It has been
common practice in the majority of TRGB measurements to
quote simply the most likely distance and estimated 1o uncer-
tainties, but this throws away much of the information, except
in the rare case that the distance distribution is actually a perfect
Gaussian. On account of this, as well as providing the actual
distance PPDs themselves for visual reference, we also provide
the same information in condensed tabular form, where the ob-
ject distance is given at 1% increments of the PPD, both for
the prior-inclusive cases (as in Figures 11 and 12) and for the
case in which no prior is invoked on the halo density. Note that
for M31, no halo density prior is applied and so this column
is set to zero. A sample of this information, as provided for
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Table 1
Tabulated Distance Posterior Distribution

Percentage Distance Distance

(kpc, no density prior) (kpc)
1 684 687
2 688 692
3 691 695
4 693 697
5 695 699
6 697 701
7 698 702
8 699 703
9 700 704
10 701 705
100 820 820

Notes. Distance posterior probability distributions for Andromeda I
given at 1% intervals for the case of no halo density prior (Column
2) and with the angle-specific prior outlined in Section 3.3 applied
(Column 3).

(This table is available in its entirety in a machine-readable form in
the online journal. A portion is shown here for guidance regarding
its form and content.)

Andromeda I, is presented in Table 1. The reader may then sam-
ple from these distributions directly rather than use the single
quoted best-fit value, thus taking into account the true uncer-
tainties in the measurements.

Due to the large number of objects studied, it is not practi-
cal to discuss each in detail within this paper. For this reason,
Andromeda I will be discussed in further detail below as a rep-
resentative example, followed by two of the more problematic
cases for completeness. First, however, we describe the excep-
tional cases of M31 itself and M33.

M31 and M33 due to their large extent on the sky and the
variety of substructure in their disks require a slightly different
approach to that used for the other objects in this study. As
was the case for NGC 147 and NGC 185, it was necessary to
define a thin elliptical annulus so as to limit as much as possible
the amount of substructure from other radii contaminating the
LF. For both M31 and M33 such a thin annulus was used
that any weighting with respect to the elliptical radius of the
stars was trivial and so no weighting was used. For M31, an
ellipticity of 0.68 was adopted, with P.A, = 37°. The inner
and outer elliptical cutoff radii were set to 2245 and 2°5,
respectively. To check for any inconsistencies in the TRGB
location across the whole annulus, it was divided up into NE,
NW, SE, and SW quarters and then the distance measured from
each quarter, giving distances of 782*1%, 782*18  775*2%  and
781?199 kpc, respectively. It is tempting to associate the slightly
lower distance to the SE quadrant with the effects on the LF of
the Giant Stellar Stream, though the distance is still within close
agreement with the other three quadrants, such that all four are
perfectly consistent. Hence, the distance was remeasured using
the whole annulus to give 779i1198 kpc. This is in good agreement
both with the findings of McConnachie et al. (2005) (785’:2255)
utilizing the TRGB and the more recent determination by Riess
et al. (2012) using Cepheid variables (765?288 .

For M33, we employ an ellipticity of 0.4 as used by
McConnachie et al. (2005), but find a position angle of P.A. =
17° in closest agreement with the data. Inner and outer ellip-
tical radii of ripper = 075 and rouer = 0°9 were adopted to

CONN ET AL.

give a very sharp discontinuity at the location of the tip. After
applying an appropriate color-cut, the qualifying stars were fed

into our algorithm to give a distance of 820J:2109 kpc. This dis-

tance is in good agreement with that of 809’:22‘2 kpc obtained by

McConnachie et al. (2005) and yields an M33-to-M31 distance
of 214Jj65 kpc. It is interesting to note that a variety of quite dif-
ferent M33 distances exist in the literature, with derived distance
moduli ranging from 24.32 (730 kpc, water masers; Brunthaler
et al. 2005) through 24.92 (964 kpc, detached eclipsing binaries;
Bonanos et al. 2006). Indeed, the variety of standard candles
utilized would suggest that M33 provides an ideal environment
for calibrating the relative offsets between them. McConnachie
(2005) suggests that the dispersion of M33 distances in the
literature is tied to an inadequate understanding of the extinc-
tion in the region of M33. Most measurements, including those
presented here, use the Galactic extinction values derived by
Schlegel et al. (1998), although these do not account for extinc-
tion within M33 itself and are calculated via an interpolation
of the extinction values for the surrounding region. Neverthe-
less, the elliptical annulus employed in our approach will act to
smooth out the field-to-field variation that might exist between
smaller regional fields.

4.1.1. Andromeda I: Example of an Ideal Luminosity Function

It would seem prudent to illustrate the performance of our
new method by presenting the results for a range of the dwarf
spheroidals from the most populated to the least populated.
Hence Andromeda I, the first discovered and one of the two most
highly populated of these objects, is the obvious place to start.
The field employed for our Andromeda I distance measurement
incorporated stars at elliptical radii between 0° < r. < 023 and,
after removal of stars outside of the range 19.5 < iy < 23.5 and
beyond our chosen color-cut, yielded a star count of 4375. The
CMD for this field is presented in Figure 7(a). This figure color-
codes the stars in the CMD as per the color distribution in the
inset field and plots them so that those innermost within the field
(and hence those accorded the highest weight) are represented
by the largest dots. In the case of Andromeda I, the RGB is so
dominant over the background that our density matched filter is
hardly necessary and hence does little to improve the already
stark contrast. It is not surprising therefore that the distance and
uncertainty obtained are almost identical to those obtained by
the base method as presented in Paper I. Andromeda I is thus

confirmed at a distance of 727’:1187, which allows us to derive a

similarly accurate separation distance from M31 of 6822 kpc.

4.1.2. Andromeda XV: Example of a Multi-peaked Distance PPD

As an example of a dwarf spheroidal of intermediate size,
we present the comparatively compact Andromeda XV. Far
from being the tidiest example of the many intermediate-
sized objects covered in this study, Andromeda XV provides
something of a challenge. Examination of Figure 8 reveals a
gradual rise in star counts when scanning from the top of the
CMD color-cut faintward toward the Andromeda XV RGB and
a correspondingly broad range in the possible tip locations in
the tip magnitude PPD. Indeed, two peaks are prominent in
the distance PPD of Figure 8(c), with the distribution mode at
626 kpc (our adopted distance) and the 1o credibility interval
spanning from 591 kpc to 705 kpc as a consequence of the
second peak. Ibata et al. (2007) determine this object to lie
at a distance of 630’:6600 kpc, which would correspond to a

tip magnitude of approximately mROB = 20.56 assuming

i
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Figure 7. Andromeda I: (a) color-coded CMD representing the weight given to each star in the field. Only stars within the red selection box with magnitudes
19.5 <ip < 23.5 were fitted and hence color-coded. The second, fainter RGB lying toward the redder end of the CMD is that of the giant stellar stream which passes
behind our Andromeda I field. The inset at top right shows the field with the same color-coding and acts as a key. The field is divided into 20 radii bins following
a linear decrease in density from the core (blue) to the field edge (purple). Stars marked as a purple “x” lie outside of the outer elliptical cutoff radius royer. Stars
marked as a black “ +” are artificial stars used in the estimation of the background density and are ignored by the MCMC; (b): posterior probability distribution for the
TRGB magnitude. The distribution is color-coded, with red indicating tip magnitudes within 68.2% (Gaussian 1-sigma) on either side of the distribution mode, green
those within 90%, and blue those within 99%; (c) weighted LF of satellite with superimposed best-fit model in red. A star at the very center of the satellite contributes
1 count to the luminosity function while those further out are assigned some fraction of 1 count in proportion with the satellite’s density profile.

(A color version of this figure is available in the online journal.)

MiTRGB = —3.44. This is in excellent agreement with the thtat.even the highest Weighted of these .three stars will have
mIRGB — 2057+ recovered by this study. Letarte et al. minimal effect on the likelihood calculation. This would then

suggest that each of these three stars has magnitude consistent

H H +70 :
(2009) however derive a distance of 77077, kpc which places with belonging to the Andromeda XV RGB.

it toward the far edge of our 99% credibility interval on the
distance (see Figure 8(c)). This measurement was derived after
three stars that had been found to lie close to the Andromeda
XV RGB tip in the former investigation were identified as

4.1.3. Andromeda X1I1: Example of a very Poorly
Populated Luminosity Function

Galactic foreground stars, following measurements of their Andromeda XIII is among the most sparsely populated
radial velocities obtained with the Deep Imaging Multi-Object objects targeted by the current study and it is important to realize
Spectrograph on Keck II. Of these stars, however, none lies that itis impossible to obtain distances to such objects with small
within 2" from our object center by which point the maximum uncertainties using the TRGB standard candle, unless of course
possible weighting has already dropped to below 10%, meaning one of the few member stars can be positively identified as

10
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Figure 8. Andromeda XV: (a) same as Figure 7(a) but for Andromeda XV; (b) same as Figure 7(b) but for Andromeda XV; (c) sampled distance posterior probability
distribution, obtained by calculating the distance 3 million times, each time randomly drawing on the tip magnitude, absolute magnitude of the tip, and extinction
from their respective probability distributions. The distribution is color-coded, with red indicating possible distances within 68.2% (Gaussian 1 o) on either side of
the distribution mode, green those within 90%, and blue those within 99%. Note that the large uncertainty in the absolute magnitude of the RGB tip is primarily
responsible for the much smoother appearance of the distance PPD (c) compared with the tip PPD (b).

(A color version of this figure is available in the online journal.)

being right on the brink of core helium fusion. Nevertheless,
though large uncertainties are inevitable, an accurate estimation
of those uncertainties is still achievable, and this is the aspiration
of the method here presented. Distances to Andromeda XI and
XIIT have been obtained with higher accuracy using RR Lyrae
stars as a standard candle with photometry from the Hubble
Space Telescope (Yang & Sarajedini 2012). In the case of
Andromeda XI, the tip magnitude identified by our method
agrees well with the distance identified by that study, but in
the case of Andromeda XIII, a brighter star in the central
regions of the field causes some confusion. Indeed in such a
sparsely populated field it is quite difficult to apply any effective
density-based weighting scheme. Nevertheless, after sampling
the tip magnitude PPD (Figure 9(b)), together with those for
the absolute magnitude of the tip and the extinction in this

11

region of sky to obtain a sampled distance PPD, and multiplying
that distribution with the angle-specific halo density prior as is
standard for all our measurements, we are able to produce a
distance PPD (Figure 9(c)) in good agreement with the findings
of Yang & Sarajedini (2012).

4.2. Determining the Distances from M31

Once a satellite’s distance from Earth is determined, it is
straightforward to determine the distance from M31 using the
cosine rule:

r = (d*+(dy31)* — 2ddys3 cos(9))'?, (7
where r is the satellite’s distance from M31, d is the distance of
the satellite from Earth, d;;3; is the distance of M31 from Earth,
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Figure 9. Andromeda XTII: All figures as per Figure 8, but for Andromeda XIII. The distance derived by Yang & Sarajedini (2012) is plotted in (c) along with error

bars for comparison.
(A color version of this figure is available in the online journal.)

and 6 is the angle on the sky between M31 and the satellite.
For convenience, we use a small angle approximation equating
0 with its M31 tangent plane projection and note that any
displacement of r is insignificant due to the size of the 1o errors.
If the uncertainty in distance to both M31 and the satellite takes
on a Gaussian distribution, it is straightforward to determine the
error in the satellite-M31 separation by adding the individual
errors in quadrature. While it is reasonable to approximate the
M31 distance uncertainty distribution as a Gaussian, the same
cannot be said for each of the companion satellites. Hence once
again it is more appropriate to sample values from the individual
distance probability distributions. Thus, a histogram of r values
for the satellite is built up by sampling d and dj3; from their
respective distributions over many iterations. This brings to the
fore an important consideration: there is an integrable singularity
in the resulting distribution at the closest approach distance to
M31 (r. = dys31 sin(f)) as shown below.

12

The probability distribution for the satellite-to-Earth distance
P(d) is related to that of the satellite-to-M31 distance P(r) as
follows: 5d

5, P @. ®)

From Equation (7), and further noting that the satellite-to-Earth
distance corresponding to r. is d. = dy31 cos(6), we have

P(r) =

&d r
o i 9
or d—d, ©)
which allows us to derive
;
P(r)= ——5 P(d), (10)
="

thus producing the singularity at » = r.. In practice, after fac-
toring in the Gaussian distribution in dy;31, this results in a sharp
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peak at the minimum possible satellite-to-M31 distance when
dealing with the more asymmetric satellite-to-Earth distance
probability distributions. Hence when considering the distribu-
tion of satellites as a function of distance from M31, one can ei-
ther take the distances as determined directly from Equation (7)
using solely the most likely distance from the satellite-to-Earth
distance distributions or the whole distance probability distribu-
tion for a satellite can be allowed to influence the calculations,
as accomplished via sampling. The final result can be quite
different, depending on the choice.

4.3. A First Approximation of the Satellite Density
Profile within the Halo

In the completed PAndAS survey, we have for the first time
a comprehensive coverage of a galaxy halo, with a uniform
photometric depth sufficient to identify even the comparatively
faint satellite companions. In addition, in this paper we have
provided distances to every one of these objects, all obtained
via the same method. We are thus presented with an excellent
opportunity to study the density of satellites as a function of
radius within a Milky Way like halo.

As hinted at in the previous section, obtaining an accurate
picture of the satellite density profile (SDP) is not a trivial task.
The first major consideration is to devise a way of factoring
in the selection function. Comprehensive though the survey
coverage is, it is not symmetric and not infinite. Second, the
choice of model for the SDP is not arbitrary. Whether a simple,
unbroken power law is sufficient is not immediately clear.
Furthermore, does it even make any sense to treat the halo
as a radially symmetric, isotropic distribution? A glance at the
obvious asymmetry in Figure 10(a) would suggest otherwise.
Nevertheless, for a first approximation it is reasonable to
consider what the best-fitting radially symmetric, unbroken
power law to the SDP would be.

The PAndAS survey covers approximately 400 deg® of sky
and is roughly symmetric about the center of the M31 disk but
with a major protrusion in the southeast to encompass the M33
environs. For the purpose of obtaining an accurate measure of
the survey coverage of the halo as a function of radius, as well as
factoring in the actual survey borders, an inner ellipse was also
subtracted where the presence of the M31 disk has made satellite
detection more difficult. Both the outer survey borders and the
inner cutoff ellipse are plotted in Figure 10. The inner cutoff
ellipse has an eccentricity € = 4/0.84 and is inclined with the
semi-major axis angled 51°9 with respect to the x-axis (n = 0).
The dwarf galaxies M32 and M110 lie inside this ellipse as
do the somewhat dubious satellite identifications Andromeda
VIII and Andromeda IV (see Ferguson et al. 2000), hence their
omission from the data presented in Table 2. With the inner and
outer boundaries suitably delineated, the procedure then was to
determine what fraction of halo volume at a given radius f(r)
would fall within these boundaries once projected onto the M31
tangent plane. This was achieved by implementing the even—odd
rule on the projections of uniformly populated halo shells.

Having determined f(r), we can proceed to determine the
required normalization for a power law of any given «, allowing
us to use the power law directly as a probability distribution.
Setting the problem out in terms of probabilities, we require to
determine the probability of each tested M31-to-object distance
(henceforth simply “radius”) r given a power law with slope «:

k
P(rle) = -2, an

13
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where k is the normalization constant and rpin < 7 < Fmaxe
Using the assumed spherical symmetry, we then have

Fmax 2 pm
f(r) P(r|a)/ f r2sin0dodedr = 1 (12)
Tmin 0 0
so that ,
A f(r) kr¥dr = 1. (13)
Fmin
Hence, for a given radius at a given «, we have
r3_"‘ T'max -1
k(r,a) = |4 f(r) ( ) (14)
3-a Prnin

The calculation of the likelihood for a power law of a given
slope o may be simplified by noting that for any given radius,
f(r) and hence k act to scale the probability in an identical
way whatever the value of «. Thus, the dependence of k on r
is effectively marginalized over when the posterior distribution
for « is calculated, so long as any sampling of radii utilizes the
same radii at every value of «. The likelihood for a given power
law (i.e., a given «) is thus

nsat

L) =] Jori™. (15)

where nsat is the number of satellites—i.e., the 27 companions
of M31 listed in Table 2. As discussed in Section 4.2, there
are essentially two ways we can determine the likelihood of a
given «. The most straightforward is to use single values of r; as
determined directly from the mode in the posterior distribution
for each satellite using Equation (7). The second and arguably
more robust method is to use the entire radius probability
distribution (RPD) for each satellite. In the case of this second
approach, the likelihood for the power law determined for each
satellite becomes a convolution of the power law with the
satellite’s RPD, so that the likelihoods of the individual samples
are summed. The final likelihoods determined for each satellite
can then be simply multiplied as before, giving a total likelihood
as follows:

+ ki )

2—a 2—a
L(a) = (krl,l +kry T nsam, 1

2—a 2—a 2—«a
X (er2 + krl2 +--+ krnsam’z) X e

2—a 2—a 2—a
X (krl,nsat + kr2,nsat +o-t krnsam.nsal)

(16)

nsat nsam

=[1| 2w

n=i | n=j

where r; ; is the jth sampled radius of the ith satellite, and nsam
is the total number of samples.

The resulting distribution achieved by implementing the first
approach is presented in Figure 13(a) from which a value for
a of 1.92*93% is obtained. It is interesting to note that this
value is consistent with an isothermal satellite distribution with
uniform velocity dispersion. Replacing the individual best-fit
radii with 500,000 samples from the respective RPD for each
satellite as per the second approach, the result is substantially
different, as demonstrated by Figure 13(b). Here a value for «
of 1 .52’:%?2 provides the best fit to the data. This discrepancy is
presumably a consequence of the non-Gaussian RPD profiles for



THE ASTROPHYSICAL JOURNAL, 758:11 (19pp), 2012 October 10

CONN ET AL.

T T
]
« (a) Y
/ Xxvil
Pa—AES
NGC 147 @ o il
NGC185 XXV
Xo——g—
x xvire—| XX
&) } T’y z B
XV SXXIIL | M31
Q |o—
o i
XVI b
T XK
It XL
1
Xl Xl
L@ M33
XIV of
o
S
QE B
| XXII
1 n 1 1 n 1
-200 0 200 400
kpc
o
o+ y 4
St ® © y
3L P ncerar -
— o " ®  exxvi o
XXIV NGC185(®  gxxv
Xe oXVII
Xo Xxi®
gotf | : =
~ X M31
SXXIll W
le
olll
XVl g XX
o lle XX o
oL Xle B
i Xillg ¢ T
Xl
[ ®
L M33 XVe
ot
= |- -
S exx
C 1 L 1 1
100 0 —100
kpc

Figure 10. Three views of the M31 neighborhood: (a) a view of the satellites of M31 along the y—z plane. The conic section illustrates the extent of volume covered
by the PAndAS footprint as a function of distance from Earth; (b) a view of the satellites of M31 in the x—y plane, revealing their true positions on the x—y plane after
removing the effects of perspective (assuming the distances quoted in Column 4 of Table 2). Note that Andromeda XXVII lies directly behind NGC 147 in this plot
and is not labeled; (c) a three-dimensional view of the satellites of M31. The satellite positions on the PAndAS footprint are indicated (i.e., with perspective conserved)
along with the z-vector giving distance from the M31-centered tangent plane. The central ellipse indicates the approximate area of the survey where satellite detection
is hindered by the M31 disk; note that the perpendicular bars on relevant axes indicate 100 kpc intervals.

(A color version of this figure is available in the online journal.)

the more poorly populated satellites, as noted in Section 4.2. In
fact, if the 15 most Gaussian-like distributions are taken alone,
namely Andromedas I, I, III, V, X, XVI, XVII, XVIII, XX,
XXI, XXIII, XXIV, NGC 147, NGC 185, and M33, the results
are in much closer agreement, with o = 1.87+%:4S with sampling

—0.42
and o = 2.02*%%} without.

Given the obvious asymmetry in the satellite distribution
in Figure 10, it is interesting to consider the effects of iso-
lating various other satellites from the calculations. The stark
asymmetry between the number of satellites on the near side
as opposed to the far side of the M31 tangent plane for in-
stance (as had been initially reported by McConnachie & Irwin

2006) is echoed in the respective density profiles, with an o

14

of 2374942

(no sampling) recorded when only the near-side

satellites are considered, and that of 0.931%369 (no sampling)

when instead the far-side galaxies alone are included. When the
individual satellite RPDs are sampled, the corresponding values
are 1.87*443 and 0.78%45%, respectively. Despite the large un-
certainties, the results clearly do not support symmetry of any
kind about the tangent plane. It is important to note, however,
that this asymmetry may not be physical, but rather an effect
of incompleteness in the data at the fainter magnitudes of the
satellites on the far side of M31. McConnachie & Irwin (2006)
do however observe this asymmetry even when only the more
luminous satellites are considered. In time, it is hoped that the
nature of the data incompleteness will be better understood and
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Table 2
M31 Satellite Parameters: Distance and Associated Parameters of M31 and its Companions
Source Distance Modulus E(B—-V) Distance M31 Distance Literature Distance Values
(kpc) (kpc) (kpe)
M31 24.46t%2§5 0.062 779’:‘198 cee 78512255 TRGB; McConnachie et al. (2005)

784*17, RC; Stanek & Garnavich (1998)
765*% Ceph; Riess et al. (2012)

And I 24.3174%; 0.054 72778 68+2, 731*'$ TRGB; Conn et al. (2011)
735*%, TRGB; McConnachie et al. (2004)
And II 24.0075% 0.062 630*13 19520 634*15, TRGB; Conn et al. (2011)
645*1% TRGB; McConnachie et al. (2004)
And III 24.301%% 0.057 72318 862 749*%, TRGB; McConnachie et al. (2005)
And V 2435190 0.125 742%%), 11375 774*2% TRGB; McConnachie et al. (2005)
And IX 23.89743L 0.076 600*%, 182+3% 765*%, TRGB; McConnachie et al. (2005)
And X 24.1374%% 0.126 670%%, 130%€% 667 — 738 TRGB; Zucker et al. (2007)
And XI 24.4170%, 0.080 763206 102+1% 740 — 955 TRGB; Martin et al. (2006)
735%17, RR Ly; Yang & Sarajedini (2012)
And XII 24.84*4% 0.111 928+49 181+1) 82585 TRGB; (MCMC without MF)
740 — 955 TRGB; Martin et al. (2006)
And XIII 24.407%33 0.082 760*%, 11527 89059 TRGB; (MCMC without MF)

740 — 955 TRGB; Martin et al. (2006)
83972% RR Ly; Yang & Sarajedini (2012)

And XIV 24.50*%% 0.060 79342, 1614 630 — 850 TRGB; Majewski et al. (2007)
And XV 23.98+92¢ 0.046 6267 174+%, 630*% TRGB; Ibata et al. (2007)
770%7% TRGB; Letarte et al. (2009)
And XVI 23.39741 0.066 476*4% 319t 525+ TRGB; Ibata et al. (2007)
525 TRGB; Letarte et al. (2009)
And XVII 2431491k 0.075 7275 672, 794*4% TRGB; Irwin et al. (2008)
And XVIII 25.42+00% 0.104 12144 4573, 135588 TRGB; McConnachie et al. (2008)
And XIX 24.5774%, 0.062 821+3% 1157 933*€] TRGB; McConnachie et al. (2008)
And XX 24.35‘:%}126 0.058 741’:4522 128’:258 802?9? TRGB; McConnachie et al. (2008)
And XXI 24.59G% 0.093 827*% 1355, 859*%), TRGB; Martin et al. (2009)
And XXII (Tri I) 24.8270%% 0.075 9203 2754, 794*%° TRGB; Martin et al. (2009)
And XXIII 24.3775% 0.066 74843 1274, 7332} TRGB; Conn et al. (2011)
7674} HB; Richardson et al. (2011)
And XXIV 24.77%%, 0.083 898+2% 1693, 6003} HB; Richardson et al. (2011)
And XXV 24.33709) 0.101 736%% 90%5, 812+4% HB; Richardson et al. (2011)
And XXVI 24.39055 0.110 754218 103+%* 762+42 HB; Richardson et al. (2011)
And XXVII 25.497G9% 0.080 1255742, 482%9 5 827+ HB; Richardson et al. (2011)
And XXX* (Cass II) 24.174:(2)'.1206 0.166 681’:3728 145*_945 56512255 TRGB g-band; M. J. Irwin (2012, in preparation)
NGC 147 24.2675% 0.173 71242 118*1% 6752}, TRGB; McConnachie et al. (2005)
NGC 185 23.967%%% 0.182 620%"% 181%% 616*%% TRGB; McConnachie et al. (2005)
M33 24,5700 0.042 820*2) 210*¢, 809+2} TRGB; McConnachie et al. (2005)

964*%, DEB; Bonanos et al. (2006)

Notes. All distance measurements utilize the data from the Pan-Andromeda Archaeological Survey (McConnachie et al. 2009) and have been obtained using the method
presented in this paper. A value of MiTRGB = —3.44 £ 0.05 is assumed for the absolute magnitude of the RGB tip in CFHT MegaCam i band, based on the value
identified for the SDSS i band (Bellazzini 2008) and justified for use here by the color equations applicable to the new MegaCam i-band filter (Gwyn 2010). Values for
the extinction in MegaCam i band have been adopted as A, = 2.086 x E(B — V) for the same reasons, with uncertainties taken as +=10%. The extinction values quoted
are for the object centers, though the actual calculations apply individual corrections to each member star according to their coordinates. Note that the uncertainties in
the M31 distance are based on the sampled distributions while the quoted value is that derived directly from the Earth distance as per Equation (7). The last column gives
alternative distances from the literature. TRGB-derived distances are quoted wherever possible. Distance derivation methods: TRGB, tip of the red giant branch; Ceph,
Cepheid period-luminosity relation; RR Ly, RR Lyrae period—luminosity relation; RC, red clump; HB, horizontal branch; DEB, detached eclipsing binary.

% Andromeda XXX is a new discovery, and will also be known as Cassiopeia II, being the second dwarf spheroidal satellite of M31 to be discovered in the constellation
of Cassiopeia (M. J. Irwin 2012, in preparation).
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Figure 11. Distance posterior distributions for dwarf spheroidal satellites And I-III, And V and And IX-XIX. The distributions are color-coded with red, green,

Proposed Distance (kpe)

Proposed Distance (kpc)

Proposed Distance (kpc)

and

blue denoting 1o (68.2%), 90%, and 99% credibility intervals, respectively. The credibility intervals are measured from either side of the highest peak.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)
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Figure 13. Probability distributions for the slope « of a single power law used to model the M31 halo satellite distribution, given the entire set of 27 M31 companions
presented in Table 2. Panel (a) gives the distribution assuming a single best-fit radius for each of the satellites as determined from the mode in the satellite’s distance
posterior distribution (as given in Column 4 of Table 2). Panel (b) shows the same distribution when the entire radius probability distribution for each satellite is

sampled 500,000 times.

effort is underway to determine the completeness functions for
dwarf galaxy detection in the PAndAS survey (N. F. Martin
et al. 2012b, in preparation). In the mean time, it would seem
prudent to regard the contribution to the density profile of the
far-side satellites with caution, instead taking the density profile
measured from the near-side satellites alone as the best mea-
surement.

On a final note with regard to near-side—far-side asymmetry, it
is important to realize that the uncertainty in the distance to M31
has a large effect on how many satellites will lie on either side of
the M31 tangent plane, and indeed on the density measurement
as a whole. Where the individual PPDs are sampled, this is taken
into account as the M31 PPD is sampled for each measurement.
Nevertheless, it is interesting to consider the specific (non-
sampled) case where M31 is measured at a closer distance,
while all best-fit satellite distances remain unchanged. From
the M31 PPD in Figure 12, it can be seen that there is a 5%

18

chance that M31 lies at 750 kpc or closer. If M31 is taken to
lie at 750 kpc, Andromedas XI, XIII, and XIV move onto the
far side of the M31 tangent plane, going someway to even out
the asymmetry. However, if the distances of all the satellites
from M31 are re-measured for this new M31 position, the same
stark contrast between the density profiles for the near and far
sides remains and in fact grows. Using only those satellites on
the near side of the new M31 tangent plane, an o of 2.87*}
is determined whereas if only those satellites on the far side
are considered, an & of 1.22*%:47 is obtained. Hence it would
seem unlikely that the observed near-side—far-side asymmetry
is primarily a consequence of an overestimated M31 distance.
Recent research, such as that presented by Koch & Grebel
(2006) and Metz et al. (2007) point toward highly significant
planar alignments of various collections of satellites within
the M31 halo, even though as a whole, no such distribution is
prominent. Interestingly, the former investigation finds that it is
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predominantly the objects morphologically similar to the dwarf
spheroidals in their sample that can be constrained to a relatively
thin disk, which also includes NGC 147 and M33. While our
sample is considerably larger, it nevertheless consists nearly
entirely of such objects, so it will be interesting to determine
what degree of symmetry may be found within and on either
side of the best-fit plane. We intend to investigate this in an
upcoming publication, though it must still be noted that outliers
from the planar trend have already been noted in this small
sample, such as Andromeda IT and NGC 185. Furthermore, other
members are known not to conform to the norm of M31 satellite
dynamics, with Andromeda XIV for instance apparently at the
escape velocity for the M31 system for its determined distance
(Majewski et al. 2007). Indeed, it would seem that whatever
model is assumed, a few outliers are inevitable.

5. CONCLUSIONS

With the ready applicability of the TRGB standard candle to
almost any of our galactic neighbors, there can be no question
that its role will continue to be an important one. As the
world’s premier telescopes grow in size, so too will the radius
of the “neighborhood” of galaxies to which the TRGB can be
applied. Hence a technique which accurately characterizes the
true probability space of the TRGB distances determined is a
great asset. Indeed this quality comes to play an increasingly
important role as more and more sparsely populated objects are
found to frequent the environs of our larger nearby neighbors.
The differences in the results achieved in the previous section
with and without sampling of the actual distance distributions
illustrate this fact.

Where in Paper I the foundations were laid for a TRGB
method with such desirable qualities, its full value only becomes
apparent when one actually employs its full Bayesian potential.
It only requires a brief glance at Figures 2 and 3 to see how
powerful a single data-specific prior can be. Similarly, the simple
distance weighting prior outlined in Section 3.3 can make a
poorly constrained model quite workable, as illustrated in the
case of Andromeda XIII. Both tools will likely prove very useful
when the method is used further afield.

It should also be remembered that the TRGB standard candle
is in many ways, just the “first assault.” When photometric data
of sufficient depth are obtained, the horizontal branch can often
pin down the distance with still greater accuracy. With a simple
adjustment to the model LF, the techniques outlined in this paper
and its predecessor commute quite readily to implementation on
the horizontal branch.

Last, it must also be said that the distances presented herein
provide an excellent opportunity to provide a new, updated anal-
ysis of the asymmetry and density of the M31 halo satellite dis-
tribution, one only touched on here. With such comprehensive
and consistent coverage, there is great potential in these dis-
tances to further constrain the possible evolution and dynamical
history of the M31 halo system.
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“Distance lends enchantment to the view.”

Mark Twain (1835-1910)

Paper III: The Three Dimensional Structure
of the M31 Satellite System;
Strong Evidence for an Inhomogeneous

Distribution of Satellites
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Paper III Preface

This paper in many respects represents the climax of the thesis and the culmination of the
work presented in the three previous chapters. Specifically, it takes the satellite distance
distributions presented in the previous chapter (i.e. Paper II), converts them into three-
dimensional positions and then proceeds with a thorough analysis of the resulting distribu-
tion, leading to some exciting revelations as to the structure of the satellite system. Central to
the work presented in Paper III are a variety of tools utilized throughout the analysis. These
tools are discussed in the method section of the paper, but they are elaborated upon here in an
effort to help the reader visualize the processes described and thus provide a suitable preface

to the forthcoming material.

The first consideration in our analysis of the M31 satellite system must be to devise a
suitable means for viewing the distribution in a clear and consistent way. Since we are con-
cerned with a system completely external to our own Milky Way, it is intuitive to depart
from our Earth-bound view and instead view the system as it would appear from the center
of M31. To do this, we shift to M31-centric galactic coordinates. The convention in this
regard has been to orient the north galactic pole (b = +90°) in the reverse direction to that
of the net angular momentum of the disk (i.e. perpendicular to the disk of the galaxy) with
the meridian of longitude / = 0° aligned so as to pass through the Milky Way (or specifically
Earth). Hence, we take the x, y and z coordinates derived as per Fig. 4.1 and perform a rota-
tion of coordinates (quantified in the method section of the paper - see ‘PlaneSigRMS.f95’ in
Appendix D for implementation) so as to bring our satellite positions into the new coordinate
system. For plotting purposes, we can then simply convert from cartesian to spherical co-
ordinates and plot each object’s latitude and longitude in an Aitoff-Hammer projection (see
aitoff_hammer.f95 in Appendix D), where positive x points in the direction of [ = 0°, b = 0°;

positive y toward / = —90°, b = 0°; and positive z toward [/ = 0°, b = +90°.

With a suitable method for visualizing the satellite distribution devised, the next con-
sideration in our analysis concerns plane fitting. The whole of Paper III is essentially built
around plane fitting, whether it be to identify planes of satellites with in the distribution,

or the asymmetry of the distributions as a whole. Where we are interested in identifying
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physically significant planes or disks of satellites, we need to seek out the plane that most
closely approximates the constituent satellites as determined by any one of many possible
‘goodness-of-fit’ statistics. When instead we wish to find the magnitude and direction of the
asymmetry of the distribution, we need simply find that plane which divides the sample most
unequally. What ever the application, for ease of implementation and versatility, a simple

scanning routine was chosen to accomplish the task.

The algorithm devised for the plane fitting is best understood by visualizing a plane
pivoted at the center of our coordinate system (i.e. the center of M31) with its normal vector
projecting out from this point. This plane is then rotated such that its normal vector or ‘pole’
scans a complete hemisphere of the sky. In so doing, every possible orientation of the plane
is passed through exactly once. In practice, discrete pointings of the normal vector are used
and at each one the goodness-of-fit statistic or the asymmetry is measured and compared
with the best-fit value encountered so far. It is then either stored or discarded accordingly.
Thus by the completion of the scan, the true best-fit pole has been identified and retained.
In order to scan the hemisphere at a suitably high resolution whilst retaining computational
efficiency, a low resolution scan is made first and then a localized high resolution search
initiated about the best-fit pole. This process is illustrated in Fig. 5.1, where the poles tested
in a single instance of plane fitting have been plotted using the TOPCAT graphics program
(Taylor, 2005). Once the pole to the best-fit plane has been identified via this method, its
orientation can then be converted into M31-centric latitude and longitude and plotted on
an aitoff-hammer projection. This may be done once, as in the case for a particular set of
satellites, or many times, in order to produce a pole distribution plot representing all possible

combinations of a particular number of satellites for instance.

We are now equipped to identify the best-fit plane for a particular set of satellites, but
this is only part of our analysis. We now need to ascertain the significance of the identified
plane; is it likely to be a chance alignment or is it a real physical structure? To answer
this question, we need a method by which the identical measurement can be performed
repeatedly on a large number of ‘realizations’ of randomly distributed artificial satellites,

each one subject to the same constraints as the real data. Our first requirement in producing
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Ficure 5.1: Plane Fitting; Poles of Tested Planes. This figure illustrates the plane fitting method
utilized for most of the analysis contained in Paper III. Figure (a) shows a hemisphere of equally
spaced points, each one the pole of a tested plane. This plot represents the low resolution scan
undertaken for every instance of plane fitting to a particular set of satellites. Once the scan is complete,
a high resolution scan is undertaken about the best-fit pole. Figure (b) is a close up of several of these
high resolution scans, indicating the effective resolution of each scan. Note that several adjacent scans
are shown to indicate the overlapping coverage. For a given instance of plane fitting, only one high
resolution search (i.e. square) need be made. Plotted using TOPCAT.

such ‘random realizations’ is a tool by which a given satellite position vector can be spun
around to any random position on the M31 sky. Development of such a tool is not a trivial
task, as lines of constant latitude on a sphere are not great circles, but decrease in diameter
toward the poles. Thus simply drawing a latitude and longitude at random will produce a
disproportionate number of satellites at high latitude. We therefore weight the probability
of drawing a particular latitude in proportion to the cosine of the latitude. This is illustrated
in Fig. 5.2 (a). Fig. (b) shows 10,000 unit vectors distributed truly randomly following
this procedure. Note that this same process is not only applicable to positioning satellites
randomly on the sky but is also another means of generating random poles for plane fitting
(see §3.4 of Paper III for instance).

With the means to spin satellite position vectors to random orientations now in place,
we can proceed to build our random satellite realizations. The general procedure then is
as follows. First, the desired number of satellites to be included in the random realization
is chosen. This is always the total number of satellites in the real distribution i.e. usually

27, but 25 where NGC147, NGC185 and Andromeda XXX are grouped together as a single
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point (see §3.3 of Paper III). Then to generate a position for each artificial satellite, one of
the real satellites is chosen at random and a distance is drawn from its associated distance
distribution. The M31-centric position vector is then calculated and spun around to a new
random orientation as described above. As we wish to subject our random sample to the
same constraints as the real sample, it is very important at this point that we verify that
the new orientation does not place the object outside of the utilized region of the PAndAS
survey area. We therefore project the new satellite position back onto the sky and determine
whether it meets this criterion. If it does, we proceed to generate a position for the next
satellite following the same procedure, if it does not, we reject the new position and likewise
repeat the process, until we get an acceptable position for the current satellite. The process

repeats until the desired number of satellites are produced.

By this point, we have generated our random realization with one possible position for
each satellite. If we are to mimic the data most closely, we should have in effect a full line-
of-sight distance distribution for each artificial satellite. Hence once we have determined a
single set of acceptable three-dimensional positions for the satellites, the positions of each
on the sky as viewed from Earth are stored, as are the new Earth-to-satellite distances. The
original satellite distance distributions used for each one can then be sampled and appropri-
ately mapped to the new positions. Fig. 5.3 below illustrates the procedure for the random
generation of satellites. Figure (a) illustrates the positions on the sky of 1000 accepted satel-
lite positions as viewed from Earth. As with most of the figures in this preface, this figure
was generated to verify the correct behavior of the algorithm. Hence a very large number
of satellites were generated in order to insure that all accepted satellites did indeed fall in-
side the utilized portion of the PAndAS survey area. Figure (b) likewise was generated to
insure that the final random realizations had the correct appearance. It shows 1000 possible

positions drawn for each of 27 artificial satellites.

With all of the above tools in place, we are now in a position to embark on our analysis
of the three dimensional structure of the M31 satellite system. As shall become apparent in
the paper, the analysis reveals some very interesting results. There can, for instance, be very

little doubt that the distribution is significantly inhomogeneous, with degrees of planarity and
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asymmetry observed which are shown to be very unlikely to arise by chance. Most striking is
a very thin plane or disk made up of 15 satellites from the total sample of 27. The orientation

of this ‘great plane’ is also of particular note.
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Figure 5.2: Method for rotating vectors to random angles. Fig. (a) illustrates the calculation of
the necessary weighting factor as a function of latitude. Fig. (b) shows 10,000 unit vectors spun to
random angles after incorporating this weighting factor. Note that had this weighting factor not been
included, the density of poles would be greater at higher latitudes. Fig. (b) plotted using TOPCAT.



PAPER III: THE THREE DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM;
96 STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

10

7 (degress)

—-10

=15

£ [degrees)

b)

500

¢ 0 50 -100 W
y {kpo)

Figure 5.3: Generating random satellite realizations. Fig (a) illustrates the acceptable on-sky po-
sitions in which artificial satellites are allowed to appear, via the creation of a large 1000-satellite
random realization. Note that satellites are less likely to be positioned at larger distances from M31
due to the small number of satellites in the real sample lying at equivalent distances. Figure (b) plots a
single random realization of 27 satellites complete with sampled distance distributions for each. This
is the form of the random realizations used in the actual analysis. Fig. (b) plotted using TOPCAT.
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ABSTRACT

We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance
distributions presented in a previous publication. These distances make use of the unique combination of depth
and spatial coverage of the Pan-Andromeda Archaeological Survey (PAndAS) to provide a large, homogeneous
sample consisting of 27 of M31°s satellites, as well as M31 itself. We find that the satellite distribution, when
viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk
consisting of a large subset of 15 of the satellites is however found to be highly significant, and surprisingly
thin, with a root-mean-square thickness of just 12.34*0'1 kpc. This disk is oriented approximately edge on
with respect to the Milky Way and almost perpendicular to the Milky Way disk. It is also roughly orthogonal to
the disk like structure regularly reported for the Milky Way satellite system and in close alignment with M31’s
Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also
significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of
the 27 satellites most likely lie on the Milky Way side of the galaxy. This lopsidedness is all the more intriguing
in light of the apparent orthogonality observed between the satellite systems of the Milky Way and M31.

Subject headings: galaxies: distribution — galaxies: dwarf — galaxies: individual (M31) — galaxies: satellites

1. INTRODUCTION

The possibility that irregular distributions of satellite galax-
ies may be a common feature of large galaxy halos was orig-
inally bolstered by several studies of the anisotropic distri-
bution of our own galaxy’s satellites. Lynden-Bell (1976)
found that the Magellanic Stream along with Sculptor and
the Draco-Ursa Minor Stream and their associated dwarf
spheroidal galaxies all appear to lie in the orbital plane of
the Magellanic Clouds. In Lynden-Bell (1982), all the then
known dwarf spheroidal companions of the Milky Way are
identified as lying in one of two streams. Kroupa, Theis, &
Boily (2005) examined the likelihood of producing the ob-
served disk-like distribution of Milky Way satellites from a
spherical or oblate dark matter halo. From comparisons with
theoretical isotropic satellite distributions produced from such
a halo, they find that the chance of producing the observed dis-
tribution from the dark-matter sub-halos of cold-dark-matter
(CDM) cosmology is less than 0.5 %. They examine various
combinations of the inner most satellites and find a best-fit
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plane that is almost perpendicular to the plane of the Milky
Way with a root-mean-square height ranging from only about
10 to 30 kpc. Zentner et al. (2005), whilst finding a simi-
lar plane to Kroupa, Theis, & Boily (2005) for the satellites
of M31, disagree with their assumption that such a plane is
unlikely to arise from a conventional CDM dark matter halo.
They argue that that the most luminous satellites cannot be
taken for granted as forming randomly from the isotropic
sub-halo distribution but instead, lie preferentially at smaller
distances from the halo centre and co-planar with the major
axis of the host halo. Coupled with the finding that galaxies
preferentially align themselves with their major-axis highly-
inclined or even perpendicular to that of the surrounding mat-
ter (e.g. Navarro, Abadi, & Steinmetz 2004; Hartwick 2000),
this then provides a good explanation for the observed orien-
tation of the best fit plane.

More recently, Lovell et al. (2011), using the six halo mod-
els in the Aquarius Simulations (Springel et al. 2008), find
that all six halos produce a significant population of sub-halos
with quasi-planar orbits aligned with the main halo spin. This,
they argue, is a natural explanation for the observed satellite
distribution of the Milky Way. Pawlowski et al. (2012) ar-
gue against this however. With the calculation of the angular
momenta of 8 Milky Way Satellites (Metz, Kroupa, & Libe-
skind 2008) revealing a strong alignment between 6 of the
orbital poles, Pawlowski et al. (2012) examine the likelihood
of randomly drawing 6 sub-halos from each of the 6 Aquar-
ius simulations (among other halo simulations), and finding a
similar degree of alignment. More precisely, they draw 10°
sets of 8 satellites from each of the 6 simulations, and se-
lect the 6 with the highest degree of alignment between their
orbits, thus emulating the findings of Metz, Kroupa, & Libe-
skind (2008). They then look at the degree of clumping of the
orbital poles Ay, as well as the angular distance of the aver-
age of the orbital pole inclinations from the model equator d
and find that the actual degree of planarity observed for the
six satellites identified by Metz, Kroupa, & Libeskind (2008)
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(AYY = 35.4° and dyw = 9.4°) are equalled or exceeded in

the random draws in less than 10% of cases when Ay, is con-
sidered and less than 15% of cases for d. Starkenburg et al.
(2012) also find that the degree of planarity observed for the
Milky Way satellites is uncommon in all six of the Aquarius
halos (see Fig. 7 of that study).

In addition to the revelation that the Milky Way’s satellites
appear to inhabit highly-inclined great planes, they also ap-
pear to corroborate the finding of Holmberg (1969), namely
that the companions of Spiral Galaxies preferentially congre-
gate at high galactic latitudes (the Holmberg Effect), as ob-
served in his study of 174 galaxy groups. It is not clear why
this should be the case, or even if it truly is the case, although
if the apparent adherence of satellite systems to polar great
planes is typical of galaxies in general, then the Holmberg
Effect seems to be an extension of this. Quinn & Goodman
(1986) proposed that dynamical friction may be responsible
for the observed polar great planes, with those orbits spending
the most time in close proximity to the galactic disk, experi-
encing the fastest decay, while those that take the most direct
route through the disk environs, namely the polar orbits, ex-
periencing the slowest orbital decay.

Besides the conjecture that satellite great planes trace the
major-axis of the dark-matter halo in which the parent galaxy
resides, there are other proposed mechanisms for their cre-
ation. One hypothesis is that these planes trace the orbits
of ancient galaxies that have been cannibalized by the host
galaxy. Palma, Majewski, & Johnston (2002) have inves-
tigated this hypothesis by looking for planes among groups
of satellite galaxies and globular clusters in the Milky Way’s
outer halo and find various members to be co-planar with ei-
ther the Magellanic or Sagittarius streams. The findings of
Lynden-Bell & Lynden-Bell (1995) are also consistent with
such a hypothesis. Indeed, it is this hypothesis which is most
strongly supported by Pawlowski et al. (2012), wherein the
Agpi and d of satellites drawn from various tidal models equal

or exceed A’g} V-and dyw in over 80% of draws in some cases.

A similar hypothesis, which in some regards links the galaxy-
cannibalization and dark-matter hypotheses, proposes that the
observed planes result from the orientation of the large-scale
filamentary structure of galaxy clusters (e.g. Knebe et al.
2004), an orientation traced out by those minor galaxies which
fall into the halo of a major galaxy. Metz et al. (2009) argue
however that extra-galactic associations of dwarf galaxies are
too extended to account for the high degree of planarity ob-
served for the Milky Way satellites.

The great obstacle to a conclusive resolution of these issues
is the lack of systems for which reliable spatial (and kine-
matic) data exists. While some such data does exist for large
galaxy clusters such as Virgo and Coma, accurate 3D distri-
butions of galaxies within their halo have for a long time been
known only for our own galaxy’s halo, ascertainable due to
our central position within it. It has only been in recent times
that a second system has opened up to us - that of our coun-
terpart in the Local Group, M31. Whilst various databases
of photometry and other data have been available for M31
and some of its brighter companions for over a decade, it is
the Pan-Andromeda Archaeological Survey (PAndAS - Mc-
Connachie et al. 2009) - a deep photometric, 2-colour survey
providing a uniform coverage of the M31 halo out to approx-
imately 150 kpc - that has provided a new level of detail for
this system. It is from this survey that we obtained our dis-
tances to M31 and 27 of its companions, following the method

developed in Conn et al. (2011) (henceforth CLI11) and fur-
ther adapted for this purpose in Conn et al. (2012) (henceforth
CIL12). The distances themselves and their associated un-
certainty distributions are presented in CIL12 and it is these
distributions that are utilized for all analysis contained in this
paper.

With regard to previous studies of the anisotropy in the M31
satellite distribution, two investigations warrant consideration
at this point. McConnachie & Irwin (2006), making use of
Wide Field Camera (WFC) photometry from the Isaac New-
ton Telescope (INT) in what was essentially the forerunner
to the PAndAS Survey, focus on “Ghostly Streams” of satel-
lite galaxies following a similar approach as Lynden-Bell &
Lynden-Bell (1995) used for the Milky Way. In addition,
they characterize the large degree of asymmetry in the satel-
lite distribution, a feature also noted in CIL12, and examine
the radial distribution of the satellites, noting a (statistically
insignificant) larger average distance from M31 than that ob-
served between the Milky Way and its satellites. They find
a large number of candidate satellite streams, with some fa-
voring the dwarf spheroidal members. Koch & Grebel (2006)
utilize distance measurements from a variety of sources and
focus particularly on planes of satellites and, whilst they do
not find a particularly significant best fit plane when their
whole satellite sample is considered, it is rather interesting
that they find a 99.7 % statistical significance to their best fit
plane when the then-known dwarf spheroidal galaxies domi-
nate their sample. Furthermore, this plane is near-polar - as
has been observed for the Milky Way, although they find lit-
tle support for the Holmberg Effect. Koch & Grebel (2006)
utilize a particularly robust method in their search for high-
significance planar fits to subsets of galaxies by considering
every possible combination of a given number of satellites
from their sample.

In the current study we employ a similar approach, but with
the great advantage of having a considerably extended sample
of galaxies in our sample, with all distances derived by the
same method and from the same data as described in CLI11
and CIL12. As a result, we are able to give full consideration
to the effects of selection bias on the observed satellite distri-
bution. This then presents an excellent opportunity to greatly
improve our knowledge of the three-dimensional structure of
the M31 satellite distribution, with important implications re-
garding the recent evolution of the system.

A breakdown of the structure of the paper is as follows. In
Section §2, we outline our method for plane fitting (§2.1) and
locating significant planes of satellites as well as the orien-
tation, magnitude and significance of the asymmetry of the
distribution. A method for generating random realizations
of satellites subject to the same selection biases as the real
data is also discussed in this section (§2.2) as is the selec-
tion bias itself (§2.3). §3 then presents the results of apply-
ing these methods, first to the sample as a whole, and then to
subsets of galaxies. Specifically, §3.1 presents a study of pla-
narity within the satellite system when all satellites contribute
to the determination of the best fit plane; §3.2 examines the
asymmetry in a similar way; §3.3 examines the orientations
of planes of smaller subsets of satellites within the distribu-
tion; and §3.4 concludes this section with a determination of
the significance of a ‘Great Plane’ of satellites emerging from
the preceding sections. Sections 4 and 5 then follow with dis-
cussion and conclusions.

Note that this paper was written in conjunction with a
shorter contribution (Ibata et al. 2012; hereafter ILC12) which
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announced some of the key discoveries resulting from the
analysis we present here. In particular, the process of iden-
tifying the member satellites of the ‘great plane’ discussed in
ILC12 is described here in more detail. In this analysis how-
ever, we concern ourselves with the spatial structure of the
satellite system only and so the reader should refer to ILC12
for the interesting insight provided by the addition of the ve-
locity information.

2. METHOD
2.1. Plane Fitting

In order to find planes of satellites within the M31 satellite
system, our first concern is to convert the satellite distances
as presented in CIL12 into three-dimensional positions. To
do this, we begin with an M31-centered, cartesian coordinate
system oriented such that the x and y axes lie in the M31 tan-
gent plane with the z-axis pointed toward the Earth. Specifi-
cally, the x-axis corresponds to 77, = 0 which is the projection
of M31’s Declination onto the tangent plane. The y-axis then
corresponds to &, = 0 - the projection of M31’s Right As-
cension onto the tangent plane. The z-axis then points along
the Earth-to-M31 vector, with magnitude increasing with dis-
tance from Earth. This orientation can be seen in Fig. 10(c)
of CIL12. Thus:

x = Dyycos(@)tan(é)
Y = Dyqsin(n) ()
2 = Dyqc08(0) — Dus)

where D31 and Dy, are the distances from Earth to M31
and from Earth to the satellite respectively, 0 is the angular
separation on the sky between M31 and the satellite, and 7 and
¢ are the real-angle equivalents of the tangent plane projection
angles 7, and &, respectively.

Next, we rotate this reference frame to the conventional
M31 reference frame such that the positive z-axis points to-
ward M31°s north galactic pole' (i.e. by;3; = +90°) and the
Iy31 = 0° meridian passes through the Earth. So as to be con-
sistent with the earlier work of McConnachie & Irwin (2006),
we have adopted the same values for M31’s position angle
(39.8°) and inclination (77.5° - de Vaucouleurs 1958). Each
object is hence rotated by 39.8° about the z-axis to counter
the effect of its position angle, and then 77.5° about the x-
axis to account for M31’s inclination. A final rotation of 90°
about the z-axis is then necessary to bring /y;3; = 0° into
alignment with the direction of Earth (which hence lies at
Ivz1 = 0°,by3 = —12.5°). The resulting spherical coordi-
nates for each object in the sample are plotted onto an Aitoff-
Hammer projection in Fig. 1. This same figure also shows the
uncertainties in position associated with each object, gener-
ated via sampling of the respective distance posterior proba-
bility distributions (PPDs) of each object and subsequent con-
version of each drawn distance into a three-dimensional posi-
tion.

With the satellites’ positions determined in cartesian coor-
dinates, it is straight forward to determine the minimum dis-
tance of each satellite from a given plane as follows:

Dpiane = lax + by + cz +d| )

where D is the distance of a satellite at a point (x,y, z)
from a plane whose normal vector is (a, b, c) and is of unit

! Defined so as to point north in Equatorial coordinates

length. For simplicity, we invoke the reasonable requirement
that all planes must pass through the center of M31 and so
in our case, d = 0 and the plane normal vector points out
from the center of M31. Hence, in order to find the best-fit
or maximum significance plane to a set of satellites, we need
simply minimize D, for the satellites to be fitted. This can
be done via a variety of means, some of which are compared
in the following section, but perhaps the most robust and the
predominant method employed in this study, is that of min-
imizing the root-mean-square (RMS) of the distances to the
fitted satellites.

In order to measure the asymmetry of the satellite distribu-
tion about a given plane, we need only count the number of
satellites on one side of the plane. To do this, we can simply
remove the absolute value signs from equation 2, so that the
side of the plane on which a satellite lies can be determined by
whether D4, is positive or negative. The plane of maximum
asymmetry is then taken to be that which divides the sample
such that the difference in satellite counts for opposite sides
of the plane is greatest.

Whether we wish to determine the best fit plane through a
sample of satellites or the plane of maximum asymmetry, we
require a system by which a large number of planes can be
tested on the sample so that the goodness of fit (or asymme-
try) can be calculated for each. To do this, we define each
tested plane by its normal vector or pole (a, b, ¢) so that Eq.
2 can be applied directly. We then rotate this pole to differ-
ent orientations around the sky in such a way as to ‘scan’ the
whole sphere evenly and at a suitably high resolution. In prac-
tice, we need to be able to apply this routine many thousands
of times for a large number of samples and so a fast computa-
tional time is of the essence. To this end, for a given sample,
our algorithm determines the desired plane following a two
step procedure.

Firstly, a low resolution scan of the sphere is made to de-
termine the approximate direction on the sky of the pole to
the best-fit plane. Only half the sphere actually needs to be
scanned since poles lying on the opposite hemisphere corre-
spond to the identical planes flipped upside down. The low
resolution scan tests 2233 different poles across the hemi-
sphere. A near-uniform coverage is achieved by decreasing
the number of planes tested in proportion to the cosine of the
latitude of the planes’ pole. This prohibits what would oth-
erwise be an increased coverage at the higher latitudes of the
coordinate system. With the pole to the best-fit plane deter-
mined in low-resolution, a high resolution search is then made
around the identified coordinates at 10 times the resolution.
In this way a pole can effectively be found at any of approxi-
mately 250,000 evenly spread locations on the hemisphere.

2.2. Generating Random Satellite Samples

Whilst we are now equipped to identify best-fit planes to
our sample and subsamples thereof, it is necessary to have
some means of determining the significance of these planes
in an absolute sense. The most intuitive way to do this is to
perform the same analysis on a randomly generated sample
of equal size. In particular, when we are concerned with all
possible combinations of a particular number of satellites that
can be produced from the whole sample, we are often deal-
ing with a very large number of subsamples and so it is in-
evitable that some of these subsets of satellites will exhibit a
very high degree of planarity. Identical analysis must there-
fore be performed on random distributions, to see if there are
similar numbers of subsets with equal degrees of planarity.
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Fig. 1.— An Aitoff-Hammer Projection showing the positions of M31’s satellites, along with their associated lo- uncertainties. The positions show where each
object would appear in the sky if viewed from the centre of M31, and are given in M31’s inherent galactic latitude and longitude. The position of the Milky Way
is also shown for reference. The position uncertainties trace single arcs across the M31 sky, rather than two-dimensional patches on account of the restriction of
the uncertainty to lie solely along the line of sight to the object from Earth. For this same reason, all the lines point radially outward from the Milky Way. These
uncertainties also take into account the uncertainty in M31’s distance. The existence of a prominent plane, broadly consisting of Andromedas I, XI, XII, XIII,
XIV, XVI, XVII, XXV, XX VI, XXVII, XXX and NGC147 and NGC185, is hinted at by the close proximity of their respective arcs.

For this reason, considerable care was taken to design an
algorithm capable of providing a unique random realization
of the desired number of satellites whenever it is called. The
algorithm makes use of the distance PPD for each satellite,
and also takes into account the irregular window function (i.e.
useable portion) of the PAndAS survey. Each time a satellite
is to be added to the random realization, one of the 27 actual
satellites is chosen at random and a distance is drawn from
its associated PPD. This distance (Dy,,) is then converted into
a three dimensional position (x, y, z) following equation set 1
and this satellite-to-M31 separation vector is then spun around
to a new, random location in the M31 sky. Note that for each
random realization, a new value of Dy3; is similarly drawn
from the M31 distance PPD.

Once again, care must be taken in this step to ensure that the
whole sphere is given equal weight, otherwise there is a higher
likelihood for the artificial satellites to be positioned at high
latitude. Again, this is remedied by weighting the likelihood
by the cosine of the latitude.

With the new, random location for the satellite chosen, it
is then projected back onto the sky as it would appear from
Earth and a check is made to ensure that it does indeed lie
within the boundaries of the PAndAS survey area, and outside
of the central ellipse (5° major axis, 2° minor axis - see Fig.
10 (c) of CIL12) where the disk of M31 inhibits reliable mea-
surements. If the satellite does not meet these requirements, it
is rejected and the satellite drawing process is repeated until a
suitable position is generated. By repeating this process until
the desired number of satellites are produced, a new, random
comparison sample is generated which gives full account to
the constraints on the actual data.

In order for the random satellite realizations to mimic the
actual data most closely, it is necessary that each artificial

satellite is represented not by just one point, but rather a string
of points reflecting the uncertainty in the Earth-to-Object dis-
tance. Hence once acceptable positions for each satellite are
drawn as described above, the distance distributions for each
object are sampled and projected to their equivalent positions
along the line of sight about the initially placed point. For
sections 3.1, 3.2 and 3.4 each artificial satellite’s distance dis-
tribution is represented by 1000 points such that each plane-
fitting measurement is made for 1000 possible positions of
the object and then the average value of the measurements
is taken. The only exception to this number is where the
maximum-likelihood approach is used in §3.1. Due to the
inclusion of a second fitting parameter in this case, only 100
samples are taken for each satellite. For §3.3, as we are not
concerned with comparisons of plane significance between
the real sample and the random realizations, it is sufficient
to use a single drawn position for each artificial satellite.

2.3. A note on Satellite Detection Bias

By employing a similar method to that described above, it is
also possible to explore the effect of the PAndAS survey area
boundaries on the satellite detection bias as viewed from the
center of M31. It is intuitive that more satellites are likely to
be detected along the line of sight to Earth, since even satel-
lites at a large distance from M31 will still appear within the
survey boundaries if they lie along this line. We can visual-
ize this effect by generating a large number of randomly dis-
tributed satellites and plotting them on the M31 sky after first
rejecting those satellites that would appear outside the survey
area ‘mask’ if viewed from Earth. To do this, one million
satellites were drawn from a spherically symmetric halo po-
tential with density falling off as a function of the square of the
distance from the halo center. Satellites were hence drawn at
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distances between 0 and 700 kpc from M31 with equal prob-
ability. The satellites were then projected onto the M31 tan-
gent plane and those satellites lying outside the survey area or
inside the M31 disk obstruction area were excised from the
density map. The resulting anisotropy of the satellites on the
M3 sky is presented in Fig. 2.

Fic. 2.— An Aitoff-Hammer projection illustrating the satellite detection
bias resulting from the PAndAS survey boundaries and M31 disk obstruction.
Note that this figure utilizes a Gaussian blurring of radius 5°, as do all of the
subsequent pole-density plots.

As can be seen from the figure, the probability of detection
is indeed higher along a great circle oriented edge-on with re-
spect to the direction of Earth, and perpendicular to the M31
disk (byz1 = 0°). This great circle has its pole/ anti-pole at
Iyz1 = £90°,by3; = 0° and hence we would expect a pre-
disposition toward finding planes of satellites with a pole in
this vicinity. We would also expect, though to a lesser ex-
tent, to find an excess of satellite planes oriented edge-on
with respect to Earth at any inclination. Such planes would
have poles lying anywhere on the great circle whose normal
is directed toward Earth. The drop in the satellite density at
Iz = 0%, byz = —12.5° and Iy = £180°,byz = 12.5°
is a consequence of the hinderance to detection caused by the
M31 disk. Due to the increased volume of space covered by
the survey at greater distances from Earth, unhindered satel-
lite detection is possible over a larger range of angles on the
far side of M31 in comparison to the Earth-ward side.

3. RESULTS
3.1. Best Fit Plane to the Entire Satellite Sample

In order to find the best-fit plane to the satellite system as
a whole, the procedure of §2.1 is applied to the whole sam-
ple of 27 satellites presented in CIL12. The RMS thickness
of the sample is used here, as in subsequent sections, as the
statistic of planarity; we find it to be a robust measure and
it has the convenient property of being computationally inex-
pensive. Since we are dealing with only one sample in this
case, two other measures are also used for comparison. The
first calculates the sum of the absolute values of the distances
of each of the satellites from the tested plane. The second is
essentially a maximum likelihood approach and replaces the
plane of zero-thickness with a ‘Gaussian Plane’ such that a
satellite’s position within the Gaussian determines the plane’s
goodness-of-fit to that satellite. This second approach re-
quires that different Gaussian widths o be tested for each
plane orientation in order to find the width that best matches
the satellite distribution. Values between Skpc and 150 kpc
were tested at 5 kpc intervals for each tested plane orienta-
tion. Hence an additional characteristic of the satellite distri-
bution is obtained, but at the expense of a considerably longer

computation time.

For each of the three measures of goodness-of-fit described
above, the first step is to find the best-fit plane to the satel-
lite positions with their positions determined from their best-
fit distances. When either the RMS or maximum likeli-
hood approach is used, the same best-fit plane is found as
0.153x + 0.932y + 0.329z = 0 with pole at (Iy31,bu31) =
(—80.7°,19.2°). This plane is plotted as a great circle on the
M31 sky in Fig. 3 with the poles of the plane indicated.
When the absolute distance sum is used instead, the pole is
found farther from the plane of the galaxy, at (Iy31, bys1) =
(=74.9°,24.3°). Nevertheless, the polar-plane described by
Koch & Grebel (2006) is supported by either measurement,
and is reminiscent of the satellite streams identified in the
Milky Way satellite system. In light of the detection biases
imposed by the PAndAS survey area as illustrated in Fig. 2,
the result in this case must clearly be treated with suitable
caution however. Like Koch & Grebel (2006), we find little
evidence for the Holmberg Effect, with only 3 best-fit satel-
lite positions falling within 30° of the M31 galactic poles,
and only 6 of the 1o error trails from Fig. 1 pass beyond
bM31 = +60°.

Fic. 3.— An Aitoff-Hammer Projection showing the best-fit plane to the
satellite system as a whole. The pole and anti-pole of the plane are denoted
by ‘+” and ‘X’ symbols respectively. Only the best-fit satellite positions were
incorporated into the fit for this figure. The distribution of poles obtainable
from other possible realizations of the satellite distribution is presented in Fig.
4. Note that the plane is near-polar, similar to the preferred plane orientations
identified for the Milky Way Satellite System.

To determine the uncertainty in the plane’s goodness-of-fit,
we need to repeat the procedure for a large number of real-
izations of the satellite sample, with the best-fit satellite dis-
tances replaced with a distance drawn at random from their re-
spective satellite distance PPDs. A density map of the best-fit
plane poles identified from 200,000 such realizations is pre-
sented in Fig. 4. This figure was generated using the distribu-
tion RMS as the goodness-of-fit statistic, and contains 71.1%
of all poles within a 5° radius of the best-fit pole stated above.
When the sum of absolute distances is used in place of the
RMS, this fraction falls to 68.3%, or to 70.9% when the max-
imum likelihood approach is used. It should be noted that
the distribution of poles lies in close proximity to the pole of
maximum detection bias at /y;3; = —90°,by3; = 0°, again
suggesting that the detection bias is having a strong influence
on the polar orientation of the best-fit plane.

In order to determine whether the goodness-of-fit of the
best-fit plane is really physically significant, similar analysis
should be performed on a large number of random realiza-
tions of satellites, to see how often distributions of satellites
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Fic. 4.— A pole-density map showing the effective uncertainty in the loca-
tion of the best-fit plane to the whole satellite sample. The poles of the best-fit
planes derived for 200,000 possible realizations of the data are plotted, along
with their corresponding anti-poles.

arise with a comparable degree of planarity. Figure 5 presents
probability distributions of the plane significance for possi-
ble realizations of the real satellite sample along with average
values from random realizations of the satellites (as per §2.2),
obtained using the three measures of goodness-of-fit stated
above.

It is immediately clear from Fig. 5 that regardless of the
choice of the measure of goodness-of-fit, the range of values
obtainable from possible realizations of the real satellite po-
sitions are similar to the most likely values to be expected
from completely random realizations of the satellites. Hence,
whilst a prominent plane of satellites comprising roughly half
of the sample is suggested in Fig. I, it would seem that the
sample as a whole is no more planar than would be expected
from a strictly random distribution. Again, this is in keep-
ing with the findings of Koch & Grebel (2006), and detracts
from any physical significance that should be attributed to the
plane’s polar orientation.

Further to this finding, the overall width of the ‘plane’ is
again in keeping with that expected from a purely random
satellite distribution. From fitting the Gaussian Plane to the
best-fit satellite positions, a 1o~ width of 60 kpc is found to
produce the best fit to the data. When the 200,000 PPD-
sampled realizations were tested, a 1o~ of 60 kpc was found
preferential in 66.3% of cases, with a 1o of 55 kpc being pre-
ferred in 32.7% of cases. Values of 50 kpc make up the re-
maining 1% almost entirely. The average value for the actual
satellite distribution was thus determined as 58.3 kpc. This
value is similar to the most likely width identified from the
10,000 random realizations, as can be seen in Fig. 6.

3.2. The Plane of Maximum Asymmetry

To determine the plane of maximum asymmetry and its sig-
nificance, we employ an identical approach as in the preced-
ing section, but with the goodness-of-fit statistic replaced with
a count of the number of satellites on each side of the plane
as per §2.1. As was suggested by the three-dimensional satel-
lite distribution generated in CIL12, the asymmetry about the
M31 tangent plane is close to a maximum, with 19 satellites
on the near-side of the plane but only 8 on the other when the
best-fit satellite positions are assumed. The highest asymme-
try plane possible from this same distribution has 21 satellites
on one side and 6 on the other, with the equation of the plane
identified by the algorithm as —0.797x - 0.315y+ 0.515z = 0.
The anti-pole of this plane lies 27.2° away from the Milky
Way at (Iy31,bm31) = (=21.6°,-31.0°). This plane is plotted

as a great circle on the M31 sky in Fig. 7.

When 200, 000 realizations of the satellite sample are gen-
erated using the satellite’s respective distance probability dis-
tributions, the most likely asymmetry of the sample is actually
found to be greater than this, with 23 satellites on one side
and only 4 on the other. Such a scenario is more than twice
as likely as the 21 : 6 scenario. In one realization, a plane
was identified which could divide the sample such that all 27
satellites lay in a single hemisphere, while an asymmetry of
26 : 1 was found possible for 815 (0.4%) of the realizations.
The distribution of maximum-asymmetry poles on the sky, as
determined from realizations of possible satellite positions, is
illustrated in Fig. 8, whilst Fig. 9 (a) plots the probability
distribution for the greatest number of satellites that can be
found in one hemisphere for a given realization of the ob-
served satellite sample. The average value of this distribution
is 22.7 (shown as a dashed line in Fig. 9 (b)), a value which
is equalled or exceeded for 422 out of the 10,000 random re-
alizations represented in Fig. 9 (). A maximum asymmetry
ratio of 21 : 6, as was observed for the best-fit satellite dis-
tribution plotted in Fig. 7, is more common however, falling
inside the 1o credibility interval.

What is particularly striking about the satellite distribution
however, is the orientation of the asymmetry, with the ma-
jority of satellites lying on the near-side of the M31 tangent
plane. From Fig. 9 (c), it is clear that the effect of the dis-
tance uncertainties lying along the line of sight is to create
quite a broad distribution in the level of asymmetry about the
tangent plane, though the average is markedly high at 20.3.
To investigate the likelihood of this scenario arising from a
random satellite distribution, we measure the average num-
ber of satellites on either side of the M31 tangent plane for
each of 10,000 random realizations as per §2.2. The results
are illustrated in Fig. 9 d). The observed profile is more-
or-less as expected, with a maximum probability close to the
minimum possible asymmetry at 14 and then a rapid fall off
toward higher asymmetries. It is therefore clear that the dis-
tance uncertainties lying along the line of sight have no sig-
nificant bearing on the orientation of the asymmetry. Yet the
observed degree of asymmetry about the M31 tangent plane is
equalled or exceeded in only 46 of the 10, 000 random satellite
realizations and hence is very significant. The possibility that
this asymmetry may be a consequence of data incomplete-
ness is currently being examined more closely (see Martin et
al. 2012), although it seems very unlikely. The high degree
of asymmetry is still observed even when only the brightest
satellites are considered. Furthermore, the data incomplete-
ness appears to be dominated by the boundaries of the PAn-
dAS survey area and obstructed regions which are already
taken into account by our analysis. Indeed, one would ex-
pect more satellites to be observed on the far side of the M31
tangent plane on account of the increased volume of space
covered by the survey at greater distances, an effect clearly
visible in Fig. 2.

3.3. Subsets of Satellites

It is perhaps not surprising that the satellite system of M31,
when treated as a whole, is no more planar than one would
expect from a random sample of comparable size. Indeed,
a similar result was noted for the M31 system by Koch &
Grebel (2006). The existence of outliers in our satellite sam-
ple was already clear from Fig. 1 and furthermore, if multiple
planes of differing orientation are present as has been sug-
gested for both the Milky Way’s satellite system (e.g. Lynden-
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Fi. 5.— Probability distributions for the planarity of the entire satellite sample, as determined from three different measures of the plane goodness-of-fit. The
left-hand column of figures gives the distribution of the goodness-of-fit statistic as obtained via plane fitting to 200,000 separate samplings of the real satellite
sample. The right-hand column of figures summarizes the same procedure performed for 1,000 separate samplings of each of 10,000 random realizations of the
satellites (as per §2.2). It is important to note that each histogram in this column has been generated by plotting the average values from the 10,000 individual
histograms corresponding to each of the random realizations and hence they should only be compared with the average of the histograms in the left-hand column.
The goodness-of-fit statistic for a) and b) is the distribution RMS; for ¢) and d) is the absolute distance sum and; for e) and f) is the sum of satellite likelihoods.
The average of the histograms in (a), (c) and (e) are shown in (b), (d) and (f) respectively as dashed lines. Red, green and blue lines denote the extent of lo-

(68.2%),90% and 99% credibility intervals respectively.

I

Probability

o L L L L T
30 40 50 60

Plane Sigma (kpc)

Fic. 6.— The probability distribution for the average 1o~ width as deter-
mined from 10,000 random distributions of 27 satellites. This figure is gen-
erated from the same run as Fig. 5 f) and is the result of marginalizing over
the plane-orientation model parameters.

Bell 1982; Pawlowski, Plamm-Altenburg, & Kroupa 2012B)
and the M31 system (McConnachie & Irwin 2006), then the
goodness of fit of the best-fit plane to the entire distribution is
of little consequence. For this reason, we now concentrate our
analysis on subsets or combinations of satellites. Specifically,
we perform a pole-count analysis by determining the pole of
the best-fit plane to every possible satellite combination of a
particular size that can be drawn from the entire sample.

A pole-count analysis is an excellent way of mapping the
degree of prominence of various planes that exist within the
distribution as a whole, whatever their orientation may be.
The choice of combination size is not trivial however. The
number of combinations s of a particular number of satellites
k that can be drawn from the entire sample of n satellites can
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Fic. 7.— An Aitoff-Hammer projection showing the plane of maximum
asymmetry identified from the full sample of best-fit satellite positions. It
divides the distribution such that 21 satellites lie in one hemisphere, but only
6 in the other. The anti-pole of the maximum asymmetry plane lies just 28.1°
from the Milky Way as viewed from the center of M31.

Fic. 8.— A pole-density map showing the effective uncertainty in the lo-
cation of the maximum asymmetry plane to the whole satellite sample. The
poles of the maximum asymmetry planes derived for 200,000 possible real-
izations of the data are plotted, along with their corresponding anti-poles. The
elongated distributions that run through the pole and antipole determined
from the best-fit distribution (see Fig. 7) arise due to the orientation of the
uncertainty trails of the individual satellite positions, as presented in Fig. 1.
Note that the probability of the anti-pole of the asymmetry lying within a
couple of degrees of the direction of the Milky Way is close to a maximum.

be determined as follows:

n!
ST K=k

For reasons that shall be discussed shortly, we will effectively
be working with a sample of 25 satellite positions. It is clear
from this equation however that with 25 satellites forming the
entire sample, the total number of combinations that can be
drawn may be very large, depending on the number of satel-
lites forming the combinations. For instance, if n = 25 and
k = 13, there are over 5.2 million possible combinations that
can be drawn. Additionally, if we are to properly account for
the uncertainties in the satellite positions, it will be necessary
to sample from the distance distributions of each satellite a
large number of times for every combination. Given that we
must test every possible plane orientation (as per §2.1) for
every rendition of every combination, the computation times
can become impracticable. It is therefore necessary to limit
our combination sizes as much as possible. We note however,
that the final pole-plot distribution showing the poles of the
best-fit planes to each combination, is not so dependent on
the combination size as might at first be thought.

3)

With all the planes tested as per §2.1 having to pass through
the center of M31, the minimum number of satellites that can
not be fitted exactly is 3. This is therefore the smallest com-
bination size we consider. There are 2, 300 combinations of 3
satellites that can be drawn from the full sample of 25 satel-
lites. If we increase the combination size considerably to 7
satellites, there are 480, 700 satellite combinations that can be
drawn. Due to an excessive number of combinations beyond
this point, this is the largest combination size we consider.
But it is critical to note that even if we produce our pole-plot
map from combinations of only 3 satellites we do not exclu-
sively find planes consisting of 3 satellites. If a plane of 7
satellites exists for instance, then by Eq. 3, such a plane will
produce 35 poles at the same location on the pole plot, where
a plane consisting of only 3 satellites would contribute only
one pole. Conversely if we take combinations of 7 satellites,
despite the larger number of possible combinations in total,
we become less sensitive to planes made up of less than 7
satellites. So in a sense, the combination size we choose de-
pends on the satellite planes we wish to be most sensitive to.
In practice, we have found that the smaller combination sizes
of 3 and 4 satellites are particularly useful for identifying the
lowest RMS planes congregating around the band of satellites
visible in Fig. 1. The larger combination sizes of 5, 6 and
7 satellites gradually shift toward finding planes closer to the
best-fit plane to the entire satellite sample illustrated in Fig. 3.

Noting these points, we proceed as follows. First, the num-
ber of satellites per combination k is chosen (3 < k < 7) and
then for each combination, distances are drawn for each of the
satellites from their respective posterior distance distributions
as provided in CIL12. To give a satisfactory representation
of the form of the distributions, each combination is sampled
100 times. As such, each satellite combination contributes not
1 pole to the pole density map for the chosen combination size
but 100, with the spread of poles relating the possible orienta-
tions of the best-fit plane to the combination, given the error
in the individual satellite positions. The contribution of each
pole to the density map is also weighted by the RMS of the
best-fit plane it represents. Thus each pole does not contribute
1 count, but rather some fraction, depending on how good a fit
the plane it represents is to the satellites in the combination.
This fraction is also further divided by 100, since it represents
only 1% of the samples for the combination, as just discussed.

As stated above, it should also be noted that we effectively
limit the total number of satellites in our sample to 25 for all
analysis in this subsection. This is to account for the bound
group of satellites consisting of NGC147, NGC185 and And
XXX (henceforth the NGC147 group). Since we suspect that
these satellites orbit M31 as a group and since they all lie
along the apparent plane identified in Fig. 1, it is preferable
to treat the group as a single object when we are not con-
cerned with measurements of the significance of particular
planes. To do this, we take the luminosity weighted centre
as an approximation for the center of mass, and treat this de-
termined position as though it were the location of a single
satellite. To calculate the luminosity weighted center, we can
ignore the contribution from And XXX since it is negligible
compared with the contributions of the two dwarf ellipticals.
From the Third Reference Catalogue of Bright Galaxies (de
Vaucouleurs et al. 1991), NGC185 is 0.2 magnitudes brighter
than NGC147 in the V-band. Each time the NGC147 group is
chosen as one of the ‘satellites’ for a combination, distances
to each of NGC147 and NGC185 are sampled from their re-
spective distributions and the luminosity weighted center of
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Fic. 9.— Asymmetry probability distributions. The top two histograms plot probability distributions for the greatest number of satellites that can be found
in one hemisphere, as generated from (a) 200,000 samplings of satellite positions possible from the data and; (b) the average of 1000 samplings from each of
10,000 random realizations of the satellites generated as per §2.2. Figures (c) and (d) give the equivalent distributions when the maximum asymmetry plane is
replaced with the fixed M31 tangent plane. As for Fig. 5, the histograms in the right-hand column should only be compared with the average of the corresponding
histogram in the left column. The average value of the histograms of (a) and (c) are shown in (b) and (d) respectively as a dashed line.

the group is determined. As for any other combination, this
position, along with all other satellites in the combination, is
sampled 100 times.

The results of applying the above procedure to all combi-
nations of 3, 4, 5, 6 and 7 satellites that can be drawn from
the total sample is presented in Fig. 10. The left-hand column
shows the fit to the most planar combination determined from
the best-fit positions whilst the right-hand column shows the
corresponding pole density plots for all combinations of that
particular number of satellites, based on 100 samples of each
combination as per the discussion above. It is noteworthy that
the best-fit planes to the most planar combinations are almost
identical in every case, except for that of the 3 satellite com-
binations, where the RMS values are so small for so many
combinations as to make this result not particularly impor-
tant. It should also be noted that these best-fit planes trace
out the same approximate great circle as the prominent plane
indicated in Fig. 1, a result that shall be investigated a little
later in §3.4. It is particularly interesting that the pole shared
by each of these planes, located at I3 —80°, bz ~ 40°
corresponds to a pole count maximum in each of the pole
plots. This indicates that many of the satellite combinations
are aligned along this plane, hence further suggesting that the
plane applies to more satellites than the combination sizes
tested here. The other, lower latitude principle maximum in
the pole plots is that corresponding approximately to the best
fit to all the satellites and hence it grows more prominent in
the plots made from larger combination sizes as discussed ear-
lier.

Besides the pole count maxima that are strongly indicative
of a highly planar subset of satellites, the other principle fea-
ture of the pole plots in Fig. 10 is the great circle along which

~

the pole count density is highest. This great circle is very
prominent but great caution must be exercised in attributing
any significance to it. It is centered on the Milky Way in-
dicating that the constituent poles result from a majority of
satellites lying along the Earth to M31 line of site. But this
reflects the anisotropy predicted from Fig. 2, the result of the
bias incurred by the finite area of the PAndAS survey. Hence
it would seem that the progenitor of this prominent great cir-
cle is not physical but rather the result of selection effects. To
further investigate the significance of the patterns observed in
the pole plots, 1000 random realizations of 25 satellites were
generated as per §2.2, and a similar pole count analysis per-
formed on each of them. Specifically, the pole density distri-
bution resulting from the best fit planes to all combinations
of 5 satellites was generated for each of them. The resulting
pole plots for 8 of the 1000 random realizations (chosen at
random) are presented in Fig. 11 along with an enlarged ver-
sion of the equivalent plot from Fig. 10 generated from the
real distribution. A bias toward a similar high-density great
circle is indeed observed in these plots, but the plot generated
from the actual data features a conspicuously narrower great
circle, and a much more constrained distribution in general.
This appears to be primarily the result of the large fraction of
satellites that lie along the prominent plane that is repeatedly
identified and plotted in the left-hand column of Fig. 10. It
should also be noted that this plane, whilst being oriented per-
fectly edge-on with respect to the Earth, contains a significant
fraction of satellites lying well outside the region of the M31
sky where the detection bias is large, and hence it is unlikely
that its prominence is due to our observational constraints.
Figure 12 provides for a comparison between the concen-
tration of poles around the principle maximum in the pole dis-
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Fic. 10.— Best fit planes and pole density maps for combinations of 3 through 7 satellites. The left-hand column shows the best-fit plane through the combination
of satellites that can be fit with the lowest RMS. Satellites included in the best-fit combination are colored red. The centre of the NGC147 group is marked with
a circle, and lies on the best-fit plane in every case. The three members of this group are colored orange. Only the best-fit satellite positions are considered for
these plots. The right-hand column shows the corresponding pole density plot for the poles of all satellite combinations. These plots have been weighted by the
RMS of each pole and fully account for the uncertainty in the satellite positions.
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Fic. 11.— Pole density maps for 8 random realizations of 25 satellites. The maps plot the poles for the best-fit planes to all combinations of 5 satellites. The
contribution of each pole is weighted by the RMS of the plane it represents. The map resulting from all combinations of 5 satellites drawn from the real data is
shown again at the top for comparison.
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tributions of the actual satellite distribution and the average of
the 1000 random satellite distributions. From line (a) in Fig.
12 we see that 21.5% of all combinations of the actual satel-
lite positions are fitted by a best-fit plane with pole within 15°
of the principal maximum (located at ly;3; = —78.7°,by3; =
38.4°). This is in stark contrast to the 12.0% that lie within
15° of the principal maximum for the average random real-
ization of satellite positions (Fig. 12 line (b)). Furthermore,
we find that only 117 of the 1000 random realizations exhib-
ited the degree of concentration of poles within 15° of the
principal maximum that was observed for the actual satellite
distribution. Hence it would seem that a large percentage of
satellite combinations are fitted by best-fit planes that all have
strikingly similar orientations when compared with what one
could expect from a random distribution of satellites. Again,
this points toward a significant plane of satellites that includes
a large fraction of the whole satellite sample.

Cumulative Prabability

0 2 4 6 8 10 12 14

Degrees

Fig. 12.— Radial density profiles showing the percentage of all poles ly-
ing within n degrees of the densest point in the pole count distributions (the
principal maximum) for a) the actual satellite distribution and b) the aver-
age of 1000 random satellite distributions. The profile for the actual satellite
distribution is generated from the same pole distribution as illustrated for 5
satellites in Fig. 10 and at the top of Fig. 11. Note that the relative linearity
of (b) compared with (a) is simply a result of the averaging of a large number
of individual profiles undertaken to produce the former.

In order to obtain a better understanding of the satellites that
this plane consists of, it is of particular interest to explore the
number of times each satellite is included in a combination
that is best fit by a plane with pole in close proximity to the
principal maximum in the pole distribution for the entire sam-
ple. Once again, we use the pole distribution for all combina-
tions of 5 satellites, and we count the number of times each
satellite contributes to a pole within 3° of the principal maxi-
mum at [y;31 = —78.7°, by;z; = 38.4°. The counts are divided
by 100 to account for the 100 samples that are taken of each
combination. The result can be seen in Fig. 13. From this fig-
ure, it can be seen that the main contributors to the principal
maximum in pole counts are those same satellites identified
as forming a prominent plane in Fig 1, namely Andromedas I,
XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and the
NGC147 group, along with Andromeda III and Andromeda
IX. Hence the conclusion of our analysis thus far must be
that there is indeed a significant plane in the satellite distri-
bution of M31 and that it broadly consists of the aforesaid
satellites. We therefore investigate the numerical significance
of the best-fit plane to these satellites in §3.4. As yet there

is still more to be gleaned from a study of the pole density
distribution however.
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Fic. 13.— Histogram showing the relative contribution of each satel-
lite to the pole density within 3° of the principal maximum at ly3; =
—78.7°, by = 38.4°. The histogram is generated from the same pole distri-
bution as illustrated for 5 satellites in Fig. 10 and at the top of Fig. 11.

From Fig. 13 we have been able to determine the principle
contributing satellites to the principal maximum in the pole
density distribution, but what of the remaining satellites? Do
the positions of these satellites follow any particular trend?
The best way to determine this is to construct pole density
plots of the two halves of the complete sample, namely the
major contributors to the principal maximum and the minor
contributors. The resulting pole plots are presented in Fig.
14.

The left-hand plot of Fig. 14 shows the pole density dis-
tribution generated from the major contributing satellites to
the principal maximum at I3, = -78.7°,bys; = 38.4°.
This half-sample includes Andromedas I, III, IX, XI, XII,
XIII, XTIV, X VI, XVII, XXV, XXVI, XXVII and the NGC147
group. As expected, this plot reflects the existence of the
aforementioned plane with all combination poles lying in
the vicinity of the principal maximum. The right-hand plot,
with poles generated from the remaining 12 satellites, namely
Andromedas II, V, X, XV, XVIII, XIX, XX, XXI, XXII,
XXII, XXIV and M33, paints a very different picture how-
ever. There is a much greater spread in the distribution of
poles, with the great circle induced by the survey area bias
once again conspicuous. Also prominent in this plot are 2
density maxima with their corresponding mirror images in the
opposite hemisphere. The maximum lying midway between
Andromedas XIX and XX lies very close to the pole of maxi-
mum detection bias at /y;3; = —90°, by31 = 0° and so it is not
unexpected, now that the prominent plane of satellites is ef-
fectively removed from the distribution. The elongated max-
imum passing through /31 ~ 45°,by3; = 45° is more inter-
esting however, and suggests the possibility of a second plane,
roughly orthogonal to the major plane represented in the left-
hand plot, though much less conspicuous. The planes repre-
sented by this maximum pass close to the error trails on the
M31 sky of Andromedas II, III, XIX, XX, XXIII and XXIV.
This maximum is faintly discernible in the pole distribution
for combinations of 6 satellites presented in Fig. 10 but is no
more pronounced than anywhere else along the high-density
great circle in any of the other pole plots. On account of this, it
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FiG. 14.— Pole density distributions generated from all combinations of 5 satellites possible from: Left) the satellites contributing significantly to the principal
maximum at /31 = —=78.7°, byz; = 38.4° as per Fig. 13 and Right) the remaining 12 satellites.

would appear that this plane is likely no more significant than
one would expect to find from a random satellite distribution
subject to the same detection biases, such as those illustrated
in Fig. 11.

3.4. A Great Plane of Satellites

Throughout the investigation undertaken thus far, all evi-
dence has repeatedly pointed toward a conspicuously planar
sub-set of satellites consisting of roughly half the total sam-
ple of satellites. Andromedas I, XI, XII, XIII, XIV, XVI,
XVII, XXV, XXVI, XXVII and XXX as well as the dwarf
ellipticals NGC147 and NGC185 all appeared to lie along a
plane in Fig. 1. The reality of this co-planarity was veri-
fied in §3.3 and in particular Fig. 13, which also suggested
that Andromeda III and Andromeda IX should be considered
as plane members. Hence it is of great interest to ascertain
whether this ‘great plane’ is in fact significant. To do this, it
is necessary to determine how likely such a plane is to arise
from a random satellite distribution subject to the same selec-
tion biases. The plane itself and the satellites of which it is
constituted are illustrated in Fig. 15. The plane shown is that
calculated from the best-fit satellite positions and has equa-
tion of the form: 0.158x + 0.769y + 0.620z = 0 with pole at
(Iyz1, byz) = (=78.4°,38.3°). Note that for this section, we
re-instate NGC147, NGC185 and Andromeda XXX as sepa-
rate objects since we are again concerned with measurements
of the significance of the planarity of the distribution. Our
‘great plane’ thus consists of 15 satellites out of the entire
sample of 27.

Using the method of §2.2, we again generate 10, 000 inde-
pendent random realizations of 27 satellites and seek the most
planar combination of 15 satellites from each. For each ran-
dom realization, we sample 1000 possible positions for each
satellite as in previous sections and take the average value for
the RMS of the best fit plane through the most planar com-
bination. Since there are more than 17 million ways that 15
satellites can be drawn from 27, and since we are not con-
cerned with the orientation of each fitted plane as we have
been in all previous sections, we depart from the plane fit-
ting method of §2.1 for this section and instead proceed as
follows. For each sample of satellite positions from each re-
alization, 10, 000 randomized planes are generated and the 15
closest satellites of the 27 to the plane are stored in each case
and the RMS recorded. The lowest RMS achieved is hence
taken to be that for the most planar combination of 15 satel-
lites in the sample. These minimum RMS values from each of
the 1000 samples of the particular random realization are then
averaged to provide the best representation for the realization,

Fic. 15.— A Great Plane of Satellites consisting of Andromedas I, III, IX,
XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII, XXX, NGC147 and
NGC185. The plane shown is that derived from the best-fit satellite positions.
The pole is located at (Iy31, byz1) = (—78.4°,38.3°).

given the distance uncertainties. Fig. 16 provides probabil-
ity distributions in the RMS for the observed ‘great plane’ (a)
together with those for the average RMS for the most planar
combination from each random realization (b). The average
RMS for the observed plane is plotted in (b) for comparison.

As can be seen from Fig. 16, the RMS for the observed
plane is very low compared to what one could reasonably ex-
pect from a chance alignment. Indeed, the average RMS of
12.58 kpc for the observed plane is found to be equalled or
exceeded in only 36 out of the 10,000 random realizations.
The chances of obtaining such a planar group of 15 satellites
from a sample of 27 at random is thus estimated as 0.36%.
Hence we can conclude from this test that the observed plane
is very unlikely to be a chance alignment, but rather the re-
sult of some underlying physical mechanism. Note that an in-
dependent but equivalent investigation is presented in ILC12
where such an alignment is found to occur in only 0.15% of
instances. This is due to the larger central obstruction adopted
in that analysis (19.6 vs. 7.9 sq. deg.) which rejects more
satellites in close proximity to the plane pivot point (M31)
where small plane distances are most likely.

4. DISCUSSION

Throughout the analysis conducted in §3, the presence of
a prominent plane of satellites has been a consistent feature.
This is not the first time that a significant plane of satellites
has been identified from among the denizens of the M31 halo
however. Koch & Grebel (2006) identified a highly signif-
icant plane lying within 5° to 7° of being polar. Further-
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Fic. 16.— Determining the significance of the observed ‘great plane’ of
satellites (see Fig. 15). Figure (a) gives the distribution of possible values
of the RMS obtainable from 200,000 realizations of possible positions of the
15 plane members, given their respective distance probability distributions.
Figure (b) plots the average RMS of the best fit plane through the most planar
combination of 15 satellites for each of 10,000 random realizations of 27
satellites. These satellites are subject to the same selection biases as the real
data. As for Fig. 5, histogram (b) should only be compared with the average
of histogram (a), which is plotted in (b) as a dashed line. It is thus clear
that the planarity observed for our ‘great plane’ of satellites is very unlikely
to arise by chance. The lo (68.2%), 90% and 99% credibility intervals are
shown as red, green and blue lines respectively.

more, they identify a subset of 9 satellites from this plane
lying within a thin disk with an RMS of 16 kpc. Metz,
Kroupa, & Jerjen (2007) and later Metz, Kroupa, & Jerjen
(2009) similarly identify a disk of satellites, this time not
so markedly polar, with pole (in our coordinate system) at
(Imz1, bauzr) = (=70.2°,32.9°). They find this disk to have
an RMS height of 39.2 kpc. This disk is clearly the same
structure that we identify here, being tilted by only 8.6° with
respect to our ‘great plane.” Our plane is found to have a
much smaller RMS of just 12.34*(73 kpc however, despite
including a comparable number of satellites. It is particu-
larly noteworthy however, that their satellite sample is sig-
nificantly different to that used here, with their disk including
M32, NGC205, IC10, LGS3 and IC1613 - all of which lie
outside the portion of the PAndAS survey region used in this
study (see Fig. 10 (c) of CIL12). Indeed, it is clear from Fig. 4
of McConnachie & Irwin (2006) that the galaxies M32,1C10,
LGS3 and IC1613 all lie along the same great circle as our

‘great plane’ in Fig. 15, as do their entire error trails. Their
conformity along with Andromeda I to a thin disk is noted in
the said paper as one of 8 possible ‘streams of satellites,” thus
providing another early detection of the plane identified by
this study. Majewski et al. (2007) also draw attention to the
linear distribution of many of the plane-member satellites on
the sky, a consequence of the edge-on orientation of the plane
as indicated by the present study. The plane of Metz, Kroupa,
& Jerjen (2009) does however include a significant number of
satellites that, whilst included in our sample, we exclude due
to their looser association with our plane. This then accounts
for the much smaller RMS height observed in our study.

Unlike previous studies of the M31 satellite system, we
have a significant advantage in this study on account of the
greatly improved sample of satellites available to us. Our
sample is not only more numerous, but the positions are all
determined via the same method applied to the same data
as per CLII1 and CIL12. We are thus afforded unprece-
dented knowledge of the satellite detection biases, as well
as the uncertainties in the object positions and have factored
this knowledge into the analysis. An understanding of this
bias is of particular importance when it comes to ascertaining
the significance of any substructure identified, since a phys-
ically homogeneous satellite distribution will inevitably ap-
pear anisotropic after ‘folding in’ the selection function and it
is important that we do not attribute physical significance to
this anisotropy.

Even after taking these effects into account however, there
can be little doubt that the plane described in §3.4 is a real
physical object. The component satellites extend well into the
regions of low detection bias in Fig. 2 and the analysis of the
last section makes it clear that such a thin disk of satellites has
very little chance of arising within a random satellite distribu-
tion of the same size, even when subject to the same obser-
vation biases. Furthermore, it should be noted that the study
of the plane’s significance in §3.4 is likely to be conserva-
tive, given that if the satellites M32,1C10, LGS3,1C1613 and
NGC205 were to be included in the analysis, the significance
of our observed plane would likely grow still further. What
is also particularly interesting is that subsequent research has
shown 13 of the 15 objects to be co-rotating. This result is
discussed in more detail in ILC12.

What then could be the progenitor of this ‘great plane’?
The polar orientation one might expect to arise had the satel-
lites formed within the dark matter halo or had the dynamical
friction proposed by Quinn & Goodman (1986) had sufficient
time to take effect is not observed. Similarly, the findings
of Metz et al. (2009) seemingly preclude the possibility that
the structure might be the result of the accretion of an ex-
ternal galactic association. Furthermore, there is apparently
no marked distinction in the metallicities of the disk mem-
bers compared with the non-disk members as one might ex-
pect from this scenario. There remains however the possibility
that the satellites trace out the tidal debris of a galaxy merger.
This is a particularly interesting possibility, especially since
the plane, when projected onto the M31 tangent plane, is in
close alignment with the Giant Stellar Stream. Indeed, Ham-
mer et al. (2010) show that the Giant Stellar Stream could
feasibly be the product of a major merger event that began
around 9 Gyr ago, sustained by the returning stars from a tidal
tail oriented similarly to our ‘great plane.’

The observed asymmetry of the system does however pose
a problem for this scenario. It is of particular interest that, of
the 13 co-rotating satellites in the plane, all but one lie on the
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near side of the M31 tangent plane. Indeed, if we removed all
of the plane member-satellites from the system, the remaining
satellite distribution would no longer be significantly asym-
metric. With almost all of the satellites currently on the near
side of M31, it would seem that the progenitor event could not
have occurred substantially more than a typical orbital time
ago or else the satellites would have had sufficient time to dis-
perse. This suggests the event responsible must have occurred
within the last 5 Gyr. Another plausible alternative is that a
strong drag is induced on the orbiting satellites by an over-
density in the dark matter halo broadly lying along the Milky-
Way-to-M31 separation vector. The result is analogous to gas
passing through a galaxy’s spiral arms. This scenario would
account for the direction of the asymmetry but would lead to
rapid orbital decay however and hence again would imply that
the structure is relatively short lived. In any case, how such a
thin rotating structure could survive for an extended length of
time in a traditional triaxial dark matter halo remains unclear.

There is also another striking characteristic of the observed
plane. As one will note from examination of Fig. 15 (and in-
deed the left-hand column of plots in Fig. 10), it is oriented
perfectly edge-on with respect to the Milky Way. Whilst there
is a noted bias toward detection of satellites positioned along
planes oriented in this way, it must be remembered that this
bias arises primarily due to the propensity for detecting satel-
lites close to the line of sight passing through M31. Many of
the satellites observed to lie on our plane are located a good
distance from this line of sight however and well into the low-
bias portions of the M31 sky. In any case, the random re-
alizations of §3.4 suffer from the same biases and yet show
unequivocally that the observed plane is very unlikely to arise
by chance. Hence if we are to accept these results, we must
also accept the plane’s orientation.

Further to this strikingly edge-on orientation, it is also note-
worthy that the plane is approximately perpendicular to the
Milky Way disk. This fact can be easily seen if the con-
stituent satellites are traced out in Galactic coordinates (i.e.
all lie on approximately the same Galactic longitude). This
of course raises the question - how does the orientation of the
Milky Way’s polar plane of satellites compare with this plane?
Noting that the average pole of the ‘Vast Polar Structure’ de-
scribed by Pawlowski, Plamm-Altenburg, & Kroupa (2012B)
points roughly in the direction of M31, the two planes are
approximately orthogonal. These precise alignments are dis-

cussed in more detail in ILC12, but suffice to say here that
this alignment is particularly interesting and suggests that the
Milky Way and M31 halos should not necessarily be viewed
as fully isolated structures. It is entirely conceivable that our
current ignorance as to the coupling between such structures
may be to blame for our inability to pin down the precise
mechanism by which such planes arise.

5. CONCLUSIONS

It is clear that whilst the satellites of M31 when taken as a
whole are no more planar than one can expect from a random
distribution, a subset consisting of roughly half the sample is
remarkably planar. The presence of this thin disk of satel-
lites has been conspicuous throughout the analysis contained
in this paper. The degree of asymmetry determined from the
satellite distribution is also found to be relatively high. Of
particular note, the orientation of the asymmetry is very sig-
nificant, being aligned very strongly in the direction of the
Milky Way. When this fact is combined with the apparent or-
thogonality observed between the Milky Way and M31 satel-
lite distributions and the Milky Way disk, it appears that the
two halos may in fact be coupled. Regardless, the great plane
of satellites identified in this study, and its clear degree of
significance, provides persuasive evidence that thin disks of
satellites are a ubiquitous feature of galaxy dark matter halos.
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PAPER III: THE THREE DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM;
112 STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES




“We live in a changing universe, and few things are changing faster

than our conception of it.”

Timothy Ferris, "The Whole Shebang” (1997)

Conclusions

The contribution to the field of galactic archaeology embodied in this work has essentially
been twofold. Firstly, a robust new technique has been developed for ascertaining distances
via the tip of the red giant branch, a technique which is stand-alone in terms of its diverse
applicability. Secondly, this technique has been applied to the satellite system of M31 to re-
veal an inhomogeneous structure which is somewhat at odds with our current understanding

of galaxy formation. The key outcomes of the thesis are summarized as follows:

I A powerful new Bayesian technique has been developed for determining the distance
probability distribution of an object from the tip of its red giant branch. The technique
is best suited to older, metal poor structures that are sufficiently close as to facilitate
accurate photometric measurements to a depth exceeding that of the RGB tip by at least

0.5 magnitudes.
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IT A ‘density’ matched-filter has been developed to compliment the technique of I. This
matched filter was developed specifically for the satellite galaxies of M31 and as such, is
not applicable to extended structures (such as streams). It effectively acts to improve the
contrast of the RGB tip in the object’s luminosity function by weighting the component

stars with respect to their position within the object’s density profile.

III An angle-specific density prior has been devised specifically for the M31 halo and in-
corporated into the technique of I. It effectively equates each position along the line
of sight to one of the satellites with some probability, based on the assumed sub-halo

density at the associated radius from the center of the halo.

IV Accurate distance probability distributions have been obtained for 27 of the satellites of
M31 as well as for M31 itself via incorporating the priors of II and III into the technique
of L.

V The distance distributions of IV have been converted into M31-centric 3D positions,

providing the largest homogeneous sample of satellite galaxy positions for any galaxy

halo.

VI The M31 satellite distribution has been found to be approximately isothermal. When
the 15 most Gaussian distance distributions are considered, the satellite density profile

is found to follow a power law with p(r) oc r™® where @ = 1.8704.

VII The satellite distribution as a whole has been shown to be no more planar than one

would expect from a random distribution of points.

VIII A large subset of the satellites, 15 out of the total sample of 27, has been found to be
remarkably planar, with a root-mean-square thickness of just 12.34*57% kpc. The prob-
ability of obtaining such a large, thin structure in a random distribution of equal size is
found to be only 0.36%. The orientation of this plane is intriguing. It is found to lie al-
most perfectly edge-on with respect to the Milky Way, and approximately perpendicular
to the Milky Way disk. It is also roughly orthogonal to the planar distribution of satel-
lites regularly reported for the Milky Way, and 13 of the 15 satellites have subsequently

been identified as co-rotating.
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IX The asymmetry of the distribution as a whole has been shown to be considerably larger
than one would expect by chance. After factoring in the uncertainty in the satellite
positions, it is most likely that the sample can be divided such that 23 of the 27 satellites
all lie in a single hemisphere. The probability of the observed asymmetry arising in a

random distribution is 4.22%.

X The asymmetry about the M31 tangent plane has been found to be particularly high,
with 20 of the 27 satellites most likely lying on the Milky Way side. The probability
of the observed degree of asymmetry about this plane arising by chance is just 0.46%.
It is noteworthy that if the 15 satellites belonging to the plane of VIII are omitted, the

asymmetry about the M31 tangent plane is no longer significant.

In light of the above outcomes, there are several avenues of future investigation that war-
rant attention. The first concerns the future application of the RGB tip finding technique in its
current form. The PAndAS survey region is awash with the relics of past accretion events and
is the obvious starting place. There are many streams of stars that are well within reach of the
technique. Furthermore, it should be possible to divide most of these streams into segments
and obtain distance measurements to each individually. The result would be the effective
conversion of the key structures of the PAndAS survey into a three dimensional network of
streams and interspersed satellite galaxies. This would facilitate a study of unprecedented
scale into the distribution of mass within the M31 halo.

The RGB tip finding technique is of course also readily applicable to the denizens of
the Milky Way halo. There are more than 25 satellite galaxies and more than 150 globular
clusters that orbit within the halo of our own galaxy. Distance measurements already exist
for almost all of them, but there would be significant advantages to a sample of distances
obtained via the systematic application of a single measurement technique.

In addition to the possible future applications of the tip finding technique, there are also a
variety of means by which it might be improved. In particular, the method in its current form
is most suited to more metal poor structures where there is minimum variation of the i-band
tip luminosity with metallicity. The method could be made more versatile by replacing the

one-dimensional model of the object’s luminosity function with a two-dimensional model
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of its CMD. Following this approach, stellar isochrones could be incorporated to model the
correct form of the object’s red giant branch in colour-magnitude space, making the method
more robust in its treatment of more metal rich objects, and those containing more than one
stellar population. Along similar lines, one could also apply a matched-filter to the object’s
CMD. This could be achieved by fitting a 2D surface to the object’s CMD and dividing it by
that fitted to the CMD of a suitable comparison (background) field, creating an effective ‘flat
field’ tailored to suit the object. Each star in the object’s CMD could thus be weighted by its
probability of being a true member of the object’s red giant branch.

The structure of the M31 satellite distribution as revealed by this study, also presents
a number of opportunities to further our understanding of the local universe. The most
immediate course to pursue would seem to lie in the application of this knowledge to a new
study of the galaxy’s mass distribution via modeling of its rotation curve. The plane of co-
rotating satellites (VIII) provides the perfect starting point for such a study. With the plane
fortuitously aligned edge-on with respect to the Earth, it will be possible to calculate the
tangential component of the satellites’ orbital velocities directly from the radial velocities
via simple trigonometry. Thus, if the satellites are approximated to follow circular orbits, it
will be relatively straightforward to obtain probability distributions for the mass enclosed by
each satellite orbit, and in so doing, extend the known M31 rotation curve significantly. It
would also be possible to obtain estimates of the enclosed mass for the non-plane members
via a maximum likelihood approach, after marginalizing over the two tangential components
of the orbital velocity.

More than anything else, this study has highlighted the limitations of existing theories of
galaxy formation and evolution. It is very difficult to explain how such a large, thin structure
as that identified in VIII can remain intact for any length of time, let alone how it came to
exist in the first place. Add to that the bizarre orientation and the high degree of asymmetry,
and we are left with an intriguing enigma. The onus then is on unlocking this enigma, for in
so doing we shall undoubtedly learn a great deal about galaxy evolution and M31’s past, as

well as that of our own galaxy.



An Introduction to the Appendices

As a PhD student, perhaps 90 % of my time has been occupied with the development of pro-
grams (principally in Fortran) designed to perform the analysis necessary for my research.
In this sense, the written component of the thesis really is just the tip of the iceberg, and it
therefore seemed both fitting and rather useful to record some of the source code for refer-
ence. When I embarked to do this however, I did not realize the shear volume of code I had
amassed and subsequently found it necessary to condense the code substantially. The code
that is presented in these appendices therefore represents only a fraction of all the programs
written during my PhD candidature. Nevertheless, I have endeavored to reproduce here the
most important programs and subroutines in as logical a way as possible and with minimum
repetition. Each appendix is devoted to code pertinent to a particular chapter, and each pro-
gram is introduced with a brief description of its purpose and functionality as well as a link to
the thesis content to which it relates. Note that some of the programs make a very localized
contribution to the material presented in the thesis while others are much broader in scope
and may apply to a number of chapters. Many subroutines have also been omitted either to
avoid repetition or to remove portions of code which are secondary to the principal function-
ality of the parent program. In summary, it is intended that the programs presented in these
appendices serve to provide further clarification of the precise way in which the analysis
discussed in the thesis has been implemented. The code is not intended for ready implemen-
tation on other systems and hence may in many instances require substantial modification to
be usable. All code is however well commented and should be reasonably intuitive even for

those not well acquainted with Fortran.
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120 CHAPTER Two PROGRAMS

Program: EdgeFinder7.f95

Creation Date: 3 September 2009

Relevant Section: 2.2

Notes: This program represents one of my earliest investigations into potential TRGB-
finding algorithms. It is really a number of stand alone algorithms rolled into one program.
An artificial ‘kink’ is induced in a simple luminosity function and this kink is sort out by
a number of methods: 1. By fitting a polynomial to the data and finding where the second
derivative of that polynomial has the largest absolute value; 2. By Finding the largest pos-
itive gradient between two neighboring bins of the luminosity function and; 3. By taking
the angle subtended by each subsequent set of 3 luminosity function bins. The identified

location of the tip is outputted along with the value of the particular measurement statistic.

PROGRAM EdgeFinder
IMPLICIT NONE

!A polynomial of degree ma — 1 is fitted to the read—in data and a ’.p’ file is
!generated so that the read—in data can be instantly plotted using gnuplot along
!with the fitted polynomial. The RandReal subroutine then generates a mock data

!'set based on the fitted polynomial and the d2ydx2max subroutine finds where the
!maximum rate of change of the gradient occurs which is symbolic of an ’edge’

!or sudden discontinuity in the fitted polynomial.

!Later adapted to use pgplot

INTEGER :: ma,mp, ndata ,ndat,np

parameter (np = 20)

parameter (mp = 1000)

parameter (ndat = 1000)

parameter (ma = np)

DOUBLE PRECISION :: chisq ,a(ma),sig(ndat),u(mp,np),v(np,np).,w(np),.x(ndat)
DOUBLE PRECISION :: y(ndat), z(ndat), integral_max , dummy, e(ndat), f(ndat)
EXTERNAL :: funcs

INTEGER :: ios, i, j

integer :: ma.max,ma_used
parameter (ma.max=100)

DOUBLE PRECISION :: pass_a(ma.max)
common/ pass_block2/pass_a, ma_used

ma_used=ma

x=0. ; y=0. ; z=0. ; sig=0.00001

OPEN (unit = 1, file = ’luminosity_function2.dat’, status = ’old”)

OPEN (unit = 2, file = " Iffit.dat’, status = ‘unknown’)

i=0

DO WHILE (.TRUE.) !Reads data until end of input file and puts it into arrays
i=i+l

READ (1, =, IOSTAT = ios) dummy,x(i).dummy, dummy, dummy, dummy, y(i)
if (ios == 0) then ;
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else if (ios == —1) then ;
i=i-1
exit
else if (ios > 0) then ;
i=i-1
cycle
end if
x(i) = x(i)/5.
IF(x(i) > -0.2) then
i=i-1
else if (abs(x(i)).1t.0.1) then

! i=1i-1

end if

END DO

DO j =1, i !'Outputs exclusively the chosen data to *I1ffit.dat’
WRITE (2, *(2ES20.5)") x(j), y(j)

END DO

ndata=i

CALL svdfit(x,y,sig.ndata,a,ma,u,v,w,mp,np,chisq,funcs) !SVD fitting program

do j=1,ma

pass-a(j)=a(j)

end do
PRINT *, a
OPEN (unit = 3, file = 7Iffit.p”, status = ’unknown’)

CALL RandReal(ma, a, x, i, sig, ndata, u, v, w, mp, np, chisq, funcs)

!CALL d2ydx2max(ma, a)

END PROGRAM EdgeFinder

SUBROUTINE RandReal (ma, a, x, i, sig, ndata, u, v, w, mp, np, chisq, funcs)

!Random realization mock data generator

INTEGER :: ma, i, q, 1, val, ndat

PARAMETER (val = 200)

PARAMETER (ndat = 1000)

INTEGER :: idum = 0

DOUBLE PRECISION :: a(ma), area, max.x(ma + 1), min.x(ma + 1), x(i)
DOUBLE PRECISION :: ranl, randnum, sig(ndat), u(mp,np),v(np,np).,w(np)
DOUBLE PRECISION :: b(ma + 1), rtr(ma), rti(ma), chisq

DOUBLE PRECISION :: mock-x(val), mock.y(val), mock_y_-at_l(ma)

OPEN (unit = 1, file = "mockdata.dat”, status = “unknown’)

OPEN (unit = 2, file = ”"mockdata.p”, status = “unknown’)

DO q =1, ma

b(g+1) = a(q)/q ! Transfers from coefficients of p(x) to those of integral

END DO
b(l) =0
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DOq=ma+ 1, 1, -1 ! Calculates the variable “area’ — the
min_x(q) = b(q) * x(i)=x(q-1) larea under the polynomial between
max_x(q) = b(q) * x(1)=*x(q-1) !x(1) and x(i) — i.e. the range of the

END DO lintegral for the chosen x—value

area = SUM(max_x) — SUM(min_x) !domain .

DO q =1, val
randnum = ranl (idum)

b(l) = —(SUM(min-x) + randnum x area) !Generates a random y value between the value of the integral at x(1) and at x(i).
CALL zrhqr(b,ma, rtr ,rti) ! Finds roots of integral for given y value
DO1 =1, ma
IF(rti(l) == 0.) THEN ! Only use the real roots
IF(rtr (1) .gt. MINVAL(x)) THEN !Make sure the chosen root
IF(rtr (1) .1t. MAXVAL(x)) THEN !is in the domain used
mock_x(q) = rtr(l)
END IF
END IF
END IF
END DO

END DO

DO q =1, val
DO1 =1, ma

mock_y_at_1(1) = a(l) % mock.x(q)*=(1-1)
END DO
mock_y(q) = SUM(mock_y_at_1)
WRITE (1, *(2ES20.5)’) mock-x(q)., mock-y(q)

END DO

WRITE (2,%) ’plot.\’ !'Prints fitted

DO j = ma, 2, -1 !'polynomial to
WRITE (2 ,%) a(j), Tsoxss’, j—1, "+.\7 ta ’.p’° file for

END DO !'plotting with

WRITE (2,%) a(l), “title.’’svdfit’’,.”mockdata.dat”’ !gnuplot

CALL Kink (ma,a,mock-x ,mock.y, val ,sig ,ndata ,u,v,w,mp,np,chisq ., funcs)

END SUBROUTINE RandReal

|

SUBROUTINE Kink (ma,a, mock_x ,mock.y, val ,sig ,ndata ,u,v,w,mp,np,chisq , funcs)

!Generates a new set of mock data points with a kink at offset of 0.25

INTEGER :: val, q, ma, 1, h, ndat, ndata, ios = 0

PARAMETER (ndat = 1000)

DOUBLE PRECISION :: a(ma), mock.x(val), mock_.y(val), e(ndat), f(ndat)

DOUBLE PRECISION :: shift_x(val), shift_y(val), shift_y_at_l(ma), new_y(val)

INTEGER :: mp, np

DOUBLE PRECISION :: chisq,sig(ndat),u(mp,np),.v(np,np) ,w(np)

EXTERNAL :: funcs

DOUBLE PRECISION :: ypl,ypn,ya2(ndat),x,y, der_abs(ndat)

INTEGER :: indx(ndat)

DOUBLE PRECISION :: xa(ndat), ya(ndat)

OPEN (unit = [, file = "kink.dat”, status = ‘unknown’)

DO q = 1, val !
shift_x (q) = mock.x(q) + 0.25 ! Offsets mockdata
DO =1, ma talong x—axis by 0.25
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shift_y_at_1(1) = a(l) % shift_x(q)*=(1-1) land then adds these
END DO !'new mock data points
shift_y (q) = SUM(shift_y_at_1) !to the poly fitted
new.y(q) = (mock.y(q) + 5.0«MINVAL(mock.y)) + shift_y(q) !to the previous ones.
WRITE (1, %) shift_.x(q), new.y(q) ! 5«MINVAL( mock-y )
END DO !'makes large kink.

DO q =1, val !
IF (mock_x(q) .l1t. MINVAL(shift-x)) THEN !Outputs original mockdata points

WRITE (1, %) mock_-x(q), mock_y(q) !for mock_x points less than the
END IF !minimum shift_x value.
END DO !
REWIND( 1)

e=0.; f=0.;h=0
DO WHILE (.TRUE.) !Reads data until end of input file and puts it into arrays
h=h+1
READ (1, =, IOSTAT = ios) e(h), f(h) !i.e. Read shift_x(q), new_y(q)
if (ios == 0) then ;
else if (ios == —1) then ;
h=h-1
exit
else if (ios > 0) then ;
h=h-1
cycle
end if
END DO

ndata = h

CALL indexx (ndata ,e,indx) !Creates array indx(l:ndata) whose elements are

lindicies to the elements of e in chronological order

DO j=1,ndata !
xa(j)=e(indx(j)) !Makes xa and ya equal to the ordered versions of
ya(j)=f(indx(j)) le and f respectively.

write (x,%) xa(j), ya(j)
END DO
WRITE (*,%) MINVAL(xa), MAXVAL(xa), MINVAL(ya), MAXVAL(ya)

call pgbegin(0,’?°,1,1)

call pgenv(REAL(MINVAL(xa)), REAL(MAXVAL(xa)), &
0., REAL(MAXVAL(ya)), 0, 0)

call pgpt(ndata, REAL(xa), REAL(ya), 1)

call pgend

!CALL PolyTest(xa,ya,sig,ndat,ndata,a,ma,u,v,w,mp,np,chisq,funcs)
CALL SplineTest(xa,ya,ndata ,mock.x, val)

CALL GradTest(xa, ya, ndata, mock.-x, val)

CALL AngleTest(xa, ya, ndata, mock-x, val)

CALL LegPrint(ma, a)

END SUBROUTINE Kink
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SUBROUTINE PolyTest(xa,ya,sig,ndat,ndata,a,ma,u,v,w,mp,np

!Use to test the polynomials ability to find the kink

INTEGER :: ndat, ndata, ma, mp, np

DOUBLE PRECISION :: sig(ndat), a(ma), u(mp,np), v(np,np), w(np), chisq, x(ndata)

DOUBLE PRECISION :: y(ndata), xa(ndata), ya(ndata)
EXTERNAL :: funcs

X = xa; y = ya !Don’ t want high precission here

OPEN (unit = 1, file = “kinkpoly.p”, status = “unknown’)

,chisq , funcs)

CALL svdfit(x,y,sig.ndata,a,ma,u,v,w,mp,np,chisq,funcs) !SVD fitting program

WRITE (1,%) ’setoxr_[—-1.0_:_.-0.2]"
WRITE (1,%) "plot.\’ !Prints fitted
DO j = ma, 2, -1 ! polynomial to
WRITE (1,#) a(j), “#oxsx’, j—=1, "+.\’ la .p’ file for
END DO !'plotting with gnuplot

WRITE (1 .,%) a(l), *title.’’svdfit’’ . "kink.dat”’

CALL LegPlot2(xa, ya, ndata)

END SUBROUTINE PolyTest

SUBROUTINE SplineTest(xa,ya,ndata,mock_x, val)

!Use to test the spline functions ability to find the kink

INTEGER :: ndata, indx(ndata), val

DOUBLE PRECISION :: ypl, ypn, ya2(ndata), x, y, der_abs(ndata),

DOUBLE PRECISION :: b(ndata), mock_x(val), xa(ndata), ya(

a = xa; b=ya !Don’t want high precision here
ypl=1.1e30 !Makes 2nd derivative (ya2) equal to zero at
ypn=1.1e30 lend of the spline—-interpolated function

CALL spline_NR (a,b,ndata,ypl,ypn,ya2) !Finds 2nd der. of

der_abs = 0.
DO j = 1, ndata
IF (xa(j) .gt. -0.8) THEN
IF(xa(j) .1t. -0.2) THEN
der_abs(j) = ABS(ya2(j))
END IF
END IF
END DO
PRINT =, "Max._abs._val._of_2nd_der._is’, MAXVAL(der_abs)
PRINT #, ’This_occurs_at-x_=", xa(MAXLOC(der-abs) — 1)

ndata)

either

a(ndata)

tabulated fn f(e)

!Find location and

labsolute value of

!'the maximum

!second derivative

PRINT s+, ’Giving_offset:’, xa(MAXLOC(der_-abs)) — MINVAL(mock.x)

OPEN (1, file= ’spline.dat’, status = ’unknown’)
DO j=1,1000

x=-0.9+j%0.7/1000.0 !x range and interval size for outputted spline

CALL splint_NR (a,b,ya2,ndata ,x,y)!Returns cubic-spline
WRITE(1 ,%) x.,y

END DO

CLOSE (1)

interpolated

data

value y
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OPEN (2, file = ’kinkspline.p’, status = ’unknown’)
WRITE (2,%) ’setoxro[—-1.0_:2-0.2]"
WRITE (2,%) ’'plot_"kink.dat”,_"spline.dat”_with_lines’

END SUBROUTINE SplineTest

SUBROUTINE GradTest(xa, ya, ndata, mock_x, val)

INTEGER :: ndata, j, val

DOUBLE PRECISION :: grad(ndata — 1), graddiff(ndata — 2), mock._x(val)
DOUBLE PRECISION :: xa(ndata), ya(ndata)

! This subroutine takes the gradient of the line joining each two data points
!and then compares it to the gradient between the left most of the two data
!points and the data point to its left. Where the greatest difference occurs,
'an ’edge’ or sharp gradient discontinuity must exist in the data. This is
!very similar to the second derivative method but more easily tailored to the

!'specific nature of the inputted data.

grad = 0. ! Find
DO j = 1, ndata - 1 !gradient
IF (xa(j) .gt. —1.0) THEN !between
IF (xa(j) .1t. -0.2) THEN leach two
grad(j) = (ya(j + 1) - ya(j))/(xa(j+1) - xa(j))  ladjacent
END IF !points
END IF lin the range
END DO 1-1.0 < x < -0.2
graddiff = 0. !Find difference
DO j = 1, ndata — 2 !between each
IF (grad(j) .ne. 0.) THEN !two adjacent
IF (grad(j + 1) .ne. 0.) THEN !gradients so
graddiff(j) = grad(j + 1) - grad(j) !long as neither
END IF lof the two
END IF !gradients are
END DO lequal to zero.

!Note: absolute values are not used in either of the above loops as we are
!'specifically looking for positive gradients and for the edge where the

!gradient goes from small to large with increasing x.
PRINT *, ’Largest_gradient_difference.is.at_x_=", xa(MAXLOC(graddiff) + 1)
PRINT +, *With_magnitude’, MAXVAL( graddiff)

PRINT s, ’This_gives.an_.offset_of’, xa(MAXLOC(graddiff) + 2) — MINVAL(mock-x)

END SUBROUTINE GradTest

SUBROUTINE AngleTest(xa, ya, ndata, mock-x, val)

!This subroutine is designed to find the angle between lines connecting
ladjacent data points. Starting from the smallest x value (say point 1), the
!line joining point 2 and point 3 is denoted length “a’, that joining point 1
'and point 2 is denoted length ’b’ and that connecting points I and 3 is
!denoted length ’c,’ thus setting up a triangle. The trigonometric rule

! ¢ =a+ b - 2abcosC is then used to find angle C. The algorithm then shifts

!to concentrate on the triangle made by points 2, 3 and 4 and so on until the

!end of the data. The sharpest gradient change occurs where angle C is smallest.
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!Note that only positive gradient changes from left to right are considered.

INTEGER :: ndata, j, val

DOUBLE PRECISION :: mock-_x(val)

DOUBLE PRECISION :: xa(ndata), ya(ndata), grad(ndata—1)

DOUBLE PRECISION :: a(ndata-2), b(ndata-2), c(ndata-2), angle_c(ndata-2)

grad = 0. ! Find

DO j = 1, ndata - 1 !gradient
IF (xa(j) .gt. —1.0) THEN !between

IF (xa(j) .1t. -0.2) THEN leach two
grad(j) = (va(j + 1) - ya(j))/(xa(j+1) - xa(j))  ladjacent
END IF !points
END IF lin the range

END DO

angle.c = 7. !Makes angle_c larger than 2spi for grad(j+1) < grad(j)

DO j = 1, ndata-2 !Populates
a(j) = SQRT((xa(j+2) — xa(j+1))=x2 + (ya(j+2) — ya(j+1))=x2) larray
b(j) = SQRT((xa(j+1) — xa(j))*=2 + (ya(j+1) — ya(j))**2) !"angle_c’
c(j) = SQRT((xa(j+2) — xa(j))=*2 + (ya(j+2) — ya(j))=*x2) !with the
IF (grad(j+1) .gt. grad(j)) THEN langles

angle_c(j) = ACOS(—(c(j)#*2 — a(j)**2 — b(j)*=*2)/(2«a(j)*b(j))) !between
END IF leach set
END DO tof points
PRINT #, ’'Smallest_angle_occurs_for.x.=", xa(MINLOC(angle.c) + 1)

PRINT s, *With_magnitude’, MINVAL(angle_c), ’radians’
PRINT #, ’'This_recovers._an_offset.of’, xa(MINLOC(angle_.c) + 2) — MINVAL(mock-x)

END SUBROUTINE AngleTest

SUBROUTINE LegPrint(ma, a) !For printing Legendre polynomials
implicit none

REAL%8 :: facl, fac2, fac3, fac4

INTEGER :: ma, n, k, j

INTEGER :: ma.max,ma_used

PARAMETER (ma.max=100)

INTEGER :: LegEx (0:ma-max—1, 0:(ma-max/2))

DOUBLE PRECISION :: a(ma)

DOUBLE PRECISION :: LegCo(0:ma-max—1, 0:(ma-max/2)), PolyCo(ma.max)
CHARACTER(LEN=100) , DIMENSION(0: ma_max—1, 0:(ma.max/2)) :: P
CHARACTER(LEN=100) , DIMENSION(ma.max) :: PolyElement
CHARACTER(LEN=1000) :: Polynomial = *.~

COMMON /PASS/ PolyCo, ma-used

PolyCo = 0.

if (ma.gt.ma-max) then
write (+,%) ‘ma_too.large’ ; stop
end if

ma_used=ma

!'|| Calculate Legendre polynomial
!'\/exponents and coefficients
DO n = 0, ma—1
DO k = 0, n/2
facl = 1; fac2 = 1; fac3 = 1; fac4 =1
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DO j = 1, 2+n — 2k

facl = facl = j
END DO
DOj =1, k
fac2 = fac2 = j
END DO
DO j=1,n-k

fac3 = fac3 = j
END DO
DO j =1, n - 2xk
fac4 = fac4 = j
END DO

LegCo(n,k) = a(n+1)*(((—=1.d0)=*xk)=(facl /((2.d0**n) = fac2 * fac3 % fac4)))

LegEx(n,k) = n — 2.d0xk
WRITE(P(n.k) ,*) LegCo(n,k), “s_x_*x’, LegEx(n.,k)
PRINT =, TRIM(P(n,k))
END DO
PRINT =, ’_°
END DO

DO j =1, ma
DO n = 0, ma-1
DO k = 0, n/2
IF (LegEx(n.,k) == j-1) THEN
PolyCo(j) = PolyCo(j) + LegCo(n,k)
END IF
END DO
END DO
END DO

OPEN (unit = 1, file = "1ffit2.p”, status = ’unknown’)
WRITE(1 ,%) ’plot.\’

DO j = ma, 1, -1
IF (j .ne. 1) THEN
WRITE(1 ,%) PolyCo(j), ‘#oxexx’, j—1, 4.\’
IF (PolyCo(j — 1) .gt. 0.d0) THEN
WRITE( PolyElement(j). %) PolyCo(j), ’#_Xoxx’, j—1, '+
END IF
IF (PolyCo(j — 1) .It. 0.d0) THEN
WRITE( PolyElement(j), %) PolyCo(j),  soxoxx’', j—1

END IF

END IF

IF (j == 1) THEN
WRITE(1 ,%) PolyCo(j), “title.’ svdfit’’,_”1ffit.dat”’
WRITE( PolyElement(j) ,*) PolyCo(j)

END IF

Polynomial = TRIM(Polynomial) // TRIM(PolyElement(j))

END DO

PRINT *, TRIM(Polynomial)

END SUBROUTINE LegPrint

SUBROUTINE LegPlot2(xa, ya, ndata) !For plotting Legendre polynomials with
IMPLICIT NONE

INTEGER :: ndata, j

pgplot
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DOUBLE PRECISION :: xa(ndata), ya(ndata)

REAL :: xasp(ndata), yasp(ndata), Legendre_new , dummy
EXTERNAL ::

Legendre_new
Xxasp = xa ; yasp = ya
dummy = Legendre_new (—-0.5)
DO j= 1, ndata
PRINT ., j. xasp(j). yasp(j)
END DO
CALL pgbegin (0,27 ,1,1)
CALL pgfunx(Legendre_new ,100,-0.9,-0.2.0)
CALL pgpt(ndata, xasp, yasp, 228)

CALL pgend

END SUBROUTINE LegPlot2

SUBROUTINE d2ydx2max(ma, a) !Finds the turning pts of the 2nd derivative of p(x)
INTEGER :: ma, j
DOUBLE PRECISION :: a(ma), c(ma-2), d(ma-3), rtr(ma—3), rti(ma-3)

DO j =1, ma-2
c(j) = a(j+2) = (j+1) = (j) !Finds the coefficients for d2ydx2
END DO

DO j =1, ma-3
d(j) = c(j+1) * j !Finds the coefficients for the 3rd derivative (d3ydx3)
END DO

CALL zrhqr(d,1,rtr ,rti) !Finds the roots for the maximum rate of change of the
DO j=1, ma - 3
IF(rti(j) == 0) THEN

!gradient (d3ydx3 = 0) and d2ydx2’s magnitude there.
!Include only real roots
PRINT #, ’turning_point_at.x.=", rtr(j)
END IF
END DO

END SUBROUTINE d2ydx2max

Libpress algorithms
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Program: RGBPeakFinder6.f95

Creation Date: 7 December 2009

Relevant Section: 2.2

Notes: This is another RGB finder which combines elements of ‘edge-finding’ and model
fitting. Stars in a small region around Andromeda I are read in and a smoothed ‘Luminosity
Probability Distribution’ is produced from the individual stellar magnitudes via a Gaussian
smoothing of the luminosity function. The second derivative of this distribution is produced
with the peaks denoting inflection points in the gradient of the smoothed luminosity function.

See Figs. 2.1 and 2.2.

MODULE Global3 !Define all
IMPLICIT NONE ! Variables

INTEGER :: ndata_max, ndata, ndata_t, i, j, k, n, ios, idum = 0, randnum
INTEGER :: ndata2 , ndata_sub, div_per_mag = 100

PARAMETER (ndata-max = 100000)

REAL :: xmin, xmax, min.mag = 19.5d0, max.mag = 21.5d0

REAL+8 :: temp-x(ndata_max), temp.y(ndata.max), temp.e(ndata.max), dummy
REAL+8 :: mag(10000), phi(10000), mag2(10000), phi2(10000)

REAL+8 :: mag3(10000), phi3(10000), phi4(10000), phi4_max

END MODULE Global3

PROGRAM RGBPeakFinder6 !Finds greatest peak of (d2phi/dm2)/(phi) between min.mag and max.mag.
USE GLOBAL3
IMPLICIT NONE

INTEGER :: check(100000)
REAL+8 :: xhl(ndata_max), yhl(ndata_max), ehl(ndata_max)

temp_x = 0.d0 ; temp.y = 20.d0

OPEN (unit = 1, file = *./m31_fields_stellar/ANDI_box_small.dat’, status = ’old’)
i =0 ios =0
DO WHILE (.TRUE.) !Reads data until end of input file and puts it into arrays
i=i+l
READ (1, =, IOSTAT = ios) temp-x(i), temp.y(i) !x: g magnitude

ly: 1 magnitude

if (ios == 0) then ;

else if (ios == —1) then ;
i=i-1
exit

else if (ios > 0) then ;
i=i-1
cycle

end if

IF (temp-x(i) == 0. .or. temp.y(i) == 0.) THEN
i=i-1
cycle

END IF
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END DO

ndata = i

PRINT *, "Number_of_sources_=", ndata
DO j = 1, ndata
temp.x(j) = temp-x(j) — temp-y(j)

END DO

CALL CutPlot
CALL Smooth

END PROGRAM RGBPeakFinder6

SUBROUTINE CutPlot !Produce colour cuts
USE Global3
IMPLICIT NONE

REAL :: div, var(1000)
REAL :: uppercut(1000), lowercut(1000)

div = 2+(INT(MAXVAL(temp.x)) — INT(MINVAL(temp_x)))/1000.

DO j =1, 1000
var(j) = INT(MINVAL(temp-x)) + divsj
uppercut(j) = 24.5 — 3x(var(j))
lowercut(j) = 27.0 — 3=(var(j))

END DO

! Upper and Lower Cuts plot

CALL pgbegin (0, templ.ps/CPS’,1.1)

CALL pgenv (MINVAL(REAL(temp-x)), MAXVAL(REAL(temp-x)), MAXVAL(REAL(temp.y)), MINVAL(REAL(temp-y)), 0, 0)

CALL pgpt(ndata, REAL(temp.x), REAL(temp.y), 1)
CALL pgsci(2)

CALL pgline (1000, var, uppercut)

CALL pgline (1000, var, lowercut)

CALL pgsci(l)

CALL pglab (" (g-——i)\dO\u’, *i\d0O\u’, *7)

CALL pgend

END SUBROUTINE CutPlot

SUBROUTINE Smooth !'Apply Gaussian smoothing to LF and
USE Global3 !find inflection points.
IMPLICIT NONE

REAL#+8 :: x(ndata), y(ndata), xa(ndata), ya(ndata), pi = 2xACOS(0.d0)
REAL+8 :: e(ndata), err(ndata), ave_phi, ave_mag, ave_phi4

REAL#+8 :: xa.sel(ndata), ya-sel(ndata), err_sel(ndata)

REAL :: yasp(ndata), phisp(10000), magsp(10000)

INTEGER :: indx(ndata), place, place2, place3, counts, denominator

DO j = 1, ndata
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x(j) = temp_x(j)
y(j) = temp-y(j)
END DO
CALL indexx (ndata ,y,indx) !Creates array indx(l:ndata) whose elements are
lindicies to the elements of y in chronological order
DO j=1,ndata
xa(j)=x(indx(j)) !Makes xa, ya & err equal to the ordered versions of
ya(j)=y(indx(j)) Ix, y & e respectively.
err(j) = 0.1d0
END DO
counts = 0 ; xa.sel = 0.d0 ; ya_sel = 0.d0
DO j=1, ndata
IF (ya(j) .gt. 24.5 — 3x(xa(j))) THEN !Throw away stars
IF (ya(j) .1t. 27.0 — 3%(xa(j))) THEN !outside of colour cut
counts = counts + 1 !counts is the total number of accepted stars
xa.sel(counts) = xa(j)

ya_sel (counts) = ya(j)

err_sel (counts) = err(j)
END IF

END IF
END DO
! Accepted Data Points Plot
CALL pgbegin (0,27 ,1,1)
CALL pgenv (MINVAL(REAL(temp-x)), MAXVAL(REAL(temp-x)), MAXVAL(REAL(temp.y)), MINVAL(REAL(temp-y)), 0, 0)
CALL pgpt(counts, REAL(xa_sel), REAL(ya_sel), 1)
CALL pglab(’(ge——i)\dO\u’, *i\dO\u’, ")
CALL pgend
|
!Produce Luminosity Probability Distribution (LPD)

place = 0 ; phi = 0.d0 : mag = 0.d0

DO j = 100%(INT(MINVAL(ya)) — 1), 100%(INT(MAXVAL(ya)) + 1), (100/div_per_-mag)
place = place + 1
mag(place) = j/100.d0
DO k = 1, counts !Perform Gaussian smoothing at magnitude by summing contributions
phi(place) = phi(place) + & lof each star represented by a normalized Gaussian
(1.d0/(SQRT(2.d0 * pi) % err_.sel(k))) = EXP(—((ya.sel(k) — j/100.d0)*%2.d0)/ (2.dOx(err_sel(k)=*%2.d0)))
END DO
END DO
!Produce derivative of LPD
place2 = 0 ; phi2 = 0.d0 :; mag2 = 0.d0
DO j = 100%(INT(MINVAL(ya)) — 1), 100%(INT(MAXVAL(ya)) + 1), (100/div_per_mag)

place2 = place2 + 1
mag2(place2) = j/100.d0
DO k = 1, counts

END
END DO

!Produ
place3

phi2 (place2) = phi2(place2) + &

(1.d0/(SQRT(2.d0 * pi) % (err-sel(k))=*3)) * EXP(—((ya-sel(k) — j/100.d0)*%2.d0)/ (2.dOs*(err-sel(k)*%2.d0))) = (ya.sel(k) — (j
/100.d0))

DO

ce second derivative of LPD

=0 ; phi3 = 0.d0 ; mag3 = 0.d0
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165 DO j = 100+(INT(MINVAL(ya)) — 1), 100+(INT(MAXVAL(ya)) + 1), (100/div_per_mag)

166 place3 = place3 + 1

167 mag3(place3) = j/100.d0

168 DO k = 1, counts

169 phi3(place3) = phi3(place3) + &

170 (1.d0O/(SQRT(2.d0 % pi) = (err-sel(k))=*5)) = EXP(-((ya-sel(k) — j/100.d0)#*%2.d0)/ (2.d0*(err_sel(k)=%2.d0))) = (ya.sel(k)*%2 — 2%
ya-sel(k)=(j/100.d0) — err-sel (k)2 + (j/100.d0)x*2)

171 END DO

172 END DO

173

174

175

176 phi4 = (phi3 /(ABS(phi)+0.1)) !Use 2nd der. of LPD divided by LPD to locate potential TRGBs

177

178  ndata2 = div_per_mag=(INT(MAXVAL(ya)) — INT(MINVAL(ya)) + 2) + 1
179 ndata_sub = (div_per-mag % (max.mag — min_mag)) + I

180

181 ave_phi = SUM(phi)/ ndata2

182 ave.mag = SUM(mag)/ ndata2

183 ave.phi4 = 0. ; denominator = 0 ; phi4_max = 0.d0

184 DO j = 1, ndata2 !

185 IF (mag(j) .ge. min.mag) THEN !

186 IF (mag(j) .le. max-mag) THEN !

187 ave_phi4 = ave_phi4 + phid(j) !Find maximum value of array phi4 and
188 denominator = denominator + 1 !the averagage value of array phi4 in
189 IF (phi4(j) .gt. phi4_max) THEN !the region where the TRGB could

190 phi4_max = phid(j) !feasibly be located. These can then

191 END IF !'be used for scaling graphs and

192 END IF !determining the strenghts of possible
193 END IF !'TRGBs .

194  END DO !

195 ave.phi4 = ave_phi4/ denominator !

196

197 yasp = ya ; magsp = mag

198 phisp = phix(phi4_max/ MAXVAL(phi)) !Scale REAL(phi) for plotting with phi4

199

200 DO j = ndata2 + 1, 10000

201 phi(j) = ave_phi !'Since SIZE(phi) = SIZE(phisp) = SIZE(mag) = SIZE(magsp)
202 mag(j) = ave.mag ! = 10000 .not. ndata2

203 phisp(j) = 0. it is necessary to make all array elements outside of
204 magsp(j) = ave.mag !ndata2 equal to some intermediate value so that the
205 END DO !minval & maxval functions are still useable.

206

207  xmin = INT(MINVAL(yasp)) — 1. ; xmax = INT(MAXVAL(yasp)) + 1.

208

209 CALL TurningPoints

210

211 ! !Main Plot (i.e. smoothed luminosity
212 !function with inflection points)
213 CALL pgbegin (0, temp2.ps/CPS’ ,1,1)

214

215 CALL pgenv(18., 26., MINVAL(phisp), REAL(1.5%phi4_max), 0, 0)
216 CALL pgsci(l)

217 CALL pgline (ndata2, magsp, phisp)

218  CALL pgsci(2)

219 CALL pgline (ndata2, REAL(mag3), REAL(phi4))

220 CALL pgsci(4)

221 CALL pgsch(4.0)

222 CALL pgpt(l, 20.77, 0.001, 2264)

223 CALL pgsch(1.0)

224  CALL pgsci(l)
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CALL pglab(i\dO\u’, “relative_probability’, *7)

CALL pgend

END SUBROUTINE Smooth

SUBROUTINE TurningPoints ! Prints location of potential RGB tips (in magnitudes)

USE Global3 land assigns
IMPLICIT NONE 'LF slope at

INTEGER :: TRGB-_found = 0

PRINT =, ”

to them a stength, based on the change in

that magnitude

DO j = 1, ndata2
IF (mag(j) .ge. min.mag) THEN
IF (mag(j) .le. max-mag) THEN

IF (phi4(j) .gt. phi4(j—1) .and.
PRINT =, "Potential -TRGB.at”,

phi4(j) .gt. phi4(j+1)) THEN
mag(j), &

»Strength_=", REAL(phi4 (j)/ phi4_max)

TRGB_found = 1
END IF
END IF
END IF
END DO

IF (TRGB_found == 0) THEN

PRINT *, "No_TRGB.could_be_located.”

END IF
PRINT «,

END SUBROUTINE TurningPoints

SUBROUTINE RandSplit(check)
USE Global3
IMPLICIT NONE

!Subroutine creates a randomized index

!by subroutine ’TestSeparate’ to split

INTEGER :: check(100000), count, num = 0

REAL+8 :: ranl

check (100000) =0 ; j =0
DO WHILE (j .l1t. ndata_t — 1)
j=j
randnum = INT(ndata_tsranl (idum))
count = 0
DO k =1, j
IF (randnum .eq. check(k)) THEN

count = count + 1

END IF
END DO
IF (count == 0) THEN
check(j) = randnum
END IF

IF (count .ne. 0) THEN

the read-in data set. It is called

the data in two halves and process them.

!Insure array check has all elements 0
!
!
!
|
!
!
!
!Loop generates randomised index with
!'number of entries equal to ndata. All
!entries are unique integers from 1 to
!ndata. Index is outputted to ’check’
!
1

!
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cycle
END IF
END DO

check(ndata_-t) = ndata-t

DO j = 1, ndata_t
DO k = 1, ndata_t

IF (check (k) == j) THEN

num = num + 1
END IF
END DO
END DO

PRINT s, “number_of_unique_.integers.=",

END SUBROUTINE RandSplit

!
!
!

!Final element of ’check’ is

Check that

all integer

values between

1 and ndata

can be

found in the

array ’check’

ndata

Algorithms
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Program: spikes.f95

Creation Date: 1 February 2011

Relevant Section: 2.3

Notes: I created this program to illustrate the precise way in which the posterior probability
distribution of a parameter is produced via maximum likelihood model fitting. An artificial
luminosity function is created from a step function, where the user specifies the number of
stars to be produced as well as the position of the step and the relative proportions of the
‘background’ and ‘signal’ components. Various types of priors can then be applied to the re-
sulting posterior distributions. Fig. 2.4 illustrates the way in which the posterior distributions

in the tip position are created. Figs. 2.3, 2.5 and 2.6 were created using this code.

MODULE Global !Define all
IMPLICIT NONE !variables

INTEGER :: i, j, indx(20001)

REAL#+8 :: 1like (1000), posterior(1000,2), likex1(1000,20000), data(20001), rand_num, ylim = 0.d0, x(1000)
REAL+8 :: hist(101,2) = 0.d0, temp(101,2), ord.data(20001)

INTEGER :: ndata = 1000 !<= Enter number of stars

REAL+8 :: TRGB ; PARAMEIER (TRGB = 0.4d0) !<= Enter tip position 0 < TRGB < 1

REAL+8 :: f = 0.3d0 !<= Enter fraction background

b For No Prior on tip-———————-

REAL+8 :: tip_expt = TRGB !Tip magnitude expected for structure
REAL+8 :: gauss_hwhm = 0.25d0 !Magnitudes on either side of expected tip magnitude to explore
REAL+8 :: gauss_expo = 4.d0 !Sharpness of edges of Gaussian prior profile

REAL+8 :: prior_sig , g(1000)

REAL+8 :: gap, maxgap, counts, d(1000)

REAL :: BG_counts, RGB_counts

END MODULE Global

PROGRAM spikes !
USE Global !Main Program
IMPLICIT NONE !

CALL random_seed ! Insures stars are at different magnitudes each time

DO i = 1, ndata !
CALL random_number (rand_num) !
IF (rand-num .gt. TRGB = f) THEN !
CALL random_number (rand_num) !Draw ndata stars at
rand_.num = TRGB + (1.00d0 - TRGB) # rand_num!random from a luminosity
ELSE !function with tip at TRGB
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42 CALL random_number (rand_num) land background height = f.
43 rand_-num = TRGB * rand_.num !

44 END IF !

45 rand_-num = NINT(rand_-num =x 100.d0) !

46 data(i) = rand_-num/ 100.d0 !

47  END DO !

48

49 DO i =1, 101

50 hist(i,l1) = REAL(i-1)/100.d0

51 DO j = 1, ndata

52 IF (data(j) .eq. hist(i,1)) THEN

53 hist(i,2) = hist(i,2) + 1.d0

54 END IF

55 END DO

56 END DO

57

58 hist (101,2) = hist(101,2) % 2.e0 !Account for the bin width of the last bin
59

60 BG_counts = (REAL(ndata) % REAL(f))/100.e0 !Function height before step
61 RGB_counts = (REAL(ndata) % REAL(1.d0 — f))/(REAL(1.d0-TRGB) # 100.e0)
62 !'/\ Function height

63 !'|| after step

65 —— Plot histogram of data points ———————————————

67  CALL pgbegin (0, tempLF.ps/CPS’ ,1.1)

69  CALL pgenv (0.0, 1.0, 0., 1.1*MAXVAL(REAL(hist(:,2))), 0, 0)
70 CALL pgbin (101, REAL(hist(:.1)), REAL(hist(:.2)), .true.)

71 CALL pglab(’star_.magnitude’, ’counts’, °’)
72
73 !'|| Plot model

74 !'\/over LF

75 CALL pgsci(2)

76  CALL pgsls(3)

77  CALL pgslw(5)

78 CALL pgline (2, (/0.0e0, REAL(TRGB)/), (/ BG_.counts, BG_counts /))

79 CALL pgline (2, (/REAL(TRGB), 1.e0/), (/ BG-.counts + RGB_.counts, BG_counts + RGB_counts /))
80 CALL pgline (2, (/REAL(TRGB), REAL(TRGB)/), (/ BG.counts, BG_counts + RGB_counts /))
81  CALL pgslw (1)

82 CALL pgsls(1)

83  CALL pgsci(l)

84 DAY

85 I

87 CALL pgend

90 IF (ndata .ge. NINT(1/f)) THEN
91 !CALL remove
92 END IF

94 e Plot histogram of data points ———————————————

95 CALL pgbegin(0,°?,1,1)

97  CALL pgenv (0.0, 1.0, 0., 1.1*MAXVAL(REAL(hist(:.2))). 0. 0)
98  CALL pgbin (101, REAL(hist(:,1)), REAL(hist(:,2)), .true.)
99  CALL pglab(’star_magnitude’, ’counts’, 'BG-removed_.Luminosity _Function’)

101 CALL pgend
102 !
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CALL u_prior

values of

!CALL d_prior ! Choose prior here, for no

!CALL g._prior

like = 1.d0 !Set initial

DO i = 1, ndata !For each star ...
DO j = 1, 1000 !For TRGB set at

IF (data(i) .gt. REAL(j)/1000.d0) THEN

bin j

prior —> CALL u_prior

likelihood array elements to 1

like (j) = like(j) * (f + (1.d0 — f)+(1.d0/(REAL(1001-j)/1000.d0)))
likex1(j.i) = (f + (1.d0 — f)+(1.d0/(REAL(1001—j)/1000.d0)))

ELSE
like (j) = like(j) * f
likex1(j.i) = f

END IF
END DO
like = like * u !x d = g
likex1 (:,i) = likexI (:,i) = u !+ d = g
like = like/ SUM(like)

likex1 (:,i) = likex1 (:.i)/ SUM(likex1 (:,i))
END DO

|
|
! Normalize

!'Normalize

|
!Multiply the current likelihood value for
[like (j)], by the likelihood for
likelihoods

Ibin j

!'star i. For the purpose of plotting
the TRGB being at

likex1(j,i) is

! for each j for each individual

I'star i, also calculated.

Multiply “like ’ by chosen prior function
Multiply ’likex1 (:,i)’ by chosen prior function
*like ’

Plikex1 (:,i)”

DO j =1, 1000 !
posterior(j,1) = REAL(j)/1000.d0 !'Build final likelihood
posterior (j,2) = like(j) !'distribution ready for plotting
END DO !
b Plot Individual Likelihoods ———————-nn—
CALL pgbegin(0, ind_like.ps/CPS’.,1,1)
DO i = 1, ndata I< !
IF (MAXVAL(likex1 (:,i)) .gt. ylim) THEN !
ylim = MAXVAL(likex1 (:,i)) !
END IF !Change stars
END DO !
CALL pgenv (0., 1., 0., 1.1 = REAL(ylim), 0, 0) !
DO i = 1, ndata 1< !

CALL pgsci(i+1)

CALL pgbin (1000, REAL(posterior (:,1)), REAL(likex1(:,i)),

END DO
CALL pgsci(l)
CALL pglab(’Proposed._tip._.magnitude’,

*Probability *,
CALL pgend

e Plot Posterior
CALL pgbegin (0, post_dis.ps/CPS’,1,1)

CALL pgenv (0.0, 1.0, 0.,

Distribution ————————

)

CALL pgbin (1000, REAL(posterior (:,1)), REAL(posterior(:,2)),

CALL pglab(’Proposed_tip.magnitude’, ’Probability’,
CALL pgend

END PROGRAM spikes

)

.true .)

1.1*MAXVAL(REAL( posterior (:,2))), 0, 0)

.true .)

plotted here
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SUBROUTINE u_prior
USE Global
IMPLICIT NONE

DO i =1, 1000
x(i) = REAL(i) /
END DO

!

!Generates Uniform prior function —> i.e.

!

1000.d0

! No Prior

DO i = 1, 1000
u(i) = 1.do
END DO

CALL pgbegin (0,7 .1.1)

CALL pgenv (0., 1.,

0

.11, 0, 0)

CALL pgbin (1000, REAL(x), REAL(u), .true.)

CALL pglab(’x’, "y’

CALL pgend

*Uniform_Prior_Applied’)

END SUBROUTINE u_prior

u =

SUBROUTINE g _prior
USE Global
IMPLICIT NONE

DO i = 1. 1000
x(i) = REAL(i) /
END DO

e Gaussian Prior ——————

!Generates Gaussian prior function —> parameters

1000.d0

prior_sig = ABS(gauss_hwhm #% (0.5d0 * gauss_expo))

DO i = 1, 1000

of Gaussian changed

g(i) = exp((—(REAL(x(i)) — tip-expt)#*gauss_expo)/(2.d0*(prior-sig)=2.d0))

END DO

CALL pgbegin (0,27 ,1,1)

CALL pgenv (0., 1.

0.,

1.1, 0, 0)

CALL pgbin (1000, REAL(x), REAL(g), .true.)
CALL pglab(’magnitude’, “weight’,

CALL pgend

END SUBROUTINE g_prior

*Gaussian_Prior_Applied’)

in MODULE Global .

SUBROUTINE d_prior
USE Global
IMPLICIT NONE

DO i = 1, 1000
x(i) = REAL(i) /
END DO

!For applying

!2 data points

a density prior. A window is

in the array “data.”

lof stars lying within the window

lor middle of

1000.d0

the window.

is

The window then

placed

chosen with

in

the bin

width equal to

corresponding

the greatest

slides across the LF

to

at 1-bin increments

either

the LHS, RHS

separation between any

and the number
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CALL indexx (ndata, REAL(data), indx)

DO i =

1, ndata

ord_data(i) = data(indx(i))

END DO

maxgap

DO i =
gap
IF

END
END DO

maxgap

DO i =

cou

END

= 0.d0

2, ndata

= ord.

data (i) — ord-data(i — 1)

(gap .gt. maxgap) THEN

maxgap
IF

= gap

= NINT(maxgap+100.d0)

Density
1, 101

applied to left edge of window

— NINT(maxgap)

nts = 0.d0
DO j =1,

counts

DO

i + NINT(maxgap)

= counts + hist(j,2)

d(10%1 — 9:10%i) = counts

IF

END
END DO

(i .eq.
d(10%i:
IF

101 — NINT(maxgap)) THEN
1000) = counts

d =d / (MAXVAL(d))

7777777 Plot

density prior ———————

CALL pgbegin(0,’?,1,1)

CALL pgenv (0., 1., 0., 1.1 % MAXVAL(REAL(d)), 0, 0)
CALL pgbin (1000, REAL(x), REAL(d), .true.)

CALL pglab(’magnitude’, “weight’, ’Density_Prior_Applied’)

CALL pgend

END SUBROUTINE d_prior

SUBROUTINE remove !Remove fsndata data points

USE Gl

IMPLICIT NONE

obal

!spread randomly over magnitude

!space from data array.

CALL random_number (rand_num)

rand_num =

NINT(rand_num = 100) + 1.d0

IF (hist(NINT(rand.num), 2) .ge. 1.d0) THEN

END
IF

END
END DO

temp =

i= i+l

hist (NINT(rand-num), 2) = hist(NINT(rand-num) ,

IF

(i .ge.
exit ;
IF

hist

NINT(f * ndata)) THEN

2) -

1

.d0
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ndata = ndata — (INT(f % ndata) + 1)

data = 0.d0

DO WHILE (temp(i,2) .gt. 0.d0)
j=
data(j) = temp(i,l)
temp(i,2) = temp(i,2) — 1.d0
END DO
END DO

END SUBROUTINE remove
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Program: BayesianTRGB_ANDI.{95

Creation Date: 23 September 2010 (first version 6 Mar 2010)

Relevant Sections: 2.4, 3

Notes: This program lies at the heart of the material presented in Paper I (Ch. 3) and hence
is described there in much more detail. Note also that §2 of Paper II (presented in Ch.
4) also provides a useful summary as to its workings. The program is an example of my
original TRGB finding algorithm. At this stage I had not yet generalized the code so that the
parameters for different objects could be fed in, and hence each object had its own separate
code - that shown here is for Andromeda I. In summary, a circular field is taken centered
on user-specified coordinates and all stars within that field are then plotted on a Colour-
Magnitude Diagram. The user then provides the coordinates for the corners of a polygon to
be used as a colour-cut to isolate the stars of the object’s Red Giant Branch. The colour-cut
should extend at least half a magnitude brightward of the estimated TRGB magnitude to
give a reasonable portion of pure background luminosity function (LF) for the algorithm to
fit, and it should span an equal colour range as a function of magnitude so as not to distort
the LF. The user must also provide a ‘background field’ from which the algorithm generates
a LF which it then fits with a polynomial to give the functional form of the background
component of the model LF. The same colour-cut is imposed on the background field as was
chosen for the object or ‘signal’ field. By calculating the number of stars in both the signal
and background fields and dividing by their respective areas, the expected ratio of the two
components in the signal field’s LF is determined and the components are scaled accordingly
in the model LF generated. An MCMC algorithm is then used to find the parameters of the
model which best fit the data and posterior distributions of these parameters are plotted. The
object’s distance posterior distribution can then be determined by sampling the distribution
in the tip magnitude along with those for the uncertainty in the absolute magnitude of the tip
and the extinction. This is done using another, purpose-written program, a version of which

can be found in Appendix C (‘Multi_ MCMC _Result_Plotter.f95”).

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

b General Program Parameters ————————————————
INTEGER :: i, j, k, I, eval, idum = -9999, it, nit

INTEGER :: ndata_max , nsamples, binspm, nbins, cmod-nbins, ghw, mm, ios



60
61
62
63
64
65
66
67

143

PARAMETER (ndata_max = 20000000, nsamples = 100)

PARAMETER (binspm = 100)

PARAMETER (nbins = 8xbinspm + 1)

PARAMETER (nit = 3000000)

INTEGER :: ndata, ndata2

INTEGER :: dl, d2, d3, d4

REALx*8 blim, flim, pi

PARAMETER (blim = 19.5d0)

PARAMETER (flim = 23.5d0)

PARAMETER (pi = ACOS(-1.¢0))

INTEGER :: blimBins = INT(REAL((blim - 18.d0) = binspm)) + 1

INTEGER :: flimBins = INT(REAL((flim - 18.d0) % binspm)) + 1

REALx*8 randnuml, randnum2, randnum3, rl, r2, spotR, hb = 0.005d0

REALx*8 model (nbins ,2) , cmodel(nbins ,2), magnitude (ndata_max)

REALx*8 histo_fine (nbins ,2), histo_coarse (INT(0.25%(nbins -1.d0)) + 1.2)
REAL=*8 data(ndata_max), cumulative_.cmodel (nbins,2), f, f_hold, bfm(nbins)
REAL*8 mag_tip, mag, mag._cutoff = 24.e0, a

REALx*8 area, area2

REALx*8 modelnoise (nbins ,2), noise(nbins) = 0.d0

REALx*8 kernel (nbins ,2) = 0.e0, scale, uplim, lowlim, gx

REALx*8 temp (nbins ,2) = 0.e0, t

REALx*8 logL, prob, LikeA, LikeB

REALx*8 tip (nsamples), tip-ord(nsamples), maxlogL(nsamples) = -999999999999.
REAL+*8 tip_rec , tip_offset, tip_psigma, tip.msigma, Toffset_kpc, Tsigma_kpc
REALx*8 f_offset, tip-kpc, kpc-perr, kpc.merr, f_.sigma, a_offset, a_sigma
REAL=*8 f.rec, a.rec, tip_counts, f_counts, a_counts

REALx*8 tipminsig , tiplusig , fminsig, fplusig, aminsig, aplusig

REALx*8 mcounts , pcounts

REALx*8 xI(nit), x2(nit), x3(nit), p(3), time(nit), r

REALx*8 post_yl (10x(nbins —1)+1) = 0.d0, post_x1(10x(nbins—1)+1), mlim
REAL+8 d_blim, bg_blim, d_flim, bg_flim

REAL:8 post_y2(nbins) = 0.d0, post_-x2(nbins)

REALx*8 post_y3(2+nbins — 1) = 0.d0, post_x3(2=nbins — 1)

REALx*8 PPD_peak , Best-Combo (6)

CHARACTER :: argvs*10, field*30, chl1%9, ch2%9, ch3%9, ch4x9, ch5%9, string*60
e For reading in PAndAS data ——————————————

INTEGER iCCDt, clsg, clsi, ifieldt, iacc-t

REAL*4 xgt, ygt, g, dg, im, dim, xki-t, eta_t, FeH_phot_t, diff_tip_-t, E.BV_t
REALx*8 ra_t, de_t

REAL*4 dummy

REAL:x4 mag.-g(ndata_max ), mag.i(ndata_max), xki(ndata_max), eta(ndata_.max)
REAL*4 g-min_i(ndata_max), mag.i_poly(ndata_max), g.min_i_poly(ndata_max)
REAL+4 gmi

!—-—Additional parameters for calculating background stats ———

INTEGER :: bg.ndata, bg._ndata2, bg_ndata3

REALx*4 bg.mag_g(ndata_max), bg.mag_i(ndata_.max), bg_xki(ndata_max), bg._eta(ndata_max)
REALx*4 bg_g-min_i(ndata_max), bg_-mag.i_poly(ndata_max), bg_.g.-min_i_poly(ndata_max)
REAL*4 bg_gmi

REAL:x*8 bg_data(ndata_max)

!-—SVD fitting of background——

INTEGER

ma, mp, np, ndat

PARAMETER (ndat = INT(0.25%(nbins —1.d0)) + 1)
PARAMETER (np = 8)

PARAMETER (mp = ndat)

PARAMETER (ma = np)

REAL ::
REAL ::

chisq, ay(ma), sig(ndat), u(mp,np), v(np,np), w(np), xa(ndat),
xt(ndat), yt(ndat)

ya(ndat)
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68 REAL+8 :: bg_histo_coarse (ndat,2)

69 EXTERNAL :: funcs

70

71 !-—Additional parameters for specifying object coordinates —

72 INTEGER :: Jop

73  REAL+8 :: Xlop., ETAop

74  REAL+8 :: RAh, RAm, RAs, DecD, DecM, DecS, RA_rad, Dec.rad

75  REAL+8 :: tpRAh, tpRAm, tpRAs, tpDecD, tpDecM, tpDecS, tpRA_rad, tpDec.rad
76

77 ! When f is known
78 INTEGER :: bg_stars, sig-stars

79 REAL#8 :: bg_area, sig.area

80 REAL#8 :: known_f, bg_stars_in_sig-field

81 REAL#8 :: sig_field_-radius = 0.1d0, bg_low_xi = —10.d0, bg_up_xi = 10.d0
82

83  END MODULE Global

84

85 !
86

87 PROGRAM BayesianTRGBsatellite ! Master program

88 USE Global

89  IMPLICIT NONE

90

91 WRITE (field ,+) ~Andromedal’

92

93 string = TRIM(ADJUSTL( field)) // */results.dat’

94  OPEN(3, file=TRIM(ADJUSTL(string)), status = ’unknown’)
95  WRITE (3,x) "Field_.Name:”, field

96

97 CALL positionFinder !
98 !
99  CALL random_seed !
100 !

101 CALL M3I1DataReader !

102 CALL SVDFitter !

103 CALL NoiseMake !

104 ICALL NoisePlot ICALL

105  CALL MOMC !

106 ICALL PosteriorPlot !SUBROUTINES

107 !

108  CALL TipAndSigma !

109 CALL PosteriorPlot !

110 CALL OtherPlots !

111 CALL DataHist !

112

113 WRITE (3, ’(3all)’) "oootipomag:”, “__+.sigma:_.”, "o.—_sigma:.” !

114  WRITE (3, °(3F10.3)’) tip_rec, tip_psigma ., tip_msigma !

115 WRITE (3, "(2all)’) "ooofioooooo 7, Vecosigma:l” !

116 ~ WRITE (3, °(2F10.3)°) f_.rec, f_sigma !'Write results
117 WRITE (3, ’(2all)’) ".
118  WRITE (3, °(2F10.3)") a.rec, a.sigma !
119  WRITE (3 .%) "Distance.=", REAL(tip_kpc), "kpc” !
120 WRITE (3 ,%) "Error.=.+", kpc_perr, “kpc.—", kpc_merr, “kpc” !
121

122 END PROGRAM BayesianTRGBsatellite

123
124 !
125
126  SUBROUTINE PositionFinder !Converts object’s position in RA and Dec into

27, Teaosigmall” !to file

a

127 USE Global lits position on the M3l tangent plane
128 IMPLICIT NONE
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RAh = 0.d0

RAm = 45.d0
RAs = 39.8d0
DecD = 38.d0
DecM = 2.d0
DecS = 28.d0

tpRAh = 0.d0
tpRAm = 42.d0
tpRAs = 44.33d0
tpDecD = 41.d0
tpDecM = 16.d0
tpDecS = 7.5d0

!'|| Perform

!'\/Conversion

RA_rad = (pi/180.d0)  (RAh x

Dec_rad = (pi/180.d0) # (DecD + DecM/60.d0 + DecS/3600.d0)

tpRA_rad = (pi/180.d0) * (tpRAh *

tpDec_rad = (pi/180.d0) = (tpDecD + tpDecM/60.d0 + tpDecS/3600.d0)

CALL sla_DS2TP (RA_rad,

A
U

Xlop = Xlop * (180.d0/pi)
(180.d0/pi) !(i.

ETAop = ETAop =

WRITE (3 ,%) "C.O.F..Xi.=", Xlop,

!Object coordinates

'in RA and Dec
|

!Tangent point

(i.e. M31)

!coordinates in RA and Dec

END SUBROUTINE PositionFinder

15.d0 + RAm =

Dec_rad, tpRA_rad,

15.d0 + tpRAm *

. PAndAS xi and

(15.d0/60.d0) + RAs * (15.d0/3600.d0))

(15.d0/60.d0) + tpRAs =

tpDec.rad , Xlop, ETAop,

!tangent plane coordinates

eta)

”C.O.F._Eta_=", ETAop

(15.d0/3600.d0))

SUBROUTINE M31DataReader !The field to be analysed is specified here

USE Global
IMPLICIT NONE

OPEN(1 , file=".

DO WHILE (. true .)
READ( 1 ,IOSTAT=i0s )

g,dg,clsg ,im,dim, clsi ,ifieldt ,xki_t ,eta_.t, &

dummy, FeH_phot_t , diff_tip_-t ,E_.BV_t,iacc_t

IF (ios.ne.0) exit

g=g-3.793+E_BV_t
im=im-2.086+E_BV_t

gmi = g — im

if (clsi.ne.—1
if (clsg.ne.—1
if (18.0.le.im.and.im.le.24.) then

else

.and. clsi.ne.—-2) cycle

!Extinction

!Corrections

.and. clsg.ne.-2) cycle !non

./../../PANDAS/M31_unique_con.dat’ ,form="unformatted’,status="old ")

ra_t ,de_t ,iCCDt, xgt,ygt, & !Read
! from

! format

!Rejects

stars

!Specifies

!'magnitude
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cycle to
if

if (-2.5.le.FeH_phot_t.and.FeH_phot_t.le.—-1.5) then !

!range
end linclude
else

! cycle

end if !

!range

!'Specifies

to

metallicity

include

spotR = SQRT((ABS(eta_t — (ETAop)))++2 + (ABS(xki_t — (XlIop)))+x2)

IF (spotR .1t. sig_field_.radius) THEN

i=1i+1
IF (i .gt. ndata_max) exit
mag-g(i)=g !

mag_i(i)=im !

arrays

arrays

g-min_i(i)=gmi 'If all conditions are met, add star data to signal
xki (i)=xki-t !
eta(i)=eta_t !
ELSE IF (xki-t .ge. bg-low_xi .and. xki-t .le. bg-up_-xi) THEN
IF (xki-t .1t. -3.5 .or. xki-t .gt. 2.5) THEN
IF (eta_t .ge. ETAop — 0.2d0 .and. eta_t .le. ETAop + 0.2d0) THEN
ji=j+1
IF (j .gt. ndata.max) exit
bg-mag-g(j)=g !
bg_mag_i(j)=im !
bg_g-min_i(j)=gmi !If all conditions are met, add star data to bckgrnd
bg_xki(j)=xki-t !
bg-eta(j)=eta_t !
END IF
END IF
END IF
END DO
ndata = i ; bg_ndata = j
sig.area = pi * (sig-field_radius % 2.d0) !Calculate area of signal field
bg-area = 0.4d0 * (bg.up_xi — bg-low.xi) — 2.4d0 !Calculate area of bacground field
DO i = 1, ndata
data(i) = mag.i(i) !Object stars before colour cut
END DO
DO j = 1, bg_ndata
bg-data(j) = bg.mag.i(j) !Background stars before colour cut
END DO
CALL M31DataPlotter
END SUBROUTINE M3I1DataReader
|
SUBROUTINE M3l1DataPlotter !Plot object and backgound field star positions
USE Global ton the sky and CMDs for each object (g—i vs. i)

IMPLICIT NONE
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! Signal -Field
string = TRIM(ADJUSTL( field)) // */sig-field.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

CALL pgenv(MAXVAL(xki, mask = xki .ne. 0.), MINVAL(xki, mask = xki .ne.

MINVAL(eta, mask = eta .ne. 0.), MAXVAL(eta, mask = eta .ne. 0.), 1, 0)
CALL pgpt (ndata, xki., eta, —1)
CALL pglab(’\(0640)-(degrees)’, "\(0633).(degrees)’, ")

CALL pgend

! Signal -CMD
string = TRIM(ADJUSTL( field)) // */sig-cmd.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

CALL pgenv (MINVAL(g.min_i, mask = g_min_i .ne. 0.), MAXVAL(g.min_.i), &
MAXVAL(mag-i), MINVAL(mag-i , mask = mag-i .ne. 0.), 0, 0)

CALL pgpt (ndata, g.min_i, mag.i, -1)

CALL pglab(’(g-—-i)\d0O\u’, *i\d0O\u’, *7)

CALL PolySelect !Apply colour cut to signal CMD

CALL pgend

| Bckgrnd-Field

string = TRIM(ADJUSTL( field)) // */bg_field.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

CALL pgenv (MAXVAL(bg._xki, mask = bg_xki .ne. 0.), &
MINVAL(bg_xki, mask = bg_xki .ne. 0.), &
MINVAL(bg_eta , mask = bg_.eta .ne. 0.), &
MAXVAL(bg_eta, mask = bg_eta .ne. 0.), 1, 0)

CALL pgpt (bg-ndata, bg-xki, bg_eta, -1)

CALL pglab(’\(0640)_.(degrees)’, *\(0633)._(degrees)’, ")

CALL pgend

! Bckgrnd -CMD

string = TRIM(ADJUSTL( field)) // ’/bg.cmd.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

CALL pgenv (MINVAL(bg.g-min-i, mask = bg_g_-min-i .ne. 0.), &
MAXVAL(bg.g_-min_i), MAXVAL(bg.-mag_.i), &
MINVAL(bg.-mag-i, mask = bg.mag.i .ne. 0.), 0, 0)

CALL pgpt (bg.ndata, bg.g_min_i, bg.mag.i, -1)

CALL pglab (' (g-——i)\dO\u’, *i\d0\u’, *7)

CALL PolySelect

CALL pgend

b Input selected data into ’“data’———————————
! || Removes stars from the signal and backround fields that
!\/lie outside of the chosen colour cut
data = 0.d0 ; xki = 0.d0 ; eta = 0.d0 ; d_blim = 100.d0 ; d_flim = 0.d0
DO i = 1, ndata2

data(i) = mag_i_poly (i)

IF (data(i) .I1t. d-blim) THEN

d_blim = data(i)
END IF

0.), &
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312 IF (data(i) .gt. d_flim) THEN
313 d_flim = data(i)

314 END IF

315 END DO

316

317 bg_-data = 0.d0 ; bg-blim = 100.d0 ; bg_flim = 0.d0
318 DO i = 1, bg_ndata2

319 bg-data(i) = bg_mag_i_poly (i)

320 IF (bg-data(i) .I1t. bg_blim) THEN

321 bg-blim = bg_data(i)

322 END IF

323 IF (bg_data(i) .gt. bg_flim) THEN

324 bg-flim = bg_data(i)

325 END IF

326 END DO

327 VAN

328 il

329

330 !———Set parameters for calculation of background height-——
331

332 sig_stars = ndata2 !Total number of stars in signal field

333 bg_stars = bg._ndata3 !Number of stars in background field

334 bg-stars_in_sig_-field = REAL(bg_stars) * (sig-area/bg.area)

335 !Number of Background stars in signal field

336

337 WRITE (3 ,%) "Number_of._data_points:”, sig_stars

338  WRITE (3,%) "SNR:”, (REAL(sig-stars) — bg_stars_in_sig-field) / bg_stars_.in_sig-field

339

340 ] Make coarse data histogram for bckgrnd ———————

341

342 DO i = 1, INT(0.25%(nbins —1.d0)) + 1

343 bg_histo_coarse(i,l) = 18.d0 + (i-1.d0)/REAL(0.25«binspm)

344 END DO

345

346 DO i = 1, bg_ndata2

347 bg-histo_coarse (INT((bg-data(i)—-18.d0)+0.25«binspm) + 1, 2) = &
348 bg_histo_coarse (INT((bg_data(i)—-18.d0)*0.25%binspm) + 1, 2) + 1.d0
349  END DO

350

351 !'|| Fill empty bright edge of array with

352 !'\/ artificial data for improved fitting

353 DO i = 1, INT((bg-blim — 18.d0) * REAL(binspm/4.d0)) + 4

354 bg_histo_coarse(i,2) = bg_histo.coarse (INT((bg-blim — 18.d0) x REAL(binspm/4.d0)) + 4, 2)
355 END DO

356

357  END SUBROUTINE M31DataPlotter

358

359 !

360

361  SUBROUTINE SVDFitter !Fits a polynomial to the background luminosity function
362 USE Global

363  IMPLICIT NONE

364

365 INTEGER :: ntmp

366

367 xa = bg_histo_coarse (:,1)
368 ya = bg_histo_coarse (:,2)
369 Xt = xa

370 yt = ya

371 sig = 1.e0

372
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! Shift the array in steps of 1 until the first element does

shiftloop: do

xt = cshift(xt,I)

yt = cshift(yt,1)

if ( yt(l) > 0.1 ) exit shiftloop
end do shiftloop

ntmp = 0
countloop: do i = 1 , ndat
if ( yt(i) > 0.1 ) then
ntmp = ntmp + 1
else
exit countloop
end if

end do countloop

xt = xt — 21.

CALL svdfit(xt,yt,sig,ntmp—1,ay,ma,u,v,w,mp,np,chisq,funcs)

CALL BG_DataHist

END SUBROUTINE SVDFitter

not contain a zero

SUBROUTINE BG_DataHist !Plots background luminosity
USE Global !fitted polynomial
IMPLICIT NONE

DO j =1, np
bfm(i) = bfm(i) + ay(j) * (xa(i)—=21.) *x (j—1)
END DO
END DO

function

together

! Plots best fit model over coarse histogram

string = TRIM(ADJUSTL( field)) // °/bckgrdfit.ps/CPS®
CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

CALL pgenv(19.5, 23.5, 0., 1.1*MAXVAL(REAL(bg_histo_coarse (:,2))), 0,
CALL pgbin (ndat, REAL(bg_histo_coarse (:,1))., REAL(bg_histo_coarse (:,2)),

CALL pgsci(2)
CALL pgline (ndat, xa, REAL(bfm))
CALL pgsci(l)
CALL pglab(’i\dO\u’, ’counts’, °7)

CALL pgend

END SUBROUTINE BG_DataHist

with

0)

.true.)

SUBROUTINE MOMC ! The master Markov Chain MonteCarlo

USE Global !creates a new model at each iteration

IMPLICIT NONE !'the quality of the fit to the data

routine

and then

compares
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434 lss% Most subroutines are called from 'MCMC #x#x
435

436  REAL+8 :: gasdev

437

438 known._f = (REAL(bg_stars) * sig_area)/(REAL(sig_.stars) % bg_area)
439

440 x1 (1) = 20.88d0; x2(1) = known_-f; x3(1) = 0.27d0 ; time(1l) = 1
441

442 mag_tip = xI1(1) ; f = x2(1) ; a = x3(1)

443 CALL ModelMake !Make model and

444  CALL Convolution !evaluate goodness of fit

445  CALL Loglike !for initial parameter choices
446  LikeA = logL

447  LikeB = 0.d0

448

449 x1(2) = x1(1) ; x2(2) = x2(1) ; x3(2) = x3(1)
450

451 Best-Combo (6) = —9.d99

452

453 string = TRIM(ADJUSTL( field)) // '/MCMC.steps.dat’
454  OPEN(2, file=TRIM(ADJUSTL(string)), status = ’unknown’)

455  WRITE(2 ,%) “___Iteration mag_tip f a LikeA LikeB”
456 DO it = 2, nit

457 time (it) = it

458 p(l) = x1(it) + 0.03d0xgasdev (idum) !Gaussian weighted steps from initial

459 p(2) = x2(it)! + 0.02d0*gasdev (idum) !parameters for the tip magnitude (p(1))
460 p(3) = x3(it) + 0.02d0xgasdev (idum) !'noise ratio (p(2)) and slope (p(3))

461

462 IF (p(l) .1t. blim .or. p(l) .gt. flim) THEN !

463 r = 0.d0 !

464 else IF (p(2) .le. 0.d0 .or. p(2) .ge. 1.d0) THEN !Restrictions on

465 r = 0.d0 !'whether proposed step

466 else IF (p(3) .le. 0.d0 .or. p(3) .ge. 2.d0) THEN !

467 r = 0.d0 !

468 else !

469 mag_tip = p(1) ; f =p(2) ; a = p(3)

470 CALL ModelMake !Make model and

471 CALL Convolution levaluate the

472 CALL Loglike !goodness of fit

473 LikeB = logL

474 r = 10#x(LikeB-LikeA)

475 end IF

476 CALL random_number (randnum3) !

477 IF (it .1t. nit) THEN !

478 IF (randnum3 .le. r) THEN !

479 x1(it+1) = p(1) ; x2(it+1) = p(2) ; x3(it+1) = p(3) !

480 likeA = likeB !Decide whether
481 ELSE !to take step
482 x1(it+1) = x1(it) ; x2(it+1) = x2(it) ; x3(it+1) = x3(it) !or not

483 likeA = likeA !

484 END IF !

485 END IF !

486 post_yl (INT((x1(it) — 18.d0)*10xbinspm + 1)) = & |

487 post_yl (INT((x1(it) — 18.d0)*10«binspm + 1)) + 1.d0 !

488 post_y2 (INT(x2(it) * (nbins — 1)) + 1) = & !Generate posterior plot
489 post_y2 (INT(x2(it) % (nbins — 1)) + 1) + 1.d0 !for mag_tip, f and a
490 post_y3 (INT(x3(it) * (nbins — 1)) + 1) = & !

491 post_y3 (INT(x3(it) * (nbins — 1)) + 1) + 1.d0 !

492

493 WRITE (2, *(6F16.5)’) time(it), xI(it), x2(it), x3(it), LikeA, LikeB

494
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IF (LikeB .gt. Best.Combo(6)) THEN
Best_.Combo (1) = time(it) ; Best.Combo(2) = p(l)

Best_.Combo (3) = p(2) ; Best_.Combo(4) = p(3)
Best_-Combo (5) = LikeA ; Best-Combo (6) = LikeB
END IF

END DO

WRITE (2, '(6F16.5) ) Best-Combo (1), Best-Combo(2), Best_-Combo(3), &

Best_Combo (4), Best_.Combo(5), Best_.Combo(6)

DO i = 1, 10+(nbins—1)+1 !
post_x1(i) = 18.d0 + (REAL(i) — 1.d0)/REAL(10+binspm)!
END DO !

!

DO i = 1, nbins Ix—values

post_x2(i) = (REAL(i) — 1.d0)/REAL(nbins — 1) thistograms

END DO !
!

DO i = 1, 2«nbins — 1 !
post_x3 (i) = (REAL(i) — 1.d0)/REAL(nbins — 1) !
END DO !

END SUBROUTINE MOMC

SUBROUTINE PosteriorPlot
USE Global
IMPLICIT NONE

post.yl = post_yl/nit ; post_y2 = post_y2/nit ; post.y3 = post_y3/nit

! Plots mag_tip posterior plot
string = TRIM(ADJUSTL( field)) // */mag_tip_postplot.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

CALL pgenv (REAL(MINVAL(x1)) —0.01, REAL(MAXVAL(x1))+0.01, &
0., 1.1+REAL(MAXVAL(post_yl)), 0, 0)

CALL pgbin (10%(nbins —1)+1, REAL(post_-x1), REAL(post_yl) ,.true.)

CALL pglab(’Proposed.i\dO\u_tip_magnitude’, ’Probability’,

CALL pgend

! Plots f and a posterior plots
string = TRIM(ADJUSTL( field)) // ’/f_and_a_postplot.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

IF (MAXVAL(post_-y3) .ge. MAXVAL(post.y2)) THEN

CALL pgenv (0., 2., 0., 1.1xREAL(MAXVAL(post-y3)), 0, 0)
ELSE

CALL pgenv (0., 2., 0., 1.1xREAL(MAXVAL(post-y2)), 0, 0)
END IF

CALL pgsci(2)

CALL pgbin (nbins, REAL(post_-x2), REAL(post.y2) ,.true.)
CALL pgsci(3)

CALL pgbin (2*nbins —1, REAL(post-x3), REAL(post_y3) ,.true.)
CALL pgsci(l)

CALL pglab(’Proposed.-value’, 'Probability:_f_(red)-a~(green)’
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556

557 CALL pgend

558

559 post.yl = post_yl+nit ; post_y2 = post_y2#nit ; post.y3 = post_y3s*nit
560

561  END SUBROUTINE PosteriorPlot

563 !
564

565 SUBROUTINE OtherPlots
566  USE Global

567  IMPLICIT NONE

568

569 ! Variation of ’mag_tip’ with iteration #
570 string = TRIM(ADJUSTL( field)) // */mag_tip_-val_vs_it.ps/CPS’

571  CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

572

573  CALL pgenv (0., REAL(nit), REAL(MINVAL(x1))-0.01, REAL(MAXVAL(x1))+0.01, 0, 0)
574  CALL pgline (nit, REAL(time), REAL(x1))

575 CALL pglab(’Iteration.number’, ’Proposed.i\dO\u_tip._magnitude’, *7)

576

577  CALL pgend

578

579 ! Variation of 'f’ and ’a’ with iteration #
580 string = TRIM(ADJUSTL( field)) // */f-and_-a_val_vs_it.ps/CPS’

581  CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

582

583  CALL pgenv (0., REAL(nit), 0., 2., 0, 0)

584 CALL pgsci(2)

585 CALL pgline (nit, REAL(time), REAL(x2))

586  CALL pgsci(3)

587 CALL pgline (nit, REAL(time), REAL(x3))

588 CALL pgsci(l)

580 CALL pglab(’Iteration.number’, ’Proposed.value:._f_(red).a_(green)’, *7)
590

591  CALL pgend

592

593 ! Values of ’'f’ for each value of ’mag._tip’
594 string = TRIM(ADJUSTL( field)) // */f_-vs_mag_tip.ps/CPS’

595 CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

596

597  CALL pgenv (0.99+REAL(MINVAL(x1)), 1.01*REAL(MAXVAL(x1)), 0.9*REAL(MINVAL(x2)), 1.1+*REAL(MAXVAL(x2)), 0, 0)
598 CALL pgpoint (nit, REAL(x1), REAL(x2), -1)

599  CALL pglab(’Proposed.i\dO\u_tip_magnitude’, ’Proposed.value_of_f’, *")
600

601  CALL pgend

602

603 ! Values of 'a’ for each value of ’mag._tip’
604  string = TRIM(ADJUSTL( field)) // ’/a_vs_mag_tip.ps/CPS’

605 CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

606  CALL pgenv (REAL(MINVAL(x1)) -0.01, REAL(MAXVAL(x1))+0.01, REAL(MINVAL(x3)) -0.01, REAL(MAXVAL(x3))+0.01, 0, 0)
607  CALL pgslw (3)

608 CALL pgpoint (nit, REAL(x1), REAL(x3), -1)

609 CALL pgslw (1)

610 CALL pglab (’Proposed.i\dO\u_tip_magnitude’, ’Proposed.value_of_a’, °")
611

612  CALL pgend

613

614 ! Values of 'f’ for each value of ’a’

615 string = TRIM(ADJUSTL( field)) // */a.vs_f.ps/CPS’

616 CALL pgbegin (0 ,TRIM(ADJUSTL( string)) ,1,1)
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CALL pgenv (0.9+REAL(MINVAL(x2)), 1.1*REAL(MAXVAL(x2)), 0.9*REAL(MINVAL(x3)), 1.1+*REAL(MAXVAL(x3)), 0, 0)
CALL pgpoint (nit, REAL(x2), REAL(x3), -1)
CALL pglab(’Proposed.value_of_f’, “Proposed_.value_of.a’, ")

CALL pgend

END SUBROUTINE OtherPlots

SUBROUTINE NoiseMake !Generates a polynomial of degree 7 that follows the

USE Global !functional form of the GSS background LF. The polynomial

IMPLICIT NONE !coefficients were derived in *BackgroundPolyFit’ using
!7svdfit ° from Numerical Recipes.

area2 = 0.d0

DO i = 1, 8 * binspm + 1
modelnoise (i,1) = 18.d0 + (i-1.d0)/REAL(binspm)
modelnoise (i,2) = 0.d0
DO j =1, np !Set background counts
modelnoise (i,2) = modelnoise(i,2) + ay(j) * (modelnoise(i,l) — 21.d0) =*x (j — 1)
END DO
IF (modelnoise(i,2) .It. 0.d0) THEN !

modelnoise (i,2) = 0.d0 !Insure no negative counts
END IF !
IF (i .ge. (blim-18.d0)*binspm + 1 .and. i .le. flimBins) THEN

area2 = area2 + modelnoise (i,2) !Used for normalization in *ModelMake’
END IF

END DO

END SUBROUTINE NoiseMake

SUBROUTINE NoisePlot !Plots the unscaled form of the background LF

USE Global

IMPLICIT NONE

CALL pgbegin (0,27 ,1,1)

CALL pgenv(18., REAL(mag_-cutoff), 0., 1.1+«REAL(MAXVAL(modelnoise (:,2), mask = modelnoise(:,1) .le. 23.5)), 0, 0)
CALL pgbin (nbins — INT(2.5%binspm), REAL(modelnoise (:,1)), REAL(modelnoise (:,2)), .true.)

CALL pglab(’i\dO\u’, ’Counts’, ’7)

CALL pgend

END SUBROUTINE NoisePlot

SUBROUTINE ModelMake !'ITnitial Model (i.e. model before convolution)
USE Global
IMPLICIT NONE

REAL+8 :: func_i

noise = modelnoise(:,2) = (f/area2) !Calculate background height
area = 0.d0
DO i = 1, nbins
model(i,1) = 18.d0 + (i-1.d0)/REAL(binspm )
IF (model(i,l1) + hb .gt. mag-tip .and. model(i,l) — hb .le. mag_tip) THEN
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model (i,2) = ((10.d0+(a+(model(i,1) + hb — mag_tip)))/(a+LOG(10.))) — &

(1.d0/(a*xLOG(10.))) !'Model value at tip
area = area + model(i,2) !Used to calculate noise in master program
ELSE IF (model(i,l) .gt. mag-tip) THEN !Model value faintward of tip

model (i,2) = ((10.d0s*+(a*(model(i,l) + hb — mag_tip)))/(a*LOG(10.))) - &
((10.d0*+(a*(model(i,l) — hb — mag-tip)))/(a*xLOG(10.)))
IF (i .ge. (blim—-18.d0)*binspm + 1 .and. i .le. flimBins) THEN

area = area + model(i,2) !Used to calculate noise in master program
ELSE
cycle;
END IF
ELSE
model(i,2) = 0.d0 !Model value brightward of tip
END IF
END DO
model (:,2) = (model(:,2)/area) = (1.d0-f) !Normalize
model (:,2) = model(:,2) + noise I'Add noise

END SUBROUTINE ModelMake

SUBROUTINE ModelPrint !Prints model before convolution

USE Global

IMPLICIT NONE

CALL pgbegin (0,27 ,1,1)

CALL pgenv(REAL(mag_tip) — 3., REAL(mag_cutoff), 0., 1.1+*REAL(model(INT(5.5%binspm),2)), 0, 0)
CALL pgbin (nbins — INT(2.5+binspm), REAL(model(:,1)), REAL(model(:,2)), .true.)

CALL pglab(’i\dO\u’, ’Counts’, °7)

CALL pgend

END SUBROUTINE ModelPrint

SUBROUTINE GaussianKernel !Generates a Gaussian kernel 'kernel ™ with

USE Global 'HWHM (sigma) changing with magnitude in
IMPLICIT NONE taccordance with func.i. Kernel is defined from
lgx = —5Sxsigma to gx = +5#sigma.

REAL+8 :: func_i

temp = 0.d0 ; kernel = 0.d0

gx=0.

j=0

DO WHILE (gx .le. 5.e0sfunc.i(t)) !
j=j+l1 |
gx = 0.e0 + (j—1.e0)/binspm !Creates half of
temp(j.1) = gx !the kernel (’temp’)
temp(j,2) = exp(—((gx)*%2.e0)/(2.e0*(func_i(t)*+2.e0)))!

END DO !

ghw = j — 1.d0 !The first non-zero bin of ’cmodel’ will be the first

!non-zero bin of ’'model’ minus ghw
DOk =1, j

kernel (k,:) = temp(j — (k—1),:) !Create “kernel’ by concatenating

kernel (j+k,2) = temp(k+1.,2) !"temp’ with a reflected version
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kernel (j+k,1) = —temp(k+1,1) lof itself
END DO
!Note: temp(2#j,2) = 0.d0 ; temp(2%j,1) = -0.d0

kernel (:,2) = kernel (:,2)/SUM(kernel (:,2))

END SUBROUTINE GaussianKernel

SUBROUTINE GaussianKernelPrint !Prints Gaussian Kernel at given magnitude
USE Global
IMPLICIT NONE

REAL+8 :: func_i

CALL pgbegin(0,’?°,1,1)

CALL pgenv(-5.5 % REAL(func_.i(t)), 5.5 % REAL(func_.i(t)), 0., 1.1«xMAXVAL(REAL(kernel (:,2))),

CALL pgbin (2xghw+1, REAL(kernel (:,1)), REAL(kernel (:,2)), .true.)
CALL pglab(’Magnitude_.offset’, ’Strength’, ")

CALL pgend

END SUBROUTINE GaussianKernelPrint

SUBROUTINE Convolution !Convolves initial model with a Gaussian kernel
Use Global !whose width is equal to the photometric error
IMPLICIT NONE land hence expands with increasing magnitude

cmodel = 0.d0

DO i = 1, nbins

t = 18.d0 + (i — 1.d0)/REAL(binspm) !Convert bin number to magnitude
cmodel(i,1) =t ! This then derives the current
CALL GaussianKernel !width of the Gaussian kernel
DO j = —ghw, ghw, +1 !
IF (i .gt. ghw .and. i .1t. nbins — ghw) THEN ! Convolve
cmodel (i+j,2) = cmodel(i+j,2) + kernel(ghw+j+1,2)*model(i,2)!model with
END IF !gaussian
END DO !
END DO
DO i = nbins, flimBins+1, -1 !'Set the faint limit
cmodel (i,2) = 0.d0 lof the final convolved
END DO !model at flim.
cmod._nbins = flimBins

!Normalize the convolved model

cmodel (:,2) = cmodel (:,2)/SUM(cmodel (:,2), mask = cmodel(:,1) .ge. blim)

!Note the above step is very important — normalization must only be over the
!range of magnitudes in the ’data’ array — i.e. down to mlim —> not right the
!way to 18 unless mlim = 18. This was a difficult bug to find!

END SUBROUTINE Convolution

0)
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SUBROUTINE ConvolutionPrint !Prints convolved version of model

USE Global

IMPLICIT NONE

CALL pgbegin (0,2 ,1.1)

CALL pgenv (REAL(mag_tip) — 0.5, 25., 0., 1.1+MAXVAL(REAL(cmodel(:,2))), 0, 0)
CALL pgbin (nbins, REAL(cmodel (:,1)), REAL(cmodel (:,2)), .true.)

CALL pglab(’i\dO\u’, °Relative_probability ™, ')

CALL pgend

END SUBROUTINE ConvolutionPrint

SUBROUTINE DataHist !Generates finely and coarsely binned histograms and

USE Global loverlays them with the best fit model determined by
IMPLICIT NONE !'the MOMC
REAL+8 :: scaled_-f_rec

histo_fine (:,1) = model(:,1)
DO i = 1, INT(0.25%(nbins —1.d0)) + 1

histo_coarse (i,1) = 18.d0 + (i-1.d0)/REAL(0.25%binspm)
END DO

DO i = 1, ndata2 !

histo_fine (INT(REAL((data(i)—-18.d0)*binspm) + 1.d0).,2) = & !'Generates
histo_fine (INT(REAL((data (i) —18.d0)«binspm) + 1.d0).,2) + 1.d0 !
histo_coarse (INT(REAL((data(i)-18.d0)*0.25%binspm) + 1.d0),2) = & !Histograms

histo_coarse (INT(REAL((data(i)—18.d0)+0.25xbinspm) + 1.d0),2) + 1.d0 !
END DO !

histo_coarse (INT(5.5«REAL(binspm/4.d0)) + 1,2) = & !'See paragraph
histo_coarse (INT(5.5«REAL(binspm/4.d0)) + 1,2) % 2.d0 !below

!For graphing purposes, the last bin of the coarse histogram is doubled since
!'this bin lies half outside the range of interest and so is depleted by
!roughly one half. This is for graphing only and has no bearing on the

!determined best fit model.

|| Plot Best Fit Model

!\/ over histogram

mag_tip = tip_rec ; f = f.rec ; a = a.rec !

CALL ModelMake !Generate best fit function
CALL Convolution !

bfm = cmodel (:,2) !bfm = best fit model
bfm = bfm % (SUM(histo_fine (:,2))/SUM(bfm)) !Scale bfm to match histogram

! Plots best fit model over fine histogram
string = TRIM(ADJUSTL( field)) // ’/model_-fit_vs_data_fine.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

CALL pgenv (REAL(blim), REAL(flim), 0., 1.1«MAXVAL(real(histo_fine(:,2))), 0, 0)
CALL pgbin (nbins, REAL(histo_fine (:,1)), REAL(histo_fine (:,2)), .false.)

CALL pgsci(2)

CALL pgslw (5)

CALL pgline (nbins, REAL(histo-fine (:,1)), REAL(bfm))
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CALL pgsci(l)
CALL pgslw (1)
CALL pglab(’i\dO\u’, ’Counts’, °’)

CALL pgend

bfm = bfm % 4.d0 !Scale bfm to match coarse histogram

! Plots best fit model over coarse histogram
string = TRIM(ADJUSTL( field)) // */model_fit_vs_data_coarse.ps/CPS”’
CALL pgbegin (0 ,TRIM(ADJUSTL(string)) ,1,1)

CALL pgenv (REAL(blim), REAL(flim), 0., 1.1«MAXVAL(real(histo-coarse (:,2))),
CALL pgbin (INT(0.25%(nbins —1.d0)) + 1, REAL(histo_coarse(:,1)), &
REAL( histo_coarse (:,2)), .false.)
CALL pgsci(2)
CALL pgline (nbins, REAL(histo_fine (:,1))., REAL(bfm))
CALL pgsci(l)
CALL pglab(’i\dO\u’, ’Counts’, °7)

CALL pgend

END SUBROUTINE DataHist

0,

0)

SUBROUTINE LogLike !Generates the log of the likelihood fn

USE Global ! — gives the likelihood of the tip being at
IMPLICIT NONE leach magnitude given the dataset
logL = 0.d0

DO i = 1, ndata2
prob = (data(i) — 18.d0)=*binspm + 1.d0
prob = cmodel (INT(prob) ,2)
logL = logL + LOGI0(prob)

END DO

END SUBROUTINE LogLike

SUBROUTINE TipAndSigma !Identifies the best parameter values and
USE Global !'their associated 1 sigma errors from the

IMPLICIT NONE !respective posterior plots.

PPD_peak = 0.d0 !
DO i = 1, 10«(nbins—1)+1 !
IF (post_yl(i) .gt. PPD_peak) THEN !

PPD_peak = post.yl (i) !Find best fit TRGB value
tip-rec = post_x1(i) !
END IF !
END DO !

PPD_peak = 0.d0 !
DO i = 1, nbins !
IF (post_y2(i) .gt. PPD_peak) THEN !

PPD_peak = post.y2(i) !Find best fit f value
forec = post_x2(i) !
END IF !
END DO !
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PPD_peak = 0.d0 !
DO i = 1, 2«nbins — 1 !
IF (post_y3(i) .gt. PPD_peak) THEN !

PPD_peak = post.y3 (i) !Find best fit a value
a.rec = post_x3(i) !
END IF !
END DO !

tip-kpc = (100.d0s**((tip-rec + 3.44d0)/10.d0))/100.d0 !Distance inferred from

!'tip magnitude in kpc

tip_-counts = 0.d0 ; mcounts = 0.d0 !
DO i = MAXLOC(post.yl , DIM = 1), 1, -1 !

mcounts = mcounts + post_yl (i) !
END DO !
DO i = MAXLOC(post_.yl , DIM = 1), 1, -1 !

tip_counts = tip_counts + post_yl (i) !Finds negative one sigma
IF (tip-counts .ge. 0.682smcounts) THEN lerror in magnitudes
tip.msigma = ((REAL(i) — 1.d0)/REAL(10*binspm)) + 18.d0 !
tip-msigma = tip.rec — tip-msigma !
exit !
END IF !

END DO !

tip-counts = 0.d0 ; pcounts = 0.d0 !
DO i = MAXLOC(post.yl , DIM = 1), 10%(nbins —1)+1 !

pcounts = pcounts + post.yl (i) !

END DO !

DO i = MAXLOC(post-yl, DIM = 1), 10%(nbins —1)+1 !
tip_counts = tip_counts + post.yl (i) !Finds positive one sigma
IF (tip_counts .ge. 0.682%pcounts) THEN lerror in magnitudes

tip-psigma = ((REAL(i) - 1.d0)/REAL(10*binspm)) + 18.d0 !
tip_-psigma = tip_psigma — tip.rec !

exit !
END IF !

END DO !

dl =0 ;d2=0;d3=0;d4 =0

f_counts = 0.d0 ; a_counts = 0.d0 !

DO i = 1, nbins !
f_counts = f_counts + post_y2(i) !
a_counts = a.counts + post_y3(i) !
IF (f_counts .ge. 0.159#nit .and. dlI .eq. 0) THEN !

fminsig = post_-x2(i) !

dl =1 !
END IF !
IF (f_counts .ge. 0.841%nit .and. d2 .eq. 0) THEN !For f and a:
fplusig = post_x2(i) !Finds upper and lower
d2 =1 !bounds for posterior
END IF !'distribution within one

IF (a_counts .ge. 0.159%nit .and. d3 .eq. 0) THEN !sigma of maximum.

aminsig = post_x3(i) !
d3 =1 !
END IF !

IF (a_counts .ge. 0.841snit .and. d4 .eq. 0) THEN !
aplusig = post_x3 (i) !
d4 =1 |

END IF !

END DO !
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f_sigma = 0.5d0«(fplusig — fminsig) !Hence calculates 1 sigma error

a_sigma = 0.5d0x(aplusig — aminsig) !for f and a

kpc_merr = tip_kpc#100.d0*=+(tip-msigma/10.d0) - tip_kpc !minus tip error in kpc
kpc_perr = tip_-kpcx100.d0**(tip-psigma/10.d0) — tip-kpc !plus tip error in kpc

END SUBROUTINE TipAndSigma

FUNCTION func_i(m) ! This function feeds the photometric error as a function
USE Global lof magnitude to the ’GaussianKernel’ subroutine.
IMPLICIT NONE

REAL*8 :: func.i, m, cl, c2, c3

cl = 0.001

c3 = log(0.24) — log(0.11)

c2 = ¢3%25.0 - log(0.24)

func-i = ¢l + exp(c3+m — c2)

END FUNCTION

Rodrigo’s poly selection tool

SUBROUTINE PolySelect !Used for selection of appropriate colour cut
USE Global !in colour —magnitude space
IMPLICIT NONE

integer MAXPT, ipol

integer NPT_ggr, NPT_spatial

parameter (MAXPT=100)

real+4 XCOL_ggr(MAXPT) ,YMAG_ggr (MAXPT)
real«4 X_spatial (MAXPT), Y _spatial (MAXPT)
logical refine.CMDsel_ggr,refine_spatialsel
!parameter (refine.CMDsel_ggr=.true

)
parameter (refine_.CMDsel_ggr=.false.)
!parameter (refine_spatialsel=.true.)

)

parameter (refine_spatialsel=.false

logical in_poly

external in_poly

npt_ggr=0
if (refine_CMDsel_ggr) then
call pgsls(2)
call pgmove(0.2,26.0)
call pgdraw (0.2,15.0)
call pgsls(1)
call pglcur (MAXPT, NPT _ggr,XCOL_ggr, YMAG_ggr)
open (2, file="ANDI.CMD’ ,status="unknown’)
write (2,%) NPT_ggr
do ipol=1,NPT_ggr
write (2,%) XCOL_ggr(ipol) ,YMAG.ggr(ipol)
end do
close (2)
call pgsci(l)

call pgadvance



1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

160

CHAPTER THREE PROGRAMS

else
open (2, file="ANDI.CMD’ ,status="o0ld ")
read (2 ,x) NPT_ggr
do ipol=1,NPT_ggr
read (2 ,%) XCOL_ggr(ipol),YMAG_ggr(ipol)
end do
close (2)
call pgsci(2)
call pgslw(5)
call pgline (NPT_ggr,XCOL_ggr, YMAG_ggr)
call pgsci(l)
call pgslw (1)

end if
] Make colour cut to Signal Field ————————————
i=0 !
DO i = 1, ndata ! Makes new
IF (in_-poly(g-min-i(i),mag.i(i),NPT_ggr,XCOL_ggr,YMAG._ggr)) THEN! arrays for
IF (mag.i(i) .le. flim .AND. mag.i(i) .ge. blim) THEN i and g-i
j =]+l !containing
mag_i_poly(j) = mag.i(i) lonly stars
g-min_i_poly(j) = g-min_i(i) !'within
END IF !polygon
END IF !
END DO !
ndata2 = j !New number of stars in dataset after colour cut
— ] Make colour cut to Bckgrnd Field ————————————————
j=0 : k=0

DO i = 1, bg.ndata
IF (in_poly(bg.g_min_i(i),bg-mag.i(i) ,NPT_ggr,XCOL_ggr,YMAG_ggr)) THEN
IF (bg-mag_i(i) .le. 24.d0) THEN
IF (bg-mag.i(i) .le. flim .AND. bg.mag-i(i) .ge. blim) THEN
k = k+l1
END IF
jo= g+
bg-mag_i_poly(j) = bg-mag.i(i)
bg-g-min_i_poly(j) = bg.g-min_i(i)
END IF
END IF
END DO

|
|

|

! Makes new
larrays for
i and g-i
!containing
lonly stars
!'within
!polygon

|

|

bg_ndata2 = j ; bg._ndata3 = k !Stars in bckgrnd ; Stars in bckgrnd between blim & flim

END SUBROUTINE PolySelect

logical function in_poly(x,y.,np,xp,yp) !Used by PolySelect subroutine

implicit none

real=4 x,y

integer np

real«4 xp(np),yp(np)
real*4 tiny ,xs,xe,ys,ye

parameter (tiny=1.e-5)

real+4 simag,fimag
external fimag

integer j
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sim

do

end

if (abs(simag).gt.tiny) then

ag=0.0

j=l.np

if (j.I1t.np)
xe=xp(j+1)
xs=xp(j)
ye=yp(j+1)
ys=yp(j)

else
xe=xp (1)
xs=xp(]j)
ye=yp (1)
ys=yp(j)

end if

then

simag=simag+ fimag(x,xs,xe,y,ys,ye)

do

in_poly=.true

else

end

end

in_poly=.false .

if

real 4 function

implicit none

real*4 x0,xs,xe,

real=4 top,bot

top

bot

fim

end

= —(xe—x0) =

= (xe—-x0) =

ag=atan2 (top,

fimag (x0,xs,xe,y0,ys,ye) !Used by

y0.ys.ye

(ys=y0) + (ye-y0) * (xs-x0)

(xs=x0) + (ye-y0) * (ys-y0)

bot)

PolySelect

subroutine

Libpress
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Program: MCMCTRGBTester2.f95

Creation Date: 30 July 2010 (first version 25 Mar 2010)

Relevant Section: §2.3 of Paper I (Ch. 3)

Notes: This program was written to test the performance of the TRGB algorithm (i.e.
BayesianTRGB_ANDI.f95) for different luminosity functions (LFs) that might be encoun-
tered. A model LF is created with both the tip magnitude and RGB slope constant at
mag_tip = 20.5 and a = 0.3 respectively. The fraction of background stars (f) in the LF is
varied however as is the number of stars populating the LF (ndata). In practice, a perl script
was written to run this code for all combinations of f and ndata, where f € {0.1,0.2,...0.9}
and ndata € {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000,20000}. Many of the sub-
routines in this program are omitted for the sake of brevity, but their form can be ascertained
from the ‘BayesianTRGB_ANDI.f95’ program. The subroutine that actually generates the

artificial stars from the model LF is however shown - ‘DataMake.’

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

INTEGER :: i, j, k., 1, eval, idum = -9999, it, nit

INTEGER :: ndata.max, nsamples, binspm, nbins, cmod_nbins, ghw, mm, ios
PARAMETER (ndata_max = 20000000, nsamples = 100)

PARAMETER (binspm = 100)

PARAMETER (nbins = 8xbinspm + 1)

o - Y S N e

PARAMETER (nit = 200000)

INTEGER :: ndata, ndata2

INTEGER :: dl, d2, d3, d4, d5, d6, field_num
INTEGER :: flimBins, blimBins

REAL+8 :: blim, flim, array(ndata_.max)
REAL+8 :: c_.o-f(2)

REAL*8 :: randnuml, randnum2, randnum3, randnum4, rl, r2,
REAL+8 :: model(nbins ,2), cmodel(nbins,2), magnitude(ndata_max)
REAL#8 :: histo_fine (nbins,2), histo_coarse (INT(0.25%(nbins—-1.d0)) + 1,2)

REAL%8 :: data(ndata_.max), cumulative_cmodel(nbins ,2), f, bfm(nbins)

REAL#8 :: mag_tip, mag, mag-cutoff = 24.e0, a, inputs(4)
REAL+8 :: area, area2

, B2, B3,

REAL#+8 :: modelnoise (nbins,2), noise(nbins) = 0.d0, pi = ACOS(-1.e0)

REAL#8 :: kernel(nbins,2) = 0.e0, scale, uplim, lowlim,
REAL+8 :: temp(nbins .,2) = 0.e0, t
REAL+8 :: logL, prob, LikeA, LikeB

REAL+8 :: tip(nsamples), tip-ord(nsamples)., maxlogL(nsamples) = -999999999999.
REAL+8 :: tip.rec, tip_offset, tip.sigma, Toffset_.kpc, Tsigma_kpc

REAL+8 :: f_offset, tip_kpc, kpc_err, f_sigma, a_offset,

REAL«8 :: f_rec, a.rec, tip-counts, f_counts, a_counts

REAL+8 :: tipminsig , tiplusig , fminsig, fplusig, aminsig,

REAL«+8 :: xI(nit), x2(nit), x3(nit), p(3), time(nit), r

REAL#8 :: post_yl (10x(nbins—1)+1) = 0.d0, post_x1(10x(nbins—1)+1), mlim
REAL+8 :: post_y2(nbins) = 0.d0, post_x2(nbins)

REAL#8 :: post_y3(2«nbins — 1) = 0.d0, post_x3(2xnbins — 1)

REAL+8 :: offset_kpc . PPD_peak

CHARACTER :: argvs*10, test*40, chl«9, ch2%9, ch3%9, ch4x9, string *80

B4,
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INTEGER :: iCCDt, clsg, clsi,

ifieldt , iacc._t

REAL+4 :: xgt, ygt, g, dg, im, dim, xki-t, eta_-t, FeH_phot_t, diff_tip_t, E.BV_.t

REAL+8 :: ra_t, de_t

REAL#+4 :: mag_g(ndata_max) ,

mag-i(ndata_max), xki(ndata_.max), eta(ndata_max)

REAL+4 :: g_min_i(ndata_max), mag_i_poly(ndata.max), g-min_i_poly(ndata_max)

REAL#+4 :: gmi

END MODULE Global

PROGRAM MCMCTRGBTester2
USE Global
IMPLICIT NONE

mm = IARGC ()

IF (mm==4) THEN
CALL GETARG(1, argv)
READ (argv ,*,iostat=ios)
CALL GETARG(2, argv)
READ (argv ,*,iostat=ios)
CALL GETARG(3, argv)
READ (argv ,*,iostat=ios)
CALL GETARG(4, argv)
READ (argv ,*,iostat=ios)

ELSE

! Master program

mag_tip !
!

a !
|

ndata !Indicates the arguments to be
!'set in the command line

f !

WRITE(* ,*) “You_must_enter_4_arguments:” !

stop
END IF

WRITE (%) "_"

WRITE (*,%) “Model_mag_tip/slope/#_sources/background_height_=", mag_tip, a, ndata,

WRITE (chl %) mag-_tip
WRITE (ch2,%) a
WRITE (ch3,%) ndata
IF (f .eq. 0.d0) THEN

WRITE (ch4 ,%) "0’
ELSE

WRITE (ch4 ,%) f
END IF

inputs (1) = mag_tip
inputs(2) = a

inputs (3) = ndata
f

inputs (4)

ndata2 = 0

|
!

!

!Generate test identifying character string

!to become file name using mag_tip, ndata and f
le.g. "MCMC._Test/T.20.5-0.3-1000-0.2"

1

WRITE (test ,+) 'MCMC_Test/T.’ // TRIM(ADJUSTL(chl)) &

/!

/!

/1
CALL random_seed !

'~ // TRIM(ADJUSTL(ch2)) &
*—* // TRIM(ADJUSTL(ch3)) &
"—* // TRIM(ADJUSTL(ch4))

flimBins = INT(REAL((23.5d0 — 18.d0)) % binspm) + 1

f
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blim = 18.0d0 ; flim = 23.5d0 ; mlim = blim

CALL NoiseMake !Generates the convoluted model for the inputted
CALL ModelMake I'tip magnitude and then uses to generate sets
CALL Convolution lof data points in ’DataMake’ subroutine
blim = 20.0d0 ; flim = 21.0d0 ; mlim = blim
flimBins = INT(REAL((flim — 18.d0)) = binspm) + 1
blimBins = INT(REAL((blim — 18.d0)) = binspm) + 1
CALL DataMake
DO i = 1, ndata
IF (data(i) .ge. blim .AND. data(i) .le. flim) THEN
ndata2 = ndata2 + 1
data(ndata2) = data(i)
END IF
END DO
WRITE (#,%) "Number_of_stars_in_fitted._range:”, ndata2
CALL NoiseMake !
CALL MOMC !CALL
CALL TipAndSigma IMOMC
CALL PosteriorPlot | SUBROUTINES
CALL OtherPlots !
CALL DataHist !
WRITE (, *(3all)’) "o__tipomag:”, "___.sigma:”, "___._offset:” !
WRITE (+, '(3F11.3)") tip-rec, tip.sigma, tip-offset !
WRITE (x, *(3all)’) "ooof:ioooooo T, Vaoosigma:”, Yoooooffset:” !'Write results
WRITE (+, '(3F11.3)") f_rec, f_sigma, f_offset Ito file
WRITE (s, *(3all)’) "cccaicccooo 7, Veoosigma:”, Yoooooffset:” !
WRITE (+, *(3F11.3)°) a_.rec, a.sigma, a_offset !
WRITE (#,%) "Distance.=", REAL(tip_-kpc), “kpc_p/m”, REAL(kpc_err), “kpc”
WRITE (#,%) "Distance.Offset_=", REAL(offset_kpc), “kpc”
END PROGRAM MCMCTRGBTester2
|
SUBROUTINE DataMake !Generates data points from the convolved model
USE Global
IMPLICIT NONE
real =8 ranl
cumulative_cmodel (:,1) = cmodel(:,1)
cumulative_cmodel (1,2) = cmodel(1,2) | Effective
DO i = 2, cmod.nbins lintegral of
cumulative_cmodel (i,2) = cumulative_cmodel (i —1,2) + cmodel(i,2)!convolved
END DO !'model
DO i = 1, ndata !
CALL random_number (randnum4) !
randnum4 = cumulative_cmodel (blimBins ,2) + & !
randnum4 = (cumulative_cmodel (flimBins ,2) — cumulative_cmodel (blimBins
DO j = flimBins, blimBins, -1 !
IF (randnum4 .le. cumulative_.cmodel(j,2)) THEN !Generates ’'ndata’
IF (randnum4 .gt. cumulative_.cmodel(j—1,2)) THEN !datapoints from

.2))
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data(i) = cumulative_cmodel(j,1)

exit;
END IF
END IF
END DO
END DO

END SUBROUTINE DataMake

!'the convolved
!'model

|

|

Libpress
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Program: BayesianTRGBTestPlotterMCMC.f95

Creation Date: 29 April 2010

Relevant Section: Figs. 10 & 11 of Paper I (Ch. 3) and Figs. 4 & 5 of Paper II (Ch. 4)
Notes: This program is used to plot the results returned by ‘MCMCTRGBTester2.195,
namely the one sigma uncertainties and the offset of the recovered tip magnitude from
mag_tip = 20.5 for each combination of f and ndata. Pixels are created with bounds
X1,X2,Y1,Y2 with the added complication of a log scale for the x-axis. These pixels are

then assigned a shade of grey based on the magnitude of the quantity they represent.

PROGRAM BayesianTRGBTestPlotterMCMC ! Plots results of tests for different combinations of

IMPLICIT NONE !'f vs. ndata (generates two plots: tip offset for each
!combination and sigma for each combination)

INTEGER :: i, ios, j, k, x(11,9) =3

REAL :: AI(11,9), A2(11.,9)

REAL :: ndata(1000), ndata_actual (1000), f(1000), offmag(1000), v

REAL :: offkpc(1000), sigmag(1000), sigkpc(1000), temp, X1, X2, YI, Y2

REAL :: ALEV(100), TR(6), stars(11,9), noise(11,9)

REAL :: grey, xmin, xmax

CHARACTER(LEN=15) :: CI(11,9), C2(11.,9)

OPEN (unit = 1, file = °./summary.dat’, status = “old’)
i =0 ; ios =0
DO WHILE (.TRUE.) !Reads data until end of input file and puts it into arrays
i=i+l
READ (1, #, IOSTAT = ios) ndata(i), f(i), sigkpc(i), offkpc(i), temp, temp, temp
if (ios == 0) then ;
else if (ios == —1) then ;
i=i-1
exit ;
else if (ios > 0) then ;
i=i-1
cycle
end if
END DO

DO j =1, 11 !
DOk =1, 9 |
AL(j,k) = sigkpe (((j-1)%9)+k) !

IF (Al(j.k) .eq. 0.d0) THEN !
Al(j.k) = 0.001d0 !

END IF !Puts results

A2(j.k) = offkpe (((j—1)*9)+k) !

IF (A2(j.k) .eq. 0.d0) THEN linto ndata x f
A2(j,k) = 0.001d0 !

END IF tarrays for

stars (j,k) = ndata (((j-1)=9)+k) !

noise (j,k) = f(((j—-1)*9)+k) leasy plotting

WRITE (C1(j,k),*) NINT(AI(j,k)) !
WRITE (C2(j.k) ,*) NINT(A2(j.k)) !

END DO |
END DO !
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CALL pgbeg

CALL pgenv

in (0, "MF.TRGBSigmaMCMC. ps/CPS’ ,1,1) !Generates sigma plot

(0.8, 4.5, 0., 1., 0, 10)

xmin = MINVAL(AL)
xmax = MAXVAL(AI)

IF (MOD(i.3) .eq. 1) THEN !

X

1 = LOGIO(10.#+(((i—-1)/3)+1)) — 0.13 !

X2 = LOGIO(10.%%(((i-1)/3)+1)) + 0.13 !

END IF ! Generate pixel
!
IF (MOD(i,3) .eq. 2) THEN !x boundaries for
X1 = LOGI0(2. % 10.%%(((i—1)/3)+1)) — 0.13 !
X2 = LOGI0(2. * 10.#*(((i—=1)/3)+1)) + 0.13 !log x axis
END IF !
!(3 different width
IF (MOD(i,3) .eq. 0) THEN !calculations required)
X1 = LOGIO(5. % 10.%%(((i-1)/3)+1)) — 0.13 !
X2 = LOGIO(5. * 10.##(((i—-1)/3)+1)) + 0.13 !
END IF !
Yl = j % 0.1e0 - 0.04 ! Generate
I'pixel
Y2 =j % 0.1e0 + 0.04 !y boundaries
grey = (xmax — Al(i,j)) / (xmax — xmin) !Determine shade of grey
CALL pgscr(3, grey, grey, grey)
CALL pgpixI(x, 11, 9, i, i, j, j, X1, X2, YI, Y2) !make pixels
CALL pgsci(2)
CALL pgptxt(LOGIO(stars(i,j)), noise(i,j). 0., 0.5, CI(i,j)) !put value in
END DO
END DO
CALL pgsci(l)
CALL pglab(’number_of._stars’, ’proportion.of_background.stars’, &
*Sigma._(kpc).—_.One_Sigma_Error’)
CALL pgend
|
CALL pgbegin (0, "MF.TRGBOffsetMCMC. ps/CPS’ ,1,1) !Generates offset plot
CALL pgenv (0.8, 4.5, 0., 1., 0, 10)
A2 = ABS(A2)

xmin = MINVAL(A2)
xmax = MAXVAL(A2)

IF (MOD(i,3) .eq. 1) THEN !
X1 = LOGIO(10.%%(((i-1)/3)+1)) — 0.13 !

pixels
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X2 = LOGIO(10.%%(((i-1)/3)+1)) + 0.13 !

END IF ! Generate pixel

!

IF (MOD(i,3) .eq. 2) THEN !x boundaries for
X1 = LOGIO(2. * 10.%+(((i-1)/3)+1)) — 0.13 !
X2 = LOGIO(2. % 10.#%(((i=1)/3)+1)) + 0.13 'log x axis
END IF !
1(3 different width
IF (MOD(i,3) .eq. 0) THEN !calculations required)
X1 = LOGIO(5. * 10.#*(((i—1)/3)+1)) — 0.13 !
X2 = LOGIO(5. % 10.%%(((i-1)/3)+1)) + 0.13 !
END IF !
Yl = j % 0.1e0 — 0.04 !Generate
I'pixel
Y2 =j % 0.1e0 + 0.04 !y boundaries
grey = (xmax — A2(i,j)) / (xmax — xmin) !Determine shade of grey
CALL pgscr(3, grey, grey, grey)
CALL pgpixI(x, 11, 9, i, i, j, j, X1, X2, YI, Y2) !make pixels
CALL pgsci(2)
CALL pgptxt(LOGIO(stars (i,j)), noise(i,j), 0., 0.5, C2(i,j)) !put value in
END DO
END DO

CALL pgsci(l)
CALL pglab( 'number_of_stars’, ’proportion_of_background_stars’, &

*Offset.(kpc).—-Radial_.Distance.Offset )

CALL pgend

END PROGRAM BayesianTRGBTestPlotterMCMC

pixels



MF TRGB.f95
MF _TRGB_Feed.pl
MF _TRGB_Tester.f95
Multi MCMC _Result_Plotter. f95
SatPlot.f95

SatDensity_SampCont.f95
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Program: MF_TRGB.f95

Creation Date: 31 August 2011 (first version 8 Dec 2010) Many modifications.

Relevant Section: Ch. 4

Notes: This program is the successor of ‘BayesianTRGB_ANDI.f95” in Appendix B and
similarly lies at the heart of the material presented in Paper II (Ch. 4). The principal differ-
ence between the two is that this new version incorporates a density matched filter weighting
scheme, where by stars are given a weight based on their position with in the object’s den-
sity profile. In this way, stars that are more likely to be true object member’s are given
greater consideration during the luminosity function fitting. The actual weighting itself is
taken care of by the ‘Weighter’ subroutine, but other subroutines have been modified sig-
nificantly to handle it. The background component of the LF (built in ‘NoiseMake’) for
instance is no longer added to the model LF in the ‘ModelMake’ subroutine. This is be-
cause with the weighting switched on, each star effectively has its own model LF with the
ratio of background to RGB component tailored to suit the star’s probability of being a true
object member. Hence, these ratios are now taken into account in the ‘LoglLike’ subrou-
tine on a star-by-star basis. There are many other additions. A new LF plotting subroutine
‘w_DataHist’ plots the weighted LF and a plot of the object density profile is created in the
‘Weighter’ subroutine. Parallel tempering has been added to the ‘MCMC’ subroutine and
the run-speed of the whole algorithm has be greatly improved by fixing up a design flaw
in the way the convolution step was being done (The ‘GaussianKernel’ subroutine is now
called just once and the values are saved). The program also now takes command line input
so that the one set of code can be used for all objects. Due to the large number of changes
made to most of the subroutines originally written for ‘BayesianTRGB_ANDI.f95,” I have
reproduced the whole program here rather than omitting the duplicate subroutines. Note that
the command line inputs for each satellite are provided as the next item in this appendix for
completeness. For a more in depth description of the workings of the program in general,

see Paper II - particularly §2 and §3.1.

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

! General Program Parameters
INTEGER :: i, j, k, I, eval, idum = -9999, it, nit

INTEGER :: ndata_max , nsamples, binspm, nbins, cmod_nbins, mm, ios
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diff_tip_t .

PARAMETER (ndata_max = 10000000, nsamples = 100)

PARAMETER (binspm = 100)

PARAMETER (nbins = 8xbinspm + 1)

PARAMETER (nit = 500000)

INTEGER :: ndata, ndata2

INTEGER :: dl, d2, d3, d4

INTEGER :: ghw(nbins)

REALx*8 blim, flim, pi

PARAMETER (blim = 19.5d0)

PARAMETER (flim = 23.5d0)

PARAMETER (pi = ACOS(-1.e0))

INTEGER :: blimBins = INT(REAL((blim - 18.d0) % binspm)) + 1

INTEGER :: flimBins = INT(REAL((flim - 18.d0) * binspm)) + 1

REALx*8 randnum! , randnum2, randnum3, randnumé4, randnum3

INTEGER :: randint

REAL+*8 rl, r2, spotR, hb = 0.005d0

REALx*8 model (nbins ,2), cmodel(nbins ,2), magnitude (ndata_max)

REALx*8 histo-fine (nbins ,2), histo_coarse (INT(0.25«(nbins —1.d0)) + 1,2)
REALx*8 w_histo_fine (nbins ,2), w_histo_coarse (INT(0.25%(nbins -1.d0)) + 1,2)
REAL:x*8 data(ndata-max), cumulative_cmodel (nbins ,2), f, f_hold, bfm(nbins)
REAL+8 mag_tip , mag, mag_cutoff = 24.e0, a

REALx*8 area , area2

REALx*8 modelnoise (nbins ,2), noise(nbins) = 0.d0 , bg(nbins) = 0.d0

REALx*8 kernel (nbins ,2,nbins) = 0.e0, scale, uplim, lowlim, gx

REALx*8 temp (nbins ,2) = 0.e0, t

INTEGER :: starbin

REALx*8 tip (nsamples), tip-ord(nsamples), maxlogL(nsamples) = -999999999999.
REAL*8 tip_rec , tip_offset , tip_psigma, tip.msigma, Toffset_.kpc, Tsigma_kpc
REAL*8 f_offset, tip-kpc, kpc_perr, kpc.merr, f_sigma, a_offset, a_sigma
REALx*8 f.rec, a.rec, tip-counts, f_counts, a_counts

REAL*8 tipminsig ., tiplusig , fminsig, fplusig, aminsig, aplusig

REAL#8 :: mcounts, pcounts

INTEGER :: num_chains, cn, chain_compare, swap_count

PARAMETER (num-_chains = 4)

REALx*8 swaprate = 1.d0/ 30.d0, logL(num_chains), LikeA(num_chains), LikeB(num_chains)
REAL*8 prob, sig_prob, bg_prob

REALx*8 beta, betaholder(num_chains) = (/ 1.d0, 0.25d0, 0.111d0, 0.001d0 /)
REALx*8 m_step (num_chains) = (/ 0.03d0, 0.06d0, 0.12d0, 0.3d0 /)

REAL*8 f_step (num_chains) = (/ 0.02d0, 0.04d0, 0.08d0, 0.2d0 /)

REALx*8 a_step (num_chains) = (/ 0.02d0, 0.04d0, 0.08d0, 0.2d0 /)

REAL:*8 PTAR, par-hold (4)

REALx*8 x1(nit ,num_chains), x2(nit,num_chains), x3(nit,num_chains), p(3), time(nit), r
REALx*8 post_yl (10«(nbins —=1)+1) = 0.d0, post_x1(10#(nbins —1)+1), mlim
REAL+8 d_blim, bg_blim, d_flim, bg_flim

REALx*8 post-y2(nbins) = 0.d0, post_x2(nbins)

REALx*8 post_y3(2«nbins — 1) = 0.d0, post_x3(2xnbins — 1)

REALx*8 PPD_peak, Best_.Combo (6)

CHARACTER :: argvs+30, field=*30, colcut*30, chl%9, ch2%9, ch3%9, ch4%9, ch5x9,
INTEGER :: scout_counts

LOGICAL :: not.scout

! For reading in PAndAS data -———————————————

INTEGER :: iCCDt, clsg, clsi, ifieldt, iacc-t

REALx4 xgt, ygt, g, dg, im, dim, xki-t, eta_-t, FeH_phot.alan_t, FeH_phot.t,
REAL+8 ra_t, de_t

REALx*4 mag-g(ndata_max ), mag.i(ndata_max), xki(ndata_.max), eta(ndata_max)
REAL*4 g-min_i(ndata_max), mag.i_poly(ndata_max), g.min_i_poly (ndata_max)
REAL+4 mag_-g_poly(ndata_.max), xi-poly(ndata_max), eta_poly(ndata_max)
REALx*4 gmi, xi.all(ndata_max), eta_-all(ndata_max)

string «60, command*200

E_BV_t
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68 LOGICAL :: truestar(ndata.max), truestar_poly (ndata_max)
69
70 | Additional parameters for calculating background stats ——————

71 INTEGER :: bg.ndata, bg._ndata2, bg_ndata3

72 REAL+#4 :: bg_mag_g(ndata.max), bg.mag.i(ndata_max), bg._xki(ndata_max), bg_eta(ndata_max)
73 REAL#4 :: bg_g_min.i(ndata.max), bg_-mag.i-poly(ndata_max), bg.g-min_i_poly(ndata_max)
74  REAL#4 :: bg._mag._g_poly(ndata.max), bg.gmi

75 REAL+8 :: bg_data(ndata_max)

76
77 !1-—SVD fitting of background——
78 INTEGER ma, mp, np, ndat

79 PARAMETER (ndat = INT(0.25%(nbins —1.d0)) + 1)

80 PARAMETER (np = 8)

81 PARAMETER (mp = ndat)

82 PARAMETER (ma = np)

83 REAL :: chisq, ay(ma), sig(ndat), u(mp,np), v(np,np), w(np), xa(ndat), ya(ndat)
84 REAL :: xt(ndat), yt(ndat)

85 REAL#+8 :: bg-histo_coarse (ndat,2)

86 EXTERNAL :: funcs

87

88 l— Additional parameters for specifying object coordinates —————

89 INTEGER :: Jop

90 REAL+8 :: Xlop, ETAop

91 REAL=8 :: RAh, RAm, RAs, DecD, DecM, DecS, RA_rad, Dec_rad

92  REAL+#8 :: tpRAh, tpRAm, tpRAs, tpDecD, tpDecM, tpDecS, tpRA_rad, tpDec.rad

93

94 !-—Additional parameters for Matched Filters Subroutine ’*Weighter ——

95 INTEGER :: rhobins, rhobins2

96  PARAMETER (rhobins = 40)

97 REAL#4 :: C_O_F_dist(ndata.max), Density(rhobins ,2), Den.sig(rhobins), rhofit(rhobins ,2), weightplot(500,2)

98 REAL+8 :: weight(ndata_max), scaled_a(ndata.max), scaled_a_all(ndata_max), crowded_rad, ellipse_stars , ellipse_area
99  REAL+#8 :: ellip , HLR, PA, xdash, ydash, maxweight, maxa, SR, den_prof_scale, outer.rad

100 REAL*8 :: weightsum, Densitysum

101

102 ! When f is known

103 INTEGER :: bg_stars, sig-stars

104 REAL%8 :: bg_area, sig-area

105 REAL+8 :: known_f, bg_stars_in_sig-field

106 REAL#8 :: sig_field.radius , bg_low_xi, bg_up_xi

107

108 END MODULE Global

109

110 !

111

112 PROGRAM BayesianTRGBsatellite ! Master program

113 USE Global
114 IMPLICIT NONE

115

116  mm = IARGC()

117

118 IF (mm==16) THEN !
119 CALL GETARG(1, argv) !
120 READ (argv ,*,iostat=ios) field !
121 CALL GETARG(2, argv) !
122 READ (argv ,*,iostat=ios) RAh !
123 CALL GETARG(3, argv) !
124 READ (argv ,*,iostat=ios) RAm !
125 CALL GETARG(4, argv) !
126 READ (argv .,*,iostat=ios) RAs !
127 CALL GETARG(5, argv) !

128 READ (argv .+ ,iostat=ios) DecD !
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CALL GETARG(6, argv) !
READ (argv ,*,iostat=ios) DecM !
CALL GETARG(7, argv) !
READ (argv ,*,iostat=ios) DecS !
CALL GETARG(8, argv) !

READ (argv .x,iostat=ios) ellip !Indicates the arguments
CALL GETARG(9, argv) !'set in the command line

READ (argv ,*,iostat=ios) HLR !
CALL GETARG(10, argv) !
READ (argv ,*,iostat=ios) PA !
CALL GETARG(11, argv) !
READ (argv ,*,iostat=ios) crowded.rad !
CALL GETARG(12, argv) !

READ (argv ,*,iostat=ios) outer_rad !
CALL GETARG(13, argv) |
READ (argv ,*,iostat=ios) sig-field_-radius !
CALL GETARG(14, argv) !

READ (argv ,*,iostat=ios) bg_-low._xi !
CALL GETARG(15, argv) !

READ (argv ,*,iostat=ios) bg_up._xi !
CALL GETARG(16, argv) !

READ (argv ., ,iostat=ios) colcut !

ELSE !
WRITE(* ,%) “You_must_enter_l6_arguments:” !
stop !
END IF !
string = TRIM(ADJUSTL( field)) // */results.dat’
OPEN(3, file=TRIM(ADJUSTL(string)), status = ‘unknown’)
WRITE (3 ,%) "Field_.Name:”, field

CALL positionFinder !

CALL random_seed !

CALL M31DataReader !
CALL Weighter !
CALL SVDFitter !
CALL GaussianKernel !

CALL NoiseMake !CALL
CALL MOMC !
!CALL PosteriorPlot !SUBROUTINES

CALL TipAndSigma !
CALL PosteriorPlot !
CALL OtherPlots !
CALL DataHist !
CALL w_DataHist !

IF (num-chains .ne. 1) THEN

WRITE (3 ,%) "Proposed.Swaps_with_Cold_.Sampler_Chain:”,

WRITE
WRITE
END IF
WRITE
WRITE
WRITE

(3,%) "Accepted_Swaps_with_Cold_.Sampler_Chain:”, swap_count

(3,%) “Parallel .Tempering_Acceptance_Rate:”,

7 ee—osigma:l”

(3, ’(3all)’) 7oootipomag:”, "ootosigma:.l”,
(3, "(3F10.3)") tip_rec, tip.psigma, tip.msigma
(3, "(2all)’) 7acoficacooe 7, Vaoosigma:zol”

(3, ’(2F10.3)") f.rec, f_sigma

(3, "(2all)’) "aecaicaoooo 7, Vaoosigmazol”

(3, (2F10.3)") a.rec, a.sigma
(3.,%) ”Distance.=", REAL(tip_kpc), “kpc”

chain_compare

to be

!
!

!

REAL(swap_count)/ REAL(chain_compare)

!'Write results

!'to
1

!

file
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190 WRITE (3 ,%) "Error.=_+", kpc_perr, “kpc.—", kpc_merr, “kpc” !
191

192 END PROGRAM BayesianTRGBsatellite

193
194 !
195
196  SUBROUTINE PositionFinder !Converts object RA and Dec into M3l tangent plane coordinates xi and

197 USE Global leta. These are used in the next subroutine for reading in all stars
198 IMPLICIT NONE !from the PAndAS survey with in some radius of the object center
199

200  tpRAh = 0.d0 !

201 tpRAm = 42.d0 !

202 tpRAs = 44.33d0 !RA and Dec of tangent point

203 tpDecD = 41.d0  !(i.e. M31)

204  tpDecM = 16.d0 !

205  tpDecS = 7.5d0 !

206

207 !'|| Perform

208 !\/Conversion

209 RA_rad = (pi/180.d0) % (RAh % 15.d0 + RAm * (15.d0/60.d0) + RAs = (15.d0/3600.d0))

210

211 Dec.rad = (pi/180.d0) % (DecD + DecM/60.d0 + DecS/3600.d0)

212

213 tpRA_rad = (pi/180.d0) = (tpRAh * 15.d0 + tpRAm * (15.d0/60.d0) + tpRAs = (15.d0/3600.d0))
214

215 tpDec_rad = (pi/180.d0) * (tpDecD + tpDecM/60.d0 + tpDecS/3600.d0)

216

217  CALL sla_DS2TP (RA_rad, Dec.rad, tpRA_rad, tpDec_rad, Xlop, ETAop, Jop)
218 WA

219 1]

220

221 XIop = Xlop * (180.d0/pi) !tangent plane coordinates

222 ETAop = ETAop * (180.d0/pi) !(i.e. PAndAS xi and eta)

223

224 WRITE (3 .,%) ”C.O.F._Xi.=", Xlop, "C.O.F._Eta_=", ETAop

225

226  END SUBROUTINE PositionFinder

227

228 !

229 SUBROUTINE M31DataReader !The field to be analysed is specified here
230 USE Global
231  IMPLICIT NONE

232

233 OPEN(I1, file="../../../PANDAS/M31 _unique_.con.dat’ form="unformatted’,status="old")
234

235 i=0;j=0

236

237 DO WHILE (. true.)

238 READ(1 ,IOSTAT=ios) ra-t,de_t ,iCCDt,xgt,ygt, & !Read in data
239 g,dg,clsg ,im,dim, clsi ,ifieldt , xki-t ,eta_t, & !from binary

240 FeH_phot_alan_t, FeH_phot_t,diff_tip_t ,E.BV_t,iacc_t !'format data file
241

242 IF (ios.ne.0) exit

243

244 g=g-3.793+E_BV_t !Extinction

245 im=im-2.086«E_BV_t !'Corrections

246 gmi = g — im

247

248 if (clsi.ne.—1 .and. clsi.ne.-2) cycle !Regects

249 if (clsg.ne.—1 .and. clsg.ne.-2) cycle !non stars

250 if (iacc-t .ne. 1) cycle
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if (18.0.le.im.and.im.le.24.0) then

else
cycle

end if

!Specifies

!'magnitude

!range to

linclude

if (-2.5.le.FeH_phot_alan_t.and.FeH_phot_alan_t.le.-1.5) then

else
! cycle

end if

!'Specifies
!range to

!

metallicity

include

spotR = SQRT((ABS(eta.t — (ETAop)))##2 + (ABS(xki_-t — (Xlop)))+*#2)

IF (spotR .1t. sig_field_.radius) THEN

i=1i+1

IF (i .gt. ndata_max)

mag.g(i)=g
mag-i(i)=im
g-min_i(i)=gmi
xki(i)=xki-t

eta(i)=eta_t

exit

!

!

'If all conditions are met, add star data

!

!

IF (ifieldt .ge. 0) THEN

!

to signal arrays

truestar (i) = .true. !'Distinguish between
ELSE !real data and artificial
truestar (i) = .false. !'background
END IF !
ELSE IF (xki_t .ge. bg_low_xi .and. xki_t .le. bg_up_xi) THEN
.and. eta_-t .le. ETAop + 0.5d0) THEN

IF (eta_-t .ge. ETAop — 0.5d0

IF (j .gt. ndata.max) exit

bg-mag_g(j)=g
bg-mag_i(j)=im
bg_g-min_i(j)=gmi
bg_xki(j)=xki_t
bg-eta(j)=eta_t
END IF
END IF

END DO

ndata = i ; bg._ndata = j

'Tf all conditions are met, add star

sig-area = pi = (sig-field_radius x*x

2.d0)

data

!Calculate area of signal

bg_area = 1.d0 % (bg-up_xi — bg_low_xi) — (pi * (sig-field_radius

DO i = 1, ndata
data(i) = mag.i(i) !

xi-all(i) = xki(i) !Object stars

eta_all (i) = eta(i)
END DO

DO j = 1, bg-ndata
bg.data(j) = bg-mag.i(j)

END DO

CALL M31DataPlotter

'BG stars

END SUBROUTINE M3I1DataReader

before applying colour cut

before

applying colour cut

EEY

to bckgrnd arrays

field
2.d0))

!Calculate area of BG field
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312

313 !

314

315 SUBROUTINE M31DataPlotter !Produces plots of the object and background fields
316 USE Global tas well as their Colour—Magnitude Diagrams. Colour
317  IMPLICIT NONE !cuts are also implemented in this subroutine

318

319 ! Signal —Field

320 string = TRIM(ADJUSTL( field)) // */sig-field.ps/CPS”’

321 CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

322

323 CALL pgenv (MAXVAL(xki, mask = xki .ne. 0.), MINVAL(xki, mask = xki .ne. 0.), &
324 MINVAL(eta, mask = eta .ne. 0.), MAXVAL(eta, mask = eta .ne. 0.), 1, 0)

325  CALL pgslw(3)

326 DO i = 1, ndata

327 IF (truestar(i)) THEN

328 CALL pgpt (1, xki(i), eta(i), -1)
329 ELSE

330 CALL pgpt (1, xki(i), eta(i), 225)
331 END IF

332 END DO

333  CALL pgslw (1)

334 CALL pglab(’\(0640).(degrees)’, *\(0633)_(degrees)’, °’)

335

336  CALL pgend

337

338 WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &
339 */sig-field.ps../" // TRIM(ADJUSTL( field)) // &
340 */sig-field.jpg’

341

342 call system (command)

343

344 ! Signal -CMD
345 string = TRIM(ADJUSTL( field)) // */sig-cmd.ps/CPS’

346  CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

347

348  CALL pgenv (MINVAL(g_min_i, mask = g_min_i .ne. 0.), MAXVAL(g.min.i), &
349  MAXVAL(mag-i), MINVAL(mag.i, mask = mag.i .ne. 0.), 0, 0)

350 CALL pgslw (3)

351 DO i = 1, ndata

352 IF (truestar(i)) THEN

353 CALL pgpt (1, g-min_i(i), mag.i(i), -1)
354 ELSE

355 CALL pgpt (1, g-min_i(i), mag.i(i), 225)
356 END IF

357  END DO

358 CALL pgslw (1)

359  CALL pglab(’(g-——i)\dO\u’, *i\dO\u’, *7)

360

361 CALL PolySelect !For CMD colour—cut

362

363 CALL pgend

364

365 WRITE (command,*) ’convert_—rotate-90~./" // TRIM(ADJUSTL( field)) // &
366 */sig-emd.ps~./  // TRIM(ADJUSTL(field)) // &
367 */sig_emd . jpg’
368

369 call system (command)

370

371 ! Bckgrnd—-Field
372 string = TRIM(ADJUSTL( field)) // */bg-field.ps/CPS’
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CALL pgbegin (0, TRIM(ADJUSTL( string)) .1.1)

CALL pgenv (MAXVAL(bg_xki, mask = bg_xki .ne. 0.), &
MINVAL(bg-xki, mask = bg_xki .ne. 0.), &
MINVAL(bg_eta , mask = bg_eta .ne. 0.), &
MAXVAL(bg.eta, mask = bg_eta .ne. 0.), 1, 0)

CALL pgslw (2)

CALL pgpt (bg.ndata, bg_xki, bg_eta, -1)

CALL pgslw (1)

CALL pglab(’\(0640)_(degrees)’, *\(0633)._(degrees)’, ")

CALL pgend

WRITE (command,*) ’“convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &
*/bg_field.ps../” // TRIM(ADJUSTL(field)) // &
*/bg-field.jpg’

call system (command)

! Bckgrnd -CMD-

string = TRIM(ADJUSTL( field)) // °/bg-cmd.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) .1.1)

CALL pgenv(MINVAL(bg.g_min_i, mask = bg_g_min_i .ne. 0.), &
MAXVAL(bg-g-min_i), MAXVAL(bg_mag.i), &
MINVAL(bg_-mag.i, mask = bg.mag.i .ne. 0.), 0, 0)

CALL pgslw (3)

CALL pgpt (bg.ndata, bg_g_.min_i, bg.mag.i, -1)
CALL pgslw (1)
CALL pglab (’(g-——i)\dO\u’, *i\dO\u’, )

CALL PolySelect !For CMD colour—cut

CALL pgend

WRITE (command,*) ’convert_o—rotate.90../" // TRIM(ADJUSTL( field)) // &
*/bg.emd.ps../’ // TRIM(ADJUSTL( field)) // &

’/bg-cmd. jpg’

call system (command)

Input selected data into ’'data’———————————
string = TRIM(ADJUSTL( field)) // ’/i-and_-g.in_cut.dat’
OPEN(7, file=TRIM(ADJUSTL(string)), status = ‘unknown’)

WRITE(7 ,*) ~ i g number_of_stars:”,

data = 0.d0 ; xki = 0.d0 ; eta = 0.d0 ; d_blim = 100.d0 ; d_flim = 0.d0
DO i = 1, ndata2
data(i) = mag_i_poly (i)
xki(i) = xi-poly (i)
eta(i) = eta_poly (i)
IF (data(i) .1t. d_blim) THEN
d_blim = data(i)
END IF
IF (data(i) .gt. d_-flim) THEN
d_flim = data(i)
END IF
WRITE (7, *(2F16.5)’) mag-i-poly (i), mag-g-poly (i)
END DO

e Signal —Field after colour cut——————————————

string = TRIM(ADJUSTL( field)) // */sig_field_cc.ps/CPS’

ndata2
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434 CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

435

436  CALL pgenv (MAXVAL(xki, mask = xki .ne. 0.), MINVAL(xki, mask = xki .ne. 0.), &
437 MINVAL(eta, mask = eta .ne. 0.), MAXVAL(eta, mask = eta .ne. 0.), 1, 0)

438  CALL pgslw (3)

439 DO i = 1, ndata2

440 IF (truestar_poly(i)) THEN

441 CALL pgpt (1, xki(i). eta(i), —1)
442 ELSE

443 CALL pgpt (1, xki(i), eta(i), 225)
444 END IF

445  END DO

446  CALL pgslw (1)

447  CALL pglab(’\(0640)_(degrees)’, *\(0633).(degrees)’, ")

448

449  CALL pgend

450

451 WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL( field)) // &
452 */sig-field_cc.ps../” // TRIM(ADJUSTL( field)) // &
453 */sig-field_.cc.jpg’

454

455 call system (command)

456

457 o Input selected background data into ’bg._data’———————

458  bg.data = 0.d0 :; bg_blim = 100.d0 ; bg_flim = 0.d0

459 DO i = 1, bg.ndata2

460 bg-data(i) = bg_mag_i_poly (i)

461 IF (bg_data(i) .I1t. bg_blim) THEN

462 bg_blim = bg_data(i)

463 END IF

464 IF (bg_data(i) .gt. bg_flim) THEN

465 bg_flim = bg._data(i)

466 END IF

467  END DO

468

469 !———Set parameters for calculation of background height-——
470

471 sig-stars = ndata2 !'Total number of stars in signal field
472 bg_stars = bg.ndata3 !Number of stars in background field
473 bg_stars_in_sig_field = REAL(bg_stars) = (sig-area/bg.area)! : bg_stars = 0.d0

474 !Number of Background stars in signal field

475

476 WRITE (3 ,%) “Number_.of_data_points:”, sig.stars

477  WRITE (3 ,%) ”Average_Field _SNR:”, (REAL(sig_stars) — bg_stars_in_sig_field) / bg_stars_in_sig_field
478

479 ] Make coarse data histogram for bckgrnd ————————

480

481 DO i = 1, INT(0.25+(nbins —1.d0)) + 1

482 bg_histo_coarse (i,1) = 18.d0 + (i—-1.d0)/REAL(0.25%binspm)

483 END DO

484

485 DO i =1, bg-ndata2

486 bg_histo_coarse (INT((bg_-data(i)—-18.d0)*0.25%binspm) + 1, 2) = &
487 bg-histo_coarse (INT((bg-data(i)—-18.d0)*0.25«binspm) + 1, 2) + 1.d0
488  END DO

489

490 !'|I Fill empty bright edge of array with

491 '\/ artificial data for improved fitting

492 DO i = 1, INT((bg-blim - 18.d0) % REAL(binspm/4.d0)) + 4

493 bg_histo_coarse(i,2) = bg_histo_coarse (INT((bg-blim — 18.d0) * REAL(binspm/4.d0)) + 4, 2)

494 END DO
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495

496  END SUBROUTINE M31DataPlotter

497

498 !

499

500 SUBROUTINE Weighter !Implements an elliptical weighting scheme using the

501  USE Global tellipticity , half-light radius and position angle

502  IMPLICIT NONE tof the satellite

503

504 HLR = HLR = (1.d0/ 60.d0) !Convert half-light radius from minutes to degrees

505 SR = HLR / 1.678 !Convert from half light radius to exponential scale radius

506 PA = PA x (pi/180.d0) !Convert position angle from degrees to radians

507 ellipse_area = pi * outer.rad % outer.rad = (1.d0 — ellip) !Area of outer ellipse

508

509 ellipse_stars = 0.d0 ; maxweight = 0.d0 : maxa = 0.d0

510

511 ellipse_area = ellipse_area — pi * crowded.rad * crowded.rad = (1.d0 — ellip) !Subtract area of inner ellipse

512

513

514 DO i = 1, ndata2 !'Rotation of coordinates to match orientation
515 xdash = (xki(i) - (XIop)) % cos(PA) — (eta(i) — (ETAop)) #* sin(PA) tof satellite. The new coordinates are then used
516 ydash = (xki(i) — (XIop)) * sin(PA) + (eta(i) — (ETAop)) * cos(PA) !to find the major axis of the ellipse a given
517 scaled_a (i) = SQRT(ydashx%2.d0 + (xdash*%2.d0 / (1.d0 — ellip)*%2.d0))!star lies on — this equates to circular radius.
518 IF (scaled_.a(i) .le. outer_rad .and. scaled.a(i) .ge. crowded_rad) THEN !

519 ellipse_stars = ellipse_stars + 1.d0 !Count stars in ellipse_area

520 END IF !

521 IF (scaled-a(i) .gt. maxa) THEN !

522 maxa = scaled.a(i) !Find major—axis of largest ellipse that passes through field

523 END IF ! (weighting will be smallest for stars on this ellipse)

524 END DO

525

526  WRITE (3 ,%) “Number.of._data_points_in_annulus:”, ellipse_stars

527 WRITE (3 ,%) "Average_.annulus_SNR:”, (ellipse_stars — (REAL(bg_stars) % (ellipse_area/bg_area))) / (REAL(bg_stars) * (ellipse_area/
bg-area))

528

529 den_prof_.scale = ((ellipse.stars/ellipse_area) — (bg_stars/bg_area)) = ellipse_area

530 den_prof_scale = den_prof_scale / (2.d0 = pi * SR * ((exp(—crowded_rad/SR) % (SR + crowded.rad)) - (exp(—outer_rad/SR) * (SR +
outer-rad))))

531 den_prof_scale = den_prof_scale/ (1.d0 — ellip)

532 !/\ Calculate scaling factor of elliptical function of shape defined by HLR, ellipticity and PA.

533 !'|| This is calculated by insuring the total number of stars under the curve matches the number of stars in ellipse_area

534 !Where there is an inner or outer cutoff radius, it is not absolutely necessary to account for this in the scaling

535 !as the exponential profile should account for the variations in density across annuli but for completeness, scaling is achieved
536 !by only measuring the density and number of stars in the annulus used (this becomes very important if a huge HLR is set to remove
537 !weighting as the profile will no longer account for the variation in density in this case!)

538

539

540 DO i = 1, ndata2 !

541 IF (truestar_poly (i) .and. scaled_a(i) .ge. crowded.rad .and. scaled.a(i) .le. outer.rad) THEN

542 weight(i) = exp(—1.d0 = scaled-a(i)/SR) = den_prof_scale ! Apply weights to stars based on elliptical

543 ELSE !contour they lie on.

544 weight(i) = exp(—1.d0 * maxa/SR) % den_prof_scale !'Artificial stars are given the lowest possible

545 END IF !weight in this step.

546 IF (weight(i) .gt. maxweight) THEN !

547 maxweight = weight(i) !Determine maximum weight for use in

548 END IF I'plotting the weighted LF

549  END DO !

550

551

552 !'||  AIl subsequent lines in this subroutine are for plotting the density function

553 !'\/ ”density.ps” and for checking the scaling relative to the data.
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554
555 Density = 0.e0

556 maxa = sig_field.radius

557

558 DO i = 1, ndata2 !Calculate number of stars in each density bin (i.e. elliptical annulus)

559 IF (scaled-a(i) .It. maxa) THEN

560 Density (INT((scaled-a(i)/maxa) = (rhobins)) + 1, 2) = &

561 Density (INT((scaled_a(i)/maxa) = (rhobins)) + 1, 2) + 1.e0

562 END IF

563 IF (scaled_.a(i) .eq. maxa) THEN

564 Density (rhobins ,2) = Density (rhobins ,2) + 1.d0

565 END IF

566 END DO

567

568 Densitysum = 0.d0

569

570 DO i = 1, rhobins !Calculate density of stars in each density bin

571 Density (i,1) = (REAL(i)/REAL(rhobins)) % REAL(maxa) !radius of bin

572 IF (i .eq. 1) THEN

573 Den_sig(i) = SQRT(Density (i,2))/ (pi*(Density(i,l)=*%2.e0)=*(1.e0 — ellip)) !<———Error bars for bin !

574 Density (i,2) = Density(i,2)/ (pi*(Density(i,1)=*x2.e0)*(1.e0 — ellip)) !<———Density of bin !

575 Densitysum = (Density(i,2) — (bg-stars/bg_area)) = (pi*(Density(i,l)=*%2.e0)=*(1.e0 — ellip)) [

576 ELSE 1

577 Den_sig(i) = SQRT(Density (i,2))/ ((pi*(Density(i,l)=*%2.e0)=*(1l.e0 — ellip)) — (pi*(Density(i—-1,1)*%2.e0)=*(1.e0 — ellip)))!<-! !

578 Density (i,2) = Density(i,2)/ ((pi*(Density(i,1)=*%2.e0)x(1.e0 — ellip)) — (pix=(Density(i—1,1)*%2.e0)=*(1.e0 — ellip)))!<——————— !

579 Densitysum = Densitysum + (Density(i,2) — (bg.stars/bg_area)) * ((pix*(Density(i,l)#%2.e0)*(1.e0 — ellip)) — (pi*(Density(i—1,1)#%2.
e0)*(1.e0 — ellip)))

580 END IF

581  END DO

582

583 weightsum = 0.d0

584 DO i =1, 500 !Calculate values of fitted density profile

585 weightplot(i,1) = (REAL(i)/500.e0) * maxa

586 weightplot(i,2) = exp(—1.e0«(weightplot(i,1))/SR) * den_-prof_scale

587 IF(i .eq. 1) THEN

588 weightsum = weightplot(i,2) * (pix(weightplot(i,l)=*%2.e0)=(1l.e0 — ellip))

589 ELSE

590 weightsum = weightsum + weightplot(i,2) % ((pix(weightplot(i,l)=x2.e0)=(1.e0 — ellip)) — (pix(weightplot(i—1,1)*%2.e0)=*(1.e0 —

ellip)))
591 END IF
592 END DO

593 weightplot(:,2) = weightplot(:,2) + (bg.stars/bg_area)

594

595  WRITE (3 ,*%) ”stars.in.model/stars.in_largest_field_.ellipse:”, weightsum/ Densitysum
596 WRITE (3 .,#) ”stars.in.annulus/stars_in-largest_field._.ellipse:”, &

597 (((ellipse_stars/ellipse_area) — (bg_stars/bg_area)) = ellipse_area)/ Densitysum
598

599 CALL WeighterPlots

600

601  END SUBROUTINE Weighter

602

604

605  SUBROUTINE WeighterPlots !Plots (log) binned density profile of object and
606  USE Global !superimposes the best fit model to the

607  IMPLICIT NONE !'density profile

608

609 INTEGER :: Iw

610

611 ! Plots Density Profile histogram
612 string = TRIM(ADJUSTL( field)) // ’/density.ps/CPS’
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CALL pgbegin (0, TRIM(ADJUSTL( string)) .1.1)

CALL pgenv (0., 1.1 * REAL(maxa), 0., 1.1+MAXVAL((/MAXVAL(weightplot(:,2)) ,MAXVAL(Density (:,2) + Den.sig)/)),

CALL pgslw (10)
CALL pgsci(l)

DO i = 1, rhobins !Plot density bin values
IF (Density(i,l) .le. crowded.rad .or. Density(i,l) .gt. outer_rad) THEN
CALL pgsci(5) !Outside of fitted region
CALL pgpt (1, Density(i,l), Density(i,2), —-1)
ELSE
CALL pgsci(l) !In fitted region
CALL pgpt (1, Density(i,l), Density(i,2), -1)
END IF
END DO

CALL pgsci(l)
CALL pgslw (1)

DO i = 1, rhobins !Plot error bars for density bin values
IF (Density(i,l) .le. crowded.rad .or. Density(i,l) .gt. outer_.rad) THEN
CALL pgsci(5) !Outside of fitted region
CALL pgerry (1, Density(i,1), Density(i,2) + Den.sig(i), Density(i,2) — Den.sig(i), 5.)
ELSE
CALL pgsci(l) !In fitted region
CALL pgerry (1, Density(i,1), Density(i,2) + Den_sig(i), Density(i,2) — Den_sig(i), 5.)
END IF
END DO

CALL pgsci(2) !Plot fit to density bins of object

CALL pgline (500, weightplot(:,1), weightplot(:.,2))

CALL pgsci(3)

CALL pgline (2, (/0., REAL(sig_field_radius)/)., (/REAL(bg_stars/bg_area), REAL(bg_stars/bg_area)/))
CALL pgptxt(0.05+REAL(sig-field-radius), 1.2*REAL(bg_stars/bg_area), 0., 0.5, 'BG’)

CALL pgsci(l)

CALL pglab(  Elliptical .Radius—-(degrees)’, ’Object_stars.per.sq..degree’, ')

CALL pgend

WRITE (command,*) ’convert_.—rotate.90_./" // TRIM(ADJUSTL( field)) // &

*/density .ps—./> // TRIM(ADJUSTL(field)) // &

*/density .jpg’

call system (command)

string = TRIM(ADJUSTL( field)) // */sig.field_cc_w .ps/CPS’

CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

CALL pgenv (MAXVAL(xki, mask = xki .ne. 0.), MINVAL(xki, mask = xki .ne. 0.), &
MINVAL(eta, mask = eta .ne. 0.), MAXVAL(eta, mask = eta .ne. 0.), 1, 0)

DO i =1, 20 !

CALL pgscr(i, 0.5+(SIN(1.0+REAL((i+10) = pi/10)) + 1.), & !
0.5%(SIN(1.0«REAL((i-5) = pi/10)) + 1.), & ! Assign colours to indicies

0.5%(SIN(1.0+REAL((i) * pi/10)) + 1.)) !

END DO !

DO i = 1, ndata2
Iw = nint ((weight(i)/maxweight) * 20.d0) + 1
CALL pgslw (lw+5)

0)
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CALL pgsci(22 - 1w)

IF (truestar_poly (i)) THEN I'If star is real (not artifical)
outer.rad) THEN !Fitted

IF (scaled.a(i) .ge. crowded._rad .and. scaled_a(i) .le.

CALL pgpt (1, xki(i), eta(i), —-1)
ELSE
CALL pgslw (1)

IF (scaled-a(i) .1t. crowded-rad) THEN I'stars inside crowded

CALL pgsci(3)
CALL pgpt (1, xki(i), eta(i), 2779)
END IF

IF (scaled-a(i) .gt. outer-rad) THEN !'stars outside

CALL pgsci(20)
CALL pgpt (1, xki(i), eta(i), 227)!2281)
END IF
END IF
ELSE 'If star is artificial ...
CALL pgslw (1)
CALL pgsci(21)
CALL pgpt (1, xki(i), eta(i), 225)
END IF
END DO
CALL pgscr(l, 0., 0., 0.)
CALL pgslw (1)
CALL pgsci(l)
CALL pglab(’\(0640)_-(degrees)’, "\(0633).(degrees)’, )

CALL pgend

fitted region

WRITE (command,*) ’convert_—rotate.-90~./" // TRIM(ADJUSTL( field)) // &
*/sig-field_cc_.w.ps../’ // TRIM(ADJUSTL( field)) // &

*/sig_field_cc_w.jpg’

call system (command)

string = TRIM(ADJUSTL( field)) // ’/sig-cmd.w.ps/CPS’

CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

CALL pgenv (MINVAL(g_-min_i , mask = g_min_i .ne. 0.), MAXVAL(g.min.i), &

MAXVAL(mag_i), MINVAL(mag_i, mask = mag_i .ne. 0.), 0, 0)

DO i =1, 20

CALL pgscr(i, 0.5%(SIN(1.0+REAL((i+10) % pi/10)) + 1.), &

0.5%(SIN(1.0%REAL((i-5) * pi/10)) + 1.), &
0.5%(SIN(1.0«REAL((i) * pi/10)) + 1.))

DO i = 1, ndata2
lw = nint ((weight(i)/maxweight) = 20.d0) + 1
CALL pgslw (Iw+5)
CALL pgsci(22 - 1w)

IF (truestar_poly (i)) THEN 'If star is real (not artifical)
outer.rad) THEN ! Fitted

IF (scaled.a(i) .ge. crowded._rad .and. scaled_a(i) .le.

CALL pgpt (1, REAL(g-min_i_poly(i)), REAL(data(i)),
ELSE
CALL pgslw (1)

-1

|
|
! Assign
|

!

IF (scaled-a(i) .1t. crowded.rad) THEN !stars inside crowded region

CALL pgsci(3)

CALL pgpt (1, REAL(g_min_i_poly(i)), REAL(data(i)). 2779)

END IF
IF (scaled-a(i) .gt. outer-rad) THEN !stars outside

fitted

region

region

colours

to

stars

indicies

stars
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CALL pgsci(20)
CALL pgpt (1, REAL(g-min_i_poly(i)), REAL(data(i)), 227)
END IF
END IF
ELSE If star is artificial ...
CALL pgslw (1)
CALL pgsci(21)
CALL pgpt (1, REAL(g-min_i_poly(i)). REAL(data(i)), 225)
END IF
END DO
CALL pgscr(l, 0., 0., 0.)
CALL pgscr(2, 1., 0., 0.)
CALL pgslw (3)
CALL pgsci(l)
CALL pgpt (ndata, g_min_i, mag.i, -1)
CALL pgslw (1)
CALL pglab (' (g-——i)\dO\u’, *i\d0O\u’, *7)

CALL PolySelect

CALL pgend

WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &

*/sig_emd_w.ps—./ > // TRIM(ADJUSTL(field)) // &

*/sig-emd.w . jpg’

call system (command)

—_ Signal -CMD-(included stars only)-—————mmee—r

DO i = 1, ndata !Rotation of coordinates to match orientation
xdash = (xi-all(i) — (XIop)) * cos(PA) — (eta-all(i) — (ETAop)) * sin(PA) lof satellite. The new coordinates are then used
ydash = (xi-all(i) — (XIop)) * sin(PA) + (eta_all(i) — (ETAop)) #* cos(PA) !to find the major axis of the ellipse a given
scaled_a_all (i) = SQRT(ydash#%2.d0 + (xdash#%2.d0 / (1.d0 — ellip)#%2.d0)) !'star lies on — this equates to circular radius.

END DO

string = TRIM(ADJUSTL( field)) // */sig-cmd.used.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)
!
CALL pgenv(MINVAL(g_-min_i, mask = g_min_i .ne. 0.), MAXVAL(g.min_i), &
MAXVAL(mag-i), MINVAL(mag-i, mask = mag-i .ne. 0.), 0, 0)

DO i = 1, ndata
IF (scaled.a-all(i) .ge. crowded.rad .and. scaled-a_-all(i) .le. outer.rad) THEN
CALL pgpt (1, REAL(g_min_i(i)), REAL(mag.i(i)), -1)
END IF
END DO

CALL pglab (’(ge—ci)\d0\u’, *i\d0\u’, ")

CALL PolySelect

CALL pgend

WRITE (command,*) ’convert_—rotate.90_./" // TRIM(ADJUSTL(field)) // &

*/sig_cmd_used.ps../’ // TRIM(ADJUSTL(field)) // &

*/sig_cmd_used.jpg’

call system (command)
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796  END SUBROUTINE WeighterPlots
797

799

800  SUBROUTINE SVDFitter !For fitting polynomial to the

801 USE Global !'background field luminosity function
802  IMPLICIT NONE

803

804 INTEGER :: ntmp

805

806 xa = bg_histo_coarse (:,1)

807 ya = bg_histo_coarse (:,2)

808 Xt = xa

809 yt = ya

810 sig = l.e0

811

812

813 ! Shift the array in steps of 1 until the first element does not contain a zero
814

815 shiftloop: do

816 xt = cshift(xt,1)

817 yt = cshift(yt,1)

818 if ( yt(l) > 0.1 ) exit shiftloop
819 end do shiftloop

820

821 ntmp = 0

822 countloop: do i = 1 , ndat

823 if ( yt(i) > 0.1 ) then
824 ntmp = ntmp + 1

825 else

826 exit countloop

827 end if

828 end do countloop

829

830 xt = xt — 21.

831

832 CALL svdfit(xt,yt,sig,ntmp—1,ay,ma,u,v,w,mp,np,chisq,funcs)
833

834  CALL BG_DataHist

835

836 END SUBROUTINE SVDFitter

837

839

840 SUBROUTINE BG._DataHist !Produces plot of background field luminosity
841  USE Global !function and polynomial fit
842  IMPLICIT NONE

843

844  bfm = 0.d0

845

846 DO i = 1, ndat

847 DO j =1, np

848 bfm(i) = bfm(i) + ay(j) = (xa(i)-21.) *x (j—1)
849 END DO

850  END DO

851

852

853 ! Plots best fit model over coarse histogram
854 string = TRIM(ADJUSTL( field)) // */bckgrdfit.ps/CPS”’

855 CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

856
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CALL pgenv(18., 24., 0., 1.1+*MAXVAL(REAL(bg_histo_.coarse(:,2))), 0, 0)
CALL pgbin (ndat, REAL(bg_histo.coarse (:,1)), REAL(bg_histo_coarse (:,2)),
CALL pgsci(2)

CALL pgline (ndat, xa, REAL(bfm))

CALL pgsci(l)

CALL pglab(’i\dO\u’, ’counts’, ’7)

CALL pgend

WRITE (command,*) ’convert_.—rotate.90../" // TRIM(ADJUSTL( field)) // &

*/bekgrdfit.ps—./> // TRIM(ADJUSTL(field)) // &

*/bekgrdfit.jpg’

call system (command)

END SUBROUTINE BG_DataHist

.true .)

SUBROUTINE MOMC ! The master Markov Chain MonteCarlo routine
USE Global !creates a new model at each iteration and then compares
IMPLICIT NONE !the quality of the fit to the data

ls«s% Most subroutines are called from 'MCMC s

REAL#8 :: gasdev

string = TRIM(ADJUSTL( field)) // ’/MCMC.steps.dat’
OPEN(2, file=TRIM(ADJUSTL(string)), status = ‘unknown’)

OPEN(8, file=TRIM(ADJUSTL( field)) // */MCMC._steps-unf.dat’, form = ’unformatted’, status

WRITE(2 ,%) “___Iteration mag._tip f a LikeA

not_scout = .false. ; scout_counts = 0

known.f = (REAL(bg_stars) * sig-area)/(REAL(sig-stars) = bg_area)

x1(1,:) = 20.5d0; x2(1,:) = known_f; x3(1,:) = 0.3d0 ; time(l) =1

1 IF (not.scout) THEN !Set

x1(1,:) = x1(200,:); x2(1,:) = x2(200,:); x3(1,:) = x3(200,:) ; time(l) =1 lafter

END IF I'scout

mag-tip = x1(1,1) ; f = x2(1,1) ; a = x3(1,1)

cn = 1 ; beta = betaholder (1)

CALL ModelMake !Make model and

CALL Convolution !

DO j = 1, num_chains levaluate goodness of fit
cn = j ; beta = betaholder(cn)!
CALL Loglike !for initial parameter choices
LikeA (cn) = logL(cn) !

END DO !

LikeB (:) = 0.d0

x1(2,:) = x1(1,:) 5 x2(2,:) = x2(1,:) 3 x3(2,:) = x3(1,:)

Best_.Combo (5) = -9.d99
DO it = 2, nit

time (it) = it

DO cn = 1, num_chains

beta = betaholder(cn)

p(l) = x1(it,cn) + m._step(cn)=*gasdev (idum) ! Gaussian weighted steps

from

initial
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918 p(2) = x2(it,cn)! + f_step(cn)xgasdev(idum) !parameters for the tip magnitude (p(l))
919 p(3) = x3(it,cn) + a-step(cn)s*gasdev (idum) !noise ratio (p(2)) and slope (p(3))

920

921 IF (p(1) .1t. blim .or. p(l) .gt. flim) THEN !

922 r = 0.d0 !

923 else IF (p(2) .le. 0.d0 .or. p(2) .ge. 1.d0) THEN !Restrictions on

924 r = 0.d0 !whether proposed

925 else IF (p(3) .le. 0.d0 .or. p(3) .ge. 2.d0) THEN !step is taken

926 r = 0.d0 !

927 else !

928 mag-tip = p(1) 3 f = p(2) ;: a = p(3)

929 CALL ModelMake !Make model and

930 CALL Convolution !evaluate the

931 CALL Loglike !goodness of fit

932 LikeB (cn) = logL(cn)

933 r = 10=x(LikeB(cn) — LikeA(cn))

934 end IF

935

936 IF (cn .eq. 1 .and. not_scout) THEN 10nly counts after the scouting run contribute to the ppds
937 post_y I (INT((x1(it,1) — 18.d0)«10«binspm + 1)) = & !

938 post_yl (INT((x1(it,1) — 18.d0)*10«binspm + 1)) + 1.d0 !

939 post_y2 (INT(x2(it ,I) = (nbins — 1)) + 1) = & !'Generate posterior plot
940 post_y2 (INT(x2(it ,1) = (nbins — 1)) + 1) + 1.d0 !for mag-tip, f and a
941 post_y3 (INT(x3(it,1) * (nbins — 1)) + 1) = & !

942 post_y3 (INT(x3(it,1) # (nbins — 1)) + 1) + 1.d0 !

943

944 WRITE (2, *(6F16.5)") time(it), xI(it,cn), x2(it,cn), x3(it,cn), LikeA(cn), LikeB(cn)
945 WRITE (8) time(it), xI(it,cn), x2(it,cn), x3(it,cn), LikeA(cn), LikeB(cn)

946 !'/\ Prints current parameter values and their likelihood (LikeA) as

947 'l well as the likelihood of the current proposed swap (LikeB)

948 IF (LikeA(cn) .gt. Best_.Combo(5)) THEN !

949 Best.Combo (1) = time(it) ; Best_.Combo(2) = x1(it,cn) !Update best likelihood
950 Best_.Combo (3) = x2(it,cn); Best_Combo(4) = x3(it,cn) !combination encountered
951 Best-Combo (5) = LikeA(cn) ; Best_-Combo(6) = LikeB(cn) !

952 END IF

953 END IF

954

955 CALL random_number (randnum3) !

956 IF (it .1t. nit) THEN !

957 IF (randnum3 .le. r) THEN !

958 x1(it+l,cn) = p(1) !

959 x2(it+l,cn) = p(2) !

960 x3(it+l,cn) = p(3) !Decide

961 likeA (cn) = likeB (cn) !whether

962 ELSE 'to take

963 x1(it+l,cn) = x1(it,cn) !'step

964 x2(it+l,cn) = x2(it,cn) !

965 x3(it+1l,cn) = x3(it,cn) !

966 likeA (cn) = likeA (cn) !

967 END IF !

968 END IF

969 END DO

970 !'/\ RUN MULTIPLE

971 !'|| MOMC CHAINS

972

973 IF (scout_counts .I1t. 200) THEN !

974 scout_counts = scout_counts + 1 !

975 cycle !

976 END IF 1200 iterations will be run at the beginning before the
977 IF (scout_counts .eq. 200) THEN !

978 not-scout = .true. !"nit’ used iterations in order to remove the lead in trail.
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scout_counts = 1000000000 !

goto 1

END IF !

PARALLEL

!'\/ TEMPERING
IF (num_chains .ne. | .and. it .ne. nit) THEN

CALL random_number (randnum4)

IF (randnum4 .le. swaprate) THEN

CALL random_number (randnum4)

randint = INT((num-chains — 1) % randnum4) + 1

IF (randint .eq. 1) THEN !Count number of proposed
chain.compare = chain_compare + 1. !'swaps with the

END IF !cold sampler chain

PTAR = (Betaholder(randint)/ Betaholder(randint + 1)) * LikeA(randint + 1) + &
(Betaholder(randint + 1)/ Betaholder(randint)) % LikeA(randint) - &

LikeA (randint) — LikeA(randint + 1)
CALL random-number (randnum5)

IF (randnum5 .le. 10 =% PTAR) THEN

IF (randint .eq. 1) THEN !Count number of accepted
swap.count = swap.count + 1 !'swaps with the
END IF !cold sampler chain

par-hold (1) = xI(it+1, randint)

par_hold(2) = x2(it+1, randint)

par-hold (3) = x3(it+1, randint)

par_hold (4) = LikeA(randint)

x1(it+1, randint) = xI(it+1, randint + 1)

x2(it+1, randint) = x2(it+1, randint + 1)

x3(it+1, randint) = x3(it+1, randint + 1)

LikeA(randint) = LikeA(randint + 1) * &

(Betaholder(randint)/Betaholder (randint + 1))

x1(it+1, randint + 1) = par_hold (1)

x2(it+1, randint + 1) = par_hold(2)

x3(it+1, randint + 1) = par_hold(3)

LikeA(randint + 1) = par_hold(4) * &

(Betaholder(randint + 1)/Betaholder(randint))
END IF

END IF
END IF

END DO

x1(1,:)
x1(2,:)

!Swap the parameter

!values and

!likelihoods

!between chains

= x1(200,:) ; x2(1,:) = x2(200,:) ; x3(1,:) = x3(200,:)
= x1(201,:) ;3 x2(2,:) = x2(201,:) ; x3(2,:) = x3(201,:)

!Remove initial

!parameter values

WRITE (2, *(6F16.5)") Best.Combo (1), Best-Combo(2), Best_.Combo(3), &

DO i =

Best_Combo (4) ., Best_Combo(5), Best_.Combo (6)

1. 10+(nbins —1)+1 !

post_x1(i) = 18.d0 + (REAL(i) — 1.d0)/REAL(10%binspm)!

END DO

DO i =

post_x2(i) = (REAL(i) — 1.d0)/REAL(nbins — 1)

END DO

DO i =

!

!

1, nbins !x—values

!
!

1, 2«nbins — 1

post_x3(i) = (REAL(i) — 1.d0)/REAL(nbins — 1) !

END DO

!

END SUBROUTINE MCMC

of posterior

thistograms created above
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1040
1041 !
1042
1043  SUBROUTINE PosteriorPlot !Produces histogram plots of the posterior distributions
1044 USE Global lin the tip magnitude and LF slope

1045 IMPLICIT NONE

1046

1047 post_yl = post_yl/nit ; post_.y2 = post_y2/nit ; post_.y3 = post_y3/nit
1048

1049 ! Plots mag_tip posterior plot
1050 string = TRIM(ADJUSTL( field)) // ’/mag_tip_-postplot.ps/CPS’
1051 CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

1052

1053  CALL pgenv (REAL(MINVAL( post_x1, mask = post_yl .ne. 0.)), &

1054 REAL(MAXVAL( post_x1 , mask = post_yl .ne. 0.)), 0., &

1055 1.1+REAL(MAXVAL( post_y1)), 0, 0)

1056  CALL pgbin (10#(nbins—-1)+1, REAL(post_x1), REAL(post.yl) ,.false.)

1057 CALL pglab (' Proposed.i\dO\u_tip_magnitude’, ’Probability’, ")

1058

1059  CALL pgend

1060

1061 WRITE (command,*) ’convert——rotate.-90~./" // TRIM(ADJUSTL( field)) // &
1062 */mag_tip_postplot.ps_./’ // TRIM(ADJUSTL(field)) // &
1063 */mag_tip_postplot.jpg’

1064

1065 call system (command)

1066

1067 ! Plots f and a posterior plots

1068 string = TRIM(ADJUSTL( field)) // ’/f-and_-a_postplot.ps/CPS’
1069  CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

1070

1071 IF (MAXVAL(post-y3) .ge. MAXVAL(post.y2)) THEN

1072 CALL pgenv (0., 2., 0., 1.1*REAL(MAXVAL(post-y3)), 0, 0)
1073 ELSE

1074 CALL pgenv (0., 2., 0., 1.1*xREAL(MAXVAL(post_y2)), 0, 0)
1075  END IF

1076

1077  CALL pgsci(2)

1078  CALL pgbin (nbins, REAL(post_x2), REAL(post_y2) ,.false.)

1079  CALL pgsci(3)

1080  CALL pgbin (2+nbins -1, REAL(post-x3), REAL(post_.y3) ,.false.)

1081  CALL pgsci(1)

1082  CALL pglab (’Proposed.value’, ’Probability:_f_(red).a.(green)’, *7)

1083

1084  CALL pgend

1085

1086  WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL( field)) // &

1087 */f.and_a_postplot.ps_./” // TRIM(ADJUSTL( field)) // &
1088 */f_and_a_postplot.jpg’

1089

1090 call system (command)

1091

1092 post.yl = post_yls*nit ; post_y2 = post.y2#nit ; post.y3 = post_y3snit

1093

1094  END SUBROUTINE PosteriorPlot

1095
1096 !
1097
1098  SUBROUTINE OtherPlots !MCMC related plots — i.e. plots each parameter vs.
1099  USE Global literation number and vs. each other

1100  IMPLICIT NONE
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! Variation of 'mag_tip’ with iteration #
string = TRIM(ADJUSTL( field)) // */mag_tip_val_vs_it.ps/CPS’
CALL pgbegin (0 ,TRIM(ADJUSTL(string)) .1,1)

CALL pgenv (0., REAL(nit), REAL(MINVAL(x1(:,1))) -0.1, REAL(MAXVAL(x1(:,1)))+0.1, 0, 0)
CALL pgline (nit, REAL(time), REAL(x1(:,1)))
CALL pglab(’Iteration._number’, ’Proposed_i\dO\u_tip._magnitude’, °’)

CALL pgend

WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &
*/mag_tip_-val_vs_it.ps—-./" // TRIM(ADJUSTL(field)) // &
*/mag_tip_val_vs_it.jpg’

call system (command)

! Variation of 'f’ and ’a’ with iteration #

string = TRIM(ADJUSTL( field)) // */f_.and_a_val_vs_it.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

CALL pgenv (0., REAL(nit), 0., 2., 0, 0)

CALL pgsci(2)

CALL pgline (nit, REAL(time), REAL(x2(:,1)))

CALL pgsci(3)

CALL pgline (nit, REAL(time), REAL(x3(:,1)))

CALL pgsci(l)

CALL pglab(’Iteration.number’, ’Proposed.value:_f._(red).a-(green)’, °7)

CALL pgend

WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &
*/f_.and_a_val_vs_it.ps_./  // TRIM(ADJUSTL( field)) // &
*/f_and.a_val_vs_it.jpg’

call system (command)

! Values of 'f’ for each value of ’mag._tip’

string = TRIM(ADJUSTL( field)) // */f_-vs_mag_tip.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL( string)) .1,1)

CALL pgenv (0.99+*REAL(MINVAL(x1(:,1))), 1.0 1 *REAL(MAXVAL(x1(:,1))), 0.9%*REAL(MINVAL(x2(:,1))),
CALL pgslw (3)

CALL pgpoint (nit, REAL(x1(:,1)), REAL(x2(:,1)), —1)

CALL pgslw (1)

CALL pglab(’Proposed.i\dO\u_tip_magnitude’, ’Proposed.value_of_f’, *7)

CALL pgend
WRITE (command,*) ’convert_o—rotate.90../" // TRIM(ADJUSTL( field)) // &
*/f_vs_mag_tip.ps../’ // TRIM(ADJUSTL(field)) // &

*/f_vs_mag_tip.jpg’

call system (command)

! Values of ’a’ for each value of ’mag_tip’
string = TRIM(ADJUSTL( field)) // */a-vs_mag_tip.ps/CPS’

CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

CALL pgenv (0.99*REAL(MINVAL(x1(:,1))), 1.01*REAL(MAXVAL(x1(:,1))), 0.9%*REAL(MINVAL(x3(:,1))),
CALL pgslw (3)

1.1+REAL(MAXVAL(x2 (:,1))),

1.1+REAL(MAXVAL(x3 (:,1))),

0,

0,

0)

0)
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CALL pgpoint (nit, REAL(x1(:,1)), REAL(x3(:,1)), -1)
CALL pgslw (1)
CALL pglab(’Proposed.i\dO\u_tip_magnitude’, ’Proposed.value_of_a’, *7)

CALL pgend

WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &
/a_vs.mag_tip.ps—./’ // TRIM(ADJUSTL(field)) // &
*Ja_vs_mag_tip.jpg’

call system (command)

! Values of 'f’ for each value of ’a’

string = TRIM(ADJUSTL( field)) // */a.vs_f.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string)).1,1)

CALL pgenv (0.9 +*REAL(MINVAL(x2(:,1))), 1.1*REAL(MAXVAL(x2(:,1))), 0.9#*REAL(MINVAL(x3(:,1))), 1.1+REAL(MAXVAL(x3(:,1))),
CALL pgslw (3)

CALL pgpoint (nit, REAL(x2(:,1)), REAL(x3(:,1)), —-1)

CALL pgslw (1)

CALL pglab(’Proposed.value_of_f’, ’Proposed_value_of.a’, *’)

CALL pgend

WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &

*Ja_vs_f.ps../’ // TRIM(ADJUSTL(field)) // &

fa_vs_f.jpg’

call system (command)

END SUBROUTINE OtherPlots

SUBROUTINE NoiseMake !Generates a polynomial of degree 7 that follows the

USE Global !'functional form of the GSS background LF. The polynomial

IMPLICIT NONE !coefficients were derived in *BackgroundPolyFit’ using
!”svdfit’ from Numerical Recipes.

area2 = 0.d0

DO i = 1, 8 * binspm + 1
modelnoise (i,1) = 18.d0 + (i-1.d0)/REAL(binspm)
modelnoise (i,2) = 0.d0
DO j =1, np !Set background counts
modelnoise (i.2) = modelnoise(i,2) + ay(j) * (modelnoise(i,l) — 21.d0) =*x (j — 1)
END DO
IF (modelnoise(i,2) .It. 0.d0) THEN !

modelnoise (i,2) = 0.d0 !Insure no negative counts
END IF !
IF (i .ge. blimBins .and. i .le. flimBins) THEN
area2 = area2 + modelnoise (i,2) !Used for normalization in ’ModelMake’
END IF
END DO
model (:,2) = modelnoise(:,2) / area2

CALL Convolution

noise = cmodel (:,2)

END SUBROUTINE NoiseMake

0,

0)
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1223 !

1224 SUBROUTINE NoisePlot !Plots the unscaled form of the background LF

1225 USE Global

1226  IMPLICIT NONE

1227

1228  CALL pgbegin(0,’?’,1,1)

1229

1230 CALL pgenv (REAL(blim), REAL(mag_cutoff), 0., 1.1+REAL(MAXVAL(modelnoise (:.,2), mask = modelnoise (:,1) .le. 23.5 .and. modelnoise (:,1)
.ge. bg-blim)), 0, 0)

1231 CALL pgbin (nbins — INT(2.5+binspm), REAL(modelnoise (:,1)), REAL(modelnoise(:,2)), .true.)

1232 CALL pglab(’i\d0\u’, *Counts’, *’)

1233

1234 CALL pgend

1235

1236 END SUBROUTINE NoisePlot

1237

1238 !

1239

1240  SUBROUTINE ModelMake !'Initial Model (i.e. model before convolution)

1241 USE Global

1242 IMPLICIT NONE

1243

1244 REAL%8 :: func.i

1245

1246 area = 0.d0

1247 DO i = 1, nbins

1248 model (i,1) = 18.d0 + (i-1.d0)/REAL(binspm)

1249 IF (model(i,1) + hb .gt. mag_tip .and. model(i,l1) — hb .le. mag_tip) THEN
1250 model (i,2) = ((10.d0*#*(a*(model(i,l1) + hb — mag_tip)))/(a*LOG(10.))) - &
1251 (1.d0/(a*LOG(10.))) !Model value at tip
1252 area = area + model(i,2) !Used for normalization

1253 ELSE IF (model(i,1) .gt. mag-tip) THEN !Model value faintward of tip
1254 model (i,2) = ((10.d0**(ax(model(i,1) + hb — mag_tip)))/(axLOG(10.))) - &
1255 ((10.d0*+*(a*(model(i,l1) — hb — mag_tip)))/(a*LOG(10.)))
1256 ELSE

1257 model(i,2) = 0.d0 !Model value brightward of tip
1258 END IF

1259 IF (i .ge. blimBins .and. i .le. flimBins) THEN

1260 area = area + model(i,2) !Used for normalization

1261 END IF

1262 END DO

1263

1264 model (:,2) = model(:,2) / area !Normalize

1265

1266  END SUBROUTINE ModelMake

1267

1268 !

1269

1270 SUBROUTINE ModelPrint ! Prints model before convolution

1271 USE Global

1272 IMPLICIT NONE

1273

1274 CALL pgbegin(0,’?’,1,1)

1275

1276 CALL pgenv (REAL(mag_tip) — 3., REAL(mag_cutoff), 0., 1.1*REAL(model(INT(5.5+binspm),2)), 0, 0)
1277  CALL pgbin (nbins — INT(2.5«binspm), REAL(model(:,1)), REAL(model(:,2)), .true.)
1278  CALL pglab(’i\dO\u’, *Counts’, ’’)

1279

1280  CALL pgend

1281

1282 END SUBROUTINE ModelPrint
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1283
1284 !
1285
1286  SUBROUTINE GaussianKernel !Generates a Gaussian kernel “kernel’ with

1287  USE Global 'HWHM (sigma) changing with magnitude in

1288 IMPLICIT NONE laccordance with func.i. Kernel is defined from

1289 lgx = —5#sigma to gx = +5xsigma.

1290 REAL%8 :: func.i

1291

1292 kernel = 0.d0

1293

1294 DO i = 1, nbins

1295 t = 18.d0 + (i — 1.d0)/REAL(binspm) !Convert bin number to magnitude
1296

1297 temp = 0.d0

1298 gx=0.

1299 j=0

1300 DO WHILE (gx .le. 5.e0xfunc.i(t)) !

1301 j=j+1 !

1302 gx = 0.e0 + (j—1.e0)/binspm !Creates half of
1303 temp(j,1) = gx !the kernel (“temp’)
1304 temp(j.,2) = exp(—((gx)#*%2.e0)/(2.e0+(func_i(t)=%x2.e0)))!

1305 END DO !

1306

1307 ghw(i) = j - 1.d0 !The first non—-zero bin of ’cmodel’ will be the first
1308 !non—zero bin of ’model’ minus ghw

1309

1310 DO k =1, j

1311 kernel(k,:,i) = temp(j — (k-1),:) !Create “kernel’ by concatenating
1312 kernel (j+k,2,i) = temp(k+1,2) !"temp’ with a reflected version

1313 kernel (j+k,1,i) = —temp(k+1,1) tof itself

1314 END DO

1315 INote: temp(2%j,2) = 0.d0 ; temp(2xj,1) = -0.d0

1316

1317 kernel (:,2,1) = kernel(:,2,i)/SUM(kernel (:,2,1))

1318

1319 END DO

1320

1321

1322 END SUBROUTINE GaussianKernel

1323
1324 !
1325
1326  SUBROUTINE GaussianKernelPrint !Prints Gaussian Kernel at given magnitude
1327  USE Global

1328 IMPLICIT NONE

1329

1330 REAL#8 :: func.i

1331

1332 CALL pgbegin(0,°?" ,1.,1)
1333

1334 CALL pgenv(-5.5 * REAL(func-i(t)), 5.5 * REAL(func-i(t)), 0., 1.1*MAXVAL(REAL(kernel(:,2,i)))., 0, 0)
1335 CALL pgbin (2xghw(i)+1, REAL(kernel (:,1,i)), REAL(kernel (:,2,i)), .true.)

1336 CALL pglab(’Magnitude~offset’, *Strength’, ")

1337

1338 CALL pgend

1339

1340 END SUBROUTINE GaussianKernelPrint

1341
1342 !
1343
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SUBROUTINE Convolution !Convolves initial model with a Gaussian kernel

Use Global !whose width is equal to the photometric error
IMPLICIT NONE tand hence expands with increasing magnitude

cmodel = 0.d0

DO i = 1, nbins
cmodel(i,1) = 18.d0 + (i — 1.d0)/REAL(binspm)
DO j = —ghw(i), ghw(i), +1
IF (i .gt. ghw(i) .and. i .lt. nbins — ghw(i)) THEN

!Convolve

cmodel (i+j,2) = cmodel(i+j.,2) + kernel(ghw(i)+j+1,2,i)+model(i,2) !'model with
END IF !gaussian
END DO !
END DO
DO i = nbins, flimBins+1, -1 !'Set the faint limit
cmodel (i,2) = 0.d0 lof the final convolved
END DO !'model at flim.
cmod_nbins = flimBins

!Normalize the convolved model

cmodel (:,2) = cmodel (:,2)/SUM(cmodel (:,2), mask = cmodel(:,1) .ge. blim)

!Note the above step is very important — normalization must only be over the
!range of magnitudes in the ’'data’ array - i.e. down to blim -> not right the
!way to blim — 1.d0. This was a difficult bug to find!

END SUBROUTINE Convolution

|

SUBROUTINE ConvolutionPrint !Prints convolved version of model

USE Global

IMPLICIT NONE

CALL pgbegin (0,27 ,1,1)

CALL pgenv (REAL(mag_tip) — 0.5, 25., 0., 1.1*MAXVAL(REAL(cmodel(:,2))), 0, 0)

CALL pgbin (nbins, REAL(cmodel(:,1)), REAL(cmodel (:,2)), .true.)
CALL pglab(’i\d0O\u’, ’Relative_probability ', *7)

CALL pgend

END SUBROUTINE ConvolutionPrint

SUBROUTINE DataHist !Generates finely and coarsely binned histograms and
USE Global loverlays them with the best fit model determined by

IMPLICIT NONE ! the MOMC

REAL+8 :: scaled_-f_rec

histo_-fine (:,1) = model(:,1)
DO i = 1, INT(0.25%(nbins —1.d0)) + 1

histo_coarse(i,1) = 18.d0 + (i—-1.d0)/REAL(0.25%binspm)
END DO

DO i = 1, ndata2
histo_fine (INT(REAL((data(i)—-18.d0)*binspm) + 1.d0).,2) = &
histo_fine (INT(REAL((data (i) —18.d0)«binspm) + 1.d0),2) + 1.d0

!
!Generates

!
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1405 histo_coarse (INT(REAL((data(i)—-18.d0)«0.25«binspm) + 1.d0).2) = & !Histograms
1406 histo_coarse (INT(REAL((data(i)-18.d0)*0.25%binspm) + 1.d0),2) + 1.d0 !

1407  END DO !

1408

1409

1410 histo_coarse (INT(REAL(blimbins)/4.e0) + 1.,2) = & !'See paragraph

1411 histo_coarse (INT(REAL(blimbins)/4.e0) + 1,2) % 2.d0 !below

1412 histo_coarse (INT(REAL( flimbins)/4.e0) + 1.,2) = & !'See paragraph

1413 histo_coarse (INT(REAL( flimbins)/4.e0) + 1,2) % 2.d0 !below

1414

1415 !For graphing purposes, the first and last bins of the coarse histogram are doubled since
1416 !these bin lies half outside the range of interest and so are depleted by

1417 !roughly one half. This is for graphing only and has no bearing on the

1418 !determined best fit model.

1419

1420 !'|| Plot Best Fit Model

1421 !\/ over histogram

1422 mag-tip = tip-rec ; f = f_rec ; a = a.rec !

1423 CALL ModelMake ! Generate best fit sig function
1424 CALL Convolution !

1425

1426 bfm = 0.d0 ; bg = 0.d0 !

1427

1428 bfm = cmodel (:,2) % (1.d0 - f) !bfm = best fit signal function
1429 bg = noise * f !bg = back ground function

1430

1431 bfm = bfm + bg !Add bfm and background together
1432 bfm = bfm % (SUM(histo_fine (:,2))/SUM(bfm, mask = cmodel(:,1) .ge. blim)) !'Scale bfm to match histogram
1433

1434 ! Plots best fit model over fine histogram

1435 string = TRIM(ADJUSTL( field)) // ’/model_fit_vs_data_fine.ps/CPS’

1436 CALL pgbegin (0, TRIM(ADJUSTL(string)) ,1,1)

1437

1438  CALL pgenv (REAL(blim), REAL(flim), 0., 1.1*MAXVAL(real(histo_-fine(:,2))), 0, 0)
1439  CALL pgbin (nbins, REAL(histo_fine (:,1)), REAL(histo_fine (:,2)), .false.)

1440  CALL pgsci(2)

1441 CALL pgslw (5)

1442 CALL pgline (nbins, REAL(histo_-fine (:,1)), REAL(bfm))

1443 CALL pgsci(1)

1444 CALL pgslw (1)

1445  CALL pglab(’i\dO\u’, *Counts’, ’7)

1446

1447  CALL pgend

1448

1449  WRITE (command,*) ’convert_—rotate.-90~./" // TRIM(ADJUSTL( field)) // &

1450 */model_fit_.vs_data_fine.ps../  // TRIM(ADJUSTL(field)) // &
1451 /model_fit_vs_data_fine.jpg’

1452

1453 call system (command)

1454

1455 bfm = bfm * 4.d0 !Scale bfm to match coarse histogram

1456

1457 ! Plots best fit model over coarse histogram

1458 string = TRIM(ADJUSTL( field)) // ’/model_fit_-vs_data_coarse.ps/CPS’

1459  CALL pgbegin (0 , TRIM(ADJUSTL( string)) ,1,1)

1460

1461 CALL pgenv (REAL(blim), REAL(flim), 0., 1.1«MAXVAL(real(histo_coarse(:,2))), 0, 0)
1462 CALL pgbin (INT(0.25+(nbins —1.d0)) + 1, REAL(histo_coarse (:,1)), &

1463 REAL( histo_coarse (:,2)), .false.)

1464  CALL pgsci(2)

1465 CALL pgline (nbins, REAL(histo_fine (:,1)), REAL(bfm))
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CALL pgsci(l)

CALL pglab(’i\dO\u’, ’Counts’,

)

CALL pgend

WRITE (command,*) ’convert_—rotate.-90~./" // TRIM(ADJUSTL( field)) // &
*/model_fit_vs_data_coarse.ps../’
/model_fit_vs_data_coarse.jpg’

call system (command)

END SUBROUTINE DataHist

// TRIM(ADJUSTL( field)) // &

SUBROUTINE w_DataHist !Generates finely and coarsely binned (weighted)

histograms

USE Global land overlays them with the best fit model determined by
IMPLICIT NONE !'the MOMC

REAL*8 scaled_f_rec

w_histo_fine (:,1) = model(:,1)

DO i = 1, INT(0.25%(nbins —1.d0)) + 1

w_histo_coarse (i,l) = 18.d0 + (i-1.d0)/REAL(0.25%binspm)
END DO
DO i = 1, ndata2

IF (truestar_poly(i)) THEN
IF (scaled-a(i) .ge.
w_histo_fine (INT(REAL((data(i)-18.d0)=*binspm) + 1.d0),2) = &
w_histo_fine (INT(REAL((data(i)—-18.d0)«binspm) + 1.d0).2) + &

crowded.-rad .and. scaled-a(i) .le.

(weight(i)/maxweight)
w_histo_coarse (INT(REAL((data(i)—-18.d0)*0.25«binspm) + 1.d0).,2) = &
w_histo_coarse (INT(REAL((data(i)—-18.d0)*0.25«binspm) + 1.d0).,2) + &
(weight(i)/maxweight)
END IF
END IF

END DO

outer_rad) THEN

!Generates Weighted Histograms.

!Set so that stars at centre of

!field contribute 1.0 counts

!'while stars at some radius give

!some fraction of 1.0 counts

!depending on the density profile.

are doubled since

w_histo_coarse (INT(REAL(blimbins)/4.e0) + 1,2) = & !See paragraph
w_histo_coarse (INT(REAL(blimbins)/4.e0) + 1,2) % 2.d0 !below
w_histo_coarse (INT(REAL( flimbins)/4.e0) + 1,2) = & !'See paragraph
w_histo_coarse (INT(REAL( flimbins)/4.¢0) + 1,2) % 2.d0 !below

!For graphing purposes, the first and last bins of the coarse histogram
!these bin lies half outside the range of interest and so are depleted by
!roughly one half. This is for graphing only and has no bearing on the
!determined best fit model.

!'||] Plot Best Fit Model

!\/ over weighted histogram

mag_tip = tip_-rec f = f_rec ; a = a_rec !

CALL ModelMake !Generate best fit signal
CALL Convolution !

bfm = 0.d0 ; bg = 0.d0 !Apply weights to best fit model for [

DO i = 1, ndata2 teach star and sum together. \/

IF (truestar_poly(i)) THEN
IF (scaled.a(i)
bfm = bfm + cmodel(:,2) =

.ge. crowded.rad .and. scaled.a(i) .le.

(weight(i)/(weight(i) + (bg-stars / bg.area))) % weight(i)

function

outer_rad) THEN

!'sum together RGB LFs from each

star
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1527 bg = bg + noise % ((bg._stars / bg.area)/(weight(i) + (bg_stars / bg.area))) * weight(i) !sum together BG LFs from each star
1528 END IF

1529 END IF

1530  END DO

1531

1532 bfm = bfm + bg !Add bfm and background together

1533 bfm = bfm % (SUM(w_histo_fine (:,2))/SUM(bfm, mask = cmodel(:,1) .ge. blim)) !Scale bfm to match histogram

1534

1535 ! Plots best fit model over fine histogram

1536 string = TRIM(ADJUSTL( field)) // */model_fit_vs_data_fine_w.ps/CPS’

1537  CALL pgbegin (0 , TRIM(ADJUSTL( string)) ,1,1)

1538

1539  CALL pgenv (REAL(blim), REAL(flim), 0., 1.1*MAXVAL(real(w_histo_fine (:,2))), 0, 0)
1540  CALL pgbin (nbins, REAL(w_histo_fine (:,1)), REAL(w_histo_fine (:,2)), .false.)
1541 CALL pgsci(2)

1542 CALL pgslw (5)

1543  CALL pgline (nbins, REAL(w_histo_fine (:,1)), REAL(bfm))

1544  CALL pgsci(1)

1545  CALL pgslw (1)

1546 CALL pglab(’i\dO\u’, *Weighted_Counts’, *’)

1547

1548  CALL pgend

1549

1550  WRITE (command,x) ’convert_—rotate.90_../" // TRIM(ADJUSTL(field)) // &

1551 */model_fit_vs_data_fine_w.ps../’ // TRIM(ADJUSTL(field)) // &
1552 */model_fit_vs_data_fine_w.jpg’

1553

1554 call system (command)

1555

1556 bfm = bfm % 4.d0 !Scale bfm to match coarse histogram

1557

1558 ! Plots best fit model over coarse histogram

1559 string = TRIM(ADJUSTL( field)) // */model_fit_vs_data_coarse_w.ps/CPS’

1560  CALL pgbegin (0 , TRIM(ADJUSTL(string)) ,1,1)

1561

1562  CALL pgenv (REAL(blim), REAL(flim), 0., 1.1*MAXVAL(real(w_histo-coarse(:,2))), 0, 0)
1563  CALL pgbin (INT(0.25%(nbins —1.d0)) + 1, REAL(w_histo_coarse (:,1)), &

1564 REAL( w_histo_-coarse (:,2)), .false.)

1565 CALL pgsci(2)

1566  CALL pgline (nbins, REAL(w_histo_fine (:,1)), REAL(bfm))

1567 CALL pgsci(1)

1568  CALL pglab(’i\d0\u’, *Weighted_Counts’, *")

1569

1570 CALL pgend

1571

1572 WRITE (command,*) ’convert_—rotate.90../" // TRIM(ADJUSTL(field)) // &

1573 */model_fit_vs_data_coarse.w.ps../’ // TRIM(ADJUSTL( field)) // &
1574 */model_fit_vs_data_coarse.w.jpg’

1575

1576 call system (command)

1577

1578  END SUBROUTINE w_DataHist

1579
1580 !
1581
1582  SUBROUTINE LogLike !'Generates the log
1583  USE Global tof the likelihood
1584  IMPLICIT NONE !for a given model
1585

1586 logL(cn) = 0.d0

1587 DO i = 1, ndata2
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IF (truestar_poly (i)) THEN
IF (scaled.a(i) .ge. crowded.rad .and. scaled.a(i) .le. outer-rad) THEN
starbin = INT((data(i) — 18.d0)=*binspm) + 1

for star given current ratio

total prob. of the model

together in log space.

sig-prob = cmodel(starbin, 2) % weight(i)/(weight(i) + (bg-stars/ bg.area)) !Determine likelihood
bg_prob = noise(starbin) * (bg_stars/ bg_area)/(weight(i) + (bg_stars/ bg_area))!of the RGB LF vs. the BG LF due to star’s weight.
prob = (sig_-prob + bg_prob) * weight(i) !This also insures the
logL(cn) = logL(cn) + LOGIO(prob) lis 1. Add likelihoods
END IF
ELSE
cycle
END IF
END DO

logL(cn) = logL(cn) * beta

END SUBROUTINE LogLike

SUBROUTINE TipAndSigma !Identifies the best parameter values and
USE Global !'their associated 1 sigma errors from the

IMPLICIT NONE !respective posterior plots.

PPD_peak = 0.d0
DO i = 1, 10%(nbins—1)+1 !
IF (post_yl (i) .gt. PPD_peak) THEN !

PPD_peak = post_yl (i) !Find best fit TRGB value
tip-rec = post_x1(i) !
END IF !
END DO

PPD_peak = 0.d0 !
DO i = 1, nbins
IF (post_y2(i) .gt. PPD_peak) THEN

PPD_peak = post.y2(i) !Find best fit f value
forec = post_x2(i) !
END IF !
END DO !

PPD_peak = 0.d0
DO i = 1, 2«nbins — 1
IF (post_y3(i) .gt. PPD_peak) THEN

PPD_peak = post.y3 (i) !Find best fit a value
a.rec = post_x3(i) !
END IF !
END DO

tip_kpc = (100.d0==((tip-rec + 3.44d0)/10.d0))/100.d0 !Distance inferred from

!'tip magnitude in kpc

tip-counts = 0.d0 :; mcounts = 0.d0
DO i = MAXLOC(post.yl , DIM = 1), 1, -1 !

mcounts = mcounts + post_yl (i)
END DO !
DO i = MAXLOC(post.yl , DIM = 1), 1, -1 !

tip_counts = tip_counts + post.yl (i) !Finds negative one sigma
IF (tip_counts .ge. 0.682«mcounts) THEN lerror in magnitudes
tip-msigma = ((REAL(i) — 1.d0)/REAL(10xbinspm)) + 18.d0
tip.msigma = tip.rec — tip_msigma !
exit !
END IF !
END DO !
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1649

1650 tip-counts = 0.d0 ; pcounts = 0.d0 !
1651 DO i = MAXLOC(post.yl , DIM = 1), 10%(nbins —1)+1 !
1652 pcounts = pcounts + post.yl (i) !
1653 END DO !
1654 DO i = MAXLOC(post.yl , DIM = 1), 10«(nbins—1)+1 !

1655 tip_counts = tip_counts + post.yl (i) !Finds positive one sigma
1656 IF (tip_.counts .ge. 0.682xpcounts) THEN lerror in magnitudes

1657 tip-psigma = ((REAL(i) — 1.d0)/REAL(10xbinspm)) + 18.d0 !

1658 tip_psigma = tip_psigma — tip.rec !

1659 exit !

1660 END IF !

1661  END DO !

1662

1663

1664 dl =0 ; d2=0;d3 =0 ; d4 =0
1665 f_counts = 0.d0 ; a_counts = 0.d0 !
1666 DO i = 1, nbins !

1667 f_counts = f_counts + post_y2(i) !

1668 a_counts = a.counts + post_y3(i) !

1669 IF (f_counts .ge. 0.159%nit .and. dl .eq. 0) THEN !

1670 fminsig = post_-x2(i) !

1671 dl =1 !

1672 END IF !

1673 IF (f_counts .ge. 0.841xnit .and. d2 .eq. 0) THEN !For f and a:

1674 fplusig = post.x2(i) !Finds upper and lower
1675 d2 =1 !'bounds for posterior
1676 END IF !'distribution within one
1677 IF (a_counts .ge. 0.159%nit .and. d3 .eq. 0) THEN !sigma of maximum.
1678 aminsig = post_x3(i) !

1679 d3 =1 !

1680 END IF !

1681 IF (a_counts .ge. 0.841snit .and. d4 .eq. 0) THEN !

1682 aplusig = post_x3(i) !

1683 d4 =1 !

1684 END IF !

1685  END DO !

1686

1687

1688 f_sigma = 0.5d0=*(fplusig — fminsig) !Hence calculates 1 sigma error
1689  a_sigma = 0.5d0x(aplusig — aminsig) !for f and a

1690

1691 kpc-merr = tip_-kpc*100.d0**(tip-msigma/10.d0) — tip_-kpc !minus tip error in kpc
1692 kpc_perr = tip_kpc*100.d0*x*(tip_psigma/10.d0) — tip_kpc !plus tip error in kpc

1693

1694  END SUBROUTINE TipAndSigma

1695

1696 !

1697

1698  FUNCTION func-i(m) !'This function feeds the photometric error as a function
1699  USE Global lof magnitude to the ’GaussianKernel’ subroutine.
1700  IMPLICIT NONE

1701

1702 REAL+8 :: func-i, m, cl, ¢c2, c3

1703

1704 ¢l = 0.001

1705 ¢3 = log(0.24) - log(0.11)
1706 ¢2 = ¢3%25.0 — log(0.24)
1707

1708 func_i = ¢l + exp(c3+m — c2)
1709
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END FUNCTION

! Rodrigo’s poly selection tool

SUBROUTINE PolySelect !Used for selection
USE Global lin colour —magnitude
IMPLICIT NONE

integer MAXPT, ipol

integer NPT_ggr, NPT_spatial

parameter (MAXPT=100)

real+4 XCOL_ggr(MAXPT) ,YMAG-ggr (MAXPT)
real«4 X_spatial (MAXPT), Y _spatial (MAXPT)
logical refine_.CMDsel_ggr,refine_spatialsel
!parameter (refine.CMDsel_ggr=.true

.
parameter (refine_.CMDsel_ggr=.false.)

!parameter (refine_spatialsel=.true.

-

parameter (refine_spatialsel=.false.

logical in_poly

external in_poly

npt_ggr=0

if (refine_CMDsel_ggr) then
call pgsls(2)
call pgmove(0.2.,26.0)
call pgdraw (0.2,15.0)
call pgsls(1)

of appropriate

space

call pglcur (MAXPT, NPT _ggr,XCOL_ggr, YMAG_ggr)
open (2, file=TRIM(ADJUSTL(colcut)),status="unknown’)

write (2,%) NPT_ggr
do ipol=1,NPT_ggr
write (2,%) XCOL_ggr(ipol),YMAG.ggr(ipol
end do
close (2)
call pgsci(l)
call pgadvance

else

)

open (2, file=TRIM(ADJUSTL(colcut)),status="old")

read (2 ,%) NPT_ggr
do ipol=1,NPT_ggr
read (2 ,%) XCOL_ggr(ipol) ,YMAG_ggr(ipol)
end do
close (2)
call pgsci(2)
call pgslw(5)
call pgline (NPT_ggr,XCOL_ggr, YMAG_ggr)
call pgsci(l)
call pgslw (1)
end if

] Make colour cut to Signal

DO i = 1, ndata

Field

cut

IF (in_poly(g-min_i(i),mag.i(i) ,NPT_ggr,XCOL_ggr,YMAG._ggr)) THEN!

IF (mag.i(i) .le. flim .AND. mag-i(i)
jo=j+l
mag-i-poly (j) = mag.i(i)
mag_g_poly(j) = mag-g(i)
g-min_i_poly(j) = g-min_i(i)

.ge.

blim) THEN

! Makes new
larrays
!containing
lonly

I'stars
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1771 xi-poly (j) = xki(i) !'within
1772 eta_poly(j) = eta(i) !polygon
1773 truestar_poly (j) = truestar (i) !

1774 END IF !

1775 END IF !

1776~ END DO !

1777

1778 ndata2 = j !New number of stars in dataset after colour cut

1779

1780 l—————— o ] Make colour cut to Bckgrnd Field ———————————————

1781 j=0 : k = 0 |
1782 DO i = 1, bg.ndata |

1783 IF (in_poly(bg-g-min_i(i),bg-mag.i(i) ,NPT_ggr,XCOL_ggr,YMAG_ggr)) THEN !

1784 IF (bg_mag_i(i) .le. 24.d0) THEN ! Makes new
1785 IF (bg_-mag_i(i) .le. flim .AND. bg_mag_i(i) .ge. blim) THEN larrays for
1786 k = k+1 !'i and g-i
1787 END IF !containing
1788 jo=j+l lonly

1789 bg-mag_i_poly(j) = bg_mag_i(i) I'stars

1790 bg-mag._g_poly(j) = bg-mag_g(i) !within
1791 bg-g-min_i_poly(j) = bg.g-min_i(i) !polygon
1792 END IF !

1793 END IF !

1794  END DO !

1795

1796  bg_ndata2 = j ; bg_ndata3 = k !Stars in bckgrnd ; Stars in bckgrnd between blim & flim
1797

1798  END SUBROUTINE PolySelect

1799

1800 !

1801

1802 logical function in_poly(x,y,np,xp,yp) !Used by PolySelect subroutine

1803 implicit none

1804

1805 real=4 x,y

1806 integer np

1807  realx4 xp(np),yp(np)
1808 real*4 tiny ,xs,xe,ys,ye
1809 parameter (tiny=1.e-5)
1810

1811 real«4 simag,fimag
1812 external fimag

1813 integer j

1814

1815 simag=0.0

1816 do j=1,np

1817 if (j.1t.np) then
1818 xe=xp(j+1)
1819 xs=xp(j)

1820 ye=yp(j+1)

1821 ys=yp(j)

1822 else

1823 xe=xp (1)

1824 xs=xp(j)

1825 ye=yp (1)

1826 ys=yp(j)

1827 end if

1828 simag=simag+ fimag(x,xs,xe,y,ys,ye)

1829  end do
1830 if (abs(simag).gt.tiny) then
1831 in_poly=.true.
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else
in_poly=.false.

end if

end

real+4 function fimag(x0,xs,xe,y0,ys,ye) !Used by PolySelect

implicit none

real«4 x0,xs,xe,y0,ys,ye

real*4 top,bot

top= —(xe-x0) * (ys—-y0) + (ye-y0) = (xs—x0)

bot= (xe-x0) * (xs-x0) + (ye-y0) * (ys-y0)

fimag=atan2 (top , bot)

end

subroutine

Libpress

Algorithms
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Program: MF_TRGB _Feed.pl

Creation Date: 23 January 2012

Relevant Section: Ch. 4

Notes: This Perl scrip shows the individual parameters for each satellite fed to the program
‘MF_TRGB.195. I have included it as it provides information specific to each satellite that is
not given in Ch. 4. For each satellite, there are 16 inputs in the order described below. Note
that for the dwarf spheroidal satellites, values for parameters 2 - 10 were provided by Nicolas
Martin (Observatoire Astronomique, Universite de Strasbourg) and are due for publication
in the near future. As an aside, it is worth noting that the weighting can effectively be turned
off by specifying a very large Half-Light Radius, which produces an essentially flat object

density profile across the field of view.

9. Object Half-Light Radius
1. Object Name

10. Object Position Angle
2. Right Ascension Coordinate (hours)

) ) i . 11. Inner Cutoff Radius
3. Right Ascension Coordinate (minutes)

4. Right Ascension Coordinate (seconds) 12. Outer Cutoff Radius

5. Declination Coordinate (degrees) 13. Object Field Radius

6. Declination Coordinate (minutes) 14. Background Field Right Edge (Xi)
7. Declination Coordinate (seconds) 15. Background Field Left Edge (Xi)

8. Object Ellipticity 16. File Name for Colour-Cut Polygon

#!/usr/bin/perl

system (”./MF.TRGB. e_.Andromedale_0.0.45.0.40.0.38.0.2.0.18.5.0.26.3.9.25.0.0.0.0.3.0.3.0.0_.2.0_ANDI.CMD”) ; #final

print “Andromedal_done.\n”;

system (”./MF.TRGB.e_.Andromedalle.1.0.16.0.26.9.33.0.26.0-1.9.0.13.5.0.27.0.0.0-0.4.0.4_.5.0_8.0_ANDII.CMD”); #final
print “Andromedall_done.\n”;

system (”./MF.TRGB. e_.Andromedallle.0.0.35.0.30.6.36.0.30.0.3.5_.0.61.1.7.138.0-0.0175.0.2.0.2_-2.5_.0.5_ANDIII.CMD”); #final
print "Andromedalll_done.\n”;

system (”./MF.TRGB. e.AndromedaVe._1.0.10.0.17.1-47.0.37.0.45.4_0.27.1.6..41.0-0.011.0.2..0.2.3.0_-6.0_,ANDV.CMD”); #final
print ”AndromedaV._done.\n”;

system (7 ./MF.TRGB. e_AndromedalXe_0.0.52.0.52.5.43.0.11.0.58.2_0.0.1.9.105.0.0.0.0.15.0.15_.1.45_2.25_ANDIX.CMD") ; #final

print ”AndromedalX.done.\n”;
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system (7 ./MF.TRGB. e_AndromedaXe._1.0.6.0.35.5_44.0.48.0.30.9_.0.41.1.4.33.0.0.0_.0.15.0.15_.3.2_5.2_ANDX.CMD") ; #final

print ”AndromedaX._done.\n";

system (7 ./MF.TRGB. e_AndromedaXIe_0.0.46.0.19.6.33.0.48.0.8.6.0.04.0.7.43.0.0.0-0.15.0.15.-0.75_2.25 _ANDXI.CMD") ;  #final
print ”AndromedaXI.done.\n”;

system (”./MF.TRGB.e_.AndromedaXIle.0.0.47.0.27.0.34.0.22.0.29.0.0.0.1.1.0.0.0.0-0.15.0.15.-0.5_2.5_ANDXII.CMD”) ; #final
print “AndromedaXII.done.\n”;

system (”./MF.TRGB.e_.AndromedaXIIle.0.0.51.0.50.9.33.0.0.0.14.5_0.60.0.8.-25.0.0.0.0.15.0.15_.0.4_3.4 _ANDXIII.CMD”); #final
print ”AndromedaXIII_done.\n”;

system (”./MF.TRGB. e.AndromedaXIVe.0.0.51.0.35.1.29.0.41.0.14.1.0.31.1.6.-7.0.0.0.0.2.0.2.1.0_3.0_ANDXIV.CMD”) ; #final
print “AndromedaXIV._done.\n”;

system (”./MF.TRGB. e.AndromedaXVe_1.0.14.0.18.8_.38.0.7.0.18.0.0.23.1.4.33.0.0.0-0.2.0.2.4.7_.7.7_ANDXV.CMD”) ; #final

print “AndromedaXV._done.\n”;

system (7 ./MF.TRGB. e.AndromedaXVIe.0.0.59.0.30.1-32.0..22.0..32.9.0.27..0.92..104.0-0.005..0.2..0.2-1.7.4.7 _ANDXVI.CMD”) ;  #final
print “AndromedaXVI_done.\n”;

system (7 ./MF.TRGB. e_AndromedaXVIle.0.0.37.0.6.5.44.0.19.0.20.1.0.36.1.3.121.0_.0.0.0.2.0.2_-2.5_0.5_ANDXVII.CMD”) ; #final
print ”AndromedaXVII_done.\n”;

system (7 ./MF.TRGB. e_AndromedaXVIIle.0.0.2.0.16.0.45.0.5.0.33.2_0.15.0.72.91.0.0.0.0.1.0.1_-8.5_-6.0_ANDXVIII.CMD") ; #final
print “AndromedaXVIII_done.\n"”;

system (7 ./MF.TRGB. e_AndromedaXI1Xe.0.0.19.0.32.1.35.0.2.0.37.1.0.17.6.2.37.0.0.0.0.2.0.2_.-7.5_-2.0 _ANDXIX.CMD") ;

print ”AndromedaXIX.done.\n”;

system (”./MF.TRGB. e.AndromedaXXe_0.0.7.0.30.5.35.0.7.0.39.4_.0.07.0.48.69.0.0.0.0.15.0.15_.-8.3_-6.0_ANDXX.CMD”) ; #final
print “AndromedaXX.done.\n”;

system (7 ./MF.TRGB. e_.AndromedaXXIe.23.0.54.0.46.8.42.0.28.0.16.9.0.23.4.2.-36.0.0.0.0.3.0.3_.-9.5_-6.5_ANDXXI.CMD”) ; #final
print “AndromedaXXI._done.\n”;

system (”./MF.TRGB. e.AndromedaXXIle.1.0.27.0.40.2.28.0.5.0.26.0.0.62.0.92.-65.0.0.0.0.08.0.08_.10.2_13.2_ANDXXII.CMD”) ; #final
print “AndromedaXXII_done.\n”;

system (”./MF.TRGB. e.AndromedaXXIIle.1.0.29.0.20.8.38.0.43.0.27.8.0.39.5.1.-42.0.0.0.0.2.0.2_.7.2_10.2 _ANDXXIII.CMD”) ; #final
print “AndromedaXXIII_done.\n”;

system (7 ./MF.TRGB. e.AndromedaXXIVe..1.0.18.0.31.4.46.0.22.0.19.3.0.0.2.3..-87.0-0.0..0.125.0.125_5.0.8.0 _ANDXXIV.CMD”) ; #final
print ”AndromedaXXIV._.done.\n”;

system (7 ./MF.TRGB. e_AndromedaXXVe.0.0.30.0_.11.0.46.0.51.0.20.6_.0.17.3.1.-3.0.0.0.0.2.0.2_.-3.5_-1.0_ANDXXV.CMD") ; #final
print ”AndromedaXXV.done.\n”;

system (7 ./MF.TRGB. e_AndromedaXXVIe.0.0.23.0.45.7.47.0.54.0.43.6.0.55_.1.3_.-31.0.0.0.0.15.0.15_-4.2_-2.2_ANDXXVI.CMD") ; #final
print ”AndromedaXXVI_.done.\n"”;

system (7 ./MF.TRGB. e_AndromedaXXVIle_.0.0.37.0.36.4.45.0.22.0.19.0.0.75.15.8_.-59.0.0.0.0.3_.0.3_-2.5_.0.5 _ANDXXVII.CMD") ;# final
print ”AndromedaXXVII_done.\n"”;

system (”./MF.TRGB. e.AndromedaXXXe.0.0.36.0.34.7.49.0.38.0.47.0.0.33.1.5.-63.0.0.0.0.15.0.15_-1.5_.-0.4_ANDXXX.CMD”) ;  #final
print “AndromedaXXX.done.\n”;

#system (7 ./MF.TRGB.NGC147¢e.e _NGC147e_outer.0.0-33.0.12.0.48.0-30.0.31.0.0.44_10.0.28.0.0.28_0.33.0.6.-4.2_-2.2_NGC147.CMD”) ;
#print "NGCl47e_outer_done.\n";

#system (”./MF.TRGB.NGC147¢e.e _NGC147e_inner.0.0-33.0.12.0.48.0-30.0.31.0.0.44_10.0.28.0.0.12_.0.18.0.6.-4.0_-2.1_NGC147.CMD”) ;
#print "NGCl47e_inner_done.\n";

#system (7 ./MF.TRGB.e_.NGC147stream.0.0.33.0.12.0.48.0.30.0.31.0.0.0.6000.0-.0.0-.0.0.0.5.0.5_.-4.0_-2.7_.NGC147stream .CMD”) ;
#print "NGCl47stream._done.\n";

#system (7 ./MF.TRGB.NGC185¢.e _NGC185e_outer~0.0-38.0.57.97..48.0-20.0..14.56.0.26-6.0..41.0..0.18_.0.26..0.6..0.0.1.0 _NGCI185.CMD”) ;
#print "NGCl185e_outer_done.\n";

#system (7 ./ MF_.TRGB_NGC205e. e _NGC205¢.0.0.40.0.22.075.41.0.41.0_.7.08.0.50.13.0_.-35.0.0.38.0.4_0.4_-1.9_.-0.9_NGC205.CMD") ;
#print "NGC205e_done.\n”;

#system (7 ./MF.TRGB_M33e.e._M33e_1.0.33.0.50.904_.30.0.39.0.35.79_.0.4.6000.0.17.0.0.75.0.9.1.0_.12.4_.13.4_M33_ellipse .CMD") ;
#print "M33_done.\n”;

#system (7 ./MF.TRGB_M3le.e_.M31e.0.0.42.0.44.33_41.0.16.0.7.50_.0.68.6000.0.37.0.2.45.2.5.2.5.9.0_.10.0_M31_ellipse .CMD”) ;
#print "M3l_done.\n”;

#system (”./MF_.TRGB_.M3le.NE.e_M31e NE_.0.0.42.0.44.33.41.0.16.0_.7.50.0.68.6000.0.37.0.2.45.2.5.2.5.9.0.10.0_.M31_ellipse .CMD”) ;
#print "M3le.NE_done.\n"”;

#system (”./MF.TRGB.M31e NW. e _M31e NW._.0.0.42.0.44.33.41.0.16.0.7.50.0.68.6000.0.37.0.2.45.2.5.2.5.9.0.10.0_M31 _ellipse .CMD”) ;
#print "M3le NW_done.\n";

#system (”./MF.TRGB-M3le_SE.e_M31e.SE.0.0.42.0.44.33.41.0.16.0.7.50.0.68.6000.0.37.0.2.45.2.5.2.5.9.0.10.0_.M31_ellipse .CMD”) ;
#print "M3le_SE_done.\n";

#system (7 ./MF_.TRGB-M31le_.SW.e_M31e.SW.0.0.42.0.44.33.41.0.16.0-7.50.0.68.6000.0.37.0.2.45.2.5.2.5.9.0.10.0_.M31 _ellipse .CMD”) ;
#print "M3le.SW_done.\n";
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Program: MF_TRGB Tester.f95

Creation Date: 8 December 2010

Relevant Section: §3.2 of Paper II (Ch. 4)

Notes: This program is the equivalent of ‘MCMCTRGBTester2.f95” provided in Appendix
B, but it has been updated for use with ‘MF_TRGB.f95’ and thus also provides the artificial
stars with a radius representing their distance from the object’s center. For simplicity, an

ellipticity of O is assumed. For the sake of brevity, only the ‘DataMaker’ subroutine is

shown, but the other subroutines called can be found in ‘MF_TRGB.f95.’

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

! General Program Parameters

INTEGER :: i, j, k, 1, eval, idum = -9999, it, nit, trial

INTEGER :: ndata.max, nsamples, binspm, nbins, cmod_nbins, ghw, mm, ios
PARAMETER (ndata_max = 20000000, nsamples = 100)

PARAMETER (binspm = 100)

PARAMETER (nbins = 8xbinspm + 1)

PARAMETER (nit = 50000)

INTEGER :: ndata, ndata2

INTEGER :: dl, d2, d3, d4

REAL#8 :: blim, flim, pi

PARAMETER (blim = 19.5d0)

PARAMETER (flim = 23.5d0)

PARAMETER (pi = ACOS(-1.¢0))

INTEGER :: blimBins = INT(REAL((blim - 18.d0) =% binspm)) + 1

INTEGER :: flimBins = INT(REAL((flim — 18.d0) * binspm)) + 1

REAL=8 :: randnuml , randnum2, randnum3, randnum4, randnum5, randnum6, randnum7
INTEGER :: randint

REAL+8 :: rl, r2, spotR, hb = 0.005d0

REAL#8 :: model(nbins,2), cmodel(nbins,2), magnitude(ndata.max)

REAL«8 :: histo_fine (nbins ,2), histo_coarse (INT(0.25%(nbins—1.d0)) + 1,2)
REAL+8 :: w_histo_fine (nbins ,2), w_histo-coarse (INT(0.25%(nbins —1.d0)) + 1,2)
REAL+8 :: data(ndata_max), cumulative_cmodel(nbins ,2), f, f_hold, bfm(nbins)
REAL%8 :: cumulative_dist(2000,2)

REAL+8 :: mag_tip, mag, mag_cutoff = 24.e0, a

REAL+8 :: area, area2

REAL#8 :: modelnoise(nbins ,2), noise(nbins) = 0.d0 , bg(nbins) = 0.d0
REAL+8 :: kernel(nbins.2) = 0.e0, scale, uplim, lowlim, gx

REAL#8 :: temp(nbins,2) = 0.e0, t

INTEGER :: starbin

REAL+8 :: tip (nsamples), tip-ord(nsamples), maxlogL(nsamples) = -=999999999999.
REAL+8 :: tip.rec, tip_offset, tip_psigma, tip.msigma, Toffset_.kpc, Tsigma_kpc
REAL+8 :: f_offset, tip-kpc, kpc.perr, kpc.merr, f_sigma, a_offset, a_sigma
REAL«8 :: f_rec, a.rec, tip-counts, f_counts, a_counts

REAL+8 :: tipminsig ., tiplusig , fminsig, fplusig, aminsig, aplusig

REAL+8 :: mcounts, pcounts

INTEGER :: num_chains, cn, chain_.compare, swap._count

PARAMETER (num-_chains = 4)

REAL+8 :: swaprate = 1.d0/ 30.d0, logL(num_chains), LikeA(num_chains), LikeB(num_chains)
REAL+8 :: prob, sig_prob, bg_prob

REAL%8 :: beta, betaholder(num_chains) = (/ 1.d0, 0.25d0, 0.111d0, 0.001d0 /)

REAL+8 :: m_step(num_chains) = (/ 0.03d0, 0.06d0, 0.12d0, 0.3d0 /)

REAL#8 :: f_step (num-_chains) = (/ 0.02d0, 0.04d0, 0.08d0, 0.2d0 /)
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REAL+8 :: a_step (num_chains) = (/ 0.02d0, 0.04d0, 0.08d0, 0.2d0 /)

REAL+8 :: PTAR, par_-hold(4)

REAL#8 :: xI(nit,num_chains), x2(nit,num_chains), x3(nit,num_chains), p(3), time(nit), r
REAL+8 :: post_yl (10%(nbins—-1)+1) = 0.d0, post_x1(10#(nbins—1)+1), mlim

REAL+8 :: d_blim, bg_blim, d_flim, bg_flim

REAL+8 :: post_y2(nbins) = 0.d0, post_x2(nbins)

REAL#8 :: post_y3(2«nbins — 1) = 0.d0, post_x3(2xnbins — 1)

REAL+8 :: PPD_peak, Best.Combo (6)

CHARACTER :: argvs*10, field=*60, chl%9, ch2%9, ch3%9, ch4x9, ch5%9, ch6x9, string=90

! For reading in PAndAS data ———————————————-——

INTEGER :: iCCDt, clsg, clsi, ifieldt, iacc_t

REAL+4 :: xgt, ygt, g, dg, im, dim, xki-t, eta_-t, FeH_phot_t, diff_tip_.t, E.BV.t
REAL+8 :: ra_t, de_t

REAL#4 :: mag.g(ndata_max), mag.i(ndata_max), xki(ndata_.max), eta(ndata_max)
REAL+4 :: g_min_i(ndata_max), mag_i_poly(ndata.max), g-min_i_poly(ndata_max)
REAL#4 :: xi.poly(ndata_max), eta_poly(ndata.max)

REAL+4 :: gmi

o Additional parameters for calculating background stats ——————

INTEGER :: bg.ndata, bg_ndata2, bg_ndata3

REAL#4 :: bg.mag.g(ndata_max), bg.mag.i(ndata.max), bg._xki(ndata_max), bg_eta(ndata_max)
REAL+4 :: bg_g_-min_i(ndata_max), bg_mag._i_poly(ndata_max), bg_g_min_i_poly(ndata_max)
REAL+4 :: bg_gmi

REAL+8 :: bg_data(ndata_max)

!——SVD fitting of background——

INTEGER ma, mp, np, ndat

PARAMETER (ndat = INT(0.25%(nbins —1.d0)) + 1)

PARAMETER (np = 8)

PARAMETER (mp = ndat)

PARAMETER (ma = np)

REAL :: chisq, ay(ma), sig(ndat), u(mp,np), v(np,np), w(np), xa(ndat), ya(ndat)
REAL :: xt(ndat), yt(ndat)

REAL+8 :: bg_histo_.coarse (ndat,2)

EXTERNAL :: funcs

e Additional parameters for specifying object coordinates —————
INTEGER :: Jop

REAL#8 :: Xlop, ETAop

REAL=8 :: RAh, RAm, RAs, DecD, DecM, DecS, RA_rad, Dec.rad

REAL#+8 :: tpRAh, tpRAm, tpRAs, tpDecD, tpDecM, tpDecS., tpRA.rad, tpDec.rad

!-—Additional parameters for Matched Filters Subroutine *Weighter’ ——
INTEGER :: rhobins, rhobins2

PARAMETER (rhobins = 10)

REAL#4 :: C_O_F_dist(ndata.max), Density(rhobins,2), rhofit(rhobins ,2)
REAL+8 :: weight(ndata_max)

!——Fitting to Density Profile —

INTEGER :: mwt, ndat2

PARAMETER (ndat2 = rhobins)

REAL offset, gradient, chi2, q, siga, sighb, sigma(ndat2)

! When f is known

INTEGER :: bg_stars, sig-stars

REAL+8 :: bg_area, sig.area, bg_density

REAL+8 :: known_f, bg_stars_in_sig_field

REAL+8 :: sig_field_radius = 0.2d0, bg_low_xi = =5.d0, bg_up_xi = 13.d0
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107 END MODULE Global
108

110

111 PROGRAM BayesianTRGBsatellite ! Master program
112 USE Global

113 IMPLICIT NONE

114

115 mm = IARGC()

116

117 IF (mm==4) THEN !

118 CALL GETARG(1, argv) !

119 READ (argv .+ ,iostat=ios) mag-_tip !

120 CALL GETARG(2, argv) !

121 READ (argv .+ ,iostat=ios) a !

122 CALL GETARG(3, argv) !

123 READ (argv ,+,iostat=ios) ndata !Indicates the arguments to be
124 CALL GETARG(4, argv) !'set in the command line
125 READ (argv ,,iostat=ios) f !

126  ELSE !

127 WRITE(# ,%) “You.must_.enter_4_arguments:” !

128 stop !

129  END IF !

130

131 WRITE (chl,*) mag-_tip !
132 WRITE (ch2,) a !
133 WRITE (ch3,+) ndata !

134 IF (f .eq. 0.d0) THEN !Generate test identifying character string
135 WRITE (ch4 .,%) 0’ !to become file name using mag-tip, ndata and f
136 ELSE le.g. "MCMC_Test/T.20.5-0.3-1000-0.2"

137 WRITE (ch4 ,x) f !

138 END IF !

139

140 ndata2 = 0

141

142 WRITE (field ,x) *MF.MCMC.Test/T." // TRIM(ADJUSTL(chl)) &

143 // *=" // TRIM(ADJUSTL(ch2)) &

144 // =" /] TRIM(ADJUSTL(ch3)) &

145 // ’=" // TRIM(ADJUSTL(ch4))

146

147 string = TRIM(ADJUSTL( field)) // '/test.dat’

148 OPEN(3, file=TRIM(ADJUSTL(string)). status = ’unknown’)
149 WRITE (3,%) ”Field_.Name:”, field

150 WRITE (3,#) “ndata.=_”, TRIM(ADJUSTL(ch3))

151  WRITE (3,+) ”f_=_", TRIM(ADJUSTL(ch4))

152

154  CALL random_seed !

155

156 CALL NoiseMake !

157  CALL ModelMake !

158  CALL Convolution !

159

160 cmodel (:,2) = (1.d0 — f) = cmodel(:,2) + f = noise
161

162 CALL DataMaker !

163  CALL Weighter !

164  CALL NoiseMake ICALL

165  CALL MOMC !
166 CALL TipAndSigma | SUBROUTINES

167 CALL PosteriorPlot !
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CALL OtherPlots !
CALL DataHist !
CALL w_DataHist !

IF (num-chains .ne. 1) THEN

WRITE (3 ,%) "Proposed.Swaps_with_Cold_.Sampler_Chain:”, chain_compare

WRITE (3 ,%) “Accepted_Swaps_with_Cold_Sampler_Chain:”, swap_count

WRITE (3 ,%) "Parallel._.Tempering_Acceptance_Rate:”, REAL(swap_count)/ REAL(chain_compare)
END IF

WRITE (3, *(3all)’) "oootipomag:”, "ootosigma:..”, “oo—osigma:.” !

WRITE (3, *(3F10.3)’) tip_rec, tip_psigma, tip.msigma !

WRITE (3, *(2all)’) "aoofio 7, Veeasigma: .7 !

WRITE (3, *(2F10.3)’) f.rec, f_sigma !'Write results
WRITE (3, '(2all)’) "oocaioooooo T, Vooosigma:_l” Ito file

WRITE (3, *(2F10.3)’) a.rec, a.sigma !

WRITE (3 ,%) ”Distance.=", REAL(tip_kpc), “kpc” !

WRITE (3 ,%) "Error.=.+", REAL(kpc.perr), “kpc.—", REAL(kpc_-merr), “kpc” !
WRITE (3 ,%) "Average_Error_=", REAL((ABS(kpc_perr) + ABS(kpc.merr))/2.d0), “kpc”
WRITE (3 ,%) "Tip-Mag.&-Error_=", tip.rec , REAL(tip_-psigma), REAL(tip-msigma)

WRITE (3 ,%) 7Offset.=", REAL(tip_rec — 20.5d0), =", REAL(tip_kpc - (100.d0*%((20.5d0 + 3.44d0)/10.d0))/100.d0),

END PROGRAM BayesianTRGBsatellite

SUBROUTINE DataMaker ! Generates artificial stars with magnitudes from

USE Global !model luminosity function and positions from

IMPLICIT NONE !model density profile

cumulative_cmodel (:,1) = cmodel(:,1)

cumulative_cmodel (1,2) = cmodel(1,2) | Effective

DO i = 2, cmod.nbins lintegral of
cumulative_.cmodel (i,2) = cumulative_cmodel (i —1,2) + cmodel(i,2)!convolved

END DO !'model

DO i = I, ndata !
CALL random_number (randnum6) !

randnum6 = cumulative_cmodel (blimBins ,2) + &

randnum6 = (cumulative_cmodel (flimBins ,2) — cumulative_cmodel (blimBins ,2))
DO j = flimBins, blimBins, -1 !'Generates ’ndata’
IF (randnum6 .le. cumulative_.cmodel(j,2)) THEN !magnitude datapoints
IF (randnum6 .gt. cumulative_.cmodel(j—1,2)) THEN !from the convolved
data(i) = cumulative_cmodel (j—1,1) !'model
exit ; !
END IF !
END IF !
END DO !
END DO !
cumulative_dist = 0.d0 !
cumulative_dist(1,1) = 0.0001 ! Generates model radial density
cumulative_dist(1,2) = 10.d0 = (5.610696 — 0.0013362497) !'profile based on that fitted

!to Andromeda Il (with approximation
DO i = 2, 2000 lof zero ellipticity)
cumulative_dist(i,1) = i = 0.0001d0 !
cumulative_dist(i,2) = cumulative_dist(i—-1,2) + (10.d0 #* (5.610696 — 13.362497 * cumulative_dist(i,1)))
END DO

“kpe”
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DO i = 1, ndata !
CALL random_number (randnum6 ) !
IF (data(i) .ge. mag_tip) THEN !
CALL random-number (randnum?7) !Draws random

IF (randnum7 .gt. f % (flim - mag_tip)/(flim - blim)) THEN !

randnum6 = randnum6 % cumulative_-dist(2000,2) !radial distance
DO j = 2000, 2, -1 !

IF (randnum6 .le. cumulative_dist(j.,2) .and. randnum6 .gt. cumulative_dist(j—1,2)) THEN

C.O_F_dist(i) = cumulative_dist(j—1,1) !

exit ; !'for each
END IF !
END DO !'star based
ELSE !
C_O_F_dist(i) = SQRT((randnum6 = (pi * sig_-field_-radius *x 2))/ pi)lon above
END IF !
ELSE !'model
C_O_F_dist(i) = SQRT((randnum6 = (pi = sig_field_radius =*x 2))/ pi) !
END IF !
END DO !

sig-area = pi * (sig-field_-radius =x 2.d0) !
sig-stars = ndata !For calculating ratio
ndata2 = ndata !of RGB to background
bg._density = f * REAL(sig_stars)/ sig_area !

b plot magnitude vs. radius ——————————————————
string = TRIM(ADJUSTL( field)) // */mag_vs_rad.ps/CPS’

CALL pgbegin (0, TRIM(ADJUSTL( string)) ,1,1)

CALL pgenv(19.5, 23.5, 0., MAXVAL(REAL(C_O_F_dist)), 0, 0)
CALL pgslw (3)

CALL pgpt (ndata, REAL(data), REAL(C_O_F_dist), -1)

CALL pgslw (1)

CALL pglab(’magnitude’, ’radius’, ")

CALL pgend

END SUBROUTINE DataMaker
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Program: Multi MCMC _Result_Plotter.f95

Creation Date: 6 Feb 2012 (first version 10 Dec 2010 )

Relevant Sections: Ch. 3 & Ch. 4

Notes: This program was created to take the posterior distributions generated by the TRGB
algorithm (e.g. ‘MF_TRGB.f95’) and produce more polished versions of the figures for use
in papers I and II. In particular, it colour-codes the distributions to indicate the 1o, 90%
and 99% credibility intervals. It also generates a contour map of the distribution of the tip
magnitude verses the RGB slope model parameters (see Fig. 8 of Paper I; Ch. 3) -i.e. a3D
surface from which the individual parameter posterior distributions are created by marginal-
izing over the other parameter. The actual distance posterior distributions for each object are
also created by this program. This is achieved by sampling the posterior distribution in the
tip magnitude along with the probability distributions for the absolute magnitude of the tip
and the extinction along the line of sight (see the ‘Dist_Error’ subroutine). The halo density
prior (see §3.3 of Paper II; Ch. 4) is also generated and applied in this program, as are the
hundredth-percentile tables of the object distance distributions published alongside Paper II

(see Table 1 of Paper II for example).

MODULE Global !Defines all variables used by BayesianTRGB

IMPLICIT NONE

INTEGER :: i, ios, j, k, ndata_max, ndata, ndata_M31, nbins, binspm, dl, d2, d3, d4, mm
PARAMETER (ndata_.max = 7100000, binspm = 100)

PARAMETER (nbins = 8 s binspm)

REAL+8 :: pi

PARAMETER (pi = ACOS(-1.e0))

REAL :: it(ndata.max), mag_tip(ndata_max), f(ndata_max), a(ndata_.max)

REAL :: LikeA(ndata_max), LikeB(ndata_max), M31_dist.ppd(ndata.max)
REAL :: tip.PPD(10%(nbins-1)+1, 2) = 0.d0
REAL :: f_PPD(nbins, 2) = 0.d0, a_PPD(2#nbins — 1, 2) = 0.d0

REAL :: mag_tip_11, mag_tip_ul

REAL :: f_11 = 0., f_ul = 1.

REAL :: a_11, a_ul

REAL :: tip_rec, f_rec, a.rec, PPD_peak, tip_kpc, tip_counts, mcounts, pcounts, tip.msigma, tip_psigma
REAL :: f_sigma, a.sigma, kpc_merr, kpc.perr, f_counts, a_counts, fminsig, fplusig, aminsig, aplusig

REAL :: tip.m90, tip_p90, tip.m99, tip_p99, xpts(2), ypts(2)

REAL :: xi-coord, eta-coord

REAL%«8 :: RA, DEC, xi.dble, eta_dble

CHARACTER :: argv=20, field =60, plot_dir=60, string+200, string2 200, commandl*200, command2=300

INTEGER :: cont_bins, ncontours

PARAMETER (cont_bins = 75)

PARAMETER (ncontours = 20)

REAL :: Cont(cont_bins, cont_bins), clevels(ncontours), TR(6)
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INTEGER :: —-9999, nsamples ,
PARAMETER (nsamples = 500000)

REAL :: M.TRGB, Ext, Ext.0,
REAL ::
REAL ::
REAL ::
REAL ::
REALx*8

idum = DistBins , prior_type
Tip ,

dist-rec , dist_counts , dist-m90 ,
DistPrior (4000), alpha,
M31_to_obj-x (4001),

M31_dist_rec ,

dist_.msigma , dist_psigma , dist_p90 ,

slope , flat, hwhm, theta

M31_to_obj.y(4001), M31_to.obj, m31._dist

M31_dist_psigma, M31._dist_msigma

randnum

converting distances back to magnitudes ——

dist2mag_rec , d2m.-msigma, d2m_psigma, d2m-m90, d2m_p90, d2m.-m99,

cum_dist ,

LOGICAL next

perc, dist_at_perc(100,2)

END MODULE Global

dist-m99 ,

d2m_p99

Dist_PPD, Dist_.PPDx(4000), Dist.PPDy(4000), Dist_.PPD_min, Dist.PPD_max

dist_-p99

PROGRAM MCMC _Result_Plotter
USE Global
IMPLICIT NONE

DOUBLE PRECISION sla_DSEP

mm = IARGC ()

IF (mm==9) THEN !
CALL GETARG(1,
READ (argv ,x,iostat=ios)
CALL GETARG(2, argv)
READ (argv ,x,iostat=ios)
CALL GETARG(3,
READ (argv ,,iostat=ios)
CALL GETARG(4 ,
READ
CALL GETARG(S5, argv)

READ (argv ,*,iostat=ios) a_
CALL GETARG(6, argv)

READ (argv,*,iostat=ios) a_ul
CALL GETARG(7,
READ (argv ,*,iostat=ios)
CALL GETARG(8,
READ (argv ,x,iostat=ios)
CALL GETARG(9 ,

argv)

field !

Ext_0 !
argv)

mag_tip_11
argv)
(argv ,*,iostat=ios) !Indicates the

mag_tip_ul arguments to be

set in the command line

11 !

argv)
Xi-coord
argv)
eta_coord
argv)
READ (argv .,+,iostat=ios) plot_dir !
ELSE !
WRITE(* ,%) “You_must_enter_9_arguments:”
stop
END IF !

xi-coord = xi-coord x (pi/180.¢e0) !Convert angles from

eta.coord = eta_coord x (pi/180.e0) !degrees to radians

xi_dble = eta_dble = !
CALL sla_DTP2S(xi_dble, eta_dble ,
IF (xi-dble .1t. 0.d0) then

RA =RA - (2.¢0 = pi)
END IF

eta_coord
0.d0, 0.d0, RA, DEC)

xi-coord ;
! Convert
!projection
!'their

!sla_DTP2S

true

tangent
angles

angles

plane
into

using
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xi.coord = RA !

eta.coord = DEC !

xi_dble = xi-coord !Find the true angle
eta_dble = eta_coord !theta — the angle on
theta = sla_.DSEP(0.d0, 0.d0, xi-dble, eta_-dble) !'the sky between M3l

land the object

!'(uses sla_DSEP)

xi_coord = xi_coord x (180.e0/pi) !'Convert back

eta_coord = eta_coord x (180.e0/pi) !to degrees

WRITE (*,%) xi.coord, eta_coord, theta = (180.e0/pi)

WRITE (string .«) °./° // TRIM(ADJUSTL(field)) // */° // TRIM(ADJUSTL(plot_dir))

WRITE (commandl,*) ’“mkdir.’ // TRIM(ADJUSTL(string))

call system (commandl)

OPEN (unit = 1, file = *./’ // TRIM(ADJUSTL(field)) // ’/MCMC._steps.dat’,

OPEN (unit = 2, file = *./° // TRIM(ADJUSTL(string)) // ’/results.dat’

OPEN (unit = 3, file = *./M3le/other_plots/M31_Distance.PPD.dat’, status =

WRITE (2,#) ”Field:.”, TRIM(ADJUSTL( field)) !

WRITE (2 ,x) "Coordinates:.xi_=", xi.coord, ”,_eta.=", eta_coord !

WRITE (2,%) “"Plot_Directory:.”, TRIM(ADJUSTL(string)) ! Print

WRITE (2,x) "_" linfo to

WRITE (2,%) "Extinction.in_SDSS_i:.”, Ext.0 !
WRITE (2,%) "E(B-V):.”, Ext.0 / 2.086¢e0 !

i =0 ; ios =0

DO WHILE (.TRUE.) !Reads data until end of input file and puts it into ar

i=i+l

READ (1, =, IOSTAT = ios) it(i), mag_tip(i), f(i), a(i), LikeA(i), LikeB(i)

if (ios == 0) then ;

else if (ios == —1) then ;

exit
else if (ios > 0) then ;
i=i-1
cycle
end if
END DO

ndata = i - 1

i=07: ios =0
DO WHILE (.TRUE.) !Reads M31 distance sample data until end of input
i=i+l
READ (3, #, IOSTAT = ios) M31_dist_ppd (i)
if (ios == 0) then
else if (ios == —1) then ;
i=i-1
exit
else if (ios > 0) then ;
i=i-1
cycle
end if
END DO
ndata_M31 =i - 1

status = ‘old’) !Open input
, status = ’unknown’)!and output
Told’) !files
basic object
file
rays
file and puts it into an array
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CALL random_seed !

CALL PosteriorBuild !CALL

CALL PosteriorPlot !

CALL OtherPlots !SUBROUTINES
CALL Dist_Error !

END PROGRAM MCMC_Result_Plotter

SUBROUTINE PosteriorBuild
USE Global
IMPLICIT NONE

DO i = 1, 10+(nbins —1)+1 !
tip-PPD (i, 1) = 18.d0 + (REAL(i) — 1.d0)/REAL(10#%binspm) !

END DO !
!
DO i = 1, nbins !'x—values of
f_-PPD(i, 1) = (REAL(i) — 1.d0)/REAL(nbins — 1) !PPD histograms
END DO !

1

DO i = 1, 2«nbins — 1 !
aPPD(i, 1) = (REAL(i) — 1.d0)/REAL(nbins — 1) |
END DO !

DO i = 1, ndata !
tip.PPD (INT (( mag_tip(i) — 18.d0)=*10«binspm + 1), 2) = & !

tip-PPD (INT((mag-tip(i) — 18.d0)=*10xbinspm + 1), 2) + 1.d0 !
f_.PPD(INT(f(i) * (nbins — 1)) + 1, 2) = & ly—values of
f_.PPD(INT(f(i) * (nbins — 1)) + 1, 2) + 1.d0 !PPD histograms
a_PPD(INT(a(i) * (nbins — 1)) + 1, 2) = & !
a_PPD(INT(a(i) * (nbins — 1)) + 1, 2) + 1.d0 !

END DO !

CALL Confidence

END SUBROUTINE PosteriorBuild

SUBROUTINE PosteriorPlot !Plots posterior distributions in tip magnitude and a
USE Global !'tip magnitude PPD is plotted with credibility intervals
IMPLICIT NONE

tip-PPD (:,2) = tip.PPD(:,2)/ndata ; f_.PPD(:,2) = f_PPD(:,2)/ndata
a_PPD(:,2) = a_PPD(:.2)/ndata

! Plots mag_tip posterior plot
string2 = TRIM(ADJUSTL(string)) // ’/bw_mag_tip_postplot.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string2)),1,1)

CALL pgenv(mag-tip-11, mag_tip-ul, 0., 1.1*MAXVAL(tip-PPD (:,2)), 0, 0)
CALL pgbin (10%(nbins—1)+1, tip-PPD(:,1), tip.PPD(:,2) ,.false.)
CALL pglab(’Proposed.i\dO\u_tip_magnitude’, ’Probability’, *’)

CALL pgend

WRITE (command2,#) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &

*/bw_mag_tip_postplot.ps.’ // TRIM(ADJUSTL(string)) // &
*/bw_mag_tip_postplot.jpg’
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call system (command2)

! Plots
string2 = TRIM(ADJUSTL(string)) //
CALL pgbegin (0, TRIM(ADJUSTL(string2)) ,1,1)
CALL pgenv(mag_tip_11, mag_tip_ul, 0.,
DO i = 1, 10x(nbins —1)+1
IF (tip-PPD(i,l) .ge.
CALL pgsci(2)
CALL pgbin (2, tip.PPD(i.l),
IF (tip.PPD(i,l) .eq.
tip_.PPD (i, 1)
ypts (1) = 0.e0 ;
CALL pgline (2,
END IF
IF (tip.PPD(i+1,1) .eq.
tip-.PPD (i+1,1)
ypts(l) = 0.e0 ; ypts(2) =
CALL pgline (2, ypts)
END IF
ELSE IF (tip.PPD(i,l) .ge.
CALL pgsci(3)

Xpts =
ypts(2) =

Xpts , ypts)

Xpts =

Xpts ,

mag-tip posterior

tip-rec — tip-msigma

tip_.rec — tip-m90

.and .

tip_.PPD (i,2) .. false.)
tip_.rec — tip.msigma) THEN

tip-PPD(i,2)

tip.rec + tip_psigma) THEN

tip-PPD(i,2)

cand .

CALL pgbin (2, tip_PPD(i,1), tip.PPD(i.2) ,.false.)

IF (tip-PPD(i,l) .eq.
xpts = tip_.PPD (i, 1)
ypts(1l) = 0.e0 ;
CALL pgline (2,

END IF

IF (tip.PPD(i+1,1) .eq.
xpts = tip_.PPD(i+1,1)
ypts(1l) = 0.e0 ;
CALL pgline (2,

END IF

ELSE IF (tip_.PPD(i,l) .ge.

CALL pgsci(4)

Xpts , ypts)

Xpts , ypts)

tip.rec — tip-m99

tip-rec - tip-m90) THEN

ypts (2) = tip_PPD (i.2)

tip-rec + tip-p90) THEN

ypts (2) = tip_PPD(i.2)

.and.

CALL pgbin (2, tip-PPD(i,1), tip-PPD(i,2) ,.false.)

IF (tip-PPD(i,l) .eq.
tip_.PPD (i, 1)
ypts(l) = 0.e0 ypts(2) =
CALL pgline (2, xpts, ypts)
END IF
IF (tip-PPD(i+1,1) .eq.
xpts = tip-PPD(i+1,1)
ypts(l) = 0.e0 ;
CALL pgline (2,
END IF
ELSE
CALL pgsci(l)
CALL pgbin (2,
END IF
END DO

Xpts =

Xpts , ypts)

tip-PPD(i.1) .

CALL pgsci(l)

CALL pglab(’Proposed.i\d0\u_tip_magnitude’,

CALL pgend

tip_-rec — tip-m99) THEN

tip_PPD (i .2)

tip-rec + tip-p99) THEN

ypts (2) = tip_PPD (i.2)

tip.PPD (i ,2) ,.false.)

*Probability *,

plot

tip.PPD(i,1) .It.

tip_PPD(i.1) .1t.

tip.PPD(i.1) .lt.

with confidence levels

*/mag_tip_postplot.ps/CPS’

1. 1+*MAXVAL(tip_.PPD (:,2)), 0, 0)

tip-rec + tip_psigma) THEN
|

|

|

!

!One Sigma

!
!'Credibility
|

!Interval

|

|

!

tip_rec + tip_p90) THEN
|

!

|

!

190 percent
!
!'Credibility
!

!Interval

|

|

!

tip-rec + tip-p99) THEN
|

|

|

!

199 percent
!
!Credibility
!

!Interval

|

|

!Distribution

loutside of 99 %
!Cred. Interval
)
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274  WRITE (command2,x) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &

275 */mag_tip-postplot.ps.’ // TRIM(ADJUSTL(string)) // &
276 */mag_tip_postplot.jpg’

277

278 call system (command2)

279

280 ! Plots a posterior plot

281 string2 = TRIM(ADJUSTL(string)) // ’/a_postplot.ps/CPS’
282  CALL pgbegin (0, TRIM(ADJUSTL(string2)) ,1,1)

283

284 CALL pgenv(a-1l1, a-ul, 0., 1.1*MAXVAL(a.PPD(:,2)), 0, 0)
285 CALL pgbin (2#nbins—1, a.PPD(:,1), a.PPD(:,2) ,.false.)

286 CALL pglab(’Proposed.-value_for_LF_slope~(a)’, ’Probability’, ")

287

288  CALL pgend

289

290 WRITE (command2,%) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &
291 */a_postplot.ps.’ // TRIM(ADJUSTL(string)) // &
292 */a_postplot.jpg’

293

294 call system (command2)

295

296 tip-PPD (:,2) = tip-PPD(:,2)*ndata ; f.PPD(:,2) = f_PPD(:,2)=ndata
297 a_PPD(:,2) = a_PPD(:.2)=ndata

298

299  END SUBROUTINE PosteriorPlot

300

301 !
302
303 SUBROUTINE OtherPlots
304 USE Global

305 IMPLICIT NONE

306

307 b Values of ’a’ for each value of 'mag_tip’ — contour plot
308

309 Cont = 0.e0

310 TR = 0.e0

311 TR(1) = mag-tip-11 ; TR(2) = (mag-tip-ul — mag-tip-11)/REAL(cont_bins) :; TR(4) = a_-11 ; TR(6) = (a-ul — a_ll)/REAL(cont_bins)
312

313 DO k = 1, ndata

314 i = INT((mag-tip(k) — TR(1))/TR(2)) + 1

315 j = INT((a(k) — TR(4))/TR(6)) + 1

316 if ( i>0 .and. i<=cont.bins .and. j>0 .and. j<=cont-bins) Cont(i,j) = Cont(i,j) + l.e0
317 END DO

318

319 DO i =1, ncontours

320 clevels(i) = 0.e0 + i*MAXVAL(Cont)/REAL(ncontours)

321 END DO

322

323 string2 = TRIM(ADJUSTL(string)) // ’/m_vs_a_contour.ps/CPS’
324  CALL pgbegin (0, TRIM(ADJUSTL( string2)) ,1,1)

325

326 CALL pgenv(mag_tip_11, mag_tip_ul, a_ll, a_ul, 0, 0)

327 CALL PGCONT (Cont, cont-bins, cont-bins, 1, cont-bins, 1, cont_-bins, clevels, ncontours, TR)
328 CALL pglab (’Proposed.i\dO\u_tip_magnitude’, ’Proposed.value_of_a’, °")

329

330 CALL pgend

331

332  WRITE (command2,x) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &

333 */m_vs_a_contour.ps.’ // TRIM(ADJUSTL(string)) // &

334 /m_vs_a_contour.jpg’
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call system (command2)

END SUBROUTINE OtherPlots

SUBROUTINE Confidence !Identifies the best parameter values and
USE Global !'their associated 1 sigma errors from the

IMPLICIT NONE !respective posterior plots.

PPD_peak = 0.d0 !
DO i = 1, 10#(nbins —1)+1 !
IF (tip.PPD(i,2) .gt. PPD_peak) THEN !

PPD_peak = tip.PPD(i.2) !Find best fit TRGB value
tip-rec = tip-PPD(i,1) !
END IF !
END DO !

PPD_peak = 0.d0 !
DO i = 1, nbins !
IF (f-PPD(i,2) .gt. PPD_peak) THEN !

PPD_peak = f_PPD(i,2) !Find best fit f value
f_rec = f_PPD(i,l) !
END IF !
END DO !

PPD_peak = 0.d0 !

DO i = 1, 2«nbins — 1 !

IF (a.PPD(i,2) .gt. PPD_peak) THEN !
PPD_peak = a_PPD(i.2) I'Find best fit a value

a.rec = a_PPD(i,l) !
END IF !
END DO !

tip-kpc = (100.d0=*=*((tip-rec + 3.44d0)/10.d0))/100.d0 !Distance inferred from

!'tip magnitude

tip-counts = 0.d0 ; mcounts = 0.d0 !
DO i = MAXLOC(tip-PPD (:,2), DIM = 1), 1, -1 !

mcounts = mcounts + tip-PPD(i,2) !

END DO !
DO i = MAXIOC(tip-PPD(:,2), DIM = 1), 1, -1 !
tip_counts = tip_counts + tip.PPD(i,2) !Finds
IF (tip-counts .ge. 0.682%mcounts) THEN lerror
tip-msigma = ((REAL(i) — 1.d0)/REAL(10xbinspm)) + 18.d0 !
tip.msigma = tip_rec — tip_msigma !
exit !
END IF !

END DO !

tip-counts = 0.d0 ; pcounts = 0.d0 !
DO i = MAXLOC(tip_.PPD (:,2), DIM = 1), 10x(nbins—1)+1 !
pcounts = pcounts + tip-PPD(i,2) !
END DO !
DO i = MAXLOC(tip_PPD (:,2), DIM = 1), 10x(nbins—1)+1 !

tip-counts = tip_counts + tip-PPD(i,2) !Finds

IF (tip_counts .ge. 0.682xpcounts) THEN lerror
tip-psigma = ((REAL(i) — 1.d0)/REAL(10xbinspm)) + 18.d0 !
tip_psigma = tip_psigma — tip_.rec !

exit !

in kpc

negative one sigma

in magnitudes

positive one sigma

in magnitudes
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END IF
END DO

tip-counts = 0.d0 :; mcounts = 0.d0
DO i = MAXLOC(tip_PPD(:,2), DIM = 1), 1, -1
mcounts = mcounts + tip.PPD(i,2)
END DO
DO i = MAXLOC(tip_PPD(:,2), DIM = 1), 1, -1
tip-counts = tip_counts + tip-PPD(i,2)
IF (tip_counts .ge. 0.9d0x*mcounts) THEN
tip-m90 = ((REAL(i) - 1.d0)/REAL(10+binspm)) + 18.d0
tip-m90 = tip_.rec — tip.m90
exit
END IF
END DO

tip-counts = 0.d0 ; pcounts = 0.d0
DO i = MAXLOC(tip-PPD (:,2), DIM = 1), 10#(nbins—1)+1
pcounts = pcounts + tip.PPD(i,2)
END DO
DO i = MAXLOC(tip-PPD (:,2), DIM = 1), 10%(nbins —1)+1
tip-counts = tip-counts + tip-PPD(i,2)
IF (tip-counts .ge. 0.9d0xpcounts) THEN
tip.p90 = ((REAL(i) - 1.d0)/REAL(10+binspm)) + 18.d0
tip-p90 = tip-p90 - tip-rec
exit
END IF
END DO
tip_counts = 0.d0 mcounts = 0.d0
DO i = MAXLOC(tip_.PPD(:,2), DIM = 1), 1, -1
mcounts = mcounts + tip-PPD(i,2)
END DO
DO i = MAXIOC(tip-PPD(:,2), DIM = 1), 1, -1
tip_counts = tip_counts + tip.PPD(i,2)
IF (tip-counts .ge. 0.99d0+mcounts) THEN
tip-m99 = ((REAL(i) — 1.d0)/REAL(10x*binspm)) + 18.d0
tip-m99 = tip.rec — tip-m99
exit
END IF
END DO

tip-counts = 0.d0 :; pcounts = 0.d0
DO i = MAXLOC(tip-PPD(:,2), DIM = 1), 10%(nbins —1)+1
pcounts = pcounts + tip-PPD(i,2)
END DO
DO i = MAXLOC(tip_.PPD (:,2), DIM = 1), 10«(nbins—1)+1
tip-counts = tip_counts + tip-PPD(i,2)
IF (tip_counts .ge. 0.99d0xpcounts) THEN
tip-p99 = ((REAL(i) - 1.d0)/REAL(10%binspm)) + 18.d0
tip_p99 = tip_p99 - tip_rec
exit
END IF
END DO

dl =0 ;d2=0;d3=0:;d4 =0

f_counts = 0.d0 ; a_-counts = 0.d0 !

DO i = 1, nbins !
f_counts = f_counts + f_-PPD(i,2) !
a_counts = a_counts + a_.PPD(i,2) !

0) THEN!

IF (f_counts .ge. 0.159+ndata .and. dl .eq.

|
|

!Finds negative 90% confidence
!error in magnitudes

|

|

|
|

!Finds positive 90% confidence
lerror in magnitudes

|

|

|
|

!Finds negative 99% confidence
!error in magnitudes

|

|

|
|

!Finds positive 99% confidence
lerror in magnitudes

|

|
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fminsig = f_.PPD(i,1) !

dl =1 !
END IF !
IF (f_counts .ge. 0.841xndata .and. d2 .eq. 0) THEN!For f and a:
fplusig = f_.PPD(i,1) !Finds upper and lower
d2 =1 !'bounds for posterior
END IF !'distribution within one

IF (a_counts .ge. 0.159sndata .and. d3 .eq. 0) THEN!sigma of maximum.
aminsig = a_.PPD(i,1) !
d3 =1 !

END IF !

IF (a_counts .ge. 0.841xndata .and. d4 .eq. 0) THEN!
aplusig = a_PPD(i,l) !

d4 =1 !
END IF !
END DO !
f_sigma = 0.5d0«(fplusig — fminsig) !Hence calculates 1 sigma error
a_sigma = 0.5d0*(aplusig — aminsig) !for f and a

kpc_merr = tip_kpc#100.d0*+(tip-msigma/10.d0) - tip_kpc !minus tip error in kpc
kpc_perr = tip-kpc«100.d0**(tip-psigma/10.d0) — tip-kpc !plus tip error in kpc

WRITE (2 ,x) “_”

WRITE (2,%) ”Distance.Modulus:”, tip.rec + 3.44¢0

WRITE (2 ,%) "+sigma.-sigma:”, tip_psigma, tip.msigma

WRITE (2,%) 7+90.-90:", tip_p90, tip-m90

WRITE (2 ,%) ”4+99.-99:", tip_p99, tip-m99

WRITE (2,%) “tip._+sigma.—-sigma:”, tip.rec, tip.rec + tip_psigma, tip-rec — tip-msigma
WRITE (2,%) 7tip_.+90.-90:", tip_rec, tip.rec + tip.p90, tip_.rec — tip.m90

WRITE (2.,%) "tip.+99.-99:", tip_.rec, tip.rec + tip_.p99, tip_rec — tip.m99

END SUBROUTINE Confidence

SUBROUTINE Dist_Error !Samples Distance likelihood space
USE Global tusing samples of m.TRGB, A_lambda and M.TRGB
IMPLICIT NONE !from their respective likelihood distributions

REAL#8 :: gasdev

!||Don’t forget to reinstate

!'\/writing distances to files 13 & 14

string2 = TRIM(ADJUSTL(string)) // °/Sampled_-MWy_Distances.dat’
OPEN (unit = 13, file = TRIM(ADJUSTL(string2)), status = ‘unknown’)
string2 = TRIM(ADJUSTL(string)) // °/Sampled_-M31_Distances.dat’
OPEN (unit = 14, file = TRIM(ADJUSTL(string2)), status = “unknown’)

Dist_PPDx = 0.e0 !Pre—set Distance likelihood
Dist.PPDy = 0.e0 !'distribution histogram to 0.

Dist.PPD_min = (100.e0xx((MINVAL(mag_-tip , mask = mag_tip .ne. 0.) — 0.3e0+*Ext_.0 + 3.14)/10.¢0))/100.e0
Dist.PPD_max = (100.e0**((MAXVAL(mag-tip, mask = mag-tip .ne. 0.) + 0.3e0+*Ext_0 + 3.74)/10.e0))/100.e0

M31_to.obj.x = 0.e0 !Pre—set M3l to object histogram x values to 0.

M31_to_.obj.y = 0.e0 !Pre—set M3l to object distance histogram values to 0.

DistBins = 0 !

DO i = NINT(Dist-PPD_min) — 1, NINT(Dist-PPD_max) + 1 !'Generate ’x’ values

DistBins = DistBins + 1 !for distribution

Dist_.PPDx (DistBins) = REAL(i) 'number of bins

(MWy distances)
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END DO
DO i = -2000, 2000
M31_to_obj_x (i+2001) = REAL(i)
END DO
DO i = 1, nsamples

MIRGB = 3.44¢0 + 0.05e0xgasdev (idum)
Ext = Ext.0 + 0.1e0=Ext_Oxgasdev (idum)

CALL random_number (randnum)

!'Generate 'x’ values (M3l distances)

!for distribution histogram

!
|
!

!Take ’'nsamples’ samples of the distance

Tip = mag-tip (NINT(randnum#0.9999d0+ndata)+1) + Ext.0 lusing values of m.TRGB, A_lambda and M.TRG
Dist.PPD = (100.e0#*((Tip — Ext + M.TRGB)/10.¢0))/100.¢0 Ifrom their respective likelihood distributions.
m31._dist = M31._dist_ppd (NINT(randnum+0.9999d0+ndata_-M31)+1) !m31._dist is sampled directly from the M3l dist PPD each
M31.to.Obj = ((Dist_.PPD xx 2.e0) + (m31._dist #x 2.e0) - & !
2.e0 = Dist.PPD * m31_dist = cos(theta)) =#x 0.5e0 !
WRITE (13 ,%) Dist.PPD
WRITE (14.,%) M31_to_Obj
Dist_PPDy (NINT(Dist_PPD) — (NINT(Dist.PPD_min) - 2)) = & ! Tally up number of counts
Dist_.PPDy (NINT(Dist_.PPD) — (NINT(Dist.PPD_min) - 2)) + 1.e0 lin each Earth distance bin

M31_to_obj_y (2001 + NINT(M31_to_Obj)) = &
M31_to-obj_y (2001 + NINT(M31_.to-Obj)) + 1.e0
END DO

I Tally

lin each

R One Hundredth Percentiles before prior ———————

dist_at_perc = 0.e0
cum-dist = 0.e0 ; perc = 0.e0 ; next = .true.
DO i = 1, 4000

cum-dist = cum-dist + Dist.PPDy (i)

I IF (next) THEN

perc = perc + 1.e0
next = .false.
END IF

IF (cum_dist .ge. (perc/100.e0)*SUM(Dist_.PPDy)) THEN
dist_at_perc (NINT(perc),l) = Dist.PPDx (i)
next = .true.
goto 1

END IF

END DO

[ Apply distance
CALL DistancePrior

prior ————————————

Dist_.PPDy = Dist_PPDy = DistPrior

Dist_.PPDy = Dist_.PPDy/ SUM(Dist_.PPDy)

! One Hundredth Percentiles

after prior
cum_dist = 0.e0 ; perc = 0.e0 ; next = .true.
DO i =1, 4000
cum_dist = cum_dist + Dist_PPDy (i)

2 IF (next) THEN

perc = perc + l.e0
next = .false.
END IF

IF (cum-.dist .ge. (perc/100.e0)=«SUM(Dist.-PPDy)) THEN

up number of counts

M31 distance bin

!
the
1%

!Note, this routine now accounts for fact that

'a single bin can contain more than of the

!data. i.e. — cum_dist does not progress until

!the percentage of the PPD surpasses it. Otherwise

!cum_dist overtakes it and the second if statement

lis always true.

! Note , the fact that

1% of the

this routine now accounts for

'a single bin can contain more than

!data. i.e. — cum-dist does not progress until

!the percentage of the PPD surpasses it. Otherwise

!cum_dist overtakes it and the second if statement

iteration
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dist_at_perc (NINT(perc) ,2) = Dist.PPDx (1) lis always true.
next = .true. !
goto 2

END IF

END DO

e Create table of One Hundredth Percentiles —————————

string2 = TRIM(ADJUSTL(string)) // °/Hundredth_Percentiles.dat’
OPEN (unit = 14, file = TRIM(ADJUSTL(string2)), status = ’unknown’)

DO i =1, 100
WRITE(14,°(3i7)") i, NINT(dist-at_-perc(i,l)), NINT(dist_at_perc(i,2))
END DO

CALL Confidence2 ! Calculate 68.3%, 90% and 99% plus/ minus credibility intervals

Dist_.PPDy = Dist_.PPDy/ SUM(Dist_.PPDy) !normalize distribution

CALL Confidence3 !Calculate 68.3%credibility intervals
M31_to_obj_.y = M31_to_obj.y/ SUM(M31_to_obj_y) !normalize distribution

! Plots Distance Distribution w/o credibility
string2 = TRIM(ADJUSTL(string)) // ’/bw_dist.PPD.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string2)) ,1,1)

CALL pgenv (MINVAL(DIST_PPDx, mask = DIST.PPDx .ne. 0.) — 1, MAXVAL(DIST_PPDx) + 1, 0., 1.1+sMAXVAL(Dist_.PPDy), 0, 0)

CALL pgbin (DistBins, Dist.PPDx, Dist_.PPDy, .false.)
CALL pglab(’Proposed_.Distance-(kpc)’, ’Probability’, )

CALL pgend

WRITE (command2,#) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &
*/bw_dist_PPD.ps.’ // TRIM(ADJUSTL(string)) // &
*/bw_dist_.PPD.jpg’

call system (command2)

! Plots Distance Distribution with credibility intervals

string2 = TRIM(ADJUSTL(string)) // °/dist.PPD.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string2)) ,1,1)

CALL pgenv (MINVAL(DIST_PPDx, mask = DIST.PPDx .ne. 0.) — 1, MAXVAL(DIST_PPDx) + 1, 0., 1.1:MAXVAL(Dist_.PPDy), 0, 0)

DO i = 1, DistBins

intervals

IF (Dist.PPDx (i) .ge. dist_rec — dist.msigma .and. Dist.PPDx(i) .It. dist_rec + dist_psigma) THEN

CALL pgsci(2) !
CALL pgbin (2, Dist.PPDx (i), Dist.PPDy(i) ,.false.) !
IF (Dist.PPDx (i) .eq. dist.rec — dist.msigma) THEN !

xpts = Dist.PPDx (i) !

ypts (1) = 0.e0 ; ypts(2) = Dist-PPDy(i) !One Sigma
CALL pgline (2, xpts, ypts) !
END IF ! Credibility
IF (Dist.PPDx(i+1) .eq. dist-rec + dist_-psigma) THEN !
xpts = Dist.PPDx(i+1) !'Interval

ypts(l) = 0.e0 ; ypts(2) = Dist_PPDy (i) !
CALL pgline (2, xpts, ypts) !
END IF !
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ELSE IF

CALL pgsci(3)

CALL pgbin (2, Dist.PPDx (i), Dist.PPDy(i) ,.false.) !
.eq. dist_.rec — dist-m90) THEN !

IF (Dist_PPDx (i)

xpts = Dist.PPDx (i)
ypts(1) = 0.e0 ; ypts(2) = Dist-PPDy(i) 190 percent
CALL pgline (2, xpts, ypts)

END IF

!Credibility

IF (Dist.PPDx(i+1) .eq. dist_-rec + dist_-p90) THEN !
xpts = Dist.PPDx (i+1)
ypts (1) = 0.e0 ; ypts(2) = Dist_.PPDy(i) !

CALL pgline (2, xpts, ypts)

END IF

ELSE IF (Dist_PPDx (

CALL pgsci(4)

!Interval

(Dist.PPDx (i) .ge. dist.rec — dist.m90 .and. Dist.PPDx (i) .1t. dist.rec + dist_-p90) THEN

i) .ge. dist.rec — dist-m99 .and. Dist.PPDx (i) .It. dist.rec + dist-p99) THEN

CALL pgbin (2, Dist.PPDx (i), Dist.PPDy(i) ,.false.) !
.eq. dist.rec — dist_m99) THEN !
xpts = Dist.PPDx (i)

IF (Dist_PPDx (i)

ypts(l) = 0.e0

CALL pgline (2, xpts, ypts)

END IF

ypts(2) = Dist_.PPDy (i) 199 percent

!Credibility

IF (Dist.PPDx(i+1) .eq. dist.rec + dist-p99) THEN !
xpts = Dist.PPDx (i+1)
ypts (1) = 0.e0 ; ypts(2) = Dist_PPDy(i) !

CALL pgline (2, xpts, ypts)

!Interval

END IF |
ELSE
CALL pgsci(l) !Distribution
CALL pgbin (2, Dist.PPDx (i), Dist.PPDy(i) ,.false.) loutside of 99 %
END IF !Cred. Interval
END DO
CALL pgsci(l)

CALL pglab(’Proposed._Distance_(kpc)’,

CALL

WRITE (command2 , )

call

pgend

system (command2)

‘convert_—rotate.90."

*Probability ”, *7)

// TRIM(ADJUSTL(string)) // &

>/ dist_PPD .ps.’ // TRIM(ADJUSTL(string)) // &

*/dist.PPD.jpg’

string2 = TRIM(ADJUSTL(string)) //

Plots M3l to Object

CALL pgbegin (0, TRIM(ADJUSTL( string2)) .1.1)

Distance Distribution w/o credibility

*/bw_M31dist_PPD . ps/CPS’

CALL pgenv(MINVAL(M31_to_obj_x, mask = M31_to_obj.y .ne. 0.) — 1, &

CALL

WRITE (command2, )

call

MAXVAL(M31

-to_obj_x ,

mask = M31_to_obj.y .ne. 0.) + 1, &

0., 1.1*MAXVAL(M31_to_obj_y), 0, 0)
CALL pgbin (4001, M31_to-obj-x, M31_to-obj.y
CALL pglab(’Proposed._.Distance_from_.M3I_.(kpc)’, *Probability’, °7)

pgend

system (command2)

‘convert_—rotate.90."

*/bw_M31dist_PPD .ps.’
*/bw_M31dist_PPD . jpg’

, .false.)

// TRIM(ADJUSTL(string)) // &

// TRIM(ADJUSTL(string)) // &

intervals
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END SUBROUTINE Dist_Error

SUBROUTINE DistancePrior ! Multiplies Distance Posterior

USE Global !Distribution by the distance prior —
IMPLICIT NONE le.g. the density function of the halo

DistPrior = 0.e0
prior_type = 2

IF (prior_type .eq. 1) Then !For a Uniform Prior
WRITE (2,%) 7.7

WRITE (2,x) "Prior.Type:._Uniform”

DistPrior = 1.e0

END IF
IF (prior_type .eq. 2) Then !For actual integrated density along line of sight
alpha = 1.e0 !'Slope of power law

WRITE (2 ,%) ”.”

WRITE (2,%) ”Prior.Type:._-Integrated._.density .function ,_.alpha_=", alpha, “theta_(deg)-=", (theta * 180.e0/

DO i = 1, DistBins
DistPrior (i) = (Dist.PPDx (i) =*x 2.e0) / &

acos(—1.e0))

(((Dist.PPDx (i) #x 2.e0) + (779.e0 #x 2.e0) — (2.e0 * 779.e0) % Dist.PPDx(i) % cos(theta)) #x (0.5e0 * alpha))

END DO
END IF

IF (prior_type .eq. 3) Then !For a power law prior
alpha = 0.2e0 !Slope of power law
WRITE (2,%) 7.7

WRITE (2,%) “Prior_Type:_Power_Law,_alpha_=", alpha

DO i = 1, DistBins
IF (Dist.PPDx (i) .ne. 779.e0) THEN
DistPrior (i) = (ABS(779.e0 — Dist.PPDx(i))) =% (—1.e0 * alpha)
END IF
IF (Dist_.PPDx (i) .eq. 779.e0) THEN
DistPrior(i) = 1.e0

END IF
END DO
END IF
IF (prior_type .eq. 4) Then !For a linear decreasing prior
slope = 2.e0 ! Gradiant of diminishing probability

WRITE (2,%) “_"

WRITE (2,%) ”Prior.Type:.Linear_Decreasing ,.slope.=", slope

DO i = 1, DistBins

DistPrior (i) = 779.e0 — abs(slope * (Dist.PPDx (i) — 779.e0))
END DO
END IF

IF (prior_type .eq. 5) Then !For a Gaussian Prior

flat = 1.e0 !Gaussian Flattening Factor
hwhm = 150.e0 !'Gaussian Half Width Half Maximum

WRITE (2,x) ~_"
WRITE (2,%) ”Prior_.Type:_.Gaussian,.flattening_=", flat, ”;_hwhm_=", hwhm, “kpc.”

DO i = 1, DistBins
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DistPrior(i) = exp(—((Dist.PPDx(i) — 779.e0) #+ (2.e0 % flat)) / (2.e0 % hwhm #*

END DO
END IF

DistPrior = DistPrior /SUM(DistPrior)

! Plots Distance Prior

string2 = TRIM(ADJUSTL(string)) // °/dist_prior.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string2)),1,1)

CALL pgenv (MINVAL(DIST_PPDx, mask = DIST_PPDx .ne. 0.) — 1, MAXVAL(DIST_PPDx) + I,

CALL pgbin (DistBins, Dist.PPDx, DistPrior, .false.)

CALL pglab(’Proposed.Distance_(kpc)’, *Probability’, )

CALL pgend

WRITE (command2,#) ’convert_—rotate.90." // TRIM(ADJUSTL(string)) // &
*/dist_prior.ps.’ // TRIM(ADJUSTL(string)) // &

*/dist_prior.jpg’

call system (command2)

END SUBROUTINE DistancePrior

(2.0 * flat)))

., 1.1+MAXVAL(DistPrior), 0, 0)

SUBROUTINE Confidence2 !Identifies the best parameter values and
USE Global !'their associated 1 sigma errors from the
IMPLICIT NONE !respective posterior plots.
PPD_peak = 0.d0 !
DO i = 1, DistBins !

IF (Dist.PPDy(i) .gt. PPD_peak) THEN !

PPD_peak = Dist_.PPDy (i) !Find best fit TRGB value
dist_-rec = Dist_.PPDx (i) !
END IF !
END DO !

dist_counts = 0.d0 ; mcounts = 0.d0 !
DO i = MAXLOC(Dist.PPDy, DIM = 1), 1, -1 !

mcounts = mcounts + Dist_PPDy (i) !
END DO !
DO i = MAXLOC(Dist_PPDy, DIM = 1), 1, —I !

dist_counts = dist_-counts + Dist.PPDy (i) ! Finds
IF (dist_counts .ge. 0.682smcounts) THEN lerror
dist_msigma = dist_rec — Dist_PPDx (i) !
exit !
END IF !

END DO !

dist_.counts = 0.d0 ; pcounts = 0.d0 !
DO i = MAXLOC(Dist_.PPDy, DIM = 1), DistBins !
pcounts = pcounts + Dist_PPDy (i) !

END DO !
DO i = MAXLOC(Dist_.PPDy, DIM = 1), DistBins !
dist_.counts = dist_counts + Dist.PPDy (i) ! Finds
IF (dist_counts .ge. 0.682xpcounts) THEN lerror
dist_psigma = Dist.PPDx (i) — dist_rec !
exit !
END IF !

one sigma

one sigma
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END DO

dist_.counts = 0.d0

DO i = MAXLOC(Dist.PPDy, DIM = 1), 1, -1

mcounts = 0.d0

mcounts = mcounts + Dist_.PPDy (i)
END DO
DO i = MAXLOC(Dist_PPDy, DIM = 1), 1, -1
dist_counts = dist_counts + Dist.PPDy (i)
IF (dist_counts .ge. 0.9%mcounts) THEN
dist_-m90 = dist_rec — Dist.PPDx (1)
exit
END IF
END DO
dist_counts = 0.d0 :
DO i = MAXLOC(Dist_PPDy, DIM = 1),

pcounts = 0.d0

DistBins
pcounts = pcounts + Dist_.PPDy (i)

END DO

DO i = MAXLOC(Dist_.PPDy, DIM = 1), DistBins
dist_counts = dist_.counts + Dist.PPDy (i)

0.9% pcounts) THEN

dist-p90 = Dist.PPDx (i) -

IF (dist_counts .ge.
dist_rec
exit
END IF
END DO
dist_counts = 0.d0 ; mcounts = 0.d0
DO i = MAXLOC(Dist_.PPDy, DIM = 1), 1, -1
mcounts = mcounts + Dist_PPDy (i)
END DO
DO i = MAXLOC(Dist.PPDy, DIM = 1), 1, -1
dist_.counts = dist_counts + Dist.PPDy (i)
IF (dist_counts .ge. 0.99sxmcounts) THEN
dist-m99 = dist_rec — Dist-PPDx (i)
exit
END IF
END DO

0.d0 ;
DO i = MAXLOC(Dist.PPDy, DIM = 1),

dist.counts = pcounts = 0.d0

DistBins
pcounts = pcounts + Dist_.PPDy (i)

END DO

DO i = MAXLOC(Dist.PPDy, DIM = 1), DistBins
dist_counts = dist_counts + Dist.PPDy(i)

IF (dist_counts .ge. 0.99%pcounts) THEN
dist_p99 = Dist_.PPDx (i) — dist.rec

exit

END IF

END DO

WRITE (2 %) "_"
WRITE (2 %)
WRITE (2 ,%)
WRITE (2 %)
WRITE (2 %)

”Most._Likely..Distance:”, dist_rec

74+90--90_dist+90_dist =90:”,
7499.-99._dist+99_dist —=99:7,

dist_p90 ,
dist_p99 ,
intervals

|| Convert mode and

1'\/ back

distance profile

into the equivalent in magnitudes
dist2mag.rec = 5.e0 * LOGIO(dist_-rec * 100.e0) — 3.44e0
(5.e0 * LOGIO((dist.rec+dist_psigma) =

(5.e0 + LOGIO(dist_rec *

d2m_psigma =

d2m_msigma =

“+sigma.—sigma_dist+sigma._dist —sigma:”, dist_psigma ,
dist-m90 ,
dist-m99 ,

dist.rec + dist_p90 ,
dist_-rec + dist-p99 ,

100.e0) — 3.44¢0) —
100.e0) — 3.44e0) — (5.e0 = LOGIO((dist.rec —dist-msigma) =*

!Finds

linterval in

linterval in

Finds negative 90 credibility

interval in distance

Finds positive 90 credibility

interval in distance

negative 99 credibility

distance

Finds positive 99 credibility

distance

dist_msigma ,

dist_rec

(5.¢0 * LOGIO(dist_rec

dist_rec + dist_psigma,

*

dist_rec — dist.msigma

dist_rec - dist-m90
— dist-m99

100.¢0) — 3.44¢0)
100.e0) — 3.44¢0)
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884  d2m_p90 = (5.e0 * LOGIO((dist_rec+dist_p90) * 100.e0) — 3.44e0) — (5.e0 * LOGIO(dist_rec = 100.e0) — 3.44¢0)
885  d2m.m90 = (5.e0 * LOGIO(dist_rec * 100.e0) — 3.44e0) — (5.e0 * LOGIO((dist.rec —dist-m90) * 100.e0) — 3.44¢0)
886 d2m_p99 = (5.e0 * LOGIO((dist_rec+dist_.p99) = 100.e0) — 3.44e0) - (5.e0 = LOGIO(dist_rec = 100.e0) — 3.44¢e0)
887 d2m.m99 = (5.e0 * LOGIO(dist_rec = 100.e0) — 3.44e0) — (5.e0 % LOGIO((dist.rec—dist-m99) * 100.e0) — 3.44¢0)
888 VAN

889 U

890

891  WRITE (2 ,%) "_”

892  WRITE (2,%) ”Distance.back_to_magnitude:”, dist2mag_rec

893  WRITE (2,+) “Hence,.distance_modulus_after_applying._prior:”, dist2mag._rec + 3.44¢0

894  WRITE (2,#) ”+sigma.—sigma:”, d2m_psigma, d2m._msigma

895  WRITE (2,%) "+90-c..-90...:”, d2m_p90, d2m_m90

896 WRITE (2 ,%) "499_...-99...:", d2m_p99, d2m.-m99

897

898  END SUBROUTINE Confidence2

899
900 !
901
902  SUBROUTINE Confidence3

903  USE Global

904  IMPLICIT NONE

905

906  PPD_peak = 0.d0 !
907 DO i = 1, 3001 !
908 IF (M31_to_obj_y(i) .gt. PPD_peak) THEN !

909 PPD_peak = M31_to_obj_y (i) 'Find best fit TRGB value
910 M31_dist.rec = M31_to-obj_x (i) !

911 END IF !

912 END DO !

913

914 dist_counts = 0.d0 ; mcounts = 0.d0 !
915 DO i = MAXLOC(M31_to_obj_y, DIM = 1), 1, -1 !

916 mcounts = mcounts + M31_to_obj.y (i) !

917  END DO !

918 DO i = MAXLOC(M31_to_obj_y, DIM = 1), 1, -1 !

919 dist_counts = dist_.counts + M31_to_obj.y (i) !Finds negative one sigma

920 IF (dist_counts .ge. 0.682smcounts) THEN lerror in M3l to object distance
921 M31.dist_msigma = M31_dist.rec — M31_to_obj_x (i) !

922 exit !

923 END IF !

924 END DO !

925

926 dist_.counts = 0.d0 ; pcounts = 0.d0 !
927 DO i = MAXLOC(M31_to_obj_.y , DIM = 1), 3001 !

928 pcounts = pcounts + M31_to_obj_y(i) !

929  END DO !

930 DO i = MAXLOC(M31_to_obj_y, DIM = 1), 3001 !

931 dist_.counts = dist_counts + M31_to_obj._y (i) !Finds positive one sigma

932 IF (dist_counts .ge. 0.682xpcounts) THEN lerror in M3l to object distance
933 M31_dist_psigma = M31_to_obj_x(i) — M31_dist_rec !

934 exit !

935 END IF !

936 END DO !

937

938  WRITE (2,%) ”.”

939 WRITE (2,%) “Most_Likely_Distance_from.M31:”, M31_dist_rec

940  WRITE (2,%) "+sigma.-sigma_dist+sigma.dist-sigma:”, M31_dist_.psigma, M31_dist_msigma, &

941 M31_dist.rec + M31._dist_psigma, M31_dist.rec — M31_dist_msigma
942 END SUBROUTINE Confidence3
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Program: SatPlot.f95

Creation Date: 17 February 2012 (first version 22 Sep 2011)

Relevant Section: Fig. 10 of Paper II (Ch. 4)

Notes: I wrote this program with the sole objective of producing a three dimensional plot
of the satellite system. The distances and positions on the sky of each satellite are read in
and used to generate a set of M31-centric cartesian coordinates for each satellite. Rotation
matrices are then used to spin the view angle. The use of rotation matrices here is actually
not quite correct as the order of application is not given its due importance. This means that
the operation is a little clumsy but the plots themselves are unaffected. The actual PAndAS
survey area footprint visible in Fig. 10 (c) of Paper II was generated (painstakingly!) for use

in ‘SatDensity_SampCont.f95,” but I added it to this figure for illustration.

MODULE Global !Define all
IMPLICIT NONE ! Variables

INTEGER :: i, j, k, ios, ndata, SAP_ndata, ICP_ndata, v_angle !SAP = Survey Area Point

PARAMETER (ndata = 28)

PARAMETER (SAP_ndata = 135)

REAL :: x(ndata), y(ndata), z(ndata), MWy_to.Obj(ndata), M31_to_Obj(ndata), m31_dist, m31_psig, m3l_msig, x.pro(ndata), y_pro(ndata)
REAL :: SAP_xi(SAP_ndata), SAP_eta(SAP_ndata), SAP_.x(SAP_ndata), SAP_y(SAP_ndata), SAP_theta, MWy_to_.SAP(SAP_ndata)

REAL :: SAPn_x(SAP_ndata), SAPn.y(SAP._ndata), SAPf_x(SAP_ndata), SAPf.y(SAP_ndata), MWy_to.SAPn(SAP_ndata), MWy_to_SAPf(SAP_ndata)
REAL :: ICP_xi(300), ICP_eta(300), ICP_x(300), ICP_.y(300), ICP_theta, MWy_to_.ICP(300)

PARAMETER (m31_dist = 779.e0)

PARAMETER (m31_psig = 0.e0)

PARAMETER (m31.msig = 0.e0)

REAL :: xi(ndata), eta(ndata), theta(ndata), p.sig(ndata), m_sig(ndata), pi, dummy

PARAMETER (pi = ACOS(-1.e0))

REAL :: M31_.to.Obj.psig(ndata), M31_to_Obj_msig(ndata), templ, temp2

CHARACTER :: name(ndata)=20, string=200

REAL :: obj.rot(ndata,3), obj_pro.rot(ndata,3), obj(ndata,5), obj_pro(ndata,3)

REAL :: obj._rotp(ndata.,3), obj_rotm(ndata,h3)

REAL :: SAP_rot(SAP_ndata,3), SAP(SAP_ndata,3), SAPn.rot(SAP.ndata,3), SAPn(SAP_ndata,3), SAPf_rot(SAP_ndata,3), SAPf(SAP_.ndata,h3)
REAL :: ICP_rot(300,3), ICP(300,3)

REAL :: x_.rot(3,3), y-rot(3.,3), z_rot(3,3), rot-mat(3,3), x-axis(3), y-axis(3), z-.axis(3)

REAL :: marker_x(3), marker.y(3), marker.z(3)

REAL :: alpha, beta, gamma

END MODULE Global

PROGRAM SatPlot ! Master program
USE Global
IMPLICIT NONE

CALL GetData
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string = 'M31_neighborhood._xy.ps/CPS’

alpha = 0.e0 = (pi/180.e0)
beta = 0.e0 = (pi/180.¢e0)
gamma = 0.e0 % (pi/180.e0)
v.angle = 1

CALL Rotate

CALL Plot

string = *M31_neighborhood_xz.ps/CPS’

alpha = 90.e0 * (pi/180.e0)
beta = 0.e0 % (pi/180.e0)
gamma = 0.e0 = (pi/180.e0)
v_angle = 2

CALL Rotate

!CALL Plot

string = *M31_neighborhood_yz.ps/CPS’

alpha = 0.e0 = (pi/180.e0)
beta = 270.e0 * (pi/180.¢e0)
gamma = 0.e0 % (pi/180.e0)
v.angle = 3

CALL Rotate

CALL Plot

string = *M31_neighborhood_xyz.ps/CPS’!

alpha = 5.¢0 = (pi/180.¢e0)
beta = 5.e0 % (pi/180.e0)
gamma = 0.e0 = (pi/180.e0)
v_angle = 4

CALL DistancePerspective
CALL Rotate

CALL Plot

END PROGRAM SatPlot

!Remove Effects

!
!
!Plots satellite
!positions on
!xy plane

!

!

!
!
!Plots satellite
!'positions on
!'xz plane

!

!

!
|
!Plots satellite
!positions on
!yz plane

!

!

|
|
!Plots

lin 3D.

!

satellite positions

of distance on x/y positions of

satellites

SUBROUTINE GetData
USE Global
IMPLICIT NONE

!Get data :)

OPEN (unit = 1,

i =0; ios =0

DO WHILE (.TRUE.) !Reads data until
i =i+l
READ (1, =, IOSTAT = ios) xi(i),

if (ios == 0) then ;

else if (ios == —1) then
i=i-1
exit ;

else if (ios > 0) then ;

i=i-1
cycle
end if

END DO

DO i = 1, ndata-1

file = *./SatStats.dat’,

end of input

eta(i),

status = ’old’)

file and puts it into

theta (i), Mwy_to.Obj(i),

arrays

p-sig (i), m-sig(i), name(i)
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xi(i) = xi(i) = (pi/180.e0)
eta(i) = eta(i) = (pi/180.e0)
theta (i) = theta(i) = (pi/180.e0)

!Convert angles from degrees to radians

x(i) = ABS(MWy_to_Obj(i) % cos(theta(i)) * tan(xi(i))) !Determine length of x vector for each

IF (xi(i) .1t. 0.e0) THEN
x(i) = —=1.e0 % x(i)
END IF

y(i) = ABS(MWy_to_Obj(i) = sin(eta(i)))
IF (eta(i) .lt. 0.e0) THEN

y(i) = —1l.e0 * y(i)
END IF

!Determine if x

satellite

is positive or negative

!Determine length of y vector for each

!Determine if y

satellite

is positive or negative

z(i) = MWy_to.Obj(i) = cos(theta(i)) — m31_dist !Determine length and sign of z vector

M31_t0_0bj(i) = (((x(i)) #* 2.e0) + ((y(i)) #x 2.e0) + ((z(i)) % 2.e0)) #x

0.5e0 !Determine distance between M31 and satellite

templ = ((2.e0 * MWy_to_obj(i)) — 2.e0 * m31._dist % cos(theta(i))) #x 2.e0 / &
( (MWy_to_Obj(i) =% 2.e0) + (m31_dist #x 2.e0) — (2.e0 * MWy_to.Obj(i) * m31_dist * cos(theta(i))) )
temp2 = ((2.e0 * m31.dist) — 2.e0 = MWy_to_obj(i) * cos(theta(i))) #* 2.e0 / &
( (MWy_to_Obj(i) =% 2.e0) + (m31_dist *x 2.e0) — (2.e0 * MWy_to.Obj(i) * m31_dist * cos(theta(i))) )

M31_to_Obj_psig(i) = SQRT((templ) =* (p-sig(i) =x 2.e0) + (temp2) * (12.e0 =x 2.e0))
M31_to.Obj.msig(i) = SQRT((templ) * (m_sig(i) *x 2.e0) + (temp2) * (11.e0 *x 2.e0))

WRITE (*,%) name(i)

WRITE (=, ’(6F16.5)") x(i), y(i), z(i), M31_to_Obj(i) .

END DO

For Survey Border

!'Write x,y and z components of M3I-to—satellite

M31_to.Obj_psig(i), M31_to_Obj_msig (i)

OPEN (unit = 2, file = *../SurveyArea/Border_Coords_XiEta.dat’, status = ’old’)

=0 ; ios =0

DO WHILE (.TRUE.) !Reads data until end of

i= i+l

READ (2, #, IOSTAT = ios) SAP.xi(i), SAP.

if (ios == 0) then ;

else if (ios == —1) then ;
i=i-1
exit

else if (ios > 0) then ;
i=i-1
cycle

end if

END DO

DO i = 1, SAP_ndata

SAP_xi(i) = SAP.xi(i) * (pi/180.e0)
SAP_eta(i) = SAP_eta(i) * (pi/180.e0)

input file and puts it into arrays

eta(i) !SAP = Survey Area Point

!

!'Convert

SAP_theta = SQRT(SAP_xi(i)#+2.e0 + SAP_ eta(i)+%2.e0) = (pi/180.e0) !

MWy_to.SAP(i) = m31.dist / cos(SAP_theta)

!Determine Survey Area Point

SAP.x(i) = ABS(MWy_to.SAP(i) * cos(SAP_theta) * tan(SAP_xi(i))) !Determine

IF (SAP_xi(i) .l1t. 0.¢0) THEN
SAPx(i) = —1.e0 % SAPx(i)

angles from degrees

Distance assuming plane at

length of x vector

!'Area Point, assuming plane at

!Determine

if x is positive or

separation vector

!magnitude and

to

distance

radians

for each Survey

of M31

negative

along with vector

uncertainties

distance of M3l
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END IF

SAP_.y(i) = ABS(MWy_to.SAP(i) * sin(SAP_eta(i)))
IF (SAP_eta(i) .1t. 0.e0) THEN

SAP_y(i) = —1.e0 = SAP_y(i)
END IF

MWy_to_SAPn(i) = (m31_dist + z(12)) / cos(SAP_theta)

!Determine length of y vector for each Survey

!'Area Point,
!Determine if

!

SAPn_x(i) = ABS(MWy_to_.SAPn(i) * cos(SAP_theta) * tan(SAP.xi(i))) !Determine

IF (SAP.xi(i) .l1t. 0.e0) THEN
SAPn_x(i) = —1.e0 %= SAPn.x(i)
END IF

SAPn_y(i) = ABS(MWy_to_.SAPn(i) * sin(SAP_eta(i)))

IF (SAP_eta(i) .1t. 0.¢0) THEN
SAPn_y(i) = —1.e0  SAPn_y(i)
END IF

MWy_to_SAPf(i) = (m31_dist + z(23)) / cos(SAP_theta)

!'Area Point,

!Determine

!

!Determine
!'Area Point
!Determine

!

!Determine Survey Area Point

SAPf.x(i) = ABS(MWy_to.SAPf(i) * cos(SAP_theta) * tan(SAP_xi(i))) !Determine

IF (SAP.xi(i) .1t. 0.e0) THEN
SAPf.x(i) = —1.e0 = SAPf.x(i)
END IF

assuming plane at distance of M3l

y is positive or negative

!Determine Survey Area Point Distance assuming

length of x vector for

plane at

each Survey

if x is positive or negative

length of y vector for each Survey

assuming plane at distance of ANDXVI

, assuming plane at distance of ANDXVI

if y is positive or negative

Distance assuming plane at

length of x vector for each Survey

distance of

!Area Point, assuming plane at distance of ANDXVIII

!Determine

!

SAPf.y (i) = ABS(MWy_to_.SAPf(i) * sin(SAP.eta(i))) !Determine
IF (SAP_eta(i) .1t. 0.e0) THEN !'Area Point
SAPf.y(i) = —1l.e0 = SAPf.y(i) !Determine
END IF |
END DO
! For Inner CutOff Ellipse
OPEN (unit = 3, file = *../SurveyArea/M31CutOffEllipse.dat’, status = ’old’)

i =0 ios =0
DO WHILE (.TRUE.) !Reads data until end of input
i= i+l

READ (3, =, IOSTAT = ios) ICP_xi(i), ICP_eta(i)

if (ios == 0) then ;
else if (ios == —1) then
i=i-1
exit ;

else if (ios > 0) then ;

END DO

ICP_ndata = i

DO i = I, ICP_ndata

ICP_xi(i) = ICP_xi(i) * (pi/180.¢e0)
ICP_eta(i) = ICP_eta(i) * (pi/180.¢0)

file and puts it into arrays

!'ICP = Inner Cut

!

if x is positive or negative

length of y vector for each Survey

of ANDXVIII

, assuming plane at distance

if y is positive or negative

—Off Point

!Convert angles from degrees to radians

ICP_theta = SQRT(ICP_xi(i)*+2.e0 + ICP_eta(i)+%2.e0) * (pi/180.e0) !

MWy_to ICP(i) = m31.dist / cos(ICP_theta)

!Determine

Inner Cut—Off Point

Distance assuming plane

at

distance

of M3l

distance of ANDXVI

ANDXVIIT



223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

276
271
278
279
280
281
282
283

229

ICP_x(i) = ABS(MWy_to_ICP(i) * cos(ICP_theta) * tan(ICP_xi(i)))

IF (ICP_xi(i) .1t. 0.e0) THEN
ICP_x(i) = —l.e0 » ICP.x(i)
END IF

ICP_y(i) = ABS(MWy_to_ICP(i)
IF (ICP_eta(i) .lt. 0.e0) THEN
ICP_y(i) = —l.e0 » ICP_y(i)
END IF
END DO

sin (ICP_eta(i)))

CLOSE( 1)
CLOSE(2)
CLOSE (3)

END SUBROUTINE GetData

!Determine
! Cut-Off Point,
!Determine if x is

!

!Determine
! Cut—-Off Point,
!Determine if y is

!

length of x vector
assuming plane at

positive or

length of y vector
assuming plane at

positive or

each Inner

distance of M3l

for

negative

for each Inner

distance of M3l

negative

SUBROUTINE DistancePerspective
USE Global

! This
't

subroutine is for removing

scales x and y positions of

satellites

the effects of perspective on

relative to

the

the 3D view.

closest satellite

IMPLICIT NONE !'(And XVI) to preserve the on sky view of the satellites.

DO i = 1, ndata
x(i) = x(i) * ((m31.dist + z(12))/ (m31_dist + z(i)))
y(i) = y(i) = ((m31_dist + z(12))/ (m31_dist + z(i)))

END DO

DO i = 1, SAP_ndata
SAP.x(i) = SAPx(i) * ((m31_dist + z(12))/ m31_dist) !PAndAS survey border at distance of M3l
SAP_.y(i) = SAP.y(i) * ((m31l_dist + z(12))/ m31_dist) !
SAPn_x(i) = SAPn.x(i) = ((m31.dist + z(12))/ (m31_.dist + z(12))) !PAndAS survey border at distance of And XVI
SAPn_y(i) = SAPn.y(i) = ((m31.dist + z(12))/ (m31_dist + z(12))) !(And XVI is the nearest satellite)
SAPfx(i) = SAPfx(i) % ((m3l_.dist + z(12))/ (m31.dist + z(23))) !PAndAS survey border at distance of And XXVII
SAPf.y(i) = SAPf_y(i) % ((m31_.dist + z(12))/ (m31.dist + z(23))) !(And XXVII is the furthest satellite)

END DO

DO i = 1, ICP_ndata
ICP_x(i) = ICP_x(i) = ((m31.dist + z(12))/ m31.dist) !Inner cutoff ellipse at
ICP_y (i) = ICP.y(i) = ((m31_dist + z(12))/ m31_dist) !distance to M3Il.

END DO

END SUBROUTINE DistancePerspective

|

SUBROUTINE Rotate !Uses rotation matrices to shift

USE Global I'the position on screen of the

IMPLICIT NONE !'satellites based on the viewing angle

x_axis (1) = MAXVAL(abs(x)) x-.axis(2) = 0.e0 ; x-.axis(3) = 0.e0 !Generate coordinates of

y-axis(l) = 0.e0 ; y_axis(2) = MAXVAL(abs(y)) : y-axis(3) = 0.e0 !the positive ends of the

z_axis (1) = 0.e0 z_axis (2) = 0.e0 z_axis (3) = MAXVAL(abs(z)) !x, y and z axes

marker_x (1) = 100.e0 ; marker-x(2) = 0.e0 ; marker_x(3) = 0.e0 ! Generate coordinates of

marker_y (1) = 0.e0 ; marker.y(2) = 100.e0 : marker_.y(3) = 0.e0 !'the positive 100 kpc

marker-z (1) = 0.e0 ; marker-z(2) = 0.e0 ; marker-z(3) = 100.e0 laxis markers

x-rot(1,1) = 1.e0 !
0.e0 !
0.e0 !

x-rot(2,1) =
x-rot(3,1) =
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284  x.rot(1,2) = 0.e0 !
285 x-rot(2,2) = cos(alpha) !Rotation matrix for adjusting yaw — angle alpha
286 x_rot(3,2) = —1.e0 * sin(alpha) !
287 x-rot(1,3) = 0.e0 !
288 x-rot(2,3) = sin(alpha) !
289 x-rot(3.,3) = cos(alpha) !

291 y_rot(l,l) = cos(beta) !
292 y-rot(2,1) = 0.e0 !
293 y-rot(3,1) = sin(beta) !
294 y-rot(l1,2) = 0.e0 !

295 y-rot(2,2) = 1.e0 !Rotation matrix for adjusting pitch — angle beta
296 y-rot(3.,2) = 0.e0 !
297 y-rot(1,3) = —1.e0 % sin(beta) !

298 y-rot(2,3) = 0.e0 !
299 y-rot(3,3) = cos(beta) !
300

301 z_rot(1,1) = cos(gamma) !
302 z_rot(2,1) = —1.e0 * sin(gamma) !
303 z_-rot(3,1) = 0.e0 !
304 z_rot(1,2) = sin(gamma) !
305 z-rot(2,2) = cos(gamma) !Rotation matrix for adjusting roll — angle gamma
306 z_rot(3,2) = 0.e0 !
307 z_rot(1,3) = 0.e0 !
308 z_rot(2,3) = 0.e0 !
309 z_rot(3.,3) = 1.e0 !

310

311 rot-mat = MATMUL( x_rot , y_rot) !Generate rotation matrix to adjust object coordinates

312 rot-mat = MATMUL(rot-mat, z_-rot) !for the chosen combination of yaw, pitch and roll

313

314 x.axis = MATMUL(rot_mat, Xx_axis) !

315 y-axis = MATMUL(rot-mat, y_-axis) !Convert coordinates of positive ends of axes for new view angle
316 z_axis = MATMUL(rot_mat, z_axis) !

317

318 marker_.x = MATMUL(rot_mat, marker_x)
319 marker_.y = MATMUL(rot-mat, marker.y)
320 marker_z = MATMUL(rot_-mat , marker_z)

321

322 DO i = 1, ndata

323 obj(i,1) = x(i) !

324 obj(i,2) = y(i) !Convert object coordinates
325 obj(i,3) = z(i) !for new viewing angle

326 obj(i,4) = z(i) + p-sig(i) !For error

327 obj(i,5) = z(i) — m_sig(i) !'bars

328 obj.rot(i,:) = MAIMUL(rot-mat, obj(i,(/ 1,2,3 /))) !

329 obj.rotp (i,:) = MAIMUL(rot.mat, obj(i,(/ 1,2,4 /))) !

330 obj.rotm(i.,:) = MAIMUL(rot_mat, obj(i.(/ 1.,2,5 /))) !

331

332 obj_pro(i,l) = x(i) !

333 obj_pro(i,2) = y(i) !'Convert z = 0 projection of object coordinates
334 obj-pro(i,3) = 0.e0 !for new viewing angle to form other end of plotted z vector
335 obj_pro_rot(i,:) = MATMUL(rot-mat, obj.pro(i,:)) !

336 END DO

337

333 DO i = 1, SAP_ndata

339 SAP(i,1) = SAP.x(i) !

340 SAP(i,2) = SAP.y(i) !'Convert SAP coordinates
341 SAP(i,3) = 0.¢0 !for new viewing angle
342 SAP_rot(i,:) = MATMUL(rot-mat , SAP(i,:)) !

343

344 SAPn(i.1) = SAPn.x(i) !
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SAPn(i,2) = SAPn_y(i) !'Convert SAPn coordinates
SAPn(i,3) = z(12) !for new viewing angle
SAPn_rot(i,:) = MATMUL(rot.mat , SAPn(i,:)) !
SAPf(i,1) = SAPf_x(i) !
SAPf(i,2) = SAPf_y(i) !'Convert SAPf coordinates
SAPf(i,3) = z(23) !for new viewing angle
SAPf_rot(i,:) = MATMUL(rot.mat , SAPf(i,:)) !

END DO

DO i = 1, ICP_ndata
ICP(i.1) = ICP_x(i) !
ICP(i,2) = ICP.y (i) !'Convert ICP coordinates
ICP(i,3) = 0.e0 !for new viewing angle
ICP_rot(i,:) = MATMUL(rot_.mat , ICP(i,:)) !

END DO

END SUBROUTINE Rotate

|

SUBROUTINE Plot !Plot the satellites for chosen view angle

USE Global
IMPLICIT NONE

CALL pgbegin (0, TRIM(ADJUSTL( string)) .1.1)

IF (v.angle .eq. 1 .or.

CALL pgenv (1.1%(MAXVAL(ABS(obj-rot(:,1)))),
—1.1%(MAXVAL(ABS(obj_rot(:,2)))),

ELSE IF (v_angle .eq. 3) THEN

CALL pgenv (1.1%(MINVAL(obj_rot(:,1))),
1.1%(MINVAL(SAPf_rot(:,2))),

v_angle .eq.

ELSE

CALL pgenv (1.1*(MAXVAL(ABS(SAP_rot(:,1)))),
—1.1+(MAXVAL(ABS(SAP_rot (:,2)))),

END IF

CALL pgline (2,
CALL pgline (2,
CALL pgline (2,

(/x-axis (1),
(/y-axis (1),
(/z-axis (1),

—1.e0 * x_axis(1)/),
—1.e0 *

—1.e0 * z_axis(1)/), (/z-axis(2), -1.e0 * z_axis(2)/))

IF (v.angle .eq. 1) THEN !

CALL pgptxt(x.axis(l) — 5., x_axis(2) - 10., 0., 0.5, ’x7) !

CALL pgptxt(y-axis(l) — 10., y-axis(2) — 5., 0., 0.5, "y") !

END IF !

IF (v_angle .eq. 3) THEN !Print x, y and z
CALL pgptxt(y-axis(l) — 10., y.axis(2) - 10., 0., 0.5, ’y’) !

CALL pgptxt(z_axis(l) — 10., z_axis(2) — 15., 0., 0.5, "z") lat the positive ends
END IF !

IF (v_angle .eq. 4) THEN !their respective axes
CALL pgptxt(x-axis(1) — 5., x-axis(2) - 5., 0., 0.5, ’x’) !

CALL pgptxt(y-axis(l) - 5., y.axis(2) = 5., 0., 0.5, 'y’) !

CALL pgptxt(z-axis(l) — 5., z.axis(2) — 5., 0., 0.5, ’z’) !

END IF !

IF (v.angle .ne. 4) THEN

CALL pgpt(1,marker_x (1), marker-x(2), 0612) !

CALL pgpt(l,-1.e0 * marker-x(1), —1.e0 % marker-x(2), 0612) !

CALL pgpt(l,marker_y (1), marker_.y(2), 0590) !
CALL pgpt(l,-1.e0 * marker.y(l), —1.e0 % marker-y(2), 0590) !

2) THEN !
—1.1x(MAXVAL(ABS(obj-rot(:,1)))), & !Set frame limits
1.1%(MAXVAL(ABS(obj_rot (:,2)))), 1, 0) !

!
1.1%(MAXVAL(ABS(obj-rot(:,1)))), & !and parameters for
1.1%(MAXVAL(SAPf_rot(:,2))), 1, 0) !

!

—1.1%x(MAXVAL(ABS(SAP_rot(:,1)))), & !various viewing angles
1.1%(MAXVAL(ABS(SAP_rot(:,2)))), 1, -1) !

1

(/x-axis(2), -1.e0 * x_axis(2)/)) !Draw lines from positive
y-axis(1)/), (/y-axis(2), —-1.e0 = y_axis(2)/)) tend to negative end of

!x, y and z axes

of
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406 END IF !

407 IF (v.angle .eq. 2) THEN !Plot
408  CALL pgpt(l,marker_z(1), marker_z(2), 0590) !

409 CALL pgpt(l,—1.e0 * marker-z(1), —-1.e0 % marker-z(2), 0590) ! Markers
410  ELSE !

411 CALL pgpt(l,marker_z (1), marker-z(2), 0612) !
412 CALL pgpt(l,—-1.e0 * marker-z(1), —1.e0 % marker-z(2), 0612) !

413 END IF !

414

415  CALL PGSCH(0.75)

416

417 DO i =1, 24 !For satellites with prefix *And’

418 CALL pgslw (2)

419 CALL pgsci(2)

420 CALL pgline(2, (/obj_pro_.rot(i,l), obj_rot(i,l)/), (/obj_pro_rot(i,2), obj_rot(i,2)/)) !Draw z vector of object for
421 CALL pgslw (15) !chosen view angle
422 CALL pgpt(l, obj_rot(i,l), obj_rot(i,2), —-1) !Draw large dot at the end of the z vector

423 CALL pgslw (2)

424 CALL pgsci(2)

425 END DO

426

427 CALL pgslw (8)
428  CALL pgsci(3)

429

430 DO i = 25, 26 !For NGCI147 and NGC185

431 CALL pgslw (2)

432 CALL pgsci(3)

433 CALL pgline (2, (/obj.-pro_rot(i,l), obj_rot(i,1)/), (/obj_pro_rot(i,2), obj_rot(i,2)/)) !Draw z vector of object for
434 CALL pgslw (20) !chosen view angle
435 CALL pgpt(l, obj.rot(i,l), obj_rot(i,2), —1) !Draw large dot at the end of the z vector

436 CALL pgslw (2)

437 CALL pgsci(3)

438 END DO

439

440 DO i = 27, 27 !For M33

441 CALL pgslw (2)

442 CALL pgsci(4)

443 CALL pgline(2, (/obj-pro-rot(i,l), obj_rot(i,l)/), (/obj_pro_rot(i.,2), obj_rot(i,2)/)) !Draw z vector of object for
444 CALL pgslw (30) !chosen view angle
445 CALL pgpt(l, obj_rot(i,l), obj_rot(i.,2), —-1) !Draw large dot at the end of the z vector

446 CALL pgslw (2)

447 CALL pgsci(4)

448 END DO

449

450 IF (v.angle .eq. 4) THEN !
451 DO i =1, 27 !

452 CALL pgslw (2) !
453 CALL pgsci(l) !Plot square on survey plane
454 CALL pgpt(l, obj_pro_rot(i,l), obj_pro_rot(i,2), 0254) !

455 END DO !

456  END IF !

457

458  CALL pgslw (30)

459  CALL pgsci(4)

460  CALL pgpoint (1, 0., 0., -1) !Plot large dot at origin for M3l

461  CALL pgslw (2)

462  CALL pgsci(4)

463

464 IF (v.angle .eq. 4) THEN !Plot Survey Area and Inner Cut—Off Ellipse on plane at M3l distance
465

466  CALL pgsci(1)
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DO i = 2, SAP.ndata — 1
CALL pgline (2, (/SAP_rot(i-1,1), SAP_rot(i,1)/), (/SAP_rot(i-1,2), SAP_rot(i,2)/))
END DO
CALL pgline (2, (/SAP_rot(SAP_ndata—1,1), SAP_rot(1,1)/), (/SAP_rot(SAP_ndata—1,2), SAP_rot(1,2)/))

DO i = 2, ICP_ndata — 1
CALL pgline (2, (/ICP_rot(i-1,1), ICP_rot(i,l1)/), (/ICP_rot(i—-1,2), ICP_rot(i,2)/))
END DO
CALL pgline (2, (/ICP_rot(ICP_ndata—-1,1), ICP_rot(1,1)/), (/ICP_rot(ICP._ndata—-1,2), ICP_rot(1,2)/))

END IF

IF (v.angle .eq. 3) THEN !Plot Survey Area on planes at And XVI and And XXVII distances

CALL pgsci(l)

DO i = 2, SAP.ndata — 1
CALL pgline (2, (/SAPn_rot(i—-1,1), SAPn_rot(i,1)/), (/SAPn_rot(i-1,2), SAPn_rot(i,2)/))
END DO
CALL pgline (2, (/SAPn_rot(SAP_ndata—1,1), SAPn_rot(1,1)/), (/SAPn_rot(SAP_ndata—-1,2), SAPn_rot(1,2)/))

DO i = 2, SAP._ndata — 1
CALL pgline (2, (/SAPf_rot(i—1,1), SAPf_rot(i,l1)/), (/SAPf_rot(i-1,2), SAPf_rot(i,2)/))
END DO
CALL pgline (2, (/SAPf_rot(SAP_ndata—1,1), SAPf_rot(1,1)/), (/SAPf_rot(SAP_ndata—-1,2), SAPf_rot(1,2)/))

!'|| Plot lines from the top of the two survey areas

!\/ to the bottom of the two survey areas.

CALL pgline (2, (/MAXVAL(SAPn_rot(:,1)), MAXVAL(SAPf_rot(:,1))/), (/MAXVAL(SAPn_rot(:,2)), MAXVAL(SAPf_rot(:,2))/))
CALL pgline (2, (/MINVAL(SAPn_rot(:,1)), MINVAL(SAPf_rot(:.1))/). (/MINVAL(SAPn_rot(:,2)), MINVAL(SAPf_rot(:.2))/))

END IF

! Print Satellite Labels

IF (v.angle .eq. 1) THEN !Prints satellite labels for xy plane view
CALL pgsci(l)

CALL pgptxt(obj_pro_rot(l,1) +
CALL pgptxt(obj_pro_rot(2,1) +
CALL pgptxt(obj_pro_rot(3,1) —
CALL pgptxt(obj_pro_rot(4,1) —

, obj_pro_rot(1,2), 0., 0.5, "I")

, obj_pro_rot(2.,2), 0., 0.5, "II")

, obj.pro.rot(3.,2), 0., 0.5, "III")
obj_pro.rot(4.,2) —-4., 0., 0.5, 'V")

, obj.pro.rot(5.,2), 0., 0.5, "IX")
obj_pro_rot(6,2), 0., 0.5, 'X")

CALL pgptxt(obj-_pro_rot(7,1) + , obj.pro.rot(7.2), 0., 0.5, "XI")

CALL pgptxt(obj_pro_rot(8,1) — obj_pro.rot(8,2) - 12., 0., 0.5, *XII")
CALL pgptxt(obj_pro_rot(9.,1) + 11., obj_pro_rot(9.2), 0., 0.5, *XIII")

CALL pgptxt(obj_pro_rot(10,1) + 11., obj_pro.rot(10,2), 0., 0.5, *XIV’")

CALL pgptxt(obj_pro_rot(l1,1) — 9., obj_pro_rot(11,2), 0., 0.5, *XV")

CALL pgptxt(obj_pro_rot(12,1) + 12., obj_pro-rot(12,2), 0., 0.5, *XVI")

CALL pgptxt(obj_pro_rot(13,1) = 12., obj_pro_rot(13,2) = 3., 0., 0.5, *XVII")
CALL pgptxt(obj-pro_rot(14,1), obj-pro-rot(14,2) — 11., 0., 0.5, *XVIII")
CALL pgptxt(obj_pro_rot(15,1) + 12., obj_pro_rot(15,2), 0., 0.5, *XIX")

CALL pgptxt(obj_pro-rot(16,1), obj-pro.rot(16.,2) + 6., 0., 0.5, 'XX")

CALL pgptxt(obj_pro_rot(17,1) + 14., obj_pro.rot(17.,2) — 5., 0., 0.5, "XXI")
CALL pgptxt(obj_pro_rot(18,1) — 13., obj_pro_rot(18.,2) — 2., 0., 0.5, *XXII")
CALL pgptxt(obj-_pro_rot(19,1) — 14., obj_pro-rot(19,2), 0., 0.5, *XXIII")
CALL pgptxt(obj_pro_rot(20,1) + 5., obj_pro_rot(20,2) — 13., 0., 0.5, *XXIV")
CALL pgptxt(obj-_pro_rot(21,1) — 14., obj_pro-rot(21,2) — 2., 0., 0.5, "XXV")
CALL pgptxt(obj_pro_rot(22,1) —= 15., obj_pro_rot(22,2) - 3., 0., 0.5, *XXVI")
!CALL pgptxt(obj_pro_rot(23,1) — 16., obj_pro_-rot(23,2) — 10., 0., 0.5, *XXVII’) !Hidden behind NGC147

CALL pgptxt(obj_pro_rot(5,1) +
CALL pgptxt(obj_pro_rot(6,1) +

O ® o o ®w O 3 =
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CALL pgptxt(obj_pro_rot(24,1) — 0., obj_pro_rot(24.,2) + 5., 0., 0.5, 'XXX")
CALL pgptxt(obj_pro_rot(25,1) — 23., obj_pro-rot(25,2) + 7., 0., 0.5, 'NGCl147")
CALL pgptxt(obj_pro_rot(26,1) + 28., obj_pro_rot(26,2) — 4., 0., 0.5, 'NGCI85")
CALL pgptxt(obj_pro_rot(27,1) — 7., obj-pro-rot(27,2) — 18., 0., 0.5, "M33")
CALL pgptxt(obj_pro_rot(28,1) — 15., obj_pro_rot(28,2) — 15., 0., 0.5, 'M31")
END IF

IF (v_angle .eq. 3) THEN !Prints satellite labels for yz plane view

CALL pgsci(l)

CALL pgptxt(1.2 % (obj_rot(1,1)), obj_rot(1,2) - 5., 0., 0.5, 'I")

CALL pgptxt(0.8 % (obj.rot(2,1)), obj.rot(2,2) — 15., 0., 0.5, "II")

CALL pgptxt(0.5 % (obj.rot(3,1)), obj_rot(3,2) + 3., 0., 0.5, "III")

CALL pgptxt(1.23 % (obj-rot(4,1)), obj-rot(4,2) — 4., 0., 0.5, 'V")

CALL pgptxt(1.08 = (obj-rot(5,1)), obj-rot(5,2) - 3., 0., 0.5, "IX")

CALL pgptxt(l.1 % (obj_rot(6,1)), obj_rot(6,2) — 2., 0., 0.5, 'X")

CALL pgptxt(0.5 % (obj.rot(7,1)), obj-rot(7,2) + 2., 0., 0.5, XI")

CALL pgptxt(0.5 % (obj_rot(8,1)), obj_rot(8,2) — 15., 0., 0.5, "XII")

CALL pgptxt(0.5 % (obj.rot(9,1)), obj.rot(9,2) - 15., 0., 0.5, *XIII")
CALL pgptxt(7.0 % (obj.rot(10,1)), obj.rot(10,2) — 3., 0., 0.5, *XIV")
CALL pgptxt(0.75 % (obj-rot(l1,1)), obj.rot(11,2) + 2., 0., 0.5, 'XV")
CALL pgptxt(0.85 % (obj.rot(12,1)), obj_rot(12,2) + 2., 0., 0.5, *XVI")
CALL pgptxt(1.35 % (obj-rot(13,1)), obj.rot(13,2) — 10., 0., 0.5, "XVII")
CALL pgptxt(0.95 x (obj-rot(14,1)), obj.rot(14,2) — 12., 0., 0.5, "XVIII")
CALL pgptxt(1.6 % (obj_rot(15,1)), obj_rot(15,2), 0., 0.5, 'XIX")

CALL pgptxt(0.5 % (obj-rot(16,1)), obj-rot(16,2), 0., 0.5, 'XX")

CALL pgptxt(l.4 % (obj_rot(17,1)), obj.rot(17,2) — 3., 0., 0.5, *XXI")
CALL pgptxt(0.5 % (obj.rot(18,1)), obj.rot(18,2) — 15., 0., 0.5, *XXII")
CALL pgptxt(0.5 % (obj_rot(19,1)), obj_rot(19,2) + 2., 0., 0.5, *XXIII")
CALL pgptxt(0.75 % (obj-rot(20,1)), obj.rot(20,2) - 15., 0., 0.5, "XXIV")
CALL pgptxt(0.45 % (obj.rot(21,1)), obj.rot(21,2) = 12., 0., 0.5, "XXV’)
CALL pgptxt(0.75 % (obj_rot(22,1)), obj_rot(22,2) + 2., 0., 0.5, *XXVI")
CALL pgptxt(0.95 % (obj-rot(23,1)), obj-rot(23,2) + 3., 0., 0.5, *XXVII")
CALL pgptxt(0.5 % (obj_rot(24,1)), obj_rot(24,2) + 4., 0., 0.5, *XXX")
CALL pgptxt(1.5 % (obj.rot(25,1)), obj.rot(25,2) — 4., 0., 0.5, 'NGC.147")
CALL pgptxt(0.75 * (obj.rot(26,1)), obj.rot(26,2) — 15., 0., 0.5, 'NGCI8")
CALL pgptxt(3.0 % (obj.rot(27,1)), obj.rot(27,2) — 2., 0., 0.5, 'M33")
CALL pgptxt(0.5 % (obj.rot(28,1)) + 30., obj_rot(28,2) - 20., 0., 0.5, 'M31")
END IF

IF (v_angle .eq. 4) THEN !Prints satellite labels for 3D view

CALL pgsci(l)

CALL pgptxt(obj_pro_rot(l,1) + 5., obj_pro_rot(1,2), 0., 0.5, ")

CALL pgptxt(obj-pro_rot(2,1) + 5., obj-pro-rot(2,2), 0., 0.5, °II")

CALL pgptxt(obj_pro_rot(3,1) — 7., obj_pro.rot(3,2), 0., 0.5, "IIl")

CALL pgptxt(obj-pro_rot(4,1) — 6., obj-pro-rot(4,2) -2., 0., 0.5, V")
CALL pgptxt(obj-_pro_rot(5,1) + 6., obj_pro_rot(5,2), 0., 0.5, "IX")

CALL pgptxt(obj_pro_rot(6,1) + 6., obj_pro_rot(6.2), 0., 0.5, 'X")

CALL pgptxt(obj-pro_rot(7,1), obj-pro_-rot(7,2) — 8., 0., 0.5, "XI")

CALL pgptxt(obj_pro_rot(8,1) + 6., obj_pro_rot(8.,2), 0., 0.5, *XII")

CALL pgptxt(obj_pro_rot(9,1) + 8., obj-pro-rot(9,2), 0., 0.5, *XIII")

CALL pgptxt(obj_pro_rot(10,1) = 6., obj_pro_rot(10,2), 0 0.5, "XIV")
CALL pgptxt(obj-_pro_rot(l1,1) — 7., obj-pro-rot(11,2), 0., 0.5, 'XV")

CALL pgptxt(obj_pro_rot(12,1) + 8., obj_pro_rot(12,2), 0., 0.5, *XVI")
CALL pgptxt(obj-pro-rot(13.,1) — 9., obj-pro.rot(13.,2), 0., 0.5, *XVII")
CALL pgptxt(obj_pro_rot(14,1), obj_pro_rot(14,2) — 8., 0., 0.5, *XVIII")
CALL pgptxt(obj_pro_rot(15,1) + 8., obj_pro_rot(15,2), 0., 0.5, XIX")
CALL pgptxt(obj_pro_rot(16,1), obj-pro_rot(16,2) + 4., 0., 0.5, "XX")

CALL pgptxt(obj_pro_rot(17,1) + 9., obj_pro_rot(17,2) — 2., 0., 0.5, *XXI")
CALL pgptxt(obj-pro_rot(I18,1) + 9., obj_pro-rot(18,2) +1., 0., 0.5, *XXII")
CALL pgptxt(obj_pro_rot(19,1) = 9., obj_pro_rot(19,2), 0., 0.5, *XXIII")
CALL pgptxt(obj-pro-rot(20,1) + 6., obj-pro.rot(20,2) -8., 0., 0.5, 'XXIV’)
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CALL pgptxt(obj_pro_rot(21,1) — 9., obj_pro_rot(21,2) — 2., 0.,

CALL pgptxt(obj-_pro_rot(22,1) — 10., obj_pro.rot(22,2) — 2., 0.,
CALL pgptxt(obj_pro_rot(23,1) — 11., obj_pro_rot(23,2) - 2., 0.,
CALL pgptxt(obj-_pro_rot(24,1) — 7., obj_pro-rot(24,2) + 2., 0.,

CALL pgptxt(obj_pro_rot(25,1) — 8., obj_pro_rot(25.,2) + 4., 0.,

CALL pgptxt(obj-pro-rot(26,1) + 18., obj-pro.rot(26,2) — 4., 0.,
CALL pgptxt(obj-_pro_rot(27,1), obj_pro_-rot(27,2) — 8., 0., 0.5,

CALL pgptxt(obj_pro_rot(28.,1) — 7., obj_pro_rot(28.,2) — 8., 0.,

END IF

! END Satellite Labels

CALL pgslw (2)

CALL pgsci(l)

CALL PGSCH(1.0)

IF (v_angle .eq. 1 .or. v_angle .eq. 2 .or. v_angle .eq. 3) THEN

CALL pglab( kpe’, “kpe’, ’7)
END IF

CALL pgend

END SUBROUTINE PLOT

0.5, "XXV’)
0.5, "XXVI')
0.5, *XXVII')
0.5, "XXX’)
0.5, 'NGCI47")
0.5, 'NGCI85")
"M337)

0.5, "M31’)

laxis labels
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Program: SatDensity_SampCont.f95

Creation Date: 20 Feb 2012

Relevant Section: §4.3 of Paper II (Ch. 4)

Notes: The analysis presented in §4.3 of Paper II concerning the density profile of the M31
halo was carried out using this program. It fits a spherically-symmetric unbroken power
law to the satellite density profile, taking into account the uneven coverage of the PAndAS
survey area. One of the most difficult tasks here was to actually generate the PAndAS survey
polygon from the field centers specified by Mike Irwin (Institute of Astronomy, University
of Cambridge) and this took me two days to complete. Using this polygon as the outer
boundary, and using the inner cutoff ellipse around the M31 disk, it is possible to determine
how much volume at each radius (i.e. distance from M31) would fall inside the utilized
survey region. The resulting function can then be used to weight the density profile so that
we can obtain an unbiased measure of the slope of the power law for the desired sample of
satellites. Note that the program can perform the analysis using either the best-fit distances
alone or the full distance distributions for each satellite. The code presented here is as applied
to the whole satellite sample but desired satellites can be omitted from the sample by skipping

over them in the ‘MaxLike’ subroutine.

MODULE Global !Define all
IMPLICIT NONE !variables

INTEGER :: i, j, h, n, nn, k_ndata

REAL :: Sat_Rad(27), alpha, alpha_hold(600), ML_logL(600), Rel_ML_logL (600), norm_fac
REAL :: k.vs_alpha(601.,2), k(600)

REAL :: alpha_counts, alpha_psigma, alpha.msigma, pcounts, mcounts

DOUBLE PRECISION :: av_ML_logL

!'|| For sampled distributions

1\/ with MOMC

INTEGER :: nit, it, nsamples, ndata.max, ios, idum = -9999

PARAMETER (nit = 3000000)

PARAMETER (nsamples = 10000)

PARAMETER (ndata-max = 3000000)

INTEGER :: time(ndata_.max)

REAL :: Sat_Radii(27.500001), M33_dist, in_cut, out.cut, LikeA, LikeB., logL, randnum, r
REAL :: Radius(27,10000)

REAL :: x(ndata_.max, 3), p(3)

REAL :: post_.yl(600), post_y2(100), post_y3(300), Best-Combo (6)

REAL :: post_x1(600), post_x2(100), post_x3(300), pi

PARAMETER (pi = 3.141592)

CHARACTER :: folder+100, string*200, string2%200, command*200, sample
PARAMETER (sample = 'y’)

END MODULE Global
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PROGRAM SatDensity_SampCont !Master program
USE Global
IMPLICIT NONE

WRITE (folder ,x) *Sat_Density’
WRITE (string ,+) ./ // TRIM(ADJUSTL(folder))

WRITE (command ,+) ’mkdir.’ // TRIM(ADJUSTL(folder))

CALL system (command)

CALL random_seed
CALL NonSampledRadii

IF (sample .eq. ’y’) THEN !If using many samples of

CALL SampledRadii !radii for each object as
CALL SampleSelect
END IF
CALL k_verse.alpha
CALL MaxLike

string2 = TRIM(ADJUSTL( folder)) // ’/results.dat’

possible

opposed

!to just the best fit radius

OPEN(3, file=TRIM(ADJUSTL(string2)), status = ’unknown’)

WRITE (3,%) “Results_for_Maximum_Likelihood_test”
WRITE (3 ,%) "Most_Likely._alpha_(Max_.Likelihood):”,

alpha_hold (MAXLOC(ML_logL ))

WRITE (3 ,%) ”plus_l_.sigma_error:”, alpha_psigma, ”;_minus.l_sigma.error:”, alpha.msigma

END PROGRAM SatDensity-SampCont

SUBROUTINE NonSampledRadii !Use this subroutine if using the directly
USE Global !calculated values of the Satellite to M3l
IMPLICIT NONE !distance rather than samples from the PPD
Sat_Rad (1) = 68.e0 And 1

Sat_-Rad (2) = 196.e0 !And II

Sat_-Rad(3) = 86.¢0 !And III

Sat_Rad (4) = 113.e0 !And V

Sat_Rad (5) = 182.e0 !And IX

Sat_Rad (6) = 130.e0 !And X

Sat_.Rad (7) = 103.e0 !And XI

Sat_Rad(8) = 182.e0 And XII

Sat_.Rad (9) = 116.e0 !And XIII

Sat_Rad(10) = 163.e0  !And XIV
Sat_Rad(11) = 174.e0  !And XV
Sat_Rad(12) = 320.e0  !And XVI
Sat_Rad(13) = 67.¢0 1And XVII
Sat_Rad(14) = 457.e0  !And XVIII
Sat_Rad(15) = 116.e0  !And XIX
Sat_Rad(16) = 129.e0  !And XX
Sat_Rad(17) = 136.e0  !And XXI
Sat_Rad(18) = 280.e0  !And XXII

Sat_Rad (19) = 128.e0 !'And XXIII
Sat_Rad (20) = 169.e0 !And XXIV
Sat_Rad (21) = 91.e0 !And XXV

Sat_Rad (22) = 103.e0 !And XXVI
Sat_Rad (23) = 482.e0 !And XXVII
Sat_-Rad(24) = 146.¢0 ! And XXX
Sat_Rad (25) = 118.e0 INGC147
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Sat_Rad (26) = 181.e0 INGC185
Sat_Rad (27) = 214.e0 IM33

END SUBROUTINE NonSampledRadii

SUBROUTINE k_verse_alpha !This subroutine finds values of the power law normalization factor ‘k’ for
USE Global leach power law (i.e. exponent ’alpha’). It simply interpolates based on values

IMPLICIT NONE !derived by Geraint (provided in 'k_vs_alpha.dat’)

OPEN(40, file="./k_vs_alpha.dat’, status = ’unknown’)

READ (40, =, IOSTAT = ios) k-vs-alpha(i,l), k-vs_alpha(i,2)

IF (ios == —1) THEN
i=1i-1
exit

ELSE IF (ios .gt. 0) THEN
WRITE (*,x) i
i=i-1
cycle

END IF

END DO
CLOSE(36)
k_ndata = i
DO i =1, 599 'k as determined for alpha = 0.01, 0.02, ..., 5.99
alpha = REAL(i)/100.e0
nn = INT((alpha — k.vs_alpha(1,1))/(k-vs_alpha(241,1) — k-vs_alpha(l,1)) % 241.e0) + 1
k(i) = (alpha — k_vs_alpha(nn,1))/(k_vs_alpha(nn+1, 1) — k_vs_alpha(nn,1)) % (k_vs_alpha(nn+1,2) — k_vs_alpha(nn,2)) + k_vs_alpha(
nn,2)
k(i) = 10.e0 #x k(i)
END DO
DO i = 600, 600 'k for alpha = 6.00
alpha = REAL(i)/100.e0
nn = 241
k(i) = (alpha - k._vs_alpha(nn,1))/(k-vs_alpha(nn+1, 1) — k_vs_alpha(nn,1)) % (k_-vs_alpha(nn+1,2) — k._vs_alpha(nn,2)) + k_vs_alpha(
nn,2)

k(i) = 10.e0 =#= k(i)

END DO

END SUBROUTINE k_verse_alpha
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SUBROUTINE MaxLike

USE Global
IMPLICIT NONE

!Direct calculation of likelihoods for alpha

lassuming fixed values of inner and outer

lcutoff radii. See Eq. 16 of Paper II for

string2 = TRIM(ADJUSTL( folder)) // ’/alpha_ML_dist.dat’
OPEN(9, file=TRIM(ADJUSTL(string2)), status = ’unknown’)

ML_logL = 0.e0
DO i =1, 600

print =, i

alpha = REAL(i)/100.e0
alpha_hold (i) = alpha

IF (sample .eq.

DO j =1, 27
av_ML_logL

DO h = 1, 500000
av_ML_logL

END DO

av_ML_logL

ML_logL (i)
END DO

ELSE

DO j =1, 27

ML_logL (i)

END DO

END IF

END DO

|| Plot
!\/ Distribution

ye

) THEN

0.d0

!nsamples

av_ML_logL + ((k(i) = Sat-Radii(j, h) ==

LOGI10(av_-ML_logL)
ML_logL (i) + av_-ML_logL

ML_logL (i) + LOGIO((k(i) * Sat.Rad(j) #=*

string2 = TRIM(ADJUSTL(string)) // ’/ml_alpha_loglike.ps/CPS’
CALL pgbegin (0 ,TRIM(ADJUSTL(string2)) .,1.1)

CALL pgenv (0., 6.

0.9

operation.

(2.d0 - alpha)))

(2.e0 — alpha)))

+ MINVAL(ML_logL), 1.1  MAXVAL(ML_logL). 0, 0)

CALL pgbin(600, alpha_hold, ML_logL, .false.)

CALL pglab(’\(0627)",

CALL pgend

WRITE (command, )

call system (command)

A

'] Plot

!'\/ Distribution

‘Log.Likelihood’, *")

convert.—rotate.90." // TRIM(ADJUSTL(string

*/ml_alpha_loglike.ps.’ // TRIM(ADJUSTL(
/ml_alpha_loglike.jpg’

string2 = TRIM(ADJUSTL(string)) // ’/ml_alpha_PPD.ps/CPS’
CALL pgbegin (0, TRIM(ADJUSTL(string2)) ,1,1)

N &
string)) // &

!Determine

likelihood

of

given

alpha
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209 Rel_ML_logL (i) = 10.%* (ML_logL(i) — MAXVAL(ML_logL))
210 END DO

211

212 Rel-ML.logL = Rel-ML_logL/ SUM(Rel-ML_logL)

213

214  CALL pgenv (0., 3.5, 0., 1.1 % MAXVAL(Rel-ML_logL), 0, 0)
215

216 DO i = 1, 600

217 WRITE (9, *(3F16.5)’) alpha_hold (i), Rel-ML_logL (i), ML_logL(i)
218 END DO

219

220  CALL pgline (600, alpha_hold, Rel_ML_logL)

221

222 CALL pglab(’\(0627)’, *Probability”, )

224  CALL pgend

226  WRITE (command,*) ’convert.—rotate.90." // TRIM(ADJUSTL(string)) // &
227 */ml_alpha_PPD .ps.’ // TRIM(ADJUSTL(string)) // &
228 */ml_alpha_PPD.jpg’

230 call system (command)
231 1/\
232 il

234 alpha_counts = 0.d0 ; mcounts = 0.d0 !
235 DO i = MAXLOC(REL.ML_logL, DIM = 1), 1, -1 !

236 mcounts = mcounts + REL_ML_logL (i) !

237  END DO !

238 DO i = MAXLOC(REL_ML_logL, DIM = 1), 1, -1 !

239 alpha_counts = alpha_counts + REL_ML_logL (1) !Finds negative
240 IF (alpha_counts .ge. 0.682%mcounts) THEN lone sigma error
241 alpha_msigma = alpha_hold (MAXLOC(REL_ML_logL, DIM = 1)) — alpha_hold(i) !

242 exit !

243 END IF !

244 END DO !

245

246 alpha_counts = 0.d0 :; pcounts = 0.d0 !
247 DO i = MAXLOC(REL_ML_logL, DIM = 1), 600 !

248 pcounts = pcounts + REL_ML_logL(i) !
249  END DO !
250 DO i = MAXLOC(REL_ML_logL, DIM = 1), 600 !
251 alpha_counts = alpha_counts + REL_ML_logL (i) !Finds positive
252 IF (alpha_counts .ge. 0.682%pcounts) THEN lone sigma error
253 alpha_psigma = alpha_hold (i) — alpha_hold (MAXLOC(REL-ML_logL, DIM = 1)) !
254 exit !
255 END IF !
256 END DO !
257

258

259  END SUBROUTINE

260

261 !

262 IMOMC subroutine omitted

263 !

264 !Plots subroutine omitted

265 !

266 !LogLike subroutine omitted

267 !

268

269 SUBROUTINE SampledRadii !Read in sampled radii probability
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USE Global

IMPLICIT NONE

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit
(unit

(unit

13,

15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,

file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file

!Distributions for each satellite

’ ./ Andromedale/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)

./ Andromedalle/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ Andromedallle/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaVe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedalXe/other_plots2/Sampled_M31_Distances.dat’, status = 'old’)
./ AndromedaXe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXle/other_plots2/Sampled_M31_Distances.dat’, status = 'old’)

* ./ AndromedaXIle/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXIlle/other_plots2/Sampled_M31_Distances.dat’, status = ’old’)
./ AndromedaXIVe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXVe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)

./ AndromedaXVIe/other_plots2/Sampled_M31_Distances.dat’, status = 'old’)

* ./ AndromedaXVIle/other_plots2/Sampled-M31_Distances.dat’, status = ’old’)
./ AndromedaXVIlle/other_plots2/Sampled_M31_Distances.dat’, status = ’old’)

’ ./ AndromedaXIXe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXXe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old”)

* ./ AndromedaXXle/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXXIle/other_plots2/Sampled_M31_Distances.dat’, status = ’old’)
./ AndromedaXXIIle/other_plots2/Sampled_M31_Distances.dat’, status = ’old’)
./ AndromedaXXIVe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./ AndromedaXXVe/other_plots2/Sampled_M31_Distances.dat’, status = 'old’)

./ AndromedaXXVIe/other_plots2/Sampled-M31_Distances.dat’, status = ’old’)
./ AndromedaXXVIle/other_plots2/Sampled_M31_Distances.dat’, status = ’old’)

./ AndromedaXXXe/other_plots2/Sampled_-M31_Distances.dat’, status = ’old’)
./NGCl47e_outer/other_plots2/Sampled_M31_Distances.dat’, status = ’old”)
./NGC185e_outer/ other_plots2/Sampled_-M31_Distances.dat’, status = 'old’)

./M33¢/other_plots2/Sampled-M31_Distances.dat’, status = “old’)

!'\/ distances

Read

in

the

of Andromeda

distribution of *%k

I from M3l

i= + 1
READ (11, %, IOSTAT = ios) Sat_Radii(1,i)
IF (ios == -1) THEN
i=1-
exit
ELSE IF (ios .gt. 0) THEN
WRITE (*,x) i
i=i-1
cycle
END IF
END DO
! Repeat sx read in the distance distribution
!of each satellite with respect to M3l
CLOSE(11) ; CLOSE(12) ; CLOSE(13) ; CLOSE(14) : CLOSE(15) ; CLOSE(16) ; CLOSE(17) : CLOSE(18)
CLOSE(21) ; CLOSE(22) ; CLOSE(23) ; CLOSE(24) : CLOSE(25) ; CLOSE(26) ; CLOSE(27) ; CLOSE(28)
CLOSE(31) ; CLOSE(32) : CLOSE(33) ; CLOSE(34) ; CLOSE(35) ; CLOSE(36) ; CLOSE(37)

: CLOSE(19)
; CLOSE(29)
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END SUBROUTINE SampledRadii

SUBROUTINE SampleSelect
USE Global
IMPLICIT NONE

REAL :: gasdev

DO i =1, 27
DO j = 1, nsamples

1 CALL random_number (randnum)

randnum = (randnum =

500000) + 1

IF (Sat_Radii(i, NINT(randnum))

WRITE (*,*) i, j,
ELSE
goto 1
END IF
END DO
END DO

END SUBROUTINE SampleSelect

Radius(i,j)

.ge.
Radius (i.j) = Sat_Radii(i, NINT(randnum))

50.e0

.and .

Sat_Radii (i, NINT(randnum))

e

600.¢0) THEN
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Program: PlaneSigRMS.f95

Creation Date: 7 June 2012 (first version Feb 2012) Many modifications.

Relevant Section: Ch. 5

Notes: This program is representative of the many versions used to implement plane fit-
ting on the satellite distribution. The satellite distance distributions (along with the best
fit distances) are read in and stored for subsequent sampling in the ‘SampledDist” subrou-
tine. The ‘Significance’ subroutine then samples distances for each satellite (and M31 it-
self), converts these distances into 3D positions and calls ‘MaxSigFind’ to do the actual
plane fitting (see the preface for Paper III (p. 90) and Fig. 5.1 for details). The program
is currently set to repeat this process for 200, 000 realizations of possible positions of the
satellites as well as the particular realization where each satellite is in the position defined
by its best-fit distance (mainly for plotting). The program is also set up to build 200, 000
random realizations (generated in the ‘RandomPoints’ subroutine) of the (27) satellites and
perform equivalent plane fitting on each. The version of ‘RandomPoints’ included in this
program includes only one possible position for each satellite, and is used only in §3.3 of
Paper I1I. The version of this subroutine used in all other sections can be seen in the pro-
gram ‘PlaneSigSubS ets_RandReal4 _noGroup.f95’ (p. 268). This version represents each
satellite by a distance distribution containing 1, 000 possible positions along the line of sight
from Earth (i.e. an accurate representation of the real data). Note also that this program
is designed to perform plane-fitting on the whole sample. The modified code segments de-
signed to handle each satellite combination of a given size can be seen in Subroutines for
Processing Satellite Subsets (p. 260). The ‘goodness of fit statistic’ used for the plane fitting
by this program is the RMS. The code for alternative measures are given in Alternative Plane

Fitting Code Segments (p. 258).

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

INTEGER :: i, j, k, s, mm, ios, idum = -9999, it, nit, err_samp

INTEGER :: ndata.max, nsats

PARAMETER (ndata.max = 10000000)

PARAMETER (nit = 200000)

PARAMETER (err_samp = 200000)

PARAMETER (nsats = 27)

REAL+8 :: pi

PARAMETER (pi = ACOS(-1.€0))

REAL :: randnum, sig(nit), err_sig(nit), norm(3), best_fit_.vect(3), best_fit_sigma
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REAL :: pos(3,ndata_max), temp_pos(3)

REAL :: a(ndata.max), b(ndata-max), c(ndata.max), d(ndata-max)

REAL :: a_hist(201,2), b_hist(201,2), c-hist(201,2), d_-hist(2001,2)

REAL :: logL, LikeA, LikeB, r, p(4), p-temp(4), min.sigma, max.sigma

REALx*8 sigma, planeDist, like, plane_sig, rms

REAL :: max_plane_sig, min_signif, Actual_sig, Actual_bfv(3), Actual_bfs

INTEGER :: dummy, sat_pick

REAL :: Sat_Dist(500000,27), Sat_Dist.-Drawn(27), Sat_Pos(27.,2), xi(27), eta(27), theta(27),
REALx*8 RA, DEC, xi.dble, eta_-dble

REAL :: xi_test, eta_test, theta_test, SAP_xi(134), SAP_eta(134), spotR

REAL :: Best_-Sat_Dist(27)

REAL :: m31._dist

REAL :: alpha_set, beta_.set, gamma.set, pole.alpha, pole_beta

REAL :: x_.rot(3.,3), y-rot(3.,3), z_rot(3,3)

REAL :: par_like(180,6)

REAL :: theta_coord, phi-coord

CHARACTER :: argv#30, folder=100, string=200, string2 =200, command*200, subsize=3

END MODULE Global

PROGRAM PlaneSignificance
USE Global
IMPLICIT NONE

!Master program

WRITE (subsize ,*) nsats

WRITE (folder ,+) *RMS_Plane-Stats.’ // TRIM(ADJUSTL(subsize)) // ’_-sats’
WRITE (string ,*) °./’ // TRIM(ADJUSTL(folder))

!Primary output

!'directory

WRITE (command,+*) ’mkdir.’ // TRIM(ADJUSTL(folder))

CALL system (command)

CALL random_seed !Insure random seed for random numbers

CALL SampledDist !Get sampled satellite distances

CALL BorderGet !Get PAndAS survey boundary points

string2 = TRIM(ADJUSTL( folder)) // .dat”’ !File for result

OPEN(11, file=TRIM(ADJUSTL(string2)), status =

*/results summary e.g.

unknown’) lation and RMS for real satellite

string2 = TRIM(ADJUSTL(folder)) // ’/sat_pos.dat’ !Positions of satellites in

OPEN(12, file=TRIM(ADJUSTL(string2)), status = ‘unknown’) !Random Realizations
string2 = TRIM(ADJUSTL( folder)) // ’/significance.dat’ 'RMS distribution and poles from
OPEN(13, file=TRIM(ADJUSTL(string2)), status = ‘unknown’) !Random Realizations
string2 = TRIM(ADJUSTL( folder)) // ’/real_sig_wth_err.dat’ !RMS distribution and poles for

OPEN(14, file=TRIM(ADJUSTL(string2)), status = ’“unknown’) !of the real satellite

CALL Significance !The main subroutine which in turn calls the plane fitting subroutine

CALL Theta_Phi(Actual_bfv (1), Actual_bfv(2), Actual_bfv(3))

WRITE(11 %) Actual_bfv (2), Actual_bfv(3), )"
WRITE(11 %)
WRITE(1 1 %)

WRITE(11 %)

"Best_fit_.vector:_(”, Actual_bfv(l),
”"Theta.=", theta_coord, ”;_.Phi_=",
"LOGIO(RMS) of_best_fit:”,

phi_coord
Actual_sig

”Minimum.RMS..from _random._samples:”, min_signif

plane

M31_Dist_.PPD(3000000)

orient —

distribution

realizations

distribution
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246 CHAPTER F1vE PROGRAMS

CLOSE(11) ; CLOSE(12) ; CLOSE(13) ; CLOSE(14)

END PROGRAM PlaneSignificance

SUBROUTINE RandomPoints !Generates Random Realizations of Satellites
USE Global
IMPLICIT NONE

LOGICAL :: in_poly

CALL random_number (randnum)

randnum = randnum % 2999999.e0 + 1.e0
m31._dist = M31_Dist.PPD (NINT(randnum) )

DO i = 1, nsats

2 CALL random-number (randnum)

sat_pick = 1 + NINT(randnum+REAL(nsats - 1)) !Draw a random satellite

CALL random_number (randnum)

randnum = randnum * 499999.e0 + 1.e0

pos(1,i) = ABS(Sat_Dist(NINT(randnum) ,sat-pick) * cos(theta(sat_pick)) * tan(xi(sat-pick)))

IF (xi(sat_pick) .1t. 0.e0) THEN !

!Determine

!for each

pos(l,i) = —1.e0 = pos(l,i) !Determine if x is positive or
END IF |
pos(2,i) = ABS(Sat_Dist(NINT(randnum) ,sat_pick) * sin(eta(sat_pick))) !Determine length of y vector fo

IF (eta(sat_pick) .1t. 0.e0) THEN !

r each

satellite

negative

or negative

pos(2,i) = —1.e0 % pos(2,i) !Determine if y is positive
END IF !
pos(3,i) = Sat_Dist(NINT(randnum) ,sat_pick) * cos(theta(sat_pick)) — m31_dist !Determine length
pos(3,i) = SQRT((pos(l,i)*%2.e0) + (pos(2,i)*%2.e0) + (pos(3,i)#*x2.e0)) !Rotate position vector to point

pos(l,i) = 0.e0 ; pos(2,i) = 0.e0 lalong z-axis

CALL random_number (randnum) !

alpha_set = randnum =% 360.e0 * (pi/180.e0) !Pick random longitude
CALL random_number (randnum) !Pick random latitude between 0 and 90 weighted
beta_set = ASIN(randnum) !by area of a sphere as a function of latitude

CALL random_number (randnum) !

IF (randnum .1t. 0.5e0) THEN !Re—assign latitude as
beta_set = beta_set !

ELSE !-1 % latitude in
beta_set = —beta_set !

END IF 150% 0f cases

CALL Rotate

pos(:,i) = MATMUL(y-rot ,pos(:,i)) !Rotate to the chosen

pos(:,i) = MATIMUL(x_.rot ,pos(:,i)) !random angle

xi-test = ATAN(abs(pos(1,i))/(m31._dist + pos(3,i))) ! Convert

IF (pos(l,i) .1t. 0.e0) THEN !new random
xi_test = —xi-test !position

END IF !vector

eta_test = ATAN(abs(pos(2,i))/SQRT(pos(1l,i)#**2 + (m31_dist + pos(3,i))*%2))!into

IF (pos(2,i) .1t. 0.e0) THEN !non t.p.
eta_test = —eta_test leta and

and

sign

length of x

of

vector

satellite

z vector
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END IF

RA = xi_test
DEC = eta_test

CALL sla_DS2TP (RA, DEC, 0.d0, 0.d0,

Xi-test = xi_dble = (180.e0/pi)
eta_test = eta_dble * (180.e0/pi)

IF (in_poly(xi-test ,eta-test , 134 SAP_xi,SAP_eta)) THEN

ELSE
goto 2
END IF

SpotR = ((xi_test#cos(51.9d0+pi/180.d0) + eta_test=sin(51.9d0+pi/180.d0))*+2 / 6.25d0) + & !choice doesn’

!Use sla_DS2TP

!to convert true
xi-dble , eta_-dble ., j) leta amd xi to
!their tangent
!plane projections

!Re—generate
!the new
!randomized
!'satellite
!position if

!the current

((xi-test*sin(51.9d0xpi/180.d0) — eta_-test*cos(51.9d0xpi/180.d0))x*=*2 / 1.d0) !'fall within

IF (spotR .le. 1.e0) THEN
goto 2
END IF

END DO

END SUBROUTINE RandomPoints

!the PAndAS
!footprint
las viewed

!from Earth

SUBROUTINE Rotate

USE Global !is the desired rotation angle about the x axis,

IMPLICIT NONE I'the y axis and
x-rot(l,1) = 1.e0

x-rot(2,1) = 0.e0

x-rot(3,1) = 0.e0

x-rot(1,2) = 0.e0

x_rot(2,2) = cos(alpha_set)
x-rot(3.,2) = —1.e0 * sin(alpha_set)
x_rot(1,3) = 0.e0

x_rot(2,3) = sin(alpha_set)
x-rot(3,3) = cos(alpha_set)

y-rot(l,1) = cos(beta_set)
y-rot(2,1) = 0.e0

y-rot(3,1) = sin(beta_set)
y-rot(1,2) = 0.e0

y_rot(2.,2) = l.e0

y-rot(3,2) = 0.e0

y_rot(l.,3) = —1.e0 * sin(beta_set)
y-rot(2,3) = 0.e0

y-rot(3,3) = cos(beta_set)

z_rot(l,1) = cos(gammad_set)
z-trot(2,1) = —1.e0 % sin(gamma.set)
z_rot(3,1) = 0.e0

z_rot(l,2) = sin(gamma_set)
z_rot(2,2) = cos(gamma._set)

z_rot(3,2) = 0.e0
z_-rot(1,3) = 0.e0
z_rot(2,3) = 0.e0
z_-rot(3,3) = 1.e0

!Rotation Matrices for rotations about x,y and z axes. ’alpha_set’

beta_set ’ about

gamma_set’ about the z axis

!
!
!

!

!Rotation about x—axis — angle alpha
!
!
!
!
!
!
!
!
!Rotation about y—axis — angle beta
!
!
!
!
!
!
!
!
!Rotation about z-axis — angle gamma

!
!

1
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196
197 END SUBROUTINE Rotate
198

201 SUBROUTINE Theta_Phi(x,y,z) !Converts from cartesian x,y,z into spherical coordinates theta
202 USE Global 'and phi (r is not required) for obtaining positions of objects
203  IMPLICIT NONE !(and plane normal vector pointings) in M3l galactic coordinates
204

205 REAL :: x, y, z

206

207 theta_coord = acos(z/(SQRT(x#%2.e0 + y=#2.e0 + zx%2.e0))) — (pi/2.e0)
208

209 theta_coord = —theta_coord * (180.e0/pi)

210

211 IF (x .gt. 0.e0) THEN

212

213 phi_coord = atan(y/x)

214

215 ELSE IF (x .It. 0.e0 .and. y .ge. 0.e0) THEN

216

217 phi-coord = atan(y/x) + pi

218

219 ELSE IF (x .It. 0.e0 .and. y .l1t. 0.e0) THEN

220

221 phi_coord = atan(y/x) — pi

222

223 ELSE IF (x .eq. 0.e0 .and. y .gt. 0.e0) THEN

224

225 phi_coord = pi/2.e0

226

227  ELSE IF (x .eq. 0.e0 .and. y .I1t. 0.e0) THEN

228

229 phi_coord = —pi/2.e0

230

231 ELSE IF (x .eq. 0.e0 .and. y .eq. 0.e0) THEN

232

233 phi-coord = 0.e0

234

235 END IF

236

237 phi_coord = —phi_coord * (180.e0/pi)

238

239  END SUBROUTINE Theta_Phi

240

242

243  SUBROUTINE MaxSigFind !Finds best fit plane for a satellite distribution by testing goodness of fit of each
244  USE Global !tested plane. The poles of the tested planes are all approximately equi—distant , taking
245  IMPLICIT NONE !into account the surface area of a shere as a function of latitude.

246 !A low resolution run finds the approximate location of the best fit plane’s pole and then
247 !poles around this point are searched at higher resolution.

248 par_like = 0.e0

249 max-plane_sig = 9999999.¢0

250

251 !'||] Low resolution

252 !'\/ plane tests

253 DO i =1, 30

254

255 beta_set = REAL(i%3) = (pi/180.¢0)

256
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DO j = 1, NINT(120.e0 = cos(beta_set)) !The higher the latitude , the smaller the
!number of points

alpha_set = (REAL(j)/NINT(120.e0 % cos(beta_set))) % 360.e0 = (pi/180.e0)

norm = (/ 0.e0, 0.e0, 1.e0 /)

CALL Rotate
norm = MATMUL(y_rot ,norm)
norm = MATMUL( x-rot ,norm)

plane_sig = 0.d0

rms = 0.d0

DO k = 1, nsats IRMS Calculation
planeDist = norm(1)s*pos(1,k) + norm(2)*pos(2,k) + norm(3)#*pos(3.,k)
rms = rms + (planeDist) %2

END DO

rms = SQRT(rms/nsats)

plane_sig = LOGIO(rms)

IF (plane_sig .l1t. max_plane_sig) THEN !Most significant plane has lowest rms

max-plane_sig = plane_sig !'Store approx, low resolution values
best_fit_vect = norm lof best fit pole and significance
pole_alpha = alpha_set !Store best fit pole for
pole_beta = beta_set 'high resolution search
END IF
END DO

END DO

norm = (/ —1.e0, 0.e0, 0.e0 /) !Test at the actual pole (not included in above loop)

plane_sig = 0.d0

rms = 0.d0

DO k = 1, nsats IRMS Calculation
planeDist = norm(1)=*pos(l.,k) + norm(2)=*pos(2,k) + norm(3)=pos(3.k)
rms = rms + (planeDist) 2

END DO

rms = SQRT(rms/nsats)

plane_sig = LOGIO(rms)

!'|| High resolution search
!\/ around best fit pole
IF (plane.sig .I1t. max_plane.sig) THEN !Condition not met unless the RMS at the actual pole

!was better than anywhere else in the low res search

max_plane_sig = plane_sig
best_fit-vect = norm

DO i =1, 15
beta_set = (88.5e0 + (REAL(i)/10.e0)) = (pi/180.e0)
DO j = 1, NINT(1200.e0 = cos(beta-set)) !The higher the latitude , the smaller the
!number of points

alpha.set = (REAL(j)/NINT(1200.e0 = cos(beta-set))) = 360.e0 = (pi/180.e0)
norm = (/ 0.e0, 0.e0, 1.e0 /)
CALL Rotate
norm = MATMUL(y.rot ,norm)

norm = MATMUL( x_rot ,norm)

plane_sig = 0.d0
rms = 0.d0
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DO k
pl

rms =

= 1, nsats IRMS Calculation
aneDist =

rms + (planeDist) 2

END DO

rms =

plane

IF (plane_sig .lt.

SQRT(rms/nsats)
-sig = LOGI10(rms)
max_plane_sig) THEN

! Most

significant

norm (1) *pos(1,k) + norm(2)*pos(2,k) + norm(3)s*pos(3,k)

plane has

lowest

rms

(1.e0/cos(beta_set))

max_plane_sig = plane_sig !'Store final , high resolution values
best_fit_vect = norm lof best fit pole and significance

END IF

END DO

END DO

ELSE

DO i =1, 11
DO j =1, 11

beta_set = pole_beta + 2.e0 x REAL(j—-6) % (0.15e¢0) = (pi/180.e0)

alpha_set = pole_alpha + 2.e0 * REAL(i-6) % (0.15e0) = (pi/180.e0) =*

norm = (/ 0.e0, 0.e0, 1.e0 /)

CALL Rotate

norm = MATMUL(y.rot ,norm)

norm = MATMUL( x_rot ,norm)

plane_sig = 0.d0

rms = 0.d0

DO k = I, nsats IRMS Calculation
planeDist = norm(1)#*pos(1l.k) + norm(2)*pos(2,k) + norm(3)=*pos(3.k)
rms = rms + (planeDist)x*%2

END DO

rms = SQRT(rms/nsats)

plane_sig = LOGIO(rms)

IF (plane.sig .l1t. max_.plane_sig) THEN !Most significant plane has lowest
max_plane_sig = plane_sig !'Store final , high resolution values
best_fit_-vect = norm lof best fit pole and significance

END IF

END DO
END DO
END IF
END SUBROUTINE MaxSigFind
|
SUBROUTINE Significance !Principal subroutine which generates distributions of the

USE Global

IMPLICIT NONE

!'!]| Determi

!'!\/positions

m31_dist =

Best_Sat_Di
Best_Sat_Di
Best_Sat_Di
Best_Sat_Di

!plane fitting

!'subroutine *MaxSigFind

ne best fit plane and significance
generated from best fit distances

779.¢0 'M31

st(l) = 727.e0 'And 1

st(2) = 630.e0 'And II

st(3) = 723.e0 'And III

st(4) = 742.e0 !And V

statistic (RMS in

for

satellite

this

is called from

case) .

this

subroutine

rms

The plane fitting
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Best_Sat_Dist(5) = 600.e0 'And IX
Best_-Sat_Dist(6) = 670.e0 !And X
Best_Sat_Dist(7) = 763.e0 !And XI
Best_Sat_Dist(8) = 928.e0 'And XII
Best_Sat_Dist(9) = 760.e0 !'And XIII
Best_Sat_Dist(10) = 793.e0 !And XIV
Best_Sat_Dist(11) = 626.e0 !'And XV
Best_Sat_Dist(12) = 476.e0 !And XVI
Best_-Sat_Dist(13) = 727.e0 !And XVII
Best_Sat_Dist(14) = 1214.e0 !And XVIII
Best_Sat_Dist(15) = 821.e0 !And XIX
Best_Sat_Dist(16) = 741.e0 !And XX
Best_Sat_Dist(17) = 827.e0 !And XXI
Best_Sat_Dist(18) = 920.e0 !And XXII
Best_Sat_Dist(19) = 748.e0 'And XXIII
Best_Sat_Dist(20) = 898.e0 !'And XXIV
Best_Sat_Dist(21) = 736.e0 !And XXV
Best_-Sat_Dist(22) = 754.e0 !And XXVI
Best_Sat_Dist(23) = 1255.e0 !And XXVII
Best_Sat_Dist(24) = 681.e0 !And XXX
Best_Sat_Dist(25) = 712.e0 INGC147
Best_Sat_Dist(26) = 620.e0 INGC185
Best_Sat_Dist(27) = 820.e0 'M33

DO i = 1, nsats
pos(1l,i) = ABS(Best_Sat_Dist(i) % cos(theta(i)) * tan(xi(i))) !Determine length of x vector for each
IF (xi(i) .1t. 0.e0) THEN !
pos(l,i) = —1.e0 % pos(l,i) !Determine if x is positive or negative
END IF !
pos(2,i) = ABS(Best_Sat_Dist(i) * sin(eta(i))) !Determine length of y vector for each
IF (eta(i) .1t. 0.e0) THEN !
pos(2,i) = —1.e0 = pos(2,i) !Determine if y is positive or negative
END IF !
pos(3.,i) = Best_Sat_Dist(i) * cos(theta(i)) — m31._dist !Determine length and sign of z vector
END DO
CALL MaxSigFind
Actual_sig = max-plane_sig
Actual_bfv = best_fit_vect
alpha_set = - (90.e0 — 12.5¢0) * (pi/180.e0) !Rotate to bring back out of M3I's inclination !
gamma.set = + (90.e0 — 39.8e¢0) * (pi/180.e0) !angle and PA (i.e. to view from above the M3l pole) !
!Change
CALL Rotate !
!'to
Actual_bfv = MATIMUL(z.rot , Actual_bfv) !Convert vectors back to how they would appear !
Actual_bfv = MATMUL( x-rot , Actual_bfv) !in M31 reference frame IM31

gamma.set = 90.e0 x (pi/180.¢0) !

!

CALL Rotate

!

Actual_bfv = MAIMUL(z_rot , Actual_bfv) !

!'1/\ Determine best fit plane and significance for

!'!|| positions generated from best fit distances

!'!'|| Determine best fit plane and significance for

!'Additional rotation in M3l galactic longitude

satellite

“err.samp” samples of

|
!coordinate
|

I'system

!

!

satellite

satellite
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440 !'!\/possible satellite positions generated from sampled distances and plot

441

442 DO it = 1, err_samp

443

444 CALL random_number (randnum) !Read in err_samps M3l

445 randnum = randnum x 2999999.e0 + 1.e0 !possible distances

446 m31._dist = M31_Dist_PPD (NINT(randnum) ) !to generate err.samps

447 !posible x,y,z coords

448

449 DOi =1, 27 !Read in err_samps

450 CALL random_-number (randnum) !possible distances

451 randnum = randnum x 499999.¢0 + 1.e0 !for each of the

452 Sat_Dist-Drawn (i) = Sat-Dist(NINT(randnum) ,i) I'satellites to

453 END DO !generate err_samps

454 !posible x,y,z coords

455

456 DO i =1, 27

457 pos(1,i) = ABS(Sat.Dist-Drawn(i) = cos(theta(i)) % tan(xi(i))) !Determine length of x vector for each satellite
458 IF (xi(i) .1t. 0.e0) THEN !

459 pos(l,i) = —1.e0 = pos(l,i) !Determine if x is positive or negative
460 END IF !

461

462 pos(2,i) = ABS(Sat.Dist-Drawn(i) = sin(eta(i))) !Determine length of y vector for each satellite
463 IF (eta(i) .1t. 0.e0) THEN !

464 pos(2,i) = —1.e0 * pos(2,i) !Determine if y is positive or negative
465 END IF !

466

467 pos(3,i) = Sat_Dist_-Drawn (i) * cos(theta(i)) — m31_dist !Determine length and sign of z vector
468 END DO

469

470 CALL MaxSigFind

471

472 alpha_set = — (90.e0 — 12.5¢0) * (pi/180.e0) !Rotate to bring back out of M3I's inclination !

473 gamma.set = + (90.e0 — 39.8e0) * (pi/180.e0) !angle and PA (i.e. to view from above the M3l pole) !

474 ! Change
475 CALL Rotate !

476 !'to

477 best_fit_-vect = MAIMUL(z-rot, best_fit_vect) !Convert vectors back to how they would appear !

478 best_fit.vect = MATIMUL( x_rot, best_fit_-vect) lin M31 reference frame IM31
479 !

480 gamma.set = 90.e0 = (pi/180.e0) ! lcoordinate
481 ! !

482 CALL Rotate ! Additional rotation in M3l galactic longitude !'system
483 ! !

484 best_fit_vect = MAIMUL(z-rot, best_fit_vect) ! !

485

486 CALL Theta_Phi(best_fit_vect(l), best_fit_vect(2), best_fit_vect(3))

487

488 err_sig(it) = max_plane_sig

489 WRITE (14, °(7F16.5)") REAL(it), err.sig(it), theta_.coord, phi-coord, best_fit_vect(l), best_fit_-vect(2), best_fit_-vect(3)
490

491  END DO

492

493 string2 = TRIM(ADJUSTL( folder)) // ’/err_samp.PPD.’ // TRIM(ADJUSTL(subsize)) // ’_.sats.ps/CPS’

494

495 CALL HistoPlot(err_samp ,101,err_sig , ’LOGI0(Minimum_RMS) *,  Probability *, TRIM(ADJUSTL(string2)), .true.)

496

497  WRITE (command,*) ’convert_—rotate.90." // TRIM(ADJUSTL(folder)) // */err_samp_PPD_’ // TRIM(ADJUSTL(subsize)) // ’_sats.ps.’ &
498 // TRIM(ADJUSTL(folder)) // ’/err_samp_PPD_." // TRIM(ADJUSTL(subsize)) // ’_sats.jpg’
499 call system (command)

500
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!'!/\ Determine best fit plane and significance for “err_samp” samples of

!'!|| possible satellite positions generated from sampled distances and pl

ot

!'!|| Determine best fit plane and significance for “nit”
!'!\/random realizations of satellite positions and plot
min_signif = 1000.e0
DO it = 1, nit
CALL RandomPoints
CALL MaxSigFind
IF (max_plane_sig .I1t. min_signif) THEN
min_signif = max_plane_sig
END IF
alpha_set = - (90.e0 — 12.5e¢0) * (pi/180.e0) !Rotate to bring back out of M3I’s inclination !
gamma.set = + (90.e0 — 39.8e0) * (pi/180.e0) !angle and PA (i.e. to view from above the M3l pole) !
! Change
CALL Rotate !
!'to
best_fit_.vect = MAIMUL(z_rot, best_fit_vect) !Convert vectors back to how they would appear !
best_fit_.vect = MAIMUL(x_rot, best_fit_vect) lin M3l reference frame IM31

gamma._set = 90.e0 = (pi/180.¢0) !

CALL Rotate ! Additional rotation in

best_fit-vect = MAIMUL(z_rot , best_fit_-vect) !

CALL Theta_Phi(best_fit-vect (1), best-fit_-vect(2), best_fit_vect(3))

sig(it) = max_plane_sig

WRITE (13, °(7F16.5)") REAL(it), sig(it), theta.coord, phi.coord,
END DO
string2 = TRIM(ADJUSTL( folder)) // */sig-PPD.’ // TRIM(ADJUSTL(subsize))

CALL HistoPlot(nit,101,sig, LOGIO(Minimum_.RMS) ", Probability >, TRIM(ADJUSTL(string2)),

best_fit_vect(l),

!coordinate

!

M31 galactic longitude !'system
!

!

best_fit_vect(2),

/| -sats.ps/CPS’

.true.)

WRITE (command,*) ’convert_—rotate.90." // TRIM(ADJUSTL(folder)) // */sig-PPD.’ // TRIM(ADJUSTL(subsize)) //
// TRIM(ADJUSTL( folder)) // ’/sig-PPD_." // TRIM(ADJUSTL(subsize)) //

call system (command)

!'!/\ Determine best fit plane and significance for “nit”

!'!|lrandom realizations of satellite positions and plot

END SUBROUTINE Significance

|

SUBROUTINE HistoPlot(nval, data_hist_bins , data, xlabel, ylabel, device, normalize)

IMPLICIT NONE

!

Vessssxs Created 24 Feb 201 2ssssssxx
!

!INTEGER nval = in

number of data points histogram

best_fit_vect(3)

-sats.ps.’ &

Posats.jpg’



254 CHAPTER F1vE PROGRAMS

562 !INTEGER data_hist_bins = number of bins in histogram
563 'REAL data(nval) = The array containing the data

564 !CHARACTER xlabel = Label of x—axis of histogram

565 !CHARACTER ylabel = Label of y—axis of histogram

566 ICHARACTER device = The plotting device (’?° if unsure)

567 !LOGICAL normalize = .true. if histogram is to be
568 !normalized , else set to .false.

569 !

570 ! Uses PGPLOT

571 !

572

573 INTEGER :: data_hist_bins , nval, it_num

574 REAL :: bw, data(nval), data_hist(data_hist_bins ,2), data_min, data_-max
575  CHARACTER(LEN=x) :: xlabel, ylabel, device

576  LOGICAL :: normalize

571

578 data_hist = 0.e0

579

580 data_.min = MINVAL(data) ; data_max = MAXVAL(data)

581

582 bw = (data.max — data_min)/(REAL(data_hist_bins) — 1.e0)
583

584 DO it.num = 1, data_hist_-bins

585 data_hist(itnum ,1) = data.min + REAL(it.num —1) = bw
586 END DO

587

588 DO it-num = 1, nval

589 data_hist (NINT((data(it-num) — data_min)/bw) + 1,2) = &
590 data_hist (NINT((data(it-num) — data-min)/bw) + 1,2) + 1.e0
591 END DO

592

593 IF (normalize) THEN
594  data_hist(:,2) = data_hist(:,2) / SUM(data_hist(:,2))

595 END IF

596

597  CALL pgbegin (0, TRIM(ADJUSTL(device)) ,1,1)

598

599  CALL pgenv(MINVAL(data, mask = data .ne. 0.), &
600 MAXVAL(data, mask = data .ne. 0.), &

601 0., 1.1*xMAXVAL(data_hist(:,2)), 0, 0)

602

603  CALL pgbin (data_hist_bins , data_hist(:,1), data_hist(:,2), .true.)
604 CALL pglab (TRIM(ADJUSTL( xlabel)), TRIM(ADJUSTL(ylabel)), °7)

605

606 CALL pgend

607

608 END SUBROUTINE HistoPlot

609

611
612 !lTogical function in_poly(x,y.,np,xp,yp) omitted — see MF.TRGB.f95 in preceding appendix
613 !real function fimag(x0,xs,xe,y0,ys,ye) omitted — see MF.TRGB.f95 in preceding appendix
614

616

617 SUBROUTINE SampledDist !Read in samples from the distance distributions of
618 USE Global IM31 and its satellites

619  IMPLICIT NONE

620

621  DOUBLE PRECISION :: sla_DSEP

622
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“old”)

old”)
“old”)

“old”)

old”)

Yold”)

S

OPEN (unit 11, file ’ ./ Andromedale/other_plots2/Sampled_MWy_Distances. dat’, status =
OPEN (unit 12, file *./Andromedalle/other_plots2/Sampled-MWy_Distances.dat’, status =
OPEN (unit 13, file > ./ Andromedallle/other_plots2/Sampled_ MWy _Distances.dat’, status
OPEN (unit 14, file ./ AndromedaVe/other_plots2/Sampled_.MWy_Distances.dat’, status =
OPEN (unit 15, file ./ AndromedalXe/other_plots2/Sampled_MWy_Distances.dat’, status =
OPEN (unit 16, file ./ AndromedaXe/other_plots2/Sampled_MWy_Distances. dat’, status =
OPEN (unit 17, file * ./ AndromedaXIe/other_plots2/Sampled-MWy_Distances.dat’, status =
OPEN (unit 18, file *./ AndromedaXIle/other_plots2/Sampled_MWy_Distances.dat’, status
OPEN (unit 19, file *./AndromedaXIIle/other_plots2/Sampled_-MWy_Distances.dat’, status
OPEN (unit 20, file ./ AndromedaXIVe/other_plots2/Sampled_ MWy _Distances.dat’, status
OPEN (unit 21, file ./ AndromedaXVe/other_plots2/Sampled_-MWy_Distances.dat’, status =
OPEN (unit 22, file ./ AndromedaXVIe/other_plots2 /Sampled_MWy_Distances.dat’, status
OPEN (unit 23, file ./ AndromedaXVIle/other_plots2/Sampled-MWy_Distances.dat’, status
OPEN (unit 24, file *./AndromedaXVIIle/other_plots2/Sampled_- MWy _Distances.dat’, status
OPEN (unit 25, file ’ ./ AndromedaXIXe/other_plots2/Sampled_ MWy _Distances.dat’, status
OPEN (unit 26, file ./ AndromedaXXe/other_plots2/Sampled-MWy_Distances.dat’, status =
OPEN (unit 27, file ’ ./ AndromedaXXle/other_plots2/Sampled_MWy_Distances.dat’, status
OPEN (unit 28, file * ./ AndromedaXXIle/other_plots2/Sampled-MWy_Distances.dat’, status
OPEN (unit 29, file * ./ AndromedaXXIIle/other_plots2/Sampled_.MWy_Distances.dat’, statu
OPEN (unit 30, file ./ AndromedaXXIVe/other_-plots2/Sampled-MWy_Distances.dat’, status
OPEN (unit 31, file ’ ./ AndromedaXXVe/other_plots2 /Sampled_MWy_Distances.dat’, status
OPEN (unit 32, file ./ AndromedaXXVIe/other_plots2/Sampled_MWy_Distances. dat’, status
OPEN (unit 33, file ./ AndromedaXXVIle/other_plots2/Sampled_-MWy_Distances.dat’, status
OPEN (unit 34, file ./ AndromedaXXXe/other_plots2/Sampled_MWy_Distances.dat’, status
OPEN (unit 35, file *./NGCl147e_outer/other_plots2/Sampled-MWy_Distances.dat’, status
OPEN (unit 36, file *./NGCl185e_outer/other_plots2/Sampled_ MWy _Distances.dat’, status
OPEN (unit 37, file *./M33e/other-plots2/Sampled-MWy_Distances.dat’, status = “old”)
OPEN (unit 38, file *./M3le/other_plots /M31_Distance_.PPD.dat’, status = ’old’)
|
i=0
DO WHILE (.TRUE.)
i=1i+1
IF (i .gt. 500000) THEN

exit
END IF
READ (11, =%, IOSTAT = ios) Sat_Dist(i,l)
IF (ios == —1) THEN

i=1-

exit
ELSE IF (ios .gt. 0) THEN

WRITE (#,x) i

END DO

|

!Files 12 through 36 read in as shown for
!file 11 above and 37 below

old )
old )
old”)
old )
old”)
old”)
old )
= ’old")
old”)
old”)
old”)
old )
= "old’)
old ")
Told )
old )
= ’old")
old”)
old”)
old”)
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684 i =0

685

686 DO WHILE (.TRUE.)

687

688 i=1+ 1

689

690 IF (i .gt. 500000) THEN
691 exit

692 END IF

693

694  READ (37, #, IOSTAT = ios) Sat_Dist(i,27)
695

696 IF (ios == -1) THEN

697 i=1i-1

698 exit

699 ELSE IF (ios .gt. 0) THEN
700 WRITE (*,x) i

701 i=i-1

702 cycle

703  END IF

704

705  END DO

706

707 !

708

709 i =0

710

711 DO WHILE (.TRUE.)

712

713 =1+ 1

714

715 IF (i .gt. 3000000) THEN
716 exit

717  END IF

718

719  READ (38, #, IOSTAT = ios) M31.Dist.PPD (i)
720

721 IF (ios == —1) THEN

722 i=1i-1

723 exit

724 ELSE IF (ios .gt. 0) THEN
725 WRITE (*,=) i

726 i=i-1

727 cycle

728 END IF

729

730 END DO

731

732 !

733

734 !'|| Tangent Plane projection angles (xi,eta)

735 !'\/for each satellite

736 Sat_Pos(1,:) = (/ 0.577417966865471, -3.2314283795568426 /)
737 Sat_Pos(2,:) = (/ 7.122225162668977, -7.592252808099334 /)
738 Sat_Pos(3,:) = (/ —1.457960734448612, -4.765087242682244 /)
739 Sat_Pos(4.,:) = (/ 4.67571438294161, 6.595921326738737 /)

740  Sat-Pos(5.,:) = (/ 1.8486898643911536, 1.9594865642747519 /)
741 Sat_Pos (6,:) = (/ 4.243395063076322, 3.7004040941268976 /)
742 Sat.Pos(7.,:) = (/ 0.7517384673615299, -7.5056115753940515 /)
743 Sat_Pos(8,:) = (/ 0.979245230608749, -6.921767335891222 /)
744 Sat_Pos(9.,:) = (/ 1.9303864363068866, -8.301405961956007 /)



745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794

796
797
798
799
800
801
802
803
804
805

257

Sat_Pos (10,:) = (/ 1.9616750556905713,
Sat-Pos(11,:)

Sat_Pos (12,:)

Sat_Pos(13,:) = (/ —1.0085393602174035,
Sat_Pos(14,:) = (/ -7.181147930491751,
Sat_Pos(15,:) = (/ —-4.784510400133266,
Sat_Pos(16,:) = (/ -7.269591542188213,
Sat_Pos(17,:) = (/ —8.888840848373246,
Sat_Pos (18,:) = (/ 10.246238044162409,
Sat_Pos (19,:)

Sat_-Pos (20,:)

Sat_Pos(21,:) = (/ -2.1573196501753253,
Sat_Pos(22,:) = (/ -3.203360921263025,
Sat_Pos(23,:) = (/ -0.9036995038298262,
Sat_Pos(24,:) = (/ —1.0080494766702268,
Sat_Pos(25,:) = (/ —1.5924793331852394,
Sat_Pos(26,:) = (/ -0.6317798640615756,
Sat_Pos (27 ,:) = (/ 11.273546933713943,
A

DO i = 1, nsats
xi(i) = Sat_Pos(i,l)
eta(i) = Sat_Pos(i,2)
xi(i) = xi(i) * (pi/180.e0)
eta(i) = eta(i) = (pi/180.e0)
END DO

DO i = 1, nsats
xi-dble = xi(i) ; eta-dble = eta(i)
CALL sla_DTP2S (xi-dble , eta_dble, O.
IF (xi-dble .I1t. 0.d0) then
RA = RA — (2.e0 = pi)
END IF
xi(i) = RA
eta(i) = DEC
END DO

DO i = 1, nsats
xi-dble = xi(i)
eta_dble = eta(i)

—11.722713906650105 /)

= (/ 6.234635220222043, -2.8843033494675128 /)
= (/ 3.585309428238602, -8.89395559219651 /)

3.0650628218938585 /)
4.280747404302224 /)
-6.109702992340868 /)
—5.840766998597464 /)
1.8332101560489324 /)
—12.92831734742824 /)

= (/ 9.147466892705275, —1.961574445626079 /)
= (/ 6.211342279324403, 5.469930868721202 /)

5.648080455771416 /)
6.772438490131299 /)
4.117443311518852 /)
8.448293881357133 /)
7.303792725460755 /)
7.108624424318093 /)
—10.076848401834724 /)

!Convert angles from

!degrees to radians

d0, 0.d0, RA, DEC) !Convert tangent plane
!projection angles into
!their true angles using
!'sla_DTP2S

!Find the true angle
!'theta — the angle on

!'the sky between M3l

theta (i) = sla.DSEP(0.d0, 0.d0, xi_-dble, eta_dble) !and the object

END DO

END SUBROUTINE SampledDist

!'(uses sla_DSEP)

SUBROUTINE BorderGet !Read in the 134

points in xi and eta defining the PAndAS

USE Global !'Survey Border. These points are used to reject satellites
IMPLICIT NONE !'that fall out of bounds (see RandomPoints Subroutine)
OPEN (unit = 40, file = ’../SurveyArea/Border_-Coords_XiEta.dat’, status = ’old’)
DO i =1, 134

READ (40, +, IOSTAT = ios) SAP_xi(i
END DO

END SUBROUTINE BorderGet

). SAP_eta(i)
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Program: Alternative Plane Fitting Code Segments

Creation Date: First versions Feb 2012

Relevant Section: Ch. 5; Paper III §3.1, §3.2

Notes: Presented here are four separate code segments, each one performing the calculation
of the goodness of fit of a tested plane. The first uses the root-mean-square (RMS) of the per-
pendicular distances of the satellites from the plane. This is the one used in the ‘MaxSigFind’
subroutine presented in PlaneSigRMS.f95 (p. 244). The other code segments are alterna-
tives to this RMS code segment. The second code segment calculates the goodness of fit
of a given plane by summing the absolute values of the perpendicular distances of each
satellite from the plane. The third uses a maximum likelihood approach and replaces the
zero-thickness plane with a Gaussian distribution of some (to be determined) thickness. The
fourth and final code segment serves a different purpose to the previous three in that it finds
the plane of maximum asymmetry. It seeks the plane which can divide the sample most un-
equally. Note that some other minor modifications to the code of PlaneSigRMS.f95 would
be required for correct operation. These segments are intended to illustrate precisely how the

various forms of plane fitting utilized in Paper III are implemented.

For Plane Fitting using RMS

!As used in the included version of the 'MaxSigFind’ subroutine in ’PlaneSigRMS. 95"
!Where an alternate plane fitting statistic is used, this segment of code should be

!replaced with one of the versions below for each of the four times it appears in the
! ’MaxSigFind’ subroutine. Note that other minor code variations are necessary

!but these are included to show the way the actual plane fitting statistic is

!calculated in each case.

plane_sig = 0.d0

rms = 0.d0

DO k = 1, nsats IRMS Calculation
planeDist = norm(1)s*pos(1,k) + norm(2)*pos(2,k) + norm(3)#pos(3.,k)
rms = rms + (planeDist)=%2

END DO

rms = SQRT(rms/nsats)

plane_sig = LOG10(rms)

IF (plane_sig .1t. max_plane_sig) THEN !Most significant plane has lowest rms

max_-plane_sig = plane_sig !'Store approx, low resolution values
best_fit_vect = norm lof best fit pole and significance
pole_alpha = alpha_set !Store best fit pole for
pole_beta = beta_set 'high resolution search

END IF

plane_sig = 0.d0
ab_val = 0.d0

DO k = I, nsats !'Absolute Value of distance sum Calculation
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planeDist =
ab_val =
END DO
plane_sig = LOGIO(ab_val)
IF (plane_sig .lt.
max-plane_sig =
best_fit_vect = norm
pole_alpha = alpha_set
pole_beta = beta_set

END IF

!Replace max_plane_sig =

DO s =1, 30

sigma = REAL(s) *5.d0
plane_sig = 0.d0
DO k = I, nsats
planeDist =
like =

IF (LOGIO(like) .le.

plane_sig =
ELSE
plane_sig =
END IF
END DO
IF (plane.sig .gt.
max_plane_sig = plane_sig
best_fit_vect = norm
best_fit_sigma = sigma
pole_alpha = alpha_set
pole_-beta = beta_set
END IF
END DO

! For Fitting Maximum Asymmetry Plane

max_plane_sig) THEN

plane_sig

77777777777777777777 For Maximum Likelihood Fitting of
9999999.e0 with max_plane_sig =

abs (norm (1)*pos(1,k) + norm(2)+*pos(2,k) + norm(3)=pos(3.k))

ab_val + planeDist

!Most significant plane has lowest AbVal

!'Store approx, low resolution values

lof best fit pole and significance

!Store best fit pole for

'high resolution search

*Gaussian Plane’———————————————————

-9999999.e0 as initial value

abs (norm (1)*pos(1,k) + norm(2)+*pos(2,k) + norm(3)=pos(3.k))
exp(—(planeDist*%2.d0)/(2.d0 * sigma *x 2.d0))/ (sigma % SQRT(2.d0 * pi))
-9999.d0) THEN

plane_sig - 9999.d0

plane_sig + LOGIO(like)

max-plane_sig) THEN !Significance Calculation

!'Store approx, low resolution values

lof best fit pole, significance

!and Gaussian one sigma
!Store best fit pole for

'high resolution search

!Replace max_plane_sig = 9999999.e0 with max_plane_asymm = 0.e0 as initial value
pos_side = 0.e0 !
DO k = I, nsats !'Count satellites on
planeDist = norm(1)*pos(1l,k) + norm(2)*pos(2,k) + norm(3)=*pos(3.,k) !one side of plane.
IF (planeDist .ge. 0.d0) THEN !Satellites on the
pos-side = pos_side + 1.e0 !other side of the
END IF !plane is known
END DO lautomatically from
neg.side = nsats — pos_side !total number of sats.
IF (pos.side .gt. neg.side) THEN !
plane_asymm = pos_side !Calculate asymmetry, defined as
ELSE !the number of satellites on the side
plane_asymm = neg-side !with the most satellites
END IF !
IF (plane_asymm .gt. max_plane_.asymm) THEN
max_plane_asymm = plane_asymm !If a higher asymmetry plane is
max._asymm.vect = norm !'found, note normal vector of that
ma_pos.side = pos_side !plane as well as the satellite
ma_neg_side = neg.side !counts on each side.
pole_alpha = alpha_set !Store highest asymmetry pole for
pole_beta = beta_set 'high resolution search
END IF
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Program: Subroutines for Processing Satellite Subsets

Creation Date: 18 July 2012 (first version 26 Apr 2012) Many modifications.

Relevant Section: Ch. 5; Paper III §3.3

Notes: The three subroutines presented here essentially modify PlaneSigRMS.f95 (p. 244)
so that it can process every possible combination of a given number of satellites rather than
just the full sample. The ‘Combinations’ subroutine steps through every possible combina-
tion of the specified size (sizes of 3 through 7 satellites are shown) and for each one calls the
‘Significance’ subroutine which samples positions for each satellite in the combination and
then calls ‘MaxSigFind’ to perform the plane fitting. Note that each possible combination of
satellites is sampled ‘err_samps’ (currently set to 100 as used in §3.3 of Paper III) times so as
to account for the uncertainties in the satellite distances. Also, this code compresses storage
file size by indexing each possible pole position and then recording the number of instances
of that pole as well as the number of times each satellite contributes to that pole (information

which is used by pole vicinity_counts_satid w.f95 - p. 274).

!Code Segments for testing =xallx combinations of a particular number (nsatsub)
lof satellites possible from the total sample (total sample is 25 satellites here

las NGCI147/NGC185/AndXXX are treated as a single point).

!See ’'PlaneSigRMS.f95" for all subroutines called that are not incuded

SUBROUTINE Combinations !Finds the best fit plane to every possible combination of “nsatsub’

USE Global !'satellites. The pole of each combination’s best fit plane is converted

IMPLICIT NONE !'to M3l-centric lat. and long. and stored for plotting as a pole plot
!map on an aitoff —hammer projection.

subsetcounts = 0

RMSmin = 9999999.¢0

IF (nsatsub .eq. 3) THEN

DO s1 = 1, nsats -2
DO s2 = sl+1, nsats -1
DO s3 = s2+1, nsats

satholder (1) = sl
satholder (2) = s2
satholder (3) = s3
subsetcounts = subsetcounts + 1
CALL Significance
write(13) Actual_sig ., theta_coord, phi_coord, Actual_bfv(l), Actual_bfv(2), Actual_bfv(3), &
sl, s2, s3
END DO
END DO
END DO

ELSE IF (nsatsub .eq. 4) THEN
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E8EE

satholder (1)
satholder (2)
satholder (3)
satholder (4)

subsetcounts

sl = 1, nsats-3

s2 = sl+1, nsats -2
s3 = s2+1, nsats -1

s4 = s3+1, nsats

sl
s2
s3
s4

subsetcounts + 1

CALL Significance

write (13) Actual_sig,

theta_coord , Actual_bfv (1), Actual_bfv(2), Actual_bfv(3), &

sl, s2, s3, s4
END DO
END DO
END DO
END DO
|
ELSE IF (nsatsub .eq. 5) THEN
DO s1 = 1, nsats—4
DO s2 = sl+1, nsats -3
DO s3 = s2+1, nsats -2
DO s4 = s3+1, nsats—1
DO s5 = s4+1, nsats

satholder (1)
satholder (2)
satholder (3)
satholder (4)
satholder (5)

subsetcounts

sl
s2
s3
s4
s5

subsetcounts + 1

CALL Significance

write (13) Actual_sig ,

sl,

s2, s3, s4, s5

theta_coord , Actual_bfv (1), Actual_bfv(2), Actual_bfv(3), &

END DO

END DO

END DO

END DO

END DO

|

ELSE IF (nsatsub .eq. 6) THEN
DO sl = 1, nsats -5
DO s2 = sl+1, nsats —4
DO s3 = s2+1, nsats -3
DO s4 = s3+1, nsats -2
DO s5 = s4+1, nsats -1
DO s6 = s5+1, nsats

satholder (1)
satholder (2)
satholder (3)
satholder (4)
satholder (5)
satholder (6)

subsetcounts

sl
s2
s3
s4
s5
s6

subsetcounts + 1

CALL Significance

write(13) Actual_sig,

theta_coord , Actual_bfv (1), Actual_-bfv(2), Actual_-bfv(3), &
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95 sl, s2, s3, s4, s5, s6
96  END DO

97  END DO

98  END DO

99  END DO

100 END DO

101 END DO

102

103 !

104

105 ELSE IF (nsatsub .eq. 7) THEN
106

107 DO sl = 1, nsats—6

108 DO s2 = sl+1, nsats -5

109 DO s3 = s2+1, nsats -4

110 DO s4 = s3+1, nsats -3

111 DO s5 = s4+1, nsats -2

112 DO s6 = s5+1, nsats -1

113 DO s7 = s6+1, nsats

114 satholder (1) = sl

115 satholder (2) = s2

116 satholder (3) = s3

117 satholder (4) = s4

118 satholder (5) = s5

119 satholder (6) = s6

120 satholder (7) = s7

121 subsetcounts = subsetcounts + 1
122 CALL Significance

123 write(13) Actual_sig, theta_coord, phi_coord, Actual_bfv(l), Actual_bfv(2), Actual_bfv(3), &
124 sl, s2, s3, s4, s5, s6, s7
125 END DO

126 END DO

127 END DO

128 END DO

129 END DO

130  END DO

131 END DO

132

133 !

134

135 END IF

136

137 write(11,%) "Results:”

138 write(11,%) "Total_number_of_combinations_of”, nsatsub, “satellites:”, subsetcounts
139 write(11,%) "Best_satellite _.combination:”

140 DO i = 1, nsatsub

141 write(11, %) best_sat_combo (i)

142 END DO

143 write(11,%) “Normal_vector_of_best_fit_plane_for_this_combination:”

144 write(11,%) best_sat_-bfv(l), best_sat_bfv(2), best_sat_-bfv(3)

145 CALL Theta_Phi(best_sat_bfv (1), best_sat_.bfv(2), best_sat_bfv(3))

146 write(11,%) "Theta~and~.phi_-of_normal_.vector_of_best~fit_plane_for~this_.combination:”
147 write(11,+) "Theta_.=", theta_coord, ”;.Phi_=", phi_coord

148 write(11,%) "LOGIO(RMS)..of _best_fit_.plane_for_this_.combination:”, RMSmin

149

150 mode_counts = 0.e0 !'|| Every pole position possible is given an index and the number of times
151 DO i =1, 31 !'[la pole is recorded at that position is recorded. This greatly reduces
152 DO j =1, 120 !|| file storage size. The number of times a particular satellite contributes
153 DOk =1, 15 !'\/to a pole at each possible position is also recorded.

154 DO 1 =1, 30

155 IF (poles_per_-pos(i.j.k,1,6) .ne. 0.e0) THEN
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WRITE (17, *(31F11.5)") poles_per_pos(i,j.k,1,1), poles_per_pos(i,j.k,1,2), poles_per_pos(i,j.k,1.,3), &
poles_per_pos(i,j.k,1.,4), poles_per-pos(i,j.k,1,5), poles_per_pos(i,j.k,1,6), &
poles_per_pos(i,j,k,1,7), poles_per_pos(i,j.,k,1,8), poles_per_pos(i,j.k,1,9), &
poles_per_pos(i,j.k,1,10), poles_per-pos(i,j.k,1,11), poles_per_pos(i,j.k,1,12),
poles_per_pos(i,j,k,1,13), poles_per_pos(i,j.,k,1,14), poles_per_pos(i,j.k,1,15),
poles_per_-pos(i.,j.k,1,16), poles_per-pos(i,j.k,1,17), poles_per_pos(i,.j.k,1,18),
poles_per-pos(i,j.,k,1,19), poles_per_pos(i,j.k,1,20), poles_per_pos(i,j.k,1,21),
poles_per_pos(i.j.k,1,22), poles_per_pos(i,j.k,1,23), poles_per_pos(i,j.k,1,24),
poles_per-pos(i,j,k,1,25), poles_per-pos(i,j.k,1,26), poles_per_pos(i,j.k,1,27),
poles_per_pos(i,j,k,1,28), poles_per_pos(i,j.k,1,29), poles_per_pos(i,j.k,1,30),
poles_per_pos(i,j.k,1,31)

END IF
IF (poles_per_-pos(i.j.k,1,6) .gt. mode_counts) THEN
mode_counts = poles_per_pos(i,j.k,1,6)

pos_mpc (1) = i ; pos_mpc(2) = j ; pos.mpc(3) = k ; pos_mpc(4) = 1

END IF
END DO
END DO
END DO
END DO
x-mode = poles_per_pos(pos-mpc(1l),pos.mpc(2),pos-mpc(3).pos-mpc(4).1) !Most freq. normal vector x
y-mode = poles_per_-pos (pos-mpc(1),pos-mpc(2),pos-mpc(3),pos-mpc(4),2) !Most freq. normal vector y
z_.mode = poles_per_pos(pos_mpc(1l),pos_mpc(2),pos.mpc(3).,pos_mpc(4).3) !Most freq. normal vector z
theta_.mode = poles_per_pos(pos-mpc (1) ,pos-mpc(2),pos-mpc(3),pos_.mpc(4).4) !Most freq. pole theta
phi_mode = poles_per_pos (pos_mpc (1) ,pos_.mpc(2),pos.mpc(3),pos_mpc(4).5) !Most freq. pole phi
write(11,+) "Normal_vector_of_most_frequently _encountered._plane:”
write(11,%) x-mode, y-mode, z.mode
write(11,%) "Theta_.and_phi_of_most_frequently_encountered._pole:”
write(11,%) “Theta_=", theta_mode, ”;_Phi_=", phi_mode
write (11,%) "Number_of._instances_of_this_.pole:”, mode_counts
END SUBROUTINE Combinations
|
SUBROUTINE Significance !Finds RMS and pole of best fit plane to a given satellite combination.
USE Global !Does this for ’err_samps’ possible versions of the combination
IMPLICIT NONE 'using distances drawn from the respective satellite distance PPDs.

WRITE(16,%) “Combinations_tested_so_far:”, subsetcounts !Progress update

DO samp_it = 1, err_samps

CALL random_number (randnum) !Read one possible M3l
randnum = randnum % 2999999.e0 + 1.e0 !'distance
m31_1K_dist = M31._Dist.PPD(NINT(randnum) )

to generate
lone possible set of

!x,y,z coords

DO i =1,
IF (satholder(i) .1t.

nsatsub
24) THEN
CALL random_number (randnum)

randnum = randnum % 499999.e0 + 1.e0

sat-1K_dist(satholder(i)) = Sat_Dist(NINT(randnum) ,satholder(i))!set

ELSE IF (satholder(i) .eq.
DO j = 25, 26

CALL random_number (randnum)

24) THEN

randnum = randnum % 499999.e0 + 1.e0
sat_.1K_dist(j) = Sat_Dist(NINT(randnum),j)
END DO

IRead in one possible

!'distance for each of the
!'dwarf sph sats

!AND XXX to generate one

except

of possible distances
!Get possible distances
!for NGCI147 and NGCI185
!to combine into one point
!to represent the NGCI47,
INGCI185, AND XXX group

R RR
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217 ELSE IF (satholder(i) .eq. 25) THEN

218 CALL random_number (randnum ) !Get a possible

219 randnum = randnum % 499999.e0 + 1.e0 !'distance for

220 sat_.1K_dist(27) = Sat_Dist(NINT(randnum) ,27) IM33

221 END IF

222 END DO

223

224 DO i = 1, nsatsub !Convert distances to 3D positions for:

225 IF (satholder(i) .1t. 24) THEN !A: All the dwarf spheroidal satellites except Andromeda XXX

226

227 pos(1l,satholder(i)) = ABS(sat_1K_dist(satholder(i)) % cos(theta(satholder(i))) # tan(xi(satholder(i))))!Determine length of x
228 IF (xi(satholder(i)) .1t. 0.e0) THEN !vector for each satellite
229 pos(1l,satholder(i)) = —1.e0 * pos(l,satholder(i)) !Determine if x is positive or negative
230 END IF !

231

232 pos(2,satholder(i)) = ABS(sat_1K_dist(satholder(i)) = sin(eta(satholder(i)))) !Determine length of y vector for each satellite
233 IF (eta(satholder(i)) .I1t. 0.e0) THEN !

234 pos(2,satholder(i)) = —1.e0 * pos(2,satholder(i)) !Determine if y is positive or negative
235 END IF !

236

237 pos(3,satholder(i)) = sat_1K_dist(satholder(i)) * cos(theta(satholder(i))) — m31_1K_dist!Determine length and sign of z vector
238

239 ELSE IF (satholder (i) .eq. 24) THEN !B: The NGCI47/NGCI85/AND XXX subgroup

240 DO j = 25, 26

241

242 pos(1l,j) = ABS(sat_1K_dist(j) * cos(theta(j)) * tan(xi(j)))!Determine length of x vector for each

243 IF (xi(j) .1t. 0.e0) THEN !'satellite vector for each satellite

244 pos(l,j) = =1.e0 % pos(l,j) !Determine if x is positive or negative

245 END IF !

246

247 pos(2,j) = ABS(sat_1K_dist(j) * sin(eta(j))) !Determine length of y vector for each satellite

248 IF (eta(j) .1t. 0.e0) THEN !

249 pos(2,j) = —1.e0 = pos(2,j) !Determine if y is positive or negative

250 END IF !

251

252 pos(3.j) = sat_-1K_dist(j) * cos(theta(j)) — m31_-1K_dist !Determine length and sign of z vector

253

254 END DO

255 pos(:,24) = pos(:,25) + ((100.e0)*%(0.2e0%0.2e0)) = pos(:,26)

256 pos(:,24) = pos(:,24)/(1.e0 + (100.e0)*%(0.2e0%0.2¢0))

257

258 ELSE IF (satholder(i) .eq. 25) THEN !C: M33

259

260 pos(1,25) = ABS(sat_-1K_dist(27) * cos(theta(27)) * tan(xi(27)))!Determine length of x vector for each
261 IF (xi(27) .1t. 0.e0) THEN I'satellite vector for each satellite

262 pos(1,25) = —1.e0 = pos(1,25) !Determine if x is positive or negative
263 END IF !

264

265 pos(2,25) = ABS(sat_1K_dist(27) = sin(eta(27))) !Determine length of y vector for each satellite
266 IF (eta(27) .1t. 0.e0) THEN !

267 pos(2,25) = —1.e0 = pos(2,25) !Determine if y is positive or negative

268 END IF !

269

270 pos(3.25) = sat-1K_dist(27) = cos(theta(27)) — m31_1K_dist !Determine length and sign of z vector

271

272 END IF

273

274 END DO

275

276 CALL MaxSigFind
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278 Actual_sig = max_plane_sig
279  Actual_bfv = best_fit_vect

280

281 alpha_set = - (90.e0 — 12.5e¢0) * (pi/180.e0) !Rotate to bring back out of M3I’s inclination !

282 gamma.set = + (90.e0 — 39.8e0) % (pi/180.e0) !angle and PA (i.e. to view from above the M3l pole) !

283 ! Change
284  CALL Rotate !

285 I'to

286  Actual_bfv = MATMUL(z.rot , Actual_bfv) !Convert vectors back to how they would appear !

287 Actual_bfv = MATMUL( x.rot , Actual_bfv) lin M3l reference frame IM31
288 !

289 gamma._set = 90.e0 % (pi/180.¢0) ! !coordinate
290 ! !

291  CALL Rotate !'Additional rotation in M3l galactic longitude I'system
292 ! !

293 Actual _bfv = MATMUL( z_-rot , Actual_bfv) ! !

294

295 CALL Theta_Phi(Actual_bfv(l), Actual_-bfv(2), Actual_-bfv(3))

296

297 !'|| Every pole position possible is given an index and the number of times

298 !|la pole is recorded at that position is recorded. This greatly reduces

299 !'|| file storage size. The number of times a particular satellite contributes

300 !\/to a pole at each possible position is also recorded.

301 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best_pol_loc(3), best_pol_loc(4).,1) = Actual_bfv(l) !

302 poles_per_pos(best_pol_-loc (1), best_pol_-loc(2), best.pol_loc(3), best_pol_-loc(4),2) = Actual_-bfv(2) ! Update

303 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best_pol_loc(3), best_pol_loc(4),3) = Actual_bfv(3) !counts
304 poles_per_pos(best_pol_-loc (1), best_pol_-loc(2), best_.pol_-loc(3), best_pol_loc(4).4) = theta_coord lat a

305 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best.pol_loc(3), best_pol_loc(4).,5) = phi_coord !particular
306 poles_per_pos(best_pol_-loc (1), best_pol_-loc(2), best_-pol_-loc(3), best_pol_-loc(4).6) =& !'pole

307 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best_pol_loc(3), best_pol_-loc(4).,6) + (1.e¢0/(10.e0 =* Actual_sig)) !

308 DO i = 1, nsatsub

309 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best_-pol_-loc(3), best_pol_loc(4),6+satholder(i)) =&

310 poles_per_pos(best_pol_loc (1), best_pol_loc(2), best_pol_loc(3), best_pol_loc(4),6+satholder(i)) + (1.e0/(10.e0 ** Actual_sig))
311 END DO

312

313 IF (Actual_sig .1t. RMSmin) THEN

314 RMSmin = Actual_sig !

315 DO i = 1, nsatsub !'Store best possible satellite

316 best_sat_.combo (i) = satholder (i) !combination encountered so far

317 END DO !(i.e. the combination within lowest

318 best_sat_bfv = Actual_bfv IRMS of its best fit plane)

319 END IF !

320

321 END DO

322

323 END SUBROUTINE Significance

324

325 !

326

327 SUBROUTINE MaxSigFind !Finds best fit plane for a satellite distribution by testing goodness of fit of each
328 USE Global !'tested plane. The poles of the tested planes are all approximately equi—distant, taking
329  IMPLICIT NONE linto account the surface area of a shere as a function of latitude.

330 !A low resolution run finds the approximate location of the best fit plane’s pole and then
331 !poles around this point are searched at higher resolution.

332 par_like = 0.e0

333 max_plane_sig = 9999999.e0
334

335 !'|| Low resolution

33 !\/ plane tests

337 DOi =1, 30

338
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beta_set = REAL(i+3) = (pi/180.¢0)

DO j =1,

NINT(120.e0 % cos(beta_-set)) !The higher the latitude , the smaller the

!'number of points

alpha_set = (REAL(j)/NINT(120.e0 % cos(beta_set))) % 360.e0 = (pi/180.e0)

norm = (/ 0.e0, 0.e0,

CALL Rotate

norm = MATMUL(y_rot ,norm)
norm = MATMUL( x-rot ,norm)

plane_sig = 0.d0
rms = 0.d0
DO k = 1, nsatsub

1.¢0 /)

IRMS calculation

planeDist = norm(1)*pos(1l,satholder(k)) + norm(2)*pos(2,satholder(k)) + norm(3)#*pos(3,satholder(k))

rms = rms + (planeDist)=%2

END DO
rms = SQRT(rms/nsatsub)
plane_sig = LOGIO(rms)
IF (plane_sig .lt.

max-plane_sig = plane_sig

best_fit_vect = norm

pole_alpha = alpha_set

pole_beta = beta_set
best_pol_loc (1) =i
best_pol_-loc(2) = j
END IF
END DO
END DO

norm = (/ -1.e0, 0.e0, 0.e0 /)

plane_sig = 0.d0
rms = 0.d0
DO k = 1, nsatsub

max_plane_sig) THEN

!Most significant plane has lowest rms
!'Store approx, low resolution values
lof best fit pole and significance

!Store best fit pole for

'high resolution search

!Used for cumulative

!pole count

!Test at the actual pole (not included in above loop)

IRMS calculation

planeDist = norm(1)*pos(1l,satholder(k)) + norm(2)xpos(2,satholder(k)) + norm(3)s*pos(3,satholder(k))

rms = rms + (planeDist)#*%2
END DO
rms = SQRT(rms/nsatsub)
plane_sig = LOGIO(rms)

!'|| High resolution search
!\/ around best fit pole

IF (plane_sig .1t.

best-pol_-loc (1) = 31
best_pol_loc(2) =1

max_plane_sig = plane_sig
best_fit-vect = norm

DOi =1, 15

max_plane_sig) THEN

!Used for

!Condition not met unless the RMS at the actual pole
!was better than anywhere else in the low res search

cumulative

!pole count

beta_set = (88.5e0 + (REAL(i)/10.e0)) = (pi/180.e0)

DO j = 1, NINT(1200.e0 = cos(beta-set)) !The higher the latitude , the smaller the

!number of points

alpha.set = (REAL(j)/NINT(1200.e0 = cos(beta-set))) = 360.e0 = (pi/180.e0)

norm = (/ 0.e0, 0.e0,

1.0 /)
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CALL Rotate

norm = MATMUL(y_.rot ,norm)
norm = MATMUL( x-rot ,norm)

plane_sig = 0.d0
rms = 0.d0
DO k = 1, nsatsub

planeDist = norm(1)*pos(1l,satholder(k)) + norm(2)=pos(2,satholder(k)) + norm(3)=*pos(3,satholder(k))

IRMS calculation

rms = rms + (planeDist) %2

END DO

rms = SQRT(rms/nsatsub)
plane_sig = LOG10(rms)
max_plane_sig) THEN ! Most

IF (plane_sig .l1t.
max_plane_sig =
best_fit_vect =

best_pol_loc(3)

best_pol_loc(4) = j !pole count
END IF
END DO
END DO
ELSE
DOi =1, 11
DO j =1, 11

beta_set = pole_beta + 2.e0 x REAL(j—-6) % (0.15e¢0) = (pi/180.e0)

alpha_set = pole_alpha + 2.e0 * REAL(i-6) % (0.15e0) = (pi/180.e0) =

norm = (/ 0.e0, 0.e0, 1.e0 /)

CALL Rotate

norm = MATMUL(y.rot ,norm)

norm = MATMUL( x.rot ,norm)

plane_sig = 0.d0

rms = 0.d0

DO k = 1, nsatsub IRMS calculation
planeDist = norm(1)=*pos(1l,satholder(k)) + norm(2)=pos(2,satholder(k)) + norm(3)=*pos(3,satholder(k))
rms = rms + (planeDist)#x2

END DO

rms = SQRT(rms/nsatsub)

plane_sig = LOGIO(rms)

IF (plane.sig .l1t. max.plane_sig) THEN !Most significant plane has
max_plane_sig = plane_sig !'Store final , high resolution values
best_fit_vect = norm lof best fit pole and significance
best_pol_-loc(3) =i !Used for cumulative
best_pol_loc(4) = j !pole count

END IF

END DO
END DO
END IF

END SUBROUTINE MaxSigFind

plane_sig !'Store final , high

norm lof best fit pole and

i

!Used for cumulative

significant

plane has

resolution values

significance

lowest

(1.e0/cos(beta_set))

lowest

rms

rms
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Program: PlaneSigSubSets_RandReal4 _noGroup.f95

Creation Date: 3 Oct 2012 (first version 26 Apr 2012) Many modifications.

Relevant Section: Ch. 5; Paper III §3.1, §3.2, §3.4

Notes: This program is designed specifically for finding the most planar combination of large
subsets of satellites. It can only be used where we do not require a measurement for every
possible subset (i.e. a pole distribution map). In this program, the ‘MaxSigFind’ subroutine
is completely different to the version seen in PlaneSigRMS.f95 (p. 244). It throws down
10, 000 random planes and finds the closest ‘nsatsub’ (15 in this case) satellites to the tested
plane out of the full sample (nsats = 27) and records the associated RMS. That combination
which is fit with the lowest RMS is then taken to approximate the most planar sub set. Note
that the ‘RandomPoints’ subroutine presented here is also substantially different to that in
PlaneSigRMS.f95 as it represents each satellite by a distance distribution containing 1, 000

possible positions along the line of sight from Earth.

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

INTEGER :: i, j, k., 1, s, mm, ios, idum = -9999, it, nit

INTEGER :: ndata.max, nsats, nsatsub, subsetcounts

PARAMETER (ndata.max = 10000000)

PARAMETER (nsats = 27)

PARAMETER (nit = 10000)

PARAMETER (nsatsub = 15)

REAL+8 :: pi

PARAMETER (pi = ACOS(-1.¢0))

REAL :: randnum, sig(nit), norm(3), best_fit_vect(3), best_fit_sigma

REAL :: pos(3,ndata_max), temp_pos(3)

REAL :: a(ndata.max), b(ndata_max), c(ndata.max), d(ndata-max)

REAL :: a_hist(201,2), b_hist(201,2), c-hist(201,2), d_-hist(2001,2)

REAL :: logL, LikeA, LikeB, r, p(4)., p-temp(4), min.sigma, max_sigma
REAL#8 :: sigma, planeDist, like, plane.sig, rms, min.rms, rms_average(nit)
REAL :: max_plane_sig, RMSmin, Actual_sig, Actual_bfv(3), best_sat_bfv(3), Actual_bfs
INTEGER :: dummy, sat_pick(27)

REAL :: Sat_Dist(500000,nsats), Sat_Pos(nsats,2), xi(nsats), eta(nsats), theta(nsats), M31_Dist.PPD(3000000)
REAL :: Sat.Dist.change(nsats), new_Earth_Dist, Sat_Dist_store

REAL :: art_xi(nsats), art_eta(nsats), art_theta(nsats)

REAL+8 :: RA, DEC, xi-dble, eta_dble

REAL :: xi_test, eta_-test, theta_test, SAP_xi(134), SAP_eta(134), spotR
REAL :: Best-Sat_Dist(nsats)

REAL :: m31_dist

REAL :: alpha_set, beta_set, gamma.set, pole_alpha, pole_beta

REAL :: x.rot(3.,3), y-rot(3.,3), z-rot(3.,3)

REAL :: par_like (180,6)

REAL :: theta_coord, phi-coord

REAL :: poles_per_pos(31,120,15,30,6) = 0.e0

INTEGER :: best_pol_-loc (4)

INTEGER :: sl, s2, s3, s4, s5, s6, s7, s8, s9, sl0, sll, sl2, slI3

INTEGER :: sl4, sl15, sl6, sl17, s18, s19, s20, s21, s22, s23, s24, s25, s26
INTEGER :: satholder(nsats), best.sat_.combo(nsats), pos-mpc(4)
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REAL :: x_mode, y.-mode, z_mode, theta_mode, phi_mode, mode_counts

CHARACTER :: argv#30, folder=100, string=200, string2=200, command*200, subsize =3,
LOGICAL :: new._sats

REAL :: closest-sats (nsatsub)

INTEGER :: closest_sats_id (nsatsub), best_sats (nsatsub), u

END MODULE Global

PROGRAM PlaneSignificance ! Master program
USE Global
IMPLICIT NONE

WRITE (subsize ,*) nsatsub

itnum 5

WRITE (folder ,+) ’*Plane_Stats_’ // TRIM(ADJUSTL(subsize)) // ’_sats_RandReal_weighted’!Create

WRITE (string ,+) °./° // TRIM(ADJUSTL(folder))

WRITE (command ,+) *mkdir.’ // TRIM(ADJUSTL(folder))

CALL system (command)

CALL random_seed !Insure random seed for random numbers

CALL SampledDist !Get sampled

CALL FixedDist !'satellite distances
CALL BorderGet !Get PAndAS survey boundary points
string2 = TRIM(ADJUSTL( folder)) // ’/sat_pos.dat’ !Positions of satellites

OPEN(12, file=TRIM(ADJUSTL(string2)), status = ‘unknown’) !Random Realizations

string2 = TRIM(ADJUSTL( folder)) // */RMS.’ // TRIM(ADJUSTL(subsize)) // ’_sats.dat’
OPEN(13, file=TRIM(ADJUSTL(string2)), status = “unknown’)

rms_average = 0.e0 !
!Principal loop which
DO it = 1, nit ! Generates ’nit’
CALL RandomPoints Irandom realizations
rms_average (it) = rms_average (it)/REAL(1000) land finds average RMS
WRITE (13, °(2F16.5)") REAL(it), rms.average(it) !for best fit plane of
CALL Flush(13) !Empty buffer I'most planar satellite
END DO !combination in each

string2 = TRIM(ADJUSTL( folder)) // ’/sig_-PPD.ps/CPS’

CALL HistoPlot(nit,101 ,REAL(rms_average), RMS_(kpc)’,  Probability’, TRIM(ADJUSTL(string2)).

WRITE (command,*) ’convert_—rotate.90." // TRIM(ADJUSTL(folder)) // &
*/sig-PPD.ps.’ // TRIM(ADJUSTL(folder)) // &
"/sig-PPD.jpg’

call system (command)

CLOSE(11) ; CLOSE(12) ; CLOSE(13) ; CLOSE(15) : CLOSE(17)

END PROGRAM PlaneSignificance

SUBROUTINE RandomPoints !Generates a random realization containing nsats satellites

!primary

loutput

!'directory

!Best Plane RMS

loutput

file

.true.)
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USE Global !Each satellite
IMPLICIT NONE !positions
! This routine

! ’PlaneSigRMS . {95

!for each

LOGICAL ::
DOUBLE PRECISION ::

in_poly
sla_DSEP

CALL random_number (randnum)

randnum = randnum * 2999999.e0 + 1.e0
m31_dist = M31_Dist_.PPD(NINT(randnum))

DO i = 1, nsats

2 CALL random_number (randnum)

sat_pick (i) =

CALL random_number (randnum)

randnum = randnum * 499999.e0 + 1.e0

Sat_Dist (NINT(randnum) ,sat_pick (i))

Sat_Dist_store =

pos(l.,i) = ABS(Sat_Dist_store

along the

is

artificial

1 + NINT(randnum=+REAL(nsats — 1))

# cos(theta(sat_pick(i))) =

is represented by 1,000 samples of possible

line of sight from Earth.

different to that of the same name in

which includes only 1 possible position

satellite

!Draw a random satellite

tan(xi(sat_pick(i)))) !Determine length of x vector for each

IF (xi(sat-pick(i)) .It. 0.e0) THEN !

pos(l,i) = —1.e0 = pos(l,i) !Determine if x is positive or negative
END IF !
pos(2,i) = ABS(Sat_Dist_store #* sin(eta(sat.pick(i)))) !Determine length of y vector for each satellite
IF (eta(sat_pick(i)) .It. 0.e0) THEN !

pos(2,i) = —l.e0 = pos(2,i) !Determine if y is positive or negative
END IF !
pos(3.,i) = Sat_Dist_store * cos(theta(sat_pick(i))) — m3I_dist !Determine length and sign of z vector
pos(3,i) = SQRT((pos(l,i)*%2.e0) + (pos(2,i)*%2.e0) + (pos(3,i)*x2.e0)) !Rotate position vector to point

pos(l,i) = 0.e0 ; pos(2,i) = 0.e0

CALL random_number (randnum)

alpha_.set = randnum = 360.e0 = (pi/180.e0)

CALL random_number (randnum)
beta_set = ASIN(randnum)

CALL random_number (randnum)

IF (randnum .1t. 0.5e0) THEN
beta_set = beta_set

ELSE
beta_set = —beta_set

END IF

CALL Rotate

pos(:,i) = MATMUL(y-rot ,pos(:,i))
pos(:,i) = MATIMUL(x_.rot ,pos(:,i))

xi-test = ATAN(abs(pos(1,i))/(m31._dist + pos(3,i)))

lalong z-axis

!

!Pick random longitude

!Pick random latitude between 0 and 90 weighted
!'by area of a sphere as a function of latitude
!
!Re—assign latitude as
1
!'—-1 * latitude in
!
150% Of cases
!Rotate to the chosen
!random angle
!Convert
!new random
!position
!vector

eta_test = ATAN(abs(pos(2,i))/SQRT(pos(1l,i)#**2 + (m31_dist + pos(3,i))*%2))!into

IF (pos(l.i) .lt. 0.e0) THEN
xi_-test = —xi_test

END IF

IF (pos(2,i) .1t. 0.e0) THEN
eta_-test = —eta-test

!non t.p.

leta and

satellite
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END IF ! xi

art_xi(i) = xi_test !

art_eta(i) = eta-test !Store position on sky of
xi-dble = art_xi(i) !randomly oriented satellite
eta_-dble = art_eta (i) !for 1000 samples.

art_theta(i) = sla_DSEP(0.d0, 0.d0, xi-dble, eta_-dble) !

new_Earth_Dist = abs(pos(2,i))/sin(abs(eta_-test)) !Calculate new distance of sat from Earth

Sat_Dist_.change (i) = new_Earth_Dist — Sat_Dist_store !Calculate the difference between

!Earth distances for each satellite
RA = xi_test !
DEC = eta_test !Use sla_DS2TP
!to convert true

CALL sla_DS2TP (RA, DEC, 0.d0, 0.d0, xi.dble, eta.dble, j) !'eta amd xi to

!'their tangent
xi_-test = xi.dble * (180.e0/pi) !plane projections
eta_-test = eta_dble * (180.e0/pi) !

IF (in_poly(xi-test ,eta_test ,134 SAP_xi,SAP_eta)) THEN

ELSE
goto 2
END IF

((xi-testxcos(51.9d0xpi/180.d0) + eta_test*sin(51.9d0xpi/180.d0))=%2 / 6.25d0) + &
1.d0)

spotR =
((xi-testxsin(51.9d0*pi/180.d0) — eta_testxcos(51.9d0xpi/180.d0))=x%2 /
IF (spotR .le. 1.e0) THEN
goto 2
END IF
END DO
new._sats =

CALL MaxSigFind

.true .
new.sats = .true.

DO j = 1, 999

CALL random_number (randnum)

randnum = randnum * 2999999.e0 + 1.e0
m31_dist = M31_Dist_.PPD (NINT(randnum))
DO i = 1, nsats

CALL random_number (randnum)
randnum * 499999.e0 + 1.e0
Sat_Dist (NINT(randnum) ,sat_pick (i)) + Sat_Dist_change (i)

randnum =

Sat_Dist_store =

pos(1,i) = ABS(Sat_Dist_store * cos(art_theta(i)) = tan(art_xi(i))) !Determine length of
IF (art_xi(i) .1t. 0.e0) THEN !

pos(l,i) = —1.e0 = pos(l,i) !Determine if x is
END IF !
pos(2,i) = ABS(Sat_Dist_store * sin(art.eta(i))) !Determine length of y vector for each
IF (art_eta(i) .It. 0.e0) THEN !

pos(2,i) = —1.e0 % pos(2,i) !Determine if y is
END IF !
pos(3.,i) = Sat_Dist_store * cos(art_theta(i)) — m31_dist !Determine length and

END DO

! Adjust drawn Earth

after rotation

the new and old

!Re—generate
!the new
!randomized
!'satellite
!position if
!the current
!choice doesn’t
!fall
!'the PAndAS

within

!footprint
las viewed

!from Earth

distance for new position

x vector for each satellite

positive or negative

satellite

positive or negative

sign of z vector
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CALL MaxSigFind
END DO

END SUBROUTINE RandomPoints

!"Rotate’ Subroutine — See

*PlaneSigRMS . f95°

SUBROUTINE MaxSigFind
USE Global tof

!Finds the

best fit

‘nsatsub ’

plane through the combination

This is

#most planar*

satellites . achieved by “throwing in” 10,000

IMPLICIT NONE !random planes and determining the ’nsatsub’ closest satellites to
leach plane and the associated RMS.
min_rms = 9999.e0
DO i = 1, 10000
IF (new_sats) THEN
closest_sats = 999.e0 !If finding the best fit combo each time
closest_sats_id = 0 !reset these parameters
ELSE
closest_sats_id = best_sats
END IF
norm = (/ 0.e0, 0.e0, 1.e0 /)

CALL random_number (randnum)

alpha_set = randnum % 360.e0 * (pi/180.e0)

!Pick random longitude

CALL random_number (randnum) !Pick random latitude between O and 90 weighted
beta_set = ASIN(randnum) !by area of a sphere as a function of latitude
CALL random_number (randnum) !
IF (randnum .1t. 0.5e0) THEN !Re—assign latitude as
beta_set = beta_set !
ELSE !'—-1 % latitude in
beta_set = —beta_set !
END IF 150% 0f cases
CALL Rotate
norm (:) = MATMUL(y.rot ,norm(:)) 'Rotate to the chosen
norm (:) = MATMUL( x.rot ,norm (:) ) !random angle
IF (new_sats) THEN
DO k = 1, nsats !
planeDist = abs(norm(1)s*pos(l,k) + norm(2)s*pos(2,k) + norm(3)=*pos(3.,k)) !
IF (planeDist .1t. MAXVAL(closest_sats)) THEN !Find the closest ’nsatsub’

u = MAXLOC(closest-sats , DIM = 1)

closest_sats(u) = planeDist

closest_sats_id(u) = k
END IF
END DO
END IF
rms = 0.d0 !

DO k = 1, nsatsub

planeDist = abs(norm(1l)*pos(l,closest_sats_id(k)) + norm(2)=*pos(2,closest_sats_id(k)) + norm(3)=*pos(3.,closest_sats_id(k)))

rms = rms + (planeDist)*%2 !
END DO !
rms = SQRT(rms/nsatsub) !

IF (rms .1t. min.rms) THEN

! Measure

!'satellites to the currently

!tested plane
|

the RMS for the plane based on the closest ’nsatsub’ satellites
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min_rms = rms I'If the RMS is the
best_sats = closest_sats_id !lowst encountered so far
END IF I'then store it
END DO !
rms_average (it) = rms.average(it) + min.rms !min_.rms is now a good approximation to the lowest

END SUBROUTINE MaxSigFind

!"Theta_Phi’ Subroutine — See ’'PlaneSigRMS.{95"

!”HistoPlot > Subroutine — See ’PlaneSigRMS. 95"

!logical function in_poly(x,y,np.,xp,yp) omitted — see MF.TRGB.f95 in preceding appendix
!real function fimag(x0,xs,xe,y0,ys,ye) omitted — see MF.TRGB.f95 in preceding appendix

!”SampledDist” Subroutine — See ’PlaneSigRMS.f95"

!’FixedDist’ Subroutine — See ’PlaneSigRMS.f95"

!The function of this subroutine is to read in the best fit satellite positions
!(as opposed to the positions generated from sampled satellite distances). This
!'subroutine is not included specifically in ’'PlaneSigRMS.f95" but it’s functions
lare performed at the beginning of the ’Significance’ subroutine and at the end

!of the ’SampledDist’ subroutine

!”BorderGet’ Subroutine — See ’PlaneSigRMS.f95"

possible for

the

tested sample
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Program: pole_vicinity_counts_satid_w.f95

Creation Date: 24 June 2012

Relevant Section: Ch. 5; Paper III §3.3

Notes: This is an analysis program for handling pole distribution maps from the real data, as
produced using Subroutines for Processing Satellite Subsets (p. 260). A similar program was
written to process the individual pole distribution maps from the many random realizations
of satellites, which are then averaged. The code in this program performs two main tasks.
The first is to generate a density profile for all poles falling within 15° of the most frequent
pole location (e.g. Fig. 12 in Paper III). The second is to produce a histogram showing the
extent to which each satellite has contributed to the most frequent pole (e.g. Fig. 13 in Paper

I0).

MODULE Global !Defines all variables
IMPLICIT NONE

INTEGER :: i, j, k, ios
REAL :: counts, angle, err_samps, rad_bins(15,2) = 0.e0, sat_counts (25,2)
REAL :: max._counts, pole_-theta_.mode , pole_phi_mode

PARAMETER( err_samps = 100.¢0)

REAL+8 :: dummy, best_theta , best_phi, pole_theta, pole_phi, pi
PARAMETER( pi = acos(-1.d0))

REAL :: ncombos = 53130.e0
REAL :: cum_pole_count

REAL :: sat(25)

LOGICAL :: cumulative
PARAMETER( cumulative = .true.)

END MODULE Global

PROGRAM pole_vicinity_counts !Counts number of poles within ’x’ degrees of the best—fit pole
USE Global !where x is an integer such that 1 .ge. x .ge. 15
IMPLICIT NONE !Counts are divided by the number of samples of each combination

DOUBLE PRECISION :: sla_DSEP

best_theta = 38.37154d0 ; best_phi = -78.7439d0 !lat and long of most freq pole

!best_theta = 9.9d0 ; best_phi = -87.9d0 !lat and long of blob

!'||Open file with

!'\/pole positions

OPEN(unit = 11, file="Sat_Combo_Planes/Plane_Stats_5_sats_err-weighted/poles_per_pos_5_sats.dat’, status = ’old’)
DOi =1, 15 !degree

rad_bins(i,1) = REAL(i) !values
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END DO tof bin
best_theta = best_theta % (pi/180.d0) !Convert to
best_phi = best_phi * (pi/180.d0) !radians

cum_pole_count = 0.e0

i=1i+1
!'||Read in pole positions and satellite
!\/contributions at that position

READ (11, =%, IOSTAT = ios) dummy, dummy, dummy,
sat (1), sat(2), sat(3),
sat(11), sat(12), sat(13),

sat(21), sat(22), sat(23),

pole_theta , pole_phi, counts, &

sat(4), sat(5), sat(6), sat(7), sat(8),
sat(14), sat(15), sat(16), sat(17),
sat(24), sat(25)

cum-pole_count = cum-_pole_count + counts

IF (counts .gt. max_counts) THEN

max._counts = counts
pole_theta_mode = pole_theta
pole_phi_mode =

END IF

pole_phi

pole_theta = pole_theta % (pi/180.d0) !Convert to

pole_phi = pole_phi = (pi/180.d0) !radians

!'|| Measure angular distance between current

!\/pole and best—fit pole (uses SLALIB)
angle = sla_DSEP(best_phi, best_theta, pole_phi, pole_theta)
angle = angle * (180.d0/pi) !Convert back to degrees
!'|| Find angular distance bin to put
!'\/pole into (if it is within 15 degrees)
IF (angle .le. 1.e0) THEN
rad_bins (1,2) = rad_bins(1,2) + counts
DO k =1, 25 !Count number of
sat_counts (k,2) = sat_counts(k,2) + sat(k) !contributions to this
END DO !pole from each satellite
ELSE IF (angle .gt. 1.e0 .and. angle .le. 2.e0) THEN
rad_bins (2.,2) = rad_bins(2,2) + counts
DO k =1, 25 !Count number of
sat_counts (k,2) = sat_counts(k,2) + sat(k) !contributions to this
END DO !pole from each satellite
ELSE IF (angle .gt. 2.e0 .and. angle .le. 3.e0) THEN
rad_bins (3,2) = rad-bins(3,2) + counts
DO k =1, 25 !Count number of
sat-counts (k,2) = sat-counts(k,2) + sat(k) !contributions to this
END DO !pole from each satellite
ELSE IF (angle .gt. 3.e0 .and. angle .le. 4.e¢0) THEN
rad_bins (4,2) = rad-bins(4,2) + counts
ELSE IF (angle .gt. 4.e0 .and. angle .le. 5.e0) THEN
rad_bins (5,2) = rad-bins(5,2) + counts
ELSE IF (angle .gt. 5.e¢0 .and. angle .le. 6.e¢0) THEN

rad_bins (6,2) = rad-bins(6,2) + counts

sat(9),
sat(18),

sat(10),
sat(19),

&

sat(20), &
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ELSE IF (angle .gt. 6.e0 .and. angle .le. 7.e0) THEN
rad_bins (7,2) = rad-bins(7,2) + counts

ELSE IF (angle .gt. 7.e0 .and. angle .le. 8.e0) THEN
rad_bins (8,2) = rad-bins(8,2) + counts

ELSE IF (angle .gt. 8.e0 .and. angle .le. 9.e0) THEN
rad_bins (9,2) = rad-bins(9,2) + counts

ELSE IF (angle .gt. 9.e0 .and. angle .le. 10.e0) THEN

rad_bins (10,2) = rad_bins (10,2) + counts

ELSE IF (angle .gt. 10.e0 .and.
rad_bins (11,2) = rad_bins(11,2) + counts

ELSE IF (angle .gt. 11.e0 .and. angle .le. 12.e0) THEN
rad_bins (12,2) = rad_bins(12,2) + counts

ELSE IF (angle .gt. 12.e0 .and. angle .le. 13.e0) THEN
rad_bins (13,2) = rad_bins (13,2) + counts

ELSE IF (angle .gt. 13.e0 .and. angle .le. 14.e0) THEN
rad_bins (14,2) = rad_-bins(14,2) + counts

ELSE IF (angle .gt. 14.e0 .and. angle .le. 15.e0) THEN
rad_bins (15,2) = rad_-bins (15,2) + counts

END IF

angle .le. 11.e0) THEN

!'/\Find angular distance bin to put

!'|I pole into (if it is within 15 degrees)

!'|| Chack for

!'\/end of file

IF (ios == —1) THEN
i=1-1
exit

ELSE IF (ios .gt.
WRITE (*,%) i

0) THEN
i=i-1
cycle

END IF

END DO

WRITE (*,%) “Most.frequent_.pole_at_theta_=", pole_theta_mode ,

ncombos = cum-pole_count/ err_samps

rad_bins (:,2) = rad_bins (:,2)/ err_samps

sat_counts (:,2) = sat_counts (:,2)/err_samps
DO i =1, 25

sat_counts (i,1) = REAL(i)
END DO

IF (cumulative) THEN

"phi_=", pole_phi_mode, ”with”, max_counts, “counts.”

!Divide by number of samples.

DO i =2, 15 !
rad_bins (i,2) = rad_bins(i,2) + rad_bins(i—-1,2) !Convert to cumulative counts
END DO !
END IF
DO i =1, 15 !Print number
WRITE (%, *(3F16.5)") rad_bins(i,l), rad_bins(i,2), & lof poles

(rad-bins (i,2)/ncombos) * 100.e0
END DO

IF (cumulative) THEN

!between x-1 and

'x (< 15) degrees

WRITE (*,%) “Total_.poles_within_l15_.degrees_of_best—fit_pole:”, rad_bins(15,2), &
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ELSE

WRITE (=

END IF

WRITE (s ,x)
WRITE (+ )

WRITE (+

END DO

”(”, (rad_bins (15,2)/ncombos) =*

"(2F16.5) ")

sat_counts (i,1),

100.e0,

! || Make histogram

!\/one degree wide annuli

CALL pgbegin (0, pole_-sat_prof_err-w.ps/CPS’,1,1)

around

of average pole density

the most

,#) "Total_poles_within_15_degrees_of_best—fit_pole:”,
(7, (SUM(rad-bins (:,2))/ncombos) *

“Contributions _from_each_satellite _to_a_pole_within_3_degrees_of_most_frequent_pole:.”

sat_counts (i,2) !pole within 3 degrees

15 nested

frequent pole

!CALL pgbegin (0,  pole_sat_prof_err_w_blob.ps/CPS’,1,1)

CALL pgenv (0.,15.,0.,1.1+*MAXVAL(rad_-bins (:,2))/ncombos,

CALL pgbin (15,

IF (cumulative) THEN

CALL pglab(’Degrees’,

ELSE

CALL pglab(’Degrees’,

END IF

CALL

pgend

!/\Make histogram of

!'||one degree wide

rad_bins (:,1) -0.5,

rad_bins (:,2) /ncombos,

*Cumulative_Probability >, ")

*Probability ”,” ")

annuli

average

around

pole density

the most

CLOSE(11)

!'|| Make histogram

!'\/with in

CALL pgbegin(0,’ pole_sat_cont_err_w.ps/CPS’,1,1)

degrees

location

of contributions

of the

of each

satellite

of most frequent

15 nested

frequent pole

!CALL pgbegin (0,  pole_sat_cont_err_-w_blob.ps/CPS’,1,1)

CALL
CALL
CALL

CALL

CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

pgsvp(0.1,0.9,0.1,0.9)

pgswin (0.5,25.5,0.,1.1«*MAXVAL(sat_counts (:,2)))
pgbox (’BCST” ,0.0,0, 'BCNST’

pgbin (25,

pglab(’’, counts’,
PGPTXT (1.15, -1.,
PGPTXT (2.15, —1.
PGPTXT (3.15, -1.
PGPTXT (4.15, —1.
PGPTXT (5.15, —1.
PGPTXT (6.15, —1.
PGPTXT (7.15, —1.
PGPTXT (8.15, -1.,
PGPTXT (9.15, —1.

)

90
90
90
90
90
90
90
90
90

o o o o o o o oo

sat_counts (:,1),

1
1

1

.0.0.0)

sat_counts (:,2),

.true .)

%) )

SUM(rad_bins (:,2)), &
100.e0,

number of contributions

to a pole

pole
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CALL PGPTXT (10.15, —1., 90.0, 1.0, 'XIV’)
CALL PGPTXT (11.15, —1., 90.0, 1.0, 'XV’)
CALL PGPTXT (12.15, —1., 90.0, 1.0, 'XVI’)
CALL PGPTXT (13.15, —1., 90.0, 1.0, 'XVII’)
CALL PGPTXT (14.15, —1., 90.0, 1.0, *XVIII’)
CALL PGPTXT (15.15, —1., 90.0, 1.0, 'XIX’)
CALL PGPTXT (16.15, —1., 90.0, 1.0, 'XX’)
CALL PGPTXT (17.15, —1., 90.0, 1.0, 'XXI")
CALL PGPTXT (18.15, —1., 90.0, 1.0, 'XXII’)
CALL PGPTXT (19.15, —1., 90.0, 1.0, ’XXIII)
CALL PGPTXT (20.15, —-1., 90.0, 1.0, 'XXIV’)
CALL PGPTXT (21.15, —1., 90.0, 1.0, 'XXV’)
CALL PGPTXT (22.15, —1., 90.0, 1.0, 'XXVI’)
CALL PGPTXT (23.15, —1., 90.0, 1.0, *XXVII’)
CALL PGPTXT (24.15, —1., 90.0, 1.0, ’group’)
CALL PGPTXT (25.15, —1., 90.0, 1.0, 'M33")

CALL pgend

!/\Make histogram of contributions of each satellite to a pole

!'|lwith in 3 degrees of the location of most frequent pole

END PROGRAM pole_vicinity_counts
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Program: aitoff hammer.f95

Creation Date: Cir. May 2012 Many versions

Relevant Section: Ch. 5 (Paper III aitoff-hammer plots)

Notes: This program illustrates the way in which the aitoff-hammer plots were produced. I
wrote several versions but that presented here is the one used for the standard plots which
show the plane member satellites, the great circle on the sky representing the plane, and the
pole and anti-pole of the plane (see Fig. 15 of Paper III for example). The aitoff-hammer grid
is produced by first making a rectangular grid of a large number of points along the desired
lines of latitude and longitude and then transforming the x and y of the points via a Hammer
projection. The points are then linked up to produce the final grid. All positions in Paper
III (satellites and plane poles) are actually calculated first in the Cartesian coordinate system
of Fig. 4.1, rotated into the M3 1-centric reference frame, converted to Spherical coordinates

and then finally transformed into their equivalent Hammer projection locations for plotting.

MODULE Global !Defines all variables
IMPLICIT NONE

INTEGER :: i, j, s, idum = -9999, nit, seam_loc, color(29), nsats
PARAMETER( nit = 1000000)
PARAMETER( nsats = 27)

REAL :: pi
PARAMETER( pi = acos(-1.e0))

REAL :: sat_xyz(29.3)

REAL :: theta_coord, phi-coord

REAL :: theta(29), phi(29), theta_t(28), phi_t(28)
REAL :: theta_ah , phi_ah

REAL :: alpha_set, beta_set, gamma._set

REAL :: x.rot(3.,3), y-rot(3.,3), z_rot(3.,3)

REAL :: pole(2), pole2(2), gc(361,2), gc-t(361,2)
REAL :: cart_hold(361.3), pole_cart(3), gc_cart(361,3)
REAL :: seam_val

REAL :: Best_Sat_Dist(27), Sat_Pos(27,2), xi(27), eta(27), m31_dist
REAL=+8 :: RA, DEC, xi-dble, eta_-dble

END MODULE Global

PROGRAM aitoff_hammer_proj !Master program
USE Global
IMPLICIT NONE

CALL sat_xyz._data
CALL aitoff _hammer

END PROGRAM aitoff_hammer_proj
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SUBROUTINE aitoff_hammer !Produce the plot
USE Global
IMPLICIT NONE

INTEGER :: it.i, it.j, it_k

REAL :: lat(181,2,13), lon(181,2,13), lat_t(181,2,13), lon_t(181,2,13)

!Note lat and lon are lines of constant latitude and longitude
!respectively , each made up of 181 dots

!lat(:,1,:) is the longitude of the dot

!lTat(:,2,:) is the latitude of the dot

!So lon(81,1,3) is the longitude of the 81st dot of the 3rd parallel
!'Tt has a value of +120 (i.e. the fixed longitude of this parallel)
!lon(81,2.,3) has a value of —10 i.e. the latitude of the dot along
!'this line of longitude.

!

!lTat_t and lon_t store the lat and lon values before their conversion

!to the aitoff hammer projection.

lon(:,1,1) = 180.e0
lon(:,1,2) = 150.e0
lon(:,1,3) = 120.e0
lon(:,1,4) = 90.e0
lon(:,1,5) = 60.e0
lon(:,1,6) = 30.e0
lon(:,1,7) = 0.e0

lon(:,1,8) = =30.e0
lon(:,1,9) = —-60.e0
lon(:,1,10) = =90.e0
lon(:,1,11) = —120.e0
lon(:,1,12) = —-150.e0
lon(:,1,13) = —-180.e0

lat(:,2,1) = 90.e0
lat(:,2,2) = 75.¢0
lat (:,2,3) = 60.e0
lat(:,2,4) = 45.¢0
lat(:,2,5) = 30.e0
lat(:,2,6) = 15.¢0
lat(:,2,7) = 0.e0

lat(:,2,8) = —15.e0
lat (:,2,9) = —30.e0
lat(:,2,10) = —-45.¢0
lat (:,2,11) = —60.e0
lat(:,2,12) = -75.¢0
lat (:,2.13) = —90.¢0

DO it.i = 1, 181
lon(it.i ,2,:) = REAL(it_i — 91)
lat(iti ,1,:) = REAL((2 = it_i) — 182)

END DO

lon = lon * (pi/180.e0) ; lat = lat = (pi/180.e0) !Convert to radians

lon_t = lon ; lat_t = lat

DO it_i =1, 13 !The conversion to an aitoff—

DO it_j =1, 181 'hammer projection



97
98
99
100
101
102
103

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

281

lon(it_j .1,it_i) = 2.e0 + SQRT(2.e0)

SQRT(1.e0 +

lon(it_j .2, it_i)

SQRT(1.e0 +

lat (it_j ,1.it_i)

SQRT(1.e0 +

lat(it_j .2, it_i)

END DO
END DO

SQRT(1.e0 +

cos(lon-t(it-j ,2,it_i)) = cos(lon_t(it_j ,1,it_-i)/2.e0))

= SQRT(2.e0) * sin(lon_t(it_j ,2,it_i)) / &

cos(lon_t(it.j ,2,it-i)) * cos(lon_t(it_j ,1,it-i)/2.e0))

= 2.e0 % SQRT(2.e0) * cos(lat_t(it_j ,2,it_i)) = sin(lat_t(it_j
cos(lat_t(it.j ,2,it-i)) * cos(lat_t(it_j  ,1,it-i)/2.e0))

= SQRT(2.e0) * sin(lat_t(it_j ,2,it_i)) / &

cos(lat_t(it_j ,2,it_i)) * cos(lat_t(it_j ,l,it_i)/2.e0))

!'|| Plotting

1\/ Code

CALL pgbegin (0,

CALL pgenv(-1.0 * pi,

DO it.i =

DO it_j

CALL pgline (2,
CALL pgline (2,

END DO
END DO

1, 13
=2, 181

*sat.combo_15_sats.ps/CPS’ ,1,1)

1.0 = pi, =05 % pi, 0.5 % pi, 1, =2)

(Jlon(it_j — I, 1, it_i), lon(it.j . I, iti)/). (/lon(it_j — I,
(Jlat(it.j — 1, 1, it-i), lat(it.j . 1, it-i)/). (/lat(it_j — 1.

!This segment takes the normal vector of the best fit plane, finds the corresponding

!pole, anti-pole and great—circle in lat., long. and then converts all to an aitoff

!~hammer projection.

pole_cart

color (1)
color(2)
color (3)
color (4)
color (5)
color (6)
color (7)

color(29)

These are then plotted on the aitoff —hammer sphere.

= (/ 0.15819097, 0.76853156, 0.61994755 /) !x,y.z of normal vector to BFP

2 ; color(8) =2 ; color(l5) =1 ; color(22) =2
1 : color(9) =2 color(16) =1 ; color(23) =2
2 ; color(10) = 2 ; color(17) =1 ; color(24) =2 '8
1 ; color(ll) =1 ; color(18) =1 ; color(25) =2 !8
2 5 color(12) =2 ; color(19) =1 :; color(26) =2 !8
1 3 color(13) =2 ; color(20) =1 ; color(27) =1

2 ; color(14) =1

= 2 !Colour

color(21) =2 : color(28) =1

for the NGC147/ NGCI185/ AND XXX group midpoint icon

CALL Theta_Phi(pole_cart(l), pole_cart(2), pole.cart(3)) !

!Convert to

pole (1) = theta_coord !lat, long
pole(2) = phi_coord !
pole2(1) = —1.e0 * pole(l) !
pole2(2) = pole(2) + 180.e0 !Find latitude and
IF (pole2(2) .gt. 180.e0) THEN !longitude of anti-pole
pole2(2) = pole2(2) - 360.e0 !
END IF !
DO i =1, 361 !Find x,y,z of vectors perpendicular

ge_cart(i,l) = cos(REAL(i—-181) * (pi/180.e0)) !to pole_cart — i.e. cartesian
gc-cart(i,2) = sin(REAL(i-181) * (pi/180.e0)) !coordinates of best fit plane!!!ItI11I1II1t

L1

2,
2,

i),

itoi),

ge_cart(i,3) = —1l.e0 = (pole_cart(1l) % gc_cart(i,l) + pole_cart(2) * gc_cart(i,2))/ & !

pole_cart(3)

ge-cart(i,:) = gc_cart(i,:)/ SQRT(gc_cart(i,l)=*%2.e0 + gc_cart(i,2) *x 2.e0 + &

ge-cart(i,3)=*%2.e0)

!
!

!

# cos(lon_t(it_j.,2,it_i)) * sin(lon_t(it_j ,1,it_i)/2.e0) / &

Litli)/2.e0) / &

lon(it-j ,

lat(it_j ,

2
2

it-i)/))
itii)/))
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seam._val = pi

DO i =1, 361

CALL Theta_Phi(gc-cart(i,l), gc-cart(i,2), gc-cart(i,3)) !Convert best
!fit plane x,y.z

ge(i,1) = theta_coord = (pi/180.¢e0) !to their lat.

gc(i,2) = phi-coord = (pi/180.e0) tand long. values

IF (gc(i,2) .le. seam-val) THEN !Find seam

seam_val = gc(i,2) !where -180
seam-loc = i !longitude
END IF I'meets +180
END DO
ge-t = gc !Set gc.t to pre—order—fix gc

IF (ge(1.,2) .1t. ge(361,2)) THEN !

ge(1,:) = ge.t(361,:) I fix
ge(361,:) = ge-t(1,:) lorder
END IF |
ge-t = gc !Set gc_t to new gc

DO i =1, 361 !

ge(i,2) = 2.e0 * SQRT(2.e0) * cos(gec-t(i,1)) * sin(gec_t(i,2)/2.e0) !Transform great-—
ge(i,2) = ge(i,2) / SQRT(l.e0 + cos(gec-t(i,1)) = cos(gec-t(i,2)/2.e0)) !circle into
ge(i,1) = SQRT(2.e0) * sin(gec-t(i,l)) taitoff —hammer
ge(i,1) = ge(i, 1) / SQRT(l.e0 + cos(gec-_t(i,1)) = cos(gec_t(i,2)/2.e0)) !projection

END DO !

CALL pgsci(4) !

CALL pgslw (3) !

CALL pgsch(2.0) !

CALL aitoff_convert(pole(l), pole(2)) !

CALL pgpt(l, pole(2), pole(l), 845) !'Plot pole

CALL aitoff_convert(pole2(1), pole2(2)) !

CALL pgpt(l, pole2(2), pole2(1l), 846) lanti —pole and

CALL pgsch(1.0) !

CALL pgslw (1) !great circle

!

DO i = 2, 361 !
CALL pgline (2. (/ge(i-1.2), ge(i.2)/). (Jge(i-1.1), ge(i.1)/)) !

END DO !

!'|| Plot individual satellites

!'\/and labels

s =1

CALL pgsci(color(s))

CALL pgpt(l, phi(s), theta(s), 843)

CALL pgptxt(phi(s)-0.1, theta(s)+0.0, 0., 0., "I7)

'S =2, ..., 206

CALL pgsci(color(s))
CALL pgpt(l, phi(s), theta(s), 768)
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CALL pgptxt(phi(s)-0.30, theta(s)+0.05, 0., 0., *M33")

s = 28

CALL pgsci(color(s))

CALL pgpt(1, phi(s), theta(s), 2284)

CALL pgptxt(phi(s)-0.3, theta(s)+0.05, 0., 0., "MWy’)

!'s = 29 INgcld47/ NGC185/ And XXX Group midpoint icon
!CALL pgsci(color(s))

!CALL pgpt(l, phi(s), theta(s), 0904)

!'/\ Plot individual satellites

!'|]and labels

CALL pgsci(l)

CALL pgpt(1, 0., 0., 2293)
CALL pgptxt(-0.3, 0.05, 0., 0., 'M31")

CALL pgsch(1.0)

!'|| Plots labels for lines of

!\/constant lat. and long.

CALL pgptxt(lat(l,1,1)-0.05, lat(1.2,1)+0.05, 0., 0., *90°)
CALL pgptxt(lat(1,1,2)-0.06, lat(1,2,2)+0.05, 0., 0., '75")
CALL pgptxt(lat(1,1,3)-0.08, lat(1.2,3)+0.05, 0., 0., *60°)
CALL pgptxt(lat(1,1,4)-0.14, lat(1,2,4)+0.03, 0., 0., '45)

CALL pgptxt(lat(l,1,5)-0.18, lat(1,2,5)+0.0, 0., 0., *30")

CALL pgptxt(lat(1,1,6)-0.20, lat(1,2,6)—-0.02, 0., 0., *15°)
CALL pgptxt(lat(1,1,7)=0.15, lat(1,2,7)-0.02, 0., 0., *0°)
CALL peptxt(lat(1,1,8)-0.33, lat(1,2,8)-0.05, 0., 0., *—15")
CALL pgptxt(lat(1,1,9)-0.31, lat(1,2,9)-0.07, 0., 0., *=30")
CALL peptxt(lat(1,1,10)-0.24, lat(1,2,10)=0.13, 0., 0., ’—45")
CALL pgptxt(lat(1,1,11)=-0.20, lat(1,2,11)=0.13, 0., 0., *—60")
CALL peptxt(lat(1,1,12)-0.21, lat(1,2,12)-0.14, 0., 0., *=75")
CALL pgptxt(lat(1,1,13)-0.20, lat(1,2,13)=0.12, 0., 0., *=90")

CALL pgsch(0.5)
CALL pgptxt(lon(91,1,11)-0.20, lon(91,2,11)-0.12, 0., 0., *-120")

CALL pgptxt(lon(91.1,9)-0.15, lon(91,2,9)-0.12, 0., 0., *=60")
CALL pgptxt(lon(91,1,5)-0.12, lon(91,2,5)-0.12, 0., 0., *60°)
CALL pgptxt(lon(91,1,3)-0.16, lon(91,2,3)-0.12, 0., 0., *120°)
CALL pgptxt(lon(91.1,1)-0.16, lon(91,2,1)-0.12, 0., 0., *180")

CALL pgsch(1.0)

CALL pgend

END SUBROUTINE aitoff_hammer

SUBROUTINE sat_xyz.data !Get the data
USE Global
IMPLICIT NONE

DOUBLE PRECISION :: sla_DSEP

m31_dist = 779.e0 'M31

!Best_Sat_Dist(1:27) as per 'PlaneSigRMS.f95° - see ’Significance’

subroutine
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!Sat_Pos(1:27,:) as per 'PlaneSigRMS.f95° - see ’'SampledDist’ subroutine
DO i = 1, nsats
xi(i) = Sat_Pos(i,l)
eta(i) = Sat-Pos(i,2)
xi(i) = xi(i) * (pi/180.e0) !Convert angles from
eta(i) = eta(i) * (pi/180.e0) !degrees to radians
END DO
DO i = 1, nsats !
xi-dble = xi(i) eta_dble = eta(i) !
CALL sla_DTP2S (xi-dble , eta_-dble, 0.d0, 0.d0, RA, DEC) !Convert tangent plane
IF (xi.dble .1t. 0.d0) then !projection angles into
RA = RA - (2.e0 * pi) !their true angles using
END IF !'sla_DTP2S
xi(i) = RA !
eta(i) = DEC !
END DO
DO i = 1, nsats !
xi-dble = xi(i) !Find the true angle
eta_dble = eta(i) !'theta_-t — the angle on
theta_t(i) = sla_DSEP(0.d0, 0.d0, xi_-dble, eta_dble)!the sky between M3l and
END DO !the object (uses sla_DSEP)
DO i = 1, nsats

sat.xyz(i,l) = ABS(Best_Sat_Dist(i) % cos(theta_t(i)) * tan(xi(i)))

IF (xi(i) .1t. 0.e0) THEN
sat_xyz(i,l) =

END IF

—1.e0 = sat_xyz(i,l

sat.xyz(i,2) = ABS(Best_Sat_Dist(i) =

IF (eta(i) .lt. 0.e0) THEN
sat_xyz(i,2) =

END IF

sat-xyz(i,3) = Best_Sat_Dist(i) * cos(theta_t(i)) — m31_dist

END DO

sat-xyz (28,:) = (/ 0.e0, 0.e0,

sat_xyz(29,:) =

sat-xyz(29,:) = sat.xyz(29,:)/(1.e0 + (1

—1l.e0 = sat_xyz(i,2)

~779.¢0 /)

sat_xyz (25,:) + ((100.e0)*%(0.2e0%0.2e0)) =

!Determine length of x vector for each satellite

!

) !Determine if x is positive or negative

!

sin(eta(i))) !Determine length of y vector for each satellite

!

!Determine if y is positive or negative

!
!Determine

length and sign of z vector

MWy
sat-xyz (26,:) !NGC147/ NGCI85/ AND XXX

00.e0)*%(0.2e0%0.2e0)) !group mid point

DO i =1, 29

WRITE (% ,%) i, sat.xyz(i,l), sat-xyz(i,2), sat_xyz(i,3)

alpha_set = - (90.e0 - 12.5e¢0) * (pi/180.e0) !Rotate to bring back out of M3I's inclination !
gamma.set = + (90.e0 — 39.8e0) % (pi/180.e0) !angle and PA (i.e. to view from above the M3l pole) !

! Change
CALL Rotate !

I'to
sat-xyz(i,:) = MAIMUL(z-rot, sat.xyz(i,:)) !Convert vectors back to how they would appear !
sat-xyz(i,:) = MAIMUL(x-rot, sat.xyz(i,:)) lin M31 reference frame IM31

!
gamma.set = 90.e0 = (pi/180.e0) ! Icoordinate

! !
CALL Rotate !'Additional rotation in M3l galactic longitude I'system
! !
sat-xyz(i,:) = MAIMUL(z-rot, sat.xyz(i,:))! !
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WRITE (% ,%) i, sat-xyz(i,l), sat-xyz(i,2), sat-xyz(i,3)

CALL Theta_Phi(sat-xyz(i,l), sat-xyz(i,2), sat-xyz(i,3))

CALL aitoff_convert(theta_coord, phi-coord)

theta (i) = theta_coord ; phi(i) = phi_coord

END DO

END SUBROUTINE sat_xyz_data

SUBROUTINE aitoff_convert(theta_ah, phi_ah) !Convert to aitoff -
IMPLICIT NONE 'hammer projection

REAL :: theta_ah, phi_ah, pre_theta_ah, pre_phi_ah

REAL :: pi
PARAMETER( pi = acos(-1.e0))

pre_-theta_ah = theta_ah = (pi/180.¢0)
pre_phi_ah = phi_ah * (pi/180.e0)

phi_ah = 2.e0 * SQRT(2.e0) % cos(pre-theta_.ah) # sin(pre_-phi-ah/2.e0)
phi_ah = phi_ah / SQRT(1.e0 + cos(pre_-theta_ah) % cos(pre_phi_ah/2.¢e0))

theta_ah = SQRT(2.e0) * sin(pre-theta_ah)
theta_ah = theta_ah / SQRT(1.e0 + cos(pre_theta_ah) % cos(pre_phi_ah/2.e0))

END SUBROUTINE aitoff_convert

!”Rotate’ Subroutine — See ’PlaneSigRMS.f95"

!"Theta_Phi’ Subroutine — See ’PlaneSigRMS.f95"
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Program: RR_Histograms.f95

Creation Date: 7 Oct 2012

Relevant Section: Ch. 5; Paper III Figs. 5 (RH column), 6, 9 (RH column), 16 (b)

Notes: This program illustrates the way in which the histograms of the goodness of fit statis-
tic for the random realizations were generated. Throughout the entire thesis I have generated
many histograms and toward the end I decided to make a stand alone subroutine ‘HistoPlot’
(see PlaneSigRMS.f95 - p. 244) that automated the process. I later modified that subroutine
to add the credibility interval color-coding used for the papers. It is this subroutine which
is shown here: ‘HistoPlotAdv.” The ‘DataCall’ subroutine is designed to handle the many
different outputs from the various plane fitting programs. It is set up to plot the histogram of
the average RMS (or other plane fitting statistic) values from the random satellite realizations

and also to take the average of the histogram produced from the real data.

MODULE Global !Defines all variables used by BayesianTRGB
IMPLICIT NONE

INTEGER :: i, idum = -9999, ios, ndata, ndata2, counts
PARAMETER (ndata = 10000)

PARAMETER (ndata2 = 200000)

REAL :: signif(ndata), signif2, dummy, scale_-factor, average.sig
CHARACTER :: folder+300, string«300, string2 %300, command+300
LOGICAL :: Bestl5, RMS, AbVal, Asy, AsyFP, ML, Sigma
PARAMETER (Bestl5 = .true.)

PARAMETER (RMS = . false.)

PARAMETER (AbVal = .false.)

PARAMETER (Asy = .false.)

PARAMETER (AsyFP = . false.)

PARAMETER (ML = . false.)

PARAMETER (Sigma = . false.)

END MODULE Global

PROGRAM DataCall !Reads in data to be
USE Global !plotted and passes
IMPLICIT NONE !'to HistoPlotAdy

IF (Bestl5) THEN !For Plane of best 15 satellites
OPEN(unit = 11, file="./Sat_.Combo_planes/Plane_Stats_15_sats_.RandReal_weighted/RMS_15_sats.dat’, status = ’old’)

OPEN(unit = 12, file="./Sat_.Combo_planes/RMS_Plane_Stats_Best_15_sats/real_sig-wth_err.dat’, status = ’old’)

END IF

IF (RMS) THEN !For RMS distribution

OPEN(unit = 11, file="./Sat.Comp-Set_Stats/Plane_Stats_27_sats_.RandReal_weighted.RMS/RMS_27_sats.dat’, status = ’old’)
OPEN(unit = 12, file="./Sat_.Comp_Set_Stats/RMS_Plane_Stats_27_sats/real_sig_wth_err.dat’, status = “old”)

END IF

IF (AbVal) THEN !For ’sum of Absolute Values’ distribution
OPEN(unit = 11, file="./Sat.Comp-Set_Stats/Plane_Stats_27_sats_RandReal_weighted_. AV /AV_27_sats.dat’, status = ’old’)
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OPEN(unit = 12, file="./Sat_Comp_Set_Stats/AbVal_Plane_Stats/real_sig_wth_err.dat’, status = ’old’)
END IF

IF (Asy) THEN !For Asymmetry distribution

OPEN(unit = 11, file="./Sat.Comp_Set_Stats/Plane_Stats_27_sats_RandReal_weighted_Asy/Asy_27_sats.dat’,
OPEN(unit = 12, file="./Sat_.Comp-Set_Stats/Asymm_Stats/real_asy_wth_err.dat’, status = ’old’)

END IF

IF (AsyFP) THEN !For Distribution of Asymmetry about M3l tangent plane

OPEN(unit = 11, file="./Sat_.Comp_Set_Stats/Plane_Stats_27_sats_RandReal_weighted_AsyFP/AsyFP_27_sats.dat’,
OPEN(unit = 12, file="./Sat.Comp-Set_Stats/Asymm_Stats_FixedPlane/real_asy_wth_err.dat’, status =

END IF

IF (ML .or. Sigma) THEN !For Maximum Likelihood (and sigma) distributions

OPEN(unit = 11, file="./Sat_Comp_Set_Stats/Plane_Stats_27_sats_RandReal_weighted_ ML /ML_27_sats.dat’,
OPEN(unit = 12, file="./Sat_.Comp-Set_Stats/Plane_Stats/real_sig-wth_err.dat’, status = ’old’)

END IF

!'||Read in plane fitting statistic (e.g. RMS) from

!'\/Random Realizations for generation of histogram

i=0

IF (i .gt. ndata) THEN

i=i-1
exit
END IF

IF (Sigma) THEN

READ (11, #, IOSTAT
ELSE

READ (11, =, IOSTAT
END IF
IF (ios

i=1i-1

exit

ELSE IF (ios .gt.
WRITE (*,%) i

i=i-1

cycle
END IF
END DO
!/\Read in plane fittin
!'||Random Realizations
!'||Read in plane fittin
!'\/of possible position

g statistic

= ios) dummy, dummy, signif(i)

= ios) dummy, signif(i)

0) THEN

(e.g. RMS) from

for generation of histogram
g statistic (e.g. RMS) from Realizations
s of the real satellites to find average

Yold”)

status =

status

status

= "old”)

“old”)

Yold”)
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IF (i .gt. ndata2) THEN
i=i-l
exit

END IF

IF (Sigma) THEN

READ (12, =, IOSTAT = ios) dummy, dummy, signif2
ELSE

READ (12, x, IOSTAT = ios) dummy, signif2
END IF

IF (Asy .or. AsyFP .or. ML .or. Sigma) THEN

ELSE
signif2 = 10.e0 =% signif2
END IF
average.sig = average-sig + signif2
IF (ios == —1) THEN
i=1-1
exit

ELSE IF (ios .gt. 0) THEN
WRITE (*,=) i
i=i-1
cycle

END IF

END DO

!/\Read in plane fitting statistic (e.g. RMS) from Realizations

!'||of possible positions of the real satellites to find average

average.sig = average.sig/ REAL(ndata2)

CALL pgbegin (0, RR_Histogram.ps/CPS’ ,1,1)

IF (Bestl5) THEN

CALL pgenv(5.,35.,0.,0.15, 0, 0) !For Best 15 satellites
END IF

IF (RMS) THEN

CALL pgenv(30.,90.,0.,0.07, 0, 0) !For RMS distribution
END IF

IF (AbVal) THEN

CALL pgenv (700.,1900.,0.,0.003, 0, 0) !For AbVal distribution
END IF

IF (Asy) THEN

CALL pgenv(13.,28.,0.,0.4, 0, 0) !For Asymmetry distribution

END IF

IF (AsyFP) THEN

CALL pgenv(13.,28.,0.,0.8, 0, 0) !For Asymmetry Fixed Plane
END IF

IF (ML) THEN

CALL pgenv(-69.,-59..0.,0.4, 0, 0) !For ML distribution

END IF

IF (Sigma) THEN

CALL pgenv(30.,90.,0.,0.07, 0, 0) !For Sigma distribution
END IF

IF (Sigma) THEN

CALL HistoPlotAdv (ndata, 21, signif, *°, *’, ’?°, .true.) !Make Histogram
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ELSE

CALL HistoPlotAdv (ndata, 51, signif,
END IF
!'|| Plot dot—dash line at location

!'\/of possible positions of the real
CALL pgsls(3)
CALL pgsci(8)
CALL pgslw (5)

IF (Bestl5) THEN
CALL pgline (2, (/
END IF

IF (RMS) THEN
CALL pgline (2, (/
END IF

IF (AbVal) THEN
CALL pgline (2, (/
END IF

IF (Asy) THEN
CALL pgline (2, (/
END IF

IF (AsyFP) THEN
CALL pgline (2, (/
END IF

IF (ML) THEN

CALL pgline (2, (/
END IF

IF (Sigma) THEN
CALL pgline (2, (/
END IF

CALL pgslw (1)
CALL pgsci(l)
CALL pgsls (1)
!'/\ Plot dot—dash

average.sig ,

average_sig ,

average_sig ,

average.sig ,

average_sig ,

average.sig ,

average.sig ,

location

the

line at
!'|| of possible positions of real
IF (RMS .or. Bestl5) THEN

CALL pglab (’Minimum.RMS.. (kpc) *,
END IF

IF (AbVal) THEN

CALL pglab (’Minimum_.Absolute_Distance .Sum.(kpc)’,

END IF
IF (Asy .or. AsyFP) THEN

CALL pglab (’Maximum_Hemisphere_Satellite .Count’,

END IF

IF (ML) THEN

CALL pglab ('LOGI0(Maximum.Likelihood) ",
END IF

IF (Sigma) THEN

CALL pglab (’Plane._Sigma.(kpc)’,
END IF

CALL pgend
WRITE (% ,%) ”Average.of_observed_plane:”,
IF (Bestl5) THEN

counts = 0

DOi =1,
IF (signif(i) .le.

ndata

counts = counts + 1

of histogram

average_sig

average._sig

average._sig

average._sig

average._sig

average._sig

average._sig

of histogram average from

Probability ",

*Probability *,

"Probability *,

average.sig) THEN

s g

s , 7?7, .true.) !Make Histogram

average from realizations

satellites

(/ 0.0, 0.15 /)) !For Best 15 satellites

/). (/ 0.0, 0.07 /)) !For RMS distribution

0.003 /)) !For AbVal distribution

distribution

0.4 7))

!For Asymmetry

0.8 /) distribution

!For Asymmetry

!For ML distribution

0.4 /))

0.07 /)) !For Sigma distribution

realizations

satellites

D) !For RMS distribution
Probability’, ’7) !For AbVal distribution
Probability’, *’) !For Asymmetry distribution

!For ML distribution

)

)

!For Sigma distribution

average._sig
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END IF
END DO
WRITE (#,%) "An_.RMS_of”, average.sig , “was_equalled._or_exceeded”, counts, “out.of”, ndata, “times.”

END IF

IF (Asy .or. AsyFP) THEN
counts = 0
DO i = I, ndata
IF (signif(i) .ge. average_sig) THEN
counts = counts + 1
END IF
END DO
WRITE (*,%) “An_Asymmetry_of”, average_sig, “was.equalled_or_exceeded”, counts, “out.of”, ndata, “times.’

END IF

END PROGRAM

SUBROUTINE HistoPlotAdv (nval, data_hist_bins , data, xlabel, ylabel, device, normalize)
USE Global
IMPLICIT NONE

#Created 16 Jun 2012%

!INTEGER nval = number of data points in histogram
!INTEGER data_hist_bins = number of bins in histogram
'REAL data(nval) = The array containing the data
!CHARACTER xlabel = Label of x—axis of histogram
!CHARACTER ylabel = Label of y—axis of histogram
!CHARACTER device = The plotting device (’?’ if unsure)
!LOGICAL normalize = .true. if histogram is to be
!normalized, else set to .false.

|

! Uses PGPLOT

INTEGER :: data_hist_bins , nval, it_num, BFL

REAL :: bw, data(nval), data_hist(data_hist_bins ,2), data_min, data_max
REAL :: BFV, psig, msig, max.bin_height, data_.counts, pcounts, mcounts
REAL :: xpts(2), ypts(2), p90, m90, p99, m99

CHARACTER(LEN=x) :: xlabel, ylabel, device

LOGICAL :: normalize

!'|| Builds the specified

!'\/ histogram
data_hist = 0.e0
data_min = MINVAL(data) ; data_max = MAXVAL(data)
bw = (data.max — data_min)/(REAL(data_hist_bins) — 1.e0)
DO it_.num = 1, data_hist_bins
data_hist(it.num ,1) = data.min + REAL(it.num —1) = bw
END DO
DO it_.num = 1, nval

data_hist (NINT((data(it-num) — data_min)/bw) + 1,2) = &
data_hist (NINT((data(it-num) — data-min)/bw) + 1,2) + 1.e0
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END DO

IF (normalize) THEN

data_hist (:,2) = data_hist(:,2) / (bw % SUM(data_-hist(:,2)))
END IF
!'/\ Builds the specified
']l histogram
max_bin_height = 0.d0 !
DO it.num = 1, data_hist_bins !

IF (data_hist(it.num ,2) .gt. max_bin_height) THEN !

max-_bin_height = data_hist(it-num ,2) I'Find best fit TRGB value

BFV = data_hist(it-num ,1) )

BFL = it.num |

END IF )

END DO !
WRITE (#,%) “Best_fit.value_is_at:”, BFV

data_counts = 0.d0 ; pcounts = 0.d0 !
DO it_num = BFL, data_hist_bins !

pcounts = pcounts + data_hist(it-num ,2) !
END DO !
DO it_num = BFL, data_hist_bins !

data_counts = data_counts + data_hist(it-num ,2)!Finds

IF (data_counts .ge. 0.682xpcounts) THEN lerror
psig = data_hist(it.num ,1) — BFV !
exit !
END IF !
END DO !

WRITE (*,%) “Plus_l_sigma:_.”, psig

data_counts = 0.d0 ; mcounts = 0.d0 !
DO it.num = BFL, 1, -1 !

mcounts = mcounts + data_hist(it_num ,2) !
END DO !
DO it.num = BFL, 1, -1 !

data_counts = data-counts + data_hist(it-num ,2)!Finds

IF (data_counts .ge. 0.682smcounts) THEN lerror
msig = BFV — data_hist(it.num,1) !
exit !
END IF !
END DO !

WRITE (% ,%) ”"Minus.l_sigma:”, msig

data_counts = 0.d0 ; pcounts = 0.d0 !
DO it_num = BFL, data_hist_bins !

pcounts = pcounts + data_hist(it-num ,2) !
END DO !
DO it_.num = BFL, data_hist_bins !

data_counts = data_counts + data_hist(it.num ,2)!Finds

IF (data_counts .ge. 0.9%pcounts) THEN lerror
p90 = data_hist(it_num ,1) — BFV !
exit !
END IF !
END DO !

WRITE (#,#) “Plus_90%:.", p90

data_counts = 0.d0 ; mcounts = 0.d0 !
DO it.num = BFL, 1, -1 !

mcounts = mcounts + data_hist(it-num ,2) !

positive one sigma

in distance

negative one sigma

in distance

positive 90% credibility

in distance
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END DO !
DO it.num = BFL, 1, -1 !
data_counts = data_counts + data_hist(it.num ,2)!Finds
0.9=mcounts) THEN lerror in
1) !
exit !
END IF !
END DO !

WRITE (*,%) ”Minus.90%:”, m90

negative 90%
IF (data_counts .ge. distance

m90 = BFV — data_hist(it-num

data_counts = 0.d0 !

DO it_num =

0.d0
BFL,

pcounts =
data_hist_bins !

pcounts =
END DO !
DO it_num = BFL,

pcounts + data_hist(it-num ,2) !

data_hist_bins !

data.counts = data_.counts + data_hist(it-num ,2)!Finds

0.99%pcounts) THEN

positive 99%

IF (data_counts .ge. lerror in distance

p99 = data_hist(it.num ,1) — BFV !

exit !

END IF !

END DO !
WRITE (#,%) “Plus.99%:.", p99

data_counts = 0.d0 ; mcounts = 0.d0 !

DO it_.num = BFL, 1, -1 !

mcounts = mcounts + data_hist(it_num ,2) !

END DO !

DO it.num = BFL, 1, -1 !

data_counts = data_counts + data_hist(it-num ,2)!Finds negative 99%
IF (data_counts .ge. 0.99smcounts) THEN

m99 = BFV - data_hist(it.num ,1) !

lerror in distance
exit !
END IF !
END DO !
WRITE (#,%) "Minus.99%:”, m99

!'|| Plot

!'\/credibility

DO it_num = 1,

IF (data_hist(it.num,1) .ge.
CALL pgsci(2)

CALL pgbin (2, data_hist(it_num 1),

IF (data_hist(it-num,1) .eq. BFV — msig) THEN

data_hist(it-num ,1)

histogram with coloured

intervals

data_hist_bins -1

.and.

BFV - msig data_hist(itnum ,1)

data_hist(it-num ,2) ,. false .)

Xpts =
ypts(l) = 0.e0
CALL pgline (2,
END IF
IF (data_hist(it-num+1,1)

ypts(2) = data_hist(it-num ,2)
Xpts , ypts)

.eq. BFV + psig) THEN
Xpts =
ypts(1l) = 0.e0 ;
CALL pgline (2,

END IF

ELSE IF (data_hist(it-num ,1) .ge.
CALL pgsci(3)
CALL pgbin (2,
IF (data_hist(it.num,1)

data_hist(it.num+1,1)
ypts(2) = data_hist(it-num ,2)
Xpts , ypts)

BFV — m90 .and.

data_hist(itcnum ,1),

.eq. BFV — m90) THEN

data_hist(it-num ,1)
ypts(l) = 0.e0 ; ypts(2) =
CALL pgline (2, xpts, ypts)

END IF

IF (data_hist(it-num+1,1)

data_hist(it.num ,2) ,.false.)

Xpts =

data_hist(it-num ,2)

_eq. BFV + p90) THEN

data_hist(it-num ,1) .1t.

credibility

credibility

credibility

JIt. BFV + psig) THEN

!
|

!

!

!One Sigma

!

!'Credibility

!

!Interval

!

|

!

BFV + p90) THEN
!

!

|

!

190 percent

!

!Credibility

!
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xpts = data_hist(itonum+1,1)
ypts(1) = 0.e0 ; ypts(2) = data_hist(it.num ,2)
CALL pgline (2, xpts, ypts)

END IF

!Interval
!
|

!

ELSE IF (data_hist(it-num ,1) .ge. BFV — m99 .and. data_hist(itcnum ,1) .It. BFV + p99) THEN

CALL pgsci(4)

CALL pgbin (2, data_hist(it-num ,1), data_hist(it-num ,2) ,.false.)

IF (data_hist(it-num.,1) .eq. BFV — m99) THEN
xpts = data_hist(it-num ,1)
ypts(l) = 0.e0 ; ypts(2) = data_hist(it.num ,2)
CALL pgline (2, xpts, ypts)

END IF

IF (data_hist(it-num+1,1) .eq. BFV + p99) THEN
xpts = data_hist(itcnum+1,1)
ypts(l) = 0.e0 ; ypts(2) = data_hist(it.num ,2)
CALL pgline (2, xpts, ypts)

END IF

ELSE

CALL pgsci(l)

CALL pgbin (2, data_hist(it-num ,1), data_hist(it-num ,2) ,.false.)

IF (it.num .eq. 1) THEN
xpts = data_hist(it-num ,1)
ypts(1) = 0.e0 ; ypts(2) = data_hist(it.num ,2)
CALL pgline (2, xpts, ypts)

END IF

IF (it.num .eq. data_hist_bins —1) THEN
xpts = data_hist(it-num+1,1) + bw
ypts(l) = 0.e0 ; ypts(2) = data_hist(it-num+1,2)
CALL pgline (2, xpts, ypts)

END IF

END IF
END DO
!/\ Plot histogram with coloured

!'||] confidence intervals

END SUBROUTINE HistoPlotAdv

!
!

!

!

199 percent
!
!Credibility
!

!'Interval

!

!

!

1

!

!

!Distribution

!

toutside of 99 %
!

!Cred. Interval
|

1

!
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List of Abbreviations

The following list is neither exhaustive nor exclusive, but may be helpful.
2MASS ..... The Two-Micron All-Sky Survey

ACDM or CDM [Lambda] Cold Dark Matter (cosmological model)

AGB........ Asymptotic Giant Branch

CFHT ...... The Canada-France-Hawaii Telescope
CMD....... Colour-Magnitude Diagram

LF.......... Luminosity Function

PAndAS .... The Pan-Andromeda Archaeological Survey
RGB........ Red Giant Branch

SDSS ...... The Sloan Digital Sky Survey

TRGB...... Tip of the Red Giant Branch
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