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Résumé

La recherche en informatique graphique cherche à produire des algorithmes effi-
caces de génération et de manipulation de données, de simulation physique, et de
visualisation temps-réel pour produire des images de synthèse. La croissance con-
stante de la puissance des machines est talonnée par l’explosion de la demande
en terme de complexité, de réalisme et d’interactivité, motivant la mise au point
de méthodes toujours plus performantes pour générer des images de synthèse. Je
présente dans ce contexte plusieurs contributions dans différents sous-domaines de
l’informatique graphique: (1) l’analyse et le traitement de la géométrie, incluant
un algorithme original de placage de texture ainsi qu’une méthode d’instantiation
automatique de données géométriques; (2) le traîtement d’images avec une général-
isation de la décomposition modale de Hilbert-Huang, et un algorithme de sélection
semi-automatique de régions à partir d’indications imprécises; (3) la simulation de
l’éclairage global et son application à la simulation physiologique de la croissance des
plantes, l’analyse de Fourier de l’opérateur de transport de l’éclairage pour diverses
applications, ainsi que des contributions en rendu temps-réel. Dans une seconde
partie je détaille des pistes de recherche que je considère prometteuses.

Summary

Research in computer graphics aims at producing efficient algorithms for generating
and manipulating data, simulating physical phenomena, and displaying information
in real-time in order to generate synthetic images. The constant increase in com-
putational power is challenged by the explosion of the demand in terms of level of
realism, complexity of simulations and amount of data to handle in interactive appli-
cations. In this context, I present contributions in different sub-domains of research
in computer graphics: (1) geometry analysis and processing including an original
texture mapping algorithm and a method for automatic instancing of scenes; (2)
image processing, for which I propose an extension of the Hilbert-Huang empiri-
cal mode decomposition in 2D and an algorithm for binary content selection from
inaccurate user input; (3) simulation of light transport applied to plant growth sim-
ulation, and Fourier analysis of the light transport operator for various applications
including real-time rendering. Eventually I present potential research tracks that I
consider promising for the future.





Chapter 1

Introduction

“As technology advances, rendering time

remains constant”

Jim Blinn

1.1 Why research in computer graphics?

Computers are ubiquitous, and because our primary interaction with computers is to
look at their screen we need to find proper ways to generate and display information.
Research in computer graphics is all about finding efficient algorithms to compute
images. That includes designing appropriate data representations, processing this
data, simulating the underlying physical phenomena, and being able to shape these
algorithms for a specific kind of hardware. Of course, this is not as simple as it
sounds, and research in computer graphics sometimes produces new theories at a
more fundamental scope. But the ultimate goal is to produce images on computers to
be viewed by humans. In order to understand what research is needed, it is required
to understand what are the problems to solve, and what brings these problems on
the table. A practical answer to this question is to look through the application
domains and see what is the actual demand in computer-related techniques.

Movies. There’s a strong connexion between computer graphics and the movie
industry, and for good reasons: computer generated images have gradually become
a very comfortable alternative to hand-made animatronics and movie sets, crowds,
and even individual actors. Not only does a digital alternative allow to endlessly
explore the possibilities of easy modification of the sets, shooting new view angles
and lighting, but it also allows to simulate otherwise costly processes such as the
destruction of the model. Interestingly, geometric models of creatures involved in
movie making are often generated through a tedious digitalization process of real
models made by artists out of clay.

The movie “Tron” (1982) was the first notable use of computer graphics in a
movie. Jurassic Park (1993) showed photorealistic fully animated computer graph-
ics creatures for the first time. Before that, creatures in movies mostly relied on
animated puppets (a.k.a. animatronics) such as in Alien 1 The Grail is of course to

1The notion of “photorealistic creature” is itself absurd since all these creatures cannot actually

be compared to anything real. I believe that in Jurassic Park, dinosaurs were mostly visible under

the rain, simply because realistic wet lizards required simpler shading models than dry ones.
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Figure 1.1: Typical special effects where the actual shot is performed in front of a

green screen. In post production, numerical simulation and animation are used to

generate the snow that is seamlessly blended into the movie. Images via SpinVFX.

http://www.spinvfx.com/work/game-of-thrones/.

represent human characters in a way that is seamless for the spectator. This is ex-
tremely challenging because, as human beings, we’re ultimately trained to recognize
our own species. Many attempts could be cited. The Curious Case of Benjamin
Button (2008) is a one example of such a successful achievement in this particular
direction, not only because it features very technical facial animation work, but also
because it does not stand in the line of science fiction movies where you would most
naturally expect such technology to be involved. Nowadays some movies are almost
entirely done with computer generated images. Avatar (2009) is a one of them.

Figure 1.1 shows a typical example of integration techniques in the process of
using a green screen during the actual shot, and adding a computer generated set af-
terwards. Seamlessly integrating computer-generated actors/objects and sets into a
movie requires modeling and acquisition of the data, simulation of physical phenom-
ena, and image combination techniques, all of which should deal with huge amounts
of data, and therefore require an equally large computational power. The role of
research in this field is to provide efficient algorithms to perform these tasks while
handling the complexity.

Because of the race for realism and visual complexity, research in computer
graphics works hand-in-hand with movie production companies in order to design
new algorithms and data models. Some of the most successful actors of the movie in-
dustry (Pixar, Digital Domain, etc) have their own research departments in the field
of computer graphics, and they develop their own software suites in order to master
the complete production pipeline (An interesting reference is [Christensen 2012]).
Even algorithms developed by academic researchers have a real opportunity to take
place in today’s movie production, if they are easy enough to adapt to a production
level. This is probably one reason for the implicit “production ready” requirement
of some conferences like Siggraph.

Computational photography refers to the set of automatic treatments of a dig-
ital photograph or an entire set of pictures. The aim is to produce a result that
is not necessarily possible to obtain from an ordinary camera. Examples include:
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panorama stitching, range compression (a.k.a. tone mapping), filtering for image
enhancement or artistic purpose, color and histogram transfers, focus or defocus
operations, motion blur removal, image compression, etc. Most of these techniques
come from the world of image analysis and processing, but can also be considered
to stand in the field of computer graphics. They all involve very advanced im-
age manipulation and filtering techniques, that are the result of years of research.
Recently a significant amount of rather technical work has shown to serve very prac-
tical applications. A typical example is the action to “remove” an object within an
image while automatically filling the place in a consistent way [Hays 2007]. Image
resizing algorithms [Avidan 2007], image re-targeting [Farbman 2009, Chen 2013],
intrinsic image decomposition [Bousseau 2009, Carroll 2011], and edge-aware image
smoothing [Karacan 2013a] have shown truly impressive results as well.

Virtual prototyping is another important application to computer graphics that
is highly demanding of efficient algorithms. The purpose of virtual prototyping is to
validate a product design using computer simulation and visualization. It involves
the design and acquisition of geometry, material and illumination models, the sim-
ulation of undergoing physical processes, and the display of the results. Between
2002 and 2006, I participated in the RealReflect European project 2, which goal was
to build a full virtual prototyping pipeline for cars. The project was a collaboration
between eleven academic and industrial actors (including Daimler in Germany, and
INRIA in France). RealReflect was a representative example of the use of computer
graphics techniques for virtual prototyping, since computer graphics research teams
were involved in all possible stages of the pipeline: acquisition and representation
of light sources, car geometry and material properties; lighting simulation inside
the cars; and rendering in a virtual reality cave using a proper tone reproduction
system. All these techniques have been the subject of a lot of research in particular
to efficiently cope with the huge amount of data involved.

One important problem brought on the table by virtual prototyping is that
the topological and geometrical quality of mesh models need to be consistent with
the algorithms that are used for physical simulation. Finite element methods for
instance are much more stable on meshes with nearly equilateral triangles, which
require careful remeshing techniques [Botsch 2010].

Data manipulation and visualization. Most of the industry works with com-
puters, and requires to visualize all sorts of data. Research problems in computer
graphics that are relevant to data visualization are numerous: the efficient display
of gigantic geometric scenes requires clever occlusion culling algorithms to avoid
unnecessary handling of geometric primitives [Correa 2007]. Automatic placement
of geometric primitives (such as when displaying a large graph [Munzner 2000]),
automatic labeling [Been 2008], and generally the selection of what is displayed are
non trivial problems as well.

2http://cg.cs.uni-bonn.de/en/projects/realreflect/
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Properly accounting for the display technology is sometimes a real challenge
since displays usually have a much lower dynamic range than the scenes they are
supposed to show [Yoshida 2006]. A typical field of application is simulators where
the effect of the sun and reflexions on the windshield of a car for instance need to
be rendered as realistically as possible.

In some situations it might even be necessary to generate additional data on-
the-fly in a way that is consistent with the real data, in order to fill in miss-
ing information. This can be achieved using procedural content generation meth-
ods [Müller 2006, Bruneton 2012].

Video games have a major connexion with research in computer graphics. First
of all, just like movies, video games need the production of computer generated
images. The essential difference is that whereas the movie industry can afford to
spend hours and an enormous computational power to generate photorealistic im-
ages, video games need them fast (By that I mean really fast). The usual outcome
is to trade realism for speed, while trying to keep the best possible ratio between
the two. That is why research in computer graphics is useful in the domain of video
games. One example is the computation of approximate global illumination in real
time [Kaplanyan 2010], because fast enough physically based global illumination
remains out of reach.

The production of digital assets for video games is also a challenge. The usual
size of data for a video game is most of the time several gigabytes, among which
the game logic and display algorithms are a tiny proportion. Most of this data
is actually geometric models, textures, level maps, etc. Generating them takes a
lot of effort to artists, and it is therefore a field of research to produce algorithms
to help generating them automatically. Texture synthesis by example [Efros 1999]
and procedural generation of vegetation and terrain [Génevaux 2013] are such ex-
amples. Handling very large collections of geometric models is also a challenge,
at which various techniques can prove very useful, for instance practical selection
algorithms [Eitz 2012].

Serious games are now becoming more popular. A quick look at the spectrum of
games which have an educational purpose shows an incredible number of application
domains such as defense, education, scientific exploration, health care, emergency
management, city planning, and engineering. However, because serious games are
not primarily intended to provide entertainment, their demand is oriented toward
accurate simulation of physical phenomena.

Art and communication. General conferences such as Siggraph have seen
lots of contributions related to art, which inherently solve a “toy problem” with
an application to the generation of artistic results. Examples include pen-and-
ink [Wilson 2004] and painterly [Hertzmann 2000] illustration, procedural genera-
tion of patterns [Wong 1998], generation of shadows [Mitra 2009], etc. Although the
action of re-creating by a computer program the style of an existing artist may not
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Figure 1.2: 3D Printing example. The program on the left was used to automatically

generate a 18-pieces burr puzzle, which pieces are shown in the middle. A 3D printer

was afterwards used in order to get the real object in hands, at right.

seem always useful, it can be an interesting opportunity to raise more fundamental
questions, some of which are still unsolved. One good example is style capture:
is it possible to automatically recognize which painter produced a given painting?
Another example is to find compromises in the unsolvable problem of temporal co-
herence that arises when drawing 3D objects on a 2D canvas [Bénard 2011]. Finally,
computers are a new space of creativity, which gives lots of room for real artists to
create. Because these artists will probably use computer graphics techniques that
have been previously developed by researchers, one can say that research in com-
puter graphics also serves graphical arts to some extent [StãNculescu 2013].

3D printing is a newly emerging application to computer graphics. It allows rapid
prototyping with side applications in artistic design and health care. Anything can
actually be printed including jewelry, food, consumer replacement parts, and even
buildings. It is currently considered to be the upcoming revolutionary technology
for the 21th century. Figure 1.2 shows such an example where a 3D burr puzzle was
automatically generated by a computer program before being printed for real. Vari-
ous research problems are related to 3D printing, most of which deal with geometric
optimization. Here’s some examples: (1) balance problem: one wants to make
printed models stand, by slightly deforming the object [Prévost 2013, Hergel 2014];
(2) robustness: computing weaknesses in printed shapes [Zhou 2013] and adding
internal structures so as to make the printed object more robust, while limiting the
total amount of matter that is used.Typical solutions involve the generation of bee
hive structure inside void areas; (3) solving geometric constraints of the printing
technology: printing isn’t always possible due to the angles and details of the input
model. Therefore it is necessary to split the model following intrinsic constraints of
the printing material, which can be a geometric challenge. Various extensions of 3D
printing are currently under investigation such as BRDF printing [Matusik 2009].
Also related to 3D printing is the problem of watermarking of 3D digital mod-
els [Wang 2007b].
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Virtual and augmented reality are probably about to explode in everyday
life. This is a consequence of the successful miniaturization of graphics hardware
which are currently on the verge of bringing the accessibility of these techniques
to everyone. The Google glass are a perfect example of such a technique. The
constraints that come with miniaturization require algorithms to be even more effi-
cient. Similarly, Valve (a company that creates video games) is currently exploring
the possibility of using virtual reality devices such as the Occulus Rift 3 for its
games. The connexion between research in computer graphics and virtual reality is
tight, and partly driven by the need for interactivity toward the changes in display
conditions that are quite unpredictable, and maintaining quality in the displayed
images [Pohl 2013].

In summary, all the application domains I just reviewed are an incredible source of
problems to be solved by research in computer graphics, some of which are really
challenging.

1.2 My perception of research in computer graphics

Research in computer graphics ties together a rather large spectrum of sub-domains
that share a common goal: facilitate the generation of synthetic images. These sub-
domains correspond to the various steps involved in the process of image creation:
generation and processing of geometry and photometric data; Modeling; Real time
rendering and offline global illumination; image treatment and computational im-
agery. Some sub-domains are emerging, such as computational photography; some
are already quite mature, as is it the case for lighting simulation and geometry
processing.

Computer graphics is a particularly active domain for three reasons: (1) first,
the constant evolution of technologies involved for display, computation, printing,
and acquisition of data raise new questions and research topics on a yearly basis. It
happens regularly that a new technology brings space for improving existing com-
putational methods that had previously been left aside because their inherent cost
could not previously be handled with current hardware. Algorithms must sometimes
be reshaped in order to fit the programmability constraints of new hardware, as it
has recently been the case for programmable GPUs; (2) Secondly, one side effect
of the constant increasing of computational power is the increasing demand in data
complexity. Therefore, whatever the hardware to solve existing problems, the data
that comes with them always raises the cost to the acceptable limit, meaning that
researchers must always fight to improve the computation cost of existing meth-
ods; (3) Finally, computer graphics stands at the convergence of multiple domains:
physics, geometry, algorithmics, mathematics, perception and vision, which makes
the research inherently cross-domains.

The goal of a researcher in computer graphics is generally to produce algorithms

3See this: http://www.academia.edu/5387318/The_Oculus_Rift_and_Immersion_through_Fear
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to compute images visible by human beings in an interactive application. That cer-
tainly ties the research to a specific set of working principles: computation must be
as fast as possible, which means being able to perform controlled approximations.
Algorithms must be scalable, which mostly means working with hierarchical meth-
ods. The result itself must be tuned to fit the characteristics of the human visual
system: our eyes are more sensitive to some particular types of errors which are not
easily characterized by the simplest mathematical distances. Finally, one generally
needs to aim for simple and robust solutions, and allow as much precomputation as
possible. All the research that I am presenting in this document is driven by these
requirements.

Connexion to other scientific domains

Mathematics are essentially used in computer graphics as a tool [Vince 2010], the
principal aspects of which are linear algebra, probability and statistics, differential
and integral geometry and numerical computation methods. Some sub-domains such
as computational geometry should certainly be counted in the list of contributions
of research in computer graphics since computer graphics need the handling and
processing of geometric models with very specific constraints. A number of work
pieces in computer graphics are therefore really contributing to the mathematics of
geometry processing and differential geometry, that are required by mesh filtering,
interpolation, reconstruction, etc. Similarly, advances in understanding the proper-
ties of the light transport operator might be seens as contributions to the knowledge
of the Fredholm operator for a particular class of discontinuous kernels.

Applications to computer graphics often need to simulate physical phenomena,
even in a simplified way. Therefore, one way to proceed is to start from the phys-
ical models and perform controlled approximations. As a consequence, computer
graphics commonly use notions of mechanics, optics, electromagnetics, and thermal
exchange, and contribute to consistently simplifying them.

Computer vision has strong connections with computer graphics [Lengyel 1998].
Computer vision for instance develops techniques for understanding and acquiring
information from measurements by a captor. Some of these techniques are strongly
related to the problems that material and geometry acquisition techniques in com-
puter graphics are dealing with.

Perception is also a connected research domain [Thompson 2011]. Computer
generated images often need a compromise between computation cost and accuracy,
in order to be generated within a reasonable amount of time. Because these images
are ultimately viewed by the human visual system, it is important to tune the
measures for accuracy in accordance to our own visual system.

Current trends

Computational power increases but the demand for scene complexity increases as
well. It seems that the demand in complexity and realism always goes a little bit
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beyond the current storage and computational capability, which keeps pushing the
research to develop more efficient algorithms. To understand this literally, it is im-
portant to realize that the growth in computational power of graphics processors
has almost every time exceeded Moore’s law. When I was at ENSIMAG in 1996,
my teacher in numerical analysis, Francois Robert, used to talk about the ”latest
Cray machine” that had the incredible power of 1 Teraflop. That same Teraflop
is currently the computational power of the graphics card of my laptop. It is also
common today to distribute computation on farms of computers each having mul-
tiple processors. As suggested by the citation of Jim Blinn in the beginning of this
chapter, the race between computational power and scene complexity is still going
on.

Real time simulation of complex physical phenomena for display purposes is
a major problem. While the problem of physically accurate global illumination for
instance can mostly be understood to be already solved, real-time global illumination
is still out of reach. Because scene complexity keeps increasing, it is likely that at
any time we will never reach real time global illumination for the typical scenes
that are used at that time. For a given level of scene complexity however, real time
global illumination will be reached eventually. The same applies to large scale fluid
simulation, natural phenomena, etc. As a consequence, the quest of researchers in
computer graphics is mostly about scalability of algorithms [Forrest 2003].

Large scale data acquisition is another side effect of the increase of the required
complexity. With the ever increasing demand in realism (especially from the movie
industry) comes the need for larger and more accurate digital models in general.
These models can be of geometric or photometric nature. Acquiring these models
usually involves complex treatments such as filtering, 3D registration, compression,
etc.

Human interaction with computer generated media is also an important aspect
that will need lots of research in the future. Virtual and augmented reality are
a source of many unsolved problems in this field, for instance how to optimize
computation according to unpredictable movements of the user.

So, why do I like it?

First of all, research in computer graphics produces nice images 4. Beyond the
satisfaction of producing a result that might be visually pleasing, the ability to “see”
an algorithm in action is very rewarding.

Variety is certainly an important aspect as well: because computer graphics is
related to so many different research subjects, it is easy to switch between geometry
processing and image analysis which are totally different fields, while using similar
tools in different contexts (e.g. wavelets, Fourier analysis).

Researchers in computer graphics have the opportunity to manipulate very inter-
esting mathematical tools. Among my favorites are spherical harmonics and mesh-

4Even when a program does not work, the faulty result is sometimes surprisingly interesting.

See for instance http://www-evasion.imag.fr/∼Fabrice.Neyret/perso/bugs.html
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based wavelets. I also enjoy implementing and working with numerical methods,
especially for integration. Monte-Carlo algorithms that are used in global illumina-
tion also have some kind of magic power, since you add up billions of random values
in order to compute a result that is eventually not random at all. Implementation
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Figure 1.3: Computer graphics pipeline, with the different sub domains I

contributed to, sorted with respect to light transport, image and geometry

processing. All references are listed in Appendix A. Reference in boldface

are appended in Appendix B. All references are available in PDF format at

http://maverick.inria.fr/Publications/index?author=soler.

aspects are really compelling, especially for hierarchical algorithms, parallel and
SIMD programming, although programming on GPU is sometimes particularly te-
dious and difficult to debug. Beyond that, we’re often working with very recent
graphics hardware that is constantly evolving. Some research in computer graphics
have even influenced the future of existing graphics hardware [Eisemann 2007].

Finally, as shown earlier, there is a enormous set of application domains, and
therefore the opportunities to collaborate with the industry are really significant
and compelling.

1.3 Position of the presented work

I contributed in different sub-domains of computer graphics: simulation of light
transport, geometry processing and image processing. In each of them, my contri-
butions stand at various places in the pipeline of generating synthetic images: data
acquisition and representation, data processing, physical simulation and display.
Figure 1.3 summarizes these connections and displays the various fields in which I
have contributed.

In Chapter 2, I list my academic activities, while in Chapter 3, I will summa-
rize the research I have been involved in since my PhD thesis. Appendix A lists
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all my publications. In appendix B, I appended a representative subset of these
publications.



Chapter 2

Scientific activities

I list in this chapter the students I have advised, the projects I have been involved
into, and additional scientific activities such as paper reviewing and code dissemi-
nation.

2.1 Past PhD students

For each student I shortly describe the research project during the thesis, and give
the percentage at which I was advising the student with a co-supervisor.

Benoit Zupancic (2012–2015) Reflectance Acquisition using Compressive Sens-

ing (95%, with N. Holzschuch).
The goal of this thesis is to explore the possibility to leverage the intrinsic
sparsity of reflectance functions to design acquisition methods based on the
recent theory of compressive sensing [PI-05].

Laurent Belcour (2009–2012) Frequency Analysis of Light transport (95%, with
N. Holzschuch).
Currently on a post-doc at University of Montreal.
The goal of the thesis was to extend the work done by Durand et al [RI-

08] to the time domain so as to handle motion blur. We eventually found a
very interesting representation for the spectrum of local light fields based on
the covariance matrix of the power spectrum, which opened very interesting
avenues and produced fruitful results and significant publications [RI-01,RI-

02,CI-02,PI-01].

Mahdi Bagher (2009–2012) Real-time rendering of complex materials (60%,
with N. Holzschuch).
Currently employed by Microsoft in Vancouver.
The thesis was dedicated to efficiently rendering measured materials, which
we achieved through two very different contributions. First we simplified the
theory of the Fourier analysis of light transport so as to use it directly on the
GPU [RI-02,CI-02]. Then we derived a new analytical approximation of ma-
terials based on a shifted gamma distribution that proved to overcome existing
approximations while offering good computational properties [RI-03].

Pierre-Edouard Landes (2007–2011) Analysis and synthesis of textures with

stochastic distributions of shapes (95%, with F. Sillion).
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Currently engineer at Aerys, a french SME.
We studied the problem of automatically recognizing distributions of shapes
in an image, with potential overlaps, so as to later perform statistics on the
distribution of these shapes to be able to generate a similar texture [CN-01].

Aurélien Martinet (2003–2007) Automatic instantiation of geometry (90%,
with F. Sillion).
Currently an engineer at Tetrane.
We studied the problem of automatically instancing incoherent geometry that
is available as a list of simple geometric primitives such as triangles. Part of
the work was to find an automatic method to deterministically determine sym-
metries of shapes, which we further applied to design a constructive algorithm
to find similar objects in a scene [PI-04,RI-07].

2.2 Undergraduate students and engineers

Isabelle Delore (2009–2011) Engineer, GARDEN Project.
Methods for automatic content generation in video games.

The GARDEN project, in collaboration with EDEN Games—a French video
game company—was aiming at developing a full pipeline for the design of video
games. Isabelle Delore worked on evaluating existing algorithms including
procedural noise from example, image compression, etc.

Olivier Hoel (2007–2009) Engineer, GENAC II Project.
GPU implementation of illumination methods for video games.

I advise O.Hoel in the context of the GENAC II project which aimed at
developing efficient algorithms for content generation in video games. Olivier
worked in particular on the problem of computing an approximation of indirect
illumination in screen-space, in a deferred shading pipeline (See Section 3.3.2).

Pierre-Edouard Landes (2005–2006) DEA.
Analysis and synthesis of textures with stochastic pattern distributions.

P-E.Landes did his DEA on that subject which he pursueded during his PhD.
The goal was to automatically extract distributions of sprites from an image,
using pixel-based similarity measures and graph completion.

Jean-Christophe Roche (2004–2006) Engineer, RealReflect Project

Implementation of a complete lighting simulation platform. I advised this per-
son as an engineer to develop a complete global illumination system, including
geometry management based on an extension of X3D, material representations
(BRDFs and BTFs), light sources including the full IESNA standard, global
illumination using photon mapping, scene management and distributed com-
putation tools. Later this code has been entirely rewritten and is used by my
students (See Section 2.7).
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Stéphane Guy (2004–2005) DEA

Real-time rendering of birefringent materials

During this project we explored the possibilities of rendering facetted gem-
stones in real-time on current graphics hardware. For that we derived con-
trolled approximations of the full optics of birefringent materials and simplified
them to become tractable on GPU (See Section 3.3.1). Afterwards, Stéphane
Guy did a PhD on a totally different subject.

David Roger (2003–2004) DEA

Analysis of diffuse intereflexion on the ambient light intensity

The goal of this work was to figure out in what ways diffuse intereflexion in a
scene contributes to the ambient intensity in this scene, and propose heuristics
to compute visually pleasant yet non physically based ambient illumination
knowing the materials that compose a given scene.

Thomas Schneider (2003–2004) DEA IVR

Expressive rendering of global illumination

In the beginning of years 2000, a lot of papers have been published on the
subject of expressive rendering (a.k.a. non photorealistic rendering). None
of them however explored the possible visual clues to properly render global
illumination. that was precisely the goal of this research.

Benjamin Sergeant (2002–2003) DEA IVR

Extraction of semantic information in a 3D scene using Bayesian classifica-

tion.

This work was a preliminary investigation to our later work on instantiation.
The idea was to try to recover object classes from the topology of the graph
that connects the different parts of an object, using Bayesian methods.

2.3 Funded projects

2011-2015 ALTA, ANR Blanc. http://maverick.inria.fr/Projects/ALTA/.
The ALTA project stands for Analysis of Light Transport operator and Appli-
cations. It is funded by the french National Research Agency (ANR), and ties
together three teams of INRIA: MAVERICK (INRIA Rhône-Alpes), REVES
(INRIA Sophia) and MANAO (INRIA Bordeau). These teams collaborate in
the triple goal of performing a frequency, dimensional and first order analysis
of the light transport operator. The targeted applications are both real time
rendering and global illumination. The project is managed by N. Holzschuch,
and I’m responsible for conducting the research on frequency and dimensional
analysis of light transport.

2009-2011 Garden, FUI, Région Rhône-Alpes et Pôle de Compétitivité Imagi-
nove.
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This project teamed up academic actors including INRIA and the LIG labora-
tory, and video game companies such as Eden Games, Krysalide and Gamr7.
The goal was to develop a full game development pipeline. My contribution
was to manage the part related to illumination, advising sudents and engineers
(Isabelle Delore, Olivier Hoel, Pierre-Edouard Landes) for designing new tech-
niques and implementing them on graphics hardware.

2007-2009 Genac II, FUI, Région Rhône-Alpes et Pôle de Compétitivité Imagi-

nove.
The GENAC II project deals with automated content generation for video
games. This applies to generating motion for non playing game characters,
generating textures, game levels, vegetation, and performing light simulation
on top of this. I was mainly involved in the "illumination" side of the project,
advising an engineer (O. Hoel) for 2 years.

2001-2006 RealReflect, European project IST-2001-34744.
RealReflect was a long-term European research project. Academical partners
included INRIA, University of Bohn, University of Wien, and university of
Prague. Industrial partners were Daimler Chrysler (Germany), and Faurecia
(France). The goal was to design a complete pipeline for virtual prototyp-
ing in the car industry. This included acquisition and treatment of material
properties, illumination and geometry parts involved in the creation process
of a car. Then lighting simulation was performed in order to realistically ren-
der the prototypes. The display was also tuned to fit the requirements of a
cave system offering a 3D head-tracking display. I was involved in leading
work package 7 (lighting simulation) in collaboration with F.Sillion, and I was
advising an engineer to develop a lighting simulation platform.

1999-2000 Soleil, Action de Recherche Coopérative INRIA.
This project was a collaboration between LIAMA (French-Chinese Labo-
ratory for Applied Mathematics and Automatics, Beijing, China) and IN-
RIA. Its goal was to design a physiological plant growth simulator by con-
necting a plant growth simulator with a global illumination engine, the
former computing the geometry of the plant at the next growing step
given the distribution of light inside the plant that is calculated by the
later. This project gave birth to plant models which shape and distribu-
tion of leaves are influenced by light (See examples on the project page
http://maverick.inria.fr/Projects/Soleil/index.html). My involve-
ment was to handle the simulation of radiative exchanges in the plants.
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2.4 Other collaborations

2013-2014 University of Montreal, with Derek Nowrouzezahrai
In 2010, I had the idea of using rotated zonal harmonics as a new basis for
representing harmonic functions on the sphere. Derek had the same idea and
published it before me. So I joined him to work on that subject. We’re
currently in an active collaboration on the subject of spherical filtering.

2010-2014 Cornell University, Ithaca, with Prof. Kavita Bala.
Laurent Belcour, a former PhD student, has spent a few months during his
PhD at Cornell University, which was the opportunity to work with Prof.
Kavita Bala on Frequency analysis of participating media [RI-00].

2011-2012 University College London, UK with Prof. Jan Kautz and Kartic
Subr.
Kartic Subr was a postdoctoral researcher at ARTIS for one year, then he left
for UC London to work with Jan Kautz. Having a lot of common research
interests we collaborated on the project of accurate binary image selection us-
ing inaccurate input [CI-01]. This work was also a collaboration with Sylvain
Paris, from Adobe Research.

2005-2010 MIT, Boston, with Prof. Frédo Durand.
Fredo Durand is a former PhD student of C.Puech who defended his PhD at
Grenoble University. He is now a professor at MIT. We have been collaborating
on various subjects including frequency analysis of light transport (of which he
also owns the original concept), and image analysis [RI-01,RI-04,RI-05,RI-

08].

2002-2004 Noveltis, Toulouse.
Noveltis is a SME which activities are focussed toward bridging the gap be-
tween the industry and researchers. They develop solutions for the former
using the knowledge of the later. I have worked with Noveltis in collaboration
with V.Bruniquel on radiative transfer simulation in vegetation for remote
sensing[RI-06].

1999-2000 LIAMA, Beijing, China. with P.Dereffye
P.Dereffye is a international-class researcher in the domain of plant architec-
ture, currently invited professor at the CEF (Centre d’Etude de la Forêt). We
have worked together on lighting simulation for physiological plant growth
simulation, in the context of the SOLEIL project.

2.5 Program committee and reviews

I’ve performed several reviews for the following journals and conferences: Siggraph
(since 1998), Eurographics Symposium on rendering (since 1998), Eurographics Con-
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ference, IEEE Transactions on Visualization and Computer Graphics, ACM Trans-
actions on Computer Graphics, and the Visual Computer.

I have participated in the following program committee: Eurographics (2004,
2013), Eurographics Symposium on Rendering 2014, Pacific Graphics (2012, 2013).

I have been solicited a few times for ANR projects reviewing.
In 2014 I co-chair the tutorials for the Eurographics 2015 conference with

Matthias Zwicker.

2.6 Consulting at Digisens S.A.

Digisens is a SME currently employing 6-7 persons which sells solutions for efficient
computer tomography. They provide a software suite to perform many of the oper-
ations along the acquisition pipeline: tomographic reconstruction on the GPU, data
filtering, mesh production, metrology, etc.

I’ve acted as a consultant for Digisens SA1 for 5 years (from 2007 to early 2013).
My work consisted into solving scientific problems of very various nature, perform-
ing technology intelligence and providing proof-of-concept code. I’ve been working
successively on mesh extraction, automated volume stitching, mesh filtering, mesh
and volume segmentation, volume filtering and removal of tomography artifacts,
and compressive sensing tomography.

The work I conducted at INRIA about filtering 3D tomographic volumes was
partly inspired by my involvement at Digisens [PI-02].

2.7 Code

Along all these past years, I have accumulated a significant amount of code, some of
which has been kept in a portable form. I’m only listing three representative code
projects here:

HQR The High Quality Renderer is a rendering platform that was first created
during the RealReflect project. It has been extended with a plugin system that
allows to change every internal component, allowing user-customed materials,
sampling algorithms, illumination sources, and geometry representation and
management methods, to be used in place of the existing. It is a very practical
tool for experimenting with new light simulation algorithms while inheriting
the basic components to process geometric scenes, image output, etc. See
http://maverick.imag.fr/Membres/Cyril.Soler/HQR.

VRender The VRender library is a simple tool to render the content of an OpenGL
window to a vectorial device such as Postscript, XFig, and SVG. The main
usage of such a library is to make clean vectorial drawings for publications,
books, etc. In practice, VRender replaces the z-buffer based hidden surface

1http://www.digisens3d.com
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removal of OpenGL by sorting the geometric primitives so that they can be
rendered in a back-to-front order, possibly cutting them into pieces to solve
cycles. VRender is also responsible for the vectorial snapshot feature of the
QGLViewer library (See http://maverick.inria.fr/Software/VRender/).

Spherical harmonic library This library allows to perform all sorts of use-
ful tasks with spherical harmonics. It implements my own—currently
unpublished—SH rotation formula, as well as the famous ZXZXZ
method [Kautz 2002]. It also contains the necessary tools for stable com-
putation of SH at high orders (L>150) This library has been improved over
the years with a significant amount of test code, IO methods and visualization
tools. This code is mostly used by students in the Maverick team. Although
this code is currently not public, I am planning to release it so that other
researchers can use it.





Chapter 3

Research summary

In this chapter, I summarize the research I did after my PhD thesis in 1998. Al-
though my preferred subject in the early years has been the simulation of radiative
exchanges, I gradually moved to other areas of the domain of computer graphics:
texture synthesis, geometry and image analysis. While exploring these fields, I con-
tinued to work on the problem of global illumination, with the Fourier analysis of
light transport and its following contributions. At the present, I’m heading toward
material acquisition and computational photography. Figure 3.1 below summarizes
this by listing the papers I had in international conferences and journals, along with
the connexion of the various co-authors I collaborated with.

A Frequency Analysis 
of Light Transport [SIG'2005]

Kavita Bala

2005 2006 2007 2008 2009 2011 2012 2013 20142004

Fourier Depth of Field
[TOG'2009]

1999 2000 2001 2002 2003

5D Covariance Tracing
[TOG'2013]

Frequency kernel estimation
for progressive photon mapping

(SIG'Poster 2011)

Sylvain Paris

Jan Kautz

Frequency analysis of
scattering and absorption

(TOG'2014)

Fredo Durand

Edge-Preserving Multi-scale 
Image Decomposition [SIG'2009]

Accurate Detection of Symmetries
in 3D Shapes [TOG'2006]

An Efficient Instantiation Algorithm for
Simulating Radiant Transfer in Plant 

Models [TOG2003]

Hierarchical Pattern 
Mapping [SIG2002]

Texture-Based Visibility
for Efficient Lighting

Simulation [TOG2000]

Accurate Binary Image Selection
from Inaccurate User Input [EG'2013]

Hierarchical Instantiation for
radiosity [EGSR'2000]

Automatic Calculation of Soft
Shadow Textures [EGSR'1998]

Fast Calculation of Soft Shadow 
Textures using Convolution [SIG'1998]

199819971996

Francois Sillion

Marie-Paule Cani

Kartic Subr

Nicolas Holzschuch

Philippe Dereffye

Aurelien Martinet

Laurent Belcour

Mahdi Bagher

Graphics Gems 
Revisited [SIG'2004]

Stephane Guy

Accurate rendering of measured
reflectances using SGD [EGSR2012]

Interactive rendering of acquired 
materials using bandwidth prediction

[TVCG'2013, I3D2012]

3rd Radiation Transfer Model
Intercomparison exercise [RAMI'2007]

Veronique Bruniquel

Eric Chan

Frederic Blaise

Alexis Angelidis

A Deferred Shading Pipeline for
Rela-Time Indirect Illumination

(SIG'Talk 2010)
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Frank RochetOlivier Hoel
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closer Soft Shadows
[SIG'Poster 2010]

Sparse Approximations of
BRDFs [SIG'Poster 2013]Benoit Zupancic

Figure 3.1: Co-authors and timeline for my publications into international journals
and conferences
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A full list of my publications is available in appendix A. They are referenced
throughout the summary of research that I present below.
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3.1 Simulation of radiative exchanges

The term global illumination designates the problem of computing the distribution
of light in a geometric scene, accounting for how it is emitted from light sources and
how it interacts with materials and objects. When the goal is to make synthetic
images, one needs to complete such a simulation by a measurement of how light
energy is perceived by a virtual camera. For some applications however, it is the
distribution of radiant energy in the scene that constitutes the ultimate goal of the
calculation. In any case, because the radiant energy that is received at each point in
a scene partly reflects and influences the radiant energy that is received at all other
points, the problem of computing the distribution of light in a scene essentially is
to solve a global equilibrium equation.

I’ve been working on the simulation of radiative exchange for almost fourteen
years now, on top of approximately ten years of prior work. It is not possible to
detail the huge amount of existing contributions in this field. Each of my papers
in this domain detail the relevant subset of previous work. In this section however,
I’m giving the reader the necessary bits to understand the motivation of my con-
tributions. I’m starting with a brief introduction to the physical aspects of global
illumination and radiative exchange simulation in general, explaining what impor-
tant questions needed further work, and I give an overview of how I contributed to
research in this domain.

3.1.1 The rendering equation

For all applications considered in this document, light is supposed to reach equi-
librium instantly. Light is represented by a quantity L(x, ω) called radiance, that
is the amount of energy propagating at point x in direction ω, per unit of solid
angle and area orthogonal to ω. Light generally interacts with surfaces and volumes
where it reflects and diffuses. The interaction with surfaces can be modelled by
the Bidirectional Reflectance Distribution Function ρ of the material, also known
as BRDF, which ties the distribution of incident radiance Li at x to the reflected
differential radiance in direction ω:

dL(x, ω) = ρ(x, ω, ω′)Li(x, ω
′)cosθdω′

In this equation, θ is the angle between the surface normal and ω′. Given these
quantities, it is easy to express the equilibrium of light energy in a scene, by writing
that the energy at each point x is the sum of the energy emitted by that point, plus
the integral of radiance coming from all other points, that reflects at x:

L(x, ω) = Le(x, ω) +

∫

Ω

ρ(x, ω, ω′)Li(x, ω
′)cosθdω′ (3.1)

Since Li and L are the same quantity expressed using two different parameter-
izations, this equation is intrinsically a linear integral equation (Fredholm equa-
tion of the second kind), which in general does not admit an analytical solu-
tion [Kajiya 1986].
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Because the integral in the second member is a linear transform of the distribu-
tion of radiance L, it is common to define it as a linear operator over the infinite
dimensional space of radiance distributions: the light transport operator T . With
this compact notation, the radiance equation becomes:

L = Le + T L

This formulation emphases even further the equilibrium nature of the radiance equa-
tion. Physical considerations show that the spectral radius of T is strictly smaller
than 1. Indeed, if T has an eigenvalue of modulus greater than 1, it would be possi-
ble to create a scene where the total light energy strictly increases at each bounce,
breaking the law of energy conservation. If T had an eigenvalue of modulus equal
to 1, we should be able to create an object inside which a non zero distribution of
light bounces indefinitely 1. Consequently, L can be expressed using the following
sum, that is converging:

L = (I − T )−1Le =

(

∞
∑

k=0

T k

)

Le (3.2)

It is notable however that very little work has been done in studying the spectrum
of T and its eigen functions in the context of computer graphics for the full radiance
equation [Baranoski 1997, Ashdown 2001, Lessig 2010], meaning with the particular
kernel based on general reflectance functions. Now I will briefly present two families
of methods for solving the radiance equation: Galerkin methods and Monte-Carlo
methods, since my contributions are built on top of these.

3.1.1.1 Galerkin methods

Galerkin methods have been the primary option for solving Equation 3.1, better
known as the radiosity methods [Sillion 1994]. In these, the light distribution L is
approximated by an element of a subspace of functions of finite dimension, and T is
approximated by a matrix T that operates onto coefficient vectors of a basis in this
subspace. This is an approximation indeed, since there is no reason for the space
spanned by the chosen basis to be stable by T .

The simplest approach is to choose a basis of functions that are piecewise con-
stant, that we define with respect to a mesh of the space where L is defined. For the
most general case, a mesh element will be a 4D sub-region of surfaces and directions.
In the classical radiosity method, L is supposed to only depend on the position in
the scene, which corresponds to having all materials be perfectly diffuse. In this
case L is represented by its vector l with coefficients {li}i=1..N such that:

T l = le + T l with Tij =
ρi
Ai

∫

Ai×Aj

v(x,y)
cos θ cos θ′

‖x− y‖2 dxdy (3.3)

1One can imagine a sphere internally covered with a mirror, but injecting light inside this object

will necessarily create a hole, or an obstacle, hence reducing the eigenvalue
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In this equation, ρi and Ai are the diffuse reflectance and area of surface element i.
The angles θ and θ′ are the angles between the surface normals and the line joining
x and y, and v(x,y) is the binary visibility between these points. Because v can
be arbitrarily complex, there is no analytical formula to compute the form factors
Tij , and one generally needs to rely on numerical integration. For this reason,
computing the form factors is by far the most computationally expensive task in
solving Equation 3.3.

Although it is very limited in the scope of image synthesis because of its poor
ability to represent non diffuse materials, the radiosity method has definite appli-
cations in the field of heat transfer calculations. The main issue is the quadratic
cost of computing the form factors. In other words, if a N -elements discretization
of the scene does not bring enough accuracy, half-splitting each element will raise
the number of elements to 2N and raise computation cost by four times.

To overcome this particular issue, researchers have proposed a hierarchical formu-
lation of the radiosity equation, where form factors and light exchanges are computed
between arbitrarily large groups of surfaces (and objects), which size is adapted so
as to keep the error below a user-defined threshold [Smits 1994, Seidel 1997]. This
brings the simulation cost down to O(N logN).

Despite this definite improvement, the memory cost of the radiosity method
stays proportional to the accuracy at which the solution is computed, which makes
it totally intractable for even moderately large scenes. One solution would be to
use instantiation, which means replicating self-similar geometry using references and
geometric transforms. This is particularly suitable to architectural scenes where lots
of furniture items are replicated, and vegetation scenes because plants naturally
display self similarity [Prusinkiewicz 1990]. However, the different instances of a
given piece of geometry are likely to receive a different amount of light, which
means they will need a specific storage and a careful handling of this energy at an
appropriate hierarchical level in each instance.

For this reason, I worked on the problem of automatic instantiation of geometry
(Section 3.4.2) and the use of instantiation in the hierarchical radiosity method
(Section 3.1.2). Being successful in this field, we applied these algorithms to the
simulation of light exchanges in vegetation scenes, for the application to plant growth
simulation and remote sensing.

3.1.1.2 Monte-Carlo methods

Equation 3.2 basically adds up layers of light that have bounced k times in the scene
before reaching the camera. Monte-Carlo methods solve the rendering equation
using this property. They express the light L(p) that comes to a pixel p at the
sensor as the integral of the contribution C(p, l) of all possible light paths l between
the light sources and the sensor:

L(p) =

∫

l∈L
C(p, l)dl (3.4)
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In this expression L is the space of light paths, which dimension is also infi-
nite. Monte-Carlo methods use the following—embarrassingly simple—algorithm
to compute L(p) for all pixels at once, repeating the following operations:

1. Draw a light path from the light sources to the camera with a probability
proportional to the contribution of that path to the image;

2. sum the contribution to the pixel on the sensor that this path intersects.

In practice, sampling light paths proportionally to their contribution in the im-
age needs to follow the light from the sources and bounce it on the geometry using
importance sampling and the Russian roulette to decide whether the path is ab-
sorbed or not. That explains why Monte-Carlo methods, at least with such a naive
implementation, converge very slowly.

Despite this fact, Monte-Carlo methods can simulate anything including complex
light paths (think of e.g. sunlight creating caustics on the bottom of a swimming
pool and refracting back to the camera, or dispersion effects in a diamond), motion
blur, depth of field effects caused by finite aperture sensor systems, participating
media, complex materials, etc. Depending on how light paths are sampled, some
specific types of light paths can become much harder to sample in some methods,
hence producing noise for particular subsets of the space of light paths.

Various advances in how to sample light paths in Equation 3.4 have given
birth to a wide spectrum of methods, each having their strength and weak-
nesses [Dutré 2003]. I’m listing below a representative subset of three of them:

Path Tracing These methods randomly sample light paths from the source to
the camera using various heuristics [Kajiya 1986]. The simplest path trac-
ing approach consists in sampling from the source and rejecting paths when
light is absorbed, until they reach the camera. When that occurs, a pixel
corresponding to that light path is lit on the screen. Efficient approaches
associate multiple sampling strategies, for instance connecting partial paths
sampled from the camera and from the light, as with Bidirectional Path Trac-
ing [Lafortune 1993]. Because they are absolutely generic and unbiased, path
tracing methods are usually chosen for generating reference solutions.

Photon Mapping Photon mapping is a density estimation method [Jensen 1996].
The density that is thereby reconstructed is the distribution of radiance in the
scene. It is estimated by measuring the amount of "photons" that accumulate
in the scene. These photons are samples of the flux of radiance. In practice,
the algorithm works in two steps. First, it generates light paths from the light
sources and deposits photons at each bounce. Then a density estimation is
performed for each pixel in the image to estimate the radiance at that pixel in
direction to the camera. In their original formulation photon mapping meth-
ods are biased because the reconstruction kernel has a finite size. The recently
introduced Progressive Photon Mapping removes this issue by constantly de-
creasing the size of the density estimation kernels while keeping the variance
below a given threshold [Hachisuka 2009].
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Metropolis light transport This method is an adaptation by Erik Veach of
the Metropolis-Hasting algorithm for performing density estimation using a
Markov chain of samples [Veach 1997]. The space considered is the infi-
nite dimensional space of light paths that come trough the screen, and the
density that is reconstructed is proportional to the amount of energy at
each pixel in the image. The MLT method basically samples light paths
and mutates them into similar light paths in path space, according to the
ratio between their contribution to the image. Because of this, the MLT
method is notoriously efficient for exploring regions of light path space that
are difficult to sample. A common drawback is that the space of light
paths is not uniformly sampled in the early stages of convergence. Instead,
one can observe a strong correlation due to sampling some specific fami-
lies of light paths (See Figure 3.2). MLT has been improved in various
ways [Kelemen 2002, Hoberock 2010, Lehtinen 2013a].

Figure 3.2 shows the early convergence states of these three methods, along with
a reference—almost—converged solution. This comparison puts the light on the
various bias and variance effects one usually observes with these classes of methods,
since the full convergence is only obtained after a significant amount of time.

Improving these Monte-Carlo methods has been relying on several different
strategies, which just cannot be shortly summarized. Although each of my pa-
pers include very detailed previous work for the relevant techniques, it is pos-
sible to sort these strategies into high level sub-classes, among which are: the
improvement of sampling so as to remove variance [Kirk 1994, Ashikhmin 2001];
noise removal during calculation [Pajot 2011] or as a post-process [Sen 2012];
exploit of coherency in the space of light paths [Keller 1997, Segovia 2006];
caching intermediate results during the computation in order to save path sam-
pling [Jarosz 2008, Schwarzhaupt 2012], and clever reconstruction of the sig-
nal [Hachisuka 2008, Lehtinen 2011, Lehtinen 2013b].

A different way to look at this problem is to remark that Monte-Carlo methods
work without priors about the solution that is being computed. Path tracing and
Metropolis Light Transport for instance add up pixel-size light contributions to the
final image in a way that is unaware of the structure of the image. Photon mapping
performs density estimation possibly adapting the kernel size to the local density of
photons whereas it should adapt it to the second derivatives of the energy (See for
instance Silvermann’s book, page 85 [Silverman 1986]). Looking at the images in
Figure 3.2, it seems that if we are able to predict smoothness in some regions of the
image before it is actually computed, we can afford to sample it less according to
the Nyquist reconstruction theorem. Similarly, if we can predict the variance that
will result from sampling a given subset of light paths, we might be able to increase
the sampling rate accordingly.

Both variance and bandwidth are easily computed from the Fourier spectrum of
the light field in a local region of path space. But this is a chicken and egg problem,
since computing that Fourier spectrum requires to know the distribution of radiance
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(a) Unconverged (b) Unconverged (c) Unconverged (d) Reference
Photon mapping Path tracing Metropolis LT

Figure 3.2: Comparison of the early seconds of convergence of the three classes

of methods (a) photon mapping, (b) Bidirectional path tracing and (c) metropolis

light transport, to the reference image in the classical Cornell Box scene (advancely

converged Path Tracing). In this example one can easily spot how each method

approximates the solution in its early stages of convergence: Photon mapping intro-

duces density estimation bias and variance; Path tracing introduces high frequency

variance proportionally to energy; Metropolis Light Transport forgets some entire

regions of the space of light paths. Of course, all methods eventually produce the

reference image on the right if allocated enough computation time.

in the scene, which is what we are trying to compute in the first place! Our work
on the frequency analysis of light transport is all about making this happen, and
taking advantage of the level of smoothness of the illumination in light path space.
I will present this work in more details in Section 3.2.

3.1.1.3 Remarks

To some extent, Galerkin and Monte-Carlo methods work in two ways dual to each
other. While the former propagates light in the entire scene bounce after bounce,
the later adds up contributions of single light paths that can bounce an arbitrary
number of times. One big advantage of Monte-Carlo methods is that they do not
rely on a mesh representation of the scene, making the computation really efficient
in terms of memory cost. Galerkin methods however compute a solution that does
not depend on the camera, which can be useful in some situations.

It is interesting to note that methods exist in-between these two concepts such as
stochastic radiosity methods [Neumann 1994, Sbert 1998], but tend to combine the
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limited ability to represent materials of the former and the low convergence speed
of the later.

It is also known that the computation of visibility is the bottleneck of light
simulation methods in general. This is illustrated by the fact that the computation
of form factors is the bottleneck of the radiosity method, and that connecting light
paths is the bottleneck of Monte-Carlo algorithms. Existing works provide extensive
solutions for improving visibility queries [Havran 2001, Foley 2005, Hapala 2013].

3.1.2 Radiative exchanges in plant models

Despite their high memory cost and limited capability for computing global illu-
mination in the presence of highly specular materials, radiosity methods offer the
unique advantage of computing a solution that is independent of the viewpoint.
They also have a simple formulation and an efficient solving algorithm for scenes
that display purely Lambertian surfaces. Therefore, using the radiosity method for
simulating radiant energy transfers in plant models is an appropriate choice. Some
applications such as remote sensing require simulation in the near-infrared domain,
where plants are highly diffusing reflectors with an albedo close to unity.

My contributions in this field has been to develop radiosity methods that are
suitable for the challenging case of lighting simulation in vegetation cover, and to
experiment the application of these methods into two different fields: physiological
plant-growth simulation and remote sensing.

3.1.2.1 Instantiation for lighting simulation in plant models

A first step in this work has been to design the principles of using the radiosity
method in combination with geometric instancing. This is not as easy as it sounds,
since traditional hierarchical radiosity methods are by design attached to an explicit
representation of the underlying geometry. The algorithm we proposed extends the
hierarchical radiosity algorithm of Smits et al. [Smits 1994] that groups objects into
clusters between which energy exchange can be represented by a single form factor.

Our contribution was to prove that it is possible to treat instanced objects in the
hierarchical radiosity method as black boxes in the hierarchy of clusters, for which
a directional transmittance and a phase function need to be pre-computed. Once
an equilibrium of the radiant energy has been found at the high level of these black
boxes, the solution is refined in each cluster, sequentially replacing each black box
by its actual geometry, possibly made of smaller instances. Each opened cluster is
treated by considering external incoming energy as constant, since it is already the
result of the converged solution at upper hierarchical levels. The method recursively
treats all instances in the scene, while sequentially outputting the solution on the
disk. This algorithm is general enough to apply to any scene with instantiation.

Later on, we studied the application of this algorithm to the specific case of
plant models. That involved finding a heuristic to determine how to create an
instantiable hierarchy of clusters in a plant model and properly precomputing and
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storing radiometric information (e.g. phase and transmittance functions) of plant
models [RI-10].

3.1.2.2 Plant growth simulation

In a collaboration between INRIA and the CIRAD (French Agricultural Research
for Development) and LIAMA (French-Chinese Laboratory for Automation and Ap-
plied Mathematics, in Beijing), we have brought together the simulation of radiative
exchange in plant models and the simulation of plant growth.

The system works as an interaction loop between two software components: (1)
The plant growth simulator computes the shape of the plant at the next time step,
given the amount of radiant energy received at each leaf. The plant growth simu-
lation model that is used, is the GreenLab model, originally developed by Philippe
Dereffye. This simulator combines measured physiological data on one side, and a
plant growth model that has been validated by measurements on real plants in a
controlled environment [Cournède 2009]; (2) The light simulation engine takes as
input the geometry of the plants at the current step and computes the amount of
radiant energy received by each leaf. We achieved that using a modified version of
the software developed in collaboration with F.Sillion and G.Drettakis, which has
been named PlantRad [RI-10].

We have experimented in various situations where plant growth is influenced by
the distribution of light. Trees growing at a close distance will mainly develop new
leaves near the top; plants will preferably grow toward light sources (heliotropism);
Most importantly, these physical modifications of the plant models are not the result
of arbitrary rules when shaping the plant, but the reaction of a physiologically
callibrated model to simulated environmental factors. Figure 3.3 shows such an
example where a small plant grows toward the light and finally out of the window.

Figure 3.3: Simulation of plant growth that results from the interaction between a

physiological plant simulator and a simulation of radiative exchanges. This model

generates realistic plant models that adapt to the geometry and lighting conditions

of their environment.

3.1.2.3 Application to remote sensing

The shape and intensity of the reflectance function of lands covered by forest gives
important clues about the plant species involved. Measurements are typically per-
formed using the sun as a light source, and captured from a satellite. The resulting
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reflectance function is a complex combination of the direct illumination from the
sun, diffusion in the sky and possibly intricate interaction inside the foliage. A typi-
cal pattern that is observed is the angular width of the hot-spot, which is the region
where self-occlusion of the forest becomes negligible because the directions of the
light source and the camera are very close.

Simulating the reflectance that results from such a complex system is extremely
challenging. The large amount of geometry involved limits the possibility of an
accurate calculation in a reasonable amount of time (typical test scenes involve
thousands of trees having hundred thousands of leaves each). The various approxi-
mations involved in this calculation (simplified geometric models for trees, simplified
reflectance model, simplified atmospheric model, etc) have an impact on the final
reflectance estimate that remains very hard to quantify. Moreover, while trees rea-
sonably block the light in the visible spectrum, they do behave light almost pure
diffusing volumes in the infrared range, making light simulation very long to con-
verge.

For these reasons a RAdiation transfer Model Inter comparison (RAMI) is or-
ganized every 2-3 years 2, and scientists can participate and compare the results of
their simulations over a set of standard scenes.

We participated in phase III of RAMI [RI-06], providing measurements using
our radiosity engine with instantiation. This was done in collaboration with Noveltis,
a company in Toulouse that performs technology transfer for the industry 3.

3.2 Fourier Analysis of Light Transport

As explained in Section 3.1.1.2, Monte-Carlo methods for global illumination basi-
cally sum up contributions of light paths, that are randomly sampled with various
strategies from the space of all light paths between the sensor and the light sources
in the scene. We saw that a possible way to improve these methods is to perform
a predictive analysis of the bandwidth of the illumination in light path space. In
this chapter, I give a comprehensive high-level overview of the Fourier analysis of
light transport and its applications. A more technical and rigorous description is
provided by each of the publications I participated to [RI-00,RI-01,RI-02,RI-

05,RI-08,CI-02,PI-01]. Whereas the original 2005 paper establishes the funda-
mentals of the theory [RI-08], later contributions explore its possible extensions to
specific lighting simulation problems and provide practical applications.

This work has been the conjoint effort of many contributors, among which Fredo
Durand (who had the original idea), Nicolas Holzschuch, Kartic Subr, Laurent Bel-
cour, Kavita Bala, and Mahdi Bagher.

Local light fields in path space The Fourier analysis of light transport is based
on the notion of local light fields, which represents the 4D subset of rays that lie in

2See http://rami-benchmark.jrc.ec.europa.eu/HTML/
3See http://www.noveltis.com/



32 Chapter 3. Research summary

the neighborhood of a given light ray. To represent such a set, we use the paraxial
parameterization of rays based on two Cartesian coordinates δu and δv in the plane
orthogonal to the ray and two angular coordinates δθ and δφ as shown in Figure 3.4.

Figure 3.4: Paraxial parameterization of rays in the neighborhood of a light ray.

For a complete light path, one can concatenate the local light fields around
segments of the path between successive bounces.

The notion of "locality" plays an important role in the definition of local light
fields, and seems rather arbitrary at first. For the theory to be useful and sound,
the local light field needs to be the largest region around the central ray in which
the signal can be seen as stationary, or in other words, when its variations can be
represented by the intensity spectrum of the signal. In practice, the exact "width"
of the local light field never explicitly occurs in the calculations, except for defining
visibility events, and the central ray can be considered a representative of what
happens in its neighborhood.

Transport operators in the Fourier domain The original 2005 paper demon-
strates that the various events a light ray and its local light field encounter all
turn out to be simple operators in the Fourier domain [RI-08]. In particular, free
space traveling causes a re-parameterization and therefore a shear between spacial
and angular coordinates, which is also a shear in the Fourier domain. Reflectance
causes a convolution in the primal domain, which in Fourier space is a simple pro-
duct between the light field and BRDFs spectra. Partial visibility is a product with
the binary visibility function in the primal domain, and therefore a convolution in
Fourier space.

As a consequence, knowing the Fourier spectrum of the local light field at a point
leaving a light source, one can easily predict approximately what the spectrum of
the light field will be after several interactions with the environment.

This high level of simplicity totally justifies the use of the Fourier theory in place
of wavelets or polynomial functions to characterize the light transport operators.
Indeed, only the Fourier basis brings at once the convolution theorem (that turns
convolutions into products) and linearity with respect to transforms in the 4D space
(for instance the Fourier transform of a rotated signal is a rotated copy of its Fourier
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transform). These good properties all come at the cost of locality. But because we’re
dealing with stationary signals, this is not a problem per se.

An essential contribution of the Fourier analysis of Light Transport has been to
measure local light fields (using ray-tracing) and effectively compute their Fourier
spectrum in order to verify that the predictions given by the theory actually matches
the measurements. An example of such a measurement is given in Figure 3.5 below:

Figure 3.5: Practical measurement of the Fourier spectrum of the light field just

before hitting the screen on the right. In all three cases, the spectrum of the light field

carries multiple copies of itself, as a result of the convolution with the spectrum of the

set of blocking cubes. However, if the cubes are small enough, these copies spread far

from the main (tilted) spectrum, and after reflecting on the diffuse reflector, which

retains only the spatial component of the spectrum (the horizontal central axis of the

spectrum here), all frequencies will disappear. This is consistent with the absence of

shadows at right, where the blocker’s spectrum only has high frequencies.

Using such an explicit definition however, the Fourier spectrum of a local light
field along a light path might need a tremendous computational effort to compute,
which certainly cannot be afforded for all light paths in a Monte-Carlo simulation.
Sampling a local light field using as few as 128 samples along each of the 4 dimen-
sions of the space for instance, already requires 4 × 1284Bytes = 1GB of storage.
Consequently, we need a method to efficiently compute or predict the spectrum, and
we need a compact representation of that spectrum.

3.2.1 The covariance representation

We came up with an efficient representation for the spectrum by examining which
are the characteristics of that spectrum we might potentially be interested in. In
order to define a proper sampling density for image reconstruction, one needs to
know the combined bandwidth of the signal along all axis of the data in order to
follow the Nyquist reconstruction theorem. If we want to design proper reconstruc-
tion filters in the image, we need to know whether the signal is anisotropic (meaning
it has a preferred direction) and in which direction of the space this signal is elon-
gated/stretched. All these characteristics are exactly represented by the covariance
matrix of the power spectrum of the signal, that is defined by:
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Figure 3.6: Practical examples of stationary signals, along with their power spec-

trum. These examples where generated by inserting random phases into a Gaussian

power spectrum. For each image, the covariance of the 2D power spectrum is shown.

Σij =

∫

z∈Ω
< z, ei >< z, ej > |l̂(z)|dz

In this equation, Ω is the 4D Fourier space, and ei is the ith canonical basis
vector of that space. The traditional definition of the covariance of positive functions
usually involve the expected value of that function. Because the signals we’re dealing
with are real, their Fourier spectrum is symmetric and therefore the expected value of
a probability density function proportional to l̂(z) is always 0. The covariance matrix
also offers very interesting properties: the covariance of the signal is exactly the
inverse of the covariance matrix of its Fourier transform and the covariance operator
is additive. Therefore it seems very reasonable to adopt the covariance of the Fourier
spectrum of the lightfield as a compact representation of that spectrum. This is
illustrated in Figure 3.6 where I show different stationary signals that have been
generated from a Gaussian power spectrum with random phases. Small values mean
low bandwidth and therefore large oscillations in the signal. The eigenanalysis of the
matrix also reveals the orient of the spectrum and therefore the anisotropy directions
of the signal. This proves the high relevance of the covariance representation.

Recomputing the covariance matrix of the Fourier spectrum at each bounce along
a light path sounds like a terribly inefficient task. Fortunately, we found the perfect
way to do it: it is possible to directly derive matrix operators that transform the
covariance matrix of the Fourier spectrum of local light fields for each of the light
transport operators: free-space transport, occlusion and reflectance. In practice,
that means we only need to be able to compute the Fourier covariance at the emit-
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ting light sources, and then transform these covariances when the light is reflected,
transported, and occluded, using the appropriate matrix operators. Eventually, the
calculation that is required in order to know the covariance of the Fourier spec-
trum of the light field in the camera sensor is a bunch of matrix operations, which is
certainly practical for applications in path tracing, and possibly real-time rendering.

Representing the spectrum of the local light field by its covariance is exactly
equivalent to approximating that spectrum by an anisotropic Gaussian. Indeed, the
covariance matrix Σ of l̂ is also the covariance matrix of the Gaussian defined by:

g(z) = e−
T
zΣ−1

z

Such a representation however is not convenient for expressing the light transport
operators in the Fourier domain, because some of these operators zero the covari-
ance along particular directions by turning the spectrum into a Dirac along these
directions, making Σ non invertible. Nevertheless, we showed that in this case the
expected operators can be expressed using the pseudo-inverse of the covariance ma-
trix, as it happens for the reflectance operator.

3.2.2 Application to depth of field and motion blur

Depth of field and motion blur are two notable effects that "blur" the content of
an image in different ways. The former is the result of an image focusing in front
or behind the camera sensor because of the optics of the finite aperture camera.
The later is the result of the non instantaneous capture of moving scenes due to the
limited sensitivity of camera sensors, which effectively blurs the captured image in
the apparent direction of the movement. Figure 3.7 shows an illustration of this.

Figure 3.7: Extreme motion blur (at left) and depth of field effects (at right). While

these effects blur out information in an image, they require extra computational

power when simulated using Monte-Carlo methods. Our contribution of Fourier

analysis of light transport predicts and takes advantage of the reduction of informa-

tion in the image to reduce the required level of computation.

A common characteristic of these two phenomena is that Monte-Carlo algo-
rithms, while unbiased, spend a large computation time performing the integration
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across the camera lens and shutter time interval, in order to produce an image that
is eventually very smooth. Indeed, because this integration practically averages the
signal, it will heavily remove high frequencies and therefore reduce the amount of
information in it. Computing motion blur and depth of field images efficiently was
therefore a good candidate application for the Fourier analysis of light transport.

In a first step, we have performed a frequency analysis of the finite aperture
camera model [RI05]. We show that the camera acts as a band-limiting operator
in the angular domain, effectively cutting off high frequencies of the signal. In this
work, the Fourier analysis is performed for the last bounce before the camera, and
conservatively supposes infinite spatial bandwidth in the signal leaving the objects
in the scene. The model was validated by comparing the predicted bandwidth to
the bandwidth of windowed Fourier transforms of light fields obtained by practical
measurements in image space. Finally, we derived an ad hoc image reconstruction
method based on splatting isotropic Gaussian kernels, which size is computed from
the frequency estimate of the signal in image space.

While this work effectively brought a method for computing images with depth
of field that outperformed blind ray-casting, it suffered from several limitations:

• the whole analysis was performed in 2D (one angular and one spatial di-
mension), making it impossible to predict anisotropy in the signal and use
anisotropic reconstruction kernels;

• the internal representation of the power spectrum of the light field was based
on a collection of 2D samples, making it quite inefficient to compute.

To overcome these problems, we have worked on designing a more efficient rep-
resentation of the spectrum: the covariance matrix [RI01]. As compared to the
sampled representation of the power spectrum, the covariance representation offers

• a full 5D anisotropic analysis in the frequency domain (2D space, 2D angle,
1D time);

• a very efficient computation of the effect of light transport operators in the
frequency domain;

• a general analysis that applies to any light path, potentially useful for all
Monte-Carlo methods.

Moreover, we have extended our frequency analysis to time-dependent signals, mak-
ing it possible to represent time shears caused by moving objects or various camera
motions. This allowed us to correctly predict anisotropic reconstruction filters for
images with motion blur. Figure 3.8 below shows multiple examples of predicted
covariance matrices in a scene displaying both motion blur and depth of field effect,
with specular, glossy, and diffuse materials.

Because the 5D covariance formulation allows a full anisotropic analysis of the
signal, we are able to derive reconstruction filters in screen-space that are correctly
aligned with the directions of anisotropy in the screen.
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Figure 3.8: 5D covariance matrices of local light field predicted by the frequency

analysis of light transport. The moving white ball is in focus, but blurred because

of the relatively long aperture time. Therefore it shows a strong correlation between

time and the four other dimensions.

3.2.3 Fourier analysis for density estimation methods

As explained in 3.1.1.2 density estimation methods perform the reconstruction of
an unknown density from a random set of samples issued from that distribution.

It has been shown [Silverman 1986] that the error in the reconstructed density is
the result of two terms: a variance term, that is the result of too small a reconstruc-
tion kernel, which is proportional to the estimated density, and a bias term, that
is the consequence of using a reconstruction kernel that is too large with respect
to how far from its average the density is. That later term is proportional to the
Laplacian of the function. The final error measure, proposed by Silvermann is:

E(x) = αh2△f(x) +
β

nhd
f(x)

In this expression both α and β are constants that depend on the shape of the
reconstruction kernel, f is the recontructed signal, d is the dimension of the space.
The optimal size of a reconstruction kernel h is what minimizes this error for a given
number of samples n.

We have shown that the eigenvalues of the covariance of the spectrum of the local
light field around a point x are equal to the eigenvalues of the Hessian matrix of
that function, up to the sign (See [RI-00]). This allowed us to derive a conservative
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approximation of the bias error in the above equation, as a function of the predicted
covariance.

In practice, this brings very useful information for global illumination methods
based on density estimation, for instance photon mapping [Jensen 1996], and pro-
gressive photon mapping [Hachisuka 2009]. In the former, computing the covariance
matrix of the light field in the Fourier domain allows to know, for each photon, what
would be the optimal reconstruction kernel.

In the method of progressive photon mapping, reconstruction kernels are care-
fully reduced to zero, in order to reduce the bias while maintaining variance below
a given threshold. Thanks to our prediction, we know that reducing them is not
necessary as soon as their size is small enough to ensure an acceptable bias. In
practice, this means that we can eventually keep the same radius as the number
of samples increases. Because of this, variance reduces and our solutions converge
faster at equal error [PI-01]. We also applied this to accelerate Progressive Photon
Beams [RI-00].

3.2.4 Fourier analysis of participating media

Participating media designate volumetric media that contain reflecting particles
which size is much smaller than the wavelength of light (for instance fog and translu-
cent objects). As a consequence, participating media act on light as a diffusing
medium. The light equilibrium equation in participating media extends Equa-
tion 3.1 with two additional terms: an absorption term and a scattering term (The
reflectance term on objects is omitted for clarity):

ω.∇xl(x, ω) = κa(x)(le(x, ω)−l(x, ω))+κs(x)

(

1

4π

∫

ω′∈S2

ρ(ω, ω′)l(x, ω′)dω′ − l(x, ω)

)

(3.5)
This equation basically says that the increase of radiance at x in direction ω is

proportional to the emitted radiance minus the radiance that is absorbed, plus the
radiance that is scattered inward from all incoming directions, minus the radiance
that is out-scattered from direction ω.

If the case of a medium for which the mean free path of light is relatively small as
compared to the domain, the solution of the scattering equation can be approximated
by solving a diffusion equation [Stam 1995].

Another notable family of methods for solving this equation are based on a
global Fourier analysis of the domain, which decorrelates the various frequencies
in the solution. The equation in the Fourier domain can then be solved analyti-
cally [Ishimaru 1997]. Such methods however require strong assumptions about the
domain and the phase functions as well, which do not realistically apply when com-
puting global illumination for image synthesis. In this case, we’re bound to using
the Monte-Carlo methods which are general enough to handle all situations.

Because of their continuous and inherently 3-dimensional nature, participating
media are the worst possible test bed for Monte-Carlo simulation methods. Indeed,
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Monte-Carlo methods traditionally compute light propagation by summing contri-
butions of a large number of independent light paths that randomly bounce in the
medium. These methods eventually reconstruct an image by adding totally incoher-
ent pixel-size contributions into an image that is otherwise smooth in many ways
(See Figure 3.9). Consequently using frequency analysis of light transport in order
to improve Monte-Carlo methods seems very relevant.

Figure 3.9: Picture rendered with the ARIONTM physically based renderer to il-

lustrate the complex effect of participating media. High frequencies created by light

sources, occluders and caustics get gradually blurred as the light diffuses inside the

medium. Predicting the actual frequency content of light fields in this kind of scene

is a real challenge.

Our contribution in this work is 4-fold: first, we have performed an analysis of
scattering and absorption in the Fourier domain. This means that starting from
Equation 3.5, we have derived the mathematical relationship that express the be-
havior of the local light field along a light path that travels in participating media.
This part of the work proves that scattering acts as reflexion and lowers frequen-
cies, whereas absorption acts as a non binary visibility filter and therefore increases
bandwidth. The later sounds counter-intuitive, but the effect is clearly visible on
"god rays" created by clouds, or the shadow cast by the glass sphere in Figure 3.9.

Secondly, we have derived the corresponding operators for the covariance ma-
trix of the power spectrum. That includes finding a practical way to compute the
covariance of phase functions in the 4D chunk corresponding to the local lightfield
at a scattering event, and computing the frequency content of the absorbance.

Third, we observed that the light-path based analysis cannot be used directly
to drive sampling and reconstruction since the bandwidth in the image (and in
the volume) eventually results from the combination of many light paths. So we
figured out methods to convert the per-light path information into practical sampling
metrics. To do that, we introduce an intermediate quantity, called the volumetric
covariance, that represents the spectral covariance of the fluence in the volume.
Using this quantity, that we obtain by summing slices of 4D covariance contributions
from many rays into a 3D grid, we show that it is possible to compute a number
of very interesting metrics: the variance of the fluence along rays from the camera,
the Laplacian of the fluence in the volume, and the covariance of the 4D radiance
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field in screen-space.
Finally, we use these metrics to improve existing computation methods. We

propose four scenarios where our frequency analysis allows a faster computation:
we design an adaptive sampling for integration of light toward the camera; we use
the Laplacian of the fluence to compute an optimal radius reduction strategy for the
method of progressive photon beams; we use screen-space covariance to derive op-
timal image reconstruction filters; finally, we show how the Laplacian of the fluence
can be used to improve irradiance caching methods [RI-00].
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3.3 Real time rendering

Real time rendering is devoted to porting existing algorithms to the Graphic Pro-
cessing Units (GPU), or develop new techniques to perform existing tasks using
graphics hardware. GPUs have grown in power at a speed larger than what is pre-
dicted by Moore’s law. At the time of writing this document, a 300$ graphics card
has a power of more than one Teraflop, which for comparison is the computational
power of the Cray 2 supercomputer in 1990. The ability of researchers in computer
graphics to use such a low cost and powerful hardware has brought an entire scope
of possible research.

Now, and since approximately 10 years, GPUs are programmable, with a shader
language that has evolved to closely reassemble C++. In addition to supplying
graphic primitives to be rendered, the user can also supply shader code that will
be applied in parallel to these geometric primitives, and to pixels in the screen, as
illustrated in Figure 3.10. It has therefore become quite common to use GPUs as
an efficient programmable test bed for processing not only graphical primitives, but
also any numerical data, by hacking the graphic pipeline for tasks that would not
necessarily aim at producing images. This was called GPGPU computing. More
recently, NVidia has released a GPU programming language that is not tied to
the graphic pipeline anymore, called cuda [Sanders 2010] which allows to program
graphic cards without the constraints imposed by the data layout of the graphic
pipeline.

Fragment
engine Frame buffer

Clipping
Projection
Viewport culling

Texture memory

Geometry

Projection and
Modelview transforms Vertex

engine

Vertex shader

Fragment shader

User space Graphics Hardware Screen

Textures

Figure 3.10: Simplified view of the graphics pipeline. Items in green are pro-

grammable with C-style code, which offers enormous possibilities of using graphics

cards to compute the rendered result on the fly. The user only interacts by changing

the data in the "user space" area of the pipeline.

But because of their very specific architecture, GPUs need friendly algorithms,
and although the shader language looks like C++, it imposes some specific algorith-
mic requirements which mainly reside on two characteristics: (1) memory accesses
are very costly and should therefore be considered as a bottleneck. Memory accesses
are facilitated by a hierarchy of caches based on locality in the images, which forces
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the programmer to keep memory accesses local in texture or pixel space; (2) the
implicit operating mode is SIMD which stands for Single Instruction on Multiple
Data. That needs a major rewrite of algorithms. Because of their SIMD architec-
tures, graphic cards do not like algorithmic branching at all. Indeed, when a warp
of graphics processors have to split between different branches of a program because
the underlying data needs it, twice the time will be used since both branches are
executed sequentially. As a consequence, porting existing algorithms to GPUs is
generally considered to be a research problem.

In this chapter I present three projects that share the same scientific approach:
they aim at simplifying the equations of a known physical phenomenon in a con-
trolled manner, in order to produce a GPU-friendly algorithm. The goal is to
produce real time results with controllable error, while taking into account the
limitations of graphics hardware programming, essentially the SIMD model and the
memory access bottleneck. Of course, because real-time rendering algorithms highly
depend on the capabilities of GPUs which evolve really fast, it is likely that the re-
search that is done in this context has a reasonably short life time. The value that
remains however is a better understanding of the physical and algorithmic aspects
of the different problems in the light of image synthesis.

3.3.1 Revisiting birefringent materials

This project aimed at rendering facetted gemstones in real time, using graphics
hardware. Facetted gemstones take their colors from two optical phenomena:

Polarization While light polarization might safely be neglected for image synthesis
in most applications, this is not true for gemstones because of the phenomenon
of pleochroism. The absorbance of light in gemstones depends on its polar-
ization. The optical characteristics of the Fresnel reflectance at the interface
between the material and the air strongly affect the polarization of light. As
a consequence even unpolarized light entering a gemstone becomes polarized
after encountering its surface and its polarization changes when light bounces
inside the stone. Figure 3.11 below shows an typical example of this phe-
nomenon on a photograph of a tourmaline.

Dispersion That effect is the consequence of the refractive indices not being equal
for all wavelengths across the spectrum of visible light. The primary effect is
that white light entering a gemstone is spread into a continuous range of colors
with different directions of propagation. This phenomenon is responsible for
the fire of diamonds, as well as most stones with a moderately high refractive
index.

As often in nature, these characteristics can be found in all possible combinations
at various scales. Examples of non birefringent stones include diamond and red
garnet, birefringent stones include sapphire (uni-axial) and andalusite (bi-axial). In
summary rendering gemstones is a pain since it needs quite complex calculations
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for estimating the transfer coefficients at each interface. As a consequence, accurate
renderings of such objects in real time was a real challenge.

Figure 3.11: Typical display of the effect of pleochroism in a tourmaline gemstone.
Light traveling horizontally is not absorbed the same way than light travelling ver-
tically (w.r.t. the observer) which causes this apparent difference in color within an
material that is otherwise optically constant.

Realistically rendering faceted gemstones in real time has a few potential appli-
cations the first of which is jewelry prototyping: vendors would be able to foresee
the look of a jewelry project before even building it. A gemstone rendering system
that would allow to interactively change all parameters would also have a high ed-
ucational impact. Finally optimizing gemstone shapes to produce new interesting
cuts is an interesting application, although a very accurate rendering (in both its
spectral and geometric aspects) is necessary to confirm what a real time simulation
can produce. Our contribution to this topic has been three fold:

First of all, we have gathered the equations and optical laws to be used in the
context of ray tracing, which is harder than it seems, because optical laws are not
always presented in books in a form that is consistent with ray-tracing. Eventually,
we had to re-derive everything from scratch. But because of this, we were able to
give a complete set of equations and a precise road map for someone to implement
ray-tracing in birefringent materials.

The second contribution was to simplify the optics of birefringent materials to
make it tractable on GPU. In 2004 indeed, graphics hardware was far less powerful
than it is now. That means quantifying the visual importance of each phenomena.
Among questions to be solved are for instance: to what extent is a linear approxi-
mation of the absorption acceptable, or should we account for the doubling of the
edges seen after internal reflections? Other examples include using a proper color
space, or limiting the depth of the internal bounces of light in the minerals.

Finally, we designed an algorithm to render gemstones on the GPU. For this
we used the feedback buffer to clip polygons and therefore determine regions that
delimit optical paths with similar parameters. Each region was then rendered in
high dynamic range using a shader that would account for the various light transport
events such as internal reflexions, changes in polarization and absorption, which we
completed by a tone mapping pass [RI-09].
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The prototype we designed had the interesting property to allow us to modify any
parameter of the rendering in real time, including the stone’s geometry, absorption
parameters, index of refraction and direction of the optical axis.

Validating our results was the most challenging task. First, we implemented a
ray-tracer to serve as a both a proof-of-concept for the derived equations and as
a reference computation to validate the GPU approximations. We also performed
comparisons to real images. This is obviously difficult, since the pixelwise appear-
ance of gemstones is known to vary a lot with the orientation of the incident lighting.

Of course the GPU implementation which resulted from this work has rapidly
become outdated. What essentially remains of this work is the overall recipe to
ray-trace birefringent materials. If I would be to implement a new prototype for
the same paper now, I would do it in cuda [Sanders 2010], and include possible
improvements to this work such as rendering in full spectral mode, to avoid possible
banding artifacts, and also generate caustics caused by light going out of the stone.

3.3.2 Screen-space indirect illumination

This project aimed at computing indirect illumination in screen-space for video
games. It took part into a joint ’region’ project between INRIA and video game
companies including Eden Games, Krysalide and Gamr7, which ultimate goal was
to create a fully working video game production pipeline. I was responsible for the
scientific management of the "lighting" and its GPU implementation.

The time constraints for an algorithm to fit in a video game pipeline are drastic.
Indeed, it is common in the research community to sell new algorithms as potential
candidates for taking place into a video game pipeline when these algorithms can
run at 30 frames per second (or 33 ms per frame) for moderately complex geom-
etry. In reality, the limit of 33 ms per frame should already account for all other
tasks required by the game including artificial intelligence, physically based anima-
tion, rendering of all geometric primitives (a large number of them sometimes), disk
accesses and memory management. That means in particular that a global illumina-
tion algorithm that would takes place at the end of the graphics pipeline should not
be using more than 3-4 milliseconds per frame, whatever the amount and variations
in complexity of the geometry of the scene. Consequently, our primary line of work
was to simplify the computation of indirect illumination to its bare minimum and
keep it as independent as possible from the geometric complexity of the scene.

In order to handle this, we decided to perform the whole calculation in screen-
space. This also favored the integration of our algorithm in the deferred shading
pipeline that was used at Eden Games. We first rendered full screen-images of the
scene with normals, materials and depth. Then a shader taking these images as input
gathers illumination from the entire scene at each point in the image. Obviously,
only parts of the scene that are visible can be used to gather light from. That is a
severe approximation, which we compensated by merging the indirect illumination
using multiple cameras [CN-04].

In this algorithm, texture accesses is the main bottle neck. In particular, illumi-
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nation is potentially exchanged between any pair of points in the screen. Therefore
we designed a hierarchical algorithm to limit distance in texture accesses: all in-
put data is mipmapped with proper algorithms, and light is gathered from a ring
of pixels in each mipmap. Eventually, when all levels are combined, light from all
distances in the scene is gathered at each pixel. We also derived the equations for
computing illumination in screen space without bias. An other important contri-
bution was to handle temporal coherence, by merging several warped views when
moving the camera, and to handle visibility between samples, using ray tracing into
a voxel grid to represent the scene, which was computed on the fly using existing
techniques [Eisemann 2006].

The algorithm was successfully tested in the engine of the game "Alone in the
Dark", although not used in the final product that was already finalized. Figure 3.12
shows an example of employing our screen-space indirect illumination in the render-
ing engine of that game.

Direct illumination only With screen-space indirect
illumination added by our technique

Figure 3.12: Our method to compute screen-space indirect illumination was suc-
cessfully used in the pipeline of the game Alone In The Dark, developed by Eden
Games.

3.3.3 Rendering measured materials in real time

Visual realism in image synthesis essentially depends on the accuracy at which
materials are represented4. Eventually, what we see in a synthetic image is reflected
light, that always carries a very subtle fingerprint of the material where it has last
bounced.

Yet, when a material’s reflectance is convolved with natural light, the eye is
immediately capable of categorizing the appearance into large classes (e.g. plas-
tic, paint, metal, ...), and subclasses (brushed metal, unpolished metal,...), then
eventually putting a name on it (gold, brass, silver, etc). Although the perceptual

4I do not have references to validate this claim; I think we should conduct perceptual experi-

ments so as to measure the sensitivity of perceived realism for various approximations of material

models.
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dimension of this extraordinary capability does not seem to have been studied yet
in the context of rendering, it seems that using a more or less approximate repre-
sentation for the same materials will be immediately visible to a human observer.
Figure 3.13 below shows the reflectance lobe of a metallic paint from the MERL
database [Matusik 2003], which was acquired with a gonioreflectometer. Although
an approximation of the measured BRDF with a Shifted Gaussian Distribution [RI-

03] is numerically very close to the actual material (it is considered the best as of
year 2013), the rendering with natural light still fails to convey the exact nature of
the material.

Rendered with Rendered with Comparison of SGD
measured data best known fit (SGD) and original models

Figure 3.13: Even a reasonably accurate analytical approximation of a measured

material is not always good enough to render the perceptual aspect of a material.

Here, a SGD distribution (considered to be the best fit in 2013) does not fully convey

the metallic aspect of this green metallic paint material from the MERL database.

As a consequence, using an accurately sampled representation for a material’s
reflectance is mandatory for a number of applications, such as virtual prototyping of
car paints. In practice, the BRDF will be convolved at each pixel with the incident
illumination using the shading equation:

L(x, ω) =

∫

Ω

ρ(x, ω, ω′)E(ω′) cos θdω′

Numerically, this integral can be approximated using Monte-Carlo integration. A
large collection of directions ω′

i is sampled according to a spherical probability den-
sity function p, and the sum is approximated by:

L(x, ω) ≈ π

N

N
∑

i=1

E(ω′
i)ρ(x, ω, ω

′
i) cos θi

p(ωi)

When N grows to infinity, the sum converges toward the actual value of the integral.
However, computing this equation for all pixels is absolutely impossible to

achieve in real time for multiple reasons: First of all, the convergence rate of Monte-
Carlo integration is O(1/

√
N). It can be raised to O(1/N) using stratification and

further improved with importance sampling using a well tuned distribution for p,
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but that still means that hundreds of samples of incident illumination need to be
used for each pixel. Because memory look-ups have a very large cost on the GPU,
no practical solution exist for computing this integral in real time for all pixels in an
image with an acceptable amount of noise. We have of course explored alternative
solutions for instance based on projection on directional function bases [Wang 2009].
But because we wanted to render the measured material instead of an approximation
of that material, we eventually discarded these solutions.

Observing synthetic images of measured materials (see e.g. Figure 3.13), one
immediately sees however that glossy and moderately diffuse materials tend to pro-
duce very smooth images. Glossy materials also produce smooth images if the
illumination is smooth. Finally, the surface geometry, as well as the distance to
the camera seem to take a strong part in influencing image-space frequencies in the
final result. In practice, a subtle combination of all these parameters governs the
pixel to pixel complexity of the resulting image. As a consequence, it appeared to
be an interesting contribution to predict image smoothness at each pixel and adapt
the computational effort to the least amount that is necessary to render the image
correctly.

Our contributions have been to simplify the theory of frequency analysis of light
transport for the simple case of shading from distant illumination, so as to perform
frequency predictions directly on the GPU, and allow an optimal balance between
accuracy and computation cost. We designed a multiresolution shading algorithm
based on a one-way pyramidal reconstruction and effectively compute the shading
equation for a small subset of pixels. For each pixel that is computed, the number
of samples is adapted to the predicted variance of the integrand, which we derived
from a frequency analysis of the incident illumination.

This work has been published at I3D [CI-02] and received a 2nd best paper
award, which gave us the opportunity to publish an extended journal version at
IEEE Transactions on Visualization and Computer Graphics [RI-02]. This ex-
tended version adds an interesting method for adaptive sampling for preconvolved
shading, where our frequency prediction is used to further improve the calculation
when one of the two directional functions (the illumination, or the BRDF) acts as
a band limiting filter. In this case, is becomes possible to pre-filter the function
with higher bandwidth with a low-pass filter and drastically reduce the number of
samples involved in the shading integral.
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3.4 Computational geometry

My contributions to the field of computational geometry do not constitute a coherent
piece of work, because they are the result of side ideas that popped during my time
of work, some being driven by my research in lighting simulation, some being a
response to typical problem in the industry that was raised during my consulting
activity at Digisens.

The instantiation of geometry for instance was a requirement for the simulation
of radiative exchange in very large vegetation scenes. It was necessary to be able
to correctly determine which parts of a big tree could be instanced with which
level of approximation. My research for a smoothing algorithm for tomographic
reconstruction was motivated by my consulting activities in Digisens SA, who sell a
software suite for tomographic reconstruction and visualization.

This doubly proves one single thing: working on side projects might bring new
interesting ideas onto which one can perform interesting research.

3.4.1 Seamless parameterization-free texturing

Texture mapping is a technique employed by graphics hardware that consists in
picking up colors of an object from an image, called a texture. This is a very efficient
way to add small surface details, without the need to explicitly define geometric
primitives for each graphical element to represent on the final object. In video games
for instance, meshes are usually made of large polygons, and most of the details are
encoded into textures, including reflectance properties, transparency, precomputed
illumination, etc.

In production, the design of textured objects is a two-fold problem: First of
all, the problem of texture mapping is a problem of parameterization. Indeed, the
target surface being most of the time not developable, there is no obvious parame-
terization with minimal deformation from the plane to the object’s surface (Think
for instance about putting wallpaper on a non flat surface such as a sphere). As
a consequence, one generally tries to solve for a parameterization that satisfies a
less drastic constraint such as being conformal, which essentially means everywhere
locally isotropic, but allows some non uniform scaling across the model [Paillé 2012].
This can be achieved through a rather complex optimization process [Lévy 2002].

Another issue it that one usually starts with a texture sample, and needs to
generate enough texture material for the entire surface of an object, or at least for
a larger part of it, so that is can be mapped on the object without showing to much
repetition. Texture synthesis from example has long been an avenue of research but
few works had proposed to do it directly on the target surface at this time (See for
instance [Wei 2001]).

Our contribution to texture mapping gives a possible solution to that later prob-
lem, based on the fact that if the input texture sample T is sufficiently self-similar,
it should be possible to find a piecewise continuous mapping function f : R2 → S

such that f ◦ T is continuous. In other words, the cracks in the parameterization
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are exactly compensated by the self-similarities in the input texture sample.
We achieved this using a hierarchical algorithm, by first re-meshing the input

surface into a hierarchy of triangular patches, and then finding parts in the input
texture samples that can be mapped onto these triangles while respecting continuity
with the neighbor triangles that are already mapped. When a large patch cannot
be found, the algorithm splits current patch (which reduces the constraints) and
searches for smaller patches to fill in the holes. This is illustrated on Figure 3.14.
What the algorithm eventually outputs is not a texture, but a parameterization, that

Figure 3.14: Result of our texture mapping method. Parts of the input texture

sample (left) are carefully selected and mapped onto the surface so that the result

(middle) is eventually continuous. The image at right shows the various regions

where the mapping itself is continuous. The output of the algorithm is simply a list

of texture coordinates to be picked up in the input texture sample.

can be used directly with the input texture sample for the entire surface [RI-11].

3.4.2 Automatic instantiation of geometry

This work was originally inspired by the need to manage scene complexity in global
illumination methods. Basically, instantiation allows to represent rotated copies
of some geometry using a single pointer and a geometric transform, sparing the
memory for the explicit representation of that geometry.

Instancing a scene while building it in a geometric modeler is certainly the best
way to go, whenever this is possible. Most of the time however, one grabs geometric
descriptions of scenes from the internet as a collection of triangles that have no par-
ticular structure. This type of data is traditionally designated by the term “polygon
soup”. Finding out which subsets of the input triangles can be grouped together
so as to form replicated instances of similar objects is a difficult problem. We have
decided to tackle it using a heuristic.

In a first step, triangles are grouped into objects based on connectivity. Then the
reconstructed objects are tested for self-similarity, and hierarchically assembled into
larger sets which pairwise similarity transforms are also computed. This approach
is of course a heuristic, since one can easily imagine hand-crafted situations where
the tessellation of a geometric scene does not allow a usable intermediary step with
instantiable objects. However, this approach proved to work very nicely on most of
the data that we found on the internet, simply because people build scenes by assem-
bling together objects with a semantic meaning that is lost afterwards. Eventually,
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the whole operation needs to solve the following sub-problems: (1) determining that
two objects are similar up to a geometric transform, even if meshed differently and
(2) determining if two collections of objects (possibly different) are globally similar
up to a given transform.

We adopted a constructive approach to solve this, based on the following rule:
if you know the symmetries of each piece of two different geometric models, you
should be able to compute all the transforms (if any) that globally match the two
models. That means we eventually need to solve the following sub-problems:

1. determine when two geometric models are similar up to a given transform;

2. determine the symmetries of an object;

3. determine the global symmetries of a group of objects knowing the symmetries
and positions of each object in this group.

Straightforward solutions to the first two problems existed already: one can check
for the symmetries for all possible axis orient and rotation angles, and find for which
parameters the transformed object globally matches itself [Kazhdan 2004]. This has
two drawbacks however: (1) it is very costly. In particular the object might have
a complicated shape and very fine mesh representation, for which computing the
Hausdorff distance to another rotated mesh is computationally expensive. (2) by
testing possible rotations, one introduces a bias since only rotations from this set
will be found. As a consequence, finding complicated symmetries potentially needs
to check for a very large number of candidates, most of which will not give any
result.

The solution we designed was deterministic: we first compute a set of directional
functions from the shape. We call them generalized moments, simply because they
generalize the moments of inertia of a thin-shell object to orders higher than order
2. In essence, we compute the functions:

ω 7→ M2p(ω) =

∫

s∈S
‖s× ω‖2pds

The integral is computed over the entire shape S for each direction ω. These func-
tions have not been chosen randomly. They have the following set of very interesting
properties, which we use later to find the shape’s symmetries: (1) they decompose
into a finite set of spherical harmonics, and (2) any symmetry of the original shape
leaves the moment functions invariant.

Spherical harmonics indeed have this nice property that rotations can be com-
puted efficiently, and rotational symmetries of the function appear as straightfor-
ward relationships between the coefficients of the spherical harmonic decomposi-
tion [Sloan 2008]. As a consequence, we find the global symmetries of a shape using
the following steps:

1. we compute the spherical harmonic coefficients of the generalized moments
of a shape. For this we need a single surface integral per spherical harmonic
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coefficient. This is because the powers of the sine functions involved have a
known finite decomposition in the spherical harmonic basis.

2. we find the axis and angles of symmetries of the moment functions by looking
at the relationship between their spherical harmonic coefficients.

3. we check that these symmetries only are valid for the original shape.

Figure 3.15 below illustrates this on a simple shape:

Figure 3.15: Illustration of our method for detecting global symmetries of geometric

models. A collection of directional functions are computed from the input geome-

try, and by studying the spherical harmonic coefficients of these function, we can

deterministically discover all the axis and planes of symmetry of the object.

In order to leverage this into finding geometric instances in a scene, we designed
two algorithms: First of all, a rotation-free similarity distance can be easily obtained
by summing the square of spherical harmonic coefficients of the moments for each
frequency band. Indeed, spherical harmonic rotation matrices are unitary matrices.
As a consequence, the sum of per-frequency band square of SH coefficients is constant
when rotating a shape. Then, in a second step we designed an algorithm to determine
the global symmetries of a group of objects from the symmetries and position of
each of these objects. We applied this algorithm to successfully instance some
huge geometric data scenes at multiple hierarchical levels, such as the power plant

model [RI-07].
This work obviously has a number of limitations. First of all, our similarity

finding method is inherently global. It cannot be used to find local symmetries
within a big model. However, it is possible to extend the computation of generalized
moments to local regions of the surface with a Gaussian weight, for instance using:

ω 7→ M2p(x, ω) =

∫

s∈S
‖s× ω‖2pe−‖x−s‖2/σ2

ds (3.6)
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Although in this case the spherical harmonic decomposition of the moments will
not be finite anymore, its calculation and the application of the same framework
could be used to approximately detect regions with local symmetries, and approxi-
mately detecting similar regions, and eventually extract similar sub-components of
the shape. To some extent, the local moments computed in Equation 3.6 would act a
local geometric descriptors. But their spherical harmonic representation would help
a lot determining their similarity up to a geometric transform. This is a potential
avenue for future work.

3.4.3 Smoothing data for tomography reconstruction

Computer tomography is a fantastic non-destructive acquisition method. It is used
in various contexts, the most popular of which is medical analysis. But it is used
as well for post-production checking of products and reverse engineering in gen-
eral, including acquisition and comprehension of concurrent technology. Another
application is cultural heritage analysis.

Tomography reconstruction actually regroups multiple reconstruction algorithms
that operate on different types of data obtained using various acquisition technolo-
gies. In all cases, the output is a volume of data (e.g. densities, X-Ray absorbance
values) that represents the actual sample. X-Ray tomography for a start, consists
in reconstructing a volume of data from 2D X-Ray images acquired from different
directions. The problem is not exactly linear until one approximates the X-Ray
absorption process by a linear equation. Eventually the problem is to reconstruct a
volume from its directional 2D projections. Positron emission tomography (known
as PET scan) records dual emission of particles in pairs of opposite random di-
rections from radioactive fluor, in concentration proportional to biological activity.
The problem is therefore that of reconstructing 3D data from linear projections,
which is even harder. Other techniques, such as fluorescence tomography combine
an indirect stimulation of the data (the sample is lit externally by UV light that
diffuses through the tissue) and an indirect measurement of the effect of the data
(the fluorescent light diffuses out of the sample and can then be measured), making
it an even more difficult problem to solve.

Image quality issues are a common problem to all tomography reconstruction
algorithms, including for the most straightforward ones such as X-Ray tomography.
If only restricting to X-Ray tomography, artifacts of various natures decrease image
quality: ring artifacts caused by pixel defects in the X-Ray captor, noise due to
imperfect convergence and poor signal to noise ratio at the captor, beam effects due
to neglecting non linear light interaction in the volume, etc. Smoothing algorithms
are therefore essential to tomography.

In our work, we designed a smoothing method based on anisotropic diffusion,
which consisted in convolving the data at each point with an anisotropic Gaussian
3D kernel that is computed from the data itself, inspired by existing work on image
segmentation based on anti-geometric diffusion [Manay 2003].

Adapting the shape of the kernel allows to smooth the data while respecting
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edges and other thin structures. We have also reformulated the diffusion process so
that it is capable of running on the GPU, to make the filtering very fast, and used
splitting of large volumes in order to use it on large volumetric data sets [PI-02].
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3.5 Computational imagery

I worked on three different project related to image analysis and manipulation, that
can be useful at various stages of the image creation process in computer graphics.
The three projects I’m describing here all consist in automatically understanding
the content of an image, in order to be able to ease additional manipulations.

3.5.1 Analysis and synthesis of stochastic distributions of sprites

Texture synthesis by example [Efros 1999] is a well known problem that has been
the subject of a lot of research in the past. The intrinsic goal is to capture the
underlying process that created a input texture sample, and to use it in order to
generate a new random texture that is similar in appearance, while random in the
positionning of the various identifiable texture features. When the input texture
sample has some structure (e.g. an irregular wall) non parametric texture synthesis
methods are challenged because they cannot capture the consistency in the image at
multiple scales at once, while keeping enough room for randomness, and one needs
to rely on high level priors on the image structure [Liu 2004].

When a input texture is a stochastic collection of shapes (e.g. sprites), the
human vision system does a very frustrating job in figuring out that a given im-
age contains similar shapes otherwise randomly distributed and partly overlapping.
Our contribution is this field has been to design an algorithm to automatically de-
tect that an image contains multiple instances of similar potentially overlapping
2D objects. The actual shapes and positions of the objects are recovered and
occluded parts are reconstructed based on their occurrence in multiple instances
throughout the input image [CN-01,RR-05]. This work stands half-way between
pixel-based texture synthesis [Wei 2000] and analysis/synthesis of vectorial shape
arrangements [Hurtut 2009].

3.5.2 Image segmentation from inaccurate input

Computer aided foreground selection is a common operation that is offered by tra-
ditional image editing programs (e.g. Gimp, Photoshop, etc). It allows to cut and
paste objects of potentially complicated geometry between images. However, sepa-
rating an object from the background is an ill posted problem since the definition
of the object mostly relies on semantics that cannot be robustly captured using
mathematical concepts (Although it some cases, this remains possible even in very
challenging situations [Shahrian 2013]). As a consequence binary object selection is
usually driven by a prior coarse selection from the user, which the computer improves
afterwards using an automated process (See for instance [Levin 2006, Wang 2007a]).

Although a user input greatly helps the selection process, if the input user-
supplied selection is not perfect, which happens for instance when the foreground
strokes partly touch the background, traditional algorithms get confused and tend
to produce an incorrect output, mixing the foreground and the background together.
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Our contribution has been to create a robust method that allows to produce
sensible segmentation results even when the user input is imperfect. This looks
contradictory of course, and obviously such a method is at fight between trusting the
interpretation of the user’s intention (that is the input strokes), and the algorithm’s
own a priori segmentation measure that it should rather trust if the user’s input is
imperfect. Figure 3.16 below gives an example of using our technique.

Figure 3.16: Extreme case of selecting foreground from background using a very

inaccurate input using our technique.

We achieved this using conditional random fields to classify pixels into two cat-
egories: foreground and background. The distance we used between pixels was
based on a mix between local histograms, and a Gaussian distance. Because con-
ditional random fields require a low dimensional Euclidean distance between the
feature of pixel pairs to match, we first convert all pixel descriptors at once into
a low-dimensional Euclidean space using multi-dimensional scaling, based on the
Landmark MDS algorithm [I-01].

3.5.3 Empirical mode image decomposition

Structure-preserving image filtering is a difficult task that essentially consists in
detecting which discontinuities in an image are noise and patterns and which are
actual structure. Some images for instance possess noise that comes from the cam-
era on top of fine texture details that can in turn be understood to be unwanted
oscillations at a larger scale, etc. We have therefore tried to decompose images into
bandwidth layers that respect the higher level structures. Such an operation offers
very interesting possibilities for image editing such as texture replacement, filtering,
detail enhancement, tone mapping, etc [RI-04].

Edge-aware mode decomposition is however not a trivial task. In 1D, the Hilbert-
Huang transform extracts modes from a signal by averaging envelops and then sub-
tracting the mean to the original signal [Huang 2005]. What we needed was a 2D
version of the Hilbert-Huang transform that would in addition be respectful of larger
structures in the image.

However, no consistent 2D extension of the Hilbert transform exists, and for good
reasons: there’s no consistent way in 2D to define a single phase and frequency of
a signal at each point. As a consequence, various extensions of the Hilbert-Huang
transform exist in 2D but none do respect the larger scale structures.
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Our contribution was to design such a 2D extension which is suitable for image
manipulation. Our method computes two envelopes (min and max) of the image sig-
nal, using an edge-aware interpolation method proposed by Levin et al. [Levin 2004]
for image colorization. We proposed to average them and subtract to the original
image to get the details level. Figure 3.17 below shows multiple edge-aware band-
width levels successfully extracted from the same image. This work has since been

original image 1st level smoothed/details 2nd level smoothed/details

Figure 3.17: Multiple levels of image details extracted from the snake at left. The
image noise is the first, then the scales, then the shading over the snake.

cited a few times and further improved, one of its limitations being that is was hard
to distinguish extrema in regions containing a mixture of texture and structure [RI-

04].
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Research project

“Nanum gigantum humeris insidentem”

The domain of computer graphics seems to be very rich in possibilities for inter-
esting research. Because the demand from application domains and the hardware
on which algorithms can be implemented both evolve rather rapidly, it is a real
challenge to propose a long term vision of research. Of course, some very difficult
questions will probably remain on the table for a long time. Among these: large
scale acquisition of geometry/illumination/reflectance data, efficient processing of
large data bases, real time global illumination. I consider that making even small
steps in these directions is already a significant achievement.

Large scale data acquisition is probably the next challenge in computer graphics.
On one hand the demand of realism in synthetic images pushes toward the handling
of gigantic data sets. On the other hand, new hardware (for instance the Kinect)
offers interesting possibilities to acquire them at a very low cost. The gap in between
these needs to be filled by research for converting data from the captors (mostly
images) into geometric models, textures, material representations, and illumination.
In this field, I want to work on BRDF acquisition and procedural texture synthesis
by example.

Processing large amounts of data for computer graphics will probably need to
develop new mathematical tools. One example of such a challenge is efficiently
filtering large scale data. In this context I am proposing to work on isotropic filter
decomposition.

Although the simulation of light transport is well understood, the nature of
the light transport operator is not entirely understood yet. This is the case in
particular for very specular scenes. That is why I want to pursue the Fourier analysis
of light transport, and also initiate new work on the dimensional analysis of the
light transport operator. A better understanding of the underlying mathematical
properties of light transport is likely to produce new efficient methods for global
illumination.

Before to list specific research proposals, I would like to review a few principles
that I have become attached to across my recent experience as a researcher, and
that constitute—to me—a good basis to work with:
Experiment. Experimenting allows not only to spot new problems but also to
start figuring out the possibilities of research to overcome these problems. Because



58 Chapter 4. Research project

it helps identifying the "technological locks" that lie in a given field, experimentation
is by all means the first step in my research.
Reformulate. Problems in computer graphics are often a mix up of multiple smaller
question, that can as well be more abstract and more general and fundamental than
the particular application they are extracted from. Reformulating problems helps
giving them a stand-alone justification and extend them to a broader scope at the
same time. This is for instance the case of transversal domains such as filtering,
sampling, etc.
Import ideas from other domains Keeping an eye on research that is being
developed in other domains can help a lot. It happens that interesting tools and
algorithms produced in a different context have a substantial importance in the do-
main computer graphics. Metropolis Light Transport [Veach 1997] is such a typical
example, where the Metropolis-Hastings method—a Markov chain density estima-
tion method—for reconstructing probability densities was successfully adapted to
perform photorealistic lighting simulation. I find the recent advances in sparse sig-
nal reconstruction, known as Compressive Sensing methods, really inspiring. One
of my future research projects aim at adapting these techniques to perform BRDF
acquisition.
Validate. In computer graphics validation is mandatory. It brings practical proof
that a method can be implemented (most theories include "hidden constants" that
are known to exist, but cause lots of issues when an actual number needs to be
put in the code). It also helps measuring how efficient a new method is with re-
spect to previous work, although providing fair comparisons is always difficult, since
speed depends on the quality of implementation and hardware capabilities. Most
conferences in computer graphics will not accept a theory paper without practical
validation anyway.
Collaborate with industrial partners. Collaboration with the industry brings
fresh air to research. More specifically, it brings new questions, with very specific
constraints, and potential application domains for more fundamental research. My
previous collaboration with video game companies (e.g. Eden Games) has been an
illustration of this principle.
Collaborate with academic partners. The domain of computer graphics ben-
efits from a spirit of sane competition. Besides, it is fairly easy to team up with
researchers from "concurrent" universities to collaborate on new contributions. I’ve
recently successfully collaborated with MIT, Cornell University and University of
Montreal. As we say, “if you can’t beat them, join them”.
Advise students. Not only is advising PhD students part of the researcher’s job,
but it also puts some regularity constraints on the research and constantly needs to
challenge yourself. It is also a great pleasure to see PhD students gradually turn
from students to very valuable work collaborators across years.

Now I will elaborate on my future research subjects: spherical filtering, dimen-
sional and frequency analysis of light transport, sparse BRDF reconstruction, and
the analysis of procedural textures. For each of them I specify the estimated time I
will devote to that particular work.
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4.1 Short term research

Filtering (1-2 years)

Filtering usually consists in removing artifacts from an input signal so as to recover
the ideal data. It is an ubiquitous component of computer graphics methods. Fil-
tering is for instance necessary for displaying images at multiple resolutions while
removing aliasing, to ensure consistency between several representations of data at
multiple scales, to allow controlled approximations, and to facilitate measurement
operations such as numerical integration. Without filtering, aliasing occurs, as the
result of unwanted frequency content causing visual artifacts. A close look into the
Fourier domain shows aliasing to be the consequence of replicated copies of the spec-
trum of the signal bumping into their neighbors when the sampling in the primal
domain is too sparse.

A large number of image and multi-dimensional data filtering methods are avail-
able. Some are linear, such as methods based on numerical integration with a sliding
filter function [Damelin 2011], some are not such as the bilateral filter [Aurich 1995].
They can be either local such as diffusion methods, or global as the total variation
filters. There already exists very efficient algorithms for most of these. Even some
non linear filters such as the bilateral filter can be used in real time on large data
sets [Chen 2007]. Computation is especially easy when the filter is constant and the
filtering operation is inherently linear. In this case, filtering is a simple product in
the Fourier domain.

I am interested in particular in the problem of efficient filtering with non constant
and non isotropic filters. This problem raises in computer graphics under several
forms. For instance, anisotropic diffusion filters for edge-aware image and volume
smoothing have a shape that depends on the data itself. That shape is an anisotropic
Gaussian, usually computed as a function of the Hessian of the data, which allows
to respect edges while filtering.

The same situation pops up in the spherical domain when computing the shading
on an object under distant illumination, since the BRDF lobe—that stands for the
filter—depends on the view direction. Because of the anisotropy of that filter, and
because it is not even constant across the object, prefiltering the distant illumination
with all possible shapes and orients of the filter is practically not feasible.

Finally, another similar situation is that of anti-aliasing environment mapping,
because the curvature of the surface that is inside a given pixel changes the size and
shape of the region of the incident illumination that needs to be averaged for that
pixel.

It is therefore necessary to develop new techniques to efficiently perform non
constant filtering with anisotropic filters, especially in the spherical domain. A
possible solution to this problem is to first perform a decomposition of anisotropic
filters into rotationally symmetric filters, so as to reduce the dimensionality of the
precalculation. In a collaboration with D.Nowrouzezahrai (U. of Montreal, Canada),
I have already started exploring the possibilities of using rotated zonal harmonics as
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a new basis to represent anisotropic filters. In the 2D image domain (and possibly
in the 3D domain if filtering videos) such a nice basis of isotropic functions does
not seem to exist. In this case, relying on partial bases (bases that do not span the
entire space)—for instance mixtures of Gaussians—appears to be a possible solution
too.

By example procedural texture synthesis (1-2 years)

Procedural texture synthesis consists in generating textures using analytical meth-
ods possibly driven by a set of parameters [Ebert 2002] which values can be chosen at
random. A procedural texture is inherently a process that can be used to endlessly
generate similar textures by randomly changing the parameter values. Consequently
procedural texture synthesis is used a lot in video game pipelines, since it allows
to generate—possibly on the fly—a lot of similar stationary textures with sufficient
variability.

Existing softwares such as the tool provided by Allegorithmics 1 provide a system
to build a pipeline of image operators which eventually produce a stationary tex-
ture. Changing the random seed between two realizations of the pipeline produces
different textures that still seem to be produced by the same underlying process.

However, given an input texture sample, it is extremely hard to figure out what
is the set of image operations that eventually produced that particular image. This
problem is known as procedural texture synthesis by example. In game designing
pipelines, finding a procedural texture that mimics a given input usually relies on
the capability of artists which deep knowledge of the texture generation software
helps finding the correct blocks to tie together. Doing the same thing in a completely
automated process is a very challenging problem.

The problem of procedural texture synthesis by example has been addressed
for very specific cases only, in particular Perlin noise [Lagae 2009] and Gabor
noise [Lagae 2012], but no generic solution exists. The difficulty behind this comes
from the fact that most of the operations that take place in a procedural pipeline are
intrinsically non linear (examples include color map combination, thresholding, etc)
and sometimes even modify the image in a way that might appear as random after-
wards, possibly removing the information that was needed to generate a particular
effect.

One option to recover the process that created a given texture is of course to
perform a brute force search over all possible image combination methods, the same
way a "Plouffe" inverse symbolic calculator proceeds 2 in order to find mathematical
expressions that match a given decimal number.

However, a given instance of a procedural texture is often based on random
values of the parameters, which would also need to be discovered. That means in
particular that even when generating random textures, only the underlying process

1http://www.allegorithmic.com/
2See for instance http://www.mrob.com/pub/ries/index.html
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should be matched, independently of the random parameters that have been used
to instance it.

In order to overcome this problem, one needs an image similarity measure that
can determine whether or not two images are the result of the same image creation
process, possibly using a different set of random parameters. I propose to look for
such an image descriptor, and to use it in order to generate procedural descriptions
of textures using an inverse symbolic calculator.

Among possible solutions, we could use multi-level covariance distribu-
tions [Karacan 2013b]. We might for instance compute a Gaussian/Laplacian pyra-
mid of the image, and then compute clouds of covariance matrices on each level. The
descriptor will be the multi-level cloud of values. In a first step, several experiments
are needed to find out whether such a descriptor would have enough discrimination
power. In any case, this is an ambitious project, that includes potentially interesting
applications.

Perceptual Analysis of BRDF Approximations (1 year)

There exist a large number of analytical material reflectance models: Ashikmin-
Shirley, He, Micro-facet models, for which the L2 approximation error has been well
studied [Ngan 2005]. However, the ability a person has to perceive a material is
not well described by the L2 error (see for instance Fig. 3.13), and ultimately, the
decision to use a particular approximation in realistic rendering should be driven by
how realistic the result will look like.

We denote by "realism" the amount at which an object is recognized by a human
viewer. A study is therefore necessary to sort out the following questions: To which
extend does realism depend on the approximations to the material model rather
than the geometry or the illumination ? What is the impact of the various BRDF
approximations on the perceived realism of a rendered image?

That needs rendering multiple BRDFs in multiple lighting conditions on different
geometry, and setting up a set of perceptual experiments. This is a small project,
but it could be a nice opportunity for a collaboration with people in human percep-
tion and human vision teams, with a potential impact on video games, and virtual
prototyping.

4.2 Long term research

Acquisition and representation of materials (3-4 years)

Numerical models of materials are the key ingredient to realism in image synthe-
sis, whatever the rendering technique involved, should they work in real time for
video games, or offline in a computationally expensive but unbiased physically-based
lighting simulation. Numerical models for materials are designated by the term
"reflectance" which groups multiple sub-families of functions with one to height
parameters.
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Acquisition and processing of reflectance data from real-life material samples
is practically difficult for several reasons: (1) the acquisition cost is huge. Several
hours are necessary to acquire an accurate BTF (Bidirectional Texture Function)
with a gonioreflectometer [Matusik 2003]; (2) the acquisition requires calibration
both in the photometric and geometric domains; (3) acquired data must be ade-
quately filtered, parameterized and compressed in order to be used later in a lighting
simulation system. As a consequence, the acquisition of material properties requires
a complex setup and lots of processing power. It seems necessary to derive new ac-
quisition algorithms that can fit consumer hardware (a camera, a webcam,...) and
that run at a low computation cost, while controlling the possible approximation
errors.

A technique that would ideally be able to run on low price hardware would
need a complete pipeline that is able to recover all the missing information that is
usually provided by a fully calibrated system: high dynamic range reconstruction
of the signal, calculation of surface normals and reflectance properties, and possibly
calculation of the incident illumination as well, although the later is easy to capture
with good accuracy using a spherical reflector [Ren 2011].

I want to explore the application of the theory of compressive sensing to acquire
reflectance functions. Compressive sensing is a set of techniques which aim at re-
constructing sparse signals from linear measurements. A sparse signal is a signal
which expresses with a small number of significant coefficients in a linear function
basis. Practical experiments have shown that such signals can be reconstructed
with a number of measurements that is well below the traditional Nyquist limit.
The reason for this is that the inherent dimensionality of sparse signals is small in
comparison to the space they live in. The good news is that most signals we’re deal-
ing with in computer graphics are sparse. This is the case for reflectance functions
in particular, but also light fields [Marwah 2013] and solutions of global illumination
problems [Peers 2009].

This work should start with a preliminary experimental phase where we should
test the feasibility of compressive sensing reconstruction in simple situations. We
will measure for various choices of function spaces and various types of data mea-
surement how nicely existing compressive sensing methods work. Available algo-
rithms include for instance the SpaRSA method [Wright 2009], or the COSAMP
method [Needell 2010]. Then, we will explore how feasible it is to extend the re-
covery to not only the reflectance but also the normals of the surface. That will
need to apply non linear compressive sensing techniques [Blumensath 2012], which
have been proved to work under reasonable assumptions. Finally, this work should
eventually provide a complete acquisition pipeline and the software suite that allows
to perform acquisition of reflectance properties.

This work has already begun, and I am currently advising a PhD student on that
particular subject. First results have already given birth to a poster at Siggraph
Asia’2013.
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Frequency and dimensional analysis of the light transport operator
(3-4 years)

Lighting simulation always results into computing more than what is eventually
necessary. This crude statement is actually motivated by the fact that the amount
of information in synthetic images, in the sense used by information theory, is usually
much less than what the space of functions over a grid of pixels actually contains. In
other words, simulated images are sparse, with very limited frequency content. This
is even worse when the dimensionality of the problem increases, as we have proved
in our works on generating depth of field and motion blur images. Sub-surface
scattering and light scattering in general also tend to produce synthetic images with
rather smooth variations.

The apparent regularity of synthetic images is the consequence of two distinct
phenomena. First of all, light transport mostly acts as a low-pass filter over the
illumination, with the notable exception of occlusion. Secondly, the light transport
operator has a rather low dimensionality, which means that is can be represented
compactly in a well chosen function basis. That has been successfully used for
compressing precomputed radiance transport [Sloan 2002]. Traditional computation
methods, and in particular methods based on Monte-Carlo summation in the space
of light paths do not account for these characteristics and for good reasons: it is
difficult to know in advance that the combined effect of many light paths is going to
produce a smooth function in the image space, and how smooth that function will
eventually be. The frequency analysis of light transport aims at giving such tools.

Frequency analysis of light transport Frequency analysis of light transport
consists in reformulating local light transport operators in the Fourier domain, so
as to characterize the spectrum of a light distribution before the light distribution
itself is even computed. This analysis allows to allocate adequate computational
power to the calculation using adaptive sampling and proper reconstruction filters.
It is usually performed in 4D but it elegantly extends to 5D including the temporal
dimension so as to predict the variations of light in images taken with a finite
aperture time.

In my own contributions, I have already explored theoretical and practical as-
pects of frequency analysis of light transport, in particular related to depth of field
and motion blur effects. We have also derived various representations for the fre-
quency content of local light fields some suitable to real time rendering, some suitable
for unbiased offline rendering. This works has very recently been extended to par-
ticipating media [RI-00]. In the near future, I would like to try to apply frequency
analysis to sub-surface scattering. A more generic research topic is also to use
frequency analysis along light paths to drive Markov chains Monte-Carlo methods
such as Metropolis Light Transport [Veach 1997] and Energy Redistribution Path
Tracing [Cline 2005]. Indeed, mutation strategies are usually driven by how much
energy is conveyed by a light path. It is likely that a faster converging solution can
be obtain by oversampling regions with a higher variance instead.
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Dimensional analysis of the light transport operator The light transport
operator, as defined in Section 3.1.1 transforms a full distribution of light having
bounced n times into a full distribution of light having bounced n+ 1 times. With
this particular definition, the light transport operator appears to be dense since it
spreads light everywhere in a scene.

The idea behind the dimensional analysis of light transport is to find function
spaces in which it is as sparse as possible. In other words, if we can find such a
function space where one transported distribution of light decomposes over a small
number of basis functions, we might be able to increase computation speed a lot.
One good candidate of course is the eigen space of the light transport operator.
I propose to explore that particular space. It is also likely that examining local
transport operators such as the reflectance operator or the scattering operator will
bring interesting results.

These eigenspaces that inherently depend on the scene’s geometry and materials
but not on the light sources, will potentially give new representations for the light
transport operator in which it is more compact and therefore faster to compute.
However, Fredholm operators with a discontinuous kernel (that is what we’re dealing
with) do not usually have a spectrum that is easy to compute. What do the eigen
functions of light transport in a geometric scene look like? I have no idea yet. But
I have the feeling that some interesting information is to be found there.
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Computer Graphics, IEEE, 2013, 19 (5), pp. 749-761
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cal Extrema; Kartic Subr; Cyril Soler; Fredo Durand; ACM Transactions
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Asia’2009

RI-05 Fourier Depth of Field; Cyril Soler; Kartic Subr; Frédo Durand; Nicolas
Holzschuch; François X. Sillion; ACM Transactions on Graphics, ACM Press,

2009, 28 (2), pp. 18:1-18:12. Presented at Siggraph 2009
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lowski; M. Taberner; B. Pinty; V. Bruniquel-Pinel; M. Disney; R. Fernandes;
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John Wiley & Sons, Inc., 2013, 32 (2)
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Appendix B

Key publications

I’m including here a selection of four publications that are representative of my
work. I mostly chose the ones I am the most proud of, in each of the sub-domains I
referenced in this report (realtime rendering, geometry processing, image analysis,
and simulation of radiative transfer) while trying to cover the full research period
that is referred in this document.
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Abstract

We present an algorithm for rendering faceted colored gemstones
in real time, using graphics hardware. Beyond the technical chal-
lenge of handling the complex behavior of light in such objects, a
real time high quality rendering of gemstones has direct applica-
tions in the field of jewelry prototyping, which has now become
a standard practice for replacing tedious (and less interactive) wax
carving methods. Our solution is based on a number of controlled
approximations of the physical phenomena involved when light en-
ters a stone, which permit an implementation based on the most
recent – yet commonly available – hardware features such as frag-
ment programs, cube-mapping.

Keywords: Crystal optics, Hardware-based rendering, real time

1 Introduction

Gemstones are fascinating because they display many visually ap-
pealing phenomena thanks to their ability to alter light in a number
of very specific ways. Examples include brilliance from internal
reflections, fire due to dispersion of light, dichroism and doubling
due to birefringence, color-shifting because of a camel-shaped ab-
sorbance spectrum, and darkening due to polarization. Unfortu-
nately, the complexity of light interaction inside gemstones, due to
their particular crystal structure, makes correct renderings of such
objects very difficult to obtain.

Furthermore, our investigations among jewelry design packages
show that computer aided prototyping has now become a stan-
dard [Doyle 2000]. Applications need a fast algorithm for rendering
gemstones to allow the user to move and appreciate the variations
in color and brightness over several views of the stone. The qual-
ity of the rendering is most important during the design of a piece
hand-in-hand with a client who may want to see a high quality view
of the expected result.

Up to now, the academic solutions which have been pro-
posed for rendering gemstones have all been based on more
or less complex ray tracing implementations, and therefore do
not offer the possibility of real time display. To our knowl-
edge, no commercial jewelry design software has such a ca-
pability. In the specifications of the two software packages
JewelSpaceTM (see www.jewelspace.net) and JewelCADTM

(see www.jacadcam.com), for instance, one learns that the first

∗Artis and PRIMA are teams within the GRAVIR/IMAG labo-

ratory, a joint research unit of CNRS, INPG, INRIA, and UJF.
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combines radiosity and ray tracing while the second uses OpenGL
and ray tracing, which gives nice, but not instant, results.

We show in this paper that the convexity and polyhedral nature
of faceted gemstones raises the possibility of an efficient hardware
implementation, which we achieve by using the most recent hard-
ware capabilities such as high level fragment programming [Mark
et al. 2003], as well as more classical techniques such as cube map-
ping [Greene 1986]. It is indeed possible to rely on these tools
for implementing pixel-based computation of Fresnel terms, direc-
tional light sampling and tone reproduction.

Our system introduces new possibilities of observing virtual
gemstones: not only can the viewing conditions be changed in real
time but also the physical properties (e.g., color, refractive index)
and even the geometry of the stone. Indeed, our management of ren-
dering complexity offers the possibility to trade accuracy for speed,
so as to maintain interactive rendering speed. Among applications,
our algorithm could be a plugin for rendering faceted objects in a
more complex scene as our results show. In terms of jewelry design,
our contribution should be seen as a potential solution for real time
examination of created objects with high rendering quality. For ed-
ucational purposes it also permits to study interactively the visual
properties of gemstone cuts in measured light conditions.

In section 3 we present a physical model for the behavior of light
in colored gemstones. The importance of each phenomenon is then
examined with a correct order of priority in terms of visual impact
in Section 4, in order to derive a model suitable for hardware im-
plementation. This implementation is presented in section 5. We
finally give a number of results prior to concluding.

2 Related work

Yokoi et al. propose an algorithm [Yokoi et al. 1986] aimed par-
ticularly at the reproduction of asterism (i.e., the effect seen on star
sapphires) and chatoyancy effects. For this, a model for the dis-
persion of light rays into a distribution of microfacets is elaborated,
which produces the expected result.

Yuan uses an adaptive ray tracing for adequately sampling the
light spectrum for various wavelengths [Yuan et al. 1988], while
keeping the overall complexity much lower than traditional dis-
persive ray tracing [Thomas 1986] and obtains fine images of di-
amonds. Dispersion is further investigated in [Sun et al. 2000b]
and [Wilkie et al. 2000] for the rendering of glass-made objects.

Sun [Sun et al. 2000a] obtains images of colored diamonds using
Fresnel reflection, volume absorption and light dispersion in a ray
tracer. He also proposes a method to handle the non-linearity of
absorption and the poor regularity of absorbance spectra using a
composite spectral model.

These three papers constitute the few contributions in the field
of computer graphics which aiming at rendering gemstones specifi-
cally. All these methods share a ray tracing basis with high compu-
tation time. None of them implements polarization which however
incurs several visually important phenomena in gemstones.

Wolff proposes one of the first attempts to incorporate polariza-
tion effects in ray tracing [Wolff and Kurlander 1990], in the context



of generalizing the Torrance-Sparrow reflectance model. For this,
he uses the formalism of coherency matrices, introduced by Wolf
in 1959 [Wolf 1959]. Another formalism (Stokes light vectors) was
used by Wilkie in 2001 to get rid of complex numbers [Wilkie et al.
2001] and to incorporate polarization along with fluorescence ef-
fects in a ray tracer, with convincing results on semi-transparent
objects. In 1994, Tannenbaum gave some details about the im-
plementation of the birefringency phenomenon [Tannenbaum et al.
1994] for computing images of highly birefringent media such as
calcite. As we explain below, birefringency is responsible for color
variations in many stones.

3 Light propagation in gemstones

We start by presenting a physical model for light propagation in
gemstones. This model will be used as a starting point for the ap-
proximations which lead to our simplified model (in Section 4),
which is suitable for hardware implementation. It will also serve in
a ray tracer (see Section 6) for validating these approximations.

Although the polarization state of light is, for most rendering
applications, an expensive and unnecessary feature, it does play a
critical role in the interaction of light with gemstones, and there-
fore must be incorporated into any rendering model that wants to
reproduce these effects. Indeed, while the naked eye is not trained
for detecting light polarization, the path of light through a faceted
transparent object involves a number of selective changes in the po-
larization. This succession of changes is responsible for the darken-
ing of some regions and, in the case of anisotropic crystal structures,
a color change depending on the direction of propagation (Figure 3,
left shows a combination of these two effects).

Let E be the electrical field of a monochromatic planar wave
propagating along vector s at speed v and angular frequency ω. E is
expressed in the plane orthogonal to s as space and time dependent
2D vector:

E(r, t)=

[

E⊥ cos(ω(t − r · s/v))

E‖ cos(ω(t − r · s/v)+δ)

]

=R

(

E⊥ei(ω(t−r·s/v))

E‖ei(ω(t−r·s/v)+δ)

)

(1)

E⊥ and E‖ are the amplitudes of each component and δ is the phase
shift between the two components of E. As shown, E may alterna-
tively be represented as the real part of a complex-valued field. For
rendering, we are interested in the intensity of E, which is

I = E⊥2
+E‖2

3.1 Fresnel laws

Most crystal-structured materials are optically anisotropic
(e.g., tourmaline, sapphire, but not diamond). This comes from
the geometric asymmetry of the atoms arranged in the structure,
which favors different charge transfers – i.e., different wavelength
absorptions–, and different propagation speeds, depending on
the direction of propagation. In the case of uniaxial crystals the
medium is characterized by two indices of refraction no and ne, and
its optical axis a. For a given wave propagation vector s, we define
the crystal coordinate system by its orthonormal basis Xa,Ya,Za

and the principal plane by the two vectors Ya,Za:

Xa(s) =
a× s

‖a× s‖
Ya(s) =

s× (a× s)

‖s× (a× s)‖
Za(s) = a (2)

Let ε be the dielectric tensor of the medium, defined by:

ε =tO





no 0 0
0 no 0
0 0 ne



O with O =





Xa(s)
Ya(s)
Za(s)





The dielectric displacement vector D of the wave is related to the
electric field E by:

D = εE

A light ray entering an anisotropic gemstone separates into two
sub-rays linearly polarized along orthogonal directions (see Fig-
ure 1), called ordinary ray, or o−ray, and extraordinary ray, or
e−ray [Born and Wolf 1999]. These rays belong to the only two
categories of waves which are allowed to propagate in uniaxial crys-
tals, and have their own characteristics:
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Figure 1: Formation of an ordinary and extraordinary ray when an
incident light ray encounters an anisotropic medium.

The two waves have respective directions of propagation so and
se. The directions of polarization are such that for the o−ray, Do vi-
brates perpendicular to the principal plane (i.e.,along Xa(s

o)), and
for the e−ray, De vibrates parallel to the principal plane (i.e.,along
Ya(s

e)). The electric field of the o−ray is orthogonal to the direc-
tion of propagation so of its wave, whereas that of the e−ray is not,
because εEe is not collinear to De. The energy propagation vectors
of the two waves (i.e.,the directions used for ray tracing) are thus
to = so and te 6= se.

The speed v of the two rays can be computed from the speed c of
light in vacuum, using [Born and Wolf 1999]:

vo = c
no

ve =
(

(

c
no

)2
cos2 θ+

(

c
ne

)2
sin2 θ

) 1

2

with cosθ = a · se

While the o−ray lies in the plane of incidence and obeys Snell’s
law, the transmitted e−ray does not. Its ray direction te

t
can be com-

puted using the following formula [Beyerle and McDermid 1998]
in which n is the interface normal and n1 the refractive index of the
incident medium:

te
t
=

γ2(n′2
s+(R−n

′·s′)n)

‖γ2(n′2s+(R−n′·s′)n)‖
where γ = 1

none ε and

R =
(

(n′ · s′)2 −n′2s′
2 +n′2/n2

1

) 1

2

n′ = γn s′ = γs

(3)
Similar to refractions, internal reflections inside an anisotropic

crystal splits light waves into ordinary and extraordinary rays.
While the direction of the former obeys the classical rule of reflec-
tion, the direction of the e−ray obtained by internal reflection must
be computed using [Beyerle and McDermid 1998]:

te
r =

γ2(n′2s′ +2(s′ ·n′)n′)

‖γ2(n′2s′ +2(s′ ·n′)n′)‖
(4)

Finally, for a given wave refracting and reflecting at the interface
between the air and an anisotropic medium, we need to express the
Fresnel coefficients which permit us to compute the refracted and
reflected fields. This happens when light enters or exits a gemstone,
and depending on the case, reflected or refracted waves may either
be the sum of an ordinary and extraordinary rays, or a unpolarized



wave. We treat both cases at once by considering the interface be-
tween two anisotropic media. If one medium is isotropic, the waves
in this medium are still the sum of two orthogonally polarized wave
components and can thus be represented as a ’o−ray’ and a ’e−ray’
with the same direction of propagation with arbitrary choice of the
’optical axis’ of the medium. We take the convention that subscripts
t and r stand for transmitted and reflected fields, while o and e stand
for ordinary and extraordinary.

Let Ei be an incident linearly polarized wave of amplitude Ei,
vibrating direction ei, and speed vi = c

ni
. We want to find the coef-

ficients αo
r ,α

e
r ,α

o
t ,α

e
t by which to multiply Ei to obtain the ampli-

tudes of the four reflected and refracted fields.
Maxwell theory requires that the tangential components of the

total electric field and the magnetic vector H = c
µv s×E be con-

tinuous across the surface (where µ is the magnetic permissivity,
supposed identical in both media):

n× (Ei +Eo
r +Ee

r) = n× (Eo
t

+Ee
t

)
n× (Hi +Ho

r +He
r)= n× (Ho

t
+He

t
)

Let eo
r ,e

e
r,e

o
t
,ee

t
and ho

r ,h
e
r,h

o
t
,he

t
be the respective vibrating direc-

tions of the electrical and magnetic fields. By expressing each

component El
k

(resp. Hl
k
) as αl

kEie
l
k

(resp. αl
kEin

l
khl

k
, with hl

k
=

sk × el
k
/‖sk × el

k
‖), and computing the dot product of these equa-

tions with two independent vectors v1 and v2 in the interface plane,
one obtains [C.McClain et al. 1993]:
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(5)

This linear system can be solved numerically. In the case of total
reflection it should first be simplified into a 2x2 system by sup-
pressing the αo

t and αe
t unknowns. Up to now Ei has been supposed

linearly polarized, which applies for e−rays and o−rays inside an
anisotropic medium. If the incident medium is isotropic, the two
solutions corresponding to setting ei orthogonal and then parallel
to the incident plane gives the 8 needed coefficients. If both me-
dia are chosen isotropic, and if the ’optical axis’ is set to be the
normal of the interface, we have checked that the obtained solution
corresponds to the well known Fresnel formulas given in Figure 2.
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−1
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Figure 2: Geometric configuration and
Fresnel coefficients for a light ray refr-
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acting and reflecting at the interface between two isotropic media.
The crossed coefficients αoe

r ,αeo
r ,αoe

t and αeo
t are null in this

particular case.

3.2 Absorption

As a general rule, a fraction of the light traveling inside a trans-
parent material is absorbed. The absorption along a path (x0,x) is
ruled by the Bouguer-Lambertian law [Wyszecki and Stiles 1982],
giving the resulting intensity after a distance d:

Iλ(x) = Iλ(x0)e
−κ(λ)d (6)

κ is called the absorbance of the medium and depends on the wave-
length. Absorption is responsible for the color of gemstones, and
the absorbance spectrum acts as a tracer for the chemical nature,
geographic source and applied treatments of a stone.

Green tourmaline
absorbance spectra

E a
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Figure 3: left: Photo of pleochroism in a green tourmaline. The op-
tical axis is left-to-right oriented. Rays entering on the left side per-
pendicular to the page have most of their path parallel to the optical
axis before they come out to the eye from the right side. They are
thus mainly attenuated by the E‖ (mainly green) spectrum. Photo:
Wimon Manorotkul/Pala International (www.palagems.com); used
with permission. Right: absorbance spectra of tourmaline for waves
components polarized along/perpendicular to the optical axis.

Here again the optical anisotropy of gemstones plays an impor-
tant role: because the o−rays and e−rays have different polariza-
tion directions, they are absorbed differently by the stone. The fol-
lowing formula [Born and Wolf 1999] gives the absorbance for the
two rays:

κo = Ko

κe = Ko cos2 θ+Ke( no

ne )2 sin2 θ
(7)

In this formula, Ko and Ke are characteristic constants of the
medium, and cosθ = se · a is the cosine of the angle between the
extraordinary wave propagation direction and the optical axis of the
stone.

Depending on the angle with which a ray enters a birefringent
gemstone, the refracted e−ray will have variable direction; its ab-
sorption and color contribution to the outgoing light will conse-
quently vary. This phenomena, called pleochroism, is illustrated on
Figure 3 for a tourmaline gemstone.

Many gemstones display this behavior (e.g.,sapphires, rubies,
tourmalines [Hughes 1997; Nassau 2001]). Other gemstones (like
andalusite) display three distinct colors. This comes from their
crystal structure, which has two optical axes instead of one. The
computation of absorption in this context is beyond the scope of
this paper. Some of these stones, however, behave visually as if
they were uniaxial (e.g.,peridot and andalusite) because two of the
three absorbance spectra are nearly identical.

The model presented above represents the state of the art in the
understanding of light transport in gemstones, except for two delib-
erate approximations: First, the model treats wavelengths indepen-
dently, and therefore cannot represent fluorescence in gemstones.
Although there is fluorescence in some gems (e.g., some sapphires,
synthetic diamonds), it is weak and mainly affects UV light outside
the visible spectrum, so we ignore it. Second, in absorption, the
polarizations of the e-ray and o-rays are in fact very slightly ellipti-
cal rather than strictly linear [Born and Wolf 1999]; we nonetheless
treat them as linear.

4 Adopted model

At this point of the paper, we discuss the importance and priorities
that should be given to the phenomena previously described, keep-
ing in mind a possible hardware implementation. In section 4.1 we
justify our choices for representing color as three separate wave-
lengths, and examine in section 4.2 how light will be represented
for each wavelength.

4.1 Representation of color

Choosing a good representation of color is usually a compromise
between visual accuracy of the result and a bulky set of coefficients.



Because the constraints of the hardware, we have chosen to work
with 3 color components. Richer spectral rendering [Peercy 1993]
could still be achieved by adding more passes and a final recon-
struction, at the expense of rendering time [Sun et al. 1999].

We thus limit ourselves to spectral sampling, although the non
linear relationship between absorbance and transmittance tends to
saturate colors when darkening them [Sun et al. 1999]. Such an ap-
proximation on the facility to approach the attenuation by its linear
counterpart is justified below.

One other important aspect of spectral sampling is to correctly
choose the absorbance coefficients κr,κg and κb for the R,G and
B channels. Directly reading spectral absorption coefficients from
the spectral absorbance curve at the exact wavelengths of red
(700.0nm), green (546.1nm) and blue (435.8nm) introduces signif-
icant errors due to peaks in the absorbance curve [Sun et al. 1999].
We thus need a way to extract significant enough absorbance val-
ues from the stone’s spectral absorbance curves. Inspired by exist-
ing approximations for reflectance [Borges 1991], we propose the
following:

The R,G,B color components perceived by human eye for a
given spectrum S are computed using the color matching functions
r, g and b of λ [Wyszecki and Stiles 1982] by:





R
G
B



 =
Z

λ





r(λ)
g(λ)
b(λ)



S(λ)dλ

Following Equation 6, a spectrum S0 corresponding to white light
will transform, after a path of length x, into

S(x,λ) = S0(λ)e−κ(λ)x e.g., R(x) =
Z

λ
r(λ)S0(λ)e−κ(λ)x (8)

We are looking for an absorbance value κr such that R(x) =
R(0)e−κrx approximates equation 8 for small values of x. We thus
take:

κr = −
1

x
ln

R(x)

R(0)
= −

1

x
ln

[

1

R(0)

Z

λ
S0(λ)r(λ)e−κ(λ)xdλ

]

which, for small distance values x, is approximated by:

κr =
1

R0

Z

λ
κ(λ)r(λ)S0(λ)dλ using R0 =

Z

λ
r(λ)S0(λ)dλ (9)

Proceeding identically for the green and blue components we obtain
suitable absorbance coefficients from the absorbance spectra, while
avoiding artifacts of direct sampling of absorbance functions with
peaks.

The error of the above approximation for κr,κg,κb depends on
the extent to which absorption differs from its linear approximation
in Equation 9. The error is thus small because the diameter L of the
stone, times the absorbance κ is small (the absorbance is computed
piecewise between successive internal reflections of light). For typ-
ical values of L = 1cm and κ = 0.4 for instance, we get an error of
e−κL−(1−κL)

e−κL = 0.00125%

4.2 Representation of monochromatic light

We adopt the formalism of coherency matrices [Glassner 1995;
Wolf 1959] for representing the intensity and the polarization state
of the electric field along a ray of light. The coherency matrix of a

field E =
(

e⊥(t),e‖(t)
)

is defined as

J =

[

< e⊥e⊥
∗

> < e⊥e‖
∗

>

< e‖e⊥
∗

> < e‖e‖
∗

>

]

=< E E∗ > =

[

Jxx Jxy

Jyx Jyy

]

where E is the complex representation of E, E∗ is the conjugate
transpose of E, and < u > denotes the mean value of u over time.
The intensity of the field is given by I = Jxx + Jyy. From this, the

coherency matrix of an incoherent (non polarized) light ray of in-
tensity I0 is [Wolf 1959]:

Jincoherent =
1

2
I0

[

1 0
0 1

]

For any linear transformation M (also called a modifier matrix) ap-
plied to E, the corresponding coherency matrix becomes, from the
definition of J, J′ = MJM∗. It is thus possible to compute the ma-
trix J along a ray by applying successive modifier matrices corre-
sponding to refraction and internal reflections on the faces of the
gemstone, and rotations to account for the change in coordinate
systems between two successive media interfaces. The matrices
involved for refraction, reflection and rotation with an angle of θ,
are respectively:

Mt =

[

αoo
t αoe

t
αeo

t αee
t

]

Mr =

[

αoo
r αoe

r
αeo

r αee
r

]

Rθ =

[

cosθ sinθ
−sinθ cosθ

]

In birefringent gemstones, the direction of the ordinary ray
is easily computed using Snell’s law, but the intervention of a
different direction for the extraordinary refracted and reflected rays
make the computation cost grow exponentially with the depth of
paths inside the stone. We computed the maximum angle between
the o−ray and e−ray for all incidence angles in [0,π/2] and any
orientation of the optical axis, for common gemstones (zircon
being an extreme case):

Material Zircon Tourmaline Sapphire Emerald

Angle (deg.) 2.328 0.767 0.45 0.324
Error 4.06 % 1.34 % 0.785 % 0.565 %

The ”error” field gives the distance between the two images of an
edge on the far side of the stone, as a fraction of the total size of
the stone. For a 1cm Zircon, for instance, the two images would be
0.5mm apart; on a 1000-pixel image, this would 50 pixels, but this
is the extreme case (by far). The validity of this approximation is
confirmed by the photos of the tourmaline gemstones on Figures 3
and 11: no doubling of the edges seen by refraction is perceptible
whereas in the orientation of the optical axis corresponds to a case
of maximum deviation in Figure 3.

Computing Fresnel coefficients using Equation 5 can not conve-
niently be implemented in graphics hardware. Contrarywise, Fres-
nel coefficients at the interface of two isotropic media (given in Fig-
ure 2) can be tabulated very efficiently. Because o−rays and e−rays
propagate along close directions and have orthogonal polarization,
the generalized Fresnel coefficients are very close to the isotropic
ones when the difference ne−no is small, if expressed into the same
coordinate systems. Let Rθi

,Rθr
,Rθt

be the rotation matrices which
align the coordinate systems for the isotropic Fresnel coefficients
of Figure 2 to the corresponding implicit coordinate systems of the
general Fresnel coefficients of equation 5 in the coordinate system
on the principal planes (Equation 2). We have:

Mt ≈ Rθi

[

Ft
‖ 0

0 F t
⊥

]

Rθt
and Mr ≈ Rθi

[

Fr
‖ 0

0 Fr
⊥

]

Rθr
(10)

Equality holds when no = ne. For instance let’s consider the case
of a ray entering an anisotropic medium of optical axe a from an
isotropic medium. n is the interface normal and st the propagation
vector of the transmitted wave. Generalized Fresnel coefficients
already relate the reflected field to the incident field in the same co-
ordinate system than in the isotropic case, but the transmitted field
is expressed in the coordinate system with the orthogonal vibrating
direction given by a× s, so one should take:

θi = 0, θr = 0, cosθt = n×st ·a×st, sinθt = n×st · st×(a×st)

The proposed approximation works very well, even on zircon, as
illustrated on figure 4.
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Figure 4: The colored curves present the 8 Fresnel coefficients

α
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at the interface between the air and a birefringent medium

(zircon). The black-dotted curves represent their approximations
obtained through equations 10. The interface is the plane z = 0, the
optical axis is a = (cos(π/6),0,sin(π/6)) and the incidence plane is
chosen so as to correspond to the case of highest deviation between
the o−rays and the e−rays.

Contrarywise, the change in absorption due to the polarization of
rays with respect to the optical axis of the stone dramatically affects
the rendering color and should not be neglected (see Figure 3).

Because the waves along the o−ray and the e−ray are polarized
orthogonally to each other, we can represent them using a single
coherency matrix in the coordinate system based on the ordinary
and extraordinary vibration directions and their – supposed shared
– direction of propagation s. In this coordinate system, the matrix
of a wave propagating inside the crystal is therefore diagonal, and is
attenuated by a diagonal modifier matrix depending on the direction
of propagation, using the attenuation coefficients of Equation 7:

A(s) =

[

e−κo(s)l 0

0 e−κe(s)l

]

(11)

In the case of isotropic crystals (e.g., diamonds, garnets) the ma-
trix A(s) becomes identity times the attenuation given by Equa-
tion 6.

5 Rendering algorithm

Figure 5 shows the path of the light obtained by tracing a ray from
the eye to a point on the stone. To compute the resulting intensity
J0 along such a path, we need to add the contributions of light at
each interface Pk between the stone and the air, and accounting for
attenuation Ak→k+1 along segments [Pk,Pk+1] inside the stone. De-
noting by Jk the coherency matrix of the light from point Pk in the
path, we have:

J0 = Mr
0Ii

0Mr
0
∗ +Mt

0A0→1 J1 A∗
0→1Mt

0
∗

Jk = Mt
kJi

kMt
k
∗ +Mr

kAk→k+1 Jk+1 A∗
k→k+1Mr

k
∗ (12)

For rendering a gemstone using classical ray tracing, one would
collect these contributions from back to front (i.e., at Pn,Pn−1 and
finally P0), transforming rays at each successive interface to ac-
count for refraction, external reflection, or internal reflections en-
countered along the path.

Our hardware-based algorithm relies on the fact that, for a given
depth k, the set of points Pk that contribute to the image through the
same succession of transformations, can be rendered at the same
time using a fragment program. Such a set is called a facet. We
regroup facets in a tree structure called the facet tree. Each node of
the facet tree at depth k contains a product of k transformations and
a region of points included in one face of the gemstone.
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0,1,2,3,4 contribute to

the final intensity at point P0

along incident directions asso-
ciated to external reflections (at
P0) and internal refraction (at
P1,P3,P4). The ray is followed
until the attenuation lowers sig-
nificantly the chances of miss-
ing a hotspot in the incoming
light.

Rendering a gemstone from a given viewpoint thus requires for
each frame to (1) build the facet tree corresponding to current view-
point and (2) accumulate contributions of all facets of the facet
tree, from back to front, using a fragment program. The light-
ing environment used for rendering gemstones is stored in a cube-
map [NVIDIA Corporation 2000]. As illustrated in the result sec-
tion, rendering gemstones needs to deal with high dynamic range
lighting and rendering. All computations are thus performed with
floating point values and a final tone reproduction pass (3) turns the
result of pass (2) it into a 8−bits rgb image. Pass (1),(2) and (3)
are detailed in Sections 5.1,5.2 and 5.3.

When changing the viewpoint the facet tree changes and must
therefore be updated. This means that not only the viewpoint, but
also the geometry of the gemstone as well as its physical parame-
ters (refractive indices, orientation of optical axis, attenuation) can
arbitrarily be changed during rendering, at the same cost.

5.1 Pass 1: construction of the facet tree

Because refraction is not in general a linear transform, the facets
as defined above are not polygons. However the nonlinearity does
not noticeably affect the refracted images of short segments such as
the edges of a gemstone, as shown on figure 6, and we adopt, for
representing refraction through a front face of the gemstone, the lin-
ear approximation proposed by Heckbert for beam tracing [Heck-
bert and Hanrahan 1984]. To each facet is thus associated a fictive
viewpoint. Note however, that when we render the facet tree, the
refraction direction of incoming light Ik at point Pk 6=0 will be com-
puted exactly by the fragment shader. Approximations of refraction
only affect the point P0.

Figure 6: Left: image computed using exact refraction with our ray
tracer. Center: image computed with graphics hardware algorithm
and linearized refraction. Right: difference image.

Thanks to this approximation and to the linearity of internal re-
flections on the gemstone faces, each facet is an actual polygon and
a subset of a single face of the gemstone. We compute facets with
the OpenGL feedback buffer using the following algorithm:

At level 0 of the tree the facets are the faces of the gemstone poly-
hedron directly seen from the viewpoint. At level 1 the child facets
of level 0 facet f 0

i correspond to the intersection of a beam traced
from the viewpoint through f o

i with the gemstone transformed by
refraction. At subsequent levels the gemstone is further transformed



by reflection through the support face of the parent facet and clipped
with this facet.

The window coordinates of each facet are computed by render-
ing the initial geometry of the gemstone (stored in a display list)
into the OpenGL feedback buffer [Neider et al. 1993], using the
appropriate viewpoint and transformation, while inserting clipping
planes corresponding to the edges of the parent facet as shown on
Figure 7.
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Figure 7: Construction of the facet tree,
using a fictive viewpoint for linearized
refraction and successive symmetries
for internal reflections. For level k the
gemstone model is transformed through
reflection/refraction around the support
plane of the parent facet, then drawn in

the OpenGL feedback buffer, and clipped by the edges of the
parent facet. The resulting mesh is displayed on the right, using
the same color for facets of the same level.

To minimize costly access to the feedback buffer, the facet tree
is constructed breadth-first. The depth of the tree is limited by
three conditions: (1) the total path length to a facet attenuates
light strongly enough to reduce the resulting intensity under a fixed
value; (2) the area of the facet is smaller than a user defined thresh-
old; (3) the computation time down to the current level exceeds the
frame-rate limit.

Because refraction indices depend on wavelengths, the facet tree
should not be the same for the red, green and blue components. De-
pending on the intensity of dispersion, we compute either one sin-
gle facet tree corresponding to an average refractive index, or three
distinct facet trees, at the expense of frame rate. However, the frag-
ment shader which computes the refraction of light at points P1,...n
still uses the correct indices of refraction. We thus still achieve in
the worst case an approximation of dispersion effects, as shown on
Figure 8.

Figure 8: Image of a highly dispersive stone, computed using exact
refraction with our ray tracer(top left) and with our hardware algo-
rithm with one facet tree (top right). Left: a difference image shows
that some –but not all, as explained in the text– rainbow effects are
missed by our algorithm in this case.

For a given maximum depth, fully building the facet tree is not
in fact necessary: during this operation, we estimate the cumulative
effect of attenuation and Fresnel coefficients for a single point on
each facet down to the next level. We locally prune the construc-
tion if the contribution of next facet will be less than a threshold
in percentage to the accumulated energy before the current facet.
Section 6.2 shows a practical example of this.

5.2 Pass 2: rendering the facet tree

We implemented and tested the rendering algorithm of the facet tree
on a NVidia GeForceFX 5900 using Cg programming [Lindholm
et al. 2001].

Figure 9 summarizes our implementation: the facet tree is tra-
versed breadth-first, by decreasing order of level. At a given level
k > 0, a P−buffer is filled with the result of the internal reflection
fragment program, which computes the exact refraction of light en-
tering the gemstone from the cube-map, as well as the internal re-
flection of the contribution of level k+1 stored in the accumulation
buffer. The combined result is copied to the accumulation buffer
for level k − 1. At level 0 the external reflection fragment pro-
gram is used instead, for adding the result of the previous calls seen
by refraction, with the light reflecting on the faces directly visible.
Both fragment programs compute the attenuation using Equations 7
and 11. The path length is obtained by subtracting the distance from
the fictive viewpoint to the current pixel (c.f. Figure 7) to that of the
pixels in the previous result. The Fresnel coefficients are computed
using equation 10, from the formulas of Figure 2, tabulated in 1D
float textures.
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Figure 9: Implementation using Cg programming. See text.

The incoming light is represented using a HDR cube-map com-
posed of three traditional 4×8−bits cube-maps, one per color chan-
nel, each representing 32−bits fixed point values. The computation
by the fragment programs is performed using floating point num-
bers. We therefore can not simply blend the contributions of facets
into the (8−bits RGBA) frame buffer. This justifies the use of a
32−bits floating point RGBA P−buffer. Fresnel relationships be-
ing always expressed in coordinate systems were the matrices are
diagonal, we only need to store two components per channel (Eo,

Ee for anisotropic media, resp. E⊥, E‖ for isotropic ones). Each
component being represented as a 16−bits half float [Bogart et al.
2003], one can fit in the RGB channels of the P−buffer the electric
fields for red,green and blue. This encoding requires to un-pack the
values before using them. The A channel contains the distance of
the pixel to the fictive viewpoint at the last treated level in the facet
tree.

5.3 Pass 3: tone reproduction

Tone reproduction is achieved entirely in hardware using a pub-
licly available shader of Industrial Light+Magic [Bogart et al.
2003], to display floating point images stored in the OpenEXR for-
mat. Such an approach makes comparisons between ray-traced im-
ages, pictures of gemstones, and images rendered using the hard-
ware method very convenient, since the first two are produced in
OpenEXR format and displayed using the same shader as the one
used in the hardware implementation. We also tested hardware
based glare effect [Spencer et al. 1995; Debevec 1998] on our HDR
images with success, as in the teaser on page 1, and the diamond on
Figure 11. Glare effect was not used anywhere else in the paper, to
prevent masking important artifacts and details of the method.



6 Results

6.1 Modus operandi

The work presented may seem hard to reproduce without a clear
road map, which we give here.

Using the reference ray tracing algorithm requires working with
coherency matrices. Directions of the ordinary reflected and trans-
mitted o−rays can be computed using Snell’s law, while those of the
e−rays are given by Equations 3 and 4. Absorption is computed by
Equations 7 and 11. General Fresnel coefficients at each interface
are obtained by solving the 4x4 linear system in Equation 5.

Our hardware based algorithm differs from a standard ray tracer
in that ray directions always follow Snell’s law; Fresnel coefficients
are obtained using Equation 10, and refraction is linearized as ex-
plained in Section 5.1.

Both methods use equation 12 for composing coherency matri-
ces at media interfaces, and use the same set of parameters, as de-
scribed in the following three paragraphs:

System parameters We detail in the table below the param-
eters we used for our experiments. One needs the nature of the
medium (’I’=isotropic, ’U’=birefringent uniaxial, ’B’=biaxial) and
the refractive indices no and ne when applicable. Values are indi-
cated for the green channel whereas red and blue are obtained after
adding or subtracting the value after ’±’ (half the dispersion value
found in usual tables). Tricolored absorbance values are computed
using Equation 9 from the absorbance spectra of each stone1 .

Gemstone Type (Kr ,Kg,Kb)o|e Colors no,ne

Garnet I (0.136,0.153,0.175) orange-red 1.730± .014

Tourmaline U (0.033,0.034,0.082)o yellow green 1.642± .011

(Dravite) (0.010,0.076,0.015)e blue green 1.619± .011

Peridot B (0.023,0.015,0.051)o green 1.680± .010

(0.011,0.003,0.028)e yellow green 1.640± .010

Diamond I (0.001,0.001,0.001) white 2.410± .022

Sapphire U (0.332,0.270,0.156)e light blue 1.768± .009

(0.165,0.147,0.185)o violetish blue 1.760± .009

Andalusite B (0.0056, .006, .0183)o greenish red 1.635± .005

(0.170,0.175,0.257)e yellowish green 1.644± .005

Geometric models Models of standard gemstone cuts are read-
ily available on the internet2 . However, problems arise when a par-
ticular gemstone needs to be simulated, as in our comparisons with
photographs. While expensive gemstones (e.g., very clear and fine
quality stones) tend to be cut using very precise standards, more
affordable pieces often display an ad-hoc cut so as to respect con-
straints such as avoiding inclusions. Laser-scanning gemstones is
not applicable due to both their size and specularity. We also tried
X−ray tomography with very poor results.
The solution we used is based on man-
ually designing the mesh and applying
an iterative relaxation algorithm on ver-
tex positions so as to fit symmetries,
distance and planarity constraints mea-
sured on the stones. This works well
provided that the hand-designed mesh is not too far from the real
object. The model at right was designed that way and corresponds
to the tourmaline of Figure 11.

Acquisition of light We used traditional methods for acquir-
ing cube-maps. Photographs of a mirrored ball were taken along
two orthogonal directions and using a set of 10 different expo-
sures. Each set is first converted into a HDR image in Radiance
format. The two HDR images are combined using HDRShopTM

1 - e.g., at http://minerals.gps.caltech.edu/FILES/Visible/

2 - e.g., at http://www.3dlapidary.com/

(www.debevec.com/HDRShop), and the result saved as a cube-
map. We proceed identically to obtain HDR images of sample gem-
stones in the same lighting environment.

6.2 Additional validation tests
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Figure 10: (Bars charts, scale at right:) Computation times in mil-
liseconds for the construction of the facet tree only and for the full
algorithm. (Lines, scale at left:) number of facets in the facet tree
as a function of the number of internal reflections, (1) in the case
where the facet tree is full down to the requested reflection level,
and (2) when the facet tree is optimized for an error bound of 4%.
Two different models were used: model 1 (130 vertices, 115 faces)
and 2 (120 vertices, 93 faces). The picture row shows, for model
1, the raw and optimized facet trees as well as the corresponding
images. Parameters correspond to violet/blue sapphire.

Computation times In Figure 10 we present the computation
times (in ms) and the numbers of facets in the resulting facet trees
for two different models. This experiment shows that cleverly prun-
ing the facet tree makes the computation more efficient. Typical
framerates for less complex models (40 to 80 facets), in a 800×600
window, range from 12 to 30 fps at depths 2 and 3.

Comparison to real images On the top-right of Figure 11 one
can see a comparison between a simulated tourmaline and a picture
of a real one. The simulation was performed using the absorbance
values and the geometric model displayed in Section 6.1, and cap-
tured lighting conditions.

Because it was impossible to precisely duplicate the geometry of
the gems and the lighting conditions, and because the appearance
of gems is very sensitive to both, one cannot expect a pixel-by-
pixel correspondence between the images; one can, on the other
hand, evaluate the phenomenological similarities and differences
quite well. Both images display a change in color along the optical
axis (oriented at approximately 60◦ in the image plane) hence the
bluish tint on the bottom of each image (this effect, also seen on
stones (e),(f) and (g) proves the need to account for birefringency
in the simulation). Color ranges are quite similar, as well as flash
effects (from a qualitative point of view) thanks to the HDR render-
ing.

However one can complain that the luster of the stone (respon-
sible for the irridescent colors on the top faces in the photography)



Example of application in Jewellery prototyping (diamond).
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Note that after 2 reflections, very little is added to the image.
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Left: real tourmaline, right: simulated stone with same model

and similar lighting condition and viewpoint. See Section 6.2.

Grenat for different depths of the facet tree. (a) no internal reflection;

(b) single internal reflection; (c) and (d): 2 and 3 reflections;
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Figure 11: Various examples of results from our hardware rendering algorithm.

is not simulated, which would be a challenging problem to solve
using graphics hardware.

7 Conclusion

We have presented a solution for rendering faceted colored gem-
stones based on the analysis of optical phenomena, their simpli-
fication and their adaptation to a hardware-based implementation.
We have shown – we think for the first time – that it is possible
to obtain some very visually pleasant and mostly physically correct
images of faceted gemstones in real time by using a number of wise
approximations of the real phenomena.

Our implementation benefits from the high level programming
of today’s graphic cards [Mark et al. 2003], which allows a com-
prehensive and portable implementation. Moreover, the rendering
speed of our system offers new possibility for observing gemstones:
not only the viewpoint can be changed in real time, but also the
stone physical properties and geometry.

Our model can easily be extended to biaxial media. Other im-
portant features of gemstones, such as inclusions, color zoning and
luster would be interesting to incorporate as well.
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Accurate Detection of Symmetries in 3D Shapes
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We propose an automatic method for finding symmetries of 3D shapes, that is, isometric transforms which leave a shape globally
unchanged. These symmetries are deterministically found through the use of an intermediate quantity: the generalized moments.
By examining the extrema and spherical harmonic coefficients of these moments, we recover the parameters of the symmetries
of the shape. The computation for large composite models is made efficient by using this information in an incremental algorithm
capable of recovering the symmetries of a whole shape using the symmetries of its subparts. Applications of this work range from
coherent remeshing of geometry with respect to the symmetries of a shape to geometric compression, intelligent mesh editing,
and automatic instantiation.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface,

solid and object representations

General Terms: Algorithms

1. INTRODUCTION

Many shapes and geometrical models exhibit symmetries: isometric transforms that leave the shape
globally unchanged. Using symmetries, one can manipulate models more efficiently through coherent
remeshing or intelligent mesh editing programs. Other potential applications include model compres-
sion, consistent texture-mapping, model completion, and automatic instantiation.

The symmetries of a model are sometimes made available by the creator of the model and represented
explicitly in the file format the model is expressed in. Usually, however, this is not the case, and auto-
matic translations between file formats commonly result in the loss of this information. For scanned
models, symmetry information is also missing by nature.

In this article, we present an algorithm that automatically retrieves symmetries in a geometrical
model. Our algorithm is independent of the tesselation of the model; in particular, it does not assume
that the model has been tesselated in a manner consistent with the symmetries we attempt to identify,
and it works well on noisy objects such as scanned models. Our algorithm uses a new tool, the generalized

moment functions. Rather than computing these functions explicitly, we directly compute their spherical
harmonic coefficients, using a fast and accurate technique. The extrema of these functions and their
spherical harmonic coefficients enable us to deterministically recover the symmetries of a shape.

For composite shapes, that is, shapes built by assembling simpler structures, we optimize the compu-
tation by applying the first algorithm to the subparts, then iteratively building the set of symmetries of
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the composite shape, taking into account both the relative positions of the subparts and their relative
orientations.

We envision many applications for our work, including geometric compression, consistent mesh edit-
ing, and automatic instantiation.

This article is organized as follows. In the following section, we review previous work on identifying
geometric symmetries on 2D and 3D shapes. Then in Section 3, we present an overview of the symmetry-
detection problem and the quantities used in our algorithms. In Section 4, we introduce the generalized
moments and our method to compute them efficiently; in Section 5, we present our algorithm for
identifying symmetries of a shape. The extension of this algorithm to composite shapes is then presented
in Section 6., Finally, in Section 7, we show various applications of our algorithm.

2. RELATED WORK

Early approaches to symmetry detection focused on the 2D problem. Attalah [1985], Wolter et al. [1985]
and Highnam [1985] present methods to reduce the 2D-symmetry detection problem to a 1D pattern
matching problem for which efficient solution are known [Knuth et al. 1977]. Their algorithms efficiently
detect all possible symmetries in a point set but are highly sensitive to noise.

Identifying symmetries for 3D models is much more complex, and little research on this subject has
been published. Jiang and Bunke [1991] present a symmetry-detection method, restricted to rotational
symmetry, based on a scheme called generate and test, first finding hypothetical symmetry axes, then
verifying these assumptions. This method is based on a graph representation of a solid model and uses
graph theory. The dependency between this graph representation and the mapping between points
makes their method highly dependent on the topology of the mesh and sensitive to small modifications
of the object geometry. Brass and Knauer [2004] provide a model for general 3D objects and give an
algorithm to test congruence or symmetry for these objects. Their approach is capable of retrieving
symmetry groups of an arbitrary shape but is also topology-dependent since it relies on a mapping
between points of the model. Starting from an octree representation, Minovic et al. [1993] describe an
algorithm based on octree traversal to identify symmetries of a 3D object. Their algorithm relies on
PCA to find the candidate axis; PCA, however, fails to identify axes for a large class of objects, including
highly symmetric objects such as regular solids.

All these methods try to find strict symmetries for 3D models. As a consequence, they are sensitive
to noise and data imperfections. Zabrodsky et al. [1995] define a measure of symmetry for nonperfect
models, defined as the minimum amount of work required to transform a shape into a symmetric shape.
This method relies on the ability to first establish correspondence between points, a very restrictive
precondition.

Sun and Sherrah [1997] use the Extended Gaussian Image to identify symmetries by looking at
correlations in the Gaussian image. As in Minovic et al. [1993], they rely on PCA to identify potential
axes of symmetry, thus possibly failing on highly symmetric objects. More recently, Kazhdan et al. [2004]
introduced the symmetry descriptors, a collection of spherical functions that describe the measure of a
model’s rotational and reflective symmetry with respect to every axis passing through the center of mass.
Their method provides good results in the shape identification but involves a surface integration for each
sampled direction; this surface integration is carried on a voxel grid. Using the symmetry descriptors
to identify symmetries requires an accurate sampling in all directions, making their algorithm very
costly for an accurate set of results. In contrast, our algorithm only computes a deterministic small
number of surface integrals, which are performed on the shape itself, and still provides very accurate
results. Effective complexity comparisons will be given in Section 8.
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Fig. 1. Mirror symmetries and rotational symmetries found by our algorithm for a cube (for clarity, not all elements are repre-
sented).

3. OVERVIEW

Considering a surface S, the symmetries of S are the isometric transforms which map S onto itself, in
any coordinate system centered on its center of gravity. Symmetries of a shape form a group for the
law of function composition with identity as its neutral element. For a given shape, the study of such a
group relates to the domain of mathematical crystallography [Prince 2004].

The group of the cube, for instance, contains 48 elements (see Figure 1): the identity, eight 3−fold
rotations around 4 possible axes, nine 4−fold rotations around 3 possible axes, six 2−fold rotations
around 6 possible axes, nine mirror-symmetries, and fifteen other elements obtained by composing
rotations and mirror symmetries.

Studying the group of isometries in IR3 shows that, for a given isometry I , there always exists an
orthonormal basis (X, Y, Z) into which the matrix of I takes the following form:

I (λ, α) =

⎛

⎝

λ 0 0
0 cos α − sin α

0 sin α cos α

⎞

⎠ with

{

α ∈ [0, 2π [
λ = ±1

As suggested by the example of the cube, this corresponds to 3 different classes of isometries: rotations,
mirror symmetries, and their composition, depending whether λ is positive and/or α = 0(mod π ). Find-
ing a symmetry of a shape thus resolves into finding a vector X — which we call the axis of the isometry
— and an angle α — which we call the angle of the isometry — such that I (λ, α) maps this shape onto
itself.

However, finding all symmetries of a shape is much more difficult than simply checking whether
a given transform actually is a symmetry. In particular, the naive approach that would consist of
checking as many sampled values of (X, λ, α) as possible to find a symmetry is far too costly. We thus
need a deterministic method for finding good candidates.

Our approach to finding symmetries is to use intermediate functions, which set of symmetries is
a superset of the set of symmetries of the shape itself, but for which computing the symmetries is
much easier. By examining these functions, we will derive in Section 5 a deterministic algorithm
which finds a finite number of possible candidates for X, λ, and α. Because some unwanted triplets
of values will appear during the process, these candidates are then checked back on the original
shape. Choosing a family of functions which fulfill these requirements is easy. More difficult is the
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task of finding such functions for which computing the symmetries can be done both accurately and
efficiently.

Inspired by the work on principal component analysis [Minovic et al. 1993], we introduce the gener-

alized moment functions of the shape for this purpose. These functions will be the topic of Section 4.
These functions, indeed, have the same symmetries as the shape itself plus a small number of extra
candidates. Furthermore, we propose an elegant framework based on spherical harmonics to accurately
and efficiently find their symmetries.

A second contribution of this article is to extend the proposed algorithm into a constructive algorithm
which separately computes the symmetries of subcomponents of an object—using the first method—,
and then associates this information to compute symmetries of the whole composite shape. This con-
structive algorithm proves to be more accurate in some situations and more efficient when it is possible
to decompose an object according to its symmetries. It is presented in Section 6.

4. GENERALIZED MOMENTS

In this section, we introduce a new class of functions: the generalized moments of a shape. We then
show that these functions have at least the same symmetries as the shape itself and that their own
symmetries can be computed in a very efficient way.

4.1 Definition

For a surface S in a 3-dimensional domain, we define its generalized moment of order 2p in direction ω

by

M2p(ω) =
∫

s∈S
‖s × ω‖2p ds. (1)

In this definition, s is a vector which links the center of gravity of the shape (placed at the origin) to a
point on the surface, and ds is thus an infinitesimal surface element. M2p itself is a directional function.

It should be noted that, considering S to have some thickness dt, the expression M2(ω)dt (i.e., the
generalized moment of order 2) corresponds to the moment of inertia of the thin shell S along ω, hence
the name of these functions. Furthermore, the choice of an even exponent and a cross-product will lead
to very interesting properties.

4.2 Shape Symmetries and Moments

Symmetry properties of a shape translate into symmetry properties of its moment functions. We now
introduce a theorem that we will be rely on (see proof in Appendix):

THEOREM 1. Any symmetry I of a shape S also is a symmetry of all its M2p moment functions:

I (S) = S ⇒ ∀ω M2p(I (ω)) = M2p(ω).

Furthemore, if M2p has a symmetry I with axis ω, then the gradient of M2p is null at ω:

∀ω M2p(I (ω)) = M2p(ω) ⇒ (∇M2p)(ω) = 0.

This theorem implies that the axes of the symmetries of a shape are to be found in the intersection
of the sets of directions which zero the gradients of each of its moment functions. The properties are
not reciprocal, however. Once the directions of the zeros of the gradients of the moment functions have
been found, they must be checked on the shape itself to eliminate false positives.
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4.3 Efficient Computation

At first sight, looking for the zeros of the gradient of the moment functions requires precise and dense
sampling of these functions which would be very costly using their integral form of Equation (1). We
thus present an efficient method to compute the generalized even moment functions of a shape, using
spherical harmonics. In particular, we can accurately compute the spherical harmonic coefficients of
the moment functions without sampling these functions. The search for zeros in the gradient will then
be performed efficiently on the spherical harmonic decomposition itself.

Spherical Harmonics. We use real-valued spherical harmonics [Hobson 1931] to represent directional
functions. Real spherical harmonics are defined, for integers l ≥ 0 and −l ≤ m ≤ l , by:

Y m
l (θ , ϕ) =

⎧

⎨

⎩

√
2 Nm

l Pm
l (cosθ ) cos(mϕ) for 0 < m ≤ l

Nm
l P0

l (cosθ ) for m = 0√
2 Nm

l P−m
l (cosθ ) sin(mϕ) for − l ≤ m < 0

where Pm
l are the associated Legendre polynomials; the normalization constants Nm

l are such that the
spherical harmonics form an orthonormal set of functions for the scalar product:

< f , g >=
∫

‖ω‖=1

f (ω)g (ω) dω.

This corresponds to choosing:

Nm
l =

√

2l + 1

4π

(l − |m|)!
(l + |m|)!

.

We will use the following very powerful property of spherical harmonics. Any spherical harmonic of
degree l can be expressed in a rotated coordinate system using harmonics of same degree and coefficients
depending on the rotation R:

Y m
l ◦ R =

∑

−l≤m′≤l

Dm,m′

l (R)Y m′

l . (2)

Any combination of spherical harmonics of degree less than l can therefore be expressed in a rotated
coordinate system, using spherical harmonics of degree less than l , without loss of information. Coeffi-
cients Dm,m′

l (R) can efficiently be obtained using recurrence formula [Ivanic and Ruedenberg 1996] or
directly computed [Ramamoorthi and Hanrahan 2004].

Computation of Moment Functions. As defined by Equation (1), the 2p−moment function of a shape
S is expressed as:

M2p(ω) =
∫

s∈S
‖s × ω‖2p ds

=
∫

s∈S
‖s‖2p sin2p

β ds

In this expression, β is the angle between s and ω.
Function β �→ sink

β has angular dependence on β only and therefore decomposes into zonal harmon-
ics (i.e., harmonics Y m

l for which m = 0). Performing the calculation shows that, when k is even, the
decomposition is finite. Setting k = 2p, we obtain :

sin2p
β =

p∑

l=0

Sl
pY 0

2l (β, .)
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with:

Sl
p =

√
(4l + 1)π

22l

2l∑

k=l

(−1)k 22p+1 p!(2k)!(p + k − l )!

(2(p + k − l )+1)!(k − l )!k!(2l − k)!
. (3)

For the sake of completeness, we provide the corresponding derivation and the proof of the finite de-
composition in the appendix section of this article.

Let Rs be a rotation which maps z, unit vector along z−axis, to s. Using Equation (2) for rotating the
Y 0

2l zonal harmonics, we have :

sin2p
β =

p∑

l=0

Sl
p

2l∑

m=−2l

D0,m
2l (Rs)Y

m
2l (ω).

And finally:

M2p(ω) =
p∑

l=0

2l∑

m=−2l

C
2p

2l ,mY m
2l (ω), (4)

using

C
2p

2l ,m = Sl
p

∫

s∈S
‖s‖2pD0,m

2l (Rs) ds. (5)

Equation (4) says that M2p decomposes into a finite number of spherical harmonics, and Equation (5)
allows us to directly compute the coefficients. The cost of computing M2p is therefore (p + 1)(2p + 1)
surface integrals (one integral per even order of harmonic, up to order 2p). This is much cheaper than
the alternative method of computing the scalar product of M2p as defined by Equation (1) with each
spherical harmonic basis function: this would indeed require many evaluations of M2p, which itself is
defined as a surface integral. Furthermore, numerical accuracy is only a concern when computing the
Cm

2k, p coefficients, and we can now compute both M2p and its gradient analytically from Equation (4).

5. FINDING SYMMETRIES OF A SINGLE SHAPE

In this section, we present our algorithm for identifying symmetries of a shape seen as a single entity as
opposed to the algorithm presented in the next section where the shape is considered as an aggregation
of multiple subparts. For a given shape, we want to determine the axis X and the (λ, α) parameters
of the potential isometries, using the generalized moment functions, and check the isometries found
against the actual shape.

Central symmetries (λ = −1 and α = π ) form a specific case since, by construction, M2p always has
a central symmetry. Because central symmetries also do not require an axis, we treat this case directly
while checking the other candidate symmetries on the shape itself in Section 5.3.

5.1 Determination of the Axis

As we saw in Section 4.2, the axis of isometries which let a shape globally unchanged also zero the
gradient of the generalized even moments of this shape. We thus obtain a superset of them by solving
for:

∇(M2p)(ω) = 0.

In a first step, we estimate a number of vectors which are close to the actual solutions by refining the
sphere of directions starting from an icosahedron. In each face, the value of ‖∇(M2p)(ω)‖2 is examined
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in several directions, and faces are sorted by order of the minimal value found. Only faces with small
minimum values are refined recursively. The number of points to look at in each face, as well as the
number of faces to keep at each depth level, are constant parameters of the algorithm.

In a second step, we perform a steepest descent minimization on ‖∇(M2p)(ω)‖2, starting from each
of the candidates found during the first step. For this we need to evaluate the derivatives of ‖∇(M2p)‖
which we do using analytically computed second-order derivatives of the spherical harmonics along
with Equation (4). The minimization converges in a few steps because starting positions are by nature
very close to actual minima. This method has the double advantage that (1) the derivatives are very
efficiently computed and (2) no approximation is contained into the calculation of the direction of the

axis beyond the precision of the calculation of the C
2p

2l ,m coefficients.
During this process, multiple instances of the same direction can be found. We filter them out by

estimating their relative distance. While nothing in theory prevents the first step from missing the
area of attraction of a minimum, it works very well in the present context. Indeed, moment functions
are very smooth, and shapes having two isometries with very close—yet different—axis are not common.

Finally, because all moment functions, whatever their order, must have an extremum in the direction
of the axis of the symmetries of the shape, we compute such sets of directions for multiple moment
functions (e.g., M4, M6 and M8) but keep only those which simultaneously zero the gradient of all
these functions, which in practice leaves none or very few false positives to check for.

5.2 Determination of Rotation Parameters

After finding the zero directions for the gradient of the moment functions, we still need to find the
parameters of the corresponding isometric transforms. This is done deterministically by studying the
spherical harmonic coefficients of the moment functions themselves. We use the following properties.

PROPERTY 1. A function has a mirror symmetry Sz around the z = 0 plane if and only if all its spherical

harmonic coefficients for which l + m is even are zero (i.e., it decomposes onto z−symmetric harmonics

only). In the specific case of the moment functions:

∀ω M2p(ω) = M2p(Szω) ⇔ m ≡ 0(mod 2) ⇒ C
2p

2l ,m = 0.

PROPERTY 2. A function has a revolution symmetry around the z axis if and only if it decomposes onto

zonal harmonics only, that is,

∀l ∀m m �= 0 ⇒ Cm
l = 0.

PROPERTY 3. A function is self-similar through a rotation Rα of angle α around z if and only if all its

spherical harmonic coefficients Cm
l verify:

∀l ∀m Cm
l = cos(mα)Cm

l − sin(mα)C−m
l . (6)

Property 3 can be adapted to check if the function is self-similar through the composition of a rotation
and a symmetry with the same axis (i.e., the case λ = −1 as defined in Section 3). In this case, the
equation to be checked for is:

∀l ∀m (−1)l+mCm
l = cos(mα)Cm

l − sin(mα)C−m
l . (7)

These properties are easily derived from the very expression of the spherical harmonic functions
[Hobson 1931].
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Before using these properties, the moment function must be expressed in a coordinate system where
the z axis coincides with the previously found candidate axis. This is performed using the rotation
formula in Equation (2). Then checking for Properties 1 and 2 is trivial provided that some tolerance
is accepted on the equalities. Using Property 3 is more subtle; coefficients of the function are first
examined by order of decreasing m. For λ = 1, for instance, when the first nonzero value of Cm

l is found,
Equation (6) is solved by:

tan
mα

2
=

C−m
l

Cm
l

, that is, α =
2

m
arctan

(
C−m

l

Cm
l

)

+
kπ

m
,

then all the remaining coefficients are checked with the obtained values of α. If the test passes, then α

is the angle of an existing rotation symmetry for the moment function. A very similar process is used
to search for α when λ = −1.

The error tolerance used when checking for Properties 1, 2, and 3 can be considered as a way of
detecting approximate symmetries on objects. We will show in the results section that symmetries can
indeed be detected on noisy data such as scanned models.

5.3 Filtering Results

The condition extracted from Theroem 1 is a necessary condition only. To avoid false positives, the
directions and rotation angles obtained from the moment functions must therefore be verified on the
shape itself. We do this using a symmetry measure inspired by the work of Zabrodsky et al. [1995]. Let S
and R be two tessellated shapes. Let VS and VR be the mesh vertices of S and R. We define the measure

dM between S and R by:

dM (S, R) = max
p∈VS

(min
q∈R

‖p − q‖). (8)

The symmetric measure dA(S) of a shape S with respect to a symmetry A is then defined by:

dA(S) = max(dM (S, AS), dM (AS, S)).

It should be noted that this definition is different from that of the Hausdorff distance since, in Equa-
tion (8), not all points of S are considered but only the mesh vertices, whereas all points of R are used.
However, because S is polyhedral, dA(S) = 0 still implies that AS = S.

Computing dA is costly, but fortunately we only compute it for a few choices of A which are the
candidates we found at the previous step of the algorithm. This computation is much cheaper than
computing a full symmetry descriptor [Kazhdan et al. 2004] for a sufficient number of directions to
reach the precision of our symmetry detection algorithm.

5.4 Results

Complete Example. The whole process is illustrated in Figure 2. Starting from the original object (a),
the moment functions of orders 4, 6, and 8 are computed (see, e.g., M8 in (b)). The gradients of these
moments are then computed analytically (c) and used for finding the directions of the minima. The
unfiltered set of directions contains 7 directions among which only 3 are common extrema of M4, M6,
and M8. This set of 3 directions (D1,D2, and D3) must contain the axes of the symmetries of the shape.
After checking the symmetry axis and parameters on the actual shape, D1 is revealed as the axis of a
2-fold symmetry which is the composition of the two remaining mirror symmetries of axes D2 and D3.

The example of the cube, shown in Figure 1, illustrates the extraction of rotations and mirror sym-
metries. Experiments have shown that our method finds all 48 symmetries whatever the coordinate
system the cube is expressed in originaly.
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Fig. 2. Extraction of symmetries for a single shape. Starting from the original shape (a), generalized moments (b) and their
gradients (c) are computed. The set of their common extrema directions contains the axes of the symmetries of the shape, depicted
at right. Here, both mirror symmetries have been found as well as the 2-fold rotational symmetry. Note that the original shape
is neither convex nor star-shaped and that the mesh is not consistent with the symmetries of the geometry.

Fig. 3. View of the three 3D models used in the robustness tests presented in Figure 4 shown with their symmetries. For the
sake of clarity, we chose models with only one symmetry each.

Robustness Tests. We now study the sensitivity of our method to small perturbations of the 3D model
in two different ways.

(1) Noise. We randomly perturb each vertex of each polygon independently in the original model by a
fraction of the longest length of the model’s bounding box.

(2) Delete. We randomly delete a small number of polygons in the model.

We use a set of three models to test the robustness of our method. These model as well as their
symmetry are shown in Figure 3. For the sake of clarity, we use objects with only one symmetry.

In order to test the robustness of the method, we progressively increase the magnitude of the noise
and let the algorithm automatically detect the symmetry. In our robustness tests, we consider shapes as
single entities and use the first algorithm presented in Section 5 to detect these symmetries. To evaluate
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Fig. 4. We test the sensitivity of the method to noise by progressively increasing noise magnitude and letting the algorithm
detect the symmetry for each of our three test models. We evaluate the accuracy of the results by computing the angular de-
viation between the axis found and the axis of the symmetry of the original model. Top row: We perturb each vertex of each
polygon independently by a fraction of the longest length of the bounding box on each of the three test models. The left fig-
ure shows a noisy pick-up model with a noise magnitude of 1% and the right figure shows angular deviation evolution for
the three models for a magnitude ranging from 0% to 1%. Bottom row: We randomly delete polygons of the models. The left
figure shows a noisy pick-up obtained by deleting 5% of the polygons and the right figure shows angular deviation evolution
by deleting 0% to 5% of the polygons of the three models. As can be seen from the curve, for small variations of the mod-
els, our method has approximatively linear dependency regarding noise and delivers high-quality results even for nonperfect
symmetries.

the reliability of the results, we compute the angular deviation between the found axis of symmety and
the real one, that is, computed with no noise. In our experiments, noise magnitude varies from 0 to 1%
of the longest length of the model’s bounding box, and the number of deleted polygons ranges from 0 to
5% of the total number of polygons in the model (see Figure 4).

The results of these experiments show that, for small variations, our method has approximatively
linear dependency regarding noise and delivers high-quality results even for nonperfect symmetries.
These statistical results can also be used to derive an upper bound on the mean angular error obtained
as a function of the noise in the model.

5.4.1 Application to Scanned Models. We present in Figure 5 examples of applying the single-shape
algorithm to scanned models, retreived from a Web database and used as is (see http://shapes.aim-at-
shape.net). Our algorithm perfectly detects all the parameters of candidate symmetries for all these
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Fig. 5. Our algorithm perfectly detects approximate symmetries of scanned models. Detecting these symmetries requires re-
laxing the constraints when checking candidate symmetries on the model. Please note that these scanned models are by nature
neither axis-aligned nor tesselated according to their symmetries. This illustrates the fact that our algorithm does not depend
on the coordinate system nor on the mesh of the objects.

Table I. Computation times (in seconds) for the Four Scanned
Models Presented in Figure 5

Model Teeth Vase Pelvis Angkor statue

# polygons 233, 204 76, 334 50, 000 163, 054
Computing moments* 33.7 11.8 7.26 23.26
Finding parameters 0.4 0.6 0.4 0.7
Checking candidates 9.4 11.1 5 12.2

Total 43.5 23.5 12.66 36.16
∗Global computation times for moments of order 2 to 8

shapes. When testing these symmetries, one should allow a large enough symmetry distance error (as
defined in Section 5.3) because these models are by nature not perfectly symmetric.

5.5 Discussion

Because the M2p functions are trigonometric polynomials on the sphere, they have a maximum number
of strict extrema depending on p: the larger p is, the more M2p is able to capture the information of a
symmetry, that is, to have an extremum in the direction of its axis. But because all moment functions
must have a null gradient in this direction (according to Theorem 1), these extrema are bound to become
nonstrict extrema for small values of p, and M2p is forced to be constant on a subdomain of nonnull
dimension. Using the cube as an example in which case M2 is a constant function a trigonometric
polynomial of order 2 can simply not have enough strict extrema to represent all 12 distinct directions
of the symmetries of the cube.

In all the tests we conducted, however, using moments up to order 10 has never skipped any symmetry
on any model. But it would still be interesting to know the exact maximum number of directions
permitted by moments of a given order.

6. FINDING SYMMETRIES OF GROUPS OF OBJECTS

In Section 5, we have presented an algorithm for finding the symmetries of single shapes. In this section,
we present a constructive algorithm which recovers the symmetries of a group of objects—which we
call tiles to indicate that together they form a larger object—from the symmetries and positions of each
separate tile.
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Fig. 6. This figure illustrates the reliability of our congruency descriptor (as defined by Equation (9)). Two identical objects
meshed differently and expressed in two different coordinate systems (A and B) have extremely close descriptor vectors, but a
slightly different object (C) has a different descriptor. The graphics on the right shows each component of the three descriptors.

The constructive algorithm first computes (if necessary) the symmetries of all separate tiles using
the single shape algorithm. Then it detects which tiles are similar up to an isometric transform and
finds the transformations between similar tiles. Then it explores all one-to-one mappings between tiles,
discarding mappings which do not correspond to a symmetry of the group of tiles as a whole.

Section 6.2 explains how we detect similar tiles and Section 6.3 details the algorithm which both
explores tile-to-tile mappings and finds the associated symmetry for the whole set of tiles.

Because it is always possible to apply the algorithm presented in Section 5 to the group of tiles,
considering it as a single complex shape, questioning the usefulness of the constructive method is
legitimate. For this reason, we will explain in Section 6.5 in which situations the constructive method
is preferable to the algorithm for single shapes; but let us first explain the method itself.

6.1 Computing the Symmetries of Each Tile

If not available, the symmetries of each tile are computed using the algorithm presented in Section 5.
When assembling known objects together, the economy of this computation can, of course, be performed
by simply computing the symmetries of one instance for each class of different tiles.

6.2 Detecting Tiles Congruency

In this subsection, we introduce a shape descriptor suitable for detecting whether two shapes are
identical up to an—unknown—isometry. We will use this tool for classifying tiles before trying to find
a mapping of a composite object onto itself.

Let S be a shape and C
2p

2l ,m the spherical harmonic coefficients of its generalized even moment func-

tions M2p up to an order p. Our shape descriptor is defined as the p(p + 1)/2-vector obtained by pack-
ing together the frequency energy of the spherical harmonic decomposition of all moments of S up to
order p:

D2p =
[

d0
0 , d2

0 , d2
2 , . . . , d

2p

0 , d
2p

2 . . . d
2p

2p

]

(9)

with

d2k
2l =

∑

−2l≤m≤2l

(

C2k
2l ,m

)2
(10)

(See Figure 6). It has been shown by Kazhdan et al. [2003] that dk
l , as defined in Equation (10), does

not depend on the coordinate system the spherical harmonic decomposition is expressed in. This means

that each d
2p

2l , and therefore D2p itself, is not modified by isometric transforms of the shape. Mirror
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Table II. Percentage of Tiles Matched by our Shape
Descriptor That Are Effectively Identical For Our Test Scenes

Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 92.1% 43.9% 92.3%

4 100% 78.0% 100%

6 100% 92.2% 100%

8 100% 100% 100%

Fig. 7. Scenes used for testing the object congruency descriptor. In each scene, the descriptor has been used to detect objects
with similar geometry (but possibly different meshes) up to a rigid transform. Objects found to be congruent are displayed with
the same color.

symmetries do not affect d
2p

2l either since they only change the sign of the coefficient for some harmonics
in a coordinate system aligned with the axis.

Two tiles A and B are considered to be similar up to an isometric transform, at a precision ε, when:

‖D2p(A) − D2p(B)‖ < ε.

Theoretically, this shape descriptor can produce false positives, that is, tiles that are not congruent
but have the same descriptor, but it can not produce false negatives because of its deterministic nature.
Our experiments have shown that using moments up to order 6 produces a sufficiently discriminant
shape descriptor on all test scenes. This is illustrated in Table II where we present the average precision
value, that is, the percentage of matched tiles that are actually identical up to an isometric transform,
for a set of architectural scenes (Figure 7).

By definition, congruent tiles should have the same set of symmetries, possibly expressed in different
coordinate systems. Since we know the symmetries of each of the tiles, we introduce this constraint,
thereby increasing the discriminating power of our shape descriptor as shown in Table III.

6.3 Algorithm for Assembled Objects

6.3.1 Overview. Once we have determined all classes of congruent tiles, the algorithm examines
all the one-to-one mappings of the set of all tiles onto itself which map each tile onto a similar tile.
For each one-to-one mapping found, it determines the isometric transforms which are simultaneously
compatible with each tile and its symmetries.

The algorithm works recursively: at the beginning of each recursion step, we have extracted two
subsets of tiles, H1 and H2, of the composite shape S, and we have computed the set of all possible
isometric transforms that globally transform H1 into H2. Then, taking two new similar tiles, S1 ∈ S \H1
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Table III. Percentage of Tiles Matched By Our Shape
Descriptor That Are Effectively Identical Using the Added
Constraint That Identical Tiles Must Have the Same Set of

Symmetries Up to a Rigid Transform
Max 39,557 Polygons 182,224 Polygons 515,977 Polygons
order 851 Tiles 480 Tiles 5,700 Tiles

2 95.6% 73.4% 97%

4 100% 96.0% 100%

6 100% 100% 100%

8 100% 100% 100%

and S2 ∈ S \ H2, we restrict the set of isometric transforms to the isometric transforms that also map
S1 onto S2 (but not necessarily S2 onto S1). Because these tiles have symmetries, this usually leaves
multiple possibilities.

Note that the global symmetries found must always be applied with respect to the center of mass g

of S, according to the definition of a symmetry of S.
At the end of the recursion step, we have the set of isometric transforms that map H1 ∪ {S1} onto

H2 ∪ {S2}.
Each recursion step narrows the choice of symmetries for S. The recursion stops when either this

set is reduced to identity transform or when we have used all the component tiles in the model. In the
latter case, the isometric transforms found are the symmetries of the composite shape. The recursion
is initiated by taking for H1 and H2 two similar tiles, that is, two tiles of the same class.

In the following paragraphs, we review the individual steps of the algorithm: finding all the isometric
transforms which map tile S1 onto similar tile S2 and reducing the set of compatible symmetries of S.
We then illustrate the algorithm in a step-by-step example.

6.3.2 Finding All the Isometries Which Transform a Tile onto a Similar Tile. At each step of our
algorithm, we examine pairs of similar tiles, S1 and S2, and we have to find all the isometries which
map S1 onto S2.

If gi is the center of mass of tile Si and g is the center of mass of the composite shape S, this condition
implies that the isometries we are looking for transform vector g1 − g into g2 − g. In order to generate
the set of all isometric transforms that map S1 onto S2, we use the following property.

PROPERTY 4. If J is an isometry that maps S1 onto a similar tile S2, then all the isometries K which

map S1 onto S2 are of the following form:

K = JT−1 AT with A ∈ GS1
such that A(g1 − g) = g1 − g, (11)

where GS1
is the group of symmetries of S1, and T is the translation of vector g−g1 (refer to the Appendix

for proof of this property).

This property states that, once we know a single seed isometric transform which maps S1 onto S2, we
can generate all such transforms by using the elements of GS1

in Equation (11).

6.3.3 Finding a Seed Transform. We need to find a seed transform J that maps S1 onto S2. For each
tile, we extract a minimum set of independent vectors that correspond to extremas of their generalized
even moment functions. The number of vectors needed depends on the symmetries of the tile. J is then
defined as any isometric transform that maps the first set of vectors onto the second as well as vector
g1 − g onto g2 − g. Most of the time, a single isometric transform is possible at most. When multiple
choices exist, the candidate transforms are checked onto the shapes using the distance presented in
Section 5.3. This ensures that we find at least one seed transform.
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Fig. 8. Three spheres uniformly distributed on a circle in the z-plane. Etablishing all one-to-one mappings of the set of all tiles
onto itself, which map each tile onto a similar tile, are used to detect all the symmetries of the shape. Note that the 3−fold
symmetry H is detected and is associated to a circular permutation mapping.

6.3.4 Ensuring Compatibility with Previous Isometries. During the recursion, we need to store the
current set of compatible isometries we have found. We do this by storing a minimal set of linearly
independent vectors along with their expected images by these isometries. For example, if we have to
store a symmetry of revolution, we store only one vector, the axis of the symmetry, and its image (itself).
For mirror symmetries, rotations, and central symmetries, we store three independent vectors, along
with their images by this isometric transform. For instance, in the case of a rotation of angle π around
axis X, we have:

X �→ X Y �→ −Y Z �→ −Z. (12)

By examining all the one-to-one mappings of the set of all tiles onto itself, which map each tile onto a
similar tile, we are able to detect all symmetries of the set of tiles (see Figure 8). Note in this example
that the 3−fold symmetry H is detected and is associated to a circular permutation mapping.

6.4 Step-By-Step Example

Figure 9 presents a very simple example of a shape (a pair of pliers) composed of 3 tiles, S1, S2 (the
handles), and R (the head). Two of the tiles are similar up to an isometric transform, S1 and S2. Figure 9
also displays the centers of mass, g1, and g2 of tiles S1 and S2 (which are not in the plane z = 0), and
the center of mass g of the whole shape. In the coordinate systems centered on their respective centers
of mass, S1 and S2 have a mirror symmetry of axis Z, and R has a rotation symmetry around axis X of
angle π .

Our constructive algorithm starts by selecting tile R and a similar tile (here, the only possible choice
is R).

Step 1. The algorithm explores the possibilities to transform R into itself. Two possibilities exist (a) the identity
transform, and (b) the rotation around X of angle π , deduced from (a) by Property 4.
At this point, the algorithm branches, and either tries to map S1 to itself (branch 1) or to S2 (branch 2).
Branch 1, Step 1. The algorithm tries to match S1 to itself. The only compatible transform is the identity
transform.
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Fig. 9. Illustration of the constructive algorithm on a very simple example: from the symmetries of each of the 3 parts of the
object, the symmetries of the whole object are recovered. Please note that no symmetry was ommitted in this Figure. In particular,
tile R has only a rotational symmetry but no mirror symmetry. See text of Section 6.4 for a detailed explanation.

Fig. 10. A complex model which has the same group of symmetries as the icosahedron. The constructive algorithm successfully
retrieves all 15 planes of mirror symmetries (center) and all 31 distinct axes of rotational symmetries (right) using the rotational
and mirror symmetry of each tile (at left). The presence of 3−fold and 5−fold symmetries proves that our algorithm also detects
symmetries which map a set of similar tiles onto itself through a complex permutation.

Branch 1, Step 2. The algorithm then tries to map S2 to itself. Once again, the only possible transform is the
identity transform, and the recursion stops because all the tiles in the model have been used.
Branch 2, Step 1. The algorithm tries to match S1 to S2. The only compatible transform is the rotation around X
of angle π .
Branch 2, Step 2. The algorithm then tries to match S2 to S1. Once again, the only compatible transform is the
rotation around X of angle π , and the recursion stops because all the tiles in the model have been used.

Two symmetries have been found that map the shape onto itself, the identity transform and the
rotation around X of angle π . Note that, although our algorithm can potentially create lots of branching,
we prune branches that result in empty sets of transforms and, in practice, we only explore a small
number of branches.

6.5 Application Scenarios

In order to illustrate the efficiency of the constructive algorithm, we show in this section various situ-
ations where this method is a valuable alternative to the single-shape algorithm.

6.5.1 Application to an Agregation of Many Objects. Figure 10 presents a complex model which has
the same group of symmetries as an icosahedron. The constructive algorithm retrieves all the 31 distinct
axis of rotational symmetries (Figure 10, right) as well as the 15 axis of plannar symmetries (Figure 10,
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Table IV. Comparison of the costs of the single-shape algorithm
presented in Section 5 to the cost of the constructive algorithm to

find all 46 symmetries of the icosahedron shape displayed on
Figure 10 at equivalent precision. Because the object is close to a

sphere and because it has many symmetries, the constructive
algorithm performs much better

Method Single shape (order 10) Constructive (order 4)

Moments calculation 500 sec 30 × 0.5 sec
Symmetry verification 46 × 55 sec 30 × 2 × 1.5 sec
Tile congruency N/A 2 sec
Tile mappings N/A 10 sec
Total 50mn 30 sec 1mn 57 sec

middle) of the shape, using the symmetries of each tile (Figure 10, left), which are 1 revolution symmetry
and 1 mirror symmetry.

Conversely, directly applying the first algorithm on such a shape shows that M2 to M8 are extremely
close to constant functions, making the extraction of directions an inaccurate process. The single-shape
algorithm still correctly finds all the axis if using moments up to order 10, but this has some impact on
computation times. Furthermore, the single-shape algorithm requires checking all of the symmetries
found on the model which is a significant part of its computation time. This is not the case for the
constructive algorithm because it relies on its knowledge of the symmetries of the tiles only. Because
many symmetries exist for this model, the total computation time of the single-shape algorithm is
therefore much higher. This is summarized in Table IV where we compare the computation times for
both methods at equivalent precision (i.e., 10−4 radians).

6.5.2 Finding Symmetries Inside Noncoherent Geometry. There exist common situations where 3D
scenes do not come as a set of closed separate objects but as an incoherent list of polygons. This hap-
pens, for instance, when retrieving geometric data from a Web site, mostly because a list of polygons
constitutes a practical common denominator to all possible formats.

In such a case, applying the single-shape algorithm would certainly give the symmetries of the whole
scene but if we are able to partition the set of polygons into adequate groups, that is, tiles to which we
apply the constructive algorithm, we may be able to extract symmetric objects from the scene as well
as the set of symmetries for the whole scene more rapidely as illustrated in Figure 10.

The gain in using the constructive algorithm to recover symmetries in the scene resides in the fact
that, once tile symmetries have been computed, grouping them together and testing for symmetries in
composed objects only adds a negligible cost which is not the case when we try to apply the single-shape
algorithm to many possible groups of polygons or even to the entire scene itself.

The various issues in the decomposition of a raw list of polygons into intelligent tiles are beyond the
scope of this article. In our case, tiles only need to be consistent with the symmetries. We propose the
following heuristic to achieve this correctly for most scenes:

We define tiles as maximal sets of edge-connected polygons. To obtain them, we insert all vertices of
the model into a KDTree and use this KDTree to efficiently recover which polygons share vertices up
to a given precision and share an edge. By propagating connectivity information between neighboring
polygons, we then build classes of edge-connected polygons, which we define to be our tiles. Figure 11
gives examples of such tiles for objects collected from the Web as a raw list of polygons.

Our simple heuristic approach of making tiles produced very good results on all scenes we tested and
suffices for a proof of concept of the constructive algorithm. This is illustrated in Figure 11 where a
lamp object and a chess game are shown along with their global symmetries. These symmetries were
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Fig. 11. Two models taken from the Web. From the raw list of polygons (left) our heuristic for scene partitionning extracts tiles
before the single-shape algorithm computes the symmetries for each of them (center). Using this information, the constructive
algorithm computes the symmetries of the whole model (right). Top row: A lamp object which has seven mirror symmetries and a
7−fold rotational symmetry. Bottom row: a chess board which is composed of pieces with very different symmetries but reveals to
only have a single 2−fold symmetry around a vertical axis (Note: in this last model, once tiles have been identified, chess pieces
were moved so as to obtain a model with at least one global symmetry).

computed from the symmetries of each of the subparts. These, in turn, were separately computed using
the algorithm presented in Section 5.

Obviously, this application requires that constructed tiles be consistent with symmetries, that is, that
it is possible to partition the scene into tiles which will map onto each other through the symmetries
of the scene. This may not be easy with scanned models, for instance, nor in perturbated data. In such
a case, our simple heuristic should be modified so as to base polygon neighborood relationships on
proximity distances between polygons rather than vertex positions only. Doing so, cutting one tile into
two parts and remeshing them independently, would have a high probability of producing the same
original tile after reconstruction. If not, then the existance of a symmetry inside the model may become
questionnable. Suppose, for instance, that the wrench in the step-by-step example (Section 6.4) gets
split into tiles that are not exact symmetrical copies of one another, and that these two tiles are too far
away to be merged into a single tile. Then the model is by nature not symmetric anymore which will
also be the output of the constructive algorithm.
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Table V. Computation Times (in seconds) for the
Different Steps of our Algorithm, for the Models

Shown in this Article
Model Plier Lamp Chessboard
# polygons 1, 940 39, 550 24, 942
# tiles 3 22 8

Computing moments* 0.9 18.2 15
Finding parameters 0.4 1.2 2.0
Checking candidates 2.3 7.4 7.9

Constructive algo. 0.001 0.05 0.01

Total 3.601 26.85 24.91
∗Global computation time for moments of order 2 to 8.

6.6 Computation Cost

Computation times (in seconds) for the models shown in this article are given in Table V as well as
the complexity of the models. They were measured on a machine equipped with a 2.4GHz processor
with 512MB of memory. As expected, the cost of the computation of the moment functions and the
cost of the verification of the candidates required by the first algorithm occupy the most important
part of the total cost and depend on the model complexity. Conversely, finding the parameters of the
symmetries (Section 5.2) as well as applying the constructive algorithm only depends on the number
of these symmetries.

Regarding accuracy, both algorithms computed the axes of the symmetries with a maximum error of
10−4 radians, independently of shape complexity, in our tests.

7. APPLICATIONS

7.1 Geometry Compression and Instantiation

Our framework can be used for model compression at two different levels. (1) If a model exhibits
symmetries, then it can be compressed by storing only the significant part of the model and using the
symmetries to recreate the full model. (2) If a model contains multiple instances of the same part, then
these parts can be instantiated. (see Figure 12).

Although complex models often do not present symmetries, symmetry-based compression can usu-
ally be used on some subparts of the model. The ability to express a model by explicitely storing the
significant parts only while instancing the rest of the scene is provided by some recent 3D file formats
such as X3D (see Table VI). We thus measure our compression ratios as the size of the X3D files before
and after our two compression operations which we detail now.

The scene is first loaded as a raw collection of polygons, before being decomposed into tiles, using the
heuristic presented in Section 6.5.2. We then compute symmetries and congruent descriptors for each
tile. Computation times shown in Table VI present the average time needed to compute symmetries and
congruent descriptors for a single tile. As the process of computing tile properties does not depend on the
other tiles, it is an easily parallelizable process. The scene is then first compressed by instancing the tiles.
Secondly, when storing each tile, we only store the minimum significant part of its geometry according
to its symmetries. This part is extracted using the same algorithm we will present for remeshing a tile
according to its symmetries in the next section. Note that compression rates shown on this table are
computed using geometry informations only, that is, neither texturing nor material information are
taken into account. Compression times shown in Table VI are the times needed to detect all classes of
tile congruency.
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Fig. 12. Detecting symmetries and similarities between tiles created from a raw list of polygons allows us to compress geometric
models in two ways: (1) by instancing similar tiles and (2) inside each symmetric tile, by instancing the part of the geometry which
permits to reconstruct the whole tile. In such a big model as the powerplant (13 millions triangles), we achieve a compression
ratio (ratio of geometry file size in X3D format) of 1:4.5. We show in this figure two subparts of the complete model. For each, we
show the tiles computed by our heuristic (see Section 6.5) as well as the obtained compression ratio. The PowerPlant model is a
courtesy of The Walkthru Project.

Table VI. Examples of Compression Rates Obtained Using our Symmetry
Detection Method Coupled with the Congruency Descriptor. (See text in

Section 7.1 for a detailed explanation.)
Model Room Plane Studio Powerplant

# polygons 39, 557 182, 224 515, 977 12, 748, 510
# tiles 851 480 5, 700 525, 154
av. computing tile properties (secs) 1.45 1.3 1.9 1.1
Compression time (secs) 7.2 9 14.6 311
Compression rate 1 : 2.7 1 : 8.3 1 : 3.5 1 : 4.5

7.2 Mesh Editing

It may be interesting, when an object contains symmetries, to remesh the object with respect to these
symmetries. In order to do this, we proceed by first extracting the minimum part of the shape that can
be reconstructed through each symmetry independently, then we apply the corresponding symmetry
to each of them in order to get as many meshes of the shape which are consistent with each symmetry
independently. The final step is to compute the union of all these meshes, merging identical vertices and
adding new vertices at edge crossings. While not necessarily optimal, the obtained mesh is consistent
with all symmetries of the shape.

Since a coherent remeshing allows for the establishment of a correspondence between model ver-
tices, we have developed a proof-of-concept mesh editing system which allows the user to modify a
3D object under the constraints given by the symmetries of the original object. It appears that, under
the constraint of too many symmetries, no vertices can be moved independently of the others, and the
geometry is sometimes bound to scale about its center of gravity. Images collected from this program
are displayed in Figure 13.

8. DISCUSSION

We discuss here a number of features of our technique as well as differences with existing approaches.
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Fig. 13. Starting from an object in arbitrary orientation, we detect symmetries of the shape (in the figure, a planar symmetry)
and use it to remesh the objects with respect to these symmetries. Then, a user can easily edit the mesh and modify it while
keeping the symmetries of the initial shape.

Using Spherical Harmonics

Generalized moments are a central component of our system. As stated before, we do not compute
these functions explicitly but we rather compute their coefficients in a spherical harmonics basis. As
for the decomposition itself, any basis could be used. In particular, a well chosen basis of 3D monomials
restricted to the unit sphere may also lead to a finite decomposition. Still, using spherical harmonics
has many advantages, in particular, because we use the same coefficients computed once for different
tasks throughout this article. (1) The expression of moment function as a sum of spherical harmonics
provides an accurate detection of the potential axes of symmetries. This detection is made deterministic
by finding the zero directions for the gradient of the moment functions. Such a computation is performed
analytically from the 2nd order derivatives of the spherical harmonics, and thus does not introduce
further approximation. (2) Computing symmetry parameters for the moment functions is made very
easy by working on the spherical harmonic coefficients themselves. Since spherical harmonics are
orthogonal and easily rotated, finding symmetries on the moment functions translates into simple
relationships between the coefficients. (3) The spherical harmonic coefficients provide an effective shape
congruency descriptor which we use to detect which tiles are identical up to an unknown isometric
transform.

In summary, the use of spherical harmonics provides us a consistent framework throughout the whole
process of our symmetry-finding algorithm.

Non Star-Shaped Objects

Whether the direct algorithm presented in Section 5 works for non star-shaped objects is a legitimate
question. Our approach never relies on a spherical projection. Indeed, the moment functions, as ex-
pressed in Equations (1) and (5) are computed through an integration over the surface itself, possibly
covering the same directions multiple times but with different values. Parts of a shape which correspond
to a same direction during integration will not contribute the same into the various moment functions
because of the varying exponent. By using various orders of moment functions in our symmetry detec-
tion process and in the computation of our shape congruency descriptor, we thus capture the geometry
of non star-shaped objects as well. Some previous approaches [Kazhdan et al. 2004] achieved this by
decomposing the shape into concentric spherical regions before doing a spherical integration which can
be assimilated to convoluting the shape with 0-degree functions with concentric spherical support; Our
technique is similar, but with another, kind of functions expressed into the form of the even moments.
In summary, detecting symmetries on non star-shaped objects has no particular reason to fail which is
illustrated by the result in Figure 2.
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The second algorithm (for assembled objects) naturally works just as well for non star-shaped objects
as illustrated by the examples in Figure 11.

Avoiding Dense Sampling

Previous methods that defined a continuous measure of symmetry( [Zabrodsky et al. 1995; Kazhdan
et al. 2004]) can theoretically compute both perfect and approximate symmetries. However, detecting
symmetries using such methods involves a sampling step of the directions on the sphere, whose density
must be adapted to the desired angular precision for the axis of the symmetry.

The work of Kazhdan et al. [2004] leads to impressive results concerning the improvment on the shape
matching process. However, relying on this technique to obtain accurate symmetries with high angular
precision requires a time-consuming step for the construction of the symmetry descriptors. According
to the presented results, the time needed to compute reflective, 2-fold, 3-fold, 4-fold, 5-fold, and axial
symmetry information for a spherical function of bandwidth b = 16 is 0.59 seconds. As stated in the
article [Kazhdan et al. 2004], the number of samples taken on the sphere is O(b2) (i.e., approximately
103 sample directions) which is insufficent to reach a high angular precision equivalent to the one
obtained with our method: reaching a precision of 10−4 radians would require approximately 109 sample
directions. This would theoretically increase the computation time to approximately 0.59 × 109/103 =
5.9 105 seconds, making the method inefficient for this task.

In contrast, our method does not rely on a dense sampling of directions to find symmetries but on
the computation of a fixed number of surface integrals which—thanks to the Gauss integration used—
provides an extremely accurate approximation of the spherical harmonic coefficients of the moment
functions. From there on, no further approximation is introduced in the computation of the directions
of the candidate symmetries which lets us achieve an excellent angular precision at a much lower
cost.

Furthermore, the cost of our algorithm does not rely on assumptions about the expected results.
The method of Kazhdan et al. [2004] indeed computes symmetry descriptors for each kind of searched
symmetry. Our method in turn computes all directions of possible symmetries and then checks back on
the shape of the obtained candidates.

9. CONCLUSIONS

We have presented an algorithm to automatically retrieve symmetries for geometric shapes and models.
Our algorithm efficiently and accurately retrieves all symmetries from a given model, independently
of its tesselation.

We use a new tool, the generalized moment functions, to identify candidates for symmetries. The
validity of each candidate is checked against the original shape using a geometric measure. Generalized
moments are not computed directly: instead, we compute their spherical harmonic coefficients using an
integral expression. Having an analytical expression for the generalized moment functions and their
gradients, our algorithm finds potential symmetry axes quickly and with good accuracy.

For composite shapes assembled from simpler elements, we have presented an extension of this algo-
rithm that works by first identifying the symmetries of each element, then sets of congruent elements.
We then use this information to iteratively build the symmetries of the composite shape. This extension
is able to handle complex shapes with better accuracy since it pushes the accuracy issues down to the
scale of the tiles.

Future Work

The constructive algorithm presented in Section 6 automatically detects instantiation relationships
between tiles into a composite shape.
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We are currently developing a constructive instantiation algorithm which iteratively collates similar
tiles into instances, checking at each step that the relative orientation of each tile with respect to each
already constructed instance is preserved.

This algorithm requires the symmetries of the tiles, and maintaining the symmetries of the instances
found so far. For this, we use our shape congruency metric, our algorithm for finding symmetries of single
shapes, and our algorithm for finding symmetries on composite shapes.

APPENDIX (PROOFS)

PROOF OF THEOREM 1. Let A be an isometric transform which lets a shape S be globally unchanged.
We have:

∀ω M2p(Aω) =
∫

s∈S
‖s × Aω‖2p ds

=
∫

t∈A−1S

‖At × Aω‖2p| det A| dt

=
∫

t∈A−1S

‖t × ω‖2p dt

= M2p(ω)

At line 2, we change variables and integrate over the surface transformed by A−1. At line 3, an isometric
transform is a unit transform and so, its determinant is ±1 and thus vanishes. The cross product is
also left unchanged by applying an isometric transform to each of its terms. Line 4: because AS = S, we
also have S = A−1S. The isometric transform A is thus also a symmetry of the M2p moment functions.

Let A be an isometric transform with axis v, and suppose that A is a symmetry of M2p. Let dv be the
direction of steepest descent of function M2p around direction v. Because A is a symmetry of M2p, we
have:

dAv = Adv = dv. (13)

If A is a rotation, this is impossible because dv ⊥ v. Moreover, for all directions ω, we have M2p(−ω) =
M2p(ω) and thus:

d−v = −dv. (14)

So, if A is a symmetry, we have Av = −v. From Equations (13) and (14), we get dv = −dv which is
impossible.

In both cases,M2p can not have a direction of steepest descent in direction v. BecauseM2p is infinitely
derivable, this implies that ∇M2p(v) = 0

PROOF OF PROPERTY 4. Let S and R be two shapes, identical up to an isometric transform. Let J be an
isometric transform such that JS = R. Let T be the translation of vector −uS with uS = gS − g with gS
as the center of mass of S, and g the origin of the coordinate system into which J is applied.

— Let A ∈ GS be a symmetry of S such that AuS = uS . We have ATS = TS (the symmetry A

operates in the coordinate system centered on gS ). Let K = JT−1 AT . Then

KS = JT−1 ATS K 0 = JT−1 AT0

= JT−1TS and = JT−1 A(−uS )
= JS = JT−1(−uS )
= R = J0 = 0
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By construction K is a rigid transform and conserves distances. It maps the origin onto itself. K is thus
an isometric transform. Furthermore, K maps S to R.

— Let K be an isometric transform such that KS = R. Let us choose A = T J−1K T−1. This choice
leads to K = JT−1 AT . Moreover:

ATS = T J−1K T−1TS AuS = T J−1K T−1uS

= T J−1K S and = T J−1K 2uS

= TS = T2uS = uS

and

A0 = T J−1K T−10

= T J−1K uS

= T J−1(gR − g)
= T (−uS )
= 0

By construction A is affine and conserves distances. It maps 0 onto 0. A is thus an isometric transform.
A is also a symmetry of S which verifies AuS = uS .

— The set of isometries which mapS toR is therefore the set of functions K of the form K = JT−1 AT ,
where A ∈ GS is a symmetry of S such that A(g− gS ) = (g− gS ).

PROOF OF EQUATION 3. We compute the decomposition of function θ �−→ sin2p
θ into zonal spherical

harmonics. We prove that this decomposition is finite, and give the values of the coeficients.
By definition [Hobson 1931], we have:

Y 0
L(θ , ϕ) =

√

2L + 1

4π
PL(cos θ )

=
√

2L + 1

4π

(−1)L

2LL!

d L

d xL

[

(1 − x2)L
]

(cos θ )

where Pk is the Legendre polynomial of order k. Because the set of Legendre polynomials P0, P1, ..., Pn

is a basis for polynomials of order not greater than n, function θ �−→ sin2p
θ = (1 − cos2 θ )p can be

uniquely expressed in terms of PL(cos θ ). The decomposition of θ �−→ sin2p
θ is thus finite and has

terms up to Y 0
2p at most.

Let’s compute them explicitely:

d L

d xL

[

(1 − x2)L
]

=
d L

d xL

L∑

k=0

(−1)L−kx2L−2kCk
L

= (−1)L d L

d xL

L∑

k=0

(−1)kx2kCk
L

=
∑

L≤2k≤2L

(−1)L+kCk
L2k(2k − 1)...(2k − L + 1)x2k−L

=
∑

L≤2k≤2L

(−1)L+kCk
L

(2k)!

(2k − L)!
x2k−L
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So:

Y 0
L(θ , ϕ) =

√

2L + 1

4π

∑

L≤2k≤2L

(−1)k

2LL!
Ck

L

(2k)!

(2k − L)!
cos2k−L θ

The coeficients of the decomposition we are interested in are thus:

∫ π

θ=0

∫ 2π

ϕ=0

Y 0
L(θ , ϕ) sin2p

θ sin θdθdϕ = 2π

√

2L + 1

4π

∑

L≤2k≤2L

(−1)k

2LL!
Ck

L

(2k)!

(2k − L)!
I

p

2k−L (15)

where integrals I
p

m are defined by:

I p
m =

∫ π

θ=0

sin2p+1
θ cosm θdθ

First, I
p

m = 0 for all odd m because the integrand in antisymetric around x = π/2. Then, if m is even:

I p
m =

[
1

2p + 2
sin2p+2

θ cosm−1 θ

]π

0
︸ ︷︷ ︸

0

+
m − 1

2p + 2

∫ π

0

sin2p+3
θ cosm−2 θdθ

=
m − 1

2p + 2
I

2p+3
m−2

=
(m − 1)(m − 3) . . . 1

(2p + 2)(2p + 4) . . . (2p + m)

∫ π

o

sin2p+m+1
θdθ

Let Jq be the integral defined by

Jq =
∫ π

0

sin2q+1
θdθ.

We have

Jq = [− cos θ sin2q
θ ]π0

︸ ︷︷ ︸

0

+ 2q

∫ π

0

cos2 θ sin2q−1
θdθ

= 2q Jq−1 − 2q Jq

Therefore

Jq =
2q

2q + 1
Jq−1

=
2q(2q − 2) . . . 2

(2q + 1)(2q − 1) . . . 3
J0

=
22q+1(q!)2

(2q + 1)!

For m even, we can take m = 2r and q = p + r; we get:

I
p

2r =
(2r)!p!

2rr!2r (p + r)!

22p+2r+1(p + r)!2

(2p + 2r + 1)!

=
(2r)!p!22p+1(p + r)!

r!(2p + 2r + 1)!
(16)
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From Equation (15), we deduce that, for L odd,
∫ ∫

Y 0
L(θ , ϕ) sin2p

θ sin θdθdϕ = 0.

For L even, we set L = 2l . Using r = k − l to match Equation (16) in Equation (15), we get:

Sl
p =

∫ ∫

Y 0
2l (θ , ϕ) sin2p

θ sin θdθdϕ

= 2π

√

4l + 1

4π

∑

2l≤2k≤4l

(−1)k

22l (2l )!
Ck

2l

(2k)!

(2k − 2l )!

(2k − 2l )!p!22p+1(p + k − l )!

(k − l )!(2p + 2k − 2l + 1)!

=
√

(4l + 1)π

22l (2l )!

∑

l≤k≤2l

(−1)kCk
2l

(2k)!p!22p+1(p + k − l )!

(k − l )!(2p + 2k − 2l + 1)!

=
√

(4l + 1)π

22l

∑

l≤k≤2l

(−1)k (2k)!p!22p+1(p + k − l )!

k!(2l − k)!(k − l )!(2p + 2k − 2l + 1)!
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Edge-preserving Multiscale Image Decomposition based on Local Extrema
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Frédo Durand‡

MIT CSAIL

(a) Input (b) Fine features boosted (c) Coarse features boosted (d) Scanline plots

Figure 1: Our multiscale decomposition of image (a) allows detail to be extracted based on spatial scale rather than contrast and preserves
edges. (b) Boosting fine scale features increases the contrast of the pattern on the vase. (c) Boosting coarse scale contrast and suppressing
fine features reduces the contrast of the pattern, while increasing the contrast of the vase with its background. (d) Scanline plots (rows
indicated using arrows in (a), (b) and (c)), illustrating the effect of the two equalizations (b) and (c). The dashed lines in the plots show two
examples of edges that have been preserved.

Abstract

We propose a new model for detail that inherently capturesoscil-
lations, a key property that distinguishes textures from individual
edges. Inspired by techniques in empirical data analysis and mor-
phological image analysis, we use the local extrema of the input
image to extract information about oscillations: We define detail as
oscillations between local minima and maxima. Building on the key
observation that the spatial scale of oscillations are characterized by
the density of local extrema, we develop an algorithm for decom-
posing images into multiple scales of superposed oscillations.

Current edge-preserving image decompositions assume image de-
tail to be low contrast variation. Consequently they apply filters
that extract features with increasing contrast as successive layers
of detail. As a result, they are unable to distinguish between high-
contrast, fine-scale features and edges of similar contrastthat are to
be preserved.We compare our results with existing edge-preserving
image decomposition algorithms and demonstrate exciting applica-
tions that are made possible by our new notion of detail.

Keywords: image decomposition, computational photography

1 Introduction

A variety of applications in computational photography require a
decomposition of an image into different scales. Traditional ap-
proaches that use linear bases have evolved to accommodate the
need for respecting strong edges. Recent definitions of scales are
usually based on spatial scale definitions combined with a notion
on the range to differentiate strong edges [Tomasi and Manduchi
1998; Durand and Dorsey 2002; Farbman et al. 2008; Lischinski
et al. 2006; Choudhury and Tumblin 2005]. Current approaches

∗e-mail: Kartic.Subr@inrialpes.fr
†e-mail: Cyril.Soler@inrialpes.fr
‡e-mail: fredo@mit.edu

share a common notion of an edge– large gradients, or large value
differences, where the definition of large might depend on the ap-
plication. However, this notion of an edge makes it challenging to
capture fine details or textures that have fine spatial scale but high
contrast. For example, in Figure 1(d), some edges to be preserved
are lower contrast than oscillations to be smoothed. Extracting the
white dots on the vase as detail requires aggressive smoothing of
gradients, which would also blur single edges that are to be pre-
served (see Fig. 2). This distinction between edges and oscillations
raises challenges in defining fully multiscale decompositions be-
cause the interplay between spatial and edge considerationleads to
unexpected results, as shown by Farbman et al. [2008]

We propose a novel non-linear image decomposition that effec-
tively extracts fine-scale features, regardless of their contrast, as
detail and yet preserves softer salient edges in the base layer. In
contrast to previous approaches that rely on magnitudes of pixel
differences at their heart, our approach captures local image oscil-
lations by considering local image extrema. A fine-scale texture
is characterized by rapid oscillations (see Fig. 1) betweenminima
and maxima. Furthermore, the oscillation between extrema provide
critical information that permit the distinction of individual edges
from oscillations. We obtain a multiscale decomposition byrecur-
sively smoothing the image while also progressively coarsening the
scale at which extrema are detected.

1.1 Related work

Several image decomposition techniques have been proposed.
Strategies that use linear filters [Burt and Adelson 1983; Rahman
and Woodell 1997; Pattanaik et al. 1998] produce halo artifacts at
edges and have been succeeded by non-linear filters that preserve
strong edges– a popular choice being the bilateral filter [Tomasi
and Manduchi 1998; Durand and Dorsey 2002; Choudhury and
Tumblin 2005]. Bae et al. [2006] used the bilateral filter to sep-
arate images into low- and high-contrast features and manipulated
the layers independently to enhance photographic look. Fattal et



al. [2007] presented a technique to enhance shape and surface de-
tails of objects using bilaterally filtered representations of a set of
differently lit images. Our goal is to extract from a single image, at
each scale, the finest spatial oscillations as detail without assuming
them to be low-contrast oscillations.

Two approaches have been proposed for multiscale decompositions
using the bilateral filter. One strategy is to progressivelyincrease
the width of the range and spatial Gaussian through the coarsen-
ing process. Chen et al. [2007] used this technique to construct a
bilateral pyramidfor progressive video abstraction. Another strat-
egy [Fattal et al. 2007] recursively applies the bilateral filter to
the smoothed versions of the input image. This strategy decreases
the width of the range-Gaussian during successive iterations so that
edges from preceding smoothing operations are not blurred during
the coarsening.

In recent work, Farbman et al. [2008] pointed out that, whilethe
bilateral filter is effective at smoothing out low amplitudenoise at a
fine scale, multiscale decompositions using the bilateral filter suffer
from a variety of problems. Progressive widening of the range and
spatial Gaussians through the coarsening process was shownto pro-
duce halo artifacts at strong edges. To overcome some problems of
using the bilateral filter in a multiscale decomposition, Farbman et
al. [2008] proposed a filter that smoothes an input imageI by com-
puting an image that is as close toI as possible while being smooth
everywhere except at regions where the gradient ofI is large. They
used a weighted least squares filter, originally used to control ring-
ing during deblurring of noisy images [Lagendijk et al. 1988]. The
nature of this optimization makes it impossible to preservesalient
edges with lower contrast than the texture that is to be smoothed.

In summary, smoothing filters currently used in image decompo-
sition algorithms assume detail is low-contrast. As a result, local
variation at different contrast levels are extracted as successive lay-
ers of detail. Such layers of detail do not necessarily represent fine-
scale spatial variation.

A notable exception, for1D data, is empirical mode decomposi-
tion [Huang 1998]— a powerful data analysis tool originallypro-
posed to decompose nonlinear, nonstationary signals into their in-
trinsic modes of oscillations. The decomposition is achieved by
iterative removal of the finest intrinsic oscillations as indicated by
local extrema. This technique is popularly used on 1D data that do
not contain sharp discontinuities. A few attempts at extending the
technique to image decomposition [Nunes et al. 2003; Liu andPeng
2005; Damerval et al. 2005] have uncovered a number of difficul-
ties. One formidable challenge that has not been addressed is the
need to respect sharp edges. Another drawback of empirical mode
decomposition is its poor handling of signals where oscillations at
different scales occur as bursts, in parts of the domain (theproblem
of intermittency [Li et al. 2005]).

1.2 Contributions

We introduce novel definitions, based on local extrema, for edges
and detail that permit the distinction between highly contrasted
texture and single edges. Using these definitions we developan
edge-preserving smoothing algorithm that allows fine scalede-
tail to be extracted regardless of contrast. We perform an edge-
preserving multiscale decomposition by recursively applying the
smoothing algorithm on the base layer. The decomposition corre-
sponds to features at different spatial scales with salientedges be-
ing preserved. We compare our approach with existing decomposi-
tions and demonstrate its effectiveness using applications. Figure 4
places our novel algorithm in the context of existing approaches.

(a) Input (b) Our smoothing

(c) WLS Filter
(λ = 13, α = 0.2)

(d) WLS Filter
(λ = 13, α = 1.2)

Figure 3: The ubiquitous notion of edges as pixels with large gradi-
ents does not allow disambiguation between fine-scale features and
edges that are to be preserved, as shown by this example.(a) The
contrast of the pattern on the flower vase is greater than across
the edges of the soft shadows and petal boundaries.(b) Using
our smoothing algorithm, the pattern is extracted as detailbecause
of its fine scale, while coarser soft shadow- and petal-boundaries
are preserved.(c) The weighted least square (WLS) filter does not
smooth the pattern if fidelity to strong gradients is retained. (d) On
the other hand, the WLS filter necessarily blurs softer edgeseven
though they are coarse-scale features while smoothing the pattern
on the vase.

2 Extrema-based multiscale decomposition

We present a novel smoothing algorithm which effectively
smoothes highly contrasted oscillations while preservingsalient
edges. By applying this algorithm recursively on the smoothed im-
age, we compute amultiscale decompositionof an input image into
layers at different scales of coarseness. In comparison with existing
edge-preserving multiscale decompositions, our algorithm signifi-
cantly increases the ability to distinguish high-contrasttexture from
a dense field of edges.

Our notion of detail inherently captures repetitive variation of inten-
sity, which we termoscillations. Locally, the amplitudes of oscil-
lations represent contrast while their spatial-frequencies represents
fineness in scale. Our goal is to smooth fine-scale oscillations, or
detail, regardless of their amplitudes (see Fig 6). We extract the
locally finest-scale oscillations as detail using a single smoothing
operation, and obtain a multiscale decomposition by progressive
smoothing. During successive smoothing operations on the resid-
ual, we coarsen the scale at which extrema are detected.

Inspired by empirical mode decomposition and morphological im-
age filters, we examine thelocal extremaof the input image to de-
tect oscillations. Empirical decomposition does not preserve edges



(a) Input (b) Bilateral Filter (c)WLS filter (d) Our method

Figure 2: Intensity plots along a scanline of an input image are shown with three filtered versions: (b) Bilateral filtering with a conservative
(blue) and aggressive (black) range parameter values ; (c) Gradient-based edge preserving smoothing technique (WLS filtering [2008]) with
larger (blue) and smaller (black) gradient preserving parameter values; (d) Our smoothing filter. While existing techniques (b) and (c) are
effective in smoothing variation with small amplitude (blue), they necessarily blur edges (black) that have smaller magnitudes of gradients
than the oscillations to be smoothed. Our smoothing algorithm smoothes large oscillations and strictly preserves edges (green), without the
need for careful selection of parameter values.
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Figure 4: Comparison of our approach with three existing tech-
niques for image decomposition: Bilateral filtering [Fattal et al.
2007] , weighted least squares (WLS) filtering [Farbman et al.
2008] and bidimensional empirical mode decomposition (BEMD)
[Huang 1998] .

while morphological operations do not preserve shape [Serra and
Vincent 1992]. We exploit information provided by local extrema
about the oscillations in the image and preserve both— edgesand
shape. Our algorithm is based on two key observations: (1) Detail
(even if high-contrast) is characterized by a large densityof local
extrema; (2) salient edges (even if low-contrast) are characterized
by a large variation in their neighboring extremal values.

Using local extrema, rather than contrast, to characterizedetail pro-
vides two important benefits. First, we make noa priori assump-
tions on the dynamic range of the input image or on the amplitude
of the oscillations. Second, we obtain the local scale of oscilla-
tions independent of contrast. Progressive coarsening of the scale
at which extrema are detected results in layers with oscillations at
different scales. Also, by recursively removing detail, the degrees
of coarseness in the multiscale decomposition are likely tocapture
the inherent superimposed scales of oscillation in the input image.

For simplicity, we describe our algorithm for an input grayscale
imageI . Similar to existing decomposition techniques, we perform
the decomposition on the luminance channel for color images. We
denote image-space coordinates(x, y) with boldface letters. Thus
I(p) is the intensity of the given grayscale imageI at pixelp.

2.1 Smoothing

We definedetail asoscillations between local minima and maxima
(see Fig 5). We extract detail by subtracting a smoothed image,
that we call themean, from the input. The smoothing algorithm
uses the local extrema to detect oscillations at their finestscale,
locally. By interpolating the minima and maxima independently,
we construct twoextremal envelopes, that sandwich the data, and
propagate information about local oscillations to all pixels in the
image. The average of the two interpolants, evaluated at each pixel,
provides an estimate of the local mean about which the oscillations
occur. To ensure that the mean respects edges in the input image,
the interpolants need to be edge preserving in the traditional sense
that they retain fidelity to the input at strong gradients.

Our smoothing algorithm consists of three steps: (1) Identification
of local minima and local maxima ofI ; (2) Interpolation of the lo-
cal minima and maxima to compute minimal and maximal extremal
envelopes respectively; (3) computation of the smoothed meanM
as the average of the extremal envelopes. Figure 5 illustrates the
three steps of our smoothing algorithm by plotting 1D slicesof the
Barbara input image (red), its extrema, extremal envelopes(blue
and magenta) and smoothed mean (black). The detail layer is ob-
tained asD = I − M .

Extrema location: We use a simple test for locating image max-
ima. Pixelp is reported as a maxima (resp. minima) ifat most
k − 1 elements in in thek × k neighborhood aroundp are greater
(resp. smaller) than the value at pixelp. Oscillations whose max-
ima are detected by using ak×k kernel have wavelengths of at least
k/2 pixels. Intuitively, using a large kernel overlooks the detection
of fine oscillations. We start withk = 3 and increase the kernel
size for multiscale smoothing, after extracting fine oscillations (see
Sec. 2.2).

Extremal envelope construction: Given an imageI and a set of
pixelsS (image local extrema), we compute an extremal envelope
E using an interpolation technique that was proposed by Levinet
al. [2004] for image colorization. In our context, we seek aninter-
polantE such that neighboring pixelsE(r) andE(s) have similar
values ifI(r) andI(s) are similar. More formally, we minimize
the functional

∑

r



E(r) −
∑

s∈N(r)

wrsE(s)





2

(1)



(a) InputI (b) Smoothed meanM1 (c) DetailD1 (d) Scanline-plots

Figure 6: Plots showing the input intensities (red) along a row and itsseparation into detail (green) and mean (blue) by our algorithm.
Despite the large amplitude of some oscillations they are extracted as detailD1, while single edges of lower amplitude are preserved in the
smoothed meanM1.

Input Step 1: Locate extrema

Step 2: Compute envelopes Step 3: Average envelopes

Figure 5: The three steps of our smoothing algorithm illustrated
with plots of intensity along the row shown in Figure 6.Step 1:
We locate the local minima and maxima of the input (red). Note:
The plot is along a row in the 2D input and extrema correspond-
ing to some peaks seem to be missing since they lie on adjacent
scanlines.Step 2:We compute the minimal (magenta) and maximal
(blue) envelopes as edge-preserving interpolants throughthe min-
ima and maxima respectively.Step 3:The smoothed mean (black)
is computed as the average of the two envelopes.

subject to the constraint

∀ p ∈ S E(p) = I(p).

N(r) denotes the neighbors ofr, and weights

wrs ∝ exp

(

−
(I(r) − I(s))2

2σ2
r

)

(2)

are computed using the local varianceσ2
r aroundr. We adopt the

approach of Levin et al. [2004] and minimize the quadratic func-
tional using their weighted least squares formulation, which re-
duces to solving a sparse linear system withN(r) defined as a3×3
local neighborhood.

Smoothed mean: Performing the envelope construction indepen-
dently on the minima and maxima of the image yields the minimal

and maximal envelopes respectively. The smoothed mean image is
computed as the average of these two envelopes (see Fig 5).

2.2 Multiscale decomposition

A single smoothing operation ofI yields a detail image,D1, that
contains the finest-scale local oscillations and a mean,M1, that rep-
resents a coarser trend. We obtain a multiscale decomposition of
the input image by recursively extracting a number of detaillayers
from the mean. Aftern recursive smoothing operations, we obtain
detail imagesD1, D2, ..., Dn at increasing scales of coarseness and
a residual mean image:

I(p) =

n
∑

i=0

Di(p) + Mn(p). (3)

Choosingk = 3 as the size of the extrema-location kernel (see
Sec. 2.1) for the first smoothing step ofI results in a detailD1 that
captures oscillations of frequency up to3/2 pixel−1. By increas-
ing k, we effectively capture coarser oscillations while recursively
smoothingM1. Progressively increasingk through each recursive
smoothing causes the different detail layers to contain increasingly
coarse oscillations. In our experiments we found that the algorithm
was not sensitive to the factor by whichk was increased. For all
the results in the paper we increasedk by a constant value of eight,
between iterations. Figure 7(d) visualizes the extrema ofI , M1 and
M2. For compact visualization, the three sets of extrema are shown
in different vertical regions of the image.

2.3 Discussion

Effects of noise: For noisy input images, our algorithm effectively
separates the noise if the scale of the noise does not match the scale
of features in the input image. We repeated an experiment per-
formed by Farbman et al. [2008], on a greyscale image with several
step-edges of varying magnitude that was polluted with noise at two
scales. Our decomposition algorithm effectively recoversthe noise
at different scales (see Fig. 8).

Edge preservation: Current edge-preserving image decomposi-
tions use local contrast to define edges. On the other hand, we
define edges as regions where thevariation in the values of the
neighboring extremais large. Our smoothing filter preserves edges
because the extremal envelopes implicitly maintain fidelity to the
data at pixels where the variation in the range values of the nearby
extrema is large. Regions with large-amplitude, oscillations are
smoothed effectively since the local extrema have similar values.



(a) Input image
(b) Base/detail

after one smoothing operation
(c) Base/detail

after two smoothing operations
(d) Extrema of input

and two base layers (b) and (c)

Figure 7: Our multiscale decomposition extracts features based on their spatial scale. An input image is shown along with its three-layer
decomposition. The local extrema of the input image, the base layer in (b) and the base layer in (c) are shown as three abutting vertical
regions in (d).

(a) Input imageI (b) Our decomposition ofI

(c) I smoothed twice
using Iterative WLS

(d) I smoothed twice
using our algorithm

(e) Mean (blue) using
Iterative WLS

(f) Mean (black) using
our method

Figure 8: Results of applying our algorithm on a noisy image
(courtesy of Farbman et al. [2008]). (a) The input imageI is a
piecewise constant image containing several step-edges ofdiffer-
ent magnitudes, to which noise was added at different scales. Our
smoothing algorithm produces a better estimate of the mean while
effectively extracting detail at multiple scales. (b) The result of our
decomposition on a single row. (c) The result of smoothingI using
iterative WLS [Farbman et al. 2008]. (d) The result of smoothing
I using our algorithm. (e) A plot of the smoothed result (blue)us-
ing WLS filtering, along with the input (red). (f) A plot of theour
smoothed result (black) with the input (red).

Robustness to image scaling: Performing the decomposition of a
scaled version of an image provides consistent results if the win-
dow used for extrema detection is scaled accordingly. The size of
the kernel used in our extrema detection determines the largest fre-
quency of oscillations that can be extracted as detail. To maintain
consistency between decompositions of scaled versions of the input
image it suffices to simply scale the the kernels by the same factor.

Sparse extrema: When the density of local extrema is very low, the

interpolation [Levin et al. 2004] can become unstable. However, a
low extremal density indicates that the underlying function is very
smooth. Introducing artificial interpolation constraints(extrema)
in smooth regions makes the interpolation stable. In practice, we
insert artificial extrema in regions of the image that contain no ex-
trema and are larger than a given threshold size (50 × 50 pixels).

Smoothing by contrast reduction: In traditional empirical mode
decomposition [Huang 1998] of smooth 1D data, smooth interpo-
lation schemes are used to construct the extremal envelopes. We
use an edge-preserving interpolation scheme so that the smoothed
mean preserves isolated discontinuities. The tendency of the inter-
polant to preserve large gradients may result in incompletesmooth-
ing of oscillations in a single iteration. However, a combination
of increasing the window size for extrema-location and perform-
ing the decomposition in the log-domain make this effect almost
imperceivable. Another solution is to repeat each smoothing step
(keepingk fixed) until the detail is completely extracted.

Features at boundaries of textured regions: large-amplitude os-
cillations that occur at the boundaries of textured regionsare in-
distinguishable from edges. Figure 9 illustrates an example where,
despite the high contrast, the spotted pattern on the hat is smoothed
effectively while subtler shading is preserved on the coarse scale.
However, the bright spots at the boundary with the ribbon aremis-
taken to be part of the ribbon. Handling such cases would require
semantic information such as from an explicit pattern matching al-
gorithm.

3 Results

We tested our smoothing and decomposition algorithms on a variety
of images. On average, a four-layer decomposition of1024 × 768
images took about30 seconds using a naı̈ve solver for computing
the extremal envelopes. Using a simple multigrid solver, wewere
able to achieve a speedup of about1.5. To locate extrema, we use a
3×3 kernel for the finest detail and progressively enlarge the kernel
by a constant value (8) through the recursion for coarser layers.

3.1 Comparison

We wish to stress the difference in philosophies between current al-
gorithms and our approach. Our novel definition of detail, asrepet-
itive oscillatory features between local extrema, produces funda-
mentally different decompositions from existing solutions that in-
terpret large gradients as edges to be preserved. The differences
are primarily with coarse-scale features that have low contrast and
fine-scale features that are highly contrasted.

Techniques, that extract low contrast features as detail, typically
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Figure 10: The Barbara input image along with results of smoothing withthe WLS filter [Farbman et al. 2008] using various combinations
of the input parameters. Zooming into insets with contrasted texture and subtle shading, we see that gradient-based techniques are unable to
preserve subtle, coarse features while smoothing fine, well-contrasted texture. Our method preserves subtle shading and effectively smoothes
the texture.

(a) Input image (b) Smoothed image

Figure 9: Failure case: Although the high-contrast, spotted pattern
on the hat is smoothed effectively while retaining subtler shading
information, parts of this pattern on the boundary with the ribbon
are indistinguishable from the ribbon. Although our definition of
detail does not inherently disambiguate edges from partialoscilla-
tions of similar amplitude at boundaries, this is an extremeexam-
ple. Handling such cases would require semantic information such
as from an explicit pattern matching algorithm.

demonstrate their utility using images where the low contrast detail
also tends to be fine-scale. On such images, despite the difference
in philosophies, our results are quite similar since fine-scale fea-
tures extracted by our technique as detail also happen to be of low
contrast. For example, using the flower example of Farbman et
al. [Farbman et al. 2008] we achieve similar results (Fig. 11) since
the details on the flower petals are fine-scale and of lower contrast
than at the boundaries. In this paper, we focus on cases that produce
different decompositions from gradient-based approaches.

Figure 15 compares the results of our technique with existing de-
composition schemes. One key difference is that our decomposition
extracts, earlier, fine-scale features (such as the pebblestowards the
bottom of the image) as detail, while existing schemes extract low-
contrast features (such as the large clouds) earlier as detail.

Figure 10 shows an example where the input contains texture that
is more contrasted than some edges. Using a purely gradient de-

pendent approach, smoothing the oscillation necessarily smoothes
low-contrast edges (see also Fig. 3). Also, current decompositions
can involve non-intuitive manipulation of input parameters across
different images. In comparison, our technique is simple, smoothes
texture, respects soft, single edges, preserves subtle shading and
consistently smoothes a variety of images with widely different
contrasts.

3.2 Applications

Multiscale decompositions of images, into layers of varying con-
trast, have been used in several applications including equalization
and image abstraction [Farbman et al. 2008; Lischinski et al. 2006;
Fattal et al. 2007]. In addition to these, we present applications that
exploit a key property of our decomposition— the extracted lay-
ers correspond to superposed oscillations of increasing coarseness.
We apply our decomposition to enhance detail (image equalization)
and to remove detail ( estimating tone from cross-hatched images,
separating texture from illumination, illumination transfer).

Hatch to tone: Few techniques are able to recover tone from im-
ages with hatching or stippling, while preserving edges. The dif-
ficulty lies in retaining edges depicted by these techniqueswhile
smoothing high-contrast variation. Smoothing filters likethe bilat-
eral filter or weighted least squares filter are not very useful in this
context. Figure 12 shows the residual from running three iterations
of our smoothing algorithm on a cross-hatched input image. We
smooth fine-scale oscillations, ideally to their flat means,earlier
in the process. However, in the case of non-homogeneous, high-
contrast oscillations, the edge preserving nature of the non-linear
extremal interpolants causes the contrast of the oscillations to be
reduced considerably but not completely. Consequently thecom-
puted mean tends to contain residual oscillations that are grayscale.
The amplitude of these residual oscillations depends on itsorigi-
nal wavelength; fine oscillations leave weaker residuals than coarse
ones. Over multiple iterations of such smoothing applied onbi-
nary (or highly contrasted) hatched images, the complex interplay
between homogeneity of oscillations in 2D and grayscale residuals
from previous iterations tends to result in a smoothed imagewhere
the tone at each pixel is directly related to the frequency oflocal
oscillations. While we smooth variation, the edges of variations are
well preserved. We compare our solution with a median filter.The
problem with the latter is that, using a small kernel size, tone is not
recovered at a coarse scale and Increasing the kernel size wipes out
thin features like outlines. Another drawback of the medianfilter is



Figure 11: Fine-scale enhancement of the input image (left) using WLS [Farbman et al. 2008] (middle) and our technique (right) provides
similar results with subtle differences since the detail onthe petals are of, both, low contrast and fine scale. The WLS method fails to enhance
fine-scale detail that are high-contrast such as the serrations on the leaves in the background and specularities on the small leaves on the
right. In addition, coarser features such as the subtle discoloration on the defocused top-left portion of the image areenhanced as detail by
the WLS method simply because they are low contrast.

that the filter only selects pixel levels that are present in the input
image.

(a) Input (b) Median filtering (c) Our method

Figure 12: (b) Applying a median filter has two disadvantages:
Choosing a large kernel size washes out thin edges while choos-
ing a small kernel size does not smooth the hatched pattern; also
the median filter simply selects one of the existing grey levels and
cannot produce intermediate shades of grey. (c) The residual af-
ter three iterations of smoothing using our algorithm yields a good
estimate of the tone while preserving the edges of hatched regions.

Separating fine texture and coarse shading: We are able to sepa-
rate fine texture from shading, provided the oscillations ofthe tex-
ture and shading are of different scales. Although we make the
same assumption as Oh et al. [2001] that illumination information
is “lower frequency” than texture, we do not make any assumptions
on the contrast of the texture. Since Oh et al. use the bilateral fil-
ter, they are prone to the additional assumption that the contrast of
the texture and shading are vastly different. We demonstrate the
effectiveness of our algorithm by retexturing an image containing
high-contrast texture, while retaining shading on the newly painted
texture (see Fig. 13). We achieve this by transferring the coarsened
luminance of the input image onto its edited version.

Image equalization: The layers from our decomposition can be
seen as an adaptive basis that sum to the input. By considering
different linear combination of these layers, we show that detail at
different scales can be exaggerated. In practice, since we manipu-
late the log-luminance channel, we perform the linear combinations
in log space. Current equalization techniques define detailas low
contrast. Instead, we are able to control relative contrasts of fea-

(a) Input image
(b) Illumination transfer

onto painted texture

Figure 13: Our edge preserving decomposition separates an input
image into layers containing detail at different scales. (a) The tiled
texture on the floor is finer than illumination effects such asglossy
reflections and shadows. (b) The coarse illumination information is
extracted from (a) and combined with the fine texture information
extracted from (b) to preserve shadows and subtle effects such as
glossy reflections of pillars on the newly painted texture (inset).

tures based on their scales (see Fig.1). More examples of image
equalization are presented in the video.

High dynamic range (HDR) images: Although filters that extract
detail based on contrast (WLS and bilateral filters) are moreappro-
priate tools for tone-mapping, in practice, we find that our equaliza-
tions produce reasonable results (see Fig. 14). An advantage of our
method is intuitive and consistent parameter values acrossdifferent
images. However, since we filter based on scale and not contrast,
specialized techniques may be preferable for input where the HDR
content is spread across significantly different spatial scales.

4 Conclusion

We have presented a novel definition for image detail as oscillations
between local minima and maxima. While existing decomposition
algorithms extract detail based on a notion of contrast, ourdefini-
tion of detail captures the scale of spatial oscillations, locally.

Building on our definition of detail, we proposed a simple algo-
rithm to smooth an input image. By recursively performing the
smoothing with extrema detection at multiple scales, we performed
a decomposition of the input image into multiple-scale layers of
detail and a coarse residual. Our algorithm smoothes high-contrast
texture while preserving salient edges. Finally, we exploited this
ability by applying our decomposition in a variety of applications.



(a) Tone-mapped using the bilateral filter (b) Tone-mapped using the WLS filter (c) Our equalized result

Figure 14: Comparison of our equalization against tone-mapping operators on an example high dynamic range (HDR) input image. (a)
and (b) have been directly taken from [Durand and Dorsey 2002] and [Farbman et al. 2008] respectively. (c) is obtained using our 2-layer
equalization where the base layer is scaled to half and recombined with the detail. Although our notion of detail is basedon spatial scale and
not contrast, our equalization can be used to achieve basic tone-mapping by scaling down the layer(s) with HDR content.
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Figure 15: Comparison of our results with existing approaches: Bilateral filtering [Chen et al. 2007], MSBLT [Fattal et al. 2007], LCIS [Tum-
blin and Turk 1999], WLS, iterative WLS [Farbman et al. 2008]. Our smoothing extracts features based on spatial scale while other methods
smooth low-contrast features first. Using our decomposition, the pebbles and stones towards the bottom of the image are extracted as fine-
and medium-scale detail respectively, even though they arewell contrasted. On the other hand, despite their low contrast, the clouds are not
extracted as detail due to their coarse scale. The comparison images have been directly taken from [Farbman et al. 2008].
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1. INTRODUCTION

Rendering participating media is challenging because of the high
cost of simulating scattering events. But participating media mostly
blur out details, and decrease the contrast of images: some image
regions appear almost locally constant, and light beams are practi-
cally constant in the direction of light propagation. In this paper we
introduce a new frequency analysis of local light fields in partici-
pating media. We show the effect that volumetric scattering has on
lowering frequency content and contrast. We derive the associated
theoretical framework and provide tools to optimize participating
media rendering algorithms using the frequency content of light
transport.

Scattering is a long standing problem in computer graphics
where a range of techniques, with varying trade-offs between per-
formance and accuracy, have been proposed to simulate the inter-
action of light with participating media. Unbiased methods such
as path tracing [Lafortune and Willems 1993] and Metropolis
light transport [Veach and Guibas 1997] provide accuracy, but of-
ten at a prohibitive cost. Photon mapping based approaches han-
dle participating media [Jensen and Christensen 1998; Knaus and
Zwicker 2011] with different trade-offs. Methods such as Photon
Beams [Jarosz et al. 2011] efficiently simulate low order scatter-
ing, relying on the accumulation of illumination primitives (e.g.,
points or beams) to compute images. While some approaches ex-
ploit the lower frequency nature of lighting in participating media,
to our knowledge, there is no existing literature on a priori fre-
quency analysis of local light fields in volume transport.

For non-volumetric surface-based rendering, Durand et
al. [2005] introduced a frequency analysis of light transport. We
extend this framework to characterize the behavior, in the Fourier
domain, of light traveling and scattering inside participating media.
Methods exist that use the Fourier transform as a global transform
operator in 3D to decouple the frequencies in the scattering
equation [Ishimaru 1997]. Instead, our extension to the frequency
analysis framework applies to 4D local light fields, along light
paths in the medium.

We build on covariance analysis [Belcour et al. 2013], an effi-
cient and practical representation of the covariance matrix of the
frequency spectrum of the local light field. It was used to acceler-
ate the rendering of motion and defocus blur. The covariance ma-
trix representation conveys the required information on the Fourier
transform of the light field, at a very small cost, making it tractable
for path-tracing.

In this paper, we extend the covariance representation to global
illumination in participating media, including multiple scattering.
We show that our new formulae for participating media fit nicely in
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(a) Our frequency estimate combined with (b) Predicted 3D covariance (c) Image space filters (d) Reference (Prog. Photon Beams, 4h44min)

Progressive Photon Beams (25 min) of fluence spectrum & Camera rays sample density Inset: Equal time comparison (25min)

Fig. 1. We propose a frequency analysis of light transport in participating media, a broad theoretical tool that allows improvements in a wide variety of

algorithms. From the predicted 3D covariance of the fluence in the Fourier domain (b), we derive three different sampling metrics in the 3D volume. We present

multiple example uses of these metrics: to improve image-space adaptive sampling density and reconstruction, we provide sampling density and reconstruction

filters (c-top); to improve light integration along camera rays, we evaluate a required number of samples along those rays (c-bottom); to improve progressive

photon beams, we derive the optimal reconstruction radius based on the frequency content (a and d). In order to ease comparisons, we scaled the covariance

graphs (b), and increased the luminosity of insets (d). This scene is composed of a pumpkin modeled by user Mundomupa of blendswap.com provided under

creative common license CC-BY, and of a house front modeled by Jeremy Birn.

the existing framework when the medium is not optically thick (as
in subsurface scattering). We use the covariance information of the
local light field spectrum in 4D along light paths to predict the 3D
covariance of the windowed spectrum of fluence in volumes with
participating media. We propose four application scenarios where
this quantity proves useful (see Figure 1). The contributions of this
paper are:

—A local analysis of scattering and absorption in the Fourier do-
main along a light path, in heterogeneous participating media.
The model is compatible with multiple scattering.

—A compact representation of attenuation and scattering in the
Fourier domain, using covariance matrices.

—The combination of covariance from many light paths in the
medium into usable sampling metrics in 3D.

—Four different computation scenarios that benefit from our anal-
ysis: computation of second derivatives of the fluence; image
space adaptive sampling and reconstruction; adaptive sampling
of scattered illumination along rays from the camera; and pro-
gressive photon beams.

Note that the term “spectral analysis” usually has multiple mean-
ings; it is sometimes used to refer to the eigenanalysis of linear
operators. In this paper the term spectrum refers to the frequency
spectrum of the Fourier transform of light fields.

2. PREVIOUS WORK

We categorize related work into research on the frequency analy-
sis of light transport, and on the volume rendering of participating
media.

2.1 Fourier domain methods for scattering.

In these methods, the Fourier transform is used as a tool for solv-
ing the scattering equation at once in the entire domain [Duderstadt
and Martin 1979; Ishimaru 1997]. Some methods use a different
basis for certain dimensions, such as the Chebychev basis [Kim
and Moscoso 2003], or spherical harmonics [Dave 1970]. These
methods in general depend on a combination of very specific con-
straints: infinite or spherical domains [Dave and Gazdag 1970], pe-
riodic boundary conditions [Ritchie et al. 1997], isotropic scatter-
ing functions [Rybicki 1971], and mostly homogeneous scattering
functions. These conditions make such methods not very suitable
to computer generated images where the constraints of uniformity
and periodicity can hardly be satisfied.

Our approach is fundamentally different: we use the Fourier
transform as a local tool in the 4D ray space to predict bandwidth—
as opposed to globally solving the equations—which allows us to
handle non homogeneous participating media.

2.2 Volume rendering.

The field of rendering participating media has a long history. Vol-
ume rendering based on ray tracing techniques was first proposed
for forward path tracing integration [Kajiya and Von Herzen 1984].
It has been expanded afterwards to other integration schemes:
Lafortune and Willems [1996] extended bidirectional path tracing;
Pauly et al. [2000] adapted Metropolis for participating media. Pho-
ton mapping [Jensen and Christensen 1998] has been shown to be
efficient in generating high frequency light patterns such as caus-
tics. Cerezo et al. [2005] surveys the state-of-the-art, though it is a
bit dated.

Recently, various extensions to photon mapping and progres-
sive photon mapping use photon beams, rather than point sampling
along rays, to greatly improve the performance of volume render-
ing [Jarosz et al. 2008; Jarosz et al. 2011; Jarosz et al. 2011; Knaus
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and Zwicker 2011]. These methods however, remain unaware of
image complexity, and rely on an accumulation of illumination
primitives (e.g., points or beams) to compute an image that will
eventually be very smooth.

Several virtual point light (VPL)-based algorithms for volumet-
ric rendering trade-off quality and performance. Light cuts and
variants [Walter et al. 2005; Walter et al. 2006; Walter et al. 2012]
achieve scalable rendering of complex lighting with many VPLs
for motion blur, depth of field, and volumetric media (including for
oriented media [Jakob et al. 2010]). These scalable approaches cou-
ple error bounded approximations with simple perceptual metrics.
For interactive VPL rendering of participating media, Engelhardt et
al. [2010] introduce a GPU-friendly bias compensation algorithm.
Novak et al. [2012] spread the energy of virtual lights along both
light and camera rays, significantly diminishing noise caused by
singularities.

Multiple approaches aim at efficiently computing low-order scat-
tering in refractive media. Walter et al. [2009] compute single scat-
tering in refractive homogeneous media with triangle boundaries.
Ihrke et al. [2007] solve the eikonal equation with wavefront trac-
ing for inhomogeneous media with varying refractive indices and
Sun et al. [2010] develop a line gathering algorithm to integrate
complex multiple reflection/refraction and single scattering volu-
metric effects for homogeneous media.

2.3 Efficient sampling and reconstruction methods

Some works perform adaptive sampling or local filtering using
heuristics based on the frequency of light transport, without ex-
plicitly computing frequency information. Adaptive sampling for
single scattering [Engelhardt and Dachsbacher 2010] permits re-
sampling when detecting an occlusion. This approach finds epipo-
lar lines, sparsely samples and interpolates along these lines, but
finds occlusion boundaries to preserve high frequency details. An
epipolar coordinate system [Baran et al. 2010; Chen et al. 2011] al-
lows to interactively compute single scattering in volumetric media
by exploiting the regularity of the visibility function.

The structure of the light field [Levoy and Hanrahan 1986;
Gortler et al. 1986] can be exploited to perform adaptive sampling
or reconstruction. For surface radiance computation, Lehtinen et
al. [2011] exploits anisotropy in the temporal light field to effi-
ciently reuse samples between pixels, and perform visibility-aware
anisotropic reconstruction to indirect illumination, ambient occlu-
sion and glossy reflections. Ramamoorthi et al. [2012] derived a
theory of Monte Carlo visibility sampling to decide on the best
sampling strategies depending on a particular geometric configura-
tion. Mehta et al. [2012] derives the sampling rates and filter sizes
to reconstruct soft shadows from a theoretical analysis to consider
axis-aligned filtering.

Irradiance caching methods [Jarosz et al. 2008] inherently per-
form filtering in the space of the irradiance by looking at the ir-
radiance gradient. For example, Ribardiere et al. [2011] perform
adaptive irradiance caching for volumetric rendering. They predict
variations of the irradiance and map an ellipsoid to define the non-
variation zone with respect to a local frame.

2.4 Frequency analysis of light transport.

In their frequency analysis of light transport, Durand et al. [2005]
studied the frequency response of the radiance function to various
radiative transport phenomena (such as transport, occlusion and re-
flection). Other works on this subject [Egan et al. 2009; Soler et al.
2009; Belcour and Soler 2011; Bagher et al. 2012] have enriched
the number of effects to be studied (motion, lens) and showed that

filtering and adaptive sampling methods can benefit from frequency
analysis. Yet, some radiative phenomena have not been studied in
this framework, including refraction and scattering. We aim to fill a
part of this gap by bringing comprehension of the frequency equiv-
alent of volume scattering and attenuation operators, and showing
the usefulness of such analysis with a few practical applications.

A frequency analysis has been carried out for shadows specifi-
cally by Egan et al.in 4D to build sheared reconstruction filters for
complex visibility situations [Egan et al. 2011], or in the case of
occlusion by distant illumination [Egan et al. 2011].

3. BACKGROUND: COVARIANCE OF LOCAL

SPECTRUM

Our ultimate goal is to provide a general, efficient tool for predict-
ing the variations of the illumination, at different stages of the cal-
culation of global illumination, so as to make sampling and recon-
struction methods the most efficient possible. In prior work [Bel-
cour et al. 2013], it was demonstrated that the covariance of the
spectrum of the local light field along rays does this job. In this pa-
per, we perform the mathematical analysis to extend this approach
to multiple scattering in participating media. This section recalls
the basics about local light fields, Fourier analysis of light transport
and the covariance representation of the spectrum as background.

3.1 Local light fields

We call the local light field the 4D field of radiance in the 4D neigh-
borhood of a ray. Our space of study is the 4D domain of tangen-
tial positions around a central ray [Igehy 1999; Wand and Straßer
2003]. It is parameterized by two spatial and two angular coordi-
nates, defined with respect to the plane orthogonal to the ray at a
3D position x (See Figure 2).

Fig. 2. Parameterization of a local radiance light field around a ray of di-

rection ω. We use δu, δv as the transverse spatial coordinates of the ray and

δθ, δφ as its angular coordinates.

3.2 Fourier analysis

Durand et al. analyzed the various effects a local light field un-
dergoes along a light path [Durand et al. 2005]. They showed that
the effect of light transport operators such as reflection, free space
transport, and occlusion, all correspond to simple operators on the
Fourier spectrum of the light field. These operators and their equiv-
alent operator in the Fourier domain are listed in Table I.
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Space travel Occlusion BRDF Rotation by angle ϕ Scale f(λ1x1, ..., λ4x4)

Σ′ = TT
d ΣTd Σ′ = Σ+O Σ′ =

(
Σ−1 +B

)−1
Σ′ = RT

ϕΣRϕ Σ′ = ΛΣΛ

Td =




1 0 −d 0
0 1 0 −d
0 0 1 0
0 0 0 1


O =




Oxx Oyx 0 0
Oxy Oyy 0 0
0 0 0 0
0 0 0 0


B =




0 0
0 0

0 0
0 0

0 0
0 0

[
B−1θφ

]


Rϕ =




cos(ϕ) −sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 cos(ϕ) −sin(ϕ)
0 0 sin(ϕ) cos(ϕ)


 Λ =




λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4




Fig. 3. Operations on the light field and their equivalence on the covariance matrix of the light field’s spectra at various stages of light transport (see Belcour

et al. [2013] for detailed derivations). The middle row shows each operator applied to the covariance Σ while the bottom row details the constant matrices

involved. Occlusion adds spatial covariance (O is the 2D spatial covariance of the occluder), BRDF removes angular covariance (Bθφ is the angular covariance

of the BRDF locally to the reflected direction), while rotation and free-space travel only cause a re-parameterization.

Table I. Operators on the light field function along a light path, and

their Fourier equivalent.

Effect Light space operator Fourier operator

Space travel Angles→space shear Space→angles shear

Occlusion Product with visibility Convolution by occluder’s spectrum

Projection Scale Inverse scale

BRDF integral Convolution by BRDF Product with BRDF’s spectrum

3.3 Covariance representation

It is not practical to perform a complete calculation of the full spec-
trum, especially on a per light path basis. Fortunately, we do not
need the full spectrum of local light fields to perform useful predic-
tions about how the local light field behaves. The relevant informa-
tion needed is how far and in which directions the spectrum spreads
in the Fourier domain. It was demonstrated that the covariance ma-
trix of the power spectrum of the local light field is sufficient to
maintain this information [Belcour et al. 2013].

In the most general case, assuming non-static scenes, local light
fields are defined over space, angle, and time, making the light field
and its power spectrum a 5D function. The effect of motion is de-
rived independently of the other 4D operators using a change of
coordinates in time [Belcour et al. 2013]. In the present document,
we chose to focus on static scenes only, and work with 4D covari-
ance matrices.

For any zero-centered, non-negative real function f defined over
the 4D domain, the covariance matrix of f is a 4×4 matrix, denoted
as Σ, and defined by:

∀(i, j) ∈ {1, ..., 4}2 Σi,j =
1∫
Ω
f

∫

x∈Ω

(x.ei)(x.ej)f(x)dx (1)

In this equation, ei is the ith vector of the canonical basis of the
4D space Ω, while (x.y) is the dot product of vectors x and y.

The covariance matrix has very interesting properties in terms of
what we actually need:

—its eigenvectors indicate in which direction function f spreads
the most and where it spreads the least;

—its eigenvalues are the variance of the function in all 4 principal
directions;

—it is additive, which allows us to accumulate the covariance ma-
trices of rays. More specifically, the Monte Carlo estimate of
a composed covariance matrix of many rays is the weighted
average of the individual covariance matrices with radiance as
weights.

Therefore, the covariance of the power spectrum (amplitude of the
spectrum) of the local light field can provide us information about
sampling and integrating the light field function [Belcour et al.

2013]. In the remaining text, we use the term spectral covariance
to mean the covariance of the power spectrum of a given quantity.

3.4 Relationship with a Gaussian approximation

When the covariance Σ is non-degenerate, it also coincides with
the covariance matrix of the Gaussian g defined by

g(x) = e−x
TΣ−1x

Therefore, representing a function by its covariance matrix Σ is
just as good as approximating that function by the Gaussian above.
Such an approximation appears very relevant for power spectra,
which—just like Gaussians—are zero-centered radially symmetric
functions.

However, in order to handle degenerate cases, using a covari-
ance matrix is more practical than handling Gaussian functions.
Besides, all transformations we perform over the local light field
directly turn into algebraic operations on the covariance matrix,
with no further approximation except for multiplication [Belcour
et al. 2013].

3.5 Covariance algebra

All operators listed in Table I directly act on the covariance matrix
as algebraic operations, most of which are left-and-right products
with constant matrices (see Figure 3). Obviously missing in this list
are the operators to model the effect of volumetric attenuation and
scattering over the local light field along a light path. We derive
them in the next section. We also need an efficient way of com-
bining the 4D light path covariance information in the 3D domain,
to predict how smooth the diffused illumination will eventually be,
and where and how to sample it. This is done in Section 5.

3.6 Relationship with second derivatives

We show in Appendix A, that for any function f with good regular-
ity in the neighborhood of a given point x0, the covariance matrix
of the windowed spectrum of f in the neighborhood of x0 corre-
sponds to the Hessian matrix of f in the primal domain at x0, in
the coordinate system of the principal curvatures:

∀i Σii(f̂) =
1

4π2|f(x0)|

∣∣∣∣
∂2f

∂x2
i

(x0)

∣∣∣∣ (2)

This last property will be very useful later on in our analysis, as a
practical method to compute covariance matrices of the windowed
spectrum of some signals (e.g. the phase functions) around partic-
ular points.
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4. FOURIER ANALYSIS FOR PARTICIPATING MEDIA

In this section, we extend the frequency analysis of light transport
to participating media. We follow a light path, bouncing possibly
multiple times, into the medium. Our model is therefore compati-
ble with multiple scattering. We derive the equations to model the
effect of two operators over the frequency spectrum of the local
light field around this light path: absorption and scattering. We first
perform a first order expansion of the phenomena. We then study
the Fourier equivalent of the two operators, and show how to ex-
press them using algebraic operations on the spectral covariance
matrices of the light field. Table II summarizes our notations.

Table II. Definitions and notations used in the paper.

δu, δv, δθ, δφ Spatial and angular local coordinates

l(δu, δv, δθ, δφ) local light field function

Ωu,Ωv ,Ωθ,Ωφ Spatial and angular variables in Fourier space

l̂(Ωu,Ωv ,Ωθ,Ωφ) Fourier spectrum of the local light field

Σ 4D covariance of the local light field spectrum

Γ 3D covariance of windowed spectrum of fluence

δt Coordinate along the central direction of travel

κ(x, y, z) Volumetric absorption at 3D position (x, y, z)
κuv(u, v) Volumetric absorption in plane orthogonal to a ray

ω,ωi, ωs directions of light (general, incident, scattered)

ρ(ωi, ωs) phase function for directions ωi, ωs

ρ(δθ, δφ) phase function around ωi, ωs, i.e. ρ(0, 0) = ρ(ωi, ωs)

ρg Henyey-Greenstein function with parameter g

α Finite angle for scattered direction

⊗ΩuΩv
Convolution operator in the Fourier Ωu,Ωv plane

Although the behavior of individual light paths in participating
media is potentially complicated, we will show that in the Fourier
domain, absorption acts like visibility, and scattering acts like re-
flectance. Not only does this fit elegantly into the existing frame-
work, but it also results in a very simple frequency prediction tool
for efficiently rendering participating media.

4.1 Volumetric absorption

We first consider the effect of volumetric absorption. When the den-
sity of particles is not constant in space, energy is not uniformly ab-
sorbed as light travels through the medium. This creates an increase
in spatial frequencies in the signal (similar to shadows), which fur-
ther propagates to the angular domain because of the travel of light.
We study the effect of volumetric absorption by a density function
κ(x, y, z) acting as an extinction coefficient along a ray, for a small
travel distance δt along ω (see Figure 4).

The attenuated light obeys the following differential equa-
tion [Cerezo et al. 2005]:

∂(l(x+ tω, ω))

∂t
(0) = −κ(x)l(x, ω) (3)

We perform a first order approximation of the absorption, consid-
ering κ to be constant for a small distance δt along ω. This allows
us to integrate this equation as:

l(x+ δtω, ω) = l(x, ω)(1− δtκ(x)) (4)

Let κuv be the restriction of κ to the plane, orthogonal to ω
(Which means κuv(δu, δv) = κ(x + δuu + δvv)). We adopt the
notation p(δu, δv) = 1 − δtκuv(δu, δv). In the Fourier domain,
Equation 4 turns into a convolution:

l̂′ = l̂ ⊗ΩuΩv
p̂ (5)

Fig. 4. Notations for the attenuation operator. We analyze the spectral co-

variance of the attenuation for a small travel distance δt along the central

ray. Using small distances allows to assume that the attenuation is constant

along ω.

In this equation, ⊗ΩuΩv
denotes a convolution over the spatial

component only. The effect of attenuation is therefore identical to
occlusion, except that the mask p = 1− δtκuv is a function taking
arbitrary values in [0, 1] instead of a binary function. Let A be the
covariance matrix of p̂. Applying the covariance formula for occlu-
sion (Figure 3), we write the covariance matrix of the convolution
as the sum of the two covariance matrices:

Σ′ = Σ+A (6)

This equation shows that absorption transfers covariance into the
spectrum of the local light field. Another way of seeing this is that
the oscillations of absorption transfer into the light-field.

Computing matrix A in practice, is actually simple using Equa-
tion 2: we compute the 2D Hessian matrix H(x) of κ in the (u,v)
basis using finite differences, and diagonalize it using a 2D-rotation
R. We apply the absolute value, and convert it back to the (u,v)
coordinate system, using covariance rotation with the inverse rota-
tion RT (using Figure 3):

A =
δt

4π




[
RT

∣∣RH(x)RT
∣∣R

]
0 0
0 0

0 0
0 0

0 0
0 0


 (7)

It follows that if a ray crosses a region with transverse sharp transi-
tions of the attenuation function (e.g., a transverse transition from
opaque to non-opaque medium, such as the one depicted on Fig-
ure 4) the attenuation matrix will represent arbitrarily large fre-
quencies in the direction of the discontinuity; this behavior is equiv-
alent to binary occlusion.

Note that for locally constant and linearly varying volumes, the
absorption does not affect the spectral covariance of the signal. In
this case the effect of attenuation is simply the change of the weight
we will use when combining covariance matrices from multiple
light paths that we describe in Section 5.

4.2 Scattering

In this section we derive the matrix formulation of the change in
spectral covariance of a local light field, along a ray that is scattered
in a participating medium. Starting from the scattering equation,
we perform a first order analysis of the integral, and compute the
Fourier transform of the approximated local light fields.

The scattering equation used in raytracing expresses the local in-
crease of radiance at x, in direction ωs due to light scattering from
all incoming directions ω according to the phase function ρ [Cerezo
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et al. 2005]:

∂(l(x+ tωs, ωs))

∂t
(0) =

κs

4π

∫

ω∈S2

ρ(ω, ωs) l(x, ω)dω (8)

Integrating for a small traveling distance δt, we obtain:

l(x+δtωs, ωs) = l(x, ωs)+
δtκs

4π

∫

ω∈S2

ρ(ω, ωs) l(x, ω)dω (9)

When performing Monte-Carlo rendering in participating media,
the sum on the right is handled by deciding with Russian Roulette
whether the light path scatters or not. Consequently, to study scat-
tering along a light path that is known to scatter, we need to deal
with the integral term of the above equation only.

4.2.1 Scattering the local light fields. We study the implication
of this equation in the 4D neighborhood of a couple of directions ωi

and ωs, making a finite angle α (In other words, cosα = ωi.ωs).
We derive the scattering equation for small perturbations around
the incoming and outgoing directions.

We consider the incoming and outgoing light fields to be defined
in correlated angular frames, for which the first angular component
lies in the plane containing ωs and ωi, as depicted in Figure 5. Let
(δθ, δφ) and (δθ′, δφ′) be the angular coordinates of the incom-
ing and outgoing light fields in these frames, Rδθ,δφ the rotation
that turns the central direction into the local light field direction
(δθ, δφ). We also denote by (δu, δv) (resp. δu′, δv′) the spatial
components of the 4D frame around ωi (resp. ωs).

Fig. 5. Notations for scattering in 3D, with the input and output angular

coordinate systems aligned. The local light field around the central incom-

ing direction ωi (resp. scattered direction ωs) is parameterized with spa-

tial and angular coordinates δu, δv, δθ, δφ (resp. δu′, δv′, δθ′, δφ′). The

change in spatial coordinates implies a projection of the first spatial com-

ponent only, scaling it by cosα.

With this notation in place, we express the scattered contribu-
tion of the light field around ωi to the light field around ωs, by re-
stricting the integration domain in Equation 9 to local coordinates
around the two vectors:

ls(δu
′, δv′, δθ′, δφ′) =

δtκs

4π

∫

δθ,δφ

li(δu
′ cosα, δv′, δθ, δφ)ρ(Rδθ,δφωi, Rδθ′,δφ′ωs)

(10)
Note also that in the integrand li uses outgoing spatial coordi-

nates δu′, δv′, but incoming angular coordinates δθ, δφ. Reparam-
eterizing spatial coordinates corresponds to a projection of the first
spatial coordinate, resulting in the 1D scale by cosα that expands
the signal along the first spatial coordinate.

We suppose that ρ(ωi, ωs) only depends on the relative position
of the two vectors, in which case we can express it as ρ(cosα).
Given an input angular perturbation (δθ, δφ) and output angular
perturbation (δθ′, δφ′) in the equatorial parametrization, the angle
α′ between those directions obeys the law of cosines (See for in-
stance [Todhunter 1859] page 18, and Figure 5), which for small
perturbations, boils down to:

cos(α′) = cos(α+ δθi − δθs) cos(δφi − δφs)

We adopt the following notation for the phase function in the neigh-
borhood of (ωi, ωs):

ρ(δθ′ − δθ, δφ′ − δφ) = ρ(cos(α+ δθ − δθ′) cos(δφ− δφ′))

Equation 10 becomes:

ls(δu
′, δv′, δθ′, δφ′) =

κsδt

4π

∫

δθ,δφ

li(δu
′ cosα, δv′, δθ, δφ)ρ(δθ′ − δθ, δφ′ − δφ)

In the angular domain, this is a 2D convolution between the inci-
dent light field and the phase function ρ in the neighborhood of
directions ωi, ωs.

4.2.2 Spectrum covariance formula. Given this formulation,
going to Fourier space then follows in a straightforward manner.
We simply take the Fourier transform on both sides, to get:

l̂s(Ωu,Ωv,Ωθ,Ωφ) =
κsδt

4π cosα
l̂i

(
Ωu

cosα
,Ωv,Ωθ,Ωφ

)
ρ̂

To translate this relationship into covariance matrices, we apply
the formulae summarized in Figure 3: the convolution adds angu-
lar bandwidth to the inverse of the covariance (and thus effectively
removes angular bandwidth), and the scale by 1/ cosα scales the
covariance by cos2 α. The outside factor is kept away for normal-
ization according to Equation 1:

Σs = ((VαΣiVα)
−1 + S)−1 (11)

where S is the covariance matrix of the scattering operator. S de-
pends on the 2D covariance matrix σρ of the windowed Fourier
spectrum of ρ, and Vα is the scale matrix due to the spatial re-
parameterization:

S =




0 0
0 0

0 0
0 0

0 0
0 0

[
σ−1ρ

]


Vα =




cosα 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (12)

To compute matrix σρ, we use Equation 2, which directly gives
the spectral covariance of the phase function around (ωi, ωs) from
the Hessian matrix of ρ (we suppose that the Hessian is diago-
nal, without loss of generality. Otherwise, an additional rotation
is needed just like what we did for absorption):

σρ =
1

4π2ρ(0, 0)





∣∣∣ ∂
2ρ

∂θ2
(0, 0)

∣∣∣ 0

0
∣∣∣ ∂

2ρ
∂φ2 (0, 0)

∣∣∣



 (13)

The effect of scattering is therefore very similar to what a BRDF
does on the local light field: it removes frequencies.

It is also interesting to note that for α = π
2

, the spectrum co-
variance in Ωu is totally removed by the above equation. This is
because in this case, the incoming and outgoing directions are per-
pendicular, and therefore no variation along u on the incoming light
affects the outgoing light field. Note also that for a general light
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path scattering multiple times in a volume, Equation 11 needs to
be interleaved with rotations to correctly align coordinate systems
between two scatter events.

In summary, we proved that the effect of the scattering operator
to the covariance matrix will be: a BRDF operator followed by a
scaling of the spatial component. We will now give an example of
how to compute S when ρ is the Henyey-Greenstein function.

4.2.3 Covariance of the Henyey-Greenstein phase function.
There are multiple analytical models of phase functions avail-
able [Gutierrez et al. 2009]. As a practical example, we give the for-
mulas of the spectral covariance matrix for the Henyey-Greenstein
phase function, that is most common in the field. This function is
defined using angle α between the incoming and outgoing direc-
tions, as

ρg(ωi, ωs) =
1

4π

1− g2

(1 + g2 − 2g cosα)
3

2

with cosα = ωi.ωs

We show in Appendix B that the spectral covariance of the Henyey-
Greenstein function locally around ωs is:

cov(ρ̂g) =
1

4π2

[
|h11| 0
0 |h22|

]
(14)

with

h11 =
3g(2(g2 + 1) cosα+ g(3 cos(2α)− 7)

2(g2 − 2g cosα+ 1)2

h22 =
3g cosα

g2 − 2g cosα+ 1

As expected, the covariance is isotropic for α = 0 (i.e. h11 =
h22) since the Henyey-Greenstein function is rotationally symmet-
ric, and is null for g = 0, since the function is constant in this
case. We validate these equations in Figure 6 with a comparison
of ground truth and predicted covariance matrices for two different
values of α.

Fig. 6. Validation of Equations 11 and 14. We measure the covariance of

the windowed spectrum of an input light beam (left) after scattering with

two different angles (resp. α = 0, middle, and α = 0.2, right), for a

Henyey-Greentein parameter g = 0.8. Top row: Angular slice of the sig-

nal (in the primal domain). Middle row: Predicted covariance matrix of the

spectrum. Bottom row: measured covariance matrix, from the 4D data sam-

pled with 644 in [−1, 1]4. Given the order of magnitude of numbers in-

volved in the calculation, the measured and predicted values are very close

(besides, the square root of the diagonals must be compared). Our calcula-

tion is conservative and well predicts the behavior of the measured data.

Summary

In this section we have derived equations to compute the spectral
covariance of the local light field along a light path inside partici-
pating media. We have shown that absorption increases frequency
content and acts as the previously defined occlusion operator. Scat-
tering low-pass filters the angular frequencies of the input local
light-field with a bandwidth defined by the phase function. Thus,
it acts like the BRDF operator.

5. SAMPLING AND INTEGRATION METRICS IN 3D

In Section 4, we performed an analysis of scattering and attenuation
in the 4D space of local light fields along rays. In participating
media, light bounces in all directions, and the covariance of a single
ray cannot be used to predict the overall frequency characteristics
of the light distribution. In this section we will see how to leverage
the 4D local analysis to compute a set of sampling metrics in 3D,
by combining the covariance from many rays.

We consider the following metrics: image-space bandwidth will
enable efficient image space sampling and reconstruction; the vari-
ance in the volume along a ray will prove useful to optimize the
placement of integration samples for integrating illumination along
a ray; and finally, a prediction of volumetric bandwidth will predict
the optimal size of density estimation kernels to improve volumet-
ric integration techniques, such as progressive photon mapping,

Combining the 4D local covariance of many rays into a single 3D
field also has favorable practical consequences: we favor reusing
the covariance of a small subset of light paths by storing it in a
buffer. However, since the spectral covariance of radiance is direc-
tional it would ideally need to be stored in a 5D buffer, a potentially
computationally and memory intensive datastructure. Fortunately,
a good compromise is to base our metrics on the frequency covari-
ance of the volumetric fluence only, which requires a spatial (3D)
buffer, at the cost of a very reasonable approximation.

5.1 The volumetric covariance

The volumetric covariance is the covariance of the power spectrum
of the fluence in a volume. It bridges the gap between the light path
formulation of covariance derived in Section 4, and our proposed
practical improvements of sampling strategies in existing global il-
lumination methods.

We define the volumetric covariance to be the 3 × 3 covariance
matrix Γx, where entry (i, j) is the ij-covariance of the Fourier
transform of the fluence Fx in the neighborhood of x:

(Γx)ij =
1

Fx(0)

∫
ΩiΩjF̂x(Ω)dΩ (15)

The local fluence F at an offset s around the point x is defined as:

Fx(s) =

∫

ω∈S2

l(x+ s, ~ω)dω

In practice, the volumetric covariance is computed and stored in
a voxel grid, and the size of the neighborhood considered for each
voxel is the size of the voxel itself (so, x + s is restricted to lie in
the voxel).

Computation. We compute the volumetric covariance by accu-
mulating contributions of individual light paths traversing the vol-
ume. At a point x, the 4D spectral covariance Σ of an incident light
path in direction ω carries the illumination from a very localized
set of directions around ω. The 2D spatial sub-matrix of the 4D co-
variance of the local light field around ω is therefore a slice of the
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3D covariance of the integrated radiance, in the plane orthogonal to
ω.

Consequently, we compute the covariance of the fluence at x by
summing up the 2D spatial slices of the covariance matrices of each
incident light path, padded to 3D with zeroes, and rotated to match
the world coordinate system. Since Σ lives in Fourier space, and
the summation happens in the primal domain, submatrices need
to be extracted from Σ−1 and inverted back to Fourier space after
summation:

Γp =

(∫

ω∈S2

RωΣ
−1|δx,δyR

T
ω I(ω)dω

)−1
(16)

In this equation, the notation Σ−1|δx,δy refers to the 2D spatial sub-
matrix of matrix Σ−1, while Rω is the 3× 2 matrix converting the
two local spatial coordinates around ω into the three coordinates
of the world. Finally, I(ω) is the normalized incident energy along
incoming direction ω.

In practice, the integral in Equation 16 is computed using a clas-
sical Monte Carlo summation, as light paths in the volume cross
voxels they contribute to. We do not need to explicitly compute
I(ω) since it is naturally handled by the photon tracing approach:
the number of path crossing a voxel is proportional to the fluence.
We only record how many times each voxel was hit, for proper nor-
malization.

5.2 Image-space covariance

We want to compute image-space covariances for adaptive sam-
pling. The angular sub-matrix of the covariance Σ at the camera
can be used to derive sampling densities and reconstruction filters
for ray-tracing, at each pixel [Belcour et al. 2013].

The most straightforward method to obtain Σ for each pixel in
the screen would be to accumulate covariance matrices from light
paths reaching the camera, applying the theory of Section 4. While
this eventually provides an unbiased estimate of the image-space
covariance, it needs many light paths to obtain a reasonably noise-
free estimate.

It is the spatial variations of “light intensity” in the participating
medium that will show up as angular bandwidth at the camera, and
after projection, as spatial bandwidth on the screen [Durand et al.
2005]. Consequently, we propose computing screen-space band-
width from Γ. To compute Σ at the camera, we slice the volumetric

+ +

Fig. 7. To estimate the 2D spatial covariance matrix in image space, we

accumulate slices of the volumetric covariance Γ along the ray using Equa-

tion 17, and the equations of attenuation 6 and 7.

covariance Γ orthogonally to camera rays, pad it to 4D with null
angular covariance, and accumulate it using Equations 6 and 7 to
account for the attenuation between points along the ray and the

camera. At pixel p, corresponding to a ray with origin c and direc-
tion d:

Σ(p) =
1∫

K(t)dt

∫ D

t=0

K(t)TT
d (A(t) + Γc+td|xy)Tddt (17)

The normalization constant K(t) accounts for how much energy
is associated with each voxel in the covariance grid. The resulting
matrix is a 4D covariance from which we extract the angular com-
ponent at the camera. The process is illustrated in Figure 7.

Equation 17 is an approximation because it implicitly supposes
that the last bounce of light before the camera has no angular co-
variance, meaning that the last scattering step is isotropic. In prac-
tice we found this approximation to have no visible effect.

5.3 Ray-space variance

When gathering energy in participating media, one needs to inte-
grate illumination along rays. For each ray, we need to make sure
that the spacing between integration samples avoids aliasing with
respect to how much the illumination varies in the volume. That
requires the variance v(t) of the fluence function along the ray. The
variance of the fluence in a particular direction ω is naturally given
by a 1D slice of the volumetric covariance matrix, in direction ω
(supposedly a unit vector):

v(x, ω) = ωTΓxω (18)

5.4 Optimal kernel size for density estimation

Methods based on density estimation such as photon mapping, need
to carefully adapt the size of the kernel to collect photons: too small
a kernel increases variance, while too large a kernel increases bias.
Silverman gives an estimate of the mean integrated square error for
density estimation (see Silverman’s monograph [1986], page 85)
which depends on the Laplacian of the estimated function. In the
case of photon mapping methods the function is the fluence, and
Silverman’s estimate gives:

biash(x) =
1

2
h2a△F (x)

In this formula, h is the radius of the kernel used for density esti-
mation, and a is a constant that only depends on the shape of the
kernel. We use again equation 2, that links the diagonal of the co-
variance matrix to the absolute value of the partial second deriva-
tives of F (x), to obtain an upper bound on the absolute value of
the Laplacian from the trace of the covariance matrix:

|△F (x)| ≤ 4π2F (x)tr(Γx)

Equality holds when the second derivatives share the same sign.
From this, we have an upper bound on the density estimation bias:

|biash(x)| ≤ 2π2h2 a F (x) tr(Γx) (19)

This equation directly gives us the largest possible kernel radius h
to always keep the bias below a given threshold.

Summary. In this section we have explained how to combine
the 4D spectral covariance of many rays into volumetric 3D covari-
ance. We have derived interesting sampling metrics from volumet-
ric covariance. In the next section, we will explain how to use these
metrics to improve existing rendering algorithms in three different
application scenarios.
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6. IMPROVEMENT OF EXISTING SAMPLING AND

RECONSTRUCTION METHODS

In this section we demonstrate the usefulness of our analysis from
Section 4, and the sampling prediction metrics we derived in Sec-
tion 5. We examine four different calculation steps that are involved
in computational methods of global illumination in participating
media, and we show that our sampling metrics can be used to ac-
celerate them.

Our sampling metrics need the computation of volumetric 3D
covariance, as defined in Section 5. To compute and store volumet-
ric covariance, we use a voxel grid, the covariance grid. In the use
cases below, we always read the values of Γ in that grid to compute
the required metrics. All results are computed on an Intel i7-3820
with four cores at 3.60GHz per core and an NVidia GeForce GTX
680. We use 8 threads to benefit from hyperthreading. Unless noted,
we use a 643 covariance grid. The covariance grid population algo-
rithms run on a single thread, while we use multi-processor capa-
bilities for volume integration (Section 6.3 and 6.4 using OpenMP)
and for density estimation (Section 6.5 using CUDA).

6.1 The covariance grid

We sample light paths, and populate the covariance grid using
Equation 16. We also record how many times each voxel in the grid
is visited by light paths, so as to maintain information for proper
normalization.

This calculation is not view-dependent. Depending on the appli-
cation, we populate the covariance grid using a fixed proportion of
the light paths used for the simulation (in Section 6.5), or fill it up
once before the simulation (Sections 6.3 and 6.4). Figure 9 refer-
ences the values used for the different scenes. For the algorithms
of Section 6.3 and 6.4, ray marching and filling the covariance grid
with 100, 000 light paths takes 21 seconds for a 643 covariance grid
with the Halloween scene. We used as many as 10, 000 light paths
for the Sibenik scene, as the lights are spot lights. With this amount
of light paths, it took 8 seconds for ray marching and filling for the
643 covariance grid.

Figure 8 shows the volumetric covariance predicted by our sys-
tem in three different locations of a scene showing volumetric caus-
tics and shadows.

6.2 Efficient prediction of the Hessian of the fluence

The covariance grid naturally enables a stable computation of sec-
ond derivatives of the fluence. In this section we study the ben-
efit of estimating second derivatives from the covariance in fre-
quency space using Equation 2, rather than trying to estimate sec-
ond derivatives in the primal domain using a finite differences
scheme.

We present such a comparison in Figure 10, in a simple volume
containing a point light source, and for two different integration
schemes: a 3-points second derivative estimate, which naturally
proves to be very noisy, and a heavily filtered estimate using the
second derivative of a Gaussian over 213 neighbor voxels. This ex-
periment not only proves that our model gives a correct estimate of
the second derivatives, but also that it converges faster than meth-
ods based on the primal domain. This is not surprising, because our
method does not require explicit differentiation over the path-traced
illumination the way the primal domain estimate does.

Methods that rely on linear interpolation between 3D illumina-
tion samples in the volume theoretically have an interpolation er-
ror that is proportional to the second derivatives of the illumina-
tion. This has been proven for surface irradiance caching meth-

Fig. 8. The volumetric covariance Γ is the covariance of the fluence

around each point in the volume. We show values of Γ from the covariance

grid, as an ellipsoid (iso-value of the 3D Gaussian with same covariance).

Top: in the region of diffusion, Γ is really small. Middle: on the shadow

boundary, Γ is large along the normal to the shadow volume. Bottom: in

the caustic, Γ is large orthogonally to the direction of the caustic (Caution:

All graphs are normalized to help demonstrate the shape of the covariance.

To compare the covariance quantitatively, look at the eigenvalues listed for

each dimension).

Halloween Sibenik

Image Space
Cov. grid samples 100 000 10 000

Step size 0.01 0.002

Eye Path
Cov. grid samples 100 000 10 000

Step sizes 0.1− 0.01 0.1− 0.002

Naive Step size 0.01 0.002

Prog. Photon Beams
α 0.7 0.7

Samples per pass 5 000 5 000

Fig. 9. We list the different parameters used for our results section. We

report the number of light paths used to fill the covariance grid, the distance

between samples along the eye ray for the integration in the volume, and

Progressive Photon Beams [Jarosz et al. 2011] parameters (radius reduc-

tion ratio α, and the number of light paths sampled per pass). We report

only scenes that are common to the three algorithms. We used σs = 0.1,

σa = 0.1 and g = 0.5 for the parameters of the volume. For our adaptive

sampling and image space filtering algorithms, we used 8 jittered supersam-

pling samples per pixel to obtain anti-aliasing.

ods [Schwarzhaupt et al. 2012], and such an error estimate out-
performs existing heuristics [Jarosz et al. 2008].

Although extending our work to volumetric irradiance caching
is beyond the scope of this paper, we believe that the irradiance
caching error estimate based on the Hessian can be extended to vol-
umes, with an error estimate that is proportional to the Laplacian of
the fluence (see, for instance, Equations 5 and 6 in [Schwarzhaupt
et al. 2012]), and where the shape of the influence regions of irradi-
ance cache samples will be ellipsoids aligned with the eigenvectors
of the Hessian of the fluence in the volume. This opens interest-
ing research avenues toward the replacement of existing heuris-
tics for error and influence regions for volumes [Ribardière et al.
2011], especially removing the need for special treatment of occlu-
sion [Schwarzhaupt et al. 2012] that the covariance analysis natu-
rally handles.
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 2.5

 3

 3.5

 4

 4.5

 5

 0  10000  20000  30000  40000  50000

Fluence 2nd derivative in primal space (3-points estimate)
Fluence 2nd derivative in primal space (21^3-sized filter)
Fluence 2nd derivative using 3D covariance (Equation 2)

Total rays cast

Fig. 10. Comparative estimate of the second derivative of the fluence in the

primal domain (red and green curves) versus Equation 2 (blue curve), for

point x in the direction of the arrow, as a function of the number of beams

cast. In both cases we used grids of 1283 voxels to store the covariance

and the fluence. In the primal space, the second derivative is estimated in

two ways from the fluence grid. Red curve: using a finite difference scheme

between immediate neighbor voxels. Green curve: using a very large Gaus-

sian filter around the measured voxel (averaging the nearby 213 voxels).

For the blue curve, we simply applied Equation 2 to the covariance matrix

picked at that voxel in the covariance grid, without filtering. With as low as

5000 total rays cast in the scene our estimate outperforms the costly filtered

estimate in the primal domain.

6.3 Image adaptive sampling and reconstruction

An effective method for rendering images with varying local band-
width is to compute image space converged illumination samples,
and filter these samples using an appropriate 2D reconstruction ker-
nel. For an optimal result, it is necessary to know in advance the op-
timal sampling density (in samples per square pixels), and the shape
of the reconstruction filter at each pixel [Belcour et al. 2013] or to
compute it from a subset of the light paths used in the image [Over-
beck et al. 2009; Rousselle et al. 2011].

The optimal sampling densities N(p) and the shape of the 2D
image reconstruction filter fp can be derived for each pixel p
from the covariance Σ(p) of the local light field at that particular
pixel [Belcour et al. 2013]:

N(p) = k
√
|Σ(p)| and fp(x) = e−

1

2
x
T (Σ(p)−1)|x,yx (20)

In this expression, Σ(p)−1|x,y is the spatial slice of the inverse of
the spectrum covariance matrix in the image plane at pixel p. In
other words, Σ(p) is the covariance of the Gaussian whose vari-
ance matches the bandwidth of the image according to the Nyquist
rate. In practice, for each pixel, we trace a single ray through the
covariance grid and apply Equation 17 to compute Σ(p).

The number of samples per square pixel is proportional to the
determinant of the screen-space spectrum covariance, and the shape
of the filter is obtained by slicing the covariance of the signal along
the spatial dimensions at each pixel. The constant k lets us express
N(p) as a fraction of the total number of samples allocated for the
entire image.

To compute the image, we obtain the required number of samples
per pixel using Equation 20 and form an image sampling density
map. We use this map as a probability density to draw pixels to
be computed, using rejection sampling. For each pixel to compute,
we estimate the radiance using path tracing. Each image sample is
therefore a converged illumination value. Finally, we reconstruct
the image by filtering the image samples around each pixel p with
the filter fp that is given by Equation 20.

This computation is efficient because it samples the image very
sparsely when the resulting image is predicted to be smooth. Fig-
ure 11 shows the result of such a computation for the pumpkin

scene. The number of computed pixels is 43% of the total num-
ber of pixels in the image. The results also show that we correctly
predict the shape and size the of reconstruction filters. For more
trivial scenes, the gain is even better.

Estimated density Reconstruction filters Reconstructed image

of image samples (Single scattering only)

Fig. 11. We demonstrate the use of our prediction metrics for image space

filtering and reconstruction of single scattering. We predict the varying den-

sity of image samples to compute using Equation 20 (left) as well as the

shape of the Gaussian filter to reconstruct from these samples at each pixel

(middle), to reconstruct the image (right).

6.4 Adaptive sampling along a ray

For each pixel that we compute, we need to integrate the illumi-
nation that is scattered towards the camera. For this we integrate
the radiance after a last scattering event. Instead of using uniform
samples, we adapt the sampling density to the variance of the flu-
ence along the ray to the camera, as computed in Section 5.3. The
variance is directly computed from the covariance grid using Equa-
tion 18. This allows us to place samples in regions where the path
crosses rapid changes in illumination, which can be caused by vol-
umetric shadows, for example, as illustrated in Figure 12. In prac-
tice we first uniformly sample the radiance along the eye path, and
then we use additional samples in proportion to the local variance
estimate along the path.

Fig. 12. Computing the amount of light reaching the camera through a

given pixel requires integrating the radiance scattered by the participat-

ing medium towards the camera. Using an arbitrary number of uniformly

spaced integration samples (red) might do a bad job if not accounting for

the distribution of light into the volume. We propose instead to distribute

samples according to the local variance of the fluence along the ray (green),

in order to adaptively sample high frequency regions.

We provide a simplified algorithm for the adaptive integration
used with Algorithm 1. It uses Equation 18 to evaluate the required
distance between two samples in the volume.

Since our algorithm takes advantage of adaptive sampling on
shadow boundaries, we are able to reduce the aliasing of light shafts
caused by undersampling high frequency regions. Figure 13 shows
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Algorithm 1 Our adaptive sampling algorithm compute the single
scattering radiance for an eye ray defined by its position x in space
and direction ω. It returns the light scattered by the volume in the
interval [0, Tmax] along the ray. Our variance estimate v (Equa-
tion 18) provides a step size in the volume. Note that the last step
requires special treatment as the step might be larger than the re-
maining integration distance. We do not show it in this example to
keep a compact formulation.

function ADAPTIVEINTEGRATION(x, ω, Tmax, stepmin,
stepmax)

rad = 0
t = 0
while t ∈ [0..Tmax] do

xt = x+ tω

dt =
1

2
√

v(xt, ω)
dt = clamp(dt, stepmin, stepmax)
rad = rad+ dt integrateRadiance(xt,−ω)
t = t+ dt

end while
return rad

end function

Fig. 13. We compare our variance-driven integration method to naive uni-

form sampling, at equal computation time (14 minutes). Our adaptive sam-

pling clearly removes aliasing caused by the shaft from the Rose window.

Inset: total number of samples used per pixel for our algorithm. (Model of

the Sibenik cathedral by Marko Dabrovic).

that our results on the Sibenik cathedral model outperforms uni-
form sampling at equal computation time, in the detailed shafts.

We summarize the timings of the image space adaptive sampling
and the eye path adaptive sampling algorithm compared with an
equal quality naive raytracing approach in Figure 14. Both algo-
rithms save computation time by adapting the workload to high
frequency regions.

We investigated different resolutions for the covariance grid
(Figure 15). A size of 643 for the grid was sufficient for all our
scenes. Coarser grids will provide a conservative estimation of fre-
quencies and lead to poor performances, while finer grids will nat-
urally increase the cost of ray marching in this structure. The cost
of filling the grid is linear with the grid edge size. For the Sibenik
scene using 10K light-paths, ray marching and filling took 4s for a

scene Image space Eye space Naive

Sibenik 19m 14m 1h 40m

Halloween 7m 6m 30s 22m

Fig. 14. Our adaptive sampling and image space filtering approaches save

computation time compared to a naive raytracing approach for the same

quality. Eye path adaptive sampling and the naive implementation use 8

samples per pixel for antialiasing. The image space method adapts the num-

ber of samples up to this limit.

323 grid, 8s for a 643 grid, and 17s for a 1283 grid. We found that
a 643 grid provides a good trade-off between construction time,
quality and time required to ray march during rendering (see Fig-
ure 15), in all our tests, except for San Miguel where we needed a
2563 grid.

323 grid 643 grid 1283 grid

Fig. 15. We analyse the impact of various resolutions of the covariance

grid (323, 643 and 1283) on the prediction of the required number of sam-

ples along camera rays. Smaller grid sizes bring more conservative results

while larger grids are more costly to handle. A size of 643 performs well

for most scenes.

6.5 Improved multiple scattering photon beams

We study the possible improvement of the convergence rate of pro-
gressive photon beams (PPB), to illustrate the benefits of frequency
analysis.

In the original algorithm, photons are traced in the scene con-
taining a participating medium and the paths of propagation (called
beams) are stored [Jarosz et al. 2011]. Then, for each pixel, rays are
shot from the camera, and the density of beams along the ray is esti-
mated using a 2D circular kernel. This is repeated while decreasing
kernel size until convergence is satisfactory.

Just like any other density estimation technique, the PPB algo-
rithm fights between too small a reconstruction kernel—causing
variance—and too large a reconstruction kernel—causing bias.
Whereas the original algorithm keeps reducing the kernel sizes as
more beams come along, we can afford to stop reducing it as soon
as this size ensures that the density estimation bias is below a cer-
tain threshold. We know exactly when this happens from Equa-
tion 19.

During the gathering pass, for each eye ray, we test for its dis-
tance d to the beams stored (Figure 16). At the closest point to each
beam along the ray, we look into the covariance matrix, and esti-
mate the ideal gathering radius rσ using Equation 19. We gather
that beam only if:

d < max(ri, rσ)

where, ri is the radius given by the photon beam method for pass
#i. In other words, we replace the gathering radius of progressive
photon mapping by a specific radius for each pair (eye-ray, pho-
ton beam) that is adapted to the local variations of the signal. This
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Table III. Images resolutions used for our rendering tests.

scene San Miguel Cornell Box Sibenik Halloween

resolution 1000× 1024 512× 512 714× 968 512× 512

adaptive radius computation stops us from decreasing the radius
in regions of low bandwidth, and therefore significantly reduces
variance, while keeping the error uniformly controlled. We imple-
mented this gathering in a CUDA kernel.

We follow a pure ray tracing approach in our PPB implementa-
tion. We generate light paths and eye paths on the CPU and transfer
them on the GPU. It lets us simplify the generation of rays, to fol-
low specular paths from the camera and to avoid duplicating the
scene data on the GPU. This explains the timing differences be-
tween our PPB implementation and the one of Jarosz et al. [2011].

Fig. 16. Given a camera ray (green)

and a beam, we use the radius rσ ,

estimated by the covariance analysis,

instead of the radius ri of the pro-

gressive photon mapping, when ri is

smaller. Using this, we gather more

beams in low frequency regions and

decrease the variance of the image.

We validate our improvement of progressive photon beams using
the San Miguel scene (Figure 17), Halloween scene (Figure 18),
Cornell box (Figure 19), and Sibenik cathedral (Figure 20) scenes.
In all cases, our covariance framework correctly estimates the high
frequency regions due to the illumination. San Miguel, Halloween,
and Sibenik (Figures 17,18, and 20) scenes have significant indirect
illumination; they prove that our method converges faster than PPB.
San Miguel also demonstrate the scalability of our technique. The
non-homogeneous Cornell box scene (Figure 19) validates that our
analysis and filtering methods correctly handle non-constant scat-
tering parameters. In this example, the scattering parameters are
varied based on Perlin noise. Image resolutions are reported in Ta-
ble III.

(a) Our improved PPB, 9.7M beams,

25min

(b) Standard PPB, 10M beams, 25min

Fig. 18. The Halloween scene combines high frequency white shafts with

a low frequency orange multiple scattering. Our covariance prediction al-

lows to filter out the noise due to the diffuse component while preserving

edges of shafts.

At equal computation time, we achieve a much better conver-
gence in smoother regions of the image, while we approximately
keep the same convergence in the highest frequency regions such

Fig. 19. In this figure, a non-homogeneous volume is illuminated. The

walls of the Cornell box provide indirect color bleeding from diffuse reflec-

tions. We compare our algorithm after a run of 31 minutes (8.5M beams)

with an equal time run of Progressive Photon Beams (10M beams). Our

algorithm reduces noise thanks to our adaptive density estimation.

as shaft borders and caustics, as predicted. However, our method
will always eventually stop reducing the kernel size, contrary to
the classical photon beam approach. It just happens later for higher
frequency regions of the image.

7. IMPLEMENTATION AND DISCUSSION

7.1 Implementation

Taking advantage of symmetry, 4D covariance matrices only need
10 floats to store (instead of 16) into light rays equipped with co-
variance information. An additional float is also needed to keep
track of light intensity for proper normalization, since our defini-
tion of covariance has no units (see Equation 1). The combined
covariance matrix Σ12 of two different paths with covariances Σ1

and Σ2 and intensities I1 and I2, after proper alignment, is:

Σ12 =
1

I1 + I2
(I1Σ1 + I2Σ2)

We also store, along with the covariance information, the tangent
frame of the local parametrization (two 3D normalized vectors).

A photon that carries covariance is initialized at the light source
and covariance is updated as the photon path is sampled [Belcour
et al. 2013]. For instance, a square diffuse light source will pro-
duce rays with null angular covariance and spatial covariance that
depends on the size of the square.

During light propagation, the covariance matrix Σ of rays is up-
dated when the light is reflected, refracted, or occluded using the
Equations of Figure 3 (see Algorithm 2). Each time a ray is scat-
tered we transform its covariance using Equation 11, and for each
absorption event, we apply Equations 6 and 7. Eventually, the var-
ious operators involved boil down to sums, products and inverses
(or pseudo-inverses) of 4D covariance matrices, which is carried on
very efficiently using explicit formulas.

The covariance grid uses 6-float arrays to store the individual
3D spatial covariances Γp and an additional float for the light in-
tensity normalization factor per voxel. We populate the covariance
grid using Equation 16, basically summing up matrices multiplied
by intensity. Depending on the application, the covariance grid is
either populated once, using a fixed number of rays (for e.g., adap-
tive reconstruction and ray-space integration) or updated during the
computation (for progressive photon beams, where only 10% of the
light paths carry covariance information).

We did not use ray differentials in our implementation of PPB
(nor in our improvement). Jarosz et al. [2011] showed that using ray
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(a) Standard PPB, 10M beams, 3h10min (b) Our improved PPB, 9.8M beams, 3h10min (c) Reference (133M beams)

Fig. 17. The full San Miguel scene with a rather indirect illumination, shows a very smooth volumetric environment, in a significantly complex geometry

(2.5M polygons). In this context, our frequency prediction method makes the progressive photon beams converge much faster. Because of the size of this

scene, we used 2563-wide covariance and occlusion grids. The most severe limitation of covariance tracing in this scene was due to the occlusion grid size.

Too small a grid would cause over-estimation of visibility, and conservatively populate the covariance grid with high frequencies. We used Morgan McGuire

export of the San Miguel scene. As he noted on his website, http://graphics.cs.williams.edu/data, some geometry (chairs) and textures (walls and

columns) are missing.

Our method (20M beams, 2h35min) Equal time PPB (20.5M beams)

Our method Equal time PPB

Our method Equal time PPB

Fig. 20. Using our analysis metric our algorithm predicts the low frequency part of the volume where the progressive photon beam can afford to keep large

collection radii, while controlling the bias. As a result, we provide a much better converged image at equal computation time than classical progressive photon

beams; here, in a scene with multiple scattering.

differentials was beneficial for the convergence of specular paths
from the light. But they use a constant beam radius for diffusely
reflected or scattered beams. Since we compare the convergence of
both algorithms for non-specular regions, this improvement of PPB
was not necessary. Note that both algorithms would benefit equally
from adding ray differentials.

We use a sufficiently large starting radius to improve the con-
vergence of indirect effects while still keeping convergence of the

direct part. In all our examples, specular paths from the light are
converged.

7.2 Limitations

The various techniques we present, based on our frequency anal-
ysis, effectively improve convergence in regions of the volume
where under-sampling can be performed without loss of accuracy.
If frequency is high everywhere—such as in a very highly varying
medium, or in a volume where a large number of small shadow
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Algorithm 2 The tracing of frequency photons is straightforward
to implement. It only requires that we update the covariance ma-
trix at specific steps. Note that it requires the ray tracing engine to
compute specific information for intersection with geometry (such
as local curvature). The R matrix is the factorized matrix of projec-
tion, alignment and curvature, before and after reflection. T is the
covariance of the texture matrix.

function TRACEFREQUENCYPHOTON

{p, ω} ← sampleLight()
Σ← computeLightCovariance()
while russianRoulette() do

p← traceRay(p, ω)
for all voxels v until hit do

updateVoxelCovariance(v,Σ)
Σ← TT

d ΣTd

Σ← Σ+O
Σ← Σ+A

end for
ω ← sampleBRDF()
Σ← RT

i ΣRi

Σ← Σ+ T
Σ← RT

o

(
Σ−1 +B

)−1
Ro

end while
end function

rays are cast—our a priori analysis naturally predicts that the sam-
pling needs to be uniformly dense. In this case, the computation of
covariance information would naturally not help improve conver-
gence.

Using volumetric covariance implies an approximation, since it
neglects the angular covariance of the incident light. Our method
captures variations in the volumetric fluence which, for reasonably
non-specular phase functions, remains close to the variance of the
radiance, while only requiring a small storage cost. In the case of
a very specular phase function at the last bounce before the cam-
era, a 3D covariance grid is likely to produce a conservative over-
estimation of the bandwidth. A more accurate approach would re-
quire also storing directional information into the covariance grid,
and does not invalidate our frequency analysis.

The size of the covariance grid is another important limitation as
it determines the scale at which we can optimize the radius reduc-
tion. A coarse grid will conservatively estimate small kernel sizes
in low varying regions since high frequencies will leak outside of
the region where they actually take place (This is illustrated in Fig-
ure 21).

The paraxial approximation used by the frequency analysis lim-
its the capacity of our predictions to describe the full directional
variations of light with a few photons. The paraxial approximation
is valid for angles below one degree. However, using our estimates,
based on this assumption, to estimate light variations works in prac-
tice.

7.3 Discussion

Performing our analysis in the Fourier domain around light paths
brings us a local characterization of the signal’s bandwidth.
Wavelets also bring bandwidth estimation of a signal. However,
they perform a local analysis at the cost of a making operations
like convolution and scaling much more complex. In our case, lo-
calization is already brought by windowing our analysis around a
particular point of the signal, and the Fourier transform appears to
be the most simple approach to characterize bandwidth. Polyno-

(a) Ours, 163 grid, 20M beams (b) Ours, 643 grid, 20M beams

Fig. 21. Influence of the size of the covariance grid over the gain in conver-

gence. A very coarse grid (163 in this example), will conservatively spread

high frequency values into regions where the radiance is actually low fre-

quency, failing to improve the convergence in these regions. Note: we chose

to use an overly coarse grid in this example to make the effect more appar-

ent.

mial bases in turn, don’t offer simple expressions for convolution
and scale.

Our theoretical derivations perform first order approximations of
the scattering and absorption operators, as opposed to first order
approximations of the spectra. Linearly approximating the spectra
would be meaningless. In our framework, spectra contain all possi-
ble frequencies. The only assumption made is the paraxial approx-
imation [Durand et al. 2005].

As a comparison to the work of Yue et al. [2010], our adap-
tive sampling strategy is based on the variance of the illumina-
tion, whereas Yue’s algorithm is based on the maximum variance
of the density in the medium along a light path. Therefore we avoid
wasting time oversampling highly varying regions with low energy.
While adaptive sampling techniques are usually based on an a pos-
teriori estimation of the energy (sometimes the bandwidth) of the
signal, we base our sampling on an a priori prediction of the vari-
ance of the signal.

Kulla et al. [2012] propose strategies for importance sampling
participating media. Our approach is complementary since we be-
lieve that importance sampling metrics can be derived from the vol-
umetric covariance. Combining our covariance prediction tool with
their importance sampling metrics would allow to drive the impor-
tance sampling by the actual distribution of energy in the solution.

Keeping a large radius for progressive photon beams could slow
down the selection process, if using an acceleration structure (such
as a KD-tree [Sun et al. 2010]), since this increases the branching
factor of the KD-tree search. In our CUDA implementation, which
follows the method described by Jarosz et al., not having an accel-
eration structure removes this penalty.

When filling the covariance grid, we do not need to record a di-
rectional distribution of incident illumination to weight the covari-
ance contributions from incident rays, since those rays are path-
traced and arrive with a probability that is already proportional to
the illumination. Consequently, even in its current and simple im-
plementation, the covariance grid allows us to perform anisotropic
filtering of light beams. This is visible in the caustic scene (Fig-
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ure 8) where we can see that the covariance estimates capture the
directional discontinuities of the light distribution.

We chose to apply our framework to accelerate progressive pho-
ton beams rather than the more recent progressive virtual beam
lights [Novák et al. 2012]. The two methods, however, use a similar
iterative radius reduction scheme. Therefore, one can expect to im-
prove on the latter the same way we improve on progressive photon
beams, using our radius reduction stopping criterion.

Similar to Novak et al. [2012], we could use our method to only
reconstruct the multiple scattering component of the illumination
and not store the specular contribution into the covariance grid. Al-
though did not do that, we still produce convincing results as our
method adapts to any effect (be it direct of indirect). Treating in-
direct scattering independently would enhance the speedup factor
of our method as the reconstructed signal would be of even lower
frequency. But this would increase the required engineering for the
implementation (multiple photon maps would be required).

Our improved progressive photon beams method removes the
need to finely tune the parameters of the radius reduction. This,
in a way, is similar to the Adaptive Progressive Photon Mapping of
Kaplanyan and Daschbacher [2013]. One notable difference is that
our method does not need to evaluate the Hessian of the radiance
using density estimation, and as shown in Section 6.2 our estimate
is much more robust.

Adding the time analysis [Belcour et al. 2013] is straightforward
but currently limited to rigid motion. The analysis of time varying
media is also possible, but beyond the scope of this paper. Time
analysis could be implemented using the 3D covariance grid by in-
tegrating the time dimension. This way, motion events are blurred
according to the resulting appearance. A 4D grid would be neces-
sary to perform temporal coherent filtering. Adding depth of field
is also orthogonal to this work, but we expect it would not cause
particular issues.

8. CONCLUSION

We proposed the first extension to participating media, of the
Fourier analysis of local light fields. This is a very important prob-
lem that is amenable to performance acceleration, since participat-
ing media typically has lower frequencies.

We show how to extend the use of covariance matrices in a prin-
cipled manner to represent the spectrum of the light field including
scattering and absorption. We derive the equations to combine the
information carried by each light path into a set of 3D frequency
prediction metrics, and to compute them from a common quantity:
the volumetric covariance, stored in a grid. We used these metrics
to improve the convergence and efficiency of image-space adaptive
sampling and reconstruction, camera ray integration, and for accel-
erating the progressive photon beam approach.

Several future avenues of research exist. While we demonstrated
the use of this analysis for the gather part of photon mapping, our
frequency estimate could also be used to drive photon tracing, like,
for example, using a function of frequency as the acceptance func-
tion of Metropolis photon sampling [Fan et al. 2005]. Another inter-
esting research avenue would be to extend our analysis to oriented
media [Jakob et al. 2010].

We did not use an adaptive covariance grid. To do that, the local
resolution of the covariance grid needs to be adapted to the varia-
tions of the covariance information to be stored, and would spare
the need to specify an initial resolution. We leave this question to
future work.
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APPENDIX

A. LAPLACIAN FROM COVARIANCE OF

SPECTRUM

Let f be a function defined over a 4D domain. Following basic
Fourier theory, the DC of the second derivative is the integral of its
spectrum:

∀i, j
∂2f

∂xi∂xj

(0) =

∫
∂̂2f

∂xi∂xj

(Ω)dΩ

...where the integral is carried over the entire 4D Fourier domain.
We expand the Fourier transform of the derivative over each vari-
able:

∀i, j
∂2f

∂xi∂xj

(0) =

∫
(2πiΩi)(2πiΩj)f̂(Ω)dΩ

= −4π2

∫
ΩiΩj f̂(Ω)dΩ

This formulation almost fits the covariance of the power spectrum.

It actually does when f̂(Ω) is real and positive, and we miss the

normalization factor (which is
∫
f̂ = f(0) = 1). There exist a

wide class of such functions [Giraud and Peschanski 2006], the
simplest of which are Gaussians. In this case we have:

−4π2f(0)Σij(x0) =
∂2f

∂xi∂xj

In practice, that means that we can approximate the covariance of
the power spectrum of a function in a small window around a point,
as soon as the function is close to the osculating Gaussian at that
point. For 4D functions, the covariance matrix of the windowed
power spectrum of the function around a particular point (corre-
sponding to x→ f(x0+x)) is therefore well approximated by the
following diagonal matrix in the frame of the principal curvatures:

Σ(x0) ≈
1

4π2|f(0)|

∥∥∥∥

∣∣∣∣
∂f2

∂x2
i

(x0)

∣∣∣∣

∥∥∥∥
ii

In the most general case, the Hessian matrix must be diagonalised
before taking the absolute values on the diagonal. Similarly, we

have:

∑

i

∣∣∣∣
∂2f

∂x2
i

∣∣∣∣ ≈ 4π2f(x0)Tr(Σ(x0)) (21)

B. LOCAL FOURIER COVARIANCE OF H-G

FUNCTION

The Henyey-Greenstein phase function is defined by

ρg(ωi, ωs) =
1

4π

1− g2

(1 + g2 − 2gc)
3

2

with c = ωi.ωs = cosα

We are interested in the 2D covariance of the windowed spectrum
of function ρ, defined by

ρ(δθ, δφ) = ρg(cos(α+ δθ) cos(δφ))

We recall that the 2D covariance matrix of a phase function ρ,
noted σρ, is defined by Equation 13:

σρ =
1

4π2ρ(0, 0)





∣∣∣ ∂
2ρ

∂θ2
(0, 0)

∣∣∣ 0

0
∣∣∣ ∂

2ρ
∂φ2 (0, 0)

∣∣∣





Taking the second derivatives of ρ and evaluating them at δθ =
δφ = 0 gives:

∂2ρ

∂δθ2
(0, 0) =

3g(g2 − 1)(2(g2 + 1) cosα+ g(3 cos(2α)− 7))

8π(g2 − 2g cosα+ 1)7/2

∂2ρ

∂δθ∂δφ
(0, 0) = 0

∂2ρ

∂δφ2
(0, 0) =

3g(g2 − 1) cosα

4π(g2 − 2g cosα+ 1)5/2

The Hessian being diagonal, we don’t need additional rotations
before taking the absolute value. When α = 0, the second deriva-
tives match (to 3g(g+1)/(4π(g−1)4)), as it is expected for a rota-
tionally symmetric function. To get the covariance in equation 14,
we further divide by 4π2ρ(0, 0) = 4π2ρg(α).
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