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Abstract

This thesis investigates automata-theoretic techniques for the verification of
physically distributed machines communicating via unbounded reliable chan-
nels. Each of these machines may run several recursive programs (multi-
threading). A recursive program may also use several unbounded stack and
queue data-structures for its local-computation needs. Such real-world systems
are so powerful that all verification problems become undecidable.

We introduce and study a new parameter called split-width for the under-
approximate analysis of such systems. Split-width is the minimum number of
splits required in the behaviour graphs to obtain disjoint parts which can be
reasoned about independently. Thus it provides a divide-and-conquer approach
for their analysis. With the parameter split-width, we obtain optimal decision
procedures for various verification problems on these systems like reachability,
inclusion, etc. and also for satisfiability and model checking against various
logical formalisms such as monadic second-order logic, propositional dynamic
logic and temporal logics.

It is shown that behaviours of a system have bounded split-width if and only
if they have bounded clique-width. Thus, by Courcelle’s results on uniformly
bounded-degree graphs, split-width is not only sufficient but also necessary to
get decidability for MSO satisfiability checking.

We then study the feasibility of distributed controllers for our generic dis-
tributed systems. We propose several controllers, some finite state and some
deterministic, which ensure that the behaviours of the system have bounded
split-width. Such a distributedly controlled system yields decidability for the
various verification problems by inheriting the optimal decision procedures for
split-width. These also extend or complement many known decidable subclasses
of systems studied previously.
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Résumé

Cette thèse développe des techniques base d’automates pour la vérification
formelle de systèmes physiquement distribués communiquant via des canaux fi-
ables de tailles non bornées. Chaque machine peut exécuter localement plusieurs
programmes récursifs (multi-threading). Un programme récursif peut également
utiliser pour ses calculs locaux des structures de données non bornées, comme
des files ou des piles. Ces systèmes, utilisés en pratique, sont si puissants que
tous leurs problèmes de vérification deviennent indécidables.

Nous introduisons et étudions un nouveau paramètre, appelé largeur de
coupe (split-width), pour l’analyse de ces systèmes. Cette largeur de coupe est
définie comme le nombre minimum de scissions nécessaires pour partitioner le
graphe d’une exécution en parties sur lesquelles on pourra raisonner de manière
indépendante. L’analyse est ainsi réalisée avec une approche diviser pour régner.
Lorsqu’on se restreint la classe des comportements ayant une largeur de coupe
bornée par une constante, on obtient des procédures de décision optimales
pour divers problèmes de vérification sur ces systèmes tels que l’accessibilité,
l’inclusion, etc. ainsi que pour la satisfaisabilité et le model checking par rap-
port divers formalismes comme la logique monadique du second ordre, la logique
dynamique propositionnelle et des logiques temporelles.

On montre aussi que les comportements d’un système ont une largeur de
coupe bornée si et seulement si ils ont une largeur de clique bornée. Ainsi,
grâce aux résultats de Courcelle sur les graphes de degré uniformément borné,
la largeur de coupe est non seulement suffisante, mais aussi nécessaire pour
obtenir la décidabilité du problème de satisfaisabilité d’une formule de la logique
monadique du second ordre.

Nous étudions ensuite l’existence de contrôleurs distribués génériques pour
nos systèmes distribués. Nous proposons plusieurs contrôleurs, certains ayant
un nombre fini d’états et d’autres étant déterministes, qui assurent que les
comportements du système sont des graphes ayant une largeur de coupe bornée.
Un système ainsi contrôlé de manière distribuée hérite des procédures de décision
optimales pour les différents problèmes de vérification lorsque la largeur de coupe
est bornée. Cette classe décidable de système généralise plusieurs sous-classes
décidables étudiées précédemment.
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Chapter 1

Introduction

Formal verification has been a significant area of research in the recent years.
The main reason is the vital role that technology plays today – almost everything
one interacts with is directly or indirectly controlled by programs. A hardware
or software failure may affect the quality of life of millions, or more seriously,
cost lives, time and money. The necessity for “reliable” hardware and software
is ever more prominent, and formal verification is an important tool in achieving
this goal.

When verification as a whole turns out to be infeasible, one tries to identify
the features she wants to verify. For instance, a crucial feature which needs
to be verified may be the locking mechanism of a multi-threaded program. In
another scenario, the timing delays and its propagation might be the crucial
issue. In general, abstracting away several details and concentrating on partic-
ular features can make verification “feasible”. Since there are several levels and
dimensions of abstraction, formal verification has also several dimensions.

This thesis is a humble attempt to understand and extend this research
area considering concurrency and recursion as the main features. It adopts the
model checking approach for verification. We abstract away many details like
timing delays and probabilities. However we keep concurrency, the power of re-
cursion and communication between concurrent systems. We study verification
of properties expressed in powerful logical formalism such as Monadic Second
Order Logic (MSO), in addition to the ubiquitous control state reachability
problem.

1.1 Thesis in a nutshell

The work described in this thesis is done in collaboration with Paul Gastin
and K. Narayan Kumar. It is a generalisation of [CGN12a] where split-width is
introduced to address the decidability of MSO specifications for multi-pushdown
systems.

The study of communicating concurrent systems is an important and chal-
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lenging research area. Various means of interaction between the concurrent
processes have been considered by researchers, of which two prominent ones are
‘shared-variable communication’ and ‘communication via channels’.

Different processes running on the same machine may employ ‘shared-variable
communication’ as the main method of interaction, while physically distributed
programs rely on communication channels. The former corresponds to ‘syn-
chronous communication’ while the latter gives rise to ‘asynchronous communi-
cation’.

We will consider generic systems which incorporate both these methods of
communication (cf. see the figure below). We will be considering physically
distributed machines which communicate via (possibly several) reliable first-in-
first-out queues. Each of these machines are capable of running potentially re-
cursive multi-threaded programs. These programs within a machine use shared
variable for communication. Such a machine consisting of a set of threads com-
municating by shared memory can be formally modelled as a multi-pushdown
system. Thus we have a network of multi-pushdown systems communicating via
FIFO queues. Moreover, these programs may use stacks and queues as data-
structures to aid their local computation. We call such a system a system of
concurrent processes with data-structures (CPDS).

Queue 1

Queue 2

Queue 3

Queue 4

Queue 5

Queue 6

Queue 7

Process 1
Process 2

Process 3

Stack 1 Stack 2 Stack 3

This models real-world systems like several computers connected via a local-
area-network. Each of these computers may run several recursive programs
concurrently, which may communicate among themselves via shared memory
access. A computer may also provide several data-structures to the programs
for the storage and retrieval of data. These computers may access the network
to communicate with its peers, via first-in-first-out channels.

The behaviours of such system may be modelled
by unifying message sequence charts [IT11] and
nested-words [AM09]. We call them MSCNs.
The behaviour of each process can be seen as
a word, and hence an MSCN is a union of lin-
ear orders. We abstract the communication and
the recursion by linking pairs of matching writes
and reads to a data-structure. An example is
depicted on the right.

1 2 3

The generic system of CPDS, when restricted to one process and only stack
data-structures yields the trending topic of multi-pushdown systems [QR05,
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LMP07, BCCCR96, AKS13, LN11, ABH08]. On the other hand, restricting
CPDS to have at most one queue between every pair of processes and no stacks
gives us the well studied model of communicating finite state machines [BZ83,
GKM06, GKM07, HMN+05].

For specifying properties of CPDS we may consider temporal logics, or path
expressions or monadic second order logic (MSO). These logics can easily link
matching writes and reads and hence are very expressive.

Since CPDS are Turing powerful, verification of even basic properties like
reachability becomes undecidable. However, the verification of these systems is
an important concern. One way around this difficulty is to verify approximations
of such systems. That is, identify a subset of the behaviours for which the
verification problem becomes decidable. Naturally it is better if the subset
covers many, if not most, or all of the interesting and substantial behaviours of
the system. In practice bugs are likely to manifest among such behaviours.

Identifying such subsets in a parametrised way so that one may increase
the coverage of the set by such a parameter would clearly be useful and all the
more so if every behaviour is covered by some choice of the parameter. Yet
another desired property for such a subclass is, if one may force the system in
some operational way to only behaviours defined in the subset, this will give
the user or implementer the choice of using a verified system at the cost of
generality. The main contribution of this thesis is a systematic way to construct
such approximations.

We introduce and study a new technique called split-width for the under-
approximate verification of CPDS. This parameter is based on simple shuffle
and merge operations and gives us a divide-conquer-way to prove the bound of
languages. When parametrised by a bound on split-width, we obtain decidabil-
ity for various verification problems. We provide a uniform decision procedure
for various verification problems with optimal complexities.

We expose the power of split-width in several ways. We show that our
simple algebra is powerful enough to capture any class of CPDS which admits
decidability for MSO model checking, and yardstick graph metrics such as tree-
width and clique-width.

We also show that various restrictions well-studied in the literature for ob-
taining decidability of reachability for the particular cases of multi-pushdown
systems and message passing systems admit a bound on split-width. In fact, we
propose generic controllers which subsume many of these cases.

Distributed controller design amounts to designing a controller (which is
another CPDS) which, when run synchronously with a system ensures bounded
split-width. These controllers are distributed in nature and are independent of
the system it is controlling. Thus such a controller respects the privacy of the
system (by not reading their states, for instance). Moreover, thanks to split-
width such a controlled system offers efficient (in most cases optimal) decision
procedures for the verification of the controlled system.

We propose a generic approach to define controllable classes of CPDS in
terms of quotient graphs, which admit a ‘suitable’ acyclicity restriction. We also
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give a generic controller for several of the classes definable in this framework.
The controllers we propose are sound and complete for the respective class,
meaning that they allow all and only the behaviours of this class. Moreover,
our technique for proving the bound on split-width of the controlled systems
is also generic and systematic, hence may easily extend to generalisations and
other classes as well.

The decidability results for the controllable classes we propose in this the-
sis are new while they capture, as special cases, several restrictions studied in
the literature like bounded phase [LMP07], bounded scope [LN11], poly-forest
topology [LMP08a] etc.

We now compare and contrast our results to the related works.

1.2 Comparison with related works

1.2.1 on multi-pushdown systems

Multi-pushdown systems are Turing powerful, and hence even control state
reachability problem is undecidable. A main strategy to get around this unde-
cidability is to restrict the behaviours of MPDS in terms of how they access the
different stacks. A number of restrictions have been proposed for their under-
approximate verification including bounded context switch, bounded phase, or-
dered multi-pushdown and bounded scope.

Qadeer and Rehof [QR05] showed that bounding the number of switches
from using one stack to another (i.e., the number of switches between threads)
yields decidability. This restriction, called bounded context switching, has been
well-studied [LTKR08, LMP08a, LR09]. The reachability problem of multi-
pushdown systems with a bound on number of context switches as a parameter
is in NP.

In [LN11] bounded context-switching restriction is extended to bounded-
scope where the number of context-switches between a push and the corre-
sponding pop is bounded. In this case, the reachability problem is in PSpace.

An orthogonal generalisation of bounded context switching is the bounded-
phase restriction [LMP07] — where a limit is placed on the number of phases,
— a phase refers to sequence of steps in which values are popped only from one
designated stack while pushing is permitted on all of the stacks. The reachability
problem of multi-pushdown systems with a bound on the number of phases as
a parameter is in 2ExpTime.

A different restriction (ordered multi-pushdown) [BCCCR96, ABH08] im-
poses a priority order on the stacks and permits popping only from the non-
empty stack with highest priority. The reachability problem of multi-pushdown
systems with this restriction is again in 2ExpTime. In [AKS13], a stricter
restriction is imposed, where, in addition, pushes are permitted only to the ad-
jacent stacks in the priority ordering. With this restriction, reachability is in
ExpTime.
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All the above restrictions yield decidability for the control state reachability
problem (or emptiness checking). However, the proof of decidability for each
class uses ad-hoc techniques.

A unifying proof of decidability is shown via tree-width [MP11, LP12]. In
fact [MP11] also captures some classes of message passing concurrent systems.
We discuss these in the end of Section 1.2.2.

Using split-width we get another uniform proof of decidability for all the
above classes [CGN12a]. While tree-width is defined for general graphs, the
definition of split-width is designed for behaviours of CPDS. It is based on simple
operations of shuffle and merge and hence, we believe, is easier to handle. A
detailed comparison between split-width and tree-width is given in Section 6.1
(Chapter 6).

The proofs of the split-width of the above classes suggested that several of
these classes can be jointly generalised preserving decidability.

One such generalisation extends ordered and scope bounded multi-pushdown
systems. We freely allow pops of both kinds in this restriction. There is no
restriction on pushes. But the corresponding pop a) has to be within fixed
number of context switches from then (analogous to time-out) or b) if a) fails,
then all such pop events will be ordered on a priority basis (assuming a total
order on the priorities of different stacks). Another generalisation is to replace
the ordering policy by a bounded phase policy.

These two general classes are shown to be decidable1. The decidability is
again by bounding split-width, which can be obtained from the bounds of the
constituent classes.

Temporal logics and model checking for the above restrictions have been
studied in the literature [BCGZ11, ABKS12, LN12, BKM13], but again in an
ad-hoc manner.

A generic framework for defining temporal logics for concurrent recursive
program is given in [BCGZ11], but a bounded phase is assumed for decidability.
[BKM13] refines complexity of such a temporal logic further when the bound
on phase is part of the input.

In [LN12] the authors study model checking of multi-pushdown system un-
der scope-bounded and ordering restrictions against temporal logics. The tem-
poral logics used there is expressible in our generic framework of [BCGZ11].
Linear-time model checking under bounded scope restriction is also considered
in [ABKS12].

Again, the thesis provides a uniform decision procedure for the satisfiability
and model checking of temporal logics for the above restrictions, as well as
several other generalisations. It also gives a uniform decision procedure for
PDL and MSO satisfiability and model checking problems. The complexities of
these uniform decision procedures are optimal in most cases.

When viewing multi-pushdown systems as abstractions of concurrent recur-
sive programs whose actions are ordered by an external scheduler, each of the

1A joint generalisation of ordered and phase bounded yields undecidability.
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above restrictions can be seen as a particular policy that the external scheduler
adopts. Thus under-approximate verification wrt. the above restrictions is a
kind of fair model checking, in which those runs which comply to the scheduling
policy are verified against some specification.

1.2.2 on message passing concurrent systems

Concurrent systems communicating via unbounded queues are also Turing pow-
erful. Hence the control state reachability problem for even the simple case of
finite state systems communicating through unbounded queues (CFMs) is un-
decidable [BZ83].

In an influential paper, Abdulla and Jonsson [AJ96] showed that, if the un-
derlying queues are lossy then the state reachability problem becomes decidable.
For a survey of the plethora of results in the study of lossy channel systems see
[Abd10, FS01].

Independently, in the study of message sequence charts (MSCs) [IT11], which
model behaviours of communicating finite state machines, a number of decid-
ability results are known. For a survey, see [GKM07, Nar12]. These essentially
assume the behaviours to be existentially bounded2.

Study of communicating recursive systems (CRS) is more recent, following
developments in the analysis of multi-threaded programs. In [LMP08a], it is
shown that reachability is decidable if the architecture forms a suitable acyclic
topology. In [HLMS10], the authors characterise the topologies that give a
decidable control state reachability problem under the restriction that local
stacks are empty while sending (or instead, receiving) messages.

In [MP11], the authors provide a first unifying reason for why these re-
strictions work, relating it to the tree-width of the graph underlying these
runs. If a class of graphs is MSO definable and in addition has bounded
tree-width then any MSO expressible property is decidable over such a class
[See91, Cou97, Kre09].

In [MP11] it is shown that for bounded context, bounded phase and or-
dered multi-pushdown restrictions of multi-pushdown systems, as well as for
the acyclic topology restrictions [LMP08a] on message passing programs, the
class of permissible behaviours when considered as graphs is MSO definable
and has bounded tree-width. In [LP12] bounded scope restriction is also shown
to have bounded tree-width and MSO definable. As a consequence they get a
uniform proof of the decidability of control state reachability for all these classes
via tree-width.

In the thesis we introduce new decidable restrictions. These restrictions as-
sume unbounded and reliable channels and permit behaviours from arbitrary
topologies which, in particular, are not covered in [LMP08a] and [HLMS10].
Moreover they do not require the local stacks to be empty while accessing
queues. The decidability of the new restrictions are again shown via split-width.
This captures several of the known decidability results in a uniform framework.

2An existentially bounded run admits a linearisation without exceeding the assumed bound
on the channels.
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Temporal logics and propositional dynamic logics for MSCs have been con-
sidered in [Men13b, BKM10, MR04, Pel00]. These works assume the MSCs to
be existentially bounded in order to obtain decidability. Moreover, these cannot
handle the behaviours of a stack.

The thesis provides uniform decision procedure for the satisfiability and
model checking of temporal logics, propositional dynamic logics and monadic
second order logics for our new decidable classes. Recall that our restrictions
go well beyond existentially bounded MSCs.

1.3 Organisation of the thesis

Formalisms for concurrent processes with data-structures, their behaviours, and
specifying properties of behaviours are presented in Chapter 2. We state the
various verification problems, and show that they are undecidable.

In Chapter 3 we introduce and illustrate the notion of split-width. The
various decision procedures for verification problems with split-width as a pa-
rameter are studied in Chapter 4. We also discuss how to adapt the decision
procedures for other classes of systems which admit a bound on split-width. The
complexities of the decision procedures for such classes are summarised at the
end of this chapter. This may be used as a template to deduce the complexity
of various classes of CPDS with bounded split-width.

In Chapter 5 split-width is compared and shown to be equivalent to graph
parameters such as tree-width and clique-width. Chapter 6 is a discussion,
where we give an in-depth comparison between split-width and tree-width and
also list out some open problems.

Part III studies various generic classes in a uniform framework, providing
decision procedures for various verification problems. These classes generalise
various classes studied in the literature. Furthermore a sound and complete
distributed controller is provided for each of these classes.

Chapter 7 discusses the desirable features of a controllable class and a con-
troller. Chapter 8 introduces the basic notions necessary to define our classes:
how to define a quotient graph of a behaviour based on suitable notions of
contexts, and the various notions of acyclicity.

Chapter 9-11 study classes based on acyclic quotient graphs. Chapter 9
presents a class that allows behaviours from arbitrary architectures which are
not existentially bounded, thus extending the decidability frontier. The class
studied in Chapter 10 and Chapter 11 subsume bounded context switching and
bounded phase restrictions of multi-pushdown systems.

All these classes admit distributed controllers that are similar in nature.
Hence we present a generic controller for classes admitting finite quotient graphs.
The controller for individual classes are obtained by particular instantiation.
This generic controller is given in Chapter 9. This generic controller is also
proved sound and complete.
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Chapter 12 studies another class of restriction which allows unbounded quo-
tient graphs. This class captures bounded scope restriction on multi-pushdown
systems. We provide a sound and complete controller for this class based on
context-stamping. We conclude Part III in Chapter 13 where we discuss other
results and the impacts of our results.

The manuscript concludes in Chapter 14 with further perspectives and di-
rections for future research.

We do not dedicate a chapter on preliminaries in the beginning. Rather, the
relevant preliminary notions and results are recalled as and when needed. The
reader may benefit from the index given at the very end of this manuscript to
easily trace back the definition of some technical terms if needed.

1.4 Other contributions of the author

During my doctoral studies, I have worked on other problems related to veri-
fication as well. While the results of this thesis are obtained in collaboration
with Paul Gastin and K. Narayan Kumar, the following works have been done
in collaboration with Benedikt Bollig, Löıc Hélouët, Paul gastin, Ahmet Kara,
K. Narayan Kumar, Thomas Schwentick and Marc Zeitoun.

1.4.1 Temporal logics for concurrent recursive programs
communicating via shared variables

We study the problem of modelling, specifying and model checking concurrent
recursive programs communicating via shared variables. Multi-pushdown sys-
tems, while being a nice model to study their interleaving semantics, are not
very satisfactory to model the intrinsic concurrency. Hence we need a formalism
which models both concurrency and recursion. Further we need specification
formalisms which can reason about these two indispensable aspects. Finally we
need efficient algorithms for model checking.

For sequential non-recursive systems, linear-time temporal logic (LTL)
[Pnu77] is a yardstick among the specification languages. It combines high
expressiveness (equivalence to first-order logic [Kam68]) with a reasonable com-
plexity of decision problems such as satisfiability and model checking. As real
programs are often concurrent or rely on recursive procedures, LTL has been
extended in two directions

First, asynchronous finite-state programs (asynchronous automata) [Zie87]
are a formal model of shared-memory systems and properly generalise finite-
state sequential programs. Their executions are no longer sequential (i.e., totally
ordered) but can be naturally modelled as graphs or partial orders. In the
literature, these structures are known as Mazurkiewicz traces. They look back
on a long list of now classic results that smoothly extend the purely sequential
setting (e.g., expressive equivalence to first-order logic) [DR95, DG06].

Second, in an influential paper, Alur and Madhusudan extend the finite-
state sequential model to visibly pushdown automata (VPA) [AM09]. VPA are
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a flexible model for recursive programs, where subroutines can be called and
executed while the current thread is suspended. The execution of a VPA is still
totally ordered. However, it comes with some extra information that relates a
subroutine call with the corresponding return position, which gives rise to the
notion of nested words [AM09]. Alur et al. recently defined versions of LTL
towards this infinite-state setting [AEM04, AAB+08] that can be considered as
canonical counterparts of the classical logic introduced by Pnueli.

To model programs that involve both recursion and concurrency, one needs
to mix both views. A first model for concurrent recursive programs with partial-
order semantics was considered in [BGH09]. Executions of their concurrent VPA
equip Mazurkiewicz traces with multiple nesting relations. For decidability, an
existential bound on the number of phases [LMP07] is assumed. This serves as a
good behavioural model, which models recursion and at the same time preserves
independencies between program events.

In [BCGZ11], we present linear-time temporal logics for concurrent recursive
programs. A temporal logic is parametrized by a finite set of modalities that are
definable in monadic second-order logic (cf. [GK03]). In addition, it provides
path expressions similar to those from PDL [FL79] or XPath [Lib06], which are
orthogonal to the modalities. This general framework captures temporal logics
considered in [AEM04, AAB+08, DK11] when we restrict to one process, and it
captures those considered in [DG06, GK03, GK10] when we go without recur-
sion. Our decision procedures for the (bounded phase) satisfiability problem are
optimal in all these special cases, but provide a unifying proof. They also apply
to other structures such as ranked and unranked trees. We then use our logics
for model checking. To do so, we provide a system model similar to [BGH09],
which we call concurrent recursive Kripke systems, whose behavioural seman-
tics preserves concurrency (unlike multi-pushdown systems). The complexity
upper bounds from satisfiability are preserved. More concretely, satisfiability
and model checking are decidable in ExpTime and 2ExpTime, depending on
the precise path modalities. We also show matching lower bounds.

Summarizing, we provide the first framework to specify linear-time proper-
ties of concurrent recursive programs appropriately over partial orders.

1.4.2 Systems handling data

So far we have considered boolean programs. Data, potentially unbounded, is a
main feature of many real programs. However, data is quite difficult to handle
as almost all decidable verification problems become undecidable as soon as
an infinite data domain is assumed. The behaviours are called data-words,
which are words adorned with a data-value from an infinite domain at every
position. The undecidability holds even for finite state sequential programs
without recursion. This is the case even when the data is used in a restrictive
manner, say only for equality checks (and no arithmetic). Even limiting the
specification language to first order logic instead of MSO renders satisfiability
undecidable as soon as a data equality predicate is allowed.
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A wide range of automata and grammars over data words have been intro-
duced in the literature [KF94, Tze11, KZ10, GKS10, BDM+11, CK98, Bol11].
For all of them, MSO model checking is undecidable. Model checking of counter
machines against freeze LTL was considered in [DLS08, DS10]. However the
temporal logic, which can be embedded into MSO logic, has to be restricted
further to obtain decidability results.

Our contribution [BCGK12] The undecidability is probably because un-
controlled occurrences of the data values in a word makes it difficult to track
equal values. However, for many practical applications, the repetition of a same
data value is often not by chance, but on purpose3. For example in protocol
descriptions in a dynamic distributed system, a process identity (pid) may be
stored in a register for a later reuse. Storing a data value in a data structure
and reusing it later may allow us to track it. We explore this idea in [BCGK12],
considering programs which use data-structures to store data. For this we con-
sider a model which is both an extension and a restriction of register automata
[KF94]. We extend the register automata with several stacks, increasing it mod-
elling power. At the same time we forbid arbitrary repetitions of data value,
thus gaining decidability for MSO model checking. We call this model a data
multi-pushdown automata.

A data-pushdown automaton has a stack and a set of registers to facilitate
storage of data-values. Moreover, transitions can be guarded by data com-
parison tests on the current register contents and the top of the stack. The
generated data word may use values stored in the registers, or “fresh” values
which are different from any value ever used in the history. Model-checking of
data-pushdown automata against MSO with data equality tests is decidable.
A data-multi-pushdown automaton extends a data-pushdown automaton by al-
lowing multiple stacks. We can recover decidability of MSO model-checking
with any restriction on multi-pushdown systems which yields MSO decidability
(like scheduling policies or bounded split-width).

A data multi-pushdown automaton is powerful enough to model protocols
like peer-to-peer protocol and leader election protocol in a distributed setting
with dynamic process creation. It can also handle broadcasting. For such
applications, the role of the stack is rather to aid the storage and retrieval
of the pids than modelling recursion.

In [Cyr12] we observe that the above results can be extended to data-domain
with an ordering. The MSO logic, is also extended to include data-comparisons.
The freshness assumption requires the fresh data-value to be higher than any
previously used value. Note that, this is in accordance with data-values origi-
nating from time-stamping or with the UNIX pid-assigning conventions.

3The probability that a same data-value repeats by chance is zero, since the data-domain
is infinite.
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1.4.3 Dynamic distributed systems

We apply our decidability results on systems handling data to the special case
of dynamic distributed systems, which are interesting especially in the setting of
this thesis. Dynamic distributed systems are concurrent systems with dynamic
process creation. Many concurrent systems we encounter have the ability to
spawn processes, thus there is no bound on the maximum number of processes
the whole system can have. The internet is a typical example. Thus these
systems handle an unbounded data (their process identifiers, or pids). Such
systems are usually physically distributed and hence employ message passing as
a feasible communication mechanism instead of shared memory. We propose a
formalism to model protocols for dynamic distributed systems.

Branching high-level message sequence charts [BCH+13] In scenarios
with only fixed number of processes and no dynamic process creation, high-level
message sequence charts have been employed successfully for protocol descrip-
tion. We extend this formalism to incorporate dynamic process creation as well.
The extended formalism, called a branching high-level message sequence chart,
is an automaton with several registers and an implicit stack (or, it can branch
off like a tree, and the branches can join later). This allows to describe some
protocols like peer-to-peer protocol in a dynamic setting. A branching high-level
message sequence chart may be seen as a global automaton which describes the
global (intended) behaviour of the system.

Branching high-level message sequence charts can be encoded as a data push-
down automaton. MSO over message sequence charts can be translated to MSO
over data words. Thus MSO model checking of branching high level message
sequence charts is again decidable.

Branching high-level message sequence charts are quite convenient to de-
scribe a protocol, but they are not models of real distributed implementation.
An implementation model for dynamic distributed systems is described next.

Dynamic communicating automata [BCH+13] Dynamic communicating
automata are finite state machines with several registers. At any instant of
time, there are finitely many processes, each with a unique process identifier
(pid). Each of these processes is executing a copy of the finite state machine
with registers. The registers store pids of some other processes in the network.
Since there are only a fixed number of registers, a process can remember only
a bounded number of pids at a time. Processes can 1) send messages to any
process it remembers (in other words, whose pid is stored in its register), 2)
receive messages from other processes and 3) create a new process with a “fresh”
pid. The messages in addition may contain other pids. The receiving process
may choose to store some of the message contents (pids) in some of its registers.
Hence the communication neighbourhood of a process changes dynamically as
the system evolves. The communication is via FIFO channels. We assume an
unbounded FIFO channel between every pair of processes in each direction.
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This powerful natural model however renders basic problems like control
state reachability undecidable. It is so, even if we restrict the channel capacity
to be zero (that is, only synchronous communication is allowed) and bound
the number of registers to two. However, from some formal high level protocol
description, we may synthesise an implementation, the implementation being
correct by construction. We employ branching high level message sequence
charts for protocol description as they can be verified against MSO. Synthesis
of a dynamic communicating automaton from a branching high-level message
sequence chart is not always possible. However, we identify syntactic subclasses
of branching high-level message sequence charts for which synthesis is always
possible, and provide an efficient algorithm for synthesis in this case.

To summarise, branching high-level message sequence charts act as a low-
level specification formalism which can be model checked against MSO. Once
the low-level specification formalism is guaranteed to specify the intended re-
quirements, we implement it directly as a dynamic communicating automaton,
which is now formally verified by virtue of the construction.

Related Work The extension of high-level message sequence charts to branch-
ing high-level message sequence charts is inspired by branching automata [LW00,
LW01] and register automata [KF94]. Several other formalisms with dynamic
process creation can be found, for example, in [LMM02, BGP08, BS01, Mey08,
BLP08, ABQ11]. Dynamic communicating automata were introduced in [BH10].
However, their version could not handle pids as message contents. Also, we opti-
mally solve the implementability problem for a class of specifications that cannot
be handled by [BH10].
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Chapter 2

Systems of concurrent
processes with
data-structures
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In this chapter we will consider systems with fixed number of finite state
processes with access to fixed number of unbounded stack and queue data-
structures. This forms an interesting class of systems on its own right and at
the same time captures many important classes of systems in a uniform way.
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2.1 Introduction

The study of communicating concurrent systems is an important and challenging
research area. Various means of interaction between the concurrent processes
have been considered by researchers, of which two prominent ones are ‘shared-
variable communication’ and ‘communication via channels’.

Different processes running on the same machine may employ ‘shared-variable
communication’ as the main method of interaction, while physically distributed
programs rely on first-in-first-out communication channels. The former cor-
responds to ‘synchronous communication’ while the latter gives rise to ‘asyn-
chronous communication’.

Recursive programs communicating via shared variables are also called multi-
threaded programs. Such systems can be modelled as a multi-pushdown systems
for studying their interleaving semantics. The concurrency is more visible in the
models like concurrent recursive Kripke systems [BGH09] (whose behaviours are
called nested-traces). Concurrent programs communicating via channels look
back at the rich theory of message sequence charts [IT11].

We will consider generic systems which incorporate both these methods of
communication. We will be considering physically distributed machines which
communicate via (possibly several) reliable first-in-first-out queues. Each of
these machines are capable of running multi-threaded programs. These pro-
grams within a machine use shared variable for communication. Moreover,
these programs may use stacks and queues as data-structures to aid their local
computation.

This models real-word systems like several computers connected via a local-
area-network. Each of these computers may run several recursive programs
concurrently, which may communicate among themselves via shared memory
access. A computer may also provide several data-structures to the programs
for the storage and retrieval of data. These computers may access the network
to communicate to its peers, where the message are sent and received via first-
in-first-out channels.

2.2 Architecture

A system of concurrent processes with data-structures (CPDS) has a fixed finite
set of p many finite state processes denoted by Procs = {1, . . . , p}.

Moreover the system has a finite set of data-structures denoted DS. The
number of data-structures is denoted d, i.e, d = |DS|. The data-structures
are either stacks or queues. Thus DS = Stacks ⊎ Queues. We denote by s

(resp. q) the number of stack (resp. queue) data-structures: s = |Stacks| and
q = |Queues|.

We also keep the set of processes and the set of data-structures disjoint.
Procs ∩DS = ∅.

Stacks and queues may be used as local data-structures by processes. In
addition queues may also serve as FIFO communication channels between pro-
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cesses. Hence each stack data-structure can be accessed by only one process. A
queue data-structure can be written on to by one process and read from also
by one process. Note that, the read operations on these data-structures are
destructive: the data item is removed from the data-structure once it is read.
Thus write operations as well as read operations “modify” the data-structure.

The read and write accesses are specified by mappings Writer : DS → Procs
and Reader : DS → Procs. We also define the symmetric mappings W-access :
Procs → 2DS and R-access : Procs → 2DS which identifies the subset of data-
structures to which a process has write-access and read-access respectively. For
all p ∈ Procs and all d ∈ DS, Writer(d) = p if and only if d ∈ W-access(p) and
Reader(d) = p if and only if d ∈ R-access(p).

Since stacks are local to processes, Writer(d) = Reader(d) for all d ∈ Stacks.
Thus the stacks can be used to aid the local computation and the computing
power, like permitting recursive calls. The queues in addition can act as un-
bounded FIFO communication channels between the processes. Notice that a
process may be equipped with several stacks and queues, and there may be
several FIFO channels between a pair of processes.

We call the above settings of a system of CPDS an architecture. Thus an
architecture is a tuple

A = (Procs,Stacks,Queues,Writer,Reader)

where these objects are defined as above.

Queue 1

Queue 2

Queue 3

Queue 4

Queue 5

Queue 6

Queue 7

Process 1
Process 2

Process 3

Stack 1 Stack 2 Stack 3

Figure 2.1: Architecture A1

Example 2.1. In Figure 2.1 we depict an architecture with three processes,
three stacks and seven queues. All queues serve as FIFO communication chan-
nels. Process 1 has two stacks to aid its local computations, Process 3 has one,
but Process 2 does not have any local stacks. There are two channels in each
direction between Process 1 and Process 2. There are two channels from Pro-
cess 3 to Process 2 as well, but only one channel from Process 2 to Process 3.
Process 1 and Process 3 cannot communicate directly, as there are no channels
between them. This architecture could be described as in Table 2.1.
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Procs = {1, 2, 3}
Stacks = {s1, s2, s3}
Queues = {q1, q2, q3, q4, q5, q6, q7}
Writer = {s1 7→ 1, s2 7→ 1, s3 7→ 3, q1 7→ 1, q2 7→ 1, q3 7→ 2, q4 7→ 2,

q5 7→ 2, q6 7→ 3, q7 7→ 3}
Reader = {s1 7→ 1, s2 7→ 1, s3 7→ 3, q1 7→ 2, q2 7→ 2, q3 7→ 1, q4 7→ 1,

q5 7→ 3, q6 7→ 2, q7 7→ 2}

Table 2.1: Architecture A1

Example 2.2. An-
other architecture
with two processes, a
stack, and two queues
is described in Ta-
ble 2.2. Here one queue
acts as a communica-
tion channel, and the
other serves as a local
data-structure.

Queue 1Queue 2
Process 1 Process 2

Stack 1

Architecture A2

Procs = {1, 2}
Stacks = {s1}
Queues = {q1, q2}
Writer = {s1 7→ 1, q1 7→ 2, q2 7→ 1}
Reader = {s1 7→ 1, q1 7→ 2, q2 7→ 2}

Table 2.2: Architecture A2

What other data-structures? We are considering only stack and queue
data-structures in this thesis. However, it is possible to consider architectures
with other types of data-structures such as bags and linked lists. One may also
consider architectures in which a data-structure may have several writers and
readers. We believe it is possible to extend the results of this thesis into this
more general framework.

Another setting may permit non-destructive reads on a data-structure by a
subset of processes. However, these raise ‘race’-issues, which need to be carefully
handled at the semantic and specification level. This is not in the scope of this
thesis.
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2.3 Modelling the system

To define a system of concurrent processes with data-structures we first fix an
architecture A. Each process in A may perform actions from a finite set of
actions Σ. Thus a model of the system will be parametrised by the architecture
and the set of actions.

2.3.1 Concurrent Processes with Data-Structures

Definition 2.3. A system of concurrent processes with data-structures (abbre-
viated as CPDS) CPDSover A and Σ is a tuple S = (Locs,Trans, (ℓin1 , . . . , ℓ

in
p ), Locsfin)

where

• Locs is the finite set of control locations.

• (ℓin1 , . . . , ℓ
in
p ) ∈ LocsProcs is global initial state, which lists out the local

initial control location for each process.

• Locsfin ⊆ LocsProcs is the set of global final states.

• Trans is a tuple (Transp)p∈Procs, where Transp is the set of local transi-
tions of Process p.

The local transitions of a process p is partitioned into the following:

Transp =Transp:int

⊎
⊎

d∈W-access(p)

Transp→d

⊎
⊎

d∈R-access(p)

Transp←d

where Transp:int denotes the internal (no data-structure access) transitions of
Process p, Transp→d are the transitions of Process p which write to data-
structure d, Transp←d are the transitions of Process p which read from data-
structure d, Thus:

Transp:int ⊆ Locs× Σ× Locs

Transp→d ⊆ Locs× Σ× Locs× Locs

Transp←d ⊆ Locs× Locs× Σ× Locs

For an immediate and intuitive understanding of CPDS, we will now give an
operational semantics. This describes the sequential (or interleaving) evolution
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of the CPDS and is not really concurrent in nature. In the next section we will
see the more interesting partial-order semantics of a CPDS.

Intuitively, a sequential execution (or a ‘linearisation’ of a run) of a CPDS
starts in an initial configuration, and it changes the configurations as permitted
by the transition relations, and in order to be successful, it ends in a final
accepting configuration.

The set of configurations of the CPDS S is CS = LocsProcs × (Locs∗)DS. A
configuration c = ((ℓp)p∈Procs, (ud)d∈DS) indicates that the current local state
of process p is ℓp and the current contents of data-structure d is ud.

The configuration c is initial if (ℓ1, . . . ℓp) = (ℓin1 , . . . , ℓ
in
p ) and ud = ǫ for all

d ∈ DS. Similarly the configuration c is final if (ℓ1, . . . ℓp) ∈ Locsfin and ud = ǫ
for all d ∈ DS.

We define the evolves relation which describe one step evolution of the con-
figuration. It is actually a union of

a
−→p ⊆ CS ×CS where a ∈ Σ and p ∈ Procs.

The relation
a
−→p is defined as follows where ℓp, ℓ

′
p, ℓ ∈ Locs

(. . . , ℓp, . . .)
a
−→p (. . . , ℓ′p, . . .) if (ℓp, a, ℓ

′
p) ∈ Transp:int

(. . . , ℓp, . . . , ud, . . .)
a
−→p (. . . , ℓ′p, . . . , udℓ, . . .) if (ℓp, a, ℓ

′
p, ℓ) ∈ Transp→d

(. . . , ℓp, . . . , udℓ, . . .)
a
−→p (. . . , ℓ′p, . . . , ud, . . .) if (ℓp, ℓ, a, ℓ

′
p) ∈ Transp←d

and d ∈ Stacks

(. . . , ℓp, . . . , ℓud, . . .)
a
−→p (. . . , ℓ′p, . . . , ud, . . .) if (ℓp, ℓ, a, ℓ

′
p) ∈ Transp←d

and d ∈ Queues

seq-run A sequential run ρ of S is a sequence c0
a1−→p1

c1
a2−→p2

c2 . . .
an−−→pn

cn of
configurations and actions, for n ≥ 1 and c0 initial. It is accepting if cn is final.
Sequential run is abbreviated as seq-run for the rest of this thesis.

Remark 2.4. Several processes of a CPDS may progress concurrently (or inde-
pendently). This information is not conveyed by a sequential run. The inde-
pendency will be explicitly reflected in the partial-order semantics of a CPDS
(cf. Section 2.4.2).

No separate data-structure alphabet! Notice that we do not haveData-Structure alphabet employ
a separate data-structure alphabet. Very often in formal language theory, au-
tomata formalisms with auxiliary storage employ a separate finite alphabet for
each auxiliary data-structure. However, we have decided not to follow this con-
vention.

By not insisting on a fixed data-structure alphabet, we do not limit the
contents of the data-structure and their possible functionalities. In fact our
models let any local state to be written on to the data-structures by the local
processes. Thus the data-structure alphabet of a system is as liberal as the set
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of local states. This is clearly more generic than keeping separate data-structure
alphabet, as one could easily augment the finite set of states to include a finite
data-structure alphabet.

We believe it allows us to easily model programs and protocols described in
high-level languages in our setting. As we mentioned before, one purpose of the
stacks is to model recursion. Also, one purpose of queues is to serve as FIFO
communication channels. We do not want to restrict what can be written onto
these data-structures in the architecture level.

If we consider high level programming languages supporting recursion, they
do not use or define a separate stack-alphabet. In fact, the program stack can
store the program counter value and the local ‘state’ which gives the assignments
to each local variables. Hence on returning from a recursive call, the program
is able to restore the local state and to continue the computation. However, if
the program stack was bound to use only a fixed finite alphabet, it limits the
possibilities of recursion.

One may argue, rightly so, that the actual unbounded values can be encoded
in the finite alphabet. But this alters the behaviour – increasing the number
of stack-accesses by a logarithmic factor of the size of the program. Also, one
would want to specify requirements about a program without actually looking at
the size of a program. The requirements, when formalised, are anticipated to be
independent of the evaluation model. This is mainly because one would like to
translate the requirements specified in one formalism to another, independently.

Similarly, for the case of communication channel via queues, the amount
of information that can be communicated between processes is bounded if we
insist on finite alphabet. As before, if we try to encode more information via a
finite alphabet, this will change the underlying behaviour of the system: More
messages need to be sent in order to transmit the information in one message.

Changing the underlying behaviours may change the decidability status of
various problems on these models. For example, consider a class of distributed
systems which comply to a certain protocol. This protocol may have nice prop-
erties like the channel size never exceeds a pre-determined bound during the
execution. Many algorithms are available for various verification problems on
systems with such nice properties. However, if we encode the desired informa-
tion by an a priori fixed finite alphabet, the change in the underlying behaviour
may make them violate the nice property. Thus the known verification methods
which rely on the nice properties cannot be used anymore for the verification of
these systems.

One main topic of study in formalisms with fixed data-structure alphabet
is the data-structure language. To study data-structure languages in our for-
malisms, we may take homomorphic projections from the control states to the
desired finite alphabet. This aspect is discussed again in forthcoming remarks.
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Alternative Another equivalent definition of CPDS may assume that always
the current local state is written into data-structure. This simplifies the write-
transitions to have the form Transp→d ⊆ Locs× Σ× Locs.

However this definition makes the local state of a process transparent to its
communication partners. On the other hand, our current definition allows a
better privacy policy for the processes. The local states are protected. The
processes need to communicate only the information they want to.

Behaviours of the system An accepting seq-run, which is a sequence of con-
figurations and actions, gives the complete details about one possible behaviour
of the system.

However, this complete and natural representation of behaviours has certain
drawbacks:

• An accepting seq-run is a word over an infinite alphabet (the data-
structures are unbounded, and hence the configurations are infinite).

• Since the seq-runs are linear, the concurrency information is lost.

• The related accesses on data-structure is not explicitly linked.

We propose another representation of the behaviours of the system which
will avoid the above shortcomings. These are essentially graphs, whose nodes
represent the events of the CPDS. Each node is labelled by the action label, the
process which executes it, and the data-structure it accesses, if any. There are
process-successor edges which link successive events on the same process. Thus
two independent events on two processes are not necessarily ordered, which
makes it a succinct representation for a “set of linearizations”, and the concur-
rency information is preserved. Also, the matching write and read events are
linked by a direct edge in the graph, making the data-structure accesses explicit.

Making the matching relations of data-structures explicit allows us to specify
properties of the systems pertaining to the data-structure accesses, and subse-
quently, a data-structure aware verification of these systems.

We will see this representation next, and we show that we do not lose any
information about the behaviours by choosing this representation. Thus the
language of a CPDS will be defined as a set of such graphs.

2.4 Modelling the behaviour

In order to represent the behaviours of a system of concurrent processes with
data-structures, we extend Message Sequence Charts with nesting relations.
Message sequence charts are scenarios standardised by ITU [IT11]. In their
simplest form, they describe finite message exchanges among a finite set of
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processes, or the queue behaviour. Similarly nested words [AM09] enrich a word
with nesting relations in order to describe behaviours of a recursive system, or
the stack behaviour. Since we need to describe both queue and stack behaviours,
we integrate MSCs and nested words to yield Message Sequence Charts with
Nesting (MSCN).

Message sequence charts with nestings are essentially sequences of events
adorned with both message relations and nesting relations. We will define them
formally now.

2.4.1 Message sequence charts with nestings

A message sequence chart with nesting (MSCN) over an architecture A consists
of a number of events E executed by the processes in A.

Each event is labelled by its action (λ), the process which executes it (pid),
and the data-structure it accesses (δ), if any.

The set of events executed by Process p is totally ordered by a direct-
successor relation →. The relation ⊲ associates each write event on some data-
structure with the corresponding read event.

The exchange of messages via any queue has to conform with a FIFO policy.
Similarly, the push and the corresponding pop on any stack has to conform with
a LIFO policy.

Definition 2.5 (MSCN). A message sequence chart with nesting (MSCN) over
an architecture A and a set of actions Σ is a tuple MSCN

M = (E , λ, pid, δ,→,⊲)

where

• E is a non-empty finite set of events

• the mapping λ : E → Σ labels each event with an action label,

• the mapping pid : E → Procs assigns a process to each event,

• the partial mapping δ : E → DS labels relevant events with a data-structure
id,

• the underlying graph (E , (→ ∪⊲)
∗
) is a partial order,

• → ⊆
⋃

p∈Procs pid
−1(p)× pid−1(p) and, for each p ∈ Procs, → restricted

to pid−1(p) is the direct-successor relation of some total order on pid−1(p),

• the matching relation is the union of the matching relations of each data-
structure: ⊲ =

⊎

d∈DS ⊲d where ⊲d ⊆ δ−1(d)× δ−1(d). Moreover,

– For each e ∈ dom(δ), there is f ∈ E such that e⊲ f or f ⊲ e.

– If e ⊲ f , then δ(e) = δ(f) = d, say, and Writer(d) = pid(e) and
Reader(d) = pid(f).

25



– ⊲ is an irreflexive and vertex-disjoint matching relation on dom(δ):
If (e1, f1) ∈ ⊲ and (e2, f2) ∈ ⊲ and if (e1, f1) 6= (e2, f2), then
|{e1, f1, e2, f2}| = 4. Moreover, if (e1, f1) ∈ ⊲ then e1 6= f1.

– For each d ∈ Stacks, ⊲d is a nesting relation which conforms to
LIFO: if e1 ⊲

d f1 and e2 ⊲
d f2 are different nesting edges then we do

not have e1 →+ e2 →+ f1 →+ f2.

– For each d ∈ Queues, ⊲d is a message relation which conforms to
FIFO: if e1 ⊲

d f1 and e2 ⊲
d f2 are different message edges then we

do not have e1 →+ e2 and f2 →+ f1.

MSCNs enjoy a natural graphical representation.

Example 2.6. An MSCN over A1 (cf. Example 2.1) and a unary alphabet is
shown in Figure 2.2. Each process is represented by a vertical line. The relation
→ orders (top-down) consecutive events located on the same process line. The
messages are depicted by straight edges (solid or dotted) connecting different
lines and nesting edges are depicted by curved edges (solid or dotted) connecting
within a line. More specifically, ⊲s1 is depicted by solid curved edges on Process
1, ⊲s2 by dotted curved edges on Process 1 and ⊲s3 is depicted by solid curved
edges on Process 3. ⊲q1 is depicted by solid straight edges from Process 1 to
Process 2, ⊲q2 by dotted straight edges from Process 1 to Process 2, ⊲q3 by solid
straight edges from Process 2 to Process 1, ⊲q4 by dotted straight edges from
Process 2 to Process 1, ⊲q5 by solid straight edges from Process 2 to Process 3,
⊲q6 by solid straight edges from Process 3 to Process 2, and ⊲q7 is depicted by
dotted straight edges from Process 3 to Process 2.

Example 2.7. An MSCN over Archi-
tecture A2 and Σ = {a, b} is shown on
the right.

a

b

b

b

a

a

b

a

b

a

a

b
MSCN(A,Σ) The set of all MSCNs over Architecture A and set of actions Σ is denoted

MSCN(A,Σ).

Remark 2.8. Notice that the degree of any node of an MSCN is at most three.

2.4.2 Languages of MSCNs

We can view a CPDS as an acceptor for MSCNs. For this we define a notion
of a partially-ordered-run (abbreviated as po-run) of a CPDS over an MSCN. A
po-run labels the events of an MSCN with the control locations of the CPDS.
This is given by the control location labelling c-loc : E → Locs. In order to keep
track of the control locations stored in the data-structures, some nodes need to
be labelled by an additional location which is specified by the data-structure
location mapping d-loc : E → Locs ⊎ {⊥}. Thus a po-run of a CPDS on an
MSCN is a pair of mappings (c-loc, d-loc).
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1 2 3

Figure 2.2: An MSCN over Architecture A1

A partially-ordered-run of a CPDS S = (Locs,Trans, (ℓin1 , . . . , ℓ
in
p ), Locsfin)

over an MSCN M = (E , λ, pid, δ,→,⊲) is a pair (c-loc, d-loc) po-runsuch that the
following consistency conditions hold for all e ∈ E . We denote by e−, the
unique event such that e− → e if it exists, and otherwise e− = ⊥pid(e) /∈ E . We
set c-loc(⊥p) = ℓinp as a convention.

1. if e⊲ f then (c-loc(e−), λ(e), c-loc(e), d-loc(e)) ∈ Transpid(e)→δ(e)

2. if f ⊲ e then (c-loc(e−), d-loc(f), λ(e), c-loc(e)) ∈ Transpid(e)←δ(e)

and d-loc(e) = ⊥

3. if e is not part of ⊲, then (c-loc(e−), λ(e), c-loc(e)) ∈ Transpid(e):int and
d-loc(e) = ⊥

Let ep denote the maximal event on process p if it exists. Otherwise, we set
ep = ⊥p /∈ E and as we set before c-loc(⊥p) = ℓinp as a convention. A po-run is
accepting if (c-loc(e1), . . . , c-loc(ep)) ∈ Locsfin.

Thus the language Lpo(S)accepted by a CPDS S is the set of MSCNs on which it
has an accepting po-run. We denote it by Lpo(S).

We have an understanding of the behaviour of a CPDS in a operational way
(cf. seq-runs) from Section 2.3. Here we see the CPDS as an acceptor of MSCNs
via po-runs. Now we will see that, po-runs and seq-runs of a CPDS S are closely
related.
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We start by associating an MSCN to a sequential run ρ.
Let ρ = c0

a1−→p1
c1

a2−→p2
c2 . . .

an−−→pn
cn be a seq-run of a CPDS S. The

MSCN associated to ρ,M(ρ) M(ρ) = (E , λ, pid, δ,→,⊲) is defined as follows.
The set of events is E = {1, 2, . . . , n}. For 1 ≤ x ≤ n, we set pid(x) = px and

λ(x) = ax. For 1 ≤ x ≤ n, let τx be the transition taken for moving from cx−1
to cx. Note that τx is uniquely determined by 1) pid(x), 2) the control locations
corresponding to pid(x) in cx−1 and cx and 3) change in the data-structure
contents of cx−1 and cx, if any. We set δ(x) = d if τx ∈ Transpx→d ∪Transpx←d.

The relation → is uniquely determined by the pid mapping and the total
order on the sequence of configurations. For x, y ∈ E , x → y if pid(x) = pid(y),
say p, and x < y and for all z such that x < z < y, pid(z) 6= p.

For 0 ≤ x ≤ n, let cx = ((ℓxp)p∈Procs, (u
x
d)d∈DS). We will recover the ⊲-

relation for each data-structure d ∈ DS.
Let d ∈ Stacks be a stack data-structure. The nesting relation ⊲d is given

by {(x, y) | ux−1d = u, uxd = uℓ, uy−1d = uℓ and uyd = u and for all z such that
x < z < y, uzd 6= u}. Note that uxd denotes the contents of the stack d at
configuration x.

Similarly for a queue data-structure d ∈ Queues, the message relation ⊲d

is given by {(x, y) | ux−1d = u, uxd = uℓ, uy−1d = ℓu′ and uyd = u′ and the number
of reads on queue d between cx and cy is |u|} where uxd denotes the contents of
the queue d at configuration x.

By virtue of the stack and queue access policies, the induced nesting relations
follow LIFO and the message relations follow FIFO. Thus the resulting structure
is an MSCN.

Now, we define the ‘sequential’ language of a CPDS S as the set of MSCNs as-
sociated toLseq(S) accepting sequential runs of the CPDS. That is, Lseq(S) = {M(ρ) |
ρ is an accepting sequential run of S}.

Theorem 2.9. Lpo(S) = Lseq(S).

Henceforth, it is denoted L (S).L (S)

Proof. (⊇) Let M(ρ) ∈ Lseq(S). An accepting po-run (c-loc, d-loc) is uniquely
determined by ρ. Recall that τx is the transition taken for moving from cx−1 to
cx, and pid(x) = px. Then c-loc(x) is indeed the target control location of τx.
That is, c-loc(x) = ℓxpx

. Also

d-loc(x) =

{
ℓ if τx is of the form (ℓpx

, a, ℓ′px
, ℓ) ∈ Transpx→d

⊥ otherwise.

Claim 2.10. (c-loc, d-loc) is an accepting po-run of S on M(ρ).

(⊆) Let S be a CPDS and M = (E , λ, pid, δ,→,⊲) be an MSCN. Further,
let (c-loc, d-loc) be a po-run of S on M, and let < be a linearisation1 of the
events of M.

1A linearisation of a partial order is a total order extension of it. In the case of MSCNs, a
linearisation is a total order which respects (→∪ ⊲)∗ order.
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We can associate a seq-run ρ to the tuple (M, (c-loc, d-loc), <) as follows:
We associate a configuration to each prefix of the MSCN with respect to the

linearisation <.
A prefix is a downward closed set E ′ ⊆ E . The frontier of a prefix is the

tuple of maximal events of E ′ with respect to →. That is, the frontier of E ′

is (e1, . . . ep) if for each p, either ep ∈ E ′ and pid(ep) = p and there does not
exist f ∈ E ′ such that e → f , or there is no e ∈ E ′ such that pid(e) = p and
ep = ⊥p /∈ E .

The configuration associated to a prefix E ′ is denoted cE′ . The set of con-
trol locations of cE′ is given by c-loc(e1), . . . , c-loc(ep) where (e1, . . . , ep) is the
frontier of E ′. Recall that by convention c-loc(⊥p) = ℓinp .

The contents of the data-structure d is ud = d-loc(e1) . . . d-loc(ex) if e1 →+

e2 →+ . . . ex is the maximal sequence of pending d-writes in E ′. An event e is
a pending d-write in E ′ if e⊲ f for some f /∈ E ′ and δ(e) = d.

The sequential run po-to-seq(M, (c-loc, d-loc), <) of S is defined to be

ρ = cE0
a1−→p1

cE1
a2−→p2

cE2 . . .
an−−→pn

cEn

where

• ∅ = E0 ⊆ E1 ⊆ . . . En = E are the prefixes induced by the linearisation <.

• Let ej be the jth event according to the linearization <. Then, aj = λ(ej)
and pj = pid(ej).

Claim 2.11. ρ is an accepting seq-run of S on M. Furthermore, M(ρ) = M.

2.4.3 Closure properties

The language of a CPDS is a set of MSCNs. The class of MSCNs recognised by
a CPDS enjoys several closure properties. These are closed under union, inter-
section, concatenation and alphabetic projection (non-erasing homomorphism).

Theorem 2.12. The class of languages recognised by CPDS is closed under
union, intersection, concatenation and renaming.

Proof. We can effectively obtain the CPDS for each of these operations using
standard constructions. We detail the construction for union, and briefly discuss
the other cases.

For closure under union, we may assume that the control locations of each
CPDS are disjoint. The set of control locations for the union will be the union
of the control locations of each together with a new initial control location. On
the initial transition, the CPDS non-deterministically chooses to simulate one
of the two CPDS. The global acceptance condition makes sure that the local
non-deterministic guess made at the initial transition is consistent among all
the processes. The global accepting set is the union of both.
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To define the CPDS for union more formally, let S1 =
(Locs1,Trans1, (ℓ11, . . . , ℓ

1
p), Locs

1
fin) and S2 = (Locs2,Trans2, (ℓ21, . . . , ℓ

2
p), Locs

2
fin)

be two CPDS. We may assume Locs1 ∩ Locs2 = ∅. The CPDS for the union
S = (Locs,Trans, (ℓin, . . . , ℓin)

︸ ︷︷ ︸

p

, Locsfin) where

• Locs = Locs1 ∪ Locs2 ∪ {ℓin} where ℓin /∈ Locs1 ∪ Locs2.

• The global initial state is (ℓin, . . . , ℓin)
︸ ︷︷ ︸

p

.

• The set of global final states is the union of both: Locsfin = Locs1fin∪Locs
2
fin.

• The set of transition Trans is again a tuple (Transp)(p∈Procs). The local

transitions on process p contains those of both: Trans1p ⊆ Transp and

Trans2p ⊆ Transp. In addition Transp also contains the following initial

transitions, where b ∈ {1, 2} and ℓbp is the local initial state of process p
in Sb :

(ℓin, a, ℓ) if (ℓbp, a, ℓ) ∈ Transbp

(ℓin, a, ℓ, ℓ
′) if (ℓbp, a, ℓ, ℓ

′) ∈ Transbp

(ℓin, ℓ, a, ℓ
′) if (ℓbp, ℓ, a, ℓ

′) ∈ Transbp

Closure under intersection similarly follows the standard constructions. The
cartesian product of the two CPDS gives the automaton for intersection. The
number of control locations in the product automaton is the product of the
number of control locations in each.

Concatenation of two MSCNs over the same architecture concatenates them
process-wise. That is, for each process p, it adds a → edge from the maximum
event on p of the first MSCN to the minimum event on p of the second MSCN.
This, can be lifted to sets of MSCNs as well. CPDs are closed under concatena-
tion. This means that, given two CPDS S1 and S2 over an architecture A, we
can effectively construct a CPDS S such that L (S) = L (S1) · L (S2).

We first consider the case where S1 has only one global accepting state. In
this case, the CPDS S is obtained by the standard constructions from S1 and
S2. The initial state is inherited from S1 and the final states fro S2; the initial
transitions of S2 are tweaked in to behave as if global accepting state of S1 are
the global initial state of S2.

Now, for the general case where S1 has several global accepting states, it can
be written as the union of several CPDS with a single global accepting state.
Since CPDS are closed under union, and since (L1∪L2)·L3 = L1 ·L3∪L2 ·L3,
closure under concatenation follows.

Closure under renaming can also be shown using standard techniques. On
each letter, the CPDS guesses a transition on its pre-image. No additional
control locations are needed.
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From the closure under union, we get the following corollary:

Corollary 2.13. The model of CPDS which allows sets of global initial states
is no more powerful than the one with a single global initial state.

Remark 2.14. We choose to keep a single global initial state in the definition of
CPDS as it makes some technical proofs simpler.

The class of languages of MSCNs recognisable by CPDS is not closed under
complementation. This follows from a result due to Bollig and Leucker [BL06,
Bol05] that simpler systems of communicating finite state machines are not
closed under complementation.

Theorem 2.15 ([BL06, Bol05]). The class of languages recognisable by CPDS
over A and Σ are not closed under complementation, as soon as A embeds the
following architecture.

Procs = {1, 2}
Stacks = ∅
Queues = {q1, q2}
Writer = {q1 7→ 1, q2 7→ 2}
Reader = {q1 7→ 2, q2 7→ 1}

Queue 1

Queue 2

Process 1 Process 2

The class of deterministic CPDS is weaker than the class of non-deterministic
CPDS. More precisely, a non-deterministic CPDS is not determinisable always.
In fact, the non-determinisability is a consequence of non-complementability: If
CPDS were determinisable, then they could be complemented by complementing
the global accepting states.

Corollary 2.16. The class of languages recognised by deterministic CPDS is
strictly contained in that recognised by CPDS.

2.5 Specification formalisms

We will see three different and powerful specification formalisms for MSCNs
here: Monadic Second Order Logic which serves as a classical logic, Proposi-
tional Dynamic Logic which serves as a navigational logic, and Temporal Logics.

2.5.1 MSO over MSCNs

Monadic Second Order Logic is a very expressive classical logic. We assume
an infinite supply of first-order variables x, y, . . . and second-order variables
X,Y, . . .. First order variables vary over events of an MSCN while second order
variables vary over subsets of events. The vocabulary of MSO is fixed by the
architecture A and the set of actions Σ. The syntax of MSO(A,Σ) MSO(A,Σ)is as follows:

ϕ ::=a(x) | p(x) | d(x) | x→ y | x = y | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃X ϕ

31



where p ∈ Procs, a ∈ Σ, and d ∈ DS.
An MSO(A,Σ) formula is evaluated over an MSCN M = (E , λ, pid, δ,→

,⊲) ∈ MSCN(A,Σ). The semantics assigns truth values for a formula under a
valuation of free variables. A valuation of free variables assigns events to the
first order variables, and sets of events to the second order variables. We denote
a valuation by ν. ν[x 7→ e] represents a valuation which agrees with ν on all
variables except x, which is mapped to e.

M, ν |= a(x) if λ(ν(x)) = a ∈ Σ

M, ν |= p(x) if pid(ν(x)) = p ∈ Procs

M, ν |= d(x) if δ(ν(x)) = d ∈ DS

M, ν |= x→ y if (ν(x), ν(y)) ∈ →

M, ν |= x⊲ y if (ν(x), ν(y)) ∈ ⊲

M, ν |= x = y if ν(x) = ν(y)

M, ν |= x ∈ X if ν(x) ∈ ν(X)

M, ν |= ϕ ∨ ψ if M, ν |= ϕ or M, ν |= ψ

M, ν |= ¬ϕ if it is not the case that M, ν |= ϕ

M, ν |= ∃xϕ if there exists e ∈ E such that M, ν[x 7→ e] |= ϕ

M, ν |= ∃X ϕ if there exists E ′ ⊆ E such that M, ν[X 7→ E ′] |= ϕ

Macros We may also use macros: ϕ1 ∧ϕ2 for ¬(¬ϕ1 ∨¬ϕ2); ∀xϕ for ¬∃x¬ϕ;
∀Xϕ for ¬∃X¬ϕ; ϕ1 =⇒ ϕ2 for ϕ2 ∨ ¬ϕ1; x⊲d y for d(x) ∧ x⊲ y.

The partial order on MSCNs is expressible in MSO. We denote the partial
order by ≤ and use it as a macro: x ≤ y stands for ∀X ((∀z1 ∀z2 (z1 ∈ X∧(z1 →
z2 ∨ z1 ⊲ z2)) =⇒ z2 ∈ X)) =⇒ (x ∈ X =⇒ y ∈ X).

The linear order on the processes ( or (→)∗) is denoted ≤proc. x ≤proc y
stands for ∀X ((∀z1 ∀z2 (z1 ∈ X ∧ z1 → z2) =⇒ z2 ∈ X)) =⇒ (x ∈ X =⇒
y ∈ X).

Now that we have the partial order ≤ , we can also have a macro for the
“concurrent” relation: concurrent(x, y) stands for ¬x ≤ y ∧ ¬y ≤ x

Example 2.17. Let us state the property: every a labelled event has at least
another a labelled event which is concurrent to it.

∀x a(x) =⇒ ∃y concurrent(x, y) ∧ a(y)

Example 2.18. Consider the following safety property:

An event labelled b does not occur in the scope of a function a.

This means that, there is an event labelled b during which the program stack
should have some contents pushed on a call to function a (abstracted by the
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action label a). This can be expressed in MSO as:

¬∃x∃y∃z (b(x) ∧ (y ⊲ z ∧ y ≤proc x ∧ x ≤proc z ∧ a(x) ∧
∨

d∈Stack

d(x))

We give a couple of scenarios where this property is relevant:

• The function a is secure: During a secure function no communication
to neighbouring processes is allowed. For this, we may replace ‘label b’
with ‘an access to a queue data-structure’ (that is, b(x) is replaced with
∨

d∈Queues d(x)).

• Recall that each process of a CPDS may be internally multi-threaded
(models interleaving behaviour of several recursive programs by several
stacks). Suppose a is an important function that needs to be executed
interrupt free. Thus during the scope of a, the processor must execute b
— here b stands for a big disjunction over the accesses to other stacks and
local actions by other threads.

• In [LMP08a], a ‘well-queuing’ assumption was required to obtain the de-
cidability for reachability of communicating recursive programs. The well-
queuing property states that local stacks must be empty when a process
reads from a queue. This is same as stating that all functions are secure.

Existential Monadic Second-Order Logic (EMSO(A,Σ)) This is a frag-
ment of MSO(A,Σ) which employs only existentially quantified second-order
variables, which appears as a prefix of the formula. EMSO(A,Σ)

Thus a formula ϕ ∈ MSO(A,Σ) is in EMSO(A,Σ) if ϕ is of the form
∃X1∃X2 . . . ∃Xnψ where ψ does not use a second-order quantification.

First-Order Logic (FO(A,Σ)) This is a weaker fragment of MSO(A,Σ)
which does not use any second-order quantification. FO(A,Σ)

Thus a formula ϕ ∈ MSO(A,Σ) is in FO(A,Σ) if ϕ does not use any second-
order quantification.

Remark 2.19. The language of a CPDS S over A and Σ as a set of MSCNs can be
described in EMSO(A,Σ). The EMSO(A,Σ) formula will employ second-order
variables to guess the (c-loc, d-loc) labelling of an event. Thus there are twice as
many second-order variables as the number of control locations: {Xℓ}ℓ∈Locs used
to identify the c-loc mapping and {Yℓ}ℓ∈Locs used to identify the d-loc mapping.
These are existentially quantified.

A satisfying valuation function corresponding to an accepting run will assign
to the second-order variable Xℓ all the events which are assigned the control
location ℓ by c-loc mapping. Similarly, the variable Yℓ will be assigned all
the events which are mapped to the control location ℓ by d-loc mapping. The
formula will then verify that for each event, the control state assignment of its

33



local neighbourhood (assumed by the existential second order variables) respects
the transition relations. The labelling of the minimal events must conform to
the initial state, and those of the maximal events must conform to one of the
global final states.

Let EMSO(A,Σ) formula for S be ψS . One can prove that for all MSCNs
M ∈ MSCN(A,Σ), M ∈ L (S) if and only if there exists a valuation ν such that
M, ν |= ψS . Since ψS does not have any free variables, ν can be any valuation,
and in particular the empty one.

2.5.2 Propositional Dynamic Logic (PDL)

Propositional Dynamic Logic is a navigational logic. It allows to walk along
an MSCN traversing the edges (path formulas) and verifying properties (state
formulas) along the path.

A state formula in PDL is a boolean combination of atomic propositions
and existence of paths. A path formula follows a path as dictated by a regular
expression over edges while checking state formulas at the nodes if needed. We
extend the PDL introduced in [BKM10] for message passing systems to our
needs. The syntax of state formulas (σ) and path formulas (π) of PDL(A,Σ) is
given by

σ ::= ⊤ | p | a | d | σ1 ∨ σ2 | ¬σ | 〈π〉σ

π ::= ¿σ? | → | ⊲ | (→)−1 | ⊲−1 | π1 + π2 | π1 · π2 | π∗

where p ∈ Procs, a ∈ Σ, and d ∈ DS.

A PDL(A,Σ) formula is evaluated on an MSCN M = (E , λ, pid, δ,→,⊲) ∈
MSCN(A,Σ). The semantics of a state formula is the set of events which satisfy
the formula. The semantics of a path formula is the set of pairs of events between
which there is a satisfying path. The semantics is denoted by J−KM. We may
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simply write J−K instead of J−KM id M is understood from the context.

J⊤K = E

JpK = {e ∈ E | pid(e) = p}

JaK = {e ∈ E | λ(e) = a}

JdK = {e ∈ E | δ(e) = d}

Jσ1 ∨ σ2K = Jσ1K ∪ Jσ2K

J¬σK = E \ JσK

J〈π〉σK = {e ∈ E | ∃f ∈ JσK such that (e, f) ∈ JπK}

J¿σ?K = {(e, e) | e ∈ JσK}

J→K = →

J⊲K = ⊲

J(→)−1K = J→K−1

J(⊲)−1K = J(⊲)K−1

Jπ1 + π2K = Jπ1K ∪ Jπ2K

Jπ1 · π2K = {(e, f) ∈ E2 | ∃e1 ∈ E such that (e, e1) ∈ Jπ1K and (e1, f) ∈ Jπ2K}

Jπ∗K = {(e, f) ∈ E2 | e = f or ∃e1, . . . en ∈ E such that for all 0 ≤ i ≤ n

(ei, ei+1) ∈ JπK where e0 = e and en+1 = f}

Macros Wemay use macros in PDL also: ϕ1∧ϕ2 for ¬(¬ϕ1∨¬ϕ2); ϕ1 =⇒ ϕ2

for ϕ2 ∨ ¬ϕ1; ⊲
d for ¿d? ·⊲ · ¿d? etc.

The partial order on MSCNs is easily expressible in PDL. We denote the
partial order by ≤ and use it as a macro: ≤ stands for (⊲+ →)∗.

PDL with intersection We can also include intersection in the path formulas
of the PDL. PDL with intersection over an architecture A and set of actions Σ
is denoted PDL∩(A,Σ). It is given by the following syntax: PDL with intersection

σ ::= ⊤ | p | a | d | σ1 ∨ σ2 | ¬σ | 〈π〉σ

π ::= ¿σ? | → | ⊲ | (→)−1 | ⊲−1 | π1 + π2 | π1 · π2 | π1 ∩ π2 | π∗

where p ∈ Procs, a ∈ Σ, and d ∈ DS.
The semantics of intersection is as expected:

Jπ1 ∩ π2K = Jπ1K ∩ Jπ2K

This allows to express more properties of the system. However, as we will see
later, the complexity of the decision procedures will be one exponential higher.

Example 2.20. Consider Example 2.18. The property can be described in
PDL∩ as follows:

a ∧ 〈⊲∩ →∗ ·¿b?· →∗〉⊤
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We introduce sentencessentence as there are no natural starting points for MSCNs
[DG06]. A PDL(A,Σ) (resp. PDL∩(A,Σ)) sentence φ is given by:

φ = ⊤ | Eσ | φ ∨ φ | ¬φ

where σ is a PDL(A,Σ) (resp. PDL∩(A,Σ)) state formula. The sentence Eσ
holds true in an MSCN M if the semantics of σ in M is non-empty. That is,

M |= Eσ if JσKM 6= ∅

The semantics of the boolean connectives are as expected.

2.5.3 Temporal Logics

We propose a temporal logic over MSCNs in the spirit of local temporal logics
over partial orders [APP95, DG06, GK03, GK10, Thi94].

The temporal logic we propose has several ‘next’ and ‘until’ modalities. The
‘next modality intuitively allows us to move one ‘step’, and the ‘until’ modality
allows us to follow a sequence of (guarded) ‘steps’ in order to meet a requirement.
We allow several ‘steps’ in our syntax, which are essentially combinations of
basic edge relations of the graph, and their converses.

The syntax of TL(A,Σ) of local temporal logics is as follows:

ϕ = a | p | d | ¬ϕ | ϕ ∨ ϕ | Xπϕ | ϕ Uπ ϕ

where a ∈ Σ, p ∈ Procs, d ∈ DS and π could be one among {→,⊲,→−1,⊲−1,→+
⊲,→−1 +⊲−1,→+⊲+→−1 +⊲−1}.

Thus TL(A) has both future and past modalities. The modalities X→ and
X⊲ allow to reason about the successor events in the graph. The past counter-
parts X→−1 and X⊲−1 allow to reason about the predecessor events. The until
modality Uπ asks for the existence of a π-path until an event which satisfies a
requirement, and in addition makes sure that the events along this path satisfy
another criterion.

The temporal logic formulas are evaluated on the events of an MSCN M =
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(E , λ, pid, δ,→,⊲).

M, e |= a if λ(e) = a ∈ Σ

M, e |= p if pid(e) = p ∈ Procs

M, e |= d if δ(e) = d ∈ DS

M, e |= ¬ϕ if it is not the case that M, e |= ϕ

M, e |= ϕ1 ∨ ϕ2 if M, e |= ϕ1 or M, e |= ϕ2

M, e |= Xπϕ if there exists f ∈ E such that (e, f) ∈ JπK and M, f |= ϕ

M, e |= ϕ1 Uπ ϕ2 if there is a sequence e = e0, e1, e2 . . . en−1, en

such that (ei, ei+1) ∈ JπK for all 0 ≤ i < n and

M, ei |= ϕ1 for each 0 ≤ i < n and M, en |= ϕ2

Example 2.21. Consider the property: If the b (for ‘begin’) signal is activated
on an access to data-structure d by process p, then the process p is dedicated to
the data-structure d until an e (for ‘end’) signal is activated. This can be said
by the following TL formula:

p ∧ d ∧ b =⇒ (
∧

d′ 6=d

¬d′) U→ (d ∧ e)

All the modalities of TL(A,Σ) can be written equivalently in PDL(A,Σ)
(Table 2.3). We denote this translation by TL2PDL. Note that M, e |= ϕ if and
only if e ∈ JTL2PDL(ϕ)K.

TL2PDL(a) = a
TL2PDL(p) = p
TL2PDL(d) = d

TL2PDL(¬ϕ) = ¬TL2PDL(ϕ)
TL2PDL(ϕ1 ∨ ϕ2) = TL2PDL(ϕ1) ∨ TL2PDL(ϕ2)

TL2PDL(Xπϕ) = 〈π〉TL2PDL(ϕ)
TL2PDL(ϕ1 Uπ ϕ2) = 〈(¿TL2PDL(ϕ1)? · π)

∗〉TL2PDL(ϕ2)

Table 2.3: Translation from TL(A) to PDL(A)

For temporal logics also, we introduce sentences. A TL(A,Σ) sentence φ is
given by:

φ = ⊤ | Eϕ | φ ∨ φ | ¬φ

The sentence Eϕ holds true in an MSCN M if there is an event e of M such
that M, e |= ϕ. That is,

M |= Eϕ if there is an event e of M such thatM, e |= ϕ

The sematics of the boolean connectives are as expected.
A temporal logic sentence can be translated to a PDL sentence.
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Remark 2.22.TL with arbitrary PDL

steps

We can extend our temporal logic to allow unrestricted steps (π)
in Xπ and Uπ. The results we show for TL(A,Σ) hold for this extension also,
without affecting the complexity.

Remark 2.23.TL with MSO definable

modalities

We can further extend our temporal logic by allowing more modal-
ities definable in MSO. Note that all the modalities of TL(A,Σ) are expressible
in MSO(A,Σ). It is desirable to have more convenient modalities. For example,
we could define a ‘concurrent’ modality #, which allows to reason about a con-
current event. Another modality would be a ‘universal’ until ϕ1 U∀ ϕ2 which
requires that a later event satisfies ϕ2 and all the events in between satisfy ϕ1.
Note that these two modalities are not expressible in PDL.

The techniques and results presented in this thesis can be extended to cap-
ture any temporal logic definable in this generic framework of ‘temporal logics
with MSO definable modalities’ (cf. [BCGZ11, GK10]). However this will alter
the complexity.

Macros We keep the usual macros for TL(A) as well: ϕ1∧ϕ2 for ¬(¬ϕ1∨¬ϕ2);
ϕ1 =⇒ ϕ2 for ϕ2 ∨ ¬ϕ1

Eventually (Fπ) and Always (Gπ) are defined as follows: Fπϕ = ⊤Uπ ϕ and
Gπϕ = ¬Fπ(¬ϕ).

2.5.4 Discussions

The data-structure language:Data-Structure alphabet It is often desirable to reason about the
stack-languages (or queue-languages). The stack language is the set of possible
stack configurations. Similarly the queue language is the set of possible stack
contents. In order to reason about them independently of the states of the sys-
tem, it is desirable to have an independent stack-alphabet and queue alphabet.
That is essentially to say that the stack and queue alphabets are part of the
architecture, and are fixed.

We can reduce the case to our setting by enriching the action labels to include
the information about the stack symbols (resp. queue symbols) as well. Thus
new action labels are pairs, one field keeps track of the ’real’ action label and the
other stores the data-structure alphabet. The events accessing a data-structure
must be labelled by such pairs. Of course, the ’data-structure field’ of the source
and target events of a ⊲-edge must agree.

Let M = (E , λ, pid, δ,→,⊲) be an MSCN. Consider any prefix E ′ ⊆ E .
E ′ is a downward-closed set, as it is a prefix. The contents of data-structure
d at prefix E is the sequence c(e1)c(e2) . . . c(en) where ce corresponds to the
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contents of the ’data-structure field’ of event e, and e1, . . . , en is a maximal
(ordered) subsequence of open writes to d with respect to E ′. That is, for all
j ∈ {1, . . . , n}, δ(ej) = d and there exists e′ ∈ E \E ′ such that ej⊲e

′. Of course,
pid(ej) = Writer(d) and e1, . . . en are ordered by the → ordering.

Equipped like this, our specification formalisms permit us to reason about
properties of data-structure languages. Any regular property of data-structure
language can be expressed in MSO. It suffices to consider all prefixes of the
MSCN and then to relativize the regular property to the “open” ⊲-positions.

With PDL, however, identifying the “open” ⊲-positions is challenging. For a
stack data-structure d it can be achieved by allowing to skip over some ⊲-edges.
For queue-data structure the “open” ⊲-positions cannot be identified using the
intersection-free fragment. Once the “open” ⊲-positions are identified, PDL can
also reason about regular properties of these languages, as the path expressions
can verify the regular expressions along the path.

2.6 Specific Architectures

We have seen a generic framework for modelling the system with several data-
structures. We also have formalism for modelling their behaviours, and specifi-
cation languages to reason about them. Our generic framework captures several
interesting classes of systems as special cases. Now we will have a glimpse at
some well-studied specific architectures of independent interest.

Finite state machines An architecture with only one process and no data-
structures is nothing but a framework for finite state machines. The MSCNs in
this case are simply words.

Communicating finite state machines If the architecture has no stacks
and there is at most one queue (FIFO communication channel) between every
pair of processes in each direction, we have the well-studied class of communi-
cating finite state machines [BZ83]. The MSCNs in this case are message se-
quence charts (MSCs). The logics we defined in Section 2.5 correspond to PDL

over MSCs [BKM10] and a variant of local trace temporal logics over MSCs
(TrLTL) [GK10, Thi94].

Pushdown systems If we have only one process and one stack, we are es-
sentially having a pushdown system. Put in our framework, the CPDS over
this specific architecture corresponds to nested word automata [AM09]. The
MSCNs over this architecture are words with a (single) nesting relation. These
are called nested words. Temporal and navigational logics over nested words
have been studied in the literature [AAB+08, AEM04, BCGZ11]. Our temporal
logic and PDL when restricted to nested words subsume these.
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Multi-pushdown systems If we have only one process and several stacks but
no queues, we have a multi-pushdown system. These model the interleaving se-
mantics of multi-threaded boolen recursive programs (without data-structures).
The behaviours in this case are multiply nested words. We have introduced
navigational and temporal logics for these behaviours in [BCGZ11]. Another
temporal logic for these objects is studied in [LN12]. Our generic temporal
logic and PDL subsume these too.

Communicating pushdown systems If we have at most one stack per pro-
cess, and at most one queue between each pair of processes in each direction,
we have a communicating pushdown system. This generalises pushdown sys-
tem and communicating finite state machines. These systems are studied in
[LMP08a, HLMS10, MP11] etc. The MSCNs in this case are called stack-queue
graphs in [MP11].

2.7 Decision Problems

We have found suitable frameworks to model the system and their behaviours.
We also saw formalisms to specify properties/requirements of these systems.
Also we saw that this generic framework captures several interesting classes of
systems. Now we will address our main goal — which is to formally verify these
complex systems.

The verification method we adopt in this thesis is that of model-checking.
We do model-checking on the design of our complex system, before really im-
plementing it. After all finding a bug at the design phase saves money, time,
and lives (these are safety-critical systems). Consider the following scenario:

A hypothetical firm is specialised in formally verified system design. The
main service offered by this firm is, as one would guess, designing a system
according to the specific requirements by a client. Their salient feature is that
they also formally verify their design, and guarantee satisfaction to the client.
We now describe a product development cycle in this firm.

A client gives the requirements for a distributed system to the firm. The
requirements fix an architecture. Then, the engineers in the firm translate each
of the requirements into a formal one, say MSO or PDL or TL, or it could even
be another CPDS. Then the engineers design a system to meet the requirement.
The design is again another CPDS.

Having obtained the proposed design as a CPDS and the specifications, the
engineers want to verify that the design is correct. Since the designed system
can be huge at times, and since a manual checking of the design is often prone
to error, they would like to employ automated methods of the verification.

One of the very basic thing that needs to checked is whether the designed
system can generate anything at all (otherwise all behaviours may vacuously sat-
isfy the specification, but this may not please the client). This is the problem
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of emptiness checking. This problem can be also seen equivalently as a ‘reacha-
bility question’ which asks for whether a particular combination of local control
locations (a combination of local control locations is a global control state) is
reachable. The reachability alone can be the specification for some ‘safety’ cri-
terion. One may want to verify that some ‘bad/unsafe’ control location is not
reachable.

Another triviality check on the design is universality checking. Perhaps the
design allows all possible MSCNs, and in this case, the engineers may want to
reconsult their design.

Once they have verified that the design is not trivial-by-mistake, they want to
verify that the formal requirements are satsified by the design. This corresponds
to different problems depending on what formalism has been used to formally
specify the requirement.
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When the formal specification is
given as another CPDS, the model-
checking problem corresponds to in-
clusion checking. The engineers
want to check whether all the be-
haviours of the proposed design
are already contained in a ‘well-
behaved’ system model.
They of course need to consider the
model-checking problem when the
specification is given in one of the
logical specification formalism like
MSO, PDL or TL. One important
issue about the specification formal-
ism is to be able to detect if the
specification is absurd. It is very
well possible that the engineers find
out that their design does not meet
the specification. They try to cor-
rect their design over and over, but
it still does not meet the specifica-
tion. It may very well be possible
that this is rather due to an absurd
specification which is impossible to
meet. In order to rule out this unde-
sirable situation, the engineers want
to check whether the given specifi-
cation is satisfiable at all. This is
called the satisfiability problem.

The product-development cycle is
depicted in the flowchart.

We will state these basic verification problems next. The architecture A and
the set of actions Σ are also part of the input.

Problem 1 (CPDS-Emptiness).

42



Input S: a CPDS over A and Σ.
Question Is L (S) = ∅?

Problem 2 (CPDS-Inclusion).
Input S1, S2: two CPDS over A and Σ.
Question Is L (S1) ⊆ L (S2)?

Problem 3 (CPDS-Universality).
Input S: a CPDS over A and Σ.
Question Is L (S) = MSCN(A,Σ)?

Problem 4 (MSO-SAT).
Input ϕ: an MSO(A,Σ) formula.
Question Does there exist M ∈ MSCN(A,Σ) such that M |= ϕ?

Problem 5 (PDL-SAT).
Input φ: a PDL(A,Σ) sentence.
Question Does there exist M ∈ MSCN(A,Σ) such that M |= φ?

Problem 6 (TL-SAT).
Input φ: a TL(A,Σ) sentence.
Question Do there exist an M ∈ MSCN(A,Σ) such that M |= φ?

Problem 7 (MSO-MC).
Input ϕ: an MSO(A,Σ) formula.

S: a CPDS over A and Σ.
Question Do all M ∈ L (S) satisfy M |= ϕ?

Problem 8 (PDL-MC).
Input φ: a PDL(A,Σ) sentence.

S: a CPDS over A and Σ.
Question For all M ∈ L (S), does it hold that M |= φ?

Problem 9 (TL-MC).
Input φ: a TL(A,Σ) sentence.

S: a CPDS over A and Σ.
Question For all M ∈ L (S), does it hold that M |= φ?
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2.7.1 Undecidability casting shadow

Our very powerful model comes with the price of undecidability. All the above
verification problems are undecidable except for some specific architectures. In
fact, it is so even for the special cases discussed in the previous section except
finite state machines and pushdown systems.

Theorem 2.24. The Problems 1-9 are undecidable.

Note that the problems take the architecture A and the set of actions Σ as
part of the input.

In fact the undecidability holds even for fixed architecture and set of actions
as soon as |Σ| ≥ 2 and the architecture embeds one of the following:

A1 A process with two local stacks.

A2 A process with a local queue.

A3 Two processes with two queues between them (the direction of the queues
does not matter).

A4 Two processes with two stacks and a queue between them. In this case,
however, the undecidability of universality checking is not known.

The above theorem holds if the set of actions is at least binary. Any be-
haviour on bigger set of actions can be encoded as one on a binary set of actions.
Thus, for the problems discussed here, if it is undecidable for a bigger set of
actions, it is also undecidable for a binary set of actions.

Proof. The undecidability of two stack machines is a folklore result. Reachabil-
ity of single process with a queue is undecidable [BZ83]. Two processes with
queues between them in both directions can simulate a single process with a
single queue: the second process just copies the contents from the incoming
channel to the outgoing channel. Two processes with two queues between them
in the same direction is also undecidable [Cha11]. Two processes with stacks
communicating via a queue can check the intersection of context free languages.
In fact, the undecidability holds even for reachability restricted to bounded
runs [HLMS10].

The emptiness problem can be reduced to the inclusion checking, by keeping
an ‘empty’ automaton for S2. Thus inclusion checking is also undecidable.

Next we argue that the satisfiability problem for TL(A) is undecidable. We
reduce the emptiness problem of CPDS to TL(A) satisfiability. Given a CPDS
S over A, we construct a TL(A) formula ϕS . The action labels used in ϕS are
the set of (pairs of) control locations of S. The formula essentially describes
a run (labelling the events with states) of an MSCN. The formula ϕS states
that 1) the labelling of the local neighbourhood of an event must conform to
the transition relation, 2) the labelling of the minimal events must respect the
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global initial state and 3) the labelling of the maximal events must conform to
one of the global accepting states.

This can be said in the unary fragment of temporal logic, in an almost pure
future fragment (it needs only two past modalities X→−1 and X⊲−1). In fact,
choosing transitions instead of states as action labels allows us to express valid
runs in pure-future unary fragment of the logic. Thus satisfiability problem of
temporal logics with pure-future and unary modalities is undecidable.

The TL(A,Σ) modalities can be expressed in PDL(A,Σ), thus PDL(A,Σ)
satisfiability is also undecidable.

The unary TL(A,Σ) modalities can be expressed inMSO(A,Σ), and in fact in
the first-order fragment. Thus satisfiability problem ofMSO(A,Σ) and FO(A,Σ)
are undecidable.

The emptiness can be reduced to TL(A,Σ)-MC. The reachability condition
is simply an ‘eventuality’ requirement. Thus TL(A,Σ)-MC is undecidable. The
undecidability of PDL(A,Σ)-MC and MSO(A,Σ)-MC follows.

For the architectures A1-A3, FO(A,Σ) can be effectively translated to CPDS
[BL06, Bol08]. Since FO(A,Σ) is closed under complementation, the satisfiabil-
ity problem of FO(A,Σ) can be reduced to the universality problem of CPDS.
Given an FO(A,Σ) formula ϕ, consider the CPDS for its negation S¬ϕ. The
following are equivalent:

• ϕ is satisfiable
• ¬ϕ is not valid
• S¬ϕ is not universal

Thus the universality problem of CPDS is undecidable.

2.7.2 Lighting up candles

However, these classes of systems are so crucial that we do not want to give up.
So we look for ways to get around undecidability.

One way is to restrict the architecture to decidable ones. In [HLMS10]
and [LMP08a] the authors characterise the decidable architectures for bounded
runs. However, we would like not to impose restrictions on the architecture as
it is something on which we do not have much control on. We would like the
architecture also to be part of the input of the verification problems.

Another technique is to consider only weaker specification formalisms, which
disallow expressing undecidable problem instances. However, the undecidability
results hold even with really weak fragments of specification logic, like temporal
logics with only unary and future modalities, or the fragment of first order logic
with only two variables. These weak fragments are not in general sufficient
to express critical properties of the system. Hence we would like to keep a
reasonably expressive specification language.

Another method is to adopt approximate verification. In the over-
approximate verification more behaviours can be associated to the system by
being more lenient about the semantics. An example is to drop the assumption
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of reliability of data-structures. We may assume that the data-structures may
lose some entries (or data-items) non-deterministically, and this may help to
obtain decidability. The study of lossy channel systems is in this spirit and is a
major research line [AJ96, Cha11, Sch02].

In under-approximate verification, some restriction is imposed on the system,
so that all the original behaviors need not be exhibited in the restricted one. This
is also a way to regain decidability. A very well-studied under-approximation
technique for communicating machines is to bound the channel sizes [GKM06,
HMN+05].

For multi-pushdown systems, another method of under-approximation is
to impose restrictions on the access policies on stacks. The restriction called
bounded context was proposed in [QR05]; more permissive bounded phase was
studied in [LMP07]; a more general one with ordering on the stacks was studied
in [ABH08] and [BCCCR96]; and an orthogonal restriction permitting infinite
behaviours was studied in [LN11].

The under-approximate verification can also be seen as a way of parametrized
verification. The under-approximation is often imposing a ‘bound’ on some pa-
rameter of the system, like the channel size, or the number of contexts. The
complexities could be analysed wrt. these bounds. Another important parame-
ter for under-approximate verification is tree-width, as it serves as a parameter
for various fixed-parameter-tractable algorithms. In [MP11] the authors give the
unified proof of decidability for various under approximate techniques studied
separately otherwise via demonstrating a bound on their tree-width.

Our approach: We propose another parameter for under-approximate ver-
ification of these generic systems. This parameter, called split-width, yields
decidability for the various verification problems. The parameter split-width is
defined and studied in Part II.

We also study ways to implement a design so that a bound on split-width is
guaranteed. Part III is devoted to this. Thus we can ensure that the behaviours
of the implementation are formally verified.
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Part II

Split-Width
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Chapter 3

Split-width
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In this chapter, we introduce the notion of split-width, which is central to
this thesis.

3.1 Introduction

Split-width is a complexity measure based on an algebra for MSCNs. This
algebra allows to decompose MSCNs into smaller independent parts, which can
be reasoned independently. It then allows to compose the independent parts to
form a bigger MSCN such that reasonings made about the smaller parts can
be used to reason about the bigger MSCN. Thus it offers a divide-and-conquer
approach to handle MSCNs.

We may observe that a divide-and-conquer way (or the composition / de-
composition technique) of reasoning about behaviours is, in a sense, the basis
of automata theory. Let us consider words. Decomposition corresponds to fac-
torising a word and composition corresponds to concatenation.

Many foundational notions like monoid morphisms or Myhill-Nerode equiv-
alence classes are based on decomposition / composition . An automaton or a
monoid morphism on words can be seen also as a way for modular reasoning
— divide a big object into simpler independent parts, abstract them indepen-
dently, and obtain the abstraction for the bigger one from the abstractions of
the smaller ones.

49



While researchers unanimously agree on factorisation / concatenation as
the natural decomposition / composition technique for words, when it comes
to more elaborate behavioural models, researchers have different stands on the
right notion of composition / decomposition. For example, in the well-studied
theory of nested words1[AM09] the composition / decomposition used for defin-
ing congruences[AKMV05] is different from that used for obtaining an algebraic
characterisation[Cyr10]. In fact the right notion of decomposition / composition
in this case is a topic of debate. The practise is to choose the one that serves
the purpose.

In this chapter, we propose a way to compose and decompose MSCNs for
such compositional reasoning. We will also derive a measure (split-width) on
MSCNs based on this decomposition technique, which provides decidability for
the various parametrized verification problems.

3.2 Concurrent behaviour with matching

We consider a slight generalisation of message sequence charts with nestings for
this section. We do not impose any LIFO or FIFO conditions on this matching
relation ⊲. It is rather lenient. We only require that a node can be part of at
most one ⊲ edge, and that the resulting graph is a partial order.

Definition 3.1 (Concurrent Behaviour with Matching (CBM)).CBM Formally, a
concurrent behaviour with matching (abbreviated as CBM) over an alphabet Σ
and processes Procs is a tuple M = (E , λ, pid,→,⊲) where

• E , λ, pid and → are as in Definition 2.5.

• ⊲ ⊆ E ×E is the irreflexive and disjoint matching relation: If (e1, e2) ∈ ⊲,
(e3, e4) ∈ ⊲ and (e1, e2) 6= (e3, e4), then |{e1, e2, e3, e4}| = 4. Moreover, if
(e1, e2) ∈ ⊲, then e1 6= e2.

• The underlying graph (E , (→∪⊲)
∗
) is a partial order.

Notice that, the definition of CBMs does not involve any data-structures.
However, the ⊲ edges may beBag data-structure thought of as those arising from ‘bag’ data-
structures between every pair of processes. It could also be seen as a global
bag data-structure which permits writes and reads by every process. The only
requirement for such a bag data-structure is that writes must be ‘before’ reads.
This is reflected in the feature that the underlying graph is a partial order.

Example 3.2. An example of a CBM over Σ = {a, b}, and Procs = {1, 2}
is shown in Figure 3.1. The vertical arrows denote the → edges and the other
arrows denote the ⊲ edges. Observe that the underlying graph has no cycles.

1These are MSCNs generated by pushdown systems.
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Figure 3.2: A CBM

Example 3.3. Another example of a CBM over Σ = {a, b}, and Procs = {1, 2}
is shown in Figure 3.2. Notice that the ⊲ edges do not follow any LIFO or FIFO
policy.

Thus CBMs are a generalisation of MSCNs in the sense that the ⊲ relation
do not have to comply to any data-structure access policies. We consider CBMs
in this chapter, as our results hold for them. Indeed we obtain the results for
MSCNs as a particular case of the results on CBMs.

3.3 Split concurrent behaviour with matching

In order to analyse CBMs, we consider objects called split-CBMs. As the name
suggests, these are CBMs which are split: A split cuts some → edges. Thus a
split-CBM is a CBM with some → edges missing. This introduces some ‘holes’
in the graph.
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Figure 3.3: A split-CBM

We will then define an algebra on split-CBMs. This algebra allows new
nodes to be inserted in the holes. However, rearranging the connected parts is
disallowed. Thus, when a → edge is cut to obtain a split-CBM, it cannot be
forgotten completely as the direction of this edge still needs to be conserved.
This can be accomplished if the missing → edge is replaced by an ‘elastic’ one:
more nodes could be inserted in between, but the order is maintained. Thus the
non-split edges remain ‘rigid’ and the split-edges become ‘elastic’.

Let us define split-CBMs formally:

Definition 3.4 (split-CBMs). A split-CBMsplit-CBM is a CBM together with a partition-
ing of its → edges into “rigid” edges (denoted r−→) and “elastic edges” (denoted
e−→). It is a tuple M = (E , λ, pid, r−→, e−→,⊲) where M = (E , λ, pid,→= r−→ ⊎ e−→,⊲)
is a CBM, which we call the underlying CBM .

We denote the rigid part of a split-CBMM byM. That is,M = (E , λ, pid, r−→
,⊲). Thus a split-CBM M can be written equivalently as M = (M, e−→).

Remark 3.5. A split-CBM M uniquely determines its rigid part M. However,
there could be several split-CBMs yielding the same rigid part M.

The elasticityelasticity of a split-CBM is the number of elastic edges it has. Thus
elasticity(M) = | e−→ |. A componentcomponent of a split-CBM M is a maximal connected

component ofM wrt. r−→ edges. In particular⊲ edges and e−→ edges are discarded
when considering a maximal connected component for a component.

Example 3.6. A split-CBM is depicted in Figure 3.3, whose underlying CBM
is given in Figure 3.1. The elastic edges are depicted by wavy edges. It has two
elastic edges and hence it is of elasticity two. It has four components.

Example 3.7. A split-CBM over three processes is shown in Figure 3.4. It has
three elastic edges, and hence elasticity three. It has six components.

Example 3.8. Another split-CBM is shown in Figure 3.5. The underlying
CBM of this split-CBM is given in Figure 3.2. It has five elastic edges, and
hence elasticity five. It has seven components. We call this split-CBM M12 for
later reference.
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Figure 3.5: The split-CBM M12

53



Remark 3.9. The number of elastic edges e−→ on a process p of a split-CBM M is
one less than the number of components on p. Thus the number of components
of a split-CBM M is at most elasticity(M) + p.

3.4 Merge and Shuffle

We will now define two operations on split-CBMs. 1) A unary merge operation
which transforms an elastic edge to a rigid edge. 2) A binary shuffle operation
that shuffles the components of two split-CBMs.

The merge operation may transform any of the elastic edges into a rigid one.
merge Hence merge(M) is a set of split-CBMs. If M′ ∈ merge(M) then

• Both M and M′ have the same underlying CBM.

• M′ and M are the same except that, a pair of events linked by an elastic
edge in M are linked by a rigid edge in M′.

In other words, letting Mi = (Ei, λi, pidi,
r−→i,

e−→i,⊲i) for i ∈ {1, 2}, we have
M2 ∈ merge(M1) if and only if:

• Both M1 and M2 have the same underlying CBM: E1 = E2, λ1 = λ2,
pid1 = pid2, and ⊲1 = ⊲2. Thus,

r−→1 ⊎
e−→1 = r−→2 ⊎

e−→2.

• r−→1 ⊆ r−→2 and e−→2 ⊆ e−→1.

• | e−→1| − | e−→2| = 1 = | r−→2| − | r−→1|.

Example 3.10. Consider the split-CBM M12 given in Example 3.8. The set
of split-CBMs in merge(M12) is given in Figure 3.6.

Remark 3.11. Notice that the number of components and the elasticity decrease
by 1 as the result of a merge. That is, ifM2 ∈ merge(M1) then elasticity(M2) =
elasticity(M1)− 1. Moreover, if M2 ∈ merge(M1) and M3 ∈ merge(M1), then
elasticity(M2) = elasticity(M3). That is, the elasticity as well as the number of
components of all split-CBMs belonging to the set merge(M) agree.

Remark 3.12. |merge(M)| = elasticity(M).

The binary shuffle operation is denoted ✁. M1✁M2 is again a set of split-
CBMsshuffle as there are several possible ways of rearranging the rigid components
preserving the partial order.

For i ∈ {1, 2} let Mi = (Ei, λi, pidi,
r−→i,

e−→i,⊲i) such that E1 ∩ E2 = ∅.
Further let M = (E , λ, pid, r−→, e−→,⊲) be a plit-CBM. M ∈ M1 ✁M2 if

• E = E1 ⊎ E2, λ = λ1 ⊎ λ2, pid = pid1 ⊎ pid2, ⊲ = ⊲1 ⊎⊲2

• r−→ = r−→1 ⊎
r−→2. The components are the disjoint union of the constituent

components.
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Figure 3.6: The set merge(M12)
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• e−→1 ∪
e−→2 ⊆ ( r−→∪ e−→)∗. The ordering dictated by the elastic edges of Mi

is respected in the shuffle.

Remark 3.13. All the components on a process are totally ordered by the e−→
edges. This respects the ordering given by e−→1 and e−→2. Thus any event parti-
cipating in an elastic edge still does so after a shuffle. Moreover, two consecutive
components in Mi can be separated only by components from M3−i.

More formally, for i ∈ {1, 2}, if (ei, fi) ∈ e−→i then ∃e, f ∈ E such that
(ei, e) ∈

e−→ and (f, fi) ∈
e−→. Moreover, for all e ∈ E if ei(

e−→∪ r−→)+e( e−→∪ r−→)+fi,
then e ∈ E3−i.

LetM = (E , λ, pid, r−→, e−→,⊲) be a split-CBM. We denote the active processes
in M by Procs(M) ⊆ Procs. That is, Procs(M) = {p ∈ Procs | there is an
event e ∈ E such that pid(e) = p}.

Claim 3.14. | e−→| = |Procs(M1) ∩ Procs(M2)|+ | e−→1|+ | e−→2|.

Proof. The claim follows from the observations:

obs1 The number of elastic edges on Process p remains the same in Mi and in
Mi✁M3−i, if p is not present inM3−1: For p ∈ Procs(Mi)\Procs(M3−i),
| e−→∩ pid−1(p)× pid−1(p)| = | e−→i ∩ pid−1i (p)× pid−1i (p)|.

obs2 If a Process p is present in both M1 and M2, then the number of elas-
tic edges on Process p in the shuffle is one plus the sum of the number
of elastic edges on Process p in M1 and M2: For p ∈ Procs(M1) ∩
Procs(M2), |

e−→∩ pid−1(p)× pid−1(p)| = 1+ | e−→1 ∩ pid−11 (p)× pid−11 (p)|+
| e−→2 ∩ pid−12 (p)× pid−12 (p)|.

Example 3.15. Consider the split-CBMs M141 and M142 given in Figure 3.7.
The split-CBM M12 is in M141 ✁M142.

The set M141 ✁M142 contains six split-CBMs in total. They are given in
Figure 3.8.

Example 3.16. Consider the split-CBMs M151 and M152 given in Figure 3.9.
The split-CBM M12 is in M151✁M152. All the CBMs shown in Figure 3.8 are
also in M151✁M152. In fact the set M151✁M152 contains 18 split-CBMs in
total.

We can lift the definition of merge and shuffle to sets of split-CBMs in the
natural way. Let L, L1 and L2 be sets of split-CBMs. We define

merge(L) =
⋃

M∈L

merge(M) (3.1)

L1 ✁ L2 =
⋃

M1∈L1,M2∈L2

M1 ✁M2 (3.2)
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Figure 3.7

3.5 An algebra over split-CBMs

We now define an algebra on split-CBMs. The basic terms of this algebra are
1) a CBM with a single event, and 2) a split-CBM with two events connected
by a ⊲ edge and without any rigid edges (| r−→ | = 0).

There are two operations in this algebra: a unary merge and a binary shuffle.
These operations are analogous to the merge and shuffle defined above, and
hence we use the same name for them.

A split-term over (Σ,Procs) is of the form:

s := (a, p) | (a, p)⊲ (b, p′) | merge(s) | s✁ s

where a, b ∈ Σ and p, p′ ∈ Procs.

Each split-term represents a set of split-CBMs. For each split-term s, the
set of split-CBMs it represents, denoted JsK, is given as follows:

• J(a, p)K is the CBM with a single node labelled a on process p.

• J(a, p)⊲ (b, p′)K is the CBM with two nodes labelled a (resp. b) on process
p (resp. p′) connected by a ⊲ edge. Moreover, if p = p′, these two nodes
are linked by an elastic edge: (a, p) e−→ (b, p)
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Figure 3.8: The set M141 ✁M142
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• Jmerge(s)K = merge(JMK) (cf. (3.1)).

• Js1 ✁ s2K = Js1K✁ Js2K (cf. (3.2)).

We call JsK the semantics of the split-term s. semantics of split-term

Example 3.17. Consider the split-
term merge(merge(((b, 2) ⊲ (a, 1)) ✁
(merge((a, 2)✁ ((a, 1)⊲ (b, 1)))))). This
term can be pictorially depicted as
shown on the right. The semantics
of the sub-terms are depicted in Fig-
ure 3.10.

m

m

✁

(b, 2)⊲ (a, 1) m

✁

(a, 2) (a, 1)⊲ (b, 1)
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Figure 3.10: The semantics of the split-term given in Example 3.17
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Example 3.18. Another split-term is
shown on the right. The semantics of
this split-term contains the semantics of
the split-term in Example 3.17. It has

1 2

a b

a

b

a

and

1 2

a

ba

b

a

in its semantics, in addition to all those
from Example 3.17. Notice that both
terms use the same set of basic terms
and the same number of merge and shuf-
fle operations.

m

m

m

✁

(b, 2)⊲ (a, 1) ✁

(a, 2) (a, 1)⊲ (b, 1)

All the split-CBMs in JsK have the same set of non-empty processes. We
define Procs(s) as follows:

• Procs((a, p)) = {p},

• Procs((a, p)⊲ (b, p′)) = {p, p′},

• Procs(merge(s)) = Procs(s), and

• Procs(s1 ✁ s2) = Procs(s1) ∪ Procs(s2)

Remark 3.19. For every split-CBM M ∈ JsK, we have Procs(M) = Procs(s).

In fact all the split-CBMs defined by a split-term s have the same elasticity
as well. We define the elasticity of a split-term s as follows. elasticity of

split-term
• elasticity((a, p)) = 0,

• elasticity((a, p)⊲ (b, p′)) =

{
0 if p 6= p′

1 if p = p′
,

• elasticity(merge(s)) = elasticity(s)− 1, and

• elasticity(s1 ✁ s2) = elasticity(s1) + elasticity(s2) + |Procs(s1) ∩ Procs(s2)|

Remark 3.20. The elasticity of a split-term s is the elasticity of any (or all) split-
CBM(s) in JsK. That is, for every split-CBM M ∈ JsK, we have elasticity(M) =
elasticity(s).

The width of a split-term s, denoted swd(s), is the maximum elasticity of width

all its sub-terms. The split-width of a split-CBM M, denoted swd(M), is the split-width

minimum width of all split-terms s such that M ∈ JsK.

We say a split-term s is a k-split-term if its width is at most k.
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Example 3.21. The elasticity of the split-terms in both Example 3.17 and
Example 3.18 is zero. However, the split-width of the former is two, whereas
that of the latter is three. Notice that the split-term with higher split-width
allows more split-CBMs in its semantics though both terms use the same set of
basic terms and the same number of shuffles and merges.

Remark 3.22. The split-width algebra over (Σ,Procs) can generate any CBM
over (Σ,Procs). In fact a sequence of shuffles of basic split-terms will generate
a split-CBM M1 = (E , λ, pid, r−→1 = ∅, e−→1,⊲). This will then be followed by a
sequence of merges to get M2 = (E , λ, pid, r−→2,

e−→2 = ∅,⊲).

Example 3.23 (Split-width of Nested-Words). Nested words are MSCNs over
an architecture with only one process and one stack. The split-width of any
nested-word is at most two. This can be proved inductively. We give a split-
term sw for any nested-word w such that its width it at most two (swd(sw) ≤ 2)
and its elasticity is zero (elasticity(sw) = 0). We omit the process label and the
stack label as these are unique. The base cases are:

• w = a is a single event labelled a with no stack access. In this case, the
split-term is simply a.

• w = a b: In this case, the split-term is sw = merge(a⊲ b).

For the inductive case, we have the following case distinctions.

• If the first event does not access the stack (that is w = a · w′): sw =
merge(a ✁ sw′). By induction, the split-width of sw′ is at most 2 and
its elasticity is zero. Hence, the elasticity of the topmost shuffle node
of sw is one, and hence its split-width is again at most 2. Moreover,
elasticity(sw) = 0.

• If w =a w1 b w2: Let w′ = a w1 b. Then, sw = merge(sw′✁sw2
).

By induction, the split-width of sw′ and sw2
is at most 2 and their elasticity

is zero. Hence, the elasticity of the topmost shuffle node of sw is one, and
hence its split-width is again at most 2. Moreover, elasticity(sw) = 0.

• If w =a w1 b: Then, sw = merge(merge(sw1
✁ a ⊲ b)). By induction,

the split-width of sw1
is at most 2 and its elasticity is zero. Hence, the

elasticity of the topmost shuffle node of sw is two, and hence its split-width
is again at most 2. Moreover, elasticity(sw) = 0.
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Chapter 4

Parametrised Decision
Problems
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In this chapter, we consider the parametrised versions of the decision prob-
lems considered in Section 2.7 of Chapter 2. The parameter we employ is split-
width.
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Figure 4.1: The product development cycle with the bound on split-width as a
parameter.
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Figure 4.1 depicts the product development cycle of the hypothetical firm.
This time they have a bound on split-width as a parameter to their aid.

The parametrised versions of these decision problems are decidable. Thus,
up to the parameter, the firm can guarantee the correctness of their design.
A higher value of the parameter split-width means that more behaviours have
been taken into account by the decision problem. Thus, a higher value of the
parameter provides a more accurate verification cycle. But, accuracy comes
at the price of time and space resources. The complexity of these procedures
increase with the value of the parameter.

The engineers may do the tests against different values of the parameter.
If the tests pass positively with a particular value, and if they have time, they
may increment the value for better accuracy. On the other hand, if it does not
work for one particular value, they may decrease the value and see whether for
a lower value it works. The figure demonstrates the scenario for one fixed value
of split-width.

4.1 Preliminaries

Our decision procedures rely on tree-automata techniques. We are dealing with
only finite, binary trees in this chapter (and in the thesis).

Here we will briefly recall some automata formalisms over binary trees and
the complexities of their emptiness checking problem.

A finite binary tree T over Σ is a Σ labelled finite tree T : dom(T ) → Σ
in which every node has at most two children. All nodes except the root has
a parent. The parent of a node can be reached by following the up direction.
Some nodes have only one child. The child of such a node node can be reached
by following the left direction. Some nodes have two children, which can be
accessed respectively by following the left and right directions.

The set of possible directions of a binary tree is thus D = {up, left, right}.
Only a subset of these directions are available at a particular node.

Alternating 2-way Tree Automata We present here an adapted definition
of alternating 2-way automata [Var98]. The orginal definition was for infinite
trees and infinite runs which require a parity acceptance condition. However,
our purposes need only finite runs on finite trees. Hence we remove the parity
acceptance condition from the definition.

Definition 4.1. An alternating 2-way tree automaton (A2A) over Σ labelled A2A

binary trees is a tuple A = (Q, δ,Acc) where

• Q is a finite set of states,

• Acc ⊆ Q is the subset of accepting or initial states, and
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• δ : Q × Σ × 2D → B+(Moves × Q) is the transition function where
Moves = {stay, up, left, right} and B+(Moves × Q) is the set of positive
boolean formulas over Moves×Q.

We use A2A occasionally, so we only give an intuition of their semantics and
refer to [Var85] for details.

A run of an A2A A over a Σ-labelled finite tree T is a (Q × dom(T ))-
labelled finite tree ρ such that for each node x ∈ dom(ρ) labelled (q, u), if
x1, . . . , xn are the children of x in ρ and are labelled (d1, q1), . . . , (dn, qn), then
{(d1, q1), . . . , (dn, qn)} |= δ(q, λ(u),∆(u)) where ∆(u) is the set of directions
available at u. Notice that, according to the definition above, each leaf of ρ
must be labelled by pairs (q, u) such that δ(q, λ(u),∆(u)) = true. The run ρ is
accepting if its root is labelled (q, u) with q ∈ Acc and u being the root of T . A
tree T is accepted by A if there is an accepting run ρ of A over T .

Fact 4.2 ([Var98]). Given an A2A A with n states, one can check in time
exponential in n if the set of trees accepted by A is nonempty.

A classical tree-automatontree-automaton is a special case of A2A which is only moving
downwards and which sends exactly one thread to each children of a node.
Thus, we have transitions of the form δ(q, a,∆) =

∨∧

d∈∆\{up}(qd, d).

Fact 4.3. The emptiness of a tree-automaton with n states can be checked in
time O(n3).

A classical tree-automaton could be seen intuitively as a mechanism for tiling
a tree from the root to the leaves (top-down), or from the leaves to the root
(bottom-up). When viewed bottom-up, this class of tree-automata is determin-
isable (with an exponential blow-up in the number of states). A (complete)
deterministic bottom-up automatondeterministic bottom-up

automata

can be complemented by complementing
the set of accepting states.

Fact 4.4 ([Var98]). An A2A can be translated in exponential time to an equiv-
alent (non-deterministic) tree-automaton.

Fact 4.5. The class of trees definable by an MSO formula over trees is precisely
the same as that recognisable by a tree automaton.

The cascade product of two tree automata is essentially a cartesian productcascade product

in which the second automaton can access the states of the first automaton
while making transitions.

A tree-walking automatontree-walking automaton is another special case of an A2A where the tran-

sitions allow only disjunctive formulas. Thus δ : Q×Σ× 2D →
∨
(Moves×Q).

In addition, we consider a subset Q0 ⊆ Q of initial states. A run is then
a sequence (q0, u0), (q1, u1) · · · (qn, un) such that for all 0 ≤ i < n we have
(qi+1, ui+1) |= δ(qi, λ(ui),∆(ui)). The run goes from node u0 to node un and it
is accepting if qO ∈ Q0 and qn ∈ Acc. The semantics JAKT of the automaton
over the tree T is the set of pairs (u,v) such that there is an accepting run of A
over T from u to v.
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4.2 Towards decidability

A main result of this chapter is that, for the class of CBMs with bounded split-
width, satisfiability checking of MSO and PDL formulas are decidable. It follows
that various model-checking problems for systems of concurrent processes with
data-structures are also decidable once a bound of split-width is assumed.

The proof of decidability is based on the following idea: Represent a (split-)
CBM M of split-width at most k as a tree. Interpret the logics and automata
over (split-) CBMs over such tree-representations. Benefit from the decidability
of logics and automata over trees.

This section investigates a good tree-representation for split-CBMs with
bounded split-width.

A candidate tree for such a representation is a k-split-term s such that M ∈
JsK. However, such a split-term represents several split-CBMs (all those in JsK),
whereas we want the tree-representations to be unique: A tree-representation
should represent only one CBM.

4.2.1 Disambiguated split-terms

Let us locate where the uniqueness fails in split-terms. A basic split-terms
represents a unique split-CBM. A merge introduces some ambiguity on which
elastic edge is being replaced by a rigid edge, and thus compromises uniqueness.
Similarly a shuffle also has several possibilities, which again spoils uniqueness.

The ambiguous merge and shuffle can be disambiguated in order to meet our
purpose. This requires some additional labelling (or typing) of the operations.

For a merge, we explicitly specify which elastic edge gets transformed to a
rigid one. Thus a merge node will be labelled by a pair (p, j), where p ∈ Procs
and j ∈ {1, . . . , k − 1}, meaning that the jth elastic edge on process p is replaced
by a rigid edge.

Example 4.6. Consider Example 3.10. There are five split-CBMs inmerge(M12).
Each of them can be uniquely identified by the following labelling (in the order):

merge(1,1)(M12), merge(1,2)(M12), merge(2,1)(M12),
merge(2,2)(M12), merge(2,3)(M12).

For a shuffle, we specify which of the components come from the first ar-
gument (left child). Thus a shuffle node is labelled by a set of pairs S =
{(p1, j1), . . .}. If (p, j) ∈ S, then the jth component on Process p comes from
the first argument. Otherwise it comes from the second argument.

Example 4.7. Consider Example 3.15. The six split-CBMs in M141 ✁M142
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can be uniquely identified by the following labelling (in the order) :

M141 ✁{(1,1),(1,2),(1,3),(2,3),(2,4)}M142

M141 ✁{(1,1),(1,2),(1,3),(2,2),(2,4)}M142

M141 ✁{(1,1),(1,2),(1,3),(2,2),(2,3)}M142

M141 ✁{(1,1),(1,2),(1,3),(2,1),(2,4)}M142

M141 ✁{(1,1),(1,2),(1,3),(2,1),(2,3)}M142

M141 ✁{(1,1),(1,2),(1,3),(2,1),(2,2)}M142

Notice that the label on a merge operation specifies an elastic edge, whereas
that on shuffle operations specifies a set of components. The label on the merge
node could also be seen equivalently as identifying the component which gets
merged to its successive one.

We also make a minor change to the leaves of the split-terms
so as to make the constructions easier. The basic split-term
(a, p)⊲ (b, p′) will instead be represented as a tree of size three.

⊲

(a, p) (b, p′)

Such a disambiguated-k-split-term (abbr. k-DST) uniquely determines ak-DST
split-CBM. A k-DST is a finitely labelled at-most-binary tree.

• The leaves are labelled by pairs (a, p) from Σ×Procs.

• The unary internal nodes are labelled by pairs (p, j) fromProcs×{1, . . . , k}.

• Some binary nodes are labelled by ⊲. These nodes appear at height 1.

• The remaining binary nodes are labelled by sets of pairs of process name
and component number, from 2Procs×{1,...,k+1}.

Thus the finite labels of a k-DST comes from the set (Σ × Procs) ∪ {⊲} ∪
(Procs×{1, . . . , k})∪2Procs×{1,...,k+1}. This constitutes the finite alphabet for
k-DST which we denote by k-DST-Labels.k-DST-Labels

A k-DST is a binary tree over k-DST-Labels. The set of nodes of a k-DST
T is denoted dom(T ). The set of leaves of a tree T is denoted LeavesT , and
the set of leaves of the subtree of T rooted at the node x ∈ dom(T ) is denoted
LeavesT (x).

4.2.2 Valid k-DSTs

A k-DST is valid if it actually represents a split-CBM.

Note that any binary tree over k-DST-Labels need not be a valid DST. Even
if the labellings respect the typing requirements described above, it may still
have invalid labels: The specified elastic edge at a merge node need not be
present, or all the components specified at a shuffle node might not be present,
either in the parent or in the child.
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However, validity can be checked if we know how many components are
present on each process at every node. We call this information (number of
components per process) the ‘type’ of a node, and with the help of ‘type’ we
can define valid k-DSTs.

A binary tree over k-DST-Labels is a valid k-DST if there valid k-DSTis a mapping

Type from the nodes of the tree to p-tuples Type{0, . . . , k}Procs, denoted Type(x) =
(ix1 , . . . i

x
p), such that the following hold for every node x:

dst1 If T (x) = (a, p) ∈ Σ×Procs, then x is a leaf, and
Type(x) = (0, . . . , 0, 1

︸ ︷︷ ︸

p

, 0, . . . , 0
︸ ︷︷ ︸

p−p

).

dst2 If T (x) = ⊲, then x has two children y and z. Both y and z must be leaves.
Let T (y) = (a, p1) and T (z) = (b, p2). Then, Type(x) = Type(y)+Type(z),
their component-wise sum.

For instance, if p1 < p2, Type(x) = (0, . . . , 0, 1
︸ ︷︷ ︸

p1

, 0, . . . , 1
︸ ︷︷ ︸

p2−p1

, 0, . . . , 0
︸ ︷︷ ︸

p−p2

)) , and if

p1 = p2, Type(x) = (0, . . . , 0, 2
︸ ︷︷ ︸

p1

, 0, . . . , 0
︸ ︷︷ ︸

p−p1

)

dst3 If T (x) = (p, j) ∈ Procs × {1, . . . , k}, then x has only one child, call
it y, and Type(x) = (iy1, . . . , i

y
p−1, i

y
p − 1, iyp+1, . . . , i

y
p). Moreover, j ≤ ixp

(equivalently, j < iyp).

dst4 If T (x) = S = {(p1, j1), . . .} ⊆ Procs× {1, . . . , k + 1}, then x has two
children y and z. Type(x) = Type(y) + Type(z), their component-wise
sum. If (p, j) ∈ S, then j ≤ ixp . For each p, |{j | (p, j) ∈ S}| = iyp.

Remark 4.8. Note that the mapping Type is unique if it exists.

A valid k-DST represents a unique split-CBM. In fact, every subtree of a
k-DST T represents a unique split-CBM. Thus we can associate a split-CBM to
every node x ∈ dom(T ) – the one represented by the subtree rooted at x. The
events of this split-CBM correspond to the leaves of the subtree rooted at x.
We call it the semantics, and denoted it by JxKT . The semantics of a k-DST T
is the semantics of its root. That is, JT K = JxKT where x is the root of T . JT K

In fact, Type(x) is an abstraction of JxKT since JxKT has ixp components on
process p.

We will now inductively define JxKT = (Ex = LeavesT (x), λx, pidx,
r−→x,

e−→x

,⊲x), and also verify that it agrees with Type(x). Simultaneously, we will also JxKT
verify that JxKT ∈ JsxK where sx is the split-term defined by the subtree of T
rooted at x.

• If T (x) = (a, p), then JxKT is the CBM with a single node labelled a on
process p. That is,

JxKT = (Ex = {x}, λx = {x 7→ a}, pidx = {x 7→ p}, r−→x = ∅, e−→x = ∅,⊲x = ∅)
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Clearly JxKT agrees with Type(x), and JxKT ∈ JsxK.

• If T (x) = ⊲. Let the left child of x be y with T (y) = (a, p) and the right
child of x be z with T (z) = (b, p′). Then JxKT is the unique split-CBM in
J(a, p)⊲ (b, p′)K.

JxKT = (Ex = {y, z}, λx = {y 7→ a, z 7→ b}, pidx = {y 7→ p, z 7→ p′},

r−→x = ∅, e−→x =

{

{(y, z)} if p = p′

∅ otherwise
,⊲x = {(y, z)})

Notice that JxKT agrees with Type(x), and JxKT ∈ JsxK.

• If T (x) = (p, j). Let y be the only child of x. Then JxKT = merge(p,j)(JyKT ).
Notice again that Type(x) agrees with JxKT , and JxKT ∈ JsxK.

• If T (x) = S = {(p1, j1), . . .}. Let y and z be the children of x. Then

JxKT = JyKT ✁S JzKT

Notice that Type(x) agrees with JxK, by definition of shuffle, and JxKT ∈
JsxK. In fact, all the components specified by the set S are present in JxKT ,
as T is a valid k-DST (cf. condition dst4).

Example 4.9. A disam-
biguated version of the split-
term from Example 3.17, and
the CBM it represents are
shown in the right. The label
on the topmost shuffle node
(topmost binary node) says
that the second component
on Process 1 and the first
component on Process 2 come
from the left child. The label
on the topmost but one merge
node (unary) says that the first
elastic edge on Process 2 must
be replaced by a rigid edge.

1 2

a

ba

b a

(1, 1)

(2, 1)

{(1, 2), (2, 1)}

⊲

(b, 2) (a, 1)

(1, 1)

{(2, 1)}

(a, 2) ⊲

(a, 1) (b, 1)

Automaton Ak-valid: The set of all valid k-DSTs is recognisable. A determin-
istic bottom up tree automaton can remember the type of a node in its state.

Ak-valid Only consistent transitions are allowed, and the states are updated accordingly.
We call this automaton Ak-valid. The number of states of Ak-valid is at most
(k + 1)p.

Let s be a split-term of width at most k. For each split-CBM M ∈ JsK, the
split-term s can be disambiguated to a k-DST TM such that JTMK = M. We
denote by disamb(s) the set of all disambiguations of s. Thus disamb(s) is a set
of valid k-DSTs.
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Proposition 4.10.
JsK = {JxKT | T ∈ disamb(s)}

Thus we may conclude that valid k-DSTs are sound and complete for split-
CBMs of width at most k.

Proposition 4.11. If T is a valid k-DST, then JT K is a split-CBM of split-
width at most k. Conversely, if M is a split-CBM of split-width at most k, then
there is a valid k-DST T such that M = JT K.

Proof. The soundness follows from the definition of JT K. For the completeness,
since M has split-width at most k, there is a split-term s of width at most k
such that M ∈ JsK. From Proposition 4.10, there is a k-DST T ∈ disamb(s),
which is a disambiguation of s, such that M = JT K.

4.2.3 Retrieving a CBM from its k-DST encoding

In fact, a k-DST T offers more than just disambiguating a split-term to have a
single split-CBM in its semantics. It indeed embeds the split-CBM it represents.
By definition, the events of JT K are the leaves of T . Moreover, the edge relations
⊲, r−→ and e−→ can be recovered in T efficiently.

Proposition 4.12. Let T be a valid k-DST with JT K = (E , λ, pid, r−→, e−→,⊲).
The relations r−→ and e−→ can be recovered in T

• by a deterministic tree-walking automaton with at most kp states.

• by a deterministic bottom-up tree-automaton with at most 3×kp+2 states
over a marked alphabet (k-DST-Labels× {0, 1}2).

The relation ⊲ can be recovered by a deterministic tree-walking automaton with
at most 2 states, and equally by a deterministic bottom-up tree-automaton with
at most 3 states over a marked alphabet (k-DST-Labels× {0, 1}2).

Proof. Tree-walking automaton for r−→ : The tree-walking automaton starts at
a leaf x, walks up the tree T tracking its component in its state, until it finds
the first merge node labelled by its current state. Then it walks down the tree
following the left-most event of merge partner (which corresponds to a leaf y).
In this phase it tracks in its state the component number of the leaf y until it hits
the leaf y. At every node, the update of the current state is deterministically
dictated by the label of the node.

Bottom-up automaton for r−→ : We describe a bottom-up automaton A r−→
with the following property: a valid k-DST T with two marked leaves x and y
is accepted by A r−→ (that is, T [x, y] ∈ L (A r−→)) if and only if x r−→ y in JT K.

The automaton verifies that there is exactly one leaf marked x (i.e. with
label (a, p, 1, 0)) and exactly one leaf marked y (i.e. with label (b, p′, 0, 1)) and
that these two leaves are different. A leaf x marked 1 in the second component
is assigned the state (pid(x), 1, source). The state indicates that it is the first
component on process pid(x), and the tag source says that it is assumed to be
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the source of the r−→ edge we are tracking for. Likewise, a leaf y marked 1 in
the third component is assigned the state (pid(x), 1, target). The state with a
‘source’ tag tracks the component number as it moves up, while making sure
that this component does not get merged on the right. Similarly, the state with
a ‘target’ tag makes sure that this component does not get merged on the left.
Once it reaches the common ancestor of the source and the target, it makes sure
that the target is the successor component of source. Then it keeps track of the
component of source on moving up until it sees a merge on the right when it
may move into an ‘accept’ state. During this last leg (from common ancestor
towards the merge) it ensures that no shuffle inserts a new component between
the source and its successor (which is the target). This automaton needs only
3 × kp + 2 states: kp for identifying a component number, and this could be
in the source mode, target mode, or in the last leg mode. It also uses a special
‘accept’ state and a ‘no-x-no-y’ state1. A tree is accepted only if it has a run
which assigns the accepting state to the root.

Tree-walking automaton for e−→ : This is similar to that of r−→. It starts
at a leaf x, walks up the tree T tracking its component in its state until the
root, verifying that it does not encounter a merge node labelled by its current
state. Then it walks down the tree following the left-most event of the successive
component (which corresponds to a leaf y). In this phase it tracks in its state
the component number of the leaf y until it hits the leaf y. At every node, the
update of the current state is deterministically dictated by the label of the node.

Bottom-up automaton for e−→ :This automaton is essentially A r−→ with a
different acceptance condition. The ‘accept’ state of A r−→ is rejecting for A e−→,

as x must not have a r−→ successor. The state corresponding to the ‘last-leg’ is
instead accepting since it verifies that the e−→ edge is preserved until the root.

For ⊲ and ⊲−1 the tree-walking automaton moves up from the leaf x to its
father checking that it is a ⊲ node and moves down to the other child verifying
that it is the leaf y.

Remark 4.13. The inverse edge relations r−→
−1

, e−→
−1

and ⊲−1 can be also recog-
nised symmetrically. The sizes of the automata remain the same.

4.2.4 Split-MSCNs

Our aim is to reason about MSCNs rather than CBMs. The events of an MSCN
are adorned with a data-structure identity (δ). The relation ⊲ in the case of
MSCNs is the union of the matching relations of the various data-structures
(that is, ⊲ = ⊎d∈DS⊲

d). Moreover, each ⊲d has to conform to the relevent
data-structure access policy – LIFO or FIFO.

In order to encode an MSCN as a CBM, we enrich the action label to include
the data-structure identity as well. The requirements on ⊲d can then be checked
by a tree-automaton. First we define split-MSCNs and their split-width.

1This state acts like an additive zero for the transitions.
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Let A be an architecture with the set of processesProcs, and data-structures
DS. A split-MSCN split-MSCNover the architecture A and a set of actions Σ is a tuple
M = (E , λ, pid, δ, r−→, e−→,⊲) where

• (E , (λ, δ), pid, r−→, e−→,⊲) is a split-CBM over Σ∪ (Σ×DS) and Procs and

• M = (E , λ, pid, δ,→ = r−→∪ e−→,⊲) is an MSCN over A and Σ.

The split-width of an MSCN M is the split-width of its underlying CBM.
We denote the set of all MSCNs over the architecture A and action set Σ

with split-width at most k by k-MSCN(A,Σ)k-MSCN(A,Σ).

In fact the encodings of k-MSCN(A,Σ) form a regular subset of k-DSTs
over (Σ × DS) and Procs. We can construct an automaton which verifies
that a binary tree over k-DST-Labels indeed represents an MSCN M ∈ k-
MSCN(A,Σ). For this, we need to ensure that the data-structure access policies
are respected, in addition to checking that it accepts valid k-DSTs. We will
describe in Proposition 4.14 the automaton Ad which verifies the access policy
for the data-structure d. Then requisite automaton will be a product of Ak-valid

and Ad for all d ∈ DS.

Proposition 4.14. For every data-structure d ∈ DS, there is a deterministic
bottom up tree-automaton Ad of size 2k

2

such that a valid k-DSTs over (Σ×DS)
and Procs is accepted by Ad if and only if the encoded CBM respects the access
policy of the data-structure d.

Proof. The bottom up tree automaton Ad remembers in its state the set of
pairs of components linked by a ⊲d edge. The automaton updates its state
consistently at a shuffle node, as well as at a merge node. Only those states
which are consistent to the access policy on d are permitted.

More formally, the states of the automaton are subsets of {1, . . . , k}2. If a
state contains a pair (i, j) then it means that there is a ⊲d edge from an event
in the ith component of Writer(d) to the jth component of Reader(d). If d is a
stack, a state of the automaton must not contain two pairs (i1, j1) and (i2, j2)
such that i1 < i2 < j1 < j2. If d is a queue, a state must not contain two pairs
(i1, j1) and (i2, j2) such that i1 < i2 and j2 < j1.

Thus, those shuffles which may violate the access policy on the data-structure
d are disabled. The number of states of this automaton is at most 2k

2

.

We denote by Ak-DS the product automaton of the various Ad. That is
Ak-DS =

∏

d∈DS Ad. The deterministic bottom-up automaton Ak-DS makes Ak-DS

sure that the access policies on all the data-structures are respected. The size
of Ak-DS is O(2k

2
d).

Finally, we obtain the deterministic bottom-up tree-automaton which recog-
nises the encodings of k-MSCN(A,Σ) as k-DSTs over (Σ×DS) and Procs. We
denote this automaton by Ak, which is the product of Ak-valid and Ak-DS. For Ak

acceptance, it requires in addition that the root verifies that every process has
at most one component. This information (Type) is available in the states of

the automaton Ak-valid. The size of Ak is 2O(k2
dp).
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As we shall see next, various verification problems on MSCNs and CPDS
become decidable when parametrised by a bound on split-width. The decid-
ability is shown via automata theoretic techniques, in fact by constructing tree
automata over k-DSTs. The automaton Ak will be a common “module” in most
of these constructions.

4.3 Decision Procedures

As alluded to before, the verification problems discussed in Chapter 2 become
decidable, if parametrised with a bound on split-width. In this section we will
see the parametrised versions of the verification problems and their decision
procedures one by one. The decision procedures make crucial use of the notions
introduced in the previous section.

4.3.1 MSO satisfiability

Problem 10 (SW-par-MSO-SAT).
Input ϕ: an MSO(A,Σ) formula,

k ∈ N.
Question Does there exist M ∈ k-MSCN(A,Σ) such that M |= ϕ?

Theorem 4.15. SW-par-MSO-SAT is decidable in time non-elementary in the
size of the formula ϕ.

Proof. We will construct a tree-automaton Ak(ϕ) over binary trees over k-DST-
Labels such that it accepts k-DST encodings of k-MSCNs which model the
formula ϕ. Recall that the automaton Ak recognises the encodings of k-MSCNs.

L (Ak(ϕ)) = {T ∈ L (Ak) | JT K |= ϕ} (4.1)

The automaton Ak(ϕ) is obtained as the intersection of Ak and Ak(ϕ) which
is built by structural induction on ϕ as described below.

Recall that the events of JT K correspond to the leaves of T .
Hence, first-order and second-order variables of an MSO formula ϕ over

MSCNs will be interpreted as first-order and second-order variables ranging
over the leaves of k-DST T .

Therefore, in order to define the automaton Ak(ϕ) inductively, we consider
first atomic formulas assuming that free variables are bound to (set of) leaves.
Thus, to build the induction, we consider an extended alphabet where leaves
are labelled with the free variables. A second order free variable may label
several leaves, whereas a first order free variable labels exactly one leaf. This
consistency check on first order variable labelling can be easily checked by a
bottom up tree-automaton.

The cases p(x) (pid test), a(x) (action label test) and d(x) (data-structure
label test) can be verified by the k-DST-Label of the respective leaf. The cases
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x = y and x ∈ X are again tests on the labels of the leaf by the extended
alphabet. We can easily construct a deterministic bottom up tree automaton
for these basic formulas. For the atomic binary relations x → y and x ⊲ y, we
employ the automata provided by Proposition 4.12.

Hence, we have deterministic bottom-up tree automata for all atomic for-
mulas. The sizes of these automata are O(kp).

The automaton for the inductive cases are obtained using the classical con-
structions on automata: union for disjunction, complementation for negation,
and projection for existential quantification.2

The automaton Ak(ϕ) makes sure that the split-CBM encoded by any ac-
cepted DST satisfies the formula ϕ. The automaton Ak verifies that any ac-
cepted DST indeed encodes a valid MSCN in k-MSCN(A,Σ). Thus their inter-
section Ak(ϕ) indeed verifies Equation (4.1).

Theorem 4.15 follows immediately since emptiness is decidable for tree au-
tomata.

4.3.2 PDL satisfiability

Problem 11 (SW-par-PDL-SAT).
Input φ: a PDL(A,Σ) sentence,

k ∈ N.
Question Does there exist M ∈ k-MSCN(A,Σ) such that M |= φ?

Theorem 4.16. SW-par-PDL-SAT is in ExpTime.

Proof. If Eσ appears in the sentence, then as before, we will construct a tree-
automaton Ak(σ) over binary trees over k-DST-Labels such that it accepts
k-DST encodings of k-MSCNs which model the formula σ.

L (Ak(σ)) = {T ∈ L (Ak) | JσKJT K 6= ∅}

The automaton Ak(σ) is actually the intersection of Ak and Ak(σ) where

L (Ak(σ)) = {T | JσKJT K 6= ∅}

We will now describe how to construct automaton Ak(σ).

In fact, we construct from a PDL formula σ an alternating two-way tree
automaton (A2A) [FL79, Var85], which can then be translated to the desired
tree automaton Ak(σ). The A2A is constructed inductively. We use the power
of alternation to deal with the boolean connectives: non-determinism for dis-
junction, alternation for conjunction, and dualisation for negation. For path
expression, we employ any translation from a regular expression to an automa-
ton. This is then viewed as a walking automaton. The basic steps are simulated

2The projection operation makes the automaton non-deterministic, and hence it must
be determinised before a complementation, and this is what makes the construction non-
elementary.
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by simpler walking automata described in Proposition 4.12. If a state formula
need to be asserted at a node, the walking automaton invokes the corresponding
alternating automaton (which is constructed by induction).

Thus the size of the A2A for σ is O(kp|σ|).
The A2A for Eσ walks down to an arbitrary leaf and launches the A2A for

σ. The boolean closure can be easily taken into account by an A2A. Thus we
get an A2A for φ whose size is O(kp|σ|).

We can indeed obtain a bottom-up tree automaton Ak(σ) from the above

A2A[Var98]. The number of states of Ak(σ) is 2O(k2|σ|2).

The PDL sentence is satisfiable with respect to k-split-width MSCNs if and
only if Ak(φ) is non-empty.

Remark 4.17.PDL with intersection For PDL with intersection, the satisfiability checking with respect
to bounded split-width behaviours is 2ExpTime. The problem in this case is
called SW-par-PDL∩-SAT.

This bound is obtained by essentially an adaptation of the construction in
[GLL09] for PDL with intersection over trees. The tree-walking alternating
automaton for atomic path-expressions in their construction are very simple,
which, in the adaptation, needs to be replaced with the walking automata de-
scribed above. Thus the automata for basic steps have O(kp) states. The rest of
the construction remains the same. Thus it gives us a two-way alternating tree
automaton with the number of states O((k|σ|)IW(σ)) where IW(σ), as defined
in [GLL09] is bounded from above by the total number of occurrences of the
intersection operator (∩) in σ.

The emptiness of an A2A can be done in exponential time. The above
construction gives us an A2A whose number of states is exponential in the size
of the formula σ (and hence exponential in φ). Hence the complexity upper
bound follows.

4.3.3 Temporal Logics satisfiability

Problem 12 (SW-par-TL-SAT).
Input φ: a TL(A,Σ) sentence,

k ∈ N.
Question Does there exist M ∈ k-MSCN(A,Σ)such that M |= φ?

Theorem 4.18. SW-par-TL-SAT is in ExpTime.

Proof. We instead do the parametrised satisfiability check of TL2PDL(ϕ).

Remark 4.19.TL with arbitrary PDL

steps

Notice that the proof goes through verbatim if we consider the
extension of the TL with arbitrary path-expressions as steps (π). Thus the
parametrised satisfiability of this extended temporal logic is also decidable in
ExpTime.
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Remark 4.20. TL with MSO definable

modalities

Consider the extension of the TL with MSO definable modalities.
The parametrised satisfiability problem of this logic is decidable, thanks to
Theorem 4.15. The complexity, however, is non-elementary. For a temporal
logic with a fixed set of modalities, the precise complexity can be characterised
to be some m-fold exponential where m depends on the alternation depth of the
modality definitions. This characterisation is due to Mennicke [Men13a].

However, if the parameters are fixed (k, A and Σ is not part of the input),
then the satisfiability is in ExpTime. A decision procedure in this case is an
adaptation of [GK10, BCGZ11].

4.3.4 CPDS emptiness checking

We consider the bounded split-width emptiness checking of concurrent processes
with data-structures:

Problem 13 (SW-par-CPDS-Emptiness).
Input S: a CPDS over A and Σ,

k ∈ N.
Question Is L (S) ∩ k-MSCN(A,Σ) = ∅?

Theorem 4.21. SW-par-CPDS-Emptiness is in ExpTime.

Proof. Theorem 4.15 and Remark 2.19 allows us to conclude the decidability
of the above problem. However, we can improve the complexity by directly
building an automaton Ak(S) over k-DSTs such that a DST T is accepted if
and only if the encoded MSCN MT is accepted by S.

The automaton Ak(S) will be the cascade product of the automaton Ak and
an automaton Ak(S) which we define below.

The automaton Ak(S) is intended the simulate the run of S on the MSCN.
Notice that each rigid component of a split-MSCN is a contiguous execution
trace of a process in S. Thus a split-MSCN is a collection of several execution
traces, which is closed under the data-structure accesses, meaning that, if a read
event is present, then so is the corresponding write event, and vice versa. Thus
Ak(S) labels each component of a split-MSCN with a pair of control locations
(ℓ, ℓ′) with the intended meaning that the component can potentially take the
corresponding process from location ℓ to location ℓ′.

Thus we keep the set of states of Ak(S) as Locs2kp. A split-term may have
fewer than k components on a process. Even in this case, the automaton re-
members in the state a tuple of fixed length (2k), and discards the last entries
as “don’t-cares”. The length until which the tuple must be read is actually
the number of components present at that node (cf. Type). This information
is available in the state of the automaton Ak-valid. Thus the automaton Ak(S)
needs to access the states of the Ak-valid: this is why we have considered the
cascade product of the automata instead of normal intersection.
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This intuition of partial system runs described above is followed in the tran-
sition rules.3

• A leaf (a, p) (which is not a child of ⊲ node) can be labelled by (ℓ, ℓ′) if
(ℓ, a, ℓ′) ∈ Transp:int

• Consider a subtree ⊲

x y

with T (x) = (a, p, d) and T (y) = (b, p′, d):

The leaf x can be labelled by (ℓ1, ℓ
′
1) and the leaf y can be labelled by

(ℓ2, ℓ
′
2) and the ⊲ node can be labelled by a tuple ((ℓ1, ℓ

′
1), (ℓ2, ℓ

′
2)), if

(ℓ1, a, ℓ
′
1, ℓ) ∈ Transp→d and (ℓ2, ℓ, b, ℓ

′
2) ∈ Transp′←d.

• For a shuffle node, the start and end control locations of each component
are inherited from the corresponding children.

• For a merge node x labelled (p, j): Let its child be y. Suppose the bottom-
up tree automaton at node y assigns the pair (ℓ1, ℓ

′
1) to the component

(p, j) and the pair (ℓ2, ℓ
′
2) to the component (p, j + 1). Then the merged

component (p, j) of the node x can be assigned (ℓ1, ℓ
′
2) if ℓ′1 = ℓ2. The

pair of control locations for the other components of x are inherited from
those of the child y.

Finally, the accepting states of the bottom-up tree-automaton Ak(S) will
be tuples ((ℓ1, ℓ

′
1), . . . , (ℓp, ℓ

′
p)) such that (ℓ1, . . . , ℓp) is the global initial state of

the CPDS S and (ℓ′1, . . . , ℓ
′
p) is a global final state of S.

Thus we get the following theorem:

Theorem 4.22. Given a CPDS S and an integer k, we can construct in time
exponential in k and polynomial in S an automaton Ak(S) = Ak×Ak(S) which
accepts all k-DSTs T such that S has an accepting run on JT K. The size of

Ak(S) is |S|O(k) × 2O(k2).

To answer Problem 13, we only need to check the emptiness of Ak(S). Since
the emptiness of an exponential sized tree-automaton can be checked in expo-
nential time, the bound claimed in Theorem 4.21 follows.

Consider the following problem where the bound k on split-width, as well as
the architecture A and the set of actions Σ is fixed a priori.

Problem 14 (SW-k-CPDS-Emptiness).
Input S: a CPDS over A and Σ.
Question Is L (S) ∩ k-MSCN(A,Σ) = ∅?

From Theorem 4.22 it follows that

Corollary 4.23. SW-k-CPDS-Emptiness is in PTime.

3We only mention the relevant entries of the tuple here. The don’t-cares could be anything.
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4.3.5 Inclusion checking and Universality checking

Next we consider inclusion checking of CPDSs with respect to behaviours of
bounded split-width. Given two systems S1 and S2 we would like to check
whether all the MSCNs accepted by S1 and having split-width at most k are
also accepted by S2.

Problem 15 (SW-par-CPDS-Inclusion).
Input S1, S2: two CPDS over A and Σ,

k ∈ N.
Question Is L (S1) ∩ k-MSCN(A,Σ) ⊆ L (S2)?

This can be done by checking whether the language of Ak(S1) is contained
in the language of Ak(S2). The inclusion test for tree automata can be done by
standard constructions which involves complementing the latter tree automaton.

Thus we get the following theorem.

Theorem 4.24. SW-par-CPDS-Inclusion is in 2ExpTime. If the bound on
split-width k is fixed, SW-k-CPDS-Inclusion is in ExpTime.

Note that the tree-automaton Ak accepts all k-DSTs encoding MSCNs of
split-width at most k, and the size of Ak is 2O(k2). Hence, we also get the
decidability of universality checking.

Problem 16 (SW-par-CPDS-Universality).
Input S: a CPDS over A and Σ,

k ∈ N.
Question Is k-MSCN(A,Σ) ⊆ L (S)?

Theorem 4.25. SW-par-CPDS-Universality is in 2ExpTime. If the bound on
split-width k is fixed, SW-k-CPDS-Universality is in ExpTime.

4.3.6 MSO model checking

Bounded split-width model checking of CPDS against MSO addresses the fol-
lowing problem:

Problem 17 (SW-par-MSO-MC).
Input ϕ: an MSO(A,Σ) formula,

S: a CPDS over A and Σ,
k ∈ N.

Question Do all M ∈ L (S) ∩ k-MSCN(A,Σ) satisfy M |= ϕ?

This problem is decidable since it amounts to checking inclusion between tree
automata, more precisely, whether the set of trees accepted by the automaton
Ak(S) of Theorem 4.22 is contained in the set of trees accepted by the automaton
Ak(ϕ) of Section 4.3.1

Theorem 4.26. SW-par-MSO-MC is decidable in time non-elementary in the
length of the MSO formula, exponential in k, and polynomial in the size of the
CPDS.
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4.3.7 PDL and TL model checking

Problem 18 (SW-par-PDL-MC).
Input φ: a PDL(A,Σ) sentence,

S: a CPDS over A and Σ,
k ∈ N.

Question For all M ∈ L (S) ∩ k-MSCN(A,Σ), does M |= φ?

Consider the automaton Ak(¬φ) obtained in the proof of Theorem 4.16. For
PDL model checking we only need to check emptiness of the intersection of
Ak(S) and Ak(¬φ).

Theorem 4.27. SW-par-PDL-MC is in ExpTime.

Since we have a linear translation from TL to PDL (cf. Table 2.3), we get a
decision procedure for TL model checking as well.

Problem 19 (SW-par-TL-MC).
Input φ: a TL(A,Σ) sentence,

S: a CPDS over A,
k: an integer.

Question For all M ∈ L (S) ∩ k-MSCN(A,Σ),
does M |= ϕ?

Theorem 4.28. SW-par-TL-MC is in ExpTime.

4.4 Opt for Optimal

Here we summarise and optimise the complexities of our decision procedures for
the various verification problems. We address the case when the parameters are
part of input as well as the case when they are fixed. The parameters include
not only the bound on split-width k, but also the architecture A and the set of
action labels Σ.

4.4.1 Optimal complexities

The complexity upper bounds of the various verification problems are sum-
marised in Table 4.1.

These time complexity bounds are also optimal. For the case when the bound
on split-width is not part of input follows from the known lower bounds for the
simpler case of nested-words. For the case when the bound on split-width is part
of input follows from the known lower bounds of the simpler case of bounded
phase multi-pushdown systems[LMP07, BCGZ11]. This class of behaviours is
shown to have bounded split-width ([CGN12a]; Also Section 11.2).

Consider the case of nested-words. The split-width of any nested-word is
at most 2 (cf. Example 3.23). Hence the complexity upper bounds for the
various decision problems follow that in the right-most column of Table 4.1.
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These bounds indeed match the lower bounds shown in the literature. The
lower bounds for emptiness, inclusion and universality follow from [AM09]. The
lower bounds for the satisfiability and model checking of temporal logics over
nested-words (NWTL) is shown in [AAB+08]. The lower bounds for PDL satisfi-
ability and model checking is shown in [BCGZ11], where we also give the generic
framework of MSO definable temporal logics capturing NWTL, and still match-
ing the ExpTime complexity. The satisfiability and model checking against
MSO is non-elementary even in the simpler case of words. Thus we conclude
the lower bounds for the case when the parameter is not part of the input

The lower bounds when the parameter is part of the input follow from the
case when it is fixed, except for CPDS emptiness, inclusion and universality.
In fact, we can deduce a matching lower bound for CPDS emptiness check-
ing, which we argue below in the particular case of bounded-phase multiply-
nested-words. However, we only have ExpTime lower bound for inclusion and
universality which we obtain from the case when the parameter is fixed.

A multiply-nested-word (MNW) is an MSCN over an architecture of multi-
pushdown systems (single process and multiple stacks). A phase of an MNW
is a contiguous sequence of events which pop from at most one stack, while no
restriction on pushes is imposed. A p-phase MNW is one which can be decom-
posed into p phases. This restriction was introduced and studied in [LMP07],
where emptiness checking of CPDS under this restriction is shown to be 2Ex-

pTime. It is shown to be 2ExpTime-Hard in [LMP08b]. Temporal logics and
PDL over this restriction was studied again in [BCGZ11], where we show that
the satisfiability and model checking with respect to temporal logics and PDL

are 2ExpTime, whereas they become 3ExpTime once we allow intersection
in PDL. We show that a p-phase bounded MNW has split-width bounded by
O(2p) in [CGN12a]. We prove this bound again in a more general setting in
Section 11.2. Thus, we may conclude the optimality of the decision procedure
for CPDS emptiness checking as well as the asymptotic optimality of the bound
on split-width of this class.

4.4.2 Further optimisations

The decision procedures uniformly make use of the encoding of MSCNs by dis-
ambiguated split-terms, and the tree-automata techniques. However, there are
classes of systems over specific architectures, which indeed have bounded split-
width, but the split-terms are more “linear” than tree-like. For example, the
class of all words have split-width one: Any word can be canonically decom-
posed to have a split-term with a special structure — the right subtree of any
shuffle node is simply a leaf. In fact there are other classes as well, whose de-
compositions have such word-like properties. We will see elaborate examples
in Part III. We will now argue that we can optimise the space complexity in
such cases by replacing the tree-automata techniques with corresponding word-
automata techniques.

A split-term is word-like word-like, if all the shuffle nodes have, either its left or its
right, subtree with height at most a constant, say m.
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Problem

Complexity

When par, the bound on split-width,

is part of the input is fixed

SW-par-MSO-SAT Non-elementary

SW-par-PDL-SAT ExpTime-Complete

SW-par-PDL∩-SAT 2ExpTime -Complete

SW-par-TL-SAT ExpTime-Complete

SW-par-CPDS-Emptiness ExpTime-Complete PTime-Complete

SW-par-CPDS-Inclusion 2ExpTime ExpTime-Complete

SW-par-CPDS-Universality 2ExpTime ExpTime-Complete

SW-par-MSO-MC Non-elementary

SW-par-PDL-MC ExpTime-Complete

SW-par-PDL∩-MC 2ExpTime-Complete

SW-par-TL-MC ExpTime-Complete

Table 4.1: Summary of the complexities for bounded split-width verification.
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Such split-terms can be seen as a word over an extended alphabet - the label
of the shuffle node contains the whole missing subtree. Thus, the extended
alphabet size is (k-DST-Labels)2

m+1

. Since m is a priori fixed constant, this
amounts to a polynomial blow-up in the alphabet size.

The parametrised problems discussed in this chapter can be asked for word-
like MSCNs. In this case, the complexities of the decision procedures can
be improved by using finite state word automata techniques instead of tree-
automata. Recall that the emptiness checking of finite state word automata is
in NLogSpace where as for tree-automata, it is in PTime. Thus, this gives us
a better space complexity for the decision procedures.

The complexities of the decision procedures for word-like MSCNs, in the
case where the bound k on split-width is part of the input and otherwise, are
summarised in Table 4.2.

Problem (Word-Like)

Complexity

When par, the bound on split-width,

is part of the input is fixed

SW-par-MSO-SAT Non-elementary

SW-par-PDL-SAT PSpace-Complete

SW-par-PDL∩-SAT ExpSpace-Complete

SW-par-TL-SAT PSpace-Complete

SW-par-CPDS-Emptiness PSpace-Complete NLogSpace-Complete

SW-par-CPDS-Inclusion ExpSpace-Complete PSpace-Complete

SW-par-CPDS-Universality ExpSpace-Complete PSpace-Complete

SW-par-MSO-MC Non-elementary

SW-par-PDL-MC PSpace-Complete

SW-par-PDL∩-MC ExpSpace-Complete

SW-par-TL-MC PSpace-Complete

Table 4.2: Complexities of the decision procedures for the various verification
problems for word-like MSCNs.

Remark 4.29. The notion of word-like MSCNs can be generalised to allow sub-
trees whose size is bounded polynomially in the split-width, rather than by a
constant m. A polynomial sized subtree can be abstracted in a node by an
extended labelling. The extended alphabet size in this case is again exponential
in the bound on the split-width. As our k-DST-Labels was exponential in k,
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the extended alphabet is still polynomial in the original alphabet size. Hence
even in this general case of word-like, the complexity bounds shown in Table 4.2
follow.

Remark 4.30. The lower bounds in this case follow from the known lower bounds
in the case of words. The lower bounds of emptiness, inclusion and universality
of CPDS follow from the case of undirected acyclic communicating finite state
processes[LMP08a]. The behaviours of such systems have split-width bounded
by one plus the number of processes (1+p). We show this bound in Section 9.2.

4.4.3 Parametrised verification with respect to parame-
ters other than split-width

We can consider various other (parametrised) classes of MSCNs for under-
approximate verification. For example, bounded phase multiply nested words
with the bound on the number of phases as a parameter. The various verifica-
tion problems we considered in this chapter become decidable if the class under
consideration has a bounded split-width and is MSO definable.

Let U(p) be a class of MSCNs parametrised by a parameter p. The parametrised
verification problems and the fixed parameter verification problems can be asked
in the case of the class U(p) in the natural way.

Assume MSCNs in U(p) have split-width at most k = f(p). Further suppose
k-DST encodings of MSCNs in U(p) can be recognised by a tree-automaton
AU(p) of size at most 2poly(k). Then the parametrised verification problems
with respect to the class U(p) are decidable. The decision procedures can be
adapted by replacing the automaton Ak with the intersection of Ak and AU(p).

The complexity upper bounds when the function f is polynomial is given
in Table 4.3 and when f is exponential (k = 2poly(p)) are given in Table 4.5.
Table 4.4 and Table 4.6 summarise the complexities when the class U(p) in
addition admits word-like split-terms.

We will see various parametrised classes of MSCNs in Part III, where the
decision procedures may reduce to the above case.

4.5 Closure Properties

Closure under union, intersection and renaming of CPDS holds even when
restricted to bounded split-width behaviours. In fact the same constructions
described in Section 2.4.3 work, preserving the same bound on split-width.

However, for concatenation, the bound of split-width k is preserved only if
k > p, the number of processes. If M1 and M2 have split-width at most k for
some k > p, then their concatenation M1 · M2 also has split-width at most k.
We explain this below.

If s1 and s2 are split-terms with width at most k such that M1 ∈
Js1K and M2 ∈ Js2K, then consider s = s1 ✁ s2. The elasticity
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Problem

Complexity

When the parameter p

is part of the input is fixed

U-par-MSO-SAT Non-elementary

U-par-PDL-SAT ExpTime

U-par-PDL∩-SAT 2ExpTime

U-par-TL-SAT ExpTime

U-par-CPDS-Emptiness ExpTime PTime

U-par-CPDS-Inclusion 2ExpTime ExpTime

U-par-CPDS-Universality 2ExpTime ExpTime

U-par-MSO-MC Non-elementary

U-par-PDL-MC ExpTime

U-par-PDL∩-MC 2ExpTime

U-par-TL-MC ExpTime

Table 4.3: Summary of the complexities of the parametrised decision procedures
for the class U(p) when the split-width of U(p) is bounded by k = poly(p), and
encodings of U(p) is recognisable by a 2poly(k) tree-automaton over k-DSTs.
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Problem (Word-Like)

Complexity

When the parameter p

is part of the input is fixed

U-par-MSO-SAT Non-elementary

U-par-PDL-SAT PSpace

U-par-PDL∩-SAT ExpSpace

U-par-TL-SAT PSpace

U-par-CPDS-Emptiness PSpace NLogSpace

U-par-CPDS-Inclusion ExpSpace PSpace

U-par-CPDS-Universality ExpSpace PSpace

U-par-MSO-MC Non-elementary

U-par-PDL-MC PSpace

U-par-PDL∩-MC ExpSpace

U-par-TL-MC PSpace

Table 4.4: Complexities of the decision procedures for the various verification
problems for the class U(p) if it is admits a word-like split-term of width at
most k = poly(p), and when the encodings of U(p) is recognisable by a tree-
automaton of size at most 2poly(k).

of s is at most p. Thus the split-width of s is at most max(k, p).
M1 · M2 ∈ Jmerge(merge(. . .merge(s) . . .))K.

An interesting problem which we leave open is closure under complemen-
tation with respect to bounded split-width. Though we can complement the
tree-automata for the k-DST encodings of MSCNs, we do not know how to
obtain a corresponding CPDS given a tree-automaton over k-DSTs.
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Problem

Complexity

When the parameter p

is part of the input is fixed

U-par-MSO-SAT Non-elementary

U-par-PDL-SAT 2ExpTime ExpTime

U-par-PDL∩-SAT 3ExpTime 2ExpTime

U-par-TL-SAT 2ExpTime ExpTime

U-par-CPDS-Emptiness 2ExpTime PTime

U-par-CPDS-Inclusion 3ExpTime ExpTime

U-par-CPDS-Universality 3ExpTime ExpTime

U-par-MSO-MC Non-elementary

U-par-PDL-MC 2ExpTime ExpTime

U-par-PDL∩-MC 3ExpTime 2ExpTime

U-par-TL-MC 2ExpTime ExpTime

Table 4.5: Summary of the complexities of the parametrised decision procedures
for the class U(p) when the split-width k of U(p) is at most exponential in p, and
encodings of U(p) is recognisable by a tree-automaton of size at most 2poly(k)

over k-DSTs.
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Problem (Word-Like)

Complexity

When the parameter p

is part of the input is fixed

U-par-MSO-SAT Non-elementary

U-par-PDL-SAT ExpSpace PSpace

U-par-PDL∩-SAT 2ExpSpace ExpSpace

U-par-TL-SAT ExpSpace PSpace

U-par-CPDS-Emptiness ExpSpace NLogSpace

U-par-CPDS-Inclusion 2ExpSpace PSpace

U-par-CPDS-Universality 2ExpSpace PSpace

U-par-MSO-MC Non-elementary

U-par-PDL-MC ExpSpace PSpace

U-par-PDL∩-MC 2ExpSpace ExpSpace

U-par-TL-MC ExpSpace PSpace

Table 4.6: Complexities of the decision procedures for the various verification
problems for the class U(p) if it is admits a word-like split-term of width k which
is at most exponential in p, and when the encodings of U(p) is recognisable by
a tree-automaton of size at most 2poly(k).
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Chapter 5

Split-width equivalent to
clique-width

Contents
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5.4 Bounded clique-width implies bounded split-width 95

In this section, we relate the notion of split-width to other well-known mea-
sures on graphs such as clique-width and tree-width. Our main result states
that a bound on one of these parameters imposes a bound on the others too.
This is stated in Theorem 5.1 and is depicted in Figure 5.1. This gives us a
very interesting corollary: Bounded split-width characterises MSO decidability
for CBMs.

We will now reason briefly how to conclude the corollary from Theorem 5.1.
The rest of the chapter will then be mainly devoted to proving Theorem 5.1.

Theorem 5.1. 1. If the split-width of a CBM is k, then its clique-width is
at most 2(k + p) + 1.

2. If the clique-width of a CBM is c, then its split-width is at most 2c− 3.

For bounded degree graphs, clique-width is bounded if and only if its tree-
width is bounded [CE12]. The translation between clique-width and tree-width
gives us the following corollary:

Corollary 5.2. 1. If the split-width of a CBM is k, then its tree-width is at
most 2(k + p)− 1.

2. If the tree-width of a CBM is t, then its split-width is at most 120(t+ 1).
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Tree-width (t)Clique-width (c)

Split-width (k)
c ≤ 2(k + p) + 1

k ≤ 2c− 3

t ≤ 2(k + p)− 1

k ≤ 120(t+ 1)

Figure 5.1: Relation between split-width, clique-width and tree-width for CBMs

Let L be a class of graphs over the vocabulary V . We say that the class L
has a decidable MSO-theory if the following problem is decidable.

Problem 20. Input: ϕ: An MSO formula over the vocabulary V .
Question: Is there a graph G ∈ L such that G |= ϕ?

A class of graphs L over a vocabulary V is MSO definable, if there exists
an MSO(V ) formula φ such that for all graphs G over the vocabulary V , G ∈
L ⇐⇒ G |= φ.

Fact 5.3 ([CE95]). If a class of graphs is definable in MSO and has bounded
clique-width, then it has a decidable MSO theory.

The converse of Fact 5.3 is not known to be true. D. Seese conjectured that
the converse is true [See91]. Courcelle [Cou06] showed that Seese’s conjecture
holds true for bounded degree graphs:

Fact 5.4 ([Cou06]). If a class of bounded degree graphs has a decidable MSO
theory, then it has bounded clique-width.

Note that CBMs are bounded degree graphs. Thus, Fact 5.4 together with
Theorem 5.1 give us a very interesting corollary:

Corollary 5.5. Let L be a class of CBMs. If L has a decidable MSO theory,
then L has bounded split-width.

The rest of this chapter is devoted to proving Theorem 5.1.

5.1 Preliminaries

Here we will recall the definitions of clique-width and tree-width. We will also
see another notion called special-tree-width, which is actually what we use in
our translations.

Clique-width

Here we recall the definition of clique-width for directed graphs with node and
edge labels.
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Let NLabels be a finite set of node labels and ELabels be a finite set of edge
relation names. A directed node labelled graph with several edge relations is
a tuple G = (V ,N-label, (Eγ)γ∈ELabels) where V is the set of vertices, N-label :
V → NLabels is the node labelling function, and Eγ ⊆ V ×V is the edge relation
γ. Such a graph can be equivalently seen as directed graph with node and edge
labels, that is as a tuple G = (V ,N-label,E-label) where V is the set of vertices,
N-label : V → NLabels is the node labelling function, and E-label : V × V →
2ELabels gives the set of edge relations between every pair of vertices.

Definition 5.6 (k-clique-term). Let C = {1, . . . , k} be a set of colors. The
k-clique-terms over (NLabels,ELabels) are given by

t ::= (a, x) | t⊕ t | Renx,y(t) | Addxγy(t)

where a ∈ NLabels, γ ∈ ELabels, and x, y ∈ C. The operator Ren, allows
renaming of colours, and Addγ adds a γ-edge.

Each k-clique-term t defines a graph Gt = (V t,N-labelt,E-labelt) and a sur-
jective colouring relation χt ⊆ C × V t.

• The term t = (a, x) denotes the graph which has a single vertex v labelled
a, and no edges. The colouring relation is χt = {(x, v)}.

• The term t = t1⊕ t2 denotes the disjoint union of the graphs Gt1 and Gt2 .
The colouring relation is also the disjoint union: χt = χt1 ⊎ χt2 .

• The term t = Renx,y(t1) denotes the same graph Gt1 . But the colouring
relation recolours to y all the vertices coloured x in Gt1 . That is, Gt = Gt1

and χt = {(c, v) | c 6= x and (c, v) ∈ χt1 , or c = y and (x, v) ∈ χt1}.

• Finally, the term t = Addxγy(t1) adds a γ-edge from every vertex coloured
x to every vertex coloured y in Gt1 .

E-labelt(v1, v2) = E-labelt1 ∪







{γ} if v1 ∈ χt1(x) and v2 ∈ χt1(y)

∅ otherwise

The clique-width of a graph G is the smallest k such that G = Gt for some
k-clique-term t.

Special-Tree-width [Cou10]

Special-tree-terms are clique-terms which satisfy some additional conditions.
These terms use a special additional colour 0 which never gets recoloured, nor
takes part in edge additions. Moreover, every other colour can colour at most
one node.

Definition 5.7 (k-special-tree-term). A k-special-tree-term t is a clique-term
on a set of k + 1 colours C = {0, 1, 2, . . . k} such that the following conditions
hold:
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stw1 For every subterm t1 of t, χ
t1 defines a partial function on the set {1, . . . , k}.

That is, if (x, v1), (x, v2) ∈ χt1 , then v1 = v2 or x = 0.

stw2 The color 0 is never recolored. That is, for every subterm Renx,y(t1)
occurring in t, we have x 6= 0.

stw3 The color 0 does not take part in edge additions. That is, for every subterm
Addxγy(t1) occurring in t, we have x 6= 0 and y 6= 0.

stw4 A vertex must not be created with colour 0. That is, t must not have
(a, 0) as a subexpression for a ∈ NLabels.

The special-tree-width of a graph G is the smallest number k such that
G = Gt for some (k + 1)-special-tree-term t.

Tree-width

The concept of tree-width of a graph is one of the most important measures of
the algorithmic complexity of a graph and has played a fundamental role in the
recent developments in graph theory. The tree-width of a graph is an integer
which, as the folklore phrase goes, “tells how close a graph is to a tree” (the
tree-width of a graph is 1 if and only if it is a forest).

A bound on tree-width is often shown by a “tree-decomposition” of a graph.
The tree-decomposition of a graph is a tree whose nodes are bags of vertices of
the original graph such that

1. Every vertex of the graph must be present in at least one bag.

2. If two vertices are linked by an edge in the graph, then there must be at
least one bag which contains both these vertices.

3. If a vertex is contained in two bags, then it is contained in every other
bag on the unique path between them in the tree-decomposition.

The width of a tree-decomposition is the maximum bag size minus one. The
tree-width of a graph G is the smallest k such that G has a tree-decomposition
of width k.

Which width is wider?

Note that a k-special-tree-term is a (k+1)-clique-term. Thus a bound on special-
tree-width implies a bound on clique-width, but the converse is not true.

A k-special-tree-term also suggests a tree-decomposition of width k−1 which
is isomorphic to the term: The bag at a sub-term t is exactly those vertices which
are not coloured by 0 (i.e. χt({1, . . . , k})).

Fact 5.8. 1. The tree-width of a graph is at most its special-tree-width.

2. The clique-width of a graph is at most its special-tree-width plus two.
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In fact, a bound on tree-width implies a bound on clique-width:

Fact 5.9. [CO00, CR01] The clique-width of any graph with tree-width k is
bounded by 3 · 2k−1.

Fact 5.10. [CO00, CR01, Cou10] For any class of graphs L,

special-tree-width(L) <∞ =⇒ tree-width(L) <∞ =⇒ clique-width(L) <∞,

but the converse implications do not hold.

However for bounded degree graphs these three notions are “equivalent”. A
bound on one implies a bound on the others too.

Fact 5.11. [CE12] For any class of bounded-degree graphs L,

special-tree-width(L) <∞ ⇐⇒ tree-width(L) <∞ ⇐⇒ clique-width(L) <∞

5.2 Clique-width and special-tree-width for CBMs

To generate CBMs over (Σ,Procs), we set the node labels NLabels = Σ×Procs
and the edge labels ELabels = {→,⊲}.

Thus a k-clique-term for CBMs is given by:

t ::= (a, p, x) | t⊕ t | Renx,y(t) | Addx→y(t) | Addx⊲y(t)

where a ∈ Σ, p ∈ Procs, and x, y ∈ C.

Remark 5.12. Note that these terms can generate graphs which are not split-
CBMs. Indeed we require that → edges must be added only between nodes
with the same pid. We also require that a node should have at most one →
predecessor and successor. These conditions need not be satisfied by arbitrary
k-clique-terms. However these are regular properties on k-clique-terms, and can
be ensured by a regular tree automaton.

Fact 5.13 ([Cou10, CE12]). If a CBM has clique-width k then its special-tree-
width is at most k − 2.

For general graphs clique-
width (c), tree-width (t) and
special tree-width (s) are re-
lated as shown on the right.

tc

s

c ≤ s+ 2(Cou10)
t ≤ s(Cou10)

c ≤ 3 · 2t−1
(CO00, CR01)
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For CBMs as they
are of degree at most
three, clique-width (c),
tree-width (t) and spe-
cial tree-width (s) are
all equivalent.

tc

s

s ≤ c− 2(Fact 5.13) s ≤ 60(t+ 1)(Cou10)

c ≤ 60t+ 62 (via STW)

t ≤ c− 2 (via STW)

5.3 Bounded split-width implies bounded clique-
width

A bound on split-width implies a bound on clique-width. This follows from
Fact 5.4 and Theorem 4.15, but this does not yield a bound.

In fact, we can rewrite the split-width algebra in terms of special tree-width
algebra thus giving a bound on the special tree-width (and hence clique-width
and tree-width).

Theorem 5.14. If a CBM over (Σ,Procs) has split-width at most k, then its
special-tree-width is at most 2(k + p)− 1

Proof. Let M be a CBM with split-width at most k. We consider a (dis-
ambiguated) k-split-term s for M. Each sub-term s′of s represents a unique
subgraph of JsK, which is a split-CBM given by Js′K. The idea is to label the
end-points of the components of Js′K with unique colours. The number of such
end points is at most 2(k+p). We label the end points of the components using
colours from {1, . . . , 2(k + p)}. The remaining nodes will be coloured 0.

The special-tree-term corresponding to a disambiguated split-term s is de-
noted 〈s〉. We define it inductively as follows. Intuitively, G〈s〉 gives the rigid
part of JsK.

• If s = (a, p) then 〈s〉 = (a, p, x) for some x ∈ {1, . . . , k}.

• If s = (a, p)⊲ (b, p′) then 〈s〉 = Addx⊲y((a, p, x)⊕ (b, p′, y)).

• If s = s1 ✁S s2 then 〈s〉 = 〈s1〉 ⊕ 〈s2〉.

• If s = merge(p,j)(s1) then let t′ = Addx→y(〈s1〉) where x, y are such that

the merge joined χt1(x) and χt1(y).

Let t′′ =







Renx,0(t
′) if χt′(x) is not the first event of

any component in Gt′ (or JsK)

t′ otherwise.

Then 〈s〉 =







Reny,0(t
′′) if χt′′(y)is not the last event of

any component in Gt′′ (or JsK)

t′′ otherwise.
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5.4 Bounded clique-width implies bounded split-
width

In fact our simple split-width algebra is powerful enough to capture all CBMs
with bounded clique-width.

Theorem 5.15. Every CBM of clique-width at most k + 1 has split-width at
most 2k − 1.

This is the more involved direction. Our proof takes advantage of Fact 5.13
and shows a translation from a k-special-tree-term to a split-term of width 2k−1.

We consider two normal forms for special-tree-terms. A special tree-term is
⊲-rename-free if a node taking part in a ⊲ edge addition is never ⊲-rename-freerecoloured
between its creation and this edge addition: if Addx⊲y(t

′) is a subterm, then the
nodes taking part in this edge addition are not recolored in t′.

The other normal form we consider is called ⊲-leafed. In a ⊲-leafed ⊲-leafedspecial-
tree-term, the addition of ⊲ edges takes place “almost” at the leaf-level (at
height one, to be precise). If a⊲-leafed special-tree-term has a subterm Addx⊲y(t)
then, t = (a, x)⊕ (b, y).

Notice that a ⊲-leafed term is also ⊲-rename-free.
The proof of Theorem 5.15 is done in several steps. First we show that any

special-tree-term can be written equivalently as a⊲-rename-free term (Lemma 5.16).
Then we show that a ⊲-rename-free term can be written equivalently as a
⊲-leafed term (Lemma 5.18). Finally we give a translation from ⊲-leafed-terms
to split-terms (Lemma 5.20).

Lemma 5.16. For every k-special-tree-term t, there is an equivalent k-special-
tree-term t′ which is ⊲-rename-free.

Proof. It is a consequence of the following even stronger lemma.

Lemma 5.17. For every k-special-tree-term t, there is an equivalent k-special-
tree-term t′ such that if a sub-term Renx,y(t

′′) appears in t′, then y = 0 .

Proof. Suppose the term t contains a subterm Renx,y(t1) with y 6= 0. We can
assume that there is exactly one node coloured x 6= 0 and no node coloured
y 6= 0, as t satisfies the conditions in Definition 5.7.

To rewrite in the normal form, we swap the colours x and y in the sub-term
t1 and ignore the recolouring. More formally, let π be a permutation mapping
x to y and vice versa, and which is identity mapping on the other colours. We
replace each occurrence of the sub-term Renx,y(t1) in t with π(t1) to get the
term t′′. Note that the term we obtain so is still a special-tree-term, but with
fewer Renx,y(·) operations. We repeat the process until all Renx,y(·) with y 6= 0
are removed, and this gives us the desired term t′.

Lemma 5.18. For every k-special-tree-term t which is ⊲-rename-free, there is
an equivalent 2k-special-tree-term t′ which is ⊲-leafed.
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Proof. The translation to a ⊲-leafed-term is achieved at the expense of addi-
tional colours. We may use up to k additional colours from {1′, . . . , k′}.

We will bring the Addx⊲y terms to leaf level one by one, starting from in-
nermost to outermost. The resulting term at each step has one less Addx⊲y

term which is not at leaf level. Moreover this term satisfies a stronger version
of ⊲-rename-free. The stronger version of ⊲-rename-free takes the new colours
{1′, . . . , k′} into account.

A special tree-term is strongly-⊲-rename-free if for every sub-term Addx⊲y(t
′)strongly-⊲-rename-free

where t′ is not of the form (a, x)⊕(b, y), we have the following (letting u = χt′(x)
and v = χt′(y))

srf1 x, y ∈ {1, . . . , k}

srf2 Vertices u and v are never recoloured in the sub-term t′: if t′′ is a sub
term of t′ then u ∈ V t′′ =⇒ χt′′(x) = u and v ∈ V t′′ =⇒ χt′′(y) = v.

srf3 The colour x′ never appears in the branch of u and the colour y′ never
appears in the branch of v: if t′′ is a sub-term of t′ then u ∈ V t′′ =⇒
χt′′(x′) is undefined and v ∈ V t′′ =⇒ χt′′(y′) is undefined.

First we will see how to bring an innermost Addx⊲y to the leaf level. This case
is depicted in Figure 5.2 and Figure 5.3.

Suppose that t has an innermost sub-term1 t1 = Addx⊲y(t2) where t2 is not
of the form (a, x) ⊕ (b, y). Let u ∈ V t1 and v ∈ V t1 be the unique vertices
coloured x and y respectively in Gt1 (that is, χt1(x) = u and χt1(y) = v). Since
t is ⊲-rename-free, u and v were created with colours x and y respectively and
they were never recoloured.

In the sub-term t2, there needs to be a sub-term of the form t3 = t4⊕t5 such
that u is created in t4 as (a, x) and v is created in t5 as (b, y). Our idea is to
detach v from t5 and attach it next to u as shown in Figure 5.2 and Figure 5.3.
This requires transforming t4 to t′4 and t5 to t′5, and finally t3 to t′3. We will
first describe the transformation, and argue its correctness later.

The term t′4 is obtained from t4 by replacing the leaf (a, x) with Addx⊲y((a, x)⊕
(b, x′)). All the operations in t4, including those done on u, are maintained as
such in t′4.

However there are several subtleties on obtaining t′5. Note that v /∈ V t′5 .
Hence the operations in t5 involving v need to be postponed until v appears in
t′3

In the sub-term t5, node v might have got a left neighbour v− and/or a right
neighbour v+. If there were → edge additions between v and its neighbours in
t5, these spurious edge additions are omitted in t′5. However, we need to keep
the vertices v− or v+ coloured until the postponed edge additions are done. But
perhaps t5 may involve colouring v− or v+ to 0, and their previous colours may
be later used by other vertices.

We solve this issue by colouring the vertices v− and v+ to two free colours
instead of recolouring them to 0. We use y and y′ as the free colours.

1to be precise, we are referring to one occurrence of a sub-term
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⊕

Addx⊲y

(a, x)

Addy→z+

Renz+,0

Addz−
→y

Renz−,0

⊕

(b, y)

Figure 5.2: A ⊲-rename-free term. Its equivalent ⊲-leafed term is shown on
Figure 5.3
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Renx′,y

Reny′,0

Addx′
→y′

Reny,0

Addy→x′

⊕

|

Renz+,y′

|

Renz−,y

Addx⊲x′

⊕

(a, x) (b, x′)

Figure 5.3: A ⊲-leafed term corresponding to the term in Figure 5.3. Two
additional colours x′ and y′ are used. Note that these are recoloured to 0, so
that these colours are not bound outside the subtree.
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Thus t′5 is obtained from t5 as follows:

1. The leaf (b, y) where vertex v was created is removed. That is, the sub-
term (b, y)⊕ t6 is replaced by t6 in order to get the term t15.

2. If t15 has a sub-term Addz−→y(t7) such that χt7(z−) = v− , we replace it
by t7 to get t25. Otherwise, t25 = t15.

3. If t25 has a sub-term Addy→z+(t8) such that χt8(z+) = v+ , we replace it
by t8 to get t35. Otherwise, t35 = t25.

4. If t35 has a sub-term Renz−,0(t9) where χt9(z−) is v−, then we replace it
by Renz,y(t9) to obtain t45. Otherwise, t45 = t35.

5. If t45 has a sub-term Renz+,0(t10) where χ
t10(z+) is v+, then we replace it

by Renz,y′(t10) to obtain t′5. Otherwise, t′5 = t45.

Note that Figure 5.2 and Figure 5.3 consider all the above cases to be posi-
tive. Having obtained t′5 we now describe how to obtain t′3.

Suppose case 2 and case 3 were positive. Let them be coloured z1 and z2
respectively. That is, χt′5(z1) = v− and χt′5(z2) = v+. (Note that, z1 = y if case
4 above was positive. Otherwise there is no node coloured y in t5. Similarly
z2 = y′ if case 5 above was positive. Otherwise there is no node coloured y′ in
t5.) Then

t′3 = Renx′,y(Reny′,0(Addx′→z2(Reny,0(Addz1→x′(t′4 ⊕ t′5)))))

The case where only one or none of the neighbours of v are connected to v in
Gt5 are simpler: One or both of the Add→ in the expression above are removed
depending on the case.

Finally, t′1 is obtained by replacing the sub-term t3 with t′3.

Now we argue the correctness of our transformation in the following claim.

Claim 5.19. 1. Gt1 = Gt′1 and χt1 = χt′1 .

2. t′1 is a special-tree-term.

3. The term t′1 is ⊲-leafed.

4. The term t′ in which t1 is replaced with t′1 in t is strongly-⊲-rename-free.

Proof. 1. By construction of t′1. All the edge additions have been incorpo-
rated, and the nodes have been recoloured properly to match t1.

2. All we need to argue is that χt′′ is a partial function for any sub-term t′′ of
t′1. Since t is strongly-⊲-rename-free, in t1, the colour x

′ is not used in the
branch of u, and the colour y′ is not used in the branch of v. Hence using
the colour x′ for v in t′4 does not violate injection of χ in t′4. Similarly y′

can colour at most one node in t′5. Also, y can colour at most one node
in t′5, as y coloured at most one node in the branch of v in t5 and v is not
present any more.
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3. t1 has only one Addx⊲y which was not leafed. Hence, after the transfor-
mation all the ⊲ edge additions are leafed.

4. Let Addx1⊲y1
(t′′) be a non-leaf sub-term of t′ adding an edge from vertex

u1 to v1. Condition SRF1 is trivially true, as the transformation only
introduced leafed additions of ⊲-edges. Condition SRF2 holds if u1 (or
v1) is not one of u, v, v

−, v+. Clearly it cannot be u or v as ⊲ is disjoint. If
it was v− or v+, then this node was not recoloured in t′1. This is because
the recolourings were done only if originally these nodes were recoloured
to 0 in t1 which in turn disallows further edge additions. Thus Condition
SRF2 holds.

If the branches of u1 and v1 do not intersect with the branches of u and
v in t, then Condition SRF3 holds. This is because the colours x′ and y′

were recoloured to 0 in t′3, thus x
′ and y′ are only present on the branches

of u and v in t, hence not in the branches of u1 and v1. If the branch of
u1 and/or v1 (call it w) intersects the branch of u and/or v: Since it was
never recoloured, χt′1(w) = z 6= x and/or z 6= y. Hence z′ is not added
on the branch of w in the transformation from t1 to t′1. Thus Condition
SRF3 holds in all cases.

Thus our transformation moves the Add⊲ operations to the leaf level one
by one, from innermost to outermost, maintaining the properties stated in
Claim 5.19.

Now we will put the last piece for proving Theorem 5.15.

Lemma 5.20. If a CBM has a k-special-tree-term which is ⊲-leafed, then its
split-width is at most k − 1.

Proof. Let T be a k-special-tree-term which is ⊲-leafed for a CBM M. To every
sub-term t of T , we will associate a split-term denoted t-to-s(t) as follows:

• t-to-s((a, p, x)) = (a, p) if (a, p, x) is not a subterm of some Add·⊲· in t

• t-to-s(Addx⊲y((a, p, x)⊕ (b, p′, y))) = (a, p)⊲ (b, p′)

• t-to-s(t1 ⊕ t2) = t-to-s(t1)✁ t-to-s(t2)

• t-to-s(Addx→y(t1)) = merge(t-to-s(t1))

• t-to-s(Renx,y(t1)) = t-to-s(t1)

Now we claim the following:

Claim 5.21. 1. M ∈ Jt-to-s(T )K

2. Width of t-to-s(T ) is at most k − 1.

Towards proving the above claim, we first associate a split-CBM to every
sub-term t of T , denoted Ht = (Mt, e−→t). We let Mt = Gt. Thus it suffices to
define the elastic edges e−→t. It is defined top-down as follows:
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1. e−→T= ∅

2. if t = Addx→y(t
′) then e−→t′ =

e−→t ∪ {(χt′(x), χt′(y))}.

3. if t = Renx,y(t
′) then e−→t′ =

e−→t.

4. if t = t1 ⊕ t2 then, for i = 1, 2,

e−→ti= {(u, v) | u, v ∈ V ti and (u, v) ∈ J e−→t ·(¿(V
t3−i)?· →t)

∗K}

That is, e−→ti relate a pair of vertices if they are separated by at least one
elastic edge in between, and all the vertices in between them must belong
to its complementary graph Gt3−i .

Claim 5.22. Ht ∈ Jt-to-s(t)K

Proof. We argue this claim by induction. Notice that the inductive definition
of Ht terminates once a sub-term Addx⊲y or a leaf is encountered. The split
CBMs associated to these terms are uniquely determined. Thus the claim holds
for base terms.

For the inductive case

1. If t = Renx,y(t
′), then Ht = Ht′ and t-to-s(t) = t-to-s(t′), hence by

induction Ht ∈ Jt-to-s(t)K.

2. If t = Addx→y(t
′) , then Ht ∈ merge(Ht′) ⊆ Jt-to-s(t)K

3. If t = t1 ⊕ t2, then H
t ∈ Ht1 ✁Ht2 ⊆ Jt-to-s(t)K

Thus the claim holds by induction.

Item 1 of Claim 5.21 follows from Claim 5.22 since Ht = Gt = M.

Claim 5.23. For every sub-term t of T , the vertices participating in e−→t are
contained in χt({1, . . . , k}).

Proof. If (u, v) ∈ e−→t, then there is t1 = Addx→y(t2) sub-term of T such that t
is a sub-term of t2 and χt2(x) = u and χt2(y) = v. Then we know that u (resp.
v) is coloured in all Gt3 if t3 is a sub-term of t2 with u (resp. v) in V t3 . This
holds in particular when t3 = t. Thus the claim holds.

Item 2 of Claim 5.21 follows from the above claim as there can be at most
k−1 elastic edges between k vertices. Lemma 5.20 follows from Claim 5.21.
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Chapter 6

Discussions

This part of the thesis has introduced the notion of split-width. This is the main
technical tool we use to analyse CPDS. It allows us to encode an MSCN as a tree
and employ tree-automata techniques for the parametrised verification, yielding
decidability. It compares well to other graph parameters such as clique-width
and tree-width.

In Chapter 3 we have defined CBMs, split-CBMs and the notion of split-
width.

The power of split-width as a tool for under-approximate verification is ex-
ploited in Chapter 4. A way to disambiguate a split-term is proposed. This
gives an encoding of a split-CBM as a binary tree, with a bijection between
the events and the leaves of the tree. The edge relations can be easily re-
covered. This tree-encoding has opened us the possibility of benefitting from
tree-automata techniques for the under-approximate verification of CPDS.

The significance of our results is best exposed in this light of related work.
We capture uniformly various restrictions studied for under approximate veri-
fication of specific architectures. We also provide a uniform decision procedure
for various verification problems. Our generic decision procedure meets the
optimal complexity in most cases. Moreover, our technique easily extends to
generalisations. The next part (Part III) elaborates these.

In Chapter 5 we have shown that split-width is ‘equivalent’ to the classical
notion of tree-width / clique-width on CBMs. A bound on one implies a linear
bound on the other. Thus split-width, while offering a simple inductive way to
express a CBM, also is powerful enough to capture any CBM with a bounded
tree-width. In Section 6.1 we compare split-width and classical notion of tree-
width/split-width in terms of readability and usability.

One could ask numerous interesting questions in this extent. We have not
been able to address these questions during this thesis due to lack of time. We
will state some1 important questions in Section 6.2 which we leave open.

1It is by no means an exhaustive listing of open questions in this area.
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6.1 Split-width versus Tree-width

In Chapter 5 we have seen that split-width is ‘equivalent’ in power to tree-width
/ clique-width. This calls for a closer comparison between these metrics.

Tree-width and clique-width are generic graph-theoretic metrics. These are
defined for arbitrary graphs, and hence in the case of particular classes of graphs,
do not exploit the strict structure of the underlying graph into their definition.
In other words, all the edges are treated the same, whether they form a linear
/ partial order, or preserve some other structure like well-nestedness.

Split-width on the other hand implicitly reply on an underlying linear order
on each process. This linear order issplit-width exploits

the underlying graph

structure

abstracted away from the definitions, but
rather is reflected in the shuffles and merges which preserve an order. Moreover,
the ⊲ edges appear just at the atomic level. Thus the explicit handling of edges
in the case of tree-terms and clique-terms are made implicit in split-terms. Hence
one need not worry about edge additions while obtaining a split-term for an
MSCN.

Thus, split-width, in a sense, is a notion equivalent to tree-width which is
well-tuned for MSCNs. The simplicity in definition can be attributed partly to
the underlying structure of the MSCN.

Another feature which makes split-width handier and easier than tree-width
is its inductive definition. To prove the split-width of an MSCN, one needs to
find a splitting of its → edges to get two disconnected components. This can
be called a “split” operation. The cost of a split-operation is the number of →
edges getting split (into an elastic one).

Thus a split operation divides a split-MSCN into two disconnected parts.
These two disconnected parts are again split-MSCNs. Note that each of these
parts still preserve the order induced by the split by means of an elastic edge.

divide-and-conquer One can then try to recursively split each of these parts independently. Thus it
provides a “divide and conquer” approach for obtaining a split-term.

A ‘split’ operation described above corresponds to the inverse of several
‘merge’ operations. The ‘division’ is the inverse of the ‘shuffle’.

The split-width can also be expressed as a recurrence. It is the maximum
amongst the cost of a single split, and the split-width of the sub-parts.

The divide and conquer approach makes it easier to obtain the split-width
for an MSCN. This also gives a dynamic programming solution to compute the
split-width of a given MSCN. The fact that the sub-parts one has to deal with
are also of the same nature (they are also split-MSCNs) makes the analysis
easier. One has a better understanding of what sub-objects they are dealing
with. In a deeper level, one may also identify these are essentially consecutive
chunks of execution trace of some CPDS.

Obtaining a (disambiguated) split-term for an MSCN also suggests a tree-
decomposition for it. In fact, a tree-decomposition has the same structure as the
split-term. Each node of the split-term corresponds to a bag which contains all
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the vertices which are the extreme events of some component. Thus a split-term
gives a tree-decomposition, which in addition gives some intuitive insights.

The split-term also suggests one way to root the tree-decomposition. The
bags contain essentially end-points of blocks of execution-threads. Thus the
vertices in a bag may be preceded or succeeded by events which are not yet
present in the current subtree.

Notice that, once we move to a tree-decomposition suggested by a split-term,
we already lose the information about whether a vertex in the bag has one or
none of its linear neighbours. This information is transparent in a split-term.
For an arbitrary tree-decomposition (one that is not obtained this way from
a split-term), we may only infer that some of the neighbours of a vertex in a
bag might be missing (this need not be the case always, as a vertex can be
present in a bag just because it is on the path between two other bags which
contain this vertex). Moreover, if a neighbour is missing, it could very well be
a ⊲-neighbour.

On the other hand, a split-term offers an embedding of an MSCN. There is a
bijective correspondence between the embeddingevents of an MSCN and the leaves of the
split term. The edges correspond to specific paths and are easily recoverable by
a walking tree automaton. This makes reasoning about the MSCN structure on
the tree-domain easy, as witnessed by the PDL satisfiability checking procedure.

Thus split-width serves as a way to bound tree-width. It provides a divide-
and-conquer approach to obtain a tree-decomposition, and also provides extra
insights and meanings to the bags in the tree-decomposition.

The fact that bounded split-width implies bounded tree-width can be argued
alternately as:

MSCNs are bounded degree graphs. The class of bounded split-
width MSCNs have a decidable MSO theory (cf. Theorem 4.15). If
a class of bounded degree graphs has a decidable MSO theory, then it
has bounded clique-width (cf. Fact 5.4). For bounded degree graphs,
clique-width is bounded if and only if its tree-width is bounded (cf.
Fact 5.11).

Nevertheless, we have described above a constructive way to obtain a tree-
decomposition. This allows us to conclude a linear bound on tree-width. way to bound tree-widthIn
fact we have been able to improve the bound on tree-width for multi-pushdown
systems under ordering restriction from s2s to 2s+1 [CGN12a] by demostrating
a bound on split-width.

However, the converse direction which shows that any class of MSCNs with
a bounded tree-width also has a bounded split-width is surprising. If an MSCN
has a tree-decomposition which witnesses an arbitrary edge (⊲ or →) in an
arbitrary bag, it indeed has another one in which the ⊲ edges are witnessed
almost at leaves, and the bags having specific meaning. In fact such a tree-
decomposition can be understood as a sequence of divide-and-conquer opera-
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tions on the MSCN.more meaningful

tree-decomposition

This more involved direction, gives us new insights about
tree-width for MSCNs.

For a closer structural comparison between split-terms and clique-terms, we
find special tree-terms as the right intermediate formalisms. Table 6.1 contrasts
split-terms and special tree-terms for MSCNs.

Objects split-terms special tree-terms

Constant
terms

(a, p) (a, p, c)

Edges ⊲ (restricted to leaves),
merge()

Addc1→c2 , Addc1⊲c2

(unrestricted)

Growth /
expansion /
union

shuffle (✁) (respecting lin-
ear order on the compo-
nents)

Disjoint union (⊕) (no
structure on the com-
ponents)

Miscellaneous N.A. Renc1,c2

Table 6.1: Comparison between split-terms and special tree-terms for MSCNs.

Thus, split-width and tree-width are two equivalent notions. Tree-width has
been well-studied and is now classical as opposed to split-width. One might
wonder whether we need a new metric when we already have another one which
is well-studied, particularly when the new metric is simply equivalent to the old
one. We address these concerns with the following analogy.

FO vs. LTL analogy Consider first-order logic and linear time temporal logics (LTL) over words.
These two are equivalent in expressive power. It is rather easy to see that a
temporal logic can be expressed in first order logic, as the semantics of every
modality is FO definable. The other direction is more involved, but nevertheless,
these two formalisms are equal in power.

First order logic is a classical logic which is very well-studied and accepted.
Even then, temporal logics adorn a very special place and is very widely used.
One of the reasons behind this is the following.

LTL makes reasoning about properties easier and simpler. The first-order
logic formulas have the ‘order’ relation and the free-variables, which one has to
keep in mind while writing a formula to state a property. On the other hand,
temporal logic formulas make these implicit in their definition. One does not
have to worry about free-variables, what it corresponds to, and the underlying
linear order.
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Notice that, the well established first-order logic is defined for arbitrary
graphs and is well studied, whereas LTL is defined only for linear orders. Nev-
ertheless LTL is much more handy once we are studying words (or linear orders).

In the analogy tree-width corresponds to first-order logic which is classical,
well-studied and established. The bags in a tree-decomposition (or the colours
in a tree-term) are analogous to the free-variables. Just like first-order logic is
defined over arbitrary structures, tree-width is defined over arbitrary graphs.
On the other hand, split-width is defined only for specific structures of MSCNs,
similar to LTL which is defined only for linear orders. The explicit bags of a tree-
decomposition are abstracted away in a split-term, just like the free-variables
are abstracted away in an LTL formula. The merge and shuffle operations are
analogous to the temporal modalities. These operations rely on, and at the
same time abstract away, the underlying order in the structure.

Thus to conclude, we believe that split-width is a handier tool for the analysis
of MSCNs. However, unlike tree-width/clique-width, split-width is not defined
for arbitrary graphs, and cannot be a replacement for the former. Nevertheless,
one may benefit from the divide-and-conquer approach and the deeper insights
into the underlying structure offered by split-width for the analysis of MSCNs.

6.2 Open Problems

However, there are many interesting questions one could ask in this setting,
which we have not considered in this thesis due to shortage of time. These form
interesting directions for future research. We list out a few such questions in
this section.

Open Question 6.1. Are the decision procedures for the parametrised problems
optimal for CPDS inclusion checking and universality checking?

One interesting specification formalism which we have not considered is µ-
calculus. How do we compute fix-points in tree encodings like a DST. What is
the complexity? Can the decision procedure for PDL be extended to capture
µ-calculus?

Open Question 6.2. What is the complexity of the parametrised (by the bound
on split-width) model checking a CPDS against a µ-calculus formula?

What is the complexity of the parametrised satisfiability of µ-calculus?

Another very interesting question is a logical characterisation of recognisabil-
ity by CPDS. We know that the language of a CPDS can be expressed in the
existential fragment of MSO. However, the other direction is more challenging.
Given an MSO formula, does there exist a CPDS whose language corresponds
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to the satisfiable models of the formula? This question cannot be answered
affirmatively always, as CPDS as not closed under complementation.

Does it become decidable, if parametrised by a bound on split-width?

Open Question 6.3 (SW-par-MSO-to-CPDS).

Input ϕ: an MSO(A,Σ) formula,

k ∈ N.

Question Does there exist a CPDS S over A and Σ such that

for every MSCN M ∈ k-MSCN(A,Σ),

M ∈ L (S) if and only if M |= ϕ?

The above question can be asked for various other logical languages. Let L
be a logical language describing MSCNs over A and Σ.

Open Question 6.4 (SW-par-L-to-CPDS(A,Σ)).

Input exp: an expression in the language L,

k: an integer

Question Does there exist a CPDS S such that

L (S) ∩ k-MSCN(A,Σ) = L (exp) ∩ k-MSCN(A,Σ)?

Open Question 6.5. Does there exist a non-trivial logical language L such
that Problem 6.4 becomes decidable?

We did not address closure under complementation while discussing the clo-
sure properties with respect to the bound on split-width. We know, that the
language of CPDS are not closed under complementation in general. However,
if we impose a bound on split-width, can one effectively complement a CPDS?

Open Question 6.6 (SW-par-CPDS-Complementaion).

Input S: a CPDS over A and Σ,

k ∈ N.

Question Does there exist a CPDS S ′ such that

L (S ′) ∩ k-MSCN = k-MSCN(A,Σ) \ L (S)?

Open Question 6.7. Is Problem 6.6 decidable? What is the precise complex-
ity?

The above problem would become decidable (with a trivial answer ‘yes’) if
we have a translation from a tree-automaton over valid k-DSTs to a CPDS over
the corresponding architecture such that an MSCN is accepted by the CPDS if
and only if its k-DST encoding is accepted by the tree-automaton. This gives
us another interesting problem at hand.
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Open Question 6.8 (SW-par-DST-to-CPDS).

Input A: a tree-automaton over k-DST encodings of k-MSCN(A,Σ),

k ∈ N.

Question Does there exist a CPDS S over A and Σ such that

L (S) = {JT K | T ∈ L (A)}?

Note that the above question asks for S to be faithful to A only within k-
MSCNs. S is free to have behaviours whose split-width is more than k. This
gives us an even more challenging problem at hand:

Open Question 6.9 (SW-to-CPDS).

Input A: an architecture,

k ∈ N.

Question For any set of actions Σ, does there exist

a CPDS S over A and Σ such that L (S) = k-MSCN(A,Σ)?

We leave these very interesting questions open. However, to compensate, we
consider some distributed controllers for CPDS in Part III. These distributed
controllers are implementable, and enforces a bound on split-width. The CPDS,
when run synchronously with the distributed controller, is guaranteed to gen-
erate only behaviours of bounded split-width.

6.3 Frequently Asked Questions

◮ Can MSCNs of split-width k be recognised by a CPDS?

We believe it is not possible to recognise k-MSCN(A,Σ) by a CPDS.
It is in fact a very interesting open problem (cf. Open Question 6.9)

.

◮ Can L (S) ∩ k-MSCN(A,Σ) be captured by a syntactic restriction on the

CPDS S?

This is another interesting open problem. We believe it is not pos-
sible.

However, we can impose syntactic restrictions on CPDS which
will impose the given bound on split-width to the permitted be-
haviours. We will see examples of such restrictions in the next chap-
ter. However, these may forbid some valid behaviours of the system
whose split-width is well within the bound.

◮ Is there an MSO formula over MSCNs describing MSCNs of split-width k?
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We believe it is not possible to have an MSO description of bounded
split-width. However, MSO with fix-points seem more promising in
this regard.

◮ Can split-width be a replacement for tree-width? What are the advantages

of tree-width over split-width?

It depends on what structure one is interested in. Please refer to
Section 6.1.

◮ Are there any complexity gains on using split-width as a verification param-

eter instead of tree-width?

Since we have linear translations between the various bounds, we
believe there are no theoretical complexity gains. However, we
gain a better understanding of the verification procedures. For ex-
ample, the evaluation of a PDL formula over a split-term is intu-
itive, whereas it is not so clear what it would mean over a tree-
decomposition. Thus, we believe split-width would enable us to find
easier decision procedures, even though one may be able to later
adapt this procedure, or find new procedure matching our complex-
ity, using tree-width.

◮ Bounded split-width is necessary for MSO decidability. Can one decide

weaker properties, say emptiness, for classes without bounded split-width?

We do not know. This is another direction for future research.

◮ What kind of syntactic restrictions on the systems can bounded split-width

capture?

We do not have a precise characterisation. However we will see some
very generic classes with bounded split-width in Part III which will
give a flavour of the kind of restrictions bounded split-width can
capture.
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Part III

Distributed Controllers
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In Part I we saw systems over generic architectures with concurrents pro-
cesses and data structures. All verification problems are undecidable for these
systems. In Part II we saw a convenient parameter called split-width which
allows parametrised verification of these systems.

In this part, we consider the problem of implementing a restriction used for
parametrised verification in to the system.
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Chapter 7

Need for distributed
controllers

Contents
7.1 Need for implementing restrictions . . . . . . . . . 115

7.2 Desirable features of a restriction: . . . . . . . . . 117

7.1 Need for implementing restrictions

Consider the product development cycle in the hypothetical firm. The firm
develops a system which is formally verified with the help of a parameter.

Verification has been performed up to a fixed value of the parameter split-
width (the higher, the better). But this means only a subset of the possible
behaviours has been verified. This subset is precisely those behaviours admitting
an upper bound on their split-width, and can be seen as a ‘restriction’ on the
whole set of behaviours. Thus k-MSCN(A,Σ) ⊆ MSCN(A,Σ) is a restriction of
MSCN(A,Σ)

Building a complex system with the specifications verified for only a subset of
its behaviours (call it a restriction) is dangerous. For safety critical systems, the
existence of some unverified runs in the system is perhaps as bad as having the
system not verified. Hence the firm would rather like to ‘build the restrictions
into the system’.

‘Building the restriction into the system’ is called implementing a restriction.
This is the main topic of study of this part of the thesis.

The very generic restriction used by the firm for verification procedures is
often a ‘theoretical restriction’ (like split-width). Split-width poses us some

115



challenges here. Is the restriction k-MSCN implementable? We believe this is
in general not possible.

However, we can consider other implementable restrictions. We can ask
the parametrised verification problems with respect to any restriction (cf. Sec-
tion 4.4.3. Let C be a restriction (or a class of MSCNs). The parametrised
verification problems can be stated as follows:

Problem 21 (C-Emptiness).
Input S: a CPDS over A and Σ.
Question Is LC(S) = ∅?

Problem 22 (C-Inclusion).
Input S1, S2: two CPDS over A and Σ
Question Is LC(S1) ⊆ LC(S2)?

Problem 23 (C-Universality).
Input S: a CPDS over A and Σ.
Question Is LC(S) = C?

Problem 24 (C-MSO-SAT).
Input ϕ: an MSO(A,Σ) formula.
Question Does there exist M ∈ C such that M |= ϕ?

Problem 25 (C-PDL-SAT).
Input φ: a PDL(A,Σ) sentence.
Question Does there exist M ∈ C such that M |= φ?

Problem 26 (C-TL-SAT).
Input φ: a TL(A,Σ) sentence.
Question Does there exist an M ∈ C such that M |= φ?

Problem 27 (C-MSO-MC).
Input ϕ: an MSO(A,Σ) formula.

S: a CPDS over A
Question Do all M ∈ LC(S) satisfy M |= ϕ?

Problem 28 (C-PDL-MC).
Input φ: a PDL(A,Σ) sentence.

S: a CPDS over A and Σ
Question For all M ∈ LC(S), does M |= φ?

Problem 29 (C-TL-MC).
Input φ: a TL(A,Σ) sentence.

S: a CPDS over A and Σ
Question For all M ∈ LC(S), does M |= ϕ?

Theorem 7.1. Let C be a class of MSCNs. If C is MSO definable, and C has
bounded split-width, then the Problems 21 - 29 are decidable.
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Proof. It follows from MSO definability and the bound on split-width, thanks
to Theorem 4.15.

A main challenge now is to come up with good restrictions which are as
lenient as possible. This part is oriented towards this direction. We will propose
a few restrictions, which generalise and uniformly capture several restrictions
studied in the literature for particular architectures. The following chapters will
discuss the implementability of these restrictions, and show an upper bound on
their split-width.

7.2 Desirable features of a restriction:

The restrictions we consider for verification are generic in the sense that they are
not constrained by the architecture or the alphabet or the system. Split-width,
for instance, is defined in a uniform way which can be applied to any fixed
architecture and alphabet. We call this feature uniformity , and a restriction uniform

which possesses uniformity is called a uniform restriction. A uniform restriction
is one which is defined independent of the architecture, the set of actions and
the system. independence

It is desirable that the implementation can also be done uniformly. That system independence

is, there is a generic way to impose the restriction, which is independent of the
architecture and the system, and the adaptation to the specific case gives the
specific implementation.

For example, a generic implementation method could be a “distributed com-
munication protocol”. If all the processes in the system follow the protocol while
executing their local actions, it may bound the split-width. The protocol could
be something like, at most three ‘phases’ of data-structure access; a phase is
constrained to access only one data-structure.1

An implementation method which is NOT generic is ‘disabling transitions’
of the system. This is highly system dependent. One cannot define generic
‘rules’ for disabling transitions without really analysing the system.

We choose to implement a restriction again as a CPDS. The implementation
essentially suggests a family of CPDS, one for each architecture. This CPDS is
called a controller for the restriction.

The controller will again be defined in a uniform way. The system can be
designed independently. Then the implementation (or the controlled system)
will be the synchronous product of the the controller and the system.

We say that a controller realises a restriction if the former is sound and
complete with respect to the latter. Realisability is an important concern while
choosing a restriction for under-approximate verification. We will now argue
the importance of realisability (or, soundness and completeness).

1This is only an example protocol. This protocol does not yield decidability for verification.
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Let us denote the restriction under which a system has been formally verified
by C. C identifies, or is equivalent to, a subset of MSCNs. For each architecture
A and set of actions Σ, we have C ⊆ MSCN(A,Σ). A C-restricted CPDS S
admits fewer behaviours. For a CPDS S over A and Σ, the restricted language
of S is denoted LC(S) (= C ∩ L (S)).

Let C be a controller for the restriction. Let LC(S) denote the behaviours
of the C-controlled system.

A controller C realises C if, for all architectures A and set of actions Σ and
CPDS over A and Σ, LC(S) = LC(S). Thus the controller must be independent
of the system.

The implementation will guarantee safety if C ⊆ C. Safety properties check
whether an unsafe state can be reached in the system.soundness If C guarantees that an
unsafe state cannot be reached, then so does C ⊆ C.

For liveness properties, we require completeness (C ⊆ C). Liveness can be
thought of as preserving the possibility to execute some action in the future.

completeness Suppose C satisfies some liveness properties. Removing some behaviours from
this set may potentially violate this property.

Implementing a controller as a CPDS makes it distributed. This is a very im-
portant property. For physicallydistributedness distributed system, a global (or, non-distributed)
controller is practically infeasible.

Thus, a controlled system essentially has two fields in its states and data-
structure entries: A ‘system field’ and a ‘control field’. The system does not
access/modify the ‘control fields’ and the controller does not access/modify the
‘system fields’.

This method of implementation of a restriction has the following advantages.
1. MSO definability for free (thanks to Remark 2.19).MSO-definability

2. Better complexity for verification algorithms than working directly with
an MSO formula for the restriction.

3. Privacy: The controller is not accessing the local states of the processes,
or the data-structure entries.privacy/security

4. Safety: The processes do not modify the states of the controller.
5. Possibility to provide some controllers as “libraries”. The controllers avail-

able in the library will be uniform. Thus, once a system is designed, it
may import the suitable controller from the library and run synchronously
with it.

Note that, by asking the controller to be synchronously running with the
system, we ensure that no new behaviours are added into the controlled system.
Note also that the controlled system is again over the same architecture, the
controller does not have private data-structures or independent data-structure
accesses. It can only tag the data-structure entries made by the system with
necessary control information in the designated ‘control field’.

Thus, we have a solution to the problem faced by our hypothetical firm. We
could consider various other restrictions which are 1) implementable, 2) MSO
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definable, and 3) of bounded split-width. If the restriction is MSO definable
and possesses bounded split-width, we can employ our decision procedures from
Part II for decidability of verification. Of course, the controller realises the
restriction in this case. Such a restriction is called a good restriction.
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In this part we will propose some good restrictions which may be added to
such a ‘controller library’. Later in this part, we will also show that several
well-studied restrictions in the literature for under-approximate verification are
subsumed by our library.
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Chapter 8

Preliminary notions
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We will propose some generic restrictions which are potential candidates for
being good. In the following chapters we will see their definitions, and discuss
the implementability and bound on split-width.

First, we introduce some basic notions, which will help us to define, under-
stand and analyse these restrictions. This chapter is dedicated to these necessary
preliminaries.

8.1 Contexts: Decompositions and Graphs

A context is a consecutive chunk of the execution of a single process. Thus in a context

context, only one process is active.
A context-decomposition splits an MSCN into different contexts. A context-

decomposition of an MSCN M = (E , λ, pid, δ,→,⊲) is a split-MSCN M such context-decomposition

that M = (M, e−→). for some e−→. Each component of M is a context.
In the following, a split-MSCN is synonymous to a context-decomposition.

Likewise, a component is synonymous to a context.

We need to reason about the inter-dependencies of different contexts. This
information is abstracted in what is called a context-graph. It is a graph
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whose vertices are the contexts. The edges relate pairs of contexts related
by some data-structure access. We provide a different edge relation for each
data-structure.

The context-graph of a split-MSCN M denoted GM, is a graph with multiplecontext-graph

edge relations. The vertices of this graph are the components of M. There is
an edge relation Ed for each data-structure d to link the components related by
an access to the data-structure d. An example is given in Figure 8.1. Thus,

GM = (V, (Ed)d∈DS)

where

• V is the set of components of M

• (Ed)d∈DS are edge relations such that for all components x, y ∈ V and
d ∈ DS, the pair (x, y) ∈ Ed if and only if there exist events e1 ∈ x and
e2 ∈ y such that δ(e1) = δ(e2) = d and (e1, e2) ∈ ⊲.

An extended context-graph is a context-graph which follows a canonical nam-extended-context-graph

ing of the contexts (or vertices) as follows: The ith context on process p is named
(p, i). Thus the canonical naming reveals the pid information and the ordering
induced by the elastic edges.

We denote by 4 the transitive closure of the edge relations of the extended4

context graph which include the elastic edges. Thus 4 is the transitive closure
of e−→ ∪

⋃

d∈DSEd.

Example 8.1. The (extended) context-graph corresponding to a split-MSCN
(or context-decomposition) over the following architecture is given in Figure 8.1.

Queue 1

Queue 2

Queue 3

Process 1

Process 2

Stack 1 Stack 2
Stack 3

8.2 Classes of context-graphs

In order to define generic classes of MSCNs we impose restrictions on context-
graphs. A class of context-graphs G defines a class of MSCNs, denoted MSCNG ,MSCNG
as follows: MSCNG = {M | M has a context decomposition M such that
GM ∈ G}.
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Figure 8.1: A split-MSCN and its (extended) context-graph.

✗ ✗ ✓

Table 8.1: Directed acyclic yes/no.

8.2.1 Preliminaries

Towards defining classes of context-graphs, we first familiarise with the notion
of acyclicity of a context graph.

A context-graph G is directed acyclic if the union of the edge relations does directed acyclicity

not impose a directed cycle. That is, if (x, y) ∈ Ed then
• x 6= y (no self loops)
• there are no directed simple path from y to x (using edges from E =

⋃

d∈DSEd)

Example 8.2. Some (counter-) examples are given in Table 8.1

A context-graph G is undirected acyclic if the disjoint union of the undirected undirected acyclicity

edge relations does not impose an undirected cycle. Note that the disjoint union
of the undirected edge relations may yield a graph with several edges between
a pair of vertices. This counts as a cycle and is forbidden by the ‘undirected
acyclicity’ condition.

Thus, if (x, y) ∈ Ed of an undirected acyclic context-graph G then
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✗ ✓ ✓

Table 8.2: Undirected acyclic yes/no.

stack

queue

stack

stack

stack

stack

✗ ✗ ✗ ✓

Table 8.3: Undirected acyclic with simple stack self-loops yes/no.

• x 6= y (no self loops)

• there is no other undirected simple path from x to y (in E ∪ E−1)

Thus only one “kind” (with respect to the labelling) of edge is possible
between any pair of nodes.

Example 8.3. Some (counter-) examples are given in Table 8.2

A context-graph G is undirected acyclic with simple stack self-loops if theundirected acyclicity

with simple stack

self-loops

union of the edge relations does not impose an undirected cycle of length more
than one. Moreover the loops must be formed by stack data-structures. That
is, if (x, y) ∈ Ed then

• either x = y and

– d ∈ Stacks and
– for all d′ 6= d, (x, y) /∈ Ed′ .

• or x 6= y and

– there is no other undirected simple path from y to x (in E ∪ E−1).

Example 8.4. Some (counter-) examples are given in Table 8.3

A context-graph G is directed acyclic with simple stack self-loops if the uniondirected acyclicity

with simple stack

self-loops

of the edge relations does not impose a directed cycle of length more than
one. Moreover the loops must be formed by stack data-structures. That is, if
(x, y) ∈ Ed then

• either x = y and

– d ∈ Stacks and
– for all d′ 6= d, (x, y) /∈ Ed′ .
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stackstack
queue

✓ ✗

Table 8.4: Directed acyclic with simple stack self-loops yes/no.

• or x 6= y and

– there is no directed simple path from y to x (in E =
⋃

d∈DSEd).

Example 8.5. Some (counter-) examples are given in Table 8.4

Now, we are ready to define some classes of context graphs.

8.2.2 Undirected Acyclic Context-Graph (k), GUA(k)

A context graph G belongs to the class GUA(k) if GUA(k)

da G is undirected acyclic, and

b G has at most k vertices: |V | ≤ k.

The next two classes permits simple (restricted) self-loops on otherwise (re-
spectively undirected/directed) acyclic context-graphs. To counterbalance, they
forbid read-access to multiple data-structures in the same context.

8.2.3 Undirected Acyclic with Simple Stack Self-loops (k),
GUASL(k)

A context graph G belongs to the class GUASL(k) if GUASL(k)

uasl G is undirected acyclic with simple stack self-loops,

b G has at most k vertices: |V | ≤ k, and

sr for all contexts x, y, z and data-structures d, d′,
if (y, x) ∈ Ed and (z, x) ∈ Ed′ , then d = d′.

8.2.4 Directed Acyclic with Simple Stack Self-loops (k),
GDASL(k)

A context graph G belongs to the class GDASL(k) if GDASL(k)

dasl G is directed acyclic with simple stack self-loops,

b G has at most k vertices: |V | ≤ k, and

sr for all contexts x, y, z and data-structures d, d′,
if (y, x) ∈ Ed and (z, x) ∈ Ed′ , then d = d′.
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8.2.5 Bounded Scope (k), GBS(k)

This class is orthogonal to all those described above. There is no bound on the
size of the context-graph. But we require that each context accesses at most one
data-structure, and, the edges do not extend over unbounded many contexts.

A context-graph G belongs to BS(k) ifGBS(k)

srw Each context accesses at most one data-structure. That is, for all contexts
x, y, z and data-structures d, d′,
if (x, y) ∈ Ed ∪ E

−1
d and (x, z) ∈ Ed′ ∪ E−1d′ , then d = d′.

dasl G is directed acyclic with simple stack self-loops,

The condition dasl implies that G enriched with the elastic edges between
consecutive components is a partial order. That is, 4 (page. 122) is a partial
order. The strict partial order is denoted ≺. If x ≺ y, we say that x is in
the past of y. Note that, the partial order ≺ also takes the elastic edges into
account.

We further require the following condition.

bs The number of contexts between the source and target of any edge in G
is bounded by k. That is, if (x, y) ∈ Ed for some data-structure d ∈ DS,
then the number of contexts z such that, z is in the past of y but not in
the past of x, is bounded by k : |{z | (z ≺ y) ∧ ¬(z ≺ x)}| < k.

Remark 8.6. We could replace the condition dasl with a simpler condition sl:

sl G has only stack self-loops. That is, for all contexts x, if (x, x) ∈ Ed then
d is a stack.

Condition dasl implies sl. Conditions sl and srw implies that the loops are
indeed simple stack self-loops. The restrictive nature of the contexts (srw + sl)
together with the directed acyclicity of MSCNs imply that any context graph
satisfying srw + sl is always directed acyclic. Hence condition srw + sl is
equivalent to srw + dasl.

Classes of MSCNs We are now ready to define and study some classes of
MSCNs based on the classes of context-graphs defined above. As we had men-
tioned before, a class G of context-graphs defines a class of MSCNs denoted
G-MSCNG-MSCN . We will examine some such classes more closely in the following
chapters.
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Chapter 9

Undirected Acyclic
Context-Graph (k), UA(k)

Contents
9.1 Definition and Examples . . . . . . . . . . . . . . . 127

9.2 MSO Definability and Bounding Split-width . . . 130

9.3 Controller . . . . . . . . . . . . . . . . . . . . . . . . 133

9.4 Decision Procedures and Discussions . . . . . . . . 136

9.1 Definition and Examples

An MSCN M belongs to the class UA(k) if it has a context-decomposition M UA(k)
such that GM ∈ GUA(k). That is, UA(k) = GUA(k)-MSCN.

The class UA(k) does not impose any restriction on contexts. In a context, a
process may write to and read from all the data-structures, as long as it avoids
cycles.

Example 9.1. All the MSCNs generated by communicating finite-state ma-
chines over undirected acyclic architectures belong to this class. If there are n
processes in the architecture, then all behaviours of systems over such an ar-
chitecture belong to UA(n). The trivial context-decomposition (with no elastic
edges) is a witness.

Example 9.2. The class UA(k) also permits non-trivial behaviours from cyclic
architectures. An example is given in Figure 9.1, where both the MSC and a
context-decomposition witnessing the membership in UA(k) are depicted.

As witnessed by the example, the class UA(k) also permits behaviours that
are not existentially bounded. That is, they need not admit a linearisation in
which the data-structure size is bounded.
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Figure 9.1: An MSC language which is not existentially bounded, and a context-
decomposition witnessing membership in UA(4). Note that the underlying ar-
chitecture is cyclic.

Example 9.3. Consider a process with a self-queue which is simulating a Tur-
ing machine. It scans a configuration left-to-right while enqueuing it. It reads
a configuration from the queue, and simultaneously enqueue the next config-
uration to the queue. Since the queue is unbounded, it may simulate Turing
machines with arbitrary long configurations. It can also simulate an arbitrary
number of computation steps. This hints that such a system renders all verifi-
cation problems undecidable.

However, if we limit the computation to only k steps, we gain decidability
for the verification problems. Such computations fall in the class of UA(k).
Figure 9.2 depicts the encoding of a 5-step computation of an unbounded Turing
machine, and a context-decomposition witnessing its membership in UA(5).

Remark 9.4. We can convince ourselves that both the conditions ua and b are
necessary for decidability.

As suggested by Example 9.3 if GM is not bounded, it is again Turing
powerful.

If we relax undirected acyclicity with weaker directed acyclicity on the
context-graph, we also lose decidability. To see this, consider an architecture
with two processes and two queues from the first process to the second. We
can easily encode solutions to Post’s Correspondence Problem as MSCNs over
this architecture. Given an instance of a PCP (u1, v1), . . . (uk, vk), the first pro-
cess non-deterministically chooses a sequence of indices i and enqueues ui in the
first queue, and vi in the second queue. The second process dequeues alternately
from the two queues verifying that they span the same word. Notice that the
MSCN encoding a solution to the PCP admits a directed acyclic context graph
with just two contexts.
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Figure 9.2: An MSCN encoding k computation steps of an unbounded Turing
machine, and a context-decomposition witnessing its membership in UA(5).
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If we keep undirected acyclicty, but allow simple stack loops, we are again
compromising decidability. Two processes each with one stack, communicating
in one direction via a queue between them can check the intersection of two
context-free languages. The behaviours of such systems are MSCNs which would
satisfy undirected acyclicity condition with two contexts and have only simple
stack loops.

9.2 MSO Definability and Bounding Split-width

The class UA(k) is EMSO definable and admits bounded-split-width.

Lemma 9.5. The class UA(k) is EMSO definable.

Proof. The EMSO formula has k existentially quantified second-order variables
to represent the contexts. The formula asserts that every event belongs to
exactly one context, and that the contexts are contiguous. Then it asserts that
there are no self loops, and that there are no undirected cycles in the context-
graph. The latter can be said in the first-order fragment as we need to rule out
only cycles of length at most k.

Theorem 9.6. If an MSCN M is in UA(k), then the split-width of M is at
most k + 1. Moreover, it is word-like.

We first prove a couple of preliminary lemmas before proving the theorem.

A brink is an extreme event of any component of a split-MSCN. That is, itbrink

is either the first event, or the last event of any component.

Lemma 9.7. In any split-MSCN M, there do not exist events e1, e2, e3, e
′
1, e
′
2, e
′
3

all different and a data-structure d such that all the following hold.

1. δ(ei) = d = δ(e′i) for each i ∈ {1, 2, 3}

2. for each i ∈ {1, 2, 3} either ei ⊲ e′i or e
′
i ⊲ ei

3. e1, e2 and e′3 belong to the same component

4. e′1, e
′
2 and e3 belong to the same component

5. ei is a brink for each i ∈ {1, 2, 3}

e1

e′3
e2

e3

e′1

e′2

Proof. Such patterns are forbidden in a split-MSCN as otherwise it will violate
the data-structure access policy (like LIFO or FIFO). Without loss of generality
we may assume that e1 →∗ e′3 →∗ e2.

First of all, we observe that e1, e
′
3 and e2 are either all write events, or

all read events. If both the components mentioned in the Lemma belong to
the same process, since the three events are related to the other component by
⊲ edge, they all must be write events if they are in the first component, and
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they all must be read events if they belong to the second component. If the
components mentioned in the Lemma belong to different processes, then the
process of e1 (which is same as pid(e′3) and also pid(e2)) is either Writer(d) or
Reader(d). In the former case, all three events are writes, and in the latter case
they are all read events.

Suppose d ∈ Queues. Since e1 →∗ e′3 →∗ e2, we deduce that e′1 →∗ e3 →∗

e′2 from the FIFO policy on queues. Suppose d ∈ Stacks. According to the
LIFO policy on stacks, we deduce that e′2 →∗ e3 →∗ e′1. Both these cases
contradict e3 being a brink.

Lemma 9.8. If M is a split-MSCN whose context-graph GM is finite and
undirected acyclic, then

• either M has a brink not taking part in the ⊲ relation,
• or M has two brinks connected by a ⊲ edge.

Proof. Suppose all the brinks of M take part in ⊲. In other words, M does
not have a brink not taking part in ⊲ relation. We will argue that M has two
brinks connected by a ⊲ edge.

In order to witness two brinks connected by a ⊲ edge, we start from a random
component x1, and descend to a component x2 connected to one of its brinks (a
brink-neighbour). If there is a ⊲ edge between the two brinks of x2, or if there
is a ⊲ edge between a brink of x1 and a brink of x2, we obtain a witnessing ⊲

edge.
Otherwise we descend to a brink-neighbour x3 which is different from x1.

Such a brink neighbour x3 exists, thanks to Lemma 9.7. The component x3
has not been visited before, thanks to undirected acyclicity. This procedure
eventually terminates by witnessing a ⊲ edge between brinks, as we have only
finitely many components.

Remark 9.9. Lemma 9.8 does not hold if we replace the assumption of undi-
rected acycilicity by weaker directed acyclicity. A counter-example is shown
in Figure 9.3. Note that the communication architecture is a directed acyclic
graph with at most one queue between an ancestor and a descendant, and there
are neither stacks nor self-loops. Moreover, at most one data-structure is read
in any context.

The proof of Theorem 9.6 is based on the following lemma.

Lemma 9.10. Let M be a split-MSCN such that GM ∈ GUA(k) (that is, undi-
rected acyclic and has at most k vertices). Then there is a split-term sM of
width at most k + 1 such that M ∈ JsMK. Moreover, sM is word-like.

Proof. The base cases are when M is a single event, or when M is e⊲ e′. The
split-terms corresponding to the base cases are atomic split-terms.

If the split-MSCN M has a brink e which is not taking part in ⊲ relation,
then M ∈ merge(sM′ ✁ se) where M′ is M without e. M′ is again a split-
MSCN such that GM′ ∈ GUA(k). The split-MSCNs in JsM′ ✁ seK have at most
k + 1 components. Thus the number of elastic edges is at most k which does
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Figure 9.3: Directed acyclicity is not enough to remove ⊲-edges one at a time!

not exceed the bound of k + 1. By induction (notice that M′ has fewer events
than M), M′ has split-width at most k + 1, and hence M has split-width at
most k + 1.

If the split-MSCN M has two brinks e and e′ such that (e, e′) ∈ ⊲, then
M ∈ merge(merge(sM′ ✁ s(e⊲e′))) whereM

′ isM without e⊲e′. Again, GM′ ∈
GUA(k). The split-MSCNs in J(sM′ ✁ s(e⊲e′))K have at most k + 2 components,
and hence at most k+1 elastic edges. By induction, M′ has split-width at most
k + 1, and hence M has split-width at most k + 1.

In fact, the inductive proof of Lemma 9.10 is complete, thanks to Lemma 9.8.

Notice also that the shuffle expressions have one argument of the form either
s(e⊲e′) or se. Thus the split-term sM is word-like.

Now we are ready to prove Theorem 9.6.

Proof of Theorem 9.6. Let M be a context-decomposition of M witnessing the
membership in UA(k). Since M satisfies GM ∈ GUA(k), from Lemma 9.10 we
have a split-term sM of width at most k+1 withM ∈ JsMK. We haveM ∈ JsMK
where sM = merge(. . .merge(sM) . . .) and this proves the bound claimed in
Theorem 9.6. Since sM is word-like, the split-term sM is also word-like.
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9.3 Controller

The class UA(k) admits a CPDS as a controller.

In fact any class based on a ‘finite context-graph’ characterisation for some
distinguishable contexts admits a finite state CPDS as a controller. A class of
MSCNs is defined as those admitting a context-decomposition with the context-
graph belonging to a set G. The set G is a subset of context-graphs with at
most k vertices. The classes of context graphs GUA(k), GUASL(k) and GDASL(k) are
examples of such G.

We will now describe the controller for a class of MSCNs based on a class of
context-graphs G (that is, G-MSCN). As particular cases, this will give us the
controller for the class UA(k), and also the classes UASL(k) and DASL(k) which
we will study in the forthcoming chapters.

The controller for G-MSCN is based on the following policy: Guess a suitable
context-graph from G in the beginning, and along the run, guess a context-
decomposition on-the-fly to match the initially guessed context-graph. The
global accepting state makes sure that each local process has guessed the same
context-graph.

The local state of such a controller has
1. the context-graph guessed in the beginning,
2. information about which context the current event belongs to (as guessed

on-the-fly along the run), and
3. information about which all nodes and edges in the context-graph have

been witnessed by the run so far.

The local state of the controller for process p is a tuple 〈G, i, F 〉 where

1. G = (V, (Ed)d∈DS) is an extended context-graph from the set G. Re-
call that, an extended context-graph follows the canonical naming of the
contexts which manifests the elastic edges.

2. i is an integer from {1, . . . , k} such that (p, i) ∈ V .

3. F = (Fd)d∈DS where Fd ⊆ Ed, and if (v1, v2) ∈ Fd, then v2 4 (p, i) in G.
Recall that 4 is the transitive closure of the edge relations of the extended
context graphs which include the elastic edges.

G is the guessed extended context-graph. (p, i) indicates the current context.
Intuitively, the run so far has witnessed i contexts on process p. Every process
tallies the edges of Ed, if it reads from data-structure d. The third component
of the local state serves this purpose. It stores the edges it has witnessed so far.
Thus every edge set Ed is verified by Reader(d).

The data-structure entries are tagged with the local state of the write event.
In addition the controller has a special control location ℓin used for the initial
state. Recall that a CPDS has a single global initial state.

The finite set of control locations Locs of the controller contains the set of
local states, the set of data-structure tags and ℓin.
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The transitions Trans of the controller is a tuple (Transp)p∈Procs, where
Transp is the set of local transitions of the local controller for process p.

The transitions of the following form are valid initial transitions.

(ℓin, a, 〈G, 1, ∅〉) ∈ Transp:int (9.1)

(ℓin, a, 〈G, 1, ∅〉, 〈G, 1, ∅〉) ∈ Transp→d (9.2)

(ℓin, 〈G, i
′, F ′〉, a, 〈G, 1, F 〉) ∈ Transp←d (9.3)

where Fd′ =

{

F ′d′ if d 6= d′

{(Writer(d), i′), (p, 1)} if d = d′

The extended context-graph is guessed in the initial transition. The first
event must belong to the first context. Moreover, if the first event is a read event,
then the set F must be updated. Further, we have the following transitions.

(〈G, i, F 〉, a, 〈G, i, F 〉) ∈ Transp:int (9.4)

(〈G, i, F 〉, a, 〈G, i+ 1, F 〉) ∈ Transp:int (9.5)

(〈G, i, F 〉, a, 〈G, i, F 〉, 〈G, i, F 〉) ∈ Transp→d (9.6)

(〈G, i, F 〉, a, 〈G, i+ 1, F 〉, 〈G, i+ 1, F 〉) ∈ Transp→d (9.7)

(〈G, i, F 〉, 〈G, i′, F ′〉, a, 〈G, i, F ′′〉) ∈ Transp←d (9.8)

where F ′′d′ =

{

Fd′ ∪ F ′d′ if d 6= d′

Fd′ ∪ F ′d′ ∪ {(Writer(d), i′), (p, i)} if d = d′

(〈G, i, F 〉, 〈G, i′, F ′〉, a, 〈G, i+ 1, F ′′〉) ∈ Transp←d (9.9)

where F ′′d′ =

{

Fd′ ∪ F ′d′ if d 6= d′

Fd′ ∪ F ′d′ ∪ {(Writer(d), i′), (p, i+ 1)} if d = d′

The transitions (9.1), (9.4) and (9.5) do not access any data-structure. The
transitions (9.2), (9.6) and (9.7) write the context-number (given in the target
state of the transition) into the data-structure. The transitions (9.3), (9.8) and
(9.9) read the context-number (i′) of the corresponding send event from the
data-structure, and update the set of witnessed edges.

The transitions (9.4), (9.6) and (9.8) provide the choice to keep the same
context for the new event, while the other transitions let the new event to mark
the start of a new context.

The values of i and i′ are bounded as per G. In any case we have i′ < k.
Moreover i < k in (9.5), (9.7) and (9.9) and i ≤ k in (9.4), (9.6) and (9.8).

Notice that the extended context-graph is guessed in the initial transition.
This guess cannot be changed along the run. The transitions (9.4) – (9.9)
preserve the graph G.

Also notice that the transitions dictated by (9.1) – (9.9) only exist if all
states are consistent. In particular, the edges added in (9.3), (9.8) and (9.9)
must be in Ed.
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A tuple (〈G1, i1, F 1〉, . . . 〈Gp, ip, F p〉) is a global accepting state if

1. G1 = · · · = Gp,

2. for each p ∈ Procs, (p, ip) is the last context on process p in Gp, and

3. for each d ∈ DS, Ed = F p
d where p = Reader(d).

Notice that the global accepting state guarantees that all the local controllers
have guessed the same graph G. Moreover, it makes sure that the guessed graph
is witnessed entirely. This defines the set Locsfin.

The global initial location is Locsin = (ℓin, . . . , ℓin
︸ ︷︷ ︸

p

).

The above controller for the class G-MSCN is denoted SG-MSCN SG-MSCN. It is a CPDS
(Locs,Trans, Locsin, Locsfin) where the elements are as described above.

The number of states of this controller is exponential in k, d and p. More
precisely, |Locs| = 2O(d×p×k2 log k).

Remark 9.11. The above generic controller gives controllers for the special cases
of UA(k), UASL(k) (Chapter 10) and DASL(k) (Chapter 11). To obtain the
controller for UA(k) (resp, UASL(k), DASL(k)) we may replace G with GUA(k)

(resp. GUASL(k), GDASL(k)) and G-MSCN with UA(k) (resp. UASL(k), DASL(k)).

We show below that the controller SG-MSCN is sound and complete for the
class G-MSCN. That is, if an MSCN M is accepted by the controller, then it
belongs to G-MSCN. Conversely, if M ∈ G-MSCN, then it is accepted by the
controller SG-MSCN. In other words, L (SG-MSCN) = G-MSCN.

In particular, L (SUA(k)) = UA(k), L (SUASL(k)) = UASL(k), and
L (SDASL(k)) = DASL(k).

Lemma 9.12. L (SG-MSCN) ⊆ G-MSCN

Proof. Suppose M = (E , λ, pid, δ,→,⊲) ∈ L (SG-MSCN). Then the controller
SG-MSCN has an accepting run (c-loc, d-loc) on M. The mapping c-loc uniquely
determines a context-decomposition M for M as follows. All the vertices on
process p labelled 〈G, i, F 〉 by c-loc for some G and F constitutes the context
(p, i). The graph appearing in the c-loc mapping is precisely the extended
context-graph GM of M: The run registers in its state every context and edge it
witnessed so far, and the global acceptance condition guarantees this. Since the
graphs permitted in the control locations, and in particular GM, are from G (by
definition), M serves as a witnessing context-decomposition for the membership
of M in G-MSCN.

Lemma 9.13. G-MSCN ⊆ L (SG-MSCN)

Proof. Let M = (E , λ, pid, δ,→,⊲) ∈ G-MSCN, and let M be a witnessing
context-decomposition. We can extract an accepting run (c-loc, d-loc) of S on
M as follows. For every event e ∈ E , c-loc maps it to the location (GM, i, F )
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where i is the context-number of event e as per M (cf. the canonical naming of
the contexts in the extended context-graph GM), and F contains the ⊲ edges
which are in the past of e: the triplets as uniquely determined by M and e:
(x1, x2) ∈ Fd if and only if there exist e1, e2 ∈ E such that 1) e1 ⊲ e2 , 2) e2 ≤ e
(that is, (e2, e) ∈ (→ ∪⊲)∗), 3) δ(e2) = d (= δ(e1)) and 4) for b ∈ {1, 2} the
event eb belongs to context xb. The d-loc map of a write event e is same as
its c-loc map (and it is ⊥ for the other events). This defines a valid run of S.
We can verify that the (c-loc, d-loc) mapping of any local neighbourhood of M
conforms to the transition relations. The run is accepting, as the c-loc mappings
of the maximal events agree on the graph GM, and the component-numbers as
well as the F -sets match the graph GM perfectly.

9.4 Decision Procedures and Discussions

The verification problems 21 – 29 are decidable in the case of UA(k). Since the
split-width of UA(k) is bounded by k+1, and since UA(k) is MSO definable, we
could employ the decision procedures studied in Chapter 4.

For recognising UA(k) over DSTs, we can employ the simulation of the con-
troller SUA(k) by a tree-automaton over valid DSTs. There is a tree-automaton

Ak(SUA(k)) (cf. page. 77) over valid-k + 1-DSTs recognises the k + 1-DST en-
codings of UA(k). Thus UA(k) admits a polynomial (which is k + 1) bound
on the split-width via word-like split-terms, and its k + 1-DST encodings are
recognisable by an exponential sized tree-automaton. Hence the complexities of
the decision procedures are as stated in Table 4.4.

The class UA(k) thus provides a good class for the verification purposes.
We have elementary decision procedures for verification problems (except those
involving MSO). Moreover, we have a finite state controller for this class.

As a corollary, this also gives us a verification technique for communicating
finite state machines over acyclic architectures. The reachability problem for
such systems has been considered in the literature [LMP08a, MP11] where it is
shown to be PSpace-Complete. Note that, we also get decision procedures for
various other problems including model checking against temporal and naviga-
tional logic specifications.

From the PSpace-hardness of the reachability of communicating finite state
machines over acyclic architectures, we may conclude the optimalitylower bounds of our deci-
sion procedure. Notice that the split-width is linear in the number of processes
in such a case. Thus we may conclude the the PSpace-hardness of CPDS with
respect to UA(k), as well as k-MSCNs, when k is part of the input.

Even in the case of cyclic topology UA(k) provides very interesting classes,
which are not existentially bounded. These can encode time bounded compu-
tations of Turing machines. It is interesting to see that we have elementary
decision procedures for all the verification problems (excluding those involv-
ing MSO), even without assuming an existential bound on the communication
channels.
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Chapter 10

Undirected Acyclic with
Simple Stack Loops (k),
UASL(k)

Allowing loops UA(k) forms a very interesting class of behaviours of commu-
nicating finite state machines. However, they are not so interesting in the case
of architectures with stacks. Strict acyclicity does not permit the unrestricted
behaviours of a single stack. The behaviour of a single stack as such is not the
root of undecidability.

Hence, we will now consider classes which are acyclic except for simple self-
loops. These self-loops must be due to stacks, since a queue loop immediately
renders all the verification problems undecidable. Also, two stack loops on the
same context is again Turing powerful, and hence must be avoided.

In such a setting, simultaneous reads from different contexts must be dis-
allowed for the sake of decidability. Otherwise it has the power to verify the
intersection of two context-free languages (cf. Remark 9.4).

In this chapter, we consider a class with the strict restriction of undirected
acyclicity, and in the next chapter we will see another class based on more
lenient directed acyclicity.
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10.1 Definition and Examples

An MSCNM belongs to the class Undirected acyclic with simple stack loops (k)
(abbr. UASL(k)) if it has a context-decomposition M such that GM ∈ GUASL(k).
That is, UASL(k) = GUASL(k)-MSCN.UASL(k)

Recall that simultaneous unrestricted execution of two stacks, or a queue,
in a single context is forbidden by Condition uasl (cf. Section 8.2.3). Thus a
context can either

• read from a stack and write to all data-structures, or
• read from a queue and write to all other data-structures.

The Examples 9.2 and 9.3 for the class UA(k) are also examples for UASL(k).
However, Example 9.1 is not an example of UASL(k) as it may have unbounded
number of interleaved reads from different data-structures.

Example 10.1. Consider communicating pushdown machines over a tree-like
architecture with stacks only on processes without incoming queues. All the
MSCNs generated by such systems belong to the class UASL(k).

Note that Example 10.1 is not an example for UA(k). Thus the classes UA(k)
and UASL(k) are orthogonal.

Example 10.2. The context-bounded model checking of multi-pushdown sys-
tems was introduced and studied in [QR05], where a context allowed access to
only one stack. This under-approximation technique assumes a bound on the
number of context switches. The behaviours of multi-pushdown systems with
at most k−1 context switches are UASL(k); a context-decomposition as per the
contexts of [QR05] confirms the membership in UASL(k).

10.2 MSO Definability and Bounding Split-width

As in the case of UA(k), this class is also EMSO definable and admits a bound
on split-width.

Lemma 10.3. The class UASL(k) is EMSO definable.

Proof. The formula uses existentially quantified second-order variables to rep-
resent each context. The specific requirements of GUASL(k) can then be stated
easily.

Theorem 10.4. If an MSCN M is in UASL(k), then the split-width of M is
at most 2k − 1.

The proof is based on the following lemma.
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Lemma 10.5. Let M be a split-MSCN. If GM ∈ GUASL(k) then there is a
split-term sM with width at most 2k − 1 such that M ∈ JsMK.

Proof. The proof is by induction on the size of M.

The base case is when all the components of M are trivial (that is only one
event per component). In this case, M is in the shuffle of several basic split-
MSCNs. The number of components of any sub-term never exceeds k. Hence
the split-width of sM in this case is at most k.

For the inductive case, suppose M has at least one non-trivial component.
We will identify two split-MSCNs M1 and M2 such that

1. M ∈ Jmerge(. . .merge(M1 ✁M2)) . . .K
1,

2. GMi
∈ GUASL(k) for each i ∈ {1, 2} and

3. the size of each Mi is strictly smaller than that of M.

By induction, there exist sM1
and sM2

each with width at most 2k − 1. More-
over, they have at most k components each. Thus the number of components of
any split-MSCN in JsM1

✁ sM2
K is at most 2k, and thus the number of elastic

edges is at most 2k − 1.
Thus the split-term sM will be merge(. . .merge(sM1

✁sM2
) . . .). The width

of sM is at most 2k − 1 (i.e., swd(sM) ≤ 2k − 1).

Now we describe how to identify the split-MSCNs M1 and M2. We have
two cases to consider.

Case 1: Suppose a brink e of M is not accessing any data-structure. Then we let
M1 be M without e, and M2 be e.

Case 2: Suppose two brinks of M, say e1 and e2, are linked with a ⊲ edge. Then
we let M1 be e1⊲e2 and M2 be M without e1⊲e2. Note that both GM1

and GM2
belong to GUASL(k).

Case 3: SupposeM does not have two brinks connected by a⊲ edge. Let x1, . . . , xk
be a topological sorting2 of the components of M. Let x be the first non-
trivial component of M according to the topological sorting. Let e1 be
the first event of x.

Claim 10.6. We have that e1 is a write-event.

Proof. Suppose e1 was a read-event. Let e2 be the matching write-event.
e2 is before e1, and in the topological sorting it forms a trivial component.
Hence e2 as well as e1 are brinks linked with⊲ edge. Hence this contradicts
the assumption that M does not have two brinks connected by a ⊲ edge.
This concludes the proof of Claim 10.6.

1The number of preceding merge operations is elasticity(M1 ✁M2)− elasticity(M).
2Since GM is undirected acyclic, it is also directed acyclic. Hence there exists a topological

sorting respecting the direction of the edges.
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If e1 is writing to a queue d, let x1 = e1 and x2 be the rest of x such that
x = x1x2. Notice that x2 is non-empty as x is non-trivial. Also notice
that queue loops are disallowed by uasl.

If e1 is writing to a stack d, we have two cases to consider depending on
whether e2 is in x or not. If e2 is not in x, we let x1 = e1 and x2 be
the rest of x such that x = x1x2. Notice that x2 is non-empty as x is
non-trivial. Again there are no ⊲ edges from x1 to x2 as the ⊲ partner of
x1 is not in x. If e2 is in x, let x1 be the prefix of x up to and including
e2, and let x2 be the rest. Since e2 is not a brink, x2 is again non-empty.
In this case also there are no ⊲ edges from x1 to x2. Because of sr, all
the ⊲ edges within x must be from the stack d itself. Hence if there if a
⊲ edge from x1 to x2, then together with e1 ⊲ e2, it will violate the LIFO
policy on stack d.

We now propagate the splitting induced by that of x to the other com-
ponents. For this, we view GM as a tree3 (or a forest) rooted at the
component x. This is always possible, as GM is undirected acyclic. We
propagate the splitting top-to-bottom in this tree. During the propaga-
tion, we maintain the following two invariants.

inv1 At every step of the propagation we make sure that there are no ⊲

edges from a component with a superscript b to another component
with a superscript 3− b, for b ∈ {1, 2}.

We write y ⊲ z if there is an event e1 ∈ x and e2 ∈ y such that e1 ⊲ e2.y ⊲ z

inv2 If a node y ( 6= x) is split into two non-empty components y1 and y2

by the propagation, then, letting father(y) = z,

(a) z ⊲ y.

(b) z = z1z2 or z = z2z1 for z1 and z2 non-empty.

(c) z1 ⊲ y1 and z2 ⊲ y2.

For each component y (other than x) taken in a top-to-bottom order (for
example in a breadth/depth-first manner), we do the following: Let z
be the parent of y (in the tree).

– If z = z1, then y1 = y and y2 is undefined.
– If z = z2, then y2 = y and y1 is undefined.
– If z = z1z2, we consider the following sub-cases.

∗ If y⊲ z: From inv2, father(z)⊲ z. From sr, z can read only one
data-structure, call it d. Hence (y, z) ∈ Ed and (father(z), z) ∈
Ed. Hence both y and father(z) belong to the same process
Writer(d) and are ordered. From inv2-(c), it follows that y is not
connected to both z1 and z2. We have four cases to consider, as
described in the following table.

3This tree is not directed. In this tree every node y has at most one parent z, but the
direction of the ⊲ edge could be either from x to y or from y to z.

140



y ⊲ z d is a queue d is a stack

y < father(z)
y1 = y ⋫ z2 y2 = y ⋫ z1

and y2 is undefined and y1 is undefined

father(z) < y
y2 = y ⋫ z1 y1 = y ⋫ z2

and y1 is undefined and y2 is undefined
The invariants inv1 and inv2 are trivially true in this case.

∗ If z ⊲ y: Let d be the data-structure being read in y. We split y
as described in the following table.
d is a queue d is a stack

Let y1 be the shortest prefix
of y to contain all the ⊲ edges
from z1, and let y2 be the rest
such that y = y1y2.

Let y1 be the shortest suffix
of y to contain all the ⊲ edges
from z1, and let y2 be the rest
such that y = y2y1.

Notice that in both cases we have y2 ⋫ z1⊲y1. Moreover, thanks
to sr and the access policy on d (LIFO or FIFO), there cannot
be any ⊲ edge between y1 and y2. Thus the invariants inv1 and
inv2 are satisfied in this case.

– If z = z2z1: This case is symmetric to the case before.

For each context y not treated by the above top-to-bottom ordering of
the tree (these are the components which are not in the same connected
component of x in GM), we let y1 = y and leave y2 undefined.

Thus the above procedure gives us a way to split the components into two.
All those4 with a superscript i forms the split-MSCN Mi. Observe that
there are no ⊲ edge between components of Mi and those of M3−i.

This gives us the required split-MSCNs M1 and M2. Notice that Mi ∈
UASL(k). Clearly, M ∈ merge(. . .merge(sM1

✁ sM2
) . . .). This concludes

the proof of Lemma 10.5.

Proof of Theorem 10.4. Let M be a context-decomposition of M such that
GM ∈ GUASL(k). M ∈ merge(. . .merge(sM) . . .), and the width of sM is at
most 2k − 1, thanks to Lemma 10.5. Thus the split-width of M is at most
2k − 1.

10.3 Controller

The controller is a particular case of the controller defined for generic class G
of finite context-graphs in Section 9.3 with a uniform replacement of MSCNG
with UASL(k) and G with GUASL(k).

More explicitly, the context-graphs appearing in the control locations are
those belonging to GUASL(k). Thus the controller will initially guess a graph
from GUASL(k) and try to verify it along the run. We denote the controller for
UASL(k) by SUASL(k). SUASL(k) is a sound and complete controller for UASL(k).

4We may discard the empty components.
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10.4 Decision Procedures and Discussions

The verification problems 21 – 29 are for UASL(k) as well. Since UASL(k) is
MSO definable and since the split-width is bounded by 2k−1, we again employ
the decision procedures studied in Chapter 4.

The reasoning is similar to the case of UA(k). There is a tree-automaton
Ak(SUASL(k)) over (2k−1)-DST-Labels which recognises embeddings of MSCNs

from UASL(k). The size of Ak(SUASL(k)) (cf. page. 77) is exponential in k. Thus
the class UASL(k) admits a polynomial bound on split-width and an exponential
sized tree-automaton recognising its DST-encodings. Hence, the verification
problems follow the complexities dictated in Table 4.3.

Thus to conclude, the class UASL(k) also proves to be a good class for under-
approximate verification of CPDS. It allows us to have elementary decision
procedures for the verification problem (except those involving MSO) and is
also efficiently implementable.

This class compares well with other classes studied in the literature. In
[LMP08a, HLMS10], the authors have studied the emptiness problem of com-
municating pushdown systems over an acyclic topology. They obtain decidabil-
ity when a restriction called ‘well-queuing’ is imposed. This restriction requires
the local stack to be empty when a process accesses a queue. The class UASL(k)
is orthogonal to the well-queuing restriction. The latter permits an unbounded
interleaving of reads from a queues and stacks, whereas the former permits read-
ing from a queue even when the local stack is not empty. The class UASL(k)
also allows for the verification of cyclic architectures.
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Chapter 11

Directed Acyclic with
Simple Stack Loops (k),
DASL(k)
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11.1 Definition and Examples

An MSCN M belongs to the class DASL(k) DASL(k)if it has a context-decomposition
M such that GM ∈ GDASL(k). That is, DASL(k) = GDASL(k)-MSCN.

This class is a generalisation of UASL(k) by relaxing the strong undirected
acyclicity requirement by weaker directed acyclicity requirement. Like in the
case of UASL(k), a context of DASL(k) can either

• read from a stack and write to all data-structures, or
• read from a queue and write to all other data-structures.

The Examples 9.2, 9.3, 10.1 and 10.2 are also examples for DASL(k).

Example 11.1. Consider communicating pushdown machines over a directed
acyclic architecture with stacks only on roots. All the MSCNs generated by
such systems belong to the class DASL(k).

Example 11.2. The well-studied bounded phase restriction [LMP07] on multi-
pushdown systems is an example of DASL. A phase allows pops (or reads)
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from at most one stack, while pushes (writes) to all stacks are permitted. Each
phase is also a DASL context. Thus bounded number of phases implies bounded
number of contexts. Since multi-pushdown systems have only one process, no
cycles other than loops are possible.

11.2 MSO Definability and Bounding Split-width

DASL(k) is also EMSO definable and admits a bound on split-width.

Lemma 11.3. The class DASL(k) is EMSO definable.

Proof. As in the case of previous classes, we employ second order variables to
identify the context decomposition. Directed acyclicity can then be stated in
first-order as there are at most k contexts.

Theorem 11.4. If an MSCN M ∈ DASL(k), then the split-width of M is at
most 2k − 1.

Proof. The proof proceeds in two steps. In the first step we give a reduction
from DASL(k) to a stronger version of DASL in which every component has in-
degree at most one. This causes an exponential blow-up. Then, in the second
step we show that any MSCN belonging to the stronger version of DASL has
linear sized split-width.

Stronger version of DASL: sDASL(k). An MSCN M is in sDASL(k) if it
admits a context-decomposition M such that GM ∈ GDASL(k) and in addition,
the in-degree of every component is at most one, excluding self-loops. We denote
the set of such context-graphs by GsDASL(k).

A context graph G belongs to the class GsDASL(k) ifGsDASL(k)

dasl G is directed acyclic with simple stack self-loops,

b G has at most k vertices: |V | ≤ k, and

ssr for all contexts x, y, z and data-structures d and d′,
if (y, x) ∈ Ed and (z, x) ∈ Ed′ , then d = d′, and z = x or z = y.

Example 11.5. Some (counter-)examples of GsDASL(4), GUASL(4) and GDASL(4)

are given in Table 11.1.

Lemma 11.6. If M ∈ DASL(k), then M ∈ sDASL(2k−1).

Proof. Consider the context decomposition witnessing membership in DASL(k).
Call it M′. GM′ has at most k vertices. Let x1, . . . , xk be a topological ordering
of the components of M′. It follows from Condition sr that a component xi
may have incoming ⊲ edges from any preceding component, but all these must
be from the same data-structure.
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d1 d1

d2 d2

d1

d2 d2

d1 d1

d2

GsDASL(4) ✗ ✗ ✓

GUASL(4) ✗ ✓ ✓

GDASL(4) ✓ ✓ ✓

Table 11.1: GsDASL(4), GUASL(4) and GDASL(4) yes/no.

We split each component xi into f(i) many new components (some of them
may be empty). Call them xi,1, . . . , xi,f(i). Each of the new component xi,j has
incoming ⊲ edges from at most one component other than itself.

Here f(i) is a number which is a function of i. For i = 1, f(i) = 1. For
i > 1, f(i) = 2i−2. This estimate can be verified. Notice that the number of
new components preceding xi in this procedure is

f(1) +
i−1∑

j=2

f(j) = 1 +
i−1∑

j=2

2j−2 = 1 + 2i−2 − 1 = 2i−2.

Thus a component needs to be split into at most f(i) many new ones.
This splitting is possible, because all the reads are from the same data-

structure. We will see the splitting more closely now.
Suppose component xi has incoming edges from Ed where d is a queue.

Then, xi,1 is a factor of xi which contains all the ⊲ edges from x1,1; xi,2 is a
factor of xi which contains all the ⊲ edges from x2,1; etc., and xi,f(i) is a factor
of xi which contains all the ⊲ edges from xi−1,f(i−1). Further we require that
xi = xi,1 · xi,2 . . . · xi,f(i).

Suppose component xi has incoming edges from Ed where d is a stack. Due
to the LIFO policy on stacks, the new components will be attached to the
preceding ones in the reverse order. That is, xi,1 is a factor of xi which contains
all the ⊲ edges from xi−1,f(i−1), xi,2 is a factor of xi which contains all the
⊲ edges from xi−1,f(i−1)−1, etc. and xi,f(i) contains all the ⊲ edges from x1,1.
As before xi = xi,1 · xi,2 . . . · xi,f(i). We may also assume the the factors xi,1,
. . .xi,f(i)−1, if non-empty, end with a read-event. This forbids ⊲ edges between
xi,1, . . .xi,f(i).

The required split-MSCN M is the one with

x1,1, x2,1, . . . , xi,1, . . . , xi,f(i), . . . , xk,f(k)

as its components.
The total number of components is at most f(k + 1) = 2k−1.

The second part of the proof is showing the linear bound on split-width for
sDASL(k).
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Lemma 11.7. If M ∈ sDASL(k), then the split-width of M is at most 2k − 1.

The proof of this lemma is based on the following lemma.

Lemma 11.8. Let M be a split-MSCN. If GM ∈ GsDASL(k) then there is a
split-term sM with width at most 2k − 1 such that M ∈ JsMK.

Proof. The proof is by induction on the size of M.
The base case is when all the components of M are trivial (that is only one

event per component). In this case, M is in the shuffle of several basic split-
MSCNs. The number of components of any subterm never exceeds k. Hence
the split-width in this case is at most k − 1.

For the inductive case, suppose M has at least one non-trivial component.
We will identify two split-MSCNs M1 and M2 such that both GM1

∈ GsDASL(k)

and GM2
∈ GsDASL(k) and the size of Mi is strictly smaller than that of M.

By induction, there exist sM1
and sM2

with width at most 2k − 1. The split-
expression sM = merge(merge(. . .merge(sM1

✁ sM2
) . . .)). Since both M1 and

M2 have at most k components each, the total number of components at the
shuffle node is at most 2k. Hence the width of sM is at most 2k − 1.

Now we describe how to identify the split-MSCNs M1 and M2. We have
two cases to consider.

Case 1: Suppose a brink e of M is not accessing any data-structure. Then we let
M1 be M without e, and M2 be e.

Case 2: Suppose two brinks of M, say e1 and e2, are linked with a ⊲ edge. Then
we let M1 be e1⊲e2 and M2 be M without e1⊲e2. Note that both GM1

and GM2
belong to GsDASL(k). Indeed, M ∈ merge(merge(sM1

✁ sM2
)).

Case 3: SupposeM does not have two brinks connected by a⊲ edge. Let x1, . . . , xk
be a topological sorting of the components of M. Let xi be the first non-
trivial component. We split the component xi into two non-empty com-
ponents x1i and x2i such that xi = x1i · x

2
i and there are no edges from x1i

to x2i . We explain below why such a splitting is possible whether xi has
self-loops or not.

If xi does not have self-loops, any non-trivial splitting suffices. If xi
has a self-loop, let d be the stack being read in xi. Consider the first
event (brink) of xi. Let us call it e1. The event e1 alone forms x1i if
either e1 is not taking part in a ⊲ edge, or the ⊲ neighbour of e1 is
not in xi (that is, e2 ⊲ e1 or e1 ⊲ e2, and e2 /∈ xi). Otherwise, e1 has
a ⊲ neighbour e2 which also belongs to xi (e1⊲ e2 and e2 ∈ xi). The
event e2 is not a brink, as otherwise this would have been in Case 1.
We let x1i to be the prefix of xi up to and including e2. Indeed x

2
i is

the rest of xi. There are no ⊲ edges linking x1i and x2i in all these
cases.

We now propogate the splitting induced by that of xi to the other com-
ponents.
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For j < i:
If xbi has an incoming edge from xj then xbj = xj for b ∈ {1, 2}. Since

j < i and xj is singleton. Let x1j = xj for all other j < i.

For j > i:
For each j > i taken in the order, we do the following: If xj has no
incoming edges from any previous component, we let x1j = xj . If xj has
incoming edges from a previous component xj′ (note that there is only
one such component):

– If x2j′ is undefined, then let x1j = xj .

– If xj′ = x1j′ · x
2
j′ :

∗ If xj has reads from a queue data-structure (that is, (xj′ , xj) ∈
Ed for d ∈ Queues): xj = x1j ·x

2
j such that all the ⊲ edges from

xbj′ are incident on xbj for b ∈ {1, 2}.

∗ If xj has reads from a stack data-structure (that is, (xj′ , xj) ∈ Ed

for d ∈ Stacks): xj = x2j ·x
1
j such that all the edges from xbj′ are

incident on x3−bj for b ∈ {1, 2}. Moreover, we ensure that there

are no ⊲ edges between x2j and x1j by letting x2j to be minimal.
Notice that the order of the indices is reversed in order to respect
the LIFO policy on stacks.

– If xj′ = x2j′ · x
1
j′ :

∗ If xj has reads from a queue data-structure (that is, (xj′ , xj) ∈
Ed for d ∈ Queues): xj = x2j ·x

1
j such that all the ⊲ edges from

xbj′ are incident on xbj for b ∈ {1, 2}.

∗ If xj has reads from a stack data-structure (that is, (xj′ , xj) ∈ Ed

for d ∈ Stacks): xj = x1j · x
2
j such that all the edges from xbj′

are incident on x3−bj for b ∈ {1, 2}. Moreover, we ensure that

there are no ⊲ edges between x1j and x2j by choosing x1j minimal.
Notice that the order of the indices is reversed in order to respect
the LIFO policy on stacks.

Finally, Mb is the split-MSCN with xbj as its components. Observe that
there are no ⊲ edge between components of Mb and those of M3−b.
Clearly, M ∈ merge(. . .merge(sM1

✁ sM2
) . . .). Notice that for each b,

GMb
is sDASL(k).

Proof of Lemma 11.7. LetM be a sDASL(k) context-decomposition ofM. From
Lemma 11.8 there exists sM of width at most 2k− 1 such that M ∈ JsMK. We
have M ∈ JsMK where sM = merge(. . .merge(sM) . . .) and this proves the
bound on split-width.

Theorem 11.4 follows from Lemma 11.6 and Lemma 11.7.
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11.3 Controller

The controller for DASL(k) is a particular instantiation of SDASL(k) defined in
Section 9.3. We call this controller SDASL(k). The context-graphs appearing in
the control locations are those belonging to GDASL(k). The controller will initially
guess a graph from GDASL(k) and try to verify it along the run. The controller
SDASL(k) is sound and complete for DASL(k).

11.4 Decision Procedures and Discussions

The class DASL(k) also offers decidability for the verification problems, sim-
ilar to UA(k) and UASL(k). However, since the split-width is bounded by
2k − 1, we will be using tree-automata over (2k−1)-DST-Labels. As before the
tree-automaton Ak(SDASL(k)) recognised the encoding of DASL(k) among valid

(2k−1)-DSTs.
Since there is an exponential bound on the split-width, and since there is

a double exponential sized tree-automaton over valid DSTs recognising the en-
codings of DASL(k), the complexities of the decision procedure are as stated in
Table 4.5.

Notice that, our decision procedure gives a double exponential time decision
procedure for the emptiness of k-phase multi-pushdown systems, which is known
to be 2-ExpTime-Complete [LMP07, LMP08b]. Thus our bound on split-width
is asymptotically optimal, as well as the decision procedure. Satisfiability and
model checking of temporal logics and PDL over bounded phase multiply-nested
words have been addressed in [BCGZ11], but only when k is not part of the
input. Hence the complexity upper bounds of these problems when k is part of
the input are new.

Notice that we cover MSCNs from generic architectures and not just multi-
pushdown systems. These architectures could be cyclic as well. We cover be-
haviours which are not necessarily existentially bounded.

In the case of communicating finite state machines, the MSCNs in DASL(k)
also admits a linearisation with at most k contexts, and vice versa. The reach-
ability problem in this case has been addressed in [LMP08a] under the name
bounded context-switching reachability problem for non-recursive queuing con-
current programs. There, it is shown to be decidable in time double exponential
in the number of contexts and exponential in the size of the CPDS. Our decision
procedure improves this upper bound to double exponential in the number of
contexts, but only polynomial in the size of the CPDS. Also note that, our de-
cision procedure can be applied even in the case of recursive queuing programs.
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Chapter 12

Bounded Scope (k)
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The class bounded scope (k) is orthogonal to all the previous classes. It does
not bound the size of the context-graph. But, the contexts are more restrictive.

12.1 Definition and Examples

An MSCN M belongs to the class BS(k) if it has a context-decomposition M
such that GM ∈ GBS(k). That is, BS(k) = GBS(k)-MSCN. BS(k)

Notice that the condition srw disallows simultaneous writes and reads on a
queue data-structure, or self-queues. Thus the contexts are essentially

• accessing a single stack in either direction, but no other data-structure, or
• reading from a queue but no other data-structure access, or
• writing to a queue but no other data-structure access.

This class imposes a bound on the number of contexts between a write and the
corresponding read.

Example 12.1. Consider Example 9.3 which simulates k-computation steps of
a Turing machine. It is not an example of BS(k). However, the dual restriction,
which puts a limit on the tape length but allows unboundedly many steps is
indeed bounded scope. A trivial context-decomposition in which each context
is a singleton witnesses its membership in BS(k).
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Example 12.2. The above example gives rise to an existentially bounded1

MSCN language. Example 9.2 is also an example of BS(k) which is not existen-
tially bounded. But Example 9.2 has only 4 contexts. However, an unbounded
repetition of the pattern (Figure 12.1) in Example 9.2 is also an example MSCN
in the class BS(4) which has unbounded number of contexts and which is not
existentially bounded.

Example 12.3. The class BS(k) in case of multi-pushdown systems is essen-
tially the scope bounded multi-pushdown systems. The latter has been intro-
duced in [LN11] and is a trending topic of current research [LN12, LP12].

12.2 MSO Definability and Bounding Split-width

Proposition 12.4. The class BS(k) is MSO definable.

Proof. Instead of verifying conditions srw, dasl and bs, we will equivalent
conditions srw, sl and bs (thanks to Remark 8.6). The conditions srw and sl

are easy to enforce on any guessed context. The difficulty is to ensure bs.
The idea is to forbid the existence of ⊲ edges which span over more than

k contexts. Thus the formula will negate the existence of a ⊲ edge with k + 1
contexts in between. To identify k contexts in between a matching write and
read, it is sufficient to identify k+1 events accessing data-structures, such that
consecutive events from this set accesses different data-structures. This is in
order to force a change of context.

Consider the following formula:

¬∃x0 ∃x1 · · · ∃xk ∃x
′
1 · · · ∃x′k−1 ∃y0 ∃y1 · · · ∃yk−1 ∃y

′
1 · · · ∃y′k−1

x0 ⊲ xk ∧
∧

i∈{1,...,k−1}

(xi ⊲ x′i) ∨ (x′i ⊲ xi) ∧
∧

i∈{0,...,k−1}

(yi ⊲ y′i) ∨ (y′i ⊲ yi)

∧
∧

i∈{1,...,k−1}

xi < xk ∧ ¬(xi < x0)

∧
∧

i 6=j∈{0,...k}

[

xi 6= xj

∧
∧

d∈Stacks

(
d(xi) ∧ d(xj) ∧ xi < xj

=⇒ xi < yi < xj ∧ ¬d(yi)
)

∧
∧

d∈Queues

(
d(xi) ∧ d(xj) ∧ xi ⊲ x′i ∧ xj ⊲ x′j ∧ xi < xj

=⇒ xi < yi < xj ∧ (¬d(yi) ∨ y
′
i ⊲ yi)

)

∧
∧

d∈Queues

(
d(xi) ∧ d(xj) ∧ x

′
i ⊲ xi ∧ x

′
j ⊲ xj ∧ xi < xj

=⇒ xi < yi < xj ∧ (¬d(yi) ∨ yi ⊲ y′i)
)]

1An existentially bounded language assumes a bound on the size of the data-structures.
An MSCN in the language can be generated by such a size bounded data-structure.
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Figure 12.1: An MSCN which is not existentially bounded and a witnessing
context-decomposition for its membership in BS(4).
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The formula aims to witness a violation of the scope boundedness. The first
order variables x0 and xk stand for the events linked by ⊲ edge which spans
over more than k contexts. The variables x1, . . . , xk−1 stand for k − 1 events
which are the representatives of k − 1 contexts which occur in between x0 and
xk. These k − 1 events must access data-structures (to emphasise a context)
and must be pair-wise distinct. We use the variables x′1, . . . , x

′
k−1 to represent

their respective ⊲-neighbours.
Moreover, in order to force a change of context between any two such events,

we require that any two events which could potentially belong to the same con-
text (accessing the same queue in the same direction, or accessing the same
stack), must have another event in between them. This new event must be
accessing a different data-structure, or accessing the queue in the opposite di-
rection. We use the variable yi to mark the change of context between xi and
any other xj accessing the same data-structure at a later point of time (note
that, xi and xj will be on the same process as they are accessing the same
data-structure in the same direction). We use the variable y′i to indicate the
⊲-neighbour of yi. Notice that those xi which do not satisfy the premise of the
implication, (like those which represent the last context on a process) do not
need a yi, and in this case yi could be same as xi itself.

Notice that, even if the source and the target are separated by more than
k + 1 contexts, the above formula would detect it. Any k − 1 contexts which
occur in between need to be witnessed in addition to the source and the target
contexts.

Remark 12.5. The above formula is first-order if we allow the partial order rela-
tion < in the syntax. Otherwise, expressing the partial order relation, which is
the transitive closure of the → and ⊲ edges, require second order quantification.
This can be noticed in our definition of < as a macro in Section 2.5.

Let FO(<) denote the first-order logic supplemented with the partial order
relation. It follows that:

Proposition 12.6. The class BS(k) is FO(<) definable.

The class BS(k) also admits a bound on split-width.

Theorem 12.7. If an MSCN M ∈ BS(k), then the split-width of M is at most
(d+ 1)k + 2 where d is the number of data-structures in the architecture.

Proof. Let M be a context-decomposition witnessing membership in BS(k).
That is, GM = (V, (Ed)d∈DS) ∈ GBS(k). The proof proceeds in two steps. In
the first step we show that there exists a topological sorting x1, x2, . . . of the
contexts of M such that if (xi, xj) ∈ Ed, then j − i < (d + 1)k. In the second
step we show that if a split-MSCN M admits a total ordering of the contexts
such that ⊲ edges have at most m contexts between the source and target with
respect to the total order, then the split-width of M is at most m+ 2.
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Lemma 12.8. Let M be a split-MSCN in BS(k). Then there exists a topological
sorting x1, x2, . . . of the contexts of M such that if e1 ⊲ e2 and e1 ∈ xi and
e2 ∈ xj, then j − i < (d+ 1)k.

Proof. We will describe how to extract a required ordering. Consider GM. First
we show that any prefix of GM can be augmented by at most k new contexts
to match all the pending writes on a particular data-structure.

Let GM = (V, (Ed)d∈DS) ∈ GBS(k). We say subset U ⊆ V a prefix prefixof GM if
it is down-ward closed with respect to 4. Recall that 4 is a partial order in the
case of GBS(k). Prefix U is a strict prefix of GM if U ( V .

Lemma 12.9. Let GM = (V, (Ed)d∈DS) ∈ GBS(k) and let U be any strict prefix
of GM. For each d ∈ DS, there exists a bigger prefix U ′ (i.e., U ( U ′ ⊆ V )
such that

1. |U ′ \ U | ≤ k and
2. all the unmatched writes on data-structure d are in U ′ \ U .

That is, if (x, y) ∈ Ed and x ∈ U ′ and y /∈ U ′ then x /∈ U . Equivalently,
all the writes to data-structure d in U are matched in U ′. That is, if
(x, y) ∈ Ed and x ∈ U , then y ∈ U ′.

Proof. If the data-structure d does not have any unmatched write in U , then
we augment it with any minimal context from V \ U to get U ′. If U ′ contains
any unmatched write on d, then clearly it is from this new context and hence
not in U .

Suppose the data-structure d has some unmatched writes in U . Let e1 be
the last-to-be-read unmatched write on d in U . If d is a stack, then e1 is the
first unmatched write on d; and if d is a queue, e1 is the last unmatched write
on d. Let e2 be the matching read. Further let x and y be the respective
contexts of e1 and e2. That is e1 ∈ x and e2 ∈ y. Indeed y ∈ V \ U . We will
augment U by adding the context y and the necessary contexts from the past
of y (precisely the down-ward closure of y as these are required to make it a
prefix). Thus U ′ = U ∪ ↓ y where ↓ y denotes the down-ward closure of y, i.e.
↓ y = {x ∈ V | x 4 y}. By Condition bs (cf. 126), the number of contexts in
the past of y, but not in the past of x are at most k − 1. Also by choosing e1
as the last-to-be-read unmatched write, we make sure that all the unmatched
writes in U are matched in U ′. This concludes the proof of Lemma 12.9.

We write U
d
−→ U ′, if it witnesses the above lemma. U

d
−→ U ′

We will now give a sequence of prefixes of GM such that any linear ordering
(or completion to a total order of successive prefixes) of it will provide the
topological sorting claimed in Lemma 12.8. For this, let d1, . . . dd be an arbitrary
enumeration (ordering) of the data-structures in DS.

Lemma 12.10. Consider the sequence which follows the enumeration of the
data-structures in a round-robin fashion

∅ = U0
d1−→ U1

d2−→ U2 . . .
dd−→ Ud

d1−→ Ud+1 . . .
dm−−→ Un = V.
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For all i > 0 and all data-structures d ∈ DS, all the unmatched writes on data-
structure d in the prefix Ui are in Ui \ Uj where j is the largest index smaller

than i such that Uj
d
−→ Uj+1 appears in the above sequence. If Uj

d
−→ Uj+1 does

not appear for some j < i, we let j = 0.

Proof. Notice that Uj is a strict prefix of Ui, and thanks to Lemma 12.9, all the

unmatched writes on data-structure d are matched in Uj+1 since Uj
d
−→ Uj+1.

Since Ui contains Uj+1, Ui does not have any unmatched write on d from the
prefix Uj . Hence all the unmatched writes on data-structure d in Ui must be in
Ui \ Uj .

We can observe that i − j ≤ d, where i and j are as in Lemma 12.10. This

maximum value (d) is reached for those choices of i and d such that Ui
d
−→ Ui+1

appears in the sequence. Thus, all the unmatched writes on all data-structures
in the prefix Uj will definitely be matched in Ui where i = min (j + d, n).

Consider any linear extension of the sequence of Lemma 12.10. From the
above observation and Lemma 12.9 it follows that the source and the target of
any ⊲ edge is separated by at most (d+1)k in this linear extension. This gives
the witnessing sequence and proves Lemma 12.8.

Having proved Lemma 12.8, we now show how to bound the split-width.

We say that an MSCN M is in strong BS(m), abbreviated sBS(m)sBS(m) , if M
admits a context decomposition M with GM satisfying the following conditions.

srw Each context accesses at most one data-structure.

dasl GM is direcred acyclic with simple stack self-loops.

s-bs There exists a topological sorting x1, x2, . . . of the contexts such that if
(xi, xj) ∈ E =

⋃

d∈DSEd, then i ≤ j < i+m.

The first two conditions can together be stated in different words as follows:
A context can access either at most one stack or at most one queue in one
direction (i.e., either writing mode or reading mode).

Notice that the above conditions subsume the requirements of BS(m).

An sBS(m) context-decomposition M may have unbounded number of con-
texts. For our proof, we often focus on the first few contexts of M, and would
like to treat the remaining as a single component. For this, we define an n-
mask(M).

Let M be a split-MSCN satisfying sBS(m). Let x1, . . . be the topological
sorting of the contexts as guaranteed by Condition 12.2. The n-mask of M
denoted n-mask(M)n-mask(M) is the split-MSCN N ∈ merge(. . .merge(M) . . .) such that
all the elastic edges of M which do not originate from the first n contexts are
transformed into rigid edges in N . That is, if M = (M, e−→) then n-mask(M) =
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(M, e−→
′
) where e−→

′
⊆ e−→ is such that, if (e1, e2) ∈ e−→

′
then e1 ∈ xi for some

i ≤ n.
Thus the components of n-mask(M) are x1, . . . , xn, y1, . . . yp, where yp de-

notes the single component formed by the merge of all the remaining components
in process p.

The elasticity of n-mask(M) is at most n.

Lemma 12.11. Let M be an MSCN in sBS(m). Then the split-width of M is
at most m+ 2.

Proof. We will inductively give split-expressions for split-MSCNs showing the
bound. The main step in the induction is to identify smaller split-MSCNs
allowing the induction to proceed.

In order to give the split-expression sM for M, consider the split-MSCN
M witnessing the membership of M in sBS(m). Also consider the topological
sorting x1, x2, . . . of the contexts. It is too expensive to get a split-expression for
M. The elasticity of M is unbounded as M may have an unbounded number
of contexts. Hence, we will rather get a split-expression for m-mask(M).

Let M′ be the m-mask of M. Clearly M ∈ merge(. . .merge(M′) . . .). Note
that the elasticity of m-mask(M) is at most m. Hence it is sufficient to find a
split-expression for m-mask(M) with width at most m+ 2.

Claim 12.12. Let M′ be m-mask(M) for some sBS(m) context-decomposition
M. Then the split-width of M′ is at most m+ 2.

Proof. The proof is by induction on the size (number of events) of M′. We will
inductively give a split-expression sM′ for M′ witnessing the width of m+ 2.

A base case is when M′ has trivial components. In this case sM′ is the
shuffle of several basic split-MSCNs. Since the elasticity of M′ is at most m,
the split-width of sM′ is at most m.

Another base case is when M′ is a nested-word w. In this case sM′ = sw as
explained in Example 3.23. Recall that the split-width if sw is at most 2.

We now consider the inductive cases.

Case 1 If M′ has a brink e which does not take part in ⊲ relation: Let M1 be
M without e. Further let M′

1 be the m-mask(M1).
2 We let

sM′ =

{

sM′
1
✁ se if e forms a component of M′ by itself.

merge(sM′
1
✁ se) otherwise.

.

The elasticity of the shuffle node is at most m + 1. Since M′
1 is the m-

mask of some sBS(m) context decomposition M1, the split-width of sM′

is at most m+ 2 by induction.

2Note that M′
1 need not be same as M′ without e. In case e alone forms a component,

taking m-mask(M1) would change some yp by extracting out xm+1 of M.
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Case 2 If M′ has two brinks e1 and e2 linked by a ⊲ edge (that is, e1 ⊲ e2)
(cf. Case 2 - page 139 and page 146): Let M1 be M without e1 and e2.
Further let M′

1 be the m-mask(M1).
3 We let

sM′ =







sM′
1
✁ se1⊲e2 if both e1 and e2 form

a component of M′ by itself,

merge(sM′
1
✁ se1⊲e2) if either e1 or e2 forms

a component of M′ by itself,

merge(merge(sM′
1
✁ se1⊲e2)) otherwise.

The elasticity of the shuffle node is at most m + 2. Since M′
1 is the m-

mask of some sBS(m) context decomposition M1, the split-width of sM′

is at most m+ 2 by induction.

Case 3 If M′ has a brink e1 in the first n components which is ⊲ linked to an
event e2 in the same component: Necessarily the component of e1, call
it x, is accessing a stack d, as otherwise it forms a forbidden queue-loop.
The factor of x between e1 and e2 including both is a nested-word, call it
w4. Let M′

1 be M′ without w. We let s′M = merge(sM′
1
✁ sw).

The above three cases exhaust all the cases in fact. We argue this below:
First we argue that, if the first two cases are not applicable, then the first
component must be accessing a stack.

Suppose the first component is accessing a queue d. It is necessary
writing to d as it is the first component. Let e1 be the first event of
the first component. e1 is necessarily a write event, as otherwise this
is in Case 1. Let e1 ⊲ e2 and let x be the component of e2. x is a
component which reads from d. Necessarily e2 must be the first read
event of x in order to comply with the FIFO policy on queue d. In
fact e2 must also be the first event of x, as otherwise it would have
been in Case 1. If e2 is the first event then e2 is also a brink which
should be handled in Case 2. This contradicts the assumption that
Case 1 and Case 2 are not applicable. Thus the first context must
not be accessing a queue.

Now we argue that if the first component is accessing a stack and if none
of the cases are applicable, we reach a contradiction.

Suppose the first component is accessing a stack d. Let e1 be its first
event of the first component and let e1⊲e2. The event e2 is necessarily
in another component x, as otherwise Case 3 is applicable. If e2 is
a brink of x, case 2 is applicable, hence e2 is not a brink. Let e3 be
the first event of x, and let S be the set of components smaller than
(in the topological sorting) x accessing d. Let B denote the set of

3Note that M′
1 need not be same as M′ without e1 and e2. If any of these events form a

single component, taking m-mask(M1) would change some yp by extracting out xm+1 of M.
4w is a strict factor of x, as otherwise e2 is also a brink and hence would have been handled

in Case 2.
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brinks of S and e3. All the event in B must have a ⊲ partner as
otherwise, it is case 1. None of the events in B has their partner in
their own component, as otherwise it is Case 3. All the ⊲ partners
of B must be in S, as otherwise it will violate the LIFO policy on
d with (e1, e2). Notice, in particular, that e3 is a read event and its
partner is also in S (if e3 was a write event, its partner must be in the
same component x before e2 which is a Case 3 instance). Consider
an innermost ⊲ edge between some event e in B and its partner e′.
Both e and e′ must be brinks from B. If not, let e′′ be the brink of
the component of e′ which is in between e and e′. Since e′′ ∈ B, its ⊲
edge must be the innermost contradicting the assumption the e⊲ e′

is an innermost ⊲ edge. Hence e and e′ must be brinks contradicting
the assumption that Case 2 is not applicable.

Thus the proof of Claim 12.12 is complete.

From Claim 12.12, the split-MSCN M has a split-expression of width at
most m+ 2. This proves Lemma 12.11.

From Lemma 12.8 we get the following:

Proposition 12.13. If M ∈ BS(k) then M ∈ sBS((d+ 1)k).

From Proposition 12.13 and Lemma 12.11 together prove the the bound of
(d+ 1)k + 2 on the split-width of BS(k).

Remark 12.14. The above bound can be improved to (d+1)k+1 by considering
(m− 1)-masks instead of m-masks.

Remark 12.15. The split-expression we obtain for MSCNs in BS(k) are not word-
like. However, if the architecture does not have stacks (like in communicating
finite state machines), the split-expressions are word-like.

Remark 12.16. Notice that whenever the word-like property is violated at a
shuffle node, one of its children is sw for some nested-word w. The split-width
of sw is at most 2 (cf. Example 3.23). Thus the split-terms we obtain for BS(k)
are almost-word-like. A split-term is almost-word-like if at every shuffle node, almost-word-like

the split-width of one of its children is bounded by a constant m.

12.3 Controller

12.3.1 Controller description

For BS(k) we propose an infinite state deterministic CPDS as a controller. The
local states of the controller contain global context-vectors (best knowledge of
a local process about the global context). These are passed around by data-
structure accesses, which allows the controllers 1) to update the current context
vector (or its best knowledge about the global context) and 2) to compare the
context-vectors so that the bound on scope can be checked.
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We will see that change of the current context can be detected deterministi-
cally. A (greedy) strategy is not to change the current context unless necessary.

The contexts are numbered sequentially (cf. the canonical naming of the
contexts). The controller remembers the current context number as well as
the best information it has about the contexts of the other processes (global
knowledge). This is represented as a ‘context-vector’ (−→cv). A context-vectorcontext-vector is
a tuple of non-negative integers ((ip)p∈Procs) which gives a context-number for
each process.

A write-event writes the current context-vector to the data-structure so that
the controller can access it at the corresponding read for comparisons.

For each process, a change of context is inevitable if there is a change of the
data-structure it has been accessing, or in the case of queue data-structures,
if the access mode (read / write) changes. Hence the controller keeps this
information (curr-DS ∈ Stacks ∪ (Queues× {write, read})) in its local state.

Moreover, it needs to check whether the bound of k contexts has been ex-
ceeded since the earliest write-context to the current-context. If the current
context is accessing a stack, the context-vector of the earliest write is the one
available on the top of stack (due to the LIFO policy).

However, if the current context is reading a queue, then the earliest write-
context to the current context corresponds to the context of the first write to the
current context. This information is not available on later read events. Hence on
the first read event of a queue-read-context the controller will store the context-

vector at the corresponding write also in its memory. This is denoted (
−→
iv). If

the controller detects that prolonging the current context will add more than k

contexts between the current context and
−→
iv , it will again switch context.

More formally, the local states of the controller for process p consist of three
parts: A current-data-structure (curr-DS), a current-context-vector (−→cv) and an

initial-context-vector (
−→
iv). Current-data-structure (curr-DS) remembers which

data-structure is being accessed in the current context, and if the data-structure
is a queue, also the direction of access. The initial-context-vector is needed only
if the current context is accessing a queue in read-mode. It is maintained as ⊥
in other cases.

The initial control location of every local controller is the tuple

curr-DS = ⊥,−→cv = (0, . . . , 0),
−→
iv = ⊥.

As we said before, on a read-event the controller needs to access the context-
vector at the write-event, in order to ensure bounded scope. For this, it will also
“context-stamp” the data-structure entries. On a write to a data-structure, the
writer’s best knowledge about the contexts (−→cv) is also written into the data-
structure. This will allow the controller to update its global knowledge at a
read-event. On a read-event,

1. it asserts that the bounded scope is respected by comparing the (updated)
current context-vector, and the context-vector of the earliest write-event
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to the current context. The latter is either available in the data-structure
entry, or in the local state, depending on whether it is a stack, or a queue,
that is being accessed.

2. if the above assertion does not hold by prolonging the current context,
it checks if it can be held by forcing a change of context. This case is
meaningful only in the case of a queue-read context. Note that, if there is

a change of context then the earliest-write-context (
−→
iv) is updated. Hence

there could be potentially fewer contexts between the current context and

the updated
−→
iv .

3. If the assertion fails, the run is aborted.
4. If the assertion holds, the current context vector is updated.

We will now describe the transitions formally. For −→cv = (iq)q∈Procs, we

define incp(
−→cv)incp(

−→cv) = (i′q)q∈Procs where i′q =

{

iq if q 6= p

1 + ip otherwise.

The transitions preserve the local state if not accessing a data-structure.

((curr-DS,−→cv,
−→
iv), a, (curr-DS,−→cv,

−→
iv)) ∈ Transp:int (12.1)

The write transitions update the state (both curr-DS and −→cv) if a change of
context is detected. Also, the updated context-vector −→cv′ is always written onto
the data-structure.

((curr-DS,−→cv,
−→
iv), a, (curr-DS′,−→cv′,⊥),−→cv′) ∈ Transp→d (12.2)

where

curr-DS′ =

{

(d,write) if d ∈ Queues

d if d ∈ Stacks

and, with −→cv = (iq)q∈Procs,

−→cv′ =

{
−→cv if curr-DS = curr-DS′

incp(
−→cv) otherwise.

Notice that the component
−→
iv is not used in the above transitions. Also, the

context-vectors are not compared. Thus on internal events and write events,
the controller simply increments the current context if a change of context is
detected (via violation of srw or dasl). On write events, it writes the current
context-vector onto the data-structure.

It is in fact read transitions which ensure that the bounded scope restriction
is respected. For easily defining the transitions in this case, we first define two
operations on context-vectors.

159



Let −→cv′ = (i′p)p∈Procs and −→cv′′ = (i′′p)p∈Procs. We define max(−→cv′,−→cv′′) to be

themax(−→cv′,−→cv′′) context-vector −→cv = (ip)p∈Procs where ip = max(i′p, i
′′
p).

By ‖−→cv′ −−→cv′′‖ we‖−→cv′ −−→cv′′‖ denote the sum of the component-wise differences. That
is, ‖−→cv′−−→cv′′‖ =

∑

p∈Procs i
′
p− i

′′
p . We may assume that −→cv′′ is component-wise

smaller than −→cv′ as we need only such cases.
We first consider the easier case of a transition reading from a stack, and

then consider the case of queue.

The stack-read transitions update the state if a change of context is detected.
Only those read transitions which respect the scope bounded restriction are
permitted.

For d ∈ Stacks, we have a transition of the following form if ‖−→cv′−−→cv′′‖ < k:

((curr-DS,−→cv,
−→
iv),−→cv′′, a, (d,−→cv′,⊥)) ∈ Transp←d (12.3)

where,

−→cv′ =

{
−→cv if curr-DS = d

incp(
−→cv) otherwise.

Note that −→cv′′ ≤ −→cv component-wise.
The queue-read transitions also update the state if a change of context is

detected. It will also change the context if prolonging the current context vio-
lates the bounded scope restriction. For this, we use the initial-context-vector
−→
iv . Notice that

−→
iv has a value other than ⊥ only if curr-DS is (d, read).

For d ∈ Queues, we have a transition of the following form if ‖−→cv′−
−→
iv ′‖ < k:

((curr-DS,−→cv,
−→
iv),−→cv′′, a, ((d, read),−→cv′,

−→
iv ′)) ∈ Transp←d (12.4)

where,

−→cv′ =

{

max(−→cv,−→cv′′) if curr-DS = (d, read) and −→cv′ −
−→
iv < k

incp(max(−→cv,−→cv′′)) otherwise

and
−→
iv ′ =

{−→
iv if curr-DS = (d, read) and −→cv′ −

−→
iv < k

−→cv′′ otherwise.

Notice that
−→
iv ′ is the context-vector at the earliest write-event to the context

(p, i′p). Also −→cv′ covers all the context in the past of a read event. In particular,
−→
iv ′ ≤ −→cv′ component-wise. Hence ‖−→cv′ −

−→
iv ′‖ < k ensures bs.

The controller permits only safe transitions (those respecting the bounded
scope restriction). Hence, the global acceptance set may allow any (all) combi-
nations of states.

The set of control locations of the controller is (Queues × {read,write} ∪
Stacks ∪ {⊥})× NProcs × (NProcs ∪ ⊥).

The controller can be ‘completed’ by adding a sink state called ABORT. The
above controller is denoted SBS(k).
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12.3.2 Soundness and Completeness

The deterministic infinite state controller SBS(k) based on context-stamping is
sound and complete.

Proposition 12.17. SBS(k) is sound and complete for BS(k).

Proof. The soundness and completeness are proved respectively in Lemma 12.18
and Lemma 12.19.

Lemma 12.18. L (SBS(k)) ⊆ BS(k).

Proof. If an MSCNM has an accepting run in SBS(k), then a context-decomposition
M is suggested by the c-loc mapping of the run. The context-graph GM be-
longs to GBS(k) since the transitions of SBS(k) ensure the conditions srw, dasl
and bs, as explained below.

srw: Note that the transitions update −→cv whenever curr-DS is updated.
Thus only one data-structure can be accessed in a context.

dasl: We identify a queue context together with its access mode. Hence no
queue loops are allowed in a single context. Now dasl follows from srw and
directed acyclicity of MSCNs.

bs: If the condition bs were violated, then there would be e1 ⊲ e2 with e1
and e2 in contexts x and y respectively such that the number of contexts in the
past of y but not in the past of x are more than k. The transitions ensure that
this cannot happen as we explain below.

In the case of a stack data-structure, it compares the context vector (say
−→cv1) at e1 (which is available at the top of the stack) with the context vector
(say −→cv2) at e2. Notice that no new event can be added to the past of −→cv1
(respectively −→cv2) by events occuring later than e1 (respectively e2).

For a queue data-structure, on the other hand, it compares −→cv with
−→
iv on

every read event of y. Since
−→
iv is the context vector at the earliest write to y,

−→
iv ≤ −→cv1 component-wise. Since the comparison is made at every read-event of
y, there is a comparison in which −→cv ≥ −→cv2. Hence the transitions ensure that
bs is respected.

Thus M is a witnessing context-decomposition for the membership in BS(k).

Lemma 12.19. BS(k) ⊆ L (SBS(k)).

Proof. If an MSCNM belongs to BS(k), it has a witnessing context-decomposition
which is also ‘greedy’. We will describe below how any abritrary BS(k) context-
decomposition of M can be transformed into a greedy one by prolonging the
contexts as long the condition bs is not violated. Such a greedy BS(k) context-
decomposition of M dictates an accepting run of the controller SBS(k).

LetM = (E , λ, pid, δ, r−→, e−→,⊲) be a context-decomposition ofM withGM =
(V, (Ed)d∈DS) ∈ GBS(k) its extended context-graph.
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For a context x ∈ V , we denote its ‘type’ by curr-DS(x). We have curr-DS(x) ∈
Stacks ∪ (Queues × {read,write) ∪ {⊥}. If a context x is not accessing any
data-structure, the curr-DS(x) = ⊥.

For an event e ∈ E , we denote by contextGM
(e) the component x ∈ V

such that e ∈ x. When the context-decomposition is clear, we may simply
write context(e). We lift this naturally to sets of events as well: For E ′ ⊆ E ,
contextGM

(E ′) = ∪e∈E′contextGM
(e).

We denote the contexts of GM in the past of an event e by pastGM
(e) and

the contexts in the past of context(e) by PASTGM
(e):

• pastGM
(e) = {x ∈ V | ∃e′ ≤ e such that x = context(e′)}

• PASTGM
(e) = {x ∈ V | x 4 context(e)} = {x ∈ V | ∃e′′ ∈ context(e) and e′ ≤

e′′ such that x = context(e′)}

Also, we denote the downward closure in GM of a context x by ↓GM
x = {y |

y 4 x}. The downward closure of an event ↓ e = {f ∈ E | f ≤ e}.

Observe that pastGM
(e) ⊆ PASTGM

(e) = ↓GM
context(e).

Recall that GM ∈ GBS(k) if and only if for every ⊲ edge f1 ⊲ f2,

|PASTGM
(f2) \ PASTGM

(f1)| < k.

Now we will explain how to obtain a greedy context-decomposition M′ with
GM′ ∈ BS(k) from an arbitrary context-decomposition M with GM ∈ BS(k).
This is done in two phases.

Two contexts x and y are consecutive if with the canonical naming of the
contexts, x = (p, i) and y = (p, i + 1) for some process p ∈ Procs. In the first
phase, consecutive pairs of contexts x and y are merged into a single context if

1. If curr-DS(x) = ⊥ and y is arbitrary.

2. If curr-DS(y) = ⊥ and x is arbitrary.

3. Both x and y are accessing the same stack. That is curr-DS(x) =
curr-DS(y) = d for some d ∈ Stacks.

4. Both x and y are writing to the same queue. That is curr-DS(x) =
curr-DS(y) = (d,write) for some d ∈ Queues.

Notice that the first phase does not increase the number of contexts be-
tween context(f1) and context(f2) for any f1 ⊲ f2. Hence the resulting context-
decomposition after the first phase, call it M′, again witnesses BS(k):

|PASTGM′ (f2) \ PASTGM′ (f1)| ≤ |PASTGM
(f2) \ PASTGM

(f1)| < k.

That is GM′ ∈ GBS(k).

In the second phase we deal with adjascent queue-reading contexts. We may
assume that compatible queue-write contexts and stack contexts have already
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been merge (i.e., first phase is not applicable). Let x and y be two consecutive
contexts reading from a queue d ∈ Queues. We show that if the first event e of
y is feasible for x, then detaching e from y and attaching it as the last event of
x still preserves bounded scope. Thus by induction, we may conclude that we
can obtain a greedy decomposition for BS(k) from an arbitrary one.

Let x and y be two adjascent contexts (say x = (p, i) and y = (p, i+1) with
curr-DS(x) = curr-DS(y) = (d, read) and let e be the first event of y. Let e2
be the first read on x and let e1 be the matching write (that is e1 ⊲

d e2, and
e2 ∈ x is the first read-event of x.5)

We say the event e is feasible feasiblefor x if |(pastGM
(e) \ {y}) \PASTGM

(e1)| < k.
If there is an event e which is feasible for x, then the context-decomposition
is not greedy. Note that the controller SBS(k) does not change the context
(and context-vector) at a feasible event, thus permitting only greedy context-
decomposition.

Let M′ be the context-decomposition obtained from M by detaching a fea-
sible event e from context y and attaching it to x. We will now argue that, M′

still verifies BS(k), that is, GM′ ∈ GBS(k). For this, it suffices to show that for
all edges f1 ⊲ f2,

|PASTGM′ (f2) \ PASTGM′ (f1)| < k.

In the following two claims we relate the downward closures in GM and GM′

of a context.

Claim 12.20. ↓GM′ x = pastGM
(e) \ {y}.

Proof. Since the maximal event of x in M′ is e.

Claim 12.21. If y 6= {e} in M, then for all contexts z 6= x, ↓GM
z = ↓GM′ z.

Proof. We make the following observations:

obs1 For all events g 6= e, contextGM
(g) = contextGM′ (g).

obs2 For the event e, contextGM
(e) = y and contextGM′ (e) = x.

From the above observations, we get the following observation as well.

obs3 contextGM
(↓ f \ e) = contextGM′ (↓ f \ e).

obs4 For all split-MSCNs M′′ with GM′′ ∈ GBS(k) and all contexts v, letting f
be the maximal event of v,

↓GM′′ v = pastGM′′
(f) = contextGM′′ (↓ f)

This is true in particular for M and M′ as well.

5If ‘greedification’ chooses the left-most non-greedy event each time, then the event e2 is
indeed the first event of x.
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obs5 If e < g for some event g, then since e is a read event, there must be
an event e′ successor of e such that e → e′ ≤ g. Since y 6= {e} in M,
contextGM′ (e

′) = y.

Having made the above observations, we are now ready to prove the claim.
Let f be the maximal event of context z. Note that it is the same in both M
and M′, as z 6= x. We have two cases to consider.

1. If e 6≤ f :

Thanks to obs3 and obs4, the claim follows.

2. If e ≤ f : Since z 6= x, e � f . From obs5, both x and y are in
contextGM

(↓ f) as well as contextGM′ (↓ f). Therefore, ↓GM
z = ↓GM′ z

if z 6= x and y 6= {e} in M.

Claim 12.22. Suppose y = {e} in M.

1. If e ≤ g, then contextGM′ (↓ g) = contextGM
(↓ e) \ {y}.

2. If e 6≤ g, then contextGM′ (↓ g) = contextGM
(↓ e).

Now consider f1 ⊲ f2. We have two cases depending on whether the context
of f2 in GM′ is x or not. Notice that x 6= context(f1) as x is a queue-read
context and f1 is a write event.

• If x is not the context of f2 in GM′ :

1. If y 6= {e} in M.

From Claim 12.21 we know that PASTGM
(f2) = PASTGM′ (f2) and

PASTGM
(f1) = PASTGM′ (f1).

Hence |PASTGM
(f2)\PASTGM

(f1)| = |PASTGM′ (f2)\PASTGM′ (f1)|.
Since GM ∈ GBS(k), the above cardinality is bounded by k.

2. y = {e} in M. If e 6≤ g, then again |PASTGM′ (f2) \PASTGM′ (f1)| =
|PASTGM

(f2) \ PASTGM
(f1)| < k.

If e ≤ g, then |PASTGM′ (f2) \ PASTGM′ (f1)| ≤ |PASTGM
(f2) \

PASTGM
(f1)| < k.

• If x is the context of f2 in GM′ :

We have |PASTGM′ (f2) \PASTGM′ (f1)| ≤ |↓GM′ x \PASTGM′ (e1)| due to
the FIFO policy on the queue d: Note that e1 and f1 write to the same
queue, and e2 and f2 are the matching read events with e2 ≤ f2.

Since e is the last event of context x in M′, we get,

↓GM′ x \ PASTGM′ (e1) = pastGM′
(e) \ PASTGM′ (e1)

= (pastGM
(e) \ {y}) \ PASTGM′ (e1).

Since e is feasible for x in M, the cardinality of the above set is bounded
by k: |(pastGM

(e) \ {y}) \ PASTGM′ (e1)| < k.

Thus |PASTGM′ (f2) \ PASTGM′ (f1)| < k.
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Thus for every f1⊲f2, |PASTGM′ (f2)\PASTGM′ (f1)| < k. Hence GM′ ∈ GBS(k).
Now, we repeat the above procedure until the context-decomposition is greedy.
This proves completeness of SBS(k).

12.3.3 Discussions

This section leaves out a very interesting problem for future work.

Open Question 12.23. Does there exist a finite state controller (as a CPDS)
for the class BS(k)?

Remark 12.24. In the case of multi-pushdown systems, a finite state controller
indeed exists6. We will describe it informally.

We may observe that, if there is a violation of bs by an MNW (multiply
nested word, which is an MSCN over the architecture of multi-pushdown sys-
tems), then there is always a bottom-most stack entry which has stayed for
more than k contexts. The controller thus aims to verify that all bottom most
entries stay for at most k contexts, and this will ensure bounded scope.

The state of a controller is a tuple Stacks × {0, 1, . . . , k}Stacks. A state
(s, (id)d∈Stacks) indicates that stack which is active in the current context is s,
and the bottom-most entry on stack d has seen id contexts so far. The bottom-
most entry on a stack will always be tagged # and all other entries are tagged
⋆. These are the only two values which will be written on the stacks by the
controller.

Observe that the change of context can be decided deterministically in the
case of BS(k). Thus, the controller will deterministically change the context
when needed, and increment the values of all (but one, sometimes) id. If at any
point this incrementation step would exceed the bound k, the controller moves
into an ABORT state. When it pops # from a stack d, the value of id is reset to
0. If there is a push on stack d while id is 0, then it pushes # and changes id
to 1 in the next state. All other pushes are ⋆.

The finite state deterministic controller for multi-pushdown systems is sound
and complete. It aborts a run as soon as a violation of scope bounded is detected.

Note that this controller cannot be extended as such to generic architectures
as it relies crucially on the fact that there is only one process (which imposes a
total order on the contexts), and that there are only stack data-structures.

12.4 Decision Procedures and Discussions

The verification problems become decidable in the case of BS(k) also, as this
class is MSO definable and has bounded split-width. Let k′ = (d + 1)k + 2,
denote the bound on split-width for BS(k).

We cannot use the tree-automaton Ak′

(SBS(k)) for obtaining the complexity
bounds, as our controller is not a finite-state CPDS. Instead we will use the

6I thank Salvatore La Torre for a fruitful discussion on controllers for multi-pushdown
systems.
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translation of the MSO formula given in page 150. Call it ϕBS(k). The tree-

automaton Ak′

(ϕBS(k)) (cf. page 74) recognises the encodings of BS(k) among
valid k′-DSTs.

Claim 12.25. The size of Ak′

(ϕBS(k)) is doubly exponential in k.

Proof. Consider the formula ϕBS(k) given in Section 12.2. For every atomic bi-
nary relation appearing in the formula, we will give a linear sized 2-way walking
tree-automaton over k′-DSTs. Those atomic binary relations other than x < y
are discussed in Section 4.3.1. We now argue that the relation x < y can also
be recognised by a linear sized 2-way walking tree-automaton over k′-DSTs.

For < along a process, the automaton only needs to verify that both x and
y have the same pid value, and on their least common ancestor, the component
corresponding to x is before the component corresponding to y. Thus, it re-
members the component number in its state. As a walking automaton, it would
move up tracking the component of x, and then non-deterministically jump to
a later component in the same node, and move down tracking this component
(it resolves the choice on moving down a merge node in a non-deterministic
fashion) until it reaches a leaf labelled y.

For < as partial order, we can still have a walking automaton which alter-
nates between ⊲ relation and < along a process at most p times. (Actually the
number of times it alternates between these two or whether it repeats a same
process several times does not matter. We can also take the transitive closure of
→+⊲ directly.) Thus we have a 2-way walking automaton for < whose number
of states is linear in kp.

Thus for the formula from 2nd line onwards, we have a 2-way alternating
automaton whose size is polynomial in k. This automaton accepts trees over a
slightly extended alphabet (with xi, x

′
i, yi, y

′
i etc. marked on the leaves). For

obtaining the automaton for the existential quantification, we need a projection
to the k′-DST-Labels. For this, we first need to convert the polynomial sized 2-
way alternating automaton to a non-deterministic tree-automaton. This causes
an exponential blow up, giving us a non-deterministic tree-automaton whose
size is 2poly(k).

Finally, in order to incorporate the top-most negation, we require a comple-
mentation, which adds another exponentiation. Thus we have a doubly expo-
nential sized tree-automaton for BS(k). Note that, for the complement of BS(k)
within MSCNk′ , we have a polynomial sized (in k) alternating 2-way automa-
ton, and an exponential sized (in k) non-deterministic tree-automaton over the
k′-DSTs.

Corollary 12.26. Consider the set of valid (k′)-DST encodings of MSCNs with
split-width at most k′ which are NOT in BS(k). There exists a tree-automaton
A¬BS(k) over valid k′-DSTs which recognises the above set. The size of ABS(k)

is exponential in k. The above set can also be recognised by a 2-way alternating
tree-automaton whose size is polynomial in k.
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Complexity Upper Bounds The split-width k′ of BS(k) is indeed bounded
by somem which is exponential in k: k′ = (d+1)k+2 ≤ m ∈ 2poly(k). There is a
tree-automaton of size at most 2poly(m) over validm-DSTs recognising encodings
of BS(k). Hence we get the complexity upper bounds stated in Table 4.5 for the
verification problems.

Note that BS(k) admits word-like split-terms if the architecture does not
have stacks. Hence for stack-free architectures, the complexity upper bounds
for the verification problems are as stated in Table 4.6.

For multi-pushdown systems we have an exponential sized controller. Thus
in this case there is an exponential sized tree-automaton over valid k′-DSTs
recognising BS(k). Moreover k′ is polynomial in k. Thus, the verification prob-
lems for scope bounded multi-pushdown systems are decidable with complexity
upper bounds as stated in Table 4.3.

In fact these upper bounds (Table 4.3) would carry over to arbitrary archi-
tectures if we can find an exponential sized controller for BS(k).

Further (Space) Optimisations To optimise futher, recall that we have
an almost-word-like split-term for BS(k) (Remark 12.16). We will now argue
that we can match the space complexity as for word-like by a polynomial time
pre-computation.

The idea is, once we obtain a tree-automaton A1 over almost-word-like k′-
DSTs, to compute the reachable set of states of this tree automaton by terms
corresponding to nested-words. Let us call this set R(A1). This is a pre-
computation phase which takes time polynomial in the size of A1.

Then we obtain another tree-automaton A2 which is supposed to accept the
‘pruned’ versions of the almost-word-like k′-DSTs, where terms corresponding
to nested-words are replaced by a state from R(A1). The new automaton A2

is expecting word-like split-terms whose alphabet is augmented with R(A1). A
letter from R(A1) only occurs on a leaf, and the transitions are augmented to
assign the state s to a leaf labelled s for s ∈ R(A1). Thus we obtain A2 over
word-like split-terms, and |A2| = O(|A1|).

Hence for BS(k) we get complexity upper bounds as stated in Table 4.6 for
all architectures, except for the problem of CPDS emptiness checking against
fixed parameter. We also get complexity upper bounds as stated in Table 4.4
for bounded scope multi-pushdown systems, except for the problem of CPDS
emptiness checking against fixed parameter. In the case of CPDS emptiness
checking, our procedure is PTime due to the pre-computation phase. In fact
we cannot do better since emptiness of nested-word automata is PTime-hard.
Note that, for CPDS emptiness checking of bounded scope multi-pushdown
systems with the bound as part of the input, we obtain a PSpace procedure
which matches its known lower bound [LN11].

Note also that, if we obtain an exponential sized controller for BS(k), the
complexities of the verification problems will be as stated in Table 4.4, except
for CPDS emptiness checking against fixed parameter which would be PTime.
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Conclusions Thus we may conclude that the class BS(k) also provides a rea-
sonable class for the verification purposes. We have elementary decision pro-
cedures for all verification problems (except those involving MSO). This class
also allows unbounded number of contexts which makes the case of infinite be-
haviours interesting.

This class also permits behaviours which are not existentially bounded and
from cyclic architectures.

A very interesting problem which is left open here is to obtain a finite state
controller for this class.
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Chapter 13

Discussions

In this part of the thesis we have seen some classes of MSCNs, which allow
under-approximate verification, and, at the same time are implementable.

However, this part is not an exhaustive listing of the classes. There are
many other possibilities, and it is up to a researcher’s imagination to come up
with sensible classes to add into our ‘controller library’. There are classes which
could be defined independent of the framework of context graphs. There are
classes which may jointly generalise a set of classes. We will briefly discuss some
such classes now.

13.1 More results

13.1.1 Ordered multi-pushdown systems

A multi-pushdown system with ordering restriction [BCCCR96] assumes a total
(priority) ordering on its stacks. It allows pops from a stack only if all the
higher priority stacks are empty. However, there is no constraint on pushes.
The reachability problem of such systems is decidable and is in fact 2-ETime-
complete [ABH08]. The behaviours of such systems were shown to have a tree-
width bounded by s2s in [MP11]. (Recall that s denote the number of stacks.)
Temporal logics model checking has been considered in [Ati10, LN12].

In [CGN12a] we show that the behaviours of ordered multi-pushdown sys-
tems have split-width bounded by 2s+1.1 This class is easily MSO definable.

Multi-pushdown systems with ordering restriction is implementable by a
CPDS whose number of states is at most exponential in the number of stacks.
We will briefly describe this controller in the next paragraph. From the results
of this thesis, it follows that this class has elementary (2-ExpTime) decision
procedure for PDL model checking as well.

The controller for ordered multi-pushdown systems remembers in its state
the subset of stacks which are non-empty. Thus pops are allowed only from

1 From Theorem 5.2 this gives an improved bound on their tree-width.
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the highest priority stack present in the current state. When it pushes to a
non-empty stack, it retains its state. However, when it pushes to an empty
stack s (one which is not present in its current state), it marks the value pushed
into s with a special # symbol to indicate that it is the bottom-most symbol.
Then it updates its state to include the stack s. Similarly, if it pops a #
symbol from a stack s, it updates its state by removing stack s from the current
state. Initial state as well as the final state of this controller is empty set (∅).
This deterministic controller is sound and complete for ordered multi-pushdown
systems.

Since ordered-multi-pushdown systems admit an exponential bound on split-
width as well as an exponential sized controller, the complexities of the various
verification problems are as given in Table 4.5.

13.1.2 Joint generalisation of bounded phase / ordered
with bounded scope

In [CGN12a] we also have other classes which jointly generalise bounded phase
and bounded scope, or ordering and bounded scope2. The idea is that the
pops try to follow the bounded scope restriction as much as possible, and those
pops which fail to follow bounded scope must follow bounded phase or ordering
restriction (when defining the phase/ordering we may discard the ⊲ edges which
followed bounded scope). An example behaviour is given in Figure 13.1.

These classes are also shown to have bounded split-width, which is in fact
the product of the split-width of the separate classes [CGN12b]. These classes
are also implementable. The controller is essentially a cartesian product of the
separate controllers. On a push it non-deterministically guesses whether the
corresponding pop is going to follow bounded scope restriction or not, and this
guess is also pushed into the stack, so that the guess can indeed be verified at
the matching pop.

13.1.3 SR replaced by SW in UASL(k) and DASL(k)

The condition sr can be replaced with a dual sw in the defintion of UASL(k)
and DASL(k). The condition sw requires that a context may write to at most
one data-structure. We may observe that the condition sr is the mirror of sw
by reversing the direction of all edges. Thus the dual notions of UASL(k) and
DASL(k) also form decidable classes with sound and complete controllers. The
MSO definition, bound on split-width, the controller, and hence the complexities
are all similar to the respective class (UASL(k) or DASL(k)).

13.1.4 Existentially bounded MSCNs

An MSCN M = (E , λ, pid, δ,→,⊲) is existentially bounded by k, if there is a
linearisation of the events E such that the total usage of the data-structures

2A joint generalisation of bounded phase and ordered is Turing powerful.
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Figure 13.1: A multiply nested word following scope-or-phase-bounded policy.
The bound on scope is 3 whereas it has only 2 phases. This behaviour follows
scope-bounded-or-ordered policy as well. The solid stack has higher priority
than the dashed stack.
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does not exceed k. Let <lin denote the linearisation. MSCN M is existentially
k bounded if for every event e, |{e′ | e′ ⊲ f ′ and e′ ≤lin e <lin f ′}| ≤ k. We
denote the set of existentially k bounded MSCNs by EB(k).EB(k)

For the classes EB(k) and a generalisation GEB(k) (Section 13.1.5) we give a
bound on split-width. But we leave it for future work to investigate controllers
and to obtain MSO formulas for these classes. The challenge would be to assume
and ensure a linearisation respecting the bound k.

In [GKM06], it is shown that the class of existentially bounded MSCs (with-
out stacks) is definable in MSO and admits a distributed implementation. This
would be a possible starting point to study the generalisation towards MSCNs.

Theorem 13.1. If an MSCN M is in EB(k), then the split-width of M is at
most k + 1. Moreover, it is word-like.

Proof idea. To obtain a split-decomposition we detach events (that is, make the
→ edges incident on it into e−→ edges) one by one in the order of the linearisation
as singleton contexts. After an event is detached we may remove it (together
with its ⊲ partner if it is available as a singleton context) so that the following
invariant is kept.

1. All the unremoved detached events are writes.

2. There are at most k unremoved detached events

Thus, if the current detached event is an internal event, it is removed from the
rest as a child of shuffle. If it is a write event we keep it as a separate component
of the split-MSCN. If it is a read event, then the matching write is already
present as a singleton context. Hence this ⊲ edge can be removed. Note that
all the singleton contexts are write events. Moreover since it is existentially k
bounded and the events are detached according to the linearisation, the number
of unremoved detached contexts cannot exceed k.

The detached contexts are the only possible sources of an elastic edge e−→,
hence the split width is bounded by the maximal number of detached contexts
possible at any instant, which is k+1. There can be k+1 detached contexts when
there are already k write events detached as single contexts, and on detaching
the subsequent event (which would be a read or an internal, and hence will be
removed to satisfy the invariants).

Thus for obtaining a split-term, we are treating MSCNs in the order of the
linearisation (a single left-to-right scan). Only one event is processed at a time.
Depending on its type, either it stays as a singleton context, or is detached from
the main spine of the split-term as the child of a shuffle node. Clearly this gives
a word-like split-term.

13.1.5 Generalisation of existentially bounded MSCNs

We can consider a much richer class of MSCNs inspired by the above result
on existentially bounded MSCNs. Let EB(k) be the set of all MSCNs with an
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existential bound of k. An MSCN is generalised existentially bounded by k if it
admits a context-decomposition which looks like an MSCN in EB(k). For this
we describe how to extract out a possibly-MSCN-like structure from a context
decomposition.

Let M be a split-MSCN with GM = (V, (Ed)d∈DS) its extended context
graph. The Quotient(M)structure Quotient(M) = (E , λ, pid, δ,→,⊲) where

• E = V

• λ(v) = a

• pid(v = (p, i)) = p

• δ(v = (p, i)) = {d | δ(e) = d for some e ∈ v}

• →= {(v, v′) | v = (p, i) and v′ = (p, i+ 1)}

• ⊲d = Ed

We say a split-MSCN M looks like an MSCN if Quotient(M) is an MSCN
over Σ = {a}. This requires that a context can be part of at most one edge
from ∪Ed. Hence not only a context accesses at most one data-structure in one
direction, but also all the ⊲ edges from/to this context are to/from a single
other context. In particular, stack loops are forbidden.

We say an MSCN M is in GEB(k), if it admits a GEB(k)context decomposition M
such that Quotient(M) ∈ EB(k).

Theorem 13.2. If an MSCN M is in GEB(k), then the split-width of M is at
most k + 3. Moreover, it is word-like.

Proof idea. Let M be a witnessing context decomposition with a linearisa-
tion. The idea is to simulate the proof of bounded split-width of EB(k) on
Quotient(M). The components are extracted out in the order of the linearisa-
tion. These components need not be singleton, but will be accessing at most
one data-structure and in at most one direction (either write or read, even for
stacks). If the currently extracted context is a “write” context, it stays as a
context. However, we may trim this context by removing the brinks that are
internal. If the currectly extracted context is not accessing a data-structure,
then we remove the brinks one by one until this context disappears. If the cur-
rently extracted context is a “read” context, then brinks of this read context are
linked to the brinks of an already extracted context. Hence we may remove the
⊲ edges connecting brinks one by one, and also the brinks which are internal,
as soon as they appear, until the two contexts disappear.

13.2 Impact of the results

The impacts of our results can be best appreciated on comparison with existing
related works. Please refer to Section 1.2 for a brief overview of related works.
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Reachability problems over specific architectures have been an important
topic of study in formal verification. Temporal logics and model checking have
also been studied for some architectures. Various restrictions have been pro-
posed to obtain decidability. Decidability is shown for each of these restrictions
using ad-hoc techniques3.

On the contrary, split-width offers a generic proof technique, not onlyuniform decision

procedure

various restrictions
various verification

problems

optimal complexity

for various restrictions, but also for various verification problems. Moreover, it
gives the best known complexities in most cases.

The approach for bounding the split-width is also generic and systematic.

easy to extend

This easily extends to generalisations as well.

In essence, split-width is a new technique for the verification of CPDS. It
gives a parameter for the under-approximate verification, and a useful encoding
of the behaviours as trees. It also provides alternate proofs for the existing
decidability results. In fact we have been able to find new decidable classes,
thanks to split-width technique. It is worth mentioning that even on specific
architectures well-studied in the literature, our results throw new lights.

13.3 Perspectives

It is left for future work to extend the classes discussed in Section 13.1 for multi-
pushdown systems to the more general setting of MSCNs, as well as investigating
good controllers for them.

Another direction of research is to tackle different desirable features of the
controllers. Is it possible to get a deterministic controller for a class? Can we
get a controller which is deadlock-free? Is it possible to gain one feature by
compromising another? For example, can we get a deadlock-free controller by
surrendering the finite state property and settling for some time stamping like
protocols (cf. controller for BS(k))? This would be a very promising direction
of research with many interesting problems that need to be answered.

This part also unveils the beauty and power of split-width. It shows us how
split-width explores the ‘structure’ of a class, and enlightens our understanding
of a class of restrictions of MSCNs. It also exemplifies the divide-and-conquer
approach for showing the split-width.

3[MP11] gives a unifying proof of decidability of reachability for some restrictions.
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Chapter 14

Conclusions

Summary The manuscript introduces the notion of split-width as a tool for
the verification of concurrent processes with data-structures. It illustrates a con-
venient tree-representation for the behaviours with bounded split-width. Then
it demonstrates how to make use of the rich results and techniques available
for trees to aid the verification of CPDS. It provides uniform decision proce-
dures for various verification problems. The complexity of the uniform decision
procedures are optimal for most of these problems.

It proceeds to emphasise the power of split-width. In Chapter 5 we have
seen that split-width can capture all bounded clique-width behaviour graphs.
Thus it follows that it can capture any class of behaviours with a decidable
MSO theory.

In another direction it illustrates the power of split-width by considering
several natural restrictions on CPDS and showing that these have bounded
split-width. These classes are general and extends several known decidable re-
strictions. Moreover, these classes are implementable by distributed controllers.

The thesis discusses the necessity and advantages of distributed controllers.
It proposes some desirable features to keep in mind while designing one. Dis-
tributed controllers for several natural classes are given, and these are shown to
be sound and complete.

Future work We have stated interesting open questions and further direc-
tions research throughout the manuscript. A very important one of these is,
given a regular language over tree-representations of MSCNs of split-width at
most k, can we obtain a CPDS recognising the represented MSCNs (cf. Open
Question 6.8). If we can answer this positively, then the split-width technique
can be used for complementing a CPDS wrt. a bound on split-width. This would
also imply that various controllable classes are complementable.

There are several classes for which we need to investigate whether they admit
reasonable controllers. It is interesting to see whether the class BS(k) admits a
finite state controller, or whether the acyclic classes admit a deterministic con-
troller. Another direction that ought to be taken is investigating the controllers
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to have further desirable properties like determinism, dead-lock freedom etc.

Further directions From a wider perspective, the theory of split-width may
be extended along several dimensions. For example, to handle infinite be-
haviours. The challenge is that, the current definition of split-width resonates
with a least fixed point, which does not naturally lift up to infinite behaviours.
Another possibility is to extend this theory to handle infinite data (cf. [BCGK12]).
Yet another dimension is broadening the application domain, e.g. allowing data-
structures other than stacks and queues. Note that the notion of split-width
is defined for CBMs which may be thought of as handling bag data-structures.
However, we do not know natural classes of CPDS with bag data-structures
that would admit a bound on split-width. In the thesis we have only considered
linear time properties of CPDS. Applications of split-width to the verification
of branching time properties is another direction.

It is interesting to see whether split-width can be defined when a linear order
of events along a process is replaced by a partial order of events (cf. nested traces
[BGH09]).

A lot of algorithmic questions can also be asked in the case of split-width,
e.g. obtaining the optimal split-term for an input MSCN.

176



Bibliography

[AAB+08] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and
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Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi,

177



and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in
Computer Science, pages 1102–1114. Springer, 2005. 50

[AKS13] Mohamed Faouzi Atig, K. Narayan Kumar, and Prakash Saivasan.
Adjacent ordered multi-pushdown systems. In Marie-Pierre Béal
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