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On étudie les fonctions multivaluées vers un espace de Hilbert. Après avoir introduit une bonne notion de p énergie, on donne une définition possible d'espace de Sobolev et on prouve un théorème d'existence des p minimiseurs. Puis on considère les fonctions bivaluées de deux variables, stationnaires pour les déformations au départ et à l'arrivée. On démontre qu'elles sont localement lipschitziennes et on utilise cette régularité pour montrer la convergence forte dans W 1,2 vers leur unique éclatement en un point. L'ensemble de branchement d'une telle fonction est la réunion localement finie de courbes analytiques qui se rencontrent en faisant des angles égaux. Nous donnons aussi un exemple de fonction discontinue et stationnaire seulement pour les déformations au départ.

Dans un deuxième temps, on prouve qu'il n'existe pas de rétraction uniformément continue de l'espace des champs vectoriels continus vers le sous-espace de ceux dont la divergence est nulle en un sens distributionnel. On généralise ce résultat en toute codimension en utilisant la notion de m charge et à tout ensemble X ⊂ R n vérifiant une hypothèse géométrique mineure.

Introduction The Plateau problem

When we observe a soap film spanning a wire frame, we can be interested in the principles that enable it to exist in certain geometric configurations and not others. The Plateau problem amounts to asking what are the possible shapes it can assume.

The liquid surface acts as an elastic membrane. In a first time, we can say that the total surface energy of such a soap film is proportionnal to its area, though such a statement leaves behind situations with multiple sheets. A shape is a physical solution of the Plateau problem only if it cannot change to a configuration with less energy.

Therefore, we will be interested in certain generalized surfaces of R 3 that are stable, i.e stable critical points of the area functional.

The first physicist to have studied the geometry of soap films appears to be the Belgian Joseph Plateau. In his honor, various mathematical questions dealing with the geometry of soap-film-like surfaces are referred to as the Plateau problem. The first difficulty is that there is no universal agreement on what is meant by a "surface" and its "area". Here is a list of different formulations, to see how this problem led to a bushy mathematical literature

• immersed surfaces: the first progress in this direction was independently achieved in the thirties by Tibor Radó and Jesse Douglas. Both relied on setting up minimization problems and complex analysis. However, their work does not extend in higher dimensions.

• sets with finite perimeter, introduced by De Giorgi.

• rectifiable currents: introduced by Federer and Flemming. They generalize sets with finite perimeter to codimensions greater than 1.

• varifolds: they can useful for the study of stationary surfaces which are not necessarily minimizing. However, they lack a boundary operator.

• Almgren's (M, 0, δ) minimal sets: they are accurate models of physical solutions, but the lack of a compactness theorem makes it difficult to prove the existence of an area minimizer.

Establishing the existence and regularity of solutions to the Plateau problem in general dimensions and codimensions is one of the most challenging problem in geometric measure theory. In the eighties, Frederick J. Almgren proved the following theorem: Theorem 1. Let T be an m dimensional mass minimizing current in R n . Consider the set reg(T ) of all points x ∈ supp T \supp ∂T for which there exists an open neighborhood U of x such that supp T \ supp ∂T ∩ U is an C ∞ manifold. Then the set sing(T ) := supp T \ (supp ∂T ∪ reg(T )) has Hausdorff dimension less than m -2. This theorem is optimal, as shown by the case of complex varieties. Its proof has required development of several new geometric and analytic techniques, central among which is the utilization of multiple valued functions to study branching phenomena.

We believe stationary varifolds can be well approximated by stationary multiple valued functions, and that one can deduce from this approximation some regularity results. The following question is open, even in the case Q = 2. Conjecture 1. Suppose (A) V is a 2 dimensional stationary varifold in R 3 with integer multiplicities,

(B) ε ∈ [0, 1), Q ∈ N * , (C) V B 3 (0, 1) ≤ π(Q + ε)
Then there exists γ ∈ (0, 1) such that H 2 (sing V ∩ B 3 (0, γ)) = 0.

Multiple valued functions

Let Y be a metric space and Q be an integer. We define Q Q (Y ) to be the subset of measures in Y :

Q Q (Y ) :=    Q i=1 y i : y 1 , . . . , y Q ∈ Y    .
We will adopt the compact notation

y 1 , . . . , y Q = Q i=1 y i .
Elements of Q Q (Y ) are just unordered Q tuples of points in Y . What we mean by a multiple valued function in the sense of Almgren is just a Q Q (Y ) valued function.

A natural metric on Q Q (Y ) is given by

G ( y 1 , . . . , y Q , z 1 , . . . , z Q ) := min σ∈S Q Q i=1 d(y i , z σ(i) ) 2 ,
where d is the metric of Y .

Typical examples of multiple valued functions include inverses of non injective functions, such as the map z ∈ C → √ z ∈ Q 2 (C). Another important example is given by slicing a (mass minimizing or stationary) integral current in vertical directions in a neighborhood of a point with multiplicity Q, or slicing in a cylinder in which a current has no boundary.

In the first part of his monumental work, Almgren establishes the foundations of multiple valued calculus in case Y is Euclidean. His theory is based on the existence of a Euclidean embedding ξ :

Q Q (R n ) → R N (n,Q) such that ξ is Lipschitzian, ξ(Q Q (R n )
) is a polyhedral cone and there is a Lipschitz retraction map ρ : R N (n,Q) → ξ(Q Q (R n )). A Rademacher type theorem follows easily. Also, we can naturally define a generalized Dirichlet integral and Sobolev functions from R m to Q Q (R n ) as one would between two Riemannian manifolds.

Such an "isometric" embedding is unknown when Y is a Banach space, even when Y = ℓ 2 . Thus we are led to develop further the intrinsic approach pioneered in [START_REF] Goblet | A selection theory for multiple-valued functions in the sense of almgren[END_REF] and [START_REF] Lellis | Q-Valued Functions Revisited[END_REF] (yet we cannot dispense completely with the locally isometric embedding, in particular when proving the lower semicontinuity of the energy).

Though a Lipschitz function f : R m → Q Q (Y ) (when Y is a Banach space with the Radon-Nikodým property) does not generally decompose into Q Lipschitz "branches", we nevertheless establish their differentiability almost everywhere, for an appropriate notion of a derivative Df that controls the variations of f . In case Y is finite dimensional, this had been obtained by F.J. Almgren [START_REF] Almgren | Almgren's Big Regularity Paper: Q-Valued Functions Minimizing Dirichlet's Integral and the Regularity of Area-Minimizing Rectifiable Currents Up to Codimension 2[END_REF], the third author [START_REF] Goblet | A selection theory for multiple-valued functions in the sense of almgren[END_REF], and C. De Lellis and E. Spadaro [START_REF] Lellis | Q-Valued Functions Revisited[END_REF]. Our proof in the infinite dimensional setting follows essentially that given in the last two references.

Sobolev Spaces

Letting U = U (0, 1) be the unit ball of ℓ m 2 , we consider the Borel measurable maps

f : U → Q Q (ℓ 2 ) with finite L p "norm" |f | Lp := U G(f, Q 0 ) p dL m < ∞.
Their L p semidistance is defined as

d p (f 1 , f 2 ) := U G(f 1 , f 2 ) p dL m 1/p . The Sobolev maps f ∈ W 1 p (U ; Q Q (ℓ 2 )
) are defined to be the limits in this L p semidistance of sequences of Lipschitz maps

f j : U → Q Q (ℓ 2 ) such that sup j U |Df j | p dL m < ∞.
This sort of "weak density" of Lipschitz Q-valued maps among Sobolev ones is justified, in case Y = ℓ n 2 is finite dimensional, by the fact that U is an extension domain and that im ξ is a Lipschitz retract of R N . That Sobolev Q-valued maps extend from U to the whole ℓ m 2 , with the appropriate control, is a matter of routine verification. We define the p energy Dir where the weak convergence means that (f j ) is a sequence of Sobolev maps such that lim j d p (f, f j ) = 0 and

sup j U |Df j | p dL m < ∞.
Thus Dir p is automatically lower semicontinuous with respect to convergence in the L p semidistance, and we then embark on showing that f is differentiable almost everywhere and that the following intuitive formula holds:

Dir p p (f ; U ) = U |Df | p dL m .
For this purpose we need to know the corresponding statement for finite dimensional approximating Sobolev maps U → Q Q (ℓ n 2 ), a convergence result for the finite dimensional approximations, a Poincaré inequality from which a stronger (Luzin type) approximation by Lipschitz Q-valued maps follows. The differentiability almost everywhere of a Sobolev Q-valued map now becomes a consequence of our aforementioned Rademacher type result.

At that point we also obtain that

Dir p p (f ; U ) = U |Df | p dL m ,
thus the lower semicontinuity sought for.

We prove the existence of a useful trace "operator" T , verifying the following continuity property: If (f j ) is a sequence of Sobolev converging weakly to f , then lim j d p (T (f ), T (f j )) = 0. Finally, the multiple valued Rellich compactness Theorem relies on a Fréchet-Kolmogorov compactness Theorem and a new embedding Theorem.

Given a Lipschitz g : ∂U → Q Q (ℓ 2 ) and 1 < p < ∞, our main result states that the minimization problem

   minimize U |Df | p dL m among f ∈ W 1 p (U ; Q Q (ℓ 2 )
) such that T (f ) = g admits a solution.

Stationary multiple valued functions

The first step in Almgren's proof of Theorem 1 establishes the same kind of dimensional bound for some multiple valued functions, namely, those minimizing the Dirichlet energy.

Not much is known when we replace Dirichlet minimizing functions with critical points of the Dirichlet functional. In particular, the following question was discussed in [START_REF] Allard | Geometric Measure Theory and the Calculus of Variations[END_REF]: What can we say about the branch set of such stationary multiple valued functions ? This question is motivated by the study of the singular set of stationary integral currents. An example showing that its dimension can exceed m -2 is provided by a multiple valued function whose graph consists of two "opposite" hyperplanes.

Let us consider two-valued functions of two variables, we assume that they are stationary with respect to transformations of the domain -usually such functions are called stationary harmonic, yet we will follow Almgren's terminology and use the term squeeze stationary. Our first result is that squeeze stationary functions are locally Lipschitz continuous. To prove this fact, we can rely on complex-analytic arguments since we work in two dimensions. Indeed, squeeze stationarity of a function f is equivalent to the Hopf form of f being holomorphic ; the Hopf form carries information on the derivatives, which implies regularity of f . Thus branching is the only type of singularity which may occur.

Our main theorem states that, under the conditions m = 2, Q = 2 and n = 1, a stationary function has a singular set of dimension 1, which consists of finitely many real analytic curves in the interior and C 1 up to the boundary. The extremities of the curves are precisely those branch points around which one does not decompose f as a sum of two harmonic functions.

We follow a usual blow-up method. Our proof is divided into three steps.

(1) Existence of blow-ups: rescalings of a stationary multiple valued function converge to a tangent object, namely, a homogeneous stationary function. To prove this fact, we use Almgren's frequency function; this function was shown to be nondecreasing as a consequence of stationarity -up to some minor technicalities. This fact plays a role analogous to the monotonicity of the density ratio in Allard's regularity theorem. We also need a compactness argument to allow sequences of rescalings to converge ; one delicate point here is that unlike for Dirichlet minimizing functions, we cannot use comparison arguments. Moreover, the convergence must be strong since the equations of stationarity are nonlinear. Note that our compactness result strongly relies on the Lipschitz continuity of stationary functions.

(2) Classification of blow-ups. As we work in low dimension, it is not difficult to completely classify homogeneous stationary functions by hand. Several facts are worth noting. First, the homogeneity degree of a blow-up corresponds to its frequency. Second, since convergence of rescalings is strong in W 1,2 , the Hopf forms converge during the blow-up process. This implies that there is no loss of energy. Finally, as we are able to list a posteriori all homogeneous stationary functions, we can deduce the uniqueness of blow-ups. The blow-up at one point depends only on the value of the Hopf form and its successive derivatives.

(3) Regularity of the branch set. Consider a stationary function f . We need some topological results to compare the local behavior of the branch set of f with that of its blow-ups. The blow-ups vary continuously because of the continuity of the Hopf form ; we then deduce that the branch set is C ∞ and then improve the regularity to real analyticity.

We hope that this work can be extended to Q-valued stationary functions, for Q ≥ 3.

Charges

To understand the notion of charge, one needs some acquaintance with currents, which have been developed by Federer and Fleming (see [START_REF] Federer | Geometric Measure Theory[END_REF] for an extensive presentation).

We know that differential forms can be seen as acting on oriented submanifolds by integration

N → N ω.
Inspired by this duality, one may define charges as continuous linear functionals on a peculiar class of currents, known as normal currents. Unlike submanifolds, normal currents fortunately have a linear space structure, but the suitable topology is not obvious. For example, if we endow the space of normal currents with the flat norm topology, we obtain flat cochains instead of charges. This topology does not behave correctly. Besides, we do not control the normal mass of a converging sequence of normal currents. The localized topology on normal currents goes over this difficulty; it is therefore perfectly suited to define charges. Generalizing Stokes' formula, it is possible to define a weak coboundary operator d for charges; charge cohomology is the associated cohomology. We give the proof of a significant representation theorem that helps understand the link between charges and continuous differential forms. Namely, for each m charge α, there exists a continuous m-form ω and a continuous (m -1) form ζ such that α = ω + dζ.

Hence, charge cohomology is the natural notion to deal with continuous differential forms. Still let us mention that there exists an analogue representation theorem for flat cochains, due to Wolfe which asserts that flat cochains are L ∞ differential forms whose weak derivatives are L ∞ . Unlike Wolfe's theorem, the representation theorem for charges is rather abstract; it does not yield any particular continuous representatives to a given charge. A natural question is whether there is a canonical choice for ω and ζ in the representation formula. Section 7 is the original part on this subject: it states that there is no uniformly continuous choice α → (ω, ζ).

Sections 1, 2 and 3 of Part I are taken from the article [START_REF] Ph | Existence of p-harmonic multiple valued maps into a separable hilbert space[END_REF] written in collaboration with Thierry De Pauw and Jordan Goblet. Section 4 is taken from [START_REF] Bouafia | Blow up analysis of stationary two valued functions[END_REF], whereas the last part on charges is taken from [START_REF] Bouafia | Retractions onto the space of divergence free vector fields[END_REF] 

General notations

The set of nonnegative integers is N and the one of positive integers is denoted by N * .

We will denote by R n or more accurately ℓ n 2 the Euclidean space of dimension n, and by ℓ 2 the Hilbert space of square summable sequences. The symmetric difference of sets is denoted by ⊖.

If (Y, d) is a metric space and m is a nonnegative integer, we define, for any subset A ⊂ Y and δ > 0,

H m δ := α(m) i∈I (diam A i ) m : A ⊂ ∪ i∈I A i , I countable ,
where α(m) is the m volume of the unit ball in ℓ m 2 . The Hausdorff measure of A is

H m (A) = sup δ>0 H m δ (A).
We write L m instead of H m whenever Y = ℓ m 2 . A function f : X → Y between two metric spaces is called Lipschitz continuous whenever

Lip f := sup d Y (f (x), f (y)) d X (x, y) : x = y ∈ X < ∞.
The closed unit ball of a Banach space X is denoted by B X . The operator norm of a continuous linear map T : X → Y between two normed spaces is defined by

T := sup{ T (x) Y : x ∈ B X }.
When µ is a measure on a metric space and a ∈ X, we let the m density of µ at a be the quantity (whenever it exists) Θ m (µ, a) := lim 

Symmetric powers

Let Q be a positive integer and let Y be a metric space. Our aim is to consider unordered Q-tuples of elements of Y . For instance, letting Y = C and letting P be a polynomial of degree Q with coefficients in C, the roots of P form such an unordered Q-tuple of complex numbers. Thus the elements under consideration need not be distinct; if some agree they should be counted with their multiplicity.

Formally the collection Q Q (Y ) of unordered Q-tuples in Y may be defined as the quotient of the Cartesian product Y Q under the action of the symmetric group S Q . An element σ ∈ S Q is a permutation of {1, . . . , Q}. It acts on Y Q in the obvious way :

Y Q → Y Q : (y 1 , . . . , y Q ) → (y σ(1) , . . . , y σ(Q) ) .
We will denote by y 1 , . . . , y Q the equivalence class of (y 1 , . . . , y Q ) in Q Q (Y ), so that in particular y 1 , . . . , y Q = y σ(1) , . . . , y σ(Q) for every σ ∈ S Q . On occasions we shall also denote by v a generic element of Q Q (Y ). Another way of thinking of a member v = y 1 , . . . , y Q ∈ Q Q (Y ) is to identify it with the finite measure µ v = Q i=1 δ y i where δ y i is the Dirac mass with atom {y i }. The support of v ∈ Q Q (Y ) is, by definition, the support of the corresponding measure, supp v = supp µ v = {y 1 , . . . , y Q } where y 1 , . . . , y Q is a numbering of v, i.e. a map y : {1, . . . , Q} → Y such that v = y 1 , . . . , y Q . The multiplicity of y ∈ supp v is defined as µ v {y}.

We now define a metric on Q Q (Y ) associated with the given metric d of Y . Let G( y 1 , . . . , y Q , y ′ 1 , . . . , y ′ Q ) = min

σ∈S Q Q i=1 d(y i , y ′ σ(i) ) 2 .
We will sometimes use the notation G 2 for G in order to avoid confusion with two other useful metrics:

G 1 ( y 1 , . . . , y Q , y ′ 1 , . . . , y ′ Q ) = min σ∈S Q Q i=1 d(y i , y ′ σ(i) ) ,
and

G ∞ ( y 1 , . . . , y Q , y ′ 1 , . . . , y ′ Q ) = min σ∈S Q max i=1,...,Q d(y i , y ′ σ(i) ) .
Thus G 1 , G 2 and G ∞ are equivalent metrics on Q Q (Y ).

We begin with the following easy proposition.

Proposition 1. The metric space (Y, d) is complete (resp. compact, separable) if and only if (Q Q (Y ), G) is complete (resp. compact, separable) for every Q ∈ N * .

Proof. As (Q 1 (Y ), G) is isometric to (Y, d) we need only to check that (Q Q (Y ), G), Q ≥ 2, inherits the properties of (Y, d). Let {v j } be a Cauchy sequence in Q Q (Y ). It suffices to establish the convergence of some subsequence, still denoted {v j }, and we choose it so that G(v j , v j+1 ) < 2 -j . We let v 0 = y 0,1 , . . . , y 0,Q and we choose inductively a numbering v j = y j,1 , . . . , y j,Q so that G(v j , v j+1 ) 2 = Q i=1 d(y j,i , y j+1,i ) 2 . It follows that each {y j,i } j , i = 1, . . . , Q, is a Cauchy sequence in Y . Letting y i denote its limit, and v = y 1 , . . . , y Q , it remains to observe that G(v, v j ) 2 ≤ Q i=1 d(y i , y j,i ) 2 → 0. This proves that if Y is complete then so is Q Q (Y ). Regarding total boundedness we notice that if a finite subset A ⊂ Y and r > 0 are so that

Y = y∈A B d (y, r) then Q Q (Y ) = (y 1 ,...,y Q )∈A Q B G∞ ( y 1 , . . . , y Q , r) .
As for separability, if D is dense countable subset of (Y, d), then so is

Q Q (Y ) ∩ { y 1 , . . . , y Q : (y 1 , . . . , y Q ) ∈ D Q } in (Q Q (Y ), G ∞ ).
A Q-valued function from a set X to Y is a mapping f : X → Q Q (Y ). A multiplevalued function from X to Y is a Q-valued function for some positive integer Q. In case X is a metric space, the notion of continuity (in particular Lipschitz continuity) of such f now makes sense. If A is a σ-algebra of subsets of X we say that f is A-measurable (or simply measurable when A is clear from the context) whenever

f -1 (B) ∈ A for every Borel subset B ⊂ Q Q (Y ).
Our coming observation will reveal ubiquitous. We define the splitting distance of

v = y 1 , . . . , y Q ∈ Q Q (Y ) as follows: split v =    min{d(y i , y j ) : i, j = 1, . . . , Q and y i = y j } if card supp v > 1 +∞ if card supp v = 1 . Lemma 1 (Splitting Lemma). Let v = y 1 , . . . , y Q ∈ Q Q (R n ) and v ′ ∈ Q Q (Y ) be such that G(v, v ′ ) ≤ split v/2. Choose a numbering of v ′ = y ′ 1 , . . . , y ′ Q ∈ Q Q (Y ) so that d(y i , y ′ i ) ≤ split v/2, i = 1, . . . , Q. It follows that G(v, v ′ ) = Q i=1 d(y i , y ′ i ) 2
(and the analogous statement for G 1 and G ∞ ).

Proof. We first observe that in case split v = ∞ the conclusion indeed holds true. Thus we assume that split v < ∞. Let σ ∈ S Q and i = 1, . . . , Q. We aim to show that

d(y i , y ′ i ) ≤ d(y σ(i) , y ′ i ). In case y σ(i) = y i this is obvious. Otherwise, assuming if possible that d(y σ(i) , y ′ i ) < d(y i , y ′ i ) we would infer from the triangle inequality split v ≤ d(y σ(i) , y i ) ≤ d(y σ(i) , y ′ i ) + d(y ′ i , y i ) < 2d(y i , y ′ i ) ≤ split v , a contradiction. Since i = 1, . . . , Q is arbitrary we obtain Q i=1 d(y i , y ′ i ) 2 ≤ Q i=1 d(y σ(i) , y ′ i ) 2 .
Since σ ∈ S Q is arbitrary, the proof is complete.

Proposition 2. The function σ : Q Q (Y ) → N : v → card supp v is lower semicontinu- ous. Proof. It follows easily from the definition of split v that if v, v ′ ∈ Q Q (Y ) and if G ∞ (v ′ , v) < split v/2 then card supp v ′ ≥ card supp v.

Concatenation and splitting

Let Q 1 and Q 2 be positive integers. We define the concatenation operation

⊕ : Q Q 1 (Y ) × Q Q 2 (Y ) → Q Q 1 +Q 2 (Y ) : (v 1 , v 2 ) → v 1 ⊕ v 2 as follows. Write v 1 = y 1,1 , . . . , y 1,Q 1 and v 2 = y 2,1 , . . . , y 2,Q 2 , and put v 1 ⊕ v 2 = y 1,1 , . . . , y 1,Q 1 , y 2,1 , . . . , y 2,Q 2 . We observe that this operation is commutative, i.e. v 1 ⊕ v 2 = v 2 ⊕ v 1 . We notice the following associativity property. If Q 1 , Q 2 and Q 3 are positive integers and v j ∈ Q Q j (Y ), j = 1, 2, 3, then (v 1 ⊕ v 2 ) ⊕ v 3 = v 1 ⊕ (v 2 ⊕ v 3 ) so that v 1 ⊕ v 2 ⊕ v 3 is well defined.
It is thus possible to iterate the definition to the concatenation of any finite number of members of some Q Q j (Y ). In this new notation we readily have the identity

y 1 , . . . , y Q = y 1 ⊕ . . . ⊕ y Q = ⊕ Q i=1 y i .
We leave the obvious proof of the next result to the reader.

Proposition 3. Let Q 1 , . . . , Q k ∈ N * . The concatenation operation Q Q 1 (Y ) × • • • × Q Q k (Y ) → Q Q 1 +•••+Q k (Y ) : (v 1 , . . . , v k ) → v 1 ⊕ . . . ⊕ v k is Lipschitz continuous. In fact if each Q Q (Y )
appearing in the statement is equipped with the metric G 1 , and if the Cartesian product is considered as an ℓ 1 "product", then the Lipschitz constant of the above mapping equals 1.

Given Q maps f 1 , . . . , f Q : X → Y we define their concatenation f : X → Q Q (Y ) by the formula f (x) = f 1 (x), . . . , f Q (x) = ⊕ Q i=1 f i (x) , x ∈ X.
Abusing notation in the obvious way we shall also write

f = f 1 , . . . , f Q .
In writing f as above we will call f 1 , . . . , f Q branches of f . It is most obvious that such splitting of f into branches is always possible, and equally evident that branches are very much not unique unless X is a singleton. It ensues from the above proposition that if f i : X → Y , i = 1, . . . , Q, are measurable (resp. continuous, Lipschitz continuous) then so is their concatenation f = ⊕ Q i=1 f i . Now, if f has some of these properties, can it be split into branches f 1 , . . . , f Q having the same property? The answer is positive for measurability, as we shall see momentarily, but not for continuity. Consider f :

C → Q 2 (C) defined by f (z) = √ z, - √ z .
Thus f is (Hölder) continuous (for a recent account of such continuity, consult e.g. [START_REF] Brink | Holder continuity of roots of complex and p-adics polynomial[END_REF]). We claim however that f does not decompose into two continuous branches. In fact we shall argue that the restriction of f to the unit circle, still denoted f ,

f : S 1 → Q 2 (S 1 ) : z → √ z, - √ z
does not admit a continuous selection. Suppose if possible that there are continuous maps

f 1 , f 2 : S 1 → S 1 such that f = f 1 , f 2 . Let g : S 1 → S 1 : z → z 2 . From the identity id S 1 = g • f 1 we infer that 1 = deg(g • f 1 ) = deg(g) • deg(f 1 ) = 2 deg(f 1 ), contradicting deg(f 1 ) ∈ Z.

Measurability

This section is also contained in [START_REF] Lellis | Q-Valued Functions Revisited[END_REF]. The process of splitting

v ∈ Q Q (Y ) (such that split v < ∞) into v 1 ∈ Q Q 1 (Y ) and v 2 ∈ Q Q 2 (Y ), Q = Q 1 + Q 2 and Q 1 = 0 = Q 2 ,
is locally well-defined and continuous.

Proposition 4. Let v ∈ Q Q (Y ) be such that s = split v < ∞. There then exist Q 1 , Q 2 > 0 with Q = Q 1 + Q 2 and continuous mappings ψ k : Q Q (Y ) ∩ {v ′ : G ∞ (v, v ′ ) < s/2} → Q Q k (Y ) , k = 1, 2 , such that v ′ = ψ 1 (v ′ ) ⊕ ψ 2 (v ′ ) . Proof. Choose 1 ≤ Q 1 < Q and a numbering v = y 1 , . . . , y Q so that y 1 = • • • = y Q 1 and d(y 1 , y i ) ≥ s for every i = 1 + Q 1 , . . . , Q. Let v ′ ∈ Q Q (Y ) be such that G ∞ (v, v ′ ) < s/2 and choose a numbering v ′ = y ′ 1 , . . . , y ′ Q such that d(y i , y ′ i ) ≤ G ∞ (v, v ′ ) for every i = 1, . . . , Q. We claim that the mappings ψ 1 (v ′ ) = y ′ 1 , . . . , y ′ Q 1 ∈ Q Q 1 (Y ) and ψ 2 (v ′ ) = y ′ 1+Q 1 , . . . , y ′ Q ∈ Q Q-Q 1 (Y ) are well-defined. Suppose indeed that v ′ = y ′′ 1 , . . . , y ′′ Q is another numbering such that d(y i , y ′′ i ) ≤ G ∞ (v, v ′ ), i = 1, . . . , Q. If some y ′ i with i = 1, . . . , Q 1 were equal to some y ′′ j with j = 1 + Q 1 , . . . , Q then the triangle inequality would imply that d(y i , y j ) ≤ 2G ∞ (v, v ′ ), a contradiction since 2G ∞ (v, v ′ ) < s. Thus y ′ 1 , . . . , y ′ Q 1 = y ′′ 1 , . . . , y ′′ Q 1 . Since readily v ′ = ψ 1 (v ′ ) ⊕ ψ 2 (v ′
), it only remains to check that ψ 1 and ψ 2 are continuous. Let {v ′ j } be a sequence in the domain of

ψ 1 converging to v ′ . Assume j is large enough for G ∞ (v ′ , v ′ j ) < δ := min{(split v ′ )/2, s/2 -G ∞ (v, v ′ )}. Choose a numbering v ′ j = y ′ j,1 , . . . , y ′ j,Q such that d(y ′ i , y ′ j,i ) < δ. Notice that d(y i , y ′ j,i ) < s/2 for each i = 1, . . . , Q, and consequently ψ 1 (v ′ j ) = y ′ j,1 , . . . , y ′ j,Q 1 .
Finally we infer from the Splitting Lemma that

G 1 (ψ 1 (v ′ ), ψ 1 (v ′ j )) ≤ Q 1 i=1 d(y ′ i , y ′ j,i ) ≤ Q i=1 d(y ′ i , y ′ j,i ) = G 1 (v ′ , v ′ j )
. The continuity of ψ 2 is proved in the same way.

When Y is a metric space we let B Y denote the σ-algebra of Borel subsets of Y . Proposition 5. Let (X, A) be a measurable space and let Y be a separable metric space.

(A) If f 1 , . . . , f Q : X → Y are (A, B Y )-measurable then f = f 1 , . . . , f Q is (A, B Q Q (Y ) )-measurable. (B) If f : X → Q Q (Y ) is (A, B Q Q (Y ) )-measurable then there exist (A, B Y )-measurable maps f 1 , . . . , f Q : X → Y such that f = f 1 , . . . , f Q . Proof. (A) Since (Q Q (Y ), G ∞ ) is separable (Proposition 1), each open subset of Q Q (Y ) is a finite or countable union of open balls. Thus it suffices to show that f -1 (B G∞ (v, r)) ∈ A whenever v ∈ Q Q (Y ) and r > 0. Writing v = y 1 , . . . , y Q we simply notice that f -1 (B G∞ (v, r)) = X ∩ {x : G ∞ (f (x), v) < r} = X ∩ x : min σ∈S Q max i=1,...,Q d(f i (x), y σ(i) ) < r = σ∈S Q Q i=1 f -1 i (B(y σ(i) , r)) ∈ A . (B)
The proof is by induction on Q. The case Q = 1 being trivial, we henceforth assume that Q ≥ 2. We start by letting

F = Q Q (Y ) ∩ {v : card supp v = 1}. Notice F is closed, according to Proposition 2, thus A 0 = f -1 (F ) ∈ A. There readily exist identical (A, B Y )-measurable maps f 0 1 , . . . , f 0 Q : A 0 → Y such that f ↾ A 0 = f 0 1 , . . . , f 0 Q . We next infer from Proposition 4 that to each v ∈ Q Q (Y ) \ F there correspond a neighbor- hood U v of v in Q Q (Y )\F , integers Q v 1 , Q v 2 ∈ N * such that Q = Q v 1 +Q v 2 , and continuous maps ψ v k : U v → Q Q v k (Y ), k = 1, 2, such that ψ v 1 ⊕ ψ v 2 = id Uv . Since Q Q (Y ) \ F is sep- arable we find a sequence {v j } such that Q Q (Y ) \ F = ∪ j∈N * U v j . Thus we find a disjointed sequence {B j } of Borel subsets of Q Q (Y ) such that Q Q (Y ) \ F = ∪ j∈N * B j and B j ⊂ U v j for every j. Define A j = f -1 (B j ) ∈ A, j ∈ N * .
For each j ∈ N * the induction hypothesis applies to the two multiple-valued functions

ψ v j k • (f ↾ A j ) : A j → Q Q v j k (Y ), k = 1, 2 to yield (A, B Y )-measurable decompositions f j 1 , . . . , f j Q v j 1 and f j 1+Q v j 1
, . . . , f j Q (the numberings are chosen arbitrarily). We define

f i : X → Y , i = 1, . . . , Q, by letting f i ↾ A j = f j i , j ∈ N * . It is now plain that each f i is (A, B Y )-measurable and that f = f 1 , . . . , f Q .

Lipschitz extensions

The Lipschitz extension Theorem 2 is due to F.J. Almgren in case Y is finite dimensional (see [AST00, 1.5]), a former version is found in [START_REF] Allard | Geometric Measure Theory and the Calculus of Variations[END_REF] for a different notion of multiplevalued function). Here we merely observe that it extends to the case when Y is an arbitrary Banach space (in case Q = 1 this observation had already been recorded in [START_REF] Johnson | Extensions of lipschitz functions into banach spaces[END_REF], the method being due to H. Whitney [START_REF] Whitney | Analytic extensions of differentiable functions defined in closed sets[END_REF]). This exposition is very much inspired by that of [START_REF] Lellis | Q-Valued Functions Revisited[END_REF] (see also [START_REF] Lang | Nagata dimensions, quasisymmetric embeddings and lipschitz extensions[END_REF] for a comprehensive study of the extension techniques used here). This extension Theorem in case Y is finite dimensional is equivalent to the fact that Q Q (R n ) is an absolute Lispschitz retract (see Theorem 5). The latter is proved "by hand" in [AST00, 1.3].

Given a map f : X → Y between two metric spaces, and r > 0, we recall that the oscillation of f at r is defined as

osc(f ; r) = sup{d Y (f (x 1 ), f (x 2 )) : x 1 , x 2 ∈ X and d X (x 1 , x 2 ) ≤ r} ∈ [0, +∞] . Proposition 6. Let Q ≥ 2. Assume that
(1) X and Y are metric spaces, x 0 ∈ X, and δ := diam X < ∞;

(

2) f : X → (Q Q (Y ), G ∞ ) and f (x 0 ) = y 1 (x 0 ), . . . , y Q (x 0 ) ; (3) There are i 1 , i 2 ∈ {1, . . . , Q} such that d Y (y i 1 (x 0 ), y i 2 (x 0 )) > 3(Q -1) osc(f ; δ) . It follows that there are Q 1 , Q 2 ∈ N * such that Q 1 + Q 2 = Q, and f 1 , f 2 : X → Q Q (Y ) such that f = f 1 ⊕ f 2 and osc(f j ; •) ≤ osc(f ; •), j = 1, 2.
Proof. We let J denote the family of all those J ⊂ {1, . . . , Q} such that i 1 ∈ J and for every j 1 , j 2 ∈ J, d Y (y j 1 (x 0 ), y j 2 (x 0 )) ≤ 3(card J -1) osc(f ; δ) .

(1)

Notice that J = ∅ (because {i 1 } ∈ J ), and let J 1 ∈ J be maximal with respect to inclusion. Also define J 2 = {1, . . . , Q} \ J 1 , so that J 2 = ∅: according to hypothesis (3), J 2 contains at least i 2 . We notice that for every j 1 ∈ J 1 and every j 2 ∈ J 2 one has

d Y (y j 1 (x 0 ), y j 2 (x 0 )) > 3 osc(f ; δ), (2) 
otherwise J 1 ∪ {j 2 } ∈ J which contradicts the maximality of J 1 .

For each x ∈ X we choose a numbering f (

x) = y 1 (x), . . . , y Q (x) such that G ∞ (f (x 0 ), f (x)) = max i=1,...,Q d Y (y i (x 0 ), y i (x)) .
We let

Q 1 = card J 1 , Q 2 = card Q 2 , and we define f j : X → Q Q (Y ), j = 1, 2, by the formula f j (x) = y i (x) : i ∈ J j , so that f = f 1 ⊕ f 2 . For each pair x, x ′ ∈ X we choose σ x,x ′ ∈ S Q such that G ∞ (f (x), f (x ′ )) = max i=1,...,Q d Y (y i (x), y σ x,x ′ (i) (x ′ )) .
We now claim that σ x,x ′ (J 1 ) = J 1 and σ x,x ′ (J 2 ) = J 2 , and this will readily finish the proof. Assume if possible that there exist j 1 ∈ J 1 and j 2 ∈ J 2 such that σ

x,x ′ (j 1 ) = j 2 . Thus d Y (y j 1 (x), y j 2 (x ′ )) ≤ G ∞ (f (x), f (x ′
)), and it would follow from Equation (2) that

3 osc(f ; δ) < d Y (y j 1 (x 0 ), y j 2 (x 0 )) ≤ d Y (y j 1 (x 0 ), y j 1 (x)) + d Y (y j 1 (x), y j 2 (x ′ )) + d Y (y j 2 (x ′ ), y j 2 (x 0 )) ≤ G ∞ (f (x 0 ), f (x)) + G ∞ (f (x), f (x ′ )) + G ∞ (f (x ′ ), f (x 0 )) ≤ 3 osc(f ; δ) , a contradiction.
Proposition 7. For each Q ∈ N * there is a constant c 7 (Q) ≥ 1 with the following property. Assume that

(1) X and Y are Banach spaces;

(2) C ⊂ X is a closed ball;

(3

) f : (∂C, • ) → (Q Q (Y ), G ∞ ) is Lipschitz. It follows that f admits an extension f : (C, • ) → (Q Q (Y ), G ∞ ) such that Lip f ≤ c 7 (Q) Lip f ,
and max{G ∞ ( f (x), v) : x ∈ C} ≤ (6Q + 2) max{G ∞ (f (x), v) : x ∈ ∂C} for every v ∈ Q Q (Y ).
Proof. There is no restriction to assume that C = B(0, R), R > 0, is a ball centered at the origin. Note that it is enough to construct a Lipschitz extension f of f on a dense subset of C, for example on C \ {0}. The proof is by induction on Q, and we start with the case Q = 1. Choose x 0 ∈ ∂C. We define

f (x) = 1 - x R f (x 0 ) + x R f Rx x , x ∈ C \ {0} .
This is readily an extension of f to B(0, R) \ {0}. In order to estimate its Lipschitz constant, we let x, x ′ ∈ B(0, R) \ {0}, we put r = x , r ′ = x ′ , and we assume r ≤ r ′ . We define x ′′ = rx ′ r ′ , such as x = x ′′ and we observe that

f (x) -f (x ′′ ) = x R f Rx x - x ′′ R f Rx ′′ x ′′ = r R f Rx x -f Rx ′ x ′ ≤ r(Lip f ) x x - x ′ x ′ = (Lip f ) x -x ′′ ≤ (Lip f ) ( x -x ′ + x ′ -x ′′ ) = (Lip f ) ( x -x ′ + x ′ -x ) ≤ 2(Lip f ) x -x ′ , and f (x ′′ ) -f (x ′ ) = x ′′ -x ′ R f Rx ′ x ′ -f (x 0 ) x ′ -x R • 2R Lip f ≤ 2(Lip f ) x -x ′ Therefore, Lip f ≤ 4 Lip f . Moreover, if v ∈ Y and x ∈ C, we compute f (x) -v ≤ 1 - x R f (x 0 ) -v + x R f Rx x -v ≤ max ξ∈∂C f (ξ) -v .
We are now ready to treat the case when Q > 1.

First case. Assume there are i 1 , i 2 ∈ {1, . . . , Q} and x 0 ∈ ∂C such that

y i 1 (x 0 ) -y i 2 (x 0 ) > 3Q osc(f ; 2R) ≥ 3(Q -1) osc(f ; 2R) .
where f (x 0 ) = y 1 (x 0 ), . . . , y Q (x 0 ) . We infer from Proposition 6 (applied with

X = ∂C) that f decomposes into f = f 1 ⊕ f 2 with f j : ∂C → Q Q j (Y ) and Lip f j ≤ Lip f , j = 1, 2.
The induction hypothesis implies the existence of extensions fj :

C → Q Q j (Y ) of f j , such that Lip fj ≤ c 7 (Q j ) Lip f j , j = 1, 2.
We put f = f1 ⊕ f2 and we notice that

Lip f ≤ max{c 7 (Q 1 ), c 7 (Q 2 )} Lip f and osc( f ; 2R) ≤ osc(f ; 2R) .
Let K > 0 a constant to be determined later.

• First subcase. Suppose that

K osc( f ; 2R) ≤ G ∞ (v, f (x 0 )).
Then, for any x ∈ C, one has

G ∞ (v, f (x)) ≤ G ∞ (v, f (x 0 )) + G ∞ (f (x 0 ), f (x)) ≤ G ∞ (v, f (x 0 )) + osc( f ; 2R) ≤ (1 + K -1 )G ∞ (v, f (x 0 )) ≤ (1 + K -1 ) max ξ∈∂C G ∞ (v, f (ξ)).
• Second subcase. Suppose that

K osc( f , 2R) > G ∞ (v, f (x 0 )).
We will use the same notations as in the proof of Proposition 6. Recall that f l (x) = ⊕ i∈J l y i (x) for x ∈ ∂C and l ∈ {1, 2}.

We choose a numbering

v = v 1 , . . . , v Q such that G ∞ (v, f (x 0 )) = max 1≤i≤Q v i - y i (x 0 ) . We set v J 1 = ⊕ i∈J 1 v i and v J 2 = ⊕ i∈J 2 v i . We claim that for any x ∈ C, G ∞ (v, f (x)) = max(G ∞ (v J 1 , f1 (x)), G ∞ (v J 2 , f2 (x))). ( 3 
)
This together with the inductive hypothesis will complete the proof. Suppose if possible that (3) is not valid. Switching J 1 and J 2 if necessary, it follows that there are j 1 ∈ J 1 and

j 2 ∈ J 2 with G ∞ (v, f (x)) = v j 1 -ŷj 2 (x)
. Therefore, using (1) and (2),

K osc( f ; 2R) > G ∞ (v, f (x 0 )) ≥ G ∞ (v, f (x)) -G ∞ ( f (x), f (x 0 )) ≥ v j 1 -ŷj 2 (x) -osc( f ; 2R) ≥ y i 1 (x 0 ) -y i 2 (x 0 ) -y i 1 (x 0 ) -y j 1 (x 0 ) -y j 1 (x 0 ) -v j 1 -y i 2 (x 0 ) -y j 2 (x 0 ) -y j 2 (x 0 ) -ŷj 2 (x) -osc( f ; 2R) ≥ y i 1 (x 0 ) -y i 2 (x 0 ) -3(card J 1 -1) osc( f ; 2R) -G ∞ (v, f (x 0 )) -3(card J 2 -1) osc( f ; 2R) -G ∞ (f (x 0 ), f (x)) -osc( f ; 2R) ≥ (3Q -3(Q -2) -K -2) osc( f ; 2R) If K = 2, one gets a contradiction.
Second case. Assume that for every i 1 , i 2 ∈ {1, . . . , Q} and for every x ∈ ∂C one has

y i 1 (x) -y i 2 (x) ≤ 3Q osc(f ; 2R) ≤ 6QR Lip f .
where f (x) = y 1 (x), . . . , y Q (x) is an arbitrary numbering. We pick some x 0 ∈ ∂C and we define ŷi :

C \ {0} → Y by 1 ŷi (x) = x R y i Rx x + R -x R y 1 (x 0 ) , x ∈ C \ {0} and i = 1, . . . , Q. We define f : C \ {0} → Q Q (Y ) by f (x) = ŷ1 (x), . . . , ŷQ (x) , x ∈ C \{0}. We first show that Lip( f ↾ ∂B(0, r)) ≤ Lip f , 0 < r ≤ R. Indeed given x, x ′ ∈ C with x = x ′ = r, we define x = Rx r and x′ = Rx ′ r , and we select σ ∈ S Q such that G ∞ (f (x), f (x ′ )) = max i=1,...,Q y i (x) -y σ(i) (x ′ ) .
1 Note we don't claim any regularity about the y i nor the ŷi , not even measurability

We notice that ŷi (x) -ŷσ(i) (x ′ ) = r R y i (x) -y σ(i) (x ′ ) ≤ r R (Lip f ) x -x′ = (Lip f ) x -x ′ . Therefore G ∞ ( f (x), f (x ′ )) ≤ max i=1,...,Q ŷi (x) -ŷσ(i) (x ′ ) ≤ (Lip f ) x -x ′ .
Next, given x ∈ ∂C, we choose j ∈ {1, . . . , Q} such that

y j (x) -y 1 (x 0 ) ≤ G ∞ (f (x), f (x 0 )) ≤ (Lip f )2R. For each 0 < t 1 < t 2 ≤ 1 and i = 1, . . . , Q one has ŷi (t 2 x) -ŷi (t 1 x) = (t 2 -t 1 ) y i (x) -y 1 (x 0 ) ≤ (t 2 -t 1 ) ( y i (x) -y j (x) + y j (x) -y 1 (x 0 ) ) ≤ (t 2 -t 1 ) (3Q + 1) 2R Lip f = t 2 x -t 1 x (6Q + 2) (Lip f ) , thus G ∞ ( f (t 2 x), f (t 1 x)) ≤ (6Q + 2) (Lip f ) t 2 x -t 1 x .
We conclude from the triangle inequality that for any x,

x ′ ∈ C \ {0}, r = x , r ′ = x ′ G ∞ ( f (x), f (x ′ )) ≤ G ∞ f (x), f rx ′ r ′ + G f rx ′ r ′ , f (x ′ ) ≤ (Lip f ) x -x x ′ r ′ + 6Q max 1≤k<Q c 7 (k) + 2 rx ′ r ′ -x ′ ≤ 6Q max 1≤k<Q c 7 (k) + 4 (Lip f ) x -x ′
Regarding the second part of the Proposition, we choose some

v = v 1 , . . . , v Q , ordered such that G ∞ (f (x 0 ), v) = max 1≤i≤Q y i (x 0 ) -v i . Let x ∈ C \ 0 and σ such that G ∞ f Rx x , v = max 1≤i≤Q y σ(i) Rx x -v i .
One has

G ∞ ( f (x), v) ≤ max 1≤i≤Q x R y σ(i) Rx x + R -x R y 1 (x 0 ) -v i = max 1≤i≤Q x R y σ(i) Rx x -v i + R -x R (y 1 (x 0 ) -v i ) ≤ G ∞ f Rx x , v + max 1≤i≤Q y 1 (x 0 ) -v i ≤ G ∞ f Rx x , v + max 1≤i≤Q ( y i (x 0 ) -v i + y i (x 0 ) -y 1 (x 0 ) ) ≤ 2 max ξ∈∂C G ∞ (f (ξ), v) + 3Q osc(f ; 2R) . Note that osc(f ; 2R) = max ξ 1 ,ξ 2 ∈∂C G ∞ (f (ξ 1 ), f (ξ 2 )) ≤ max ξ 1 ,ξ 2 ∈∂C (G ∞ (f (ξ 1 ), v) + G ∞ (v, f (ξ 2 ))) ≤ 2 max ξ∈∂C G ∞ (f (ξ), v) .
Thus the proof is complete.

Theorem 2. For every Q ∈ N * and every m ∈ N * there exists a constant c 2 (m, Q) ≥ 1 with the following property. Assume that

(1) X is a finite dimensional Banach space with m = dim X, and A ⊂ X is closed;

(2) Y is a Banach space;

(3)

f : A → (Q Q (Y ), G ∞ ) is Lipschitz.
It follows that f admits an extension f :

X → (Q Q (Y ), G ∞ ) with Lip f ≤ c 2 (m, Q) Lip f ,
and sup{G ∞ ( f (x), v) : x ∈ X} ≤ c 2 (m, Q) sup{G ∞ (f (x), v) : x ∈ A} for every v ∈ Q Q (Y ).
Proof. Because they are lipeomorphic, there is no restriction to assume that X and ℓ m ∞ coincide: an isomorphism T : X → ℓ m ∞ will multiply the constant c 2 (m, Q) by a factor T • T -1 (where • denotes the operator norm), yet one can always find a T such that T • T -1 is smaller than a constant depending only on m, since the Banach-Mazur compactum of m dimensional spaces is bounded. We consider a partition of X \ A into dyadic semicubes {C j } j with the following property

dist(C j , A) 2 ≤ diam C j < dist(C j , A)
for every j ∈ N. With each C j and k = 0, . . . , m we associate it k-skeleton S k (C j ), i.e. S m (C j ) = {Clos C j } and S k (C j ) is the collection of those maximal k dimensional convex subsets of the (relative) boundary of each F ∈ S k+1 (C j ). We also set S k = ∪ j∈N S k (C j ). We now define, by upwards induction on k, mappings fk :

A ∪ S k → Q Q (Y )
which coincide with f on A and such that

Lip fk ↾ F ∩ S k (C j ) ≤ C(k, Q) Lip f (4)
for each F ∈ S k+1 (C j ), j ∈ N, (where C(k, Q) is a constant depending only on k and Q). Furthermore, if k ≥ 1 then fk is an extension of fk-1 .

Definition of f0 . With each x ∈ A ∪ S 0 we associate ξ x ∈ A such that xξ x = dist(x, A), and we put f0 (x) = f (ξ x ). For x ∈ A we obviously have f0 (

x) = f (x). If x ∈ C j then x -ξ x = dist(x, A) ≤ diam C j + dist(C j , A) ≤ 3 diam C j . Consequently, if x, x ′ ∈ C j then ξ x -ξ x ′ ≤ ξ x -x + x -x ′ + x ′ -ξ x ′ ≤ 7 diam C j = 7 x -x ′ . Thus G ∞ ( f0 (x), f0 (x ′ )) = G ∞ (f (ξ x ), f (ξ x ′ )) ≤ 7(Lip f ) x -x ′ .
This indeed proves (4) in case k = 0.

Definition of fk by induction on k ≥ 1. We say a k-face F ∈ S k is minimal if there is no k-face F ′ ∈ S k such that F ′ ⊂ F and F ′ = F . We observe that each k-face contains a minimal one, and that two distinct minimal k-faces have disjoint (relative) interiors. If F ∈ S k is a minimal k-face then its " boundary" ∂F (relative to the k dimensional affine subspace containing it) equals F ∩ ∪S k-1 (C j ) where C j is so that F ∈ S k (C j ), hence Lip fk-1 ↾ ∂F ≤ C(k -1, Q) Lip f according to the induction hypothesis (4). Thus Proposition 7 guarantees the existence of an extension fk of fk-1 from ∂F to F so that Lip( fk ↾ F ) ≤ c 7 (Q)C(k -1, Q) Lip f . This completes the definition of fk to ∪S k . By construction fk verifies (4) for every minimal k-face F ∈ S k . Since each k-face is the union of (finitely many) minimal k-faces all contained in the same k dimensional affine subspace of X, it is an easy matter to check that (4) is also verifies for arbitrary F ∈ S k .

According to Proposition 7, for k ≥ 1 and

v ∈ Q Q (Y ), one has sup x∈A∪(∪S k ) G ∞ (v, fk (x)) ≤ 2Q Lip φ k Lip φ -1 k sup x∈A∪(∪S k-1 ) G ∞ (v, fk-1 (x))
where φ k denote a lipeomorphism from a k ball to a k cube. Moreover, one has easily sup

x∈A∪(∪S 0 ) G ∞ (v, f0 (x)) = sup x∈A G ∞ (v, f (x)) . Those two facts implies that sup{G ∞ ( fm (x), v) : x ∈ X} ≤ c 2 (m, Q) sup{G ∞ (f (x), v) : x ∈ A} if c 2 (m, Q) ≥ (2Q) m m k=1 (Lip φ k Lip φ -1 k )
. We now check that fm is Lipschitz. Let x, x ′ ∈ X and we define the line segment [x, x ′ ] = X ∩ {x + t(x ′x) : 0 ≤ t ≤ 1}. We distinguish between several cases according to the positions of these points.

First case : if x, x ′ ∈ A, the clearly G ∞ ( fm (x), fm (x ′ )) = G ∞ (f (x), f (x ′ )) ≤ (Lip f ) x -x ′ . Second case : x, x ′ ∈ Clos C j for some j ∈ N. It then follows that G ∞ ( fm (x), fm (x ′ )) ≤ C(m, Q)(Lip f ) x -x ′ according to (4). Third case : [x, x ′ ] ∩ A = ∅. One then checks that J = N ∩ {j : [x, x ′ ] ∩ Clos C j = ∅}
is finite and we apply the previous case to conclude that also G ∞ ( fm (x), fm (x ′ )) ≤ C(m, Q)(Lip f ) xx ′ . Fourth case : x ∈ A and x ′ ∈ A. We choose j ∈ N such that x ∈ C j and we choose arbitrarily x ′′ ∈ S 0 (C j ). It follows that

x -x ′′ ≤ diam C j ≤ dist(C j , A) ≤ x -x ′ and x -ξ x ′′ ≤ x -x ′′ + x ′′ -ξ x ′′ ≤ diam C j + 3 diam C j ≤ 4 x -x ′ . Thus G ∞ ( fm (x), fm (x ′ )) ≤ G ∞ ( fm (x), fm (x ′′ )) + G ∞ ( f0 (x ′′ ), f0 (x ′ )) ≤ (Lip fm ↾ Clos C j ) x -x ′′ + (Lip f ) ξ x ′′ -x ′ ≤ 6(C(m, Q) + 1)(Lip f ) x -x ′ .
Fifth case : [x, x ′ ] ∩ A = ∅ and either x or x ′ does not belong to A. We let a (resp. a ′ ) denote the point [x, x ′ ] ∩ A closest to x (resp. x ′ ) and we observe that

G ∞ ( fm (x), fm (x ′ )) ≤ G ∞ ( fm (x), fm (a)) + G ∞ (f (a), f (a ′ )) + G ∞ ( fm (a ′ ), fm (x ′ )) ≤ 6(C(m, Q) + 1)(Lip f ) x -a + (Lip f ) a -a ′ + 6(C(m, Q) + 1)(Lip f ) a ′ -x ′ ≤ 6(C(m, Q) + 1)(Lip f ) x -x ′ .
Given a pair of Banach spaces X and Y we here denote by c(X, Y, Q) the best constant occurring in Theorem 2 corresponding to these Banach spaces. Thus c(X, Y, Q) ≤ c 2 (dim X, Q) < ∞ in case X is finite dimensional. Kirszbraun's Theorem says that c(ℓ m 2 , ℓ N 2 , 1) = 1 for every n, N ∈ N * , thus it follows from Theorem 5 that c(ℓ m 2 , ℓ n 2 , Q) ≤ Lip ρ n,Q is bounded independently of m. Is it true that c(ℓ m 2 , ℓ 2 , Q) < ∞ for every Q > 1? That would be an analog of Kirszbraun's Theorem for multiple-valued functions. On the other hand, it is well-known that c(X, ℓ ∞ , 1) = 1 for every X. Is it true that c(X, ℓ ∞ , Q) < ∞ for every Q > 1 and every finite dimensional Banach space X? See also the discussion at the end of section 2.3.

Differentiability

The results contained in this section are standard in case Y = ℓ n 2 is Euclidean. The notion of (approximate) differentiability was introduced (under the name (approximate) affine approximatability) by F.J. Almgren in [START_REF] Almgren | Almgren's Big Regularity Paper: Q-Valued Functions Minimizing Dirichlet's Integral and the Regularity of Area-Minimizing Rectifiable Currents Up to Codimension 2[END_REF]. We call unambiguously differentiable what Almgren calls strongly affinely approximatable. "Intrinsic" proofs (i.e. avoiding the embedding defined in section 2.3) of the analog of Rademacher's Theorem have been given in [START_REF] Goblet | A selection theory for multiple-valued functions in the sense of almgren[END_REF] and [START_REF] Lellis | Q-Valued Functions Revisited[END_REF].

In this section X is a finite dimensional Banach space, m = dim X, λ is a Haar measure on X, and Y is a separable Banach space.

We say that g :

X → Q Q (Y ) is affine (resp. linear) if there are affine maps A 1 , . . . , A Q from X to Y (resp. linear maps L 1 , . . . , L Q from X to Y ) such that g = ⊕ Q i=1 A i (resp. g = ⊕ Q i=1 L i ).
Our first task is to observe that the A i 's are uniquely determined by g.

Lemma 2. Let A 1 , . . . , A Q , A ′ 1 , . . . , A ′ Q be affine maps from X to Y , g = ⊕ Q i=1 A i , g ′ = ⊕ Q i=1 A ′ i , and S ⊂ X. If g(x) = g ′ (x)
for every x ∈ S and λ(S) > 0, then there exists σ ∈ S Q such that A i = A ′ σ(i) , i = 1, . . . , Q.

Proof. For each σ ∈ S Q we define

W σ = X ∩ {x : A i (x) = A ′ σ(i) (x), i = 1, .
. . , Q} , and we notice that W σ is an affine subspace of X. If x ∈ S then x ∈ W σ for some σ ∈ S Q . Thus S ⊂ ∪ σ∈S Q W σ . Therefore there exists σ such that λ(W σ ) > 0, hence W σ = X.

Let f, g : X → Q Q (Y ) be Borel measurable, and a ∈ X. We say that f and g are approximately tangent at a if for every ε > 0,

Θ m (λ {x : G(f (x), g(x)) > ε x -a }, a) = 0 .
It is plain that the distance G can be replaced by G 1 or G ∞ without changing the scope of the definition.

Proposition 8. Let g, g ′ : X → Q Q (Y ) be affine and approximately tangent at some a ∈ X. It follows that g = g ′ . Proof. Write g = ⊕ Q i=1 A i , g ′ = ⊕ Q i=1 A ′ i , where A 1 , . . . , A Q , A ′ 1 , . . . , A ′ Q are affine from X to Y , and A i = L i + b i , A ′ i = L ′ i + b ′ i , b i , b ′ i ∈ Y and the L i 's and L ′ i 's are linear. With 0 < ε ≤ 1 we associate G ε = X ∩ {x : G 1 (g(x), g ′ (x)) ≤ ε x -a } so that Θ m (λ G ε , a) = 1 by assumption, because G ε is Borel measurable. Define η = inf{ A i (a) -A ′ j (a) : i, j = 1, . . . , Q and A i (a) = A ′ j (a)} ∈ (0, ∞].
Suppose η < ∞, the case η = ∞ being easier to prove. Choose δ > 0 small enough for

δ(1 + 2Q max{ L 1 , . . . , L Q , L ′ 1 , . . . , L ′ Q }) < η, where • denotes the operator norm L = sup{ L(x) : x ≤ 1} . s Let x ∈ G ε ∩ B(a, δ) and write x = a + h. There exists σ ∈ S Q such that ε h ≥ G 1 (g(a + h), g ′ (a + h)) = Q i=1 A i (a + h) -A ′ σ(i) (a + h) = Q i=1 L i (a) + b i -L ′ σ(i) (a) -b ′ σ(i) + L i (h) -L ′ σ(i) (h) = Q i=1 A i (a) -A ′ σ(i) (a) + L i (h) -L ′ σ(i) (h) ≥ Q i=1 A i (a) -A ′ σ(i) (a) - Q i=1 L i (h) -L ′ σ(i) (h) , (5) 
whence

Q i=1 A i (a) -A ′ σ(i) (a) ≤ ε h + 2Q h max{ L 1 , . . . , L Q , L ′ 1 , . . . , L ′ Q } < η since h ≤ δ. The definition of η then implies that A i (a) = A ′ σ(i) (a)
for each i = 1, . . . , Q. Multiplying (5) by t > 0 we obtain

ε th ≥ Q i=1 L i (th) -L ′ σ(i) (th) = Q i=1 A i (a + th) -A ′ σ(i) (a + th) ≥ G 1 (g(a + th), g ′ (a + th)) .
In other words, we have established that for every 0 < ε ≤ 1 and every t > 0, if

a + h ∈ G ε ∩ B(a, δ) then a + th ∈ G ε .
Letting

ε k = k -1 , k ∈ N * , we choose 0 < r k < δ such that λ(G ε k ∩ B(a, r k )) ≥ 1 - 1 4 k λ(B(a, r k )) . If h k : B(a, r k ) → B(a, 1) maps a + h to a + r -1 k h then the above paragraph says that h k (G ε k ∩ B(a, r k )) ⊂ G ε k ∩ B(a, 1). Consequently, λ(G ε k ∩ B(a, 1)) ≥ λ(h k (G ε k ∩ B(a, r k ))) = r -m k λ(G ε k ∩ B(a, r k )) ≥ 1 - 1 4 k λ(B(a, 1)) .
Summing over k ∈ N * we obtain

λ   k∈N * G ε k   > 0
and the conclusion now follows from Lemma 2.

Corollary 1. If f : X → Q Q (Y ) is Borel measurable, g, g ′ : X → Q Q (Y )
are both affine and both approximately tangent to f at a, then g = g ′ .

Proof. Observe that g and g ′ are approximately tangent (to each other) at a and apply Proposition 8.

Let f : X → Q Q (Y ) and a ∈ X. We say that f is approximately differentiable at a if there exists an affine Q-valued g : X → Q Q (Y ) which is approximately tangent to f at a. According to the above corollary, the existence of such g implies its uniqueness. It will be subsequently denoted as Af (a). Writing

Af (a) = ⊕ Q i=1 A i we shall see later that Af (a)(a) = ⊕ Q i=1 A i (a) equals f (a) in case f is approximately continuous at a. Concatenation of the linear parts L i = A i -A i (0) yields Df (a) = ⊕ Q i=1 L i
which is uniquely determined by Af (a). It may occur (but not too often, as we shall later see) that for some pair of distinct indexes i and j one has A i (a) = A j (a), yet L i = L j . We now state a definition to rule this out. We say that f is unambiguously approximately differentiable at a if Af (a) fulfils the following additional requirement:

for every i, j = 1, . . . , Q, if A i (a) = A j (a) then L i = L j .
Example 1. The affine 2-valued map

g = R → Q 2 (R) : x → x ⊕ -x
is everywhere (approximately) differentiable, but not unambiguously so at 0.

The need for unambiguous differentiation appears when stating the Euler-Lagrange equation for minimizing multiple-valued maps with respect to range deformation (socalled "squash deformation" by F.J. Almgren), see e.g. [AST00, Theorem 2.6(4)] or section 4.1.

Recall the function σ defined in Proposition 2.

Lemma 3. Assume v ∈ Q Q (Y ), put k = σ(v), and let Q 1 , . . . , Q k ∈ N * and y 1 , . . . , y k ∈ Y be such that v = ⊕ k j=1 Q j y j and Q = k j=1 Q j . For every 0 < r < 1 2 split v the following holds. Whenever v ′ ∈ Q Q (Y ) is such that G ∞ (v, v ′ ) < r and σ(v ′ ) = k, there are y ′ 1 , . . . , y ′ k ∈ Y such that v ′ = ⊕ k j=1 Q j y ′ j , y j -y ′ j < r for every j = 1, . . . , k, and G 1 (v, v ′ ) = Q j=1 Q j y j -y ′ j .
Proof. Let v ′ be as in the statement and choose a numbering v ′ = z 1 , . . . , z Q . Since G ∞ (v, v ′ ) < r, it follows that each z i is r close to some y j . In other words there exists τ : {1, . . . , Q} → {1, . . . , k} such that z iy τ (i) < r, i = 1, . . . , Q. Thus

G 1 (v, v ′ ) = Q i=1 z i -y τ (i)
according to the Splitting Lemma. We now observe that if i, i ′ ∈ {1, . . . , Q} are so that τ (i) = τ (i ′ ) then z i = z i ′ . Indeed the converse would yield 

y τ (i) -y τ (i ′ ) ≤ y τ (i) -z i + z i ′ -y τ (i ′ ) ≤ 2r < split v , a contradiction. Since also σ(v ′ ) = k we infer that τ (i) = τ (i ′ ) implies z i = z i ′ .
, . . . , Q k with k j=1 Q j = Q such that f (a) = ⊕ k j=1 Q j f j (a) . Let 0 < r 0 < 1
2 split f (a) so that Lemma 3 applies with any 0 < r ≤ r 0 . For each ε > 0 define

G ε = X ∩ {x : G 1 (f (x), f (a)) ≤ ε and σ(f (x)) = k and G 1 (f (x), Af (a)(x)) ≤ ε x -a } .
Given η > 0 there exists r 1 (ε, η) > 0 such that

λ(G ε ∩ B(a, r)) ≥ (1 -η)λ(B(a, r))
whenever 0 < r ≤ r 1 (ε, η). From now on we shall further assume that

ε < min 1 8 split f (a), 1 and r ≤ min 1, r 0 , r 1 (ε, η), 1 4α split f (a) .
For each x ∈ G ε ∩ B(a, r) there are f 1 (x), . . . , f k (x) ∈ Y such that

f (x) = ⊕ k j=1 Q j f j (x) and G 1 (f (x), f (a)) = k j=1 Q j f j (x) -f j (a) ≤ ε (6)
according to Lemma 3. Associated with such x, there are also partitions I x,1 , . . . , I x,k of {1, . . . , Q} such that

G 1 (f (x), Af (a)(x)) = k j=1 i∈I x,j f j (x) -A i (x) ≤ ε x -a . ( 7 
)
In view of (6) there also holds

k j=1 i∈I x,j f j (a) -A i (x) ≤ ε(1 + x -a ) ≤ 2ε .
This already implies that f (a) = Af (a)(a). Now let x, x ′ ∈ G ε ∩ B(a, r) and j, j ′ ∈ {1, . . . , k}.

If i ∈ I x,j ∩ I x ′ ,j ′ then f j (a) -f j ′ (a) ≤ f j (a) -A i (x) + A i (x) -A i (x ′ ) + A i (x ′ ) -f j ′ (a) ≤ 4ε + α x -x ′ < split f (a)
according to our choice of ε and r, thus j = j ′ . This in turn readily implies that I x,j = I x ′ ,j =: I j , j = 1, . . . , k. It follows from (7) above that if x ∈ G ε ∩ B(a, r) and i, i ′ ∈ I j , j = 1, . . . , k, then

A i (x) -A i ′ (x) ≤ A i (x) -f j (x) + f j (x) -A i ′ (x) ≤ 2ε x -a .
Since η > 0 and ε > 0 are arbitrarily small we see that A i and A i ′ are approximately tangent at a. Thus A i = A i ′ according to Proposition 8 applied with

Q = 1. Finally if i ∈ I j , i ′ ∈ I j ′ , and j = j ′ then A i (a) = f j (a) = f j ′ (a) = A i ′ (a). The proof is complete. Example 2. Consider f : R → Q 2 (R) : x →    2 0 if x < 0 x 2 ⊕ -x 2 if x ≥ 0 .
One readily checks that f is (approximately) continuous at 0 and unambiguously (approximately) differentiable at 0, yet σ • f is not approximately constant at 0.

We are ready to state and prove a useful generalization of Rademacher's Theorem. We recall that X is a finite dimensional Banach space, and Y a Banach space. In case f :

X → Q Q (Y ) is approximately differentiable at a ∈ X we let Af (a) = ⊕ Q i=1 A i and we define L i = A i -A i (0), i = 1, . . . , Q
, the linear part of the affine approximation. We introduce the new notation

Df (a) = ⊕ Q i=1 L i ∈ Q Q (Hom(X, Y ))
where Hom(X, Y ) denotes the space of linear operators X → Y (these are automatically continuous). Letting the latter be equipped with some norm ||| • ||| we let 

|Df (a)| = G 2 (Df (a), Q 0 ) = Q i=1 |||L i ||| 2 . Theorem 3. Let f : X → Q Q (Y )
)(a) = f (a); (B) The map X → Q Q (Hom(X, Y )) : x → Df (x) is (B X , B Q Q (Hom(X,Y )) ) measurable; (C) If f is approximately differentiable at a ∈ X then it is differentiable at a in the sense that lim x→a G(f (x), Af (a)(x)) x -a = 0 , and |Df (a)| ≤ √ Q Lip f ; (D) For every injective Lipschitzian curve γ : [0, 1] → X such that γ ′ (t) = 1 and f is approximately differentiable at γ(t) for L 1 almost every 0 ≤ t ≤ 1, one has G 2 (γ(1), γ(0)) ≤ im γ |Df (x)|dH 1 (x) . Proof. For each k = 1, . . . , Q define B k = X ∩ {x : σ(f (x)) = k} .
Notice B k is Borel since σ is Borel measurable according to Proposition 2. Fix k and let a ∈ B k . Put η a = split f (a). Choose 0 < r < 1 2 η a small enough for G 1 (f (x), f (a)) < 1 8 η a whenever x ∈ B(a, r). It follows from Lemma 3 that there exist positive integers

Q 1 , . . . , Q k such that k j=1 Q j = Q and each f (x), x ∈ B(a, r) ∩ B k , can be decomposed as f (x) = ⊕ k j=1 Q j f j (x)
in such a way that f j (a)f j (x) < r, j = 1, . . . , k, and

G 1 (f (x), f (a)) = k j=1 Q j f j (a) -f j (x) .
In particular, for j = j ′ , we infer that

f j (x) -f j ′ (x) ≥ f j (a) -f j ′ (a) -f j (x) -f j (a) -f j ′ (a) -f j ′ (x) ≥ 1 2 η a .
Thus

η x := split f (x) ≥ 1 2 η a . If x, x ′ ∈ B(a, r) ∩ B k then f j (x) -f j (x ′ ) ≤ f j (x) -f j (a) + f j (a) -f j (x ′ ) < 1 4 η a ≤ 1 2 η x so that G 1 (f (x), f (x ′ )) = k j=1 Q j f j (x) -f j (x ′ )
according to the Splitting Lemma. Thus each f j is Lipschitz continuous on B(a, r) ∩ B k , and hence it is differentiable at λ almost every point of B(a, r) ∩ B k since it can be extended to the whole X and Y has the Radon-Nikodým property. Now if each f j is differentiable at a density point x of B(a, r) ∩ B k one easily checks that g = ⊕ k j=1 Q j f j (a) + Df j is approximately tangent to f at x. Thus we have shown that assumption (C) of Proposition 9 occurs at λ almost every a ∈ X. Since this is also the case of assumptions (A) and (B) (according to [Fed96, 2.9.13] and the Borel measurability of f and of σ • f ), conclusion (A) is now a consequence of that proposition.

In order to prove conclusion (B) we use the same notation B k , a ∈ B k and r > 0 as above. It follows that the restriction

Df : B k ∩ B(a, r) → Q Q (Hom(X, Y )) : x → ⊕ Q
i=1 Df j is Borel measurable according to Proposition 5(A), because each x → Df j (x) is itself Borel measurable. Since B k is Lindelöf the restriction Df ↾ B k is Borel measurable for each k = 1, . . . , Q, and the Borel measurability of Df follows immediately.

The proof of the first part of conclusion (C) is inspired by [Fed96, Lemma 3.1.5] and exactly similar to [START_REF] Goblet | A selection theory for multiple-valued functions in the sense of almgren[END_REF]. In order to prove the second part of conclusion (C) we assume that f is differentiable at a and we write Af (a) = ⊕ Q i=1 A i and

L i = A i -A i (0), i = 1, . . . , Q. Observe that A i (h) = A i (0)+L i (h) = f i (a)+L i (h), i = 1, . . . , Q, according to (A). Observe that for each x ∈ X we have G 2 (Af (a)(x), f (a)) 2 ≤ x -a 2   Q i=1 L i 2   (8)
and, given x, let σ ∈ S Q be a permutation such that

G 2 (Af (a)(x), f (a)) 2 = Q i=1 f i (a) + L i (x -a) -f σ(i) (a) 2 . ( 9 
)
Assuming that f i (a) = f σ(i) (a), for some i = 1, . . . , Q, and that

x -a max{ L 1 , . . . , L Q } ≤ 1 2 split f (a)
we infer that the right member of ( 9) is bounded below by 1 4 (split f (a)) 2 , in contradiction with (8) provided xa

Q i=1 L i 2 < 1 2 split f (a). Thus, if x -a is small enough then (9) becomes Q i=1 L i (x -a) 2 = G 2 (Af (a)(x), f (a)) ≤ G 2 (Af (a)(x), f (x)) + G 2 (f (x), f (a)) . Upon letting x → a we obtain sup      Q i=1 L i (h) 2 : h ∈ X and h ≤ 1      ≤ Lip f . ( 10 
) Let j = 1, . . . , Q be such that L j = max{ L 1 , . . . , L Q }. The above inequality implies that L j ≤ Lip f . Finally |Df (a)| = Q i=1 L i 2 1 2 ≤ √ Q Lip f .
It remains to establish conclusion (D). We define g : [0, 1] → R by the formula g(t) = G 2 (γ(t), γ(0)), 0 ≤ t ≤ 0. We will show that g is Lipschitzian and that |g ′ (t)| ≤ |Df (γ(t))| at each t such that f is differentiable at γ(t), so that our conclusion will become a consequence of a Theorem of Lebesgue applied to g:

G 2 (γ(1), γ(0)) = g(1) -g(0) = 1 0 g ′ (t)dL 1 (t) ≤ 1 0 |Df (γ(t))|dL 1 (t) = im γ |Df (x)|dH 1 (x) according to the area formula applied to γ. Write Df (γ(t)) = ⊕ Q i=1 L i (γ(t)) . For each t, t + h ∈ [0, 1] one has g(t + h) -g(t) = G 2 (f (γ(t + h)), γ(0)) -G 2 (f (γ(t)), γ(0)) ≤ G 2 (f (γ(t + h)), f (γ(t))
which shows that Lip g ≤ Lip(f • γ); and assuming further that f is differentiable at γ(t), we obtain:

≤ G 2 (Af (γ(t))(γ(t + h)), f (γ(t))) + G 2 (Af (γ(t))(γ(t + h)), f (γ(t + h))) ≤   Q i=1 L i (γ(t))(γ(t + h) -γ(t)) 2   1 2 + ε γ(t + h) -γ(t)
where the last inequality holds provided h is small enough according to ε, split f (γ(t)) and L 1 (γ(t) , . . . , L Q (γ(t)) (recall the proof of (C)). Dividing by |h|, letting h → 0, and recalling that Lip γ ≤ 1 we infer that |g

′ (t)| ≤ |Df (γ(t))| provided that g is differentiable at t. Given f : X → Q Q (Y ) and a ∈ X we now define lip a f := lim sup r→0 sup x∈B(a,r) G(f (x), f (a)) x -a .
If f is Lipschitz then clearly lip a f ≤ Lip f < ∞ for every a ∈ X. We leave it to the reader to check the following partial "product rule": if f and λ :

X → R are Lipschitz then lip a (λf ) ≤ (lip a λ)|f (a)| + |λ(a)|(lip a f ) . ( 11 
) Proposition 10. If f : X → Q Q (Y ) is Lipschitz then lip a f ≤ |Df (a)| ≤ Q(lip a f ) for L m almost every a ∈ X.
Proof. The second inequality is proved in exactly the same as Theorem 3(C) by noticing that in (18) Lip f can be replaced by lip a f . In order to prove the first inequality we assume that f is differentiable at a and that a is a Lebesgue point of

x → |Df (x)|. Given 0 < ε < 1 we define G ε = X ∩ {x : |Df (x)| ≤ ε + |Df (a)|} .
There exists r 0 > 0 such that for every 0 < r ≤ r 0 one has

L m (B(a, r) ∩ G c ε ) ≤ 2 -m ε m α(m -1)r m .
Fix 0 < r ≤ r 0 /2. Given x ∈ B(a, r), x = a, we put ρ = xa and we consider the set

H = B(0, ερ) ∩ span{x -a} ⊥ . 2.1 -Whitney bi-Hölder embedding -The case Y = ℓ n 2 (K) 37
With each h ∈ H we associate the line segment S j joining a + h and x + h, and we define the "cylinder"

C = h∈H S h .
We observe that C ⊂ B(a, 2ρ) and that

L m (C) = ρα(m -1)ε m-1 ρ m-1 = ε m-1 α(m -1)ρ m .
Therefore,

L m (C ∩ G ε ) = L m (C) -L m (C ∩ G c ε ) ≥ ε m-1 α(m -1)ρ m -2 -m ε m α(m -1)(2ρ) m = ε m-1 α(m -1)ρ m-1 (1 -ε)ρ .
According to Fubini's Theorem, Chebyshev's inequality and Theorem 3, there exists

h ∈ H such that H 1 (S h ∩ G ε ) ≥ (1 -ε)ρ
and f is differentiable H 1 almost everywhere on S h . For such h, recalling Theorem 3(D), we infer that

G(f (x + h), f (a + h)) ≤ S h |Df (z)|dH 1 (z) = S h ∩Gε |Df (z)|dH 1 (z) + S h ∩G c ε |Df (z)|dH 1 (z) ≤ (ε + |Df (a)|)ρ + Q(Lip f )ερ .
Since h ≤ ερ, the triangle inequality implies that

G(f (x), f (a)) ≤≤ (ε + |Df (a)|)ρ + (2 + Q)(Lip f )ερ , thus G(f (x), f (a)) x -a ≤ ε + |Df (a)| + (2 + Q)(Lip f )ε .

Embeddings

Whitney bi-Hölder embedding -The case

Y = ℓ n 2 (K)
Here we report on [Whi72, Appendix V]. We let K = R or K = C. We start by recalling the usual embedding

η : Q Q (K) → K Q : v → (η 1 (v), . . . , η Q (v)) . Given v = x 1 , . . . , x Q we let η i (v) ∈ K, i = 1, .
. . , Q, be the coefficients of the Weierstrass polynomial of v:

P v (x) = Q i=1 (x -x i ) = x Q + Q i=1 η i (v)x Q-i ∈ K[x] .
Readily the η i (v) are the Q symmetric functions of Q variables, and their (Lipschitz) continuity follows. In case K = C, η is a bijection and η -1 is Hölder continuous (see e.g. [Mar66, Theorem (1,4)]).

We now treat the case of K n . We will define a mapping

η : Q Q (K n ) → K N where N = N (n, Q). Given u ∈ C n and v = x 1 , . . . , x Q ∈ Q Q (K n ) we define a polynomial P v (u, x) = Q i=1 (x -u, x i ) ∈ K[u 1 , . . . , u n , x]
whose coefficients η α (v) form the components of η:

P v (u, x) = x Q + Q i=1 α∈N n |α|=i η α (v)u α 1 1 . . . u αn n x Q-i .
One computes that

N (n, Q) = Q + n n -1 . One shows ([Whi72, Appendix V Theorem 6A]) that η is injective, continuous, that η(Q Q (K n )) is closed in K N , and that η -1 is continuous as well. In case K = C, it follows from the Proper Mapping Theorem that η(Q Q (C n )) is an irreducible analytic variety in C N , see [Whi72, Chapter 5 Theorem 5A]. In fact η(Q Q (C n )) is a Hölder continuous retract of C N .

Splitting in case Y = R

We now state an easy and important observation on how to compute the G 2 distance of two members of Q Q (R). The order of R plays the essential role. This is taken from [AST00, 1.1(4)].

Proposition 11. Let v, v ′ ∈ Q Q (R) and choose numbering v = y 1 , . . . , y Q and v ′ = y ′ 1 , . . . , y ′ Q such that y 1 ≤ y 2 ≤ . . . ≤ y Q and y ′ 1 ≤ y ′ 2 ≤ . . . ≤ y ′ Q . It follows that G 2 (v, v ′ ) = Q i=1 |y i -y ′ i | 2 .
Proof. We must show that for each σ ∈ S Q one has

Q i=1 |y i -y ′ i | 2 ≤ Q i=1 |y i -y σ(i) | 2 . ( 12 
)
Let σ ∈ S Q be nontrivial and let i < j be such that σ(i) > σ(j). Observe that

0 ≤ 2(y j -y i )(y ′ σ(i) -y ′ σ(j) ) = -2y i y ′ σ(i) -2y j y ′ σ(j) + 2y j y ′ σ(i) + 2y i y ′ σ(j) = (y i -y ′ σ(i) ) 2 + (y j -y ′ σ(j) ) 2 -(y j -y ′ σ(i) ) 2 -(y i -y ′ σ(j) ) 2 .
In other words,

(y i -y ′ σ(j) ) 2 + (y j -y ′ σ(i) ) 2 ≤ (y i -y ′ σ(i) ) 2 + (y j -y ′ σ(j) ) 2 . ( 13 
)
In case Q = 2 the proof is complete. We next assume that (12) holds for Q and we shall show it holds for

Q + 1. Let σ ∈ S Q+1 . If σ(Q + 1) = Q + 1 then we define σ = σ ↾ {1, . . . , Q} ∈ S Q and we simply notice that Q+1 i=1 |y i -y ′ i | 2 ≤ Q i=1 |y i -y ′ σ(i) | 2 + |y Q+1 -y ′ Q+1 | 2 = Q+1 i=1 |y i -y ′ σ(i) | 2 .
In case

σ(Q + 1) = Q + 1 we choose k ∈ {1, . . . , Q} such that σ(k) = Q + 1.
We apply inequality (13) above with i = k and j = Q + 1 to obtain

(y k -y ′ σ(Q+1) ) 2 + (y Q+1 -y ′ σ(k) ) 2 ≤ (y k -y ′ σ(k) ) 2 + (y Q+1 -y ′ σ(Q+1) ) 2 . ( 14 
)
We define σ ∈ S Q+1 as follows:

σ(i) = σ(i) if i = k and i = Q + 1 σ(k) = σ(Q + 1) σ(Q + 1) = σ(k) = Q + 1 . Since σ(Q + 1) = Q + 1 the first case considered above together with (14) yield Q+1 i=1 |y i -y ′ i | 2 ≤ Q+1 i=1 |y i -y ′ σ(i) | 2 ≤ Q+1 i=1 |y i -y ′ σ(i) | 2 .

Almgren-White locally isometric embedding -The case

Y = ℓ n 2 (R)
This section is devoted to the case Y = ℓ n 2 , i.e. R n equipped with its Euclidean norm • and inner product •, • . Proposition 12 and Theorem 4 are due to F.J. Almgren [AST00, 1.2]. The presentation we give here is (inspired by) that of C. De Lellis and E.N. Spadaro [START_REF] Lellis | Q-Valued Functions Revisited[END_REF]. Part (B) of Theorem 4 is due to B. White.

Let e ∈ R n be such that e = 1. We define a map

π e : Q Q (R n ) → R Q
by the requirement that π e ( y 1 , . . . , y Q ) be the list of inner products y 1 , e , . . . , y Q , e . numbered in increasing order. Notice that we need indeed to explain how we choose to order these real numbers if we want the values of π e to belong to R Q , for otherwise they would merely belong to Q Q (R).

Proposition 12. Let e 1 , . . . , e n be an orthonormal basis of R n . The mapping

ξ 0 : Q Q (R n ) → R Qn : v → (π e 1 (v), . . . , π en (v))
has the following properties:

(A) Lip ξ 0 = 1; (B) For every v ∈ Q Q (R n ) there exists r > 0 such that for each v ′ ∈ Q Q (R n ), if G 2 (v, v ′ ) < r then ξ 0 (v) -ξ 0 (v ′ ) = G 2 (v, v ′ ); (C) For every v ∈ Q Q (R n ) one has ξ 0 (v) = G 2 (v, Q 0 ). Proof. (A) Let v, v ′ ∈ Q Q (R n ) and write v = y 1 , . . . , y Q and v ′ = y ′ 1 , . . . , y ′ Q .
For each j = 1, . . . , n there exists τ j ∈ S Q such that y τ j (1) , e j ≤ . . . ≤ y τ j (Q) , e j and there exists τ

′ j ∈ S Q such that y ′ τ ′ j (1) , e j ≤ . . . ≤ y ′ τ ′ j (Q) , e j .
By definition of π e j we have

π e j (v) -π e j (v ′ ) 2 = Q i=1 | y τ j (i) , e j -y ′ τ ′ j (i) , e j | 2 .
There also exists σ ∈ S Q such that

G 2 (v, v ′ ) 2 = Q i=1 y i -y ′ σ(i) 2 .
It remains to observe that

ξ 0 (v) -ξ 0 (v ′ ) 2 = n j=1 Q i=1 | y τ j (i) , e j -y ′ τ ′ j (i) , e j | 2
which, by Proposition 11, is bounded by

≤ n j=1 Q i=1 | y i , e j -y σ(i) , e j | 2 = Q i=1 y i -y σ(i) 2 = G 2 (v, v ′ ) 2 . (B) Let v ∈ Q Q (R n ) and write v = y 1 , . . . , y Q . For each j = 1, . . . , n choose τ j ∈ S Q such that y τ j (1) , e j ≤ . . . ≤ y τ j (Q) , e j . Define r = 1 2 min{split π e j (v) : j = 1, . . . , n} and let v ′ ∈ Q Q (R n ) be such that G 2 (v, v ′ ) < r. Choose a numbering v ′ = y ′ 1 , . . . , y ′ Q so that G 2 (v, v ′ ) 2 = Q i=1 y i -y ′ i 2 .
Notice that for every j = 1, . . . , n one has

max i=1,...,Q | y τ j (i) , e j -y ′ τ j (i) , e j | ≤ max i=1,...,Q y τ j (i) -y ′ τ j (i) ≤ G 2 (v, v ′ ) < 1 2 split π e j (v)
which implies, according to the Splitting Lemma, Proposition 11 and the definition of π e j , that

Q i=1 | y τ j (i) , e j -y ′ τ j (i) , e j | 2 = G 2 (π e j (v), π e j (v ′ )) 2 = Q i=1 | y τ j (i) , e j -y ′ τ ′ j (i) , e j | 2 where τ ′ j ∈ S Q is such that y ′ τ ′ j (1) , e j ≤ . . . ≤ y ′ τ ′ j (Q) , e j . Therefore, ξ 0 (v) -ξ 0 (v ′ ) 2 = n j=1 Q i=1 | y τ j (i) , e j -y ′ τ ′ j (i) , e j | 2 = n j=1 Q i=1 | y τ j (i) , e j -y ′ τ j (i) , e j | 2 = Q i=1 n j=1 | y i , e j -y ′ i , e j | 2 = Q i=1 y i -y ′ i 2 = G 2 (v, v ′ ) 2 . (C) Writing v = y 1 , . . . , y Q , it suffices to observe that ξ 0 (v) 2 = n j=1 Q i=1 | y i , e j | 2 = Q i=1 y i 2 = G 2 (v, Q 0 ) 2 .
Remark 1. The Lipschitz mapping ξ 0 defined above is usually not injective. Consider for instance the case when Q = 2, n = 2, and let e 1 , e 2 be an orthonormal basis of

R 2 . We define v = -e 1 + e 2 , e 1 . It follows that ξ 0 (v) = (-1, 1, 0, 1) = ξ 0 (v ′ ) where v ′ = -e 1 , e 1 + e 2 . Clearly v = v ′ .
The lack of injectivity of ξ 0 is overcome by considering a lot of orthonormal bases instead of just one, i.e. we shall replace ξ 0 by many copies of ξ 0 corresponding to various bases. The main observation to obtain injectivity is the following. Proposition 13. Given integers n and L there are ε > 0 and unit vectors e 1 , . . . , e K ∈ S n-1 with the following property. For every v

1 , . . . , v L ∈ R n there exists k = 1, . . . , K such that | e k , v l | ≥ ε v l for each l = 1, . . . , L.
Proof. We first notice that the measure

H n-1 S n-1 is doubling, i.e. there exists C ≥ 1 such that H n-1 (S n-1 ∩B(e, 2r)) ≤ CH n-1 (S n-1 ∩B(e, r)
) whenever e ∈ S n-1 and r > 0.

Given e ∈ S n-1 and ε > 0 we define the slab

S e,ε = S n-1 ∩ {w : | e, w | < ε} .
Now we choose ε > 0 small enough for

H n-1 (S e,ε ) ≤ H n-1 (S n-1 ) 3CL
whenever e ∈ S n-1 . We choose a maximal collection of points e 1 , . . . , e k ∈ S n-1 such that the (open) balls B(e k , ε), k = 1, . . . , K, are pairwise disjoint. Such a collection exists because H n-1 (S n-1 ) is finite and H n-1 (S n-1 ∩ B(e, ε)) does not depend on e ∈ S n-1 . By maximality, we have that S n-1 = K k=1 U (e k , 2ε). Let now v 1 , . . . , v L ∈ R n be arbitrary. We define L = {1, . . . , L} ∩ {l : v l = 0} and for l ∈ L we set w l = v l |v l | -1 . Our claim is that for some k, e k does not belong to any of the slabs S w l ,ε , l ∈ L. Suppose if possible that for each k = 1, . . . , K, e k ∈ S where

S = l∈L S w l ,ε . If l ∈ L corresponds to k so that e k ∈ S w l ,ε then in fact at least "half" the ball B(e k , ε) must be contained in S w l ,ε , thus H n-1 (S ∩ B(e k , ε)) ≥ 1 2 H n-1 (S n-1 ∩ B(e k , ε
)). We would then obtain

H n-1 (S n-1 ) ≤ K k=1 H n-1 (S n-1 ∩ B(e k , 2ε)) ≤ C K k=1 H n-1 (S n-1 ∩ B(e k , ε)) ≤ 2C K k=1 H n-1 (S ∩ B(e k , ε)) ≤ 2CH n-1 (S) ≤ 2C l∈L H n-1 (S w l ,ε ) ≤ 2 3 H n-1 (S n-1 ) , a contradiction.
Theorem 4. There exist an integer

N = N (n, Q), a real number α = α(n, Q) ≤ 1 and a mapping ξ : Q Q (R n ) → R N
with the following properties.

(A) For every v, v ′ ∈ Q Q (R n ), αG 2 (v, v ′ ) ≤ ξ(v) -ξ(v ′ ) ≤ G 2 (v, v ′ ); (B) For every v ∈ Q Q (R n ) there exists r > 0 such that for each v ′ ∈ Q Q (R n ), if G 2 (v, v ′ ) < r then ξ(v) -ξ(v ′ ) = G 2 (v, v ′ ); (C) For every v ∈ Q Q (R n ) one has ξ(v) = G 2 (v, Q 0 ).
Proof. Letting L = Q 2 we choose ε and e 1 , . . . , e K according to Proposition 13. For each k = 1, . . . , K we choose an orthonormal basis e 1,k , . . . , e n,k of R n such that e 1,k = e k .

We then define ξ :

Q Q (R n ) → R N : v → (ξ 1 (v), . . . , ξ K (v))
where N = QnK and we have abbreviated

ξ k (v) = (π e 1,k (v), . . . , π e n,k (v)).
Thus each ξ k is a mapping of the type ξ 0 considered in Proposition 12, corresponding to the basis e 1,k , . . . , e n,k . We therefore infer from Proposition 12(A) that for every

v, v ′ ∈ Q Q (R n ), ξ(v) -ξ(v ′ ) 2 = K k=1 ξ k (v) -ξ k (v ′ ) 2 ≤ KG 2 (v, v ′ ) 2 .
On the other hand, letting v = y 1 , . . . , y Q and v ′ = y ′ 1 , . . . , y ′ Q , we infer from Proposition 13 that there exists k = 1, . . . , K such that

| e 1,k , y i -y ′ j | ≥ ε y i -y ′ j for every i, j = 1, . . . , Q. Let σ ∈ S Q be such that y σ(1) , e 1,k ≤ . . . ≤ y σ(Q) , e 1,k and let τ ∈ S Q be such that y ′ τ (1) , e 1,k ≤ . . . ≤ y ′ τ (Q) , e 1,k . Observe that G 2 (v, v ′ ) 2 ≤ Q i=1 y σ(i) -y ′ τ (i) 2 ≤ ε -2 Q i=1 | y σ(i) , e 1,k -y ′ τ (i) , e 1,k | 2 = ε -2 π e 1,k (v) -π e 1,k (v ′ ) 2 ≤ ε -2 ξ(v) -ξ(v) 2 .
We now turn to proving conclusions (B) and

(C). Given v ∈ Q Q (R n ) and k = 1, . . . , K we choose r k > 0 according to Proposition 12(B). Let r = min{r 1 , . . . , r K }. If v ∈ Q Q (R n ) and G 2 (v, v ′ ) < r then ξ(v) -ξ(v ′ ) 2 = K k=1 ξ k (v) -ξ k (v ′ ) 2 = KG 2 (v, v ′ ) 2 .

Also, regarding conclusion (C), we observe that for every

v ∈ Q Q (R n ), ξ(v) 2 = KG 2 (v, Q 0 ) ,
according to Proposition 12(C). This means that the mapping K -1/2 ξ verifies the conclusions of the present proposition. L(e j ), e k 2 corresponding to the canonical bases of R m and R ν .

Proposition 14. Assume that f : R m → Q Q (R n ), a ∈ R n , and that both f and ξ • f are differentiable at a. 2 It follows that |Df (a)| = |||D(ξ • f )(a)||| .
Proof. For each j = 1, . . . , m we have

∂ j (ξ • f )(a) 2 = lim t→0 (ξ • f )(a + te j ) -(ξ • f )(a) 2 t 2 = lim t→0 G 2 (f (a + te j ), f (a)) 2 t 2 (according to Theorem 4(B)) = lim t→0 G 2 (Af (a)(a + te j ), f (a)) 2 t 2 (because f is differentiable at a) = lim t→0 Q i=1 f i (a) -A σt(i) (a) -L σt(i) (te j ) 2 t 2 ,
where, as usual,

Df (a) = ⊕ Q i=1 A i , L i = A i -A i (0), i = 1, . . . , Q and σ t is a permutation σ ∈ S Q for which the quantity Q i=1 f i (a) -A σ(i) (a) -L σ(i) (te j ) 2 t 2
is minimal. Since the above limit exists and is finite, we infer that

σ t ∈ S Q must be such that f i (a) = A σt(i) (a) when t is small enough, i = 1, . . . , Q. Thus, ∂ j (ξ • f )(a) 2 = Q i=1 L i (e j ) 2 ,
and in turn,

|||D(ξ • f )(a)||| 2 = m j=1 ∂ j (ξ • f )(a) 2 = m j=1 Q i=1 L i (e j ) 2 = Q i=1 |||L i ||| 2 = |Df (a)| 2 .
Theorem 5. Let N = N (n, Q) and ξ be as in Theorem 4. There exists a Lipschitz retraction ρ :

R N → ξ(Q Q (R n )) . Proof. Apply Theorem 2 with X = ℓ N 2 , A = ξ(Q Q (R n )), Y = ℓ n 2 and f = ξ -1 . Letting f be a Lipschitz extension of f , the mapping ρ = ξ • f verifies the conclusion.
The exact same proof shows that there exists a Hölder continuous retraction ρ :

C N → η(Q Q (C n ))
where N = N (n, Q) and η are as in Section 2.1. This follows indeed from the fact that η -1 is Hölder continuous (reference [Mar66, Theorem (1,4)]). In the same vein one can prove the following, based on [BL00, Theorem 1.12] and Theorem 5: If ω : R + → R + is concave then for every A ⊂ ℓ m 2 and every f :

A → Q Q (ℓ n 2 ) such that osc(f ; •) ≤ ω, there exists an extension f : ℓ m 2 → Q Q (ℓ n 2 ) of f such that osc( f ; •) ≤ (Lip ρ n,Q )ω.
Here ρ n,Q is the Lipschitz retraction of Theorem 5, and

Q Q (ℓ n
2 ) is equipped with its metric G 2 . We recall that a metric space Z is an absolute Lipschitz retract if and only if each isometric embedding Z → Z ′ into another metric space Z ′ has a Lipschitz right inverse ρ : Z ′ → Z. In other words, Z is a Lipschitz retract of any of its metric superspaces. This is equivalent to asking that any partially defined Lipschitz map into Z extends to a Lipschitz map into Z, see [BL00, Proposition 1.2]. For instance ℓ N ∞ is an absolute Lipschitz retract, and hence the following holds.

Corollary 2. Q Q (R n ) is an absolute Lipschitz retract. It is unknown whether Q Q (Y ) is an absolute Lipschitz retract if Y is also one. Are Q Q (ℓ ∞ ) and Q Q (C[0, 1]
) absolute Lipschitz retracts? Are they absolute uniform retracts?

Lipeomorphic embedding into Lip y 0 (Y ) *

Let (Y, y 0 ) be a pointed metric space, i.e. a metric space Y together with a distinguished point y 0 ∈ Y . We denote by Lip y 0 (Y ) the collection of those Lipschitz continuous functions u : Y → R vanishing at y 0 . This is a Banach space equipped with the norm

u Lip = Lip u. With each v = y 1 , . . . , y Q ∈ Q Q (Y ) we associate a linear functional ζ 0 (v) : Lip y 0 (Y ) → R : u → Q i=1 u(y i ) . ( 15 
)
One readily checks that ζ 0 (v) is continuous and

ζ 0 (v) (Lip Y ) * ≤ Q i=1 d(y i , y 0 ) . In particular ζ 0 (v) (Lip Y ) * ≤ Q(diam Y ) so that ζ 0 is bounded when Y is. Notice also that ζ 0 (Q y 0 ) = 0.
We shall now show that

ζ 0 : Q Q (Y ) → Lip y 0 (Y ) *
is a lipeomorphic embedding.

Theorem 6. There exists c Q > 0 such that for every pointed metric space (Y, y 0 ) and every

v, v ′ ∈ Q Q (Y ) one has c Q G 1 (v, v ′ ) ≤ ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * ≤ G 1 (v, v ′ ) .
Proof. We start with the second inequality.

Let v, v ′ ∈ Q Q (Y ) and choose numberings v = y 1 , . . . , y Q and v ′ = y ′ 1 , . . . , y ′ Q so that G 1 (v, v ′ ) = Q i=1 d(y i , y ′ i ). It is clear that ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * = sup    Q i=1 u(y i ) - Q i=1 u(y ′ i ) : u ∈ Lip y 0 (Y ) and Lip u ≤ 1    ≤ Q i=1 d(y i , y ′ i ) = G 1 (v, v ′ ) .
We now turn to proving the first inequality, by induction on

Q. If Q = 1 then the inequality is verified with c 1 = 1. Indeed, given v = y 1 and v ′ = y ′ 1 we let u(y) = d(y 1 , y) -d(y 1 , y 0 ) so that u ∈ Lip y 0 (Y ), Lip u ≤ 1, and ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * ≥ |u(y 1 ) -u(y ′ 1 )| = d(y 1 , y ′ 1 ) = G 1 (v, v ′ ) .
We now assume the conclusion holds for Q and we establish it for

Q + 1. Let v, v ′ ∈ Q Q+1 (Y ) and write v = ⊕ Q+1 i=1 y i and v ′ = ⊕ Q+1 i=1 y ′ i .
We let α > 0 to be determined later, and we distinguish between two cases.

First case. We assume that dist(supp

µ v , supp µ v ′ ) = min{d(y i , y ′ j ) : i, j = 1, . . . , Q + 1} > αG 1 (v, v ′ ) .
We define u 0 : (supp µ v ) ∪ (supp µ v ′ ) → R by letting u 0 (y i ) = 0 and u 0 (y ′ i ) = αG 1 (v, v ′ ), i = 1, . . . , Q + 1. It is most obvious that Lip u 0 ≤ 1 and we let û0 be an extension of u 0 to Y such that Lip û0 ≤ 1, whose existence follows from the McShane-Whitney Theorem. Finally we let u = û0 -û0 (y 0 )✶ Y and we observe that

ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * ≥ Q+1 i=1 u(y i ) - Q+1 i=1 u(y ′ i ) = α(Q + 1)G 1 (v, v ′ ) . Second case. We assume that dist(supp µ v , supp µ v ′ ) ≤ αG 1 (v, v ′ ) . Choose i 0 , j 0 ∈ {1, . . . , Q + 1} such that d(y i 0 , y ′ j 0 ) = dist(supp µ v , supp µ v ′ ). Define ṽ, ṽ′ ∈ Q Q (Y ) by ṽ = ⊕ i =i 0 y i and ṽ′ = ⊕ j =j 0 y ′ j .
According to the induction hypothesis there exists u ∈ Lip y 0 (Y ) with Lip u ≤ 1 and

i =i 0 u(y i ) - j =j 0 u(y ′ j ) ≥ 1 2 ζ 0 (ṽ) -ζ 0 (ṽ ′ ) (Lip Y ) * ≥ c Q 2 G 1 (ṽ, ṽ′ ) . Since readily G 1 (ṽ, ṽ′ ) + d(y i 0 , y ′ j 0 ) ≥ G 1 (v, v ′ ) we infer that ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * ≥ Q+1 i=1 u(y i ) - Q+1 j=1 u(y ′ j ) ≥ c Q 2 G 1 (ṽ, ṽ′ ) -|u(y i 0 ) -u(y ′ j 0 )| ≥ c Q 2 G 1 (v, v ′ ) - c Q 2 d(y i 0 , y ′ j 0 ) -d(y i 0 , y ′ j 0 ) ≥ c Q 2 -α 1 + c Q 2 G 1 (v, v ′ ) .
We now choose α > 0 small enough for

c Q 2 -α 1 + c Q 2
> 0 and we set

c Q+1 = min α(Q + 1), c Q 2 -α 1 + c Q 2 so that, in both cases, ζ 0 (v) -ζ 0 (v ′ ) (Lip Y ) * ≥ c Q+1 G 1 (v, v ′ ) .
For the remaining part of this section we assume that Y is compact. We notice that the formula (15) defining u, ζ 0 (v) makes sense also when u ∈ C(Y ). For convenience we consider an embedding in the Banach subspace

C y 0 (Y ) = C(Y ) ∩ {u : u(y 0 ) = 0} .
In order to formally distinguish between the cases when u ∈ Lip y 0 (Y ) and u ∈ C y 0 (Y ) we introduce a different notation

ζ(v) : C y 0 (Y ) → R : u → Q i=1 u(y i ) .
The Banach space C(Y ) is equipped with its usual maximum norm • C(Y ) and we notice that ζ(v) is continuous and

ζ(v) C(Y ) * ≤ Q .
In the sequel we shall use the lipeomorphic embedding ζ 0 in conjunction with the well-known metrization property of weakly* compact subsets of C(Y ) * in the following form. We recollect the standard proof for completeness.

Proposition 15. Let (Y, y 0 ) be a pointed metric space and assume that Y is compact. The ball

M Q = C y 0 (Y ) * ∩ {T : T ≤ Q}
is weakly* compact, and the restriction to M Q of the weak* topology is metrized by

d(T, T ′ ) = sup{|T (u) -T ′ (u)| : u ∈ Lip y 0 (Y ) and Lip u ≤ 1} .
Proof. The weak* compactness of M Q is a consequence of the Banach-Alaoglu Theorem. We let T d denote the topology on M Q associated with the metric d above, and T σ * the restriction to M Q of the weak* topology of C(Y ) * . For convenience we denote by

φ : M Q [T d ] → M Q [T σ * ]
the identity map, and by φ -1 its inverse, so we must recall why both are continuous.

Let {T j } be a sequence in M Q , T ∈ M Q , and assume that d(T, T j ) → 0. Let u ∈ C(Y ) and ε > 0. Since u is uniformly continuous there exists a Lipschitz continuous û :

Y → R such that u -û C(Y ) < ε (see e.g. [BL00, Proposition 2.1(i)]). It follows that lim sup j | u, T -T j | ≤ lim sup j | û, T -T j | + lim sup j | u -û, T -T j | = lim sup j | û -û(y 0 )✶ Y , T -T j | + lim sup j | u -û, T -T j | ≤ lim sup j (1 + Lip û) -1 d(T, T j ) + 2εQ = 2εQ .
The arbitrariness of ε shows that φ is continuous.

Assume that {T λ } λ∈Λ is a directed family in M Q converging weakly* to some T . As a family of functionals defined on

C(Y ), {T λ : λ ∈ Λ} is equicontinuous. Furthermore S = Lip y 0 (Y ) ∩ {u : Lip u ≤ 1} is compact in C(Y ) according to Ascoli's Theorem.
Therefore the pointwise (i.e. weak*) convergence of the directed family on C(Y ) implies its uniform convergence on S (see e.g. [Edw95, Proposition 0.4.9]). This is exactly saying that d(T, T λ ) → 0.

Sobolev classes

3.1 Definition of L p (X, Q Q (Y ))
Let (Y, y 0 ) be a pointed metric space as usual, let (X, A, µ) be a measure space, and let 1 ≤ p < ∞. We denote by

L p (X, Q Q (Y )) the collection of mappings f : X → Q Q (Y ) verifying the following requirements: (A) f is (A, B Q Q (Y ) ) measurable; (B) The function X → R : x → G 2 (f (x), Q y 0 ) p is µ summable.
In the remaining part of this paper we shall abbreviate

|f (x)| = G 2 (f (x), Q y 0 ) ,
x ∈ X, and we keep in mind that no ambiguity should occur from the lack of mention of y 0 in the abbreviation 3 

. If f ∈ L p (X, Q Q (Y )) we also set the notation |f | Lp = X |f | p dµ 1 p . Of course L p (X, Q Q (Y )) is not a linear space. It is most obvious that the formula d p (f, g) = X G 2 (f, g) p dµ 1 p defines a semimetric on L p (X, Q Q (Y )).
As in the scalar case, we have:

Proposition 16. Assume that Y is a complete metric space. It follows that L p (X, Q Q (Y ))[d p ]
is a complete semimetric space, and each Cauchy sequence contains a subsequence converging pointwise almost everywhere.

Proof. We merely recall the usual argument. Let {f j } be a d p Cauchy sequence in

L p (X, Q Q (Y )). Define inductively an increasing sequence of integers {k j } such that d p (f k j+1 , f k j ) p ≤ 4 -j , and let X j = X ∩ {x : G 2 (f k j+1 (x), f k j (x)) p ≥ 2 -j }, j ∈ N * . Thus 1 4 j ≥ d p (f k j+1 , f k j ) p ≥ X j G 2 (f k j+1 , f k j ) p dµ ≥ 1 2 j µ(X j ) . Therefore µ(X j ) ≤ 2 -j , j ∈ N * . Letting X ′ i = ∪ j≥i X j it follows that µ(X ′ i ) ≤ 2 -i+1 . Defining N = ∩ i∈N * X ′ i it immediately follows that N is negligible. Observe that if x ∈ X \N then {f k j (x)} j is a Cauchy sequence, hence convergent, owing to the completeness of Q Q (Y ) (Proposition 1). The limiting f : X → Q Q (Y ) is (A, B Q Q (Y ) ) measurable. For every j ∈ N * , d p (f, f k j ) p = X G 2 (f, f k j ) p dµ = X lim j ′ G 2 (f k j ′ , k k j ) p dµ ≤ lim inf j ′ X G 2 (f k j ′ , k k j ) p dµ = lim inf j ′ d p (f k j ′ , f k j ) p
according to Fatou's Lemma, and

|f | Lp ≤ d p (f, f k j ) + |f k j | Lp < ∞
according to the triangular inequality. The proof is complete.

Analog of the Fréchet-Kolmogorov compactness Theorem

Theorem 7. Assume that 1 ≤ p < ∞ and that:

(A) (X, B X , λ) is a finite dimensional Banach space with a Haar measure λ defined on the σ algebra B X of Borel subsets of X;

(B) Y is a compact metric space, and y 0 ∈ Y ;

(C) F ⊂ L p (X, Q Q (Y )
) is a family subjected to the following requirements:

(i) sup{|f | Lp : f ∈ F } < ∞;
(ii) For every ε > 0 there exists a neighbourhood U of 0 in X such that

sup{d p (τ h f, f ) : f ∈ F } < ε whenever h ∈ U , where (τ h f )(x) := f (x + h);
(iii) For every ε > 0 there exists a compact K ⊂ X such that

sup{d p (f, f K ) : f ∈ F } < ε ,
where

f K (x) =    f (x) if x ∈ K Q y 0 if x ∈ K . It follows that F is relatively compact in L p (X, Q Q (Y ))[d p ].
Proof. In this proof we will abbreviate

• = • (Lip Y ) * . In view of the completeness of L p (X, Q Q (Y )) (Proposition 16
) we need only to show that F is totally bounded. Let ε > 0 and choose U and K according to hypotheses (C)(ii) and (C)(iii). There is no restriction to assume that Clos U is compact. We next consider a continuous function ϕ :

X → R + such that supp ϕ ⊂ U and X ϕdλ = 1. Given f ∈ F we consider the map ζ • f K : X → Lip y 0 (Y ) *
and we observe that it is (B X , 

B Lip y 0 (Y ) * )-measurable, separably valued (in fact im ζ • f K ⊂ im ζ
0 ) = 0), so that the Lebesgue integral X ζ • f K dλ < ∞. Thus ζ • f K is Bochner integrable.
We define the convolution product of ϕ and ζ • f K by means of the Bochner integral:

(ϕ * ζ • f K )(x) = (B) X ϕ(h)(ζ • f K )(x + h)dλ(h) , x ∈ X . We now claim that each ϕ * (ζ • f K ) is continuous and, in fact, that the family C(X, Lip y 0 (Y ) * ) ∩ {ϕ * (ζ • f K ) : f ∈ F } is equicontinuous. Given x, x ′ ∈ X we simply observe that (ϕ * ζ • f K )(x) -(ϕ * ζ • f K )(x ′ ) = (B) X (ϕ(h) -ϕ(h + x -x ′ ))(ζ • f K )(x + h)dλ(h) ≤ X |ϕ(h) -ϕ(h + x -x ′ )| p p-1 dλ(h) 1-1 p X (ζ • f K )(x + h) p dλ(h) 1 p ≤ osc(ϕ, x -x ′ X )λ(U + B X (0, x -x ′ X )) 1-1 p |f | Lp ,
according to [DU77, Chap. II §2 Theorem 4(ii)], Hölder's inequality, and Theorem 6. The equicontinuity follows from the uniform continuity of ϕ and hypothesis (C)(i).

We denote by C the closed convex hull of im ζ in the Banach space Lip y 0 (Y ) * . As im ζ is compact it ensues from Mazur's Theorem that C is compact as well. Furthermore, the definition of the convolution product guarantees that (ϕ

* ζ • f K )(x) ∈ C for every x ∈ X. It therefore follows from Ascoli's Theorem, [Edw95, 0.4.11], that the family C(X, Lip y 0 (Y ) * ) ∩ {ϕ * (ζ • f K ) : f ∈ F } is relatively compact in C c (X, Lip y 0 (Y ) * ) with respect to uniform convergence (note that supp(ϕ * ζ • f K ) ⊂ K + Clos U , a compact set independent of f ). Consequently there are f 1 , . . . , f κ ∈ F such that for every f ∈ F there exists k ∈ {1, . . . , κ} with (ϕ * ζ • f K )(x) -(ϕ * ζ • f k K )(x) < ελ(K + Clos U ) -1 p (16)
for every x ∈ X.

Now given f ∈ F we choose k so that (16) holds and we aim at showing that d p (f, f k ) < Dε where D is a suitable constant; this will complete the proof. We start with the observation that

d p (f, f k ) ≤ d p (f, f K ) + d p (f K , f k K ) + d p (f k K , f k ) ≤ 2ε + d p (f K , f k K )
according to hypothesis (C)(iii). Next we infer from Theorem 6 and ( 16) that

c Q d p (f K , f k K ) ≤ X (ζ • f K ) -(ζ • f k K ) p dλ 1 p ≤ X (ζ • f K ) -(ϕ * ζ • f K ) p dλ 1 p + K+Clos U (ϕ * ζ • f K ) -(ϕ * ζ • f k K ) p dλ 1 p + X (ϕ * ζ • f k K ) -(ζ • f k K ) p dλ 1 p ≤ X (ζ • f K ) -(ϕ * ζ • f K ) p dλ 1 p + ε + X (ϕ * ζ • f k K ) -(ζ • f k K ) p dλ 1 p
Thus it remains only to find a uniform small upper bound of

X (ζ • f K ) -(ϕ * ζ • f K ) p dλ whenever f ∈ F . Let x ∈ X, abbreviate µ = λ ϕ, and observe that (ζ • f K )(x) -(ϕ * ζ • f K )(x) = (B) X ϕ(h) (ζ • f K )(x) -(ζ • f K )(x + h) dλ(h) ≤ X G 1 (f K (x), τ h f K (x))dµ(h) .
It then follows from Jensen's inequality applied to the probability measure µ, and from Fubini's Theorem that

X (ζ • f K )(x) -(ϕ * ζ • f K )(x) p dλ(x) ≤ X dλ(x) X G 1 (f K (x), τ h f K (x))dµ(h) p ≤ X dλ(x) X G 1 (f K (x), τ h f K (x)) p dµ(h) = Q p/2 U dµ(h)d p (f K , τ h f K ) p ≤ Q p/2 sup h∈U d p (f K , τ h f K ) p .
Consequently,

X (ζ • f K ) -(ϕ * ζ • f K ) p dλ 1 p ≤ 3 Qε
according to hypotheses (C)(ii) and (iii). Therefore,

d p (f K , f k K ) ≤ c -1 Q (1 + 6 Q)ε ,
and finally,

d p (f, f k ) ≤ 2 + c -1 Q (1 + 6 Q) ε .

Definition of W

1 p (U ; Q Q (Y ))
In this section X is a finite dimensional Banach space with Haar measure λ, U ⊂ X is either X itself or a bounded open subset having the extension property4 , Y is a Banach space having the Radon-Nikodým property, and 1 < p < ∞. The space Hom(X, Y ) is given a norm ||| • |||. We recall that each Lipschitz map f :

U → Q Q (Y ) extends to a Lipschitz map f : X → Q Q (Y )
according to Theorem 2, and that f is differentiable at λ almost every x ∈ U , according to Theorem 3. For such x, writing Df (x) = ⊕ Q i=1 L i , we recall that we have defined

|Df (x)| = Q i=1 |||L i ||| 2 . We define the Sobolev class W 1 p (U ; Q Q (Y )) to be the subset of L p (U ; Q Q (Y )) consisting of those f : U → Q Q (Y ) for which there exists a sequence {f j } of Lipschitz mappings X → Q Q (Y ) with the following properties (1) f j ∈ L p (U ; Q Q (Y )) and U |Df j | p dλ < ∞ for every j = 1, 2, . . .; (2) sup j U |Df j | p dλ < ∞; (3) d p (f, f j ) → 0 as j → ∞. In case U is bounded, (1) is redundant. We define W 1 p (U ; Q Q (Y )) to be the quotient of W 1 p (U ; Q Q (Y )) relative to the equiv- alence relation f 1 ∼ f 2 iff λ{f 1 = f 2 } = 0. We now recall the definition of F.J. Almgren's Sobolev class Y p (U ; Q Q (ℓ n 2 )
). Here X = ℓ m 2 and Y = ℓ n 2 . This is simply the collection of Borel functions f : U → R N (where N = N (n, Q) is as in 4) such that f is a member of the classical Sobolev space W 1 p (U ; R N ), and f (x) ∈ ξ(ℓ n 2 ) for L m almost every x ∈ U . This is reminiscent of the definition of Sobolev mappings between Riemannian manifolds, except for Q Q (ℓ n 2 ) is not a Riemannian manifold, but merely a stratified space. We also let Y p (U ; Q Q (ℓ n 2 )) denote the corresponding quotient relative to equality L m almost everywhere. We finally recall that Hom(ℓ m 2 , ℓ ν 2 ) is equipped with the following norm

|||L||| = m j=1 ν k=1
L(e j ), e k 2 that appears in the following result.

Theorem 8. Assuming that X = ℓ m 2 and Y = ℓ n 2 , the mapping

Υ : W 1 p (U ; Q Q (ℓ n 2 )) → Y p (U ; Q Q (ℓ n 2 )) : f → ξ • f yields a bijection Υ : W 1 p (U ; Q Q (ℓ n 2 )) → Y p (U ; Q Q (ℓ n 2 ))
, and

(1) U G 2 (f (x), Q 0 ) p dL m (x) = U Υ(f )(x) p dL m (x); (2) If f is Lipschitz then U |Df (x)| p dL m (x) = U |||DΥ(f )(x)||| p dL m (x) . Proof. We first show that ξ • f ∈ Y p (U ; Q Q (ℓ n 2 )) whenever f ∈ W 1 p (U ; Q Q (ℓ n 2 )). It is clear that f : U → R N is Borel measurable and also that U (ξ • f )(x) p dL m (x) = U G 2 (f (x), Q 0 ) p dL m (x) < ∞ ,
according to Theorem 4(C), thus ξ • f is a member of the classical Lebesgue space L p (U ; R N ) and conclusion (1) is proved. Assuming that f be also Lipschitz then so is ξ•f , thus conclusion (2) holds according to Proposition 14 (in conjunction with Theorem 3 and the classical Rademacher Theorem), whence ξ • f belongs to the classical Sobolev space W 1 p (U ; R N ). If we now return to merely assuming that

f ∈ W 1 p (U ; Q Q (ℓ n 2 )) in our definition, then there exists a sequence {f j } of Lipschitz maps X → Q Q (ℓ n 2 ) such that sup j U |Df j | p dL m < ∞ and lim j U G 2 (f, f j ) p dL m = 0. We infer from conclusions (1) and (2) that {ξ • f j } is a bounded sequence in W 1 p (U ; R N ). Since W 1 p (U ; R N
) is a reflexive Banach space, there exists a subsequence {ξ • f k(j) } converging weakly to some g ∈ W 1 p (U ; R N ). Since U has the extension property, the weak convergence corresponds to convergence in L p :

lim j U (ξ • f k(j) ) -g p dL m = 0 , and therefore ξ • f = g L m almost everywhere, which readily implies that ξ • f ∈ Y p (U ; Q Q (ℓ n 2 )
). We next observe that the equivalence class of Υ(f ) depends only upon the equivalence class of f , because ξ maps null sets to null sets. Since the same is true about ξ -1 , we infer that Υ is injective. It remains to show that

Υ is surjective. Let g ∈ Y p (U ; Q Q (ℓ n 2 )
). There is no restriction to assume that g(x) ∈ ξ(ℓ n

2 ) for all x ∈ U , and we define f = ξ -1 • g; it is obviously Borel measurable. Since g ∈ W 1 p (U ; R N ) and U has the extension property, there exists ĝ ∈ W 1 p (R n ; R N ) such that ĝ is compactly supported in a neighborhood of U and ĝ ↾ U = g. Choosing {ϕ ε j } a smooth compactly supported approximation to the identity, we define

f j = ξ -1 • ρ • (ϕ ε j * ĝ) .
We observe that the f j :

X → Q Q (ℓ n
2 ) are Lipschitz and

U G 2 (f j , f ) p dL m = U G 1 (ξ -1 • ρ • (ϕ ε j * ĝ), ξ -1 • g) p dL m ≤ α(n, Q) -p U ρ • (ϕ ε j * ĝ) -ρ • g p dL m ≤ α(n, Q) -p (Lip ρ) p U ϕ ε j * ĝ -g p dL m → 0 as j → ∞ .
Finally, if f j and ρ • (ϕ ε j * ĝ) are both differentiable at a ∈ U , then Proposition 14 implies that

|Df j (a)| p = |D(ξ -1 • ρ • (ϕ ε j * ĝ))(a)| p = |||D(ρ • (ϕ ε j * ĝ))(a)||| p ≤ (Lip ρ) p |||D(ϕ ε j * ĝ)(a)||| p .
Since this occurs that L m almost every a ∈ U , according to Theorem 3 and the classical Rademacher Theorem, we infer that

sup j U |Df j (a)| p dL m ≤ (Lip ρ) p sup j U |||D(ϕ ε j * ĝ)||| p dL m ≤ (Lip ρ) p U |||Dĝ||| p dL m . Thus f ∈ W 1 p (U ; Q Q (ℓ n 2 )).
It is worth observing that in case p = 1 the above Theorem would not be valid, as our definition would yield a space of mappings

U → Q Q (ℓ n
2 ) of bounded variation rather than Sobolev.

We recall that U is assumed to have the extension property. This means that there exists a continuous linear operator

E : W 1 p (U ; R N ) → W 1 p (R m ; R N ) . Given f ∈ W 1 p (R m ; R N ) and f ∈ f , one easily checks that ρ • f ∈ Y 1 p (R m ; Q Q (ℓ n 2 )
) and that the equivalence class of ρ • f depends only upon that of f . Thus the formula

Ẽ(f ) = Υ -1 (ρ • E (Υ (f ))) 3.3 -Definition of W 1 p (U ; Q Q (Y )) 55
defines an "extension mapping"

W 1 p (U ; Q Q (ℓ n 2 )) → W 1 p (R m ; Q Q (ℓ n 2 )) . Proposition 17. Let f ∈ W 1 p (U ; Q Q (ℓ n 2 )) and t ≥ 0. Define A t = U ∩ x : G 2 (f (x), Q 0 ) p + (M |||DE(Υ(f ))|||) p (x) ≤ t p ,
where M denotes the maximal function operator and E(Υ(f )) is a representant of the class E(Υ(f )). Then there exists a Lipschitzian map h :

U → Q Q (ℓ n 2 ) such that (1) h(x) = f (x) for L m almost every x ∈ A t ; (2) Lip h ≤ 4 m+1 α(n, Q) -1 c 2 (m, Q)t where α(n, Q) is as in Theorem 4; (3) G 2 (h(x), Q 0 ) ≤ c 2 (m, Q)t for every x ∈ U ; (4) For L m almost every x ∈ A t , f is approximately differentiable at x and |Df (x)| = |Dh(x)|. Proof. Write u = E(Υ(f )) ∈ W 1 p (R m ; R N ).
We let Ãt denote the Borel subset of A t consisting of those x such that u(x) = lim ε→0 + (ϕ ε * u)(x) where {ϕ ε } ε>0 is a given approximate identity. Given distinct x, x ′ ∈ Ãt we let Ω = U(x, 2r) ∩ U(x ′ , 2r), where r = xx ′ > 0, and we infer from [MZ97, Lemma 1.50] (adapted in the obvious way to the case of vectorvalued maps) that

u(x) -- Ω udL m ≤ 4 m mα(m) Ω |||Du(y)||| x -y m-1 dL m (y)
and

u(x ′ ) -- Ω udL m ≤ 4 m mα(m) Ω |||Du(y)||| x ′ -y m-1 dL m (y) It follows from the potential estimate [MZ97, Theorem 1.32(i)] that Ω |||Du(y)||| x -y m-1 dL m (y) ≤ U(x,2r) |||Du(y)||| x -y m-1 dL m (y) ≤ mα(m)2 x -x ′ M (|||Du|||) (x) .
Since the same holds with x replaced by x ′ , we obtain

u(x) -u(x ′ ) ≤ 4 m+1 t x -x ′
whenever x, x ′ ∈ Ãt . The first three conclusions now follow from Theorems 4 and 2. Conclusion (4) follows from the fact that h and f are approximately tangent at each Lebesgue density point of A t , together with the differentiability Theorem 3.

Remark 2. We shall see in Proposition 24 that the constant in (2) does not in fact depend upon n. Proof. That Υ(f ) be approximately differentiable (in the usual sense) L m almost everywhere follows from standard Sobolev theory (see e.g. [MZ97, Theorem 1.72]). The analogous property of f follows from Proposition 17(4) and the arbitrariness of t ≥ 0. The last conclusion is a consequence of Proposition 14.

Corollary 3. Let f ∈ W 1 p (U ; Q Q (ℓ n 2 )).

The p energy

In this section, X, Y , U and p are subject to the same requirements as in the last section, and sometimes more. Given

f ∈ W 1 p (U ; Q Q (Y )
) and an open subset V ⊂ U , we define the p energy of f in V by the formula

Dir p p (f ; V ) = inf lim inf j V |Df j | p dλ : {f j } is a sequence of Lipschitz mappings U → Q Q (Y ) such that d p (f, f j ) → 0 as j → ∞ .
We notice that Dir p p (f ;

V ) ≤ Dir p p (f ; U ) < ∞. Clearly, Proposition 18. Given f ∈ W 1 p (U ; Q Q (Y )
) and an open subset V ⊂ U , there exists a sequence of Lipschitz mappings

U → Q Q (Y ) such that lim j d p (f, f j ) = 0 and Dir p p (f ; V ) = lim j V |Df j | p dλ . Proof. For each k ∈ N \ {0} choose a sequence {f k j } j of Lipschitz mappings U → Q Q (Y ) such that d p (f k j , f ) → 0 as j → ∞, and 
Dir p p (f ; V ) ≤ lim inf j V |Df k j | p dλ < 1 k + Dir p p (f ; V ) .
There exists an integer j(k) such that

d p (f, f k j(k) ) < k -1 and Dir p p (f ; V ) - 1 k ≤ V |Df k j(k) | p dλ < 1 k + Dir p p (f ; V ) .
The sequence {f k j(k) } k suits our needs.

As the p-energy is defined by relaxation, we easily prove its lower semicontinuity with respect to weak convergence.

Proposition 19. Let f, f 1 , f 2 , . . . be members of W 1 p (U ; Q Q (Y )) and assume that d p (f, f j ) → 0 as j → ∞. It follows that Dir p p (f ; V ) ≤ lim inf j Dir p p (f j ; V )
for every open subset V ⊂ U .

Proof. For each j = 1, 2, . . . there exists a Lipschitz mapping

g j : U → Q(Y ) such that d p (f j , g j ) ≤ j -1 and V |Dg j | p dλ ≤ 1 j + Dir p p (f j ; V ) ,
by definition of Dir p p (f j ; V ). Since d p (f, g j ) → 0 as j → ∞, we have

Dir p p (f ; V ) ≤ lim inf j V |Dg j | p dλ ≤ lim inf j Dir p p (f j ; V ) .
If W ⊂ Y is a linear subspace and P : Y → W is a continuous linear retract we define

Q Q (P ) : Q Q (Y ) → Q Q (W ) by the formula Q Q (P )( y 1 , . . . , y Q ) = P (y 1 ), . . . , P (y Q ) . It is a trivial matter to check that G 2 (Q Q (P )(v), Q Q (P )(v ′ )) ≤ (Lip P )Q 2 (v, v ′ ) whenever v, v ′ ∈ Q Q (Y ).
Proposition 20. Assume that

(1) W ⊂ Y is a linear subspace and P : Y → W is a continuous linear retract;

(2) g :

U → Q Q (Y ) is approximately differentiable at a ∈ U ;
(3) Hom(X, Y ) and Hom(X, W ) are equipped with norms such that |||P • L||| ≤ (Lip P )|||L||| whenever L ∈ Hom(X, Y ).

It follows that Q Q (P ) • g is approximately differentiable at a and |D(Q Q (P ) • g)(a)| ≤ (Lip P )|Dg(a)| . Proof. Write Ag(a) = ⊕ Q i=1 A i , with A i : X → Y affine maps. Observe that ap lim x→a G 2 (Q Q (P ) • g)(x), Q Q (P ) • ⊕ Q i=1 A i (x) x -a ≤ (Lip P )ap lim x→a G 2 g(x), ⊕ Q i=1 A i (x) x -a = 0 . Since Q Q (P ) • ⊕ Q i=1 A i = ⊕ Q i=1 P • A i
, and the P • A i are affine as well, we infer that

Q Q (P ) • g is differentiable at a and A(Q Q (P ) • g)(a) = ⊕ Q i=1 P • A i . Next note that if L i is the linear part of A i , then P • L i is the linear part of P • A i . Consequently, |D(Q Q (P ) • g)(a)| 2 = Q i=1 |||P • L i ||| 2 ≤ (Lip P ) 2 Q i=1 |||L i ||| 2 = (Lip P ) 2 |Dg(a)| 2 .
Proposition 21. Assume that (1) W ⊂ Y is a linear subspace and ι : W → Y is the canonical injection;

(2) g :

U → Q Q (W ) is differentiable at a ∈ U ;
(3) Hom(X, Y ) and Hom(X, W ) are equipped with norms such that |||ι • L||| = |||L||| whenever L ∈ Hom(X, W ).

It follows that Q Q (ι) • g is differentiable at a and |D(Q Q (ι) • g)(a)| = |Dg(a)| .
Proof. The proof is similar to that of Proposition 20.

Hypotheses (3) of Proposition 20 and 21 are verified in two cases of interest. First when ||| • ||| is the operator norm. Second when

|||L||| = ν   m j=1 L(u j ) Y e j  
where ν is a norm on R m , m = dim X, e 1 , . . . , e m is the canonical basis of R m , and u 1 , . . . , u m is a basis of X.

Proposition 22. Assume that

(1) W ⊂ Y is a linear subspace, P : Y → W is a continuous linear retraction, and ι : W → Y is the canonical injection;

(2) g ∈ W 1 p (U ; Q Q (W ));

(3) Hom(X, Y ) and Hom(X, W ) are equipped with norms such that |||P • L||| ≤ (Lip P )|||L||| whenever L ∈ Hom(X, Y ), and |||ι • L||| = |||L||| whenever L ∈ Hom(X, W ).

It follows that Q Q (ι) • g ∈ W 1 p (U ; Q Q (Y ) and 
(Lip P ) -p Dir p p (g; V ) ≤ Dir p p (Q Q (ι) • g; V ) ≤ Dir p p (g; V ) , for every V ⊂ U open. Proof. Choose a sequence {g j } of Lipschitz mappings U → Q Q (W ) such that d p (g, g j ) → 0 and Dir p p (g; V ) = lim j V |Dg j | p dλ, according to Proposition 18. Notice that Q Q (ι) • g are Lipschitz mappings U → Q Q (Y ) and that lim sup j d p (Q Q (ι) • g, Q Q (ι) • g j ) ≤ lim j d p (g, g j ) = 0 . Therefore, Dir p p (Q Q (ι) • g; V ) ≤ lim inf j V |D(Q Q (ι) • g j )| p dλ ≤ lim sup j V |Dg j | p dλ = Dir p p (g; V ) , according to Proposition 21. The case V = U of this computation implies that Q Q (ι) • g ∈ W 1 p (U ; Q Q (Y ))
, by definition of this Sobolev class, and the general case yields the second inequality of our conclusion.

The other way round choose a sequence {f j } of Lipschitz mappings

U → Q Q (Y ) such that d p (Q Q (ι) • g, f j ) → 0 and Dir p p (Q Q (ι) • g; V ) = lim j V |Df j | p dλ. Notice that the mappings Q Q (P ) • f j : U → Q Q (W ) are Lipschitz and, since g = Q Q (P ) • Q Q (ι) • g, one has d p (g, Q Q (P ) • f j ) = d p (Q Q (P ) • Q Q (ι) • g, Q Q (P ) • f j ) ≤ d p (Q Q (ι) • g, f j ) → 0 as j → ∞ .
Thus,

Dir p p (g; V ) ≤ lim inf j V |D(Q Q (P ) • f j )| p dλ ≤ (Lip P ) p lim inf j V |Df j | p dλ = (Lip P ) p Dir p p (Q Q (ι) • g; V ) .
For the remaining part we will only consider the cases when either Y = ℓ n 2 for some n ∈ N \ {0} or Y = ℓ 2 , and X is a finite dimensional Banach space as usual. The norm ||| • ||| on Hom(X, Y ) is associated with a basis u 1 , . . . , u m of X as follows:

|||L||| = m j=1 L(u j ) 2
where • is the Hilbert norm on Y . According to last remark, Propositions 20 and 21 apply. When Y = ℓ 2 and n ∈ N \ {0} we also define an n dimensional subspace of Y , W n = span{e 1 , . . . , e n }, and we let P n : Y → W n be the orthogonal projection and ι n : W n → Y be the canonical injection.

The following guarantees that the p energy is the expected quantity in case Y = ℓ n 2 . Notice the statement makes sense since g is almost everywhere approximately differentiable (recall Corollary 3). Choosing the sequence {g j } according to Proposition 18 we infer that

Proposition 23. If g ∈ W 1 p (U ; Q Q (ℓ n 2 )) for some n ∈ N \ {0} then Dir p p (g; V ) = V |Dg| p dλ for every open set V ⊂ U . Proof. If {g j } is a sequence of Lipschitz mappings U → Q Q (ℓ n 2 ) such that d p (g, g j ) → 0 as j → ∞, then ξ • g -ξ • g n Lp → 0 as j → ∞
V |Dg| p dλ ≤ Dir p p (g; V ) .
We turn to proving the reverse inequality. We let u = E(Υ(g)) ∈ W 1 p (R m ; R N ) so that the maximal function M (|||Du|||) ∈ L p (U ) (see e.g. [MZ97, Theorem 1.22]). For each j ∈ N \ {0} we define

A j = U ∩ {x : G 2 (g(x), Q 0 ) p + M (|||Du|||) p (x) ≤ j p }
and we infer that

lim j j p λ(U \ A j ) ≤ lim j U \A j (G 2 (g(x), Q 0 ) p + M (|||Du|||) p (x)) dλ(x) = 0 .
We let

g j : U → Q Q (ℓ n
2 ) be the Lipschitz mapping associated with f = g and t = j in Proposition 17. We see that lim

j d p (g j , g) = lim j U \A j G 2 (g j , g) p dλ(x) 1 p ≤ lim j U \A j G 2 (g j , Q 0 ) p dλ(x) 1 p + lim j U \A j G 2 (g, Q 0 ) p dλ(x) 1 p ≤ lim j (c 2 (m, Q)j p λ(U \ A j )) 1 p + lim j U \A j G 2 (g, Q 0 ) p dλ(x) 1 p = 0 , thus Dir p p (g; V ) ≤ lim inf j V |Dg j | p dλ. Furthermore, lim inf j V |Dg j | p dλ ≤ lim inf j V ∩A j |Dg j | p dλ + lim sup j U \A j |Dg j | p dλ ≤ lim inf j V ∩A j |Dg| p dλ + Q p 2 lim sup j U \A j (Lip g j ) p dλ ≤ V |Dg| p dλ + lim sup j Q p 2 4 p(m+1) α(n, Q) -p c 2 (m, Q) p j p λ(U \ A j ) = V |Dg| p dλ .
This completes the proof.

Theorem 9. Let f ∈ W 1 p (U ; Q Q (ℓ 2 )).
The following hold.

(A) Q Q (P n ) • f ∈ W 1 p (U ; Q Q (ℓ n 2 )) for each n ∈ N \ {0}; (B) For every open set V ⊂ U one has Dir p p (f ; V ) = lim n V |D(Q Q (P n ) • f )| p dλ ; (C) The sequence {|D(Q Q (P n ) • f )| p } n is nondecreasing λ almost everywhere and bounded in L 1 (U ). Proof. (A) Choose a sequence {f j } of Lipschitz mappings U → Q Q (ℓ 2 ) such that d p (f j , f ) → 0 and sup j U |Df j | p dλ < ∞. Notice that the Q Q (P n ) • f : U → Q Q (ℓ n 2 ) are Lipschitz, lim j d p (Q Q (P n ) • f j , Q Q (P n ) • f ) ≤ lim j d p (f j , f ) = 0 and sup j U |D(Q Q (P n ) • f j )| p dλ ≤ sup j U |Df j | p dλ < ∞ according to Proposition 20. Thus f ∈ W 1 p (U ; Q Q (ℓ n 2 )). (B) We note that for every x ∈ U one has lim n G 2 f (x), (Q Q (ι n ) • Q Q (P n ) • f ) (x) = 0 ,
and also

G 2 (f, Q Q (ι n ) • Q Q (P n ) • f ) ≤ G 2 (f, Q 0 ) + G 2 (Q Q (ι n ) • Q Q (P n ) • f, Q 0 ) ≤ 2G 2 (f, Q 0 ) . Thus lim n d p (f, Q Q (ι n ) • Q Q (P n ) • f ) = 0
according to the Dominated Convergence Theorem. Therefore,

Dir p p (f ; V ) ≤ lim inf n Dir p p (Q Q (ι n ) • Q Q (P n ) • f ; V ) = lim inf n Dir p p (Q Q (P n ) • f ; V ) = lim inf n V |D(Q Q (P n ) • f )| p dλ ,
according respectively to Propositions 19, 22 and 23. The other way round, we choose a sequence

{f j } of Lipschitz mappings U → Q Q (ℓ 2 ) such that d p (f j , f ) → 0 and Dir p p (f ; V ) = lim j V |Df j | p dλ
, according to Proposition 18. For each fixed n we have

V |D(Q Q (P n ) • f )| p dλ ≤ lim inf j V |D(Q Q (P n ) • f j )| p dλ
(according to the proof of (A) and Proposition 19 and 23)

≤ lim inf j V |Df j | p dλ (according to Proposition 20) = Dir p p (f ; V ) . Therefore lim sup n V |D(Q Q (P n ) • f )| p dλ ≤ Dir p p (f ; V ). (C) That the sequence {|D(Q Q (P n ) • f )| p } n
be nondecreasing follows as in the proof of Proposition 20; its boundedness in L 1 (U ) is a consequence of (B).

We now turn to defining the function

|δf | ∈ L p (U ) associated with f ∈ W 1 p (U ; Q Q (ℓ 2 ))
. It follows from Theorem 9(C) and the Monotone Convergence Theorem that

V lim n |D(Q Q (P n ) • f )| p dλ = lim n V |D(Q Q (P n ) • f )| p dλ , V ⊂ U open. We define, for λ almost every x ∈ U , |δf |(x) = lim n |D(Q Q (P n ) • f )(x)| . ( 17 
)
It follows therefore from Theorem 9(B) that

Dir p p (f ; V ) = V |δf | p dλ . ( 18 
)

Extension

The following is the obvious analog of [MZ97, Theorem 1.63].

Theorem 10. Let U = U (0, 1) be the unit ball in R m . There exists a mapping

E : W 1 p (U ; Q Q (ℓ 2 )) → W 1 p (R m ; Q Q (ℓ 2 ))
with the following properties.

(A) For every f ∈ W 1 p (U ; Q Q (ℓ 2 )) one has E(f )(x) = f (x) for every x ∈ U ; (B) For every f 1 , f 2 ∈ W 1 p (U ; Q Q (ℓ 2 ) one has d p (E(f 1 ), E(f 2 )) ≤ 2 1 p d p (f 1 , f 2 ) ; (C) For every f ∈ W 1 p (U ; Q Q (ℓ 2 )) one has Dir p p (E(f ); R m ) ≤ 1 + Q p 2 2 p Dir p p (f ; U ) + |f | p p ; (D) For every x ∈ R m \ U (0, 2) one has E(f )(x) = Q 0 ; (E) If 0 ∈ C ⊂ ℓ 2 is convex and f (x) ∈ Q Q (C) for every x ∈ U , then E(f )(x) ∈ Q Q (C) for every x ∈ R m .
Proof. We start the proof by associating with each Lipschitz map f : 

U → Q Q (ℓ 2 ) a Lipschitz map E 0 (f ) : R m → Q Q (ℓ 2 ) verifying (A), ( 
U → Q Q (ℓ 2 ) one has R m |DE 0 (f )(x)| p dL m (x) ≤ C(m, p) U |Df (x)| p dL m (x) + |f | p p .
Given f we write f (x) = ⊕ Q i=1 f i (x) , x ∈ U , and we define

g(x) =    ⊕ Q i=1 (2 x -1)f i (x) if x ≥ 1 2 Q 0 if x < 1 2 .
The conscientious reader will check that g is Lipschitz on U . In fact, it follows from Proposition 10 and the paragraph preceding it (in particular equation ( 17)) that

|Dg(x)| ≤ Q |Df (x)| + 2|f (x)| for almost every x ∈ U (0, 1) \ B(0, 1/2). Therefore, U |Dg| p dL m ≤ Q p 2 2 p U |Df | p dL m + U |f | p dL m . ( 19 
)
We now define a Lipschitz mapping ϕ : U (0, 3/2) \ U (0, 1) → B(0, 1) \ B(0, 1/2) by the formula

ϕ(x) = 2 x -1 x ,
and E 0 (f ) by

E 0 (f )(x) =        Q 0 if x ≥ 3 2 g(ϕ(x)) if 1 ≤ x < 3 2 f (x) if x ≤ 1 .
We notice that conclusions (A), (D) and (E) are verified by E 0 (f ). Regarding conclusions (B) and (C') we first observe that the differential of x/ x at a point x = 0 is the orthogonal projection onto the plane orthogonal to x. Therefore Jϕ = 1 and we apply the change of variable formula:

d p (E 0 (f 1 ),E 0 (f 2 )) p ≤ U G(f 1 , f 2 ) p dL m + B(0,3/2)\B(0,1) G(g 1 • ϕ, g 2 • ϕ) p dL m ≤ U G(f 1 , f 2 ) p dL m + B(0,3/2)\B(0,1) G(g 1 • ϕ, g 2 • ϕ) p JϕdL m ≤ 2 U G(f 1 , f 2 ) p dL m (because G(g 1 , g 2 ) ≤ G(f 1 , f 2 ))
, and similarly,

R m |DE 0 (f )| p dL m ≤ U |Df | p dL m + B(0,3/2)\B(0,1) |D(g • ϕ)| p dL m ≤ U |Df | p dL m + B(0,3/2)\B(0,1) (|Dg| p • ϕ) dL m (because Lip ϕ ≤ 1) ≤ U |Df | p dL m + B(0,3/2)\B(0,1) (|Dg| p • ϕ) JϕdL m ≤ 1 + Q p 2 2 p U |Df | p dL m + U |f | p dL m according to (19). We now define E(f ), f ∈ W 1 p (U ; Q Q (ℓ 2 )
), as follows. We choose a sequence {f j } of Lipschitz mappings U → Q Q (ℓ 2 ) associated with f as in Proposition 18 and we observe that {E 0 (f j )} is Cauchy in L p (R m ) : for E(f ) we choose a limit of this sequence (that verifies conclusion (A)). That conclusions (B), (C), (D) and (E) are valid is now a matter of routine verification.

Poincaré inequality and approximate differentiability almost everywhere

We start with a modification of Theorem 9. Proof. With each n ∈ N \ {0} we associate

Theorem 11. Let f ∈ W 1 p (U ; Q Q (ℓ 2 )). There then exist a sequence {f n } of Lipschitz mappings U → Q Q (ℓ 2 ) and a sequence {A n } of Borel subsets of U such that (A) lim n d p (f n , f ) = 0; (B) For every open set V ⊂ U , Dir p p (f ; V ) = lim n V |Df n | p dλ . (C) lim n L m (U \ A n ) =
g n = Q Q (P n ) • f ∈ W 1 p (U ; Q Q (ℓ n 2 )
) as well as

u n = G 2 (g n , Q 0 ) p + M (|||DΥ(g n )|||) p ∈ L 1 (U ) . Letting A n = U ∩ {x : u n (x) ≤ t p n } we can choose t n > 0 large enough for max L m (U \ A n ), c 17 (n, m, Q) p U \An u n dλ < 1 n , ( 20 
)
where we have put

c 17 (n, m, Q) = 4 m+1 α(n, Q) -1 c 2 (m, Q). We then let h n : U → Q Q (ℓ n
2 ) be a Lipschitz mapping associated with g n and t n as in Proposition 17, and we define

f n = Q Q (ι n ) • h n : U → Q Q (ℓ 2
) which is Lipschitz as well. We observe that

d p (f n , f ) ≤ d p (Q Q (ι n ) • h n , Q Q (ι n ) • Q Q (P n ) • f ) + d p (Q Q (ι n ) • Q Q (P n ) • f, f ) ≤ d p (h n , g n ) + d p (Q Q (ι n ) • Q Q (P n ) • f, f ) . Notice that lim n d p (Q Q (ι n ) • Q Q (P n ) • f, f ) = 0
according to the Dominated Convergence Theorem, whereas

d p (h n , g n ) = U G 2 (h n , g n ) p dλ 1 p = U \An G 2 (h n , g n ) p dλ 1 p ≤ U \An G 2 (h n , Q 0 ) p dλ 1 p + U \An G 2 (g n , Q 0 ) p dλ 1 p ≤ U \An c 2 (m, Q) p t p n dλ 1 p + U \An G 2 (g n , Q 0 ) p dλ 1 p ≤ (1 + c 2 (m, Q)) U \An u n dλ 1 p → 0 as n → ∞ ,
from what conclusion (A) follows. Consequently,

Dir p p (f ; V ) ≤ lim inf n V |Df n | p dλ .
Furthermore, for each n we have

V |Df n | p dλ = V |Dh n | p dλ (according to Proposition 22) ≤ V ∩An |Dg n | p dλ + V \An Q p 2 c 17 (n, m, Q) p t p n dλ
(according to Proposition 17)

≤ V |D(Q Q (P n ) • f )| p dλ + Q p 2 c 17 (n, m, Q) p U \An u n dλ .
It now follows from (20) and Theorem 9(B) that

lim sup n V |Df n | p dλ ≤ lim n V |D(Q Q (P n ) • f )| p dλ + lim sup n Q p 2 c 17 (n, m, Q) p U \An u n dλ = Dir p p (f ; V ) .

This proves conclusion (B).

The first part of conclusion (C) is a consequence of (20) and the second part follows from the fact that h n = g n on A n , therefore Dh n (x) = Dg n (x) at L m almost every x ∈ A n , and for those x it follows from Proposition 21, the definition of |δf | and Theorem 9(C) that

|Df n (x)| = |D(Q Q (ι n ) • h n )(x)| ≤ |Dh n (x)| = |Dg n (x)| = |D(Q Q (P n ) • f )(x)| ≤ |δf |(x) .

Conclusion (D) is an easy consequence of (B) and (C).

We are now ready to prove the analog of the Poincaré inequality.

Theorem 12. There exists a constant c 12 (m) ≥ 1 with the following property. Let

f ∈ W 1 p (U ; Q Q (ℓ 2 )), 1 ≤ q ≤ p, and let V ⊂ U be a bounded open convex subset of U . It follows that for L m almost every x ∈ V , V G 2 (f (x), f (y)) q dL m (y) ≤ (diam V ) q+m-1 V |δf | q (z) z -x m-1 dL m (z) . Furthermore there exists v ∈ Q Q (ℓ 2 ) such that V G 2 (f (x), v) q dL m (x) ≤ c 12 (m)(diam V ) q (diam V ) m L m (V ) 1-1 m V |δf | q dL m .
Proof. We start with the case when f is Lipschitz. Given x ∈ V it follows from Theorem 3(D) that

G 2 (f (x), f (y)) ≤ Sx,y |Df (z)|dH 1 (z) = x -y 1 0 |Df (x + t(y -x))|dL 1 (t)
for L m almost every y ∈ V , where S x,y denotes the line segment joining x and y. Now, given s > 0, we observe that

V ∩∂B(x,s) G 2 (f (x), f (y)) q dH m-1 (y) ≤ s q V ∩∂B(x,s)
dH m-1 (y)

1 0 |Df (x + t(y -x))| q dL 1 (t) = s q 1 0 dL 1 (t) V ∩∂B(x,s) |Df (x + t(y -x))| q dH m-1 (y) = s q 1 0 t 1-m dL 1 (t) V ∩∂B(x,ts) |Df (z)| q dH m-1 (z) ≤ s q+m-1 1 0 dL 1 (t) V ∩∂B(x,ts) |Df (z)| q z -x m-1 dH m-1 (z) = s q+m-2 V ∩B(x,s) |Df (z)| q z -x m-1 dL m (z) .
Hence,

V G 2 (f (x), f (y)) q dL m (y) = diam V 0 dL 1 (s) V ∩∂B(x,s) G 2 (f (x), f (y)) q dH m-1 (y) ≤ diam V 0 s q+m-2 dL 1 (s) V ∩B(x,s) |Df (z)| q z -x m-1 dL m (z) ≤ (diam V ) q+m-1 V |Df (z)| q z -x m-1 dL m (z) . ( 21 
)
We now merely assume that f ∈ W 1 p (U ; Q Q (ℓ 2 )) and we choose a sequence of Lipschitz mappings {f n } as in Theorem 11. Thus (21) applies to each f n . Let x ∈ V be such that lim n G 2 (f (x), f n (x)) = 0. In order to establish our first conclusion we can readily assume that

V → R : z → |δf | q (x) z -x m-1
is summable. In that case, it follows from Theorem 11(A) and (D), from (21) and from the Dominated Convergence Theorem that

V G 2 (f (x), f (y)) q dL m (y) = lim n V G 2 (f n (x), f n (y)) q dL m (y) ≤ (diam V ) q+m-1 lim n V |Df n (z)| q z -x m-1 dL m (z) = (diam V ) q+m-1 V |δf | q (z) z -x m-1 dL m (z) .
We now turn to proving the second conclusion. Integrating the inequality above with respect to x, and applying standard potential estimates (see e.g. [MZ97, Lemma 1.31] applied with p = 1) we obtain

V dL m (x) V G 2 (f (x), f (y)) q dL m (y) ≤ (diam V ) q+m-1 V dL m (x) V |δf | q (z) z -x m-1 dL m (z) ≤ C(m)(diam V ) q+m-1 L m (V ) 1 m V |δf | q dL m . Thus there exists x ∈ V such that V G 2 (f (x), f (y)) q dL m (y) ≤ C(m) (diam V ) q+m-1 L m (V ) 1 m L m (V ) V |δf | q dL m .
Letting v = f (x) completes the proof.

Proposition 24. Let U = U (0, 1) be the unit ball in R m , let f ∈ W 1 p (U ; Q Q (ℓ 2 )) and t ≥ 0. Define A t = U ∩ x : G 2 (f (x), Q 0 ) p + (M |δE(f )|) p (x) ≤ t p ,

where M denotes the maximal function operator and E denotes the extension operator defined in Theorem 10. There then exists a Lipschitzian map

h : U → Q Q (ℓ 2 ) such that (1) h(x) = f (x) for L m almost every x ∈ A t ; (2) Lip h ≤ 6mα(m)c ?? (m, Q)t; (3) G 2 (h(x), Q 0 ) ≤ c 2 (m, Q)t for every x ∈ U ; (4) For L m almost every x ∈ A t , f is approximately differentiable at x and |Df (x)| = |Dh(x)|.
Proof. The proof is similar to that of Proposition 17. We abbreviate f = E(f ). We choose a countable dense set D ⊂ R m and we consider the collection V of subsets V of R m of the type V = U (x, r) ∩ U (x ′ , r) where x, x ′ ∈ D and r ∈ Q + . Thus V is countable and for each V ∈ V there exists

N V ⊂ V such that L m (V \ N V ) = 0 and for every x ∈ V \ N V one has V G( f (x), f (y))dL m (y) ≤ (diam V ) m V |δ f |(z) z -x m-1 dL m (z) , ( 22 
)
according to Theorem 12 applied with q = 1.

Let N = ∪ V ∈V N V . Given x, x ′ ∈ R m \ N we choose r ∈ Q + such that 0 < r -x -x ′ < x -x ′ 5
and we choose x, x′ ∈ D such that max x -x , x ′ -x′ < r 5 .

Defining V = U (x, 2r) ∩ U (x ′ , 2r) ∈ V we easily infer that x, x ′ ∈ V . Therefore (22) applies to both pairs x, V and x ′ , V . We define

G = V ∩    y : G( f (x), f (y)) < 3(diam V ) m ) L m (V ) V |δ f |(z) z -x m-1 dL m (z)    ,
as well as

G ′ = V ∩    y : G( f (x ′ ), f (y)) < 3(diam V ) m ) L m (V ) V |δ f |(z) z -x ′ m-1 dL m (z)    . One readily infer from (22) that max L m (V \ G), L m (V \ G ′ ) < L m (V ) 3 , and hence G ∩ G ′ = ∅. We choose y ∈ G ∩ G ′ and we set v = f (y). Thus G( f (x), v) ≤ 3(2r) m α(m)r m V |δ f |(z) z -x m-1 dL m (z)
and

G( f (x ′ ), v) ≤ 3(2r) m α(m)r m V |δ f |(z) z -x ′ m-1 dL m (z) .
It follows from the potential estimate [MZ97, Lemma 1.32(i)] that

V |δ f |(z) z -x m-1 dL m (z) ≤ U (x,2r) |δ f |(z) z -x m-1 dL m (z) ≤ mα(m)(2r)M |δ f | (x) ≤ 3mα(m) x -x ′ M |δ f | (x) ,
and similarly

V |δ f |(z) z -x ′ m-1 dL m (z) ≤ 3mα(m) x -x ′ M |δ f | (x ′ ) . If furthermore x, x ′ ∈ A t then max{M (| f |)(x), M (| f |)(x ′ )} ≤ t and it ensues from the above inequalities that G( f (x), f (x ′ )) ≤ 6mα(m) x -x ′ t .
One now concludes like in Proposition 17.

The following is the analog of Proposition 23 for an infinite dimensional target.

Corollary 4. Let U = U (0, 1) be the unit ball in R m and let f ∈ W 1 p (U ; Q Q (ℓ 2 )). It follows that f is approximately differentiable L m almost everywhere and that

Dir p p (f ; V ) = V |Df (x)| p dL m (x)
for every open set V ⊂ U .

Proof. Letting {t j } be an increasing unbounded sequence in R + we observe that L m (U \ A t j ) → 0 as j → ∞ (where A t j is defined as in the statement of Proposition 24) because both G( f (•), Q 0 )) and M |δ f | belong to L p (R m ). Letting h j be a Lipschitz mapping U → Q Q (ℓ 2 ) which coincides with f almost everywhere on A t j , we easily infer that f is approximately differentiable at each Lebesgue point x ∈ A t j of A t j at which h j is approximately differentiable. Since this is the case of L m almost every a ∈ A t j according to Theorem 3, our first conclusion follows.

In order to prove our second conclusion, consider a point x ∈ U of approximate differentiability of f . Reasoning as in the proof of Proposition 20 we write Af (x) = ⊕ Q i=1 A i and we infer that for each integer n, A(Q

Q (P n ) • f )(a) = ⊕ Q i=1 P n • A i . Since the linear part of P n • A i is P n • L i , where L i is the linear part of A i , we see that |D(Q Q (P n ) • f )(x)| 2 = Q i=1 |||P n • L i ||| 2 = Q i=1 m j=1 P n (L i (e j )) 2 . Thus lim n |D(Q Q (P n ) • f )(x)| 2 = lim n Q i=1 m j=1 P n (L i (e j )) 2 = Q i=1 m j=1 L i (e j )) 2 = |Df (x)| 2 .
Therefore |Df (x)| = |δf |(x), according to (17), and the conclusion follows from (18).

Trace

Proposition 25. Let U = U (0, 1) be the unit ball in R m . For every ε > 0 there exists θ > 0 such that

∂U |u| p dH m-1 ≤ θ U |u| p dL m + ε U ∇u p dL m whenever u : Clos U → R is Lipschitz. Proof. Given ε > 0 we choose a smooth function ϕ : [0, 1] → [0, 1] such that ϕ(0) = ϕ(1) = 1 and ε = 1 0 ϕ q p q
where q is the exponent conjugate to p, and we put

θ = 1 0 |ϕ ′ | q p q .
For every x ∈ ∂U and y ∈ U we observe that

|u(x) -u(y)| = 1 0 d dt ϕ(t)u(y + t(x -y)) dL 1 (t) = 1 0 ϕ ′ (t)u(y + t(x -y)) + ϕ(t) ∇u(y + t(x -y)), x -y dL 1 (t) ≤ 1 0 |ϕ ′ | q 1 q 1 0 |u(y + t(x -y))| p dL 1 (t) 1 p + 1 0 ϕ q 1 q 1 0 ∇u(y + t(x -y)) p x -y p dL 1 (t) 1 p , Therefore, |u(x) -u(y)| p ≤ 2 p-1 θ 1 0 |u(y + t(x -y))| p dL 1 (t) + 2 p-1 x -y p ε 1 0 ∇u(y + t(x -y)) p dL 1 (t) . ( 23 
)
In order to integrate with respect to x ∈ ∂U , we first note that the jacobian of the map [0, 1] × ∂U → U : (t, x) → y + t(xy) at (t, x) equals xy t m-1 . Since xy ≤ 2, the area formula therefore implies that

2 2-m ∂U dH m-1 (x) 1 0 |u(y + t(x -y))| p dL 1 (t) ≤ 1 0 dL 1 (t) ∂U |u(y + t(x -y))| p x -y m-2 dH m-1 (x) = 1 0 dL 1 (t) ∂U |u(y + t(x -y))| p y -(y + t(x -y)) m-1 x -y t m-1 dH m-1 (x) = U |u(z)| p y -z m-1 dL m (z) .
Since the similar inequality holds for the gradient term, we infer from (23) that

∂U |u(x) -u(y)| p dH m-1 (x) ≤ 2 p+m-3 θ U |u(z)| p y -z m-1 dL m (z) + 2 2p+m-3 ε U ∇u(z) p y -z m-1 dL m (z) . Thus, ∂U |u(x)| p dH m-1 (x) ≤ 2 p-1 mα(m)|u(y)| p + 2 2p+m-4 θ U |u(z)| p y -z m-1 dL m (z) + 2 3p+m-4 ε U ∇u(z) p y -z m-1 dL m (z) ,
according to the triangle inequality. We now integrate with respect to y ∈ U and, referring to the potential estimate [MZ97, Lemma 1.31], we obtain

∂U |u| p dH m-1 ≤ 2 p-1 m U |u(y)| p dL m (y) + 2 2p+m-4 α(m) -1 θ U dL m (y) U |u(z)| p y -z m-1 dL m (z) + 2 3p+m-4 α(m) -1 ε U dL m (y) U ∇u(z) p y -z m-1 dL m (z) ≤ m(2 p-1 + 2 2p+m-4 θ) U |u| p dL m + m2 3p+m-4 ε U ∇u p dL m .

Remark 3. It follows in particular from Proposition 25 that

∂U |u| p dH m-1 ≤ C U |u| p dL m + U ∇u p dL m
for some C > 0. Thus there exists a unique continuous trace operator

T : W 1 p (U ) → L p (∂U ; H m-1
) defined by T (u) = u whenever u is Lipschitz. Of course, being continuous, T is also weakly continuous. The inequality in Proposition 25 shows that T is completely continuous, i.e. if {u k } converges weakly in W 1 p (U ) then {T (u k )} converges strongly in L p (∂U ; H m-1 ). Using Proposition 25 (more precisely, an R N valued version) in conjunction with the embedding Theorem 4 we obtain that for every ε > 0 there exists

θ n > 0 such that ∂U G(f 1 , f 2 ) p dH m-1 ≤ θ n U G(f 1 , f 2 ) p dL m + ε U |Df 1 | p dL m + |Df 2 | p dL m whenever f 1 , f 2 : U → Q Q (ℓ n
2 ) are Lipschitz. The dependence of θ upon n is caused by a constant α(n, Q) -1 (the biLipschitz constant of the Almgren embedding). This leads to a proper definition of a trace "operator" for maps

f ∈ W 1 p (U ; Q Q (ℓ n 2 )) but not for maps f ∈ W 1 p (U ; Q Q (ℓ 2 ))
. We use a different approach in our next result, avoiding altogether the embedding of Theorem 4. Theorem 13. There exists a map

T : W 1 p (U ; Q Q (ℓ 2 )) → L p (∂U ; Q Q (ℓ 2 ))
verifying the following properties.

(A) If f : Clos U → Q Q (ℓ 2 ) is Lipschitz then T (f )(x) = f (x) for every x ∈ ∂U ; (B) For every ε > 0 there exists θ > 0 such that ∂U G(T (f 1 ), T (f 2 )) p dH m-1 ≤ θ U G(f 1 , f 2 ) p dL m + ε U |Df 1 | p dL m + |Df 2 | p dL m whenever f 1 , f 2 ∈ W 1 p (U ; Q Q (ℓ 2 ); (C) There exists C > 0 such that for every f ∈ W 1 p (U ; Q Q (ℓ 2 )), ∂U |T (f )| p dH m-1 ≤ C U |f | p dL m + U |Df | p dL m .
Proof. Owing to definition of W 1 p (U ; Q Q (ℓ 2 )) (the weak density of Lipschitz maps), and to Propositions 16, 18 and 4, it suffices to show that the map T defined for Lipschitz f by (A), verifies conclusions (B) and (C) for Lipschitz f 1 , f 2 , f . Given f 1 , f 2 : Clos U → Q Q (ℓ 2 ) we define u : Clos U → R by the formula u(x) = G(f 1 (x), f 2 (x)), x ∈ U . Given x ∈ U and h ∈ R m such that x + h ∈ U we infer from the triangle inequality that

|u(x + h) -u(x)| ≤ |G(f 1 (x + h), f 2 (x + h)) -G(f 1 (x), f 2 (x + h))| + |G(f 1 (x), f 2 (x + h)) -G(f 1 (x), f 2 (x))| ≤ G(f 1 (x + h), f 1 (x)) + G(f 2 (x + h), f 2 (x)) .
This shows at once that u is Lipschitz. Furthermore Proposition 10 implies that

∇u(x) ≤ |Df 1 (x)| + |Df 2 (x)|
at each x ∈ U where u, f 1 and f 2 are differentiable. Conclusion (B) now follows from Proposition 25, and conclusion (C) is a consequence of (B) with

f 1 = f , f 2 = Q 0 and ε = 1.

Analog of the Rellich compactness Theorem

Lemma 4. Let f ∈ W 1 p (R m ; Q Q (ℓ 2 )) and h ∈ R m . It follows that R m G(f (x + h), f (x)) p dL m (x) ≤ h p R m |Df | p dL m .
Proof. According to Propositions 16 and 18, it suffices to prove it when f is Lipschitz as well. In that case it follows from Theorem 3(D) and Jensen's inequality that

G(f (x + h), f (x)) p ≤ h 1 0 |Df (x + th)|dL 1 (t) p ≤ h p 1 0 |Df (x + th)| p dL 1 (t) .
The conclusion follows upon integrating with respect to x ∈ R m .

Theorem 14. Let U = U (0, 1) be the unit ball in R m and let {f j } be a sequence in

W 1 p (U ; Q Q (ℓ 2 )) such that
(1) There exists a compact set C ⊂ ℓ 2 such that f j (x) ∈ Q Q (C) for every x ∈ U and every j = 1, 2, . . .;

(2) sup j U |Df j | p dL m < ∞.

It follows that there exists a subsequence {f k(j) } and

f ∈ W 1 p (U ; Q Q (ℓ 2 )) such that lim j d p (f, f k(j) ) = 0.
Proof. We show that the compactness Theorem 7 applies to the sequence {E(f j )} in L p (R m ; Q Q (C)). Our hypothesis (1) and Theorem 10(D) guarantee that the extension E(f j ) take their value in Q Q (C). We now check that the hypotheses of Theorem 7 are verified:

(i) follows from the fact that C is bounded, thus

R m |E(f j )| p dL m ≤ 2 m α(m)Q p 2 (diam C) p
for every j = 1, 2, . . .;

(ii) follows from Lemma 4 and Theorem 10(C):

sup j R m G(E(f j )(x + h), E(f j )(x)) p dL m (x) ≤ h p R m |DE(f j )| p dL m ≤ h p C(m, p, Q) sup j U |f j | p dL m + U |Df j | p dL m
(iii) follows from the fact that E(f j ) = E(f j ) K for each j = 1, 2, . . ., where K = B(0, 2), according to Theorem 10(D).

Thus there exists f

∈ L p (R m ; Q Q (ℓ 2 )) such that lim j d p (E(f k(j) ), f ) = 0. It remains to notice that the restriction f ↾ U belongs to W 1 p (U ; Q Q (ℓ 2 ))
. This is because for each j = 1, 2, . . . we can choose a Lipschitz map

g j : R m → Q Q (ℓ 2 ) such that d p (E(f k(j) , g j ) < j -1 and R m |Dg j | p dL m ≤ j -1 + R m |E(f k(j) )| p dL m . Thus lim j d p ( f ↾ U, g j ↾ U ) = 0 and sup j U |D(g j ↾ U )| p dL m < ∞.
Remark 4. It would be interesting to know whether or not all the results proved so far in this paper hold when the range ℓ 2 is replaced by an infinite dimensional Banach space Y which is separable, a dual space, and admits a monotone Schauder basis.

Existence Theorem

Lemma 5. Assume that

(A) X is a compact metric space; (B) Y is a metric space; (C) g : X → Q Q (Y ) is continuous. It follows there exists a compact set C ⊂ Y such that g(x) ∈ Q Q (C) for every x ∈ Y .
Proof. We let C = Y ∩ {y : y ∈ supp g(x) for some x ∈ X}. One easily checks that C is closed, thus it suffices to show it is totally bounded. Since im g itself is compact, given ε > 0 there are x 1 , . . . , x κ ∈ X such that for each x ∈ X there exists k = 1, . . . , κ with G(f

(x), f (x k )) < ε. We write f (x k ) = ⊕ Q i=1 y k i . It it now obvious that C ⊂ ∪ κ k=1 ∪ Q i=1 B Y (y k i , ε). Theorem 15. Let U = U (0, 1) be the unit ball in R m and let g : ∂U → Q Q (ℓ 2 ) be Lipschitz. It follows that the minimization problem    minimize U |Df | p dL m among f ∈ W 1 p (U ; Q Q (ℓ 2 )) such that T (f ) = g admits a solution.
Proof. The class of competitors is not empty according to the extension Theorem 2. We let C 0 ⊂ ℓ 2 be a compact set associated with g in Lemma 5 and we let C be the convex hull of C 0 ∪ {0} (so that C is compact as well). We denote by P : ℓ 2 → C the nearest point projection. Given a minimizing sequence {f j } we consider the sequence {Q Q (P ) • f j } which, we claim, is minimizing as well. That these be Sobolev maps, and form a minimizing sequence, follows from the inequalities

U G(Q Q (P ) • f, Q Q (P ) • f ′ ) p dL m ≤ U G(f, f ′ ) p dL m
(recall the paragraph preceding Proposition 20) and

U |D(Q Q (P ) • f )| p dL m ≤ U |Df | p dL m (because Lip P ≤ 1) valid for every Lipschitz f, f ′ : U → Q Q (ℓ 2 )
, and hence for every

f, f ′ ∈ W 1 p (U ; Q Q (ℓ 2
)) as well. It also follows from these inequalities and Theorem 10(B) and (C) that

T (Q Q (P ) • f ) = T (f ) whenever f ∈ W 1 p (U ; Q Q (ℓ 2 )). Thus T (Q Q (P ) • f j ) = g, j = 1, 2, . . .. Since all these Q Q (P ) • f j take their values in Q Q (C),
it follows from Theorem 14 that there are integers k(1) < k(2) < . . . and f ∈ W 1 p (U ; Q Q (ℓ 2 )) such that lim j d p (f, f k(j) ) = 0. Theorem 13(B) implies that T (f ) = g. Proposition 18 and Corollary 4 guarantee the required lower semicontinuity.

Blowup analysis of stationary multiple valued functions

In this last section, we will study the regularity of stationary multiple valued functions. Subsection 4.1 contains the basic definitions of stationarity. We will focus on one codimensional multiple valued functions, i.e with values in Q Q (R). We recall that because of the order structure of R, Q Q (R) is considerably simpler to describe than any cone Q Q (Y ), see subsection 2.2. Indeed, the embeddings ξ and ξ 0 conincide, and

ξ Q i=1 x i = (x 1 , . . . , x Q ) whenever x 1 ≤ • • • ≤ x Q . Therefore, we can define Q Q (R) to be the set Q Q (R) := R Q ∩ {(x 1 , . . . , x Q ) ∈ R Q : x 1 ≤ • • • ≤ x Q }.
It follows from subsections 1.5, 2.2 and 2.3 that if f : 

U → Q Q (R)

Squeeze and squash variations

When dealing with stationarity, one must precise with respect to which class of small pertubations. We expect not only stationary multiple valued functions to derive from Lipschitz approximations of stationary varifolds, but also to be stable under vertical and horizontal dilatations. This stability is very important when blowing up. Therefore, there are only two possible types of deformation, deformation of the domain, or of the codomain, respectively called squeeze and squash transformations. This terminology is due to F.J. Almgren. The definitions given below are very similar to those of stationarity between Riemannian manifolds. In this framework, stationary maps with respect to domain transformations are usually called stationary-harmonic, whereas those stationary with respect to codomain transformations are called weakly harmonic.

A multiple valued function

f ∈ W 1,2 (Ω, R) is called squash stationary whenever for all ψ = ψ(x, u) ∈ C ∞ c (Ω × R, R), one has d dt|t=0 Ω DΨ t 2 = 0, where Ψ t (x) := Q i=1 f i (x) + tψ(x, f i (x)) (24) 
and f (x) := (f 1 (x), . . . , f Q (x)).

The following is well-known, see for example [?, Proposition 6]

Proposition 26. f is squash stationary if and only if for all

ψ ∈ C ∞ c (Ω × R, R), Q i=1 Ω Df i , D x ψ(x, f i (x)) dx + Ω Df i , D u ψ(x, f i (x)) • Df i (x) dx = 0. ( 25 
)
Proof. The following holds for all u ≤ v and x ∈ Ω:

tψ(x, v) -tψ(x, u) ≤ t(v -u) ∂ψ ∂u ∞ ≤ v -u whenever t ≤ ∂ψ ∂u -1 ∞
Thus, for small values of t,

f 1 (x) + tψ(x, f 1 (x)) ≤ • • • ≤ f Q (x) + tψ(x, f Q (x)).
Consequently,

DΨ t 2 (x) = Q i=1 Df i + t(D x ψ(x, f i (x)) + D u ψ(x, f i (x)) • Df i (x)) 2 .
Integrating over Ω and then derivating at t = 0 yields (25).

Let ϕ ∈ C ∞ c (Ω, R m ). The map Φ t (x) := x + tϕ(x) defines a diffeomorphism of Ω onto itself for small values of t. A multiple valued map f ∈ W 1,2 (Ω, Q Q (R)) is called squeeze stationary whenever d dt|t=0 Ω D(f • Φ t ) 2 = 0. ( 26 
)
for all choices of ϕ ∈ C ∞ c (Ω, R m ). One can similarly derive the Euler-Lagrange equation for squeeze stationary maps (see also [?, Proposition 6]):

Proposition 27. f is squeeze stationary if and only if for all

ϕ ∈ C ∞ c (Ω, R m ) 2 Ω Df, Df • Dϕ - Ω Df 2 div ϕ = 0. ( 27 
)
(where Df • Dϕ stands for (Df 1 • Dϕ, . . . , Df Q • Dϕ)).
Proof. As for any x ∈ Ω and t small enough,

f 1 (x + tϕ(x)) ≤ • • • ≤ f Q (x + tϕ(x)), the squared gradient of f • Φ t equals D(f • Φ t )(x) 2 = Q i=1 Df i (Φ t (x)) + tDf i (Φ t (x)) • Dϕ(x) 2 = Q i=1 Df i (Φ t (x)) 2 + 2t Df i (Φ t (x)), Df i (Φ t (x)) • Dϕ(x) + t 2 Q i=1 Df i (Φ t (x)) • Dϕ(x) 2 = Df (Φ t (x)) 2 + 2t Df (Φ t (x)), Df (Φ t (x)) • Dϕ(x) + O(t 2 )
We make the substitution y := Φ t (x) in the following integral

Ω D(f • Φ t ) 2 = Ω Df (y) 2 + 2t Df (y), Df (y) • Dϕ(Φ -1 t (y)) Jac Φ -1 t (y)dy + O(t 2 )
We estimate the Jacobian Jac Φ -1 t (y):

Jac Φ -1 t (y) = 1 det(id + tDϕ) = 1 -ttr Dϕ + O(t 2 ) = 1 -tdiv ϕ + O(t 2 ).
When integrating and derivating at 0, we just keep the first-order term in the preceding equations. This proves (27).

When Q = 1, Equation (25) simply asserts that f is a harmonic function. However, a squeeze stationary function is not necessarily harmonic, as shown by the function x → |x|.

A multiple valued function is called stationary when it is stationary with respect to both squeeze and squash variations. A basic example of stationary multiple valued function is the sum of harmonic functions f = 1≤i≤Q h i . The next proposition proves that those notions of stationarity are local. This follows from the linearity of Equation (27) (resp. ( 25)) with respect to ϕ (resp. ψ). Equation ( 27) is true with ϕ replaced by ϕ ι ϕ. Summing over ι, we prove that f is squeeze stationary. We proceed in a similar fashion for squash stationarity.

We end this section by two useful results, the combination of which implies: if f is stationary, then so is f ⊕ (-η • f ). When considering problems on stationary multiple valued functions, one can often replace f with its translation f ⊕ (-η • f ), that is, require that f should be centered (η • f = 0). This enables simplifications, in particular when Q = 2. A two valued centered multiple valued function f is just the data of a nonnegative function f + (the nonnegative part of f ) where

f = -f + + f + . Proposition 29. Let f ∈ W 1,2 (Ω, Q Q (R)) be squash stationary. It follows that η • f is harmonic. Proof. Let φ ∈ C ∞ c
(Ω) be arbitrary. Let h : R + → R be a smooth function such that h = 1 on [0, 1] and h = 0 on [2, ∞). Let a > 0. We now plug ψ(x, u) := φ(x)h(u/a) in Equation ( 25). One has

Q i=1 Ω h(f i /a) Df i , Dφ + 1 a Ω φh ′ (f i /a) Df i 2 = 0.
By Lebesgue dominated convergence, we control the first term:

lim a→∞ Ω Q i=1 h(f i /a) Df i , Dφ = Q Ω D(η • f ), Dφ ,
whereas the second term has limit zero. Indeed, 

1 a Ω Q i=1 φh ′ (f i /a) Df i 2 ≤ φ ∞ h ′ ∞ a Ω Df 2 → 0. Therefore Ω D(η • f ), Dφ = 0. Since φ is arbitrary, η • f is harmonic. Proposition 30. Let f ∈ W 1,2 (Ω, Q Q (R))
) applied to f ⊕ h is 2 Ω D(f ⊕ h), D(f ⊕ h) • Dϕ = 2 Q i=1 Ω D(f i + h), D(f i + h) • Dϕ = 2 Q i=1 Ω Df i , Df i • Dϕ + Ω Dh, Df i • Dϕ + Ω Df i , Dh • Dϕ + Ω Dh, Dh • Dϕ (28) = 2 Ω Df, Df • Dϕ + 2Q Ω Dh, D(η • f ) • Dϕ + 2Q Ω D(η • f ), Dh • Dϕ + 2Q Ω Dh, Dh • Dϕ
The second term of Equation ( 27) is equal to

Ω D(f ⊕ h) 2 div ϕ = Ω Df 2 div ϕ + Q Ω Dh 2 div ϕ (29) + 2Q Ω D(η • f ), Dh div ϕ.
f is squash stationary, thus by Proposition 29,

η • f is harmonic. So is η • f + h. Since harmonicity implies squeeze stationarity, 2 U D(η • f + h), D(η • f + h) • Dϕ - U |D(η • f + h)| 2 div ϕ = 0 (30) 2 U D(η • f ), D(η • f ) • Dϕ - U |D(η • f )| 2 div ϕ = 0 (31)
After calculations, one sees that ( 28)

-(29) = (27) + Q(30) -Q(31) = 0, i.e f ⊕ h is squeeze stationary. Now we prove that f ⊕ h is squash stationary. Let ψ(x, u) ∈ C ∞ c (Ω × R), we set Λ(x) := i ψ(x, f i (x)+h(x)) and Ψ t (x) := i f i (x)+h(x)+tψ(x, f i (x)+h(x)) where f (x) := i f i (x) . According to [AST00, 2.3.(4)], one has Dir(Ψ t , Ω) = QDir(h, Ω) + Dir(Ψ t ⊕ (-h), Ω) + 2Q Ω Dh, D(η • f ) + 2Qt Ω Dh, D(η • Λ) .
The derivative of the second term in the right-hand side of the above equation is zero. This is easily seen when testing the squash stationarity of f with ψ(x, u)

:= ψ(x, u + h(x)). Thus d dt|t=0 Dir(Ψ t , Ω) = 2Q Ω Dh, D(η • Λ) .
Since η • Λ ∈ W 1,2 0 (Ω), the squash variation of f ⊕ h is zero by harmonicity of h.

Regularity results

When m = 2, we have the following criterion for squeeze stationarity:

Proposition 31. Suppose f ∈ W 1,2 (Ω, Q Q (R)), where Ω ⊂ R 2 .

f is squeeze stationary if and only if the Hopf form

H f (z)dx ∧ dy := 1 Q Q i=1   ∂f i ∂x (z) 2 - ∂f i ∂y (z) 2 -2i ∂f i ∂x (z) ∂f i ∂y (z)   dx ∧ dy is holomorphic on Ω. Proof. Let ϕ ∈ C ∞ c (Ω).
We apply Equation ( 27) to (ϕ, 0) and (0, ϕ):

Q i=1 Ω   ∂f i ∂x 2 - ∂f i ∂y 2   ∂ϕ ∂x + 2 Q i=1 Ω ∂f i ∂x ∂f i ∂y ∂ϕ ∂y = 0, Q i=1 Ω   ∂f i ∂y 2 - ∂f i ∂x 2   ∂ϕ ∂y + 2 Q i=1 Ω ∂f i ∂x ∂f i ∂y ∂ϕ ∂x = 0.
This amounts to saying that QH f is weakly holomorphic, hence holomorphic by Weyl's lemma.

This important property is used in [START_REF] Schoen | Analytic aspects of the harmonic map problem[END_REF] to prove that a squeeze stationary map (actually with values in an arbitrary Riemannian manifold) is continuous. We refer to [Lin01, Chapter 3] and [START_REF] Lin | Interior continuity of two-dimensional weakly stationaryharmonic multiple-valued functions[END_REF] for a proof more in the spirit of multiple valued functions, which gives some information on the modulus of continuity. More regularity is unknown. In the special case Q = 2, a centered squeeze stationary multiple valued function (η • f = 0) can be written f := -f + + f + , where f + ∈ W 1,2 (Ω) is nonnegative. We compute its Hopf form:

H f = H f + = ∂f + ∂x 2 - ∂f + ∂y 2 -2i ∂f + ∂x ∂f + ∂y = ∂f + ∂x -i ∂f + ∂y 2 . A straightforward computation gives |H f | = Df + 2 . Since |H f | is continuous, we deduce that f + , hence f is locally Lipschitz. Corollary 5. A centered squeeze stationary function f : Ω → Q 2 (R) is locally Lipschitz on Ω.
The branch set of a stationary map f

: Ω → Q 2 (R) (Ω ⊂ R 2 ) is the set Branch(f ) := {z ∈ Ω : ∃a ∈ R, f (z) = 2 a }.
Since f and f ⊕ (-η • f ) have the same branch set, we shall usually suppose f is centered, in which case Branch(f ) = {z : f + (z) = 0}. This definition makes sense because of corollary 5

Note that a stationary may not be Lipschitz continuous as soon as Q = 3. For example, let f : B 2 → Q 3 (R) be defined by

f (z) := r 2/3 sin 2θ 3 + r 2/3 sin 2θ 3 + 2π 3 + r 2/3 sin 2θ 3 + 4π 3 .
f is stationary and 2/3-Hölderian. Indeed, a straightforward computation gives

Df 2 = 4r -2/3 /3, therefore f ∈ W 1,2 (B 2 , Q 3 (R)
). H f = 0 is holomorphic, hence f is squeeze stationary by Proposition 31. Moreover, f is locally the sum of three harmonic sheets on B 2 \ {0}, thus by Proposition 28, f is squash stationary on B 2 \ {0}. We continue this section with a simple and useful removability criterion for squash stationary functions, which will prove that f is squash stationary on all B 2 . This proposition will also be needed to construct an example of a non continuous squash stationary multiple valued function.

Proposition 32. If z 0 ∈ Ω ⊂ R 2 and f ∈ W 1,2 (Ω, Q Q (R)) is squash stationary on Ω \ {z 0 }, then it is on all Ω.
Proof. Let φ : R 2 → R be a smooth function such that φ ≡ 1 on B 2 (0, 1/2), 0 ≤ φ ≤ 1 on R 2 , and φ ≡ 0 on R 2 \ B 2 (0, 1). We set for all r > 0, φ r (z) := φ(z/r). Let ψ ∈ C ∞ c (U ×R, R). We decompose ψ into ψ = ψ 1 +ψ 2 with ψ 2 (z, u) = φ r (z -z 0 )ψ(z, u), where supp ψ 1 ⊆ U \ {z 0 } × R. By squash stationarity, Equation ( 25) is satisfied when plugging in ψ 1 . On the other hand,

Ω Df i , D z ψ 2 (z, f i (z)) dz = Ω φ r (z -z 0 ) Df i , D z ψ(z, f i (z)) dz + Ω ψ(z, f i (z)) Df i , Dφ r (z -z 0 ) dz ≤ D z ψ ∞ + ψ ∞ Dφ ∞ r B 2 (z 0 ,r) Df i ≤ √ π (r D z ψ ∞ + ψ ∞ Dφ ∞ ) Dir(f i , B 2 (z 0 , r)) 1/2
and this tends to 0 as r → 0. One easily proves that

lim r→0 Ω Df i (z), D u ψ 2 (z, f i (z)) • Df i (z) dz = 0
as well, which proves that f is squash stationary.

Squash stationary functions are not necessarily continuous, although they satisfy a Caccioppoli inequality (see next Proposition 33). A usual regularity proof combining Poincaré and Caccioppoli inequalities does not work: due to the lack of algebraic operations on Q Q (R), it is not possible to translate a multiple valued function and preserve its squash stationarity at branch points.

Proposition 33. Let f : Ω ⊂ R m → Q Q (R) a squash stationary multiple valued func- tion and φ ∈ C ∞ c (Ω), Ω φ 2 Df 2 ≤ 4 Ω Dφ 2 G(f, Q 0 ) 2 (32)
Proof. Let a > 0 and χ : R → R be a compactly supported smooth function such that χ(u) = u on [-a, a], |χ(u)| ≤ |u| on R and χ ′ ∞ ≤ 1+1/a. We set ψ(z, u) := φ 2 (z)χ(u). Equation (25) yields:

2 Q i=1 Ω φχ(f i ) Df i , Dφ + Q i=1 Ω Df i 2 φ 2 χ ′ (f i ) = 0.
Letting a → ∞, we end up with

Ω φ 2 Df 2 = -2 Q i=1 Ω φf i Df i , Dφ (33) ≤ 2 Q i=1 Ω |φf i | Df i Dφ ≤ 2 Ω |φ|G(f, Q 0 ) Df Dφ ≤ 2 Ω Dφ 2 G(f, Q 0 ) 2 1/2 Ω φ 2 Df 2 1/2
, which finally proves (32). Now we construct a squash stationary Q 2 (R) valued function on B 2 := B 2 (0, 1) which is non continuous at the origin. It is not surprising that the structure of range variations is not enough to ensure continuity: T. Rivière [START_REF] Rivière | Everywhere discontinuous harmonic maps into spheres[END_REF] already proved the existence of everywhere non continuous weakly harmonic maps, taking values in the sphere S 2 . Note that Q Q (R n ) in general is, as S 2 , non negatively curved in the sense of Alexandrov, see [START_REF] Zhu | Some remarks on q q (R n )[END_REF].

Consider the sequence of segments (K n ) n≥n 0 defined by

K n := [2 -n -2 -n 3 , 2 -n + 2 -n 3 ] × {0}.
We will choose n 0 big enough, for the moment suppose n 0 ≥ 2. Thus the K n are mutually disjoint and lie in B 2 . We will consider the open set

G := B 2 \   {0} ∪ n≥n 0 K n   .
Consider the nonnegative map φ n : B 2 → R defined by

φ n (z) := C n ln 1 + 2 -n |z -2 -n | , (thus φ n (2 -n ) = ∞)
where C n is chosen such that φ n ≥ 1 on K n , that is:

C -1 n := ln 1 + 2 -n 2 -n 3 .
The functions φ n /C n are harmonic and locally uniformly bounded in G. Since C n ∼ n 1/(n 3 ln 2), the series

∞ n=n 0 φ n
converges locally uniformly on G to a harmonic function. Define

v(z) := 1 - ∞ n=n 0 φ n (z).
We have that v ≤ 1 and

∀z ∈ n≥n 0 K n , lim sup ξ→z v(ξ) ≤ 0.
We set z p := (2 -(p+1) + 2 -p )/2 for any p ≥ n 0 . We readily check that z p ∈ G and

∀n ≥ n 0 , |z p -2 -n | ≥ 2 -n /4. And 1 -v(z p ) = n≥n 0 C n ln 1 + 2 -n |z p -2 -n | ≤ n≥n 0 C n ln 4(1 + 2 n ).
The last series converges since

C n ln 4(1+2 n ) ∼ n n -2 . If n 0 is big enough, 1-v(z p ) ≤ 1/2, thus v(z p ) ≥ 1/2. Thus lim sup z→0 v(z) > 0. Now, we denote by B 2 + the upper half disk B 2 + := B 2 ∩ {z : ℑz > 0} (ℑz stands for the imaginary part of z). Let u ∈ W 1,2 (B 2 + ) solving the problem u = 1 on ∂B 2 + \ ([-1, 1] × {0}
), u |Kn = 0 for each n ≥ n 0 , and u minimizes its Dirichlet energy. We can show that u is continuous up to all boundary points but the origin (see [Ran95, Section 4.2]). That is lim

ξ→z u(ξ) = 0, ∀z ∈ n≥n 0 K n and lim ξ→z u(ξ) = 1 whenever z ∈ ∂B 2 + \ ([-1, 1] × {0}). The function ũ ∈ W 1,2 (B 2 ) defined by reflection ũ(z) = u(z) ℑx ≥ 0 u(z) ℑx ≤ 0 is harmonic on G.
Otherwise, one finds a competitor w of ũ:

Dir(w, B 2 + ) + Dir(w, B 2 -) < Dir(ũ, B 2 ) = 2Dir(u, B 2 + ). Either w |B 2 + or z ∈ B 2 + → w(z)
contradicts the minimality of Dir(u, B 2 + ). Since ũ is nonnegative, lim sup ξ→z,ξ∈G (v-ũ)(ξ) ≤ 0 for all z ∈ ∂G\{0}. We conclude that v ≤ ũ. To justify this, let us mention this general version of the maximum principle. To this end, recall that a set E ⊆ R m is polar when there is a superharmonic function ϑ on R m such that E ⊆ {θ = ∞}. In particular, countable subsets of R m are polar. Therefore lim sup ξ→0 ũ(ξ) ≥ lim sup ξ→0 v(ξ) > 0. ũ is non continuous at the origin. We now define f ∈ W 1,2 (B 2 , Q 2 (R))

f := ũ + -ũ .
We see that f decomposes into two harmonic sheets on G, thus f is stationary there. f is not continuous at 0, otherwise u would be. Let z be an inner point in K n , (z ∈ {2 -n -2 -n 3 , 2 -n + 2 -n 3 }). Let r be small such as B 2 (z, r) does not contain the end points of K n . Let û : B 2 (z, r) → R defined by

û(ξ) = ũ(ξ) ℑξ ≥ 0 -ũ(ξ) ℑξ ≤ 0 Thus û is continuous because ũ = 0 on K n . Obviously, û is harmonic on B 2 + (z, r) ∪ B 2
-(z, r) and the mean value of û in an open ball contained in B 2 (z, r) and centered at a point in K n is zero. Thus, by the following Proposition 34, û is harmonic.

Proposition 34. Let Ω be an open set in R m , and u : Ω → R a continuous function, such that for each x ∈ Ω, there is r x > 0 satisfying B(x, r x ) ⊆ Ω and

1 L m (B(x, r)) B(x,r) u = u(x), ∀r ≤ r x .
It follows that u is harmonic on Ω.

Proof. We can suppose Ω to be an open ball, and f to be uniformly continuous. Let h be the harmonic function solving the Dirichlet problem

h |∂Ω = f |∂Ω . Then h -f has zero boundary values. Let A := {x ∈ Ω : (h -f )(x) = sup Ω (h -f )}. A is obviously closed in Ω. A is also open. Indeed, if x ∈ A then B(x,rx) (h -f )(y)dy = L m (B(x, r x ))(h -f )(x). This implies that h -f is constant in B(x, r x ). Since Ω is connected, A = Ω or A = ∅.
In both cases, hf attains its maximum in ∂Ω, which means that h ≤ f . Similarly, one has h ≥ f .

We come back to our example. Since

f |B 2 (z,r) = û + -û
f is locally the sum of two harmonic sheets around z. Thus f is squash stationary on B 2 \ ({0} ∪ ∪ n≥n 0 ∂K n ). Now we can remove all these singularities. To be rigorous, we first assert f is squash stationary on B 2 \ {0}. Indeed, we test squeeze stationary with a test function ψ with compact support in (B 2 \ {0}) × R and apply the removability proposition 32 finitely many times. Again, removing the origin, f must be squash stationary on B 2 .

Blowing up

From now on, we set

m = Q = 2. Let f ∈ W 1,2 (Ω, Q 2 (R)). If B 2 (z, r)
⋐ Ω, we define (unless the denominator is zero) (1) For all z ∈ Ω, the function r → N (z, r), r ∈ (0, dist(z, ∂Ω)) is well-defined and nondecreasing.

N (z, r) := r B 2 (z,r) Df 2 ∂B 2 (z,r) G(f, 2 0 ) 2 . Theorem 17. Let f : Ω → Q 2 (R)
(2) If N (z, r) ≡ ν for small values of r, then f is ν homogeneous on a neighborhood of z, i.e there is g

∈ W 1,2 (∂B 2 , Q 2 (R)) such that f (ξ) = |ξ -z| ν g((ξ -z)/|ξ -z|) on a neighborhood of x.
Proof. We assume, without loss of generality, that z = 0. Let us introduce the following notations D(r) :=

B 2 (0,r) Df 2 , H(r) := ∂B 2 (z,r) G(f, 2 0 ) 2
for any r < dist(0, ∂Ω). We simply write N (r) instead of N (0, r). We recall from elementary analysis that r → D(r) is an absolutely continuous map and that

D ′ (r) = ∂B 2 (0,r) Df 2 dH 1
for L 1 almost every r ∈ (0, dist(0, ∂Ω)). We also observe that H is a well defined function because of the continuity of f , see Corollary 5.

Note that if for some r, H(r) = 0, i.e f vanishes on ∂B 2 (0, r), then f ≡ 0 on all Ω. Indeed, let ε > 0 be such that B 2 (0, r + ε) ⋐ Ω and φ : Ω → R be a smooth function such that φ ≡ 1 on B 2 (0, r), φ ≡ 0 on Ω \ B 2 (0, r + ε) and Dφ ∞ ≤ 2/ε. According to (32), one has

B 2 (0,r) Df 2 ≤ 16 ε 2 B 2 (0,r+ε)\B 2 (0,r) G(f, 2 0 ) 2 ≤ 16πLip(f ) 2 (r + ε) 2 -r 2 .
Letting ε → 0, one sees that Dir(f, B 2 (0, r)) = 0. Hence f is constant on B 2 (0, r) and

H f ≡ 0 on B 2 (0, r). Since H f is holomorphic, H f = 0 everywhere, thus f ≡ 2 0 on Ω.
A change of variable in H yields

H(r) = r ∂B 2 G(f (rz), 2 0 ) 2 dz.
One then deduces that:

H ′ (r) = ∂B 2 G(f (rz), 2 0 ) 2 dz + ∂B 2 ∂ ∂ν G(f, 2 0 ) 2 |rz dz. ( 34 
)
Actually, this is immediate in case z → G(f (z), 2 0 ) 2 were smooth. In the general case, this follows from a density argument.

Apply formula (33) with the following map φ

h : Ω → R φ h (z) =      1 if |z| ≤ r (r + h -|z|)/h if r ≤ |z| ≤ r + h 0 otherwise
Letting h tend to 0, we prove that (note that the average value of φ h on the annulus

B 2 (0, r + h) \ B 2 (0, r) is 1/2): D(r) = 2 i=1 ∂B 2 (0,r) f i (z)Df i (z) z |z| dH 1 (z). ( 35 
)
Combining ( 34) and ( 35), one gets

H ′ (r) = H(r) r + 2D(r). ( 36 
)
One needs a last estimate using squeeze stationarity. We apply Proposition 27 with

ϕ(z) = φ h (z)z. As ∀ζ ∈ R 2 , Dϕ(z)(ζ) = φ h (z)ζ + ∂φ h ∂ν (z) ζ, z |z| z, one deduces div ϕ(z) = 2φ h (z) + |z|∂ ν φ h (z). Then (27) yields 2 Ω φ h Df 2 + 2 Ω ∂φ h ∂ν (z) Df (z) z |z| 2 = 2 Ω φ h Df 2 + Ω |z|∂ ν φ h (z) Df (z) 2
We let h → 0 and finally end up with

D ′ (r) = ∂B 2 (0,r) Df 2 = 2 ∂B 2 (0,r) Df (z) z |z| 2 dz. ( 37 
)
Now, use (36) to infer

N ′ (r) N (r) = 1 r + D ′ (r) D(r) - H ′ (r) H(r) = H(r)D ′ (r) -2D(r) 2 D(r)H(r)
Using ( 35), (37) and Cauchy-Schwarz inequality, one has

D(r) 2 ≤ ∂B 2 (0,r) G(f, 2 0 ) 2 dH 1 ∂B 2 (0,r) Df (z) z |z| 2 dH 1 (z) = H(r) D ′ (r) 2
Thus the logarithmic derivative N ′ /N is nonnegative and N is monotonous.

In case N ≡ ν is constant for small values r ≤ r 0 ≤ dist(0, ∂Ω), in particular N ′ = 0 for r ≤ r 0 , the equality case of Cauchy-Schwarz inequality tells us that for L 1 almost r ≤ r 0 , there is λ(r) ∈ R such that for i ∈ {1, 2} and H 1 almost all z ∈ ∂B 2 (0, r)

f i (z) = λ(r)Df i (z) z |z| .
Recalling (35), one computes

D(r) = λ(r) ∂B 2 (0,r) G(f, 2 0 ) 2 dH 1 = λ(r)H(r).
Thus N (r) = rD(r)/H(r) = rλ(r) = ν for r ≤ r 0 . To sum up,

f i (z) = ν |z| Df i (z) z |z| . ( 38 
)
An application of the area formula finally yields that (38) holds H 1 almost every on [0, y] = {ty : 0 ≤ t ≤ 1} for H 1 almost every y ∈ ∂B 2 (0, r 0 ). For almost such y, the function

g y : t ∈ (0, 1] → f i (ty) is in W 1,2 [0, 1]
, therefore absolutely continuous, and is a solution of the ordinary differential equation

g y = ν t g ′ y . Hence g y (t) = t r 0 ν f (y).
This proves conclusion (2).

The limit N (z) := lim r→0 N (z, r) is called the frequency of f at z. We need the following proposition, which roughly states that a limit of stationary maps is stationary.

Proposition 35. Let (f k ) be a sequence of stationary functions f k : B 2 → Q 2 (R). Suppose (1) (f k (0)) k is a bounded sequence. (2) sup k Dir(f k , B 2 ) < ∞.
Up to passing to a subsequence, (f k ) converges locally uniformly to a stationary map f . Moreover, Df k → Df almost everywhere on B 2 . Proof. We have that Dir(η • f k , B 2 ) ≤ Dir(f k , B 2 )/2. The η • f k are harmonic, therefore by the mean value property for D(η•f k ) and the boundedness of the sequence (η•f k (0)) k , they are locally uniformly bounded. Up to passing to a subsequence, the η • f k converge locally uniformly to a harmonic function h, and D(η 1) and (2), we suppose suppose the f k to be centered, i.e f k =:

•f k ) → Dh. Since the f k ⊕(-η •f k ) satisfy hypotheses (
-f + k + f + k where f + k ≥ 0 is squeeze stationary. Let s ∈ (0, 1)
. By Cauchy's integral formula,

H f + k (z) = r 2π 2π 0 H f + k (re iθ )e iθ
re iθz dθ for z ∈ B 2 (0, s) and r ∈ ((1 + s)/2, 1). Consequently,

Df + k (z) 2 ≤ 1 2π 2 1 -s 2 1 (1+s)/2 2π 0 |H f + k (re iθ )|rdrdθ ≤ 2 (1 -s) 2 π sup k Dir(f + k , B 2 ) = 1 (1 -s) 2 π sup k Dir(f k , B 2 ) ( 39 
)
Thus the f + k are locally uniformly Lipschitz continuous on B 2 . This and Hypothesis (1) imply by Arzelà-Ascoli theorem the existence of a subsequence (still denoted f + k ) converging locally uniformly to some f + ≥ 0. We set f := -f + + f + . Now, if z ∈ B 2 (0, s) and f + (z) > 0, then there is a neighborhood of z on which all f + k are positive. By squash stationarity, f + k is harmonic in this neighborhood, and so is f + as a uniform limit of harmonic functions and Df + k converges uniformly to Df + in a smaller neighborhood. We let Λ s be the uniform Lipschitz constant on B 2 (0, 2), that is, Λ 2 s is the right-hand side of (39).

Let A be the set of points z ∈ B 2 (0, s) such that {f + = 0} has Lebesgue density 1 at z. Let ε ∈ (0, 1/9). If z ∈ A and r z < (s -|z|)/3 is small enough, then

L 2 {ξ ∈ B 2 (z, 3r z ) : f + (ξ) > 0} 9πr 2 z < ε. ( 40 
) Let φ : B 2 → R be a nonnegative smooth function such that φ ≡ 1 on B 2 (z, r z ), φ ≡ 0 off B 2 (z, 2r z ) and φ ∞ ≤ 2/r z . Caccioppoli inequality (32) gives B 2 (z,rz) Df + k 2 ≤ 16 r 2 z B 2 (z,2rz) f +2 k . ( 41 
)
A is covered by the balls B 2 (z, r z ) (z ∈ A). By Besicovitch theorem, there are F 1 , . . . , F β subfamilies of disjoints balls such that A ⊆ ∪ i≤β ∪ F i . We deduce

A Df + k 2 ≤ β i=1 B 2 (z,rz)∈F i B 2 (z,rz) Df + k 2 ≤ β i=1 B 2 (z,rz)∈F i 16 r 2 z B 2 (z,2rz) f +2 k .
As k goes to infinity, we get lim sup

k→∞ A Df + k 2 ≤ β i=1 B 2 (z,rz)∈F i 16 r 2 z B 2 (z,2rz) f +2 . ( 42 
)
Set

ρ z := 3 √ εr z . If ξ ∈ B 2 (z, 2r z ) then B 2 (ξ, ρ z ) ⊂ B 2 (z, 3r z ) ⊂ B 2 (0, s) and L 2 (B 2 (ξ, ρ z )) = 9επr 2 z . Thus, by (40), there is ξ ′ ∈ B 2 (ξ, ρ z ) such that f + (ξ ′ ) = 0. Consequently, |f + (ξ)| ≤ Λ s ρ z . We therefore infer from (40) that 16 r 2 z B 2 (z,2rz) f +2 ≤ 16 r 2 z L 2 {ξ ∈ B 2 (z, 2r z ) : f + (ξ) > 0}Λ 2 s ρ 2 z ≤ 1296πε 2 Λ 2 s r 2 z .
(42) gives lim sup

k→∞ A Df + k 2 ≤ β i=1 1296ε 2 Λ 2 s L 2 F i ≤ 1296βε 2 Λ 2 s L 2 (B 2 ).
Since ε is arbitrarily small, we deduce that lim k→∞ Dir(f + k , A) = 0. In particular, up to passing to a subsequence, Df + k → 0 almost everywhere on A. Now we conclude: we write the Euler-Lagrange equations for stationary (27) and (25) for f k . We let k tend to ∞. By the Lebesgue dominated convergence theorem, ( 27) and (25) hold also for f . Let r > 0, suppose f is stationary, centered and non zero in a neighborhood B 2 (z 0 , r) ⊂ Ω of a branch point z 0 , i.e f (z 0 ) = 2 0 . The blow up of f at z 0 is

f z 0 ,r (z) := f (z 0 + rz) Dir(f, B 2 (z 0 , r)) , z ∈ B 2
Proposition 36. Let (r n ) be a sequence converging to 0. Up to passing to a subsequence, f z 0 ,rn converges locally uniformly to a nonzero N (z 0 ) homogeneous stationary multiple valued function h. Moreover, if k ∈ {0, 1, . . .} is the first integer such that

H (k) f (z 0 ) = 0, then H (k) h (0) = (k + 2)k! 4π H (k) f (z 0 ) |H (k) f (z 0 )| . ( 43 
)
Proof. Let us suppose for convenience that z 0 = 0. We write f rn instead of f 0,rn . Note that f rn (0) = 2 0 for all n and Dir(f rn , B 2 ) = 1. Therefore we can apply Proposition 35 to (f rn ). There is a subsequence, still denoted (f rn ), which converges locally uniformly to a stationary multiple valued function h :

B 2 → Q 2 (R). Moreover, Df rn → Dh almost everywhere on B 2 .
In case h = 0, then

Df + rn (z) = r n Df + (r n z) Dir(f, B 2 (0, r n ))
→ 0 on B 2 (0, 1/2). Recall that the f rn are uniformly Lipschitz continuous on B 2 (0, 1/2), therefore we can apply Lebesgue dominated convergence theorem:

1 Dir(f, B 2 (0, r n )) B 2 (0,1/2) r 2 n Df + (r n z) 2 dz = Dir(f + , B 2 (0, r n /2)) 2Dir(f + , B 2 (0, r n )) → 0 (44)
as n → ∞. On the other hand, H f + is nonzero since f + is not. There is an integer k ≥ 0 and a holomorphic map g such that

H f + (z) = z k g(z)/k! and g(0) = H (k) f + (0) = 0. Hence Dir(f + , B 2 (0, r)) = B 2 (0,r) |H f + | ∼ r→0 2πg(0) k + 2 r k+2 ,
which contradicts (44). Hence h is nonzero. Now, let r ∈ (0, 1).

N h (0, r) = rDir(h + , B 2 (0, r)) ∂B 2 (0,r) h +2 = lim n→∞ rDir(f + rn , B 2 (0, r)) ∂B 2 (0,r) f +2 rn = lim n→∞ rr n Dir(f + , B 2 (0, rr n )) ∂B 2 (0,rrn) f +2 = lim n→∞ N f (0, rr n ) = N f (0).
Consequently, h is N f (0) homogeneous by Theorem 17. Recall that (H fr n ) are locally uniformly bounded and converge almost everywhere to H h on B 2 . Using the holomorphicity of the Hopf forms, one easily deduces that (H

(k) fr n ) converges locally uniformly to H (k)
h . Now, to prove the last part, we use the mean value property in the first and last equalities of:

H (k) h (0) = 1 L 2 (B 2 (0, 1/2)) B 2 (0,1/2) H (k) h = lim n→∞ 1 L 2 (B 2 (0, 1/2)) B 2 (0,1/2) H (k) fr n = lim n→∞ 1 L 2 (B 2 (0, 1/2)) B 2 (0,1/2) H (k) f (r n z)r k+2 n Dir(f, B 2 (0, r n )) dz = lim n→∞ r k n L 2 (B 2 (0, 1/2)) Dir(f, B 2 (0, r n )) B 2 (0,rn/2) H (k) f = lim n→∞ r k+2 n Dir(f, B 2 (0, r n )) H (k) f (0).
On the other hand, writing again

H f (z) = z k g(z)/k! with g(0) = H (k) f (0), one has Dir(f, B 2 (0, r n )) r k+2 n = 1 r k+2 n B 2 (0,rn) 2|H f | = 2 k!r k+2 n B 2 (0,rn) |z| k |g(z)|dz ∼ n→∞ 4π|H (k) f (0)| (k + 2)k! .
which proves (43).

We end this section with the classification of all homogeneous centered stationary functions h : B 2 → Q 2 (R). Let us write h(re iθ ) = r ν g(θ), where ν is the frequency of h at 0, g : R/2πZ → Q 2 (R) is a Lipschitz continuous map. Suppose θ 0 is a non branching point of h, i.e g + (θ 0 ) > 0. By continuity, there is a maximal interval I θ 0 containing θ 0 on which g = 2 0 . Therefore, h + is harmonic on {(re iθ : r ∈ (0, 1), θ ∈ I θ 0 }, thus, there is a ∈ R \ {0} and ϕ ∈ R/2πZ such that h + (re iθ ) = ar ν sin(νθ + ϕ) whenever r ∈ (0, 1) and θ ∈ I θ 0 , i.e g + is trigonometric with g + (θ) = a sin(νθ + ϕ). If θ 1 , θ 2 are the end points of I θ 0 (in case I θ 0 = R/2πZ), then by maximality g + (θ 1 ) = g + (θ 2 ) = 0. This implies that I θ 0 has a length ≥ π/ν.

Let J be the collection of those maximal intervals {I θ : θ ∈ R/2πZ}. They are mutually disjoint, and have a length bounded below. Therefore J is finite. R/2πZ \ ∪J is also a finite union of closed intervals, on which g + is zero (thus trivially trigonometric). Let us study the behaviour of g + around some point in ∪ I∈J ∂I. Up to a rotation, we suppose this point is θ = 0. There is ε > 0, and a, b ∈ R such that

g + (θ) = a sin νθ whenever θ ∈ [0, ε) b sin νθ whenever θ ∈ (-ε, 0] . We set U 1 := B 2 ∩ {re iθ : r ∈ (0, 1), θ ∈ (0, ε)} U 2 := B 2 ∩ {re iθ : r ∈ (0, 1), θ ∈ (-ε, 0)} .
Let us remark that the following holds on U 1

Dh + = e iθ ∂h + ∂r + i 1 r ∂h + ∂θ = aνr ν-1 ie iθ(1-ν) ,
and

H h + (z) = Dh + 2 = -a 2 ν 2 z 2(ν-1) . Similarly, H h + (z) = -b 2 ν 2 z 2(ν-1) on U 2 . Since H h + is holomorphic, a 2 = b 2 and ν = 1 + k/2 for some k ∈ {0, 1 . . .}.
Conversely, the ν homogeneous map

h ν,ϕ (re iθ ) := r ν sin (ν(θ -ϕ)) + -r ν sin (ν(θ -ϕ)) , where ν ∈ 1, 3 2 , 2, . . . is stationary. Indeed, H h + ν,ϕ = -ν 2 e -2iνϕ z 2(ν-1
) is holomorphic thus h ν,ϕ is squeeze stationary. h ν,ϕ is locally the sum of two harmonic sheets on B 2 \ {0} hence it is squash stationary there.

|H h + ν,ϕ | is integrable, hence h ν,ϕ is in W 1,2 (B 2 , Q 2 (R)
) and we can conclude with Proposition 32. We summarize Proposition 37. The homogeneous centered stationary multiple valued functions are the ah ν,ϕ , with

a ∈ R, ν ∈ {1, 3/2, 2, . . .}, ϕ ∈ R/(π/ν)Z. Moreover, H h + ν,ϕ = -ν 2 e -2iνϕ z 2(ν-1) .
We deduce an important fact from Proposition 37 and (43). The Hopf form of a blow up h at z 0 is necessarily of the form

H h (z) = ν 2π H (2ν-2) f (z 0 ) |H (2ν-2) f (z 0 )| z 2ν-2 (45) 
since ν = N f (z 0 ) is imposed and the (2ν -2) derivative of h at 0 is given in (43). Thus

h = 1 √ 2πν h ν,ϕ , where 2νϕ + π = arg   H (2ν-2) f (z 0 ) |H (2ν-2) f (z 0 )|   . ( 46 
)
ϕ is unambiguously defined in R/(π/ν)Z. Therefore the blow up is unique. Moreover, there is no loss of energy in the blowing up, indeed

Dir(h, B 2 ) = 2Dir(h + , B 2 ) = 2 B 2 |H h | = 1.
This fact was not so obvious since no comparison argument can be made unlike for maps minimizing their Dirichlet energy.

Branch set

We need to distinguish between two types of branch points:

Definition 1. Let f : Ω → Q 2 (R) be a nonzero stationary map on a domain Ω and z ∈ Branch(f ). z is a branch point of the first type if H f (z) = 0. z is a branch point of the second type if H f (z) = 0.
The set of first type branch points is denoted Branch 1 (f ) and the set of second type branch points is denoted Branch 2 (f ).

Equivalently, a point z ∈ Branch(f ) belongs to Branch 2 (f ) when

N f (z) ∈ {3/2, 2, . . .}, it belongs to Branch 1 (f ) if and only if N f (z) = 1. If h : B 2 → Q 2 (R)
is one of the homogeneous stationary functions listed in the previous section, then Branch(h) is the restriction in B 2 of a cone. Our next step is to prove that the branch set of a stationary function is locally well approximated by the branch set of its blow up. To this end, we recall the following definition: Definition 2. Let A be any subset of R m , and a ∈ R m . The tangent cone Tan(A, a) at a the set of vectors v ∈ R m such that for all ε > 0, there is

x ∈ A ∩ B m (a, ε) and t > 0 satisfying t(x -a) -v < ε. Equivalently, if v = 0, v ∈ Tan(A, a) if and only if there is a sequence (x n ) of points in A \ {a}, lim x n = a and lim n→∞ x n -a x n -a = v v . ( 47 
)
Tan(A, a) is a cone, nonempty whenever a ∈ A.

Proposition 38. Let f : Ω → Q 2 (R) be a centered stationary map on Ω ⊂ R 2 , z 0 ∈ Branch(f )
, and h be the blow up of f at z 0 . Then

Tan(Branch(f ), z 0 ) ∩ B 2 = Branch(h).
Proof. Let us suppose for convenience that z 0 = 0. Let v ∈ Tan(Branch(f ), 0) of norm v = 1/2. There are points z n ∈ Branch(f ) \ {0} converging to 0, such that

lim n→∞ z n 2 z n = v.
We set r n := 2 z n , and consider the sequence of blow ups (f rn ). Up to passing to a subsequence, we can suppose it converges to h, uniformly on B 2 (0, 1/2). Consequently,

h(v) = lim n→∞ f rn z n 2 z n = lim n→∞ f (z n ) = 2 0 , i.e v ∈ Branch(h).
Conversely, let v ∈ Branch(h) \ {0}. h is the limit of blow ups (f rn ). Let ε ∈ (0, 1v ). (f rn ) converges to h uniformly on B 2 (v, ε) ⋐ B 2 . Suppose Branch(f rn ) ∩ B 2 (v, ε) = ∅ for infinitely many n. Then for those values of n, f + rn is a positive harmonic function on B 2 (v, ε). As n → ∞, f + rn tends to h + . Thus, h + is a nonnegative harmonic function on B 2 (v, ε). Since it vanishes at v, it must be zero everywhere on B 2 (v, ε). This is contradictory with our classification of blow ups, see Proposition 37. Therefore, if n is big enough, then r n < ε and Branch(f

rn ) ∩ B 2 (v, ε) contains at least some point ξ. Set z := r n ξ. Then f (z) = 2 0 and z ≤ r n < ε. Moreover, tz -v < ε, where t = r -1 n . As ε is arbitrary, v ∈ Tan(Branch(f ), 0).
In particular, when z 0 is a first type branch point, the blow up at z 0 is the sum of two linear maps, therefore the tangent cone of Branch(f ) at z 0 is a line. Let us call ϕ(z 0 ) the angle between the x axis and Tan(Branch(f ), z 0 ). By (46), we have

ϕ(z 0 ) = 1 2 arg H f (z 0 ) |H f (z 0 )| -π . ( 48 
)
Note that if f is a nonzero stationary Q 2 (R) valued function on a domain, there are locally finitely many second type branch points, as the Hopf form vanishes on each of them. We wish to study the structure of Branch 1 (f ). We will prove that it is a C ∞ manifold. We will need the following purely topological fact. Recall a locally closed set in a topological space is just the intersection of a closed set and an open set.

Lemma 6. Let C ⊂ R be a locally closed set such that for all x ∈ C, Tan(C, x) = R.

Then C is open.

Proof. Let x ∈ C, by local closedness, there is a closed interval I such that x ∈ Int(I) and

C ∩ I is closed. Suppose there is a closed interval [a, b] ⊆ I such that C ∩ [a, b] = ∅. Either m 1 := max C ∩ I ∩ (-∞, a] or m 2 := min C ∩ I ∩ [b, +∞) exists.
In case m 1 is well defined, note that Tan(C, m 1 ) is contained in the half line R -, which contradicts the hypothesis. A similar contradiction arises with m 2 . Consequently,

C ∩ I is dense in I, thus I ⊆ C. This proves that C is open. Theorem 18. Suppose f : Ω → Q 2 (R) is stationary and not constant on a domain Ω ⊂ R 2 . Then Branch 1 (f ) is a union of disjoint real analytic curves.
Proof. Let z 0 ∈ Branch 1 (f ). We will show that Branch 1 (f ) is a C ∞ curve in a neighborhood of z 0 . The analyticity of Branch 1 (f ) will be a consequence of Proposition 39. We can suppose, up to rotating and translating, that z 0 = 0 and Tan(Branch(f ), 0) = R × {0}, i.e the function ϕ, defined by (48), verifies ϕ(0) = 0. We set

K := {(x, y) ∈ R 2 : |y| ≤ |x|}.
Recall that H -1 f ({0}) consists of isolated points and ϕ is continuous, therefore we can choose r small enough such that

         B 2 (0, 2r) ⊂ Ω B 2 (0, 2r) ∩ H -1 f ({0}) = ∅ B 2 (0, 2r) ∩ Branch(f ) ⊂ K ∀z ∈ B 2 (0, 2r) ∩ Branch(f ), Tan(Branch(f ), z) = {0} × R .
Define π, π ⊥ : R 2 → R the projections (x, y) → x, (x, y) → y and

A := Branch(f ) ∩ B 2 (0, 2r) ∩ π -1 (-r, r), C := π(A). Since Branch(f ) ∩ B 2 (0, 2r) ⊂ K and K ∩ π -1 (-r, r) ⊂ B 2 (0, √ 2r) ⊂ B 2 (0, 2r), one has A = Branch(f ) ∩ B 2 (0, √ 2r) ∩ π -1 (-r, r), therefore A is closed in π -1 (-r, r). Consequently, C is locally closed. Moreover, for every z ∈ A, Tan(C, π(z)) ⊃ π(Tan(A, z)) = R. C satisfies the hypothesis of Lemma 6, thus C is open. As 0 ∈ C, there is ε < r such that (-ε, ε) ⊂ C. Now we set for each x ∈ (-ε, ε), M (x) := sup{y : (x, y) ∈ Branch(f ) ∩ B 2 (0, √ 2r)} m(x) := inf{y : (x, y) ∈ Branch(f ) ∩ B 2 (0, √ 2r)} . Let us prove that M is continuous. Let a ∈ (-ε, ε) and (x n ) a sequence in (-ε, ε) such that x n → a and (M (x n )) converges to some ℓ. B 2 (0, √ 2r) is closed, therefore contains (a, ℓ). Hence ℓ ≤ M (a) and lim sup x→a M (x) ≤ M (a). If ρ is small enough to have B 2 ((a, M (a)), 2ρ) ⊂ B 2 (0, 2r) ∩ π -1 (-ε, ε), set A ′ := Branch(f ) ∩ B 2 ((a, M (a)), 2ρ) ∩ π -1 (a -ρ, a + ρ), C ′ := π(A ′ ).
is normal to V ∩ Branch(f ) at z. Indeed, let us call h the blow up of f at z. By Proposition 37 and Equation ( 45), one has

H h (0) = -e 2iϕ(z) 2π = 1 2π H f (z) |H f (z)| = 1 2π g(z) 2 |H f (z)| , therefore g(z) = ±i |H f (z)|e iϕ(z)
is orthogonal to Tan(V ∩ Branch(f ), z) (which makes an angle ϕ(z) with the x-axis).

These four points ensure that u is

C 1 on V with Du = g. Since g is anti-holomorphic, u is C 2 and 0 = ∂g ∂z = 1 2 ∂ ∂x -i ∂ ∂y ∂u ∂x + i ∂u ∂y = 1 2 ∆u.
Note in particular that V ∩Branch(f ) = u -1 ({0}), thus by the implicit function theorem, Branch 1 (f ) is analytic.

It remains to study the local behaviour of Branch(f ) around branch points of the second type. If v ∈ R 2 \ {0} and α ∈ [0, π], we let

K + (v, α) := {z ∈ R 2 : z, v ≥ z v cos α}
be the cone of direction v and aperture 2α.

Theorem 19. Let z 0 ∈ Branch 2 (f ) and ν := N f (z 0 ). In a neighborhood of z 0 , Branch(f ) is a union of 2ν non intersecting real analytic curves in the interior, all starting at z 0 and C 1 up to z 0 . Proof. For convenience, let us suppose z 0 = 0. According to Propositions 37 and 38, the tangent cone of Branch(f ) at 0 consists of the 2ν half-lines {θ = ϕ + kπ/ν}, k ∈ {0, . . . , 2ν -1} (where ϕ is such that h ν,ϕ / √ 2πν is the blow up of f at 0). Up to making a rotation, we can suppose ϕ = 0. Besides, there is a holomorphic map g on Ω such that

H f (z) = 1 (2ν -2)! g(z)z 2(ν-1) , with g(0) = H (2ν-2) f (0) = -|H (2ν-2) f (0)|
by Equations ( 45) and (46). Thus, by Equation (48),

ϕ(z) = 1 2 (arg(g(z)) + 2(ν -1) arg z -π) (49) for all z such that H f (z) = 0. If z lies in K + (1, π/5ν)\{0}, then |2(ν -1) arg(z)| ≤ 2π/5. If |z| is small, arg(g(z)
) is closed to π and therefore ϕ(z) = ±π/2. We can choose r > 0 such that B 2 (0, 2r) ⊂ Ω contains no second type branch points but 0,

B 2 (0, 2r) ∩ Branch(f ) ⊂ 2ν-1 k=0 K + e i(kπ/ν) , π 5ν , and ϕ(z) = ±π/2 for all z ∈ (Branch(f ) ∩ B 2 (0, 2r) ∩ K + (1, π/5ν)) \ {0}.
Since M is continuous, one sees that α is lower semi-continuous at x 0 , as α is also nondecreasing, α is left continuous at x 0 . Now suppose that ℓ := lim

x→x 0 x>x 0 α(x) > α(x 0 ).
Then for all x ∈ [x 0 , ε), there is (x

′ (x), y ′ (x)) ∈ Branch(f ) ∩ K + (1, π/5ν) with x 0 ≤ x ′ (x) ≤ x such that arg(x ′ (x) + iy ′ (x)) ≥ ℓ.
There is a sequence x n → x 0 such that y ′ (x n ) converges to some y 0 . (x 0 , y 0 ) ∈ Branch(f ) ∩ K + (1, π/5ν) and arg(x 0 + iy 0 ) ≥ ℓ. Consequently, α(x 0 ) ≥ ℓ. This is contradictory, hence α is right continuous at x 0 .

Stationary surfaces in R 3

In this last subsection, we describe how stationary surfaces in R 3 could be studied by means of stationary multiple valued functions. We emphasize that this area is relatively untouched in comparison with the study of area minimizing currents. The major regularity result is namely Allard's regularity theorem, see [START_REF] Allard | On the first variation of a varifold[END_REF]. More recently, some work has been done for stable stationary hypersurfaces, see [START_REF] Wickramasekera | A regularity and compactness theory for immersed stable minimal hypersurfaces of multiplicity at most 2[END_REF]. This is an attempt to remove the stability condition.

First let us introduce what we mean by a stationary surface.

Definition 3. A set M ⊂ R n is called m rectifiable whenever countably many C 1 man- ifolds M 1 , M 2 , . . . such that H m M \ ∞ i=1 M i = 0.
Note that if i = j, then for H m almost every x ∈ M i ∩ M j , the tangent spaces Tan(M i , x) and Tan(M j , x) coincide. There we can send almost every x ∈ M to a "tangent space" Tan(M, x).

If A is H m measurable, the map x → Tan(M, x) is moreover H m measurable. Let U be an open set in R n . A m rectifiable varifold in U is the data of (1) an H m measurable m rectifiable subset M of U , called the carrying set,
(2) a density function θ : M → (0, ∞), H m measurable and H m locally integrable.

Two varifolds (M 1 , θ 1 ) and (M 2 , θ 2 ) are meant to be equivalent whenever

H m (M 1 ⊖ M 2 ) = 0 and θ 1 = θ 2 H m almost everywhere on M 1 ∩ M 2 . When X : U → R n is a C 1 vector field X = (X 1 , . . . , X n ) and A ∈ G(m, n), we call div A X(x) the quantity div A X(x) := tr(A ♮ • DX(x)) = n i=1 A ♮ ∇X i (x), e i ,

Charges and cohomology

Preleminaries on Federer-Fleming currents

We assume n >1 and 0 ≤ m ≤ n. We let E m (R n ) be the linear space of all smooth differential m forms on R n . We recall that each differential form ω has a unique decomposition ω =

1≤k 1 ≤•••≤km≤n ω k 1 ,...,km dx k 1 ∧ • • • ∧ dx km
where the ω k 1 ,...,km are smooth functions. For each x ∈ R n , we call

ω(x) := sup    1≤k 1 ≤•••≤km≤n ω k 1 ,...,km (x)det (dx k i (ξ j )) 1≤i,j≤m : ξ 1 , . . . , ξ m ≤ 1    .
The reason why we choose to norm covectors (i.e elements of ∧ m (R n )) this way -instead of choosing the usual Euclidean norm -is quite technical. It allows to define general finite mass currents by relaxation of rectifiable currents, this will become clear in the following pages. For the moment, the choice of a norm on ∧ m (R n ) does not matter.

For each multi-index α = (α 1 , . . . , α m ) ∈ {1, . . . , n} m and each compact subset K ⊂ R n we define the semi-norm

ω α,K := sup{ ∂ α ω(x) : x ∈ K},
where

∂ α ω(x) := 1≤k 1 ≤•••≤km≤n ∂ α 1 +•••+αm ω k 1 ,...,km ∂x α 1 1 • • • ∂x αm m dx k 1 ∧ • • • ∧ dx km .
The family of all semi-norms • α,K induces a Fréchet topology on E m (R n ). For each compact subset K ⊂ R n we define D m K (R n ) := {ω ∈ E m (R n ) : supp ω ⊂ K}, which is a closed subspace of E m (R n ). We also define the subspace D m (R n ) of smooth differential forms with compact support, and give it the localized topology (see section 8) with respect to the family

C := {D m K (R n ) : K compact}. Whenever m < 0 or m > n, we set E m (R n ) := 0, D m (R n ) = 0. We let D m (R n ) be the dual of D m (R n )
, and we endow it with the weak* topology. Elements of D m (R n ) are called m currents on R n . For any current T , we define its support to be the smallest closed subset A for which T, ω = 0 whenever supp If M(T ) < ∞, by Riesz representation theorem, there exists a unique Radon measure T on R n , and a Borel m vector field T , unique up to a T negligible set, such that

ω ⊂ R n \ A. Functional restriction from E m (R n ) to D m (R n ) yields a linear map E m (R n ) * → D m (R n ),
T, ω = R n ω, T d T .
Actually, the application of Riesz representation theorem is not so straightforward, because ∧ m R n was not given a Euclidean norm. To overcome this slightly technical difficulty, we refer to [START_REF] Federer | Geometric Measure Theory[END_REF]4.1.5].

If X is any subset of R n , we introduce the space M m (X) of currents T ∈ D m (R n ) with finite mass, with support contained in X, normed by M. M m (X) is a Banach space whenever X is closed.

A current T ∈ D m (R n ) with compact support is called normal if both T and ∂T have finite mass. For any X ⊂ R n , N m (X) will denote the space of normal currents with support contained in X, normed by the normal mass N(T ) := M(T ) + M(∂T ). N m (X) is a Banach space whenever X is closed.

When f : R n → R p is of class ∞, T ∈ D m (R n ) and f ↾ supp T is proper, we define a current f # T ∈ D m (R p ) so as to satisfy f # T, ω = T, γf # ω whenever ω ∈ D m (R p ) and γ ∈ C ∞ c (R n ), γ ≡ 1 on a neighborhood of supp T ∩ f -1 (supp ω). Under these conditions, it follows that supp f # T ⊂ f (supp T ) and ∂f # T = f # ∂T . The flat norm of a current T ∈ N m (R n ) is the number F(T ) := inf{M(T -∂S) + M(S) : S ∈ N m+1 (R n )}.
It may not be obvious at first that F is a norm. However, we have the following proposition.

Proposition 40. Let T ∈ N m (R n ). Then F(T ) := sup{ T, ω : max( ω ∞ , dω ∞ ) ≤ 1}. Proof. Let S ∈ N m+1 (R n ). Then for any ω ∈ D m (R n ), we have T, ω = T -∂S, ω + S, dω . Hence T, ω ≤ M(T -∂S) + M(S) whenever max( ω ∞ , dω ∞ ) ≤ 1. Thus sup{ T, ω : max( ω ∞ , dω ∞ ) ≤ 1} ≤ F(T ). On the other hand, endow D m (R n ) × D m+1 (R n ) with the norm (ω, ω ′ ) := max( ω ∞ , ω ′ ∞ )
. We define a continuous linear form ϕ on the linear subspace

{(ω, dω) : ω ∈ D m (R n )} ⊂ D m (R n ) × D m+1 (R n
) by setting ϕ(ω, dω) := T, ω . By Hahn-Banach theorem, we extend ϕ to a continuous linear form on D m (R n )×D m+1 (R n ), which we still denote ϕ, with the same norm

ϕ = sup{ T, ω : ω ∈ D m (R n ) and max( ω ∞ , dω ∞ ) ≤ 1}. Define S ∈ D m+1 (R n ) by S, ω := ϕ(0, ω). For all ω ∈ D m (R n ), ω ′ ∈ D m+1 (R n ) such that ω ∞ ≤ 1, ω ′ ∞ ≤ 1, we have T -∂S, ω + S, ω ′ = ϕ(ω, ω ′ ) ≤ ϕ . Thus F(T ) ≤ M(T -∂S) + M(S) ≤ ϕ . Let T ∈ D m 1 (R n 2 ) and S ∈ D m 2 (R n 2 ). Then each ω ∈ D m 1 +m 2 (R n 1 +n 2 ) has an expansion ω(x, y) = ω α 1 ,...,α m ′ 1 ,β 1 ,...,β m ′ 2 (x, y)dy β 1 ∧ • • • ∧ dy β m ′ 2 ∧ dx α 1 ∧ • • • ∧ dx α m ′ 1 (52)
where the sum is taken over all (α, β)

∈ N m ′ 1 × N m ′ 2 such that m ′ 1 + m ′ 2 = m 1 + m 2 , and 1 ≤ α 1 < • • • < α m ′ 1 ≤ n 1 , 1 ≤ β 1 < • • • < β m ′ 2 ≤ n 2 . We define a current T × S ∈ D m 1 +m 2 (R n 1 +n 2 ) by T × S, ω := T x S y ω α,β (x, y)dy β 1 ∧ • • • ∧ dy β m ′ 2 dx α 1 ∧ • • • ∧ dx α m ′ 1 ,
where the first sum is taken over all α ∈ N m 1 with 1

≤ α 1 < • • • < α m 1 ≤ n 1 and the second sum is taken over all β ∈ N m 2 with 1 ≤ β 1 < • • • < β m 2 ≤ n 2 .
Note that all terms in (52) for which m ′ 1 = m 1 are not taken into account. From the characterizing conditions, one infers that supp(T × S) = supp T × supp S and

∂(T × S) = ∂T × S + (-1) m 1 T × ∂S.
One easily proves this following fact.

Proposition 41. Let T ∈ D m 1 (R n 1 ) and S ∈ D m 2 (R n 2 ). Let p : R n 1 +n 2 → R n 2 be the projection onto the last n 2 coordinates. Suppose that supp T is compact. Then p # (T × S) = T (1)S whenever m 1 = 0 0 otherwise

Topologies on the space of normal currents

In this section, we study other topologies on N m (R n ) than the one inherited from the normal mass. Let W * be the weak* topology on D m (R n ), i.e the coarsest one for which the maps T → T, ω , ω ∈ D m (R n ) are continuous. F will denote the topology on N m (R n ) inherited from the flat norm. For any subset X of R n , and c > 0, we define N m,c (X) := N m (X) ∩ {T : N(T ) ≤ c and supp T ⊂ X}.

Let us introduce the increasing system of convex sets

C(X) := {N m,k (X ∩ B n (0, k)) : k ≥ 1}
It is a linearly stable family in N m (X) (see Appendix 8) consisting of sets that are closed in the F topology. Note that C(X) = C(R n ) ↾ N m (X). We define F X,m to be the localized topology of F ↾ N m (X) with respect to C(X). Using the notation of Appendix 8, one writes

F X,m := [F ↾ N m (X)] C(X) . Proposition 42. If X ⊂ R n then F X,m = F R n ,m ↾ N m (X), and consequently F Y,m = F X,m ↾ N m (Y ) for each Y ⊂ X.
Proof. As the space (N m (R n ), F) is metrizable, it is hereditarily sequential. Proposition 60 assure us that inducing and localizing topologies are commutative operations, precisely

F X,m = [F ↾ N m (X)] C(X) = [F ↾ N m (X)] C(R n )↾Nm(X) = F C(R n ) ↾ N m (X) = F R n ,m ↾ N m (X) Now if Y ⊂ X, F Y,m = F R n ,m ↾ N m (Y ) = F R n ,m ↾ (N m (X) ∩ N m (Y )) = F X,m ↾ N m (Y ). Proposition 43. If X is compact and c > 0, then F ↾ N m,c (X) = W * ↾ N m,c (X)
, and these topologies turn N m,c (X) into a compact space.

Proof. F is a lower semicontinuous norm of N m (R n ) under the weak* topology

W * ↾ N m (R n ), hence F is larger than W * ↾ N m (R n ).
In particular, the identity map id :

(N m,c (X), F ↾ N m,c (X)) → (N m,c (X), W * ↾ N m,c (X))
is continuous. N is also lower semicontinuous in the topology Now we show that (N m,c (X), F ↾ N m,c (X)) is compact; we follow the argument of [Fed96, Theorem 4.2.17, (1)] and prove that the distance associated to F makes N m,c (X) into a totally bounded complete metric space. Choose ε > 0. As X is compact, the deformation theorem [Fed96, 4.2.9] implies that one can find a finite dimensional linear space Y X,ε ⊂ N m,c (R n ) and a constant γ > 0 such that the following condition is satisfied: for each T ∈ N m,c (X), there is P ∈ Y X,ε such that N(P ) ≤ γc and F(T -P ) < ε. As {P ∈ Y X,ε : N(P ) ≤ γc} is a bounded set of a finite dimensional space, it is easy to infer that N m,c (X) is covered by finitely many F-balls of radius 2ε. By the arbitrariness of ε, N m,c (X) is a totally bounded subset of (N m (R n ), F).

W * ↾ N m (R n ), there- fore N m,c (X) is a W * ↾ N m (R n )-
Select a Cauchy sequence (T i ) in (N m,c (X), F) and observe (T i ) weak* converges to a continuous linear functional T : D m (R n ) → R by the Banach-Steinhaus theorem [Rud06, Theorem 2.9]. A standard argument shows that lim i F(T i -T ) = 0, and the lower semicontinuity of normal mass implies N(T ) ≤ c. As X is closed, supp T ⊂ X. Hence T ∈ N m,c (X), and (N m,c (X), F) is complete.

It follows that the space (N m,c (X), F ↾ N m,c (X)) is compact and id is a homeomorphism. Now we extend the definition of a pushforward f # T when f : R n → R p is locally Lipschitz continuous and T ∈ D m (R n ) is normal. Since f is Lipschitz continuous on a compact neighborhood U of supp T , we can suppose f to be globally Lipschitz continuous; otherwise replace f with a Lipschitz continuous extension of f ↾ U (which exists by Kirszbraun's theorem, see [START_REF] Federer | Geometric Measure Theory[END_REF]2.10.43]). Let (g i ) i∈N be a sequence of smooth functions converging uniformly to f on R n and such that sup i ∇g i ∞ < ∞. To obtain such a sequence, one can for instance regularize f . We define the map h ij : [0, 1] × R n → R p by setting h ij (t, x) := (1t)g i (x) + tg j (x). We let 0, 1 ∈ D 1 (R) be the current 0, 1 , ω :=

1 0 ω(x)dL 1 (x). Then g j# T -g i# T = ∂h ij# ( 0, 1 × T ) + h ij# ( 0, 1 × ∂T ). Thus, F(g j# T -g i# T ) ≤ M(h ij# ( 0, 1 × T )) + M(h ij# ( 0, 1 × ∂T )) ≤ 1 0 R n g j -g i ((1 -t) ∇g j + t ∇g i ) m d T dt + 1 0 R n g j -g i ((1 -t) ∇g j + t ∇g i ) m-1 d ∂T dt ≤ g j -g i ∞ max(sup i ∇g i m , sup i ∇g i m-1 )N(T ), hence (g i# T
) is a F Cauchy sequence. Since all g i# T lie in N m,c (X) for some c > 0 and some compact X ⊂ R p , it follows from Proposition 43 that (g i# T ) converges to a current f # T . f # T does not depend on the choice of the g j .

Proposition 44. Let T ∈ N m (R n ), and let f, g : R n → R p be locally Lipschitz continuous maps. If

f ↾ supp T = g ↾ supp T , then f # T = g # T .
As a consequence of Proposition 44, if X, Y are subsets of Euclidean spaces and f : X → Y is a locally Lipschitz continuous map, there exists a continuous linear map f # : (N m (X), F X,m ) → (N m (Y ), F Y,m ).

Charges and duality with normal currents

Now that a suitable topology has been defined on N m (X), we can introduce charges as linear functionals. Definition 6. An m charge in X ⊂ R n is an F X,m continuous linear functional on N m (X). The linear space of all m charges in X is denoted CH m (X).

Using Proposition 61, one easily sees that a linear functional f : N m (X) → R is a charge if and only if given ε > 0, there is a θ > 0 such that for each T ∈ N m (X ∩ B n (0, ε -1 )), we have α, T ≤ θF(T ) + εN(T ). We next define a topology on CH m (X). For all k ≥ 1, we introduce the seminorm

α k := sup{ α, T : α ∈ N m (X ∩ B n (0, k)) and N(T ) ≤ 1}.
Proposition 45. The seminorms • k define a Fréchet topology in CH m (X).

Proof. First note that given α ∈ CH m (X) and k ≥ 1, α k is finite. Indeed, one can find θ > 0 so that

α, T ≤ θF(T ) + 1 k N(T ) ≤ (θ + 1)N(T ) ≤ θ + 1 for every T ∈ N m (X ∩ B n (0, k)) with N(T ) ≤ 1. Hence α k ≤ θ + 1 < ∞.
Clearly if α k = 0 for all k ≥ 1 then α = 0, so we need only to show that if (α i ) is a Cauchy sequence in CH m (X) then it converges. The sequence (α i ) converges uniformly on each set N m,1 (X ∩ B n (0, k)) to a linear functional α. Choose ε > 0 and an integer k ≥ ε -1 . One can find α i such that αα i , T ≤ ε/2 for all T ∈ N m,1 (X ∩ B n (0, k)). There is θ > 0 such that for all nonzero T ∈ N m (X ∩ B n (0, 2ε -1 )),

α i , T ≤ θF(T ) + ε 2 N(T ).
Now for all T ∈ N m (X ∩ B n (0, ε -1 )), we have

α, T = α i , T + N(T ) α -α i , T N(T ) ≤ θF(T ) + ε 2 N(T ).
hence we conclude α ∈ CH m (X).

In the sequel, we will only consider CH m (X) with its Fréchet topology. In particular, if X is bounded, then CH m (X) is a Banach space normed by

α CH m (X) := sup{ α, T : T ∈ N m (X), N(T ) ≤ 1}.
When X is closed, it follows from Proposition 43 and Proposition 59 that the Fréchet topology on CH m (X) is that of uniform convergence on bounded subsets of the space (N m (X), F X,m ) * , in other words, the strong topology. By Proposition 62, we conclude that the evaluation linear map Υ : N m (X) → CH m (X) * is bijective.

When X is compact, it is straightforward to see that Υ is a continuous linear map from (N m (X), N) to CH m (X) * normed by the dual norm of • CH m (X) . Since both spaces are Banach spaces, Υ is a Banach space isomorphism by the open mapping theorem.

Let X ⊂ R n , Y ⊂ R p and let f : X → Y be a Lipschitz continuous map. f induces a pullback map f # : CH m (Y ) → CH m (X) such that f # α, T := α, f # T for all T ∈ N m (X). f # is continuous, since for all k ∈ N, f # α k ≤ max(Lip(f ) m-1 , Lip(f ) m ) α k .
Proposition 46. Let X ⊂ Y be subsets of R n and let ι : X → Y be the inclusion map. Then each charge on X can be extended to a charge on

Y , i.e ι # : CH m (Y ) → CH m (X) is a surjection. Proof. Since ι # : N m (X) → N m (Y )
is the inclusion map, we see immediately that ι # α = α ↾ N m (X) for any α ∈ CH m (Y ). The proposition hence follows from Proposition 42 and Hahn-Banach theorem.

A representation theorem for charges

Let X ⊂ R n . We denote by C u (X, ∧ m R n ) the linear space of all maps from X to ∧ m R n that are uniformly continuous on all bounded subsets of X. Throughout, we assume C u (X, ∧ m R n ) is given the Fréchet topology induced by the seminorms

|ω| k := sup{ ω(x) : x ∈ X ∩ B n (0, k)}.
Proposition 47. For X ⊂ R n , the linear map Λ : C u (X, ∧ m R n ) → CH m (X) defined by Λ(ω), T := T, ω is continuous.

Proof. Λ(ω) is a linear functional on N m (X). We show that it is a m charge in X. Choose ε > 0. Since ω is uniformly continuous on X ∩ B n (0, ε -1 ), there is c ∈ R and φ ∈ D m (R n ) such that for all x ∈ X ∩ B n (0, ε -1 ), ω(x) ≤ c and ω(x)φ(x) ≤ ε.

For all T ∈ N m (X ∩ B n (0, ε -1 )) and S ∈ N m+1 (R n ), Λ(ω), T = T, ω -φ + T -∂S, φ + S, dφ ≤ εM(T ) + φ ∞ M(T -∂S) + dφ ∞ M(S) ≤ εN(T ) + max( φ ∞ , dφ ∞ ) (M(T -∂S) + M(S)) Since S is arbitrary, Λ(ω), T ≤ εN(T ) + max( φ ∞ , dφ ∞ )F(T ). For any k ≥ 1, |Λ(ω)| k ≤ |ω| k , hence Λ is continuous.
It follows from the continuity of ∂ : (N m+1 (X), F X,m+1 ) → (N m (X), F X,m ) that we can assign to each m charge its coboundary dα defined by dα, T := α, ∂T .

Since for k ≥ 1, we have |dα| k ≤ |α| k , d : CH m (X) → CH m+1 (X) is continuous.
Proposition 47 show that charges can be viewed as generalized differential forms with d as a coboundary operator. Now we introduce the Fréchet space

E := C(R n , ∧ m R n ) × C(R n , ∧ m-1 R n ) and the continuous operator Θ : E → CH m (R n ) defined by Θ(ω, ζ) = Λ(ω) + dΛ(ζ).
Our representation theorem 21 will prove that Θ is onto.

Lemma 7. The subspace Λ(D m (R n )) ⊂ CH m (R n ) is dense. Proof. Choose γ ∈ CH m (R n ) * such that γ(Λ(ω)) = 0 whenever α ∈ D m (R n ). Recall that the evaluation map Υ : N m (R n ) → CH m (R n ) * is a bijection. For all ω ∈ D m (R n ), Υ -1 (α), ω = α, Λ(ω) = 0. Hence Υ -1 (α) = 0 and α = 0. Thus, by Hahn-Banach theorem [Rud06, Theorem 3.5], Λ(D m (R n )) is dense in CH m (R n ).
The next proposition is a variation on the closed range theorem in Fréchet spaces; for a demonstration, see [Edw95, section 6]. We will only use the only if implication. Lemma 8. Let X and Y be Fréchet spaces, and let f :

X → Y be a continuous linear map. f * (Y * ) is strongly sequentially closed in X * if and only if f (X) is closed in Y . Theorem 21. Let X ⊂ R n . For each α ∈ CH m (X), there exists ω ∈ C u (X, ∧ m R n ) and ζ ∈ C u (X, ∧ m-1 R n ) such that α = Λ(ω) + dΛ(ζ).
Proof. We prove the theorem for X = R n , for the general case is an easy consequence of the extension theorem 46 for charges. We claim that Θ * (CH m (R n ) * ) is sequentially strongly closed in E * . Indeed, let (F i ) be a sequence in CH m (R n ) * such that (Θ * (F i )) converges strongly to G ∈ E * . Proposition 60 shows that Υ :

N m (R n ) → CH m (R n ) * is
a continuous bijection when CH m (R n ) * is given the bounded weak* topology. Since the strong topology is coarser than the bounded weak* topology, Υ is still continuous when CH m (R n ) * is given the strong topology. We define T i := Υ -1 (F i ), we have

Θ * (F i ), (ω, ζ) = Θ * • Υ(T i ), (ω, ζ) = Υ, Θ(ω, ζ) = Θ(ω, ζ), T i = T i (ω) + ∂T i (ζ)
Since the sequence (Θ * (F i )) is uniformly bounded on each bounded subset of E , it follows from the boundedness of {(ω, 0)

∈ E : ω ∞ ≤ 1} and {(0, ζ) ∈ E : ζ ∞ ≤ 1}
that there exists c > 0 such that for all i ≥ 1,

N(T i ) = M(T i ) + M(∂T i ) = sup ω ∞≤1 Θ * (F i ), (ω, 0) + sup ζ ∞≤1 Θ * (F i ), (0, ζ)
Suppose there exists no k for which ∪ i supp

T i i ⊂ B n (0, k). Construct recursively a subsequence (T ϕ(i) ) of (T i ) such that supp T ϕ(i) ∩ B n (0, i) = ∅. There is ω i ∈ D m (R n ) such that supp ω i ⊂ U n (0, i + 1) \ B n (0, i), a i := | T ϕ(i) , ω i | > 0 and ω ∞ ≤ 1. Let b j := max(a -1 1 , • • • , a -1 j )
, and observe that By Lemma 8, the range of Θ is closed. Since Lemma 7 implies that it is dense in CH m (R n ), we therefore obtain Θ(E ) = CH m (R n ).

B := {ω ∈ C(R n , ∧ m R n ) : ∀j ≥ 1, |ω| j ≤ jb j } is a bounded subset of C(R n , ∧ m R n ). Hence B × {0} is bounded in E . As (ib i ω i , 0) ∈ B ×{0} and | T ϕ(i) , ω i | ≥ i,
We briefly mention that charges together with the differential operator d give birth to a new cohomology theory. Indeed, since d 2 = 0, we have a linear complex 0

→ CH 0 (X) d → • • • d → CH n (X) → 0.
whose cohomology spaces are referred to as charge cohomology groups. Namely, for any integer m, we denote B m (X) :

= d(CH mâ1 (X)), Z m (X) := {α ∈ CH m (X) : dα = 0} and H m (X) = Z m (X)/B m (X).
H m is a contravariant functor on the category of subsets of a Euclidean space with Lipschitz maps. Indeed, if f :

X → Y is Lipschitz continuous, the map f # : CH m (Y ) → CH m (X) gives rise to a map H m (f ) : H m (Y ) → H m (X).
We hope that charge cohomology is suitable to distinguish two Lipschitz non equivalent metrics on an infinite torus.

Charges vanishing at infinity

The paper [START_REF] Pauw | On the distributional divergence of vector fields vanishing at infinity[END_REF] introduces the notion of charges vanishing at infinity. This framework is particularly well suited for the study of charges in R n in top dimension, because the We let CH 0 (R n ) be the space of charges vanishing at infinity. CH 0 (R n ) can be made into a Banach space by norming it with

F CH 0 (R n ) := sup {F (ϕ) : ϕ ∈ BV 1 * (R n ), ∇ϕ ≤ 1} . The operator div : C 0 (R n , R n ) → CH 0 (R n ) is defined by (div v)(ϕ) := -R n v • d(∇ϕ).
6 Functional analytical tools

Duality of vector lattices

A linear space X over R, endowed with a (partial) order relation is called an ordered linear space if the order structure is compatible with the linear structure, that is (1) for all x, y, z ∈ X, x y implies x + z y + z,

(2) for all x, y ∈ X, λ ≥ 0, x y implies λx λy.

Generally speaking, a cone in a linear space is a subset C invariant under homothetic maps x → λx with λ > 0. If C is closed under addition and C ∩ (-C) = {0}, C is called a proper cone . In an ordered linear space X, the set X + := {x ∈ X : x 0}, called the positive cone , is a proper cone. Conversely, for any proper cone C in a linear space X, there exists a unique order structure on X, compatible with the linear structure, for which C is the positive cone. A vector lattice is an ordered linear space such that x ∨ y := sup{x, y} and x ∧ y := inf {x, y} exist for all x, y ∈ X. In a vector lattice, we define for each x ∈ X, x + := x ∨ 0, x -:= x ∧ 0, and |x| := x ∨ (-x), respectively called the positive part, the negative part, and the absolute value of x.

A norm • on a vector lattice X is called a lattice norm if for all x, y ∈ X, |x| |y| implies x ≤ y . A vector lattice, together with a lattice norm, is called a normed vector lattice. A normed vector lattice is called a Banach lattice when it is norm complete. Now we fix a vector lattice X. An order interval is a subset of the form [x, y] := {z ∈ X : x z y}, for some x, y ∈ X. A linear form f : X → R is called order bounded whenever f ([x, y]) is bounded in R for any x, y ∈ X. The order dual X * is the linear space of all order bounded linear forms. We endow X * with the order relation

f g :⇔ ∀x ∈ X + , f (x) ≤ g(x),
which turns X * into an ordered linear space. One verifies that X * is a vector lattice with the following ∨ and ∧ operations

f ∨ g(x) = sup{f (y) + g(z) : y, z ∈ X + , y + z = x}, f ∧ g(x) = inf{f (y) + g(z) : y, z ∈ X + , y + z = x}, whenenver x ∈ X + , and f ∨ g(x) = f ∨ g(x + ) -f ∨ g(x -
) for any x ∈ X, and a similar formula for f ∧ g. When X is a normed vector lattice, we need to investigate the relationship between the order and topological structures. First note that X + is closed in X. Indeed, for all x, y ∈ X, one has |x -y -| |x -y|, thus x -y -≤ xy . The map x → x -is therefore Lipschitz continuous, and we infer that X + is closed as the reversed image of {0} under this map.

Proposition 48. Let X be a Banach lattice. Then a linear form is continuous if and only if it is order bounded. X * with its dual order structure described above and its dual norm, is a Banach lattice.

Proof. First we claim that every positive linear form on T : X → R is continuous. Indeed, if T is not continuous, then T must be unbounded on the closed unit ball B of X. Since B ⊂ (B ∩ X + ) -(B ∩ X + ), T is unbounded on B ∩ X + . This implies the existence of a sequence (x n ) in B ∩ X + with T (x n ) ≥ n 3 for all n ∈ N. On the other hand, X being complete, z := n∈N n -2 x n exists in X, and z n -2 x n for all n, X + being closed. Then T

(z) ≥ n -2 T (x n ) ≥ 0 which implies T (z) ≥ n -2 T (x n ) ≥ n.
Hence a contradiction. Now we claim that every order bounded linear form T is continuous. Indeed T = T + -T -and T + , T -are positive, hence continuous.

We proved X * ⊂ X * . The reverse inclusion is easier to prove; since every order interval in X is bounded, a bounded linear form is automatically order bounded. Thus X * = X * . Now X * is a Banach space as a dual space, and the fact that its dual norm is a lattice norm is only routine.

We now introduce two important classes of Banach lattices and examine their duality. Definition 7. An abstract M space (briefly, AM -space) is a Banach lattice X such that for all x, y ∈ X + , x ∨ y = max( x , y ). If the closed unit ball of an AM space contains a largest element e, e is called a unit.

For instance, if K is compact Hausdorff topological space and C(K) is the space of continuous real-valued functions defined on K normed by f ∞ := sup{|f (x)| : x ∈ K}, ordered by f g if and only if f (x) ≥ g(x) for all x ∈ K, then C(K) is an AM -space. Definition 8. An abstract Lebesgue space (briefly, AL-space) is a Banach lattice X such that for all x, y ∈ X + , x + y = x + y .

It is straightforward to see that for any measure space (X, S, µ), the Banach space L 1 (X, S, µ) is an abstract Lebesgue space, hence the name. Theorem 25 will prove that conversely, any abstract Lebesgue space is a concrete Lebesgue space.

Proposition 49. The dual of an AM -space is an AL-space, and the dual of an AL-space is an AM -space with unit.

Proof. Suppose X is an AM space. Note that for any positive form h in X * , one has

h = sup{h(x) : x ≤ 1, x ∈ X + }.
Let f, g ∈ X * be positive forms, and let ε > 0. From the above statement, there exist elements x, y ∈ X + , such that x = y ≤ 1 and f (x) > fε, g(y) > gε.

We have x ∨ y ≤ 1, and this implies

f + g ≥ (f + g)(x ∨ y) ≥ f (x) + g(y) ≥ f + g -2ε.
By the arbitrariness of ε, f + g ≥ f + g . The reverse inequality is the triangle inequality, hence f + g = f + g and X * is an AL-space.

On the other hand, let X be an AL-space. We define e : X → R by e(x) := x +x -for all x ∈ X. It is obvious that e is continuous positive linear form, and that for all x ∈ X, e(|x|) = x . Consequently, e is the largest element of the closed unit ball of X * . Note that for all f ∈ (X * ) + , f = inf{λ ≥ 0 : f λe}.

Fix f, g ∈ (X * ) + . Let λ ≥ 0 such that f ∨ g λe. Then λ = λe ≥ max( f , g ). Thus, f ∨ g ≥ max( f , g ). On the opposite, one has f ∨ g max( f , g )e, and so f ∨ g ≤ max( f , g ). Hence X * is an AM space.

Proposition 49 yields further examples of abstract L spaces. For any compact Hausdorff topological space K, the space of signed Radon measures on K, C(K) * (following Bourbaki's definition, see [Bou52, III.1]) is an AL space.

Representation of abstract M spaces

This subsection is devoted to several theorems on Banach lattices of type C(K), where K is a compact Hausdorff topological space, in particular, the order theoretic Stone-Weierstrass density theorem and a representation theorem for AM -spaces with unit.

Theorem 23 (Order theoretic Stone-Weierstrass theorem). Let K be a compact Hausdorff topological space. Let e the constant 1 function on K. Let X be a vector subspace of C(K), which verifies the following properties:

(1) X is a sublattice of C(K), i.e closed under ∧ and ∨.

(2) X contains e.

(3) X separates the points in K, i.e, for any x = y ∈ K, there exists f ∈ X such that f (x) = f (y).

Then X is dense in C(K).

Proof. Let x, y be any points in K and α, β real numbers. We make the further assumption that α = β if x = y. There exists f ∈ X such that f (x) = α, f (y) = β. This is clear if x = y. If x = y there exists g ∈ X such that g(x) = g(y) and a suitable linear combination of e and g will satisfy the requirement. Now fix h ∈ C(K), ε > 0 and x ∈ K. For any y ∈ K, there exists f y ∈ X such that f y (x) = h(x) and f y (y) = h(y). The set U y := {z ∈ K : f y (z) > h(z) -ε} is open and contains y. Hence, the open sets U y (y ∈ K) cover K. The compactness of K implies the existence of a finite subset I ⊂ K such that X = ∪ y∈I U y . Using the lattice property of X, we can define a function g x := sup y∈I f y ∈ X, such that g x (y) > h(y)ε for all y ∈ K and g x (x) = h(x). Now consider this procedure applied to each x ∈ K; we obtain a family {g x : x ∈ K} in X such that g x (x) = h(x) for all x ∈ K and g x (y) > h(y)ε for all x, y ∈ K.

The set V x := {z ∈ K : g x (z) < h(z) + ε} is open and contains x. Therefore, the compactness of K implies the existence of a finite subset J ⊂ K such that K = ∪ x∈J V x . We define g := inf x∈J g x ∈ X. One has g(z)ε < h(z) < g(z) + ε for all z ∈ K, hence hg < ε.

The algebraic Stone-Weierstrass theorem is the same as Theorem 23 with hypothesis (1) replaced with the assumption that X is a subalgebra of C(K). For a demonstration, see [START_REF] Rudin | Functional Analysis. International series in pure and applied mathematics[END_REF]Theorem 5.7].

Let X be an AM space with unit e; we let H 0 be the intersection of the hyperplane H := {x ∈ X * : x, e = 1} with the positive cone of X * . H 0 is a convex, weak* closed subset of the dual unit ball [-e, e]. It follows that H 0 , which is called the positive face of [-e, e], is weak* compact. It is immediately verified that f ∈ H 0 is an extreme point if and only if for all h ∈ X * , 0 h f implies that h is a scalar multiple of f . Now we can prove Kakutani's representation theorem for AM spaces with unit.

Theorem 24. Let X be an AM space with unit e, and let K be the set of extreme points of the positive face H 0 of the dual unit ball. Then K is non-empty and weak* compact, and the evaluation map ψ : x → •, x is a Banach lattice isomorphism from X to C(K) in the following sense: ψ is a surjective isometry which preserves the lattice operations.

Proof. Since H 0 is convex and weak* compact, it follows from Krein-Milman theorem [START_REF] Rudin | Functional Analysis. International series in pure and applied mathematics[END_REF][Theorem 3.21] that H 0 is the weak* closure of the convex hull of K. We claim that f ∈ H 0 is in K if and only if f is a lattice morphism. Indeed, let f ∈ K. Let x ∈ X and suppose f (x + ) > 0. We define a linear form h by h(y) := sup{f (z) : 0 z y and z ρx + for some ρ ≥ 0} whenever y ∈ X + and h(y) := h(y + )h(y -) in the general case. It is only routine to prove that h is well defined and bounded (it is enough to see that it is additive and positive homogeneous on X + ). It follows that 0 h f and therefore there exists ρ ≥ 0 such that h = ρf . Since h(x -) = 0, it follows that f (x -) = 0, thus for all x ∈ X, inf(f (x + ), f (x -)) = 0, and this statement is readily seen to be equivalent to the requirement that f is a lattice morphism.

Conversely, if f ∈ H 0 is a lattice morphism, then f is positive. Now let h be a positive linear form in X * such that fh is positive, or, equivalently, 0 h f . For any

x ∈ ker f , one has |h(x)| ≤ h(|x|) ≤ f (|x|) = |f (x)| = 0. Thus ker h ⊂ ker f and there exists ρ ∈ R such that h = ρf . Since h is positive, ρ ≥ 0, hence f is an extreme point of H 0 .
K is consequently the set of lattice morphisms with norm 1. From this, K is weak* closed, hence weak* compact by Banach-Alaoglu theorem.

The mapping ψ is clearly a linear map from X to C(K) that preserves the lattice operations, since each f ∈ K is a lattice morphism. To show that ψ is an isometry, it is enough to show that x = ψ(x) when x ∈ X + , since X and C(K) are Banach lattices. For x ∈ X + , we have

x = sup{ f, x : f ∈ X * , f ≤ 1} = sup{ f, x : f ∈ H 0 }.
Since H 0 is the closed convex hull of K and for each x ∈ X, •, x defines a weak* continuous linear form on X * , it follows that

x = sup{ f, x : f ∈ H 0 } = sup f, x : f ∈ K = ψ(x) .
Thus ψ defines an isomorphism of X onto a complete vector sublattice ψ(X) ⊂ C(K), which contains the unit ψ(e) of C(K). It is straightforward that ψ(X) separates points in K, it follows from Theorem 23 that ψ(X) is dense in C(K). Hence ψ is onto.

Representation of abstract L spaces

We are looking forward to proving Kakutani's representation theorem 25 for abstract L spaces. Given a measure space (X, S, µ), there is not necessarily a constant 1 function e in L 1 (X, S, µ), unless the measure µ is finite. For this reason, we need to develop some technical machinery.

Let X be a vector lattice. A subset S ⊂ X + is called an orthogonal system if 0 =∈ S and x ∧ y = 0 for each pair of distinct elements of S. A weak order unit is an element e ∈ X such that {e} is a maximal orthogonal system. This means that for all x ∈ X, x ∧ e = 0 implies x = 0. Definition 9. A subset A of a vector lattice X is called solid if x ∈ A, y ∈ X and |y| |x| implies y ∈ A. An ideal is a solid vector subspace of X.

Each ideal is a sublattice of X (i.e, closed under ∨ and ∧). For all e ∈ X, we define X e to be the ideal generated by {e}, or equivalently, the intersection of all ideals containing e. Obviously, one can assume e ∈ X + by replacing it with |e|. In that case, one readily checks that X e = ∪ n∈N n[-e, e]. Definition 10. An element e 0 of a normed vector lattice X is called a quasi-interior point of X + if the principal ideal X e is dense in X.

Proposition 50. Let X be a Banach lattice. For each e 0, the principal ideal X e is an AM space under the norm p e whose closed unit ball is the order interval [-e, e], with unit e, and the canonical imbedding X e → X is continuous.

Proof. p e is the norm given by p e (x) = inf{λ ≥ 0 : x ∈ λ[-e, e]}.

One routinely verifies that p e is a lattice norm and that for all x, y ∈ X e ∩ X + , x ∨ y = max( x , y ). Now we prove that (X e , p e ) is a Banach space. Let (x n ) be a p e Cauchy sequence. There exists a subsequence (

x ϕ(n) ) such that |x ϕ(n+1) -x ϕ(n) | 2 -n e for all n ∈ N. Let us define u n := (x ϕ(n+1) -x ϕ(n) ) + and v n := (x ϕ(n+1) -x ϕ(n) ) -. We have 0 u n ∨ v n 2 -n e. Since (E, • ) is a Banach space, the series n∈N u n converges to a point u ∈ X and u - m n=1 u n = ∞ n=m+1 u n ∞ n=m+1 2 -n e = 2 -m e.

Hence we infer

p e u - m n=1 u n ≤ 2 -m ,
thus u n p e converges. One obtains similar results for the series v n , therefore (x ϕ(n) ) p e converges to uv. Finally, the continuity of the inclusion map X e → X can be derived from the inequality • ≤ e p e .

We will prove that weak order units in an AL space are quasi-interior. Lemma 9. Let X be a Banach lattice and let S denote any maximal orthogonal system of X. For each x ∈ X + , the net (x n,H ) where n ∈ N, H is a finite subset of S and x n,H := u∈H x ∧ nu order converges to x, i.e x = sup n,H x n,H .

In particular, if e is a weak order unit in X, then for any x ∈ X + , x = sup n (x ∧ ne).

Proof. It is clear that x

x n,H for each n ∈ N and each finite H ⊂ S. Suppose that z

x n,H for all n and H; we have to show that z

x. Fix u ∈ S. Then 0 z -(x ∧ nu) = (z -x) ∨ (z -nu) which implies 0 = ((z -x) ∨ (z -nu)) ∧ 0 = (z -x) -∧ (z -nu) -, and so (z -x) -∧ (u -n -1 z) + = 0 for all n ∈ N. Now sup n (u -n -1 z) = u. Since u is positive, sup(u -n -1 z) + = u. Thus, we have sup n (z -x) -∧ (u -n -1 z) + = (z -x) -∧ u = 0.
By the arbitariness of u ∈ S, it follows that (z -x) -= 0 since S is a maximal orthogonal system. Hence z x.

Lemma 10. Let X be an AL space. Every increasing bounded net in X converges.

Proof. Let (x α ) α∈A be a increasing net in X, bounded by a constant M . If (x α ) α∈A is not a Cauchy net, there would exist a number ε > 0 and an infinite subsequence (x αn ) n∈N (with α n+1 ≥ α n for n ∈ N) such that x α n+1x αn > ε for all n ∈ N. We have

nε ≤ n+1 k=2 x α k -x α k-1 = x α n+1 -x α 1 ≤ 2M
for all n ∈ N, which is contradictory. Hence (x α ) α∈A is a Cauchy net, thus it converges for X is complete.

Proposition 51. Let X be an AL space, and let S be a maximal orthonormal system in X. The ideal generated by I is dense in X. In particular, every weak order unit in X is quasi-interior.

Proof. It is an easy consequence of Lemmas 9 and 10. Now we can state and prove the most important theorem of this section.

Theorem 25. Let X be an AL space, there exists a locally compact Hausdorff space Y and a positive Radon measure µ on Y such that X is isomorphic to L 1 (Y, µ). Y can be chosen to be compact if and only if X possesses a weak order unit.

Proof. First we consider the case where X has a weak order unit e. Then X e is a dense ideal of X by 51. By Proposition 50 and Theorem 24, (X e , p e ) can be identified with C(K), for some compact Hausdorff topological space K. The map µ(x) := x +x - defines a positive linear form µ on X for which x = µ(|x|) for all x ∈ X. The restriction of µ to X e defines a positive Radon measure on K (which we again denote by µ).

Since C(K) is dense in L 1 (K, µ), it is clear that the isomorphism (X e , • ) → (C(K), • L 1 (K,µ) ) extends uniquely to an isomorphism of Banach lattices X → L 1 (K, µ).
Now suppose E possesses no weak order unit and denote by S := {e α : α ∈ A} a maximal orthogonal system. Such a system exists by Zorn's lemma. We let I be the ideal generated by S. By 51, I is dense in E. Moreover, I is the algebraic direct sum ⊕ α∈A X eα . By Proposition 50 and Theorem 24, (X eα , p eα ) can be identified with C(K α ) for some compact Hausdorff topological space K α . Thus, I can be identified with C c (Y ), the space of compactly supported continuous real-valued map on the locally compact Hausdorff direct topological sum Y := α∈A K α . Once again, we define µ(x) := x +x -for all x ∈ I. µ defines a positive Radon measure on Y for which x = Y |x|dµ for all x ∈ I. The isomorphism (I, • ) → (C c (Y ), • L 1 (Y,µ) ) extends to an isomorphism of Banach lattices E → L 1 (Y, µ).

p absolutely summing operators

We introduce the class of p operators in Banach spaces. They are similar to Hilbert-Schmidt operators in a Hilbert space. In fact, if H is a Hilbert space, an operator T : H → H is Hilbert-Schmidt if and only if it is p absolutely summing for some 1 ≤ p < ∞. A weaker result is proved in Proposition 54. Definition 11. Let X, Y be Banach spaces, and 1 ≤ p < ∞. A linear operator T : X → Y is called p absolutely summing if there exists a constant C ≥ 0 such that for all choices of (x k ) n k=1 in X we have

p k=1 T (x k ) p 1/p ≤ C sup    n k=1 | ξ, x k | p 1/p : ξ ∈ X * , xi ≤ 1    .
The least such constant C is denoted π p (T ) and is called the p absolutely summing norm of T .

In the limit case p = ∞, an ∞ absolutely operator is just a bounded operator, and its absolutely summing norm is nothing but its operator norm. The next proposition shows that the class of p absolutely summing operators is an ideal class. The proof is only routine. Proposition 52. Let U : W → X, T : X → Y , V : Y → Z be bounded operators between Banach spaces. If T is p absolutely summing, then V T U is p absolutely summing and π p (V T U ) ≤ V π p (T ) U .

We recall that a Hilbert Schmidt operator on a Hilbert space H is a bounded operator T : H → H such that there exists a Hilbert basis (e i ) i∈I for which

T 2 HS := i∈I T (e i ) 2 < ∞.
T HS is called the Hilbert-Schmidt norm and does not depend on the choice of the Hilbert basis.

Proposition 53. Suppose 1 ≤ r < p < ∞. Let T be an r absolutely summing operator between Banach spaces X and Y . Then T is p absolutely summing and π p (T ) ≤ π r (T ).

Proof. Choose x 1 , • • • , x n ∈ X and observe that if λ k := T (x k ) p/r-1 , then T (x k ) p = T (λ k x k ) r . Since T is r absolutely summing, we have Hence i∈I T (e i ) 2 ≤ C 2 < ∞.

Let us prove the opposite implication. If T is a Hilbert-Schmidt operator, it is compact. Hence T * T is compact and self-adjoint. We can therefore exhibit a Hilbert basis (e i ) i∈I consisting of T * T eigenvectors; there exist s i ≥ 0 such that T * T (e i ) = s i e i . Let (x k ) n k=1 be a H valued finite sequence; we write x k := i∈I a k,i e i for any k ∈ {1, • • • , n}. As i∈I s i is the square of the Hilbert-Schmidt norm of T , and so is finite. Hence we can conclude.

L p spaces

Let 1 ≤ p ≤ ∞. We denote ℓ n p the space R n normed by where the infimum is taken among all isomorphisms T : X → Y . In particular, if X and Y are not isomorphic, d(X, Y ) = ∞.

Definition 13. Let λ > 1. A Banach space X is said to be an L p,λ space if for all finite dimensional subspace E ⊂ X, there exists a finite dimensional subspace F ⊂ X which contains E and d(F, ℓ dim F p ) ≤ λ. X is called an L p space if there exists λ > 1 such that X is an L p,λ space. Proposition 55. Let (X, S, µ) be any measure space and 1 ≤ p ≤ ∞. L p (X, S, µ) is an L p,λ space for all λ > 1.

Proof. Choose E ⊂ L p (X, S, µ) a finite dimensional subspace and let (f 1 , • • • , f n ) be a basis of E, such that f k p = 1 for all k ∈ {1, • • • , n}. Let α > 0. There exist simple functions g 1 , • • • , g n such that f kg k ≤ α for all k ∈ {1, • • • , n}. There exists a partition of X in S measurable sets {X 1 , • • • , X m } such that each g k is constant on X j , for 1 ≤ j ≤ m. In other words, if we denote by F 1 the subspace generated by the characteristic maps ✶ X j , 1 ≤ j ≤ m and by E 1 the subspace generated by the maps g k , 1 ≤ k ≤ n, then E 1 ⊂ F 1 . F 1 is clearly isometric to ℓ m p . Since all n dimensional spaces are isomorphic, there exists a constant C > 0 such that for all f ∈ E, f := n k=1 a k f k , we have Hence the linear map E1 → R, g k → 0 if k = l and g l → 1 is continuous with norm ≤ C/(1 -αC). By Hahn-Banach theorem, there exists an extension φ l ∈ F * 1 such that φ l ≤ C/(1 -αC). We define T : F 1 → L p (X, µ) by

T (f ) := f + n k=1 φ k (f )(f k -g k ).
It is straightforward to see that T (g k ) = f k , thus F := T (F 1 ) contains E. Now for any

f ∈ F 1 , T (f ) -f p ≤ nαC(1 -αC) -1 f p , thus 1 - nαC 1 -αC f p ≤ T (f ) p ≤ 1 + nαC 1 -αC f p
If α is small enough, then T defines an isomorphism from F 1 to F , and computing T , T -1 , we see

d(F, F 1 ) ≤ 1 + nαC 1 -αC 1 - nαC 1 -αC -1
For any λ > 1, choosing α small enough, the right-hand side can be ≤ λ. Theorem 26. Let K be a compact Hausdorff topological space. For any λ > 1, C(K) * is an L 1,λ space.

Proof. It is a straightforward consequence of the results of section 6.3 : C(K) * is an abstract L space and by Proposition 55 we infer that it is an L 1,λ space for all λ > 1.

Here, we give an alternative and somewhat more elementary proof which does not use any Banach lattice argument. Recall that C(K) * is the space of signed Radon measure on K normed by the total variation. Fix λ > 1. Let E ⊂ C(K) * be a finite dimensional subspace generated by a family µ 1 , . . . , µ n . Each Radon measure µ i (1 ≤ i ≤ n) is absolutely continuous with respect to µ := |µ 1 | + • • • + |µ n |. The embedding ι : L 1 (K, µ) → C(K) * , f → f µ is an isometry. We denote by f i ∈ L 1 (K, µ) the Radon-Nikodým derivative of µ i with respect to µ. By Proposition 55, there exists a finite dimensional subspace F ⊂ L 1 (K, µ) which contains f i (1 ≤ i ≤ n), such that d(F, ℓ m 1 ) ≤ λ, where m := dim F . Then d(ι(F ), ℓ m 1 ) ≤ λ and E ⊂ ι(F ). Hence C(K) * is an L 1,λ space.

Grothendieck theorem

Theorem 27 (Grothendieck inequality). There exists a universal constant K G , called Grothendieck constant so that for any m, p > 0, any real matrix (a jk ) p,m j,k=1 , having the property that for any finite real-valued sequences (s j Proof. The proof presented here is taken from [START_REF] Blei | An elementary proof of the grothendieck inequality[END_REF]. It is very elementary compared to other proofs, but we eventually obtain a bad upper bound for the Grothendieck constant.

Let us denote R (N) the space of real-valued sequences with finitely many nonzero terms. We equip R (N) with the inner product x, y := n∈N x(n)y(n).

Since the vectors u 1 , . . . , u p , v 1 , . . . , v m live in a finite dimensional subspace of H isometric to some ℓ N 2 and there is an isometry ℓ N 2 → R (N) , we can restrict ourselves to the case H = R (N) (though this is not a Hilbert space). Note that we can easily assume m = p, completing the matrix (a jk ) and the vectors (u j ), (v k ) with zeros if necessary. We define A : R (N) × R Let (Z n ) n∈N be a sequence of independent real-valued random variables on some probability space such that E(Z n ) = 0, E(Z 2 n ) = 1 and |Z n | = 1 almost surely. (Such a sequence of independent variables is provided by the Rademacher functions defined on the unit interval [0, 1] with the Lebesgue measure, r n (x) := (1 + sign(sin 2nπx))/2). Given x ∈ R (N) , we define a complex valued random variable

F (x) := n∈N (1 + iZ n x(n)) .
Almost surely, we have Let (E J ) J≥2 be an infinite partition of N in infinite subsets. Let W J be the J dimensional wedge of N J given by

|F (x)| ≤   n∈N (1 + x(n) 2 )   1/2 = A(x, x) 1/2 ≤ e x 2 /2 .
W J := {(n 1 , . . . , n J ) ∈ N J : n 1 > • • • > n J },
and set up a one-to-one correspondance between E J and W J , (J ≥ 2): α J : E J → W J . Given an arbitrary x ∈ R (N) , x ≤ 1, we define a vector φ(x) := (φ(x)(n)) n∈N in R (N) setting φ(x)(n) := x(n 1 ) • • • x(n J ) whenever n ∈ E J and (n 1 , . . . , n J ) := α J (n). Once again, we estimate

φ(x) =   ∞ J=2 n∈W J (x(n 1 ) • • • x(n J )) 2   1/2 ≤    ∞ J=2 1 J!   n∈N x(n) 2   J    1/2 ≤ e x 2 -1 -x 2 1/2
≤ (e -2) 1/2 < 1.

Let us define δ := (e -2) 1/2 and φ δ (x) = δ -1 φ(x), for all x ∈ R (N) , x ≥ 1. Then φ δ (x) ≤ 1. Fix x, y in the unit ball of R (N) and expand A(x, y): A(x, y) := 1 + x, y

+ • • • + n 1 >•••>n J x(n 1 ) • • • x(n J )y(n 1 ) • • • y(n J ) + • • •
Therefore x, y = A(x, y) -1δ 2 φ δ (x), φ δ (y) . Applying this formula recursively, we obtain for each J > 0

x, y = J l=0 (-δ 2 ) l (A(φ l δ (x), φ l δ (y)) -1) + (-δ 2 ) J+1 φ J+1 δ (x), φ J+1 δ (y) .

Finally, letting J → ∞, we deduce

x, y = ∞ l=0 (-δ 2 ) l (A(φ l δ (x), φ l δ (y)) -1)

Now, we can establish Grothendieck inequality. We are given u 1 , . . . , u m , v 1 , . . . , v m ∈ R (N) and by a homogeneity argument, we can assume all these terms to lie in the unit ball of R (N) . Then The proof is finished and K G ≤ (e + 1)/(3e).

Theorem 28 (Grothendieck theorem). Let X be an L 1,λ space, with λ > 1, H a Hilbert space. Every bounded operator T : X → H is 1-absolutely summing and π 1 (T ) ≤ K G λ T .

Proof. First of all, we claim that for any m ≥ 1 and any bounded operator u : ℓ m 1 → H, π 1 (u) ≤ K G u . Indeed, let u be such an operator. Choose x 1 , • In particular, if we choose y j := u(x j ) -1 u(x j ) if u(x j ) = 0 (and y j is any vector in the unit ball of H if u(x j ) = 0) then Thus π 1 (u) ≤ K G u . Now we turn back to the main result. Choose a finite family x 1 , . . . , x n in X and denote E the finite dimensional subspace it generates. There exists a finite dimensional subspace F ⊂ X which contains E and such that d(F, ℓ m 1 ) ≤ λ. Let α : ℓ m 1 → H be an isomorphism such that α α -1 ≤ λ. Up to normalizing, we can suppose α = 1 and α -1 ≤ λ. By the above claim, the π 1 norm of T α : ℓ m 1 → H verifies π 1 (T α) ≤ K G T α ≤ T . Thus,

n k=1 T (x k ) = n k=1 T α(α -1 (x k )) ≤ K G T sup n k=1 | ξ, α -1 (x k ) | : ξ ∈ ℓ ∞ m , ξ ∞ ≤ 1 = K G T sup n k=1 | α -1 * (ξ), x k | : ξ ∈ ℓ ∞ m , ξ ∞ ≤ 1 ≤ λK G T sup n k=1 | ζ, x k | : ζ ∈ F * , ξ ∞ ≤ 1 = λK G T sup n k=1 | ζ, x k | : ζ ∈ X * , ξ ∞ ≤ 1
where the last equality follows from Hahn-Banach theorem. We conclude that T is 1-absolutely summing and π 1 (T ) ≤ λK G T .

that any accumulation point of (ϕ n ) n is a fixed point of T x . Hence F x = ∅.

By an easy induction argument and the fact that the maps T x commute with each other, ∩ x∈F F x = ∅ for any finite subset F ⊂ X. And since W is weak* compact, ∩ x∈X F x = ∅. Now choose M ∈ ∩ x∈X F x . Theorem 29. Let X and Y be Banach spaces, let X 0 be a closed subspace of X. Let S : X 0 → Y be a bounded linear operator, and assume that f : X → Y is a uniformly continuous function such that f ↾ X 0 = S. Then there is a linear operator T : X → Y * * such that

(1) T ↾ X 0 = S,

(2) T ≤ osc(f ; 1).

Proof. We will consider Y as a subspace of Y * * . Let M 0 and M be Y * * valued invariant means on respectively X 0 and X.

Since f is uniformly continuous, the function

h z : y → f (z + y) -f (y)
is bounded for each z ∈ X. More precisely, sup y h z (y) ≤ osc(f ; z ). Thus g(z) := M 0 (h z ) is well defined. Furthermore, for every z, z ′ ∈ X, Now some z ∈ X 0 . By invariance of translation in the X 0 direction and the fact that f ↾ X 0 is linear, we get

g(z) -g(z ′ ) = M 0 (h z -h z ′ ) ≤ sup
g(z + z) = M 0 (h z+z ) = M 0 (x → f (z + z + x) -f (z + x)) + M 0 (x → f (z + x) -f (x)) = M 0 (h z ) + M 0 (f (z)) = g(z) + f (z) = g(z) + S(z). ( 53 
)
In particular, g(z) = S(z) by taking z = 0. The map

T (z) := M (x → g(z + x) -g(x))
is well defined because we noticed g inherited the uniform continuity of f . By invariance of M ,

T (z + z ′ ) = M (x → g(z + z ′ + x) -g(z ′ + x)) + M (x → g(z ′ + x) -g(x)) = T (z) + T (z ′ )
thus T is additive. Moreover, we easily have that sup{ T (z) : z ≤ 1} ≤ osc(g; 1) ≤ osc(f ; 1).

From this and the additivity of T , we infer that T is linear. Finally, by (53), g(x + z)g(x) = S(z) for each z ∈ X 0 and x ∈ X. Therefore T (z) = S(z).

Continuous representation operators 7.1 Main theorem

We will need this following theorem, which is of independent interest. Let us recall that n ≥ 2.

Theorem 30. Neither BV(I n ) nor BV 1 * (R n ) is complemented in an L 1 space. In particular none of these is itself an L 1 space.

Proof. The following proof is inspired from [BB03, second proof of Proposition 2]. Let L be an L 1 space containing BV(I n ). Suppose there exists a continuous left inverse π to the inclusion map ι : BV(I n ) → L. Let f : L 2 ((0, 1) n ) → W 1,1 ((0, 1) n ) be the linear map such that for any multi-index α ∈ Z n ,

f : cos(2πα • x)) → cos(2πα • x) 1 + |α| 2 , sin(2πα • x) → sin(2πα • x) 1 + |α| 2 .
f is easily seen to be continuous since it factors through W 1,2 ((0, 1) n ):

f : L 2 ((0, 1) n ) -→ W 1,2 ((0, 1) n )

incl.

-→ W 1,1 ((0, 1) n )

Let g : L 1 * ((0, 1) n ) → L 2 ((0, 1) n ) be the bounded (by Sobolev embedding theorem) multiplier operator

g : cos(2πα • x) → cos(2πα • x) (1 + |α|) n/2-1 , sin(2πα • x) → sin(2πα • x) (1 + |α|) n/2-1 ,
for every α ∈ Z n . We have the following commutative diagram :

L 2 ((0, 1) n ) f Ψ ( ( L π L 2 ((0, 1) n ) W 1,1 ((0, 1) n ) ι 1 / / BV(I n ) ι O O ι 2 / / L 1 * ((0, 1) n ) g O O
ι 1 is the inclusion map W 1,1 ((0, 1) n ) ⊂ BV(I n ). ι 2 is the Sobolev inclusion map BV(I n ) ⊂ L 1 * ((0, 1) n ), and Ψ := gι 2 ι 1 f . The boundedness of the inclusion map ι 1 is guaranteed by the boundedness of the extension by zero operator for BV maps (see [EG92, Section 5.4, Theorem 1]). The linear map gι 2 π maps an L 1 space into a Hilbert space; we infer from Grothendieck theorem that it is 1-absolutely summing. So is Ψ : L 2 ((0, 1) n ) → L 2 ((0, 1) n ) by virtue of Proposition 52. Thus it is 2-absolutely summing according to Proposition 53. Then by Proposition 54, it is a Hilbert-Schmidt operator. However we have

Ψ 2 HS = Ψ(1) 2 + 1 2 n α∈Z n \{0} Ψ(cos(2πα • x)) 2 L 2 + Ψ(sin(2πα • x)) 2 L 2 = 1 + 1 2 n-1 α∈Z n \{0} 1 (1 + |α| 2 )(1 + |α|) n-2 = +∞,
The map S * • ev Z * is a right inverse to ι * , because one easily checks that ev * Z • ev Z * = id Z * . Therefore, the exact sequence splits linearly, and CH 0 (R n ) * is complemented in C 0 (R n , R n ) * . Since CH 0 (R n ) * is isomorphic to BV 1 * (R n ), it remains to be proven that C 0 (R n , R n ) is an L 1 space.

To do so, remark that the n sphere S n is the Alexandroff compactification of R n , so C 0 (R n , R n ) is isomorphic to a (closed) hyperplane of C(S n , R n ). This space is isomorphic to its hyperplanes (it is an immediate consequence of [AK06, Proposition 4.4.1]), thus

C 0 (R n , R n ) * ≃ C(S n , R n ) * ≃ (C(S n ) n ) * ≃ (C(S n ) * ) n ,
and (C(S n ) * ) n is an L 1 space as a finite product of L 1 spaces.

Let us mention what follows: a corollary of Michael's selection theorem (see [BL00, Chapter 1, Section 3]) asserts that each surjective linear map between Banach spaces has a continuous right inverse, or equivalently, each closed subspace of a Banach space is a continuous positively homogeneous retract. But the proof of Michael's theorem does not provide us with a concrete continuous retraction. One also obtains the existence of a non continuous linear retract C 0 (R n , R n ) → ker div by elementary linear algebra.

Adaptation to charges of positive codimension

Let us introduce the following notations

E m,X := C u (X, ∧ m R n ) × C u (X, ∧ m-1 R n )
and Θ m,X : E m,X → CH m (X) be the map (ω, ζ) → Λ(ω) + dΛ(ζ).

The representation theorem 21 shows that the map Θ m,X is onto. Representing charges deals with picking one right inverse to Θ m,X . Michael's selection theorem is also true for Fréchet spaces (the proof of [BL00, Theorem 1.1] remains valid in the case of Fréchet spaces), therefore the existence of a continuous right inverse to Θ m,X is guaranteed. The following theorem proves that one cannot however require such an inverse to be uniformly continuous. 

  p p (f ; U ) of a Sobolev Q-valued map f by relaxation Dir p p (f ; U ) := inf U |Df j | p dL m : f j are Lipschitz and converge weakly to f ,

Proof.

  Write Af (a) = ⊕ Q i=1 A i , and define α = max{ A 1 , . . . , A Q }, where A denotes the operator norm of the linear part of A. Put k = σ(f (a)). There exist f 1 (a), . . . , f k (a) ∈ Y and positive integers Q 1

B

  . White's addition (B) to F.J. Almgren's embedding Theorem 4 has the following rather useful consequence. Here the linear spaces Hom(R m , R ν ) (ν = n or ν = N ) are equipped with the norm

  It follows that f and Υ(f ) are approximately differentiable L m almost everywhere, and that |Df (x)| = |||DΥ(f )(x)||| at each point x ∈ U where both are approximately differentiable.

  where ξ is the Almgren embedding described in Theorem 4. ThusV |||D(ξ • g)||| p dλ ≤ lim inf j V |||D(ξ • g j )|||p dλ according to classical finite dimensional Sobolev theory: the above functional is weakly lower semicontinuous because it satisfies the hypotheses of [Dac08, Section 3.3, Theorem 3.4]. It then follows from Corollary 3 that V |Dg| p dλ ≤ lim inf j V |Dg j | p dλ .

  B), (D) and (E) above (for Lipschitz maps f , f 1 , f 2 ) and (C) replaced with (C') For every Lipschitz f :

  0 and, for each n, |Df n (x)| ≤ |δf |(x) for L m almost every x ∈ A n ; (D) lim n |Df n (x)| = |δf |(x) for L m almost every x ∈ U .

  is a Lipschitz continuous multiple valued map defined on an open set in R m (or more generally lying in a Sobolev class), f = (f 1 , . . . , f Q ) then Df = ⊕ Q i=1 Df i almost everywhere on U . Therefore, the differential Df can be seen as the usual (Df 1 , . . . , Df Q ) ∈ Hom(R n , R Q ). All spaces will be given their canonical Euclidean structure. Since no confusion can arise, we will denote by • such a Euclidean norm, except for the normed spaces (R, |•|) and (C, | • |), for example

Proposition 28 .

 28 Let (Ω ι ) ι∈I on open cover of Ω. If f is squeeze ( resp. squash) stationary on each Ω ι , then it also is on Ω. Proof. Let us choose a locally finite open cover (W ι ) ι∈I subordinate to (Ω ι ) ι∈I and a partition of unity ϕ ι ∈ C ∞ c (Ω, R), with supp ϕ ι ⊆ W ι . If ϕ ∈ C ∞ c (U, R m ), ϕ can be written as a finite sum ϕ = ι∈I ϕ ι ϕ.

  a nonzero stationary multiple valued function on a domain Ω.

  whose range consists of all currents with compact support. The boundary of an m dimensional current T is the (m -1) dimensional current ∂T defined by ∂T, ω := T, dω if 1 ≤ m ≤ n and ∂T = 0 otherwise. The mass of a current is the extended real number M(T ) := sup{ T, ω : ω ∈ D m (R n ), sup x ω(x) ≤ 1}.

  closed set. By Banach-Alaoglu theorem (in general topological vector spaces, see [Rud06, Theorem 3.15]),{T ∈ D m (R n ) : | T, ω | ≤ c, | T, dω | ≤ c if sup ω ≤ 1, supp T ⊂ X}is compact in the weak* topology W * . As a closed subset, N m,c (X) is W * -compact.

  a contradiction appears. Hence, there exists k ≥ 1 such that the sequence (T i ) is in N m,k (B n (0, k)). By Proposition 43, there exists a subsequence of (T i ) thatF ↾ N m,k (B n (0, k))-converges to T ∈ N m,k (B n (0, k)). Hence (T i ) converges to T in (N m (R n ), F R n ,m ). Thus lim F i = lim Υ(T i ) = Υ(T )by the continuity of Υ. Therefore, G = Θ * (Υ(T )), and Θ * (CH m (R n )) is sequentially strongly closed in R n .

.

  By Hölder inequality with the conjugate indices p/(pr) and p/r, we haven k=1 λ r k | ξ, x k | rLet H be a Hilbert space, and let T : H → H be a bounded operator. T is a Hilbert-Schmidt operator if and only if T is 2-absolutely summing.Proof. Suppose T is 2-absolutely summing. Let (e i ) i∈I be a Hilbert basis in H. There exists C ≥ 0 such that for each finite subsetJ ⊂ I, j∈J T (e j ) 2 ≤ C 2 sup    j∈J | ξ, e j | 2 : ξ ∈ H, ξ ≤ 1    ≤ C 2 .

T

  (x k ) 2 = n k=1 T * T (x k ), x k = n k=1 i∈I a k,i s i e i , i∈I a k,i e i k 2 : ξ ∈ H, ξ ≤ 1 .

  if p < ∞ and x ∞ := max i |x i |. Definition 12. Let X and Y be Banach spaces. The (multiplicative) Banach-Mazur distance between X and Y is defined to be d(X, Y ) := inf T T -1 ,

a k g k p ≤

 p Hence if α is small enough, that is α < C -1 , since (1 -αC) f p ≤ n k=1 (1 + αC) f p , f k → g k defines a isomorphism between E and E 1 .For all a 1 , . . . , a n ∈ R, for all l ∈ {1, • • • , n}, we have|a l | ≤

aa

  jk s j t k ≤ max j |s j | max k |t k |, then for any Hilbert space H and any H valued finite sequences (u j ) p j=1 , (v k ) m k=1 , we have jk u j , v k ≤ K G max j u j max k v k .

  (N) → R by A(x, y) := n∈N (1 + x(n)y(n)) .We have the following estimate|A(x, y)| ≤ exp

Foraa

  any x, y ∈ R ( N), by independence of the random variables Z n ,E(F (x)F (y)) = n∈N E ((1 + iZ n x(n))(1 -iZ n y(n))) = n∈N E 1 + iZ n (x(n)y(n)) + Z 2 n x(n)y(n) = A(x, y)Thus, for any R (N) valued finite sequences (x j ) m j=1 and (y k ) m k=1 which lie in the unit ball of R (N) , we have jk E(F(x j )F (y k )) jk E(F (x j )F (y k )) ≤ max j |F (x j )| max k |F (y k )| ≤ e

a

  jk (A(φ l δ (u j ), φ l δ (v k )) -1)

a

  jk y j , u(e k ) ≤ K G sup j y j sup k u(e k ) ≤ K G u sup j y j .

a

  jk y j , u(e k ) ≤ K G u

y∈X 0 h

 0 z (y)h z ′ (y) = sup y∈X 0 f (z + y)f (z ′ + y) ≤ osc(f ; zz ′ ).

Theorem 32 .

 32 Assume n ≥ 2 and 2 ≤ m ≤ n. Let X a subset of R n which contains a bilipschitz copy of the m-cube. The linear mapΘ m,X : E m,X -→ CH m (X)has no uniformly continuous right inverse.Proof. Suppose that Θ m,X has a uniformly continuous left inverse S. The map(ω, η) → (ω, η) -S(Λ(ω) + dΛ(η))is a uniformly continuous retraction of E m,X onto ker Θ m,X . Proceeding as in Theorem 31, one proves that the dual sequence0 / / CH m (X) * Θ * m,X / / E * m,X/ / (ker Θ m,X ) * / / 0

  

be Lipschitz continuous and assume that Y has the Radon-Nikodým property. It follows that

  

	(A) For λ almost every a ∈ X, f is unambiguously approximately differentiable at a, and Af (a

  be stationary, and h : Ω → R be a harmonic function. It follows that f ⊕ h is stationary.Proof. Let us first check that f ⊕ h is squeeze stationary. The first term in the left-hand side of Equation (27

  • • , x p ∈ ℓ m 1 such that for all ξ ∈ ℓ m ∞ , p j=1 | ξ, x j | ≤ ξ ∞ ; write x j := m k=1 a jk e k , where (e k ) m k=1 denotes the standard basis in ℓ m 1 . For all s := (s 1 , • • • , s p ) ∈ R p and t := (t 1 , . . . , t m) ∈ R m , note that Hence by Theorem 27, for any y 1 , . . . , y p ∈ H, we have

	p	m		p		m	
	j=1	k=1	a jk s j t k ≤	j=1	|s j |	k=1	a jk t k
				p			
			≤	j=1	s ∞ | t, x j |
			≤ s ∞ t ∞	

For f this is in the sense of Theorem

3(C)

i.e. for every 1 < p < ∞ there exists an extension operator W 1 p (U ) → W 1 p (X) for classical Sobolev spaces; for instance U has Lipschitz boundary

As previously, one can apply Lemma 6 to C ′ . Furthermore, a ∈ C ′ . Consequently, there is an open interval J such that a ∈ J ⊂ C ′ . For all x ∈ J, there is some z ∈ Branch(f ) ∩ B 2 ((a, M (a)), 2ρ) ∩ π -1 ({x}). We infer that M (x) ≥ M (a) -2ρ. Thus lim inf x→a M (x) ≥ M (a) -2ρ. As ρ is arbitrarily small, this proves the lower semi-continuity.

Let as before (x n ) be a sequence in (-ε, ε) converging to a. As (x n , M (x n )) → (a, M (a)), by (47), the limit points of (x na, M (x n ) -M (a))

are ±(cos ϕ(a, M (a)), sin ϕ(a, M (a)). Therefore,

x na = tan ϕ(a, M (a)).

Thus M is a solution of the differential equation M ′ (x) = tan ϕ(x, M (x)). Similarly we prove the same for m. As M (0) = m(0) = 0, we conclude M = m, which means that Branch(f ) ∩ B 2 (0, 2r) ∩ π -1 (-ε, ε) is the graph of a C ∞ function.

The following proposition explains that we should think of points in Branch 1 (f ) as false branch points: Proposition 39. Suppose z 0 ∈ Branch 1 (f ). Then f is the sum of two harmonic functions in a neighborhood of z 0 .

Proof. Suppose f is centered and z 0 = 0. As H f (0) = 0, there is a neighborhood V of 0 such that V ∩ Branch 2 (f ) = ∅, and a antiholomorphic function g : V → C such that for all z ∈ V , H f (z) = g(z) 2 = 0. Recall that H f = Df + 2 almost everywhere. The equality is satisfied everywhere on {f + > 0}, since on that set f + is harmonic. Let us define u : V → R by

We will prove that u is harmonic. As f = u + -u , that will end the proof.

• u is continuous: this is induced by the continuity of f ,

• u is a C 1 map on V \ Branch(f ), and Du = g is the restriction on V \ Branch(f ) of a continuous map,

As in Theorem 18, define

and C := π(A). A is closed in π -1 [0, r), thus C is a locally closed subset of [0, r). One proves as before that 0 ∈ C, Tan(C, 0) = R + and Tan(C, x) = R for all x ∈ C \ {0}. A slight adaptation of Lemma 6 implies that there is some ε

As in Theorem 18, we prove that M (0) = 0, M is continuous on [0, ε) and

α is nondecreasing, and lim x→0 α(x) = 0 because

)) = π, we infer from Equation (49) that ϕ(x, M (x)) → 0 as x → 0. This and (50) implies that M is differentiable at 0 and M ′ (0) = 0. We define M :

γ is obviously locally Lipschitz continuous with respect to y. If we prove that α is continuous, this will imply that γ is continuous on (-∞, ε) × R. By the Picard-Lindelöf theorem, the solution of the Cauchy problem y ′ = γ(x, y), y(0) = 0 is unique. Let us call m the extension by zero of m on (-∞, ε). We prove as well that m is a C 1 solution of this problem. Thus M = m, i.e Branch(f ) is a C 1 curve starting at 0 in a neighborhood of 0 in K + (1, π/5ν). We treat as well the 2ν -1 other sectors.

It remains to prove that α is continuous. We already proved that α is continuous at 0

In case x ′ = x 0 , then y ′ = M (x 0 ) and α(x 0 ) = arg(x 0 + iM (x 0 )). Moreover,

where (e 1 , . . . , e n ) is the canonical basis of R n . One easily checks that if (τ 1 , . . . , τ m ) is an orthonormal basis of A, then

for all continuously differentiable vector fields

The notion of excess measures how much a varifold is far from being "flat".

In order to prove Conjecture 1, one needs a Lispchitz approximation theorem. The following is well known.

then there is γ = γ(α) and an application f :

However, this approximation is not powerful enough for our purposes. One needs to sharpen the estimate (2) and bound the non graphical part of M by the excess to a power 1 + ε. This is mainly because the equations ( 26) and ( 27) involve the gradient to the square. 

Part II

Representation of charges

Appendix to Part II

spaces under consideration are endowed with canonical norms. The space of charges vanishing at infinity will be denoted by CH 0 (R n ). It is a proper subspace of CH n (R n ), which contains the space of continuous vector fields, vanishing at infinity C 0 (R n , R n ).

Let 1 * be the Sobolev conjugate exponent 1 * := n/(n-1) and BV 1 * (R n ) be the space of functions ϕ ∈ L 1 * (R n ) whose gradient ∇ϕ is a finite vector valued measure, i.e.

The following holds [PT11, Theorem 6.1 and Section 7]

Theorem 22. Let F be a linear functional on BV 1 * (R n ). There is a continuous vector field v : R n → R n vanishing at infinity such that for all ϕ ∈ BV 1 * (R n )

A functional F satisfying the hypothesis of Theorem 22 is called a charge vanishing at infinity. A function f ∈ L n (R n ) is a charge vanishing at infinity, and so is the distributional divergence of a continuous vector field vanishing at infinity (see [PT11, Propositions 3.4 and 3.5]). Let us rephrase Theorem 22: there is continuous surjective linear operator div :

where CH 0 (R n ) stands for the space of charges vanishing at infinity. Contrary to the Poisson equation, the nonhomogeneous equation div v = F lacks of uniqueness properties.

In the sequel n will be a fixed integer larger than 2. I is the unit segment [0, 1]. We denote by C 0 (R n , R n ) the space of continuous vector fields vanishing at infinity, i.e continuous maps v : R n → R n such that for any ε > 0 there exists a compact

If X is a subset of R n we denote by BV(X) the space of maps ϕ ∈ L 1 (R n ) of bounded variation and compact support in X. We endow BV(X) with the norm ϕ BV(X)

in BV(X) whenever X is a Lebesgue measurable set with finite measure and the characteristic function ✶ X has bounded variation. However • BV(X) has the geometrical meaning of a normal mass.

A splitting theorem

In this part, we will present a method to linearize some maps between Banach space. A first attempt would be to differentiate them. However, even differentiation (at one point) of Lipschitz maps between most non reflexive Banach spaces is difficult to obtain, and false in general. Instead we will use the method of invariant means, which applies to general uniformly continuous functions. An invariant mean is a sort of generalized integral functional "with respect to a translation invariant probability measure". The material here is fully exposed in [BL00][Chapter 7]. Definition 14. Let X be a Banach space. An invariant mean on X is a linear map

We will prove that invariant means exist in all Banach space in Proposition 56. Actually, we can prove the existence of (left) invariant on every (possibly noncommutative) semigroup (replacing the topological condition (2) by the equivalent requirement M (f ) ≥ 0 whenever f ≥ 0). Though, we shall need invariant means only on Banach spaces. If Z * is a dual space, one can construct a vector-valued invariant mean M : ℓ ∞ (X; Z * ) → Z * in the same way the Pettis integral is defined from the Lebesgue integral. Indeed, define M (f ), z := M (x → f (x), z )

for every z ∈ Z. M trivially satisfies the requirements (1), (2) and (3) of Definition 14.

Proposition 56. Let X be a Banach space. Then X admits an invariant mean.

Proof. Let W be the subset of ℓ ∞ (X) * consisting of the linear forms ϕ ∈ ℓ ∞ (X) * such that

The set W * is convex and weak* compact. For any x ∈ X and ϕ ∈ W , we define

Trivially, T x (W ) ⊂ W and T x is weak* continuous. We claim that the set F x := {ϕ : T x (ϕ) = ϕ} is empty. To see this, fix any ϕ ∈ W and define

It follows from

and this is contradictory. Now let us remark that BV 1 * (R n ) contains BV(I n ) and the norm induced by

BV(I n ), and it is bounded (see [EG92, Section 5.4, Theorem 1] to justify this step).

Thus BV(I n ) is complemented in BV 1 * (R n ) and by the above part, BV 1 * (R n ) cannot be complemented in an L 1 space.

This result is false if n = 1. In fact, the map f → (f (0), f ′ ) defines an isomorphism between BV [0, 1] and R × C[0, 1] * . R × C[0, 1] * is a product of L 1 spaces, and thus is an L 1 space. We can now prove the main theorem of this paper. If there exists a uniformly continuous right inverse s to div, then v → vs(div v) is a uniformly continuous retraction of C 0 (R n , R n ) onto its subspace ker div. Such a retraction is forbidden by the following result: Theorem 31. There is no uniformly continuous retraction from C 0 (R n , R n ) onto ker div.

Note that if we replace "uniformly continuous" with "bounded linear", this theorem is an easy consequence of the preceding result. Indeed, a bounded linear retraction r :

Therefore the dual sequence

-→ (ker div) * -→ 0 would also split. The key observation is that

see the following proof), and this is contradictory.

Now, if we suppose there is a uniformly continuous retraction r, we wish to linearize r to obtain a contradiction. We want to apply the results of subsection 6.7. However ker div is not a dual space (otherwise, since it is separable, it would be a Radon-Nikodým space by Dunford-Pettis theorem, but the space c 0 of convergent sequences is embeddable in ker div). This leads to a small complication in the proof below: we will embed ker div into its bidual (ker div) * * .

Proof. For sake of brevity, we denote ker div by Z. One argues by contradiction, assuming the existence of a uniformly continuous retraction r. By theorem 29, there exists a bounded linear map S :

We let ev Z * be the evaluation map Z * → Z * * * and ι : Z → C 0 (R n , R n ) be the inclusion map, and consider the following commutative diagram

splits linearly. We now prove Theorem 32 in three steps.

Step 1. We prove the theorem in top dimension m = n, for X = I n .

Suppose there exists a continuous right inverse for Θ n,I n , from CH n (I n ) to E n,I n . We dualize it and obtain a continuous left inverse

Thus BV(I n ) is a complemented subspace of an L 1 space and this is contradictory with Theorem 30.

Step 2. We prove the theorem under the hypothesis 2 ≤ m < n and

) has a continuous linear right inverse τ , we dualize it and obtain a continuous linear map

We let δ 0 ∈ M 0 (I n-m ) be the Dirac mass at 0, i.e δ 0 (ω) := ω(0) for all ω ∈ D 0 (R n-m ). Let p : R n → R m be the projection onto the last m coordinates. We define σ : 

δ 0 is compactly supported, Lemma 41 hence implies p # (δ 0 × T ) = δ 0 (1)T = T . This is contradictory by step 1.

Step 3. We prove the theorem under the general assumption.

Let X ⊂ R n such that X contains a bilischiptz copy of the m cube. Up to a bilipschitz transformation, we suppose that X contains I m ×{0}. Suppose there exists a continuous right inverse ϕ : CH m (X) → E m,X for Θ m,X . We denote by ι : I m × {0} → X the inclusion map and by π : X → I m × {0} the projection onto the compact convex set I m × {0}. Note that ι and π are Lipschitz continuous. We define

and this is impossible by step 2.

Appendix to Part II

We now state unproved results on inductive limits in the category of locally convex spaces. Proofs can be found in [START_REF] De Pauw | Charges in middle dimension[END_REF][Section 1]. Definition 15. A nonempty family C of convex subsets of a linear space X is called linearly stable if every C ∈ C contains 0, and for any t ∈ R, x ∈ X and C ∈ C, there exists D ∈ C so that x + tC ⊂ D. Proposition 57. Let (X, T) be a locally convex space, and let C be a linearly stable family. There is a unique locally convex topology T C for X that satifies the following conditions:

Moreover, the topology T C has the following properties:

(

The locally convex topology T C is referred to as the C localized topology. As an example, if X is a locally convex space, and B is a neighborhood basis at 0 consisting of balanced convex sets, then for any U ∈ B, by the Banach-Alaoğlu theorem, the polar set (2) A set E ⊂ X is T C bounded if and only if E is a T bounded subset of some C k .

(3) If (X, T) is sequential, then a linear map f from (X, T C ) to a locally convex space Y is continuous whenever f (x i ) converges to 0 for each sequence (x i ) that T C converges to 0.

Proposition 59. Let (X, T) be a locally convex space, and let C = {C 1 ⊂ C2 ⊂ • • • } be a countable linearly stable family in X consisting of convex compact sets. The following statements hold:

(1) T C = {E ⊂ X : ∀C ∈ C, E ∩ C ∈ T ↾ C}.

(2) For any topological space Y , a map f : (X, T C ) → Y is continuous if and only if the restriction f ↾ C k : (C k , T ↾ C k ) → Y is continuous for all k.

(3) A set E ⊂ X is T C bounded if and only if it is contained in some C k .

(4) The topology T C is sequentially complete.

(5) If (X, T) is sequential, then so is (X, T C ).

Proposition 58 easily implies the following result, which will be useful for extensions of charge. Proposition 61. Let T be the topology in a linear space X associated a norm α, and let β be a lower semicontinuous seminorm in X. Let (X k ) k≥1 be an increasing sequence of closed linear spaces, whose union is X. The subsets C k := {x ∈ X : β(x) ≤ k} form a linearly stable family C. For a linear form f : X → R, the following conditions are equivalent :

(1) f is T C continuous,

(2) ∀ε > 0, ∃θ > 0, ∀x ∈ ∪ k≤ε -1 X k , f (x) ≤ θα(x) + εβ(x). Proposition 62. Let (X, T) be a locally convex space, and let C := {C 1 ⊂ C 2 ⊂ • • • } be a linearly stable family of compact convex subsets of X. Let S be the strong topology in Y := (X, T C ) * . Then the evaluation map Υ : X → (Y, S) * is bijective. In other words, (X, T C ) is semireflexive.

Moreover, if (Y, S) * is given the bounded weak* topology, Υ is a homeomorphism.