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Pour mon père. Qu’il puisse être fier : tu vois, j’y suis
arrivé finalement. Cette thèse est pour toi.

Pratchett, "Science of the Discworld II :
the Globe" :

’An important part of the Make-a-Human
kit is the Story. We tell our children

stories, and through those stories they
learn what it is like to be a member of our

tribe or our culture. [...]. We use stories
to build our brain, and then we use the
brains to tell ourselves, and each other,

stories.’

’We had to find a way to share our
intelligence with others, and to store

useful ideas and tricks for the benefit of
the whole group, or at least, those in

position to make use of it. That’s where
extelligence comes into play. Extelligence

is what really gave those apes the
springboard that would launch them into

sentience, civilisation, technology, and all
the other things to make humans unique
on this planet. Extelligence amplifies the

individual’s ability to do good - or evil. It
even creates new forms of good and evil,

such as, respectively, cooperation and
war.’
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Abstract

Résumé

Que cela soit par des automates puis par des robots, l’Homme a été fasciné par des
machines pouvant exécuter des tâches pour lui, dans de nombreux domaines, comme
l’industrie ou les services : c’est ce dernier domaine qui nous sert de contexte.

Ainsi, nous avons utilisé une approche développementale, où le robot se doit d’apprendre
de nouvelles tâches au cours de sa vie. Inspiré par des théories sur le développement de
l’enfant, nous avons extrait les concepts intéressants pour les implémenter sur une plate-
forme robotique humanoïde : l’iCub.

L’acquisition du langage est une première étape, où la capacité à classifier les mots
de classes ouvertes et de classes fermées permet d’obtenir une syntaxe qui aide l’enfant à
construire le lien entre une phrase et son sens. Cette méthode a été implémentée grâce à
un réseau de neurones récurrents, utilisant une base de données fournit par l’humain en
interagissant avec le robot.

La maîtrise du langage permet à l’enfant de participer à des actions plus complexes,
en particulier des tâches collaboratives où la parole est requise de négocier le mode
d’apprentissage sur plusieurs modalités. Implémenté sur l’iCub et le Nao, cela permet
un apprentissage en temps réel et de réaliser un plan partagé.

Enfin, nous avons étudié le fonctionnement de la mémoire autobiographique, cruciale
pour se remémorer des épisodes passés de sa vie, d’en tirer des prédictions et de les
appliquer dans le futur. En recréant cette mémoire en SQL et formatant les données
en PDDL, l’iCub est alors capable de raisonner en fonction de sa propre expérience, lui
permettant ainsi de résoudre le problème des Tours d’Hanoi sans jamais l’avoir visualisé
avant.

Mots-clefs

Robots, iCub, Nao, Robotique Développementale, Cognition, Interaction Homme-
Robot et Coopération, Langage, Apprentissage situé et social
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Developmental Reasoning and Planning with Robot

through Enactive Interaction with Human

Abstract

From automata to robots, the Human has always been fascinated by machines which
could execute tasks for him, in several domains like industry or services.

Indeed, we have used a developmental approach, where the robot has to learn new
tasks during his life. Inspired by theories in child development, we have extracted the
interesting concepts to implement them on a humanoid robotic platform : the iCub.

Language acquisition is a first step, where the capacity to classify closed and opened
class words allows to obtain a syntax which help the children to make the link between
a sentence and its meaning. This method has been implemented with a recurrent neural
network, using a database provided from the human by interaction with the robot.

The control of the language allows the children to participate in more complex actions,
in particular cooperative tasks, where speech is required to negotiate the learning mode
within several modalities. Implemented on the iCub and the Nao, this allows a real-time
learning and to realize a shared plan.

Eventually, we have studied the functioning of the autobiographical memory, crucial to
remember episodes of his life, to extract predictions from and to apply them in the future.
By recreating this memory in SQL, and by formatting the data in PDDL, the iCub is then
capable of reasoning in function of his own experience, allowing him to solve the Tower of
Hanoi problem without knowing the solution before.

Keywords

Robots, iCub, Nao, Developmental Robotics, Cognition, Human-Robot Interaction
and Cooperation, Language, Situated and Social Learning
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Introduction

Robots. This thesis is about robots. But, what is a robot?

Everyone could picture a robot in his mind, some of them are real (Roomba, Nao, ...),
some come from science-fiction (R2D2, Wall-E, ...), some may even be coming from their
imagination. But overall, it is most likely that two people will think about two different
robots. As the topic of this thesis, it is important to define and describe what a robot is.
It is such a basic question, but in fact a very tricky one : so difficult than the definition
of robot is controversial, including among scientists inside the very same field.

In fact, it is particularly difficult to have a proper and universal definition because the
ethymology of the word does not come from an old language (e.g. greek or latin, base for
the majority of the name of scientific disciplines) but is quite new and take his roots in
science-fiction novels.

Indeed, the first appearance of the word "robot" was used by a Czech writer, Karel
Čapek 1, in 1920 in a play called Rossom’s Universal Robots (more commonly named
R.U.R.), to describe artificial workers, as shown in Figure 1 (from Czech, robotna : com-
pulsory labor).

If we look at an actual dictionnary, Oxford’s explain that it is "a machine capable of
carrying out a complex series of actions automatically" whereas Merriam-Webster’s defi-
nition is "a device that automatically performs complicated often repetitive tasks". These
definitions are general (but not general enough as we will see in the next section) and
formed around the "automatically" property of a robot. In fact, one of the father of
robotics, Engelberger has said "I can’t define a robot, but I know one when I see one".
One explanation for the origin of this issue is that the word has first been invented, and
then the field and the ideas have come to life. But in fact, if the robotic field has received
his "name" from Čapek less than 100 years ago, it has emerged and matured over several
millenia.

In the chapter 1, starting from these definitions, we will review the robotics history, in
order to better understand the field, to list the properties needed to be called "robot" and
to identify the problem that were faced and sometimes resolved until now. Indeed, we will
go from the ancestor of the robot, the automata, built and developed from the Antiquity,
to the modern robotics, with a special focus on the service robots which is our particular
interest. The intrinsic difficulties encountered by the robot in this precise use will lead us
to take the developmental approach which allows the robot to learn by itself.

1. However, Karel has later given credit for the word itself to his brother, Josef, in a czech newspaper,
Lidové noviny, 24 December 1933
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Figure 1: Scene of R.U.R. whith a robot on the left (played by a human), and a woman
one the right. In fact, the first ever "robot" is an android because of the human shape.

This theory is in fact inspired by the biology, where infants in general and human
babies in more specifics, come to the world with only a limited set of capabilities but
learn during their childhood what is necessary to survive. In this context, the human
children shows huge progress in many areas, including cognition, with one particularity
: the adults and caretakers interact more actively with their youngsters, in particular to
teach them [King, 1991]. Thus, we will explore in chapter 2 several key points in chil-
dren development related to social learning and cultural transmission, theories that we
could then apply to the service robot. First, we will investigate how they could learn a
unique tool : the language, an important milestone in child which unlock several possi-
bilities for their learning, in particular to coordinate in collaborative events [Tomasello,
2008]. During these periods or plays, adults could teach them new actions, using imita-
tion, demonstration or instructions using joint attention and the intentional stance that
the children is taking. Eventually, the children will then need to keep these events, or any
other, in memory if he wants to be able to remember and keep the knowledge he could
learn. The autobiographical memory, based on both episodic and semantic memory [Tul-
ving et al., 1988, Conway and Pleydell-Pearce, 2000, Cohen and Conway, 2007], will be
explained and we will look for its emerging and developing in children. The information
within our autobiographical events could then be retrieved, and using a teleological stance
[Gergely et al., 1995] the children could infer about actions, their goals or their constraints.

The chapter 3 will present a study about the adaptation made from language com-
prehension and production in children development, implemented in our humanoid robot
iCub, using grammatical construction [Bencini and Goldberg, 2000] to do the mapping
between syntaxic structure of the sentence and meaning in the scene. We will show in
chapter 4 a study which explains how this language understanding could be used to co-
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ordinate a human and a robot in shared plan cooperative tasks, in particular to mediate
precise sub-actions learning through different modalities. Eventually, a model of Autobi-
ographical Memory for the iCub is explained in chapter 5, with an implementation and
integration of a classical Artificial Intelligence approach, the Planning Domain Definition
Language, to reason about actions and achieve planning, and solve for instance the Tower
of Hanoi problem.

Indeed, I will try to cover several sub-domains in the robotics field, in order to provide
insight and implementation about needed steps in the developmental approach. I will
adress the problem of understanding and producing language by listening to a human, to
give next the robot more possibilities to interact with him. The robot will know nothing
at first about grammatical constructions, and human input will be only examples of ut-
terance to describe situation, in a natural interaction, without any explicit explanation or
teaching. However, the robot will already have developped capabilities in this domain, and
thus a speech processing system to extract words from an utterance speech is embedded.
He is also capable of understanding situation and could extract relevant information about
the world, providing him the references linked to the human language. Thus, I will not go
deeply into symbolic grounding problem, linked to meaning and categorization [Harnad,
1990, Rosch, 1973, Gallese and Lakoff, 2005]

Next, I present a system to allows the robot to acquire and learn new motor skills
from the human, using the language to coordinate the different layers of the teaching (the
shared plan or a precise action), allowing the human to switch through different modalities
during the episode. I focus my work on the notion of collaborative tasks, and provide a
natural way for a human partner to interact with the robot in order to help him and ex-
plain to the machine in real-time if it is needed : what sequence of actions to execute and
when. This allows the human to be involved in the development of the robot by interacting
with him, which helps the robot for future similar cooperative tasks : the enactive aspect
is then more related to the interactions between the human and the robot than to the
developmental machine itself. On the other hand, despite the fact that an action learning
system is implemented, this part is here constrained by the fact that the robot has to help
the human on the fly, and thus only one learning input is provided. Thus action learned
in this way are in fact triggering the sequence of motors joint defined by the human (ex-
cept when he uses already well defined actions using the instruction mode). The action
definition problem in particular to adapt the gesture to the actual environment, require
more repetition and will not be adressed here.

However, action will be the central component of the last part, in particular related
to the extraction of their pre-condition or effects. Using the past experience of the robot
and some reasoning capabilities, we implemented to the robot the possibility to learn
from previous lived events in order to extract these informations. We are providing here
a mechanism to give more flexibility to the robot, and the possibility for him to find a
solution by itself when confronted to a problem, even in a not previsouly encountered sit-
uation without any help for the human. The whole loop, from the goal to achieve (given
by the human using language) to the actual execution of the planned solution has been
implemented. But the planning system by itself (using the Program Domain Definition
Language) has been taken off-the-shelf : our purpose here is to provide an actual way to
recruted already known and well defined Artificial Intelligence solution, and to use them
in a real robot with a real-time constraint.
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Part I

General Introduction





Chapter 1

From ancient Automata to Service

Robots

As we have seen previously, the word by itself is from 1920, but if we stick to these
terms, and if we are not too hard on the "complexity" of the tasks, we could in fact travel
much more in time than 1920 to study the robot ancestors : the automata, starting from
the Antiquity to the Modern era. We will present the most famous of them, trying to
identify their strengths but also their weaknesses, and explaining why they are called au-
tomata and not robot. We will then introduce the first human-built robots that will show
the growing interest in the field as well as the numerous "specialities" emerging from it.
Eventually, we will investigate one precise aspect of the robotics that is concerned by this
thesis : the service robots, especially with a developmental approach.

1.1 Ancient Automata

If we look at the newest robots, because they are in the state of the art, they are
complex machines with a great number of intrinsec properties and different sub-fields
covered. Indeed, it is not very simple to try to know what a robot is if we take the last
implementation of them. Thus, in order to understand better this specific field, we will
travel in time to show the root of it. The journey begins in Greece, during the Antiquity.

1.1.1 Automata from the Antiquity

The oldest known automata was created by the Greek Engineer Ctesibius (c. 270
B.C.) : using pneumatics and hydraulics devices, he produced in particular a water clock
as shown in Figure 1.1, with a self-regulated controller and a moving-pointer to mark
hours. This is the first known feedback control mechanism [Valavanis et al., 2007].
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Figure 1.1: Water Clock with Ctesibius control mechanism (left) and schema (right). The
main jar (reservoir) needs to always be full in order for the water to go out at a constant
rate. A second tank fill the reservoir to assure that. Eventually, a third container is
equipped with a float and a pointer to indicate specific time in an automatic revolving
cylinder (because of the gear and wheel, powered by the water through the siphon). (left)
Replicas and Reconstruction by Prof. Kostas Kotsanas, from ww.mlhanas.de (right) From
edu.ajlc.waterloo.on.ca

Ctesibus had moreover influenced another great engineer, Hero of Alexandria (who
may in fact be one of his student) with a lot of automata, described in On Automatic
Theaters, On Pneumatics and On Mechanics [Hero, c. A.D. 85]. Working with several
kinds of energy (gravity, fire, wind, water, ...) he had made complex machines, included
hypagon automaton, a moving scene which can bring mobile dolls [Xagoraris, 1991] shown
in Figure 1.2. The platform was in particular able to navigate in several kinds of motion
(linear, circular, ...) because of a double axis, with parts moved by different weights. By
changing the weight, the pedestal could indeed move in a different ways.

With these two examples, we could illustrate what an automata is, using for instance
this definition : "An automaton (Greek, ’self-mover’) is a mechanical device which (after
releasing a brake) executes a function on its own and in a completely determined way"
[Rosheim, 1994]. The main properties for an automata is then to be able to move. But
we could also point two key features:

– The technology behind is part of the definition. Automata uses mechanical theories.
That means that, not only the result (moving) is important, but also the way to
achieve it.

– It has to be deterministic motions, so it is not programmable. However, this is not
in fact a so clear statement : for Hero’s theater, one could argue that we can change
the weight, and thus modified the produced move. We will investigate further this
in a further section.



1.1. Ancient Automata 19

Figure 1.2: Hero’s theater automaton, with Dionysus (near the panther) and Nike (on
top). Bacchantes and two altars are near the scence (not showed here). During the play,
Dionysus turns to light the fire in the altar and Nike revolves. Bacchantes rotates around
the pedestal and also around themselves, with the whole platform moving with several
patterns. (From [Xagoraris, 1991]).

Indeed, some could argue that this was the first programmable machine (at least with
predetermined programming, [Struijk, 2011]), but we have to wait for the Medieval Era
to have an automata with an "easy" built-in programming feature, and other major ad-
vancement in the field, in particular related to the improvement of this capability.

1.1.2 Medieval Automata

We are now in 850 A.D., in the Arabic world, with the Banu Musa brothers (Ahmad,
Muhammad and Hasan bin Musa ibn Shakir) and their Kitab al-Hiyal The Book of In-
genious Devices, describing 100 inventions [Musa, 1979]. Their work was mostly based
of water pressure. Amongst these automata, one is very special, because it is the first
programmable machine : the flute player [Farmer, 1931, Koetsier, 2001]. With a schema
shown in Figure 1.3, it was based on cylinder with raised pins : by changing them, you
could change the melody played [Fowler, 1967], like an ancestor of the punch bands. This
is really remarkable because the whole system was design for this purpose : obtaining
several kinds of melody by simply changing a piece of the machine. Moreover the pins
allow to predict without mathematical calculation the obtained output, contrary to the
weights of the Hero’s theater.

One other great arabic engineer, inspired in fact by the Banu brothers work, is Al-
Jazari (Abu al-’Iz Ibn Isma’il ibn al-Razaz al-Jazari, late 12th century-early 13th century
CE). He wrote in 1206 the Book of Knowledge of Ingenious Mechanical Devices describing
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Figure 1.3: The Flute Player schema of the Musa brothers, reconstructed by [Farmer,
1931] (From [Koetsier, 2001])

devices using water or air as power system [al Jazari, 1206].

Several of these machines have particular interesting features. In first, the Arbiter
(Hakama) for a Driking Session, shown in Figure 1.4. It is composed by three separated
automata with first a girl, then a castel with five persona (including a dancer) and even-
tually an upper castle where are a rider and his horse [Nadajaran, 2008]. According to
al-Jazari’s book, a long time (about 20 minutes) flows until the automata starts to move,
after been placed in the middle of the thirsty crowd. Then, the rider rotates with the
other persona play music or dance. When the rider stops he points someone in front of
him with his lance and the music ceases. The servant girl (the automata) pours the wine
to a gobelet, filling it up. A human servant takes the gobelet, gives it to the pointed
person who drinks and it is putted back to the servant automata.

The interesting fact is that this cycle is repetead 20 times, with 20 minutes interval :
so, of course it is a long wait if we are thirsty and it is not "efficient" in this way, but it
highlights two key features :

– the idea of a "cycle" programming, a loop with a final condition (20 drinks served)
leading to an exit behavior. At this point, a figure appeared from the castle on the
top, saying with his right hand that the service is over, while his left hand indicates
two glasses more.

– the longevity and stability of the system. This medieval automata could work for
400 minutes (more than 6 hours) straight, without human intervention.

These two features come up in several other automata from al-Jazari, like the auto-
mated boat with music player automata (with 15 performances separated by 30 minutes
interval). Indeed the Arabs push the automata to be able to run safely for a long time
without any human intervention. This lead them to look for more robust (and so more
sophisticated) solution instead of simple one, using feed-back control, close-loop system,
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Figure 1.4: A schema showing a part of the Arbiter for a Drinking Session. (From al-Jazari
book).

... [Hill, 1998].

Another one of al-Jazari’s invention has to be described : the two scribes automata for
phlebotomy (blood-letting procedure), showed in Figure 1.5. The device was designed in
order to give the precise amount of blood taken from the patient. As the blood flows, the
scribe in the center rotates with his pen and the board with the measurement is still in
front of the patient. But the particularity in this work is that al-Jazari added components
and behaviors in order to keep the human distracted during this procedure, showing here
an interest in the mental state of the user being bled [Nadajaran, 2008]. This distraction
(in addition to the rotation of the scribe) takes the form of an hidden automata, inside
the castle, who comes out through one of the 12 automated doors each time a quantity
(30 grams) of blood is taken.

Overall and to conclude in this work done by al-Jazari, leading the automata field
in the middle-Age in Arabic civilization, we will higlight a last caracteristic feature : the
practical applications of the automata. As opposed to the greek automata, mostly focus on
entertainment or "special" effect during religious ceremonies, al-Jazari’s works have almost
always a practical and technical goal to achieve [Rosheim, 1994]. In fact, the book was
divides in 6 categories : water clocks, liquid pouring, phlebotomy (blood-letting), fountain
and musical automata, water-raising and geometrical tools. As you could see, appart from
the foutain and musical parts, every other categories have practical applications. This key
element missing in automata from the greek civilization [Rosheim, 1994].
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Figure 1.5: The blood-letting automaton with the 2 scribes. From al-Jazari book (left) and
http://www.sciencemuseum.org.uk/ (right)

1.1.3 Enlightenment era and Modern Automata

One of the main milestone in automata history, and thus a keypoint leading from this
field to robotics, is a work done by the well known Leonardo da Vinci during the Renais-
sance period. Among his countless invention, one is called Leonardo’s mechanical knight
and has been designed in 1495. An assembly of gears, pulleys, cranks, ... attached to an
armor was supposed to be able to move it, controlling several parts of the "body" (neck,
shoulder, elbow, hand, wrist for the upper part, hips, legs, knees, ankles for the lower
parts). This mechanism was made to produce several human-like actions, including to
stand up or sit down, to lift its visor, to wave the arms, ...

I have stated "supposed to be" and "was made to", because in fact Leonardo never
build it from the sketches he wrote. But this was done in our time : sketches rediscover
by Pedretti in 1957 allowed Rosheim to construct the mechanical knight [Rosheim, 2006],
fully operational in 2002 and displayed at different museum as shown in Figure 1.6.

Appart from the achievement by itself, it is also the method and the way of think-
ing which is very important in Leonardo’s studies : the intimately link between human
anatomy and mechanism. Indeed, after writing a treatise elementi macchinali (mechani-
cals elements), he moved to anatomical study but by keeping the mechanical concepts, as
he stated in corpus at Windsor [Galluzzi, 1987] : "Arrange so that the book on mechani-
cal elements with its practice preceedes the demonstration of the movements and force of
man and of other animals, and by means of these you will be able to prove all of your
propositions". For him, mechanical and organic terms are not to be opposed but instead
tightly linked [Garrard, 1987]. He even use mechanical vocabulary to describe or analyze
anatomical parts : articulations are shown as revolving axles, analogy between ship’s mast
and spinal column, muscles as line of force ("power") or levers for motion with limbs.
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Figure 1.6: Leonardo’s Lost Robot Knight Exhibit, at the University of Tulsa (2007).
From www.leonardoshands.com

This lead him to quit from the two-dimensional plane anatomical studies, with draw-
ings and schemes, to a three-dimensional support because with this mechanical description,
the models could actually be built into functional mechanical devices [Galluzzi, 1987] and
could validate his theories. This way of thinking, using biology to build or improve au-
tomaton which lead to verify and validate anatomical studies is something that robotics
could push and root for.

Indeed, Vaucanson (1709 - 1782), a french engineer, had engaged himself to this path
to go beyond. With a background in mechanics, he slides to the study of medecine and to
construct a "moving anatomy", with in particular his digesting duck [Bedini, 1964]. Then,
he wanted to create an automaton which could move and act as a duck, but also and
most importantely, he desired to reproduced also inner process of the living animal : the
digestion. Vaucanson’s duck was a life-size (Figure 1.7) which could move his wings in an
elegant manner (with 400 articulated pieces for each wing) and stretch his neck which was
already a well advanced automaton, in particular about imitating a real duck : the moves
were designed after studies of natural duck [Riskin, 2003, Landes, 2012].
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Figure 1.7: Vaucanson digesting duck, photographs discovered around 1950 in the Musée
des Arts et Métiers in Paris, labeled "Pictures of Vaucanson’s Duck received from Dresden".
(From [Chapuis and Droz, 1958]).

But it also has the ability to eat grains and, after some time, defecates them. The
originality was that the automata body was transparent in the middle to show the process
of digestion to the public, using the machine as a tool to teach anatomy [Chapuis and
Droz, 1958]. However the biological process was in fact faked, and the duck was keeping
the kernels in one container and digested one, stored before the exhibition in another bowl,
were excreted after the "eating" part Riskin [2003].

However, if Vaucanson has not fully successed in his entreprise of imitating a process
(and not just build a machine), the reputation and fame of this automata has leaded
the way for the automata to go from a representation to a simulation (defined by Riskin
as "an experimental model from which one can discover properties of the natural subject").

Vaucanson has not stop imitating animal life, but also human life, in particular with
his Flute Player : life-size (1m65), he could play a dozen of different melodies. Interest-
ingly, the automata really using a flute, it was not a simple "music box" hidden inside
the automata (Jacomy in [Spillemaecker and al., 2010]). The tones were produced with
the "breath" (with variable air pressure) coming to the instrument through the lips of the
android, the fingers moving in order to cover or uncover holes with the inner mechanism
showed in Figure 1.8 [Bedini, 1964, Voskuhl, 2013]. So it was not an mechanical imitation
of a flute player, but a human-shape automata who actually played flute, like a human
do. This leads Vaucanson to discover phenomena ("Discoveries of Things wich could never
have been so much as guess’d at", quoting his words) related to the force of the wind
required to play : a (surprisingly) great force and an influence of the previous note which
change the force for the current note [Seth, 2000]. Voltaire illustrated the fineness of this
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work with this quote : "A rival to Prometheus, [Vaucanson] seemed to steal the heavenly
fires in his search to give life".

Figure 1.8: Vaucanson Flute Player, picture and inner mechanism with the variable air
pressure which could be expired and both hands moving system, with 4 and 3 fingers (for
respectively right and left hand) to play the different tones. (From Dr Barbara J. Becker,
lecture 13. Automata. https://eee.uci.edu/clients/bjbecker/NatureandArtifice).

This goal, to go from machine to "artificial human" will be shared, in particular with a
contemporary familiy of clockmakers : the Jaquet-Droz (with Pierre the father and Henri-
Louis, the son). They produced three main automata : the musician (female organ player),
the writer and the draughtsman, in the 18th century (Figure 1.9), all easily programmable
(4 drawings, 5 melodies and more importantly every sentences up to 40 characters).
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Figure 1.9: The Draughtsman, the Musician and the Writer (From left to right), using
respectively a lead pencil, an organ and a feather pencil. (From the Neuchâtel Museum of
Art and History).

In these three devices, the automata taken the shape of human (girl for the musician,
boy children for the writer and the draughtsman) using their hand to manipulate human
tool (like the flute player of Vaucanson), as we do. Thus, this was the most important part,
and it was very realistic with the skeleton modeled from real human hands with the help of
a surgeon as shown in Figure 1.10 [Perregaux and Perrot, 1916, Riskin, 2003, Moran, 2007].

Figure 1.10: The Musician hand skeleton (From the Neuchâtel Museum of Art and His-
tory)

But why building an entire body, if just the hands are needed in order to achieve
the tasks? It is because, like Vaucanson, the "life" of the automata was part of the goal.
Indeed, they don’t just do what they are built for (draw, play or write) but they do im-
itating human life : with lift of the chest (breathing), following their hands with their
gaze, blowing on the paper to remove dust or bowing at the end, ... ([Landes, 2012], Baldi
in[Spillemaecker and al., 2010]).

In conclusion, we have seen that the art of automata has evolved from the Antiquity
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era and is not only a self-moving appartus. All the scholar, craftman, engineer, scientists
have innovated in this domain and have constructed the foundations of what will become
the Robotics. They have built self-moving machines which have practical and real-life
applications. Some of them are programmable (at least pre-defined programmation if one
want to argue with) and could work for a long period of time without any human inter-
ventions. Finally, a part showed an intrinsic relation between the mechanical and physical
art of building automata, and the biology, with the ultimous goal to bring machine to life,
which act like animal or human and are modeled from them.

They are all requirements to be able to named a system a "robot", but the last one is
a property to define a precise field inside robotics which is called bio-inspired. There are
still some features missing which will be investigated in the following sections.

1.2 Robots : from Fiction to Reality

1.2.1 General History of Robotics

As seen previously, the term "robot" has been invented in 1920, but we have to wait
until 1926 to have one of the first robot, at least the first one which could achieve useful
work : Televox. Created by Westinghouse Electric Corporation, it was at first a remotely
controlled device to open or close switch and to report the operation to a human, interact-
ing with sound, so not really a robot at this time. But surfing to this new trend, Wensley,
the inventor, designed a body to this machine, with arms, legs and head as shown in
Figure 1.11. He also added the capacity to lift up a telephone receiver, becoming here a
robot which could power up or shutdown machines (ventilator, vacuum cleaner, ...), give
information about the states of the switches, ... by interacting with him through the phone
[Horáková and Kelemen, 2006, Sharkey and Sharkey, 2009].

Several particularities are to be noted here. First, the "inside" of the robot is not
anymore just mechanical : it has electronic composants, removing it from the automata
categories to go to the electro-mechanical robot entity. Secondly, the Televox was not
a robot at first : without a body to act, he could not "move". It is true that switches
could be opened and closed, but not the way human do, it was a simple electronics switch
for the Televox. Just adding a body was a great leap from machine to robot, in partic-
ular if, with his arm, he could act like a life-being, here, like a human lifting a phone.
Last but definitely not least, Televox was designed primary to interact with a human in
a "natural" way of speech (tones to be more precise) which could remotely control him.
It is an important feature, as stated by Poupyrev [Poupyrev et al., 2007] : "A significant
difference between today’s robots and early automata is that the new generation of robots
are interactive, designed to understand and respond to people"
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Figure 1.11: Televox, with his arm ready to lift the phone and his inventor Roy Wensley.
(From history-computer.com).

Westinghouse Electric didn’t stop in this field and has improved their Televox to built
in 1939 the robot Elektro by the engineer Joseph Barnett. It was a really big (7 feets
tall, a little more than 2.10 meters) thin man as shown in Figure 1.12, who could "walk"
(sliding with wheel in his foot in fact, but mimiking the walk with the legs), move his arms
(in particular to count with his fingers or smoke cigarettes), discriminate colors (between
red and green) and has speech recognition (to activate behaviors) and generation (pre-
recorded) [Moran, 2007, Ruby et al., 2009].

We "loose" here the direct usefulness of applications from the Televox, but Elektro
present a new feature which is very important : it is able to do different operations.
And this is a key feature in robotics, to differenciate a robot from an automata. In fact,
Joseph F. Engelberger, who founded the first robotics company, has explictely defined
this capability : "An automated machine that does just one thing is not a robot. It is sim-
ply automation. A robot should have the capability of handling a range of jobs at a factory".

Another step has been taken a few years later, in 1948, by William Grey Walter with
one of the first electronic autonomous robot : Machina speculatrix or more simply known
as Grey’s turtles [Walter, 1950]. Originally created to uderstand operation in the animal
brains, they have been named like this, respecting the biological taxonomy of an animal
species to highlight the behavior of exploration of the robot [Fitzpatrick and Metta, 2003].
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Figure 1.12: Joseph Barnett and Elektro, with Sparko a robot dog (From history-
computer.com)

It was indeed explicitely described by Walter : "because they illustrate particularly the
exploratory, speculative behavior that is so characteristic of most animals".

The Machina speculatrix was composed with a battery, radio tubes, two sensors (one
for the light, the other for the touch) and two motors (for crawling and steering). All of
this was protected by a smooth shell, with the light sensor, a photocell, at the tip of an
extension coming out from the body, giving to the robot the appearance of a tortoise, as
shown in Figure 1.13
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Figure 1.13: (Left) Walter and a tortoise - (Right) labelled diagram of Elsie, one of the
Machina speculatrix, without the shell (From [Holland, 2003])

Using these sensors (vision, touch and proprioception with the status of the battery),
Walter was able to obtained several kinds of behavior according to the data received (as
shown in Figure 1.14). They were mainly driven by their photo-receptor (the touch sensor
just stops the crawling module when an obstacle is encountered) : when no light is seen,
both steering and crawling mechanisms were turned on, resulting in a cycloidal gait. In-
deed, the turtle could look in every direction while going forward.
If a light is detected, the exploration module is swith off and the turtle go toward the light,
but not too far because if the intensity is too strong, the turtle stops to go in front of her
and uses its steering mechanism to go away, avoiding to be "burned". However, in order
to recharge his battery, the turtle has to go back to its shelter, where the power supply
is close to a light. So when the energy of the turtle is near the end, this maximum light
tolerance is removed and the turtle could go in the light and recharge itself autonomously
[Walter, 1950, 1951, Holland, 2003].

Walter has with his turtles been a pioneer with his turtles. It was the first self-
recharging robot (giving the notion of "survival"), the first attempt in multiple robotics,
with experience using two turtles (Elsie and Elmer). And last, but more importantly for
us, it was the first biologically inspired robots [Holland, 2003]. Walter robots were built
to test biological hypothesis : the complexity of behavior could be obtained not just from
the number of "elements" or neurons, but by the way they are linked to each other. Two
elements, A and B, could thus produce six dynamic forms : A, B, A+B, A −→ B, B −→

A and A ⇋ B [Walter, 1950]. The turtle are autonomous, showing purposefulness : they
are able to look around, detect and avoid obstacle, follow a signal, go back to their shelter,
recharge theyr battery, ... Their behavior are not deterministic anymore but depend on
their perception and the state of the environement : you could change the position of the
light, add obstacles or another turtle. Without reprogramming the Machina speculatrix,
it is able to manage itself and adapt to these changes.

Walter’s turtles are indeed examples of the win-win bi-directional relations between
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Figure 1.14: Tortoise behaviors in various conditions. From top to bottom and left to
right : tortoise in box, light in box, two lights in box, "kennel" in box, low obstacle and
mirror. (From [Walter, 1950]).

biology and robotics, adapting concept from natural sciences to build good robot and
investigate biological hypothesis by using robots [Holland, 2003]. Walter wanted in fact
to go beyond this, stating in conclusion of "An Imitation of Life" that "it would even be
feasible to build processes of self-repair and of reproduction into these machines." leading
to an autopoietic (auto for self, poiesis for creation, production) robot, term introduced
by Maturana and Varela when trying to define what a living system is [Maturana, 1980].

The Machina speculatrix is thus a very good example of another required property
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to define a robot. As stated by Heudin (in [Spillemaecker and al., 2010]), about robots
"Contrary to these lasts [the automata], they are situated in their environment. In other
terms, they can interact with it and adapt their behaviors in consequence". We have here
the basis for a robot : a body (to be situated), sensors and actuators to respectively de-
tect changes in the surrounding area and act (interact) according to these changes (adapt).

To conclude this general history about robotics, and to show the huge range in the
shape or organization of what a robot is, we will introduce the first industrial robot :
Unimate. It was designed in 1954 by Devol who will associate himself with Engelberger
to found Unimation, Inc : the first industrial robotic firm was born. Short name for
"Universal Automation", Unimate will be put to work inside an assembly line of General
Motors in 1961 [Marsh, 2004, Salichs and Balaguer, 2003]. It was in fact a robotic arm
used to move hot die casting, poisonous for human worker, and welding them on cars as
shown in Figure 1.15 [Henderson, 2006, Engelberger, 1980].

Figure 1.15: Unimate robot, displayed in a demonstration (Left) and in an assembly line at
the General Motor plant in Trenton, New Jersey (Right). (From International Federation
or Robotics, http://www.ifr.org/history/).

In addition to the direct industrial application, one of the particularity of Unimate was
its capacity to be flexible. Indeed, he could learn how to perform : using joint coordinates
(the angle value for all the degrees of freedom), one could manipulate directly the arm
which records the different values taken, to be able to reproduce them after [Singh et al.,
2013]. This flexibility has been highlighten by Devol himself in his patent : "The present
invention makes available for the first time a more or less general prupose machine that
has universal application to a vast diversity of applications where cyclic control is desired"

Through this brief history on automation and robotics, and despite the fact we have
seen just a few of the hundreds of machines built by the human, we have been able to
draw a landscape of the field and more importantly to find caracteristic properties which
tend to transform a simple "machine" into a robot. With these elements, we are now able
to focus on the definition by itself of a robot.



1.2. Robots : from Fiction to Reality 33

1.2.2 Robot Definitions

We have already introduced the difficulty to define properly what is a robot. In order
to investigate what kinds of properties are relevant and required, we have travelled through
history to find the core capabilities or concepts demonstrated by remarkable automata or
robots. The list of property shown by a system is in fact the way some entities has chosen
to define a robot.

At first, the Robotic Industries Association (RIA) which says that "A robot is a repro-
grammable, multifunctional manipulator designed to move material, parts, tools or special-
ized devices through variable programmed motions for the performance of a variety of tasks"

We have already seen these notions through our survey. In particular, the multifunc-
tional properties come from Engelberger way of thinking about robotics. Automata could
sometimes move differently, achieve several behaviors but each time, the performance is
"global" : the motions are chained and linked between them. Moreover, there is just one
purpose at the end : entertainment, service, ... so one function, despite the fact that it
could involves different kind of actions. As for the reprogrammability, we have seen that
automas could have some "crude" notion of these, so we need to be more precise in the
definition itself of this term : the ISO 8373:2012 standard defines it as "designed so that
the programmed motions or auxiliary functions can be changed without physical alter-
ation". However, physical alteration is "alteration of the mechaincal system" which "does
not include storage media, ROMs, etc.". Indeed, Hero’s theater is not reprogrammable
because we need to change the machine (the weights), but the Droz’s automata are (but
they lack the multifunctional properties).

Other organisations find another solution to define robots : forgetting the universal def-
inition in order to build different class of precise robotics. For instance, the JApan Robot
Association (JARA) uses six different ones : manual handling device, fixed sequence robot,
variable sequence robot, playback robot, numerical control robot and intelligent robot. It
is interesting to note that the first and second classes are not considered as robot by
the RIA (because it is respectively directly control by an operator and it is not repro-
grammable).

Finally, we will check the ISO 8373:2012 entry. It defines a robot as "actuated mech-
anism programmable in two or more axes (4.3) with a degree of autonomy (2.2), moving
within its environment, to perform intended tasks". We keep the programmable (and re-
programmable) properties, the multifunctional one. We add here the autonomy notion
: "ability to perform intended tasks based on current state and sensing, without human
intervention". Some automata has touched these (the blood letting device of Al-Jazari
for instance) but we could argue that it was only proprioception, the "sensing" was inside
the machine : the behavior was related to the current state but not sensing the external
world. This autonoma however has been greatly illustrated by Grey’s Turtles.

Despite the fact that these definitions are quite robust and general, the ISO norm has
also taken the side of different robotics fields definition : robotic device, industrial robot
and service robot. The robotic device is not really a robot because it has some but not all
of the required properties (in particular the degree of autonomy). Interestingly, the differ-
ence between an industrial robot and a service robot is not because of the machine itself,
but depending of the goal : the first one is used for industrial automation applications,
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the second one for helping humans or equipment (but not industrial ones). That means
that a same robot could be in both category (but not at the same time) depending on the
context and the current task. It is in fact explicitely stated : "While articulated robots
(3.15.5) used in production lines are industrial robots (2.9), similar articulated robots used
for serving food are service robots (2.10)".

In this thesis, we are focused on the robotics of services. But in this case, what are
the differences between them and the industrial ones, if a solely robot could be in both?
Whereas the border is thin, and exchange, collaboration and knowledge transfer is possi-
ble and occured, the differences is the questions asked and the precise technique primary
focused on. The industrial robot tends to be alone, work in a separate environment with
safety distance and security from the human workers, whereas the service robot has to
be close to the human, to interact with him and possibily to touch and manipulate him.
Indeed, we try to build and program robots in order to put them among us, aiming a
lot of interactions with them. Instead of having a well defined environment, with mostly
inanimate objects, these robot are designed to be in undefined and very diverse areas with
animate human beings, manipulating untangible notion as language or emotions and the
need to be autonomous.

1.2.3 Service Robot

Service robots are indeed a special kind of robot. They do not have to completely out-
performed a human in term of motion (with speed, precision, strength and stamina) but
instead, has to offer him assistance in many different tasks. A big part of the complexity
in this domain is that the environment in which the robot will be, the precise action he
has to do, the people whith whom to interact, etc... are almost completely undefined.
Yet, it will surely be put inside a home at some point : but how is this place? How many
rooms? Are there some stairs? Is the floor made of wood? Is there a carpet somewhere?
Of course, we want him to be able to clean a room, but how? Is there a vacuum cleaner
or a broom? Does it need to clean also the windows? Obviously there will be someone in
charge of the robot. Is he alone? How old or big is he? Does he speak english?

With these little examples, you could see that trying to model in advance everything
and code the proper behaviors and features accordingly could easily lead to a dead-end
: we can not predict every difficulties and situations the service robot will encountered
because of this open world and multitask purposes [Meeden and Blank, 2006, Asada et al.,
2001, Stoytchev, 2009]. Instead of this typical direct programming, we take the approach
in this thesis of what is commonly called developmental robotics, or also autonomous men-
tal development methodology or epigenetic robotics 1. The idea is to implement in a robot
models and theories coming from the child’s or animal’s development science, in order to
give the robot the capacity to increase, develop and complexify his cognitive and motor
skills through the interaction with its environment [Lungarella et al., 2003, Zlatev and
Balkenius, 2001, Prince and Demiris, 2003, Cangelosi et al., 2010, Weng et al., 2001]. In
the next chapter, we will then develop these psychological and biological cognitive theories,
especially focusing on human child, and retrieve the key elements required to understand

1. There is in fact a small difference between epigenetic and developmental : the first is more interested
in motion and morphological development while the last one is more focused on cognitive and social
development [Lungarella et al., 2003]
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and implement them inside a social robotic platform.





Chapter 2

Toward Adaptive Robotics : the

Developmental approach and the

Child Development

2.1 Overview of the field

2.1.1 Origin and Definition

This field is relatively new, from the end of the 20th century [Weng et al., 2001, Lun-
garella et al., 2003] but it takes its roots from 1950 with Alan Turing himself often refered
as the father of computer science and artificial intelligence, stating in Computing Machin-
ery and Intelligence : "Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s? If this were then
subjected to an appropriate course of education one would obtain the adult brain." [Turing,
1950]. To be able to obtain this human intelligence in an artificial system, three features
are mandatory : the system must have a body (embodiment property), it has to be sit-
uated in a physical and social world (situatedness property) and it need a mechanism to
increase his knowledge through the interaction with the world (epigenetic developmental
process property) [Zlatev and Balkenius, 2001].

The early beginning of developmental robotics comes indeed from theory which study
in particular these prerequisites : behavior-based robotics, embodied intelligence and enac-
tive approach [Lungarella et al., 2003]. Behavior-based robotics purpose is to use modular
behaviors selected and controlled by sensory information without internal representation
system [Brooks, 1986, Braitenberg, 1986]. Embodied intelligence go a little further : the
robot could learn these or combined them, because it has a body which could affect the
world and it detects these effects and regularities with its sensors, giving him the capacity
to verify what it does, to test new motor actions and keep the useful ones. To summarize,
everything he learns come from the interaction with the environment : cognition is situ-
ated [Beer, 1995, Brooks, 1991, Pfeifer et al., 2001, Wilson, 2002]. Eventually, the enactive
approaches rely on the work of Varela and Maturana [Varela et al., 1991] which unifies
five concepts [Thompson, 2005, Vernon, 2010] :

1. Autonomy : Living beings are autonomous and act while trying to maintain themself;

2. Embodiement : Cognition is embodied, the cognitive system has to be in the world
to be able to interact directly with it;
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3. Emergence : The cognitive world built by the system is relative to its interaction with
the environment, thus behaviors to act on it emerge accordingly to these interactions;

4. Experience : The history of all the interactions has thus a key role for the mind;

5. Sense-Making : The system keeps a coherent pattern according to sensorimotor infor-
mation, creating meanings between them, detecting regularities in order to discover
the laws of the environment.

It has to be noted that the sense-making property of the system emerges from experi-
ence. But these interactions are leaded by the autonomous features of the system : it has
to maintain himself. Thus, the knowledge built is dependent of both the system himself
(with the body constraints) and the explored world and the purpose from this is to incrase
the possible space of actions of the robot.

So in conclusion, enactivism adds to the embodied cognition a self-organization fea-
ture with two mechanisms : co-determination and co-development [Vernon, 2010, Metta
et al., 2008]. Co-determination is where the system builds the world according to the
perceived consequences of his actions on the environment. Co-development means that
the knowledge learned emerges from all the possible actions the system has done through
its experience, in particular with the invariances or regularities which occurs.

Thus, a key feature for this approach is the interaction between the robot and the
world. But this world in not only composed of inanimate objects, there are also a spe-
cial kind of entities that the robot will encountered in his surroundings : animate agents
such as humans. Indeed, humans are not only physically situated in the world, they are
among other agents, involved also in a social and cultural world [Brooks and Stein, 1994,
Edmonds, 1999]. Alan Turing’s child is not alone with his toys or dolls. He has parents,
siblings, caretaker with him, allowing him to use and learn already known knowledge from
them : the cognitive development is greatly impacted by social factors and interaction
with other humans [Vygotskij, 1934, Whiten, 2000, Meltzoff and Prinz, 2002, Tomasello,
2009]. It is one particularity of the human species : the caregivers interact actively with
the youngster to help them to gather and organize the information needed as opposed to
the other primates species, where adults intervene not often [King, 1991]. It is defined as
the social or cultural hypothesis which explained the difference in cognitive skills between
the human and others species (included the nearest primate relatives) by early ontongenic
development of specific social skills, as shown with an extensive comparative studies be-
tween human, chimpanzees and orangutan in both physical domain (not difference) and
social domain (human children advantages) in the Figure 2.1 [Herrmann et al., 2007]. It
has to be noted that this hypothesis is an extension of the more general social intelligence
hypothesis, which is not only applied to human species but also to other species with so-
cial group like some apes [Whiten et al., 1999, Whiten and Van Schaik, 2007, Van Schaik
et al., 2003]. The difference lies on the way the cultural interactions are made, with three
particularities for humans [Herrmann et al., 2007]:

1. Learning a language of their cultural group through social interactions ;

2. Acquiring subsistence capacities from experts ;

3. Developping skills through schooling (written language and mathematical symbols).

The social contact is thus very important for the children, a lack or impairement in
the social or communicative skills could lead to development disorders, encountered in
particular in autistic children [Baron-Cohen, 1997, Scassellati, 2001]
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Figure 2.1: Overall performance in Physical domain (A) and Social domain (B) of the
Primate Cognition Test Battery for human children, Chimpanzees and Orangutans. The
test is built with 16 tasks grouped by cognitive scales : space, quantities and causality
for Physical domain, Social learning, Communication and Theory of Mind for the Social
domain. Children are 2.5 years old. (From [Herrmann et al., 2007]).

That is why we will focus in this part to this special kind of learning, where a teacher
is available and interact with the immature being, a children or a new robot, to help him
go through his development.

2.1.2 Social Learning and Cultural Transmission

This social situadness of children - which has recently led to taking this aspect into ac-
count in cognitive science and artificial intelligence theories, in particular for robot [Brooks
and Stein, 1994, Dautenhahn, 1995] - take in fact it root in the first part of the 20th cen-
tury with work by Vygotsky and Piaget with the cognitivism learning theory. The learner
will build knowledge with a sequential development, acquiring abilities and information
from the environment but also from people. More precisely, adults can i) help the children
to organize or combine skills, or reduce difficult of a task by guiding the attention of the
children, setting up easier intermediate steps, ... (called scaffolding by [Wood et al., 1976,
Lungarella et al., 2003]) or ii) by direct instruction [Kruger and Tomasello, 1996].

This cognitive development will then allow the children to build, integrate and use
mental functions. Vygotsky introduces in this mental development the notion of Zone of
Proximal Development (ZPD), defined as the distance between what the child could do
by itself, unaided, and what he is able to do with adult guidance, cooperation with other
[Vygotskij, 1934, Lindblom and Ziemke, 2003], as shown in the Figure 2.2. He argues that
an infant could only imitate, learn or understand things or concept inside his ZPD, with
too complex notion impossible to catch despite a potentially great number of repetition.
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Figure 2.2: Zone of Proximal Development schema, between the independence and as-
sisted performance area according to the difficulty of the task. (From Peña-López, in
http://ictlogy.net/)

Vygotsky make also a disctinction between the mental functions : the elementary and
the higher ones. According to him, the first functions are "innate" and could be found in
other species apart from human, for instance perception, attention or simple memory. The
higher ones are specific to human and emerge in a non direct stimulus-response process
but with an undirect process because of what he called an intermediate link (physcological
tool) between the stimulus and the response.

Indeed, neonates already demonstrate some skills, in particular in the social domain,
such as protoconversation or mimic movements [Trevarthen, 1979, Meltzoff and Moore,
1977]. Moreover, between 9 and 12 months, infant understand that others (parents, sib-
lings, caretakers, ...) are intentional beings with goals, allowing joint attention and en-
gagement and thus triadic interaction between the child, the caretaker and the object of
focus [Tomasello, 2009]. These early abilities will be the base for the direct instructions
and the scaffolding mediated by the teachers, allowing to shift the ZPD of the child over
time, according to his development as shown in the Figure 2.3 [Leong, 1998].

Thus, one skill will be particularly important for the child during these interaction :
language understanding and production. Language will be used extensively by the teacher
in direct instruction, but also when he needs to help the infant in his purpose, for instance
by leading the attention to a key object by saying the name of it. It will also allows
both agents to coordinate in order to achieve more complex actions and shared plans,
where each will be responsible of precise action in a definite order to complete something
which could not be done alone [Ashley and Tomasello, 1998, Tomasello et al., 2005]. It
could be also to make the task easier for the children where the teacher takes care of the
more difficult one, keeping the learner’s tasks within the zone of proximal development of
Vygotsky.
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Figure 2.3: Shifting of the ZPD through the acquisition and development of skills. (From
[Leong, 1998]).

2.2 Child Development : Learning a language

Language comprehension and production is thus an important milestone in child de-
velopment, allowing him to use in the most effectiveness the cultural transmission, in
particular for coordination activity [Tomasello, 2008]. However, the infant acquires before
that some other physical or social skills which will in fact be useful for learning his native
language.

The most dominant approach in modern linguistic during the second half of the 20th

century was the generative approach of Chomsky [Kaplan et al., 2008]. This consist of
obtaining a finite set of formal statements or rules which allows by a deductive process
to produce only the all possible correct grammatical sentences for a language [Chomsky,
1957, 1959, Halle, 1962]. However, the language acquisition does not not consist of build-
ing this grammar from scratch, but instead, parametrizing a Universal Grammar (innate
and genetically inherit among humans) to match the native (or any other) language of the
children [Chomsky, 1965]. The Universal Grammar was introduced to solve the Poverty of
Stimulus (PoS) argument which says that the children is not exposed to enough consistant
and complex inputs to allow him to infere rules and to make grammatical generalization
[Chomsky, 1965, Stich, 1978]. Among others, one aspect of this Poverty of Stimulus is
the fact that children listen to only correct grammar sentences told by adults when they
begin to acquire their native language and thus have a lack of negative evidence. And even
after some point, when they begin to have a basis and try to produce sentences, including
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incorrect ones, the corrective feedback provided by the caretakers tend to be ignored by
the child (McNeil1966). And if the child gives attention to caretaker feedbacks, these ones
are noisy without a strong contingency between the feedback pattern and the syntactic
correctness [Brown and Hanlon, 1970]. And in fact, these signals do not discriminate be-
tween grammatical and ungrammatical constructions [Marcus, 1993].

Indeed, Gold showed that it is impossible to learn from positive evidence solely a hier-
archical structure (as produced by grammar of human languages) with infinite recursion
[Gold, 1967]. Nervetheless, this hypothesis has been challenged more recently with argu-
ments for a "Richness of the Stimulus" [Tomasello, 2000, Sampson, 2002, MacWhinney,
2004].

In particular, the claim that positive evidence only in not enough as input for language
acquisition as been challenged by MacWhinney [MacWhinney, 2004] : it is not having neg-
ative evidence which is curcial to the child but having enough quantity of good quality
positive evidence. Moreover, the poverty of the stimulus itself could be in jeopardy : the
child is not just exposed passively to language in order to acquire language, but he will be
directed in respect to important elements in the oral language or in the environment to be
able to manage the mapping between sentence and meaning, in particular (but not only)
with speech modulation from adults and joint attention [Dominey and Dodane, 2004].
This allow a more developmental perspective of the language acquisition skill in children
than the classical Chomsky’s view, with cues being given to help the infant to manage the
relevant aspect of both the speech part or the environement part, to achieve the correct
mapping between sentence and meaning.

2.2.1 The Richness of Stimulus : the Prosodic Bootstrapping Hypothe-

sis

This hypothesis relies on the principle that, in fact, the input for language is not
poor but instead contains clues about syntactic grouping that reduce the requirement
of the needed grammar [Morgan and Demuth, 1996]. Now, the prosodic pattern of the
spoken signal is carrying a great amount of information about precisely the syntactic
structure of the language : the children is then helped when he has to initially learn and
extract this structure [Morgan and Demuth, 1996]. Instead of having a pre-wired universal
grammar at birth, the infant just needs to acquire a small set of concrete nouns (without
any link to grammatical knowledge) to built a basis which allows him to pair off actions
(meanings) with syntax (forms) from the syntactic categories [Gillette et al., 1999, Pinker,
2010]. Indeed, the children’s early speech is most exclusively composed with open class
word (OCW or semantic word, carrying the content), and the close class word (CCW, or
grammatical word, for instance "to", "with", ...) appeared in a correct and systematic way
later [Morgan and Demuth, 1996].

Moreover the adult’s prosody in not the same if they talk to others adults (ADS, Adult-
Directed Speech) or to a child which is called CDS for Child-Directed Speech. In CDS, the
segments of the sentence are deformed by exaggerating the prosodic structure resulting
in a ’sing-song’ language form [Fernald, 1989]. The information carried by these cues are
then emphasized and easier for the child’s perceptual skills to extract and segment. In
fact, 4-months infants show preferences for this kind of ’motherise’ speech compared to
ADS samples [Fernald, 1985].
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This cues encountered in CDS can take several forms, like longer pauses between gram-
matical subsections [Broen, 1972] or high-pitch tone for new words localized at the end
of the sentence [Fernald and Mazzie, 1991]. Indeed, children as young as 6 or 7 months
could segment words from a fluent speech principally using statistical information but their
strategy is adapting and they mainly used stress syllable cues from 9 months in order to
achieve this tasks [Thiessen and Saffran, 2003]. Another possible cue, related to this last
one is the ’F0’, the fundamental frequency, whose contours are exaggerated [Fisher and
Tokura, 1996]. Yet there is a correlation between the F0 and the word classification : a F0
peak is more linked to open class word and an absence of an F0 peak points more toward
a closed class word [Dominey and Dodane, 2004].

Indeed, prosody is important when linked to children language acquisition. By modify-
ing the way we talk to infants, we help them to segment or categorize signals in particular
by leading the attention of the child to precise and relevant part of the speech signal. It
can then be treated more easily in order to extract useful information, for instance being
able to classify the word as a CCW or a OCW.

These knowledge about the classification could then allow to use the syntaxic form
of the utterance to extract information about, and possibly unknown, OCW. The gram-
matical construction theory takes this approach and is defined as a mapping between
the sentence structure and the event meaning structure, which occured during the speech
[Bencini and Goldberg, 2000]. Thus depending on the learnt sentence type, the child is
able to know that the position of the word in the sentence correspond to a precise role. For
instance, if we encountered a simple active transitive sentence (e.g. ’The octdor dartis the
dakel’), the first noun (’octdor’) is the agent who do the action (’dartis’), and the second
(’dakel’) is the object who suffered it [Naigles, 1990, Golinkoff et al., 1996, Dominey and
Dodane, 2004]. One hypothesis is that these grammatical constructions, which help to
solve uncertainty about new words, can be in particular identified and categorized with
the unique constellations of CCW or morphemes, or other cues in the Competition Model
of Bates and MacWhinney [Bates et al., 1991].

We have seen here some clues which can be used by the child in order to manage and
extract useful information from speech input signal from adults, and use them to acquire
knowledge about the sentence. We will now look down to the other parts of the mapping
occuring during language acquisition : the meaning.

2.2.2 The Richness of Stimulus : the Joint Attention

The other aspect of the Poverty of Stimulus, concerned about the ’meaning’ extrac-
tion, is that the visual scene perceived by the infant when he hears a sentence is noisy
: what precise aspect or part of this scene is relevant to the utterance told by others?
Even if I can manage this, my point of view is not the one of the adult : the perspective
is not the same [Quine, 1960]. During this early language acquisition period and related
to this problematic, research shows an important role of what is called joint attention
[Tomasello and Farrar, 1986, Hood et al., 1998, Morales et al., 2000, Mundy et al., 2007].
It is defined as the competence of the infant to coordinate her focus with another social
partner about an event or an object. Sharing an episode of joint attention between a
young children and an infant tend to improve the language acquisition process related
to the word-object mapping problem, because it helps the infant to identify the relevant
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referent of the utterance speech, in the visual scene [Morales et al., 2000, Dominey and
Dodane, 2004]. Then it allows the young children to go from dyadic (between him and an
adult) to triadic interactions (him, the adult and an object) around the first year of life
as shown in Figure 2.4 [Tomasello, 2009]

Figure 2.4: Main joint attentional interaction types and respective age of emergence
(roughly 80% of subject inside the range). (From [Tomasello, 2009]).

However, a joint attention episode could be happening in two ways : the adult could
actively direct the attention of the children to something specific he will talk about (by
looking or pointing at the focus object for instance) or the caretaker could follow the
natural attention of the children and adapt to it, commenting then what the infant is
currently gazing at or playing with. Interestingly, despite the fact that the overall RJA in
early age (under 18 months) is positively related to the length of the lexical vocabulary
acquired by the children [Morales et al., 2000, Brooks and Meltzoff, 2005], the children
with parents who followed their babies focus of attention to initiate joint interaction have
bigger vocabularies than children of parents who actively redirects the attention of them
for this kind of episodes [Tomasello and Farrar, 1986].

However, despite the fact that a causality flows from joint attention to language, it has
to be precised that this is not only a one-way causality. Instead, the influence works more
in a "transactive" way : joint attention helps the language acquisition of a prelinguistic
child which is used in return to optimize and maintain theses joint attentional episode,
resulting in more effective language interactions [Tomasello and Farrar, 1986]. It is this
precise support and coordination role during interactions, including learning through sev-
eral modalities, in order to achieve a shared plan, which is based on these precise joint
attentional episodes.
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2.3 Child Development : Learning through multi-modality,

coordinated with language

The step where the children acquire enough lexical vocabulary and grammar skill is a
crucial step for the development, in particular because the main function of the language
relies on the coordination during cooperative activity with others, which is based on joint
attentional skills [Brinck and Gärdenfors, 2003, Tomasello et al., 2005, Tomasello, 2008].
This is crucial because social and cognitive developments is mainly built from cooperative
plays with caretakers or other children [Piaget, 1932, Hartup, 1989]. The true and wanted
cooperative behaviors emerge from 18 months after the infant achieved a pre-requisite step
which is to learn the notion of intentionality, that not only he has but other persons as well
[Tomasello, 2009, Brownell et al., 2006]. Then the children can see others as intentional
agents, and simulate their goal and desires than true imitation or cooperate shared plan
is possible [Tomasello et al., 2005].

2.3.1 Joint attention and self as intentional agents, like others

As we have seen previously in figure 2.4, joint attentional episodes emerge from nine
to twelve months and will become more complex and consistent with time, allowing the
infant to use not only dyadic interactions (manipulating objects or expressing emotions
toward others) but also triadic behaviors with a share attention between him and others
toward an object [Tomasello, 2009]. During the same period, another crucial cognitive
skill appears : 12-month-old infant can attribute a goal pursued by agent and think about
his actions in relation to that purpose, at least related to spatial behavior [Gergely et al.,
1995]. Tomasello hypothesis is thus that it is when the infant begins to understand that
others are intentional agents like him that the children engages in joint attentional episodes
[Tomasello et al., 2005].

Indeed, the equivalences between me and the other, who is ’like me’ is the foundation
of the social cognition [Meltzoff, 2007a,b]. The goal-oriented actions system involves in-
tentions and emerges from an early sense of self, what Neisser called the "ecological self"
[Neisser, 1988]. It is the step where the infant knows that he is a differentiated, situated
and agentive entity. This stage could be achieve by exploring and interacting repeatedly
with objects to observe the consequences. It comes from early dyadic interactions when
18-week-old children could produce rudimentary reaching behaviors toward a translating
object with anticipation [von Hofsten and Fazel-Zandy, 1984] or when 6-week-old infant
imitates tongue protrusion from a caretaker [Meltzoff and Keith Moore, 1994].

Thus, the joint attentional episodes and the "like me" intentional stance could be
combined and develop each other in a transactive way around the 9th month of life.
Children begin to see their behaviors as goal-oriented and the new triadic interactions
allow them to project these intentions onto other agents as summarize in Figure 2.5. In
return, shared attention could be mediated and facilitated with this new perspective in
particular by separating the goal and the intermediate steps or behavioral means to achieve
it [Tomasello, 2009]. For instance, children directs the adult attention with visual cues
(by pointing) more often when others can see the object, compared to when he cannot.

This attribution of intentions to another person combined to the joint attention devel-
opment at 9 month will then open new possibilities for the cultural learning of the infant,
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Figure 2.5: Development of the "like me" framework (from [Meltzoff, 2007a])

which could be one of three types, the first one will be the imitative learning. We have seen
that the children is capable of some kind of imitation before (especially facial one like the
tongue protrusion) but it is rather a mimicry : the infant reproduces the behavior he just
saw, without any regard for the intention and current goal of the observed agent. For a
true imitation, the learner should take the perspective of the user, in particular understand
his goal, and then reproduce the majority of the observed behavior . The second one is
the instructed learning when the children remember the instructions and demonstrations
of the teacher and in which context (i.e. what is the purpose of the behavior) it could be
used, thus a certain theory of mind has to be developed to take mental perspective. It
could take several forms, like providing a set of instructions using spoken words. The third
one is called collaborative learning when both (or more) participants shared a common
goal and plan which could not been achieved alone and where cooperation for the different
behaviors to do are necessary, with the possibility of role reversal in an episode of shared
plan [Tomasello et al., 1993, 2005].

2.3.2 Imitative learning : the true imitation

We first have to define precisely the true imitation, or imitative learning, compared
to other imitation-like processes, in particular the emulation. In true imitation, you are
learning by copying the actions of others, whereas in emulation you are looking to the re-
sults of the action, the property of the tool used (if any) or the objects involved [Tomasello,
1990, Whiten, 2000, Whiten et al., 2009]. Indeed, chimpanzees are better at emulation
learning, for instance when the mother rolls a wood log in order to find and eat insects
behind, the youngster will learn that removing the lot allows to have access to food, but
the "rolling" move will not be exactly copied, because it is already something he can do or
learn by itself with trial and error [Tomasello, 2009]. In comparison, human children tend
to adopt more often a imitative learning posture as shown by Nagell [Nagell et al., 1993].
In this experiment, chimpanzees and two-year-old children, mixed and separate in two
groups, were presented an experimenter with a rake-like tool for an out of range reaching
tasks, who used it in a different ways between the groups, one of the method being more
efficient than others. Results show that children are trying to copy the method used (imi-
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tative learning), whereas the chimpanzees use different kind of strategy to manipulate the
rake independently of the method seen (emulation learning). We could see here that there
is no "more intelligent" or "better" learning, they are just focusing on a different main
property (behaviors for imitation, goals for emulation) and their efficiency depend on the
task to achieve or teacher skills. Here for instance, chimpanzee using their own behavior
to use the rake was better than children trying to copy the less efficient method from the
experimenter. However, what we could state is that imitative learning is more social and
allows to learn new behaviors of ways to act and so is a crucial skill for culture transmission.

Indeed, inventive and more efficient ways to act and use tool could be found by an
individual, but it could be transmitted to the peers and the following generation, what
Tomasello called the cumulative cultural evolution (or ratchett effect, shown in figure 2.6),
only if others try to copy the new method, and not only continue to use the tool in the
way they are used to do.
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Figure 2.6: Simplified schema of the ratchett-effect, showing an artifact with cumulative
modification. (From [Tomasello, 2009]).

However, if children tend to prefer true imitation, they are also capable of producing
emulation, and in fact they choose between these modalities according to what they un-
derstand of the behavior and the goal observed and what aspect is the most important
for the teacher. Meltzoff then Carpenter found that 14-month-old children prefer to im-
itate the unusual and awkward behavior of switching on a special light by touching the
interrupter with the head than just simply using their hands ([Meltzoff, 1988, Carpenter
et al., 1998]). However, Gergely reproduces this experiment with a new condition : the
experiment could have either his hands free or wrapped by a blanket. In fact, 14-month
children mainly imitate the weird actions where the adult’s hands were available whereas
they principally used their hands to switch on the light (emulate) when the demonstrator
had his hands occupied as shown in Figure 2.7. The 14-month children can then select
the learning mechanism in a inferential process, involving in particular the rationality and
constraint of the current situation ([Gergely et al., 2002]).
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Figure 2.7: Original Caption : Comparison of the methods used by 14-month-old infants
to switch on a light-box 1 week after watching how an adult executed the same task under
two different conditions. a, b, Adult switching on the light by touching the lamp with
her forehead in the hands-occupied condition (a, n = 14) or the hands-free condition (b,
n=13). c, Methods used by infants to switch on the light-box after watching the head
action used by the demonstrator under these two conditions (left bar, adult had hands
occupied; right bar, adult had hands free), recorded over a 20-s period. Blue, head action
was re-enacted; green, only manual touch was used. (From [Gergely et al., 2002]).

2.3.3 Instructed Learning : language coordination

Another effect that could have an impact on the selection of imitation or emulation
is the behavior of the adult, especially related to socially interactions. Indeed, the imita-
tive learning could be favored, and facilitated, when the teacher uses ostensive referential
speech acts like saying "Look at my hand", accompanied by a coherent gaze, smile. Gergely
and colleagues have found this result by reproducing their hand-free versus hand-occupied
task from 2002 and observing a significant increase in head movements in the first condi-
tion, when children receive these pedagogical cues compared to when the teacher is not
socially active [Gergely and Csibra, 2005]. Other results confirmed this tendency to copy-
ing actions when the model is social and that interactive feedback is possible at 18 and 24
months [Nielsen, 2006, Nielsen et al., 2008].

This period of age, second half of the second year, is a crucial period when a system-
atic, coordinated and consistent peer to peer cooperation emerge [Eckerman and Didow,
1996]. This matches the frequency and efficiency of coordination skill : the coordinated
episode are infrequent and seems more accidental at 18 months but they are frequent
and effective at 24 and 30 months [Brownell and Carriger, 1990], first under simple forms
(imitative game, basic routines) before being more coordinated and fully cooperative dur-
ing the third year, in particular with negotiation and accomodation between participants
[Brownell et al., 2006].

The precise 15 to 18 month period is emphasized as a key point, where joint en-
gagement episodes increase greatly in frequency in free plays situations [Bakeman and
Adamson, 1984]. Warneken and colleagues have focused on these episodes, and show that
the trials to reengage a partner who has left the cooperative activity with an unachieved
goal are eye contact for 14 month, pointing gesture for 18 months, with a verbalization in
addition for 24 months old children [Warneken and Tomasello, 2007]. The emerging speech
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capabilities of the children is developed between 28 and 32 months, and used to regulate
cooperative activity which increases their efficiency. More precisely, the first appearance
of regulatory speech occurred to negotiate the role to be played between both participants
(e.g. "Give", "Go there"). Next we find verbal means to address some details, such as the
timing (e.g. "Wait!") or to direct the partner’s attention (e.g. "Watch!"). Eventually, the
description of their own actions are verbally announced (e.g. "I get it.") [Eckerman and
Didow, 1996, Eckerman and Peterman, 2001].

2.3.4 Collaborative Learning : Shared Plan

The children have now developped all the skills needed to participate in a shared coop-
erative activity. Indeed, three main features are mandatory in order to define such episode :
a mutual responsiveness, a commitment to the joint activity and a commitment to mutual
support [Bratman, 1992]. First, we have just seen that after his second year, the children
is able to mediate a collaborative episode through non-verbal and verbal communicative
cues [Eckerman and Didow, 1996, Eckerman and Peterman, 2001]. Second, they reengage
actively the partner if he left before the plan is finished [Warneken and Tomasello, 2007].
Last, the children has also an altruistic motivation at 18 months, and spontaneously help
adult to achieve the goal they are capable of understanding and representing [Warneken
et al., 2006].

These features come from the fact that the children understand others as intentional
agents and one uniquely human aspect is also the motivation to share these intentional
states with peers [Tomasello et al., 2005]. Indeed, to have a commitment to the joint
activity, the goal has to be shared by both participants, a shared (or "we") intentionality
that we will do something together. Moreover, the commitment to the mutual support
involves the fact that one agent has to know what the other has to do in the cooperative
task, to be able to monitor the different timing or help him if a problem occurs. This
could be validated if the agent are capable of role reversal, showing in this way that he is
aware of all the roles to be fulfilled, including the partner’s ones [Tomasello et al., 2005].
This view is summarized in the Figure 2.8 where the goal is represented with self and the
other, allowing thus a shared goal : my goal is to the respect of the other goal. Another
important aspect is the "bird’s-eye view" of the joint intention which contain also myself
and the other to allow help and role reversal, that 18 month old children can do for a role
reversal imitation task [Carpenter et al., 2005].
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Figure 2.8: Original Caption : Each partner’s conception of a collaborative activity in
which a shared goal and joint intention (with complementary roles) are formed. (From
[Tomasello et al., 2005]).

2.4 Child Development : Reasoning and Planning using Ex-

perience

With the help of adults, who could engage in direct attention to a precise element,
bring knowledge by commenting or labeling an interesting focus, teach new actions with
the used of imitation or cooperative scene, a children is capable of learning through so-
cial interactions with more expert caretakers or peers. One key feature which has to be
developed in order to be able to use these learning methods is the intentional state that
the children and the other have when they act. Agents have goals and use actions to
achieve them, which means that actions have consequences and these can be our desired
goals. In the same perspective, collaborative plans have shown example of actions linked
together, which has to be in a precise order to be efficient, thus these goals could un-
lock pre-conditions needed to do a further act. This teleological stance is a powerful tool
for the children to reason about his experience, and provides another support to acquire
knowledge in a less explicit and caretaker-dependent method.

To be able to reason and plan, two main components are needed : knowledge data from
which we could extract information, and a reasoning capability to use this knowledge and
determine new concepts or information [Hayes-Roth, 1997]. We will thus investigate at
first the memory capabilities of the children and how they could recall and organize their
past experiences. Next we will see how inference mechanisms are recruted by the infant
to learn regularities from their environment.
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2.4.1 Children’s Memory about their self-past experience

Indeed, one of the crucial aspect of cognition is to anticipate future events which could
be achieved by humans with the ability to "travel in time", in particular by remember-
ing past episodes and predict the next ones through imagination into the future [Vernon
et al., 2007]. This ability to remember not any past events but our personal episodes
used different specific memories, recording in the autobiographical memory and forming
our daily life context. It is based on both the episodic memory, which stores personal
experiences with specific objects and people at a precise time and place, and the semantic
memory, which contains general knowledge, facts or laws about the world [Tulving et al.,
1988, Conway and Pleydell-Pearce, 2000, Cohen and Conway, 2007]. Indeed, when we ac-
cess to the episodic memory, we "remember" or "recollect" (e.g. "I remember having play
Tic-Tac-Toe with my little brother, yesterday, in my room") whereas we "know" or "recall"
something when we retrieve information from the semantic memory (e.g. "The Bastille
has been taken in July 1789, the 14th during the French Revolution") [Tulving, 1972, 1989].

These 2 different types of memory have been highlighter in particular because of two
different (and not present in the same patient) amnesia : temporal amnesia, a loss of
memory from personal experience, and categorical amnesia, loss of acquired facts. Indeed,
K.C. (Figure 2.9), after a car accident, has lost his episodic memory but not his semantic
one : he could then play chess without remembering he has ever learned and played them
[Tulving, 1989]. Without his episodic memory, his autonoetic consciousness (who knows
himself) was removed : he could not recall his own past event, then he lives in a permanent
present subjective time [Tulving, 1989, 2002]. The awareness of his personal past, to know
the sequence of events which bring us in the present, creates a sense of personal history
and thus defines identity and purpose [Nelson and Fivush, 2004].



2.4. Child Development : Reasoning and Planning using Experience 53

Figure 2.9: Original caption : Research involving both normal and abnormal brain activity
is modifying the traditional view of memory as simply storage of information. The am-
nesic patient K.C. has retained his knowledge of how to play chess, although he cannot
remember having played chess ever before, with anyone. The dissociation between the nor-
mal retention of knowledge and the severely impaired ability to recollect personal events
suggests a distinction between two kinds of memory, semantic (involving impersonal facts)
and episodic (involving personal experience). (From [Tulving, 1989]).

A summary of these different features of semantic and episodic memory is summarized
in Table 2.1.

Episodic Semantic

Type of information Specific events, objects, General knowledge facts
represented people about the world

Type of organisation in Chronological (by time) or In schemas or in categories
memory spatial (by place)

Source of information Personal experience Abstraction from repeated
experience or generalisations
learned from others

Focus Subjective reality: the self Objective reality: the world

Table 2.1: Original caption : the episodic-semantic distinction. (From [Cohen and Con-
way, 2007]).

However, these kinds of memory are interacting between each other and thus having
an interdependent relationship [Cohen and Conway, 2007]. Episodic memory is accessible
to inspection from the semantic memory, which could interpret data with the knowledge
and modify them, what Tulving called an "encoding" process [Tulving, 1972], for when
you see at first a wax statue of a french revolutionary man and you learn after that it was
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in fact Napoleon : the label is then add to your remembering. On the other way around,
the semantic memory could use inferential and reasoning mechanisms to extract elements
from retrieval of repetitive or pertinent personal experience from the episodic memory
[Tulving, 1972, Cohen and Conway, 2007].

Now that we have defined such kind of memory, we will focus on how they show up
during the development of the children cognition. Indeed, memory are present in infant
even before birth with newborns able to distinct familiar sounds (heard when in utero, like
mother’s voice uttering the same passage aloud) from novel sound [DeCasper and Spence,
1986]. The recognition capability increases to become more durable : at 6 months, children
can differentiate between familiar and novel stimuli (sounds or sights) for several weeks
[Fagan, 1973] and as soon as 9-months of age, infants are able to remember a sequence
of actions with specific objects and could reproduce them weeks later, after presented the
objects again [Bauer et al., 2000]. However, it is one thing to remember events, but one
need also to be able to link past events with the present self. Inspired be the classic mirror
task of Gallup [Gallup, 1970], 3, 4 and 5 years old children were recorded during a play
with an experimenter covertly placed a sticker on their head and video was shown either
just after or a few days later the interaction, testing their delayed self-recognition under-
standing. Thus, 3 year-old children never reach for the mark, and 4 year-old always do,
without any regard to the proximity or delay of the sticker trick. Eventually, 5 year-old
are able to reach the sticker when the video is shown just after, but not when the episode
has occurred some days ago, stating that they know it was in the past and the paper is
not on their head anymore, showing them that they understand the temporal relation be-
tween past and present [Povinelli et al., 1996], with a self representation linking past self to
present self along his own timeline, defining his life [Fivush, 2011]. Thus this mental time
travel is the last, but not the first, feature of autobiographical memory [Piolino et al., 2007].

2.4.2 Children’s Teleological stance and Reasoning capabilities

Adults can use a powerful tool for their reasoning capabilities by making inferences
about the cause or consequences of events, based on the observations of them and their
variation or covariation [Cheng, 1997]. How and when these features emerge in children?

As we have seen before, autobiographical memories is not ready until five years, but
some specific episodic memory is already in place before one year [Bauer et al., 2000]. Yet,
infants are capable of inferring goals of an unanimated moving dot as soon as 12 months
by taking a teleological stance [Gergely et al., 1995]. It consists of taking into account
three components of the present and future : the action, the goal state (achieved in the
future) and the situational constraints (in the present). Indeed, if we have access to any
two of these elements, we can infer the third one, and thus obtain one of the mental state
among intentions (related to the action currently executed), desires (the goal the agent
wants to achieve) and the beliefs (the constraints supposed by other), as shown in figure
2.10. This reasoning is using the principle of rational actions [Gergely and Csibra, 2003],
stating that :

– The purpose of an action is to bring to you the goal state in the future, when the
action has been executed ;

– The goal states are achieved by an agent who select the most rational action avail-
able according to the constraints of the current situation ;
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Figure 2.10: Original Caption : Teleological and mentalistic representations of actions.
Teleological representations relate three aspects of the real world to each other via the ra-
tionality principle, which provides explanations and predictions for observed actions. Men-
talistic action representations involve three types of intentional mental states attributed to
an agent (X). The contents of these mental states correspond to the elements of the tele-
ological representations. There are several differences between these action explanations,
including the direction of the explanation (causal versus teleological), or the ontological
status of the elements (real versus fictional worlds). Note, however, that the principle of
rational action applies equally to both kinds of representation. (From [Gergely and Csibra,
2003]).

In particular, attributing goals could be used for two different process, depending on
the direction of the inference : when the children determine the goal from an ongoing
action ("What is the function of this action?", he could predict the future state before it
actually happens, whereas anticipating the action knowing the goal ("What action would
achieve that goal?") he could predict the trajectory of the move. These features are avail-
able once the children has learned the different actions to achieve these goals, especially
through social learning by observing other’s action and inferring their goal (thus discover-
ing novel goals) or on the other way around, acquiring means actions in order to achieve
it [Csibra and Gergely, 2007], in particular when the other is explicitly stating his action
("I am doing something") or his goal ("I want something). A summary could be found in
Table 2.2.
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Table 2.2: Original Caption : The function of teleological interpretation of actions. (From
[Csibra and Gergely, 2007]).

In fact, social part seems important in the process of inferring. Indeed 24 months
toddlers does not spontaneously trigger a first event to generate a second : a block moving
"by itself" in a base to make a plane toy rotate on itself. However they could achieve this
if an agent is moving the block or explains using causal-language [Bonawitz et al., 2010]
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Chapter 3

Exploring the Acquisition and

Production of Grammatical

Constructions Through

Human-Robot Interaction

3.1 Introduction

The following publication will detail how we have implemented in our humanoid robot
iCub a system in order to acquire then produce grammatical construction, giving to the
robot the capability to develop language understanding and speaking through interaction
with humans. Based on the Richness of the Stimulus hypothesis ([Tomasello, 2000, Samp-
son, 2002, MacWhinney, 2004]), it is inspired by the strategy of the children who could
grammaticaly classify word as Open Class Word or Close Class Word, in particular using
prosodic cues ([Morgan and Demuth, 1996]). These classification will allows the system
to use the grammatical construction theory in order to map the sentence structure to the
event meaning structure ([Goldberg, 1995]) during a learning phase when the human is
interaction with the robot.

3.2 Publication
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Abstract 

One of the principal functions of human language is to allow people to coordinate joint 

action.  This includes the description of events, requests for action, and their organization in 

time. A crucial component of language acquisition is learning the grammatical structures that 

allow the expression of such complex meaning related to physical events. The current 

research investigates the learning of grammatical constructions and their temporal 

organization in the context of human-robot physical interaction with the embodied 

sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena.  

First, we demonstrate that a recurrent network model can be used in conjunction with this 

robotic platform to learn the mappings between grammatical forms and predicate-argument 

representations of meanings related to events, and the robot’s execution of these events in 

time.  Second, we demonstrate that this learning mechanism can function in the inverse sense, 

i.e. in a language production mode, where rather than executing commanded actions, the robot 

will describe the results of human generated actions.  Finally, we collect data from naïve 

subjects who interact with the robot via spoken language, and demonstrate significant learning 

and generalization results.  This allows us to conclude that such a neural language learning 

system not only helps to characterize and understand some aspects of human language 

acquisition, but also that it can be useful in adaptive human-robot interaction. 

 

1. Introduction 

1.1 Issues in language acquisition 

The ability to learn any human language is a marvelous demonstration of adaptation.  The 

question remains, what are the underlying mechanisms, and how do humans make the link 

between the form of a sentence and its meaning? Enormous debate has ensued over this 

question.  The debate can be characterized with one end of the continuum, Piaget’s 

constructivism,  holding that language can be learned with general associative mechanisms, 
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and the other end, Chomsky’s innatism, holding that the stimulus is so poor, that language 

could only be learned via a highly specialized universal grammar system (Piattelli-Palmarini 

1980).   We and others have argued that linguistic environment is rich – in response to the 

“Poverty of stimulus hypothesis” (reviewed in (Dominey & Dodane 2004)). As the child is 

situated in the environment, it has access to massive non-linguistic information that can aid in 

constraining the possible meanings of phonemes, words or sentences that it hears (Dominey & 

Dodane 2004). In this context, social interaction is clearly an important factor that helps the 

child to acquire language, by focusing its attention on the same object or event as the person 

he is interacting with via joint attention. Joint attention permits one to considerably reduce the 

possible mappings between what is said and what is happening in the environment.  Joint 

attention happens sufficiently often to assume it as one of the reliable ways to help the child to 

acquire language: for instance when playing a game, showing an object, ritualized situations 

including bathing and feeding, etc. (Carpenter et al 1998, Dominey & Dodane 2004, Knoblich 

& Sebanz 2008, Ricciardelli et al 2002, Sebanz et al 2006, Tomasello 2003, Tomasello & 

Hamann 2012). 

Despite the potential aid of joint attention, mapping the surface form onto the meaning (or 

deep structure) of a sentence is not an easy task.  In a first step in this direction, Siskind 

demonstrated that simply mapping all input words to all possible referents allows a first level 

of word meaning to emerge via cross-situational statistics  (Siskind 1996).  However, simply 

associating words to specific actions or objects is not sufficient to take into account the 

argument structure of sentences in language.  For instance given these two sentences “Mary 

hit John.” and “John was hit by Mary.” which have the same meaning but with a different 

focus or point of view, how could a purely word-based system extract the exact meaning of 

the sentence? How could an infant determine who is doing the action (the agent) and who 

endures the action (the object)? As simple this example is, relying only on the semantic 

words, and their order in the sentence, will not permit to reliably distinguish the agent from 

the object. 

To begin to answer this question, we consider the notion of grammatical construction as  

the mapping between a sentence’s form and its meaning (Goldberg 1995, Goldberg 2003). 

Goldberg defines constructions as “stored pairings of form and function, including 

morphemes, words, idioms, partially lexically filled and fully general linguistic patterns” 

(Goldberg 2003). Constructions are an intermediate level of meaning between the smaller 

constituents of a sentence (grammatical markers or words) and the full sentence itself. 
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Typical grammatical constructions could be used to achieve thematic role assignment, that 

is answering the question “Who did what to whom”. This corresponds to filling in the 

different slots, the roles, of a basic event structure that could be expressed in a predicate form 

like predicate(agent, direct object, indirect object or recipient). A simplified summary of 

characterization of grammatical constructions can be seen in Figure 1. 

 

 

 

Figure 1:  Schematic characterization of the thematic role assignment task. Solving this task consists in finding 

the adequate mapping between the content words (i.e. semantic words) and their roles in the meaning of a given 

sentence. This mapping is represented by the set of arrows (here three) for each sentence surface-meaning 

mapping. 

 

Solving the thematic role assignment problem consists in finding the correct role for each 

semantic word (i.e. content word or open class word). It thus consists in finding the predicate, 

the agent, the object, and the recipient for a given action. In the preceding example this means 

that hit is the predicate, Mary is the agent and John is the object.  How could one use 

grammatical constructions to solve this thematic role task for different surface forms as 

illustrated in Figure 1?  According to the cue competition hypothesis of Bates and 

MacWhinney (Bates & MacWhinney 1987, Bates et al 1982) the identification of distinct 

grammatical structures is based on combinations of cues including grammatical words (i.e. 

function words, or closed class words), grammatical morphemes, word order and prosody. 

Thus the mapping between a given sentence and its meaning could rely on the ordered  

pattern of words, and particularly on the pattern of function words and markers (Dominey 

2003, Dominey et al 2003). As we will see in the Material and Method section, this is the 

assumption we make in the model in order to resolve the thematic role assignment task, that 
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is, binding the sentence surface to its meaning.  In English, function words include “the”, 

“by”, “to” ; grammatical markers include verb inflexions “-ing”, “-ed” or “-s”.  One 

interesting aspect of grammatical words and markers is that there are relatively few of them, 

compared to the potentially infinite number of content words (i.e. semantic words). Hence the 

terms “closed class” for grammatical words and “open class” for semantic words.   As these 

closed class words are not numerous and are often used in language, it could be hypothesized 

that children would learn to recognize them very quickly only based on statistical speech 

processing. This argument is reinforced by the fact that such words or markers are generally 

shorter (in number of phonemes) than content words. This notion of prosodic bootstrapping 

(Morgan & Demuth 1996) is reviewed and modeled in Blanc et al. 2003 (Blanc et al 2003). 

 

1.1 Overview of the tasks 

 

In this study we investigate how a humanoid robot can learn grammatical constructions by 

interacting with humans, with only a small prior knowledge of the language. This includes 

having a basic joint attention mechanism that allows the robot to know for instance what is 

the object of focus.  We approach our simplified study of language acquisition via two 

conditions: language comprehension and language production. Both conditions will have two 

modes: a training mode, when the human acts as a kind of teacher, and a testing mode, where 

the human could test the language capabilities of the robot as in child-caregiver interactions.  

The experimental tasks will test the ability of our neural network model of language 

acquisition to understand and to produce meaningful language. 

We have shown in previous studies that the neural model used (1) can learn grammatical 

constructions correctly generated with a context-free grammar (with one main and one 

relative clause), (2) can show interesting performance in generalizing to not learned 

constructions, (3) can show predictive activity during the parsing of a sentence and in some 

cases give the final correct parse before the sentence ended, and (4) that the neural activity 

may be related to neurophysiological human recording (Hinaut & Dominey 2012, Hinaut & 

Dominey 2013). We believe that these results demonstrate that the model may be suitable to a 

developmental robotic approach, extending our previous work in this domain (Dominey & 

Boucher 2005a, Dominey & Boucher 2005b). 

 

Here we have four goals: (1) to determine if it is possible to use the model in an interactive 

fashion with humans, that is, to integrate this neural model in the robotic architecture and 
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make it communicate and work in real-time with the other components of the architecture 

(speech recognition tool, etc.); (2) test the model in a productive manner, that is instead of 

“understanding” a sentence, it will be able to produce one, that is, to produce the sequence of 

words of the grammatical structure given the thematic roles and the sentence type (canonical 

or non-canonical); this has not been done in our previous experiments with the neural model; 

(3) in the comprehension task, test if the neural model can learn constructions that allow for 

commands that manipulate the temporal structure of multiple events.  For instance to correctly 

respond to the sentence “before you put the guitar on the left put the trumpet on the right”.  

Finally, (4) we test the model with language input from naïve subjects, in order to determine 

if indeed this adaptive approach is potentially feasible in less structured environments. 

In the Material and Methods section we will first briefly present the robotic platform and 

the interaction environment.  We will then describe the two neural models used for the 

comprehension and production tasks. Finally, the integration of these components will be 

presented. In the Experiment section we will describe the experimental procedures for the 

scene describer task, and the action performer task. In Results section we will illustrate the 

functioning of the system in these two modalities, including figures illustrating the human-

robot interactions, and figures illustrating typical neural activation recorded for both models. 

We then present the data and learning and generalization results for an extended experiment 

with 5 naïve subjects.  In the last section, we will discuss the results and interesting aspects 

that the combination of a comprehension and production neural models provide. Training and 

testing data used in the experiments, and corresponding to the figures showing the output 

neural activity of the models are provided in Appendices section. 

 

2. Material and Methods 

 

2.1 iCub platform and interaction architecture 

The platform that we used is the iCub, furnished by the FP6 EU consortium RobotCub (see 

Figure 2). The iCub (Metta et al 2010) is a 53 DOF humanoid robot built by the Italian 

Institute of Technology (IIT) with the size of a three and a half year-old child. We use YARP 

(Metta et al 2006) as the robotic middleware with the Biomimetic Architecture for Situated 

Social Intelligence Systems (BASSIS architecture) built for the FP7 Experimental and 

Functional Android Assistant project (Petit et al 2013).  

The Supervisor module is implemented with the CSLU RAD Toolkit (Sutton et al 1998) 

Rapid Application Development for spoken language interaction.  It uses the Festival system 
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for speech synthesis (Taylor et al 1998) and Sphinx II for spoken language recognition 

(Huang et al 1993).  The Supervisor provides a dialog management capability built as a finite-

state system.  This capability allows the user to guide the robot into the different states of 

behavior, but is distinct from the neural language model, described below.  The 

Supervisor/Manager orchestrates the communication and exchange of data between speech 

recognition and synthesis, the neural models for language comprehension and generation, and 

the robot perception and action systems. 

The ability of the iCub to perceive physical objects and their manipulation in the context 

of action performance and description is provided by the ReacTable, which detects objects on 

a translucid table based on detection of fiducial markers on the object bases, using an infra-

red camera (Bencina et al 2005).  The ReacTable thus provides data on the type and position 

of objects on the table with high precision.  The ReacTable is calibrated into the motor space 

of the iCub, so that object locations can be used for physical interaction. 

The motor control for iCub reaching, grasping and object manipulation is provided by 

DForC – Dynamic Force Field Controller – (Gori et al 2012), based upon dynamic force 

control.  The robot has a small set of primitive actions: put(object, location), grasp(object), 

point(object). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Robotic Platform.  (A) iCub humanoid robot with the ReacTable. (B) System architecture overview.   

The Supervisor coordinates all interactions between the human and the different components of the system.  

When the human moves an object on the ReacTable, the coordinates are transformed into the robot space, and 

stored in the Object Properties Collector (OPC).  For Action Performance when the human speaks, the words are 

recognized by the audio interface, then they are packaged and sent to the Neural Network by the Supervisor.  

Resulting commands from the Neural Network are processed and forwarded to the iCub Motor Command (iCub 

Motor Cmd) interface by the Supervisor, the robot then performs the given actions.  For Scene Description, the 

Cartesian coordinates of the objects are transmitted from the OPC to the Supervisor. Spatial relations between 

"environmental" objects and the object of focus are computed. They are then sent to the Neural Network together 

B A 
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with the sentence type (canonical or non-canonical).  The sentence generated by the Neural Network is sent to 

the Audio interface for speech synthesis, again under the control of the Supervisor. 

 

2.2 Neural language model 

 

The neural language processing model represents the continued development of our work 

based on the underlying concept of a recurrent network with modifiable readout connections 

for grammatical construction processing (Dominey 2003, Dominey et al 2003, Hinaut & 

Dominey 2012, Hinaut & Dominey 2013).  As described in the context of grammatical 

constructions above, for sentence processing we have shown that the pattern of open and 

closed class word order could be used to correctly identify distinct grammatical constructions 

and extract their meaning for a small set of sentences.  More recently we have demonstrated 

the extension of this ability to larger corpora from several hundreds of uniquely defined 

construction-meaning pairs, to tens of thousands distinct constructions including redundant 

and ambiguous meanings (Hinaut & Dominey 2013).  As the neural model has anytime 

learning property, it is of interest to use it for exploring language acquisition in a 

developmental robotics perspective. 

The core of the language model is a recurrent neural network, with fixed random 

connections, which encodes the spatio-temporal context of input sequences.  This sequence-

dependent activity then projects via modifiable connections to the read-out layer. 

Modification of these read-connections by learning allows the system to learn arbitrary 

functions based on the sequential input.  This framework has been characterized as Reservoir 

Computing (Lukosevicius & Jaeger 2009, Verstraeten et al 2007), where the recurrent 

network corresponds to the reservoir, and has been developed in different contexts.  The first 

expression of the reservoir property with fixed recurrent connections and modifiable readout 

connections, was developed in the context of primate neurophysiology, with the prefrontal 

cortex as the reservoir, and modifiable cortico-striatal connections as the modifiable readout 

(Dominey 1995, Dominey et al 1995).  Further development was realized in related systems 

including the Liquid State Machine (Maass et al 2002), and Echo State Network (Jaeger 2001, 

Jaeger & Haas 2004). 

The model employed in the current research (Hinaut & Dominey 2013) pursues this 

parallel between brain anatomy and the reservoir computing framework. Prefrontal cortex is 

modeled as a recurrent network that generates dynamic representations of the input, and 

striatum as a separate population connected to cortex via modifiable synapses, which learns to 
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link this dynamic representation with a pertinent output.  Cortex and striatum corresponding 

respectively to the reservoir and readout.  The reservoir is composed of leaky neurons with 

sigmoid activation. The following equation describes the internal update of activity in the 

reservoir: 

 
))u(tW+x(t)αf(W+α)x(t)(=)x(t

inres
111

 (1) 

where x(t) represents the reservoir state; u(t) denotes the input at time t; α is the leak rate; and 

f(∙) is the hyperbolic tangent (tanh) activation function. Win is the connection weight matrix 

from inputs to the reservoir and Wres represents the recurrent connections between internal 

units of the reservoir.  In the initial state, the activation of all internal units of the reservoir is 

zero. The inverse of the leak rate (1/α) could be interpreted as the time constant of the system. 

By definition, the matrices Win and Wres are fixed and randomly generated. Internal 

weights (Wres) are drawn from a normal distribution with mean 0 and standard deviation 1 

and then rescaled to the specified spectral radius (the largest absolute eigenvalue of the Wres 

matrix). The input weight matrix Win was first generated with values chosen randomly 

between -1 and 1 with a 50% probability. The Win matrix was then rescaled depending on the 

experiment (input scaling parameter). The density of the input connections is 100%. 

The output vector of the system which models the striatum is called the readout. Its activity 

is expressed by the following equation: 

 

)()( txWty
out

         (2) 

 

with Wout the matrix of weights from the reservoir to the readout (output). The activation 

function of readout units is linear. Interestingly, the readout activity gives a pseudo-

probabilistic response for each output unit. To train the read-out layer (i.e. compute Wout), 

we use a linear regression with bias and pseudo-inverse method (Herbert Jaeger, 2001).  This 

general model is applied in two distinct instantiations.  One model processes commands 

(sentences) and generates a predicate-argument representation of the meaning.  The second 

describes observed actions, i.e. given a predicate-argument meaning as input, it generates a 

sentence describing that meaning.  Thus, the comprehension system learns to map semantic 

words of input sentences onto an output that characterizes the role (action, agent, object, 

recipient) of each of these semantic words, based on the structure of grammatical words in the 

sentence.   The production system learns the inverse mapping, from the meaning (i.e. 

specification of the role of each semantic word) onto a sentence form. 
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2.2.1 Comprehension model for Action Performing task 

The architecture of the comprehension model is illustrated in Figure 3. 

Preprocessing: Before being provided as input to the neural model, the sentence must 

first be transformed by extracting the open-class (i.e. semantic) words. The resulting 

grammatical form is characterized by the sequential pattern of closed-class (i.e. grammatical) 

words. This operation is performed by replacing all open class words by 'SW' markers (SW: 

semantic word).  The semantic words removed from the sentence are stored in a working 

memory. The working memory acts as a first-in-first-out (FIFO) stack: the words will be 

retrieved in the same order as in the output.  For example, when semantic word 2 (SW2) is 

determined by the model to be the agent, the actual word corresponding to SW2 will be 

retrieved as the agent of the described action.  The closed class words used were: 'after', 'and', 

'before', 'it', 'on', 'the', 'then', 'you'. 

 

 

Figure 3: Neural comprehension model for the Action Performing task. Sentences spoken by the user are first 

transformed into grammatical forms, i.e. all semantic words (SW) are replaced by a SW marker. The 

reservoir is given the grammatical form word by word. Each word activates a different input unit. Based on 

training, the readout connections from the reservoir provide the coding of the predicate-argument meaning in 

the readout neurons, thus forming the grammatical construction as a mapping from grammatical form to 

meaning.  The meaning of an input sentence is specified by determine the role (predicate, agent or location) 

for each semantic word SW.   
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Reservoir parameters: The number of unit used in the reservoir is 100. The leak rate used is 

1/6 (=0.1666…). The input scaling is 0.75. The spectral radius is set to 1. 

Sentence input parameters:  Given an input sentence, the model should assign appropriate 

thematic roles to each semantic word. The presentation of inputs is illustrated in Figure 3. 

Sentences are represented in the input as grammatical forms, where specific instances of noun 

and verb words (semantic words – SW) are replaced by a 'SW' marker. Thus, a given 

grammatical construction can code for multiple sentences, simply by filling in the 'SW' 

markers with specific words. In this way of coding, the reservoir cannot distinguish between 

nouns or verbs, as they have the same input neuron.  This is an interesting characteristic when 

using the model within a robotic platform, because when sentences are processed there is no 

need to do a preprocessing in order to classify words as nouns or verbs. 

The total number of input dimension is 9; 8 for closed class words, 1 for the semantic word 

marker.  Each word is coded as a square wave of 1 time step.  There is no pause between 

successive word presentations (the use of pauses does not have significant influence on the 

results), but there is a final pause at the end of the sentence in order to inform the model that 

the sentence is finished. This final pause could be replaced by a period, as it would have the 

same function as a terminal symbol.  An offset of the sentence was added at the beginning of 

the inputs if they were not of maximal length, in this way the correct final meaning is always 

given at the last time step.  

Desired meaning output coding: Making the analogy with an infant who is learning 

language in the presence of sentences and their corresponding meanings, we consider that the 

system is exposed to a meaningful scene while the input sentence is being presented.  Thus, 

the system has access to the meaning starting at the beginning of the presentation of the 

sentence, hence the desired output teacher signal is provided from the beginning of the first 

word until the end of the input.  All the output neurons coding the meaning are clamped at 1, 

all other output neurons are clamped to 0. By forcing the correct outputs to be 1 from the 

onset of the sentence during learning, we obtain predictive activation when processing (i.e. 

testing) a sentence after the learning phase.  This can be seen in the results section in Figure 8, 

below (see (Hinaut & Dominey 2011, Hinaut & Dominey 2013) for more details). The 

meaning output dimension is 36 (=6*3*2): 6 semantic words that each could have 3 possible 

thematic role assignment (predicate, agent or location), for each of up to maximum 2 verbs. 

Post processing: To determine the meaning specified in the output, the activity of the 

output at the last time step is thresholded. For each SW, we take the role that has the 



11 
 

maximum activation (if there are several). Each semantic word in the FIFO stack is then 

bound with its corresponding role(s). The full predicative meaning is then obtained and 

written in the output data file in order to be processed by the Supervisor module, and then 

used to command the robot. 

 

2.2.2 Production model for Scene Description task 

We have described the functioning of the language model that learns to map input 

sentences onto a predicate-argument representation of their meaning.  Now we consider the 

reverse case, where given a meaning, the model should produce a sentence.  This model thus 

employs the same principals as the language comprehension model, but we now perform the 

reverse operation -  from a meaning we want to generate the corresponding sentence (see 

Figure 4).  It is important to recall that there are potentially multiple possible sentences for 

describing a given scene or meaning (as illustrated in Figure 1).  To resolve this ambiguity, 

we provide additional input to the model, to indicate if we want a canonical (e.g. standard, 

active voice) or a non-canonical (e.g. passive voice). 

 

 

Figure 4: Neural production model for Scene Description task.  The input has 2 components: (1) meaning format 

{Predicate(Agent, Object) - left(toy, drums)} corresponding to relation toy to the left of drums, and (2) 

construction format with {SW1 – Predicate, SW2 – Object, SW3 - Agent} which could be written in a compact 

way as SW1(SW3, SW2). The full input information could be represented as {SW1_Predicate – left}, 

{SW2_Object – drums},  and {SW3_Agent – toy}.  The system must find a construction that allows this 

mapping of SWs to thematic roles. SW#_θ: Semantic Word # has thematic role θ, with # the relative position in 

the sentence among all Semantic Words.  



12 
 

 

Preprocessing:  The model is given the meaning and the sentence type desired (canonical 

or non-canonical) by the Supervisor module.  This information is converted in the 

corresponding coded meaning, as described in Figure 4. The semantic words of the meaning 

are stored in the FIFO memory. 

Reservoir parameters:  The number of units used in the reservoir is 500. The leak rate used 

is 0.75. The input scaling is set to 0.01. The spectral radius is set to 2. 

Input and output coding:  The coded meaning is given, for all the input units concerned, as 

a constant input activation set to 1. Remaining input units are set to 0. This is consistent with 

the output representation of the meaning in the first model presented in 2.2.1 (comprehension 

model).  As illustrated in Figure 4 the desired mapping of the open class words onto thematic 

roles is specified by activating the appropriate input neurons.  The input activation lasts 

during all the input presentation. The input dimension is the same as the output dimension of 

the comprehension model 6*3*2=36: 6 semantic words that each could have 3 possible 

thematic role assignment (predicate, agent or object), and each could have a role with at 

maximum 2 verbs.  Table 1 illustrates how different coded-meanings can be specified for the 

same input meanings.  This allows us to specify in the input if the sentence should be of a 

canonical or non-canonical form. 

 

 Meaning Sentence Coded-meaning 

Canonical left(toy, drum) The toy is left of the drums SW2(SW1, SW3) 

Non-Canonical left(toy, drum) To the left of the drums is 

the toy 

SW1(SW3, SW2) 

Double 

Canonical 

left(violin, trumpet); 

right(violin, trumpet) 

The violin is to the left of the 

trumpet and to the right of 

the guitar   

SW2(SW1,SW3); 

SW4(SW1, SW5) 

Double Non-

Canonical 

left(violin, trumpet); 

right (violin, guitar) 

To the left of the trumpet and 

to the right of the guitar is 

the violin 

SW1(SW5,SW2); 

SW3(SW5, SW4) 

Table 1. Representation and form of canonical and non-canonical sentences.  Both examples of each single or 

double type have the same meaning.  The sentences are different, and the mapping of semantic words onto the 

thematic roles in the meaning is different, as specified in the coded-meaning or sentence form.  The semantic 

word that is the grammatical focus changes between canonical and non-canonical sentences. Both Meaning and 

Coded-meaning use the convention Predicate(Agent, Object). SW#: Semantic Word #, with # the relative 

position in the sentence among all Semantic Words. 
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Activation of the output units corresponds to the successive words in the retrieved 

construction. The closed class words used were: 'and', 'is', 'of', 'the', 'to', '.' (dot). The dot is 

optional and was not used for the experiments shown in Figure 9; it could be used in the 

future if several sentences have to be produced. The total  number of output dimension is 7: 6 

for closed class words and one for the SW marker. 

The output teacher signal is as the following: each word is coded as a square wave of 5 

time steps.  Each word was separated with a pause of 5 time step. We used 5 time steps for 

each word and a pause of same duration between them in order to have an output activity that 

last a sufficiently long time; in this way each word could be discriminated more easily in the 

post-processing process. There is a final pause at the end of the teacher signal.  All the teacher 

signals were of maximal length corresponding to the longest sentence. 

Post processing:  Once again, the output activity is first thresholded. Then each time an 

output exceeds the threshold, the corresponding word is added to the final construction (if the 

activity of this word last 4 or 5 time steps above the word it is considered only once). If 

several outputs are above the threshold, the word of maximal value is kept. Finally, the 

sentence is reconstructed replacing the SW makers with the semantic words kept in memory. 

 

2.3 Integrated System 

 

The system operates in real-time in a human-robot interaction. Figure 5 shows how the 

communication between modules is performed.  Again, the system can operate in “action 

performer” (AP) and in  “scene description” (SD) tasks, and the Supervisor module allows the 

user to specify which of these tasks will be used. The Supervisor interacts with the human 

through spoken language to determine if he wants to run the system in train mode – to teach 

the robot new <meaning, sentence> pairings – or in test mode – to use the corpus of pairings 

already learned by the robot.  Thus there are two tasks (AP or SD), each of which can be run 

in two execution modes (train or test).  Details for AP and SD tasks are provided in the next 

section. Now we briefly describe train and test modes. 

In train mode, the Supervisor incrementally generates one of the two training data files 

depending on the task (AP or SD). The human speech is transformed into text via the speech-

to-text tool, and the meaning is given by the robotic platform (from perception or action).  

The <meaning, sentence> pairing is then written in the training data text file. In order to avoid 

populating the training files with bad examples in case of incorrect speech recognition, before 
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writing the file the Supervisor asks the user for a verification (e.g. if it correctly understood 

the meaning). If the user wants the example to be added to the data file he answers “yes”, 

otherwise he answers “no”. 

In test mode, the Supervisor processes the test example given by the user: in AP task the 

example is a sentence; in the SD task the example is a meaning (i.e. the user places objects in 

particular positions relative to the object of focus). This test example is a half-pairing of a 

complete sentence-meaning pair. First, the Supervisor generates a file containing the 

previously established training data, and the test example.   It then launches the corresponding 

neural model (comprehension or production) depending on the task (respectively AP or SD). 

The neural model is trained with the training data, and then it processes the test half-pairing 

and generates the “missing half” in a text file. The Supervisor processes the file returned by 

the neural model and executes the action in the AP task or produces the sentence in the SD 

task. 

 

 

 

 

Figure 5: Communication between modules. The Supervisor manages the spoken interaction with the user and 

controls the robotic platform, providing different behaviors in SD and AP tasks. Depending on the mode selected 

by the user, train or test, it launches the neural model or not. In the train mode, pairs of <meaning, sentence> are 

stored in the train data file. In test mode, the sentence to be tested is written in the test data file, and both train 

and test files are sent at once to the Neural model. See Figure 2 for complementary information. 
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3. Experiments 

We now illustrate in detail how the system works in two distinct modes: training and 

testing for the AP and SD tasks.  An overview is provided in Table  1.  In both tasks, 

meanings are expressed in a predicate-argument form: for instance put(toy, left) (for Action 

Performing task; see Figure 3), or left(toy, drums)  (for the Scene Description task; see Figure 

4).  During training, meaning is produced by transforming the events and relative position of 

objects into the respective action and scene meanings. This is achieved by analyzing the 

change in object positions on the ReacTable (in order to get scene meanings) and by 

interrogating the program generating random robot action (for action meanings).  Spoken 

sentences are transformed from a speech record into a list of words (using the Sphinx II 

recognizer) and paired with the associated meaning to populate the training database.  The 

training mode is responsible for building a corpus of <sentence, meaning> pairs which will be 

fed to the neural model in order to train it.  The human is then invited to build the database by 

interacting with the robotic platform.  The type of interaction is different according to the 

task, AP or SD, as indicated in Table 2.  In testing mode, the human provides one component 

of a <sentence, meaning> pair, and gets the missing component of the pair in return. 

 

 

 

 

 

 Action Performer (AP) Scene Describer (SD) 

 

Training 

1. Robot generates random action(s) 

[meaning] 

2. Human says a corresponding 

command [sentence] 

1. Human arranges objects on the table 

[meaning] 

2. Human describes the scene 

[sentence] 

 

Testing 

1. Human says a command [sentence] 

2. Robot performs corresponding 

action(s) [meaning] 

1. Human arranges objects on the table 

[meaning] 

2. Robot describes the scene [sentence] 

Table 2. Summary of events in Training and Testing modes for the Action Performer (AP) 

and Scene Describer (SD) tasks. In brackets is indicated the half-pairing generated 

corresponding to each event. 
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3.1  Experiment Scenario 1: Action Performing task 

 

In the following X, Y and Z are arbitrary objects (e.g. guitar, trumpet, violin), and, L and 

R are different locations (e.g. left, right, middle).  In the training mode, one or two random 

action(s) are generated by the iCub using available objects (e.g. <put X on the R>, <grasp Y, 

point Z>, …).  This produces the meaning. At the same time, the human user observes and 

then says the order (i.e. command) which, according to him, should command the robot to 

perform the(se) action(s): this corresponds to the sentence.  The <sentence, meaning> pair 

can thus be constructed. The robot continues to randomly select possible actions and execute 

them, and the user provides the corresponding command, thus populating the database with 

<sentence, meaning> pairs. 

In testing mode, the system uses the data generated in the learning mode in order to 

fully interact with the human, whereas in the training mode the system is more passive.  In the 

Action Performing task the human says a command to the robot (providing the sentence). This 

test sample is passed to the neural model (Figure 3). The neural model produces the 

corresponding meaning, which is sent back to the Supervisor which translates the meaning 

into the corresponding robot command(s). The robot then produces the desired action(s). 

 

3.2  Experiment Scenario 2: Scene Description task 

 

During the training phase for Scene Description task the user puts several objects on the 

table and specifies the focus object.  Then he describes orally one or two spatial relations 

relative to the focus object (e.g. <the X is to the L of Y and to the R of Z>, …), providing the 

sentence.  The Supervisor then uses the coordinates of the objects and the knowledge of the 

focus objects to find the relationships between the focus element and the other element(s) on 

the table, providing the meaning. 

During the testing phase for the Scene Description task the user puts some objects on the 

table in a particular spatial relation, producing the meaning. This test example is passed to the 

neural model. The latter produces the corresponding sentence that is sent back to the 

Supervisor which produces the sentence via the audio interface (text-to-speech tool). 

 

For both tasks during testing phase the data file that is transmitted to the neural model 

contains both the testing data and the training data. This permits to avoid executing the neural 
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model each time one example is learned.  Thus the model learns the whole data set and then 

applies this to the test data (on which it is not trained).   

 

3.3  Experiment Scenario 3: Naïve Subject Action Performer task 

 

In order to test the robustness of the system, we tested learning and generalization with 

data produced by 5 naïve subjects.  In order to standardize the experiment we made a movie 

of a human performing a set of behaviors: 5 single actions and 33 double actions.  For 

instance {point(guitar)} is an example of a single action: a corresponding sentence could be 

“Point to the guitar”; And {point(guitar), put(toy, left)} is an example of a double action: a 

corresponding sentence could be “Point to the guitar then put the toy on the left”.  For each 

behavior (i.e. for each scene of the movie), we asked the subjects to give a “simple” 

command, and then a more “elaborate” one corresponding to the observed action(s), as if they 

wanted a robot to perform the same action. The subjects looked at the same scene twice, once 

before giving a “simple” command (i.e. order), and once before giving an “elaborate” one.  

Subjects saw each scene twice in order to obtain more spontaneous responses from them.  

Thus subjects do not have to remember the scene and try to formulate both simple and 

elaborate sentences in a row. This resulted in a corpus of 5 (subjects) x 38 (behaviors) x 2 

(canonical and non-canonical) = 380 sentences.  The <sentence, meaning> corpus was 

obtained by joining the corresponding meanings to these sentences.  Once this corpus was 

obtained, first, in order to assess the “learnability” of the whole corpus, we trained and tested 

the neural model using the same data set.  Then generalization capability was tested using 

leaving-one-out method (i.e. cross validation with as many folds as data examples): for each 

<sentence, meaning> pair, the model was trained on the rest of the corpus, and then tested on 

the removed <sentence, meaning> pair. 

 

4. Results 

4.1 Human robot interaction 

The iCub robot learns in real-time from human demonstration.  This allows the robot to 

(1) perform complex actions requested by the user, and (2) describe complex scenes.  Here 

“complex” means multiple actions with temporal (chronological) relations.  The system can 

for instance execute commands like: “Before you put the guitar on the left put the trumpet on 

the right.” We demonstrate how this form of temporally structured grammatical construction 

can be learned and used in the context of human-robot cooperation. 
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In Figures 6 and 7, we can see images extracted during human-robot interactions for the two 

tasks.  In Figure 6, the robot is performing the motor commands corresponding to the sentence 

“Point the guitar before you put on the left the violin.” (A) the robot is pointing the “guitar” 

(blue object), (B) the robot is finishing the displacement of the “violin” (red object). In Figure 

7, the robot has to describe the scene relative to the object of focus: (A) the user sets the 

object of focus in the scene, where other objects are already present; (B) the robot is 

describing the position of the focus object relative to the other objects. 

 

 

 

 

 

 

 

 

 

Figure 6.  Action Performing task. The robot is performing the motor commands corresponding to the sentence 

“Point the guitar before you put on the left the violin.”: (A) the robot is pointing “guitar” (blue object), (B) the 

robot is finishing the displacement of the “violin” (red object). 

 

 

 

 

 

 

 

 

 

 

Figure 7: “Scene Description” condition. The robot have to describe the scene relative to the object of focus: (A) 

the user sets the object of focus in the scene, where other objects are already present; (B) the robot is describing 

the position of the focus object relative to the other objects. 

 

In the following subsections we describe events and human-robot interactions during 

testing mode. These descriptions correspond to the transcript of sections of videos obtained 

B A 

B A 
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during experiments with the Action Performer and Scene Describer tasks.  Videos are 

available in the supplementary materials. 

 

4.2 Trials for Execution of Action Performing task 

 

For illustrating the Action Performer task, we will use the same initial positions for the 

objects across trials, and vary the oral description made by the user.  The initial positions of 

objects are the following: the guitar is on the right and the violin is on the left.  Absolute and 

relative positions are defined relative to the user.  For the first trial, the action the user asked 

the iCub to perform was put (violin, left). The user told the robot the non-canonical sentence 1 

in Table 3. The robot then put the violin on the left.  For trials 2, 3 and 4, the desired first 

action was point (guitar) and the second action was put (violin, left).  The robot first pointed 

to the guitar and then put the violin on the left.  In this way, we could test for different ways 

of saying the same meaning but with different grammatical forms of sentences (i.e. with 

different grammatical constructions).  For each sentence spoken to the robot, we indicate in 

Table 3 for clarification the type of sentence (canonical or non-canonical word order) and the 

order of actions (chronological or non-chronological order of actions). 

 

# Sentence Type 

1 on the left put the violin non-canonical 

2 after you point the guitar put the violin on the left canonical,  

chronological 

3 before you put the violin on the left point the guitar canonical, non chronological 

4 point the guitar before you put on the left the violin canonical & non-canonical, 

chronological 

Table 3.  Example of sentences used during testing mode of Action Performer task. 

 

4.3 Trials for Scene Description task 

 

For the Scene Describer task, the user was first asked to set the initial position of the 

objects (this is indicated by the robot when it says “set objects”). Then the user was asked to 

identify the focus object (indicated by “focus”). The latter is what should be in focus in the 

sentence, i.e. the subject (i.e. the agent in this case) of the sentence.  After that, the robot 

asked the user if it should produce a usual (i.e. canonical) or non-canonical sentence.  Then 
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the robot processed all the information and described the scene by producing a sentence 

(“robot sentence”). See Table 4 to see a subset of trials for the Scene Describer task. 

 

Trial Set objects Focus Sentence 

Type 

Robot Sentence 

1 guitar middle trumpet right canonical The trumpet is to the right of the guitar 

2 trumpet 

middle 

guitar left non-

canonical 

To the left of the trumpet is the guitar 

3 guitar left, 

trumpet right 

violin middle canonical The violin is to the right of the guitar 

and to the left of the trumpet 

4 guitar left, 

violin right 

trumpet 

middle 

non-

canonical 

To the left of the violin and to the right 

of the guitar is the trumpet 

 

Table 4.  Subset of trials for the Scene Describer task. Set objects indicates the position of 

initial object(s) on the tactile table. Focus indicates the object that is put on the table when the 

“focus object” is asked by the robot. Sentence-type indicates the type of sentence that should 

be generated. Robot Sentence indicates the corresponding sentences produced by the robot. 

 

In order to get an appreciation for the near real-time behavior of the system, we examined 

experimental data logs and collected data from 22 experiments with the scene describer and 

from 66 experiments with the action performer.   

The execution times for the Scene Describer task are recorded from when the subject 

places the objects on the table, until the system responds with the description.  This includes 

file transfer time from the Supervisor to the neural network model, and back, along with the 

model processing.  Despite these delays, the total time of execution is around 30 seconds, 

which is near-real time performance.  Likewise, for the action performer, processing of the 

spoken sentence by the model takes place within approximately 20 seconds, and then the 

execution of the actions by the robot is slower. This long time for executing actions is due to 

(a) safety limits on velocity, and the fact that (b) many of the commanded actions include two 

distinct actions.  Still, from spoken command to completed action, the execution is less than a 

minute, again, within the bounds of near-real time performance.   

Looking in more detail at the time used by actually running the neural network, we 

measured the time from sending the file to the network, to the time to retrieve the file 

containing the actions to be sent to the robot.  For 66 trials of the AP task this required on 

average 6.02 seconds (SD + 0.33 sec), and for 22 trials of the SD task the file transfer and 

neural network execution required 9.42 seconds (SD + 0.96 sec).  This can be considerably 
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improved by replacing the file-based communication with a client-server communication in 

the YARP framework. 

 

4.4 Neural output activity of the models 

In this section we will illustrate the activity of the neural network model for the two tasks.  

One has to recall that the output of the neural network is used to generate the behavioral and 

spoken responses.   

4.4.1 Comprehension model neural activity for Action Performer task 

In Figure 8 we illustrate the output activity for two example trials on the Action Performer 

task.  From the beginning of the input of the grammatical construction the read-out activity 

starts to change and is updated each time a new word is presented in input. This activity can 

be interpreted as an estimated prediction given the inputs thus far.  These estimations are 

based on the statistics of the sentence forms of the training corpus (see (X. Hinaut & 

Dominey, 2013) for details).  In Figure 8A, the model correctly determines that there is only 

one meaning-predicate which is put (trumpet, left).  We see  that at the last time step the 

neural activations concerning the on-going predictions on a potential 2
nd

 predicate-meaning 

all fall below the threshold of 0.5, and as a consequence only one predicate-meaning is 

considered. 

In some cases, this activity can be used to know the correct response before the end of the 

sentence.  In future experiments, this could potentially allow the robot to start moving the 

object before the end of the sentence. This is actually a behavior that seems natural in human 

interaction when one give the other a series of orders.  When the first order is given the 

human can start to do the 1
st
 action while listening to the rest of the orders (for instance when 

someone lists what has to be done for a cake recipe, while another one is making the cake). 
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Figure 8: Example of output activity of the comprehension neural model for the “Action Performing” task. Each 

colored line indicates the pseudo-probability for each semantic word to have a given role (predicate, agent, 

location) for each of the two specified actions. (top) Output activity for both actions. (middle) Output activity for 

the first action to perform. (bottom) Output activity for the second action to perform. (left) The input sentence 

was “put on the left the trumpet”.   The model correctly determines that there is only one meaning-predicate put 

(trumpet, left). X-1, X-2, X-3 … indicate the 1
st
 , 2

nd
, 3

rd
, … SW markers. For X-5 and X-6 plots are 

superimposed, as the output neurons “X-5:location2” and “X-6:agent2” have the same activity for this sentence. 

(right) The input sentence was “before you put on the right the guitar push the trumpet on the left”: the model 

correctly determines the two meanings in the right order push (trumpet, left) and then put (guitar, right).  Several 

curves are also superimposed. 
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For the Action Performer task, we show the activity for sentences that were not learned 

(i.e. not seen beforehand).  Constructions shown in Figure 8 where not in the training data, but 

only in the test data.  Even though the constructions were not pre-learned, the model was still 

able to correctly recognize them, demonstrating generalization capabilities.  For more 

information on the model generalization performances see (Hinaut & Dominey 2012, Hinaut 

& Dominey 2013) 

 

4.4.2 Production model neural activity for Scene Description task 

 

Figure 9 illustrates the readout unit activations for two different meanings and different 

sentence forms in the Scene Description task.  In Figure 9A, the meaning given in input was 

right (trumpet, guitar) with the sentence form SW1(SW3, SW2). The model correctly 

generated the sentence “to the right of the guitar is the trumpet”.  In Figure 9B, the meaning 

given in input was {right (violin, trumpet), left (violin, guitar)} with the sentence form 

{SW1(SW5, SW2), SW3(SW5, SW4)}.  The model correctly generated the sentence “to the 

right of the trumpet and to the left of the guitar is the violin”. 

 

 

 

 

 

 

 

 

Figure 9: Output (read-out) unit activations of the production neural model in the Scene Description task. Each 

colored line represents a different read-out neuron. Each read-out neuron corresponds to a different word: either 
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a grammatical word or a SW marker. On the x-axis is indicated the number of time steps. On the y-axis is 

indicated the neural activity for output neurons. X indicates the semantic word (SW) marker. (left) The 

construction found is “To the X of the X is the X”. The sentence correctly recovered after replacement of the SW 

markers is “To the right of the guitar is the trumpet”. (right) The construction found is “To the X of the X and to 

the X of the X is the X”. The sentence correctly recovered after replacement of the SW markers is “To the right 

of the trumpet and to the left of the guitar is the violin”. 

 

 

These results indicate that the system works correctly in the SD and AP tasks, under 

controlled conditions.  We should also evaluate the capacity of the system to accommodate 

less controlled conditions.  In Hinaut & Dominey (2013) we addressed the generalization 

capabilities of the sentence comprehension model with large corpora (up to 90K sentence-

meaning pairs).  In the current research we demonstrate that the model can learn and reuse 

grammatical constructions for sentence production.  The extensive investigation of 

generalization properties (including the analysis of “incorrect” generated sentences) is beyond 

the scope of the current paper, and will be the subject of future research. 

 

4.5  Action Performing Training with Naïve Subjects 

Here we report on the results of the Action Performer model, when trained and tested with 

a set of sentences from five naïve subjects. Examination revealed that several additional 

closed class words were used by our subjects.  They were used to define the set of possible 

inputs to the model.  Here we defined the list of closed class word in a simple and systematic 

way: all the words that were not in the meaning part of the <sentence, meaning> pairs (i.e. the 

open class words that had a thematic role to be find) were defined as closed class words.  

Some of these words may appear once or a few times in the corpus, thus it is difficult for the 

model to learn their function.  Please refer to Supplementary Material SM3 for the extended 

list of all 86 closed class words.  

 

 

4.5.1 Naïve Subject Corpora 

From the initial corpus of 380 sentences, a new corpus, where 7 <sentences, meaning> 

pairs were eliminated, was created : we will call the latter the 373 corpus.  These 7 sentences 

did not fulfill the minimal conditions in order to be processed correctly by the system: they 

were ill-formed.  For instance (1) they did not describe the actions properly (e.g. “make a U-

turn”: invention of new actions instead of using the atomic actions proposed), or (2) they did 
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not refer to the objects by their name (e.g. “touch both objects”). As we will see in the 

learnability analysis, these 7 sentences were part of the sentences that were not learnable by 

the system (see learnability test).  The following analyses were performed on both initial and 

373 corpora (see supplementary material SM4 to see all the <sentence, meaning> pairs of 

both corpora).  

 

 

4.5.2 Learnability test 

The analysis of the naïve subject data proceeded in two steps: learnability and 

generalization tests.  We first tested the learnability capability of the complete set of sentences 

for each corpus: the reservoir was trained and then tested on the same set of sentences.  

Because of the increase in size and complexity of the training corpus compared to experiment 

1 – subjects were ask to provide complex sentences structures –, we increased the reservoir 

size from 100 to 500 and 1000 neurons (for the generalization test).  For the learnability test 

specifically, we deliberately took a large number of neurons (3000) in order to be sure that the 

system could learn the maximum <sentence, meaning> associations possible. Sentences are 

considered learnable if they were correctly learned “by heart” (i.e. without generalization) by 

the system. The learnability test results are taken as a reference for the generalization tests.  

The learnability test is based on the hypothesis that if the system is not able to learn some 

<sentence, meaning> associations by heart, then the system would not be able to generalize to 

such sentences. Thus the error obtained in the learnability test should be the lowest possible. 

For the learnability test we created 4 instances of the model (i.e. different random 

generator seeds were used to generate the weight connections), but there is no variability 

between the results of these instances - learnable sentences are the same.  Results for this 

learnability capability are illustrated in the “Learnability” column in Table 5.  Only 16 

sentences of the entire initial 380 corpus (i.e. 4.21%) were considered not learnable.  Thus the 

vast majority of utterances produced by the naïve users were exploitable and learnable.  This 

confirms the viability of the approach.  For the 373 corpus, learnability error falls to 2.41% 

with only 9 sentences that are not learnable.  These few sentences are not learnable because 

there is a competition between them that “interferes” because of an existing ambiguity among 

them.  For instance for a same sentence structure (construction), some associations defines a 

meaning with 2 arguments, and others a meaning with 3 arguments: this lead to an ambiguity. 

Because some sentences are more frequent than others in the corpus, the latter could not be 

learnt: by definition the model selects the most probable solution for a given structure in case 
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of ambiguity.  Ambiguity can for example be provoked by the use of irrelevant information in 

the sentence: “point the circle on my left” has the meaning point(circle) so “left” is irrelevant 

in this sentence, but the sentence “put the cross on my left” has the meaning put(cross, left) so 

left is important in this one; as the first type of structure (see sentences 152, 190 and 192 in 

SM4.1) has been used more frequently by the users than the second type (155, 156), the most 

frequent “desirable” behavior of the system is to ignore the open class word coming after “on 

my”.  

 

 Learnability Error  Generalization Error (best) 

Global 16/380 (4.2%)  133/380 (35.0%) 

 Single Action Double Action  Single Action Double Action 

Simple  

Sentence 

4/25 

(16.0%) 

9/165 

(5.5%) 

 2/25 

(8.0%) 

44/165 

(26.7%) 

Elaborate 

sentence 

0/25 

(0.0%) 

3/165 

(1.8%) 

 9/25 

(36.0%) 

78/165 

(47.3%) 

 

Table 5.  Learnability and best generalization capabilities on the naïve subject initial 380 corpus.  (left)  

Learnability test performed with a reservoir of 3000 neurons. Number of non-learnable sentences for different 

sentence categories.  For each category,  the number of non-learnable sentences is divided by the total number of 

sentences for that category, with the corresponding percentage in parentheses.  Only 4.2% of sentences are not 

learnable: this indicates that most of the corpus is learnable.  (right) Best generalization errors for different 

sentence categories. For each category the neural model is able to generalize to some not learned sentences. As 

one could expect, generalization performances are better for Simple sentences than for Elaborate sentences. 

These results were obtained for a model of 1000 neurons using LoO method. No variability is observed when 

using such a number of neurons: the sentences that fail in generalization are always the same. 

 

This learnability test is important to demonstrate the difficulty of the task, and it constitutes 

a preliminary step before looking at the generalization capability; because sentences that are 

not learnable have a priori no chance for being part of the group of sentences that the neural 

system could “understand” (i.e. generalize on).  Of course the learnability of a sentence is also 

dependent on other sentences in the corpus: in this view, if one sentence is not learnable, it 

means that it is an outlier in this corpus. 

 

 

4.5.3 Generalization test 
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In a second step we tested the ability of the model to generalize to sentences not used in 

training.  We used a standard “leaving one out” (LoO) method: the model is trained on nearly 

all sentences and then tested on the sentence left out of the training data.  This corresponds to 

the case were the robot-neural system has been taught hundreds of sentences and we want to 

test its ability to understand correctly a new sentence given by a naïve user. Even if that new 

sentence has a grammatical structure different from those in the training set, the system could 

nevertheless generalize to this untrained structure in some cases; this was demonstrated in 

(Hinaut & Dominey 2013).  For this study, we used two sizes of reservoirs: 500 and 1000 

neurons. We run 10 instances of the model for each size and each corpus.   

For a reservoir size equal to 1000 units using the initial 380 corpus, 133 sentences failed to 

pass the generalization (LoO) test in all 10 simulations (i.e. for all 10 instances).  We can 

consider that, for this amount of units in the reservoir (1000) – related to the computational 

power of the system – the corpus did not enable the system to have sufficient grammatical 

information to allow generalization to these 133 sentences.  In Table 5, best generalization 

errors for different sentence categories are provided in the left column. The best 

generalization error over all categories is 35.0%.  As expected, generalization error increase 

from Single to Double action sentences, and from Simple to Elaborate sentences. These 

results were obtained for a model of 1000 neurons also using LoO method. Considering the 

learnability results, which could lead to only 8.0% error for Simple – Single Action category, 

the system displays a good ability to generalize to unseen sentences.  In particular, for the 

simple sentences (both single and double actions) the system is able to generalize to more 

than 75% of unseen sentences: this is an important result as in a natural conditions subjects 

will tend to produced spontaneously this type of sentences (that we categorized as “Simple”). 

 

4.5.4 Discussion on the “utility” of the learnability test 

In Table 5, one could remark that for the Simple Sentence - Single Action category a lower 

error is obtained for the best generalization than for the learnability. This could be explained 

by the fact that LoO results with 1000N are the "best" accumulated over 10 simulations, thus 

it is possible that sometimes a given sentence that could not be learnt by heart with a reservoir 

of 3000 units (when nearly the whole corpus is correctly learned), could be generalized when 

using a smaller reservoir – here 1000 units – (when only a part of the corpus is correctly 

learnt).  In particular if there is a “competition” between some sentences in the corpus that 

lead to an ambiguity.  Consider that a group of sentences with a given construction A could 

not be learnt simultaneously with sentences with construction B; if more sentences of group A 
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than sentences of group B are learnt correctly, then the system could not learn (or generalize) 

correctly to sentences of the concurrent group B, and vice versa. 

Indeed, this partly contradicts the hypothesis that was at the origin of the learnability test, 

because of sentences that could not be learnt with this test.  However the “best” generalization 

results are not obtained with a single reservoir, but with 10 reservoirs running in parallel using 

the best possible combination of results of each reservoir – such an optimal combination may 

not be found without knowing in advance which reservoirs give the best answer for each 

sentence.  Consequently, this is a demonstration that the learnability and generalization of a 

sentence is dependent on the corpus it constitutes, as the learning system tends to learn the 

corpus coherently.  Thus outlier constructions that have poor chance to be learnt, which is a 

useful property if possibly ungrammatical constructions are present in the corpus.  Here a part 

of ungrammaticality could also be interpreted as “less frequent”, because for a learning 

system what makes a construction learnable (i.e. grammatical) is the fact that it has a higher 

probability of occurrence. 

 

4.5.5 Summary of results for the generalization test 

 

Initial corpus 373 corpus 

500 N 
Mean (std.) 70.13 (1.87) 68.96 (2.03) 

Best 46,05 44.50 

1000 N 
Mean (std.) 58.53 (2.23) 58.26 (1.37) 

Best 35.00 34.85 

 

Table 6. Generalization errors. Results for different conditions are shown: initial and 373 corpus and 

reservoir sizes of 500 and 1000 neurons.  For each condition, the average error (Mean) over 10 instances along 

with the standard deviation (std.), and the best error (counts of only the errors in common within the 10 

instances) are indicated. One can see that when the number of neuron increases, the negative influence of ill-

formed sentences, removed in the 373 corpus, tend to decrease. 

 

In Table 6. can be seen a summary of generalization errors for different conditions. A 

bigger reservoir (1000 compared to 500 neurons) clearly demonstrates better performances.  

On the contrary, the corpus does not have much influence on the performances. One can see 

that when the number of neuron increases, the negative influence of ill-formed sentences, 

removed in the 373 corpus, tend to decrease.  Looking at the best error values, obtained when 

counting only errors that are made in common by all 10 instances, there is a clear decrease 

compared to the mean values.  This big difference between best and mean values shows that 
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there is a high variability regarding which sentences are recognized by the different reservoir 

instances.  This indicates that there is a clear potential to increase the performance of the 

system by combining several reservoirs in parallel. In addition, even better performance could 

be found by increasing the number of units in the reservoir, but this is not the point of the 

current study.  We did not explore for the best parameters of the reservoir, we considered that 

the parameters we found in  (X. Hinaut & Dominey, 2013) were sufficiently robust to be 

applied to a new type of corpus – produced by naïve users, demonstrating in this manner the 

robustness of this reservoir language model. 

 

4.5.6 Some remarkable properties of the flexibility of the system 

Some of the sentences that produced successful generalization are worth noting. Sentences 

(230), (245), (260) and (268) (see Table 7) illustrate the use of the impersonal pronoun “it” in 

various configurations of distinct constructions.  Processed as a closed-class (i.e. 

grammatical) word, “it” indicates the appropriate role for the referent open class (i.e. 

semantic) element: the system is able to generalize correctly the function of the grammatical 

word “it” and bind to the correct role the semantic word it refers to.  In a sentence like (230) 

(see Table 7) the second semantic word “circle” will be considered as the “object” of both 

actions, “grasp” and “point”.  Sentence (92) illustrates a similar situation, where the closed 

class word “twice” informs the system that the same action is repeated two times.  Thus, in a 

certain sense, the system has learned the non-trivial meaning of the word “twice”. Similarly, 

in sentence (313) this special function can be learned even when relying on several words: 

“two times”.  The system also acquires non-trivial use of the temporal relatives “before” and 

“after”.  In (198), (214) and (340), “before” is used in such a way that the first action 

appearing in the sentence is actually to be performed second.  Thus in these situations, the 

presence of “before” results in a temporal inversion of the commanded actions.  Interestingly, 

the system can also master a different use of “before” as illustrated in (5): here “before” does 

not result in an inversion, the order of actions in the sentence is preserved in the execution of 

actions.  Similarly in sentence (268), “after” plays also the role of temporal inversion.  

Moreover such sentence illustrate how these different properties – “it”: reference, “after”: 

inversion – can be combined.  Sentence (340) has a particular structure: “before” is the unique 

closed class word present in the sentence, the four open class words follow in a row. The 

system is nevertheless able to learn correctly this structure even if it could not distinguish the 

different open class words from one to another, because it does not have access to the 

semantics of these words.  Sentences (198) and (214) have also the particularity to have  
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useless closed class words – for the given task – “please” and “you” have no specific function, 

but the model still has to learn to ignore these words. Although the system has not been 

designed to reach this level of “interpretation” of closed class words, it is able to generalize its 

use in not learned sentences. This ability of the system to work with non-predefined cases 

demonstrates its flexibility. 

 

(5) point the triangle before grasping the circle 

(20) put the cross to the left before grasping the circle 

(92) point to the cross twice 

(198) before you grasp the cross please grasp the triangle 

(214) before pushing the triangle to the middle please push the cross to the right 

(230) grasp the circle and then point to it 

(245) touch the triangle then move it to the left 

(260) the cross touch it 

(268) point to the circle after having grasped it 

(313) point cross two times 

(340) before grasp circle point triangle 

Table 7. Example sentences produced by naïve subjects (of the 373 corpus; see SM4.2), and understood by 

the model (i.e. 0% error in LoO generalization simulations for a reservoir of 1000 units). Closed class words 

indicated in bold have a specific function and the system has to learn it without any additional feature to treat 

these special words. These words are common words of natural language, but they are not essential to form a 

correct sentence understandable by the system. Nevertheless, the system is able to learn their specific function.  

Numbers in parenthesis indicate the identifiers of the sentences for the corpus 373; note that identifiers are not 

the same for initial and 373 corpora. 

 

5. Discussion 

The current research makes several distinct contributions to language-based human-robot 

interaction.  Previous research has used language to command humanoids e.g. (Dominey et al 

2007, Lallée et al 2012, Petit et al 2013), and to allow robotic systems to describe actions 

(Dominey & Boucher 2005b).  The current research for the first time demonstrates real-time 

acquisition of new grammatical constructions for comprehension and production that can be 

used respectively in commanding the robot and in asking the robot to describe the physical 

world.  This is of interest both in theory and in practice.  In theory, it demonstrates that the 

form-to-meaning mapping that we have employed in learning grammatical constructions can 

be used in both directions, to generate meaning from form, and to generate form from 
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meaning.  In practice, this means that the system can adapt to individual differences in the 

way users employ language to describe and request actions.  The current research also 

addresses how language can allow for the coordination of multiple sub-actions in time, using 

the prepositions “before,” and “after.”  Learning of these terms has a long history of research 

in child language development, and it poses an interesting problem because of the interaction 

with non-temporal event ordering and non-canonical syntactic structure (Carni & French 

1984).  Our work can contribute to the debate by indicating that a system that is sufficiently 

powerful to handle canonical and non-canonical events in single and double event sentences 

can do the same in sentences in which order is expressed with prepositions including “before” 

and “after”.  Interestingly, the key assumption is that these prepositions are processed in the 

model as closed class or grammatical words, which can then directly contribute to the 

elaboration of the form to meaning mapping. 

Because of this flexibility, the framework that we have developed potentially enables naive 

users to interact with the robot, indeed there is no "predefined" way of giving a command or 

description of an action such as put (toy, left) ; the user could say "put the toy on the left" or 

"on the left put the toy". In this way, we are able to escape from a 1-to-1 sentence-action 

correspondence: several sentences could indicate the same meaning. 

Concerning the production model we partly escape the 1-to-1 sentence-action (or sentence-

scene) limitation because we can specify if we want a canonical or non-canonical sentence 

type. We could specify a more precise sentence type, for instance by specifying the semantic 

word of focus.  But this problem could be tackled in a more general way.  In order to be able 

to generate several sentences with the same meaning, we could consider 2 alternatives. (1) We 

could add feedback connections from the readout layer to the reservoir with the addition of 

noise either in the reservoir states or in these feedback connections. Thus the network would 

not produce every time the same pattern of words, but different ones. The noise would enable 

the network to be driven by one of the possible learned sentences (word patterns). (2) Use an 

additional self-organization map (SOM) based on the semantic words. During training this 

SOM will tend to organize words that appear in the same sentences in the same area of the 

map. During testing, the SOM activation will provide a supplementary input to the sentence 

production model in order to give a kind of context and enable the model to generate one 

pattern of words that is context relevant. In this way, if some sentence constructions are 

commonly used with certain semantic words, it will produce the more common sentences. 

Both alternative solutions may enable the production of constructions that were not learned, 

i.e. give the production generalization capabilities (like the comprehension model).  Finally, 
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the generation of different non-canonical forms allows the system to manipulate the 

grammatical focus while describing the same situation, as illustrated in Table 1. 

The production model introduced here is able to learn to produce grammatical 

constructions when given the meaning, coded in the same way that the comprehension model 

output is coded. This is the first time that we demonstrate that the input and output of the 

comprehension model could be reversed in order to do the “inverse” task (i.e. production 

instead of comprehension).  This is an interesting property that may be useful in further 

understanding human language.  Indeed, we have here a system that is able to do grammatical 

construction comprehension and production with a common coded meaning representation 

(which corresponds to the output of the comprehension model, and to the input of the 

production model).  We can imagine that the two models can be running in parallel, with the 

outputs of the production model connected to the inputs of the comprehension model. In this 

way, when the production model would be generating a sentence, the latter could be decoded 

in real-time and fed to the inputs of the comprehension model. Thus the comprehension model 

will reconstruct in real-time the meaning of the sentence produced by the production model. 

Consequently this would allow the system to check if the produced sentence is correct or not 

to the original meaning (i.e. the input of the production model).  A correction mechanism 

could be then added to compensate when errors of productions are made.  Such a correction 

mechanism appears to exist in human language behavior, as when one notices that they have 

produced a word instead of another in the middle of a sentence, they correct their sentence 

production in real-time accordingly.  Detection of such a production error would likely be 

accompanied by specific brain response, as it is the case for the P600 event related scalp 

potential when an ungrammatical word or complex sentence is processed. In a previous study 

using our comprehension model (Hinaut & Dominey 2013) we showed that a kind of 

instantaneous derivative of the output values – the sum of absolute change of all outputs – 

could be related with a P600-like event.  In the reverse sense, the output of the comprehension 

model could be input to the production model, allowing the listener to predict the upcoming 

words of the speaker.  Another alternative would be to combine both comprehension on 

production within a same model, with feedback connections from both discovered thematic 

roles and produced words: a unique reservoir would do both tasks at the same time; this 

would probably require an online learning algorithm. 

The experiment with the naïve subjects is particularly interesting, as it provides the model 

with a form of “cognitive variability” in the language used, which goes beyond that employed 

when “insider” researchers interact with the robot.  The use of the impersonal pronoun “it”, 
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words like “twice”, the use of “before,” and “after,” in the diverse configurations allowed a 

test and finally an illustration of the adaptability of the language model.  The good learnability 

of the sentences – 93% of the corpus is learnable – indicates that the naïve subjects can make 

really complicated sentences that may contain only partial information.  The relatively robust 

generalization, particularly for the “simple” sentences (>75% generalization) indicates that the 

model was able to extract the relevant information from this relatively small (< 400 sentences) 

corpus; it also indicates that the naïve subjects are “playing the game,” i.e. they are attempting 

to speak in a reasonable way to the robot in the “simple” sentence condition.  Future research 

should asses how, as such corpora increase in size, generalization improves (for a given 

corpus complexity), as indicated in (Hinaut & Dominey 2013). 
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7. Video links 

Video demonstration of the scene description in Experiment 1 can be seen at: 

http://youtu.be/AUbJAupkU4M 

Video demonstration of the action performer in Experiment 2 can be seen at: 

http://youtu.be/3ZePCuvygi0 

 

Supplementary Material 

SM1:  Input file for Action Performer task with train and test data used for Figure 8. 

 

SM2: Input file for Scene Description task with train and test data used for Figure 9. 

 

SM3: Details concerning the Naïve Subject Experiment : List of closed class words used and 

removed sentences from raw corpus for the naïve subject experiment;  List of the 7 <meaning, 

sentence> pairs removed from the raw corpus of 380 sentences (i.e. sentences that are not 

present in 373 corpus). 

 

SM4: Files containing the detailed results of the naïve subject experiment for the learnability 

test for both corpora (initial or 373 corpus) with a reservoir size of 3000 units. 
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(See data sheet files 4, 5 and 6.) 

 

SM5: Files containing the detailed results of the naïve subject experiment for the 

generalization test for the different conditions: initial or 373 corpus, and 500 or 1000 reservoir 

units. 

(See data sheet files 7, 8, 9 and 10.) 

 

SM6: Movie scenes shown to the users for the naïve subject experiment. 
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Chapter 4

The Coordinating Role of

Language in Real-Time

Multimodal Learning of

Cooperative Tasks

4.1 Introduction

Now that the iCub has some linguistic capabilities, we have worked on what it could
bring to his development. Yet, one on the main function of language is to coordinate
between the agents during cooperative activity ([Brinck and Gärdenfors, 2003, Tomasello,
2008]). Based on joint attentional skill, the children has to see other as intentional agents
like themself ([Tomasello et al., 2005]) in order to participate in a true collaborative task.
By using demonstration or true imitation, they can learn new actions and produce a shared
plan with others, using language to coordinate with their partner and negociate the role
or sharing their intentions ([Carpenter et al., 2005, Tomasello et al., 2005]).

4.2 Publication
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nition is our outstanding capacity to cooperate. A central
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agents—in real time, and even to negotiate this shared plan during
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and demonstrate the system’s ability to allow a Nao humanoid
robot to learn a nontrivial cooperative task in real-time. We
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nication, one of the major cognitive capacities that separates

humans from nonhuman primates [1]. In this context, language

itself is an inherently cooperative activity in which the listener

and speaker cooperate, in order to arrive at the shared goal

of communication. Tomasello et al. make the foundational

statement that language is built on the uniquely human ability

to read and share intentions, which is also the foundation for the

uniquely human ability and motivation to cooperate. Indeed,

Tomasello goes one step further, suggesting that the principal

function of language is to establish and negotiate cooperative

plans [1].

The building blocks of cooperative plans are actions. In this

context, it has been suggested that we are born with certain

systems of “core cognition,” which are “identi ed by modular

innate perceptual-input devices” [2]. One of the proposed el-

ements of core cognition is agency. This includes an innate

system for representing others in terms of their goal directed

actions, and perceptual mechanisms such as gaze following that

allow the developing child to monitor the goal directed actions

of others. Thus we consider that these notions of agency are

given in the system, though the degree to which they may actu-

ally be developed versus innate remains an open question [2].

A cooperative plan (or shared plan) is de ned as a goal di-

rected action plan, consisting of interlaced turn-taking actions

by two cooperating agents, in order to achieve a common goal

that could otherwise not have been achieved individually [1].

Interestingly, infants can establish shared plans without the use

of language, if the shared goal and corresponding plan are suf -

ciently simple. However, once the plans reach a certain level of

complexity, and particularly if the plan must be renegotiated in

real-time, then language is often invoked to establish and nego-

tiate who does what [3], [4]. Thus, cooperation requires commu-

nication, and when things get complex, language is the preferred

communication method. Indeed, much of early language maps

onto physical parameters of goal directed action [5], [6].

In the construction grammar framework, Goldberg identi es

how the structure of language is mapped onto the structure of

meaning such that “constructions involving basic argument

structure are shown to be associated with dynamic scenes

such as that of someone volitionally transferring something to

someone else, someone causing something to move or change

state” [5]. Thus, grammatical constructions implement the

mapping from linguistic utterances to meaning, in the form

of action and perceptual scene speci cations. The nature of

the link between language and action, and how that link is

established, is an open topic of research in child development

and developmental robotics [7].

1943-0604/$31.00 © 2012 IEEE
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In the context of this debate, following a usage-based ap-

proach [6], we have demonstrated how such constructions

can be learned in a usage-based approach, as the mapping

between the argument structure of sentences and argument

structure of robotic representations of action meanings [8].

This “usage-based” development of grammatical constructions

(versus a more nativist approach) is also a topic of debate,

similar to the case for agency cited above.

Independent of the nativist vs. usage-based debate, we

can take the position that via such constructions, language is

uniquely situated in its capability to allow agents to construct

and negotiate shared cooperative plans. Our approach is to

implement a scaffolded system based on this capability. In this

scaffolding, we build in simple grammatical constructions that

map onto the argument structure of actions that can be per-

formed by the robot. This allows a scaffolding for the creation

of action plans. We have previously used spoken language to

construct diverse action plans for a robot cooperating with a

human [9], [10], but the plans were not shared, in that they

only speci ed the robot’s actions. We then introduced a shared

planning capability where a robot could observe a sequence

of actions, with an agent attributed to each by the user via

language. This generated a true shared plan, that could pass

the test of role reversal [11]. Role reversal occurs when the

two participants in a cooperative task can exchange roles,

thus indicating that they both have a “bird’s eye view” of the

shared plan, which is a central part of the requirements for true

cooperation [12].

In a series of studies we then more carefully reexamined the

bases of shared planning. In the rst study [13], we implemented

a capability for learning to perceive and recognize novel human

actions based on the structure of perceptual primitive consti-

tuting those actions. We next implemented the corresponding

ability to learn to execute complex actions based on the com-

position of motor primitives, and to make the link between per-

ception and action via imitation [14]. Finally, we extended this

capability to multiple actions in shared plans, where the human

could use spoken language to specify a shared plan that could

then be executed by the robot, again displaying role reversal

[15].

While this work represented signi cant progress, it left

several issues unanswered. First, when a shared plan “goes

wrong” there is no mechanism to x it. Language can ful ll

this role-indeed much of human language is about coordinating

and correcting shared plans [16]. Second, in our previous work,

teaching the shared plan was in a xed modality, typically with

the human speaking the shared plan, action by action. Here we

extend this so that language becomes the central coordinator,

a scaffold, which allows the user to then specify individual

actions by: 1) kinesthetically demonstrating the action; 2)

performing the action himself so the robot can perceive and

imitate; or 3) for known actions—to specify the action verbally.

Learning by visual and kinesthetic demonstration are highly

developed and well documented means for transmission of skill

from human to robot, e.g., [17]–[19]. We will demonstrate how

this provides a novel interaction framework that where lan-

guage coordinates these three potential modalities for learning

shared plans.

The transmission of knowledge from humans to robots can

take multiple forms. We consider three speci c forms. “Imita-

tion” will refer to learning in which the human performs the

action to be learned, and the robot observes this and performs

a mapping from observation space onto its execution space, as

de ned in [20]. Likewise, based on [20] we will refer to “kines-

thetic teaching” as a form of “demonstration” where the pas-

sive robot is moved through the desired trajectory by the human

teacher. Finally we will refer to “spoken language program-

ming” [21] as the method described above where well-formed

sentences are used to speci c robot actions and arguments, ei-

ther in isolation or in structured sequences. Language has been

used to explain new tasks to robots [22], and is especially useful

for scaffolding tasks, when the teacher uses previously acquired

skills to resolve a new and more complex tasks [23].

Imitation has been successfully used on diverse platforms

[24]–[29]. It is an easy way for the teacher to give the robot

the capacity to perform novel actions, and is ef cient in high

dimensional spaces, and as a mechanism for communication

[30]. It also speeds up the learning time by reducing the repe-

titions required for trial-and-error learning [31], and it can lead

to open-ended learning without previous knowledge of the tasks

or the environment [32].

Demonstration (also called self-imitation) [33], [34] avoids

the problem of mapping from teacher to observer space. While

this problem exists during imitation, it is eliminated in demon-

stration, as the human directly move the limbs of the robot [20]

thus avoiding the “Correspondance Problem” [28]. It also does

not require expert-knowledge of the domain dynamics, allowing

the teacher to be a nonexpert [20].

Some authors have also studied multimodal learning, com-

bining these techniques; including imitation and instructions

[35]–[37] or demonstration and instruction [38]. In this research

we build upon and extend these multimodal approaches. We im-

plement a multimodal learning architecture which allow a user

to teach action to robots (iCub and Nao) using one or a combina-

tion of language instructions, demonstration or imitation. More

precisely, demonstration is a form of “tele-operation” by “kines-

thetic teaching” and imitation is mediated by “external sensor”

as de ned in [20]: demonstration by kinesthetic teaching be-

cause the teacher operates directly on the robot learner platform,

and imitation by external sensor because we are using kinect as

perceptual device to encode the executing body’s moves.

Thus the novelty of the current research is threefold— rst

it demonstrates a rich language capability for establishing and

negotiating shared plans in real time. Second, it does this by

allowing a multimodal combination of spoken language pro-

gramming, imitation and demonstration based learning. Finally,

it demonstrates that, with an appropriate robotic platform, lan-

guage can be used as the glue that binds together learning from

these different modalities. These capabilities are demonstrated

on two robots, the Nao and the iCub, which allow us to take ad-

vantage of the speci c motor capabilities of each, including the

more dexterous manipulation capabilities of the iCub.

II. SYSTEM REQUIREMENTS AND DESIGN

The goal of the current research is to demonstrate that a

learning system that is based on the human developmental
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capability to map language onto action can provide the basis

for a multimodal shared plan learning capability. In order to

proceed with this analysis, we consider a scenario that involves

multimodal learning. This will allow us in particular to deter-

mine the requirements involved in a human–robot cooperation

to achieve an unknown task with real-time learning.

Consider a scenario where a humanoid robot and a human are

in a face-to-face interaction, with a box and a toy put on a table.

The human wants to clean the table, by putting the toy in the

box. In order to do that, he must rst grasp the toy, then open

the box, then put the toy in the box, and nally close the box.

Let us further consider that the human cannot grasp the toy and

open the box at the same time, and that he thus needs help in

performing this task. The human will ask the robot to “clean the

table.” The robot doesn’t yet know the plan so it will ask the

human to explain. The user will describe each step of the plan,

which is composed by several sequential actions:

— “I grasp the toy, then;

— you open the box, then;

— I put the toy in the box, then;

— you close the box.”

After checking whether the stated shared plan has been under-

stood correctly, the robot will check each action that it should

perform. The robot recognizes that there are some problems be-

cause it does not know how to open or close the box. It will ask

for the help of the human, who has to teach it however he wants.

For opening the box, the human will decompose the teaching

in two parts: at rst, going to a safe initial position and next

imitating him. After the opening action is learned, the user will

teach the closing behavior, by directly demonstrating the motion

by moving the arm of the robot. Finally, the robot has learned

the whole shared plan and each action it should perform, and

so the two agents can proceed and clean the table together. This

scenario allows us to identify the functional requirements for

the system. The system should:

1) inderstand human language, including mapping grammat-

ical structure onto internal representation of action;

2) appropriately distinguish the de nition of self and the other

for relative pronouns (e.g., “I,” “You”);

3) manage a memory of known shared plan and actions;

4) become active in the discussion by asking human when a

problem occurred;

5) perform Inverse kinematics mapping to learn from human

action by imitation;

6) encode proprioception induced when the human is moving

the robot to teach;

7) perceive the state of objects in the world.

In the following sections, we will de ne an overall system ar-

chitecture that accommodates requirements 1)–4) in a platform

independent manner, suggesting that these are the core learning

functions. We will further demonstrate how this system can be

used for real-time multimodal shared plan learning on the Nao

with requirements 5) and 6), and on the iCub with point 7).

III. SYSTEM DESIGN OVERVIEW

Here, we present the system architecture for the learning and

execution of cooperative shared plans. We begin with the com-

Fig. 1. Biomimetic Architecture for Situated Social Intelligence Systems
(BASSIS).

ponents that are independent of the physical platform, and then

introduce the platform speci c components.

The BASSIS architecture (see Fig. 1) is a multiscale archi-

tecture organized at three different levels of control—reactive,

adaptive, and contextual, where the different levels of self are all

based on the physical instantiation of the agent through its body

(soma). It is based on the distributed adaptive control architec-

ture [39]–[41]. Soma corresponds to the physical platform, in-

stantiated as the Nao or iCub in our experiments. The Reactive

or sensorimotor layer employs Kinect for perception and Chore-

ograph™ (Aldebaran) for motor control on the Nao, and the Re-

acTable sensitive table, and the passive motion planner (PMP)

and iKin inverse kinematic solver for iCub. The Adaptive layer

de nes adaptive motor capabilities for each robot. In the cur-

rent context, this adaptation can take place through learning

within the human–robot interaction. The Contextual layer is

platform independent, and implements a Supervisor function,

with a grammar-based Interaction Manager, and a Shared Plan

Manager. Within the BASSIS framework, the Contextual layer

implements a form of long term memory that we exploit here in

the context of learning shared action plans.

A. Supervisor

The Supervisor function consists in two related capabilities.

The rst is general management of the human–robot interaction

via a state-based dialog management capability. The second is
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capability to learn and execute shared plans. Both of these func-

tions are platform independent.

1) Interaction Management: Interaction management is

provided by the CSLU Toolkit [42] rapid application devel-

opment (RAD) state-based dialog system which combines

state-of-the-art speech synthesis (Festival) and recognition

(Sphinx-II recognizer) in a GUI programming environment.

RAD allows scripting in the TCL language and permits easy

and direct binding to the YARP domain, so that all access from

the Interaction Management function with other modules in the

architecture is via YARP.

The system is state-based with states for specifying the shared

plan, modifying the shared plan, if there are errors, teaching

speci c actions within the shared plan, and nally, executing the

shared plan during the cooperative task execution. Interaction

management also allows the system to indicate error states to

the user, and to allow him to explore alternate possibilities to

rectify such errors, as illustrated in Section IV-A.2.

2) Shared Plan Learning: The core aspect of the learning ca-

pability is the capability to learn and execute shared plans, and

to learn constituent actions that can make up those plans. As

de ned above, a shared plan is a sequence of actions with each

action attributed to one of two agents in a turn-taking context.

Shared plans can be learned via two complimentary learning

mechanisms. The rst method involves a form of spoken lan-

guage programming, in which the user verbally describes the

succession of action-agent components that make up the shared

plan. Recognition is based on a grammar that we have devel-

oped for this purpose:

1) %% %%

;

2) ;

3)

a. %%

b. %% ;

4) %% %% %% ;

5) ;

6) ;

7)

a.

b.

c.

d.

e. ;

8)

%% ;

9) ;

Line (1) speci es that a shared plan begins with the “imper-

ative” “Pedro” (the robot’s name) followed by an optional si-

lence (*sil%%), then an agent and command, followed by [0-n]

groups made of a link word, an agent and a command. Agent

terminals are identi ed in (2). Commands can take 1 or two ar-

guments, as speci ed, respectively, in 7) and 8). Interestingly, in

this grammar, the set of terminal nodes (actual words to be rec-

ognized) is only 16 distinct words. Thus, the speaker indepen-

dent recognition system is in a well-de ned recognition niche,

and the system works with few to no errors.

In the case that errors are made, either in recognition, or by

the user forgetting a command, saying a wrong command etc.

we have a “spoken language programming” editing capability.

Editing can involve the following edits: replace one command

with another. In this case the user repeats the faulty command,

and then the correct one (in cooperation with the dialog system

of the robot). Delete a command, in which case the user stats

the command to be deleted. Insert a command, in which case

the user says before or after a given command, and then the new

command.

The second learning mechanism is evoked at the level of in-

dividual actions, and allows the user to teach new component

actions to the robot. This involves a combination of spoken lan-

guage programming and perceptual action recognition. Percep-

tual action recognition can occur via action recognition with

the Kinect, and via kinesthetic demonstration, which will be de-

tailed below. The robot can then use the resulting shared plan

to take the role of either agent, thus demonstrating the crucial

role-reversal capability that is the signature of shared planning

[1], [12].

As illustrated in the example dialog with the Nao below, this

provides a rich capability to negotiate a complex cooperative

task using spoken language. The resulting system can learn

how to perform novel component actions (e.g., open, close),

and most importantly, it can learn arbitrary novel turn-taking

sequences—shared plans—that allow the user to teach in any

novel cooperative behavior to the robot in real-time. The only

constraint is on the set of composite actions from which the

novel behavior can be constructed.

B. YARP

Softwaremodules in the architecture are interconnected using

YARP [43], an open source library written to support software

development in robotics. In brief YARP provides an intercom-

munication layer that allows processes running on different ma-

chines to exchange data. Data travels through named connec-

tion points called ports. Communication is platform and trans-

port independent: processes are not aware of the details of the

underlying operating system or protocol and can be relocated at

will across the available machines on the network. More impor-

tantly, since connections are established at runtime it is easy to

dynamically modify how data travels across processes, add new

modules or remove existing ones. Interface between modules

is speci ed in terms of YARP ports (i.e., port names) and the

type of data these ports receive or send (respectively for input

or output ports). This modular approach allows minimizing the

dependency between algorithm and the underlying hardware/

robot; different hardware devices become interchangeable as

long as they export the same interface.

C. Humanoid Robot Nao and Kinect

The Nao (Fig. 3) is a 25 degrees of freedom humanoid robot

built by the French company Aldebaran. It is a medium size

(57 cm) entertainment robot that includes an onboard computer

and networking capabilities at its core. Its open, programmable

and evolving platform can handle multiple applications. The on-

board processor can run the YARP server (described below) and

can be accessed via telnet connection over the internet via WiFi.

More speci cally, the Nao is equipped with the following:

CPU x86 AMD Geode with 500 MHz, 256 MB SDRAM
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and 1 Gb Flash memories, WiFi (802.11g) and Ethernet,

2 640 480 camera with up to 30 frames per second, inertial

measurement unit (2 gyro meters and 3 accelerometers), 2

bumper sensors and 2 ultrasonic distance sensors.

In this research, we extend the perceptual system of the Nao

to include a 3D motion capture capability implemented with the

Kinect™ system. The Kinect recognizes a human body image

in a con guration posture (see Fig. 3), and then continuously

tracks the human body. Joint angles for three degrees of freedom

in the shoulder and one in the elbow are extracted from the

skeleton model, and mapped into the Nao joint space to allow

real-time telecommand of the two arms.

D. iCub Humanoid and Reactable Perceptual System

The iCub is a 53 DOF humanoid platform developed within

the EU consortium RobotCub. The iCub [44] is an open-source

robotic platform with morphology approximating that of a

3(1/2) year-old child (about 104 cm tall), with 53 degrees of

freedom distributed on the head, arms, hands and legs. The cur-

rent work was performed on the iCubLyon01 at the INSERM

laboratory in Lyon, France. The head has 6 degrees of freedom

(roll, pan and tilt in the neck, tilt and independent pan in the

eyes). Three degrees of freedom are allocated to the waist, and

6 to each leg (three, one and two respectively for the hip, knee

and ankle). The arms have 7 degrees of freedom, three in the

shoulder, one in the elbow and three in the wrist. The iCub

has been speci cally designed to study manipulation, for this

reason the number of degrees of freedom of the hands has been

maximized with respect to the constraint of the small size. The

hands of the iCub have ve ngers and 19 joints.

1) Motor Control: Motor control is provided by PMP. The

passive motion paradigm (PMP) [45] is based on the idea of em-

ploying virtual force elds in order to perform reaching tasks

while avoiding obstacles, taking inspiration from theories con-

ceived by Khatib during 80s [46]. Within the PMP framework

it is possible to describe objects of the perceived world either

as obstacles or as targets, and to consequently generate proper

repulsive or attractive force elds, respectively. A meaningful

example of attractive force eld that can be produced is the so

called spring-mass-damper eld; in this case the relevant param-

eters are the stiffness constant and the damping factor, which

regulate the force exerted by a target placed in a given spa-

tial location. An effective model that represents repulsive force

elds is the multivariate Gaussian function, which accounts for

a eld centred at an obstacle and is characterized by the typ-

ical bell-shaped decay. According to the composition of all ac-

tive elds, the manipulator’s end-effector is eventually driven

towards the selected target while bypassing the identi ed obsta-

cles; evidently, its behavior and performances strictly depend on

the mutual relationship among the tuneable eld’s parameters.

However, in order to tackle the inverse kinematics problem

and compute the nal trajectory of the end-effector, the orig-

inal PMP makes use of the Transposed Jacobian algorithm; this

method is well known to suffer from a number of weaknesses

[47] such as the dif culty to treat constraints of complex kine-

matic structures as the iCub arm turns to be [48], [49]. There-

fore, we have decided to replace the Transposed Jacobian ap-

proach with a tool that relies on a powerful and fast nonlinear

optimizer, namely Ipopt [50]; the latter manages to solve the

inverse problem while dealing with constraints that can be ef-

fectively expressed both in the robot’s con guration space (e.g.,

joints limits) and in its task-space. This new tool [49] represents

the backbone of the Cartesian Interface, the software component

that allows controlling the iCub directly in the operational space,

preventing the robot from getting stuck in kinematic singulari-

ties and providing trajectories that are much smoother than the

pro les yielded by the rst implementation of PMP.

In this changed context, the Cartesian Interface lies at the

lowest level of the revised PMP architecture, whose simpli ed

diagram is show in Fig. 3. At higher level the pmpServer ele-

ment is responsible of composing the nal force eld according

to the objects currently stored in an internal database. Users can

add, remove or modify this database in the easiest way by for-

warding requests to the server through a dedicated software in-

terface, made available by the pmpClient component. It is im-

portant to point out that the properties of objects stored in the

database can be retrieved for modi cation in real-time in order

to mirror the environment as it evolves over time. All the soft-

ware components of the revised PMP architecture can be openly

accessed from the iCub repository.

2) Perception: In the current research we extend the per-

ceptual capabilities of the iCub with the ReacTable™. The Re-

acTable is licensed by Reactable Systems. The ReacTable has

a translucid surface, with an infrared illumination beneath the

table, and detection system that perceives tagged objects on the

table surface with an accuracy of mm. Thus, tagged objects

can be placed on the table, and their location accurately captured

by the infrared camera.

Interaction with the external world requires that the robot is

capable of identifying its spatial reference frame with the ob-

jects that it interacts with. In the human being, aspects of this

functionality is carried out by the dorsal stream, involving areas

in the posterior parietal cortex which subserve complex aspects

of spatial perception [51]. In our system, the 2D surface of the

table is calibrated into the joint space of the iCub by a linear

transformation calculated based on a sampling of three cali-

bration points on the table surface that are pointed to by the

iCub. Thus, three points are physically identi ed in the Carte-

sian space of the iCub, and on the surface of the ReacTable, thus

providing the basis for calculation of a transformation matrix

which allows the projection of object coordinates in the space of

the table into the Cartesian space of the iCub. These coordinates

can then be used as spatial arguments to the PMP action system

of the iCub, described above, which provides basic physical ac-

tions including point-to(x, y, z), put(source X, Y, Z; target x, y,

z), grasp(x, y, z), release(x, y, z).

IV. MULTIMODAL LEARNING I: NAO & KINECT

Here we demonstrate the system functionality for real-time

learning, in which language, spatial perception (via Kinect), and

proprioception are combined to allow the Nao to learn a shared

plan which is then executed in real-time with the human teacher.

The idea is to solve a common problem encountered during

daily life which is cleaning a table with some objects on it. As

de ned in the requirements analysis in Section II, the goal is to

place the object from the table to a chest. However, the chest
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needs to be opened before doing that, and we need to close it

afterward to complete the task.

A. Learning the Shared Plan and Component Actions

Here we present the time-tagged unfolding of the cooperative

dialog where the shared plan is established, and indicate how

the system components are engaged to permit the corresponding

interaction, and learning and execution of the shared plan.

1) Establishing the Shared Plan: The user begins by giving

the name of the cooperative shared plan:

00:25 Nao: Tell me what I have to do.

00:26 Human: “Pedro, help me to clean

the table.”

TheNao recognizes the spoken order and checks in the shared

plan manager if it knows this plan, and determines that there is

no de nition for such a plan

00:30 Nao: “The shared plan is clean.

00:36 Nao: “Please explain me.”

The shared plan manager creates an empty shared plan called

“clean the table” and it is ready to be lled with the human

description.

The user verbally explains all the steps of the shared plan,

including both moves of the robot and himself. It is worth noting

that the shared plan is initially speci ed in s.

00:37 Human: “I reach the toy, then

I reach the trash box then you open

the trash box then I put the toy in

the trash box then you close the trash

box.”

The Nao will segments the global shared plan in a sequential

set of 3 actions using the grammar built in the spoken language

interface, and then repeats it to be sure it has perfectly under-

stood the whole interaction:

00:50: Nao: “I reach the toy, you

reach the trash box, then I open the

trash box, you put the toy in the

trash box, I close the trash box. Do

you agree with this plan?”

Two remarks should be made. First, note that in order to be

intuitive and understandable, for relative pronouns “You” or “I”

rather than repeating these literally, the Nao has created the plan

by replacing the relative agent by the absolute ones: the human

for “I” and the Nao for “You” because the human was speaking.

2) Correcting the Shared Plan: The second remark here is

that there is in fact an error in the plan. Nao states that it should

reach for the toy, rather than the human doing so. When the Nao

is repeating the plan, it is not only to check if it has understood

the orders but it also provides the human a way to verify his

plan.

The user has here the possibility to edit the shared plan (Sec-

tion II.A.2), and will do it by answering that he does not agree

with this, for instance:

Human: “No I do not”.

Thus the robot will ask where the problem is:

01:05 Nao: “So, What did I misunder-

stand?”.

Here, the human has several ways to edit the plan:

— he could specify that there is a problem with a speci c

action by repeating it and could, after that, remove it or

replace it by another one;

— he could erase everything and describe the plan again from

scratch;

— he could insert a missing action.

In this dialogue example described below, the problem is with

the agent of the rst action. The Nao said “I reach the toy”,

but the intended action was “You reach the toy,” with “you”

referring to the human, so in response to the robot’s question

“what did I misunderstand?” the human names the erroneous

action:

01:08 Human: “I reach the toy.”

Thus, this dialog is motivated by the user’s recognition that

an error has occurred, followed by his speci cation of the erro-

neous component. This will trigger an editing of the plan, with

the Nao asking

01:10 Nao: “What do you want me to do

instead?”

A new command can now be inserted to replace the erroneous

one.

01:13 Human: “I reach the toy.”

This illustrates the detailed manipulation of relative pro-

nouns, as the human is now speaking from his own perspective,

and thus refers to himself as “I”. To con rm the edit, the Nao

then places a “virtual cursor” after the element to be replaced,

and before the next action, and veri es that the new command

should be inserted there:

01:15 Nao: “So where—I reached the

toy, instead, you will reach the toy.

Do you agree with this plan?

01:24 Human: “Yes, I do.”

The robot now has a complete shared plan including tasks for

the user and for itself. The next step is to verify that all of the

tasks assigned to the robot are known.

3) Learning Component Actions: The Nao iterates through

the shared plan until it encounters an action assigned to it, de-

termines if it knows the action, and informs the user if not. A

query is made to the Motor Primitive Library where the list of

current known behaviors of the Nao is stored into. There may

be several unknown behaviors in a new plan, thus to keep the

interaction more animated the system selects one of the three

interrogatory sentences at random.

Here, the Nao recognizes that it has to perform the “open”

action, which is unknown for now and will call the human for

help:

01:26 Nao: “Behavior ‘open’ is un-

known. I am going to learn ‘open’”

This will put the supervisor in the learning state. The human

could create the behavior in the Motor Sequence Learning with

one or a combination of these methods (see Fig. 2):

— calling a known behavior by language;

— asking the robot to imitate him;

— physically demonstrating the action by moving the robot’s

arms.

As illustrated in Fig. 4 (left column), the chest can be opened

by pushing a lever, and the human will choose to teach “open”
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Fig. 2. Shared Plan Manager. In the initial state, the user describes the entire shared plan. The robot repeats the understood plan, allowing editing. Then, for each
action, if it is unknown, the system enters speci c states for learning by language, imitation or demonstration. When all actions are learned, the shared plan is
executed.

by decomposing the action in two steps: First, the robot needs

to move its arms up in the air, before, second, going down to

push the lever. The “put-the-hands-up” is a known action, so

the human will command this action.

01:34 Nao: “Tell me what to do.”

01:36 Human:“Move to Kinect init.”

This is recognized to be a known behavior in Motor Primitive

Library, so the robot asks for a con rmation before performing

the action:

01:38 Nao: “I am going to move to

Kinect init. Are you sure?”

01:42 Human: “Yes I am.”

After the user’s acknowledgment, Nao executes the behavior

and the resulting joint angle trajectory will be stored in the new

“open” behavior of motor sequence learning to begin the con-

struction of this action.

The robot informs the user that the action is nished and it is

waiting for the following command:

01:51 Nao: “Tell me what to do.”

The human proceeds to the second step of the teaching by

calling the imitation method:

01:53 Human:“Imitate me.”

01:56 Nao: “Imitation activated. Tell

me when it is finished.”

The system then enters the state (see Fig. 2) where joint angles

are read from the Kinect device based on the observed human

demonstrator (which is calibrated in the hands up position). The

user then demonstrates the motion required to open the box,

using visual feedback from the Nao in real-time. The corre-

sponding joint angle trajectory is concatenated to those from the

previous method. The user then terminates the imitation:

02:17 Human: “It is finished.”

The “open” behavior has thus been learned by the Nao in

real-time as a complex joint trajectory, and is transferred from

Motor Sequence Learning to Motor Primitive Library so that it

is now available as a command.

Following the ow outlined in Fig. 2, the Nao proceeds to the

next behavior it should perform in the shared plan, and again

there is an unknown action: “close”:

02:20 Nao: “The behavior ‘close’ is

unknown. I am going to learn ‘close.’”

02:27 Nao: “Tell me what to do.”

An empty “close” behavior is created in motor sequence

learning. This time, the human chooses to teach the action

using the demonstration method:

02:29 Human: “Let me move your arms.”

This places the supervisor in a state where it commands the

Nao to set the stiffness of the arms to zero so that they can be

manipulated by the human:

02:33 Nao: “Stiffness changed. Tell me

when it is finished.”

As illustrated in Fig. 4 (right column) the human then physi-

cally demonstrates the action, pushing the Nao’s hand and arm

through a trajectory that closes the box. Once the demonstra-

tion is nished, the human terminates the learning, and asks the

robot to proceed with the shared plan execution:

02:46 Human : “It is finished.”

Thus, this dialog fragment, and Fig. 4, illustrate two com-

plimentary learning methods: imitation of an action trajectory

performed by the human, and physical demonstration where the

human physically guides the learned trajectory of the robot. De-

pending on the nature of what is to be learned, the user can

choose the more appropriate method.

B. Executing the Shared Plan

The shared plan is now fully speci ed, and the Nao begins

execution, illustrated in Fig. 5.

02:56 Nao: “The current step is you

reach toy. You are supposed to reach.

Tell me when it is done.”

03:01 Human: “It is done.”

03:03 Nao: “The current step is I open

trash box.”
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Fig. 3. PMP software architecture.

Fig. 4. Multimodal learning. (Left column) Using perceptual based imitation,
the human demonstrates to the Nao how to open the box, and the Nao performs
the action in real-time, mirroring the action of the human. (Right column) Using
kinesthetic demonstration the human teaches the Nao how to close the box.

Here the robot uses the learned action trajectory to reproduce

the “open” movement:

03:27 Nao: “The current step is you

put the toy trash box. You are sup-

posed to put. Tell me when it is

done.”

03:34 Human: “It is done.”

03:37 Nao: “The current step is I

close trash box.”

The Nao then uses the joint trajectory that was taught by

kinesthetic demonstration, to close the box. At this point the toy

has successfully been closed in the box, and the shared plan is

nished”

03:52 Nao: “This was the last com-

mand.”

Fig. 5. Shared plan execution. Left column: Human takes toy, Nao opens box,
human places toy in box. Right column: Nao closes box.

C. Performance Analysis

We analyze performance from three separate executions of

the learning task described above. Two were performed in the

laboratory, and the third was performed during the Robocup

@home Open Challenge 2011 in Istanbul, July 2011. In this

case, we were required to install and set up the system in 3

minutes, and then had ve minutes to perform the task, with no

possibility to shift to a different time, or to have another 5 min-

utes in case of failure. The task was successfully completed, and

our “Radical Dudes” team placed 4th/19 in the Open Challenge.

This demonstrates the robustness of the system.

For each of the three sessions where the shared plan was

learned and then executed, we measured the time to complete

the open-the-box and close-the-box actions during the learning

phase, and then during execution of the learned shared plan.

Execution time is measured from the onset of the human

command, to the execution of the action and onset of next

request by the Nao. Thus, during learning, the execution time

includes the teaching component. In order to compare the effect

of learning on the time to complete individual actions, we per-

formed nonparametric Wilcoxon signed-rank test comparing

each action when it was being learned vs. when it had been

learned, collapsing across sessions. There were two actions

per session (open and close), each performed once in learning

and once in execution after learning. With the three sessions,
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Fig. 6. Effects of shared plan learning on overall action execution time in sec-
onds.

this provided a total of 6 learning-learned comparisons. As

illustrated in Fig. 6, there is a signi cant reduction in execution

time during the shared plan execution. This was con rmed in

a signi cant learning effect in the Wilcoxon signed-rank test,

. We thus demonstrated that the

system can learn to produce arbitrary sequences of actions with

a turn-taking structure. The principle limiting factor is simply

the set of basic level actions from which the shared plans can

be constructed. Three repetitions of the “clean-up” shared plan,

including one during the Robocup@Home Open Challenge,

demonstrate the reliability of the system. Over these three trials,

we also demonstrated a signi cant effect of this learning (as

opposed to simply commanding the robot) in terms of behavior

execution time after learning.

D. Nao Experiment Discussion

We have previously demonstrated how the user can employ

language to teach new actions [13], [14], and then combined

the previously learned actions into a new shared plan [11], [15].

The current research extends this shared plan learning. For the

rst time, we demonstrate how spoken language can be used

to coordinate online multimodal learning for a shared coopera-

tive plan. The multiple modalities include imitation of actions

performed by the human (using the Kinect), human demonstra-

tion of a desired trajectory by physically manipulating the robot

arm, and nally, spoken language based invocation of known

actions, with all of these modalities contributing to a coherent

and integrated plan. We should stress that learning by imitation,

demonstration and spoken language programming all have been

extensively studied in the past. What is new here is the combi-

nation of these multiple modalities in a coherent and seamless

manner, under the control of language. It is worth noting that

while we emphasize the learning of the “clean the table” shared

plan, the grammar-based learning capability allows for the con-

struction of arbitrary turn-taking action sequences.

V. MULTIMODAL LEARNING II: ICUB & REACTABLE

While the learning that we observed in the previous section

has certain components that are platform speci c (e.g., the mor-

phology of the Nao, and the mapping of the Kinect to that mor-

phology), the principal learning component which is based on

spoken language is platform independent. Indeed, it provides a

method for the linking together of action primitives into shared

plans that can subsequently be used to achieve cooperative ac-

tivity.

A. Learning the Shared Plan and Component Actions

In the rst experiment with the iCub, the human explains a

shared cooperative task similar to that used with the Nao, where

the goal is to “hide” a toy under a box. The grammar is of the

same structure as that used for the Nao. The principal differ-

ence is that it is constructed so that the plan is successively con-

structed from single actions that are concatenated with the pre-

vious actions (4):

1)

;

2)

;

3) :

a) %% %%

%% %% ;

b) %% %%

%% %% ;

c) %% %% %% %%

d) %% %% %% %%

4) .

Here we illustrate how by exploiting this grammar, the shared

plan manager can construct the shared plan from the sequence

of actions described by the subject:

00:00 ICub: “What can I help you

with?”

00:02 Human: “Shared Plan.”

00:05 ICub: “Shared Plan menu.”

00:07 Human: “You and I hide the toy

with the box.”

The Supervisor consults the Shared Plan Manager, and deter-

mines that there is no de nition for this plan:

00:11 ICub: “Tell me how you and I can

hide toy box?”

00:13 ICub: “What is next?”

00:17 Human: “You put box left.”

00:20 ICub: “Did you say ‘you put box

left’?”

00:23 Human: “Yes I did.”

00:25 ICub: “What is next?”

00:27 Human:“I put toy middle.”

00:30 ICub: “Did you say ‘I put toy

middle’?”

00:32 Human: “Yes I did.”

00:35 ICub: “What is next?”

00:38 Human:“You put box toy.”

00:40 ICub: “Did you say ‘You put box

toy’?”

00:43 Human: “Yes I did.”

00:46 ICub: “What is next?”

00:48 Human: “Finished.”
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The successive actions of the shared plan have now been ex-

tracted, and the plan is stored as

In the de nition, the four arguments to hide are instantiated

with the “you, I, toy, box.” When the shared plan is used in the

future, it can be called with different arguments, e.g., hide (John,

you, trumpet, carton) for “John and you hide the trumpet with

the carton,” and these new arguments will be systematically sub-

stituted into the component actions of the shared plan. This pro-

vides the ability generalize to new objects and agents, including

providing a capability for role reversal as speci ed in Section C.

B. Executing the Shared Plan

01:00 Human: “You and I hide the

trumpet with the box.”

Note here that the system allows arguments to be used in the

“hide” shared plan. Here trumpet will be hidden.

01:04 ICub: “I will put the box on

the left. You will put the trumpet on

the middle. I will put the box on the

trumpet. Should we proceed?”

01:24 Human: “Yes we should.”

01:26 ICub: “I will put the box on the

left.“.

The robot performs its action, illustrated in Fig. 7(A)–(B).

02:02 ICub: “You will put the trumpet

on the middle.”.

The human makes the move, and the robot detects the change

of position of the trumpet to the middle [see Fig. 7(C)].

02:12 ICub: “I will put the box on the

trumpet.”.

The iCub performs the nal move, covering the trumpet with

the box (Fig. 7(D)–(E)), completing the shared plan.

02:48 ICub: “Shared Plan menu.”.

C. Role Reversal

In the cooperative task, the user can decide who takes which

role. This implies the principal of role reversal. As stated in the

introduction, role reversal is taken as evidence that the agent

has a global representation of the actions that both agents will

perform. This representation allows the agent to take on the role

of either of the two participants in the shared plan [12].

In order to reverse roles, the human can use the same shared

plan, and indicate role reversal by specifying the arguments in

the reversed order. He can say “you and I hide the toy in the

box” or “I and you hide the toy in the box.” As speci ed in

Section V-A above, depending on how the pronouns I and you

are ordered in the speci cation, the roles of the human and robot

will be reversed.

00:08 Human: “I and You will hide the

toy in the box.”

Fig. 7. Learning and performing the “hide the toy” cooperative plan. Setupwith
the “toy” on the left of the table, and “box” on the right. Spatial representation
on iCub GUI left rear. B. iCub puts the box on its left. C. human put the toy in
the middle. D. iCub reaches for the box, and F. puts the box on the toy. Note
the grasping precision.

00:13 ICub: “You will put the box on

the left. I will put the toy on the

middle. You will put the box on the

toy. Should we proceed?”.

00:29 Human: “Yes we should.”

00:31 ICub: “You will put the box on

the left.“.

Here the robot detects the change of position of the box to the

left.

00:37 ICub: “I will put the toy on the

middle.”.

01:13 ICub: “You will put the box on

the toy.”.

01:19 ICub: “Shared Plan menu.”.

Role reversal is a speci c instance of a more general capa-

bility that is provided by the system. That is, once a shared plan

has been learned with a given set of agent arguments, the ar-

guments for the two agents can be instantiated with different

instances, e.g., I and you vs. you and I.

D. Performance Analysis

We repeated the shared plan learning, execution and role re-

versal twice each. The timing of the principal events is illus-

trated in Fig. 8. It is noteworthy that the system allows the

multiple-action shared plan to be speci ed in well-under one



PETIT et al.: THE COORDINATING ROLE OF LANGUAGE IN REAL-TIME MULTIMODAL LEARNING OF COOPERATIVE TASKS 13

Fig. 8. Event durations (in seconds:minutes) for two trials (Trial 1 in black, trial 2 in grey) of the learning, execution and role reversal for the “hide the toy” shared
plan.

minute, and then executed in this same time scale, both in the

standard format, and the role reversal.

Note that in Fig. 8, the role reversal condition is executed

more rapidly than the standard condition. This is due to the rel-

ative slowness of the robot actions, with respect to those of the

human. In the standard sequence, the robot performs two actions

(moving the box away from the center, and then over the toy)

while the human performs only one action (placing the toy in

the middle to be covered). This is reversed in the role, reversal,

and thus the effect of the slowness of the robot is reduced.

E. iCub Discussion

These experiments extend the results with the Nao, which is

in part achieved because of the more dexterous grasping ca-

pabilities of the iCub. In the current experiments we demon-

strated how an arbitrary shared plan could be established in less

than one minute, and then immediately be used to execute the

cooperative task. In addition, we demonstrate how this shared

plan can be used to allow role reversal, in which the two agents

swap roles. Again, for Carpenter et al. [12] this is a hallmark of

shared plan use, as it clearly demonstrates that the agents have

a “bird’s eye view” or global view, of the shared activity. Tech-

nically this requires that all of the actions that can take place in

the shared plan can be executed physically by both the human

and the robot. Because of the high spatial precision of the Re-

acTable, and the precision grasping capabilities of the iCub, this

is a technical reality.

VI. DISCUSSION AND FUTUREWORK

The current research can be situated within the larger con-

text of cognitive developmental robotics [52], with physical em-

bodiment playing a central role in structuring representations

within the system, through interaction with the environment,

including humans. In development, the early grammatical con-

structions that are acquired and used by infants de ne struc-

tural mappings between the underlying structure of everyday ac-

tions, and the expression of this structure in language [6], [53].

We have exploited this mapping, in building systems that can

learn grammatical constructions from experience with the en-

vironment [8], [54]. Here we exploit this type of grammatical

construction, by building such constructions into the grammars

that are used for speech recognition. These constructions that

map onto the basic structure of action (e.g., agent action ob-

ject) correspond to the basic argument constructions that are the

workhorses of initial language [6], [53]. The “ditransitive” con-

struction is a good example that has been extensively studied

[5]. In a canonical form of this construction “Subject Verb

Recipient Object” (e.g., John gave Sally a ower), Sub-

ject maps onto the agent of the transitive action speci ed by

Verb, and Recipient receives the Object via that tran-

sitive action. The current research demonstrates how language,

based on these constructions, can be used to coordinate real-time

learning of cooperative actions, providing the coordination of

multiple demonstration modalities including vision-like percep-

tion, kinesthetic demonstration [13], [29], [55]–[58], and com-

mand execution via spoken language. In this sense, language

serves a dual purpose: First and most important, it provides the

mechanism by which a cooperative plan can be constructed and

modi ed. Second, during the construction of the shared plan,

one of the modalities by which actions can be inserted into the

plan is via the spoken issue of a command. We demonstrate

that in this framework, the constructive features of language

can be mapped onto different robot platforms. This requires the

mapping of the argument structure of grammatical constructions

onto the predicate-argument structure of the command and per-

ceptual operators of the given platform [13], [55]. Doing so, we

subsequently achieve performance, where the systems can learn

and perform new cooperative behaviors in the time frame of
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2–3 minutes. The introduction of structured language provides

a powerful means to leverage sensory-motor skills into coopera-

tive plans, re ecting how the development of language in human

children is coincident with an explosion in their social devel-

opment in the context of triadic relations between themselves,

another person and a shared goal [1]. We should note that the

“ecological validity” of the kind of language that the user can

employ is somewhat restricted to simple grammatical construc-

tions. That is, people cannot use fully unconstrained natural lan-

guage, such as relative clauses, and pronouns. Still, this allows

suf cient expressive ability for the user to construct elaborated

shared plans.

The approach to learning that we have taken thus consists

in the implementation of a highly structured scaffolding that al-

lows the user to teach the robot new action components, and then

to teach the robot how to organize these actions into more elab-

orate turn-taking sequences that constitute shared plans. The ad-

vantage of this approach is that it is powerful and scales well.

It is powerful because it allows the user to specify arbitrary

turn-taking sequences (which can even include solo sequences

that are performed only by one of the agents), and the set of ele-

mentary actions can also be augmented through learning. All of

this learning can be done with a single trial. The advantage of

this is that learning is rapid. Indeed, related studies have demon-

strated that for complex tasks such as those used here, human

and neural network simulations fare better with high level in-

struction (imitation or verbal instruction) than with lower level

instruction (reinforcement learning) [59]. The disadvantage is

that the teaching must be perfect. Thus, in demonstrating a tra-

jectory, the system cannot bene t from a successive re nement

over multiple trials [60].

One of the limitations of this work is that there is not a system-

atic mechanism for the long-term accumulation and synthesis of

such learning. In the future it will be important for these devel-

opmental acquisitions to be integrated into the system over a

life-time scale [61]. Another limitation is that in the current re-

search the behavior is determined by the shared plan, and there

is no choice. To cope with changing task contingencies, the

system will require more adaptive behavior including the ability

to choose between competing options [62]. Perhaps one of the

most fundamental limitations of the current research, which lays

a foundation for future research, has to do with the deeper na-

ture of the shared plan. This is the notion of the shared intention.

Our robots can learn a plan that allows them to perform a coop-

erative task, and event to demonstrate role reversal. Yet the true

notion of the actual nal goal, the shared intention, to get that

toy into the box, is currently not present. We have started to ad-

dress this issue by linking actions to their resulting states, within

the action representation [56]. We must go further, in order to

now expand the language capability to address the expression

and modi cation of internal representations of the intentional

states of others.

The current research proposes an interaction architecture, for

on-line multimodal learning, and demonstrates its functionality.

It is not an extended user study that allows for the collection of

data whose variability can be statistically analyzed in a popu-

lation of subjects. Within the interactions that we test, the most

pertinent parameter that re ects the change in the real-time ow

and uidity of the interactions is related to the time required

for different component actions, and their changes as a func-

tion of learning. We thus demonstrate the feasibility of using

spoken language to coordinate the creation of arbitrary novel

turn-taking action sequences (which we refer to as shared plans).

This includes the ability to create new actions (through demon-

stration and imitation), and to embed these actions in new turn-

taking shared plans. Clearly a more robust demonstration of the

performance of the architecture (and effective time gains be-

fore/after learning) should use naïve users and include metrics

related to interaction quality, success etc. This is a topic of our

ongoing research.
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Chapter 5

Reasoning Based on Integrated

Real World Experience Acquired

by a Humanoid Robot

5.1 Introduction

This publication presents an implementation of the autobiographical memory, using
both episodic and semantic memory, which store respectively personal events with precise
objects, localization, actions, ... and general knowledge or facts about time, spatial or
contextual items ([Tulving et al., 1988, Conway and Pleydell-Pearce, 2000, Cohen and
Conway, 2007]). Through interaction with Human, the robot will acquire data and build
his own knowledge based on his experience, filling in an SQL database. Inspired by the
teleological stance taken by children ([Gergely and Csibra, 2003]), we will investigate how
we can extract pre-conditions or effects of observed actions in order to be able to under-
stand and manipulate them, allowing the iCub the be able to reason, planify and solve
unseen problems.

5.2 Publication
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Abstract.  

One of the long-term strengths of research in artificial intelligence has been the devel-

opment of reasoning systems that can exploit expert knowledge in well-defined task do-

mains. A non-trivial problem in this domain is getting information coded in the 

knowledge representation. For example, as in human development, the acquisition of 

knowledge at one level requires the consolidation of knowledge from a lower level. How 

is accumulated experience structured so as to allow the individual to apply this structured 

knowledge to new situations? The current research investigates how a robotic system that 

interacts with humans can acquire knowledge that can be formalized automatically, form-

ing the expert knowledge that can be used for reasoning. Through physical interaction 

with a human, the iCub robot acquires experience about spatial locations. Once consoli-

dated, this knowledge can be used in further acquisition of experience concerning the 

preconditions and consequences of actions. Finally, this knowledge can be translated into 

rules that can be used for reasoning and planning in novel problem solving situations. We 

demonstrate how multiple levels of knowledge acquisition are organized, based on expe-

rience in interaction with humans, in two distinct problem solving domains. In the more 

complex domain, we demonstrate how the robot can learn the rules of the Tower of Ha-

noi and solve novel instances of the problem, without ever having seen a complete solu-

tion. This research illustrates how real world knowledge can be acquired by robots for 

use in AI planning and reasoning systems. This can provide the first step for more flexi-

ble systems that can avoid the brittleness that has sometimes been associated with tradi-

tional AI solutions where knowledge has been pre-specified. 

 

 

1 Introduction 

The ability to reason can be considered to rely on two complimentary components. First, a system 

must have access to some form of knowledge or expertise from which it can reason. Second, the sys-

tem must then have some form of reasoning capability that allows that knowledge to be used in a 

systematic way [1]. Within this context, the current research attempts to determine how experience 
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that a robot can acquire through interaction with a human can be used as the basis for knowledge-

based reasoning. Allowing robots to learn from experience has been a long-term goal in cognitive 

robotics [2]. Spoken language has been used to “program” robots, that is, to specify procedures for 

how to achieve tasks, including navigation [3], interaction [4-8] and more elaborate shared plans for 

joint cooperative action with the human [9-13]. In this framework, knowledge is transferred from the 

human to the robot in a direct manner. Ideally, the robot should be able to extract information from 

its experience rather than having the knowledge explicitly specified. This knowledge could then be 

used order to allow the robot to reason about new situations. Via this approach, robotics research 

could make contact with symbolic reasoning in AI. 

The symbolic reasoning capability of AI is built around three basic capabilities: how to represent 

knowledge so that the system can use this knowledge for problem solving; the actual problem solv-

ing achieved by inference machines; and control of exponential complexity in the domain [1]. In ad-

dition there are requirements for supplemental knowledge about the domain, and all of this must be 

encompassed in a coherent architecture. A proven AI approach can use rules for representation, for-

ward and backward chaining for inference, goal directed reasoning for control, and a rule based 

problem solving architecture [1].  

We focus on the knowledge generation and representation component, and in particular, how 

knowledge about the domain can be acquired in an autonomous manner. In traditional AI [1], 

knowledge engineers would elicit expert knowledge from experienced people, and codify it so that 

this expert knowledge would allow the system to reason. In the modern context of adaptive cognitive 

systems for robots, the goal is to allow the robot itself to become an expert by accumulating 

knowledge from its own experience [14-16].  

From the outset of development, the infant begins to extract regularities from the environment, 

and in a recursive manner to further extract structure based on this growing repertoire [17, 18]. The 

goal of this research is to provide a real-time goal-directed reasoning capability to robots, loosely 

based on a development-like trajectory where knowledge from successively refined levels contrib-

utes to the ability to reason. When we reach the highest level of this representational hierarchy, the 

information will be appropriate for reasoning in the AI sense. Based on the Planning Domain Defini-

tion Language (PDDL) format [19, 20], actions encountered by the robot and stored in its AutoBio-

graphical-like Memory (ABM) are statistically processed in order to extract contextual knowledge 
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about them [21]. This knowledge is formatted in PDDL allowing an AI planner to produce the se-

quence of actions allowing the robot to fulfill a goal. We will demonstrate the system capabilities 

with two concrete example tasks, where the robot learns the physical structure of the environment, 

the rules of the tasks, and then demonstrates its ability to use this knowledge to reason in novel situa-

tions. The first task or game involves rules about how objects can be displaced from one location to 

another in terms of pre- and post-conditions for actions. The second game is more involved, based on 

the Tower of Hanoi, adapted to our environment and here called the “Table of Hanoi”. In this context 

the system must learn about the particular properties of objects in terms of when and where they can 

move, based on the presence of other objects at the source and target destinations. 

  

************** Figure 1 about here ************** 

2 Robot System Description 

We first describe the global architecture of the robot and control system, and then provide a more 

detailed description of the memory and reasoning systems. The human-robot interaction set-up is 

illustrated in Figure 1. The iCub robot interacts with humans, using an interactive table that allows 

for precise object localization. As seen in the figure, the Graphical User Interface (GUI) displays the 

robot and the positions of recognized objects on the table. An overview of the system architecture is 

also illustrated in Figure 1, and explained, element by element, below. Part of the core basis of our 

research is the implementation of a multi-level memory system, illustrated in Figure 2.  

 

 

************** Figure 2 about here ************** 

 

Following Figure 2, direct perceptual experience is represented in the episode-like memory 

(ELM), and through the detection and extraction of recurring regularities (e.g. the word “left” and 

spatial coordinates within a certain dispersion ellipse), a higher level semantic memory is generated 

through a process we refer to as consolidation (inspired by the same term in animal physiology). This 

accumulated knowledge (e.g. the meaning of the term “left”) can lead to a reinterpretation of past 

experiences in the ELM, in a process that we refer to as “retro-reasoning”. Using this knowledge 
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about spatial locations, the system can begin to extract regularities about pre-and post-conditions that 

hold before and after acting, respectively. This information can be transformed into a format compat-

ible for AI planners, thus allowing the robot to use its accumulated experience to reason about new 

situations. Given this overview, we can now describe the system in more detail. 

2.1 iCub 

The current work was performed on the iCubLyon01 at the INSERM Robot Cognition Laboratory 

in Lyon, France. The iCub is a 53 DOF humanoid platform developed within the EU consortium Ro-

botCub. The iCub [22] is an open-source robotic platform with morphology approximating that of a 

3½ year-old child (about 104cm tall), with 53 degrees of freedom distributed on the head, arms, 

hands and legs. The head has 6 degrees of freedom (roll, pan and tilt in the neck, tilt and independent 

pan in the eyes). Three degrees of freedom are allocated to the waist, and 6 to each leg (three, one 

and two respectively for the hip, knee and ankle). The arms have 7 degrees of freedom, three in the 

shoulder, one in the elbow and three in the wrist. The iCub has been specifically designed to study 

manipulation, for this reason the number of degrees of freedom of the hands has been maximized 

with respect to the constraint of the small size. The hands of the iCub have five fingers and 19 joints. 

Motor control for the robot requires identification of object locations in space, and computation of 

the required joint trajectories [23]. As part of the iCub software architecture the YARP communica-

tion protocol is used throughout the system, in order to allow well defined port-based client-server 

connections between the different components described below. 

 

2.2 ReacTable 

In order to allow high precision perception of objects, both for understanding scenes and events, as 

well as for allowing precise and reliable reaching and grasping, we have adopted the ReacTable™ 

interactive table. The ReacTable has a translucid surface, with an infrared (IR) illumination and IR 

camera detection system beneath the table that perceives tagged objects on the table surface with an 

accuracy of ~5mm. Thus, tagged objects can be placed on the table, and their location accurately 

captured by the IR camera inside the table.  
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Interaction with the external world requires that the robot is capable of identifying its spatial refer-

ence frame with the objects that it interacts with.  This is similar to the human, where aspects of this 

functionality is carried out by the dorsal visual stream, involving areas in the posterior parietal cortex 

which subserve complex aspects of spatial perception [24]. In our system, the 2D surface of the table 

is calibrated into the joint space of the iCub by a linear transformation calculated based on a sam-

pling of four calibration points on the table surface that are pointed to by the iCub. Thus, four points 

are physically identified in the Cartesian space of the iCub, and on the surface of the ReacTable, thus 

providing the basis for calculation of a transformation matrix which allows the projection of object 

coordinates in the space of the table into the Cartesian space of the iCub. These coordinates can then 

be used as spatial arguments to the action system of the iCub, described below, which provides basic 

physical actions including point-to(x, y, z), put(source x, y, z; target x, y, z), grasp(x, y, z), release(x, 

y, z).  In the current experiments, all objects can be grasped with the same grasp parameters, so these 

are not independently specified. 

2.3 Object Properties Collector 

The common space in which the human and robot interact with objects is on the surface of the Re-

acTable. The current state of the world, in terms of those objects, the human and the iCub, is stored 

in the Object Properties Collector (OPC) which thus contains all the information about objects, 

agents, entities or relations. The OPC can be considered as the mental representation of the Robot. 

For example, all the information gathered by the ReacTable, or any other sensor will be stored in real 

time in the OPC.  

The ReacTable2OPC client receives the data about the real-time position of objects from the Re-

acTable software and stores this in the OPC. The data acquired from each object once on the table 

includes: a unique ID, position with respect to the coordinate frame of the table, angle, speed, rota-

tion and whether the object are still present on the table or not, as stated above. As stated above, in 

order to allow coherent interaction, the iCub and the ReacTable are calibrated into a common physi-

cal space that is based on the egocentric frame of the iCub. 
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2.4 Interaction Supervisor 

The Supervisor (Figures 1 and 3) provides the general management function for the human-robot 

interaction, and is implemented using a state-based dialog management capability. This allows the 

user to enter different interaction states related to teaching spatial location, action and temporal prim-

itives and shared plans. The Supervisor function is implemented with the CSLU Rapid Application 

Development (RAD) Toolkit [25], a state-based dialog system which combines state-of-the-art 

speech synthesis (Festival) and recognition (Sphinx-II) in a GUI programming environment. RAD 

allows scripting in the TCL language and permits easy and direct binding to the YARP domain, so 

that all access from the Supervisor function with other modules in the architecture is via YARP. 

We have previously explored how the argument structure of sentences (e.g. “Put the circle on the 

left”)  allows for a structured mapping onto the argument structure of perceptual and motor com-

mands for robots, and we use such mappings here [5, 6, 13, 26, 27] in the Supervisor. 

 

************** Figure 3 about here ************** 

 

3 Autobiographical Memory and Reasoning 

A central aspect of this research is that the experience of the robot shall be captured in a struc-

tured, time ordered record, and that this record can be used to generate appropriate behavior in the 

future. We implement an autobiographical memory (ABM) that consists of an episodic-like memory 

(ELM), and a semantic memory (SM), illustrated in Figure 3. The ABM is a PostgreSQL database 

storing data (essentially from the OPC) each time an action occurs (the episodic memory) but also 

the knowledge extracted after reasoning about this data (the semantic memory). Thus, the Episodic-

Like Memory ELM, is a component of the ABM containing data from the OPC (i.e. current state of 

the world) before and after each actions done either by the iCub or other agent. Semantic Memory 

(SM), is a component of the ABM built after reasoning about past experience, based on statistical 

analysis of data from ELM. The ELM and SM are implemented in postgreSQL. The Autobiograph-

ical memory (ABM) is a set of functions that operate on these SQL tables, and interact with the 

ABM Reasoning module which performs reasoning over past experience and memory consolidation 
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in order to generate the SM and update the ELM. The Supervisor provides the spoken language inter-

face with the human, and manages high level interaction.  

3.1 Episodic-Like Memory 

The episode-like memory (ELM) is organized around actions, and the state of the world before and 

after actions. The SQL data structure of the ELM is illustrated in Figure 4. This action-centered ap-

proach is useful in that it helps to solve the problem of how to segment the perceptual stream of 

events [28]. When the human announces that he will perform an action, a message is sent to the 

ABM Reasoning, and the current state of the world (a snapshot of the current state of OPC)  is stored 

in the episodic memory in the ELM SQL table, before and after the action occurs. Likewise, the sys-

tem is informed at the end of each action, and takes an OPC snapshot. With the state of the OPC be-

fore and after an action, the robot can extract the pre-condition and effect the for actions [29, 30].  

 

 

************** Figure 4 about here ************** 

 

3.2 Semantic Memory  

The semantic memory is derived by ABM Reasoning, from experience encoded in the ELM. ABM 

Reasoning is coded in C++, and its role is to retrieve the information stored in the ELM and to gen-

eralize over this information, in order to extract the pertinent information of each action. The ABM 

Reasoning thus constructs a Semantic Memory with the pertinent information related to con-

text/spatial/temporal information. The robot will then store its semantic knowledge into the appropri-

ate part of the ABM, i.e. the Semantic Memory. This stored knowledge can be retrieved and reused. 

We refer to this as “consolidation” (a dream-like memory consolidation function) [29]. During 

consolidation, the robot will iterate through all its actions performed in the current session, and will 

generalize over this data, and consolidate the resulting semantic knowledge in the database. This 

consolidation is the first level of a system of Retro Reasoning (described in the section 3.3) and is 

displayed in Figures 6 and 7.  
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CONSOLIDATION (level 1 reasoning) pseudocode: 

For each ACTION in the ELM 

 { 

Retrieve the COORDINATES of the object of focus before and after the move. 

Calculate the DISPLACEMENT of the object 

Populate the corresponding SPATIAL KNOWLEDGE entry and ACTION DEFINITION in the SM. 

Calculate the DISPERSION of the displacement to determine if the action is absolute or relative. 

If the ACTION is absolute (is location): 

 Update the LOCATION DEFINITION in the OPC. 

 } 

  

This pseudo code describes how the encoding of in the ELM of multiple repetitions of actions with 

spatial parameters like “put north” can be processed to determine that north here refers to a fixed 

location, which can be learned, and stored in the OPC as a new, learned, named location. This infor-

mation is also coded in the semantic memory (illustrated in Figure 5) in the spatial data component. 

 

************** Figure 5 about here ************** 

3.3 Retro Reasoning 

Once the robot has extracted these initial concepts, which can be spatial properties related to loca-

tions, displacements and actions, it can use this knowledge to construct higher level knowledge. The 

ABM reasoning will once again iterate through the contents of the ELM, and for actions, will be able 

to extract knowledge about the pre- and post- condition. For example in the case where a move has a 

precondition (for example, the moved object must be at location A before going to B), the robot will 

observe the moves done by the human, and then learn the locations A and B (as outlined in the pseu-

docode above). Once the robot knows locations A and B, it can then perform retro reasoning, and 

observe that each time the action: “move-B object” was performed, the object was first at A. This 

leads to the extraction of the pre-condition: “Object is at A”, and similarly for the post condition 

“Object is at B”. Based on this retro reasoning, the system will know that to perform the action 

“move-B”, the condition “Object is in A” is mandatory. Also, the robot will know that the action to 

perform in order to have “Object is in B” is “move-B object”. This information is coded in the con-

text data (before and after fields) of the SM (see Figure 5). 



  10 

 

In order to perform retro reasoning, the system requires a copy of the OPC - a mental OPC. In this 

mental OPC, the robot will simulate the state of the world at the time of the memory, and will ana-

lyze it, in the same way it would do it for the real world (i.e. with the new knowledge). 

 

RETRO-REASONING (level 2 reasoning) pseudocode: 

For each MEMORY in the ELM (before and after actions) 

 { 

         Re-imagine the SNAPSHOT of the memory in the mental OPC 

         Re-evaluate the SITUATION with the new spatial knowledge 

         Integrate the new SPATIAL RELATION found in the ELM  

} 

 

 

 

************** Figure 6 about here ************** 

 

3.4 Level 3 Reasoning 

The knowledge that has been acquired through retro reasoning now makes it possible to perform 

more pertinent reasoning about the conditions that hold before and after actions. This is illustrated in 

Figure 7B. The ABM Reasoning will again iterate through the ELM (arrow 1) and match this with 

the knowledge stored in the SM (arrow 2) and will extract new regularities at a higher level. The dif-

ference with the first level reasoning is that the ABM Reasoning will now write high level relations 

in the ELM (arrow 4) such as: “Object is at Location A” that the robot could not have known at the 

time of the memory (arrow 4), because the location A had not yet been learned. The system can also 

create higher level knowledge in the SM (arrow 3). For example, in the case of the move of the me-

dium object of the Hanoi Tower, the knowledge will be: “Big object can be at location From and 

location To, but the small object can’t be at location From and location To.” The function of this lev-

el of reasoning is described in the pseudo code below.  
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LEVEL 3 REASONING (pseudo code) 

For each ACTION 

 { 

 for STATE before and after the action 

  { 

determine ALL RELATIONS between the object of focus and all objects that hold before 

and after  

calculate PROBABILITY/PERCENTAGE for each relation over all instances in ELM 

store appropriately in before and after FIELDS OF CONTEXT in SM  

} 

 } 

 

 

************** Figure 7 about here ************** 

 

Figure 7 then illustrates the system level processing of these different successive levels of repre-

sentation. Human demonstrations lead to changes in the states of objects as represented in the OPC. 

These states are recorded in the ELM, associated in time with the named actions, and locations. Lev-

el one reasoning detects spatial regularities in terms of the elliptical forms of point cloud distribu-

tions of objects in the demonstrated actions and creates this new spatial knowledge. 

4 Planning and Goal Directed Reasoning  

The previously explained Retro-Reasoning, based on the ELM and SM allows the iCub to obtain 

information about its known actions, in particular i) pre-conditions, which have to be true if the robot 

wants to execute the actions and ii) effects, which will be the changes effected in the world with 

these actions. 

This gives the iCub the capacity to know, for a given current state of affairs, what actions are 

available, and to predict the successive states of the world after several actions. By using these two 

features, and checking pre-conditions of the next actions against the state of the world attained with 

the effect of the previous action, the system will be able to reason about a goal and plan successive 
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action in order to achieve it. This requires the extraction of the acquired knowledge of pre- and post-

conditions in a format that can be used for reasoning. This is implemented on the robot by extracting 

and formatting the rules to be compatible with the standardized planning language PDDL (Planning 

Domain Definition Language). 

 

************** Figure 9 about here ************** 

 

4.1 Planning Domain Definition Language (PDDL) Framework 

PDDL is a framework in which the domain of a task can be described (including specification of 

the “rules” in terms of pre- and post-conditions for actions), and in which a given problem or goal 

can be specified [19, 20]. This can then be provided as input to a planner, that will attempt to find a 

sequence of action executions that take the system from the current state, to the specified goal state. 

Thus, In order to be used, a PDDL planner needs this information, as specified in two different files : 

a domain, and a problem definition. The domain file contains the set of known actions, including 

their respective preconditions and effects, whereas in the problem file, we have the current situation 

description (i.e. the list of all initial conditions) and the desired goal. 

Traditionally, these files are hand-coded, with fixed set of actions given to a robot in order to solve 

a precise kind of problem with variable initial conditions. In our system, these data will be automati-

cally generated in real-time by the iCub, allowing a “developmental” inspired approach based on 

experience that accumulates and becomes successively refined via the level 1-3 reasoning. This is 

possible by extracting knowledge from the Semantic Memory (in SQL format) to produce well-

formed PDDL domain definition. The problem definition will be made by a direct request to the 

ABM about the current situation and the goal is defined from interaction with the human. In order to 

provide a concrete domain in which to pursue this work, we elaborated a simple interaction scenario, 

illustrated in Figure 8.  In this scenario, four spatial locations are learned by the robot, via observa-

tion of the human.  In addition, the robot learns certain regularities concerning how objects can be 

moved between these locations. This provides a simple scenario for testing the ability to learn from 

experience and reason on the acquired knowledge.  
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************** Figure 8 about here ************** 

 

 

We have extended the architecture from Figure 4, as now illustrated in Figure 9, to allow for the 

PDDL rule extraction and planning for on-line problem solving. Figure 9 illustrates in more detail 

the flow of information between the different representations of knowledge, starting in the lowest 

level “perceptual” representations in the ELM, to the pre-condition, post-condition representations of 

actions in the PDDL format, appropriate for use with available state of the art reasoning engines [19, 

20].The process begins by the expression of the human's desire using speech, indicated by the key-

word "want", followed by the goal to reach (1). The Supervisor handles this request and sends it to 

the ABM module of the iCub (2) which has to solve that problem. The system will then establish the 

state of the current situation by querying the OPC (3.a, 3.b), and writing it into the problem PDDL 

file, completed by the human's goal. After that, the system will check the semantic memory to re-

trieve the contextual knowledge about all the known actions and build the domain PDDL file (5). 

The AI Planner is then run with these data, to produce a plan (6), made up of the sequence of action 

which needs to be done in order to achieve the goal from the current situation. This file is parsed and 

the sequence is sent to the Supervisor (7), which then controls the iCub to execute these moves (8), 

and thus to achieve the human's goal without any explicit information from him about the "how to". 

 

************** Figure 9 about here ************** 

 

  

5 Experiments 

We now demonstrate the operation of the system with two experiments that exercise the ability of 

the system to extract the structure of knowledge derived from experience, and to reason based on that 

experience. Both experiments involve interaction tasks that can be organized according to rules or 

actions that have pre- and post-conditions. 
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5.1 Experiment 1: Learning Rules About Spatial Movement – Proof of Concept 

 

The goal of the first experiment is to demonstrate that the system is capable of extracting pre-

conditions and post-conditions for learned actions, and is then able to use these in the PDDL envi-

ronment for goal based reasoning in real-time. The robot will learn two types of actions. The first 

action is to add an object into the interaction space, by putting it on the table. By definition, in terms 

of our physical constraints, this action can only be performed by the human. The second action is to 

move an object from one location to another. The two actions will be learned independently. The link 

between them will be that the precondition of one is the effect of the other. In the first experiment, 

the initial state will be with the object off the table, as illustrated in Figure 8i, and goal state will be 

announced to the robot to put the object at location D as illustrated in Figure 8vi. The robot should be 

able to reason from experience that to put the object at “D”, it must be moved from “C”, and so on, 

chaining from the initial state to the final goals state..  

 

************** Figure 10 about here ************** 

 

 

Figure 10 illustrates how the action of moving an object to location B is learned. First, the human 

has to show the robot how the new actions work by example. He will say to the iCub what he will do 

(e.g. “I move the circle to B”). The sentence is parsed with the Supervisor, and the recognized action, 

with the name and the arguments (e.g. “Peter” as agent, “circle” as object, “A” as spatial location), is 

sent to the ABM, indicating that this action will happen. A snapshot of the OPC is then taken from 

ABM producing the state of the world before the named action. Again this illustrates how the human 

interaction allows the system to segment the perceptual flow, here to identify the beginning and end-

ing for actions. Control is returned to the human who can then proceed and execute the action before 

given a signal to the system (“Done”). This triggers the end of the action, which is written into the 

ELM, and a second snapshot, this time after the action execution, is then taken. Thus within the ELM 

there is a specification of the action and its arguments, and snapshots of the state of the world before 

and after the action. This procedure is repeated several times for the same action (but arguments 
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could be different) in order to have a set of data where statistical tools could be used for extracting 

regularities (or “rules”), as described in Section 3. 

The characteristic regularity is that actions can be performed with any objects, but there is a 

“from-to” structure that to go to B you must be at A, to C you must be at B, etc. as illustrated in Fig-

ure 10. The ABM Reasoning module collects the statistics on the pre- and post-conditions of these 

movements, and generates a set of entries in the semantic memory “Context” entry, for each type of 

move, according to its initial and final location. 

Once the pre-conditions and effect of actions have been extracted and made explicit in the seman-

tic memory, the system can use them in order to produce the two PDDL files needed for reasoning. 

The first one, the domain file, is the list of all the known actions, including preconditions and effects, 

arguments. The ABM Reasoning module begins by writing a “skeleton” of the PDDL, everything 

which does not change : the domain (“efaa”), the requirements (“:strips :typing :equality”), the predi-

cates (isPresent, isAtLoc, Objects and Locations). Then the system iterates through the known ac-

tions that are stored in ContextualKnowledge class. For each action the system will write in the files 

the required components: action, parameters, precondition and effect, which are directly translated 

from the ContextualKnowledge of the Semantic Memory. 

The action name is extracted by combining the verb (e.g. “add”, “move”) with the none-

generalizable arguments (nothing for “add”, the location for “move”). That allows for the possibility 

that actions can have different rules according to the location to where an object is to be moved. The 

precondition for “move-B” is “isAtLoc obj A”, whereas the precondition is “isAtLoc obj C” for 

“move-D”. 

Parameters are the arguments over which the action can generalize (e.g. object for “add” and 

“move”). One can perform these actions with different parameters value, the rules will be the same 

(for add, the object is not present at first, and is present after, no matter what the object is). 

Preconditions are extracted from the ContextualKnowledge class. The system checks for proper-

ties which are above a superior threshold for positive conditions and below an inferior threshold for 

negative conditions, before the action is executed. These properties are the presence of the object 

(which has to be present for “move” but has not to be for “add”) and its location of (for “move-B” 

the object has to be in location A), as illustrated in Figure 10. The effects or post-conditions are de-

termined in the same way, except that instead of using the regularities before the action is done, the 
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system computes over the data after the action’s execution. Table 1 illustrates the automatically ex-

tracted definitions for the ABCD game. 

 

 

************** Insert Table 1 about here **************** 

 

 

 After the creation of the domain file specifying the known actions, the problem file must be 

produced. The problem is defined by the current state and the goal that is to be achieved. As for the 

domain extraction, the system begins to write the skeleton of the problem file, with the problem 

name (“efaa-prob”) and the domain name (same as for the domain file, “efaa”). The objects (all the 

locations and objects known by the iCub) are extracted by a SQL query to the ABM in order to have 

their name (circle, cross, A, B, …) and their types (object for circle and cross, location A and B). 

These pairs are added in the “init” section, along with the initial condition. 

This PDDL creation is performed when the human asks the robot to reason about a situation, i.e. to 

attain a particular world state.  An OPC snapshot is taken, which correspond to the state of the world 

before the iCub preforms the reasoning.  This snapshot is obtained through an SQL query in order to 

extract all objects present or absent from the table and if present, their locations. This gives the sys-

tem the initial situation, which is written in the problem file.  

The “goal” part is produced from the human request to the  robot to reason about a situation, i.e. to 

attain a particular world state. Indeed, the human must specify to the robot that he wants something, 

and enumerate conditions he desires (or does not desires). These are extracted and put inside the goal 

(e.g. “I want the cross on D” gives “(isAtLoc cross D)”), as illustrated in Table 2. 

 

************** Insert Table 2 about here **************** 

 

Both the domain and problem PDDL files are now written. The iCub can run the PDDL planner in 

order to know what actions he has to do if he wants to execute the human wishes. We use the LPG-td 

planner [31], with options to find the best of 30 generated solutions, and a computation time limit of 

2 seconds. Thus, the system will take a maximum of two seconds or 30 solution files, from lower 
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quality to better quality before finding the best solution. After execution, the files matching “solu-

tionEFAA_X.SOL” are searched, as X goes from 1 to the maximum number of solutions, to identify 

the file with the best solution (if there is a solution).  The contents of such a file is illustrated in Table 

2. 

This file is scanned until the actions are found, written between parenthesis. By splitting what is 

inside according to space, we obtain the name of the action (e.g. “add”, “move-A”) and the argument 

on the other part (e.g. “cross” for move). The name is split against but with “-” to have the action 

verb on one hand, the non-generalizable argument on the other hand. The action is then put together 

and stored in a YARP bottle, and the next action is parsed until the end of the file. The bottle con-

taining all the actions could now be sent back to the Supervisor Interaction, which will launch the 

motor command of the iCub to execute them, one by one. 

5.2 Experiment 2: The Table of Hanoi 

We now consider a more strenuous test of the system.  The Table of Hanoi is based on the Tower 

of Hanoi, adapted to the constraints of the ReacTable. In particular this implies that objects cannot be 

stacked, but rather they can be placed in zones, following the rules of the Tower of Hanoi, i.e. an 

object cannot be moved from its current location if there is a smaller object at that same location (be-

cause in the ToOH that smaller object would be on top). Also, an object cannot be moved to a loca-

tion if there is a smaller object at that location. Thus, the goal of the current experiment is to deter-

mine if the ABM and domain extraction functions are suitable for learning such rules, and if so, 

whether the system can learn these rules and then correctly play the TaOH. 

In the ABCD experiment, the system was to learn that the constraints on actions involve where 

objects come from and where they go, but there were no constraints on the objects themselves.  The 

move-A action was demonstrated with different objects, thus there was high variability in the object 

parameter, and so the object identity was not considered as part of the action, but rather as a free pa-

rameter. Thus, the moves could be learned with one set of objects and generalized to another. In the 

Table of Hanoi experiment, the difference is that, as they have been demonstrated, the actions will be 

location-generalizable instead of object-generalizable. The Hanoi moves have the same rules from 

one location to another (between the left, middle and right positions) but they depend on the object 

involved (small, medium, big), such that small can move to locations with the medium or big object, 
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medium can move to the big object, and all objects can move to empty locations. Moreover, because 

the status of the different locations, the origin place (from) and the destination place (to) are particu-

lar and have to be managed instead of just working on fixed location.  

The human demonstration of these moves (Hanoi-big ?from ?to, Hanoi-medium ?from ?to, Ha-

noi-small ?from ?to) is done in the same way as for Experiment 1, with only a modification to the 

lexical entries of the speech recognition grammar (for the new names of objects and locations). It 

should be noted that, because of the generalization of learning, we need only to perform the moves 

from “Left” to “Middle”, and the robot will be able to generalize to other move locationss. In par-

ticular, he has never seen an actual Hanoi game, from the beginning to the end, only a set of illustra-

tive moves. We first teach the robot the locations left, right and middle, by moving each of the three 

objects three times to each of the locations. This makes 9 moves per location, for a total of 27 moves, 

which is sufficient to allow the consolidation to extract the location definitions. These locations can 

then be used to demonstrate the moves that allow the system to learn the rules governing how object 

positions influence legal moves. 

 

************** Figure 11 about here ************** 

 

 

These moves are illustrated in Figure 11. The three moves executed with the small object indicate 

that it can move from an occupied or a free position to a free position or an occupied position, thus 

there are no constraints on where it can come from or go to. This is revealed in the rule that is ex-

tracted from the SemanticMemory illustrated in Table 3. For the Medium object, the three demonsta-

tions indicate that it cannot move from nor to the same location as the Small. Recall that when calcu-

lating the pre-conditions, the system examines all possible relations between objects, and then looks 

for probabilities that approach 0 (corresponding to a “never” or “not” condition, and probabilities 

that approach 1 (corresponding to a positive constraint). 

For building the domain, the procedure is exactly the same, except the fact that, instead of check-

ing if objects intersect some precise location, the ContextualKnowledge is asked to give information 

about the “from” and “to”, and if the object is on them or not. Nothing changed to write the problem 

file or launching the PDDL planner. 
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************** Insert Table 3 about here **************** 

 

To specify a problem or goal, the user can set the objects at the desired initial location (on the 

left location, for eample), so that the system can determine the current state.  The user can then 

state the final state, in terms of the positions of the objects, e.g. that all three objects should be on 

the right location.  This yields the automatic construction of the domain and goal.  Table 4 illus-

trates such a domain and goal specification that was automatically generated.  Then, the planner 

can be run, to generate a solution.  The solution is presented in Table 4.  Again, the sequence of 

commands is then automatically transformed into the equivalent commands for the iCub, and the 

problem is solved, physically.  

 

************** Insert Table 4 about here **************** 

 

Figure 14 illustrates the performance of the solution that was generated. Here we see the comple-

tion of the embodied reasoning loop: Experience gained by interacting with the human allows the 

robot to learn the locations, and the rules about different objects and their ability to move to these 

locations based on the status of other objects in the context (i.e. the rules of the Hanoi game family). 

Once this knowledge has been extracted it can be automatically formatted into a PDDL description, 

which can then be executed on standard robust planners. The plan is then automatically transformed 

into the corresponding sequence of physical actions that can be realized by the iCub, as illustrated in 

Figure 14. 

 

************** Figure 14 about here ************** 

6 Discussion and Conclusion 

Reasoning requires some form of inference engine, and equally important, a base of structured 

knowledge from which the system can reason. In the current research, we have conceived and im-

plemented a framework for human-robot interaction, in which, through interaction with the human, 

the robot acquires experience, and then organizes this experience in order to create a structured 
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knowledge base from which it can reason. We demonstrate the functioning of the system with two 

experiments. In the second experiment, from a small set of examples the system learns the rules for 

moving objects in a Tower of Hanoi – like problem. The system then demonstrates that it can use 

these rules with a standard AI planner to solve arbitrary problems in the Tower of Hanoi domain. 

This is of interest, as it illustrates a concrete example where real-world experience, extracted from 

interaction with a human, can provide a knowledge base upon which an AI system can reason to 

solve new problems. 

 

When learning new actions, the identification of action parameters is one of the central problems 

that must be addressed. The difficulty is to determine what are the pertinent aspects of an action, and 

what can be ignored. For example, Siskind demonstrated how cross situational reasoning can be ap-

plied in this context during the acquisition of word meanings [32]. The same kind of statistics can be 

applied to learning the argument structure of actions [33]. In an effort to determine how to reduce the 

scope of what should be considered during learning, we previously determined that the focus can be 

placed on all objects whose state changes as a result of the action [27]. 

The developing infant faces the same problem, which is, how to know what is the pertinent aspect 

of a given scene that should be learned. Extensive behavioral studies and observations suggest that in 

many interactions between adults caregivers and children, the adult creates a very focused context of 

joint attention with the child in order to supervise in a certain sense what the child will focus on [34]. 

This motivates us to allow the robot to have knowledge from the user about when demonstrated ac-

tions begin and end, particularly when the user is also naming the objects. 

In our previous research, the iCub was learning about actions, and we introduced a bias such that 

actions would generalize over objects. By performing actions such as moving different objects from 

different starting locations to a fixed target location and calling that “move A to B”, the system de-

tected the variability in the A argument, and thus learned that the move command could take arbi-

trary arguments for the object. The system thus learned to generalize over objects. 

As we have seen, for objects in the Table of Hanoi experiment, the situation is different. Objects 

are not of a single form of equivalence class. Rather, there are specific rules associated with each 

object and its movement with respect to the presence and absence of other objects at the source and 

target destinations. Interestingly, these constraints are coded in the statistical structure of the data in 
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the ELM, and they are extracted by the multi-level reasoning, to become reflected as pre- and post-

conditions of the action representations in the SM.  

A principal limitation of the current system is the restrained environment in which it is demon-

strated. One can ask whether the current system could generalize to a much more open and high di-

mensional world, where the focus of interaction would not be so obvious. It has been stated by Levi-

Strauss that the objective of man is to understand the world around him [35]. Beneath this objective 

lies a set of tools for attempting to impose structure on the world. The degrees of freedom for the 

possible structures that could be imposed on the observables in the world is quite large, and in the 

absence of constraints, the resulting models or explanations can deviate substantially from the truth, 

or never converge. This is essentially related to issues of learnability in language, where it has been 

claimed that the training data that the child is exposed to is so highly under-constrained, that there 

must be some highly specialized language specific learning capability (reviewed in detail in [36]). 

However, in the presence of proper constraints, the problem changes. Many typical interactions be-

tween infants and caretakers are characterized by behavior that creates joint attention around the ob-

ject of interest, thus effectively reducing the search space to something very tractable. 

This gives us hope that the current approach can scale. By including the human in the learning 

context, we exploit the notion that the human will perform this search space reduction, by making 

pertinent demonstrations, and by using language to identify the objects of focus. 
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Figure 1. Left. Human-robot physical interaction platform, with the iCub humanoid, and ReacTable 

interactive table. Screen behind the robot depicts the contents of the OPC (Object Property Collec-

tor), reflecting the state of the world on the ReacTable, and the iCub’s physical state. Colored objects 

correspond to objects that are currently perceived on the ReacTable surface. The system can also 

represent spatial location definitions that have been extracted from the episodic-like memory by con-

solidation, and are now represented in the Semantic Memory, and have become entities in the OPC. 

Right.  Physical interaction architecture.  Human and robot interact by co-manipulating objects on 

the ReacTable. ReactVision detects objects on the table surface and populates the OPC. The Supervi-

sor manages spoken language interaction. ABM Reasoning manages the autobiographical memory. 
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Figure 2. Overview of flow of information in refinement of knowledge. Episodic-like memory 

(ELM) is a time ordered record of world states (derived from the OPC) before and after each action 

performed by the human or robot. Through consolidation (by ABM reasoning), regularities about 

spatial locations, temporal relations, and contextual information about actions are extracted, and en-

coded in the Semantic memory. By the process of retro-reasoning, this new knowledge is retro-

integrated into the ELM (e.g. information about spatial locations that was not known at the time an 

action was performed). This new information can then propagate and contribute to the contents of 

semantic memory (e.g. a certain type of action might only be allowed for a specific location, or ob-

ject). By the process of rule extraction, this information is coded for actions in terms of their pre- and 

post- conditions, and then automatically reformatted in PDDL, appropriate as input to AI reasoning 

engines, to allow the system to solve now problems, by reasoning over self-acquired knowledge. 
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Figure 3. Architecture of the autobiographical memory system. Overview of the memory functioning 

including the SQL Database, the Supervisor, the ABM Reasoning, and the OPC. 1-2. SQL queries, 

and replies to ABM are managed by a C++ Autobiographical Memory interface module. 3. User in-

teracts with ABM related to action status, and 4. Memory content. 5-6. ABM reasoning requests and 

receives content via YARP connections. 7-8. ABM manager requests and receives state data from 

OPC. 9 Final answer of ABM Reasoning to the supervisor  
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Figure 4. SQL format of the Episodic memory. Architecture of the episodic memory storage in Post-

greSQL. The main data type is specified as ContentArg which defines arguments for actions, and 

ContentOPC which defines entities that are in the OPC. Each interaction has the content of the OPC 

at a given time (state of the world) but also, information concerning the arguments of the action 

(who, what, when…). The content of a memory can be divided in 3 sections: self-related, world-

related, and action-related  
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Figure 5. SQL format of the Semantic Memory. Architecture of the semantic memory storage in 

PostgreSQL. For each type of knowledge, a first table stores the general information concerning the 

knowledge (name, argument…) while a second table stores the “technical information”: the positions 

of each move in the case of a spatial knowledge, or the time-stamp in the case of a temporal 

knowledge. For each memory is create an instance (corresponding to a given time). The parameter 

"instance" allows to get all the information about the state of the world at a given time. 
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Figure 6: First level reasoning: Consolidation of Knowledge Function (first level reasoning). ABM 

Reasoning gets raw data stored in the ELM, such as: the time of the action, the position of the object, 

the presence or not of the objects (arrow 1)… The module will then extract the regularities and will 

build low level knowledge such as the spatial knowledge. For instance the knowledge extracted 

could be: “location: south_east – raw data of the point cluster constituting the location” or “temporal: 

before – delay between the 2 actions (here the delay is negative)”. The new knowledge will then be 

stores in the SM (arrow 2). : Retro reasoning (level 2 - n reasoning). ABM Reasoning will go 

through the ELM (arrow 1) and match this with the knowledge stored in the SM (arrow 2) and will 

extract new regularities at a higher level. The difference with the first level reasoning is that the 

ABM Reasoning will now write high level relations in the ELM (arrow 4) such as: “Object is at Lo-

cation – Agent Beliefs are …” that the robot didn’t know at the time of the memory (arrow 4). He 

will also create some high level knowledge in the SM (arrow 4). In the case of the move of the medi-

um object of the Hanoi Tower, the knowledge will be: “Big object can be at location From and loca-

tion To, and small object can’t be at location From and Location To.” 
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Figure 7: Example of the effect of the different levels of the retro reasoning in the specific case of the 

Tower of Hanoi. 
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Figure 8. Interaction scenario schema. Four learned locations ( on ReacTable (central circle), with 

human (oval body), iCub (rectangular body) and manipulable object (dark square). The learned loca-

tions are labeled A-D. i. Object is off the table. ii. Human has placed the object on the table, in an 

undefined location. iii. Human or iCub has placed the object location A. iv. Human or iCub has 

placed the object at B. v-vi. Human has place the object at C, then D, respectively (these locations 

are out of reach of the iCub).  
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Figure 9. Extended architecture with rule extraction and rule based planning and reasoning. 

 

 

 

 



  34 

 

 

 

 

 

 

 

Figure 10. Example of definition of different moves in the ABCD experiment. As illustrated, the 

Move_B action has the precondition that the object must be at location A before Move_B can be ex-

ecuted.  
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Figure 11. Minimal set of moves to learn the rules for the Table of Hanoi. S,M, B stand for Small, 

Medium, Big respectively. Colored areas correspond to left, middle and right locations.Three moves 

are demonstrated with the Small object, 3 for Medium and 1 for Big. See text.  
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Figure 12. iCub solving the Table of Hanoi. Initial state: small, medium and big objects at Middle 

position. Goal state: small, medium and big objects at Left position. The problem is solved in 6 

moves. (1) small to left, (2) medium to right, (3) small to right, (4) big to left, (5) medium to left, (6) 

small to left. The task is solved based on learning the rules of the game, without ever seeing a com-

plete solution. 
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Table 1. Domain knowledge for actions, extracted automatically from the Autobiographical (SLM) 

memory in PDDL format. Here, for compactness of presentation, we only illustrate the actions relat-

ed to the ABCD game. 

 

;; STRIPS domain automatically generated by ABMReasoning, part of EFAA 

(define (domain efaa) 

 (:requirements :strips :typing :equality) 

 (:predicates 

  (isPresent ?obj) 

  (isAtLoc ?obj ?loc) 

  (Object ?obj) 

  (Locations ?loc) 

 ) 

 (:action add 

  :parameters (?obj1) 

  :precondition (and (not (isPresent ?obj1) ) ) 

  :effect (and (isPresent ?obj1) ) 

 ) 

 (:action remove 

  :parameters (?obj1) 

  :precondition (and (isPresent ?obj1) ) 

  :effect (and (not (isPresent ?obj1) ) ) 

 ) 

 (:action move-B 

  :parameters (?obj1) 

  :precondition (and (isPresent ?obj1) (isAtLoc ?obj1 A )) 

  :effect (and (isPresent ?obj1) (isAtLoc ?obj1 B) ) 

 ) 

 (:action move-C 

  :parameters (?obj1) 

  :precondition (and (isPresent ?obj1) (isAtLoc ?obj1 B ) ) 

  :effect (and (isPresent ?obj1) (isAtLoc ?obj1 C) ) 

 ) 

 (:action move-D 

  :parameters (?obj1) 

  :precondition (and (isPresent ?obj1) (isAtLoc ?obj1 C) ) 

  :effect (and (isPresent ?obj1) (isAtLoc ?obj1 D) ) 

 ) 

 (:action move-A 

  :parameters (?obj1) 

  :precondition (and (isPresent ?obj1) (isAtLoc ?obj1 D ) ) 

  :effect (and (isPresent ?obj1) (isAtLoc ?obj1 A) ) 

 ) 

) 
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Table 2. Specification of the initial state, and the goal, to put the object at location D in the ABCD 

interaction for Experiment 1. 

 

 

;; STRIPS problem automatically generated by ABMReasoning, part of EFAA 

(define (problem efaa-prob) 

 (:domain efaa) 

 (:objects 

   circle cross eraser 

  A B C D 

 ) ;; end :objects 

 (:init 

  ;;types 

  (Object circle) (Object cross) (Object eraser) 

  (Locations A) (Locations B) (Locations C) (Locations D)  

 

  ;;init-conditions 

  (isPresent cross) (isAtLoc cross A)  

 ) ;; end :init 

 (:goal 

  (and ( isAtLoc cross D)  

  ) ;; end and 

 ) ;; end goal 

) ;; end define 
 

Solution: 

; Version LPG-td-1.0 

; Seed 52616643 

; Command line: lpg-td-1.0 -n 30 -cputime 2 -o domainEFAA.pddl -f problemEFAA.pddl -out solutionEFAA  

; Problem problemEFAA.pddl 

; Actions having STRIPS duration 

; Time 0.05 

; Search time 0.00 

; Parsing time 0.03 

; Mutex time 0.00 

; Quality 3 

 

 

Time 0.05 

 

0:   (MOVE-B CROSS) [1] 

1:   (MOVE-C CROSS) [1] 

2:   (MOVE-D CROSS) [1]
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Table 3. Specification of rules for moving the three objects in the Table of Hanoi.  

 

;; STRIPS domain automatically generated by ABMReasoning, part of EFAA 

(define (domain efaa) 

 (:requirements :strips :typing :equality) 

 (:types location object) 

 (:predicates 

  (object ?obj) 

  (location ?loc) 

  (isAtLoc ?obj ?loc) 

 ) 

 (:action hanoi-small 

  :parameters (?from ?to) 

  :precondition (and (isAtLoc small ?from) (location ?to) ) 

  :effect (and (not (isAtLoc small ?from)) (isAtLoc small ?to) ) 

 ) 

 (:action hanoi-medium 

  :parameters (?from ?to)  

  :precondition (and (isAtLoc medium ?from) (not (isAtLoc small ?from))  

(not (isAtLoc small ?to)) (location ?to)) 

  :effect (and (not (isAtLoc medium ?from)) (isAtLoc medium ?to) ) 

 ) 

 (:action hanoi-big 

  :parameters (?from ?to) 

  :precondition (and (isAtLoc big ?from) (not (isAtLoc small ?from)) (not (isAtLoc small ?to))  

(not (isAtLoc medium ?from)) (not (isAtLoc medium ?to)) (location ?to)) 

  :effect (and (not (isAtLoc big ?from)) (isAtLoc big ?to) ) 

 ) 

) 
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Table 4. Problem and solution to the Table of Hanoi. 

;; STRIPS problem automatically generated by ABMReasoning, part of EFAA 

(define (problem efaa-prob) 

 (:domain efaa) 

 (:objects 

   small medium big 

   left middle right 

 ) ;; end :objects 

 (:init 

  ;;types 

  (object small) (object medium) (object big) 

  (location left) (location right) (location middle)  

 

  ;;init-conditions 

  (isAtLoc small left) (isAtLoc medium left) (isAtLoc big left) 

 ) ;; end :init 

 (:goal 

  (and ( isAtLoc big right) ( isAtLoc small right) ( isAtLoc medium right) 

  ) ;; end and 

 ) ;; end goal 

) ;; end define 

 

Solution: 

; Version LPG-td-1.0 

; Seed 105015930 

; Command line: lpg-td-1.0 -o domainEFAA_hanoi.pddl -f problemEFAA_hanoi.pddl -n 30 -cputime 2 -out solu-

tionEFAA_hanoi  

; Problem problemEFAA_hanoi.pddl 

; Actions having STRIPS duration 

; Time 0.03 

; Search time 0.01 

; Parsing time 0.02 

; Mutex time 0.00 

; Quality 7 

 

 

Time 0.03 

 

0:   (HANOI-SMALL LEFT RIGHT) [1] 

1:   (HANOI-MEDIUM LEFT MIDDLE) [1] 

2:   (HANOI-SMALL RIGHT MIDDLE) [1] 

3:   (HANOI-BIG LEFT RIGHT) [1] 

4:   (HANOI-SMALL MIDDLE LEFT) [1] 

5:   (HANOI-MEDIUM MIDDLE RIGHT) [1] 

6:   (HANOI-SMALL LEFT RIGHT) [1] 





Part III
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Chapter 6

Discussion and Perspectives

6.1 General Conclusion

The work during this thesis was indeed at the interface between cognitive sciences
theories, especially related to children development, and intelligent and social robotics
within a developmental framework based on human-robot interactions. The investigation
was focused on how to obtain robots with enough advanced cognition capabilities in or-
der to understand, manipulate and adapt in complex human environment. One possible
way to achieve that and developed in this work was to implement and exploit unique
features from human in their cultural interaction, compared to other species. Indeed, two
are particularly important : learning a language to be able to fully make use of cultural
transmitted knowledge, and acquiring capacities from experts [Herrmann et al., 2007].

Using a recurrent neural network fed with paired sentence-meaning provided through
human-robot interactions, we implemented a system to learn grammatical construction to
map and generalize on these structures [Goldberg, 1995]. Thus the robot is exposed to
the precise way human are currently speaking to him, and then his language capabilities
will be adapted to them, the final users. One particular feature is also that the system is
capable of both comprehension (from sentence to meaning) and production (from meaning
to sentence) : the robot could then participate in dialogue, and negotiate with the partner
in several steps communication.

This capacity to communicate with others is a key feature in cooperative capability
in humans : in fact, Tomasello argues that the main function of language is precisely to
negotiate during cooperation [Tomasello et al., 2005]. But first, one has to be able to exe-
cute actions which will be involved in these collaborative events, and children has several
way to learn them if needed, for instance through imitation (when the teacher shows the
action), demonstration (when the expert guide and control the learner moves) or through
instructions (when the leader details known sub-actions). Language comprehension and
production is then required in several scales : i) for the directed instructions itself (as a
proper learning modality), ii) to direct the attention of the learner on the precise teaching
technique (teacher body for imitation, own body for demonstration, speech for instruc-
tions) and iii) to negotiate inside the shared plan, explain it or define who is responsible
for what. Using the grammatical construction approach, we have implemented a spoken
language interaction system in the robot to manage these shared plan event, allowing the
robot to learn a collaborative behavior and to acquire unknown actions involved in it if
needed, obtained through a combination of different available modalities.
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Thus the robot is able to learn in real-time a shared plan, including acquiring the
unknown actions he has to execute within this context, and can coordinate itself with the
human in particular in the case of role reversal. However, we do not have yet an intrinsic
feature of true collaborative plan : the shared intention. Indeed, the robot could cooperate
with the human in order to achieve the plan, but the system has not the actual final goal
that both participants (and especially the one who trigger the cooperation) need to share.

That is why we have begin to study more carefully the concept of action representa-
tion, especially in a teleological framework, were an action is a mean to achieve a goal
when pre-conditions needed for the behavior are encountered [Gergely and Csibra, 2003].
Children can extract many informations from the complex environment using different
perceptual capabilities. In order to acquire action concepts, he has to reason about this
knowledge and extract among the "noise" what is relevant to the behavior [Csibra and
Gergely, 2007]. This mechanism involves a system to store informations and another one
to make inference about them. We have then designed in the iCub an autobiographical
memory (with both episodic and semantic memory sub-system) to automatically stores
information during its life when properties of the world or objects features are extracted
as well as symbolic representation coming from spoken description oh the human. Using
a description game setup by implementing a semiotic cycle, described in Figure 6.1, we
can then ground events description [Steels, 2001, Steels and Baillie, 2003]. A reasoning
capability has been designed in order to extract regularities among the raw data thus
extracting pre-conditions and effects (which are the action goals), respectively from regu-
larities before and after an action. Formatted in a Planning Domain Definition Language
format, these data allows the robot to analyse the current situation and plan the shortest
sequence of actions (using a PDDL planner) needed to achieve a goal, potentially shared
by the human if he ask the help of the robot. This reasoning capability, based on his
own experience, allows the robot to adapt to the current situation, predict outcomes of
behaviors and solve unknown problems : he thus gain in flexibility and is more autonomous.

Figure 6.1: The semiotic cycle for description game interaction, with the processes per-
formed by the speaker to the left, and the ones carried out by the hearer to the right. In
particular, when the human is speaking and provides an utterance, the iCub extracts the
meaning from it and bring it together with world perception. Sensory data, thus properties
of the world, are then linked to semantic concepts (From [Steels and Baillie, 2003]).
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6.2 Discussion

This thesis is largely centered around language, tool of choice to communicate between
humans, and is thus an interesting approach for human-robot interactions. This means
also that we have access to the symbolic representation carried by the language itself and,
according to our child development inspiration, we could use already developed skills from
the child when he acquired this features : word segmentation in an utterance, object de-
tection, joint attention, etc ... This has allowed us to focus on the "high-level" aspect of
the learning, in particular for conceptualization of actions, and to apply a part of this
work an not one but two robots : the Nao and the iCub. But now that we have a working
system, capable through human-robot interaction to understand and produce language, to
learn and negotiate a shared plan and to reason about actions in order to solve unknown
problems, we could look either at the basis or the end of the developmental trajectory.
We could then implement i) earlier skills to give the robot some non-mature but already
useful capabilities, or ii) advance already matured features in order to be more precise
or powerful. As the second point has already been addressed within discussions of the
different publications, it is the first point which will be detailed here.

If we look more carefully in language development for children, they go through dif-
ferent stages when they try to acquire their cultural language as shown in Table 6.1. Our
recurrent neural network system is defined to use the last step, the verb-general construc-
tions : he defines each roles for open class word and is able to generalize grammatical
construction to unknown verb. However, we might encounter a problem of overgeneraliza-
tion, which is happening also in children between three and four years [Tomasello, 2000] :
they apply grammatical constructions without taking care of the verb itself, for instance
if it is transitive or intransitive (e.g. "Don’t giggle me").
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Table 6.1: Original Caption : Young children’s conceptual parsing and categorization
of scenes of experience as occasioned by the acquisition of a natural language. (From
[Tomasello, 2009]).

One possibility to fix this issue is then to "go back" a little, and implement the different
stages, where semantic is still involved in the process of acquiring the syntax, especially
the verb island constructions. For this step, the grammatical constructions are linked
to specific and already encountered verbs. Thus, semantic has to be involved in order
to constraint the syntax. We could implement a proposed developmental trajectory of
Tomasello, shown in Figure 6.2. At first we will have a verb island construction with
no generalization, that we will authorized as soon as we have enough different construc-
tion. But by keeping the percentage of occurrences for each verb, we could set up an
entrenchment system which could generalize only for the same verb subclasses at the end.
Thus we abstract the grammatical construction gradually and we constraint along the way.

Lastly, we have presented a long-term memory framework which could store raw data
from interaction and language in episodic events that an inference reasoning mechanism
could analyze and extract regularities, leading to semantic concepts. However, we have
been interesting in the concept of actions itself, so taken independently from the other.
This allowed us to reason about them and produce new and efficient sequences of actions
depending on the current situation and the goal to achieve. But what about sequences
of actions which are inherently linked together to form habits (e.g. always pointing to
an object before moving it), social convention (e.g. look at the partner, saying "thank
you" then smiling when we received something from him) or more generaly in any turn-
taking activity (e.g. peek-a-boo game). To keep together these actions, an implementation
of a short-term memory could be a solution. Broz and colleagues have indeed recently
produce a system called Extended Interaction History Architecture (EIHA), containing a
short-term memory which can handle and sequences of simple actions, associating with
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Figure 6.2: Original Caption : Shaded area depicts growing abstractness of the transitive
construction. Other specifications designate constraints on the tendency to overgeneralize
inappropriate verbs to this construction. (From [Tomasello, 2000]).

conditions, rewards, etc... [Broz et al., 2012]. They achieved to learn a pick-a-boo behavior
("hide-face" then "home-position") and a drumming activity ("start-drum", several "drum-
hit", "home-position") : this last behavior, more complex, is not learned by the system
if the short-term memory capability is removed, thus this feature is a key component in
EIHA in order to learn complex turn-taking interactions.

Eventually, we have shown how a robot can learn complex actions and shared plan
using its language understanding and production acquired skills. But children can learn
simple actions before they are able to produce complete and correct sentences. Our robot
has first to learn how to speak and then could learn through spoken interactions with the
humans. If we want for the robot to be effective earlier, we will need to address the learn-
ing problem without language capability. Recent work has been made to teach a robot
without any specific reward and no linguistic feedback nor cues : for instance the inter-
action rhythm and synchrony could be used as natural reinforcement signals for learning
move through mirroring [Hiolle et al., 2010, Prepin and Gaussier, 2010, Andry et al., 2011].
Indeed, they have shown that synchrony is naturally attained when the human is satisfied
by the actions of the robot providing then a positive feedback. The interesting part is that
Hiolle specifically give instructions to the naive human subjects, where they are told to
teach the robot as if he was a 6 to 15 month old infant and that he could process speech
and facial emotions (which in fact was not the case). Indeed, the subjects were acting
more naturally and thus provided coherent rhythm which could be exploit by the robot,
along with voice tons or facial expression, not used but still present in human behavior.
The belief of the naive human subject in different communicative skills of the robot is thus
very important : social robots are not designed to be used by expert users exclusively, we
need to think about naive subject and how they will interact with the embodied cognitive
system. We need to encourage them, and adding robot expressiveness or keeping them in
the dark on the actual capacity to process speech or facial emotions lead them to longer
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and better interactions [Hiolle et al., 2010].

In fact, this precise point is also related to the other aspect of this thesis : each of
them was using human-robot interactions with the intention to be used by naive subjects.
You want to predict how humans will act with a robot, how they will respond to different
actions and trying to extract their feedback in order to build a coherent system. And
thus, several and powerful algorithms, concepts and apparatus could be used. But at
the end, if the human does not act as expected, does not answer to the robot, look at
the experimenter instead of in the eyes of the iCub, you will just have noise data and
nothing useful to extract from them. As roboticist, we are the first one to use and test our
interaction system, and we also know how it is working, what is expecting, etc... Taking
time to implement "toy" or "esthetic" functions, like blinking, respiratory moves, waiting
actions (e.g. looking back and forth to the human and a focus object) in order to give
a feeling of "life" in the robot, could change completely the naive subject behaviors and
engagement and thus the efficiency of the system. Even if you can (and arguably have to)
used intensively the human in developmental approach for social robotics, at the end the
human is not forced to interact with him and teach something. We then need to be sure
that we could encourage such episodes and that they are pleasant, or at least interesting for
the human, and seen as a distractful game to avoid frustration or boredness. Eventually
at the end, we has to not forget that even if humans can help the robot to take their first
steps, it is the robot which has to entertain or give assistance to the human, and not the
other way around.
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