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Strong Evidence for an Inhomogeneous Distribution of Satellites
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The satellite system of a large galaxy represents the ideal laboratory for the study of galactic evolution. Whether that evolution has been dominated by past mergers or in situ formation, clues abound within the structure of the satellite system. This study utilizes recent photometric data obtained for the halo of M31 via the Pan-Andromeda Archaeological Survey (PAn-dAS), to undertake an analysis of the spatial distribution of the M31 satellite system. To do this, a new Bayesian algorithm is developed for measuring the distances to the satellites from the tip of their Red Giant Branch. The distances are obtained in the form of posterior probability distributions, which give the probability of the satellite lying at any given distance after accounting for the various spatial and photometric characteristics of the component stars. Thus robust distances are obtained for M31 and 27 of its satellite galaxies which are then transformed into three-dimensional, M31-centric positions yielding a homogenous sample of unprecedented size in any galaxy halo. A rigorous analysis of the resulting distribution is then undertaken, with the homogeneity of the sample fully exploited in characterizing the effects of data incompleteness. This analysis reveals a satellite distribution which as a whole, is roughly isothermal and no more planar than one would expect from a random distribution of equal size. A subset of 15 satellites is however found to be remarkably planar, with a root-mean-square thickness of just 12.34 +0.75 -0.43 kpc. Of these satellites, 13 have subsequently been identified as co-rotating. This highly significant plane is all the more striking for its orientation. From the Earth we view it perfectly edge on and it is almost perpendicular to the Milky Way's disk. Furthermore, it is roughly orthogonal to the disk-like structure commonly reported for the Milky Way's satellite galaxies. The distribution is also found to be highly asymmetric, with the majority of satellites lying on the near side of M31. These findings point to a complex evolutionary history with possible links to that of our own galaxy.
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A Note on Paper Co-Author Contributions

As a thesis by publication, much of the work contained in the main body of this thesis has been (or will be) published in the form of three separate papers submitted to the Astrophysical Journal. Each of these publications acknowledges contributions from a relatively large group of co-authors. This is an inevitable consequence of the use of data that is the property of a large collaboration (i.e. the Pan-Andromeda Archaeological Survey -PAndAS), and it has in no way diminished the amount of work that I have put into each of these papers. In fact, rather the opposite is true, due to the enormous amount of code adjustments and paper editing that has had to take place to accommodate the suggestions of a large group of people.

The work contained in these papers has been carried out principally with the direction of the second and third co-authors, my supervisors Prof. Geraint Lewis and Dr Rodrigo Ibata, with all other contributions being in the form of written critiques of the paper drafts. This does not detract from the aid I have received from my other two supervisors Prof. Quentin Parker and A/Prof. Dan Zucker, who as well as providing similar critiques of my drafts, have been a great help with all administrational matters that I have contended with during the course of my PhD candidature. I should also note that I had many in-person discussions with Dr Nicolas Martin whilst in Strasbourg, which further influenced the way I carried out the analysis contained in the second paper.

All of this said, all three papers have been written entirely by me, and all figures they contain have been generated by me using the PGPLOT plotting package [START_REF] Pearson | PGPLOT: Device-independent Graphics Package for Simple Scientific Graphs[END_REF], with the sole exception of the pole-density plots in Paper III; Ch. 5 (Figs. 2,[START_REF]The Hipparcos and Tycho Catalogues (ESA[END_REF]8,10 (right-hand column of plots), 11 and 14), which were produced using a Gaussian-smoothing vii viii A Note on Paper Co-Author Contributions program by Geraint Lewis from the pole count analysis data that I sent him. All of the analysis contained in the papers has been undertaken using Fortran code that I have written from scratch, with examples of most of the principal versions of the code provided in the appendix. These programs do make occasional use of subroutines written by others, as now stated: I The "PolyS elect" subroutine is built around code written by Rodrigo Ibata, which uses the functions "in poly" and " f imag" written by him. Given a series of points defining the corners of a polygon, it determines whether or not a given point is inside this polygon. I use this routine to make colour-cuts on the Colour-Magnitude Diagram (see calls of this subroutine in MF T RGB. f 95; Appendix C for example) and also to reject random satellites drawn outside of the PAndAS survey area in my "RandomPoints" subroutine, used in the analysis of Paper III. gives the photometric error as a function of magnitude in CFHT i-band for the PAndAS data and was provided by Rodrigo Ibata.

IV The "k verse alpha" subroutine called in S atDensity S ampCont. f 95 (Appendix C) makes use of data generated by Geraint Lewis (k vs alpha.dat), which accounts for the volume of space covered by the PAndAS survey area as a function of distance from M31.

V Several subroutines from Numerical Recipes [START_REF] Press | Numerical recipes in FORTRAN[END_REF] have been used to perform standard functions by various programs I have written, in particular MF T RGB. f 95.

In the programs listed in the appendices, use of these algorithms are generally noted at the end of the program with commented double lines and the words 'Libpress Algorithms' embedded. The Numerical Recipes subroutines themselves are not shown for the sake of brevity, but any subroutine or function that is called from the code as printed ix in the appendices and yet is apparently absent from this printed code can be assumed to be from Numerical Recipes. VI The SLALIB Positional Astronomy Library [START_REF] Wallace | The SLALIB Library[END_REF] has been used to convert object RA and Dec into tangent plane coordinates in MF T RGB. f 95 and earlier TRGB programs so that the user can access various parts of the PAndAS Survey directly by entering the objects Celestial coordinates. This library is also made use of in many of the programs written for Paper III to convert back and forth between tangent plane angles and real angles, and also to measure the angle between two given objects on the sky.

I believe this to be a complete disclosure of all coding aspects that I make use of that I have not written personally. They are few in number compared to the number I have written and in general, their function has been to perform tasks secondary to the principal operation of the programs that use them. Their inclusion is however, nevertheless vital to the correct functioning of the programs. In summary, whilst many have contributed to the work presented in these three papers, my contribution to each of them is exactly the same as any dedicated student would make to the work contained in a major chapter of their thesis were it not a journal publication. dans leur noyau et dont celui-ci n'a plus une densité suffisante pour fusionner de l'hélium, entrent dans la phase de la branche des géantes rouges (RGB). Après un certain temps, l'étoile devient plus lumineuse et les cendres dhélium produites par cette réaction retombent sur le noyau, accroissant sa densité jusqu'à celle-ci soit suffisante pour remettre en marche la fusion de l'hélium. L'étoile, qui n'appartiendra bientôt plus à la branche d'étoiles RGB est dite du tip of the Red Giant Branch (TRGB) . Du fait des propriétés similaires du noyau de toutes les étoiles qui arrivent à ce state de leur évolution dans une gamme spécifique de masse et de métallicité (voir Iben and Renzini 1983), leur radiation énergétique et donc leur luminosité est constante. Le TRGB pour de telles populations stellaires donne donc une mesure de la distance à cette population.

Avant le développement de la méthode de la détection d'un bord de Lee et al. (1993), la TRGB était déterminée par des Diagrammes Couleur-Magnitude (CMD) à l'oeil nu et les distances dérivées manquaient donc de précision et d'uniformité requis pour une utilisation fiable pour de nombreux objets. On a développé de nombreuses méthodes depuis celle-ci mais elles se basent toutes sur l'idée de convoluer la fonction de luminosité (LF) du RGB avec un kernel de détection de bord, afin de créer un maximum à la magnitude correspondant à la plus grande discontinuité dans la LF, qui devrait correspondre à la magnitude du TRGB.

Malheureusement, de telles méthodes donnent de mauvais résultats dans la présence de bruits -notamment lorsque le RGB est noyé par des étoiles contaminantes. Pour cette raison, plusieurs alternatives d'ajustement de modèles qui utilisent toute la LF ont été proposées xvii xviii Résumé de Thèse (par exemple Méndez et al. 2002). Malgré cela, pour ces méthodes, les incertitudes de mesures sont souvent très grandes et mal définies et n'ont pas la possibilité d'incorporer nos informations à priori sur le système étudié. C'est pour cela que la première grande partie de cette thèse aura pour but de créer un algorithme robuste et versatile pour mesurer des distances en utilisant la magnitude du TRGB.

Les premiers chapitres décrivent le développement d'un algorithme Bayesien qui utilise une approche de maximum de vraisemblance. Les paramètres du modèle (magnitude du TRGB, pente de la LF, propriétés de contamination) sont ajustés par l'algorithme suivant une simulation Markov Chain Monte Carlo (MCMC). Cela donne accès aussi aux incertitudes sur ces paramètres. Malgré sa simplicité, cette méthode est robuste, et donne des sorties intuitives et visuelles des probabilités de paramètres et il reste facile d'ajouter de l'information à priori. La première version de cet algorithme a été publiée dans le Astrophysical Journal (Paper I), et est à la base du chapitre 3. Cette publication présente également des tests qui caractérisent la performance de cette méthode pour des LFs de différentes qualités, ainsi que son application à trois galaxies naines sphéroïdales, satellites de M31, et donne les meilleures incertitudes de toutes les méthodes basées sur le TRGB publiées jusqu'à ce jour.

Les données physiques analysées dans cette thèse viennent du Pan-Andromeda Archaeological Survey (PAndAS -McConnachie et al. 2009), un relevé ambitieux qui couvre plus de 300 degrés carrés autour de la galaxie d'Andromèdre, la galaxie géante la plus proche de la Voie Lactée. Ce relevé donne accès à la photométrie profonde en bande g' (centré sur 487 nm) et la bande i' (centré sur 770 nm), et qui couvre plus de 25 satellites galactiques qui sont idéaux pour des mesures de distance par la méthode TRGB. L'algorithme présenté en chapitre 3 a été amélioré pour utiliser ces donnes spécifiques. La contamination du fond étant la plus grande source du détriment de la qualité des distances TRGB, j'ai mis au point une routine << matched filter >> (voir Rockosi et al. 2002) pour donner des poids à chaque étoile en fonction de sa position spatiale dans le profil de densité du satellite. L'effet de l'application de cet algorithme sur la LF est de réduire la contamination du fond et ainsi d'augmenter le contraste de la troncature du RGB au TRGB. Visuellement, le changement du LF est souvent suffisant pour révéler de fac ¸on très claire la position du TRGB qui était avant à peine plus que du bruit Poissonnien. xix Cette méthode améliorée, appliquée à tous les satellites (27 en total) détectés dans le relevé PAndAS est présentée dans un deuxième article soumis à l'Astrophysical Journal et constitue l'essentiel du chapitre 4 (Paper II). Cet article apporte les premières mesures de distances pour une grande partie de ces satellites et se révèle être l'analyse la plus compréhensive des distances du système de satellites de M31. Cette investigation contient également une analyse brève du profil de la densité du halo en utilisant ces nouvelles distances, que nous avons comparées aux valeurs trouvées avec l'aide d'autres méthodes.

Le grand nombre de satellites autour de M31 pour lesquels j'ai obtenu de bonnes mesures de distances donne ainsi une excellente occasion d'analyser le degré de planarité et d'asymétrie du système de satellites. Cela a des fortes répercussions sur la distribution de matire dans le halo de la galaxie hôte ainsi que sur l'histoire de formation des satellites mêmes. Plusieurs études du système satellitaire de la Voie Lactée (par exemple Lynden-Bell 1982;[START_REF] Zentner | t s ! S A P r o t ( i[END_REF][START_REF] Pawlowski | The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way[END_REF], trouvent des plans fortement significatifs, souvent inclinés par rapport au disque Galactique. Des résultats similaires ont été publiés pour le système de M31 (par exemple Koch and Grebel 2006). Les études du système de M31 ont été faits avec de petits échantillons de satellites et les mesures de distances proviennent donc de plusieurs auteurs (et méthodes) différentes. C'est ainsi que le chapitre 5 et une troisième publication donnent à voir une analyse détaillée du système de satellites de M31 en se basant sur les données du chapitre 4. La planarité du système de satellites est explorée par le biais du plan de meilleur ajustement en utilisant plusieurs méthodes (moindre rms, moindre distance, ajustement à un modele Gaussien). La vraisemblance de ces alignements est analysée à l'aide de simulations où chaque satellite est tiré au hasard a partir de sa distribution de distance. L'analyse de l'asymétrie est effectuée de fac ¸on similaire, en utilisant des statistiques d'asymétrie, notamment le nombre de satellites qui se trouvent sur un hémisphère du halo.

Les positions 3-D présentées au chapitre 4 montrent que le pôle du plan d'asymétrie maximal se trouve très près du vecteur Terre-M31 ; la probabilité d'un tel alignement est étudiée dans cette thèse.

xx Résumé de Thèse Contents galaxy a structure which, as might be expected, is shared by many of our galactic neighbours and indeed by nearly all those galaxies near and far of a similar type.

A portrait of a Galaxy

The Milky Way (henceforth 'the Galaxy') is a late-type barred spiral galaxy. It is known to consist of both a thin and a thick disk component, a central bulge and an enormous halo, encompassing the whole system [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF]. The thin disk has been determined to have a scale length of 2600 pc and a scale height of 300 pc [START_REF] Jurić | The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution[END_REF] with an overall radius of 15 ± 2 kpc [START_REF] Ruphy | New determination of the disc scale length and the radial cutoff in the anticenter with DENIS data[END_REF]. It is within the thin disk that both the solar neighbourhood and the spiral arms reside. The spiral arms have been traced by various methods, notably by [START_REF] Georgelin | The spiral structure of our Galaxy determined from H II regions[END_REF], who used HII regions to trace their extent. They found two symmetrical pairs of arms with a pitch angle of 12 • . The four arms in total were identified as the Sagittarius-Carina Arm, the Scutum-Crux Arm, the Norma Arm and the Perseus Arm, with the Sun residing in a spur between the inner Sagittarius-Carina Arm and the outer Perseus Arm. This is represented schematically in Enveloping the thin disk is a somewhat more diffuse, ancient haze of stars termed the Galactic 'thick disk' [START_REF] Gilmore | New light on faint stars. III -Galactic structure towards the South Pole and the Galactic thick disc[END_REF]. It has been calculated from the Sloan Digital Sky Survey I (SDSS I) to have a scale length of 3600 pc and a scale height of 900 pc [START_REF] Jurić | The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution[END_REF]. [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] describe it as a 'snap frozen relic of the heated early disk' and allocate some 10% of the Galaxy's baryonic matter to its confines. A metallicity of -2.2 < [Fe/ H] < -0.5 is quoted for the thick disk stars in contrast to the -0.5 < [Fe/ H] < 0.3 determined for the younger thin disk, and its luminosity is specified as 10% that of the thin disk.

In the inner regions of the Galaxy is a denser conglomeration of what are generally considered to be older, metal poor stars termed 'the bulge. [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] caution however that a study of bulge red giant stars [START_REF] Mcwilliam | The first detailed abundance analysis of Galactic bulge K giants in Baade's window[END_REF] [START_REF] Vallée | The Spiral Arms and Interarm Separation of the Milky Way: An Updated Statistical Study[END_REF] a metallicity much closer to the older stars of the thin disk than to the truly ancient stars in the Galactic halo. They further describe the Milky Way's bulge as appearing significantly smaller than that of M31 and somewhat 'boxy,' typical of an Sb to Sc spiral. Also of particular note, the Galaxy has long been suspected of containing a bar at its centre which has, as of 2005, been proven. [START_REF] Benjamin | First GLIMPSE Results on the Stellar Structure of the Galaxy[END_REF] find the bar to have a length of 8.8 ± 1.0 kpc with orientation such that it is rotated 44 ± 10 o from a line connecting the Sun and Galactic Centre.

Finally, the halo of the Milky Way is easily its largest and arguably its oldest major constituent. It is an enormous, roughly spherical [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] cocoon of ancient field stars, and approximately 150 similarly ancient globular clusters [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF]. It is also known to extend out well beyond the Small Magellanic Cloud to a distance of 100 kpc from Galactic centre and it contains at least 10 known satellite galaxies [START_REF] Van Den Bergh | The Dwarf Satellites of M31 and the Galaxy[END_REF]. Perhaps most remarkable is that it contains 1.0 +0. 3 -0.2 × 10 12 M ⊙ [START_REF] Xue | The Milky Way's Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ˜2400 SDSS Blue Horizontal-Branch Stars[END_REF] of dark matter, which amounts to at least 90 % of the total mass of the Galaxy An Introduction to Galactic Archaeology [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF]. The substructure within this dark matter halo is of great interest as it lies at the heart of our current understanding of galaxy formation.

Our current knowledge of the Galaxy as presented in the above paragraphs represents some of the fruits of Galactic Archaeology. This knowledge is however fairly coarse in scope and Galactic Archaeology may still be regarded as a burgeoning field. Nevertheless, it is our means to unravel the Galaxy's past and our best hope for predicting its future.

Galactic Archaeology -The Means and the Motives

The field of Galactic Archaeology is in a sense a toolkit providing the necessary tools to wind back the cosmic clock and provide us with a high resolution view of our Galaxy and its immediate neighbours in a way that might otherwise have been restricted to the poorly resolved galaxies of the high-redshift universe. It is not a single method but rather a collection of techniques making use of large sky photometric, astrometric and kinematic surveys to study the positions, motions and chemical compositions of groups of stars in an effort to link them to ancient progenitor structures and then simulate the evolution of these structures through time to the present and beyond. In other words, if stars are found to be grouped together in 6D phase space (i.e. 3 dimensions in position and 3 dimensions of velocity) they may be members of a present day cluster whereas stars grouped together only in velocity space may be termed a moving group and be members of a since-dispersed cluster. Stars grouped together in chemical space might similarly be 'tagged' to an ancient progenitor structure. Some of these possibilities are further investigated in the following paragraphs.

With the advent of Galactic Archaeology, the discovery of moving groups has become common. In an early example, [START_REF] Eggen | Stellar groups, IV. The Groombridge 1830 group of high velocity stars and its relation to the globular clusters[END_REF] identified the nearby moving group Groombridge 1830 and associated it with the Galaxy's globular clusters, providing an early detection of nearby halo stars. In the intervening decades, numerous further examples have been discovered associated with the halo alone, but [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] caution that the validity of some of these groups is questionable.

The tagging of stars to progenitor groups based on their chemical composition is perhaps an even more powerful technique. It relies on the assumption that the progenitor cloud 1.3 Galactic Archaeology -The Means and the Motives 5 be uniformly well mixed before the formation of the surviving stars [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] which is conceivable if [START_REF] Mckee | Massive star formation in 100,000 years from turbulent and pressurized molecular clouds[END_REF]'s model of cluster formation is accepted whereby all stars form at a similar time. Such a method has interesting implications not only for the origins of structure formation in the Galaxy at large, but also at a more local level, as it presents the real possibility of identifying Solar siblings -those stars that formed out of the same cloud as our Sun. Indeed [START_REF] Reipurth | The Early Sun: Evolution and Dynamic Environment[END_REF] lists possible evidence supporting the idea that the Sun did in fact form in a cluster and Portegies [START_REF] Portegies Zwart | The Lost Siblings of the Sun[END_REF] goes so far as to provide mass and radius constraints for the cluster of 500 -3000 M ⊙ and 1 -3 pc respectively. They further concur that with accurate chemical abundances and phase space information, the identity of the cluster members may be recovered. A direct test of the feasibility of chemical abundance tagging is seen in De [START_REF] De Silva | Chemically Tagging the HR 1614 Moving Group[END_REF] where of the 18 supposed members of the commoving group HR1614, 14 were found to have very little scatter in chemical abundances across a wide range of elements with the non-conforming stars conceivably 'pollution' from the non-cluster background. Thus it seems that, at least in some cases, this powerful technique proposed for Galactic Archaeology should be applicable.

So far we have encountered the means to re-construct ancient Galactic components but the question remains -how ancient? A time frame is needed to accurately model the Galaxy's evolution, as evolution is after all time dependent. There are various methods proposed to fulfill this function, all relating to the determination of stellar age, of which [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] gives a concise summary. Since we are generally concerned with stars long since removed from their parent clusters, determining age from the main sequence turnoff is obviously not an option. Instead, such methods as nucleo-cosmochronology, astero-seismology and age-metallicity relations are suggested. Nucleo-cosmochronology is concerned with ageing the elements in a star based on their remaining radioactive isotope strengths, given a certain radioactive decay rate. Since the original elemental abundances are not known, the method compares the radioactive isotope strengths to stable r-process elements. Some studies based on this technique have already been highly successful. Asteroseismology takes advantage of the evolving mean molecular weight in the cores of stars to ascertain age and has been used to provide an age for the Sun of 4.57 Gyr ± 0.12 Gyr (Gough, The best fit median is represented by the solid line while the dashed lines represent 1σ limits. [START_REF] Chaboyer | The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem[END_REF] 2001), which matches well with the ages determined for the oldest meteorites by more direct means. An age-metallicity relationship would provide a more direct measure of stellar age, if indeed one could be established but alas, such a relationship only applies to a small subset of stars. [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF] find such a relationship to exist only for a small range of young, hot, metal-rich stars. More useful however is the age-luminosity relationship (Figure 1.2) found to apply to the much older RR Lyrae stars, provided their distances may be accurately determined. This principle has been applied to constrain the ages of the Galaxy's globular clusters [START_REF] Chaboyer | Globular Cluster Ages and the Formation of the Galactic Halo[END_REF]. Still, there is a large age interval over which the latter two methods are not applicable, thus emphasizing the importance of the former two methods.

Having discussed the tools of Galactic Archaeology, what are its goals and to what extent have these goals already been met? The ultimate goal of Galactic Archaeology is to be able to 1.3 Galactic Archaeology -The Means and the Motives trace the current structures of the Galaxy back to their progenitor structures in the protocloud from which it formed. In so doing, the histories of the various components of the Galaxy are uncovered, spanning from the epoch of formation to the present day. As outlined in section 1, the basic structure of the Galaxy has already been established and based on the stellar ages and metallicities/ elemental abundances across the various components an hypothesis for galaxy formation has been formulated, again summarized in [START_REF] Freeman | The New Galaxy: Signatures of Its Formation[END_REF]. It is suggested that the Galactic Protocloud began to form at a similar time to the epoch of reionization. At this time the Galaxy, like those around it, appeared in the form of a dark matter halo, with its central black hole and possibly its stellar bulge forming first. The prominent disk structure where most of the baryons reside did not develop until the beginning of the main epoch of baryon dissipation at a redshift of z ∼ 1 -5. This also coincides with the ages of the thick disk and the globular clusters. The populating of the halo with globulars and field stars is thought to have also begun very early in the formation process, the result of tidal interactions with small neighbouring dwarf galaxies. The thin disk comprises the youngest stars of the Galaxy while the thick disk is likely the dynamically heated remnant of an ancient thin disk -in fact, Galactic Archaeology may provide some clue as to the particular interaction responsible. One popular theory is that the globular cluster ω Cen is the remnant core of a small galaxy, stripped of its outer stars in an interaction precipitating the heating of the original thin disk [START_REF] Bekki | Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc[END_REF]. It is also believed that the current galactic bulge is not of the ancient origin of more pronounced bulges such as that found in M31, but rather a later formation in the established inner disk. This is consistent with the relatively high metallicities in the galactic core, although it must be stressed that metallicity is a better measure of the number of supernova events rather than of actual age and the density of the galactic core is bound to influence this number profoundly.

The formation sequence presented above owes little to observations of high-redshift galaxies or even to computer simulations based on Cold Dark Matter (CDM) Cosmology, but rather it is a construction based on observations of our own galaxy and those nearby. Our focus has so far been centered on the Milky Way, but it must be stressed that any galaxies close enough to have their individual stars mapped into phase space or chemical space are An Introduction to Galactic Archaeology within the reach of Galactic Archaeology. It should also be stressed that the methods associated with Galactic Archaeology described above form the basis for such study but such methods provide for mere data acquisition -the possible applications for the data are enormous, and hence so to is the scope of Galactic Archaeology. These points should be kept in mind as some of the various sky surveys available to the 'Galactic Archaeologist' are discussed in the next section.

Completed and Future Surveys -What can they tell us?

Modern Galactic Archaeology draws heavily on a small number of ambitious, wide field surveys focused, at least in part, on the acquisition of either photometric, astrometric or kinematic data for large numbers of stars. While there are many smaller data sets such as Hubble Space Telescope (HST) pointings and those from major ground telescopes which are also utilized, our focus here shall be limited to these major surveys.

Photometric

Among those surveys with the broadest scope are the photometric surveys, although the data they include is often more restrictive for Galactic Archaeology than that from the astrometric and kinematic surveys. Photometry is of particular usefulness in determining the distance to large numbers of objects. The two most recent major photometric catalogues are those from the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS). SDSS is an ongoing survey, begun in 2000, using the dedicated 2.5 m wide-field, modified Ritchey-Chrétien telescope at Apache Point Observatory and an array of 30 × 4 megapixel CCDs.

The survey provides photometry in the u, g, r, i and z bands (see [START_REF] York | The Sloan Digital Sky Survey: Technical Summary[END_REF] for a technical summary) as well as spectroscopy of select targets. As of the ninth data release (SDSS-III Collaboration et al., 2012), the survey had covered some 14555 square degrees of sky or more than 1 3 of the entire celestial sphere, with spectra obtained for 668054 stars. The survey also features stellar positions accurate to within 150 mas for each coordinate and metallicity as well as phase space information are determinable for the observed stars.

The stellar coverage is however, relatively small owing to the survey's greater emphasis on 1.4 Completed and Future Surveys -What can they tell us? 9 obtaining photometry for galaxies.

The 2MASS survey (Skrutskie et al., 2006) in contrast covers an enormous quantity of stars, with some 471 million point sources extracted from the data. The survey covers the entire sky and includes photometry in the J, H and Ks near-infrared bandpasses. For entire sky coverage, two ground based telescopes were required, one in each hemisphere, and hence two 1.3 m telescopes were constructed for the task, one at Mount Hopkins, Arizona and the other at Cerro Tololo in Chile. The 7.8 second exposure for each field results in limiting magnitudes of 15.8, 15.1 and 14.3 in the J, H and K s bands respectively. A 1σ error of < 0.03 magnitudes is determined for the photometry with an estimated error of 100 mas in the source positions. With stellar positions as well as metallicity being determinable from the data, stellar tagging is a possibility from this data set. Indeed, this survey is a useful archive of data for isolating ancient structures, especially since such structures may be expected to be delineated by luminous red giant stars which would remain visible out to great distances due to their strong emission in the near infra-red. This merit of the survey has in fact been exploited by previous studies, as exemplified by Ibata et al. (2002a) where M giants were used to trace substructure in the outer Galactic halo. Still, the lack of kinematic data obtainable from the survey does present some limitations for reconstructing ancient structures that have since dispersed.

The Skymapper Telescope (see [START_REF] Keller | The SkyMapper Telescope and The Southern Sky Survey[END_REF]) is currently working to improve on the 2MASS data set, at least for the southern celestial hemisphere. Skymapper is a 1.33 m telescope operated by the Australian National University (ANU) at Siding Spring mountain. It features an array of 32×8 megapixel CCDs mounted at the Cassegrain focus of the telescope to provide a 5.7 square degree field of view. Six coloured glass filters allow photometry in the u, v, g, r, i and z bands with peak throughput in the r band at around 650 nm. A proposed An Introduction to Galactic Archaeology mas. Hence in using the Skymapper data, Galactic Archaeologists have at their disposal 5 dimensions of phase space data as well as basic metallicity information for each surveyed star. It might therefore be argued that Skymapper represents one of the greatest leaps forward in the field of Galactic Archaeology to date and indeed the probing of the evolution and structure of the Galaxy ranks highly as one of the projects chief science goals.

Astrometric

Astrometry is essentially concerned with the determination of the 5 dimensions of phase space excluding radial velocity. Two data sets stand out as major contributions to the bulk of astrometry information currently available -that from the HIPPARCOS mission (ESA, 1997) and the data contained in the United States Naval Observatory (USNO) catalogues.

HIPPARCOS is actually an acronym for HIgh Precision PARallax COllecting Satellite, chosen in honour of the Greek astronomer Hipparchus whose main contribution to astronomy was astrometry, albeit in only two dimensions of phase space! The satellite operated from 1989 to 1993 providing high precision positional and proper motion data for more than 100000 stars. The final HIPPARCOS Catalogue consists of 118218 stars within a limiting magnitude of 12.4. The stars' positions on the celestial sphere, parallaxes and proper motions were determined to within median precisions of 0.77 mas, 0.97 mas and 0.88 mas yr -1 respectively. Additionally, photometry was determined for each star using an HIPPARCOSspecific visible pass band. The measurements were based on ∼ 110 independent observations and are accurate to a mean value of 0.0015 mag. Based on these parameters, it is clear that the HIPPARCOS Catalogue represents an extraordinarily high precision source for phase space information and some photometry applications. The fundamental drawback to the data for Galactic Archaeology however is the small number of surveyed stars. This is remedied to some extent by the addition of the Tycho Catalogue (named in honour of Tycho Brahe's significant contributions to astrometry) wherein phase space data and photometry are presented for 1 058 332 stars with a median astrometric precision of 25 mas for all stars and photometry accurate to within 0.07 mag for B band photometry and 0.06 mag for V band photometry for all stars. It should also be noted that a new catalogue, Tycho 2 [START_REF] Høg | The Tycho-2 catalogue of the 2.5 million brightest stars[END_REF] has been 1.4 Completed and Future Surveys -What can they tell us? 11 released, based on the same raw data as the original Tycho Catalogue but with astrometry available for 2.5 million stars and slightly higher parameter accuracy owing to a different reduction technique, yielding proper motions as small as 2.5 mas yr -1 detectable. In summary, the quality of the proper motion data from these three surveys distinguish them from other surveys, yet still, astrometric parallax -the particular specialty of these surveys -is inevitably limited by distance, so this dimension of phase space is not going to be available for far-flung structures of the Galaxy or extragalactic targets.

One of the largest astrometric catalogues available to date is the United States Naval Observatory A2.0 (USNO-A2.0) Catalogue [START_REF] Monet | ,881 Objects In The USNO-A2.0 Catalog[END_REF]. The catalogue is based on the same raw data as the USNO-A1.0 Catalogue [START_REF] Monet | The PMM USNO-A1.0 Catalogue[END_REF] which was compiled using measurements of the Palomar Observatory Sky Survey I (POSS I) O and E plates for declinations north of -35 o and the UK Science Research Council (SRC-J) and European Southern Observatory (ESO-R) survey plates for declinations south of -35 o . The plates were scanned using the Precision Measuring Machine (PMM) at the U. S. Naval Observatory Flagstaff Station with precisions of 150 mas in positional information and 0.15 mag in the b and r band photometry afforded by using the ACT Catalogue over the Guide Star Catalogue (GSC) -as was used for USNO-A1.0 -for astrometric calibration. The ACT catalogue is based on the combination of the Astrographic Catalogue and the Tycho Catalogue and provides proper motion information about an order of magnitude more accurate than that contained in the original Tycho Catalogue [START_REF] Urban | The ACT Reference Catalog[END_REF]. The final product is a catalogue of some 526 280 881 stars with RA, DEC and b and r band photometry to the accuracies already specified. The data is hence limited to the 3 positional coordinates of phase space (assuming distances are obtained from the photometry) and minimal photometric information but nevertheless, the sheer bulk of stars covered warrants the inclusion of the USNO-A2.0 Catalogue as a major source of raw data for Galactic Archaeology.

In addition to these surveys, there have been some noteworthy astrometry surveys in the intervening years, such as that utilized for the Second US Naval Observatory CCD Astrograph Catalogue or UCAC2 [START_REF] Zacharias | The Second US Naval Observatory CCD Astrograph Catalog (UCAC2)[END_REF] wherein are presented position and proper motion data for 48 330 571 sources -mostly stars -with declination between -90 o and +40 o . The precision in position is estimated between 15 and 70 mas, depending on An Introduction to Galactic Archaeology source magnitude, and proper motions are determined to within 1 -3 mas yr -1 for stars brighter than 12th magnitude and 4 -7 mas yr -1 for those between 12th and 16th magnitude.

Another, more restrictive survey, is the Southern Proper Motion Program III [START_REF] Girard | The Southern Proper Motion Program. III. A Near-Complete Catalog to V=17.5[END_REF] which has catalogued ∼ 10.7 million objects in an area 3700 o or 1/11 of the entire sky, with proper motions determined in some cases accurate to 4 mas yr -1 .

The future for the collection of astrometric data is potentially an exciting one, but alas there are many setbacks faced by would-be missions. Already, two particularly promising, ∼ 40 million star surveys -the Full-sky Astrometric Mapping Explorer (FAME) and the German Interferometer for Multichannel Photometry and Astrometry (DIVA) -have been cancelled due to escalating costs and logistic difficulties. Disappointingly, this leaves some time until a new major astrometric survey is released. Nevertheless, two even more ambitious missions are scheduled for the next decade, one -JASMINE (the Japanese Astrometry Satellite Mission for INfrared Exploration) -is purely astrometric with regard to the dimensions of phase space it is intended to explore, the other, Gaia, will provide a measure of radial velocity as well and so is discussed amongst the 'kinematic' surveys in the next sub-section.

The JASMINE mission (see [START_REF] Gouda | The Jasmine Working Group. Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE)[END_REF], due for launch around 2014, is a 1.5 m spacebased telescope under preparation by JAXA (the Japanese Aerospace Exploration Agency), designed to peer through the gas and dust of the galactic disk at a wavelength of 0.9 microns. The telescope will be sent into a Lissajous orbit around the Sun-Earth Lagrange point L2 from where it shall undertake astrometry of some 100 million Galactic disk and bulge stars (or such stars brighter than magnitude 14 in the z band) in the Galactic Latitude range |b| ≤ 4.0. As such it is not an all sky survey and it is of limited use for studying any other Galactic structures but nevertheless, with an accuracy of 10 µas for position and parallax data and 10 µas yr -1 for proper motions, the mission has the potential to produce a substantial catalogue of data, so far unequaled in depth, for the appropriate Galactic Archaeology work.

Kinematic

Kinematic surveys are perhaps the most useful survey type to the Galactic Archaeologist as they provide a complete description of each star's location in phase space and provide the 1.4 Completed and Future Surveys -What can they tell us? 13 best chance for the identification of those structures sharing a similar evolutionary history.

When this information is coupled with elemental abundance data, which is sometimes available from the same survey, the Galactic Archaeologist is endowed with the astronomical equivalent of the Rosetta Stone -the key to piece together the ancient lives of the Galactic populace. The only concern then is that the 'Galactic census' is far enough reaching to register enough substructure to give a representative view of the Galaxy in its entirety. Kinematic surveys are a relatively recent addition to the available data but, as we shall see, plans are afoot to see the kinematic dataset explode by the end of the next decade. [START_REF] Bland-Hawthorn | Galactic history: formation Memorie della Societa Astronomica Italiana evolution[END_REF] identify the Geneva-Copenhagen Survey of the Solar Neighbourhood [START_REF] Nordstrom | Geneva-Copenhagen Survey of Solar neighbourhood (Nord-strom+[END_REF] as the first major kinematic survey -a study featuring kinematic data for 16682 nearby K and G dwarfs, with full 6D phase space data available for 14139 stars after combination with HIPPARCOS parallax data and Tycho 2 proper motions. Combined with photometry and metallicity data, the survey represents the means to study the precise structure of the local stellar neighbourhood and perhaps even identify any solar siblings that have migrated along similar paths to the Sun. Still, if enough data is to be had for the Galaxy on the broadest scales, the surveyed stars are going to have to be much more numerous and include those much less luminous! Several such projects have either been completed or are in their final or preparatory stages. The most important completed to date is SEGUE -the Sloan Extension for Galactic Understanding and Exploration [START_REF] Yanny | SEGUE: A Spectroscopic Survey of 240,000 Stars with g = 14-20[END_REF]. It is a moderate-resolution (R = 1800) spectroscopic survey of 240000 stars, spanning the spectral range from 390 nm to 900 nm, with the principal aim of aiding the study of the kinematics and populations of the Galaxy.

The survey concentrates on fainter Milky Way stars of various spectral and luminosity classes with g band magnitudes between 14.0 and 20.3. The spectra it contains are from 212 regions of sky covering a total of 3500 square degrees, scattered over three quarters of the celestial sphere, though with an emphasis on low galactic latitudes. From the spectra, radial velocities have been obtained accurate to 4 kms -1 for stars brighter than g = 18 and better than 15 kms -1 for those brighter than g = 20. Photometries are also provided for u, g, r, i and z bands, as are astrometry data (accurate to 100 mas), and determinations of metallicity and other stellar atmosphere parameters where an SNR exceeding 10 per resolution element is An Introduction to Galactic Archaeology available. All things considered, the SEGUE data represent an excellent resource for Galactic Archaeology in all of the major Galactic substructures and may be used as a stand-alone resource with 6 dimensions of phase space as well as metallicity data all available from the one dataset. Still the number of stars included and the region of sky surveyed are still quite restrictive, and particularly in the Galactic halo or in cases where rare spectral types are used as tracers, there may simply not be enough coverage to properly identify and characterize substructure.

The RAdial Velocity Experiment (RAVE -see [START_REF] Steinmetz | The Radial Velocity Experiment (RAVE): First Data Release[END_REF]) should provide a substantial compliment to the SEGUE data at least for Southern Hemisphere stars. The project aims to obtain mid-resolution (R = 7500) spectra of up to one million stars using the Six Degree Field Multi-Object Spectrograph on the 1.2 m UK Schmidt Telescope at Siding Spring. The spectra are concentrated on the Ca-triplet region (841.0 nm -879.5 nm) in an effort to determine metallicity as well as temperature and surface gravity for the surveyed stars, which will be chosen to have a magnitude in I band in the range from 9 to 12. Radial velocities will be determined to better than 3.4 kms -1 , marking a small improvement over the SEGUE data, while proper motions are included from external sources such as Tycho-2.

As of the third data release [START_REF] Siebert | The RAdial Velocity Experiment (RAVE): Third Data Release[END_REF], 77461 individual stars had been surveyed, so the quantity of data is still considerably smaller than that available from SEGUE.

As the 'crescendo' to this review of stellar surveys, one particular project in the preparatory stages is set to supersede all the others -the ambitious Gaia space mission. A review of the Gaia mission is found in de Bruijne (2012), wherein the basic capabilities of the Gaia satellite are discussed. Gaia is set to measure the parallaxes, positions and proper motions of the one billion brightest stars in the sky -a truly astronomic endeavor! The stellar parallax measurements obtained by the satellite are expected to be accurate to within 25 µas for stars brighter than 15th magnitude. Accompanying this astrometric data will be low-resolution spectroscopic (R ≈ 11500) and photometric data covering the range from 330 nm to 1000 nm allowing the radial velocity to be measured to within 1 -15 kms -1 and metallicity and other parameters of the stellar atmospheres to be determined. The mission is planned to launch in 2013 with final results expected by 2021. By comparison to the other surveys already discussed, this mission represents a new generation for Galactic Archaeology. Not 1.5 Dark Matter and the Predictions of ΛCDM Cosmology only will cooler main sequence stars comparable to the Sun be visible out to beyond 10 kpc but more luminous stars will be visible throughout the Local Group and even in external galaxy clusters, taking Galactic archaeology to new places quite literally. This data will provide the representative survey of the Galaxy really needed to unravel its past and to study galactic evolution in a more general sense. In closing, it should however be cautioned that 2021 is almost a decade away and budget restraints may yet curtail the ambitious scale of Gaia, and even if they do not, the next ten years should be ones of productivity in Galactic Archaeology. Hence the more immediate, albeit less ambitious surveys will be the raw material utilized to push forward the boundary of knowledge in the mean time.

Dark Matter and the Predictions of ΛCDM Cosmology

The requirement for the existence of dark matter was first identified observationally by Fritz Zwicky [START_REF] Zwicky | Die Rotverschiebung von extragalaktischen Nebeln[END_REF]. Upon studying the high velocities of member galaxies of the Coma Cluster, he realized that their orbits must enclose substantially more matter than could be attributed to visible galaxies alone in order for them to remain bound, hence implying the existence of some unseen, yet significant component of matter [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]. Rotation curves for individual galaxies were also subsequently shown to imply significant amounts of matter not associated with the luminous component of the galaxies (see Figure 1.3). Studies of the Cosmic Microwave Background (CMB) and the Universe's abundance of deuterium have indicated that ordinary baryonic matter -matter made up of baryons (i.e. protons and neutrons) -constitute a mere 4% of the total mass/energy content of the Universe and that non-baryonic matter must contribute a much larger fraction, ∼ 30% [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]. Various properties and forms have been suggested for the elusive dark matter, of which the Λ Cold Dark Matter (ΛCDM -Λ being the cosmological constant) model has been the most successful at explaining the primordial 'power spectrum of density fluctuations' and its evolution to its present state.

In ΛCDM Cosmology, the dark matter's constituent particles exhibit a small, non-relativistic velocity dispersion (hence they are termed cold), having decoupled from baryonic matter and Figure 1.3: A schematic conveying the disparity between observed and expected galaxy rotation curves [START_REF] Sahni | Dark Matter and Dark Energy[END_REF] energy after they had slowed to non-relativistic speeds [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]. Associated with the particles is a 'free-streaming distance' λ f s that relates the mean distance traveled by the particles while still relativistic, before they slow to non-relativistic velocities. Since CDM cosmology already assumes 'cool' particles, this distance is not very long and so free streaming can only disrupt the primordial density distribution on small scales -hence giving rise to small-scale structure soon after the big bang. The opposite to this scenario is borne out by the Hot Dark Matter model, in which density inhomogeneities first appear on larger scales before fragmenting into the building blocks of individual galaxies -i.e. a top-down cosmology. CDM Cosmology in contrast is a bottom-up or hierarchical cosmology in which smaller structures appear first in the Universe and over time undergo gravitational clustering into larger structures such as clusters and eventually into the super-cluster-filament/ void frothy structure observed today. ΛCDM cosmology differs from the earlier standard CDM cosmology in that the mass density Ω m is chosen to be 0.3 of the total mass-energy density (as opposed to 1) with Hubble constant (at z = 0) h ∼ 70 kms -1 Mpc -1 , thus providing for a better fit to the shape of the current observed power spectrum.

1.5 Dark Matter and the Predictions of ΛCDM Cosmology With regard to the actual form of the dark matter, several possibilities have been proposed which can generally be summarized into two fundamental categories -the non-baryonic WIMPs (Weakly Interacting Massive Particles) and the baryonic MACHOs (MAssive Compact Halo Objects). In particular, the neutralino particle has been put forward as a strong contender for the CDM particle. The proposed neutralino is a WIMP with energy in the 100 -1000 GeV range and is both stable and neutral so that it does not scatter light. [START_REF] Jungman | Supersymmetric dark matter[END_REF] describes the neutralino as "the best motivated and most theoretically developed" of the WIMP particles and goes on to outline how it might be detected and how its abundance might be determined. Indeed, schemes are underway aimed at the direct detection of neutralinos on the Earth via their gamma-ray emitting interaction with nuclei in a detector -similar to the generation of x-rays in an x-ray tube. At least some of the missing matter however, is going to exist in the form of MACHOs such as distant white dwarfs, brown dwarfs and other low-luminosity bodies in the halo but there are theoretical and observational constraints on the percentage of dark matter made up of such baryonic matter. Theoretically, baryonic matter is not particularly successful at 'growing substructure' from the small primordial density fluctuations in the universe due to its strong coupling with radiation. On the other hand, if most of the dark matter is non-baryonic and thus not coupled to the radiation, this matter can clump together much earlier so that the comparatively small percentage of baryons simply fall into these ready made over-densities shortly afterward [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]). An example of observational constraints on the size of the baryonic component of dark matter is found in [START_REF] Alcock | The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations[END_REF] where the low count rate of micro-lensing events in the direction of the Large Magellanic Cloud over a 5.7 year period is used to constrain the halo mass tied up in MACHOs to ∼ 20%. Whether MACHO or WIMP, the fact remains that the matter is dark and will not be directly observable to the astronomer -with the exception of the odd MACHO as more sensitive telescopes become available. Hence it would appear that, at least for the time being, the study of the Galactic dark matter will be restricted to the astronomical indirect measurement of the halo mass distribution (with several methods described in the next section) and the independent detection of WIMPs by particle physicists in the laboratory.

Before leaving this discussion of the ΛCDM cosmology, it must be noted that this model An Introduction to Galactic Archaeology is a 'best-fit' model only and is not without its own shortcomings. Two principal examples are outlined in [START_REF] Sahni | Dark Matter and Dark Energy[END_REF]. Firstly, the model predicts an over abundance of halo substructure or subhalos which, if assumed to be accompanied by a luminous baryonic component, are not currently observed. Secondly, CDM predicts a so-called 'cuspy core,' with N-body simulations producing a halo density dropping off more steeply in the central regions than is observed such that ρ is proportional to r -1 . With regard to the first problem, [START_REF] Diemand | Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo[END_REF] describes the results of "Via Lactea," the highest resolution simulation of the Galaxy to date, which predicts that the Milky Way halo should possess 124 subhaloes with masses comparible to the Galaxy's dwarf satellite galaxies, yet according to [START_REF] Van Den Bergh | The Dwarf Satellites of M31 and the Galaxy[END_REF], only ∼ 10 such galaxies have been observed. This begs the question: where are the missing satellites? [START_REF] Diemand | Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo[END_REF] goes on however to identify two studies which may hold the answer to this. A local group model by [START_REF] Kravtsov | The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem[END_REF] suggests that galaxy formation will only initiate in the most massive (> 10 9 M ⊙ ) subhalos while [START_REF] Moore | Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks[END_REF] find that only those subhalos forming very early on in the galaxy assembly process (at redshifts z > 12 ± 2 i.e. before the epoch of reionization) with masses above the atomic cooling mass 1 Diemand et al. (2007) subsequently found that when the "Via Lactea" simulation was run backward through time only two subhalos were found to comply with each of Krastov and Moore's requirements -the same two in each case -which is a much better match to the number of satellites found to date in the Milky Way halo. Furthermore, [START_REF] Sahni | Dark Matter and Dark Energy[END_REF] highlights the fact that powerful winds from star formation and early supernovae may be responsible for clearing potential low mass satellites of what baryonic matter they might of had initially. With regard to the 'cuspy core' problem, [START_REF] Sahni | Dark Matter and Dark Energy[END_REF] goes on to draw attention to the fact that complex processes in galactic cores such as bar formation and baryon-dark-matter interactions are not treated adequately in the simulations to date. 1 The atomic cooling mass M H is the critical mass above which gas can cool efficiently allowing for condensation and subsequent fragmentation via excitation of the Lyman α transition of hydrogen. Assuming a virial temperature above 10 4 K, M H ≈ 10 8 [(1 + z)/10] -3/2 M ⊙ which gives M > 0.067 × 10 9 M ⊙ at z = 12 in order for a luminous component to develop (ref: [START_REF] Madau | Population III and the near-infrared background excess[END_REF] 1.6 Resolving the Matter -Methods for Measuring the Dark Matter Distribution 19

Resolving the Matter -Methods for Measuring the Dark Matter Distribution

There are a variety of methods available to ascertain a broad picture of the dark matter distribution in galactic halos, of which three principal techniques are now discussed. The first method is that of gravitational lensing. In the last section, discussion was made of the use of microlensing to determine the percentage of dark matter attributable to MACHOs.

Here we are concerned with strong lensing, where for instance a quasi-stellar object (QSO) is lensed by a foreground galaxy, and the contribution of substructure in the lense galaxy to the resulting flux distribution. Lense galaxy substructure in the form of dark subhalos will manifest itself as flux anomalies and milliarcsecond distortions in the image of the source object [START_REF] Metcalf | Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos[END_REF]. A study into the feasibility of using such phenomena to map the subhalo distribution in the halos of lens galaxies is made in [START_REF] Riehm | Prospects for CDM subhalo detection using high angular resolution observations[END_REF].

Here, a test is proposed where a QSO is already known to be lensed on the arc second scale so as to ensure a suitably well-aligned, massive halo as the lensing object. Conditions are then favourable for the detection of subhalos in the 10 6 -10 10 M ⊙ range based on the milliarcsecond distortions to the imaged QSO. Still, the study finds that the most realistic models currently available for the density distribution within typical subhalos do not bode well for the likelihood of their detection. Their density drops off with distance from the core at a more gradual rate than earlier models, yielding separations in the source image too small to resolve with the current generation of telescopes. Even if some subhalos are detectable, this method is not strictly in the realm of local cosmology, with inferences having to be drawn from the distant lensing galaxies as to how the halos of more local galaxies should be structured.

A much more direct method is proposed in the detection of gamma rays from annihilation of WIMPs such as from the chief contender -the neutralino. [START_REF] Diemand | Dark Matter Substructure and Gamma-Ray Annihilation in the Milky Way Halo[END_REF] goes so far as to produce an all sky map of the possible annihilation flux based on the "Via Lactea" simulation. They find that halo substructure should provide an overall boost to the annihilation signal from a galaxy when compared to a smooth halo distribution. Since the annihilation rate is proportional to the square of the density, a map of halo substructure may An Introduction to Galactic Archaeology soon be possible with the upcoming Gamma Ray Large Area Telescope (GLAST) which has a field of view covering approximately one sixth of the sky and sub-degree resolution at energies greater than 1 GeV. Based on the "Via Lactea" run, subhalo luminosity is predicted to be directly proportional to the mass of the subhalo, with even comparatively small examples visible to such a telescope when they are close to the Sun. The background noise from the Galactic centre is expected to hinder observations toward Sagittarius and in the Galactic Plane in general so observations may be best made looking away from these regions.

Whatever the simulations may show, however, studies such as this are based heavily on assumptions and so, until such a time as observational evidence is available to support such ideas, it is important to focus on those methods that are independent of the precise nature of dark matter, relying only on its gravitational effects. Such a method is found in the kinematic study of currently detectable halo structures such as the stellar streams found in the Andromeda halo and that of our own galaxy. Studies have been made into the feasibility of such methods for constraining the distribution of massive subhalos, notably by [START_REF] Ibata | Uncovering cold dark matter halo substructure with tidal streams[END_REF] and [START_REF] Johnston | How Lumpy Is the Milky Way's Dark Matter Halo?[END_REF] with some success predicted upon the availability of deeper 6D-phasespace surveys such as will be undertaken by Gaia. [START_REF] Ibata | Uncovering cold dark matter halo substructure with tidal streams[END_REF] presents the results of N-body simulations and their implications for the possibility of inferring the presence of dark matter clumps from their heating effects on stellar streams. Specifically, a 10 6 M ⊙ globular cluster is modeled with 10 4 particles and placed in a variety of smooth and lumpy galactic potentials both spherical and oblate. It is found that, assuming a spherical potential, the tidal stream from the cluster after a 10 Gyr period remains dynamically cold if the potential is smooth, with a width at its narrowest similar to the tidal radius of the initial cluster model. If the smooth halo is populated with subhalos so that a mere 1 % of the halo mass is tied up in this substructure, the emergent stream from the model cluster over the same time interval becomes significantly dynamically heated and hence physically wider and more diffuse. If, contrary to an earlier study [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] that will be discussed shortly, the Galactic halo is not spherical, but rather significantly oblate, the effect of the resulting precession of the cluster orbit can be distinguished from that of heating from subhalo disruption when the integrals of motion of the stream -the total energy and angular momentum (particularly the z-component) per unit 1.6 Resolving the Matter -Methods for Measuring the Dark Matter Distribution 21 mass -are plotted with respect to each other. As a result, this particular method is indeed a possibility whatever the structure of the halo, but as is statistically determined using the 2MASS survey (Ibata et al., 2002a), too few stream members per disrupted globular cluster are available in the presently available data -and with incomplete phase space information -to make such streams detectable, with the stream from the disrupted Sgr Dwarf being the only one discernable from the data. Alas, the Sgr Dwarf is too large, with stellar velocities too dispersed for the subtle effects of heating from Galactic subhalos to be easily distinguishable within its stream. Hence, it is concluded that this method must wait for the Gaia data before the level of halo substructure can reasonably be determined. [START_REF] Johnston | How Lumpy Is the Milky Way's Dark Matter Halo?[END_REF] concur with this conclusion but they do find that data for the Sgr Stream is sufficient to isolate some dynamical heating due to 'lumpiness' in the halo, although they point out that the observed scattering may be accounted for by the effects of the Large Magellanic Cloud (LMC) alone. Further, they predict that even an improved data sample for the stream is unlikely to improve on the deductive possibilities of the technique due to the alignments of the orbits of the two progenitor satellites. It is pointed out however, that future deep halo surveys may allow detection of colder extended streams from other Milky Way satellites that are relatively unaffected by the LMC and ideal for probing the halo substructure.

Whilst a study of the subhalo distribution in the Galactic halo may not yet be practical, initial investigations regarding the overall shape of the Milky Way halo and mass of the M31 halo have already taken place. [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] determines with a high level of confidence that the Milky Way halo cannot be significantly oblate. The study used the Automatic Plate Measuring Facility halo carbon star (APM) survey [START_REF] Totten | The APM survey for cool carbon stars in the Galactic halo. I[END_REF], which utilized Palomar Sky Survey plates and those from the UK Schmidt Telescope, to examine the distribution of carbon stars and their possible association with known halo structures. Carbon stars were chosen as the structure tracers of choice owing to their high intrinsic luminosity, rarity, distinct photometry and intermediate age, all of which act to make such stars easily identifiable and useful markers of recent Galactic accretion. Of the 75 carbon stars identified, 38 were found to lie within 10 • of the great circle on the celestial sphere corresponding to the predicted Sgr Dwarf orbit and a further 28 within a similar proximity to the projected orbit of the Magellanic Clouds as represented in Figure 1.4 using a pole-count analysis. These An Introduction to Galactic Archaeology represent 6σ and 4σ overdensities respectively with regard to the statistically expected value of ∼10 counts. To further illustrate the significance of these results, simulations were run which factored in the sky coverage of the survey plates employed and randomly positioned stars accordingly, and despite 1000 runs, no such overdensities were produced. Because the Sagittarius Stream delineated by these stars is observed as an approximate great circle, [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] suggest that the orbit traced by the Sgr Dwarf must occupy a region of spherically symmetric gravitational potential since orbital precession must otherwise take place with orbital angular momentum no longer conserved. To better understand the evolution of the Sgr Dwarf responsible for the presently observed stream, the team represented the progenitor galaxy first as compact and then as a more loosely bound structure, evolving it each time within a Galactic potential with mass distribution:

ρ(R, z) = ρ 0 ( s r 0 ) -γ (1 + s r 0 ) γ-β e s 2 r 2 t
where r 0 is the core radius, r t is the truncation radius and γ and β are the power law indices for in and outside of the core respectively. Two particular halo models were investigated based on observational constraints, each with slightly different parameters input into the mass distribution equation. Further to this, each of these halos was simulated for 3 different circular velocities (ν c -determined at 50 kpc) and 11 different values of the halo density flattening (q m ). In short, both progenitor models were evolved in 66 different versions of the Galactic potential in order to find the combination best fitting observations. It was found that those models with low flattening (e.g. q m ≥ 0.9) are a much better match to the observed carbon star distribution whilst those halos with q m ≤ 0.7 are refuted with high confidence.

Hence [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] conclude that the galaxy cannot be significantly oblate throughout the Galactocentric radii occupied by the orbit.

As a further example of the utility afforded by the study of halo stream kinematics, [START_REF] Ibata | Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31[END_REF] uses the detection of 'giant stellar stream' stars in a kinematic survey using the DEep Imaging Multi-Object Spectrograph (DEIMOS) on Keck2 to obtain a mass estimate for the dark matter halo of the Andromeda Galaxy (M31). The measurement is made using a realistic galaxy model [START_REF] Klypin | ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models[END_REF] incorporating the disc and bulge components [START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] of the galaxy in addition to the dark halo. From the radial velocity gradient of stream stars in the 9 surveyed fields with confirmed stream components, a mass of 7.5 +2.5 -1.3 × 10 11 M ⊙ is obtained for the halo component located within 125 kpc of galactic centre.

The Pan-Andromeda Archaeological Survey

Up to this point we have concentrated our discussion of Galactic Archaeology on the Milky Way Galaxy. Due to our position within it, it has long been the only galaxy for which deep, comprehensive survey data has been available. But this is no longer the case, with the completion in 2011 of the Pan-Andromeda Archaeological Survey (PAndAS).

The origins of the PAndAS survey lie in the 25-square-degree survey of the disk and inner halo of M31 undertaken with the 2.5 m Isaac Newton Telescope (INT). The survey sought to identify the transition between the disk and inner halo, but identified extensive substructure An Introduction to Galactic Archaeology and culminated in the discovery of the Giant Stellar Stream [START_REF] Ibata | A giant stream of metal-rich stars in the halo of the galaxy M31[END_REF]. A comprehensive study of the stellar density and metallicity was undertaken by [START_REF] Ferguson | Evidence for Substructure in the Halo of M31[END_REF] on a field-by-field basis using the INT data. In an effort to map the full spatial extent of the Giant Stellar Stream, the whole southern quadrant of the M31 halo out to 150 kpc was mapped using the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, with an extension out to M33 more than 200 kpc from M31 (Ibata et al., 2007). With the wealth of substructure discovered, and given the large window of the M31 halo already covered, it was then decided to map the the remaining three quadrants out to 150 kpc with CFHT. This major undertaking marked the official birth of the PAndAS survey, with the initial results published in Nature in 2009 (McConnachie et al., 2009). In total, the survey incorporates some 400 square-degrees of sky covering most of the constellation of Andromeda, with extensions into Cassiopeia and Triangulum. It covers the entire halo of M31 out to 150 kpc as well as that of M33 out to 50 kpc. A map of the survey showing the extent of its coverage just prior to completion is presented in Fig. 1.5.

PAndAS is a deep photometric survey which has been undertaken in two bands, g and i using CFHT with the MegaCam instrument. MegaCam is an array of 36, 2048 × 4612 pixel CCD chips, covering approximately one square degree on the sky with a resolution perfectly matched to the 0.7" median seeing atop Mauna Kea. The MegaCam g and i band filters have a very similar throughput to the SDSS filters, with g spanning from approximately 4000Å to 5700Å and i from 6700Å to 8500Å see Gwyn (2010). A comparison of the two filter sets with the corresponding SDSS filters is illustrated in Fig 1.6. Each of the PAndAS fields reaches a depth of approximately magnitude 25.5 in g band and 24.5 in i band, though data incompletion is noticeable at these magnitudes.

Since the first PAndAS data has become available, a great many studies have been undertaken across a diverse range of topics concerning the structure of the M31 halo system.

Possible tidal interactions have been investigated and numerous satellite galaxies, globular clusters and streams have been detected. McConnachie et al. (2009) details the discovery of "stars and coherent structures" that are very likely the remains of ancient dwarf galaxies long since cannibalized. They also identify the remnants of a recent encounter between M31 and Figure 1.5: The Pan-Andromeda Archaeological Survey. This map of the PAndAS survey was generated just prior to its completion. It is generated from the most metal poor stars only and thus highlights the location of the various satellite dwarf galaxies. Also visible is the complex network of tidal streams marking the trails of past galaxy interactions. [START_REF] Mcconnachie | PAndAS: The Pan-Andromeda Archaeological Survey[END_REF] M33, and conclude that the wealth of halo structure present in the survey provides excellent evidence for the validity of hierarchical galaxy formation. The globular cluster system of the outer halos of both M31 [START_REF] Mackey | Evidence for an Accretion Origin for the Outer Halo Globular Cluster System of M31[END_REF] and M33 [START_REF] Cockcroft | The M33 Globular Cluster System with PAndAS Data: the Last Outer Halo Cluster[END_REF] have been investigated, with a strong correlation identified between prominent streams and the locations of the known globular clusters. The presence of a large number of dark matter haloes has also been suggested by [START_REF] Carlberg | Density Variations in the NW Star Stream of M31[END_REF], after a study of the 120 kpc long North West Stream found density fluctuations that should not arise in a smooth galactic potential.

The locations and masses of known dwarf galaxies are also insufficient to explain the density variations. Many new satellites have also been discovered from the PAndAS survey, including Andromedas XVIII, XIX and XX (McConnachie et al., 2008), XXI and XXII (Martin et al., 2009) XXIII-XXVII (Richardson et al., 2011) and XXX [START_REF] Irwin | Andromeda XXX/ Cassiopeia II discovery paper -In preparation[END_REF]. (Gwyn, 2010) In summary, PAndAS represents our first opportunity to study an entire galaxy halo system from an unobstructed view point outside the galaxy. Though the survey is now complete, its legacy has just begun as the many studies underway continue to unravel the secrets of Galaxy formation.

The Importance of Position

Due to the enormous distances separating us from all astronomical objects, with out considerable effort, the Universe remains a purely two-dimensional realm. For the local universe, we can use the Earth's orbit as a base line to measure the angular parallax of an object, and derive a distance accordingly. Further afield at the distance of M31 however, even the 300 million km diameter of the Earth's orbit is of little use in gaging distances, and hence we must turn to indirect means. Nevertheless, the prospect of PAndAS in three-dimensions is an exciting one which would allow us to constrain orbits much more accurately and fully 1.8 The Importance of Position 27 explore the matter distribution of the M31 halo.

At the distance of M31, there are several Standard Candles that could potentially be used as our distance gage. Two that are commonly invoked are Cepheid Variable and RR Lyrae stars. Indeed it was the Cepheid Variable that provided the first measure of the distance to the "Spiral Nebulae" thus establishing them as "Island Universes" external to our own Milky Way. The "Spiral Nebulae" targeted were of course M31 and M33 [START_REF] Hubble | Cepheids in Spiral Nebulae[END_REF].

Nevertheless, Cepheid Variable stars are rare and require multiple epochs of observation to determine their light curves and hence use the Period-Luminosity relation to derive a distance. RR Lyrae stars are much more common than Cepheids but also much fainter and still require multiple observation epochs for distance measurements. Hence we turn our attention to the Tip of the Red Giant Branch (TRGB) standard candle.

The Red Giant Branch forms the backbone of the average metal poor galaxy and at the distance of M31, given the photometric depth of the PAndAS survey, it accounts for almost all of the stars observed to form any given structure. The TRGB standard candle is therefore applicable to even the most sparsely populated object and can even be used to gage distances at multiple points along streams. It also requires only one epoch of observation and hence is readily applicable to a large scale survey such as PAndAS. A study by Salaris and Cassisi (1997) has shown that Cepheid and RR Lyrae determined distances are consistant with those obtained using the TRGB to within 5%.

The TRGB standard candle arises due to the properties common to all Red Giant Branch stars in a particular mass and luminosity range as they approach the onset of core helium fusion. Such stars first enter the Red Giant Branch toward the end of their life when their source of core hydrogen is depleted. To fuse the helium ash left over in their core requires an immense pressure which the core density is as yet insufficient to produce, and so hydrostatic equilibrium is instead maintained by hydrogen fusion in a shell around the core. This process continues for the duration of the star's life on the Red Giant Branch, with the star gradually becoming more luminous as more and more energy is produced in the hydrogen fusion shell.

Due to a relationship between the core helium mass and the luminosity of the star, the rate at which the luminosity increases grows as the star continues it's evolution [START_REF] Salaris | Red Giant Branch Stars: The Theoretical Framework[END_REF][START_REF] Zoccali | Comparison between observed and theoretical Red Giant Branch luminosity functions of galactic globular clusters[END_REF]. This means that more stars will be observed at the fainter end of An Introduction to Galactic Archaeology the Red Giant Branch than at the brighter end, with the result that the luminosity function of a particular object is observed to follow a power law trend (Méndez et al., 2002).

As the star continues its evolution toward the bright end of the Red Giant Branch, the increasing buildup of helium ash in the core steadily increases the core density. In the particular mass range applicable to the TRGB standard candle, the stellar core succumbs to electron degeneracy before helium fusion can ignite and so all such stars have very similar core properties which in turn yields very similar energy outputs in the surrounding hydrogen fusion shell (see Iben and Renzini 1983, particularly Fig. 7). At the very instant of core helium fusion, the stars are at their most luminous and hence lie at the bright tip of the Red Giant Branch before undergoing the Helium Flash as the core pressure becomes sufficient for helium fusion to ignite. At this point, the stars contract and their luminosity diminishes as they enter life on the horizontal branch, resulting in a sudden truncation at the bright end of the luminosity function -i.e. the TRGB. One of the earliest detailed studies of the evolution of Population II stars toward the TRGB can be found in [START_REF] Hoyle | On the Evolution of Type II Stars[END_REF]. A schematic summarizing this evolution is presented in Fig. 1.7. In order to make use of the near-constant luminosity of the TRGB as a distance gage, it is usual to take measurements in the near infra-red region of the spectrum where dependence on metallicity is minimal. Indeed, Lee et al. (1993) show that for metallicities in the range -2.2 < [Fe/H] < -0.7, the absolute magnitude of the TRGB in Johnson-Cousins I band is constant to within 0.1 magnitudes, where in V band it varies by 1.3 magnitudes. This small variation is a consequence of the near-constant absorption in the stellar atmosphere in nearinfrared wavelengths. Using very accurate I band photometry for the globular cluster ωCen, Bellazzini et al. (2001) derived the absolute magnitude of the TRGB as M I as -4.04 ± 0.12.

The MegaCam i bandpass is however significantly different to Johnson-Cousins I band and so for our PAndAS photometry, it is more suitable to use M i = -3.44 ± 0.12 as derived in Bellazzini (2008) for SDSS i band. This is justified given the similar throughputs of the MegaCam and SDSS i band filters as illustrated in Fig. 1.6. At this point, having now introduced the burgeoning field of Galactic Archaeology, the PAndAS survey and the unique opportunity it has provided to explore galaxy evolution in exhausting its core supply of hydrogen. The star expands and cools as it fuses hydrogen in a shell surrounding the core. At the onset of core helium fusion, the star has reached the Tip of the Red Giant Branch (TRGB) from which point it cools and contracts and enters life as a Horizontal Branch (HB) star. When it exhausts its core supply of helium it continues to fuse helium in a shell around the core once again becoming more luminous and following a path approaching the RGB asymptoticly. At this stage in its evolution the star is hence known as an Asymptotic Giant Branch (AGB) star. Note that stars spend only a tiny fraction of their life time as an AGB star in comparison to the time they spend as RGB stars and hence AGB stars are much rarer and so do little to diminish the contrast of the TRGB in an object's luminosity function.

action, we come to the specific aims of the research contained in this thesis. The highest ambition any research thesis can aspire to, is to make an original and significant contribution to the field furnished with clear and accurate results. This is indeed a major underlying motivation for this thesis, though of course, the contribution must inevitably be a specialized one in a field with such enormous scope. To this end, the focus is concentrated on the satellite system of M31. With the known satellite population of the M31 halo so greatly increased in the last 5 years, largely thanks to the PAndAS survey, the time is ripe for a renewed study of the three-dimensional spatial structure of the system. Such a study has the potential to shed An Introduction to Galactic Archaeology light on the past evolution of the satellite system as well as the distribution of matter within the M31 halo. It will also provide for a much needed comparison with the satellite system of the Milky Way and, when combined with velocity information, will facilitate a new, more accurate determination of the M31 halo mass. But before such a study can be undertaken, accurate satellite positions derived consistently via a single method are paramount. Hence, we turn our attention toward the development of a brand new algorithm for locating the TRGB -in particular, one that takes into full account all prior information available about the object's luminosity function.

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George E. P. Box (1987) 2

Building the Framework for a new TRGB Algorithm

The RGB Tip Finding Problem

Given the broad applicability of the Red Giant Branch tip magnitude as a standard candle, it is not surprising to find that it is invoked frequently for distance measurements within the Local Group. Identifying the magnitude of the TRGB accurately however is not without its challenges, and hence many have resorted to simple "eyeball" measurements, read off from the Luminosity Function (LF) of the object in question. Such an approach is acceptable perhaps for distance measurements to a single, well populated object, but it falls short of the task when a consistent measurement is desired for numerous objects within the same group, or when the LF is poorly populated and the bright edge of the Red Giant Branch (RGB) is 32 Building the Framework for a new TRGB Algorithm not clear-cut. There is also the problem of ascribing an accurate measurement uncertainty to such an approach. It is therefore desirable to have an automated routine which, given the object LF, returns the most likely position of the RGB truncation with a measure of the uncertainty in this position.

The development of such a TRGB-finding algorithm is not without its difficulties however. Binned luminosity functions by their very nature suffer from Poisson noise, and thus star counts in two neighboring bins may differ by a significant factor. This is a serious problem when the primary task of our algorithm is to locate a sudden jump in star counts that might signal the bright edge of the RGB. It is however, less problematic for those objects exhibiting well populated RGBs. There is also the question of how the LF is effected by the stellar "background" contribution. After all, if the background LF contribution can be isolated perfectly and subtracted from the net LF for the object field, the RGB tip magnitude is simply the brightest non-zero bin remaining.

These issues have been approached in various ways over the years, and a more detailed literature review is provided in Chapter 3 (see Paper I Introduction), but relevant developmental landmarks are discussed below.

The first attempt at an automated tip-finding routine was introduced by Lee et al. (1993), who employed what is essentially an edge-finding technique, similar to what one might encounter in image processing. Instead of a 2D matrix however, the 'image' is the onedimensional, binned luminosity function and the edge finding kernel is a one-dimensional Sobel kernel. The LF is convolved with this kernel, and peaks are produced at the locations where the discontinuity in star counts is greatest. With this method, they find that they can regularly recover the location of the tip, accurate to within 0.2 of a magnitude. Whilst this approach represents the first automated, repeatable TRGB finding method, the size of the uncertainties limits its usefulness. At the distance of M31 for instance, an uncertainty of 0.2 magnitudes corresponds to an uncertainty of approximately ±70 kpc in the distance.

The edge-finding method of Sakai et al. (1996) improves on this technique significantly by addressing the luminosity function binning issue via Gaussian smoothing, so that stars no longer fall in one single bin but rather contribute to all bins.

As shall be seen in the next section, some similar techniques to these were experimented 2.2 Early Trials of TRGB Finding Algorithms 33 with in the earliest days of the work contained in this thesis. Nevertheless, even with the inclusion of Gaussian smoothing of the LF, the issue of the Poisson noise is still a major concern with any pure edge-finding algorithm. Such techniques also ignore the distinction between object and background contributions to the LF and in so doing, throw away valuable information that might be used to constrain the location of the tip. Hence it is arguable that a model-fitting approach is superior to simple edge-fitting, in that it is less susceptible to the effects of Poisson noise, and more versatile with respect to the incorporation of prior knowledge.

The base method introduced in Chapter 3; Paper I makes use of these advantages by modeling both the background LF and signal or RGB LF separately. The RGB component of the model, whereby the RGB is approximated by a truncated power law, is inspired by Méndez et al. (2002). As in the base method of Chapter 3, they employ a maximum likelihood approach where the model parameters are updated at each iteration, and the likelihood of the model being correct given the data is evaluated. They assume a fixed functional form for the background bright-ward of the tip however, as well as a fixed value for the RGB slope. A more sophisticated approach is to fit the functional form of the background on a case-by-case basis using a suitable (and separate) background field. Likewise, the RGB slope can be set as a separate free parameter.

Early Trials of TRGB Finding Algorithms

During the preliminary, "pathfinding" phase of the development of the base algorithm of Chapter 3, various edge-finding algorithms were experimented with, some of which are now discussed. The relevant code can be found in Appendix A ('EdgeFinder7.f95' and 'RGB-PeakFinder6.f95').

The very first algorithms tested made use of artificial luminosity functions, where a deliberate 'kink' could be placed in the LF, and various algorithms used to recover the location of that kink. The kink was generated by summing two luminosity functions together, one displaced toward fainter magnitudes relative to the first such that the brightest non-zero bin in the second LF would mark the beginning of the RGB. In effect, the first LF simulated Building the Framework for a new TRGB Algorithm the 'background' contamination whilst the second represented the luminosity function of the actual RGB. The prominence of the discontinuity at the beginning of the RGB could be controlled by adding a constant value to the RGB component of the LF. With the model LF set up in this way, it can then be populated with the desired number of stars.

The first edge detecting algorithms implemented on this artificial data were comparable to the kernel convolution method of Lee et al. (1993). Starting from the bright edge of the luminosity function, the gradient between each consecutive pair of magnitude bins was measured and stored. Once the whole LF had been scanned, the magnitude of the induced kink (i.e. the TRGB) was taken to be the fainter of the two consecutive bins for which the maximum gradient was recorded. An equivalent method replaced the measure of gradient with that of the angle subtended by each consecutive set of three magnitude bins. The central bin of the set producing the smallest angle was then taken as the magnitude of the TRGB.

Both of these approaches are of course susceptible to confusing a noise spike in the LF for the 'TRGB' if the RGB truncation is not suitably prominent.

In an effort to lessen the sensitivity of the algorithm to Poisson noise, the possibility of fitting either a single polynomial or polynomial splines to the LF was investigated. If a suitable polynomial interpolation of the LF magnitude bins could be found, one would effectively have a smoothed LF, hopefully devoid of problematic noise spikes. The location of the tip could then be determined from the turning points in the second derivative of the fitted polynomial. This approach is fraught with difficulties however, as the degree of the polynomial or number of splines required depends on how smooth the LF is to begin with.

If the TRGB truncation lies amidst noise spikes of comparable prominence, it will be very difficult to choose a polynomial which preserves the discontinuity in star counts at the TRGB whilst simultaneously smoothing out the surrounding noise spikes. Furthermore, such an approach inevitably requires a case-specific setup by the user and thus introduces significant biases into the measurement process.

In addition to the above tests carried out on artificial data, further experimentation was carried out on the luminosity functions of real objects. One fairly successful test incorporated a Gaussian smoothing, similar to that employed by Sakai et al. (1996). The dependence of the LF on binning was removed by replacing each star with a normalized Gaussian of some user-specified width and summing all Gaussians together. The width of the Gaussian was chosen so as to produce the desired level of smoothing in the resulting LF, but in practice, this value should be dependent on the photometric error at the magnitude in question (as is the case in the base method of Chapter 3). Having produced this smoothed version of the LF, the magnitudes at which significant star-count discontinuities occurred could be identified from the function's second derivative. The results of applying this process to the colour-magnitude diagram of the M31 satellite galaxy Andromeda I (illustrated in Fig. 2.1) is presented in Fig. 2.2. It shows the smoothed Andromeda I luminosity function, created by replacing each star with a Gaussian of width1 0.2 magnitudes. The superimposed function in red is the second derivative of the LF, weighted by the star counts at that magnitude. It denotes inflection points in the LF gradient. It is clear to the eye that the inflection point corresponding to the TRGB is that identified at i 0 = 20.77, which would correspond to a distance to Andromeda I of 695 kpc. This is roughly consistent with the distances in the literature, though as shall be clear from later measurements, the degree of smoothing applied to the LF has shifted the tip brightward by (predictably) ∼ 0.1 magnitudes.

As is clear from Fig. 2.2, this approach does provide a useful compliment to a simple "eyeball" measurement, providing the user with a computationally based readout of the most likely tip locations. Precisely which location is the correct location is left to the discretion of the user, and hence the method stumbles when the onset of the RGB is not clear to the naked eye. As was the case for the polynomial fitting, there also remains the problem that the degree of smoothing required will vary from object to object, and the measurement is thus biased by the user's choices and lacks consistency.

The results of all of these trials culminated in the realization that any method that is to perform consistently across all luminosity functions, will need to abandon the hope that the effects of Poisson noise can somehow be eliminated from the luminosity function. If the method is to perform consistently across all luminosity functions that might be encountered, the data contained therein should be accepted for what it is in its raw form, and a suitable model developed that best explains it. In this way, we can incorporate our expectations of Building the Framework for a new TRGB Algorithm what form the LF might take were it so well populated that Poisson noise was no longer an issue, and then let the data decide which version of the model approximates it best.

A Simple Maximum Likelihood Test

In order to gain a thorough understanding of how the RGB tip magnitude might be ascertained via model fitting, it is essential to "start simple." As the primary objective of any such algorithm is to locate a sharp discontinuity in star counts, we can begin by approximating the luminosity function with a simple step function, normalized so as to contain unit area.

We can then set the 'step' at a particular location, populate the resulting LF with the desired number of star magnitudes and then attempt to recover the position of the step from those star magnitudes. The code pertaining to this section can be found in the program 'spikes.f95' in Appendix A.

In using a maximum likelihood approach, we note that our model LF -i.e. our normalized step function -can actually be considered a probability distribution. It tells us the probability of finding a star at any given magnitude. Bright-ward of the step where we have only background stars, the probability of finding a star is lower but faint-ward of the step we have both background stars and stars from the object's RGB and so we expect more counts at a given magnitude. We can make use of this probability distribution both to generate our random sample of stellar magnitudes, and to recover the original state of the model that produced them.

To produce our random magnitude sample, we make use of a random number generatorbut weight the likelihood of drawing a particular magnitude by our step function. This can be done by taking the integral of the step function, which gives us the cumulative area under the step function. This is equivalent to the probability of finding a star bright-ward of a particular magnitude. We then multiply the total area under the step function by a number between 0 and 1 generated by the random number generator and then find the magnitude corresponding to this value of the integral. In so doing we generate a 'random realization' of the step function in question. In practice, any number of random realizations can be generated from a single step function but the larger the sample, the better it will resemble the model that was used to produced it. Fig. 2.3 shows one such random realization. It contains 1000 stars and was produced from a step function where the fraction of stars contained in the RGB and background components were 0.7 and 0.3 respectively. The step was located at a magnitude of 0.4.

To recover the state of the model luminosity function which produced our artificial data, we need to test the likelihood of the model reproducing that data for a range of different step positions. Since our model LF is a probability distribution, the likelihood of the model producing a star at a particular magnitude is simply the value of the model at that magnitude.

Thus if we are given a single star at a particular magnitude, we can find the version of the model that is most likely to have produced it by sliding the step location from the bright to the faint end of the LF and then noting which step location produced a maximum likelihood at the magnitude of the star. This process is illustrated in Fig. 2.4.

As can be seen in the figure, it is critical to the procedure that an equal area is preserved under the model for all step positions tried. The model represents all possible magnitudes at which a star can be observed and so the area underneath it should be unity. Likewise, the ratio of the background and RGB contributions to the model should remain constant. Given these requirements, the form of the probability distribution for the location of the step, as determined from a luminosity function containing a single star can be understood. As the step slides to fainter magnitudes, the RGB height rises to preserve equal area under the model.

Hence the likelihood of the model producing the star at the observed magnitude grows at an increasing rate. Eventually however, the step slides past the magnitude at which the star is Building the Framework for a new TRGB Algorithm observed and the likelihood for any subsequent step positions being correct therefore drops immediately to the background height.

In reality of course, one star does not constitute a useful luminosity function. We must therefore understand how probability distributions for the step location are produced when more than one star is present. To determine the likelihood of a particular state of the model producing two or more stars at their specifically observed magnitudes, we multiply together the likelihoods of the model separately producing each star. Equivalently, the final probability distribution for the step location is simply the product of the individual distributions generated for each star. This result is illustrated in Fig. 2.5 for a 10 star luminosity function.

Whilst the probability distribution of Fig. 2.5 (b) reveals a large uncertainty in the location of the step, little else can be expected from such a poorly populated luminosity function.

More important is the fact that we have a reliable measure of the uncertainty in the most likely step position identified, assuming of course that our chosen model is a good approximation for the mechanisms responsible for producing the LF, as is the case here. Nevertheless, for well populated luminosity functions, the step location is generally locatable with considerable precision, as can be seen in Fig. 2.6 which has been generated from the luminosity function of Fig. 2.3.

From the simple tests presented in this section, the power, as well as the relative simplicity of the maximum likelihood model-fitting approach begin to emerge. Such an approach is particularly robust, as every single data point is taken into account every time a possible RGB tip location is considered. This greatly desensitizes any algorithm that implements it against the localized effects of Poisson noise. The approach is also versatile, being applicable to any model no matter how simple or complex. If we are to advance from a simple 'step' luminosity function however, we shall also need other tools at our disposal. 

The Markov Chain Monte Carlo Method

The tests of §2.3 approximated an object's luminosity function with a single-parameter step function. All possible states of such a model are obtainable by changing only the step location. As such, it was not computationally intensive to calculate the likelihood for the model at every possible step location, even for very small increments in the step location and for very densely populated luminosity functions. A better model however, would take into consideration other aspects of the LF, such as the background to RGB contribution ratio and the slope of the RGB component. But the number of possible states of the model increases exponentially with the number of free parameters, and hence so too does the computation time. Hence the deterministic approach used above quickly becomes impractical as we add increased complexity to our model. For this reason it is advantageous to adopt a Monte Carlo method, which builds up a picture of the likelihood of the state space of the model by taking samples of the model likelihood at randomly chosen parameter values. Our method of choice is the Markov Chain Monte Carlo (MCMC) Method.
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The MCMC works via the construction of a Markov Chain. Named for the Russian Mathematician Andrey Markov, it is essentially a statistically representative sample of all possible states of a model, given a specific set of data. The sample is a chain, in the sense that each newly chosen parameter set is affected by the previous. The creation of the chain is however a 'memoryless' procedure, with each newly chosen state having no dependence on past states in the chain, with the exception of the state that immediately preceded it. To properly represent the differing likelihoods of various states, the chain should be created in such a way as not to prohibit the possible recurrence of certain states. The extent to which the chain explores the full state space of the model is of course dependent on the length of the chain. One must therefore be careful to insure that the chain is indeed long enough to be a true representation of the model states and their likelihoods. A detailed overview of Markovian models with examples can be found in the online reference work [START_REF] Meyn | Markov chains and stochastic stability[END_REF].

There are various ways that a Markov Chain can be constructed, but the one employed for the analysis contained in this thesis makes use of the Metropolis-Hastings algorithm [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo Sampling Methods Using Markov Chains and Their Applications[END_REF]). An excellent introduction to this algorithm, with examples can be found in Gregory (2005). The algorithm essentially provides an 'intelligent' random walk through the state space of the model by preferentially choosing steps toward model parameter sets that have a higher likelihood. To initiate the algorithm, one must first choose a 'jumping distribution' as well as a starting value, for each of the model parameters.

The jumping distribution is a probability distribution that defines how likely a jump to any given parameter value is, given the present value of the parameter. For our implementation of the MCMC, a Gaussian jumping distribution is chosen due to its symmetry and preference for jumps to nearby parameter values. The appropriate width of the distribution for each parameter is chosen through experimentation.

With the jumping distributions and initial parameter values defined, new parameter values are proposed and the model likelihood for those values is calculated. If the likelihood is greater with these new parameter values than the current model likelihood, the proposed parameter values are automatically accepted and thus define the next model state in the chain. If the model likelihood is smaller with these new parameter values, the probability of accepting them is weighted by the ratio r of the two likelihoods, with r = iteration. It is therefore useful to plot each pair of parameters against each other to observe any correlation between them. This said, whilst many parameters might be coupled, our ultimate goal is to obtain the absolute probability of particular values of each parameter without regard for what any other parameters are doing, thus creating a probability distribution for the parameter. This is achieved by marginalizing over the other parameters. If our model were to have n free parameters, the probability of one of the parameters having some particular value is equal to the integral under the n -1 dimensional surface relating the probability distributions of all the other parameters at that value. In practice, it is actually very straightforward to create the probability distributions of individual parameters of a Markov Chain, by simply representing the number of occurrences of each parameter value as a histogram. This process is illustrated in Fig. 2.8.

It is clear from Fig. 2.8 (b) that 1000 iterations of our MCMC algorithm is insufficient to fully explore the likelihoods of the various model states. Indeed, for the probability distributions presented in Papers I and II, hundreds of thousands of iterations were found necessary before the distributions were as smooth as one would expect to achieve via a deterministic approach. With the underlying model luminosity function used for the analysis in each of these papers being defined by only two free parameters, the MCMC approach might be described as 'overkill' for the model used. It must be stressed however that this approach has been built into the algorithm from the outset in order to facilitate added model complexity with only minimal coding changes.

The Bayesian and the Frequentist

Statisticians are of two minds with regard to the nature of probability and how it should be calculated. The traditional 'Frequentist' view, as the name suggests, holds that the probability of an event is related to the frequency with which it occurs over a large number of samples. Strictly speaking, it is the limit in that frequency as the number of samples goes to infinity and therefore it can never be calculated exactly. Frequentists hence speak of confidence intervals, an interval over which they have some degree of confidence that an event will be observed. Beginning with the work of the mathematician Thomas Bayes [START_REF] Bayes | An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr[END_REF], a new perspective on the nature of probability began to emerge however. It essentially regarded probability as a subjective construct, the distribution of which depended on the prior knowledge available to the investigator. Herein lies the power of the Bayesian technique. The probability of an event can be weighted by our knowledge of the laws that govern it, thus producing a probability distribution which characterizes the credibility of the measurement.

Central to Bayesian Inference is Bayes theorem. The modern form of Bayes Theorem has it's origin in the work of Pierre-Simon Laplace [START_REF] Laplace | Théorie analytique des probabilités[END_REF]. It is commonly written as follows:

P(A | B) = P(B | A) × P(A) P(B) (2.1) 
where P(A|B) is the probability of A being true, given observation B; P(B|A) is the probability of B being true, given A; and P(A) and P(B) are the absolute probabilities of A and B respectively. As an example, suppose someone comes across a set of 10 old coins in the attic, apparently all identical. Upon closer inspection however, they note that one of them has a particular mintmark. After some investigation they determine this mintmark to be quite rare, being found on only 1% of coins of that type. They also learn however, that 30% of all coins of the type are fakes, and that 90% of the fakes bear the mintmark. So what is the probability that they have found an authentic example? We have

P(real | mintmark) = P(mintmark | real) × P(real) P(mintmark) = 0.01 × 0.7 0.01 × 0.7 + 0.9 × 0.3 = 2.5%. (2.2)
Note however that if the finder of the coin had not done their research, they would have had to assume that approximately 1 in 10 coins of the type bear the mintmark, and that the authenticity of the coin was not in question. Prior knowledge has thus completely changed their perspective.

We can equally well apply Bayes Theorem to our model-fitting RGB tip finding algorithm Building the Framework for a new TRGB Algorithm thus: 

f (M p | D) = f (D | M p ) × f (M p ) f (D) , (2.3 

Prior Information

As shall be seen in the next two chapters, prior information has been incorporated into our TRGB algorithm in a variety of ways. Some of our prior knowledge of the objects under study has been applied in the form of an independent 'prior' distribution which is multiplied by the likelihood distribution as per Eq. 2.3, while other prior information has been built into the model luminosity function directly. The model LF by it's very nature reflects our assumptions as to the form it would take were it populated with an infinite number of stars, thereby eradicating any Poisson noise. We assume a truncated power law for the RGB and fit the background component directly with a polynomial. This process is discussed in detail in Paper I, but it is important to realize that the model LF applied to each object is 'custom built' for that object. The likelihood distribution generated for each parameter thus already incorporates prior information we have for the object.

To expand on this, it shall be seen in the next two chapters that the areas under the RGB and background components of the model LF are set based on the average stellar density in the object field as compared with that of a suitable 'background' field. The background field is chosen so that it lies very close to the object field, and is usually in the form of a large 2.6 Prior Information rectangle centered on the object, but with the object field subtracted so that the object RGB contributes negligibly to the LF of the background field 2 . In so doing, we are effectively assigning a prior constraint on how many stars we expect to find at a given magnitude on either side of the RGB tip. If the average stellar density in the background field is very low compared with that of the object field, than we do not expect to find very many stars that are not true members of the object RGB.

With the base method presented in Paper I, the ratio of the RGB to background model contributions is held constant for all stars. When the density matched filter is applied in Paper II however, individual stars are assigned a weight that reflects our prior expectation as to the probability of their being true object members. Using this information, we can tailor our model LF not only to the object in question, but to the specific star in question. The ratio of the RGB to background model contributions is calculated for each star individually, based on its position within the object's density profile.

In addition to the prior information that has been incorporated directly into the model LF, additional prior information has been incorporated in the conventional sense, i.e. as a prior probability distribution. The default prior distribution is a uniform prior, an assumption of equal probability for all parameter values. Various prior distributions were experimented with in the initial development of the base algorithm, each one devised so as to put some constraint on the distance at which the object can be found. A Gaussian distribution could be chosen for example, with the center of the distribution corresponding to the distance of M31 and the width reflecting our assumptions as to the extent of the halo. Alternatively, a flattened

Gaussian could be chosen so as to yield equal probability over some desired distance range whilst cutting off sharply outside of that range. The priors on the tip magnitude m T RGB and RGB slope a for both papers have been simple top hat functions, such that 19.5 ≤ m T RGB ≤ 23.5 and 0 < a < 2 are predicted with equal probability whilst values outside of those ranges are assumed impossible. A more subjective prior is assumed in Paper II for the object Building the Framework for a new TRGB Algorithm distance however, namely the density profile of a simple spherical halo along the line of sight passing through the object (see Paper II, Fig. 6).

The net result of the inclusion of the prior information discussed above, is that we transform our simple maximum likelihood technique of §2.3 into an 'educated' tip finding algorithm. We effectively combine the best of both worlds by automating the tip finding process, but at the same time imparting some of the intuition to the tip finding algorithm that we would use if estimating the tip magnitude from the LF by eye. Such is the power of Bayesian

Inference, that we can combine the information obtainable from one lone data sample with all other knowledge we can possibly infer about the circumstances which produced it. 

Paper I Preface

This chapter presents the first of three papers which, together, represent the very heart of the thesis. They are perhaps best thought of as a 'trilogy,' as each one flows naturally into the next and, though written to stand as independent contributions in their own right they are best understood in the light of their companion papers. Unlike papers II and III however, Paper I is primarily a 'methods' paper. It lays the foundations for a new approach to the long standing Tip of the Red Giant Branch problem which is further developed in Paper II where it is applied to the majority of the M31 satellites. A preliminary analysis of the satellite distribution is provided in that paper with a study of the halo density profile but the real 'fruits of the labour' follow in Paper III which contains a thorough analysis of the satellite spatial distribution which has led to some very interesting results. Whilst papers II and III shall likewise be introduced with their own preface, chapters 1 and 2 arguably form the real 'preface' for this paper and hence it seemed apt that this paper should be introduced with a discussion of its place within a broader picture. Note also that the principal programing code pertinent to the material presented in this paper can be found in Appendix B.

INTRODUCTION

The tip of the red giant branch (TRGB) is a very useful standard candle for gauging distances to extended, metal-poor structures. The tip corresponds to the very brightest members of the first ascent red giant branch (RGB), at which point stars are on the brink of fusing helium into carbon in their cores and hence contracting and dimming to become horizontal branch stars. The result is a truncation to the RGB when the color-magnitude diagram (CMD) for an old stellar population is generated, beyond which lie only the comparatively rare asymptotic giant branch (AGB) stars and sources external to the system of interest. The (highly variable) contamination from such objects provides the principal obstacle to simply "reading off" the tip position from the RGB's luminosity function (LF) and the truncation of the AGB can even masquerade as the TRGB in certain instances. The I band is the traditionally favored region of the spectrum for TRGB measurements, minimizing the interstellar reddening that plagues shorter wavelengths, while keeping dependence on metallicity lower than it would be at longer IR wavelengths. It should also be remembered that stars approaching the TRGB generally exhibit peak emission in this regime. Iben & Renzini (1983) determined that low-mass (<1.6 M ⊙ for Population I, <1 M ⊙ for Population II), metalpoor ([Fe/H] < -0.7 dex) stars older than 2 Gyr produce a TRGB magnitude that varies by only 0.1 mag. More recently, Bellazzini et al. (2001) determined the tip magnitude to lie at an I-band magnitude of M TRGB = -4.04 ± 0.12. This low variation can be attributed to the fact that all such stars have a degenerate core at the onset of helium ignition and so their cores have similar properties regardless of the global properties of the stars. The result is a standard candle that is widely applicable to the old, metal-poor structures that occupy the halos of major galaxies. Distances derived from the TRGB, unlike those from a Cepheid variable or RR Lyrae star, for example, can be determined from a single epoch of observation, making it very useful for wide-area survey data. Furthermore, Salaris & Cassisi (1997) confirmed agreement between Cepheid and RR Lyrae distances and TRGB distances to within ∼5%.

Until Lee et al. (1993) published their edge-finding algorithm, the tip had always been found by eye, but clearly if the widereaching applications of the TRGB standard candle were to be realized, a more consistent, repeatable approach was in order. The aforementioned paper shows that, if a binned LF for the desired field is convolved with a zero sum Sobel kernel [-2, 0, +2], a maximum is produced at the magnitude bin corresponding to the greatest discontinuity in star counts, which they attribute to the tip. Using this method, they were able to obtain accuracies of better than 0.2 mag. Sakai et al. (1996) set out to improve on this approach by replacing the binned LF and kernel with their smoothed equivalents. To do this, they equate each star with a Gaussian probability distribution whose FWHM is determined by the photometric error at the magnitude actually recorded for the star. Then, rather than each star falling within a particular bin, it contributes to all bins via a normalized Gaussian centered on the magnitude recorded for it. This is illustrated in Equation ( 1):

Φ(m) = N i=1 1 2π σ 2 i exp - (m i -m) 2 2σ 2 i , (1) 
where m is the magnitude of the bin in question and m i and σ 2 i are the central magnitude and variance, respectively, of the Gaussian probability distribution for the ith star. This method halved the error associated with the non-smoothed version of the algorithm and an identical smoothing is hence just incorporated into the model LF for our Bayesian approach.

In a more recent variation on the edge detection methods, Madore et al. (2009) once again applied a Sobel kernel, but fit to an LF built from composite stellar magnitudes T ≡ Iβ[(V -I ) 0 -1.50] where β is the slope of the TRGB as a function of color. This, they argued, results in a sharper output response from the filter, and allows all stars, regardless of color, to contribute equally to the derived tip position. Rizzi et al. (2007) derived a value of 0.22 ± 0.02 for β after a study of five nearby galaxies, and showed that it is quite consistent from one galaxy to another. Méndez et al. (2002) made a departure from the simple "edgefinding" algorithms above by adapting a maximum likelihood model fitting procedure into their technique. They pointed out that the LF faintward of the tip is well modeled as a power law:

L(m m TRGB ) = 10 a(m-m TRGB ) , (2) 
where m m TRGB and a is fixed at 0.3. They then ascribed the location of the tip to the magnitude at which this power law truncates, i.e., m = m TRGB . Brightward of the tip they assumed a functional form

L(m < m TRGB ) = 10 b(m-m TRGB )-c , ( 3 
)
where b is the slope of the power law brightward of the tip and c is the magnitude of the step at the RGB tip. Such a model, though simplistic, is robust against the strong Poisson noise that is inevitable in more sparsely populated LFs, making it a significant improvement over the previous, purely "edge-finding" methods. Makarov et al. (2006) followed in a similar vein, demonstrating the proven advantages of a maximum likelihood approach over simple edge detection techniques, despite a model dependence. Unlike Méndez et al. (2002) however, they allowed a as a free parameter, arguing its notable variance from 0.3, and importantly, they smoothed their model LF using a photometric error function deduced from artificial star experiments. One shortcoming of both of these methods, however, is that the most likely parameter values alone are obtained, without their respective distributions or representation of their dependence on the other parameters. Also, with regard to the background contamination, the RGB LF in fact sits on top of non-system stars in the field and so rather than model the background exclusively brightward of the TRGB, the truncated power law of Equation ( 2) can be added onto some predefined function of the contamination.

Arguably the most successful method developed so far has been that devised by McConnachie et al. (2004). It has been used to ascertain accurate distances to 17 members of the Local Group (McConnachie et al. 2005). It combines aspects of both "edge-finding" and model fitting to zero in more accurately on the tip. They argued that as the precise shape of the LF at the location of the tip is not known, a simple Sobel Kernel approach that assumes a sharp edge to the RGB does not necessarily produce a maximum at the right location. They instead used a least-squares model-fitting technique that fits to the LF in small windows searching for the portion best modeled by a simple slope function. This, they reasoned, marks the location of the steepest decline in star counts which is attributable to the tip location. This method is capable of finding the tip location accurate to better than 0.05 mag, although is still susceptible to being thrown off by noise spikes in a poorly populated LF.

Despite the merits of previous methods such as these, none of them work particularly well when confronted with the high levels of Poisson noise that abound in the more poorly populated structures of galaxy halos. Furthermore, in such conditions as these where the offset between detected and true tip position will likely be at its greatest, it is of great use to have a full picture of likelihood space, as opposed to merely the determined, most probable value. This has led us to develop a new, Bayesian approach to locating the TRGB, specifically, one that incorporates a Markov Chain Monte Carlo (MCMC) algorithm. As shall become apparent in the next section, such a method is very robust against noise spikes in the LF and allows all prior knowledge about the system to be incorporated into the tip-finding process-something lacking in the previous approaches. Further to this, the MCMC provides for a remarkably simple, yet highly accurate error analysis. It also makes it possible to marginalize over parameters to provide posterior probability distributions (PPDs) of each parameter, or to obtain plots of the dependence of each parameter on every other. In Section 2, a detailed explanation of our approach and its limitations is given. Section 2.1 introduces the method by applying the algorithm to one of M31's brightest dwarf spheroidals, Andromeda I. Section 2.2 discusses the nature of systematic errors that apply to the method. Section 2.3 investigates the accuracy that the basic method (before addition of priors) is capable of given the number of stars populating the LF for the field and the strength of the non-RGB background while Section 2.4 deals with its performance when faced with a composite LF. Section 3 then applies our new approach to two additional M31 dwarf satellite galaxies and Section 4 summarizes the advantages of the method and outlines the expected applicability of the method in the immediate future.

METHOD

The MCMC Method

The MCMC method is an iterative technique that, given some model and its associated parameters, rebuilds the model again and again with different values assigned to each parameter, in order that a model be found that is the best fit to the data at hand. It does this by comparing the likelihood of one model, built from newly proposed parameter values, being correct for the data, as opposed to the likelihood for the model built from the previously accepted set of model parameters. The MCMC then accepts or rejects the newly proposed parameter values weighted by the relative likelihoods of the current and proposed model parameter values. At every iteration of the MCMC, the currently accepted value of each parameter is stored so that the number of instances of each value occurring can be used to build The saturated disk dominates the northwest corner of the field while Andromeda I itself appears as an overdensity within the Giant Stellar Stream (GSS). The GSS in actuality lies well behind Andromeda I, as is evidenced by the CMD in Figure 2. A strict color-cut was imposed on the data to highlight the location of the satellite and the extent of the stream with greatest contrast. (A color version of this figure is available in the online journal.) a likelihood distribution histogram-which can be interpreted as a PPD-for each model parameter. Hence, the MCMC is a way of exploring the likelihood space of complicated models with many free parameters or possible priors imposed, where a pure maximum likelihood method would be quickly overwhelmed. With the PPD generated, the parameter values that produce the best-fit model to the data can simply be read off from the peak of the PPD for each parameter. Similarly, the associated error can be ascertained from the specific shape of the distribution. A detailed description of the MCMC with worked examples can be found in Gregory (2005, Chap. 12).

To illustrate the precise workings of our MCMC tip-finding algorithm, its application to a well-populated dwarf galaxy in the M31 halo is described. Andromeda I was discovered by van den Bergh (1971) and at a projected distance of ∼45 kpc from M31 (Da Costa et al. 1996), it is one of its closest satellites. Da Costa et al. (1996) ascribed to it an age of ∼10 Gyr and a relatively low metallicity of Fe/H =-1.45 ± 0.2 dex which is clearly exemplified in the CMD for Andromeda I presented in Figure 2.

Here the RGB of Andromeda I lies well to the blue side of that of the Giant Stellar Stream (GSS) which lies behind Andromeda I but in the same field of view. Mould & Kristian (1990) provide the first TRGB-based distance measurement to Andromeda I, which they deduce as 790 ± 60 kpc, based solely on a visual study of the RGB. McConnachie et al. (2004) improve on this significantly, producing a distance determination of 735 ± 23 kpc, based on a tip magnitude of 20.40 +0.03 -0.02 in the I band. Andromeda I's position with respect to M31 and the GSS is presented in Figure 1, where the red circle indicates the precise field area fed to our MCMC algorithm. An object-to-background ratio (OBR) of 11.0 was recorded for this field with the color-cut applied, based on comparisons of the signal field stellar density with that of an appropriate background field. The data presented in this figure, as with all other data discussed in this paper, were obtained as part of the Pan-Andromeda Archaeological Survey (PAndAS; McConnachie 2009), undertaken by the 3.6 m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea equipped with the MegaCam imager. CFHT utilizes its own unique photometric bandpasses i and g based on the AB system. We work directly with the extinction-corrected CFHT i and g magnitudes and it is these that appear in all relevant subsequent figures. The extinction-correction data applied to each star have been interpolated using the data from Schlegel et al. (1998).

At the heart of our tip-finding algorithm is the model LF that the MCMC builds from the newly chosen parameters at every iteration. The LF is a continuous function which we subsequently convolve with a Gaussian kernel to account for the photometric error at each magnitude. This is achieved by discretizing both functions on a scale of 0.01 mag. Like Méndez et al. (2002), we assume the LF faintward of the tip to follow a simple power law, of the form given in Equation ( 2); however, we set a as a free parameter. The bin height at each magnitude is then calculated by integrating along this function setting the bin edges as the limits of integration. The value for the bin which is set to contain the RGB tip for the current iteration is calculated by integrating along the function from the precise tip location to the faint edge of the bin. All other bins are then set at 0. A bin width of 0.01 mag for our model was found to provide a good balance between magnitude resolution, which is limited by the photometric error in the MegaCam data (∼0.01 mag at m = 20.5), and the computational cost for a higher number of bins. We stress here, however, that each star's likelihood is calculated from the model independently, so that the actual data LF is "fed" to the MCMC in an unbinned state. A faint edge to the model LF was imposed at m = 23.5 to remove any significant effects from data incompletion and increasing photometric error.

Further to this, we add a background function to this truncated power law. While the scaling of the background strength relative to the RGB signal strength could be set as another free parameter, and indeed was initially, it makes better use of our prior information to instead determine the fraction of background stars or "background height" (f) manually. This is achieved simply by calculating the average density of stars in the background field D BG and in the "signal" field D SIG with f then being the ratio of the two, i.e., f = D BG /D SIG . Note that this is not directly the inverse of the object-to-background star ratio, OBR = (D SIG -D BG )/D BG , as f represents the percentage of all stars lying inside the signal field that can be expected to be external to the object of interest. Hence, when we normalize the area under the model LF so that it may be used by the MCMC as a probability distribution, the background component will have area f while the RGB component will have area 1f . Now, with f known, what we then have is a simplified two-parameter model, allowing for faster convergence of the MCMC algorithm.

We have thus devised our model so that the MCMC is tasked with the problem of finding just two parameters, namely the slope of the RGB LF (a) and of course the location of the RGB tip magnitude (m TRGB ). For simplicity in this first paper, we impose uniform priors on each of these parameters, where 19.5 m TRGB 23.5 and 0 a 2. We also do not account for the color dependence of the tip magnitude which is only slight in the I band (see Rizzi et al. 2007) and for the metalpoor targets examined here, but these effects will be dealt with in future publications. While it is true that two parameters are tractable analytically, we apply the numerical MCMC in order to set the framework for computationally more challenging models with non-uniform priors that will become necessary for the more sparsely populated structures presented in future contributions. There are, however, several more complexities to the model that have yet to be discussed. First, the choice of background function is not arbitrary. It has been found that the best way to model the background is to fit it directly by taking the LF of an appropriate "background" field. The best choice of background field is arguably one that is at similar galactic latitude to the structure of interest, as field contamination is often largely Galactic in origin, and hence closely dependent on angular distance from the Galactic plane. Furthermore, the field should be chosen so that the presence of any substructure is minimal, so as to prevent the signature of another halo object interfering with the LF for the structure of interest.

In addition to these constraints, owing to the low stellar density of the uncontaminated halo, it is preferable that the background field be as large as possible to keep down the Poisson noise and hence it will of necessity be much larger than that of the field of interest. As a result, the main error in the background fit will arise from background mismatching and is not random. In addition, the large background field size may inevitably contain some substructure, requiring removal. This may be done by physically subtracting contaminated portions of the background area, but this is often unnecessary as the CMD color-cut imposed on the signal field must also be applied to the background field, usually ridding the sample of any substantial substructure that may be present. In the case of our Andromeda I background field, however, we have removed a large 2. • 4 portion crossing numerous streams (as shown in Figure 3) as these streams do trespass into the chosen Andromeda I colorcut. Nevertheless, this is just a precaution, because for wellpopulated systems such as Andromeda I and Andromeda II, the algorithm is impervious to small discrepancies in the functional form of the background.

Once an appropriate background field has been selected, its LF can be fitted by a high-order polynomial. This polynomial then becomes the function added to our model and scaled Figure 3. Map of the entire PAndAS survey area, with color-cut chosen to favor the low metallicities exhibited by many of M31's satellite galaxies. The three dwarf spheroidal companions of M31 studied in this paper are labeled, along with the signal fields (small circles of radius 0. • 2) and their respective background fields fed to our algorithm. Note that the background fields are chosen to be as narrow as possible in Galactic latitude while retaining as large an area as possible. In each case, the signal field areas are subtracted from their respective background fields to prevent contamination. (A color version of this figure is available in the online journal.) by f as described earlier. Our choice of background field for Andromeda I (along with Andromeda II and Andromeda XXIII) and the polynomial fit to its LF are presented in Figures 3 and4, respectively.

The other major consideration that has yet to be addressed is the effect of photometric error on the LF. This is dealt with by convolving the initial binned model with a normalized Gaussian whose width is adjusted as a function of magnitude in accordance with the error analysis conducted on the PAndAS data. This is equivalent to the method of Sakai et al. (1996) described in Equation (1). As described earlier, this procedure has the added advantage of making the model independent of binning. It is also important in this stage, as it is at every stage, that the model and all constituent parts are normalized so that the model can be used as a probability distribution.

With these issues addressed, the MCMC algorithm can be set in motion. The i-band magnitudes and (gi) 0 data for the desired field is read into data arrays, spurious sources are rejected, and a color-cut is imposed to remove as many non-members of the structure's RGB as possible. The same constraints are of course applied to the background field as well. The MCMC then applies preset starting values of a and m TRGB and builds the corresponding model for the first iteration. Within this iteration, the MCMC proposes new values for each parameter, displaced by some random Gaussian deviate from the currently set values and re-constructs the appropriate model. The step size, or width of the Gaussian deviate is chosen so as to be large enough for the MCMC to explore the entire span of probability space, while small enough to provide a high-resolution coverage of whatever features are present. The ratio of the likelihoods of the two models is then calculated (the Metropolis Ratio r) and a swap of accepted parameter values made if a new, uniform random deviate drawn from the 3). The same color-cut is applied as in the CMD for the signal field (Figure 2). Bottom: The binned luminosity function for the background with the fitted polynomial superimposed. A polynomial of degree seven was found adequate to represent the luminosity function.

(A color version of this figure is available in the online journal.) interval [0,1], is less than or equal to r. The calculation of the Metropolis Ratio for our model is exemplified in Equations ( 4) and ( 5):

r = L proposed L current (4) 
with the value for each of the likelihoods L being calculated thus

L = ndata n=1 M(m TRGB , a, m n ) ( 5 
)
with where m TRGB and a are the parameters currently chosen for the model by the MCMC, ndata is the number of stars and m n is the i-band magnitude of the nth star. BG represents the fitted background function (see Figure 4). The MCMC then stores the new choice for the current parameter values and cycles to the next iteration. In order to ascertain a reasonable number of iterations, the chains for each parameter were inspected to insure that they were well mixed, resulting in posterior distributions that appeared smooth (by eye).

M(m n m TRGB ) = RGB(m n ) + BG(m n ) M(m n < m TRGB ) = BG(m n ) where RGB(m n ) = 10 a(m n -m TRGB ) (6) 
When the MCMC has finished running, the PPD for each parameter is generated. By binning up the number of occurrences of each parameter value over the course of the MCMC's iterations, the probability of each value is directly determined and the most probable value can be adopted as the correct model value for the data. If one assumes a Gaussian probability distribution, then the 1σ errors associated with each parameter value can be obtained simply by finding the value range centered on the best-fit value that contains 68.2% of the data points. As our PPDs are not always Gaussian, our quoted 1σ errors in the tip magnitude represent more strictly a 68.2% credibility interval. We do not fit a Gaussian to our PPDs to obtain 1σ errors. Our 1σ errors in tip magnitude are obtained by finding the magnitude range spanning 68.2% of the PPD data points, on one side of the distribution mode and then the other. It must be stressed that these quoted errors are merely an indicator of the span of the parameter likelihood distribution and are no substitute for examining the PPDs themselves. Figures 5 and6 present the PPD for the RGB tip magnitude based on the Andromeda I CMD (Figure 2) and the best-fit model to the LF for the field, respectively. The PPD for the LF slope a is presented in Figure 7 and a contour map of the distribution of the tip magnitude versus a is presented in Figure 8.

Upon the completion of the algorithm, the RGB tip for Andromeda I was identified at m = 20.879 +0.014 -0.012 . This corresponds to an extinction-corrected distance of 731 (+5)+18 (-4)-17 kpc, where the final errors include contributions from the extinction and the uncertainty in the absolute magnitude of the TRGB (see Section 2.2). The i-band extinction in the direction of Andromeda I is taken as A λ = 0.105 mag (Schlegel et al. The Astrophysical Journal,740:69 (11pp) It is noteworthy that there is little correlation between the two parameters, with the peak of the distribution of a more or less independent of tip magnitude. Regardless of any correlation, the respective PPDs of each parameter are the result of marginalizing over the other parameter, and thus take into account any covariance between parameters.

Figure 9.

Plot of the distribution of possible distances to Andromeda I obtained through the application of our method. Once again, the colors red, green, and blue denote distances within 68.2%, 90%, and 99% credibility intervals, respectively. (A color version of this figure is available in the online journal.) 1998). The parameters a and f were derived as 0.273 ± 0.011 and 0.083, respectively. This distance measurement is in excellent agreement with the distance determined by McConnachie et al. (2004). It is noteworthy, however, that our method searches for the TRGB itself as distinct from the RGB star closest to the TRGB as sort out by the method of McConnachie et al. (2004), which would contribute to our slightly smaller distance measurement. A similar discrepancy arises in the case of Andromeda II (see Section 3).

A Note on Distance Errors

Despite the small errors in the tip magnitude afforded by our approach, there are a number of factors that contribute to produce a somewhat larger error in the absolute distance. These arise due to uncertainties both in the extinction corrections applied and in the absolute magnitude of the TRGB in the i band. Both of these contributions are assumed to be Gaussian, where the 1σ error in the extinction correction, ∆{A λ }, is taken as 10% of the correction applied, and the error in the absolute magnitude of the tip is expressed in Equation [START_REF] Bellazzini | The Tip of the Red Giant Branch[END_REF] below

∆ M TRGB i = ∆ 2 m TRGB i ωCen + ∆ 2 {A λ } ωCen + ∆ 2 {m -M} ωCen = {0.04} 2 + {0.03} 2 + {0.11} 2 = ±0.12. ( 7 
)
As we are working in the native CFHT i and g bands, we adopt this magnitude as M TRGB i = -3.44 ± 0.12, where the conversion from M TRGB I is based on the absolute magnitude for the TRGB identified for the Sloan Digital Sky Survey (SDSS) i band (Bellazzini 2008). This is justified by the color equations applying to the new MegaCam i-band filter (Gwyn 2010). Noting that the largest contribution to this error is that from the distance modulus to ωCen, (m -M) ωCen , derived from the eclipsing binary OGLEGC 17, we consider only the contributions from the extinction {A λ } ωCen , which is taken as 10% of the Schlegel et al. (1998) derived distance modulus may be systematically displaced by up to 0.1 of a magnitude. This then gives us M TRGB i = -3.44 ± √ 0.04 2 + 0.03 2 = -3.44 ± 0.05. Since our principal motive is to obtain relative distances between structures within the M31 halo rather than the absolute distances to the structures, this offset is not important. Furthermore, as measurements for the ωCen distance modulus improve, our distances are instantly updatable by applying the necessary distance shift.

While these external contributions to our distance uncertainties may be taken as Gaussian, the often non-Gaussian profile of our TRGB (m TRGB i ) posterior distributions necessitates a more robust treatment then simply adding the separate error components in quadrature. Hence to obtain final distance uncertainties, we produce a distance distribution obtained by sampling combinations of m TRGB i , A λ and M TRGB i from their respective likelihood distributions, thus giving us a true picture of the likelihood space for the distance. The result of this process for Andromeda I is illustrated in Figure 9. From this distribution, we determine not only the quoted 1σ errors but also that Andromeda I lies at a distance between 703 and 761 kpc with 90% credibility and between 687 and 778 kpc with 99% credibility.

Initial Tests

In order to gain a better understanding of the capabilities of our method when faced with varying levels of LF quality, a series of tests were conducted on artificial "random realization" data, as well as on sub-samples of the Andromeda I field utilized above. There are two major factors that affect the quality of LF available to work with, namely, the number of stars from which it is built and the strength of the background component relative to the RGB component. Hence to simulate the varying degrees of LF quality that are likely to be encountered in the M31 halo, artificial LFs were built for 99 combinations of background height versus number of stars. Specifically, background heights of f = 0.1, 0.2, . . . , 0.9 were tested against each of ndata = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, and 20,000 stars populating the LF.

To achieve this, a model was built as discussed in Section 2.1, with a constant tip magnitude and RGB slope of m TRGB = 20.5 and a = 0.3, respectively, and a background height f set to one of the nine levels given above. The functional form of the background was kept as a horizontal line for the sake of the tests. An LF was then built from the model, using one of the 11 possible values for the number of stars listed above. This was achieved by assigning to each of the ndata stars a magnitude chosen at random, but weighted by the model LF probability distribution-a "random realization" of the model. The MCMC algorithm was then run on this artificial data set as described in the previous subsection with m TRGB and a as free parameters to be recovered. The tests also assume the photometric errors of the PAndAS survey and further assume that incompleteness is not an issue in the magnitude range utilized. The error in the recovered tip position and the offset of this position from the known tip position in the artificial data (I = 20.5) were then recorded. The results are presented in Figures 10 and11 below. Each pixel represents the average result of ten 200,000 iteration MCMC runs for the given background height versus number of stars combination. Note that the kpc distances given correlate to an object distance of 809 kpc-i.e., m TRGB I = 20.5-which is in keeping with distances to the central regions of the M31 halo. Furthermore, all stars of the random realization were generated within a 1 mag range centered on this tip value. (A color version of this figure is available in the online journal.) Figures 10 and 11 are intended to serve as a reference for future use of the basic method, with regard to the number of stars required to obtain the distance to within the desired uncertainty for the available signal-to-noise ratio. The results follow the inevitable trend of greater performance when the background height is small and there are many stars populating the LF. There are some minor deviations from this trend but these result from single outlying values whose effects would diminish if a higher number of samples were averaged. It is also noteworthy that the offsets recorded clearly correlate with the 1σ errors and are consistently less than their associated errors.

The results of these random realization tests are borne out by similar tests conducted on subsamples of the Andromeda I field. Random samples were drawn containing 335 (10% of the total sample), 200, 100, and 50 stars. These correspond approximately to 10, 20, 50, and 100 stars in the 1 mag range centered on the tip. In no case was the derived tip location more than 80 kpc from that identified from the full sample, and the offset grew steadily less as the number of stars in the sample was increased. Furthermore, the offsets were almost always less than the 1σ errors.

Algorithm Behavior for Composite Luminosity Functions

When a field is fed to any RGB tip finding algorithm, it must be remembered that field is in fact three dimensions of space projected onto two, and therefore it is possible that two structures at very different distances may be present within it. Such a scenario becomes especially likely when dealing with the busy hive of activity that the PAndAS Survey has come to reveal around M31. The result of such an alignment along the line of sight is an LF built from two superimposed RGBs with two different-possibly widely separated-tip magnitudes. Hence it is important to understand how the TRGB algorithm applied to such a field will respond.

Unlike other algorithms that have been developed, our Bayesian approach provides us with a measure for the probability of the tip being at any given magnitude (the PPD). But this also leads to an important caveat-the selection criteria imposed on the data that is fed to the algorithm biases it strongly toward the structure whose distance we are trying to measure. Taking the Andromeda I measurement of Section 2.1 for example, this satellite sits on top of the GSS which contributes prominently to the field CMD, yet its contribution to the LF fed to the MCMC is almost eradicated by our choice of color-cut. Yet if this stringent color-cut is removed, the algorithm remains surprisingly insensitive to the GSS tip. This is because of another prior constraint we impose on the routine-the background height. With this fixed background imposed on our fitted model, the MCMC looks for the first consistent break of the data from the background-i.e., the tip of the Andromeda I RGB. It is therefore necessary to reinstate the background height as a free parameter of the MCMC to give it any chance of finding the tip of the GSS's RGB. By this stage, enough of our prior constraints have been removed to give the method freedom to choose the best fit of the unrestricted model to the entire data set from the field. Nevertheless, the more (correct) prior information we can feed the algorithm, the better the result we can expect to receive.

Still, while the method has not been tailored toward composite LFs, it is worth noting that it can be used successfully to identify more than one object in the line of sight-a useful ability when the two structures are poorly separated in color-magnitude space. The model used assumes only one RGB and thus one tip; to do otherwise would increase computation times. If two distinct structures are identified by this method and cannot be separated using an appropriate color-cut or altered field boundaries, an appropriate double RGB model should be built to accurately locate the tip for each structure. But even with the basic single-RGB model (which will suffice for the vast majority of cases), at least the presence of a second structure is indicated. If we take the example of Andromeda I again, the ideal way to obtain a distance measurement to the portion of the GSS that sits behind it would be to make a color-cut that favors it and removes Andromeda I, but we can force the algorithm to consider both structures to demonstrate the extreme case of what might be encountered in a general halo field. The result is two broad bumps in the PPD well separated in magnitude. The nature of the MCMC however is to converge straight onto the nearest major probability peak, seldom venturing far from that peak. This is remedied by the addition to the algorithm of Parallel Tempering.

While an infinite number of iterations of the MCMC would accurately map probability space in its entirety, Parallel Tempering is a way of achieving this goal much more quickly. Parallel Tempering involves a simple modification to the MCMC algorithm, whereby multiple chains are run in parallel. One chain, the "cold sampler" runs exactly as before, but additional chains have their likelihoods weighted down producing a flatter PPD that is more readily traversed by the MCMC. The further the chain is from the cold sampler chain, the heavier the weight that is applied. Every so many iterations, a swap of parameters is proposed between two random but adjacent chains so that even the "hottest" chains eventually affect the cold sampler chain and allow it to escape any local maximum it may be stuck in. The result is a cold sampler chain PPD that is more representative of the full extent of the LF (see Gregory 2005, Chap. 12 for a more detailed discussion). The result of applying a four-chain MCMC to the region of Andromeda I is summarized in the PPD of Figure 12.

While the Andromeda I TRGB is found much less accurately by this method as a result of the removal of our prior constraints for illustrative purposes, it is nevertheless clear that the addition of Parallel Tempering adds to our algorithm the facility to identify other structures in the field that may require separate analysis. Even given a properly constrained model and data set, the safeguard it provides against a poorly explored probability space arguably warrants its inclusion.

DISTANCES TO TWO MORE SATELLITES

To further illustrate the capabilities of our basic method as outlined in Section 2, we have applied it to two more of M31's brighter satellites, whose distances have been determined in 2) and is very well defined against the stellar background. The RGB tip is clearly visible at i 0 ∼ 20.6. (A color version of this figure is available in the online journal.) Figure 14. Posterior probability distribution for three million iterations of the MCMC on a 4 mag interval (see Figure 15) of the Andromeda II CMD selection presented in Figure 13. The peak probability of the distribution is well defined at i 0 ≈ 20.57. The distribution is again color coded as in Figure 5, with red, green, and blue corresponding to 68.2%, 90%, and 99% credibility intervals, respectively. (A color version of this figure is available in the online journal.) past measurements using a range of methods, including TRGBfinding algorithms. The additional satellites chosen for this study are the relatively luminous dwarf spheroidal Andromeda II and the somewhat fainter, newly discovered Andromeda XXIII dwarf. The location of both satellites within the M31 halo can be seen in Figure 3.

Andromeda II

Andromeda II was discovered as a result of the same survey as Andromeda I using the 1.2 m Palomar Schmidt telescope (van den Bergh 1971). Da Costa et al. (2000) deduce a similar age for Andromeda II as for Andromeda I but with a wider spread of metallicities centered on Fe/H =-1.49 ± 0.11 dex. Our Andromeda II LF was built from a circular field of radius 0. • 2 centered on the dwarf spheroidal with an OBR of 34.0 recorded. This high OBR is not unexpected with Andromeda II arguably the best populated of M31's dwarf spheroidal satellites. The CMD for this field is presented in Figure 13.

Application of our algorithm to Andromeda II yields a tip magnitude of i 0 = 20.572 +0.005 -0.006 for the RGB which corresponds to an extinction-corrected distance to Andromeda II of 634 (+2)+15 (-2)-14 kpc, where the i-band extinction is taken as A λ = 0.121 mag (Schlegel et al. 1998). This is in good agreement with [START_REF] Ibata | Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31[END_REF] derived distance of 645±19 kpc. Values for a and f were recovered as 0.276±0.009 and 0.028, respectively. The m TRGB i PPD and best-fit model found by our method are illustrated in Figures 14 and15, respectively.

Andromeda XXIII

Despite its relative brightness among the other satellites of the M31 system, Andromeda XXIII was only discovered with the undertaking of the outer portion of the PAndAS survey in 2009/ 2010, being too faint at M V = -10.2 ± 0.5 to identify from
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Figure 17.

Posterior probability distribution for three million iterations of the MCMC on a 4 magnitude interval (see Figure 18) of the Andromeda XXIII CMD selection presented in Figure 16. There are several probability peaks in this instance but the preferred peak lies at 20.885. The distribution is again color coded as in Figure 5, with red, green, and blue corresponding to 68.2%, 90%, and 99% credibility intervals, respectively. (A color version of this figure is available in the online journal.) Figure 18. Four-magnitude segment of the Andromeda XXIII luminosity function fitted by our MCMC algorithm. It is built from 328 stars. The best-fit model is overlaid in red. While the model LF tested by the MCMC retained the resolution of 100 bins per magnitude described in Section 2.1, the data LF is re-produced here at the lower resolution of 0.04 mag per bin to better reveal its structure to the eye. (A color version of this figure is available in the online journal.) the SDSS (Richardson et al. 2011). The said paper presents its vital statistics along with those for the other newly discovered satellites Andromeda XXIV-XXVII. It is a dwarf spheroidal galaxy and has the lowest recorded metallicity of the satellites we present with Fe/H =-1.8 ± 0.2. Making use of the deeper coverage of PAndAS in the g band, Richardson et al. (2011) obtain a distance measurement of 767 ± 44 kpc from the horizontal branch of the CMD.

Andromeda XXIII is a more challenging target for our algorithm in its current form, with less than ∼50 stars lying within the 1 mag range centered on the tip and an OBR of 8.4 for the field and color-cut employed. The CMD for this circular field of radius 0. • 1 is presented in Figure 16. We find the RGB tip at an i-band magnitude of 20.885 +0.038 -0.032 , which, given an i-band extinction of 0.112 mag in the direction of Andromeda XXIII (Schlegel et al. 1998), corresponds to a distance of 733 (+13)+23 (-11)-22 kpc. We derive the values of a and f as 0.270 ± 0.039 and 0.105, respectively. Curiously, the MCMC finds several peaks very close to the major peak in the PPD (see Figure 17), but these are attributable to the lower star counts available in the LF around the tip. This has the effect of creating large magnitude gaps between the stars that are just brightward of the tip so that each individual star can mimic the sudden increase in star counts associated with the beginning of the RGB. As a result, there is a range of likely locations for the tip, but the PPD shows that the object cannot be more distant than 802 kpc nor closer than 601 kpc with 99% confidence. The best fit model determined by the MCMC is overlaid on the LF in red in Figure 18.

CONCLUSIONS

The versatility and robustness of our new method can be appreciated from Section 2 and its high level of accuracy is evident from the measurement errors which are consistently smaller than those in the literature to date. In addition, it is our hope that with the correct priors imposed, this new approach carries with it the ability to gauge distances to even the most poorly populated substructures, bringing a whole new range of objects with in reach of the TRGB standard candle. In the case of the M31 halo alone, it will be possible to obtain distances to all of the new satellites discovered by the PAndAS survey-a feat previously impractical using the TRGB. Furthermore, PAndAS has revealed a complicated network of tidal streams that contain valuable information as to the distribution of dark matter within the M31 halo. With our new method, it will be possible to systematically obtain distances at multiple points along these streams, thus providing vital information for constraining their orbits.

The great advantage of our new Bayesian method over a pure maximum likelihood method is the ease with which prior information may be built into the algorithm, making it more sensitive to the tip. Herein lies the great power of the Bayesian approach, whereby the addition of a few carefully chosen priors can reduce the measurement errors 10 fold. The result is an algorithm that is not only very accurate but highly adaptable and readily applicable to a wide range of structures within the distance (and metallicity) limitations of the TRGB standard candle. With instruments such as the 6.5 m infrared James Webb Space Telescope and the 42 m European Extremely Large Telescope expected to be operational within the decade, these distance limitations will soon be greatly reduced. This will bring an enormous volume of space within reach of the TRGB method, including the region of the Virgo Cluster. A tool with which it is possible to apply the TRGB standard candle to small, sparsely populated structures and small subsections of large structures alike is hence, needless to say, invaluable.

A.R.C. thanks Sydney University for allowing him the use of their computational and other resources. In addition, A.R.C. thanks fellow student Anjali Varghese for her assistance with and practical insights with regard to the implementation of parallel tempering. A.R.C. also thanks Neil Conn for assistance in proofreading the document. G.F.L. thanks the Australian Research Council for support through his Future Fellowship (FT100100268) and Discovery Project (DP110100678). N.F.M. acknowledges funding by Sonderforschungsbereich SFB 881 "The Milky Way System" (subproject A3) of the German Research Foundation (DFG).

Paper II: A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude. II.

Distances to the Satellites of M31

Paper II Preface

The first tip of the red giant branch paper (Paper I) was written with the intention that a second paper would soon follow which would further develop the method and apply it to the entire satellite sample of M31 1 . As it came to pass, Paper II would not be accepted as an

Astrophysical Journal publication until one year and three days after the acceptance of the first paper, despite being begun well before the first paper was accepted. This paper therefore represents a significant portion of my PhD candidature.

The method employed to gain the satellite distance distributions presented in Paper II, differs from that introduced in Paper I, chiefly in the way that prior information is taken into account. Most notably, 'matched filtering' is introduced to weight stars in accordance with their likelihood of being true object members. The object's density profile (as a function of radius) is treated as a probability distribution of object membership such that stars found in the densest central regions of the object are given more weight when fitting the object's luminosity function. In many cases, the contrast between the luminosity function with and without the matched filtering switched on is profound, with the RGB tip becoming clearly visible to the eye where before it was lost in a mass of masquerading background stars. In addition to the matched filtering, a prior is also imposed on the expected object distance in the form of a halo density prior. A cross-section through the (expected) M31 halo density profile along the line of sight to the object is used to weight the probability of finding the object at any distance along its distance probability distribution.

The reason for the rather lengthy time interval between the publication of the two papers was not due to any major issues with the method in this new paper, but rather the amount of feedback I received from those interested in the satellite distances. It became clear very early on that a lot of people had a vested interest in having access to accurate distances accompanied by accurate uncertainty distributions in those distances. It was also clear that many held clear-cut views as to how the distances should be obtained and presented. As a result I had to incorporate a particularly large amount of changes into the method and in turn 1 Due to the advantages of using a single data set for all measurements, only those satellites contained within the PAndAS survey were actually included in the paper. An inner cutoff ellipse around the M31 disk was also necessary due to its obscuring effects (see Fig. 10 (c)).

the draft of the paper which inevitably meant a large number of complete re-runs on all of the data and analysis it contained. After making the necessary changes to the method and re-writting various parts of the paper, it was finally ready for submission to Astrophysical

Journal. All of this said, there is no doubt that the method is more robust as a result of this lengthy process.

One of the most important changes that arose from this scrutiny concerned the way the density profiles of the target objects were generated. Originally, the density profiles were being produced simply be drawing a series of evenly spaced concentric circles (or bands) about the object center and determining the density of stars in each band. The resulting binned profile was then fit in log space by a straight line (i.e. approximating the profiles as exponential). This of course assumes spherical symmetry which is not always a fair assumption, with some of M31's satellites being strongly elliptical. It was therefore decided to take this ellipticity fully into account which required a substantial re-write of the code for the density matched filter. These changes also warranted a second look at the luminosity function of each object and extra care was taken to insure that the CMD colour-cuts and the inner and outer cutoff radii for each object combined to produce luminosity functions with the greatest tip contrast possible. Other shortcomings in the algorithm code (see 'MF TRGB.f95' in Appendix C) were also subsequently identified as the need arose for faster processing times and so provisions were made for feeding in the necessary object parameters in the command line and other portions of the code were altered to run more efficiently. Improvements to the PAndAS photometry calibration at the beginning of 2012 also required another re-run on the M31 satellites which further improved the quality of the distance measurements.

In many respects, the real climax of Paper II is the application of the distances to produce a new 3D view of the M31 system, as is presented in Fig. 10. This represents the true beginning of our study of the three dimensional structure of the satellite system, at the heart of which is the trigonometry necessary to convert the earth distances into an M31-centric coordinate system. Fig. 4.1 was created to aid in the determination of the necessary conversions.

The coordinate system used here is that which arises most naturally from an Earth based perspective, with z pointing along the line of site to the center of M31, and x and y point- 

INTRODUCTION

The tip of the red giant branch (TRGB) is a well-established standard candle for ascertaining distances to extended, metalpoor structures containing a sufficient red giant population. Its near constant luminosity across applicable stellar mass and metallicity ranges (see Iben & Renzini 1983) arises due to the prevailing core conditions of these medium-mass stars as core helium fusion ensues. Their cores lack the necessary pressure to ignite immediate helium fusion on the depletion of their hydrogen fuel and so they continue to fuse hydrogen in a shell around an inert, helium ash core. This core is supported by electron degeneracy and grows in mass as more helium ash is deposited by the surrounding layer of hydrogen fusion. On reaching a critical mass, core helium fusion ignites, and the star undergoes the helium flash before fading from its position at the TRGB, to begin life as a horizontal branch star. Due to the very similar core properties of the stars at this point, their energy output is almost independent of their total mass, resulting in a distinct edge to the RGB in the color-magnitude diagram (CMD) of any significant red giant population.

With the TRGB standard candle applicable wherever there is an RGB population, it is an obvious choice for obtaining distances to the more sparsely populated objects in the Local Group and other nearby groups where Cepheid variables seldom reside. Even when Cepheids are available, the TRGB often remains a more desirable alternative, requiring only one epoch of observation, and facilitating multiple distance measurements across an extended structure. Good agreement between TRGBobtained distances and those obtained using Cepheid variables as well as the much fainter RR Lyrae variables have been confirmed by Salaris & Cassisi (1997), with discrepancies of no more than ∼5% (see also Tammann et al. 2008 for an extensive list of distance comparisons utilizing the three standard candles). Of the satellites of M31, many are very faint and poorly populated and thus have poorly constrained distances which propagate on into related measurements concerning the structure of the halo system. Hence, a technique for refining the distances that can be applied universally to all halo objects, while accurately conveying the associated distance errors has been a long sought goal.

In "A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I)"- Conn et al. (2011), hereafter Paper I, we reviewed the challenges of identifying the TRGB given the contamination to the pure RGB luminosity function (LF) typically encountered. We also outlined some of the methods that have been devised to meet these challenges since the earliest approach, put forward by Lee et al. (1993). We then introduced our own unique Bayesian approach, incorporating Markov Chain Monte Carlo (MCMC) fitting of the LFs. This approach was essentially the base algorithm, designed to easily incorporate priors to suit the task at hand. Here we present the results of an adaptation of that algorithm, intended for use on small, compact objects-specifically the dwarf spheroidal companions of M31. Once again, we utilize the data of the Pan-Andromeda Archaeological Survey (PAndAS; McConnachie et al. 2009), a two-color (i ′ = 770 nm, g ′ = 487 nm) panoramic survey of the entire region around M31 and M33 undertaken using the Canada-France-Hawaii Telescope (CFHT). The tip is measured in the i ′ band where dependence on metallicity is minimal. Following a recap of the base method in Section 2, we introduce the aforementioned new adaptations to the method in Section 3.1 and in Section 3.2 we describe the results of tests intended to characterize the modified algorithms performance as well as check the accuracy of its outputs. In addition, Section 3.3 outlines the application of a further prior on the satellite distances. Section 4.1 presents the results of applying the modified algorithm to the companions of M31, while Section 4.2 details the method by which the object-to-M31 distances are obtained and Section 4.3 uses the obtained distances to analyze the density profile of these objects within the halo. Conclusions follow in Section 5.

A RECAP OF THE BASE METHOD

In Paper I, we introduced our "base" method, whereby the LF of a target field was modeled by a single, truncated power law (the RGB of the object of interest) added to a representative background polynomial. The location of the truncation (the TRGB) and the slope of the power law were set as free parameters of the model, with the best fit derived using an MCMC algorithm. The functional form of the background component was modeled by directly fitting a polynomial to the LF of an appropriate background field, and then scaling the polynomial to reflect the expected number of background stars in the target field. The resulting model was then convolved with a Gaussian of width increasing in proportion to the photometric error as a function of magnitude. The posterior distribution in the tip magnitude returned by the MCMC, which thus already incorporates the photometric error, is then sampled together with Gaussian distributions representing the distribution in the absolute magnitude of the tip (M TRGB i = -3.44 ± 0.05) and the distribution in the extinction (A λ ± 0.1A λ ) to give a final posterior distribution in the distance. The mode of this distribution is then adopted as the distance to the object, with the ±1σ error calculated from the portion of the distribution lying on the far and near side of the mode, respectively.

A more detailed discussion of the assumptions and rationale behind the base method is provided in paper I, but the reader should again be made aware of the most fundamental assumptions it entails. At the heart of the calculations of course is the choice of the absolute magnitude of the tip and its associated uncertainty. We adopt the values of this parameter stated above based on the value derived for the SDSS i band in Bellazzini (2008), noting the near-identical bandpass characteristics of the MegaCam i-band filter as detailed by Gwyn (2010). We adopt somewhat smaller uncertainties than those derived by Bellazzini (2008) following the same argument as McConnachie et al. (2004) that the quoted uncertainty in the absolute magnitude of the tip is conservative and it is a systematic error effecting all distance measurements in an identical way. As almost all applications of the distances to the satellites are concerned with their relative positions to one another and M31, this component of the error is of minimal importance. Nevertheless, it often forms the major component of the quoted errors in our distances.

Mention should also be made as to the effects of metallicity and internal reddening within the objects under study as well as the zero-point uncertainty in the PAndAS photometry. While there is a metallicity dependence of M TRGB i (though minimal when compared with other bands), it is only really an issue for more metal-rich targets (e.g., [Fe/H] > -1; see Bellazzini 2008, Figure 6) and thus will primarily affect measurements to the large, diverse systems such as M31 itself and M33. But the TRGB for more metal-rich populations is fainter than that for their metal-poor counterparts and thus it is this metal-poor population component which dominates the measurement. A similar situation is encountered with the internal reddening present in the objects under study, where the vast majority of objects, chiefly the dwarf spheroidal galaxies, are almost completely devoid of such effects. Those objects most strongly affected are the large, well-populated systems which will provide ample signal from the least affected stars on the near side of the system, for a good distance determination. The uncertainty in the zero point of the photometry is consistent throughout the survey at approximately 0.02 mag. (R. A. Ibata et al. 2012, in preparation).

Lastly, a brief discussion of the distance posterior distributions themselves is warranted. As noted above, they are produced by the sampling of the distribution of possible tip positions (as generated by the MCMC and with photometric errors incorporated) along with sampling of the Gaussian distributions representing the uncertainties in the foreground extinction (A λ ) and in the absolute magnitude of the tip (M TRGB i ). Specifically, 500,000 possible distances are drawn to form the distance PPD, where for each draw κ, the distance modulus µ is

µ(κ) = m TRGB i (κ) -A λ (κ) -M TRGB i (κ), (1) 
where each of m TRGB i (κ), A λ (κ), and M TRGB i (κ) is the values drawn from the uncertainty distributions in the tip position, foreground extinction, and absolute magnitude of the tip, respectively. The foreground extinction and its uncertainty vary from object to object but the error in the absolute magnitude of the tip is a systematic error as already discussed. In using this method, there are two situations that can be encountered. The first is that the object is very well populated and the tip position is thus well constrained with a narrow PPD. In such instances, the uncertainty in M TRGB i far outweighs any other contributions to the error budget and is almost solely responsible for the width of the distance PPD. In the second situation, the object is poorly populated and the tip position PPD is very wide and typically asymmetric. If the LF population is not extremely low, the uncertainty in M TRGB i will contribute noticeably to the distance PPD, otherwise the distance PPD will essentially depend solely on the uncertainty in the determined tip positions. Hence while some of the smaller contributions to the distance uncertainties are omitted from the calculations, their overall effects will be washed out by the contributions from these two principal sources of error.

ADDITION OF A MATCHED FILTER

Matched Filtering using Radial Density Profiles

With the introduction of our method in Paper I, it was stressed that one of its greatest attributes was its adaptability to the prior knowledge available for the object of interest. When applying the method to compact satellites, there is one very conspicuous attribute that can be incorporated into the prior information constraining the model fit-namely, the object's density as a function of radius. The simplest way to achieve this is with the addition to the algorithm of a matched-filter weighting scheme, wherein the weighting is matched to the specific data by accounting for the data within the filter itself.

The successes of Rockosi et al. (2002) using a matched filter in color-magnitude space to identify member stars of globular cluster Palomar 5 amidst the stellar background provide the inspiration for our technique. They make use of the characteristic RGB of the globular cluster to weight stars as to their likelihood of being cluster members. To achieve such a goal, a matched filter can be created by binning the CMD of the field in which the cluster lies into a two-dimensional matrix and then dividing that matrix by a similarly created background matrix. Stars found in the densest regions of the resulting matched filter CMD are then assigned the highest weight, being the most likely cluster members. In this way, they can greatly improve the signal-to-noise ratio (S/N) with respect to that of their original, unmodified data and are able to trace tidal streams from the globular cluster well into the surrounding background. Hence we have applied a similar approach to weight field stars fed to the MCMC in terms of their probability of being object members. In our case, however, the stars proximity to the object's center provides the basis for the weighting scheme, with the innermost stars being the most likely to be actual object members as opposed to background stars, and so a one-dimensional matched filter is sufficient.

The first step in implementing our weighting scheme is to ascertain a model of stellar density as a function of radius specific to the object of interest. For this purpose, we employ the best fits presented in N. F. Martin et al. (2012a, in preparation) for the dwarf spheroidal satellites, wherein the optimal ellipticity ǫ, position angle (P.A.), half-light radii (r h ), and object centers are given for exponential density profiles fitted to each satellite. For the two dwarf ellipticals, in the case of NGC 147 we assume ǫ = 0.44 and P.A. = 28 • as specified by Geha et al. (2010) and we derive the r h manually as 10 ′ , which produces the best-fit profile to the data when coupled with the other two parameters. For NGC 185, we adopt ǫ = 0.26 and P.A. = 41 • based on the findings of Hodge (1963) and once again derive the r h manually, this time as 6 ′ . For both NGC 147 and 185, we employ the object centers derived from the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). With the ellipticity, P.A., half-light radius and object center know, we can proceed to produce a weighting scheme proportional to the density profile ρ of the object, where ρ is of the form

ρ(r ǫ ) = e -rǫ R , (2) 
where R = (r h /1.678) is the scale radius and r ǫ is the elliptical radius at which the star lies, as now defined. With the P.A. and object center of the object known, a rotation of coordinates is used to define each star's position (x ′ , y ′ ) with respect to the center of the ellipse. The projected elliptical radius r ǫ of the ellipse on which the star lies is then

r ǫ = (y ′ ) 2 + x ′ 1 -ǫ 2 1/2 , (3) 
where the y ′ axis is assumed as the major axis of the ellipse. While Equation (2) gives us the functional form of our weighting scheme, it is further necessary to define the absolute values of the weights given to each star, so as to scale them appropriately with respect to the background density ρ bg . This is achieved by insuring that the area under the function ρ(r ǫ ) between any imposed inner and outer radius limits is set equal to the number of signal stars in the observed region. Hence, our weighting scheme is ultimately defined by

W (r ǫ ) = Se -rǫ R (4) with S = (ρ total -ρ bg ) × A 2π R(1 -ǫ)[(e -rinner R )(R + r inner ) -(e r outer R )(R + r outer )] , (5) 
where ρ total is the density of stars in the observed region before subtraction of the background density and A is the area of the observed region which is either an ellipse in the (usual) case that r inner = 0 or an elliptical annulus otherwise. r inner and r outer are the inner and outer cutoffs respectively of the range of r ǫ values observed.

In Figure 1, the result of our fitting procedure as applied to the sparsely populated dwarf spheroidal Andromeda X is presented. In this case, stars out to r ǫ = 0. • 15 are fitted, with no inner cutoff radius imposed. While most of the satellites are too poorly populated for blending to be an issue, in the case of several, the stellar density counts at the innermost radii drop off in spite of the predicted counts from the fitted density profile. This is a good indicator of blending or overcrowding in those radii which can hinder the accuracy of the photometry for the affected stars and so in such cases, these inner radii are omitted. This was the case with Andromeda III (r inner = 0. • 0175), Andromeda V (r inner = 0. • 011), and Andromeda XVI (r inner = 0. • 005). For the dwarf ellipticals NGC 147 and NGC 185, it was found beneficial to avoid the inner regions altogether, with the presence of a wider range of metallicities in these regions degrading the contrast of the RGB tip. Similarly, an outer cutoff radius was chosen for these objects inside of 3 r h to help sharpen the tip discontinuity, so that for NGC 147, r inner = 0. • 28 and r outer = 0. • 33 and for NGC 185, r inner = 0. • 18 and r outer = 0. • 26. M31 and M33 are treated similarly to the dwarf ellipticals but with still thinner annuli so that any weighting is unnecessary. They are discussed in more detail in Section 4.1.

With regard to the actual likelihood calculations used at each iteration of the MCMC, these are undertaken not by simple multiplication of the likelihood for each star by the respective weight, but by physically adjusting the relative proportions of the RGB and background components of the LF. Up until now, we have assumed a generic LF and calculated the likelihood contributions from each star from this single LF. But in reality, the outer regions of the field are more accurately represented by a shallow-signal/high-background LF while the innermost stars obey an LF which has almost no background component. Hence using the radial density profile obtained above, we can essentially build an individual LF for each star, tailored to suit its position within the object. In practice, this is achieved with almost no extra computational effort, as the background and signal can be normalized separately and only the signal component is changed by the MCMC at each iteration so that the background component need only be generated once. The two components are normalized to contain an area of unity and then the bin of each corresponding to the star's magnitude is scaled according to the ratios of the star's weight and the background level when its contribution to the model likelihood is calculated by the MCMC.

The result of the incorporation of this extra prior information is a marked improvement in the performance of the algorithm for the more sparsely populated targets. In such objects, the RGB component is typically overwhelmed by non-system stars, even with the most carefully chosen field size. This can greatly diminish the prospects of obtaining a well-constrained tip measurement. This is apparent from Figures 2 and3 which show the LF and corresponding posterior distributions before and after the application of the matched filter to the dwarf spheroidal Andromeda X. With the matched filtering applied, the great majority of non-system stars are severely suppressed, revealing clearly the RGB component, which in turn provides much stronger constraints on the location of the tip, as evidenced by Figure 3. Herein lies an example of the power of the Bayesian approach, where a single prior can cast the available data in a completely different light.

A Test for the Refined Algorithm

In Section 2.3 of Paper I, the results of a series of tests were presented that characterized the performance of our original algorithm given a range of possible background density levels and LF populations. Here we present the results of similar tests applied to our new, matched-filter-equipped algorithm, but with some important differences. Most fundamentally, the way our artificial test data are generated is quite different. As we are now concerned with the position of each star in the field, a distance from field center must be generated for each star. To do this, we have randomly assigned a radial distance to each star, but weighted by a circularly symmetric (ǫ = 0) exponential density profile. Further to this, the magnitudes of our stars are now generated directly from our convolved LF, so that photometric error as a function of stellar magnitude is incorporated.

The other important change from the previous tests concerns the way in which the artificial LFs are populated. Whereas in the former tests all of the sampled stars were drawn from the model LF within the one magnitude range 20 m star 21, in the current tests the stars are drawn from within the much larger magnitude range actually utilized for our satellite measurements, namely 19.5 m star 23.5. Hence a 100 star LF in these tests for example corresponds to a much smaller sample of stars than in the tests described in Section 2.3 of Paper I. Aside from these critical differences, the current tests are undertaken and presented as per the previous publication, with measurements of the average sigma and tip offset given for each combination of background level ( f ) versus number of stars (ndata) where f = 0.1, 0.2, . . . , 0.9 and ndata = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000. The results are presented in Figures 4 and5, respectively.

Examination of the figures reveals the expected trend of increased 1σ error and tip offset with increasing background height and decreasing LF population levels. Once again, there is very good agreement between the derived errors and the actual offsets obtained. Most importantly, it is clear by comparing these results with those of Paper I that the matched filtering has • 15 was used to generate the LF histograms, wherein each star contributes between 0 and 1 "counts," depending on its proximity to the field center and the density profile of the object. (A color version of this figure is available in the online journal.) greatly diminished the effects of the background contamination, as exemplified by the much gentler increase in 1σ errors and offsets with increasing background star proportion.

An Additional Prior

In addition to our density matched filter, a further prior may be devised so as to constrain our distance posterior probability distributions (PPDs) in accordance with our knowledge of the M31 halo dwarf density profile. The expected falloff in density of subhalos within an M31-sized galaxy halo is not well constrained. The largest particle simulation of an M31sized dark matter halo to date, the Aquarius Project (Springel et al. 2008), favored the density of subhalos to fall off following an Einasto profile with r -2 = 200 kpc and α = 0.678, and furthermore identified no significant dependence of the The Astrophysical Journal,758:11 (19pp), 2012 October 10Conn et al.

Figure 3.

Posterior distributions obtained for Andromeda X before (top) and after (bottom) the application of the matched filter. For the "before" case, a circular field of radius 0. • 05 (2.143 × r h ) has been chosen, specifically to provide the most possible signal with the least possible background contamination. For the "after" case, the same LF as presented in Figure 2 is used. (A color version of this figure is available in the online journal.) relationship on subhalo mass. For the specific case of the satellites within the M31 halo, Richardson et al. (2011) found a relation of ρ ∝ r -α where α = 1 a better fit to the data, drawing largely from the PAndAS survey, although this does not take into account the slightly irregular distribution of the survey area. We adopt this more gentle density falloff with radius giving us a more subtle prior on the satellite density distribution and note that α may be changed significantly without great effect on our measured distances.

So in effect, we assume a spherical halo centered on M31, such that ρ(sat) ∝ r -1 and integrate along a path through the halo at an angle corresponding to the angular displacement on The distribution gives the likelihood of the satellite existing at a particular distance, given an angular separation on the sky of 8. • 5 from M31 (the halo center) and assuming a distance of 779 kpc for M31. The distribution peaks where the line of sight traverses the innermost region of the halo, and flattens out at large distances due to the increasing volume of the halo subtended by the unit of solid angle observed. The same prior with α = 2 is shown as a dashed line for reference. While this value for alpha is in closer agreement with the results of Section 4.3, we deliberately adopt the less restrictive α = 1 prior, so as not to suppress the probability of satellites in the outer halo too greatly.

the sky of the satellite from M31. This yields an equation of the form

P (d) ∝ d 2 ((d 2 + 779 2 -2d × 779 × cos(θ )) α ) 1/2 , (6) 
where α = 1,779 kpc is the distance to M31, and P (d) is the relative probability of the satellite lying at distance d (in kpc) given an angular separation of θ degrees from M31.

Note that this produces a peak where the line of sight most closely approaches M31, and that P (d ≫ 779) is approximately proportional to d. The equation is normalized between limits appropriate to the size of the halo. We thus generate a separate prior for the probability as a function of distance for each satellite, tailored to its specific position with respect to M31. The effect of the prior is to suppress unlikely peaks in the multi-peaked posterior distributions obtained for certain satellites, while leaving the peak positions unaffected. As such, the prior has very little effect on singlepeaked distributions, whatever the angular position and distance of the satellite it represents. The distance prior applied to the Andromeda XIII distance PPD is shown in Figure 6 for illustration.

A NEW PERSPECTIVE ON THE COMPANIONS OF M31

Galaxy Distances

The PAndAS survey provides us with a unique opportunity to apply a single method to a homogeneous data sample encompassing the entire M31 halo out to 150 kpc. The data encompass many dwarf spheroidals, along with the dwarf ellipticals NGC 147 and NGC 185, and of course the M31 disk itself with additional fields bridging the gap out to the companion spiral galaxy M33, some 15 • distant. Of these objects, the vast majority have metallicities [Fe/H] -1, so that any variation in the absolute magnitude of the tip is slight. Indeed, Bellazzini (2008) suggests that for such metallicities, the variation in the region of the spectrum admitted by the CFHT i ′ filter is perhaps less than in Cousins' I. Perhaps of greatest concern are the cases of M31 and M33, which will contain substructure at a variety of metallicities. In this case, however, the more metal-rich portions will exhibit a fainter TRGB than those in the regime [Fe/H] -1, such that the brightest RGB stars will fall within this regime.

In this section we present distance measurements to these many halo objects, culminating in Figure 10 below, a threedimensional map of the satellite distribution, and Table 2, which presents the satellite data pertinent to our distance measurements. Figures 11 and12 below present the distance posterior distributions obtained for every object in this study. It has been common practice in the majority of TRGB measurements to quote simply the most likely distance and estimated 1σ uncertainties, but this throws away much of the information, except in the rare case that the distance distribution is actually a perfect Gaussian. On account of this, as well as providing the actual distance PPDs themselves for visual reference, we also provide the same information in condensed tabular form, where the object distance is given at 1% increments of the PPD, both for the prior-inclusive cases (as in Figures 11 and12) and for the case in which no prior is invoked on the halo density. Note that for M31, no halo density prior is applied and so this column is set to zero. A sample of this information, as provided for (This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Andromeda I, is presented in Table 1. The reader may then sample from these distributions directly rather than use the single quoted best-fit value, thus taking into account the true uncertainties in the measurements. Due to the large number of objects studied, it is not practical to discuss each in detail within this paper. For this reason, Andromeda I will be discussed in further detail below as a representative example, followed by two of the more problematic cases for completeness. First, however, we describe the exceptional cases of M31 itself and M33.

M31 and M33 due to their large extent on the sky and the variety of substructure in their disks require a slightly different approach to that used for the other objects in this study. As was the case for NGC 147 and NGC 185, it was necessary to define a thin elliptical annulus so as to limit as much as possible the amount of substructure from other radii contaminating the LF. For both M31 and M33 such a thin annulus was used that any weighting with respect to the elliptical radius of the stars was trivial and so no weighting was used. For M31, an ellipticity of 0.68 was adopted, with P.A, = 37 • . The inner and outer elliptical cutoff radii were set to 2. • 45 and 2. • 5, respectively. To check for any inconsistencies in the TRGB location across the whole annulus, it was divided up into NE, NW, SE, and SW quarters and then the distance measured from each quarter, giving distances of 782 +19 -19 , 782 +18 -18 , 775 +20 -18 , and 781 +19 -19 kpc, respectively. It is tempting to associate the slightly lower distance to the SE quadrant with the effects on the LF of the Giant Stellar Stream, though the distance is still within close agreement with the other three quadrants, such that all four are perfectly consistent. Hence, the distance was remeasured using the whole annulus to give 779 +19 -18 kpc. This is in good agreement both with the findings of McConnachie et al. (2005) 

(785 +25

-25 ) utilizing the TRGB and the more recent determination by Riess et al. (2012) using Cepheid variables (765 +28 -28 ). For M33, we employ an ellipticity of 0.4 as used by McConnachie et al. (2005), but find a position angle of P.A. = 17 • in closest agreement with the data. Inner and outer elliptical radii of r inner = 0. • 75 and r outer = 0. • 9 were adopted to give a very sharp discontinuity at the location of the tip. After applying an appropriate color-cut, the qualifying stars were fed into our algorithm to give a distance of 820 +20 -19 kpc. This distance is in good agreement with that of 809 +24 -24 kpc obtained by McConnachie et al. (2005) and yields an M33-to-M31 distance of 214 +6 -5 kpc. It is interesting to note that a variety of quite different M33 distances exist in the literature, with derived distance moduli ranging from 24.32 (730 kpc, water masers;Brunthaler et al. 2005) through 24.92 (964 kpc, detached eclipsing binaries; Bonanos et al. 2006). Indeed, the variety of standard candles utilized would suggest that M33 provides an ideal environment for calibrating the relative offsets between them. McConnachie (2005) suggests that the dispersion of M33 distances in the literature is tied to an inadequate understanding of the extinction in the region of M33. Most measurements, including those presented here, use the Galactic extinction values derived by Schlegel et al. (1998), although these do not account for extinction within M33 itself and are calculated via an interpolation of the extinction values for the surrounding region. Nevertheless, the elliptical annulus employed in our approach will act to smooth out the field-to-field variation that might exist between smaller regional fields.

Andromeda I: Example of an Ideal Luminosity Function

It would seem prudent to illustrate the performance of our new method by presenting the results for a range of the dwarf spheroidals from the most populated to the least populated. Hence Andromeda I, the first discovered and one of the two most highly populated of these objects, is the obvious place to start. The field employed for our Andromeda I distance measurement incorporated stars at elliptical radii between 0 • r ǫ 0. • 3 and, after removal of stars outside of the range 19.5 i 0 23.5 and beyond our chosen color-cut, yielded a star count of 4375. The CMD for this field is presented in Figure 7(a). This figure colorcodes the stars in the CMD as per the color distribution in the inset field and plots them so that those innermost within the field (and hence those accorded the highest weight) are represented by the largest dots. In the case of Andromeda I, the RGB is so dominant over the background that our density matched filter is hardly necessary and hence does little to improve the already stark contrast. It is not surprising therefore that the distance and uncertainty obtained are almost identical to those obtained by the base method as presented in Paper I. Andromeda I is thus confirmed at a distance of 727 +18 -17 , which allows us to derive a similarly accurate separation distance from M31 of 68 +22 -16 kpc.

Andromeda XV: Example of a Multi-peaked Distance PPD

As an example of a dwarf spheroidal of intermediate size, we present the comparatively compact Andromeda XV. Far from being the tidiest example of the many intermediatesized objects covered in this study, Andromeda XV provides something of a challenge. Examination of Figure 8 reveals a gradual rise in star counts when scanning from the top of the CMD color-cut faintward toward the Andromeda XV RGB and a correspondingly broad range in the possible tip locations in the tip magnitude PPD. Indeed, two peaks are prominent in the distance PPD of Figure 8(c), with the distribution mode at 626 kpc (our adopted distance) and the 1σ credibility interval spanning from 591 kpc to 705 kpc as a consequence of the second peak. Ibata et al. (2007) M TRGB i = -3.44. This is in excellent agreement with the m TRGB i = 20.57 +0.23 -0.14 recovered by this study. Letarte et al. (2009) however derive a distance of 770 +70 -70 kpc which places it toward the far edge of our 99% credibility interval on the distance (see Figure 8(c)). This measurement was derived after three stars that had been found to lie close to the Andromeda XV RGB tip in the former investigation were identified as Galactic foreground stars, following measurements of their radial velocities obtained with the Deep Imaging Multi-Object Spectrograph on Keck II. Of these stars, however, none lies within 2 ′ from our object center by which point the maximum possible weighting has already dropped to below 10%, meaning that even the highest weighted of these three stars will have minimal effect on the likelihood calculation. This would then suggest that each of these three stars has magnitude consistent with belonging to the Andromeda XV RGB.

Andromeda XIII: Example of a very Poorly Populated Luminosity Function

Andromeda XIII is among the most sparsely populated objects targeted by the current study and it is important to realize that it is impossible to obtain distances to such objects with small uncertainties using the TRGB standard candle, unless of course one of the few member stars can be positively identified as being right on the brink of core helium fusion. Nevertheless, though large uncertainties are inevitable, an accurate estimation of those uncertainties is still achievable, and this is the aspiration of the method here presented. Distances to Andromeda XI and XIII have been obtained with higher accuracy using RR Lyrae stars as a standard candle with photometry from the Hubble Space Telescope (Yang & Sarajedini 2012). In the case of Andromeda XI, the tip magnitude identified by our method agrees well with the distance identified by that study, but in the case of Andromeda XIII, a brighter star in the central regions of the field causes some confusion. Indeed in such a sparsely populated field it is quite difficult to apply any effective density-based weighting scheme. Nevertheless, after sampling the tip magnitude PPD (Figure 9(b)), together with those for the absolute magnitude of the tip and the extinction in this region of sky to obtain a sampled distance PPD, and multiplying that distribution with the angle-specific halo density prior as is standard for all our measurements, we are able to produce a distance PPD (Figure 9(c)) in good agreement with the findings of Yang & Sarajedini (2012).

Determining the Distances from M31

Once a satellite's distance from Earth is determined, it is straightforward to determine the distance from M31 using the cosine rule:

r = (d 2 + (d M31 ) 2 -2dd M31 cos(θ )) 1/2 , ( 7 
)
where r is the satellite's distance from M31, d is the distance of the satellite from Earth, d M31 is the distance of M31 from Earth, and θ is the angle on the sky between M31 and the satellite.

For convenience, we use a small angle approximation equating θ with its M31 tangent plane projection and note that any displacement of r is insignificant due to the size of the 1σ errors.

If the uncertainty in distance to both M31 and the satellite takes on a Gaussian distribution, it is straightforward to determine the error in the satellite-M31 separation by adding the individual errors in quadrature. While it is reasonable to approximate the M31 distance uncertainty distribution as a Gaussian, the same cannot be said for each of the companion satellites. Hence once again it is more appropriate to sample values from the individual distance probability distributions. Thus, a histogram of r values for the satellite is built up by sampling d and d M31 from their respective distributions over many iterations. This brings to the fore an important consideration: there is an integrable singularity in the resulting distribution at the closest approach distance to M31 (r c = d M31 sin(θ )) as shown below.

The probability distribution for the satellite-to-Earth distance P (d) is related to that of the satellite-to-M31 distance P (r) as follows:

P (r) = δd δr P (d). ( 8 
)
From Equation ( 7), and further noting that the satellite-to-Earth distance corresponding to r c is d c = d M31 cos(θ ), we have

δd δr = r d -d c , (9) 
which allows us to derive

P (r) = r r 2 -r 2 c 1/2 P (d), (10) 
thus producing the singularity at r = r c . In practice, after factoring in the Gaussian distribution in d M31 , this results in a sharp
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peak at the minimum possible satellite-to-M31 distance when dealing with the more asymmetric satellite-to-Earth distance probability distributions. Hence when considering the distribution of satellites as a function of distance from M31, one can either take the distances as determined directly from Equation ( 7) using solely the most likely distance from the satellite-to-Earth distance distributions or the whole distance probability distribution for a satellite can be allowed to influence the calculations, as accomplished via sampling. The final result can be quite different, depending on the choice.

A First Approximation of the Satellite Density Profile within the Halo

In the completed PAndAS survey, we have for the first time a comprehensive coverage of a galaxy halo, with a uniform photometric depth sufficient to identify even the comparatively faint satellite companions. In addition, in this paper we have provided distances to every one of these objects, all obtained via the same method. We are thus presented with an excellent opportunity to study the density of satellites as a function of radius within a Milky Way like halo.

As hinted at in the previous section, obtaining an accurate picture of the satellite density profile (SDP) is not a trivial task. The first major consideration is to devise a way of factoring in the selection function. Comprehensive though the survey coverage is, it is not symmetric and not infinite. Second, the choice of model for the SDP is not arbitrary. Whether a simple, unbroken power law is sufficient is not immediately clear. Furthermore, does it even make any sense to treat the halo as a radially symmetric, isotropic distribution? A glance at the obvious asymmetry in Figure 10(a) would suggest otherwise. Nevertheless, for a first approximation it is reasonable to consider what the best-fitting radially symmetric, unbroken power law to the SDP would be.

The PAndAS survey covers approximately 400 deg 2 of sky and is roughly symmetric about the center of the M31 disk but with a major protrusion in the southeast to encompass the M33 environs. For the purpose of obtaining an accurate measure of the survey coverage of the halo as a function of radius, as well as factoring in the actual survey borders, an inner ellipse was also subtracted where the presence of the M31 disk has made satellite detection more difficult. Both the outer survey borders and the inner cutoff ellipse are plotted in Figure 10. The inner cutoff ellipse has an eccentricity ǫ = √ 0.84 and is inclined with the semi-major axis angled 51. • 9 with respect to the x-axis (η = 0). The dwarf galaxies M32 and M110 lie inside this ellipse as do the somewhat dubious satellite identifications Andromeda VIII and Andromeda IV (see Ferguson et al. 2000), hence their omission from the data presented in Table 2. With the inner and outer boundaries suitably delineated, the procedure then was to determine what fraction of halo volume at a given radius f (r) would fall within these boundaries once projected onto the M31 tangent plane. This was achieved by implementing the even-odd rule on the projections of uniformly populated halo shells.

Having determined f (r), we can proceed to determine the required normalization for a power law of any given α, allowing us to use the power law directly as a probability distribution. Setting the problem out in terms of probabilities, we require to determine the probability of each tested M31-to-object distance (henceforth simply "radius") r given a power law with slope α:

P (r|α) = k r α , ( 11 
)
where k is the normalization constant and r min r r max . Using the assumed spherical symmetry, we then have

f (r) r max r min P (r|α) 2π 0 π 0 r 2 sin θdθdφdr = 1 (12) so that 4πf (r) r max r min kr 2-α dr = 1. ( 13 
)
Hence, for a given radius at a given α, we have

k(r, α) = 4πf (r) r 3-α 3 -α r max r min -1 . ( 14 
)
The calculation of the likelihood for a power law of a given slope α may be simplified by noting that for any given radius, f (r) and hence k act to scale the probability in an identical way whatever the value of α. Thus, the dependence of k on r is effectively marginalized over when the posterior distribution for α is calculated, so long as any sampling of radii utilizes the same radii at every value of α. The likelihood for a given power law (i.e., a given α) is thus

L(α) = nsat n=i kr 2-α i , ( 15 
)
where nsat is the number of satellites-i.e., the 27 companions of M31 listed in Table 2. As discussed in Section 4.2, there are essentially two ways we can determine the likelihood of a given α. The most straightforward is to use single values of r i as determined directly from the mode in the posterior distribution for each satellite using Equation [START_REF] Bellazzini | The Tip of the Red Giant Branch[END_REF]. The second and arguably more robust method is to use the entire radius probability distribution (RPD) for each satellite. In the case of this second approach, the likelihood for the power law determined for each satellite becomes a convolution of the power law with the satellite's RPD, so that the likelihoods of the individual samples are summed. The final likelihoods determined for each satellite can then be simply multiplied as before, giving a total likelihood as follows:

L(α) = kr 2-α 1,1 + kr 2-α 2,1 + • • • + kr 2-α nsam,1 × kr 2-α 1,2 + kr 2-α 2,2 + • • • + kr 2-α nsam,2 × • • • × kr 2-α 1,nsat + kr 2-α 2,nsat + • • • + kr 2-α nsam,nsat (16) 
= nsat n=i   nsam n=j kr 2-α j,i  
where r j,i is the j th sampled radius of the ith satellite, and nsam is the total number of samples. The resulting distribution achieved by implementing the first approach is presented in Figure 13(a) from which a value for α of 1.92 +0.32 -0.30 is obtained. It is interesting to note that this value is consistent with an isothermal satellite distribution with uniform velocity dispersion. Replacing the individual best-fit radii with 500,000 samples from the respective RPD for each satellite as per the second approach, the result is substantially different, as demonstrated by Figure 13(b). Here a value for α of 1.52 +0.35 -0.32 provides the best fit to the data. This discrepancy is presumably a consequence of the non-Gaussian RPD profiles for

The Astrophysical Journal,758:11 (19pp) the more poorly populated satellites, as noted in Section 4.2. In fact, if the 15 most Gaussian-like distributions are taken alone, namely Andromedas I, II, III, V, X, XVI, XVII, XVIII, XX, XXI, XXIII, XXIV, NGC 147, NGC 185, and M33, the results are in much closer agreement, with α = 1.87 +0.46 -0.42 with sampling and α = 2.02 +0.43 -0.41 without. Given the obvious asymmetry in the satellite distribution in Figure 10, it is interesting to consider the effects of isolating various other satellites from the calculations. The stark asymmetry between the number of satellites on the near side as opposed to the far side of the M31 tangent plane for instance (as had been initially reported by McConnachie & Irwin 2006) is echoed in the respective density profiles, with an α of 2.37 +0.42 -0.37 (no sampling) recorded when only the near-side satellites are considered, and that of 0.93 +0.56 -0.49 (no sampling) when instead the far-side galaxies alone are included. When the individual satellite RPDs are sampled, the corresponding values are 1.87 +0.43 -0.40 and 0.78 +0.61 -0.46 , respectively. Despite the large uncertainties, the results clearly do not support symmetry of any kind about the tangent plane. It is important to note, however, that this asymmetry may not be physical, but rather an effect of incompleteness in the data at the fainter magnitudes of the satellites on the far side of M31. McConnachie & Irwin (2006) do however observe this asymmetry even when only the more luminous satellites are considered. In time, it is hoped that the nature of the data incompleteness will be better understood and Notes. All distance measurements utilize the data from the Pan-Andromeda Archaeological Survey (McConnachie et al. 2009) and have been obtained using the method presented in this paper. A value of M TRGB i = -3.44 ± 0.05 is assumed for the absolute magnitude of the RGB tip in CFHT MegaCam i band, based on the value identified for the SDSS i band (Bellazzini 2008) and justified for use here by the color equations applicable to the new MegaCam i-band filter (Gwyn 2010). Values for the extinction in MegaCam i band have been adopted as A λ = 2.086 × E(B -V ) for the same reasons, with uncertainties taken as ±10%. The extinction values quoted are for the object centers, though the actual calculations apply individual corrections to each member star according to their coordinates. Note that the uncertainties in the M31 distance are based on the sampled distributions while the quoted value is that derived directly from the Earth distance as per Equation [START_REF] Bellazzini | The Tip of the Red Giant Branch[END_REF]. The last column gives alternative distances from the literature. TRGB-derived distances are quoted wherever possible. Distance derivation methods: TRGB, tip of the red giant branch; Ceph, Cepheid period-luminosity relation; RR Ly, RR Lyrae period-luminosity relation; RC, red clump; HB, horizontal branch; DEB, detached eclipsing binary. a Andromeda XXX is a new discovery, and will also be known as Cassiopeia II, being the second dwarf spheroidal satellite of M31 to be discovered in the constellation of Cassiopeia (M. J. Irwin 2012, in preparation 2. Panel (a) gives the distribution assuming a single best-fit radius for each of the satellites as determined from the mode in the satellite's distance posterior distribution (as given in Column 4 of Table 2). Panel (b) shows the same distribution when the entire radius probability distribution for each satellite is sampled 500,000 times.

effort is underway to determine the completeness functions for dwarf galaxy detection in the PAndAS survey (N. F. Martin et al. 2012b, in preparation). In the mean time, it would seem prudent to regard the contribution to the density profile of the far-side satellites with caution, instead taking the density profile measured from the near-side satellites alone as the best measurement.

On a final note with regard to near-side-far-side asymmetry, it is important to realize that the uncertainty in the distance to M31 has a large effect on how many satellites will lie on either side of the M31 tangent plane, and indeed on the density measurement as a whole. Where the individual PPDs are sampled, this is taken into account as the M31 PPD is sampled for each measurement. Nevertheless, it is interesting to consider the specific (nonsampled) case where M31 is measured at a closer distance, while all best-fit satellite distances remain unchanged. From the M31 PPD in Figure 12, it can be seen that there is a 5% chance that M31 lies at 750 kpc or closer. If M31 is taken to lie at 750 kpc, Andromedas XI, XIII, and XIV move onto the far side of the M31 tangent plane, going someway to even out the asymmetry. However, if the distances of all the satellites from M31 are re-measured for this new M31 position, the same stark contrast between the density profiles for the near and far sides remains and in fact grows. Using only those satellites on the near side of the new M31 tangent plane, an α of 2.87 +0.50 -0.45 is determined whereas if only those satellites on the far side are considered, an α of 1.22 +0.47 -0.47 is obtained. Hence it would seem unlikely that the observed near-side-far-side asymmetry is primarily a consequence of an overestimated M31 distance.

Recent research, such as that presented by Koch & Grebel (2006) and Metz et al. (2007) point toward highly significant planar alignments of various collections of satellites within the M31 halo, even though as a whole, no such distribution is prominent. Interestingly, the former investigation finds that it is
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predominantly the objects morphologically similar to the dwarf spheroidals in their sample that can be constrained to a relatively thin disk, which also includes NGC 147 and M33. While our sample is considerably larger, it nevertheless consists nearly entirely of such objects, so it will be interesting to determine what degree of symmetry may be found within and on either side of the best-fit plane. We intend to investigate this in an upcoming publication, though it must still be noted that outliers from the planar trend have already been noted in this small sample, such as Andromeda II and NGC 185. Furthermore, other members are known not to conform to the norm of M31 satellite dynamics, with Andromeda XIV for instance apparently at the escape velocity for the M31 system for its determined distance (Majewski et al. 2007). Indeed, it would seem that whatever model is assumed, a few outliers are inevitable.

CONCLUSIONS

With the ready applicability of the TRGB standard candle to almost any of our galactic neighbors, there can be no question that its role will continue to be an important one. As the world's premier telescopes grow in size, so too will the radius of the "neighborhood" of galaxies to which the TRGB can be applied. Hence a technique which accurately characterizes the true probability space of the TRGB distances determined is a great asset. Indeed this quality comes to play an increasingly important role as more and more sparsely populated objects are found to frequent the environs of our larger nearby neighbors. The differences in the results achieved in the previous section with and without sampling of the actual distance distributions illustrate this fact.

Where in Paper I the foundations were laid for a TRGB method with such desirable qualities, its full value only becomes apparent when one actually employs its full Bayesian potential. It only requires a brief glance at Figures 2 and3 to see how powerful a single data-specific prior can be. Similarly, the simple distance weighting prior outlined in Section 3.3 can make a poorly constrained model quite workable, as illustrated in the case of Andromeda XIII. Both tools will likely prove very useful when the method is used further afield.

It should also be remembered that the TRGB standard candle is in many ways, just the "first assault." When photometric data of sufficient depth are obtained, the horizontal branch can often pin down the distance with still greater accuracy. With a simple adjustment to the model LF, the techniques outlined in this paper and its predecessor commute quite readily to implementation on the horizontal branch.

Last, it must also be said that the distances presented herein provide an excellent opportunity to provide a new, updated analysis of the asymmetry and density of the M31 halo satellite distribution, one only touched on here. With such comprehensive and consistent coverage, there is great potential in these distances to further constrain the possible evolution and dynamical history of the M31 halo system. A.R.C. would like to thank Macquarie University for their financial support through the Macquarie University Research Excellence Scholarship (MQRES) and both the University of Sydney and Université de Strasbourg for the use of computational and other facilities. R.A.I. and D.V.G. gratefully acknowledge support from the Agence Nationale de la Recherche though the grant POMMME (ANR 09-BLAN-0228). G.F.L. thanks the Australian Research Council for support through his Future Fellowship (FT100100268) and Discovery Project (DP110100678). M.A.F. acknowledges support from NSF grant AST-1009652. The analysis contained in this publication uses photometric data obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Our thanks go to the entire staff at CFHT for their great efforts and continuing support throughout the PAndAS project. 

Paper III Preface

This paper in many respects represents the climax of the thesis and the culmination of the work presented in the three previous chapters. Specifically, it takes the satellite distance distributions presented in the previous chapter (i.e. Paper II), converts them into threedimensional positions and then proceeds with a thorough analysis of the resulting distribution, leading to some exciting revelations as to the structure of the satellite system. Central to the work presented in Paper III are a variety of tools utilized throughout the analysis. These tools are discussed in the method section of the paper, but they are elaborated upon here in an effort to help the reader visualize the processes described and thus provide a suitable preface to the forthcoming material.

The first consideration in our analysis of the M31 satellite system must be to devise a suitable means for viewing the distribution in a clear and consistent way. Since we are concerned with a system completely external to our own Milky Way, it is intuitive to depart from our Earth-bound view and instead view the system as it would appear from the center of M31. To do this, we shift to M31-centric galactic coordinates. The convention in this regard has been to orient the north galactic pole (b = +90 • ) in the reverse direction to that of the net angular momentum of the disk (i.e. perpendicular to the disk of the galaxy) with the meridian of longitude l = 0 • aligned so as to pass through the Milky Way (or specifically Earth). Hence, we take the x, y and z coordinates derived as per Fig. 4.1 and perform a rotation of coordinates (quantified in the method section of the paper -see 'PlaneSigRMS.f95' in Appendix D for implementation) so as to bring our satellite positions into the new coordinate system. For plotting purposes, we can then simply convert from cartesian to spherical coordinates and plot each object's latitude and longitude in an Aitoff-Hammer projection (see aitoff hammer.f95 in Appendix D), where positive x points in the direction of l = 0

• , b = 0 • ; positive y toward l = -90 • , b = 0 • ; and positive z toward l = 0 • , b = +90 • .
With a suitable method for visualizing the satellite distribution devised, the next consideration in our analysis concerns plane fitting. The whole of Paper III is essentially built around plane fitting, whether it be to identify planes of satellites with in the distribution, or the asymmetry of the distributions as a whole. Where we are interested in identifying physically significant planes or disks of satellites, we need to seek out the plane that most closely approximates the constituent satellites as determined by any one of many possible 'goodness-of-fit' statistics. When instead we wish to find the magnitude and direction of the asymmetry of the distribution, we need simply find that plane which divides the sample most unequally. What ever the application, for ease of implementation and versatility, a simple scanning routine was chosen to accomplish the task.

The algorithm devised for the plane fitting is best understood by visualizing a plane pivoted at the center of our coordinate system (i.e. the center of M31) with its normal vector projecting out from this point. This plane is then rotated such that its normal vector or 'pole' scans a complete hemisphere of the sky. In so doing, every possible orientation of the plane is passed through exactly once. In practice, discrete pointings of the normal vector are used and at each one the goodness-of-fit statistic or the asymmetry is measured and compared with the best-fit value encountered so far. It is then either stored or discarded accordingly.

Thus by the completion of the scan, the true best-fit pole has been identified and retained.

In order to scan the hemisphere at a suitably high resolution whilst retaining computational efficiency, a low resolution scan is made first and then a localized high resolution search initiated about the best-fit pole. This process is illustrated in Fig. 5.1, where the poles tested in a single instance of plane fitting have been plotted using the TOPCAT graphics program [START_REF] Taylor | TOPCAT Memorie della Societa Astronomica Italiana STIL: Starlink Table/VOTable Processing Software[END_REF]. Once the pole to the best-fit plane has been identified via this method, its orientation can then be converted into M31-centric latitude and longitude and plotted on an aitoff-hammer projection. This may be done once, as in the case for a particular set of satellites, or many times, in order to produce a pole distribution plot representing all possible combinations of a particular number of satellites for instance.

We are now equipped to identify the best-fit plane for a particular set of satellites, but this is only part of our analysis. We now need to ascertain the significance of the identified plane; is it likely to be a chance alignment or is it a real physical structure? To answer this question, we need a method by which the identical measurement can be performed repeatedly on a large number of 'realizations' of randomly distributed artificial satellites, each one subject to the same constraints as the real data. Our first requirement in producing such 'random realizations' is a tool by which a given satellite position vector can be spun around to any random position on the M31 sky. Development of such a tool is not a trivial task, as lines of constant latitude on a sphere are not great circles, but decrease in diameter toward the poles. Thus simply drawing a latitude and longitude at random will produce a disproportionate number of satellites at high latitude. We therefore weight the probability of drawing a particular latitude in proportion to the cosine of the latitude. This is illustrated in Fig. 5.2 (a). With the means to spin satellite position vectors to random orientations now in place, we can proceed to build our random satellite realizations. The general procedure then is as follows. First, the desired number of satellites to be included in the random realization is chosen. This is always the total number of satellites in the real distribution i.e. usually 27, but 25 where NGC147, NGC185 and Andromeda XXX are grouped together as a single point (see §3.3 of Paper III). Then to generate a position for each artificial satellite, one of the real satellites is chosen at random and a distance is drawn from its associated distance distribution. The M31-centric position vector is then calculated and spun around to a new random orientation as described above. As we wish to subject our random sample to the same constraints as the real sample, it is very important at this point that we verify that the new orientation does not place the object outside of the utilized region of the PAndAS survey area. We therefore project the new satellite position back onto the sky and determine whether it meets this criterion. If it does, we proceed to generate a position for the next satellite following the same procedure, if it does not, we reject the new position and likewise repeat the process, until we get an acceptable position for the current satellite. The process repeats until the desired number of satellites are produced.

By this point, we have generated our random realization with one possible position for each satellite. If we are to mimic the data most closely, we should have in effect a full lineof-sight distance distribution for each artificial satellite. Hence once we have determined a single set of acceptable three-dimensional positions for the satellites, the positions of each on the sky as viewed from Earth are stored, as are the new Earth-to-satellite distances. The original satellite distance distributions used for each one can then be sampled and appropriately mapped to the new positions. With all of the above tools in place, we are now in a position to embark on our analysis of the three dimensional structure of the M31 satellite system. As shall become apparent in the paper, the analysis reveals some very interesting results. There can, for instance, be very little doubt that the distribution is significantly inhomogeneous, with degrees of planarity and 

INTRODUCTION

The possibility that irregular distributions of satellite galaxies may be a common feature of large galaxy halos was originally bolstered by several studies of the anisotropic distribution of our own galaxy's satellites. Lynden-Bell (1976) found that the Magellanic Stream along with Sculptor and the Draco-Ursa Minor Stream and their associated dwarf spheroidal galaxies all appear to lie in the orbital plane of the Magellanic Clouds. In Lynden-Bell (1982), all the then known dwarf spheroidal companions of the Milky Way are identified as lying in one of two streams. Kroupa, Theis, & Boily (2005) examined the likelihood of producing the observed disk-like distribution of Milky Way satellites from a spherical or oblate dark matter halo. From comparisons with theoretical isotropic satellite distributions produced from such a halo, they find that the chance of producing the observed distribution from the dark-matter sub-halos of cold-dark-matter (CDM) cosmology is less than 0.5 %. They examine various combinations of the inner most satellites and find a best-fit plane that is almost perpendicular to the plane of the Milky Way with a root-mean-square height ranging from only about 10 to 30 kpc. [START_REF] Zentner | t s ! S A P r o t ( i[END_REF], whilst finding a similar plane to Kroupa, Theis, & Boily (2005) for the satellites of M31, disagree with their assumption that such a plane is unlikely to arise from a conventional CDM dark matter halo. They argue that that the most luminous satellites cannot be taken for granted as forming randomly from the isotropic sub-halo distribution but instead, lie preferentially at smaller distances from the halo centre and co-planar with the major axis of the host halo. Coupled with the finding that galaxies preferentially align themselves with their major-axis highlyinclined or even perpendicular to that of the surrounding matter (e.g. Navarro, Abadi, & Steinmetz 2004;Hartwick 2000), this then provides a good explanation for the observed orientation of the best fit plane.

More recently, Lovell et al. (2011), using the six halo models in the Aquarius Simulations (Springel et al. 2008), find that all six halos produce a significant population of sub-halos with quasi-planar orbits aligned with the main halo spin. This, they argue, is a natural explanation for the observed satellite distribution of the Milky Way. Pawlowski et al. (2012) argue against this however. With the calculation of the angular momenta of 8 Milky Way Satellites (Metz, Kroupa, & Libeskind 2008) revealing a strong alignment between 6 of the orbital poles, Pawlowski et al. (2012) examine the likelihood of randomly drawing 6 sub-halos from each of the 6 Aquarius simulations (among other halo simulations), and finding a similar degree of alignment. More precisely, they draw 10 5 sets of 8 satellites from each of the 6 simulations, and select the 6 with the highest degree of alignment between their orbits, thus emulating the findings of Metz, Kroupa, & Libeskind (2008). They then look at the degree of clumping of the orbital poles ∆ sph as well as the angular distance of the average of the orbital pole inclinations from the model equator d and find that the actual degree of planarity observed for the six satellites identified by Metz, Kroupa, & Libeskind (2008) Conn et al.

(∆ MW sph = 35.4 • and d MW = 9.4 •
) are equalled or exceeded in the random draws in less than 10% of cases when ∆ sph is considered and less than 15% of cases for d. Starkenburg et al. (2012) also find that the degree of planarity observed for the Milky Way satellites is uncommon in all six of the Aquarius halos (see Fig. 7 of that study).

In addition to the revelation that the Milky Way's satellites appear to inhabit highly-inclined great planes, they also appear to corroborate the finding of Holmberg (1969), namely that the companions of Spiral Galaxies preferentially congregate at high galactic latitudes (the Holmberg Effect), as observed in his study of 174 galaxy groups. It is not clear why this should be the case, or even if it truly is the case, although if the apparent adherence of satellite systems to polar great planes is typical of galaxies in general, then the Holmberg Effect seems to be an extension of this. Quinn & Goodman (1986) proposed that dynamical friction may be responsible for the observed polar great planes, with those orbits spending the most time in close proximity to the galactic disk, experiencing the fastest decay, while those that take the most direct route through the disk environs, namely the polar orbits, experiencing the slowest orbital decay.

Besides the conjecture that satellite great planes trace the major-axis of the dark-matter halo in which the parent galaxy resides, there are other proposed mechanisms for their creation. One hypothesis is that these planes trace the orbits of ancient galaxies that have been cannibalized by the host galaxy. Palma, Majewski, & Johnston (2002) have investigated this hypothesis by looking for planes among groups of satellite galaxies and globular clusters in the Milky Way's outer halo and find various members to be co-planar with either the Magellanic or Sagittarius streams. The findings of Lynden-Bell & Lynden-Bell (1995) are also consistent with such a hypothesis. Indeed, it is this hypothesis which is most strongly supported by Pawlowski et al. (2012), wherein the ∆ sph and d of satellites drawn from various tidal models equal or exceed ∆ MW sph and d MW in over 80% of draws in some cases. A similar hypothesis, which in some regards links the galaxycannibalization and dark-matter hypotheses, proposes that the observed planes result from the orientation of the large-scale filamentary structure of galaxy clusters (e.g. Knebe et al. 2004), an orientation traced out by those minor galaxies which fall into the halo of a major galaxy. Metz et al. (2009) argue however that extra-galactic associations of dwarf galaxies are too extended to account for the high degree of planarity observed for the Milky Way satellites.

The great obstacle to a conclusive resolution of these issues is the lack of systems for which reliable spatial (and kinematic) data exists. While some such data does exist for large galaxy clusters such as Virgo and Coma, accurate 3D distributions of galaxies within their halo have for a long time been known only for our own galaxy's halo, ascertainable due to our central position within it. It has only been in recent times that a second system has opened up to us -that of our counterpart in the Local Group, M31. Whilst various databases of photometry and other data have been available for M31 and some of its brighter companions for over a decade, it is the Pan-Andromeda Archaeological Survey (PAndAS - Mc-Connachie et al. 2009) -a deep photometric, 2-colour survey providing a uniform coverage of the M31 halo out to approximately 150 kpc -that has provided a new level of detail for this system. It is from this survey that we obtained our distances to M31 and 27 of its companions, following the method developed in Conn et al. (2011) (henceforth CLI11) and further adapted for this purpose in Conn et al. (2012) (henceforth CIL12). The distances themselves and their associated uncertainty distributions are presented in CIL12 and it is these distributions that are utilized for all analysis contained in this paper.

With regard to previous studies of the anisotropy in the M31 satellite distribution, two investigations warrant consideration at this point. McConnachie & Irwin (2006), making use of Wide Field Camera (WFC) photometry from the Isaac Newton Telescope (INT) in what was essentially the forerunner to the PAndAS Survey, focus on "Ghostly Streams" of satellite galaxies following a similar approach as Lynden-Bell & Lynden-Bell (1995) used for the Milky Way. In addition, they characterize the large degree of asymmetry in the satellite distribution, a feature also noted in CIL12, and examine the radial distribution of the satellites, noting a (statistically insignificant) larger average distance from M31 than that observed between the Milky Way and its satellites. They find a large number of candidate satellite streams, with some favoring the dwarf spheroidal members. Koch & Grebel (2006) utilize distance measurements from a variety of sources and focus particularly on planes of satellites and, whilst they do not find a particularly significant best fit plane when their whole satellite sample is considered, it is rather interesting that they find a 99.7 % statistical significance to their best fit plane when the then-known dwarf spheroidal galaxies dominate their sample. Furthermore, this plane is near-polar -as has been observed for the Milky Way, although they find little support for the Holmberg Effect. Koch & Grebel (2006) utilize a particularly robust method in their search for highsignificance planar fits to subsets of galaxies by considering every possible combination of a given number of satellites from their sample.

In the current study we employ a similar approach, but with the great advantage of having a considerably extended sample of galaxies in our sample, with all distances derived by the same method and from the same data as described in CLI11 and CIL12. As a result, we are able to give full consideration to the effects of selection bias on the observed satellite distribution. This then presents an excellent opportunity to greatly improve our knowledge of the three-dimensional structure of the M31 satellite distribution, with important implications regarding the recent evolution of the system.

A breakdown of the structure of the paper is as follows. In Section §2, we outline our method for plane fitting ( §2.1) and locating significant planes of satellites as well as the orientation, magnitude and significance of the asymmetry of the distribution. A method for generating random realizations of satellites subject to the same selection biases as the real data is also discussed in this section ( §2.2) as is the selection bias itself ( §2.3). §3 then presents the results of applying these methods, first to the sample as a whole, and then to subsets of galaxies. Specifically, §3.1 presents a study of planarity within the satellite system when all satellites contribute to the determination of the best fit plane; §3.2 examines the asymmetry in a similar way; §3.3 examines the orientations of planes of smaller subsets of satellites within the distribution; and §3.4 concludes this section with a determination of the significance of a 'Great Plane' of satellites emerging from the preceding sections. Sections 4 and 5 then follow with discussion and conclusions.

Note that this paper was written in conjunction with a shorter contribution (Ibata et al. 2012; hereafter ILC12) which announced some of the key discoveries resulting from the analysis we present here. In particular, the process of identifying the member satellites of the 'great plane' discussed in ILC12 is described here in more detail. In this analysis however, we concern ourselves with the spatial structure of the satellite system only and so the reader should refer to ILC12 for the interesting insight provided by the addition of the velocity information.

2. METHOD 2.1. Plane Fitting In order to find planes of satellites within the M31 satellite system, our first concern is to convert the satellite distances as presented in CIL12 into three-dimensional positions. To do this, we begin with an M31-centered, cartesian coordinate system oriented such that the x and y axes lie in the M31 tangent plane with the z-axis pointed toward the Earth. Specifically, the x-axis corresponds to η tp = 0 which is the projection of M31's Declination onto the tangent plane. The y-axis then corresponds to ξ tp = 0 -the projection of M31's Right Ascension onto the tangent plane. The z-axis then points along the Earth-to-M31 vector, with magnitude increasing with distance from Earth. This orientation can be seen in Fig. 10(c) of CIL12. Thus:

x = D sat cos(θ)tan(ξ) y = D sat sin(η) z = D sat cos(θ) -D M31 (1)
where D M31 and D sat are the distances from Earth to M31 and from Earth to the satellite respectively, θ is the angular separation on the sky between M31 and the satellite, and η and ξ are the real-angle equivalents of the tangent plane projection angles η tp and ξ tp respectively.

Next, we rotate this reference frame to the conventional M31 reference frame such that the positive z-axis points toward M31's north galactic pole 1 (i.e. b M31 = +90 • ) and the l M31 = 0 • meridian passes through the Earth. So as to be consistent with the earlier work of McConnachie & Irwin (2006), we have adopted the same values for M31's position angle (39.8 • ) and inclination (77.5 • -de Vaucouleurs 1958). Each object is hence rotated by 39.8 • about the z-axis to counter the effect of its position angle, and then 77.5 • about the xaxis to account for M31's inclination. A final rotation of 90 • about the z-axis is then necessary to bring l M31 = 0 • into alignment with the direction of Earth (which hence lies at

l M31 = 0 • , b M31 = -12.5 •
). The resulting spherical coordinates for each object in the sample are plotted onto an Aitoff-Hammer projection in Fig. 1. This same figure also shows the uncertainties in position associated with each object, generated via sampling of the respective distance posterior probability distributions (PPDs) of each object and subsequent conversion of each drawn distance into a three-dimensional position.

With the satellites' positions determined in cartesian coordinates, it is straight forward to determine the minimum distance of each satellite from a given plane as follows:

D plane = |ax + by + cz + d| (2)
where D plane is the distance of a satellite at a point (x, y, z) from a plane whose normal vector is (a, b, c) and is of unit 1 Defined so as to point north in Equatorial coordinates length. For simplicity, we invoke the reasonable requirement that all planes must pass through the center of M31 and so in our case, d = 0 and the plane normal vector points out from the center of M31. Hence, in order to find the best-fit or maximum significance plane to a set of satellites, we need simply minimize D plane for the satellites to be fitted. This can be done via a variety of means, some of which are compared in the following section, but perhaps the most robust and the predominant method employed in this study, is that of minimizing the root-mean-square (RMS) of the distances to the fitted satellites.

In order to measure the asymmetry of the satellite distribution about a given plane, we need only count the number of satellites on one side of the plane. To do this, we can simply remove the absolute value signs from equation 2, so that the side of the plane on which a satellite lies can be determined by whether D plane is positive or negative. The plane of maximum asymmetry is then taken to be that which divides the sample such that the difference in satellite counts for opposite sides of the plane is greatest.

Whether we wish to determine the best fit plane through a sample of satellites or the plane of maximum asymmetry, we require a system by which a large number of planes can be tested on the sample so that the goodness of fit (or asymmetry) can be calculated for each. To do this, we define each tested plane by its normal vector or pole (a, b, c) so that Eq. 2 can be applied directly. We then rotate this pole to different orientations around the sky in such a way as to 'scan' the whole sphere evenly and at a suitably high resolution. In practice, we need to be able to apply this routine many thousands of times for a large number of samples and so a fast computational time is of the essence. To this end, for a given sample, our algorithm determines the desired plane following a two step procedure.

Firstly, a low resolution scan of the sphere is made to determine the approximate direction on the sky of the pole to the best-fit plane. Only half the sphere actually needs to be scanned since poles lying on the opposite hemisphere correspond to the identical planes flipped upside down. The low resolution scan tests 2233 different poles across the hemisphere. A near-uniform coverage is achieved by decreasing the number of planes tested in proportion to the cosine of the latitude of the planes' pole. This prohibits what would otherwise be an increased coverage at the higher latitudes of the coordinate system. With the pole to the best-fit plane determined in low-resolution, a high resolution search is then made around the identified coordinates at 10 times the resolution. In this way a pole can effectively be found at any of approximately 250,000 evenly spread locations on the hemisphere.

Generating Random Satellite Samples

Whilst we are now equipped to identify best-fit planes to our sample and subsamples thereof, it is necessary to have some means of determining the significance of these planes in an absolute sense. The most intuitive way to do this is to perform the same analysis on a randomly generated sample of equal size. In particular, when we are concerned with all possible combinations of a particular number of satellites that can be produced from the whole sample, we are often dealing with a very large number of subsamples and so it is inevitable that some of these subsets of satellites will exhibit a very high degree of planarity. Identical analysis must therefore be performed on random distributions, to see if there are similar numbers of subsets with equal degrees of planarity. For this reason, considerable care was taken to design an algorithm capable of providing a unique random realization of the desired number of satellites whenever it is called. The algorithm makes use of the distance PPD for each satellite, and also takes into account the irregular window function (i.e. useable portion) of the PAndAS survey. Each time a satellite is to be added to the random realization, one of the 27 actual satellites is chosen at random and a distance is drawn from its associated PPD. This distance (D sat ) is then converted into a three dimensional position (x, y, z) following equation set 1 and this satellite-to-M31 separation vector is then spun around to a new, random location in the M31 sky. Note that for each random realization, a new value of D M31 is similarly drawn from the M31 distance PPD.

Once again, care must be taken in this step to ensure that the whole sphere is given equal weight, otherwise there is a higher likelihood for the artificial satellites to be positioned at high latitude. Again, this is remedied by weighting the likelihood by the cosine of the latitude.

With the new, random location for the satellite chosen, it is then projected back onto the sky as it would appear from Earth and a check is made to ensure that it does indeed lie within the boundaries of the PAndAS survey area, and outside of the central ellipse ( 5• major axis, 2 • minor axis -see Fig. 10 (c) of CIL12) where the disk of M31 inhibits reliable measurements. If the satellite does not meet these requirements, it is rejected and the satellite drawing process is repeated until a suitable position is generated. By repeating this process until the desired number of satellites are produced, a new, random comparison sample is generated which gives full account to the constraints on the actual data.

In order for the random satellite realizations to mimic the actual data most closely, it is necessary that each artificial satellite is represented not by just one point, but rather a string of points reflecting the uncertainty in the Earth-to-Object distance. Hence once acceptable positions for each satellite are drawn as described above, the distance distributions for each object are sampled and projected to their equivalent positions along the line of sight about the initially placed point. For sections 3.1, 3.2 and 3.4 each artificial satellite's distance distribution is represented by 1000 points such that each planefitting measurement is made for 1000 possible positions of the object and then the average value of the measurements is taken. The only exception to this number is where the maximum-likelihood approach is used in §3.1. Due to the inclusion of a second fitting parameter in this case, only 100 samples are taken for each satellite. For §3.3, as we are not concerned with comparisons of plane significance between the real sample and the random realizations, it is sufficient to use a single drawn position for each artificial satellite.

A note on Satellite Detection Bias

By employing a similar method to that described above, it is also possible to explore the effect of the PAndAS survey area boundaries on the satellite detection bias as viewed from the center of M31. It is intuitive that more satellites are likely to be detected along the line of sight to Earth, since even satellites at a large distance from M31 will still appear within the survey boundaries if they lie along this line. We can visualize this effect by generating a large number of randomly distributed satellites and plotting them on the M31 sky after first rejecting those satellites that would appear outside the survey area 'mask' if viewed from Earth. To do this, one million satellites were drawn from a spherically symmetric halo potential with density falling off as a function of the square of the distance from the halo center. Satellites were hence drawn at distances between 0 and 700 kpc from M31 with equal probability. The satellites were then projected onto the M31 tangent plane and those satellites lying outside the survey area or inside the M31 disk obstruction area were excised from the density map. The resulting anisotropy of the satellites on the M31 sky is presented in Fig. 2. As can be seen from the figure, the probability of detection is indeed higher along a great circle oriented edge-on with respect to the direction of Earth, and perpendicular to the M31 disk (b M31 = 0 • ). This great circle has its pole/ anti-pole at

l M31 = ±90 •
, b M31 = 0 • and hence we would expect a predisposition toward finding planes of satellites with a pole in this vicinity. We would also expect, though to a lesser extent, to find an excess of satellite planes oriented edge-on with respect to Earth at any inclination. 3. RESULTS

Best Fit Plane to the Entire Satellite Sample

In order to find the best-fit plane to the satellite system as a whole, the procedure of §2.1 is applied to the whole sample of 27 satellites presented in CIL12. The RMS thickness of the sample is used here, as in subsequent sections, as the statistic of planarity; we find it to be a robust measure and it has the convenient property of being computationally inexpensive. Since we are dealing with only one sample in this case, two other measures are also used for comparison. The first calculates the sum of the absolute values of the distances of each of the satellites from the tested plane. The second is essentially a maximum likelihood approach and replaces the plane of zero-thickness with a 'Gaussian Plane' such that a satellite's position within the Gaussian determines the plane's goodness-of-fit to that satellite. This second approach requires that different Gaussian widths σ be tested for each plane orientation in order to find the width that best matches the satellite distribution. Values between 5kpc and 150 kpc were tested at 5 kpc intervals for each tested plane orientation. Hence an additional characteristic of the satellite distribution is obtained, but at the expense of a considerably longer computation time.

For each of the three measures of goodness-of-fit described above, the first step is to find the best-fit plane to the satellite positions with their positions determined from their bestfit distances. When either the RMS or maximum likelihood approach is used, the same best-fit plane is found as 0.153x + 0.932y + 0.329z = 0 with pole at (l

M31 , b M31 ) = (-80.7 • , 19.2 •
). This plane is plotted as a great circle on the M31 sky in Fig. 3 with the poles of the plane indicated. When the absolute distance sum is used instead, the pole is found farther from the plane of the galaxy, at (l M31 , b M31 ) = (-74.9 • , 24.3 • ). Nevertheless, the polar-plane described by Koch & Grebel (2006) is supported by either measurement, and is reminiscent of the satellite streams identified in the Milky Way satellite system. In light of the detection biases imposed by the PAndAS survey area as illustrated in Fig. 2, the result in this case must clearly be treated with suitable caution however. Like Koch & Grebel (2006), we find little evidence for the Holmberg Effect, with only 3 best-fit satellite positions falling within 30 • of the M31 galactic poles, and only 6 of the 1σ error trails from Fig. 1 pass beyond b M31 = ±60 • . Fig. 3.-An Aitoff-Hammer Projection showing the best-fit plane to the satellite system as a whole. The pole and anti-pole of the plane are denoted by '+' and '×' symbols respectively. Only the best-fit satellite positions were incorporated into the fit for this figure. The distribution of poles obtainable from other possible realizations of the satellite distribution is presented in Fig. 4. Note that the plane is near-polar, similar to the preferred plane orientations identified for the Milky Way Satellite System.

To determine the uncertainty in the plane's goodness-of-fit, we need to repeat the procedure for a large number of realizations of the satellite sample, with the best-fit satellite distances replaced with a distance drawn at random from their respective satellite distance PPDs. A density map of the best-fit plane poles identified from 200,000 such realizations is presented in Fig. 4. This figure was generated using the distribution RMS as the goodness-of-fit statistic, and contains 71.1% of all poles within a 5 • radius of the best-fit pole stated above. When the sum of absolute distances is used in place of the RMS, this fraction falls to 68.3%, or to 70.9% when the maximum likelihood approach is used. It should be noted that the distribution of poles lies in close proximity to the pole of maximum detection bias at l M31 = -90 • , b M31 = 0 • , again suggesting that the detection bias is having a strong influence on the polar orientation of the best-fit plane.

In order to determine whether the goodness-of-fit of the best-fit plane is really physically significant, similar analysis should be performed on a large number of random realizations of satellites, to see how often distributions of satellites arise with a comparable degree of planarity. Figure 5 presents probability distributions of the plane significance for possible realizations of the real satellite sample along with average values from random realizations of the satellites (as per §2.2), obtained using the three measures of goodness-of-fit stated above.

It is immediately clear from Fig. 5 that regardless of the choice of the measure of goodness-of-fit, the range of values obtainable from possible realizations of the real satellite positions are similar to the most likely values to be expected from completely random realizations of the satellites. Hence, whilst a prominent plane of satellites comprising roughly half of the sample is suggested in Fig. 1, it would seem that the sample as a whole is no more planar than would be expected from a strictly random distribution. Again, this is in keeping with the findings of Koch & Grebel (2006), and detracts from any physical significance that should be attributed to the plane's polar orientation.

Further to this finding, the overall width of the 'plane' is again in keeping with that expected from a purely random satellite distribution. From fitting the Gaussian Plane to the best-fit satellite positions, a 1σ width of 60 kpc is found to produce the best fit to the data. When the 200,000 PPDsampled realizations were tested, a 1σ of 60 kpc was found preferential in 66.3% of cases, with a 1σ of 55 kpc being preferred in 32.7% of cases. Values of 50 kpc make up the remaining 1% almost entirely. The average value for the actual satellite distribution was thus determined as 58.3 kpc. This value is similar to the most likely width identified from the 10,000 random realizations, as can be seen in Fig. 6.

The Plane of Maximum Asymmetry

To determine the plane of maximum asymmetry and its significance, we employ an identical approach as in the preceding section, but with the goodness-of-fit statistic replaced with a count of the number of satellites on each side of the plane as per §2.1. As was suggested by the three-dimensional satellite distribution generated in CIL12, the asymmetry about the M31 tangent plane is close to a maximum, with 19 satellites on the near-side of the plane but only 8 on the other when the best-fit satellite positions are assumed. The highest asymmetry plane possible from this same distribution has 21 satellites on one side and 6 on the other, with the equation of the plane identified by the algorithm as -0.797x -0.315y + 0.515z = 0. The anti-pole of this plane lies 27.2 • away from the Milky Way at (l M31 , b M31 ) = (-21.6 • , -31.0 • ). This plane is plotted as a great circle on the M31 sky in Fig. 7. When 200, 000 realizations of the satellite sample are generated using the satellite's respective distance probability distributions, the most likely asymmetry of the sample is actually found to be greater than this, with 23 satellites on one side and only 4 on the other. Such a scenario is more than twice as likely as the 21 : 6 scenario. In one realization, a plane was identified which could divide the sample such that all 27 satellites lay in a single hemisphere, while an asymmetry of 26 : 1 was found possible for 815 (0.4%) of the realizations. The distribution of maximum-asymmetry poles on the sky, as determined from realizations of possible satellite positions, is illustrated in Fig. 8, whilst Fig. 9 (a) plots the probability distribution for the greatest number of satellites that can be found in one hemisphere for a given realization of the observed satellite sample. The average value of this distribution is 22.7 (shown as a dashed line in Fig. 9 (b)), a value which is equalled or exceeded for 422 out of the 10, 000 random realizations represented in Fig. 9 (b). A maximum asymmetry ratio of 21 : 6, as was observed for the best-fit satellite distribution plotted in Fig. 7, is more common however, falling inside the 1σ credibility interval.

What is particularly striking about the satellite distribution however, is the orientation of the asymmetry, with the majority of satellites lying on the near-side of the M31 tangent plane. From Fig. 9 (c), it is clear that the effect of the distance uncertainties lying along the line of sight is to create quite a broad distribution in the level of asymmetry about the tangent plane, though the average is markedly high at 20.3. To investigate the likelihood of this scenario arising from a random satellite distribution, we measure the average number of satellites on either side of the M31 tangent plane for each of 10, 000 random realizations as per §2.2. The results are illustrated in Fig. 9 d). The observed profile is moreor-less as expected, with a maximum probability close to the minimum possible asymmetry at 14 and then a rapid fall off toward higher asymmetries. It is therefore clear that the distance uncertainties lying along the line of sight have no significant bearing on the orientation of the asymmetry. Yet the observed degree of asymmetry about the M31 tangent plane is equalled or exceeded in only 46 of the 10, 000 random satellite realizations and hence is very significant. The possibility that this asymmetry may be a consequence of data incompleteness is currently being examined more closely (see Martin et al. 2012), although it seems very unlikely. The high degree of asymmetry is still observed even when only the brightest satellites are considered. Furthermore, the data incompleteness appears to be dominated by the boundaries of the PAn-dAS survey area and obstructed regions which are already taken into account by our analysis. Indeed, one would expect more satellites to be observed on the far side of the M31 tangent plane on account of the increased volume of space covered by the survey at greater distances, an effect clearly visible in Fig. 2.

Subsets of Satellites

It is perhaps not surprising that the satellite system of M31, when treated as a whole, is no more planar than one would expect from a random sample of comparable size. Indeed, a similar result was noted for the M31 system by Koch & Grebel (2006). The existence of outliers in our satellite sample was already clear from Fig. 1 and furthermore, if multiple planes of differing orientation are present as has been suggested for both the Milky Way's satellite system (e.g. Lynden-

a) b) c) d) e) f)
Fig. 5.-Probability distributions for the planarity of the entire satellite sample, as determined from three different measures of the plane goodness-of-fit. The left-hand column of figures gives the distribution of the goodness-of-fit statistic as obtained via plane fitting to 200,000 separate samplings of the real satellite sample. The right-hand column of figures summarizes the same procedure performed for 1, 000 separate samplings of each of 10, 000 random realizations of the satellites (as per §2.2). It is important to note that each histogram in this column has been generated by plotting the average values from the 10, 000 individual histograms corresponding to each of the random realizations and hence they should only be compared with the average of the histograms in the left-hand column. The goodness-of-fit statistic for a) and b) is the distribution RMS; for c) and d) is the absolute distance sum and; for e) and f) is the sum of satellite likelihoods. The average of the histograms in (a), (c) and (e) are shown in (b), (d) and (f) respectively as dashed lines. Red, green and blue lines denote the extent of 1σ (68.2%), 90% and 99% credibility intervals respectively. Fig. 6.-The probability distribution for the average 1σ width as determined from 10,000 random distributions of 27 satellites. This figure is generated from the same run as Fig. 5 f) and is the result of marginalizing over the plane-orientation model parameters.

Bell 1982; Pawlowski, Pflamm-Altenburg, & Kroupa 2012B) and the M31 system (McConnachie & Irwin 2006), then the goodness of fit of the best-fit plane to the entire distribution is of little consequence. For this reason, we now concentrate our analysis on subsets or combinations of satellites. Specifically, we perform a pole-count analysis by determining the pole of the best-fit plane to every possible satellite combination of a particular size that can be drawn from the entire sample.

A pole-count analysis is an excellent way of mapping the degree of prominence of various planes that exist within the distribution as a whole, whatever their orientation may be. The choice of combination size is not trivial however. The number of combinations s of a particular number of satellites k that can be drawn from the entire sample of n satellites can Conn et al. be determined as follows:

s = n! k!(n -k)! (3)
For reasons that shall be discussed shortly, we will effectively be working with a sample of 25 satellite positions. It is clear from this equation however that with 25 satellites forming the entire sample, the total number of combinations that can be drawn may be very large, depending on the number of satellites forming the combinations. For instance, if n = 25 and k = 13, there are over 5.2 million possible combinations that can be drawn. Additionally, if we are to properly account for the uncertainties in the satellite positions, it will be necessary to sample from the distance distributions of each satellite a large number of times for every combination. Given that we must test every possible plane orientation (as per §2.1) for every rendition of every combination, the computation times can become impracticable. It is therefore necessary to limit our combination sizes as much as possible. We note however, that the final pole-plot distribution showing the poles of the best-fit planes to each combination, is not so dependent on the combination size as might at first be thought.

With all the planes tested as per §2.1 having to pass through the center of M31, the minimum number of satellites that can not be fitted exactly is 3. This is therefore the smallest combination size we consider. There are 2, 300 combinations of 3 satellites that can be drawn from the full sample of 25 satellites. If we increase the combination size considerably to 7 satellites, there are 480, 700 satellite combinations that can be drawn. Due to an excessive number of combinations beyond this point, this is the largest combination size we consider. But it is critical to note that even if we produce our pole-plot map from combinations of only 3 satellites we do not exclusively find planes consisting of 3 satellites. If a plane of 7 satellites exists for instance, then by Eq. 3, such a plane will produce 35 poles at the same location on the pole plot, where a plane consisting of only 3 satellites would contribute only one pole. Conversely if we take combinations of 7 satellites, despite the larger number of possible combinations in total, we become less sensitive to planes made up of less than 7 satellites. So in a sense, the combination size we choose depends on the satellite planes we wish to be most sensitive to.

In practice, we have found that the smaller combination sizes of 3 and 4 satellites are particularly useful for identifying the lowest RMS planes congregating around the band of satellites visible in Fig. 1. The larger combination sizes of 5, 6 and 7 satellites gradually shift toward finding planes closer to the best-fit plane to the entire satellite sample illustrated in Fig. 3.

Noting these points, we proceed as follows. First, the number of satellites per combination k is chosen (3 ≤ k ≤ 7) and then for each combination, distances are drawn for each of the satellites from their respective posterior distance distributions as provided in CIL12. To give a satisfactory representation of the form of the distributions, each combination is sampled 100 times. As such, each satellite combination contributes not 1 pole to the pole density map for the chosen combination size but 100, with the spread of poles relating the possible orientations of the best-fit plane to the combination, given the error in the individual satellite positions. The contribution of each pole to the density map is also weighted by the RMS of the best-fit plane it represents. Thus each pole does not contribute 1 count, but rather some fraction, depending on how good a fit the plane it represents is to the satellites in the combination. This fraction is also further divided by 100, since it represents only 1% of the samples for the combination, as just discussed.

As stated above, it should also be noted that we effectively limit the total number of satellites in our sample to 25 for all analysis in this subsection. This is to account for the bound group of satellites consisting of NGC147, NGC185 and And XXX (henceforth the NGC147 group). Since we suspect that these satellites orbit M31 as a group and since they all lie along the apparent plane identified in Fig. 1, it is preferable to treat the group as a single object when we are not concerned with measurements of the significance of particular planes. To do this, we take the luminosity weighted centre as an approximation for the center of mass, and treat this determined position as though it were the location of a single satellite. To calculate the luminosity weighted center, we can ignore the contribution from And XXX since it is negligible compared with the contributions of the two dwarf ellipticals. From the Third Reference Catalogue of Bright Galaxies (de [START_REF] Vaucouleurs | Third reference catalogue of bright galaxies. Third Reference Catalogue of Bright Galaxies[END_REF], NGC185 is 0.2 magnitudes brighter than NGC147 in the V-band. Each time the NGC147 group is chosen as one of the 'satellites' for a combination, distances to each of NGC147 and NGC185 are sampled from their respective distributions and the luminosity weighted center of the group is determined. As for any other combination, this position, along with all other satellites in the combination, is sampled 100 times.

The results of applying the above procedure to all combinations of 3, 4, 5, 6 and 7 satellites that can be drawn from the total sample is presented in Fig. 10. The left-hand column shows the fit to the most planar combination determined from the best-fit positions whilst the right-hand column shows the corresponding pole density plots for all combinations of that particular number of satellites, based on 100 samples of each combination as per the discussion above. It is noteworthy that the best-fit planes to the most planar combinations are almost identical in every case, except for that of the 3 satellite combinations, where the RMS values are so small for so many combinations as to make this result not particularly important. It should also be noted that these best-fit planes trace out the same approximate great circle as the prominent plane indicated in Fig. 1, a result that shall be investigated a little later in §3.4. It is particularly interesting that the pole shared by each of these planes, located at l M31 ≈ -80 • , b M31 ≈ 40 • corresponds to a pole count maximum in each of the pole plots. This indicates that many of the satellite combinations are aligned along this plane, hence further suggesting that the plane applies to more satellites than the combination sizes tested here. The other, lower latitude principle maximum in the pole plots is that corresponding approximately to the best fit to all the satellites and hence it grows more prominent in the plots made from larger combination sizes as discussed earlier.

Besides the pole count maxima that are strongly indicative of a highly planar subset of satellites, the other principle feature of the pole plots in Fig. 10 is the great circle along which the pole count density is highest. This great circle is very prominent but great caution must be exercised in attributing any significance to it. It is centered on the Milky Way indicating that the constituent poles result from a majority of satellites lying along the Earth to M31 line of site. But this reflects the anisotropy predicted from Fig. 2, the result of the bias incurred by the finite area of the PAndAS survey. Hence it would seem that the progenitor of this prominent great circle is not physical but rather the result of selection effects. To further investigate the significance of the patterns observed in the pole plots, 1000 random realizations of 25 satellites were generated as per §2.2, and a similar pole count analysis performed on each of them. Specifically, the pole density distribution resulting from the best fit planes to all combinations of 5 satellites was generated for each of them. The resulting pole plots for 8 of the 1000 random realizations (chosen at random) are presented in Fig. 11 along with an enlarged version of the equivalent plot from Fig. 10 generated from the real distribution. A bias toward a similar high-density great circle is indeed observed in these plots, but the plot generated from the actual data features a conspicuously narrower great circle, and a much more constrained distribution in general. This appears to be primarily the result of the large fraction of satellites that lie along the prominent plane that is repeatedly identified and plotted in the left-hand column of Fig. 10. It should also be noted that this plane, whilst being oriented perfectly edge-on with respect to the Earth, contains a significant fraction of satellites lying well outside the region of the M31 sky where the detection bias is large, and hence it is unlikely that its prominence is due to our observational constraints.

Figure 12 provides for a comparison between the concentration of poles around the principle maximum in the pole dis- tributions of the actual satellite distribution and the average of the 1000 random satellite distributions. From line (a) in Fig. 12 we see that 21.5% of all combinations of the actual satellite positions are fitted by a best-fit plane with pole within 15 • of the principal maximum (located at l M31 = -78.7 • , b M31 = 38.4 • ). This is in stark contrast to the 12.0% that lie within 15 • of the principal maximum for the average random realization of satellite positions (Fig. 12 line (b)). Furthermore, we find that only 117 of the 1000 random realizations exhibited the degree of concentration of poles within 15 • of the principal maximum that was observed for the actual satellite distribution. Hence it would seem that a large percentage of satellite combinations are fitted by best-fit planes that all have strikingly similar orientations when compared with what one could expect from a random distribution of satellites. Again, this points toward a significant plane of satellites that includes a large fraction of the whole satellite sample. In order to obtain a better understanding of the satellites that this plane consists of, it is of particular interest to explore the number of times each satellite is included in a combination that is best fit by a plane with pole in close proximity to the principal maximum in the pole distribution for the entire sample. Once again, we use the pole distribution for all combinations of 5 satellites, and we count the number of times each satellite contributes to a pole within 3 • of the principal maximum at l M31 = -78.7 • , b M31 = 38.4 • . The counts are divided by 100 to account for the 100 samples that are taken of each combination. The result can be seen in Fig. 13. From this figure, it can be seen that the main contributors to the principal maximum in pole counts are those same satellites identified as forming a prominent plane in Fig 1, namely Andromedas I, XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and the NGC147 group, along with Andromeda III and Andromeda IX. Hence the conclusion of our analysis thus far must be that there is indeed a significant plane in the satellite distribution of M31 and that it broadly consists of the aforesaid satellites. We therefore investigate the numerical significance of the best-fit plane to these satellites in §3. [START_REF]The Hipparcos and Tycho Catalogues (ESA[END_REF]. As yet there is still more to be gleaned from a study of the pole density distribution however. From Fig. 13 we have been able to determine the principle contributing satellites to the principal maximum in the pole density distribution, but what of the remaining satellites? Do the positions of these satellites follow any particular trend? The best way to determine this is to construct pole density plots of the two halves of the complete sample, namely the major contributors to the principal maximum and the minor contributors. The resulting pole plots are presented in Fig. 14.

The left-hand plot of Fig. 14 shows the pole density distribution generated from the major contributing satellites to the principal maximum at l M31 = -78.7 • , b M31 = 38.4 • . This half-sample includes Andromedas I, III, IX, XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and the NGC147 group. As expected, this plot reflects the existence of the aforementioned plane with all combination poles lying in the vicinity of the principal maximum. The right-hand plot, with poles generated from the remaining 12 satellites, namely Andromedas II, V, X, XV, XVIII, XIX, XX, XXI, XXII, XXIII, XXIV and M33, paints a very different picture however. There is a much greater spread in the distribution of poles, with the great circle induced by the survey area bias once again conspicuous. Also prominent in this plot are 2 density maxima with their corresponding mirror images in the opposite hemisphere. The maximum lying midway between Andromedas XIX and XX lies very close to the pole of maximum detection bias at l M31 = -90 • , b M31 = 0 • and so it is not unexpected, now that the prominent plane of satellites is effectively removed from the distribution. The elongated maximum passing through l M31 ≈ 45 • , b M31 ≈ 45 • is more interesting however, and suggests the possibility of a second plane, roughly orthogonal to the major plane represented in the lefthand plot, though much less conspicuous. The planes represented by this maximum pass close to the error trails on the M31 sky of Andromedas II, III, XIX, XX, XXIII and XXIV. This maximum is faintly discernible in the pole distribution for combinations of 6 satellites presented in Fig. 10 but is no more pronounced than anywhere else along the high-density great circle in any of the other pole plots. On account of this, it would appear that this plane is likely no more significant than one would expect to find from a random satellite distribution subject to the same detection biases, such as those illustrated in Fig. 11.

A Great Plane of Satellites

Throughout the investigation undertaken thus far, all evidence has repeatedly pointed toward a conspicuously planar sub-set of satellites consisting of roughly half the total sample of satellites. Andromedas I, XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and XXX as well as the dwarf ellipticals NGC147 and NGC185 all appeared to lie along a plane in Fig. 1. The reality of this co-planarity was verified in §3.3 and in particular Fig. 13, which also suggested that Andromeda III and Andromeda IX should be considered as plane members. Hence it is of great interest to ascertain whether this 'great plane' is in fact significant. To do this, it is necessary to determine how likely such a plane is to arise from a random satellite distribution subject to the same selection biases. The plane itself and the satellites of which it is constituted are illustrated in Fig. 15. The plane shown is that calculated from the best-fit satellite positions and has equation of the form: 0.158x + 0.769y + 0.620z = 0 with pole at (l M31 , b M31 ) = (-78.4 • , 38.3 • ). Note that for this section, we re-instate NGC147, NGC185 and Andromeda XXX as separate objects since we are again concerned with measurements of the significance of the planarity of the distribution. Our 'great plane' thus consists of 15 satellites out of the entire sample of 27.

Using the method of §2.2, we again generate 10, 000 independent random realizations of 27 satellites and seek the most planar combination of 15 satellites from each. For each random realization, we sample 1000 possible positions for each satellite as in previous sections and take the average value for the RMS of the best fit plane through the most planar combination. Since there are more than 17 million ways that 15 satellites can be drawn from 27, and since we are not concerned with the orientation of each fitted plane as we have been in all previous sections, we depart from the plane fitting method of §2.1 for this section and instead proceed as follows. For each sample of satellite positions from each realization, 10, 000 randomized planes are generated and the 15 closest satellites of the 27 to the plane are stored in each case and the RMS recorded. The lowest RMS achieved is hence taken to be that for the most planar combination of 15 satellites in the sample. These minimum RMS values from each of the 1000 samples of the particular random realization are then averaged to provide the best representation for the realization, given the distance uncertainties. Fig. 16 provides probability distributions in the RMS for the observed 'great plane' (a) together with those for the average RMS for the most planar combination from each random realization (b). The average RMS for the observed plane is plotted in (b) for comparison.

As can be seen from Fig. 16, the RMS for the observed plane is very low compared to what one could reasonably expect from a chance alignment. Indeed, the average RMS of 12.58 kpc for the observed plane is found to be equalled or exceeded in only 36 out of the 10, 000 random realizations. The chances of obtaining such a planar group of 15 satellites from a sample of 27 at random is thus estimated as 0.36%. Hence we can conclude from this test that the observed plane is very unlikely to be a chance alignment, but rather the result of some underlying physical mechanism. Note that an independent but equivalent investigation is presented in ILC12 where such an alignment is found to occur in only 0.15% of instances. This is due to the larger central obstruction adopted in that analysis (19.6 vs. 7.9 sq. deg.) which rejects more satellites in close proximity to the plane pivot point (M31) where small plane distances are most likely. [START_REF]The Hipparcos and Tycho Catalogues (ESA[END_REF]. DISCUSSION Throughout the analysis conducted in §3, the presence of a prominent plane of satellites has been a consistent feature. This is not the first time that a significant plane of satellites has been identified from among the denizens of the M31 halo however. Koch & Grebel (2006) more, they identify a subset of 9 satellites from this plane lying within a thin disk with an RMS of 16 kpc. Metz, Kroupa, & Jerjen (2007) and later Metz, Kroupa, & Jerjen (2009) similarly identify a disk of satellites, this time not so markedly polar, with pole (in our coordinate system) at

(l M31 , b M31 ) = (-70.2 •
, 32.9 • ). They find this disk to have an RMS height of 39.2 kpc. This disk is clearly the same structure that we identify here, being tilted by only 8.6 • with respect to our 'great plane.' Our plane is found to have a much smaller RMS of just 12.34 +0.75 -0.43 kpc however, despite including a comparable number of satellites. It is particularly noteworthy however, that their satellite sample is significantly different to that used here, with their disk including M32, NGC205, IC10, LGS3 and IC1613 -all of which lie outside the portion of the PAndAS survey region used in this study (see Fig. 10 (c) of CIL12). Indeed, it is clear from Fig. 4 of McConnachie & Irwin (2006) that the galaxies M32, IC10,

LGS3 and IC1613 all lie along the same great circle as our 'great plane' in Fig. 15, as do their entire error trails. Their conformity along with Andromeda I to a thin disk is noted in the said paper as one of 8 possible 'streams of satellites,' thus providing another early detection of the plane identified by this study. Majewski et al. (2007) also draw attention to the linear distribution of many of the plane-member satellites on the sky, a consequence of the edge-on orientation of the plane as indicated by the present study. The plane of Metz, Kroupa, & Jerjen (2009) does however include a significant number of satellites that, whilst included in our sample, we exclude due to their looser association with our plane. This then accounts for the much smaller RMS height observed in our study.

Unlike previous studies of the M31 satellite system, we have a significant advantage in this study on account of the greatly improved sample of satellites available to us. Our sample is not only more numerous, but the positions are all determined via the same method applied to the same data as per CLI11 and CIL12. We are thus afforded unprecedented knowledge of the satellite detection biases, as well as the uncertainties in the object positions and have factored this knowledge into the analysis. An understanding of this bias is of particular importance when it comes to ascertaining the significance of any substructure identified, since a physically homogeneous satellite distribution will inevitably appear anisotropic after 'folding in' the selection function and it is important that we do not attribute physical significance to this anisotropy.

Even after taking these effects into account however, there can be little doubt that the plane described in §3.4 is a real physical object. The component satellites extend well into the regions of low detection bias in Fig. 2 and the analysis of the last section makes it clear that such a thin disk of satellites has very little chance of arising within a random satellite distribution of the same size, even when subject to the same observation biases. Furthermore, it should be noted that the study of the plane's significance in §3.4 is likely to be conservative, given that if the satellites M32, IC10, LGS3, IC1613 and NGC205 were to be included in the analysis, the significance of our observed plane would likely grow still further. What is also particularly interesting is that subsequent research has shown 13 of the 15 objects to be co-rotating. This result is discussed in more detail in ILC12.

What then could be the progenitor of this 'great plane'? The polar orientation one might expect to arise had the satellites formed within the dark matter halo or had the dynamical friction proposed by Quinn & Goodman (1986) had sufficient time to take effect is not observed. Similarly, the findings of Metz et al. (2009) seemingly preclude the possibility that the structure might be the result of the accretion of an external galactic association. Furthermore, there is apparently no marked distinction in the metallicities of the disk members compared with the non-disk members as one might expect from this scenario. There remains however the possibility that the satellites trace out the tidal debris of a galaxy merger. This is a particularly interesting possibility, especially since the plane, when projected onto the M31 tangent plane, is in close alignment with the Giant Stellar Stream. Indeed, Hammer et al. (2010) show that the Giant Stellar Stream could feasibly be the product of a major merger event that began around 9 Gyr ago, sustained by the returning stars from a tidal tail oriented similarly to our 'great plane.'

The observed asymmetry of the system does however pose a problem for this scenario. It is of particular interest that, of the 13 co-rotating satellites in the plane, all but one lie on the near side of the M31 tangent plane. Indeed, if we removed all of the plane member-satellites from the system, the remaining satellite distribution would no longer be significantly asymmetric. With almost all of the satellites currently on the near side of M31, it would seem that the progenitor event could not have occurred substantially more than a typical orbital time ago or else the satellites would have had sufficient time to disperse. This suggests the event responsible must have occurred within the last 5 Gyr. Another plausible alternative is that a strong drag is induced on the orbiting satellites by an overdensity in the dark matter halo broadly lying along the Milky-Way-to-M31 separation vector. The result is analogous to gas passing through a galaxy's spiral arms. This scenario would account for the direction of the asymmetry but would lead to rapid orbital decay however and hence again would imply that the structure is relatively short lived. In any case, how such a thin rotating structure could survive for an extended length of time in a traditional triaxial dark matter halo remains unclear.

There is also another striking characteristic of the observed plane. As one will note from examination of Fig. 15 (and indeed the left-hand column of plots in Fig. 10), it is oriented perfectly edge-on with respect to the Milky Way. Whilst there is a noted bias toward detection of satellites positioned along planes oriented in this way, it must be remembered that this bias arises primarily due to the propensity for detecting satellites close to the line of sight passing through M31. Many of the satellites observed to lie on our plane are located a good distance from this line of sight however and well into the lowbias portions of the M31 sky. In any case, the random realizations of §3.4 suffer from the same biases and yet show unequivocally that the observed plane is very unlikely to arise by chance. Hence if we are to accept these results, we must also accept the plane's orientation.

Further to this strikingly edge-on orientation, it is also noteworthy that the plane is approximately perpendicular to the Milky Way disk. This fact can be easily seen if the constituent satellites are traced out in Galactic coordinates (i.e. all lie on approximately the same Galactic longitude). This of course raises the question -how does the orientation of the Milky Way's polar plane of satellites compare with this plane? Noting that the average pole of the 'Vast Polar Structure' described by Pawlowski, Pflamm-Altenburg, & Kroupa (2012B) points roughly in the direction of M31, the two planes are approximately orthogonal. These precise alignments are dis-cussed in more detail in ILC12, but suffice to say here that this alignment is particularly interesting and suggests that the Milky Way and M31 halos should not necessarily be viewed as fully isolated structures. It is entirely conceivable that our current ignorance as to the coupling between such structures may be to blame for our inability to pin down the precise mechanism by which such planes arise.

CONCLUSIONS

It is clear that whilst the satellites of M31 when taken as a whole are no more planar than one can expect from a random distribution, a subset consisting of roughly half the sample is remarkably planar. The presence of this thin disk of satellites has been conspicuous throughout the analysis contained in this paper. The degree of asymmetry determined from the satellite distribution is also found to be relatively high. Of particular note, the orientation of the asymmetry is very significant, being aligned very strongly in the direction of the Milky Way. When this fact is combined with the apparent orthogonality observed between the Milky Way and M31 satellite distributions and the Milky Way disk, it appears that the two halos may in fact be coupled. Regardless, the great plane of satellites identified in this study, and its clear degree of significance, provides persuasive evidence that thin disks of satellites are a ubiquitous feature of galaxy dark matter halos.

"We live in a changing universe, and few things are changing faster than our conception of it." Timothy Ferris, "The Whole Shebang" (1997)
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Conclusions

The contribution to the field of galactic archaeology embodied in this work has essentially been twofold. Firstly, a robust new technique has been developed for ascertaining distances via the tip of the red giant branch, a technique which is stand-alone in terms of its diverse applicability. Secondly, this technique has been applied to the satellite system of M31 to reveal an inhomogeneous structure which is somewhat at odds with our current understanding of galaxy formation. The key outcomes of the thesis are summarized as follows: VI The M31 satellite distribution has been found to be approximately isothermal. When the 15 most Gaussian distance distributions are considered, the satellite density profile is found to follow a power law with ρ(r) ∝ r -α where α = 1.87 +0.46 -0.42 .

VII The satellite distribution as a whole has been shown to be no more planar than one would expect from a random distribution of points.

VIII A large subset of the satellites, 15 out of the total sample of 27, has been found to be remarkably planar, with a root-mean-square thickness of just 12.34 +0.75 -0.43 kpc. The probability of obtaining such a large, thin structure in a random distribution of equal size is found to be only 0.36%. The orientation of this plane is intriguing. It is found to lie almost perfectly edge-on with respect to the Milky Way, and approximately perpendicular to the Milky Way disk. It is also roughly orthogonal to the planar distribution of satellites regularly reported for the Milky Way, and 13 of the 15 satellites have subsequently been identified as co-rotating.

IX The asymmetry of the distribution as a whole has been shown to be considerably larger than one would expect by chance. After factoring in the uncertainty in the satellite positions, it is most likely that the sample can be divided such that 23 of the 27 satellites all lie in a single hemisphere. The probability of the observed asymmetry arising in a random distribution is 4.22%.

X The asymmetry about the M31 tangent plane has been found to be particularly high, with 20 of the 27 satellites most likely lying on the Milky Way side. The probability of the observed degree of asymmetry about this plane arising by chance is just 0.46%.

It is noteworthy that if the 15 satellites belonging to the plane of VIII are omitted, the asymmetry about the M31 tangent plane is no longer significant.

In light of the above outcomes, there are several avenues of future investigation that warrant attention. The first concerns the future application of the RGB tip finding technique in its current form. The PAndAS survey region is awash with the relics of past accretion events and is the obvious starting place. There are many streams of stars that are well within reach of the technique. Furthermore, it should be possible to divide most of these streams into segments and obtain distance measurements to each individually. The result would be the effective conversion of the key structures of the PAndAS survey into a three dimensional network of streams and interspersed satellite galaxies. This would facilitate a study of unprecedented scale into the distribution of mass within the M31 halo.

The RGB tip finding technique is of course also readily applicable to the denizens of the Milky Way halo. There are more than 25 satellite galaxies and more than 150 globular clusters that orbit within the halo of our own galaxy. Distance measurements already exist for almost all of them, but there would be significant advantages to a sample of distances obtained via the systematic application of a single measurement technique.

In addition to the possible future applications of the tip finding technique, there are also a variety of means by which it might be improved. In particular, the method in its current form is most suited to more metal poor structures where there is minimum variation of the i-band tip luminosity with metallicity. The method could be made more versatile by replacing the one-dimensional model of the object's luminosity function with a two-dimensional model Conclusions of its CMD. Following this approach, stellar isochrones could be incorporated to model the correct form of the object's red giant branch in colour-magnitude space, making the method more robust in its treatment of more metal rich objects, and those containing more than one stellar population. Along similar lines, one could also apply a matched-filter to the object's CMD. This could be achieved by fitting a 2D surface to the object's CMD and dividing it by that fitted to the CMD of a suitable comparison (background) field, creating an effective 'flat field' tailored to suit the object. Each star in the object's CMD could thus be weighted by its probability of being a true member of the object's red giant branch.

The structure of the M31 satellite distribution as revealed by this study, also presents a number of opportunities to further our understanding of the local universe. The most immediate course to pursue would seem to lie in the application of this knowledge to a new study of the galaxy's mass distribution via modeling of its rotation curve. The plane of corotating satellites (VIII) provides the perfect starting point for such a study. With the plane fortuitously aligned edge-on with respect to the Earth, it will be possible to calculate the tangential component of the satellites' orbital velocities directly from the radial velocities via simple trigonometry. Thus, if the satellites are approximated to follow circular orbits, it will be relatively straightforward to obtain probability distributions for the mass enclosed by each satellite orbit, and in so doing, extend the known M31 rotation curve significantly. It would also be possible to obtain estimates of the enclosed mass for the non-plane members via a maximum likelihood approach, after marginalizing over the two tangential components of the orbital velocity.

More than anything else, this study has highlighted the limitations of existing theories of galaxy formation and evolution. It is very difficult to explain how such a large, thin structure as that identified in VIII can remain intact for any length of time, let alone how it came to exist in the first place. Add to that the bizarre orientation and the high degree of asymmetry, and we are left with an intriguing enigma. The onus then is on unlocking this enigma, for in so doing we shall undoubtedly learn a great deal about galaxy evolution and M31's past, as well as that of our own galaxy.

As a PhD student, perhaps 90 % of my time has been occupied with the development of programs (principally in Fortran) designed to perform the analysis necessary for my research.

In this sense, the written component of the thesis really is just the tip of the iceberg, and it therefore seemed both fitting and rather useful to record some of the source code for reference. When I embarked to do this however, I did not realize the shear volume of code I had amassed and subsequently found it necessary to condense the code substantially. The code that is presented in these appendices therefore represents only a fraction of all the programs written during my PhD candidature. Nevertheless, I have endeavored to reproduce here the most important programs and subroutines in as logical a way as possible and with minimum repetition. Each appendix is devoted to code pertinent to a particular chapter, and each program is introduced with a brief description of its purpose and functionality as well as a link to the thesis content to which it relates. Note that some of the programs make a very localized contribution to the material presented in the thesis while others are much broader in scope and may apply to a number of chapters. Many subroutines have also been omitted either to avoid repetition or to remove portions of code which are secondary to the principal functionality of the parent program. In summary, it is intended that the programs presented in these appendices serve to provide further clarification of the precise way in which the analysis discussed in the thesis has been implemented. The code is not intended for ready implementation on other systems and hence may in many instances require substantial modification to be usable. All code is however well commented and should be reasonably intuitive even for those not well acquainted with Fortran. parameter ( mp = 1 0 0 0 ) parameter ( n d a t = 1 0 0 0 ) parameter ( ma = np ) DOUBLE PRECISION : : c h i s q , a ( ma ) , s i g ( n d a t ) , u ( mp , np ) , v ( np , np ) ,w( np ) , x ( n d a t ) DOUBLE PRECISION : : y ( n d a t ) , z ( n d a t ) , i n t e g r a l m a x , dummy , e ( n d a t ) , f ( n d a t ) EXTERNAL : : f u n c s INTEGER : : i o s , i , j i n t e g e r : : ma max , ma used parameter ( ma max =100) DOUBLE PRECISION : : p a s s a ( ma max ) common / p a s s b l o c k 2 / p a s s a , ma used ma used=ma x = 0 . ; y = 0 . ; z = 0 . ; s i g = 0 . 0 0 0 0 1

A Chapter Two Programs

OPEN ( u n i t = 1 , f i l e = ' l u m i n o s i t y f u n c t i o n 2 . d a t ' , s t a t u s = ' o l d ' ) OPEN ( u n i t = 2 , f i l e = ' l f f i t . d a t ' , s t a t u s = ' unknown ' ) i =0 DO WHILE ( . TRUE . )
! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i = i +1 READ ( 1 , * , IOSTAT = i o s ) dummy , x ( i ) , dummy , dummy , dummy , dummy , y ( i ) i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f

x ( i ) = x ( i ) / 5 . IF ( x ( i ) > -0 . 2 ) t h e n i = i -1 e l s e i f ( a b s ( x ( i ) ) . l t . 0 . 1 ) t h e n ! i = i -1 end i f END DO DO j = 1 , i
! O u t p u t s e x c l u s i v e l y t h e c h o s e n d a t a t o ' l f f i t . d a t ' WRITE ( 2 , ' ( 2 ES20 . 5 ) ' ) x ( j ) , y ( j ) END DO n d a t a = i CALL s v d f i t ( x , y , s i g , n d a t a , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) !SVD f i t t i n g p r o g r a m do j =1 ,ma p a s s a ( j ) =a ( j ) end do PRINT * , a OPEN ( u n i t = 3 , f i l e = " l f f i t . p " , s t a t u s = ' unknown ' ) CALL RandReal ( ma , a , x , i , s i g , n d a t a , u , v , w, mp , np , c h i s q , f u n c s ) !CALL d2ydx2max ( ma , a ) END PROGRAM E d g e F i n d e r !- ------------------------------------------------------------------------------SUBROUTINE RandReal ( ma , a , x , i , s i g , n d a t a , u , v , w, mp , np , c h i s q , f u n c s ) ! Random r e a l i z a t i o n mock d a t a g e n e r a t o r INTEGER : : ma , i , q , l , v a l , n d a t PARAMETER ( v a l = 2 0 0 ) PARAMETER ( n d a t = 1 0 0 0 ) INTEGER : : idum = 0 DOUBLE PRECISION : : a ( ma ) , a r e a , max x ( ma + 1 ) , min x ( ma + 1 ) , x ( i ) DOUBLE PRECISION : : r a n 1 , randnum , s i g ( n d a t ) , u ( mp , np ) , v ( np , np ) ,w( np ) DOUBLE PRECISION : : b ( ma + 1 ) , r t r ( ma ) , r t i ( ma ) , c h i s q DOUBLE PRECISION : : mock x ( v a l ) , mock y ( v a l ) , m o c k y a t l ( ma ) OPEN ( u n i t = 1 , f i l e = " m o c k d a t a . d a t " , s t a t u s = ' unknown ' ) OPEN ( u n i t = 2 , f i l e = " m o c k d a t a . p " , s t a t u s = ' unknown ' ) DO q = 1 , ma b ( q +1) = a ( q ) / q ! T r a n s f e r s from c o e f f i c i e n t s o f p ( x ) t o t h o s e o f i n t e g r a l END DO b ( 1 ) = 0 122 Chapter Two Programs DO q = ma + 1 , 1 , -1 ! C a l c u l a t e s t h e v a r i a b l e ' a r e a ' -t h e min x ( q ) = b ( q ) * x ( i ) * * ( q -1)

! a r e a u n d e r t h e p o l y n o m i a l b e t w e e n max x ( q ) = b ( q ) * x ( 1 ) * * ( q -1) ! x ( 1 ) and x ( i ) -i . e . t h e r a n g e o f t h e END DO ! i n t e g r a l f o r t h e c h o s e n x-v a l u e a r e a = SUM( max x ) -SUM( min x ) ! domain . DO q = 1 , v a l randnum = r a n 1 ( idum ) b ( 1 ) = -(SUM( min x ) + randnum * a r e a ) ! G e n e r a t e s a random y v a l u e b e t w e e n t h e v a l u e o f t h e i n t e g r a l a t x ( 1 ) and a t x ( i ) .

CALL z r h q r ( b , ma , r t r , r t i ) ! F i n d s r o o t s o f i n t e g r a l f o r g i v e n y v a l u e DO l = 1 , ma IF ( r t i ( l ) == 0 . ) THEN ! Only u s e t h e r e a l r o o t s IF ( r t r ( l ) . g t . MINVAL( x ) ) THEN ! Make s u r e t h e c h o s e n r o o t IF ( r t r ( l ) . l t . MAXVAL( x ) ) THEN ! i s i n t h e domain u s e d mock x ( q ) = r t r ( l )

END IF END IF END IF END DO END DO DO q = 1 , v a l DO l = 1 , ma m o c k y a t l ( l ) = a ( l ) * mock x ( q ) * * ( l -1) END DO mock y ( q ) = SUM( m o c k y a t l ) WRITE ( 1 , ' ( 2 ES20 . 5 ) ' ) mock x ( q ) , mock y ( q ) END DO WRITE ( 2 , * ) ' p l o t \ ' ! P r i n t s f i t t e d DO j = ma , 2 , -1 ! p o l y n o m i a l t o WRITE ( 2 , * ) a ( j ) , ' * x * * ' , j -1 , '+ \ ' ! a ' . p ' f i l e f o r END DO
! p l o t t i n g w i t h WRITE ( 2 , * ) a ( 1 ) , ' t i t l e ' ' s v d f i t ' ' , " m o c k d a t a . d a t " ' ! g n u p l o t CALL Kink ( ma , a , mock x , mock y , v a l , s i g , n d a t a , u , v , w, mp , np , c h i s q , f u n c s ) END SUBROUTINE RandReal !- ------------------------------------------------------------------------------SUBROUTINE Kink ( ma , a , mock x , mock y , v a l , s i g , n d a t a , u , v , w, mp , np , c h i s q , f u n c s ) ! G e n e r a t e s a new s e t o f mock d a t a p o i n t s w i t h a k i n k a t o f f s e t o f 0 . 2 5 INTEGER : : v a l , q , ma , l , h , n d a t , n d a t a , i o s = 0 PARAMETER ( n d a t = 1 0 0 0 ) DOUBLE PRECISION : : a ( ma ) , mock x ( v a l ) , mock y ( v a l ) , e ( n d a t ) , f ( n d a t ) DOUBLE PRECISION : : s h i f t x ( v a l ) , s h i f t y ( v a l ) , s h i f t y a t l ( ma ) , new y ( v a l ) INTEGER : : mp , np DOUBLE PRECISION : : c h i s q , s i g ( n d a t ) , u ( mp , np ) , v ( np , np ) ,w( np ) EXTERNAL : : f u n c s DOUBLE PRECISION : : yp1 , ypn , ya2 ( n d a t ) , x , y , d e r a b s ( n d a t )

INTEGER : : i n d x ( n d a t ) DOUBLE PRECISION : : xa ( n d a t ) , ya ( n d a t ) OPEN ( u n i t = 1 , f i l e = " k i n k . d a t " , s t a t u s = ' unknown ' ) DO q = 1 , v a l ! s h i f t x ( q ) = mock x ( q ) + 0 . 2 5 ! O f f s e t s m o c k d a t a DO l = 1 , ma
! a l o n g x-a x i s by 0 . 2 5 END DO ! new mock d a t a p o i n t s s h i f t y ( q ) = SUM( s h i f t y a t l ) ! t o t h e p o l y f i t t e d new y ( q ) = ( mock y ( q ) + 5 . 0 * MINVAL( mock y ) ) + s h i f t y ( q ) ! t o t h e p r e v i o u s o n e s . WRITE ( 1 , * ) s h i f t x ( q ) , new y ( q ) ! 5 * MINVAL( mock y ) END DO ! makes l a r g e k i n k . DO q = 1 , v a l ! IF ( mock x ( q ) . l t . MINVAL( s h i f t x ) ) THEN ! O u t p u t s o r i g i n a l m o c k d a t a p o i n t s WRITE ( 1 , * ) mock x ( q ) , mock y ( q ) ! f o r mock x p o i n t s l e s s t h a n t h e END IF ! minimum s h i f t x v a l u e . END DO ! REWIND( 1 ) e = 0 . ; f = 0 . ; h = 0 DO WHILE ( . TRUE . )

! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s h=h+1 , REAL(MAXVAL( ya ) ) , 0 , 0 ) c a l l p g p t ( n d a t a , REAL( xa ) , REAL( ya ) , 1 ) c a l l pgend !CALL P o l y T e s t ( xa , ya , s i g , n d a t , n d a t a , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) CALL S p l i n e T e s t ( xa , ya , n d a t a , mock x , v a l ) CALL G r a d T e s t ( xa , ya , n d a t a , mock x , v a l ) CALL A n g l e T e s t ( xa , ya , n d a t a , mock x , v a l ) CALL L e g P r i n t ( ma , a ) END SUBROUTINE Kink !- ------------------------------------------------------------------------------SUBROUTINE P o l y T e s t ( xa , ya , s i g , n d a t , n d a t a , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) ! Use t o t e s t t h e p o l y n o m i a l s a b i l i t y t o f i n d t h e k i n k INTEGER : : n d a t , n d a t a , ma , mp , np DOUBLE PRECISION : : s i g ( n d a t ) , a ( ma ) , u ( mp , np ) , v ( np , np ) , w( np ) , c h i s q , x ( n d a t a ) DOUBLE PRECISION : : y ( n d a t a ) , xa ( n d a t a ) , ya ( n d a t a ) EXTERNAL : : f u n c s x = xa ; y = ya ! Don ' t want h i g h p r e c i s s i o n h e r e OPEN ( u n i t = 1 , f i l e = " k i n k p o l y . p " , s t a t u s = ' unknown ' ) a = 0 . CALL s v d f i t ( x , y , s i g , n d a t a , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) !SVD f i t t i n g p r o g r a m ----------------------------------------------------------------------------- ------------------------------------------------------------------------------SUBROUTINE A n g l e T e s t ( xa , ya , n d a t a , mock x , v a l ) ! T h i s s u b r o u t i n e i s d e s i g n e d t o f i n d t h e a n g l e b e t w e e n l i n e s c o n n e c t i n g ! a d j a c e n t d a t a p o i n t s . S t a r t i n g from t h e s m a l l e s t x v a l u e ( s a y p o i n t 1 ) , t h e ! l i n e j o i n i n g p o i n t 2 and p o i n t 3 i s d e n o t e d l e n g t h ' a ' , t h a t j o i n i n g p o i n t 1 ! and p o i n t 2 i s d e n o t e d l e n g t h ' b ' and t h a t c o n n e c t i n g p o i n t s 1 and 3 i s ! d e n o t e d l e n g t h ' c , ' t h u s s e t t i n g up a t r i a n g l e . The t r i g o n o m e t r i c r u l e ! c = a + b -2 abcosC i s t h e n u s e d t o f i n d a n g l e C . The a l g o r i t h m t h e n s h i f t s ! t o c o n c e n t r a t e on t h e t r i a n g l e made by p o i n t s 2 , 3 and 4 and s o on u n t i l t h e ! end o f t h e d a t a . The s h a r p e s t g r a d i e n t c h a n g e o c c u r s where a n g l e C i s s m a l l e s t . ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- PRINT * , j , x a s p ( j ) , y a s p ( j ) END DO CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL p g f u n x ( Le g e n dre n e w , 1 0 0 , -0 . 9 , -0 . ------------------------------------------------------------------------------SUBROUTINE d2ydx2max ( ma , a ) ! F i n d s t h e t u r n i n g p t s o f t h e 2 nd d e r i v a t i v e o f p ( x ) INTEGER : : ma , j DOUBLE PRECISION : : a ( ma ) , c ( ma-2) , d ( ma-3) , r t r ( ma-3) , r t i ( ma-3) ------------------------------------------------------------------------------!-----------------------------L i b p r e s s a l g o r i t h m s ------------------------------ ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- -------------------------------------------Upper and Lower C u t s p l o t CALL p g b e g i n ( 0 , ' temp1 . p s / CPS ' , 1 , 1 ) CALL pgenv (MINVAL(REAL( t e m p x ) ) , MAXVAL(REAL( t e m p x ) ) , MAXVAL(REAL( t e m p y ) ) , MINVAL(REAL( t e m p y ) ) , 0 , 0 ) CALL p g p t ( n d a t a , REAL( t e m p x ) , REAL( t e m p y ) , 1 ) CALL p g s c i ( 2 ) CALL p g l i n e ( 1 0 0 0 , v a r , u p p e r c u t ) CALL p g l i n e ( 1 0 0 0 , v a r , l o w e r c u t ) CALL p g s c i ( 1) ------------------------------------------ ----------------------------------------------------------------------------- -------------------------------------------! -------------------------------------------!Main P l o t ( i . e . s m o o t h e d l u m i n o s i t y ! f u n c t i o n w i t h i n f l e c t i o n p o i n t s ) CALL p g b e g i n ( 0 , ' temp2 . p s / CPS ' , 1 , 1 ) CALL pgenv ( 1 8 . , 2 6 . , MINVAL( p h i s p ) , REAL( 1 . 5 * p h i 4 m a x ) , 0 , 0 ) CALL p g s c i ( 1 ) CALL p g l i n e ( n d a t a 2 , magsp , p h i s p ) CALL p g s c i ( 2 ) CALL p g l i n e ( n d a t a 2 , REAL( mag3 ) , REAL( p h i 4 ) ) CALL p g s c i ( 4 ) CALL p g s c h ( 4 . 0 ) CALL p g p t ( 1 , 2 0 . 7 7 , 0 . 0 0 1 , 2 2 6 4 ) CALL p g s c h ( 1 . 0 ) CALL p g s c i ( 1 ) CALL p g l a b ( ' i \ d0 \ u ' , ' r e l a t i v e p r o b a b i l i t y ' , ' ' ) "----------------------------------------------- "-----------------------------------------------" END SUBROUTINE T u r n i n g P o i n t s !- ----------------------------------------------------------------------------- ! a r r a y ' check ' PRINT * , " number o f u n i q u e i n t e g e r s =" , num END SUBROUTINE R a n d S p l i t !- ------------------------------------------------------------------------------!-----------------------------L i b p r e s s A l g o r i t h m s ------------------------------ --------------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------- ---------------P l o t h i s t o g r a m o f d a t a p o i n t s ---------------CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( 0 . 0 , 1 . 0 , 0 . , 1 . 1 * MAXVAL(REAL( h i s t ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( 1 0 1 , REAL( h i s t ( : , 1 ) ) , REAL( h i s t ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' s t a r m a g n i t u d e ' , ' c o u n t s ' , 'BG-removed L u m i n o s i t y F u n c t i o n ' ) CALL pgend !- ---------------------------------------------------------- ---------------P --------------- --------------------------------------------------------------------------------------------------------------------------- 

READ ( 1 , * , IOSTAT = i o s ) e ( h ) , f ( h ) ! i . e . Read s h i f t x ( q ) , new y ( q ) i f ( i o s == 0 ) t h
WRITE ( 1 , * ) ' s e t x r [ -1 . 0 : -0 . 2 ] ' WRITE ( 1 , * ) ' p l o t \ ' ! P r i n t s f i t t e d DO j = ma , 2 , -1 ! p o l y n o m i a l t o WRITE ( 1 , * ) a ( j ) , ' * x * * ' , j -1 , '+ \ ' ! a ' . p ' f i l e f o r END DO ! p l o t t i n g w i t h g n u p l o t WRITE ( 1 , * ) a ( 1 ) , ' t i t l e ' ' s v d f i t ' ' , " k i n k . d a t " ' CALL L e g P l o t 2 ( xa , ya , n d a t a ) END SUBROUTINE P o l y T e s t !------------------------------------------------------------------------------- SUBROUTINE S
DO k = 0 , n / 2 f a c 1 = 1 ; f a c 2 = 1 ; f a c 3 = 1 ; f a c 4 = 1 DO j = 1 , 2 * n -2 * k f a c 1 = f a c 1 * j END DO DO j = 1 , k f a c 2 = f a c 2 * j END DO DO j = 1 , n -k f a c 3 = f a c 3 * j END DO DO j = 1 , n -2 * k f a c 4 = f a c 4 * j END DO LegCo ( n , k ) = a ( n +1) * ( ( ( -1 . d0 ) * * k ) * ( f a c 1 / ( ( 2 . d0 * * n ) * f a c 2 * f a c 3 * f a c 4 ) ) ) LegEx ( n , k ) = n -2 . d0 * k WRITE( P ( n , k ) , * ) LegCo ( n , k ) , ' * x * * ' , LegEx ( n , k ) PRINT * , TRIM ( P ( n , k ) ) END DO PRINT * , ' ' END DO DO j = 1 , ma DO n = 0 , ma-1 DO k = 0 , n / 2 IF ( LegEx ( n , k ) == j -1) THEN PolyCo ( j ) = PolyCo ( j ) + LegCo ( n , k ) END IF END DO END DO END DO OPEN ( u n i t = 1 , f i l e = " l f f i t 2 . p " ,
DO j = 1 , ma-2 c ( j ) = a ( j +2) * ( j +1) * ( j ) ! F i n
CALL p g l a b ( ' ( g -i ) \ d0 \ u ' , ' i \ d0 \ u ' , ' ' ) CALL pgend !-
- END SUBROUTINE C u t P l o t !-
CALL pgend !-------------------------------------------- END SUBROUTINE Smooth !------------------------------------------------------------------------------- SUBROUTINE T u
j = j + 1 ! randnum = INT ( n d a t a t * r a n 1 ( idum ) ) ! c o u n t = 0 ! DO k = 1 , j ! IF ( randnum . eq . c h e c k ( k ) ) THEN ! c o u n t = c o u n t + 1 ! END IF ! Loop g e n e
. d0 ) ! d a t a ( i ) = rand num / 1 0 0 . d0 ! END DO ! DO i = 1 , 101 h i s t ( i , 1 ) = REAL( i -1) / 1 0 0 . d0 DO j = 1 , n d a t a IF ( d a t a ( j ) . eq . h i s t ( i , 1 ) ) THEN h i s t ( i , 2 ) = h i s t ( i , 2 ) + 1 . d0 END IF END DO END DO h i s t ( 1 0 1 , 2 ) = h i s t ( 1 0 1 , 2 ) * 2 . e0 ! A c c o u n t f o r t h e b i n w i d t h o f t h e l a s t b i n B G c o u n t s = (REAL( n d a t a ) * REAL( f ) ) / 1 0 0 . e0 ! F u n c t i o n h e i g h t b e f o r e s t e p RGB counts = (REAL( n d a t a ) * REAL( 1 . d0 -f ) ) / ( REAL( 1 . d0-TRGB) * 1 0 0 . e0 ) ! / \ F u n c t i o n h e i g h t ! | | a f t e r s t e p !----------------P l o t h i s t o g r a m o f d a t a p o i n t s --------------- CALL p
- IF ( n d a t a . ge . NINT ( 1 / f ) ) THEN !CALL remove END IF !-
DO i = 1 , 1000 x ( i ) = REAL( i ) / 1 0 0 0 . d0 END DO !---------------No P r i o r ------------------ DO i = 1 , 1000 u ( i ) = 1 . d0 END DO CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 )
CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 , 0 , 0 ) CALL p g b i n ( 1 0 0 0 , REAL( x ) , REAL( u ) , . t r u e . ) CALL p g l a b ( ' x ' , ' y ' , ' Uniform P r i o r A p p l i e d ' ) x ( i ) = REAL( i ) / 1 0 0 0 . d0 END DO !------------G a u s s i a n P r i o r --------------p r i o r s i g = ABS( gauss hwhm * * ( 0 . 5 d0 * g a u s s e x p o ) ) DO i = 1 , 1000 g ( i ) = exp ( ( -(REAL( x ( i ) ) -t i p e x p t ) * * g a u s s e x p o ) / ( 2 . d0 * ( p r i o r s i g ) * * 2 . d0 ) ) END DO CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 , 0 , 0 ) CALL p g b i n ( 1 0 0 0 , REAL( x ) , REAL( g ) , . t r u e . ) CALL p g l a b ( ' m a g n i t u d e ' , ' w e i g h t ' , ' G a u s s i a n P r i o r A p p l i e d ' ) CALL pgend END SUBROUTINE g p r i o r !- --------------------------------------------------------------------------------------------------------------------------- 

CALL pgend END SUBROUTINE u p r i o r !----------------------------------------------------------------------------------------------------------------------------- SUBROUTINE g p r i o r ! USE G l o b a l ! G e n e
DO i = 1 , 101 -NINT ( maxgap ) c o u n t s = 0 . d0 DO j = i , i + NINT ( maxgap ) c o u n t s = c o u n t s + h i s t ( j , 2 ) END DO d ( 1 0 * i -9 : 1 0 * i ) = c o u n t s IF ( i . eq . 101 -NINT ( maxgap ) ) THEN d ( 1 0 * i : 1 0 0 0 ) = c o u n t s END IF END DO d = d / (MAXVAL( d ) )
! -------P l o t d e n s i t y p r i o r --------CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 * MAXVAL(REAL( d ) ) , 0 , 0 ) CALL p g b i n ( 1 0 0 0 , REAL( x ) , REAL( d ) , . t r u e . ) CALL p g l a b ( ' m a g n i t u d e ' , ' w e i g h t ' , ' D e n s i t y P r i o r A p p l i e d ' ) CALL pgend END SUBROUTINE d p r i o r !- --------------------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------------------- 4) also provides a useful summary as to its workings. The program is an example of my original TRGB finding algorithm. At this stage I had not yet generalized the code so that the parameters for different objects could be fed in, and hence each object had its own separate code -that shown here is for Andromeda I. In summary, a circular field is taken centered on user-specified coordinates and all stars within that field are then plotted on a Colour-Magnitude Diagram. The user then provides the coordinates for the corners of a polygon to be used as a colour-cut to isolate the stars of the object's Red Giant Branch. The colour-cut should extend at least half a magnitude brightward of the estimated TRGB magnitude to give a reasonable portion of pure background luminosity function (LF) for the algorithm to fit, and it should span an equal colour range as a function of magnitude so as not to distort the LF. The user must also provide a 'background field' from which the algorithm generates a LF which it then fits with a polynomial to give the functional form of the background component of the model LF. The same colour-cut is imposed on the background field as was chosen for the object or 'signal' field. By calculating the number of stars in both the signal and background fields and dividing by their respective areas, the expected ratio of the two components in the signal field's LF is determined and the components are scaled accordingly in the model LF generated. An MCMC algorithm is then used to find the parameters of the model which best fit the data and posterior distributions of these parameters are plotted. The object's distance posterior distribution can then be determined by sampling the distribution in the tip magnitude along with those for the uncertainty in the absolute magnitude of the tip and the extinction. This is done using another, purpose-written program, a version of which can be found in Appendix C ('Multi MCMC Result Plotter.f95'). ----------------------------------------------------------------------------- t i p mag : " , " + s i g m a : " , " -s i g m a : " ! WRITE ( 3 , ' ( 3 F10 . 3 ) ' ) t i p r e c , t i p p s i g m a , t i p m s i g m a ! WRITE ( 3 , ' ( 2 a11 ) ' ) " f : " , " s i g m a : " ! WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) f r e c , f s i g m a ! W r i t e r e s u l t s WRITE ( 3 , ' ( 2 a11 ) ' ) " a : " , " s i g m a : " ! t o f i l e WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) a r e c , a s i g m a ! WRITE ( 3 , * ) " D i s t a n c e =" , REAL( t i p k p c ) , " kpc " ! WRITE ( 3 , * ) " E r r o r = +" , k p c p e r r , " kpc -" , k p c m e r r , " kpc " ! END PROGRAM B a y e s i a n T R G B s a t e l l i t e !- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 

! S h i f t t h e a r r a y i n s t e p s o f 1 u n t i l t h e f i r s t e l e m e n t d o e s n o t c o n t a i n a z e r o s h i f t l o o p : do

x t = c s h i f t ( x t , 1 ) y t = c s h i f t ( y t , 1 ) i f ( y ta u s s i a n K e r n e l P r i n t ! P r i n t s G a u s s i a n K e r n e l a t g i v e n m a g n i t u d e USE G l o b a l IMPLICIT NONE REAL * 8 : : f u n c i CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( -5 . 5 * REAL( f u n c i ( t ) ) , 5 . 5 * REAL( f u n c i ( t ) ) , 0 . , 1 . 1 * MAXVAL(REAL( k e r n e l ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( 2 * ghw +1 , REAL( k e r n e l ( : , 1 ) ) , REAL( k e r n e l ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' M a g n i t u d e o f f s e t ' , ' S t r e n g t h ' , ' ' ) CALL pgend END SUBROUTINE G a u s s i a n K e r n e l P r i n t

i s q , f u n c s ) CALL B G D a t a H i s t END SUBROUTINE S V D F i t t e r !------------------------------------------------------------------------------- SUBROUTINE B G D a
f i t LikeB = l o g L r = 1 0 * * ( LikeB -LikeA ) end IF CALL random number ( randnum3 ) ! IF ( i t . l t . n i t ) THEN ! IF ( randnum3 . l e . r ) THEN ! x1 ( i t +1) = p ( 1 ) ; x2 ( i t +1) = p ( 2 ) ; x3 ( i t +1) = p ( 3 ) ! l i k e A = l i k e B ! D

e c i d e w h e t h e r ELSE ! t o t a k e s t e p x1 ( i t

+1) = x1 ( i t ) ; x2 ( i t +1) = x2 ( i t ) ; x3 ( i t +1) = x3 ( i t ) ! o r n o t l i k e A = l i k e A ! END IF ! END IF ! p o s t y 1 ( INT ( ( x1 ( i t ) -1 8 . d0 ) * 10 * binspm + 1 ) ) = & ! p o s t y 1 ( INT ( ( x1 ( i t ) -1 8 . d0 ) * 10 * binspm + 1 ) ) + 1 . d0 ! p o s t y 2 ( INT ( x2 ( i t ) * ( n b i n s -1 ) ) + 1 ) = & ! G e n e
DO i = 1 , 1 0 * ( n b i n s -1) +1 ! p o s t x 1 ( i ) = 1 8 . d0 + (REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ! END DO ! ! DO i = 1 , n b i n s ! x-v a l u e s o f p o s t e r i o r p o s t x 2 ( i ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! h i s t o g r a m s c r e a t e d a b o v e END DO ! ! DO i = 1 , 2 * n b i n s -1 ! p o s t x 3 ( i ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! END DO ! END SUBROUTINE MCMC !------------------------------------------------------------------------------- SUBROUTINE P o s t e
!------------------------------------------------------------------------------- SUBROUTINE C o n v o l u t i o n ! C o n v o l v

e s i n i t i a l model w i t h a G a u s s i a n k e r n e l Use G l o b a l ! whose w i d t h i s e q u a l t o t h e p h o t o m e t r i c e r r o r IMPLICIT NONE

! and h e n c e e x p a n d s w i t h i n c r e a s i n g m a g n i t u d e cmodel = 0 . d0 DO i = 1 , n b i n s t = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) ! C o n v e r t b i n number t o m a g n i t u d e cmodel ( i , 1 ) = t ! T h i s t h e n d e r i v e s t h e c u r r e n t CALL G a u s s i a n K e r n e l ! w i d t h o f t h e G a u s s i a n k e r n e l DO j = -ghw , ghw , +1 ! IF ( i . g t . ghw . and . i . l t . n b i n s

-ghw ) THEN ! C o n v o l v e cmodel ( i +j , 2 ) = cmodel ( i +j , 2 ) + k e r n e l ( ghw+ j + 1 , 2 ) * model ( i , 2 ) ! model w i t h END IF ! g a u s s i a n END DO ! END DO DO i = n b i n s , f l i m B i n s +1 , -1 ! S e t t h e f a i n t l i m i t cmodel ( i , 2 ) = 0 . d0 ! o f t h e f i n a l c o n v o l v e d END DO ! model a t f l i m . c m o d n b i n s = f l i m B i n s ! N o
r m a l i z e t h e c o n v o l v e d model cmodel ( : , 2 ) = cmodel ( : , 2 ) /SUM( cmodel ( : , 2 ) , mask = cmodel ( : , 1 ) . ge . b l i m ) ! Note t h e a b o v e s t e p i s v e r y i m p o r t a n tn o r m a l i z a t i o n must o n l y be o v e r t h e ! r a n g e o f m a g n i t u d e s i n t h e ' d a t a ' a r r a yi . e . down t o mlim -> n o t r i g h t t h e ! way t o 18 u n l e s s mlim = 1 8 . T h i s was a ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ! S c a l e bfm t o match h i s t o g r a m !-------------------------P l o t s b e s t f i t model o v e r f i n e h i s t o g r a m s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / m o d e l f i t v s d a t a f i n e . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv (REAL( b l i m ) , REAL( f l i m ) , 0 . , 1 . 1 * MAXVAL( r e a l ( h i s t o f i n e ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( n b i n s , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( h i s t o f i n e ( : , 2 ) ) , . f a l s e . ) CALL p g s c i ( 2) CALL p g s l w ( 5 ) CALL p g l i n e ( n b i n s , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) ) CALL p g s c i ( 1 

d i f f i c u l t bug t o f i n d ! END SUBROUTINE C o n v o l u t i o n !-

d0 ! below ! F o r g r a p h i n g p u r p o s e s , t h e l a s t b i n o f t h e c o a r s e h i s t o g r a m i s d o u b l e d s i n c e ! t h i s b i n l i e s h a l f o u t s i d e t h e r a n g e o f i n t e r e s t and s o i s d e p l e t e d by ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g o n l y and h a s no b e a r i n g on t h e ! d e t e r m i n e d b e s t f i t model . ! | | P l o t B e s t F i t Model

' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend END SUBROUTINE D a t a H i s t !------------------------------------------------------------------------------- SUBROUTINE LogLike ! G e n e

r a t e s t h e l o g o f t h e l i k e l i h o o d f n USE G l o b a l ! -g i v e s t h e l i k e l i h o o d o f t h e t i p b e i n g a t IMPLICIT NONE

! e a c h m a g n i t u d e g i v e n t h e d a t a s e t l o g L = 0 . d0 ----------------------------------------------------------------------------- ! f s i g m a = 0 . 5 d0 * ( f p l u s i gf m i n s i g ) ! Hence c a l c u l a t e s 1 s i g m a e r r o r a s i g m a = 0 . 5 d0 * ( a p l u s i ga m i n s i g ) ! f o r f and a k p c m e r r = t i p k p c * 1 0 0 . d0 * * ( t i p m s i g m a / 1 0 . d0 ) -t i p k p c ! minus t i p e r r o r i n kpc k p c p e r r = t i p k p c * 1 0 0 . d0 * * ( t i p p s i g m a / 1 0 . d0 ) -t i p k p c ! p l u s t i p e r r o r i n kpc END SUBROUTINE TipAndSigma !- ----------------------------------------------------------------------------- ! i n c o l o u r -m a g n i t u d e s p a c e IMPLICIT NONE i n t e g e r MAXPT, i p o l i n t e g e r NPT ggr , N P T s p a t i a l parameter (MAXPT=100) r e a l * 4 XCOL ggr (MAXPT) , YMAG ggr (MAXPT) r e a l * 4 X s p a t i a l (MAXPT) , Y s p a t i a l (MAXPT) l o g i c a l r e f i n e C M D s e l g g r , r e f i n e s p a t i a l s e l ! p a r a m e t e r ( r e f i n e C M D s e l g g r = . t r u e . ) parameter ( r e f i n e C M D s e l g g r = . f a l s e . ) ! p a r a m e t e r ( r e f i n e s p a t i a l s e l = . t r u e . ) parameter ( r e f i n e s p a t i a l s e l = . f a l s e . ) l o g i c a l i n p o l y e x t e r n a l i n p o l y n p t g g r =0 i f ( r e f i n e C M D s e l g g r ) t h e n c a l l p g s l s ( 2 ) c a l l pgmove ( 0 . 2 , 2 6 . 0 ) c a l l pgdraw ( 0 . 2) c a l l p g s l w ( 5 ) c a l l p g l i n e ( NPT ggr , XCOL ggr , YMAG ggr ) c a l l p g s c i ( 1 ) c a l l p g s l w ( 1)

DO i = 1 ,
REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p m s i g m a = t i p r e c -t i p m s i g m a ! e x i t ! END IF ! END DO ! t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! p c o u n t s = p c o u n t s + p o s t y 1 ( i ) ! END DO ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s p o s i t i v e
f u n c i , m, c1 , c2 , c3 c1 = 0 . 0 0 1 c3 = l o g ( 0 . 2 4 ) -l o g ( 0 . 1 1 ) c2 = c3 * 2 5 . 0 -l o g ( 0 . 2 4 ) f u n c i = c1 + exp ( c3 * m -c2 ) END FUNCTION !--------------------------R
end i f !------------------Make c o l o u r c u t t o S i g n a l F i e l d ------------------ j =0 ! DO i = 1 , n d a t a
! Makes new IF ( i n p o l y ( g m i n i ( i ) , m a g i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN! a r r a y s f o r IF ( m a g i ( i ) . l e . f l i m .AND. m a g i ( i ) . ge . b l i m ) THEN ! i and g-i j = j +1 ! c o n t a i n i n g m a g i p o l y ( j ) = m a g i ( i )

! o n l y s t a r s g m i n i p o l y ( j ) = g m i n i ( i ) -----------------------------------------l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) ! Used by P o l y S e l e c t s u b r o u t i n e i m p l i c i t none r e a l * 4 x , y i n t e g e r np r e a l * 4 xp ( np ) , yp ( np ) r e a l * 4 t i n y , xs , xe , ys , ye parameter ( t i n y = 1 . e -5) r e a l * 4 simag , f i m a g e x t e r n a l f i m a g i n t e g e r j s i m a g = 0 . 0 do j =1 , np i f ( j . l t . np ) t h e n xe=xp ( j +1)

! w i t h i n END IF ! p o l y g o n END IF ! END DO ! n d a t a 2 = j ! New number o f s t a r s i n d a t a s e t a f t e r c o l o u r c u t !------------------Make c o l o u r c u t t o Bckgrnd F i e l d ----------------- j =0 ; k = 0 ! DO i =
x s=xp ( j ) ye=yp ( j +1) y s=yp ( j ) e l s e xe=xp ( 1 ) x s=xp ( j ) ye=yp ( 1) y s=yp ( j ) end i f s i m a g=s i m a g+ f i m a g ( x , xs , xe , y , ys , ye ) end do i f ( a b s ( s i m a g ) . g t . t i n y ) t h e n i n p o l y = . t r u e . e l s e i n p o l y = . f a l s e . ------------------------------------------------------------------------------!-----------------------------L ----------------------------- REAL * 8 : : t i p r e c , t i p o f f s e t , t i p s i g m a , T o f f s e t k p c , T s i g m a k p c REAL * 8 : : f o f f s e t , t i p k p c , k p c e r r , f s i g m a , a o f f s e t , a s i g m a REAL * 8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s REAL * 8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , a m i n s i g , a p l u s i g REAL * 8 : : x1 ( n i t ) , x2 ( n i t ) , x3 ( n i t ) , p ( 3 ) , t i m e ( n i t ) , r REAL * 8 : : p o s t y 1 ( 1 

end i f end !------------------------------------------- r e a l * 4 f u n c t i o n f i m a g ( x0 ,

i b p r e s s A l g o r i t h m s -

END MODULE G l o b a l !------------------------------------------------------------------------------- PROGRAM MCMCTRGBTester2 ! M a s t e r p r o g r a m USE G l o b a l IMPLICIT NONE mm = IARGC ( ) IF (mm==4) THEN ! CALL GETARG( 1 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) m a g t i p ! CALL GETARG( 2 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) a ! CALL GETARG( 3 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) n d a t a
! I n d i c a t e s t h e a r g u m e n t s t o be CALL GETARG( 4 , a r g v )

! s e t i n t h e command l i n e READ ( a r g v , * , ! G e n e r a t e t e s t i d e n t i f y i n g c h a r a c t e r s t r i n g WRITE ( ch4 , * ) ' 0 ' ! t o become f i l e name u s i n g m a g t i p , n d a t a and f ELSE ! e . g . ' MCMC Test / T 20 . 5 -0 .3 - ----------------------------------------------------------------------------- ------------------------------------------------------------------------------!-----------------------------L REAL : : n d a t a ( 1 0 0 0 ) , n d a t a a c t u a l ( 1 0 0 0 ) , f ( 1 0 0 0 ) , o f f m a g ( 1 0 0 0 ) , v REAL : : o f f k p c ( 1 0 0 0 ) , s i g m a g ( 1 0 0 0 ) , s i g k p c ( 1 0 0 0 ) , temp , X1 , X2 , Y1 , Y2 REAL : : ALEV( 1 0 0 ) , TR ( 6) , s t a r s ( 1 ! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i = i +1 READ ( 1 , * , IOSTAT = i o s ) n d a t a ( i ) , f ( i ) , s i g k p c ( i ) , o f f k p c ( i ) , temp , temp , temp i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO

1 0 0 0 -0 . 2 ' WRITE ( ch4 , * ) f ! END IF ! i n p u t s ( 1 ) = m a g t i p i n p u t s ( 2 ) = a i n p u t s ( 3 ) = n d a t a i n p u t s ( 4 ) = f n d a t a 2 = 0 WRITE ( t e
DO j = 1 , 11 ! DO k = 1 , 9 ! A1 ( j , k ) = s i g k p c ( ( ( j -1) * 9 ) +k ) ! IF ( A1 ( j , k ) . eq . 0 . d0 ) THEN ! A1 ( j , k ) = 0 . 0 0 1 d0 ! END IF ! P u t s r e s u l t s A2 ( j , k ) = o f f k p c ( ( ( j -1) * 9 ) +k ) ! IF ( A2 ( j , k ) . eq . 0 . d0 ) THEN ! i n t o n d a t a x f A2 ( j , k ) = 0 . 0 0 1 d0 ! END IF
! a r r a y s f o r s t a r s ( j , k ) = n d a t a ( ( ( j -1) * 9 ) +k ) ! n o i s e ( j , k ) = f ( ( ( j -1) * 9 ) +k ) ! e a s y p l o t t i n g --------------------------------------------------------------------CALL p g b e g i n ( 0 , 'MF TRGBSigmaMCMC . p s / CPS ' , 1 , 1 ) ! G e n e r a t e s s i g m a p l o t CALL pgenv ( 0 . 8 , 4 . 5 , 0 . , 1 . , 0 , 1 0 ) ! D e t e r m i n e s h a d e o f g r e y CALL p g s c r ( 3 , g r e y , g r e y , g r e y ) CALL p g p i x l ( x , 1 1 , 9 , i , i , j , j , X1 , X2 , Y1 , Y2 ) ! make p i x e l s CALL p g s c i ( 2 ) CALL p g p t x t ( LOG10 ( s t a r s ( i , j ) ) , n o i s e ( i , j ) , 0 . , 0 . 5 , C1 ( i , j ) ) ! p u t v a l u e i n p i x e l s END DO END DO CALL p g s c i ( 1 ------------------------------------------------------------------- ! D e t e r m i n e s h a d e o f g r e y CALL p g s c r ( 3 , g r e y , g r e y , g r e y ) CALL p g p i x l ( x , 1 1 , 9 , i , i , j , j , X1 , X2 , Y1 , Y2 ) ! make p i x e l s CALL p g s c i ( 2) CALL p g p t x t ( LOG10 ( s t a r s ( i , j ) ) , n o i s e ( i , j ) , 0 . , 0 . 5 , C2 ( i , j ) ) ! p u t v a l u e i n p i x e l s END DO END DO CALL p g s c i ( 1 ------------------------------------------------------------------- -------------------G e n e r a l Program P a r a m e t e r s - ------------------- ! ------A d d -------------------------When f i s known-------------------------- ------------------------------------------------------------------------------PROGRAM B a y e s i a n T R G B s a t e l l i t e ! M a s t e r p r o g r a m

WRITE ( C1 ( j , k ) , * ) NINT ( A1 ( j , k ) ) ! WRITE ( C2 ( j , k ) , * ) NINT ( A2 ( j , k ) ) ! END DO ! END DO ! !-
xmin = MINVAL( A1 ) xmax = MAXVAL( A1 ) DO i = 1 , 11 DO j = 1 , 9 IF (MOD( i , 3 ) . eq . 1 ) THEN ! X1 = LOG10 ( 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! X2 = LOG10 ( 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 . 1 3 ! END IF ! G e n e
USE G l o b a l IMPLICIT NONE mm = IARGC ( ) IF (mm==16) THEN ! CALL GETARG( 1 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) f i e l d ! CALL GETARG( 2 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) RAh ! CALL GETARG( 3 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) RAm ! CALL GETARG( 4 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) RAs ! CALL GETARG( 5 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) DecD ! CALL GETARG( 6 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) DecM ! CALL GETARG( 7 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) DecS ! CALL GETARG( 8 , a r g v )
! READ ( a r g v , * , i o s t a t = i o s ) e l l i p ! I n d i c a t e s t h e a r g u m e n t s t o be CALL GETARG( 9 , a r g v )

! s e t i n t h e command l i n e READ ( a r g v , * , i o s t a t t i p mag : " , " + s i g m a : " , " -s i g m a : " ! WRITE ( 3 , ' ( 3 F10 . 3 ) ' ) t i p r e c , t i p p s i g m a , t i p m s i g m a ! WRITE ( 3 , ' ( 2 a11 ) ' ) " f : " , " s i g m a : " ! WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) f r e c , f s i g m a ! W r i t e r e s u l t s WRITE ( 3 , ' ( 2 a11 ) ' ) " a : " , " s i g m a : " ! t o f i l e WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) a r e c , a s i g m a ! WRITE ( 3 , * ) " D i s t a n c e =" , REAL( t i p k p c ) , " kpc " !

= i o s ) HLR ! CALL GETARG( 1 0 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) PA ! CALL GETARG( 1 1 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) c r o w d e d r a d ! CALL GETARG( 1 2 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) o u t e r r a d ! CALL GETARG( 1 3 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) s i g f i e l d r a d i u s ! CALL GETARG( 1 4 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) b g l o w x i ! CALL GETARG( 1 5 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) b g u p x i ! CALL GETARG( 1 6 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) c o l c u t ! ELSE ! WRITE( * , * ) "You must e n t e
Chapter Four Programs WRITE ( 3 , * ) " E r r o r = +" , k p c p e r r , " kpc -" , k p c m e r r , " kpc " ! END PROGRAM B a y e s i a n T R G B s a t e l l i t e !- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- dim , c l s i , i f i e l d t , x k i t , e t a t , & ! from b i n a r y F e H p h o t a l a n t , F e H p h o t t , d i f f t i p t , E BV t , i a c c t ! f o r m a t d a t a f i l e IF ( i o s . ne . 0 ) e x i t g=g -3 . 

i = i + 1 IF ( i . g t . n d a t a m a x ) e x i t mag g ( i ) =g ! m a g i ( i ) =im ! g m i n i ( i ) =gmi
! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o s i g n a l a r r a y s x k i ( i ) = x k i t ! e t a ( i ) = e t a t ! IF ( i f i e l d t . ge . 0 ) THEN ! t r u e s t a r ( i ) = . t r u e .

! D i s t i n g u i s h b e t w e e n ELSE

! r e a l d a t a and a r t i f i c i a l t r u e s t a r ( i ) = . f a l s e . ----------------------------------------------------------------------------- ---------------------S i g n a l -F i e l d ------------------------s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / s i g f i e l d . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv (MAXVAL( x k i , mask = x k i . ne . 0 . ) , MINVAL( x k i , mask = x k i . ne . 0 . ) , & MINVAL( e t a , mask = e t a . ne . 0 . ) , MAXVAL( e t a , mask = e t a . ne . 0 . ) , 1 , 0 ) CALL p g s l w ( 3) ----------------------S i g n a l -CMD-------------------------s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / s i g c m d . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , & MAXVAL( m a g i ) , MINVAL( mag i , mask = m a g i . ne . 0 . ) , 0 , 0 ) CALL p g s l w ( 3) ---------------------Bckgrnd -F i e l d ------------------------s ' / bg cmd . j p g ' c a l l s y s t e m ( command ) !--------------I n p u t s e l e c t e d d a t a i n t o ' d a t a '----------s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / i a n d g i n c u t . d a t ' OPEN( 7 , f i l e =TRIM ( ADJUSTL ( s t r i n g ) ) , s t a t u s = ' unknown ' ) WRITE( 7 , * ) " i g number o f s t a r s : " , n d a t a 2 d a t a = 0 . d0 ; x k i = 0 . d0 ; e t a = 0 . d0 ; d b l i m = 1 0 0 . d0 ; d f l i m = 0 . d0 ( 2 F16 . 5 ) ' ) m a g i p o l y ( i ) , m a g g p o l y ( i ) END DO !-------------S i g n a l -F i e l d a f t e r c o l o u r c u t - --------------s ! w e i g h t i n t h i s s t e p . IF ( w e i g h t ( i ) . g t . maxweight ) THEN ! maxweight = w e i g h t ( i )

DO i = 1 , n d a t a IF ( t r u e s t a r ( i ) ) THEN CALL p g p t ( 1 , x k i ( i ) , e t a ( i ) , -1) ELSE CALL p g p t ( 1 , x k i ( i ) , e t a ( i ) , 2 2 
DO i = 1 , n d a t a IF ( t r u e s t a r ( i ) ) THEN CALL p g p t ( 1 , g m i n i ( i ) , m a g i ( i ) , -1) ELSE CALL p g p t ( 1 , g m i n i ( i ) , m a g i ( i ) , 2 2 5 ) END IF END DO CALL p g s l w ( 1 ) CALL p g l a b ( ' ( g -i ) \ d0 \ u ' , ' i \ d0 \ u ' , '
DO i = 1 , n d a t a 2 d a t a ( i ) = m a g i p o l y ( i ) x k i ( i ) = x i p o l y ( i ) e t a ( i ) = e t a p o l y ( i ) IF ( d a t a ( i ) . l t . d b l i m ) THEN d b l i m = d a t a ( i ) END IF IF ( d a t a ( i ) . g t . d f l i m ) THEN d f l i m = d a t a ( i ) END IF WRITE ( 7 , '

! | | T h i s i s c a l c u l a t e d by i n s u r i n g t h e t o t a l number o f s t a r s u n d e r t h e c u r v e m a t c h e s t h e number o f s t a r s i n e l l i p s e a r e a ! Where t h e r e i s an i n n e r o r o u t e r c u t o f f r a d i u s , i t i s n o t a b s o l u t e l y n e c e s s a r y t o a c c o u n t f o r t h i s i n t h e s c a l i n g ! a s t h e e x p o n e n t i a l p r o f i l e s h o u l d a c c o u n t f o r t h e v a r i a t i o n s i n d e n s i t y a c r o s s a n n u l i b u t f o r c o m p l e t e n e s s , s c a l i n g i s a c h i e v e d ! by o n l y m e a s u r i n g t h e d e n s i t y and number o f s t a r s i n t h e a n n u l u s u s e d ( t h i s becomes v e r y i m p o r t a n t i f a huge HLR i s s e t t o remove ! w e i g h t i n g a s t h e p r o f i l e w i l l no l o n g e r a c c o u n t f o r t h e v a r i a t i o n i n d e n s i t y i n t h i s c a s e ! )

DO i = 1 , n d a t a 2 ! IF ( t
! D e t e r m i n e maximum w e i g h t f o r u s e i n END IF

! p l o t t i n g t h e w e i g h t e d LF END DO ! ! | |

A l l s u b s e q u e n t l i n e s i n t h i s s u b r o u t i n e a r e f o r p l o t t i n g t h e d e n s i t y f u n c t i o n ! \ / " d e n s i t y . p s " and f o r c h e c k i n g t h e s c a l i n g r e l a t i v e t o t h e d a t a . D e n s i t y = 0 . e0 maxa = s i g f i e l d r a d i u s DO i = 1 , n d a t a 2 ! C a l c u l a t e number o f s t a r s i n e a c h d e n s i t y b i n ( i . e . e l l i p t i c a l a n n u l u s )

IF ( s c a l e d a ( i ) . w e i g h t s u m = w e i g h t s u m + w e i g h t p l o t ( i , 2 ) * ( ( p i * ( w e i g h t p l o t ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) -( p i * ( w e i g h t p l o t ( i -1 , 1 ) * * 2 . e0 ) * ( 1 . e0e l l i p ) ) ) END IF END DO w e i g h t p l o t ( : , 2 ) = w e i g h t p l o t ( : , 2 ) + ( b g s t a r s / b g a r e a ) WRITE ( 3 , * ) " s t a r s i n model / s t a r s i n l a r g e s t f i e l d e l l i p s e : " , w e i g h t s u m / D e n s i t y s u m WRITE ( 3 , * ) " s t a r s i n a n n u l u s / s t a r s i n l a r g e s t f i e l d e l l i p s e : " , & ( ( ( e l l i p s e s t a r s / e l l i p s e a r e a ) -( b g s t a r s / b g a r e a ) ) * e l l i p s e a r e a ) / D e n s i t y s u m CALL W e i g h t e r P l o t s END SUBROUTINE W e i g h t e r !- ----------------------------------------------------------------------------- ----------------------P ------------------S i g n a l -CMD-( w e i g h t e d )------------------s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / s i g c m d w . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) ! CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , & MAXVAL( m a g i ) , MINVAL( mag i , mask = m a g i . ne . 0 . ) , 0 , 0 ) ! I f s t a r i s a r t i f i c i a l . . . CALL p g s l w ( 1) CALL p g s c i ( 2 1 ) CALL p g p t ( 1 , REAL( g m i n i p o l y ( i ) ) , REAL( d a t a ( i ) ) , 2 2 5 ) END IF END DO CALL p g s c r ( 1 , 0 . , 0 . , 0 . ) CALL p g s c r ( 2 , 1 . , 0 . , 0 . ) CALL p g s l w ( 3) CALL p g s c i ( 1) CALL p g p t ( n d a t a , g m i n i , mag i , -1) CALL p g s l w ( 1) ! s t a r l i e s ont h i s e q u a t e s t o c i r c u l a r r a d i u s . END DO s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / s i g c m d u s e d . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) ! CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , & MAXVAL( m a g i ) , MINVAL( mag i , mask = m a g i . ne . 0 . ) , 0 , 0 ) ----------------------------------------------------------------------------- 

DO i = 1 , 20 ! CALL p g s c r ( i , 0 . 5 * ( SIN ( 1 . 0 * REAL( ( i +10) * p i / 1 0 ) ) + 1 . ) , & ! 0 . 5 * ( SIN ( 1 . 0 * REAL( ( i -5) * p i / 1 0 ) ) + 1 . ) , & ! A s s i g n c o l o u r s t o i n d i c i e s 0 . 5 * ( SIN ( 1 . 0 * REAL( ( i ) * p i / 1 0 ) ) + 1 . ) ) ! END DO ! DO i = 1 , n d a t a 2 lw = n i n t ( ( w e i g h t ( i ) / maxweight ) * 2 0 . d0 ) + 1 CALL p g s l w ( lw +5) CALL p g s c i ( 2 2 -lw ) IF ( t
CALL p g l a b ( ' ( g -i ) \ d0 \ u ' , ' i \ d0 \ u ' ,
DO i = 1 ,

e0 ! S h i f t t h e a r r a y i n s t e p s o f 1 u n t i l t h e f i r s t e l e m e n t d o e s n o t c o n t a i n a z e r o s h i f t l o o p : do

x t = c s h i f t ( x t , 1 ) ----------------------------------------------------------------------------- ----------------------P ----------------------------------------------------------------------------- ( 6 F16 . 5 ) ' ) t i m e ( i t ) , x1 ( i t , cn ) , x2 ( i t , cn ) , x3 ( i t , cn ) , LikeA ( cn ) , LikeB ( cn ) WRITE ( 8 ) t i m e ( i t ) , x1 ( i t , cn ) , x2 ( i t , cn ) , x3 ( i t , cn ) , LikeA ( cn ) , LikeB ( cn ) ! / \ P r i n t s c u r r e n t p a r a m e t e r v a l u e s and t h e i r l i k e l i 

y t = c s h i f t ( y t , 1 ) i f ( y t ( 1 ) > 0 . 1 ) e x i t s h i f t l o o p end do s h i f t l o o p ntmp = 0 c o u n t l o o p : do i = 1 , n d a t i f ( y t ( i ) > 0 .
- SUBROUTINE B G D a t a H i s t ! P r o d u c e s p l o t o f b a c k g r o u n d f i e l d l u m i n o s i t y USE G l o b a l ! f u n c t i o n and p o l y n o m i a l f i t IMPLICIT NONE bfm = 0 . d0 DO i = 1 , n d a t DO j = 1 , np bfm ( i ) = bfm ( i ) + ay ( j ) * ( xa ( i ) -2 1 . ) * * ( j -1) END DO END DO !-
( n b i n s -1 ) ) + 1 ) = & ! p o s t y 3 ( INT ( x3 ( i t , 1 ) * ( n b i n s -1 ) ) + 1 ) + 1 . d0 ! WRITE ( 2 , '
( i t . l t . n i t ) THEN ! IF ( randnum3 . l e . r ) THEN ! x1 ( i t +1 , cn ) = p ( 1 ) ! x2 ( i t +1 , cn ) = p ( 2 ) ! x3 ( i t +1 , cn ) = p ( 3 ) ! D e c i d e l i k e A ( cn ) = l i k e B ( cn ) ! w h e t h e r ELSE ! t o t a k e x1 ( i t +1 , cn ) = x1 ( i t , cn ) ! s t e p x2 ( i t +1 , cn ) = x2 ( i t , cn ) ! x3 ( i t +1 , cn ) = x3 ( i t , cn ) ! l i k e A ( cn ) = l i k e A ( cn ) ! END IF ! END IF END DO ! / \ RUN MULTIPLE ! | | MCMC CHAINS IF
( i t +1 , r a n d i n t ) ! p a r h o l d ( 2 ) = x2 ( i t +1 , r a n d i n t ) ! p a r h o l d ( 3 ) = x3 ( i t +1 , r a n d i n t ) ! p a r h o l d ( 4 ) = LikeA ( r a n d i n t ) ! x1 ( i t +1 , r a n d i n t ) = x1 ( i t +1 , r a n d i n t + 1 ) ! x2 ( i t +1 , r a n d i n t ) = x2 ( i t +1 , r a n d i n t + 1 )
! Swap t h e p a r a m e t e r x3 ( i t +1 , r a n d i n t ) = x3 ( i t +1 , r a n d i n t + 1 ) ! v a l u e s and LikeA ( r a n d i n t ) = LikeA ( r a n d i n t Best Combo ( 4) , Best Combo ( 5) , Best Combo ( 6) ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ------------------------------------------------------------------------------SUBROUTINE G a u s s i a n K e r n e l P r i n t ! P r i n t s G a u s s i a n K e r n e l a t g i v e n m a g n i t u d e USE G l o b a l IMPLICIT NONE REAL * 8 : : f u n c i CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( -5 . 5 * REAL( f u n c i ( t ) ) , 5 . 5 * REAL( f u n c i ( t ) ) , 0 . , 1 . 1 * MAXVAL(REAL( k e r n e l ( : , 2 , i ) ) ) , 0 , 0 ) CALL p g b i n ( 2 * ghw ( i ) +1 , REAL( k e r n e l ( : , 1 , i ) ) , REAL( k e r n e l ( : , 2 , i ) ) , . t r u e . ) CALL p g l a b ( ' M a g n i t u d e o f f s e t ' , ' S t r e n g t h ' , ' ' ) CALL pgend END SUBROUTINE G a u s s i a n K e r n e l P r i n t !- -----------------------------------------------------------------------------

DO i = 1 , 1 0 * ( n b i n s -1) +1 ! p o s t x 1 ( i ) = 1 8 . d0 + (REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ! END DO ! ! DO i = 1 , n b i n s ! x-v a l u e s o f p o s t e r i o r p o s t x 2 ( i ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! h i s t o g r a m s c r e a t e d a b o v e END DO ! ! DO i = 1 , 2 * n b i n s -1 ! p o s t x 3 ( i ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! END DO ! END SUBROUTINE MCMC ' / a v s f . j p g ' c a l l s y s t e m ( command ) END SUBROUTINE O t h e r P l o t s !-

-SUBROUTINE C o n v o l u t i o n ! C o n v o l v e s i n i t i a l model w i t h a G a u s s i a n k e r n e l

Use G l o b a l ! whose w i d t h i s e q u a l

t o t h e p h o t o m e t r i c e r r o r IMPLICIT NONE

! and h e n c e e x p a n d s w i t h i n c r e a s i n g m a g n i t u d e cmodel = 0 . d0 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 

DO i = 1 , n b i n s cmodel ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) DO j = -ghw ( i ) , ghw ( i ) , +1 ! IF ( i . g t . ghw ( i ) . and . i . l t . n b i n s -ghw ( i ) ) THEN ! C o n v o l v e cmodel ( i +j , 2 ) = cmodel ( i +j , 2 ) + k e r n e l ( ghw ( i ) + j + 1 , 2 , i ) * model ( i , 2 ) ! model w i t h END IF ! g a u s s i a n END DO ! END DO DO i = n b i n s , f l i m B i n s +1 , -1 ! S e t t h e f a i n t l i m i t cmodel ( i , 2 ) = 0 . d0 ! o f t h e f i n a l c o n v o l v e d END DO ! model a t f l i m . c m o d n b i n s = f l i m B i n s ! N o
l i m -> n o t r i g h t t h e ! way t o b l i m -1 . d0 . T h i s was a d i f f i c u l t bug t o f i n d ! END SUBROUTINE C o n v o l u t i o n !-
f i t s i g f u n c t i o n CALL C o n v o l u t i o n ! bfm = 0 . d0 ; bg = 0 . d0 ! bfm = cmodel ( : , 2 ) * ( 1 . d0 -f ) ! bfm = b e s t f i t s i g n a l f u n c t i o n bg = n o i s e * f ! bg = b a c k g r o u n d f u n c t i o n bfm = bfm + bg ! Add
DO i = 1 , INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 w h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( 0 . 2 5 * binspm ) END DO DO i = 1 , n d a t a 2 ! IF ( t
DO i = 1 , 1 0 * ( n b i n s -1) +1 ! IF ( p o s t y 1 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 1 ( i ) ! F i n d b e s t f i t TRGB v a l u e t i p r e c = p o s t x 1 ( i ) ! END IF ! END DO ! PPD peak = 0 . d0 ! DO i = 1 , n b i n s ! IF ( p o s t y 2 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 2 ( i ) ! F i n d b e s t f i t f v a l u e f r e c = p o s t x 2 ( i ) ! END IF ! END DO ! PPD peak = 0 . d0 ! DO i = 1 , 2 * n b i n s -1 ! IF ( p o s t y 3 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 3 ( i ) ! F i n d b e s t f i t a v a l u e a r e c = p o s t x 3 ( i ) ! END IF ! END DO ! t i p k p c = ( 1 0 0 . d0 * * ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from ! t i p m a g n i t u d e i n kpc t i p c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + p o s t y 1 ( i ) ! END DO ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 , -1 ! t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i )
! F i n d s n e g a t i v e one s i g m a IF ( t i p c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p m s i g m a = ( (

REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p m s i g m a = t i p r e c -t i p m s i g m a ! e x i t ! END IF ! END DO
! IF ( f c o u n t s . ge . 0 . 1 5 9 * n i t . and . d1 . eq . 0 ) 

THEN ! f m i n s i g = p o s t x 2 ( i ) ! d1 = 1 ! END IF ! IF ( f c o u n t s . ge . 0 .
( i ) ! d4 = 1 ! END IF ! END DO ! f s i g m a = 0 . 5 d0 * ( f p l u s i g -f m i n s i g )
! Hence c a l c u l a t e s 1 s i g m a e r r o r a s i g m a = 0 . 5 d0 * ( a p l u s i ga m i n s i g ) ! f o r f and a k p c m e r r = t i p k p c * 1 0 0 . d0 * * ( t i p m s i g m a / 1 0 . d0 ) -t i p k p c ! minus t i p e r r o r i n kpc k p c p e r r = t i p k p c * 1 0 0 . d0 * * ( t i p p s i g m a / 1 0 . d0 ) -t i p k p c ! p l u s t i p e r r o r i n kpc END SUBROUTINE TipAndSigma !- ----------------------------------------------------------------------------- ! i n c o l o u r -m a g n i t u d e s p a c e IMPLICIT NONE i n t e g e r MAXPT, i p o l i n t e g e r NPT ggr , N P T s p a t i a l parameter (MAXPT=100) r e a l * 4 XCOL ggr (MAXPT) , YMAG ggr (MAXPT) r e a l * 4 X s p a t i a l (MAXPT) , Y s p a t i a l (MAXPT) l o g i c a l r e f i n e C M D s e l g g r , r e f i n e s p a t i a l s e l ! p a r a m e t e r ( r e f i n e C M D s e l g g r = . t r u e . ) parameter ( r e f i n e C M D s e l g g r = . f a l s e . ) ! p a r a m e t e r ( r e f i n e s p a t i a l s e l = . t r u e . ) parameter ( r e f i n e s p a t i a l s e l = . f a l s e . ) l o g i c a l i n p o l y e x t e r n a l i n p o l y n p t g g r =0 i f ( r e f i n e C M D s e l g g r ) t h e n c a l l p g s l s ( 2 ) c a l l pgmove ( 0 . 2 , 2 6 . 0 ) c a l l pgdraw ( 0 . 2) c a l l p g s l w ( 5 ) c a l l p g l i n e ( NPT ggr , XCOL ggr , YMAG ggr ) c a l l p g s c i ( 1 ) c a l l p g s l w ( 1)

- FUNCTION f u n c i (m) ! T h i s f u n c t i o n f e e d s
f u n c i , m, c1 , c2 , c3 c1 = 0 . 0 0 1 c3 = l o g ( 0 . 2 4 ) -l o g ( 0 . 1 1 ) c2 = c3 * 2 5 . 0 -l o g ( 0 . 2 4 ) f u n c i = c1 + exp ( c3 * m -c2 ) END FUNCTION !--------------------------R
end i f !------------------Make c o l o u r c u t t o S i g n a l F i e l d ------------------ j =0 ! DO i = 1 , n d a t a ! IF ( i n p o l y ( g m i n i ( i )
, m a g i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN! IF ( m a g i ( i ) . l e . f l i m .AND. m a g i ( i ) . ge . b l i m ) THEN ! Makes new j = j +1 ! a r r a y s m a g i p o l y ( j ) = m a g i ( i ) ! c o n t a i n i n g m a g g p o l y ( j ) = mag g ( i )

! o n l y g m i n i p o l y ( j ) = g m i n i ( i ) ! s t a r s

Chapter Four Programs x i p o l y ( j ) = x k i ( i ) ! w i t h i n e t a p o l y ( j ) = e t a ( i ) ! p o l y g o n t r u e s t a r p o l y ( j ) = t r u e s t a r ( i )

! END IF ! END IF ! END DO ! n d a t a 2 = j ! New number o f s t a r s i n d a t a s e t a f t e r c o l o u r c u t !------------------Make c o l o u r c u t t o Bckgrnd F i e l d ----------------- j =0 ; k = 0 ! DO i = 1 , b g n d a t a ! IF ( i n p o l y ( b g g m i n i ( i ) , b g m a g i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN ! IF ( b g m a g i ( i ) . l e . 2 4 . d0 ) THEN ! Makes new IF ( b g m a g i ( i ) . l e . f l i m .AND. b g m a g i ( i ) . ge . b l i m ) THEN ! a r r a y s f o r k = k+1 ! i and g-i END IF ! c o n t a i n i n g j = j +1 ! o n l y b g m a g i p o l y ( j ) = b g m a g i ( i ) ! s t a r s b g m a g g p o l y ( j ) = bg mag g ( i ) ! w i t h i n b g g m i n i p o l y ( j ) = b g g m i n i ( i ) ! p o l y g o n END IF ! END IF ! END DO ! b g n d a t a 2 = j ; b g n d a t a 3 = k ! S t a r s i n b c k g r n d ; S t a r s i n b c k g r n d b e t w e e n b l i m & f l i m END SUBROUTINE P o l y S e l e c t !------------------------------------------- l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp )
! Used by P o l y S e l e c t s u b r o u t i n e i m p l i c i t none r e a l * 4 x , y i n t e g e r np r e a l * 4 xp ( np ) , yp ( np ) r e a l * 4 t i n y , xs , xe , ys , ye parameter ( t i n y = 1 . e -5) r e a l * 4 simag , f i m a g e x t e r n a l f i m a g i n t e g e r j s i m a g = 0 . 0 do j =1 , np i f ( j . l t . np ) t h e n xe=xp ( j +1)

x s=xp ( j ) ye=yp ( j +1) y s=yp ( j ) e l s e xe=xp ( 1 ) x s=xp ( j ) ye=yp ( 1 ) y s=yp ( j ) end i f s i m a g=s i m a g+ f i m a g ( x , xs , xe , y , ys , ye ) end do i f ( a b s ( s i m a g ) . g t . t i n y ) t h e n i n p o l y = . t r u e . e l s e i n p o l y = . f a l s e . end i f end !- -----------------------------------------r ----------------------------------------------------------------------------- 16. File Name for Colour-Cut Polygon # ! / u s r / b i n / p e r l s y s t e m ( " . / MF TRGB . e AndromedaIe 0 . 0 4 5 . 0 4 0 . 0 3 8 . 0 2 . 0 1 8 . 5 0 . 2 6 3 . 9 2 5 . 0 0 . 0 0 . 3 0 . 3 0 . 0 2 . 0 ANDI .CMD" ) ; # f i n a l p r i n t " AndromedaI done . \ n " ; s y s t e m ( " . / MF TRGB . e A n d r o m e d a I I e 1 . 0 1 6 . 0 2 6 . 9 3 3 . 0 2 6 . 0 1 . 9 0 . 1 3 5 . 0 2 7 . 0 0 . 0 0 . 4 0 . 4 5 . 0 8 . 0 ANDII .CMD" ) ; # f i n a l p r i n t " A n d r o m e d a I I done . \ n " ; s y s t e m ( " . / MF TRGB . e A n d r o m e d a I I I e 0 . 0 3 5 . 0 3 0 . 6 3 6 . 0 3 0 . 0 3 . 5 0 . 6 1 1 . 7 1 3 8 . 0 0 . 0 1 7 5 0 . 2 0 . 2 -2.5 0 . 5 ANDIII .CMD" ) ; # f i n a l p r i n t " A n d r o m e d a I I I done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaVe 1 . 0 1 0 . 0 1 7 . 1 4 7 . 0 3 7 . 0 4 5 . 4 0 . 2 7 1 . 6 4 1 . 0 0 . 0 1 1 0 . 2 0 . 2 3 . 0 6 . 0 ANDV.CMD" ) ; # f i n a l p r i n t " AndromedaV done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaIXe 0 . 0 5 2 . 0 5 2 . 5 4 3 . 0 1 1 . 0 5 8 . 2 0 . 0 1 . 9 1 0 5 . 0 0 . 0 0 . 1 5 0 . 1 5 1 . 4 5 2 . 2 5 ANDIX .CMD" ) ; # f i n a l p r i n t " AndromedaIX done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXe 1 . 0 6 . 0 3 5 . 5 4 4 . 0 4 8 . 0 3 0 . 9 0 . 4 1 1 . 4 3 3 . 0 0 . 0 0 . 1 5 0 . 1 5 3 . 2 5 . 2 ANDX.CMD" ) ; # f i n a l p r i n t " AndromedaX done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXIe 0 . 0 4 6 . 0 1 9 . 6 3 3 . 0 4 8 . 0 8 . 6 0 . 0 4 0 . 7 4 3 . 0 0 . 0 0 . 1 5 0 . 1 5 -0.75 2 . 2 5 ANDXI .CMD" ) ; # f i n a l p r i n t " AndromedaXI done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXIIe 0 . 0 4 7 . 0 2 7 . 0 3 4 . 0 2 2 . 0 2 9 . 0 0 . 0 1 . 1 0 . 0 0 . 0 0 . 1 5 0 . 1 5 -0.5 2 . 5 ANDXII .CMD" ) ; # f i n a l p r i n t " AndromedaXII done . \ n " ; s y s t e m ( " . / MF TRGB . e A n d r o m e d a X I I I e 0 . 0 5 1 . 0 5 0 . 9 3 3 . 0 0 . 0 1 4 . 5 0 . 6 0 0 . 8 -25.0 0 . 0 0 . 1 5 0 . 1 5 0 . 4 3 . 4 ANDXIII .CMD" ) ; # f i n a l p r i n t " AndromedaXIII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXIVe 0 . 0 5 1 . 0 3 5 . 1 2 9 . 0 4 1 . 0 1 4 . 1 0 . 3 1 1 . 6 -7.0 0 . 0 0 . 2 0 . 2 1 . 0 3 . 0 ANDXIV .CMD" ) ; # f i n a l p r i n t " AndromedaXIV done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXVe 1 . 0 1 4 . 0 1 8 . 8 3 8 . 0 7 . 0 1 8 . 0 0 . 2 3 1 . 4 3 3 . 0 0 . 0 0 . 2 0 . 2 4 . 7 7 . 7 ANDXV.CMD" ) ; # f i n a l p r i n t " AndromedaXV done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXVIe 0 . 0 5 9 . 0 3 0 . 1 3 2 . 0 2 2 . 0 3 2 . 9 0 . 2 7 0 . 9 2 1 0 4 . 0 0 . 0 0 5 0 . 2 0 . 2 1 . 7 4 . 7 ANDXVI .CMD" ) ; # f i n a l p r i n t " AndromedaXVI done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXVIIe 0 . 0 3 7 . 0 6 . 5 4 4 . 0 1 9 . 0 2 0 . 1 0 . 3 6 1 . 3 1 2 1 . 0 0 . 0 0 . 2 0 . 2 -2.5 0 . 5 ANDXVII .CMD" ) ; # f i n a l p r i n t " AndromedaXVII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXVIIIe 0 . 0 2 . 0 1 6 . 0 4 5 . 0 5 . 0 3 3 . 2 0 . 1 5 0 . 7 2 9 1 . 0 0 . 0 0 . 1 0 . 1 -8.5 -6.0 ANDXVIII .CMD" ) ; # f i n a l p r i n t " AndromedaXVIII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXIXe 0 . 0 1 9 . 0 3 2 . 1 3 5 . 0 2 . 0 3 7 . 1 0 . 1 7 6 . 2 3 7 . 0 0 . 0 0 . 2 0 . 2 -7.5 -2.0 ANDXIX .CMD" ) ; p r i n t " AndromedaXIX done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXe 0 . 0 7 . 0 3 0 . 5 3 5 . 0 7 . 0 3 9 . 4 0 . 0 7 0 . 4 8 6 9 . 0 0 . 0 0 . 1 5 0 . 1 5 -8.3 -6.0 ANDXX.CMD" ) ; # f i n a l p r i n t " AndromedaXX done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXIe 2 3 . 0 5 4 . 0 4 6 . 8 4 2 . 0 2 8 . 0 1 6 . 9 0 . 2 3 4 . 2 -36.0 0 . 0 0 . 3 0 . 3 -9.5 -6.5 ANDXXI .CMD" ) ; # f i n a l p r i n t " AndromedaXXI done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXIIe 1 . 0 2 7 . 0 4 0 . 2 2 8 . 0 5 . 0 2 6 . 0 0 . 6 2 0 . 9 2 -65.0 0 . 0 0 . 0 8 0 . 0 8 1 0 . 2 1 3 . 2 ANDXXII .CMD" ) ; # f i n a l p r i n t " AndromedaXXII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXIIIe 1 . 0 2 9 . 0 2 0 . --------------------F o r r e a d i n g i n PAndAS d a t a --------------------INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t REAL * 4 : : x g t , y g t , g , dg , im , dim , x k i t , e t a t , F e H p h o t t , d i f f t i p t , E BV t REAL * 8 : : r a t , d e t REAL * 4 : : mag g ( n d a t a m a x ) , m a g i ( n d a t a m a x ) , x k i ( n d a t a m a x ) , e t a ( n d a t a m a x ) REAL * 4 : : g m i n i ( n d a t a m a x ) , m a g i p o l y ( n d a t a m a x ) , g m i n i p o l y ( n d a t a m a x ) REAL * 4 : : x i p o l y ( n d a t a m a x ) , e t a p o l y ( n d a t a m a x ) REAL * 4 : : gmi ! - -----A d d REAL o f f s e t , g r a d i e n t , c h i 2 , q , s i g a , s i g b , s i g m a ( n d a t 2 ) !- -------------------------When f i s known-------------------------- ------------------------------------------------------------------------------PROGRAM B a y e s i a n T R G B s a t e l l i t e ! M a s t e r p r o g r a m

t o p = -( xe -x0 ) * ( ys -y0 ) + ( ye -y0 ) * ( xs -x0 ) b o t = ( xe -x0 ) * ( xs -x0 ) + ( ye -y0 ) * ( ys -y0 ) f i m a g= a t a n 2 ( t o p , b o t ) end !-
- !-----------------------------L i b p r e s s A l g o r i t h m s -----------------------------
USE G l o b a l IMPLICIT NONE mm = IARGC ( ) IF (mm==4) THEN ! CALL GETARG( 1 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) m a g t i p ! CALL GETARG( 2 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) a ! CALL GETARG( 3 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) n d a t a
! I n d i c a t e s t h e a r g u m e n t s t o be CALL GETARG( 4 , a r g v )

! s e t i n t h e command l i n e READ ( a r g v , * , i o s t a t = i o s ) f ! ELSE ! WRITE( * , * ) "You must e n t e r 4 a r g u m e n t s : "

! s t o p ; ! END IF ! WRITE ( ch1 , * ) m a g t i p ! WRITE ( ch2 , * ) a ! WRITE ( ch3 , * ) n d a t a ! IF ( f . eq . 0 . d0 ) THEN
! G e n e r a t e t e s t i d e n t i f y i n g c h a r a c t e r s t r i n g WRITE ( ch4 , * ) ' 0 ' ! t o become f i l e name u s i n g m a g t i p , n d a t a and f ELSE ! e . g . ' MCMC Test / T 20 .5 t i p mag : " , " + s i g m a : " , " -s i g m a : " ! WRITE ( 3 , ' ( 3 F10 . 3 ) ' ) t i p r e c , t i p p s i g m a , t i p m s i g m a ! WRITE ( 3 , ' ( 2 a11 ) ' ) " f : " , " s i g m a : " ! WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) f r e c , f s i g m a ! W r i t e r e s u l t s WRITE ( 3 , ' ( 2 a11 ) ' ) " a : " , " s i g m a : " ! t o f i l e WRITE ( 3 , ' ( 2 F10 . 3 ) ' ) a r e c , a s i g m a ! WRITE ( 3 , * ) " D i s t a n c e =" , REAL( t i p k p c ) , " kpc " ! WRITE ( 3 , * ) " E r r o r = +" , REAL( k p c p e r r ) , " kpc -" , REAL( k p c m e r r ) , " kpc " ! WRITE ( 3 , * ) " A v e r a g e E r r o r =" , REAL( ( ABS( k p c p e r r ) + ABS( k p c m e r r ) ) / 2 . d0 ) , " kpc " WRITE ( 3 , * ) " T i p Mag & E r r o r =" , t i p r e c , REAL( t i p p s i g m a ) , REAL( t i p m s i g m a ) WRITE ( 3 , * ) " O f f s e t =" , REAL( t i p r e c -2 0 . 5 d0 ) , "=" , REAL( t i p k p c -( 1 0 0 . d0 * * ( ( 2 0 . 5 d0 + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ) , " kpc " END PROGRAM B a y e s i a n T R G B s a t e l l i t e ! o f z e r o e l l i p t i c i t y ) c u m u l a t i v e d i s t ( i , 1 ) = i * 0 . 0 0 0 1 d0 ! c u m u l a t i v e d i s t ( i , 2 ) = c u m u l a t i v e d i s t ( i -1 , 2 ) + ( 1 0 . d0 * * ( 5 . 6 1 0 6 9 6 -1 3 . 3 6 2 4 9 7 * c u m u l a t i v e d i s t ( i , 1 ) ) ) END DO s t ( 2 0 0 0 ,2 ) ! r a d i a l d i s t a n c e DO j = 2 0 0 0 , 2 , -1 ! IF ( randnum6 . l e . c u m u l a t i v e d i s t ( j , 2 ) . and . randnum6 . g t . c u m u l a t i v e d i s t ----------------------------------------------------------------------------- REAL : : i t ( n d a t a m a x ) , m a g t i p ( n d a t a m a x ) , f ( n d a t a m a x ) , a ( n d a t a m a x ) REAL : : LikeA ( n d a t a m a x ) , LikeB ( n d a t a m a x ) , M 3 1 d i s t p p d ( n d a t a m a x ) REAL : : t i p P P D ( 1

-0 . 3 -1 0 0 0 -0 . 2 ' WRITE ( ch4 , * ) f ! END IF ! n d a t a 2 = 0 WRITE ( f i e l d , * ) ' MF MCMC Test / T ' / / TRIM ( ADJUSTL ( ch1 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch2 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch3 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch4 ) ) s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / t e s t . d a t ' OPEN( 3 , f i l e =TRIM ( ADJUSTL ( s t r i n g ) ) , s t a t u s = ' unknown ' ) WRITE ( 3 , * ) " F i e l d Name : " , f i e l d WRITE ( 3 , * ) " n d a t a = " , TRIM ( ADJUSTL ( ch3 ) ) WRITE ( 3 , * ) " f = " , TRIM ( ADJUSTL ( ch4 ) ) ! CALL r a n d o m s e e d ! CALL NoiseMake ! CALL ModelMake ! CALL C o n v o l u t i o n ! cmodel ( : , 2 ) = ( 1 . d0 -f ) * cmodel ( : , 2 ) + f * n o i s e CALL DataMaker ! CALL W e i g h t e r ! CALL NoiseMake !CALL CALL MCMC ! CALL TipAndSigma ! SUBROUTINES CALL P o s t e r i o r P l o t ! CALL D a t a H i s t ! CALL w D a t a H i s t ! IF ( n u m c h a i n s . ne .
!------------------------------------------------------------------------------- SUBROUTINE DataMaker ! G e n e
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DO i = 1 , n d a t a ! CALL random number ( randnum6 ) ! IF ( d a t a ( i ) . ge . m a g t i p ) THEN ! CALL random number ( randnum7 ) ! Draws random IF ( randnum7 . g t . f * ( f l i m -m a g t i p ) / ( f l i m -b l i m ) ) THEN ! randnum6 = randnum6 * c u m u l a t i v e d i
( j -1 , 2 ) ) THEN C O F d i s t ( i ) = c u m u l a t i v e d i s t ( j -1 , 1 ) ! e x i t ; ! f o r e a c h END IF ! END DO ! s t a r b a s e d ELSE ! C O F d i s t ( i ) = SQRT ( ( randnum6 * ( p i * s i g f i e l d r a d i u s * * 2 ) ) / p i ) ! on a b o v e END IF ! ELSE ! model C O F d i s t ( i ) = SQRT ( ( randnum6 * ( p i * s i g f i e l d r a d i u s * * 2 ) ) / p i ) ! END IF ! END DO ! s i g a r e a = p i * ( s i g f i e l d r a d i u s * * 2 . d0 ) ! s i g s t a r s = n d a t a ! F o r c a l c u l a t i n g r a t i o n d a t a 2 = n d a t a ! o f RGB t o b a c k g r o u n d b g d e n s i t y = f * REAL( s i g s t a r s ) / s i g a r e a ! !---------------p l o t m a g n i t u d e v s . r a d i u s ------------------- s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / m a g v s r a d . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 ,
0 * ( n b i n s -1) +1 , 2 ) = 0 . d0 REAL : : f PPD ( n b i n s , 2 ) = 0 . d0 , a PPD ( 2 * n b i n s -1 , 2 ) = 0 . d0
REAL : : m a g t i p l l , m a g t i p u l REAL : : f l l = 0 . , f u l = 1 . REAL : : a l l , a u l REAL : : t i p r e c , f r e c , a r e c , PPD peak , t i p k p c , t i p c o u n t s , mcounts , p c o u n t s , t i p m s i g m a , t i p p s i g m a REAL : : f s i g m a , a s i g m a , k p c m e r r , k p c p e r r , f c o u n t s , a c o u n t s , f m i n s i g , f p l u s i g , a m i n s i g , a p l u s i g REAL : : t i p m 9 0 , t i p p 9 0 , t i p m 9 9 , t i p p 9 9 , x p t s ( 2 ) , y p t s ( 2 6) !----------F o r D i s t a n c e D i s t r i b u t i o n -------------INTEGER : : idum = -9999 , n s a m p l e s , D i s t B i n s , p r i o r t y p e PARAMETER ( n s a m p l e s = 5 0 0 0 0 0 ) REAL : : M TRGB, Ext , E x t 0 , Tip , Dist PPD , D i s t P P D x ( 4 0 0 0 ) , D i s t P P D y ( 4 0 0 0 ) , D i s t P P D m i n , Dist PPD max REAL : : d i s t r e c , d i s t c o u n t s , d i s t m s i g m a , d i s t p s i g m a , d i s t m 9 0 , d i s t p 9 0 , d i s t m 9 9 , d i s t p 9 9 REAL : : D i s t P r i o r ( 4 0 0 0 ) , a l p h a , s l o p e , f l a t , hwhm , t h e t a REAL : : M 3 1 t o o b j x ( 4 0 0 1 ) , M 3 1 t o o b j y ( 4 0 0 1 ) , M 3 1 t o o b j , m 3 1 d i s t REAL : : M 3 1 d i s t r e c , M 3 1 d i s t p s i g m a , M 3 1 d i s t m s i g m a REAL * 8 : : randnum ! ---F o r c o n v e r t i n g d i s t a n c e s b a c k t o m a g n i t u d e s ---REAL : : d i s t 2 m a g r e c , d2m msigma , d2m psigma , d2m m90 , d2m p90 , d2m m99 , d2m p99 !--------F o r H u n d r e d t h P e r c e n t i l e T a b l e -----------REAL : : c u m d i s t , p e r c , d i s t a t p e r c ( 1 0 0 , 2 ) ---------------------------------------------------------------------------------------------

LOGICAL n e x t END MODULE G l o b a l !-
- PROGRAM M C M C R e s u l t P l o t t e r USE G l o b a l IMPLICIT NONE DOUBLE PRECISION : : sla DSEP mm = IARGC ( ) IF (mm==9) THEN ! CALL GETARG( 1 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) f i e l d ! CALL GETARG( 2 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) E x t 0 ! CALL GETARG( 3 , a r g v )
! READ ( a r g v , * , i o s t a t = i o s ) m a g t i p l l ! CALL GETARG( 4 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) m a g t i p u l ! I n d i c a t e s t h e a r g u m e n t s t o be CALL GETARG( 5 , a r g v )

! s e t i n t h e command l i n e READ ( a r g v , * , i o s t a t 

= i o s ) a l l ! CALL GETARG( 6 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) a u l ! CALL GETARG( 7 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) x i c o o r d ! CALL GETARG( 8 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) e t a c o o r d ! CALL GETARG( 9 , a r g v ) ! READ ( a r g v , * , i o s t a t = i o s ) p l o t d i r ! ELSE ! WRITE( * , * ) "You must e n t e
/ p i ) WRITE ( s t r i n g , * ) ' . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / ' / ' / / TRIM ( ADJUSTL ( p l o t d i r ) ) WRITE ( command1 , * ) ' m k d i r ' / / TRIM ( ADJUSTL ( s t r i n g ) )
c a l l s y s t e m ( command1 ) OPEN ( u n i t = 1 , f i l e = ' . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / ' / MCMC steps . d a t ' , s t a t u s = ' o l d ' ) ! Open i n p u t OPEN ( u n i t = 2 , f i l e = ' . / ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / r e s u l t s . d a t ' , s t a t u s = ' unknown ' ) ! and o u t p u t OPEN ( u n i t = 3 , f i l e = ' . / M31e / o t h e r p l o t s / M31 Distance PPD . d a t ' , s t a t u s

= ' o l d ' ) ! f i l e s WRITE ( 2 , * ) " F i e l d : " , TRIM ( ADJUSTL ( f i e l d ) ) ! WRITE ( 2 , * ) " C o o r d i n a t e s : x i =" , x i c o o r d , " , e t a =" , e t a c o o r d ! WRITE ( 2 , * ) " P l o t D i r e c t o r y : " , TRIM ( ADJUSTL ( s t r i n g ) ) ! P r i n t b a s i c o b j e c t WRITE ( 2 , * ) " " ! i n f o t o f i l e WRITE ( 2 , * ) " E x t i n c t i o n i n SDSS i : " , E x t 0 ! WRITE ( 2 , * ) "E ( B-V) : " , E x t 0 / 2 . 0 8 6 e0 ! i = 0 ; i o s = 0 DO WHILE ( . TRUE . )
! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i

= i +1 READ ( 1 , * , IOSTAT = i o s ) i t ( i ) , m a g t i p ( i ) , f ( i ) , a ( i ) , LikeA ( i ) , LikeB ( i ) i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO n d a t a = i -1 i = 0 ; i o s = 0 DO WHILE ( . TRUE . )
! Reads M31 d i s t a n c e s a m p l e d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o an a r r a y

i = i +1 READ ( 3 , * , IOSTAT = i o s ) M 3 1 d i s t p p d ( i ) i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO ndata M31 = i -1
Chapter Four Programs --------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------SUBROUTINE P o s t e r i o r P l o t ! P l o t s p o s t e r i o r d i s t r i b u t i o n s i n t i p m a g n i t u d e and a USE G l o b a l ! t i p m a g n i t u d e PPD i s p l o t t e d w i t h c r e d i b i l i t y i n t e r v a l s IMPLICIT NONE t i p P P D ( : , 2 ) = t i p P P D ( : , 2 ) / n d a t a ; f PPD ( : , 2 ) = f PPD ( : , 2 ) / n d a t a a PPD ( : , 2 ) = a PPD ( : , 2 ) / n d a t a !- -----------------------------P l o t s m a g t i p p o s t e r i o r p l o t s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / b w m a g t i p p o s t p l o t . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv ( m a g t i p l l , m a g t i p u l , 0 . , 1 . 1 * MAXVAL( t i p P P D ( : , 2 ) ) , 0 , 0 ) CALL p g b i n ( 1 0 * ( n b i n s -1) +1 , t i p P P D ( : , 1 ) , t i p P P D ( : , 2 ) , . f a l s e . ) CALL p g l a b ( ' P r o p o s e d i \ d0 \ u t i p m a g n i t u d e ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / b w m a g t i p p o s t p l o t . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / b w m a g t i p p o s t p l o t . j p g ' c a l l s y s t e m ( command2 ) !------------------------------P l o t s m a g t i p p o s t e r i o r p l o t w i t h c o n f i d e n c e l e v e l s s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / m a g t i p p o s t p l o t . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv ( m a g t i p l l , m a g t i p u l , 0 . , 1 . 1 * MAXVAL( t i p P P D ( : , 2 ) ) , 0 , 0 )

- SUBROUTINE P o s t e r i o r B u i l d USE G l o b a l IMPLICIT NONE DO i = 1 , 1 0 * ( n b i n s -1) +1 ! t i p P P D ( i , 1 ) = 1 8 . d0 + (REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ! END DO ! ! DO i = 1 , n b i n s ! x-v a l u e s o f f PPD ( i , 1 ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! PPD h i s t o g r a m s END DO ! ! DO i = 1 , 2 * n b i n s -1 ! a PPD ( i , 1 ) = (REAL( i ) -1 . d0 ) /REAL( n b i n s -1 ) ! END DO ! DO i = 1 , n d a t a ! t i p P P D ( INT ( ( m a g t i p ( i ) -1 8 . d0 ) * 10 * binspm + 1 ) , 2 ) = & ! t i p P P D ( INT ( ( m a g t i p ( i ) -1 8 . d0 ) * 10 * binspm + 1 ) , 2 ) + 1 . d0 ! f PPD ( INT ( f ( i ) * ( n b i n s -1 ) ) + 1 , 2 ) = & ! y-v a l u e s o f f PPD ( INT ( f ( i ) * ( n b i n s -1 ) ) + 1 , 2 ) + 1 . d0 ! PPD h i s t o g r a m s a PPD ( INT ( a ( i ) * ( n b i n s -1 ) ) + 1 , 2 ) = & ! a PPD ( INT ( a ( i ) * ( n b i n s -1 ) ) + 1 , 2 ) + 1 . d0 ! END DO ! CALL C o n f i d e n c e END SUBROUTINE P o s t e r i o r B u i l d !-
DO i = 1 , 1 0 * ( n b i n s -1) +1
IF ( t i p P P D ( i , 1 ) . ge . t i p r e ct i p m s i g m a . and . t i p P P D ( i , 1 ) . l t . t i p r e c + t i p p s i g m a ) THEN CALL p g s c i ( 2 ) ! CALL p g b i n ( 2 , t i p P P D ( i , 1 ) , t i p P P D ( i , 2 ) , . f a l s e . ) ! IF ( t i p P P D ( i , 1 ) . eq . t i p r e ct i p m s i g m a ) THEN ! x p t s = t i p P P D ( i , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 ) ! One Sigma CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( t i p P P D ( i + 1 , 1 ) . eq . t i p r e c + t i p p s i g m a ) THEN ! x p t s = t i p P P D ( i + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( t i p P P D ( i , 1 ) . ge . t i p r e ct i p m 9 0 . and . t i p P P D ( i , 1 ) . l t . t i p r e c + t i p p 9 0 ) THEN CALL p g s c i ( 3 ) ! CALL p g b i n ( 2 , t i p P P D ( i , 1 ) , t i p P P D ( i , 2 ) , . f a l s e . ) ! IF ( t i p P P D ( i , 1 ) . eq . t i p r e ct i p m 9 0 ) THEN ! x p t s = t i p P P D ( i , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 )

! 90 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( t i p P P D ( i + 1 , 1 ) . eq . t i p r e c + t i p p 9 0 ) THEN ! x p t s = t i p P P D ( i + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( t i p P P D ( i , 1 ) . ge . t i p r e ct i p m 9 9 . and . t i p P P D ( i , 1 ) . l t . t i p r e c + t i p p 9 9 ) THEN CALL p g s c i ( 4 ) ! CALL p g b i n ( 2 , t i p P P D ( i , 1 ) , t i p P P D ( i , 2 ) , . f a l s e . ) ! IF ( t i p P P D ( i , 1 ) . eq . t i p r e ct i p m 9 9 ) THEN ! x p t s = t i p P P D ( i , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 )

! 99 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( t i p P P D ( i + 1 , 1 ) . eq . t i p r e c + t i p p 9 9 ) THEN ! x p t s = t i p P P D ( i + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p P P D ( i , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE CALL p g s c i ( 1 ) ! D i s t r i b u t i o n CALL p g b i n ( 2 , t i p P P D ( i , 1 ) , t i p P P D ( i , 2 ) , . f a l s e . ) ! o u t s i d e o f 99 % END IF ! Cred . I n t e r v a l END DO CALL p g s c i ( 1 ) CALL p g l a b ( ' P r o p o s e d i \ d0 \ u t i p m a g n i t u d e ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m a g t i p p o s t p l o t . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m a g t i p p o s t p l o t . j p g ' c a l l s y s t e m ( command2 ) !------------------------------P l o t s a p o s t e r i o r p l o t s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / a p o s t p l o t . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv ( a l l , a u l , 0 . , 1 . 1 * MAXVAL( a PPD ( : , 2 ) ) , 0 , 0 ) CALL p g b i n ( 2 * n b i n s -1 , a PPD ( : , 1 ) , a PPD ( : , 2 ) , . f a l s e . ) CALL p g l a b ( ' P r o p o s e d v a l u e f o r LF s l o p e ( a ) ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / a p o s t p l o t . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / a p o s t p l o t . j p g ' c a l l s y s t e m ( command2 ) t i p P P D ( : , 2 ) = t i p P P D ( : , 2 ) * n d a t a ; f PPD ( : -----------V a l u e s o f ' a ' f o r e a c h v a l u e o f ' m a g t i p ' -c o n t o u r p l o t Cont = 0 . e0 TR = 0 . e0 TR ( 1 ) = m a g t i p l l ; TR ( 2 ) = ( m a g t i p u lm a g t i p l l ) /REAL( c o n t b i n s ) ; TR ( 4 ) = a l l ; TR ( 6 4) ) / TR ( 6) ) + 1 i f ( i >0 . and . i <= c o n t b i n s . and . j >0 . and . j <= c o n t b i n s ) Cont ( i , j ) = Cont ( i , j )

, 2 ) = f PPD ( : , 2 ) * n d a t a a PPD ( : , 2 ) = a PPD ( : , 2 ) * n d a t a END SUBROUTINE P o s t e r i o r P l o t !----------------------------------------------------------------------------------------------- SUBROUTINE O t h e r P l o t s USE G l o b a l IMPLICIT NONE !-
) = ( a u l -a l l ) /REAL( c o n t b i n s ) DO k = 1 , n d a t a i = INT ( ( m a g t i p ( k ) -TR ( 1 ) ) / TR ( 2 ) ) + 1 j = INT ( ( a ( k ) -TR (
+ 1 . e0 END DO DO i = 1 , n c o n t o u r s c l e v e l s ( i ) = 0 . e0 + i * MAXVAL( Cont ) /REAL( n c o n t o u r s ) END DO s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / m v s a c o n t o u r . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 )
CALL pgenv ( m a g t i p l l , m a g t i p u l , a l l , a u l , 0 , 0 ) --------------------------------------------------------------------------------------------- ! IF ( t i p P P D ( i , 2 ) . g t . PPD peak ) THEN ! PPD peak = t i p P P D ( i , 2 ) ! F i n d b e s t f i t TRGB v a l u e t i p r e c = t i p P P D ( i , 1 )

CALL PGCONT ( Cont , c o n t b i n s , c o n t b i n s , 1 , c o n t b i n s ,
! END IF ! END DO ! PPD peak = 0 . d0 ! DO i = 1 , n b i n s ! IF ( f PPD ( i , 2 ) . g t . PPD peak ) THEN ! PPD peak = f PPD ( i , 2 ) ! F i n d b e s t f i t f v a l u e f r e c = f PPD ( i , 1 ) ! END IF ! END DO ! PPD peak = 0 . d0 ! DO i = 1 , 2 * n b i n s -1 ! IF ( a PPD ( i , 2 ) . g t . PPD peak ) THEN ! PPD peak = a PPD ( i , 2 )
! F i n d b e s t f i t a v a l u e a r e c = a PPD ( i , 1 ) ! END IF ! END DO ! t i p k p c = ( 1 0 0 . d0 * * ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from ! t i p m a g n i t u d e i n kpc t i p c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 ) ! F i n d s n e g a t i v e one s i g m a IF ( t i p c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p m s i g m a = ( (

REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p m s i g m a = t i p r e c -t i p m s i g m a ! e x i t ! END IF ! END DO ! t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! p c o u n t s = p c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 )
! F i n d s p o s i t i v e one s i g m a IF ( t i p c o u n t s . ge . 0 . 6 8 2 * p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p p s i g m a = ( ( REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p p s i g m a = t i p p s i g m at i p r e c ! e x i t !

Chapter Four Programs END IF ! END DO ! t i p c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 ) ! F i n d s n e g a t i v e 90% c o n f i d e n c e IF ( t i p c o u n t s . ge . 0 . 9 d0 * m c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p m 9 0 = ( (

REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p m 9 0 = t i p r e c -t i p m 9 0 ! e x i t ! END IF ! END DO ! t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! p c o u n t s = p c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 )
! F i n d s p o s i t i v e 90% c o n f i d e n c e IF ( t i p c o u n t s . ge . 0 . 9 d0 * p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p p 9 0 = ( (

REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p p 9 0 = t i p p 9 0 -t i p r e c ! e x i t ! END IF ! END DO ! t i p c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0
! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 , -1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 ) ! F i n d s n e g a t i v e 99% c o n f i d e n c e IF ( t i p c o u n t s . ge . 0 . 9 9 d0 * m c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p m 9 9 = ( ( REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p m 9 9 = t i p r e ct i p m 9 9 ! e x i t 

! END IF ! END DO ! t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! p c o u n t s = p c o u n t s + t i p P P D ( i , 2 ) ! END DO ! DO i = MAXLOC( t i p P P D ( : , 2 ) , DIM = 1 ) , 1 0 * ( n b i n s -1) +1 ! t i p c o u n t s = t i p c o u n t s + t i p P P D ( i , 2 ) ! F i n d s p o s i t i v e 99% c
! d4 = 1 ! END IF ! END DO ! f s i g m a = 0 . 5 d0 * ( f p l u s i g -f m i n s i g )
! Hence c a l c u l a t e s 1 s i g m a e r r o r a s i g m a = 0 . 5 d0 * ( a p l u s i ga m i n s i g ) ! f o r f and a k p c m e r r = t i p k p c * 1 0 0 . d0 * * ( t i p m s i g m a / 1 0 . d0 ) -t i p k p c ! minus t i p e r r o r i n kpc k p c p e r r = t i p k p c * 1 0 0 . d0 * * ( t i p p s i g m a / 1 0 . d0 ) -t i p k p c ! p l u s t i p e r r o r i n kpc WRITE ( 2 , * ) " " WRITE ( 2 , * ) " D i s t a n c e Modulus : " , t i p r e c + 3 . 4 4 e0 WRITE ( 2 , * ) "+s i g m a -s i g m a : " , t i p p s i g m a , t i p m s i g m a WRITE ( 2 , * ) " +90 -90: " , t i p p 9 0 , t i p m 9 0 WRITE ( 2 , * ) " +99 -99: " , t i p p 9 9 , t i p m 9 9 WRITE ( 2 , * ) " t i p +s i g m a -s i g m a : " , t i p r e c , t i p r e c + t i p p s i g m a , t i p r e ct i p m s i g m a WRITE ( 2 , * ) " t i p +90 -90: " , t i p r e c , t i p r e c + t i p p 9 0 , t i p r e ct i p m 9 0 WRITE ( 2 , * ) " t i p +99 -99: " , t i p r e c , t i p r e c + t i p p 9 9 , t i p r e ct i p m 9 9 END SUBROUTINE C o n f i d e n c e !- --------------------------------------------------------------------------------------------- ------------------------------------------- ------------------------------------------- -----------------------------P l o t s D i s t a n c e D i s t r i b u t i o n w i t h c r e d i b i l i t y i n t e r v a l s s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / d i s t P P D . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) -1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1 * MAXVAL( D i s t P P D y ) , 0 , 0 ) DO i = 1 , D i s t B i n s IF ( D i s t P P D x ( i ) . ge . d i s t r e cd i s t m s i g m a . and . D i s t P P D x ( i ) . l t . d i s t r e c + d i s t p s i g m a ) THEN CALL p g s c i ( 2 ) ! CALL p g b i n ( 2 , D i s t P P D x ( i ) , D i s t P P D y ( i ) , . f a l s e . ) ! IF ( D i s t P P D x ( i ) . eq . d i s t r e cd i s t m s i g m a ) THEN ! x p t s = D i s t P P D x ( i ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = D i s t P P D y ( i ) ! One Sigma CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( D i s t P P D x ( i +1) . eq . d i s t r e c + d i s t p s i g m a ) THEN ! x p t s = D i s t P P D x ( i +1) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = D i s t P P D y ( i ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( D i s t P P D x ( i ) . ge . d i s t r e cd i s t m 9 0 . and . D i s t P P D x ( i ) . l t . d i s t r e c + d i s t p 9 0 ) THEN CALL p g s c i ( 3 ) ! CALL p g b i n ( 2 , D i s t P P D x ( i ) , D i s t P P D y ( i ) , . f a l s e . ) ! IF ( D i s t P P D x ( i ) . eq . d i s t r e cd i s t m 9 0 ) THEN ! x p t s = D i s t P P D x ( i ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = D i s t P P D y ( i )

! 90 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( D i s t P P D x ( i +1) . eq . d i s t r e c + d i s t p 9 0 ) THEN ! x p t s = D i s t P P D x ( i +1)

! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = D i s t P P D y ( i ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( D i s t P P D x ( i ) . ge . d i s t r e cd i s t m 9 9 . and . D i s t P P D x ( i ) . l t . d i s t r e c + d i s t p 9 9 ) THEN CALL p g s c i ( 4 ) ! CALL p g b i n ( 2 , D i s t P P D x ( i ) , D i s t P P D y ( i ) , . f a l s e . ) ! IF ( D i s t P P D x ( i ) . eq . d i s t r e cd i s t m 9 9 ) THEN ! x p t s = D i s t P P D x ( i ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = D i s t P P D y ( i )

! 99 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( D i s t P P D x ( i +1) . eq . d i s t r e c + d i s t p 9 9 ) THEN ! x p t s = D i s t P P D x ( i +1)

! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 -----------------------P ! G a u s s i a n F l a t t e n i n g F a c t o r hwhm = 1 5 0 . e0 ! G a u s s i a n H a l f Width H a l f Maximum WRITE ( 2 , * ) " " WRITE ( 2 , * ) " P r i o r Type : G a u s s i a n , f l a t t e n i n g =" , f l a t , " ; hwhm =" , hwhm , " kpc . " DO i = 1 , D i s t B i n s D i s t P r i o r ( i ) = exp ( -( ( D i s t P P D x ( i ) -7 7 9 . e0 ) * * ( 2 . e0 * f l a t ) ) / ( 2 . e0 * hwhm * * ( 2 . e0 * f l a t ) ) ) END DO END IF D i s t P r i o r = D i s t P r i o r /SUM( D i s t P r i o r ) !----------------------------------------------P l o t s D i s t a n c e P r i o r s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / d i s t p r i o r . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , -------------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------------------------------------------SUBROUTINE G e t D a t a ! Get d a t a : ) USE G l o b a l IMPLICIT NONE OPEN ( u n i t = 1 , f i l e = ' . / S a t S t a t s . d a t ' , s t a t u s = ' o l d ' ) i = 0 ; i o s = 0 DO WHILE ( . TRUE . )

------------------------------------------------------------------------------------------------ SUBROUTINE C o n f i d e n c
! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i = i +1 READ ( 1 , * , IOSTAT = i o s ) x i ( i ) , e t a ( i ) , t h e t a ( i ) , Mwy to Obj ( i ) , p s i g ( i ) , m s i g ( i ) , name ( i ) i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO DO i = 1 , n d a t a -1 x i ( i ) = x i ( i ) * ( p i / 1 8 0 . e0 ) ! e t a ( i ) = e t a ( i ) * ( p i / 1 8 0 . e0 ) ! C o n v e r t a n g l e s from d e g r e e s t o r a d i a n s t h e t a ( i ) = t h e t a ( i ) * ( p i / 1 8 0 . e0 ) ! x ( i ) = ABS( MWy to Obj ( i ) * c o s ( t h e t a ( i ) ) * t a n ( x i ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h s a t e l l i t e IF ( x i ( i ) . l t . 0 . e0 ) THEN ! x ( i ) = -1. e0 * x ( i )

! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! y ( i ) = ABS( MWy to Obj ( i ) * s i n ( e t a ( i ) ) )

! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h s a t e l l i t e IF ( e t a ( i ) . l t . 0 . e0 ) THEN ! y ( i ) = -1. e0 * y ( i )

! ---------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------------- 1) , -1. e0 * x a x i s ( 1 ) / ) , ( / x a x i s ( 2 ) , -1. e0 * x a x i s ( 2 ) / ) ) ! Draw l i n e s from p o s i t i v e CALL p g l i n e ( 2 , ( / y a x i s ( 1 ) , -1. e0 * y a x i s ( 1 ) / ) , ( / y a x i s ( 2 ) , -1. e0 * y a x i s ( 2 ) / ) ) ! end t o n e g a t i v e end o f CALL p g l i n e ( 2 , ( / z a x i s ( 1 ) , -1. e0 * z a x i s ( 1 ) / ) , ( / z a x i s ( 2 ) , -1. e0 * z a x i s ( 2 ) / ) ) ! x , y and z a x e s IF ( v a n g l e . eq . 1 ) THEN ! CALL p g p t x t ( x a x i s ( 1 ) -5 . , x a x i s ( 2 ) -1 0 . , 0 . , 0 . 5 , ' x ' ) ! CALL p g p t x t ( y a x i s ( 1 ) -1 0 . , y a x i s ( 2 ) -5 . , 0 . , 0 . 5 , ' y ' ) ! END IF ! IF ( v a n g l e . eq . 3 ) THEN ! P r i n t x , y and z CALL p g p t x t ( y a x i s ( 1 ) -1 0 . , y a x i s ( 2 ) -1 0 . , 0 . , 0 . 5 , ' y ' ) ! CALL p g p t x t ( z a x i s ( 1 ) -1 0 . , z a x i s ( 2 ) -1 5 . , 0 . , 0 . 5 , ' z ' ) ! a t t h e p o s i t i v e e n d s o f END IF ! IF ( v a n g l e . eq . 4 ) THEN ! t h e i r r e s p e c t i v e a x e s CALL p g p t x t ( x a x i s ( 1 ) -5 . , x a x i s ( 2 ) -5 . , 0 . , 0 . 5 , ' x ' ) ! CALL p g p t x t ( y a x i s ( 1 ) -5 . , y a x i s ( 2 ) -5 . , 0 . , 0 . 5 , ' y ' ) ! CALL p g p t x t ( z a x i s ( 1 ) -5 . , z a x i s ( 2 ----------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------- . . , 5 . 9 9 a l p h a = REAL( i ) / 1 0 0 . e0 nn = INT ( ( a l p h ak v s a l p h a ( 1 , 1 ) ) / ( k v s a l p h a ( 2 4 1 , 1 ) -k v s a l p h a ( 1 , 1 ) ) * 2 4 1 . e0 ) + 1 k ( i ) = ( a l p h ak v s a l p h a ( nn , 1 ) ) / ( k v s a l p h a ( nn +1 , 1 ) -k v s a l p h a ( nn , 1 ) ) * ( k v s a l p h a ( nn + 1 , 2 ) -k v s a l p h a ( nn , 2 ) ) + k v s a l p h a ( nn , 2 ) k ( i ) = 1 0 . e0 * * k ( i ) END DO DO i = 6 0 0 , 600 ! k f o r a l p h a = 6 . 0 0 a l p h a = REAL( i ) / 1 0 0 . e0 nn = 241 k ( i ) = ( a l p h ak v s a l p h a ( nn , 1 ) ) / ( k v s a l p h a ( nn +1 , 1 ) -k v s a l p h a ( nn , 1 ) ) * ( k v s a l p h a ( nn + 1 , 2 ) -k v s a l p h a ( nn , 2 ) ) + k v s a l p h a ( nn , 2 ) k ( i ) = 1 0 . e0 * * k ( i ) END DO END SUBROUTINE k v e r s e a l p h aa ( n d a t a m a x ) , b ( n d a t a m a x ) , c ( n d a t a m a x ) , d ( n d a t a m a x ) REAL : : a h i s t ( 2 0 1 , 2 ) , b h i s t ( 2 0 1 , 2 ) , c h i s t ( 2 0 1 , 2 ) , d h i s t ( 2 0 0 1 , 2 ) REAL : : logL , LikeA , LikeB , r , p ( 4 ) , p t e m p ( 4 ) , m in s ig ma , max sigma REAL * 8 : : sigma , p l a n e D i s t , l i k e , p l a n e s i g , rms REAL : : m a x p l a n e s i g , m i n s i g n i f , A c t u a l s i g , A c t u a l b f v ( 3 ) , A c t u a l b f s INTEGER : : dummy , s a t p i c k REAL : : S a t D i s t ( 5 0 0 0 0 0 , 2 7 ) , S a t D i s t D r a w n ( 2 7 ) , S a t P o s ( 2 7 ,2 ) ,x i ( 2 7 ) , e t a ( 2 7 ) , t h e t a ( 2 7 ) , M31 Dist PPD ( 3 0 0 0 0 0 0 ) REAL * 8 : : RA, DEC, x i d b l e , e t a d b l e REAL : : x i t e s t , e t a t e s t , t h e t a t e s t , SAP xi ( 1 3 4 ) , S A P e t a ( 1 3 4 ) , s p o t R REAL : : B e s t S a t D i s t ( 2 ----------------------------------------------------------------------------- ! F i l e f o r r e s u l t summary e . g . p l a n e o r i e n t -OPEN( 1 1 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) ! a t i o n and RMS f o r r e a l s a t e l l i t e d i s t r i b u t i o n s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / s a t p o s . d a t ' ! P o s i t i o n s o f s a t e l l i t e s i n OPEN( 1 2 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) ! Random R e a l i z a t i o n s s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / s i g n i f i c a n c e . d a t ' !RMS d i s t r i b u t i o n and p o l e s from OPEN( 1 3 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) ! Random R e a l i z a t i o n s s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / r e a l s i g w t h e r r . d a t ' !RMS d i s t r i b u t i o n and p o l e s f o r r e a l i z a t i o n s OPEN( 1 4 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) ! o f t h e r e a l s a t e l l i t e d i s t r i b u t i o n CALL S i g n i f i c a n c e ! The main s u b r o u t i n e which i n t u r n c a l l s t h e p l a n e f i t t i n g s u b r o u t i n e CALL T h e t a P h i ( A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) ) WRITE( 1 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 

) ) ) M 3 1 t o O b j p s i g ( i ) = SQRT ( ( temp1 ) * ( p s i g ( i ) * * 2 . e0 ) + ( temp2 ) * ( 1 2 . e0 * * 2 . e0 ) ) M 3 1 t o O b j m s i g ( i ) = SQRT ( ( temp1 ) * ( m s i g ( i ) * * 2 . e0 ) + ( temp2 ) * ( 1 1 . e0 * * 2 . e0 ) ) WRITE ( * , * ) name ( i ) ! W r i t e x ,
( i ) = x ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( i ) ) ) y ( i ) = y ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( i ) ) ) END DO DO i = 1 , S A P n d a t a SAP x ( i ) = SAP x ( i ) * ( ( m 3 1 d i s t + z ( 1 
) i = i + 1 READ ( 1 1 , * , IOSTAT = i o s ) S a t R a d i i ( 1 , i ) IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , * ) i i =i -1 c y c l e END IF END DO !-
. e0 ) THEN R a d i u s ( i , j ) = S a t R a d i i ( i , NINT ( randnum ) ) WRITE ( * , * ) i , j , R a d i u s ( i , j ) ELSE g o t o 1 END IF END DO END DO END SUBROUTINE S a m p l e S e l e c t !-------------------------------------------------------------------------------------------------
DO END SUBROUTINE R a n d o m P o i n t s !------------------------------------------------------------------------------- SUBROUTINE R o t a t e ! R
i n ) / ( REAL( d a t a h i s t b i n s ) -1 . e0 ) DO i t n u m = 1 , d a t a h i s t b i n s d a t a h i s t ( i t n u m , 1 ) = d a t a m i n + REAL( i t n u m -1) * bw END DO DO i t n u m = 1 , n v a l d a t a h i s t ( NINT ( ( d a t a ( i t n u m ) -d a t a m i n ) / bw ) + 1 , 2 ) = & d a t a h i s t ( NINT ( ( d a t a ( i t n u m ) -d a t a m i n ) / bw ) + 1 , 2 ) + 1 . e0 END DO IF ( n o
r m a l i z e ) THEN d a t a h i s t ( : , 2 ) = d a t a h i s t ( : , 2 ) / SUM( d a t a h i s t ( : , 2 ) ) END IF CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( d e v i c e ) ) , 1 , 1 ) CALL pgenv (MINVAL( data , mask = d a t a . ne . 0 . ) , & MAXVAL( data , mask = d a t a . ne . 0 . ) , & 0 . , 1 . 1 * MAXVAL( d a t a h i s t ( : , 2 ) ) , 0 , 0 ) CALL p g b i n ( d a t a h i s t b i n s , d a t a h i s t ( : , 1 ) , d a t a h i s t ( : , 2 ) , . t r u e . ) CALL p g l a b ( TRIM ( ADJUSTL ( x l a b e l ) ) , TRIM ( ADJUSTL ( y l a b e l ) ) , ' ' ) CALL pgend END SUBROUTINE H i s t o P l o t !- ------------------------------------------------------------------------------! ----------------------------------------------------------------------------- -------------------------------------------! -------------------------------------------i -------------------------------------------! | | T a n g e n t P l a n e p r o j e c t i o n a n g l e s ( x i , e t a ) ! \ / f o r e a c h s a t e l l i t e S a t P o s ( 1 , : ) = ( / 0 . 5 7 7 4 1 7 9 6 6 8 6 5 4 7 1 6 7 5 7 1 4 3 8 2 9 4 1 6 1 ,6 . 5 9 5 9 2 1 3 2 6 7 3 8 7 3 7 8 4 8 6 8 9 8 6 4 3 9 1 1 5 3 6 ,1 . 9 5 9 4 8 6 5 6 4 2 7 4 7 5 1 9 / ) S a t P o s ( 6 , : ) = ( / 4 . 2 4 3 3 9 5 0 6 3 0 7 6 3 2 2 , 3 . 7 0 0 4 0 4 0 9 4 1 2 6 8 9 7 6 / ) S a t P o s ( 7 , : ) = ( / 0 . 7 5 1 7 3 8 4 6 7 3 6 1 5 2 9 9 , -7.5056115753940515 / ) S a t P o s ( 8 , : ) = ( / 0 . 9 7 9 2 4 5 2 3 0 6 0 8 7 4 9 , -6.921767335891222 / ) S a t P o s ( 9 , : ) = ( / 1 . 9 3 0 3 8 6 4 3 6 3 0 6 8 8 6 6 , -8.301405961956007 / ) DO i = 1 , n s a t s

) i = i + 1 IF ( i . g t . 5 0 0 0 0 0 ) THEN e x i t END IF READ ( 1 1 , * , IOSTAT = i o s ) S a t D i s t ( i , 1 ) IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , * ) i i =i -1 c y c l e END IF END DO !-
= 0 DO WHILE ( . TRUE . ) i = i + 1 IF ( i . g t . 5 0 0 0 0 0 ) THEN e x i t END IF READ ( 3 7 , * , IOSTAT = i o s ) S a t D i s t ( i , 2 7 ) IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , * ) i i =i -1 c y c l e END IF END DO !-------------------------------------------- i = 0 DO WHILE ( . TRUE . ) i = i + 1 IF ( i . g t . 3 0 0 0 0 0 0 ) THEN e x i t END IF READ ( 3 8 , * , IOSTAT = i o s ) M31 Dist PPD ( i ) IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , * ) i i =i -1 c y c l e END IF END DO !-
x i ( i ) = S a t P o s ( i , 1 ) e t a ( i ) = S a t P o s ( i , 2 ) ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- --------------------------F o r P l a n e F i t t i n g u s i n g RMS--------------------------------! As u s e d i n t h e i n c l u d e d v e r s i o n o f t h e ' MaxSigFind ' s u b r o u t i n e i n ' PlaneSigRMS . f95 ' ! Where an a l t e r n a t e p l a n e f i t t i n g s t a t i s t i c i s used , t h i s s e g m e n t o f c o d e s h o u l d be ! r e p l a c e d w i t h one o f t h e v e r s i o n s below f o r e a c h o f t h e f o u r t i m e s i t a p p e a r s i n t h e ! ' MaxSigFind ' s u b r o u t i n e . Note t h a t o t h e r m i n o r c o d e v a r i a t i o n s a r e n e c e s s a r y ! b u t t h e s e a r e i n c l u d e d t o show t h e way t h e a c t u a l p l a n e f i t t i n g s t a t i s t i c i s ! c a l c u l a t e d i n e a c h c a s e . --------------------------F o r F i t t i n g Maximum Asymmetry P l a n e -----------------------------! R e p l a c e m a x p l a n e s i g = 9 9 9 9 9 9 9 . e0 w i t h max plane asymm = 0 . e0 a s i n i t i a l v a l u e p o s s i d e = 0 . e0 ! DO k = 1 , n s a t s ! Count s a t e l l i t e s on p l a n e D i s t = norm ( 1 ------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------- ----------------------------------- ----------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- ! t h e n s t o r e i t END DO ! r m s a v e r a g e ( i t ) = r m s a v e r a g e ( i t ) + min rms ! min rms i s now a good a p p r o x i m a t i o n t o t h e l o w e s t p o s s i b l e f o r t h e t e s t e d s a m p l e END SUBROUTINE MaxSigFind !-------------------------------------------------------------------------------! ' T h e t a P h i ' S u b r o u t i n e -See ' PlaneSigRMS . f95 ' !-------------------------------------------------------------------------------! ' H i s t o P l o t ' S u b r o u t i n e -See ' PlaneSigRMS . f95 ' !- ------------------------------------------------------------------------------! ------------------------------------------------------------------------------! ---------------------------------------------------------------------------------------------------- 1) , s a t ( 2) , s a t ( 3 ) , s a t ( 4) , s a t ( 5) , s a t ( 6) , s a t ( 7) , s a t ( 8) , s a t ( 9) , s a t ( 1 0 ) , & s a t ( 1 1 ) , s a t ( 1 2 ) , s a t ( 1 3 ) , s a t ( 1 4 ) , s a t ( 1 5 ) , s a t ( 1 6 ) , s a t ( 1 7 ) , s a t ( 1 8 ) , s a t ( 1 9 ) , s a t ( 2 0 ) , & s a t ( 2 1 ) , s a t ( 2 2 ) , s a t ( 2 3 ) , s a t ( 2 4 ) , s a t ( 2 ( 1 8 1 ,2 ,1 3 ) ,l o n ( 1 8 1 ,2 ,1 3 ) ,l a t t ( 1 8 1 ,2 ,1 3 ) ,l o n t ( 1 8 1 ,2 ,1 3 l o n ( : , 1 , 1 3 ) = -180. e0 l a t ( : , 2 , 1 ) = 9 0 . e0 l a t ( : , 2 , 2 ) = 7 5 . e0 l a t ( : , 2 , 3 ) = 6 0 . e0 l a t ( : , 2 , 4 ) = 4 5 . e0 l a t ( : , 2 , 5 ) = 3 0 . e0 l a t ( : , 2 , 6 ) = 1 5 . e0 l a t ( : , 2 , 7 ) = 0 . e0 l a t ( : , 2 , 8 ) = -15. e0 l a t ( : , 2 , 9 ) = -30. e0 l a t ( : , 2 , 1 0 ) = -45. e0 l a t ( : , 2 , 1 1 ) = -60. e0 l a t ( : , 2 , 1 2 ) = -75. e0 l a t ( : , 2 , 1 3 ) = -90. e0 DO i t i = 1 , 181 l o n ( i t i , 2 , : ) = REAL( i t i -9 1 ) l a t ( i t i , 1 , : ) = REAL( ( 2 * i t i ) -1 8 2 ) END DO l o n = l o n * ( p i / 1 8 0 . e0 ) ; l a t = l a t * ( p i / 1 8 0 . e0 ) ! C o n v e r t t o r a d i a n s l o n t = l o n ; l a t t = l a t DO i t i = 1 , 13 ! The c o n v e r s i o n t o an a i t o f f -DO i t j = 1 , 181 ! hammer p r o j e c t i o n l o n ( i t j , 1 , i t i ) = 2 . e0 * SQRT ( 2 . e0 ) * c o s ( l o n t ( i t j , 2 , i t i ) ) * s i n ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) / & SQRT ( 1 . e0 + c o s ( l o n t ( i t j , 2 , i t i ) ) * c o s ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) ) l o n ( i t j , 2 , i t i ) = SQRT ( 2 . e0 ) * s i n ( l o n t ( i t j , 2 , i t i ) ) / & SQRT ( 1 . e0 + c o s ( l o n t ( i t j , 2 , i t i ) ) * c o s ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) ) l a t ( i t j , 1 , i t i ) = 2 . e0 * SQRT ( 2 . e0 ) * c o s ( l a t t ( i t j , 2 , i t i ) ) * s i n ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) / & SQRT ( 1 . e0 + c o s ( l a t t ( i t j , 2 , i t i ) ) * c o s ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) ) l a t ( i t j , 2 , i t i ) = SQRT ( 2 . e0 ) * s i n ( l a t t ( i t j , 2 , i t i ) ) / & SQRT ( 1 . e0 + c o s ( l a t t ( i t j , 2 , i t i ) ) * c o s ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) ) END DO END DO !--------------------------------------! | | P l o t t i n g ! \ / Code CALL p g b e g i n ( 0 , ' s a t c o m b o 1 5 s a t s . p s / CPS ' , 1 , 1 ) CALL pgenv ( -1 . 0 * p i , 1 . 0 * p i , -0.5 * p i , 0 . 5 * p i , 1 , -2) DO i t i = 1 , 13 DO i t j = 2 , 181 CALL p g l i n e ( 2 , ( / l o n ( i t j -1 , 1 , i t i ) , l o n ( i t j , 1 , i t i ) / ) , ( / l o n ( i t j -1 , 2 , i t i ) , l o n ( i t j , 2 , i t i ) / ) ) CALL p g l i n e ( 2 , ( / l a t ( i t j -1 , 1 , i t i ) , l a t ( i t j , 1 , i t i ) / ) , ( / l a t ( i t j -1 , 2 , i t i ) , l a t ( i t j , 2 , i t i ) / ) ) END DO END DO !--------------------------------------! T h i s s e g m e n t t a k e s t h e n o r m a l v e c t o r o f t h e b e s t f i t p l a n e , f i n d s t h e c o r r e s p o n d i n g ! p o l e , a n t ip o l e and g r e a tc i r c l e i n l a t . , l o n g . and t h e n c o n v e r t s a l l t o an a i t o f f ! -hammer p r o j e c t i o n . T h e s e a r e t h e n p l o t t e d on t h e a i t o f f -hammer s p h e r e . p o l e c a r t = ( / 0 . 1 5 8 1 9 0 9 7 , 0 . ------------------------------------ 285 WRITE ( * , * ) i , s a t x y z ( i , 1 ) , s a t x y z ( i , 2 ) , s a t x y z ( i , 3 ) CALL T h e t a P h i ( s a t x y z ( i , 1 ) , s a t x y z ( i , 2 ) , s a t x y z ( i , 3 ) ) CALL a i t o f f c o n v e r t ( t h e t a c o o r d , p h i c o o r d ) t h e t a ( i ) = t h e t a c o o r d ; p h i ( i ) = p h i c o o r d END DO END SUBROUTINE s a t x y z d a t a !-------------------------------------------------------------------------------SUBROUTINE a i t o f f c o n v e r t ( t h e t a a h , p h i a h ) ! C o n v e r t t o a i t o f f -IMPLICIT NONE ! hammer p r o j e c t i o n REAL : : t h e t a a h , p h i a h , p r e t h e t a a h , p r e p h i a h REAL : : p i PARAMETER( p i = a c o s ( -1 . e0 ) ) p r e t h e t a a h = t h e t a a h * ( p i / 1 8 0 . e0 ) p r e p h i a h = p h i a h * ( p i / 1 8 0 . e0 ) p h i a h = 2 . e0 * SQRT ( 2 . e0 ) * c o s ( p r e t h e t a a h ) * s i n ( p r e p h i a h / 2 . e0 ) p h i a h = p h i a h / SQRT ( 1 . e0 + c o s ( p r e t h e t a a h ) * c o s ( p r e p h i a h / 2 . e0 ) ) t h e t a a h = SQRT ( 2 . e0 ) * s i n ( p r e t h e t a a h ) t h e t a a h = t h e t a a h / SQRT ( 1 . e0 + c o s ( p r e t h e t a a h ) * c o s ( p r e p h i a h / 2 . e0 ) ) END SUBROUTINE a i t o f f c o n v e r t !-------------------------------------------------------------------------------! ' R o t a t e ' S u b r o u t i n e -See ' PlaneSigRMS . f95 ' !-------------------------------------------------------------------------------! ' T h e t a P h i ' S u b r o u t i n e -See ' PlaneSigRMS . f95 ' !------------------------------------------------------------------------------- ------------------------------------------------------------------------ ! F o r RMS d i s t r i b u t i o n OPEN( u n i t = 1 1 , f i l e = ' . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d R M S / R M S 2 7 s a t s . d a t ' , s t a t u s = ' o l d ' ) OPEN( u n i t = 1 2 , f i l e = ' . / S a t C o m p S e t S t a t s / R M S P l a n e S t a t s 2 7 s a t s / r e a l s i g w t h e r r . d a t ' , s t a t u s = ' o l d ' ) END IF IF ( AbVal ) THEN ! F o r ' sum o f A b s o l u t e V a l u e s ' d i s t r i b u t i o n OPEN( u n i t = 1 1 , f i l e = ' . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A V / A V 2 7 s a t s . d a t ' , s t a t u s = ' o l d ' ) OPEN( u n i t = 1 2 , f i l e = ' . / S a t C o m p S e t S t a t s / A b V a l P l a n e S t a t s / r e a l s i g w t h e r r . d a t ' , s t a t u s = ' o l d ' )

x i ( i ) = x i ( i ) * ( p i / 1 8 0 . e0 ) ! C o n v e
END IF IF ( Asy ) THEN ! F o r Asymmetry d i s t r i b u t i o n OPEN( u n i t = 1 1 , f i l e = ' . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A s y / A s y 2 7 s a t s . d a t ' , s t a t u s = ' o l d ' ) OPEN( u n i t = 1 2 , f i l e = ' . / S a t C o m p S e t S t a t s / Asymm Stats / r e a l a s y w t h e r r . d a t ' , s t a t u s = ' o l d ' ) END IF IF ( AsyFP ) THEN ! F o r D i s t r i b u t i o n o f Asymmetry a b o u t M31 t a n g e n t p l a n e OPEN( u n i t = 1 1 , f i l e = ' . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A s y F P / A s y F P 2 7 s a t s . d a t ' , s t a t u s = ' o l d ' ) OPEN( u n i t = 1 2 , f i l e = ' . / S a t C o m p S e t S t a t s / A s y m m S t a t s F i x e d P l a n e / r e a l a s y w t h e r r . ------------------------------------------------------------------------- IF ( d a t a h i s t ( i t n u m , 1 ) . ge . BFVmsig . and . d a t a h i s t ( i t n u m , 1 ) . l t . BFV + p s i g ) THEN CALL p g s c i ( 2 ) ! CALL p g b i n ( 2 , d a t a h i s t ( i t n u m , 1 ) , d a t a h i s t ( i t n u m , 2 ) , . f a l s e . ) ! IF ( d a t a h i s t ( i t n u m , 1 ) . eq . BFVmsig ) THEN ! x p t s = d a t a h i s t ( i t n u m , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 ) ! One Sigma CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( d a t a h i s t ( i t n u m + 1 , 1 ) . eq . BFV + p s i g ) THEN ! x p t s = d a t a h i s t ( i t n u m + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( d a t a h i s t ( i t n u m , 1 ) . ge . BFV -m90 . and . d a t a h i s t ( i t n u m , 1 ) . l t . BFV + p90 ) THEN CALL p g s c i ( 3 ) ! CALL p g b i n ( 2 , d a t a h i s t ( i t n u m , 1 ) , d a t a h i s t ( i t n u m , 2 ) , . f a l s e . ) ! IF ( d a t a h i s t ( i t n u m , 1 ) . eq . BFV -m90 ) THEN ! x p t s = d a t a h i s t ( i t n u m , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 )

! 90 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( d a t a h i s t ( i t n u m + 1 , 1 ) . eq . BFV + p90 ) THEN ! x p t s = d a t a h i s t ( i t n u m + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE IF ( d a t a h i s t ( i t n u m , 1 ) . ge . BFV -m99 . and . d a t a h i s t ( i t n u m , 1 ) . l t . BFV + p99 ) THEN CALL p g s c i ( 4 ) ! CALL p g b i n ( 2 , d a t a h i s t ( i t n u m , 1 ) , d a t a h i s t ( i t n u m , 2 ) , . f a l s e . ) ! IF ( d a t a h i s t ( i t n u m , 1 ) . eq . BFV -m99 ) THEN ! x p t s = d a t a h i s t ( i t n u m , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 )

! 99 p e r c e n t CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! C r e d i b i l i t y IF ( d a t a h i s t ( i t n u m + 1 , 1 ) . eq . BFV + p99 ) THEN ! x p t s = d a t a h i s t ( i t n u m + 1 , 1 ) ! I n t e r v a l y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 END SUBROUTINE H i s t o P l o t A d v !---------------------------------------------------------------------------

II

  Part of the SVDFitter subroutine called in MF T RGB. f 95 (and earlier versions of this program) has been modified by Geraint Lewis. III The " f unc i" function called in MF T RGB. f 95 (and earlier versions of this program)
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 11 Figure 1.1. Based on their findings they suggest a morphological type for the Galaxy closest to Sc.

suggests 1 . 2 A 3 Figure 1 . 1 :

 12311 Figure 1.1: A Schematic of the observable portion of the Milky Way's spiral arms.[START_REF] Vallée | The Spiral Arms and Interarm Separation of the Milky Way: An Updated Statistical Study[END_REF] 

Figure 1 . 2 :

 12 Figure 1.2: An example of the Age-Luminosity Relation. Here, the ages of the oldest globular clusters have been plotted as a function of the absolute visual magnitude of component RR Lyrae stars. The best fit median is represented by the solid line while the dashed lines represent 1σ limits.[START_REF] Chaboyer | The Age of Globular Clusters in Light of Hipparcos: Resolving the Age Problem[END_REF] 

Figure 1 . 4 :

 14 Figure 1.4: A pole-count analysis of the APM survey carbon stars where the number of carbon stars lying within 10 o of a given great circle are represented at the pole of the respective great circle using contour lines. The poles of the Sgr Dwarf stream are at l = 90 o / 270 o , b = 15 o /-15 o and those for the Magellanic stream are at l = 170 o / 350 o , b = -5 o /5 o .[START_REF] Ibata | Great Circle Tidal Streams: Evidence for a Nearly Spherical Massive Dark Halo around the Milky Way[END_REF] 

Figure 1 . 6 :

 16 Figure 1.6: MegaCam Filter Set response compared with corresponding SDSS filter responses.(Gwyn, 2010) 

1. 8 Figure 1 . 7 :

 817 Figure 1.7: Schematic showing the evolution in temperature and luminosity of an intermediate mass, metal poor star. The star 'turns off' the Main Sequence onto the Red Giant Branch (RGB) afterexhausting its core supply of hydrogen. The star expands and cools as it fuses hydrogen in a shell surrounding the core. At the onset of core helium fusion, the star has reached the Tip of the Red Giant Branch (TRGB) from which point it cools and contracts and enters life as a Horizontal Branch (HB) star. When it exhausts its core supply of helium it continues to fuse helium in a shell around the core once again becoming more luminous and following a path approaching the RGB asymptoticly. At this stage in its evolution the star is hence known as an Asymptotic Giant Branch (AGB) star. Note that stars spend only a tiny fraction of their life time as an AGB star in comparison to the time they spend as RGB stars and hence AGB stars are much rarer and so do little to diminish the contrast of the TRGB in an object's luminosity function.

Figure 2 . 1 :

 21 Figure 2.1: Colour-Magnitude Diagram for the dwarf spheroidal galaxy Andromeda I. It contains all stars in the PAndAS survey with i-band magnitude i 0 in the range 18 < i 0 < 26, located within a circular field of radius 0.1 • centered on Andromeda I. The red lines indicate the colour-cut imposed on the data in order to improve the contrast between the RGB and background stars. The Red Giant Branch of the M31 Giant Stellar Stream is visible as a second, faint RGB on the red side of the Andromeda I RGB. It can be seen much more prominently in Paper I, Fig. 2 where a larger field size is plotted.

Figure 2 . 2 :

 22 Figure 2.2: A smoothed version of the Andromeda I luminosity function, built using the stars plotted in Fig. 2.1 after rejecting those stars outside of the colour-cut indicated. The superimposed function in red is the second derivative of the smoothed LF, divided by the LF height, and indicates the location of inflection points in the LF gradient. A blue arrow points out the inflection point at i 0 = 20.77 corresponding to the RGB tip. Note that the falloff in star counts faint-ward of i 0 = 23.5 is due to data incompleteness.

Figure 2 . 3 :

 23 Figure 2.3: Random realization of a model luminosity function. It contains 1000 stars whose magnitudes were drawn at random from a step function probability distribution (shown as a red dashed line). The step is located at a magnitude of 0.4 and the signal and background components are in the ratio 0.7 : 0.3 respectively.

Figure 2 . 4 :

 24 Figure 2.4: Schematic showing the scaling of the normalized step function as the step location is moved to fainter magnitudes.

Figure 2 . 5 :

 25 Figure 2.5: Probability distributions for the location of the step (i.e. RGB tip) in a 10 star, 'step' luminosity function. Fig. (a) shows the individual probability distributions resulting from each star whilst Fig. (b) shows the product of these individual distributions which forms the probability distribution given the whole luminosity function. As in Figures 2.3and 2.4, the model which produced the stars consisted of RGB and background contributions in the ratio of 0.7 : 0.3 and the step was located at a magnitude of 0.4. Note that the total area under all distributions in both (a) and (b) is unity, with all possible locations of the step position represented. This follows from the normalization of the model for all step positions.
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 3 Figure 2.5: Probability distributions for the location of the step (i.e. RGB tip) in a 10 star, 'step' luminosity function. Fig. (a) shows the individual probability distributions resulting from each star whilst Fig. (b) shows the product of these individual distributions which forms the probability distribution given the whole luminosity function. As in Figures 2.3and 2.4, the model which produced the stars consisted of RGB and background contributions in the ratio of 0.7 : 0.3 and the step was located at a magnitude of 0.4. Note that the total area under all distributions in both (a) and (b) is unity, with all possible locations of the step position represented. This follows from the normalization of the model for all step positions.

  Figure 2.5: Probability distributions for the location of the step (i.e. RGB tip) in a 10 star, 'step' luminosity function. Fig. (a) shows the individual probability distributions resulting from each star whilst Fig. (b) shows the product of these individual distributions which forms the probability distribution given the whole luminosity function. As in Figures 2.3and 2.4, the model which produced the stars consisted of RGB and background contributions in the ratio of 0.7 : 0.3 and the step was located at a magnitude of 0.4. Note that the total area under all distributions in both (a) and (b) is unity, with all possible locations of the step position represented. This follows from the normalization of the model for all step positions.

Figure 2 . 6 :

 26 Figure 2.6: Probability distribution for the location of the step in the 1000 star 'step' luminosity function of Fig. 2.3.

Figure 2 . 7 :

 27 Figure 2.7: The random walk in the RGB tip magnitude over 1000 iterations, resulting from the application of the MCMC to the Andromeda I luminosity function. The model LF being sampled consisted of two free parameters, the RGB tip magnitude and the slope a of the power law chosen to approximate the RGB component of the LF. (Generated using 'BayesianT RGB ANDI. f 95' -see Appendix B)

Figure 2 . 8 :

 28 Figure 2.8: Generating the probability distribution for a single parameter via marginalization. Both Figures (a) and (b) are generated from the same Markov Chain as Fig. 2.7. Fig. (a) shows the value of the RGB slope a corresponding to each value of the RGB tip. As the fitted model LF is defined solely by these two parameters, the figure portrays all information contained in the Markov Chain. Fig. (b) portrays the binned probability distribution in the RGB tip position. The height of each bin reflects the number of data points in Fig. (a) recorded in the magnitude range represented by each bin. It is clear that a longer chain is warranted if it is to form a truly representative sample of the state space of the model. (Generated using 'BayesianT RGB ANDI. f 95' -see Appendix B)

  ) where f (M p |D) is the 'posterior' distribution in model parameter p after taking into account the data D. The function f (D|M p ) is the distribution of likelihoods obtained from the model for the various values of p, f (M p ) is our 'prior' or initial assumption as to the distribution in p before accounting for the data, and f (D) is the probability distribution for the data points -i.e. the luminosity function. Since f (D) is constant regardless of the model parameters, it scales all probabilities by the same amount and hence is dealt with the by the normalization of the posterior distribution. In the examples of §2.3 and §2.4, a 'uniform' prior has always been assumed, such that f (M p ) = c, a constant. If we are to better constrain our posterior distributions however, we should incorporate all prior information we have on the object studied.

Figure 1 .

 1 Figure 1.Position of Andromeda I relative to the M31 disk. The saturated disk dominates the northwest corner of the field while Andromeda I itself appears as an overdensity within the Giant Stellar Stream (GSS). The GSS in actuality lies well behind Andromeda I, as is evidenced by the CMD in Figure2. A strict color-cut was imposed on the data to highlight the location of the satellite and the extent of the stream with greatest contrast. (A color version of this figure is available in the online journal.)

Figure 2 .

 2 Figure 2. Color-magnitude diagram for a circular field of radius 0. • 2 centered on Andromeda I. Two red giant branches are clearly visible, that of Andromeda I (within the red rectangle color-cut) and that of the Giant Stellar Stream which lies behind Andromeda I in the same line of sight. (A color version of this figure is available in the online journal.)
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Figure 4 .

 4 Figure 4. Top: CMD for the Andromeda I background field (see Figure3). The same color-cut is applied as in the CMD for the signal field (Figure2). Bottom: The binned luminosity function for the background with the fitted polynomial superimposed. A polynomial of degree seven was found adequate to represent the luminosity function.(A color version of this figure is available in the online journal.)

5 BGFigure 5 .

 55 Figure 5. Posterior probability distribution for three million iterations of the MCMC on the Andromeda I CMD color-cut presented in Figure 2. The peak probability is located at i 0 = 20.88. The distribution is color coded, with red indicating tip magnitudes within 68.2% (Gaussian 1σ ) on either side of the distribution mode, green those within 90%, and blue those within 99%. (A color version of this figure is available in the online journal.)

Figure 6 .Figure 7 .

 67 Figure 6. Four-magnitude segment of the Andromeda I luminosity function fitted by our MCMC algorithm. It is built from 3355 stars. The best-fit model is overlaid in red. The bin width for the LF is 0.01 mag. (A color version of this figure is available in the online journal.)

Figure 8 .

 8 Figure 8. Contour map of the distribution of the tip magnitude vs. the LF slope a. It is noteworthy that there is little correlation between the two parameters, with the peak of the distribution of a more or less independent of tip magnitude. Regardless of any correlation, the respective PPDs of each parameter are the result of marginalizing over the other parameter, and thus take into account any covariance between parameters.

Figure 10 .

 10 Figure 10. Gray-scale map of the 1σ error in tip magnitude obtained for different combinations of background height and number of sources. The actual value recorded for the error (in kpc) is overlaid on each pixel in red. For these tests, we approximate the 1σ error as the half-width of the central 68.2% of the PPD span. (A color version of this figure is available in the online journal.)
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Figure 11 .

 11 Figure 11. Gray-scale map of the offset from the true tip magnitude obtained for different combinations of background height and number of sources. The actual (absolute) value recorded for the offset (in kpc) is overlaid on each pixel in red. These values convey the discrepancy between the true object distance and that recovered by the MCMC. It was necessary to remove the direction of the individual offsets before averaging as the values would otherwise largely cancel out. Examination of the individual offsets shows no significant bias toward either direction however. (A color version of this figure is available in the online journal.)

Figure 12 .

 12 Figure 12. Posterior probability distribution for the cold sampler chain of a fourchain parallel-tempering regime. The MCMC was run for 1.5 million iterations. The strong peak at m = 20.93 results from the tip of the Andromeda I RGB, but it has been shifted faintward by the presence of the Giant Stellar Stream, responsible for the peaks at m = 21.29 and m = 21.35. Without the addition of parallel tempering, the MCMC is liable to spend an inordinate amount of time stuck in the first major probability peak it encounters.

Figure 15 .Figure 16 .

 1516 Figure 15. Four-magnitude segment of the Andromeda II luminosity function fitted by our MCMC algorithm. It is built from 4409 stars. The best-fit model is overlaid in red. The bin width for the LF is again 0.01 mag. (A color version of this figure is available in the online journal.)

  ing along lines of constant Declination and Right Ascension respectively. A more typical Paper II: A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude. II. Distances to the Satellites of M31 orientation of the coordinate system is later adapted in Paper III by implimenting rotations about the x and z axes so that z points toward the M31 Galactic north pole, with the Earth at a longitude of 0 • . Now, with M31 and its satellites represented by a series of points in three dimensions, we are in a position to begin an analysis of the distribution. This analysis is begun in Paper II with a study of the satellite density profile within the M31 halo. Of particular note, this study takes into full account the uneven coverage of the PAndAS survey, whereby certain radii from the center of M31 receive better coverage than others. The study also gives full account to the distance uncertainty distributions for each satellite by sampling possible positions from each distribution over many iterations. A more thorough study of the satellite distribution then follows in Paper III. Note that all of the principal code used throughout the analysis in Paper II can be found in Appendix C, along with a brief summary of what each program does.

Figure 4 . 1 :

 41 Figure 4.1: Conversion of Earth-to-object distances into an M31-centric cartesian coordinate system. This figure was created to help visualize the geometry of Earth-M31-object alignments. The top part of the diagram shows the projection of the target object (satellite) on to the M31 tangent plane and the x,y,z of the coordinate system used. Positive x points East (toward increasing ξ), positive y points North (toward increasing η) and positive z points along the line of sight (to M31) away from Earth. The three triangles in the lower half of the figure show how each coordinate can be determined from the Earth-to-M31 (a) and Earth-to-object (b) distances.

Figure 1 .

 1 Figure 1. Radial density profile (proportional to object membership probability) for Andromeda X. The error bars represent the Poisson error in the density for each bin, with each bin representing an elliptical annulus at the stated radius. Hence the innermost annuli have the smallest areas and thus the largest error bars. Note that this binned density distribution is for comparison only and has no bearing on the fit. The background level is marked "BG." (A color version of this figure is available in the online journal.)
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Figure 2 .

 2 Figure 2. Best-fit model to the luminosity function of Andromeda X, obtained with the addition of matched filtering. The top figure shows the best fit overlaid on the unmodified LF (i.e., histogram created without the weighting afforded by the matched filter). The bottom figure shows the same best-fit model after applying the weighting. A field radius of 0.• 15 was used to generate the LF histograms, wherein each star contributes between 0 and 1 "counts," depending on its proximity to the field center and the density profile of the object. (A color version of this figure is available in the online journal.)
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Figure 4 .Figure 5 .

 45 Figure 4. Gray-scale map of the 1σ error in tip magnitude obtained for different combinations of background height and number of sources. The actual value recorded for the error (in kpc) is overlaid on each pixel in red. Each value is the average of twenty 50,000 iteration runs for the given background height/LF population combination. (A color version of this figure is available in the online journal.)

Figure 6 .

 6 Figure6. Distance prior applied to Andromeda XIII (solid line; α = 1). The distribution gives the likelihood of the satellite existing at a particular distance, given an angular separation on the sky of 8. • 5 from M31 (the halo center) and assuming a distance of 779 kpc for M31. The distribution peaks where the line of sight traverses the innermost region of the halo, and flattens out at large distances due to the increasing volume of the halo subtended by the unit of solid angle observed. The same prior with α = 2 is shown as a dashed line for reference. While this value for alpha is in closer agreement with the results of Section 4.3, we deliberately adopt the less restrictive α = 1 prior, so as not to suppress the probability of satellites in the outer halo too greatly.

Figure 7 .

 7 Figure7. Andromeda I: (a) color-coded CMD representing the weight given to each star in the field. Only stars within the red selection box with magnitudes 19.5 i 0 23.5 were fitted and hence color-coded. The second, fainter RGB lying toward the redder end of the CMD is that of the giant stellar stream which passes behind our Andromeda I field. The inset at top right shows the field with the same color-coding and acts as a key. The field is divided into 20 radii bins following a linear decrease in density from the core (blue) to the field edge (purple). Stars marked as a purple "×" lie outside of the outer elliptical cutoff radius r outer . Stars marked as a black " + " are artificial stars used in the estimation of the background density and are ignored by the MCMC; (b): posterior probability distribution for the TRGB magnitude. The distribution is color-coded, with red indicating tip magnitudes within 68.2% (Gaussian 1-sigma) on either side of the distribution mode, green those within 90%, and blue those within 99%; (c) weighted LF of satellite with superimposed best-fit model in red. A star at the very center of the satellite contributes 1 count to the luminosity function while those further out are assigned some fraction of 1 count in proportion with the satellite's density profile. (A color version of this figure is available in the online journal.)

Figure 8 .

 8 Figure 8. Andromeda XV: (a) same as Figure 7(a) but for Andromeda XV; (b) same as Figure 7(b) but for Andromeda XV; (c) sampled distance posterior probability distribution, obtained by calculating the distance 3 million times, each time randomly drawing on the tip magnitude, absolute magnitude of the tip, and extinction from their respective probability distributions. The distribution is color-coded, with red indicating possible distances within 68.2% (Gaussian 1 σ ) on either side of the distribution mode, green those within 90%, and blue those within 99%. Note that the large uncertainty in the absolute magnitude of the RGB tip is primarily responsible for the much smoother appearance of the distance PPD (c) compared with the tip PPD (b). (A color version of this figure is available in the online journal.)

Figure 9 .

 9 Figure 9. Andromeda XIII: All figures as per Figure 8, but for Andromeda XIII. The distance derived by Yang & Sarajedini (2012) is plotted in (c) along with error bars for comparison. (A color version of this figure is available in the online journal.)

Figure 10 .

 10 Figure 10. Three views of the M31 neighborhood: (a) a view of the satellites of M31 along the y-z plane. The conic section illustrates the extent of volume covered by the PAndAS footprint as a function of distance from Earth; (b) a view of the satellites of M31 in the x-y plane, revealing their true positions on the x-y plane after removing the effects of perspective (assuming the distances quoted in Column 4 of Table2). Note that Andromeda XXVII lies directly behind NGC 147 in this plot and is not labeled; (c) a three-dimensional view of the satellites of M31. The satellite positions on the PAndAS footprint are indicated (i.e., with perspective conserved) along with the z-vector giving distance from the M31-centered tangent plane. The central ellipse indicates the approximate area of the survey where satellite detection is hindered by the M31 disk; note that the perpendicular bars on relevant axes indicate 100 kpc intervals. (A color version of this figure is available in the online journal.)

Figure 13 .

 13 Figure 13. Probability distributions for the slope α of a single power law used to model the M31 halo satellite distribution, given the entire set of 27 M31 companions presented in Table2. Panel (a) gives the distribution assuming a single best-fit radius for each of the satellites as determined from the mode in the satellite's distance posterior distribution (as given in Column 4 of Table2). Panel (b) shows the same distribution when the entire radius probability distribution for each satellite is sampled 500,000 times.
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  Distance lends enchantment to the view." The Three Dimensional Structure of the M31 Satellite System; Strong Evidence for an Inhomogeneous Distribution of Satellites

Figure 5 . 1 :

 51 Figure 5.1: Plane Fitting; Poles of Tested Planes. This figure illustrates the plane fitting method utilized for most of the analysis contained in Paper III. Figure (a) shows a hemisphere of equally spaced points, each one the pole of a tested plane. This plot represents the low resolution scan undertaken for every instance of plane fitting to a particular set of satellites. Once the scan is complete, a high resolution scan is undertaken about the best-fit pole. Figure (b) is a close up of several of these high resolution scans, indicating the effective resolution of each scan. Note that several adjacent scans are shown to indicate the overlapping coverage. For a given instance of plane fitting, only one high resolution search (i.e. square) need be made. Plotted using TOPCAT.

  Fig. (b) shows 10, 000 unit vectors distributed truly randomly following this procedure. Note that this same process is not only applicable to positioning satellites randomly on the sky but is also another means of generating random poles for plane fitting (see §3.4 of Paper III for instance).

  Fig. 5.3 below illustrates the procedure for the random generation of satellites. Figure (a) illustrates the positions on the sky of 1000 accepted satellite positions as viewed from Earth. As with most of the figures in this preface, this figure was generated to verify the correct behavior of the algorithm. Hence a very large number of satellites were generated in order to insure that all accepted satellites did indeed fall inside the utilized portion of the PAndAS survey area. Figure (b) likewise was generated to insure that the final random realizations had the correct appearance. It shows 1000 possible positions drawn for each of 27 artificial satellites.

Figure 5 . 2 :Figure 5 . 3 :

 5253 Figure 5.2: Method for rotating vectors to random angles. Fig. (a) illustrates the calculation of the necessary weighting factor as a function of latitude. Fig. (b) shows 10, 000 unit vectors spun to random angles after incorporating this weighting factor. Note that had this weighting factor not been included, the density of poles would be greater at higher latitudes. Fig. (b) plotted using TOPCAT.

Fig. 1 .

 1 Fig. 1.-An Aitoff-Hammer Projection showing the positions of M31's satellites, along with their associated 1σ uncertainties. The positions show where each object would appear in the sky if viewed from the centre of M31, and are given in M31's inherent galactic latitude and longitude. The position of the Milky Way is also shown for reference. The position uncertainties trace single arcs across the M31 sky, rather than two-dimensional patches on account of the restriction of the uncertainty to lie solely along the line of sight to the object from Earth. For this same reason, all the lines point radially outward from the Milky Way. These uncertainties also take into account the uncertainty in M31's distance. The existence of a prominent plane, broadly consisting of Andromedas I, XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII, XXX and NGC147 and NGC185, is hinted at by the close proximity of their respective arcs.

Fig. 2 .

 2 Fig. 2.-An Aitoff-Hammer projection illustrating the satellite detection bias resulting from the PAndAS survey boundaries and M31 disk obstruction. Note that this figure utilizes a Gaussian blurring of radius 5 • , as do all of the subsequent pole-density plots.

  Such planes would have poles lying anywhere on the great circle whose normal is directed toward Earth. The drop in the satellite density at l M31 = 0 • , b M31 = -12.5 • and l M31 = ±180 • , b M31 = 12.5 • is a consequence of the hinderance to detection caused by the M31 disk. Due to the increased volume of space covered by the survey at greater distances from Earth, unhindered satellite detection is possible over a larger range of angles on the far side of M31 in comparison to the Earth-ward side.

Fig. 4 .

 4 Fig. 4.-A pole-density map showing the effective uncertainty in the location of the best-fit plane to the whole satellite sample. The poles of the best-fit planes derived for 200,000 possible realizations of the data are plotted, along with their corresponding anti-poles.

Fig. 7 .Fig. 8 .

 78 Fig. 7.-An Aitoff-Hammer projection showing the plane of maximum asymmetry identified from the full sample of best-fit satellite positions. It divides the distribution such that 21 satellites lie in one hemisphere, but only 6 in the other. The anti-pole of the maximum asymmetry plane lies just 28.1 • from the Milky Way as viewed from the center of M31.

Fig. 9 .

 9 Fig.9.-Asymmetry probability distributions. The top two histograms plot probability distributions for the greatest number of satellites that can be found in one hemisphere, as generated from (a) 200,000 samplings of satellite positions possible from the data and; (b) the average of 1000 samplings from each of 10,000 random realizations of the satellites generated as per §2.2. Figures (c) and (d) give the equivalent distributions when the maximum asymmetry plane is replaced with the fixed M31 tangent plane. As for Fig.5, the histograms in the right-hand column should only be compared with the average of the corresponding histogram in the left column. The average value of the histograms of (a) and (c) are shown in (b) and (d) respectively as a dashed line.

Fig. 10

 10 Fig.10.-Best fit planes and pole density maps for combinations of 3 through 7 satellites. The left-hand column shows the best-fit plane through the combination of satellites that can be fit with the lowest RMS. Satellites included in the best-fit combination are colored red. The centre of the NGC147 group is marked with a circle, and lies on the best-fit plane in every case. The three members of this group are colored orange. Only the best-fit satellite positions are considered for these plots. The right-hand column shows the corresponding pole density plot for the poles of all satellite combinations. These plots have been weighted by the RMS of each pole and fully account for the uncertainty in the satellite positions.

Fig. 11

 11 Fig. 11.-Pole density maps for 8 random realizations of 25 satellites. The maps plot the poles for the best-fit planes to all combinations of 5 satellites. The contribution of each pole is weighted by the RMS of the plane it represents. The map resulting from all combinations of 5 satellites drawn from the real data is shown again at the top for comparison.

Fig. 12 .

 12 Fig. 12.-Radial density profiles showing the percentage of all poles lying within n degrees of the densest point in the pole count distributions (the principal maximum) for a) the actual satellite distribution and b) the average of 1000 random satellite distributions. The profile for the actual satellite distribution is generated from the same pole distribution as illustrated for 5 satellites in Fig. 10 and at the top of Fig. 11. Note that the relative linearity of (b) compared with (a) is simply a result of the averaging of a large number of individual profiles undertaken to produce the former.

Fig. 13 .

 13 Fig. 13.-Histogram showing the relative contribution of each satellite to the pole density within 3 • of the principal maximum at l M31 = -78.7 • , b M31 = 38.4 • . The histogram is generated from the same pole distribution as illustrated for 5 satellites in Fig. 10 and at the top of Fig. 11.

Fig. 14 .

 14 Fig. 14.-Pole density distributions generated from all combinations of 5 satellites possible from: Left) the satellites contributing significantly to the principal maximum at l M31 = -78.7 • , b M31 = 38.4 • as per Fig. 13 and Right) the remaining 12 satellites.

Fig. 15

 15 Fig. 15.-A Great Plane of Satellites consisting of Andromedas I, III, IX, XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII, XXX, NGC147 and NGC185. The plane shown is that derived from the best-fit satellite positions. The pole is located at (l M31 , b M31 ) = (-78.4 • , 38.3 • ).

  Fig. 16.-Determining the significance of the observed 'great plane' of satellites (see Fig. 15). Figure (a) gives the distribution of possible values of the RMS obtainable from 200,000 realizations of possible positions of the 15 plane members, given their respective distance probability distributions. Figure (b) plots the average RMS of the best fit plane through the most planar combination of 15 satellites for each of 10, 000 random realizations of 27 satellites. These satellites are subject to the same selection biases as the real data. As for Fig. 5, histogram (b) should only be compared with the average of histogram (a), which is plotted in (b) as a dashed line. It is thus clear that the planarity observed for our 'great plane' of satellites is very unlikely to arise by chance. The 1σ (68.2%), 90% and 99% credibility intervals are shown as red, green and blue lines respectively.
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  A powerful new Bayesian technique has been developed for determining the distance probability distribution of an object from the tip of its red giant branch. The technique is best suited to older, metal poor structures that are sufficiently close as to facilitate accurate photometric measurements to a depth exceeding that of the RGB tip by at least 0.5 magnitudes. 114 Conclusions II A 'density' matched-filter has been developed to compliment the technique of I. This matched filter was developed specifically for the satellite galaxies of M31 and as such, is not applicable to extended structures (such as streams). It effectively acts to improve the contrast of the RGB tip in the object's luminosity function by weighting the component stars with respect to their position within the object's density profile. III An angle-specific density prior has been devised specifically for the M31 halo and incorporated into the technique of I. It effectively equates each position along the line of sight to one of the satellites with some probability, based on the assumed sub-halo density at the associated radius from the center of the halo. IV Accurate distance probability distributions have been obtained for 27 of the satellites of M31 as well as for M31 itself via incorporating the priors of II and III into the technique of I. V The distance distributions of IV have been converted into M31-centric 3D positions, providing the largest homogeneous sample of satellite galaxy positions for any galaxy halo.
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  s t a t u s = ' unknown ' ) WRITE( 1 , * ) ' p l o t \ ' DO j = ma , 1 , -1 IF ( j . ne . 1 ) THEN WRITE( 1 , * ) PolyCo ( j ) , ' * x * * ' , j -1 , '+ \ ' IF ( PolyCo ( j -1 ) . g t . 0 . d0 ) THEN WRITE( P o l y E l e m e n t ( j ) , * ) PolyCo ( j ) , ' * x * * ' , j -1 , '+ ' END IF IF ( PolyCo ( j -1 ) . l t . 0 . d0 ) THEN WRITE( P o l y E l e m e n t ( j ) , * ) PolyCo ( j ) , ' * x * * ' , j -1 END IF END IF IF ( j == 1 ) THEN WRITE( 1 , * ) PolyCo ( j ) , ' t i t l e ' ' s v d f i t ' ' , " l f f i t . d a t " ' WRITE( P o l y E l e m e n t ( j ) , * ) PolyCo ( j ) END IF P o l y n o m i a l = TRIM ( P o l y n o m i a l ) / / TRIM ( P o l y E l e m e n t ( j ) ) END DO PRINT * , TRIM ( P o l y n o m i a l ) END SUBROUTINE L e g P r i n t !-

  -SUBROUTINE L e g P l o t 2 ( xa , ya , n d a t a ) ! F o r p l o t t i n g L e g e n d r e p o l y n o m i a l s w i t h p g p l o t IMPLICIT NONE INTEGER : : n d a t a , j DOUBLE PRECISION : : xa ( n d a t a ) , ya ( n d a t a ) REAL : : x a s p ( n d a t a ) , y a s p ( n d a t a ) , Le g e n d re n e w , dummy EXTERNAL : : L e g e n d r e n e w x a s p = xa ; y a s p = ya dummy = L e g e n d r e n e w ( -0 . 5 ) DO j = 1 , n d a t a

  d s t h e c o e f f i c i e n t s f o r d2ydx2 END DO DO j = 1 , ma-3 d ( j ) = c ( j +1) * j ! F i n d s t h e c o e f f i c i e n t s f o r t h e 3 r d d e r i v a t i v e ( d3ydx3 ) END DO CALL z r h q r ( d , 1 , r t r , r t i ) ! F i n d s t h e r o o t s f o r t h e maximum r a t e o f c h a n g e o f t h e DO j =1 , ma -3 ! g r a d i e n t ( d3ydx3 = 0 ) and d2ydx2 ' s m a g n i t u d e t h e r e . IF ( r t i ( j ) == 0 ) THEN ! I n c l u d e o n l y r e a l r o o t s PRINT * , ' t u r n i n g p o i n t a t x = ' , r t r ( j ) END IF END DO END SUBROUTINE d2ydx2max !-
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  ! b g m a g i ( j ) =im ! b g g m i n i ( j ) =gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o b c k g r n d a r r a y s b g x k i ( j ) = x k i t ! b g e t a ( j ) = e t a t ! END IF END IF END IF END DO n d a t a = i ; b g n d a t a = j s i g a r e a = p i * ( s i g f i e l d r a d i u s * * 2 . d0 ) ! C a l c u l a t e a r e a o f s i g n a l f i e l d b g a r e a = 0 . 4 d0 * ( b g u p x ib g l o w x i ) -2 . 4 d0 ! C a l c u l a t e a r e a o f b a c g r o u n d f i e l d DO i = 1 , n d a t a d a t a ( i ) = m a g i ( i ) ! O b j e c t s t a r s b e f o r e c o l o u r c u t END DO DO j = 1 , b g n d a t a b g d a t a ( j ) = b g m a g i ( j ) ! B a c k g r o u n d s t a r s b e f o r e c o l o u r c u t END DO CALL M 3 1 D a t a P l o t t e r END SUBROUTINE M31DataReader !-

  -SUBROUTINE M 3 1 D a t a P l o t t e r ! P l o t o b j e c t and b a c k g o u n d f i e l d s t a r p o s i t i o n s USE G l o b a l ! on t h e s k y and CMDs f o r e a c h o b j e c t ( g-i v s . i ) IMPLICIT NONE IF ( d a t a ( i ) . g t . d f l i m ) THEN d f l i m = d a t a ( i ) END IF END DO b g d a t a = 0 . d0 ; b g b l i m = 1 0 0 . d0 ; b g f l i m = 0 . d0 DO i = 1 , b g n d a t a 2 b g d a t a ( i ) = b g m a g i p o l y ( i ) IF ( b g d a t a ( i ) . l t . b g b l i m ) THEN b g b l i m = b g d a t a ( i ) END IF IF ( b g d a t a ( i ) . g t . b g f l i m ) THEN b g f l i m = b g d a t a ( i ) END IF END DO ! / \ ! | | ! ---S e t p ar a m e t e r s f o r c a l c u l a t i o n o f b a c k g r o u n d h e i g h t --s i g s t a r s = n d a t a 2 ! T o t a l number o f s t a r s i n s i g n a l f i e l d b g s t a r s = b g n d a t a 3 ! Number o f s t a r s i n b a c k g r o u n d f i e l d b g s t a r s i n s i g f i e l d = REAL( b g s t a r s ) * ( s i g a r e a / b g a r e a ) ! Number o f B a c k g r o u n d s t a r s i n s i g n a l f i e l d WRITE ( 3 , * ) " Number o f d a t a p o i n t s : " , s i g s t a r s WRITE ( 3 , * ) "SNR : " , (REAL( s i g s t a r s ) -b g s t a r s i n s i g f i e l d ) / b g s t a r s i n s i g f i e l d !---------Make c o a r s e d a t a h i s t o g r a m f o r b c k g r n d ---------DO i = 1 , INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 b g h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( 0 . 2 5 * binspm ) END DO DO i = 1 , b g n d a t a 2 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 , 2 ) = & b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 , 2 ) + 1 . d0 END DO ! | | F i l l empty b r i g h t e d g e o f a r r a y w i t h ! \ / a r t i f i c i a l d a t a f o r i m p r o v e d f i t t i n g DO i = 1 , INT ( ( b g b l i m -1 8 . d0 ) * REAL( binspm / 4 . d0 ) ) + 4 b g h i s t o c o a r s e ( i , 2 ) = b g h i s t o c o a r s e ( INT ( ( b g b l i m -1 8 . d0 ) * REAL( binspm / 4 . d0 ) ) + 4 , 2 ) END DO END SUBROUTINE M 3 1 D a t a P l o t t e r !-

  -SUBROUTINE S V D F i t t e r ! F i t s a p o l y n o m i a l t o t h e b a c k g r o u n d l u m i n o s i t y f u n c t i o n USE G l o b a l IMPLICIT NONE INTEGER : : ntmp xa = b g h i s t o c o a r s e ( : , 1 ) ya = b g h i s t o c o a r s e ( : , 2 ) x t = xa y t = ya s i g = 1 . e0

  t a H i s t ! P l o t s b a c k g r o u n d l u m i n o s i t y f u n c t i o n t o g e t h e r w i t h USE G l o b a l ! f i t t e d p o l y n o m i a l IMPLICIT NONE bfm = 0 . d0 DO i = 1 , n d a t DO j = 1 , np bfm ( i ) = bfm ( i ) + ay ( j ) * ( xa ( i ) -2 1 . ) * * ( j -1) END DO END DO !-----------------------P l o t s b e s t f i t model o v e r c o a r s e h i s t o g r a m s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / b c k g r d f i t . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv ( 1 9 . 5 , 2 3 . 5 , 0 . , 1 . 1 * MAXVAL(REAL( b g h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( n d a t , REAL( b g h i s t o c o a r s e ( : , 1 ) ) , REAL( b g h i s t o c o a r s e ( : , 2 ) ) , . t r u e . ) CALL p g s c i ( 2 ) CALL p g l i n e ( n d a t , xa , REAL( bfm ) ) CALL p g s c i ( 1 ) CALL p g l a b ( ' i \ d0 \ u ' , ' c o u n t s ' , ' ' ) CALL pgend END SUBROUTINE B G D a t a H i s t !-

  -SUBROUTINE MCMC ! The m a s t e r Markov C h a i n M o n t e C a r l o r o u t i n e USE G l o b a l ! c r e a t e s a new model a t e a c h i t e r a t i o n and t h e n c o m p a r e s IMPLICIT NONE ! t h e q u a l i t y o f t h e f i t t o t h e d a t a Chapter Three Programs ! * * * Most s u b r o u t i n e s a r e c a l l e d from 'MCMC' * * * REAL * 8 : : g a s d e v known f = (REAL( b g s t a r s ) * s i g a r e a ) / ( REAL( s i g s t a r s ) * b g a r e a ) x1( 1 ) = 2 0 . 8 8 d0 ; x2 ( 1 ) = known f ; x3 ( 1 ) = 0 . 2 7 d0 ; t i m e ( 1 ) = 1 m a g t i p = x1 ( 1 ) ; f = x2 ( 1 ) ; a = x3 ( 1) CALL ModelMake ! Make model and CALL C o n v o l u t i o n ! e v a l u a t e g o o d n e s s o f f i t CALL L o g l i k e ! f o r i n i t i a l p a r a m e t e r c h o i c e s LikeA = l o g L LikeB = 0 . d0 x1 ( 2 ) = x1 ( 1 ) ; x2 ( 2 ) = x2 ( 1 ) ; x3 ( 2 ) = x3 ( 1 ) Best Combo ( 6 ) = -9. d99 s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / MCMC steps . d a t ' OPEN( 2 , f i l e =TRIM ( ADJUSTL ( s t r i n g ) ) , s t a t u s = ' unknown ' ) WRITE( 2 , * ) " I t e r a t i o n m a g t i p f a LikeA LikeB " DO i t = 2 , n i t t i m e ( i t ) = i t p ( 1 ) = x1 ( i t ) + 0 . 0 3 d0 * g a s d e v ( idum ) ! G a u s s i a n w e i g h t e d s t e p s from i n i t i a l p ( 2 ) = x2 ( i t ) ! + 0 . 0 2 d0 * g a s d e v ( idum ) ! p a r a m e t e r s f o r t h e t i p m a g n i t u d e ( p ( 1 ) ) p ( 3 ) = x3 ( i t ) + 0 . 0 2 d0 * g a s d e v ( idum ) ! n o i s e r a t i o ( p ( 2 ) ) and s l o p e ( p ( 3 ) ) IF ( p ( 1 ) . l t . b l i m . o r . p ( 1 ) . g t . f l i m ) THEN ! r = 0 . d0 ! e l s e IF ( p ( 2 ) . l e . 0 . d0 . o r . p ( 2 ) . ge . 1 . d0 ) THEN ! R e s t r i c t i o n s on r = 0 . d0 ! w h e t h e r p r o p o s e d s t e p e l s e IF ( p ( 3 ) . l e . 0 . d0 . o r . p ( 3 ) . ge . 2 . d0 ) THEN ! r = 0 . d0 ! e l s e ! m a g t i p = p ( 1 ) ; f = p ( 2 ) ; a = p ( 3 ) CALL ModelMake ! Make model and CALL C o n v o l u t i o n ! e v a l u a t e t h e CALL L o g l i k e ! g o o d n e s s o f

  l o t s m a g t i p p o s t e r i o r p l o t s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / m a g t i p p o s t p l o t . p s / CPS ' CALL pgenv ( 0 . 9 * REAL(MINVAL( x2 ) ) , 1 . 1 * REAL(MAXVAL( x2 ) ) , 0 . 9 * REAL(MINVAL( x3 ) ) , 1 . 1 * REAL(MAXVAL( x3 ) ) , 0 , 0 ) CALL p g p o i n t ( n i t , REAL( x2 ) , REAL( x3 ) , -1) CALL p g l a b ( ' P r o p o s e d v a l u e o f f ' , ' P r o p o s e d v a l u e o f a ' , ' ' ) CALL pgend END SUBROUTINE O t h e r P l o t s !-

  -SUBROUTINE NoiseMake ! G e n e r a t e s a p o l y n o m i a l o f d e g r e e 7 t h a t f o l l o w s t h e USE G l o b a l ! f u n c t i o n a l form o f t h e GSS b a c k g r o u n d LF . The p o l y n o m i a l IMPLICIT NONE ! c o e f f i c i e n t s were d e r i v e d i n ' B a c k g r o u n d P o l y F i t ' u s i n g ! ' s v d f i t ' from N u m e r i c a l R e c i p e s . a r e a 2 = 0 . d0 DO i = 1 , 8 * binspm + 1 m o d e l n o i s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) m o d e l n o i s e ( i , 2 ) = 0 . d0 DO j = 1 , np ! S e t b a c k g r o u n d c o u n t s m o d e l n o i s e ( i , 2 ) = m o d e l n o i s e ( i , 2 ) + ay ( j ) * ( m o d e l n o i s e ( i , 1 ) -2 1 . d0 ) * * ( j -1 ) END DO IF ( m o d e l n o i s e ( i , 2 ) . l t . 0 . d0 ) THEN ! m o d e l n o i s e ( i , 2 ) = 0 . d0 ! I n s u r e no n e g a t i v e c o u n t s END IF ! IF ( i . ge . ( blim -1 8 . d0 ) * binspm + 1 . and . i . l e . f l i m B i n s ) THEN a r e a 2 = a r e a 2 + m o d e l n o i s e ( i , 2 ) ! Used f o r n o r m a l i z a t i o n i n ' ModelMake ' END IF END DO END SUBROUTINE NoiseMake !-

  -SUBROUTINE N o i s e P l o t ! P l o t s t h e u n s c a l e d form o f t h e b a c k g r o u n d LF USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv ( 1 8 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1 * REAL(MAXVAL( m o d e l n o i s e ( : , 2 ) , mask = m o d e l n o i s e ( : , 1 ) . l e . 2 3 . 5 ) ) , 0 , 0 ) CALL p g b i n ( n b i n s -INT ( 2 . 5 * binspm ) , REAL( m o d e l n o i s e ( : , 1 ) ) , REAL( m o d e l n o i s e ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend END SUBROUTINE N o i s e P l o t !-

  -SUBROUTINE ModelMake ! I n i t i a l Model ( i . e . model b e f o r e c o n v o l u t i o n ) USE G l o b a l IMPLICIT NONE REAL * 8 : : f u n c i n o i s e = m o d e l n o i s e ( : , 2 ) * ( f / a r e a 2 ) ! C a l c u l a t e b a c k g r o u n d h e i g h t a r e a = 0 . d0 DO i = 1 , n b i n s model ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) IF ( model ( i , 1 ) + hb . g t . m a g t i p . and . model ( i , 1 ) -hb . l e . m a g t i p ) THEN model ( i , 2 ) = ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) + hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) -& ( 1 . d0 / ( a * LOG ( 1 0 . ) ) ) ! Model v a l u e a t t i p a r e a = a r e a + model ( i , 2 ) ! Used t o c a l c u l a t e n o i s e i n m a s t e r p r o g r a m ELSE IF ( model ( i , 1 ) . g t . m a g t i p ) THEN ! Model v a l u e f a i n t w a r d o f t i p model ( i , 2 ) = ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) + hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) -& ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) -hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) IF ( i . ge . ( blim -1 8 . d0 ) * binspm + 1 . and . i . l e . f l i m B i n s ) THEN a r e a = a r e a + model ( i , 2 ) ! Used t o c a l c u l a t e n o i s e i n m a s t e r p r o g r a m ELSE c y c l e ; END IF ELSE model ( i , 2 ) = 0 . d0 ! Model v a l u e b r i g h t w a r d o f t i p END IF END DO model ( : , 2 ) = ( model ( : , 2 ) / a r e a ) * ( 1 . d0-f ) ! N o r m a l i z e model ( : , 2 ) = model ( : , 2 ) + n o i s e ! Add n o i s e END SUBROUTINE ModelMake !-

  -SUBROUTINE M o d e l P r i n t ! P r i n t s model b e f o r e c o n v o l u t i o n USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv (REAL( m a g t i p ) -3 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1 * REAL( model ( INT ( 5 . 5 * binspm ) , 2 ) ) , 0 , 0 ) CALL p g b i n ( n b i n s -INT ( 2 . 5 * binspm ) , REAL( model ( : , 1 ) ) , REAL( model ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend END SUBROUTINE M o d e l P r i n t !-

  -SUBROUTINE G a u s s i a n K e r n e l ! G e n e r a t e s a G a u s s i a n k e r n e l ' k e r n e l ' w i t h USE G l o b a l !HWHM ( s i g m a ) c h a n g i n g w i t h m a g n i t u d e i n IMPLICIT NONE ! a c c o r d a n c e w i t h f u n c i . K e r n e l i s d e f i n e d from ! gx = -5 * s i g m a t o gx = +5 * s i g m a . REAL * 8 : : f u n c i temp = 0 . d0 ; k e r n e l = 0 . d0 gx = 0 . j =0 DO WHILE ( gx . l e . 5 . e0 * f u n c i ( t ) ) ! j = j +1 ! gx = 0 . e0 + ( j -1 . e0 ) / binspm ! C r e a t e s h a l f o f temp ( j , 1 ) = gx ! t h e k e r n e l ( ' temp ' ) temp ( j , 2 ) = exp ( -( ( gx ) * * 2 . e0 ) / ( 2 . e0 * ( f u n c i ( t ) * * 2 . e0 ) ) ) ! END DO ! ghw = j -1 . d0 ! The f i r s t nonz e r o b i n o f ' cmodel ' w i l l be t h e f i r s t ! nonz e r o b i n o f ' model ' minus ghw DO k = 1 , j k e r n e l ( k , : ) = temp ( j -( k -1) , : ) ! C r e a t e ' k e r n e l ' by c o n c a t e n a t i n g k e r n e l ( j +k , 2 ) = temp ( k + 1 , 2 ) ! ' temp ' w i t h a r e f l e c t e d v e r s i o n k e r n e l ( j +k , 1 ) = -temp ( k + 1 , 1 ) ! o f i t s e l f END DO ! Note : temp ( 2 * j , 2 ) = 0 . d0 ; temp ( 2 * j , 1 ) = -0. d0 k e r n e l ( : , 2 ) = k e r n e l ( : , 2 ) /SUM( k e r n e l ( : , 2 ) ) END SUBROUTINE G a u s s i a n K e r n e l !-

  -SUBROUTINE C o n v o l u t i o n P r i n t ! P r i n t s c o n v o l v e d v e r s i o n o f model USE G l o b a l IMPLICIT NONE CALL p g b eg i n ( 0 , ' ? ' , 1 , 1 )CALL pgenv (REAL( m a g t i p ) -0 . 5 , 2 5 . , 0 . , 1 . 1 * MAXVAL(REAL( cmodel ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( n b i n s , REAL( cmodel ( : , 1 ) ) , REAL( cmodel ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' R e l a t i v e p r o b a b i l i t y ' , ' ' ) CALL pgend END SUBROUTINE C o n v o l u t i o n P r i n t !-

  -SUBROUTINE D a t a H i s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i n n e d h i s t o g r a m s and USE G l o b a l ! o v e r l a y s them w i t h t h e b e s t f i t model d e t e r m i n e d by IMPLICIT NONE ! t h e MCMC REAL * 8 : : s c a l e d f r e c h i s t o f i n e ( : , 1 ) = model ( : , 1 )DO i = 1 , INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( 0 . 2 5 * binspm ) END DO DO i = 1 , n d a t a 2 ! h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) = & ! G e n er a t e s h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) + 1 . d0 ! h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) = & ! H i s t o g r a m s h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) + 1 . d0 ! END DO ! h i s t o c o a r s e ( INT ( 5 . 5 * REAL( binspm / 4 . d0 ) ) + 1 , 2 ) = & ! See p a r a g r a p h h i s t o c o a r s e ( INT ( 5 . 5 * REAL( binspm / 4 . d0 ) ) + 1 , 2 ) * 2 .

  ! \ / o v e r h i s t o g r a m m a g t i p = t i p r e c ; f = f r e c ; a = a r e c ! CALL ModelMake ! G e n e r a t e b e s t f i t f u n c t i o n CALL C o n v o l u t i o n ! bfm = cmodel ( : , 2 ) ! bfm = b e s t f i t model bfm = bfm * (SUM( h i s t o f i n e ( : , 2 ) ) /SUM( bfm ) )

  ) CALL p g s l w ( 1 ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend bfm = bfm * 4 . d0 ! S c a l e bfm t o match c o a r s e h i s t o g r a m !-----------------------Pl o t s b e s t f i t model o v e r c o a r s e h i s t o g r a m s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / m o d e l f i t v s d a t a c o a r s e . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv (REAL( b l i m ) , REAL( f l i m ) , 0 . , 1 . 1 * MAXVAL( r e a l ( h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , REAL( h i s t o c o a r s e ( : , 1 ) ) , & REAL( h i s t o c o a r s e ( : , 2 ) ) , . f a l s e . ) CALL p g s c i ( 2 ) CALL p g l i n e ( n b i n s , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) ) CALL p g s c i ( 1 ) CALL p g l a b (

  n d a t a 2 p r o b = ( d a t a ( i ) -1 8 . d0 ) * binspm + 1 . d0 p r o b = cmodel ( INT ( p r o b ) , 2 ) l o g L = l o g L + LOG10 ( p r o b ) END DO END SUBROUTINE LogLike !-

  -SUBROUTINE TipAndSigma ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and USE G l o b a l ! t h e i r a s s o c i a t e d 1 s i g m a e r r o r s from t h e IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s . PPD peak = 0 . d0! DO i = 1 , 1 0 * ( n b i n s -1) +1 ! IF ( p o s t y 1 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 1 ( i ) ! F i n d b e s t f i t TRGB v a l u e t i p r e c = p o s t x 1 s t y 2 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 2 ( i ) ! F i n d b e s t f i t f v a l u e f r e c = p o s t x 2 ( i ) ! END IF ! END DO ! Chapter Three Programs PPD peak = 0 . d0 ! DO i = 1 , 2 * n b i n s -1 ! IF ( po s t y 3 ( i ) . g t . PPD peak ) THEN ! PPD peak = p o s t y 3 ( i ) ! F i n d b e s t f i t a v a l u e a r e c = p o s t x 3 k p c = ( 1 0 0 . d0 * * ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from ! t i p m a g n i t u d e i n kpc t i p c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + p o s t y 1 ( i ) ! END DO ! DO i = MAXLOC( p o s t y 1 , DIM = 1 ) , 1 , -1 ! t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s n e g a t i v e one s i g m a IF ( t i p c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p m s i g m a = ( (

  one s i g m a IF ( t i p c o u n t s . ge . 0 . 6 8 2 * p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p p s i g m a = ( ( REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 8 . d0 ! t i p p s i g m a = t i p p s i g m at i p r d2 = 0 ; d3 = 0 ; d4 = 0 f c o u n t s = 0 . d0 ; a c o u n t s = 0 . d0! DO i = 1 , n b i n s ! f c o u n t s = f c o u n t s + p o s t y 2 ( i ) ! a c o u n t s = a c o u n t s + p o s t y 3 ( i ) ! IF ( f co u n t s . ge . 0 . 1 5 9 * n i t . and . d1 . eq . 0 ) THEN ! f m i n s i g = p o s t x 2 c o u n t s . ge . 0 . 8 4 1 * n i t . and . d2 . eq . 0 ) THEN ! F o r f and a : f p l u s i g = p o s t x 2 ( i ) ! F i n d s u p p e r and l o w e r d2 = 1 ! b o u n d s f o r p o s t e r i o r END IF ! d i s t r i b u t i o n w i t h i n one IF ( a c o u n t s . ge . 0 . 1 5 9 * n i t . and . d3 . eq . 0 ) THEN ! s i g m a o f maximum . a m i n s i g = p o s t x 3 o u n t s . ge . 0 . 8 4 1 * n i t . and . d4 . eq . 0 ) THEN ! a p l u s i g = p o s t x 3

  -FUNCTION f u n c i (m) ! T h i s f u n c t i o n f e e d s t h e p h o t o m e t r i c e r r o r a s a f u n c t i o n USE G l o b a l ! o f m a g n i t u d e t o t h e ' G a u s s i a n K e r n e l ' s u b r o u t i n e . IMPLICIT NONE REAL * 8 : :

  o d r i g o ' s p o l y s e l e c t i o n t o o l ------------------------SUBROUTINE P o l y S e l e c t ! Used f o r s e l e c t i o n o f a p p r o p r i a t e c o l o u r c u t USE G l o b a l

  l p g l c u r (MAXPT, NPT ggr , XCOL ggr , YMAG ggr ) open ( 2 , f i l e = 'ANDI .CMD' , s t a t u s = ' unknown ' ) w r i t e ( 2 , * ) NPT ggr do i p o l =1 , NPT ggr w r i t e ( 2 , * ) XCOL ggr ( i p o l ) , YMAG ggr ( i p o l ) end do c l o s e ( 2 ) c a l l p g s c i ( 1 ) c a l l p g a d v a n c e 160 Chapter Three Programs e l s e open ( 2 , f i l e = 'ANDI .CMD' , s t a t u s = ' o l d ' ) read ( 2 , * ) NPT ggr do i p o l =1 , NPT ggr read ( 2 , * ) XCOL ggr ( i p o l ) , YMAG ggr ( i p o l ) end do c l o s e ( 2 ) c a l l p g s c i (

  1 , b g n d a t a ! IF ( i n p o l y ( b g g m i n i ( i ) , b g m a g i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN ! IF ( b g m a g i ( i ) . l e . 2 4 . d0 ) THEN ! Makes new IF ( b g m a g i ( i ) . l e . f l i m .AND. b g m a g i ( i ) . ge . b l i m ) THEN ! a r r a y s f o r k = k+1 ! i and g-i END IF ! c o n t a i n i n g j = j +1 ! o n l y s t a r s b g m a g i p o l y ( j ) = b g m a g i ( i ) ! w i t h i n b g g m i n i p o l y ( j ) = b g g m i n i ( i ) ! p o l y g o n END IF ! END IF ! END DO ! b g n d a t a 2 = j ; b g n d a t a 3 = k ! S t a r s i n b c k g r n d ; S t a r s i n b c k g r n d b e t w e e n b l i m & f l i m END SUBROUTINE P o l y S e l e c t !-

  xs , xe , y0 , ys , ye ) ! Used by P o l y S e l e c t s u b r o u t i n e i m p l i c i t none r e a l * 4 x0 , xs , xe , y0 , ys , ye r e a l * 4 t o p , b o t t o p = -( xe -x0 ) * ( ys -y0 ) + ( ye -y0 ) * ( xs -x0 ) b o t = ( xe -x0 ) * ( xs -x0 ) + ( ye -y0 ) * ( ys -y0 ) f i m a g= a t a n 2 ( t o p , b o t ) end !-

-

  Program: MCMCTRGBTester2.f95 Creation Date: 30 July 2010 (first version 25 Mar 2010) Relevant Section: §2.3 of Paper I (Ch. 3) Notes: This program was written to test the performance of the TRGB algorithm (i.e.BayesianTRGB ANDI.f95) for different luminosity functions (LFs) that might be encountered. A model LF is created with both the tip magnitude and RGB slope constant at mag tip = 20.5 and a = 0.3 respectively. The fraction of background stars ( f ) in the LF is varied however as is the number of stars populating the LF (ndata). In practice, a perl script was written to run this code for all combinations of f and ndata, where f ∈ {0.1, 0.2, . . . 0.9} and ndata ∈ {10,20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}. Many of the subroutines in this program are omitted for the sake of brevity, but their form can be ascertained from the 'BayesianTRGB ANDI.f95' program. The subroutine that actually generates the artificial stars from the model LF is however shown -'DataMake.' MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s u s e d by BayesianTRGB IMPLICIT NONE INTEGER : : i , j , k , l , e v a l , idum = -9999 , i t , n i t INTEGER : : n d a t a m a x , n s a m p l e s , binspm , n b i n s , c m o d n b i n s , ghw , mm, i o s PARAMETER ( n d a t a m a x = 2 0 0 0 0 0 0 0 , n s a m p l e s = 1 0 0 ) PARAMETER ( binspm = 1 0 0 ) PARAMETER ( n b i n s = 8 * binspm + 1 ) PARAMETER ( n i t = 2 0 0 0 0 0 ) INTEGER : : n d a t a , n d a t a 2 INTEGER : : d1 , d2 , d3 , d4 , d5 , d6 , f i e l d n u m INTEGER : : f l i m B i n s , b l i m B i n s REAL * 8 : : blim , f l i m , a r r a y ( n d a t a m a x ) REAL * 8 : : c o f ( 2 ) REAL * 8 : : randnum1 , randnum2 , randnum3 , randnum4 , r1 , r2 , B1 , B2 , B3 , B4 , hb = 0 . 0 0 5 d0 REAL * 8 : : model ( n b i n s , 2 ) , cmodel ( n b i n s , 2 ) , m a g n i t u d e ( n d a t a m a x ) REAL * 8 : : h i s t o f i n e ( n b i n s , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , 2 ) REAL * 8 : : d a t a ( n d a t a m a x ) , c u m u l a t i v e c m o d e l ( n b i n s , 2 ) , f , f h o l d , bfm ( n b i n s ) REAL * 8 : : m a g t i p , mag , m a g c u t o f f = 2 4 . e0 , a , i n p u t s ( 4 ) REAL * 8 : : a r e a , a r e a 2 REAL * 8 : : m o d e l n o i s e ( n b i n s , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , p i = ACOS( -1 . e0 ) REAL * 8 : : k e r n e l ( n b i n s , 2 ) = 0 . e0 , s c a l e , uplim , lowlim , gx REAL * 8 : : temp ( n b i n s , 2 ) = 0 . e0 , t REAL * 8 : : logL , prob , LikeA , LikeB REAL * 8 : : t i p ( n s a m p l e s ) , t i p o r d ( n s a m p l e s ) , maxlogL ( n s a m p l e s ) = -999999999999.

  0 * ( n b i n s -1) +1) = 0 . d0 , p o s t x 1 ( 1 0 * ( n b i n s -1) +1) , mlim REAL * 8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s ) REAL * 8 : : p o s t y 3 ( 2 * n b i n s -1 ) = 0 . d0 , p o s t x 3 ( 2 * n b i n s -1 ) REAL * 8 : : o f f s e t k p c , PPD peak CHARACTER : : a r g v * 1 0 , t e s t * 4 0 , ch1 * 9 , ch2 * 9 , ch3 * 9 , ch4 * 9 , ch5 * 9 , s t r i n g * 80 INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t REAL

  i o s t a t = i o s ) f ! ELSE ! WRITE( * , * ) "You must e n t e r 4 a r g u m e n t s : " ! s t o p ; ! END IF ! WRITE ( * , * ) " " WRITE ( * , * ) " Model m a g t i p / s l o p e / # s o u r c e s / b a c k g r o u n d h e i g h t =" , m a g t i p , a , n d a t a , f WRITE ( ch1 , * ) m a g t i p ! WRITE ( ch2 , * ) a ! WRITE ( ch3 , * ) n d a t a ! IF ( f . eq . 0 . d0 ) THEN

  s t , * ) ' MCMC Test / T ' / / TRIM ( ADJUSTL ( ch1 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch2 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch3 ) ) & / / '-' / / TRIM ( ADJUSTL ( ch4 ) ) CALL r a n d o m s e e d ! ! f l i m B i n s = INT (REAL( ( 2 3 . 5 d0 -1 8 . d0 ) ) * binspm ) + 1 b l i m = 1 8 . 0 d0 ; f l i m = 2 3 . 5 d0 ; mlim = b l i m CALL NoiseMake ! G e n e r a t e s t h e c o n v o l u t e d model f o r t h e i n p u t t e d CALL ModelMake ! t i p m a g n i t u d e and t h e n u s e s t o g e n e r a t e s e t s CALL C o n v o l u t i o n ! o f d a t a p o i n t s i n ' DataMake ' s u b r o u t i n e b l i m = 2 0 . 0 d0 ; f l i m = 2 1 . 0 d0 ; mlim = b l i m f l i m B i n s = INT (REAL( ( f l i m -1 8 . d0 ) ) * binspm ) + 1 b l i m B i n s = INT (REAL( ( b l i m -1 8 . d0 ) ) * binspm ) + 1 CALL DataMake DO i = 1 , n d

  3 ) ' ) f r e c , f s i g m a , f o f f s e t ! t o f i l e WRITE ( , '( 3 F11 . 3 ) ' ) a r e c , a s i g m a , a o f f s e t ! WRITE ( * , * ) " D i s t a n c e =" , REAL( t i p k p c ) , " kpc p /m" , REAL( k p c e r r ) , " kpc " WRITE ( * , * ) " D i s t a n c e O f f s e t =" , REAL( o f f s e t k p c ) , " kpc " END PROGRAM MCMCTRGBTester2 !-

  -SUBROUTINE DataMake ! G e n e r a t e s d a t a p o i n t s from t h e c o n v o l v e d model USE G l o b a l IMPLICIT NONE r e a l * 8 : : r a n 1 c u m u l a t i v e c m o d e l ( : , 1 ) = cmodel ( : , 1 ) c u m u l a t i v e c m o d e l ( 1 , 2 ) = cmodel ( 1 , 2 ) ! E f f e c t i v e DO i = 2 , c m o d n b i n s ! i n t e g r a l o f c u m u l a t i v e c m o d e l ( i , 2 ) = c u m u l a t i v e c m o d e l ( i -1 , 2 ) + cmodel ( i , 2 ) ! c o n v o l v e d END DO ! model DO i = 1 , n d a t a ! CALL random number ( randnum4 ) ! randnum4 = c u m u l a t i v e c m o d e l ( b l i m B i n s , 2 ) + & ! randnum4 * ( c u m u l a t i v e c m o d e l ( f l i m B i n s , 2 ) -c u m u l a t i v e c m o d e l ( b l i m B i n s , 2 ) ) ! DO j = f l i m B i n s , b l i m B i n s , -1 ! IF ( randnum4 . l e . c u m u l a t i v e c m o d e l ( j , 2 ) ) THEN ! G e n e r a t e s ' n d a t a ' IF ( randnum4 . g t . c u m u l a t i v e c m o d e l ( j -1 , 2 ) ) THEN ! d a t a p o i n t s from d a t a ( i ) = c u m u l a t i v e c m o d e l ( j

  i b p r e s s A l g o r i t h m s -------------------------------Program: BayesianTRGBTestPlotterMCMC.f95 Creation Date: 29 April 2010 Relevant Section: Figs. 10 & 11 of Paper I (Ch. 3) and Figs. 4 & 5 of Paper II (Ch. 4) Notes: This program is used to plot the results returned by 'MCMCTRGBTester2.f95,' namely the one sigma uncertainties and the offset of the recovered tip magnitude from mag tip = 20.5 for each combination of f and ndata. Pixels are created with bounds X1, X2, Y1, Y2 with the added complication of a log scale for the x-axis. These pixels are then assigned a shade of grey based on the magnitude of the quantity they represent. PROGRAM BayesianTRGBTestPlotterMCMC ! P l o t s r e s u l t s o f t e s t s f o r d i f f e r e n t c o m b i n a t i o n s o f IMPLICIT NONE ! f v s . n d a t a ( g e n e r a t e s two p l o t s : t i p o f f s e t f o r e a c h ! c o m b i n a t i o n and s i g m a f o r e a c h c o m b i n a t i o n ) INTEGER : : i , i o s , j , k , x ( 1 1 , 9 ) = 3 REAL : : A1 ( 1 1 , 9 ) , A2 ( 1 1 , 9 )

  1 , 9 ) , n o i s e ( 1 1 , 9 ) REAL : : g r e y , xmin , xmax CHARACTER(LEN=15) : : C1 ( 1 1 , 9 ) , C2 ( 1 1 , 9 ) OPEN ( u n i t = 1 , f i l e = ' . / summary . d a t ' , s t a t u s = ' o l d ' ) i = 0 ; i o s = 0 DO WHILE ( . TRUE . )

  r a t e p i x e l ! IF (MOD( i , 3 ) . eq . 2 )THEN ! x b o u n d a r i e s f o r X1 = LOG10 ( 2 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! X2 = LOG10 ( 2 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 . 1 3 ! l o g x a x i s END IF ! ! ( 3 d i f f er e n t w i d t h IF (MOD( i , 3 ) . eq . 0 ) THEN ! c a l c u l a t i o n s r e q u i r e d ) X1 = LOG10 ( 5 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! X2 = LOG10 ( 5 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 y = ( xmax -A1 ( i , j ) ) / ( xmaxxmin )

  ) CALL p g l a b ( ' number o f s t a r s ' , ' p r o p o r t i o n o f b a c k g r o u n d s t a r s ' , & ' Sigma ( kpc ) -One Sigma E r r o r ' ) CALL pgend !-

  -CALL p g b e g i n ( 0 , 'MF TRGBOffsetMCMC . p s / CPS ' , 1 , 1 ) ! G e n e r a t e s o f f s e t p l o t CALL pgenv( 0 . 8 , 4 . 5 , 0 . , 1 . , 0 , 1 0 ) A2 = ABS( A2 ) xmin = MINVAL( A2 ) xmax = MAXVAL( A2 ) DO i = 1 , 11 DO j = 1 , 9 IF (MOD( i , 3 ) . eq . 1 ) THEN ! X1 = LOG10 ( 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! Chapter Three Programs X2 = LOG10 ( 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 . 1 3 ! END IF ! G e n er a t e p i x e l ! IF (MOD( i , 3 ) . eq . 2 ) THEN ! x b o u n d a r i e s f o r X1 = LOG10 ( 2 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! X2 = LOG10 ( 2 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 . 1 3 ! l o g x a x i s END IF ! ! ( 3 d i f f e r e n t w i d t h IF (MOD( i , 3 ) . eq . 0 ) THEN ! c a l c u l a t i o n s r e q u i r e d ) X1 = LOG10 ( 5 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) -0 . 1 3 ! X2 = LOG10 ( 5 . * 1 0 . * * ( ( ( i -1) / 3 ) +1) ) + 0 . 1 3 ! END IF ! Y1 = j * 0 . 1 e0 -0 . 0 4 ! G e n e r a t e ! p i x e l Y2 = j * 0 . 1 e0 + 0 . 0 4 ! y b o u n d a r i e s g r e y = ( xmax -A2 ( i , j ) ) / ( xmaxxmin )

  ) CALL p g l a b ( ' number o f s t a r s ' , ' p r o p o r t i o n o f b a c k g r o u n d s t a r s ' , & ' O f f s e t ( kpc ) -R a d i a l D i s t a n c e O f f s e t ' ) CALL pgend !-

  scheme, where by stars are given a weight based on their position with in the object's density profile. In this way, stars that are more likely to be true object member's are given greater consideration during the luminosity function fitting. The actual weighting itself is taken care of by the 'Weighter' subroutine, but other subroutines have been modified significantly to handle it. The background component of the LF (built in 'NoiseMake') for instance is no longer added to the model LF in the 'ModelMake' subroutine. This is because with the weighting switched on, each star effectively has its own model LF with the ratio of background to RGB component tailored to suit the star's probability of being a true object member. Hence, these ratios are now taken into account in the 'LogLike' subroutine on a star-by-star basis. There are many other additions. A new LF plotting subroutine 'w DataHist' plots the weighted LF and a plot of the object density profile is created in the 'Weighter' subroutine. Parallel tempering has been added to the 'MCMC' subroutine and the run-speed of the whole algorithm has be greatly improved by fixing up a design flaw in the way the convolution step was being done (The 'GaussianKernel' subroutine is now called just once and the values are saved). The program also now takes command line input so that the one set of code can be used for all objects. Due to the large number of changes made to most of the subroutines originally written for 'BayesianTRGB ANDI.f95,' I have reproduced the whole program here rather than omitting the duplicate subroutines. Note that the command line inputs for each satellite are provided as the next item in this appendix for completeness. For a more in depth description of the workings of the program in general, see Paper II -particularly §2 and §3.1. MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s u s e d by BayesianTRGB IMPLICIT NONE !--------------------G e n e r a l Program P a r a m e t e r s ---------------------

  -INTEGER : : i , j , k , l , e v a l , idum = -9999 , i t , n i t INTEGER : : n d a t a m a x , n s a m p l e s , binspm , n b i n s , c m o d n b i n s , mm, i o s PARAMETER ( n d a t a m a x = 1 0 0 0 0 0 0 0 , n s a m p l e s = 1 0 0 ) PARAMETER ( binspm = 1 0 0 ) PARAMETER ( n b i n s = 8 * binspm + 1 ) PARAMETER ( n i t = 5 0 0 0 0 0 ) INTEGER : : n d a t a , n d a t a 2 INTEGER : : d1 , d2 , d3 , d4 INTEGER : : ghw ( n b i n s ) REAL * 8 : : blim , f l i m , p i PARAMETER ( b l i m = 1 9 . 5 d0 ) PARAMETER ( f l i m = 2 3 . 5 d0 ) PARAMETER ( p i = ACOS( -1 . e0 ) ) INTEGER : : b l i m B i n s = INT (REAL( ( b l i m -1 8 . d0 ) * binspm ) ) + 1 INTEGER : : f l i m B i n s = INT (REAL( ( f l i m -1 8 . d0 ) * binspm ) ) + 1 REAL * 8 : : randnum1 , randnum2 , randnum3 , randnum4 , randnum5 INTEGER : : r a n d i n t REAL * 8 : : r1 , r2 , spotR , hb = 0 . 0 0 5 d0 REAL * 8 : : model ( n b i n s , 2 ) , cmodel ( n b i n s , 2 ) , m a g n i t u d e ( n d a t a m a x ) REAL * 8 : : h i s t o f i n e ( n b i n s , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , 2 ) REAL * 8 : : w h i s t o f i n e ( n b i n s , 2 ) , w h i s t o c o a r s e ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , 2 ) REAL * 8 : : d a t a ( n d a t a m a x ) , c u m u l a t i v e c m o d e l ( n b i n s , 2 ) , f , f h o l d , bfm ( n b i n s ) REAL * 8 : : m a g t i p , mag , m a g c u t o f f = 2 4 . e0 , a REAL * 8 : : a r e a , a r e a 2 REAL * 8 : : m o d e l n o i s e ( n b i n s , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , bg ( n b i n s ) = 0 . d0 REAL * 8 : : k e r n e l ( n b i n s , 2 , n b i n s ) = 0 . e0 , s c a l e , uplim , lowlim , gx REAL * 8 : : temp ( n b i n s , 2 ) = 0 . e0 , t INTEGER : : s t a r b i n REAL * 8 : : t i p ( n s a m p l e s ) , t i p o r d ( n s a m p l e s ) , maxlogL ( n s a m p l e s ) = -999999999999. REAL * 8 : : t i p r e c , t i p o f f s e t , t i p p s i g m a , t i p m s i g m a , T o f f s e t k p c , T s i g m a k p c REAL * 8 : : f o f f s e t , t i p k p c , k p c p e r r , k p c m e r r , f s i g m a , a o f f s e t , a s i g m a REAL * 8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s REAL * 8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , a m i n s i g , a p l u s i g REAL * 8 : : mcounts , p c o u n t s INTEGER : : n u m c h a i n s , cn , c h a i n c o m p a r e , s w a p c o u n t PARAMETER ( n u m c h a i n s = 4 ) REAL * 8 : : s w a p r a t e = 1 . d0 / 3 0 . d0 , l o g L ( n u m c h a i n s ) , LikeA ( n u m c h a i n s ) , LikeB ( n u m c h a i n s ) REAL * 8 : : prob , s i g p r o b , b g p r o b REAL * 8 : : b e t a , b e t a h o l d e r ( n u m c h a i n s ) = ( / 1 . d0 , 0 . 2 5 d0 , 0 . 1 1 1 d0 , 0 . 0 0 1 d0 / ) REAL * 8 : : m s t e p ( n u m c h a i n s ) = ( / 0 . 0 3 d0 , 0 . 0 6 d0 , 0 . 1 2 d0 , 0 . 3 d0 / ) REAL * 8 : : f s t e p ( n u m c h a i n s ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / ) REAL * 8 : : a s t e p ( n u m c h a i n s ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / ) REAL * 8 : : PTAR , p a r h o l d ( 4 ) REAL * 8 : : x1 ( n i t , n u m c h a i n s ) , x2 ( n i t , n u m c h a i n s ) , x3 ( n i t , n u m c h a i n s ) , p ( 3 ) , t i m e ( n i t ) , r REAL * 8 : : p o s t y 1 ( 1 0 * ( n b i n s -1) +1) = 0 . d0 , p o s t x 1 ( 1 0 * ( n b i n s -1) +1) , mlim REAL * 8 : : d b l i m , b g b l i m , d f l i m , b g f l i m REAL * 8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s ) REAL * 8 : : p o s t y 3 ( 2 * n b i n s -1 ) = 0 . d0 , p o s t x 3 ( 2 * n b i n s -1 ) REAL * 8 : : PPD peak , Best Combo ( 6 ) CHARACTER : : a r g v * 3 0 , f i e l d * 3 0 , c o l c u t * 3 0 , ch1 * 9 , ch2 * 9 , ch3 * 9 , ch4 * 9 , ch5 * 9 , s t r i n g * 6 0 , command * 200 INTEGER : : s c o u t c o u n t s LOGICAL : : n o t s c o u t !---------------------F o r r e a d i n g i n PAndAS d a t a --------------------INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t REAL

  i t i o n a l p a r a m e t e r s f o r c a l c u l a t i n g b a c k g r o u n d s t a t s -------INTEGER : : b g n d a t a , b g n d a t a 2 , b g n d a t a 3 REAL * 4 : : bg mag g ( n d a t a m a x ) , b g m a g i ( n d a t a m a x ) , b g x k i ( n d a t a m a x ) , b g e t a ( n d a t a m a x ) REAL * 4 : : b g g m i n i ( n d a t a m a x ) , b g m a g i p o l y ( n d a t a m a x ) , b g g m i n i p o l y ( n d a t a m a x ) REAL * 4 : : b g m a g g p o l y ( n d a t a m a x ) , bg gmi REAL * 8 : : b g d a t a ( n d a t a m a x ) ! --SVD f i t t i n g o f b a c k g r o u n d --INTEGER ma , mp , np , n d a t PARAMETER ( n d a t = INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 ) PARAMETER ( np = 8 ) PARAMETER ( mp = n d a t ) PARAMETER ( ma = np ) REAL : : c h i s q , ay ( ma ) , s i g ( n d a t ) , u ( mp , np ) , v ( np , np ) , w( np ) , xa ( n d a t ) , ya ( n d a t ) REAL : : x t ( n d a t ) , y t ( n d a t ) REAL * 8 : : b g h i s t o c o a r s e ( n d a t , 2 ) EXTERNAL : : f u n c s ! ------A d d i t i o n a l p a r a m e t e r s f o r s p e c i f y i n g o b j e c t c o o r d i n a t e s ------INTEGER : : J o p REAL * 8 : : XIop , ETAop REAL * 8 : : RAh , RAm, RAs , DecD , DecM , DecS , RA rad , D e c r a d REAL * 8 : : tpRAh , tpRAm , tpRAs , tpDecD , tpDecM , tpDecS , tpR A rad , t p D e c r a d ! --A d d i t i o n a l p a r a m e t e r s f o r Matched F i l t e r s S u b r o u t i n e ' W e i g h t e r '--INTEGER : : r h o b i n s , r h o b i n s 2 PARAMETER ( r h o b i n s = 4 0 ) REAL * 4 : : C O F d i s t ( n d a t a m a x ) , D e n s i t y ( r h o b i n s , 2 ) , D e n s i g ( r h o b i n s ) , r h o f i t ( r h o b i n s , 2 ) , w e i g h t p l o t ( 5 0 0 , 2 ) REAL * 8 : : w e i g h t ( n d a t a m a x ) , s c a l e d a ( n d a t a m a x ) , s c a l e d a a l l ( n d a t a m a x ) , c r o w d e d r a d , e l l i p s e s t a r s , e l l i p s e a r e a REAL * 8 : : e l l i p , HLR, PA , xdash , ydash , maxweight , maxa , SR , d e n p r o f s c a l e , o u t e r r a d REAL * 8 : : weightsum , D e n s i t y s u m !-

  -INTEGER : : b g s t a r s , s i g s t a r s REAL * 8 : : b g a r e a , s i g a r e a REAL * 8 : : known f , b g s t a r s i n s i g f i e l d REAL * 8 : : s i g f i e l d r a d i u s , b g l o w x i , b g u p x i END MODULE G l o b a l !-

  r 16 a r g u m e n t s : " ! s t o p ; ! END IF ! s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / r e s u l t s . d a t ' OPEN( 3 , f i l e =TRIM ( ADJUSTL ( s t r i n g ) ) , s t a t u s = ' unknown ' ) WRITE ( 3 , * ) " F i e l d Name : " , f i e l d CALL p o s i t i o n F i n d e r ! ! CALL r a n d o m s e e d ! ! CALL M31DataReader ! CALL W e i g h t e r ! CALL S V D F i t t e r ! CALL G a u s s i a n K e r n e l ! CALL NoiseMake !CALL CALL MCMC ! !CALL P o s t e r i o r P l o t ! SUBROUTINES ! CALL TipAndSigma ! CALL P o s t e r i o r P l o t ! CALL O t h e r P l o t s ! CALL D a t a H i s t ! CALL w D a t a H i s t ! IF ( n u m c h a i n s . ne . 1 ) THEN WRITE ( 3 , * ) " P r o p o s e d Swaps w i t h Cold S a m p l e r C h a i n : " , c h a i n c o m p a r e WRITE ( 3 , * ) " A c c e p t e d Swaps w i t h Cold S a m p l e r C h a i n : " , s w a p c o u n t WRITE ( 3 , * ) " P a r a l l e l T e m p e r i n g A c c e p t a n c e R a t e : " , REAL( s w a p c o u n t ) / REAL( c h a i n c o m p a r e ) END IF WRITE ( 3 , ' ( 3 a11 ) ' ) "

  -SUBROUTINE P o s i t i o n F i n d e r ! C o n v e r t s o b j e c t RA and Dec i n t o M31 t a n g e n t p l a n e c o o r d i n a t e s x i and USE G l o b a l ! e t a . T h e s e a r e u s e d i n t h e n e x t s u b r o u t i n e f o r r e a d i n g i n a l l s t a r s IMPLICIT NONE ! from t h e PAndAS s u r v e y w i t h i n some r a d i u s o f t h e o b j e c t c e n t e r tpRAh = 0 . d0 ! tpRAm = 4 2 . d0 ! tpRAs = 4 4 . 3 3 d0 !RA and Dec o f t a n g e n t p o i n t tpDecD = 4 1 . d0 ! ( i . e . M31 ) tpDecM = 1 6 . d0 ! tpDecS = 7 . 5 d0 ! ! | | P e r f o r m ! \ / C o n v e r s i o n RA rad = ( p i / 1 8 0 . d0 ) * ( RAh * 1 5 . d0 + RAm * ( 1 5 . d0 / 6 0 . d0 ) + RAs * ( 1 5 . d0 / 3 6 0 0 . d0 ) ) D e c r a d = ( p i / 1 8 0 . d0 ) * ( DecD + DecM / 6 0 . d0 + DecS / 3 6 0 0 . d0 ) t p R A r a d = ( p i / 1 8 0 . d0 ) * ( tpRAh * 1 5 . d0 + tpRAm * ( 1 5 . d0 / 6 0 . d0 ) + tpRAs * ( 1 5 . d0 / 3 6 0 0 . d0 ) ) t p D e c r a d = ( p i / 1 8 0 . d0 ) * ( tpDecD + tpDecM / 6 0 . d0 + tpDecS / 3 6 0 0 . d0 ) CALL sla DS2TP ( RA rad , D e c r a d , tpR A rad , t p D e c r a d , XIop , ETAop , J o p ) ! / \ ! | | XIop = XIop * ( 1 8 0 . d0 / p i ) ! t a n g e n t p l a n e c o o r d i n a t e s ETAop = ETAop * ( 1 8 0 . d0 / p i ) ! ( i . e . PAndAS x i and e t a ) WRITE ( 3 , * ) "C . O . F . Xi =" , XIop , "C . O . F . E t a =" , ETAop END SUBROUTINE P o s i t i o n F i n d e r !-

  -SUBROUTINE M31DataReader ! The f i e l d t o be a n a l y s e d i s s p e c i f i e d h e r e USE G l o b a l IMPLICIT NONE OPEN( 1 , f i l e = ' . . / . . / . . / PANDAS/ M 3 1 u n i q u e c o n . d a t ' , form= ' u n f o r m a t t e d ' , s t a t u s = ' o l d ' ) i = 0 ; j = 0 DO WHILE ( . t r u e . ) READ( 1 , IOSTAT= i o s ) r a t , d e t , iCCDt , x g t , y g t , & ! Read i n d a t a g , dg , c l s g , im ,
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 3 E BV t ! E x t i n c t i o n im=im -2 . 0 8 6 * E BV t ! C o r r e c t i o n s gmi = gim i f ( c l s i . ne . -1 . and . c l s i . ne . -2 ) c y c l e ! R e g e c t s i f ( c l s g . ne . -1 . and . c l s g . ne . -2 ) c y c l e ! non s t a r s i f ( i a c c t . ne . 1 ) c y c l e i f ( 1 8 . 0 . l e . im . and . im . l e . 2 4 . 0 ) t h e n ! S p e c i f i e s e l s e ! m a g n i t u d e c y c l e ! r a n g e t o end i f ! i n c l u d e i f ( -2 . 5 . l e . F e H p h o t a l a n t . and . F e H p h o t a l a n t . l e . -1 . 5 ) t h e n ! e l s e ! S p e c i f i e s m e t a l l i c i t y ! c y c l e ! r a n g e t o i n c l u d e end i f ! s p o t R = SQRT ( ( ABS( e t a t -( ETAop ) ) ) * * 2 + (ABS( x k i t -( XIop ) ) ) * * 2 ) IF ( s p o t R . l t . s i g f i e l d r a d i u s ) THEN

  ! b a c k g r o u n d END IF ! ELSE IF ( x k i t . ge . b g l o w x i . and . x k i t . l e . b g u p x i ) THEN IF ( e t a t . ge . ETAop -0 . 5 d0 . and . e t a t . l e . ETAop + 0 . 5 d0 ) THEN j = j + 1 IF ( j . g t . n d a t a m a x ) e x i t bg mag g ( j ) =g ! b g m a g i ( j ) =im ! b g g m i n i ( j ) =gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o b c k g r n d a r r a y s b g x k i ( j ) = x k i t ! b g e t a ( j ) = e t a t ! END IF END IF END DO n d a t a = i ; b g n d a t a = j s i g a r e a = p i * ( s i g f i e l d r a d i u s * * 2 . d0 ) ! C a l c u l a t e a r e a o f s i g n a l f i e l d b g a r e a = 1 . d0 * ( b g u p x ib g l o w x i ) -( p i * ( s i g f i e l d r a d i u s * * 2 . d0 ) ) ! C a l c u l a t e a r e a o f BG f i e l d DO i = 1 , n d a t a d a t a ( i ) = m a g i ( i ) ! x i a l l ( i ) = x k i ( i ) ! O b j e c t s t a r s b e f o r e a p p l y i n g c o l o u r c u t e t a a l l ( i ) = e t a ( i ) END DO DO j = 1 , b g n d a t a b g d a t a ( j ) = b g m a g i ( j ) !BG s t a r s b e f o r e a p p l y i n g c o l o u r c u t END DO CALL M 3 1 D a t a P l o t t e r END SUBROUTINE M31DataReader !-

  -SUBROUTINE M 3 1 D a t a P l o t t e r ! P r o d u c e s p l o t s o f t h e o b j e c t and b a c k g r o u n d f i e l d s USE G l o b a l ! a s w e l l a s t h e i r C o l o u r -M a g n i t u d e D i a g r a m s . C o l o u r IMPLICIT NONE ! c u t s a r e a l s o i m p l e m e n t e d i n t h i s s u b r o u t i n e !-

  5 ) END IF END DO CALL p g s l w ( 1 ) CALL p g l a b ( ' \ ( 0 6 4 0 ) ( d e g r e e s ) ' , ' \ ( 0 6 3 3 ) ( d e g r e e s ) ' , ' ' ) CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g f i e l d . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g f i e l d . j p g ' c a l l s y s t e m ( command ) !-

  ' ) CALL P o l y S e l e c t ! F o r CMD c o l o u rc u t CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d . j p g ' c a l l s y s t e m ( command ) !-

  t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / b g f i e l d . p s / CPS ' ' / bg cmd . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / &

  t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / s i g f i e l d c c . p s / CPS ' b g d a t a = 0 . d0 ; b g b l i m = 1 0 0 . d0 ; b g f l i m = 0 . d0 DO i = 1 , b g n d a t a 2 b g d a t a ( i ) = b g m a g i p o l y ( i ) IF ( b g d a t a ( i ) . l t . b g b l i m ) THEN b g b l i m = b g d a t a ( i ) END IF IF ( b g d a t a ( i ) . g t . b g f l i m ) THEN b g f l i m = b g d a t a ( i ) END IF END DO ! ---S e t p a r a m e t e r s f o r c a l c u l a t i o n o f b a c k g r o u n d h e i g h t --s i g s t a r s = n d a t a 2 ! T o t a l number o f s t a r s i n s i g n a l f i e l d b g s t a r s = b g n d a t a 3 ! Number o f s t a r s i n b a c k g r o u n d f i e l d b g s t a r s i n s i g f i e l d = REAL( b g s t a r s ) * ( s i g a r e a / b g a r e a ) ! ; b g s t a r s = 0 . d0 ! Number o f B a c k g r o u n d s t a r s i n s i g n a l f i e l d WRITE ( 3 , * ) " Number o f d a t a p o i n t s : " , s i g s t a r s WRITE ( 3 , * ) " A v e r a g e F i e l d SNR : " , (REAL( s i g s t a r s ) -b g s t a r s i n s i g f i e l d ) / b g s t a r s i n s i g f i e l d !---------Make c o a r s e d a t a h i s t o g r a m f o r b c k g r n d ---------DO i = 1 , INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 b g h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( 0 . 2 5 * binspm ) END DO DO i = 1 , b g n d a t a 2 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 , 2 ) = & b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 , 2 ) + 1 . d0 END DO ! | | F i l l empty b r i g h t e d g e o f a r r a y w i t h ! \ / a r t i f i c i a l d a t a f o r i m p r o v e d f i t t i n g DO i = 1 , INT ( ( b g b l i m -1 8 . d0 ) * REAL( binspm / 4 . d0 ) ) + 4 b g h i s t o c o a r s e ( i , 2 ) = b g h i s t o c o a r s e ( INT ( ( b g b l i m -1 8 . d0 ) * REAL( binspm / 4 . d0 ) ) + 4 , 2 ) END DO END SUBROUTINE M 3 1 D a t a P l o t t e r !-------------------------------------------------------------------------------SUBROUTINE W e ig h t e r ! I m p l e m e n t s an e l l i p t i c a l w e i g h t i n g scheme u s i n g t h e USE G l o b a l ! e l l i p t i c i t y , h a l fl i g h t r a d i u s and p o s i t i o n a n g l e IMPLICIT NONE ! o f t h e s a t e l l i t e HLR = HLR * ( 1 . d0 / 6 0 . d0 ) ! C o n v e r t h a l fl i g h t r a d i u s from m i n u t e s t o d e g r e e s SR = HLR / 1 . 6 7 8 ! C o n v e r t from h a l f l i g h t r a d i u s t o e x p o n e n t i a l s c a l e r a d i u s PA = PA * ( p i / 1 8 0 . d0 ) ! C o n v e r t p o s i t i o n a n g l e from d e g r e e s t o r a d i a n s e l l i p s e a r e a = p i * o u t e r r a d * o u t e r r a d * ( 1 . d0 -e l l i p ) ! Area o f o u t e r e l l i p s e e l l i p s e s t a r s = 0 . d0 ; maxweight = 0 . d0 ; maxa = 0 . d0 e l l i p s e a r e a = e l l i p s e a r e ap i * c r o w d e d r a d * c r o w d e d r a d * ( 1 . d0 -e l l i p ) ! S u b t r a c t a r e a o f i n n e r e l l i p s e DO i = 1 , n d a t a 2 ! R o t a t i o n o f c o o r d i n a t e s t o match o r i e n t a t i o n x d a s h = ( x k i ( i ) -( XIop ) ) * c o s ( PA ) -( e t a ( i ) -( ETAop ) ) * s i n ( PA ) ! o f s a t e l l i t e . The new c o o r d i n a t e s a r e t h e n u s e d y d a s h = ( x k i ( i ) -( XIop ) ) * s i n ( PA ) + ( e t a ( i ) -( ETAop ) ) * c o s ( PA ) ! t o f i n d t h e m a j o r a x i s o f t h e e l l i p s e a g i v e n s c a l e d a ( i ) = SQRT ( y d a s h * * 2 . d0 + ( x d a s h * * 2 . d0 / ( 1 . d0 -e l l i p ) * * 2 . d0 ) ) ! s t a r l i e s ont h i s e q u a t e s t o c i r c u l a r r a d i u s . IF ( s c a l e d a ( i ) . l e . o u t e r r a d . and . s c a l e d a ( i ) . ge . c r o w d e d r a d ) THEN ! e l l i p s e s t a r s = e l l i p s e s t a r s + 1 . d0 ! Count s t a r s i n e l l i p s e a r e a END IF ! IF ( s c a l e d a ( i ) . g t . maxa ) THEN ! maxa = s c a l e d a ( i ) ! F i n d majora x i s o f l a r g e s t e l l i p s e t h a t p a s s e s t h r o u g h f i e l d END IF ! ( w e i g h t i n g w i l l be s m a l l e s t f o r s t a r s on t h i s e l l i p s e ) END DO WRITE ( 3 , * ) " Number o f d a t a p o i n t s i n a n n u l u s : " , e l l i p s e s t a r s WRITE ( 3 , * ) " A v e r a g e a n n u l u s SNR : " , ( e l l i p s e s t a r s -(REAL( b g s t a r s ) * ( e l l i p s e a r e a / b g a r e a ) ) ) / (REAL( b g s t a r s ) * ( e l l i p s e a r e a / b g a r e a ) ) d e n p r o f s c a l e = ( ( e l l i p s e s t a r s / e l l i p s e a r e a ) -( b g s t a r s / b g a r e a ) ) * e l l i p s e a r e a d e n p r o f s c a l e = d e n p r o f s c a l e / ( 2 . d0 * p i * SR * ( ( exp ( -c r o w d e d r a d / SR ) * ( SR + c r o w d e d r a d ) ) -( exp ( -o u t e r r a d / SR ) * ( SR + o u t e r r a d ) ) ) ) d e n p r o f s c a l e = d e n p r o f s c a l e / ( 1 . d0 -e l l i p ) ! / \ C a l c u l a t e s c a l i n g f a c t o r o f e l l i p t i c a l f u n c t i o n o f s h a p e d e f i n e d by HLR, e l l i p t i c i t y and PA .

  r u e s t a r p o l y ( i ) . and . s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN w e i g h t ( i ) = exp ( -1 . d0 * s c a l e d a ( i ) / SR ) * d e n p r o f s c a l e ! Apply w e i g h t s t o s t a r s b a s e d on e l l i p t i c a l ELSE ! c o n t o u r t h e y l i e on . w e i g h t ( i ) = exp ( -1 . d0 * maxa / SR ) * d e n p r o f s c a l e ! A r t i f i c i a l s t a r s a r e g i v e n t h e l o w e s t p o s s i b l e END IF

  l t . maxa ) THEN D e n s i t y ( INT ( ( s c a l e d a ( i ) / maxa ) * ( r h o b i n s ) ) + 1 , 2 ) = & D e n s i t y ( INT ( ( s c a l e d a ( i ) / maxa ) * ( r h o b i n s ) ) + 1 , 2 ) + 1 . e0 END IF IF ( s c a l e d a ( i ) . eq . maxa ) THEN D e n s i t y ( r h o b i n s , 2 ) = D e n s i t y ( r h o b i n s , 2 ) + 1 . d0 END IF END DO D e n s i t y s u m = 0 . d0 DO i = 1 , r h o b i n s ! C a l c u l a t e d e n s i t y o f s t a r s i n e a c h d e n s i t y b i n D e n s i t y ( i , 1 ) = (REAL( i ) /REAL( r h o b i n s ) ) * REAL( maxa ) ! r a d i u s o f b i nIF ( i . eq . 1 ) THEN D e n s i g ( i ) = SQRT ( D e n s i t y ( i , 2 ) ) / ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ! <---E r r o r b a r s f o r b i n --------------------------! D e n s i t y ( i , 2 ) = D e n s i t y ( i , 2 ) / ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ! <---D e n s i t y o f b i n ------------------------------------! D en s i t y s u m = ( D e n s i t y ( i , 2 ) -( b g s t a r s / b g a r e a ) ) * ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ! ! ELSE ! ! D e n s i g ( i ) = SQRT ( D e n s i t y ( i , 2 ) ) / ( ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) -( p i * ( D e n s i t y ( i -1 , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ) ! <-! ! D e n s i t y ( i , 2 ) = D e n s i t y ( i , 2 ) / ( ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) -( p i * ( D e n s i t y ( i -1 , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ) ! <-------! D e n s i t y s u m = D e n s i t y s u m + ( D e n s i t y ( i , 2 ) -( b g s t a r s / b g a r e a ) ) * ( ( p i * ( D e n s i t y ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) -( p i * ( D e n s i t y ( i -1 , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ) END IF END DO w e i g h t s u m = 0 . d0 DO i = 1 , 500 ! C a l c u l a t e v a l u e s o f f i t t e d d e n s i t y p r o f i l e w e i g h t p l o t ( i , 1 ) = (REAL( i ) / 5 0 0 . e0 ) * maxa w e i g h t p l o t ( i , 2 ) = exp ( -1 . e0 * ( w e i g h t p l o t ( i , 1 ) ) / SR ) * d e n p r o f s c a l e IF ( i . eq . 1 ) THEN w e i g h t s u m = w e i g h t p l o t ( i , 2 ) * ( p i * ( w e i g h t p l o t ( i , 1 ) * * 2 . e0 ) * ( 1 . e0 -e l l i p ) ) ELSE

  -SUBROUTINE W e i g h t e r P l o t s ! P l o t s ( l o g ) b i n n e d d e n s i t y p r o f i l e o f o b j e c t and USE G l o b a l ! s u p e r i m p o s e s t h e b e s t f i t model t o t h e IMPLICIT NONE ! d e n s i t y p r o f i l e INTEGER : : lw !-

  l o t s D e n s i t y P r o f i l e h i s t o g r a m s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / d e n s i t y . p s / CPS ' CALL p g s c r ( i , 0 . 5* ( SIN ( 1 . 0 * REAL( ( i +10) * p i / 1 0 ) ) + 1 . ) , & ! 0 . 5 * ( SIN ( 1 . 0 * REAL( ( i -5) * p i / 1 0 ) ) + 1 . ) , & ! A s s i g n c o l o u r s t o i n d i c i e s 0 . 5 * ( SIN ( 1 . 0 * REAL( ( i ) * p i / 1 0 ) ) + 1 . ) ) ! END DO ! DO i = 1 , n d a t a 2 lw = n i n t ( ( w e i g h t ( i ) / maxweight ) * 2 0 . d0 ) + 1 CALL p g s l w ( lw +5) CALL p g s c i ( 2 2 -lw ) IF ( tr u e s t a r p o l y ( i ) ) THEN ! I f s t a r i s r e a l ( n o t a r t i f i c a l ) . . . IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN ! F i t t e d s t a r s CALL p g p t ( 1 , x k i ( i ) , e t a ( i ) , -1) ELSE CALL p g s l w ( 1 ) IF ( s c a l e d a ( i ) . l t . c r o w d e d r a d ) THEN ! s t a r s i n s i d e crowded r e g i o n CALL p g s c i ( 3 ) CALL p g p t ( 1 , x k i ( i ) , e t a ( i ) , 2 7 7 9 ) END IF IF ( s c a l e d a ( i ) . g t . o u t e r r a d ) THEN ! s t a r s o u t s i d e f i t t e d r e g i o n CALL p g s c i ( 2 0 ) CALL p g p t ( 1 , x k i (i) , e t a ( i ) , 2 s t a r i s a r t i f i c i a l . . . CALL p g s l w ( 1 ) CALL p g s c i ( 2 1 ) CALL p g p t ( 1 , x k i ( i ) , e t a ( i ) , 2 2 5 ) END IF END DO CALL p g s c r ( 1 , 0 . , 0 . , 0 . ) CALL p g s l w (1) CALL p g s c i (1) CALL p g l a b ( ' \ ( 0 6 4 0 ) ( d e g r e e s ) ' , ' \ ( 0 6 3 3 ) ( d e g r e e s ) ' , ' ' ) CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g f i e l d c c w . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g f i e l d c c w . j p g ' c a l l s y s t e m ( command ) !-

  ' ' ) CALL P o l y S e l e c t CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d w . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d w . j p g ' c a l l s y s t e m ( command )!-------------------S i g n a l -CMD-( i n c l u d e d s t a r s o n l y )-------------------DO i = 1 , n d a t a ! Ro t a t i o n o f c o o r d i n a t e s t o match o r i e n t a t i o n x d a s h = ( x i a l l ( i ) -( XIop ) ) * c o s ( PA ) -( e t a a l l ( i ) -( ETAop ) ) * s i n ( PA ) ! o f s a t e l l i t e . The new c o o r d i n a t e s a r e t h e n u s e d y d a s h = ( x i a l l ( i ) -( XIop ) ) * s i n ( PA ) + ( e t a a l l ( i ) -( ETAop ) ) * c o s ( PA ) ! t o f i n d t h e m a j o r a x i s o f t h e e l l i p s e a g i v e n s c a l e d a a l l ( i ) = SQRT ( y d a s h * * 2 . d0 + ( x d a s h * * 2 . d0 / ( 1 . d0 -e l l i p ) * * 2 . d0 ) )

  n d a t a IF ( s c a l e d a a l l ( i ) . ge . c r o w d e d r a d . and . s c a l e d a a l l ( i ) . l e . o u t e r r a d ) THEN CALL p g p t ( 1 , REAL(g m i n i ( i ) ) , REAL( m a g i ( i ) ) , -1) END IF END DO CALL p g l a b ( ' ( gi ) \ d0 \ u ' , ' i \ d0 \ u ' , '' ) CALL P o l y S e l e c t CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d u s e d . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / s i g c m d u s e d . j p g ' c a l l s y s t e m ( command ) END SUBROUTINE W e i g h t e r P l o t s !-

  -SUBROUTINE S V D F i t t e r ! F o r f i t t i n g p o l y n o m i a l t o t h e USE G l o b a l ! b a c k g r o u n d f i e l d l u m i n o s i t y f u n c t i o n IMPLICIT NONE INTEGER : : ntmp xa = b g h i s t o c o a r s e ( : , 1 ) ya = b g h i s t o c o a r s e ( : , 2 ) x t = xa y t = ya s i g = 1 .

  l o t s b e s t f i t model o v e r c o a r s e h i s t o g r a m s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / b c k g r d f i t . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) CALL pgenv ( 1 8 . , 2 4 . , 0 . , 1 . 1 * MAXVAL(REAL( b g h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( n d a t , REAL( b g h i s t o c o a r s e ( : , 1 ) ) , REAL( b g h i s t o c o a r s e ( : , 2 ) ) , . t r u e . ) CALL p g s c i ( 2 ) CALL p g l i n e ( n d a t , xa , REAL( bfm ) ) CALL p g s c i ( 1 ) CALL p g l a b ( ' i \ d0 \ u ' , ' c o u n t s ' , ' ' ) CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / b c k g r d f i t . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / b c k g r d f i t . j p g ' c a l l s y s t e m ( command ) END SUBROUTINE B G D a t a H i s t !-

2 ,

 2 -SUBROUTINE MCMC ! The m a s t e r Markov C h a i n M o n t e C a r l o r o u t i n e USE G l o b a l ! c r e a t e s a new model a t e a c h i t e r a t i o n and t h e n c o m p a r e s IMPLICIT NONE ! t h e q u a l i t y o f t h e f i t t o t h e d a t a ! * * * Most s u b r o u t i n e s a r e c a l l e d from 'MCMC' * * * REAL * 8 : : g a s d e v s t r i n g = TRIM ( ADJUSTL ( f i e l d ) ) / / ' / MCMC steps . d a t ' OPEN( 2 , f i l e =TRIM ( ADJUSTL ( s t r i n g ) ) , s t a t u s = ' unknown ' ) OPEN( 8 , f i l e =TRIM ( ADJUSTL ( f i e l d ) ) / / ' / MCMC steps unf . d a t ' , form = ' u n f o r m a t t e d ' , s t a t u s = ' unknown ' ) WRITE( s c o u t = . f a l s e . ; s c o u t c o u n t s = 0 known f = (REAL( b g s t a r s ) * s i g a r e a ) / ( REAL( s i g s t a r s ) * b g a r e a ) x1 ( 1 , : ) = 2 0 . 5 d0 ; x2 ( 1 , : ) = known f ; x3 ( 1 , : ) = 0 . 3 d0 ; t i m e ( 1 ) = 1 1 IF ( n o t s c o u t ) THEN ! S e t v a l u e s x1 ( 1 , : ) = x1 ( 2 0 0 , : ) ; x2 ( 1 , : ) = x2 ( 2 0 0 , : ) ; x3 ( 1 , : ) = x3 ( 2 0 0 , : ) ; t i m e ( 1 ) = 1 ! a f t e r END IF ! s c o u t r u n m a g t i p = x1 ( 1 , 1 ) ; f = x2 ( 1 , 1 ) ; a = x3 ( 1 , 1 ) cn = 1 ; b e t a = b e t a h o l d e r ( 1 ) CALL ModelMake ! Make model and CALL C o n v o l u t i o n ! DO j = 1 , n u m c h a i n s ! e v a l u a t e g o o d n e s s o f f i t cn = j ; b e t a = b e t a h o l d e r ( cn ) ! CALL L o g l i k e ! f o r i n i t i a l p a r a m e t e r c h o i c e s LikeA ( cn ) = l o g L ( cn ) ! END DO ! LikeB ( : ) = 0 . d0 x1 ( 2 , : ) = x1 ( 1 , : ) ; x2 ( 2 , : ) = x2 ( 1 , : ) ; x3 ( 2 , : ) = x3 ( 1 , : ) Best Combo ( 5 ) = -9. d99 DO i t = 2 , n i t t i m e ( i t ) = i t DO cn = 1 , n u m c h a i n s b e t a = b e t a h o l d e r ( cn ) p ( 1 ) = x1 ( i t , cn ) + m s t e p ( cn ) * g a s d e v ( idum ) ! G a u s s i a n w e i g h t e d s t e p s from i n i t i a l p ( 2 ) = x2 ( i t , cn ) ! + f s t e p ( cn ) * g a s d e v ( idum ) ! p a r a m e t e r s f o r t h e t i p m a g n i t u d e ( p ( 1 ) ) p ( 3 ) = x3 ( i t , cn ) + a s t e p ( cn ) * g a s d e v ( idum ) ! n o i s e r a t i o ( p ( 2 ) ) and s l o p e ( p ( 3 ) ) IF ( p ( 1 ) . l t . b l i m . o r . p ( 1 ) . g t . f l i m ) THEN ! r = 0 . d0 ! e l s e IF ( p ( 2 ) . l e . 0 . d0 . o r . p ( 2 ) . ge . 1 . d0 ) THEN ! R e s t r i c t i o n s on r = 0 . d0 ! w h e t h e r p r o p o s e d e l s e IF ( p ( 3 ) . l e . 0 . d0 . o r . p ( 3 ) . ge . 2 . d0 ) THEN ! s t e p i s t a k e n r = 0 . d0 ! e l s e ! m a g t i p = p ( 1 ) ; f = p ( 2 ) ; a = p ( 3 ) CALL ModelMake ! Make model and CALL C o n v o l u t i o n ! e v a l u a t e t h e CALL L o g l i k e ! g o o d n e s s o f f i t LikeB ( cn ) = l o g L ( cn ) r = 1 0 * * ( LikeB ( cn ) -LikeA ( cn ) ) end IF IF ( cn . eq . 1 . and . n o t s c o u t ) THEN ! Only c o u n t s a f t e r t h e s c o u t i n g r u n c o n t r i b u t e t o t h e p p d s p o s t y 1 ( INT ( ( x1 ( i t , 1 ) -1 8 . d0 ) * 10 * binspm + 1 ) ) = & ! p o s t y 1 ( INT ( ( x1 ( i t , 1 ) -1 8 . d0 ) * 10 * binspm + 1 ) ) + 1 . d0 ! p o s t y 2 ( INT ( x2 ( i t , 1 ) * ( n b i n s -1 ) ) + 1 ) = & ! G e n e r a t e p o s t e r i o r p l o t p o s t y 2 ( INT ( x2 ( i t , 1 ) * ( n b i n s -1 ) ) + 1 ) + 1 . d0 ! f o r m a g t i p , f and a p o s t y 3 ( INT ( x3 ( i t , 1 ) *

  h o o d ( LikeA ) a s ! | | w e l l a s t h e l i k e l i h o o d o f t h e c u r r e n t p r o p o s e d swap ( LikeB ) IF ( LikeA ( cn ) . g t . Best Combo ( 5 ) ) THEN ! Best Combo ( 1 ) = t i m e ( i t ) ; Best Combo ( 2 ) = x1 ( i t , cn ) ! U p d a t e b e s t l i k e l i h o o d Best Combo ( 3 ) = x2 ( i t , cn ) ; Best Combo ( 4 ) = x3 ( i t , cn ) ! c o m b i n a t i o n e n c o u n t e r e d Best Combo ( 5 ) = LikeA ( cn ) ; Best Combo ( 6 ) = LikeB ( cn ) ! END IF END IF CALL random number ( randnum3 ) ! IF

  ( s c o u t c o u n t s . l t . 2 0 0 ) THEN ! s c o u t c o u n t s = s c o u t c o u n t s + 1 ! c y c l e ! END IF ! 200 i t e r a t i o n s w i l l be r u n a t t h e b e g i n n i n g b e f o r e t h e IF ( s c o u t c o u n t s . eq . 2 0 0 ) THEN ! n o t s c o u t = . t r u e . ! ' n i t ' u s e d i t e r a t i o n s i n o r d e r t o remove t h e l e a d i n t r a i l . s c o u t c o u n t s = 1000000000 ! g o t o 1 ! END IF ! ! | | PARALLEL ! \ / TEMPERING IF ( n u m c h a i n s . ne . 1 . and . i t . ne . n i t ) THEN CALL random number ( randnum4 ) IF ( randnum4 . l e . s w a p r a t e ) THEN CALL random number ( randnum4 ) r a n d i n t = INT ( ( n u m c h a i n s -1 ) * randnum4 ) + 1 IF ( r a n d i n t . eq . 1 ) THEN ! Count number o f p r o p o s e d c h a i n c o m p a r e = c h a i n c o m p a r e + 1 . ! swaps w i t h t h e END IF ! c o l d s a m p l e r c h a i n PTAR = ( B e t a h o l d e r ( r a n d i n t ) / B e t a h o l d e r ( r a n d i n t + 1 ) ) * LikeA ( r a n d i n t + 1 ) + & ( B e t a h o l d e r ( r a n d i n t + 1 ) / B e t a h o l d e r ( r a n d i n t ) ) * LikeA ( r a n d i n t ) -& LikeA ( r a n d i n t ) -LikeA ( r a n d i n t + 1 ) CALL random number ( randnum5 ) IF ( randnum5 . l e . 10 * * PTAR ) THEN IF ( r a n d i n t . eq . 1 ) THEN ! Count number o f a c c e p t e d s w a p c o u n t = s w a p c o u n t + 1 ! swaps w i t h t h e END IF ! c o l d s a m p l e r c h a i n p a r h o l d ( 1 ) = x1

  + 1 ) * & ! l i k e l i h o o d s ( B e t a h o l d e r ( r a n d i n t ) / B e t a h o l d e r ( r a n d i n t + 1 ) ) ! b e t w e e n c h a i n s x1 ( i t +1 , r a n d i n t + 1 ) = p a r h o l d ( 1 ) ! x2 ( i t +1 , r a n d i n t + 1 ) = p a r h o l d ( 2 ) ! x3 ( i t +1 , r a n d i n t + 1 ) = p a r h o l d ( 3 ) ! LikeA ( r a n d i n t + 1 ) = p a r h o l d ( 4 ) * & ! ( B e t a h o l d e r ( r a n d i n t + 1 ) / B e t a h o l d e r ( r a n d i n t ) ) ! END IF END IF END IF END DO x1 ( 1 , : ) = x1 ( 2 0 0 , : ) ; x2 ( 1 , : ) = x2 ( 2 0 0 , : ) ; x3 ( 1 , : ) = x3 ( 2 0 0 , : ) ! Remove i n i t i a l x1 ( 2 , : ) = x1 ( 2 0 1 , : ) ; x2 ( 2 , : ) = x2 ( 2 0 1 , : ) ; x3 ( 2 , : ) = x3 ( 2 0 1 , : ) ! p a r a m e t e r v a l u e s WRITE ( 2 , ' ( 6 F16 . 5 ) ' ) Best Combo ( 1 ) , Best Combo ( 2 ) , Best Combo ( 3 ) , &

  -SUBROUTINE NoiseMake ! G e n e r a t e s a p o l y n o m i a l o f d e g r e e 7 t h a t f o l l o w s t h e USE G l o b a l ! f u n c t i o n a l form o f t h e GSS b a c k g r o u n d LF . The p o l y n o m i a l IMPLICIT NONE ! c o e f f i c i e n t s were d e r i v e d i n ' B a c k g r o u n d P o l y F i t ' u s i n g ! ' s v d f i t ' from N u m e r i c a l R e c i p e s . a r e a 2 = 0 . d0 DO i = 1 , 8 * binspm + 1 m o d e l n o i s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) m o d e l n o i s e ( i , 2 ) = 0 . d0 DO j = 1 , np ! S e t b a c k g r o u n d c o u n t s m o d e l n o i s e ( i , 2 ) = m o d e l n o i s e ( i , 2 ) + ay ( j ) * ( m o d e l n o i s e ( i , 1 ) -2 1 . d0 ) * * ( j -1 ) END DO IF ( m o d e l n o i s e ( i , 2 ) . l t . 0 . d0 ) THEN ! m o d e l n o i s e ( i , 2 ) = 0 . d0 ! I n s u r e no n e g a t i v e c o u n t s END IF ! IF ( i . ge . b l i m B i n s . and . i . l e . f l i m B i n s ) THEN a r e a 2 = a r e a 2 + m o d e l n o i s e ( i , 2 ) ! Used f o r n o r m a l i z a t i o n i n ' ModelMake ' END IF END DO model ( : , 2 ) = m o d e l n o i s e ( : , 2 ) / a r e a 2 CALL C o n v o l u t i o n n o i s e = cmodel ( : , 2 ) END SUBROUTINE NoiseMake 191 !-

  -SUBROUTINE N o i s e P l o t ! P l o t s t h e u n s c a l e d form o f t h e b a c k g r o u n d LF USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv (REAL( b l i m ) , REAL( m a g c u t o f f ) , 0 . , 1 . 1 * REAL(MAXVAL( m o d e l n o i s e ( : , 2 ) , mask = m o d e l n o i s e ( : , 1 ) . l e . 2 3 . 5 . and . m o d e l n o i s e ( : , 1 ) . ge . b g b l i m ) ) , 0 , 0 ) CALL p g b i n ( n b i n s -INT ( 2 . 5 * binspm ) , REAL( m o d e l n o i s e ( : , 1 ) ) , REAL( m o d e l n o i s e ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend END SUBROUTINE N o i s e P l o t !-

  -SUBROUTINE ModelMake ! I n i t i a l Model ( i . e . model b e f o r e c o n v o l u t i o n ) USE G l o b a l IMPLICIT NONE REAL * 8 : : f u n c i a r e a = 0 . d0 DO i = 1 , n b i n s model ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) IF ( model ( i , 1 ) + hb . g t . m a g t i p . and . model ( i , 1 ) -hb . l e . m a g t i p ) THEN model ( i , 2 ) = ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) + hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) -& ( 1 . d0 / ( a * LOG ( 1 0 . ) ) ) ! Model v a l u e a t t i p a r e a = a r e a + model ( i , 2 ) ! Used f o r n o r m a l i z a t i o n ELSE IF ( model ( i , 1 ) . g t . m a g t i p ) THEN ! Model v a l u e f a i n t w a r d o f t i p model ( i , 2 ) = ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) + hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) -& ( ( 1 0 . d0 * * ( a * ( model ( i , 1 ) -hbm a g t i p ) ) ) / ( a * LOG ( 1 0 . ) ) ) ELSE model ( i , 2 ) = 0 . d0 ! Model v a l u e b r i g h t w a r d o f t i p END IF IF ( i . ge . b l i m B i n s . and . i . l e . f l i m B i n s ) THEN a r e a = a r e a + model ( i , 2 ) ! Used f o r n o r m a l i z a t i o n END IF END DO model ( : , 2 ) = model ( : , 2 ) / a r e a ! N o r m a l i z e END SUBROUTINE ModelMake !-

  -SUBROUTINE M o d e l P r i n t ! P r i n t s model b e f o r e c o n v o l u t i o n USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 ) CALL pgenv (REAL( m a g t i p ) -3 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1 * REAL( model ( INT ( 5 . 5 * binspm ) , 2 ) ) , 0 , 0 ) CALL p g b i n ( n b i n s -INT ( 2 . 5 * binspm ) , REAL( model ( : , 1 ) ) , REAL( model ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend END SUBROUTINE M o d e l P r i n t !-

  -SUBROUTINE G a u s s i a n K e r n e l ! G e n e r a t e s a G a u s s i a n k e r n e l ' k e r n e l ' w i t h USE G l o b a l !HWHM ( s i g m a ) c h a n g i n g w i t h m a g n i t u d e i n IMPLICIT NONE ! a c c o r d a n c e w i t h f u n c i . K e r n e l i s d e f i n e d from ! gx = -5 * s i g m a t o gx = +5 * s i g m a . REAL * 8 : : f u n c i k e r n e l = 0 . d0DO i = 1 , n b i n s t = 1 8 . d0 + ( i -1 . d0 ) /REAL( binspm ) ! C o n v e r t b i n number t o m a g n i t u d e temp = 0 . d0 gx = 0 . j =0 DO WHILE ( gx . l e . 5 . e0 * f u n c i ( t ) ) ! j = j +1 ! gx = 0 . e0 + ( j -1 . e0 ) / binspm ! Cr e a t e s h a l f o f temp ( j , 1 ) = gx ! t h e k e r n e l ( ' temp ' ) temp ( j , 2 ) = exp ( -( ( gx ) * * 2 . e0 ) / ( 2 . e0 * ( f u n c i ( t ) * * 2 . e0 ) ) ) ! END DO ! ghw ( i ) = j -1 . d0 ! The f i r s t nonz e r o b i n o f ' cmodel ' w i l l be t h e f i r s t ! nonz e r o b i n o f ' model ' minus ghw DO k = 1 , j k e r n e l ( k , : , i ) = temp ( j -( k -1) , : ) ! C r e a t e ' k e r n e l ' by c o n c a t e n a t i n g k e r n e l ( j +k , 2 , i ) = temp ( k + 1 , 2 ) ! ' temp ' w i t h a r e f l e c t e d v e r s i o n k e r n e l ( j +k , 1 , i ) = -temp ( k + 1 , 1 ) ! o f i t s e l f END DO ! Note : temp ( 2 * j , 2 ) = 0 . d0 ; temp ( 2 * j , 1 ) = -0. d0 k e r n e l ( : , 2 , i ) = k e r n e l ( : , 2 , i ) /SUM( k e r n e l ( : , 2 , i ) ) END DO END SUBROUTINE G a u s s i a n K e r n e l !-

  r m a l i z e t h e c o n v o l v e d model cmodel ( : , 2 ) = cmodel ( : , 2 ) /SUM( cmodel ( : , 2 ) , mask = cmodel ( : , 1 ) . ge . b l i m ) ! Note t h e a b o v e s t e p i s v e r y i m p o r t a n tn o r m a l i z a t i o n must o n l y be o v e r t h e ! r a n g e o f m a g n i t u d e s i n t h e ' d a t a ' a r r a yi . e . down t o b

  -SUBROUTINE C o n v o l u t i o n P r i n t ! P r i n t s c o n v o l v e d v e r s i o n o f model USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , ' ? ' , 1 , 1 )CALL pgenv (REAL( m a g t i p ) -0 . 5 , 2 5 . , 0 . , 1 . 1 * MAXVAL(REAL( cmodel ( : , 2 ) ) ) , 0 , 0 ) CALL p g b i n ( n b i n s , REAL( cmodel ( : , 1 ) ) , REAL( cmodel ( : , 2 ) ) , . t r u e . ) CALL p g l a b ( ' i \ d0 \ u ' , ' R e l a t i v e p r o b a b i l i t y ' , ' ' ) CALL pgend END SUBROUTINE C o n v o l u t i o n P r i n t !-

  -SUBROUTINE D a t a H i s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i n n e d h i s t o g r a m s and USE G l o b a l ! o v e r l a y s them w i t h t h e b e s t f i t model d e t e r m i n e d by IMPLICIT NONE ! t h e MCMC REAL * 8 : : s c a l e d f r e c h i s t o f i n e ( : , 1 ) = model ( : , 1 ) DO i = 1 , INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i -1 . d0 ) /REAL( 0 . 2 5 * binspm ) END DO DO i = 1 , n d a t a 2 ! h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) = & ! G e n e r a t e s h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) + 1 . d0 ! Chapter Four Programs h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) = & ! H i s t o g r a m s h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) + 1 . d0 ! END DO ! h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) * 2 . d0 ! below h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) * 2 . d0 ! below ! F o r g r a p h i n g p u r p o s e s , t h e f i r s t and l a s t b i n s o f t h e c o a r s e h i s t o g r a m a r e d o u b l e d s i n c e ! t h e s e b i n l i e s h a l f o u t s i d e t h e r a n g e o f i n t e r e s t and s o a r e d e p l e t e d by ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g o n l y and h a s no b e a r i n g on t h e ! d e t e r m i n e d b e s t f i t model . ! | | P l o t B e s t F i t Model ! \ / o v e r h i s t o g r a m m a g t i p = t i p r e c ; f = f r e c ; a = a r e c ! CALL ModelMake ! G e n e r a t e b e s t

  bfm and b a c k g r o u n d t o g e t h e r bfm = bfm * (SUM( h i s t o f i n e ( : , 2 ) ) /SUM( bfm , mask = cmodel ( : , 1 ) . ge . b l i m ) ) ! S c a l e bfm t o match h i s t o g r a m CALL p g s c i ( 1 ) CALL p g l a b ( ' i \ d0 \ u ' , ' C o u n t s ' , ' ' ) CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / m o d e l f i t v s d a t a c o a r s e . p s . / ' / / TRIM ( ADJUSTL ( f i e l d ) ) / / & ' / m o d e l f i t v s d a t a c o a r s e . j p g ' c a l l s y s t e m ( command ) END SUBROUTINE D a t a H i s t !-

  -SUBROUTINE w D a t a H i s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i n n e d ( w e i g h t e d ) h i s t o g r a m s USE G l o b a l ! and o v e r l a y s them w i t h t h e b e s t f i t model d e t e r m i n e d by IMPLICIT NONE ! t h e MCMC REAL * 8 : : s c a l e d f r e c w h i s t o f i n e ( : , 1 ) = model ( : , 1 )

  r u e s t a r p o l y ( i ) ) THEN ! IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN w h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) = & ! G e n e r a t e s W e i g h t e d H i s t o g r a m s . w h i s t o f i n e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * binspm ) + 1 . d0 ) , 2 ) + & ! S e t s o t h a t s t a r s a t c e n t r e o f ( w e i g h t ( i ) / maxweight ) ! f i e l d c o n t r i b u t e 1 . 0 c o u n t s w h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) = & ! w h i l e s t a r s a t some r a d i u s g i v e w h i s t o c o a r s e ( INT (REAL( ( d a t a ( i ) -18. d0 ) * 0 . 2 5 * binspm ) + 1 . d0 ) , 2 ) + & ! some f r a c t i o n o f 1 . 0 c o u n t s ( w e i g h t ( i ) / maxweight ) ! d e p e n d i n g on t h e d e n s i t y p r o f i l e . END IF END IF ! END DO ! w h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h w h i s t o c o a r s e ( INT (REAL( b l i mb i n s ) / 4 . e0 ) + 1 , 2 ) * 2 . d0 ! below w h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h w h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) * 2 . d0 ! below ! F o r gr a p h i n g p u r p o s e s , t h e f i r s t and l a s t b i n s o f t h e c o a r s e h i s t o g r a m a r e d o u b l e d s i n c e ! t h e s e b i n l i e s h a l f o u t s i d e t h e r a n g e o f i n t e r e s t and s o a r e d e p l e t e d by ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g o n l y andh a s no b e a r i n g on t h e ! d e t e r m i n e d b e s t f i t model . ! | | P l o t B e s t F i t Model ! \ / o v e r w e i g h t e d h i s t o g r a m m a g t i p = t i p r e c ; f = f r e c ; a = a r e c ! CALL ModelMake ! G e n e r a t e b e s t f i t s i g n a l f u n c t i o n CALL C o n v o l u t i o n ! bfm = 0 . d0 ; bg = 0 . d0 ! Apply w e i g h t s t o b e s t f i t model f o r | | DO i = 1 , n d a t a 2 ! e a c h s t a r and sum t o g e t h e r . \ / IF ( t r u e s t a r p o l y ( i ) ) THEN IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN bfm = bfm + cmodel ( : , 2 ) * ( w e i g h t ( i ) / ( w e i g h t ( i ) + ( b g s t a r s / b g a r e a ) ) ) * w e i g h t ( i ) ! sum t o g e t h e r RGB LFs from e a c h s t a r bg = bg + n o i s e * ( ( b g s t a r s / b g a r e a ) / ( w e i g h t ( i ) + ( b g s t a r s / b g a r e a ) ) ) * w e i g h t ( i ) ! sum t o g e t h e r BG LFs from e a c h s t a r END IF END IF END DO bfm = bfm + bg ! Add bfm and b a c k g r o u n d t o g e t h e r bfm = bfm * (SUM( w h i s t o f i n e ( : , 2 ) ) /SUM( bfm , mask = cmodel ( : , 1 ) . ge . b l i m ) ) ! S c a l e bfm t o match h i s t o g r a m USE G l o b a l ! o f t h e l i k e l i h o o d IMPLICIT NONE ! f o r a g i v e n model l o g L ( cn ) = 0 . d0 DO i = 1 , n d a t a 2 IF ( t r u e s t a r p o l y ( i ) ) THEN IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN s t a r b i n = INT ( ( d a t a ( i ) -1 8 . d0 ) * binspm ) + 1 s i g p r o b = cmodel ( s t a r b i n , 2 ) * w e i g h t ( i ) / ( w e i g h t ( i ) + ( b g s t a r s / b g a r e a ) ) ! D e t e r m i n e l i k e l i h o o d f o r s t a r g i v e n c u r r e n t r a t i o b g p r o b = n o i s e ( s t a r b i n ) * ( b g s t a r s / b g a r e a ) / ( w e i g h t ( i ) + ( b g s t a r s / b g a r e a ) ) ! o f t h e RGB LF v s . t h e BG LF due t o s t a r ' s w e i g h t . p r o b = ( s i g p r o b + b g p r o b ) * w e i g h t ( i ) ! T h i s a l s o i n s u r e s t h e t o t a l p r o b . o f t h e model l o g L ( cn ) = l o g L ( cn ) + LOG10 ( p r o b ) ! i s 1 . Add l i k e l i h o o d s t o g e t h e r i n l o g s p a c e . L ( cn ) = l o g L ( cn ) * b e t a END SUBROUTINE LogLike !-

  -SUBROUTINE TipAndSigma ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and USE G l o b a l ! t h e i r a s s o c i a t e d 1 s i g m a e r r o r s from t h e IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s . PPD peak = 0 . d0 !
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 1 * n i t . and . d2 . eq . 0 ) THEN ! F o r f and a : f p l u s i g = p o s t x 2 ( i ) ! F i n d s u p p e r and l o w e r d2 = 1 ! b o u n d s f o r p o s t e r i o r END IF ! d i s t r i b u t i o n w i t h i n one IF ( a c o u n t s . ge . 0 . 1 5 9 * n i t . and . d3 . eq . 0 ) THEN ! s i g m a o f maximum . a m i n s i g = p o s t x 3 c o u n t s . ge . 0 . 8 4 1 * n i t . and . d4 . eq . 0 ) THEN ! a p l u s i g = p o s t x 3

  t h e p h o t o m e t r i c e r r o r a s a f u n c t i o n USE G l o b a l ! o f m a g n i t u d e t o t h e ' G a u s s i a n K e r n e l ' s u b r o u t i n e . IMPLICIT NONE REAL * 8 : :

  o d r i g o ' s p o l y s e l e c t i o n t o o l ------------------------SUBROUTINE P o l y S e l e c t ! Used f o r s e l e c t i o n o f a p p r o p r i a t e c o l o u r c u t USE G l o b a l

  2 , 1 5 . 0 ) c a l l p g s l s ( 1 ) c a l l p g l c u r (MAXPT, NPT ggr , XCOL ggr , YMAG ggr ) open ( 2 , f i l e =TRIM ( ADJUSTL ( c o l c u t ) ) , s t a t u s = ' unknown ' ) w r i t e ( 2 , * ) NPT ggr do i p o l =1 , NPT ggr w r i t e ( 2 , * ) XCOL ggr ( i p o l ) , YMAG ggr ( i p o l ) end do c l o s e ( 2 ) c a l l p g s c i ( 1 ) c a l l p g a d v a n c e e l s e open ( 2 , f i l e =TRIM ( ADJUSTL ( c o l c u t ) ) , s t a t u s = ' o l d ' ) read ( 2 , * ) NPT ggr do i p o l =1 , NPT ggr read ( 2 , * ) XCOL ggr ( i p o l ) , YMAG ggr ( i p o l ) end do c l o s e ( 2 ) c a l l p g s c i (

  e a l * 4 f u n c t i o n f i m a g ( x0 , xs , xe , y0 , ys , ye ) ! Used by P o l y S e l e c t s u b r o u t i n e i m p l i c i t none r e a l * 4 x0 , xs , xe , y0 , ys , ye r e a l * 4 t o p , b o t

  --Program: MF TRGB Feed.pl Creation Date: 23 January 2012 Relevant Section: Ch. 4Notes: This Perl scrip shows the individual parameters for each satellite fed to the program 'MF TRGB.f95.' I have included it as it provides information specific to each satellite that is not given in Ch. 4. For each satellite, there are 16 inputs in the order described below. Note that for the dwarf spheroidal satellites, values for parameters 2 -10 were provided by Nicolas Martin (Observatoire Astronomique, Universite de Strasbourg) and are due for publication in the near future. As an aside, it is worth noting that the weighting can effectively be turned off by specifying a very large Half-Light Radius, which produces an essentially flat object density profile across the field of view.
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 25 .CMD" ) ; # f i n a l p r i n t " AndromedaXXIII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXIVe 1 .CMD" ) ; # f i n a l p r i n t " AndromedaXXIV done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXVe 0 ANDXXV.CMD" ) ; # f i n a l p r i n t " AndromedaXXV done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXVIe 0 ANDXXVI .CMD" ) ; # f i n a l p r i n t " AndromedaXXVI done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXVIIe 0 .CMD" ) ; # f i n a l p r i n t " AndromedaXXVII done . \ n " ; s y s t e m ( " . / MF TRGB . e AndromedaXXXe 0 -1.5 -0.4 ANDXXX.CMD" ) ; # f i n a l p r i n t " AndromedaXXX done . \ n " ; # s y s t e m ( " . / MF TRGB NGC147e . e NGC147e outer 0 . 0 6 -4.2 -2.2 NGC147 .CMD" ) ; # p r i n t " NGC147e outer done . \ n " ; # s y s t e m ( " . / MF TRGB NGC147e . e NGC147e inner 0 . 0 6 -4.0 -2.1 NGC147 .CMD" ) ; # p r i n t " NGC147e inner done . \ n " ; # s y s t e m ( " . / MF TRGB . e NGC147stream 0 . 0 3 3 . 0 1 2 . 0 4 8 . 0 3 0 . 0 3 1 . 0 0 . 0 6 0 0 0 . 0 0 . 0 0 . 0 0 . 5 0 . 5 -4.0 -2.7 NGC147stream .CMD" ) ; # p r i n t " NGC147stream done . \ n " ; # s y s t e m ( " . / MF TRGB NGC185e . e NGC185e outer 0 l i p s e .CMD" ) ; # p r i n t " M31e SE done . \ n " ; # s y s t e m ( " . / MF TRGB M31e SW . e M31e SW 0 . 0 4 2 . 0 4 4 . 3 3 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6 0 0 0 . 0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD" ) ; # p r i n t "M31e SW done . \ n " ; Program: MF TRGB Tester.f95 Creation Date: 8 December 2010 Relevant Section: §3.2 of Paper II (Ch. 4) Notes: This program is the equivalent of 'MCMCTRGBTester2.f95' provided in Appendix B, but it has been updated for use with 'MF TRGB.f95' and thus also provides the artificial stars with a radius representing their distance from the object's center. For simplicity, an ellipticity of 0 is assumed. For the sake of brevity, only the 'DataMaker' subroutine is shown, but the other subroutines called can be found in 'MF TRGB.f95.' MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s u s e d by BayesianTRGB IMPLICIT NONE !--------------------Ge n e r a l Program P a r a m e t e r s ---------------------INTEGER : : i , j , k , l , e v a l , idum = -9999 , i t , n i t , t r i a l INTEGER : : n d a t a m a x , n s a m p l e s , binspm , n b i n s , c m o d n b i n s , ghw , mm, i o s PARAMETER ( n d a t a m a x = 2 0 0 0 0 0 0 0 , n s a m p l e s = 1 0 0 ) PARAMETER ( binspm = 1 0 0 ) PARAMETER ( n b i n s = 8 * binspm + 1 ) PARAMETER ( n i t = 5 0 0 0 0 ) INTEGER : : n d a t a , n d a t a 2 INTEGER : : d1 , d2 , d3 , d4 REAL * 8 : : blim , f l i m , p i PARAMETER ( b l i m = 1 9 . 5 d0 ) PARAMETER ( f l i m = 2 3 . 5 d0 ) PARAMETER ( p i = ACOS( -1 . e0 ) ) INTEGER : : b l i m B i n s = INT (REAL( ( b l i m -1 8 . d0 ) * binspm ) ) + 1 INTEGER : : f l i m B i n s = INT (REAL( ( f l i m -1 8 . d0 ) * binspm ) ) + 1 REAL * 8 : : randnum1 , randnum2 , randnum3 , randnum4 , randnum5 , randnum6 , randnum7 INTEGER : : r a n d i n t REAL * 8 : : r1 , r2 , spotR , hb = 0 . 0 0 5 d0 REAL * 8 : : model ( n b i n s , 2 ) , cmodel ( n b i n s , 2 ) , m a g n i t u d e ( n d a t a m a x ) REAL * 8 : : h i s t o f i n e ( n b i n s , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , 2 ) REAL * 8 : : w h i s t o f i n e ( n b i n s , 2 ) , w h i s t o c o a r s e ( INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 , 2 ) REAL * 8 : : d a t a ( n d a t a m a x ) , c u m u l a t i v e c m o d e l ( n b i n s , 2 ) , f , f h o l d , bfm ( n b i n s ) REAL * 8 : : c u m u l a t i v e d i s t ( 2 0 0 0 , 2 ) REAL * 8 : : m a g t i p , mag , m a g c u t o f f = 2 4 . e0 , a REAL * 8 : : a r e a , a r e a 2 REAL * 8 : : m o d e l n o i s e ( n b i n s , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , bg ( n b i n s ) = 0 . d0 REAL * 8 : : k e r n e l ( n b i n s , 2 ) = 0 . e0 , s c a l e , uplim , lowlim , gx REAL * 8 : : temp ( n b i n s , 2 ) = 0 . e0 , t INTEGER : : s t a r b i n REAL * 8 : : t i p ( n s a m p l e s ) , t i p o r d ( n s a m p l e s ) , maxlogL ( n s a m p l e s ) = -999999999999.REAL * 8 : : t i p r e c , t i p o f f s e t , t i p p s i g m a , t i p m s i g m a , T o f f s e t k p c , T s i g m a k p c REAL * 8 : : f o f f s e t , t i p k p c , k p c p e r r , k p c m e r r , f s i g m a , a o f f s e t , a s i g m a REAL * 8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s REAL * 8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , a m i n s i g , a p l u s i g REAL * 8 : : mcounts , p c o u n t s INTEGER : : n u m c h a i n s , cn , c h a i n c o m p a r e , s w a p c o u n t PARAMETER ( n u m c h a i n s = 4 ) REAL * 8 : : s w a p r a t e = 1 . d0 / 3 0 . d0 , l o g L ( n u m c h a i n s ) , LikeA ( n u m c h a i n s ) , LikeB ( n u m c h a i n s ) REAL * 8 : : prob , s i g p r o b , b g p r o b REAL * 8 : : b e t a , b e t a h o l d e r ( n u m c h a i n s ) = ( / 1 . d0 , 0 . 2 5 d0 , 0 . 1 1 1 d0 , 0 . 0 0 1 d0 / ) REAL * 8 : : m s t e p ( n u m c h a i n s ) = ( / 0 . 0 3 d0 , 0 . 0 6 d0 , 0 . 1 2 d0 , 0 . 3 d0 / ) REAL * 8 : : f s t e p ( n u m c h a i n s ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / ) 205 REAL * 8 : : a s t e p ( n u m c h a i n s ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / ) REAL * 8 : : PTAR , p a r h o l d ( 4 ) REAL * 8 : : x1 ( n i t , n u m c h a i n s ) , x2 ( n i t , n u m c h a i n s ) , x3 ( n i t , n u m c h a i n s ) , p ( 3 ) , t i m e ( n i t ) , r REAL * 8 : : p o s t y 1 ( 1 0 * ( n b i n s -1) +1) = 0 . d0 , p o s t x 1 ( 1 0 * ( n b i n s -1) +1) , mlim REAL * 8 : : d b l i m , b g b l i m , d f l i m , b g f l i m REAL * 8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s ) REAL * 8 : : p o s t y 3 ( 2 * n b i n s -1 ) = 0 . d0 , p o s t x 3 ( 2 * n b i n s -1 ) REAL * 8 : : PPD peak , Best Combo ( 6 ) CHARACTER : : a r g v * 1 0 , f i e l d * 6 0 , ch1 * 9 , ch2 * 9 , ch3 * 9 , ch4 * 9 , ch5 * 9 , ch6 * 9 , s t r i n g * 90 !-

  i t i o n a l p a r a m e t e r s f o r c a l c u l a t i n g b a c k g r o u n d s t a t s -------INTEGER : : b g n d a t a , b g n d a t a 2 , b g n d a t a 3 REAL * 4 : : bg mag g ( n d a t a m a x ) , b g m a g i ( n d a t a m a x ) , b g x k i ( n d a t a m a x ) , b g e t a ( n d a t a m a x ) REAL * 4 : : b g g m i n i ( n d a t a m a x ) , b g m a g i p o l y ( n d a t a m a x ) , b g g m i n i p o l y ( n d a t a m a x ) REAL * 4 : : bg gmi REAL * 8 : : b g d a t a ( n d a t a m a x ) ! --SVD f i t t i n g o f b a c k g r o u n d --INTEGER ma , mp , np , n d a t PARAMETER ( n d a t = INT ( 0 . 2 5 * ( n b i n s -1 . d0 ) ) + 1 ) PARAMETER ( np = 8 ) PARAMETER ( mp = n d a t ) PARAMETER ( ma = np ) REAL : : c h i s q , ay ( ma ) , s i g ( n d a t ) , u ( mp , np ) , v ( np , np ) , w( np ) , xa ( n d a t ) , ya ( n d a t ) REAL : : x t ( n d a t ) , y t ( n d a t ) REAL * 8 : : b g h i s t o c o a r s e ( n d a t , 2 ) EXTERNAL : : f u n c s ! ------A d d i t i o n a l p a r a m e t e r s f o r s p e c i f y i n g o b j e c t c o o r d i n a t e s ------INTEGER : : J o p REAL * 8 : : XIop , ETAop REAL * 8 : : RAh , RAm, RAs , DecD , DecM , DecS , RA rad , D e c r a d REAL * 8 : : tpRAh , tpRAm , tpRAs , tpDecD , tpDecM , tpDecS , tpR A rad , t p D e c r a d ! --A d d i t i o n a l p a r a m e t e r s f o r Matched F i l t e r s S u b r o u t i n e ' W e i g h t e r '--INTEGER : : r h o b i n s , r h o b i n s 2 PARAMETER ( r h o b i n s = 1 0 ) REAL * 4 : : C O F d i s t ( n d a t a m a x ) , D e n s i t y ( r h o b i n s , 2 ) , r h o f i t ( r h o b i n s , 2 ) REAL * 8 : : w e i g h t ( n d a t a m a x ) ! --F i t t i n g t o D e n s i t y P r o f i l e --INTEGER : : mwt , n d a t 2 PARAMETER ( n d a t 2 = r h o b i n s )

  -INTEGER : : b g s t a r s , s i g s t a r s REAL * 8 : : b g a r e a , s i g a r e a , b g d e n s i t y REAL * 8 : : known f , b g s t a r s i n s i g f i e l d REAL * 8 : : s i g f i e l d r a d i u s = 0 . 2 d0 , b g l o w x i = -5. d0 , b g u p x i = 1 3 . d0 END MODULE G l o b a l !-

  1 ) THEN WRITE ( 3 , * ) " P r o p o s e d Swaps w i t h Cold S a m p l e r C h a i n : " , c h a i n c o m p a r e WRITE ( 3 , * ) " A c c e p t e d Swaps w i t h Cold S a m p l e r C h a i n : " , s w a p c o u n t WRITE ( 3 , * ) " P a r a l l e l T e m p e r i n g A c c e p t a n c e R a t e : " , REAL( s w a p c o u n t ) / REAL( c h a i n c o m p a r e ) END IF WRITE ( 3 , ' ( 3 a11 ) ' ) "

  r a t e s a r t i f i c i a l s t a r s w i t h m a g n i t u d e s from USE G l o b a l ! model l u m i n o s i t y f u n c t i o n and p o s i t i o n s from IMPLICIT NONE ! model d e n s i t y p r o f i l e c u m u l a t i v e c m o d e l ( : , 1 ) = cmodel ( : , 1 ) c u m u l a t i v e c m o d e l ( 1 , 2 ) = cmodel ( 1 , 2 ) ! E f f e c t i v e DO i = 2 , c m o d n b i n s ! i n t e g r a l o f c u m u l a t i v e c m o d e l ( i , 2 ) = c u m u l a t i v e c m o d e l ( i -1 , 2 ) + cmodel ( i , 2 ) ! c o n v o l v e d END DO ! model DO i = 1 , n d a t a ! CALL random number ( randnum6 ) ! randnum6 = c u m u l a t i v e c m o d e l ( b l i m B i n s , 2 ) + & randnum6 * ( c u m u l a t i v e c m o d e l ( f l i m B i n s , 2 ) -c u m u l a t i v e c m o d e l ( b l i m B i n s , 2 ) ) DO j = f l i m B i n s , b l i m B i n s , -1 ! G e n e r a t e s ' n d a t a ' IF ( randnum6 . l e . c u m u l a t i v e c m o d e l ( j , 2 ) ) THEN ! m a g n i t u d e d a t a p o i n t s IF ( randnum6 . g t . c u m u l a t i v e c m o d e l ( j -1 , 2 ) ) THEN ! from t h e c o n v o l v e d d a t a ( i ) = c u m u l a t i v e c m o d e l ( j -1 o f i l e b a s e d on t h a t f i t t e d ! t o Andromeda I I ( w i t h a p p r o x i m a t i o n DO i = 2 , 2000

1 )

 1 CALL pgenv ( 1 9 . 5 , 2 3 . 5 , 0 . , MAXVAL(REAL( C O F d i s t ) ) , 0 , 0 ) CALL p g s l w ( 3 ) CALL p g p t ( n d a t a , REAL( d a t a ) , REAL( C O F d i s t ) , -1) CALL p g s l w ( 1 ) CALL p g l a b ( ' m a g n i t u d e ' , ' r a d i u s ' , ' ' ) CALL pgend END SUBROUTINE DataMaker !-

-

  Program: Multi MCMC Result Plotter.f95 Creation Date: 6 Feb 2012 (first version 10 Dec 2010 ) Relevant Sections: Ch. 3 & Ch. 4 Notes: This program was created to take the posterior distributions generated by the TRGB algorithm (e.g. 'MF TRGB.f95') and produce more polished versions of the figures for use in papers I and II. In particular, it colour-codes the distributions to indicate the 1σ, 90% and 99% credibility intervals. It also generates a contour map of the distribution of the tip magnitude verses the RGB slope model parameters (see Fig. 8 of Paper I; Ch. 3) -i.e. a 3D surface from which the individual parameter posterior distributions are created by marginalizing over the other parameter. The actual distance posterior distributions for each object are also created by this program. This is achieved by sampling the posterior distribution in the tip magnitude along with the probability distributions for the absolute magnitude of the tip and the extinction along the line of sight (see the 'Dist Error' subroutine). The halo density prior (see §3.3 of Paper II; Ch. 4) is also generated and applied in this program, as are the hundredth-percentile tables of the object distance distributions published alongside Paper II (see Table 1 of Paper II for example). MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s u s e d by BayesianTRGB IMPLICIT NONE INTEGER : : i , i o s , j , k , n d a t a m a x , n d a t a , ndata M31 , n b i n s , binspm , d1 , d2 , d3 , d4 , mm PARAMETER ( n d a t a m a x = 7 1 0 0 0 0 0 , binspm = 1 0 0 ) PARAMETER ( n b i n s = 8 * binspm ) REAL * 8 : : p i PARAMETER ( p i = ACOS( -1 . e0 ) )

  ) REAL : : x i c o o r d , e t a c o o r d REAL * 8 : : RA, DEC, x i d b l e , e t a d b l e CHARACTER : : a r g v * 2 0 , f i e l d * 6 0 , p l o t d i r * 6 0 , s t r i n g * 2 0 0 , s t r i n g 2 * 2 0 0 , command1 * 2 0 0 , command2 * 300 !---------------F o r C o n t o u r P l o t -----------------INTEGER : : c o n t b i n s , n c o n t o u r s PARAMETER ( c o n t b i n s = 7 5 ) PARAMETER ( n c o n t o u r s = 2 0 ) REAL : : Cont ( c o n t b i n s , c o n t b i n s ) , c l e v e l s ( n c o n t o u r s ) , TR (

  o o r d = x i c o o r d * ( p i / 1 8 0 . e0 ) ! C o n v e r t a n g l e s from e t a c o o r d = e t a c o o r d * ( p i / 1 8 0 . e0 ) ! d e g r e e s t o r a d i a n s x i d b l e = x i c o o r d ; e t a d b l e = e t a c o o r d ! CALL sla DTP2S ( x i d b l e , e t a d b l e , 0 . d0 , 0 . d0 , RA, DEC) ! C o n v e r t t a n g e n t p l a n e IF ( x i d b l e . l t . 0 . d0 ) t h e n ! p r o j e c t i o n a n g l e s i n t o RA = RA -( 2 . e0 * p i ) ! t h e i r t r u e a n g l e s u s i n g END IF ! sla DTP2S x i c o o r d = RA ! e t a c o o r d = DEC ! x i d b l e = x i c o o r d ! F i n d t h e t r u e a n g l e e t a d b l e = e t a c o o r d ! t h e t at h e a n g l e on t h e t a = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) ! t h e s k y b e t w e e n M31 ! and t h e o b j e c t ! ( u s e s sla DSEP ) x i c o o r d = x i c o o r d * ( 1 8 0 . e0 / p i ) ! C o n v e r t b a c k e t a c o o r d = e t a c o o r d * ( 1 8 0 . e0 / p i ) ! t o d e g r e e s WRITE ( * , * ) x i c o o r d , e t a c o o r d , t h e t a * ( 1 8 0 . e0

  CALL r a n d o m s e e d ! CALL P o s t e r i o r B u i l d !CALL CALL P o s t e r i o r P l o t ! CALL O t h e r P l o t s ! SUBROUTINES CALL D i s t E r r o r ! END PROGRAM M C M C R e s u l t P l o t t e r !-

  1 , c o n t b i n s , c l e v e l s , n c o n t o u r s , TR ) CALL p g l a b ( ' P r o p o s e d i \ d0 \ u t i p m a g n i t u d e ' , ' P r o p o s e d v a l u e o f a ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m v s a c o n t o u r . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m v s a c o n t o u r . j p g ' c a l l s y s t e m ( command2 ) END SUBROUTINE O t h e r P l o t s !-

  -SUBROUTINE C o n f i d e n c e ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and USE G l o b a l ! t h e i r a s s o c i a t e d 1 s i g m a e r r o r s from t h e IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s . PPD peak = 0 . d0 ! DO i = 1 , 1 0 * ( n b i n s -1) +1

  o n f i d e n c e IF ( t i p c o u n t s . ge . 0 . 9 9 d0 * p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s t i p p 9 9 = ( (REAL( i ) -1 . d0 ) /REAL( 1 0 * binspm ) ) + 1 d2 = 0 ; d3 = 0 ; d4 = 0 f c o u n t s = 0 . d0 ; a c o u n t s = 0 . d0 ! DO i = 1 , n b i n s ! f c o u n t s = f c o u n t s + f PPD ( i , 2 ) ! a c o u n t s = a c o u n t s + a PPD ( i ,2 ) ! IF ( f c o u n t s . ge . 0 . 1 5 9 * n d a t a . and . d1 . eq . 0 ) THEN! f m i n s i g = f PPD ( i c o u n t s . ge . 0 . 8 4 1 * n d a t a . and . d2 . eq . 0 ) THEN! F o r f and a : f p l u s i g = f PPD ( i , 1 ) ! F i n d s u p p e r and l o w e r d2 = 1 ! b o u n d s f o r p o s t e r i o r END IF ! d i s t r i b u t i o n w i t h i n one IF ( a c o u n t s . ge . 0 . 1 5 9 * n d a t a . and . d3 . eq . 0 ) THEN! s i g m a o f maximum . a m i n s i g = a PPD ( i c o u n t s . ge . 0 . 8 4 1 * n d a t a . and . d4 . eq . 0 ) THEN! a p l u s i g = a PPD ( i , 1 )

  -SUBROUTINE D i s t E r r o r ! S a m p l e s D i s t a n c e l i k e l i h o o d s p a c e USE G l o b a l! u s i n g s a m p l e s o f m TRGB , A lambda and M TRGB IMPLICIT NONE ! from t h e i r r e s p e c t i v e l i k e l i h o o d d i s t r i b u t i o n s REAL * 8 : : g a s d e v ! | | Don ' t f o r g e t t o r e i n s t a t e ! \ / w r i t i n g d i s t a n c e s t o f i l e s 13 & 14 s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / Sampled MWy Distances . d a t ' OPEN ( u n i t = 1 3 , f i l e = TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / S a m p l e d M 3 1 D i s t a n c e s . d a t ' OPEN ( u n i t = 1 4 , f i l e = TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) D i s t P P D x = 0 . e0 ! Pres e t D i s t a n c e l i k e l i h o o d D i s t P P D y = 0 . e0 ! d i s t r i b u t i o n h i s t o g r a m t o 0 . D i s t P P D m i n = ( 1 0 0 . e0 * * ( ( MINVAL( m a g t i p , mask = m a g t i p . ne . 0 . ) -0 . 3 e0 * E x t 0 + 3 . 1 4 ) / 1 0 . e0 ) ) / 1 0 0 . e0 Dist PPD max = ( 1 0 0 . e0 * * ( (MAXVAL( m a g t i p , mask = m a g t i p . ne . 0 . ) + 0 . 3 e0 * E x t 0 + 3 . 7 4 ) / 1 0 . e0 ) ) / 1 0 0 . e0 M 3 1 t o o b j x = 0 . e0 ! Pres e t M31 t o o b j e c t h i s t o g r a m x v a l u e s t o 0 . M 3 1 t o o b j y = 0 . e0 ! Pres e t M31 t o o b j e c t d i s t a n c e h i s t o g r a m v a l u e s t o 0 . D i s t B i n s = 0 ! DO i = NINT ( D i s t P P D m i n ) -1 , NINT ( Dist PPD max ) + 1 ! G e n e r a t e ' x ' v a l u e s (MWy d i s t a n c e s ) D i s t B i n s = D i s t B i n s + 1 ! f o r d i s t r i b u t i o n h i s t o g r a m and c o u n t D i s t P P D x ( D i s t B i n s ) = REAL( i ) ! number o f b i n s Chapter Four Programs END DO ! DO i = -2000 , 2000 ! G e n e r a t e ' x ' v a l u e s ( M31 d i s t a n c e s ) M 3 1 t o o b j x ( i +2001) = REAL( i ) ! f o r d i s t r i b u t i o n h i s t o g r a m END DO ! DO i = 1 , n s a m p l e s ! M TRGB = 3 . 4 4 e0 + 0 . 0 5 e0 * g a s d e v ( idum ) ! E x t = E x t 0 + 0 . 1 e0 * E x t 0 * g a s d e v ( idum ) ! CALL random number ( randnum ) ! Take ' n s a m p l e s ' s a m p l e s o f t h e d i s t a n c e T i p = m a g t i p ( NINT ( randnum * 0 . 9 9 9 9 d0 * n d a t a ) +1) + E x t 0 ! u s i n g v a l u e s o f m TRGB , A lambda and M TRG D i s t P P D = ( 1 0 0 . e0 * * ( ( T i p -E x t + M TRGB) / 1 0 . e0 ) ) / 1 0 0 . e0 ! from t h e i r r e s p e c t i v e l i k e l i h o o d d i s t r i b u t i o n s . m 3 1 d i s t = M 3 1 d i s t p p d ( NINT ( randnum * 0 . 9 9 9 9 d0 * ndata M31 ) +1) ! m 3 1 d i s t i s s a m p l e d d i r e c t l y from t h e M31 d i s t PPD e a c h i t e r a t i o n M 3 1 t o O b j = ( ( D i s t P P D * * 2 . e0 ) + ( m 3 1 d i s t * * 2 . e0 ) -& ! 2 . e0 * D i s t P P D * m 3 1 d i s t * c o s ( t h e t a ) ) * * 0 . 5 e0 ! WRITE ( 1 3 , * ) D i s t P P D WRITE ( 1 4 , * ) M 3 1 t o O b j D i s t P P D y ( NINT ( D i s t P P D ) -( NINT ( D i s t P P D m i n ) -2 ) ) = & ! T a l l y up number o f c o u n t s D i s t P P D y ( NINT ( D i s t P P D ) -( NINT ( D i s t P P D m i n ) -2 ) ) + 1 . e0 ! i n e a c h E a r t h d i s t a n c e b i n M 3 1 t o o b j y ( 2 0 0 1 + NINT ( M 3 1 t o O b j ) ) = & ! T a l l y up number o f c o u n t s M 3 1 t o o b j y ( 2 0 0 1 + NINT ( M 3 1 t o O b j ) ) + 1 . e0 ! i n e a c h M31 d i s t a n c e b i n END DO !-----------One H u n d r e d t h P e r c e n t i l e s b e f o r e p r i o r ----------d i s t a t p e r c = 0 . e0 c u m d i s t = 0 . e0 ; p e r c = 0 . e0 ; n e x t = . t r u e . DO i = 1 , 4000 c u m d i s t = c u m d i s t + D i s t P P D y ( i ) ! 1 IF ( n e x t ) THEN ! Note , t h i s r o u t i n e now a c c o u n t s f o r t h e f a c t t h a t p e r c = p e r c + 1 . e0 ! a s i n g l e b i n c a n c o n t a i n more t h a n 1% o f t h e n e x t = . f a l s e . ! d a t a . i . e . -c u m d i s t d o e s n o t p r o g r e s s u n t i l END IF ! t h e p e r c e n t a g e o f t h e PPD s u r p a s s e s i t . O t h e r w i s e IF ( c u m d i s t . ge . ( p e r c / 1 0 0 . e0 ) * SUM( D i s t P P D y ) ) THEN ! c u m d i s t o v e r t a k e s i t and t h e s e c o n d i f s t a t e m e n t d i s t a t p e r c ( NINT ( p e r c ) , 1 ) = D i s t P P D x ( i ) ! i s a l w a y s t r u e . n e x t = . t r u e . ! g o t o 1 END IF END DO !-----------Apply d i s t a n c e p r i o r --------------CALL D i s t a n c e P r i o r D i s t P P D y = D i s t P P D y * D i s t P r i o r D i s t P P D y = D i s t P P D y / SUM( D i s t P P D y ) !-----------One H u n d r e d t h P e r c e n t i l e s a f t e r p r i o r ----------c u m d i s t = 0 . e0 ; p e r c = 0 . e0 ; n e x t = . t r u e . DO i = 1 , 4000 c u m d i s t = c u m d i s t + D i s t P P D y ( i ) ! 2 IF ( n e x t ) THEN ! Note , t h i s r o u t i n e now a c c o u n t s f o r t h e f a c t t h a t p e r c = p e r c + 1 . e0 ! a s i n g l e b i n c a n c o n t a i n more t h a n 1% o f t h e n e x t = . f a l s e . ! d a t a . i . e . -c u m d i s t d o e s n o t p r o g r e s s u n t i l END IF ! t h e p e r c e n t a g e o f t h e PPD s u r p a s s e s i t . O t h e r w i s e IF ( c u m d i s t . ge . ( p e r c / 1 0 0 . e0 ) * SUM( D i s t P P D y ) ) THEN ! c u m d i s t o v e r t a k e s i t and t h e s e c o n d i f s t a t e m e n t d i s t a t p e r c ( NINT ( p e r c ) , 2 ) = D i s t P P D x ( i ) ! i s a l w a y s t r u e . n e x t = . t r u e . ! g o t o 2 END IF END DO !---------C r e a t e t a b l e o f One H u n d r e d t h P e r c e n t i l e s --------s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / H u n d r e d t h P e r c e n t i l e s . d a t ' OPEN ( u n i t = 1 4 , f i l e = TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) DO i = 1 , 100 WRITE( 1 4 , ' ( 3 i 7 ) ' ) i , NINT ( d i s t a t p e r c ( i , 1 ) ) , NINT ( d i s t a t p e r c ( i , 2 ) ) END DO !-

  -CALL C o n f i d e n c e 2! C a l c u l a t e 68.3% , 90% and 99% p l u s / minus c r e d i b i l i t y i n t e r v a l s D i s t P P D y = D i s t P P D y / SUM( D i s t P P D y ) ! n o r m a l i z e d i s t r i b u t i o n !-

  -CALL C o n f i d e n c e 3 ! C a l c u l a t e 68.3% c r e d i b i l i t y i n t e r v a l s M 3 1 t o o b j y= M 3 1 t o o b j y / SUM( M 3 1 t o o b j y ) ! n o r m a l i z e d i s t r i b u t i o n !----------------------------------------------P l o t s D i s t a n c e D i s t r i b u t i o n w / o c r e d i b i l i t y i n t e r v a l s s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / /' / b w d i s t P P D . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) -1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1 * MAXVAL( D i s t P P D y ) , 0 , 0 ) CALL p g b i n ( D i s t B i n s , Dist PPDx , Dist PPDy , . f a l s e . ) CALL p g l a b ( ' P r o p o s e d D i s t a n c e ( kpc ) ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / b w d i s t P P D . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / b w d i s t P P D . j p g ' c a l l s y s t e m ( command2 ) !-

  ) = D i s t P P D y ( i ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE CALL p g s c i ( 1 ) ! D i s t r i b u t i o n CALL p g b i n ( 2 , D i s t P P D x ( i ) , D i s t P P D y ( i ) , . f a l s e . ) ! o u t s i d e o f 99 % END IF ! Cred . I n t e r v a l END DO CALL p g s c i ( 1 ) CALL p g l a b ( ' P r o p o s e d D i s t a n c e ( kpc ) ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / d i s t P P D . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / d i s t P P D . j p g ' c a l l s y s t e m ( command2 ) !-

  l o t s M31 t o O b j e c t D i s t a n c e D i s t r i b u t i o n w / o c r e d i b i l i t y i n t e r v a l s s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / bw M31dist PPD . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv (MINVAL( M 3 1 t o o b j x , mask = M 3 1 t o o b j y . ne . 0 . ) -1 , & MAXVAL( M 3 1 t o o b j x , mask = M 3 1 t o o b j y . ne . 0 . ) + 1 , & 0 . , 1 . 1 * MAXVAL( M 3 1 t o o b j y ) , 0 , 0 ) CALL p g b i n ( 4 0 0 1 , M 3 1 t o o b j x , M 3 1 t o o b j y , . f a l s e . ) CALL p g l a b ( ' P r o p o s e d D i s t a n c e from M31 ( kpc ) ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / bw M31dist PPD . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / bw M31dist PPD . j p g ' c a l l s y s t e m ( command2) END SUBROUTINE D i s t E r r o r !------------------------------------------------------------------------------------------------SUBROUTINE D is t a n c e P r i o r ! M u l t i p l i e s D i s t a n c e P o s t e r i o r USE G l o b a l ! D i s t r i b u t i o n by t h e d i s t a n c e p r i o r -IMPLICIT NONE ! e . g . t h e d e n s i t y f u n c t i o n o f t h e h a l o D i s t P r i o r = 0 . e0 p r i o r t y p e = 2 IF ( p r i o r t y p e . eq . 1 ) Then ! F o r a Uniform P r i o r WRITE ( 2 , * ) " " WRITE ( 2 , * ) " P r i o r Type : Uniform " D i s t P r i o r = 1 . e0 END IF IF ( p r i o r t y p e . eq . 2 ) Then ! F o r a c t u a l i n t e g r a t e d d e n s i t y a l o n g l i n e o f s i g h t a l p h a = 1 . e0 ! S l o p e o f power law WRITE ( 2 , * ) " " WRITE ( 2 , * ) " P r i o r Type : I n t e g r a t e d d e n s i t y f u n c t i o n , a l p h a =" , a l p h a , " t h e t a ( deg ) =" , ( t h e t a * 1 8 0 . e0 / a c o s ( -1 . e0 ) ) DO i = 1 , D i s t B i n s D i s t P r i o r ( i ) = ( D i s t P P D x ( i ) * * 2 . e0 ) / & ( ( ( D i s t P P D x ( i ) * * 2 . e0 ) + ( 7 7 9 . e0 * * 2 . e0 ) -( 2 . e0 * 7 7 9 . e0 ) * D i s t P P D x ( i ) * c o s ( t h e t a ) ) * * ( 0 . 5 e0 * a l p h a ) ) END DO END IF IF ( p r i o r t y p e . eq . 3 ) Then ! F o r a power law p r i o r a l p h a = 0 . 2 e0 ! S l o p e o f power law WRITE ( 2 , * ) " " WRITE ( 2 , * ) " P r i o r Type : Power Law , a l p h a =" , a l p h a DO i = 1 , D i s t B i n s IF ( D i s t P P D x ( i ) . ne . 7 7 9 . e0 ) THEN D i s t P r i o r ( i ) = (ABS ( 7 7 9 . e0 -D i s t P P D x ( i ) ) ) * * ( -1 . e0 * a l p h a ) END IF IF ( D i s t P P D x ( i ) . eq . 7 7 9 . e0 ) THEN D i s t P r i o r ( i ) = 1 . e0 END IF END DO END IF IF ( p r i o r t y p e . eq . 4 ) Then ! F o r a l i n e a r d e c r e a s i n g p r i o r s l o p e = 2 . e0 ! G r a d i a n t o f d i m i n i s h i n g p r o b a b i l i t y WRITE ( 2 , * ) " " WRITE ( 2 , * ) " P r i o r Type : L i n e a r D e c r e a s i n g , s l o p e =" , s l o p e DO i = 1 , D i s t B i n s D i s t P r i o r ( i ) = 7 7 9 . e0 -a b s ( s l o p e * ( D i s t P P D x ( i ) -7 7 9 . e0 ) ) END DO END IF IF ( p r i o r t y p e . eq . 5 ) Then ! F o r a G a u s s i a n P r i o r f l a t = 1 . e0

1 )

 1 CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) -1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1 * MAXVAL( D i s t P r i o r ) , 0 , 0 ) CALL p g b i n ( D i s t B i n s , Dist PPDx , D i s t P r i o r , . f a l s e . ) CALL p g l a b ( ' P r o p o s e d D i s t a n c e ( kpc ) ' , ' P r o b a b i l i t y ' , ' ' ) CALL pgend WRITE ( command2 , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / d i s t p r i o r . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / d i s t p r i o r . j p g ' c a l l s y s t e m ( command2 ) END SUBROUTINE D i s t a n c e P r i o r !

  e 2 ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and USE G l o b a l ! t h e i r a s s o c i a t e d 1 s i g m a e r r o r s from t h e IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s . PPD peak = 0 . d0 ! DO i = 1 , D i s t B i n s ! IF ( D i s t P P D y ( i ) . g t . PPD peak ) THEN ! PPD peak = D i s t P P D y ( i ) ! F i n d b e s t f i t TRGB v a l u e d i s t r e c = D i s t P P D x ( i )! END IF ! END DO ! d i s t c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i ) ! F i n d sn e g a t i v e one s i g m a IF ( d i s t c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! e r r o r i n d i s t a n c e d i s t m s i g m a = d i s t r e c -D i s t P P D x ( i t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! p c o u n t s = p c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i ) ! F i n d s p o s i t i v e one s i g m a IF ( d i s t c o u n t s . ge . 0 . 6 8 2 * p c o u n t s ) THEN ! e r r o r i n d i s t a n c e d i s t p s i g m a = D i s t P P D x( i ) -d i s t r e c ! e x i t ! END IF ! END DO ! d i s t c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i )! F i n d s n e g a t i v e 90 c r e d i b i l i t y IF ( d i s t c o u n t s . ge . 0 . 9 * m c o u n t s ) THEN ! i n t e r v a l i n d i s t a n c e d i s t m 9 0 = d i s t r e c -D i s t P P D x ( i t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! p c o u n t s = p c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i ) ! F i n d s p o s i t i ve 90 c r e d i b i l i t y IF ( d i s t c o u n t s . ge . 0 . 9 * p c o u n t s ) THEN ! i n t e r v a l i n d i s t a n c e d i s t p 9 0 = D i s t P P D x ( i ) -d i s t r e c ! e x i t ! END IF ! END DO d i s t c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , 1 , -1 ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i ) ! F i n d s n e g a t i v e 99 c r e d i b i l i t y IF ( d i s t c o u n t s . ge . 0 . 9 9 * m c o u n t s ) THEN ! i n t e r v a l i n d i s t a n c e d i s t m 9 9 = d i s t r e c -D i s t P P D x ( i t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! p c o u n t s = p c o u n t s + D i s t P P D y ( i ) ! END DO ! DO i = MAXLOC( Dist PPDy , DIM = 1 ) , D i s t B i n s ! d i s t c o u n t s = d i s t c o u n t s + D i s t P P D y ( i ) ! F i n d s p o s i t i v e 99 c r e d i b i l i t y IF ( d i s t c o u n t s . ge . 0 . 9 9 * p c o u n t s ) THEN! i n t e r v a l i n d i s t a n c e d i s t p 9 9 = D i s t P P D x ( i ) -d i s t r * ) " " WRITE ( 2 , * ) " Most L i k e l y D i s t a n c e : " , d i s t r e c WRITE ( 2 , * ) "+s i g m a -s i g m a d i s t +s i g m a d i s t -s i g m a : " , d i s t p s i g m a , d i s t m s i g m a , d i s t r e c + d i s t p s i g m a , d i s t r e cd i s t m s i g m a WRITE ( 2 , * ) " +90 -90 d i s t +90 d i s t -90: " , d i s t p 9 0 , d i s t m 9 0 , d i s t r e c + d i s t p 9 0 , d i s t r e cd i s t m 9 0 WRITE ( 2 , * ) " +99 -99 d i s t +99 d i s t -99: " , d i s t p 9 9 , d i s t m 9 9 , d i s t r e c + d i s t p 9 9 , d i s t r e cd i s t m 9 9 ! | | C o n v e r t d i s t a n c e p r o f i l e mode and i n t e r v a l s ! \ / b a c k i n t o t h e e q u i v a l e n t i n m a g n i t u d e s d i s t 2 m a g r e c = 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 d2m psigma = ( 5 . e0 * LOG10 ( ( d i s t r e c + d i s t p s i g m a ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) d2m msigma = ( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( ( d i s t r e cd i s t m s i g m a ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) d2m p90 = ( 5 . e0 * LOG10 ( ( d i s t r e c + d i s t p 9 0 ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) d2m m90 = ( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( ( d i s t r e cd i s t m 9 0 ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) d2m p99 = ( 5 . e0 * LOG10 ( ( d i s t r e c + d i s t p 9 9 ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) d2m m99 = ( 5 . e0 * LOG10 ( d i s t r e c * 1 0 0 . e0 ) -3 . 4 4 e0 ) -( 5 . e0 * LOG10 ( ( d i s t r e cd i s t m 9 9 ) * 1 0 0 . e0 ) -3 . 4 4 e0 ) ! / \ ! | | WRITE ( 2 , * ) " " WRITE ( 2 , * ) " D i s t a n c e b a c k t o m a g n i t u d e : " , d i s t 2 m a g r e c WRITE ( 2 , * ) " Hence , d i s t a n c e modulus a f t e r a p p l y i n g p r i o r : " , d i s t 2 m a g r e c + 3 . 4 4 e0 WRITE ( 2 , * ) "+s i g m a -s i g m a : " , d2m psigma , d2m msigma WRITE ( 2 , * ) " +90 -90 : " , d2m p90 , d2m m90 WRITE ( 2 , * ) " +99 -99 : " , d2m p99 , d2m m99 END SUBROUTINE C o n f i d e n c e 2 !-

  -SUBROUTINE C o n f i d e n c e 3 USE G l o b a l IMPLICIT NONE PPD peak = 0 . d0 ! DO i = 1 , 3001 ! IF ( M 3 1 t o o b j y ( i ) . g t . PPD peak ) THEN ! PPD peak = M 3 1 t o o b j y ( i ) ! F i n d b e s t f i t TRGB v a l u e M 3 1 d i s t r e c = M 3 1 t o o b j x ( i ) ! END IF ! END DO ! d i s t c o u n t s = 0 . d0 ; m c o u n t s = 0 . d0 ! DO i = MAXLOC( M 3 1 t o o b j y , DIM = 1 ) , 1 , -1 ! m c o u n t s = m c o u n t s + M 3 1 t o o b j y ( i ) ! END DO ! DO i = MAXLOC( M 3 1 t o o b j y , DIM = 1 ) , 1 , -1 ! d i s t c o u n t s = d i s t c o u n t s + M 3 1 t o o b j y ( i ) ! F i n d s n e g a t i v e one s i g m a IF ( d i s t c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! e r r o r i n M31 t o o b j e c t d i s t a n c e M 3 1 d i s t m s i g m a = M 3 1 d i s t r e c -M 3 1 t o o b j x( i ) ! e x i t ! END IF ! END DO ! d i s t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( M 3 1 t o o b j y , DIM = 1 ) , 3001 ! p c o u n t s = p c o u n t s + M 3 1 t o o b j y ( i ) ! END DO ! DO i = MAXLOC( M 3 1 t o o b j y , DIM = 1 ) , 3001 ! d i s t c o u n t s = d i s t c o u n t s + M 3 1 t o o b j y ( i ) ! F i n d s p o s i t i v e one s i g m a IF ( d i s t c o u n t s . ge . 0 . 6 8 2 * p c o u n t s ) THEN ! e r r o r i n M31 t o o b j e c t d i s t a n c e M 3 1 d i s t p s i g m a = M 3 1 t o o b j x ( i ) -M 3 * ) " " WRITE ( 2 , * ) " Most L i k e l y D i s t a n c e from M31 : " , M 3 1 d i s t r e c WRITE ( 2 , * ) "+s i g m a -s i g m a d i s t +s i g m a d i s t -s i g m a : " , M 3 1 d i s t p s i g m a , M3 1 d i s t m s i g m a , & M 3 1 d i s t r e c + M 3 1 d i s t p s i g m a , M 3 1 d i s t r e c -M 3 1 d i s t m s i g m a END SUBROUTINE C o n f i d e n c e 3 Program: SatPlot.f95 Creation Date: 17 February 2012 (first version 22 Sep 2011) Relevant Section: Fig. 10 of Paper II (Ch. 4) Notes: I wrote this program with the sole objective of producing a three dimensional plot of the satellite system. The distances and positions on the sky of each satellite are read in and used to generate a set of M31-centric cartesian coordinates for each satellite. Rotation matrices are then used to spin the view angle. The use of rotation matrices here is actually not quite correct as the order of application is not given its due importance. This means that the operation is a little clumsy but the plots themselves are unaffected. The actual PAndAS survey area footprint visible in Fig. 10 (c) of Paper II was generated (painstakingly!) for use in 'SatDensity SampCont.f95,' but I added it to this figure for illustration. MODULE G l o b a l ! D e f i n e a l l IMPLICIT NONE ! V a r i a b l e s INTEGER : : i , j , k , i o s , n d a t a , SAP ndata , I C P n d a t a , v a n g l e ! SAP = S u r v e y Area P o i n t PARAMETER ( n d a t a = 2 8 ) PARAMETER ( S A P n d a t a = 1 3 5 ) REAL : : x ( n d a t a ) , y ( n d a t a ) , z ( n d a t a ) , MWy to Obj ( n d a t a ) , M 3 1 t o O b j ( n d a t a ) , m 3 1 d i s t , m 31 p sig , m31 msig , x p r o ( n d a t a ) , y p r o ( n d a t a ) REAL : : SAP xi ( S A P n d a t a ) , S A P e t a ( S A P n d a t a ) , SAP x ( S A P n d a t a ) , SAP y ( S A P n d a t a ) , S A P t h e t a , MWy to SAP ( S A P n d a t a ) REAL : : SAPn x ( S A P n d a t a ) , SAPn y ( S A P n d a t a ) , SAPf x ( S A P n d a t a ) , SAPf y ( S A P n d a t a ) , MWy to SAPn ( S A P n d a t a ) , MWy to SAPf ( S A P n d a t a ) REAL : : I C P x i ( 3 0 0 ) , I C P e t a ( 3 0 0 ) , ICP x ( 3 0 0 ) , ICP y ( 3 0 0 ) , I C P t h e t a , MWy to ICP ( 3 0 0 ) PARAMETER ( m 3 1 d i s t = 7 7 9 . e0 ) PARAMETER ( m 3 1 p s i g = 0 . e0 ) PARAMETER ( m31 msig = 0 . e0 ) REAL : : x i ( n d a t a ) , e t a ( n d a t a ) , t h e t a ( n d a t a ) , p s i g ( n d a t a ) , m s i g ( n d a t a ) , p i , dummy PARAMETER ( p i = ACOS( -1 . e0 ) ) REAL : : M 3 1 t o O b j p s i g ( n d a t a ) , M 3 1 t o O b j m s i g ( n d a t a ) , temp1 , temp2 CHARACTER : : name ( n d a t a ) * 2 0 , s t r i n g * 200 ! -----F o r R o t a t e s u b r o u t i n e -----REAL : : o b j r o t ( n d a t a , 3 ) , o b j p r o r o t ( n d a t a , 3 ) , o b j ( n d a t a , 5 ) , o b j p r o ( n d a t a , 3 ) REAL : : o b j r o t p ( n d a t a , 3 ) , o b j r o t m ( n d a t a , 3 ) REAL : : S A P r o t ( SAP ndata , 3 ) , SAP ( SAP ndata , 3 ) , S A P n r o t ( SAP ndata , 3 ) , SAPn ( SAP ndata , 3 ) , S A P f r o t ( SAP ndata , 3 ) , SAPf ( SAP ndata , 3 ) REAL : : I C P r o t ( 3 0 0 , 3 ) , ICP ( 3 0 0 , 3 ) REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 ) , r o t m a t ( 3 , 3 ) , x a x i s ( 3 ) , y a x i s ( 3 ) , z a x i s ( 3 ) REAL : : m a r k e r x ( 3 ) , m a r k e r y ( 3 ) , m a r k e r z ( 3 ) REAL : : a l p h a , b e t a , gamma END MODULE G l o b a l !-

  -PROGRAM S a t P l o t ! M a s t e r p r o g r a m USE G l o b a l IMPLICIT NONE CALL G e t D a t a s t r i n g = ' M 3 1 n e i g h b o r h o o d x y . p s / CPS ' ! a l p h a = 0 . e0 * ( p i / 1 8 0 . e0 ) ! b e t a = 0 . e0 * ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e gamma = 0 . e0 * ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on v a n g l e = 1 ! xy p l a n e CALL R o t a t e ! CALL P l o t ! s t r i n g = ' M 3 1 n e i g h b o r h o o d x z . p s / CPS ' ! a l p h a = 9 0 . e0 * ( p i / 1 8 0 . e0 ) ! b e t a = 0 . e0 * ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e gamma = 0 . e0 * ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on v a n g l e = 2 ! xz p l a n e CALL R o t a t e ! !CALL P l o t ! s t r i n g = ' M 3 1 n e i g h b o r h o o d y z . p s / CPS ' ! a l p h a = 0 . e0 * ( p i / 1 8 0 . e0 ) ! b e t a = 2 7 0 . e0 * ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e gamma = 0 . e0 * ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on v a n g l e = 3 ! yz p l a n e CALL R o t a t e ! CALL P l o t ! s t r i n g = ' M 3 1 n e i g h b o r h o o d x y z . p s / CPS ' ! a l p h a = 5 . e0 * ( p i / 1 8 0 . e0 ) ! b e t a = 5 . e0 * ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e p o s i t i o n s gamma = 0 . e0 * ( p i / 1 8 0 . e0 ) ! i n 3D . v a n g l e = 4 ! CALL D i s t a n c e P e r s p e c t i v e ! Remove E f f e c t s o f d i s t a n c e on x / y p o s i t i o n s o f s a t e l l i t e s CALL R o t a t e CALL P l o t END PROGRAM S a t P l o t !-

  y and z c o m p o n e n t s o f M31-t os a t e l l i t e s e p a r a t i o n v e c t o r a l o n g w i t h v e c t o r WRITE ( * , ' ( 6 F16 . 5 ) ' ) x ( i ) , y ( i ) , z ( i ) , M 3 1 t o O b j ( i ) , M 3 1 t o O b j p s i g ( i ) , M 3 1 t o O b j m s i g ( i ) ! m a g n i t u d e and u n c e r t a i n t i e s END DO !-----------------------F o r S u r v e y B o r d e r ----------------------------OPEN ( u n i t = 2 , f i l e = ' . . / S u r v e y A r e a / B o r d e r C o o r d s X i E t a . d a t ' , s t a t u s = ' o l d ' ) i = 0 ; i o s = 0 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i= i +1 READ ( 2 , * , IOSTAT = i o s ) SAP xi ( i ) , S A P e t a ( i ) ! SAP = S u r v e y Area P o i n t i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO DO i = 1 , S A P n d a t a SAP xi ( i ) = SAP xi ( i ) * ( p i/ 1 8 0 . e0 ) ! S A P e t a ( i ) = S A P e t a ( i ) * ( p i / 1 8 0 . e0 ) ! C o n v e r t a n g l e s from d e g r e e s t o r a d i a n s S A P t h e t a = SQRT ( SAP xi ( i ) * * 2 . e0 + S A P e t a ( i ) * * 2 . e0 ) * ( p i / 1 8 0 .e0 ) ! MWy to SAP ( i ) = m 3 1 d i s t / c o s ( S A P t h e t a ) ! D e t e r m i n e S u r v e y Area P o i n t D i s t a n c e a s s u m i n g p l a n e a t d i s t a n c e o f M31 SAP x ( i ) = ABS( MWy to SAP ( i ) * c o s ( S A P t h e t a ) * t a n ( SAP xi ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h S u r v e y IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f M31 SAP x ( i ) = -1. e0 * SAP x ( i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e SAP y ( i ) = ABS( MWy to SAP ( i ) * s i n ( S A P e t a ( i ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h S u r v e y IF ( S A P e t a ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f M31 SAP y ( i ) = -1. e0 * SAP y ( i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! MWy to SAPn ( i ) = ( m 3 1 d i s t + z ( 1 2 ) ) / c o s ( S A P t h e t a ) ! D e t e r m i n e S u r v e y Area P o i n t D i s t a n c e a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVI SAPn x ( i ) = ABS( MWy to SAPn ( i ) * c o s ( S A P t h e t a ) * t a n ( SAP xi ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h S u r v e y IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVI SAPn x ( i ) = -1. e0 * SAPn x ( i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! SAPn y ( i ) = ABS( MWy to SAPn ( i ) * s i n ( S A P e t a ( i ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h S u r v e y IF ( S A P e t a ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVI SAPn y ( i ) = -1. e0 * SAPn y ( i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! MWy to SAPf ( i ) = ( m 3 1 d i s t + z ( 2 3 ) ) / c o s ( S A P t h e t a ) ! D e t e r m i n e S u r v e y Area P o i n t D i s t a n c e a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVIII SAPf x ( i ) = ABS( MWy to SAPf ( i ) * c o s ( S A P t h e t a ) * t a n ( SAP xi ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h S u r v e y IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVIII SAPf x ( i ) = -1. e0 * SAPf x ( i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! SAPf y ( i ) = ABS( MWy to SAPf ( i ) * s i n ( S A P e t a ( i ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h S u r v e y IF ( S A P e t a ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f ANDXVIII SAPf y ( i ) = -1. e0 * SAPf y ( i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! END DO !-----------------------Fo r I n n e r C u t O f f E l l i p s e ----------------------------OPEN ( u n i t = 3 , f i l e = ' . . / S u r v e y A r e a / M 3 1 C u t O f f E l l i p s e . d a t ' , s t a t u s = ' o l d ' ) i = 0 ; i o s = 0 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end o f i n p u t f i l e and p u t s i t i n t o a r r a y s i = i +1 READ ( 3 , * , IOSTAT = i o s ) I C P x i ( i ) , I C P e t a ( i ) ! ICP = I n n e r Cut -O f f P o i n t i f ( i o s == 0 ) t h e n ; e l s e i f ( i o s == -1) t h e n ; i =i -1 e x i t ; e l s e i f ( i o s > 0 ) t h e n ; i =i -1 c y c l e end i f END DO I C P n d a t a = i DO i = 1 , I C P n d a t a I C P x i ( i ) = I C P x i ( i ) * ( p i / 1 8 0 . e0 ) ! I C P e t a ( i ) = I C P e t a ( i ) * ( p i / 1 8 0 . e0 ) ! C o n v e r t a n g l e s from d e g r e e s t o r a d i a n s I C P t h e t a = SQRT ( I C P x i ( i ) * * 2 . e0 + I C P e t a ( i ) * * 2 . e0 ) * ( p i / 1 8 0 . e0 ) ! MWy to ICP ( i ) = m 3 1 d i s t / c o s ( I C P t h e t a ) ! D e t e r m i n e I n n e r Cut -O f f P o i n t D i s t a n c e a s s u m i n g p l a n e a t d i s t a n c e o f M31 ICP x ( i ) = ABS( MWy to ICP ( i ) * c o s ( I C P t h e t a ) * t a n ( I C P x i ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h I n n e r IF ( I C P x i ( i ) . l t . 0 . e0 ) THEN ! Cut -O f f P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f M31 ICP x ( i ) = -1. e0 * ICP x ( i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! ICP y ( i ) = ABS( MWy to ICP ( i ) * s i n ( I C P e t a ( i ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h I n n e r IF ( I C P e t a ( i ) . l t . 0 . e0 ) THEN ! Cut -O f f P o i n t , a s s u m i n g p l a n e a t d i s t a n c e o f M31 ICP y ( i ) = -1. e0 * ICP y ( i )! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i

  2 ) ) / m 3 1 d i s t ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f M31 SAP y ( i ) = SAP y ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! SAPn x ( i ) = SAPn x ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 1 2 ) ) ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f And XVI SAPn y ( i ) = SAPn y ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 1 2 ) ) ) ! ( And XVI i s t h e n e a r e s t s a t e l l i t e ) SAPf x ( i ) = SAPf x ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 2 3 ) ) ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f And XXVII SAPf y ( i ) = SAPf y ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 2 3 ) ) ) ! ( And XXVII i s t h e f u r t h e s t s a t e l l i t e ) END DO DO i = 1 , I C P n d a t a ICP x ( i ) = ICP x ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! I n n e r c u t o f f e l l i p s e a t ICP y ( i ) = ICP y ( i ) * ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! d i s t a n c e t o M31 . END DO END SUBROUTINE D i s t a n c e P e r s p e c t i v e !-

  -SUBROUTINE R o t a t e ! Uses r o t a t i o n m a t r i c e s t o s h i f t USE G l o b a l ! t h e p o s i t i o n on s c r e e n o f t h e IMPLICIT NONE! s a t e l l i t e s b a s e d on t h e v i e w i n g a n g l e x a x i s ( 1 ) = MAXVAL( a b s ( x ) ) ; x a x i s ( 2 ) = 0 . e0 ; x a x i s ( 3 ) = 0 . e0 ! G e n e r a t e c o o r d i n a t e s o f y a x i s ( 1 ) = 0 . e0 ; y a x i s ( 2 ) = MAXVAL( a b s ( y ) ) ; y a x i s ( 3 ) = 0 . e0 ! t h e p o s i t i v e e n d s o f t h e z a x i s ( 1 ) = 0 . e0 ; z a x i s ( 2 ) = 0 . e0 ; z a x i s ( 3 ) = MAXVAL( a b s ( z ) ) ! x , y and z a x e s m a r k e r x ( 1 ) = 1 0 0 . e0 ; m a r k e r x ( 2 ) = 0 . e0 ; m a r k e r x ( 3 ) = 0 . e0 ! G e n e r a t e c o o r d i n a t e s o f m a r k e r y ( 1 ) = 0 . e0 ; m a r k e r y ( 2 ) = 1 0 0 . e0 ; m a r k e r y ( 3 ) = 0 . e0 ! t h e p o s i t i v e 100 kpc m a r k e r z ( 1 ) = 0 . e0 ; m a r k e r z ( 2 ) = 0 . e0 ; m a r k e r z ( 3 ) = 1 0 0 . e0 ! a x i s m a r k e r s x r o t( 1 , 1 ) = 1 . e0 ! x r o t ( 2 , 1 ) = 0 . e0 ! x r o t ( 3 , 1 ) = 0 . e0 ! Chapter Four Programs x r o t ( 1 , 2 ) = 0 . e0 ! x r o t ( 2 , 2 ) = c o s ( a l p h a ) ! R o t a t i o n m a t r i x f o r a d j u s t i n g yawa n g l e a l p h a x r o t ( 3 , 2 ) = -1. e0 * s i n ( a l p h a t a t i o n m a t r i x f o r a d j u s t i n g p i t c ha n g l e b e t a y r o t ( 3 , 2 ) = 0 . e0 ! y r o t ( 1 , 3 ) = -1. e0 * s i n ( b e t a ) ! y r o t ( 2 , 3 ) = 0 . e0 ! y r o t ( 3 , 3 ) = c o s ( b e t a ) ! z r o t ( 1 , 1 ) = c o s ( gamma ) ! z r o t ( 2 , 1 ) = -1. e0 * s i n ( gamma ) ! z r o t ( 3 , 1 ) = 0 . e0 ! z r o t ( 1 , 2 ) = s i n ( gamma ) ! z r o t ( 2 , 2 ) = c o s ( gamma ) ! R o t a t i o n m a t r i x f or a d j u s t i n g r o l la n g l e gamma z r o t ( 3 , 2 ) = 0 m a t = MATMUL( x r o t , y r o t ) ! G e n e r a t e r o t a t i o n m a t r i x t o a d j u s t o b j e c t c o o r d i n a t e s r o t m a t = MATMUL( r o t m a t , z r o t ) ! f o r t h e c h o s e n c o m b i n a t i o n o f yaw , p i t c h and r o l l x a x i s = MATMUL( r o t m a t , x a x i s ) ! y a x i s = MATMUL( r o t m a t , y a x i s ) ! C o n v e r t c o o r d i n a t e s o f p o s i t i v e e n d s o f a x e s f o r new view a n g l e z a x i s = MATMUL( r o t m a t , z a x i s ) ! m a r k e r x = MATMUL( r o t m a t , m a r k e r x ) m a r k e r y = MATMUL( r o t m a t , m a r k e r y ) m a r k e r z = MATMUL( r o t m a t , m a r k e r z ) DO i = 1 , n d a t a o b j ( i , 1 ) = x ( i ) ! o b j ( i , 2 ) = y ( i ) ! C o n v e r t o b j e c t c o o r d i n a t e s o b j( i , 3 ) = z ( i ) ! f o r new v i e w i n g a n g l e o b j ( i , 4 ) = z ( i ) + p s i g ( i ) ! F o r e r r o r o b j ( i , 5 ) = z ( i ) -m s i g ( i ) ! b a r s o b j r o t ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 , 2 , 3 / ) ) ) ! o b j r o t p ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 , 2 , 4 / ) ) ) ! o b j r o t m ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 , 2 , 5 / ) ) ) ! o b j p r o ( i , 1 ) = x ( i ) ! o b j p r o ( i , 2 ) = y ( i ) ! C o n ve r t z = 0 p r o j e c t i o n o f o b j e c t c o o r d i n a t e s o b j p r o ( i , 3 ) = 0 . e0 ! f o r new v i e w i n g a n g l e t o form o t h e r end o f p l o t t e d z v e c t o r o b j p r o r o t ( i , : ) = MATMUL( r o t m a t , o b j p r o ( i , : ) ) ! END DO DO i = 1 , S A P n d a t a SAP ( i , 1 ) = SAP x ( i ) ! SAP ( i , 2 ) = SAP y ( i ) ! C o n v e r t SAP c o o r d i n a t e s SAP ( i , 3 ) = 0 . e0 ! f o r new v i e w i n g a n g l e 231 SAPn ( i , 2 ) = SAPn y ( i ) ! C o n v e r t SAPn c o o r d i n a t e s SAPn ( i , 3 ) = z ( 1 2 ) ! f o r new v i e w i n g a n g l e S A P n r o t ( i , : ) = MATMUL( r o t m a t , SAPn ( i , : ) ) ! SAPf ( i , 1 ) = SAPf x ( i ) ! SAPf ( i , 2 ) = SAPf y ( i ) ! C o n v e r t SAPf c o o r d i n a t e s SAPf ( i , 3 ) = z ( 2 3 ) ! f o r new v i e w i n g a n g l e S A P f r o t ( i , : ) = MATMUL( r o t m a t , SAPf ( i , : ) ) ! END DO DO i = 1 , I C P n d a t a ICP ( i , 1 ) = ICP x ( i ) ! ICP ( i , 2 ) = ICP y ( i ) ! C o n v e r t ICP c o o r d i n a t e s ICP ( i , 3 ) = 0 . e0 ! f o r new v i e w i n g a n g l e I C P r o t ( i , : ) = MATMUL( r o t m a t , ICP ( i , : ) ) ! END DO END SUBROUTINE R o t a t e !-

  -SUBROUTINE P l o t ! P l o t t h e s a t e l l i t e s f o r c h o s e n view a n g l e USE G l o b a l IMPLICIT NONE CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g ) ) , 1 , 1 ) IF ( v a n g l e . eq . 1 . o r . v a n g l e . eq . 2 ) THEN ! CALL pgenv ( 1 . 1 * (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , -1 . 1 * (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , & ! S e t f r a m e l i m i t s -1 . 1 * (MAXVAL(ABS( o b j r o t ( : , 2 ) ) ) ) , 1 . 1 * (MAXVAL(ABS( o b j r o t ( : , 2 ) ) ) ) , 1 , 0 ) ! ELSE IF ( v a n g l e . eq . 3 ) THEN ! CALL pgenv ( 1 . 1 * ( MINVAL( o b j r o t ( : , 1 ) ) ) , 1 . 1 * (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , & ! and p a r a m e t e r s f o r 1 . 1 * ( MINVAL( S A P f r o t ( : , 2 ) ) ) , 1 . 1 * (MAXVAL( S A P f r o t ( : , 2 ) ) ) , 1 , 0 ) ! ELSE ! CALL pgenv ( 1 . 1 * (MAXVAL(ABS( S A P r o t ( : , 1 ) ) ) ) , -1 . 1 * (MAXVAL(ABS( S A P r o t ( : , 1 ) ) ) ) , & ! v a r i o u s v i e w i n g a n g l e s -1 . 1 * (MAXVAL(ABS( S A P r o t ( : , 2 ) ) ) ) , 1 . 1 * (MAXVAL(ABS( S A P r o t ( : , 2 ) ) ) ) , 1 , -1) ! END IF ! CALL p g l i n e ( 2 , ( / x a x i s (

  ) -5 . , 0 . , 0 . 5 , ' z ' ) ! END IF ! IF ( v a n g l e . ne . 4 ) THEN CALL p g p t ( 1 , m a r k e r x( 1 ) , m a r k e r x ( 2 ) , 0 6 1 2 ) ! CALL p g p t ( 1 , -1 . e0 * m a r k e r x ( 1 ) , -1. e0 * m a r k e r x ( 2 ) , 0 6 1 2 ) ! CALL p g p t ( 1 , m a r k e r y( 1 ) , m a r k e r y ( 2 ) , 0 5 9 0 ) ! CALL p g p t ( 1 , -1 . e0 * m a r k e r y ( 1 ) , -1. e0 * m a r k e r y ( 2 ) , 0 5 9 0 ) ! IF ( v a n g l e . eq . 2 ) THEN ! P l o t CALL p g p t ( 1 , m a r k e r z ( 1 ) , m a r k e r z ( 2 ) , 0 5 9 0 ) ! CALL p g p t ( 1 , -1 . e0 * m a r k e r z ( 1 ) , -1. e0 * m a r k e r z ( 2 ) , 0 5 9 0 ) ! M a r k e r s ELSE ! CALL p g p t ( 1 , m a r k e r z ( 1 ) , m a r k e r z ( 2 ) , 0 6 1 2 ) ! CALL p g p t ( 1 , -1 . e0 * m a r k e r z ( 1 ) , -1. e0 * m a r k e r z ( 2 r s a t e l l i t e s w i t h p r e f i x ' And ' CALL p g s l w (2) CALL p g s c i ( 2 ) CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r CALL p g s l w ( 1 5 ) ! c h o s e n view a n g l e CALL p g p t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , -1) ! Draw l a r g e d o t a t t h e end o f t h e z v e c t o r CALL p g s l w ( 2 ) CALL p g s c i ( 2 ) END DO CALL p g s l w (8)CALL p g s c i ( 3 ) DO i = 2 5 , 26 ! F o r NGC147 and NGC185 CALL p g s l w ( 2 ) CALL p g s c i ( 3 ) CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r CALL p g s l w ( 2 0 ) ! c h o s e n view a n g l e CALL p g p t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , -1)! Draw l a r g e d o t a t t h e end o f t h e z v e c t o r CALL p g s l w (2) CALL p g s c i ( 3 ) END DO DO i = 2 7 , 27 ! F o r M33 CALL p g s l w ( 2 ) CALL p g s c i ( 4 ) CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r CALL p g s l w ( 3 0 ) ! c h o s e n view a n g l e CALL p g p t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , -1) ! Draw l a r g e d o t a t t h e end o f t h e z v e c t o r CALL p g s l w ( 2 ) CALL p g s c i ( 4 ) END DO IF ( v a n g l e . eq . 4 ) THEN ! DO i = 1 , 27 ! CALL p g s l w ( 2 ) ! CALL p g s c i ( 1 ) ! P l o t s q u a r e on s u r v e y p l a n e CALL p g p t ( 1 , o b j p r o r o t ( i , 1 ) , o b j p r o r o t ( i , 2 CALL p g p o i n t ( 1 , 0 . , 0 . , -1) ! P l o t l a r g e d o t a t o r i g i n f o r M31 CALL p g s l w ( 2 ) CALL p g s c i ( 4 ) IF ( v a n g l e . eq . 4 ) THEN ! P l o t S u r v e y Area and I n n e r Cut -O f f E l l i p s e on p l a n e a t M31 d i s t a n c e CALL p g s c i ( 1 ) Program: SatDensity SampCont.f95 Creation Date: 20 Feb 2012 Relevant Section: §4.3 of Paper II (Ch. 4) Notes: The analysis presented in §4.3 of Paper II concerning the density profile of the M31 halo was carried out using this program. It fits a spherically-symmetric unbroken power law to the satellite density profile, taking into account the uneven coverage of the PAndAS survey area. One of the most difficult tasks here was to actually generate the PAndAS survey polygon from the field centers specified by Mike Irwin (Institute of Astronomy, Universityof Cambridge) and this took me two days to complete. Using this polygon as the outer boundary, and using the inner cutoff ellipse around the M31 disk, it is possible to determine how much volume at each radius (i.e. distance from M31) would fall inside the utilized survey region. The resulting function can then be used to weight the density profile so that we can obtain an unbiased measure of the slope of the power law for the desired sample of satellites. Note that the program can perform the analysis using either the best-fit distances alone or the full distance distributions for each satellite. The code presented here is as applied to the whole satellite sample but desired satellites can be omitted from the sample by skipping over them in the 'MaxLike' subroutine. MODULE G l o b a l ! D e f i n e a l l IMPLICIT NONE ! v a r i a b l e s INTEGER : : i , j , h , n , nn , k n d a t a REAL : : S a t R a d ( 2 7 ) , a l p h a , a l p h a h o l d ( 6 0 0 ) , ML logL ( 6 0 0 ) , Rel ML logL ( 6 0 0 ) , n o r m f a c REAL : : k v s a l p h a ( 6 0 1 , 2 ) , k ( 6 0 0 ) REAL : : a l p h a c o u n t s , a l p h a p s i g m a , a l p h a m s i g m a , p c o u n t s , m c o u n t s DOUBLE PRECISION : : av ML logL ! | | F o r s a m p l e d d i s t r i b u t i o n s ! \ / w i t h MCMC INTEGER : : n i t , i t , n s a m p l e s , n d a t a m a x , i o s , idum = -9999 PARAMETER ( n i t = 3 0 0 0 0 0 0 ) PARAMETER ( n s a m p l e s = 1 0 0 0 0 ) PARAMETER ( n d a t a m a x = 3 0 0 0 0 0 0 ) INTEGER : : t i m e ( n d a t a m a x ) REAL : : S a t R a d i i ( 2 7 , 5 0 0 0 0 1 ) , M 3 3 d i s t , i n c u t , o u t c u t , LikeA , LikeB , logL , randnum , r REAL : : R a d i u s ( 2 CHARACTER : : f o l d e r * 1 0 0 , s t r i n g * 2 0 0 , s t r i n g 2 * 2 0 0 , command * 2 0 0 , s a m p l e PARAMETER ( s a m p l e = ' y ' ) END MODULE G l o b a l !-

  -PROGRAM S a t D e n s i t y S a m p C o n t ! M a s t e r p r o g r a m USE G l o b a l IMPLICIT NONE WRITE ( f o l d e r , * ) ' S a t D e n s i t y ' WRITE ( s t r i n g , * ) ' . / ' / / TRIM ( ADJUSTL ( f o l d e r ) ) WRITE ( command , * ) ' m k d i r ' / / TRIM ( ADJUSTL ( f o l d e r ) ) CALL s y s t e m ( command ) CALL r a n d o m s e e d CALL N o n S a m p l e d R a d i i IF ( s a m p l e . eq . ' y ' ) THEN ! I f u s i n g many s a m p l e s o f p o s s i b l e CALL S a m p l e d R a d i i ! r a d i i f o r e a c h o b j e c t a s o p p o s e d CALL S a m p l e S e l e c t ! t o j u s t t h e b e s t f i t r a d i u s END IF CALL k v e r s e a l p h a CALL MaxLike s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / r e s u l t s . d a t ' OPEN( 3 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) WRITE ( 3 , * ) " R e s u l t s f o r Maximum L i k e l i h o o d t e s t " WRITE ( 3 , * ) " Most L i k e l y a l p h a ( Max L i k e l i h o o d ) : " , a l p h a h o l d (MAXLOC( ML logL ) ) WRITE ( 3 , * ) " p l u s 1 s i g m a e r r o r : " , a l p h a p s i g m a , " ; minus 1 s i g m a e r r o r : " , a l p h a m s i g m a END PROGRAM S a t D e n s i t y S a m p C o n t !-

  -SUBROUTINE N o n S a m p l e d R a d i i ! Use t h i s s u b r o u t i n e i f u s i n g t h e d i r e c t l y USE G l o b a l ! c a l c u l a t e d v a l u e s o f t h e S a t e l l i t e t o M31 IMPLICIT NONE ! d i s t a n c e r a t h e r t h a n s a m p l e s from t h e PPD S a t R a d ( 1 ) = 6 S a t R a d ( 2 2 ) = 1 0 3 . e0 ! And XXVI S a t R a d ( 2 3 ) = 4 8 2 . e0 ! And XXVII S a t R a d ( 2 4 ) = 1 4 6 . e0 ! And XXX S a t R a d ( 2 5 ) = 1 1 SUBROUTINE N o n S a m p le d R a d i i !-

  -SUBROUTINE k v e r s e a l p h a ! T h i s s u b r o u t i n e f i n d s v a l u e s o f t h e power law n o r m a l i z a t i o n f a c t o r ' k ' f o r USE G l o b a l ! e a c h power law ( i . e . e x p o n e n t ' a l p h a ' ) . I t s i m p l y i n t e r p o l a t e s b a s e d on v a l u e s IMPLICIT NONE ! d e r i v e d by G e r a i n t ( p r o v i d e d i n ' k v s a l p h a . d a t ' ) OPEN( 4 0 , f i l e = ' . / k v s a l p h a . d a t ' , s t a t u s = ' unknown ') i = 0 DO WHILE ( . TRUE . ) i = i + 1 READ ( 4 0 , * , IOSTAT = i o s ) k v s a l p h a ( i , 1 ) , k v s a l p h a ( i , 2 ) IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , a t a = i DO i = 1 ,599 ! k a s d e t e r m i n e d f o r a l p h a = 0 . 0 1 , 0 . 0 2 , .

  -SUBROUTINE MaxLike ! D i r e c t c a l c u l a t i o n o f l i k e l i h o o d s f o r a l p h a USE G l o b a l ! a s s u m i n g f i x e d v a l u e s o f i n n e r and o u t e r IMPLICIT NONE! c u t o f f r a d i i . See Eq . 16 o f P a p e r I I f o r o p e r a t i o n . s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / a l p h a M L d i s t . d a t ' OPEN( 9 , f i l e =TRIM ( ADJUSTL ( s t r i n g 2 ) ) , s t a t u s = ' unknown ' ) ML logL = 0 . e0 DO i = 1 , 600 p r i n t * , i a l p h a = REAL( i ) / 1 0 0 . e0 a l p h a h o l d ( i ) = a l p h a IF ( s a m p l e . eq . ' y ' ) THEN DO j = 1 , 27 av ML logL = 0 . d0 DO h = 1 , 500000 ! n s a m p l e s av ML logL = av ML logL+ ( ( k ( i ) * S a t R a d i i ( j , h ) * * ( 2 . d0 -a l p h a ) ) ) END DO av ML logL = LOG10 ( av ML logL ) ML logL ( i ) = ML logL ( i ) + av ML logL END DO ELSE DO j = 1 , 27 ML logL ( i ) = ML logL ( i ) + LOG10 ( ( k ( i ) * S a t R a d ( j ) * * ( 2 . e0 -a l p h a ) ) ) ! D e t er m i n e l i k e l i h o o d o f g i v e n a l p h a END DO END IF END DO ! | | P l o t ! \ / D i s t r i b u t i o n s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / m l a l p h a l o g l i k e . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) CALL pgenv ( 0 . , 6 . , 0 . 9 * MINVAL( ML logL ) , 1 . 1 * MAXVAL( ML logL ) , 0 , 0 ) CALL p g b i n ( 6 0 0 , a l p h a h o l d , ML logL , . f a l s e . ) CALL p g l a b ( ' \ ( 0 6 2 7 ) ' , ' Log L i k e l i h o o d ' , ' ' ) CALL pgend WRITE ( command , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m l a l p h a l o g l i k e . p s ' / / TRIM ( ADJUSTL ( s t r i n g ) ) / / & ' / m l a l p h a l o g l i k e . j p g ' c a l l s y s t e m ( command ) ! / \ ! | | ! | | P l o t ! \ / D i s t r i b u t i o n s t r i n g 2 = TRIM ( ADJUSTL ( s t r i n g ) ) / / ' / m l a l p h a P P D . p s / CPS ' CALL p g b e g i n ( 0 , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , 1 , 1 ) DO i = 1 , 600 IF ( a l p h a c o u n t s . ge . 0 . 6 8 2 * m c o u n t s ) THEN ! one s i g m a e r r o r a l p h a m s i g m a = a l p h a h o l d (MAXLOC( REL ML logL , DIM = 1 ) ) -a l p h a h o l d ( i ) ! e x i t ! END IF ! END DO ! a l p h a c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 ! DO i = MAXLOC( REL ML logL , DIM = 1 ) , 600 ! p c o u n t s = p c o u n t s + REL ML logL ( i ) ! END DO ! DO i = MAXLOC( REL ML logL , DIM = 1 ) , 600 ! a l p h a c o u n t s = a l p h a c o u n t s + REL ML logL ( i ) ! F i n d s p o s i t i v e IF ( a l p h a c o u n t s . ge . 0 . 6 8 2 * p c o u n t s ) THEN ! one s i g m a e r r o r a l p h a p s i g m a = a l p h a h o l d ( i ) -a l p h a h o l d (MAXLOC( REL ML logL , DIM = 1

  -!MCMC s u b r o u t i n e o m i t t e d !-

  P l o t s s u b r o u t i n e o m i t t e d !-

  -! LogLike s u b r o u t i n e o m i t t e d !-

  -SUBROUTINE S a m p l e d R a d i i ! Read i n s a m p l e d r a d i i p r o b a b i l i t y OPEN ( u n i t = 3 7 , f i l e = ' . / M33e / o t h e r p l o t s 2 / S a m p l e d M 3 1 D i s t a n c e s . d a t ' , s t a t u s = ' o l d ' ) !--------------------------------------------! | | Read i n t h e d i s t r i b u t i o n o f * * ! \ / d i s t a n c e s o f Andromeda I from M31 i = 0 DO WHILE ( . TRUE .

  -! R e p e a t * * t o r e a d i n t h e d i s t a n c e d i s t r i b u t i o n ! o f e a c h s a t e l l i t e w i t h r e s p e c t t o M31 CLOSE( 1 1 ) ; CLOSE( 1 2 ) ; CLOSE( 1 3 ) ; CLOSE( 1 4 ) ; CLOSE( 1 5 ) ; CLOSE( 1 6 ) ; CLOSE( 1 7 ) ; CLOSE( 1 8 ) ; CLOSE( 1 9 ) ; CLOSE( 2 0 ) CLOSE( 2 1 ) ; CLOSE( 2 2 ) ; CLOSE( 2 3 ) ; CLOSE( 2 4 ) ; CLOSE( 2 5 ) ; CLOSE( 2 6 ) ; CLOSE( 2 7 ) ; CLOSE( 2 8 ) ; CLOSE( 2 9 ) ; CLOSE( 3 0 ) CLOSE( 3 1 ) ; CLOSE( 3 2 ) ; CLOSE( 3 3 ) ; CLOSE( 3 4 ) ; CLOSE( 3 5 ) ; CLOSE( 3 6 ) ; CLOSE( 3 7 ) END SUBROUTINE S a m p l e d R a d i i !-

  -SUBROUTINE S a m p l e S e l e c t USE G l o b a l IMPLICIT NONE REAL : : g a s d e v DO i = 1 , 27 DO j = 1 , n s a m p l e s 1 CALL random number ( randnum ) randnum = ( randnum * 5 0 0 0 0 0 ) + 1 IF ( S a t R a d i i ( i , NINT ( randnum ) ) . ge . 5 0 . e0 . and . S a t R a d i i ( i , NINT ( randnum ) ) . l e . 6 0 0
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 7 REAL : : m 3 1 d i s t REAL : : a l p h a s e t , b e t a s e t , gamma set , p o l e a l p h a , p o l e b e t a REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 ) REAL : : p a r l i k e ( 1 8 0 , 6 ) REAL : : t h e t a c o o r d , p h i c o o r d CHARACTER : : a r g v * 3 0 , f o l d e r * 1 0 0 , s t r i n g * 2 0 0 , s t r i n g 2 * 2 0 0 , command * 2 0 0 , s u b s i z e * 3 END MODULE G l o b a l !-

  -PROGRAM P l a n e S i g n i f i c a n c e ! M a s t e r p r o g r a m USE G l o b a l IMPLICIT NONE WRITE ( s u b s i z e , * ) n s a t s WRITE ( f o l d e r , * ) ' R M S P l a n e S t a t s ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s ' ! P r i m a r y o u t p u t WRITE ( s t r i n g , * ) ' . / ' / / TRIM ( ADJUSTL ( f o l d e r ) ) ! d i r e c t o r y WRITE ( command , * ) ' m k d i r ' / / TRIM ( ADJUSTL ( f o l d e r ) ) CALL s y s t e m ( command ) CALL r a n d o m s e e d ! I n s u r e random s e e d f o r random numbers CALL S a m p l e d D i s t ! Get s a m p l e d s a t e l l i t e d i s t a n c e s CALL B o r d e r G e t ! Get PAndAS s u r v e y b o u n d a r y p o i n t s s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / r e s u l t s . d a t '

  1 , * ) " B e s t f i t v e c t o r : ( " , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , " ) " WRITE( 1 1 , * ) " T h e t a =" , t h e t a c o o r d , " ; P h i =" , p h i c o o r d WRITE( 1 1 , * ) "LOG10 (RMS) o f b e s t f i t : " , A c t u a l s i g WRITE( 1 1 , * ) " Minimum RMS from random s a m p l e s : " , m i n s i g n i f CLOSE( 1 1 ) ; CLOSE( 1 2 ) ; CLOSE( 1 3 ) ; CLOSE( 1 4 ) END PROGRAM P l a n e S i g n i f i c a n c e !-

  -SUBROUTINE R a n d o m P o i n ts ! G e n e r a t e s Random R e a l i z a t i o n s o f S a t e l l i t e s USE G l o b a l IMPLICIT NONE LOGICAL : : i n p o l y CALL random number ( randnum ) randnum = randnum * 2 9 9 9 9 9 9 . e0 + 1 . e0 m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) ) DO i = 1 , n s a t s 2 CALL random number ( randnum ) s a t p i c k = 1 + NINT ( randnum * REAL( n s a t s -1 ) ) ! Draw a random s a t e l l i t e CALL random number ( randnum ) randnum = randnum * 4 9 9 9 9 9 . e0 + 1 . e0 p o s ( 1 , i ) = ABS( S a t D i s t ( NINT ( randnum ) , s a t p i c k ) * c o s ( t h e t a ( s a t p i c k ) ) * t a n ( x i ( s a t p i c k ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r IF ( x i ( s a t p i c k ) . l t . 0 . e0 ) THEN ! ! f o r e a c h s a t e l l i t e p o s ( 1 , i ) = -1. e0 * p o s ( 1 , i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! p o s ( 2 , i ) = ABS( S a t D i s t ( NINT ( randnum ) , s a t p i c k ) * s i n ( e t a ( s a t p i c k ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h s a t e l l i t e IF ( e t a ( s a t p i c k ) . l t . 0 . e0 ) THEN ! p o s ( 2 , i ) = -1. e0 * p o s ( 2 , i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! p o s ( 3 , i ) = S a t D i s t ( NINT ( randnum ) , s a t p i c k ) * c o s ( t h e t a ( s a t p i c k ) ) -m 3 1 d i s t ! D e t e r m i n e l e n g t h and s i g n o f z v e c t o r p o s ( 3 , i ) = SQRT ( ( p o s (

  o t a t i o n M a t r i c e s f o r r o t a t i o n s a b o u t x , y and z a x e s . ' a l p h a s e t ' USE G l o b a l ! i s t h e d e s i r e d r o t a t i o n a n g l e a b o u t t h e x a x i s , ' b e t a s e t ' a b o u t IMPLICIT NONE ! t h e y a x i s and ' gamma set ' a b o u t t h e z a x t ( 2 , 2 ) = c o s ( a l p h a s e t ) ! R o t a t i o n a b o u t x-a x i sa n g l e a l p h a x r o t ( 3 , 2 ) = -1. e0 * s i n ( a l p h a s e t ) ! END SUBROUTINE R o t a t e !-

  -SUBROUTINE T h e t a P h i ( x , y , z ) ! C o n v e r t s from c a r t e s i a n x , y , z i n t o s p h e r i c a l c o o r d i n a t e s t h e t a USE G l o b a l ! and p h i ( r i s n o t r e q u i r e d ) f o r o b t a i n i n g p o s i t i o n s o f o b j e c t s IMPLICIT NONE ! ( and p l a n e n o r m a l v e c t o r p o i n t i n g s ) i n M31 g a l a c t i c c o o r d i n a t e s REAL : : x , y , z t h e t a c o o r d = a c o s ( z / ( SQRT ( x * * 2 . e0 + y * * 2 . e0 + z * * 2 . e0 ) ) ) -( p i / 2 . e0 ) t h e t a c o o r d = -t h e t a c o o r d * ( 1 8 0 . e0 / p i ) IF ( x . g t . 0 . e0 ) THEN p h i c o o r d = a t a n ( y / x ) ELSE IF ( x . l t . 0 . e0 . and . y . ge . 0 . e0 ) THEN p h i c o o r d = a t a n ( y / x ) + p i ELSE IF ( x . l t . 0 . e0 . and . y . l t . 0 . e0 ) THEN p h i c o o r d = a t a n ( y / x ) -p i ELSE IF ( x . eq . 0 . e0 . and . y . g t . 0 . e0 ) THEN p h i c o o r d = p i / 2 . e0 ELSE IF ( x . eq . 0 . e0 . and . y . l t . 0 . e0 ) THEN p h i c o o r d = -p i / 2 . e0 ELSE IF ( x . eq . 0 . e0 . and . y . eq . 0 . e0 ) THEN p h i c o o r d = 0 . e0 END IF p h i c o o r d = -p h i c o o r d * ( 1 8 0 . e0 / p i ) END SUBROUTINE T h e t a P h i !-

  -SUBROUTINE MaxSigFind ! F i n d s b e s t f i t p l a n e f o r a s a t e l l i t e d i s t r i b u t i o n by t e s t i n g g o o d n e s s o f f i t o f e a c h USE G l o b a l ! t e s t e d p l a n e . The p o l e s o f t h e t e s t e d p l a n e s a r e a l l a p p r o x i m a t e l y e q u id i s t a n t , t a k i n g IMPLICIT NONE ! i n t o a c c o u n t t h e s u r f a c e a r e a o f a s h e r e a s a f u n c t i o n o f l a t i t u d e . !A low r e s o l u t i o n r u n f i n d s t h e a p p r o x i m a t e l o c a t i o n o f t h e b e s t f i t p l a n e ' s p o l e and t h e n ! p o l e s a r o u n d t h i s p o i n t a r e s e a r c h e d a t h i g h e r r e s o l u t i o n . p a r l i k e = 0 . e0 m a x p l a n e s i g = 9 9 9 9 9 9 9 . e0 ! | | Low r e s o l u t i o n ! \ / p l a n e t e s t s DO i = 1 , 30 b e t a s e t = REAL( i * 3 ) * ( p i / 1 8 0 . e0 ) DO j = 1 , NINT ( 1 2 0 . e0 * c o s ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e ! number o f p o i n t s a l p h a s e t = (REAL( j ) / NINT ( 1 2 0 . e0 * c o s ( b e t a s e t ) ) ) * 3 6 0 . e0 * ( p i / 1 8 0 . e0 ) norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / ) CALL R o t a t e norm = MATMUL( y r o t , norm ) norm = MATMUL( x r o t , norm ) p l a n e s i g = 0 . d0 rms = 0 . d0 DO k = 1 , n s a t s !RMS C a l c u l a t i o n p l a n e D i s t = norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) rms = rms + ( p l a n e D i s t ) * * 2 END DO rms = SQRT ( rms / n s a t s ) p l a n e s i g = LOG10 ( rms ) IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e h a s l o w e s t rms m a x p l a n e s i g = p l a n e s i g ! S t o r e a p p r o x , low r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e and s i g n i f i c a n c e p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r p o l e b e t a = b e t a s e t ! h i g h r e s o l u t i o n s e a r c h END IF END DO END DO norm = ( / -1. e0 , 0 . e0 , 0 . e0 / ) ! T e s t a t t h e a c t u a l p o l e ( n o t i n c l u d e d i n a b o v e l o o p ) p l a n e s i g = 0 . d0 rms = 0 . d0 DO k = 1 , n s a t s !RMS C a l c u l a t i o n p l a n e D i s t = norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) rms = rms + ( p l a n e D i s t ) * * 2 END DO rms = SQRT ( rms / n s a t s ) p l a n e s i g = LOG10 ( rms ) ! | | High r e s o l u t i o n s e a r c h ! \ / a r o u n d b e s t f i t p o l e IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! C o n d i t i o n n o t met u n l e s s t h e RMS a t t h e a c t u a l p o l e ! was b e t t e r t h a n a n y w h e r e e l s e i n t h e low r e s s e a r c h m a x p l a n e s i g = p l a n e s i g b e s t f i t v e c t = norm DO i = 1 , 15 b e t a s e t = ( 8 8 . 5 e0 + (REAL( i ) / 1 0 . e0 ) ) * ( p i / 1 8 0 . e0 ) DO j = 1 , NINT ( 1 2 0 0 . e0 * c o s ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e ! number o f p o i n t s a l p h a s e t = (REAL( j ) / NINT ( 1 2 0 0 . e0 * c o s ( b e t a s e t ) ) ) * 3 6 0 . e0 * ( p i / 1 8 0 . e0 ) norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / ) CALL R o t a t e norm = MATMUL( y r o t , norm ) norm = MATMUL( x r o t , norm ) p l a n e s i g = 0 . d0 rms = 0 . d0 Chapter Five Programs DO k = 1 , n s a t s !RMS C a l c u l a t i o n p l a n e D i s t = norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) rms = rms + ( p l a n e D i s t ) * * 2 END DO rms = SQRT ( rms / n s a t s ) p l a n e s i g = LOG10 ( rms ) IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e h a s l o w e s t rms m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h i g h r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e and s i g n i f i c a n c e END IF END DO END DO ELSE DO i = 1 , 11 DO j = 1 , 11 b e t a s e t = p o l e b e t a + 2 . e0 * REAL( j -6) * ( 0 . 1 5 e0 ) * ( p i / 1 8 0 . e0 ) a l p h a s e t = p o l e a l p h a + 2 . e0 * REAL( i -6) * ( 0 . 1 5 e0 ) * ( p i / 1 8 0 . e0 ) * ( 1 . e0 / c o s ( b e t a s e t ) ) norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / ) CALL R o t a t e norm = MATMUL( y r o t , norm ) norm = MATMUL( x r o t , norm ) p l a n e s i g = 0 . d0 rms = 0 . d0 DO k = 1 , n s a t s !RMS C a l c u l a t i o n p l a n e D i s t = norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) rms = rms + ( p l a n e D i s t ) * * 2 END DO rms = SQRT ( rms / n s a t s ) p l a n e s i g = LOG10 ( rms ) IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e h a s l o w e s t rms m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h i g h r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e and s i g n i f i c a n c e

  -SUBROUTINE S i g n i f i c a n c e ! P r i n c i p a l s u b r o u t i n e which g e n e r a t e s d i s t r i b u t i o n s o f t h e USE G l o b a l ! p l a n e f i t t i n g s t a t i s t i c (RMS i n t h i s c a s e ) . The p l a n e f i t t i n g IMPLICIT NONE ! s u b r o u t i n e ' MaxSigFind ' i s c a l l e d from t h i s s u b r o u t i n e ! ! | | D e t e r m i n e b e s t f i t p l a n e and s i g n i f i c a n c e f o r s a t e l l i t e ! ! \ / p o s i t i o n s g e n e r a t e d from b e s t

  ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h s a t e l l i t e IF ( e t a ( i ) . l t . 0 . e0 ) THEN ! p o s ( 2 , i ) = -1. e0 * p o s( 2 , i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! p o s ( 3 , i ) = B e s t S a t D i s t ( i ) * c o s ( t h e t a ( i ) ) -m 3 1 d i s t ! D e t e r m i n e l e n g t h and s i g n o f z v e c t o r END DO CALL MaxSigFind A c t u a l s i g = m a x p l a n e s i g A c t u a l b f v = b e s t f i t v e c t a l p h a s e t = -( 9 0 . e0 -1 2 . 5 e0 ) * ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g b a c k o u t o f M31' s i n c l i n a t i o n ! gamma set = + ( 9 0 . e0 -3 9 . 8 e0 ) * ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from a b o v e t h e M31 p o l e ) ! ! Change CALL R o t a t e ! ! t o A c t u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! C o n v e r t v e c t o r s b a c k t o how t h e y would a p p e a r ! A c t u a l b f v = MATMUL( x r o t , A c t u a l b f v ) ! i n M31 r e f e r e n c e f r a u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! ! ! ! / \ D e t e r m i n e b e s t f i t p l a n e and s i g n i f i c a n c e f o r s a t e l l i t e ! ! | | p o s i t i o n s g e n e r a t e d from b e s t f i t d i s t a n c e s ! ! | | D e t e r m i n e b e s t f i t p l a n e and s i g n i f i c a n c e f o r " e r r s a m p " s a m p l e s o f Chapter Five Programs ! ! \ / p o s s i b l e s a t e l l i t e p o s i t i o n s g e n e r a t e d from s a m p l e d d i s t a n c e s and p l o t DO i t = 1 , e r r s a m p CALL random number ( randnum ) ! Read i n e r r s a m p s M31 randnum = randnum * 2 9 9 9 9 9 9 . e0 + 1 . e0 ! p o s s i b l e d i s t a n c e s m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) ) ! t o g e n e r a t e e r r s a m p s ! p o s i b l e x , y , z c o o r d s DO i = 1 , 27 ! Read i n e r r s a m p s CALL random number ( randnum ) ! p o s s i b l e d i s t a n c e s randnum = randnum * 4 9 9 9 9 9 . e0 + 1 . e0 ! f o r e a c h o f t h e S a t D i s t D r a w n ( i ) = S a t D i s t ( NINT ( randnum ) , i ) ! s a t e l l i t e s t o END DO ! g e n e r a t e e r r s a m p s ! p o s i b l e x , y , z c o o r d s DO i = 1 , 27 p o s ( 1 , i ) = ABS( S a t D i s t D r a w n ( i ) * c o s ( t h e t a ( i ) ) * t a n ( x i ( i ) ) ) ! D e t e r m i n e l e n g t h o f x v e c t o r f o r e a c h s a t e l l i t e IF ( x i ( i ) . l t . 0 . e0 ) THEN ! p o s ( 1 , i ) = -1. e0 * p o s ( 1 , i ) ! D e t e r m i n e i f x i s p o s i t i v e o r n e g a t i v e END IF ! p o s ( 2 , i ) = ABS( S a t D i s t D r a w n ( i ) * s i n ( e t a ( i ) ) ) ! D e t e r m i n e l e n g t h o f y v e c t o r f o r e a c h s a t e l l i t e IF ( e t a ( i ) . l t . 0 . e0 ) THEN ! p o s ( 2 , i ) = -1. e0 * p o s ( 2 , i ) ! D e t e r m i n e i f y i s p o s i t i v e o r n e g a t i v e END IF ! p o s ( 3 , i ) = S a t D i s t D r a w n ( i ) * c o s ( t h e t a ( i ) ) -m 3 1 d i s t ! D e t e r m i n e l e n g t h and s i g n o f z v e c t o r END DO CALL MaxSigFind a l p h a s e t = -( 9 0 . e0 -1 2 . 5 e0 ) * ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g b a c k o u t o f M31' s i n c l i n a t i o n ! gamma set = + ( 9 0 . e0 -3 9 . 8 e0 ) * ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from a b o v e t h e M31 p o l e ) ! ! Change CALL R o t a t e ! ! t o b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! C o n v e r t v e c t o r s b a c k t o how t h e y would a p p e a r ! b e s t f i t v e c t = MATMUL( x r o t , b e s t f i t v e c t ) ! i n M31 r e f e r e n c e f r a m e ! M31 ! gamma set = 9 0 . e0 * ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e ! ! CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! s y s t e m ! ! b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! ! CALL T h e t a P h i ( b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) ) e r r s i g ( i t ) = m a x p l a n e s i g WRITE ( 1 4 , ' ( 7 F16 . 5 ) ' ) REAL( i t ) , e r r s i g ( i t ) , t h e t a c o o r d , p h i c o o r d , b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) END DO s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / e r r s a m p P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . p s / CPS ' CALL H i s t o P l o t ( e r r s a m p , 1 0 1 , e r r s i g , 'LOG10 ( Minimum RMS) ' , ' P r o b a b i l i t y ' , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , . t r u e . ) WRITE ( command , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / e r r s a m p P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . p s ' & / / TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / e r r s a m p P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . j p g ' c a l l s y s t e m ( command ) m i n s i g n i f = 1 0 0 0 . e0 DO i t = 1 , n i t CALL R a n d o m P o i n ts CALL MaxSigFind IF ( m a x p l a n e s i g . l t . m i n s i g n i f ) THEN m i n s i g n i f = m a x p l a n e s i g END IF a l p h a s e t = -( 9 0 . e0 -1 2 . 5 e0 ) * ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g b a c k o u t o f M31' s i n c l i n a t i o n ! gamma set = + ( 9 0 . e0 -3 9 . 8 e0 ) * ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from a b o v e t h e M31 p o l e ) ! ! Change CALL R o t a t e ! ! t o b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! C o n v e r t v e c t o r s b a c k t o how t h e y would a p p e a r ! b e s t f i t v e c t = MATMUL( x r o t , b e s t f i t v e c t ) ! i n M31 r e f e r e n c e f r a m e ! M31 ! gamma set = 9 0 . e0 * ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e ! ! CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! s y s t e m ! ! b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! ! CALL T h e t a P h i ( b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) ) s i g ( i t ) = m a x p l a n e s i g WRITE ( 1 3 , ' ( 7 F16 . 5 ) ' ) REAL( i t ) , s i g ( i t ) , t h e t a c o o r d , p h i c o o r d , b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) END DO s t r i n g 2 = TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / s i g P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . p s / CPS ' CALL H i s t o P l o t ( n i t , 1 0 1 , s i g , 'LOG10 ( Minimum RMS) ' , ' P r o b a b i l i t y ' , TRIM ( ADJUSTL ( s t r i n g 2 ) ) , . t r u e . ) WRITE ( command , * ) ' c o n v e r tr o t a t e 90 ' / / TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / s i g P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . p s ' & / / TRIM ( ADJUSTL ( f o l d e r ) ) / / ' / s i g P P D ' / / TRIM ( ADJUSTL ( s u b s i z e ) ) / / ' s a t s . j p g ' c a l l s y s t e m ( command ) ! ! / \ D e t e r m i n e b e s t f i t p l a n e and s i g n i f i c a n c e f o r " n i t " ! ! | | random r e a l i z a t i o n s o f s a t e l l i t e p o s i t i o n s and p l o t END SUBROUTINE S i g n i f i c a n c e !-

  -SUBROUTINE H i s t o P l o t ( n v a l , d a t a h i s t b i n s , data , x l a b e l , y l a b e l , d e v i c e , n o r m a l i z e ) IMPLICIT NONE ! ! * * * * * * * C r e a t e d 24 Feb 2 0 1 2 * * * * * * * * ! ! INTEGER n v a l = number o f d a t a p o i n t s i n h i s t o g r a m Chapter Five Programs ! INTEGER d a t a h i s t b i n s = number o f b i n s i n h i s t o g r a m !REAL d a t a ( n v a l ) = The a r r a y c o n t a i n i n g t h e d a t a !CHARACTER x l a b e l = L a b e l o f x-a x i s o f h i s t o g r a m !CHARACTER y l a b e l = L a b e l o f y-a x i s o f h i s t o g r a m !CHARACTER d e v i c e = The p l o t t i n g d e v i c e ( ' ? ' i f u n s u r e ) ! LOGICAL n o r m a l i z e = . t r u e . i f h i s t o g r a m i s t o be ! n o r m a l i z e d , e l s e s e t t o . f a l s e . ! ! Uses PGPLOT ! INTEGER : : d a t a h i s t b i n s , n v a l , i t n u m REAL : : bw , d a t a ( n v a l ) , d a t a h i s t ( d a t a h i s t b i n s , 2 ) , d a t a m i n , d a t a m a x CHARACTER(LEN= * ) : : x l a b e l , y l a b e l , d e v i c e LOGICAL : : n o r m a l i z e d a t a h i s t = 0 . e0 d a t a m i n = MINVAL( d a t a ) ; d a t a m a x = MAXVAL( d a t a ) bw = ( d a t a m a xd a t a m

  l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) o m i t t e ds e e MF TRGB . f 9 5 i n p r e c e d i n g a p p e n d i x ! r e a l f u n c t i o n f i m a g ( x0 , xs , xe , y0 , ys , ye ) o m i t t e ds e e MF TRGB . f 9 5 i n p r e c e d i n g a p p e n d i x !-

  -SUBROUTINE S a m p l e d D i s t ! Read i n s a m p l e s from t h e d i s t a n c e d i s t r i b u t i o n s o f USE G l o b a l ! M31 and i t s s a t e l l i t e s IMPLICIT NONE DOUBLE PRECISION : : sla DSEP i = 0 DO WHILE ( . TRUE .

  F i l e s 12 t h r o u g h 36 r e a d i n a s shown f o r ! f i l e 11 a b o v e and 37 below !-

  P o s ( 4 , : ) = ( / 4 .

  / ) S a t P o s ( 5 , : ) = ( / 1 .

  r t a n g l e s from e t a ( i ) = e t a ( i ) * ( p i / 1 8 0 . e0 ) ! d e g r e e s t o r a d i a n s END DO DO i = 1 , n s a t s ! x i d b l e = x i ( i ) ; e t a d b l e = e t a ( i ) ! CALL sla DTP2S ( x i d b l e , e t a d b l e , 0 . d0 , 0 . d0 , RA, DEC) ! C o n v e r t t a n g e n t p l a n e IF ( x i d b l e . l t . 0 . d0 ) t h e n ! p r o j e c t i o n a n g l e s i n t o RA = RA -( 2 . e0 * p i ) ! t h e i r t r u e a n g l e s u s i n g END IF ! sla DTP2S x i ( i ) = RA ! e t a ( i ) = DEC ! END DO DO i = 1 , n s a t s ! F i n d t h e t r u e a n g l e x i d b l e = x i ( i ) ! t h e t at h e a n g l e on e t a d b l e = e t a ( i ) ! t h e s k y b e t w e e n M31 t h e t a ( i ) = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) ! and t h e o b j e c t END DO ! ( u s e s sla DSEP ) END SUBROUTINE S a m p l e d D i s t !-

  -SUBROUTINE B o r d e r G e t ! Read i n t h e 134 p o i n t s i n x i and e t a d e f i n i n g t h e PAndAS USE G l o b a l ! S u r v e y B o r d e r . T h e s e p o i n t s a r e u s e d t o r e j e c t s a t e l l i t e s IMPLICIT NONE ! t h a t f a l l o u t o f b o u n d s ( s e e R a n d o m P o in t s S u b r o u t i n e ) OPEN ( u n i t = 4 0 , f i l e = ' . . / S u r v e y A r e a / B o r d e r C o o r d s X i E t a . d a t ' , s t a t u s = ' o l d ' ) DO i = 1 , 134 READ ( 4 0 , * , IOSTAT = i o s ) SAP xi ( i ) , S A P e t a ( i ) END DO END SUBROUTINE B o r d e r G e t !-

-

  Program: Alternative Plane Fitting Code Segments Creation Date: First versions Feb 2012 Relevant Section: Ch. 5; Paper III §3.1, §3.2 Notes: Presented here are four separate code segments, each one performing the calculation of the goodness of fit of a tested plane. The first uses the root-mean-square (RMS) of the perpendicular distances of the satellites from the plane. This is the one used in the 'MaxSigFind' subroutine presented in PlaneS igRMS . f 95 (p. 244). The other code segments are alternatives to this RMS code segment. The second code segment calculates the goodness of fit of a given plane by summing the absolute values of the perpendicular distances of each satellite from the plane. The third uses a maximum likelihood approach and replaces the zero-thickness plane with a Gaussian distribution of some (to be determined) thickness. The fourth and final code segment serves a different purpose to the previous three in that it finds the plane of maximum asymmetry. It seeks the plane which can divide the sample most unequally. Note that some other minor modifications to the code of PlaneS igRMS . f 95 would be required for correct operation. These segments are intended to illustrate precisely how the various forms of plane fitting utilized in Paper III are implemented. !-

  p l a n e s i g = 0 . d0 rms = 0 . d0 DO k = 1 , n s a t s !RMS C a l c u l a t i o n p l a n e D i s t = norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) rms = rms + ( p l a n e D i s t ) * * 2 END DO rms = SQRT ( rms / n s a t s ) p l a n e s i g = LOG10 ( rms ) IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e h a s l o w e s t rms m a x p l a n e s i g = p l a n e s i g ! S t o r e a p p r o x , low r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e and s i g n i f i c a n c e p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r p o l e b e t a = b e t a s e t ! h i g h r e s o l u t i o n s e a r c h END IF !--------F o r F i t t i n g u s i n g Sum o f A b s o l u t e V a l u e s o f S a t e l l i t e D i s t a n c e s from P l a n e -------p l a n e s i g = 0 . d0 a b v a l = 0 . d0 DO k = 1 , n s a t s ! A b s o l u t e V a l u e o f d i s t a n c e sum C a l c u l a t i o n p l a n e D i s t = a b s ( norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) ) a b v a l = a b v a l + p l a n e D i s t END DO p l a n e s i g = LOG10 ( a b v a l ) IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e h a s l o w e s t AbVal m a x p l a n e s i g = p l a n e s i g ! S t o r e a p p r o x , low r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e and s i g n i f i c a n c e p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r p o l e b e t a = b e t a s e t ! h i g h r e s o l u t i o n s e a r c h END IF !--------------------F o r Maximum L i k e l i h o o d F i t t i n g o f ' G a u s s i a n P l a n e '-------------------! R e p l a c e m a x p l a n e s i g = 9 9 9 9 9 9 9 . e0 w i t h m a x p l a n e s i g = -9999999. e0 a s i n i t i a l v a l u e DO s = 1 , 30 s i g m a = REAL( s ) * 5 . d0 p l a n e s i g = 0 . d0DO k = 1 ,n s a t s p l a n e D i s t = a b s ( norm ( 1 ) * p o s ( 1 , k ) + norm ( 2 ) * p o s ( 2 , k ) + norm ( 3 ) * p o s ( 3 , k ) ) l i k e = exp ( -( p l a n e D i s t * * 2 . d0 ) / ( 2 . d0 * s i g m a * * 2 . d0 ) ) / ( s i g m a * SQRT ( 2 . d0 * p i ) ) IF ( LOG10 ( l i k e ) . l e . -9999. d0 ) THEN p l a n e s i g = p l a n e s i g -9 9 9 9 . d0 ELSE p l a n e s i g = p l a n e s i g + LOG10 ( l i k e ) END IF END DO IF ( p l a n e s i g . g t . m a x p l a n e s i g ) THEN ! S i g n i f i c a n c e C a l c u l a t i o n m a x p l a n e s i g = p l a n e s i g ! S t o r e a p p r o x , low r e s o l u t i o n v a l u e s b e s t f i t v e c t = norm ! o f b e s t f i t p o l e , s i g n i f i c a n c e b e s t f i t s i g m a = s i g m a ! and G a u s s i a n one s i g m a p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r p o l e b e t a = b e t a s e t ! h i g h r e s o l u t i o n s e a r c h END IF END DO !-

-

  Program: Subroutines for Processing Satellite Subsets Creation Date: 18 July 2012 (first version 26 Apr 2012) Many modifications. Relevant Section: Ch. 5; Paper III §3.3 Notes: The three subroutines presented here essentially modify PlaneS igRMS . f 95 (p. 244)so that it can process every possible combination of a given number of satellites rather than just the full sample. The 'Combinations' subroutine steps through every possible combination of the specified size (sizes of 3 through 7 satellites are shown) and for each one calls the 'Significance' subroutine which samples positions for each satellite in the combination and then calls 'MaxSigFind' to perform the plane fitting. Note that each possible combination of satellites is sampled 'err samps' (currently set to 100 as used in §3.3 of Paper III) times so as to account for the uncertainties in the satellite distances. Also, this code compresses storage file size by indexing each possible pole position and then recording the number of instances of that pole as well as the number of times each satellite contributes to that pole (information which is used by pole vicinity counts satid w. f 95 -p. 274). ! Code S e g m e n t s f o r t e s t i n g * a l l * c o m b i n a t i o n s o f a p a r t i c u l a r number ( n s a t s u b ) ! o f s a t e l l i t e s p o s s i b l e from t h e t o t a l s a m p l e ( t o t a l s a m p l e i s 25 s a t e l l i t e s h e r e ! a s NGC147 / NGC185 / AndXXX a r e t r e a t e d a s a s i n g l e p o i n t ) . ! See ' PlaneSigRMS . f95 ' f o r a l l s u b r o u t i n e s c a l l e d t h a t a r e n o t i n c u d e d !-

  -SUBROUTINE C o m b i n a t i o n s ! F i n d s t h e b e s t f i t p l a n e t o e v e r y p o s s i b l e c o m b i n a t i o n o f ' n s a t s u b ' USE G l o b a l ! s a t e l l i t e s . The p o l e o f e a c h c o m b i n a t i o n ' s b e s t f i t p l a n e i s c o n v e r t e d IMPLICIT NONE ! t o M31-c e n t r i c l a t . and l o n g . and s t o r e d f o r p l o t t i n g a s a p o l e p l o t ! map on an a i t o f f -hammer p r o j e c t i o n . s u b s e t c o u n t s = 0 RMSmin = 9 9 9 9 9 9 9 . e0 IF ( n s a t s u b . eq . 3 ) THEN DO s 1 = 1 , n s a t s -2 DO s 2 = s 1 +1 , n s a t s -1 DO s 3 = s 2 +1 , n s a t s s a t h o l d e r ( 1 ) = s 1 s a t h o l d e r ( 2 ) = s 2 s a t h o l d e r ( 3 ) = s 3 s u b s e t c o u n t s = s u b s e t c o u n t s + 1 CALL S i g n i f i c a n c e w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3

  -ELSE IF ( n s a t s u b . eq . 4 ) THEN s1 , s2 , s3 , s4 , s5 , s

  -ELSE IF ( n s a t s u b . eq . 7 ) THEN DO s 1 = 1 , n s a t s -6 DO s 2 = s 1 +1 , n s a t s -5 DO s 3 = s 2 +1 , n s a t s -4 DO s 4 = s 3 +1 , n s a t s -3 DO s 5 = s 4 +1 , n s a t s -2 DO s 6 = s 5 +1 , n s a t s -1 DO s 7 = s 6 +1 , n s a t s s a t h o l d e r ( 1 ) = s 1 s a t h o l d e r ( 2 ) = s 2 s a t h o l d e r ( 3 ) = s 3 s a t h o l d e r ( 4 ) = s 4 s a t h o l d e r ( 5 ) = s 5 s a t h o l d e r ( 6 ) = s 6 s a t h o l d e r ( 7 ) = s 7 s u b s e t c o u n t s = s u b s e t c o u n t s + 1 CALL S i g n i f i c a n c e w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3

  -END IF w r i t e ( 1 1 , * ) " R e s u l t s : " w r i t e ( 1 1 , * ) " T o t a l number o f c o m b i n a t i o n s o f " , n s a t s u b , " s a t e l l i t e s : " , s u b s e t c o u n t s w r i t e ( 1 1 , * ) " B e s t s a t e l l i t e c o m b i n a t i o n : "DO i = 1 ,n s a t s u b w r i t e ( 1 1 , * ) b e s t s a t c o m b o ( i ) END DO w r i t e ( 1 1 , * ) " Normal v e c t o r o f b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : " w r i t e ( 1 1 , * ) b e s t s a t b f v ( 1 ) , b e s t s a t b f v ( 2 ) , b e s t s a t b f v ( 3 ) CALL T h e t a P h i ( b e s t s a t b f v ( 1 ) , b e s t s a t b f v ( 2 ) , b e s t s a t b f v ( 3 ) ) w r i t e ( 1 1 , * ) " T h e t a and p h i o f n o r m a l v e c t o r o f b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : " w r i t e ( 1 1 , * ) " T h e t a =" , t h e t a c o o r d , " ; P h i =" , p h i c o o r d w r i t e ( 1 1 , * ) "LOG10 (RMS) o f b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : " , RMSmin m o d e c o u n t s = 0 . e0 ! | | E v e r y p o l e p o s i t i o n p o s s i b l e i s g i v e n an i n d e x and t h e number o f t i m e s DO i = 1 , 31 ! | | a p o l e i s r e c o r d e d a t t h a t p o s i t i o n i s r e c o r d e d . T h i s g r e a t l y r e d u c e s DO j = 1 , 120 ! | | f i l e s t o r a g e s i z e . The number o f t i m e s a p a r t i c u l a r s a t e l l i t e c o n t r i b u t e s DO k = 1 , 15 ! \ / t o a p o l e a t e a c h p o s s i b l e p o s i t i o n i s a l s o r e c o r d e d . DO l = 1 , 30 IF ( p o l e s p e r p o s ( i , j , k , l , 6 ) . ne . 0 . e0 ) THEN WRITE ( 1 7 , ' ( 3 1 F11 . 5 ) ' ) p o l e s p e r p o s ( i , j , k , l , 1 ) , p o l e s p e r p o s ( i , j , k , l , 2 ) , p o l e s p e r p o s ( i , j , k , l , 3 ) , & p o l e s p e r p o s ( i , j , k , l , 4 ) , p o l e s p e r p o s ( i , j , k , l , 5 ) , p o l e s p e r p o s ( i , j , k , l , 6 ) , & p o l e s p e r p o s ( i , j , k , l , 7 ) , p o l e s p e r p o s ( i , j , k , l , 8 ) , p o l e s p e r p o s ( i , j , k , l , 9 ) , & p o l e s p e r p o s ( i , j , k , l , 1 0 ) , p o l e s p e r p o s ( i , j , k , l , 1 1 ) , p o l e s p e r p o s ( i , j , k , l , 1 2 ) , & p o l e s p e r p o s ( i , j , k , l , 1 3 ) , p o l e s p e r p o s ( i , j , k , l , 1 4 ) , p o l e s p e r p o s ( i , j , k , l , 1 5 ) , & p o l e s p e r p o s ( i , j , k , l , 1 6 ) , p o l e s p e r p o s ( i , j , k , l , 1 7 ) , p o l e s p e r p o s ( i , j , k , l , 1 8 ) , & p o l e s p e r p o s ( i , j , k , l , 1 9 ) , p o l e s p e r p o s ( i , j , k , l , 2 0 ) , p o l e s p e r p o s ( i , j , k , l , 2 1 ) , & p o l e s p e r p o s ( i , j , k , l , 2 2 ) , p o l e s p e r p o s ( i , j , k , l , 2 3 ) , p o l e s p e r p o s ( i , j , k , l , 2 4 ) , & p o l e s p e r p o s ( i , j , k , l , 2 5 ) , p o l e s p e r p o s ( i , j , k , l , 2 6 ) , p o l e s p e r p o s ( i , j , k , l , 2 7 ) , & p o l e s p e r p o s ( i , j , k , l , 2 8 ) , p o l e s p e r p o s ( i , j , k , l , 2 9 ) , p o l e s p e r p o s ( i , j , k , l , 3 0 ) , & p o l e s p e r p o s ( i , j , k , l , 3 1 ) END IF IF ( p o l e s p e r p o s ( i , j , k , l , 6 ) . g t . m o d e c o u n t s ) THEN m o d e c o u n t s = p o l e s p e r p o s ( i , j , k , l , 6 ) pos mpc ( 1 ) = i ; pos mpc ( 2 ) = j ; pos mpc ( 3 ) = k ; pos mpc ( 4 ) = l END IF END DO END DO END DO END DO x mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 1 ) ! Most f r e q . n o r m a l v e c t o r x y mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 2 ) ! Most f r e q . n o r m a l v e c t o r y z mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 3 ) ! Most f r e q . n o r m a l v e c t o r z t h e t a m o d e = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 4 ) ! Most f r e q . p o l e t h e t a p h i m o d e = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 5 ) ! Most f r e q . p o l e p h i w r i t e ( 1 1 , * ) " Normal v e c t o r o f most f r e q u e n t l y e n c o u n t e r e d p l a n e : " w r i t e ( 1 1 , * ) x mode , y mode , z mode w r i t e ( 1 1 , * ) " T h e t a and p h i o f most f r e q u e n t l y e n c o u n t e r e d p o l e : " w r i t e ( 1 1 , * ) " T h e t a =" , t h e t a m o d e , " ; P h i =" , p h i m o d e w r i t e ( 1 1 , * ) " Number o f i n s t a n c e s o f t h i s p o l e : " , m o d e c o u n t s END SUBROUTINE C o m b i n a t i o n s !-
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  5 ) c u m p o l e c o u n t = c u m p o l e c o u n t + c o u n t s IF ( c o u n t s . g t . m a x c o u n t s ) THEN m a x c o u n t s = c o u n t s p o l e t h e t a m o d e = p o l e t h e t a p o l e p h i m o d e = p o l e p h i END IF p o l e t h e t a = p o l e t h e t a * ( p i / 1 8 0 . d0 ) ! C o n v e r t t o p o l e p h i = p o l e p h i * ( p i / 1 8 0 . d0 ) ! r a d i a n s ! | | Measure a n g u l a r d i s t a n c e b e t w e e n c u r r e n t ! \ / p o l e and b e s tf i t p o l e ( u s e s SLALIB ) a n g l e = sla DSEP ( b e s t p h i , b e s t t h e t a , p o l e p h i , p o l e t h e t a ) a n g l e = a n g l e * ( 1 8 0 . d0 / p i ) ! C o n v e r t b a c k t o d e g r e e s ! | | F i n d a n g u l a r d i s t a n c e b i n t o p u t ! \ / p o l e i n t o ( i f i t i s w i t h i n 15 d e g r e e s ) IF ( a n g l e . l e . 1 . e0 ) THEN r a d b i n s ( 1 , 2 ) = r a d b i n s ( 1 , 2 )+ c o u n t s DO k = 1 , 25 ! Count number o f s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s END DO! p o l e from e a c h s a t e l l i t e ELSE IF ( a n g l e . g t . 1 . e0 . and . a n g l e . l e . 2 . e0) THEN r a d b i n s ( 2 , 2 ) = r a d b i n s ( 2 , 2 ) + c o u n t s DO k = 1 , 25 ! Count number o f s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s END DO ! p o le from e a c h s a t e l l i t e ELSE IF ( a n g l e . g t . 2 . e0 . and . a n g l e . l e . 3 . e0 ) THEN r a d b i n s ( 3 , 2 ) = r a d b i n s ( 3 , 2 ) + c o u n t s DO k = 1 , 25 ! Count number o f s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s END DO ! p o l e from e a c h s a t e l l i t e ELSE IF ( a n g l e . g t . 3 . e0 . and . a n g l e . l e . 4 . e0 ) THEN r a d b i n s ( 4 , 2 ) = r a d b i n s ( 4 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 4 . e0 . and . a n g l e . l e . 5 . e0 ) THEN r a d b i n s ( 5 , 2 ) = r a d b i n s ( 5 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 5 . e0 . and . a n g l e . l e . 6 . e0 ) THEN r a d b i n s ( 6 , 2 ) = r a d b i n s ( 6 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 6 . e0 . and . a n g l e . l e . 7 . e0 ) THEN r a d b i n s ( 7 , 2 ) = r a d b i n s ( 7 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 7 . e0 . and . a n g l e . l e . 8 . e0 ) THEN r a d b i n s ( 8 , 2 ) = r a d b i n s ( 8 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 8 . e0 . and . a n g l e . l e . 9 . e0 ) THEN r a d b i n s ( 9 , 2 ) = r a d b i n s ( 9 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 9 . e0 . and . a n g l e . l e . 1 0 . e0 ) THEN r a d b i n s ( 1 0 , 2 ) = r a d b i n s ( 1 0 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 1 0 . e0 . and . a n g l e . l e . 1 1 . e0 ) THEN r a d b i n s ( 1 1 , 2 ) = r a d b i n s ( 1 1 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 1 1 . e0 . and . a n g l e . l e . 1 2 . e0 ) THEN r a d b i n s ( 1 2 , 2 ) = r a d b i n s ( 1 2 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 1 2 . e0 . and . a n g l e . l e . 1 3 . e0 ) THEN r a d b i n s ( 1 3 , 2 ) = r a d b i n s ( 1 3 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 1 3 . e0 . and . a n g l e . l e . 1 4 . e0 ) THEN r a d b i n s ( 1 4 , 2 ) = r a d b i n s ( 1 4 , 2 ) + c o u n t s ELSE IF ( a n g l e . g t . 1 4 . e0 . and . a n g l e . l e . 1 5 . e0 ) THEN r a d b i n s ( 1 5 , 2 ) = r a d b i n s ( 1 5 , 2 )+ c o u n t s END IF ! / \ F i n d a n g u l a r d i s t a n c e b i n t o p u t ! | | p o l e i n t o ( i f i t i s w i t h i n 15 d e g r e e s ) ! | | Chack f o r ! \ / end o f f i l e IF ( i o s == -1) THEN i = i -1 e x i t ELSE IF ( i o s . g t . 0 ) THEN WRITE ( * , * ) i i =i -1 c y c l e END IF END DO WRITE ( * , * ) " Most f r e q u e n t p o l e a t t h e t a =" , p o l e t h e t a m o d e , " p h i =" , p o l e p h i m o d e , " w i t h " , m a x c o u n t s , " c o u n t s . " ncombos = c u m p o l e c o u n t / e r r s a m p s r a d b i n s ( : , 2 ) = r a d b i n s ( : , 2 ) / e r r s a m p s ! D i v i d e by number o f s a m p l e s . s a t c o u n t s ( : , 2 ) = s a t c o u n t s ( : , 2 ) / e r r s a m p s DO i = 1 , 25 s a t c o u n t s ( i , 1 ) = REAL( i ) END DO IF ( c u m u l a t i v e ) THEN DO i = 2 , 15 ! r a d b i n s ( i , 2 ) = r a d b i n s ( i , 2 ) + r a d b i n s ( i -1 , 2 ) ! C o n v e r t t o c u m u l a t i v e c o u n t s END DO ! END IF DO i = 1 , 15 ! P r i n t number WRITE ( * , ' ( 3 F16 . 5 ) ' ) r a d b i n s ( i , 1 ) , r a d b i n s ( i , 2 ) , & ! o f p o l e s ( r a d b i n s ( i , 2 ) / ncombos ) * 1 0 0 . e0 ! b e t w e e n x-1 and END DO ! x ( < 1 5 ) d e g r e e s IF ( c u m u l a t i v e ) THEN WRITE ( * , * ) " T o t a l p o l e s w i t h i n 15 d e g r e e s o f b e s tf i t p o l e : " , r a d b i n s ( 1 5 , 2 ) , & " ( " , ( r a d b i n s ( 1 5 , 2 ) / ncombos ) * 1 0 0 . e0 , "% ) " ! ELSE WRITE ( * , * ) " T o t a l p o l e s w i t h i n 15 d e g r e e s o f b e s tf i t p o l e : " , SUM( r a d b i n s ( : , 2 ) ) , & " ( " , (SUM( r a d b i n s ( : , 2 ) ) / ncombos ) * 1 0 0 . e0 , "% ) " ! END IF WRITE ( * , * ) " " ! WRITE ( * , * ) " C o n t r i b u t i o n s from e a c h s a t e l l i t e t o a p o l e w i t h i n 3 d e g r e e s o f most f r e q u e n t p o l e : " ! P r i n t number o f c o n t r i b u t i o n s DO i = 1 , 25 ! from e a c h s a t e l l i t e t o a WRITE ( * , ' ( 2 F16 . 5 ) ' ) s a t c o u n t s ( i , 1 ) , s a t c o u n t s ( i , 2 ) ! p o l e w i t h i n 3 d e g r e e s o f t h e END DO ! b e s t f i t p o l e !--------------------------------------------! | | Make h i s t o g r a m o f a v e r a g e p o l e d e n s i t y i n 15 n e s t e d ! \ / one d e g r e e wide a n n u l i a r o u n d t h e most f r e q u e n t p o l e CALL p g b e g i n ( 0 , ' p o l e s a t p r o f e r r w . p s / CPS ' , 1 , 1 ) !CALL p g b e g i n ( 0 , ' p o l e s a t p r o f e r r w b l o b . p s / CPS ' , 1 , 1 ) CALL pgenv ( 0 . , 1 5 . , 0 . , 1 . 1 * MAXVAL( r a d b i n s ( : , 2 ) ) / ncombos , 0 , 0 ) CALL p g b i n ( 1 5 , r a d b i n s ( : , 1 ) -0 . 5 , r a d b i n s ( : , 2 ) / ncombos , . t r u e . ) IF ( c u m u l a t i v e ) THEN CALL p g l a b ( ' D e g r e e s ' , ' C u m u l a t i v e P r o b a b i l i t y ' , ' ' ) ELSE CALL p g l a b ( ' D e g r e e s ' , ' P r o b a b i l i t y ' , ' ' ) END IF CALL pgend ! / \ Make h i s t o g r a m o f a v e r a g e p o l e d e n s i t y i n 15 n e s t e d ! | | one d e g r e e wide a n n u l i a r o u n d t h e most f r e q u e n t p o l e !--------------------------------------------CLOSE( 1 1 ) ! | | Make h i s t o g r a m o f c o n t r i b u t i o n s o f e a c h s a t e l l i t e t o a p o l e Program: aitoff hammer.f95 Creation Date: Cir. May 2012 Many versions Relevant Section: Ch. 5 (Paper III aitoff-hammer plots) Notes: This program illustrates the way in which the aitoff-hammer plots were produced. I wrote several versions but that presented here is the one used for the standard plots which show the plane member satellites, the great circle on the sky representing the plane, and the pole and anti-pole of the plane (see Fig. 15 of Paper III for example). The aitoff-hammer grid is produced by first making a rectangular grid of a large number of points along the desired lines of latitude and longitude and then transforming the x and y of the points via a Hammer projection. The points are then linked up to produce the final grid. All positions in Paper III (satellites and plane poles) are actually calculated first in the Cartesian coordinate system of Fig. 4.1, rotated into the M31-centric reference frame, converted to Spherical coordinates and then finally transformed into their equivalent Hammer projection locations for plotting. MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s IMPLICIT NONE INTEGER : : i , j , s , idum = -9999 , n i t , s e a m l o c , c o l o r ( 2 9 ) , n s a t s PARAMETER( n i t = 1 0 0 0 0 0 0 ) PARAMETER( n s a t s = 2 7 ) REAL : : p i PARAMETER( p i = a c o s ( -1 . e0 ) ) REAL : : s a t x y z ( 2 9 , 3 ) REAL : : t h e t a c o o r d , p h i c o o r d REAL : : t h e t a ( 2 9 ) , p h i ( 2 9 ) , t h e t a t ( 2 8 ) , p h i t ( 2 8 ) REAL : : t h e t a a h , p h i a h REAL : : a l p h a s e t , b e t a s e t , gamma set REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 ) REAL : : p o l e ( 2 ) , p o l e 2 ( 2 ) , gc ( 3 6 1 , 2 ) , g c t ( 3 6 1 , 2 ) REAL : : c a r t h o l d ( 3 6 1 , 3 ) , p o l e c a r t ( 3 ) , g c c a r t ( 3 6 1 , 3 ) REAL : : s e a m v a l REAL : : B e s t S a t D i s t ( 2 7 ) , S a t P o s ( 2 7 , 2 ) , x i ( 2 7 ) , e t a ( 2 7 ) , m 3 1 d i s t REAL * 8 : : RA, DEC, x i d b l e , e t a d b l e END MODULE G l o b a l !--------------------------------------------------------------------------PROGRAM a i t o f f h a m m e r p r o j ! M a s t e r p r o g r a m USE G l o b a l IMPLICIT NONE CALL s a t x y z d a t a CALL a i t o f f h a m m e r END PROGRAM a i t o f f h a m m e r p r o j !--------------------------------------------------------------------------SUBROUTINE a i t o f f h a m m e r ! P r o d u c e t h e p l o t USE G l o b a l IMPLICIT NONE INTEGER : : i t i , i t j , i t k REAL : : l a t
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  Program: RR Histograms.f95 Creation Date: 7 Oct 2012 Relevant Section: Ch. 5; Paper III Figs. 5 (RH column), 6, 9 (RH column), 16 (b) Notes: This program illustrates the way in which the histograms of the goodness of fit statistic for the random realizations were generated. Throughout the entire thesis I have generated many histograms and toward the end I decided to make a stand alone subroutine 'HistoPlot' (see PlaneS igRMS . f 95 -p. 244) that automated the process. I later modified that subroutine to add the credibility interval color-coding used for the papers. It is this subroutine which is shown here: 'HistoPlotAdv.' The 'DataCall' subroutine is designed to handle the many different outputs from the various plane fitting programs. It is set up to plot the histogram of the average RMS (or other plane fitting statistic) values from the random satellite realizations and also to take the average of the histogram produced from the real data. MODULE G l o b a l ! D e f i n e s a l l v a r i a b l e s u s e d by BayesianTRGB IMPLICIT NONE INTEGER : : i , idum = -9999 , i o s , n d a t a , n d a t a 2 , c o u n t s PARAMETER ( n d a t a = 1 0 0 0 0 )PARAMETER ( n d a t a 2 = 2 0 0 0 0 0 ) REAL : : s i g n i f ( n d a t a ) , s i g n i f 2 , dummy , s c a l e f a c t o r , a v e r a g e s i g CHARACTER : : f o l d e r * 3 0 0 , s t r i n g * 3 0 0 , s t r i n g 2 * 3 0 0 , command * 300 LOGICAL : : B e s t 1 5 , RMS, AbVal , Asy , AsyFP , ML, Sigma PARAMETER ( B e s t 1 5 = . t r u e . ) PARAMETER (RMS = . f a l s e . ) PARAMETER ( AbVal = . f a l s e . ) PARAMETER ( Asy = . f a l s e . ) PARAMETER ( AsyFP = . f a l s e . ) PARAMETER (ML = . f a l s e . ) PARAMETER ( Sigma = . f a l s e . ) END MODULE G l o b a l !-

  -PROGRAM D a t a C a l l ! Reads i n d a t a t o be USE G l o b a l ! p l o t t e d and p a s s e s IMPLICIT NONE ! t o H i s t o P l o t A d v IF ( B e s t 1 5 ) THEN ! F o r P l a n e o f b e s t 15 s a t e l l i t e s OPEN( u n i t = 1 1 , f i l e = ' . / S a t C o m b o p l a n e s / P l a n e S t a t s 1 5 s a t s R a n d R e a l w e i g h t e d / R M S 1 5 s a t s . d a t ' , s t a t u s = ' o l d ' ) OPEN( u n i t = 1 2 , f i l e = ' . / S a t C o m b o p l a n e s / R M S P l a n e S t a t s B e s t 1 5 s a t s / r e a l s i g w t h e r r . d a t ' , s t a t u s = ' o l d ' ) END IF IF (RMS) THEN
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		Table 1	
		Tabulated Distance Posterior Distribution	
	Percentage	Distance	Distance
		(kpc, no density prior)	(kpc)
	1	684	687
	2	688	692
	3	691	695
	4	693	697
	5	695	699
	6	697	701
	7	698	702
	8	699	703
	9	700	704
	10	701	705
	:	:	:
	:	:	:
	100	820	820

Notes. Distance posterior probability distributions for Andromeda I given at 1% intervals for the case of no halo density prior (Column 2) and with the angle-specific prior outlined in Section 3.3 applied (Column 3).
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Table 2

 2 M31 Satellite Parameters: Distance and Associated Parameters of M31 and its Companions

	Source	Distance Modulus	E(B -V )	Distance (kpc)	M31 Distance (kpc)	Literature Distance Values (kpc)
	M31	24.46 +0.05 -0.05	0.062	779 +19 -18		

  ).

	And I And XX		And II And XXI	And III And XXII
	And V And XXIII		And IX And XXIV	And X And XXV
	And XI	And XXVI	And XII And XXVII	And XIII And XXX
	NGC147		NGC185	M33
	And XIV		And XV	And XVI
	And XVII		And XVIII	And XIX

Figure 11. Distance posterior distributions for dwarf spheroidal satellites And I-III, And V and And IX-XIX. The distributions are color-coded with red, green, and blue denoting 1σ (68.2%), 90%, and 99% credibility intervals, respectively. The credibility intervals are measured from either side of the highest peak. (A color version of this figure is available in the online journal.) The Astrophysical Journal, 758:11 (19pp), 2012 October 10 Conn et al. M31 Figure 12. Distance posterior distributions for dwarf spheroidal satellites And XX-XXVII and And XXX, dwarf elliptical satellites NGC 147 and NGC 185, and major galaxies M31 and M33. The distributions are color-coded with red, green, and blue denoting 1σ (68.2%), 90%, and 99% credibility intervals, respectively. (A color version of this figure is available in the online journal.) The Astrophysical Journal, 758:11 (19pp), 2012 October 10 Conn et al.

  " DO j = 1 , n d a t a 2

	4 m a x )
	TRGB found = 1
	END IF
	END IF
	END IF
	END DO
	IF ( TRGB found == 0 ) THEN
	PRINT * , "No TRGB c o u l d be l o c a t e d . "
	END IF
	PRINT * ,

IF ( mag ( j ) 

. ge . min mag ) THEN IF ( mag ( j ) . l e . max mag ) THEN IF ( p h i 4 ( j ) . g t . p h i 4 ( j -1) . and . p h i 4 ( j ) . g t . p h i 4 ( j +1) ) THEN PRINT * , " P o t e n t i a l TRGB a t " , mag ( j ) , & " S t r e n g t h =" , REAL( p h i 4 ( j ) / p h i

  -SUBROUTINE D i s t a n c e P e r s p e c t i v e ! T h i s s u b r o u t i n e i s f o r r e m o v i n g t h e e f f e c t s o f p e r s p e c t i v e on t h e 3D view .

	USE G l o b a l	! I t s c a l e s x and y p o s i t i o n s o f s a t e l l i t e s r e l a t i v e t o t h e c l o s e s t s a t e l l i t e
	IMPLICIT NONE	! ( And XVI ) t o p r e s e r v e t h e on s k y view o f t h e s a t e l l i t e s .
	DO i = 1 , n d a t a	
	x	

  = ( ( x i t e s t * c o s ( 5 1 . 9 d0 * p i / 1 8 0 . d0 ) + e t a t e s t * s i n ( 5 1 . 9 d0 * p i / 1 8 0 . d0 ) ) * * 2 / 6 . 2 5 d0 ) + & ! c h o i c e doesn ' t ( ( x i t e s t * s i n ( 5 1 . 9 d0 * p i / 1 8 0 . d0 ) -e t a t e s t * c o s ( 5 1 . 9 d0 * p i / 1 8 0 . d0 ) ) * * 2 / 1 .

	END IF		! x i
	RA = x i t e s t		!
	DEC = e t a t e s t		! Use sla DS2TP
			! t o c o n v e r t t r u e
	CALL sla DS2TP (RA, DEC, 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e , j ) ! e t a amd x i t o
			! t h e i r t a n g e n t
	x i t e s t = x i d b l e * ( 1 8 0 . e0 / p i )	! p l a n e p r o j e c t i o n s
	e t a t e s t = e t a d b l e * ( 1 8 0 . e0 / p i )	!
	IF ( i n p o l y ( x i t e s t , e t a t e s t , 1 3 4 , SAP xi , S A P e t a ) ) THEN	! Re-g e n e r a t e
			! t h e new
	ELSE		! r a n d o m i z e d
	g o t o 2		! s a t e l l i t e
	END IF		! p o s i t i o n i f
			! t h e c u r r e n t
	s p o t R d0 )	! f a l l w i t h i n
			! t h e PAndAS
	IF ( s p o t R . l e . 1 . e0 ) THEN	! f o o t p r i n t
	g o t o 2		! a s v i e w e d
	END IF		! from E a r t h
	END	
	1 , i ) * * 2 . e0 ) + ( p o s ( 2 , i ) * * 2 . e0 ) + ( p o s ( 3 , i ) * * 2 . e0 ) ) ! R o t a t e p o s i t i o n v e c t o r t o p o i n t
	p o s ( 1 , i ) = 0 . e0 ; p o s ( 2 , i ) = 0 . e0		! a l o n g z-a x i s
	CALL random number ( randnum )		!
	a l p h a s e t = randnum * 3 6 0 . e0 * ( p i / 1 8 0 . e0 )	! P i c k random l o n g i t u d e
	CALL random number ( randnum )	! P i c k random l a t i t u d e b e t w e e n 0 and 90 w e i g h t e d
	b e t a s e t = ASIN ( randnum )	! by a r e a o f a s p h e r e a s a f u n c t i o n o f l a t i t u d e
	CALL random number ( randnum )	!
	IF ( randnum . l t . 0 . 5 e0 ) THEN	! Re-a s s i g n l a t i t u d e a s
	b e t a s e t = b e t a s e t	!
	ELSE	! -1 * l a t i t u d e i n
	b e t a s e t = -b e t a s e t	!
	END IF	! 50% 0 f c a s e s
	CALL R o t a t e	
	p o s ( : , i ) = MATMUL( y r o t , p o s ( : , i ) )	! R o t a t e t o t h e c h o s e n
	p o s ( : , i ) = MATMUL( x r o t , p o s ( : , i ) )	! random a n g l e
	x i t e s t = ATAN( a b s ( p o s ( 1 , i ) ) / ( m 3 1 d i s t + p o s ( 3 , i ) ) )	! C o n v e r t
	IF ( p o s ( 1 , i ) . l t . 0 . e0 ) THEN		! new random
	x i t e s t = -x i t e s t		! p o s i t i o n
	END IF		! v e c t o r
	e t a t e s t = ATAN( a b s ( p o s ( 2 , i ) ) / SQRT ( p o s ( 1 , i ) * * 2 + ( m 3 1 d i s t + p o s ( 3 , i ) ) * * 2 ) ) ! i n t o
	IF ( p o s ( 2 , i ) . l t . 0 . e0 ) THEN		! non t . p .
	e t a t e s t = -e t a t e s t		! e t a and

  ) = d a t a h i s t ( i t n u m , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) ! END IF ! ELSE CALL p g s c i ( 1 ) CALL p g b i n ( 2 , d a t a h i s t ( i t n u m , 1 ) , d a t a h i s t ( i t n u m , 2 ) , . f a l s e . ) ! IF ( i t n u m . eq . 1 ) THEN ! x p t s = d a t a h i s t ( i t n u m , 1 ) ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m , 2 ) ! CALL p g l i n e ( 2 , x p t s , y p t s ) !D i s t r i b u t i o n END IF ! IF ( i t n u m . eq . d a t a h i s t b i n s -1) THEN ! o u t s i d e o f 99 % x p t s = d a t a h i s t ( i t n u m + 1 , 1 ) + bw ! y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m + 1 , 2 )! Cred . I n t e r v a l CALL p g l i n e ( 2 , x p t s , y p t s )

		!
	END IF	!
	END IF	!
	END DO	
	! / \ P l o t h i s t o g	

Specifically the width between the two inflection points of the Gaussian

Note that in Paper I, the background fields used were long stripes running along the Galactic Latitude of the object, as can be seen in Paper I, Fig.

It was later determined however that smaller fields provided a better approximation to the localized background contained in the object field. Hence, the background fields used for Paper II were rectangles of approximately 2 • × 1 • oriented as before with the longer axis parallel to lines of equal Galactic Latitide.

Acknowledgements I have been very fortunate throughout my PhD candidature to work with some very dedicated and talented astronomers and astrophysicists who have had a huge impact on the course my research has taken. I have worked most closely with my supervisors Dr Rodrigo Ibata (Université de Strasbourg) and Prof. Geraint Lewis (University of Sydney) who I would Acknowledgements v A. R. C. would like to thank Macquarie University for their financial support through the Macquarie University Research Excellence Scholarship (MQRES) and both the University of Sydney and Université de Strasbourg for the use of computational and other facilities. G. F. L. thanks the Australian Research Council for support through his Future Fellowship (FT100100268) and Discovery Project (DP110100678). R. A. I. and D. V. G. gratefully acknowledge support from the Agence Nationale de la Recherche though the grant POM-MME (ANR 09-BLAN-0228). Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

 3) REAL : : a ( n d a t a m a x ) , b ( n d a t a m a x ) , c ( n d a t a m a x ) , d ( n d a t a m a x ) REAL : : a h i s t ( 2 0 1 , 2 ) , b h i s t ( 2 0 1 , 2 ) , c h i s t ( 2 0 1 , 2 ) , d h i s t ( 2 0 0 1 , 2 ) REAL : : logL , LikeA , LikeB , r , p ( 4 ) , p t e m p ( 4 ) , m in s ig ma , max sigma REAL * 8 : : sigma , p l a n e D i s t , l i k e , p l a n e s i g , rms , min rms , r m s a v e r a g e ( n i t ) REAL : : m a x p l a n e s i g , RMSmin , A c t u a l s i g , A c t u a l b f v ( 3) , b e s t s a t b f v ( 3 ) , A c t u a l b f s INTEGER : : dummy , s a t p i c k ( 2 7 ) REAL : : S a t D i s t ( 5 0 0 0 0 0 , n s a t s ) , S a t P o s ( n s a t s , 2 ) , x i ( n s a t s ) , e t a ( n s a t s ) , t h e t a ( n s a t s ) , M31 Dist PPD ( 3 0 0 0 0 0 0 ) REAL : : S a t D i s t c h a n g e ( n s a t s ) , n e w E a r t h D i s t , S a t D i s t s t o r e REAL : : a r t x i ( n s a t s ) , a r t e t a ( n s a t s ) , a r t t h e t a ( n s a t s ) REAL * 8 : : RA, DEC, x i d b l e , e t a d b l e REAL : : x i t e s t , e t a t e s t , t h e t a t e s t , SAP xi ( 1 3 4 ) , S A P e t a ( 1 3 4 ) , s p o t R REAL : : B e s t S a t D i s t ( n s a t s ) REAL : : m 3 1 d i s t REAL : : a l p h a s e t , b e t a s e t , gamma set , p o l e a l p h a , p o l e b e t a REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) : s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,s9 ,s10 ,s11 ,s12 ,s 1 3 INTEGER : : s14 ,s15 ,s16 ,s17 ,s18 ,s19 ,s20 ,s21 ,s22 ,s23 ,s24 ,s25 , 

List of Abbreviations

The following list is neither exhaustive nor exclusive, but may be helpful.