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Abstract

The satellite system of a large galaxy represents the ideal laboratory for the study of galactic

evolution. Whether that evolution has been dominated by past mergers or in situ formation,

clues abound within the structure of the satellite system. This study utilizes recent photomet-

ric data obtained for the halo of M31 via the Pan-Andromeda Archaeological Survey (PAn-

dAS), to undertake an analysis of the spatial distribution of the M31 satellite system. To do

this, a new Bayesian algorithm is developed for measuring the distances to the satellites from

the tip of their Red Giant Branch. The distances are obtained in the form of posterior prob-

ability distributions, which give the probability of the satellite lying at any given distance

after accounting for the various spatial and photometric characteristics of the component

stars. Thus robust distances are obtained for M31 and 27 of its satellite galaxies which are

then transformed into three-dimensional, M31-centric positions yielding a homogenous sam-

ple of unprecedented size in any galaxy halo. A rigorous analysis of the resulting distribution

is then undertaken, with the homogeneity of the sample fully exploited in characterizing the

effects of data incompleteness. This analysis reveals a satellite distribution which as a whole,

is roughly isothermal and no more planar than one would expect from a random distribution

of equal size. A subset of 15 satellites is however found to be remarkably planar, with a

root-mean-square thickness of just 12.34+0.75
−0.43 kpc. Of these satellites, 13 have subsequently

been identified as co-rotating. This highly significant plane is all the more striking for its

orientation. From the Earth we view it perfectly edge on and it is almost perpendicular to the

Milky Way’s disk. Furthermore, it is roughly orthogonal to the disk-like structure commonly

reported for the Milky Way’s satellite galaxies. The distribution is also found to be highly

asymmetric, with the majority of satellites lying on the near side of M31. These findings

point to a complex evolutionary history with possible links to that of our own galaxy.
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Résumé de Thèse

Étude de la structure tridimensionnelle du système de satellites de M31 au moyen d’une

méthode Bayesienne de localisation de la pointe de la branche des Géantes Rouges

Les étoiles de basse masse pauvres en métaux qui ont consommé tout l’hydrogène présent

dans leur noyau et dont celui-ci n’a plus une densité suffisante pour fusionner de l’hélium,

entrent dans la phase de la branche des géantes rouges (RGB). Après un certain temps,

l’étoile devient plus lumineuse et les cendres dhélium produites par cette réaction retombent

sur le noyau, accroissant sa densité jusqu’à celle-ci soit suffisante pour remettre en marche

la fusion de l’hélium. L’étoile, qui n’appartiendra bientôt plus à la branche d’étoiles RGB

est dite du tip of the Red Giant Branch (TRGB) . Du fait des propriétés similaires du noyau

de toutes les étoiles qui arrivent à ce state de leur évolution dans une gamme spécifique de

masse et de métallicité (voir Iben and Renzini 1983), leur radiation énergétique et donc leur

luminosité est constante. Le TRGB pour de telles populations stellaires donne donc une

mesure de la distance à cette population.

Avant le développement de la méthode de la détection d’un bord de Lee et al. (1993),

la TRGB était déterminée par des Diagrammes Couleur-Magnitude (CMD) à l’oeil nu et les

distances dérivées manquaient donc de précision et d’uniformité requis pour une utilisation

fiable pour de nombreux objets. On a développé de nombreuses méthodes depuis celle-ci

mais elles se basent toutes sur l’idée de convoluer la fonction de luminosité (LF) du RGB

avec un kernel de détection de bord, afin de créer un maximum à la magnitude correspondant

à la plus grande discontinuité dans la LF, qui devrait correspondre à la magnitude du TRGB.

Malheureusement, de telles méthodes donnent de mauvais résultats dans la présence de bruits

– notamment lorsque le RGB est noyé par des étoiles contaminantes. Pour cette raison,

plusieurs alternatives d’ajustement de modèles qui utilisent toute la LF ont été proposées
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(par exemple Méndez et al. 2002). Malgré cela, pour ces méthodes, les incertitudes de

mesures sont souvent très grandes et mal définies et n’ont pas la possibilité d’incorporer nos

informations à priori sur le système étudié. C’est pour cela que la première grande partie

de cette thèse aura pour but de créer un algorithme robuste et versatile pour mesurer des

distances en utilisant la magnitude du TRGB.

Les premiers chapitres décrivent le développement d’un algorithme Bayesien qui utilise

une approche de maximum de vraisemblance. Les paramètres du modèle (magnitude du

TRGB, pente de la LF, propriétés de contamination) sont ajustés par l’algorithme suivant une

simulation Markov Chain Monte Carlo (MCMC). Cela donne accès aussi aux incertitudes sur

ces paramètres. Malgré sa simplicité, cette méthode est robuste, et donne des sorties intu-

itives et visuelles des probabilités de paramètres et il reste facile d’ajouter de l’information

à priori. La première version de cet algorithme a été publiée dans le Astrophysical Journal

(Paper I), et est à la base du chapitre 3. Cette publication présente également des tests qui

caractérisent la performance de cette méthode pour des LFs de différentes qualités, ainsi que

son application à trois galaxies naines sphéroı̈dales, satellites de M31, et donne les meilleures

incertitudes de toutes les méthodes basées sur le TRGB publiées jusqu’à ce jour.

Les données physiques analysées dans cette thèse viennent du Pan-Andromeda Archae-

ological Survey (PAndAS – McConnachie et al. 2009), un relevé ambitieux qui couvre plus

de 300 degrés carrés autour de la galaxie d’Andromèdre, la galaxie géante la plus proche

de la Voie Lactée. Ce relevé donne accès à la photométrie profonde en bande g’ (centré sur

487 nm) et la bande i’ (centré sur 770 nm), et qui couvre plus de 25 satellites galactiques

qui sont idéaux pour des mesures de distance par la méthode TRGB. L’algorithme présenté

en chapitre 3 a été amélioré pour utiliser ces donnes spécifiques. La contamination du fond

étant la plus grande source du détriment de la qualité des distances TRGB, j’ai mis au point

une routine << matched filter >> (voir Rockosi et al. 2002) pour donner des poids à chaque

étoile en fonction de sa position spatiale dans le profil de densité du satellite. L’effet de

l’application de cet algorithme sur la LF est de réduire la contamination du fond et ainsi

d’augmenter le contraste de la troncature du RGB au TRGB. Visuellement, le changement

du LF est souvent suffisant pour révéler de façon très claire la position du TRGB qui était

avant à peine plus que du bruit Poissonnien.
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Cette méthode améliorée, appliquée à tous les satellites (27 en total) détectés dans le

relevé PAndAS est présentée dans un deuxième article soumis à l’Astrophysical Journal et

constitue l’essentiel du chapitre 4 (Paper II). Cet article apporte les premières mesures de dis-

tances pour une grande partie de ces satellites et se révèle être l’analyse la plus compréhensive

des distances du système de satellites de M31. Cette investigation contient également une

analyse brève du profil de la densité du halo en utilisant ces nouvelles distances, que nous

avons comparées aux valeurs trouvées avec l’aide d’autres méthodes.

Le grand nombre de satellites autour de M31 pour lesquels j’ai obtenu de bonnes mesures

de distances donne ainsi une excellente occasion d’analyser le degré de planarité et d’asymétrie

du système de satellites. Cela a des fortes répercussions sur la distribution de matire dans le

halo de la galaxie hôte ainsi que sur l’histoire de formation des satellites mêmes. Plusieurs

études du système satellitaire de la Voie Lactée (par exemple Lynden-Bell 1982; Zentner

et al. 2005; Pawlowski et al. 2012b), trouvent des plans fortement significatifs, souvent in-

clinés par rapport au disque Galactique. Des résultats similaires ont été publiés pour le

système de M31 (par exemple Koch and Grebel 2006). Les études du système de M31 ont

été faits avec de petits échantillons de satellites et les mesures de distances proviennent donc

de plusieurs auteurs (et méthodes) différentes. C’est ainsi que le chapitre 5 et une troisième

publication donnent à voir une analyse détaillée du système de satellites de M31 en se basant

sur les données du chapitre 4. La planarité du système de satellites est explorée par le biais

du plan de meilleur ajustement en utilisant plusieurs méthodes (moindre rms, moindre dis-

tance, ajustement à un modele Gaussien). La vraisemblance de ces alignements est analysée

à l’aide de simulations où chaque satellite est tiré au hasard a partir de sa distribution de dis-

tance. L’analyse de l’asymétrie est effectuée de façon similaire, en utilisant des statistiques

d’asymétrie, notamment le nombre de satellites qui se trouvent sur un hémisphère du halo.

Les positions 3-D présentées au chapitre 4 montrent que le pôle du plan d’asymétrie maxi-

mal se trouve très près du vecteur Terre-M31 ; la probabilité d’un tel alignement est étudiée

dans cette thèse.
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“I do not feel obliged to believe that the same God who has endowed

us with sense, reason, and intellect has intended us to forgo their

use.”

Galileo Galilei (1564-1642)

1
An Introduction to Galactic Archaeology

1.1 Overview

Large galaxies like the Milky Way and it’s neighbor the Andromeda Galaxy (M31) are com-

plex, evolved structures when studied on any scale. They are a plethora of countless billions

of stars and the condensing clouds of gas and dust from which they form, all in motion, all

evolving since time immemorial. But far removed though their origins may be, their very

structure preserves their past. However, even the structure of the Milky Way, our own galaxy,

is not obvious from our vantage point deep within it and while the general structure of its

basic components have been constrained, there is an underlying labyrinth of substructure

remaining to be identified and interpreted with respect to its bearing on Galactic Evolution.

Hence we must begin our study with an overview of the large scale structure of our own

1
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galaxy a structure which, as might be expected, is shared by many of our galactic neigh-

bours and indeed by nearly all those galaxies near and far of a similar type.

1.2 A portrait of a Galaxy

The Milky Way (henceforth ‘the Galaxy’) is a late-type barred spiral galaxy. It is known to

consist of both a thin and a thick disk component, a central bulge and an enormous halo,

encompassing the whole system (Freeman and Bland-Hawthorn, 2002). The thin disk has

been determined to have a scale length of 2600 pc and a scale height of 300 pc (Jurić et al.,

2008) with an overall radius of 15 ± 2 kpc (Ruphy et al., 1996). It is within the thin disk that

both the solar neighbourhood and the spiral arms reside. The spiral arms have been traced

by various methods, notably by Georgelin and Georgelin (1976), who used HII regions to

trace their extent. They found two symmetrical pairs of arms with a pitch angle of 12◦.

The four arms in total were identified as the Sagittarius-Carina Arm, the Scutum-Crux Arm,

the Norma Arm and the Perseus Arm, with the Sun residing in a spur between the inner

Sagittarius-Carina Arm and the outer Perseus Arm. This is represented schematically in

Figure 1.1. Based on their findings they suggest a morphological type for the Galaxy closest

to Sc.

Enveloping the thin disk is a somewhat more diffuse, ancient haze of stars termed the

Galactic ‘thick disk’ (Gilmore and Reid, 1983). It has been calculated from the Sloan Digital

Sky Survey I (SDSS I) to have a scale length of 3600 pc and a scale height of 900 pc (Jurić

et al., 2008). Freeman and Bland-Hawthorn (2002) describe it as a ‘snap frozen relic of the

heated early disk’ and allocate some 10% of the Galaxy’s baryonic matter to its confines. A

metallicity of -2.2 < [Fe/ H] < -0.5 is quoted for the thick disk stars in contrast to the -0.5

< [Fe/ H] < 0.3 determined for the younger thin disk, and its luminosity is specified as 10%

that of the thin disk.

In the inner regions of the Galaxy is a denser conglomeration of what are generally con-

sidered to be older, metal poor stars termed ‘the bulge.’ Freeman and Bland-Hawthorn (2002)

caution however that a study of bulge red giant stars (McWilliam and Rich, 1994) suggests
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Figure 1.1: A Schematic of the observable portion of the Milky Way’s spiral arms. (Vallée, 2005)

a metallicity much closer to the older stars of the thin disk than to the truly ancient stars in

the Galactic halo. They further describe the Milky Way’s bulge as appearing significantly

smaller than that of M31 and somewhat ‘boxy,’ typical of an Sb to Sc spiral. Also of partic-

ular note, the Galaxy has long been suspected of containing a bar at its centre which has, as

of 2005, been proven. Benjamin et al. (2005) find the bar to have a length of 8.8 ± 1.0 kpc

with orientation such that it is rotated 44 ± 10o from a line connecting the Sun and Galactic

Centre.

Finally, the halo of the Milky Way is easily its largest and arguably its oldest major

constituent. It is an enormous, roughly spherical (Ibata et al., 2001b) cocoon of ancient

field stars, and approximately 150 similarly ancient globular clusters (Freeman and Bland-

Hawthorn, 2002). It is also known to extend out well beyond the Small Magellanic Cloud to

a distance of 100 kpc from Galactic centre and it contains at least 10 known satellite galaxies

(van den Bergh, 2006). Perhaps most remarkable is that it contains 1.0+0.3
−0.2 × 1012M⊙ (Xue

et al., 2008) of dark matter, which amounts to at least 90 % of the total mass of the Galaxy
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(Freeman and Bland-Hawthorn, 2002). The substructure within this dark matter halo is of

great interest as it lies at the heart of our current understanding of galaxy formation.

Our current knowledge of the Galaxy as presented in the above paragraphs represents

some of the fruits of Galactic Archaeology. This knowledge is however fairly coarse in

scope and Galactic Archaeology may still be regarded as a burgeoning field. Nevertheless, it

is our means to unravel the Galaxy’s past and our best hope for predicting its future.

1.3 Galactic Archaeology - The Means and the Motives

The field of Galactic Archaeology is in a sense a toolkit providing the necessary tools to wind

back the cosmic clock and provide us with a high resolution view of our Galaxy and its im-

mediate neighbours in a way that might otherwise have been restricted to the poorly resolved

galaxies of the high-redshift universe. It is not a single method but rather a collection of

techniques making use of large sky photometric, astrometric and kinematic surveys to study

the positions, motions and chemical compositions of groups of stars in an effort to link them

to ancient progenitor structures and then simulate the evolution of these structures through

time to the present and beyond. In other words, if stars are found to be grouped together

in 6D phase space (i.e. 3 dimensions in position and 3 dimensions of velocity) they may

be members of a present day cluster whereas stars grouped together only in velocity space

may be termed a moving group and be members of a since-dispersed cluster. Stars grouped

together in chemical space might similarly be ‘tagged’ to an ancient progenitor structure.

Some of these possibilities are further investigated in the following paragraphs.

With the advent of Galactic Archaeology, the discovery of moving groups has become

common. In an early example, Eggen and Sandage (1959) identified the nearby moving

group Groombridge 1830 and associated it with the Galaxy’s globular clusters, providing

an early detection of nearby halo stars. In the intervening decades, numerous further exam-

ples have been discovered associated with the halo alone, but Freeman and Bland-Hawthorn

(2002) caution that the validity of some of these groups is questionable.

The tagging of stars to progenitor groups based on their chemical composition is per-

haps an even more powerful technique. It relies on the assumption that the progenitor cloud
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be uniformly well mixed before the formation of the surviving stars (Freeman and Bland-

Hawthorn, 2002) which is conceivable if McKee and Tan (2002)’s model of cluster forma-

tion is accepted whereby all stars form at a similar time. Such a method has interesting

implications not only for the origins of structure formation in the Galaxy at large, but also at

a more local level, as it presents the real possibility of identifying Solar siblings – those stars

that formed out of the same cloud as our Sun. Indeed Reipurth (2005) lists possible evidence

supporting the idea that the Sun did in fact form in a cluster and Portegies Zwart (2009) goes

so far as to provide mass and radius constraints for the cluster of 500 – 3000 M⊙ and 1 –

3 pc respectively. They further concur that with accurate chemical abundances and phase

space information, the identity of the cluster members may be recovered. A direct test of the

feasibility of chemical abundance tagging is seen in De Silva et al. (2007) where of the 18

supposed members of the commoving group HR1614, 14 were found to have very little scat-

ter in chemical abundances across a wide range of elements with the non-conforming stars

conceivably ‘pollution’ from the non-cluster background. Thus it seems that, at least in some

cases, this powerful technique proposed for Galactic Archaeology should be applicable.

So far we have encountered the means to re-construct ancient Galactic components but

the question remains – how ancient? A time frame is needed to accurately model the Galaxy’s

evolution, as evolution is after all time dependent. There are various methods proposed to

fulfill this function, all relating to the determination of stellar age, of which Freeman and

Bland-Hawthorn (2002) gives a concise summary. Since we are generally concerned with

stars long since removed from their parent clusters, determining age from the main sequence

turnoff is obviously not an option. Instead, such methods as nucleo-cosmochronology,

astero-seismology and age-metallicity relations are suggested. Nucleo-cosmochronology is

concerned with ageing the elements in a star based on their remaining radioactive isotope

strengths, given a certain radioactive decay rate. Since the original elemental abundances

are not known, the method compares the radioactive isotope strengths to stable r-process el-

ements. Some studies based on this technique have already been highly successful. Astero-

seismology takes advantage of the evolving mean molecular weight in the cores of stars to

ascertain age and has been used to provide an age for the Sun of 4.57 Gyr ± 0.12 Gyr (Gough,
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Figure 1.2: An example of the Age-Luminosity Relation. Here, the ages of the oldest globular
clusters have been plotted as a function of the absolute visual magnitude of component RR Lyrae
stars. The best fit median is represented by the solid line while the dashed lines represent 1σ limits.
(Chaboyer et al., 1998)

2001), which matches well with the ages determined for the oldest meteorites by more di-

rect means. An age-metallicity relationship would provide a more direct measure of stellar

age, if indeed one could be established but alas, such a relationship only applies to a small

subset of stars. Freeman and Bland-Hawthorn (2002) find such a relationship to exist only

for a small range of young, hot, metal-rich stars. More useful however is the age-luminosity

relationship (Figure 1.2) found to apply to the much older RR Lyrae stars, provided their dis-

tances may be accurately determined. This principle has been applied to constrain the ages

of the Galaxy’s globular clusters (Chaboyer et al., 1996). Still, there is a large age interval

over which the latter two methods are not applicable, thus emphasizing the importance of

the former two methods.

Having discussed the tools of Galactic Archaeology, what are its goals and to what extent

have these goals already been met? The ultimate goal of Galactic Archaeology is to be able to
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trace the current structures of the Galaxy back to their progenitor structures in the protocloud

from which it formed. In so doing, the histories of the various components of the Galaxy are

uncovered, spanning from the epoch of formation to the present day. As outlined in section 1,

the basic structure of the Galaxy has already been established and based on the stellar ages

and metallicities/ elemental abundances across the various components an hypothesis for

galaxy formation has been formulated, again summarized in Freeman and Bland-Hawthorn

(2002). It is suggested that the Galactic Protocloud began to form at a similar time to the

epoch of reionization. At this time the Galaxy, like those around it, appeared in the form of a

dark matter halo, with its central black hole and possibly its stellar bulge forming first. The

prominent disk structure where most of the baryons reside did not develop until the beginning

of the main epoch of baryon dissipation at a redshift of z ∼ 1 − 5. This also coincides with

the ages of the thick disk and the globular clusters. The populating of the halo with globulars

and field stars is thought to have also begun very early in the formation process, the result

of tidal interactions with small neighbouring dwarf galaxies. The thin disk comprises the

youngest stars of the Galaxy while the thick disk is likely the dynamically heated remnant

of an ancient thin disk – in fact, Galactic Archaeology may provide some clue as to the

particular interaction responsible. One popular theory is that the globular cluster ω Cen is

the remnant core of a small galaxy, stripped of its outer stars in an interaction precipitating

the heating of the original thin disk (Bekki and Freeman, 2003). It is also believed that the

current galactic bulge is not of the ancient origin of more pronounced bulges such as that

found in M31, but rather a later formation in the established inner disk. This is consistent

with the relatively high metallicities in the galactic core, although it must be stressed that

metallicity is a better measure of the number of supernova events rather than of actual age

and the density of the galactic core is bound to influence this number profoundly.

The formation sequence presented above owes little to observations of high-redshift

galaxies or even to computer simulations based on Cold Dark Matter (CDM) Cosmology,

but rather it is a construction based on observations of our own galaxy and those nearby. Our

focus has so far been centered on the Milky Way, but it must be stressed that any galaxies

close enough to have their individual stars mapped into phase space or chemical space are
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within the reach of Galactic Archaeology. It should also be stressed that the methods as-

sociated with Galactic Archaeology described above form the basis for such study but such

methods provide for mere data acquisition – the possible applications for the data are enor-

mous, and hence so to is the scope of Galactic Archaeology. These points should be kept

in mind as some of the various sky surveys available to the ‘Galactic Archaeologist’ are

discussed in the next section.

1.4 Completed and Future Surveys - What can they tell us?

Modern Galactic Archaeology draws heavily on a small number of ambitious, wide field

surveys focused, at least in part, on the acquisition of either photometric, astrometric or

kinematic data for large numbers of stars. While there are many smaller data sets such as

Hubble Space Telescope (HST) pointings and those from major ground telescopes which are

also utilized, our focus here shall be limited to these major surveys.

1.4.1 Photometric

Among those surveys with the broadest scope are the photometric surveys, although the data

they include is often more restrictive for Galactic Archaeology than that from the astrometric

and kinematic surveys. Photometry is of particular usefulness in determining the distance to

large numbers of objects. The two most recent major photometric catalogues are those from

the Sloan Digital Sky Survey (SDSS) and the Two Micron All Sky Survey (2MASS). SDSS

is an ongoing survey, begun in 2000, using the dedicated 2.5 m wide-field, modified Ritchey-

Chrétien telescope at Apache Point Observatory and an array of 30 × 4 megapixel CCDs.

The survey provides photometry in the u, g, r, i and z bands (see York et al. 2000 for a

technical summary) as well as spectroscopy of select targets. As of the ninth data release

(SDSS-III Collaboration et al., 2012), the survey had covered some 14555 square degrees

of sky or more than 1
3 of the entire celestial sphere, with spectra obtained for 668054 stars.

The survey also features stellar positions accurate to within 150 mas for each coordinate

and metallicity as well as phase space information are determinable for the observed stars.

The stellar coverage is however, relatively small owing to the survey’s greater emphasis on
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obtaining photometry for galaxies.

The 2MASS survey (Skrutskie et al., 2006) in contrast covers an enormous quantity of

stars, with some 471 million point sources extracted from the data. The survey covers the

entire sky and includes photometry in the J, H and Ks near-infrared bandpasses. For entire

sky coverage, two ground based telescopes were required, one in each hemisphere, and hence

two 1.3 m telescopes were constructed for the task, one at Mount Hopkins, Arizona and the

other at Cerro Tololo in Chile. The 7.8 second exposure for each field results in limiting

magnitudes of 15.8, 15.1 and 14.3 in the J, H and Ks bands respectively. A 1σ error of

< 0.03 magnitudes is determined for the photometry with an estimated error of 100 mas

in the source positions. With stellar positions as well as metallicity being determinable

from the data, stellar tagging is a possibility from this data set. Indeed, this survey is a

useful archive of data for isolating ancient structures, especially since such structures may

be expected to be delineated by luminous red giant stars which would remain visible out to

great distances due to their strong emission in the near infra-red. This merit of the survey has

in fact been exploited by previous studies, as exemplified by Ibata et al. (2002a) where M

giants were used to trace substructure in the outer Galactic halo. Still, the lack of kinematic

data obtainable from the survey does present some limitations for reconstructing ancient

structures that have since dispersed.

The Skymapper Telescope (see Keller et al. 2007) is currently working to improve on the

2MASS data set, at least for the southern celestial hemisphere. Skymapper is a 1.33 m tele-

scope operated by the Australian National University (ANU) at Siding Spring mountain. It

features an array of 32×8 megapixel CCDs mounted at the Cassegrain focus of the telescope

to provide a 5.7 square degree field of view. Six coloured glass filters allow photometry in

the u, v, g, r, i and z bands with peak throughput in the r band at around 650 nm. A proposed

‘Five-Second Survey’ consisting of at least 3 images of every field per filter is capable of

providing photometry for stars of magnitude 8.5 through to 15.5 with a minimum accuracy

in the g and r bands of σ = 0.1 mag, thus providing comparable sensitivity and accuracy to

the 2MASS survey but with a wider wavelength coverage. With 36 observation epochs over

a five year period, astrometry will also be possible from the Skymapper data, with proper

motions as small as 4 mas year−1 detectable and position information accurate to within 50



10 An Introduction to Galactic Archaeology

mas. Hence in using the Skymapper data, Galactic Archaeologists have at their disposal 5

dimensions of phase space data as well as basic metallicity information for each surveyed

star. It might therefore be argued that Skymapper represents one of the greatest leaps for-

ward in the field of Galactic Archaeology to date and indeed the probing of the evolution and

structure of the Galaxy ranks highly as one of the projects chief science goals.

1.4.2 Astrometric

Astrometry is essentially concerned with the determination of the 5 dimensions of phase

space excluding radial velocity. Two data sets stand out as major contributions to the bulk

of astrometry information currently available – that from the HIPPARCOS mission (ESA,

1997) and the data contained in the United States Naval Observatory (USNO) catalogues.

HIPPARCOS is actually an acronym for HIgh Precision PARallax COllecting Satellite,

chosen in honour of the Greek astronomer Hipparchus whose main contribution to astron-

omy was astrometry, albeit in only two dimensions of phase space! The satellite operated

from 1989 to 1993 providing high precision positional and proper motion data for more than

100000 stars. The final HIPPARCOS Catalogue consists of 118218 stars within a limiting

magnitude of 12.4. The stars’ positions on the celestial sphere, parallaxes and proper mo-

tions were determined to within median precisions of 0.77 mas, 0.97 mas and 0.88 mas yr−1

respectively. Additionally, photometry was determined for each star using an HIPPARCOS-

specific visible pass band. The measurements were based on ∼ 110 independent observations

and are accurate to a mean value of 0.0015 mag. Based on these parameters, it is clear that the

HIPPARCOS Catalogue represents an extraordinarily high precision source for phase space

information and some photometry applications. The fundamental drawback to the data for

Galactic Archaeology however is the small number of surveyed stars. This is remedied to

some extent by the addition of the Tycho Catalogue (named in honour of Tycho Brahe’s sig-

nificant contributions to astrometry) wherein phase space data and photometry are presented

for 1 058 332 stars with a median astrometric precision of 25 mas for all stars and photome-

try accurate to within 0.07 mag for B band photometry and 0.06 mag for V band photometry

for all stars. It should also be noted that a new catalogue, Tycho 2 (Høg et al., 2000) has been
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released, based on the same raw data as the original Tycho Catalogue but with astrometry

available for 2.5 million stars and slightly higher parameter accuracy owing to a different

reduction technique, yielding proper motions as small as 2.5 mas yr−1 detectable. In sum-

mary, the quality of the proper motion data from these three surveys distinguish them from

other surveys, yet still, astrometric parallax – the particular specialty of these surveys – is

inevitably limited by distance, so this dimension of phase space is not going to be available

for far-flung structures of the Galaxy or extragalactic targets.

One of the largest astrometric catalogues available to date is the United States Naval Ob-

servatory A2.0 (USNO-A2.0) Catalogue (Monet, 1998). The catalogue is based on the same

raw data as the USNO-A1.0 Catalogue (Monet et al., 1998) which was compiled using mea-

surements of the Palomar Observatory Sky Survey I (POSS I) O and E plates for declinations

north of -35o and the UK Science Research Council (SRC-J) and European Southern Obser-

vatory (ESO-R) survey plates for declinations south of -35o. The plates were scanned using

the Precision Measuring Machine (PMM) at the U. S. Naval Observatory Flagstaff Station

with precisions of 150 mas in positional information and 0.15 mag in the b and r band pho-

tometry afforded by using the ACT Catalogue over the Guide Star Catalogue (GSC) – as was

used for USNO-A1.0 – for astrometric calibration. The ACT catalogue is based on the com-

bination of the Astrographic Catalogue and the Tycho Catalogue and provides proper motion

information about an order of magnitude more accurate than that contained in the original

Tycho Catalogue (Urban et al., 1998). The final product is a catalogue of some 526 280 881

stars with RA, DEC and b and r band photometry to the accuracies already specified. The

data is hence limited to the 3 positional coordinates of phase space (assuming distances are

obtained from the photometry) and minimal photometric information but nevertheless, the

sheer bulk of stars covered warrants the inclusion of the USNO-A2.0 Catalogue as a major

source of raw data for Galactic Archaeology.

In addition to these surveys, there have been some noteworthy astrometry surveys in

the intervening years, such as that utilized for the Second US Naval Observatory CCD As-

trograph Catalogue or UCAC2 (Zacharias et al., 2004) wherein are presented position and

proper motion data for 48 330 571 sources – mostly stars – with declination between -90o

and +40o. The precision in position is estimated between 15 and 70 mas, depending on
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source magnitude, and proper motions are determined to within 1 – 3 mas yr−1 for stars

brighter than 12th magnitude and 4 – 7 mas yr−1 for those between 12th and 16th magnitude.

Another, more restrictive survey, is the Southern Proper Motion Program III (Girard et al.,

2004) which has catalogued ∼ 10.7 million objects in an area 3700o or 1/11 of the entire sky,

with proper motions determined in some cases accurate to 4 mas yr−1.

The future for the collection of astrometric data is potentially an exciting one, but alas

there are many setbacks faced by would-be missions. Already, two particularly promising,

∼ 40 million star surveys – the Full-sky Astrometric Mapping Explorer (FAME) and the

German Interferometer for Multichannel Photometry and Astrometry (DIVA) – have been

cancelled due to escalating costs and logistic difficulties. Disappointingly, this leaves some

time until a new major astrometric survey is released. Nevertheless, two even more ambi-

tious missions are scheduled for the next decade, one – JASMINE (the Japanese Astrometry

Satellite Mission for INfrared Exploration) – is purely astrometric with regard to the dimen-

sions of phase space it is intended to explore, the other, Gaia, will provide a measure of radial

velocity as well and so is discussed amongst the ‘kinematic’ surveys in the next sub-section.

The JASMINE mission (see Gouda et al. 2005), due for launch around 2014, is a 1.5 m space-

based telescope under preparation by JAXA (the Japanese Aerospace Exploration Agency),

designed to peer through the gas and dust of the galactic disk at a wavelength of 0.9 microns.

The telescope will be sent into a Lissajous orbit around the Sun-Earth Lagrange point L2

from where it shall undertake astrometry of some 100 million Galactic disk and bulge stars

(or such stars brighter than magnitude 14 in the z band) in the Galactic Latitude range |b| ≤

4.0. As such it is not an all sky survey and it is of limited use for studying any other Galactic

structures but nevertheless, with an accuracy of 10 µas for position and parallax data and 10

µas yr−1 for proper motions, the mission has the potential to produce a substantial catalogue

of data, so far unequaled in depth, for the appropriate Galactic Archaeology work.

1.4.3 Kinematic

Kinematic surveys are perhaps the most useful survey type to the Galactic Archaeologist as

they provide a complete description of each star’s location in phase space and provide the
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best chance for the identification of those structures sharing a similar evolutionary history.

When this information is coupled with elemental abundance data, which is sometimes avail-

able from the same survey, the Galactic Archaeologist is endowed with the astronomical

equivalent of the Rosetta Stone – the key to piece together the ancient lives of the Galactic

populace. The only concern then is that the ‘Galactic census’ is far enough reaching to regis-

ter enough substructure to give a representative view of the Galaxy in its entirety. Kinematic

surveys are a relatively recent addition to the available data but, as we shall see, plans are

afoot to see the kinematic dataset explode by the end of the next decade. Bland-Hawthorn

and Freeman (2006) identify the Geneva-Copenhagen Survey of the Solar Neighbourhood

(Nordstrom et al., 2004) as the first major kinematic survey – a study featuring kinematic data

for 16682 nearby K and G dwarfs, with full 6D phase space data available for 14139 stars

after combination with HIPPARCOS parallax data and Tycho 2 proper motions. Combined

with photometry and metallicity data, the survey represents the means to study the precise

structure of the local stellar neighbourhood and perhaps even identify any solar siblings that

have migrated along similar paths to the Sun. Still, if enough data is to be had for the Galaxy

on the broadest scales, the surveyed stars are going to have to be much more numerous and

include those much less luminous!

Several such projects have either been completed or are in their final or preparatory

stages. The most important completed to date is SEGUE – the Sloan Extension for Galactic

Understanding and Exploration (Yanny et al., 2009). It is a moderate-resolution (R = 1800)

spectroscopic survey of 240000 stars, spanning the spectral range from 390 nm to 900 nm,

with the principal aim of aiding the study of the kinematics and populations of the Galaxy.

The survey concentrates on fainter Milky Way stars of various spectral and luminosity classes

with g band magnitudes between 14.0 and 20.3. The spectra it contains are from 212 regions

of sky covering a total of 3500 square degrees, scattered over three quarters of the celestial

sphere, though with an emphasis on low galactic latitudes. From the spectra, radial veloc-

ities have been obtained accurate to 4 kms−1 for stars brighter than g = 18 and better than

15 kms−1 for those brighter than g = 20. Photometries are also provided for u, g, r, i and z

bands, as are astrometry data (accurate to 100 mas), and determinations of metallicity and

other stellar atmosphere parameters where an SNR exceeding 10 per resolution element is
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available. All things considered, the SEGUE data represent an excellent resource for Galac-

tic Archaeology in all of the major Galactic substructures and may be used as a stand-alone

resource with 6 dimensions of phase space as well as metallicity data all available from the

one dataset. Still the number of stars included and the region of sky surveyed are still quite

restrictive, and particularly in the Galactic halo or in cases where rare spectral types are used

as tracers, there may simply not be enough coverage to properly identify and characterize

substructure.

The RAdial Velocity Experiment (RAVE – see Steinmetz et al. 2006) should provide

a substantial compliment to the SEGUE data at least for Southern Hemisphere stars. The

project aims to obtain mid-resolution (R = 7500) spectra of up to one million stars using the

Six Degree Field Multi-Object Spectrograph on the 1.2 m UK Schmidt Telescope at Siding

Spring. The spectra are concentrated on the Ca-triplet region (841.0 nm – 879.5 nm) in an

effort to determine metallicity as well as temperature and surface gravity for the surveyed

stars, which will be chosen to have a magnitude in I band in the range from 9 to 12. Radial

velocities will be determined to better than 3.4 kms−1, marking a small improvement over

the SEGUE data, while proper motions are included from external sources such as Tycho-2.

As of the third data release (Siebert et al., 2011), 77461 individual stars had been surveyed,

so the quantity of data is still considerably smaller than that available from SEGUE.

As the ‘crescendo’ to this review of stellar surveys, one particular project in the prepara-

tory stages is set to supersede all the others – the ambitious Gaia space mission. A review

of the Gaia mission is found in de Bruijne (2012), wherein the basic capabilities of the Gaia

satellite are discussed. Gaia is set to measure the parallaxes, positions and proper motions of

the one billion brightest stars in the sky – a truly astronomic endeavor! The stellar parallax

measurements obtained by the satellite are expected to be accurate to within 25 µas for stars

brighter than 15th magnitude. Accompanying this astrometric data will be low-resolution

spectroscopic (R ≈ 11500) and photometric data covering the range from 330 nm to 1000

nm allowing the radial velocity to be measured to within 1 – 15 kms−1 and metallicity and

other parameters of the stellar atmospheres to be determined. The mission is planned to

launch in 2013 with final results expected by 2021. By comparison to the other surveys

already discussed, this mission represents a new generation for Galactic Archaeology. Not
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only will cooler main sequence stars comparable to the Sun be visible out to beyond 10 kpc

but more luminous stars will be visible throughout the Local Group and even in external

galaxy clusters, taking Galactic archaeology to new places quite literally. This data will pro-

vide the representative survey of the Galaxy really needed to unravel its past and to study

galactic evolution in a more general sense. In closing, it should however be cautioned that

2021 is almost a decade away and budget restraints may yet curtail the ambitious scale of

Gaia, and even if they do not, the next ten years should be ones of productivity in Galac-

tic Archaeology. Hence the more immediate, albeit less ambitious surveys will be the raw

material utilized to push forward the boundary of knowledge in the mean time.

1.5 Dark Matter and the Predictions of ΛCDM Cosmology

The requirement for the existence of dark matter was first identified observationally by Fritz

Zwicky (Zwicky, 1933). Upon studying the high velocities of member galaxies of the Coma

Cluster, he realized that their orbits must enclose substantially more matter than could be

attributed to visible galaxies alone in order for them to remain bound, hence implying the ex-

istence of some unseen, yet significant component of matter (Sahni, 2004). Rotation curves

for individual galaxies were also subsequently shown to imply significant amounts of mat-

ter not associated with the luminous component of the galaxies (see Figure 1.3). Studies

of the Cosmic Microwave Background (CMB) and the Universe’s abundance of deuterium

have indicated that ordinary baryonic matter – matter made up of baryons (i.e. protons and

neutrons) – constitute a mere 4% of the total mass/energy content of the Universe and that

non-baryonic matter must contribute a much larger fraction, ∼ 30% (Sahni, 2004). Various

properties and forms have been suggested for the elusive dark matter, of which the Λ Cold

Dark Matter (ΛCDM –Λ being the cosmological constant) model has been the most success-

ful at explaining the primordial ‘power spectrum of density fluctuations’ and its evolution to

its present state.

InΛCDM Cosmology, the dark matter’s constituent particles exhibit a small, non-relativistic

velocity dispersion (hence they are termed cold), having decoupled from baryonic matter and
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Figure 1.3: A schematic conveying the disparity between observed and expected galaxy rotation
curves (Sahni, 2004)

energy after they had slowed to non-relativistic speeds (Sahni, 2004). Associated with the

particles is a ‘free-streaming distance’ λ f s that relates the mean distance traveled by the

particles while still relativistic, before they slow to non-relativistic velocities. Since CDM

cosmology already assumes ‘cool’ particles, this distance is not very long and so free stream-

ing can only disrupt the primordial density distribution on small scales – hence giving rise

to small-scale structure soon after the big bang. The opposite to this scenario is borne out by

the Hot Dark Matter model, in which density inhomogeneities first appear on larger scales

before fragmenting into the building blocks of individual galaxies – i.e. a top-down cos-

mology. CDM Cosmology in contrast is a bottom-up or hierarchical cosmology in which

smaller structures appear first in the Universe and over time undergo gravitational cluster-

ing into larger structures such as clusters and eventually into the super-cluster-filament/ void

frothy structure observed today. ΛCDM cosmology differs from the earlier standard CDM

cosmology in that the mass density Ωm is chosen to be 0.3 of the total mass-energy density

(as opposed to 1) with Hubble constant (at z = 0) h ∼ 70 kms−1Mpc−1, thus providing for a

better fit to the shape of the current observed power spectrum.
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With regard to the actual form of the dark matter, several possibilities have been proposed

which can generally be summarized into two fundamental categories – the non-baryonic

WIMPs (Weakly Interacting Massive Particles) and the baryonic MACHOs (MAssive Com-

pact Halo Objects). In particular, the neutralino particle has been put forward as a strong

contender for the CDM particle. The proposed neutralino is a WIMP with energy in the 100

– 1000 GeV range and is both stable and neutral so that it does not scatter light. Jungman

et al. (1996) describes the neutralino as “the best motivated and most theoretically devel-

oped” of the WIMP particles and goes on to outline how it might be detected and how its

abundance might be determined. Indeed, schemes are underway aimed at the direct detection

of neutralinos on the Earth via their gamma-ray emitting interaction with nuclei in a detector

– similar to the generation of x-rays in an x-ray tube. At least some of the missing mat-

ter however, is going to exist in the form of MACHOs such as distant white dwarfs, brown

dwarfs and other low-luminosity bodies in the halo but there are theoretical and observational

constraints on the percentage of dark matter made up of such baryonic matter. Theoretically,

baryonic matter is not particularly successful at ‘growing substructure’ from the small pri-

mordial density fluctuations in the universe due to its strong coupling with radiation. On the

other hand, if most of the dark matter is non-baryonic and thus not coupled to the radiation,

this matter can clump together much earlier so that the comparatively small percentage of

baryons simply fall into these ready made over-densities shortly afterward (Sahni, 2004). An

example of observational constraints on the size of the baryonic component of dark matter

is found in Alcock et al. (2000) where the low count rate of micro-lensing events in the di-

rection of the Large Magellanic Cloud over a 5.7 year period is used to constrain the halo

mass tied up in MACHOs to ∼ 20%. Whether MACHO or WIMP, the fact remains that the

matter is dark and will not be directly observable to the astronomer – with the exception

of the odd MACHO as more sensitive telescopes become available. Hence it would appear

that, at least for the time being, the study of the Galactic dark matter will be restricted to

the astronomical indirect measurement of the halo mass distribution (with several methods

described in the next section) and the independent detection of WIMPs by particle physicists

in the laboratory.

Before leaving this discussion of the ΛCDM cosmology, it must be noted that this model
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is a ‘best-fit’ model only and is not without its own shortcomings. Two principal examples

are outlined in Sahni (2004). Firstly, the model predicts an over abundance of halo substruc-

ture or subhalos which, if assumed to be accompanied by a luminous baryonic component,

are not currently observed. Secondly, CDM predicts a so-called ‘cuspy core,’ with N-body

simulations producing a halo density dropping off more steeply in the central regions than

is observed such that ρ is proportional to r−1. With regard to the first problem, Diemand

et al. (2007) describes the results of “Via Lactea,” the highest resolution simulation of the

Galaxy to date, which predicts that the Milky Way halo should possess 124 subhaloes with

masses comparible to the Galaxy’s dwarf satellite galaxies, yet according to van den Bergh

(2006), only ∼ 10 such galaxies have been observed. This begs the question: where are the

missing satellites? Diemand et al. (2007) goes on however to identify two studies which

may hold the answer to this. A local group model by Kravtsov et al. (2004) suggests that

galaxy formation will only initiate in the most massive (> 109M⊙) subhalos while Moore

et al. (2006) find that only those subhalos forming very early on in the galaxy assembly pro-

cess (at redshifts z > 12 ± 2 i.e. before the epoch of reionization) with masses above the

atomic cooling mass 1 Diemand et al. (2007) subsequently found that when the “Via Lactea”

simulation was run backward through time only two subhalos were found to comply with

each of Krastov and Moore’s requirements – the same two in each case – which is a much

better match to the number of satellites found to date in the Milky Way halo. Furthermore,

Sahni (2004) highlights the fact that powerful winds from star formation and early super-

novae may be responsible for clearing potential low mass satellites of what baryonic matter

they might of had initially. With regard to the ‘cuspy core’ problem, Sahni (2004) goes on to

draw attention to the fact that complex processes in galactic cores such as bar formation and

baryon-dark-matter interactions are not treated adequately in the simulations to date.

1The atomic cooling mass MH is the critical mass above which gas can cool efficiently allowing for conden-

sation and subsequent fragmentation via excitation of the Lyman α transition of hydrogen. Assuming a virial

temperature above 104K, MH ≈ 108[(1 + z)/10]−3/2M⊙ which gives M > 0.067 × 109M⊙ at z = 12 in order for

a luminous component to develop (ref: Madau and Silk (2005))
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1.6 Resolving the Matter - Methods for Measuring the Dark

Matter Distribution

There are a variety of methods available to ascertain a broad picture of the dark matter

distribution in galactic halos, of which three principal techniques are now discussed. The

first method is that of gravitational lensing. In the last section, discussion was made of the

use of microlensing to determine the percentage of dark matter attributable to MACHOs.

Here we are concerned with strong lensing, where for instance a quasi-stellar object (QSO)

is lensed by a foreground galaxy, and the contribution of substructure in the lense galaxy to

the resulting flux distribution. Lense galaxy substructure in the form of dark subhalos will

manifest itself as flux anomalies and milliarcsecond distortions in the image of the source

object (Metcalf and Madau, 2001). A study into the feasibility of using such phenomena to

map the subhalo distribution in the halos of lens galaxies is made in Riehm et al. (2008).

Here, a test is proposed where a QSO is already known to be lensed on the arc second

scale so as to ensure a suitably well-aligned, massive halo as the lensing object. Conditions

are then favourable for the detection of subhalos in the 106
− 1010M⊙ range based on the

milliarcsecond distortions to the imaged QSO. Still, the study finds that the most realistic

models currently available for the density distribution within typical subhalos do not bode

well for the likelihood of their detection. Their density drops off with distance from the core

at a more gradual rate than earlier models, yielding separations in the source image too small

to resolve with the current generation of telescopes. Even if some subhalos are detectable,

this method is not strictly in the realm of local cosmology, with inferences having to be

drawn from the distant lensing galaxies as to how the halos of more local galaxies should be

structured.

A much more direct method is proposed in the detection of gamma rays from annihi-

lation of WIMPs such as from the chief contender – the neutralino. Diemand et al. (2007)

goes so far as to produce an all sky map of the possible annihilation flux based on the “Via

Lactea” simulation. They find that halo substructure should provide an overall boost to the

annihilation signal from a galaxy when compared to a smooth halo distribution. Since the

annihilation rate is proportional to the square of the density, a map of halo substructure may
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soon be possible with the upcoming Gamma Ray Large Area Telescope (GLAST) which

has a field of view covering approximately one sixth of the sky and sub-degree resolution at

energies greater than 1 GeV. Based on the “Via Lactea” run, subhalo luminosity is predicted

to be directly proportional to the mass of the subhalo, with even comparatively small exam-

ples visible to such a telescope when they are close to the Sun. The background noise from

the Galactic centre is expected to hinder observations toward Sagittarius and in the Galac-

tic Plane in general so observations may be best made looking away from these regions.

Whatever the simulations may show, however, studies such as this are based heavily on as-

sumptions and so, until such a time as observational evidence is available to support such

ideas, it is important to focus on those methods that are independent of the precise nature of

dark matter, relying only on its gravitational effects.

Such a method is found in the kinematic study of currently detectable halo structures such

as the stellar streams found in the Andromeda halo and that of our own galaxy. Studies have

been made into the feasibility of such methods for constraining the distribution of massive

subhalos, notably by Ibata et al. (2002b) and Johnston et al. (2002) with some success pre-

dicted upon the availability of deeper 6D-phasespace surveys such as will be undertaken by

Gaia. Ibata et al. (2002b) presents the results of N-body simulations and their implications

for the possibility of inferring the presence of dark matter clumps from their heating effects

on stellar streams. Specifically, a 106M⊙ globular cluster is modeled with 104 particles and

placed in a variety of smooth and lumpy galactic potentials both spherical and oblate. It is

found that, assuming a spherical potential, the tidal stream from the cluster after a 10 Gyr

period remains dynamically cold if the potential is smooth, with a width at its narrowest

similar to the tidal radius of the initial cluster model. If the smooth halo is populated with

subhalos so that a mere 1 % of the halo mass is tied up in this substructure, the emergent

stream from the model cluster over the same time interval becomes significantly dynami-

cally heated and hence physically wider and more diffuse. If, contrary to an earlier study

(Ibata et al., 2001b) that will be discussed shortly, the Galactic halo is not spherical, but

rather significantly oblate, the effect of the resulting precession of the cluster orbit can be

distinguished from that of heating from subhalo disruption when the integrals of motion of

the stream – the total energy and angular momentum (particularly the z-component) per unit
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mass – are plotted with respect to each other. As a result, this particular method is indeed

a possibility whatever the structure of the halo, but as is statistically determined using the

2MASS survey (Ibata et al., 2002a), too few stream members per disrupted globular cluster

are available in the presently available data – and with incomplete phase space information

– to make such streams detectable, with the stream from the disrupted Sgr Dwarf being the

only one discernable from the data. Alas, the Sgr Dwarf is too large, with stellar velocities

too dispersed for the subtle effects of heating from Galactic subhalos to be easily distinguish-

able within its stream. Hence, it is concluded that this method must wait for the Gaia data

before the level of halo substructure can reasonably be determined. Johnston et al. (2002)

concur with this conclusion but they do find that data for the Sgr Stream is sufficient to isolate

some dynamical heating due to ‘lumpiness’ in the halo, although they point out that the ob-

served scattering may be accounted for by the effects of the Large Magellanic Cloud (LMC)

alone. Further, they predict that even an improved data sample for the stream is unlikely to

improve on the deductive possibilities of the technique due to the alignments of the orbits

of the two progenitor satellites. It is pointed out however, that future deep halo surveys may

allow detection of colder extended streams from other Milky Way satellites that are relatively

unaffected by the LMC and ideal for probing the halo substructure.

Whilst a study of the subhalo distribution in the Galactic halo may not yet be practical,

initial investigations regarding the overall shape of the Milky Way halo and mass of the M31

halo have already taken place. Ibata et al. (2001b) determines with a high level of confidence

that the Milky Way halo cannot be significantly oblate. The study used the Automatic Plate

Measuring Facility halo carbon star (APM) survey (Totten and Irwin, 1998), which utilized

Palomar Sky Survey plates and those from the UK Schmidt Telescope, to examine the dis-

tribution of carbon stars and their possible association with known halo structures. Carbon

stars were chosen as the structure tracers of choice owing to their high intrinsic luminosity,

rarity, distinct photometry and intermediate age, all of which act to make such stars easily

identifiable and useful markers of recent Galactic accretion. Of the 75 carbon stars identified,

38 were found to lie within 10◦ of the great circle on the celestial sphere corresponding to the

predicted Sgr Dwarf orbit and a further 28 within a similar proximity to the projected orbit

of the Magellanic Clouds as represented in Figure 1.4 using a pole-count analysis. These
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represent 6σ and 4σ overdensities respectively with regard to the statistically expected value

of ∼10 counts. To further illustrate the significance of these results, simulations were run

which factored in the sky coverage of the survey plates employed and randomly positioned

stars accordingly, and despite 1000 runs, no such overdensities were produced. Because the

Sagittarius Stream delineated by these stars is observed as an approximate great circle, Ibata

et al. (2001b) suggest that the orbit traced by the Sgr Dwarf must occupy a region of spher-

ically symmetric gravitational potential since orbital precession must otherwise take place

with orbital angular momentum no longer conserved. To better understand the evolution of

the Sgr Dwarf responsible for the presently observed stream, the team represented the pro-

genitor galaxy first as compact and then as a more loosely bound structure, evolving it each

time within a Galactic potential with mass distribution:

ρ(R, z) = ρ0(
s

r0
)−γ(1 +

s

r0
)γ−βe

s2

r2
t

where r0 is the core radius, rt is the truncation radius and γ and β are the power law indices

for in and outside of the core respectively. Two particular halo models were investigated

based on observational constraints, each with slightly different parameters input into the

mass distribution equation. Further to this, each of these halos was simulated for 3 different

circular velocities (νc – determined at 50 kpc) and 11 different values of the halo density

flattening (qm). In short, both progenitor models were evolved in 66 different versions of the

Galactic potential in order to find the combination best fitting observations. It was found that

those models with low flattening (e.g. qm ≥ 0.9) are a much better match to the observed

carbon star distribution whilst those halos with qm ≤ 0.7 are refuted with high confidence.

Hence Ibata et al. (2001b) conclude that the galaxy cannot be significantly oblate throughout

the Galactocentric radii occupied by the orbit.

As a further example of the utility afforded by the study of halo stream kinematics, Ibata

et al. (2004) uses the detection of ‘giant stellar stream’ stars in a kinematic survey using the

DEep Imaging Multi-Object Spectrograph (DEIMOS) on Keck2 to obtain a mass estimate

for the dark matter halo of the Andromeda Galaxy (M31). The measurement is made using

a realistic galaxy model (Klypin et al., 2002) incorporating the disc and bulge components
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Figure 1.4: A pole-count analysis of the APM survey carbon stars where the number of carbon
stars lying within 10o of a given great circle are represented at the pole of the respective great circle
using contour lines. The poles of the Sgr Dwarf stream are at l = 90o/ 270o, b = 15o/-15o and those
for the Magellanic stream are at l = 170o/ 350o, b = -5o/5o. (Ibata et al., 2001b)

of the galaxy in addition to the dark halo. From the radial velocity gradient of stream stars

in the 9 surveyed fields with confirmed stream components, a mass of 7.5+2.5
−1.3 × 1011M⊙ is

obtained for the halo component located within 125 kpc of galactic centre.

1.7 The Pan-Andromeda Archaeological Survey

Up to this point we have concentrated our discussion of Galactic Archaeology on the Milky

Way Galaxy. Due to our position within it, it has long been the only galaxy for which

deep, comprehensive survey data has been available. But this is no longer the case, with the

completion in 2011 of the Pan-Andromeda Archaeological Survey (PAndAS).

The origins of the PAndAS survey lie in the 25-square-degree survey of the disk and inner

halo of M31 undertaken with the 2.5 m Isaac Newton Telescope (INT). The survey sought to

identify the transition between the disk and inner halo, but identified extensive substructure



24 An Introduction to Galactic Archaeology

and culminated in the discovery of the Giant Stellar Stream (Ibata et al., 2001a). A compre-

hensive study of the stellar density and metallicity was undertaken by Ferguson et al. (2002)

on a field-by-field basis using the INT data. In an effort to map the full spatial extent of

the Giant Stellar Stream, the whole southern quadrant of the M31 halo out to 150 kpc was

mapped using the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, with an

extension out to M33 more than 200 kpc from M31 (Ibata et al., 2007). With the wealth of

substructure discovered, and given the large window of the M31 halo already covered, it was

then decided to map the the remaining three quadrants out to 150 kpc with CFHT. This major

undertaking marked the official birth of the PAndAS survey, with the initial results published

in Nature in 2009 (McConnachie et al., 2009). In total, the survey incorporates some 400

square-degrees of sky covering most of the constellation of Andromeda, with extensions into

Cassiopeia and Triangulum. It covers the entire halo of M31 out to 150 kpc as well as that

of M33 out to 50 kpc. A map of the survey showing the extent of its coverage just prior to

completion is presented in Fig. 1.5.

PAndAS is a deep photometric survey which has been undertaken in two bands, g and i

using CFHT with the MegaCam instrument. MegaCam is an array of 36, 2048 × 4612 pixel

CCD chips, covering approximately one square degree on the sky with a resolution perfectly

matched to the 0.7” median seeing atop Mauna Kea. The MegaCam g and i band filters have

a very similar throughput to the SDSS filters, with g spanning from approximately 4000Å

to 5700Å and i from 6700Å to 8500Å see Gwyn (2010). A comparison of the two filter

sets with the corresponding SDSS filters is illustrated in Fig 1.6. Each of the PAndAS fields

reaches a depth of approximately magnitude 25.5 in g band and 24.5 in i band, though data

incompletion is noticeable at these magnitudes.

Since the first PAndAS data has become available, a great many studies have been un-

dertaken across a diverse range of topics concerning the structure of the M31 halo system.

Possible tidal interactions have been investigated and numerous satellite galaxies, globular

clusters and streams have been detected. McConnachie et al. (2009) details the discovery of

“stars and coherent structures” that are very likely the remains of ancient dwarf galaxies long

since cannibalized. They also identify the remnants of a recent encounter between M31 and
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Figure 1.5: The Pan-Andromeda Archaeological Survey. This map of the PAndAS survey was
generated just prior to its completion. It is generated from the most metal poor stars only and thus
highlights the location of the various satellite dwarf galaxies. Also visible is the complex network of
tidal streams marking the trails of past galaxy interactions. (McConnachie, 2010)

M33, and conclude that the wealth of halo structure present in the survey provides excellent

evidence for the validity of hierarchical galaxy formation. The globular cluster system of the

outer halos of both M31(Mackey et al., 2010) and M33 (Cockcroft et al., 2011) have been

investigated, with a strong correlation identified between prominent streams and the loca-

tions of the known globular clusters. The presence of a large number of dark matter haloes

has also been suggested by Carlberg et al. (2011), after a study of the 120 kpc long North

West Stream found density fluctuations that should not arise in a smooth galactic potential.

The locations and masses of known dwarf galaxies are also insufficient to explain the density

variations. Many new satellites have also been discovered from the PAndAS survey, includ-

ing Andromedas XVIII, XIX and XX (McConnachie et al., 2008), XXI and XXII (Martin

et al., 2009) XXIII-XXVII (Richardson et al., 2011) and XXX (Irwin, 2012).
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Figure 1.6: MegaCam Filter Set response compared with corresponding SDSS filter responses.
(Gwyn, 2010)

In summary, PAndAS represents our first opportunity to study an entire galaxy halo sys-

tem from an unobstructed view point outside the galaxy. Though the survey is now complete,

its legacy has just begun as the many studies underway continue to unravel the secrets of

Galaxy formation.

1.8 The Importance of Position

Due to the enormous distances separating us from all astronomical objects, with out consid-

erable effort, the Universe remains a purely two-dimensional realm. For the local universe,

we can use the Earth’s orbit as a base line to measure the angular parallax of an object, and

derive a distance accordingly. Further afield at the distance of M31 however, even the 300

million km diameter of the Earth’s orbit is of little use in gaging distances, and hence we

must turn to indirect means. Nevertheless, the prospect of PAndAS in three-dimensions is

an exciting one which would allow us to constrain orbits much more accurately and fully
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explore the matter distribution of the M31 halo.

At the distance of M31, there are several Standard Candles that could potentially be used

as our distance gage. Two that are commonly invoked are Cepheid Variable and RR Lyrae

stars. Indeed it was the Cepheid Variable that provided the first measure of the distance

to the “Spiral Nebulae” thus establishing them as “Island Universes” external to our own

Milky Way. The “Spiral Nebulae” targeted were of course M31 and M33 (Hubble, 1925).

Nevertheless, Cepheid Variable stars are rare and require multiple epochs of observation

to determine their light curves and hence use the Period-Luminosity relation to derive a

distance. RR Lyrae stars are much more common than Cepheids but also much fainter and

still require multiple observation epochs for distance measurements. Hence we turn our

attention to the Tip of the Red Giant Branch (TRGB) standard candle.

The Red Giant Branch forms the backbone of the average metal poor galaxy and at the

distance of M31, given the photometric depth of the PAndAS survey, it accounts for almost

all of the stars observed to form any given structure. The TRGB standard candle is therefore

applicable to even the most sparsely populated object and can even be used to gage distances

at multiple points along streams. It also requires only one epoch of observation and hence

is readily applicable to a large scale survey such as PAndAS. A study by Salaris and Cassisi

(1997) has shown that Cepheid and RR Lyrae determined distances are consistant with those

obtained using the TRGB to within 5%.

The TRGB standard candle arises due to the properties common to all Red Giant Branch

stars in a particular mass and luminosity range as they approach the onset of core helium

fusion. Such stars first enter the Red Giant Branch toward the end of their life when their

source of core hydrogen is depleted. To fuse the helium ash left over in their core requires an

immense pressure which the core density is as yet insufficient to produce, and so hydrostatic

equilibrium is instead maintained by hydrogen fusion in a shell around the core. This process

continues for the duration of the star’s life on the Red Giant Branch, with the star gradually

becoming more luminous as more and more energy is produced in the hydrogen fusion shell.

Due to a relationship between the core helium mass and the luminosity of the star, the rate at

which the luminosity increases grows as the star continues it’s evolution (Salaris et al. 2002;

Zoccali and Piotto 2000). This means that more stars will be observed at the fainter end of
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the Red Giant Branch than at the brighter end, with the result that the luminosity function of

a particular object is observed to follow a power law trend (Méndez et al., 2002).

As the star continues its evolution toward the bright end of the Red Giant Branch, the

increasing buildup of helium ash in the core steadily increases the core density. In the par-

ticular mass range applicable to the TRGB standard candle, the stellar core succumbs to

electron degeneracy before helium fusion can ignite and so all such stars have very similar

core properties which in turn yields very similar energy outputs in the surrounding hydrogen

fusion shell (see Iben and Renzini 1983, particularly Fig. 7). At the very instant of core

helium fusion, the stars are at their most luminous and hence lie at the bright tip of the Red

Giant Branch before undergoing the Helium Flash as the core pressure becomes sufficient for

helium fusion to ignite. At this point, the stars contract and their luminosity diminishes as

they enter life on the horizontal branch, resulting in a sudden truncation at the bright end of

the luminosity function - i.e. the TRGB. One of the earliest detailed studies of the evolution

of Population II stars toward the TRGB can be found in Hoyle and Schwarzschild (1955). A

schematic summarizing this evolution is presented in Fig. 1.7.

In order to make use of the near-constant luminosity of the TRGB as a distance gage, it

is usual to take measurements in the near infra-red region of the spectrum where dependence

on metallicity is minimal. Indeed, Lee et al. (1993) show that for metallicities in the range

−2.2 < [Fe/H] < −0.7, the absolute magnitude of the TRGB in Johnson-Cousins I band is

constant to within 0.1 magnitudes, where in V band it varies by 1.3 magnitudes. This small

variation is a consequence of the near-constant absorption in the stellar atmosphere in near-

infrared wavelengths. Using very accurate I band photometry for the globular cluster ωCen,

Bellazzini et al. (2001) derived the absolute magnitude of the TRGB as MI as −4.04 ± 0.12.

The MegaCam i bandpass is however significantly different to Johnson-Cousins I band and

so for our PAndAS photometry, it is more suitable to use Mi = −3.44 ± 0.12 as derived in

Bellazzini (2008) for SDSS i band. This is justified given the similar throughputs of the

MegaCam and SDSS i band filters as illustrated in Fig. 1.6.

At this point, having now introduced the burgeoning field of Galactic Archaeology, the

PAndAS survey and the unique opportunity it has provided to explore galaxy evolution in
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Figure 1.7: Schematic showing the evolution in temperature and luminosity of an intermediate
mass, metal poor star. The star ‘turns off’ the Main Sequence onto the Red Giant Branch (RGB) after
exhausting its core supply of hydrogen. The star expands and cools as it fuses hydrogen in a shell
surrounding the core. At the onset of core helium fusion, the star has reached the Tip of the Red Giant
Branch (TRGB) from which point it cools and contracts and enters life as a Horizontal Branch (HB)
star. When it exhausts its core supply of helium it continues to fuse helium in a shell around the core
once again becoming more luminous and following a path approaching the RGB asymptoticly. At
this stage in its evolution the star is hence known as an Asymptotic Giant Branch (AGB) star. Note
that stars spend only a tiny fraction of their life time as an AGB star in comparison to the time they
spend as RGB stars and hence AGB stars are much rarer and so do little to diminish the contrast of
the TRGB in an object’s luminosity function.

action, we come to the specific aims of the research contained in this thesis. The highest

ambition any research thesis can aspire to, is to make an original and significant contribution

to the field furnished with clear and accurate results. This is indeed a major underlying

motivation for this thesis, though of course, the contribution must inevitably be a specialized

one in a field with such enormous scope. To this end, the focus is concentrated on the satellite

system of M31. With the known satellite population of the M31 halo so greatly increased in

the last 5 years, largely thanks to the PAndAS survey, the time is ripe for a renewed study of

the three-dimensional spatial structure of the system. Such a study has the potential to shed
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light on the past evolution of the satellite system as well as the distribution of matter within

the M31 halo. It will also provide for a much needed comparison with the satellite system

of the Milky Way and, when combined with velocity information, will facilitate a new, more

accurate determination of the M31 halo mass. But before such a study can be undertaken,

accurate satellite positions derived consistently via a single method are paramount. Hence,

we turn our attention toward the development of a brand new algorithm for locating the

TRGB – in particular, one that takes into full account all prior information available about

the object’s luminosity function.



“Remember that all models are wrong; the practical question is how

wrong do they have to be to not be useful.”

George E. P. Box (1987)

2
Building the Framework for a new TRGB

Algorithm

2.1 The RGB Tip Finding Problem

Given the broad applicability of the Red Giant Branch tip magnitude as a standard candle,

it is not surprising to find that it is invoked frequently for distance measurements within the

Local Group. Identifying the magnitude of the TRGB accurately however is not without its

challenges, and hence many have resorted to simple “eyeball” measurements, read off from

the Luminosity Function (LF) of the object in question. Such an approach is acceptable

perhaps for distance measurements to a single, well populated object, but it falls short of the

task when a consistent measurement is desired for numerous objects within the same group,

or when the LF is poorly populated and the bright edge of the Red Giant Branch (RGB) is

31
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not clear-cut. There is also the problem of ascribing an accurate measurement uncertainty

to such an approach. It is therefore desirable to have an automated routine which, given

the object LF, returns the most likely position of the RGB truncation with a measure of the

uncertainty in this position.

The development of such a TRGB-finding algorithm is not without its difficulties how-

ever. Binned luminosity functions by their very nature suffer from Poisson noise, and thus

star counts in two neighboring bins may differ by a significant factor. This is a serious prob-

lem when the primary task of our algorithm is to locate a sudden jump in star counts that

might signal the bright edge of the RGB. It is however, less problematic for those objects

exhibiting well populated RGBs. There is also the question of how the LF is effected by

the stellar “background” contribution. After all, if the background LF contribution can be

isolated perfectly and subtracted from the net LF for the object field, the RGB tip magnitude

is simply the brightest non-zero bin remaining.

These issues have been approached in various ways over the years, and a more detailed

literature review is provided in Chapter 3 (see Paper I Introduction), but relevant develop-

mental landmarks are discussed below.

The first attempt at an automated tip-finding routine was introduced by Lee et al. (1993),

who employed what is essentially an edge-finding technique, similar to what one might

encounter in image processing. Instead of a 2D matrix however, the ‘image’ is the one-

dimensional, binned luminosity function and the edge finding kernel is a one-dimensional

Sobel kernel. The LF is convolved with this kernel, and peaks are produced at the loca-

tions where the discontinuity in star counts is greatest. With this method, they find that they

can regularly recover the location of the tip, accurate to within 0.2 of a magnitude. Whilst

this approach represents the first automated, repeatable TRGB finding method, the size of

the uncertainties limits its usefulness. At the distance of M31 for instance, an uncertainty

of 0.2 magnitudes corresponds to an uncertainty of approximately ±70 kpc in the distance.

The edge-finding method of Sakai et al. (1996) improves on this technique significantly by

addressing the luminosity function binning issue via Gaussian smoothing, so that stars no

longer fall in one single bin but rather contribute to all bins.

As shall be seen in the next section, some similar techniques to these were experimented
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with in the earliest days of the work contained in this thesis. Nevertheless, even with the

inclusion of Gaussian smoothing of the LF, the issue of the Poisson noise is still a major

concern with any pure edge-finding algorithm. Such techniques also ignore the distinction

between object and background contributions to the LF and in so doing, throw away valuable

information that might be used to constrain the location of the tip. Hence it is arguable that

a model-fitting approach is superior to simple edge-fitting, in that it is less susceptible to

the effects of Poisson noise, and more versatile with respect to the incorporation of prior

knowledge.

The base method introduced in Chapter 3; Paper I makes use of these advantages by mod-

eling both the background LF and signal or RGB LF separately. The RGB component of the

model, whereby the RGB is approximated by a truncated power law, is inspired by Méndez

et al. (2002). As in the base method of Chapter 3, they employ a maximum likelihood ap-

proach where the model parameters are updated at each iteration, and the likelihood of the

model being correct given the data is evaluated. They assume a fixed functional form for the

background bright-ward of the tip however, as well as a fixed value for the RGB slope. A

more sophisticated approach is to fit the functional form of the background on a case-by-case

basis using a suitable (and separate) background field. Likewise, the RGB slope can be set

as a separate free parameter.

2.2 Early Trials of TRGB Finding Algorithms

During the preliminary, “pathfinding” phase of the development of the base algorithm of

Chapter 3, various edge-finding algorithms were experimented with, some of which are now

discussed. The relevant code can be found in Appendix A (‘EdgeFinder7.f95’ and ‘RGB-

PeakFinder6.f95’).

The very first algorithms tested made use of artificial luminosity functions, where a de-

liberate ‘kink’ could be placed in the LF, and various algorithms used to recover the location

of that kink. The kink was generated by summing two luminosity functions together, one

displaced toward fainter magnitudes relative to the first such that the brightest non-zero bin

in the second LF would mark the beginning of the RGB. In effect, the first LF simulated
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the ‘background’ contamination whilst the second represented the luminosity function of the

actual RGB. The prominence of the discontinuity at the beginning of the RGB could be con-

trolled by adding a constant value to the RGB component of the LF. With the model LF set

up in this way, it can then be populated with the desired number of stars.

The first edge detecting algorithms implemented on this artificial data were comparable

to the kernel convolution method of Lee et al. (1993). Starting from the bright edge of

the luminosity function, the gradient between each consecutive pair of magnitude bins was

measured and stored. Once the whole LF had been scanned, the magnitude of the induced

kink (i.e. the TRGB) was taken to be the fainter of the two consecutive bins for which the

maximum gradient was recorded. An equivalent method replaced the measure of gradient

with that of the angle subtended by each consecutive set of three magnitude bins. The central

bin of the set producing the smallest angle was then taken as the magnitude of the TRGB.

Both of these approaches are of course susceptible to confusing a noise spike in the LF for

the ‘TRGB’ if the RGB truncation is not suitably prominent.

In an effort to lessen the sensitivity of the algorithm to Poisson noise, the possibility

of fitting either a single polynomial or polynomial splines to the LF was investigated. If

a suitable polynomial interpolation of the LF magnitude bins could be found, one would

effectively have a smoothed LF, hopefully devoid of problematic noise spikes. The location

of the tip could then be determined from the turning points in the second derivative of the

fitted polynomial. This approach is fraught with difficulties however, as the degree of the

polynomial or number of splines required depends on how smooth the LF is to begin with.

If the TRGB truncation lies amidst noise spikes of comparable prominence, it will be very

difficult to choose a polynomial which preserves the discontinuity in star counts at the TRGB

whilst simultaneously smoothing out the surrounding noise spikes. Furthermore, such an

approach inevitably requires a case-specific setup by the user and thus introduces significant

biases into the measurement process.

In addition to the above tests carried out on artificial data, further experimentation was

carried out on the luminosity functions of real objects. One fairly successful test incorporated

a Gaussian smoothing, similar to that employed by Sakai et al. (1996). The dependence of

the LF on binning was removed by replacing each star with a normalized Gaussian of some
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user-specified width and summing all Gaussians together. The width of the Gaussian was

chosen so as to produce the desired level of smoothing in the resulting LF, but in practice,

this value should be dependent on the photometric error at the magnitude in question (as is the

case in the base method of Chapter 3). Having produced this smoothed version of the LF, the

magnitudes at which significant star-count discontinuities occurred could be identified from

the function’s second derivative. The results of applying this process to the colour-magnitude

diagram of the M31 satellite galaxy Andromeda I (illustrated in Fig. 2.1) is presented in Fig.

2.2. It shows the smoothed Andromeda I luminosity function, created by replacing each star

with a Gaussian of width10.2 magnitudes. The superimposed function in red is the second

derivative of the LF, weighted by the star counts at that magnitude. It denotes inflection

points in the LF gradient. It is clear to the eye that the inflection point corresponding to the

TRGB is that identified at i0 = 20.77, which would correspond to a distance to Andromeda I

of 695 kpc. This is roughly consistent with the distances in the literature, though as shall be

clear from later measurements, the degree of smoothing applied to the LF has shifted the tip

brightward by (predictably) ∼ 0.1 magnitudes.

As is clear from Fig. 2.2, this approach does provide a useful compliment to a simple

“eyeball” measurement, providing the user with a computationally based readout of the most

likely tip locations. Precisely which location is the correct location is left to the discretion

of the user, and hence the method stumbles when the onset of the RGB is not clear to the

naked eye. As was the case for the polynomial fitting, there also remains the problem that

the degree of smoothing required will vary from object to object, and the measurement is

thus biased by the user’s choices and lacks consistency.

The results of all of these trials culminated in the realization that any method that is to

perform consistently across all luminosity functions, will need to abandon the hope that the

effects of Poisson noise can somehow be eliminated from the luminosity function. If the

method is to perform consistently across all luminosity functions that might be encountered,

the data contained therein should be accepted for what it is in its raw form, and a suitable

model developed that best explains it. In this way, we can incorporate our expectations of

1Specifically the width between the two inflection points of the Gaussian
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Figure 2.1: Colour-Magnitude Diagram for the dwarf spheroidal galaxy Andromeda I. It contains
all stars in the PAndAS survey with i-band magnitude i0 in the range 18 < i0 < 26, located within a
circular field of radius 0.1◦ centered on Andromeda I. The red lines indicate the colour-cut imposed
on the data in order to improve the contrast between the RGB and background stars. The Red Giant
Branch of the M31 Giant Stellar Stream is visible as a second, faint RGB on the red side of the
Andromeda I RGB. It can be seen much more prominently in Paper I, Fig. 2 where a larger field size
is plotted.

what form the LF might take were it so well populated that Poisson noise was no longer an

issue, and then let the data decide which version of the model approximates it best.

2.3 A Simple Maximum Likelihood Test

In order to gain a thorough understanding of how the RGB tip magnitude might be ascer-

tained via model fitting, it is essential to “start simple.” As the primary objective of any such

algorithm is to locate a sharp discontinuity in star counts, we can begin by approximating

the luminosity function with a simple step function, normalized so as to contain unit area.

We can then set the ‘step’ at a particular location, populate the resulting LF with the desired

number of star magnitudes and then attempt to recover the position of the step from those
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Figure 2.2: A smoothed version of the Andromeda I luminosity function, built using the stars
plotted in Fig. 2.1 after rejecting those stars outside of the colour-cut indicated. The superimposed
function in red is the second derivative of the smoothed LF, divided by the LF height, and indicates
the location of inflection points in the LF gradient. A blue arrow points out the inflection point at
i0 = 20.77 corresponding to the RGB tip. Note that the falloff in star counts faint-ward of i0 = 23.5 is
due to data incompleteness.

star magnitudes. The code pertaining to this section can be found in the program ‘spikes.f95’

in Appendix A.

In using a maximum likelihood approach, we note that our model LF - i.e. our nor-

malized step function - can actually be considered a probability distribution. It tells us the

probability of finding a star at any given magnitude. Bright-ward of the step where we have

only background stars, the probability of finding a star is lower but faint-ward of the step we

have both background stars and stars from the object’s RGB and so we expect more counts

at a given magnitude. We can make use of this probability distribution both to generate

our random sample of stellar magnitudes, and to recover the original state of the model that

produced them.

To produce our random magnitude sample, we make use of a random number generator -

but weight the likelihood of drawing a particular magnitude by our step function. This can be
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Figure 2.3: Random realization of a model luminosity function. It contains 1000 stars whose
magnitudes were drawn at random from a step function probability distribution (shown as a red dashed
line). The step is located at a magnitude of 0.4 and the signal and background components are in the
ratio 0.7 : 0.3 respectively.

done by taking the integral of the step function, which gives us the cumulative area under the

step function. This is equivalent to the probability of finding a star bright-ward of a particular

magnitude. We then multiply the total area under the step function by a number between 0

and 1 generated by the random number generator and then find the magnitude corresponding

to this value of the integral. In so doing we generate a ‘random realization’ of the step

function in question. In practice, any number of random realizations can be generated from

a single step function but the larger the sample, the better it will resemble the model that

was used to produced it. Fig. 2.3 shows one such random realization. It contains 1000 stars

and was produced from a step function where the fraction of stars contained in the RGB and

background components were 0.7 and 0.3 respectively. The step was located at a magnitude

of 0.4.

To recover the state of the model luminosity function which produced our artificial data,

we need to test the likelihood of the model reproducing that data for a range of different
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Figure 2.4: Schematic showing the scaling of the normalized step function as the step location is
moved to fainter magnitudes.

step positions. Since our model LF is a probability distribution, the likelihood of the model

producing a star at a particular magnitude is simply the value of the model at that magnitude.

Thus if we are given a single star at a particular magnitude, we can find the version of the

model that is most likely to have produced it by sliding the step location from the bright to

the faint end of the LF and then noting which step location produced a maximum likelihood

at the magnitude of the star. This process is illustrated in Fig. 2.4.

As can be seen in the figure, it is critical to the procedure that an equal area is preserved

under the model for all step positions tried. The model represents all possible magnitudes

at which a star can be observed and so the area underneath it should be unity. Likewise, the

ratio of the background and RGB contributions to the model should remain constant. Given

these requirements, the form of the probability distribution for the location of the step, as

determined from a luminosity function containing a single star can be understood. As the step

slides to fainter magnitudes, the RGB height rises to preserve equal area under the model.

Hence the likelihood of the model producing the star at the observed magnitude grows at an

increasing rate. Eventually however, the step slides past the magnitude at which the star is
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observed and the likelihood for any subsequent step positions being correct therefore drops

immediately to the background height.

In reality of course, one star does not constitute a useful luminosity function. We must

therefore understand how probability distributions for the step location are produced when

more than one star is present. To determine the likelihood of a particular state of the model

producing two or more stars at their specifically observed magnitudes, we multiply together

the likelihoods of the model separately producing each star. Equivalently, the final proba-

bility distribution for the step location is simply the product of the individual distributions

generated for each star. This result is illustrated in Fig. 2.5 for a 10 star luminosity function.

Whilst the probability distribution of Fig. 2.5 (b) reveals a large uncertainty in the loca-

tion of the step, little else can be expected from such a poorly populated luminosity function.

More important is the fact that we have a reliable measure of the uncertainty in the most likely

step position identified, assuming of course that our chosen model is a good approximation

for the mechanisms responsible for producing the LF, as is the case here. Nevertheless, for

well populated luminosity functions, the step location is generally locatable with consider-

able precision, as can be seen in Fig. 2.6 which has been generated from the luminosity

function of Fig. 2.3.

From the simple tests presented in this section, the power, as well as the relative simplic-

ity of the maximum likelihood model-fitting approach begin to emerge. Such an approach

is particularly robust, as every single data point is taken into account every time a possible

RGB tip location is considered. This greatly desensitizes any algorithm that implements it

against the localized effects of Poisson noise. The approach is also versatile, being appli-

cable to any model no matter how simple or complex. If we are to advance from a simple

‘step’ luminosity function however, we shall also need other tools at our disposal.
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a)

b)

Figure 2.5: Probability distributions for the location of the step (i.e. RGB tip) in a 10 star, ‘step’
luminosity function. Fig. (a) shows the individual probability distributions resulting from each star
whilst Fig. (b) shows the product of these individual distributions which forms the probability dis-
tribution given the whole luminosity function. As in Figures 2.3 and 2.4, the model which produced
the stars consisted of RGB and background contributions in the ratio of 0.7 : 0.3 and the step was
located at a magnitude of 0.4. Note that the total area under all distributions in both (a) and (b) is
unity, with all possible locations of the step position represented. This follows from the normalization
of the model for all step positions.
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Figure 2.6: Probability distribution for the location of the step in the 1000 star ‘step’ luminosity
function of Fig. 2.3.

2.4 The Markov Chain Monte Carlo Method

The tests of §2.3 approximated an object’s luminosity function with a single-parameter step

function. All possible states of such a model are obtainable by changing only the step loca-

tion. As such, it was not computationally intensive to calculate the likelihood for the model

at every possible step location, even for very small increments in the step location and for

very densely populated luminosity functions. A better model however, would take into con-

sideration other aspects of the LF, such as the background to RGB contribution ratio and

the slope of the RGB component. But the number of possible states of the model increases

exponentially with the number of free parameters, and hence so too does the computation

time. Hence the deterministic approach used above quickly becomes impractical as we add

increased complexity to our model. For this reason it is advantageous to adopt a Monte Carlo

method, which builds up a picture of the likelihood of the state space of the model by taking

samples of the model likelihood at randomly chosen parameter values. Our method of choice

is the Markov Chain Monte Carlo (MCMC) Method.
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The MCMC works via the construction of a Markov Chain. Named for the Russian

Mathematician Andrey Markov, it is essentially a statistically representative sample of all

possible states of a model, given a specific set of data. The sample is a chain, in the sense

that each newly chosen parameter set is affected by the previous. The creation of the chain

is however a ‘memoryless’ procedure, with each newly chosen state having no dependence

on past states in the chain, with the exception of the state that immediately preceded it. To

properly represent the differing likelihoods of various states, the chain should be created in

such a way as not to prohibit the possible recurrence of certain states. The extent to which

the chain explores the full state space of the model is of course dependent on the length

of the chain. One must therefore be careful to insure that the chain is indeed long enough

to be a true representation of the model states and their likelihoods. A detailed overview

of Markovian models with examples can be found in the online reference work Meyn and

Tweedie (1993).

There are various ways that a Markov Chain can be constructed, but the one employed

for the analysis contained in this thesis makes use of the Metropolis-Hastings algorithm

(Metropolis et al. 1953, Hastings 1970). An excellent introduction to this algorithm, with

examples can be found in Gregory (2005). The algorithm essentially provides an ‘intelligent’

random walk through the state space of the model by preferentially choosing steps toward

model parameter sets that have a higher likelihood. To initiate the algorithm, one must first

choose a ‘jumping distribution’ as well as a starting value, for each of the model parameters.

The jumping distribution is a probability distribution that defines how likely a jump to any

given parameter value is, given the present value of the parameter. For our implementation of

the MCMC, a Gaussian jumping distribution is chosen due to its symmetry and preference

for jumps to nearby parameter values. The appropriate width of the distribution for each

parameter is chosen through experimentation.

With the jumping distributions and initial parameter values defined, new parameter val-

ues are proposed and the model likelihood for those values is calculated. If the likelihood is

greater with these new parameter values than the current model likelihood, the proposed pa-

rameter values are automatically accepted and thus define the next model state in the chain.
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Figure 2.7: The random walk in the RGB tip magnitude over 1000 iterations, resulting from the
application of the MCMC to the Andromeda I luminosity function. The model LF being sampled
consisted of two free parameters, the RGB tip magnitude and the slope a of the power law chosen
to approximate the RGB component of the LF. (Generated using ‘BayesianTRGB ANDI. f 95’ - see
Appendix B)

If the model likelihood is smaller with these new parameter values, the probability of accept-

ing them is weighted by the ratio r of the two likelihoods, with r =
Lproposed

Lcurrent
. Specifically, a

random number d is drawn between 0 and 1 and the proposed step is taken only if d ≤ r.

An example of the random walk that results from many iterations of this process is provided

in Fig. 2.7, which shows the sampled values of the RGB tip parameter in the Andromeda I

LF in a Markov Chain of 1000 iterations. Note that this figure has been generated with prior

knowledge of the approximate magnitude of the tip, and hence there is no obvious lead-in

period. In practice, it is advantageous to excise the first thousand or so iterations (depending

on the step size and initial starting value) from the sample, to remove the initial walk to the

general location of the best-fit parameter value.

The single-parameter random walk exemplified by Fig. 2.7 is of course, only a partial

description of the Markov Chain. It ignores what any other parameters are doing at each
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iteration. It is therefore useful to plot each pair of parameters against each other to observe

any correlation between them. This said, whilst many parameters might be coupled, our ulti-

mate goal is to obtain the absolute probability of particular values of each parameter without

regard for what any other parameters are doing, thus creating a probability distribution for

the parameter. This is achieved by marginalizing over the other parameters. If our model

were to have n free parameters, the probability of one of the parameters having some partic-

ular value is equal to the integral under the n− 1 dimensional surface relating the probability

distributions of all the other parameters at that value. In practice, it is actually very straight-

forward to create the probability distributions of individual parameters of a Markov Chain,

by simply representing the number of occurrences of each parameter value as a histogram.

This process is illustrated in Fig. 2.8.

It is clear from Fig. 2.8 (b) that 1000 iterations of our MCMC algorithm is insufficient to

fully explore the likelihoods of the various model states. Indeed, for the probability distribu-

tions presented in Papers I and II, hundreds of thousands of iterations were found necessary

before the distributions were as smooth as one would expect to achieve via a deterministic

approach. With the underlying model luminosity function used for the analysis in each of

these papers being defined by only two free parameters, the MCMC approach might be de-

scribed as ‘overkill’ for the model used. It must be stressed however that this approach has

been built into the algorithm from the outset in order to facilitate added model complexity

with only minimal coding changes.

2.5 The Bayesian and the Frequentist

Statisticians are of two minds with regard to the nature of probability and how it should be

calculated. The traditional ‘Frequentist’ view, as the name suggests, holds that the proba-

bility of an event is related to the frequency with which it occurs over a large number of

samples. Strictly speaking, it is the limit in that frequency as the number of samples goes

to infinity and therefore it can never be calculated exactly. Frequentists hence speak of con-

fidence intervals, an interval over which they have some degree of confidence that an event
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a)

b)

Figure 2.8: Generating the probability distribution for a single parameter via marginalization. Both
Figures (a) and (b) are generated from the same Markov Chain as Fig. 2.7. Fig. (a) shows the value of
the RGB slope a corresponding to each value of the RGB tip. As the fitted model LF is defined solely
by these two parameters, the figure portrays all information contained in the Markov Chain. Fig. (b)
portrays the binned probability distribution in the RGB tip position. The height of each bin reflects
the number of data points in Fig. (a) recorded in the magnitude range represented by each bin. It is
clear that a longer chain is warranted if it is to form a truly representative sample of the state space of
the model. (Generated using ‘BayesianTRGB ANDI. f 95’ - see Appendix B)



2.5 The Bayesian and the Frequentist 47

will be observed. Beginning with the work of the mathematician Thomas Bayes (Bayes and

Price, 1763), a new perspective on the nature of probability began to emerge however. It

essentially regarded probability as a subjective construct, the distribution of which depended

on the prior knowledge available to the investigator. Herein lies the power of the Bayesian

technique. The probability of an event can be weighted by our knowledge of the laws that

govern it, thus producing a probability distribution which characterizes the credibility of the

measurement.

Central to Bayesian Inference is Bayes theorem. The modern form of Bayes Theorem

has it’s origin in the work of Pierre-Simon Laplace (Laplace, 1812). It is commonly written

as follows:

P(A | B) =
P(B | A) × P(A)

P(B)
(2.1)

where P(A|B) is the probability of A being true, given observation B; P(B|A) is the proba-

bility of B being true, given A; and P(A) and P(B) are the absolute probabilities of A and B

respectively. As an example, suppose someone comes across a set of 10 old coins in the attic,

apparently all identical. Upon closer inspection however, they note that one of them has a

particular mintmark. After some investigation they determine this mintmark to be quite rare,

being found on only 1% of coins of that type. They also learn however, that 30% of all coins

of the type are fakes, and that 90% of the fakes bear the mintmark. So what is the probability

that they have found an authentic example? We have

P(real | mintmark) =
P(mintmark | real) × P(real)

P(mintmark)

=
0.01 × 0.7

0.01 × 0.7 + 0.9 × 0.3

= 2.5%.

(2.2)

Note however that if the finder of the coin had not done their research, they would have

had to assume that approximately 1 in 10 coins of the type bear the mintmark, and that the

authenticity of the coin was not in question. Prior knowledge has thus completely changed

their perspective.

We can equally well apply Bayes Theorem to our model-fitting RGB tip finding algorithm
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thus:

f (Mp | D) =
f (D | Mp) × f (Mp)

f (D)
, (2.3)

where f (Mp|D) is the ‘posterior’ distribution in model parameter p after taking into account

the data D. The function f (D|Mp) is the distribution of likelihoods obtained from the model

for the various values of p, f (Mp) is our ‘prior’ or initial assumption as to the distribution in

p before accounting for the data, and f (D) is the probability distribution for the data points

- i.e. the luminosity function. Since f (D) is constant regardless of the model parameters, it

scales all probabilities by the same amount and hence is dealt with the by the normalization

of the posterior distribution. In the examples of §2.3 and §2.4, a ‘uniform’ prior has always

been assumed, such that f (Mp) = c, a constant. If we are to better constrain our posterior

distributions however, we should incorporate all prior information we have on the object

studied.

2.6 Prior Information

As shall be seen in the next two chapters, prior information has been incorporated into our

TRGB algorithm in a variety of ways. Some of our prior knowledge of the objects under

study has been applied in the form of an independent ‘prior’ distribution which is multiplied

by the likelihood distribution as per Eq. 2.3, while other prior information has been built

into the model luminosity function directly. The model LF by it’s very nature reflects our

assumptions as to the form it would take were it populated with an infinite number of stars,

thereby eradicating any Poisson noise. We assume a truncated power law for the RGB and

fit the background component directly with a polynomial. This process is discussed in detail

in Paper I, but it is important to realize that the model LF applied to each object is ‘custom

built’ for that object. The likelihood distribution generated for each parameter thus already

incorporates prior information we have for the object.

To expand on this, it shall be seen in the next two chapters that the areas under the RGB

and background components of the model LF are set based on the average stellar density in

the object field as compared with that of a suitable ‘background’ field. The background field

is chosen so that it lies very close to the object field, and is usually in the form of a large
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rectangle centered on the object, but with the object field subtracted so that the object RGB

contributes negligibly to the LF of the background field 2. In so doing, we are effectively

assigning a prior constraint on how many stars we expect to find at a given magnitude on

either side of the RGB tip. If the average stellar density in the background field is very low

compared with that of the object field, than we do not expect to find very many stars that are

not true members of the object RGB.

With the base method presented in Paper I, the ratio of the RGB to background model

contributions is held constant for all stars. When the density matched filter is applied in

Paper II however, individual stars are assigned a weight that reflects our prior expectation as

to the probability of their being true object members. Using this information, we can tailor

our model LF not only to the object in question, but to the specific star in question. The ratio

of the RGB to background model contributions is calculated for each star individually, based

on its position within the object’s density profile.

In addition to the prior information that has been incorporated directly into the model

LF, additional prior information has been incorporated in the conventional sense, i.e. as a

prior probability distribution. The default prior distribution is a uniform prior, an assumption

of equal probability for all parameter values. Various prior distributions were experimented

with in the initial development of the base algorithm, each one devised so as to put some

constraint on the distance at which the object can be found. A Gaussian distribution could be

chosen for example, with the center of the distribution corresponding to the distance of M31

and the width reflecting our assumptions as to the extent of the halo. Alternatively, a flattened

Gaussian could be chosen so as to yield equal probability over some desired distance range

whilst cutting off sharply outside of that range. The priors on the tip magnitude mTRGB and

RGB slope a for both papers have been simple top hat functions, such that 19.5 ≤ mTRGB ≤

23.5 and 0 < a < 2 are predicted with equal probability whilst values outside of those

ranges are assumed impossible. A more subjective prior is assumed in Paper II for the object

2Note that in Paper I, the background fields used were long stripes running along the Galactic Latitude of

the object, as can be seen in Paper I, Fig. 3. It was later determined however that smaller fields provided a

better approximation to the localized background contained in the object field. Hence, the background fields

used for Paper II were rectangles of approximately 2◦ × 1◦ oriented as before with the longer axis parallel to

lines of equal Galactic Latitide.
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distance however, namely the density profile of a simple spherical halo along the line of sight

passing through the object (see Paper II, Fig. 6).

The net result of the inclusion of the prior information discussed above, is that we trans-

form our simple maximum likelihood technique of §2.3 into an ‘educated’ tip finding algo-

rithm. We effectively combine the best of both worlds by automating the tip finding process,

but at the same time imparting some of the intuition to the tip finding algorithm that we

would use if estimating the tip magnitude from the LF by eye. Such is the power of Bayesian

Inference, that we can combine the information obtainable from one lone data sample with

all other knowledge we can possibly infer about the circumstances which produced it.



“Every statistician would be a Bayesian if he took the trouble to read

the literature thoroughly...”

D. V. Lindley (1986)

3
Paper I: A Bayesian Approach to Locating

the Red Giant Branch Tip Magnitude. I.
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Paper I Preface

This chapter presents the first of three papers which, together, represent the very heart of the

thesis. They are perhaps best thought of as a ‘trilogy,’ as each one flows naturally into the

next and, though written to stand as independent contributions in their own right they are

best understood in the light of their companion papers. Unlike papers II and III however,

Paper I is primarily a ‘methods’ paper. It lays the foundations for a new approach to the long

standing Tip of the Red Giant Branch problem which is further developed in Paper II where

it is applied to the majority of the M31 satellites. A preliminary analysis of the satellite

distribution is provided in that paper with a study of the halo density profile but the real

‘fruits of the labour’ follow in Paper III which contains a thorough analysis of the satellite

spatial distribution which has led to some very interesting results. Whilst papers II and III

shall likewise be introduced with their own preface, chapters 1 and 2 arguably form the real

‘preface’ for this paper and hence it seemed apt that this paper should be introduced with a

discussion of its place within a broader picture. Note also that the principal programing code

pertinent to the material presented in this paper can be found in Appendix B.
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ABSTRACT

We present a new approach for identifying the tip of the red giant branch (TRGB) which, as we show, works
robustly even on sparsely populated targets. Moreover, the approach is highly adaptable to the available data for the
stellar population under study, with prior information readily incorporable into the algorithm. The uncertainty in the
derived distances is also made tangible and easily calculable from posterior probability distributions. We provide an
outline of the development of the algorithm and present the results of tests designed to characterize its capabilities
and limitations. We then apply the new algorithm to three M31 satellites: Andromeda I, Andromeda II, and the
fainter Andromeda XXIII, using data from the Pan-Andromeda Archaeological Survey (PAndAS), and derive

their distances as 731
(+5)+18
(−4)−17 kpc, 634

(+2)+15
(−2)−14 kpc, and 733

(+13)+23
(−11)−22 kpc, respectively, where the errors appearing in

parentheses are the components intrinsic to the method, while the larger values give the errors after accounting
for additional sources of error. These results agree well with the best distance determinations in the literature and
provide the smallest uncertainties to date. This paper is an introduction to the workings and capabilities of our
new approach in its basic form, while a follow-up paper shall make full use of the method’s ability to incorporate
priors and use the resulting algorithm to systematically obtain distances to all of M31’s satellites identifiable in the
PAndAS survey area.

Key words: galaxies: general – galaxies: stellar content – Local Group

Online-only material: color figures

1. INTRODUCTION

The tip of the red giant branch (TRGB) is a very useful
standard candle for gauging distances to extended, metal-poor
structures. The tip corresponds to the very brightest members
of the first ascent red giant branch (RGB), at which point
stars are on the brink of fusing helium into carbon in their
cores and hence contracting and dimming to become horizontal
branch stars. The result is a truncation to the RGB when the
color–magnitude diagram (CMD) for an old stellar population
is generated, beyond which lie only the comparatively rare
asymptotic giant branch (AGB) stars and sources external to the
system of interest. The (highly variable) contamination from
such objects provides the principal obstacle to simply “reading
off” the tip position from the RGB’s luminosity function (LF)
and the truncation of the AGB can even masquerade as the
TRGB in certain instances. The I band is the traditionally favored
region of the spectrum for TRGB measurements, minimizing the
interstellar reddening that plagues shorter wavelengths, while
keeping dependence on metallicity lower than it would be
at longer IR wavelengths. It should also be remembered that
stars approaching the TRGB generally exhibit peak emission in
this regime. Iben & Renzini (1983) determined that low-mass
(<1.6 M⊙ for Population I, <1 M⊙ for Population II), metal-
poor ([Fe/H] < −0.7 dex) stars older than 2 Gyr produce a
TRGB magnitude that varies by only 0.1 mag. More recently,

Bellazzini et al. (2001) determined the tip magnitude to lie at
an I-band magnitude of MTRGB = −4.04 ± 0.12. This low
variation can be attributed to the fact that all such stars have
a degenerate core at the onset of helium ignition and so their
cores have similar properties regardless of the global properties
of the stars. The result is a standard candle that is widely
applicable to the old, metal-poor structures that occupy the halos
of major galaxies. Distances derived from the TRGB, unlike
those from a Cepheid variable or RR Lyrae star, for example,
can be determined from a single epoch of observation, making
it very useful for wide-area survey data. Furthermore, Salaris &
Cassisi (1997) confirmed agreement between Cepheid and RR
Lyrae distances and TRGB distances to within ∼5%.

Until Lee et al. (1993) published their edge-finding algorithm,
the tip had always been found by eye, but clearly if the wide-
reaching applications of the TRGB standard candle were to
be realized, a more consistent, repeatable approach was in
order. The aforementioned paper shows that, if a binned LF
for the desired field is convolved with a zero sum Sobel kernel
[−2, 0, +2], a maximum is produced at the magnitude bin
corresponding to the greatest discontinuity in star counts, which
they attribute to the tip. Using this method, they were able to
obtain accuracies of better than 0.2 mag. Sakai et al. (1996) set
out to improve on this approach by replacing the binned LF and
kernel with their smoothed equivalents. To do this, they equate
each star with a Gaussian probability distribution whose FWHM

1
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is determined by the photometric error at the magnitude actually
recorded for the star. Then, rather than each star falling within a
particular bin, it contributes to all bins via a normalized Gaussian
centered on the magnitude recorded for it. This is illustrated in
Equation (1):

Φ(m) =

N
∑

i=1

1
√

2πσ 2
i

exp

[

−
(mi − m)2

2σ 2
i

]

, (1)

where m is the magnitude of the bin in question and mi and
σ 2

i are the central magnitude and variance, respectively, of the
Gaussian probability distribution for the ith star. This method
halved the error associated with the non-smoothed version of the
algorithm and an identical smoothing is hence just incorporated
into the model LF for our Bayesian approach.

In a more recent variation on the edge detection methods,
Madore et al. (2009) once again applied a Sobel kernel, but
fit to an LF built from composite stellar magnitudes T ≡
I − β[(V − I )0 − 1.50] where β is the slope of the TRGB
as a function of color. This, they argued, results in a sharper
output response from the filter, and allows all stars, regardless
of color, to contribute equally to the derived tip position. Rizzi
et al. (2007) derived a value of 0.22±0.02 for β after a study of
five nearby galaxies, and showed that it is quite consistent from
one galaxy to another.

Méndez et al. (2002) made a departure from the simple “edge-
finding” algorithms above by adapting a maximum likelihood
model fitting procedure into their technique. They pointed out
that the LF faintward of the tip is well modeled as a power law:

L(m ! mTRGB) = 10a(m−mTRGB), (2)

where m ! mTRGB and a is fixed at 0.3. They then ascribed
the location of the tip to the magnitude at which this power law
truncates, i.e., m = mTRGB. Brightward of the tip they assumed
a functional form

L(m < mTRGB) = 10b(m−mTRGB)−c, (3)

where b is the slope of the power law brightward of the tip and
c is the magnitude of the step at the RGB tip.

Such a model, though simplistic, is robust against the strong
Poisson noise that is inevitable in more sparsely populated LFs,
making it a significant improvement over the previous, purely
“edge-finding” methods.

Makarov et al. (2006) followed in a similar vein, demonstrat-
ing the proven advantages of a maximum likelihood approach
over simple edge detection techniques, despite a model depen-
dence. Unlike Méndez et al. (2002) however, they allowed a
as a free parameter, arguing its notable variance from 0.3, and
importantly, they smoothed their model LF using a photomet-
ric error function deduced from artificial star experiments. One
shortcoming of both of these methods, however, is that the most
likely parameter values alone are obtained, without their respec-
tive distributions or representation of their dependence on the
other parameters. Also, with regard to the background contam-
ination, the RGB LF in fact sits on top of non-system stars in
the field and so rather than model the background exclusively
brightward of the TRGB, the truncated power law of Equation
(2) can be added onto some predefined function of the contam-
ination.

Arguably the most successful method developed so far has
been that devised by McConnachie et al. (2004). It has been

used to ascertain accurate distances to 17 members of the Local
Group (McConnachie et al. 2005). It combines aspects of both
“edge-finding” and model fitting to zero in more accurately on
the tip. They argued that as the precise shape of the LF at the
location of the tip is not known, a simple Sobel Kernel approach
that assumes a sharp edge to the RGB does not necessarily
produce a maximum at the right location. They instead used
a least-squares model-fitting technique that fits to the LF in
small windows searching for the portion best modeled by a
simple slope function. This, they reasoned, marks the location
of the steepest decline in star counts which is attributable to the
tip location. This method is capable of finding the tip location
accurate to better than 0.05 mag, although is still susceptible to
being thrown off by noise spikes in a poorly populated LF.

Despite the merits of previous methods such as these, none
of them work particularly well when confronted with the high
levels of Poisson noise that abound in the more poorly popu-
lated structures of galaxy halos. Furthermore, in such condi-
tions as these where the offset between detected and true tip
position will likely be at its greatest, it is of great use to have
a full picture of likelihood space, as opposed to merely the
determined, most probable value. This has led us to develop
a new, Bayesian approach to locating the TRGB, specifically,
one that incorporates a Markov Chain Monte Carlo (MCMC)
algorithm. As shall become apparent in the next section, such
a method is very robust against noise spikes in the LF and al-
lows all prior knowledge about the system to be incorporated
into the tip-finding process—something lacking in the previous
approaches. Further to this, the MCMC provides for a remark-
ably simple, yet highly accurate error analysis. It also makes
it possible to marginalize over parameters to provide posterior
probability distributions (PPDs) of each parameter, or to obtain
plots of the dependence of each parameter on every other. In
Section 2, a detailed explanation of our approach and its limi-
tations is given. Section 2.1 introduces the method by applying
the algorithm to one of M31’s brightest dwarf spheroidals, An-
dromeda I. Section 2.2 discusses the nature of systematic errors
that apply to the method. Section 2.3 investigates the accu-
racy that the basic method (before addition of priors) is capable
of given the number of stars populating the LF for the field
and the strength of the non-RGB background while Section 2.4
deals with its performance when faced with a composite LF.
Section 3 then applies our new approach to two additional M31
dwarf satellite galaxies and Section 4 summarizes the advan-
tages of the method and outlines the expected applicability of
the method in the immediate future.

2. METHOD

2.1. The MCMC Method

The MCMC method is an iterative technique that, given some
model and its associated parameters, rebuilds the model again
and again with different values assigned to each parameter, in
order that a model be found that is the best fit to the data at
hand. It does this by comparing the likelihood of one model,
built from newly proposed parameter values, being correct for
the data, as opposed to the likelihood for the model built from
the previously accepted set of model parameters. The MCMC
then accepts or rejects the newly proposed parameter values
weighted by the relative likelihoods of the current and proposed
model parameter values. At every iteration of the MCMC, the
currently accepted value of each parameter is stored so that the
number of instances of each value occurring can be used to build

2
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Figure 1. Position of Andromeda I relative to the M31 disk. The saturated disk
dominates the northwest corner of the field while Andromeda I itself appears
as an overdensity within the Giant Stellar Stream (GSS). The GSS in actuality
lies well behind Andromeda I, as is evidenced by the CMD in Figure 2. A strict
color-cut was imposed on the data to highlight the location of the satellite and
the extent of the stream with greatest contrast.

(A color version of this figure is available in the online journal.)

a likelihood distribution histogram—which can be interpreted as
a PPD—for each model parameter. Hence, the MCMC is a way
of exploring the likelihood space of complicated models with
many free parameters or possible priors imposed, where a pure
maximum likelihood method would be quickly overwhelmed.
With the PPD generated, the parameter values that produce the
best-fit model to the data can simply be read off from the peak
of the PPD for each parameter. Similarly, the associated error
can be ascertained from the specific shape of the distribution. A
detailed description of the MCMC with worked examples can
be found in Gregory (2005, Chap. 12).

To illustrate the precise workings of our MCMC tip-finding
algorithm, its application to a well-populated dwarf galaxy in the
M31 halo is described. Andromeda I was discovered by van den
Bergh (1971) and at a projected distance of ∼45 kpc from M31
(Da Costa et al. 1996), it is one of its closest satellites. Da Costa
et al. (1996) ascribed to it an age of ∼10 Gyr and a relatively
low metallicity of 〈Fe/H〉 =− 1.45 ± 0.2 dex which is clearly
exemplified in the CMD for Andromeda I presented in Figure 2.
Here the RGB of Andromeda I lies well to the blue side of that of
the Giant Stellar Stream (GSS) which lies behind Andromeda I
but in the same field of view. Mould & Kristian (1990) provide
the first TRGB-based distance measurement to Andromeda I,
which they deduce as 790 ± 60 kpc, based solely on a visual
study of the RGB. McConnachie et al. (2004) improve on
this significantly, producing a distance determination of 735 ±

23 kpc, based on a tip magnitude of 20.40+0.03
−0.02 in the I band.

Andromeda I’s position with respect to M31 and the GSS is
presented in Figure 1, where the red circle indicates the precise
field area fed to our MCMC algorithm. An object-to-background

Figure 2. Color–magnitude diagram for a circular field of radius 0.◦2 centered
on Andromeda I. Two red giant branches are clearly visible, that of Andromeda
I (within the red rectangle color-cut) and that of the Giant Stellar Stream which
lies behind Andromeda I in the same line of sight.

(A color version of this figure is available in the online journal.)

ratio (OBR) of 11.0 was recorded for this field with the color-cut
applied, based on comparisons of the signal field stellar density
with that of an appropriate background field. The data presented
in this figure, as with all other data discussed in this paper,
were obtained as part of the Pan-Andromeda Archaeological
Survey (PAndAS; McConnachie 2009), undertaken by the
3.6 m Canada–France–Hawaii Telescope (CFHT) on Mauna
Kea equipped with the MegaCam imager. CFHT utilizes its own
unique photometric bandpasses i and g based on the AB system.
We work directly with the extinction-corrected CFHT i and g
magnitudes and it is these that appear in all relevant subsequent
figures. The extinction-correction data applied to each star have
been interpolated using the data from Schlegel et al. (1998).

At the heart of our tip-finding algorithm is the model LF
that the MCMC builds from the newly chosen parameters at
every iteration. The LF is a continuous function which we
subsequently convolve with a Gaussian kernel to account for
the photometric error at each magnitude. This is achieved by
discretizing both functions on a scale of 0.01 mag. Like Méndez
et al. (2002), we assume the LF faintward of the tip to follow a
simple power law, of the form given in Equation (2); however,
we set a as a free parameter. The bin height at each magnitude is
then calculated by integrating along this function setting the bin
edges as the limits of integration. The value for the bin which is
set to contain the RGB tip for the current iteration is calculated
by integrating along the function from the precise tip location
to the faint edge of the bin. All other bins are then set at 0. A bin
width of 0.01 mag for our model was found to provide a good
balance between magnitude resolution, which is limited by the
photometric error in the MegaCam data (∼0.01 mag at m =

20.5), and the computational cost for a higher number of bins.
We stress here, however, that each star’s likelihood is calculated
from the model independently, so that the actual data LF is “fed”
to the MCMC in an unbinned state. A faint edge to the model
LF was imposed at m = 23.5 to remove any significant effects
from data incompletion and increasing photometric error.

Further to this, we add a background function to this truncated
power law. While the scaling of the background strength
relative to the RGB signal strength could be set as another
free parameter, and indeed was initially, it makes better use

3
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of our prior information to instead determine the fraction of
background stars or “background height” (f) manually. This is
achieved simply by calculating the average density of stars in
the background field DBG and in the “signal” field DSIG with f
then being the ratio of the two, i.e., f = DBG/DSIG. Note that
this is not directly the inverse of the object-to-background star
ratio, OBR = (DSIG−DBG)/DBG, as f represents the percentage
of all stars lying inside the signal field that can be expected to be
external to the object of interest. Hence, when we normalize the
area under the model LF so that it may be used by the MCMC as
a probability distribution, the background component will have
area f while the RGB component will have area 1 − f . Now,
with f known, what we then have is a simplified two-parameter
model, allowing for faster convergence of the MCMC algorithm.

We have thus devised our model so that the MCMC is tasked
with the problem of finding just two parameters, namely the
slope of the RGB LF (a) and of course the location of the
RGB tip magnitude (mTRGB). For simplicity in this first paper,
we impose uniform priors on each of these parameters, where
19.5 " mTRGB " 23.5 and 0 " a " 2. We also do not account
for the color dependence of the tip magnitude which is only
slight in the I band (see Rizzi et al. 2007) and for the metal-
poor targets examined here, but these effects will be dealt with
in future publications. While it is true that two parameters are
tractable analytically, we apply the numerical MCMC in order
to set the framework for computationally more challenging
models with non-uniform priors that will become necessary
for the more sparsely populated structures presented in future
contributions. There are, however, several more complexities
to the model that have yet to be discussed. First, the choice of
background function is not arbitrary. It has been found that the
best way to model the background is to fit it directly by taking
the LF of an appropriate “background” field. The best choice
of background field is arguably one that is at similar galactic
latitude to the structure of interest, as field contamination is
often largely Galactic in origin, and hence closely dependent
on angular distance from the Galactic plane. Furthermore, the
field should be chosen so that the presence of any substructure
is minimal, so as to prevent the signature of another halo object
interfering with the LF for the structure of interest.

In addition to these constraints, owing to the low stellar
density of the uncontaminated halo, it is preferable that the
background field be as large as possible to keep down the
Poisson noise and hence it will of necessity be much larger
than that of the field of interest. As a result, the main error in
the background fit will arise from background mismatching and
is not random. In addition, the large background field size may
inevitably contain some substructure, requiring removal. This
may be done by physically subtracting contaminated portions of
the background area, but this is often unnecessary as the CMD
color-cut imposed on the signal field must also be applied to the
background field, usually ridding the sample of any substantial
substructure that may be present. In the case of our Andromeda I
background field, however, we have removed a large 2.◦4
portion crossing numerous streams (as shown in Figure 3)
as these streams do trespass into the chosen Andromeda I color-
cut. Nevertheless, this is just a precaution, because for well-
populated systems such as Andromeda I and Andromeda II, the
algorithm is impervious to small discrepancies in the functional
form of the background.

Once an appropriate background field has been selected, its
LF can be fitted by a high-order polynomial. This polynomial
then becomes the function added to our model and scaled

Figure 3. Map of the entire PAndAS survey area, with color-cut chosen to
favor the low metallicities exhibited by many of M31’s satellite galaxies. The
three dwarf spheroidal companions of M31 studied in this paper are labeled,
along with the signal fields (small circles of radius 0.◦2) and their respective
background fields fed to our algorithm. Note that the background fields are
chosen to be as narrow as possible in Galactic latitude while retaining as large
an area as possible. In each case, the signal field areas are subtracted from their
respective background fields to prevent contamination.

(A color version of this figure is available in the online journal.)

by f as described earlier. Our choice of background field for
Andromeda I (along with Andromeda II and Andromeda XXIII)
and the polynomial fit to its LF are presented in Figures 3 and
4, respectively.

The other major consideration that has yet to be addressed
is the effect of photometric error on the LF. This is dealt
with by convolving the initial binned model with a normalized
Gaussian whose width is adjusted as a function of magnitude
in accordance with the error analysis conducted on the PAndAS
data. This is equivalent to the method of Sakai et al. (1996)
described in Equation (1). As described earlier, this procedure
has the added advantage of making the model independent of
binning. It is also important in this stage, as it is at every stage,
that the model and all constituent parts are normalized so that
the model can be used as a probability distribution.

With these issues addressed, the MCMC algorithm can be
set in motion. The i-band magnitudes and (g − i)0 data for
the desired field is read into data arrays, spurious sources
are rejected, and a color-cut is imposed to remove as many
non-members of the structure’s RGB as possible. The same
constraints are of course applied to the background field as
well. The MCMC then applies preset starting values of a and
mTRGB and builds the corresponding model for the first iteration.
Within this iteration, the MCMC proposes new values for each
parameter, displaced by some random Gaussian deviate from the
currently set values and re-constructs the appropriate model.
The step size, or width of the Gaussian deviate is chosen so
as to be large enough for the MCMC to explore the entire
span of probability space, while small enough to provide a
high-resolution coverage of whatever features are present. The
ratio of the likelihoods of the two models is then calculated
(the Metropolis Ratio r) and a swap of accepted parameter
values made if a new, uniform random deviate drawn from the
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Figure 4. Top: CMD for the Andromeda I background field (see Figure 3). The
same color-cut is applied as in the CMD for the signal field (Figure 2). Bottom:
The binned luminosity function for the background with the fitted polynomial
superimposed. A polynomial of degree seven was found adequate to represent
the luminosity function.

(A color version of this figure is available in the online journal.)

interval [0,1], is less than or equal to r. The calculation of the
Metropolis Ratio for our model is exemplified in Equations (4)
and (5):

r =
Lproposed

Lcurrent

(4)

with the value for each of the likelihoods L being calculated
thus

L =

ndata
∏

n=1

M(mTRGB, a,mn) (5)

with

M(mn ! mTRGB) = RGB(mn) + BG(mn)

M(mn < mTRGB) = BG(mn)

where RGB(mn) = 10a(mn−mTRGB) (6)

and

∫ m=23.5

m=mTRGB

RGB dm = 1 − f

and

∫ m=23.5

m=19.5

BG dm = f,

Figure 5. Posterior probability distribution for three million iterations of the
MCMC on the Andromeda I CMD color-cut presented in Figure 2. The peak
probability is located at i0 = 20.88. The distribution is color coded, with red
indicating tip magnitudes within 68.2% (Gaussian 1σ ) on either side of the
distribution mode, green those within 90%, and blue those within 99%.

(A color version of this figure is available in the online journal.)

where mTRGB and a are the parameters currently chosen for the
model by the MCMC, ndata is the number of stars and mn is
the i-band magnitude of the nth star. BG represents the fitted
background function (see Figure 4). The MCMC then stores the
new choice for the current parameter values and cycles to the
next iteration. In order to ascertain a reasonable number of
iterations, the chains for each parameter were inspected to insure
that they were well mixed, resulting in posterior distributions
that appeared smooth (by eye).

When the MCMC has finished running, the PPD for each pa-
rameter is generated. By binning up the number of occurrences
of each parameter value over the course of the MCMC’s itera-
tions, the probability of each value is directly determined and
the most probable value can be adopted as the correct model
value for the data. If one assumes a Gaussian probability distri-
bution, then the 1σ errors associated with each parameter value
can be obtained simply by finding the value range centered on
the best-fit value that contains 68.2% of the data points. As our
PPDs are not always Gaussian, our quoted 1σ errors in the tip
magnitude represent more strictly a 68.2% credibility interval.
We do not fit a Gaussian to our PPDs to obtain 1σ errors. Our 1σ

errors in tip magnitude are obtained by finding the magnitude
range spanning 68.2% of the PPD data points, on one side of
the distribution mode and then the other. It must be stressed that
these quoted errors are merely an indicator of the span of the
parameter likelihood distribution and are no substitute for ex-
amining the PPDs themselves. Figures 5 and 6 present the PPD
for the RGB tip magnitude based on the Andromeda I CMD
(Figure 2) and the best-fit model to the LF for the field, respec-
tively. The PPD for the LF slope a is presented in Figure 7 and
a contour map of the distribution of the tip magnitude versus a
is presented in Figure 8.

Upon the completion of the algorithm, the RGB tip for
Andromeda I was identified at m = 20.879+0.014

−0.012. This cor-

responds to an extinction-corrected distance of 731
(+5)+18
(−4)−17 kpc,

where the final errors include contributions from the extinction
and the uncertainty in the absolute magnitude of the TRGB (see
Section 2.2). The i-band extinction in the direction of
Andromeda I is taken as Aλ = 0.105 mag (Schlegel et al.
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Figure 6. Four-magnitude segment of the Andromeda I luminosity function
fitted by our MCMC algorithm. It is built from 3355 stars. The best-fit model is
overlaid in red. The bin width for the LF is 0.01 mag.

(A color version of this figure is available in the online journal.)

Figure 7. Posterior probability distribution obtained for the slope a of the
Andromeda I luminosity function. The distribution is a clean Gaussian with the
distribution mode at 0.273.

Figure 8. Contour map of the distribution of the tip magnitude vs. the LF slope
a. It is noteworthy that there is little correlation between the two parameters,
with the peak of the distribution of a more or less independent of tip magnitude.
Regardless of any correlation, the respective PPDs of each parameter are the
result of marginalizing over the other parameter, and thus take into account any
covariance between parameters.

Figure 9. Plot of the distribution of possible distances to Andromeda I obtained
through the application of our method. Once again, the colors red, green, and blue
denote distances within 68.2%, 90%, and 99% credibility intervals, respectively.

(A color version of this figure is available in the online journal.)

1998). The parameters a and f were derived as 0.273 ±

0.011 and 0.083, respectively. This distance measurement
is in excellent agreement with the distance determined by
McConnachie et al. (2004). It is noteworthy, however, that
our method searches for the TRGB itself as distinct from
the RGB star closest to the TRGB as sort out by the
method of McConnachie et al. (2004), which would con-
tribute to our slightly smaller distance measurement. A sim-
ilar discrepancy arises in the case of Andromeda II (see
Section 3).

2.2. A Note on Distance Errors

Despite the small errors in the tip magnitude afforded by
our approach, there are a number of factors that contribute to
produce a somewhat larger error in the absolute distance. These
arise due to uncertainties both in the extinction corrections
applied and in the absolute magnitude of the TRGB in the i
band. Both of these contributions are assumed to be Gaussian,
where the 1σ error in the extinction correction, ∆{Aλ}, is taken
as 10% of the correction applied, and the error in the absolute
magnitude of the tip is expressed in Equation (7) below

∆
{

MTRGB
i

}

=

√

∆2
{

mTRGB
i

}

ωCen
+ ∆2{Aλ}ωCen + ∆2{m − M}ωCen

=
√

{0.04}2 + {0.03}2 + {0.11}2

= ±0.12. (7)

As we are working in the native CFHT i and g bands, we
adopt this magnitude as MTRGB

i = −3.44 ± 0.12, where the

conversion from MTRGB
I is based on the absolute magnitude

for the TRGB identified for the Sloan Digital Sky Survey
(SDSS) i band (Bellazzini 2008). This is justified by the color
equations applying to the new MegaCam i-band filter (Gwyn
2010). Noting that the largest contribution to this error is that
from the distance modulus to ωCen, (m − M)ωCen, derived
from the eclipsing binary OGLEGC 17, we consider only the
contributions from the extinction {Aλ}ωCen, which is taken as
10% of the Schlegel et al. (1998) values, and the apparent
tip magnitude determination {mTRGB

i }ωCen and note that our
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derived distance modulus may be systematically displaced
by up to 0.1 of a magnitude. This then gives us MTRGB

i =

−3.44 ±
√

0.042 + 0.032 = −3.44 ± 0.05. Since our principal
motive is to obtain relative distances between structures within
the M31 halo rather than the absolute distances to the structures,
this offset is not important. Furthermore, as measurements for
the ωCen distance modulus improve, our distances are instantly
updatable by applying the necessary distance shift.

While these external contributions to our distance uncertain-
ties may be taken as Gaussian, the often non-Gaussian profile of
our TRGB (mTRGB

i ) posterior distributions necessitates a more
robust treatment then simply adding the separate error compo-
nents in quadrature. Hence to obtain final distance uncertainties,
we produce a distance distribution obtained by sampling com-
binations of mTRGB

i , Aλ and MTRGB
i from their respective likeli-

hood distributions, thus giving us a true picture of the likelihood
space for the distance. The result of this process for Andromeda I
is illustrated in Figure 9. From this distribution, we determine
not only the quoted 1σ errors but also that Andromeda I lies at
a distance between 703 and 761 kpc with 90% credibility and
between 687 and 778 kpc with 99% credibility.

2.3. Initial Tests

In order to gain a better understanding of the capabilities of
our method when faced with varying levels of LF quality, a se-
ries of tests were conducted on artificial “random realization”
data, as well as on sub-samples of the Andromeda I field uti-
lized above. There are two major factors that affect the quality
of LF available to work with, namely, the number of stars from
which it is built and the strength of the background component
relative to the RGB component. Hence to simulate the varying
degrees of LF quality that are likely to be encountered in the
M31 halo, artificial LFs were built for 99 combinations of back-
ground height versus number of stars. Specifically, background
heights of f = 0.1, 0.2, . . . , 0.9 were tested against each of
ndata = 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000,
and 20,000 stars populating the LF.

To achieve this, a model was built as discussed in Section 2.1,
with a constant tip magnitude and RGB slope of mTRGB = 20.5
and a = 0.3, respectively, and a background height f set to
one of the nine levels given above. The functional form of the
background was kept as a horizontal line for the sake of the
tests. An LF was then built from the model, using one of the 11
possible values for the number of stars listed above. This was
achieved by assigning to each of the ndata stars a magnitude
chosen at random, but weighted by the model LF probability
distribution—a “random realization” of the model. The MCMC
algorithm was then run on this artificial data set as described in
the previous subsection with mTRGB and a as free parameters to
be recovered. The tests also assume the photometric errors of
the PAndAS survey and further assume that incompleteness is
not an issue in the magnitude range utilized. The error in the
recovered tip position and the offset of this position from the
known tip position in the artificial data (I = 20.5) were then
recorded. The results are presented in Figures 10 and 11 below.
Each pixel represents the average result of ten 200,000 iteration
MCMC runs for the given background height versus number of
stars combination. Note that the kpc distances given correlate to
an object distance of 809 kpc—i.e., mTRGB

I = 20.5—which is
in keeping with distances to the central regions of the M31 halo.
Furthermore, all stars of the random realization were generated
within a 1 mag range centered on this tip value.

Figure 10. Gray-scale map of the 1σ error in tip magnitude obtained for different
combinations of background height and number of sources. The actual value
recorded for the error (in kpc) is overlaid on each pixel in red. For these tests,
we approximate the 1σ error as the half-width of the central 68.2% of the PPD
span.

(A color version of this figure is available in the online journal.)

Figures 10 and 11 are intended to serve as a reference for
future use of the basic method, with regard to the number
of stars required to obtain the distance to within the desired
uncertainty for the available signal-to-noise ratio. The results
follow the inevitable trend of greater performance when the
background height is small and there are many stars populating
the LF. There are some minor deviations from this trend but
these result from single outlying values whose effects would
diminish if a higher number of samples were averaged. It is
also noteworthy that the offsets recorded clearly correlate with
the 1σ errors and are consistently less than their associated
errors.

The results of these random realization tests are borne out
by similar tests conducted on subsamples of the Andromeda I
field. Random samples were drawn containing 335 (10% of
the total sample), 200, 100, and 50 stars. These correspond
approximately to 10, 20, 50, and 100 stars in the 1 mag range
centered on the tip. In no case was the derived tip location more
than 80 kpc from that identified from the full sample, and the of-
fset grew steadily less as the number of stars in the sample was
increased. Furthermore, the offsets were almost always less than
the 1σ errors.

2.4. Algorithm Behavior for Composite Luminosity Functions

When a field is fed to any RGB tip finding algorithm, it
must be remembered that field is in fact three dimensions of
space projected onto two, and therefore it is possible that two
structures at very different distances may be present within it.
Such a scenario becomes especially likely when dealing with the
busy hive of activity that the PAndAS Survey has come to reveal
around M31. The result of such an alignment along the line of
sight is an LF built from two superimposed RGBs with two
different—possibly widely separated—tip magnitudes. Hence
it is important to understand how the TRGB algorithm applied
to such a field will respond.

Unlike other algorithms that have been developed, our
Bayesian approach provides us with a measure for the probabil-
ity of the tip being at any given magnitude (the PPD). But this
also leads to an important caveat—the selection criteria imposed
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Figure 11. Gray-scale map of the offset from the true tip magnitude obtained
for different combinations of background height and number of sources. The
actual (absolute) value recorded for the offset (in kpc) is overlaid on each pixel
in red. These values convey the discrepancy between the true object distance and
that recovered by the MCMC. It was necessary to remove the direction of the
individual offsets before averaging as the values would otherwise largely cancel
out. Examination of the individual offsets shows no significant bias toward either
direction however.

(A color version of this figure is available in the online journal.)

on the data that is fed to the algorithm biases it strongly toward
the structure whose distance we are trying to measure. Taking
the Andromeda I measurement of Section 2.1 for example, this
satellite sits on top of the GSS which contributes prominently to
the field CMD, yet its contribution to the LF fed to the MCMC
is almost eradicated by our choice of color-cut. Yet if this strin-
gent color-cut is removed, the algorithm remains surprisingly
insensitive to the GSS tip. This is because of another prior con-
straint we impose on the routine—the background height. With
this fixed background imposed on our fitted model, the MCMC
looks for the first consistent break of the data from the back-
ground—i.e., the tip of the Andromeda I RGB. It is therefore
necessary to reinstate the background height as a free param-
eter of the MCMC to give it any chance of finding the tip of
the GSS’s RGB. By this stage, enough of our prior constraints
have been removed to give the method freedom to choose the
best fit of the unrestricted model to the entire data set from
the field. Nevertheless, the more (correct) prior information we
can feed the algorithm, the better the result we can expect to
receive.

Still, while the method has not been tailored toward composite
LFs, it is worth noting that it can be used successfully to identify
more than one object in the line of sight—a useful ability when
the two structures are poorly separated in color–magnitude
space. The model used assumes only one RGB and thus one
tip; to do otherwise would increase computation times. If two
distinct structures are identified by this method and cannot
be separated using an appropriate color-cut or altered field
boundaries, an appropriate double RGB model should be built
to accurately locate the tip for each structure. But even with
the basic single-RGB model (which will suffice for the vast
majority of cases), at least the presence of a second structure
is indicated. If we take the example of Andromeda I again, the
ideal way to obtain a distance measurement to the portion of the
GSS that sits behind it would be to make a color-cut that favors
it and removes Andromeda I, but we can force the algorithm

Figure 12. Posterior probability distribution for the cold sampler chain of a four-
chain parallel-tempering regime. The MCMC was run for 1.5 million iterations.
The strong peak at m = 20.93 results from the tip of the Andromeda I RGB,
but it has been shifted faintward by the presence of the Giant Stellar Stream,
responsible for the peaks at m = 21.29 and m = 21.35. Without the addition of
parallel tempering, the MCMC is liable to spend an inordinate amount of time
stuck in the first major probability peak it encounters.

to consider both structures to demonstrate the extreme case of
what might be encountered in a general halo field. The result
is two broad bumps in the PPD well separated in magnitude.
The nature of the MCMC however is to converge straight onto
the nearest major probability peak, seldom venturing far from
that peak. This is remedied by the addition to the algorithm of
Parallel Tempering.

While an infinite number of iterations of the MCMC would
accurately map probability space in its entirety, Parallel Temper-
ing is a way of achieving this goal much more quickly. Parallel
Tempering involves a simple modification to the MCMC algo-
rithm, whereby multiple chains are run in parallel. One chain,
the “cold sampler” runs exactly as before, but additional chains
have their likelihoods weighted down producing a flatter PPD
that is more readily traversed by the MCMC. The further the
chain is from the cold sampler chain, the heavier the weight that
is applied. Every so many iterations, a swap of parameters is
proposed between two random but adjacent chains so that even
the “hottest” chains eventually affect the cold sampler chain and
allow it to escape any local maximum it may be stuck in. The
result is a cold sampler chain PPD that is more representative
of the full extent of the LF (see Gregory 2005, Chap. 12 for a
more detailed discussion). The result of applying a four-chain
MCMC to the region of Andromeda I is summarized in the PPD
of Figure 12.

While the Andromeda I TRGB is found much less accurately
by this method as a result of the removal of our prior constraints
for illustrative purposes, it is nevertheless clear that the addition
of Parallel Tempering adds to our algorithm the facility to
identify other structures in the field that may require separate
analysis. Even given a properly constrained model and data set,
the safeguard it provides against a poorly explored probability
space arguably warrants its inclusion.

3. DISTANCES TO TWO MORE SATELLITES

To further illustrate the capabilities of our basic method as
outlined in Section 2, we have applied it to two more of M31’s
brighter satellites, whose distances have been determined in
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Figure 13. CMD for a circular field of radius 0.◦2 centered on Andromeda II. It
is more densely populated than the Andromeda I CMD (Figure 2) and is very
well defined against the stellar background. The RGB tip is clearly visible at
i0 ∼ 20.6.

(A color version of this figure is available in the online journal.)

Figure 14. Posterior probability distribution for three million iterations of the
MCMC on a 4 mag interval (see Figure 15) of the Andromeda II CMD selection
presented in Figure 13. The peak probability of the distribution is well defined
at i0 ≈ 20.57. The distribution is again color coded as in Figure 5, with red,
green, and blue corresponding to 68.2%, 90%, and 99% credibility intervals,
respectively.

(A color version of this figure is available in the online journal.)

past measurements using a range of methods, including TRGB-
finding algorithms. The additional satellites chosen for this
study are the relatively luminous dwarf spheroidal Andromeda II
and the somewhat fainter, newly discovered Andromeda XXIII
dwarf. The location of both satellites within the M31 halo can
be seen in Figure 3.

3.1. Andromeda II

Andromeda II was discovered as a result of the same survey
as Andromeda I using the 1.2 m Palomar Schmidt telescope (van
den Bergh 1971). Da Costa et al. (2000) deduce a similar age
for Andromeda II as for Andromeda I but with a wider spread
of metallicities centered on 〈Fe/H〉 =− 1.49 ± 0.11 dex. Our
Andromeda II LF was built from a circular field of radius 0.◦2
centered on the dwarf spheroidal with an OBR of 34.0 recorded.

Figure 15. Four-magnitude segment of the Andromeda II luminosity function
fitted by our MCMC algorithm. It is built from 4409 stars. The best-fit model is
overlaid in red. The bin width for the LF is again 0.01 mag.

(A color version of this figure is available in the online journal.)

Figure 16. Color–magnitude diagram for a circular field of radius 0.◦1 centered
on Andromeda XXIII. It is much more sparsely populated than those of
Andromeda I and Andromeda II. The RGB tip appears to lie just brightward of
i0 = 21.

(A color version of this figure is available in the online journal.)

This high OBR is not unexpected with Andromeda II arguably
the best populated of M31’s dwarf spheroidal satellites. The
CMD for this field is presented in Figure 13.

Application of our algorithm to Andromeda II yields a tip
magnitude of i0 = 20.572+0.005

−0.006 for the RGB which corre-
sponds to an extinction-corrected distance to Andromeda II

of 634
(+2)+15
(−2)−14 kpc, where the i-band extinction is taken as

Aλ = 0.121 mag (Schlegel et al. 1998). This is in good agree-
ment with McConnachie et al.’s (2004) derived distance of
645±19 kpc. Values for a and f were recovered as 0.276±0.009
and 0.028, respectively. The mTRGB

i PPD and best-fit model
found by our method are illustrated in Figures 14 and 15, re-
spectively.

3.2. Andromeda XXIII

Despite its relative brightness among the other satellites of the
M31 system, Andromeda XXIII was only discovered with the
undertaking of the outer portion of the PAndAS survey in 2009/
2010, being too faint at MV = −10.2 ± 0.5 to identify from
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Figure 17. Posterior probability distribution for three million iterations of the
MCMC on a 4 magnitude interval (see Figure 18) of the Andromeda XXIII
CMD selection presented in Figure 16. There are several probability peaks in
this instance but the preferred peak lies at 20.885. The distribution is again color
coded as in Figure 5, with red, green, and blue corresponding to 68.2%, 90%,
and 99% credibility intervals, respectively.

(A color version of this figure is available in the online journal.)

Figure 18. Four-magnitude segment of the Andromeda XXIII luminosity
function fitted by our MCMC algorithm. It is built from 328 stars. The best-fit
model is overlaid in red. While the model LF tested by the MCMC retained the
resolution of 100 bins per magnitude described in Section 2.1, the data LF is
re-produced here at the lower resolution of 0.04 mag per bin to better reveal its
structure to the eye.

(A color version of this figure is available in the online journal.)

the SDSS (Richardson et al. 2011). The said paper presents its
vital statistics along with those for the other newly discovered
satellites Andromeda XXIV–XXVII. It is a dwarf spheroidal
galaxy and has the lowest recorded metallicity of the satellites
we present with 〈Fe/H〉 =− 1.8 ± 0.2. Making use of the
deeper coverage of PAndAS in the g band, Richardson et al.
(2011) obtain a distance measurement of 767± 44 kpc from the
horizontal branch of the CMD.

Andromeda XXIII is a more challenging target for our
algorithm in its current form, with less than ∼50 stars lying
within the 1 mag range centered on the tip and an OBR of
8.4 for the field and color-cut employed. The CMD for this
circular field of radius 0.◦1 is presented in Figure 16. We find
the RGB tip at an i-band magnitude of 20.885+0.038

−0.032, which,
given an i-band extinction of 0.112 mag in the direction of
Andromeda XXIII (Schlegel et al. 1998), corresponds to a

distance of 733
(+13)+23
(−11)−22 kpc. We derive the values of a and f as

0.270 ± 0.039 and 0.105, respectively. Curiously, the MCMC
finds several peaks very close to the major peak in the PPD (see
Figure 17), but these are attributable to the lower star counts
available in the LF around the tip. This has the effect of creating
large magnitude gaps between the stars that are just brightward
of the tip so that each individual star can mimic the sudden
increase in star counts associated with the beginning of the
RGB. As a result, there is a range of likely locations for the tip,
but the PPD shows that the object cannot be more distant than
802 kpc nor closer than 601 kpc with 99% confidence. The best
fit model determined by the MCMC is overlaid on the LF in red
in Figure 18.

4. CONCLUSIONS

The versatility and robustness of our new method can be
appreciated from Section 2 and its high level of accuracy is
evident from the measurement errors which are consistently
smaller than those in the literature to date. In addition, it is our
hope that with the correct priors imposed, this new approach
carries with it the ability to gauge distances to even the most
poorly populated substructures, bringing a whole new range of
objects with in reach of the TRGB standard candle. In the case of
the M31 halo alone, it will be possible to obtain distances to all
of the new satellites discovered by the PAndAS survey—a feat
previously impractical using the TRGB. Furthermore, PAndAS
has revealed a complicated network of tidal streams that contain
valuable information as to the distribution of dark matter within
the M31 halo. With our new method, it will be possible to
systematically obtain distances at multiple points along these
streams, thus providing vital information for constraining their
orbits.

The great advantage of our new Bayesian method over a
pure maximum likelihood method is the ease with which prior
information may be built into the algorithm, making it more
sensitive to the tip. Herein lies the great power of the Bayesian
approach, whereby the addition of a few carefully chosen priors
can reduce the measurement errors 10 fold. The result is an
algorithm that is not only very accurate but highly adaptable
and readily applicable to a wide range of structures within the
distance (and metallicity) limitations of the TRGB standard
candle. With instruments such as the 6.5 m infrared James
Webb Space Telescope and the 42 m European Extremely Large
Telescope expected to be operational within the decade, these
distance limitations will soon be greatly reduced. This will bring
an enormous volume of space within reach of the TRGB method,
including the region of the Virgo Cluster. A tool with which it is
possible to apply the TRGB standard candle to small, sparsely
populated structures and small subsections of large structures
alike is hence, needless to say, invaluable.
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Paper II: A Bayesian Approach to Locating the Red Giant Branch TipMagnitude. II.

Distances to the Satellites ofM31

Paper II Preface

The first tip of the red giant branch paper (Paper I) was written with the intention that a

second paper would soon follow which would further develop the method and apply it to the

entire satellite sample of M311. As it came to pass, Paper II would not be accepted as an

Astrophysical Journal publication until one year and three days after the acceptance of the

first paper, despite being begun well before the first paper was accepted. This paper therefore

represents a significant portion of my PhD candidature.

The method employed to gain the satellite distance distributions presented in Paper II,

differs from that introduced in Paper I, chiefly in the way that prior information is taken into

account. Most notably, ‘matched filtering’ is introduced to weight stars in accordance with

their likelihood of being true object members. The object’s density profile (as a function

of radius) is treated as a probability distribution of object membership such that stars found

in the densest central regions of the object are given more weight when fitting the object’s

luminosity function. In many cases, the contrast between the luminosity function with and

without the matched filtering switched on is profound, with the RGB tip becoming clearly

visible to the eye where before it was lost in a mass of masquerading background stars. In

addition to the matched filtering, a prior is also imposed on the expected object distance in

the form of a halo density prior. A cross-section through the (expected) M31 halo density

profile along the line of sight to the object is used to weight the probability of finding the

object at any distance along its distance probability distribution.

The reason for the rather lengthy time interval between the publication of the two papers

was not due to any major issues with the method in this new paper, but rather the amount

of feedback I received from those interested in the satellite distances. It became clear very

early on that a lot of people had a vested interest in having access to accurate distances

accompanied by accurate uncertainty distributions in those distances. It was also clear that

many held clear-cut views as to how the distances should be obtained and presented. As a

result I had to incorporate a particularly large amount of changes into the method and in turn

1Due to the advantages of using a single data set for all measurements, only those satellites contained within

the PAndAS survey were actually included in the paper. An inner cutoff ellipse around the M31 disk was also

necessary due to its obscuring effects (see Fig. 10 (c)).



67

the draft of the paper which inevitably meant a large number of complete re-runs on all of

the data and analysis it contained. After making the necessary changes to the method and

re-writting various parts of the paper, it was finally ready for submission to Astrophysical

Journal. All of this said, there is no doubt that the method is more robust as a result of this

lengthy process.

One of the most important changes that arose from this scrutiny concerned the way the

density profiles of the target objects were generated. Originally, the density profiles were be-

ing produced simply be drawing a series of evenly spaced concentric circles (or bands) about

the object center and determining the density of stars in each band. The resulting binned

profile was then fit in log space by a straight line (i.e. approximating the profiles as expo-

nential). This of course assumes spherical symmetry which is not always a fair assumption,

with some of M31’s satellites being strongly elliptical. It was therefore decided to take this

ellipticity fully into account which required a substantial re-write of the code for the density

matched filter. These changes also warranted a second look at the luminosity function of

each object and extra care was taken to insure that the CMD colour-cuts and the inner and

outer cutoff radii for each object combined to produce luminosity functions with the great-

est tip contrast possible. Other shortcomings in the algorithm code (see ‘MF TRGB.f95’ in

Appendix C) were also subsequently identified as the need arose for faster processing times

and so provisions were made for feeding in the necessary object parameters in the command

line and other portions of the code were altered to run more efficiently. Improvements to the

PAndAS photometry calibration at the beginning of 2012 also required another re-run on the

M31 satellites which further improved the quality of the distance measurements.

In many respects, the real climax of Paper II is the application of the distances to produce

a new 3D view of the M31 system, as is presented in Fig. 10. This represents the true be-

ginning of our study of the three dimensional structure of the satellite system, at the heart of

which is the trigonometry necessary to convert the earth distances into an M31-centric coor-

dinate system. Fig. 4.1 was created to aid in the determination of the necessary conversions.

The coordinate system used here is that which arises most naturally from an Earth based

perspective, with z pointing along the line of site to the center of M31, and x and y point-

ing along lines of constant Declination and Right Ascension respectively. A more typical
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orientation of the coordinate system is later adapted in Paper III by implimenting rotations

about the x and z axes so that z points toward the M31 Galactic north pole, with the Earth at

a longitude of 0◦.

Now, with M31 and its satellites represented by a series of points in three dimensions,

we are in a position to begin an analysis of the distribution. This analysis is begun in Paper II

with a study of the satellite density profile within the M31 halo. Of particular note, this study

takes into full account the uneven coverage of the PAndAS survey, whereby certain radii from

the center of M31 receive better coverage than others. The study also gives full account to

the distance uncertainty distributions for each satellite by sampling possible positions from

each distribution over many iterations. A more thorough study of the satellite distribution

then follows in Paper III. Note that all of the principal code used throughout the analysis in

Paper II can be found in Appendix C, along with a brief summary of what each program

does.
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Figure 4.1: Conversion of Earth-to-object distances into an M31-centric cartesian coordinate sys-
tem. This figure was created to help visualize the geometry of Earth-M31-object alignments. The top
part of the diagram shows the projection of the target object (satellite) on to the M31 tangent plane
and the x,y,z of the coordinate system used. Positive x points East (toward increasing ξ), positive y

points North (toward increasing η) and positive z points along the line of sight (to M31) away from
Earth. The three triangles in the lower half of the figure show how each coordinate can be determined
from the Earth-to-M31 (a) and Earth-to-object (b) distances.
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ABSTRACT

In “A Bayesian Approach to Locating the Red Giant Branch Tip Magnitude (Part I),” a new technique was introduced
for obtaining distances using the tip of the red giant branch (TRGB) standard candle. Here we describe a useful
complement to the technique with the potential to further reduce the uncertainty in our distance measurements
by incorporating a matched-filter weighting scheme into the model likelihood calculations. In this scheme, stars
are weighted according to their probability of being true object members. We then re-test our modified algorithm
using random-realization artificial data to verify the validity of the generated posterior probability distributions
(PPDs) and proceed to apply the algorithm to the satellite system of M31, culminating in a three-dimensional
view of the system. Further to the distributions thus obtained, we apply a satellite-specific prior on the satellite
distances to weight the resulting distance posterior distributions, based on the halo density profile. Thus in a single
publication, using a single method, a comprehensive coverage of the distances to the companion galaxies of M31 is
presented, encompassing the dwarf spheroidals Andromedas I–III, V, IX–XXVII, and XXX along with NGC 147,
NGC 185, M33, and M31 itself. Of these, the distances to Andromedas XXIV–XXVII and Andromeda XXX have
never before been derived using the TRGB. Object distances are determined from high-resolution tip magnitude
posterior distributions generated using the Markov Chain Monte Carlo technique and associated sampling of these
distributions to take into account uncertainties in foreground extinction and the absolute magnitude of the TRGB as
well as photometric errors. The distance PPDs obtained for each object both with and without the aforementioned
prior are made available to the reader in tabular form. The large object coverage takes advantage of the unprecedented
size and photometric depth of the Pan-Andromeda Archaeological Survey. Finally, a preliminary investigation into
the satellite density distribution within the halo is made using the obtained distance distributions. For simplicity,
this investigation assumes a single power law for the density as a function of radius, with the slope of this power
law examined for several subsets of the entire satellite sample.

Key words: galaxies: general – galaxies: stellar content – Local Group

Online-only material: color figures, machine-readable table

1. INTRODUCTION

The tip of the red giant branch (TRGB) is a well-established
standard candle for ascertaining distances to extended, metal-
poor structures containing a sufficient red giant population.
Its near constant luminosity across applicable stellar mass and
metallicity ranges (see Iben & Renzini 1983) arises due to the
prevailing core conditions of these medium-mass stars as core
helium fusion ensues. Their cores lack the necessary pressure
to ignite immediate helium fusion on the depletion of their
hydrogen fuel and so they continue to fuse hydrogen in a shell
around an inert, helium ash core. This core is supported by
electron degeneracy and grows in mass as more helium ash
is deposited by the surrounding layer of hydrogen fusion. On
reaching a critical mass, core helium fusion ignites, and the
star undergoes the helium flash before fading from its position
at the TRGB, to begin life as a horizontal branch star. Due to
the very similar core properties of the stars at this point, their
energy output is almost independent of their total mass, resulting

in a distinct edge to the RGB in the color–magnitude diagram
(CMD) of any significant red giant population.

With the TRGB standard candle applicable wherever there
is an RGB population, it is an obvious choice for obtaining
distances to the more sparsely populated objects in the Local
Group and other nearby groups where Cepheid variables seldom
reside. Even when Cepheids are available, the TRGB often
remains a more desirable alternative, requiring only one epoch
of observation, and facilitating multiple distance measurements
across an extended structure. Good agreement between TRGB-
obtained distances and those obtained using Cepheid variables
as well as the much fainter RR Lyrae variables have been
confirmed by Salaris & Cassisi (1997), with discrepancies
of no more than ∼5% (see also Tammann et al. 2008 for
an extensive list of distance comparisons utilizing the three
standard candles). Of the satellites of M31, many are very faint
and poorly populated and thus have poorly constrained distances
which propagate on into related measurements concerning the
structure of the halo system. Hence, a technique for refining
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the distances that can be applied universally to all halo objects,
while accurately conveying the associated distance errors has
been a long sought goal.

In “A Bayesian Approach to Locating the Red Giant Branch
Tip Magnitude (Part I)”—Conn et al. (2011), hereafter Paper I,
we reviewed the challenges of identifying the TRGB given
the contamination to the pure RGB luminosity function (LF)
typically encountered. We also outlined some of the methods
that have been devised to meet these challenges since the
earliest approach, put forward by Lee et al. (1993). We then
introduced our own unique Bayesian approach, incorporating
Markov Chain Monte Carlo (MCMC) fitting of the LFs. This
approach was essentially the base algorithm, designed to easily
incorporate priors to suit the task at hand. Here we present
the results of an adaptation of that algorithm, intended for use
on small, compact objects—specifically the dwarf spheroidal
companions of M31. Once again, we utilize the data of the Pan-
Andromeda Archaeological Survey (PAndAS; McConnachie
et al. 2009), a two-color (i ′ = 770 nm, g′ = 487 nm) panoramic
survey of the entire region around M31 and M33 undertaken
using the Canada–France–Hawaii Telescope (CFHT). The tip
is measured in the i ′ band where dependence on metallicity is
minimal. Following a recap of the base method in Section 2, we
introduce the aforementioned new adaptations to the method in
Section 3.1 and in Section 3.2 we describe the results of tests
intended to characterize the modified algorithms performance as
well as check the accuracy of its outputs. In addition, Section 3.3
outlines the application of a further prior on the satellite
distances. Section 4.1 presents the results of applying the
modified algorithm to the companions of M31, while Section 4.2
details the method by which the object-to-M31 distances are
obtained and Section 4.3 uses the obtained distances to analyze
the density profile of these objects within the halo. Conclusions
follow in Section 5.

2. A RECAP OF THE BASE METHOD

In Paper I, we introduced our “base” method, whereby the LF
of a target field was modeled by a single, truncated power law
(the RGB of the object of interest) added to a representative
background polynomial. The location of the truncation (the
TRGB) and the slope of the power law were set as free
parameters of the model, with the best fit derived using an
MCMC algorithm. The functional form of the background
component was modeled by directly fitting a polynomial to
the LF of an appropriate background field, and then scaling the
polynomial to reflect the expected number of background stars
in the target field. The resulting model was then convolved with
a Gaussian of width increasing in proportion to the photometric
error as a function of magnitude. The posterior distribution in
the tip magnitude returned by the MCMC, which thus already
incorporates the photometric error, is then sampled together
with Gaussian distributions representing the distribution in
the absolute magnitude of the tip (MTRGB

i = −3.44 ± 0.05)
and the distribution in the extinction (Aλ ± 0.1Aλ) to give a
final posterior distribution in the distance. The mode of this
distribution is then adopted as the distance to the object, with
the ±1σ error calculated from the portion of the distribution
lying on the far and near side of the mode, respectively.

A more detailed discussion of the assumptions and ratio-
nale behind the base method is provided in paper I, but the
reader should again be made aware of the most fundamen-
tal assumptions it entails. At the heart of the calculations of
course is the choice of the absolute magnitude of the tip and its

associated uncertainty. We adopt the values of this parameter
stated above based on the value derived for the SDSS i band in
Bellazzini (2008), noting the near-identical bandpass charac-
teristics of the MegaCam i-band filter as detailed by Gwyn
(2010). We adopt somewhat smaller uncertainties than those
derived by Bellazzini (2008) following the same argument as
McConnachie et al. (2004) that the quoted uncertainty in the ab-
solute magnitude of the tip is conservative and it is a systematic
error effecting all distance measurements in an identical way.
As almost all applications of the distances to the satellites are
concerned with their relative positions to one another and M31,
this component of the error is of minimal importance. Never-
theless, it often forms the major component of the quoted errors
in our distances.

Mention should also be made as to the effects of metallic-
ity and internal reddening within the objects under study as
well as the zero-point uncertainty in the PAndAS photome-
try. While there is a metallicity dependence of MTRGB

i (though
minimal when compared with other bands), it is only really
an issue for more metal-rich targets (e.g., [Fe/H] > −1; see
Bellazzini 2008, Figure 6) and thus will primarily affect mea-
surements to the large, diverse systems such as M31 itself and
M33. But the TRGB for more metal-rich populations is fainter
than that for their metal-poor counterparts and thus it is this
metal-poor population component which dominates the mea-
surement. A similar situation is encountered with the internal
reddening present in the objects under study, where the vast
majority of objects, chiefly the dwarf spheroidal galaxies, are
almost completely devoid of such effects. Those objects most
strongly affected are the large, well-populated systems which
will provide ample signal from the least affected stars on the
near side of the system, for a good distance determination. The
uncertainty in the zero point of the photometry is consistent
throughout the survey at approximately 0.02 mag. (R. A. Ibata
et al. 2012, in preparation).

Lastly, a brief discussion of the distance posterior distribu-
tions themselves is warranted. As noted above, they are pro-
duced by the sampling of the distribution of possible tip posi-
tions (as generated by the MCMC and with photometric errors
incorporated) along with sampling of the Gaussian distributions
representing the uncertainties in the foreground extinction (Aλ)
and in the absolute magnitude of the tip (MTRGB

i ). Specifically,
500,000 possible distances are drawn to form the distance PPD,
where for each draw κ , the distance modulus µ is

µ(κ) = mTRGB
i (κ) − Aλ(κ) − MTRGB

i (κ), (1)

where each of mTRGB
i (κ), Aλ(κ), and MTRGB

i (κ) is the values
drawn from the uncertainty distributions in the tip position,
foreground extinction, and absolute magnitude of the tip, re-
spectively. The foreground extinction and its uncertainty vary
from object to object but the error in the absolute magnitude of
the tip is a systematic error as already discussed. In using this
method, there are two situations that can be encountered. The
first is that the object is very well populated and the tip position
is thus well constrained with a narrow PPD. In such instances,
the uncertainty in MTRGB

i far outweighs any other contributions
to the error budget and is almost solely responsible for the width
of the distance PPD. In the second situation, the object is poorly
populated and the tip position PPD is very wide and typically
asymmetric. If the LF population is not extremely low, the un-
certainty in MTRGB

i will contribute noticeably to the distance
PPD, otherwise the distance PPD will essentially depend solely
on the uncertainty in the determined tip positions. Hence while

2



The Astrophysical Journal, 758:11 (19pp), 2012 October 10 Conn et al.

some of the smaller contributions to the distance uncertainties
are omitted from the calculations, their overall effects will be
washed out by the contributions from these two principal sources
of error.

3. ADDITION OF A MATCHED FILTER

3.1. Matched Filtering using Radial Density Profiles

With the introduction of our method in Paper I, it was stressed
that one of its greatest attributes was its adaptability to the prior
knowledge available for the object of interest. When applying
the method to compact satellites, there is one very conspicuous
attribute that can be incorporated into the prior information
constraining the model fit—namely, the object’s density as a
function of radius. The simplest way to achieve this is with
the addition to the algorithm of a matched-filter weighting
scheme, wherein the weighting is matched to the specific data
by accounting for the data within the filter itself.

The successes of Rockosi et al. (2002) using a matched filter
in color–magnitude space to identify member stars of globular
cluster Palomar 5 amidst the stellar background provide the
inspiration for our technique. They make use of the characteristic
RGB of the globular cluster to weight stars as to their likelihood
of being cluster members. To achieve such a goal, a matched
filter can be created by binning the CMD of the field in which
the cluster lies into a two-dimensional matrix and then dividing
that matrix by a similarly created background matrix. Stars
found in the densest regions of the resulting matched filter
CMD are then assigned the highest weight, being the most
likely cluster members. In this way, they can greatly improve the
signal-to-noise ratio (S/N) with respect to that of their original,
unmodified data and are able to trace tidal streams from the
globular cluster well into the surrounding background. Hence
we have applied a similar approach to weight field stars fed to the
MCMC in terms of their probability of being object members.
In our case, however, the stars proximity to the object’s center
provides the basis for the weighting scheme, with the innermost
stars being the most likely to be actual object members as
opposed to background stars, and so a one-dimensional matched
filter is sufficient.

The first step in implementing our weighting scheme is to
ascertain a model of stellar density as a function of radius
specific to the object of interest. For this purpose, we employ the
best fits presented in N. F. Martin et al. (2012a, in preparation)
for the dwarf spheroidal satellites, wherein the optimal ellipticity
ǫ, position angle (P.A.), half-light radii (rh), and object centers
are given for exponential density profiles fitted to each satellite.
For the two dwarf ellipticals, in the case of NGC 147 we assume
ǫ = 0.44 and P.A. = 28◦ as specified by Geha et al. (2010) and
we derive the rh manually as 10′, which produces the best-fit
profile to the data when coupled with the other two parameters.
For NGC 185, we adopt ǫ = 0.26 and P.A. = 41◦ based on the
findings of Hodge (1963) and once again derive the rh manually,
this time as 6′. For both NGC 147 and 185, we employ the object
centers derived from the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006). With the ellipticity, P.A., half-light radius
and object center know, we can proceed to produce a weighting
scheme proportional to the density profile ρ of the object, where
ρ is of the form

ρ(rǫ) = e
−rǫ
R , (2)

where R = (rh/1.678) is the scale radius and rǫ is the elliptical
radius at which the star lies, as now defined. With the P.A. and

object center of the object known, a rotation of coordinates is
used to define each star’s position (x ′, y ′) with respect to the
center of the ellipse. The projected elliptical radius rǫ of the
ellipse on which the star lies is then

rǫ =

(

(y ′)2 +

(

x ′

1 − ǫ

)2
)1/2

, (3)

where the y ′ axis is assumed as the major axis of the ellipse.
While Equation (2) gives us the functional form of our

weighting scheme, it is further necessary to define the absolute
values of the weights given to each star, so as to scale them
appropriately with respect to the background density ρbg. This
is achieved by insuring that the area under the function ρ(rǫ)
between any imposed inner and outer radius limits is set equal
to the number of signal stars in the observed region. Hence, our
weighting scheme is ultimately defined by

W (rǫ) = Se
−rǫ
R (4)

with

S =
(ρtotal − ρbg) × A

2πR(1 − ǫ)[(e
−rinner

R )(R + rinner) − (e
router

R )(R + router)]
,

(5)
where ρtotal is the density of stars in the observed region before
subtraction of the background density and A is the area of the
observed region which is either an ellipse in the (usual) case that
rinner = 0 or an elliptical annulus otherwise. rinner and router are
the inner and outer cutoffs respectively of the range of rǫ values
observed.

In Figure 1, the result of our fitting procedure as applied to the
sparsely populated dwarf spheroidal Andromeda X is presented.
In this case, stars out to rǫ = 0.◦15 are fitted, with no inner cutoff
radius imposed. While most of the satellites are too poorly
populated for blending to be an issue, in the case of several,
the stellar density counts at the innermost radii drop off in spite
of the predicted counts from the fitted density profile. This is a
good indicator of blending or overcrowding in those radii which
can hinder the accuracy of the photometry for the affected stars
and so in such cases, these inner radii are omitted. This was
the case with Andromeda III (rinner = 0.◦0175), Andromeda V
(rinner = 0.◦011), and Andromeda XVI (rinner = 0.◦005). For the
dwarf ellipticals NGC 147 and NGC 185, it was found beneficial
to avoid the inner regions altogether, with the presence of a wider
range of metallicities in these regions degrading the contrast of
the RGB tip. Similarly, an outer cutoff radius was chosen for
these objects inside of 3 rh to help sharpen the tip discontinuity,
so that for NGC 147, rinner = 0.◦28 and router = 0.◦33 and for
NGC 185, rinner = 0.◦18 and router = 0.◦26. M31 and M33 are
treated similarly to the dwarf ellipticals but with still thinner
annuli so that any weighting is unnecessary. They are discussed
in more detail in Section 4.1.

With regard to the actual likelihood calculations used at each
iteration of the MCMC, these are undertaken not by simple
multiplication of the likelihood for each star by the respective
weight, but by physically adjusting the relative proportions of
the RGB and background components of the LF. Up until now,
we have assumed a generic LF and calculated the likelihood
contributions from each star from this single LF. But in reality,
the outer regions of the field are more accurately represented
by a shallow-signal/high-background LF while the innermost
stars obey an LF which has almost no background component.

3
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Figure 1. Radial density profile (proportional to object membership probability) for Andromeda X. The error bars represent the Poisson error in the density for each
bin, with each bin representing an elliptical annulus at the stated radius. Hence the innermost annuli have the smallest areas and thus the largest error bars. Note that
this binned density distribution is for comparison only and has no bearing on the fit. The background level is marked “BG.”

(A color version of this figure is available in the online journal.)

Hence using the radial density profile obtained above, we can
essentially build an individual LF for each star, tailored to
suit its position within the object. In practice, this is achieved
with almost no extra computational effort, as the background
and signal can be normalized separately and only the signal
component is changed by the MCMC at each iteration so that
the background component need only be generated once. The
two components are normalized to contain an area of unity
and then the bin of each corresponding to the star’s magnitude
is scaled according to the ratios of the star’s weight and the
background level when its contribution to the model likelihood
is calculated by the MCMC.

The result of the incorporation of this extra prior information
is a marked improvement in the performance of the algorithm
for the more sparsely populated targets. In such objects, the
RGB component is typically overwhelmed by non-system stars,
even with the most carefully chosen field size. This can greatly
diminish the prospects of obtaining a well-constrained tip
measurement. This is apparent from Figures 2 and 3 which
show the LF and corresponding posterior distributions before
and after the application of the matched filter to the dwarf
spheroidal Andromeda X. With the matched filtering applied,
the great majority of non-system stars are severely suppressed,
revealing clearly the RGB component, which in turn provides
much stronger constraints on the location of the tip, as evidenced
by Figure 3. Herein lies an example of the power of the Bayesian
approach, where a single prior can cast the available data in a
completely different light.

3.2. A Test for the Refined Algorithm

In Section 2.3 of Paper I, the results of a series of tests were
presented that characterized the performance of our original
algorithm given a range of possible background density levels

and LF populations. Here we present the results of similar tests
applied to our new, matched-filter-equipped algorithm, but with
some important differences. Most fundamentally, the way our
artificial test data are generated is quite different. As we are now
concerned with the position of each star in the field, a distance
from field center must be generated for each star. To do this,
we have randomly assigned a radial distance to each star, but
weighted by a circularly symmetric (ǫ = 0) exponential density
profile. Further to this, the magnitudes of our stars are now
generated directly from our convolved LF, so that photometric
error as a function of stellar magnitude is incorporated.

The other important change from the previous tests concerns
the way in which the artificial LFs are populated. Whereas in
the former tests all of the sampled stars were drawn from the
model LF within the one magnitude range 20 ! mstar ! 21,
in the current tests the stars are drawn from within the much
larger magnitude range actually utilized for our satellite mea-
surements, namely 19.5 ! mstar ! 23.5. Hence a 100 star
LF in these tests for example corresponds to a much smaller
sample of stars than in the tests described in Section 2.3 of
Paper I. Aside from these critical differences, the current tests
are undertaken and presented as per the previous publication,
with measurements of the average sigma and tip offset given
for each combination of background level ( f ) versus number
of stars (ndata) where f = 0.1, 0.2, . . . , 0.9 and ndata =

10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000.
The results are presented in Figures 4 and 5, respectively.

Examination of the figures reveals the expected trend of
increased 1σ error and tip offset with increasing background
height and decreasing LF population levels. Once again, there is
very good agreement between the derived errors and the actual
offsets obtained. Most importantly, it is clear by comparing
these results with those of Paper I that the matched filtering has
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Figure 2. Best-fit model to the luminosity function of Andromeda X, obtained with the addition of matched filtering. The top figure shows the best fit overlaid on
the unmodified LF (i.e., histogram created without the weighting afforded by the matched filter). The bottom figure shows the same best-fit model after applying the
weighting. A field radius of 0.◦15 was used to generate the LF histograms, wherein each star contributes between 0 and 1 “counts,” depending on its proximity to the
field center and the density profile of the object.

(A color version of this figure is available in the online journal.)

greatly diminished the effects of the background contamination,
as exemplified by the much gentler increase in 1σ errors and
offsets with increasing background star proportion.

3.3. An Additional Prior

In addition to our density matched filter, a further prior may
be devised so as to constrain our distance posterior probability

distributions (PPDs) in accordance with our knowledge of
the M31 halo dwarf density profile. The expected falloff in
density of subhalos within an M31-sized galaxy halo is not
well constrained. The largest particle simulation of an M31-
sized dark matter halo to date, the Aquarius Project (Springel
et al. 2008), favored the density of subhalos to fall off following
an Einasto profile with r−2 = 200 kpc and α = 0.678,
and furthermore identified no significant dependence of the
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Figure 3. Posterior distributions obtained for Andromeda X before (top) and after (bottom) the application of the matched filter. For the “before” case, a circular field
of radius 0.◦05 (2.143 × rh) has been chosen, specifically to provide the most possible signal with the least possible background contamination. For the “after” case,
the same LF as presented in Figure 2 is used.

(A color version of this figure is available in the online journal.)

relationship on subhalo mass. For the specific case of the
satellites within the M31 halo, Richardson et al. (2011) found a
relation of ρ ∝ r−α where α = 1 a better fit to the data, drawing
largely from the PAndAS survey, although this does not take into
account the slightly irregular distribution of the survey area. We
adopt this more gentle density falloff with radius giving us a

more subtle prior on the satellite density distribution and note
that α may be changed significantly without great effect on our
measured distances.

So in effect, we assume a spherical halo centered on M31,
such that ρ(sat) ∝ r−1 and integrate along a path through the
halo at an angle corresponding to the angular displacement on
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Figure 4. Gray-scale map of the 1σ error in tip magnitude obtained for different combinations of background height and number of sources. The actual value recorded
for the error (in kpc) is overlaid on each pixel in red. Each value is the average of twenty 50,000 iteration runs for the given background height/LF population
combination.

(A color version of this figure is available in the online journal.)

Figure 5. Gray-scale map of the offset of the measured tip value from the true tip value obtained for different combinations of background height and number of
sources. The actual value recorded (in kpc) is overlaid on each pixel in red. Each value is the average of twenty 50,000 iteration runs for the given background
height/LF population combination.

(A color version of this figure is available in the online journal.)
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Figure 6. Distance prior applied to Andromeda XIII (solid line; α = 1). The distribution gives the likelihood of the satellite existing at a particular distance, given an
angular separation on the sky of 8.◦5 from M31 (the halo center) and assuming a distance of 779 kpc for M31. The distribution peaks where the line of sight traverses
the innermost region of the halo, and flattens out at large distances due to the increasing volume of the halo subtended by the unit of solid angle observed. The same
prior with α = 2 is shown as a dashed line for reference. While this value for alpha is in closer agreement with the results of Section 4.3, we deliberately adopt the
less restrictive α = 1 prior, so as not to suppress the probability of satellites in the outer halo too greatly.

the sky of the satellite from M31. This yields an equation of the
form

P (d) ∝
d2

((d2 + 7792 − 2d × 779 × cos(θ ))α)1/2
, (6)

where α = 1,779 kpc is the distance to M31, and P (d)
is the relative probability of the satellite lying at distance d
(in kpc) given an angular separation of θ degrees from M31.
Note that this produces a peak where the line of sight most
closely approaches M31, and that P (d ≫ 779) is approximately
proportional to d. The equation is normalized between limits
appropriate to the size of the halo.

We thus generate a separate prior for the probability as a
function of distance for each satellite, tailored to its specific
position with respect to M31. The effect of the prior is to sup-
press unlikely peaks in the multi-peaked posterior distributions
obtained for certain satellites, while leaving the peak positions
unaffected. As such, the prior has very little effect on single-
peaked distributions, whatever the angular position and dis-
tance of the satellite it represents. The distance prior applied
to the Andromeda XIII distance PPD is shown in Figure 6 for
illustration.

4. A NEW PERSPECTIVE ON THE COMPANIONS OF M31

4.1. Galaxy Distances

The PAndAS survey provides us with a unique opportunity
to apply a single method to a homogeneous data sample
encompassing the entire M31 halo out to 150 kpc. The data
encompass many dwarf spheroidals, along with the dwarf

ellipticals NGC 147 and NGC 185, and of course the M31
disk itself with additional fields bridging the gap out to the
companion spiral galaxy M33, some 15◦ distant. Of these
objects, the vast majority have metallicities [Fe/H] ! −1, so
that any variation in the absolute magnitude of the tip is slight.
Indeed, Bellazzini (2008) suggests that for such metallicities, the
variation in the region of the spectrum admitted by the CFHT
i ′ filter is perhaps less than in Cousins’ I. Perhaps of greatest
concern are the cases of M31 and M33, which will contain
substructure at a variety of metallicities. In this case, however,
the more metal-rich portions will exhibit a fainter TRGB than
those in the regime [Fe/H] ! −1, such that the brightest RGB
stars will fall within this regime.

In this section we present distance measurements to these
many halo objects, culminating in Figure 10 below, a three-
dimensional map of the satellite distribution, and Table 2, which
presents the satellite data pertinent to our distance measure-
ments. Figures 11 and 12 below present the distance posterior
distributions obtained for every object in this study. It has been
common practice in the majority of TRGB measurements to
quote simply the most likely distance and estimated 1σ uncer-
tainties, but this throws away much of the information, except
in the rare case that the distance distribution is actually a perfect
Gaussian. On account of this, as well as providing the actual
distance PPDs themselves for visual reference, we also provide
the same information in condensed tabular form, where the ob-
ject distance is given at 1% increments of the PPD, both for
the prior-inclusive cases (as in Figures 11 and 12) and for the
case in which no prior is invoked on the halo density. Note that
for M31, no halo density prior is applied and so this column
is set to zero. A sample of this information, as provided for
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Table 1

Tabulated Distance Posterior Distribution

Percentage Distance Distance

(kpc, no density prior) (kpc)

1 684 687

2 688 692

3 691 695

4 693 697

5 695 699

6 697 701

7 698 702

8 699 703

9 700 704

10 701 705

: : :

: : :

100 820 820

Notes. Distance posterior probability distributions for Andromeda I

given at 1% intervals for the case of no halo density prior (Column

2) and with the angle-specific prior outlined in Section 3.3 applied

(Column 3).

(This table is available in its entirety in a machine-readable form in

the online journal. A portion is shown here for guidance regarding

its form and content.)

Andromeda I, is presented in Table 1. The reader may then sam-
ple from these distributions directly rather than use the single
quoted best-fit value, thus taking into account the true uncer-
tainties in the measurements.

Due to the large number of objects studied, it is not practi-
cal to discuss each in detail within this paper. For this reason,
Andromeda I will be discussed in further detail below as a rep-
resentative example, followed by two of the more problematic
cases for completeness. First, however, we describe the excep-
tional cases of M31 itself and M33.

M31 and M33 due to their large extent on the sky and the
variety of substructure in their disks require a slightly different
approach to that used for the other objects in this study. As
was the case for NGC 147 and NGC 185, it was necessary to
define a thin elliptical annulus so as to limit as much as possible
the amount of substructure from other radii contaminating the
LF. For both M31 and M33 such a thin annulus was used
that any weighting with respect to the elliptical radius of the
stars was trivial and so no weighting was used. For M31, an
ellipticity of 0.68 was adopted, with P.A, = 37◦. The inner
and outer elliptical cutoff radii were set to 2.◦45 and 2.◦5,
respectively. To check for any inconsistencies in the TRGB
location across the whole annulus, it was divided up into NE,
NW, SE, and SW quarters and then the distance measured from
each quarter, giving distances of 782+19

−19, 782+18
−18, 775+20

−18, and

781+19
−19 kpc, respectively. It is tempting to associate the slightly

lower distance to the SE quadrant with the effects on the LF of
the Giant Stellar Stream, though the distance is still within close
agreement with the other three quadrants, such that all four are
perfectly consistent. Hence, the distance was remeasured using
the whole annulus to give 779+19

−18 kpc. This is in good agreement

both with the findings of McConnachie et al. (2005) (785+25
−25)

utilizing the TRGB and the more recent determination by Riess
et al. (2012) using Cepheid variables (765+28

−28).
For M33, we employ an ellipticity of 0.4 as used by

McConnachie et al. (2005), but find a position angle of P.A. =

17◦ in closest agreement with the data. Inner and outer ellip-
tical radii of rinner = 0.◦75 and router = 0.◦9 were adopted to

give a very sharp discontinuity at the location of the tip. After
applying an appropriate color-cut, the qualifying stars were fed
into our algorithm to give a distance of 820+20

−19 kpc. This dis-

tance is in good agreement with that of 809+24
−24 kpc obtained by

McConnachie et al. (2005) and yields an M33-to-M31 distance
of 214+6

−5 kpc. It is interesting to note that a variety of quite dif-
ferent M33 distances exist in the literature, with derived distance
moduli ranging from 24.32 (730 kpc, water masers; Brunthaler
et al. 2005) through 24.92 (964 kpc, detached eclipsing binaries;
Bonanos et al. 2006). Indeed, the variety of standard candles
utilized would suggest that M33 provides an ideal environment
for calibrating the relative offsets between them. McConnachie
(2005) suggests that the dispersion of M33 distances in the
literature is tied to an inadequate understanding of the extinc-
tion in the region of M33. Most measurements, including those
presented here, use the Galactic extinction values derived by
Schlegel et al. (1998), although these do not account for extinc-
tion within M33 itself and are calculated via an interpolation
of the extinction values for the surrounding region. Neverthe-
less, the elliptical annulus employed in our approach will act to
smooth out the field-to-field variation that might exist between
smaller regional fields.

4.1.1. Andromeda I: Example of an Ideal Luminosity Function

It would seem prudent to illustrate the performance of our
new method by presenting the results for a range of the dwarf
spheroidals from the most populated to the least populated.
Hence Andromeda I, the first discovered and one of the two most
highly populated of these objects, is the obvious place to start.
The field employed for our Andromeda I distance measurement
incorporated stars at elliptical radii between 0◦ ! rǫ ! 0.◦3 and,
after removal of stars outside of the range 19.5 ! i0 ! 23.5 and
beyond our chosen color-cut, yielded a star count of 4375. The
CMD for this field is presented in Figure 7(a). This figure color-
codes the stars in the CMD as per the color distribution in the
inset field and plots them so that those innermost within the field
(and hence those accorded the highest weight) are represented
by the largest dots. In the case of Andromeda I, the RGB is so
dominant over the background that our density matched filter is
hardly necessary and hence does little to improve the already
stark contrast. It is not surprising therefore that the distance and
uncertainty obtained are almost identical to those obtained by
the base method as presented in Paper I. Andromeda I is thus
confirmed at a distance of 727+18

−17, which allows us to derive a

similarly accurate separation distance from M31 of 68+22
−16 kpc.

4.1.2. Andromeda XV: Example of a Multi-peaked Distance PPD

As an example of a dwarf spheroidal of intermediate size,
we present the comparatively compact Andromeda XV. Far
from being the tidiest example of the many intermediate-
sized objects covered in this study, Andromeda XV provides
something of a challenge. Examination of Figure 8 reveals a
gradual rise in star counts when scanning from the top of the
CMD color-cut faintward toward the Andromeda XV RGB and
a correspondingly broad range in the possible tip locations in
the tip magnitude PPD. Indeed, two peaks are prominent in
the distance PPD of Figure 8(c), with the distribution mode at
626 kpc (our adopted distance) and the 1σ credibility interval
spanning from 591 kpc to 705 kpc as a consequence of the
second peak. Ibata et al. (2007) determine this object to lie
at a distance of 630+60

−60 kpc, which would correspond to a

tip magnitude of approximately mTRGB
i = 20.56 assuming

9
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(a)

(b) (c)

Figure 7. Andromeda I: (a) color-coded CMD representing the weight given to each star in the field. Only stars within the red selection box with magnitudes
19.5 ! i0 ! 23.5 were fitted and hence color-coded. The second, fainter RGB lying toward the redder end of the CMD is that of the giant stellar stream which passes
behind our Andromeda I field. The inset at top right shows the field with the same color-coding and acts as a key. The field is divided into 20 radii bins following
a linear decrease in density from the core (blue) to the field edge (purple). Stars marked as a purple “×” lie outside of the outer elliptical cutoff radius router. Stars
marked as a black “ + ” are artificial stars used in the estimation of the background density and are ignored by the MCMC; (b): posterior probability distribution for the
TRGB magnitude. The distribution is color-coded, with red indicating tip magnitudes within 68.2% (Gaussian 1-sigma) on either side of the distribution mode, green
those within 90%, and blue those within 99%; (c) weighted LF of satellite with superimposed best-fit model in red. A star at the very center of the satellite contributes
1 count to the luminosity function while those further out are assigned some fraction of 1 count in proportion with the satellite’s density profile.

(A color version of this figure is available in the online journal.)

MTRGB
i = −3.44. This is in excellent agreement with the

mTRGB
i = 20.57+0.23

−0.14 recovered by this study. Letarte et al.

(2009) however derive a distance of 770+70
−70 kpc which places

it toward the far edge of our 99% credibility interval on the
distance (see Figure 8(c)). This measurement was derived after
three stars that had been found to lie close to the Andromeda
XV RGB tip in the former investigation were identified as
Galactic foreground stars, following measurements of their
radial velocities obtained with the Deep Imaging Multi-Object
Spectrograph on Keck II. Of these stars, however, none lies
within 2′ from our object center by which point the maximum
possible weighting has already dropped to below 10%, meaning

that even the highest weighted of these three stars will have
minimal effect on the likelihood calculation. This would then
suggest that each of these three stars has magnitude consistent
with belonging to the Andromeda XV RGB.

4.1.3. Andromeda XIII: Example of a very Poorly
Populated Luminosity Function

Andromeda XIII is among the most sparsely populated
objects targeted by the current study and it is important to realize
that it is impossible to obtain distances to such objects with small
uncertainties using the TRGB standard candle, unless of course
one of the few member stars can be positively identified as

10
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(a)

(b) (c)

Figure 8. Andromeda XV: (a) same as Figure 7(a) but for Andromeda XV; (b) same as Figure 7(b) but for Andromeda XV; (c) sampled distance posterior probability
distribution, obtained by calculating the distance 3 million times, each time randomly drawing on the tip magnitude, absolute magnitude of the tip, and extinction
from their respective probability distributions. The distribution is color-coded, with red indicating possible distances within 68.2% (Gaussian 1 σ ) on either side of
the distribution mode, green those within 90%, and blue those within 99%. Note that the large uncertainty in the absolute magnitude of the RGB tip is primarily
responsible for the much smoother appearance of the distance PPD (c) compared with the tip PPD (b).

(A color version of this figure is available in the online journal.)

being right on the brink of core helium fusion. Nevertheless,
though large uncertainties are inevitable, an accurate estimation
of those uncertainties is still achievable, and this is the aspiration
of the method here presented. Distances to Andromeda XI and
XIII have been obtained with higher accuracy using RR Lyrae
stars as a standard candle with photometry from the Hubble
Space Telescope (Yang & Sarajedini 2012). In the case of
Andromeda XI, the tip magnitude identified by our method
agrees well with the distance identified by that study, but in
the case of Andromeda XIII, a brighter star in the central
regions of the field causes some confusion. Indeed in such a
sparsely populated field it is quite difficult to apply any effective
density-based weighting scheme. Nevertheless, after sampling
the tip magnitude PPD (Figure 9(b)), together with those for
the absolute magnitude of the tip and the extinction in this

region of sky to obtain a sampled distance PPD, and multiplying
that distribution with the angle-specific halo density prior as is
standard for all our measurements, we are able to produce a
distance PPD (Figure 9(c)) in good agreement with the findings
of Yang & Sarajedini (2012).

4.2. Determining the Distances from M31

Once a satellite’s distance from Earth is determined, it is
straightforward to determine the distance from M31 using the
cosine rule:

r = (d2 + (dM31)2 − 2ddM31 cos(θ ))1/2, (7)

where r is the satellite’s distance from M31, d is the distance of
the satellite from Earth, dM31 is the distance of M31 from Earth,

11
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(a)

(b)
(c)

Figure 9. Andromeda XIII: All figures as per Figure 8, but for Andromeda XIII. The distance derived by Yang & Sarajedini (2012) is plotted in (c) along with error
bars for comparison.

(A color version of this figure is available in the online journal.)

and θ is the angle on the sky between M31 and the satellite.
For convenience, we use a small angle approximation equating
θ with its M31 tangent plane projection and note that any
displacement of r is insignificant due to the size of the 1σ errors.
If the uncertainty in distance to both M31 and the satellite takes
on a Gaussian distribution, it is straightforward to determine the
error in the satellite–M31 separation by adding the individual
errors in quadrature. While it is reasonable to approximate the
M31 distance uncertainty distribution as a Gaussian, the same
cannot be said for each of the companion satellites. Hence once
again it is more appropriate to sample values from the individual
distance probability distributions. Thus, a histogram of r values
for the satellite is built up by sampling d and dM31 from their
respective distributions over many iterations. This brings to the
fore an important consideration: there is an integrable singularity
in the resulting distribution at the closest approach distance to
M31 (rc = dM31 sin(θ )) as shown below.

The probability distribution for the satellite-to-Earth distance
P (d) is related to that of the satellite-to-M31 distance P (r) as
follows:

P (r) =
δd

δr
P (d). (8)

From Equation (7), and further noting that the satellite-to-Earth
distance corresponding to rc is dc = dM31 cos(θ ), we have

δd

δr
=

r

d − dc

, (9)

which allows us to derive

P (r) =
r

(

r2 − r2
c

)1/2
P (d), (10)

thus producing the singularity at r = rc. In practice, after fac-
toring in the Gaussian distribution in dM31, this results in a sharp

12
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peak at the minimum possible satellite-to-M31 distance when
dealing with the more asymmetric satellite-to-Earth distance
probability distributions. Hence when considering the distribu-
tion of satellites as a function of distance from M31, one can ei-
ther take the distances as determined directly from Equation (7)
using solely the most likely distance from the satellite-to-Earth
distance distributions or the whole distance probability distribu-
tion for a satellite can be allowed to influence the calculations,
as accomplished via sampling. The final result can be quite
different, depending on the choice.

4.3. A First Approximation of the Satellite Density
Profile within the Halo

In the completed PAndAS survey, we have for the first time
a comprehensive coverage of a galaxy halo, with a uniform
photometric depth sufficient to identify even the comparatively
faint satellite companions. In addition, in this paper we have
provided distances to every one of these objects, all obtained
via the same method. We are thus presented with an excellent
opportunity to study the density of satellites as a function of
radius within a Milky Way like halo.

As hinted at in the previous section, obtaining an accurate
picture of the satellite density profile (SDP) is not a trivial task.
The first major consideration is to devise a way of factoring
in the selection function. Comprehensive though the survey
coverage is, it is not symmetric and not infinite. Second, the
choice of model for the SDP is not arbitrary. Whether a simple,
unbroken power law is sufficient is not immediately clear.
Furthermore, does it even make any sense to treat the halo
as a radially symmetric, isotropic distribution? A glance at the
obvious asymmetry in Figure 10(a) would suggest otherwise.
Nevertheless, for a first approximation it is reasonable to
consider what the best-fitting radially symmetric, unbroken
power law to the SDP would be.

The PAndAS survey covers approximately 400 deg2 of sky
and is roughly symmetric about the center of the M31 disk but
with a major protrusion in the southeast to encompass the M33
environs. For the purpose of obtaining an accurate measure of
the survey coverage of the halo as a function of radius, as well as
factoring in the actual survey borders, an inner ellipse was also
subtracted where the presence of the M31 disk has made satellite
detection more difficult. Both the outer survey borders and the
inner cutoff ellipse are plotted in Figure 10. The inner cutoff

ellipse has an eccentricity ǫ =
√

0.84 and is inclined with the
semi-major axis angled 51.◦9 with respect to the x-axis (η = 0).
The dwarf galaxies M32 and M110 lie inside this ellipse as
do the somewhat dubious satellite identifications Andromeda
VIII and Andromeda IV (see Ferguson et al. 2000), hence their
omission from the data presented in Table 2. With the inner and
outer boundaries suitably delineated, the procedure then was to
determine what fraction of halo volume at a given radius f (r)
would fall within these boundaries once projected onto the M31
tangent plane. This was achieved by implementing the even–odd
rule on the projections of uniformly populated halo shells.

Having determined f (r), we can proceed to determine the
required normalization for a power law of any given α, allowing
us to use the power law directly as a probability distribution.
Setting the problem out in terms of probabilities, we require to
determine the probability of each tested M31-to-object distance
(henceforth simply “radius”) r given a power law with slope α:

P (r|α) =
k

rα
, (11)

where k is the normalization constant and rmin ! r ! rmax.
Using the assumed spherical symmetry, we then have

f (r)

∫ rmax

rmin

P (r|α)

∫ 2π

0

∫ π

0

r2 sin θdθdφdr = 1 (12)

so that

4πf (r)

∫ rmax

rmin

kr2−αdr = 1. (13)

Hence, for a given radius at a given α, we have

k(r,α) =

[

4πf (r)

(

r3−α

3 − α

)rmax

rmin

]−1

. (14)

The calculation of the likelihood for a power law of a given
slope α may be simplified by noting that for any given radius,
f (r) and hence k act to scale the probability in an identical
way whatever the value of α. Thus, the dependence of k on r
is effectively marginalized over when the posterior distribution
for α is calculated, so long as any sampling of radii utilizes the
same radii at every value of α. The likelihood for a given power
law (i.e., a given α) is thus

L(α) =

nsat
∏

n=i

kr2−α
i , (15)

where nsat is the number of satellites—i.e., the 27 companions
of M31 listed in Table 2. As discussed in Section 4.2, there
are essentially two ways we can determine the likelihood of a
given α. The most straightforward is to use single values of ri as
determined directly from the mode in the posterior distribution
for each satellite using Equation (7). The second and arguably
more robust method is to use the entire radius probability
distribution (RPD) for each satellite. In the case of this second
approach, the likelihood for the power law determined for each
satellite becomes a convolution of the power law with the
satellite’s RPD, so that the likelihoods of the individual samples
are summed. The final likelihoods determined for each satellite
can then be simply multiplied as before, giving a total likelihood
as follows:

L(α) =
(

kr2−α
1,1 + kr2−α

2,1 + · · · + kr2−α
nsam,1

)

×
(

kr2−α
1,2 + kr2−α

2,2 + · · · + kr2−α
nsam,2

)

× · · ·

×
(

kr2−α
1,nsat + kr2−α

2,nsat + · · · + kr2−α
nsam,nsat

)

(16)

=

nsat
∏

n=i





nsam
∑

n=j

kr2−α
j,i





where rj,i is the j th sampled radius of the ith satellite, and nsam
is the total number of samples.

The resulting distribution achieved by implementing the first
approach is presented in Figure 13(a) from which a value for
α of 1.92+0.32

−0.30 is obtained. It is interesting to note that this
value is consistent with an isothermal satellite distribution with
uniform velocity dispersion. Replacing the individual best-fit
radii with 500,000 samples from the respective RPD for each
satellite as per the second approach, the result is substantially
different, as demonstrated by Figure 13(b). Here a value for α

of 1.52+0.35
−0.32 provides the best fit to the data. This discrepancy is

presumably a consequence of the non-Gaussian RPD profiles for
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(a)

(b) (c)

Figure 10. Three views of the M31 neighborhood: (a) a view of the satellites of M31 along the y–z plane. The conic section illustrates the extent of volume covered
by the PAndAS footprint as a function of distance from Earth; (b) a view of the satellites of M31 in the x–y plane, revealing their true positions on the x–y plane after
removing the effects of perspective (assuming the distances quoted in Column 4 of Table 2). Note that Andromeda XXVII lies directly behind NGC 147 in this plot
and is not labeled; (c) a three-dimensional view of the satellites of M31. The satellite positions on the PAndAS footprint are indicated (i.e., with perspective conserved)
along with the z-vector giving distance from the M31-centered tangent plane. The central ellipse indicates the approximate area of the survey where satellite detection
is hindered by the M31 disk; note that the perpendicular bars on relevant axes indicate 100 kpc intervals.

(A color version of this figure is available in the online journal.)

the more poorly populated satellites, as noted in Section 4.2. In
fact, if the 15 most Gaussian-like distributions are taken alone,
namely Andromedas I, II, III, V, X, XVI, XVII, XVIII, XX,
XXI, XXIII, XXIV, NGC 147, NGC 185, and M33, the results
are in much closer agreement, with α = 1.87+0.46

−0.42 with sampling

and α = 2.02+0.43
−0.41 without.

Given the obvious asymmetry in the satellite distribution
in Figure 10, it is interesting to consider the effects of iso-
lating various other satellites from the calculations. The stark
asymmetry between the number of satellites on the near side
as opposed to the far side of the M31 tangent plane for in-
stance (as had been initially reported by McConnachie & Irwin
2006) is echoed in the respective density profiles, with an α

of 2.37+0.42
−0.37 (no sampling) recorded when only the near-side

satellites are considered, and that of 0.93+0.56
−0.49 (no sampling)

when instead the far-side galaxies alone are included. When the
individual satellite RPDs are sampled, the corresponding values
are 1.87+0.43

−0.40 and 0.78+0.61
−0.46, respectively. Despite the large un-

certainties, the results clearly do not support symmetry of any
kind about the tangent plane. It is important to note, however,
that this asymmetry may not be physical, but rather an effect
of incompleteness in the data at the fainter magnitudes of the
satellites on the far side of M31. McConnachie & Irwin (2006)
do however observe this asymmetry even when only the more
luminous satellites are considered. In time, it is hoped that the
nature of the data incompleteness will be better understood and
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Table 2

M31 Satellite Parameters: Distance and Associated Parameters of M31 and its Companions

Source Distance Modulus E(B − V ) Distance M31 Distance Literature Distance Values

(kpc) (kpc) (kpc)

M31 24.46+0.05
−0.05 0.062 779+19

−18 · · · 785+25
−25 TRGB; McConnachie et al. (2005)

784+17
−17 RC; Stanek & Garnavich (1998)

765+28
−28 Ceph; Riess et al. (2012)

And I 24.31+0.05
−0.05 0.054 727+18

−17 68+21
−17 731+18

−17 TRGB; Conn et al. (2011)

735+23
−23 TRGB; McConnachie et al. (2004)

And II 24.00+0.05
−0.05 0.062 630+15

−15 195+20
−17 634+15

−14 TRGB; Conn et al. (2011)

645+19
−19 TRGB; McConnachie et al. (2004)

And III 24.30+0.05
−0.07 0.057 723+18

−24 86+25
−15 749+24

−24 TRGB; McConnachie et al. (2005)

And V 24.35+0.06
−0.07 0.125 742+21

−22 113+9
−6 774+28

−28 TRGB; McConnachie et al. (2005)

And IX 23.89+0.31
−0.08 0.076 600+91

−23 182+38
−66 765+24

−24 TRGB; McConnachie et al. (2005)

And X 24.13+0.08
−0.13 0.126 670+24

−39 130+60
−17 667 − 738 TRGB; Zucker et al. (2007)

And XI 24.41+0.08
−0.32 0.080 763+29

−106 102+149
−1 740 − 955 TRGB; Martin et al. (2006)

735+17
−17 RR Ly; Yang & Sarajedini (2012)

And XII 24.84+0.09
−0.34 0.111 928+40

−136 181+19
−87 825+85

−159 TRGB; (MCMC without MF)

740 − 955 TRGB; Martin et al. (2006)

And XIII 24.40+0.33
−0.49 0.082 760+126

−154 115+207
−2 890+360

−361 TRGB; (MCMC without MF)

740 − 955 TRGB; Martin et al. (2006)

839+20
−19 RR Ly; Yang & Sarajedini (2012)

And XIV 24.50+0.06
−0.56 0.060 793+23

−179 161+81
−3 630 − 850 TRGB; Majewski et al. (2007)

And XV 23.98+0.26
−0.12 0.046 626+79

−35 174+46
−32 630+60

−60 TRGB; Ibata et al. (2007)

770+70
−70 TRGB; Letarte et al. (2009)

And XVI 23.39+0.19
−0.14 0.066 476+44

−29 319+43
−27 525+50

−50 TRGB; Ibata et al. (2007)

525+50
−50 TRGB; Letarte et al. (2009)

And XVII 24.31+0.11
−0.08 0.075 727+39

−25 6720
−24 794+40

−40 TRGB; Irwin et al. (2008)

And XVIII 25.42+0.07
−0.08 0.104 1214+40

−43 457+39
−47 1355+88

−88 TRGB; McConnachie et al. (2008)

And XIX 24.57+0.08
−0.43 0.062 821+32

−148 115+96
−9 933+61

−61 TRGB; McConnachie et al. (2008)

And XX 24.35+0.12
−0.16 0.058 741+42

−52 128+28
−5 802+297

−96 TRGB; McConnachie et al. (2008)

And XXI 24.59+0.06
−0.07 0.093 827+23

−25 135+8
−10 859+51

−51 TRGB; Martin et al. (2009)

And XXII (Tri I) 24.82+0.07
−0.36 0.075 920+32

−139 275+8
−60 794+239

−0 TRGB; Martin et al. (2009)

And XXIII 24.37+0.09
−0.06 0.066 748+31

−21 127+7
−4 733+23

−22 TRGB; Conn et al. (2011)

767+44
−44 HB; Richardson et al. (2011)

And XXIV 24.77+0.07
−0.10 0.083 898+28

−42 169+29
−29 600+33

−33 HB; Richardson et al. (2011)

And XXV 24.33+0.07
−0.21 0.101 736+23

−69 90+57
−10 812+46

−46 HB; Richardson et al. (2011)

And XXVI 24.39+0.55
−0.53 0.110 754+218

−164 103+234
−3 762+42

−42 HB; Richardson et al. (2011)

And XXVII 25.49+0.07
−1.03 0.080 1255+42

−474 482+0
−425 827+47

−47 HB; Richardson et al. (2011)

And XXXa (Cass II) 24.17+0.10
−0.26 0.166 681+32

−78 145+95
−4 565+25

−25 TRGB g-band; M. J. Irwin (2012, in preparation)

NGC 147 24.26+0.06
−0.06 0.173 712+21

−19 118+15
−15 675+27

−27 TRGB; McConnachie et al. (2005)

NGC 185 23.96+0.07
−0.06 0.182 620+19

−18 181+25
−20 616+26

−26 TRGB; McConnachie et al. (2005)

M33 24.57+0.05
−0.05 0.042 820+20

−19 210+6
−5 809+24

−24 TRGB; McConnachie et al. (2005)

964+54
−54 DEB; Bonanos et al. (2006)

Notes. All distance measurements utilize the data from the Pan-Andromeda Archaeological Survey (McConnachie et al. 2009) and have been obtained using the method

presented in this paper. A value of MTRGB
i = −3.44 ± 0.05 is assumed for the absolute magnitude of the RGB tip in CFHT MegaCam i band, based on the value

identified for the SDSS i band (Bellazzini 2008) and justified for use here by the color equations applicable to the new MegaCam i-band filter (Gwyn 2010). Values for

the extinction in MegaCam i band have been adopted as Aλ = 2.086 × E(B − V ) for the same reasons, with uncertainties taken as ±10%. The extinction values quoted

are for the object centers, though the actual calculations apply individual corrections to each member star according to their coordinates. Note that the uncertainties in

the M31 distance are based on the sampled distributions while the quoted value is that derived directly from the Earth distance as per Equation (7). The last column gives

alternative distances from the literature. TRGB-derived distances are quoted wherever possible. Distance derivation methods: TRGB, tip of the red giant branch; Ceph,

Cepheid period–luminosity relation; RR Ly, RR Lyrae period–luminosity relation; RC, red clump; HB, horizontal branch; DEB, detached eclipsing binary.
a Andromeda XXX is a new discovery, and will also be known as Cassiopeia II, being the second dwarf spheroidal satellite of M31 to be discovered in the constellation

of Cassiopeia (M. J. Irwin 2012, in preparation).
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And I And II And III

And V And IX And X

And XI And XII And XIII

And XIV And XV And XVI

And XVII And XVIII And XIX

Figure 11. Distance posterior distributions for dwarf spheroidal satellites And I–III, And V and And IX–XIX. The distributions are color-coded with red, green, and
blue denoting 1σ (68.2%), 90%, and 99% credibility intervals, respectively. The credibility intervals are measured from either side of the highest peak.

(A color version of this figure is available in the online journal.)
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And XX And XXI And XXII

And XXIII And XXIV And XXV

And XXVI And XXVII And XXX

NGC147 NGC185 M33

M31

Figure 12. Distance posterior distributions for dwarf spheroidal satellites And XX–XXVII and And XXX, dwarf elliptical satellites NGC 147 and NGC 185, and
major galaxies M31 and M33. The distributions are color-coded with red, green, and blue denoting 1σ (68.2%), 90%, and 99% credibility intervals, respectively.

(A color version of this figure is available in the online journal.)
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(a)

(b)

Figure 13. Probability distributions for the slope α of a single power law used to model the M31 halo satellite distribution, given the entire set of 27 M31 companions
presented in Table 2. Panel (a) gives the distribution assuming a single best-fit radius for each of the satellites as determined from the mode in the satellite’s distance
posterior distribution (as given in Column 4 of Table 2). Panel (b) shows the same distribution when the entire radius probability distribution for each satellite is
sampled 500,000 times.

effort is underway to determine the completeness functions for
dwarf galaxy detection in the PAndAS survey (N. F. Martin
et al. 2012b, in preparation). In the mean time, it would seem
prudent to regard the contribution to the density profile of the
far-side satellites with caution, instead taking the density profile
measured from the near-side satellites alone as the best mea-
surement.

On a final note with regard to near-side–far-side asymmetry, it
is important to realize that the uncertainty in the distance to M31
has a large effect on how many satellites will lie on either side of
the M31 tangent plane, and indeed on the density measurement
as a whole. Where the individual PPDs are sampled, this is taken
into account as the M31 PPD is sampled for each measurement.
Nevertheless, it is interesting to consider the specific (non-
sampled) case where M31 is measured at a closer distance,
while all best-fit satellite distances remain unchanged. From
the M31 PPD in Figure 12, it can be seen that there is a 5%

chance that M31 lies at 750 kpc or closer. If M31 is taken to
lie at 750 kpc, Andromedas XI, XIII, and XIV move onto the
far side of the M31 tangent plane, going someway to even out
the asymmetry. However, if the distances of all the satellites
from M31 are re-measured for this new M31 position, the same
stark contrast between the density profiles for the near and far
sides remains and in fact grows. Using only those satellites on
the near side of the new M31 tangent plane, an α of 2.87+0.50

−0.45

is determined whereas if only those satellites on the far side
are considered, an α of 1.22+0.47

−0.47 is obtained. Hence it would
seem unlikely that the observed near-side–far-side asymmetry
is primarily a consequence of an overestimated M31 distance.

Recent research, such as that presented by Koch & Grebel
(2006) and Metz et al. (2007) point toward highly significant
planar alignments of various collections of satellites within
the M31 halo, even though as a whole, no such distribution is
prominent. Interestingly, the former investigation finds that it is
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predominantly the objects morphologically similar to the dwarf
spheroidals in their sample that can be constrained to a relatively
thin disk, which also includes NGC 147 and M33. While our
sample is considerably larger, it nevertheless consists nearly
entirely of such objects, so it will be interesting to determine
what degree of symmetry may be found within and on either
side of the best-fit plane. We intend to investigate this in an
upcoming publication, though it must still be noted that outliers
from the planar trend have already been noted in this small
sample, such as Andromeda II and NGC 185. Furthermore, other
members are known not to conform to the norm of M31 satellite
dynamics, with Andromeda XIV for instance apparently at the
escape velocity for the M31 system for its determined distance
(Majewski et al. 2007). Indeed, it would seem that whatever
model is assumed, a few outliers are inevitable.

5. CONCLUSIONS

With the ready applicability of the TRGB standard candle to
almost any of our galactic neighbors, there can be no question
that its role will continue to be an important one. As the
world’s premier telescopes grow in size, so too will the radius
of the “neighborhood” of galaxies to which the TRGB can be
applied. Hence a technique which accurately characterizes the
true probability space of the TRGB distances determined is a
great asset. Indeed this quality comes to play an increasingly
important role as more and more sparsely populated objects are
found to frequent the environs of our larger nearby neighbors.
The differences in the results achieved in the previous section
with and without sampling of the actual distance distributions
illustrate this fact.

Where in Paper I the foundations were laid for a TRGB
method with such desirable qualities, its full value only becomes
apparent when one actually employs its full Bayesian potential.
It only requires a brief glance at Figures 2 and 3 to see how
powerful a single data-specific prior can be. Similarly, the simple
distance weighting prior outlined in Section 3.3 can make a
poorly constrained model quite workable, as illustrated in the
case of Andromeda XIII. Both tools will likely prove very useful
when the method is used further afield.

It should also be remembered that the TRGB standard candle
is in many ways, just the “first assault.” When photometric data
of sufficient depth are obtained, the horizontal branch can often
pin down the distance with still greater accuracy. With a simple
adjustment to the model LF, the techniques outlined in this paper
and its predecessor commute quite readily to implementation on
the horizontal branch.

Last, it must also be said that the distances presented herein
provide an excellent opportunity to provide a new, updated anal-
ysis of the asymmetry and density of the M31 halo satellite dis-
tribution, one only touched on here. With such comprehensive
and consistent coverage, there is great potential in these dis-
tances to further constrain the possible evolution and dynamical
history of the M31 halo system.
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“Distance lends enchantment to the view.”

Mark Twain (1835-1910)
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Paper III Preface

This paper in many respects represents the climax of the thesis and the culmination of the

work presented in the three previous chapters. Specifically, it takes the satellite distance

distributions presented in the previous chapter (i.e. Paper II), converts them into three-

dimensional positions and then proceeds with a thorough analysis of the resulting distribu-

tion, leading to some exciting revelations as to the structure of the satellite system. Central to

the work presented in Paper III are a variety of tools utilized throughout the analysis. These

tools are discussed in the method section of the paper, but they are elaborated upon here in an

effort to help the reader visualize the processes described and thus provide a suitable preface

to the forthcoming material.

The first consideration in our analysis of the M31 satellite system must be to devise a

suitable means for viewing the distribution in a clear and consistent way. Since we are con-

cerned with a system completely external to our own Milky Way, it is intuitive to depart

from our Earth-bound view and instead view the system as it would appear from the center

of M31. To do this, we shift to M31-centric galactic coordinates. The convention in this

regard has been to orient the north galactic pole (b = +90◦) in the reverse direction to that

of the net angular momentum of the disk (i.e. perpendicular to the disk of the galaxy) with

the meridian of longitude l = 0◦ aligned so as to pass through the Milky Way (or specifically

Earth). Hence, we take the x, y and z coordinates derived as per Fig. 4.1 and perform a rota-

tion of coordinates (quantified in the method section of the paper - see ‘PlaneSigRMS.f95’ in

Appendix D for implementation) so as to bring our satellite positions into the new coordinate

system. For plotting purposes, we can then simply convert from cartesian to spherical co-

ordinates and plot each object’s latitude and longitude in an Aitoff-Hammer projection (see

aitoff hammer.f95 in Appendix D), where positive x points in the direction of l = 0◦, b = 0◦;

positive y toward l = −90◦, b = 0◦; and positive z toward l = 0◦, b = +90◦.

With a suitable method for visualizing the satellite distribution devised, the next con-

sideration in our analysis concerns plane fitting. The whole of Paper III is essentially built

around plane fitting, whether it be to identify planes of satellites with in the distribution,

or the asymmetry of the distributions as a whole. Where we are interested in identifying
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physically significant planes or disks of satellites, we need to seek out the plane that most

closely approximates the constituent satellites as determined by any one of many possible

‘goodness-of-fit’ statistics. When instead we wish to find the magnitude and direction of the

asymmetry of the distribution, we need simply find that plane which divides the sample most

unequally. What ever the application, for ease of implementation and versatility, a simple

scanning routine was chosen to accomplish the task.

The algorithm devised for the plane fitting is best understood by visualizing a plane

pivoted at the center of our coordinate system (i.e. the center of M31) with its normal vector

projecting out from this point. This plane is then rotated such that its normal vector or ‘pole’

scans a complete hemisphere of the sky. In so doing, every possible orientation of the plane

is passed through exactly once. In practice, discrete pointings of the normal vector are used

and at each one the goodness-of-fit statistic or the asymmetry is measured and compared

with the best-fit value encountered so far. It is then either stored or discarded accordingly.

Thus by the completion of the scan, the true best-fit pole has been identified and retained.

In order to scan the hemisphere at a suitably high resolution whilst retaining computational

efficiency, a low resolution scan is made first and then a localized high resolution search

initiated about the best-fit pole. This process is illustrated in Fig. 5.1, where the poles tested

in a single instance of plane fitting have been plotted using the TOPCAT graphics program

(Taylor, 2005). Once the pole to the best-fit plane has been identified via this method, its

orientation can then be converted into M31-centric latitude and longitude and plotted on

an aitoff-hammer projection. This may be done once, as in the case for a particular set of

satellites, or many times, in order to produce a pole distribution plot representing all possible

combinations of a particular number of satellites for instance.

We are now equipped to identify the best-fit plane for a particular set of satellites, but

this is only part of our analysis. We now need to ascertain the significance of the identified

plane; is it likely to be a chance alignment or is it a real physical structure? To answer

this question, we need a method by which the identical measurement can be performed

repeatedly on a large number of ‘realizations’ of randomly distributed artificial satellites,

each one subject to the same constraints as the real data. Our first requirement in producing
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a) b)

Figure 5.1: Plane Fitting; Poles of Tested Planes. This figure illustrates the plane fitting method
utilized for most of the analysis contained in Paper III. Figure (a) shows a hemisphere of equally
spaced points, each one the pole of a tested plane. This plot represents the low resolution scan
undertaken for every instance of plane fitting to a particular set of satellites. Once the scan is complete,
a high resolution scan is undertaken about the best-fit pole. Figure (b) is a close up of several of these
high resolution scans, indicating the effective resolution of each scan. Note that several adjacent scans
are shown to indicate the overlapping coverage. For a given instance of plane fitting, only one high
resolution search (i.e. square) need be made. Plotted using TOPCAT.

such ‘random realizations’ is a tool by which a given satellite position vector can be spun

around to any random position on the M31 sky. Development of such a tool is not a trivial

task, as lines of constant latitude on a sphere are not great circles, but decrease in diameter

toward the poles. Thus simply drawing a latitude and longitude at random will produce a

disproportionate number of satellites at high latitude. We therefore weight the probability

of drawing a particular latitude in proportion to the cosine of the latitude. This is illustrated

in Fig. 5.2 (a). Fig. (b) shows 10, 000 unit vectors distributed truly randomly following

this procedure. Note that this same process is not only applicable to positioning satellites

randomly on the sky but is also another means of generating random poles for plane fitting

(see §3.4 of Paper III for instance).

With the means to spin satellite position vectors to random orientations now in place,

we can proceed to build our random satellite realizations. The general procedure then is

as follows. First, the desired number of satellites to be included in the random realization

is chosen. This is always the total number of satellites in the real distribution i.e. usually

27, but 25 where NGC147, NGC185 and Andromeda XXX are grouped together as a single
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point (see §3.3 of Paper III). Then to generate a position for each artificial satellite, one of

the real satellites is chosen at random and a distance is drawn from its associated distance

distribution. The M31-centric position vector is then calculated and spun around to a new

random orientation as described above. As we wish to subject our random sample to the

same constraints as the real sample, it is very important at this point that we verify that

the new orientation does not place the object outside of the utilized region of the PAndAS

survey area. We therefore project the new satellite position back onto the sky and determine

whether it meets this criterion. If it does, we proceed to generate a position for the next

satellite following the same procedure, if it does not, we reject the new position and likewise

repeat the process, until we get an acceptable position for the current satellite. The process

repeats until the desired number of satellites are produced.

By this point, we have generated our random realization with one possible position for

each satellite. If we are to mimic the data most closely, we should have in effect a full line-

of-sight distance distribution for each artificial satellite. Hence once we have determined a

single set of acceptable three-dimensional positions for the satellites, the positions of each

on the sky as viewed from Earth are stored, as are the new Earth-to-satellite distances. The

original satellite distance distributions used for each one can then be sampled and appropri-

ately mapped to the new positions. Fig. 5.3 below illustrates the procedure for the random

generation of satellites. Figure (a) illustrates the positions on the sky of 1000 accepted satel-

lite positions as viewed from Earth. As with most of the figures in this preface, this figure

was generated to verify the correct behavior of the algorithm. Hence a very large number

of satellites were generated in order to insure that all accepted satellites did indeed fall in-

side the utilized portion of the PAndAS survey area. Figure (b) likewise was generated to

insure that the final random realizations had the correct appearance. It shows 1000 possible

positions drawn for each of 27 artificial satellites.

With all of the above tools in place, we are now in a position to embark on our analysis

of the three dimensional structure of the M31 satellite system. As shall become apparent in

the paper, the analysis reveals some very interesting results. There can, for instance, be very

little doubt that the distribution is significantly inhomogeneous, with degrees of planarity and
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asymmetry observed which are shown to be very unlikely to arise by chance. Most striking is

a very thin plane or disk made up of 15 satellites from the total sample of 27. The orientation

of this ‘great plane’ is also of particular note.
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a)

b)

Figure 5.2: Method for rotating vectors to random angles. Fig. (a) illustrates the calculation of
the necessary weighting factor as a function of latitude. Fig. (b) shows 10, 000 unit vectors spun to
random angles after incorporating this weighting factor. Note that had this weighting factor not been
included, the density of poles would be greater at higher latitudes. Fig. (b) plotted using TOPCAT.



96
Paper III: The Three Dimensional Structure of theM31 Satellite System;

Strong Evidence for an Inhomogeneous Distribution of Satellites

a)

b)

Figure 5.3: Generating random satellite realizations. Fig (a) illustrates the acceptable on-sky po-
sitions in which artificial satellites are allowed to appear, via the creation of a large 1000-satellite
random realization. Note that satellites are less likely to be positioned at larger distances from M31
due to the small number of satellites in the real sample lying at equivalent distances. Figure (b) plots a
single random realization of 27 satellites complete with sampled distance distributions for each. This
is the form of the random realizations used in the actual analysis. Fig. (b) plotted using TOPCAT.



submitted to Astrophysical Journal
Preprint typeset using LATEX style emulateapj v. 08/13/06

THE THREE-DIMENSIONAL STRUCTURE OF THE M31 SATELLITE SYSTEM;
STRONG EVIDENCE FOR AN INHOMOGENEOUS DISTRIBUTION OF SATELLITES

A. R. Conn1, 2, 3, G. F. Lewis4, R. A. Ibata3, Q. A. Parker1, 2, 5, D. B. Zucker1, 2, 5, A. W. McConnachie6, N. F. Martin3, D. Valls-Gabaud7, N.
Tanvir8, M. J. Irwin9, A. M. N. Ferguson10, and S. C. Chapman9

submitted to Astrophysical Journal

ABSTRACT

We undertake an investigation into the spatial structure of the M31 satellite system utilizing the distance
distributions presented in a previous publication. These distances make use of the unique combination of depth
and spatial coverage of the Pan-AndromedaArchaeological Survey (PAndAS) to provide a large, homogeneous
sample consisting of 27 of M31’s satellites, as well as M31 itself. We find that the satellite distribution, when
viewed as a whole, is no more planar than one would expect from a random distribution of equal size. A disk
consisting of a large subset of 15 of the satellites is however found to be highly significant, and surprisingly
thin, with a root-mean-square thickness of just 12.34+0.75

−0.43
kpc. This disk is oriented approximately edge on

with respect to the MilkyWay and almost perpendicular to theMilky Way disk. It is also roughly orthogonal to
the disk like structure regularly reported for the Milky Way satellite system and in close alignment with M31’s
Giant Stellar Stream. A similar analysis of the asymmetry of the M31 satellite distribution finds that it is also
significantly larger than one would expect from a random distribution. In particular, it is remarkable that 20 of
the 27 satellites most likely lie on the MilkyWay side of the galaxy. This lopsidedness is all the more intriguing
in light of the apparent orthogonality observed between the satellite systems of the Milky Way and M31.

Subject headings: galaxies: distribution— galaxies: dwarf— galaxies: individual (M31)— galaxies: satellites

1. INTRODUCTION

The possibility that irregular distributions of satellite galax-
ies may be a common feature of large galaxy halos was orig-
inally bolstered by several studies of the anisotropic distri-
bution of our own galaxy’s satellites. Lynden-Bell (1976)
found that the Magellanic Stream along with Sculptor and
the Draco-Ursa Minor Stream and their associated dwarf
spheroidal galaxies all appear to lie in the orbital plane of
the Magellanic Clouds. In Lynden-Bell (1982), all the then
known dwarf spheroidal companions of the Milky Way are
identified as lying in one of two streams. Kroupa, Theis, &
Boily (2005) examined the likelihood of producing the ob-
served disk-like distribution of Milky Way satellites from a
spherical or oblate dark matter halo. From comparisons with
theoretical isotropic satellite distributions produced from such
a halo, they find that the chance of producing the observed dis-
tribution from the dark-matter sub-halos of cold-dark-matter
(CDM) cosmology is less than 0.5 %. They examine various
combinations of the inner most satellites and find a best-fit
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plane that is almost perpendicular to the plane of the Milky
Way with a root-mean-square height ranging from only about
10 to 30 kpc. Zentner et al. (2005), whilst finding a simi-
lar plane to Kroupa, Theis, & Boily (2005) for the satellites
of M31, disagree with their assumption that such a plane is
unlikely to arise from a conventional CDM dark matter halo.
They argue that that the most luminous satellites cannot be
taken for granted as forming randomly from the isotropic
sub-halo distribution but instead, lie preferentially at smaller
distances from the halo centre and co-planar with the major
axis of the host halo. Coupled with the finding that galaxies
preferentially align themselves with their major-axis highly-
inclined or even perpendicular to that of the surrounding mat-
ter (e.g. Navarro, Abadi, & Steinmetz 2004; Hartwick 2000),
this then provides a good explanation for the observed orien-
tation of the best fit plane.
More recently, Lovell et al. (2011), using the six halo mod-

els in the Aquarius Simulations (Springel et al. 2008), find
that all six halos produce a significant population of sub-halos
with quasi-planar orbits aligned with the main halo spin. This,
they argue, is a natural explanation for the observed satellite
distribution of the Milky Way. Pawlowski et al. (2012) ar-
gue against this however. With the calculation of the angular
momenta of 8 Milky Way Satellites (Metz, Kroupa, & Libe-
skind 2008) revealing a strong alignment between 6 of the
orbital poles, Pawlowski et al. (2012) examine the likelihood
of randomly drawing 6 sub-halos from each of the 6 Aquar-
ius simulations (among other halo simulations), and finding a
similar degree of alignment. More precisely, they draw 105

sets of 8 satellites from each of the 6 simulations, and se-
lect the 6 with the highest degree of alignment between their
orbits, thus emulating the findings of Metz, Kroupa, & Libe-
skind (2008). They then look at the degree of clumping of the
orbital poles ∆sph as well as the angular distance of the aver-
age of the orbital pole inclinations from the model equator d
and find that the actual degree of planarity observed for the
six satellites identified by Metz, Kroupa, & Libeskind (2008)
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(∆MW
sph
= 35.4◦ and dMW = 9.4

◦) are equalled or exceeded in

the random draws in less than 10% of cases when ∆sph is con-
sidered and less than 15% of cases for d. Starkenburg et al.
(2012) also find that the degree of planarity observed for the
Milky Way satellites is uncommon in all six of the Aquarius
halos (see Fig. 7 of that study).
In addition to the revelation that the Milky Way’s satellites

appear to inhabit highly-inclined great planes, they also ap-
pear to corroborate the finding of Holmberg (1969), namely
that the companions of Spiral Galaxies preferentially congre-
gate at high galactic latitudes (the Holmberg Effect), as ob-
served in his study of 174 galaxy groups. It is not clear why
this should be the case, or even if it truly is the case, although
if the apparent adherence of satellite systems to polar great
planes is typical of galaxies in general, then the Holmberg
Effect seems to be an extension of this. Quinn & Goodman
(1986) proposed that dynamical friction may be responsible
for the observed polar great planes, with those orbits spending
the most time in close proximity to the galactic disk, experi-
encing the fastest decay, while those that take the most direct
route through the disk environs, namely the polar orbits, ex-
periencing the slowest orbital decay.
Besides the conjecture that satellite great planes trace the

major-axis of the dark-matter halo in which the parent galaxy
resides, there are other proposed mechanisms for their cre-
ation. One hypothesis is that these planes trace the orbits
of ancient galaxies that have been cannibalized by the host
galaxy. Palma, Majewski, & Johnston (2002) have inves-
tigated this hypothesis by looking for planes among groups
of satellite galaxies and globular clusters in the Milky Way’s
outer halo and find various members to be co-planar with ei-
ther the Magellanic or Sagittarius streams. The findings of
Lynden-Bell & Lynden-Bell (1995) are also consistent with
such a hypothesis. Indeed, it is this hypothesis which is most
strongly supported by Pawlowski et al. (2012), wherein the
∆sph and d of satellites drawn from various tidal models equal

or exceed ∆MW
sph

and dMW in over 80% of draws in some cases.

A similar hypothesis, which in some regards links the galaxy-
cannibalization and dark-matter hypotheses, proposes that the
observed planes result from the orientation of the large-scale
filamentary structure of galaxy clusters (e.g. Knebe et al.
2004), an orientation traced out by those minor galaxieswhich
fall into the halo of a major galaxy. Metz et al. (2009) argue
however that extra-galactic associations of dwarf galaxies are
too extended to account for the high degree of planarity ob-
served for the Milky Way satellites.
The great obstacle to a conclusive resolution of these issues

is the lack of systems for which reliable spatial (and kine-
matic) data exists. While some such data does exist for large
galaxy clusters such as Virgo and Coma, accurate 3D distri-
butions of galaxies within their halo have for a long time been
known only for our own galaxy’s halo, ascertainable due to
our central position within it. It has only been in recent times
that a second system has opened up to us - that of our coun-
terpart in the Local Group, M31. Whilst various databases
of photometry and other data have been available for M31
and some of its brighter companions for over a decade, it is
the Pan-Andromeda Archaeological Survey (PAndAS - Mc-
Connachie et al. 2009) - a deep photometric, 2-colour survey
providing a uniform coverage of the M31 halo out to approx-
imately 150 kpc - that has provided a new level of detail for
this system. It is from this survey that we obtained our dis-
tances toM31 and 27 of its companions, following the method

developed in Conn et al. (2011) (henceforth CLI11) and fur-
ther adapted for this purpose in Conn et al. (2012) (henceforth
CIL12). The distances themselves and their associated un-
certainty distributions are presented in CIL12 and it is these
distributions that are utilized for all analysis contained in this
paper.
With regard to previous studies of the anisotropy in theM31

satellite distribution, two investigations warrant consideration
at this point. McConnachie & Irwin (2006), making use of
Wide Field Camera (WFC) photometry from the Isaac New-
ton Telescope (INT) in what was essentially the forerunner
to the PAndAS Survey, focus on “Ghostly Streams” of satel-
lite galaxies following a similar approach as Lynden-Bell &
Lynden-Bell (1995) used for the Milky Way. In addition,
they characterize the large degree of asymmetry in the satel-
lite distribution, a feature also noted in CIL12, and examine
the radial distribution of the satellites, noting a (statistically
insignificant) larger average distance from M31 than that ob-
served between the Milky Way and its satellites. They find
a large number of candidate satellite streams, with some fa-
voring the dwarf spheroidal members. Koch & Grebel (2006)
utilize distance measurements from a variety of sources and
focus particularly on planes of satellites and, whilst they do
not find a particularly significant best fit plane when their
whole satellite sample is considered, it is rather interesting
that they find a 99.7 % statistical significance to their best fit
plane when the then-known dwarf spheroidal galaxies domi-
nate their sample. Furthermore, this plane is near-polar - as
has been observed for the Milky Way, although they find lit-
tle support for the Holmberg Effect. Koch & Grebel (2006)
utilize a particularly robust method in their search for high-
significance planar fits to subsets of galaxies by considering
every possible combination of a given number of satellites
from their sample.
In the current study we employ a similar approach, but with

the great advantage of having a considerably extended sample
of galaxies in our sample, with all distances derived by the
same method and from the same data as described in CLI11
and CIL12. As a result, we are able to give full consideration
to the effects of selection bias on the observed satellite distri-
bution. This then presents an excellent opportunity to greatly
improve our knowledge of the three-dimensional structure of
the M31 satellite distribution, with important implications re-
garding the recent evolution of the system.
A breakdown of the structure of the paper is as follows. In

Section §2, we outline our method for plane fitting (§2.1) and
locating significant planes of satellites as well as the orien-
tation, magnitude and significance of the asymmetry of the
distribution. A method for generating random realizations
of satellites subject to the same selection biases as the real
data is also discussed in this section (§2.2) as is the selec-
tion bias itself (§2.3). §3 then presents the results of apply-
ing these methods, first to the sample as a whole, and then to
subsets of galaxies. Specifically, §3.1 presents a study of pla-
narity within the satellite system when all satellites contribute
to the determination of the best fit plane; §3.2 examines the
asymmetry in a similar way; §3.3 examines the orientations
of planes of smaller subsets of satellites within the distribu-
tion; and §3.4 concludes this section with a determination of
the significance of a ‘Great Plane’ of satellites emerging from
the preceding sections. Sections 4 and 5 then follow with dis-
cussion and conclusions.
Note that this paper was written in conjunction with a

shorter contribution (Ibata et al. 2012; hereafter ILC12) which
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announced some of the key discoveries resulting from the
analysis we present here. In particular, the process of iden-
tifying the member satellites of the ‘great plane’ discussed in
ILC12 is described here in more detail. In this analysis how-
ever, we concern ourselves with the spatial structure of the
satellite system only and so the reader should refer to ILC12
for the interesting insight provided by the addition of the ve-
locity information.

2. METHOD

2.1. Plane Fitting

In order to find planes of satellites within the M31 satellite
system, our first concern is to convert the satellite distances
as presented in CIL12 into three-dimensional positions. To
do this, we begin with an M31-centered, cartesian coordinate
system oriented such that the x and y axes lie in the M31 tan-
gent plane with the z-axis pointed toward the Earth. Specifi-
cally, the x-axis corresponds to ηtp = 0 which is the projection
of M31’s Declination onto the tangent plane. The y-axis then
corresponds to ξtp = 0 - the projection of M31’s Right As-
cension onto the tangent plane. The z-axis then points along
the Earth-to-M31 vector, with magnitude increasing with dis-
tance from Earth. This orientation can be seen in Fig. 10(c)
of CIL12. Thus:

x = Dsatcos(θ)tan(ξ)

y = Dsatsin(η)

z = Dsatcos(θ) − DM31

(1)

where DM31 and Dsat are the distances from Earth to M31
and from Earth to the satellite respectively, θ is the angular
separation on the sky betweenM31 and the satellite, and η and
ξ are the real-angle equivalents of the tangent plane projection
angles ηtp and ξtp respectively.
Next, we rotate this reference frame to the conventional

M31 reference frame such that the positive z-axis points to-
ward M31’s north galactic pole1 (i.e. bM31 = +90

◦) and the
lM31 = 0

◦ meridian passes through the Earth. So as to be con-
sistent with the earlier work of McConnachie & Irwin (2006),
we have adopted the same values for M31’s position angle
(39.8◦) and inclination (77.5◦ - de Vaucouleurs 1958). Each
object is hence rotated by 39.8◦ about the z-axis to counter
the effect of its position angle, and then 77.5◦ about the x-
axis to account for M31’s inclination. A final rotation of 90◦

about the z-axis is then necessary to bring lM31 = 0◦ into
alignment with the direction of Earth (which hence lies at
lM31 = 0

◦
, bM31 = −12.5

◦). The resulting spherical coordi-
nates for each object in the sample are plotted onto an Aitoff-
Hammer projection in Fig. 1. This same figure also shows the
uncertainties in position associated with each object, gener-
ated via sampling of the respective distance posterior proba-
bility distributions (PPDs) of each object and subsequent con-
version of each drawn distance into a three-dimensional posi-
tion.
With the satellites’ positions determined in cartesian coor-

dinates, it is straight forward to determine the minimum dis-
tance of each satellite from a given plane as follows:

Dplane = |ax + by + cz + d| (2)

where Dplane is the distance of a satellite at a point (x, y, z)
from a plane whose normal vector is (a, b, c) and is of unit

1 Defined so as to point north in Equatorial coordinates

length. For simplicity, we invoke the reasonable requirement
that all planes must pass through the center of M31 and so
in our case, d = 0 and the plane normal vector points out
from the center of M31. Hence, in order to find the best-fit
or maximum significance plane to a set of satellites, we need
simply minimize Dplane for the satellites to be fitted. This can
be done via a variety of means, some of which are compared
in the following section, but perhaps the most robust and the
predominant method employed in this study, is that of min-
imizing the root-mean-square (RMS) of the distances to the
fitted satellites.
In order to measure the asymmetry of the satellite distribu-

tion about a given plane, we need only count the number of
satellites on one side of the plane. To do this, we can simply
remove the absolute value signs from equation 2, so that the
side of the plane on which a satellite lies can be determined by
whether Dplane is positive or negative. The plane of maximum
asymmetry is then taken to be that which divides the sample
such that the difference in satellite counts for opposite sides
of the plane is greatest.
Whether we wish to determine the best fit plane through a

sample of satellites or the plane of maximum asymmetry, we
require a system by which a large number of planes can be
tested on the sample so that the goodness of fit (or asymme-
try) can be calculated for each. To do this, we define each
tested plane by its normal vector or pole (a, b, c) so that Eq.
2 can be applied directly. We then rotate this pole to differ-
ent orientations around the sky in such a way as to ‘scan’ the
whole sphere evenly and at a suitably high resolution. In prac-
tice, we need to be able to apply this routine many thousands
of times for a large number of samples and so a fast computa-
tional time is of the essence. To this end, for a given sample,
our algorithm determines the desired plane following a two
step procedure.
Firstly, a low resolution scan of the sphere is made to de-

termine the approximate direction on the sky of the pole to
the best-fit plane. Only half the sphere actually needs to be
scanned since poles lying on the opposite hemisphere corre-
spond to the identical planes flipped upside down. The low
resolution scan tests 2233 different poles across the hemi-
sphere. A near-uniform coverage is achieved by decreasing
the number of planes tested in proportion to the cosine of the
latitude of the planes’ pole. This prohibits what would oth-
erwise be an increased coverage at the higher latitudes of the
coordinate system. With the pole to the best-fit plane deter-
mined in low-resolution, a high resolution search is then made
around the identified coordinates at 10 times the resolution.
In this way a pole can effectively be found at any of approxi-
mately 250,000 evenly spread locations on the hemisphere.

2.2. Generating Random Satellite Samples

Whilst we are now equipped to identify best-fit planes to
our sample and subsamples thereof, it is necessary to have
some means of determining the significance of these planes
in an absolute sense. The most intuitive way to do this is to
perform the same analysis on a randomly generated sample
of equal size. In particular, when we are concerned with all
possible combinations of a particular number of satellites that
can be produced from the whole sample, we are often deal-
ing with a very large number of subsamples and so it is in-
evitable that some of these subsets of satellites will exhibit a
very high degree of planarity. Identical analysis must there-
fore be performed on random distributions, to see if there are
similar numbers of subsets with equal degrees of planarity.
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Fig. 1.— An Aitoff-Hammer Projection showing the positions of M31’s satellites, along with their associated 1σ uncertainties. The positions show where each
object would appear in the sky if viewed from the centre of M31, and are given in M31’s inherent galactic latitude and longitude. The position of the Milky Way
is also shown for reference. The position uncertainties trace single arcs across the M31 sky, rather than two-dimensional patches on account of the restriction of
the uncertainty to lie solely along the line of sight to the object from Earth. For this same reason, all the lines point radially outward from the Milky Way. These
uncertainties also take into account the uncertainty in M31’s distance. The existence of a prominent plane, broadly consisting of Andromedas I, XI, XII, XIII,
XIV, XVI, XVII, XXV, XXVI, XXVII, XXX and NGC147 and NGC185, is hinted at by the close proximity of their respective arcs.

For this reason, considerable care was taken to design an
algorithm capable of providing a unique random realization
of the desired number of satellites whenever it is called. The
algorithm makes use of the distance PPD for each satellite,
and also takes into account the irregular window function (i.e.
useable portion) of the PAndAS survey. Each time a satellite
is to be added to the random realization, one of the 27 actual
satellites is chosen at random and a distance is drawn from
its associated PPD. This distance (Dsat) is then converted into
a three dimensional position (x, y, z) following equation set 1
and this satellite-to-M31 separation vector is then spun around
to a new, random location in the M31 sky. Note that for each
random realization, a new value of DM31 is similarly drawn
from the M31 distance PPD.
Once again, care must be taken in this step to ensure that the

whole sphere is given equal weight, otherwise there is a higher
likelihood for the artificial satellites to be positioned at high
latitude. Again, this is remedied by weighting the likelihood
by the cosine of the latitude.
With the new, random location for the satellite chosen, it

is then projected back onto the sky as it would appear from
Earth and a check is made to ensure that it does indeed lie
within the boundaries of the PAndAS survey area, and outside
of the central ellipse (5◦ major axis, 2◦ minor axis - see Fig.
10 (c) of CIL12) where the disk of M31 inhibits reliable mea-
surements. If the satellite does not meet these requirements, it
is rejected and the satellite drawing process is repeated until a
suitable position is generated. By repeating this process until
the desired number of satellites are produced, a new, random
comparison sample is generated which gives full account to
the constraints on the actual data.
In order for the random satellite realizations to mimic the

actual data most closely, it is necessary that each artificial

satellite is represented not by just one point, but rather a string
of points reflecting the uncertainty in the Earth-to-Object dis-
tance. Hence once acceptable positions for each satellite are
drawn as described above, the distance distributions for each
object are sampled and projected to their equivalent positions
along the line of sight about the initially placed point. For
sections 3.1, 3.2 and 3.4 each artificial satellite’s distance dis-
tribution is represented by 1000 points such that each plane-
fitting measurement is made for 1000 possible positions of
the object and then the average value of the measurements
is taken. The only exception to this number is where the
maximum-likelihood approach is used in §3.1. Due to the
inclusion of a second fitting parameter in this case, only 100
samples are taken for each satellite. For §3.3, as we are not
concerned with comparisons of plane significance between
the real sample and the random realizations, it is sufficient
to use a single drawn position for each artificial satellite.

2.3. A note on Satellite Detection Bias

By employing a similar method to that described above, it is
also possible to explore the effect of the PAndAS survey area
boundaries on the satellite detection bias as viewed from the
center of M31. It is intuitive that more satellites are likely to
be detected along the line of sight to Earth, since even satel-
lites at a large distance from M31 will still appear within the
survey boundaries if they lie along this line. We can visual-
ize this effect by generating a large number of randomly dis-
tributed satellites and plotting them on the M31 sky after first
rejecting those satellites that would appear outside the survey
area ‘mask’ if viewed from Earth. To do this, one million
satellites were drawn from a spherically symmetric halo po-
tential with density falling off as a function of the square of the
distance from the halo center. Satellites were hence drawn at
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distances between 0 and 700 kpc from M31 with equal prob-
ability. The satellites were then projected onto the M31 tan-
gent plane and those satellites lying outside the survey area or
inside the M31 disk obstruction area were excised from the
density map. The resulting anisotropy of the satellites on the
M31 sky is presented in Fig. 2.

Fig. 2.— An Aitoff-Hammer projection illustrating the satellite detection
bias resulting from the PAndAS survey boundaries and M31 disk obstruction.
Note that this figure utilizes a Gaussian blurring of radius 5◦, as do all of the
subsequent pole-density plots.

As can be seen from the figure, the probability of detection
is indeed higher along a great circle oriented edge-on with re-
spect to the direction of Earth, and perpendicular to the M31
disk (bM31 = 0

◦). This great circle has its pole/ anti-pole at
lM31 = ±90

◦
, bM31 = 0

◦ and hence we would expect a pre-
disposition toward finding planes of satellites with a pole in
this vicinity. We would also expect, though to a lesser ex-
tent, to find an excess of satellite planes oriented edge-on
with respect to Earth at any inclination. Such planes would
have poles lying anywhere on the great circle whose normal
is directed toward Earth. The drop in the satellite density at
lM31 = 0

◦
, bM31 = −12.5

◦ and lM31 = ±180
◦
, bM31 = 12.5

◦

is a consequence of the hinderance to detection caused by the
M31 disk. Due to the increased volume of space covered by
the survey at greater distances from Earth, unhindered satel-
lite detection is possible over a larger range of angles on the
far side of M31 in comparison to the Earth-ward side.

3. RESULTS

3.1. Best Fit Plane to the Entire Satellite Sample

In order to find the best-fit plane to the satellite system as
a whole, the procedure of §2.1 is applied to the whole sam-
ple of 27 satellites presented in CIL12. The RMS thickness
of the sample is used here, as in subsequent sections, as the
statistic of planarity; we find it to be a robust measure and
it has the convenient property of being computationally inex-
pensive. Since we are dealing with only one sample in this
case, two other measures are also used for comparison. The
first calculates the sum of the absolute values of the distances
of each of the satellites from the tested plane. The second is
essentially a maximum likelihood approach and replaces the
plane of zero-thickness with a ‘Gaussian Plane’ such that a
satellite’s position within the Gaussian determines the plane’s
goodness-of-fit to that satellite. This second approach re-
quires that different Gaussian widths σ be tested for each
plane orientation in order to find the width that best matches
the satellite distribution. Values between 5kpc and 150 kpc
were tested at 5 kpc intervals for each tested plane orienta-
tion. Hence an additional characteristic of the satellite distri-
bution is obtained, but at the expense of a considerably longer

computation time.
For each of the three measures of goodness-of-fit described

above, the first step is to find the best-fit plane to the satel-
lite positions with their positions determined from their best-
fit distances. When either the RMS or maximum likeli-
hood approach is used, the same best-fit plane is found as
0.153x + 0.932y + 0.329z = 0 with pole at (lM31, bM31) =
(−80.7◦, 19.2◦). This plane is plotted as a great circle on the
M31 sky in Fig. 3 with the poles of the plane indicated.
When the absolute distance sum is used instead, the pole is
found farther from the plane of the galaxy, at (lM31, bM31) =
(−74.9◦, 24.3◦). Nevertheless, the polar-plane described by
Koch & Grebel (2006) is supported by either measurement,
and is reminiscent of the satellite streams identified in the
Milky Way satellite system. In light of the detection biases
imposed by the PAndAS survey area as illustrated in Fig. 2,
the result in this case must clearly be treated with suitable
caution however. Like Koch & Grebel (2006), we find little
evidence for the Holmberg Effect, with only 3 best-fit satel-
lite positions falling within 30◦ of the M31 galactic poles,
and only 6 of the 1σ error trails from Fig. 1 pass beyond
bM31 = ±60

◦.

Fig. 3.— An Aitoff-Hammer Projection showing the best-fit plane to the
satellite system as a whole. The pole and anti-pole of the plane are denoted
by ‘+’ and ‘×’ symbols respectively. Only the best-fit satellite positions were
incorporated into the fit for this figure. The distribution of poles obtainable
from other possible realizations of the satellite distribution is presented in Fig.
4. Note that the plane is near-polar, similar to the preferredplane orientations
identified for the Milky Way Satellite System.

To determine the uncertainty in the plane’s goodness-of-fit,
we need to repeat the procedure for a large number of real-
izations of the satellite sample, with the best-fit satellite dis-
tances replacedwith a distance drawn at random from their re-
spective satellite distance PPDs. A density map of the best-fit
plane poles identified from 200,000 such realizations is pre-
sented in Fig. 4. This figure was generated using the distribu-
tion RMS as the goodness-of-fit statistic, and contains 71.1%
of all poles within a 5◦ radius of the best-fit pole stated above.
When the sum of absolute distances is used in place of the
RMS, this fraction falls to 68.3%, or to 70.9% when the max-
imum likelihood approach is used. It should be noted that
the distribution of poles lies in close proximity to the pole of
maximum detection bias at lM31 = −90

◦
, bM31 = 0

◦, again
suggesting that the detection bias is having a strong influence
on the polar orientation of the best-fit plane.
In order to determine whether the goodness-of-fit of the

best-fit plane is really physically significant, similar analysis
should be performed on a large number of random realiza-
tions of satellites, to see how often distributions of satellites
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Fig. 4.— A pole-density map showing the effective uncertainty in the loca-
tion of the best-fit plane to the whole satellite sample. The poles of the best-fit
planes derived for 200,000 possible realizations of the data are plotted, along
with their corresponding anti-poles.

arise with a comparable degree of planarity. Figure 5 presents
probability distributions of the plane significance for possi-
ble realizations of the real satellite sample along with average
values from random realizations of the satellites (as per §2.2),
obtained using the three measures of goodness-of-fit stated
above.
It is immediately clear from Fig. 5 that regardless of the

choice of the measure of goodness-of-fit, the range of values
obtainable from possible realizations of the real satellite po-
sitions are similar to the most likely values to be expected
from completely random realizations of the satellites. Hence,
whilst a prominent plane of satellites comprising roughly half
of the sample is suggested in Fig. 1, it would seem that the
sample as a whole is no more planar than would be expected
from a strictly random distribution. Again, this is in keep-
ing with the findings of Koch & Grebel (2006), and detracts
from any physical significance that should be attributed to the
plane’s polar orientation.
Further to this finding, the overall width of the ‘plane’ is

again in keeping with that expected from a purely random
satellite distribution. From fitting the Gaussian Plane to the
best-fit satellite positions, a 1σ width of 60 kpc is found to
produce the best fit to the data. When the 200,000 PPD-
sampled realizations were tested, a 1σ of 60 kpc was found
preferential in 66.3% of cases, with a 1σ of 55 kpc being pre-
ferred in 32.7% of cases. Values of 50 kpc make up the re-
maining 1% almost entirely. The average value for the actual
satellite distribution was thus determined as 58.3 kpc. This
value is similar to the most likely width identified from the
10,000 random realizations, as can be seen in Fig. 6.

3.2. The Plane of Maximum Asymmetry

To determine the plane of maximum asymmetry and its sig-
nificance, we employ an identical approach as in the preced-
ing section, but with the goodness-of-fit statistic replaced with
a count of the number of satellites on each side of the plane
as per §2.1. As was suggested by the three-dimensional satel-
lite distribution generated in CIL12, the asymmetry about the
M31 tangent plane is close to a maximum, with 19 satellites
on the near-side of the plane but only 8 on the other when the
best-fit satellite positions are assumed. The highest asymme-
try plane possible from this same distribution has 21 satellites
on one side and 6 on the other, with the equation of the plane
identified by the algorithm as −0.797x− 0.315y+ 0.515z = 0.
The anti-pole of this plane lies 27.2◦ away from the Milky
Way at (lM31, bM31) = (−21.6

◦
,−31.0◦). This plane is plotted

as a great circle on the M31 sky in Fig. 7.
When 200, 000 realizations of the satellite sample are gen-

erated using the satellite’s respective distance probability dis-
tributions, the most likely asymmetry of the sample is actually
found to be greater than this, with 23 satellites on one side
and only 4 on the other. Such a scenario is more than twice
as likely as the 21 : 6 scenario. In one realization, a plane
was identified which could divide the sample such that all 27
satellites lay in a single hemisphere, while an asymmetry of
26 : 1 was found possible for 815 (0.4%) of the realizations.
The distribution of maximum-asymmetry poles on the sky, as
determined from realizations of possible satellite positions, is
illustrated in Fig. 8, whilst Fig. 9 (a) plots the probability
distribution for the greatest number of satellites that can be
found in one hemisphere for a given realization of the ob-
served satellite sample. The average value of this distribution
is 22.7 (shown as a dashed line in Fig. 9 (b)), a value which
is equalled or exceeded for 422 out of the 10, 000 random re-
alizations represented in Fig. 9 (b). A maximum asymmetry
ratio of 21 : 6, as was observed for the best-fit satellite dis-
tribution plotted in Fig. 7, is more common however, falling
inside the 1σ credibility interval.
What is particularly striking about the satellite distribution

however, is the orientation of the asymmetry, with the ma-
jority of satellites lying on the near-side of the M31 tangent
plane. From Fig. 9 (c), it is clear that the effect of the dis-
tance uncertainties lying along the line of sight is to create
quite a broad distribution in the level of asymmetry about the
tangent plane, though the average is markedly high at 20.3.
To investigate the likelihood of this scenario arising from a
random satellite distribution, we measure the average num-
ber of satellites on either side of the M31 tangent plane for
each of 10, 000 random realizations as per §2.2. The results
are illustrated in Fig. 9 d). The observed profile is more-
or-less as expected, with a maximum probability close to the
minimum possible asymmetry at 14 and then a rapid fall off
toward higher asymmetries. It is therefore clear that the dis-
tance uncertainties lying along the line of sight have no sig-
nificant bearing on the orientation of the asymmetry. Yet the
observed degree of asymmetry about the M31 tangent plane is
equalled or exceeded in only 46 of the 10, 000 random satellite
realizations and hence is very significant. The possibility that
this asymmetry may be a consequence of data incomplete-
ness is currently being examined more closely (see Martin et
al. 2012), although it seems very unlikely. The high degree
of asymmetry is still observed even when only the brightest
satellites are considered. Furthermore, the data incomplete-
ness appears to be dominated by the boundaries of the PAn-
dAS survey area and obstructed regions which are already
taken into account by our analysis. Indeed, one would ex-
pect more satellites to be observed on the far side of the M31
tangent plane on account of the increased volume of space
covered by the survey at greater distances, an effect clearly
visible in Fig. 2.

3.3. Subsets of Satellites

It is perhaps not surprising that the satellite system of M31,
when treated as a whole, is no more planar than one would
expect from a random sample of comparable size. Indeed,
a similar result was noted for the M31 system by Koch &
Grebel (2006). The existence of outliers in our satellite sam-
ple was already clear from Fig. 1 and furthermore, if multiple
planes of differing orientation are present as has been sug-
gested for both theMilkyWay’s satellite system (e.g. Lynden-
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a) b)

c) d)

e) f)

Fig. 5.— Probability distributions for the planarity of the entire satellite sample, as determined from three different measures of the plane goodness-of-fit. The
left-hand column of figures gives the distribution of the goodness-of-fit statistic as obtained via plane fitting to 200,000 separate samplings of the real satellite
sample. The right-hand column of figures summarizes the same procedure performed for 1, 000 separate samplings of each of 10, 000 random realizations of the
satellites (as per §2.2). It is important to note that each histogram in this column has been generated by plotting the average values from the 10, 000 individual
histograms corresponding to each of the random realizations and hence they should only be compared with theaverage of the histograms in the left-hand column.
The goodness-of-fit statistic for a) and b) is the distribution RMS; for c) and d) is the absolute distance sum and; for e) and f) is the sum of satellite likelihoods.
The average of the histograms in (a), (c) and (e) are shown in (b), (d) and (f) respectively as dashed lines. Red, green and blue lines denote the extent of 1σ
(68.2%), 90% and 99% credibility intervals respectively.

Fig. 6.— The probability distribution for the average 1σ width as deter-
mined from 10,000 random distributions of 27 satellites. This figure is gen-
erated from the same run as Fig. 5 f) and is the result of marginalizing over
the plane-orientation model parameters.

Bell 1982; Pawlowski, Pflamm-Altenburg, & Kroupa 2012B)
and the M31 system (McConnachie & Irwin 2006), then the
goodness of fit of the best-fit plane to the entire distribution is
of little consequence. For this reason, we now concentrate our
analysis on subsets or combinations of satellites. Specifically,
we perform a pole-count analysis by determining the pole of
the best-fit plane to every possible satellite combination of a
particular size that can be drawn from the entire sample.
A pole-count analysis is an excellent way of mapping the

degree of prominence of various planes that exist within the
distribution as a whole, whatever their orientation may be.
The choice of combination size is not trivial however. The
number of combinations s of a particular number of satellites
k that can be drawn from the entire sample of n satellites can
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Fig. 7.— An Aitoff-Hammer projection showing the plane of maximum
asymmetry identified from the full sample of best-fit satellite positions. It
divides the distribution such that 21 satellites lie in one hemisphere, but only
6 in the other. The anti-pole of the maximum asymmetry plane lies just 28.1◦

from the Milky Way as viewed from the center of M31.
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Fig. 8.— A pole-density map showing the effective uncertainty in the lo-
cation of the maximum asymmetry plane to the whole satellite sample. The
poles of the maximum asymmetry planes derived for 200,000 possible real-
izations of the data are plotted, along with their corresponding anti-poles. The
elongated distributions that run through the pole and anti-pole determined
from the best-fit distribution (see Fig. 7) arise due to the orientation of the
uncertainty trails of the individual satellite positions, as presented in Fig. 1.
Note that the probability of the anti-pole of the asymmetry lying within a
couple of degrees of the direction of the Milky Way is close to a maximum.

be determined as follows:

s =
n!

k!(n − k)!
(3)

For reasons that shall be discussed shortly, we will effectively
be working with a sample of 25 satellite positions. It is clear
from this equation however that with 25 satellites forming the
entire sample, the total number of combinations that can be
drawn may be very large, depending on the number of satel-
lites forming the combinations. For instance, if n = 25 and
k = 13, there are over 5.2 million possible combinations that
can be drawn. Additionally, if we are to properly account for
the uncertainties in the satellite positions, it will be necessary
to sample from the distance distributions of each satellite a
large number of times for every combination. Given that we
must test every possible plane orientation (as per §2.1) for
every rendition of every combination, the computation times
can become impracticable. It is therefore necessary to limit
our combination sizes as much as possible. We note however,
that the final pole-plot distribution showing the poles of the
best-fit planes to each combination, is not so dependent on
the combination size as might at first be thought.

With all the planes tested as per §2.1 having to pass through
the center of M31, the minimum number of satellites that can
not be fitted exactly is 3. This is therefore the smallest com-
bination size we consider. There are 2, 300 combinations of 3
satellites that can be drawn from the full sample of 25 satel-
lites. If we increase the combination size considerably to 7
satellites, there are 480, 700 satellite combinations that can be
drawn. Due to an excessive number of combinations beyond
this point, this is the largest combination size we consider.
But it is critical to note that even if we produce our pole-plot
map from combinations of only 3 satellites we do not exclu-
sively find planes consisting of 3 satellites. If a plane of 7
satellites exists for instance, then by Eq. 3, such a plane will
produce 35 poles at the same location on the pole plot, where
a plane consisting of only 3 satellites would contribute only
one pole. Conversely if we take combinations of 7 satellites,
despite the larger number of possible combinations in total,
we become less sensitive to planes made up of less than 7
satellites. So in a sense, the combination size we choose de-
pends on the satellite planes we wish to be most sensitive to.
In practice, we have found that the smaller combination sizes
of 3 and 4 satellites are particularly useful for identifying the
lowest RMS planes congregating around the band of satellites
visible in Fig. 1. The larger combination sizes of 5, 6 and
7 satellites gradually shift toward finding planes closer to the
best-fit plane to the entire satellite sample illustrated in Fig. 3.
Noting these points, we proceed as follows. First, the num-

ber of satellites per combination k is chosen (3 ≤ k ≤ 7) and
then for each combination, distances are drawn for each of the
satellites from their respective posterior distance distributions
as provided in CIL12. To give a satisfactory representation
of the form of the distributions, each combination is sampled
100 times. As such, each satellite combination contributes not
1 pole to the pole density map for the chosen combination size
but 100, with the spread of poles relating the possible orienta-
tions of the best-fit plane to the combination, given the error
in the individual satellite positions. The contribution of each
pole to the density map is also weighted by the RMS of the
best-fit plane it represents. Thus each pole does not contribute
1 count, but rather some fraction, depending on how good a fit
the plane it represents is to the satellites in the combination.
This fraction is also further divided by 100, since it represents
only 1% of the samples for the combination, as just discussed.
As stated above, it should also be noted that we effectively

limit the total number of satellites in our sample to 25 for all
analysis in this subsection. This is to account for the bound
group of satellites consisting of NGC147, NGC185 and And
XXX (henceforth the NGC147 group). Since we suspect that
these satellites orbit M31 as a group and since they all lie
along the apparent plane identified in Fig. 1, it is preferable
to treat the group as a single object when we are not con-
cerned with measurements of the significance of particular
planes. To do this, we take the luminosity weighted centre
as an approximation for the center of mass, and treat this de-
termined position as though it were the location of a single
satellite. To calculate the luminosity weighted center, we can
ignore the contribution from And XXX since it is negligible
compared with the contributions of the two dwarf ellipticals.
From the Third Reference Catalogue of Bright Galaxies (de
Vaucouleurs et al. 1991), NGC185 is 0.2 magnitudes brighter
than NGC147 in the V-band. Each time the NGC147 group is
chosen as one of the ‘satellites’ for a combination, distances
to each of NGC147 and NGC185 are sampled from their re-
spective distributions and the luminosity weighted center of
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a) b)

c) d)

Fig. 9.— Asymmetry probability distributions. The top two histograms plot probability distributions for the greatest number of satellites that can be found
in one hemisphere, as generated from (a) 200,000 samplings of satellite positions possible from the data and; (b) the average of 1000 samplings from each of
10,000 random realizations of the satellites generated as per §2.2. Figures (c) and (d) give the equivalent distributions when the maximum asymmetry plane is
replaced with the fixed M31 tangent plane. As for Fig. 5, the histograms in the right-hand column should only be compared with the average of the corresponding
histogram in the left column. The average value of the histograms of (a) and (c) are shown in (b) and (d) respectively as a dashed line.

the group is determined. As for any other combination, this
position, along with all other satellites in the combination, is
sampled 100 times.
The results of applying the above procedure to all combi-

nations of 3, 4, 5, 6 and 7 satellites that can be drawn from
the total sample is presented in Fig. 10. The left-hand column
shows the fit to the most planar combination determined from
the best-fit positions whilst the right-hand column shows the
corresponding pole density plots for all combinations of that
particular number of satellites, based on 100 samples of each
combination as per the discussion above. It is noteworthy that
the best-fit planes to the most planar combinations are almost
identical in every case, except for that of the 3 satellite com-
binations, where the RMS values are so small for so many
combinations as to make this result not particularly impor-
tant. It should also be noted that these best-fit planes trace
out the same approximate great circle as the prominent plane
indicated in Fig. 1, a result that shall be investigated a little
later in §3.4. It is particularly interesting that the pole shared
by each of these planes, located at lM31 ≈ −80

◦
, bM31 ≈ 40

◦

corresponds to a pole count maximum in each of the pole
plots. This indicates that many of the satellite combinations
are aligned along this plane, hence further suggesting that the
plane applies to more satellites than the combination sizes
tested here. The other, lower latitude principle maximum in
the pole plots is that corresponding approximately to the best
fit to all the satellites and hence it grows more prominent in
the plots made from larger combination sizes as discussed ear-
lier.
Besides the pole count maxima that are strongly indicative

of a highly planar subset of satellites, the other principle fea-
ture of the pole plots in Fig. 10 is the great circle along which

the pole count density is highest. This great circle is very
prominent but great caution must be exercised in attributing
any significance to it. It is centered on the Milky Way in-
dicating that the constituent poles result from a majority of
satellites lying along the Earth to M31 line of site. But this
reflects the anisotropy predicted from Fig. 2, the result of the
bias incurred by the finite area of the PAndAS survey. Hence
it would seem that the progenitor of this prominent great cir-
cle is not physical but rather the result of selection effects. To
further investigate the significance of the patterns observed in
the pole plots, 1000 random realizations of 25 satellites were
generated as per §2.2, and a similar pole count analysis per-
formed on each of them. Specifically, the pole density distri-
bution resulting from the best fit planes to all combinations
of 5 satellites was generated for each of them. The resulting
pole plots for 8 of the 1000 random realizations (chosen at
random) are presented in Fig. 11 along with an enlarged ver-
sion of the equivalent plot from Fig. 10 generated from the
real distribution. A bias toward a similar high-density great
circle is indeed observed in these plots, but the plot generated
from the actual data features a conspicuously narrower great
circle, and a much more constrained distribution in general.
This appears to be primarily the result of the large fraction of
satellites that lie along the prominent plane that is repeatedly
identified and plotted in the left-hand column of Fig. 10. It
should also be noted that this plane, whilst being oriented per-
fectly edge-on with respect to the Earth, contains a significant
fraction of satellites lying well outside the region of the M31
sky where the detection bias is large, and hence it is unlikely
that its prominence is due to our observational constraints.
Figure 12 provides for a comparison between the concen-

tration of poles around the principle maximum in the pole dis-
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Fig. 10.— Best fit planes and pole density maps for combinations of 3 through 7 satellites. The left-hand column shows the best-fit plane through the combination
of satellites that can be fit with the lowest RMS. Satellites included in the best-fit combination are colored red. The centre of the NGC147 group is marked with
a circle, and lies on the best-fit plane in every case. The three members of this group are colored orange. Only the best-fit satellite positions are considered for
these plots. The right-hand column shows the corresponding pole density plot for the poles of all satellite combinations. These plots have been weighted by the
RMS of each pole and fully account for the uncertainty in the satellite positions.
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Fig. 11.— Pole density maps for 8 random realizations of 25 satellites. The maps plot the poles for the best-fit planes to all combinations of 5 satellites. The
contribution of each pole is weighted by the RMS of the plane it represents. The map resulting from all combinations of 5 satellites drawn from the real data is
shown again at the top for comparison.
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tributions of the actual satellite distribution and the average of
the 1000 random satellite distributions. From line (a) in Fig.
12 we see that 21.5% of all combinations of the actual satel-
lite positions are fitted by a best-fit plane with pole within 15◦

of the principal maximum (located at lM31 = −78.7
◦
, bM31 =

38.4◦). This is in stark contrast to the 12.0% that lie within
15◦ of the principal maximum for the average random real-
ization of satellite positions (Fig. 12 line (b)). Furthermore,
we find that only 117 of the 1000 random realizations exhib-
ited the degree of concentration of poles within 15◦ of the
principal maximum that was observed for the actual satellite
distribution. Hence it would seem that a large percentage of
satellite combinations are fitted by best-fit planes that all have
strikingly similar orientations when compared with what one
could expect from a random distribution of satellites. Again,
this points toward a significant plane of satellites that includes
a large fraction of the whole satellite sample.

Fig. 12.— Radial density profiles showing the percentage of all poles ly-
ing within n degrees of the densest point in the pole count distributions (the
principal maximum) for a) the actual satellite distribution and b) the aver-
age of 1000 random satellite distributions. The profile for the actual satellite
distribution is generated from the same pole distribution as illustrated for 5
satellites in Fig. 10 and at the top of Fig. 11. Note that the relative linearity
of (b) compared with (a) is simply a result of the averaging of a large number
of individual profiles undertaken to produce the former.

In order to obtain a better understanding of the satellites that
this plane consists of, it is of particular interest to explore the
number of times each satellite is included in a combination
that is best fit by a plane with pole in close proximity to the
principal maximum in the pole distribution for the entire sam-
ple. Once again, we use the pole distribution for all combina-
tions of 5 satellites, and we count the number of times each
satellite contributes to a pole within 3◦ of the principal maxi-
mum at lM31 = −78.7

◦
, bM31 = 38.4

◦. The counts are divided
by 100 to account for the 100 samples that are taken of each
combination. The result can be seen in Fig. 13. From this fig-
ure, it can be seen that the main contributors to the principal
maximum in pole counts are those same satellites identified
as forming a prominent plane in Fig 1, namely Andromedas I,
XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and the
NGC147 group, along with Andromeda III and Andromeda
IX. Hence the conclusion of our analysis thus far must be
that there is indeed a significant plane in the satellite distri-
bution of M31 and that it broadly consists of the aforesaid
satellites. We therefore investigate the numerical significance
of the best-fit plane to these satellites in §3.4. As yet there

is still more to be gleaned from a study of the pole density
distribution however.

Fig. 13.— Histogram showing the relative contribution of each satel-
lite to the pole density within 3◦ of the principal maximum at lM31 =
−78.7◦, bM31 = 38.4

◦. The histogram is generated from the same pole distri-
bution as illustrated for 5 satellites in Fig. 10 and at the top of Fig. 11.

From Fig. 13 we have been able to determine the principle
contributing satellites to the principal maximum in the pole
density distribution, but what of the remaining satellites? Do
the positions of these satellites follow any particular trend?
The best way to determine this is to construct pole density
plots of the two halves of the complete sample, namely the
major contributors to the principal maximum and the minor
contributors. The resulting pole plots are presented in Fig.
14.
The left-hand plot of Fig. 14 shows the pole density dis-

tribution generated from the major contributing satellites to
the principal maximum at lM31 = −78.7

◦
, bM31 = 38.4◦.

This half-sample includes Andromedas I, III, IX, XI, XII,
XIII, XIV, XVI, XVII, XXV, XXVI, XXVII and the NGC147
group. As expected, this plot reflects the existence of the
aforementioned plane with all combination poles lying in
the vicinity of the principal maximum. The right-hand plot,
with poles generated from the remaining 12 satellites, namely
Andromedas II, V, X, XV, XVIII, XIX, XX, XXI, XXII,
XXIII, XXIV and M33, paints a very different picture how-
ever. There is a much greater spread in the distribution of
poles, with the great circle induced by the survey area bias
once again conspicuous. Also prominent in this plot are 2
density maxima with their correspondingmirror images in the
opposite hemisphere. The maximum lying midway between
Andromedas XIX and XX lies very close to the pole of maxi-
mum detection bias at lM31 = −90

◦
, bM31 = 0

◦ and so it is not
unexpected, now that the prominent plane of satellites is ef-
fectively removed from the distribution. The elongated max-
imum passing through lM31 ≈ 45

◦
, bM31 ≈ 45

◦ is more inter-
esting however, and suggests the possibility of a second plane,
roughly orthogonal to the major plane represented in the left-
hand plot, though much less conspicuous. The planes repre-
sented by this maximum pass close to the error trails on the
M31 sky of Andromedas II, III, XIX, XX, XXIII and XXIV.
This maximum is faintly discernible in the pole distribution
for combinations of 6 satellites presented in Fig. 10 but is no
more pronounced than anywhere else along the high-density
great circle in any of the other pole plots. On account of this, it
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Fig. 14.— Pole density distributions generated from all combinations of 5 satellites possible from: Left) the satellites contributing significantly to the principal
maximum at lM31 = −78.7

◦
, bM31 = 38.4

◦ as per Fig. 13 and Right) the remaining 12 satellites.

would appear that this plane is likely no more significant than
one would expect to find from a random satellite distribution
subject to the same detection biases, such as those illustrated
in Fig. 11.

3.4. A Great Plane of Satellites

Throughout the investigation undertaken thus far, all evi-
dence has repeatedly pointed toward a conspicuously planar
sub-set of satellites consisting of roughly half the total sam-
ple of satellites. Andromedas I, XI, XII, XIII, XIV, XVI,
XVII, XXV, XXVI, XXVII and XXX as well as the dwarf
ellipticals NGC147 and NGC185 all appeared to lie along a
plane in Fig. 1. The reality of this co-planarity was veri-
fied in §3.3 and in particular Fig. 13, which also suggested
that Andromeda III and Andromeda IX should be considered
as plane members. Hence it is of great interest to ascertain
whether this ‘great plane’ is in fact significant. To do this, it
is necessary to determine how likely such a plane is to arise
from a random satellite distribution subject to the same selec-
tion biases. The plane itself and the satellites of which it is
constituted are illustrated in Fig. 15. The plane shown is that
calculated from the best-fit satellite positions and has equa-
tion of the form: 0.158x + 0.769y + 0.620z = 0 with pole at
(lM31, bM31) = (−78.4

◦
, 38.3◦). Note that for this section, we

re-instate NGC147, NGC185 and Andromeda XXX as sepa-
rate objects since we are again concerned with measurements
of the significance of the planarity of the distribution. Our
‘great plane’ thus consists of 15 satellites out of the entire
sample of 27.
Using the method of §2.2, we again generate 10, 000 inde-

pendent random realizations of 27 satellites and seek the most
planar combination of 15 satellites from each. For each ran-
dom realization, we sample 1000 possible positions for each
satellite as in previous sections and take the average value for
the RMS of the best fit plane through the most planar com-
bination. Since there are more than 17 million ways that 15
satellites can be drawn from 27, and since we are not con-
cerned with the orientation of each fitted plane as we have
been in all previous sections, we depart from the plane fit-
ting method of §2.1 for this section and instead proceed as
follows. For each sample of satellite positions from each re-
alization, 10, 000 randomized planes are generated and the 15
closest satellites of the 27 to the plane are stored in each case
and the RMS recorded. The lowest RMS achieved is hence
taken to be that for the most planar combination of 15 satel-
lites in the sample. These minimumRMS values from each of
the 1000 samples of the particular random realization are then
averaged to provide the best representation for the realization,

Fig. 15.— A Great Plane of Satellites consisting of Andromedas I, III, IX,
XI, XII, XIII, XIV, XVI, XVII, XXV, XXVI, XXVII, XXX, NGC147 and
NGC185. The plane shown is that derived from the best-fit satellite positions.
The pole is located at (lM31 , bM31) = (−78.4

◦
, 38.3◦).

given the distance uncertainties. Fig. 16 provides probabil-
ity distributions in the RMS for the observed ‘great plane’ (a)
together with those for the average RMS for the most planar
combination from each random realization (b). The average
RMS for the observed plane is plotted in (b) for comparison.
As can be seen from Fig. 16, the RMS for the observed

plane is very low compared to what one could reasonably ex-
pect from a chance alignment. Indeed, the average RMS of
12.58 kpc for the observed plane is found to be equalled or
exceeded in only 36 out of the 10, 000 random realizations.
The chances of obtaining such a planar group of 15 satellites
from a sample of 27 at random is thus estimated as 0.36%.
Hence we can conclude from this test that the observed plane
is very unlikely to be a chance alignment, but rather the re-
sult of some underlying physical mechanism. Note that an in-
dependent but equivalent investigation is presented in ILC12
where such an alignment is found to occur in only 0.15% of
instances. This is due to the larger central obstruction adopted
in that analysis (19.6 vs. 7.9 sq. deg.) which rejects more
satellites in close proximity to the plane pivot point (M31)
where small plane distances are most likely.

4. DISCUSSION

Throughout the analysis conducted in §3, the presence of
a prominent plane of satellites has been a consistent feature.
This is not the first time that a significant plane of satellites
has been identified from among the denizens of the M31 halo
however. Koch & Grebel (2006) identified a highly signif-
icant plane lying within 5◦ to 7◦ of being polar. Further-
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a)

b)

Fig. 16.— Determining the significance of the observed ‘great plane’ of
satellites (see Fig. 15). Figure (a) gives the distribution of possible values
of the RMS obtainable from 200,000 realizations of possible positions of the
15 plane members, given their respective distance probability distributions.
Figure (b) plots the average RMS of the best fit plane through the most planar
combination of 15 satellites for each of 10, 000 random realizations of 27
satellites. These satellites are subject to the same selection biases as the real
data. As for Fig. 5, histogram (b) should only be compared with the average
of histogram (a), which is plotted in (b) as a dashed line. It is thus clear
that the planarity observed for our ‘great plane’ of satellites is very unlikely
to arise by chance. The 1σ (68.2%), 90% and 99% credibility intervals are
shown as red, green and blue lines respectively.

more, they identify a subset of 9 satellites from this plane
lying within a thin disk with an RMS of 16 kpc. Metz,
Kroupa, & Jerjen (2007) and later Metz, Kroupa, & Jerjen
(2009) similarly identify a disk of satellites, this time not
so markedly polar, with pole (in our coordinate system) at
(lM31, bM31) = (−70.2◦, 32.9◦). They find this disk to have
an RMS height of 39.2 kpc. This disk is clearly the same
structure that we identify here, being tilted by only 8.6◦ with
respect to our ‘great plane.’ Our plane is found to have a
much smaller RMS of just 12.34+0.75

−0.43
kpc however, despite

including a comparable number of satellites. It is particu-
larly noteworthy however, that their satellite sample is sig-
nificantly different to that used here, with their disk including
M32, NGC205, IC10, LGS3 and IC1613 - all of which lie
outside the portion of the PAndAS survey region used in this
study (see Fig. 10 (c) of CIL12). Indeed, it is clear from Fig. 4
of McConnachie & Irwin (2006) that the galaxies M32, IC10,
LGS3 and IC1613 all lie along the same great circle as our

‘great plane’ in Fig. 15, as do their entire error trails. Their
conformity along with Andromeda I to a thin disk is noted in
the said paper as one of 8 possible ‘streams of satellites,’ thus
providing another early detection of the plane identified by
this study. Majewski et al. (2007) also draw attention to the
linear distribution of many of the plane-member satellites on
the sky, a consequence of the edge-on orientation of the plane
as indicated by the present study. The plane of Metz, Kroupa,
& Jerjen (2009) does however include a significant number of
satellites that, whilst included in our sample, we exclude due
to their looser association with our plane. This then accounts
for the much smaller RMS height observed in our study.
Unlike previous studies of the M31 satellite system, we

have a significant advantage in this study on account of the
greatly improved sample of satellites available to us. Our
sample is not only more numerous, but the positions are all
determined via the same method applied to the same data
as per CLI11 and CIL12. We are thus afforded unprece-
dented knowledge of the satellite detection biases, as well
as the uncertainties in the object positions and have factored
this knowledge into the analysis. An understanding of this
bias is of particular importance when it comes to ascertaining
the significance of any substructure identified, since a phys-
ically homogeneous satellite distribution will inevitably ap-
pear anisotropic after ‘folding in’ the selection function and it
is important that we do not attribute physical significance to
this anisotropy.
Even after taking these effects into account however, there

can be little doubt that the plane described in §3.4 is a real
physical object. The component satellites extend well into the
regions of low detection bias in Fig. 2 and the analysis of the
last section makes it clear that such a thin disk of satellites has
very little chance of arising within a random satellite distribu-
tion of the same size, even when subject to the same obser-
vation biases. Furthermore, it should be noted that the study
of the plane’s significance in §3.4 is likely to be conserva-
tive, given that if the satellites M32, IC10, LGS3, IC1613 and
NGC205 were to be included in the analysis, the significance
of our observed plane would likely grow still further. What
is also particularly interesting is that subsequent research has
shown 13 of the 15 objects to be co-rotating. This result is
discussed in more detail in ILC12.
What then could be the progenitor of this ‘great plane’?

The polar orientation one might expect to arise had the satel-
lites formed within the dark matter halo or had the dynamical
friction proposed by Quinn & Goodman (1986) had sufficient
time to take effect is not observed. Similarly, the findings
of Metz et al. (2009) seemingly preclude the possibility that
the structure might be the result of the accretion of an ex-
ternal galactic association. Furthermore, there is apparently
no marked distinction in the metallicities of the disk mem-
bers compared with the non-disk members as one might ex-
pect from this scenario. There remains however the possibility
that the satellites trace out the tidal debris of a galaxy merger.
This is a particularly interesting possibility, especially since
the plane, when projected onto the M31 tangent plane, is in
close alignment with the Giant Stellar Stream. Indeed, Ham-
mer et al. (2010) show that the Giant Stellar Stream could
feasibly be the product of a major merger event that began
around 9 Gyr ago, sustained by the returning stars from a tidal
tail oriented similarly to our ‘great plane.’
The observed asymmetry of the system does however pose

a problem for this scenario. It is of particular interest that, of
the 13 co-rotating satellites in the plane, all but one lie on the
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near side of the M31 tangent plane. Indeed, if we removed all
of the plane member-satellites from the system, the remaining
satellite distribution would no longer be significantly asym-
metric. With almost all of the satellites currently on the near
side of M31, it would seem that the progenitor event could not
have occurred substantially more than a typical orbital time
ago or else the satellites would have had sufficient time to dis-
perse. This suggests the event responsible must have occurred
within the last 5 Gyr. Another plausible alternative is that a
strong drag is induced on the orbiting satellites by an over-
density in the dark matter halo broadly lying along the Milky-
Way-to-M31 separation vector. The result is analogous to gas
passing through a galaxy’s spiral arms. This scenario would
account for the direction of the asymmetry but would lead to
rapid orbital decay however and hence again would imply that
the structure is relatively short lived. In any case, how such a
thin rotating structure could survive for an extended length of
time in a traditional triaxial dark matter halo remains unclear.
There is also another striking characteristic of the observed

plane. As one will note from examination of Fig. 15 (and in-
deed the left-hand column of plots in Fig. 10), it is oriented
perfectly edge-on with respect to the MilkyWay. Whilst there
is a noted bias toward detection of satellites positioned along
planes oriented in this way, it must be remembered that this
bias arises primarily due to the propensity for detecting satel-
lites close to the line of sight passing through M31. Many of
the satellites observed to lie on our plane are located a good
distance from this line of sight however and well into the low-
bias portions of the M31 sky. In any case, the random re-
alizations of §3.4 suffer from the same biases and yet show
unequivocally that the observed plane is very unlikely to arise
by chance. Hence if we are to accept these results, we must
also accept the plane’s orientation.
Further to this strikingly edge-on orientation, it is also note-

worthy that the plane is approximately perpendicular to the
Milky Way disk. This fact can be easily seen if the con-
stituent satellites are traced out in Galactic coordinates (i.e.
all lie on approximately the same Galactic longitude). This
of course raises the question - how does the orientation of the
MilkyWay’s polar plane of satellites compare with this plane?
Noting that the average pole of the ‘Vast Polar Structure’ de-
scribed by Pawlowski, Pflamm-Altenburg, & Kroupa (2012B)
points roughly in the direction of M31, the two planes are
approximately orthogonal. These precise alignments are dis-

cussed in more detail in ILC12, but suffice to say here that
this alignment is particularly interesting and suggests that the
Milky Way and M31 halos should not necessarily be viewed
as fully isolated structures. It is entirely conceivable that our
current ignorance as to the coupling between such structures
may be to blame for our inability to pin down the precise
mechanism by which such planes arise.

5. CONCLUSIONS

It is clear that whilst the satellites of M31 when taken as a
whole are no more planar than one can expect from a random
distribution, a subset consisting of roughly half the sample is
remarkably planar. The presence of this thin disk of satel-
lites has been conspicuous throughout the analysis contained
in this paper. The degree of asymmetry determined from the
satellite distribution is also found to be relatively high. Of
particular note, the orientation of the asymmetry is very sig-
nificant, being aligned very strongly in the direction of the
Milky Way. When this fact is combined with the apparent or-
thogonality observed between the Milky Way and M31 satel-
lite distributions and the Milky Way disk, it appears that the
two halos may in fact be coupled. Regardless, the great plane
of satellites identified in this study, and its clear degree of
significance, provides persuasive evidence that thin disks of
satellites are a ubiquitous feature of galaxy dark matter halos.
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112
Paper III: The Three Dimensional Structure of theM31 Satellite System;

Strong Evidence for an Inhomogeneous Distribution of Satellites



“We live in a changing universe, and few things are changing faster

than our conception of it.”

Timothy Ferris, ”The Whole Shebang” (1997)

6
Conclusions

The contribution to the field of galactic archaeology embodied in this work has essentially

been twofold. Firstly, a robust new technique has been developed for ascertaining distances

via the tip of the red giant branch, a technique which is stand-alone in terms of its diverse

applicability. Secondly, this technique has been applied to the satellite system of M31 to re-

veal an inhomogeneous structure which is somewhat at odds with our current understanding

of galaxy formation. The key outcomes of the thesis are summarized as follows:

I A powerful new Bayesian technique has been developed for determining the distance

probability distribution of an object from the tip of its red giant branch. The technique

is best suited to older, metal poor structures that are sufficiently close as to facilitate

accurate photometric measurements to a depth exceeding that of the RGB tip by at least

0.5 magnitudes.
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II A ‘density’ matched-filter has been developed to compliment the technique of I. This

matched filter was developed specifically for the satellite galaxies of M31 and as such, is

not applicable to extended structures (such as streams). It effectively acts to improve the

contrast of the RGB tip in the object’s luminosity function by weighting the component

stars with respect to their position within the object’s density profile.

III An angle-specific density prior has been devised specifically for the M31 halo and in-

corporated into the technique of I. It effectively equates each position along the line

of sight to one of the satellites with some probability, based on the assumed sub-halo

density at the associated radius from the center of the halo.

IV Accurate distance probability distributions have been obtained for 27 of the satellites of

M31 as well as for M31 itself via incorporating the priors of II and III into the technique

of I.

V The distance distributions of IV have been converted into M31-centric 3D positions,

providing the largest homogeneous sample of satellite galaxy positions for any galaxy

halo.

VI The M31 satellite distribution has been found to be approximately isothermal. When

the 15 most Gaussian distance distributions are considered, the satellite density profile

is found to follow a power law with ρ(r) ∝ r−α where α = 1.87+0.46
−0.42.

VII The satellite distribution as a whole has been shown to be no more planar than one

would expect from a random distribution of points.

VIII A large subset of the satellites, 15 out of the total sample of 27, has been found to be

remarkably planar, with a root-mean-square thickness of just 12.34+0.75
−0.43 kpc. The prob-

ability of obtaining such a large, thin structure in a random distribution of equal size is

found to be only 0.36%. The orientation of this plane is intriguing. It is found to lie al-

most perfectly edge-on with respect to the Milky Way, and approximately perpendicular

to the Milky Way disk. It is also roughly orthogonal to the planar distribution of satel-

lites regularly reported for the Milky Way, and 13 of the 15 satellites have subsequently

been identified as co-rotating.
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IX The asymmetry of the distribution as a whole has been shown to be considerably larger

than one would expect by chance. After factoring in the uncertainty in the satellite

positions, it is most likely that the sample can be divided such that 23 of the 27 satellites

all lie in a single hemisphere. The probability of the observed asymmetry arising in a

random distribution is 4.22%.

X The asymmetry about the M31 tangent plane has been found to be particularly high,

with 20 of the 27 satellites most likely lying on the Milky Way side. The probability

of the observed degree of asymmetry about this plane arising by chance is just 0.46%.

It is noteworthy that if the 15 satellites belonging to the plane of VIII are omitted, the

asymmetry about the M31 tangent plane is no longer significant.

In light of the above outcomes, there are several avenues of future investigation that war-

rant attention. The first concerns the future application of the RGB tip finding technique in its

current form. The PAndAS survey region is awash with the relics of past accretion events and

is the obvious starting place. There are many streams of stars that are well within reach of the

technique. Furthermore, it should be possible to divide most of these streams into segments

and obtain distance measurements to each individually. The result would be the effective

conversion of the key structures of the PAndAS survey into a three dimensional network of

streams and interspersed satellite galaxies. This would facilitate a study of unprecedented

scale into the distribution of mass within the M31 halo.

The RGB tip finding technique is of course also readily applicable to the denizens of

the Milky Way halo. There are more than 25 satellite galaxies and more than 150 globular

clusters that orbit within the halo of our own galaxy. Distance measurements already exist

for almost all of them, but there would be significant advantages to a sample of distances

obtained via the systematic application of a single measurement technique.

In addition to the possible future applications of the tip finding technique, there are also a

variety of means by which it might be improved. In particular, the method in its current form

is most suited to more metal poor structures where there is minimum variation of the i-band

tip luminosity with metallicity. The method could be made more versatile by replacing the

one-dimensional model of the object’s luminosity function with a two-dimensional model
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of its CMD. Following this approach, stellar isochrones could be incorporated to model the

correct form of the object’s red giant branch in colour-magnitude space, making the method

more robust in its treatment of more metal rich objects, and those containing more than one

stellar population. Along similar lines, one could also apply a matched-filter to the object’s

CMD. This could be achieved by fitting a 2D surface to the object’s CMD and dividing it by

that fitted to the CMD of a suitable comparison (background) field, creating an effective ‘flat

field’ tailored to suit the object. Each star in the object’s CMD could thus be weighted by its

probability of being a true member of the object’s red giant branch.

The structure of the M31 satellite distribution as revealed by this study, also presents

a number of opportunities to further our understanding of the local universe. The most

immediate course to pursue would seem to lie in the application of this knowledge to a new

study of the galaxy’s mass distribution via modeling of its rotation curve. The plane of co-

rotating satellites (VIII) provides the perfect starting point for such a study. With the plane

fortuitously aligned edge-on with respect to the Earth, it will be possible to calculate the

tangential component of the satellites’ orbital velocities directly from the radial velocities

via simple trigonometry. Thus, if the satellites are approximated to follow circular orbits, it

will be relatively straightforward to obtain probability distributions for the mass enclosed by

each satellite orbit, and in so doing, extend the known M31 rotation curve significantly. It

would also be possible to obtain estimates of the enclosed mass for the non-plane members

via a maximum likelihood approach, after marginalizing over the two tangential components

of the orbital velocity.

More than anything else, this study has highlighted the limitations of existing theories of

galaxy formation and evolution. It is very difficult to explain how such a large, thin structure

as that identified in VIII can remain intact for any length of time, let alone how it came to

exist in the first place. Add to that the bizarre orientation and the high degree of asymmetry,

and we are left with an intriguing enigma. The onus then is on unlocking this enigma, for in

so doing we shall undoubtedly learn a great deal about galaxy evolution and M31’s past, as

well as that of our own galaxy.



An Introduction to the Appendices

As a PhD student, perhaps 90 % of my time has been occupied with the development of pro-

grams (principally in Fortran) designed to perform the analysis necessary for my research.

In this sense, the written component of the thesis really is just the tip of the iceberg, and it

therefore seemed both fitting and rather useful to record some of the source code for refer-

ence. When I embarked to do this however, I did not realize the shear volume of code I had

amassed and subsequently found it necessary to condense the code substantially. The code

that is presented in these appendices therefore represents only a fraction of all the programs

written during my PhD candidature. Nevertheless, I have endeavored to reproduce here the

most important programs and subroutines in as logical a way as possible and with minimum

repetition. Each appendix is devoted to code pertinent to a particular chapter, and each pro-

gram is introduced with a brief description of its purpose and functionality as well as a link to

the thesis content to which it relates. Note that some of the programs make a very localized

contribution to the material presented in the thesis while others are much broader in scope

and may apply to a number of chapters. Many subroutines have also been omitted either to

avoid repetition or to remove portions of code which are secondary to the principal function-

ality of the parent program. In summary, it is intended that the programs presented in these

appendices serve to provide further clarification of the precise way in which the analysis

discussed in the thesis has been implemented. The code is not intended for ready implemen-

tation on other systems and hence may in many instances require substantial modification to

be usable. All code is however well commented and should be reasonably intuitive even for

those not well acquainted with Fortran.
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Program: EdgeFinder7.f95

Creation Date: 3 September 2009

Relevant Section: 2.2

Notes: This program represents one of my earliest investigations into potential TRGB-

finding algorithms. It is really a number of stand alone algorithms rolled into one program.

An artificial ‘kink’ is induced in a simple luminosity function and this kink is sort out by

a number of methods: 1. By fitting a polynomial to the data and finding where the second

derivative of that polynomial has the largest absolute value; 2. By Finding the largest pos-

itive gradient between two neighboring bins of the luminosity function and; 3. By taking

the angle subtended by each subsequent set of 3 luminosity function bins. The identified

location of the tip is outputted along with the value of the particular measurement statistic.

1 PROGRAM EdgeF inde r

2 IMPLICIT NONE

3

4 !A p o l y n o m i a l o f d e g r e e ma − 1 i s f i t t e d t o t h e read − i n d a t a and a ’ . p ’ f i l e i s

5 ! g e n e r a t e d so t h a t t h e read − i n d a t a can be i n s t a n t l y p l o t t e d u s i n g g n u p l o t a l o n g

6 ! wi th t h e f i t t e d p o l y n o m i a l . The RandReal s u b r o u t i n e t h e n g e n e r a t e s a mock d a t a

7 ! s e t based on t h e f i t t e d p o l y n o m i a l and t h e d2ydx2max s u b r o u t i n e f i n d s where t h e

8 ! maximum r a t e o f change o f t h e g r a d i e n t o c c u r s which i s s y m b o l i c o f an ’ edge ’

9 ! o r sudden d i s c o n t i n u i t y i n t h e f i t t e d p o l y n o m i a l .

10

11 ! L a t e r a d a p t e d t o use p g p l o t

12

13 INTEGER : : ma , mp , nda ta , nda t , np

14 parameter ( np = 20)

15 parameter (mp = 1000)

16 parameter ( n d a t = 1000)

17 parameter ( ma = np )

18 DOUBLE PRECISION : : c h i s q , a ( ma ) , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) ,w( np ) , x ( n d a t )

19 DOUBLE PRECISION : : y ( n d a t ) , z ( n d a t ) , i n t e g r a l m a x , dummy , e ( n d a t ) , f ( n d a t )

20 EXTERNAL : : f u n c s

21

22 INTEGER : : i o s , i , j

23

24 i n t e g e r : : ma max , ma used

25 parameter ( ma max=100)

26 DOUBLE PRECISION : : p a s s a ( ma max )

27

28 common / p a s s b l o c k 2 / p a s s a , ma used

29

30 ma used=ma

31

32 x=0. ; y=0. ; z=0. ; s i g =0.00001

33 OPEN ( u n i t = 1 , f i l e = ’ l u m i n o s i t y f u n c t i o n 2 . d a t ’ , s t a t u s = ’ o l d ’ )

34 OPEN ( u n i t = 2 , f i l e = ’ l f f i t . d a t ’ , s t a t u s = ’ unknown ’ )

35 i=0

36 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

37 i= i+1

38 READ ( 1 , ∗ , IOSTAT = i o s ) dummy , x ( i ) ,dummy , dummy , dummy , dummy , y ( i )

39 i f ( i o s == 0) then ;
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40 e l s e i f ( i o s == −1) then ;

41 i= i −1

42 e x i t ;

43 e l s e i f ( i o s > 0) then ;

44 i= i −1

45 c y c l e

46 end i f

47 x ( i ) = x ( i ) / 5 .

48 IF ( x ( i ) > −0.2) then

49 i = i −1

50 e l s e i f ( abs ( x ( i ) ) . l t . 0 . 1 ) then

51 ! i = i −1

52 end i f

53 END DO

54

55

56

57 DO j = 1 , i ! O u t p u t s e x c l u s i v e l y t h e chosen d a t a t o ’ l f f i t . da t ’

58 WRITE ( 2 , ’ (2 ES20 . 5 ) ’ ) x ( j ) , y ( j )

59 END DO

60

61 n d a t a= i

62

63 CALL s v d f i t ( x , y , s i g , nda ta , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) !SVD f i t t i n g program

64

65 do j =1 ,ma

66 p a s s a ( j )=a ( j )

67 end do

68

69 PRINT ∗ , a

70

71 OPEN ( u n i t = 3 , f i l e = ” l f f i t . p ” , s t a t u s = ’ unknown ’ )

72

73 CALL RandReal ( ma , a , x , i , s i g , nda ta , u , v , w, mp , np , c h i s q , f u n c s )

74

75 !CALL d2ydx2max ( ma , a )

76

77 END PROGRAM EdgeF inde r

78

79 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

80

81 SUBROUTINE RandReal ( ma , a , x , i , s i g , nda ta , u , v , w, mp , np , c h i s q , f u n c s )

82 ! Random r e a l i z a t i o n mock d a t a g e n e r a t o r

83

84 INTEGER : : ma , i , q , l , va l , n d a t

85 PARAMETER ( v a l = 200)

86 PARAMETER ( n d a t = 1000)

87 INTEGER : : idum = 0

88 DOUBLE PRECISION : : a ( ma ) , a r ea , max x ( ma + 1) , min x ( ma + 1) , x ( i )

89 DOUBLE PRECISION : : ran1 , randnum , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) ,w( np )

90 DOUBLE PRECISION : : b ( ma + 1) , r t r ( ma ) , r t i ( ma ) , c h i s q

91 DOUBLE PRECISION : : mock x ( v a l ) , mock y ( v a l ) , m o c k y a t l ( ma )

92

93 OPEN ( u n i t = 1 , f i l e = ” mockdata . d a t ” , s t a t u s = ’ unknown ’ )

94 OPEN ( u n i t = 2 , f i l e = ” mockdata . p ” , s t a t u s = ’ unknown ’ )

95

96 DO q = 1 , ma

97 b ( q+1) = a ( q ) / q ! T r a n s f e r s from c o e f f i c i e n t s o f p ( x ) t o t h o s e o f i n t e g r a l

98 END DO

99 b ( 1 ) = 0

100
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101 DO q = ma + 1 , 1 , −1 ! C a l c u l a t e s t h e v a r i a b l e ’ a r ea ’ − t h e

102 min x ( q ) = b ( q ) ∗ x ( i ) ∗∗ ( q−1) ! a r e a under t h e p o l y n o m i a l be tween

103 max x ( q ) = b ( q ) ∗ x ( 1 ) ∗∗ ( q−1) ! x ( 1 ) and x ( i ) − i . e . t h e r a n g e o f t h e

104 END DO ! i n t e g r a l f o r t h e chosen x−v a l u e

105 a r e a = SUM( max x ) − SUM( min x ) ! domain .

106

107 DO q = 1 , v a l

108 randnum = r an1 ( idum )

109 b ( 1 ) = −(SUM( min x ) + randnum ∗ a r e a ) ! G e n e r a t e s a random y v a l u e between t h e v a l u e o f t h e i n t e g r a l a t x ( 1 ) and a t x ( i ) .

110 CALL z r h q r ( b , ma , r t r , r t i ) ! F i n d s r o o t s o f i n t e g r a l f o r g i v e n y v a l u e

111 DO l = 1 , ma

112 IF ( r t i ( l ) == 0 . ) THEN ! Only use t h e r e a l r o o t s

113 IF ( r t r ( l ) . g t . MINVAL( x ) ) THEN ! Make s u r e t h e chosen r o o t

114 IF ( r t r ( l ) . l t . MAXVAL( x ) ) THEN ! i s i n t h e domain used

115 mock x ( q ) = r t r ( l )

116 END IF

117 END IF

118 END IF

119 END DO

120 END DO

121

122 DO q = 1 , v a l

123 DO l = 1 , ma

124 m o c k y a t l ( l ) = a ( l ) ∗ mock x ( q ) ∗∗ ( l −1)

125 END DO

126 mock y ( q ) = SUM( m o c k y a t l )

127 WRITE ( 1 , ’ (2 ES20 . 5 ) ’ ) mock x ( q ) , mock y ( q )

128 END DO

129

130 WRITE ( 2 , ∗ ) ’ p l o t \ ’ ! P r i n t s f i t t e d

131 DO j = ma , 2 , −1 ! p o l y n o m i a l t o

132 WRITE ( 2 , ∗ ) a ( j ) , ’ ∗ x∗∗ ’ , j −1 , ’+ \ ’ ! a ’ . p ’ f i l e f o r

133 END DO ! p l o t t i n g wi th

134 WRITE ( 2 , ∗ ) a ( 1 ) , ’ t i t l e ’ ’ s v d f i t ’ ’ , ” mockdata . d a t ” ’ ! g n u p l o t

135

136 CALL Kink ( ma , a , mock x , mock y , va l , s i g , nda ta , u , v , w, mp , np , c h i s q , f u n c s )

137

138 END SUBROUTINE RandReal

139

140 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

141

142 SUBROUTINE Kink ( ma , a , mock x , mock y , va l , s i g , nda ta , u , v , w, mp , np , c h i s q , f u n c s )

143 ! G e n e r a t e s a new s e t o f mock d a t a p o i n t s w i th a k ink a t o f f s e t o f 0 . 2 5

144

145 INTEGER : : va l , q , ma , l , h , nda t , nda ta , i o s = 0

146 PARAMETER ( n d a t = 1000)

147 DOUBLE PRECISION : : a ( ma ) , mock x ( v a l ) , mock y ( v a l ) , e ( n d a t ) , f ( n d a t )

148 DOUBLE PRECISION : : s h i f t x ( v a l ) , s h i f t y ( v a l ) , s h i f t y a t l ( ma ) , new y ( v a l )

149 INTEGER : : mp , np

150 DOUBLE PRECISION : : c h i s q , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) ,w( np )

151 EXTERNAL : : f u n c s

152

153 DOUBLE PRECISION : : yp1 , ypn , ya2 ( n d a t ) , x , y , d e r a b s ( n d a t )

154 INTEGER : : i ndx ( n d a t )

155 DOUBLE PRECISION : : xa ( n d a t ) , ya ( n d a t )

156

157 OPEN ( u n i t = 1 , f i l e = ” k ink . d a t ” , s t a t u s = ’ unknown ’ )

158

159 DO q = 1 , v a l !

160 s h i f t x ( q ) = mock x ( q ) + 0 . 2 5 ! O f f s e t s mockdata

161 DO l = 1 , ma ! a l o n g x− a x i s by 0 . 2 5
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162 s h i f t y a t l ( l ) = a ( l ) ∗ s h i f t x ( q ) ∗∗ ( l −1) ! and t h e n adds t h e s e

163 END DO ! new mock d a t a p o i n t s

164 s h i f t y ( q ) = SUM( s h i f t y a t l ) ! t o t h e po ly f i t t e d

165 new y ( q ) = ( mock y ( q ) + 5 . 0∗MINVAL( mock y ) ) + s h i f t y ( q ) ! t o t h e p r e v i o u s ones .

166 WRITE ( 1 , ∗ ) s h i f t x ( q ) , new y ( q ) ! 5∗MINVAL( mock y )

167 END DO ! makes l a r g e k i nk .

168

169 DO q = 1 , v a l !

170 IF ( mock x ( q ) . l t . MINVAL( s h i f t x ) ) THEN ! O u t p u t s o r i g i n a l mockdata p o i n t s

171 WRITE ( 1 , ∗ ) mock x ( q ) , mock y ( q ) ! f o r mock x p o i n t s l e s s t h a n t h e

172 END IF ! minimum s h i f t x v a l u e .

173 END DO !

174

175 REWIND( 1 )

176

177 e = 0 . ; f = 0 . ; h = 0

178 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

179 h=h+1

180 READ ( 1 , ∗ , IOSTAT = i o s ) e ( h ) , f ( h ) ! i . e . Read s h i f t x ( q ) , new y ( q )

181 i f ( i o s == 0) then ;

182 e l s e i f ( i o s == −1) then ;

183 h=h−1

184 e x i t ;

185 e l s e i f ( i o s > 0) then ;

186 h=h−1

187 c y c l e

188 end i f

189 END DO

190

191 n d a t a = h

192

193 CALL i n de xx ( nda ta , e , i ndx ) ! C r e a t e s a r r a y i ndx ( 1 : n d a t a ) whose e l e m e n t s a r e

194 ! i n d i c i e s t o t h e e l e m e n t s o f e i n c h r o n o l o g i c a l o r d e r

195

196 DO j =1 , n d a t a !

197 xa ( j )=e ( i ndx ( j ) ) ! Makes xa and ya e q u a l t o t h e o r d e r e d v e r s i o n s o f

198 ya ( j )= f ( i ndx ( j ) ) ! e and f r e s p e c t i v e l y .

199 w r i t e ( ∗ , ∗ ) xa ( j ) , ya ( j )

200 END DO

201 WRITE ( ∗ , ∗ ) MINVAL( xa ) , MAXVAL( xa ) , MINVAL( ya ) , MAXVAL( ya )

202

203 c a l l pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

204

205 c a l l pgenv (REAL(MINVAL( xa ) ) , REAL(MAXVAL( xa ) ) , &

206 0 . , REAL(MAXVAL( ya ) ) , 0 , 0 )

207

208 c a l l pgp t ( nda ta , REAL( xa ) , REAL( ya ) , 1 )

209

210 c a l l pgend

211

212

213 !CALL P o l y T e s t ( xa , ya , s i g , nda t , nda ta , a , ma , u , v , w, mp , np , c h i s q , f u n c s )

214 CALL S p l i n e T e s t ( xa , ya , nda ta , mock x , v a l )

215 CALL GradTes t ( xa , ya , nda ta , mock x , v a l )

216 CALL AngleTes t ( xa , ya , nda ta , mock x , v a l )

217 CALL L e g P r i n t ( ma , a )

218

219 END SUBROUTINE Kink

220

221 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

222
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223 SUBROUTINE P o l y T e s t ( xa , ya , s i g , nda t , nda ta , a , ma , u , v , w, mp , np , c h i s q , f u n c s )

224 ! Use t o t e s t t h e p o l y n o m i a l s a b i l i t y t o f i n d t h e k ink

225

226 INTEGER : : nda t , nda ta , ma , mp , np

227 DOUBLE PRECISION : : s i g ( n d a t ) , a ( ma ) , u (mp , np ) , v ( np , np ) , w( np ) , c h i s q , x ( n d a t a )

228 DOUBLE PRECISION : : y ( n d a t a ) , xa ( n d a t a ) , ya ( n d a t a )

229 EXTERNAL : : f u n c s

230

231 x = xa ; y = ya ! Don ’ t want h igh p r e c i s s i o n h e r e

232

233 OPEN ( u n i t = 1 , f i l e = ” k i n k p o l y . p ” , s t a t u s = ’ unknown ’ )

234

235 a = 0 .

236

237 CALL s v d f i t ( x , y , s i g , nda ta , a , ma , u , v , w, mp , np , c h i s q , f u n c s ) !SVD f i t t i n g program

238

239 WRITE ( 1 , ∗ ) ’ s e t x r [ −1.0 : −0.2] ’

240 WRITE ( 1 , ∗ ) ’ p l o t \ ’ ! P r i n t s f i t t e d

241 DO j = ma , 2 , −1 ! p o l y n o m i a l t o

242 WRITE ( 1 , ∗ ) a ( j ) , ’ ∗ x∗∗ ’ , j −1 , ’+ \ ’ ! a ’ . p ’ f i l e f o r

243 END DO ! p l o t t i n g wi th g n u p l o t

244 WRITE ( 1 , ∗ ) a ( 1 ) , ’ t i t l e ’ ’ s v d f i t ’ ’ , ” k ink . d a t ” ’

245

246 CALL L e g P l o t 2 ( xa , ya , n d a t a )

247

248 END SUBROUTINE P o l y T e s t

249

250 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

251

252 SUBROUTINE S p l i n e T e s t ( xa , ya , nda ta , mock x , v a l )

253 ! Use t o t e s t t h e s p l i n e f u n c t i o n s a b i l i t y t o f i n d t h e k ink

254

255 INTEGER : : nda ta , i ndx ( n d a t a ) , v a l

256 DOUBLE PRECISION : : yp1 , ypn , ya2 ( n d a t a ) , x , y , d e r a b s ( n d a t a ) , a ( n d a t a )

257 DOUBLE PRECISION : : b ( n d a t a ) , mock x ( v a l ) , xa ( n d a t a ) , ya ( n d a t a )

258

259 a = xa ; b = ya ! Don ’ t want h igh p r e c i s i o n h e r e

260

261 yp1=1.1 e30 ! Makes 2nd d e r i v a t i v e ( ya2 ) e q u a l t o z e r o a t e i t h e r

262 ypn=1.1 e30 ! end of t h e s p l i n e − i n t e r p o l a t e d f u n c t i o n

263 CALL s p l i n e N R ( a , b , nda ta , yp1 , ypn , ya2 ) ! F i n d s 2nd d e r . o f t a b u l a t e d fn f ( e )

264

265 d e r a b s = 0 . !

266 DO j = 1 , n d a t a !

267 IF ( xa ( j ) . g t . −0.8) THEN !

268 IF ( xa ( j ) . l t . −0.2) THEN ! F ind l o c a t i o n and

269 d e r a b s ( j ) = ABS( ya2 ( j ) ) ! a b s o l u t e v a l u e o f

270 END IF ! t h e maximum

271 END IF ! second d e r i v a t i v e

272 END DO !

273 PRINT ∗ , ’Max . abs . v a l . o f 2nd d e r . i s ’ , MAXVAL( d e r a b s ) !

274 PRINT ∗ , ’ T h i s o c c u r s a t x = ’ , xa (MAXLOC( d e r a b s ) − 1) !

275 PRINT ∗ , ’ G iv ing o f f s e t : ’ , xa (MAXLOC( d e r a b s ) ) − MINVAL( mock x )

276

277 OPEN ( 1 , f i l e = ’ s p l i n e . d a t ’ , s t a t u s = ’ unknown ’ )

278 DO j =1 ,1000

279 x=−0.9+ j ∗ 0 . 7 / 1 0 0 0 . 0 ! x r a n g e and i n t e r v a l s i z e f o r o u t p u t t e d s p l i n e d a t a

280 CALL s p l i n t N R ( a , b , ya2 , nda ta , x , y ) ! R e t u r n s cub ic − s p l i n e i n t e r p o l a t e d v a l u e y

281 WRITE( 1 , ∗ ) x , y

282 END DO

283 CLOSE ( 1 )
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284

285 OPEN ( 2 , f i l e = ’ k i n k s p l i n e . p ’ , s t a t u s = ’ unknown ’ )

286 WRITE ( 2 , ∗ ) ’ s e t x r [ −1.0 : −0.2] ’

287 WRITE ( 2 , ∗ ) ’ p l o t ” k ink . d a t ” , ” s p l i n e . d a t ” wi th l i n e s ’

288

289 END SUBROUTINE S p l i n e T e s t

290

291 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

292

293 SUBROUTINE GradTes t ( xa , ya , nda ta , mock x , v a l )

294 INTEGER : : nda ta , j , v a l

295 DOUBLE PRECISION : : g r ad ( n d a t a − 1) , g r a d d i f f ( n d a t a − 2) , mock x ( v a l )

296 DOUBLE PRECISION : : xa ( n d a t a ) , ya ( n d a t a )

297

298 ! Th i s s u b r o u t i n e t a k e s t h e g r a d i e n t o f t h e l i n e j o i n i n g each two d a t a p o i n t s

299 ! and t h e n compares i t t o t h e g r a d i e n t be tween t h e l e f t most o f t h e two d a t a

300 ! p o i n t s and t h e d a t a p o i n t t o i t s l e f t . Where t h e g r e a t e s t d i f f e r e n c e occu r s ,

301 ! an ’ edge ’ o r s h a r p g r a d i e n t d i s c o n t i n u i t y must e x i s t i n t h e d a t a . T h i s i s

302 ! ve r y s i m i l a r t o t h e second d e r i v a t i v e method b u t more e a s i l y t a i l o r e d t o t h e

303 ! s p e c i f i c n a t u r e o f t h e i n p u t t e d d a t a .

304

305 g rad = 0 . ! F ind

306 DO j = 1 , n d a t a − 1 ! g r a d i e n t

307 IF ( xa ( j ) . g t . −1.0) THEN ! be tween

308 IF ( xa ( j ) . l t . −0.2) THEN ! each two

309 grad ( j ) = ( ya ( j + 1) − ya ( j ) ) / ( xa ( j +1) − xa ( j ) ) ! a d j a c e n t

310 END IF ! p o i n t s

311 END IF ! i n t h e r a n g e

312 END DO ! −1.0 < x < −0.2

313

314 g r a d d i f f = 0 . ! F ind d i f f e r e n c e

315 DO j = 1 , n d a t a − 2 ! between each

316 IF ( g r ad ( j ) . ne . 0 . ) THEN ! two a d j a c e n t

317 IF ( g r ad ( j + 1) . ne . 0 . ) THEN ! g r a d i e n t s so

318 g r a d d i f f ( j ) = g rad ( j + 1) − g rad ( j ) ! l ong as n e i t h e r

319 END IF ! o f t h e two

320 END IF ! g r a d i e n t s a r e

321 END DO ! e q u a l t o z e r o .

322

323 ! Note : a b s o l u t e v a l u e s a r e n o t used i n e i t h e r o f t h e above l o o p s as we a r e

324 ! s p e c i f i c a l l y l o o k i n g f o r p o s i t i v e g r a d i e n t s and f o r t h e edge where t h e

325 ! g r a d i e n t goes from s m a l l t o l a r g e wi th i n c r e a s i n g x .

326

327 PRINT ∗ , ’ L a r g e s t g r a d i e n t d i f f e r e n c e i s a t x = ’ , xa (MAXLOC( g r a d d i f f ) + 1)

328 PRINT ∗ , ’ With magn i tude ’ , MAXVAL( g r a d d i f f )

329 PRINT ∗ , ’ T h i s g i v e s an o f f s e t o f ’ , xa (MAXLOC( g r a d d i f f ) + 2) − MINVAL( mock x )

330

331 END SUBROUTINE GradTes t

332

333 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

334

335 SUBROUTINE AngleTes t ( xa , ya , nda ta , mock x , v a l )

336

337 ! Th i s s u b r o u t i n e i s d e s i g n e d t o f i n d t h e a n g l e between l i n e s c o n n e c t i n g

338 ! a d j a c e n t d a t a p o i n t s . S t a r t i n g from t h e s m a l l e s t x v a l u e ( say p o i n t 1 ) , t h e

339 ! l i n e j o i n i n g p o i n t 2 and p o i n t 3 i s d e n o t e d l e n g t h ’ a ’ , t h a t j o i n i n g p o i n t 1

340 ! and p o i n t 2 i s d e n o t e d l e n g t h ’b ’ and t h a t c o n n e c t i n g p o i n t s 1 and 3 i s

341 ! d e n o t e d l e n g t h ’ c , ’ t h u s s e t t i n g up a t r i a n g l e . The t r i g o n o m e t r i c r u l e

342 ! c = a + b − 2 abcosC i s t h e n used t o f i n d a n g l e C . The a l g o r i t h m t h e n s h i f t s

343 ! t o c o n c e n t r a t e on t h e t r i a n g l e made by p o i n t s 2 , 3 and 4 and so on u n t i l t h e

344 ! end of t h e d a t a . The s h a r p e s t g r a d i e n t change o c c u r s where a n g l e C i s s m a l l e s t .



126 Chapter Two Programs

345 ! Note t h a t on ly p o s i t i v e g r a d i e n t changes from l e f t t o r i g h t a r e c o n s i d e r e d .

346

347 INTEGER : : nda ta , j , v a l

348 DOUBLE PRECISION : : mock x ( v a l )

349 DOUBLE PRECISION : : xa ( n d a t a ) , ya ( n d a t a ) , g r ad ( nda ta −1)

350 DOUBLE PRECISION : : a ( nda ta −2) , b ( nda ta −2) , c ( nda ta −2) , a n g l e c ( nda ta −2)

351

352 g rad = 0 . ! F ind

353 DO j = 1 , n d a t a − 1 ! g r a d i e n t

354 IF ( xa ( j ) . g t . −1.0) THEN ! be tween

355 IF ( xa ( j ) . l t . −0.2) THEN ! each two

356 grad ( j ) = ( ya ( j + 1) − ya ( j ) ) / ( xa ( j +1) − xa ( j ) ) ! a d j a c e n t

357 END IF ! p o i n t s

358 END IF ! i n t h e r a n g e

359 END DO

360

361 a n g l e c = 7 . ! Makes a n g l e c l a r g e r t h a n 2∗ p i f o r g rad ( j +1) < g rad ( j )

362 DO j = 1 , nda ta −2 ! P o p u l a t e s

363 a ( j ) = SQRT ( ( xa ( j +2) − xa ( j +1) ) ∗∗2 + ( ya ( j +2) − ya ( j +1) ) ∗∗2 ) ! a r r a y

364 b ( j ) = SQRT ( ( xa ( j +1) − xa ( j ) ) ∗∗2 + ( ya ( j +1) − ya ( j ) ) ∗∗2 ) ! ’ a n g l e c ’

365 c ( j ) = SQRT ( ( xa ( j +2) − xa ( j ) ) ∗∗2 + ( ya ( j +2) − ya ( j ) ) ∗∗2 ) ! w i t h t h e

366 IF ( g r ad ( j +1) . g t . g r ad ( j ) ) THEN ! a n g l e s

367 a n g l e c ( j ) = ACOS(−( c ( j ) ∗∗2 − a ( j ) ∗∗2 − b ( j ) ∗∗2 ) / ( 2 ∗ a ( j ) ∗b ( j ) ) ) ! be tween

368 END IF ! each s e t

369 END DO ! o f p o i n t s

370

371 PRINT ∗ , ’ S m a l l e s t a n g l e o c c u r s f o r x = ’ , xa (MINLOC( a n g l e c ) + 1)

372 PRINT ∗ , ’ With magn i tude ’ , MINVAL( a n g l e c ) , ’ r a d i a n s ’

373 PRINT ∗ , ’ T h i s r e c o v e r s an o f f s e t o f ’ , xa (MINLOC( a n g l e c ) + 2) − MINVAL( mock x )

374

375 END SUBROUTINE AngleTes t

376

377 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

378

379 SUBROUTINE L e g P r i n t ( ma , a ) ! For p r i n t i n g Legendre p o l y n o m i a l s

380 i m p l i c i t none

381 REAL∗8 : : fac1 , fac2 , fac3 , f a c 4

382 INTEGER : : ma , n , k , j

383 INTEGER : : ma max , ma used

384 PARAMETER ( ma max=100)

385 INTEGER : : LegEx ( 0 : ma max−1 , 0 : ( ma max / 2 ) )

386 DOUBLE PRECISION : : a ( ma )

387 DOUBLE PRECISION : : LegCo ( 0 : ma max−1 , 0 : ( ma max / 2 ) ) , PolyCo ( ma max )

388 CHARACTER(LEN=100) , DIMENSION( 0 : ma max−1 , 0 : ( ma max / 2 ) ) : : P

389 CHARACTER(LEN=100) , DIMENSION( ma max ) : : Po lyElemen t

390 CHARACTER(LEN=1000) : : P o l y n o m i a l = ’ ’

391

392 COMMON /PASS / PolyCo , ma used

393

394 PolyCo = 0 .

395

396 i f ( ma . g t . ma max ) then

397 w r i t e ( ∗ , ∗ ) ’ma t o o l a r g e ’ ; s t op

398 end i f

399 ma used=ma

400

401 ! | | C a l c u l a t e Legendre p o l y n o m i a l

402 ! \ / e x p o n e n t s and c o e f f i c i e n t s

403 DO n = 0 , ma−1

404 DO k = 0 , n /2

405 f a c 1 = 1 ; f a c 2 = 1 ; f a c 3 = 1 ; f a c 4 = 1



127

406 DO j = 1 , 2∗n − 2∗k

407 f a c 1 = f a c 1 ∗ j

408 END DO

409 DO j = 1 , k

410 f a c 2 = f a c 2 ∗ j

411 END DO

412 DO j = 1 , n − k

413 f a c 3 = f a c 3 ∗ j

414 END DO

415 DO j = 1 , n − 2∗k

416 f a c 4 = f a c 4 ∗ j

417 END DO

418 LegCo ( n , k ) = a ( n+1) ∗ ( ( ( −1 . d0 ) ∗∗k ) ∗ ( f a c 1 / ( ( 2 . d0 ∗∗n ) ∗ f a c 2 ∗ f a c 3 ∗ f a c 4 ) ) )

419 LegEx ( n , k ) = n − 2 . d0∗k

420 WRITE( P ( n , k ) , ∗ ) LegCo ( n , k ) , ’ ∗ x ∗∗ ’ , LegEx ( n , k )

421 PRINT ∗ , TRIM( P ( n , k ) )

422 END DO

423 PRINT ∗ , ’ ’

424 END DO

425

426 DO j = 1 , ma

427 DO n = 0 , ma−1

428 DO k = 0 , n /2

429 IF ( LegEx ( n , k ) == j −1) THEN

430 PolyCo ( j ) = PolyCo ( j ) + LegCo ( n , k )

431 END IF

432 END DO

433 END DO

434 END DO

435

436 OPEN ( u n i t = 1 , f i l e = ” l f f i t 2 . p ” , s t a t u s = ’ unknown ’ )

437 WRITE( 1 , ∗ ) ’ p l o t \ ’

438

439 DO j = ma , 1 , −1

440 IF ( j . ne . 1 ) THEN

441 WRITE( 1 , ∗ ) PolyCo ( j ) , ’ ∗ x ∗∗ ’ , j −1 , ’+ \ ’

442 IF ( PolyCo ( j − 1) . g t . 0 . d0 ) THEN

443 WRITE( Po lyElemen t ( j ) , ∗ ) PolyCo ( j ) , ’ ∗ x ∗∗ ’ , j −1 , ’+ ’

444 END IF

445 IF ( PolyCo ( j − 1) . l t . 0 . d0 ) THEN

446 WRITE( Po lyElemen t ( j ) , ∗ ) PolyCo ( j ) , ’ ∗ x ∗∗ ’ , j −1

447 END IF

448 END IF

449 IF ( j == 1) THEN

450 WRITE( 1 , ∗ ) PolyCo ( j ) , ’ t i t l e ’ ’ s v d f i t ’ ’ , ” l f f i t . d a t ” ’

451 WRITE( Po lyElemen t ( j ) , ∗ ) PolyCo ( j )

452 END IF

453 P o l y n o m i a l = TRIM( P o l y n o m i a l ) / / TRIM( PolyElemen t ( j ) )

454 END DO

455

456 PRINT ∗ , TRIM( P o l y n o m i a l )

457

458

459 END SUBROUTINE L e g P r i n t

460

461 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

462

463 SUBROUTINE L e g P l o t 2 ( xa , ya , n d a t a ) ! For p l o t t i n g Legendre p o l y n o m i a l s wi th p g p l o t

464 IMPLICIT NONE

465

466 INTEGER : : nda ta , j
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467 DOUBLE PRECISION : : xa ( n d a t a ) , ya ( n d a t a )

468 REAL : : xasp ( n d a t a ) , yasp ( n d a t a ) , Legendre new , dummy

469 EXTERNAL : : Legendre new

470

471 xasp = xa ; yasp = ya

472

473 dummy = Legendre new ( −0 . 5 )

474

475 DO j= 1 , n d a t a

476 PRINT ∗ , j , xasp ( j ) , yasp ( j )

477 END DO

478

479 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

480

481 CALL pgfunx ( Legendre new , 1 0 0 , −0 . 9 , −0 . 2 , 0 )

482

483 CALL pgp t ( nda ta , xasp , yasp , 228)

484

485 CALL pgend

486

487 END SUBROUTINE L e g P l o t 2

488

489 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

490

491 SUBROUTINE d2ydx2max ( ma , a ) ! F i n d s t h e t u r n i n g p t s o f t h e 2nd d e r i v a t i v e o f p ( x )

492 INTEGER : : ma , j

493 DOUBLE PRECISION : : a ( ma ) , c ( ma−2) , d ( ma−3) , r t r ( ma−3) , r t i ( ma−3)

494

495 DO j = 1 , ma−2

496 c ( j ) = a ( j +2) ∗ ( j +1) ∗ ( j ) ! F i n d s t h e c o e f f i c i e n t s f o r d2ydx2

497 END DO

498

499 DO j = 1 , ma−3

500 d ( j ) = c ( j +1) ∗ j ! F i n d s t h e c o e f f i c i e n t s f o r t h e 3 rd d e r i v a t i v e ( d3ydx3 )

501 END DO

502

503 CALL z r h q r ( d , 1 , r t r , r t i ) ! F i n d s t h e r o o t s f o r t h e maximum r a t e o f change o f t h e

504 DO j =1 , ma − 3 ! g r a d i e n t ( d3ydx3 = 0) and d2ydx2 ’ s magn i tude t h e r e .

505 IF ( r t i ( j ) == 0) THEN ! I n c l u d e on ly r e a l r o o t s

506 PRINT ∗ , ’ t u r n i n g p o i n t a t x = ’ , r t r ( j )

507 END IF

508 END DO

509

510 END SUBROUTINE d2ydx2max

511

512 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

513 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−L i b p r e s s a l g o r i t h m s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: RGBPeakFinder6.f95

Creation Date: 7 December 2009

Relevant Section: 2.2

Notes: This is another RGB finder which combines elements of ‘edge-finding’ and model

fitting. Stars in a small region around Andromeda I are read in and a smoothed ‘Luminosity

Probability Distribution’ is produced from the individual stellar magnitudes via a Gaussian

smoothing of the luminosity function. The second derivative of this distribution is produced

with the peaks denoting inflection points in the gradient of the smoothed luminosity function.

See Figs. 2.1 and 2.2.

1 MODULE Globa l3 ! D e f i ne a l l

2 IMPLICIT NONE ! V a r i a b l e s

3

4 INTEGER : : ndata max , nda ta , n d a t a t , i , j , k , n , i o s , idum = 0 , randnum

5 INTEGER : : nda ta2 , n d a t a s u b , d i v p e r m a g = 100

6 PARAMETER ( nda ta max = 100000)

7 REAL : : xmin , xmax , min mag = 1 9 . 5 d0 , max mag = 2 1 . 5 d0

8 REAL∗8 : : temp x ( nda ta max ) , temp y ( nda ta max ) , t emp e ( nda ta max ) , dummy

9 REAL∗8 : : mag ( 1 0 0 0 0 ) , p h i ( 1 0 0 0 0 ) , mag2 ( 1 0 0 0 0 ) , ph i2 ( 1 0 0 0 0 )

10 REAL∗8 : : mag3 ( 1 0 0 0 0 ) , ph i3 ( 1 0 0 0 0 ) , ph i4 ( 1 0 0 0 0 ) , phi4 max

11

12 END MODULE Globa l3

13

14 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15

16 PROGRAM RGBPeakFinder6 ! F i n d s g r e a t e s t peak of ( d2ph i / dm2 ) / ( p h i ) be tween min mag and max mag .

17 USE GLOBAL3

18 IMPLICIT NONE

19

20 INTEGER : : check ( 1 0 0 0 0 0 )

21 REAL∗8 : : xh1 ( nda ta max ) , yh1 ( nda ta max ) , eh1 ( nda ta max )

22

23 temp x = 0 . d0 ; temp y = 2 0 . d0

24

25 OPEN ( u n i t = 1 , f i l e = ’ . / m 3 1 f i e l d s s t e l l a r / ANDI box small . d a t ’ , s t a t u s = ’ o l d ’ )

26 i = 0 ; i o s = 0

27 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

28 i= i+1

29 READ ( 1 , ∗ , IOSTAT = i o s ) temp x ( i ) , temp y ( i ) ! x : g magn i tude

30 ! y : i magn i tude

31

32 i f ( i o s == 0) then ;

33 e l s e i f ( i o s == −1) then ;

34 i= i −1

35 e x i t ;

36 e l s e i f ( i o s > 0) then ;

37 i= i −1

38 c y c l e

39 end i f

40 IF ( temp x ( i ) == 0 . . o r . temp y ( i ) == 0 . ) THEN

41 i= i −1

42 c y c l e

43 END IF
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44 END DO

45

46 n d a t a = i

47 PRINT ∗ , ”Number o f s o u r c e s =” , n d a t a

48

49 DO j = 1 , n d a t a

50 temp x ( j ) = temp x ( j ) − temp y ( j )

51 END DO

52

53 CALL C u t P l o t

54 CALL Smooth

55

56 END PROGRAM RGBPeakFinder6

57

58 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

59

60 SUBROUTINE C u t P l o t ! Produce c o l o u r c u t s

61 USE Globa l3

62 IMPLICIT NONE

63

64 REAL : : d iv , v a r ( 1 0 0 0 )

65 REAL : : u p p e r c u t ( 1 0 0 0 ) , l o w e r c u t ( 1 0 0 0 )

66

67 d i v = 2∗ ( INT (MAXVAL( temp x ) ) − INT (MINVAL( temp x ) ) ) / 1 0 0 0 .

68

69 DO j = 1 , 1000

70 v a r ( j ) = INT (MINVAL( temp x ) ) + d i v ∗ j

71 u p p e r c u t ( j ) = 2 4 . 5 − 3∗ ( v a r ( j ) )

72 l o w e r c u t ( j ) = 2 7 . 0 − 3∗ ( v a r ( j ) )

73 END DO

74

75 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Upper and Lower Cuts p l o t

76

77 CALL pgbeg in ( 0 , ’ temp1 . ps /CPS ’ , 1 , 1 )

78

79 CALL pgenv (MINVAL(REAL( temp x ) ) , MAXVAL(REAL( temp x ) ) , MAXVAL(REAL( temp y ) ) , MINVAL(REAL( temp y ) ) , 0 , 0 )

80 CALL pgp t ( nda ta , REAL( temp x ) , REAL( temp y ) , 1 )

81 CALL p g s c i ( 2 )

82 CALL p g l i n e ( 1 0 0 0 , var , u p p e r c u t )

83 CALL p g l i n e ( 1 0 0 0 , var , l o w e r c u t )

84 CALL p g s c i ( 1 )

85 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

86

87 CALL pgend

88 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

89

90 END SUBROUTINE C u t P l o t

91

92 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

93

94 SUBROUTINE Smooth ! Apply G a u s s i a n smooth ing t o LF and

95 USE Globa l3 ! f i n d i n f l e c t i o n p o i n t s .

96 IMPLICIT NONE

97

98 REAL∗8 : : x ( n d a t a ) , y ( n d a t a ) , xa ( n d a t a ) , ya ( n d a t a ) , p i = 2∗ACOS ( 0 . d0 )

99 REAL∗8 : : e ( n d a t a ) , err ( n d a t a ) , a v e p h i , ave mag , a v e p h i 4

100 REAL∗8 : : x a s e l ( n d a t a ) , y a s e l ( n d a t a ) , e r r s e l ( n d a t a )

101 REAL : : yasp ( n d a t a ) , p h i s p ( 1 0 0 0 0 ) , magsp ( 1 0 0 0 0 )

102 INTEGER : : i ndx ( n d a t a ) , p l a c e , p l ace2 , p l ace3 , coun t s , d e n o m i n a t o r

103

104 DO j = 1 , n d a t a
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105 x ( j ) = temp x ( j )

106 y ( j ) = temp y ( j )

107 END DO

108

109 CALL i n de xx ( nda ta , y , i ndx ) ! C r e a t e s a r r a y i ndx ( 1 : n d a t a ) whose e l e m e n t s a r e

110 ! i n d i c i e s t o t h e e l e m e n t s o f y i n c h r o n o l o g i c a l o r d e r

111

112 DO j =1 , n d a t a

113 xa ( j )=x ( i ndx ( j ) ) ! Makes xa , ya & e r r e q u a l t o t h e o r d e r e d v e r s i o n s o f

114 ya ( j )=y ( i ndx ( j ) ) ! x , y & e r e s p e c t i v e l y .

115 err ( j ) = 0 . 1 d0

116 END DO

117

118 c o u n t s = 0 ; x a s e l = 0 . d0 ; y a s e l = 0 . d0

119 DO j =1 , n d a t a

120 IF ( ya ( j ) . g t . 2 4 . 5 − 3∗ ( xa ( j ) ) ) THEN ! Throw away s t a r s

121 IF ( ya ( j ) . l t . 2 7 . 0 − 3∗ ( xa ( j ) ) ) THEN ! o u t s i d e o f c o l o u r c u t

122 c o u n t s = c o u n t s + 1 ! c o u n t s i s t h e t o t a l number o f a c c e p t e d s t a r s

123 x a s e l ( c o u n t s ) = xa ( j )

124 y a s e l ( c o u n t s ) = ya ( j )

125 e r r s e l ( c o u n t s ) = err ( j )

126 END IF

127 END IF

128 END DO

129

130 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Accepted Data P o i n t s P l o t

131 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

132

133 CALL pgenv (MINVAL(REAL( temp x ) ) , MAXVAL(REAL( temp x ) ) , MAXVAL(REAL( temp y ) ) , MINVAL(REAL( temp y ) ) , 0 , 0 )

134 CALL pgp t ( coun t s , REAL( x a s e l ) , REAL( y a s e l ) , 1 )

135 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

136

137 CALL pgend

138 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

139

140

141 ! Produce L u m i n o s i t y P r o b a b i l i t y D i s t r i b u t i o n (LPD)

142 p l a c e = 0 ; p h i = 0 . d0 ; mag = 0 . d0

143 DO j = 100∗ ( INT (MINVAL( ya ) ) − 1) , 100∗ ( INT (MAXVAL( ya ) ) + 1) , ( 1 0 0 / d i v p e r m a g )

144 p l a c e = p l a c e + 1

145 mag ( p l a c e ) = j / 1 0 0 . d0

146 DO k = 1 , c o u n t s ! Per fo rm G a u s s i a n smooth ing a t magn i tude by summing c o n t r i b u t i o n s

147 p h i ( p l a c e ) = p h i ( p l a c e ) + & ! of each s t a r r e p r e s e n t e d by a n o r m a l i z e d G a u s s i a n

148 ( 1 . d0 / ( SQRT ( 2 . d0 ∗ p i ) ∗ e r r s e l ( k ) ) ) ∗ EXP( − ( ( y a s e l ( k ) − j / 1 0 0 . d0 ) ∗ ∗2 . d0 ) / ( 2 . d0 ∗ ( e r r s e l ( k ) ∗ ∗2 . d0 ) ) )

149 END DO

150 END DO

151

152 ! Produce d e r i v a t i v e o f LPD

153 p l a c e 2 = 0 ; ph i 2 = 0 . d0 ; mag2 = 0 . d0

154 DO j = 100∗ ( INT (MINVAL( ya ) ) − 1) , 100∗ ( INT (MAXVAL( ya ) ) + 1) , ( 1 0 0 / d i v p e r m a g )

155 p l a c e 2 = p l a c e 2 + 1

156 mag2 ( p l a c e 2 ) = j / 1 0 0 . d0

157 DO k = 1 , c o u n t s

158 ph i2 ( p l a c e 2 ) = ph i2 ( p l a c e 2 ) + &

159 ( 1 . d0 / ( SQRT ( 2 . d0 ∗ p i ) ∗ ( e r r s e l ( k ) ) ∗3) ) ∗ EXP( − ( ( y a s e l ( k ) − j / 1 0 0 . d0 ) ∗ ∗2 . d0 ) / ( 2 . d0 ∗ ( e r r s e l ( k ) ∗ ∗2 . d0 ) ) ) ∗ ( y a s e l ( k ) − ( j

/ 1 0 0 . d0 ) )

160 END DO

161 END DO

162

163 ! Produce second d e r i v a t i v e o f LPD

164 p l a c e 3 = 0 ; ph i 3 = 0 . d0 ; mag3 = 0 . d0
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165 DO j = 100∗ ( INT (MINVAL( ya ) ) − 1) , 100∗ ( INT (MAXVAL( ya ) ) + 1) , ( 1 0 0 / d i v p e r m a g )

166 p l a c e 3 = p l a c e 3 + 1

167 mag3 ( p l a c e 3 ) = j / 1 0 0 . d0

168 DO k = 1 , c o u n t s

169 ph i3 ( p l a c e 3 ) = ph i3 ( p l a c e 3 ) + &

170 ( 1 . d0 / ( SQRT ( 2 . d0 ∗ p i ) ∗ ( e r r s e l ( k ) ) ∗5) ) ∗ EXP( − ( ( y a s e l ( k ) − j / 1 0 0 . d0 ) ∗ ∗2 . d0 ) / ( 2 . d0 ∗ ( e r r s e l ( k ) ∗ ∗2 . d0 ) ) ) ∗ ( y a s e l ( k ) ∗∗2 − 2∗

y a s e l ( k ) ∗ ( j / 1 0 0 . d0 ) − e r r s e l ( k ) ∗∗2 + ( j / 1 0 0 . d0 ) ∗∗2 )

171 END DO

172 END DO

173

174

175

176 ph i4 = ( ph i3 / ( ABS( p h i ) +0 . 1 ) ) ! Use 2nd d e r . o f LPD d i v i d e d by LPD t o l o c a t e p o t e n t i a l TRGBs

177

178 n d a t a 2 = d i v p e r m a g ∗ ( INT (MAXVAL( ya ) ) − INT (MINVAL( ya ) ) + 2) + 1

179 n d a t a s u b = ( d i v p e r m a g ∗ ( max mag − min mag ) ) + 1

180

181 a v e p h i = SUM( p h i ) / n d a t a 2

182 ave mag = SUM( mag ) / n d a t a 2

183 a v e p h i 4 = 0 . ; d e n o m i n a t o r = 0 ; phi4 max = 0 . d0

184 DO j = 1 , n d a t a 2 !

185 IF ( mag ( j ) . ge . min mag ) THEN !

186 IF ( mag ( j ) . l e . max mag ) THEN !

187 a v e p h i 4 = a v e p h i 4 + ph i4 ( j ) ! F ind maximum v a l u e o f a r r a y ph i4 and

188 d e n o m i n a t o r = d e n o m i n a t o r + 1 ! t h e a v e r a g a g e v a l u e o f a r r a y ph i 4 i n

189 IF ( ph i4 ( j ) . g t . phi4 max ) THEN ! t h e r e g i o n where t h e TRGB c o u l d

190 phi4 max = ph i4 ( j ) ! f e a s i b l y be l o c a t e d . These can t h e n

191 END IF ! be used f o r s c a l i n g g r a p h s and

192 END IF ! d e t e r m i n i n g t h e s t r e n g h t s o f p o s s i b l e

193 END IF !TRGBs .

194 END DO !

195 a v e p h i 4 = a v e p h i 4 / d e n o m i n a t o r !

196

197 yasp = ya ; magsp = mag

198 p h i s p = p h i ∗ ( phi4 max / MAXVAL( p h i ) ) ! S c a l e REAL( p h i ) f o r p l o t t i n g wi th ph i4

199

200 DO j = n d a t a 2 + 1 , 10000

201 p h i ( j ) = a v e p h i ! S i n c e SIZE ( p h i ) = SIZE ( p h i s p ) = SIZE ( mag ) = SIZE ( magsp )

202 mag ( j ) = ave mag ! = 10000 . n o t . n d a t a 2

203 p h i s p ( j ) = 0 . ! i t i s n e c e s s a r y t o make a l l a r r a y e l e m e n t s o u t s i d e o f

204 magsp ( j ) = ave mag ! n d a t a 2 e q u a l t o some i n t e r m e d i a t e v a l u e so t h a t t h e

205 END DO ! minva l & maxval f u n c t i o n s a r e s t i l l u s e a b l e .

206

207 xmin = INT (MINVAL( yasp ) ) − 1 . ; xmax = INT (MAXVAL( yasp ) ) + 1 .

208

209 CALL T u r n i n g P o i n t s

210

211 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!Main P l o t ( i . e . smoothed l u m i n o s i t y

212 ! f u n c t i o n wi t h i n f l e c t i o n p o i n t s )

213 CALL pgbeg in ( 0 , ’ temp2 . ps /CPS ’ , 1 , 1 )

214

215 CALL pgenv ( 1 8 . , 2 6 . , MINVAL( p h i s p ) , REAL( 1 . 5 ∗ phi4 max ) , 0 , 0 )

216 CALL p g s c i ( 1 )

217 CALL p g l i n e ( nda ta2 , magsp , p h i s p )

218 CALL p g s c i ( 2 )

219 CALL p g l i n e ( nda ta2 , REAL( mag3 ) , REAL( ph i4 ) )

220 CALL p g s c i ( 4 )

221 CALL pgsch ( 4 . 0 )

222 CALL pgp t ( 1 , 2 0 . 7 7 , 0 . 0 0 1 , 2264)

223 CALL pgsch ( 1 . 0 )

224 CALL p g s c i ( 1 )
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225 CALL p g l a b ( ’ i \d0 \u ’ , ’ r e l a t i v e p r o b a b i l i t y ’ , ’ ’ )

226 CALL pgend

227 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

228

229 END SUBROUTINE Smooth

230

231 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

232

233 SUBROUTINE T u r n i n g P o i n t s ! P r i n t s l o c a t i o n o f p o t e n t i a l RGB t i p s ( i n m a g n i t u d e s )

234 USE Globa l3 ! and a s s i g n s t o them a s t e n g t h , based on t h e change i n

235 IMPLICIT NONE ! LF s l o p e a t t h a t magn i tude

236

237 INTEGER : : TRGB found = 0

238

239 PRINT ∗ , ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

240 DO j = 1 , n d a t a 2

241 IF ( mag ( j ) . ge . min mag ) THEN

242 IF ( mag ( j ) . l e . max mag ) THEN

243 IF ( ph i4 ( j ) . g t . ph i4 ( j −1) . and . ph i4 ( j ) . g t . ph i4 ( j +1) ) THEN

244 PRINT ∗ , ” P o t e n t i a l TRGB a t ” , mag ( j ) , &

245 ” S t r e n g t h =” , REAL( ph i4 ( j ) / phi4 max )

246 TRGB found = 1

247 END IF

248 END IF

249 END IF

250 END DO

251

252 IF ( TRGB found == 0) THEN

253 PRINT ∗ , ”No TRGB c o u l d be l o c a t e d . ”

254 END IF

255 PRINT ∗ , ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

256

257 END SUBROUTINE T u r n i n g P o i n t s

258

259 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

260

261 SUBROUTINE R a n d S p l i t ( check )

262 USE Globa l3

263 IMPLICIT NONE

264

265 ! S u b r o u t i n e c r e a t e s a randomized i n d e x t o t h e read − i n d a t a s e t . I t i s c a l l e d

266 ! by s u b r o u t i n e ’ T e s t S e p a r a t e ’ t o s p l i t t h e d a t a i n two h a l v e s and p r o c e s s them .

267

268 INTEGER : : check ( 1 0 0 0 0 0 ) , count , num = 0

269 REAL∗8 : : r an1

270

271 check ( 1 0 0 0 0 0 ) = 0 ; j = 0 ! I n s u r e a r r a y check has a l l e l e m e n t s 0

272 DO WHILE ( j . l t . n d a t a t − 1) !

273 j = j + 1 !

274 randnum = INT ( n d a t a t ∗ r an1 ( idum ) ) !

275 c o u n t = 0 !

276 DO k = 1 , j !

277 IF ( randnum . eq . check ( k ) ) THEN !

278 c o u n t = c o u n t + 1 !

279 END IF ! Loop g e n e r a t e s randomised i n d e x wi th

280 END DO ! number o f e n t r i e s e q u a l t o n d a t a . A l l

281 IF ( c o u n t == 0) THEN ! e n t r i e s a r e un i q ue i n t e g e r s from 1 t o

282 check ( j ) = randnum ; ! n d a t a . Index i s o u t p u t t e d t o ’ check ’

283 END IF !

284 IF ( c o u n t . ne . 0 ) THEN !

285 j = j − 1 !
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286 c y c l e !

287 END IF !

288 END DO !

289 check ( n d a t a t ) = n d a t a t ! F i n a l e l e m e n t o f ’ check ’ i s n d a t a

290

291 DO j = 1 , n d a t a t ! Check t h a t

292 DO k = 1 , n d a t a t ! a l l i n t e g e r

293 IF ( check ( k ) == j ) THEN ! v a l u e s between

294 num = num + 1 ! 1 and n d a t a

295 END IF ! can be

296 END DO ! found i n t h e

297 END DO ! a r r a y ’ check ’

298

299 PRINT ∗ , ” number o f u n i q ue i n t e g e r s =” , num

300

301 END SUBROUTINE R a n d S p l i t

302

303 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

304 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−L i b p r e s s Algor i thms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: spikes.f95

Creation Date: 1 February 2011

Relevant Section: 2.3

Notes: I created this program to illustrate the precise way in which the posterior probability

distribution of a parameter is produced via maximum likelihood model fitting. An artificial

luminosity function is created from a step function, where the user specifies the number of

stars to be produced as well as the position of the step and the relative proportions of the

‘background’ and ‘signal’ components. Various types of priors can then be applied to the re-

sulting posterior distributions. Fig. 2.4 illustrates the way in which the posterior distributions

in the tip position are created. Figs. 2.3, 2.5 and 2.6 were created using this code.

1 MODULE Gl ob a l ! D e f i n e a l l

2 IMPLICIT NONE ! v a r i a b l e s

3

4 INTEGER : : i , j , i ndx ( 2 0 0 0 1 )

5 REAL∗8 : : l i k e ( 1 0 0 0 ) , p o s t e r i o r ( 1 0 0 0 , 2 ) , l i k e x 1 ( 1 0 0 0 , 2 0 0 0 0 ) , data ( 2 0 0 0 1 ) , rand num , y l im = 0 . d0 , x ( 1 0 0 0 )

6 REAL∗8 : : h i s t ( 1 0 1 , 2 ) = 0 . d0 , temp ( 1 0 1 , 2 ) , o r d d a t a ( 2 0 0 0 1 )

7

8 INTEGER : : n d a t a = 1000 !<= E n t e r number o f s t a r s

9 REAL∗8 : : TRGB ; PARAMETER (TRGB = 0 . 4 d0 ) !<= E n t e r t i p p o s i t i o n 0 < TRGB < 1

10 REAL∗8 : : f = 0 . 3 d0 !<= E n t e r f r a c t i o n background

11

12 !−−−−−−−−−−For No P r i o r on t i p −−−−−−−−−−−−

13 REAL∗8 : : u ( 1 0 0 0 )

14

15 !−−−−−−−−For G a u s s i a n P r i o r on t i p −−−−−−−−

16 REAL∗8 : : t i p e x p t = TRGB ! Tip magni tude e x p e c t e d f o r s t r u c t u r e

17 REAL∗8 : : gauss hwhm = 0 . 2 5 d0 ! Magni tudes on e i t h e r s i d e o f e x p e c t e d t i p magni tude t o e x p l o r e

18 REAL∗8 : : g a u s s e x p o = 4 . d0 ! S h a r p n e s s o f edges o f G a u s s i a n p r i o r p r o f i l e

19 REAL∗8 : : p r i o r s i g , g ( 1 0 0 0 )

20

21 !−−−−

22 REAL∗8 : : gap , maxgap , coun t s , d ( 1 0 0 0 )

23

24 REAL : : BG counts , RGB counts

25

26 END MODULE Gl ob a l

27

28 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29

30 PROGRAM s p i k e s !

31 USE Gl ob a l ! Main Program

32 IMPLICIT NONE !

33

34 CALL r andom seed ! I n s u r e s s t a r s a r e a t d i f f e r e n t m a g n i t u d e s each t i me

35

36 DO i = 1 , n d a t a !

37 CALL random number ( rand num ) !

38 IF ( rand num . g t . TRGB ∗ f ) THEN !

39 CALL random number ( rand num ) ! Draw n d a t a s t a r s a t

40 rand num = TRGB + ( 1 . 0 0 d0 − TRGB) ∗ rand num ! random from a l u m i n o s i t y

41 ELSE ! f u n c t i o n wi th t i p a t TRGB
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42 CALL random number ( rand num ) ! and background h e i g h t = f .

43 rand num = TRGB ∗ rand num !

44 END IF !

45 rand num = NINT ( rand num ∗ 1 0 0 . d0 ) !

46 data ( i ) = rand num / 1 0 0 . d0 !

47 END DO !

48

49 DO i = 1 , 101

50 h i s t ( i , 1 ) = REAL( i −1) / 1 0 0 . d0

51 DO j = 1 , n d a t a

52 IF ( data ( j ) . eq . h i s t ( i , 1 ) ) THEN

53 h i s t ( i , 2 ) = h i s t ( i , 2 ) + 1 . d0

54 END IF

55 END DO

56 END DO

57

58 h i s t ( 1 0 1 , 2 ) = h i s t ( 1 0 1 , 2 ) ∗ 2 . e0 ! Account f o r t h e b i n wid th o f t h e l a s t b i n

59

60 BG counts = (REAL( n d a t a ) ∗ REAL( f ) ) / 1 0 0 . e0 ! F u n c t i o n h e i g h t b e f o r e s t e p

61 RGB counts = (REAL( n d a t a ) ∗ REAL( 1 . d0 − f ) ) / (REAL( 1 . d0−TRGB) ∗ 1 0 0 . e0 )

62 ! / \ F u n c t i o n h e i g h t

63 ! | | a f t e r s t e p

64

65 !−−−−−−−−−−−−−−−−P l o t h i s t o g r a m of d a t a p o i n t s −−−−−−−−−−−−−−−

66

67 CALL pgbeg in ( 0 , ’ tempLF . ps /CPS ’ , 1 , 1 )

68

69 CALL pgenv ( 0 . 0 , 1 . 0 , 0 . , 1 . 1∗MAXVAL(REAL( h i s t ( : , 2 ) ) ) , 0 , 0 )

70 CALL pgb in ( 1 0 1 , REAL( h i s t ( : , 1 ) ) , REAL( h i s t ( : , 2 ) ) , . t r u e . )

71 CALL p g l a b ( ’ s t a r magn i tude ’ , ’ c o u n t s ’ , ’ ’ )

72

73 ! | | P l o t model

74 ! \ / ove r LF

75 CALL p g s c i ( 2 )

76 CALL p g s l s ( 3 )

77 CALL pgslw ( 5 )

78 CALL p g l i n e ( 2 , ( / 0 . 0 e0 , REAL(TRGB) / ) , ( / BG counts , BG counts / ) )

79 CALL p g l i n e ( 2 , ( /REAL(TRGB) , 1 . e0 / ) , ( / BG counts + RGB counts , BG counts + RGB counts / ) )

80 CALL p g l i n e ( 2 , ( /REAL(TRGB) , REAL(TRGB) / ) , ( / BG counts , BG counts + RGB counts / ) )

81 CALL pgslw ( 1 )

82 CALL p g s l s ( 1 )

83 CALL p g s c i ( 1 )

84 ! / \

85 ! | |

86

87 CALL pgend

88 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

89

90 IF ( n d a t a . ge . NINT ( 1 / f ) ) THEN

91 !CALL remove

92 END IF

93

94 !−−−−−−−−−−−−−−−−P l o t h i s t o g r a m of d a t a p o i n t s −−−−−−−−−−−−−−−

95 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

96

97 CALL pgenv ( 0 . 0 , 1 . 0 , 0 . , 1 . 1∗MAXVAL(REAL( h i s t ( : , 2 ) ) ) , 0 , 0 )

98 CALL pgb in ( 1 0 1 , REAL( h i s t ( : , 1 ) ) , REAL( h i s t ( : , 2 ) ) , . t r u e . )

99 CALL p g l a b ( ’ s t a r magn i tude ’ , ’ c o u n t s ’ , ’BG−removed L u m i n o s i t y F u n c t i o n ’ )

100

101 CALL pgend

102 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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103

104 CALL u p r i o r

105 !CALL d p r i o r ! Choose p r i o r here , f o r no p r i o r −> CALL u p r i o r

106 !CALL g p r i o r

107

108 l i k e = 1 . d0 ! S e t i n i t i a l v a l u e s o f l i k e l i h o o d a r r a y e l e m e n t s t o 1

109 DO i = 1 , n d a t a ! For each s t a r . . .

110 DO j = 1 , 1000 ! For TRGB s e t a t b i n j . . .

111 IF ( data ( i ) . g t . REAL( j ) / 1 0 0 0 . d0 ) THEN !

112 l i k e ( j ) = l i k e ( j ) ∗ ( f + ( 1 . d0 − f ) ∗ ( 1 . d0 / (REAL(1001− j ) / 1 0 0 0 . d0 ) ) ) ! M u l t i p l y t h e c u r r e n t l i k e l i h o o d v a l u e f o r

113 l i k e x 1 ( j , i ) = ( f + ( 1 . d0 − f ) ∗ ( 1 . d0 / (REAL(1001− j ) / 1 0 0 0 . d0 ) ) ) ! b i n j [ l i k e ( j ) ] , by t h e l i k e l i h o o d f o r

114 ELSE ! s t a r i . For t h e p u r p o s e o f p l o t t i n g l i k e l i h o o d s

115 l i k e ( j ) = l i k e ( j ) ∗ f ! f o r t h e TRGB b e i n g a t each j f o r each i n d i v i d u a l

116 l i k e x 1 ( j , i ) = f ! s t a r i , l i k e x 1 ( j , i ) i s a l s o c a l c u l a t e d .

117 END IF !

118 END DO

119 l i k e = l i k e ∗ u ! ∗ d ∗ g ! M u l t i p l y ’ l i k e ’ by chosen p r i o r f u n c t i o n

120 l i k e x 1 ( : , i ) = l i k e x 1 ( : , i ) ∗ u ! ∗ d ∗ g ! M u l t i p l y ’ l i k e x 1 ( : , i ) ’ by chosen p r i o r f u n c t i o n

121 l i k e = l i k e / SUM( l i k e ) ! Normal i ze ’ l i k e ’

122 l i k e x 1 ( : , i ) = l i k e x 1 ( : , i ) / SUM( l i k e x 1 ( : , i ) ) ! Normal i ze ’ l i k e x 1 ( : , i ) ’

123 END DO

124

125 DO j = 1 , 1000 !

126 p o s t e r i o r ( j , 1 ) = REAL( j ) / 1 0 0 0 . d0 ! B u i l d f i n a l l i k e l i h o o d

127 p o s t e r i o r ( j , 2 ) = l i k e ( j ) ! d i s t r i b u t i o n r e a d y f o r p l o t t i n g

128 END DO !

129

130

131 !−−−−−−−−−−−−−−−−P l o t I n d i v i d u a l L i k e l i h o o d s −−−−−−−−−−−−−−−−−

132

133 CALL pgbeg in ( 0 , ’ i n d l i k e . ps /CPS ’ , 1 , 1 )

134

135 DO i = 1 , n d a t a !<−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!

136 IF (MAXVAL( l i k e x 1 ( : , i ) ) . g t . y l im ) THEN !

137 yl im = MAXVAL( l i k e x 1 ( : , i ) ) !

138 END IF ! Change s t a r s p l o t t e d h e r e

139 END DO !

140 CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 ∗ REAL( y l im ) , 0 , 0 ) !

141 DO i = 1 , n d a t a !<−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!

142 CALL p g s c i ( i +1)

143 CALL pgb in ( 1 0 0 0 , REAL( p o s t e r i o r ( : , 1 ) ) , REAL( l i k e x 1 ( : , i ) ) , . t r u e . )

144 END DO

145 CALL p g s c i ( 1 )

146 CALL p g l a b ( ’ P roposed t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

147

148 CALL pgend

149

150 !−−−−−−−−−−−−−−−−P l o t P o s t e r i o r D i s t r i b u t i o n −−−−−−−−−−−−−−−−−

151

152 CALL pgbeg in ( 0 , ’ p o s t d i s . ps /CPS ’ , 1 , 1 )

153

154 CALL pgenv ( 0 . 0 , 1 . 0 , 0 . , 1 . 1∗MAXVAL(REAL( p o s t e r i o r ( : , 2 ) ) ) , 0 , 0 )

155 CALL pgb in ( 1 0 0 0 , REAL( p o s t e r i o r ( : , 1 ) ) , REAL( p o s t e r i o r ( : , 2 ) ) , . t r u e . )

156 CALL p g l a b ( ’ P roposed t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

157

158 CALL pgend

159

160 END PROGRAM s p i k e s

161

162 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

163
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164 SUBROUTINE u p r i o r !

165 USE Gl ob a l ! G e n e r a t e s Uniform p r i o r f u n c t i o n −> i . e . u = 1

166 IMPLICIT NONE !

167

168 DO i = 1 , 1000

169 x ( i ) = REAL( i ) / 1000 . d0

170 END DO

171

172 !−−−−−−−−−−−−−−−No P r i o r −−−−−−−−−−−−−−−−−−

173

174 DO i = 1 , 1000

175 u ( i ) = 1 . d0

176 END DO

177

178 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

179

180 CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 , 0 , 0 )

181 CALL pgb in ( 1 0 0 0 , REAL( x ) , REAL( u ) , . t r u e . )

182 CALL p g l a b ( ’ x ’ , ’ y ’ , ’ Uniform P r i o r App l i ed ’ )

183

184 CALL pgend

185

186 END SUBROUTINE u p r i o r

187

188 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

189

190 SUBROUTINE g p r i o r !

191 USE Gl ob a l ! G e n e r a t e s G a u s s i a n p r i o r f u n c t i o n −> p a r a m e t e r s o f G a u s s i a n changed i n MODULE Gl ob a l .

192 IMPLICIT NONE !

193

194 DO i = 1 , 1000

195 x ( i ) = REAL( i ) / 1000 . d0

196 END DO

197

198 !−−−−−−−−−−−−G a u s s i a n P r i o r −−−−−−−−−−−−−−−

199 p r i o r s i g = ABS( gauss hwhm ∗∗ ( 0 . 5 d0 ∗ g a u s s e x p o ) )

200

201 DO i = 1 , 1000

202 g ( i ) = exp ( ( − (REAL( x ( i ) ) − t i p e x p t ) ∗∗ g a u s s e x p o ) / ( 2 . d0 ∗ ( p r i o r s i g ) ∗ ∗2 . d0 ) )

203 END DO

204

205 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

206

207 CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 , 0 , 0 )

208 CALL pgb in ( 1 0 0 0 , REAL( x ) , REAL( g ) , . t r u e . )

209 CALL p g l a b ( ’ magn i tude ’ , ’ we i g h t ’ , ’ G a u s s i a n P r i o r App l i ed ’ )

210

211 CALL pgend

212

213 END SUBROUTINE g p r i o r

214

215 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

216

217 SUBROUTINE d p r i o r ! For a p p l y i n g a d e n s i t y p r i o r . A window i s chosen wi t h wid th e q u a l t o t h e g r e a t e s t s e p a r a t i o n between any

218 USE Gl ob a l ! 2 d a t a p o i n t s i n t h e a r r a y ” d a t a . ” The window t h e n s l i d e s a c r o s s t h e LF a t 1−b i n i n c r e m e n t s and t h e number

219 IMPLICIT NONE ! o f s t a r s l y i n g w i t h i n t h e window i s p l a c e d i n t h e b i n c o r r e s p o n d i n g t o e i t h e r t h e LHS , RHS

220 ! o r midd le o f t h e window .

221 DO i = 1 , 1000

222 x ( i ) = REAL( i ) / 1000 . d0

223 END DO

224
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225 CALL i n de xx ( nda ta , REAL( data ) , i ndx )

226

227 DO i = 1 , n d a t a

228 o r d d a t a ( i ) = data ( i ndx ( i ) )

229 END DO

230

231 maxgap = 0 . d0

232 DO i = 2 , n d a t a

233 gap = o r d d a t a ( i ) − o r d d a t a ( i − 1)

234 IF ( gap . g t . maxgap ) THEN

235 maxgap = gap

236 END IF

237 END DO

238

239 maxgap = NINT ( maxgap ∗1 0 0 . d0 )

240

241 !−−−−−D e n s i t y a p p l i e d t o l e f t edge o f window

242 DO i = 1 , 101 − NINT ( maxgap )

243 c o u n t s = 0 . d0

244 DO j = i , i + NINT ( maxgap )

245 c o u n t s = c o u n t s + h i s t ( j , 2 )

246 END DO

247 d (10∗ i − 9 : 1 0∗ i ) = c o u n t s

248 IF ( i . eq . 101 − NINT ( maxgap ) ) THEN

249 d (10∗ i : 1 0 0 0 ) = c o u n t s

250 END IF

251 END DO

252

253 d = d / (MAXVAL( d ) )

254

255 !−−−−−−−P l o t d e n s i t y p r i o r −−−−−−−−

256 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

257

258 CALL pgenv ( 0 . , 1 . , 0 . , 1 . 1 ∗ MAXVAL(REAL( d ) ) , 0 , 0 )

259 CALL pgb in ( 1 0 0 0 , REAL( x ) , REAL( d ) , . t r u e . )

260 CALL p g l a b ( ’ magn i tude ’ , ’ we i g h t ’ , ’ D e n s i t y P r i o r App l i ed ’ )

261

262 CALL pgend

263

264 END SUBROUTINE d p r i o r

265

266 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

267

268 SUBROUTINE remove ! Remove f ∗ n d a t a d a t a p o i n t s

269 USE Gl ob a l ! s p r e a d randomly ove r magn i tude

270 IMPLICIT NONE ! s p a c e from d a t a a r r a y .

271

272 i = 0

273 DO

274 CALL random number ( rand num )

275 rand num = NINT ( rand num ∗ 100) + 1 . d0

276 IF ( h i s t ( NINT ( rand num ) , 2 ) . ge . 1 . d0 ) THEN

277 i = i+1

278 h i s t ( NINT ( rand num ) , 2 ) = h i s t ( NINT ( rand num ) , 2 ) − 1 . d0

279 END IF

280 IF ( i . ge . NINT ( f ∗ n d a t a ) ) THEN

281 e x i t ;

282 END IF

283 END DO

284

285 temp = h i s t
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286

287 n d a t a = n d a t a − ( INT ( f ∗ n d a t a ) + 1)

288

289 data = 0 . d0

290 j = 0

291 DO i = 1 , 101

292 DO WHILE ( temp ( i , 2 ) . g t . 0 . d0 )

293 j = j + 1

294 data ( j ) = temp ( i , 1 )

295 temp ( i , 2 ) = temp ( i , 2 ) − 1 . d0

296 END DO

297 END DO

298

299 END SUBROUTINE remove

300

301 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: BayesianTRGB ANDI.f95

Creation Date: 23 September 2010 (first version 6 Mar 2010)

Relevant Sections: 2.4, 3

Notes: This program lies at the heart of the material presented in Paper I (Ch. 3) and hence

is described there in much more detail. Note also that §2 of Paper II (presented in Ch.

4) also provides a useful summary as to its workings. The program is an example of my

original TRGB finding algorithm. At this stage I had not yet generalized the code so that the

parameters for different objects could be fed in, and hence each object had its own separate

code - that shown here is for Andromeda I. In summary, a circular field is taken centered

on user-specified coordinates and all stars within that field are then plotted on a Colour-

Magnitude Diagram. The user then provides the coordinates for the corners of a polygon to

be used as a colour-cut to isolate the stars of the object’s Red Giant Branch. The colour-cut

should extend at least half a magnitude brightward of the estimated TRGB magnitude to

give a reasonable portion of pure background luminosity function (LF) for the algorithm to

fit, and it should span an equal colour range as a function of magnitude so as not to distort

the LF. The user must also provide a ‘background field’ from which the algorithm generates

a LF which it then fits with a polynomial to give the functional form of the background

component of the model LF. The same colour-cut is imposed on the background field as was

chosen for the object or ‘signal’ field. By calculating the number of stars in both the signal

and background fields and dividing by their respective areas, the expected ratio of the two

components in the signal field’s LF is determined and the components are scaled accordingly

in the model LF generated. An MCMC algorithm is then used to find the parameters of the

model which best fit the data and posterior distributions of these parameters are plotted. The

object’s distance posterior distribution can then be determined by sampling the distribution

in the tip magnitude along with those for the uncertainty in the absolute magnitude of the tip

and the extinction. This is done using another, purpose-written program, a version of which

can be found in Appendix C (‘Multi MCMC Result Plotter.f95’).

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 !−−−−−−−−−−−−−−−−G e n e r a l Program P a r a m e t e r s −−−−−−−−−−−−−−−−−

5 INTEGER : : i , j , k , l , eva l , idum = −9999 , i t , n i t

6 INTEGER : : ndata max , nsamples , binspm , nb ins , cmod nbins , ghw , mm, i o s
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7 PARAMETER ( nda ta max = 20000000 , nsamples = 100)

8 PARAMETER ( binspm = 100)

9 PARAMETER ( n b i n s = 8∗ binspm + 1)

10 PARAMETER ( n i t = 3000000)

11 INTEGER : : nda ta , n d a t a 2

12 INTEGER : : d1 , d2 , d3 , d4

13 REAL∗8 : : bl im , f l im , p i

14 PARAMETER ( b l im = 1 9 . 5 d0 )

15 PARAMETER ( f l i m = 2 3 . 5 d0 )

16 PARAMETER ( p i = ACOS( −1 . e0 ) )

17 INTEGER : : b l i m B i n s = INT (REAL( ( b l im − 1 8 . d0 ) ∗ binspm ) ) + 1

18 INTEGER : : f l i m B i n s = INT (REAL( ( f l i m − 1 8 . d0 ) ∗ binspm ) ) + 1

19 REAL∗8 : : randnum1 , randnum2 , randnum3 , r1 , r2 , spotR , hb = 0 .005 d0

20 REAL∗8 : : model ( nb ins , 2 ) , cmodel ( nb ins , 2 ) , magn i tude ( nda ta max )

21 REAL∗8 : : h i s t o f i n e ( nb ins , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

22 REAL∗8 : : data ( nda ta max ) , c u m u l a t i v e c m o d e l ( nb ins , 2 ) , f , f h o l d , bfm ( n b i n s )

23 REAL∗8 : : mag t ip , mag , m a g c u t o f f = 2 4 . e0 , a

24 REAL∗8 : : a r ea , a r e a 2

25 REAL∗8 : : m o d e l n o i s e ( nb ins , 2 ) , n o i s e ( n b i n s ) = 0 . d0

26 REAL∗8 : : k e r n e l ( nb ins , 2 ) = 0 . e0 , s c a l e , uplim , lowlim , gx

27 REAL∗8 : : temp ( nb ins , 2 ) = 0 . e0 , t

28 REAL∗8 : : logL , prob , LikeA , LikeB

29 REAL∗8 : : t i p ( nsamples ) , t i p o r d ( nsamples ) , maxlogL ( nsamples ) = −999999999999.

30 REAL∗8 : : t i p r e c , t i p o f f s e t , t i p p s i g m a , t ip ms igma , T o f f s e t k p c , Ts igma kpc

31 REAL∗8 : : f o f f s e t , t i p k p c , k p c p e r r , kpc merr , f s i gma , a o f f s e t , a s i g m a

32 REAL∗8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s

33 REAL∗8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , amins ig , a p l u s i g

34 REAL∗8 : : mcounts , p c o u n t s

35 REAL∗8 : : x1 ( n i t ) , x2 ( n i t ) , x3 ( n i t ) , p ( 3 ) , t i me ( n i t ) , r

36 REAL∗8 : : p o s t y 1 ( 1 0 ∗ ( nb ins −1)+1) = 0 . d0 , p o s t x 1 ( 1 0 ∗ ( nb ins −1)+1) , mlim

37 REAL∗8 : : d b l im , bg bl im , d f l i m , b g f l i m

38 REAL∗8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s )

39 REAL∗8 : : p o s t y 3 (2∗ n b i n s − 1) = 0 . d0 , p o s t x 3 (2∗ n b i n s − 1)

40 REAL∗8 : : PPD peak , Best Combo ( 6 )

41 CHARACTER : : a rgv ∗10 , f i e l d ∗30 , ch1 ∗9 , ch2 ∗9 , ch3 ∗9 , ch4 ∗9 , ch5 ∗9 , s t r i n g ∗60

42

43 !−−−−−−−−−−−−−−−−−For r e a d i n g i n PAndAS da ta −−−−−−−−−−−−−−−−

44 INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t

45 REAL∗4 : : xgt , ygt , g , dg , im , dim , x k i t , e t a t , FeH pho t t , d i f f t i p t , E BV t

46 REAL∗8 : : r a t , d e t

47 REAL∗4 : : dummy

48

49 REAL∗4 : : mag g ( nda ta max ) , mag i ( nda ta max ) , x k i ( nda ta max ) , e t a ( nda ta max )

50 REAL∗4 : : g m i n i ( nda ta max ) , m a g i p o l y ( nda ta max ) , g m i n i p o l y ( nda ta max )

51 REAL∗4 : : gmi

52

53 !−−A d d i t i o n a l p a r a m e t e r s f o r c a l c u l a t i n g background s t a t s −−−

54 INTEGER : : b g n d a t a , bg nda t a2 , b g n d a t a 3

55 REAL∗4 : : bg mag g ( nda ta max ) , bg mag i ( nda ta max ) , b g x k i ( nda ta max ) , b g e t a ( nda ta max )

56 REAL∗4 : : b g g m i n i ( nda ta max ) , b g m a g i p o l y ( nda ta max ) , b g g m i n i p o l y ( nda ta max )

57 REAL∗4 : : bg gmi

58 REAL∗8 : : b g d a t a ( nda ta max )

59

60 !−−SVD f i t t i n g o f background −−

61 INTEGER ma , mp , np , n d a t

62 PARAMETER ( n d a t = INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1)

63 PARAMETER ( np = 8)

64 PARAMETER (mp = n d a t )

65 PARAMETER ( ma = np )

66 REAL : : c h i s q , ay ( ma ) , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) , w( np ) , xa ( n d a t ) , ya ( n d a t )

67 REAL : : x t ( n d a t ) , y t ( n d a t )
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68 REAL∗8 : : b g h i s t o c o a r s e ( nda t , 2 )

69 EXTERNAL : : f u n c s

70

71 !−−A d d i t i o n a l p a r a m e t e r s f o r s p e c i f y i n g o b j e c t c o o r d i n a t e s −−

72 INTEGER : : Jop

73 REAL∗8 : : XIop , ETAop

74 REAL∗8 : : RAh , RAm, RAs , DecD , DecM , DecS , RA rad , Dec rad

75 REAL∗8 : : tpRAh , tpRAm , tpRAs , tpDecD , tpDecM , tpDecS , tpRA rad , t p D e c r a d

76

77 !−−−−−−−−−−−−−−−−−−−−−−When f i s known−−−−−−−−−−−−−−−−−−−−−−−

78 INTEGER : : b g s t a r s , s i g s t a r s

79 REAL∗8 : : b g a r e a , s i g a r e a

80 REAL∗8 : : known f , b g s t a r s i n s i g f i e l d

81 REAL∗8 : : s i g f i e l d r a d i u s = 0 . 1 d0 , b g l o w x i = −10. d0 , b g u p x i = 1 0 . d0

82

83 END MODULE Gl ob a l

84

85 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86

87 PROGRAM B a y e s i a n T R G B s a t e l l i t e ! Mas te r program

88 USE Gl ob a l

89 IMPLICIT NONE

90

91 WRITE ( f i e l d , ∗ ) ’ AndromedaI ’

92

93 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / r e s u l t s . d a t ’

94 OPEN( 3 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

95 WRITE ( 3 , ∗ ) ” F i e l d Name : ” , f i e l d

96

97 CALL p o s i t i o n F i n d e r !

98 !

99 CALL r andom seed !

100 !

101 CALL M31DataReader !

102 CALL SVDFi t t e r !

103 CALL NoiseMake !

104 !CALL N o i s e P l o t !CALL

105 CALL MCMC !

106 !CALL P o s t e r i o r P l o t !SUBROUTINES

107 !

108 CALL TipAndSigma !

109 CALL P o s t e r i o r P l o t !

110 CALL O t h e r P l o t s !

111 CALL D a t a H i s t !

112

113 WRITE ( 3 , ’ (3 a11 ) ’ ) ” t i p mag : ” , ” + s igma : ” , ” − s igma : ” !

114 WRITE ( 3 , ’ (3 F10 . 3 ) ’ ) t i p r e c , t i p p s i g m a , t i p m s i g m a !

115 WRITE ( 3 , ’ (2 a11 ) ’ ) ” f : ” , ” s igma : ” !

116 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) f r e c , f s i g m a ! Wr i t e r e s u l t s

117 WRITE ( 3 , ’ (2 a11 ) ’ ) ” a : ” , ” s igma : ” ! t o f i l e

118 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) a r e c , a s i g m a !

119 WRITE ( 3 , ∗ ) ” D i s t a n c e =” , REAL( t i p k p c ) , ” kpc ” !

120 WRITE ( 3 , ∗ ) ” E r r o r = +” , k p c p e r r , ” kpc −” , kpc merr , ” kpc ” !

121

122 END PROGRAM B a y e s i a n T R G B s a t e l l i t e

123

124 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

125

126 SUBROUTINE P o s i t i o n F i n d e r ! C o n v e r t s o b j e c t ’ s p o s i t i o n i n RA and Dec i n t o

127 USE Gl ob a l ! i t s p o s i t i o n on t h e M31 t a n g e n t p l a n e

128 IMPLICIT NONE
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129

130 RAh = 0 . d0 !

131 RAm = 4 5 . d0 !

132 RAs = 3 9 . 8 d0 ! O b j e c t c o o r d i n a t e s

133 DecD = 3 8 . d0 ! i n RA and Dec

134 DecM = 2 . d0 !

135 DecS = 2 8 . d0 !

136

137 tpRAh = 0 . d0 !

138 tpRAm = 4 2 . d0 !

139 tpRAs = 44 .33 d0 ! Tangen t p o i n t ( i . e . M31)

140 tpDecD = 4 1 . d0 ! c o o r d i n a t e s i n RA and Dec

141 tpDecM = 1 6 . d0 !

142 tpDecS = 7 . 5 d0 !

143

144 ! | | Per form

145 ! \ / C o n v e r s i o n

146 RA rad = ( p i / 1 8 0 . d0 ) ∗ (RAh ∗ 1 5 . d0 + RAm ∗ ( 1 5 . d0 / 6 0 . d0 ) + RAs ∗ ( 1 5 . d0 / 3 6 0 0 . d0 ) )

147

148 Dec rad = ( p i / 1 8 0 . d0 ) ∗ ( DecD + DecM / 6 0 . d0 + DecS / 3 6 0 0 . d0 )

149

150 tpRA rad = ( p i / 1 8 0 . d0 ) ∗ ( tpRAh ∗ 1 5 . d0 + tpRAm ∗ ( 1 5 . d0 / 6 0 . d0 ) + tpRAs ∗ ( 1 5 . d0 / 3 6 0 0 . d0 ) )

151

152 t p D e c r a d = ( p i / 1 8 0 . d0 ) ∗ ( tpDecD + tpDecM / 6 0 . d0 + tpDecS / 3 6 0 0 . d0 )

153

154 CALL sla DS2TP ( RA rad , Dec rad , tpRA rad , t pDec r ad , XIop , ETAop , Jop )

155 ! / \

156 ! | |

157

158 XIop = XIop ∗ ( 1 8 0 . d0 / p i ) ! t a n g e n t p l a n e c o o r d i n a t e s

159 ETAop = ETAop ∗ ( 1 8 0 . d0 / p i ) ! ( i . e . PAndAS x i and e t a )

160

161

162 WRITE ( 3 , ∗ ) ”C .O. F . Xi =” , XIop , ”C .O. F . E ta =” , ETAop

163

164 END SUBROUTINE P o s i t i o n F i n d e r

165

166 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

167 SUBROUTINE M31DataReader ! The f i e l d t o be a n a l y s e d i s s p e c i f i e d h e r e

168 USE Gl ob a l

169 IMPLICIT NONE

170

171 OPEN( 1 , f i l e = ’ . . / . . / . . / PANDAS / M31 unique con . d a t ’ , form= ’ u n f o r m a t t e d ’ , s t a t u s= ’ o l d ’ )

172

173 i = 0 ; j = 0

174

175 DO WHILE ( . t r u e . )

176 READ( 1 , IOSTAT= i o s ) r a t , d e t , iCCDt , xgt , ygt , & ! Read i n d a t a

177 g , dg , c l s g , im , dim , c l s i , i f i e l d t , x k i t , e t a t , & ! from b i n a r y

178 dummy , FeH pho t t , d i f f t i p t , E BV t , i a c c t ! f o r m a t d a t a f i l e

179

180 IF ( i o s . ne . 0 ) e x i t

181

182 g=g−3.793∗ E BV t ! E x t i n c t i o n

183 im=im−2.086∗ E BV t ! C o r r e c t i o n s

184 gmi = g − im

185

186 i f ( c l s i . ne .−1 . and . c l s i . ne . −2) c y c l e ! R e j e c t s

187 i f ( c l s g . ne .−1 . and . c l s g . ne . −2) c y c l e ! non s t a r s

188 i f ( 1 8 . 0 . l e . im . and . im . l e . 2 4 . ) then ! S p e c i f i e s

189 e l s e ! magn i tude
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190 c y c l e ! r a n g e t o

191 end i f ! i n c l u d e

192 i f ( −2 . 5 . l e . F e H p h o t t . and . F e H p h o t t . l e . −1 . 5 ) then !

193 e l s e ! S p e c i f i e s m e t a l l i c i t y

194 ! c y c l e ! r a n g e t o i n c l u d e

195 end i f !

196

197 spotR = SQRT ( ( ABS( e t a t − ( ETAop ) ) ) ∗∗2 + (ABS( x k i t − ( XIop ) ) ) ∗∗2 )

198

199 IF ( spotR . l t . s i g f i e l d r a d i u s ) THEN

200 i = i + 1

201

202 IF ( i . g t . nda ta max ) e x i t

203

204 mag g ( i )=g !

205 mag i ( i )=im !

206 g m i n i ( i )=gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o s i g n a l a r r a y s

207 x k i ( i )= x k i t !

208 e t a ( i )= e t a t !

209

210

211 ELSE IF ( x k i t . ge . b g l o w x i . and . x k i t . l e . b g u p x i ) THEN

212 IF ( x k i t . l t . −3.5 . o r . x k i t . g t . 2 . 5 ) THEN

213 IF ( e t a t . ge . ETAop − 0 . 2 d0 . and . e t a t . l e . ETAop + 0 . 2 d0 ) THEN

214 j = j + 1

215

216 IF ( j . g t . nda ta max ) e x i t

217

218 bg mag g ( j )=g !

219 bg mag i ( j )=im !

220 b g g m i n i ( j )=gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o bckgrnd a r r a y s

221 b g x k i ( j )= x k i t !

222 b g e t a ( j )= e t a t !

223 END IF

224 END IF

225 END IF

226

227 END DO

228

229 n d a t a = i ; b g n d a t a = j

230

231 s i g a r e a = p i ∗ ( s i g f i e l d r a d i u s ∗∗ 2 . d0 ) ! C a l c u l a t e a r e a o f s i g n a l f i e l d

232 b g a r e a = 0 . 4 d0 ∗ ( b g u p x i − b g l o w x i ) − 2 . 4 d0 ! C a l c u l a t e a r e a o f bacground f i e l d

233

234 DO i = 1 , n d a t a

235 data ( i ) = mag i ( i ) ! O b j e c t s t a r s b e f o r e c o l o u r c u t

236 END DO

237

238 DO j = 1 , b g n d a t a

239 b g d a t a ( j ) = bg mag i ( j ) ! Background s t a r s b e f o r e c o l o u r c u t

240 END DO

241

242 CALL M 3 1 D a t a P l o t t e r

243

244 END SUBROUTINE M31DataReader

245

246 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

247

248 SUBROUTINE M 3 1 D a t a P l o t t e r ! P l o t o b j e c t and backgound f i e l d s t a r p o s i t i o n s

249 USE Gl ob a l ! on t h e sky and CMDs f o r each o b j e c t ( g− i vs . i )

250 IMPLICIT NONE
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251

252 !−−−−−−−−−−−−−−−−−−−−−−S i g n a l −F i e l d −−−−−−−−−−−−−−−−−−−−−−−−−

253 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s i g f i e l d . ps /CPS ’

254 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

255

256 CALL pgenv (MAXVAL( xki , mask = x k i . ne . 0 . ) , MINVAL( xki , mask = x k i . ne . 0 . ) , &

257 MINVAL( e t a , mask = e t a . ne . 0 . ) , MAXVAL( e t a , mask = e t a . ne . 0 . ) , 1 , 0 )

258 CALL pgp t ( nda ta , xki , e t a , −1)

259 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

260

261 CALL pgend

262

263 !−−−−−−−−−−−−−−−−−−−−−−−S i g n a l −CMD−−−−−−−−−−−−−−−−−−−−−−−−−−

264 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s ig cmd . ps /CPS ’

265 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

266

267 CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , &

268 MAXVAL( mag i ) , MINVAL( mag i , mask = mag i . ne . 0 . ) , 0 , 0 )

269 CALL pgp t ( nda ta , g m i n i , mag i , −1)

270 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

271

272 CALL P o l y S e l e c t ! Apply c o l o u r c u t t o s i g n a l CMD

273

274 CALL pgend

275

276 !−−−−−−−−−−−−−−−−−−−−−−Bckgrnd−F i e l d −−−−−−−−−−−−−−−−−−−−−−−−−

277 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / b g f i e l d . ps /CPS ’

278 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

279

280 CALL pgenv (MAXVAL( bg xk i , mask = b g x k i . ne . 0 . ) , &

281 MINVAL( bg xk i , mask = b g x k i . ne . 0 . ) , &

282 MINVAL( b g e t a , mask = b g e t a . ne . 0 . ) , &

283 MAXVAL( b g e t a , mask = b g e t a . ne . 0 . ) , 1 , 0 )

284 CALL pgp t ( b g n d a t a , bg xk i , b g e t a , −1)

285 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

286

287 CALL pgend

288

289 !−−−−−−−−−−−−−−−−−−−−−−−Bckgrnd−CMD−−−−−−−−−−−−−−−−−−−−−−−−−−

290 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / bg cmd . ps /CPS ’

291 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

292

293 CALL pgenv (MINVAL( b g g m i n i , mask = b g g m i n i . ne . 0 . ) , &

294 MAXVAL( b g g m i n i ) , MAXVAL( bg mag i ) , &

295 MINVAL( bg mag i , mask = bg mag i . ne . 0 . ) , 0 , 0 )

296 CALL pgp t ( b g n d a t a , b g g m i n i , bg mag i , −1)

297 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

298

299 CALL P o l y S e l e c t

300

301 CALL pgend

302

303 !−−−−−−−−−−−−−−I n p u t s e l e c t e d d a t a i n t o ’ da t a ’−−−−−−−−−−−

304 ! | | Removes s t a r s from t h e s i g n a l and backround f i e l d s t h a t

305 ! \ / l i e o u t s i d e o f t h e chosen c o l o u r c u t

306 data = 0 . d0 ; x k i = 0 . d0 ; e t a = 0 . d0 ; d b l i m = 1 0 0 . d0 ; d f l i m = 0 . d0

307 DO i = 1 , n d a t a 2

308 data ( i ) = m a g i p o l y ( i )

309 IF ( data ( i ) . l t . d b l i m ) THEN

310 d b l i m = data ( i )

311 END IF
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312 IF ( data ( i ) . g t . d f l i m ) THEN

313 d f l i m = data ( i )

314 END IF

315 END DO

316

317 b g d a t a = 0 . d0 ; b g b l i m = 1 0 0 . d0 ; b g f l i m = 0 . d0

318 DO i = 1 , b g n d a t a 2

319 b g d a t a ( i ) = b g m a g i p o l y ( i )

320 IF ( b g d a t a ( i ) . l t . b g b l i m ) THEN

321 b g b l i m = b g d a t a ( i )

322 END IF

323 IF ( b g d a t a ( i ) . g t . b g f l i m ) THEN

324 b g f l i m = b g d a t a ( i )

325 END IF

326 END DO

327 ! / \

328 ! | |

329

330 !−−−S e t p a r a m e t e r s f o r c a l c u l a t i o n o f background h e i g h t −−−

331

332 s i g s t a r s = n d a t a 2 ! T o t a l number o f s t a r s i n s i g n a l f i e l d

333 b g s t a r s = b g n d a t a 3 ! Number o f s t a r s i n background f i e l d

334 b g s t a r s i n s i g f i e l d = REAL( b g s t a r s ) ∗ ( s i g a r e a / b g a r e a )

335 ! Number o f Background s t a r s i n s i g n a l f i e l d

336

337 WRITE ( 3 , ∗ ) ”Number o f d a t a p o i n t s : ” , s i g s t a r s

338 WRITE ( 3 , ∗ ) ”SNR : ” , (REAL( s i g s t a r s ) − b g s t a r s i n s i g f i e l d ) / b g s t a r s i n s i g f i e l d

339

340 !−−−−−−−−−Make c o a r s e d a t a h i s t o g r a m f o r bckgrnd−−−−−−−−−

341

342 DO i = 1 , INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1

343 b g h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( 0 . 2 5 ∗ binspm )

344 END DO

345

346 DO i = 1 , b g n d a t a 2

347 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 , 2 ) = &

348 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 , 2 ) + 1 . d0

349 END DO

350

351 ! | | F i l l empty b r i g h t edge o f a r r a y wi t h

352 ! \ / a r t i f i c i a l d a t a f o r improved f i t t i n g

353 DO i = 1 , INT ( ( b g b l i m − 1 8 . d0 ) ∗ REAL( binspm / 4 . d0 ) ) + 4

354 b g h i s t o c o a r s e ( i , 2 ) = b g h i s t o c o a r s e ( INT ( ( bg b l i m − 1 8 . d0 ) ∗ REAL( binspm / 4 . d0 ) ) + 4 , 2 )

355 END DO

356

357 END SUBROUTINE M 3 1 D a t a P l o t t e r

358

359 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

360

361 SUBROUTINE SVDFi t t e r ! F i t s a p o l y n o m i a l t o t h e background l u m i n o s i t y f u n c t i o n

362 USE Gl ob a l

363 IMPLICIT NONE

364

365 INTEGER : : ntmp

366

367 xa = b g h i s t o c o a r s e ( : , 1 )

368 ya = b g h i s t o c o a r s e ( : , 2 )

369 x t = xa

370 y t = ya

371 s i g = 1 . e0

372
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373

374 ! S h i f t t h e a r r a y i n s t e p s o f 1 u n t i l t h e f i r s t e l e m e n t does n o t c o n t a i n a z e r o

375

376 s h i f t l o o p : do

377 x t = c s h i f t ( x t , 1 )

378 y t = c s h i f t ( y t , 1 )

379 i f ( y t ( 1 ) > 0 . 1 ) e x i t s h i f t l o o p

380 end do s h i f t l o o p

381

382 ntmp = 0

383 c o u n t l o o p : do i = 1 , n d a t

384 i f ( y t ( i ) > 0 . 1 ) then

385 ntmp = ntmp + 1

386 e l s e

387 e x i t c o u n t l o o p

388 end i f

389 end do c o u n t l o o p

390

391 x t = x t − 2 1 .

392

393 CALL s v d f i t ( x t , y t , s i g , ntmp −1 , ay , ma , u , v , w, mp , np , c h i s q , f u n c s )

394

395 CALL BG DataHis t

396

397 END SUBROUTINE SVDFi t t e r

398

399 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

400

401 SUBROUTINE BG DataHis t ! P l o t s background l u m i n o s i t y f u n c t i o n t o g e t h e r wi th

402 USE Gl ob a l ! f i t t e d p o l y n o m i a l

403 IMPLICIT NONE

404

405 bfm = 0 . d0

406

407 DO i = 1 , n d a t

408 DO j = 1 , np

409 bfm ( i ) = bfm ( i ) + ay ( j ) ∗ ( xa ( i ) −21. ) ∗∗ ( j −1)

410 END DO

411 END DO

412

413

414 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r c o a r s e h i s t o g r a m

415 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / b c k g r d f i t . ps /CPS ’

416 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

417

418 CALL pgenv ( 1 9 . 5 , 2 3 . 5 , 0 . , 1 . 1∗MAXVAL(REAL( b g h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 )

419 CALL pgb in ( nda t , REAL( b g h i s t o c o a r s e ( : , 1 ) ) , REAL( b g h i s t o c o a r s e ( : , 2 ) ) , . t r u e . )

420 CALL p g s c i ( 2 )

421 CALL p g l i n e ( nda t , xa , REAL( bfm ) )

422 CALL p g s c i ( 1 )

423 CALL p g l a b ( ’ i \d0 \u ’ , ’ c o u n t s ’ , ’ ’ )

424

425 CALL pgend

426

427 END SUBROUTINE BG DataHis t

428

429 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

430

431 SUBROUTINE MCMC ! The m a s t e r Markov Chain MonteCar lo r o u t i n e

432 USE Gl ob a l ! c r e a t e s a new model a t each i t e r a t i o n and t h e n compares

433 IMPLICIT NONE ! t h e q u a l i t y o f t h e f i t t o t h e d a t a
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434 ! ∗∗∗ Most s u b r o u t i n e s a r e c a l l e d from ’MCMC’ ∗∗∗

435

436 REAL∗8 : : gasdev

437

438 known f = (REAL( b g s t a r s ) ∗ s i g a r e a ) / (REAL( s i g s t a r s ) ∗ b g a r e a )

439

440 x1 ( 1 ) = 20 .88 d0 ; x2 ( 1 ) = known f ; x3 ( 1 ) = 0 . 2 7 d0 ; t im e ( 1 ) = 1

441

442 m a g t i p = x1 ( 1 ) ; f = x2 ( 1 ) ; a = x3 ( 1 )

443 CALL ModelMake ! Make model and

444 CALL C o n v o l u t i o n ! e v a l u a t e goodness o f f i t

445 CALL L o g l i k e ! f o r i n i t i a l p a r a m e t e r c h o i c e s

446 LikeA = logL

447 LikeB = 0 . d0

448

449 x1 ( 2 ) = x1 ( 1 ) ; x2 ( 2 ) = x2 ( 1 ) ; x3 ( 2 ) = x3 ( 1 )

450

451 Best Combo ( 6 ) = −9. d99

452

453 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ /MCMC steps . d a t ’

454 OPEN( 2 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

455 WRITE( 2 , ∗ ) ” I t e r a t i o n m a g t i p f a LikeA LikeB ”

456 DO i t = 2 , n i t

457 t i me ( i t ) = i t

458 p ( 1 ) = x1 ( i t ) + 0 . 0 3 d0∗ gasdev ( idum ) ! G a u s s i a n w e i g h t e d s t e p s from i n i t i a l

459 p ( 2 ) = x2 ( i t ) ! + 0 . 0 2 d0∗ gasdev ( idum ) ! p a r a m e t e r s f o r t h e t i p magn i tude ( p ( 1 ) )

460 p ( 3 ) = x3 ( i t ) + 0 . 0 2 d0∗ gasdev ( idum ) ! n o i s e r a t i o ( p ( 2 ) ) and s l o p e ( p ( 3 ) )

461

462 IF ( p ( 1 ) . l t . b l im . o r . p ( 1 ) . g t . f l i m ) THEN !

463 r = 0 . d0 !

464 e l s e IF ( p ( 2 ) . l e . 0 . d0 . o r . p ( 2 ) . ge . 1 . d0 ) THEN ! R e s t r i c t i o n s on

465 r = 0 . d0 ! whe the r p r o p o s e d s t e p

466 e l s e IF ( p ( 3 ) . l e . 0 . d0 . o r . p ( 3 ) . ge . 2 . d0 ) THEN !

467 r = 0 . d0 !

468 e l s e !

469 m a g t i p = p ( 1 ) ; f = p ( 2 ) ; a = p ( 3 )

470 CALL ModelMake ! Make model and

471 CALL C o n v o l u t i o n ! e v a l u a t e t h e

472 CALL L o g l i k e ! goodness o f f i t

473 LikeB = logL

474 r = 10∗∗ ( LikeB−LikeA )

475 end IF

476 CALL random number ( randnum3 ) !

477 IF ( i t . l t . n i t ) THEN !

478 IF ( randnum3 . l e . r ) THEN !

479 x1 ( i t +1) = p ( 1 ) ; x2 ( i t +1) = p ( 2 ) ; x3 ( i t +1) = p ( 3 ) !

480 l i k e A = l i k e B ! Decide whe the r

481 ELSE ! t o t a k e s t e p

482 x1 ( i t +1) = x1 ( i t ) ; x2 ( i t +1) = x2 ( i t ) ; x3 ( i t +1) = x3 ( i t ) ! o r n o t

483 l i k e A = l i k e A !

484 END IF !

485 END IF !

486 p o s t y 1 ( INT ( ( x1 ( i t ) − 1 8 . d0 ) ∗10∗ binspm + 1) ) = & !

487 p o s t y 1 ( INT ( ( x1 ( i t ) − 1 8 . d0 ) ∗10∗ binspm + 1) ) + 1 . d0 !

488 p o s t y 2 ( INT ( x2 ( i t ) ∗ ( n b i n s − 1) ) + 1) = & ! G e n e r a t e p o s t e r i o r p l o t

489 p o s t y 2 ( INT ( x2 ( i t ) ∗ ( n b i n s − 1) ) + 1) + 1 . d0 ! f o r mag t ip , f and a

490 p o s t y 3 ( INT ( x3 ( i t ) ∗ ( n b i n s − 1) ) + 1) = & !

491 p o s t y 3 ( INT ( x3 ( i t ) ∗ ( n b i n s − 1) ) + 1) + 1 . d0 !

492

493 WRITE ( 2 , ’ (6 F16 . 5 ) ’ ) t ime ( i t ) , x1 ( i t ) , x2 ( i t ) , x3 ( i t ) , LikeA , LikeB

494
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495 IF ( LikeB . g t . Best Combo ( 6 ) ) THEN

496 Best Combo ( 1 ) = t i me ( i t ) ; Best Combo ( 2 ) = p ( 1 )

497 Best Combo ( 3 ) = p ( 2 ) ; Best Combo ( 4 ) = p ( 3 )

498 Best Combo ( 5 ) = LikeA ; Best Combo ( 6 ) = LikeB

499 END IF

500

501 END DO

502

503 WRITE ( 2 , ’ (6 F16 . 5 ) ’ ) Best Combo ( 1 ) , Best Combo ( 2 ) , Best Combo ( 3 ) , &

504 Best Combo ( 4 ) , Best Combo ( 5 ) , Best Combo ( 6 )

505

506 DO i = 1 , 10∗ ( nb ins −1)+1 !

507 p o s t x 1 ( i ) = 1 8 . d0 + (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) !

508 END DO !

509 !

510 DO i = 1 , n b i n s ! x−v a l u e s o f p o s t e r i o r

511 p o s t x 2 ( i ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) ! h i s t o g r a m s c r e a t e d above

512 END DO !

513 !

514 DO i = 1 , 2∗ n b i n s − 1 !

515 p o s t x 3 ( i ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) !

516 END DO !

517

518 END SUBROUTINE MCMC

519

520 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

521

522 SUBROUTINE P o s t e r i o r P l o t

523 USE Gl ob a l

524 IMPLICIT NONE

525

526 p o s t y 1 = p o s t y 1 / n i t ; p o s t y 2 = p o s t y 2 / n i t ; p o s t y 3 = p o s t y 3 / n i t

527

528 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s m a g t i p p o s t e r i o r p l o t

529 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m a g t i p p o s t p l o t . ps /CPS ’

530 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

531

532 CALL pgenv (REAL(MINVAL( x1 ) ) −0.01 , REAL(MAXVAL( x1 ) ) +0 .01 , &

533 0 . , 1 . 1∗REAL(MAXVAL( p o s t y 1 ) ) , 0 , 0 )

534

535 CALL pgb in ( 1 0 ∗ ( nb ins −1)+1 , REAL( p o s t x 1 ) , REAL( p o s t y 1 ) , . t r u e . )

536 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

537

538 CALL pgend

539

540 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s f and a p o s t e r i o r p l o t s

541 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f a n d a p o s t p l o t . ps /CPS ’

542 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

543

544 IF (MAXVAL( p o s t y 3 ) . ge . MAXVAL( p o s t y 2 ) ) THEN

545 CALL pgenv ( 0 . , 2 . , 0 . , 1 . 1∗REAL(MAXVAL( p o s t y 3 ) ) , 0 , 0 )

546 ELSE

547 CALL pgenv ( 0 . , 2 . , 0 . , 1 . 1∗REAL(MAXVAL( p o s t y 2 ) ) , 0 , 0 )

548 END IF

549

550 CALL p g s c i ( 2 )

551 CALL pgb in ( nb ins , REAL( p o s t x 2 ) , REAL( p o s t y 2 ) , . t r u e . )

552 CALL p g s c i ( 3 )

553 CALL pgb in (2∗ nb ins −1 , REAL( p o s t x 3 ) , REAL( p o s t y 3 ) , . t r u e . )

554 CALL p g s c i ( 1 )

555 CALL p g l a b ( ’ P roposed v a l u e ’ , ’ P r o b a b i l i t y : f ( r e d ) a ( g r e e n ) ’ , ’ ’ )
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556

557 CALL pgend

558

559 p o s t y 1 = p o s t y 1 ∗ n i t ; p o s t y 2 = p o s t y 2 ∗ n i t ; p o s t y 3 = p o s t y 3 ∗ n i t

560

561 END SUBROUTINE P o s t e r i o r P l o t

562

563 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

564

565 SUBROUTINE O t h e r P l o t s

566 USE Gl ob a l

567 IMPLICIT NONE

568

569 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−V a r i a t i o n o f ’ mag t ip ’ w i t h i t e r a t i o n #

570 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m a g t i p v a l v s i t . ps /CPS ’

571 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

572

573 CALL pgenv ( 0 . , REAL( n i t ) , REAL(MINVAL( x1 ) ) −0.01 , REAL(MAXVAL( x1 ) ) +0 .01 , 0 , 0 )

574 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x1 ) )

575 CALL p g l a b ( ’ I t e r a t i o n number ’ , ’ P roposed i \d0 \u t i p magn i tude ’ , ’ ’ )

576

577 CALL pgend

578

579 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−V a r i a t i o n o f ’ f ’ and ’ a ’ w i th i t e r a t i o n #

580 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f a n d a v a l v s i t . ps /CPS ’

581 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

582

583 CALL pgenv ( 0 . , REAL( n i t ) , 0 . , 2 . , 0 , 0 )

584 CALL p g s c i ( 2 )

585 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x2 ) )

586 CALL p g s c i ( 3 )

587 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x3 ) )

588 CALL p g s c i ( 1 )

589 CALL p g l a b ( ’ I t e r a t i o n number ’ , ’ P roposed v a l u e : f ( r e d ) a ( g r e e n ) ’ , ’ ’ )

590

591 CALL pgend

592

593 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ f ’ f o r each v a l u e o f ’ mag t ip ’

594 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f v s m a g t i p . ps /CPS ’

595 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

596

597 CALL pgenv ( 0 . 9 9 ∗REAL(MINVAL( x1 ) ) , 1 . 0 1∗REAL(MAXVAL( x1 ) ) , 0 . 9∗REAL(MINVAL( x2 ) ) , 1 . 1∗REAL(MAXVAL( x2 ) ) , 0 , 0 )

598 CALL p g p o i n t ( n i t , REAL( x1 ) , REAL( x2 ) , −1)

599 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P roposed v a l u e o f f ’ , ’ ’ )

600

601 CALL pgend

602

603 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ a ’ f o r each v a l u e o f ’ mag t ip ’

604 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / a v s m a g t i p . ps /CPS ’

605 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

606 CALL pgenv (REAL(MINVAL( x1 ) ) −0.01 , REAL(MAXVAL( x1 ) ) +0 .01 , REAL(MINVAL( x3 ) ) −0.01 , REAL(MAXVAL( x3 ) ) +0 .01 , 0 , 0 )

607 CALL pgslw ( 3 )

608 CALL p g p o i n t ( n i t , REAL( x1 ) , REAL( x3 ) , −1)

609 CALL pgslw ( 1 )

610 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P roposed v a l u e o f a ’ , ’ ’ )

611

612 CALL pgend

613

614 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ f ’ f o r each v a l u e o f ’ a ’

615 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / a v s f . ps /CPS ’

616 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )
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617

618 CALL pgenv ( 0 . 9 ∗REAL(MINVAL( x2 ) ) , 1 . 1∗REAL(MAXVAL( x2 ) ) , 0 . 9∗REAL(MINVAL( x3 ) ) , 1 . 1∗REAL(MAXVAL( x3 ) ) , 0 , 0 )

619 CALL p g p o i n t ( n i t , REAL( x2 ) , REAL( x3 ) , −1)

620 CALL p g l a b ( ’ P roposed v a l u e o f f ’ , ’ P roposed v a l u e o f a ’ , ’ ’ )

621

622 CALL pgend

623

624 END SUBROUTINE O t h e r P l o t s

625

626 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

627

628 SUBROUTINE NoiseMake ! G e n e r a t e s a p o l y n o m i a l o f d e g r e e 7 t h a t f o l l o w s t h e

629 USE Gl ob a l ! f u n c t i o n a l form of t h e GSS background LF . The p o l y n o m i a l

630 IMPLICIT NONE ! c o e f f i c i e n t s were d e r i v e d i n ’ B ackg roundPo lyF i t ’ u s i n g

631 ! ’ s v d f i t ’ from Numer ica l R e c i p e s .

632 a r e a 2 = 0 . d0

633

634 DO i = 1 , 8 ∗ binspm + 1

635 m o d e l n o i s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( binspm )

636 m o d e l n o i s e ( i , 2 ) = 0 . d0

637 DO j = 1 , np ! S e t background c o u n t s

638 m o d e l n o i s e ( i , 2 ) = m o d e l n o i s e ( i , 2 ) + ay ( j ) ∗ ( m o d e l n o i s e ( i , 1 ) − 2 1 . d0 ) ∗∗ ( j − 1)

639 END DO

640 IF ( m o d e l n o i s e ( i , 2 ) . l t . 0 . d0 ) THEN !

641 m o d e l n o i s e ( i , 2 ) = 0 . d0 ! I n s u r e no n e g a t i v e c o u n t s

642 END IF !

643 IF ( i . ge . ( bl im −18. d0 ) ∗ binspm + 1 . and . i . l e . f l i m B i n s ) THEN

644 a r e a 2 = a r e a 2 + m o d e l n o i s e ( i , 2 ) ! Used f o r n o r m a l i z a t i o n i n ’ ModelMake ’

645 END IF

646 END DO

647

648 END SUBROUTINE NoiseMake

649

650 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

651 SUBROUTINE N o i s e P l o t ! P l o t s t h e u n s c a l e d form of t h e background LF

652 USE Gl ob a l

653 IMPLICIT NONE

654

655 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

656

657 CALL pgenv ( 1 8 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1∗REAL(MAXVAL( m o d e l n o i s e ( : , 2 ) , mask = m o d e l n o i s e ( : , 1 ) . l e . 2 3 . 5 ) ) , 0 , 0 )

658 CALL pgb in ( n b i n s − INT ( 2 . 5 ∗ binspm ) , REAL( m o d e l n o i s e ( : , 1 ) ) , REAL( m o d e l n o i s e ( : , 2 ) ) , . t r u e . )

659 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

660

661 CALL pgend

662

663 END SUBROUTINE N o i s e P l o t

664

665 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

666

667 SUBROUTINE ModelMake ! I n i t i a l Model ( i . e . model b e f o r e c o n v o l u t i o n )

668 USE Gl ob a l

669 IMPLICIT NONE

670

671 REAL∗8 : : f u n c i

672

673 n o i s e = m o d e l n o i s e ( : , 2 ) ∗ ( f / a r e a 2 ) ! C a l c u l a t e background h e i g h t

674 a r e a = 0 . d0

675 DO i = 1 , n b i n s

676 model ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( binspm )

677 IF ( model ( i , 1 ) + hb . g t . m a g t i p . and . model ( i , 1 ) − hb . l e . m a g t i p ) THEN
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678 model ( i , 2 ) = ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) + hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) ) − &

679 ( 1 . d0 / ( a ∗LOG( 1 0 . ) ) ) ! Model v a l u e a t t i p

680 a r e a = a r e a + model ( i , 2 ) ! Used t o c a l c u l a t e n o i s e i n m a s t e r program

681 ELSE IF ( model ( i , 1 ) . g t . m a g t i p ) THEN ! Model v a l u e f a i n t w a r d o f t i p

682 model ( i , 2 ) = ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) + hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) ) − &

683 ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) − hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) )

684 IF ( i . ge . ( bl im −18. d0 ) ∗ binspm + 1 . and . i . l e . f l i m B i n s ) THEN

685 a r e a = a r e a + model ( i , 2 ) ! Used t o c a l c u l a t e n o i s e i n m a s t e r program

686 ELSE

687 c y c l e ;

688 END IF

689 ELSE

690 model ( i , 2 ) = 0 . d0 ! Model v a l u e b r i g h t w a r d o f t i p

691 END IF

692 END DO

693

694 model ( : , 2 ) = ( model ( : , 2 ) / a r e a ) ∗ ( 1 . d0− f ) ! Normal i ze

695 model ( : , 2 ) = model ( : , 2 ) + n o i s e ! Add n o i s e

696

697 END SUBROUTINE ModelMake

698

699 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

700

701 SUBROUTINE M o d e l P r i n t ! P r i n t s model b e f o r e c o n v o l u t i o n

702 USE Gl ob a l

703 IMPLICIT NONE

704

705 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

706

707 CALL pgenv (REAL( m a g t i p ) − 3 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1∗REAL( model ( INT ( 5 . 5 ∗ binspm ) , 2 ) ) , 0 , 0 )

708 CALL pgb in ( n b i n s − INT ( 2 . 5 ∗ binspm ) , REAL( model ( : , 1 ) ) , REAL( model ( : , 2 ) ) , . t r u e . )

709 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

710

711 CALL pgend

712

713 END SUBROUTINE M o d e l P r i n t

714

715 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

716

717 SUBROUTINE G a u s s i a n K e r n e l ! G e n e r a t e s a G a u s s i a n k e r n e l ’ k e r n e l ’ w i t h

718 USE Gl ob a l !HWHM ( sigma ) c h a n g i n g wi th magn i tude i n

719 IMPLICIT NONE ! a c c o r d a n c e wi th f u n c i . Ke r ne l i s d e f i n e d from

720 ! gx = −5∗ s igma t o gx = +5∗ s igma .

721 REAL∗8 : : f u n c i

722

723 temp = 0 . d0 ; k e r n e l = 0 . d0

724 gx=0.

725 j=0

726 DO WHILE ( gx . l e . 5 . e0 ∗ f u n c i ( t ) ) !

727 j= j+1 !

728 gx = 0 . e0 + ( j −1. e0 ) / binspm ! C r e a t e s h a l f o f

729 temp ( j , 1 ) = gx ! t h e k e r n e l ( ’ temp ’ )

730 temp ( j , 2 ) = exp ( − ( ( gx ) ∗ ∗2 . e0 ) / ( 2 . e0 ∗ ( f u n c i ( t ) ∗ ∗2 . e0 ) ) ) !

731 END DO !

732

733 ghw = j − 1 . d0 ! The f i r s t non−z e r o b i n o f ’ cmodel ’ w i l l be t h e f i r s t

734 ! non−z e r o b i n o f ’ model ’ minus ghw

735

736 DO k = 1 , j

737 k e r n e l ( k , : ) = temp ( j − ( k−1) , : ) ! C r e a t e ’ k e r n e l ’ by c o n c a t e n a t i n g

738 k e r n e l ( j+k , 2 ) = temp ( k+1 ,2) ! ’ temp ’ wi t h a r e f l e c t e d v e r s i o n
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739 k e r n e l ( j+k , 1 ) = −temp ( k+1 ,1) ! o f i t s e l f

740 END DO

741 ! Note : temp (2∗ j , 2 ) = 0 . d0 ; temp (2∗ j , 1 ) = −0. d0

742

743 k e r n e l ( : , 2 ) = k e r n e l ( : , 2 ) /SUM( k e r n e l ( : , 2 ) )

744

745 END SUBROUTINE G a u s s i a n K e r n e l

746

747 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

748

749 SUBROUTINE G a u s s i a n K e r n e l P r i n t ! P r i n t s G a u s s i a n K e r n e l a t g i v e n magn i tude

750 USE Gl ob a l

751 IMPLICIT NONE

752

753 REAL∗8 : : f u n c i

754

755 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

756

757 CALL pgenv ( −5.5 ∗ REAL( f u n c i ( t ) ) , 5 . 5 ∗ REAL( f u n c i ( t ) ) , 0 . , 1 . 1∗MAXVAL(REAL( k e r n e l ( : , 2 ) ) ) , 0 , 0 )

758 CALL pgb in (2∗ghw+1 , REAL( k e r n e l ( : , 1 ) ) , REAL( k e r n e l ( : , 2 ) ) , . t r u e . )

759 CALL p g l a b ( ’ Magni tude o f f s e t ’ , ’ S t r e n g t h ’ , ’ ’ )

760

761 CALL pgend

762

763 END SUBROUTINE G a u s s i a n K e r n e l P r i n t

764

765 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

766

767 SUBROUTINE C o n v o l u t i o n ! Convolves i n i t i a l model w i t h a G a u s s i a n k e r n e l

768 Use Gl ob a l ! whose wid th i s e q u a l t o t h e p h o t o m e t r i c e r r o r

769 IMPLICIT NONE ! and hence expands wi th i n c r e a s i n g magn i tude

770

771 cmodel = 0 . d0

772

773 DO i = 1 , n b i n s

774 t = 1 8 . d0 + ( i − 1 . d0 ) /REAL( binspm ) ! Conve r t b i n number t o magn i tude

775 cmodel ( i , 1 ) = t ! Th i s t h e n d e r i v e s t h e c u r r e n t

776

777 CALL G a u s s i a n K e r n e l ! wid th o f t h e G a u s s i a n k e r n e l

778 DO j = −ghw , ghw , +1 !

779 IF ( i . g t . ghw . and . i . l t . n b i n s − ghw ) THEN ! Convolve

780 cmodel ( i+ j , 2 ) = cmodel ( i+ j , 2 ) + k e r n e l ( ghw+ j +1 ,2) ∗model ( i , 2 ) ! model wi th

781 END IF ! g a u s s i a n

782 END DO !

783 END DO

784

785 DO i = nb ins , f l i m B i n s +1 , −1 ! S e t t h e f a i n t l i m i t

786 cmodel ( i , 2 ) = 0 . d0 ! o f t h e f i n a l convo lved

787 END DO ! model a t f l i m .

788 cmod nbins = f l i m B i n s

789

790 ! Normal i ze t h e convo lved model

791 cmodel ( : , 2 ) = cmodel ( : , 2 ) /SUM( cmodel ( : , 2 ) , mask = cmodel ( : , 1 ) . ge . b l im )

792

793 ! Note t h e above s t e p i s ve ry i m p o r t a n t − n o r m a l i z a t i o n must on ly be ove r t h e

794 ! r a n g e o f m a g n i t u d e s i n t h e ’ da t a ’ a r r a y − i . e . down t o mlim −> n o t r i g h t t h e

795 ! way t o 18 u n l e s s mlim = 1 8 . Th i s was a d i f f i c u l t bug t o f i n d !

796

797 END SUBROUTINE C o n v o l u t i o n

798

799 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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800

801 SUBROUTINE C o n v o l u t i o n P r i n t ! P r i n t s convo lved v e r s i o n o f model

802 USE Gl ob a l

803 IMPLICIT NONE

804

805 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

806

807 CALL pgenv (REAL( m a g t i p ) − 0 . 5 , 2 5 . , 0 . , 1 . 1∗MAXVAL(REAL( cmodel ( : , 2 ) ) ) , 0 , 0 )

808 CALL pgb in ( nb ins , REAL( cmodel ( : , 1 ) ) , REAL( cmodel ( : , 2 ) ) , . t r u e . )

809 CALL p g l a b ( ’ i \d0 \u ’ , ’ R e l a t i v e p r o b a b i l i t y ’ , ’ ’ )

810

811 CALL pgend

812

813 END SUBROUTINE C o n v o l u t i o n P r i n t

814

815 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

816

817 SUBROUTINE D a t a H i s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i n ne d h i s t o g r a m s and

818 USE Gl ob a l ! o v e r l a y s them wi th t h e b e s t f i t model d e t e r m i n e d by

819 IMPLICIT NONE ! t h e MCMC

820

821 REAL∗8 : : s c a l e d f r e c

822

823 h i s t o f i n e ( : , 1 ) = model ( : , 1 )

824 DO i = 1 , INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1

825 h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( 0 . 2 5 ∗ binspm )

826 END DO

827

828 DO i = 1 , n d a t a 2 !

829 h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) = & ! G e n e r a t e s

830 h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) + 1 . d0 !

831 h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) = & ! H i s t o g r a m s

832 h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) + 1 . d0 !

833 END DO !

834

835 h i s t o c o a r s e ( INT ( 5 . 5 ∗REAL( binspm / 4 . d0 ) ) + 1 , 2 ) = & ! See p a r a g r a p h

836 h i s t o c o a r s e ( INT ( 5 . 5 ∗REAL( binspm / 4 . d0 ) ) + 1 , 2 ) ∗ 2 . d0 ! below

837

838 ! For g r a p h i n g pu r pose s , t h e l a s t b i n o f t h e c o a r s e h i s t o g r a m i s doub led s i n c e

839 ! t h i s b i n l i e s h a l f o u t s i d e t h e r a n g e o f i n t e r e s t and so i s d e p l e t e d by

840 ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g on ly and has no b e a r i n g on t h e

841 ! d e t e r m i n e d b e s t f i t model .

842

843 ! | | P l o t Bes t F i t Model

844 ! \ / ove r h i s t o g r a m

845 m a g t i p = t i p r e c ; f = f r e c ; a = a r e c !

846 CALL ModelMake ! G e n e r a t e b e s t f i t f u n c t i o n

847 CALL C o n v o l u t i o n !

848

849 bfm = cmodel ( : , 2 ) ! bfm = b e s t f i t model

850 bfm = bfm ∗ (SUM( h i s t o f i n e ( : , 2 ) ) /SUM( bfm ) ) ! S c a l e bfm t o match h i s t o g r a m

851

852 !−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r f i n e h i s t o g r a m

853 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a f i n e . ps /CPS ’

854 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

855

856 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( h i s t o f i n e ( : , 2 ) ) ) , 0 , 0 )

857 CALL pgb in ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( h i s t o f i n e ( : , 2 ) ) , . f a l s e . )

858 CALL p g s c i ( 2 )

859 CALL pgslw ( 5 )

860 CALL p g l i n e ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )
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861 CALL p g s c i ( 1 )

862 CALL pgslw ( 1 )

863 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

864

865 CALL pgend

866

867 bfm = bfm ∗ 4 . d0 ! S c a l e bfm t o match c o a r s e h i s t o g r a m

868

869 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r c o a r s e h i s t o g r a m

870 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a c o a r s e . ps /CPS ’

871 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

872

873 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 )

874 CALL pgb in ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , REAL( h i s t o c o a r s e ( : , 1 ) ) , &

875 REAL( h i s t o c o a r s e ( : , 2 ) ) , . f a l s e . )

876 CALL p g s c i ( 2 )

877 CALL p g l i n e ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )

878 CALL p g s c i ( 1 )

879 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

880

881 CALL pgend

882

883 END SUBROUTINE D a t a H i s t

884

885 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

886

887 SUBROUTINE LogLike ! G e n e r a t e s t h e l o g of t h e l i k e l i h o o d fn

888 USE Gl ob a l ! − g i v e s t h e l i k e l i h o o d of t h e t i p b e i n g a t

889 IMPLICIT NONE ! each magn i tude g i v e n t h e d a t a s e t

890

891 logL = 0 . d0

892 DO i = 1 , n d a t a 2

893 prob = ( data ( i ) − 1 8 . d0 ) ∗ binspm + 1 . d0

894 prob = cmodel ( INT ( prob ) , 2 )

895 logL = logL + LOG10( prob )

896 END DO

897

898 END SUBROUTINE LogLike

899

900 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

901

902 SUBROUTINE TipAndSigma ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and

903 USE Gl ob a l ! t h e i r a s s o c i a t e d 1 sigma e r r o r s from t h e

904 IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s .

905

906 PPD peak = 0 . d0 !

907 DO i = 1 , 10∗ ( nb ins −1)+1 !

908 IF ( p o s t y 1 ( i ) . g t . PPD peak ) THEN !

909 PPD peak = p o s t y 1 ( i ) ! F ind b e s t f i t TRGB v a l u e

910 t i p r e c = p o s t x 1 ( i ) !

911 END IF !

912 END DO !

913

914 PPD peak = 0 . d0 !

915 DO i = 1 , n b i n s !

916 IF ( p o s t y 2 ( i ) . g t . PPD peak ) THEN !

917 PPD peak = p o s t y 2 ( i ) ! F ind b e s t f i t f v a l u e

918 f r e c = p o s t x 2 ( i ) !

919 END IF !

920 END DO !

921
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922 PPD peak = 0 . d0 !

923 DO i = 1 , 2∗ n b i n s − 1 !

924 IF ( p o s t y 3 ( i ) . g t . PPD peak ) THEN !

925 PPD peak = p o s t y 3 ( i ) ! F ind b e s t f i t a v a l u e

926 a r e c = p o s t x 3 ( i ) !

927 END IF !

928 END DO !

929

930 t i p k p c = ( 1 0 0 . d0 ∗ ∗ ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from

931 ! t i p magni tude i n kpc

932

933 t i p c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

934 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 1 , −1 !

935 mcounts = mcounts + p o s t y 1 ( i ) !

936 END DO !

937 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 1 , −1 !

938 t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s n e g a t i v e one sigma

939 IF ( t i p c o u n t s . ge . 0 . 6 82∗mcounts ) THEN ! e r r o r i n m a g n i t u d e s

940 t i p m s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

941 t i p m s i g m a = t i p r e c − t i p m s i g m a !

942 e x i t !

943 END IF !

944 END DO !

945

946 t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

947 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 10∗ ( nb ins −1)+1 !

948 p c o u n t s = p c o u n t s + p o s t y 1 ( i ) !

949 END DO !

950 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 10∗ ( nb ins −1)+1 !

951 t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s p o s i t i v e one sigma

952 IF ( t i p c o u n t s . ge . 0 . 6 82∗ p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s

953 t i p p s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

954 t i p p s i g m a = t i p p s i g m a − t i p r e c !

955 e x i t !

956 END IF !

957 END DO !

958

959

960 d1 = 0 ; d2 = 0 ; d3 = 0 ; d4 = 0

961 f c o u n t s = 0 . d0 ; a c o u n t s = 0 . d0 !

962 DO i = 1 , n b i n s !

963 f c o u n t s = f c o u n t s + p o s t y 2 ( i ) !

964 a c o u n t s = a c o u n t s + p o s t y 3 ( i ) !

965 IF ( f c o u n t s . ge . 0 .1 59∗ n i t . and . d1 . eq . 0 ) THEN !

966 f m i n s i g = p o s t x 2 ( i ) !

967 d1 = 1 !

968 END IF !

969 IF ( f c o u n t s . ge . 0 .8 41∗ n i t . and . d2 . eq . 0 ) THEN ! For f and a :

970 f p l u s i g = p o s t x 2 ( i ) ! F i n d s uppe r and lower

971 d2 = 1 ! bounds f o r p o s t e r i o r

972 END IF ! d i s t r i b u t i o n w i t h i n one

973 IF ( a c o u n t s . ge . 0 .1 59∗ n i t . and . d3 . eq . 0 ) THEN ! s igma of maximum .

974 a m i n s i g = p o s t x 3 ( i ) !

975 d3 = 1 !

976 END IF !

977 IF ( a c o u n t s . ge . 0 .8 41∗ n i t . and . d4 . eq . 0 ) THEN !

978 a p l u s i g = p o s t x 3 ( i ) !

979 d4 = 1 !

980 END IF !

981 END DO !

982
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983

984 f s i g m a = 0 . 5 d0 ∗ ( f p l u s i g − f m i n s i g ) ! Hence c a l c u l a t e s 1 sigma e r r o r

985 a s i g m a = 0 . 5 d0 ∗ ( a p l u s i g − a m i n s i g ) ! f o r f and a

986

987 kpc mer r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p m s i g m a / 1 0 . d0 ) − t i p k p c ! minus t i p e r r o r i n kpc

988 k p c p e r r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p p s i g m a / 1 0 . d0 ) − t i p k p c ! p l u s t i p e r r o r i n kpc

989

990 END SUBROUTINE TipAndSigma

991

992 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

993

994 FUNCTION f u n c i (m) ! Th i s f u n c t i o n f e e d s t h e p h o t o m e t r i c e r r o r a s a f u n c t i o n

995 USE Gl ob a l ! o f magn i tude t o t h e ’ Ga u s s i a n K e r ne l ’ s u b r o u t i n e .

996 IMPLICIT NONE

997

998 REAL∗8 : : f u n c i , m, c1 , c2 , c3

999

1000 c1 = 0 .001

1001 c3 = l o g ( 0 . 2 4 ) − l o g ( 0 . 1 1 )

1002 c2 = c3 ∗2 5 . 0 − l o g ( 0 . 2 4 )

1003

1004 f u n c i = c1 + exp ( c3 ∗m − c2 )

1005

1006 END FUNCTION

1007

1008 !−−−−−−−−−−−−−−−−−−−−−−−−−−Rodrigo ’ s po ly s e l e c t i o n t o o l −−−−−−−−−−−−−−−−−−−−−−−−

1009

1010 SUBROUTINE P o l y S e l e c t ! Used f o r s e l e c t i o n o f a p p r o p r i a t e c o l o u r c u t

1011 USE Gl ob a l ! i n c o l o u r −magni tude s p a c e

1012 IMPLICIT NONE

1013

1014

1015 i n t e g e r MAXPT, i p o l

1016 i n t e g e r NPT ggr , N P T s p a t i a l

1017 parameter (MAXPT=100)

1018 r e a l ∗4 XCOL ggr (MAXPT) ,YMAG ggr (MAXPT)

1019 r e a l ∗4 X s p a t i a l (MAXPT) , Y s p a t i a l (MAXPT)

1020 l o g i c a l r e f i n e C M D s e l g g r , r e f i n e s p a t i a l s e l

1021 ! p a r a m e t e r ( r e f i n e C M D s e l g g r = . t r u e . )

1022 parameter ( r e f i n e C M D s e l g g r = . f a l s e . )

1023 ! p a r a m e t e r ( r e f i n e s p a t i a l s e l = . t r u e . )

1024 parameter ( r e f i n e s p a t i a l s e l = . f a l s e . )

1025

1026 l o g i c a l i n p o l y

1027 e x t e r n a l i n p o l y

1028

1029 n p t g g r=0

1030 i f ( r e f i n e C M D s e l g g r ) then

1031 c a l l p g s l s ( 2 )

1032 c a l l pgmove ( 0 . 2 , 2 6 . 0 )

1033 c a l l pgdraw ( 0 . 2 , 1 5 . 0 )

1034 c a l l p g s l s ( 1 )

1035 c a l l p g l c u r (MAXPT, NPT ggr , XCOL ggr , YMAG ggr )

1036 open ( 2 , f i l e = ’ANDI .CMD’ , s t a t u s= ’ unknown ’ )

1037 w r i t e ( 2 , ∗ ) NPT ggr

1038 do i p o l =1 , NPT ggr

1039 w r i t e ( 2 , ∗ ) XCOL ggr ( i p o l ) ,YMAG ggr ( i p o l )

1040 end do

1041 c l o s e ( 2 )

1042 c a l l p g s c i ( 1 )

1043 c a l l pgadvance



160 Chapter Three Programs

1044 e l s e

1045 open ( 2 , f i l e = ’ANDI .CMD’ , s t a t u s= ’ o l d ’ )

1046 read ( 2 , ∗ ) NPT ggr

1047 do i p o l =1 , NPT ggr

1048 read ( 2 , ∗ ) XCOL ggr ( i p o l ) ,YMAG ggr ( i p o l )

1049 end do

1050 c l o s e ( 2 )

1051 c a l l p g s c i ( 2 )

1052 c a l l pgslw ( 5 )

1053 c a l l p g l i n e ( NPT ggr , XCOL ggr , YMAG ggr )

1054 c a l l p g s c i ( 1 )

1055 c a l l pgslw ( 1 )

1056 end i f

1057

1058 !−−−−−−−−−−−−−−−−−−Make c o l o u r c u t t o S i g n a l F i e l d −−−−−−−−−−−−−−−−−−

1059 j=0 !

1060 DO i = 1 , n d a t a ! Makes new

1061 IF ( i n p o l y ( g m i n i ( i ) , mag i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN! a r r a y s f o r

1062 IF ( mag i ( i ) . l e . f l i m .AND. mag i ( i ) . ge . b l im ) THEN ! i and g− i

1063 j = j+1 ! c o n t a i n i n g

1064 m a g i p o l y ( j ) = mag i ( i ) ! on ly s t a r s

1065 g m i n i p o l y ( j ) = g m i n i ( i ) ! w i t h i n

1066 END IF ! po lygon

1067 END IF !

1068 END DO !

1069

1070 n d a t a 2 = j !New number o f s t a r s i n d a t a s e t a f t e r c o l o u r c u t

1071

1072 !−−−−−−−−−−−−−−−−−−Make c o l o u r c u t t o Bckgrnd F i e l d −−−−−−−−−−−−−−−−−

1073 j=0 ; k = 0 !

1074 DO i = 1 , b g n d a t a !

1075 IF ( i n p o l y ( b g g m i n i ( i ) , bg mag i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN !

1076 IF ( bg mag i ( i ) . l e . 2 4 . d0 ) THEN ! Makes new

1077 IF ( bg mag i ( i ) . l e . f l i m .AND. bg mag i ( i ) . ge . b l im ) THEN ! a r r a y s f o r

1078 k = k+1 ! i and g− i

1079 END IF ! c o n t a i n i n g

1080 j = j+1 ! on ly s t a r s

1081 b g m a g i p o l y ( j ) = bg mag i ( i ) ! w i t h i n

1082 b g g m i n i p o l y ( j ) = b g g m i n i ( i ) ! po lygon

1083 END IF !

1084 END IF !

1085 END DO !

1086

1087 b g n d a t a 2 = j ; b g n d a t a 3 = k ! S t a r s i n bckgrnd ; S t a r s i n bckgrnd between bl im & f l i m

1088

1089 END SUBROUTINE P o l y S e l e c t

1090

1091 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1092

1093 l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) ! Used by P o l y S e l e c t s u b r o u t i n e

1094 i m p l i c i t none

1095

1096 r e a l ∗4 x , y

1097 i n t e g e r np

1098 r e a l ∗4 xp ( np ) , yp ( np )

1099 r e a l ∗4 t i n y , xs , xe , ys , ye

1100 parameter ( t i n y =1. e−5)

1101

1102 r e a l ∗4 simag , f imag

1103 e x t e r n a l f imag

1104 i n t e g e r j
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1105

1106 simag =0.0

1107 do j =1 , np

1108 i f ( j . l t . np ) then

1109 xe=xp ( j +1)

1110 xs=xp ( j )

1111 ye=yp ( j +1)

1112 ys=yp ( j )

1113 e l s e

1114 xe=xp ( 1 )

1115 xs=xp ( j )

1116 ye=yp ( 1 )

1117 ys=yp ( j )

1118 end i f

1119 simag=s imag+ f imag ( x , xs , xe , y , ys , ye )

1120 end do

1121 i f ( abs ( s imag ) . g t . t i n y ) then

1122 i n p o l y = . t r u e .

1123 e l s e

1124 i n p o l y = . f a l s e .

1125 end i f

1126

1127 end

1128

1129 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1130

1131 r e a l ∗4 f u n c t i o n f imag ( x0 , xs , xe , y0 , ys , ye ) ! Used by P o l y S e l e c t s u b r o u t i n e

1132 i m p l i c i t none

1133

1134 r e a l ∗4 x0 , xs , xe , y0 , ys , ye

1135 r e a l ∗4 top , b o t

1136

1137 t o p= −(xe−x0 ) ∗ ( ys−y0 ) + ( ye−y0 ) ∗ ( xs−x0 )

1138

1139 b o t= ( xe−x0 ) ∗ ( xs−x0 ) + ( ye−y0 ) ∗ ( ys−y0 )

1140

1141 f imag=a t a n 2 ( top , b o t )

1142

1143 end

1144

1145 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1146 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−L i b p r e s s Algor i thms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: MCMCTRGBTester2.f95

Creation Date: 30 July 2010 (first version 25 Mar 2010)

Relevant Section: §2.3 of Paper I (Ch. 3)

Notes: This program was written to test the performance of the TRGB algorithm (i.e.

BayesianTRGB ANDI.f95) for different luminosity functions (LFs) that might be encoun-

tered. A model LF is created with both the tip magnitude and RGB slope constant at

mag tip = 20.5 and a = 0.3 respectively. The fraction of background stars ( f ) in the LF is

varied however as is the number of stars populating the LF (ndata). In practice, a perl script

was written to run this code for all combinations of f and ndata, where f ∈ {0.1, 0.2, . . . 0.9}

and ndata ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000}. Many of the sub-

routines in this program are omitted for the sake of brevity, but their form can be ascertained

from the ‘BayesianTRGB ANDI.f95’ program. The subroutine that actually generates the

artificial stars from the model LF is however shown - ‘DataMake.’

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 INTEGER : : i , j , k , l , eva l , idum = −9999 , i t , n i t

5 INTEGER : : ndata max , nsamples , binspm , nb ins , cmod nbins , ghw , mm, i o s

6 PARAMETER ( nda ta max = 20000000 , nsamples = 100)

7 PARAMETER ( binspm = 100)

8 PARAMETER ( n b i n s = 8∗ binspm + 1)

9 PARAMETER ( n i t = 200000)

10 INTEGER : : nda ta , n d a t a 2

11 INTEGER : : d1 , d2 , d3 , d4 , d5 , d6 , f i e l d n u m

12 INTEGER : : f l i m B i n s , b l i m B i n s

13 REAL∗8 : : bl im , f l im , a r r a y ( nda ta max )

14 REAL∗8 : : c o f ( 2 )

15 REAL∗8 : : randnum1 , randnum2 , randnum3 , randnum4 , r1 , r2 , B1 , B2 , B3 , B4 , hb = 0 .005 d0

16 REAL∗8 : : model ( nb ins , 2 ) , cmodel ( nb ins , 2 ) , magn i tude ( nda ta max )

17 REAL∗8 : : h i s t o f i n e ( nb ins , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

18 REAL∗8 : : data ( nda ta max ) , c u m u l a t i v e c m o d e l ( nb ins , 2 ) , f , f h o l d , bfm ( n b i n s )

19 REAL∗8 : : mag t ip , mag , m a g c u t o f f = 2 4 . e0 , a , i n p u t s ( 4 )

20 REAL∗8 : : a r ea , a r e a 2

21 REAL∗8 : : m o d e l n o i s e ( nb ins , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , p i = ACOS( −1 . e0 )

22 REAL∗8 : : k e r n e l ( nb ins , 2 ) = 0 . e0 , s c a l e , uplim , lowlim , gx

23 REAL∗8 : : temp ( nb ins , 2 ) = 0 . e0 , t

24 REAL∗8 : : logL , prob , LikeA , LikeB

25 REAL∗8 : : t i p ( nsamples ) , t i p o r d ( nsamples ) , maxlogL ( nsamples ) = −999999999999.

26 REAL∗8 : : t i p r e c , t i p o f f s e t , t i p s i g m a , T o f f s e t k p c , Ts igma kpc

27 REAL∗8 : : f o f f s e t , t i p k p c , k p c e r r , f s i gma , a o f f s e t , a s i g m a

28 REAL∗8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s

29 REAL∗8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , amins ig , a p l u s i g

30 REAL∗8 : : x1 ( n i t ) , x2 ( n i t ) , x3 ( n i t ) , p ( 3 ) , t i me ( n i t ) , r

31 REAL∗8 : : p o s t y 1 ( 1 0 ∗ ( nb ins −1)+1) = 0 . d0 , p o s t x 1 ( 1 0 ∗ ( nb ins −1)+1) , mlim

32 REAL∗8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s )

33 REAL∗8 : : p o s t y 3 (2∗ n b i n s − 1) = 0 . d0 , p o s t x 3 (2∗ n b i n s − 1)

34 REAL∗8 : : o f f s e t k p c , PPD peak

35 CHARACTER : : a rgv ∗10 , t e s t ∗40 , ch1 ∗9 , ch2 ∗9 , ch3 ∗9 , ch4 ∗9 , ch5 ∗9 , s t r i n g ∗80
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36

37

38 INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t

39 REAL∗4 : : xgt , ygt , g , dg , im , dim , x k i t , e t a t , FeH pho t t , d i f f t i p t , E BV t

40 REAL∗8 : : r a t , d e t

41

42 REAL∗4 : : mag g ( nda ta max ) , mag i ( nda ta max ) , x k i ( nda ta max ) , e t a ( nda ta max )

43 REAL∗4 : : g m i n i ( nda ta max ) , m a g i p o l y ( nda ta max ) , g m i n i p o l y ( nda ta max )

44 REAL∗4 : : gmi

45

46 END MODULE Gl ob a l

47

48 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49

50 PROGRAM MCMCTRGBTester2 ! Mas te r program

51 USE Gl ob a l

52 IMPLICIT NONE

53

54 mm = IARGC ( )

55

56 IF (mm==4) THEN !

57 CALL GETARG( 1 , a r gv ) !

58 READ ( argv , ∗ , i o s t a t= i o s ) m a g t i p !

59 CALL GETARG( 2 , a r gv ) !

60 READ ( argv , ∗ , i o s t a t= i o s ) a !

61 CALL GETARG( 3 , a r gv ) !

62 READ ( argv , ∗ , i o s t a t= i o s ) n d a t a ! I n d i c a t e s t h e a rgumen t s t o be

63 CALL GETARG( 4 , a r gv ) ! s e t i n t h e command l i n e

64 READ ( argv , ∗ , i o s t a t= i o s ) f !

65 ELSE !

66 WRITE( ∗ , ∗ ) ”You must e n t e r 4 a rgumen t s : ” !

67 s t op ; !

68 END IF !

69

70 WRITE ( ∗ , ∗ ) ” ”

71 WRITE ( ∗ , ∗ ) ” Model m a g t i p / s l o p e /# s o u r c e s / background h e i g h t =” , mag t ip , a , nda ta , f

72

73 WRITE ( ch1 , ∗ ) m a g t i p !

74 WRITE ( ch2 , ∗ ) a !

75 WRITE ( ch3 , ∗ ) n d a t a !

76 IF ( f . eq . 0 . d0 ) THEN ! G e n e r a t e t e s t i d e n t i f y i n g c h a r a c t e r s t r i n g

77 WRITE ( ch4 , ∗ ) ’ 0 ’ ! t o become f i l e name u s i n g mag t ip , n d a t a and f

78 ELSE ! e . g . ’MCMC Test / T 20 .5 −0.3 −1000 −0.2 ’

79 WRITE ( ch4 , ∗ ) f !

80 END IF !

81

82 i n p u t s ( 1 ) = m a g t i p

83 i n p u t s ( 2 ) = a

84 i n p u t s ( 3 ) = n d a t a

85 i n p u t s ( 4 ) = f

86

87 n d a t a 2 = 0

88

89 WRITE ( t e s t , ∗ ) ’MCMC Test / T ’ / / TRIM(ADJUSTL( ch1 ) ) &

90 / / ’− ’ / / TRIM(ADJUSTL( ch2 ) ) &

91 / / ’− ’ / / TRIM(ADJUSTL( ch3 ) ) &

92 / / ’− ’ / / TRIM(ADJUSTL( ch4 ) )

93 CALL r andom seed !

94 !

95

96 f l i m B i n s = INT (REAL( ( 2 3 . 5 d0 − 1 8 . d0 ) ) ∗ binspm ) + 1
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97 bl im = 1 8 . 0 d0 ; f l i m = 2 3 . 5 d0 ; mlim = bl im

98

99 CALL NoiseMake ! G e n e r a t e s t h e c o n v o l u t e d model f o r t h e i n p u t t e d

100 CALL ModelMake ! t i p magn i tude and t h e n u s e s t o g e n e r a t e s e t s

101 CALL C o n v o l u t i o n ! o f d a t a p o i n t s i n ’ DataMake ’ s u b r o u t i n e

102

103 bl im = 2 0 . 0 d0 ; f l i m = 2 1 . 0 d0 ; mlim = bl im

104 f l i m B i n s = INT (REAL( ( f l i m − 1 8 . d0 ) ) ∗ binspm ) + 1

105 b l i m B i n s = INT (REAL( ( b l im − 1 8 . d0 ) ) ∗ binspm ) + 1

106

107 CALL DataMake

108

109 DO i = 1 , n d a t a

110 IF ( data ( i ) . ge . b l im .AND. data ( i ) . l e . f l i m ) THEN

111 n d a t a 2 = n d a t a 2 + 1

112 data ( n d a t a 2 ) = data ( i )

113 END IF

114 END DO

115 WRITE ( ∗ , ∗ ) ”Number o f s t a r s i n f i t t e d r a n g e : ” , n d a t a 2

116

117 CALL NoiseMake !

118 CALL MCMC !CALL

119 CALL TipAndSigma !MCMC

120 CALL P o s t e r i o r P l o t !SUBROUTINES

121 CALL O t h e r P l o t s !

122 CALL D a t a H i s t !

123

124 WRITE ( ∗ , ’ ( 3 a11 ) ’ ) ” t i p mag : ” , ” s igma : ” , ” o f f s e t : ” !

125 WRITE ( ∗ , ’ ( 3 F11 . 3 ) ’ ) t i p r e c , t i p s i g m a , t i p o f f s e t !

126 WRITE ( ∗ , ’ ( 3 a11 ) ’ ) ” f : ” , ” s igma : ” , ” o f f s e t : ” ! Wr i t e r e s u l t s

127 WRITE ( ∗ , ’ ( 3 F11 . 3 ) ’ ) f r e c , f s i gma , f o f f s e t ! t o f i l e

128 WRITE ( ∗ , ’ ( 3 a11 ) ’ ) ” a : ” , ” s igma : ” , ” o f f s e t : ” !

129 WRITE ( ∗ , ’ ( 3 F11 . 3 ) ’ ) a r e c , a s igma , a o f f s e t !

130 WRITE ( ∗ , ∗ ) ” D i s t a n c e =” , REAL( t i p k p c ) , ” kpc p /m” , REAL( k p c e r r ) , ” kpc ”

131 WRITE ( ∗ , ∗ ) ” D i s t a n c e O f f s e t =” , REAL( o f f s e t k p c ) , ” kpc ”

132

133 END PROGRAM MCMCTRGBTester2

134

135 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

136

137 SUBROUTINE DataMake ! G e n e r a t e s d a t a p o i n t s from t h e convo lved model

138 USE Gl ob a l

139 IMPLICIT NONE

140

141 r e a l ∗8 : : r an1

142

143 c u m u l a t i v e c m o d e l ( : , 1 ) = cmodel ( : , 1 )

144

145 c u m u l a t i v e c m o d e l ( 1 , 2 ) = cmodel ( 1 , 2 ) ! E f f e c t i v e

146 DO i = 2 , cmod nbins ! i n t e g r a l o f

147 c u m u l a t i v e c m o d e l ( i , 2 ) = c u m u l a t i v e c m o d e l ( i −1 ,2) + cmodel ( i , 2 ) ! convo lved

148 END DO ! model

149

150

151 DO i = 1 , n d a t a !

152 CALL random number ( randnum4 ) !

153 randnum4 = c u m u l a t i v e c m o d e l ( b l imBins , 2 ) + & !

154 randnum4 ∗ ( c u m u l a t i v e c m o d e l ( f l i m B i n s , 2 ) − c u m u l a t i v e c m o d e l ( b l imBins , 2 ) ) !

155 DO j = f l i m B i n s , b l imBins , −1 !

156 IF ( randnum4 . l e . c u m u l a t i v e c m o d e l ( j , 2 ) ) THEN ! G e n e r a t e s ’ nda ta ’

157 IF ( randnum4 . g t . c u m u l a t i v e c m o d e l ( j −1 ,2) ) THEN ! d a t a p o i n t s from



165

158 data ( i ) = c u m u l a t i v e c m o d e l ( j , 1 ) ! t h e convo lved

159 e x i t ; ! model

160 END IF !

161 END IF !

162 END DO !

163 END DO !

164

165 END SUBROUTINE DataMake

166

167 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

168 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−L i b p r e s s Algor i thms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: BayesianTRGBTestPlotterMCMC.f95

Creation Date: 29 April 2010

Relevant Section: Figs. 10 & 11 of Paper I (Ch. 3) and Figs. 4 & 5 of Paper II (Ch. 4)

Notes: This program is used to plot the results returned by ‘MCMCTRGBTester2.f95,’

namely the one sigma uncertainties and the offset of the recovered tip magnitude from

mag tip = 20.5 for each combination of f and ndata. Pixels are created with bounds

X1, X2,Y1,Y2 with the added complication of a log scale for the x-axis. These pixels are

then assigned a shade of grey based on the magnitude of the quantity they represent.

1 PROGRAM BayesianTRGBTestPlotterMCMC ! P l o t s r e s u l t s o f t e s t s f o r d i f f e r e n t c o m b i n a t i o n s o f

2 IMPLICIT NONE ! f vs . n d a t a ( g e n e r a t e s two p l o t s : t i p o f f s e t f o r each

3 ! c o m b i n a t i o n and sigma f o r each c o m b i n a t i o n )

4 INTEGER : : i , i o s , j , k , x ( 1 1 , 9 ) = 3

5 REAL : : A1 ( 1 1 , 9 ) , A2 ( 1 1 , 9 )

6 REAL : : n d a t a ( 1 0 0 0 ) , n d a t a a c t u a l ( 1 0 0 0 ) , f ( 1 0 0 0 ) , offmag ( 1 0 0 0 ) , v

7 REAL : : o f f k p c ( 1 0 0 0 ) , s igmag ( 1 0 0 0 ) , s i g k p c ( 1 0 0 0 ) , temp , X1 , X2 , Y1 , Y2

8 REAL : : ALEV( 1 0 0 ) , TR ( 6 ) , s t a r s ( 1 1 , 9 ) , n o i s e ( 1 1 , 9 )

9 REAL : : grey , xmin , xmax

10 CHARACTER(LEN=15) : : C1 ( 1 1 , 9 ) , C2 ( 1 1 , 9 )

11

12 OPEN ( u n i t = 1 , f i l e = ’ . / summary . d a t ’ , s t a t u s = ’ o l d ’ )

13 i = 0 ; i o s = 0

14 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

15 i= i+1

16 READ ( 1 , ∗ , IOSTAT = i o s ) n d a t a ( i ) , f ( i ) , s i g k p c ( i ) , o f f k p c ( i ) , temp , temp , temp

17 i f ( i o s == 0) then ;

18 e l s e i f ( i o s == −1) then ;

19 i= i −1

20 e x i t ;

21 e l s e i f ( i o s > 0) then ;

22 i= i −1

23 c y c l e

24 end i f

25 END DO

26

27 DO j = 1 , 11 !

28 DO k = 1 , 9 !

29 A1 ( j , k ) = s i g k p c ( ( ( j −1) ∗9)+k ) !

30 IF ( A1 ( j , k ) . eq . 0 . d0 ) THEN !

31 A1 ( j , k ) = 0 .001 d0 !

32 END IF ! P u t s r e s u l t s

33 A2 ( j , k ) = o f f k p c ( ( ( j −1) ∗9)+k ) !

34 IF ( A2 ( j , k ) . eq . 0 . d0 ) THEN ! i n t o n d a t a x f

35 A2 ( j , k ) = 0 .001 d0 !

36 END IF ! a r r a y s f o r

37 s t a r s ( j , k ) = n d a t a ( ( ( j −1) ∗9)+k ) !

38 n o i s e ( j , k ) = f ( ( ( j −1) ∗9)+k ) ! ea sy p l o t t i n g

39 WRITE ( C1 ( j , k ) , ∗ ) NINT ( A1 ( j , k ) ) !

40 WRITE ( C2 ( j , k ) , ∗ ) NINT ( A2 ( j , k ) ) !

41 END DO !

42 END DO !

43

44 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45
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46 CALL pgbeg in ( 0 , ’MF TRGBSigmaMCMC . ps /CPS ’ , 1 , 1 ) ! G e n e r a t e s s igma p l o t

47

48 CALL pgenv ( 0 . 8 , 4 . 5 , 0 . , 1 . , 0 , 10)

49

50 xmin = MINVAL( A1 )

51 xmax = MAXVAL( A1 )

52

53 DO i = 1 , 11

54 DO j = 1 , 9

55

56 IF (MOD( i , 3 ) . eq . 1 ) THEN !

57 X1 = LOG10 ( 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !

58 X2 = LOG10 ( 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 !

59 END IF ! G e n e r a t e p i x e l

60 !

61 IF (MOD( i , 3 ) . eq . 2 ) THEN ! x b o u n d a r i e s f o r

62 X1 = LOG10 ( 2 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !

63 X2 = LOG10 ( 2 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 ! l o g x a x i s

64 END IF !

65 ! (3 d i f f e r e n t wid th

66 IF (MOD( i , 3 ) . eq . 0 ) THEN ! c a l c u l a t i o n s r e q u i r e d )

67 X1 = LOG10 ( 5 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !

68 X2 = LOG10 ( 5 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 !

69 END IF !

70

71 Y1 = j ∗ 0 . 1 e0 − 0 . 0 4 ! G e n e r a t e

72 ! p i x e l

73 Y2 = j ∗ 0 . 1 e0 + 0 . 0 4 ! y b o u n d a r i e s

74

75 g r ey = ( xmax − A1 ( i , j ) ) / ( xmax − xmin ) ! De te rmine shade o f g rey

76

77 CALL p g s c r ( 3 , grey , grey , g r ey )

78

79 CALL p g p i x l ( x , 11 , 9 , i , i , j , j , X1 , X2 , Y1 , Y2 ) ! make p i x e l s

80

81 CALL p g s c i ( 2 )

82

83 CALL p g p t x t ( LOG10( s t a r s ( i , j ) ) , n o i s e ( i , j ) , 0 . , 0 . 5 , C1 ( i , j ) ) ! p u t v a l u e i n p i x e l s

84 END DO

85 END DO

86

87 CALL p g s c i ( 1 )

88 CALL p g l a b ( ’ number o f s t a r s ’ , ’ p r o p o r t i o n o f background s t a r s ’ , &

89 ’ Sigma ( kpc ) − One Sigma E r r o r ’ )

90

91 CALL pgend

92

93 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

94

95 CALL pgbeg in ( 0 , ’MF TRGBOffsetMCMC . ps /CPS ’ , 1 , 1 ) ! G e n e r a t e s o f f s e t p l o t

96 CALL pgenv ( 0 . 8 , 4 . 5 , 0 . , 1 . , 0 , 10)

97

98 A2 = ABS( A2 )

99 xmin = MINVAL( A2 )

100 xmax = MAXVAL( A2 )

101

102 DO i = 1 , 11

103 DO j = 1 , 9

104

105 IF (MOD( i , 3 ) . eq . 1 ) THEN !

106 X1 = LOG10 ( 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !
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107 X2 = LOG10 ( 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 !

108 END IF ! G e n e r a t e p i x e l

109 !

110 IF (MOD( i , 3 ) . eq . 2 ) THEN ! x b o u n d a r i e s f o r

111 X1 = LOG10 ( 2 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !

112 X2 = LOG10 ( 2 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 ! l o g x a x i s

113 END IF !

114 ! (3 d i f f e r e n t wid th

115 IF (MOD( i , 3 ) . eq . 0 ) THEN ! c a l c u l a t i o n s r e q u i r e d )

116 X1 = LOG10 ( 5 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) − 0 . 1 3 !

117 X2 = LOG10 ( 5 . ∗ 1 0 . ∗ ∗ ( ( ( i −1) / 3 ) +1) ) + 0 . 1 3 !

118 END IF !

119

120 Y1 = j ∗ 0 . 1 e0 − 0 . 0 4 ! G e n e r a t e

121 ! p i x e l

122 Y2 = j ∗ 0 . 1 e0 + 0 . 0 4 ! y b o u n d a r i e s

123

124 g r ey = ( xmax − A2 ( i , j ) ) / ( xmax − xmin ) ! De te rmine shade o f g rey

125

126 CALL p g s c r ( 3 , grey , grey , g r ey )

127

128 CALL p g p i x l ( x , 11 , 9 , i , i , j , j , X1 , X2 , Y1 , Y2 ) ! make p i x e l s

129

130 CALL p g s c i ( 2 )

131

132 CALL p g p t x t ( LOG10( s t a r s ( i , j ) ) , n o i s e ( i , j ) , 0 . , 0 . 5 , C2 ( i , j ) ) ! p u t v a l u e i n p i x e l s

133 END DO

134 END DO

135

136 CALL p g s c i ( 1 )

137 CALL p g l a b ( ’ number o f s t a r s ’ , ’ p r o p o r t i o n o f background s t a r s ’ , &

138 ’ O f f s e t ( kpc ) − R a d i a l D i s t a n c e O f f s e t ’ )

139

140 CALL pgend

141

142 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

143

144

145 END PROGRAM BayesianTRGBTestPlotterMCMC
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Program: MF TRGB.f95

Creation Date: 31 August 2011 (first version 8 Dec 2010) Many modifications.

Relevant Section: Ch. 4

Notes: This program is the successor of ‘BayesianTRGB ANDI.f95’ in Appendix B and

similarly lies at the heart of the material presented in Paper II (Ch. 4). The principal differ-

ence between the two is that this new version incorporates a density matched filter weighting

scheme, where by stars are given a weight based on their position with in the object’s den-

sity profile. In this way, stars that are more likely to be true object member’s are given

greater consideration during the luminosity function fitting. The actual weighting itself is

taken care of by the ‘Weighter’ subroutine, but other subroutines have been modified sig-

nificantly to handle it. The background component of the LF (built in ‘NoiseMake’) for

instance is no longer added to the model LF in the ‘ModelMake’ subroutine. This is be-

cause with the weighting switched on, each star effectively has its own model LF with the

ratio of background to RGB component tailored to suit the star’s probability of being a true

object member. Hence, these ratios are now taken into account in the ‘LogLike’ subrou-

tine on a star-by-star basis. There are many other additions. A new LF plotting subroutine

‘w DataHist’ plots the weighted LF and a plot of the object density profile is created in the

‘Weighter’ subroutine. Parallel tempering has been added to the ‘MCMC’ subroutine and

the run-speed of the whole algorithm has be greatly improved by fixing up a design flaw

in the way the convolution step was being done (The ‘GaussianKernel’ subroutine is now

called just once and the values are saved). The program also now takes command line input

so that the one set of code can be used for all objects. Due to the large number of changes

made to most of the subroutines originally written for ‘BayesianTRGB ANDI.f95,’ I have

reproduced the whole program here rather than omitting the duplicate subroutines. Note that

the command line inputs for each satellite are provided as the next item in this appendix for

completeness. For a more in depth description of the workings of the program in general,

see Paper II - particularly §2 and §3.1.

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 !−−−−−−−−−−−−−−−−−−−−G e n e r a l Program P a r a m e t e r s −−−−−−−−−−−−−−−−−−−−−

5 INTEGER : : i , j , k , l , eva l , idum = −9999 , i t , n i t

6 INTEGER : : ndata max , nsamples , binspm , nb ins , cmod nbins , mm, i o s
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7 PARAMETER ( nda ta max = 10000000 , nsamples = 100)

8 PARAMETER ( binspm = 100)

9 PARAMETER ( n b i n s = 8∗ binspm + 1)

10 PARAMETER ( n i t = 500000)

11 INTEGER : : nda ta , n d a t a 2

12 INTEGER : : d1 , d2 , d3 , d4

13 INTEGER : : ghw ( n b i n s )

14 REAL∗8 : : bl im , f l im , p i

15 PARAMETER ( b l im = 1 9 . 5 d0 )

16 PARAMETER ( f l i m = 2 3 . 5 d0 )

17 PARAMETER ( p i = ACOS( −1 . e0 ) )

18 INTEGER : : b l i m B i n s = INT (REAL( ( b l im − 1 8 . d0 ) ∗ binspm ) ) + 1

19 INTEGER : : f l i m B i n s = INT (REAL( ( f l i m − 1 8 . d0 ) ∗ binspm ) ) + 1

20 REAL∗8 : : randnum1 , randnum2 , randnum3 , randnum4 , randnum5

21 INTEGER : : r a n d i n t

22 REAL∗8 : : r1 , r2 , spotR , hb = 0 .005 d0

23 REAL∗8 : : model ( nb ins , 2 ) , cmodel ( nb ins , 2 ) , magn i tude ( nda ta max )

24 REAL∗8 : : h i s t o f i n e ( nb ins , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

25 REAL∗8 : : w h i s t o f i n e ( nb ins , 2 ) , w h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

26 REAL∗8 : : data ( nda ta max ) , c u m u l a t i v e c m o d e l ( nb ins , 2 ) , f , f h o l d , bfm ( n b i n s )

27 REAL∗8 : : mag t ip , mag , m a g c u t o f f = 2 4 . e0 , a

28 REAL∗8 : : a r ea , a r e a 2

29 REAL∗8 : : m o d e l n o i s e ( nb ins , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , bg ( n b i n s ) = 0 . d0

30 REAL∗8 : : k e r n e l ( nb ins , 2 , n b i n s ) = 0 . e0 , s c a l e , uplim , lowlim , gx

31 REAL∗8 : : temp ( nb ins , 2 ) = 0 . e0 , t

32 INTEGER : : s t a r b i n

33 REAL∗8 : : t i p ( nsamples ) , t i p o r d ( nsamples ) , maxlogL ( nsamples ) = −999999999999.

34 REAL∗8 : : t i p r e c , t i p o f f s e t , t i p p s i g m a , t ip ms igma , T o f f s e t k p c , Ts igma kpc

35 REAL∗8 : : f o f f s e t , t i p k p c , k p c p e r r , kpc merr , f s i gma , a o f f s e t , a s i g m a

36 REAL∗8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s

37 REAL∗8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , amins ig , a p l u s i g

38 REAL∗8 : : mcounts , p c o u n t s

39 INTEGER : : num chains , cn , cha in compare , swap coun t

40 PARAMETER ( num cha ins = 4)

41 REAL∗8 : : s w a p r a t e = 1 . d0 / 3 0 . d0 , logL ( num cha ins ) , LikeA ( num cha ins ) , LikeB ( num cha ins )

42 REAL∗8 : : prob , s i g p r o b , b g p r o b

43 REAL∗8 : : be t a , b e t a h o l d e r ( num cha ins ) = ( / 1 . d0 , 0 . 2 5 d0 , 0 .111 d0 , 0 .001 d0 / )

44 REAL∗8 : : m s tep ( num cha ins ) = ( / 0 . 0 3 d0 , 0 . 0 6 d0 , 0 . 1 2 d0 , 0 . 3 d0 / )

45 REAL∗8 : : f s t e p ( num cha ins ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / )

46 REAL∗8 : : a s t e p ( num cha ins ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / )

47 REAL∗8 : : PTAR, p a r h o l d ( 4 )

48 REAL∗8 : : x1 ( n i t , num cha ins ) , x2 ( n i t , num cha ins ) , x3 ( n i t , num cha ins ) , p ( 3 ) , t im e ( n i t ) , r

49 REAL∗8 : : p o s t y 1 ( 1 0 ∗ ( nb ins −1)+1) = 0 . d0 , p o s t x 1 ( 1 0 ∗ ( nb ins −1)+1) , mlim

50 REAL∗8 : : d b l im , bg bl im , d f l i m , b g f l i m

51 REAL∗8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s )

52 REAL∗8 : : p o s t y 3 (2∗ n b i n s − 1) = 0 . d0 , p o s t x 3 (2∗ n b i n s − 1)

53 REAL∗8 : : PPD peak , Best Combo ( 6 )

54 CHARACTER : : a rgv ∗30 , f i e l d ∗30 , c o l c u t ∗30 , ch1 ∗9 , ch2 ∗9 , ch3 ∗9 , ch4 ∗9 , ch5 ∗9 , s t r i n g ∗60 , command∗200

55 INTEGER : : s c o u t c o u n t s

56 LOGICAL : : n o t s c o u t

57

58 !−−−−−−−−−−−−−−−−−−−−−For r e a d i n g i n PAndAS da ta −−−−−−−−−−−−−−−−−−−−

59 INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t

60 REAL∗4 : : xgt , ygt , g , dg , im , dim , x k i t , e t a t , F e H p h o t a l a n t , F eH pho t t , d i f f t i p t , E BV t

61 REAL∗8 : : r a t , d e t

62

63 REAL∗4 : : mag g ( nda ta max ) , mag i ( nda ta max ) , x k i ( nda ta max ) , e t a ( nda ta max )

64 REAL∗4 : : g m i n i ( nda ta max ) , m a g i p o l y ( nda ta max ) , g m i n i p o l y ( nda ta max )

65 REAL∗4 : : mag g po ly ( nda ta max ) , x i p o l y ( nda ta max ) , e t a p o l y ( nda ta max )

66 REAL∗4 : : gmi , x i a l l ( nda ta max ) , e t a a l l ( nda ta max )

67
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68 LOGICAL : : t r u e s t a r ( nda ta max ) , t r u e s t a r p o l y ( nda ta max )

69

70 !−−−−−−A d d i t i o n a l p a r a m e t e r s f o r c a l c u l a t i n g background s t a t s −−−−−−−

71 INTEGER : : b g n d a t a , bg nda t a2 , b g n d a t a 3

72 REAL∗4 : : bg mag g ( nda ta max ) , bg mag i ( nda ta max ) , b g x k i ( nda ta max ) , b g e t a ( nda ta max )

73 REAL∗4 : : b g g m i n i ( nda ta max ) , b g m a g i p o l y ( nda ta max ) , b g g m i n i p o l y ( nda ta max )

74 REAL∗4 : : bg mag g po ly ( nda ta max ) , bg gmi

75 REAL∗8 : : b g d a t a ( nda ta max )

76

77 !−−SVD f i t t i n g o f background −−

78 INTEGER ma , mp , np , n d a t

79 PARAMETER ( n d a t = INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1)

80 PARAMETER ( np = 8)

81 PARAMETER (mp = n d a t )

82 PARAMETER ( ma = np )

83 REAL : : c h i s q , ay ( ma ) , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) , w( np ) , xa ( n d a t ) , ya ( n d a t )

84 REAL : : x t ( n d a t ) , y t ( n d a t )

85 REAL∗8 : : b g h i s t o c o a r s e ( nda t , 2 )

86 EXTERNAL : : f u n c s

87

88 !−−−−−−A d d i t i o n a l p a r a m e t e r s f o r s p e c i f y i n g o b j e c t c o o r d i n a t e s −−−−−−

89 INTEGER : : Jop

90 REAL∗8 : : XIop , ETAop

91 REAL∗8 : : RAh , RAm, RAs , DecD , DecM , DecS , RA rad , Dec rad

92 REAL∗8 : : tpRAh , tpRAm , tpRAs , tpDecD , tpDecM , tpDecS , tpRA rad , t p D e c r a d

93

94 !−−A d d i t i o n a l p a r a m e t e r s f o r Matched F i l t e r s S u b r o u t i n e ’ Weighter ’−−

95 INTEGER : : r h o b i n s , r h o b i n s 2

96 PARAMETER ( r h o b i n s = 40)

97 REAL∗4 : : C O F d i s t ( nda ta max ) , D e n s i t y ( r h o b i n s , 2 ) , D en s i g ( r h o b i n s ) , r h o f i t ( r h o b i n s , 2 ) , w e i g h t p l o t ( 5 0 0 , 2 )

98 REAL∗8 : : we i g h t ( nda ta max ) , s c a l e d a ( nda ta max ) , s c a l e d a a l l ( nda ta max ) , c rowded rad , e l l i p s e s t a r s , e l l i p s e a r e a

99 REAL∗8 : : e l l i p , HLR, PA , xdash , ydash , maxweight , maxa , SR , d e n p r o f s c a l e , o u t e r r a d

100 REAL∗8 : : weightsum , Dens i tysum

101

102 !−−−−−−−−−−−−−−−−−−−−−−−−−−When f i s known−−−−−−−−−−−−−−−−−−−−−−−−−−−

103 INTEGER : : b g s t a r s , s i g s t a r s

104 REAL∗8 : : b g a r e a , s i g a r e a

105 REAL∗8 : : known f , b g s t a r s i n s i g f i e l d

106 REAL∗8 : : s i g f i e l d r a d i u s , b g l o w x i , b g u p x i

107

108 END MODULE Gl ob a l

109

110 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

111

112 PROGRAM B a y e s i a n T R G B s a t e l l i t e ! Mas te r program

113 USE Gl ob a l

114 IMPLICIT NONE

115

116 mm = IARGC ( )

117

118 IF (mm==16) THEN !

119 CALL GETARG( 1 , a r gv ) !

120 READ ( argv , ∗ , i o s t a t= i o s ) f i e l d !

121 CALL GETARG( 2 , a r gv ) !

122 READ ( argv , ∗ , i o s t a t= i o s ) RAh !

123 CALL GETARG( 3 , a r gv ) !

124 READ ( argv , ∗ , i o s t a t= i o s ) RAm !

125 CALL GETARG( 4 , a r gv ) !

126 READ ( argv , ∗ , i o s t a t= i o s ) RAs !

127 CALL GETARG( 5 , a r gv ) !

128 READ ( argv , ∗ , i o s t a t= i o s ) DecD !
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129 CALL GETARG( 6 , a r gv ) !

130 READ ( argv , ∗ , i o s t a t= i o s ) DecM !

131 CALL GETARG( 7 , a r gv ) !

132 READ ( argv , ∗ , i o s t a t= i o s ) DecS !

133 CALL GETARG( 8 , a r gv ) !

134 READ ( argv , ∗ , i o s t a t= i o s ) e l l i p ! I n d i c a t e s t h e a rgumen t s t o be

135 CALL GETARG( 9 , a r gv ) ! s e t i n t h e command l i n e

136 READ ( argv , ∗ , i o s t a t= i o s ) HLR !

137 CALL GETARG( 1 0 , a r gv ) !

138 READ ( argv , ∗ , i o s t a t= i o s ) PA !

139 CALL GETARG( 1 1 , a r gv ) !

140 READ ( argv , ∗ , i o s t a t= i o s ) c r o w d e d r a d !

141 CALL GETARG( 1 2 , a r gv ) !

142 READ ( argv , ∗ , i o s t a t= i o s ) o u t e r r a d !

143 CALL GETARG( 1 3 , a r gv ) !

144 READ ( argv , ∗ , i o s t a t= i o s ) s i g f i e l d r a d i u s !

145 CALL GETARG( 1 4 , a r gv ) !

146 READ ( argv , ∗ , i o s t a t= i o s ) b g l o w x i !

147 CALL GETARG( 1 5 , a r gv ) !

148 READ ( argv , ∗ , i o s t a t= i o s ) b g u p x i !

149 CALL GETARG( 1 6 , a r gv ) !

150 READ ( argv , ∗ , i o s t a t= i o s ) c o l c u t !

151 ELSE !

152 WRITE( ∗ , ∗ ) ”You must e n t e r 16 a rgumen t s : ” !

153 s t op ; !

154 END IF !

155

156 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / r e s u l t s . d a t ’

157 OPEN( 3 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

158 WRITE ( 3 , ∗ ) ” F i e l d Name : ” , f i e l d

159

160 CALL p o s i t i o n F i n d e r !

161 !

162 CALL r andom seed !

163 !

164 CALL M31DataReader !

165 CALL Weigh te r !

166 CALL SVDFi t t e r !

167 CALL G a u s s i a n K e r n e l !

168 CALL NoiseMake !CALL

169 CALL MCMC !

170 !CALL P o s t e r i o r P l o t !SUBROUTINES

171 !

172 CALL TipAndSigma !

173 CALL P o s t e r i o r P l o t !

174 CALL O t h e r P l o t s !

175 CALL D a t a H i s t !

176 CALL w DataHi s t !

177

178 IF ( num cha ins . ne . 1 ) THEN

179 WRITE ( 3 , ∗ ) ” Proposed Swaps wi th Cold Sampler Chain : ” , c h a i n c o m p a r e

180 WRITE ( 3 , ∗ ) ” Accep ted Swaps wi th Cold Sampler Chain : ” , swap coun t

181 WRITE ( 3 , ∗ ) ” P a r a l l e l Tempering Accep tance Rate : ” , REAL( swap coun t ) / REAL( c h a i n c o m p a r e )

182 END IF

183 WRITE ( 3 , ’ (3 a11 ) ’ ) ” t i p mag : ” , ” + s igma : ” , ” − s igma : ” !

184 WRITE ( 3 , ’ (3 F10 . 3 ) ’ ) t i p r e c , t i p p s i g m a , t i p m s i g m a !

185 WRITE ( 3 , ’ (2 a11 ) ’ ) ” f : ” , ” s igma : ” !

186 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) f r e c , f s i g m a ! Wr i t e r e s u l t s

187 WRITE ( 3 , ’ (2 a11 ) ’ ) ” a : ” , ” s igma : ” ! t o f i l e

188 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) a r e c , a s i g m a !

189 WRITE ( 3 , ∗ ) ” D i s t a n c e =” , REAL( t i p k p c ) , ” kpc ” !
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190 WRITE ( 3 , ∗ ) ” E r r o r = +” , k p c p e r r , ” kpc −” , kpc merr , ” kpc ” !

191

192 END PROGRAM B a y e s i a n T R G B s a t e l l i t e

193

194 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

195

196 SUBROUTINE P o s i t i o n F i n d e r ! C o n v e r t s o b j e c t RA and Dec i n t o M31 t a n g e n t p l a n e c o o r d i n a t e s x i and

197 USE Gl ob a l ! e t a . These a r e used i n t h e n e x t s u b r o u t i n e f o r r e a d i n g i n a l l s t a r s

198 IMPLICIT NONE ! from t h e PAndAS s u r v e y wi th i n some r a d i u s o f t h e o b j e c t c e n t e r

199

200 tpRAh = 0 . d0 !

201 tpRAm = 4 2 . d0 !

202 tpRAs = 44 .33 d0 !RA and Dec of t a n g e n t p o i n t

203 tpDecD = 4 1 . d0 ! ( i . e . M31)

204 tpDecM = 1 6 . d0 !

205 tpDecS = 7 . 5 d0 !

206

207 ! | | Per form

208 ! \ / C o n v e r s i o n

209 RA rad = ( p i / 1 8 0 . d0 ) ∗ (RAh ∗ 1 5 . d0 + RAm ∗ ( 1 5 . d0 / 6 0 . d0 ) + RAs ∗ ( 1 5 . d0 / 3 6 0 0 . d0 ) )

210

211 Dec rad = ( p i / 1 8 0 . d0 ) ∗ ( DecD + DecM / 6 0 . d0 + DecS / 3 6 0 0 . d0 )

212

213 tpRA rad = ( p i / 1 8 0 . d0 ) ∗ ( tpRAh ∗ 1 5 . d0 + tpRAm ∗ ( 1 5 . d0 / 6 0 . d0 ) + tpRAs ∗ ( 1 5 . d0 / 3 6 0 0 . d0 ) )

214

215 t p D e c r a d = ( p i / 1 8 0 . d0 ) ∗ ( tpDecD + tpDecM / 6 0 . d0 + tpDecS / 3 6 0 0 . d0 )

216

217 CALL sla DS2TP ( RA rad , Dec rad , tpRA rad , t pDec r ad , XIop , ETAop , Jop )

218 ! / \

219 ! | |

220

221 XIop = XIop ∗ ( 1 8 0 . d0 / p i ) ! t a n g e n t p l a n e c o o r d i n a t e s

222 ETAop = ETAop ∗ ( 1 8 0 . d0 / p i ) ! ( i . e . PAndAS x i and e t a )

223

224 WRITE ( 3 , ∗ ) ”C .O. F . Xi =” , XIop , ”C .O. F . E ta =” , ETAop

225

226 END SUBROUTINE P o s i t i o n F i n d e r

227

228 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

229 SUBROUTINE M31DataReader ! The f i e l d t o be a n a l y s e d i s s p e c i f i e d h e r e

230 USE Gl ob a l

231 IMPLICIT NONE

232

233 OPEN( 1 , f i l e = ’ . . / . . / . . / PANDAS / M31 unique con . d a t ’ , form= ’ u n f o r m a t t e d ’ , s t a t u s= ’ o l d ’ )

234

235 i = 0 ; j = 0

236

237 DO WHILE ( . t r u e . )

238 READ( 1 , IOSTAT= i o s ) r a t , d e t , iCCDt , xgt , ygt , & ! Read i n d a t a

239 g , dg , c l s g , im , dim , c l s i , i f i e l d t , x k i t , e t a t , & ! from b i n a r y

240 F e H p h o t a l a n t , FeH pho t t , d i f f t i p t , E BV t , i a c c t ! f o r m a t d a t a f i l e

241

242 IF ( i o s . ne . 0 ) e x i t

243

244 g=g−3.793∗ E BV t ! E x t i n c t i o n

245 im=im−2.086∗ E BV t ! C o r r e c t i o n s

246 gmi = g − im

247

248 i f ( c l s i . ne .−1 . and . c l s i . ne . −2) c y c l e ! R e g e c t s

249 i f ( c l s g . ne .−1 . and . c l s g . ne . −2) c y c l e ! non s t a r s

250 i f ( i a c c t . ne . 1 ) c y c l e
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251 i f ( 1 8 . 0 . l e . im . and . im . l e . 2 4 . 0 ) then ! S p e c i f i e s

252 e l s e ! magn i tude

253 c y c l e ! r a n g e t o

254 end i f ! i n c l u d e

255 i f ( −2 . 5 . l e . F e H p h o t a l a n t . and . F e H p h o t a l a n t . l e . −1 . 5 ) then !

256 e l s e ! S p e c i f i e s m e t a l l i c i t y

257 ! c y c l e ! r a n g e t o i n c l u d e

258 end i f !

259

260 spotR = SQRT ( ( ABS( e t a t − ( ETAop ) ) ) ∗∗2 + (ABS( x k i t − ( XIop ) ) ) ∗∗2 )

261

262 IF ( spotR . l t . s i g f i e l d r a d i u s ) THEN

263 i = i + 1

264

265 IF ( i . g t . nda ta max ) e x i t

266

267 mag g ( i )=g !

268 mag i ( i )=im !

269 g m i n i ( i )=gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o s i g n a l a r r a y s

270 x k i ( i )= x k i t !

271 e t a ( i )= e t a t !

272 IF ( i f i e l d t . ge . 0 ) THEN !

273 t r u e s t a r ( i ) = . t r u e . ! D i s t i n g u i s h between

274 ELSE ! r e a l d a t a and a r t i f i c i a l

275 t r u e s t a r ( i ) = . f a l s e . ! background

276 END IF !

277

278 ELSE IF ( x k i t . ge . b g l o w x i . and . x k i t . l e . b g u p x i ) THEN

279 IF ( e t a t . ge . ETAop − 0 . 5 d0 . and . e t a t . l e . ETAop + 0 . 5 d0 ) THEN

280 j = j + 1

281

282 IF ( j . g t . nda ta max ) e x i t

283

284 bg mag g ( j )=g !

285 bg mag i ( j )=im !

286 b g g m i n i ( j )=gmi ! I f a l l c o n d i t i o n s a r e met , add s t a r d a t a t o bckgrnd a r r a y s

287 b g x k i ( j )= x k i t !

288 b g e t a ( j )= e t a t !

289 END IF

290 END IF

291

292 END DO

293

294 n d a t a = i ; b g n d a t a = j

295

296 s i g a r e a = p i ∗ ( s i g f i e l d r a d i u s ∗∗ 2 . d0 ) ! C a l c u l a t e a r e a o f s i g n a l f i e l d

297 b g a r e a = 1 . d0 ∗ ( b g u p x i − b g l o w x i ) − ( p i ∗ ( s i g f i e l d r a d i u s ∗∗ 2 . d0 ) ) ! C a l c u l a t e a r e a o f BG f i e l d

298

299 DO i = 1 , n d a t a

300 data ( i ) = mag i ( i ) !

301 x i a l l ( i ) = x k i ( i ) ! O b j e c t s t a r s b e f o r e a p p l y i n g c o l o u r c u t

302 e t a a l l ( i ) = e t a ( i )

303 END DO

304

305 DO j = 1 , b g n d a t a

306 b g d a t a ( j ) = bg mag i ( j ) !BG s t a r s b e f o r e a p p l y i n g c o l o u r c u t

307 END DO

308

309 CALL M 3 1 D a t a P l o t t e r

310

311 END SUBROUTINE M31DataReader
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312

313 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

314

315 SUBROUTINE M 3 1 D a t a P l o t t e r ! P r o d u c e s p l o t s o f t h e o b j e c t and background f i e l d s

316 USE Gl ob a l ! a s w e l l a s t h e i r Colour−Magni tude Diagrams . Colour

317 IMPLICIT NONE ! c u t s a r e a l s o implemented i n t h i s s u b r o u t i n e

318

319 !−−−−−−−−−−−−−−−−−−−−−−S i g n a l −F i e l d −−−−−−−−−−−−−−−−−−−−−−−−−

320 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s i g f i e l d . ps /CPS ’

321 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

322

323 CALL pgenv (MAXVAL( xki , mask = x k i . ne . 0 . ) , MINVAL( xki , mask = x k i . ne . 0 . ) , &

324 MINVAL( e t a , mask = e t a . ne . 0 . ) , MAXVAL( e t a , mask = e t a . ne . 0 . ) , 1 , 0 )

325 CALL pgslw ( 3 )

326 DO i = 1 , n d a t a

327 IF ( t r u e s t a r ( i ) ) THEN

328 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , −1)

329 ELSE

330 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , 225)

331 END IF

332 END DO

333 CALL pgslw ( 1 )

334 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

335

336 CALL pgend

337

338 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

339 ’ / s i g f i e l d . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

340 ’ / s i g f i e l d . j p g ’

341

342 c a l l sys tem ( command )

343

344 !−−−−−−−−−−−−−−−−−−−−−−−S i g n a l −CMD−−−−−−−−−−−−−−−−−−−−−−−−−−

345 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s ig cmd . ps /CPS ’

346 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

347

348 CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , &

349 MAXVAL( mag i ) , MINVAL( mag i , mask = mag i . ne . 0 . ) , 0 , 0 )

350 CALL pgslw ( 3 )

351 DO i = 1 , n d a t a

352 IF ( t r u e s t a r ( i ) ) THEN

353 CALL pgp t ( 1 , g m i n i ( i ) , mag i ( i ) , −1)

354 ELSE

355 CALL pgp t ( 1 , g m i n i ( i ) , mag i ( i ) , 225)

356 END IF

357 END DO

358 CALL pgslw ( 1 )

359 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

360

361 CALL P o l y S e l e c t ! For CMD c o l o u r −c u t

362

363 CALL pgend

364

365 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

366 ’ / s ig cmd . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

367 ’ / s ig cmd . j p g ’

368

369 c a l l sys tem ( command )

370

371 !−−−−−−−−−−−−−−−−−−−−−−Bckgrnd−F i e l d −−−−−−−−−−−−−−−−−−−−−−−−−

372 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / b g f i e l d . ps /CPS ’
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373 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

374

375 CALL pgenv (MAXVAL( bg xk i , mask = b g x k i . ne . 0 . ) , &

376 MINVAL( bg xk i , mask = b g x k i . ne . 0 . ) , &

377 MINVAL( b g e t a , mask = b g e t a . ne . 0 . ) , &

378 MAXVAL( b g e t a , mask = b g e t a . ne . 0 . ) , 1 , 0 )

379 CALL pgslw ( 2 )

380 CALL pgp t ( b g n d a t a , bg xk i , b g e t a , −1)

381 CALL pgslw ( 1 )

382 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

383

384 CALL pgend

385

386 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

387 ’ / b g f i e l d . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

388 ’ / b g f i e l d . j p g ’

389

390 c a l l sys tem ( command )

391

392 !−−−−−−−−−−−−−−−−−−−−−−−Bckgrnd−CMD−−−−−−−−−−−−−−−−−−−−−−−−−−

393 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / bg cmd . ps /CPS ’

394 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

395

396 CALL pgenv (MINVAL( b g g m i n i , mask = b g g m i n i . ne . 0 . ) , &

397 MAXVAL( b g g m i n i ) , MAXVAL( bg mag i ) , &

398 MINVAL( bg mag i , mask = bg mag i . ne . 0 . ) , 0 , 0 )

399 CALL pgslw ( 3 )

400 CALL pgp t ( b g n d a t a , b g g m i n i , bg mag i , −1)

401 CALL pgslw ( 1 )

402 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

403

404 CALL P o l y S e l e c t ! For CMD c o l o u r −c u t

405

406 CALL pgend

407

408 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

409 ’ / bg cmd . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

410 ’ / bg cmd . j p g ’

411

412 c a l l sys tem ( command )

413

414 !−−−−−−−−−−−−−−I n p u t s e l e c t e d d a t a i n t o ’ da t a ’−−−−−−−−−−−

415 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / i a n d g i n c u t . d a t ’

416 OPEN( 7 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

417 WRITE( 7 , ∗ ) ” i g number o f s t a r s : ” , n d a t a 2

418 data = 0 . d0 ; x k i = 0 . d0 ; e t a = 0 . d0 ; d b l i m = 1 0 0 . d0 ; d f l i m = 0 . d0

419 DO i = 1 , n d a t a 2

420 data ( i ) = m a g i p o l y ( i )

421 x k i ( i ) = x i p o l y ( i )

422 e t a ( i ) = e t a p o l y ( i )

423 IF ( data ( i ) . l t . d b l i m ) THEN

424 d b l i m = data ( i )

425 END IF

426 IF ( data ( i ) . g t . d f l i m ) THEN

427 d f l i m = data ( i )

428 END IF

429 WRITE ( 7 , ’ (2 F16 . 5 ) ’ ) m a g i p o l y ( i ) , mag g po ly ( i )

430 END DO

431

432 !−−−−−−−−−−−−−S i g n a l −F i e l d a f t e r c o l o u r cu t −−−−−−−−−−−−−−−−

433 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s i g f i e l d c c . ps /CPS ’
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434 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

435

436 CALL pgenv (MAXVAL( xki , mask = x k i . ne . 0 . ) , MINVAL( xki , mask = x k i . ne . 0 . ) , &

437 MINVAL( e t a , mask = e t a . ne . 0 . ) , MAXVAL( e t a , mask = e t a . ne . 0 . ) , 1 , 0 )

438 CALL pgslw ( 3 )

439 DO i = 1 , n d a t a 2

440 IF ( t r u e s t a r p o l y ( i ) ) THEN

441 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , −1)

442 ELSE

443 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , 225)

444 END IF

445 END DO

446 CALL pgslw ( 1 )

447 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

448

449 CALL pgend

450

451 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

452 ’ / s i g f i e l d c c . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

453 ’ / s i g f i e l d c c . j p g ’

454

455 c a l l sys tem ( command )

456

457 !−−−−−−− I n p u t s e l e c t e d background d a t a i n t o ’ b g d a t a ’−−−−−−−

458 b g d a t a = 0 . d0 ; b g b l i m = 1 0 0 . d0 ; b g f l i m = 0 . d0

459 DO i = 1 , b g n d a t a 2

460 b g d a t a ( i ) = b g m a g i p o l y ( i )

461 IF ( b g d a t a ( i ) . l t . b g b l i m ) THEN

462 b g b l i m = b g d a t a ( i )

463 END IF

464 IF ( b g d a t a ( i ) . g t . b g f l i m ) THEN

465 b g f l i m = b g d a t a ( i )

466 END IF

467 END DO

468

469 !−−−S e t p a r a m e t e r s f o r c a l c u l a t i o n o f background h e i g h t −−−

470

471 s i g s t a r s = n d a t a 2 ! T o t a l number o f s t a r s i n s i g n a l f i e l d

472 b g s t a r s = b g n d a t a 3 ! Number o f s t a r s i n background f i e l d

473 b g s t a r s i n s i g f i e l d = REAL( b g s t a r s ) ∗ ( s i g a r e a / b g a r e a ) ! ; b g s t a r s = 0 . d0

474 ! Number o f Background s t a r s i n s i g n a l f i e l d

475

476 WRITE ( 3 , ∗ ) ”Number o f d a t a p o i n t s : ” , s i g s t a r s

477 WRITE ( 3 , ∗ ) ” Average F i e l d SNR: ” , (REAL( s i g s t a r s ) − b g s t a r s i n s i g f i e l d ) / b g s t a r s i n s i g f i e l d

478

479 !−−−−−−−−−Make c o a r s e d a t a h i s t o g r a m f o r bckgrnd−−−−−−−−−

480

481 DO i = 1 , INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1

482 b g h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( 0 . 2 5 ∗ binspm )

483 END DO

484

485 DO i = 1 , b g n d a t a 2

486 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 , 2 ) = &

487 b g h i s t o c o a r s e ( INT ( ( b g d a t a ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 , 2 ) + 1 . d0

488 END DO

489

490 ! | | F i l l empty b r i g h t edge o f a r r a y wi t h

491 ! \ / a r t i f i c i a l d a t a f o r improved f i t t i n g

492 DO i = 1 , INT ( ( b g b l i m − 1 8 . d0 ) ∗ REAL( binspm / 4 . d0 ) ) + 4

493 b g h i s t o c o a r s e ( i , 2 ) = b g h i s t o c o a r s e ( INT ( ( bg b l i m − 1 8 . d0 ) ∗ REAL( binspm / 4 . d0 ) ) + 4 , 2 )

494 END DO
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495

496 END SUBROUTINE M 3 1 D a t a P l o t t e r

497

498 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

499

500 SUBROUTINE Weigh te r ! Implements an e l l i p t i c a l w e i g h t i n g scheme u s i n g t h e

501 USE Gl ob a l ! e l l i p t i c i t y , h a l f − l i g h t r a d i u s and p o s i t i o n a n g l e

502 IMPLICIT NONE ! o f t h e s a t e l l i t e

503

504 HLR = HLR ∗ ( 1 . d0 / 6 0 . d0 ) ! Conve r t h a l f − l i g h t r a d i u s from m i n u t e s t o d e g r e e s

505 SR = HLR / 1 .678 ! Conve r t from h a l f l i g h t r a d i u s t o e x p o n e n t i a l s c a l e r a d i u s

506 PA = PA ∗ ( p i / 1 8 0 . d0 ) ! Conve r t p o s i t i o n a n g l e from d e g r e e s t o r a d i a n s

507 e l l i p s e a r e a = p i ∗ o u t e r r a d ∗ o u t e r r a d ∗ ( 1 . d0 − e l l i p ) ! Area o f o u t e r e l l i p s e

508

509 e l l i p s e s t a r s = 0 . d0 ; maxweight = 0 . d0 ; maxa = 0 . d0

510

511 e l l i p s e a r e a = e l l i p s e a r e a − p i ∗ c r o w d e d r a d ∗ c r o w d e d r a d ∗ ( 1 . d0 − e l l i p ) ! S u b t r a c t a r e a o f i n n e r e l l i p s e

512

513

514 DO i = 1 , n d a t a 2 ! R o t a t i o n o f c o o r d i n a t e s t o match o r i e n t a t i o n

515 xdash = ( x k i ( i ) − ( XIop ) ) ∗ cos (PA) − ( e t a ( i ) − ( ETAop ) ) ∗ s i n (PA) ! o f s a t e l l i t e . The new c o o r d i n a t e s a r e t h e n used

516 ydash = ( x k i ( i ) − ( XIop ) ) ∗ s i n (PA) + ( e t a ( i ) − ( ETAop ) ) ∗ cos (PA) ! t o f i n d t h e major a x i s o f t h e e l l i p s e a g i v e n

517 s c a l e d a ( i ) = SQRT( ydash ∗ ∗2 . d0 + ( xdash ∗ ∗2 . d0 / ( 1 . d0 − e l l i p ) ∗ ∗2 . d0 ) ) ! s t a r l i e s on − t h i s e q u a t e s t o c i r c u l a r r a d i u s .

518 IF ( s c a l e d a ( i ) . l e . o u t e r r a d . and . s c a l e d a ( i ) . ge . c r o w d e d r a d ) THEN !

519 e l l i p s e s t a r s = e l l i p s e s t a r s + 1 . d0 ! Count s t a r s i n e l l i p s e a r e a

520 END IF !

521 IF ( s c a l e d a ( i ) . g t . maxa ) THEN !

522 maxa = s c a l e d a ( i ) ! F ind major− a x i s o f l a r g e s t e l l i p s e t h a t p a s s e s t h r o u g h f i e l d

523 END IF ! ( w e i g h t i n g w i l l be s m a l l e s t f o r s t a r s on t h i s e l l i p s e )

524 END DO

525

526 WRITE ( 3 , ∗ ) ”Number o f d a t a p o i n t s i n a n n u l u s : ” , e l l i p s e s t a r s

527 WRITE ( 3 , ∗ ) ” Average a n n u l u s SNR: ” , ( e l l i p s e s t a r s − (REAL( b g s t a r s ) ∗ ( e l l i p s e a r e a / b g a r e a ) ) ) / (REAL( b g s t a r s ) ∗ ( e l l i p s e a r e a /

b g a r e a ) )

528

529 d e n p r o f s c a l e = ( ( e l l i p s e s t a r s / e l l i p s e a r e a ) − ( b g s t a r s / b g a r e a ) ) ∗ e l l i p s e a r e a

530 d e n p r o f s c a l e = d e n p r o f s c a l e / ( 2 . d0 ∗ p i ∗ SR ∗ ( ( exp (− c r o w d e d r a d /SR ) ∗ ( SR + c r o w d e d r a d ) ) − ( exp (− o u t e r r a d /SR ) ∗ ( SR +

o u t e r r a d ) ) ) )

531 d e n p r o f s c a l e = d e n p r o f s c a l e / ( 1 . d0 − e l l i p )

532 ! / \ C a l c u l a t e s c a l i n g f a c t o r o f e l l i p t i c a l f u n c t i o n o f shape d e f i n e d by HLR, e l l i p t i c i t y and PA .

533 ! | | Thi s i s c a l c u l a t e d by i n s u r i n g t h e t o t a l number o f s t a r s unde r t h e c u r v e matches t h e number o f s t a r s i n e l l i p s e a r e a

534 ! Where t h e r e i s an i n n e r o r o u t e r c u t o f f r a d i u s , i t i s n o t a b s o l u t e l y n e c e s s a r y t o a c c o u n t f o r t h i s i n t h e s c a l i n g

535 ! as t h e e x p o n e n t i a l p r o f i l e s h o u l d a c c o u n t f o r t h e v a r i a t i o n s i n d e n s i t y a c r o s s a n n u l i b u t f o r c o m p l e t e n e s s , s c a l i n g i s a c h i e v e d

536 ! by on ly measu r ing t h e d e n s i t y and number o f s t a r s i n t h e a n n u l u s used ( t h i s becomes ve ry i m p o r t a n t i f a huge HLR i s s e t t o remove

537 ! w e i g h t i n g as t h e p r o f i l e w i l l no l o n g e r a c c o u n t f o r t h e v a r i a t i o n i n d e n s i t y i n t h i s c a s e ! )

538

539

540 DO i = 1 , n d a t a 2 !

541 IF ( t r u e s t a r p o l y ( i ) . and . s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN

542 we i g h t ( i ) = exp ( −1 . d0 ∗ s c a l e d a ( i ) /SR ) ∗ d e n p r o f s c a l e ! Apply w e i g h t s t o s t a r s based on e l l i p t i c a l

543 ELSE ! c o n t o u r t h e y l i e on .

544 we i g h t ( i ) = exp ( −1 . d0 ∗ maxa /SR ) ∗ d e n p r o f s c a l e ! A r t i f i c i a l s t a r s a r e g i v e n t h e l o w e s t p o s s i b l e

545 END IF ! we i g h t i n t h i s s t e p .

546 IF ( we i g h t ( i ) . g t . maxweight ) THEN !

547 maxweight = we i g h t ( i ) ! De te rmine maximum w ei gh t f o r use i n

548 END IF ! p l o t t i n g t h e w e i g h t e d LF

549 END DO !

550

551

552 ! | | A l l s u b s e q u e n t l i n e s i n t h i s s u b r o u t i n e a r e f o r p l o t t i n g t h e d e n s i t y f u n c t i o n

553 ! \ / ” d e n s i t y . ps ” and f o r c h e c k i n g t h e s c a l i n g r e l a t i v e t o t h e d a t a .
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554

555 D e n s i t y = 0 . e0

556 maxa = s i g f i e l d r a d i u s

557

558 DO i = 1 , n d a t a 2 ! C a l c u l a t e number o f s t a r s i n each d e n s i t y b i n ( i . e . e l l i p t i c a l a n n u l u s )

559 IF ( s c a l e d a ( i ) . l t . maxa ) THEN

560 D e n s i t y ( INT ( ( s c a l e d a ( i ) /maxa ) ∗ ( r h o b i n s ) ) + 1 , 2 ) = &

561 D e n s i t y ( INT ( ( s c a l e d a ( i ) /maxa ) ∗ ( r h o b i n s ) ) + 1 , 2 ) + 1 . e0

562 END IF

563 IF ( s c a l e d a ( i ) . eq . maxa ) THEN

564 D e n s i t y ( r h o b i n s , 2 ) = D e n s i t y ( r h o b i n s , 2 ) + 1 . d0

565 END IF

566 END DO

567

568 Dens i tysum = 0 . d0

569

570 DO i = 1 , r h o b i n s ! C a l c u l a t e d e n s i t y o f s t a r s i n each d e n s i t y b i n

571 D e n s i t y ( i , 1 ) = (REAL( i ) /REAL( r h o b i n s ) ) ∗ REAL( maxa ) ! r a d i u s o f b i n

572 IF ( i . eq . 1 ) THEN

573 De n s i g ( i ) = SQRT( D e n s i t y ( i , 2 ) ) / ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) !<−−−E r r o r b a r s f o r bin −−−−−−−−−−−−−−−−−−−−−−−−−−!

574 D e n s i t y ( i , 2 ) = D e n s i t y ( i , 2 ) / ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) !<−−−D e n s i t y o f bin −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−!

575 Dens i tysum = ( D e n s i t y ( i , 2 ) − ( b g s t a r s / b g a r e a ) ) ∗ ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) ! !

576 ELSE ! !

577 De n s i g ( i ) = SQRT( D e n s i t y ( i , 2 ) ) / ( ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) − ( p i ∗ ( D e n s i t y ( i −1 ,1) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) ) ! <−! !

578 D e n s i t y ( i , 2 ) = D e n s i t y ( i , 2 ) / ( ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) − ( p i ∗ ( D e n s i t y ( i −1 ,1) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) ) !<−−−−−−−!

579 Dens i tysum = Densi tysum + ( D e n s i t y ( i , 2 ) − ( b g s t a r s / b g a r e a ) ) ∗ ( ( p i ∗ ( D e n s i t y ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) − ( p i ∗ ( D e n s i t y ( i −1 ,1) ∗ ∗2 .

e0 ) ∗ ( 1 . e0 − e l l i p ) ) )

580 END IF

581 END DO

582

583 weightsum = 0 . d0

584 DO i = 1 , 500 ! C a l c u l a t e v a l u e s o f f i t t e d d e n s i t y p r o f i l e

585 w e i g h t p l o t ( i , 1 ) = (REAL( i ) / 5 0 0 . e0 ) ∗ maxa

586 w e i g h t p l o t ( i , 2 ) = exp ( −1 . e0 ∗ ( w e i g h t p l o t ( i , 1 ) ) /SR ) ∗ d e n p r o f s c a l e

587 IF ( i . eq . 1 ) THEN

588 weightsum = w e i g h t p l o t ( i , 2 ) ∗ ( p i ∗ ( w e i g h t p l o t ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) )

589 ELSE

590 weightsum = weightsum + w e i g h t p l o t ( i , 2 ) ∗ ( ( p i ∗ ( w e i g h t p l o t ( i , 1 ) ∗ ∗2 . e0 ) ∗ ( 1 . e0 − e l l i p ) ) − ( p i ∗ ( w e i g h t p l o t ( i −1 ,1) ∗ ∗2 . e0 ) ∗ ( 1 . e0 −

e l l i p ) ) )

591 END IF

592 END DO

593 w e i g h t p l o t ( : , 2 ) = w e i g h t p l o t ( : , 2 ) + ( b g s t a r s / b g a r e a )

594

595 WRITE ( 3 , ∗ ) ” s t a r s i n model / s t a r s i n l a r g e s t f i e l d e l l i p s e : ” , weightsum / Densi tysum

596 WRITE ( 3 , ∗ ) ” s t a r s i n a n n u l u s / s t a r s i n l a r g e s t f i e l d e l l i p s e : ” , &

597 ( ( ( e l l i p s e s t a r s / e l l i p s e a r e a ) − ( b g s t a r s / b g a r e a ) ) ∗ e l l i p s e a r e a ) / Densi tysum

598

599 CALL W e i g h t e r P l o t s

600

601 END SUBROUTINE Weigh te r

602

603 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

604

605 SUBROUTINE W e i g h t e r P l o t s ! P l o t s ( l o g ) b i nn ed d e n s i t y p r o f i l e o f o b j e c t and

606 USE Gl ob a l ! s u p e r i m p o s e s t h e b e s t f i t model t o t h e

607 IMPLICIT NONE ! d e n s i t y p r o f i l e

608

609 INTEGER : : lw

610

611 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s D e n s i t y P r o f i l e h i s t o g r a m

612 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / d e n s i t y . ps /CPS ’
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613 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

614

615 CALL pgenv ( 0 . , 1 . 1 ∗ REAL( maxa ) , 0 . , 1 . 1∗MAXVAL( ( /MAXVAL( w e i g h t p l o t ( : , 2 ) ) ,MAXVAL( D e n s i t y ( : , 2 ) + D e n s i g ) / ) ) , 0 , 0 )

616 CALL pgslw ( 1 0 )

617 CALL p g s c i ( 1 )

618

619 DO i = 1 , r h o b i n s ! P l o t d e n s i t y b i n v a l u e s

620 IF ( D e n s i t y ( i , 1 ) . l e . c r o w d e d r a d . o r . D e n s i t y ( i , 1 ) . g t . o u t e r r a d ) THEN

621 CALL p g s c i ( 5 ) ! O u t s i d e o f f i t t e d r e g i o n

622 CALL pgp t ( 1 , D e n s i t y ( i , 1 ) , D e n s i t y ( i , 2 ) , −1)

623 ELSE

624 CALL p g s c i ( 1 ) ! In f i t t e d r e g i o n

625 CALL pgp t ( 1 , D e n s i t y ( i , 1 ) , D e n s i t y ( i , 2 ) , −1)

626 END IF

627 END DO

628

629 CALL p g s c i ( 1 )

630 CALL pgslw ( 1 )

631

632 DO i = 1 , r h o b i n s ! P l o t e r r o r b a r s f o r d e n s i t y b i n v a l u e s

633 IF ( D e n s i t y ( i , 1 ) . l e . c r o w d e d r a d . o r . D e n s i t y ( i , 1 ) . g t . o u t e r r a d ) THEN

634 CALL p g s c i ( 5 ) ! O u t s i d e o f f i t t e d r e g i o n

635 CALL p g e r r y ( 1 , D e n s i t y ( i , 1 ) , D e n s i t y ( i , 2 ) + D e n s i g ( i ) , D e n s i t y ( i , 2 ) − D e n s i g ( i ) , 5 . )

636 ELSE

637 CALL p g s c i ( 1 ) ! In f i t t e d r e g i o n

638 CALL p g e r r y ( 1 , D e n s i t y ( i , 1 ) , D e n s i t y ( i , 2 ) + D e n s i g ( i ) , D e n s i t y ( i , 2 ) − D e n s i g ( i ) , 5 . )

639 END IF

640 END DO

641

642 CALL p g s c i ( 2 ) ! P l o t f i t t o d e n s i t y b i n s o f o b j e c t

643 CALL p g l i n e ( 5 0 0 , w e i g h t p l o t ( : , 1 ) , w e i g h t p l o t ( : , 2 ) )

644 CALL p g s c i ( 3 )

645 CALL p g l i n e ( 2 , ( / 0 . , REAL( s i g f i e l d r a d i u s ) / ) , ( /REAL( b g s t a r s / b g a r e a ) , REAL( b g s t a r s / b g a r e a ) / ) )

646 CALL p g p t x t ( 0 . 0 5 ∗REAL( s i g f i e l d r a d i u s ) , 1 . 2∗REAL( b g s t a r s / b g a r e a ) , 0 . , 0 . 5 , ’BG’ )

647 CALL p g s c i ( 1 )

648 CALL p g l a b ( ’ E l l i p t i c a l Rad ius ( d e g r e e s ) ’ , ’ O b j e c t s t a r s p e r sq . d e g r e e ’ , ’ ’ )

649

650 CALL pgend

651

652 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

653 ’ / d e n s i t y . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

654 ’ / d e n s i t y . j p g ’

655

656 c a l l sys tem ( command )

657

658 !−−−−−−−−−−−−−−−−−−S i g n a l −F i e l d −( w e i g h t e d )−−−−−−−−−−−−−−−−−−

659 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s i g f i e l d c c w . ps /CPS ’

660 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

661

662 CALL pgenv (MAXVAL( xki , mask = x k i . ne . 0 . ) , MINVAL( xki , mask = x k i . ne . 0 . ) , &

663 MINVAL( e t a , mask = e t a . ne . 0 . ) , MAXVAL( e t a , mask = e t a . ne . 0 . ) , 1 , 0 )

664

665 DO i = 1 , 20 !

666 CALL p g s c r ( i , 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i +10) ∗ p i / 1 0 ) ) + 1 . ) , & !

667 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i −5) ∗ p i / 1 0 ) ) + 1 . ) , & ! Ass ign c o l o u r s t o i n d i c i e s

668 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i ) ∗ p i / 1 0 ) ) + 1 . ) ) !

669 END DO !

670

671 DO i = 1 , n d a t a 2

672 lw = n i n t ( ( we i gh t ( i ) / maxweight ) ∗ 2 0 . d0 ) + 1

673 CALL pgslw ( lw+5)
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674 CALL p g s c i (22 − lw )

675 IF ( t r u e s t a r p o l y ( i ) ) THEN ! I f s t a r i s r e a l ( n o t a r t i f i c a l ) . . .

676 IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN ! F i t t e d s t a r s

677 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , −1)

678 ELSE

679 CALL pgslw ( 1 )

680 IF ( s c a l e d a ( i ) . l t . c r o w d e d r a d ) THEN ! s t a r s i n s i d e crowded r e g i o n

681 CALL p g s c i ( 3 )

682 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , 2779)

683 END IF

684 IF ( s c a l e d a ( i ) . g t . o u t e r r a d ) THEN ! s t a r s o u t s i d e f i t t e d r e g i o n

685 CALL p g s c i ( 2 0 )

686 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , 227) ! 2281)

687 END IF

688 END IF

689 ELSE ! I f s t a r i s a r t i f i c i a l . . .

690 CALL pgslw ( 1 )

691 CALL p g s c i ( 2 1 )

692 CALL pgp t ( 1 , x k i ( i ) , e t a ( i ) , 225)

693 END IF

694 END DO

695 CALL p g s c r ( 1 , 0 . , 0 . , 0 . )

696 CALL pgslw ( 1 )

697 CALL p g s c i ( 1 )

698 CALL p g l a b ( ’ \ ( 0 6 4 0 ) ( d e g r e e s ) ’ , ’ \ ( 0 6 3 3 ) ( d e g r e e s ) ’ , ’ ’ )

699

700 CALL pgend

701

702 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

703 ’ / s i g f i e l d c c w . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

704 ’ / s i g f i e l d c c w . j p g ’

705

706 c a l l sys tem ( command )

707

708 !−−−−−−−−−−−−−−−−−−−S i g n a l −CMD−( w e i g h t e d )−−−−−−−−−−−−−−−−−−−

709 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s ig cmd w . ps /CPS ’

710 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

711 !

712 CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , &

713 MAXVAL( mag i ) , MINVAL( mag i , mask = mag i . ne . 0 . ) , 0 , 0 )

714

715 DO i = 1 , 20 !

716 CALL p g s c r ( i , 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i +10) ∗ p i / 1 0 ) ) + 1 . ) , & !

717 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i −5) ∗ p i / 1 0 ) ) + 1 . ) , & ! Ass ign c o l o u r s t o i n d i c i e s

718 0 . 5 ∗ ( SIN ( 1 . 0 ∗REAL( ( i ) ∗ p i / 1 0 ) ) + 1 . ) ) !

719 END DO !

720

721 DO i = 1 , n d a t a 2

722 lw = n i n t ( ( we i gh t ( i ) / maxweight ) ∗ 2 0 . d0 ) + 1

723 CALL pgslw ( lw+5)

724 CALL p g s c i (22 − lw )

725 IF ( t r u e s t a r p o l y ( i ) ) THEN ! I f s t a r i s r e a l ( n o t a r t i f i c a l ) . . .

726 IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN ! F i t t e d s t a r s

727 CALL pgp t ( 1 , REAL( g m i n i p o l y ( i ) ) , REAL( data ( i ) ) , −1)

728 ELSE

729 CALL pgslw ( 1 )

730 IF ( s c a l e d a ( i ) . l t . c r o w d e d r a d ) THEN ! s t a r s i n s i d e crowded r e g i o n

731 CALL p g s c i ( 3 )

732 CALL pgp t ( 1 , REAL( g m i n i p o l y ( i ) ) , REAL( data ( i ) ) , 2779)

733 END IF

734 IF ( s c a l e d a ( i ) . g t . o u t e r r a d ) THEN ! s t a r s o u t s i d e f i t t e d r e g i o n
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735 CALL p g s c i ( 2 0 )

736 CALL pgp t ( 1 , REAL( g m i n i p o l y ( i ) ) , REAL( data ( i ) ) , 227)

737 END IF

738 END IF

739 ELSE ! I f s t a r i s a r t i f i c i a l . . .

740 CALL pgslw ( 1 )

741 CALL p g s c i ( 2 1 )

742 CALL pgp t ( 1 , REAL( g m i n i p o l y ( i ) ) , REAL( data ( i ) ) , 225)

743 END IF

744 END DO

745 CALL p g s c r ( 1 , 0 . , 0 . , 0 . )

746 CALL p g s c r ( 2 , 1 . , 0 . , 0 . )

747 CALL pgslw ( 3 )

748 CALL p g s c i ( 1 )

749 CALL pgp t ( nda ta , g m i n i , mag i , −1)

750 CALL pgslw ( 1 )

751 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

752

753 CALL P o l y S e l e c t

754

755 CALL pgend

756

757 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

758 ’ / s ig cmd w . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

759 ’ / s ig cmd w . j p g ’

760

761 c a l l sys tem ( command )

762

763 !−−−−−−−−−−−−−−−−−−−S i g n a l −CMD−( i n c l u d e d s t a r s on l y )−−−−−−−−−−−−−−−−−−−

764

765 DO i = 1 , n d a t a ! R o t a t i o n o f c o o r d i n a t e s t o match o r i e n t a t i o n

766 xdash = ( x i a l l ( i ) − ( XIop ) ) ∗ cos (PA) − ( e t a a l l ( i ) − ( ETAop ) ) ∗ s i n (PA) ! o f s a t e l l i t e . The new c o o r d i n a t e s a r e t h e n used

767 ydash = ( x i a l l ( i ) − ( XIop ) ) ∗ s i n (PA) + ( e t a a l l ( i ) − ( ETAop ) ) ∗ cos (PA) ! t o f i n d t h e major a x i s o f t h e e l l i p s e a g i v e n

768 s c a l e d a a l l ( i ) = SQRT( ydash ∗ ∗2 . d0 + ( xdash ∗ ∗2 . d0 / ( 1 . d0 − e l l i p ) ∗ ∗2 . d0 ) ) ! s t a r l i e s on − t h i s e q u a t e s t o c i r c u l a r r a d i u s .

769 END DO

770

771 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / s i g c m d u s e d . ps /CPS ’

772 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

773 !

774 CALL pgenv (MINVAL( g m i n i , mask = g m i n i . ne . 0 . ) , MAXVAL( g m i n i ) , &

775 MAXVAL( mag i ) , MINVAL( mag i , mask = mag i . ne . 0 . ) , 0 , 0 )

776

777

778 DO i = 1 , n d a t a

779 IF ( s c a l e d a a l l ( i ) . ge . c r o w d e d r a d . and . s c a l e d a a l l ( i ) . l e . o u t e r r a d ) THEN

780 CALL pgp t ( 1 , REAL( g m i n i ( i ) ) , REAL( mag i ( i ) ) , −1)

781 END IF

782 END DO

783

784 CALL p g l a b ( ’ ( g − i ) \d0 \u ’ , ’ i \d0 \u ’ , ’ ’ )

785

786 CALL P o l y S e l e c t

787

788 CALL pgend

789

790 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

791 ’ / s i g c m d u s e d . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

792 ’ / s i g c m d u s e d . j p g ’

793

794 c a l l sys tem ( command )

795
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796 END SUBROUTINE W e i g h t e r P l o t s

797

798 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

799

800 SUBROUTINE SVDFi t t e r ! For f i t t i n g p o l y n o m i a l t o t h e

801 USE Gl ob a l ! background f i e l d l u m i n o s i t y f u n c t i o n

802 IMPLICIT NONE

803

804 INTEGER : : ntmp

805

806 xa = b g h i s t o c o a r s e ( : , 1 )

807 ya = b g h i s t o c o a r s e ( : , 2 )

808 x t = xa

809 y t = ya

810 s i g = 1 . e0

811

812

813 ! S h i f t t h e a r r a y i n s t e p s o f 1 u n t i l t h e f i r s t e l e m e n t does n o t c o n t a i n a z e r o

814

815 s h i f t l o o p : do

816 x t = c s h i f t ( x t , 1 )

817 y t = c s h i f t ( y t , 1 )

818 i f ( y t ( 1 ) > 0 . 1 ) e x i t s h i f t l o o p

819 end do s h i f t l o o p

820

821 ntmp = 0

822 c o u n t l o o p : do i = 1 , n d a t

823 i f ( y t ( i ) > 0 . 1 ) then

824 ntmp = ntmp + 1

825 e l s e

826 e x i t c o u n t l o o p

827 end i f

828 end do c o u n t l o o p

829

830 x t = x t − 2 1 .

831

832 CALL s v d f i t ( x t , y t , s i g , ntmp −1 , ay , ma , u , v , w, mp , np , c h i s q , f u n c s )

833

834 CALL BG DataHis t

835

836 END SUBROUTINE SVDFi t t e r

837

838 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

839

840 SUBROUTINE BG DataHis t ! P r o d u c e s p l o t o f background f i e l d l u m i n o s i t y

841 USE Gl ob a l ! f u n c t i o n and p o l y n o m i a l f i t

842 IMPLICIT NONE

843

844 bfm = 0 . d0

845

846 DO i = 1 , n d a t

847 DO j = 1 , np

848 bfm ( i ) = bfm ( i ) + ay ( j ) ∗ ( xa ( i ) −21. ) ∗∗ ( j −1)

849 END DO

850 END DO

851

852

853 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r c o a r s e h i s t o g r a m

854 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / b c k g r d f i t . ps /CPS ’

855 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

856
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857 CALL pgenv ( 1 8 . , 2 4 . , 0 . , 1 . 1∗MAXVAL(REAL( b g h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 )

858 CALL pgb in ( nda t , REAL( b g h i s t o c o a r s e ( : , 1 ) ) , REAL( b g h i s t o c o a r s e ( : , 2 ) ) , . t r u e . )

859 CALL p g s c i ( 2 )

860 CALL p g l i n e ( nda t , xa , REAL( bfm ) )

861 CALL p g s c i ( 1 )

862 CALL p g l a b ( ’ i \d0 \u ’ , ’ c o u n t s ’ , ’ ’ )

863

864 CALL pgend

865

866 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

867 ’ / b c k g r d f i t . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

868 ’ / b c k g r d f i t . j p g ’

869

870 c a l l sys tem ( command )

871

872 END SUBROUTINE BG DataHis t

873

874 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

875

876 SUBROUTINE MCMC ! The m a s t e r Markov Chain MonteCar lo r o u t i n e

877 USE Gl ob a l ! c r e a t e s a new model a t each i t e r a t i o n and t h e n compares

878 IMPLICIT NONE ! t h e q u a l i t y o f t h e f i t t o t h e d a t a

879 ! ∗∗∗ Most s u b r o u t i n e s a r e c a l l e d from ’MCMC’ ∗∗∗

880

881 REAL∗8 : : gasdev

882

883 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ /MCMC steps . d a t ’

884 OPEN( 2 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

885 OPEN( 8 , f i l e =TRIM(ADJUSTL( f i e l d ) ) / / ’ /MCMC steps unf . d a t ’ , form = ’ u n f o r m a t t e d ’ , s t a t u s = ’ unknown ’ )

886 WRITE( 2 , ∗ ) ” I t e r a t i o n m a g t i p f a LikeA LikeB ”

887

888 n o t s c o u t = . f a l s e . ; s c o u t c o u n t s = 0

889

890 known f = (REAL( b g s t a r s ) ∗ s i g a r e a ) / (REAL( s i g s t a r s ) ∗ b g a r e a )

891

892 x1 ( 1 , : ) = 2 0 . 5 d0 ; x2 ( 1 , : ) = known f ; x3 ( 1 , : ) = 0 . 3 d0 ; t i me ( 1 ) = 1

893

894

895 1 IF ( n o t s c o u t ) THEN ! S e t v a l u e s

896 x1 ( 1 , : ) = x1 ( 2 0 0 , : ) ; x2 ( 1 , : ) = x2 ( 2 0 0 , : ) ; x3 ( 1 , : ) = x3 ( 2 0 0 , : ) ; t i me ( 1 ) = 1 ! a f t e r

897 END IF ! s c o u t run

898

899 m a g t i p = x1 ( 1 , 1 ) ; f = x2 ( 1 , 1 ) ; a = x3 ( 1 , 1 )

900 cn = 1 ; b e t a = b e t a h o l d e r ( 1 )

901 CALL ModelMake ! Make model and

902 CALL C o n v o l u t i o n !

903 DO j = 1 , num cha ins ! e v a l u a t e goodness o f f i t

904 cn = j ; b e t a = b e t a h o l d e r ( cn ) !

905 CALL L o g l i k e ! f o r i n i t i a l p a r a m e t e r c h o i c e s

906 LikeA ( cn ) = logL ( cn ) !

907 END DO !

908 LikeB ( : ) = 0 . d0

909

910 x1 ( 2 , : ) = x1 ( 1 , : ) ; x2 ( 2 , : ) = x2 ( 1 , : ) ; x3 ( 2 , : ) = x3 ( 1 , : )

911

912 Best Combo ( 5 ) = −9. d99

913 DO i t = 2 , n i t

914 t i me ( i t ) = i t

915 DO cn = 1 , num cha ins

916 b e t a = b e t a h o l d e r ( cn )

917 p ( 1 ) = x1 ( i t , cn ) + m step ( cn ) ∗ gasdev ( idum ) ! G a u s s i a n w e i g h t e d s t e p s from i n i t i a l
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918 p ( 2 ) = x2 ( i t , cn ) ! + f s t e p ( cn ) ∗ gasdev ( idum ) ! p a r a m e t e r s f o r t h e t i p magn i tude ( p ( 1 ) )

919 p ( 3 ) = x3 ( i t , cn ) + a s t e p ( cn ) ∗ gasdev ( idum ) ! n o i s e r a t i o ( p ( 2 ) ) and s l o p e ( p ( 3 ) )

920

921 IF ( p ( 1 ) . l t . b l im . o r . p ( 1 ) . g t . f l i m ) THEN !

922 r = 0 . d0 !

923 e l s e IF ( p ( 2 ) . l e . 0 . d0 . o r . p ( 2 ) . ge . 1 . d0 ) THEN ! R e s t r i c t i o n s on

924 r = 0 . d0 ! whe the r p r o p o s e d

925 e l s e IF ( p ( 3 ) . l e . 0 . d0 . o r . p ( 3 ) . ge . 2 . d0 ) THEN ! s t e p i s t a k e n

926 r = 0 . d0 !

927 e l s e !

928 m a g t i p = p ( 1 ) ; f = p ( 2 ) ; a = p ( 3 )

929 CALL ModelMake ! Make model and

930 CALL C o n v o l u t i o n ! e v a l u a t e t h e

931 CALL L o g l i k e ! goodness o f f i t

932 LikeB ( cn ) = logL ( cn )

933 r = 10∗∗ ( LikeB ( cn ) − LikeA ( cn ) )

934 end IF

935

936 IF ( cn . eq . 1 . and . n o t s c o u t ) THEN ! Only c o u n t s a f t e r t h e s c o u t i n g run c o n t r i b u t e t o t h e ppds

937 p o s t y 1 ( INT ( ( x1 ( i t , 1 ) − 1 8 . d0 ) ∗10∗ binspm + 1) ) = & !

938 p o s t y 1 ( INT ( ( x1 ( i t , 1 ) − 1 8 . d0 ) ∗10∗ binspm + 1) ) + 1 . d0 !

939 p o s t y 2 ( INT ( x2 ( i t , 1 ) ∗ ( n b i n s − 1) ) + 1) = & ! G e n e r a t e p o s t e r i o r p l o t

940 p o s t y 2 ( INT ( x2 ( i t , 1 ) ∗ ( n b i n s − 1) ) + 1) + 1 . d0 ! f o r mag t ip , f and a

941 p o s t y 3 ( INT ( x3 ( i t , 1 ) ∗ ( n b i n s − 1) ) + 1) = & !

942 p o s t y 3 ( INT ( x3 ( i t , 1 ) ∗ ( n b i n s − 1) ) + 1) + 1 . d0 !

943

944 WRITE ( 2 , ’ (6 F16 . 5 ) ’ ) t i me ( i t ) , x1 ( i t , cn ) , x2 ( i t , cn ) , x3 ( i t , cn ) , LikeA ( cn ) , LikeB ( cn )

945 WRITE ( 8 ) t i me ( i t ) , x1 ( i t , cn ) , x2 ( i t , cn ) , x3 ( i t , cn ) , LikeA ( cn ) , LikeB ( cn )

946 ! / \ P r i n t s c u r r e n t p a r a m e t e r v a l u e s and t h e i r l i k e l i h o o d ( LikeA ) as

947 ! | | w e l l a s t h e l i k e l i h o o d of t h e c u r r e n t p r o p o s e d swap ( LikeB )

948 IF ( LikeA ( cn ) . g t . Best Combo ( 5 ) ) THEN !

949 Best Combo ( 1 ) = t i me ( i t ) ; Best Combo ( 2 ) = x1 ( i t , cn ) ! Update b e s t l i k e l i h o o d

950 Best Combo ( 3 ) = x2 ( i t , cn ) ; Best Combo ( 4 ) = x3 ( i t , cn ) ! c o m b i n a t i o n e n c o u n t e r e d

951 Best Combo ( 5 ) = LikeA ( cn ) ; Best Combo ( 6 ) = LikeB ( cn ) !

952 END IF

953 END IF

954

955 CALL random number ( randnum3 ) !

956 IF ( i t . l t . n i t ) THEN !

957 IF ( randnum3 . l e . r ) THEN !

958 x1 ( i t +1 , cn ) = p ( 1 ) !

959 x2 ( i t +1 , cn ) = p ( 2 ) !

960 x3 ( i t +1 , cn ) = p ( 3 ) ! Decide

961 l i k e A ( cn ) = l i k e B ( cn ) ! whe the r

962 ELSE ! t o t a k e

963 x1 ( i t +1 , cn ) = x1 ( i t , cn ) ! s t e p

964 x2 ( i t +1 , cn ) = x2 ( i t , cn ) !

965 x3 ( i t +1 , cn ) = x3 ( i t , cn ) !

966 l i k e A ( cn ) = l i k e A ( cn ) !

967 END IF !

968 END IF

969 END DO

970 ! / \ RUN MULTIPLE

971 ! | | MCMC CHAINS

972

973 IF ( s c o u t c o u n t s . l t . 200) THEN !

974 s c o u t c o u n t s = s c o u t c o u n t s + 1 !

975 c y c l e !

976 END IF ! 200 i t e r a t i o n s w i l l be run a t t h e b e g i n n i n g b e f o r e t h e

977 IF ( s c o u t c o u n t s . eq . 200) THEN !

978 n o t s c o u t = . t r u e . ! ’ n i t ’ used i t e r a t i o n s i n o r d e r t o remove t h e l e a d i n t r a i l .
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979 s c o u t c o u n t s = 1000000000 !

980 goto 1 !

981 END IF !

982

983 ! | | PARALLEL

984 ! \ / TEMPERING

985 IF ( num cha ins . ne . 1 . and . i t . ne . n i t ) THEN

986 CALL random number ( randnum4 )

987 IF ( randnum4 . l e . s w a p r a t e ) THEN

988 CALL random number ( randnum4 )

989 r a n d i n t = INT ( ( num cha ins − 1) ∗ randnum4 ) + 1

990 IF ( r a n d i n t . eq . 1 ) THEN ! Count number o f p r o p o s e d

991 c h a i n c o m p a r e = c h a i n c o m p a r e + 1 . ! swaps wi t h t h e

992 END IF ! c o l d s a m p l e r c h a i n

993 PTAR = ( B e t a h o l d e r ( r a n d i n t ) / B e t a h o l d e r ( r a n d i n t + 1) ) ∗ LikeA ( r a n d i n t + 1) + &

994 ( B e t a h o l d e r ( r a n d i n t + 1) / B e t a h o l d e r ( r a n d i n t ) ) ∗ LikeA ( r a n d i n t ) − &

995 LikeA ( r a n d i n t ) − LikeA ( r a n d i n t + 1)

996 CALL random number ( randnum5 )

997 IF ( randnum5 . l e . 10 ∗∗ PTAR) THEN

998 IF ( r a n d i n t . eq . 1 ) THEN ! Count number o f a c c e p t e d

999 swap coun t = swap coun t + 1 ! swaps wi t h t h e

1000 END IF ! c o l d s a m p l e r c h a i n

1001 p a r h o l d ( 1 ) = x1 ( i t +1 , r a n d i n t ) !

1002 p a r h o l d ( 2 ) = x2 ( i t +1 , r a n d i n t ) !

1003 p a r h o l d ( 3 ) = x3 ( i t +1 , r a n d i n t ) !

1004 p a r h o l d ( 4 ) = LikeA ( r a n d i n t ) !

1005 x1 ( i t +1 , r a n d i n t ) = x1 ( i t +1 , r a n d i n t + 1) !

1006 x2 ( i t +1 , r a n d i n t ) = x2 ( i t +1 , r a n d i n t + 1) ! Swap t h e p a r a m e t e r

1007 x3 ( i t +1 , r a n d i n t ) = x3 ( i t +1 , r a n d i n t + 1) ! v a l u e s and

1008 LikeA ( r a n d i n t ) = LikeA ( r a n d i n t + 1) ∗ & ! l i k e l i h o o d s

1009 ( B e t a h o l d e r ( r a n d i n t ) / B e t a h o l d e r ( r a n d i n t + 1) ) ! be tween c h a i n s

1010 x1 ( i t +1 , r a n d i n t + 1) = p a r h o l d ( 1 ) !

1011 x2 ( i t +1 , r a n d i n t + 1) = p a r h o l d ( 2 ) !

1012 x3 ( i t +1 , r a n d i n t + 1) = p a r h o l d ( 3 ) !

1013 LikeA ( r a n d i n t + 1) = p a r h o l d ( 4 ) ∗ & !

1014 ( B e t a h o l d e r ( r a n d i n t + 1) / B e t a h o l d e r ( r a n d i n t ) ) !

1015 END IF

1016 END IF

1017 END IF

1018

1019 END DO

1020

1021 x1 ( 1 , : ) = x1 ( 2 0 0 , : ) ; x2 ( 1 , : ) = x2 ( 2 0 0 , : ) ; x3 ( 1 , : ) = x3 ( 2 0 0 , : ) ! Remove i n i t i a l

1022 x1 ( 2 , : ) = x1 ( 2 0 1 , : ) ; x2 ( 2 , : ) = x2 ( 2 0 1 , : ) ; x3 ( 2 , : ) = x3 ( 2 0 1 , : ) ! p a r a m e t e r v a l u e s

1023

1024 WRITE ( 2 , ’ (6 F16 . 5 ) ’ ) Best Combo ( 1 ) , Best Combo ( 2 ) , Best Combo ( 3 ) , &

1025 Best Combo ( 4 ) , Best Combo ( 5 ) , Best Combo ( 6 )

1026

1027 DO i = 1 , 10∗ ( nb ins −1)+1 !

1028 p o s t x 1 ( i ) = 1 8 . d0 + (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) !

1029 END DO !

1030 !

1031 DO i = 1 , n b i n s ! x−v a l u e s o f p o s t e r i o r

1032 p o s t x 2 ( i ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) ! h i s t o g r a m s c r e a t e d above

1033 END DO !

1034 !

1035 DO i = 1 , 2∗ n b i n s − 1 !

1036 p o s t x 3 ( i ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) !

1037 END DO !

1038

1039 END SUBROUTINE MCMC



188 Chapter Four Programs

1040

1041 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1042

1043 SUBROUTINE P o s t e r i o r P l o t ! P r o d u c e s h i s t o g r a m p l o t s o f t h e p o s t e r i o r d i s t r i b u t i o n s

1044 USE Gl ob a l ! i n t h e t i p magn i tude and LF s l o p e

1045 IMPLICIT NONE

1046

1047 p o s t y 1 = p o s t y 1 / n i t ; p o s t y 2 = p o s t y 2 / n i t ; p o s t y 3 = p o s t y 3 / n i t

1048

1049 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s m a g t i p p o s t e r i o r p l o t

1050 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m a g t i p p o s t p l o t . ps /CPS ’

1051 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1052

1053 CALL pgenv (REAL(MINVAL( p o s t x 1 , mask = p o s t y 1 . ne . 0 . ) ) , &

1054 REAL(MAXVAL( p o s t x 1 , mask = p o s t y 1 . ne . 0 . ) ) , 0 . , &

1055 1 . 1∗REAL(MAXVAL( p o s t y 1 ) ) , 0 , 0 )

1056 CALL pgb in ( 1 0 ∗ ( nb ins −1)+1 , REAL( p o s t x 1 ) , REAL( p o s t y 1 ) , . f a l s e . )

1057 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

1058

1059 CALL pgend

1060

1061 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1062 ’ / m a g t i p p o s t p l o t . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1063 ’ / m a g t i p p o s t p l o t . j p g ’

1064

1065 c a l l sys tem ( command )

1066

1067 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s f and a p o s t e r i o r p l o t s

1068 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f a n d a p o s t p l o t . ps /CPS ’

1069 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1070

1071 IF (MAXVAL( p o s t y 3 ) . ge . MAXVAL( p o s t y 2 ) ) THEN

1072 CALL pgenv ( 0 . , 2 . , 0 . , 1 . 1∗REAL(MAXVAL( p o s t y 3 ) ) , 0 , 0 )

1073 ELSE

1074 CALL pgenv ( 0 . , 2 . , 0 . , 1 . 1∗REAL(MAXVAL( p o s t y 2 ) ) , 0 , 0 )

1075 END IF

1076

1077 CALL p g s c i ( 2 )

1078 CALL pgb in ( nb ins , REAL( p o s t x 2 ) , REAL( p o s t y 2 ) , . f a l s e . )

1079 CALL p g s c i ( 3 )

1080 CALL pgb in (2∗ nb ins −1 , REAL( p o s t x 3 ) , REAL( p o s t y 3 ) , . f a l s e . )

1081 CALL p g s c i ( 1 )

1082 CALL p g l a b ( ’ P roposed v a l u e ’ , ’ P r o b a b i l i t y : f ( r e d ) a ( g r e e n ) ’ , ’ ’ )

1083

1084 CALL pgend

1085

1086 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1087 ’ / f a n d a p o s t p l o t . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1088 ’ / f a n d a p o s t p l o t . j p g ’

1089

1090 c a l l sys tem ( command )

1091

1092 p o s t y 1 = p o s t y 1 ∗ n i t ; p o s t y 2 = p o s t y 2 ∗ n i t ; p o s t y 3 = p o s t y 3 ∗ n i t

1093

1094 END SUBROUTINE P o s t e r i o r P l o t

1095

1096 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1097

1098 SUBROUTINE O t h e r P l o t s !MCMC r e l a t e d p l o t s − i . e . p l o t s each p a r a m e t e r vs .

1099 USE Gl ob a l ! i t e r a t i o n number and vs . each o t h e r

1100 IMPLICIT NONE
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1101

1102 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−V a r i a t i o n o f ’ mag t ip ’ w i t h i t e r a t i o n #

1103 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m a g t i p v a l v s i t . ps /CPS ’

1104 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1105

1106 CALL pgenv ( 0 . , REAL( n i t ) , REAL(MINVAL( x1 ( : , 1 ) ) ) −0.1 , REAL(MAXVAL( x1 ( : , 1 ) ) ) +0 .1 , 0 , 0 )

1107 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x1 ( : , 1 ) ) )

1108 CALL p g l a b ( ’ I t e r a t i o n number ’ , ’ P roposed i \d0 \u t i p magn i tude ’ , ’ ’ )

1109

1110 CALL pgend

1111

1112 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1113 ’ / m a g t i p v a l v s i t . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1114 ’ / m a g t i p v a l v s i t . j p g ’

1115

1116 c a l l sys tem ( command )

1117

1118 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−V a r i a t i o n o f ’ f ’ and ’ a ’ w i t h i t e r a t i o n #

1119 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f a n d a v a l v s i t . ps /CPS ’

1120 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1121

1122 CALL pgenv ( 0 . , REAL( n i t ) , 0 . , 2 . , 0 , 0 )

1123 CALL p g s c i ( 2 )

1124 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x2 ( : , 1 ) ) )

1125 CALL p g s c i ( 3 )

1126 CALL p g l i n e ( n i t , REAL( t i me ) , REAL( x3 ( : , 1 ) ) )

1127 CALL p g s c i ( 1 )

1128 CALL p g l a b ( ’ I t e r a t i o n number ’ , ’ P roposed v a l u e : f ( r e d ) a ( g r e e n ) ’ , ’ ’ )

1129

1130 CALL pgend

1131

1132 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1133 ’ / f a n d a v a l v s i t . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1134 ’ / f a n d a v a l v s i t . j p g ’

1135

1136 c a l l sys tem ( command )

1137

1138 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ f ’ f o r each v a l u e o f ’ mag t ip ’

1139 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / f v s m a g t i p . ps /CPS ’

1140 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1141

1142 CALL pgenv ( 0 . 9 9 ∗REAL(MINVAL( x1 ( : , 1 ) ) ) , 1 . 0 1∗REAL(MAXVAL( x1 ( : , 1 ) ) ) , 0 . 9∗REAL(MINVAL( x2 ( : , 1 ) ) ) , 1 . 1∗REAL(MAXVAL( x2 ( : , 1 ) ) ) , 0 , 0 )

1143 CALL pgslw ( 3 )

1144 CALL p g p o i n t ( n i t , REAL( x1 ( : , 1 ) ) , REAL( x2 ( : , 1 ) ) , −1)

1145 CALL pgslw ( 1 )

1146 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P roposed v a l u e o f f ’ , ’ ’ )

1147

1148 CALL pgend

1149

1150 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1151 ’ / f v s m a g t i p . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1152 ’ / f v s m a g t i p . j p g ’

1153

1154 c a l l sys tem ( command )

1155

1156 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ a ’ f o r each v a l u e o f ’ mag t ip ’

1157 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / a v s m a g t i p . ps /CPS ’

1158 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1159

1160 CALL pgenv ( 0 . 9 9 ∗REAL(MINVAL( x1 ( : , 1 ) ) ) , 1 . 0 1∗REAL(MAXVAL( x1 ( : , 1 ) ) ) , 0 . 9∗REAL(MINVAL( x3 ( : , 1 ) ) ) , 1 . 1∗REAL(MAXVAL( x3 ( : , 1 ) ) ) , 0 , 0 )

1161 CALL pgslw ( 3 )
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1162 CALL p g p o i n t ( n i t , REAL( x1 ( : , 1 ) ) , REAL( x3 ( : , 1 ) ) , −1)

1163 CALL pgslw ( 1 )

1164 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P roposed v a l u e o f a ’ , ’ ’ )

1165

1166 CALL pgend

1167

1168 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1169 ’ / a v s m a g t i p . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1170 ’ / a v s m a g t i p . j p g ’

1171

1172 c a l l sys tem ( command )

1173

1174 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Values o f ’ f ’ f o r each v a l u e o f ’ a ’

1175 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / a v s f . ps /CPS ’

1176 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1177

1178 CALL pgenv ( 0 . 9 ∗REAL(MINVAL( x2 ( : , 1 ) ) ) , 1 . 1∗REAL(MAXVAL( x2 ( : , 1 ) ) ) , 0 . 9∗REAL(MINVAL( x3 ( : , 1 ) ) ) , 1 . 1∗REAL(MAXVAL( x3 ( : , 1 ) ) ) , 0 , 0 )

1179 CALL pgslw ( 3 )

1180 CALL p g p o i n t ( n i t , REAL( x2 ( : , 1 ) ) , REAL( x3 ( : , 1 ) ) , −1)

1181 CALL pgslw ( 1 )

1182 CALL p g l a b ( ’ P roposed v a l u e o f f ’ , ’ P roposed v a l u e o f a ’ , ’ ’ )

1183

1184 CALL pgend

1185

1186 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1187 ’ / a v s f . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1188 ’ / a v s f . j p g ’

1189

1190 c a l l sys tem ( command )

1191

1192 END SUBROUTINE O t h e r P l o t s

1193

1194 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1195

1196 SUBROUTINE NoiseMake ! G e n e r a t e s a p o l y n o m i a l o f d e g r e e 7 t h a t f o l l o w s t h e

1197 USE Gl ob a l ! f u n c t i o n a l form of t h e GSS background LF . The p o l y n o m i a l

1198 IMPLICIT NONE ! c o e f f i c i e n t s were d e r i v e d i n ’ B ackg roundPo lyF i t ’ u s i n g

1199 ! ’ s v d f i t ’ from Numer ica l R e c i p e s .

1200 a r e a 2 = 0 . d0

1201

1202 DO i = 1 , 8 ∗ binspm + 1

1203 m o d e l n o i s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( binspm )

1204 m o d e l n o i s e ( i , 2 ) = 0 . d0

1205 DO j = 1 , np ! S e t background c o u n t s

1206 m o d e l n o i s e ( i , 2 ) = m o d e l n o i s e ( i , 2 ) + ay ( j ) ∗ ( m o d e l n o i s e ( i , 1 ) − 2 1 . d0 ) ∗∗ ( j − 1)

1207 END DO

1208 IF ( m o d e l n o i s e ( i , 2 ) . l t . 0 . d0 ) THEN !

1209 m o d e l n o i s e ( i , 2 ) = 0 . d0 ! I n s u r e no n e g a t i v e c o u n t s

1210 END IF !

1211 IF ( i . ge . b l i m B i n s . and . i . l e . f l i m B i n s ) THEN

1212 a r e a 2 = a r e a 2 + m o d e l n o i s e ( i , 2 ) ! Used f o r n o r m a l i z a t i o n i n ’ ModelMake ’

1213 END IF

1214 END DO

1215

1216 model ( : , 2 ) = m o d e l n o i s e ( : , 2 ) / a r e a 2

1217

1218 CALL C o n v o l u t i o n

1219 n o i s e = cmodel ( : , 2 )

1220

1221 END SUBROUTINE NoiseMake

1222
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1223 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1224 SUBROUTINE N o i s e P l o t ! P l o t s t h e u n s c a l e d form of t h e background LF

1225 USE Gl ob a l

1226 IMPLICIT NONE

1227

1228 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

1229

1230 CALL pgenv (REAL( b l im ) , REAL( m a g c u t o f f ) , 0 . , 1 . 1∗REAL(MAXVAL( m o d e l n o i s e ( : , 2 ) , mask = m o d e l n o i s e ( : , 1 ) . l e . 2 3 . 5 . and . m o d e l n o i s e ( : , 1 )

. ge . b g b l i m ) ) , 0 , 0 )

1231 CALL pgb in ( n b i n s − INT ( 2 . 5 ∗ binspm ) , REAL( m o d e l n o i s e ( : , 1 ) ) , REAL( m o d e l n o i s e ( : , 2 ) ) , . t r u e . )

1232 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

1233

1234 CALL pgend

1235

1236 END SUBROUTINE N o i s e P l o t

1237

1238 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1239

1240 SUBROUTINE ModelMake ! I n i t i a l Model ( i . e . model b e f o r e c o n v o l u t i o n )

1241 USE Gl ob a l

1242 IMPLICIT NONE

1243

1244 REAL∗8 : : f u n c i

1245

1246 a r e a = 0 . d0

1247 DO i = 1 , n b i n s

1248 model ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( binspm )

1249 IF ( model ( i , 1 ) + hb . g t . m a g t i p . and . model ( i , 1 ) − hb . l e . m a g t i p ) THEN

1250 model ( i , 2 ) = ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) + hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) ) − &

1251 ( 1 . d0 / ( a ∗LOG( 1 0 . ) ) ) ! Model v a l u e a t t i p

1252 a r e a = a r e a + model ( i , 2 ) ! Used f o r n o r m a l i z a t i o n

1253 ELSE IF ( model ( i , 1 ) . g t . m a g t i p ) THEN ! Model v a l u e f a i n t w a r d o f t i p

1254 model ( i , 2 ) = ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) + hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) ) − &

1255 ( ( 1 0 . d0 ∗∗ ( a ∗ ( model ( i , 1 ) − hb − m a g t i p ) ) ) / ( a ∗LOG( 1 0 . ) ) )

1256 ELSE

1257 model ( i , 2 ) = 0 . d0 ! Model v a l u e b r i g h t w a r d o f t i p

1258 END IF

1259 IF ( i . ge . b l i m B i n s . and . i . l e . f l i m B i n s ) THEN

1260 a r e a = a r e a + model ( i , 2 ) ! Used f o r n o r m a l i z a t i o n

1261 END IF

1262 END DO

1263

1264 model ( : , 2 ) = model ( : , 2 ) / a r e a ! Normal i ze

1265

1266 END SUBROUTINE ModelMake

1267

1268 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1269

1270 SUBROUTINE M o d e l P r i n t ! P r i n t s model b e f o r e c o n v o l u t i o n

1271 USE Gl ob a l

1272 IMPLICIT NONE

1273

1274 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

1275

1276 CALL pgenv (REAL( m a g t i p ) − 3 . , REAL( m a g c u t o f f ) , 0 . , 1 . 1∗REAL( model ( INT ( 5 . 5 ∗ binspm ) , 2 ) ) , 0 , 0 )

1277 CALL pgb in ( n b i n s − INT ( 2 . 5 ∗ binspm ) , REAL( model ( : , 1 ) ) , REAL( model ( : , 2 ) ) , . t r u e . )

1278 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

1279

1280 CALL pgend

1281

1282 END SUBROUTINE M o d e l P r i n t
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1283

1284 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1285

1286 SUBROUTINE G a u s s i a n K e r n e l ! G e n e r a t e s a G a u s s i a n k e r n e l ’ k e r n e l ’ w i t h

1287 USE Gl ob a l !HWHM ( sigma ) c h a n g i n g wi th magn i tude i n

1288 IMPLICIT NONE ! a c c o r d a n c e wi th f u n c i . Ke r ne l i s d e f i n e d from

1289 ! gx = −5∗ s igma t o gx = +5∗ s igma .

1290 REAL∗8 : : f u n c i

1291

1292 k e r n e l = 0 . d0

1293

1294 DO i = 1 , n b i n s

1295 t = 1 8 . d0 + ( i − 1 . d0 ) /REAL( binspm ) ! Conve r t b i n number t o magn i tude

1296

1297 temp = 0 . d0

1298 gx=0.

1299 j=0

1300 DO WHILE ( gx . l e . 5 . e0 ∗ f u n c i ( t ) ) !

1301 j= j+1 !

1302 gx = 0 . e0 + ( j −1. e0 ) / binspm ! C r e a t e s h a l f o f

1303 temp ( j , 1 ) = gx ! t h e k e r n e l ( ’ temp ’ )

1304 temp ( j , 2 ) = exp ( − ( ( gx ) ∗ ∗2 . e0 ) / ( 2 . e0 ∗ ( f u n c i ( t ) ∗ ∗2 . e0 ) ) ) !

1305 END DO !

1306

1307 ghw ( i ) = j − 1 . d0 ! The f i r s t non−z e r o b i n o f ’ cmodel ’ w i l l be t h e f i r s t

1308 ! non−z e r o b i n o f ’ model ’ minus ghw

1309

1310 DO k = 1 , j

1311 k e r n e l ( k , : , i ) = temp ( j − ( k−1) , : ) ! C r e a t e ’ k e r n e l ’ by c o n c a t e n a t i n g

1312 k e r n e l ( j+k , 2 , i ) = temp ( k+1 ,2) ! ’ temp ’ wi t h a r e f l e c t e d v e r s i o n

1313 k e r n e l ( j+k , 1 , i ) = −temp ( k+1 ,1) ! o f i t s e l f

1314 END DO

1315 ! Note : temp (2∗ j , 2 ) = 0 . d0 ; temp (2∗ j , 1 ) = −0. d0

1316

1317 k e r n e l ( : , 2 , i ) = k e r n e l ( : , 2 , i ) /SUM( k e r n e l ( : , 2 , i ) )

1318

1319 END DO

1320

1321

1322 END SUBROUTINE G a u s s i a n K e r n e l

1323

1324 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1325

1326 SUBROUTINE G a u s s i a n K e r n e l P r i n t ! P r i n t s G a u s s i a n K e r n e l a t g i v e n magn i tude

1327 USE Gl ob a l

1328 IMPLICIT NONE

1329

1330 REAL∗8 : : f u n c i

1331

1332 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

1333

1334 CALL pgenv ( −5.5 ∗ REAL( f u n c i ( t ) ) , 5 . 5 ∗ REAL( f u n c i ( t ) ) , 0 . , 1 . 1∗MAXVAL(REAL( k e r n e l ( : , 2 , i ) ) ) , 0 , 0 )

1335 CALL pgb in (2∗ghw ( i ) +1 , REAL( k e r n e l ( : , 1 , i ) ) , REAL( k e r n e l ( : , 2 , i ) ) , . t r u e . )

1336 CALL p g l a b ( ’ Magni tude o f f s e t ’ , ’ S t r e n g t h ’ , ’ ’ )

1337

1338 CALL pgend

1339

1340 END SUBROUTINE G a u s s i a n K e r n e l P r i n t

1341

1342 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1343
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1344 SUBROUTINE C o n v o l u t i o n ! Convolves i n i t i a l model w i t h a G a u s s i a n k e r n e l

1345 Use Gl ob a l ! whose wid th i s e q u a l t o t h e p h o t o m e t r i c e r r o r

1346 IMPLICIT NONE ! and hence expands wi th i n c r e a s i n g magn i tude

1347

1348 cmodel = 0 . d0

1349

1350 DO i = 1 , n b i n s

1351 cmodel ( i , 1 ) = 1 8 . d0 + ( i − 1 . d0 ) /REAL( binspm )

1352 DO j = −ghw ( i ) , ghw ( i ) , +1 !

1353 IF ( i . g t . ghw ( i ) . and . i . l t . n b i n s − ghw ( i ) ) THEN ! Convolve

1354 cmodel ( i+ j , 2 ) = cmodel ( i+ j , 2 ) + k e r n e l ( ghw ( i )+ j +1 ,2 , i ) ∗model ( i , 2 ) ! model w i th

1355 END IF ! g a u s s i a n

1356 END DO !

1357 END DO

1358

1359 DO i = nb ins , f l i m B i n s +1 , −1 ! S e t t h e f a i n t l i m i t

1360 cmodel ( i , 2 ) = 0 . d0 ! o f t h e f i n a l convo lved

1361 END DO ! model a t f l i m .

1362 cmod nbins = f l i m B i n s

1363

1364 ! Normal i ze t h e convo lved model

1365 cmodel ( : , 2 ) = cmodel ( : , 2 ) /SUM( cmodel ( : , 2 ) , mask = cmodel ( : , 1 ) . ge . b l im )

1366

1367 ! Note t h e above s t e p i s ve ry i m p o r t a n t − n o r m a l i z a t i o n must on ly be ove r t h e

1368 ! r a n g e of m a g n i t u d e s i n t h e ’ da t a ’ a r r a y − i . e . down t o b l im −> n o t r i g h t t h e

1369 ! way t o b l im − 1 . d0 . T h i s was a d i f f i c u l t bug t o f i n d !

1370

1371 END SUBROUTINE C o n v o l u t i o n

1372

1373 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1374

1375 SUBROUTINE C o n v o l u t i o n P r i n t ! P r i n t s convo lved v e r s i o n o f model

1376 USE Gl ob a l

1377 IMPLICIT NONE

1378

1379 CALL pgbeg in ( 0 , ’ ? ’ , 1 , 1 )

1380

1381 CALL pgenv (REAL( m a g t i p ) − 0 . 5 , 2 5 . , 0 . , 1 . 1∗MAXVAL(REAL( cmodel ( : , 2 ) ) ) , 0 , 0 )

1382 CALL pgb in ( nb ins , REAL( cmodel ( : , 1 ) ) , REAL( cmodel ( : , 2 ) ) , . t r u e . )

1383 CALL p g l a b ( ’ i \d0 \u ’ , ’ R e l a t i v e p r o b a b i l i t y ’ , ’ ’ )

1384

1385 CALL pgend

1386

1387 END SUBROUTINE C o n v o l u t i o n P r i n t

1388

1389 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1390

1391 SUBROUTINE D a t a H i s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i n ned h i s t o g r a m s and

1392 USE Gl ob a l ! o v e r l a y s them wi th t h e b e s t f i t model d e t e r m i n e d by

1393 IMPLICIT NONE ! t h e MCMC

1394

1395 REAL∗8 : : s c a l e d f r e c

1396

1397 h i s t o f i n e ( : , 1 ) = model ( : , 1 )

1398 DO i = 1 , INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1

1399 h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( 0 . 2 5 ∗ binspm )

1400 END DO

1401

1402 DO i = 1 , n d a t a 2 !

1403 h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) = & ! G e n e r a t e s

1404 h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) + 1 . d0 !
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1405 h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) = & ! H i s t o g r a m s

1406 h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) + 1 . d0 !

1407 END DO !

1408

1409

1410 h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h

1411 h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) ∗ 2 . d0 ! below

1412 h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h

1413 h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) ∗ 2 . d0 ! below

1414

1415 ! For g r a p h i n g pu r pose s , t h e f i r s t and l a s t b i n s o f t h e c o a r s e h i s t o g r a m a r e doub led s i n c e

1416 ! t h e s e b i n l i e s h a l f o u t s i d e t h e r a n g e o f i n t e r e s t and so a r e d e p l e t e d by

1417 ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g on l y and has no b e a r i n g on t h e

1418 ! d e t e r m i n e d b e s t f i t model .

1419

1420 ! | | P l o t Bes t F i t Model

1421 ! \ / ove r h i s t o g r a m

1422 m a g t i p = t i p r e c ; f = f r e c ; a = a r e c !

1423 CALL ModelMake ! G e n e r a t e b e s t f i t s i g f u n c t i o n

1424 CALL C o n v o l u t i o n !

1425

1426 bfm = 0 . d0 ; bg = 0 . d0 !

1427

1428 bfm = cmodel ( : , 2 ) ∗ ( 1 . d0 − f ) ! bfm = b e s t f i t s i g n a l f u n c t i o n

1429 bg = n o i s e ∗ f ! bg = back ground f u n c t i o n

1430

1431 bfm = bfm + bg ! Add bfm and background t o g e t h e r

1432 bfm = bfm ∗ (SUM( h i s t o f i n e ( : , 2 ) ) /SUM( bfm , mask = cmodel ( : , 1 ) . ge . b l im ) ) ! S c a l e bfm t o match h i s t o g r a m

1433

1434 !−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r f i n e h i s t o g r a m

1435 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a f i n e . ps /CPS ’

1436 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1437

1438 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( h i s t o f i n e ( : , 2 ) ) ) , 0 , 0 )

1439 CALL pgb in ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( h i s t o f i n e ( : , 2 ) ) , . f a l s e . )

1440 CALL p g s c i ( 2 )

1441 CALL pgslw ( 5 )

1442 CALL p g l i n e ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )

1443 CALL p g s c i ( 1 )

1444 CALL pgslw ( 1 )

1445 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

1446

1447 CALL pgend

1448

1449 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1450 ’ / m o d e l f i t v s d a t a f i n e . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1451 ’ / m o d e l f i t v s d a t a f i n e . j p g ’

1452

1453 c a l l sys tem ( command )

1454

1455 bfm = bfm ∗ 4 . d0 ! S c a l e bfm t o match c o a r s e h i s t o g r a m

1456

1457 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r c o a r s e h i s t o g r a m

1458 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a c o a r s e . ps /CPS ’

1459 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1460

1461 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 )

1462 CALL pgb in ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , REAL( h i s t o c o a r s e ( : , 1 ) ) , &

1463 REAL( h i s t o c o a r s e ( : , 2 ) ) , . f a l s e . )

1464 CALL p g s c i ( 2 )

1465 CALL p g l i n e ( nb ins , REAL( h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )
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1466 CALL p g s c i ( 1 )

1467 CALL p g l a b ( ’ i \d0 \u ’ , ’ Counts ’ , ’ ’ )

1468

1469 CALL pgend

1470

1471 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1472 ’ / m o d e l f i t v s d a t a c o a r s e . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1473 ’ / m o d e l f i t v s d a t a c o a r s e . j p g ’

1474

1475 c a l l sys tem ( command )

1476

1477 END SUBROUTINE D a t a H i s t

1478

1479 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1480

1481 SUBROUTINE w DataHi s t ! G e n e r a t e s f i n e l y and c o a r s e l y b i nn ed ( w e i g h t e d ) h i s t o g r a m s

1482 USE Gl ob a l ! and o v e r l a y s them wi th t h e b e s t f i t model d e t e r m i n e d by

1483 IMPLICIT NONE ! t h e MCMC

1484

1485 REAL∗8 : : s c a l e d f r e c

1486

1487 w h i s t o f i n e ( : , 1 ) = model ( : , 1 )

1488 DO i = 1 , INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1

1489 w h i s t o c o a r s e ( i , 1 ) = 1 8 . d0 + ( i −1. d0 ) /REAL( 0 . 2 5 ∗ binspm )

1490 END DO

1491

1492 DO i = 1 , n d a t a 2 !

1493 IF ( t r u e s t a r p o l y ( i ) ) THEN !

1494 IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN

1495 w h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) = & ! G e n e r a t e s Weighted H i s t o g r a m s .

1496 w h i s t o f i n e ( INT (REAL( ( data ( i ) −18. d0 ) ∗ binspm ) + 1 . d0 ) , 2 ) + & ! S e t so t h a t s t a r s a t c e n t r e o f

1497 ( w e i g h t ( i ) / maxweight ) ! f i e l d c o n t r i b u t e 1 . 0 c o u n t s

1498 w h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) = & ! w h i l e s t a r s a t some r a d i u s g i v e

1499 w h i s t o c o a r s e ( INT (REAL( ( data ( i ) −18. d0 ) ∗0 . 2 5∗ binspm ) + 1 . d0 ) , 2 ) + & ! some f r a c t i o n o f 1 . 0 c o u n t s

1500 ( w e i g h t ( i ) / maxweight ) ! depend ing on t h e d e n s i t y p r o f i l e .

1501 END IF

1502 END IF !

1503 END DO !

1504

1505

1506 w h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h

1507 w h i s t o c o a r s e ( INT (REAL( b l i m b i n s ) / 4 . e0 ) + 1 , 2 ) ∗ 2 . d0 ! below

1508 w h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) = & ! See p a r a g r a p h

1509 w h i s t o c o a r s e ( INT (REAL( f l i m b i n s ) / 4 . e0 ) + 1 , 2 ) ∗ 2 . d0 ! below

1510

1511 ! For g r a p h i n g pu r pose s , t h e f i r s t and l a s t b i n s o f t h e c o a r s e h i s t o g r a m a r e doub led s i n c e

1512 ! t h e s e b i n l i e s h a l f o u t s i d e t h e r a n g e of i n t e r e s t and so a r e d e p l e t e d by

1513 ! r o u g h l y one h a l f . T h i s i s f o r g r a p h i n g on ly and has no b e a r i n g on t h e

1514 ! d e t e r m i n e d b e s t f i t model .

1515

1516 ! | | P l o t Bes t F i t Model

1517 ! \ / ove r w e i g h t e d h i s t o g r a m

1518 m a g t i p = t i p r e c ; f = f r e c ; a = a r e c !

1519 CALL ModelMake ! G e n e r a t e b e s t f i t s i g n a l f u n c t i o n

1520 CALL C o n v o l u t i o n !

1521

1522 bfm = 0 . d0 ; bg = 0 . d0 ! Apply w e i g h t s t o b e s t f i t model f o r | |

1523 DO i = 1 , n d a t a 2 ! each s t a r and sum t o g e t h e r . \ /

1524 IF ( t r u e s t a r p o l y ( i ) ) THEN

1525 IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN

1526 bfm = bfm + cmodel ( : , 2 ) ∗ ( we i g h t ( i ) / ( w e i gh t ( i ) + ( b g s t a r s / b g a r e a ) ) ) ∗ we i g h t ( i ) ! sum t o g e t h e r RGB LFs from each s t a r



196 Chapter Four Programs

1527 bg = bg + n o i s e ∗ ( ( b g s t a r s / b g a r e a ) / ( w e i gh t ( i ) + ( b g s t a r s / b g a r e a ) ) ) ∗ we i g h t ( i ) ! sum t o g e t h e r BG LFs from each s t a r

1528 END IF

1529 END IF

1530 END DO

1531

1532 bfm = bfm + bg ! Add bfm and background t o g e t h e r

1533 bfm = bfm ∗ (SUM( w h i s t o f i n e ( : , 2 ) ) /SUM( bfm , mask = cmodel ( : , 1 ) . ge . b l im ) ) ! S c a l e bfm t o match h i s t o g r a m

1534

1535 !−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r f i n e h i s t o g r a m

1536 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a f i n e w . ps /CPS ’

1537 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1538

1539 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( w h i s t o f i n e ( : , 2 ) ) ) , 0 , 0 )

1540 CALL pgb in ( nb ins , REAL( w h i s t o f i n e ( : , 1 ) ) , REAL( w h i s t o f i n e ( : , 2 ) ) , . f a l s e . )

1541 CALL p g s c i ( 2 )

1542 CALL pgslw ( 5 )

1543 CALL p g l i n e ( nb ins , REAL( w h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )

1544 CALL p g s c i ( 1 )

1545 CALL pgslw ( 1 )

1546 CALL p g l a b ( ’ i \d0 \u ’ , ’ Weighted Counts ’ , ’ ’ )

1547

1548 CALL pgend

1549

1550 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1551 ’ / m o d e l f i t v s d a t a f i n e w . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1552 ’ / m o d e l f i t v s d a t a f i n e w . j p g ’

1553

1554 c a l l sys tem ( command )

1555

1556 bfm = bfm ∗ 4 . d0 ! S c a l e bfm t o match c o a r s e h i s t o g r a m

1557

1558 !−−−−−−−−−−−−−−−−−−−−−−−P l o t s b e s t f i t model ove r c o a r s e h i s t o g r a m

1559 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m o d e l f i t v s d a t a c o a r s e w . ps /CPS ’

1560 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

1561

1562 CALL pgenv (REAL( b l im ) , REAL( f l i m ) , 0 . , 1 . 1∗MAXVAL( r e a l ( w h i s t o c o a r s e ( : , 2 ) ) ) , 0 , 0 )

1563 CALL pgb in ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , REAL( w h i s t o c o a r s e ( : , 1 ) ) , &

1564 REAL( w h i s t o c o a r s e ( : , 2 ) ) , . f a l s e . )

1565 CALL p g s c i ( 2 )

1566 CALL p g l i n e ( nb ins , REAL( w h i s t o f i n e ( : , 1 ) ) , REAL( bfm ) )

1567 CALL p g s c i ( 1 )

1568 CALL p g l a b ( ’ i \d0 \u ’ , ’ Weighted Counts ’ , ’ ’ )

1569

1570 CALL pgend

1571

1572 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1573 ’ / m o d e l f i t v s d a t a c o a r s e w . ps . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / &

1574 ’ / m o d e l f i t v s d a t a c o a r s e w . j p g ’

1575

1576 c a l l sys tem ( command )

1577

1578 END SUBROUTINE w DataHi s t

1579

1580 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1581

1582 SUBROUTINE LogLike ! G e n e r a t e s t h e l o g

1583 USE Gl ob a l ! o f t h e l i k e l i h o o d

1584 IMPLICIT NONE ! f o r a g i v e n model

1585

1586 logL ( cn ) = 0 . d0

1587 DO i = 1 , n d a t a 2
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1588 IF ( t r u e s t a r p o l y ( i ) ) THEN

1589 IF ( s c a l e d a ( i ) . ge . c r o w d e d r a d . and . s c a l e d a ( i ) . l e . o u t e r r a d ) THEN

1590 s t a r b i n = INT ( ( data ( i ) − 1 8 . d0 ) ∗ binspm ) + 1

1591 s i g p r o b = cmodel ( s t a r b i n , 2 ) ∗ we i g h t ( i ) / ( we i gh t ( i ) + ( b g s t a r s / b g a r e a ) ) ! De te rmine l i k e l i h o o d f o r s t a r g i v e n c u r r e n t r a t i o

1592 bg p r o b = n o i s e ( s t a r b i n ) ∗ ( b g s t a r s / b g a r e a ) / ( we i gh t ( i ) + ( b g s t a r s / b g a r e a ) ) ! o f t h e RGB LF vs . t h e BG LF due t o s t a r ’ s w e i g h t .

1593 prob = ( s i g p r o b + b g p r o b ) ∗ we i g h t ( i ) ! T h i s a l s o i n s u r e s t h e t o t a l p rob . o f t h e model

1594 logL ( cn ) = logL ( cn ) + LOG10( prob ) ! i s 1 . Add l i k e l i h o o d s t o g e t h e r i n l o g s p a c e .

1595 END IF

1596 ELSE

1597 c y c l e

1598 END IF

1599 END DO

1600 logL ( cn ) = logL ( cn ) ∗ b e t a

1601

1602 END SUBROUTINE LogLike

1603

1604 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1605

1606 SUBROUTINE TipAndSigma ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and

1607 USE Gl ob a l ! t h e i r a s s o c i a t e d 1 sigma e r r o r s from t h e

1608 IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s .

1609

1610 PPD peak = 0 . d0 !

1611 DO i = 1 , 10∗ ( nb ins −1)+1 !

1612 IF ( p o s t y 1 ( i ) . g t . PPD peak ) THEN !

1613 PPD peak = p o s t y 1 ( i ) ! F ind b e s t f i t TRGB v a l u e

1614 t i p r e c = p o s t x 1 ( i ) !

1615 END IF !

1616 END DO !

1617

1618 PPD peak = 0 . d0 !

1619 DO i = 1 , n b i n s !

1620 IF ( p o s t y 2 ( i ) . g t . PPD peak ) THEN !

1621 PPD peak = p o s t y 2 ( i ) ! F ind b e s t f i t f v a l u e

1622 f r e c = p o s t x 2 ( i ) !

1623 END IF !

1624 END DO !

1625

1626 PPD peak = 0 . d0 !

1627 DO i = 1 , 2∗ n b i n s − 1 !

1628 IF ( p o s t y 3 ( i ) . g t . PPD peak ) THEN !

1629 PPD peak = p o s t y 3 ( i ) ! F ind b e s t f i t a v a l u e

1630 a r e c = p o s t x 3 ( i ) !

1631 END IF !

1632 END DO !

1633

1634 t i p k p c = ( 1 0 0 . d0 ∗ ∗ ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from

1635 ! t i p magn i tude i n kpc

1636

1637 t i p c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

1638 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 1 , −1 !

1639 mcounts = mcounts + p o s t y 1 ( i ) !

1640 END DO !

1641 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 1 , −1 !

1642 t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s n e g a t i v e one sigma

1643 IF ( t i p c o u n t s . ge . 0 . 6 82∗mcounts ) THEN ! e r r o r i n m a g n i t u d e s

1644 t i p m s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

1645 t i p m s i g m a = t i p r e c − t i p m s i g m a !

1646 e x i t !

1647 END IF !

1648 END DO !
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1649

1650 t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

1651 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 10∗ ( nb ins −1)+1 !

1652 p c o u n t s = p c o u n t s + p o s t y 1 ( i ) !

1653 END DO !

1654 DO i = MAXLOC( p o s t y 1 , DIM = 1) , 10∗ ( nb ins −1)+1 !

1655 t i p c o u n t s = t i p c o u n t s + p o s t y 1 ( i ) ! F i n d s p o s i t i v e one sigma

1656 IF ( t i p c o u n t s . ge . 0 . 6 82∗ p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s

1657 t i p p s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

1658 t i p p s i g m a = t i p p s i g m a − t i p r e c !

1659 e x i t !

1660 END IF !

1661 END DO !

1662

1663

1664 d1 = 0 ; d2 = 0 ; d3 = 0 ; d4 = 0

1665 f c o u n t s = 0 . d0 ; a c o u n t s = 0 . d0 !

1666 DO i = 1 , n b i n s !

1667 f c o u n t s = f c o u n t s + p o s t y 2 ( i ) !

1668 a c o u n t s = a c o u n t s + p o s t y 3 ( i ) !

1669 IF ( f c o u n t s . ge . 0 .1 59∗ n i t . and . d1 . eq . 0 ) THEN !

1670 f m i n s i g = p o s t x 2 ( i ) !

1671 d1 = 1 !

1672 END IF !

1673 IF ( f c o u n t s . ge . 0 .8 41∗ n i t . and . d2 . eq . 0 ) THEN ! For f and a :

1674 f p l u s i g = p o s t x 2 ( i ) ! F i n d s uppe r and lower

1675 d2 = 1 ! bounds f o r p o s t e r i o r

1676 END IF ! d i s t r i b u t i o n w i t h i n one

1677 IF ( a c o u n t s . ge . 0 .1 59∗ n i t . and . d3 . eq . 0 ) THEN ! s igma of maximum .

1678 a m i n s i g = p o s t x 3 ( i ) !

1679 d3 = 1 !

1680 END IF !

1681 IF ( a c o u n t s . ge . 0 .8 41∗ n i t . and . d4 . eq . 0 ) THEN !

1682 a p l u s i g = p o s t x 3 ( i ) !

1683 d4 = 1 !

1684 END IF !

1685 END DO !

1686

1687

1688 f s i g m a = 0 . 5 d0 ∗ ( f p l u s i g − f m i n s i g ) ! Hence c a l c u l a t e s 1 sigma e r r o r

1689 a s i g m a = 0 . 5 d0 ∗ ( a p l u s i g − a m i n s i g ) ! f o r f and a

1690

1691 kpc mer r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p m s i g m a / 1 0 . d0 ) − t i p k p c ! minus t i p e r r o r i n kpc

1692 k p c p e r r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p p s i g m a / 1 0 . d0 ) − t i p k p c ! p l u s t i p e r r o r i n kpc

1693

1694 END SUBROUTINE TipAndSigma

1695

1696 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1697

1698 FUNCTION f u n c i (m) ! Th i s f u n c t i o n f e e d s t h e p h o t o m e t r i c e r r o r a s a f u n c t i o n

1699 USE Gl ob a l ! o f magn i tude t o t h e ’ Ga u s s i a n K e r ne l ’ s u b r o u t i n e .

1700 IMPLICIT NONE

1701

1702 REAL∗8 : : f u n c i , m, c1 , c2 , c3

1703

1704 c1 = 0 .001

1705 c3 = l o g ( 0 . 2 4 ) − l o g ( 0 . 1 1 )

1706 c2 = c3 ∗2 5 . 0 − l o g ( 0 . 2 4 )

1707

1708 f u n c i = c1 + exp ( c3 ∗m − c2 )

1709
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1710 END FUNCTION

1711

1712 !−−−−−−−−−−−−−−−−−−−−−−−−−−Rodrigo ’ s po ly s e l e c t i o n t o o l −−−−−−−−−−−−−−−−−−−−−−−−

1713

1714 SUBROUTINE P o l y S e l e c t ! Used f o r s e l e c t i o n o f a p p r o p r i a t e c o l o u r c u t

1715 USE Gl ob a l ! i n c o l o u r −magni tude s p a c e

1716 IMPLICIT NONE

1717

1718

1719 i n t e g e r MAXPT, i p o l

1720 i n t e g e r NPT ggr , N P T s p a t i a l

1721 parameter (MAXPT=100)

1722 r e a l ∗4 XCOL ggr (MAXPT) ,YMAG ggr (MAXPT)

1723 r e a l ∗4 X s p a t i a l (MAXPT) , Y s p a t i a l (MAXPT)

1724 l o g i c a l r e f i n e C M D s e l g g r , r e f i n e s p a t i a l s e l

1725 ! p a r a m e t e r ( r e f i n e C M D s e l g g r = . t r u e . )

1726 parameter ( r e f i n e C M D s e l g g r = . f a l s e . )

1727 ! p a r a m e t e r ( r e f i n e s p a t i a l s e l = . t r u e . )

1728 parameter ( r e f i n e s p a t i a l s e l = . f a l s e . )

1729

1730 l o g i c a l i n p o l y

1731 e x t e r n a l i n p o l y

1732

1733 n p t g g r=0

1734 i f ( r e f i n e C M D s e l g g r ) then

1735 c a l l p g s l s ( 2 )

1736 c a l l pgmove ( 0 . 2 , 2 6 . 0 )

1737 c a l l pgdraw ( 0 . 2 , 1 5 . 0 )

1738 c a l l p g s l s ( 1 )

1739 c a l l p g l c u r (MAXPT, NPT ggr , XCOL ggr , YMAG ggr )

1740 open ( 2 , f i l e =TRIM(ADJUSTL( c o l c u t ) ) , s t a t u s= ’ unknown ’ )

1741 w r i t e ( 2 , ∗ ) NPT ggr

1742 do i p o l =1 , NPT ggr

1743 w r i t e ( 2 , ∗ ) XCOL ggr ( i p o l ) ,YMAG ggr ( i p o l )

1744 end do

1745 c l o s e ( 2 )

1746 c a l l p g s c i ( 1 )

1747 c a l l pgadvance

1748 e l s e

1749 open ( 2 , f i l e =TRIM(ADJUSTL( c o l c u t ) ) , s t a t u s= ’ o l d ’ )

1750 read ( 2 , ∗ ) NPT ggr

1751 do i p o l =1 , NPT ggr

1752 read ( 2 , ∗ ) XCOL ggr ( i p o l ) ,YMAG ggr ( i p o l )

1753 end do

1754 c l o s e ( 2 )

1755 c a l l p g s c i ( 2 )

1756 c a l l pgslw ( 5 )

1757 c a l l p g l i n e ( NPT ggr , XCOL ggr , YMAG ggr )

1758 c a l l p g s c i ( 1 )

1759 c a l l pgslw ( 1 )

1760 end i f

1761

1762 !−−−−−−−−−−−−−−−−−−Make c o l o u r c u t t o S i g n a l F i e l d −−−−−−−−−−−−−−−−−−

1763 j=0 !

1764 DO i = 1 , n d a t a !

1765 IF ( i n p o l y ( g m i n i ( i ) , mag i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN!

1766 IF ( mag i ( i ) . l e . f l i m .AND. mag i ( i ) . ge . b l im ) THEN ! Makes new

1767 j = j+1 ! a r r a y s

1768 m a g i p o l y ( j ) = mag i ( i ) ! c o n t a i n i n g

1769 mag g poly ( j ) = mag g ( i ) ! on ly

1770 g m i n i p o l y ( j ) = g m i n i ( i ) ! s t a r s
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1771 x i p o l y ( j ) = x k i ( i ) ! w i t h i n

1772 e t a p o l y ( j ) = e t a ( i ) ! po lygon

1773 t r u e s t a r p o l y ( j ) = t r u e s t a r ( i ) !

1774 END IF !

1775 END IF !

1776 END DO !

1777

1778 n d a t a 2 = j !New number o f s t a r s i n d a t a s e t a f t e r c o l o u r c u t

1779

1780 !−−−−−−−−−−−−−−−−−−Make c o l o u r c u t t o Bckgrnd F i e l d −−−−−−−−−−−−−−−−−

1781 j=0 ; k = 0 !

1782 DO i = 1 , b g n d a t a !

1783 IF ( i n p o l y ( b g g m i n i ( i ) , bg mag i ( i ) , NPT ggr , XCOL ggr , YMAG ggr ) ) THEN !

1784 IF ( bg mag i ( i ) . l e . 2 4 . d0 ) THEN ! Makes new

1785 IF ( bg mag i ( i ) . l e . f l i m .AND. bg mag i ( i ) . ge . b l im ) THEN ! a r r a y s f o r

1786 k = k+1 ! i and g− i

1787 END IF ! c o n t a i n i n g

1788 j = j+1 ! on ly

1789 b g m a g i p o l y ( j ) = bg mag i ( i ) ! s t a r s

1790 bg mag g po ly ( j ) = bg mag g ( i ) ! w i t h i n

1791 b g g m i n i p o l y ( j ) = b g g m i n i ( i ) ! po lygon

1792 END IF !

1793 END IF !

1794 END DO !

1795

1796 b g n d a t a 2 = j ; b g n d a t a 3 = k ! S t a r s i n bckgrnd ; S t a r s i n bckgrnd between bl im & f l i m

1797

1798 END SUBROUTINE P o l y S e l e c t

1799

1800 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1801

1802 l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) ! Used by P o l y S e l e c t s u b r o u t i n e

1803 i m p l i c i t none

1804

1805 r e a l ∗4 x , y

1806 i n t e g e r np

1807 r e a l ∗4 xp ( np ) , yp ( np )

1808 r e a l ∗4 t i n y , xs , xe , ys , ye

1809 parameter ( t i n y =1. e−5)

1810

1811 r e a l ∗4 simag , f imag

1812 e x t e r n a l f imag

1813 i n t e g e r j

1814

1815 simag =0.0

1816 do j =1 , np

1817 i f ( j . l t . np ) then

1818 xe=xp ( j +1)

1819 xs=xp ( j )

1820 ye=yp ( j +1)

1821 ys=yp ( j )

1822 e l s e

1823 xe=xp ( 1 )

1824 xs=xp ( j )

1825 ye=yp ( 1 )

1826 ys=yp ( j )

1827 end i f

1828 simag=s imag+ f imag ( x , xs , xe , y , ys , ye )

1829 end do

1830 i f ( abs ( s imag ) . g t . t i n y ) then

1831 i n p o l y = . t r u e .
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1832 e l s e

1833 i n p o l y = . f a l s e .

1834 end i f

1835

1836 end

1837

1838 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1839

1840 r e a l ∗4 f u n c t i o n f imag ( x0 , xs , xe , y0 , ys , ye ) ! Used by P o l y S e l e c t s u b r o u t i n e

1841 i m p l i c i t none

1842

1843 r e a l ∗4 x0 , xs , xe , y0 , ys , ye

1844 r e a l ∗4 top , b o t

1845

1846 t o p= −(xe−x0 ) ∗ ( ys−y0 ) + ( ye−y0 ) ∗ ( xs−x0 )

1847

1848 b o t= ( xe−x0 ) ∗ ( xs−x0 ) + ( ye−y0 ) ∗ ( ys−y0 )

1849

1850 f imag=a t a n 2 ( top , b o t )

1851

1852 end

1853

1854 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1855 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−L i b p r e s s Algor i thms −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: MF TRGB Feed.pl

Creation Date: 23 January 2012

Relevant Section: Ch. 4

Notes: This Perl scrip shows the individual parameters for each satellite fed to the program

‘MF TRGB.f95.’ I have included it as it provides information specific to each satellite that is

not given in Ch. 4. For each satellite, there are 16 inputs in the order described below. Note

that for the dwarf spheroidal satellites, values for parameters 2 - 10 were provided by Nicolas

Martin (Observatoire Astronomique, Universite de Strasbourg) and are due for publication

in the near future. As an aside, it is worth noting that the weighting can effectively be turned

off by specifying a very large Half-Light Radius, which produces an essentially flat object

density profile across the field of view.

1. Object Name

2. Right Ascension Coordinate (hours)

3. Right Ascension Coordinate (minutes)

4. Right Ascension Coordinate (seconds)

5. Declination Coordinate (degrees)

6. Declination Coordinate (minutes)

7. Declination Coordinate (seconds)

8. Object Ellipticity

9. Object Half-Light Radius

10. Object Position Angle

11. Inner Cutoff Radius

12. Outer Cutoff Radius

13. Object Field Radius

14. Background Field Right Edge (Xi)

15. Background Field Left Edge (Xi)

16. File Name for Colour-Cut Polygon

1 # ! / u s r / b i n / p e r l

2 sys tem ( ” . /MF TRGB . e AndromedaIe 0 . 0 4 5 . 0 4 0 . 0 3 8 . 0 2 . 0 1 8 . 5 0 . 2 6 3 . 9 2 5 . 0 0 . 0 0 . 3 0 . 3 0 . 0 2 . 0 ANDI .CMD” ) ; # f i n a l

3 p r i n t ” AndromedaI done . \ n ” ;

4 sys tem ( ” . /MF TRGB . e AndromedaIIe 1 . 0 1 6 . 0 2 6 . 9 3 3 . 0 2 6 . 0 1 . 9 0 . 1 3 5 . 0 2 7 . 0 0 . 0 0 . 4 0 . 4 5 . 0 8 . 0 ANDII .CMD” ) ; # f i n a l

5 p r i n t ” AndromedaII done . \ n ” ;

6 sys tem ( ” . /MF TRGB . e AndromedaI I Ie 0 . 0 3 5 . 0 3 0 . 6 3 6 . 0 3 0 . 0 3 . 5 0 . 6 1 1 . 7 138 .0 0 .0175 0 . 2 0 . 2 −2.5 0 . 5 ANDIII .CMD” ) ; # f i n a l

7 p r i n t ” AndromedaI I I done . \ n ” ;

8 sys tem ( ” . /MF TRGB . e AndromedaVe 1 . 0 1 0 . 0 1 7 . 1 4 7 . 0 3 7 . 0 4 5 . 4 0 . 2 7 1 . 6 4 1 . 0 0 . 011 0 . 2 0 . 2 3 . 0 6 . 0 ANDV.CMD” ) ; # f i n a l

9 p r i n t ” AndromedaV done . \ n ” ;

10 sys tem ( ” . /MF TRGB . e AndromedaIXe 0 . 0 5 2 . 0 5 2 . 5 4 3 . 0 1 1 . 0 5 8 . 2 0 . 0 1 . 9 105 .0 0 . 0 0 . 1 5 0 . 1 5 1 . 4 5 2 . 2 5 ANDIX .CMD” ) ; # f i n a l

11 p r i n t ” AndromedaIX done . \ n ” ;
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12 sys tem ( ” . /MF TRGB . e AndromedaXe 1 . 0 6 . 0 3 5 . 5 4 4 . 0 4 8 . 0 3 0 . 9 0 . 4 1 1 . 4 3 3 . 0 0 . 0 0 . 1 5 0 . 1 5 3 . 2 5 . 2 ANDX.CMD” ) ; # f i n a l

13 p r i n t ” AndromedaX done . \ n ” ;

14 sys tem ( ” . /MF TRGB . e AndromedaXIe 0 . 0 4 6 . 0 1 9 . 6 3 3 . 0 4 8 . 0 8 . 6 0 . 0 4 0 . 7 4 3 . 0 0 . 0 0 . 1 5 0 . 1 5 −0.75 2 . 2 5 ANDXI .CMD” ) ; # f i n a l

15 p r i n t ” AndromedaXI done . \ n ” ;

16 sys tem ( ” . /MF TRGB . e AndromedaXIIe 0 . 0 4 7 . 0 2 7 . 0 3 4 . 0 2 2 . 0 2 9 . 0 0 . 0 1 . 1 0 . 0 0 . 0 0 . 1 5 0 . 1 5 −0.5 2 . 5 ANDXII .CMD” ) ; # f i n a l

17 p r i n t ” AndromedaXII done . \ n ” ;

18 sys tem ( ” . /MF TRGB . e AndromedaXIIIe 0 . 0 5 1 . 0 5 0 . 9 3 3 . 0 0 . 0 1 4 . 5 0 . 6 0 0 . 8 −25.0 0 . 0 0 . 1 5 0 . 1 5 0 . 4 3 . 4 ANDXIII .CMD” ) ; # f i n a l

19 p r i n t ” AndromedaXIII done . \ n ” ;

20 sys tem ( ” . /MF TRGB . e AndromedaXIVe 0 . 0 5 1 . 0 3 5 . 1 2 9 . 0 4 1 . 0 1 4 . 1 0 . 3 1 1 . 6 −7.0 0 . 0 0 . 2 0 . 2 1 . 0 3 . 0 ANDXIV .CMD” ) ; # f i n a l

21 p r i n t ” AndromedaXIV done . \ n ” ;

22 sys tem ( ” . /MF TRGB . e AndromedaXVe 1 . 0 1 4 . 0 1 8 . 8 3 8 . 0 7 . 0 1 8 . 0 0 . 2 3 1 . 4 3 3 . 0 0 . 0 0 . 2 0 . 2 4 . 7 7 . 7 ANDXV.CMD” ) ; # f i n a l

23 p r i n t ”AndromedaXV done . \ n ” ;

24 sys tem ( ” . /MF TRGB . e AndromedaXVIe 0 . 0 5 9 . 0 3 0 . 1 3 2 . 0 2 2 . 0 3 2 . 9 0 . 2 7 0 . 9 2 104 .0 0 . 005 0 . 2 0 . 2 1 . 7 4 . 7 ANDXVI .CMD” ) ; # f i n a l

25 p r i n t ” AndromedaXVI done . \ n ” ;

26 sys tem ( ” . /MF TRGB . e AndromedaXVIIe 0 . 0 3 7 . 0 6 . 5 4 4 . 0 1 9 . 0 2 0 . 1 0 . 3 6 1 . 3 121 .0 0 . 0 0 . 2 0 . 2 −2.5 0 . 5 ANDXVII .CMD” ) ; # f i n a l

27 p r i n t ” AndromedaXVII done . \ n ” ;

28 sys tem ( ” . /MF TRGB . e AndromedaXVIIIe 0 . 0 2 . 0 1 6 . 0 4 5 . 0 5 . 0 3 3 . 2 0 . 1 5 0 . 7 2 9 1 . 0 0 . 0 0 . 1 0 . 1 −8.5 −6.0 ANDXVIII .CMD” ) ; # f i n a l

29 p r i n t ” AndromedaXVIII done . \ n ” ;

30 sys tem ( ” . /MF TRGB . e AndromedaXIXe 0 . 0 1 9 . 0 3 2 . 1 3 5 . 0 2 . 0 3 7 . 1 0 . 1 7 6 . 2 3 7 . 0 0 . 0 0 . 2 0 . 2 −7.5 −2.0 ANDXIX .CMD” ) ;

31 p r i n t ” AndromedaXIX done . \ n ” ;

32 sys tem ( ” . /MF TRGB . e AndromedaXXe 0 . 0 7 . 0 3 0 . 5 3 5 . 0 7 . 0 3 9 . 4 0 . 0 7 0 . 4 8 6 9 . 0 0 . 0 0 . 1 5 0 . 1 5 −8.3 −6.0 ANDXX.CMD” ) ; # f i n a l

33 p r i n t ”AndromedaXX done . \ n ” ;

34 sys tem ( ” . /MF TRGB . e AndromedaXXIe 2 3 . 0 5 4 . 0 4 6 . 8 4 2 . 0 2 8 . 0 1 6 . 9 0 . 2 3 4 . 2 −36.0 0 . 0 0 . 3 0 . 3 −9.5 −6.5 ANDXXI .CMD” ) ; # f i n a l

35 p r i n t ” AndromedaXXI done . \ n ” ;

36 sys tem ( ” . /MF TRGB . e AndromedaXXIIe 1 . 0 2 7 . 0 4 0 . 2 2 8 . 0 5 . 0 2 6 . 0 0 . 6 2 0 . 9 2 −65.0 0 . 0 0 . 0 8 0 . 0 8 1 0 . 2 1 3 . 2 ANDXXII .CMD” ) ; # f i n a l

37 p r i n t ” AndromedaXXII done . \ n ” ;

38 sys tem ( ” . /MF TRGB . e AndromedaXXIIIe 1 . 0 2 9 . 0 2 0 . 8 3 8 . 0 4 3 . 0 2 7 . 8 0 . 3 9 5 . 1 −42.0 0 . 0 0 . 2 0 . 2 7 . 2 1 0 . 2 ANDXXIII .CMD” ) ; # f i n a l

39 p r i n t ” AndromedaXXIII done . \ n ” ;

40 sys tem ( ” . /MF TRGB . e AndromedaXXIVe 1 . 0 1 8 . 0 3 1 . 4 4 6 . 0 2 2 . 0 1 9 . 3 0 . 0 2 . 3 −87.0 0 . 0 0 .125 0 .125 5 . 0 8 . 0 ANDXXIV.CMD” ) ; # f i n a l

41 p r i n t ”AndromedaXXIV done . \ n ” ;

42 sys tem ( ” . /MF TRGB . e AndromedaXXVe 0 . 0 3 0 . 0 1 1 . 0 4 6 . 0 5 1 . 0 2 0 . 6 0 . 1 7 3 . 1 −3.0 0 . 0 0 . 2 0 . 2 −3.5 −1.0 ANDXXV.CMD” ) ; # f i n a l

43 p r i n t ”AndromedaXXV done . \ n ” ;

44 sys tem ( ” . /MF TRGB . e AndromedaXXVIe 0 . 0 2 3 . 0 4 5 . 7 4 7 . 0 5 4 . 0 4 3 . 6 0 . 5 5 1 . 3 −31.0 0 . 0 0 . 1 5 0 . 1 5 −4.2 −2.2 ANDXXVI .CMD” ) ; # f i n a l

45 p r i n t ”AndromedaXXVI done . \ n ” ;

46 sys tem ( ” . /MF TRGB . e AndromedaXXVIIe 0 . 0 3 7 . 0 3 6 . 4 4 5 . 0 2 2 . 0 1 9 . 0 0 . 7 5 1 5 . 8 −59.0 0 . 0 0 . 3 0 . 3 −2.5 0 . 5 ANDXXVII .CMD” ) ; # f i n a l

47 p r i n t ” AndromedaXXVII done . \ n ” ;

48 sys tem ( ” . /MF TRGB . e AndromedaXXXe 0 . 0 3 6 . 0 3 4 . 7 4 9 . 0 3 8 . 0 4 7 . 0 0 . 3 3 1 . 5 −63.0 0 . 0 0 . 1 5 0 . 1 5 −1.5 −0.4 ANDXXX.CMD” ) ; # f i n a l

49 p r i n t ”AndromedaXXX done . \ n ” ;

50 # sys tem ( ” . /MF TRGB NGC147e . e NGC147e outer 0 . 0 3 3 . 0 1 2 . 0 4 8 . 0 3 0 . 0 3 1 . 0 0 . 4 4 1 0 . 0 2 8 . 0 0 . 2 8 0 . 3 3 0 . 6 −4.2 −2.2 NGC147 .CMD” ) ;

51 # p r i n t ” NGC147e outer done . \ n ” ;

52 # sys tem ( ” . /MF TRGB NGC147e . e NGC147e inner 0 . 0 3 3 . 0 1 2 . 0 4 8 . 0 3 0 . 0 3 1 . 0 0 . 4 4 1 0 . 0 2 8 . 0 0 . 1 2 0 . 1 8 0 . 6 −4.0 −2.1 NGC147 .CMD” ) ;

53 # p r i n t ” NGC147e inner done . \ n ” ;

54 # sys tem ( ” . /MF TRGB . e NGC147stream 0 . 0 3 3 . 0 1 2 . 0 4 8 . 0 3 0 . 0 3 1 . 0 0 . 0 6000 .0 0 . 0 0 . 0 0 . 5 0 . 5 −4.0 −2.7 NGC147stream .CMD” ) ;

55 # p r i n t ” NGC147stream done . \ n ” ;

56 # sys tem ( ” . /MF TRGB NGC185e . e NGC185e outer 0 . 0 3 8 . 0 57 .97 4 8 . 0 2 0 . 0 14 .56 0 . 2 6 6 . 0 4 1 . 0 0 . 1 8 0 . 2 6 0 . 6 0 . 0 1 . 0 NGC185 .CMD” ) ;

57 # p r i n t ” NGC185e outer done . \ n ” ;

58 # sys tem ( ” . /MF TRGB NGC205e . e NGC205e 0 . 0 4 0 . 0 22 .075 4 1 . 0 4 1 . 0 7 . 0 8 0 . 5 0 1 3 . 0 −35.0 0 . 3 8 0 . 4 0 . 4 −1.9 −0.9 NGC205 .CMD” ) ;

59 # p r i n t ”NGC205e done . \ n ” ;

60 # sys tem ( ” . /MF TRGB M33e . e M33e 1 . 0 3 3 . 0 50 .904 3 0 . 0 3 9 . 0 35 .79 0 . 4 6000 .0 1 7 . 0 0 . 7 5 0 . 9 1 . 0 1 2 . 4 1 3 . 4 M 3 3 e l l i p s e .CMD” ) ;

61 # p r i n t ”M33 done . \ n ” ;

62 # sys tem ( ” . /MF TRGB M31e . e M31e 0 . 0 4 2 . 0 44 .33 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6000 .0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD” ) ;

63 # p r i n t ”M31 done . \ n ” ;

64 # sys tem ( ” . /MF TRGB M31e NE . e M31e NE 0 . 0 4 2 . 0 44 .33 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6000 .0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD” ) ;

65 # p r i n t ”M31e NE done . \ n ” ;

66 # sys tem ( ” . /MF TRGB M31e NW . e M31e NW 0 . 0 4 2 . 0 44 .33 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6000 .0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD” ) ;

67 # p r i n t ”M31e NW done . \ n ” ;

68 # sys tem ( ” . /MF TRGB M31e SE . e M31e SE 0 . 0 4 2 . 0 44 .33 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6000 .0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD” ) ;

69 # p r i n t ”M31e SE done . \ n ” ;

70 # sys tem ( ” . /MF TRGB M31e SW . e M31e SW 0 . 0 4 2 . 0 44 .33 4 1 . 0 1 6 . 0 7 . 5 0 0 . 6 8 6000 .0 3 7 . 0 2 . 4 5 2 . 5 2 . 5 9 . 0 1 0 . 0 M 3 1 e l l i p s e .CMD” ) ;

71 # p r i n t ”M31e SW done . \ n ” ;
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Program: MF TRGB Tester.f95

Creation Date: 8 December 2010

Relevant Section: §3.2 of Paper II (Ch. 4)

Notes: This program is the equivalent of ‘MCMCTRGBTester2.f95’ provided in Appendix

B, but it has been updated for use with ‘MF TRGB.f95’ and thus also provides the artificial

stars with a radius representing their distance from the object’s center. For simplicity, an

ellipticity of 0 is assumed. For the sake of brevity, only the ‘DataMaker’ subroutine is

shown, but the other subroutines called can be found in ‘MF TRGB.f95.’

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 !−−−−−−−−−−−−−−−−−−−−G e n e r a l Program P a r a m e t e r s −−−−−−−−−−−−−−−−−−−−−

5 INTEGER : : i , j , k , l , eva l , idum = −9999 , i t , n i t , t r i a l

6 INTEGER : : ndata max , nsamples , binspm , nb ins , cmod nbins , ghw , mm, i o s

7 PARAMETER ( nda ta max = 20000000 , nsamples = 100)

8 PARAMETER ( binspm = 100)

9 PARAMETER ( n b i n s = 8∗ binspm + 1)

10 PARAMETER ( n i t = 50000)

11 INTEGER : : nda ta , n d a t a 2

12 INTEGER : : d1 , d2 , d3 , d4

13 REAL∗8 : : bl im , f l im , p i

14 PARAMETER ( b l im = 1 9 . 5 d0 )

15 PARAMETER ( f l i m = 2 3 . 5 d0 )

16 PARAMETER ( p i = ACOS( −1 . e0 ) )

17 INTEGER : : b l i m B i n s = INT (REAL( ( b l im − 1 8 . d0 ) ∗ binspm ) ) + 1

18 INTEGER : : f l i m B i n s = INT (REAL( ( f l i m − 1 8 . d0 ) ∗ binspm ) ) + 1

19 REAL∗8 : : randnum1 , randnum2 , randnum3 , randnum4 , randnum5 , randnum6 , randnum7

20 INTEGER : : r a n d i n t

21 REAL∗8 : : r1 , r2 , spotR , hb = 0 .005 d0

22 REAL∗8 : : model ( nb ins , 2 ) , cmodel ( nb ins , 2 ) , magn i tude ( nda ta max )

23 REAL∗8 : : h i s t o f i n e ( nb ins , 2 ) , h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

24 REAL∗8 : : w h i s t o f i n e ( nb ins , 2 ) , w h i s t o c o a r s e ( INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1 , 2 )

25 REAL∗8 : : data ( nda ta max ) , c u m u l a t i v e c m o d e l ( nb ins , 2 ) , f , f h o l d , bfm ( n b i n s )

26 REAL∗8 : : c u m u l a t i v e d i s t ( 2 0 0 0 , 2 )

27 REAL∗8 : : mag t ip , mag , m a g c u t o f f = 2 4 . e0 , a

28 REAL∗8 : : a r ea , a r e a 2

29 REAL∗8 : : m o d e l n o i s e ( nb ins , 2 ) , n o i s e ( n b i n s ) = 0 . d0 , bg ( n b i n s ) = 0 . d0

30 REAL∗8 : : k e r n e l ( nb ins , 2 ) = 0 . e0 , s c a l e , uplim , lowlim , gx

31 REAL∗8 : : temp ( nb ins , 2 ) = 0 . e0 , t

32 INTEGER : : s t a r b i n

33 REAL∗8 : : t i p ( nsamples ) , t i p o r d ( nsamples ) , maxlogL ( nsamples ) = −999999999999.

34 REAL∗8 : : t i p r e c , t i p o f f s e t , t i p p s i g m a , t ip ms igma , T o f f s e t k p c , Ts igma kpc

35 REAL∗8 : : f o f f s e t , t i p k p c , k p c p e r r , kpc merr , f s i gma , a o f f s e t , a s i g m a

36 REAL∗8 : : f r e c , a r e c , t i p c o u n t s , f c o u n t s , a c o u n t s

37 REAL∗8 : : t i p m i n s i g , t i p l u s i g , f m i n s i g , f p l u s i g , amins ig , a p l u s i g

38 REAL∗8 : : mcounts , p c o u n t s

39 INTEGER : : num chains , cn , cha in compare , swap coun t

40 PARAMETER ( num cha ins = 4)

41 REAL∗8 : : s w a p r a t e = 1 . d0 / 3 0 . d0 , logL ( num cha ins ) , LikeA ( num cha ins ) , LikeB ( num cha ins )

42 REAL∗8 : : prob , s i g p r o b , b g p r o b

43 REAL∗8 : : be t a , b e t a h o l d e r ( num cha ins ) = ( / 1 . d0 , 0 . 2 5 d0 , 0 .111 d0 , 0 .001 d0 / )

44 REAL∗8 : : m s tep ( num cha ins ) = ( / 0 . 0 3 d0 , 0 . 0 6 d0 , 0 . 1 2 d0 , 0 . 3 d0 / )

45 REAL∗8 : : f s t e p ( num cha ins ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / )
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46 REAL∗8 : : a s t e p ( num cha ins ) = ( / 0 . 0 2 d0 , 0 . 0 4 d0 , 0 . 0 8 d0 , 0 . 2 d0 / )

47 REAL∗8 : : PTAR, p a r h o l d ( 4 )

48 REAL∗8 : : x1 ( n i t , num cha ins ) , x2 ( n i t , num cha ins ) , x3 ( n i t , num cha ins ) , p ( 3 ) , t im e ( n i t ) , r

49 REAL∗8 : : p o s t y 1 ( 1 0 ∗ ( nb ins −1)+1) = 0 . d0 , p o s t x 1 ( 1 0 ∗ ( nb ins −1)+1) , mlim

50 REAL∗8 : : d b l im , bg bl im , d f l i m , b g f l i m

51 REAL∗8 : : p o s t y 2 ( n b i n s ) = 0 . d0 , p o s t x 2 ( n b i n s )

52 REAL∗8 : : p o s t y 3 (2∗ n b i n s − 1) = 0 . d0 , p o s t x 3 (2∗ n b i n s − 1)

53 REAL∗8 : : PPD peak , Best Combo ( 6 )

54 CHARACTER : : a rgv ∗10 , f i e l d ∗60 , ch1 ∗9 , ch2 ∗9 , ch3 ∗9 , ch4 ∗9 , ch5 ∗9 , ch6 ∗9 , s t r i n g ∗90

55

56 !−−−−−−−−−−−−−−−−−−−−−For r e a d i n g i n PAndAS da ta −−−−−−−−−−−−−−−−−−−−

57 INTEGER : : iCCDt , c l s g , c l s i , i f i e l d t , i a c c t

58 REAL∗4 : : xgt , ygt , g , dg , im , dim , x k i t , e t a t , FeH pho t t , d i f f t i p t , E BV t

59 REAL∗8 : : r a t , d e t

60

61 REAL∗4 : : mag g ( nda ta max ) , mag i ( nda ta max ) , x k i ( nda ta max ) , e t a ( nda ta max )

62 REAL∗4 : : g m i n i ( nda ta max ) , m a g i p o l y ( nda ta max ) , g m i n i p o l y ( nda ta max )

63 REAL∗4 : : x i p o l y ( nda ta max ) , e t a p o l y ( nda ta max )

64 REAL∗4 : : gmi

65

66 !−−−−−−A d d i t i o n a l p a r a m e t e r s f o r c a l c u l a t i n g background s t a t s −−−−−−−

67 INTEGER : : b g n d a t a , bg nda t a2 , b g n d a t a 3

68 REAL∗4 : : bg mag g ( nda ta max ) , bg mag i ( nda ta max ) , b g x k i ( nda ta max ) , b g e t a ( nda ta max )

69 REAL∗4 : : b g g m i n i ( nda ta max ) , b g m a g i p o l y ( nda ta max ) , b g g m i n i p o l y ( nda ta max )

70 REAL∗4 : : bg gmi

71 REAL∗8 : : b g d a t a ( nda ta max )

72

73 !−−SVD f i t t i n g o f background −−

74 INTEGER ma , mp , np , n d a t

75 PARAMETER ( n d a t = INT ( 0 . 2 5 ∗ ( nb ins −1. d0 ) ) + 1)

76 PARAMETER ( np = 8)

77 PARAMETER (mp = n d a t )

78 PARAMETER ( ma = np )

79 REAL : : c h i s q , ay ( ma ) , s i g ( n d a t ) , u (mp , np ) , v ( np , np ) , w( np ) , xa ( n d a t ) , ya ( n d a t )

80 REAL : : x t ( n d a t ) , y t ( n d a t )

81 REAL∗8 : : b g h i s t o c o a r s e ( nda t , 2 )

82 EXTERNAL : : f u n c s

83

84 !−−−−−−A d d i t i o n a l p a r a m e t e r s f o r s p e c i f y i n g o b j e c t c o o r d i n a t e s −−−−−−

85 INTEGER : : Jop

86 REAL∗8 : : XIop , ETAop

87 REAL∗8 : : RAh , RAm, RAs , DecD , DecM , DecS , RA rad , Dec rad

88 REAL∗8 : : tpRAh , tpRAm , tpRAs , tpDecD , tpDecM , tpDecS , tpRA rad , t p D e c r a d

89

90 !−−A d d i t i o n a l p a r a m e t e r s f o r Matched F i l t e r s S u b r o u t i n e ’ Weighter ’−−

91 INTEGER : : r h o b i n s , r h o b i n s 2

92 PARAMETER ( r h o b i n s = 10)

93 REAL∗4 : : C O F d i s t ( nda ta max ) , D e n s i t y ( r h o b i n s , 2 ) , r h o f i t ( r h o b i n s , 2 )

94 REAL∗8 : : we i g h t ( nda ta max )

95

96 !−− F i t t i n g t o D e n s i t y P r o f i l e −−

97 INTEGER : : mwt , n d a t 2

98 PARAMETER ( n d a t 2 = r h o b i n s )

99 REAL o f f s e t , g r a d i e n t , ch i2 , q , s i g a , s igb , s igma ( n d a t 2 )

100

101 !−−−−−−−−−−−−−−−−−−−−−−−−−−When f i s known−−−−−−−−−−−−−−−−−−−−−−−−−−−

102 INTEGER : : b g s t a r s , s i g s t a r s

103 REAL∗8 : : b g a r e a , s i g a r e a , b g d e n s i t y

104 REAL∗8 : : known f , b g s t a r s i n s i g f i e l d

105 REAL∗8 : : s i g f i e l d r a d i u s = 0 . 2 d0 , b g l o w x i = −5. d0 , b g u p x i = 1 3 . d0

106
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107 END MODULE Gl ob a l

108

109 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

110

111 PROGRAM B a y e s i a n T R G B s a t e l l i t e ! Mas te r program

112 USE Gl ob a l

113 IMPLICIT NONE

114

115 mm = IARGC ( )

116

117 IF (mm==4) THEN !

118 CALL GETARG( 1 , a r gv ) !

119 READ ( argv , ∗ , i o s t a t= i o s ) m a g t i p !

120 CALL GETARG( 2 , a r gv ) !

121 READ ( argv , ∗ , i o s t a t= i o s ) a !

122 CALL GETARG( 3 , a r gv ) !

123 READ ( argv , ∗ , i o s t a t= i o s ) n d a t a ! I n d i c a t e s t h e a rgumen t s t o be

124 CALL GETARG( 4 , a r gv ) ! s e t i n t h e command l i n e

125 READ ( argv , ∗ , i o s t a t= i o s ) f !

126 ELSE !

127 WRITE( ∗ , ∗ ) ”You must e n t e r 4 a rgumen t s : ” !

128 s t op ; !

129 END IF !

130

131 WRITE ( ch1 , ∗ ) m a g t i p !

132 WRITE ( ch2 , ∗ ) a !

133 WRITE ( ch3 , ∗ ) n d a t a !

134 IF ( f . eq . 0 . d0 ) THEN ! G e n e r a t e t e s t i d e n t i f y i n g c h a r a c t e r s t r i n g

135 WRITE ( ch4 , ∗ ) ’ 0 ’ ! t o become f i l e name u s i n g mag t ip , n d a t a and f

136 ELSE ! e . g . ’MCMC Test / T 20 .5 −0.3 −1000 −0.2 ’

137 WRITE ( ch4 , ∗ ) f !

138 END IF !

139

140 n d a t a 2 = 0

141

142 WRITE ( f i e l d , ∗ ) ’MF MCMC Test / T ’ / / TRIM(ADJUSTL( ch1 ) ) &

143 / / ’− ’ / / TRIM(ADJUSTL( ch2 ) ) &

144 / / ’− ’ / / TRIM(ADJUSTL( ch3 ) ) &

145 / / ’− ’ / / TRIM(ADJUSTL( ch4 ) )

146

147 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / t e s t . d a t ’

148 OPEN( 3 , f i l e =TRIM(ADJUSTL( s t r i n g ) ) , s t a t u s = ’ unknown ’ )

149 WRITE ( 3 , ∗ ) ” F i e l d Name : ” , f i e l d

150 WRITE ( 3 , ∗ ) ” n d a t a = ” , TRIM(ADJUSTL( ch3 ) )

151 WRITE ( 3 , ∗ ) ” f = ” , TRIM(ADJUSTL( ch4 ) )

152

153 !

154 CALL r andom seed !

155

156 CALL NoiseMake !

157 CALL ModelMake !

158 CALL C o n v o l u t i o n !

159

160 cmodel ( : , 2 ) = ( 1 . d0 − f ) ∗ cmodel ( : , 2 ) + f ∗ n o i s e

161

162 CALL DataMaker !

163 CALL Weigh te r !

164 CALL NoiseMake !CALL

165 CALL MCMC !

166 CALL TipAndSigma !SUBROUTINES

167 CALL P o s t e r i o r P l o t !
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168 CALL O t h e r P l o t s !

169 CALL D a t a H i s t !

170 CALL w DataHi s t !

171

172

173 IF ( num cha ins . ne . 1 ) THEN

174 WRITE ( 3 , ∗ ) ” Proposed Swaps wi th Cold Sampler Chain : ” , c h a i n c o m p a r e

175 WRITE ( 3 , ∗ ) ” Accep ted Swaps wi th Cold Sampler Chain : ” , swap coun t

176 WRITE ( 3 , ∗ ) ” P a r a l l e l Tempering Accep tance Rate : ” , REAL( swap coun t ) / REAL( c h a i n c o m p a r e )

177 END IF

178 WRITE ( 3 , ’ (3 a11 ) ’ ) ” t i p mag : ” , ” + s igma : ” , ” − s igma : ” !

179 WRITE ( 3 , ’ (3 F10 . 3 ) ’ ) t i p r e c , t i p p s i g m a , t i p m s i g m a !

180 WRITE ( 3 , ’ (2 a11 ) ’ ) ” f : ” , ” s igma : ” !

181 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) f r e c , f s i g m a ! Wr i t e r e s u l t s

182 WRITE ( 3 , ’ (2 a11 ) ’ ) ” a : ” , ” s igma : ” ! t o f i l e

183 WRITE ( 3 , ’ (2 F10 . 3 ) ’ ) a r e c , a s i g m a !

184 WRITE ( 3 , ∗ ) ” D i s t a n c e =” , REAL( t i p k p c ) , ” kpc ” !

185 WRITE ( 3 , ∗ ) ” E r r o r = +” , REAL( k p c p e r r ) , ” kpc −” , REAL( kpc mer r ) , ” kpc ” !

186 WRITE ( 3 , ∗ ) ” Average E r r o r =” , REAL( ( ABS( k p c p e r r ) + ABS( kpc mer r ) ) / 2 . d0 ) , ” kpc ”

187 WRITE ( 3 , ∗ ) ” Tip Mag & E r r o r =” , t i p r e c , REAL( t i p p s i g m a ) , REAL( t i p m s i g m a )

188 WRITE ( 3 , ∗ ) ” O f f s e t =” , REAL( t i p r e c − 2 0 . 5 d0 ) , ”=” , REAL( t i p k p c − ( 1 0 0 . d0 ∗ ∗ ( ( 2 0 . 5 d0 + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ) , ” kpc ”

189

190 END PROGRAM B a y e s i a n T R G B s a t e l l i t e

191

192 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

193

194 SUBROUTINE DataMaker ! G e n e r a t e s a r t i f i c i a l s t a r s w i t h m a g n i t u d e s from

195 USE Gl ob a l ! model l u m i n o s i t y f u n c t i o n and p o s i t i o n s from

196 IMPLICIT NONE ! model d e n s i t y p r o f i l e

197

198 c u m u l a t i v e c m o d e l ( : , 1 ) = cmodel ( : , 1 )

199

200 c u m u l a t i v e c m o d e l ( 1 , 2 ) = cmodel ( 1 , 2 ) ! E f f e c t i v e

201 DO i = 2 , cmod nbins ! i n t e g r a l o f

202 c u m u l a t i v e c m o d e l ( i , 2 ) = c u m u l a t i v e c m o d e l ( i −1 ,2) + cmodel ( i , 2 ) ! convo lved

203 END DO ! model

204

205 DO i = 1 , n d a t a !

206 CALL random number ( randnum6 ) !

207 randnum6 = c u m u l a t i v e c m o d e l ( b l imBins , 2 ) + &

208 randnum6 ∗ ( c u m u l a t i v e c m o d e l ( f l i m B i n s , 2 ) − c u m u l a t i v e c m o d e l ( b l imBins , 2 ) )

209

210 DO j = f l i m B i n s , b l imBins , −1 ! G e n e r a t e s ’ nda ta ’

211 IF ( randnum6 . l e . c u m u l a t i v e c m o d e l ( j , 2 ) ) THEN ! magn i tude d a t a p o i n t s

212 IF ( randnum6 . g t . c u m u l a t i v e c m o d e l ( j −1 ,2) ) THEN ! from t h e convo lved

213 data ( i ) = c u m u l a t i v e c m o d e l ( j −1 ,1) ! model

214 e x i t ; !

215 END IF !

216 END IF !

217 END DO !

218 END DO !

219

220 c u m u l a t i v e d i s t = 0 . d0 !

221 c u m u l a t i v e d i s t ( 1 , 1 ) = 0 .0001 ! G e n e r a t e s model r a d i a l d e n s i t y

222 c u m u l a t i v e d i s t ( 1 , 2 ) = 1 0 . d0 ∗∗ ( 5 . 6 1 0 6 9 6 − 0 .0013362497) ! p r o f i l e based on t h a t f i t t e d

223 ! t o Andromeda I I ( w i th a p p r o x i m a t i o n

224 DO i = 2 , 2000 ! o f z e r o e l l i p t i c i t y )

225 c u m u l a t i v e d i s t ( i , 1 ) = i ∗ 0 .0001 d0 !

226 c u m u l a t i v e d i s t ( i , 2 ) = c u m u l a t i v e d i s t ( i −1 ,2) + ( 1 0 . d0 ∗∗ ( 5 . 6 1 0 6 9 6 − 13 .362497 ∗ c u m u l a t i v e d i s t ( i , 1 ) ) )

227 END DO

228
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229 DO i = 1 , n d a t a !

230 CALL random number ( randnum6 ) !

231 IF ( data ( i ) . ge . m a g t i p ) THEN !

232 CALL random number ( randnum7 ) ! Draws random

233 IF ( randnum7 . g t . f ∗ ( f l i m − m a g t i p ) / ( f l i m − bl im ) ) THEN !

234 randnum6 = randnum6 ∗ c u m u l a t i v e d i s t ( 2 0 0 0 , 2 ) ! r a d i a l d i s t a n c e

235 DO j = 2000 , 2 , −1 !

236 IF ( randnum6 . l e . c u m u l a t i v e d i s t ( j , 2 ) . and . randnum6 . g t . c u m u l a t i v e d i s t ( j −1 ,2) ) THEN

237 C O F d i s t ( i ) = c u m u l a t i v e d i s t ( j −1 ,1) !

238 e x i t ; ! f o r each

239 END IF !

240 END DO ! s t a r based

241 ELSE !

242 C O F d i s t ( i ) = SQRT ( ( randnum6 ∗ ( p i ∗ s i g f i e l d r a d i u s ∗∗ 2) ) / p i ) ! on above

243 END IF !

244 ELSE ! model

245 C O F d i s t ( i ) = SQRT ( ( randnum6 ∗ ( p i ∗ s i g f i e l d r a d i u s ∗∗ 2) ) / p i ) !

246 END IF !

247 END DO !

248

249 s i g a r e a = p i ∗ ( s i g f i e l d r a d i u s ∗∗ 2 . d0 ) !

250 s i g s t a r s = n d a t a ! For c a l c u l a t i n g r a t i o

251 n d a t a 2 = n d a t a ! o f RGB t o background

252 b g d e n s i t y = f ∗ REAL( s i g s t a r s ) / s i g a r e a !

253

254

255 !−−−−−−−−−−−−−−−p l o t magn i tude vs . r a d i u s −−−−−−−−−−−−−−−−−−−

256 s t r i n g = TRIM(ADJUSTL( f i e l d ) ) / / ’ / m a g v s r a d . ps /CPS ’

257

258 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

259

260 CALL pgenv ( 1 9 . 5 , 2 3 . 5 , 0 . , MAXVAL(REAL( C O F d i s t ) ) , 0 , 0 )

261 CALL pgslw ( 3 )

262 CALL pgp t ( nda ta , REAL( data ) , REAL( C O F d i s t ) , −1)

263 CALL pgslw ( 1 )

264 CALL p g l a b ( ’ magn i tude ’ , ’ r a d i u s ’ , ’ ’ )

265

266 CALL pgend

267

268 END SUBROUTINE DataMaker

269

270 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: Multi MCMC Result Plotter.f95

Creation Date: 6 Feb 2012 (first version 10 Dec 2010 )

Relevant Sections: Ch. 3 & Ch. 4

Notes: This program was created to take the posterior distributions generated by the TRGB

algorithm (e.g. ‘MF TRGB.f95’) and produce more polished versions of the figures for use

in papers I and II. In particular, it colour-codes the distributions to indicate the 1σ, 90%

and 99% credibility intervals. It also generates a contour map of the distribution of the tip

magnitude verses the RGB slope model parameters (see Fig. 8 of Paper I; Ch. 3) - i.e. a 3D

surface from which the individual parameter posterior distributions are created by marginal-

izing over the other parameter. The actual distance posterior distributions for each object are

also created by this program. This is achieved by sampling the posterior distribution in the

tip magnitude along with the probability distributions for the absolute magnitude of the tip

and the extinction along the line of sight (see the ‘Dist Error’ subroutine). The halo density

prior (see §3.3 of Paper II; Ch. 4) is also generated and applied in this program, as are the

hundredth-percentile tables of the object distance distributions published alongside Paper II

(see Table 1 of Paper II for example).

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 INTEGER : : i , i o s , j , k , ndata max , nda ta , ndata M31 , nb ins , binspm , d1 , d2 , d3 , d4 , mm

5 PARAMETER ( nda ta max = 7100000 , binspm = 100)

6 PARAMETER ( n b i n s = 8 ∗ binspm )

7 REAL∗8 : : p i

8 PARAMETER ( p i = ACOS( −1 . e0 ) )

9 REAL : : i t ( nda ta max ) , m a g t i p ( nda ta max ) , f ( nda ta max ) , a ( nda ta max )

10 REAL : : LikeA ( nda ta max ) , LikeB ( nda ta max ) , M 3 1 d i s t p p d ( nda ta max )

11 REAL : : t i p PPD ( 1 0 ∗ ( nb ins −1)+1 , 2 ) = 0 . d0

12 REAL : : f PPD ( nb ins , 2 ) = 0 . d0 , a PPD (2∗ n b i n s − 1 , 2 ) = 0 . d0

13 REAL : : m a g t i p l l , m a g t i p u l

14 REAL : : f l l = 0 . , f u l = 1 .

15 REAL : : a l l , a u l

16 REAL : : t i p r e c , f r e c , a r e c , PPD peak , t i p k p c , t i p c o u n t s , mcounts , pcoun t s , t ip ms igma , t i p p s i g m a

17 REAL : : f s i gma , a s igma , kpc merr , k p c p e r r , f c o u n t s , a c o u n t s , f m i n s i g , f p l u s i g , amins ig , a p l u s i g

18 REAL : : t ip m90 , t i p p 9 0 , t ip m99 , t i p p 9 9 , x p t s ( 2 ) , y p t s ( 2 )

19 REAL : : x i c o o r d , e t a c o o r d

20 REAL∗8 : : RA, DEC, x i d b l e , e t a d b l e

21 CHARACTER : : a rgv ∗20 , f i e l d ∗60 , p l o t d i r ∗60 , s t r i n g ∗200 , s t r i n g 2 ∗200 , command1 ∗200 , command2∗300

22

23 !−−−−−−−−−−−−−−−For Contour P l o t −−−−−−−−−−−−−−−−−

24 INTEGER : : c o n t b i n s , n c o n t o u r s

25 PARAMETER ( c o n t b i n s = 75)

26 PARAMETER ( n c o n t o u r s = 20)

27 REAL : : Cont ( c o n t b i n s , c o n t b i n s ) , c l e v e l s ( n c o n t o u r s ) , TR ( 6 )

28

29 !−−−−−−−−−−For D i s t a n c e D i s t r i b u t i o n −−−−−−−−−−−−−
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30 INTEGER : : idum = −9999 , nsamples , D i s t B i n s , p r i o r t y p e

31 PARAMETER ( nsamples = 500000)

32 REAL : : M TRGB, Ext , Ext 0 , Tip , Dist PPD , Dis t PPDx ( 4 0 0 0 ) , Dis t PPDy ( 4 0 0 0 ) , Dist PPD min , Dist PPD max

33 REAL : : d i s t r e c , d i s t c o u n t s , d i s t m s i gm a , d i s t p s i g m a , d i s t m90 , d i s t p 9 0 , d i s t m99 , d i s t p 9 9

34 REAL : : D i s t P r i o r ( 4 0 0 0 ) , a lpha , s l o p e , f l a t , hwhm , t h e t a

35 REAL : : M 3 1 t o o b j x ( 4 0 0 1 ) , M 3 1 t o o b j y ( 4 0 0 1 ) , M31 to obj , m 3 1 d i s t

36 REAL : : M 3 1 d i s t r e c , M31 d i s t p s igma , M31 dis t msigma

37 REAL∗8 : : randnum

38

39 !−−−For c o n v e r t i n g d i s t a n c e s back t o magni tudes −−−

40 REAL : : d i s t 2 m a g r e c , d2m msigma , d2m psigma , d2m m90 , d2m p90 , d2m m99 , d2m p99

41

42 !−−−−−−−−For Hundred th P e r c e n t i l e Table−−−−−−−−−−−

43 REAL : : c u m d i s t , perc , d i s t a t p e r c ( 1 0 0 , 2 )

44 LOGICAL n e x t

45

46 END MODULE Gl ob a l

47

48 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49

50 PROGRAM MCMC Resu l t P lo t t e r

51 USE Gl ob a l

52 IMPLICIT NONE

53

54 DOUBLE PRECISION : : s la DSEP

55

56 mm = IARGC ( )

57

58 IF (mm==9) THEN !

59 CALL GETARG( 1 , a r gv ) !

60 READ ( argv , ∗ , i o s t a t= i o s ) f i e l d !

61 CALL GETARG( 2 , a r gv ) !

62 READ ( argv , ∗ , i o s t a t= i o s ) E x t 0 !

63 CALL GETARG( 3 , a r gv ) !

64 READ ( argv , ∗ , i o s t a t= i o s ) m a g t i p l l !

65 CALL GETARG( 4 , a r gv ) !

66 READ ( argv , ∗ , i o s t a t= i o s ) m a g t i p u l ! I n d i c a t e s t h e a rgumen t s t o be

67 CALL GETARG( 5 , a r gv ) ! s e t i n t h e command l i n e

68 READ ( argv , ∗ , i o s t a t= i o s ) a l l !

69 CALL GETARG( 6 , a r gv ) !

70 READ ( argv , ∗ , i o s t a t= i o s ) a u l !

71 CALL GETARG( 7 , a r gv ) !

72 READ ( argv , ∗ , i o s t a t= i o s ) x i c o o r d !

73 CALL GETARG( 8 , a r gv ) !

74 READ ( argv , ∗ , i o s t a t= i o s ) e t a c o o r d !

75 CALL GETARG( 9 , a r gv ) !

76 READ ( argv , ∗ , i o s t a t= i o s ) p l o t d i r !

77 ELSE !

78 WRITE( ∗ , ∗ ) ”You must e n t e r 9 a rgumen t s : ” !

79 s t op ; !

80 END IF !

81

82

83 x i c o o r d = x i c o o r d ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from

84 e t a c o o r d = e t a c o o r d ∗ ( p i / 1 8 0 . e0 ) ! d e g r e e s t o r a d i a n s

85

86 x i d b l e = x i c o o r d ; e t a d b l e = e t a c o o r d !

87 CALL sla DTP2S ( x i d b l e , e t a d b l e , 0 . d0 , 0 . d0 , RA, DEC) ! Conve r t t a n g e n t p l a n e

88 IF ( x i d b l e . l t . 0 . d0 ) then ! p r o j e c t i o n a n g l e s i n t o

89 RA = RA − ( 2 . e0 ∗ p i ) ! t h e i r t r u e a n g l e s u s i n g

90 END IF ! s la DTP2S
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91 x i c o o r d = RA !

92 e t a c o o r d = DEC !

93

94 x i d b l e = x i c o o r d ! F ind t h e t r u e a n g l e

95 e t a d b l e = e t a c o o r d ! t h e t a − t h e a n g l e on

96 t h e t a = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) ! t h e sky between M31

97 ! and t h e o b j e c t

98 ! ( u s e s sla DSEP )

99

100 x i c o o r d = x i c o o r d ∗ ( 1 8 0 . e0 / p i ) ! Conve r t back

101 e t a c o o r d = e t a c o o r d ∗ ( 1 8 0 . e0 / p i ) ! t o d e g r e e s

102

103 WRITE ( ∗ , ∗ ) x i c o o r d , e t a c o o r d , t h e t a ∗ ( 1 8 0 . e0 / p i )

104

105 WRITE ( s t r i n g , ∗ ) ’ . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / ’ / ’ / / TRIM(ADJUSTL( p l o t d i r ) )

106

107 WRITE ( command1 , ∗ ) ’ mkdir ’ / / TRIM(ADJUSTL( s t r i n g ) )

108

109 c a l l sys tem ( command1 )

110

111 OPEN ( u n i t = 1 , f i l e = ’ . / ’ / / TRIM(ADJUSTL( f i e l d ) ) / / ’ /MCMC steps . d a t ’ , s t a t u s = ’ o l d ’ ) ! Open i n p u t

112 OPEN ( u n i t = 2 , f i l e = ’ . / ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / ’ / r e s u l t s . d a t ’ , s t a t u s = ’ unknown ’ ) ! and o u t p u t

113 OPEN ( u n i t = 3 , f i l e = ’ . /M31e / o t h e r p l o t s /M31 Distance PPD . d a t ’ , s t a t u s = ’ o l d ’ ) ! f i l e s

114

115 WRITE ( 2 , ∗ ) ” F i e l d : ” , TRIM(ADJUSTL( f i e l d ) ) !

116 WRITE ( 2 , ∗ ) ” C o o r d i n a t e s : x i =” , x i c o o r d , ” , e t a =” , e t a c o o r d !

117 WRITE ( 2 , ∗ ) ” P l o t D i r e c t o r y : ” , TRIM(ADJUSTL( s t r i n g ) ) ! P r i n t b a s i c o b j e c t

118 WRITE ( 2 , ∗ ) ” ” ! i n f o t o f i l e

119 WRITE ( 2 , ∗ ) ” E x t i n c t i o n i n SDSS i : ” , E x t 0 !

120 WRITE ( 2 , ∗ ) ”E (B−V) : ” , E x t 0 / 2 .086 e0 !

121

122 i = 0 ; i o s = 0

123 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

124 i= i+1

125 READ ( 1 , ∗ , IOSTAT = i o s ) i t ( i ) , m a g t i p ( i ) , f ( i ) , a ( i ) , LikeA ( i ) , LikeB ( i )

126 i f ( i o s == 0) then ;

127 e l s e i f ( i o s == −1) then ;

128 i= i −1

129 e x i t ;

130 e l s e i f ( i o s > 0) then ;

131 i= i −1

132 c y c l e

133 end i f

134 END DO

135 n d a t a = i − 1

136

137 i = 0 ; i o s = 0

138 DO WHILE ( . TRUE . ) ! Reads M31 d i s t a n c e sample d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o an a r r a y

139 i= i+1

140 READ ( 3 , ∗ , IOSTAT = i o s ) M 3 1 d i s t p p d ( i )

141 i f ( i o s == 0) then ;

142 e l s e i f ( i o s == −1) then ;

143 i= i −1

144 e x i t ;

145 e l s e i f ( i o s > 0) then ;

146 i= i −1

147 c y c l e

148 end i f

149 END DO

150 ndata M31 = i − 1

151
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152 CALL r andom seed !

153 CALL P o s t e r i o r B u i l d !CALL

154 CALL P o s t e r i o r P l o t !

155 CALL O t h e r P l o t s !SUBROUTINES

156 CALL D i s t E r r o r !

157

158 END PROGRAM MCMC Resu l t P lo t t e r

159

160 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

161

162 SUBROUTINE P o s t e r i o r B u i l d

163 USE Gl ob a l

164 IMPLICIT NONE

165

166 DO i = 1 , 10∗ ( nb ins −1)+1 !

167 t ip PPD ( i , 1 ) = 1 8 . d0 + (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) !

168 END DO !

169 !

170 DO i = 1 , n b i n s ! x−v a l u e s o f

171 f PPD ( i , 1 ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) !PPD h i s t o g r a m s

172 END DO !

173 !

174 DO i = 1 , 2∗ n b i n s − 1 !

175 a PPD ( i , 1 ) = (REAL( i ) − 1 . d0 ) /REAL( n b i n s − 1) !

176 END DO !

177

178 DO i = 1 , n d a t a !

179 t ip PPD ( INT ( ( m a g t i p ( i ) − 1 8 . d0 ) ∗10∗ binspm + 1) , 2 ) = & !

180 t ip PPD ( INT ( ( m a g t i p ( i ) − 1 8 . d0 ) ∗10∗ binspm + 1) , 2 ) + 1 . d0 !

181 f PPD ( INT ( f ( i ) ∗ ( n b i n s − 1) ) + 1 , 2 ) = & ! y−v a l u e s o f

182 f PPD ( INT ( f ( i ) ∗ ( n b i n s − 1) ) + 1 , 2 ) + 1 . d0 !PPD h i s t o g r a m s

183 a PPD ( INT ( a ( i ) ∗ ( n b i n s − 1) ) + 1 , 2 ) = & !

184 a PPD ( INT ( a ( i ) ∗ ( n b i n s − 1) ) + 1 , 2 ) + 1 . d0 !

185 END DO !

186

187 CALL C o n f i d e n c e

188

189 END SUBROUTINE P o s t e r i o r B u i l d

190

191 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

192

193 SUBROUTINE P o s t e r i o r P l o t ! P l o t s p o s t e r i o r d i s t r i b u t i o n s i n t i p magn i tude and a

194 USE Gl ob a l ! t i p magn i tude PPD i s p l o t t e d wi th c r e d i b i l i t y i n t e r v a l s

195 IMPLICIT NONE

196

197 t ip PPD ( : , 2 ) = t i p PPD ( : , 2 ) / n d a t a ; f PPD ( : , 2 ) = f PPD ( : , 2 ) / n d a t a

198 a PPD ( : , 2 ) = a PPD ( : , 2 ) / n d a t a

199

200 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s m a g t i p p o s t e r i o r p l o t

201 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / b w m a g t i p p o s t p l o t . ps /CPS ’

202 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

203

204 CALL pgenv ( m a g t i p l l , m a g t i p u l , 0 . , 1 . 1∗MAXVAL( t ip PPD ( : , 2 ) ) , 0 , 0 )

205 CALL pgb in ( 1 0 ∗ ( nb ins −1)+1 , t ip PPD ( : , 1 ) , t i p PPD ( : , 2 ) , . f a l s e . )

206 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

207

208 CALL pgend

209

210 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

211 ’ / b w m a g t i p p o s t p l o t . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

212 ’ / b w m a g t i p p o s t p l o t . j p g ’
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213

214 c a l l sys tem ( command2 )

215

216 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s m a g t i p p o s t e r i o r p l o t w i th c o n f i d e n c e l e v e l s

217 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / m a g t i p p o s t p l o t . ps /CPS ’

218 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

219

220 CALL pgenv ( m a g t i p l l , m a g t i p u l , 0 . , 1 . 1∗MAXVAL( t ip PPD ( : , 2 ) ) , 0 , 0 )

221

222 DO i = 1 , 10∗ ( nb ins −1)+1

223 IF ( t i p PPD ( i , 1 ) . ge . t i p r e c − t i p m s i g m a . and . t ip PPD ( i , 1 ) . l t . t i p r e c + t i p p s i g m a ) THEN

224 CALL p g s c i ( 2 ) !

225 CALL pgb in ( 2 , t ip PPD ( i , 1 ) , t i p PPD ( i , 2 ) , . f a l s e . ) !

226 IF ( t i p PPD ( i , 1 ) . eq . t i p r e c − t i p m s i g m a ) THEN !

227 x p t s = t i p PPD ( i , 1 ) !

228 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) ! One Sigma

229 CALL p g l i n e ( 2 , xp t s , y p t s ) !

230 END IF ! C r e d i b i l i t y

231 IF ( t i p PPD ( i +1 ,1) . eq . t i p r e c + t i p p s i g m a ) THEN !

232 x p t s = t i p PPD ( i +1 ,1) ! I n t e r v a l

233 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) !

234 CALL p g l i n e ( 2 , xp t s , y p t s ) !

235 END IF !

236 ELSE IF ( t i p PPD ( i , 1 ) . ge . t i p r e c − t i p m 90 . and . t ip PPD ( i , 1 ) . l t . t i p r e c + t i p p 9 0 ) THEN

237 CALL p g s c i ( 3 ) !

238 CALL pgb in ( 2 , t ip PPD ( i , 1 ) , t i p PPD ( i , 2 ) , . f a l s e . ) !

239 IF ( t i p PPD ( i , 1 ) . eq . t i p r e c − t i p m 90 ) THEN !

240 x p t s = t i p PPD ( i , 1 ) !

241 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) ! 90 p e r c e n t

242 CALL p g l i n e ( 2 , xp t s , y p t s ) !

243 END IF ! C r e d i b i l i t y

244 IF ( t i p PPD ( i +1 ,1) . eq . t i p r e c + t i p p 9 0 ) THEN !

245 x p t s = t i p PPD ( i +1 ,1) ! I n t e r v a l

246 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) !

247 CALL p g l i n e ( 2 , xp t s , y p t s ) !

248 END IF !

249 ELSE IF ( t i p PPD ( i , 1 ) . ge . t i p r e c − t i p m 99 . and . t ip PPD ( i , 1 ) . l t . t i p r e c + t i p p 9 9 ) THEN

250 CALL p g s c i ( 4 ) !

251 CALL pgb in ( 2 , t ip PPD ( i , 1 ) , t i p PPD ( i , 2 ) , . f a l s e . ) !

252 IF ( t i p PPD ( i , 1 ) . eq . t i p r e c − t i p m 99 ) THEN !

253 x p t s = t i p PPD ( i , 1 ) !

254 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) ! 99 p e r c e n t

255 CALL p g l i n e ( 2 , xp t s , y p t s ) !

256 END IF ! C r e d i b i l i t y

257 IF ( t i p PPD ( i +1 ,1) . eq . t i p r e c + t i p p 9 9 ) THEN !

258 x p t s = t i p PPD ( i +1 ,1) ! I n t e r v a l

259 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = t i p PPD ( i , 2 ) !

260 CALL p g l i n e ( 2 , xp t s , y p t s ) !

261 END IF !

262 ELSE

263 CALL p g s c i ( 1 ) ! D i s t r i b u t i o n

264 CALL pgb in ( 2 , t ip PPD ( i , 1 ) , t i p PPD ( i , 2 ) , . f a l s e . ) ! o u t s i d e o f 99 %

265 END IF ! Cred . I n t e r v a l

266 END DO

267

268 CALL p g s c i ( 1 )

269

270 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

271

272 CALL pgend

273
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274 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

275 ’ / m a g t i p p o s t p l o t . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

276 ’ / m a g t i p p o s t p l o t . j p g ’

277

278 c a l l sys tem ( command2 )

279

280 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s a p o s t e r i o r p l o t

281 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / a p o s t p l o t . ps /CPS ’

282 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

283

284 CALL pgenv ( a l l , a u l , 0 . , 1 . 1∗MAXVAL( a PPD ( : , 2 ) ) , 0 , 0 )

285 CALL pgb in (2∗ nb ins −1 , a PPD ( : , 1 ) , a PPD ( : , 2 ) , . f a l s e . )

286 CALL p g l a b ( ’ P roposed v a l u e f o r LF s l o p e ( a ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

287

288 CALL pgend

289

290 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

291 ’ / a p o s t p l o t . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

292 ’ / a p o s t p l o t . j p g ’

293

294 c a l l sys tem ( command2 )

295

296 t ip PPD ( : , 2 ) = t i p PPD ( : , 2 ) ∗ n d a t a ; f PPD ( : , 2 ) = f PPD ( : , 2 ) ∗ n d a t a

297 a PPD ( : , 2 ) = a PPD ( : , 2 ) ∗ n d a t a

298

299 END SUBROUTINE P o s t e r i o r P l o t

300

301 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

302

303 SUBROUTINE O t h e r P l o t s

304 USE Gl ob a l

305 IMPLICIT NONE

306

307 !−−−−−−−−−−−−Values o f ’ a ’ f o r each v a l u e o f ’ mag t ip ’ − c o n t o u r p l o t

308

309 Cont = 0 . e0

310 TR = 0 . e0

311 TR ( 1 ) = m a g t i p l l ; TR ( 2 ) = ( m a g t i p u l − m a g t i p l l ) /REAL( c o n t b i n s ) ; TR ( 4 ) = a l l ; TR ( 6 ) = ( a u l − a l l ) /REAL( c o n t b i n s )

312

313 DO k = 1 , n d a t a

314 i = INT ( ( m a g t i p ( k ) − TR ( 1 ) ) /TR ( 2 ) ) + 1

315 j = INT ( ( a ( k ) − TR ( 4 ) ) /TR ( 6 ) ) + 1

316 i f ( i >0 . and . i<= c o n t b i n s . and . j >0 . and . j<= c o n t b i n s ) Cont ( i , j ) = Cont ( i , j ) + 1 . e0

317 END DO

318

319 DO i = 1 , n c o n t o u r s

320 c l e v e l s ( i ) = 0 . e0 + i ∗MAXVAL( Cont ) /REAL( n c o n t o u r s )

321 END DO

322

323 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / m v s a c o n t o u r . ps /CPS ’

324 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

325

326 CALL pgenv ( m a g t i p l l , m a g t i p u l , a l l , a u l , 0 , 0 )

327 CALL PGCONT ( Cont , c o n t b i n s , c o n t b i n s , 1 , c o n t b i n s , 1 , c o n t b i n s , c l e v e l s , n c o n t o u r s , TR)

328 CALL p g l a b ( ’ P roposed i \d0 \u t i p magn i tude ’ , ’ P roposed v a l u e o f a ’ , ’ ’ )

329

330 CALL pgend

331

332 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

333 ’ / m v s a c o n t o u r . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

334 ’ / m v s a c o n t o u r . j p g ’
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335

336 c a l l sys tem ( command2 )

337

338 END SUBROUTINE O t h e r P l o t s

339

340 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

341

342 SUBROUTINE C o n f i d e n c e ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and

343 USE Gl ob a l ! t h e i r a s s o c i a t e d 1 sigma e r r o r s from t h e

344 IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s .

345

346 PPD peak = 0 . d0 !

347 DO i = 1 , 10∗ ( nb ins −1)+1 !

348 IF ( t i p PPD ( i , 2 ) . g t . PPD peak ) THEN !

349 PPD peak = t i p PPD ( i , 2 ) ! F ind b e s t f i t TRGB v a l u e

350 t i p r e c = t i p PPD ( i , 1 ) !

351 END IF !

352 END DO !

353

354 PPD peak = 0 . d0 !

355 DO i = 1 , n b i n s !

356 IF ( f PPD ( i , 2 ) . g t . PPD peak ) THEN !

357 PPD peak = f PPD ( i , 2 ) ! F ind b e s t f i t f v a l u e

358 f r e c = f PPD ( i , 1 ) !

359 END IF !

360 END DO !

361

362 PPD peak = 0 . d0 !

363 DO i = 1 , 2∗ n b i n s − 1 !

364 IF ( a PPD ( i , 2 ) . g t . PPD peak ) THEN !

365 PPD peak = a PPD ( i , 2 ) ! F ind b e s t f i t a v a l u e

366 a r e c = a PPD ( i , 1 ) !

367 END IF !

368 END DO !

369

370 t i p k p c = ( 1 0 0 . d0 ∗ ∗ ( ( t i p r e c + 3 . 4 4 d0 ) / 1 0 . d0 ) ) / 1 0 0 . d0 ! D i s t a n c e i n f e r r e d from

371 ! t i p magn i tude i n kpc

372

373 t i p c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

374 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

375 mcounts = mcounts + t i p PPD ( i , 2 ) !

376 END DO !

377 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

378 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s n e g a t i v e one sigma

379 IF ( t i p c o u n t s . ge . 0 . 6 82∗mcounts ) THEN ! e r r o r i n m a g n i t u d e s

380 t i p m s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

381 t i p m s i g m a = t i p r e c − t i p m s i g m a !

382 e x i t !

383 END IF !

384 END DO !

385

386 t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

387 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

388 p c o u n t s = p c o u n t s + t i p PPD ( i , 2 ) !

389 END DO !

390 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

391 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s p o s i t i v e one sigma

392 IF ( t i p c o u n t s . ge . 0 . 6 82∗ p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s

393 t i p p s i g m a = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

394 t i p p s i g m a = t i p p s i g m a − t i p r e c !

395 e x i t !
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396 END IF !

397 END DO !

398

399 t i p c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

400 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

401 mcounts = mcounts + t i p PPD ( i , 2 ) !

402 END DO !

403 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

404 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s n e g a t i v e 90% c o n f i d e n c e

405 IF ( t i p c o u n t s . ge . 0 . 9 d0∗mcounts ) THEN ! e r r o r i n m a g n i t u d e s

406 t i p m 9 0 = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

407 t i p m 9 0 = t i p r e c − t i p m 9 0 !

408 e x i t !

409 END IF !

410 END DO !

411

412 t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

413 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

414 p c o u n t s = p c o u n t s + t i p PPD ( i , 2 ) !

415 END DO !

416 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

417 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s p o s i t i v e 90% c o n f i d e n c e

418 IF ( t i p c o u n t s . ge . 0 . 9 d0∗ p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s

419 t i p p 9 0 = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

420 t i p p 9 0 = t i p p 9 0 − t i p r e c !

421 e x i t !

422 END IF !

423 END DO !

424

425 t i p c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

426 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

427 mcounts = mcounts + t i p PPD ( i , 2 ) !

428 END DO !

429 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 1 , −1 !

430 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s n e g a t i v e 99% c o n f i d e n c e

431 IF ( t i p c o u n t s . ge . 0 . 9 9 d0∗mcounts ) THEN ! e r r o r i n m a g n i t u d e s

432 t i p m 9 9 = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

433 t i p m 9 9 = t i p r e c − t i p m 9 9 !

434 e x i t !

435 END IF !

436 END DO !

437

438 t i p c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

439 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

440 p c o u n t s = p c o u n t s + t i p PPD ( i , 2 ) !

441 END DO !

442 DO i = MAXLOC( t ip PPD ( : , 2 ) , DIM = 1) , 10∗ ( nb ins −1)+1 !

443 t i p c o u n t s = t i p c o u n t s + t i p PPD ( i , 2 ) ! F i n d s p o s i t i v e 99% c o n f i d e n c e

444 IF ( t i p c o u n t s . ge . 0 . 9 9 d0∗ p c o u n t s ) THEN ! e r r o r i n m a g n i t u d e s

445 t i p p 9 9 = ( (REAL( i ) − 1 . d0 ) /REAL(10∗ binspm ) ) + 1 8 . d0 !

446 t i p p 9 9 = t i p p 9 9 − t i p r e c !

447 e x i t !

448 END IF !

449 END DO !

450

451 d1 = 0 ; d2 = 0 ; d3 = 0 ; d4 = 0

452 f c o u n t s = 0 . d0 ; a c o u n t s = 0 . d0 !

453 DO i = 1 , n b i n s !

454 f c o u n t s = f c o u n t s + f PPD ( i , 2 ) !

455 a c o u n t s = a c o u n t s + a PPD ( i , 2 ) !

456 IF ( f c o u n t s . ge . 0 .1 59∗ n d a t a . and . d1 . eq . 0 ) THEN!
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457 f m i n s i g = f PPD ( i , 1 ) !

458 d1 = 1 !

459 END IF !

460 IF ( f c o u n t s . ge . 0 .8 41∗ n d a t a . and . d2 . eq . 0 ) THEN! For f and a :

461 f p l u s i g = f PPD ( i , 1 ) ! F i n d s upper and lower

462 d2 = 1 ! bounds f o r p o s t e r i o r

463 END IF ! d i s t r i b u t i o n w i t h i n one

464 IF ( a c o u n t s . ge . 0 .1 59∗ n d a t a . and . d3 . eq . 0 ) THEN! s igma of maximum .

465 a m i n s i g = a PPD ( i , 1 ) !

466 d3 = 1 !

467 END IF !

468 IF ( a c o u n t s . ge . 0 .8 41∗ n d a t a . and . d4 . eq . 0 ) THEN!

469 a p l u s i g = a PPD ( i , 1 ) !

470 d4 = 1 !

471 END IF !

472 END DO !

473

474 f s i g m a = 0 . 5 d0 ∗ ( f p l u s i g − f m i n s i g ) ! Hence c a l c u l a t e s 1 sigma e r r o r

475 a s i g m a = 0 . 5 d0 ∗ ( a p l u s i g − a m i n s i g ) ! f o r f and a

476

477 kpc mer r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p m s i g m a / 1 0 . d0 ) − t i p k p c ! minus t i p e r r o r i n kpc

478 k p c p e r r = t i p k p c ∗1 0 0 . d0 ∗∗ ( t i p p s i g m a / 1 0 . d0 ) − t i p k p c ! p l u s t i p e r r o r i n kpc

479

480 WRITE ( 2 , ∗ ) ” ”

481 WRITE ( 2 , ∗ ) ” D i s t a n c e Modulus : ” , t i p r e c + 3 . 4 4 e0

482 WRITE ( 2 , ∗ ) ”+s igma −s igma : ” , t i p p s i g m a , t i p m s i g m a

483 WRITE ( 2 , ∗ ) ”+90 −90: ” , t i p p 9 0 , t i p m 90

484 WRITE ( 2 , ∗ ) ”+99 −99: ” , t i p p 9 9 , t i p m 99

485 WRITE ( 2 , ∗ ) ” t i p +s igma −s igma : ” , t i p r e c , t i p r e c + t i p p s i g m a , t i p r e c − t i p m s i g m a

486 WRITE ( 2 , ∗ ) ” t i p +90 −90: ” , t i p r e c , t i p r e c + t i p p 9 0 , t i p r e c − t i p m 9 0

487 WRITE ( 2 , ∗ ) ” t i p +99 −99: ” , t i p r e c , t i p r e c + t i p p 9 9 , t i p r e c − t i p m 9 9

488

489 END SUBROUTINE C o n f i d e n c e

490

491 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

492

493 SUBROUTINE D i s t E r r o r ! Samples D i s t a n c e l i k e l i h o o d s p a c e

494 USE Gl ob a l ! u s i n g samples o f m TRGB, A lambda and M TRGB

495 IMPLICIT NONE ! from t h e i r r e s p e c t i v e l i k e l i h o o d d i s t r i b u t i o n s

496

497 REAL∗8 : : gasdev

498

499 ! | | Don ’ t f o r g e t t o r e i n s t a t e

500 ! \ / w r i t i n g d i s t a n c e s t o f i l e s 13 & 14

501

502 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / Sampled MWy Distances . d a t ’

503 OPEN ( u n i t = 13 , f i l e = TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ )

504 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / Sampled M31 Dis tances . d a t ’

505 OPEN ( u n i t = 14 , f i l e = TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ )

506

507 Dist PPDx = 0 . e0 ! Pre− s e t D i s t a n c e l i k e l i h o o d

508 Dist PPDy = 0 . e0 ! d i s t r i b u t i o n h i s t o g r a m t o 0 .

509 Dis t PPD min = ( 1 0 0 . e0 ∗ ∗ ( (MINVAL( mag t ip , mask = m a g t i p . ne . 0 . ) − 0 . 3 e0 ∗ E xt 0 + 3 . 1 4 ) / 1 0 . e0 ) ) / 1 0 0 . e0

510 Dist PPD max = ( 1 0 0 . e0 ∗ ∗ ( (MAXVAL( mag t ip , mask = m a g t i p . ne . 0 . ) + 0 . 3 e0 ∗ E xt 0 + 3 . 7 4 ) / 1 0 . e0 ) ) / 1 0 0 . e0

511 M 3 1 t o o b j x = 0 . e0 ! Pre− s e t M31 t o o b j e c t h i s t o g r a m x v a l u e s t o 0 .

512 M 3 1 t o o b j y = 0 . e0 ! Pre− s e t M31 t o o b j e c t d i s t a n c e h i s t o g r a m v a l u e s t o 0 .

513

514 D i s t B i n s = 0 !

515 DO i = NINT ( Dis t PPD min ) − 1 , NINT ( Dist PPD max ) + 1 ! G e n e r a t e ’x ’ v a l u e s (MWy d i s t a n c e s )

516 D i s t B i n s = D i s t B i n s + 1 ! f o r d i s t r i b u t i o n h i s t o g r a m and c o u n t

517 Dis t PPDx ( D i s t B i n s ) = REAL( i ) ! number o f b i n s
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518 END DO !

519

520 DO i = −2000 , 2000 ! G e n e r a t e ’x ’ v a l u e s (M31 d i s t a n c e s )

521 M 3 1 t o o b j x ( i +2001) = REAL( i ) ! f o r d i s t r i b u t i o n h i s t o g r a m

522 END DO !

523

524 DO i = 1 , nsamples !

525 M TRGB = 3 . 4 4 e0 + 0 . 0 5 e0 ∗ gasdev ( idum ) !

526 Ext = E xt 0 + 0 . 1 e0 ∗ E xt 0 ∗ gasdev ( idum ) !

527 CALL random number ( randnum ) ! Take ’ nsamples ’ samples o f t h e d i s t a n c e

528 Tip = m a g t i p ( NINT ( randnum ∗0 .9999 d0∗ n d a t a ) +1) + E xt 0 ! u s i n g v a l u e s o f m TRGB, A lambda and M TRG

529 Dist PPD = ( 1 0 0 . e0 ∗ ∗ ( ( Tip − Ext + M TRGB) / 1 0 . e0 ) ) / 1 0 0 . e0 ! from t h e i r r e s p e c t i v e l i k e l i h o o d d i s t r i b u t i o n s .

530 m 3 1 d i s t = M 3 1 d i s t p p d ( NINT ( randnum ∗0 .9999 d0∗ ndata M31 ) +1) ! m 3 1 d i s t i s sampled d i r e c t l y from t h e M31 d i s t PPD each i t e r a t i o n

531 M31 to Obj = ( ( Dis t PPD ∗∗ 2 . e0 ) + ( m 3 1 d i s t ∗∗ 2 . e0 ) − & !

532 2 . e0 ∗ Dist PPD ∗ m 3 1 d i s t ∗ cos ( t h e t a ) ) ∗∗ 0 . 5 e0 !

533 WRITE ( 1 3 , ∗ ) Dis t PPD

534 WRITE ( 1 4 , ∗ ) M31 to Obj

535

536 Dist PPDy ( NINT ( Dis t PPD ) − ( NINT ( Dis t PPD min ) − 2) ) = & ! T a l l y up number o f c o u n t s

537 Dis t PPDy ( NINT ( Dis t PPD ) − ( NINT ( Dis t PPD min ) − 2) ) + 1 . e0 ! i n each E a r t h d i s t a n c e b i n

538

539 M 3 1 t o o b j y (2001 + NINT ( M31 to Obj ) ) = & ! T a l l y up number o f c o u n t s

540 M 3 1 t o o b j y (2001 + NINT ( M31 to Obj ) ) + 1 . e0 ! i n each M31 d i s t a n c e b i n

541 END DO

542

543 !−−−−−−−−−−−One Hundred th P e r c e n t i l e s b e f o r e p r i o r −−−−−−−−−−−

544

545 d i s t a t p e r c = 0 . e0

546 c u m d i s t = 0 . e0 ; p e r c = 0 . e0 ; n e x t = . t r u e .

547

548 DO i = 1 , 4000

549 c u m d i s t = c u m d i s t + Dist PPDy ( i ) !

550 1 IF ( n e x t ) THEN ! Note , t h i s r o u t i n e now a c c o u n t s f o r t h e f a c t t h a t

551 p e r c = p e r c + 1 . e0 ! a s i n g l e b i n can c o n t a i n more t h a n 1% of t h e

552 n e x t = . f a l s e . ! d a t a . i . e . − c u m d i s t does n o t p r o g r e s s u n t i l

553 END IF ! t h e p e r c e n t a g e o f t h e PPD s u r p a s s e s i t . O t h e r w i s e

554 IF ( c u m d i s t . ge . ( p e r c / 1 0 0 . e0 ) ∗SUM( Dist PPDy ) ) THEN ! c u m d i s t o v e r t a k e s i t and t h e second i f s t a t e m e n t

555 d i s t a t p e r c ( NINT ( p e r c ) , 1 ) = Dist PPDx ( i ) ! i s a lways t r u e .

556 n e x t = . t r u e . !

557 goto 1

558 END IF

559 END DO

560

561 !−−−−−−−−−−−Apply d i s t a n c e p r i o r −−−−−−−−−−−−−−

562 CALL D i s t a n c e P r i o r

563

564 Dist PPDy = Dist PPDy ∗ D i s t P r i o r

565

566 Dist PPDy = Dist PPDy / SUM( Dist PPDy )

567

568 !−−−−−−−−−−−One Hundred th P e r c e n t i l e s a f t e r p r i o r −−−−−−−−−−−

569

570 c u m d i s t = 0 . e0 ; p e r c = 0 . e0 ; n e x t = . t r u e .

571

572 DO i = 1 , 4000

573 c u m d i s t = c u m d i s t + Dist PPDy ( i ) !

574 2 IF ( n e x t ) THEN ! Note , t h i s r o u t i n e now a c c o u n t s f o r t h e f a c t t h a t

575 p e r c = p e r c + 1 . e0 ! a s i n g l e b i n can c o n t a i n more t h a n 1% of t h e

576 n e x t = . f a l s e . ! d a t a . i . e . − c u m d i s t does n o t p r o g r e s s u n t i l

577 END IF ! t h e p e r c e n t a g e o f t h e PPD s u r p a s s e s i t . O t h e r w i s e

578 IF ( c u m d i s t . ge . ( p e r c / 1 0 0 . e0 ) ∗SUM( Dist PPDy ) ) THEN ! c u m d i s t o v e r t a k e s i t and t h e second i f s t a t e m e n t



219

579 d i s t a t p e r c ( NINT ( p e r c ) , 2 ) = Dist PPDx ( i ) ! i s a lways t r u e .

580 n e x t = . t r u e . !

581 goto 2

582 END IF

583 END DO

584

585 !−−−−−−−−−C r e a t e t a b l e o f One Hundred th P e r c e n t i l e s −−−−−−−−−

586

587 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / H u n d r e d t h P e r c e n t i l e s . d a t ’

588 OPEN ( u n i t = 14 , f i l e = TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ )

589

590 DO i = 1 , 100

591 WRITE( 1 4 , ’ (3 i 7 ) ’ ) i , NINT ( d i s t a t p e r c ( i , 1 ) ) , NINT ( d i s t a t p e r c ( i , 2 ) )

592 END DO

593

594 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

595

596 CALL Conf idence2 ! C a l c u l a t e 68.3% , 90% and 99% p l u s / minus c r e d i b i l i t y i n t e r v a l s

597 Dis t PPDy = Dist PPDy / SUM( Dist PPDy ) ! n o r m a l i z e d i s t r i b u t i o n

598

599 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

600

601 CALL Conf idence3 ! C a l c u l a t e 68.3% c r e d i b i l i t y i n t e r v a l s

602 M 3 1 t o o b j y = M 3 1 t o o b j y / SUM( M 3 1 t o o b j y ) ! n o r m a l i z e d i s t r i b u t i o n

603

604 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s D i s t a n c e D i s t r i b u t i o n w / o c r e d i b i l i t y i n t e r v a l s

605 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / bw dis t PPD . ps /CPS ’

606 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

607

608 CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) − 1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1∗MAXVAL( Dist PPDy ) , 0 , 0 )

609 CALL pgb in ( D i s t B i n s , Dist PPDx , Dist PPDy , . f a l s e . )

610 CALL p g l a b ( ’ P roposed D i s t a n c e ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

611

612 CALL pgend

613

614 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

615 ’ / bw dis t PPD . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

616 ’ / bw dis t PPD . j p g ’

617

618 c a l l sys tem ( command2 )

619

620 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s D i s t a n c e D i s t r i b u t i o n wi th c r e d i b i l i t y i n t e r v a l s

621 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / d i s t P P D . ps /CPS ’

622 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

623

624 CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) − 1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1∗MAXVAL( Dist PPDy ) , 0 , 0 )

625

626 DO i = 1 , D i s t B i n s

627 IF ( Dis t PPDx ( i ) . ge . d i s t r e c − d i s t m s i g m a . and . Dis t PPDx ( i ) . l t . d i s t r e c + d i s t p s i g m a ) THEN

628 CALL p g s c i ( 2 ) !

629 CALL pgb in ( 2 , Dis t PPDx ( i ) , Dis t PPDy ( i ) , . f a l s e . ) !

630 IF ( Dis t PPDx ( i ) . eq . d i s t r e c − d i s t m s i g m a ) THEN !

631 x p t s = Dist PPDx ( i ) !

632 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) ! One Sigma

633 CALL p g l i n e ( 2 , xp t s , y p t s ) !

634 END IF ! C r e d i b i l i t y

635 IF ( Dis t PPDx ( i +1) . eq . d i s t r e c + d i s t p s i g m a ) THEN !

636 x p t s = Dist PPDx ( i +1) ! I n t e r v a l

637 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) !

638 CALL p g l i n e ( 2 , xp t s , y p t s ) !

639 END IF !
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640 ELSE IF ( Dis t PPDx ( i ) . ge . d i s t r e c − d i s t m 9 0 . and . Dis t PPDx ( i ) . l t . d i s t r e c + d i s t p 9 0 ) THEN

641 CALL p g s c i ( 3 ) !

642 CALL pgb in ( 2 , Dis t PPDx ( i ) , Dis t PPDy ( i ) , . f a l s e . ) !

643 IF ( Dis t PPDx ( i ) . eq . d i s t r e c − d i s t m 9 0 ) THEN !

644 x p t s = Dist PPDx ( i ) !

645 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) ! 90 p e r c e n t

646 CALL p g l i n e ( 2 , xp t s , y p t s ) !

647 END IF ! C r e d i b i l i t y

648 IF ( Dis t PPDx ( i +1) . eq . d i s t r e c + d i s t p 9 0 ) THEN !

649 x p t s = Dist PPDx ( i +1) ! I n t e r v a l

650 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) !

651 CALL p g l i n e ( 2 , xp t s , y p t s ) !

652 END IF !

653 ELSE IF ( Dis t PPDx ( i ) . ge . d i s t r e c − d i s t m 9 9 . and . Dis t PPDx ( i ) . l t . d i s t r e c + d i s t p 9 9 ) THEN

654 CALL p g s c i ( 4 ) !

655 CALL pgb in ( 2 , Dis t PPDx ( i ) , Dis t PPDy ( i ) , . f a l s e . ) !

656 IF ( Dis t PPDx ( i ) . eq . d i s t r e c − d i s t m 9 9 ) THEN !

657 x p t s = Dist PPDx ( i ) !

658 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) ! 99 p e r c e n t

659 CALL p g l i n e ( 2 , xp t s , y p t s ) !

660 END IF ! C r e d i b i l i t y

661 IF ( Dis t PPDx ( i +1) . eq . d i s t r e c + d i s t p 9 9 ) THEN !

662 x p t s = Dist PPDx ( i +1) ! I n t e r v a l

663 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = Dist PPDy ( i ) !

664 CALL p g l i n e ( 2 , xp t s , y p t s ) !

665 END IF !

666 ELSE

667 CALL p g s c i ( 1 ) ! D i s t r i b u t i o n

668 CALL pgb in ( 2 , Dis t PPDx ( i ) , Dis t PPDy ( i ) , . f a l s e . ) ! o u t s i d e o f 99 %

669 END IF ! Cred . I n t e r v a l

670 END DO

671

672 CALL p g s c i ( 1 )

673

674 CALL p g l a b ( ’ P roposed D i s t a n c e ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

675

676 CALL pgend

677

678 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

679 ’ / d i s t P P D . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

680 ’ / d i s t P P D . j p g ’

681

682 c a l l sys tem ( command2 )

683

684 !−−−−−−−−−−−−−−−−−−−−−−−−P l o t s M31 t o O b j e c t D i s t a n c e D i s t r i b u t i o n w / o c r e d i b i l i t y i n t e r v a l s

685 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / bw M31dist PPD . ps /CPS ’

686 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

687

688 CALL pgenv (MINVAL( M31 to ob j x , mask = M 3 1 t o o b j y . ne . 0 . ) − 1 , &

689 MAXVAL( M31 to ob j x , mask = M 3 1 t o o b j y . ne . 0 . ) + 1 , &

690 0 . , 1 . 1∗MAXVAL( M 3 1 t o o b j y ) , 0 , 0 )

691 CALL pgb in ( 4 0 0 1 , M31 to ob j x , M31 to ob j y , . f a l s e . )

692 CALL p g l a b ( ’ P roposed D i s t a n c e from M31 ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

693

694 CALL pgend

695

696 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

697 ’ / bw M31dist PPD . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

698 ’ / bw M31dist PPD . j p g ’

699

700 c a l l sys tem ( command2 )
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701

702 END SUBROUTINE D i s t E r r o r

703

704 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

705

706 SUBROUTINE D i s t a n c e P r i o r ! M u l t i p l i e s D i s t a n c e P o s t e r i o r

707 USE Gl ob a l ! D i s t r i b u t i o n by t h e d i s t a n c e p r i o r −

708 IMPLICIT NONE ! e . g . t h e d e n s i t y f u n c t i o n o f t h e h a l o

709

710 D i s t P r i o r = 0 . e0

711 p r i o r t y p e = 2

712

713 IF ( p r i o r t y p e . eq . 1 ) Then ! For a Uniform P r i o r

714 WRITE ( 2 , ∗ ) ” ”

715 WRITE ( 2 , ∗ ) ” P r i o r Type : Uniform ”

716 D i s t P r i o r = 1 . e0

717 END IF

718

719 IF ( p r i o r t y p e . eq . 2 ) Then ! For a c t u a l i n t e g r a t e d d e n s i t y a l o n g l i n e o f s i g h t

720 a l p h a = 1 . e0 ! S lope o f power law

721 WRITE ( 2 , ∗ ) ” ”

722 WRITE ( 2 , ∗ ) ” P r i o r Type : I n t e g r a t e d d e n s i t y f u n c t i o n , a l p h a =” , a lpha , ” t h e t a ( deg ) =” , ( t h e t a ∗ 1 8 0 . e0 / acos ( −1 . e0 ) )

723

724 DO i = 1 , D i s t B i n s

725 D i s t P r i o r ( i ) = ( Dis t PPDx ( i ) ∗∗ 2 . e0 ) / &

726 ( ( ( Dis t PPDx ( i ) ∗∗ 2 . e0 ) + ( 7 7 9 . e0 ∗∗ 2 . e0 ) − ( 2 . e0 ∗ 7 7 9 . e0 ) ∗ Dist PPDx ( i ) ∗ cos ( t h e t a ) ) ∗∗ ( 0 . 5 e0 ∗ a l p h a ) )

727 END DO

728 END IF

729

730 IF ( p r i o r t y p e . eq . 3 ) Then ! For a power law p r i o r

731 a l p h a = 0 . 2 e0 ! S lope o f power law

732 WRITE ( 2 , ∗ ) ” ”

733 WRITE ( 2 , ∗ ) ” P r i o r Type : Power Law , a l p h a =” , a l p h a

734

735 DO i = 1 , D i s t B i n s

736 IF ( Dis t PPDx ( i ) . ne . 7 7 9 . e0 ) THEN

737 D i s t P r i o r ( i ) = (ABS( 7 7 9 . e0 − Dist PPDx ( i ) ) ) ∗∗ ( −1 . e0 ∗ a l p h a )

738 END IF

739 IF ( Dis t PPDx ( i ) . eq . 7 7 9 . e0 ) THEN

740 D i s t P r i o r ( i ) = 1 . e0

741 END IF

742 END DO

743 END IF

744

745 IF ( p r i o r t y p e . eq . 4 ) Then ! For a l i n e a r d e c r e a s i n g p r i o r

746 s l o p e = 2 . e0 ! G r a d i a n t o f d i m i n i s h i n g p r o b a b i l i t y

747 WRITE ( 2 , ∗ ) ” ”

748 WRITE ( 2 , ∗ ) ” P r i o r Type : L i n e a r Dec r ea s i ng , s l o p e =” , s l o p e

749

750 DO i = 1 , D i s t B i n s

751 D i s t P r i o r ( i ) = 7 7 9 . e0 − abs ( s l o p e ∗ ( Dis t PPDx ( i ) − 7 7 9 . e0 ) )

752 END DO

753 END IF

754

755 IF ( p r i o r t y p e . eq . 5 ) Then ! For a G a u s s i a n P r i o r

756 f l a t = 1 . e0 ! G a u s s i a n F l a t t e n i n g F a c t o r

757 hwhm = 1 5 0 . e0 ! G a u s s i a n Ha l f Width Ha l f Maximum

758 WRITE ( 2 , ∗ ) ” ”

759 WRITE ( 2 , ∗ ) ” P r i o r Type : Gauss ian , f l a t t e n i n g =” , f l a t , ” ; hwhm =” , hwhm , ” kpc . ”

760

761 DO i = 1 , D i s t B i n s
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762 D i s t P r i o r ( i ) = exp ( − ( ( Dis t PPDx ( i ) − 7 7 9 . e0 ) ∗∗ ( 2 . e0 ∗ f l a t ) ) / ( 2 . e0 ∗ hwhm ∗∗ ( 2 . e0 ∗ f l a t ) ) )

763 END DO

764 END IF

765

766 D i s t P r i o r = D i s t P r i o r /SUM( D i s t P r i o r )

767

768 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P l o t s D i s t a n c e P r i o r

769 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / d i s t p r i o r . ps /CPS ’

770 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

771

772 CALL pgenv (MINVAL( DIST PPDx , mask = DIST PPDx . ne . 0 . ) − 1 , MAXVAL( DIST PPDx ) + 1 , 0 . , 1 . 1∗MAXVAL( D i s t P r i o r ) , 0 , 0 )

773 CALL pgb in ( D i s t B i n s , Dist PPDx , D i s t P r i o r , . f a l s e . )

774

775 CALL p g l a b ( ’ P roposed D i s t a n c e ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

776

777 CALL pgend

778

779 WRITE ( command2 , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

780 ’ / d i s t p r i o r . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

781 ’ / d i s t p r i o r . j p g ’

782

783 c a l l sys tem ( command2 )

784

785 END SUBROUTINE D i s t a n c e P r i o r

786

787 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

788

789 SUBROUTINE Conf idence2 ! I d e n t i f i e s t h e b e s t p a r a m e t e r v a l u e s and

790 USE Gl ob a l ! t h e i r a s s o c i a t e d 1 sigma e r r o r s from t h e

791 IMPLICIT NONE ! r e s p e c t i v e p o s t e r i o r p l o t s .

792

793 PPD peak = 0 . d0 !

794 DO i = 1 , D i s t B i n s !

795 IF ( Dis t PPDy ( i ) . g t . PPD peak ) THEN !

796 PPD peak = Dist PPDy ( i ) ! F ind b e s t f i t TRGB v a l u e

797 d i s t r e c = Dist PPDx ( i ) !

798 END IF !

799 END DO !

800

801 d i s t c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

802 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

803 mcounts = mcounts + Dist PPDy ( i ) !

804 END DO !

805 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

806 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s n e g a t i v e one sigma

807 IF ( d i s t c o u n t s . ge . 0 . 68 2∗mcounts ) THEN ! e r r o r i n d i s t a n c e

808 d i s t m s i g m a = d i s t r e c − Dist PPDx ( i ) !

809 e x i t !

810 END IF !

811 END DO !

812

813 d i s t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

814 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

815 p c o u n t s = p c o u n t s + Dist PPDy ( i ) !

816 END DO !

817 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

818 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s p o s i t i v e one sigma

819 IF ( d i s t c o u n t s . ge . 0 . 68 2∗ p c o u n t s ) THEN ! e r r o r i n d i s t a n c e

820 d i s t p s i g m a = Dist PPDx ( i ) − d i s t r e c !

821 e x i t !

822 END IF !
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823 END DO !

824

825 d i s t c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

826 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

827 mcounts = mcounts + Dist PPDy ( i ) !

828 END DO !

829 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

830 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s n e g a t i v e 90 c r e d i b i l i t y

831 IF ( d i s t c o u n t s . ge . 0 . 9∗ mcounts ) THEN ! i n t e r v a l i n d i s t a n c e

832 d i s t m 9 0 = d i s t r e c − Dist PPDx ( i ) !

833 e x i t !

834 END IF !

835 END DO !

836

837 d i s t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

838 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

839 p c o u n t s = p c o u n t s + Dist PPDy ( i ) !

840 END DO !

841 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

842 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s p o s i t i v e 90 c r e d i b i l i t y

843 IF ( d i s t c o u n t s . ge . 0 . 9∗ p c o u n t s ) THEN ! i n t e r v a l i n d i s t a n c e

844 d i s t p 9 0 = Dist PPDx ( i ) − d i s t r e c !

845 e x i t !

846 END IF !

847 END DO

848

849 d i s t c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

850 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

851 mcounts = mcounts + Dist PPDy ( i ) !

852 END DO !

853 DO i = MAXLOC( Dist PPDy , DIM = 1) , 1 , −1 !

854 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s n e g a t i v e 99 c r e d i b i l i t y

855 IF ( d i s t c o u n t s . ge . 0 . 9 9∗mcounts ) THEN ! i n t e r v a l i n d i s t a n c e

856 d i s t m 9 9 = d i s t r e c − Dist PPDx ( i ) !

857 e x i t !

858 END IF !

859 END DO !

860

861 d i s t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

862 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

863 p c o u n t s = p c o u n t s + Dist PPDy ( i ) !

864 END DO !

865 DO i = MAXLOC( Dist PPDy , DIM = 1) , D i s t B i n s !

866 d i s t c o u n t s = d i s t c o u n t s + Dist PPDy ( i ) ! F i n d s p o s i t i v e 99 c r e d i b i l i t y

867 IF ( d i s t c o u n t s . ge . 0 . 9 9∗ p c o u n t s ) THEN ! i n t e r v a l i n d i s t a n c e

868 d i s t p 9 9 = Dist PPDx ( i ) − d i s t r e c !

869 e x i t !

870 END IF !

871 END DO !

872

873 WRITE ( 2 , ∗ ) ” ”

874 WRITE ( 2 , ∗ ) ” Most L i k e l y D i s t a n c e : ” , d i s t r e c

875 WRITE ( 2 , ∗ ) ”+s igma −s igma d i s t+s igma d i s t −s igma : ” , d i s t p s i g m a , d i s t m s i gm a , d i s t r e c + d i s t p s i g m a , d i s t r e c − d i s t m s i g m a

876 WRITE ( 2 , ∗ ) ”+90 −90 d i s t +90 d i s t −90: ” , d i s t p 9 0 , d i s t m90 , d i s t r e c + d i s t p 9 0 , d i s t r e c − d i s t m 9 0

877 WRITE ( 2 , ∗ ) ”+99 −99 d i s t +99 d i s t −99: ” , d i s t p 9 9 , d i s t m99 , d i s t r e c + d i s t p 9 9 , d i s t r e c − d i s t m 9 9

878

879 ! | | Conver t d i s t a n c e p r o f i l e mode and i n t e r v a l s

880 ! \ / back i n t o t h e e q u i v a l e n t i n m a g n i t u d e s

881 d i s t 2 m a g r e c = 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0

882 d2m psigma = ( 5 . e0 ∗ LOG10 ( ( d i s t r e c+d i s t p s i g m a ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )

883 d2m msigma = ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10 ( ( d i s t r e c −d i s t m s i g m a ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )
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884 d2m p90 = ( 5 . e0 ∗ LOG10 ( ( d i s t r e c+d i s t p 9 0 ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )

885 d2m m90 = ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10 ( ( d i s t r e c −d i s t m 9 0 ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )

886 d2m p99 = ( 5 . e0 ∗ LOG10 ( ( d i s t r e c+d i s t p 9 9 ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )

887 d2m m99 = ( 5 . e0 ∗ LOG10( d i s t r e c ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 ) − ( 5 . e0 ∗ LOG10 ( ( d i s t r e c −d i s t m 9 9 ) ∗ 1 0 0 . e0 ) − 3 . 4 4 e0 )

888 ! / \

889 ! | |

890

891 WRITE ( 2 , ∗ ) ” ”

892 WRITE ( 2 , ∗ ) ” D i s t a n c e back t o magn i tude : ” , d i s t 2 m a g r e c

893 WRITE ( 2 , ∗ ) ” Hence , d i s t a n c e modulus a f t e r a p p l y i n g p r i o r : ” , d i s t 2 m a g r e c + 3 . 4 4 e0

894 WRITE ( 2 , ∗ ) ”+s igma −s igma : ” , d2m psigma , d2m msigma

895 WRITE ( 2 , ∗ ) ”+90 −90 : ” , d2m p90 , d2m m90

896 WRITE ( 2 , ∗ ) ”+99 −99 : ” , d2m p99 , d2m m99

897

898 END SUBROUTINE Conf idence2

899

900 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

901

902 SUBROUTINE Conf idence3

903 USE Gl ob a l

904 IMPLICIT NONE

905

906 PPD peak = 0 . d0 !

907 DO i = 1 , 3001 !

908 IF ( M 3 1 t o o b j y ( i ) . g t . PPD peak ) THEN !

909 PPD peak = M 3 1 t o o b j y ( i ) ! F ind b e s t f i t TRGB v a l u e

910 M 3 1 d i s t r e c = M 3 1 t o o b j x ( i ) !

911 END IF !

912 END DO !

913

914 d i s t c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

915 DO i = MAXLOC( M31 to ob j y , DIM = 1) , 1 , −1 !

916 mcounts = mcounts + M 3 1 t o o b j y ( i ) !

917 END DO !

918 DO i = MAXLOC( M31 to ob j y , DIM = 1) , 1 , −1 !

919 d i s t c o u n t s = d i s t c o u n t s + M 3 1 t o o b j y ( i ) ! F i n d s n e g a t i v e one sigma

920 IF ( d i s t c o u n t s . ge . 0 . 68 2∗mcounts ) THEN ! e r r o r i n M31 t o o b j e c t d i s t a n c e

921 M31 dis t msigma = M 3 1 d i s t r e c − M 3 1 t o o b j x ( i ) !

922 e x i t !

923 END IF !

924 END DO !

925

926 d i s t c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

927 DO i = MAXLOC( M31 to ob j y , DIM = 1) , 3001 !

928 p c o u n t s = p c o u n t s + M 3 1 t o o b j y ( i ) !

929 END DO !

930 DO i = MAXLOC( M31 to ob j y , DIM = 1) , 3001 !

931 d i s t c o u n t s = d i s t c o u n t s + M 3 1 t o o b j y ( i ) ! F i n d s p o s i t i v e one sigma

932 IF ( d i s t c o u n t s . ge . 0 . 68 2∗ p c o u n t s ) THEN ! e r r o r i n M31 t o o b j e c t d i s t a n c e

933 M 3 1 d i s t p s i g m a = M 3 1 t o o b j x ( i ) − M 3 1 d i s t r e c !

934 e x i t !

935 END IF !

936 END DO !

937

938 WRITE ( 2 , ∗ ) ” ”

939 WRITE ( 2 , ∗ ) ” Most L i k e l y D i s t a n c e from M31 : ” , M 3 1 d i s t r e c

940 WRITE ( 2 , ∗ ) ”+s igma −s igma d i s t+s igma d i s t −s igma : ” , M31 d i s t p s igma , M31 dis t msigma , &

941 M 3 1 d i s t r e c + M31 di s t ps igma , M 3 1 d i s t r e c − M31 dis t msigma

942 END SUBROUTINE Conf idence3
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Program: SatPlot.f95

Creation Date: 17 February 2012 (first version 22 Sep 2011)

Relevant Section: Fig. 10 of Paper II (Ch. 4)

Notes: I wrote this program with the sole objective of producing a three dimensional plot

of the satellite system. The distances and positions on the sky of each satellite are read in

and used to generate a set of M31-centric cartesian coordinates for each satellite. Rotation

matrices are then used to spin the view angle. The use of rotation matrices here is actually

not quite correct as the order of application is not given its due importance. This means that

the operation is a little clumsy but the plots themselves are unaffected. The actual PAndAS

survey area footprint visible in Fig. 10 (c) of Paper II was generated (painstakingly!) for use

in ‘SatDensity SampCont.f95,’ but I added it to this figure for illustration.

1 MODULE G l ob a l ! D e f i ne a l l

2 IMPLICIT NONE ! V a r i a b l e s

3

4 INTEGER : : i , j , k , i o s , nda ta , SAP ndata , ICP nda ta , v a n g l e !SAP = Survey Area P o i n t

5 PARAMETER ( n d a t a = 28)

6 PARAMETER ( SAP ndata = 135)

7 REAL : : x ( n d a t a ) , y ( n d a t a ) , z ( n d a t a ) , MWy to Obj ( n d a t a ) , M31 to Obj ( n d a t a ) , m31 d i s t , m31 psig , m31 msig , x p r o ( n d a t a ) , y p r o ( n d a t a )

8 REAL : : SAP xi ( SAP ndata ) , SAP eta ( SAP ndata ) , SAP x ( SAP ndata ) , SAP y ( SAP ndata ) , SAP the ta , MWy to SAP ( SAP ndata )

9 REAL : : SAPn x ( SAP ndata ) , SAPn y ( SAP ndata ) , SAPf x ( SAP ndata ) , SAPf y ( SAP ndata ) , MWy to SAPn ( SAP ndata ) , MWy to SAPf ( SAP ndata )

10 REAL : : I C P x i ( 3 0 0 ) , I C P e t a ( 3 0 0 ) , ICP x ( 3 0 0 ) , ICP y ( 3 0 0 ) , I C P t h e t a , MWy to ICP ( 3 0 0 )

11 PARAMETER ( m 3 1 d i s t = 7 7 9 . e0 )

12 PARAMETER ( m31 ps ig = 0 . e0 )

13 PARAMETER ( m31 msig = 0 . e0 )

14 REAL : : x i ( n d a t a ) , e t a ( n d a t a ) , t h e t a ( n d a t a ) , p s i g ( n d a t a ) , m s ig ( n d a t a ) , p i , dummy

15 PARAMETER ( p i = ACOS( −1 . e0 ) )

16 REAL : : M 3 1 t o O b j p s i g ( n d a t a ) , M31 to Obj msig ( n d a t a ) , temp1 , temp2

17

18 CHARACTER : : name ( n d a t a ) ∗20 , s t r i n g ∗200

19

20

21 !−−−−−For R o t a t e s u b r o u t i n e −−−−−

22

23 REAL : : o b j r o t ( nda ta , 3 ) , o b j p r o r o t ( nda ta , 3 ) , o b j ( nda ta , 5 ) , o b j p r o ( nda ta , 3 )

24 REAL : : o b j r o t p ( nda ta , 3 ) , o b j r o t m ( nda ta , 3 )

25 REAL : : SAP rot ( SAP ndata , 3 ) , SAP( SAP ndata , 3 ) , SAPn rot ( SAP ndata , 3 ) , SAPn ( SAP ndata , 3 ) , S A P f r o t ( SAP ndata , 3 ) , SAPf ( SAP ndata , 3 )

26 REAL : : I C P r o t ( 3 0 0 , 3 ) , ICP ( 3 0 0 , 3 )

27 REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 ) , r o t m a t ( 3 , 3 ) , x a x i s ( 3 ) , y a x i s ( 3 ) , z a x i s ( 3 )

28 REAL : : ma rke r x ( 3 ) , marke r y ( 3 ) , m a r k e r z ( 3 )

29 REAL : : a lpha , be t a , gamma

30

31 END MODULE Gl ob a l

32

33 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34

35 PROGRAM S a t P l o t ! Mas te r program

36 USE Gl ob a l

37 IMPLICIT NONE

38

39 CALL GetData
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40

41 s t r i n g = ’ M31 neighborhood xy . ps /CPS ’ !

42 a l p h a = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) !

43 b e t a = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e

44 gamma = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on

45 v a n g l e = 1 ! xy p l a n e

46 CALL R o t a t e !

47 CALL P l o t !

48

49 s t r i n g = ’ M31 ne ighborhood xz . ps /CPS ’ !

50 a l p h a = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) !

51 b e t a = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e

52 gamma = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on

53 v a n g l e = 2 ! xz p l a n e

54 CALL R o t a t e !

55 !CALL P l o t !

56

57 s t r i n g = ’ M31 ne ighborhood yz . ps /CPS ’ !

58 a l p h a = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) !

59 b e t a = 2 7 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e

60 gamma = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! p o s i t i o n s on

61 v a n g l e = 3 ! yz p l a n e

62 CALL R o t a t e !

63 CALL P l o t !

64

65 s t r i n g = ’ M31 ne ighborhood xyz . ps /CPS ’ !

66 a l p h a = 5 . e0 ∗ ( p i / 1 8 0 . e0 ) !

67 b e t a = 5 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P l o t s s a t e l l i t e p o s i t i o n s

68 gamma = 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! i n 3D.

69 v a n g l e = 4 !

70 CALL D i s t a n c e P e r s p e c t i v e ! Remove E f f e c t s o f d i s t a n c e on x / y p o s i t i o n s o f s a t e l l i t e s

71 CALL R o t a t e

72 CALL P l o t

73

74 END PROGRAM S a t P l o t

75

76 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77

78 SUBROUTINE GetData ! Get d a t a : )

79 USE Gl ob a l

80 IMPLICIT NONE

81

82 OPEN ( u n i t = 1 , f i l e = ’ . / S a t S t a t s . d a t ’ , s t a t u s = ’ o l d ’ )

83

84 i = 0 ; i o s = 0

85 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

86 i = i+1

87 READ ( 1 , ∗ , IOSTAT = i o s ) x i ( i ) , e t a ( i ) , t h e t a ( i ) , Mwy to Obj ( i ) , p s i g ( i ) , m s ig ( i ) , name ( i )

88

89 i f ( i o s == 0) then ;

90 e l s e i f ( i o s == −1) then ;

91 i= i −1

92 e x i t ;

93 e l s e i f ( i o s > 0) then ;

94 i= i −1

95 c y c l e

96 end i f

97

98 END DO

99

100 DO i = 1 , nda ta −1
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101 x i ( i ) = x i ( i ) ∗ ( p i / 1 8 0 . e0 ) !

102 e t a ( i ) = e t a ( i ) ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from d e g r e e s t o r a d i a n s

103 t h e t a ( i ) = t h e t a ( i ) ∗ ( p i / 1 8 0 . e0 ) !

104

105 x ( i ) = ABS( MWy to Obj ( i ) ∗ cos ( t h e t a ( i ) ) ∗ t a n ( x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

106 IF ( x i ( i ) . l t . 0 . e0 ) THEN !

107 x ( i ) = −1. e0 ∗ x ( i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

108 END IF !

109

110 y ( i ) = ABS( MWy to Obj ( i ) ∗ s i n ( e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

111 IF ( e t a ( i ) . l t . 0 . e0 ) THEN !

112 y ( i ) = −1. e0 ∗ y ( i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

113 END IF !

114

115 z ( i ) = MWy to Obj ( i ) ∗ cos ( t h e t a ( i ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

116

117

118 M31 to Obj ( i ) = ( ( ( x ( i ) ) ∗∗ 2 . e0 ) + ( ( y ( i ) ) ∗∗ 2 . e0 ) + ( ( z ( i ) ) ∗∗ 2 . e0 ) ) ∗∗ 0 . 5 e0 ! De te rmine d i s t a n c e between M31 and s a t e l l i t e

119

120 temp1 = ( ( 2 . e0 ∗ MWy to obj ( i ) ) − 2 . e0 ∗ m 3 1 d i s t ∗ cos ( t h e t a ( i ) ) ) ∗∗ 2 . e0 / &

121 ( ( MWy to Obj ( i ) ∗∗ 2 . e0 ) + ( m 3 1 d i s t ∗∗ 2 . e0 ) − ( 2 . e0 ∗ MWy to Obj ( i ) ∗ m 3 1 d i s t ∗ cos ( t h e t a ( i ) ) ) )

122 temp2 = ( ( 2 . e0 ∗ m 3 1 d i s t ) − 2 . e0 ∗ MWy to obj ( i ) ∗ cos ( t h e t a ( i ) ) ) ∗∗ 2 . e0 / &

123 ( ( MWy to Obj ( i ) ∗∗ 2 . e0 ) + ( m 3 1 d i s t ∗∗ 2 . e0 ) − ( 2 . e0 ∗ MWy to Obj ( i ) ∗ m 3 1 d i s t ∗ cos ( t h e t a ( i ) ) ) )

124

125 M 3 1 t o O b j p s i g ( i ) = SQRT ( ( temp1 ) ∗ ( p s i g ( i ) ∗∗ 2 . e0 ) + ( temp2 ) ∗ ( 1 2 . e0 ∗∗ 2 . e0 ) )

126 M31 to Obj msig ( i ) = SQRT ( ( temp1 ) ∗ ( m s ig ( i ) ∗∗ 2 . e0 ) + ( temp2 ) ∗ ( 1 1 . e0 ∗∗ 2 . e0 ) )

127

128 WRITE ( ∗ , ∗ ) name ( i ) ! Wr i t e x , y and z components o f M31− to − s a t e l l i t e s e p a r a t i o n v e c t o r a l o n g wi th v e c t o r

129 WRITE ( ∗ , ’ ( 6 F16 . 5 ) ’ ) x ( i ) , y ( i ) , z ( i ) , M31 to Obj ( i ) , M 3 1 t o O b j p s i g ( i ) , M31 to Obj msig ( i ) ! magn i tude and u n c e r t a i n t i e s

130

131 END DO

132

133 !−−−−−−−−−−−−−−−−−−−−−−−For Survey Border−−−−−−−−−−−−−−−−−−−−−−−−−−−−

134

135 OPEN ( u n i t = 2 , f i l e = ’ . . / SurveyArea / B o r d e r C o o r d s X i E t a . d a t ’ , s t a t u s = ’ o l d ’ )

136

137 i = 0 ; i o s = 0

138 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

139 i = i+1

140 READ ( 2 , ∗ , IOSTAT = i o s ) SAP xi ( i ) , SAP eta ( i ) ! SAP = Survey Area P o i n t

141

142 i f ( i o s == 0) then ;

143 e l s e i f ( i o s == −1) then ;

144 i= i −1

145 e x i t ;

146 e l s e i f ( i o s > 0) then ;

147 i= i −1

148 c y c l e

149 end i f

150

151 END DO

152

153 DO i = 1 , SAP ndata

154 SAP xi ( i ) = SAP xi ( i ) ∗ ( p i / 1 8 0 . e0 ) !

155 SAP eta ( i ) = SAP eta ( i ) ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from d e g r e e s t o r a d i a n s

156 S A P t h e t a = SQRT( SAP xi ( i ) ∗ ∗2 . e0 + SAP eta ( i ) ∗ ∗2 . e0 ) ∗ ( p i / 1 8 0 . e0 ) !

157 MWy to SAP ( i ) = m 3 1 d i s t / cos ( S A P t h e t a ) ! De te rmine Survey Area P o i n t D i s t a n c e assuming p l a n e a t d i s t a n c e o f M31

158

159 SAP x ( i ) = ABS( MWy to SAP ( i ) ∗ cos ( S A P t h e t a ) ∗ t a n ( SAP xi ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each Survey

160 IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f M31

161 SAP x ( i ) = −1. e0 ∗ SAP x ( i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e
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162 END IF !

163

164 SAP y ( i ) = ABS( MWy to SAP ( i ) ∗ s i n ( SAP eta ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each Survey

165 IF ( SAP eta ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f M31

166 SAP y ( i ) = −1. e0 ∗ SAP y ( i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

167 END IF !

168

169 MWy to SAPn ( i ) = ( m 3 1 d i s t + z ( 1 2 ) ) / cos ( S A P t h e t a ) ! De te rmine Survey Area P o i n t D i s t a n c e assuming p l a n e a t d i s t a n c e o f ANDXVI

170

171 SAPn x ( i ) = ABS( MWy to SAPn ( i ) ∗ cos ( S A P t h e t a ) ∗ t a n ( SAP xi ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each Survey

172 IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f ANDXVI

173 SAPn x ( i ) = −1. e0 ∗ SAPn x ( i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

174 END IF !

175

176 SAPn y ( i ) = ABS( MWy to SAPn ( i ) ∗ s i n ( SAP eta ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each Survey

177 IF ( SAP eta ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f ANDXVI

178 SAPn y ( i ) = −1. e0 ∗ SAPn y ( i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

179 END IF !

180

181 MWy to SAPf ( i ) = ( m 3 1 d i s t + z ( 2 3 ) ) / cos ( S A P t h e t a ) ! De te rmine Survey Area P o i n t D i s t a n c e assuming p l a n e a t d i s t a n c e o f ANDXVIII

182

183 SAPf x ( i ) = ABS( MWy to SAPf ( i ) ∗ cos ( S A P t h e t a ) ∗ t a n ( SAP xi ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each Survey

184 IF ( SAP xi ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f ANDXVIII

185 SAPf x ( i ) = −1. e0 ∗ SAPf x ( i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

186 END IF !

187

188 SAPf y ( i ) = ABS( MWy to SAPf ( i ) ∗ s i n ( SAP eta ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each Survey

189 IF ( SAP eta ( i ) . l t . 0 . e0 ) THEN ! Area P o i n t , assuming p l a n e a t d i s t a n c e o f ANDXVIII

190 SAPf y ( i ) = −1. e0 ∗ SAPf y ( i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

191 END IF !

192

193 END DO

194

195 !−−−−−−−−−−−−−−−−−−−−−−−For I n n e r CutOff E l l i p s e −−−−−−−−−−−−−−−−−−−−−−−−−−−−

196

197 OPEN ( u n i t = 3 , f i l e = ’ . . / SurveyArea / M31CutOf fE l l i p se . d a t ’ , s t a t u s = ’ o l d ’ )

198

199 i = 0 ; i o s = 0

200 DO WHILE ( . TRUE . ) ! Reads d a t a u n t i l end of i n p u t f i l e and p u t s i t i n t o a r r a y s

201 i = i+1

202 READ ( 3 , ∗ , IOSTAT = i o s ) I C P x i ( i ) , I C P e t a ( i ) ! ICP = I n n e r Cut−Off P o i n t

203

204 i f ( i o s == 0) then ;

205 e l s e i f ( i o s == −1) then ;

206 i= i −1

207 e x i t ;

208 e l s e i f ( i o s > 0) then ;

209 i= i −1

210 c y c l e

211 end i f

212

213 END DO

214

215 I C P n d a t a = i

216

217 DO i = 1 , I C P n d a t a

218 I C P x i ( i ) = I C P x i ( i ) ∗ ( p i / 1 8 0 . e0 ) !

219 I C P e t a ( i ) = I C P e t a ( i ) ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from d e g r e e s t o r a d i a n s

220 I C P t h e t a = SQRT( I C P x i ( i ) ∗ ∗2 . e0 + I C P e t a ( i ) ∗ ∗2 . e0 ) ∗ ( p i / 1 8 0 . e0 ) !

221 MWy to ICP ( i ) = m 3 1 d i s t / cos ( I C P t h e t a ) ! De te rmine I n n e r Cut−Off P o i n t D i s t a n c e assuming p l a n e a t d i s t a n c e o f M31

222



229

223 ICP x ( i ) = ABS( MWy to ICP ( i ) ∗ cos ( I C P t h e t a ) ∗ t a n ( I C P x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each I n n e r

224 IF ( I C P x i ( i ) . l t . 0 . e0 ) THEN ! Cut−Off P o i n t , assuming p l a n e a t d i s t a n c e o f M31

225 ICP x ( i ) = −1. e0 ∗ ICP x ( i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

226 END IF !

227

228 ICP y ( i ) = ABS( MWy to ICP ( i ) ∗ s i n ( I C P e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each I n n e r

229 IF ( I C P e t a ( i ) . l t . 0 . e0 ) THEN ! Cut−Off P o i n t , assuming p l a n e a t d i s t a n c e o f M31

230 ICP y ( i ) = −1. e0 ∗ ICP y ( i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

231 END IF !

232 END DO

233

234 CLOSE( 1 )

235 CLOSE( 2 )

236 CLOSE( 3 )

237

238 END SUBROUTINE GetData

239

240 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

241

242 SUBROUTINE D i s t a n c e P e r s p e c t i v e ! Th i s s u b r o u t i n e i s f o r removing t h e e f f e c t s o f p e r s p e c t i v e on t h e 3D view .

243 USE Gl ob a l ! I t s c a l e s x and y p o s i t i o n s o f s a t e l l i t e s r e l a t i v e t o t h e c l o s e s t s a t e l l i t e

244 IMPLICIT NONE ! ( And XVI ) t o p r e s e r v e t h e on sky view of t h e s a t e l l i t e s .

245

246 DO i = 1 , n d a t a

247 x ( i ) = x ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( i ) ) )

248 y ( i ) = y ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( i ) ) )

249 END DO

250

251 DO i = 1 , SAP ndata

252 SAP x ( i ) = SAP x ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f M31

253 SAP y ( i ) = SAP y ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) !

254 SAPn x ( i ) = SAPn x ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 1 2 ) ) ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f And XVI

255 SAPn y ( i ) = SAPn y ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 1 2 ) ) ) ! ( And XVI i s t h e n e a r e s t s a t e l l i t e )

256 SAPf x ( i ) = SAPf x ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 2 3 ) ) ) ! PAndAS s u r v e y b o r d e r a t d i s t a n c e o f And XXVII

257 SAPf y ( i ) = SAPf y ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / ( m 3 1 d i s t + z ( 2 3 ) ) ) ! ( And XXVII i s t h e f u r t h e s t s a t e l l i t e )

258 END DO

259

260 DO i = 1 , I C P n d a t a

261 ICP x ( i ) = ICP x ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! I n n e r c u t o f f e l l i p s e a t

262 ICP y ( i ) = ICP y ( i ) ∗ ( ( m 3 1 d i s t + z ( 1 2 ) ) / m 3 1 d i s t ) ! d i s t a n c e t o M31 .

263 END DO

264

265 END SUBROUTINE D i s t a n c e P e r s p e c t i v e

266

267 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

268

269 SUBROUTINE R o t a t e ! Uses r o t a t i o n m a t r i c e s t o s h i f t

270 USE Gl ob a l ! t h e p o s i t i o n on s c r e e n of t h e

271 IMPLICIT NONE ! s a t e l l i t e s based on t h e v iewing a n g l e

272

273 x a x i s ( 1 ) = MAXVAL( abs ( x ) ) ; x a x i s ( 2 ) = 0 . e0 ; x a x i s ( 3 ) = 0 . e0 ! G e n e r a t e c o o r d i n a t e s o f

274 y a x i s ( 1 ) = 0 . e0 ; y a x i s ( 2 ) = MAXVAL( abs ( y ) ) ; y a x i s ( 3 ) = 0 . e0 ! t h e p o s i t i v e ends o f t h e

275 z a x i s ( 1 ) = 0 . e0 ; z a x i s ( 2 ) = 0 . e0 ; z a x i s ( 3 ) = MAXVAL( abs ( z ) ) ! x , y and z axes

276

277 marke r x ( 1 ) = 1 0 0 . e0 ; marke r x ( 2 ) = 0 . e0 ; marke r x ( 3 ) = 0 . e0 ! G e n e r a t e c o o r d i n a t e s o f

278 marke r y ( 1 ) = 0 . e0 ; marke r y ( 2 ) = 1 0 0 . e0 ; marke r y ( 3 ) = 0 . e0 ! t h e p o s i t i v e 100 kpc

279 m a r k e r z ( 1 ) = 0 . e0 ; m a r k e r z ( 2 ) = 0 . e0 ; m a r k e r z ( 3 ) = 1 0 0 . e0 ! a x i s marke r s

280

281 x r o t ( 1 , 1 ) = 1 . e0 !

282 x r o t ( 2 , 1 ) = 0 . e0 !

283 x r o t ( 3 , 1 ) = 0 . e0 !
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284 x r o t ( 1 , 2 ) = 0 . e0 !

285 x r o t ( 2 , 2 ) = cos ( a l p h a ) ! R o t a t i o n m a t r i x f o r a d j u s t i n g yaw − a n g l e a l p h a

286 x r o t ( 3 , 2 ) = −1. e0 ∗ s i n ( a l p h a ) !

287 x r o t ( 1 , 3 ) = 0 . e0 !

288 x r o t ( 2 , 3 ) = s i n ( a l p h a ) !

289 x r o t ( 3 , 3 ) = cos ( a l p h a ) !

290

291 y r o t ( 1 , 1 ) = cos ( b e t a ) !

292 y r o t ( 2 , 1 ) = 0 . e0 !

293 y r o t ( 3 , 1 ) = s i n ( b e t a ) !

294 y r o t ( 1 , 2 ) = 0 . e0 !

295 y r o t ( 2 , 2 ) = 1 . e0 ! R o t a t i o n m a t r i x f o r a d j u s t i n g p i t c h − a n g l e b e t a

296 y r o t ( 3 , 2 ) = 0 . e0 !

297 y r o t ( 1 , 3 ) = −1. e0 ∗ s i n ( b e t a ) !

298 y r o t ( 2 , 3 ) = 0 . e0 !

299 y r o t ( 3 , 3 ) = cos ( b e t a ) !

300

301 z r o t ( 1 , 1 ) = cos ( gamma ) !

302 z r o t ( 2 , 1 ) = −1. e0 ∗ s i n ( gamma ) !

303 z r o t ( 3 , 1 ) = 0 . e0 !

304 z r o t ( 1 , 2 ) = s i n ( gamma ) !

305 z r o t ( 2 , 2 ) = cos ( gamma ) ! R o t a t i o n m a t r i x f o r a d j u s t i n g r o l l − a n g l e gamma

306 z r o t ( 3 , 2 ) = 0 . e0 !

307 z r o t ( 1 , 3 ) = 0 . e0 !

308 z r o t ( 2 , 3 ) = 0 . e0 !

309 z r o t ( 3 , 3 ) = 1 . e0 !

310

311 r o t m a t = MATMUL( x r o t , y r o t ) ! G e n e r a t e r o t a t i o n m a t r i x t o a d j u s t o b j e c t c o o r d i n a t e s

312 r o t m a t = MATMUL( r o t m a t , z r o t ) ! f o r t h e chosen c o m b i n a t i o n o f yaw , p i t c h and r o l l

313

314 x a x i s = MATMUL( r o t m a t , x a x i s ) !

315 y a x i s = MATMUL( r o t m a t , y a x i s ) ! Conve r t c o o r d i n a t e s o f p o s i t i v e ends o f axes f o r new view a n g l e

316 z a x i s = MATMUL( r o t m a t , z a x i s ) !

317

318 marke r x = MATMUL( r o t m a t , marke r x )

319 marke r y = MATMUL( r o t m a t , marke r y )

320 m a r k e r z = MATMUL( r o t m a t , m a r k e r z )

321

322 DO i = 1 , n d a t a

323 o b j ( i , 1 ) = x ( i ) !

324 o b j ( i , 2 ) = y ( i ) ! Conve r t o b j e c t c o o r d i n a t e s

325 o b j ( i , 3 ) = z ( i ) ! f o r new viewing a n g l e

326 o b j ( i , 4 ) = z ( i ) + p s i g ( i ) ! For e r r o r

327 o b j ( i , 5 ) = z ( i ) − m sig ( i ) ! b a r s

328 o b j r o t ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 ,2 ,3 / ) ) ) !

329 o b j r o t p ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 ,2 ,4 / ) ) ) !

330 o b j r o t m ( i , : ) = MATMUL( r o t m a t , o b j ( i , ( / 1 ,2 ,5 / ) ) ) !

331

332 o b j p r o ( i , 1 ) = x ( i ) !

333 o b j p r o ( i , 2 ) = y ( i ) ! Conve r t z = 0 p r o j e c t i o n o f o b j e c t c o o r d i n a t e s

334 o b j p r o ( i , 3 ) = 0 . e0 ! f o r new v iewing a n g l e t o form o t h e r end of p l o t t e d z v e c t o r

335 o b j p r o r o t ( i , : ) = MATMUL( r o t m a t , o b j p r o ( i , : ) ) !

336 END DO

337

338 DO i = 1 , SAP ndata

339 SAP( i , 1 ) = SAP x ( i ) !

340 SAP( i , 2 ) = SAP y ( i ) ! Conve r t SAP c o o r d i n a t e s

341 SAP( i , 3 ) = 0 . e0 ! f o r new v iewing a n g l e

342 SAP rot ( i , : ) = MATMUL( r o t m a t , SAP( i , : ) ) !

343

344 SAPn ( i , 1 ) = SAPn x ( i ) !
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345 SAPn ( i , 2 ) = SAPn y ( i ) ! Conve r t SAPn c o o r d i n a t e s

346 SAPn ( i , 3 ) = z ( 1 2 ) ! f o r new v iewing a n g l e

347 SAPn rot ( i , : ) = MATMUL( r o t m a t , SAPn ( i , : ) ) !

348

349 SAPf ( i , 1 ) = SAPf x ( i ) !

350 SAPf ( i , 2 ) = SAPf y ( i ) ! Conve r t SAPf c o o r d i n a t e s

351 SAPf ( i , 3 ) = z ( 2 3 ) ! f o r new v iewing a n g l e

352 S A P f r o t ( i , : ) = MATMUL( r o t m a t , SAPf ( i , : ) ) !

353 END DO

354

355 DO i = 1 , I C P n d a t a

356 ICP ( i , 1 ) = ICP x ( i ) !

357 ICP ( i , 2 ) = ICP y ( i ) ! Conve r t ICP c o o r d i n a t e s

358 ICP ( i , 3 ) = 0 . e0 ! f o r new viewing a n g l e

359 I C P r o t ( i , : ) = MATMUL( r o t m a t , ICP ( i , : ) ) !

360 END DO

361

362 END SUBROUTINE R o t a t e

363

364 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

365

366 SUBROUTINE P l o t ! P l o t t h e s a t e l l i t e s f o r chosen view a n g l e

367 USE Gl ob a l

368 IMPLICIT NONE

369

370 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g ) ) , 1 , 1 )

371

372 IF ( v a n g l e . eq . 1 . o r . v a n g l e . eq . 2 ) THEN !

373 CALL pgenv ( 1 . 1 ∗ (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , −1 .1∗ (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , & ! S e t f rame l i m i t s

374 −1 .1∗ (MAXVAL(ABS( o b j r o t ( : , 2 ) ) ) ) , 1 . 1 ∗ (MAXVAL(ABS( o b j r o t ( : , 2 ) ) ) ) , 1 , 0 ) !

375 ELSE IF ( v a n g l e . eq . 3 ) THEN !

376 CALL pgenv ( 1 . 1 ∗ (MINVAL( o b j r o t ( : , 1 ) ) ) , 1 . 1 ∗ (MAXVAL(ABS( o b j r o t ( : , 1 ) ) ) ) , & ! and p a r a m e t e r s f o r

377 1 . 1 ∗ (MINVAL( S A P f r o t ( : , 2 ) ) ) , 1 . 1 ∗ (MAXVAL( S A P f r o t ( : , 2 ) ) ) , 1 , 0 ) !

378 ELSE !

379 CALL pgenv ( 1 . 1 ∗ (MAXVAL(ABS( SAP rot ( : , 1 ) ) ) ) , −1 .1∗ (MAXVAL(ABS( SAP rot ( : , 1 ) ) ) ) , & ! v a r i o u s v i ewing a n g l e s

380 −1 .1∗ (MAXVAL(ABS( SAP rot ( : , 2 ) ) ) ) , 1 . 1 ∗ (MAXVAL(ABS( SAP rot ( : , 2 ) ) ) ) , 1 , −1) !

381 END IF !

382

383 CALL p g l i n e ( 2 , ( / x a x i s ( 1 ) , −1. e0 ∗ x a x i s ( 1 ) / ) , ( / x a x i s ( 2 ) , −1. e0 ∗ x a x i s ( 2 ) / ) ) ! Draw l i n e s from p o s i t i v e

384 CALL p g l i n e ( 2 , ( / y a x i s ( 1 ) , −1. e0 ∗ y a x i s ( 1 ) / ) , ( / y a x i s ( 2 ) , −1. e0 ∗ y a x i s ( 2 ) / ) ) ! end t o n e g a t i v e end of

385 CALL p g l i n e ( 2 , ( / z a x i s ( 1 ) , −1. e0 ∗ z a x i s ( 1 ) / ) , ( / z a x i s ( 2 ) , −1. e0 ∗ z a x i s ( 2 ) / ) ) ! x , y and z axes

386

387 IF ( v a n g l e . eq . 1 ) THEN !

388 CALL p g p t x t ( x a x i s ( 1 ) − 5 . , x a x i s ( 2 ) − 1 0 . , 0 . , 0 . 5 , ’ x ’ ) !

389 CALL p g p t x t ( y a x i s ( 1 ) − 1 0 . , y a x i s ( 2 ) − 5 . , 0 . , 0 . 5 , ’ y ’ ) !

390 END IF !

391 IF ( v a n g l e . eq . 3 ) THEN ! P r i n t x , y and z

392 CALL p g p t x t ( y a x i s ( 1 ) − 1 0 . , y a x i s ( 2 ) − 1 0 . , 0 . , 0 . 5 , ’ y ’ ) !

393 CALL p g p t x t ( z a x i s ( 1 ) − 1 0 . , z a x i s ( 2 ) − 1 5 . , 0 . , 0 . 5 , ’ z ’ ) ! a t t h e p o s i t i v e ends o f

394 END IF !

395 IF ( v a n g l e . eq . 4 ) THEN ! t h e i r r e s p e c t i v e axes

396 CALL p g p t x t ( x a x i s ( 1 ) − 5 . , x a x i s ( 2 ) − 5 . , 0 . , 0 . 5 , ’ x ’ ) !

397 CALL p g p t x t ( y a x i s ( 1 ) − 5 . , y a x i s ( 2 ) − 5 . , 0 . , 0 . 5 , ’ y ’ ) !

398 CALL p g p t x t ( z a x i s ( 1 ) − 5 . , z a x i s ( 2 ) − 5 . , 0 . , 0 . 5 , ’ z ’ ) !

399 END IF !

400

401 IF ( v a n g l e . ne . 4 ) THEN

402 CALL pgp t ( 1 , marke r x ( 1 ) , marke r x ( 2 ) , 0612) !

403 CALL pgp t ( 1 , −1 . e0 ∗ marke r x ( 1 ) , −1. e0 ∗ marke r x ( 2 ) , 0612) !

404 CALL pgp t ( 1 , marke r y ( 1 ) , marke r y ( 2 ) , 0590) !

405 CALL pgp t ( 1 , −1 . e0 ∗ marke r y ( 1 ) , −1. e0 ∗ marke r y ( 2 ) , 0590) !
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406 END IF !

407 IF ( v a n g l e . eq . 2 ) THEN ! P l o t

408 CALL pgp t ( 1 , m a r k e r z ( 1 ) , m a r k e r z ( 2 ) , 0590) !

409 CALL pgp t ( 1 , −1 . e0 ∗ m a r k e r z ( 1 ) , −1. e0 ∗ m a r k e r z ( 2 ) , 0590) ! Markers

410 ELSE !

411 CALL pgp t ( 1 , m a r k e r z ( 1 ) , m a r k e r z ( 2 ) , 0612) !

412 CALL pgp t ( 1 , −1 . e0 ∗ m a r k e r z ( 1 ) , −1. e0 ∗ m a r k e r z ( 2 ) , 0612) !

413 END IF !

414

415 CALL PGSCH ( 0 . 7 5 )

416

417 DO i = 1 , 24 ! For s a t e l l i t e s w i th p r e f i x ’And ’

418 CALL pgslw ( 2 )

419 CALL p g s c i ( 2 )

420 CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r

421 CALL pgslw ( 1 5 ) ! chosen view a n g l e

422 CALL pgp t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , −1) ! Draw l a r g e d o t a t t h e end of t h e z v e c t o r

423 CALL pgslw ( 2 )

424 CALL p g s c i ( 2 )

425 END DO

426

427 CALL pgslw ( 8 )

428 CALL p g s c i ( 3 )

429

430 DO i = 25 , 26 ! For NGC147 and NGC185

431 CALL pgslw ( 2 )

432 CALL p g s c i ( 3 )

433 CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r

434 CALL pgslw ( 2 0 ) ! chosen view a n g l e

435 CALL pgp t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , −1) ! Draw l a r g e d o t a t t h e end of t h e z v e c t o r

436 CALL pgslw ( 2 )

437 CALL p g s c i ( 3 )

438 END DO

439

440 DO i = 27 , 27 ! For M33

441 CALL pgslw ( 2 )

442 CALL p g s c i ( 4 )

443 CALL p g l i n e ( 2 , ( / o b j p r o r o t ( i , 1 ) , o b j r o t ( i , 1 ) / ) , ( / o b j p r o r o t ( i , 2 ) , o b j r o t ( i , 2 ) / ) ) ! Draw z v e c t o r o f o b j e c t f o r

444 CALL pgslw ( 3 0 ) ! chosen view a n g l e

445 CALL pgp t ( 1 , o b j r o t ( i , 1 ) , o b j r o t ( i , 2 ) , −1) ! Draw l a r g e d o t a t t h e end of t h e z v e c t o r

446 CALL pgslw ( 2 )

447 CALL p g s c i ( 4 )

448 END DO

449

450 IF ( v a n g l e . eq . 4 ) THEN !

451 DO i = 1 , 27 !

452 CALL pgslw ( 2 ) !

453 CALL p g s c i ( 1 ) ! P l o t s q u a r e on s u r v e y p l a n e

454 CALL pgp t ( 1 , o b j p r o r o t ( i , 1 ) , o b j p r o r o t ( i , 2 ) , 0254) !

455 END DO !

456 END IF !

457

458 CALL pgslw ( 3 0 )

459 CALL p g s c i ( 4 )

460 CALL p g p o i n t ( 1 , 0 . , 0 . , −1) ! P l o t l a r g e d o t a t o r i g i n f o r M31

461 CALL pgslw ( 2 )

462 CALL p g s c i ( 4 )

463

464 IF ( v a n g l e . eq . 4 ) THEN ! P l o t Survey Area and I n n e r Cut−Off E l l i p s e on p l a n e a t M31 d i s t a n c e

465

466 CALL p g s c i ( 1 )
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467

468 DO i = 2 , SAP ndata − 1

469 CALL p g l i n e ( 2 , ( / SAP rot ( i −1 ,1) , SAP rot ( i , 1 ) / ) , ( / SAP rot ( i −1 ,2) , SAP rot ( i , 2 ) / ) )

470 END DO

471 CALL p g l i n e ( 2 , ( / SAP rot ( SAP ndata −1 ,1) , SAP rot ( 1 , 1 ) / ) , ( / SAP rot ( SAP ndata −1 ,2) , SAP rot ( 1 , 2 ) / ) )

472

473 DO i = 2 , I C P n d a t a − 1

474 CALL p g l i n e ( 2 , ( / I C P r o t ( i −1 ,1) , I C P r o t ( i , 1 ) / ) , ( / I C P r o t ( i −1 ,2) , I C P r o t ( i , 2 ) / ) )

475 END DO

476 CALL p g l i n e ( 2 , ( / I C P r o t ( ICP nda ta −1 ,1) , I C P r o t ( 1 , 1 ) / ) , ( / I C P r o t ( ICP nda ta −1 ,2) , I C P r o t ( 1 , 2 ) / ) )

477

478 END IF

479

480 IF ( v a n g l e . eq . 3 ) THEN ! P l o t Survey Area on p l a n e s a t And XVI and And XXVII d i s t a n c e s

481

482 CALL p g s c i ( 1 )

483

484 DO i = 2 , SAP ndata − 1

485 CALL p g l i n e ( 2 , ( / SAPn rot ( i −1 ,1) , SAPn rot ( i , 1 ) / ) , ( / SAPn rot ( i −1 ,2) , SAPn rot ( i , 2 ) / ) )

486 END DO

487 CALL p g l i n e ( 2 , ( / SAPn rot ( SAP ndata −1 ,1) , SAPn rot ( 1 , 1 ) / ) , ( / SAPn rot ( SAP ndata −1 ,2) , SAPn rot ( 1 , 2 ) / ) )

488

489 DO i = 2 , SAP ndata − 1

490 CALL p g l i n e ( 2 , ( / S A P f r o t ( i −1 ,1) , S A P f r o t ( i , 1 ) / ) , ( / S A P f r o t ( i −1 ,2) , S A P f r o t ( i , 2 ) / ) )

491 END DO

492 CALL p g l i n e ( 2 , ( / S A P f r o t ( SAP ndata −1 ,1) , S A P f r o t ( 1 , 1 ) / ) , ( / S A P f r o t ( SAP ndata −1 ,2) , S A P f r o t ( 1 , 2 ) / ) )

493

494 ! | | P l o t l i n e s from t h e t o p of t h e two s u r v e y a r e a s

495 ! \ / t o t h e bot tom of t h e two s u r v e y a r e a s .

496 CALL p g l i n e ( 2 , ( /MAXVAL( SAPn rot ( : , 1 ) ) , MAXVAL( S A P f r o t ( : , 1 ) ) / ) , ( /MAXVAL( SAPn rot ( : , 2 ) ) , MAXVAL( S A P f r o t ( : , 2 ) ) / ) )

497 CALL p g l i n e ( 2 , ( /MINVAL( SAPn rot ( : , 1 ) ) , MINVAL( S A P f r o t ( : , 1 ) ) / ) , ( /MINVAL( SAPn rot ( : , 2 ) ) , MINVAL( S A P f r o t ( : , 2 ) ) / ) )

498

499 END IF

500

501 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−P r i n t S a t e l l i t e Labe l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

502

503 IF ( v a n g l e . eq . 1 ) THEN ! P r i n t s s a t e l l i t e l a b e l s f o r xy p l a n e view

504 CALL p g s c i ( 1 )

505 CALL p g p t x t ( o b j p r o r o t ( 1 , 1 ) + 7 . , o b j p r o r o t ( 1 , 2 ) , 0 . , 0 . 5 , ’ I ’ )

506 CALL p g p t x t ( o b j p r o r o t ( 2 , 1 ) + 7 . , o b j p r o r o t ( 2 , 2 ) , 0 . , 0 . 5 , ’ I I ’ )

507 CALL p g p t x t ( o b j p r o r o t ( 3 , 1 ) − 9 . , o b j p r o r o t ( 3 , 2 ) , 0 . , 0 . 5 , ’ I I I ’ )

508 CALL p g p t x t ( o b j p r o r o t ( 4 , 1 ) − 8 . , o b j p r o r o t ( 4 , 2 ) −4. , 0 . , 0 . 5 , ’V’ )

509 CALL p g p t x t ( o b j p r o r o t ( 5 , 1 ) + 8 . , o b j p r o r o t ( 5 , 2 ) , 0 . , 0 . 5 , ’ IX ’ )

510 CALL p g p t x t ( o b j p r o r o t ( 6 , 1 ) + 8 . , o b j p r o r o t ( 6 , 2 ) , 0 . , 0 . 5 , ’X’ )

511 CALL p g p t x t ( o b j p r o r o t ( 7 , 1 ) + 8 . , o b j p r o r o t ( 7 , 2 ) , 0 . , 0 . 5 , ’ XI ’ )

512 CALL p g p t x t ( o b j p r o r o t ( 8 , 1 ) − 6 . , o b j p r o r o t ( 8 , 2 ) − 1 2 . , 0 . , 0 . 5 , ’ XII ’ )

513 CALL p g p t x t ( o b j p r o r o t ( 9 , 1 ) + 1 1 . , o b j p r o r o t ( 9 , 2 ) , 0 . , 0 . 5 , ’ X I I I ’ )

514 CALL p g p t x t ( o b j p r o r o t ( 1 0 , 1 ) + 1 1 . , o b j p r o r o t ( 1 0 , 2 ) , 0 . , 0 . 5 , ’XIV ’ )

515 CALL p g p t x t ( o b j p r o r o t ( 1 1 , 1 ) − 9 . , o b j p r o r o t ( 1 1 , 2 ) , 0 . , 0 . 5 , ’XV’ )

516 CALL p g p t x t ( o b j p r o r o t ( 1 2 , 1 ) + 1 2 . , o b j p r o r o t ( 1 2 , 2 ) , 0 . , 0 . 5 , ’XVI ’ )

517 CALL p g p t x t ( o b j p r o r o t ( 1 3 , 1 ) − 1 2 . , o b j p r o r o t ( 1 3 , 2 ) − 3 . , 0 . , 0 . 5 , ’ XVII ’ )

518 CALL p g p t x t ( o b j p r o r o t ( 1 4 , 1 ) , o b j p r o r o t ( 1 4 , 2 ) − 1 1 . , 0 . , 0 . 5 , ’ XVIII ’ )

519 CALL p g p t x t ( o b j p r o r o t ( 1 5 , 1 ) + 1 2 . , o b j p r o r o t ( 1 5 , 2 ) , 0 . , 0 . 5 , ’XIX ’ )

520 CALL p g p t x t ( o b j p r o r o t ( 1 6 , 1 ) , o b j p r o r o t ( 1 6 , 2 ) + 6 . , 0 . , 0 . 5 , ’XX’ )

521 CALL p g p t x t ( o b j p r o r o t ( 1 7 , 1 ) + 1 4 . , o b j p r o r o t ( 1 7 , 2 ) − 5 . , 0 . , 0 . 5 , ’XXI ’ )

522 CALL p g p t x t ( o b j p r o r o t ( 1 8 , 1 ) − 1 3 . , o b j p r o r o t ( 1 8 , 2 ) − 2 . , 0 . , 0 . 5 , ’ XXII ’ )

523 CALL p g p t x t ( o b j p r o r o t ( 1 9 , 1 ) − 1 4 . , o b j p r o r o t ( 1 9 , 2 ) , 0 . , 0 . 5 , ’ XXIII ’ )

524 CALL p g p t x t ( o b j p r o r o t ( 2 0 , 1 ) + 5 . , o b j p r o r o t ( 2 0 , 2 ) − 1 3 . , 0 . , 0 . 5 , ’XXIV ’ )

525 CALL p g p t x t ( o b j p r o r o t ( 2 1 , 1 ) − 1 4 . , o b j p r o r o t ( 2 1 , 2 ) − 2 . , 0 . , 0 . 5 , ’XXV’ )

526 CALL p g p t x t ( o b j p r o r o t ( 2 2 , 1 ) − 1 5 . , o b j p r o r o t ( 2 2 , 2 ) − 3 . , 0 . , 0 . 5 , ’XXVI ’ )

527 !CALL p g p t x t ( o b j p r o r o t ( 2 3 , 1 ) − 1 6 . , o b j p r o r o t ( 2 3 , 2 ) − 1 0 . , 0 . , 0 . 5 , ’XXVII ’ ) ! Hidden beh i n d NGC147
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528 CALL p g p t x t ( o b j p r o r o t ( 2 4 , 1 ) − 0 . , o b j p r o r o t ( 2 4 , 2 ) + 5 . , 0 . , 0 . 5 , ’XXX’ )

529 CALL p g p t x t ( o b j p r o r o t ( 2 5 , 1 ) − 2 3 . , o b j p r o r o t ( 2 5 , 2 ) + 7 . , 0 . , 0 . 5 , ’NGC147 ’ )

530 CALL p g p t x t ( o b j p r o r o t ( 2 6 , 1 ) + 2 8 . , o b j p r o r o t ( 2 6 , 2 ) − 4 . , 0 . , 0 . 5 , ’NGC185 ’ )

531 CALL p g p t x t ( o b j p r o r o t ( 2 7 , 1 ) − 7 . , o b j p r o r o t ( 2 7 , 2 ) − 1 8 . , 0 . , 0 . 5 , ’M33 ’ )

532 CALL p g p t x t ( o b j p r o r o t ( 2 8 , 1 ) − 1 5 . , o b j p r o r o t ( 2 8 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’M31 ’ )

533 END IF

534

535 IF ( v a n g l e . eq . 3 ) THEN ! P r i n t s s a t e l l i t e l a b e l s f o r yz p l a n e view

536 CALL p g s c i ( 1 )

537 CALL p g p t x t ( 1 . 2 ∗ ( o b j r o t ( 1 , 1 ) ) , o b j r o t ( 1 , 2 ) − 5 . , 0 . , 0 . 5 , ’ I ’ )

538 CALL p g p t x t ( 0 . 8 ∗ ( o b j r o t ( 2 , 1 ) ) , o b j r o t ( 2 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’ I I ’ )

539 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 3 , 1 ) ) , o b j r o t ( 3 , 2 ) + 3 . , 0 . , 0 . 5 , ’ I I I ’ )

540 CALL p g p t x t ( 1 . 2 3 ∗ ( o b j r o t ( 4 , 1 ) ) , o b j r o t ( 4 , 2 ) − 4 . , 0 . , 0 . 5 , ’V’ )

541 CALL p g p t x t ( 1 . 0 8 ∗ ( o b j r o t ( 5 , 1 ) ) , o b j r o t ( 5 , 2 ) − 3 . , 0 . , 0 . 5 , ’ IX ’ )

542 CALL p g p t x t ( 1 . 1 ∗ ( o b j r o t ( 6 , 1 ) ) , o b j r o t ( 6 , 2 ) − 2 . , 0 . , 0 . 5 , ’X’ )

543 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 7 , 1 ) ) , o b j r o t ( 7 , 2 ) + 2 . , 0 . , 0 . 5 , ’ XI ’ )

544 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 8 , 1 ) ) , o b j r o t ( 8 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’ XII ’ )

545 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 9 , 1 ) ) , o b j r o t ( 9 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’ X I I I ’ )

546 CALL p g p t x t ( 7 . 0 ∗ ( o b j r o t ( 1 0 , 1 ) ) , o b j r o t ( 1 0 , 2 ) − 3 . , 0 . , 0 . 5 , ’XIV ’ )

547 CALL p g p t x t ( 0 . 7 5 ∗ ( o b j r o t ( 1 1 , 1 ) ) , o b j r o t ( 1 1 , 2 ) + 2 . , 0 . , 0 . 5 , ’XV’ )

548 CALL p g p t x t ( 0 . 8 5 ∗ ( o b j r o t ( 1 2 , 1 ) ) , o b j r o t ( 1 2 , 2 ) + 2 . , 0 . , 0 . 5 , ’XVI ’ )

549 CALL p g p t x t ( 1 . 3 5 ∗ ( o b j r o t ( 1 3 , 1 ) ) , o b j r o t ( 1 3 , 2 ) − 1 0 . , 0 . , 0 . 5 , ’ XVII ’ )

550 CALL p g p t x t ( 0 . 9 5 ∗ ( o b j r o t ( 1 4 , 1 ) ) , o b j r o t ( 1 4 , 2 ) − 1 2 . , 0 . , 0 . 5 , ’ XVIII ’ )

551 CALL p g p t x t ( 1 . 6 ∗ ( o b j r o t ( 1 5 , 1 ) ) , o b j r o t ( 1 5 , 2 ) , 0 . , 0 . 5 , ’XIX ’ )

552 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 1 6 , 1 ) ) , o b j r o t ( 1 6 , 2 ) , 0 . , 0 . 5 , ’XX’ )

553 CALL p g p t x t ( 1 . 4 ∗ ( o b j r o t ( 1 7 , 1 ) ) , o b j r o t ( 1 7 , 2 ) − 3 . , 0 . , 0 . 5 , ’XXI ’ )

554 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 1 8 , 1 ) ) , o b j r o t ( 1 8 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’ XXII ’ )

555 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 1 9 , 1 ) ) , o b j r o t ( 1 9 , 2 ) + 2 . , 0 . , 0 . 5 , ’ XXIII ’ )

556 CALL p g p t x t ( 0 . 7 5 ∗ ( o b j r o t ( 2 0 , 1 ) ) , o b j r o t ( 2 0 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’XXIV ’ )

557 CALL p g p t x t ( 0 . 4 5 ∗ ( o b j r o t ( 2 1 , 1 ) ) , o b j r o t ( 2 1 , 2 ) − 1 2 . , 0 . , 0 . 5 , ’XXV’ )

558 CALL p g p t x t ( 0 . 7 5 ∗ ( o b j r o t ( 2 2 , 1 ) ) , o b j r o t ( 2 2 , 2 ) + 2 . , 0 . , 0 . 5 , ’XXVI ’ )

559 CALL p g p t x t ( 0 . 9 5 ∗ ( o b j r o t ( 2 3 , 1 ) ) , o b j r o t ( 2 3 , 2 ) + 3 . , 0 . , 0 . 5 , ’XXVII ’ )

560 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 2 4 , 1 ) ) , o b j r o t ( 2 4 , 2 ) + 4 . , 0 . , 0 . 5 , ’XXX’ )

561 CALL p g p t x t ( 1 . 5 ∗ ( o b j r o t ( 2 5 , 1 ) ) , o b j r o t ( 2 5 , 2 ) − 4 . , 0 . , 0 . 5 , ’NGC 147 ’ )

562 CALL p g p t x t ( 0 . 7 5 ∗ ( o b j r o t ( 2 6 , 1 ) ) , o b j r o t ( 2 6 , 2 ) − 1 5 . , 0 . , 0 . 5 , ’NGC185 ’ )

563 CALL p g p t x t ( 3 . 0 ∗ ( o b j r o t ( 2 7 , 1 ) ) , o b j r o t ( 2 7 , 2 ) − 2 . , 0 . , 0 . 5 , ’M33 ’ )

564 CALL p g p t x t ( 0 . 5 ∗ ( o b j r o t ( 2 8 , 1 ) ) + 3 0 . , o b j r o t ( 2 8 , 2 ) − 2 0 . , 0 . , 0 . 5 , ’M31 ’ )

565 END IF

566

567 IF ( v a n g l e . eq . 4 ) THEN ! P r i n t s s a t e l l i t e l a b e l s f o r 3D view

568 CALL p g s c i ( 1 )

569 CALL p g p t x t ( o b j p r o r o t ( 1 , 1 ) + 5 . , o b j p r o r o t ( 1 , 2 ) , 0 . , 0 . 5 , ’ I ’ )

570 CALL p g p t x t ( o b j p r o r o t ( 2 , 1 ) + 5 . , o b j p r o r o t ( 2 , 2 ) , 0 . , 0 . 5 , ’ I I ’ )

571 CALL p g p t x t ( o b j p r o r o t ( 3 , 1 ) − 7 . , o b j p r o r o t ( 3 , 2 ) , 0 . , 0 . 5 , ’ I I I ’ )

572 CALL p g p t x t ( o b j p r o r o t ( 4 , 1 ) − 6 . , o b j p r o r o t ( 4 , 2 ) −2. , 0 . , 0 . 5 , ’V’ )

573 CALL p g p t x t ( o b j p r o r o t ( 5 , 1 ) + 6 . , o b j p r o r o t ( 5 , 2 ) , 0 . , 0 . 5 , ’ IX ’ )

574 CALL p g p t x t ( o b j p r o r o t ( 6 , 1 ) + 6 . , o b j p r o r o t ( 6 , 2 ) , 0 . , 0 . 5 , ’X’ )

575 CALL p g p t x t ( o b j p r o r o t ( 7 , 1 ) , o b j p r o r o t ( 7 , 2 ) − 8 . , 0 . , 0 . 5 , ’ XI ’ )

576 CALL p g p t x t ( o b j p r o r o t ( 8 , 1 ) + 6 . , o b j p r o r o t ( 8 , 2 ) , 0 . , 0 . 5 , ’ XII ’ )

577 CALL p g p t x t ( o b j p r o r o t ( 9 , 1 ) + 8 . , o b j p r o r o t ( 9 , 2 ) , 0 . , 0 . 5 , ’ X I I I ’ )

578 CALL p g p t x t ( o b j p r o r o t ( 1 0 , 1 ) − 6 . , o b j p r o r o t ( 1 0 , 2 ) , 0 . , 0 . 5 , ’XIV ’ )

579 CALL p g p t x t ( o b j p r o r o t ( 1 1 , 1 ) − 7 . , o b j p r o r o t ( 1 1 , 2 ) , 0 . , 0 . 5 , ’XV’ )

580 CALL p g p t x t ( o b j p r o r o t ( 1 2 , 1 ) + 8 . , o b j p r o r o t ( 1 2 , 2 ) , 0 . , 0 . 5 , ’XVI ’ )

581 CALL p g p t x t ( o b j p r o r o t ( 1 3 , 1 ) − 9 . , o b j p r o r o t ( 1 3 , 2 ) , 0 . , 0 . 5 , ’ XVII ’ )

582 CALL p g p t x t ( o b j p r o r o t ( 1 4 , 1 ) , o b j p r o r o t ( 1 4 , 2 ) − 8 . , 0 . , 0 . 5 , ’ XVIII ’ )

583 CALL p g p t x t ( o b j p r o r o t ( 1 5 , 1 ) + 8 . , o b j p r o r o t ( 1 5 , 2 ) , 0 . , 0 . 5 , ’XIX ’ )

584 CALL p g p t x t ( o b j p r o r o t ( 1 6 , 1 ) , o b j p r o r o t ( 1 6 , 2 ) + 4 . , 0 . , 0 . 5 , ’XX’ )

585 CALL p g p t x t ( o b j p r o r o t ( 1 7 , 1 ) + 9 . , o b j p r o r o t ( 1 7 , 2 ) − 2 . , 0 . , 0 . 5 , ’XXI ’ )

586 CALL p g p t x t ( o b j p r o r o t ( 1 8 , 1 ) + 9 . , o b j p r o r o t ( 1 8 , 2 ) +1 . , 0 . , 0 . 5 , ’ XXII ’ )

587 CALL p g p t x t ( o b j p r o r o t ( 1 9 , 1 ) − 9 . , o b j p r o r o t ( 1 9 , 2 ) , 0 . , 0 . 5 , ’ XXIII ’ )

588 CALL p g p t x t ( o b j p r o r o t ( 2 0 , 1 ) + 6 . , o b j p r o r o t ( 2 0 , 2 ) −8. , 0 . , 0 . 5 , ’XXIV ’ )
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589 CALL p g p t x t ( o b j p r o r o t ( 2 1 , 1 ) − 9 . , o b j p r o r o t ( 2 1 , 2 ) − 2 . , 0 . , 0 . 5 , ’XXV’ )

590 CALL p g p t x t ( o b j p r o r o t ( 2 2 , 1 ) − 1 0 . , o b j p r o r o t ( 2 2 , 2 ) − 2 . , 0 . , 0 . 5 , ’XXVI ’ )

591 CALL p g p t x t ( o b j p r o r o t ( 2 3 , 1 ) − 1 1 . , o b j p r o r o t ( 2 3 , 2 ) − 2 . , 0 . , 0 . 5 , ’XXVII ’ )

592 CALL p g p t x t ( o b j p r o r o t ( 2 4 , 1 ) − 7 . , o b j p r o r o t ( 2 4 , 2 ) + 2 . , 0 . , 0 . 5 , ’XXX’ )

593 CALL p g p t x t ( o b j p r o r o t ( 2 5 , 1 ) − 8 . , o b j p r o r o t ( 2 5 , 2 ) + 4 . , 0 . , 0 . 5 , ’NGC147 ’ )

594 CALL p g p t x t ( o b j p r o r o t ( 2 6 , 1 ) + 1 8 . , o b j p r o r o t ( 2 6 , 2 ) − 4 . , 0 . , 0 . 5 , ’NGC185 ’ )

595 CALL p g p t x t ( o b j p r o r o t ( 2 7 , 1 ) , o b j p r o r o t ( 2 7 , 2 ) − 8 . , 0 . , 0 . 5 , ’M33 ’ )

596 CALL p g p t x t ( o b j p r o r o t ( 2 8 , 1 ) − 7 . , o b j p r o r o t ( 2 8 , 2 ) − 8 . , 0 . , 0 . 5 , ’M31 ’ )

597 END IF

598

599 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−END S a t e l l i t e Labe l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

600

601 CALL pgslw ( 2 )

602 CALL p g s c i ( 1 )

603

604 CALL PGSCH ( 1 . 0 )

605 IF ( v a n g l e . eq . 1 . o r . v a n g l e . eq . 2 . o r . v a n g l e . eq . 3 ) THEN

606 CALL p g l a b ( ’ kpc ’ , ’ kpc ’ , ’ ’ ) ! a x i s l a b e l s

607 END IF

608

609 CALL pgend

610

611 END SUBROUTINE PLOT
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Program: SatDensity SampCont.f95

Creation Date: 20 Feb 2012

Relevant Section: §4.3 of Paper II (Ch. 4)

Notes: The analysis presented in §4.3 of Paper II concerning the density profile of the M31

halo was carried out using this program. It fits a spherically-symmetric unbroken power

law to the satellite density profile, taking into account the uneven coverage of the PAndAS

survey area. One of the most difficult tasks here was to actually generate the PAndAS survey

polygon from the field centers specified by Mike Irwin (Institute of Astronomy, University

of Cambridge) and this took me two days to complete. Using this polygon as the outer

boundary, and using the inner cutoff ellipse around the M31 disk, it is possible to determine

how much volume at each radius (i.e. distance from M31) would fall inside the utilized

survey region. The resulting function can then be used to weight the density profile so that

we can obtain an unbiased measure of the slope of the power law for the desired sample of

satellites. Note that the program can perform the analysis using either the best-fit distances

alone or the full distance distributions for each satellite. The code presented here is as applied

to the whole satellite sample but desired satellites can be omitted from the sample by skipping

over them in the ‘MaxLike’ subroutine.
1 MODULE Gl ob a l ! D e f i n e a l l

2 IMPLICIT NONE ! v a r i a b l e s

3

4 INTEGER : : i , j , h , n , nn , k n d a t a

5 REAL : : Sa t Rad ( 2 7 ) , a lpha , a l p h a h o l d ( 6 0 0 ) , ML logL ( 6 0 0 ) , Rel ML logL ( 6 0 0 ) , no rm fac

6 REAL : : k v s a l p h a ( 6 0 1 , 2 ) , k ( 6 0 0 )

7 REAL : : a l p h a c o u n t s , a l p h a p s i g m a , a lpha msigma , pcoun t s , mcounts

8 DOUBLE PRECISION : : av ML logL

9

10 ! | | For sampled d i s t r i b u t i o n s

11 ! \ / wi th MCMC

12 INTEGER : : n i t , i t , nsamples , ndata max , i o s , idum = −9999

13 PARAMETER ( n i t = 3000000)

14 PARAMETER ( nsamples = 10000)

15 PARAMETER ( nda ta max = 3000000)

16 INTEGER : : t i me ( nda ta max )

17 REAL : : S a t R a d i i ( 2 7 , 5 0 0 0 0 1 ) , M33 dis t , i n c u t , o u t c u t , LikeA , LikeB , logL , randnum , r

18 REAL : : Rad ius ( 2 7 , 1 0 0 0 0 )

19 REAL : : x ( ndata max , 3 ) , p ( 3 )

20 REAL : : p o s t y 1 ( 6 0 0 ) , p o s t y 2 ( 1 0 0 ) , p o s t y 3 ( 3 0 0 ) , Best Combo ( 6 )

21 REAL : : p o s t x 1 ( 6 0 0 ) , p o s t x 2 ( 1 0 0 ) , p o s t x 3 ( 3 0 0 ) , p i

22 PARAMETER ( p i = 3 . 1 4 1 5 9 2 )

23 CHARACTER : : f o l d e r ∗100 , s t r i n g ∗200 , s t r i n g 2 ∗200 , command ∗200 , sample

24 PARAMETER ( sample = ’ y ’ )

25

26 END MODULE Gl ob a l

27
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28 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29

30 PROGRAM Sa tDens i ty SampCon t ! Mas te r program

31 USE Gl ob a l

32 IMPLICIT NONE

33

34 WRITE ( f o l d e r , ∗ ) ’ S a t D e n s i t y ’

35 WRITE ( s t r i n g , ∗ ) ’ . / ’ / / TRIM(ADJUSTL( f o l d e r ) )

36

37 WRITE ( command , ∗ ) ’ mkdir ’ / / TRIM(ADJUSTL( f o l d e r ) )

38

39 CALL sys tem ( command )

40

41 CALL r andom seed

42 CALL NonSampledRadi i

43 IF ( sample . eq . ’ y ’ ) THEN ! I f u s i n g many samples o f p o s s i b l e

44 CALL SampledRad i i ! r a d i i f o r each o b j e c t a s opposed

45 CALL S a m p l e S e l e c t ! t o j u s t t h e b e s t f i t r a d i u s

46 END IF

47 CALL k v e r s e a l p h a

48 CALL MaxLike

49

50 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / r e s u l t s . d a t ’

51 OPEN( 3 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ )

52 WRITE ( 3 , ∗ ) ” R e s u l t s f o r Maximum L i k e l i h o o d t e s t ”

53 WRITE ( 3 , ∗ ) ” Most L i k e l y a l p h a ( Max L i k e l i h o o d ) : ” , a l p h a h o l d (MAXLOC( ML logL ) )

54 WRITE ( 3 , ∗ ) ” p l u s 1 sigma e r r o r : ” , a l p h a p s i g m a , ” ; minus 1 sigma e r r o r : ” , a lpha msigma

55

56 END PROGRAM Sa tDens i ty SampCon t

57

58 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

59

60 SUBROUTINE NonSampledRadi i ! Use t h i s s u b r o u t i n e i f u s i n g t h e d i r e c t l y

61 USE Gl ob a l ! c a l c u l a t e d v a l u e s o f t h e S a t e l l i t e t o M31

62 IMPLICIT NONE ! d i s t a n c e r a t h e r t h a n samples from t h e PPD

63

64 Sa t Rad ( 1 ) = 6 8 . e0 ! And I

65 Sa t Rad ( 2 ) = 1 9 6 . e0 ! And I I

66 Sa t Rad ( 3 ) = 8 6 . e0 ! And I I I

67 Sa t Rad ( 4 ) = 1 1 3 . e0 ! And V

68 Sa t Rad ( 5 ) = 1 8 2 . e0 ! And IX

69 Sa t Rad ( 6 ) = 1 3 0 . e0 ! And X

70 Sa t Rad ( 7 ) = 1 0 3 . e0 ! And XI

71 Sa t Rad ( 8 ) = 1 8 2 . e0 ! And XII

72 Sa t Rad ( 9 ) = 1 1 6 . e0 ! And X I I I

73 Sa t Rad ( 1 0 ) = 1 6 3 . e0 ! And XIV

74 Sa t Rad ( 1 1 ) = 1 7 4 . e0 ! And XV

75 Sa t Rad ( 1 2 ) = 3 2 0 . e0 ! And XVI

76 Sa t Rad ( 1 3 ) = 6 7 . e0 ! And XVII

77 Sa t Rad ( 1 4 ) = 4 5 7 . e0 ! And XVIII

78 Sa t Rad ( 1 5 ) = 1 1 6 . e0 ! And XIX

79 Sa t Rad ( 1 6 ) = 1 2 9 . e0 ! And XX

80 Sa t Rad ( 1 7 ) = 1 3 6 . e0 ! And XXI

81 Sa t Rad ( 1 8 ) = 2 8 0 . e0 ! And XXII

82 Sa t Rad ( 1 9 ) = 1 2 8 . e0 ! And XXIII

83 Sa t Rad ( 2 0 ) = 1 6 9 . e0 ! And XXIV

84 Sa t Rad ( 2 1 ) = 9 1 . e0 ! And XXV

85 Sa t Rad ( 2 2 ) = 1 0 3 . e0 ! And XXVI

86 Sa t Rad ( 2 3 ) = 4 8 2 . e0 ! And XXVII

87 Sa t Rad ( 2 4 ) = 1 4 6 . e0 ! And XXX

88 Sa t Rad ( 2 5 ) = 1 1 8 . e0 ! NGC147
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89 Sa t Rad ( 2 6 ) = 1 8 1 . e0 ! NGC185

90 Sa t Rad ( 2 7 ) = 2 1 4 . e0 !M33

91

92 END SUBROUTINE NonSampledRadi i

93

94 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95

96 SUBROUTINE k v e r s e a l p h a ! T h i s s u b r o u t i n e f i n d s v a l u e s o f t h e power law n o r m a l i z a t i o n f a c t o r ‘k ’ f o r

97 USE Gl ob a l ! each power law ( i . e . e x p o n e n t ’ a lpha ’ ) . I t s i m p l y i n t e r p o l a t e s based on v a l u e s

98 IMPLICIT NONE ! d e r i v e d by G e r a i n t ( p r o v i d e d i n ’ k v s a l p h a . da t ’ )

99

100 OPEN( 4 0 , f i l e = ’ . / k v s a l p h a . d a t ’ , s t a t u s = ’ unknown ’ )

101

102 i = 0

103

104 DO WHILE ( . TRUE . )

105

106 i = i + 1

107

108 READ ( 4 0 , ∗ , IOSTAT = i o s ) k v s a l p h a ( i , 1 ) , k v s a l p h a ( i , 2 )

109

110 IF ( i o s == −1) THEN

111 i = i − 1

112 e x i t

113 ELSE IF ( i o s . g t . 0 ) THEN

114 WRITE ( ∗ , ∗ ) i

115 i= i −1

116 c y c l e

117 END IF

118

119 END DO

120

121 CLOSE( 3 6 )

122

123 k n d a t a = i

124

125 DO i = 1 , 599 ! k as d e t e r m i n e d f o r a l p h a = 0 . 0 1 , 0 . 0 2 , . . . , 5 . 9 9

126 a l p h a = REAL( i ) / 1 0 0 . e0

127 nn = INT ( ( a l p h a − k v s a l p h a ( 1 , 1 ) ) / ( k v s a l p h a ( 2 4 1 , 1 ) − k v s a l p h a ( 1 , 1 ) ) ∗ 2 4 1 . e0 ) + 1

128 k ( i ) = ( a l p h a − k v s a l p h a ( nn , 1 ) ) / ( k v s a l p h a ( nn+1 , 1 ) − k v s a l p h a ( nn , 1 ) ) ∗ ( k v s a l p h a ( nn+1 ,2) − k v s a l p h a ( nn , 2 ) ) + k v s a l p h a (

nn , 2 )

129

130 k ( i ) = 1 0 . e0 ∗∗ k ( i )

131

132 END DO

133

134 DO i = 600 , 600 ! k f o r a l p h a = 6 . 0 0

135 a l p h a = REAL( i ) / 1 0 0 . e0

136 nn = 241

137 k ( i ) = ( a l p h a − k v s a l p h a ( nn , 1 ) ) / ( k v s a l p h a ( nn+1 , 1 ) − k v s a l p h a ( nn , 1 ) ) ∗ ( k v s a l p h a ( nn+1 ,2) − k v s a l p h a ( nn , 2 ) ) + k v s a l p h a (

nn , 2 )

138

139 k ( i ) = 1 0 . e0 ∗∗ k ( i )

140

141 END DO

142

143

144 END SUBROUTINE k v e r s e a l p h a

145

146 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

147
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148 SUBROUTINE MaxLike ! D i r e c t c a l c u l a t i o n o f l i k e l i h o o d s f o r a l p h a

149 USE Gl ob a l ! assuming f i x e d v a l u e s o f i n n e r and o u t e r

150 IMPLICIT NONE ! c u t o f f r a d i i . See Eq . 16 of Pape r I I f o r o p e r a t i o n .

151

152 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / a l p h a M L d i s t . d a t ’

153 OPEN( 9 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ )

154

155 ML logL = 0 . e0

156 DO i = 1 , 600

157 p r i n t ∗ , i

158 a l p h a = REAL( i ) / 1 0 0 . e0

159 a l p h a h o l d ( i ) = a l p h a

160

161 IF ( sample . eq . ’ y ’ ) THEN

162

163 DO j = 1 , 27

164 av ML logL = 0 . d0

165 DO h = 1 , 500000 ! nsamples

166 av ML logL = av ML logL + ( ( k ( i ) ∗ S a t R a d i i ( j , h ) ∗∗ ( 2 . d0 − a l p h a ) ) )

167 END DO

168 av ML logL = LOG10( av ML logL )

169 ML logL ( i ) = ML logL ( i ) + av ML logL

170 END DO

171

172 ELSE

173

174 DO j = 1 , 27

175 ML logL ( i ) = ML logL ( i ) + LOG10 ( ( k ( i ) ∗ Sa t Rad ( j ) ∗∗ ( 2 . e0 − a l p h a ) ) ) ! De te rmine l i k e l i h o o d of g i v e n a l p h a

176 END DO

177

178 END IF

179

180 END DO

181

182 ! | | P l o t

183 ! \ / D i s t r i b u t i o n

184 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / m l a l p h a l o g l i k e . ps /CPS ’

185 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

186

187 CALL pgenv ( 0 . , 6 . , 0 . 9 ∗ MINVAL( ML logL ) , 1 . 1 ∗ MAXVAL( ML logL ) , 0 , 0 )

188

189 CALL pgb in ( 6 0 0 , a l p h a h o l d , ML logL , . f a l s e . )

190

191 CALL p g l a b ( ’ \ ( 0 6 2 7 ) ’ , ’ Log L i k e l i h o o d ’ , ’ ’ )

192

193 CALL pgend

194

195 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

196 ’ / m l a l p h a l o g l i k e . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

197 ’ / m l a l p h a l o g l i k e . j p g ’

198

199 c a l l sys tem ( command )

200 ! / \

201 ! | |

202

203 ! | | P l o t

204 ! \ / D i s t r i b u t i o n

205 s t r i n g 2 = TRIM(ADJUSTL( s t r i n g ) ) / / ’ / ml alpha PPD . ps /CPS ’

206 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( s t r i n g 2 ) ) , 1 , 1 )

207

208 DO i = 1 , 600
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209 Rel ML logL ( i ) = 1 0 .∗∗ ( ML logL ( i ) − MAXVAL( ML logL ) )

210 END DO

211

212 Rel ML logL = Rel ML logL / SUM( Rel ML logL )

213

214 CALL pgenv ( 0 . , 3 . 5 , 0 . , 1 . 1 ∗ MAXVAL( Rel ML logL ) , 0 , 0 )

215

216 DO i = 1 , 600

217 WRITE ( 9 , ’ (3 F16 . 5 ) ’ ) a l p h a h o l d ( i ) , Rel ML logL ( i ) , ML logL ( i )

218 END DO

219

220 CALL p g l i n e ( 6 0 0 , a l p h a h o l d , Rel ML logL )

221

222 CALL p g l a b ( ’ \ ( 0 6 2 7 ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

223

224 CALL pgend

225

226 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

227 ’ / ml alpha PPD . ps ’ / / TRIM(ADJUSTL( s t r i n g ) ) / / &

228 ’ / ml alpha PPD . j p g ’

229

230 c a l l sys tem ( command )

231 ! / \

232 ! | |

233

234 a l p h a c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

235 DO i = MAXLOC( REL ML logL , DIM = 1) , 1 , −1 !

236 mcounts = mcounts + REL ML logL ( i ) !

237 END DO !

238 DO i = MAXLOC( REL ML logL , DIM = 1) , 1 , −1 !

239 a l p h a c o u n t s = a l p h a c o u n t s + REL ML logL ( i ) ! F i n d s n e g a t i v e

240 IF ( a l p h a c o u n t s . ge . 0 . 68 2∗mcounts ) THEN ! one sigma e r r o r

241 a lpha msigma = a l p h a h o l d (MAXLOC( REL ML logL , DIM = 1) ) − a l p h a h o l d ( i ) !

242 e x i t !

243 END IF !

244 END DO !

245

246 a l p h a c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

247 DO i = MAXLOC( REL ML logL , DIM = 1) , 600 !

248 p c o u n t s = p c o u n t s + REL ML logL ( i ) !

249 END DO !

250 DO i = MAXLOC( REL ML logL , DIM = 1) , 600 !

251 a l p h a c o u n t s = a l p h a c o u n t s + REL ML logL ( i ) ! F i n d s p o s i t i v e

252 IF ( a l p h a c o u n t s . ge . 0 . 68 2∗ p c o u n t s ) THEN ! one sigma e r r o r

253 a l p h a p s i g m a = a l p h a h o l d ( i ) − a l p h a h o l d (MAXLOC( REL ML logL , DIM = 1) ) !

254 e x i t !

255 END IF !

256 END DO !

257

258

259 END SUBROUTINE

260

261 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

262 !MCMC s u b r o u t i n e o m i t t e d

263 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

264 ! P l o t s s u b r o u t i n e o m i t t e d

265 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

266 ! LogLike s u b r o u t i n e o m i t t e d

267 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

268

269 SUBROUTINE SampledRad i i ! Read i n sampled r a d i i p r o b a b i l i t y
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270 USE Gl ob a l ! D i s t r i b u t i o n s f o r each s a t e l l i t e

271 IMPLICIT NONE

272

273 OPEN ( u n i t = 11 , f i l e = ’ . / AndromedaIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

274 OPEN ( u n i t = 12 , f i l e = ’ . / AndromedaIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

275 OPEN ( u n i t = 13 , f i l e = ’ . / AndromedaI I Ie / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

276 OPEN ( u n i t = 14 , f i l e = ’ . / AndromedaVe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

277 OPEN ( u n i t = 15 , f i l e = ’ . / AndromedaIXe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

278 OPEN ( u n i t = 16 , f i l e = ’ . / AndromedaXe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

279 OPEN ( u n i t = 17 , f i l e = ’ . / AndromedaXIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

280 OPEN ( u n i t = 18 , f i l e = ’ . / AndromedaXIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

281 OPEN ( u n i t = 19 , f i l e = ’ . / AndromedaXIIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

282 OPEN ( u n i t = 20 , f i l e = ’ . / AndromedaXIVe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

283 OPEN ( u n i t = 21 , f i l e = ’ . / AndromedaXVe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

284 OPEN ( u n i t = 22 , f i l e = ’ . / AndromedaXVIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

285 OPEN ( u n i t = 23 , f i l e = ’ . / AndromedaXVIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

286 OPEN ( u n i t = 24 , f i l e = ’ . / AndromedaXVIIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

287 OPEN ( u n i t = 25 , f i l e = ’ . / AndromedaXIXe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

288 OPEN ( u n i t = 26 , f i l e = ’ . / AndromedaXXe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

289 OPEN ( u n i t = 27 , f i l e = ’ . / AndromedaXXIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

290 OPEN ( u n i t = 28 , f i l e = ’ . / AndromedaXXIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

291 OPEN ( u n i t = 29 , f i l e = ’ . / AndromedaXXIIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

292 OPEN ( u n i t = 30 , f i l e = ’ . / AndromedaXXIVe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

293 OPEN ( u n i t = 31 , f i l e = ’ . / AndromedaXXVe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

294 OPEN ( u n i t = 32 , f i l e = ’ . / AndromedaXXVIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

295 OPEN ( u n i t = 33 , f i l e = ’ . / AndromedaXXVIIe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

296 OPEN ( u n i t = 34 , f i l e = ’ . / AndromedaXXXe / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

297 OPEN ( u n i t = 35 , f i l e = ’ . / NGC147e outer / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

298 OPEN ( u n i t = 36 , f i l e = ’ . / NGC185e outer / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

299 OPEN ( u n i t = 37 , f i l e = ’ . /M33e / o t h e r p l o t s 2 / Sampled M31 Dis tances . d a t ’ , s t a t u s = ’ o l d ’ )

300

301 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

302

303 ! | | Read i n t h e d i s t r i b u t i o n o f ∗∗

304 ! \ / d i s t a n c e s o f Andromeda I from M31

305 i = 0

306

307 DO WHILE ( . TRUE . )

308

309 i = i + 1

310

311 READ ( 1 1 , ∗ , IOSTAT = i o s ) S a t R a d i i ( 1 , i )

312

313 IF ( i o s == −1) THEN

314 i = i − 1

315 e x i t

316 ELSE IF ( i o s . g t . 0 ) THEN

317 WRITE ( ∗ , ∗ ) i

318 i= i −1

319 c y c l e

320 END IF

321

322 END DO

323

324 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

325 ! Repea t ∗∗ t o r e a d i n t h e d i s t a n c e d i s t r i b u t i o n

326 ! o f each s a t e l l i t e w i th r e s p e c t t o M31

327

328 CLOSE( 1 1 ) ; CLOSE( 1 2 ) ; CLOSE( 1 3 ) ; CLOSE( 1 4 ) ; CLOSE( 1 5 ) ; CLOSE( 1 6 ) ; CLOSE( 1 7 ) ; CLOSE( 1 8 ) ; CLOSE( 1 9 ) ; CLOSE( 2 0 )

329 CLOSE( 2 1 ) ; CLOSE( 2 2 ) ; CLOSE( 2 3 ) ; CLOSE( 2 4 ) ; CLOSE( 2 5 ) ; CLOSE( 2 6 ) ; CLOSE( 2 7 ) ; CLOSE( 2 8 ) ; CLOSE( 2 9 ) ; CLOSE( 3 0 )

330 CLOSE( 3 1 ) ; CLOSE( 3 2 ) ; CLOSE( 3 3 ) ; CLOSE( 3 4 ) ; CLOSE( 3 5 ) ; CLOSE( 3 6 ) ; CLOSE( 3 7 )
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331

332 END SUBROUTINE SampledRad i i

333

334 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

335

336 SUBROUTINE S a m p l e S e l e c t

337 USE Gl ob a l

338 IMPLICIT NONE

339

340 REAL : : gasdev

341

342 DO i = 1 , 27

343 DO j = 1 , nsamples

344 1 CALL random number ( randnum )

345 randnum = ( randnum ∗ 500000) + 1

346 IF ( S a t R a d i i ( i , NINT ( randnum ) ) . ge . 5 0 . e0 . and . S a t R a d i i ( i , NINT ( randnum ) ) . l e . 6 0 0 . e0 ) THEN

347 Radius ( i , j ) = S a t R a d i i ( i , NINT ( randnum ) )

348 WRITE ( ∗ , ∗ ) i , j , Rad ius ( i , j )

349 ELSE

350 goto 1

351 END IF

352 END DO

353 END DO

354

355 END SUBROUTINE S a m p l e S e l e c t

356

357 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: PlaneSigRMS.f95

Creation Date: 7 June 2012 (first version Feb 2012) Many modifications.

Relevant Section: Ch. 5

Notes: This program is representative of the many versions used to implement plane fit-

ting on the satellite distribution. The satellite distance distributions (along with the best

fit distances) are read in and stored for subsequent sampling in the ‘SampledDist’ subrou-

tine. The ‘Significance’ subroutine then samples distances for each satellite (and M31 it-

self), converts these distances into 3D positions and calls ‘MaxSigFind’ to do the actual

plane fitting (see the preface for Paper III (p. 90) and Fig. 5.1 for details). The program

is currently set to repeat this process for 200, 000 realizations of possible positions of the

satellites as well as the particular realization where each satellite is in the position defined

by its best-fit distance (mainly for plotting). The program is also set up to build 200, 000

random realizations (generated in the ‘RandomPoints’ subroutine) of the (27) satellites and

perform equivalent plane fitting on each. The version of ‘RandomPoints’ included in this

program includes only one possible position for each satellite, and is used only in §3.3 of

Paper III. The version of this subroutine used in all other sections can be seen in the pro-

gram ‘PlaneS igS ubS ets RandReal4 noGroup. f 95’ (p. 268). This version represents each

satellite by a distance distribution containing 1, 000 possible positions along the line of sight

from Earth (i.e. an accurate representation of the real data). Note also that this program

is designed to perform plane-fitting on the whole sample. The modified code segments de-

signed to handle each satellite combination of a given size can be seen in Subroutines for

Processing Satellite Subsets (p. 260). The ‘goodness of fit statistic’ used for the plane fitting

by this program is the RMS. The code for alternative measures are given in Alternative Plane

Fitting Code Segments (p. 258).

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 INTEGER : : i , j , k , s , mm, i o s , idum = −9999 , i t , n i t , e r r s a m p

5 INTEGER : : ndata max , n s a t s

6 PARAMETER ( nda ta max = 10000000)

7 PARAMETER ( n i t = 200000)

8 PARAMETER ( e r r s a m p = 200000)

9 PARAMETER ( n s a t s = 27)

10 REAL∗8 : : p i

11 PARAMETER ( p i = ACOS( −1 . e0 ) )

12 REAL : : randnum , s i g ( n i t ) , e r r s i g ( n i t ) , norm ( 3 ) , b e s t f i t v e c t ( 3 ) , b e s t f i t s i g m a
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13 REAL : : pos ( 3 , nda ta max ) , t emp pos ( 3 )

14 REAL : : a ( nda ta max ) , b ( nda ta max ) , c ( nda ta max ) , d ( nda ta max )

15 REAL : : a h i s t ( 2 0 1 , 2 ) , b h i s t ( 2 0 1 , 2 ) , c h i s t ( 2 0 1 , 2 ) , d h i s t ( 2 0 0 1 , 2 )

16 REAL : : logL , LikeA , LikeB , r , p ( 4 ) , p temp ( 4 ) , min sigma , max sigma

17 REAL∗8 : : sigma , p l a n e D i s t , l i k e , p l a n e s i g , rms

18 REAL : : m a x p l a n e s i g , m i n s i g n i f , A c t u a l s i g , A c t u a l b f v ( 3 ) , A c t u a l b f s

19 INTEGER : : dummy , s a t p i c k

20 REAL : : S a t D i s t ( 5 0 0 0 0 0 , 2 7 ) , S a t D i s t D r a w n ( 2 7 ) , S a t P o s ( 2 7 , 2 ) , x i ( 2 7 ) , e t a ( 2 7 ) , t h e t a ( 2 7 ) , M31 Dist PPD (3000000)

21 REAL∗8 : : RA, DEC, x i d b l e , e t a d b l e

22 REAL : : x i t e s t , e t a t e s t , t h e t a t e s t , SAP xi ( 1 3 4 ) , SAP eta ( 1 3 4 ) , spotR

23 REAL : : B e s t S a t D i s t ( 2 7 )

24 REAL : : m 3 1 d i s t

25 REAL : : a l p h a s e t , b e t a s e t , gamma set , p o l e a l p h a , p o l e b e t a

26 REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 )

27 REAL : : p a r l i k e ( 1 8 0 , 6 )

28 REAL : : t h e t a c o o r d , p h i c o o r d

29 CHARACTER : : a rgv ∗30 , f o l d e r ∗100 , s t r i n g ∗200 , s t r i n g 2 ∗200 , command ∗200 , s u b s i z e ∗3

30

31 END MODULE Gl ob a l

32

33 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34

35 PROGRAM P l a n e S i g n i f i c a n c e ! Mas te r program

36 USE Gl ob a l

37 IMPLICIT NONE

38

39 WRITE ( s u b s i z e , ∗ ) n s a t s

40

41 WRITE ( f o l d e r , ∗ ) ’ R M S P l a n e S t a t s ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s ’ ! P r imary o u t p u t

42 WRITE ( s t r i n g , ∗ ) ’ . / ’ / / TRIM(ADJUSTL( f o l d e r ) ) ! d i r e c t o r y

43

44 WRITE ( command , ∗ ) ’ mkdir ’ / / TRIM(ADJUSTL( f o l d e r ) )

45

46 CALL sys tem ( command )

47

48 CALL r andom seed ! I n s u r e random s eed f o r random numbers

49

50 CALL SampledDis t ! Get sampled s a t e l l i t e d i s t a n c e s

51

52 CALL BorderGe t ! Get PAndAS s u r v e y boundary p o i n t s

53

54 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / r e s u l t s . d a t ’ ! F i l e f o r r e s u l t summary e . g . p l a n e o r i e n t −

55 OPEN( 1 1 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! a t i o n and RMS f o r r e a l s a t e l l i t e d i s t r i b u t i o n

56

57 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s a t p o s . d a t ’ ! P o s i t i o n s o f s a t e l l i t e s i n

58 OPEN( 1 2 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! Random R e a l i z a t i o n s

59

60 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s i g n i f i c a n c e . d a t ’ !RMS d i s t r i b u t i o n and p o l e s from

61 OPEN( 1 3 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! Random R e a l i z a t i o n s

62

63 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / r e a l s i g w t h e r r . d a t ’ !RMS d i s t r i b u t i o n and p o l e s f o r r e a l i z a t i o n s

64 OPEN( 1 4 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! o f t h e r e a l s a t e l l i t e d i s t r i b u t i o n

65

66 CALL S i g n i f i c a n c e ! The main s u b r o u t i n e which i n t u r n c a l l s t h e p l a n e f i t t i n g s u b r o u t i n e

67

68 CALL T h e t a P h i ( A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) )

69

70 WRITE( 1 1 , ∗ ) ” Bes t f i t v e c t o r : ( ” , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , ” ) ”

71 WRITE( 1 1 , ∗ ) ” The ta =” , t h e t a c o o r d , ” ; Ph i =” , p h i c o o r d

72 WRITE( 1 1 , ∗ ) ”LOG10(RMS) of b e s t f i t : ” , A c t u a l s i g

73 WRITE( 1 1 , ∗ ) ”Minimum RMS from random samples : ” , m i n s i g n i f
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74

75 CLOSE( 1 1 ) ; CLOSE( 1 2 ) ; CLOSE( 1 3 ) ; CLOSE( 1 4 )

76

77 END PROGRAM P l a n e S i g n i f i c a n c e

78

79 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

80

81 SUBROUTINE RandomPoints ! G e n e r a t e s Random R e a l i z a t i o n s o f S a t e l l i t e s

82 USE Gl ob a l

83 IMPLICIT NONE

84

85 LOGICAL : : i n p o l y

86

87 CALL random number ( randnum )

88 randnum = randnum ∗ 2999999 . e0 + 1 . e0

89 m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) )

90

91 DO i = 1 , n s a t s

92

93 2 CALL random number ( randnum )

94 s a t p i c k = 1 + NINT ( randnum ∗REAL( n s a t s − 1) ) ! Draw a random s a t e l l i t e

95

96 CALL random number ( randnum )

97 randnum = randnum ∗ 499999 . e0 + 1 . e0

98 pos ( 1 , i ) = ABS( S a t D i s t ( NINT ( randnum ) , s a t p i c k ) ∗ cos ( t h e t a ( s a t p i c k ) ) ∗ t a n ( x i ( s a t p i c k ) ) ) ! De te rmine l e n g t h o f x v e c t o r

99 IF ( x i ( s a t p i c k ) . l t . 0 . e0 ) THEN ! ! f o r each s a t e l l i t e

100 pos ( 1 , i ) = −1. e0 ∗ pos ( 1 , i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

101 END IF !

102

103 pos ( 2 , i ) = ABS( S a t D i s t ( NINT ( randnum ) , s a t p i c k ) ∗ s i n ( e t a ( s a t p i c k ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

104 IF ( e t a ( s a t p i c k ) . l t . 0 . e0 ) THEN !

105 pos ( 2 , i ) = −1. e0 ∗ pos ( 2 , i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

106 END IF !

107

108 pos ( 3 , i ) = S a t D i s t ( NINT ( randnum ) , s a t p i c k ) ∗ cos ( t h e t a ( s a t p i c k ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

109

110 pos ( 3 , i ) = SQRT ( ( pos ( 1 , i ) ∗ ∗2 . e0 ) + ( pos ( 2 , i ) ∗ ∗2 . e0 ) + ( pos ( 3 , i ) ∗ ∗2 . e0 ) ) ! R o t a t e p o s i t i o n v e c t o r t o p o i n t

111 pos ( 1 , i ) = 0 . e0 ; pos ( 2 , i ) = 0 . e0 ! a l o n g z− a x i s

112

113 CALL random number ( randnum ) !

114 a l p h a s e t = randnum ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P i ck random l o n g i t u d e

115 CALL random number ( randnum ) ! P i ck random l a t i t u d e between 0 and 90 w e i g h t e d

116 b e t a s e t = ASIN ( randnum ) ! by a r e a o f a s p h e r e as a f u n c t i o n o f l a t i t u d e

117 CALL random number ( randnum ) !

118 IF ( randnum . l t . 0 . 5 e0 ) THEN ! Re− a s s i g n l a t i t u d e as

119 b e t a s e t = b e t a s e t !

120 ELSE !−1 ∗ l a t i t u d e i n

121 b e t a s e t = − b e t a s e t !

122 END IF !50% 0 f c a s e s

123

124 CALL R o t a t e

125 pos ( : , i ) = MATMUL( y r o t , pos ( : , i ) ) ! R o t a t e t o t h e chosen

126 pos ( : , i ) = MATMUL( x r o t , pos ( : , i ) ) ! random a n g l e

127

128 x i t e s t = ATAN( abs ( pos ( 1 , i ) ) / ( m 3 1 d i s t + pos ( 3 , i ) ) ) ! Conve r t

129 IF ( pos ( 1 , i ) . l t . 0 . e0 ) THEN ! new random

130 x i t e s t = − x i t e s t ! p o s i t i o n

131 END IF ! v e c t o r

132 e t a t e s t = ATAN( abs ( pos ( 2 , i ) ) /SQRT( pos ( 1 , i ) ∗∗2 + ( m 3 1 d i s t + pos ( 3 , i ) ) ∗∗2 ) ) ! i n t o

133 IF ( pos ( 2 , i ) . l t . 0 . e0 ) THEN ! non t . p .

134 e t a t e s t = − e t a t e s t ! e t a and
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135 END IF ! x i

136

137 RA = x i t e s t !

138 DEC = e t a t e s t ! Use sla DS2TP

139 ! t o c o n v e r t t r u e

140 CALL sla DS2TP (RA, DEC, 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e , j ) ! e t a amd x i t o

141 ! t h e i r t a n g e n t

142 x i t e s t = x i d b l e ∗ ( 1 8 0 . e0 / p i ) ! p l a n e p r o j e c t i o n s

143 e t a t e s t = e t a d b l e ∗ ( 1 8 0 . e0 / p i ) !

144

145 IF ( i n p o l y ( x i t e s t , e t a t e s t , 1 3 4 , SAP xi , SAP eta ) ) THEN ! Re−g e n e r a t e

146 ! t h e new

147 ELSE ! randomized

148 goto 2 ! s a t e l l i t e

149 END IF ! p o s i t i o n i f

150 ! t h e c u r r e n t

151 spotR = ( ( x i t e s t ∗ cos ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) + e t a t e s t ∗ s i n ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) ) ∗∗2 / 6 . 2 5 d0 ) + & ! c h o i c e doesn ’ t

152 ( ( x i t e s t ∗ s i n ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) − e t a t e s t ∗ cos ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) ) ∗∗2 / 1 . d0 ) ! f a l l w i t h i n

153 ! t h e PAndAS

154 IF ( spotR . l e . 1 . e0 ) THEN ! f o o t p r i n t

155 goto 2 ! as viewed

156 END IF ! from E a r t h

157 END DO

158

159 END SUBROUTINE RandomPoints

160

161 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

162

163 SUBROUTINE R o t a t e ! R o t a t i o n M a t r i c e s f o r r o t a t i o n s a b o u t x , y and z axes . ’ a l p h a s e t ’

164 USE Gl ob a l ! i s t h e d e s i r e d r o t a t i o n a n g l e a b o u t t h e x a x i s , ’ b e t a s e t ’ a b o u t

165 IMPLICIT NONE ! t h e y a x i s and ’ gamma set ’ a b o u t t h e z a x i s

166

167 x r o t ( 1 , 1 ) = 1 . e0 !

168 x r o t ( 2 , 1 ) = 0 . e0 !

169 x r o t ( 3 , 1 ) = 0 . e0 !

170 x r o t ( 1 , 2 ) = 0 . e0 !

171 x r o t ( 2 , 2 ) = cos ( a l p h a s e t ) ! R o t a t i o n a b o u t x− a x i s − a n g l e a l p h a

172 x r o t ( 3 , 2 ) = −1. e0 ∗ s i n ( a l p h a s e t ) !

173 x r o t ( 1 , 3 ) = 0 . e0 !

174 x r o t ( 2 , 3 ) = s i n ( a l p h a s e t ) !

175 x r o t ( 3 , 3 ) = cos ( a l p h a s e t ) !

176

177 y r o t ( 1 , 1 ) = cos ( b e t a s e t ) !

178 y r o t ( 2 , 1 ) = 0 . e0 !

179 y r o t ( 3 , 1 ) = s i n ( b e t a s e t ) !

180 y r o t ( 1 , 2 ) = 0 . e0 !

181 y r o t ( 2 , 2 ) = 1 . e0 ! R o t a t i o n a b o u t y− a x i s − a n g l e b e t a

182 y r o t ( 3 , 2 ) = 0 . e0 !

183 y r o t ( 1 , 3 ) = −1. e0 ∗ s i n ( b e t a s e t ) !

184 y r o t ( 2 , 3 ) = 0 . e0 !

185 y r o t ( 3 , 3 ) = cos ( b e t a s e t ) !

186

187 z r o t ( 1 , 1 ) = cos ( gamma set ) !

188 z r o t ( 2 , 1 ) = −1. e0 ∗ s i n ( gamma set ) !

189 z r o t ( 3 , 1 ) = 0 . e0 !

190 z r o t ( 1 , 2 ) = s i n ( gamma set ) !

191 z r o t ( 2 , 2 ) = cos ( gamma set ) ! R o t a t i o n a b o u t z− a x i s − a n g l e gamma

192 z r o t ( 3 , 2 ) = 0 . e0 !

193 z r o t ( 1 , 3 ) = 0 . e0 !

194 z r o t ( 2 , 3 ) = 0 . e0 !

195 z r o t ( 3 , 3 ) = 1 . e0 !
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196

197 END SUBROUTINE R o t a t e

198

199 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200

201 SUBROUTINE T h e t a P h i ( x , y , z ) ! C o n v e r t s from c a r t e s i a n x , y , z i n t o s p h e r i c a l c o o r d i n a t e s t h e t a

202 USE Gl ob a l ! and p h i ( r i s n o t r e q u i r e d ) f o r o b t a i n i n g p o s i t i o n s o f o b j e c t s

203 IMPLICIT NONE ! ( and p l a n e normal v e c t o r p o i n t i n g s ) i n M31 g a l a c t i c c o o r d i n a t e s

204

205 REAL : : x , y , z

206

207 t h e t a c o o r d = acos ( z / ( SQRT( x ∗ ∗2 . e0 + y ∗ ∗2 . e0 + z ∗ ∗2 . e0 ) ) ) − ( p i / 2 . e0 )

208

209 t h e t a c o o r d = − t h e t a c o o r d ∗ ( 1 8 0 . e0 / p i )

210

211 IF ( x . g t . 0 . e0 ) THEN

212

213 p h i c o o r d = a t a n ( y / x )

214

215 ELSE IF ( x . l t . 0 . e0 . and . y . ge . 0 . e0 ) THEN

216

217 p h i c o o r d = a t a n ( y / x ) + p i

218

219 ELSE IF ( x . l t . 0 . e0 . and . y . l t . 0 . e0 ) THEN

220

221 p h i c o o r d = a t a n ( y / x ) − p i

222

223 ELSE IF ( x . eq . 0 . e0 . and . y . g t . 0 . e0 ) THEN

224

225 p h i c o o r d = p i / 2 . e0

226

227 ELSE IF ( x . eq . 0 . e0 . and . y . l t . 0 . e0 ) THEN

228

229 p h i c o o r d = −p i / 2 . e0

230

231 ELSE IF ( x . eq . 0 . e0 . and . y . eq . 0 . e0 ) THEN

232

233 p h i c o o r d = 0 . e0

234

235 END IF

236

237 p h i c o o r d = −p h i c o o r d ∗ ( 1 8 0 . e0 / p i )

238

239 END SUBROUTINE T h e t a P h i

240

241 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

242

243 SUBROUTINE MaxSigFind ! F i n d s b e s t f i t p l a n e f o r a s a t e l l i t e d i s t r i b u t i o n by t e s t i n g goodness o f f i t o f each

244 USE Gl ob a l ! t e s t e d p l a n e . The p o l e s o f t h e t e s t e d p l a n e s a r e a l l a p p r o x i m a t e l y equi − d i s t a n t , t a k i n g

245 IMPLICIT NONE ! i n t o a c c o u n t t h e s u r f a c e a r e a o f a s h e r e as a f u n c t i o n o f l a t i t u d e .

246 !A low r e s o l u t i o n run f i n d s t h e a p p r o x i m a t e l o c a t i o n o f t h e b e s t f i t p l ane ’ s p o l e and t h e n

247 ! p o l e s a round t h i s p o i n t a r e s e a r c h e d a t h i g h e r r e s o l u t i o n .

248 p a r l i k e = 0 . e0

249 m a x p l a n e s i g = 9999999 . e0

250

251 ! | | Low r e s o l u t i o n

252 ! \ / p l a n e t e s t s

253 DO i = 1 , 30

254

255 b e t a s e t = REAL( i ∗3) ∗ ( p i / 1 8 0 . e0 )

256
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257 DO j = 1 , NINT ( 1 2 0 . e0 ∗ cos ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e

258 ! number o f p o i n t s

259 a l p h a s e t = (REAL( j ) /NINT ( 1 2 0 . e0 ∗ cos ( b e t a s e t ) ) ) ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 )

260

261 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

262

263 CALL R o t a t e

264 norm = MATMUL( y r o t , norm )

265 norm = MATMUL( x r o t , norm )

266

267 p l a n e s i g = 0 . d0

268 rms = 0 . d0

269 DO k = 1 , n s a t s !RMS C a l c u l a t i o n

270 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k )

271 rms = rms + ( p l a n e D i s t ) ∗∗2

272 END DO

273 rms = SQRT( rms / n s a t s )

274 p l a n e s i g = LOG10( rms )

275 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

276 m a x p l a n e s i g = p l a n e s i g ! S t o r e approx , low r e s o l u t i o n v a l u e s

277 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

278 p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r

279 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

280 END IF

281 END DO

282 END DO

283

284 norm = ( / −1. e0 , 0 . e0 , 0 . e0 / ) ! T e s t a t t h e a c t u a l p o l e ( n o t i n c l u d e d i n above loop )

285

286 p l a n e s i g = 0 . d0

287 rms = 0 . d0

288 DO k = 1 , n s a t s !RMS C a l c u l a t i o n

289 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k )

290 rms = rms + ( p l a n e D i s t ) ∗∗2

291 END DO

292 rms = SQRT( rms / n s a t s )

293 p l a n e s i g = LOG10( rms )

294

295 ! | | High r e s o l u t i o n s e a r c h

296 ! \ / a round b e s t f i t p o l e

297 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! C o n d i t i o n n o t met u n l e s s t h e RMS a t t h e a c t u a l p o l e

298 ! was b e t t e r t h a n anywhere e l s e i n t h e low r e s s e a r c h

299

300 m a x p l a n e s i g = p l a n e s i g

301 b e s t f i t v e c t = norm

302 DO i = 1 , 15

303

304 b e t a s e t = ( 8 8 . 5 e0 + (REAL( i ) / 1 0 . e0 ) ) ∗ ( p i / 1 8 0 . e0 )

305

306 DO j = 1 , NINT ( 1 2 0 0 . e0 ∗ cos ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e

307 ! number o f p o i n t s

308 a l p h a s e t = (REAL( j ) /NINT ( 1 2 0 0 . e0 ∗ cos ( b e t a s e t ) ) ) ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 )

309

310 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

311

312 CALL R o t a t e

313 norm = MATMUL( y r o t , norm )

314 norm = MATMUL( x r o t , norm )

315

316 p l a n e s i g = 0 . d0

317 rms = 0 . d0
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318 DO k = 1 , n s a t s !RMS C a l c u l a t i o n

319 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k )

320 rms = rms + ( p l a n e D i s t ) ∗∗2

321 END DO

322 rms = SQRT( rms / n s a t s )

323 p l a n e s i g = LOG10( rms )

324 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

325 m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h igh r e s o l u t i o n v a l u e s

326 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

327 END IF

328 END DO

329 END DO

330

331 ELSE

332

333 DO i = 1 , 11

334 DO j = 1 , 11

335

336 b e t a s e t = p o l e b e t a + 2 . e0 ∗ REAL( j −6) ∗ ( 0 . 1 5 e0 ) ∗ ( p i / 1 8 0 . e0 )

337 a l p h a s e t = p o l e a l p h a + 2 . e0 ∗ REAL( i −6) ∗ ( 0 . 1 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ∗ ( 1 . e0 / cos ( b e t a s e t ) )

338

339 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

340

341 CALL R o t a t e

342 norm = MATMUL( y r o t , norm )

343 norm = MATMUL( x r o t , norm )

344

345 p l a n e s i g = 0 . d0

346 rms = 0 . d0

347 DO k = 1 , n s a t s !RMS C a l c u l a t i o n

348 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k )

349 rms = rms + ( p l a n e D i s t ) ∗∗2

350 END DO

351 rms = SQRT( rms / n s a t s )

352 p l a n e s i g = LOG10( rms )

353 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

354 m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h igh r e s o l u t i o n v a l u e s

355 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

356 END IF

357 END DO

358 END DO

359

360 END IF

361

362 END SUBROUTINE MaxSigFind

363

364 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

365

366 SUBROUTINE S i g n i f i c a n c e ! P r i n c i p a l s u b r o u t i n e which g e n e r a t e s d i s t r i b u t i o n s o f t h e

367 USE Gl ob a l ! p l a n e f i t t i n g s t a t i s t i c (RMS i n t h i s c a s e ) . The p l a n e f i t t i n g

368 IMPLICIT NONE ! s u b r o u t i n e ’ MaxSigFind ’ i s c a l l e d from t h i s s u b r o u t i n e

369

370 ! ! | | Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r s a t e l l i t e

371 ! ! \ / p o s i t i o n s g e n e r a t e d from b e s t f i t d i s t a n c e s

372

373 m 3 1 d i s t = 7 7 9 . e0 !M31

374

375 B e s t S a t D i s t ( 1 ) = 7 2 7 . e0 ! And I

376 B e s t S a t D i s t ( 2 ) = 6 3 0 . e0 ! And I I

377 B e s t S a t D i s t ( 3 ) = 7 2 3 . e0 ! And I I I

378 B e s t S a t D i s t ( 4 ) = 7 4 2 . e0 ! And V
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379 B e s t S a t D i s t ( 5 ) = 6 0 0 . e0 ! And IX

380 B e s t S a t D i s t ( 6 ) = 6 7 0 . e0 ! And X

381 B e s t S a t D i s t ( 7 ) = 7 6 3 . e0 ! And XI

382 B e s t S a t D i s t ( 8 ) = 9 2 8 . e0 ! And XII

383 B e s t S a t D i s t ( 9 ) = 7 6 0 . e0 ! And X I I I

384 B e s t S a t D i s t ( 1 0 ) = 7 9 3 . e0 ! And XIV

385 B e s t S a t D i s t ( 1 1 ) = 6 2 6 . e0 ! And XV

386 B e s t S a t D i s t ( 1 2 ) = 4 7 6 . e0 ! And XVI

387 B e s t S a t D i s t ( 1 3 ) = 7 2 7 . e0 ! And XVII

388 B e s t S a t D i s t ( 1 4 ) = 1214 . e0 ! And XVIII

389 B e s t S a t D i s t ( 1 5 ) = 8 2 1 . e0 ! And XIX

390 B e s t S a t D i s t ( 1 6 ) = 7 4 1 . e0 ! And XX

391 B e s t S a t D i s t ( 1 7 ) = 8 2 7 . e0 ! And XXI

392 B e s t S a t D i s t ( 1 8 ) = 9 2 0 . e0 ! And XXII

393 B e s t S a t D i s t ( 1 9 ) = 7 4 8 . e0 ! And XXIII

394 B e s t S a t D i s t ( 2 0 ) = 8 9 8 . e0 ! And XXIV

395 B e s t S a t D i s t ( 2 1 ) = 7 3 6 . e0 ! And XXV

396 B e s t S a t D i s t ( 2 2 ) = 7 5 4 . e0 ! And XXVI

397 B e s t S a t D i s t ( 2 3 ) = 1255 . e0 ! And XXVII

398 B e s t S a t D i s t ( 2 4 ) = 6 8 1 . e0 ! And XXX

399 B e s t S a t D i s t ( 2 5 ) = 7 1 2 . e0 ! NGC147

400 B e s t S a t D i s t ( 2 6 ) = 6 2 0 . e0 ! NGC185

401 B e s t S a t D i s t ( 2 7 ) = 8 2 0 . e0 !M33

402

403 DO i = 1 , n s a t s

404 pos ( 1 , i ) = ABS( B e s t S a t D i s t ( i ) ∗ cos ( t h e t a ( i ) ) ∗ t a n ( x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

405 IF ( x i ( i ) . l t . 0 . e0 ) THEN !

406 pos ( 1 , i ) = −1. e0 ∗ pos ( 1 , i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

407 END IF !

408

409 pos ( 2 , i ) = ABS( B e s t S a t D i s t ( i ) ∗ s i n ( e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

410 IF ( e t a ( i ) . l t . 0 . e0 ) THEN !

411 pos ( 2 , i ) = −1. e0 ∗ pos ( 2 , i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

412 END IF !

413

414 pos ( 3 , i ) = B e s t S a t D i s t ( i ) ∗ cos ( t h e t a ( i ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

415 END DO

416

417 CALL MaxSigFind

418

419 A c t u a l s i g = m a x p l a n e s i g

420 A c t u a l b f v = b e s t f i t v e c t

421

422 a l p h a s e t = − ( 9 0 . e0 − 1 2 . 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g back o u t o f M31’ s i n c l i n a t i o n !

423 gamma set = + ( 9 0 . e0 − 3 9 . 8 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from above t h e M31 p o l e ) !

424 ! Change

425 CALL R o t a t e !

426 ! t o

427 A c t u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! Conve r t v e c t o r s back t o how t h e y would a p p e a r !

428 A c t u a l b f v = MATMUL( x r o t , A c t u a l b f v ) ! i n M31 r e f e r e n c e f rame !M31

429 !

430 gamma set = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e

431 ! !

432 CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! sys tem

433 ! !

434 A c t u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! !

435

436 ! ! / \ Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r s a t e l l i t e

437 ! ! | | p o s i t i o n s g e n e r a t e d from b e s t f i t d i s t a n c e s

438

439 ! ! | | Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r ” e r r s a m p ” sample s o f
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440 ! ! \ / p o s s i b l e s a t e l l i t e p o s i t i o n s g e n e r a t e d from sampled d i s t a n c e s and p l o t

441

442 DO i t = 1 , e r r s a m p

443

444 CALL random number ( randnum ) ! Read i n e r r s a m p s M31

445 randnum = randnum ∗ 2999999 . e0 + 1 . e0 ! p o s s i b l e d i s t a n c e s

446 m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) ) ! t o g e n e r a t e e r r s a m p s

447 ! p o s i b l e x , y , z c o o r d s

448

449 DO i = 1 , 27 ! Read i n e r r s a m p s

450 CALL random number ( randnum ) ! p o s s i b l e d i s t a n c e s

451 randnum = randnum ∗ 499999 . e0 + 1 . e0 ! f o r each o f t h e

452 S a t D i s t D r a w n ( i ) = S a t D i s t ( NINT ( randnum ) , i ) ! s a t e l l i t e s t o

453 END DO ! g e n e r a t e e r r s a m p s

454 ! p o s i b l e x , y , z c o o r d s

455

456 DO i = 1 , 27

457 pos ( 1 , i ) = ABS( S a t D i s t D r a w n ( i ) ∗ cos ( t h e t a ( i ) ) ∗ t a n ( x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

458 IF ( x i ( i ) . l t . 0 . e0 ) THEN !

459 pos ( 1 , i ) = −1. e0 ∗ pos ( 1 , i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

460 END IF !

461

462 pos ( 2 , i ) = ABS( S a t D i s t D r a w n ( i ) ∗ s i n ( e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

463 IF ( e t a ( i ) . l t . 0 . e0 ) THEN !

464 pos ( 2 , i ) = −1. e0 ∗ pos ( 2 , i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

465 END IF !

466

467 pos ( 3 , i ) = S a t D i s t D r a w n ( i ) ∗ cos ( t h e t a ( i ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

468 END DO

469

470 CALL MaxSigFind

471

472 a l p h a s e t = − ( 9 0 . e0 − 1 2 . 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g back o u t o f M31’ s i n c l i n a t i o n !

473 gamma set = + ( 9 0 . e0 − 3 9 . 8 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from above t h e M31 p o l e ) !

474 ! Change

475 CALL R o t a t e !

476 ! t o

477 b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! Conve r t v e c t o r s back t o how t h e y would a p p e a r !

478 b e s t f i t v e c t = MATMUL( x r o t , b e s t f i t v e c t ) ! i n M31 r e f e r e n c e f rame !M31

479 !

480 gamma set = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e

481 ! !

482 CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! sys tem

483 ! !

484 b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! !

485

486 CALL T h e t a P h i ( b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) )

487

488 e r r s i g ( i t ) = m a x p l a n e s i g

489 WRITE ( 1 4 , ’ (7 F16 . 5 ) ’ ) REAL( i t ) , e r r s i g ( i t ) , t h e t a c o o r d , p h i c o o r d , b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 )

490

491 END DO

492

493 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / e r r samp PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . ps /CPS ’

494

495 CALL H i s t o P l o t ( e r r s amp , 1 0 1 , e r r s i g , ’LOG10( Minimum RMS) ’ , ’ P r o b a b i l i t y ’ , TRIM(ADJUSTL( s t r i n g 2 ) ) , . t r u e . )

496

497 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( f o l d e r ) ) / / ’ / e r r samp PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . ps ’ &

498 / / TRIM(ADJUSTL( f o l d e r ) ) / / ’ / e r r samp PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . j p g ’

499 c a l l sys tem ( command )

500
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501 ! ! / \ Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r ” e r r s a m p ” sample s o f

502 ! ! | | p o s s i b l e s a t e l l i t e p o s i t i o n s g e n e r a t e d from sampled d i s t a n c e s and p l o t

503

504

505 ! ! | | Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r ” n i t ”

506 ! ! \ / random r e a l i z a t i o n s o f s a t e l l i t e p o s i t i o n s and p l o t

507

508 m i n s i g n i f = 1000 . e0

509

510 DO i t = 1 , n i t

511

512 CALL RandomPoints

513

514 CALL MaxSigFind

515

516 IF ( m a x p l a n e s i g . l t . m i n s i g n i f ) THEN

517 m i n s i g n i f = m a x p l a n e s i g

518 END IF

519

520 a l p h a s e t = − ( 9 0 . e0 − 1 2 . 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g back o u t o f M31’ s i n c l i n a t i o n !

521 gamma set = + ( 9 0 . e0 − 3 9 . 8 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from above t h e M31 p o l e ) !

522 ! Change

523 CALL R o t a t e !

524 ! t o

525 b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! Conve r t v e c t o r s back t o how t h e y would a p p e a r !

526 b e s t f i t v e c t = MATMUL( x r o t , b e s t f i t v e c t ) ! i n M31 r e f e r e n c e f rame !M31

527 !

528 gamma set = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e

529 ! !

530 CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! sys tem

531 ! !

532 b e s t f i t v e c t = MATMUL( z r o t , b e s t f i t v e c t ) ! !

533

534 CALL T h e t a P h i ( b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 ) )

535

536 s i g ( i t ) = m a x p l a n e s i g

537 WRITE ( 1 3 , ’ (7 F16 . 5 ) ’ ) REAL( i t ) , s i g ( i t ) , t h e t a c o o r d , p h i c o o r d , b e s t f i t v e c t ( 1 ) , b e s t f i t v e c t ( 2 ) , b e s t f i t v e c t ( 3 )

538

539 END DO

540

541 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s ig PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . ps /CPS ’

542

543 CALL H i s t o P l o t ( n i t , 1 0 1 , s i g , ’LOG10( Minimum RMS) ’ , ’ P r o b a b i l i t y ’ , TRIM(ADJUSTL( s t r i n g 2 ) ) , . t r u e . )

544

545 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s ig PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . ps ’ &

546 / / TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s ig PPD ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . j p g ’

547 c a l l sys tem ( command )

548

549 ! ! / \ Dete rmine b e s t f i t p l a n e and s i g n i f i c a n c e f o r ” n i t ”

550 ! ! | | random r e a l i z a t i o n s o f s a t e l l i t e p o s i t i o n s and p l o t

551

552 END SUBROUTINE S i g n i f i c a n c e

553

554 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

555

556 SUBROUTINE H i s t o P l o t ( nva l , d a t a h i s t b i n s , data , x l a b e l , y l a b e l , dev i ce , n o r m a l i z e )

557 IMPLICIT NONE

558 !

559 ! ∗∗∗∗∗∗∗ C r e a t e d 24 Feb 2012∗∗∗∗∗∗∗∗

560 !

561 ! INTEGER n v a l = number o f d a t a p o i n t s i n h i s t o g r a m
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562 ! INTEGER d a t a h i s t b i n s = number o f b i n s i n h i s t o g r a m

563 !REAL d a t a ( n v a l ) = The a r r a y c o n t a i n i n g t h e d a t a

564 !CHARACTER x l a b e l = Labe l o f x− a x i s o f h i s t o g r a m

565 !CHARACTER y l a b e l = Labe l o f y− a x i s o f h i s t o g r a m

566 !CHARACTER d e v i c e = The p l o t t i n g d e v i c e ( ’ ? ’ i f u n s u r e )

567 !LOGICAL n o r m a l i z e = . t r u e . i f h i s t o g r a m i s t o be

568 ! no r m a l i ze d , e l s e s e t t o . f a l s e .

569 !

570 ! Uses PGPLOT

571 !

572

573 INTEGER : : d a t a h i s t b i n s , nva l , i t n u m

574 REAL : : bw , data ( n v a l ) , d a t a h i s t ( d a t a h i s t b i n s , 2 ) , da t a min , da ta max

575 CHARACTER(LEN=∗) : : x l a b e l , y l a b e l , d e v i c e

576 LOGICAL : : n o r m a l i z e

577

578 d a t a h i s t = 0 . e0

579

580 d a t a m i n = MINVAL( data ) ; da ta max = MAXVAL( data )

581

582 bw = ( da ta max − d a t a m i n ) / (REAL( d a t a h i s t b i n s ) − 1 . e0 )

583

584 DO i t n u m = 1 , d a t a h i s t b i n s

585 d a t a h i s t ( i t num , 1 ) = d a t a m i n + REAL( i t num −1) ∗ bw

586 END DO

587

588 DO i t n u m = 1 , n v a l

589 d a t a h i s t ( NINT ( ( data ( i t n u m ) − d a t a m i n ) / bw ) + 1 , 2 ) = &

590 d a t a h i s t ( NINT ( ( data ( i t n u m ) − d a t a m i n ) / bw ) + 1 , 2 ) + 1 . e0

591 END DO

592

593 IF ( n o r m a l i z e ) THEN

594 d a t a h i s t ( : , 2 ) = d a t a h i s t ( : , 2 ) / SUM( d a t a h i s t ( : , 2 ) )

595 END IF

596

597 CALL pgbeg in ( 0 ,TRIM(ADJUSTL( d e v i c e ) ) , 1 , 1 )

598

599 CALL pgenv (MINVAL( data , mask = data . ne . 0 . ) , &

600 MAXVAL( data , mask = data . ne . 0 . ) , &

601 0 . , 1 . 1∗MAXVAL( d a t a h i s t ( : , 2 ) ) , 0 , 0 )

602

603 CALL pgb in ( d a t a h i s t b i n s , d a t a h i s t ( : , 1 ) , d a t a h i s t ( : , 2 ) , . t r u e . )

604 CALL p g l a b (TRIM(ADJUSTL( x l a b e l ) ) , TRIM(ADJUSTL( y l a b e l ) ) , ’ ’ )

605

606 CALL pgend

607

608 END SUBROUTINE H i s t o P l o t

609

610 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

611

612 ! l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) o m i t t e d − s e e MF TRGB . f95 i n p r e c e d i n g a p p e n d i x

613 ! r e a l f u n c t i o n f imag ( x0 , xs , xe , y0 , ys , ye ) o m i t t e d − s e e MF TRGB . f95 i n p r e c e d i n g a p p e n d i x

614

615 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

616

617 SUBROUTINE SampledDis t ! Read i n sample s from t h e d i s t a n c e d i s t r i b u t i o n s o f

618 USE Gl ob a l !M31 and i t s s a t e l l i t e s

619 IMPLICIT NONE

620

621 DOUBLE PRECISION : : s la DSEP

622
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623 OPEN ( u n i t = 11 , f i l e = ’ . / AndromedaIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

624 OPEN ( u n i t = 12 , f i l e = ’ . / AndromedaIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

625 OPEN ( u n i t = 13 , f i l e = ’ . / AndromedaI I Ie / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

626 OPEN ( u n i t = 14 , f i l e = ’ . / AndromedaVe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

627 OPEN ( u n i t = 15 , f i l e = ’ . / AndromedaIXe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

628 OPEN ( u n i t = 16 , f i l e = ’ . / AndromedaXe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

629 OPEN ( u n i t = 17 , f i l e = ’ . / AndromedaXIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

630 OPEN ( u n i t = 18 , f i l e = ’ . / AndromedaXIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

631 OPEN ( u n i t = 19 , f i l e = ’ . / AndromedaXIIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

632 OPEN ( u n i t = 20 , f i l e = ’ . / AndromedaXIVe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

633 OPEN ( u n i t = 21 , f i l e = ’ . / AndromedaXVe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

634 OPEN ( u n i t = 22 , f i l e = ’ . / AndromedaXVIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

635 OPEN ( u n i t = 23 , f i l e = ’ . / AndromedaXVIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

636 OPEN ( u n i t = 24 , f i l e = ’ . / AndromedaXVIIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

637 OPEN ( u n i t = 25 , f i l e = ’ . / AndromedaXIXe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

638 OPEN ( u n i t = 26 , f i l e = ’ . / AndromedaXXe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

639 OPEN ( u n i t = 27 , f i l e = ’ . / AndromedaXXIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

640 OPEN ( u n i t = 28 , f i l e = ’ . / AndromedaXXIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

641 OPEN ( u n i t = 29 , f i l e = ’ . / AndromedaXXIIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

642 OPEN ( u n i t = 30 , f i l e = ’ . / AndromedaXXIVe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

643 OPEN ( u n i t = 31 , f i l e = ’ . / AndromedaXXVe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

644 OPEN ( u n i t = 32 , f i l e = ’ . / AndromedaXXVIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

645 OPEN ( u n i t = 33 , f i l e = ’ . / AndromedaXXVIIe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

646 OPEN ( u n i t = 34 , f i l e = ’ . / AndromedaXXXe / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

647 OPEN ( u n i t = 35 , f i l e = ’ . / NGC147e outer / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

648 OPEN ( u n i t = 36 , f i l e = ’ . / NGC185e outer / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

649 OPEN ( u n i t = 37 , f i l e = ’ . /M33e / o t h e r p l o t s 2 / Sampled MWy Distances . d a t ’ , s t a t u s = ’ o l d ’ )

650 OPEN ( u n i t = 38 , f i l e = ’ . /M31e / o t h e r p l o t s /M31 Distance PPD . d a t ’ , s t a t u s = ’ o l d ’ )

651

652 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

653

654 i = 0

655

656 DO WHILE ( . TRUE . )

657

658 i = i + 1

659

660 IF ( i . g t . 500000) THEN

661 e x i t

662 END IF

663

664 READ ( 1 1 , ∗ , IOSTAT = i o s ) S a t D i s t ( i , 1 )

665

666 IF ( i o s == −1) THEN

667 i = i − 1

668 e x i t

669 ELSE IF ( i o s . g t . 0 ) THEN

670 WRITE ( ∗ , ∗ ) i

671 i= i −1

672 c y c l e

673 END IF

674

675 END DO

676

677 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

678

679 ! F i l e s 12 t h r o u g h 36 r e a d i n as shown f o r

680 ! f i l e 11 above and 37 below

681

682 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

683
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684 i = 0

685

686 DO WHILE ( . TRUE . )

687

688 i = i + 1

689

690 IF ( i . g t . 500000) THEN

691 e x i t

692 END IF

693

694 READ ( 3 7 , ∗ , IOSTAT = i o s ) S a t D i s t ( i , 2 7 )

695

696 IF ( i o s == −1) THEN

697 i = i − 1

698 e x i t

699 ELSE IF ( i o s . g t . 0 ) THEN

700 WRITE ( ∗ , ∗ ) i

701 i= i −1

702 c y c l e

703 END IF

704

705 END DO

706

707 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

708

709 i = 0

710

711 DO WHILE ( . TRUE . )

712

713 i = i + 1

714

715 IF ( i . g t . 3000000) THEN

716 e x i t

717 END IF

718

719 READ ( 3 8 , ∗ , IOSTAT = i o s ) M31 Dist PPD ( i )

720

721 IF ( i o s == −1) THEN

722 i = i − 1

723 e x i t

724 ELSE IF ( i o s . g t . 0 ) THEN

725 WRITE ( ∗ , ∗ ) i

726 i= i −1

727 c y c l e

728 END IF

729

730 END DO

731

732 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

733

734 ! | | Tangen t P l a n e p r o j e c t i o n a n g l e s ( xi , e t a )

735 ! \ / f o r each s a t e l l i t e

736 S a t P o s ( 1 , : ) = ( / 0 .577417966865471 , −3.2314283795568426 / )

737 S a t P o s ( 2 , : ) = ( / 7 .122225162668977 , −7.592252808099334 / )

738 S a t P o s ( 3 , : ) = ( / −1.457960734448612 , −4.765087242682244 / )

739 S a t P o s ( 4 , : ) = ( / 4 .67571438294161 , 6 .595921326738737 / )

740 S a t P o s ( 5 , : ) = ( / 1 .8486898643911536 , 1 .9594865642747519 / )

741 S a t P o s ( 6 , : ) = ( / 4 .243395063076322 , 3 .7004040941268976 / )

742 S a t P o s ( 7 , : ) = ( / 0 .7517384673615299 , −7.5056115753940515 / )

743 S a t P o s ( 8 , : ) = ( / 0 .979245230608749 , −6.921767335891222 / )

744 S a t P o s ( 9 , : ) = ( / 1 .9303864363068866 , −8.301405961956007 / )
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745 S a t P o s ( 1 0 , : ) = ( / 1 .9616750556905713 , −11.722713906650105 / )

746 S a t P o s ( 1 1 , : ) = ( / 6 .234635220222043 , −2.8843033494675128 / )

747 S a t P o s ( 1 2 , : ) = ( / 3 .585309428238602 , −8.89395559219651 / )

748 S a t P o s ( 1 3 , : ) = ( / −1.0085393602174035 , 3 .0650628218938585 / )

749 S a t P o s ( 1 4 , : ) = ( / −7.181147930491751 , 4 .280747404302224 / )

750 S a t P o s ( 1 5 , : ) = ( / −4.784510400133266 , −6.109702992340868 / )

751 S a t P o s ( 1 6 , : ) = ( / −7.269591542188213 , −5.840766998597464 / )

752 S a t P o s ( 1 7 , : ) = ( / −8.888840848373246 , 1 .8332101560489324 / )

753 S a t P o s ( 1 8 , : ) = ( / 10 .246238044162409 , −12.92831734742824 / )

754 S a t P o s ( 1 9 , : ) = ( / 9 .147466892705275 , −1.961574445626079 / )

755 S a t P o s ( 2 0 , : ) = ( / 6 .211342279324403 , 5 .469930868721202 / )

756 S a t P o s ( 2 1 , : ) = ( / −2.1573196501753253 , 5 .648080455771416 / )

757 S a t P o s ( 2 2 , : ) = ( / −3.203360921263025 , 6 .772438490131299 / )

758 S a t P o s ( 2 3 , : ) = ( / −0.9036995038298262 , 4 .117443311518852 / )

759 S a t P o s ( 2 4 , : ) = ( / −1.0080494766702268 , 8 .448293881357133 / )

760 S a t P o s ( 2 5 , : ) = ( / −1.5924793331852394 , 7 .303792725460755 / )

761 S a t P o s ( 2 6 , : ) = ( / −0.6317798640615756 , 7 .108624424318093 / )

762 S a t P o s ( 2 7 , : ) = ( / 11 .273546933713943 , −10.076848401834724 / )

763 ! / \

764 ! | |

765

766 DO i = 1 , n s a t s

767 x i ( i ) = S a t P o s ( i , 1 )

768 e t a ( i ) = S a t P o s ( i , 2 )

769 x i ( i ) = x i ( i ) ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from

770 e t a ( i ) = e t a ( i ) ∗ ( p i / 1 8 0 . e0 ) ! d e g r e e s t o r a d i a n s

771 END DO

772

773 DO i = 1 , n s a t s !

774 x i d b l e = x i ( i ) ; e t a d b l e = e t a ( i ) !

775 CALL sla DTP2S ( x i d b l e , e t a d b l e , 0 . d0 , 0 . d0 , RA, DEC) ! Conve r t t a n g e n t p l a n e

776 IF ( x i d b l e . l t . 0 . d0 ) then ! p r o j e c t i o n a n g l e s i n t o

777 RA = RA − ( 2 . e0 ∗ p i ) ! t h e i r t r u e a n g l e s u s i n g

778 END IF ! s la DTP2S

779 x i ( i ) = RA !

780 e t a ( i ) = DEC !

781 END DO

782

783 DO i = 1 , n s a t s ! F ind t h e t r u e a n g l e

784 x i d b l e = x i ( i ) ! t h e t a − t h e a n g l e on

785 e t a d b l e = e t a ( i ) ! t h e sky between M31

786 t h e t a ( i ) = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) ! and t h e o b j e c t

787 END DO ! ( u s e s sla DSEP )

788

789 END SUBROUTINE SampledDis t

790

791 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

792

793 SUBROUTINE BorderGe t ! Read i n t h e 134 p o i n t s i n x i and e t a d e f i n i n g t h e PAndAS

794 USE Gl ob a l ! Survey Border . These p o i n t s a r e used t o r e j e c t s a t e l l i t e s

795 IMPLICIT NONE ! t h a t f a l l o u t o f bounds ( s e e RandomPoints S u b r o u t i n e )

796

797 OPEN ( u n i t = 40 , f i l e = ’ . . / SurveyArea / B o r d e r C o o r d s X i E t a . d a t ’ , s t a t u s = ’ o l d ’ )

798

799 DO i = 1 , 134

800 READ ( 4 0 , ∗ , IOSTAT = i o s ) SAP xi ( i ) , SAP eta ( i )

801 END DO

802

803 END SUBROUTINE BorderGe t

804

805 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: Alternative Plane Fitting Code Segments

Creation Date: First versions Feb 2012

Relevant Section: Ch. 5; Paper III §3.1, §3.2

Notes: Presented here are four separate code segments, each one performing the calculation

of the goodness of fit of a tested plane. The first uses the root-mean-square (RMS) of the per-

pendicular distances of the satellites from the plane. This is the one used in the ‘MaxSigFind’

subroutine presented in PlaneS igRMS . f 95 (p. 244). The other code segments are alterna-

tives to this RMS code segment. The second code segment calculates the goodness of fit

of a given plane by summing the absolute values of the perpendicular distances of each

satellite from the plane. The third uses a maximum likelihood approach and replaces the

zero-thickness plane with a Gaussian distribution of some (to be determined) thickness. The

fourth and final code segment serves a different purpose to the previous three in that it finds

the plane of maximum asymmetry. It seeks the plane which can divide the sample most un-

equally. Note that some other minor modifications to the code of PlaneS igRMS . f 95 would

be required for correct operation. These segments are intended to illustrate precisely how the

various forms of plane fitting utilized in Paper III are implemented.

1

2 !−−−−−−−−−−−−−−−−−−−−−−−−−−−For P l a n e F i t t i n g u s i n g RMS−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3 ! As used i n t h e i n c l u d e d v e r s i o n o f t h e ’ MaxSigFind ’ s u b r o u t i n e i n ’ PlaneSigRMS . f95 ’

4 ! Where an a l t e r n a t e p l a n e f i t t i n g s t a t i s t i c i s used , t h i s segment o f code s h o u l d be

5 ! r e p l a c e d wi th one o f t h e v e r s i o n s below f o r each o f t h e f o u r t i m e s i t a p p e a r s i n t h e

6 ! ’ MaxSigFind ’ s u b r o u t i n e . Note t h a t o t h e r minor code v a r i a t i o n s a r e n e c e s s a r y

7 ! b u t t h e s e a r e i n c l u d e d t o show t h e way t h e a c t u a l p l a n e f i t t i n g s t a t i s t i c i s

8 ! c a l c u l a t e d i n each c a s e .

9

10 p l a n e s i g = 0 . d0

11 rms = 0 . d0

12 DO k = 1 , n s a t s !RMS C a l c u l a t i o n

13 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k )

14 rms = rms + ( p l a n e D i s t ) ∗∗2

15 END DO

16 rms = SQRT( rms / n s a t s )

17 p l a n e s i g = LOG10( rms )

18 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

19 m a x p l a n e s i g = p l a n e s i g ! S t o r e approx , low r e s o l u t i o n v a l u e s

20 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

21 p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r

22 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

23 END IF

24

25 !−−−−−−−−For F i t t i n g u s i n g Sum of A b s o l u t e Values o f S a t e l l i t e D i s t a n c e s from Plane −−−−−−−−

26

27 p l a n e s i g = 0 . d0

28 a b v a l = 0 . d0

29 DO k = 1 , n s a t s ! A b s o l u t e Value o f d i s t a n c e sum C a l c u l a t i o n
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30 p l a n e D i s t = abs ( norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k ) )

31 a b v a l = a b v a l + p l a n e D i s t

32 END DO

33 p l a n e s i g = LOG10( a b v a l )

34 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t AbVal

35 m a x p l a n e s i g = p l a n e s i g ! S t o r e approx , low r e s o l u t i o n v a l u e s

36 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

37 p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r

38 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

39 END IF

40

41 !−−−−−−−−−−−−−−−−−−−−For Maximum L i k e l i h o o d F i t t i n g o f ’ G a u s s i a n Plane ’−−−−−−−−−−−−−−−−−−−

42 ! Rep lace m a x p l a n e s i g = 9999999 . e0 wi th m a x p l a n e s i g = −9999999. e0 as i n i t i a l v a l u e

43

44 DO s = 1 , 30

45 sigma = REAL( s ) ∗5 . d0

46 p l a n e s i g = 0 . d0

47 DO k = 1 , n s a t s

48 p l a n e D i s t = abs ( norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k ) )

49 l i k e = exp ( −( p l a n e D i s t ∗ ∗2 . d0 ) / ( 2 . d0 ∗ s igma ∗∗ 2 . d0 ) ) / ( s igma ∗ SQRT ( 2 . d0 ∗ p i ) )

50 IF (LOG10( l i k e ) . l e . −9999. d0 ) THEN

51 p l a n e s i g = p l a n e s i g − 9999 . d0

52 ELSE

53 p l a n e s i g = p l a n e s i g + LOG10( l i k e )

54 END IF

55 END DO

56 IF ( p l a n e s i g . g t . m a x p l a n e s i g ) THEN ! S i g n i f i c a n c e C a l c u l a t i o n

57 m a x p l a n e s i g = p l a n e s i g ! S t o r e approx , low r e s o l u t i o n v a l u e s

58 b e s t f i t v e c t = norm ! of b e s t f i t po le , s i g n i f i c a n c e

59 b e s t f i t s i g m a = s igma ! and G a u s s i a n one sigma

60 p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r

61 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

62 END IF

63 END DO

64

65 !−−−−−−−−−−−−−−−−−−−−−−−−−−−For F i t t i n g Maximum Asymmetry Plane −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

66 ! Rep lace m a x p l a n e s i g = 9999999 . e0 wi th max plane asymm = 0 . e0 as i n i t i a l v a l u e

67

68 p o s s i d e = 0 . e0 !

69 DO k = 1 , n s a t s ! Count s a t e l l i t e s on

70 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k ) ! one s i d e o f p l a n e .

71 IF ( p l a n e D i s t . ge . 0 . d0 ) THEN ! S a t e l l i t e s on t h e

72 p o s s i d e = p o s s i d e + 1 . e0 ! o t h e r s i d e o f t h e

73 END IF ! p l a n e i s known

74 END DO ! a u t o m a t i c a l l y from

75 n e g s i d e = n s a t s − p o s s i d e ! t o t a l number o f s a t s .

76 IF ( p o s s i d e . g t . n e g s i d e ) THEN !

77 plane asymm = p o s s i d e ! C a l c u l a t e asymmetry , d e f i n e d as

78 ELSE ! t h e number o f s a t e l l i t e s on t h e s i d e

79 plane asymm = n e g s i d e ! wi th t h e most s a t e l l i t e s

80 END IF !

81 IF ( plane asymm . g t . max plane asymm ) THEN

82 max plane asymm = plane asymm ! I f a h i g h e r asymmetry p l a n e i s

83 max asymm vect = norm ! found , n o t e normal v e c t o r o f t h a t

84 m a p o s s i d e = p o s s i d e ! p l a n e as w e l l a s t h e s a t e l l i t e

85 m a n e g s i d e = n e g s i d e ! c o u n t s on each s i d e .

86 p o l e a l p h a = a l p h a s e t ! S t o r e h i g h e s t asymmetry p o l e f o r

87 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

88 END IF

89

90 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: Subroutines for Processing Satellite Subsets

Creation Date: 18 July 2012 (first version 26 Apr 2012) Many modifications.

Relevant Section: Ch. 5; Paper III §3.3

Notes: The three subroutines presented here essentially modify PlaneS igRMS . f 95 (p. 244)

so that it can process every possible combination of a given number of satellites rather than

just the full sample. The ‘Combinations’ subroutine steps through every possible combina-

tion of the specified size (sizes of 3 through 7 satellites are shown) and for each one calls the

‘Significance’ subroutine which samples positions for each satellite in the combination and

then calls ‘MaxSigFind’ to perform the plane fitting. Note that each possible combination of

satellites is sampled ‘err samps’ (currently set to 100 as used in §3.3 of Paper III) times so as

to account for the uncertainties in the satellite distances. Also, this code compresses storage

file size by indexing each possible pole position and then recording the number of instances

of that pole as well as the number of times each satellite contributes to that pole (information

which is used by pole vicinity counts satid w. f 95 - p. 274).

1 ! Code Segments f o r t e s t i n g ∗ a l l ∗ c o m b i n a t i o n s o f a p a r t i c u l a r number ( n s a t s u b )

2 ! o f s a t e l l i t e s p o s s i b l e from t h e t o t a l sample ( t o t a l sample i s 25 s a t e l l i t e s h e r e

3 ! a s NGC147 /NGC185 /AndXXX a r e t r e a t e d as a s i n g l e p o i n t ) .

4

5 ! See ’ PlaneSigRMS . f95 ’ f o r a l l s u b r o u t i n e s c a l l e d t h a t a r e n o t i n c u d e d

6 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7

8 SUBROUTINE Combina t ions ! F i n d s t h e b e s t f i t p l a n e t o e v e r y p o s s i b l e c o m b i n a t i o n o f ’ n s a t s u b ’

9 USE Gl ob a l ! s a t e l l i t e s . The p o l e o f each combina t ion ’ s b e s t f i t p l a n e i s c o n v e r t e d

10 IMPLICIT NONE ! t o M31− c e n t r i c l a t . and long . and s t o r e d f o r p l o t t i n g as a p o l e p l o t

11 ! map on an a i t o f f −hammer p r o j e c t i o n .

12 s u b s e t c o u n t s = 0

13 RMSmin = 9999999 . e0

14

15 IF ( n s a t s u b . eq . 3 ) THEN

16

17 DO s1 = 1 , n s a t s −2

18 DO s2 = s1+1 , n s a t s −1

19 DO s3 = s2+1 , n s a t s

20 s a t h o l d e r ( 1 ) = s1

21 s a t h o l d e r ( 2 ) = s2

22 s a t h o l d e r ( 3 ) = s3

23 s u b s e t c o u n t s = s u b s e t c o u n t s + 1

24 CALL S i g n i f i c a n c e

25 w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , &

26 s1 , s2 , s3

27 END DO

28 END DO

29 END DO

30

31 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32

33 ELSE IF ( n s a t s u b . eq . 4 ) THEN
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34

35 DO s1 = 1 , n s a t s −3

36 DO s2 = s1+1 , n s a t s −2

37 DO s3 = s2+1 , n s a t s −1

38 DO s4 = s3+1 , n s a t s

39 s a t h o l d e r ( 1 ) = s1

40 s a t h o l d e r ( 2 ) = s2

41 s a t h o l d e r ( 3 ) = s3

42 s a t h o l d e r ( 4 ) = s4

43 s u b s e t c o u n t s = s u b s e t c o u n t s + 1

44 CALL S i g n i f i c a n c e

45 w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , &

46 s1 , s2 , s3 , s4

47 END DO

48 END DO

49 END DO

50 END DO

51

52 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

53

54 ELSE IF ( n s a t s u b . eq . 5 ) THEN

55

56 DO s1 = 1 , n s a t s −4

57 DO s2 = s1+1 , n s a t s −3

58 DO s3 = s2+1 , n s a t s −2

59 DO s4 = s3+1 , n s a t s −1

60 DO s5 = s4+1 , n s a t s

61 s a t h o l d e r ( 1 ) = s1

62 s a t h o l d e r ( 2 ) = s2

63 s a t h o l d e r ( 3 ) = s3

64 s a t h o l d e r ( 4 ) = s4

65 s a t h o l d e r ( 5 ) = s5

66 s u b s e t c o u n t s = s u b s e t c o u n t s + 1

67 CALL S i g n i f i c a n c e

68 w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , &

69 s1 , s2 , s3 , s4 , s5

70 END DO

71 END DO

72 END DO

73 END DO

74 END DO

75

76 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77

78 ELSE IF ( n s a t s u b . eq . 6 ) THEN

79

80 DO s1 = 1 , n s a t s −5

81 DO s2 = s1+1 , n s a t s −4

82 DO s3 = s2+1 , n s a t s −3

83 DO s4 = s3+1 , n s a t s −2

84 DO s5 = s4+1 , n s a t s −1

85 DO s6 = s5+1 , n s a t s

86 s a t h o l d e r ( 1 ) = s1

87 s a t h o l d e r ( 2 ) = s2

88 s a t h o l d e r ( 3 ) = s3

89 s a t h o l d e r ( 4 ) = s4

90 s a t h o l d e r ( 5 ) = s5

91 s a t h o l d e r ( 6 ) = s6

92 s u b s e t c o u n t s = s u b s e t c o u n t s + 1

93 CALL S i g n i f i c a n c e

94 w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , &
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95 s1 , s2 , s3 , s4 , s5 , s6

96 END DO

97 END DO

98 END DO

99 END DO

100 END DO

101 END DO

102

103 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

104

105 ELSE IF ( n s a t s u b . eq . 7 ) THEN

106

107 DO s1 = 1 , n s a t s −6

108 DO s2 = s1+1 , n s a t s −5

109 DO s3 = s2+1 , n s a t s −4

110 DO s4 = s3+1 , n s a t s −3

111 DO s5 = s4+1 , n s a t s −2

112 DO s6 = s5+1 , n s a t s −1

113 DO s7 = s6+1 , n s a t s

114 s a t h o l d e r ( 1 ) = s1

115 s a t h o l d e r ( 2 ) = s2

116 s a t h o l d e r ( 3 ) = s3

117 s a t h o l d e r ( 4 ) = s4

118 s a t h o l d e r ( 5 ) = s5

119 s a t h o l d e r ( 6 ) = s6

120 s a t h o l d e r ( 7 ) = s7

121 s u b s e t c o u n t s = s u b s e t c o u n t s + 1

122 CALL S i g n i f i c a n c e

123 w r i t e ( 1 3 ) A c t u a l s i g , t h e t a c o o r d , p h i c o o r d , A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) , &

124 s1 , s2 , s3 , s4 , s5 , s6 , s7

125 END DO

126 END DO

127 END DO

128 END DO

129 END DO

130 END DO

131 END DO

132

133 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

134

135 END IF

136

137 w r i t e ( 1 1 , ∗ ) ” R e s u l t s : ”

138 w r i t e ( 1 1 , ∗ ) ” T o t a l number o f c o m b i n a t i o n s o f ” , n s a t s u b , ” s a t e l l i t e s : ” , s u b s e t c o u n t s

139 w r i t e ( 1 1 , ∗ ) ” B es t s a t e l l i t e c o m b i n a t i o n : ”

140 DO i = 1 , n s a t s u b

141 w r i t e ( 1 1 , ∗ ) b e s t s a t c o m b o ( i )

142 END DO

143 w r i t e ( 1 1 , ∗ ) ” Normal v e c t o r o f b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : ”

144 w r i t e ( 1 1 , ∗ ) b e s t s a t b f v ( 1 ) , b e s t s a t b f v ( 2 ) , b e s t s a t b f v ( 3 )

145 CALL T h e t a P h i ( b e s t s a t b f v ( 1 ) , b e s t s a t b f v ( 2 ) , b e s t s a t b f v ( 3 ) )

146 w r i t e ( 1 1 , ∗ ) ” The ta and p h i o f normal v e c t o r o f b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : ”

147 w r i t e ( 1 1 , ∗ ) ” The ta =” , t h e t a c o o r d , ” ; Ph i =” , p h i c o o r d

148 w r i t e ( 1 1 , ∗ ) ”LOG10(RMS) of b e s t f i t p l a n e f o r t h i s c o m b i n a t i o n : ” , RMSmin

149

150 mode coun t s = 0 . e0 ! | | Every p o l e p o s i t i o n p o s s i b l e i s g i v e n an i n d e x and t h e number o f t i m e s

151 DO i = 1 , 31 ! | | a p o l e i s r e c o r d e d a t t h a t p o s i t i o n i s r e c o r d e d . Th i s g r e a t l y r e d u c e s

152 DO j = 1 , 120 ! | | f i l e s t o r a g e s i z e . The number o f t i m e s a p a r t i c u l a r s a t e l l i t e c o n t r i b u t e s

153 DO k = 1 , 15 ! \ / t o a p o l e a t each p o s s i b l e p o s i t i o n i s a l s o r e c o r d e d .

154 DO l = 1 , 30

155 IF ( p o l e s p e r p o s ( i , j , k , l , 6 ) . ne . 0 . e0 ) THEN
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156 WRITE ( 1 7 , ’ (31 F11 . 5 ) ’ ) p o l e s p e r p o s ( i , j , k , l , 1 ) , p o l e s p e r p o s ( i , j , k , l , 2 ) , p o l e s p e r p o s ( i , j , k , l , 3 ) , &

157 p o l e s p e r p o s ( i , j , k , l , 4 ) , p o l e s p e r p o s ( i , j , k , l , 5 ) , p o l e s p e r p o s ( i , j , k , l , 6 ) , &

158 p o l e s p e r p o s ( i , j , k , l , 7 ) , p o l e s p e r p o s ( i , j , k , l , 8 ) , p o l e s p e r p o s ( i , j , k , l , 9 ) , &

159 p o l e s p e r p o s ( i , j , k , l , 1 0 ) , p o l e s p e r p o s ( i , j , k , l , 1 1 ) , p o l e s p e r p o s ( i , j , k , l , 1 2 ) , &

160 p o l e s p e r p o s ( i , j , k , l , 1 3 ) , p o l e s p e r p o s ( i , j , k , l , 1 4 ) , p o l e s p e r p o s ( i , j , k , l , 1 5 ) , &

161 p o l e s p e r p o s ( i , j , k , l , 1 6 ) , p o l e s p e r p o s ( i , j , k , l , 1 7 ) , p o l e s p e r p o s ( i , j , k , l , 1 8 ) , &

162 p o l e s p e r p o s ( i , j , k , l , 1 9 ) , p o l e s p e r p o s ( i , j , k , l , 2 0 ) , p o l e s p e r p o s ( i , j , k , l , 2 1 ) , &

163 p o l e s p e r p o s ( i , j , k , l , 2 2 ) , p o l e s p e r p o s ( i , j , k , l , 2 3 ) , p o l e s p e r p o s ( i , j , k , l , 2 4 ) , &

164 p o l e s p e r p o s ( i , j , k , l , 2 5 ) , p o l e s p e r p o s ( i , j , k , l , 2 6 ) , p o l e s p e r p o s ( i , j , k , l , 2 7 ) , &

165 p o l e s p e r p o s ( i , j , k , l , 2 8 ) , p o l e s p e r p o s ( i , j , k , l , 2 9 ) , p o l e s p e r p o s ( i , j , k , l , 3 0 ) , &

166 p o l e s p e r p o s ( i , j , k , l , 3 1 )

167 END IF

168 IF ( p o l e s p e r p o s ( i , j , k , l , 6 ) . g t . mode coun t s ) THEN

169 mode coun t s = p o l e s p e r p o s ( i , j , k , l , 6 )

170 pos mpc ( 1 ) = i ; pos mpc ( 2 ) = j ; pos mpc ( 3 ) = k ; pos mpc ( 4 ) = l

171 END IF

172 END DO

173 END DO

174 END DO

175 END DO

176

177 x mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 1 ) ! Most f r e q . normal v e c t o r x

178 y mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 2 ) ! Most f r e q . normal v e c t o r y

179 z mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 3 ) ! Most f r e q . normal v e c t o r z

180 t h e t a m o d e = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 4 ) ! Most f r e q . p o l e t h e t a

181 phi mode = p o l e s p e r p o s ( pos mpc ( 1 ) , pos mpc ( 2 ) , pos mpc ( 3 ) , pos mpc ( 4 ) , 5 ) ! Most f r e q . p o l e p h i

182

183 w r i t e ( 1 1 , ∗ ) ” Normal v e c t o r o f most f r e q u e n t l y e n c o u n t e r e d p l a n e : ”

184 w r i t e ( 1 1 , ∗ ) x mode , y mode , z mode

185 w r i t e ( 1 1 , ∗ ) ” The ta and p h i o f most f r e q u e n t l y e n c o u n t e r e d p o l e : ”

186 w r i t e ( 1 1 , ∗ ) ” The ta =” , t he t a mode , ” ; Ph i =” , phi mode

187 w r i t e ( 1 1 , ∗ ) ”Number o f i n s t a n c e s o f t h i s p o l e : ” , mode coun t s

188

189 END SUBROUTINE Combina t ions

190

191 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

192

193 SUBROUTINE S i g n i f i c a n c e ! F i n d s RMS and p o l e o f b e s t f i t p l a n e t o a g i v e n s a t e l l i t e c o m b i n a t i o n .

194 USE Gl ob a l ! Does t h i s f o r ’ e r r s a m p s ’ p o s s i b l e v e r s i o n s o f t h e c o m b i n a t i o n

195 IMPLICIT NONE ! u s i n g d i s t a n c e s drawn from t h e r e s p e c t i v e s a t e l l i t e d i s t a n c e PPDs .

196

197 WRITE( 1 6 , ∗ ) ” Combina t ions t e s t e d so f a r : ” , s u b s e t c o u n t s ! P r o g r e s s u p d a t e

198

199 DO s a m p i t = 1 , e r r s a m p s

200

201 CALL random number ( randnum ) ! Read one p o s s i b l e M31

202 randnum = randnum ∗ 2999999 . e0 + 1 . e0 ! d i s t a n c e t o g e n e r a t e

203 m31 1K dis t = M31 Dist PPD ( NINT ( randnum ) ) ! one p o s s i b l e s e t o f

204 ! x , y , z c o o r d s

205

206 DO i = 1 , n s a t s u b ! Read i n one p o s s i b l e

207 IF ( s a t h o l d e r ( i ) . l t . 24 ) THEN ! d i s t a n c e f o r each of t h e

208 CALL random number ( randnum ) ! dwarf sph s a t s e x c e p t

209 randnum = randnum ∗ 499999 . e0 + 1 . e0 !AND XXX t o g e n e r a t e one

210 s a t 1 K d i s t ( s a t h o l d e r ( i ) ) = S a t D i s t ( NINT ( randnum ) , s a t h o l d e r ( i ) ) ! s e t o f p o s s i b l e d i s t a n c e s

211 ELSE IF ( s a t h o l d e r ( i ) . eq . 24) THEN

212 DO j = 25 , 26 ! Get p o s s i b l e d i s t a n c e s

213 CALL random number ( randnum ) ! f o r NGC147 and NGC185

214 randnum = randnum ∗ 499999 . e0 + 1 . e0 ! t o combine i n t o one p o i n t

215 s a t 1 K d i s t ( j ) = S a t D i s t ( NINT ( randnum ) , j ) ! t o r e p r e s e n t t h e NGC147 ,

216 END DO ! NGC185 , AND XXX group
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217 ELSE IF ( s a t h o l d e r ( i ) . eq . 25) THEN

218 CALL random number ( randnum ) ! Get a p o s s i b l e

219 randnum = randnum ∗ 499999 . e0 + 1 . e0 ! d i s t a n c e f o r

220 s a t 1 K d i s t ( 2 7 ) = S a t D i s t ( NINT ( randnum ) , 2 7 ) !M33

221 END IF

222 END DO

223

224 DO i = 1 , n s a t s u b ! Conve r t d i s t a n c e s t o 3D p o s i t i o n s f o r :

225 IF ( s a t h o l d e r ( i ) . l t . 24 ) THEN !A: A l l t h e dwarf s p h e r o i d a l s a t e l l i t e s e x c e p t Andromeda XXX

226

227 pos ( 1 , s a t h o l d e r ( i ) ) = ABS( s a t 1 K d i s t ( s a t h o l d e r ( i ) ) ∗ cos ( t h e t a ( s a t h o l d e r ( i ) ) ) ∗ t a n ( x i ( s a t h o l d e r ( i ) ) ) ) ! De te rmine l e n g t h o f x

228 IF ( x i ( s a t h o l d e r ( i ) ) . l t . 0 . e0 ) THEN ! v e c t o r f o r each s a t e l l i t e

229 pos ( 1 , s a t h o l d e r ( i ) ) = −1. e0 ∗ pos ( 1 , s a t h o l d e r ( i ) ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

230 END IF !

231

232 pos ( 2 , s a t h o l d e r ( i ) ) = ABS( s a t 1 K d i s t ( s a t h o l d e r ( i ) ) ∗ s i n ( e t a ( s a t h o l d e r ( i ) ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

233 IF ( e t a ( s a t h o l d e r ( i ) ) . l t . 0 . e0 ) THEN !

234 pos ( 2 , s a t h o l d e r ( i ) ) = −1. e0 ∗ pos ( 2 , s a t h o l d e r ( i ) ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

235 END IF !

236

237 pos ( 3 , s a t h o l d e r ( i ) ) = s a t 1 K d i s t ( s a t h o l d e r ( i ) ) ∗ cos ( t h e t a ( s a t h o l d e r ( i ) ) ) − m31 1K dis t ! De te rmine l e n g t h and s i g n of z v e c t o r

238

239 ELSE IF ( s a t h o l d e r ( i ) . eq . 24) THEN !B : The NGC147 /NGC185 /AND XXX subgroup

240 DO j = 25 , 26

241

242 pos ( 1 , j ) = ABS( s a t 1 K d i s t ( j ) ∗ cos ( t h e t a ( j ) ) ∗ t a n ( x i ( j ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each

243 IF ( x i ( j ) . l t . 0 . e0 ) THEN ! s a t e l l i t e v e c t o r f o r each s a t e l l i t e

244 pos ( 1 , j ) = −1. e0 ∗ pos ( 1 , j ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

245 END IF !

246

247 pos ( 2 , j ) = ABS( s a t 1 K d i s t ( j ) ∗ s i n ( e t a ( j ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

248 IF ( e t a ( j ) . l t . 0 . e0 ) THEN !

249 pos ( 2 , j ) = −1. e0 ∗ pos ( 2 , j ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

250 END IF !

251

252 pos ( 3 , j ) = s a t 1 K d i s t ( j ) ∗ cos ( t h e t a ( j ) ) − m31 1K dis t ! De te rmine l e n g t h and s i g n of z v e c t o r

253

254 END DO

255 pos ( : , 2 4 ) = pos ( : , 2 5 ) + ( ( 1 0 0 . e0 ) ∗ ∗ ( 0 . 2 e0 ∗0 . 2 e0 ) ) ∗ pos ( : , 2 6 )

256 pos ( : , 2 4 ) = pos ( : , 2 4 ) / ( 1 . e0 + ( 1 0 0 . e0 ) ∗ ∗ ( 0 . 2 e0 ∗0 . 2 e0 ) )

257

258 ELSE IF ( s a t h o l d e r ( i ) . eq . 25) THEN !C : M33

259

260 pos ( 1 , 2 5 ) = ABS( s a t 1 K d i s t ( 2 7 ) ∗ cos ( t h e t a ( 2 7 ) ) ∗ t a n ( x i ( 2 7 ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each

261 IF ( x i ( 2 7 ) . l t . 0 . e0 ) THEN ! s a t e l l i t e v e c t o r f o r each s a t e l l i t e

262 pos ( 1 , 2 5 ) = −1. e0 ∗ pos ( 1 , 2 5 ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

263 END IF !

264

265 pos ( 2 , 2 5 ) = ABS( s a t 1 K d i s t ( 2 7 ) ∗ s i n ( e t a ( 2 7 ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

266 IF ( e t a ( 2 7 ) . l t . 0 . e0 ) THEN !

267 pos ( 2 , 2 5 ) = −1. e0 ∗ pos ( 2 , 2 5 ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

268 END IF !

269

270 pos ( 3 , 2 5 ) = s a t 1 K d i s t ( 2 7 ) ∗ cos ( t h e t a ( 2 7 ) ) − m31 1K dis t ! De te rmine l e n g t h and s i g n of z v e c t o r

271

272 END IF

273

274 END DO

275

276 CALL MaxSigFind

277
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278 A c t u a l s i g = m a x p l a n e s i g

279 A c t u a l b f v = b e s t f i t v e c t

280

281 a l p h a s e t = − ( 9 0 . e0 − 1 2 . 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g back o u t o f M31’ s i n c l i n a t i o n !

282 gamma set = + ( 9 0 . e0 − 3 9 . 8 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from above t h e M31 p o l e ) !

283 ! Change

284 CALL R o t a t e !

285 ! t o

286 A c t u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! Conve r t v e c t o r s back t o how t h e y would a p p e a r !

287 A c t u a l b f v = MATMUL( x r o t , A c t u a l b f v ) ! i n M31 r e f e r e n c e f rame !M31

288 !

289 gamma set = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e

290 ! !

291 CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! sys tem

292 ! !

293 A c t u a l b f v = MATMUL( z r o t , A c t u a l b f v ) ! !

294

295 CALL T h e t a P h i ( A c t u a l b f v ( 1 ) , A c t u a l b f v ( 2 ) , A c t u a l b f v ( 3 ) )

296

297 ! | | Every p o l e p o s i t i o n p o s s i b l e i s g i v e n an i n d e x and t h e number o f t i m e s

298 ! | | a p o l e i s r e c o r d e d a t t h a t p o s i t i o n i s r e c o r d e d . Th i s g r e a t l y r e d u c e s

299 ! | | f i l e s t o r a g e s i z e . The number o f t i m e s a p a r t i c u l a r s a t e l l i t e c o n t r i b u t e s

300 ! \ / t o a p o l e a t each p o s s i b l e p o s i t i o n i s a l s o r e c o r d e d .

301 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 1 ) = A c t u a l b f v ( 1 ) !

302 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 2 ) = A c t u a l b f v ( 2 ) ! Update

303 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 3 ) = A c t u a l b f v ( 3 ) ! c o u n t s

304 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 4 ) = t h e t a c o o r d ! a t a

305 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 5 ) = p h i c o o r d ! p a r t i c u l a r

306 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 6 ) = & ! p o l e

307 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) , 6 ) + ( 1 . e0 / ( 1 0 . e0 ∗∗ A c t u a l s i g ) ) !

308 DO i = 1 , n s a t s u b

309 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) ,6+ s a t h o l d e r ( i ) ) = &

310 p o l e s p e r p o s ( b e s t p o l l o c ( 1 ) , b e s t p o l l o c ( 2 ) , b e s t p o l l o c ( 3 ) , b e s t p o l l o c ( 4 ) ,6+ s a t h o l d e r ( i ) ) + ( 1 . e0 / ( 1 0 . e0 ∗∗ A c t u a l s i g ) )

311 END DO

312

313 IF ( A c t u a l s i g . l t . RMSmin) THEN

314 RMSmin = A c t u a l s i g !

315 DO i = 1 , n s a t s u b ! S t o r e b e s t p o s s i b l e s a t e l l i t e

316 b e s t s a t c o m b o ( i ) = s a t h o l d e r ( i ) ! c o m b i n a t i o n e n c o u n t e r e d so f a r

317 END DO ! ( i . e . t h e c o m b i n a t i o n w i t h i n l o w e s t

318 b e s t s a t b f v = A c t u a l b f v !RMS of i t s b e s t f i t p l a n e )

319 END IF !

320

321 END DO

322

323 END SUBROUTINE S i g n i f i c a n c e

324

325 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

326

327 SUBROUTINE MaxSigFind ! F i n d s b e s t f i t p l a n e f o r a s a t e l l i t e d i s t r i b u t i o n by t e s t i n g goodness o f f i t o f each

328 USE Gl ob a l ! t e s t e d p l a n e . The p o l e s o f t h e t e s t e d p l a n e s a r e a l l a p p r o x i m a t e l y equi − d i s t a n t , t a k i n g

329 IMPLICIT NONE ! i n t o a c c o u n t t h e s u r f a c e a r e a o f a s h e r e as a f u n c t i o n o f l a t i t u d e .

330 !A low r e s o l u t i o n run f i n d s t h e a p p r o x i m a t e l o c a t i o n o f t h e b e s t f i t p l ane ’ s p o l e and t h e n

331 ! p o l e s a round t h i s p o i n t a r e s e a r c h e d a t h i g h e r r e s o l u t i o n .

332 p a r l i k e = 0 . e0

333 m a x p l a n e s i g = 9999999 . e0

334

335 ! | | Low r e s o l u t i o n

336 ! \ / p l a n e t e s t s

337 DO i = 1 , 30

338
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339 b e t a s e t = REAL( i ∗3) ∗ ( p i / 1 8 0 . e0 )

340

341 DO j = 1 , NINT ( 1 2 0 . e0 ∗ cos ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e

342 ! number o f p o i n t s

343 a l p h a s e t = (REAL( j ) /NINT ( 1 2 0 . e0 ∗ cos ( b e t a s e t ) ) ) ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 )

344

345 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

346

347 CALL R o t a t e

348 norm = MATMUL( y r o t , norm )

349 norm = MATMUL( x r o t , norm )

350

351 p l a n e s i g = 0 . d0

352 rms = 0 . d0

353 DO k = 1 , n s a t s u b !RMS c a l c u l a t i o n

354 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , s a t h o l d e r ( k ) ) + norm ( 2 ) ∗ pos ( 2 , s a t h o l d e r ( k ) ) + norm ( 3 ) ∗ pos ( 3 , s a t h o l d e r ( k ) )

355 rms = rms + ( p l a n e D i s t ) ∗∗2

356 END DO

357 rms = SQRT( rms / n s a t s u b )

358 p l a n e s i g = LOG10( rms )

359 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

360 m a x p l a n e s i g = p l a n e s i g ! S t o r e approx , low r e s o l u t i o n v a l u e s

361 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

362 p o l e a l p h a = a l p h a s e t ! S t o r e b e s t f i t p o l e f o r

363 p o l e b e t a = b e t a s e t ! h i gh r e s o l u t i o n s e a r c h

364 b e s t p o l l o c ( 1 ) = i ! Used f o r c u m u l a t i v e

365 b e s t p o l l o c ( 2 ) = j ! p o l e c o u n t

366 END IF

367 END DO

368 END DO

369

370 norm = ( / −1. e0 , 0 . e0 , 0 . e0 / ) ! T e s t a t t h e a c t u a l p o l e ( n o t i n c l u d e d i n above loop )

371

372 p l a n e s i g = 0 . d0

373 rms = 0 . d0

374 DO k = 1 , n s a t s u b !RMS c a l c u l a t i o n

375 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , s a t h o l d e r ( k ) ) + norm ( 2 ) ∗ pos ( 2 , s a t h o l d e r ( k ) ) + norm ( 3 ) ∗ pos ( 3 , s a t h o l d e r ( k ) )

376 rms = rms + ( p l a n e D i s t ) ∗∗2

377 END DO

378 rms = SQRT( rms / n s a t s u b )

379 p l a n e s i g = LOG10( rms )

380

381

382 ! | | High r e s o l u t i o n s e a r c h

383 ! \ / a round b e s t f i t p o l e

384 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! C o n d i t i o n n o t met u n l e s s t h e RMS a t t h e a c t u a l p o l e

385 ! was b e t t e r t h a n anywhere e l s e i n t h e low r e s s e a r c h

386 b e s t p o l l o c ( 1 ) = 31 ! Used f o r c u m u l a t i v e

387 b e s t p o l l o c ( 2 ) = 1 ! p o l e c o u n t

388

389 m a x p l a n e s i g = p l a n e s i g

390 b e s t f i t v e c t = norm

391 DO i = 1 , 15

392

393 b e t a s e t = ( 8 8 . 5 e0 + (REAL( i ) / 1 0 . e0 ) ) ∗ ( p i / 1 8 0 . e0 )

394

395 DO j = 1 , NINT ( 1 2 0 0 . e0 ∗ cos ( b e t a s e t ) ) ! The h i g h e r t h e l a t i t u d e , t h e s m a l l e r t h e

396 ! number o f p o i n t s

397 a l p h a s e t = (REAL( j ) /NINT ( 1 2 0 0 . e0 ∗ cos ( b e t a s e t ) ) ) ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 )

398

399 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )
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400

401 CALL R o t a t e

402 norm = MATMUL( y r o t , norm )

403 norm = MATMUL( x r o t , norm )

404

405 p l a n e s i g = 0 . d0

406 rms = 0 . d0

407 DO k = 1 , n s a t s u b !RMS c a l c u l a t i o n

408 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , s a t h o l d e r ( k ) ) + norm ( 2 ) ∗ pos ( 2 , s a t h o l d e r ( k ) ) + norm ( 3 ) ∗ pos ( 3 , s a t h o l d e r ( k ) )

409 rms = rms + ( p l a n e D i s t ) ∗∗2

410 END DO

411 rms = SQRT( rms / n s a t s u b )

412 p l a n e s i g = LOG10( rms )

413 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

414 m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h igh r e s o l u t i o n v a l u e s

415 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

416 b e s t p o l l o c ( 3 ) = i ! Used f o r c u m u l a t i v e

417 b e s t p o l l o c ( 4 ) = j ! p o l e c o u n t

418 END IF

419 END DO

420 END DO

421

422 ELSE

423

424 DO i = 1 , 11

425 DO j = 1 , 11

426

427 b e t a s e t = p o l e b e t a + 2 . e0 ∗ REAL( j −6) ∗ ( 0 . 1 5 e0 ) ∗ ( p i / 1 8 0 . e0 )

428 a l p h a s e t = p o l e a l p h a + 2 . e0 ∗ REAL( i −6) ∗ ( 0 . 1 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ∗ ( 1 . e0 / cos ( b e t a s e t ) )

429

430 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

431

432 CALL R o t a t e

433 norm = MATMUL( y r o t , norm )

434 norm = MATMUL( x r o t , norm )

435

436 p l a n e s i g = 0 . d0

437 rms = 0 . d0

438 DO k = 1 , n s a t s u b !RMS c a l c u l a t i o n

439 p l a n e D i s t = norm ( 1 ) ∗ pos ( 1 , s a t h o l d e r ( k ) ) + norm ( 2 ) ∗ pos ( 2 , s a t h o l d e r ( k ) ) + norm ( 3 ) ∗ pos ( 3 , s a t h o l d e r ( k ) )

440 rms = rms + ( p l a n e D i s t ) ∗∗2

441 END DO

442 rms = SQRT( rms / n s a t s u b )

443 p l a n e s i g = LOG10( rms )

444 IF ( p l a n e s i g . l t . m a x p l a n e s i g ) THEN ! Most s i g n i f i c a n t p l a n e has l o w e s t rms

445 m a x p l a n e s i g = p l a n e s i g ! S t o r e f i n a l , h igh r e s o l u t i o n v a l u e s

446 b e s t f i t v e c t = norm ! of b e s t f i t p o l e and s i g n i f i c a n c e

447 b e s t p o l l o c ( 3 ) = i ! Used f o r c u m u l a t i v e

448 b e s t p o l l o c ( 4 ) = j ! p o l e c o u n t

449 END IF

450 END DO

451 END DO

452

453 END IF

454

455 END SUBROUTINE MaxSigFind

456

457 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: PlaneSigSubSets RandReal4 noGroup.f95

Creation Date: 3 Oct 2012 (first version 26 Apr 2012) Many modifications.

Relevant Section: Ch. 5; Paper III §3.1, §3.2, §3.4

Notes: This program is designed specifically for finding the most planar combination of large

subsets of satellites. It can only be used where we do not require a measurement for every

possible subset (i.e. a pole distribution map). In this program, the ‘MaxSigFind’ subroutine

is completely different to the version seen in PlaneS igRMS . f 95 (p. 244). It throws down

10, 000 random planes and finds the closest ‘nsatsub’ (15 in this case) satellites to the tested

plane out of the full sample (nsats = 27) and records the associated RMS. That combination

which is fit with the lowest RMS is then taken to approximate the most planar sub set. Note

that the ‘RandomPoints’ subroutine presented here is also substantially different to that in

PlaneS igRMS . f 95 as it represents each satellite by a distance distribution containing 1, 000

possible positions along the line of sight from Earth.

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 INTEGER : : i , j , k , l , s , mm, i o s , idum = −9999 , i t , n i t

5 INTEGER : : ndata max , n s a t s , n s a t s u b , s u b s e t c o u n t s

6 PARAMETER ( nda ta max = 10000000)

7 PARAMETER ( n s a t s = 27)

8 PARAMETER ( n i t = 10000)

9 PARAMETER ( n s a t s u b = 15)

10 REAL∗8 : : p i

11 PARAMETER ( p i = ACOS( −1 . e0 ) )

12 REAL : : randnum , s i g ( n i t ) , norm ( 3 ) , b e s t f i t v e c t ( 3 ) , b e s t f i t s i g m a

13 REAL : : pos ( 3 , nda ta max ) , t emp pos ( 3 )

14 REAL : : a ( nda ta max ) , b ( nda ta max ) , c ( nda ta max ) , d ( nda ta max )

15 REAL : : a h i s t ( 2 0 1 , 2 ) , b h i s t ( 2 0 1 , 2 ) , c h i s t ( 2 0 1 , 2 ) , d h i s t ( 2 0 0 1 , 2 )

16 REAL : : logL , LikeA , LikeB , r , p ( 4 ) , p temp ( 4 ) , min sigma , max sigma

17 REAL∗8 : : sigma , p l a n e D i s t , l i k e , p l a n e s i g , rms , min rms , r m s a v e r a g e ( n i t )

18 REAL : : m a x p l a n e s i g , RMSmin , A c t u a l s i g , A c t u a l b f v ( 3 ) , b e s t s a t b f v ( 3 ) , A c t u a l b f s

19 INTEGER : : dummy , s a t p i c k ( 2 7 )

20 REAL : : S a t D i s t (500000 , n s a t s ) , S a t P o s ( n s a t s , 2 ) , x i ( n s a t s ) , e t a ( n s a t s ) , t h e t a ( n s a t s ) , M31 Dist PPD (3000000)

21 REAL : : S a t D i s t c h a n g e ( n s a t s ) , n e w E a r t h D i s t , S a t D i s t s t o r e

22 REAL : : a r t x i ( n s a t s ) , a r t e t a ( n s a t s ) , a r t t h e t a ( n s a t s )

23 REAL∗8 : : RA, DEC, x i d b l e , e t a d b l e

24 REAL : : x i t e s t , e t a t e s t , t h e t a t e s t , SAP xi ( 1 3 4 ) , SAP eta ( 1 3 4 ) , spotR

25 REAL : : B e s t S a t D i s t ( n s a t s )

26 REAL : : m 3 1 d i s t

27 REAL : : a l p h a s e t , b e t a s e t , gamma set , p o l e a l p h a , p o l e b e t a

28 REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 )

29 REAL : : p a r l i k e ( 1 8 0 , 6 )

30 REAL : : t h e t a c o o r d , p h i c o o r d

31 REAL : : p o l e s p e r p o s ( 3 1 , 1 2 0 , 1 5 , 3 0 , 6 ) = 0 . e0

32 INTEGER : : b e s t p o l l o c ( 4 )

33 INTEGER : : s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 , s11 , s12 , s13

34 INTEGER : : s14 , s15 , s16 , s17 , s18 , s19 , s20 , s21 , s22 , s23 , s24 , s25 , s26

35 INTEGER : : s a t h o l d e r ( n s a t s ) , b e s t s a t c o m b o ( n s a t s ) , pos mpc ( 4 )
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36 REAL : : x mode , y mode , z mode , the t a mode , phi mode , mode coun t s

37 CHARACTER : : a rgv ∗30 , f o l d e r ∗100 , s t r i n g ∗200 , s t r i n g 2 ∗200 , command ∗200 , s u b s i z e ∗3 , i tnum ∗5

38 LOGICAL : : n e w s a t s

39 REAL : : c l o s e s t s a t s ( n s a t s u b )

40 INTEGER : : c l o s e s t s a t s i d ( n s a t s u b ) , b e s t s a t s ( n s a t s u b ) , u

41

42 END MODULE Gl ob a l

43

44 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45

46 PROGRAM P l a n e S i g n i f i c a n c e ! Mas te r program

47 USE Gl ob a l

48 IMPLICIT NONE

49

50 WRITE ( s u b s i z e , ∗ ) n s a t s u b

51

52 WRITE ( f o l d e r , ∗ ) ’ P l a n e S t a t s ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s R a n d R e a l w e i g h t e d ’ ! C r e a t e

53 WRITE ( s t r i n g , ∗ ) ’ . / ’ / / TRIM(ADJUSTL( f o l d e r ) ) ! p r i m a r y

54 ! o u t p u t

55 WRITE ( command , ∗ ) ’ mkdir ’ / / TRIM(ADJUSTL( f o l d e r ) ) ! d i r e c t o r y

56

57 CALL sys tem ( command )

58

59 CALL r andom seed ! I n s u r e random s eed f o r random numbers

60

61 CALL SampledDis t ! Get sampled

62 CALL F i x e d D i s t ! s a t e l l i t e d i s t a n c e s

63 CALL BorderGe t ! Get PAndAS s u r v e y boundary p o i n t s

64

65 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s a t p o s . d a t ’ ! P o s i t i o n s o f s a t e l l i t e s i n

66 OPEN( 1 2 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! Random R e a l i z a t i o n s

67

68 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ /RMS ’ / / TRIM(ADJUSTL( s u b s i z e ) ) / / ’ s a t s . d a t ’ ! B es t P l a n e RMS

69 OPEN( 1 3 , f i l e =TRIM(ADJUSTL( s t r i n g 2 ) ) , s t a t u s = ’ unknown ’ ) ! o u t p u t f i l e

70

71 r m s a v e r a g e = 0 . e0 !

72 ! P r i n c i p a l l oop which

73 DO i t = 1 , n i t ! G e n e r a t e s ’ n i t ’

74 CALL RandomPoints ! random r e a l i z a t i o n s

75 r m s a v e r a g e ( i t ) = r m s a v e r a g e ( i t ) /REAL( 1 0 0 0 ) ! and f i n d s a v e r a g e RMS

76 WRITE ( 1 3 , ’ (2 F16 . 5 ) ’ ) REAL( i t ) , r m s a v e r a g e ( i t ) ! f o r b e s t f i t p l a n e o f

77 CALL F l u s h ( 1 3 ) ! Empty b u f f e r ! most p l a n a r s a t e l l i t e

78 END DO ! c o m b i n a t i o n i n each

79

80 s t r i n g 2 = TRIM(ADJUSTL( f o l d e r ) ) / / ’ / s ig PPD . ps /CPS ’

81

82 CALL H i s t o P l o t ( n i t , 1 0 1 ,REAL( r m s a v e r a g e ) , ’RMS ( kpc ) ’ , ’ P r o b a b i l i t y ’ , TRIM(ADJUSTL( s t r i n g 2 ) ) , . t r u e . )

83

84 WRITE ( command , ∗ ) ’ c o n v e r t − r o t a t e 90 ’ / / TRIM(ADJUSTL( f o l d e r ) ) / / &

85 ’ / s ig PPD . ps ’ / / TRIM(ADJUSTL( f o l d e r ) ) / / &

86 ’ / s ig PPD . j p g ’

87

88 c a l l sys tem ( command )

89

90 CLOSE( 1 1 ) ; CLOSE( 1 2 ) ; CLOSE( 1 3 ) ; CLOSE( 1 5 ) ; CLOSE( 1 7 )

91

92 END PROGRAM P l a n e S i g n i f i c a n c e

93

94 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95

96 SUBROUTINE RandomPoints ! G e n e r a t e s a random r e a l i z a t i o n c o n t a i n i n g n s a t s s a t e l l i t e s
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97 USE Gl ob a l ! Each s a t e l l i t e i s r e p r e s e n t e d by 1 ,000 sample s o f p o s s i b l e

98 IMPLICIT NONE ! p o s i t i o n s a l o n g t h e l i n e o f s i g h t from E a r t h .

99 ! T h i s r o u t i n e i s d i f f e r e n t t o t h a t o f t h e same name i n

100 ! ’ PlaneSigRMS . f95 ’ which i n c l u d e s on l y 1 p o s s i b l e p o s i t i o n

101 ! f o r each a r t i f i c i a l s a t e l l i t e

102

103 LOGICAL : : i n p o l y

104 DOUBLE PRECISION : : s la DSEP

105

106 CALL random number ( randnum )

107 randnum = randnum ∗ 2999999 . e0 + 1 . e0

108 m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) )

109

110 DO i = 1 , n s a t s

111

112 2 CALL random number ( randnum )

113 s a t p i c k ( i ) = 1 + NINT ( randnum ∗REAL( n s a t s − 1) ) ! Draw a random s a t e l l i t e

114

115 CALL random number ( randnum )

116 randnum = randnum ∗ 499999 . e0 + 1 . e0

117 S a t D i s t s t o r e = S a t D i s t ( NINT ( randnum ) , s a t p i c k ( i ) )

118 pos ( 1 , i ) = ABS( S a t D i s t s t o r e ∗ cos ( t h e t a ( s a t p i c k ( i ) ) ) ∗ t a n ( x i ( s a t p i c k ( i ) ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

119 IF ( x i ( s a t p i c k ( i ) ) . l t . 0 . e0 ) THEN !

120 pos ( 1 , i ) = −1. e0 ∗ pos ( 1 , i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

121 END IF !

122

123 pos ( 2 , i ) = ABS( S a t D i s t s t o r e ∗ s i n ( e t a ( s a t p i c k ( i ) ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

124 IF ( e t a ( s a t p i c k ( i ) ) . l t . 0 . e0 ) THEN !

125 pos ( 2 , i ) = −1. e0 ∗ pos ( 2 , i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

126 END IF !

127

128

129

130 pos ( 3 , i ) = S a t D i s t s t o r e ∗ cos ( t h e t a ( s a t p i c k ( i ) ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

131

132

133 pos ( 3 , i ) = SQRT ( ( pos ( 1 , i ) ∗ ∗2 . e0 ) + ( pos ( 2 , i ) ∗ ∗2 . e0 ) + ( pos ( 3 , i ) ∗ ∗2 . e0 ) ) ! R o t a t e p o s i t i o n v e c t o r t o p o i n t

134 pos ( 1 , i ) = 0 . e0 ; pos ( 2 , i ) = 0 . e0 ! a l o n g z− a x i s

135

136 CALL random number ( randnum ) !

137 a l p h a s e t = randnum ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P i ck random l o n g i t u d e

138 CALL random number ( randnum ) ! P i ck random l a t i t u d e between 0 and 90 w e i g h t e d

139 b e t a s e t = ASIN ( randnum ) ! by a r e a o f a s p h e r e as a f u n c t i o n o f l a t i t u d e

140 CALL random number ( randnum ) !

141 IF ( randnum . l t . 0 . 5 e0 ) THEN ! Re− a s s i g n l a t i t u d e as

142 b e t a s e t = b e t a s e t !

143 ELSE !−1 ∗ l a t i t u d e i n

144 b e t a s e t = − b e t a s e t !

145 END IF !50% 0 f c a s e s

146

147 CALL R o t a t e

148 pos ( : , i ) = MATMUL( y r o t , pos ( : , i ) ) ! R o t a t e t o t h e chosen

149 pos ( : , i ) = MATMUL( x r o t , pos ( : , i ) ) ! random a n g l e

150

151 x i t e s t = ATAN( abs ( pos ( 1 , i ) ) / ( m 3 1 d i s t + pos ( 3 , i ) ) ) ! Conve r t

152 IF ( pos ( 1 , i ) . l t . 0 . e0 ) THEN ! new random

153 x i t e s t = − x i t e s t ! p o s i t i o n

154 END IF ! v e c t o r

155 e t a t e s t = ATAN( abs ( pos ( 2 , i ) ) /SQRT( pos ( 1 , i ) ∗∗2 + ( m 3 1 d i s t + pos ( 3 , i ) ) ∗∗2 ) ) ! i n t o

156 IF ( pos ( 2 , i ) . l t . 0 . e0 ) THEN ! non t . p .

157 e t a t e s t = − e t a t e s t ! e t a and
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158 END IF ! x i

159

160 a r t x i ( i ) = x i t e s t !

161 a r t e t a ( i ) = e t a t e s t ! S t o r e p o s i t i o n on sky of

162 x i d b l e = a r t x i ( i ) ! randomly o r i e n t e d s a t e l l i t e

163 e t a d b l e = a r t e t a ( i ) ! f o r 1000 samples .

164 a r t t h e t a ( i ) = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) !

165

166 n e w E a r t h D i s t = abs ( pos ( 2 , i ) ) / s i n ( abs ( e t a t e s t ) ) ! C a l c u l a t e new d i s t a n c e o f s a t from E a r t h a f t e r r o t a t i o n

167

168 S a t D i s t c h a n g e ( i ) = n e w E a r t h D i s t − S a t D i s t s t o r e ! C a l c u l a t e t h e d i f f e r e n c e between t h e new and o l d

169 ! E a r t h d i s t a n c e s f o r each s a t e l l i t e

170

171 RA = x i t e s t !

172 DEC = e t a t e s t ! Use sla DS2TP

173 ! t o c o n v e r t t r u e

174 CALL sla DS2TP (RA, DEC, 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e , j ) ! e t a amd x i t o

175 ! t h e i r t a n g e n t

176 x i t e s t = x i d b l e ∗ ( 1 8 0 . e0 / p i ) ! p l a n e p r o j e c t i o n s

177 e t a t e s t = e t a d b l e ∗ ( 1 8 0 . e0 / p i ) !

178

179

180 IF ( i n p o l y ( x i t e s t , e t a t e s t , 1 3 4 , SAP xi , SAP eta ) ) THEN ! Re−g e n e r a t e

181 ! t h e new

182 ELSE ! randomized

183 goto 2 ! s a t e l l i t e

184 END IF ! p o s i t i o n i f

185 ! t h e c u r r e n t

186 spotR = ( ( x i t e s t ∗ cos ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) + e t a t e s t ∗ s i n ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) ) ∗∗2 / 6 . 2 5 d0 ) + & ! c h o i c e doesn ’ t

187 ( ( x i t e s t ∗ s i n ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) − e t a t e s t ∗ cos ( 5 1 . 9 d0∗ p i / 1 8 0 . d0 ) ) ∗∗2 / 1 . d0 ) ! f a l l w i t h i n

188 ! t h e PAndAS

189 IF ( spotR . l e . 1 . e0 ) THEN ! f o o t p r i n t

190 goto 2 ! as viewed

191 END IF ! from E a r t h

192 END DO

193 n e w s a t s = . t r u e .

194 CALL MaxSigFind

195 n e w s a t s = . t r u e .

196

197 DO j = 1 , 999

198

199 CALL random number ( randnum )

200 randnum = randnum ∗ 2999999 . e0 + 1 . e0

201 m 3 1 d i s t = M31 Dist PPD ( NINT ( randnum ) )

202

203 DO i = 1 , n s a t s

204 CALL random number ( randnum )

205 randnum = randnum ∗ 499999 . e0 + 1 . e0

206 S a t D i s t s t o r e = S a t D i s t ( NINT ( randnum ) , s a t p i c k ( i ) ) + S a t D i s t c h a n g e ( i ) ! A d j u s t drawn E a r t h d i s t a n c e f o r new p o s i t i o n

207 pos ( 1 , i ) = ABS( S a t D i s t s t o r e ∗ cos ( a r t t h e t a ( i ) ) ∗ t a n ( a r t x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

208 IF ( a r t x i ( i ) . l t . 0 . e0 ) THEN !

209 pos ( 1 , i ) = −1. e0 ∗ pos ( 1 , i ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

210 END IF !

211

212 pos ( 2 , i ) = ABS( S a t D i s t s t o r e ∗ s i n ( a r t e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

213 IF ( a r t e t a ( i ) . l t . 0 . e0 ) THEN !

214 pos ( 2 , i ) = −1. e0 ∗ pos ( 2 , i ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

215 END IF !

216

217 pos ( 3 , i ) = S a t D i s t s t o r e ∗ cos ( a r t t h e t a ( i ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

218 END DO
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219 CALL MaxSigFind

220 END DO

221

222 END SUBROUTINE RandomPoints

223

224 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

225

226 ! ’ Ro ta t e ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

227

228 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

229

230 SUBROUTINE MaxSigFind ! F i n d s t h e b e s t f i t p l a n e t h r o u g h t h e ∗most p l a n a r ∗ c o m b i n a t i o n

231 USE Gl ob a l ! o f ’ n s a t s u b ’ s a t e l l i t e s . T h i s i s a c h i e v e d by ” t h r o w i n g i n ” 10 ,000

232 IMPLICIT NONE ! random p l a n e s and d e t e r m i n i n g t h e ’ n s a t s u b ’ c l o s e s t s a t e l l i t e s t o

233 ! each p l a n e and t h e a s s o c i a t e d RMS.

234 min rms = 9999 . e0

235

236 DO i = 1 , 10000

237

238 IF ( n e w s a t s ) THEN

239 c l o s e s t s a t s = 9 9 9 . e0 ! I f f i n d i n g t h e b e s t f i t combo each t i me

240 c l o s e s t s a t s i d = 0 ! r e s e t t h e s e p a r a m e t e r s

241 ELSE

242 c l o s e s t s a t s i d = b e s t s a t s

243 END IF

244

245 norm = ( / 0 . e0 , 0 . e0 , 1 . e0 / )

246

247 CALL random number ( randnum ) !

248 a l p h a s e t = randnum ∗ 3 6 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! P i ck random l o n g i t u d e

249 CALL random number ( randnum ) ! P i ck random l a t i t u d e between 0 and 90 w e i g h t e d

250 b e t a s e t = ASIN ( randnum ) ! by a r e a o f a s p h e r e as a f u n c t i o n o f l a t i t u d e

251 CALL random number ( randnum ) !

252 IF ( randnum . l t . 0 . 5 e0 ) THEN ! Re− a s s i g n l a t i t u d e as

253 b e t a s e t = b e t a s e t !

254 ELSE !−1 ∗ l a t i t u d e i n

255 b e t a s e t = − b e t a s e t !

256 END IF !50% 0 f c a s e s

257

258 CALL R o t a t e

259 norm ( : ) = MATMUL( y r o t , norm ( : ) ) ! R o t a t e t o t h e chosen

260 norm ( : ) = MATMUL( x r o t , norm ( : ) ) ! random a n g l e

261

262 IF ( n e w s a t s ) THEN

263 DO k = 1 , n s a t s !

264 p l a n e D i s t = abs ( norm ( 1 ) ∗ pos ( 1 , k ) + norm ( 2 ) ∗ pos ( 2 , k ) + norm ( 3 ) ∗ pos ( 3 , k ) ) !

265 IF ( p l a n e D i s t . l t . MAXVAL( c l o s e s t s a t s ) ) THEN ! F ind t h e c l o s e s t ’ n s a t s u b ’

266 u = MAXLOC( c l o s e s t s a t s , DIM = 1) ! s a t e l l i t e s t o t h e c u r r e n t l y

267 c l o s e s t s a t s ( u ) = p l a n e D i s t ! t e s t e d p l a n e

268 c l o s e s t s a t s i d ( u ) = k !

269 END IF !

270 END DO

271 END IF

272 rms = 0 . d0 !

273 DO k = 1 , n s a t s u b ! Measure t h e RMS f o r t h e p l a n e based on t h e c l o s e s t ’ n s a t s u b ’ s a t e l l i t e s

274 p l a n e D i s t = abs ( norm ( 1 ) ∗ pos ( 1 , c l o s e s t s a t s i d ( k ) ) + norm ( 2 ) ∗ pos ( 2 , c l o s e s t s a t s i d ( k ) ) + norm ( 3 ) ∗ pos ( 3 , c l o s e s t s a t s i d ( k ) ) )

275 rms = rms + ( p l a n e D i s t ) ∗∗2 !

276 END DO !

277 rms = SQRT( rms / n s a t s u b ) !

278

279 IF ( rms . l t . min rms ) THEN !
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280 min rms = rms ! I f t h e RMS i s t h e

281 b e s t s a t s = c l o s e s t s a t s i d ! l o w s t e n c o u n t e r e d so f a r

282 END IF ! t h e n s t o r e i t

283 END DO !

284

285 r m s a v e r a g e ( i t ) = r m s a v e r a g e ( i t ) + min rms ! min rms i s now a good a p p r o x i m a t i o n t o t h e l o w e s t p o s s i b l e f o r t h e t e s t e d sample

286

287 END SUBROUTINE MaxSigFind

288

289 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

290

291 ! ’ T h e t a P h i ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

292

293 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

294

295 ! ’ H i s t o P l o t ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

296

297 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

298

299 ! l o g i c a l f u n c t i o n i n p o l y ( x , y , np , xp , yp ) o m i t t e d − s e e MF TRGB . f95 i n p r e c e d i n g a p p e n d i x

300 ! r e a l f u n c t i o n f imag ( x0 , xs , xe , y0 , ys , ye ) o m i t t e d − s e e MF TRGB . f95 i n p r e c e d i n g a p p e n d i x

301

302 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

303

304 ! ’ SampledDis t ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

305

306 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

307

308 ! ’ F i x e d D i s t ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

309

310 ! The f u n c t i o n o f t h i s s u b r o u t i n e i s t o r e a d i n t h e b e s t f i t s a t e l l i t e p o s i t i o n s

311 ! ( a s opposed t o t h e p o s i t i o n s g e n e r a t e d from sampled s a t e l l i t e d i s t a n c e s ) . T h i s

312 ! s u b r o u t i n e i s n o t i n c l u d e d s p e c i f i c a l l y i n ’ PlaneSigRMS . f95 ’ b u t i t ’ s f u n c t i o n s

313 ! a r e pe r fo rmed a t t h e b e g i n n i n g of t h e ’ S i g n i f i c a n c e ’ s u b r o u t i n e and a t t h e end

314 ! o f t h e ’ SampledDis t ’ s u b r o u t i n e

315

316 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

317

318 ! ’ BorderGet ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

319

320 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: pole vicinity counts satid w.f95

Creation Date: 24 June 2012

Relevant Section: Ch. 5; Paper III §3.3

Notes: This is an analysis program for handling pole distribution maps from the real data, as

produced using Subroutines for Processing Satellite Subsets (p. 260). A similar program was

written to process the individual pole distribution maps from the many random realizations

of satellites, which are then averaged. The code in this program performs two main tasks.

The first is to generate a density profile for all poles falling within 15◦ of the most frequent

pole location (e.g. Fig. 12 in Paper III). The second is to produce a histogram showing the

extent to which each satellite has contributed to the most frequent pole (e.g. Fig. 13 in Paper

III).

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s

2 IMPLICIT NONE

3

4 INTEGER : : i , j , k , i o s

5

6 REAL : : coun t s , ang le , e r r s a m p s , r a d b i n s ( 1 5 , 2 ) = 0 . e0 , s a t c o u n t s ( 2 5 , 2 )

7 REAL : : max counts , p o l e t h e t a m o d e , p o l e p h i m o d e

8 PARAMETER( e r r s a m p s = 1 0 0 . e0 )

9

10 REAL∗8 : : dummy , b e s t t h e t a , b e s t p h i , p o l e t h e t a , p o l e p h i , p i

11 PARAMETER( p i = acos ( −1 . d0 ) )

12

13 REAL : : ncombos = 53130 . e0

14 REAL : : c u m p o l e c o u n t

15

16 REAL : : s a t ( 2 5 )

17

18 LOGICAL : : c u m u l a t i v e

19 PARAMETER( c u m u l a t i v e = . t r u e . )

20

21 END MODULE Gl ob a l

22

23 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24

25 PROGRAM p o l e v i c i n i t y c o u n t s ! Counts number o f p o l e s w i t h i n ’x ’ d e g r e e s o f t h e b e s t − f i t p o l e

26 USE Gl ob a l ! where x i s an i n t e g e r such t h a t 1 . ge . x . ge . 15

27 IMPLICIT NONE ! Counts a r e d i v i d e d by t h e number o f samples o f each c o m b i n a t i o n

28

29 DOUBLE PRECISION : : s la DSEP

30

31 b e s t t h e t a = 38 .37154 d0 ; b e s t p h i = −78.7439 d0 ! l a t and l ong of most f r e q p o l e

32 ! b e s t t h e t a = 9 . 9 d0 ; b e s t p h i = −87.9 d0 ! l a t and l ong of b lob

33

34 ! | | Open f i l e wi th

35 ! \ / p o l e p o s i t i o n s

36 OPEN( u n i t = 11 , f i l e = ’ Sa t Combo Planes / P l a n e S t a t s 5 s a t s e r r w e i g h t e d / p o l e s p e r p o s 5 s a t s . d a t ’ , s t a t u s = ’ o l d ’ )

37

38 DO i = 1 , 15 ! d e g r e e

39 r a d b i n s ( i , 1 ) = REAL( i ) ! v a l u e s
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40 END DO ! o f b i n

41

42 b e s t t h e t a = b e s t t h e t a ∗ ( p i / 1 8 0 . d0 ) ! Conve r t t o

43 b e s t p h i = b e s t p h i ∗ ( p i / 1 8 0 . d0 ) ! r a d i a n s

44

45 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

46

47 c u m p o l e c o u n t = 0 . e0

48 i = 0

49

50 DO WHILE ( . TRUE . )

51

52 i = i + 1

53

54 ! | | Read i n p o l e p o s i t i o n s and s a t e l l i t e

55 ! \ / c o n t r i b u t i o n s a t t h a t p o s i t i o n

56 READ ( 1 1 , ∗ , IOSTAT = i o s ) dummy , dummy , dummy , p o l e t h e t a , p o l e p h i , coun t s , &

57 s a t ( 1 ) , s a t ( 2 ) , s a t ( 3 ) , s a t ( 4 ) , s a t ( 5 ) , s a t ( 6 ) , s a t ( 7 ) , s a t ( 8 ) , s a t ( 9 ) , s a t ( 1 0 ) , &

58 s a t ( 1 1 ) , s a t ( 1 2 ) , s a t ( 1 3 ) , s a t ( 1 4 ) , s a t ( 1 5 ) , s a t ( 1 6 ) , s a t ( 1 7 ) , s a t ( 1 8 ) , s a t ( 1 9 ) , s a t ( 2 0 ) , &

59 s a t ( 2 1 ) , s a t ( 2 2 ) , s a t ( 2 3 ) , s a t ( 2 4 ) , s a t ( 2 5 )

60

61 c u m p o l e c o u n t = c u m p o l e c o u n t + c o u n t s

62

63 IF ( c o u n t s . g t . max coun t s ) THEN

64 max coun t s = c o u n t s

65 p o l e t h e t a m o d e = p o l e t h e t a

66 p o l e p h i m o d e = p o l e p h i

67 END IF

68

69 p o l e t h e t a = p o l e t h e t a ∗ ( p i / 1 8 0 . d0 ) ! Conve r t t o

70 p o l e p h i = p o l e p h i ∗ ( p i / 1 8 0 . d0 ) ! r a d i a n s

71

72 ! | | Measure a n g u l a r d i s t a n c e between c u r r e n t

73 ! \ / p o l e and b e s t − f i t p o l e ( u s e s SLALIB )

74 a n g l e = sla DSEP ( b e s t p h i , b e s t t h e t a , p o l e p h i , p o l e t h e t a )

75

76 a n g l e = a n g l e ∗ ( 1 8 0 . d0 / p i ) ! Conve r t back t o d e g r e e s

77

78 ! | | Find a n g u l a r d i s t a n c e b i n t o p u t

79 ! \ / p o l e i n t o ( i f i t i s w i t h i n 15 d e g r e e s )

80 IF ( a n g l e . l e . 1 . e0 ) THEN

81 r a d b i n s ( 1 , 2 ) = r a d b i n s ( 1 , 2 ) + c o u n t s

82 DO k = 1 , 25 ! Count number o f

83 s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s

84 END DO ! p o l e from each s a t e l l i t e

85 ELSE IF ( a n g l e . g t . 1 . e0 . and . a n g l e . l e . 2 . e0 ) THEN

86 r a d b i n s ( 2 , 2 ) = r a d b i n s ( 2 , 2 ) + c o u n t s

87 DO k = 1 , 25 ! Count number o f

88 s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s

89 END DO ! p o l e from each s a t e l l i t e

90 ELSE IF ( a n g l e . g t . 2 . e0 . and . a n g l e . l e . 3 . e0 ) THEN

91 r a d b i n s ( 3 , 2 ) = r a d b i n s ( 3 , 2 ) + c o u n t s

92 DO k = 1 , 25 ! Count number o f

93 s a t c o u n t s ( k , 2 ) = s a t c o u n t s ( k , 2 ) + s a t ( k ) ! c o n t r i b u t i o n s t o t h i s

94 END DO ! p o l e from each s a t e l l i t e

95 ELSE IF ( a n g l e . g t . 3 . e0 . and . a n g l e . l e . 4 . e0 ) THEN

96 r a d b i n s ( 4 , 2 ) = r a d b i n s ( 4 , 2 ) + c o u n t s

97 ELSE IF ( a n g l e . g t . 4 . e0 . and . a n g l e . l e . 5 . e0 ) THEN

98 r a d b i n s ( 5 , 2 ) = r a d b i n s ( 5 , 2 ) + c o u n t s

99 ELSE IF ( a n g l e . g t . 5 . e0 . and . a n g l e . l e . 6 . e0 ) THEN

100 r a d b i n s ( 6 , 2 ) = r a d b i n s ( 6 , 2 ) + c o u n t s
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101 ELSE IF ( a n g l e . g t . 6 . e0 . and . a n g l e . l e . 7 . e0 ) THEN

102 r a d b i n s ( 7 , 2 ) = r a d b i n s ( 7 , 2 ) + c o u n t s

103 ELSE IF ( a n g l e . g t . 7 . e0 . and . a n g l e . l e . 8 . e0 ) THEN

104 r a d b i n s ( 8 , 2 ) = r a d b i n s ( 8 , 2 ) + c o u n t s

105 ELSE IF ( a n g l e . g t . 8 . e0 . and . a n g l e . l e . 9 . e0 ) THEN

106 r a d b i n s ( 9 , 2 ) = r a d b i n s ( 9 , 2 ) + c o u n t s

107 ELSE IF ( a n g l e . g t . 9 . e0 . and . a n g l e . l e . 1 0 . e0 ) THEN

108 r a d b i n s ( 1 0 , 2 ) = r a d b i n s ( 1 0 , 2 ) + c o u n t s

109 ELSE IF ( a n g l e . g t . 1 0 . e0 . and . a n g l e . l e . 1 1 . e0 ) THEN

110 r a d b i n s ( 1 1 , 2 ) = r a d b i n s ( 1 1 , 2 ) + c o u n t s

111 ELSE IF ( a n g l e . g t . 1 1 . e0 . and . a n g l e . l e . 1 2 . e0 ) THEN

112 r a d b i n s ( 1 2 , 2 ) = r a d b i n s ( 1 2 , 2 ) + c o u n t s

113 ELSE IF ( a n g l e . g t . 1 2 . e0 . and . a n g l e . l e . 1 3 . e0 ) THEN

114 r a d b i n s ( 1 3 , 2 ) = r a d b i n s ( 1 3 , 2 ) + c o u n t s

115 ELSE IF ( a n g l e . g t . 1 3 . e0 . and . a n g l e . l e . 1 4 . e0 ) THEN

116 r a d b i n s ( 1 4 , 2 ) = r a d b i n s ( 1 4 , 2 ) + c o u n t s

117 ELSE IF ( a n g l e . g t . 1 4 . e0 . and . a n g l e . l e . 1 5 . e0 ) THEN

118 r a d b i n s ( 1 5 , 2 ) = r a d b i n s ( 1 5 , 2 ) + c o u n t s

119 END IF

120 ! / \ Find a n g u l a r d i s t a n c e b i n t o p u t

121 ! | | p o l e i n t o ( i f i t i s w i t h i n 15 d e g r e e s )

122

123 ! | | Chack f o r

124 ! \ / end of f i l e

125 IF ( i o s == −1) THEN

126 i = i − 1

127 e x i t

128 ELSE IF ( i o s . g t . 0 ) THEN

129 WRITE ( ∗ , ∗ ) i

130 i= i −1

131 c y c l e

132 END IF

133

134 END DO

135

136 WRITE ( ∗ , ∗ ) ” Most f r e q u e n t p o l e a t t h e t a =” , p o l e t h e t a m o d e , ” p h i =” , po l e ph i mode , ” wi th ” , max counts , ” c o u n t s . ”

137

138 ncombos = c u m p o l e c o u n t / e r r s a m p s

139

140 r a d b i n s ( : , 2 ) = r a d b i n s ( : , 2 ) / e r r s a m p s ! Di v i d e by number o f samples .

141

142 s a t c o u n t s ( : , 2 ) = s a t c o u n t s ( : , 2 ) / e r r s a m p s

143

144 DO i = 1 , 25

145 s a t c o u n t s ( i , 1 ) = REAL( i )

146 END DO

147

148

149 IF ( c u m u l a t i v e ) THEN

150 DO i = 2 , 15 !

151 r a d b i n s ( i , 2 ) = r a d b i n s ( i , 2 ) + r a d b i n s ( i −1 ,2) ! Conve r t t o c u m u l a t i v e c o u n t s

152 END DO !

153 END IF

154

155 DO i = 1 , 15 ! P r i n t number

156 WRITE ( ∗ , ’ ( 3 F16 . 5 ) ’ ) r a d b i n s ( i , 1 ) , r a d b i n s ( i , 2 ) , & ! o f p o l e s

157 ( r a d b i n s ( i , 2 ) / ncombos ) ∗ 1 0 0 . e0 ! be tween x−1 and

158 END DO ! x (< 15) d e g r e e s

159

160 IF ( c u m u l a t i v e ) THEN

161 WRITE ( ∗ , ∗ ) ” T o t a l p o l e s w i t h i n 15 d e g r e e s o f b e s t − f i t p o l e : ” , r a d b i n s ( 1 5 , 2 ) , &
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162 ” ( ” , ( r a d b i n s ( 1 5 , 2 ) / ncombos ) ∗ 1 0 0 . e0 , ”% ) ” !

163 ELSE

164 WRITE ( ∗ , ∗ ) ” T o t a l p o l e s w i t h i n 15 d e g r e e s o f b e s t − f i t p o l e : ” , SUM( r a d b i n s ( : , 2 ) ) , &

165 ” ( ” , (SUM( r a d b i n s ( : , 2 ) ) / ncombos ) ∗ 1 0 0 . e0 , ”% ) ” !

166 END IF

167

168 WRITE ( ∗ , ∗ ) ” ” !

169 WRITE ( ∗ , ∗ ) ” C o n t r i b u t i o n s from each s a t e l l i t e t o a p o l e w i t h i n 3 d e g r e e s o f most f r e q u e n t p o l e : ”

170 ! P r i n t number o f c o n t r i b u t i o n s

171 DO i = 1 , 25 ! from each s a t e l l i t e t o a

172 WRITE ( ∗ , ’ ( 2 F16 . 5 ) ’ ) s a t c o u n t s ( i , 1 ) , s a t c o u n t s ( i , 2 ) ! p o l e w i t h i n 3 d e g r e e s o f t h e

173 END DO ! b e s t f i t p o l e

174

175

176 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

177

178 ! | | Make h i s t o g r a m of a v e r a g e p o l e d e n s i t y i n 15 n e s t e d

179 ! \ / one d e g r e e wide a n n u l i a round t h e most f r e q u e n t p o l e

180

181 CALL pgbeg in ( 0 , ’ p o l e s a t p r o f e r r w . ps /CPS ’ , 1 , 1 )

182 !CALL pgbeg in ( 0 , ’ p o l e s a t p r o f e r r w b l o b . ps /CPS ’ , 1 , 1 )

183

184 CALL pgenv ( 0 . , 1 5 . , 0 . , 1 . 1 ∗MAXVAL( r a d b i n s ( : , 2 ) ) / ncombos , 0 , 0 )

185 CALL pgb in ( 1 5 , r a d b i n s ( : , 1 ) −0.5 , r a d b i n s ( : , 2 ) / ncombos , . t r u e . )

186 IF ( c u m u l a t i v e ) THEN

187 CALL p g l a b ( ’ Degrees ’ , ’ Cumula t ive P r o b a b i l i t y ’ , ’ ’ )

188 ELSE

189 CALL p g l a b ( ’ Degrees ’ , ’ P r o b a b i l i t y ’ , ’ ’ )

190 END IF

191 CALL pgend

192

193 ! / \Make h i s t o g r a m of a v e r a g e p o l e d e n s i t y i n 15 n e s t e d

194 ! | | one d e g r e e wide a n n u l i a round t h e most f r e q u e n t p o l e

195

196 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

197

198 CLOSE( 1 1 )

199

200 ! | | Make h i s t o g r a m of c o n t r i b u t i o n s o f each s a t e l l i t e t o a p o l e

201 ! \ / wi th i n 3 d e g r e e s o f t h e l o c a t i o n o f most f r e q u e n t p o l e

202

203 CALL pgbeg in ( 0 , ’ p o l e s a t c o n t e r r w . ps /CPS ’ , 1 , 1 )

204 !CALL pgbeg in ( 0 , ’ p o l e s a t c o n t e r r w b l o b . ps /CPS ’ , 1 , 1 )

205

206 CALL pgsvp ( 0 . 1 , 0 . 9 , 0 . 1 , 0 . 9 )

207 CALL pgswin ( 0 . 5 , 2 5 . 5 , 0 . , 1 . 1 ∗MAXVAL( s a t c o u n t s ( : , 2 ) ) )

208 CALL pgbox ( ’BCST ’ , 0 . 0 , 0 , ’BCNST ’ , 0 . 0 , 0 )

209

210 CALL pgb in ( 2 5 , s a t c o u n t s ( : , 1 ) , s a t c o u n t s ( : , 2 ) , . t r u e . )

211

212 CALL p g l a b ( ’ ’ , ’ c o u n t s ’ , ’ ’ )

213

214 CALL PGPTXT ( 1 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ I ’ )

215 CALL PGPTXT ( 2 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ I I ’ )

216 CALL PGPTXT ( 3 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ I I I ’ )

217 CALL PGPTXT ( 4 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’V’ )

218 CALL PGPTXT ( 5 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ IX ’ )

219 CALL PGPTXT ( 6 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’X’ )

220 CALL PGPTXT ( 7 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XI ’ )

221 CALL PGPTXT ( 8 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XII ’ )

222 CALL PGPTXT ( 9 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ X I I I ’ )
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223 CALL PGPTXT ( 1 0 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XIV ’ )

224 CALL PGPTXT ( 1 1 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XV’ )

225 CALL PGPTXT ( 1 2 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XVI ’ )

226 CALL PGPTXT ( 1 3 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XVII ’ )

227 CALL PGPTXT ( 1 4 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XVIII ’ )

228 CALL PGPTXT ( 1 5 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XIX ’ )

229 CALL PGPTXT ( 1 6 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XX’ )

230 CALL PGPTXT ( 1 7 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XXI ’ )

231 CALL PGPTXT ( 1 8 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XXII ’ )

232 CALL PGPTXT ( 1 9 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ XXIII ’ )

233 CALL PGPTXT ( 2 0 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XXIV ’ )

234 CALL PGPTXT ( 2 1 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XXV’ )

235 CALL PGPTXT ( 2 2 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XXVI ’ )

236 CALL PGPTXT ( 2 3 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’XXVII ’ )

237 CALL PGPTXT ( 2 4 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’ group ’ )

238 CALL PGPTXT ( 2 5 . 1 5 , −1. , 9 0 . 0 , 1 . 0 , ’M33 ’ )

239

240 CALL pgend

241

242 ! / \Make h i s t o g r a m of c o n t r i b u t i o n s o f each s a t e l l i t e t o a p o l e

243 ! | | wi th i n 3 d e g r e e s o f t h e l o c a t i o n o f most f r e q u e n t p o l e

244

245 END PROGRAM p o l e v i c i n i t y c o u n t s
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Program: aitoff hammer.f95

Creation Date: Cir. May 2012 Many versions

Relevant Section: Ch. 5 (Paper III aitoff-hammer plots)

Notes: This program illustrates the way in which the aitoff-hammer plots were produced. I

wrote several versions but that presented here is the one used for the standard plots which

show the plane member satellites, the great circle on the sky representing the plane, and the

pole and anti-pole of the plane (see Fig. 15 of Paper III for example). The aitoff-hammer grid

is produced by first making a rectangular grid of a large number of points along the desired

lines of latitude and longitude and then transforming the x and y of the points via a Hammer

projection. The points are then linked up to produce the final grid. All positions in Paper

III (satellites and plane poles) are actually calculated first in the Cartesian coordinate system

of Fig. 4.1, rotated into the M31-centric reference frame, converted to Spherical coordinates

and then finally transformed into their equivalent Hammer projection locations for plotting.

1 MODULE G l ob a l ! D e f i n e s a l l v a r i a b l e s

2 IMPLICIT NONE

3

4 INTEGER : : i , j , s , idum = −9999 , n i t , seam loc , c o l o r ( 2 9 ) , n s a t s

5 PARAMETER( n i t = 1000000)

6 PARAMETER( n s a t s = 27)

7

8 REAL : : p i

9 PARAMETER( p i = acos ( −1 . e0 ) )

10

11 REAL : : s a t x y z ( 2 9 , 3 )

12 REAL : : t h e t a c o o r d , p h i c o o r d

13 REAL : : t h e t a ( 2 9 ) , p h i ( 2 9 ) , t h e t a t ( 2 8 ) , p h i t ( 2 8 )

14 REAL : : t h e t a a h , p h i a h

15 REAL : : a l p h a s e t , b e t a s e t , gamma set

16 REAL : : x r o t ( 3 , 3 ) , y r o t ( 3 , 3 ) , z r o t ( 3 , 3 )

17 REAL : : p o l e ( 2 ) , p o l e 2 ( 2 ) , gc ( 3 6 1 , 2 ) , g c t ( 3 6 1 , 2 )

18 REAL : : c a r t h o l d ( 3 6 1 , 3 ) , p o l e c a r t ( 3 ) , g c c a r t ( 3 6 1 , 3 )

19 REAL : : s e a m v a l

20 REAL : : B e s t S a t D i s t ( 2 7 ) , S a t P o s ( 2 7 , 2 ) , x i ( 2 7 ) , e t a ( 2 7 ) , m 3 1 d i s t

21 REAL∗8 : : RA, DEC, x i d b l e , e t a d b l e

22

23 END MODULE Gl ob a l

24

25 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26

27 PROGRAM a i t o f f h a m m e r p r o j ! Mas te r program

28 USE Gl ob a l

29 IMPLICIT NONE

30

31 CALL s a t x y z d a t a

32 CALL a i t o f f h a m m e r

33

34 END PROGRAM a i t o f f h a m m e r p r o j

35
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36 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37

38 SUBROUTINE a i t o f f h a m m e r ! Produce t h e p l o t

39 USE Gl ob a l

40 IMPLICIT NONE

41

42 INTEGER : : i t i , i t j , i t k

43

44 REAL : : l a t ( 1 8 1 , 2 , 1 3 ) , l o n ( 1 8 1 , 2 , 1 3 ) , l a t t ( 1 8 1 , 2 , 1 3 ) , l o n t ( 1 8 1 , 2 , 1 3 )

45

46 ! Note l a t and l o n a r e l i n e s o f c o n s t a n t l a t i t u d e and l o n g i t u d e

47 ! r e s p e c t i v e l y , each made up of 181 d o t s

48 ! l a t ( : , 1 , : ) i s t h e l o n g i t u d e o f t h e d o t

49 ! l a t ( : , 2 , : ) i s t h e l a t i t u d e o f t h e d o t

50 ! So l o n ( 8 1 , 1 , 3 ) i s t h e l o n g i t u d e o f t h e 81 s t d o t o f t h e 3 rd p a r a l l e l

51 ! I t has a v a l u e o f +120 ( i . e . t h e f i x e d l o n g i t u d e o f t h i s p a r a l l e l )

52 ! l o n ( 8 1 , 2 , 3 ) has a v a l u e o f −10 i . e . t h e l a t i t u d e o f t h e d o t a l o n g

53 ! t h i s l i n e o f l o n g i t u d e .

54 !

55 ! l a t t and l o n t s t o r e t h e l a t and l o n v a l u e s b e f o r e t h e i r c o n v e r s i o n

56 ! t o t h e a i t o f f hammer p r o j e c t i o n .

57

58 l o n ( : , 1 , 1 ) = 1 8 0 . e0

59 l o n ( : , 1 , 2 ) = 1 5 0 . e0

60 l o n ( : , 1 , 3 ) = 1 2 0 . e0

61 l o n ( : , 1 , 4 ) = 9 0 . e0

62 l o n ( : , 1 , 5 ) = 6 0 . e0

63 l o n ( : , 1 , 6 ) = 3 0 . e0

64 l o n ( : , 1 , 7 ) = 0 . e0

65 l o n ( : , 1 , 8 ) = −30. e0

66 l o n ( : , 1 , 9 ) = −60. e0

67 l o n ( : , 1 , 1 0 ) = −90. e0

68 l o n ( : , 1 , 1 1 ) = −120. e0

69 l o n ( : , 1 , 1 2 ) = −150. e0

70 l o n ( : , 1 , 1 3 ) = −180. e0

71

72 l a t ( : , 2 , 1 ) = 9 0 . e0

73 l a t ( : , 2 , 2 ) = 7 5 . e0

74 l a t ( : , 2 , 3 ) = 6 0 . e0

75 l a t ( : , 2 , 4 ) = 4 5 . e0

76 l a t ( : , 2 , 5 ) = 3 0 . e0

77 l a t ( : , 2 , 6 ) = 1 5 . e0

78 l a t ( : , 2 , 7 ) = 0 . e0

79 l a t ( : , 2 , 8 ) = −15. e0

80 l a t ( : , 2 , 9 ) = −30. e0

81 l a t ( : , 2 , 1 0 ) = −45. e0

82 l a t ( : , 2 , 1 1 ) = −60. e0

83 l a t ( : , 2 , 1 2 ) = −75. e0

84 l a t ( : , 2 , 1 3 ) = −90. e0

85

86 DO i t i = 1 , 181

87 l o n ( i t i , 2 , : ) = REAL( i t i − 91)

88 l a t ( i t i , 1 , : ) = REAL( ( 2 ∗ i t i ) − 182)

89 END DO

90

91 l o n = l o n ∗ ( p i / 1 8 0 . e0 ) ; l a t = l a t ∗ ( p i / 1 8 0 . e0 ) ! Conve r t t o r a d i a n s

92

93 l o n t = l o n ; l a t t = l a t

94

95 DO i t i = 1 , 13 ! The c o n v e r s i o n t o an a i t o f f −

96 DO i t j = 1 , 181 ! hammer p r o j e c t i o n
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97 l o n ( i t j , 1 , i t i ) = 2 . e0 ∗ SQRT ( 2 . e0 ) ∗ cos ( l o n t ( i t j , 2 , i t i ) ) ∗ s i n ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) / &

98 SQRT ( 1 . e0 + cos ( l o n t ( i t j , 2 , i t i ) ) ∗ cos ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) )

99 l o n ( i t j , 2 , i t i ) = SQRT ( 2 . e0 ) ∗ s i n ( l o n t ( i t j , 2 , i t i ) ) / &

100 SQRT ( 1 . e0 + cos ( l o n t ( i t j , 2 , i t i ) ) ∗ cos ( l o n t ( i t j , 1 , i t i ) / 2 . e0 ) )

101 l a t ( i t j , 1 , i t i ) = 2 . e0 ∗ SQRT ( 2 . e0 ) ∗ cos ( l a t t ( i t j , 2 , i t i ) ) ∗ s i n ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) / &

102 SQRT ( 1 . e0 + cos ( l a t t ( i t j , 2 , i t i ) ) ∗ cos ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) )

103 l a t ( i t j , 2 , i t i ) = SQRT ( 2 . e0 ) ∗ s i n ( l a t t ( i t j , 2 , i t i ) ) / &

104 SQRT ( 1 . e0 + cos ( l a t t ( i t j , 2 , i t i ) ) ∗ cos ( l a t t ( i t j , 1 , i t i ) / 2 . e0 ) )

105 END DO

106 END DO

107

108 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

109 ! | | P l o t t i n g

110 ! \ / Code

111

112 CALL pgbeg in ( 0 , ’ s a t c o m b o 1 5 s a t s . ps /CPS ’ , 1 , 1 )

113

114 CALL pgenv ( −1.0 ∗ pi , 1 . 0 ∗ pi , −0.5 ∗ pi , 0 . 5 ∗ pi , 1 , −2)

115

116 DO i t i = 1 , 13

117 DO i t j = 2 , 181

118 CALL p g l i n e ( 2 , ( / l o n ( i t j − 1 , 1 , i t i ) , l o n ( i t j , 1 , i t i ) / ) , ( / l o n ( i t j − 1 , 2 , i t i ) , l o n ( i t j , 2 , i t i ) / ) )

119 CALL p g l i n e ( 2 , ( / l a t ( i t j − 1 , 1 , i t i ) , l a t ( i t j , 1 , i t i ) / ) , ( / l a t ( i t j − 1 , 2 , i t i ) , l a t ( i t j , 2 , i t i ) / ) )

120 END DO

121 END DO

122

123 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

124 ! Th i s segment t a k e s t h e normal v e c t o r o f t h e b e s t f i t p l ane , f i n d s t h e c o r r e s p o n d i n g

125 ! pole , a n t i −p o l e and g r e a t − c i r c l e i n l a t . , l ong . and t h e n c o n v e r t s a l l t o an a i t o f f

126 !−hammer p r o j e c t i o n . These a r e t h e n p l o t t e d on t h e a i t o f f −hammer s p h e r e .

127

128 p o l e c a r t = ( / 0 .15819097 , 0 .76853156 , 0 .61994755 / ) ! x , y , z o f normal v e c t o r t o BFP

129

130 c o l o r ( 1 ) = 2 ; c o l o r ( 8 ) = 2 ; c o l o r ( 1 5 ) = 1 ; c o l o r ( 2 2 ) = 2

131 c o l o r ( 2 ) = 1 ; c o l o r ( 9 ) = 2 ; c o l o r ( 1 6 ) = 1 ; c o l o r ( 2 3 ) = 2

132 c o l o r ( 3 ) = 2 ; c o l o r ( 1 0 ) = 2 ; c o l o r ( 1 7 ) = 1 ; c o l o r ( 2 4 ) = 2 ! 8

133 c o l o r ( 4 ) = 1 ; c o l o r ( 1 1 ) = 1 ; c o l o r ( 1 8 ) = 1 ; c o l o r ( 2 5 ) = 2 ! 8

134 c o l o r ( 5 ) = 2 ; c o l o r ( 1 2 ) = 2 ; c o l o r ( 1 9 ) = 1 ; c o l o r ( 2 6 ) = 2 ! 8

135 c o l o r ( 6 ) = 1 ; c o l o r ( 1 3 ) = 2 ; c o l o r ( 2 0 ) = 1 ; c o l o r ( 2 7 ) = 1

136 c o l o r ( 7 ) = 2 ; c o l o r ( 1 4 ) = 1 ; c o l o r ( 2 1 ) = 2 ; c o l o r ( 2 8 ) = 1

137

138 c o l o r ( 2 9 ) = 2 ! Colour f o r t h e NGC147 / NGC185 / AND XXX group m i d p o i n t i c o n

139

140 CALL T h e t a P h i ( p o l e c a r t ( 1 ) , p o l e c a r t ( 2 ) , p o l e c a r t ( 3 ) ) !

141 ! Conve r t t o

142 p o l e ( 1 ) = t h e t a c o o r d ! l a t , l ong

143 p o l e ( 2 ) = p h i c o o r d !

144

145 p o l e 2 ( 1 ) = −1. e0 ∗ p o l e ( 1 ) !

146 p o l e 2 ( 2 ) = p o l e ( 2 ) + 1 8 0 . e0 ! F ind l a t i t u d e and

147 IF ( p o l e 2 ( 2 ) . g t . 1 8 0 . e0 ) THEN ! l o n g i t u d e o f a n t i −p o l e

148 p o l e 2 ( 2 ) = p o l e 2 ( 2 ) − 3 6 0 . e0 !

149 END IF !

150

151 DO i = 1 , 361 ! Find x , y , z o f v e c t o r s p e r p e n d i c u l a r

152 g c c a r t ( i , 1 ) = cos (REAL( i −181) ∗ ( p i / 1 8 0 . e0 ) ) ! t o p o l e c a r t − i . e . c a r t e s i a n

153 g c c a r t ( i , 2 ) = s i n (REAL( i −181) ∗ ( p i / 1 8 0 . e0 ) ) ! c o o r d i n a t e s o f b e s t f i t p l a n e ! ! ! ! ! ! ! ! ! ! ! ! !

154 g c c a r t ( i , 3 ) = −1. e0 ∗ ( p o l e c a r t ( 1 ) ∗ g c c a r t ( i , 1 ) + p o l e c a r t ( 2 ) ∗ g c c a r t ( i , 2 ) ) / & !

155 p o l e c a r t ( 3 ) !

156 g c c a r t ( i , : ) = g c c a r t ( i , : ) / SQRT( g c c a r t ( i , 1 ) ∗ ∗2 . e0 + g c c a r t ( i , 2 ) ∗∗ 2 . e0 + & !

157 g c c a r t ( i , 3 ) ∗ ∗2 . e0 ) !
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158 END DO !

159

160 s e a m v a l = p i

161 DO i = 1 , 361

162

163 CALL T h e t a P h i ( g c c a r t ( i , 1 ) , g c c a r t ( i , 2 ) , g c c a r t ( i , 3 ) ) ! Conve r t b e s t

164 ! f i t p l a n e x , y , z

165 gc ( i , 1 ) = t h e t a c o o r d ∗ ( p i / 1 8 0 . e0 ) ! t o t h e i r l a t .

166 gc ( i , 2 ) = p h i c o o r d ∗ ( p i / 1 8 0 . e0 ) ! and long . v a l u e s

167

168 IF ( gc ( i , 2 ) . l e . s e a m v a l ) THEN ! F ind seam

169 s e a m v a l = gc ( i , 2 ) ! where −180

170 s e a m l o c = i ! l o n g i t u d e

171 END IF ! meets +180

172

173 END DO

174

175 g c t = gc ! S e t g c t t o pre −o r d e r − f i x gc

176

177 IF ( gc ( 1 , 2 ) . l t . gc ( 3 6 1 , 2 ) ) THEN !

178 gc ( 1 , : ) = g c t ( 3 6 1 , : ) ! f i x

179 gc ( 3 6 1 , : ) = g c t ( 1 , : ) ! o r d e r

180 END IF !

181

182 g c t = gc ! S e t g c t t o new gc

183

184 DO i = 1 , 361 !

185 gc ( i , 2 ) = 2 . e0 ∗ SQRT ( 2 . e0 ) ∗ cos ( g c t ( i , 1 ) ) ∗ s i n ( g c t ( i , 2 ) / 2 . e0 ) ! Trans fo rm g r e a t −

186 gc ( i , 2 ) = gc ( i , 2 ) / SQRT ( 1 . e0 + cos ( g c t ( i , 1 ) ) ∗ cos ( g c t ( i , 2 ) / 2 . e0 ) ) ! c i r c l e i n t o

187 gc ( i , 1 ) = SQRT ( 2 . e0 ) ∗ s i n ( g c t ( i , 1 ) ) ! a i t o f f −hammer

188 gc ( i , 1 ) = gc ( i , 1 ) / SQRT ( 1 . e0 + cos ( g c t ( i , 1 ) ) ∗ cos ( g c t ( i , 2 ) / 2 . e0 ) ) ! p r o j e c t i o n

189 END DO !

190

191 CALL p g s c i ( 4 ) !

192 CALL pgslw ( 3 ) !

193 CALL pgsch ( 2 . 0 ) !

194 CALL a i t o f f c o n v e r t ( p o l e ( 1 ) , p o l e ( 2 ) ) !

195 CALL pgp t ( 1 , p o l e ( 2 ) , p o l e ( 1 ) , 845) ! P l o t p o l e

196 CALL a i t o f f c o n v e r t ( p o l e 2 ( 1 ) , p o l e 2 ( 2 ) ) !

197 CALL pgp t ( 1 , p o l e 2 ( 2 ) , p o l e 2 ( 1 ) , 846) ! a n t i −p o l e and

198 CALL pgsch ( 1 . 0 ) !

199 CALL pgslw ( 1 ) ! g r e a t c i r c l e

200 !

201 DO i = 2 , 361 !

202 CALL p g l i n e ( 2 , ( / gc ( i −1 ,2) , gc ( i , 2 ) / ) , ( / gc ( i −1 ,1) , gc ( i , 1 ) / ) ) !

203 END DO !

204

205 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

206

207 ! | | P l o t i n d i v i d u a l s a t e l l i t e s

208 ! \ / and l a b e l s

209 s = 1

210 CALL p g s c i ( c o l o r ( s ) )

211 CALL pgp t ( 1 , p h i ( s ) , t h e t a ( s ) , 843)

212 CALL p g p t x t ( p h i ( s ) −0.1 , t h e t a ( s ) +0 .0 , 0 . , 0 . , ’ I ’ )

213 ! :

214 ! : S = 2 , . . . , 26

215 ! :

216 s = 27

217 CALL p g s c i ( c o l o r ( s ) )

218 CALL pgp t ( 1 , p h i ( s ) , t h e t a ( s ) , 768)
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219 CALL p g p t x t ( p h i ( s ) −0.30 , t h e t a ( s ) +0 .05 , 0 . , 0 . , ’M33 ’ )

220

221 s = 28

222 CALL p g s c i ( c o l o r ( s ) )

223 CALL pgp t ( 1 , p h i ( s ) , t h e t a ( s ) , 2284)

224 CALL p g p t x t ( p h i ( s ) −0.3 , t h e t a ( s ) +0 .05 , 0 . , 0 . , ’MWy’ )

225

226 ! s = 29 ! Ngc147 / NGC185 / And XXX Group m i d p o i n t i c o n

227 !CALL p g s c i ( c o l o r ( s ) )

228 !CALL pgp t ( 1 , p h i ( s ) , t h e t a ( s ) , 0904)

229

230 ! / \ P l o t i n d i v i d u a l s a t e l l i t e s

231 ! | | and l a b e l s

232

233 CALL p g s c i ( 1 )

234

235 CALL pgp t ( 1 , 0 . , 0 . , 2293)

236 CALL p g p t x t ( −0 .3 , 0 . 0 5 , 0 . , 0 . , ’M31 ’ )

237

238 CALL pgsch ( 1 . 0 )

239

240 ! | | P l o t s l a b e l s f o r l i n e s o f

241 ! \ / c o n s t a n t l a t . and l ong .

242 CALL p g p t x t ( l a t ( 1 , 1 , 1 ) −0.05 , l a t ( 1 , 2 , 1 ) +0 .05 , 0 . , 0 . , ’ 90 ’ )

243 CALL p g p t x t ( l a t ( 1 , 1 , 2 ) −0.06 , l a t ( 1 , 2 , 2 ) +0 .05 , 0 . , 0 . , ’ 75 ’ )

244 CALL p g p t x t ( l a t ( 1 , 1 , 3 ) −0.08 , l a t ( 1 , 2 , 3 ) +0 .05 , 0 . , 0 . , ’ 60 ’ )

245 CALL p g p t x t ( l a t ( 1 , 1 , 4 ) −0.14 , l a t ( 1 , 2 , 4 ) +0 .03 , 0 . , 0 . , ’ 45 ’ )

246 CALL p g p t x t ( l a t ( 1 , 1 , 5 ) −0.18 , l a t ( 1 , 2 , 5 ) +0 .0 , 0 . , 0 . , ’ 30 ’ )

247 CALL p g p t x t ( l a t ( 1 , 1 , 6 ) −0.20 , l a t ( 1 , 2 , 6 ) −0.02 , 0 . , 0 . , ’ 15 ’ )

248 CALL p g p t x t ( l a t ( 1 , 1 , 7 ) −0.15 , l a t ( 1 , 2 , 7 ) −0.02 , 0 . , 0 . , ’ 0 ’ )

249 CALL p g p t x t ( l a t ( 1 , 1 , 8 ) −0.33 , l a t ( 1 , 2 , 8 ) −0.05 , 0 . , 0 . , ’−15 ’ )

250 CALL p g p t x t ( l a t ( 1 , 1 , 9 ) −0.31 , l a t ( 1 , 2 , 9 ) −0.07 , 0 . , 0 . , ’−30 ’ )

251 CALL p g p t x t ( l a t ( 1 , 1 , 1 0 ) −0.24 , l a t ( 1 , 2 , 1 0 ) −0.13 , 0 . , 0 . , ’−45 ’ )

252 CALL p g p t x t ( l a t ( 1 , 1 , 1 1 ) −0.20 , l a t ( 1 , 2 , 1 1 ) −0.13 , 0 . , 0 . , ’−60 ’ )

253 CALL p g p t x t ( l a t ( 1 , 1 , 1 2 ) −0.21 , l a t ( 1 , 2 , 1 2 ) −0.14 , 0 . , 0 . , ’−75 ’ )

254 CALL p g p t x t ( l a t ( 1 , 1 , 1 3 ) −0.20 , l a t ( 1 , 2 , 1 3 ) −0.12 , 0 . , 0 . , ’−90 ’ )

255

256 CALL pgsch ( 0 . 5 )

257 CALL p g p t x t ( l o n ( 9 1 , 1 , 1 1 ) −0.20 , l o n ( 9 1 , 2 , 1 1 ) −0.12 , 0 . , 0 . , ’−120 ’ )

258 CALL p g p t x t ( l o n ( 9 1 , 1 , 9 ) −0.15 , l o n ( 9 1 , 2 , 9 ) −0.12 , 0 . , 0 . , ’−60 ’ )

259 CALL p g p t x t ( l o n ( 9 1 , 1 , 5 ) −0.12 , l o n ( 9 1 , 2 , 5 ) −0.12 , 0 . , 0 . , ’ 60 ’ )

260 CALL p g p t x t ( l o n ( 9 1 , 1 , 3 ) −0.16 , l o n ( 9 1 , 2 , 3 ) −0.12 , 0 . , 0 . , ’ 120 ’ )

261 CALL p g p t x t ( l o n ( 9 1 , 1 , 1 ) −0.16 , l o n ( 9 1 , 2 , 1 ) −0.12 , 0 . , 0 . , ’ 180 ’ )

262

263 CALL pgsch ( 1 . 0 )

264

265 CALL pgend

266

267 END SUBROUTINE a i t o f f h a m m e r

268

269 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

270

271 SUBROUTINE s a t x y z d a t a ! Get t h e d a t a

272 USE Gl ob a l

273 IMPLICIT NONE

274

275 DOUBLE PRECISION : : s la DSEP

276

277 m 3 1 d i s t = 7 7 9 . e0 !M31

278

279 ! B e s t S a t D i s t ( 1 : 2 7 ) a s p e r ’ PlaneSigRMS . f95 ’ − s e e ’ S i g n i f i c a n c e ’ s u b r o u t i n e
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280

281 ! S a t P o s ( 1 : 2 7 , : ) a s p e r ’ PlaneSigRMS . f95 ’ − s e e ’ SampledDis t ’ s u b r o u t i n e

282

283 DO i = 1 , n s a t s

284 x i ( i ) = S a t P o s ( i , 1 )

285 e t a ( i ) = S a t P o s ( i , 2 )

286 x i ( i ) = x i ( i ) ∗ ( p i / 1 8 0 . e0 ) ! Conve r t a n g l e s from

287 e t a ( i ) = e t a ( i ) ∗ ( p i / 1 8 0 . e0 ) ! d e g r e e s t o r a d i a n s

288 END DO

289

290 DO i = 1 , n s a t s !

291 x i d b l e = x i ( i ) ; e t a d b l e = e t a ( i ) !

292 CALL sla DTP2S ( x i d b l e , e t a d b l e , 0 . d0 , 0 . d0 , RA, DEC) ! Conve r t t a n g e n t p l a n e

293 IF ( x i d b l e . l t . 0 . d0 ) then ! p r o j e c t i o n a n g l e s i n t o

294 RA = RA − ( 2 . e0 ∗ p i ) ! t h e i r t r u e a n g l e s u s i n g

295 END IF ! s la DTP2S

296 x i ( i ) = RA !

297 e t a ( i ) = DEC !

298 END DO

299

300 DO i = 1 , n s a t s !

301 x i d b l e = x i ( i ) ! F ind t h e t r u e a n g l e

302 e t a d b l e = e t a ( i ) ! t h e t a t − t h e a n g l e on

303 t h e t a t ( i ) = sla DSEP ( 0 . d0 , 0 . d0 , x i d b l e , e t a d b l e ) ! t h e sky between M31 and

304 END DO ! t h e o b j e c t ( u s e s sla DSEP )

305

306 DO i = 1 , n s a t s

307 s a t x y z ( i , 1 ) = ABS( B e s t S a t D i s t ( i ) ∗ cos ( t h e t a t ( i ) ) ∗ t a n ( x i ( i ) ) ) ! De te rmine l e n g t h o f x v e c t o r f o r each s a t e l l i t e

308 IF ( x i ( i ) . l t . 0 . e0 ) THEN !

309 s a t x y z ( i , 1 ) = −1. e0 ∗ s a t x y z ( i , 1 ) ! De te rmine i f x i s p o s i t i v e o r n e g a t i v e

310 END IF !

311

312 s a t x y z ( i , 2 ) = ABS( B e s t S a t D i s t ( i ) ∗ s i n ( e t a ( i ) ) ) ! De te rmine l e n g t h o f y v e c t o r f o r each s a t e l l i t e

313 IF ( e t a ( i ) . l t . 0 . e0 ) THEN !

314 s a t x y z ( i , 2 ) = −1. e0 ∗ s a t x y z ( i , 2 ) ! De te rmine i f y i s p o s i t i v e o r n e g a t i v e

315 END IF !

316

317 s a t x y z ( i , 3 ) = B e s t S a t D i s t ( i ) ∗ cos ( t h e t a t ( i ) ) − m 3 1 d i s t ! De te rmine l e n g t h and s i g n o f z v e c t o r

318 END DO

319

320 s a t x y z ( 2 8 , : ) = ( / 0 . e0 , 0 . e0 , −779. e0 / ) !MWy

321

322 s a t x y z ( 2 9 , : ) = s a t x y z ( 2 5 , : ) + ( ( 1 0 0 . e0 ) ∗ ∗ ( 0 . 2 e0 ∗0 . 2 e0 ) ) ∗ s a t x y z ( 2 6 , : ) ! NGC147 / NGC185 / AND XXX

323 s a t x y z ( 2 9 , : ) = s a t x y z ( 2 9 , : ) / ( 1 . e0 + ( 1 0 0 . e0 ) ∗ ∗ ( 0 . 2 e0 ∗0 . 2 e0 ) ) ! group mid p o i n t

324

325

326 DO i = 1 , 29

327 WRITE ( ∗ , ∗ ) i , s a t x y z ( i , 1 ) , s a t x y z ( i , 2 ) , s a t x y z ( i , 3 )

328 a l p h a s e t = − ( 9 0 . e0 − 1 2 . 5 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! R o t a t e t o b r i n g back o u t o f M31’ s i n c l i n a t i o n !

329 gamma set = + ( 9 0 . e0 − 3 9 . 8 e0 ) ∗ ( p i / 1 8 0 . e0 ) ! a n g l e and PA ( i . e . t o view from above t h e M31 p o l e ) !

330 ! Change

331 CALL R o t a t e !

332 ! t o

333 s a t x y z ( i , : ) = MATMUL( z r o t , s a t x y z ( i , : ) ) ! Conve r t v e c t o r s back t o how t h e y would a p p e a r !

334 s a t x y z ( i , : ) = MATMUL( x r o t , s a t x y z ( i , : ) ) ! i n M31 r e f e r e n c e f rame !M31

335 !

336 gamma set = 9 0 . e0 ∗ ( p i / 1 8 0 . e0 ) ! ! c o o r d i n a t e

337 ! !

338 CALL R o t a t e ! A d d i t i o n a l r o t a t i o n i n M31 g a l a c t i c l o n g i t u d e ! sys tem

339 ! !

340 s a t x y z ( i , : ) = MATMUL( z r o t , s a t x y z ( i , : ) ) ! !
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341

342 WRITE ( ∗ , ∗ ) i , s a t x y z ( i , 1 ) , s a t x y z ( i , 2 ) , s a t x y z ( i , 3 )

343

344 CALL T h e t a P h i ( s a t x y z ( i , 1 ) , s a t x y z ( i , 2 ) , s a t x y z ( i , 3 ) )

345

346 CALL a i t o f f c o n v e r t ( t h e t a c o o r d , p h i c o o r d )

347

348 t h e t a ( i ) = t h e t a c o o r d ; p h i ( i ) = p h i c o o r d

349

350 END DO

351

352 END SUBROUTINE s a t x y z d a t a

353

354 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

355

356 SUBROUTINE a i t o f f c o n v e r t ( t h e t a a h , p h i a h ) ! Conve r t t o a i t o f f −

357 IMPLICIT NONE ! hammer p r o j e c t i o n

358

359 REAL : : t h e t a a h , p h i a h , p r e t h e t a a h , p r e p h i a h

360

361 REAL : : p i

362 PARAMETER( p i = acos ( −1 . e0 ) )

363

364 p r e t h e t a a h = t h e t a a h ∗ ( p i / 1 8 0 . e0 )

365 p r e p h i a h = p h i a h ∗ ( p i / 1 8 0 . e0 )

366

367 p h i a h = 2 . e0 ∗ SQRT ( 2 . e0 ) ∗ cos ( p r e t h e t a a h ) ∗ s i n ( p r e p h i a h / 2 . e0 )

368 p h i a h = p h i a h / SQRT ( 1 . e0 + cos ( p r e t h e t a a h ) ∗ cos ( p r e p h i a h / 2 . e0 ) )

369

370 t h e t a a h = SQRT ( 2 . e0 ) ∗ s i n ( p r e t h e t a a h )

371 t h e t a a h = t h e t a a h / SQRT ( 1 . e0 + cos ( p r e t h e t a a h ) ∗ cos ( p r e p h i a h / 2 . e0 ) )

372

373 END SUBROUTINE a i t o f f c o n v e r t

374

375 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

376

377 ! ’ Ro ta t e ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

378

379 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

380

381 ! ’ T h e t a P h i ’ S u b r o u t i n e − See ’ PlaneSigRMS . f95 ’

382

383 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program: RR Histograms.f95

Creation Date: 7 Oct 2012

Relevant Section: Ch. 5; Paper III Figs. 5 (RH column), 6, 9 (RH column), 16 (b)

Notes: This program illustrates the way in which the histograms of the goodness of fit statis-

tic for the random realizations were generated. Throughout the entire thesis I have generated

many histograms and toward the end I decided to make a stand alone subroutine ‘HistoPlot’

(see PlaneS igRMS . f 95 - p. 244) that automated the process. I later modified that subroutine

to add the credibility interval color-coding used for the papers. It is this subroutine which

is shown here: ‘HistoPlotAdv.’ The ‘DataCall’ subroutine is designed to handle the many

different outputs from the various plane fitting programs. It is set up to plot the histogram of

the average RMS (or other plane fitting statistic) values from the random satellite realizations

and also to take the average of the histogram produced from the real data.

1 MODULE Gl ob a l ! D e f i n e s a l l v a r i a b l e s used by BayesianTRGB

2 IMPLICIT NONE

3

4 INTEGER : : i , idum = −9999 , i o s , nda ta , nda ta2 , c o u n t s

5 PARAMETER ( n d a t a = 10000)

6 PARAMETER ( n d a t a 2 = 200000)

7 REAL : : s i g n i f ( n d a t a ) , s i g n i f 2 , dummy , s c a l e f a c t o r , a v e r a g e s i g

8 CHARACTER : : f o l d e r ∗300 , s t r i n g ∗300 , s t r i n g 2 ∗300 , command∗300

9 LOGICAL : : Best15 , RMS, AbVal , Asy , AsyFP , ML, Sigma

10 PARAMETER ( Bes t15 = . t r u e . )

11 PARAMETER (RMS = . f a l s e . )

12 PARAMETER ( AbVal = . f a l s e . )

13 PARAMETER ( Asy = . f a l s e . )

14 PARAMETER ( AsyFP = . f a l s e . )

15 PARAMETER (ML = . f a l s e . )

16 PARAMETER ( Sigma = . f a l s e . )

17

18 END MODULE Gl ob a l

19

20 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21

22 PROGRAM D a t a C a l l ! Reads i n d a t a t o be

23 USE Gl ob a l ! p l o t t e d and p a s s e s

24 IMPLICIT NONE ! t o H i s t o P l o t A d v

25

26 IF ( Bes t15 ) THEN ! For P l a n e o f b e s t 15 s a t e l l i t e s

27 OPEN( u n i t = 11 , f i l e = ’ . / Sa t Combo p lanes / P l a n e S t a t s 1 5 s a t s R a n d R e a l w e i g h t e d / RMS 15 sats . d a t ’ , s t a t u s = ’ o l d ’ )

28 OPEN( u n i t = 12 , f i l e = ’ . / Sa t Combo p lanes / R M S P l a n e S t a t s B e s t 1 5 s a t s / r e a l s i g w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

29 END IF

30

31 IF (RMS) THEN ! For RMS d i s t r i b u t i o n

32 OPEN( u n i t = 11 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d R M S / RMS 27 sats . d a t ’ , s t a t u s = ’ o l d ’ )

33 OPEN( u n i t = 12 , f i l e = ’ . / S a t C o m p S e t S t a t s / R M S P l a n e S t a t s 2 7 s a t s / r e a l s i g w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

34 END IF

35

36 IF ( AbVal ) THEN ! For ’ sum of A b s o l u t e Values ’ d i s t r i b u t i o n

37 OPEN( u n i t = 11 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A V / AV 27 sa t s . d a t ’ , s t a t u s = ’ o l d ’ )
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38 OPEN( u n i t = 12 , f i l e = ’ . / S a t C o m p S e t S t a t s / A b V a l P l a n e S t a t s / r e a l s i g w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

39 END IF

40

41 IF ( Asy ) THEN ! For Asymmetry d i s t r i b u t i o n

42 OPEN( u n i t = 11 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A s y / A s y 2 7 s a t s . d a t ’ , s t a t u s = ’ o l d ’ )

43 OPEN( u n i t = 12 , f i l e = ’ . / S a t C o m p S e t S t a t s / Asymm Stats / r e a l a s y w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

44 END IF

45

46 IF ( AsyFP ) THEN ! For D i s t r i b u t i o n o f Asymmetry a b o u t M31 t a n g e n t p l a n e

47 OPEN( u n i t = 11 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d A s y F P / A s y F P 2 7 s a t s . d a t ’ , s t a t u s = ’ o l d ’ )

48 OPEN( u n i t = 12 , f i l e = ’ . / S a t C o m p S e t S t a t s / Asym m Sta t s F ixedP l ane / r e a l a s y w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

49 END IF

50

51 IF (ML . o r . Sigma ) THEN ! For Maximum L i k e l i h o o d ( and sigma ) d i s t r i b u t i o n s

52 OPEN( u n i t = 11 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s 2 7 s a t s R a n d R e a l w e i g h t e d M L / ML 27 sa t s . d a t ’ , s t a t u s = ’ o l d ’ )

53 OPEN( u n i t = 12 , f i l e = ’ . / S a t C o m p S e t S t a t s / P l a n e S t a t s / r e a l s i g w t h e r r . d a t ’ , s t a t u s = ’ o l d ’ )

54 END IF

55

56 ! | | Read i n p l a n e f i t t i n g s t a t i s t i c ( e . g . RMS) from

57 ! \ /Random R e a l i z a t i o n s f o r g e n e r a t i o n o f h i s t o g r a m

58

59 i = 0

60

61 DO WHILE ( . TRUE . )

62

63 i = i + 1

64

65 IF ( i . g t . n d a t a ) THEN

66 i = i −1

67 e x i t

68 END IF

69

70 IF ( Sigma ) THEN

71 READ ( 1 1 , ∗ , IOSTAT = i o s ) dummy , dummy , s i g n i f ( i )

72 ELSE

73 READ ( 1 1 , ∗ , IOSTAT = i o s ) dummy , s i g n i f ( i )

74 END IF

75

76 IF ( i o s == −1) THEN

77 i = i − 1

78 e x i t

79 ELSE IF ( i o s . g t . 0 ) THEN

80 WRITE ( ∗ , ∗ ) i

81 i= i −1

82 c y c l e

83 END IF

84

85 END DO

86

87 ! / \ Read i n p l a n e f i t t i n g s t a t i s t i c ( e . g . RMS) from

88 ! | | Random R e a l i z a t i o n s f o r g e n e r a t i o n o f h i s t o g r a m

89

90 ! | | Read i n p l a n e f i t t i n g s t a t i s t i c ( e . g . RMS) from R e a l i z a t i o n s

91 ! \ / of p o s s i b l e p o s i t i o n s o f t h e r e a l s a t e l l i t e s t o f i n d a v e r a g e

92

93 i = 0

94

95 DO WHILE ( . TRUE . )

96

97 i = i + 1

98
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99 IF ( i . g t . n d a t a 2 ) THEN

100 i = i −1

101 e x i t

102 END IF

103

104 IF ( Sigma ) THEN

105 READ ( 1 2 , ∗ , IOSTAT = i o s ) dummy , dummy , s i g n i f 2

106 ELSE

107 READ ( 1 2 , ∗ , IOSTAT = i o s ) dummy , s i g n i f 2

108 END IF

109

110 IF ( Asy . o r . AsyFP . o r . ML . o r . Sigma ) THEN

111

112 ELSE

113 s i g n i f 2 = 1 0 . e0 ∗∗ s i g n i f 2

114 END IF

115

116 a v e r a g e s i g = a v e r a g e s i g + s i g n i f 2

117

118 IF ( i o s == −1) THEN

119 i = i − 1

120 e x i t

121 ELSE IF ( i o s . g t . 0 ) THEN

122 WRITE ( ∗ , ∗ ) i

123 i= i −1

124 c y c l e

125 END IF

126

127 END DO

128

129 ! / \ Read i n p l a n e f i t t i n g s t a t i s t i c ( e . g . RMS) from R e a l i z a t i o n s

130 ! | | of p o s s i b l e p o s i t i o n s o f t h e r e a l s a t e l l i t e s t o f i n d a v e r a g e

131

132 a v e r a g e s i g = a v e r a g e s i g / REAL( n d a t a 2 )

133

134 CALL pgbeg in ( 0 , ’ RR Histogram . ps /CPS ’ , 1 , 1 )

135

136 IF ( Bes t15 ) THEN

137 CALL pgenv ( 5 . , 3 5 . , 0 . , 0 . 1 5 , 0 , 0 ) ! For Bes t 15 s a t e l l i t e s

138 END IF

139 IF (RMS) THEN

140 CALL pgenv ( 3 0 . , 9 0 . , 0 . , 0 . 0 7 , 0 , 0 ) ! For RMS d i s t r i b u t i o n

141 END IF

142 IF ( AbVal ) THEN

143 CALL pgenv ( 7 0 0 . , 1 9 0 0 . , 0 . , 0 . 0 0 3 , 0 , 0 ) ! For AbVal d i s t r i b u t i o n

144 END IF

145 IF ( Asy ) THEN

146 CALL pgenv ( 1 3 . , 2 8 . , 0 . , 0 . 4 , 0 , 0 ) ! For Asymmetry d i s t r i b u t i o n

147 END IF

148 IF ( AsyFP ) THEN

149 CALL pgenv ( 1 3 . , 2 8 . , 0 . , 0 . 8 , 0 , 0 ) ! For Asymmetry F ixed P l a n e d i s t r i b u t i o n

150 END IF

151 IF (ML) THEN

152 CALL pgenv ( −6 9 . , −5 9 . , 0 . , 0 . 4 , 0 , 0 ) ! For ML d i s t r i b u t i o n

153 END IF

154 IF ( Sigma ) THEN

155 CALL pgenv ( 3 0 . , 9 0 . , 0 . , 0 . 0 7 , 0 , 0 ) ! For Sigma d i s t r i b u t i o n

156 END IF

157

158 IF ( Sigma ) THEN

159 CALL H i s t o P l o t A d v ( nda ta , 21 , s i g n i f , ’ ’ , ’ ’ , ’ ? ’ , . t r u e . ) ! Make His togram
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160 ELSE

161 CALL H i s t o P l o t A d v ( nda ta , 51 , s i g n i f , ’ ’ , ’ ’ , ’ ? ’ , . t r u e . ) ! Make His togram

162 END IF

163

164 ! | | P l o t dot−dash l i n e a t l o c a t i o n o f h i s t o g r a m a v e r a g e from r e a l i z a t i o n s

165 ! \ / of p o s s i b l e p o s i t i o n s o f t h e r e a l s a t e l l i t e s

166 CALL p g s l s ( 3 )

167 CALL p g s c i ( 8 )

168 CALL pgslw ( 5 )

169 IF ( Bes t15 ) THEN

170 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 1 5 / ) ) ! For Bes t 15 s a t e l l i t e s

171 END IF

172 IF (RMS) THEN

173 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 0 7 / ) ) ! For RMS d i s t r i b u t i o n

174 END IF

175 IF ( AbVal ) THEN

176 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 .003 / ) ) ! For AbVal d i s t r i b u t i o n

177 END IF

178 IF ( Asy ) THEN

179 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 4 / ) ) ! For Asymmetry d i s t r i b u t i o n

180 END IF

181 IF ( AsyFP ) THEN

182 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 8 / ) ) ! For Asymmetry d i s t r i b u t i o n

183 END IF

184 IF (ML) THEN

185 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 4 / ) ) ! For ML d i s t r i b u t i o n

186 END IF

187 IF ( Sigma ) THEN

188 CALL p g l i n e ( 2 , ( / a v e r a g e s i g , a v e r a g e s i g / ) , ( / 0 . 0 , 0 . 0 7 / ) ) ! For Sigma d i s t r i b u t i o n

189 END IF

190 CALL pgslw ( 1 )

191 CALL p g s c i ( 1 )

192 CALL p g s l s ( 1 )

193 ! / \ P l o t dot−dash l i n e a t l o c a t i o n o f h i s t o g r a m a v e r a g e from r e a l i z a t i o n s

194 ! | | of p o s s i b l e p o s i t i o n s o f t h e r e a l s a t e l l i t e s

195

196 IF (RMS . o r . Bes t15 ) THEN

197 CALL p g l a b ( ’Minimum RMS ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ ) ! For RMS d i s t r i b u t i o n

198 END IF

199 IF ( AbVal ) THEN

200 CALL p g l a b ( ’Minimum A b s o l u t e D i s t a n c e Sum ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ ) ! For AbVal d i s t r i b u t i o n

201 END IF

202 IF ( Asy . o r . AsyFP ) THEN

203 CALL p g l a b ( ’Maximum Hemisphere S a t e l l i t e Count ’ , ’ P r o b a b i l i t y ’ , ’ ’ ) ! For Asymmetry d i s t r i b u t i o n

204 END IF

205 IF (ML) THEN

206 CALL p g l a b ( ’LOG10( Maximum L i k e l i h o o d ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ ) ! For ML d i s t r i b u t i o n

207 END IF

208 IF ( Sigma ) THEN

209 CALL p g l a b ( ’ P l a n e Sigma ( kpc ) ’ , ’ P r o b a b i l i t y ’ , ’ ’ ) ! For Sigma d i s t r i b u t i o n

210 END IF

211

212 CALL pgend

213

214 WRITE ( ∗ , ∗ ) ” Average o f o b s e r v e d p l a n e : ” , a v e r a g e s i g

215

216 IF ( Bes t15 ) THEN

217 c o u n t s = 0

218 DO i = 1 , n d a t a

219 IF ( s i g n i f ( i ) . l e . a v e r a g e s i g ) THEN

220 c o u n t s = c o u n t s + 1
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221 END IF

222 END DO

223 WRITE ( ∗ , ∗ ) ”An RMS of ” , a v e r a g e s i g , ” was e q u a l l e d o r exceeded ” , coun t s , ” o u t o f ” , nda ta , ” t i m e s . ”

224 END IF

225

226 IF ( Asy . o r . AsyFP ) THEN

227 c o u n t s = 0

228 DO i = 1 , n d a t a

229 IF ( s i g n i f ( i ) . ge . a v e r a g e s i g ) THEN

230 c o u n t s = c o u n t s + 1

231 END IF

232 END DO

233 WRITE ( ∗ , ∗ ) ”An Asymmetry o f ” , a v e r a g e s i g , ” was e q u a l l e d o r exceeded ” , coun t s , ” o u t o f ” , nda ta , ” t i m e s . ”

234 END IF

235

236 END PROGRAM

237

238 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

239

240 SUBROUTINE H i s t o P l o t A d v ( nva l , d a t a h i s t b i n s , data , x l a b e l , y l a b e l , dev i ce , n o r m a l i z e )

241 USE Gl ob a l

242 IMPLICIT NONE

243

244 !

245 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ C r e a t e d 16 Jun 2012∗∗∗∗∗∗∗∗∗∗∗∗∗∗

246 !

247 ! INTEGER n v a l = number o f d a t a p o i n t s i n h i s t o g r a m

248 ! INTEGER d a t a h i s t b i n s = number o f b i n s i n h i s t o g r a m

249 !REAL d a t a ( n v a l ) = The a r r a y c o n t a i n i n g t h e d a t a

250 !CHARACTER x l a b e l = Labe l o f x− a x i s o f h i s t o g r a m

251 !CHARACTER y l a b e l = Labe l o f y− a x i s o f h i s t o g r a m

252 !CHARACTER d e v i c e = The p l o t t i n g d e v i c e ( ’ ? ’ i f u n s u r e )

253 !LOGICAL n o r m a l i z e = . t r u e . i f h i s t o g r a m i s t o be

254 ! no r m a l i ze d , e l s e s e t t o . f a l s e .

255 !

256 ! Uses PGPLOT

257 !

258

259 INTEGER : : d a t a h i s t b i n s , nva l , i t num , BFL

260 REAL : : bw , data ( n v a l ) , d a t a h i s t ( d a t a h i s t b i n s , 2 ) , da t a min , da ta max

261 REAL : : BFV, ps ig , msig , m a x b i n h e i g h t , d a t a c o u n t s , pcoun t s , mcounts

262 REAL : : x p t s ( 2 ) , y p t s ( 2 ) , p90 , m90 , p99 , m99

263 CHARACTER(LEN=∗) : : x l a b e l , y l a b e l , d e v i c e

264 LOGICAL : : n o r m a l i z e

265

266 ! | | B u i l d s t h e s p e c i f i e d

267 ! \ / h i s t o g r a m

268

269 d a t a h i s t = 0 . e0

270

271 d a t a m i n = MINVAL( data ) ; da ta max = MAXVAL( data )

272

273 bw = ( da ta max − d a t a m i n ) / (REAL( d a t a h i s t b i n s ) − 1 . e0 )

274

275 DO i t n u m = 1 , d a t a h i s t b i n s

276 d a t a h i s t ( i t num , 1 ) = d a t a m i n + REAL( i t num −1) ∗ bw

277 END DO

278

279 DO i t n u m = 1 , n v a l

280 d a t a h i s t ( NINT ( ( data ( i t n u m ) − d a t a m i n ) / bw ) + 1 , 2 ) = &

281 d a t a h i s t ( NINT ( ( data ( i t n u m ) − d a t a m i n ) / bw ) + 1 , 2 ) + 1 . e0
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282 END DO

283

284 IF ( n o r m a l i z e ) THEN

285 d a t a h i s t ( : , 2 ) = d a t a h i s t ( : , 2 ) / ( bw ∗ SUM( d a t a h i s t ( : , 2 ) ) )

286 END IF

287

288 ! / \ B u i l d s t h e s p e c i f i e d

289 ! | | h i s t o g r a m

290

291 m a x b i n h e i g h t = 0 . d0 !

292 DO i t n u m = 1 , d a t a h i s t b i n s !

293 IF ( d a t a h i s t ( i t num , 2 ) . g t . m a x b i n h e i g h t ) THEN !

294 m a x b i n h e i g h t = d a t a h i s t ( i t num , 2 ) ! F ind b e s t f i t TRGB v a l u e

295 BFV = d a t a h i s t ( i t num , 1 ) !

296 BFL = i t n u m !

297 END IF !

298 END DO !

299 WRITE ( ∗ , ∗ ) ” Bes t f i t v a l u e i s a t : ” , BFV

300

301 d a t a c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

302 DO i t n u m = BFL , d a t a h i s t b i n s !

303 p c o u n t s = p c o u n t s + d a t a h i s t ( i t num , 2 ) !

304 END DO !

305 DO i t n u m = BFL , d a t a h i s t b i n s !

306 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s p o s i t i v e one sigma

307 IF ( d a t a c o u n t s . ge . 0 .6 8 2∗ p c o u n t s ) THEN ! e r r o r i n d i s t a n c e

308 p s i g = d a t a h i s t ( i t num , 1 ) − BFV !

309 e x i t !

310 END IF !

311 END DO !

312 WRITE ( ∗ , ∗ ) ” P l u s 1 sigma : ” , p s i g

313

314 d a t a c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

315 DO i t n u m = BFL , 1 , −1 !

316 mcounts = mcounts + d a t a h i s t ( i t num , 2 ) !

317 END DO !

318 DO i t n u m = BFL , 1 , −1 !

319 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s n e g a t i v e one sigma

320 IF ( d a t a c o u n t s . ge . 0 .6 8 2∗mcounts ) THEN ! e r r o r i n d i s t a n c e

321 msig = BFV − d a t a h i s t ( i t num , 1 ) !

322 e x i t !

323 END IF !

324 END DO !

325 WRITE ( ∗ , ∗ ) ” Minus 1 sigma : ” , msig

326

327 d a t a c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

328 DO i t n u m = BFL , d a t a h i s t b i n s !

329 p c o u n t s = p c o u n t s + d a t a h i s t ( i t num , 2 ) !

330 END DO !

331 DO i t n u m = BFL , d a t a h i s t b i n s !

332 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s p o s i t i v e 90% c r e d i b i l i t y

333 IF ( d a t a c o u n t s . ge . 0 . 9∗ p c o u n t s ) THEN ! e r r o r i n d i s t a n c e

334 p90 = d a t a h i s t ( i t num , 1 ) − BFV !

335 e x i t !

336 END IF !

337 END DO !

338 WRITE ( ∗ , ∗ ) ” P l u s 90%: ” , p90

339

340 d a t a c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

341 DO i t n u m = BFL , 1 , −1 !

342 mcounts = mcounts + d a t a h i s t ( i t num , 2 ) !
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343 END DO !

344 DO i t n u m = BFL , 1 , −1 !

345 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s n e g a t i v e 90% c r e d i b i l i t y

346 IF ( d a t a c o u n t s . ge . 0 . 9∗ mcounts ) THEN ! e r r o r i n d i s t a n c e

347 m90 = BFV − d a t a h i s t ( i t num , 1 ) !

348 e x i t !

349 END IF !

350 END DO !

351 WRITE ( ∗ , ∗ ) ” Minus 90%: ” , m90

352

353 d a t a c o u n t s = 0 . d0 ; p c o u n t s = 0 . d0 !

354 DO i t n u m = BFL , d a t a h i s t b i n s !

355 p c o u n t s = p c o u n t s + d a t a h i s t ( i t num , 2 ) !

356 END DO !

357 DO i t n u m = BFL , d a t a h i s t b i n s !

358 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s p o s i t i v e 99% c r e d i b i l i t y

359 IF ( d a t a c o u n t s . ge . 0 . 9 9∗ p c o u n t s ) THEN ! e r r o r i n d i s t a n c e

360 p99 = d a t a h i s t ( i t num , 1 ) − BFV !

361 e x i t !

362 END IF !

363 END DO !

364 WRITE ( ∗ , ∗ ) ” P l u s 99%: ” , p99

365

366 d a t a c o u n t s = 0 . d0 ; mcounts = 0 . d0 !

367 DO i t n u m = BFL , 1 , −1 !

368 mcounts = mcounts + d a t a h i s t ( i t num , 2 ) !

369 END DO !

370 DO i t n u m = BFL , 1 , −1 !

371 d a t a c o u n t s = d a t a c o u n t s + d a t a h i s t ( i t num , 2 ) ! F i n d s n e g a t i v e 99% c r e d i b i l i t y

372 IF ( d a t a c o u n t s . ge . 0 . 9 9∗mcounts ) THEN ! e r r o r i n d i s t a n c e

373 m99 = BFV − d a t a h i s t ( i t num , 1 ) !

374 e x i t !

375 END IF !

376 END DO !

377 WRITE ( ∗ , ∗ ) ” Minus 99%: ” , m99

378

379 ! | | P l o t h i s t o g r a m wi th c o l o u r e d

380 ! \ / c r e d i b i l i t y i n t e r v a l s

381 DO i t n u m = 1 , d a t a h i s t b i n s −1

382 IF ( d a t a h i s t ( i t num , 1 ) . ge . BFV − msig . and . d a t a h i s t ( i t num , 1 ) . l t . BFV + p s i g ) THEN

383 CALL p g s c i ( 2 ) !

384 CALL pgb in ( 2 , d a t a h i s t ( i t num , 1 ) , d a t a h i s t ( i t num , 2 ) , . f a l s e . ) !

385 IF ( d a t a h i s t ( i t num , 1 ) . eq . BFV − msig ) THEN !

386 x p t s = d a t a h i s t ( i t num , 1 ) !

387 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) ! One Sigma

388 CALL p g l i n e ( 2 , xp t s , y p t s ) !

389 END IF ! C r e d i b i l i t y

390 IF ( d a t a h i s t ( i t n u m +1 ,1) . eq . BFV + p s i g ) THEN !

391 x p t s = d a t a h i s t ( i t n u m +1 ,1) ! I n t e r v a l

392 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) !

393 CALL p g l i n e ( 2 , xp t s , y p t s ) !

394 END IF !

395 ELSE IF ( d a t a h i s t ( i t num , 1 ) . ge . BFV − m90 . and . d a t a h i s t ( i t num , 1 ) . l t . BFV + p90 ) THEN

396 CALL p g s c i ( 3 ) !

397 CALL pgb in ( 2 , d a t a h i s t ( i t num , 1 ) , d a t a h i s t ( i t num , 2 ) , . f a l s e . ) !

398 IF ( d a t a h i s t ( i t num , 1 ) . eq . BFV − m90 ) THEN !

399 x p t s = d a t a h i s t ( i t num , 1 ) !

400 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) ! 90 p e r c e n t

401 CALL p g l i n e ( 2 , xp t s , y p t s ) !

402 END IF ! C r e d i b i l i t y

403 IF ( d a t a h i s t ( i t n u m +1 ,1) . eq . BFV + p90 ) THEN !
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404 x p t s = d a t a h i s t ( i t n u m +1 ,1) ! I n t e r v a l

405 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) !

406 CALL p g l i n e ( 2 , xp t s , y p t s ) !

407 END IF !

408 ELSE IF ( d a t a h i s t ( i t num , 1 ) . ge . BFV − m99 . and . d a t a h i s t ( i t num , 1 ) . l t . BFV + p99 ) THEN

409 CALL p g s c i ( 4 ) !

410 CALL pgb in ( 2 , d a t a h i s t ( i t num , 1 ) , d a t a h i s t ( i t num , 2 ) , . f a l s e . ) !

411 IF ( d a t a h i s t ( i t num , 1 ) . eq . BFV − m99 ) THEN !

412 x p t s = d a t a h i s t ( i t num , 1 ) !

413 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) ! 99 p e r c e n t

414 CALL p g l i n e ( 2 , xp t s , y p t s ) !

415 END IF ! C r e d i b i l i t y

416 IF ( d a t a h i s t ( i t n u m +1 ,1) . eq . BFV + p99 ) THEN !

417 x p t s = d a t a h i s t ( i t n u m +1 ,1) ! I n t e r v a l

418 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) !

419 CALL p g l i n e ( 2 , xp t s , y p t s ) !

420 END IF !

421 ELSE

422 CALL p g s c i ( 1 )

423 CALL pgb in ( 2 , d a t a h i s t ( i t num , 1 ) , d a t a h i s t ( i t num , 2 ) , . f a l s e . ) !

424 IF ( i t n u m . eq . 1 ) THEN !

425 x p t s = d a t a h i s t ( i t num , 1 ) !

426 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t num , 2 ) !

427 CALL p g l i n e ( 2 , xp t s , y p t s ) ! D i s t r i b u t i o n

428 END IF !

429 IF ( i t n u m . eq . d a t a h i s t b i n s −1) THEN ! o u t s i d e o f 99 %

430 x p t s = d a t a h i s t ( i t n u m +1 ,1) + bw !

431 y p t s ( 1 ) = 0 . e0 ; y p t s ( 2 ) = d a t a h i s t ( i t n u m +1 ,2) ! Cred . I n t e r v a l

432 CALL p g l i n e ( 2 , xp t s , y p t s ) !

433 END IF !

434 END IF !

435 END DO

436 ! / \ P l o t h i s t o g r a m wi th c o l o u r e d

437 ! | | c o n f i d e n c e i n t e r v a l s

438

439 END SUBROUTINE H i s t o P l o t A d v

440

441 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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List of Abbreviations

The following list is neither exhaustive nor exclusive, but may be helpful.

2MAS S . . . . . The Two-Micron All-Sky Survey

λCDM or CDM [Lambda] Cold Dark Matter (cosmological model)

AGB . . . . . . . . Asymptotic Giant Branch

CFHT . . . . . . The Canada-France-Hawaii Telescope

CMD . . . . . . . Colour-Magnitude Diagram

LF . . . . . . . . . . Luminosity Function

PAndAS . . . . The Pan-Andromeda Archaeological Survey

RGB . . . . . . . . Red Giant Branch

S DS S . . . . . . The Sloan Digital Sky Survey

TRGB . . . . . . Tip of the Red Giant Branch
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