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Abstract

Acoustic imaging is an advanced technique for acoustic source localization and power recon-
struction using limited measurements at microphone sensor array. This technique can provide
meaningful insights into performances, properties and mechanisms of acoustic sources. It has
been widely used for evaluating the acoustic influence in automobile and aircraft industries.
Acoustic imaging methods often involve in two aspects: a forward model of acoustic signal
(power) propagation, and its inverse solution. However, the inversion usually causes a very
ill-posed inverse problem, whose solution is not unique and is quite sensitive to measurement
errors. Therefore, classical methods cannot easily obtain high spatial resolutions between two
close sources, nor achieve wide dynamic range of acoustic source powers.

In this thesis, we firstly build up a discrete forward model of acoustic signal propagation.
This signal model is a linear but under-determined system of equations linking the measured data
and unknown source signals. Based on this signal model, we set up a discrete forward model
of acoustic power propagation. This power model is both linear and determined for source
powers. In the forward models, we consider the measurement errors to be mainly composed of
background noises at sensor array, model uncertainty caused by multi-path propagation, as well
as model approximating errors.

For the inverse problem of the acoustic power model, we firstly propose a robust super-
resolution approach with the sparsity constraint, so that we can obtain very high spatial reso-
lution in strong measurement errors. But the sparsity parameter should be carefully estimated
for effective performance. Then for the acoustic imaging with large dynamic range and ro-
bustness, we propose a robust Bayesian inference approach with a sparsity enforcing prior: the
double exponential law. This sparse prior can better embody the sparsity characteristic of source
distribution than the sparsity constraint. All the unknown variables and parameters can be al-
ternatively estimated by the Joint Maximum A Posterior (JMAP) estimation. However, this
JMAP suffers a non-quadratic optimization and causes huge computational cost. So that we
improve two following aspects: In order to accelerate the JMAP estimation, we investigate an
invariant 2D convolution operator to approximate acoustic power propagation model. Owing to
this invariant convolution model, our approaches can be parallelly implemented by the Graphics
Processing Unit (GPU). Furthermore, we consider that measurement errors are spatially variant
(non-stationary) at different sensors. In this more practical case, the distribution of measure-
ment errors can be more accurately modeled by Students-t law which can express the variant
variances by hidden parameters. Moreover, the sparsity enforcing distribution can be more con-
veniently described by the Student’s-t law which can be decomposed into multivariate Gaussian
and Gamma laws. However, the JMAP estimation risks to obtain so many unknown variables
and hidden parameters. Therefore, we apply the Variational Bayesian Approximation (VBA) to
overcome the JMAP drawbacks. One of the fabulous advantages of VBA is that it can not only
achieve the parameter estimations, but also offer the confidential interval of interested parameters
thanks to hidden parameters used in Students-t priors.

To conclude, proposed approaches are validated by simulations, real data from wind tunnel
experiments of Renault S2A, as well as the hybrid data. Compared with some typical state-of-
the-art methods, the main advantages of proposed approaches are robust to measurement errors,
super spatial resolutions, wide dynamic range and no need for source number nor Signal to Noise

Ration (SNR) beforehand.

Keywords : Acoustic source Localization, Bayesian approach, super resolution, sparsity,
Students-t, acoustic imaging, deconvolution, wind tunnel, JMAP, VBA, GPU.



APPROCHE BAYESIENNE POUR LA LOCALISATION DE SOURCES EN IMAGERIE
ACOUSTIQUE

Résumé

L’imagerie acoustique est une technique performante pour la localisation et la reconstruction
de puissance des sourses acoustiques en utilisant des mesures limitées au réseau des microphones.
Cette technique peut fournir des indications significatives sur les performances, les propriétés et
les mécanismes de sources acoustiques. Elle a été largement utilisée pour évaluer I'influence
acoustique dans l'industrie automobile et aéronautique. Les méthodes d’imagerie acoustique
impliquent souvent deux aspects : un modéle direct de propagation du signal (la puissance)
acoustique ; 'inversion de ce modéle direct. Cependant, cette inversion provoque généralement
un probléme inverse mal-posé, dont la solution n’est pas unique, et sensible aux erreurs des
mesures. Par conséquent, les méthodes classiques ne peuvent pas obtenir facilement la haute
résolution spatiale entre deux sources proches, ni de la large dynamique de puissance acoustique.

Dans cette thése, nous avons tout d’abord construit un discret modéle direct sur la propaga-
tion du signal. Ce modéle est un systéme d’équations, linéaire mais sous-déterminé, qui permet
de relier les données mesurées et les signaux inconnus. Basé sur ce modéle du signal, nous avons
créé un discret modele direct de la puissance acoustique qui est devenu & la fois linéaire et déter-
miné pour les puissances acoustique. Visant a la robustesse dans le modéle de la puissance, nous
considérons que les erreurs des mesures se composent principalement de trois parties : les bruits
de fond au réseau de capteurs, I'incertitude de modéle causée par les propagations & multi-trajets
(réflection et réfraction), ainsi que les erreurs de 'approximation de la modélisation.

Pour le probléme inverse du modéle direct de puissance, nous avons d’abord proposé une ap-
proche de hyper-résolution en utilisant la contrainte de la parcimonie, de sorte que nous pouvons
obtenir trés haute résolution spatiale au sein de fortes erreurs des mesures. Mais le paramétre de la
parcimonie doit étre estimé attentivement pour un rendement efficace. Ensuite, pour ’'obtention
de la large dynamique et la robustesse, nous avons proposé une approche robuste de l'inférence
bayésienne avec un a priori parcimonieux : la loi double exponentielle. Toutes les variables et
parameétres inconnus peuvent étre estimées alternativement par 'estimation de maximum a pos-
teriori conjoint (JMAP). Toutefois, le JMAP souffre d’optimisation non-quadratique et provoque
d’énorme cotit de calcul. Nous avons donc amélioré deux aspects suivants : d’un coté pour accélé-
rer le JMAP, nous avons étudié une approximation pour le modéle direct de puissance en utilisant
le 2D convolution avec un noyau invariant. Grace a ce modéle, nos approches peuvent étre réa-
lisées parallelement par Graphics Processing Unit (GPU). De l'autre coté, on considére que les
erreurs des mesures sont spatialement non-stationnaires dans différents capteurs. La distribution
des erreurs peut étre modélisée par la loi de Students-t qui peut modéliser les variances variées
via les paramétres cachés. Par ailleurs, la distribution parcimonieuse de la puissance acoustique
peut étre raffinée plus convenablement par la loi de Students-t qui peut étre décomposée par
la loi normale multidimensionnelle pour les puissances, et la loi de gamma pour les paraméres
cachés. Mais le JMAP rend difficulité aux estimations de large dimension des variables inconnues.
Nous avons donc également appliqué I’ Approximation Variationnelle Bayésienne (VBA) qui peut
permettre non seulement d’obtenir toutes les estimations des inconnues, mais aussi de founir des
intervalles confiants grace aux paramétres cachés untilisés par les lois de Students-t.

Pour conclure, nos approches ont été comparées avec des méthodes d’état-de-1’art sur des
simulations, données réelles provenant d’essais en soufflerie chez Renault S2A, ainsi que les don-
nées hybrides. Les principaux avantages des approches proposées sont de la robustesse au bruit
de fond, d’une large dynamique, hyper-résolutions spatiales et efficaces a utiliser, également pas
besoin de la connaissance préalable du numbre des sources ni du Rapport Signal sur Bruit (RSB).

Mots-clefs : Localisation de sources acoustiques, approche bayésienne, hyper-résolution, parci-
monie, Students-t, imagerie acoustique, déconvolution, soufflerie, JMAP, VBA, GPU.



e Il faut avoir la qualité morale noble;
e Il faut s’entendre franchement avec les autres;

e [l faut avoir des comportements courtois.

Charles-Louis de Secondat (Montesquieu)
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Introduction

The acoustic imaging is an advanced technique for acoustic source localiza-
tion and power reconstruction using limited measurements at microphone
sensor array. This technique can provide the insights into the performance,
properties and mechanisms of acoustic sources. Nowadays, high-resolution
acoustic imaging has been widely studied and applied in reconstructing the
acoustic source distributions on the stationary, moving and rotating objects
ete. |74, 88, 81, 25, 50]. For example, figure 1.1(a) shows the acoustic map on
the airplane surface, which can be used to measure the noise pollution near
the airport when airplane is taking off and landing. In the imaging result,
the red color represents the strong power noise, while the blue represents
the weak power. And the imaging shape indicates the noise distribution and
positions. Figure 1.1(b) shows the wind noise on the stator and rotor [121],
which serves to design an efficient wind power system. Figure 1.1(c) shows
the flap noise imaging on the aircraft gear, which indicates its aerodynamic
performance. Figure 1.1(d) shows the acoustic imaging on train and truck,
which reflects the acoustic influence of the transportation.

1.1 Problem statement

Unfortunately, acoustic imaging often causes a very ill-conditioned inverse
problem, in which the solutions are not unique. So that it is hard to exactly
reconstruct the source powers and positions. This is because the only things

29



CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of acoustic imaging researches at National Aerospace Laboratory
(NLR) Holland [121]: (a) Airplane noise imaging. (b) Wind noise imaging on blade and
rotor. (c) Flap noise imaging. (d) Acoustic imaging on train and truck.

we know are the limited number of measured signals, and microphone sensor
configurations. But there remain at least 5 constraints to be investigated:

e Sensor measurements are limited. Due to the expensive cost, the total
number of the microphones is usually few. Even if sensor number is large
enough, the size of the sensor array should not be too large or too small
due to the experiment requirements. Moreover, the number of measured
time-samples (samplings) are sometimes very few due to the very short
snap-shooting time. For example, there is a relatively very high speed
between the moving objects and sensor platform. Even if the speed is
quite small, the acoustic source instantaneously emit several signals in
quite a while.

e Acoustic propagation paths are not easy to model exactly. Due to the
acoustic reflection in the closed wind tunnel or non-anechoic chamber,
the propagation paths usually consist in both direct and indirect parts.
The latter ones might come from multi-reflections on the ground, ceiling
and walls, thus become hard to describe their real multi-paths. And
multi-path propagation often causes the acoustic reverberation effect,
which is well known in the ’cocktail-party’ problem [27]. Moreover, even
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General methods

the direct path might be also difficult to determine due to the acoustic
refraction in the non-uniform media. The propagation path is one of the
essential factors which affect the acoustic power attenuation. Without
a good propagation path model, it is difficult to accurately reconstruct
the acoustic powers and positions.

Background noise interference. There are at least two parts of it: the
inherent noises at microphone sensors and the background noise of
chamber (wind tunnel, room, concert hall for examples). The famous
cocktail-party problem |27] can also well present this difficulty: back-
ground noises are too loud that acoustic signals are almost buried by
noises.

Spatial resolution. The term 'resolution’ refers to the minimum distance
between two distinguishable objects |65], and the spatial resolution of
acoustic source is proportional to the acoustic wave length if other fac-
tors are fixed [125, 16]. In our common life, the acoustic signals whose
frequencies are sensitive to human hearing are within 20 — 20000Hz
[16]. Since the acoustic propagation speed is 340m/s in the uniform
of common air, the corresponding spatial resolution of are within the
0.8 — 800cm. In other words, the lower the frequencies are, the worse
the spatial resolution becomes.

Acoustic dynamic range. It refers to the ratio between the largest and
smallest powers of acoustic signals [16]. A good acoustic imaging result
should achieve as wide as possible dynamic range, since it is better for
us to hear and distinguish both loudest and the quietest sounds at the
same time.

There are also other important issues on the acoustic sources, such as the

directivity patterns, physical structures (monopole, extended or distributed)
etc. But in this thesis, we just take main considerations on the above five
aspects.

1.2 General methods

According to the acoustic physics and applications, acoustic imaging methods
could be loosely classified as: Time-reversal acoustic imaging |77, 9], Near-
field Acoustic Holography (NAH) [85] and inverse problems [111]. The inverse

problem consists of using the measurements of forward physical model to
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estimate parameters that characterize this forward model as pointed out in

article [111]. Moreover, the inverse problems can be well developed by signal
processing techniques and mathematical tools.

In this thesis, we focus on the inverse problems applied in acoustic imaging.

The relevant methods usually involve in the following two aspects:

e A forward model of acoustic propagation. This model should consider

the acoustic source model (signal or power model), propagation paths
(direct or indirect path), as well as the background noise interference
(Gaussian white or spatially non-stationary noises) as mentioned in ar-
ticle [74].

e Its inverse problem. The inverse solution often depends on measured

acoustic data, the source spatial distribution (monopole or distributed),
sensor array topology (uniform or random), as well as propagation types
(near-field or far-field) as discussed in article [5].

According to these two aspects, many methods with advance signal pro-

cessing techniques have been widely studied since decades:

e Spatial filter methods such as the Beamforming, Capon and MUSIC

[118, , 22, 98] aim to solve the forward model of acoustic signal
propagation. They can offer a direct and fast estimation for source
localization. However, it is not easy to construct the source power dis-
tribution with high spatial resolution in background noises.

Deconvolution methods such as the DAMAS and CLEAN [18, &, ,

| are developed based on spatial filters, and they aim to solve the
forward model of acoustic power propagation. These methods can it-
eratively deconvolve the blurry imaging results of spatial filters, and
achieve the high resolution for both source localization and power recon-
struction. However, deconvolution methods are still not robust to strong
background noises. And some of deconvolution parameters should be
carefully tuned for each application case.

Regularization [112) 70, 38, , , 28] methods can further improve
the spatial resolution of deconvolution methods in strong noise inter-
ference. They use the meaningful regularization term as the additional
constraint into the deconvolution methods, and effectively improve the
robustness to background noises. But the regularization term inevitably
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increases the optimization complexity, and regularization parameter se-
lection becomes an essential issue for practical use.

Bayesian inference methods [115, 84, 87, 5, 24, 130, 29, 3] have been re-
cently applied in acoustic imaging and successfully overcome the draw-
backs of deconvolution and regularization methods. Bayesian inference
is a powerful methodology for solving ill-posed inverse problem. It aims
to estimate unknown random variables by applying the Bayes’ rule to
update the probability law: a posterior probability is obtained based on
the likelihood and prior models. The likelihood can be derived from for-
ward model and measured data. The prior models describe the knowl-
edge or regularization on the unknown variables. Comparing to the
classical deterministic methods, there are at least three advantages of
Bayesian inference method:

— Prior models perform like the regularization term. In fact, the
Bayesian method via proper prior model is identical to the regu-
larization methods. This is because prior models can appropriately
translate the physical and statistical characteristics of unknown
quantities into a concrete mathematical model. The prior mod-
els can bring not only novel information into the under-determined
forward model, but also effectively regularize the ill-posed inverse
problem and greatly reduce the solution uncertainty.

— Important parameters of the deconvolution or regularization meth-
ods can also be seen as unknown quantities in Bayesian methods.
These parameters can be embodied by the hyper-parameters in the
prior and likelihood models. Some other unknown variables such
as forward model uncertainty caused by multi-path propagation, as
well as background noises at the sensor array, can also be modeled
by proper prior models according to their statistical distributions,
physical nature, upper or lower bonds and even our subjective pre-
sumption.

— All unknown quantities can be estimated by well developed opti-
mization methods such as the Maximum Likelihood (ML), Joint
Maximum A Posterior (JMAP), Variational Bayesian Approxima-
tion (VBA) which are the analytical methods, as well as the Gibbs
Sampling and sequential Monte Carlo methods which are the nu-
merical methods. Not only the mean values of unknown random
variables can be estimated by Bayesian inference, but also their un-
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certainties (covariance matrix) in the same time. Indeed, the full
posterior can be estimated automatically.

— However, one of the biggest limitations of Bayesian inference meth-
ods is the tremendous computational burden to get a global or sub-
global optimization results due to non-quadratic or non-convex op-
timization. And some of optimizations cannot be implemented for
practical use. So that it is a worthy work to balance the estimation
performance and the calculating time.

Above all, there is no universal method for acoustic imaging which fit all
purposes. We will discuss some of widely used the state-of-the-art methods in
this thesis, and propose several effective approaches for the specific applica-
tion: acoustic imaging on the vehicle surface in the wind tunnel experiment.
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Motivation

Figure 2.1: Acoustic imaging on vehicle surface [1].

In this thesis, we are going to obtain an acoustic imaging result on the
surface of a fast moving car. So that we can tell on which car parts exist
the acoustic sources, and how noisy they are. This imaging result will also
contribute to design a more comfortable and more silent car as shown in
Fig.2.1. There are many successful research works carried out in industry
applications. For example, in Fig.2.2(a), we show the static vehicles (no
engine noise) and microphone sensor arrays in the wind tunnel S2A [2] in
Renault Automobile Company France. One of the objectives of this wind
tunnel is to generate the wind flow at the speed of 160km/h, so that this
wind tunnel can simulate a fast running car on the high-way, and receive the
acoustic signals produced by the conflicts between the air flow and moving
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car. The results in Fig.(b) demonstrate the acoustic imaging results obtained
by article [2], so that we can easily evaluate the acoustic influence to the
drivers and passengers. While in Fig.2.2(c), another sensor array is provided
in the same wind tunnel, so that the 3D acoustic imaging result on the vehicle
surface can be obtained by article [30] in Fig.2.2(d).

Figure 2.2: Acoustic imaging applications for acoustic influence of vehicles: (a) Wind
tunnel S2A |2] (b) Acoustic imaging on vehicle surface [2] (¢) Two sets of microphone
sensor array in wind tunnel S2A [86] (d) 3D acoustic imaging on vehicle surface [36]

However, it is not an easy work to simultaneously obtain a robust acoustic
imaging results with high spatial resolution and wide dynamic range of source
powers. As discussed in the problem statement in Chapter 1.1, we should
take at least five challenges into considerations:

e Limited measurements. There are limited microphone sensors to capture
the acoustic data in this wind tunnel experiment, so that we can only
build up a few equations between measured data and unknown source
positions and powers on the vehicle surface. If the total number of
these unknown variables are much larger than the equation number, the
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acoustic imaging would be a very ill-conditioned inverse problem. In
fact, it is often the case.

Uncertainty of the multi-path propagation. In the wind tunnel, there
inevitably exists ground reflection, since the car chassis is close to the
ground. Moreover, the car is put inside the wind tunnel, but the sensor
array are fixed outside. So that the air media from the car to sensors
i1s not uniform, and there must be wind refraction at the interface be-
tween the wind flow and static air. Both the ground reflection and wind
refration cause the uncertainty of the multi-path propagation. And this
uncertainty can greatly affect the reconstruction of the source powers
and positions.

Noisy background. The wind tunnel generates wind flow as fast as
160km/h, which itself might become a strong background noise. For
simplicity, we suppose the background noise to be of Gaussian White
distribution. Furthermore, microphone sensors might be different to
each other, even if they come from the same products. Therefore, the
inherent noise at each sensor could not be the same and might be of
spatially non-stationary distribution. Moreover, although the sensor
array is not located inside the wind flow, they might be still disturbed
by the ground and wall reflection of wind flow. These unknown factors
thus cause the noisy background and measurement errors.

Super spatial resolution. In this wind tunnel experiment, we take the
acoustic source at the frequency of 2500H z for instance. Its spatial res-
olution caused by the corresponding wave length is about 20cm, which
is too low to accurately locate acoustic sources on rear-view mirrors, or
on other small gears of a car. Classical methods for source localization
can get high resolution to some extent, but still depend on wave length
or sensor array geometry. In this thesis, we try to overcome the physical
constraints and achieve much higher resolution than the classical meth-
ods, in which, we call it ’super resolution’. Here we have to point out
the term ’super-resolution’ in this thesis is not the same as the one in
image processing.

Acoustic dynamic range. For the issue of acoustic influence of a vehicle,
both strong sources and weak ones at certain frequencies can greatly
affect the hearing comfort. Therefore, a useful acoustic imaging result
should reveal simultaneously the distributions of the loudest and the
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quietest acoustic sources which both have potential impacts to drivers
and passengers.

The above limitations motivate us to improve the acoustic imaging results
in Fig.2.2(c) and (d), and provide several robust approaches with high reso-
lution and wide dynamic range of acoustic powers in the strong background
noises.

2.1 Main contributions

In this thesis, we first build up a discrete forward model of acoustic sig-
nal propagation. This signal model is an underdetermined linear system of
equations linking measured data and unknown source signals and positions.
Based on signal model, we set up a discrete forward model of acoustic power
propagation [28, 29]. This power model is a determined and linear system
of equations which can directly reflect the relationship between measured
signals, source powers and positions. In the power model, we consider the
measurement errors to be mainly composed of background noises at sensor
array, model uncertainty caused by multi-path propagation, as well as model
approximating errors.

For the inverse problem of the acoustic power model, we first propose a
robust super-resolution approach with the sparsity constraint [28, 34, 30],
so that we can obtain very high spatial resolution in strong measurement
errors. But the sparsity parameter should be carefully estimated for effective
performance. Then for the acoustic imaging with large dynamic range and
super resolution, we propose a robust Bayesian inference approach with a
sparsity enforcing prior |29, 32, 31, 33]. This sparse prior can better embody
the sparsity characteristic of source distribution than the sparsity constraint.
All the unknown variables and parameters can be automatically estimated by
the Joint Maximum A Posterior (JMAP) estimation. However, this JMAP
confronts a non-quadratic optimization and needs huge computation cost. In
order to reduce the processing time of the JMAP, we investigate an invariant
2D convolution operator to approximate acoustic power propagation model
[35]. Furthermore, we consider more realistic cases: the measurement errors
are spatially non-stationary at different sensors. Also, the sparsity enforcing
prior can be more accurately modeled by the Student-t priors. In these
cases, the JMAP confronts more limitations than advantages. Therefore, we
apply the Variational Bayesian Approximation (VBA) [35] to overcome the
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drawbacks of the JMAP.

2.2 Thesis structure

This thesis is organized as follows: Chapter 3 briefly introduces the forward
model of acoustic signal propagation. In Chapter 4, we present some of the-
state-of-art methods for acoustic imaging: spatial filter, subspace decomposi-
tion, deconvolution and regularization methods. For super spatial resolution,
we propose an effective approach using the sparsity constraint in Chapter 5.
Chapter 6 presents the proposed Bayesian inference approach via a sparsity
enforcing prior. In Chapter 7, we propose an invariant 2D convolution model
to accelerate the proposed Bayesian method. So as to maintain the accept-
able imaging results and moderate cost, we apply the VBA method based
on the 2D convolution model in Chapter 8. In each chapter, simulations
on monopole and complex acoustic source imaging will be made to reveal
performance comparisons of the proposed approaches with state-of-the-art
methods. Results of the real data in wind tunnel experiments are also used
for method validation. To further prove the effectiveness of proposed ap-
proaches, we demonstrate method performance comparison on hybrid data,
in which some known synthetic sources are added to the real data. Finally
the conclusions and perspectives of the thesis are summarized in Chapter 9.
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CHAPTER 2. MOTIVATION

e Nous devons avoir la persévérance, surtout la confiance en nous-mémes.
Notre talent est utilisé pour réaliser quelque chose et on doit la réaliser
a n’importe quel prix.

Marie Curie
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Forward Model of Acoustic Signal
Propagation

As we have stated in Introduction of Chapter 1, acoustic imaging refers to
the inverse problem of source localization and power reconstruction from
limited observations at microphone sensors. Before dealing with this inverse
problem, in this chapter, we first introduce the acoustic source model, then
build up the forward model of acoustic signal propagation, and this model
can reflect the links between the known sensor measurements and unknown
sources (signals and positions).

This chapter is organized as follows: important assumptions of this thesis
are presented in Section 3.1. The acoustic signal model and propagation are
introduced in Section 3.2. Then we present the forward model of acoustic
signal propagation in Section 3.3. In order to linearize this forward model, we
present a discrete forward model of acoustic signal propagation in Section
3.4. Finally, Section 3.5 concludes this chapter.

3.1 Assumptions

Before modeling, we have to make some necessary assumptions on acoustic
sources, microphone sensors, reverberations in the wind tunnel and back-
ground noises as follows:
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e Acoustic sources are simply supposed to be spatially punctual and un-

correlated monopoles as considered in many literature [37, : : :

, |. This acoustic monopole model is used to simplify the physical

properties and explicitly build up the forward model of acoustic prop-

agation. We also use complex sources which are composed of several

uncorrelated monopoles forming different spatial patterns as discussed
in literature[15, 18]. All sources are located on the same plane.

e We consider the wave front of acoustic signal propagation to be a spher-
ical wave in the near-field, and planar wave in the far-field. We don’t
account for the highly dispersive Rayleigh scattering sources.

e Microphone sensors are omni-directional with unitary gain, and are lo-
cated on the same plane.

e Complex reverberations are negligible in wind tunnel, but we just con-
sider the first order reflection on the ground.

e Since the sensors are located outside the wind tunnel, the wind refraction
is supposed to take place in the interface between the wind flow inside
the wind tunnel and the static air outside the tunnel.

e Background noises refer to the inherent noises at microphone sensors.
The noises are independent of acoustic sources. For simplicity, we
first model the background noise by an Additive Gaussian White Noise
(AGWN), mutually independent and identically distributed (i.i.d) in
Chapter 3-7. For more realistic applications, we propose a noise model
to account for spatial non-stationarity at different sensors in Chapter 8.

e Acoustic propagation uncertainty is mainly caused due to the ground
reflection and wind refraction in the wind tunnel. This uncertainty could
not be exactly removed off, and we consider it to be also an i.i.d AGWN
noise, independent of the background noises and acoustic sources.

e Other necessary assumptions will be specifically declared in the corre-
sponding parts.

Owing to these necessary hypothesis, we can simplify the acoustic phys-
ical procedure, set up the analytical models and make good use of signal
processing techniques.
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Acoustic source signal model and propagation

3.2 Acoustic source signal model and propagation

Based on the monopole source assumption, we will introduce:

e The acoustic source signal model.

e The measured source signal model at the microphone sensor.

3.2.1 Acoustic signal model

Spherical wave Planar wave

——- Wave direction — — - Wave front

Figure 3.1: Spherical and planar wave fronts of a acoustic signal.

It is known that an acoustic signal propagates along the spatial-temporal
4D domain in the uniform media |65, 15| as shown in Fig.3.1: the acoustic
wave front is in the form of the spherical wave in the near-field, and it grad-
ually becomes the planar wave in the far-field. We first set up a Descartes
coordinate system and note O = [0,0,0]7 to be the original point, where
()T denotes transpose operator. Suppose an acoustic monopole source fixed
(static) at the position p = [ps, py, p:]*, and let 74 denote the distance from
p to O, defined as

rs:\lp—Ol\Z\/p§+p§+p§- (3.1)
Let s(p, t) represent the acoustic signal of monopole source. In the uniform
media, the acoustic wave equation [125] at the position p and time ¢ can be
given as:

Ps(p,t)  Ps(p,t) | Ps(p,t)  1s(p,t)
Op? op? op: 2 oz 7

where ¢y denotes the acoustic propagation speed in the uniform media, taking

(3.2)

the standard pressure and common temperature (20°C) for examples, ¢ =
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3.2.2 - Measured signal model at microphone sensors

340m /s in air and ¢ = 1481m/s in water; and % denotes the second partial
derivative.

For the acoustic signal s(p,t) on the spherical wave front, one of the
solutions of mono-acoustic wave for Eq.(3.2) can be expressed as:

s(p,t) =Age /W) (3.3)
:A(t) eJ(w Po) ’

where

e Ay denotes the maximal signal amplitude;

e w denotes the angular frequency, defined as w = 27 f with f being the
signal frequency;

e k denotes the wave number; in order to make signal model of Eq.(3.3)
to satisfy Eq.(3.2), k should be defined as:

k=— 3.4
(3:4)

where the scalar value of k indicates the wave propagates omni-
directionally at the speed of ¢y, so that the wave front is spherical.

o A(t) = Age 7! denotes the signal amplitude, which is time-variant;

e &y = kr, denotes the original signal phase, which only depends on
source position p (the distance ;).

3.2.2 Measured signal model at microphone sensors

Suppose there is a microphone sensor located at the 3D coordinates p =
[P, Dy, P-)T as shown in Fig.3.2. Let 7 denote the time delay from p to p;
and Ar denotes the propagation distance between p and p, define as

Ar = Hp - pH = \/(px - ﬁx)Q + (py - py)2 + (pz - ﬁz)2 ) (3-5)
where in the uniform media, it yields Ar = ¢y 7 .

We suppose that amplitude attenuation is inversely proportional to the
propagation distance, so that the maximal amplitude Ay at the position p
becomes % at the sensor position p. According to the acoustic signal model
in Eq.(3.3), signal amplitude A(t) = Age™** becomes A(t—7) = 4% e 7<(t=7)
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Figure 3.2: Measured signal at the sensor.

accounting for time delay 7. But the original signal phase &y = kry is
unchanged, since @4 does not depend on propagation distance Ar or delay

time 7, but only depends on the original source position p as shown in
Eq.(3.3).

Let z(Ar,t) denote the noise-free measured signal at the sensor for the
acoustic signal s(p,t). According to Eq.(3.3), z(Ar,t) can be modeled as:

1
z(Ar,t) = At —T)e I (3.6)
1
—— A —jwt =1%o
A, (t)e e
1

“Ar
1
RN s s(p,t),

where compared with source signal s(p,t), the measured signal z(Ar,t) can
be obtained by attenuating source signal amplitude by the factor of ﬁ, and
by shifting the phase by wr, or w%co in the uniform media.

e ¥ s(p,t)

The Eq.(3.6) can be used with Fourier Transformation (FT) in the time
domain, then we get

2(Ar,w) = a(Ar,w) s(p,w), (3.7)

where a(Ar,w) denotes the steering factor, defined as

1
a(Ar,w) = Ee*”‘”, (3.8)

where a(Ar,w) mainly depends on the source position p if the sensor position
p and angular frequency w are both given. For the viewpoint of source
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3.2.2 - Measured signal model at microphone sensors

localization, z(Ar,w) and a(Ar,w) are both functions of unknown source
position p if the sensor position p and signal frequency are both given. So
that we note z(p, f) = z(Ar,w) and a(p, f) = a(Ar,w) in the following
parts of this thesis.

To sum up, equation (3.7) sets up an explicitly model of the measured
signal z(A, w) and the source signal s(p,w) in the frequency domain. Based
on Eq.(3.7), we can build up the forward model of signal propagation to the
sensor array in the coming section.

3.3 Forward model of acoustic signal propagation

A Wind tunnel y Microphone array
l; &
. . ® 9
@ «* *
.. o
. . Sk T - ~ L J
Wieal o °
-------- T e
Object S*k.- e © Yen ze®
: i
L] Bl Pl
Gf)u d
iscrete source plane

l %Z ind flow f l

@ Rcal source 5%, —— Direct path A Equivalent source § ¢
— -+ B> Reflection ¢ Reflection point
® Measurements z =~ =---- - Refraction 77 Refraction point

Figure 3.3: Illustration of acoustic signal propagation in wind tunnel|29].

Figure 3.3 illustrates the acoustic signal propagation from the source plane
to the microphone sensor array in the wind tunnel, where sensors are installed
outside the wind flow. On the source plane, we suppose K unknown original
source signals s* = [s}, -+, s%|7 at unknown positions P* = [p3,--- , p%]’,
where p; denotes the 3D coordinates of kth original source signal s3, and (-)*
represents notation of the original source. On the sensor plane, we consider

M sensors at the known positions P = [py,-- -, par]?.

The signal processing procedure is illustrated in Fig.(3.4). For the mth
microphone sensor with m € [1,--- | M], there are T samplings of acoustic
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Figure 3.4: Illustration of the signal processing procedure in Eq.(3.9).

signals in time domain. Then these T" temporal samplings are divided into 1
blocks with L samplings in each block, thus we note z;,,(t) as the received
signal of the ith sampling block (i € [1,---,1]) at the mth sensor (m €
[1,---, M]) in the sampling time ¢t € [( — 1)L + 1,--- ;7 L — 1], and total
number of samplings is expressed as T' = [ x L. Since the original source
signals are usually of wide-band, we apply the Discrete Fourier Transform
(DFT) in time domain to treat measured signals z; ,,(¢) at each block in order
to obtain L narrow frequency bins f; (1€ [1,--- , L]). This procedure is made
under the assumption of Gaussian Wide-Sense Stationary (WSS) process, so
that we can independently make signal processing in each narrow frequency

bin.

Let z;(fi) = [z:1(f1), -, 2zim(f))]T denote all measured signals at M
sensors. According to the measured monopole signal at one sensor of Eq.(3.7)
in the frequency domain, z;(f;) can be modeled [123] as shown in Fig.(3.5):

z;(fi)) = A(P", fi) s; (fi) +ei(f1), (3.9)

where

e ¢ denotes the ith sampling block;
o e;(fi) = leir(f), - ein(fi)]", ei( fi) € CM denotes iid AGWN noise;
o s:(f1) = [s;1(f), - six ()], s;(fi) € C* denotes the DFT of the

source signals;
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s e
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Figure 3.5: Tllustration of the original signal equation in Eq.(3.9)

e AP f)) = [a(p}, fi) --a(pl, f1)], AP*, f;) € C¥*E denotes the
steering matrix of original signal propagation.

Therefore, we get the forward model of original signal propagation in
Eq.(3.9).

¢ — —_ _Wind tunnel width 3.22 m_ _ _ _ _ 5

I ©  Wind direction l
(Cm— — p——_ " — ——)
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Figure 3.6: Ground reflection in the wind tunnel.

In particularly, we have to note that the conventional definition of
A(P*, f;) only models the direct propagation paths as discussed in many
literature [123, 18, 128, 103]. Here, we also account for indirect propagation
paths: one is the wind flow refraction happened on the interface between high
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speed wind flow and normal static air as shown in Fig.3.3; if this refraction
could not be considered, an equivalent source will be detected beside the orig-
inal one due to the wind flow (direction and speed). The other phenomenon
is the ground reflection as shown in Fig.3.6; since the object vehicle is very
close to the ground, the ground reflection can not be negligible in wind tunnel
experiments; if this reflection is not taken into account, ghost shadows will
be overlapped on the original sources. Therefore the steering vector a(pj, f)
is not only composed of the direct propagation vector a4(p;, fi), but also the
ground reflection vector a,(p*,, fi) as follows:

a(py, fi) = as(py. fi) + par-(P2y, f1) (3.10)

where

e p denotes the reflecting coefficient (0 < p < 1), whose value mainly
depends on ground conditions (material, temperature, humidity, etc.).
For the real data used in this thesis, p = 0.8 is empirically estimated
for the wind tunnel S2A experiments [2|, thanks to the contribution of
researchers in Renault Lab.

e a,(pj, fi) denotes the direct propagation vector in Eq.(3.10), defined as:

T
1 1
aq(py: fi) = {— exp [=y(2m fire)] -+, —— exp [—J(QWfZTk,M)]} :
k1 k.M

(3.11)
where 73, ,, is the propagation time from s} to sensor m, and ry, ,, is the
propagation distance during 7z ,,; in the uniform media, r,, = 7% m co
is the geometric distance from the original source position pj to the
known sensor position p,-

e a,(p*,, fi) denotes the indirect steering vector of ground reflection, de-
fined as:

a, (P2, fi) = {

1
exXp [_]<27Tfl Tfk,l)] )
k1 r—k.M

)

(3.12)
where p* ;. denotes mirror positions of s3, thus p* , and p; are symmetric
to the ground.

e Wind refraction effect in the steering vector a(pj, fi). Since the sensor
array locates outside the wind flow, the medium for acoustic propagation
is not uniform, thus the refraction will happen on the interface between
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3.2.2 - Measured signal model at microphone sensors

the common air and wind flow. In Appendix A and B, the actual ry,,
T_km a0d T, T m are formulated in details: we apply the concepts of
equivalent sources and mirror sources to deal with the wind refraction
and ground reflection respectively.

In the followings of this thesis, the signal processing will be carried out in
the frequency domain. So that we omit f; in all the functions and variables
for simplicity.

3.4 Discrete forward model of acoustic signal propaga-
tion

" Wind tunnel 4 Microphone array

Object [5

iscrete source plane
I ﬁ ind flow j I

@ Real source 57 — Direct path A Equivalent source g

. Discrete source 5, = - B~ Reflection ¢ Reflection point
@® Measurcments g,y "=t - Refraction

X Refraction point
Figure 3.7: Discretization of acoustic signal propagation in wind tunnel [29].

In Eq.(3.9), it is thus a nonlinear system of equations, since source po-
sitions P* = [p},--- ,pi]? and source signals s* = [sf,--- s%]T are both
unknown. The relationship between measured data z and s*, P* is not lin-
ear. If P* is fixed and known, equation (3.9) is linear to s*. But for given s*,
equation (3.9) is still non-linear with respect to P*. In order to transform
Eq.(3.9) into a linear system, the classical inverse problem is based on the
discretization of the source plane, as illustrated in Fig.3.7. The source plane
is equally discretized into N grid at the known positions P = [py,--- , pn]7?

J
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and we assume that K original sources s* sparsely distribute on these grids,
satisfying N > M > K and P* C P, where C denotes that the set P*
belongs to the set P. For grid size Ap, too large value cannot reach high
spatial resolution; too small, it will cause great of computation complexity.
According to recent studies, literature [18] points out that Ap should sat-
isfy Ap/AB < 0.2, where AB denotes the spatial resolution of conventional
Beamforming method, which will be introduced in Chapter 4.

Then we get N discrete source signals s = [s1,---,sy]? at known po-
sitions P; and we suppose the relationship between s, and s; in the space
domain as:

s, = s;. for p, = p; 213
{sn:O for p, #p; (3.13)

where the smaller grid is discretized, the higher spatial resolution can be
achieved. Based on the assumptions, since the number K of original source
signals s* is limited, and the number N of source signals s is much larger
(K<N), so that s is a sparse signal with K sparsity in the space domain.
Therefore, to reconstruct original source signals s* is transferred to recon-
struct K-sparsity signals s. Meanwhile, original source position p; can be
deprived from the discrete position p,, where the source power of discrete
signal s, is not zero-value.

To be clear, we state in the following parts that s* = [s%,- -+ | s%]T denotes
the original source signals, while s = [sq, - - - , si|? denotes the discrete source
signals. The term ’source n” means the discrete source signal s,, at the discrete
position p,. The term ’original source k” means the original source signal s},
at the original position pj.

Considering the Eq.(3.13) and wide-band signal processing in Fig.3.4, the
discrete signals s; of the ith sampling block can be also described as

s;i=10,---,57,0, - 55,0, ST, 00+ v - (3.14)

where s; of the ¢th sampling block is also a sparse signal with K-sparsity in
the spatial domain. After DFT transformation in time domain, s;(f;) still
maintain the sparsity in space domain. The signal processing will be made
independently for each frequency bin, thus in the following, we omit the
frequency notation f; for simplicity.

In Eq.(3.9), replacing P* by P and s! by s;, we get the discrete forward
model of signal propagation based on the discretized source plane as follows:
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Figure 3.8: Illustration of the sparse signal equation in Eq.(3.15)

Z; = A(P) S; +€;, (315)

where Eq.(3.15) is a sparse signal equation as shown in Fig.(3.8);i =1,--- | [
denotes the index of sampling blocks; and A(P) = [a(p1) - - -a(pn)], A(P) €

CM*N consists of N steering vectors a(p,,), which is similarly defined from
Eq.(3.10) as follows:

a(pn) = aa(Pn) + par(P-n) (3.16)

where a;(p,) and a,(p_,) are similarly defined from Eq.(3.11) and Eq.(3.12)
respectively as:

e a,(p,) denotes the direct steering vector, defined as:

1 1
ad(pn) = {7"_1 €xXp [—](27Tfl7'n,1)] y T o

exp [—](QWfJTn,M)]} ;
(3.17)

where 7, ,, is the propagation time from sourice n to sensor m, and r, ,,
is the propagation distance during 7, ,,; in the uniform media, it yields

T'n,m

Tum = =2 and 7,4, is the geometric distance from the discrete source

position p,, to the known sensor position p,,.
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e a,.(p_,) denotes the ground reflection vector, defined as:

1 1

(9 o),
- exp [—y(2m fi Tn1)] R

exp [—)(27 fi 7,01
(3.18)

where p_,, denotes mirror positions of source n, thus p_,, and p, are

a,(p_n) = {

symmetric to the ground.

e Wind refraction. Since the sensor array locates outside the wind flow,
the medium for acoustic propagation is not uniform, the actual 7, ,,,
T_pm and Ty, T_pm are formulated in Appendix A and B.

For simplicity, a,, is short for a(p,); and we take similar short forms for
the other steering vectors in Eq.(3.10) and Eq.(3.16).

Therefore, the forward model of Eq.(3.15) is the linear system of equations
for source signals s. The original source positions P* can be estimated from
discrete positions P where the corresponding s are non-zero values. How-
ever, since the source number N is usually larger than the sensor number M,
equation (3.15) thus is quite underdetermined, so that some extra constraints
should be involved in order to obtain stable and unique solutions of s.

In short, forward model of signal propagation in Eq.(3.15) is an under-
determined linear system of equations for discrete source signals s;, since
the measured signals z; are known, and signal propagation matrix A (P) can
be calculated from Eq.(3.16) owing to the known discrete positions P and
known sensor positions.

If s could be well estimated from z, the discrete source powers x =
[z1,---,2n]T of uncorrelated sources are thus calculated as the diagonal
elements of the source cross-spectrum matrix R:

x = diag [Ry] , (3.19)

where diag[-] denotes the diagonal items; Ry denotes the cross-spectrum
matrix of the discrete source signals s, defined as

R, = E[ss'], (3.20)

where E[-] denotes the mathematical expectation. But in practice, Ry can
be approximated by R as

R,=-) s, (3.21)

1=1

~| =
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3.2.2 - Measured signal model at microphone sensors

where s; is the discrete source signal in the ¢th sampling block number as
defined in Eq.(3.14); I is the total number of sampling blocks. The larger
I is, the more closely R, approaches R,. Similarly, we can define the real
source powers X" and cross-spectrum matrix R} of real source signals.

Finally, we can obtain original source powers x* and positions P* from
the estimated discrete powers x and positions P as follows: according to the
sparsity in Eq.(3.14), the non-zero element x, € x and its discrete position
pr € P could be the estimations of the real source power 7 € x* and its
position p; € P*

3.5 Conclusions and perspectives

In this thesis, using a monopole (punctual) acoustic source model, we ex-
plicitly build up the forward model of acoustic signal propagation from the
source plane to the microphone sensor array. In this model, we consider the
multi-path propagation effect such as ground reflection and wind refraction
in the wind tunnel. However, this model is a non-linear function of unknown
source signals and their unknown positions. For linear transformation, we set
up the discrete forward model by discretizing the source plane, in which, the
discrete source positions are known and are supposed to be able to contain
the original source positions.

Based on this linear discrete signal model, we transfer it into acous-
tic power propagation model, and directly estimate the power distribution,
which will be introduced in Chapter 4. Moreover, we make good use of the
source sparse distribution so as to reconstruct the source powers and positions
in our proposed approaches in the Chapter 5-8.
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e Pas de grand désir, pas de grand talent.

Honoré de Balzac
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State-of-the-art Methods in Source
Localization

In Chapter 3, the forward model of acoustic signal propagation in Eq.(3.9)
reveals the relation between known observations z at sensors and unknown
source signals s* and positions P* in the frequency domain. Unfortunately,
Eq.(3.9) is a non-linear system of equations. Thus we have to trans-
fer Eq.(3.9) into a linear model by giving the discrete forward model in
Eq.(3.15), in which, discrete source positions P are known. But this discrete
forward model is usually quite under-determined.

In this chapter, we want to present several state-of-the-art methods: some
of them aim to first estimating source powers and then obtain source posi-
tions. Others first focus on the source localization and then power recon-
struction. No matter what kind of the estimation strategies are adopted, we
will show the advantages and limitations of these classical methods. In the
following chapters, we will propose our approaches based on these classical
methods so as to achieve an effective acoustic imaging on the vehicle surface
in the wind tunnel tests.

This chapter is organized as: In Section 4.1, we present the necessity of
transformation from signals to powers in acoustic imaging. Acoustic signal
model and signal propagation are introduced in Section 3.2. Then some
State-of-the-art methods are introduced, such as the spatial filter methods in
Section 4.2. Based on beamforming method, we present the forward model of
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acoustic power propagation in Section 4.3. According to this power model, we
introduce the deconvolution methods in Section 4.4 and the regularization in
4.5. Method comparisons are shown on simulations in Section 4.7, real data
of wind tunnel experiments in Section 4.8, as well as the hybrid data 4.9,
in which, some known simulated source are added to the real data. Finally,
Section 4.10 concludes this chapter.

4.1 From signal reconstruction to power reconstruction

The direct estimation of discrete signals s from the discrete forward model
of signal propagation in Eq.(3.15) often confronts two difficulties:

e The under-determined equation (3.15) causes the very ill-posed inverse
problem, since the total number M of linear equations is often much
less than total number N of the unknown discrete source signals s. In
particular, when very large number of grids are used to discretize the
source plane in order to achieve the high spatial resolution imaging,
there will be huge dimension (N >> M) of discrete source signals s.

e The discrete source signals s modeled by Eq.(3.3) are of complex val-
ues, which contains three kinds of unknown variables such as ampli-
tudes, phases and characteristic frequencies. Even though we can apply
the DFT to analyze the frequency spectrum over the interested discrete
frequencies fj, with [ € [1,---, L] as shown in Fig.3.4, it still remains
the unknown amplitudes and phases to be estimated. Even though the
complex signals s can be transformed into two groups of real signals,
this procedure inevitably increases the problem complexity and compu-
tational burden.

Moreover, as stated in Introduction of Chapter 1, the acoustic imaging
issue mainly involves on the source power reconstruction and localization,
instead of estimating the signal phases, characteristic frequencies or other
signal parameters. Therefore, it is highly necessary to directly obtain the
source powers X from measured signals z at sensor array, which will be dis-
cussed in Section 4.3
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Figure 4.1: Illustration of the spatial filter in Eq.(4.1).

4.2 Spatial filter

Let us look back at
Eq.(3.15) and the steering vector a, of Eq.(3.16)-Eq.(3.18), the measured
signals z(f) = [z1(f), -, zm(f), -+, 2 (f)]F at sensors are modeled by
discrete signals s(f) = [s1(f), - ,8n(f), -+, 25(f)]F with amplitude at-
tenuations and phase shifts in the frequency domain. Correspondingly in
the time domain, z(¢) can be modeled by s(¢) with the same amplitude at-
tenuation and time delays which are caused by propagation distances from
sources to sensors. The above procedure is analogous to designing a spa-
tial filter |30, , 60, 80] which can be used to compensate the time delays
and amplitude attenuation, and reconstruct discrete signals s(f) as shown in

Fig.(4.1):

M
sn(t) =yl (1) = wom 2t + Tum) (4.1)

m=1
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where 2/ (t) denotes the spatial filter output, which can be an estimation for
the nth discrete source signal s, (t) at the position p,, namely s, (t) ~ v/ (¢);
and z,,(t) denotes the measured signal at the mth sensor; 7, ,, is the time
delay from the nth source to the mth sensor, defined in Eq.(3.17); w;, ,, with
m € [1,---, M] denotes the filter coefficient at the mth sensor for the source

signal s,,. After DFT in time domain, equation (4.1) becomes

M
Sn(fl) = yflf(fl) = Z Wn,m Zm(fl) €J27Tfl Trm (42)
m=1

=w'(p,, fi)z(f),

where f; is the [th frequency bin defined in Eq.(3.9); z = A(P)s + e is
sensor measurements modeled by Eq.(3.15); w(p,, fi) denotes the spatial
filter vector for the source s, located at the position p,,, which is defined as

W(pn, fl) — [wn,l e_]fl Tn,17 e wn,m e_Jfl Tn,'rrL, . 7wn,M e_]fl Tn,M]T 7 (43)

where the spatial filter w(p,, fi) serves to offer the gains wy, ,, and compen-
sate the phase shift due to the time delay 7, ,, for the nth discrete source
signal s, coming from the position p,, at a given frequency f;. For simplicity,
we omit f; and take w,, for w(p,, f;) afterwards.

In order to get an effective output y;P for the source signal s,, estimation,
the expected spatial filter w,, should meet the following constraints:

e P1: w, can make the source signal s,, coming from the position p,, to
well pass the spatial filter without distortions. In the forward model
of signal propagation in Eq.(3.15), the steering vector a, in Eq.(3.16)
embodies the signal amplitude attenuation and phase shift. In order to
meet P1, w,, should satisfy W}; a, = 1.

e P2: w, can attenuate all the other sources coming from the other posi-
tions.

In order to interpret P2, one of the criteria to optimize w, is to obtain
the maximal output power only if the source signal comes from the position
pn. Based on output signal of Eq.(4.2), let us first define the output power
y;‘;f as:

i = Elly! ] = wh R.w, (4.4)
where |- | denotes the scalar modulus; R, denotes the cross-spectrum matrix
of measured signals z at the sensor array, defined as:

R. =E[zz'], (4.5)
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where measured signals z = [21,- -+ , zp7]7 are modeled by z; = A(P)s; + e;
in the discrete forward model of Eq.(3.15). In practice, R, is calculated by
R, = VAR (4.6)

1
g
=1

~ =

7

where i € [1,-,I] is the sampling block number, and [ is total number of
sampling blocks; z; is measured signal vector in the ith sampling block at all

M sensors. It is seen that the greater I is, the more closely R, approaches
R..

Therefore, according to the P1 and P2 properties, the expected spatial
filter w,, should satisfy

Pl: wla,=1
power

P2 Wy, = arg MaXw, {yn } = argmaXyy, {WIL Rz WTL} ’ (47)

where a,, is the steering vector defined in Eq.(3.16) for the nth discrete source
signal at the position p,, with p, € P, n € [1,---, N] on the discrete source
plane.

4.2.1 Conventional Beamforming

/ Z ’ i R

S———— /{___ il
ard signall Z,Beamforming
propagation |/ Back projection

z=As+e = E[H;‘IHZHZ]

. ' #
B Discrete source signals § @ Real sourcesignals § @ Measured signals 7

Figure 4.2: Illustration of beamforming.

Equation (4.7) uses the criterion that the maximal output power of the
expected spatial filter should only come from the source position p,. In
other words, the expected filter should decrease filter output powers coming
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from the all other positions. One of the most commonly used spatial filters
is the Conventional BeamForming (CBF) method [118, 25], which offers a
simple, direct and coarse estimation for the source powers and positions as
shown in Fig.(4.2). The CBF assumes background noise to be i.i.d AGWN
and independent of the source signal. According to spatial filter in Eq.(4.7),
to maximize the filter output power of the source signal is equivalent to
minimize the output noise power as follows:
{Pl: aan=1 (4.8)
P2: a, =argming {ail o2 Ian}
where a,, is the signal propagation steering vector at the position p,,, defined
in Eq.(3.16); a,, denotes the beamforming steering vector (spatial filter coef-
ficients) for the source signal coming from the position p,; and 02 = E[e'e]
is the power (variance) of the i.i.d AGWN noise e, defined in Eq.(3.9); o2
is a constant compared with a, in Eq.(4.8). Using the Lagrange coefficient
method [11], the above optimization can be achieved by
— An
][>

where || - || denotes the vector norm; a, denotes the propagation steering
vector at the position p,, defined in Eq.(3.16).

(4.9)

an

From Eq.(4.8-4.9), one of the characteristics is that the beamforming steer-
ing vector (spatial filter coefficients) does not depend on the measured data,
namely the CBF method is data-independent as point out in article[79]. That
is why the CBF is a direct and simple method for source localization. Then
we should consider the following two performances of the CBF methods:

e Beamforming power estimation .

e Beamforming spatial resolution.

For the first aspect, let v, define the beamforming power at the position
pn. According to the filter output power in Eq.(4.4), y, can be calculated
as:

Yn = éjzszé-n ) (410)
where R, is the cross-spectrum matrix of measured signals z, defined in
Eq.(4.5). Owing to the assumptions that sources are uncorrelated and they
are independent of noises, R, can be further expressed as

N
R.=E[zz'] = AR,A"+ 071y = ) zpa.a) + 071y, (4.11)

n=1
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where Ry is the covariance matrix of discrete source signals, defined in
Eq.(3.20); z,, € x is the source power at position p,, defined in Eq.(3.19);
I, denotes the M x M identity matrix.

Inserting R, = E[zz'] of Eq.(4.11) into Eq.(4.10), we can rewrite the
beamforming in a vector form as:

y = ATE[zz'] A (4.12)
=E[|ATz]?,
where A = [a,--- ,&,,---,ay] denotes the beamforming steering matrix,

with &, being the beamforming steering vector obtained in Eq.(4.9). From
Eq.(4.12), the beamforming outputs can be regarded as the back-projecting
powers of measured signal powers on the source plane as shown in Fig.(4.2).
So that the beamforming method can be a simple and direct estimation for
source powers and positions.

Besides, inserting R. = S°»_, z, a,al + 02 I of Eq.(4.11) into Bq.(4.10),
we can rewrite the beamforming as:

N
Yy = al Z Tqaga,a, + o’ala,
q=1
> 1
= Z]é,t a l* v, + 0l — (4.13)

where the beamforming steering vector a,, = 24 in Eq.(4.9), so that al a,, =
1

e from Ko | |

linear combinations (overlapping effect ) of all discrete source powers. So

that the beamforming estimated powers would be greater than real source

From Eq.(4.12), the beamforming outputs can be regarded as the

powers (over-estimated), and beamforming method can be regarded as a
coarse estimation of source power.

In particular, suppose that there is only one source signal which is of the

i.i.d AWGN distribution with the power oy, independent of the noise. So that
we get N =1, r1 = 05 and R, = oy alai + 02 I,;. Then the beamforming

power in Eq.(4.10) becomes:

0.2

2 e
Y1 = o, + , (4.14)
la ||

where it indicates that in the ideal case, the CBF can maintain the original
source power and attenuate the background noise by the factor of ||ap||?,
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4.2.1 - Conventional Beamforming

which is equivalent to improve the Signal-to-Noise Ratio (SNR). According
to the definition of propagation steering vector in Eq.(3.16), if there is no
ground reflection (p = 0), we can calculate ||a;||? as:

Mo

lar ] =D ——. (4.15)

m=1 Tl,m

where M is the total number of sensors, M > 1; and ry,, is the propagation
distance from source to the mth sensor. Here we discuss the Eq.(4.15) in the
far-field and near-field respectively as follows:

e For simplicity, we define the far-field propagation satistying vy >> ¢y M,
where 71 = ﬁ Z%Zl r1,m denotes the arithmetic mean of all the prop-
agation distances, and ¢; > 1 denotes a constant with unit. And the
near-filed is defined as 71 << co M, where ¢ < 1 denote a constant

with unit.
e In the far-field, many literature |22, 79, , , , 123] model a; =
lexp (=127 fima)], - sexp =127 f; TLM)]]T and suppose ||a;[|? = M

in Eq.(4.15). So that Eq.(4.14) becomes y; = o2+ UMQ It is seen that the
background noise can be attenuated by the factor M by the CBF. There-
fore, beamforming power y; can be an estimation of the source power
x1, especially when the number of sensor array is very large (M >> 1).

e In the near-field, Eq.(4.15) is approximated by ||la; ||> = % According to
the mentioned near-field assumption 7; << M, it derives |lai]|*> >> 1.
So that in Eq.(4.14), the background noise can be also attenuated by
the factor ||a;||? by the CBF method. Therefore, beamforming power y;
can be also a coarse estimation of the source power x1, especially when
averaged distance is very small (7} << 1).

Therefore, no matter of the near or far-field, the CBF can maintain the
original source power and attenuate the background noise by the factor of
[E[

Now we discuss the beamforming resolution. In the beamforming power
estimation of Eq.(4.10), R, is practically calculated by R, in Eq.(4.6), thus
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Figure 4.3: Tllustration of linear sensor measurements in Eq.(4.10).

it yields:

1 ~
Un = Z &z (4.16)
I | M 2

1 1 1
:sz Z—GXP[J(QWflTn,m)]Zi,m 3

T
i=1 |m=1""m

where beamforming steering vector a,, is obtained from Eq.(4.9), signal steer-
ing vector a,, is modeled from Eq.(3.16) with ground reflecting coeflicient
p = 0; and ||a,||* can be similarly calculated from Eq.(4.15).

To calculate the Eq.(4.16), we take the uniform linear array of sensors
for example as shown in Fig.(4.3): let A denote the spatial interval between
sensors, satisfying A < A for the spatial sampling condition; A = j}’ denotes
the acoustic wave length 6 denotes the Direction Of Arrival (DOA). So that
the delay time 7, ,, can be expressed as

1
Tom = Tno + —(m — 1) A sind (4.17)
Co
where 7, denotes the time delay from the source n to the first sensor. Replac-
ing the Eq.(4.17) into Eq.(4.16), and assuming ry,, & 7 = 27 > m_y Tnom:
we can get an approximating expression of Eq.(4.16) as:

I M .
1 11 2w Asind
o 2 B S )

i=1 |m=1

(4.18)

where for I = 1, equation (4.18) becomes the periodogram estimation [91] of
the spectral density of measured signals z; for I > 1, the approximated CBF
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4.2.2 - Capon

method in Eq.(4.18) can be regarded as the averaged (weighted) periodogram
estimation, so that the CBF has the advantage of decreasing the standard
deviation of periodogram estimation by the factor of % In Eq.(4.18), taking
zim = 1 for instance, we get

2

P iw:eXp [JM—SiM(m—l)] (4.19)

" TaalPr, A

m=1
12
1 1 Sin[’ﬂ' (M—l/)\AsmG]

" aalPr2, | sinfr Asinf]

where equation (4.19) indicates the similar form of periodic Sinc function.

So that the angular resolution of the periodogram [91] can be given as:
SCBF = A (1aq) (4.20)
0 D, cos6 ’ '

where D, = (M — 1) A denotes the total length of the linear array; §55F
is with the unit of radian (rad); the angle (degree) is calculated as 0°5F =
dg %. Based on Eq.(4.18), the spatial resolution of the CBF can be obtained

as: ~ ~
AT coT

D, cos6 B fD,cos’

where 7 denotes the averaged distance from source plane to sensor array.

0P = 6y 7 = (4.21)

Eq.(4.21) indicates that 5SBF is proportional to the wave length and averaged
distance, inversely proportional to the frequency and array length; and 5}? BE
also depends on the DOA: when the incident wave is perpendicular to the
lincar array (0 = 0°), 6555 = Jf"—D’Z reach its best spatial resolution. When
the incident wave is parallel to the array (6 = 90°), 65F = oo is too big
to localize any sources. For instance, when 6 = 60°, D, = 3m, 7 = 4.5m,
¢y = 340m/s, we have §°“PF = 13° and (55317 = 102¢m for f = 1000H z;

§°UBE — 4.3° and 5pCBF = 34cm for f = 3000H z.

In brief, the CBF method is an easy, direct and robust estimation of source
powers. But its spatial resolution is very limited for source localization due
to the array topology and acoustic signal frequency.

4.2.2 Capon

In order to improve the spatial resolution of the CBF, the Capon filter [22],
named the Minimum Variance Distortionless Response (MVDR), is often
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used to maintain the signal at the source position and minimize the output
power of received signals at the other positions as follows:

{Pl: ala, =1

P2: &, =argming, {é}; R, én} ’ (4.22)

where a,, denotes the Capon steering vector for the source n at the position

pn. Using the Lagrange coeflicient method [11], the optimization is achieved
by
R la
a, = (4.23)
a, R 'a,

where R, is supposed to be invertible and R ! denotes the inverse of R,. Let
Un define the Capon power at the position p,. According to the filter output
power in Eq.(4.4) and Capon steering vector &, in Eq.(4.23), the Capon filter
output power ¥, can be calculated as:

1

S 4.24
al R 'a, ( )

Un =

where R is practically estimated by R;! in Eq.(4.6).

Comparing with the CBF steering vector in Eq.(4.9), the Capon criterion
in Eq.(4.23) depends on the measured data, namely it is a data-dependent
method. This explains why the Capon method can get better spatial reso-
lution than the CBF. Moreover, the over-estimation in the CBF due to its
overlapping effect shown in Eq.(4.13) can be avoided to some extend in the
Capon thank to MVDR criterion.

In particular, suppose that there is only one source signal, and it is of the
i.i.d AWGN distribution with the power of oy, independent of the noise. So
that we get N =1, xr1 =0, and R, = 03 Iy +ay0,1), aJ{. Then the Capon
power in Eq.(4.24) becomes:

1
R (4.25)
a,R'a;

1

aJ{(ag Iy +a0,1y aJ{)—lal .

According to the matrix inversion lemma, if matrix A € CM*M C ¢
CM>M are both non-singular matrice (invertible), for any B € CM*N C €
CM>N " the inversion of matrix (A + B C D) is as:

(A+BCD)'=A"'"-A'BDODA'B+C ) 'DA.  (4.26)
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where A = 021, B = a;, C = o,Ij; and D = al. So that Eq.(4.25)
becomes

5 1
= S (4.27)
al (0-6_ IM - 0-6_ 0_;2+0,;21Ha1”2)a1
2
o
_ O.g + €

where Eq.(4.27) shows that the Capon can get the similar denoising perfor-
mance as the CBF does in Eq.(4.14): attenuate the background noise and
maintain the source power. But for more than one source localization, the
Capon can well adapt to the signals of interest and get high spatial resolution
of DOA owing to its MVDR criterion in Eq.(4.22), while the CBF could not
do so due to its data-independent criterion in Eq.(4.9).

In brief, the Capon filter is also a simple and direct method for source
localization. It can get better spatial resolution than the CBF thanks to
the MVDR criterion on the received signals. But the Capon is less robust
method than the CBF, since it requires quite a lot of samplings to obtain
Rz_l in Eq.(4.24). Moreover, since the Capon has strong relationship with
the CBF, its spatial resolution could not be greatly improved.

4.2.3 MUSIC

The Capon method can improve the spatial resolution of the CBF to some
extent, but in order to achieve very high resolution, one of the most commonly
used methods is called the MUItiple SIgnal CLassification (MUSIC) [98, 12].
The MUSIC is derived from the subspace decomposition of the covariance
matrix of the measured signals at the sensors.

We introduce the subspace decomposition in the following. Let’s recall

the measured signals z for original source signals s* in Eq.(3.9) as shown in
Fig.4.4:

z=A"s"+e, (4.28)
where A* € CM*E ig short for A(P*) in Eq.(3.9). The other variable di-

mensions are: z, e € CM with M being the sensor number; s* € CX with K
being the uncorrelated original source signals, providing M > K.

In order to make subspace separation of measured signals, we have to
suppose that in Eq.(3.9), A* € CM*E has the matrix rank as rank(A*) = K.
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Figure 4.4: Tllustration of the original signal equation in Eq.(4.28)
Since A* = [a],--- ,a}] with af, k € [1,---, K] being short for a(pj), in
other words, it is equivalent to suppose that K columns of A are uncorrelated.

Based on Eq.(4.28), the covariance matrix R, of measured signals is ob-
tained as

R. = E[zz/] = A*R,- A*T + 01, (4.29)
where R« denotes the covariance matrix of original signals s*, defined as
R, = E[s*s*'], (4.30)

where R, € CK*K ig a Hermitian matrix (Rl. = R,.). Since all the K
source signals s* are uncorrelated to each other, the rank of R is K, noted
as rank(Rg) = K. In Eq.(4.29), R, € C**M i5 also a Hermitian matrix
(RI = R.), whose eigenvectors are orthonormal to each other and eigenvalues
are of real values.

On the left of Eq.(4.29), we take the EigenValue Decomposition (EVD)
on R, as:

R.,=TU.A. Ul (4.31)
where U, = [uy,---,uy]? is a unitary matrix (UUT = U'U = Iy)
that is composed of the eigenvectors u,,, m € [1,---, M] of R,; and
A, = Diag[Ay, -, A\y] is a diagonal matrix that is composed of the eigen-

values A\, of R, satisfying \y > --- >\, > --- > A\

On the right of Eq.(4.29), A* R, A* is also a Hermitian matrix. Since
rank(A*) = K and rank(Ry) = K, we have rank(A* R,- A*') = K. Then
taking the EVD on A* R, A*T, we define its eigenvalue matrix as:

Ay = Diag[\i, -, Mgl (4.32)

where A is diagonal matrix, whose diagonal items are composed of K num-
ber of the non-zero eigenvalues. So that A, is invertible.
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According to Eq.(4.29), As and A, have the relationship as:

An=An+02 for m=1,2,--- K
5 € : (4.33)
Am = 0 for m=K+1,K+2,--- .M
where it can be rewritten in a matrix form as
AS* —|— 0'2 IK 0
A= [0 02 L. | (4.34)

where I, g is a M — K dimensions identity matrix.

Therefore, the signal subspace of R, is generated by the K eigenvectors
[uy,ug, -+, ug] which correspond to K eigenvalues [A1, Ao, -+, Ag|. And
noise subspace of R, is generated by the other M — K + 1 eigenvectors.
Therefore, we can get the subspace decomposition from the Eq.(4.29, 4.31,
4.34) as:

{ES* = [, up, -, ug] (4.35)

E€ - [uK+17uK+27"' 7uM]

where E; denotes the basis of signal subspace, rank(Es) = K; its corre-
sponding eigenvalues are (Ag +02 I ) in Eq.(4.34); and E, denotes the basis
of noise subspace, which is orthonormal to Eg, namely

EL.E.=0, (4.36)

where the above equation reflects an importance property of orthogonality
between the source subspace and noise subspace.

Then taking Eg and corresponding eigenvalues (Ay + 02Ig) into
Eq.(4.31), we get
R.E, = Ey (Ay +071Ig). (4.37)

Replacing R, by Eq.(4.29) into Eq.(4.37), we get:
AR AT E, + 0’E, = B, (A, + 02 1), (4.38)
where it is the linear system of equations of Eg, which can be solved as:
E, =A"T, (4.39)

where T € CH*K ig a full rank matrix with rank(T) = K, since it can be
expressed as:
T =R,-A"E.AZ (4.40)

where
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e Source signal covariance matrix Ry € C**X has rank(Ry) = K, since
K original source signals are supposed to be independent;

e Signal propagation matrix A* € CM*K with M > K is supposed to be
rank(A*) = K;

e Signal subspace Eg has rank(Es) = K;

o AZ € RF*K has rank(AL') = K, since A, is convertible according to
its definition in Eq.(4.32).

Therefore, in Eq.(4.39), the source signal subspace Eg« can be represented
by the invertible linear combination (T) of the columns of A*. So that Es-
is equivalent to the space esp{A*} generated by the columns of A* namely
E;. = esp{A*}. Since E, and E, are orthonormal to each other, we can
obtain an importance equation as follows:

AYE, =0, (4.41)

where it indicates that columns of A* can generate the null space of E,,
defined as

Null(E,) = {a;'; cA:alE =0 kel - ,K]} (4.42)

where aj is short for a(pj) defined in Eq.(3.10). In Eq.(4.42), it shows that
the steering vector aj at the source position P7 is orthonormal to the noise
space E,.

Based on the orthonormal property of the subspace decomposition in
Eq.(4.41), MUSIC criterion is to maximize the pseudo-power y!"™*' at the
position P; as:

: 1
music __

T B
where original steering vector a; at the position pj is approximated by dis-
crete steering vector a, at the position p,, defined in Eq.(3.16), in which, we
discretize the source plane into N grids at the positions P = [py, -+, pn],
supposing p;. € P. Moreover, the noise subspace is calculated by E, which

(4.43)

is obtained from the estimated covariance matrix R.. defined in Eq.(4.6).

In brief, MUSIC can achieve infinite spatial resolution if the subspace
decomposition could be exactly made (noiseless cases). To achieve correct
subspace decomposition, it is important to know the noise level or the total
number of sources. However, MUSIC requires as many as possible samplings
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to well estimate the covariance matrix of received signals, such as the Capon.
It also needs to know the number of original sources or the SNR level to
effectively decompose the signal and the noise subspace. Therefore, MUSIC
is less robust than the CBF. Besides, MUSIC can achieve high resolution in
source localization, but could not directly offer the source power estimation.

Beamforming
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O | — | | | |
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Figure 4.5: Performance comparison of the CBF, Capon and MUSIC.

In Fig.4.5, we show the performance comparison of the CBF, Capon and
MUSIC. There are K = 2 source signals from the DOAs of —5° and 5°,
with a single frequency of f = 200Hz and a power of 2] = x5 = 1. The
background noise is supposed to be i.i.d AGWN. The SNR is as low as 0dB.
There are 7" = 10000 time samplings. The source plane is discretized into
N = 361 grids between [—45°,45°]. It is seen that the CBF could hardly
localize the two sources, since its angular resolution is as low as 6555, = 11°
according to Eq.(4.20). The beamforming estimated powers are both over-
estimated due to its overlapping effect as discussed in Eq.(4.13). The Capon
can well detect the sources owing to its MVDR criterion in Eq.(4.22). The
Capon estimated powers are much closer to source powers than the CBF as

discussed in Eq.(4.24). The MUSIC can achieve the best resolution among
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Discrete forward model of acoustic power propagation

the three thanks to the signal subspace decomposition. But MUSIC could not
reconstruct the source powers due to its pseudo-power estimation as shown
in Eq.(4.43), nor estimate the relative amplitudes due to background noise
interference.

4.3 Discrete forward model of acoustic power propaga-
tion
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Figure 4.6: Tllustration of forward model of acoustic power propagation.

The beamforming, Capon and MUSIC methods are the direct estimation
of source DOA or source powers (pseudo-powers), and they are all based
on the forward model of signal propagation in Eq.(3.15). In order to over-
come their limitations in source localization, we will introduce some typical
iterative methods (deconvolution and regularization). Before doing that, we
should present the forward model of power propagation as shown in Fig.(4.6),
since the acoustic imaging involves in the source power reconstruction, rather
than signal estimation. Owing to the fact that the beamforming powers in
Eq.(4.10) can provide a direct but coarse power estimation, it is necessary
to deconvolve the blurry beamforming result for high spatial resolution,and
deconvolution need to account for sampling errors.

Let’s recall the beamforming power y, = a'R.a, in Eq.(4.10), where
measured covariance matrix R, = E[zz'] in Eq.(4.5) is defined by measured
signal model z; = A(P)s; +e; in Eq.(3.15). As long as the sampling number
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4.2.3 - MUSIC

is big enough (sampling block number I >> 1), the measured covariance
matrix R, is practically approximated by R, = %Zle Z; Z;r in Eq.(4.6),
where z; is the measured signal vector in the ¢th sampling block at all M
sensors. So that on the left of i, = al R.a, in Eq.(4.10), we actually calculate

the beamforming power as
Yo = al R4, (4.44)

where 1, is the measured beamforming power at the position of p, on the
source plane; a, is the beamforming steering vector for the position p,,
defined in Eq.(4.9). On the right of Eq.(4.44), we replace R, by using R, =
Zévzl zqa4al + 02 Iy of Bq.(4.11), then we get

q=1

& 1

= Z’é;rl aq’2$q+0'gw (445)
=1 "
N

— 2 1

— chqxq + o, Ha H2 ,
q=1 "

where the beamforming steering vector a,, = 24 in Eq.(4.9), so that al a,, =

1
[lan|[?*

For N positions of the beamforming outputs, equation (4.45) can be
rewritten in a vector form as shown in Fig.4.7, and we obtain the forward
model of source power propagation as follows:

y=Cx+o021,, (4.46)

where

ey = [y, - ,yn|T denotes the calculated beamforming powers on the
source plane, which can be a primary estimation of the source powers;

e x is the unknown discrete source power vector defined in Eq.(3.19);

e 02 is the i.i.d AGWN noise power (unknown);

o1, = [m, cee Ha;HQ]T serves to attenuate noise power for different

positions;
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Discrete forward model of acoustic power propagation
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Figure 4.7: Illustration of the forward model power propagation in Eq.(4.46).

o C = [c,,] with n,q € [1,---, N| denotes power propagation matrix,
whose item ¢, , is defined as:

Crg = aha)”, (4.47)

)

where beamforming steering vector a,, and signal propagation steering
vector a,, are defined in Eq.(4.9) and Eq.(3.16) respectively; |- | denotes
the modulus; and ¢, , represents the power contribution rate of the gth
source to the nth position on the source plane, in which, we will give
its geometrical interpretation on the bottom of Fig.7.8 in Chapter 7.
According to Eq.(4.47), we have ¢, , = 1, namely, the diagonal value of
power propagation matrix C is always 1. Moreover, ¢, , in Eq.(4.47) can
be seen as the Point Spread Function (PSF) of the actual sensor array.
And this PSF is determined by two factors: the sensor array topology
and the distance from the source plane. If the microphone array is ideal
enough, ¢, , becomes the Dirac function as

1 for n=gq
Cng = Ong = { 0 for mtq (4.48)
Then Eq.(4.46) becomes y = x + 021, which reveals that the source
powers x can be directly estimated from the beamforming powers Y- In
particular when N = 1 and K = 1, we also get y; = x1 + H;W as
discussed in Eq.(4.14) of the beamforming method.
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4.4.1 - DAMAS

Based on Eq.(4.47), the power propagation matrix C can be expressed
as:

C=|ATA|2, (4.49)

where A = [a;---ay], A € CM*V denotes the beamforming steering
matrix, defined in Eq.(4.12); A = [a;,---,ay], A € CM*Y denotes
the signal propagation steering matrix, defined in Eq.(3.15); operator
| - |. denotes the absolute modulus of each item of a matrix; ().? denotes
the square of each item of a matrix; C € RV is a square matrix
full of non-negative values. Moreover, A € CM*N and A € CM*N
with M < N, then their matrix ranks meet rank(A) < M < N and
rank(A) < M < N. In Appendix E, we give a detailed proof that
rank(C) < M < N, and C € RM*V is a singular matrix and cannot

be invertible.

In brief, the underdetermined non-linear signal propagation model in
Eq.(3.15) is transformed into the forward model of power propagation in
Eq.(4.46) which is the determined linear system of equations for source pow-
ers x. In Eq.(4.46), the beamforming power y and power propagation matrix
C are calculated from Eq.(4.44) and Eq.(4.47) respectively. Unfortunately,
C is very ill-conditioned and cannot be invertible, so that we can not directly
obtain x from Eq.(4.46).

4.4 Deconvolution

As we have discussed that the beamforming powers in Eq.(4.10) can provide
a direct and coarse power estimation, it is reasonable to deconvolve the blurry
beamforming result to obtain high spatial resolution. Many deconvolution
methods have been successfully developed since decades |7, 44, 13, , 4,

, 8, , , 18, 19]. We introduce two of the most widely used for
acoustic source localization and imaging: the DAMAS and CLEAN methods
respectively.

4.4.1 DAMAS

Eq.(4.46) can be interpreted as a kind of deconvolution problem. One of
the recently developed deconvolution methods is called: the Deconvolution
Approach for Mapping of Acoustic Source (DAMAS) [18, 19]. The DAMAS
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Deconvolution

assumes o> = 0 in Eq.(4.46) and try to solve
y =Cx. (4.50)

The original DAMAS tries to solve Eq.(4.50) in a recursive manner as follows:

- .
0=y = ey
i+1 - +1 N /
x7<1z+ ) =Yn — ZZ:% Cn,q xéH_ ) B Zq:n—l—l Cn.q .I'¢(;> ’ (451)
(i+1) _ N-1 (i+1)
LN = YN — Zq:l CN,qTq
where () denotes the ith iteration; and x° = [z, -+ | 2%]? can be initialized

by 0 vector or the measured beamforming powers y.

In brief, the DAMAS of Eq.(4.51) provides an iterative solution for the
power propagation model of Eq.(4.46). It thus refines the CBF results and
improve the spatial resolution. However, the most important drawback of this
recursive algorithm is that the results may be very sensitive to the errors due
to the noise free assumption, since the power propagation matrix C is very
ill-conditioned. Moreover, DAMAS also suffers from the slow convergence
problem. Many efforts have been done to improve the DAMAS performance.
The most commonly used is called the Diagonal Removal (DR) DAMAS [18].

The DR-DAMAS sets diag [RZ} = 0 in Eq.(4.6) to suppress the noises, but

DR technique inevitably harms weak sources whose powers are lower than
the noise.

4.4.2 CLEAN

CLEAN [102, , 127] is another well developed deconvolution method. It
can also iteratively extract strong sources from the blurred beamforming
image, but depends on parameter selection for good performance.

Soppose there are K known original sources at the unknown positions

P* = [p}, -+ ,pj)] on the source plane. After source plane discretization,
it yields the grid (discrete source) positions P = [py,---,pn]?. Then the
first source position pj = py,, n1 € [1, -+, N] is initialized for the estimated

position of the strongest source power x,,. Since z,, can be estimated by
the strongest beamforming power y,, € y as discussed in the beamforming
method, the initialization can be expressed as:

{p}‘ =Pn, m €[l N] )
Pn, = arginaxp, ep, {y = [yla T 7yN]T} , with y, = éLRzén 5
(4.52)
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4.4.2 - CLEAN

where y, is the beamforming power calculated in Eq.(4.44); P is grid positions
on the source plane. According to the spatial filter definition in Eq.(4.2) and
beamforming steering vector in Eq.(4.9), the estimated source signal §; can
be obtained from the measured data z = [z1,--- , zy| by

$=alz, (4.53)

where a; refer to the beamforming steering vector at the source position pj
in Eq.(4.9). According to the discrete forward model of signal propagation
in Eq.(3.15), the measured signal vector z; at the sensor for §; is calculated
as:

i =As +e, (4.54)
where A = [aj,--- ,ay]| is the propagation steering vector as defined in
Eq.(3.16). Then we can substract part of this strongest source power from
the beamforming power y and get the residual powers qi = [q11, -, qiv]”

(consisted of other sources and noises) as:
a=y—aARA, (4.55)

where

ey = [y, - ,yn] is the beamforming power vector obtained from
Eq.(4.44);

e « denotes the attenuation factor. As pointed out in article[123], « is
a key issue in CLEAN; 0 < a < 1 is used to avoid over-estimation
and efficient convergence, o = 0.15 is used for the proper compromise
between convergence and estimation performance;

e A = [a;---ay] is the beamforming steering matrix as discussed in

A I A+ o~ . . . .
e R, = % D i ZLZU is the estimated covariance matrix of measured

signals z; in Eq.(4.54).

Then the estimated position of the second strongest source power is given
by: o
{q1 —y—a AR/A (4.56)

Pn, = argmaxp, ep{di} '

where if p,,, = p*;, repeat Eq.(4.53)-Eq.(4.56); this means that we still locate
the same strongest source, thus we have to furthermore subtract parts of this

strongest source power from the beamforming powers, then try to find out
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Regularizations

the second strong source in the residual powers. If p,, # p*;, that means
we have found out the second strongest source, so that we get the second
strongest source position as py = py,, no # ny € [1,---, N, as well as the
source signal 8 = w! z. Then we can subtract these two estimated sources
from the total beamforming powers y and try to find the third strongest
source in the actual residual powers qs as:

{ Q@ =y —« (A*ThA + ATR2A) (4.57)

Pu, = argmaxp, cp e}

where f{Q = % ZZ'I:1 2;1 Zo; 18 the estimated covariance matrix of measured
signals Zo, which can be obtained as zo = AS$y + e in Eq.(4.54).

This procedure of Eq.(4.53)-Eq.(4.57) is repeated until all K sources are
discovered. However, CLEAN depends on some important parameters such
as the known source number K, selected attenuation factor o and iteration
number etc. CLEAN tends to eliminate weak sources due to the background
noise interference.

4.5 Regularizations

All the mentioned spatial filter and deconvolution methods merely consider
the forward model of source signal (power) propagation. In order to estimate
x from the ill-posed determined linear system of Eq.(4.46), we need to bring
in useful constraints on these unknown variables. Since source powers x are
as K-sparsity as their source signals s in Eq.(3.14) in the spatial domain, even
though source number K is unknown, we can use the sparse power distribu-
tions, as well as the non-negative property to reconstruct source powers x and
background noise power o2 for robust acoustic imaging. The regularization
methods can be usually expressed as follows:

X = arg miny —Cx|P+ aF(x

Data fitting Regularization
st. x>=0

where = denotes each item of a vector is non-negative; the first fo-norm ||-||2
represents the data fitting part, which aims to minimize the errors between
the modeled powers from Eq.(4.46) and the measured beamforming powers
from Eq.(4.10). The second term F(-) usually takes the following forms:
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4.4.2 - CLEAN

1. F(x) = ||x]||o refers to the number of non-zero elements of x, which
can give the sparsest solution; unfortunately, the optimization of ||x]|o
becomes intractable for large dimension x , even if the Iterative Hard
Threshholding (IHT) method have been proposed recently [35].

2. F(x) = ||x]||1 involves the ¢; regularization which can enforce sparse so-
lution; and the optimization of ||x||; can be solved by the LASSO [112]
and atomic decomposition by basis pursuit [26]. Thanks to sparsity
constraint on source powers which is equivalent to using ||x||; regular-
ization, the DAMAS with sparsity constraint (SC-DAMAS) [126] can
better improve the spatial resolution than the CBF and DAMAS.

3. F(x) = ||[wx]|; refers to the weighted sparse regularization, where w
denotes the weighted coefficients and 0 < [ < 1; the optimization of
||wx||; can be solved by the Iterative Reweighed algorithm [21], and it
can obtain the sparser reconstruction of source powers than the ¢; does,
but 0 < [ < 1 involves the difficult non-convex optimization problem.

4. F(x) = ||Dx]|3 refers to the Tikhonov regularization [70], where the
operator D can suppress the noise interference, but || - ||3 can not offer
as sparse solutions as the ¢; regularization does.

The term « in Eq.(4.58) denotes regularization parameter. Tuning « is
an important issue, and various empirical approaches [18, 26, 70] have been
proposed. For example, the optimal parameter for the Tikhonov regular-
ization is selected via Generalized Cross Validation|52| and L-curve method
|70]. However, we expect that o should be automatically determined during
the estimations in order to approach the global optimization.

The sparse regularization in Eq.(4.58) with F(x) = ||x||; is equivalent to
the sparsity constraint as:

X = argmin(x) {Hy - CXH%} (4 59)
st =8, x=0 |

where [ denotes the total source power; ||x||; = 3 serves the sparsity con-
straint; x > 0 denotes z, € x > 0. Recently, many effective methods
have been proposed to solve Eq.(4.59), such as the DAMAS with sparsity
constraint (SC-DAMAS) [126]. But f selection is the key issue for good
performance. In SC-DAMAS [126], £ is often fixed for simplicity.
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Other robust or high resolution methods

4.6 Other robust or high resolution methods

Based on the mentioned classical methods, we introduce two other methods
which are recently well developed for source localization, such as

e The Covariance Matrix Fitting (CMF) method [128] can directly es-
timate the covariance matrix of uncorrelated source signals using the
sparsity constraint on the source powers as follow:

ooy 2 g2
{(x 6?) = argmin(x ;2) {HR —ARA "IM”2}, (4.60)

st. tr[Ry =0, x=0,02>0

where tr[-] denotes the matrix trace. For uncorrelated source signals,
the the covariance matrix Ry is a diagonal matrix, whose diagonal items
are composed of the source powers. So that we get tr[R,] = ||x||:.
The CMF can estimate the correlated sources, but it has much larger
dimension of variables to be estimated than regularization methods in

Eq.(4.58)-Eq.(4.59).

e Recently, the Spectral Estimation Method (SEM) [15, 14] has been pro-
posed to improve the robustness in acoustic imaging. The SEM often
pre-estimates background noise power in the wind tunnel without ob-
jects, then subtracts this noise power from the measured data with ob-
jects. This reference noise could be estimated by measuring the observed
signals without any object in wind tunnel. However, the estimated noise
power might not be the same one when the object exists in the wind
tunnel.

4.7 Simulations of monopole and complex sources

This section shows the typical simulations on source localization and power
reconstruction. To focus on method comparisons, we do not consider the
ground reflection and wind refraction in simulations, but we should reconsider
these multi-path propagation effects in wind tunnel experiments.

4.7.1 Simulation configurations

In Fig.3.3, simulation configurations come from the wind tunnel experiments
carried out by Renault SAS [30] as shown in Fig.4.8:
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4.7.1 - Simulation configurations
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Figure 4.8: Illustration of simulations (a) Wind tunnel S2A [36] (b) Illustration of simu-
lations and experiments.

For the sensor array, there are M = 64 non-uniform sensors locating
on the vertical plane. This Non-Uniform sensor Array (NUA) has a
longer horizontal size than the vertical size [30]. And it has the d = 2m
averaged size. The advantage of NUA array is that it can yield almost
the same performance but less computation burden than the uniform
array with the same sensors as discussed in article[68)].

For the wind tunnel, we do not consider the ground reflection and wind
refraction in order to focus on method comparisons. But we reconsider
the multi-path propagation effects in the real data of wind tunnel ex-
periments in the following chapters.

For the simulated sources in Fig.4.9(a), we have simulated 4 monopoles
and 5 complex sources with different patterns; and the total number of
monopole sources is K = 23. Sources are spaced at least 20cm. Original

source powers X* are within [0.08,2] ([-10.3,3.7]dB) and 14dB dynamic
range.

For the image result, there are 4 parts on Fig.4.9(a): the center im-
age shows the source positions, patterns and powers. On its right, the
colormap shows the dynamic range of source powers, in which, the dark-
red colors represent strong powers, while light white colors represent the
weak. On the left and bottom, 2 profile figures reveal the positions of 4
monopoles and complex sources on the center.

Background noises: to simulate the very noisy background, the i.i.d
AGWN noise power is set 02 = 0.86 (-0.7dB), thus the averaged SNR
is 0dB.
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Simulations of monopole and complex sources

e For other parameters, D = 4.50m is the distance between the sensor
plane and source plane. ¢y = 340m/s is the acoustic speed in the com-
mon air. 7" = 10000 is the total number of samplings, which is large
enough to calculate the covariance matrix in Eq.(4.6).

In order to make a fair comparison with other classical methods, the
following simulation parameters should be selected carefully:

e According to Eq.(4.21), the spatial resolution of the CBF at f =

2500H z in Eq.(4.21) is (5SBF = Z—? = 3lcm.

e In order to avoid the spatial aliasing problem as discussed in the DAMAS

[18], the discrete grid is set Ap = 5cm and the frequency should be
f < 3100Hz, so that they satisfy 5(%% < 0.2.

e To simulate a sparse distribution of discrete source signals, Ap = 5cm
is used to discretize the 100 x 150 em? source plane, so that the power
image is of 21 x 31 pixels. Since total grid number N = 651 is much
more larger than original source number K = 23, the discrete source
signals s and their source powers x in Fig.4.9(a) are both K-sparsity
signals.

Reconstruction results are presented on images which can directly show
the estimated source powers (dB) and positions. Then we use 3 criteria to
quantitatively evaluate estimation performance as follows:

e The first one is the averaged estimation error of original source powers,
defined as

K
1
Art=— > |dg - il (4.61)
k=1
where original source powers x* = [z}, -+, 2%]T are defined as:

x* = diag[Rs] , Ry = E[s*s*1], (4.62)

where R+ denotes the covariance matrix of the original source signals
s*, which are defined in Chapter 3. The results are shown in Table 4.1
and 4.3.

e The second is the reconstruction error of source power image, defined

as A )
_ x=xl

5y = , (4.63)

I3
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4.7.2 - Simulation results

where compared with Ax*, the value of d5 not only depends on the es-
timated positions and powers, but also on the suppression of the back-
ground noises. The results are shown in Table 4.1.

e The third is the averaged position error, defined as

K k -~
S eg - Bil)
Ap* =

K *

S P2

where p;. denotes the estimated positions of kth original source. The
results are shown in Table 4.2.

, (4.64)

4.7.2 Simulation results

Firstly we show the method comparisons at 2500Hz, since this frequency is
very sensitive to human hearing and affect acoustic comfort. In Fig.4.9, the
CBF gives a blurred image of source power distributions, since its spatial
resolution in Eq.(4.21) is 65PF = 3lem. The Capon (MVDR) obtains the
better resolution than the CBF, owing to its MVDR criterion in Eq.(4.24).
The MUSIC achieves much better resolution than CBF and Capon thanks
to exact subspace decomposition with source number K = 23 known, but
it can not provide the accurate source power estimations. The DR-DAMAS
with 5000 iterations (5000i) greatly improves the resolution and offer bet-
ter source power estimations than the Capon and MUSIC, but the Diagonal
Removal technique cause to eliminate some weak sources. The CLEAN has
the similar performance as the DAMAS, but it is sensitive to the noises.
The SC-DAMAS well detects some of strong sources, but they do not pro-
vide reliable estimation of weak sources in strong background noises. The
CMF achieves better estimation on the noise power and distinguishes most
of sources, however, it fails to reconstruct some patterns of weak sources.

4.8 Real data of wind tunnel experiments

Figure 4.8 shows the static vehicle (no engine noise), microphone sensor array
and the wind flow at the speed of 160km /h in the wind tunnel S2A [36]. One
of objects of this wind tunnel is to detect acoustic powers and positions on the
car surface. This wind tunnel can simulate a traveling car on the high-way
and measure its acoustic influence to the passengers-by.
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Real data of wind tunnel experiments
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Figure 4.9: Simulation on monopole sources with 14dB power dynamic range at 2500Hz,
02 = 0.86, SNR=0dB and 15dB display: (a) Sources (b) CBF (c) Capon (d) MUSIC with
K =23 (e) DR-DAMAS with 5000 iterations (5000i) (f) CLEAN (5000i) (g) SC-DAMAS
and (h) CMF
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4.8.1 - Experiment configurations

Table 4.1: Power estimations of 4 monopole sources by average power estimation error
Ax*, relative errors of power image reconstruction d, and estimated noise power o2, at
2500Hz, SNR=0dB, simulated ¢ = 0.86; -’ means unavailable.

Source power | 0.08 | 0.18 0.98 0.50 | Ax* 09 o2,
CBF 1.57 | 11.28 3.51 2.02 | 69.64 | 121.9 -
Capon 0.50 | 0.73 1.50 0.98 | 049 | 14.62 -
MUSIC 3.52 | 9.37 | 108.13 | 51.42 | 42.60 | 6000 -
DR-DAMAS - - 0.77 0.23 | 0.30 | 0.08 -
CLEAN - 0.25 0.44 0.28 | 0.87 | 0.67 -
SC-DAMAS - - - - 1.03 | 0.58 -
CMF 0.09 - 0.80 0.40 | 0.31 0.10 | 0.89

Table 4.2: Position estimations of 4 monopole sources by averaged position errors Ap* at
2500Hz, SNR=0dB; ’-’ means unavailable.

Source position | (-0.9,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | Ap*
CBF - - - - 1
Capon - (106,085) | - | (0.61.1) | 0.52
MUSIC - (:0.6,0.80) | (-0.3,1) | (-0.6,1.3) | 0.20
DR-DAMAS - - (:03,1) | (-0.6,1.3) | 0.43
CLEAN (-0.95,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | 0.01
SC-DAMAS - - T (-0.6,1.2) | 0.63
CMF - (10.6,0.9) | (-0.3,1) | (-0.6,1.3) | 0.29

Table 4.3: Power estimations of the complex source on the center of image by power
estimation error Az* at 2500Hz, SNR—0dB; ’-” means unavailable.

Source power | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | Ax*
CBF 2.64 1 9.60 | 9.70 | 9.64 | 11.34 | 9.77 | 6.78
Capon 5.18 | 831 | 499 | 5.01 | 821 | 498 |4.13
MUSIC 143 | 127 | 127 | 97 98 126 | 117
DR-DAMAS | 2.15 | 2.05 | 1.82 | 1.83 | 2.50 | 1.45 | 0.27
CLEAN 2291037169 | - 0.27 | 0.34 | 1.27
SC-DAMAS | 1.68 | 249 | 1.16 | 0.10 | 2.23 | 0.65 | 0.75
CMF 1.36 | 2.86 | 2.07 | 2.09 | 1.92 | 1.05 | 0.45

4.8.1 Experiment configurations

The parameter configurations and multi-path propagation effects are shown
in Fig.(4.10). The experiment configurations are introduced as follows:

e Source plane. We suppose that all acoustic sources locate on the same
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Real data of wind tunnel experiments
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Figure 4.10: Configurations of wind tunnel experiment: (a) Front-look and ground reflec-
tion (b) Overlook and wind refraction.

2D plane, since the curvature of the car side is relatively small compared
with the distance D = 4.5m between the car and array plane. The
surface of car side is of 150x 500 cm?, and we discretize this source
plane into 31x101 pixels by using identical grid Ap = bem. And we
also focus on a small region of the rear-view mirror: 1x1.5 m? (21x31
pixels), as shown in Fig.4.11(a).

e Sparsity of the source. For the acoustic imaging on the vehicle surface in
wind tunnel tests in Fig.(4.8), acoustic sources often sparsely locate on
the rear-view mirrors and around the wheels, while on the rests of the
parts, there are few significant sources. Therefore, the discrete source
signals s and their powers x are both sparse signals.

e Sensor plane is the same as discussed on Section 4.7.

e Result images are shown by normalized dB images with 10dB span. And
the colormap indicates the power range.

e Signal processing parameters. In the real data, there are T" = 524288
samplings with the sampling frequency f,—2.56x10* Hz. As discussed
in Chapter 3, we separate these samplings into I = 204 blocks with
L = 2560 samplings per block. The working frequency band is chosen
as [2400,2600]Hz, which is sensitive to acoustic comfort of human being.

e Wind tunnel multi-path effects. We consider the ground reflection in
Eq.(3.16) and wind refraction [29] in both synthetic and real data. For
the actual propagation time 7,,,, and distance 7,,, in Eq.(3.11), we
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4.8.2 - Experiment results

apply equivalent source to make refraction correction. As shown in
Fig.4.10(b), for sensor m, it seems to receive the signal from equivalent
source signal s,/, instead of original source signal s,,, along a direct path
rn.m during the same propagation time 7, ,,, as if there is no wind
influence in the wind tunnel. For 7_,, ,,, and r_, ,, in Eq.(3.11), we use
the mirror source signal s_, to correct the ground reflection as shown
in Fig.3.3(b). The details of the propagation corrections are discussed
in A and B.

4.8.2 Experiment results

Figure.4.11 illustrates the estimated power images of mentioned methods
at 2500Hz. In Fig.4.11(b), the CBF merely gives a blurred image of
strong sources around the front wheel, rear-view mirror and back wheel.
In Fig.4.11(c), the DAMAS well deconvolves the beamforming image, and
discovers weak sources on the front light, front cover and side window. How-
ever, many false targets are also detected in the air. In Fig.4.11(d), DR-
DAMAS eliminates most of the artifacts, but it also removes off some of
weak sources. Figure.4.11(e) shows that the CLEAN overcomes the draw-
backs of the DAMAS, but we have to carefully select the parameters for
this good performance. In Fig.4.11(f), the SC-DAMAS has a better noise
suppression than the DAMAS and CLEAN owing to the sparsity parameter
selection, but SC-DAMAS overwhelms too much both the noises and the
sources, so that it does not provide a wide dynamic range of source power
estimations.

Table 4.4: Computational cost for treating whole car: image 30x100 pixels, at 2500Hz,
based on CPU: 3.33GHz, - means unavailable.

Methods | CBF | DAMAS (5000i) | DR-DAMAS (5000i) | CLEAN | SC-DAMAS | CMF
Time (s) 1 10 11 45 1254 -

Furthermore, we give the computational costs in Table 4.4: the CBF is the
quickest method; the deconvolution methods such as DAMAS and CLEAN
have a moderate computations; the SC-DAMAS takes much more time than
the above due to the sparsity constraint in Eq.(4.59), but it is still applicable;
however, the CMF is hardly to work due to the huge dimensions of variables
in covariance matrix in Eq.(4.60).

Based on the acoustic imaging on the car side, we investigate a small part
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Real data of wind tunnel experiments
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Figure 4.11: Acoustic imaging on the vehicle side at 2500Hz.

Left:  Real data (a) Vehicle surface  (b) Beamforming (¢) DAMAS (5000i) (d)
DR-DAMAS (5000i) (e) CLEAN (f) SC-DAMAS

Right: Hybrid data (a’) Simulated sources (b’) Beamforming (¢’) DAMAS (5000i) (d’)
DR-DAMAS (5000i) (¢’) CLEAN (f”) SC-DAMAS.
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Figure 4.12: Acoustic imaging of rear-view mirror at 2500Hz: (a) CBF (b) DAMAS
(50001) () DR-DAMAS (5000i) (d) CLEAN () CMF and (f) SC-DAMAS

of the rear-view mirror. In Fig.4.12(a), the CBF detects strong sources on the
corner of the front wheel and rear-view mirror. The DAMAS in Fig.4.12(b)
improves the spatial resolutions, but it causes some unexpected spots. In
Fig.4.12¢, the DR-DAMAS eliminates most of false spots. In Fig.4.12(e)-(f),
the CMF and SC-DAMAS achieve much better resolutions on the rear-view
IMirror.

4.9 Results with hybrid data

Even though classical method can obtain good performance on real data
from wind tunnel experiments, it is not sufficient for performance validation.
This is because the exact acoustic source distributions on the vehicle are not
known beforehand. To further verify the performances of these methods,
we use the hybrid data which composes of known synthetic sources and the
real data. In order to avoid overlapping the original sources, the synthetic
sources are set on the region where there are no significant sources pow-
ers. In Fig.4.11(a%), five synthetic complex sources with different patterns
are generated at 2500Hz, whose powers are within [—4.5,0]dB. We expect
that effective methods can detect both the synthetic and original source pow-
ers from the hybrid data. If these known synthetic sources are successfully
recovered, these methods can be able to effectively reconstruct the original
acoustic sources on the vehicle surface.
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Results with hybrid data

4.9.1 Synthetic sources model

Based on the assumptions in Section 3.1, we suppose K’ Gaussian white
variables w'(t) = {w,(t), k = 1,--- , K}, with w},(t) ~ N(0,0%), and o7
is the variance of the variable wy (¢). In order to generate wide-band source
signals {s,.(t), k =1,--- | K"}, w,
h(t) (for instance Blackman filter
modeled by

(t) is convoluted by the impulse response
). Thus the synthetic source signals are

sp(t) =wp(t)«h(t), k=1--- K, (4.65)

where * denotes convolution operation. Since the positions P’ of synthetic
s’ are set to be known, the measurements z’ at the sensor array can be
calculated by the forward model of acoustic signal propagation in Eq.(3.15).
Then we generate the hybrid data by adding z’ to the real measured data z.

4.9.2 Acoustic imaging results with hybrid data

For the reconstructed synthetic sources in Fig.4.11(b’)-(f"), the CLEAN and
SC-DAMAS get better estimations than the CBF and DAMAS. Thus their
source reconstructions from the real data are more acceptable. But the some

important parameters such as the attenuation factor in CLEAN and sparsity
parameter in SC-DAMAS should be carefully selected for better use.

4.10 Conclusions and perspectives

Table 4.5: General performance of classical methods.

Methods CBF Capon MUSIC CLEAN DAMAS | DR-DAMAS | SC-DAMAS | CMF
Resolutions Low Normal High Normal Normal Normal High High
Dynamic Range | Narrow | Narrow Normal Normal Normal Normal Normal Wide
Noise Robust | Sensitive | Sensitive | Sensitive | Sensitive | Normal Sensitive Robust
Computation Least Normal Normal Normal Normal Normal High Higher
Samples Normal | More More Normal Normal Normal Normal More
Source number No No Required | Required | No No Required Required

In Table 4.5, we give a brief summary for the advantages and drawbacks
of mentioned classical methods. To summarize, all the above methods have
good performances on their focused aspects:
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4.9.2 - Acoustic imaging results with hybrid data

The classical spatial filter methods aim to solve the forward model of
acoustic signal propagation in Eq.(3.15), and they offer a direct estimation
for source localization.

e Conventional beamforming (CBF) is a data-independent method, and
offers a simple, direct and robust estimation for source powers; but
the CBF cannot easily obtain high spatial resolution or exact acoustic
imaging due to its low spatial resolution, especially in low frequencies.

e Capon method is a data-dependent method, and provides a better spa-
tial resolution and source power estimation than the CBF; but the
Capon 1is less robust, since it requires more measured samples to cal-
culate the inversion of covariance matrix of measured signals.

e MUSIC is also a data-dependent method, and achieves very high spatial
resolution than the CBF and Capon; but MUSIC is much less robust,
since it relies on not only the large number of measured samples, but
also the subspace decomposition which requires to known the source
number or SNR level beforehand. Moreover, MUSIC cannot directly
provide the source power estimation, but just pseudo-power.

The deconvolution methods aim to solve the forward model of acoustic power
propagation in Eq.(4.46), and they iteratively deconvolve the blurry beam-
forming result to obtain a high spatial resolution for source power reconstruc-
tion and localization (acoustic imaging).

e Original DAMAS refines the CBF result and improves the spatial res-
olution. However, it is sensitive to background noises, since the power
propagation matrix C is ill-conditioned.

e CLEAN also iteratively extracts strong sources from the blurred beam-
forming image, but it depends on parameter selection for good perfor-
mance, such as known source number K, selected attenuation factor a
and iteration number.

Regularization methods further improve the spatial resolution of deconvo-
lution methods by using the sparse regularizations (¢, ¢; or {; with 0 <1 < 1
norm), and improve the robustness to noises owing to the Tikhonov regular-
ization. But the regularization term inevitably increases method complexity,
and regularization parameter selection becomes an essential issue for effective
performance.
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Conclusions and perspectives

Covariance Matrix Fitting (CMF) method directly estimates the covari-
ance matrix of (un)correlated source signals via sparsity constraint, but it
has huge dimension of variables to be estimated.

In brief, there is no one-fits-all method. Most of the mentioned suffer one
of the following drawbacks: poor spatial resolution, sensitivity to background
noises, narrow dynamic range or high computational cost. In addition, some
methods need to set important parameters that must be tuned accurately
for each case to obtain effective performance. These limits motivate us to
investigate the robust approaches for acoustic imaging with high resolution
and wide dynamic range, which will be discussed in the following chapters.
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4.9.2 - Acoustic imaging results with hybrid data

e Je pense, donc j’existe.

René Descartes
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Super-Resolution Approach with Sparsity
Constraint

In Chapter 4, we have pointed out that the mentioned state-of-the-art meth-
ods suffer one of the following drawbacks: poor spatial resolution, sensitivity
to background noises, narrow dynamic range, high computational cost and
parameter dependence. Motivated by these limitations, we propose a method
to improve both the spatial resolution and robustness to noises in this chapter
[28, 34, 30]. There are three aspects to be considered:

e Problem of the model discrepancy of propagation steering vector. In
the forward model of acoustic signal propagation of Eq.(3.15), we have
modified the propagation steering vector of Eq.(3.16) by correcting wind
tunnel effects, such as the ground reflections and wind refractions as
discussed in A and B respectively. These corrections can be reduced
the signal propagation uncertainty to some extent, but unfortunately as
pointed out by article [79], the real propagation steering vector could
hardly be exactly modeled, thus the signal propagation uncertainty
could not be completely removed. Therefore, we take signal model un-
certainty into the Eq.(3.15) as shown in Fig.(5.1):

Z; = A(P)SZ +e; +€;, (51)

where ¢ € [1,-, ] is the sampling block number; €; = [g;1,- - ,&;m]
denotes the signal model uncertainty variables caused by the acous-
tic ground reflection and wind refraction in wind tunnel. So that it
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CHAPTER 5. SUPER-RESOLUTION APPROACH WITH SPARSITY
CONSTRAINT

M x1 M xN

Z

Figure 5.1: Illustration of sparse power equation with model uncertainty £ in Eq.(5.1).

is necessary to minimize the forward model uncertainty for the model
robustness. We also assume the mutual independence among forward
model uncertainty, source signals and background noises.

Super spatial resolution. The spatial resolution of the Conventional
BeamForming (CBF) method depends on the wave length and array ge-
ometry, so that we call it the low resolution method. The MUSIC and
deconvolution methods can achieve high resolution, which overcome the
physical constraints in the CBF, so that we call them high resolution
methods. The sparse constraint (regularization) methods such as the
SC-DAMAS in Eq.(4.59), CMF in Eq.(4.60), as well as the proposed
approach in this Chapter, they can furthermore improve the spatial res-
olution by adding useful constraints on source signals or effectively elim-
inating the background noises, so that we call the the super-resolution
methods. Here we have to point out that so called ’super-resolution’ is
different from the one in image processing. .

Robustness to noises. We then want to jointly estimate the source pow-
ers and background noise power. So that the noises can be removed
automatically during the source power estimation.

This chapter is organized as: In order to improve the model robustness,

we propose an improved model of acoustic power propagation in Section 5.1,
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Proposed forward model of acoustic power propagations

and we consider the model uncertainty caused by multi-path propagation in
wind tunnel. Then our regularization approach with sparsity constraint is
investigated in Section 5.2. Then, method comparisons with classical method
are shown on simulations in Section 5.3 and real data in Section 5.4 respec-
tively. To further confirm the effectiveness of proposed approach, Section
5.5 demonstrates the performance comparisons on the hybrid data, in which,
some known synthetic sources are added to the real data. Finally, Section
5.6 concludes this chapter.

5.1 Proposed forward model of acoustic power propa-
gations

Let’s recall the beamforming power y, = alR.a, in Eq.(4.10). Here, the
measured cross-spectrum matrix R, = E[z z'] defined in Eq.(4.5) is renewed
by the improved model of measured signals z in Eq.(5.1):

R, = E[zz']
= AR,A" + 52Ty, + R, (5.2)
N
= ananaLJragIMJng,

n=1

where R, = E[sj g;] denotes the cross-spectrum matrix of signal model un-
certainty €; in Eq.(5.1).

As long as the sampling number is big enough (sampling block number
I >> 1), the improved cross-spectrum matrix R, of measured signals in
Eq.(5.2) is practically approximated by R, = %25:1 Z; ZZ-L in Eq.(4.6), where
z; is the measured signal vector in the ith sampling block at all M sensors.
So that on the left of y, = alR.a, in Eq.(4.10), we actually calculate the
beamforming power as

Yo = &l R4, ,
where 1, is the measured beamforming power at the position of p, on the

source plane; a, is the beamforming steering vector for the position p,,
defined in Eq.(4.9). On the right of above equation, we replace R, by using
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R. =" z,a.a] +02Iy + R. in Bq.(5.2), it yields

N
Yy, = al Z Zq aqaj] a,+o’ala,+a R.a,

q=1

al 1

= " |af ay|*z, + o7 TP +a' R.a, (5.3)
g=1 "
al 1

_ chqxq + o2 TP +al R.a,.
g=1 "

where the beamforming steering vector a,, = ﬁ in Eq.(4.9), so that al a, =

1
[lan |2

For N discrete sources, equation (5.3) can be rewritten in a vector form
as shown in Fig.(5.2). Finally, we obtain the improved forward model of
acoustic power propagation as:
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Figure 5.2: Illustration of the improved forward model power propagation with multi-path

uncertainty in Eq.(5.4).

y=Cx+o’1,+¢&, (5.4)

where
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Proposed approach using sparsity constraint

ey = |y, - ,yn| is the beamforming power vector measured at sensor
Y =19 (Y g
array, calculated from Eq.(4.10);

o1, = [m, e ,W]T is a constant vector; a, is the steering vector
calculated form Eq.(3.16).

o &£ =&, -, &n]T denotes the power model uncertainty caused by multi-
path propagations; and &, is modeled by
&n=a R.a,. (5.5)

In Fig.5.3, it shows the relationship between the improved power propa-
gation model in Eq.(5.4) and the convectional one in Eq.(4.46).
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Figure 5.3: Tlustration of improved forward model of acoustic power propagation.

5.2 Proposed approach using sparsity constraint

Compared with classical sparse regularization method in Eq.(4.58-4.60), we

2

want to jointly estimate the source powers x and background noise power o2

by minimizing the propagation uncertainty &£. In order to obtain super res-
olution in strong background noises, we adaptively estimate the sparsity pa-
rameter 5 on total source power. Therefore, proposed robust super-resolution
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5.2.1 - Adaptive estimation of sparsity parameter

approach with sparsity constraint (SC-RDAMAS) is expressed as:

~

(x,02

€

(x,02)
x|li=8, 0:>0

) = arg min {Hy — Cx — az 1a\|§}
, (5.6)
stx =0, |

where sparsity parameter (3 is the total power of source signals, so that (§ is
defined as:

K N
B=> ap ==Yz =Ixl: = tr[X], (5.7)
k=1 n=1

where K is the total number of original source signals s*; and x* =
diag [E[S*S*TH denotes the original source powers; x = diag |E[ss']] denotes
the (discrete) source powers; X = E[ss] denotes the source power cross-
spectrum matrix. If § in Eq.(5.7) is modeled too large, the estimated X
from Eq.(5.6) would be more dispersed than expected. If 8 too small, some
of weak sources would be left out. Therefore, the adaptive estimation of
sparsity parameter [ is an essential issue in the proposed approach.

5.2.1 Adaptive estimation of sparsity parameter

Compared with the Covariance Matrix Fitting (CMF) method|[128] in
Eq.(4.60), we give an Adaptive estimation procedure of sparsity parame-
ter. According to the definition of measured cross-spectrum matrix R, in
Eq.(4.5), we take the matrix trace as:

tr[R] = tr[AX AT+ M o?
= i llanl? @, +Ma?

where a,, is the nth column of signal propagation matrix A, defined in
Eq.(3.16). Let ||a||min and ||al|;mae respectively denote the minimum and

(5.8)

maximum vector norms within a,, n = [1,--- , N]. From Eq.(5.8), we have
1 1
a2 (tr R.] — Maz) < |Ix|; < W (tr R.] — M02) , (5.9)
a a

max mwn

where ||x||; = 32V, #, and z,, > 0 in Eq.(5.7). Since R., is also a Hermi-
tian matrix, it can be diagonalized as tr [R,] = tr [UAU'] = tr[A], where
U is the unitary matrix, whose columns are eigenvectors of R,; and A is
the eigenvalue matrix of R,. According to Eq.(5.7-5.9), we can obtain
estimation as:

1 ) (tr Al - M 62) , (5.10)

min

s~ 1
b=
2 falle  Tal
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where A is the eigenvalue matrix of R, in Eq.(4.6). And 62 can be estimated

as [128]: y

. 1 .
g:M—f( Z Am s (5.11)
m=K+1
where A, enotes the eigenvalue of R, satisfying 5\1 > > N\ > ;\K+1 =
= A\ = 62; and M is the total sensor number; K denotes the estimated
source number, provided K e [1,--+, M]. When K = M, we have noise

power 62 = 0.

In Eq.(5.10), source number K estimation plays an importance role in de-
termining 8. There are many methods for source number estimation such the
SVD[32] and Bayesian framework [94]. Our article [34, 28] gives a fast and
rough estimation on K as: let F(A\y,) = F[A1, -+, Ay withm € [1,--- | M]
denote the eigenvalue distribution function, where F[-] denotes the inter-
polation. The first K big eigenvalues should contain the K original source
powers, while the latter M — K eigenvalues just equal the noise power o2. So
that F(\,,) has a sparse distribution. Suppose F(A,,) to be second deriva-
tive, when its curvature x(K) & 0 within K € [1,---, M], we can thus
get K ~ K. However, since the under-estimation of source number could
eliminate the weak sources, it is better to initialize K as a relative big value.
Therefore, we can use the upper bound of source number as discussed in
compressed sensing [12, 20, 10] as:

1 1
K = < —(1+-— 5.12
Il < 501+ ). (512

R/ R,
where p1 = max(j<i£j<nr) m denotes the incoherence of the measured

cross-spectrum matrix RZ, where R denotes its 7th column vector. Accord-
ing to Eq.(4.5) and independence assumption between sources and noises, p
can reflect the incoherence of source power cross-spectrum matrix X.

5.2.2 Proposed adaptive estimation procedure

In Eq.(5.6), proposed approach is a convex quadratic minimization under
linear matrix constraints, which can be solved by interior point algorithms
using MATLAB toolbox SeDuMi [109]. In order to improve the robustness
to background noises o and sparsity parameter 3, we propose an adaptive
estimating algorithm as depicted in Algorithm 1: Let J(x,0?) = |ly —
Cx — 02 1,||5 define the cost function. We firstly initialize source number K
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5.2.2 - Proposed adaptive estimation procedure

Algorithm 1 Proposed adaptive estimation procedure

1. Input:
Signal propagation matrix A in Eq.(3.15);
measured signal cross-spectrum matrix R in Eq.(4.6);
measured beamforming powers y in Eq.(4.10);
power propagation matrix C in Eq.(4.47);

2. Initialization:

Iteration number i=1;

source number KV = 1(1 4 +) in Eq.(5.12);
variables x(M=0; JA?(I)—O;

)0, 7z, 02"

criterion 7 (x(1), o2 )=1;
3. Iterations: "
While |7 (x0+1) ag ) — J(x% 02| is not small enough;

3.1 Update: &2 by Eq.(5.11), 3@ by Eq.(5.10);
3.2 Optimize:

Solve Eq.(5.6) by interior point algorithm [109]:
‘ ~ (i1 NIDNYY

(%D, Ug( + )) = arg min .2 {\7(&(1)’ Ug( ))}

t. [jx[[; < D, X0+ >0, ¢ (Z+)>0

3 3 Tterate: K0+ — K<> — 1 i=i+1;

(i+1)

~

4. Output: X, 028, K, B.

by using the matrix incoherence u of Eq.(5.12). Then 62 is obtained from
Bq.(5.11) and § from (5.10). And then we simultaneously estimate source
powers x and o2 by using the interior point algorithm [109]. Finally we
update K1) = K@ — 1 for a new estimation.

5.3 Simulations of monopole and complex sources

This section shows the typical simulations on source power reconstruction
and localization of monopole sources. To focus on method comparisons, we
do not consider the ground reflection and wind refraction in simulations. But
we should reconsider the multi-path propagation effects in wind tunnel ex-
periments. The proposed SC-RDAMAS approach is compared with the CBF,
DAMAS, CLEAN, CMF and SC-DAMAS methods mentioned discussed in
Chapter 4.

The simulation configurations are also the same as the one in Chapter 4.7
as shown in above figure: there are M = 64 non-uniform sensors locating
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on the vertical plane. d = 2m is the averaged size of sensor array. D =
4.50m is the distance between the sensor plane and source plane. ¢y =~
340m/s is the acoustic speed in the common air. 7' = 10000 is the total
number of samplings. For the simulated sources in Fig.5.4(a), there are
simulated 4 monopoles and 5 complex sources, spaced at least 20cm from
each other. Original source powers x* are within [0.08,2] (|-10.3,3.7|dB) and
14dB dynamic range. The noise power is set o2 = 0.86 (-0.7dB), thus the
averaged SNR is 0dB. To simulate a sparse distribution of discrete source
signals, Ap = 5cm is used to discretize the 100 x 150 ¢m? source plane, so
that the power image is of 21 x 31 pixels. Since total grid number N = 651
is much more larger than the maximal original source number K = 23,
the discrete source signals s and their source powers x are both K-sparsity
signals.

5.3.1 Simulation results

In Fig.5.4(h), proposed SC-RDAMAS approach not only detects most of
the complex sources, but also well reconstructs source powers and positions
in poor SNR situation. According to the adaptive estimation procedure in
Algorithm 1, K = 25 is better initialized owing to & 0.02 from Eq.(5.12).
According to the three quantitative criteria Az*, Ap* and & in the Table
5.1, 5.2 and 5.3 respectively, the proposed approach works much better than
the others:

e Compared with the low spatial resolutions of the CBF (5gBF = 3lcm
at 2500Hz), proposed approach makes good use of sparse distribution
of source powers and it achieves the resolution as high as 5cm in both
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5.3.1 - Simulation results
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Simulations of monopole and complex sources

horizontal and vertical directions. Since the horizontal aperture of NUA
array is larger than the vertical, all the results of classical methods
obtain better horizontal resolution. But proposed approach still achieves
the high resolution in vertical direction.

e Compared with the sensitiveness of deconvolution methods, proposed
approach greatly improves the robustness by jointly estimating the back-
ground noise as well as the source powers.

e Compared with sparse regularization methods, the sparsity parameter

on the total source power is adaptively estimated. So that fits well for
the strong i.i.d AGWN noise.

e To make a fair comparison, we realize the CMF, SC-DAMAS and pro-
posed SC-RDAMAS based on Matlab toolbox SeDuMi [109].

In Fig.6.3, we show the relative error of power image reconstruction dy of
mentioned methods within SNR [-6, 18|dB at 2500Hz. Proposed approach is
more robust to background noises than other classical methods.

In Fig.6.4, we show reconstruction errors 9, versus different frequency bins
within [1600, 2600|Hz which affects the acoustic comfort of human being.
The SNR is set 3dB. At high frequencies, proposed approach provides the
most significant improvements. At low frequencies, proposed approach still
maintains small reconstruction errors.

Table 5.1: Power estimations of 4 monopole sources by average power estimation error
Ax*, relative errors of power image reconstruction d, and estimated noise power o? at
2500Hz, SNR=0dB, simulated ¢ = 0.86; -’ means unavailable.

Source power | 0.08 | 0.18 [ 0.98 | 0.50 | Az* | 8y | o2,
CBF 1.57 | 11.28 | 3.51 [ 2.02 [ 69.64 | 121.9 | -
DAMAS - - - |044] 314 [ 133 | -
CLEAN - 1025 1044]0.28 ] 0.87 | 0.67 | -
SC-DAMAS - - - - [ 1.03] 058 | -
DR-DAMAS - - 1077102371 030 | 0.08 | -
CMF 009 - [0.80]040]| 0.31 | 0.10 | 0.89
SC-RDAMAS [ 0.09 | 0.10 | 1.05 [ 0.43 | 0.06 | 0.06 | 0.85

5.3.2 Over-winnowing effects on simulations
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5.3.2 - Over-winnowing effects on simulations

Table 5.2: Position estimations of 4 monopole sources by averaged position errors Ap* at
2500Hz, SNR=0dB; ’-’ means unavailable.

Position (-0.9,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | Ap*
CBF - - - - 1

DAMAS - (:0.6,0.85) | (-:0.3.1) | (:0.6,1.25) | 0.28
CLEAN (-0.95,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | 0.01
SC-DAMAS - - - (10.6,1.2) | 0.63
DR-DAMAS - - ((03,1) | (-0.6,1.3) | 0.43
CMF - (10.6,0.9) | (-0.3,1) | (-0.6,1.3) | 0.29
SC-RDAMAS | (-0.9,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | ©

Table 5.3: Power estimations of the complex monopole source on the center of image by
power estimation error Az* at 2500Hz, SNR=0dB; -’ means unavailable.

Source power | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | Az*

CBF 2.64 1 9.60 | 9.70 | 9.64 | 11.34 | 9.77 | 6.78
DAMAS 4.50 | 1.25 [ 0.48 | 2.54 | 0.49 | 1.88 | 1.15
CLEAN 2291037169 | - 0.27 | 0.34 | 1.27
SC-DAMAS 1.68 | 249 | 1.16 | 0.10 | 2.23 | 0.65 | 0.75
CMF 1.36 | 2.86 | 2.07 | 2.09 | 1.92 | 1.05 | 0.45

DR-DAMAS | 2.15|2.05|1.82 | 1.83 | 2.50 | 1.45 | 0.27
SC-RDAMAS | 1.83 | 2.00 | 2.05 | 1.72 | 2.16 | 1.95 | 0.12

One of the common limitations in the SC-DAMAS, CMF and proposed
SC-RDAMAS, is the over-winnowing effect which is well known in the com-
pressed sensing[12, 20, 10]: the sparse results are often composed of discon-
tinuous and unstructured (shapeless) points rather than continuous source
distributions. Though these shapeless points could represent the monopole
source power to some extent, they could hardly present distributed sources.
Taking Fig.5.4(e) and (g) for example, the SC-DAMAS and CMF can only
obtain discontinuous monopoles for complex sources. In Fig.5.4(h), though
proposed SC-RDAMAS well detects most of the sources, it could barely dis-
cover one complex source whose continuous pattern is a vertical line. More-
over, the artifacts on the three figures are always monopole points which are
near to sources.

The first reason for the above over-winnowing effects is the sparsity pa-
rameter influence. In Fig.5.7, we compare the sparsity parameter influence

on d9 error between the SC-DAMAS and proposed SC-RDAMAS at 0dB and
2500Hz. The sparsity constraint is interpreted by the total source power 3
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Simulations of monopole and complex sources
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Figure 5.5: Performance comparison for relative errors of power image reconstruction d,
versus SNR [-6,18|dB on simulations at 2500Hz.
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Figure 5.6: Performance comparison for relative errors of power image reconstruction d,
versus [1600, 2600|Hz on simulations at SNR=3dB.

so as to regularize data fitting errors in Eq.(4.59) and Eq.(5.6) respectively.
And g in Eq.(5.10) mainly depends on the source number K estimation, when
background noise is supposed to be i.i.d AGWN. Therefore, to evaluate the
sparsity parameter is equivalent to evaluate the source number estimation.
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Relative reconstruction error VS Source number at SNR=0dB
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Figure 5.7: Sparsity parameter influence caused by estimated source number K versus
power image reconstruction error 5 between the SC-DAMAS and proposed SC-RDAMAS
at 0dB and 2500Hz.

Since complex sources in Fig.5.4(a) are supposed to be made of uncorrelated
monopoles, it is reasonable to take K € [9,23]. In Fig.5.7, when K <9is
under-estimated, it is clear to see that d9 error of the two methods are both
very sensitive to K , so that neither of them could obtain a good reconstruc-
tion. When 9 < K < 23, proposed approach can obtain smaller 9, errors, but
both of the two methods could hardly achieve stable results. When K > 23is
over-estimated, proposed SC-RDAMAS steadily keeps much smaller d, than
the SC-DAMAS. Above all, proposed SC-RDAMAS can well initialize source
number K and adaptively estimate sparsity parameter § compared with the

SC-DAMAS.

Secondly, the sparsity constraint on total source power could not appropri-
ately model the source sparse distributions nor source structures. Suppose
two different source power distributions: x; = [1,2,3,0,0,0,0,0,0]" and
xy = [3,2,1,0,0,0,0,0,0] which have the same total source power 8 = 6.
To reconstruct x; and xs from their beamforming data y; and y, respec-
tively in the case of very strong background noises, it is highly necessary
to investigate other sparsity prior models [10, 29, (1] instead of only using
sparsity constraint § = 6. Therefore, in Fig.5.4(h), our approach can hardly
detect all the complex sources with different sparse distributions.

The last but not least, the monopole assumption on acoustic model is too
simple to model the complex sources with different patterns. Therefore, in
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Real data of wind tunnel experiments

Fig.5.4(h), our approach tends to generate unexpected monopole artifacts
near to sources, especially when the SNR is as small as 0dB. For the real
data in Section 5.4, this drawback will become the dominant reason, and
more obvious over-winnowing effects will be seen.

5.4 Real data of wind tunnel experiments
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Figure 5.8: Configurations of wind tunnel experiment: (a) Frontlook and ground reflection
(b) Overlook and wind refraction.

All the experiment configurations are the same as discussed in Chapter
4.8. But in real data, we do not know the exact source number or SNR
beforehand. Therefore, it is necessary to investigate the adaptive estimation
procedure in Algorithm 1 for robust acoustic imaging in wind tunnel tests.

The above figure shows the configurations of the wind tunnel S2A [30],
object vehicle, NUA array and wind refraction. We suppose that all acoustic
sources locate on the same plane. This assumption is almost satisfied, because
the curvature of the car side is relatively small compared to the distance
D=4.5m between the car and array plane. Since the scanning step is set by
Ap = 5em, the source plane of car side is of 1.5x 5 m? (31x 101 pixels), and
we also focus on a small region of the rear-view mirror: 1x1.5 m? (21x31
pixels). On the real data, there are T=524288 samplings with the sampling
frequency f,—2.56x10* Hz. We separate these samplings into I=204 blocks
with L—=2560 samplings in each bloc. The working frequency band is chosen
as [2400,2600]Hz, which is sensitive to human being. The image results are
shown by normalized dB images with 10dB span.
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5.4.2 - Results of wide-band data

For the actual propagation time 7,,, and distance r,,, in Eq.(3.11), we
apply equivalent source to make refraction correction. For 7_,, ,,, and r_,, ;,, in
Eq.(3.11), we use the mirror source signal s_,, to correct the ground reflection.
The details of the propagation corrections are discussed in A and B.

5.4.1 Results of single frequency data

In Fig.5.9(f), proposed SC-RDAMAS not only manages to distinguish the
strong sources around the two wheels, rear-view mirror and side window, but
also successfully reconstructs the week ones on the front cover and light. In
fact, the proposed adaptive estimation procedure in Algorithm 1 inevitably
increases more computational cost than the deconvolution methods such as
DAMAS and CLEAN. But our approach still remains a moderate complexity
compared with sparse regularization methods such as the SC-DAMAS as
shown in Table 5.4. Due to the high dimension of variables in source power
cross-spectrum matrix, we can not realize the original CMF method on real
data.

Table 5.4: Computational cost for treating whole car: image 30x100 pixels, at 2500Hz,
based on CPU:3.33GHz, ’-” means unavailable.

Methods | CBF | DAMAS (5000i) | DR-DAMAS (5000i) | CLEAN | Proposed | SC-DAMAS CMF
Time (s) 1 10 11 45 852 1254 Very Long

Based on the acoustic imaging on the car side, we investigate a small
part of the rear-view mirror. In Fig.5.10(a), the CBF detects strong sources
on the corner of the front wheel and rear-view mirror. The DAMAS in
Fig.5.10(b) improves the spatial resolutions, but it causes some unexpected
spots. In Fig.5.10(c), the DR-DAMAS eliminates most of false spots. In
Fig.5.10(e)-(g), the CMF, SC-DAMAS and proposed approach achieve much
better resolutions and offer more details of source power distributions on the
rear-view Imirror.

5.4.2 Results of wide-band data

In wind tunnel tests, acoustic sources are usually generated by wind frictions
against the car surface. Different car parts produce different characteristic
frequencies. Therefore, acoustic signals have the wide frequency band. In
Chapter 3, we have taken DFT transformation and separated the wide-band
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Figure 5.9: Acoustic imaging on the vehicle side at 2500Hz.

Left:  Real data (a) Vehicle surface  (b) Beamforming (¢) DAMAS (5000i) (d)
DR-DAMAS (5000i) (e) CLEAN (f) SC-DAMAS and (g) Proposed approach.

Right: hybrid data (a’) Simulated sources (b’) Beamforming (¢’) DAMAS (5000i) (d’)
DR-DAMAS (5000i) (¢’) CLEAN (f”) SC-DAMAS and (g’) Proposed SC-RDAMAS.

111



5.4.2 - Results of wide-band data

14
13 13f 1
2 2 : 2
2 12f
1f
s 1 s 1t s
° 09 © 09t I ©
£l o8
9 o 9 o7 I I 9
- N ;
(b (o8
1
13 ] 13 -t 13
2 -2 2
2t 120 120
| 2 B |
11f " 1| " L1f | | | .-
H u .I
it 5 1 5 1t s
| || || |
09 H - 09 - 09 H °
7
o} = ol W
ol ~ ~ , 0 , o ,
N \
L om M -
(A B (e (F :
14
13 -
-2
12
1
1 ] "
| ...
s
| o
09
| 7
08
e
-
L
P el i H i i 0
EET e o8 o5 o4 o2 0

Figure 5.10: Acoustic imaging of rear-view mirror at 2500Hz: (a) CBF (b) DAMAS (5000i)
(c) DR-DAMAS (5000i) (d) CLEAN (e) CMF and (f) SC-DAMAS and (g) Proposed SC-
RDAMAS

Figure 5.11: Wide-band data over [2400,2600|Hz: (a) CBF (b) DAMAS (¢)DR-DAMAS (d)
CLEAN (e) SC-DAMAS and (f) Proposed SC-RDAMAS

into L independent frequency bins, then we have engaged signal processing in
each frequency bin. Using the proposed SC-RDAMAS approach in Eq.(5.6),
we can obtain X(f;) as the estimation of source power x(f;) at Ith frequency
bin. Finally, total power x,,;, over the wide-band [ fiin, frmaz] can be estimated
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Real data of wind tunnel experiments

by averaging the summation of estimated result in each frequency bin as:

fmam

. 1 .

%=t > K(f) (5.3
fl:fnLin

where in real data, we take f,,;, = 2400 and f,,.. = 2600.

Based on the imaging results at single frequency, we show performance
comparisons of wide-band data within [2400, 2600]Hz which affects the acous-
tic comfort. In Fig.5.11, each method obtains a clearer result than the cor-
respondent one at 2500Hz in Fig.5.9. This is because that source powers
are enforced, but flashing false targets are suppressed over the wide-band
average. The reconstruction of DAMAS in Fig.5.11(a) is reasonable, but its
spatial resolution is not high enough on the front wheel and rear-view mirror.
Figure.5.11(b) shows that the CLEAN greatly ameliorates the resolution, but
unexpected points under the car caused by the ground reflection should be
further eliminated. The SC-DAMAS in Fig.5.11(c) has the advantages of the
CLEAN, but it could not detect the weak sources around the back wheel
due to the sparsity parameter selection. Finally in Fig.5.11(d), the proposed
approach provides the more acceptable reconstructions of source positions
and powers for the strong sources on the mirror and the front wheel, as well
as weak ones on the back wheel.

5.4.3 Over-winnowing effects on real data
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Figure 5.12:  Sparsity parameter influence of proposed SC-RDAMAS on real data at
2500Hz: (a) Under-estimated § (b) Over-estimated f.

The over-winnowing effects caused by the sparsity constraint in Fig.5.9(e)
and (f) are more obvious than the simulations in Fig.5.4(e)(g)(h). This phe-
nomenon on the real data could be explained by the following facts:

Source model problem. Some of acoustic sources on the car surface (wheels
and rear-view mirrors) might be distributed sources which have structures
and patterns. Thus the monopole source model used in this article could not
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5.4.3 - Over-winnowing effects on real data

fit any more. Since the sparsity constraint (¢; norm) on total source power
enforces the monopole reconstructions and neglects source structures to some
extent, the mentioned sparsity methods prefer to offer the discontinuous point
results, as typically shown on the back wheel in Fig.5.9(e) and (f).

Sparsity parameter problem. In proposed approach, the estimated sparsity
parameter B in Eq.(5.10) depends on the source number and background
noise power. On real data, however, it is hard to estimate source number K
on the car surface. Moreover, background noises in the wind tunnel are not
always 1...d AGWN noises. Consequently, it is not easy to exactly derive B
from Eq.(5.10). In Fig.5.12(a), if 3 is under-estimated, some weak sources
would be inevitably lost on the headlight, top antenna and side window. And
source patterns on the rear-view mirror and back wheel would be roughly
expressed by several discontinuous points. If B is over-estimated, both weak
sources and source patterns could be better detected, but the artifacts would
be produced in the air and under the car body. Similarly over-winnowing
effects can also be seen in Fig.5.10(d) (e)and (f) and Fig.5.11(c) and (d).
But according to the adaptive sparsity parameter estimation procedure in
Algorithm 1, proposed approach try to avoid under-estimate /3.

5.5 Results with hybrid data

Even though proposed SC-RDAMAS approach obtain good performance on
real data from wind tunnel experiments, it is not sufficient for performance
validation. This is because the exact acoustic source distributions on the
vehicle caused by wind flow are not known beforehand. To further verify the
proposed method, we use the hybrid data which composes of known synthetic
sources and the real data. The synthetic sources are generated in the same
way as discussed in Chapter 4.9.

For the synthetic sources, figure 5.9(f”) shows that proposed approach
successfully detects most of the source powers and patterns. For the original
sources in hybrid data, the proposed approach better discovers both strong
and weak sources on two wheels and rear-view mirrors, as well as obtains a
better noise suppression compared with mentioned methods in Fig.5.9(b’)-

(e7).
In brief, the experiment results well agree with the simulations. The

proposed SC-RDAMAS approach can achieve as good performance as the
mentioned classical methods.
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5.6 Conclusions and perspectives

In this chapter, we propose a robust super resolution approach with sparsity
constraint for the acoustic imaging on the vehicle surface in wind tunnel
experiments. The main contributions are:

For the robustness to background noises, we improve the forward model
of power propagation by considering the noises at the sensors, as well as the
propagation uncertainty caused by wind fraction and ground reflection in
wind tunnel. The latter one is often ignored by classical methods. For the
super spatial resolution, we adaptively estimate the sparsity parameter on
source powers in the proposed Algorithm 1.

For the approach validation, we present performance comparisons with
classical methods. The simulations show that proposed approach obtained
the bem super resolution compared with the beamforming resolution 31cm
at 2000Hz. It achieves 15dB dynamic range of power estimations, and well
detects complex sources with different patterns. The real data results demon-
strate that proposed approach effectively reconstructed strong sources on
front wheels and rear-view mirrors, as well as the weak sources on back
wheels. The hybrid data experiments furthermore confirm the effectiveness
for reconstructing the known synthetic sources and original sources in the
real data. We also show the moderate computational cost of our approach
for the acoustic imaging in wind tunnel tests.

In Table 5.5, we give a brief summary for the advantages and drawbacks
of mentioned classic methods and proposed SC-RDAMAS approach .

Table 5.5: General performance of classical methods and proposed SC-RDAMAS ap-
proach.

Methods CBF MUSIC CLEAN DAMAS | DR-DAMAS | SC-DAMAS | CMF SC-RDAMAS
Resolutions Low High Normal Normal Normal High Higher Higher
Dynamic Range | Narrow | Normal Normal Normal Normal Normal Wide Wide

Noise Robust | Sensitive | Sensitive | Sensitive | Normal Sensitive Robust Robust
Computation Least low Normal Normal Normal High Higher High

Samples Normal | More Normal Normal Normal Normal More Normal
Source number No Required | Required | No No Required Required | Required

The main drawback of proposed approach is the over-winnowing effect
existed in the compressed sensing methods. Due to the same sparsity con-

115
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straint, it sometimes just obtains many unstructured or shapeless points and
could not reconstruct the true source distribution, especially when acoustic
sources could not be modeled by monopoles. To overcome this limitation,
Chapter 6 investigates a Bayesian inference with a sparse prior |33, 29| which
enforces the sparsity of source power distributions.
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e [’homme qui sait réféchir est celui qui a la force illimitée.

Honoré de Balzac
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Bayesian Approach with a Sparsity Enforcing
Prior

As discussed in Chapter 4, the classical methods such as spatial filters (Beam-
forming, Capon, MUSIC), deconvolution and regularization methods suffer
one of such limitations as: poor spatial resolution, sensitivity to background
noises, narrow dynamic range, high computational cost or parameter depen-
dence. In Chapter 5, we proposed a super resolution method with sparsity
constraint (SC-RDAMAS), which overcomes most of the mentioned limita-
tions to some extend. However, the sparsity parameter should be estimated
carefully for good use. And the over-winnowing effect caused by sparsity
constraint cannot always be avoided.

In this chapter, we are going to propose a Bayesian inference approach
using a sparsity enforcing prior [29, 32, 31, 33]. So that we can get the ro-
bust acoustic imaging result in strong noise interference, and obtain high
resolution and wide dynamic range of estimated powers. This sparse prior
can better embody the sparsity characteristic of source distribution than
the sparsity constraint. Furthermore, instead of empirically selecting impor-
tant parameters, proposed Bayesian approach can automatically reconstruct
source positions and powers, and alternatively estimates hyperparameters
such as background noise power, the uncertainty of forward power model
and other parameters in prior model. At the first step, we propose to use
the Joint Maximum A Posterior (JMAP) estimation to jointly estimate all
the unknown variables and parameters. However, this JMAP needs a non-
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quadratic optimization and causes large computation cost.

This chapter is organized as follows: proposed Bayesian inference ap-
proach is presented in Section 6. On simulations, Section 6.4 demonstrates
performance comparisons of the proposed approach with state-of-the-art
methods for the monopole and complex source imaging. Results of the real
data in wind tunnel experiments are illustrated in Section 6.5. In order
to further prove the effectiveness of proposed Bayesian approach, Section
6.6 demonstrates its performances on hybrid data, in which some known
synthetic sources are added to the real data. Finally the conclusions and
perspectives are summarized in Section 6.7.

6.1 Bayesian inference methods

Bayesian inference methods [113, , 84, 87, 5, 24, , 29] have been re-
cently applied in acoustic imaging and successfully overcome the drawbacks
of deconvolution and regularization methods. Bayesian inference is a pow-
erful methodology for solving ill-posed inverse problem. It aims to estimate
the unknown random variables by applying the Bayes’ rule to update the
probability law: a posterior probability is obtained based on both the likeli-
hood and prior models, in which, the previous one can be derived from the
known data and forward model, while the latter can be adaptively imposed
on the unknown random variables. Comparing to the classical determined
methods, there are at least three advantages:

e The prior model acts like the regularization term, but work much better
than it. This is because the prior model can appropriately translate
the physical and statistical characteristics of unknown random variables
into a concrete mathematical model, so that prior models can, not only
bring in novel information into the under-determined forward model,
but also can greatly reduce the solution uncertainty of ill-posed inverse
problem.

e Important parameters of the deconvolution or regularization methods
can be seen as the unknown quantities and estimated in the same way.
Some of unknown quantities such as forward power model uncertainty
caused by multi-path propagation, and the background noises at the
sensor array can be modeled by proper prior models according to their
statistical properties, physical nature, and even our presumptions.
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e All unknown random variables can be estimated by well developed op-
timization methods such as the Maximum Likelihood (ML), joint Max-
imum A Posterior (MAP), Variational Bayesian Approximation (VBA)
which are the analytical methods, as well as the Gibbs Sampling and
sequential Monte Carlo methods which are the numerical methods. Not
only the mean values of unknown random variables can be estimated by
Bayesian inference, but also the error ranges (variance) of these variables
can be also obtained in the same time.

e However, one of the biggest limitations of Bayesian inference methods
is the tremendous computational burden to get a global or sub-global
optimization results. And some of optimizations cannot be implemented
for practical use. So that it is a worthy work to balance the estimation
performance and the calculating time.

Starting with our improved forward model of acoustic power propagation
in Eq.(5.4):
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Hlustration of sparse power equation with power model uncertainty & in Eq.(5.4).

y:Cx+U§1a+£

we can assign the likelihood p(y|x) based on the basic information of power
model uncertainty & (§ > 0). Generally, £ is supposed to be Gaussian distri-
bution as & ~ N (€0, ag), where Ug represents the power model uncertainty.
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Thus the likelihood p(y|x, 1) is obtained in narrow frequency band as fol-
lows:

1 ly — Cx — 071 y]?

p(ylx,61) = @TE)N/QGXP (6.1)

2
205

where unknown parameters 8; = [0, J?]T denotes the hyperparameters of
the above likelihood, and 6, are independent to source powers x; and p(-)
denotes the probability density function (PDF). In practice, y are known as

the measured beamforming powers y from Eq.(4.10).

Let @ = [0, 05)7 denote the hyperparameters to be estimated, with 6,
being likelihood hyperparameters and @, being the prior hyperparameters.
And assume 0 = [0, 05]T and source powers x are mutually independent to
each other.

According to the assigned likelihood in Eq.(6.1), the Maximum
Likelihood[10, 69] (ML) estimation is classically used as

X = arg max {p(ylx,0)}

Now if we can assign a prior law p(x|62) on x, we can obtain
p(x]y, 0) < p(y[x, 61) p(x|62)

using the Bayes’ rule p(x|y, 8) = p(y[x, 61) p(x|62)/p(y) with p(y) being a
constant for the observed data y.

Then if we apply the Maximum a Posterior (MAP) criterion, we can obtain
XNAP = argrr(lagx {p(x|y,0)} = arg II(li)Il{— In p(y|x,01) —In p(x|62)} ,

where In denotes Logarithm operator.

And then if @ is unknown, we can also consider it as an extra unknown
variable and try to estimate them by defining the joint posterior due to the
full Bayes’ rule:

p(x, 0ly) < p(y|x,0) p(x, 6)
= p(y|x, 01) p(x|62) p(82) p(61)
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where x and 0 are mutually independent. In this case, the proposed joint
MAP (JMAP) criterion is thus given as follows:

(%,0)j214p = arg max {p(x,0ly)}

)

= argmin{—In p(y[x, 1) — In p(x|0>) —In p(6,) —In p(61); |

(6.2)
where — In p(x|62) can be interpreted as the regularization form F(-) in
Eq.(4.58), and hyperparameter 0, takes the similar effect as the regulariza-
tion parameter does in Eq.(4.58). Indeed, one of the advantages of Bayesian

inference approach is that hyperparameters @ = [0, 05]7 can be jointly es-
timated by JMAP in Eq.(6.2).

6.2 Proposed sparsity enforcing prior on source power
distribution
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Figure 6.1: Generalized Gaussian family: (a) Probability density function GG(x,,) and (b)
—In[GG(x,)] function.

In Eq.(3.14), source signals s include just K non-zero signal s* in the space
domain, which is rather small with respect to N — K zero values (N>>K).
Therefore, the source powers x defined in Eq.(3.19) are also of the K-sparsity
signals. For the PDF distribution of x, most of the high probability values
should concentrate around the original zero of x. Meanwhile, x contains dif-
ferent items, among which, the difference between the maximal and minimal
powers could be of 10dB dynamic range. This large dynamic range of powers
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can be represented by a PDF distribution with a long heavy tail among the
large values of x. For the prior p(x|@2) on source powers x, we reconsider the
sparsity fact that acoustic sources sparsely lay on the surface of the object,
and the source number K is relatively much smaller with respect to the total
scanning points N on the source plane. Taking the vehicle in the wind tunnel
test for example, most of sources mainly locate on the particular parts the
rear-view mirrors and wheels, whereas for the rest parts, there are few sources
existing. Such a sparse distribution can be represented by a centralized PDF
function that has a very high value around the original zero (sparsity) and
a long heavy tail (dynamic range of source powers). This kind of central-
ized PDF function can be selected among the Generalized Gaussian GG(x),)
family. The above sparse distribution can be defined from the Generalized
Gaussian GG(x,,) family as discussed in [17, 87]. For the uncorrelated cen-
tralized x, we take the Double Exponential DE(x|v, 5) model as the sparsity
enforcing prior as follows::

p(x162) = Hgg w8 = || exp[ vZW] (63
where 02:[7,5] and

(xnh/ B) QF(Bl/ﬁ) exXp [_flen‘B} ’ (64)

where I'(-) denotes the Gamma function, and shape parameter [ reflects
the degree of sparsity, it controls the concentration of p(x|63) at zero value.
Thus the smaller 3 is, the sparser p(x|€2) becomes. And parameter «y reflects
the inverse variance of x,, it controls the tail of p(x|0;) and it affects the
dynamic range of x. Thus the smaller v is, the longer and heavier the tail
becomes.

In the case of § = 2, we get Gaussian N (0, %) model:

p(x]6) = HN ral0. o) = (2) P esp [lxlE] . (65)

where 8y = v, and v = L reflects the inverse variance of x, with o2 being
the variance of x.

When § = 1, we get the Double Exponential DE(x|v, 8) model from
Generalized Gaussian gg (x) family as follows:

p(x[02) = mem 9= (1) el . (69)
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where @5 = 7 is the scale parameter, which controls the dynamic range of x,
and ||x||g=1 represents the [; norm, which can promote the sparsity of x.

In Fig.6.1, four examples of GG(x,,) family and their —In[GG(x,,)] func-
tions are illustrated. When v = 1 is fixed, the smaller g is, the sparser p(z,,)
becomes. When 5 = 1 is set, the smaller v is, the heavier tail of p(x,) be-
comes. The proper values of § and v can balance the sparsity and dynamic
range. For cases 0 < 8 < 1, it is of great interest to enforce sparsity, but un-
fortunately, its —In[GG(x,,)] function is not convex. For the case =1 and
proper 7, the Double Exponential DE(x|v, ) model can promote sparsity
and obtain wide dynamic range, moreover, its — In[GG(z,,)] function is con-
vex as well. Moreover, the symmetric PDF of sparsity distribution in Fig.6.4
could be explained that the negative source power distribution representing
the mirror source powers due to the ground reflection effect in wind tunnel
experiment.

In conclusion, we select the Double Exponential DE(x|v, 8) model with
£ = 1 as the sparsity enforcing a prior. Here, we have to confine the non-
negative constraint on source powers x > 0, since the DE(x|v, f) model is
the symmetry distribution.

For hyperparameters @ = [01,05]7, we have 6; = [ag,ag]T, 0, =

~v. Assuming the independence among hyperparameters, it yields p(@) =

2

p(o?) p(o?) p(v). Since these parameters are non-negative, we take Jeffreys

priors [63] for simplicity as follows:

1 1 1
2 2
p(ae> ~ O__ga p(0§> ~ 0__27 p(V) ~ ; (67)

One of the advantages of Jeffreys priors is, taking p(y) ~ % for instance,
Jeffreys prior model mainly depends on v, and it does not bring in other
parameters which have to be selected carefully for good use.

6.3 Proposed Bayesian Joint Maximum A Posterior cri-
terion

There are several classical methods [114, 49, , 1] to solve the joint poste-
rior probability in Eq.(6.2). Here we choose the JMAP [1] estimation, since
JMAP can build up a relationship with the classical regularization method in
Eq.(4.58). Based on the selections of prior models in the above, we take the
followings into the Eq.(6.2): the likelihood p(y|x, 81) in Eq.(6.1), the sparsity
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enforcing prior p(x|602) in Eq.(6.6), and Jeffreys priors p(0) of parameters in
Eq.(6.7). By omitting trivial value terms and considering the non-negative
constraints of source powers and hyperparameters, our proposed Bayesian
approach is obtained as follows:

( (%,0) =arg min {7 (x, 6)}

1 N
< j(x,@):T‘E||y—Cx—g§1aH2+ || —|—Elna§—Nln77

y VO
> Like\lirhood - Sparseprior Hyperparameter prior

\ s.tx = 0,07 = 0,07 = 0,7 =0

(6.8)
where hyperparameters @ = |02, 02, ~v|*; ¥ are known as the measured beam-
forming powers y from Eq.(4.10). In the cost function J(x, @), the first term

]T

represents the data fitting. The second term represents the ¢1 sparse regular-
ization, and v performs as the regularization parameter. The rest terms are
derived from the priors p(€), as well as the sparse prior p(x|vy). Particularly,
the JMAP estimation in Eq.(6.8) reveals that 7 should not be neither too
big nor too small, and its proper value can not only enforce the sparsity of
source power distributions, but also can promote the dynamic range of es-
timated source powers. For hyperparameter estimations in Eq.(6.8), we use
an alternative optimization procedure as: we first initialize x, then at any
iteration k11, we obtain a new value for @ by minimizing J(x*), 8) with
respect to 8. At the next iteration we alternatively update x by minimizing
J (x, 9(k)) with respect to x. Finally we repeat this alternative optimization
procedure until 7 (x, ) converges.

We have to point out 4 advantages with respect to classical methods:

e Estimation of a? and o2 improves the robustness to the power model
uncertainty and noise interference.

e Applying ¢; norm of ||x||; enforces sparsity of x, and achieve a super
spatial resolution of power distributions.

e Estimation of v provides a wide dynamic range of source powers, more-
over, v takes the similar effect as the regularization parameter a does
in Eq.(4.58).

e x and hyperparameters are alternatively estimated without knowing the
source number or SNR.
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6.3.1 Alternate optimization for hyperparameter estimations

For the JMAP criterion in Eq.(6.8), we alternatively estimate the source
powers x and hyperparameters as follows:

A (k) . . o (k)

0 = argmin{J(x",0)}

()

: (6.9)
o (k+1) . 5 (F)
X0~ arginf 7 (x.6"))

where hyperparameters are 8 = [02, ag, v]T. The first iteration begins based
on the simple initialization of x = 0.

Moreover, we can facilitate the estimation of ag as follows:

~ (k) < o (b ~ (k=1)
of = {Ra} — x| - Mo (6.10)

where R, is estimated from Eq.(4.6), and tr (R,) represents the total power
of measured signals. According to power conservation, the total measured
power tr (R,) consists of the source powers ||x||;, total noise powers Mo? at
M sensors, and the powers model uncertainty 02.

After hyperparameter estimation, X*) are alternatively optimized by the
~(k
steepest gradient algorithm based on the estimated hyperparameters 9( -

~ (k) ~ (k
[03( ), 022 ), AENT as follows:

&0 — 201 4 v 1(x, 8™ (6.11)

where p is the step size, which could be fixed as a small value, or optimally
selected as discussed in paper [71]. Since x > 0, ||x||; = S0, z,, the

gradient VJ(x, é(k)) is obtained as:

A 1 ~ (k
VI(x,6") = ——Ci(y - cx* - 20 +4P1y . (6.12)
0—2£
When 6" = [02 ",0% ,4"W]" is fixed, the JMAP criterion in Eq. (6.8)

is a convex minimization under linear matrix constraints. This optimization
can also be solved by interior point methods using MATLAB toolbox SeMuDi

[109].
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6.3.2 Relation with regularization approach

Furthermore, comparing to the classical methods of Eq.(4.58), the regular-
ization parameter can be expressed in function of hyperparameters in the
proposed Bayesian approach of Eq.(6.8) as follows:

a=2077, (6.13)

where we can see that a is proportional to ag and ~. Particularly when Gaus-
2
sian prior in Eq.(6.5) in 6.2 is used (7 = 35) on source powers, o = Z means

the inverse of signal-to-uncertainty ratlo Slnce we can take the power model
uncertainty as the background noises to some extent, a equals the inverse
of SNR. Our conclusion agrees with the argument in paper [26]. Comparing
to the classical regularization methods in Eq.(4.58), our proposed Bayesian
approach has the advantage of automatically estimating the regularization
parameter.

6.4 Simulations of monopole and complex sources

Ir —————— Wind-tuanel - - - - - -~ 1
Sy,

| |
® o

I @ I «® °
LY

() : °
I .
Object T we®
I ) Zl.
& /
I Scanning plane Microphone array

%md flow j l

. Scanning points @ Real source s"x A\ Equivalent source 5"

o1 e i @ Mcasurements Z . e Points
(a) . " (b)— = Dircct path 7, === Refraction —— Reflection

[lustration of simulations (a) Wind tunnel S2A |36] (b) Illustration of simulations and
experiments.

This section shows the typical simulations on source power reconstruction
and localization of monopole sources. To focus on method comparisons, we
do not consider the ground reflection and wind refraction in simulations.
But we should reconsider the multi-path propagation effects in wind tunnel

experiments. The proposed Bayesian approach is compared with the CBF,
DAMAS, CLEAN, CMF, SC-DAMAS and SC-RDAMAS methods.

The above figure shows the static vehicle (no engine noise), microphone
sensor array and the wind flow at the speed of 160km /h in the wind tunnel
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S2A [86]. One of objects of this wind tunnel is to detect acoustic powers and
positions on the car surface. This wind tunnel can simulate a traveling car
on the high-way and measure its acoustic comfort to the passengers-by.

The simulation configurations are also the same as the one in Chapter
4.7. In above figure: there are M = 64 non-uniform sensors locating on the
vertical plane. d = 2m is the averaged size of sensor array. D = 4.50m
is the distance between the sensor plane and source plane. ¢y =~ 340m/s
is the acoustic speed in the common air. 7" = 10000 is the total number
of samplings. For the simulated sources in Fig.6.2(a), there are simulated
4 monopoles and 5 complex sources, spaced at least 20cm from each other.
Original source powers x* are within [0.08,2] ([-10.3,3.7]dB) and 14dB dy-
namic range. The noise power is set 02 = 0.86 (-0.7dB), thus the averaged
SNR is 0dB. To simulate a sparse distribution of discrete source signals,
Ap = 5cm is used to discretize the 100 x 150 em? source plane, so that the
power image is of 21 x 31 pixels. Since total grid number N = 651 is much
more larger than the maximal original source number K = 23, the discrete
source signals s and their source powers x are both K-sparsity signals.

In this part, we first show the reconstruction results of source power im-
ages. Then we make quantitative comparisons of different methods. Finally
we further validate our proposed Bayesian approach by simulations in the
cases of various noise levels and different frequency bins.

Figure 6.2 shows the reconstruction results of simulated data at f=2500Hz
and SNR—0dB. In Fig.6.2(b), the beamforming [25] method merely gives
a very blurred result of strong sources due to its low spatial resolution
(AB =~ 3lcm at 2500Hz). In Fig.6.2(c) and (d), both the DAMAS [18]
with 5000 iterations (5000i) and CLEAN [123] could not provide reliable re-
constructions in strong background noises. This can be explained by the fact
that DAMAS omits the background noises as discussed in Eq.(4.51). As for
CLEAN, it iteratively subtracts the maximal source power from the original
beamforming result in Fig.6.2(b), but CLEAN might not easily detect the
weak sources whose powers are lower than the noise, moreover, some impor-
tant parameters such as the attenuation factor and iteration number have to
be selected carefully by CLEAN. In Fig.6.2(e), DR-DAMAS [18] removes the
noise influence, and roughly estimates the complex source, but it loses some
of weak sources, this is because the diagonal removal operation distracts both
the noise and weak sources. The CMF [128] aims to reconstruct both the
spectrum cross-spectrum matrix R, and the noise power in Eq.(4.5) under
the sparsity constraint. In Fig.6.2(f), CMF well estimates the noise power
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Figure 6.2: Simulation on complex sources with 14dB power dynamic range at 2500Hz,
real 62 = 0.86, SNR=0dB and 15dB display : (a) 5 complex sources and 4 monopoles
(b) Beamforming (¢) DAMAS with 5000 iterations (5000i) (d) CLEAN. (e) DR-DAMAS
(5000i) (f) CMF (g) SC-RDAMAS and (h) Proposed Bayesian JMAP approach
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and distinguishes most of the sources, however, it also fails to find weak
sources, the reason might be that the adaptiveness of CMF method depends
on an important parameter of the sparsity constraint. Comparing to CMF,
the SC-RDAMAS [34] in Fig.6.2(g) achieves better reconstructions, since SC-
RDAMAS directly estimates the source powers and background noises, and it
also adaptively estimates the sparsity parameter according to the noise level.
But the performance of SC-RDAMAS still relies on the source number esti-
mation. In order to make a fair comparison, both CMF and SC-RDAMAS
are realized by the MATLAB toolbox SeMuDi [109].

In Fig.6.2(h), the proposed Bayesian inference approach works much bet-
ter than the above methods regardless of source patterns and positions. For
the monopole sources, proposed approach not only accurately estimate their
positions, but also detects the weak sources as well as strong sources. For the
complex sources, it successfully reconstructs both source powers and differ-
ent patterns. The dynamic range of estimated powers is achieved as large as
14dB. Comparing to the beamforming resolution (31cm) [25], proposed ap-
proach achieves the 5cm super-resolution, thanks to the contribution of ap-
plying DE(x|v, £) sparse prior in Eq.(6.6). In addition, proposed approach is
more robust to noise interference than the deconvolution methods (DAMAS,
DR-DAMAS [18] and CLEAN [102]). This is owing to the simultaneous es-
timation of the background noises o and power model uncertainty ag, as
well as source powers x. These two important parameters are estimated as
the hyperparameters in the JMAP criterion of Eq.(6.8). Comparing to the
adaptiveness of sparse regularization methods (CMF [128] and SC-RDAMAS
[34]), the scale parameter v in proposed approach has the similar effect as the
sparsity parameter. Since proposed Bayesian inference approach adaptively
estimates v from the the hyperparameter estimations, we provide a high res-
olution reconstruction with large dynamic range of estimated powers, even
in the low SNR case.

2

e

The hyperparameter (0 = [07, 07, 7]") estimations offer the following

results: the estimated variance of background noises is 526 = 0.86, almost
the same as the simulated 0> = 0.86. And &g = 0.69 is the estimated
power model uncertainty. This estimated result means that the propagation
uncertainty is not very obvious, but indeed, 62 = (.69 can not be negligible
with respect to the noise 02 = 0.86. The scale parameter 4 in the sparse
prior is the estimated as 4 = 0.72. As illustrated in Fig.6.1, parameter
0 < 4 < 1 makes DE(x|v, f) model to have a much sparser distribution with
a longer and heavier tail among the generated Gaussian distribution families,
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so that our proposed Bayesian inference approach manages to obtain both
the sparse reconstructions of source powers x and the wide dynamic ranges
of the estimated x at the same time.

To quantitatively validate proposed Bayesian approach, Table 6.1, Table
6.2 and Table 6.3 show the power estimations for monopole and complex
sources, as well as the average estimation error Az*, and the relative error
of power image reconstruction d;. According to Az* and §;, it is seen that
our proposed method not only successfully detects each pattern of complex
sources, but also better estimates source powers and background noises in
very poor SNR situations.

Table 6.1: Power estimations of 4 monopole sources by average power estimation er-
ror Az*, relative errors of power image reconstruction 0, d; and estimated noise cross-
spectrum o2, at 2500Hz, SNR=0dB, dynamic range 14dB, a cell containing -’ means
unavailable.

Source powers | 0.08 | 0.18 | 0.98 | 0.50 | Az* 01 09 <7A26 (0% = 0.86)
Beamforming | 1.57 | 11.28 | 3.51 | 2.02 | 4.16 | 69.64 | 121.93 -
DAMAS - - - 044 | 0.33 | 3.14 1.33 -
CLEAN - 0.25 | 0.44 | 0.28 | 0.23 | 0.87 0.67 -
DR-DAMAS - - 0.7710.23 1 0.19 | 0.30 0.08 -

CMF 0.09 - 0.80 | 0.40 | 0.12 | 0.31 0.10 0.89
SC-RDAMAS | 0.09 | 0.10 | 1.05 | 0.43 | 0.06 | 0.21 0.06 0.85
JMAP 0.08 | 0.13 | 0.94 | 0.45 | 0.04 | 0.17 0.02 0.86

Table 6.2: Position estimations of 4 monopole sources by averaged position errors Ap* at
2500Hz, SNR=0dB; ’-” means unavailable.

Position (-0.9,1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | Ap*
CBF - - - - 1

DAMAS - (-0.6,0.85) | (-0.3,1) | (-0.6,1.25) | 0.28
CLEAN (-0.95,1) | (-0.6,0.75) | (0.3,1) | (-0.6,1.3) | 0.01
DR-DAMAS - - (103,1) | (10.6,1.3) | 0.43
CMF - (10.6,0.9) | (0.3,1) | (:0.6,1.3) | 0.29
SC-RDAMAS | (-0.9.1) | (-0.6,0.75) | (-0.3,1) | (-0.6,1.3) | ©

JMAP (0.9,1) | (-0.6,08) | (-0.3,1) | (-0.6,1.3) | 0.001

Figure 6.3 and 6.4 show the simulations in the cases of various noise lev-
els and different frequency bins. Each point on the curves is the averaged

result based on 15 simulations. Firstly we fix the {=2500Hz. In Fig.6.3, the
power image reconstruction errors 9; with ¢ = 1,2 are plotted versus the
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Table 6.3: Power estimations of the complex source on the center of image by power
estimation error Az* at 2500Hz, SNR=0dB, a cell containing ’-> means unavailable.

5, (dB)

(a)

25

20

10+

Source powers | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | Azx*
Beamforming | 2.64 | 9.60 | 9.70 | 9.64 | 11.34 | 9.77 | 6.78
DAMAS 450 1.25 1048 | 254 | 0.49 | 1.88 | 1.15
CLEAN 2.29 | 0.37 | 1.69 - 0.27 | 0.34 | 1.27
DR-DAMAS 2.15 1205 | 1.82 | 1.83 | 2.50 | 1.45| 0.27
CMF 1.36 | 2.86 | 2.07 | 2.09 | 1.92 | 1.05 | 0.45
SC-RDAMAS | 1.83 | 2.00|2.05|1.72 | 2.16 | 1.95| 0.12
JMAP 1.94 | 1.99 | 1.98 | 1.76 | 2.10 | 1.91 | 0.09
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Figure 6.3: Performance comparison for relative errors of power image reconstruction o,
and &2 versus SNR [-6,18]dB on simulations at f=2500Hz (a) d; VS SNR (dB) and (b) 0,
VS SNR (dB).
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Figure 6.4: Performance comparison for relative errors of power image reconstruction d;
and dy versus [1600,2600|Hz on simulations at SNR=3dB: (a) 6; (dB) VS f (Hz) and (b)
dy (dB) VS f (Hz).
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SNRe [—6,18]dB, and it shows the robustness to background noises of the
mentioned methods. As we can see, the proposed Bayesian approach is very
robust to background noises, and outperforms the other methods in the cases
from -6dB to 18dB. Particularly in very poor SNR cases, it still achieves very
small §; and do. Then we fix the SNR=3dB. In Fig.6.4, ¢, are plotted versus
frequencies f € [1600,2600]Hz. With higher frequencies, all the methods
obtain better spatial resolution, indeed, our proposed method exceeds the
others over the entire working frequency range.

6.5 Real data of wind tunnel experiments
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Figure 6.5: Configurations of wind tunnel experiment: (a) Frontlook and ground reflection
(b) Overlook and wind refraction.

The wind tunnel experiments have been carried out by Renault SAS [30]
as discussed in Chapter 4.8 and Chapter 5.4. This wind tunnel is designed to
measure the acoustic source powers and their localization on the car surface,
and it can simulate the situation when Renault cars travel fast on the high-
way.

The above figure shows the configurations of the wind tunnel S2A [30],
object vehicle, NUA array and wind refraction. We suppose that all acoustic
sources locate on the same plane. This assumption is almost satisfied, because
the curvature of the car side is relatively small compared to the distance
D—=4.5m between the car and array plane. Since the scanning step is set by
Ap = 5cm, the source plane of car side is of 1.5x 5 m? (31x 101 pixels), and
we also focus on a small region of the rear-view mirror: 1x1.5 m? (21x31
pixels). On the real data, there are T=524288 samplings with the sampling
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frequency f,—2.56x10* Hz. We separate these samplings into I-204 blocks
with L=2560 samplings in each bloc. The working frequency band is chosen
as |2400,2600]Hz, which is sensitive to human being. The image results are
shown by normalized dB images with 10dB span.

For the actual propagation time 7,,, and distance r,,, in Eq.(3.11), we
apply equivalent source to make refraction correction. For 7_,, ,,, and r_,, ;,, in
Eq.(3.11), we use the mirror source signal s_,, to correct the ground reflection.
The details of the propagation corrections are discussed in A and B.

6.5.1 Results of single frequency data

The proposed Bayesian approach provides the following hyperparameter es-
timations: the variance of background noises is Oth = 25. The power model
uncertainty is as small as O'g = (.83, thanks to propagation corrections in the
wind tunnel, such as refraction and reflection as discussed in A and B. And
the scale parameter v in DE(x|7y, 5) prior model is estimated as ¥ = 0.33,
and this small value can insure the sparse distribution of source power with
wide dynamic range, as discussed on the simulations in Section 6.4.

For acoustic imaging on the car side in Fig.6.6(a), the left side of
Fig.6.6(b)-(g) illustrates the normalized estimated power images of men-
tioned methods. In Fig.6.6(b), the beamforming [25] hardly obtains a clear
image of source powers, it just gives a very coarse image of strong pow-
ers around the front wheel, the rear-view mirror and the back wheel. In
Fig.6.6(c), DAMAS [18] successfully deconvolves the beamforming image,
and discovers weak sources in the front light, front cover and side windows.
However, DAMAS also gets many false targets outside the car surface. In
Fig.6.6(d), the DR-DAMAS [18] eliminates most of the false targets outside
the car, but it also removes the sources on the rear-view mirror and back
wheel. Figure 6.6(e) shows that CLEAN [123] overcomes drawbacks of the
DAMAS and DR-DAMAS, but unexpected strong noises are detected on the
ground. Moreover, we have to set carefully the parameters in CLEAN for
each experiment. In Fig.6.6(f), the SC-RDAMAS [34] obtains a slightly bet-
ter result than the CLEAN, but false alarms under the car body are still
numerous. Finally, figure 6.6(g) reveals that proposed Bayesian approach
achieves the best performance of all, especially for noise suppression and
source reconstructions on the two wheels and the rear-view mirror. It re-
moves most of the false targets under the car and on the air. The reasons of
these good performances are mainly the same ones as discussed on the sim-
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6.5.1 - Results of single frequency data
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Figure 6.6: Acoustic imaging on the vehicle side at 2500Hz. Left: real data (a) vehicle
surface (b) Beamforming (¢) DAMAS (5000i) (d) DR-DAMAS (5000i) (e) CLEAN (f)
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sources (b’) Beamforming (¢’) DAMAS (5000i) (d’) DR-DAMAS (5000i) (¢’) CLEAN (f)
SC-RDAMAS and (g’) JMAP approach.
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ulations in Section 6.4. The computational times of the different methods
are given in Table 6.4. Indeed, the hyperparameter estimations increase the
computational cost, but our proposed approach remains feasible to realize it.

Based on the results of the car side, we further investigate weak sources on
the rear-view mirror. In Fig.6.7, beamforming in Fig.6.7(a) mainly demon-
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Real data of wind tunnel experiments

Table 6.4: Computational cost for treating whole car: image 31x101 pixels, at 2500Hz,
based on CPU:3.33GHz,

’

means unavailable.

Figure 6.7: Acoustic imaging of real data on rear-view mirror part at 2500Hz: (a) Beam-
forming (b)DAMAS (5000i) (¢) DR-DAMAS (5000i) (d) CMF (e) SC-RDAMAS and (f)
Proposed Bayesian JMAP

strates 3 groups of sources: one on the corner of the front wheel, one on left
of the rear-view mirror and the other on its right. DAMAS in Fig.6.7(b)
improves the resolution of the beamforming, but also gets many dirty spots
outside the car. In Fig.6.7(c), most of the false alarms are removed by DR-
DAMAS, but the vertical resolution is not high enough. CMF in Fig.6.7(d)
obtains better results than DR-DAMAS. The SC-RDAMAS in Fig.6.7(e)
achieves a result as good as CMF does. But our proposed Bayesian approach
in Fig.6.7(f) achieves more expected estimations of source positions and pow-
ers around the mirror, on the front wheel and on the front corner. This result
is reasonable, since these car parts are highly probable to produce acoustic
sources in wind tunnel.

Above all, the two experiment results agree closely with the simulation
results in Fig.6.2 at 2500Hz.
to achieve super-resolution, suppression of background noises and a wide

The proposed Bayesian approach is proved

dynamic range of power estimations.
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6.5.2 - Results of wide-band data
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Figure 6.8: Wide-band data over [2400,2600|Hz: (a) DR-DAMAS (5000i) (b) CLEAN (c)
SC-RDAMAS and (d) Proposed Bayesian JMAP

6.5.2 Results of wide-band data

Based on the effectiveness and feasibility at single frequency, we show the

performance comparisons for wide-band data of [2400,2600]Hz, as illustrated
in Fig.6.8. Each method obtains a better result than the corresponding one
at 2500Hz in Fig.6.6. That is because the SNR is increased by averaging
results over the working frequency band, and the flashing false alarms are

suppressed over the wide-band average. The estimations of the DR-DAMAS
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Results with hybrid data

in Fig.6.8(a) are reasonable and acceptable, but the spatial resolution are not
high enough on the front wheel and rear-view mirror. Fig.6.8(b) shows that
the CLEAN greatly ameliorates the resolution, but it shows many unexpected
spots under the car body. The SC-RDAMAS in Fig.6.8(c) has the advantages
of the CLEAN, and it gets wide dynamic range of source powers around
the front wheel, but it confront the same problem as CLEAN. Finally, our
proposed approach in Fig.6.8(d) successfully extracts more expected source
positions and powers than the above methods, for the weak ones on the
mirror and back wheel, as well as the strong sources around the front wheel.

6.6 Results with hybrid data

Even though our proposed Bayesian approach obtains good performance on
real data from wind tunnel experiments, it is not sufficient to validate our
proposed methods. This is because the exact sources on the vehicle generated
by wind flow are not known beforehand. To further verify our methods, we
propose to generate hybrid data by adding synthetic sources to the real data.
In order to avoid overlapping real sources, the synthetic sources are set on the
region where there are no obvious sources, as shown in Fig.6.6(a’). We expect
that our proposed approach could retrieve both the synthetic and potential
real sources, respectively from the hybrid data. If these known synthetic
sources are successfully detected, the proposed approach can be proved to
be able to effectively recover the real sources on the vehicle surface. The
synthetic sources are generated in the same way as discussed in Chapter 4.9.

Five synthetic complex sources with different patterns are generated as
seen in Fig.6.6(a’). Their powers are among [-4.5,0]dB. The working fre-
quency is 2500Hz. The right side of Fig.6.6(b)-(g) gives the results of men-
tioned methods. In fig.6.6b’, the beamforming mainly shows the strong
source distributions, but it reveals that there is no apparent overlaps of the
measured powers between the synthetic sources and the potential ones in
the real data, so that the synthetic sources are reasonably positioned be-
forehand. In Fig.6.6(c’) and (d’), both the DAMAS and DR-DAMAS fail to
provide good reconstructions for the synthetic sources, due to their sensitive-
ness to the background noises. In Fig.6.6(¢’) and (f’), both the CLEAN and
SC-RDAMAS offer better estimations for the most of synthetic sources, and
they also obtain comparable results on real data with respect to the left side
of Fig.6.6(e) and (f). However, CLEAN also detects many artifacts under
the car due to its parameter selection, and the performance of SC-RDAMAS
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6.5.2 - Results of wide-band data

depends on the estimation of source number that is different between the real
data and hybrid data.

In Fig.6.6(g’), the proposed Bayesian approach successfully detects almost
all the synthetic sources, and it obtains more precise estimations of their
powers and patterns than the other classical methods. Meanwhile, for the
other sources in the real data, the proposed approach better reconstructs
both the strong sources on the two wheels and rear-view mirror, and weak
ones on the front cover and back window, and this result in Fig.6.6(g’) is
very close to the reconstruction for the real data in Fig.6.6(g). Moreover,
proposed approach obtains simultaneously a better noise suppression and
larger dynamic range of estimated powers, compared to the mentioned state-
of-the-art methods.

But comparing to the result on real data in Fig.6.6(g), we notice the
hybrid data in Fig.6.6(g’), there are additional sources except the synthetic
ones, such as the ones between synthetic sources and the ones under the car
body. This phenomenon could be explained as follows: first, comparing to the
beamforming powers of real data in Fig.6.6(b), the beamforming of the hybrid
data in Fig.6.6(b’) have suffered the side effect of hybrid data, since some
of the sidelobes of the synthetic sources have been more or less overlapped
with the mainlobes of real sources, or vice versa. So that shadow sources are
inevitably detected by proposed approach, especially for the sources on the
vehicle bottom. Secondly, since the acoustic field is linear, the beamforming
powers of hybrid data can be made as the superpositions of the synthetic
and real data. However, the proposed JMAP estimation in Eq.(6.8) is not a
linear estimator for source powers and hyperparameters, therefore small false
detections would be made to some extent. But proposed JMAP approach
still achieves the expected reconstructions for the synthetic sources in hybrid
data, and it is reasonable to accept the source power recovery on the real
data.

6.7 Conclusion and perspectives

In this chapter, we develop a robust Bayesian super-resolution approach via
a sparsity enforcing prior for source localization and power reconstruction,
as well as the hyperparameter estimations. Our motivation is to achieve
the acoustic imaging with super spatial resolution, large dynamic range and
robustness to background noises.
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Conclusion and perspectives

The main conclusions are:

We first consider the power model uncertainty as a random variable,
and we assign a probability prior to it.

e For the inverse problem, we propose to use the Bayesian inference ap-
proach via sparsity enforcing prior based on JMAP estimation.

e For the super resolution and wide dynamic range of source powers, we
investigate the double exponential model for the sparse distribution of
source powers, in which, § = 1 greatly improves the spatial resolution,
and proper v promotes the wide dynamic range of source powers.

e For the robust imaging in strong noises, we propose to jointly estimate
v, noise power and power model uncertainty, as well as the source powers
via the JMAP criterion.

The validations of proposed forward model and JMAP estimation are pre-
sented both on the simulated, real data and hybrid data. Firstly, various sim-
ulations show that our proposed approach obtains 5cm (AB = arg tan % ~
0.6° ) super spatial resolution, 14dB wide dynamic range of power estima-
tions in 0dB SNR cases for monopole and complex source imaging. Then
wind tunnel experiments demonstrate that our approach has effectively de-
tected the expected strong sources on the front wheels and mirrors, as well as
weak sources on the back wheels. Finally, hybrid data further confirms that
proposed approach not only well reconstructs the known synthetic sources,
but also offers an expected results for real data. Moreover, proposed approach
does not require the source number or SNR, beforehand.

In Table 6.5, we give a brief summary for the advantages and drawbacks
of mentioned classic methods, proposed SC-RDAMAS in Chapter 5 and pro-
posed Bayesian JMAP approach in this Chapter.
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6.5.2 - Results of wide-band data

Table 6.5: General performance of classical methods and proposed Bayesian JMAP ap-
proach.

Methods CBF CLEAN DAMAS | DR-DAMAS | SC-DAMAS | CMF SC-RDAMAS | JMAP
Resolutions Low Normal Normal Normal High Higher Higher Higher
Dynamic Range | Narrow | Normal Normal Normal Normal Wide Wide Wide
Noise Robust | Sensitive | Sensitive | Normal Sensitive Robust Robust Robust
Computation Least Normal Normal Normal High High High Higher
Samples Normal | Normal Normal Normal Normal More Normal Normal
Source number No Required | No No Required Required | Required No

However, one of the biggest problems of proposed Bayesian JMAP infer-
ence in Eq.(6.8) is that it confronts the non-quadratic optimization. Though
we can apply alternate estimation in Eq.(6.9) for the unknown variables
and hyper-parameters respectively, this procedure greatly increases the com-
putational cost as shown in Table 6.4. But we apply the concept of power
conservation in Eq.(6.10) to simplify the hyper-parameter estimation, so that
proposed Bayesian JMAP approach can be still tractable.

In order to furthermore improve the efficiency of proposed Bayesian JMAP
approach, we will investigate in two more directions:

e Forward model simplification in Chapter 7: to reduce the calculating
time, we will use a 2D invariant convolution model to approximate the
power propagation model in Eq.(5.4).

e A hierarchical prior model based on Student-t prior in Chapter 8: to
improve the performance, we will first apply the Student-t priors on
the sparse distribution of source powers, and on the non-stationarity of
the measured errors. We will also Variational Bayesian Approximation
(VBA) for the quadratic optimization.
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Conclusion and perspectives

e Jai deux aides fidéles : ma patience et mes deux mains.

Michel Eyquem de Montaigne
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2D Invariant Convolution Model of Power
Propagation

In Chapter 6, we have proposed to apply the Bayesian inference approach via
a sparsity enforcing prior to obtain a robust acoustic imaging. The Double
Exponential model is selected as the sparse prior that contributes to achieve
super spatial resolution and wide dynamic range of estimated source pow-
ers. The unknown variables and parameters can be jointly estimated by the
JMAP optimization. Main steps of this optimization depend on the compu-
tation of forward and joint operators. However, the forward model of power
acoustic propagation in Eq.(5.4) requires tremendous matrix multiplications
due to large dimension of the power propagation matrix C. This is one of the
reasons that proposed Bayesian JMAP optimization is very time-consuming.

In this chapter, our objective is to approximate this forward model by us-
ing a 2D invariant convolution model, so that tremendous computational cost
of matrix multiplication can be greatly reduced by 2D convolution. Owing
to the quasi-Symmetric Toeplitz Block Toeplitz (STBT) structure of prop-
agation matrix C, the invariant convolution kernel (size and values) can be
derived from the items on the middle row of C. From the invariant kernel,
two accelerations can be done:

e Algorithmic acceleration using a fixed kernel with a small and square
size; further acceleration using a separable convolution kernel which can
be separated into two vectors;
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CHAPTER 7. 2D INVARIANT CONVOLUTION MODEL OF POWER
PROPAGATION

e Hardware acceleration using a 'many-core’ processor such as the Graph-
ics Processing Unit (GPU). Indeed, convolution is well suited to the
parallelization structure of GPU.

This chapter is organized as follows: Section 7.1.3 presents the computa-
tional complexity of different approximation for power propagation model.
Section 7.2 introduces the STBT matrix approximation of the power prop-
agation model. Section 7.2.1 presents the 2D-convolution model with the
variant and invariant kernels respectively. Section 7.3 and 7.4 validate the
proposed 2D convolution approximation on simulations and real data respec-
tively. Finally Section 7.5 concludes this chapter.

7.1 Conventional forward model via matrix multiplica-
tion

Here we firstly review our main points discussed from Chapter 3 to Chapter
5. We assume that acoustic sources are uncorrelated monopoles [18, 43];
microphones are omni-directional with unitary gain; background noises at
the microphones are Additive Gaussian White Noise (AGWN), independent
and identically distributed (i.i.d); complex reverberation in the open wind
tunnel could be neglected.
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Figure 7.1: (a). Illustration of the acoustic signal propagation in wind tunnel[29] of

Fig.3.7. (b). Hlustration of the signal processing procedure in Eq.(3.15) of Fig.3.4.

Figure 3.7 illustrates the acoustic signal propagation from the source plane
to the microphone array in the wind tunnel, where microphones are installed
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Conventional forward model via matrix multiplication

outside the wind flow. On the source plane, we suppose K unknown original
source signals s* = [s}, -+, s%]7 at unknown positions P* = [p}, -+, pi]?
where p; denotes the 3D coordinates of kth original source signal s7, notation

(-)* represents the original sources, and operator (-)7 denotes the transpose.

9

On the microphone plane, we consider M microphones at known positions
P = [p1,---,pm|’. The source plane is then equally discretized into N
grids at known positions P = [py, -+ ,pny]’. We assume that K original
sources s* sparsely distribute on these grids, satisfying N > M > K and
P including P*. We thus get N discrete source signals s = [sq,--- ,sy]?
at known positions P, satisfaying s, = s;,forp, = pj;s, = 0others. Since
K<<N, s is full of zero, and it becomes a sparse signal with K-sparsity in
the space domain. Therefore, to reconstruct s* is to reconstruct K-sparsity
signal s. And pj; can be deprived from the discrete position p,,, where s, is

non-zero.

7.1.1 Forward model of acoustic signal propagation

Signal processing procedure is illustrated in Fig.3.4. For the mth microphone
with m € [1,---, M], there are T samplings of acoustic signals in time
domain. Then these T' temporal samplings are divided into I blocks with
L samplings in each block. We note z;,,(t) as the received signal of the
ith sampling block (¢ € [1,---,1]) at the mth microphone in the sampling
timet e [(i —1)L+1,---,iL — 1], and total sampling number is noted by
T = I x L. Since original source signals are usually of wide-band, we apply
the Discrete Fourier Transform (DFT) in time domain to treat measured
signals z;,,(t) at each block so as to obtain L narrow frequency bins f;
(le [1,---,L]). Let zi(fy) = [2:a(f1), -+, zim(f))]" denote all measured
signals in frequency domain. The signal processing is made independently
for each frequency bin, thus in the following, we omit f; for simplicity. Thus
z; can be modeled [123, 18, 29] in Eq.(3.15) as

Z;, = A(P) S; —I-Gi,

where A(P) = [a(p1)---a(pn)], A(P) € CY*N consists of N steering
vectors is defined in Eq.(3.10) with reflecting coefficient p = 0 as:

1 | 1 | !
alpn) = {5 e l-iCafna) o e l-iCafnanl|

where 7, ,, denotes the distance from source n to sensor m, 7, ,, propaga-
tion time during 7,,,. For r, . we also consider the ground reflection and
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7.1.2 - Forward model of acoustic power propagation

wind refraction in authors” paper |29]. For simplicity, a(p,) is short as a,
afterwards.

In summary, the forward model of signal propagation in Eq.(3.15) is a lin-
ear but under-determined (M<N) system of equations for solving K-sparsity
signal s.

7.1.2 Forward model of acoustic power propagation

Based on Eq.(3.15), it is convenient to obtain the forward model of acoustic
power propagation using Beamforming methods [25, 18, 29]:

Let us recall the forward model of acoustic power propagation of Eq.(5.4):
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Figure 7.2: Tllustration of forward power model considering multi-path uncertainty £ in
Eq.(5.4).

y=Cx+0°1,+¢&

where y = {y,}% denotes the Beamforming power vector; y, can be in-
terpreted as the estimated source power at grid n. And y = ATE[zz] A
can be directly obtained from Eq.(3.15), where A = [a(p1)---a(pw)],

A(P) € CM*N denotes the Beamforming steering matrix, and a(p,,) = ﬁ,
n|l2

operator () denotes conjugate transpose, E[-] denotes mathematical expec-
tation. In practice, E[zz!] ~ %ZZ[ z;z) is approximated. x = diag {E[ss"]}
denotes the unknown source power vector, and diag{-} denotes diagonal
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Conventional forward model via matrix multiplication

items; thus x is a signal as K-sparsity as s. And o2 denotes the variance of
i.i.d AGWN noises e. Notation 1, = [m, e ,W]T represents the noise
attenuation for different grids. C = {¢;;}nxn denotes the power propaga-
tion matrix, defined as:

 Jafayl?
" Haz'H%
M 2
Z 7‘727r Ji(Tjm—Tim) ’ (71)
Zm 1727 m—1 TimTjm

m

where a; is defined in Eq.(3.15); r;,,, denotes the propagation distance from
ith discrete source (at the position p; on the discrete source plane) to the
mth microphone; f; denotes the Ith frequency bin; M is the total number of
microphones. 7;,, denotes the propagation distance from ith discrete source
(at the position p; on the discrete source plane) to the mth sensor; f; denotes
the [th frequency bin; M is the total number of sensors; propagation time
Tjm = Té—om is obtained in the uniform media, with ¢y being the acoustic
propagation speed.

According to Eq.(7.1), it yields 0 < ¢;; <1 and ¢;; = 1. In fact, ¢;; can
represent the power contribution (%) of the microphone array from the jth
source to the ith position on the source plane. So that ¢;; can also be seen
as the Point Spread Function (PSF) of the microphone array. This PSF is
determined by two factors: the microphone array topology and the distance
from the source plane. In ideal case, ¢; ; = 0;; becomes the Dirac function,
and it derives the simple expression as y = x + 021, + &£ from Eq.(5.4).

In brief, compared with signal propagation model of Eq.(3.15), the power
propagation model of Eq.(5.4) is a linear and determined system of equations
for solving K-sparsity source powers Xx.

7.1.3 Computational complexity in forward model of power prop-
agation

In Fig.7.3, we show one example of Eq.(5.4) in the way of image forms.
N-length vector x and N x N power propagation matrix C cause a compu-
tational complexity as heavy as O(N?) to calculate matrix multiplications
C x. Moreover, it seems that C is close to a quasi Symmetric Toeplitz Block
Toeplitz matrix (STBT). These motivate us to use a 2D-convolution model
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7.1.3 - Computational complexity in forward model of power propagation
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Figure 7.3: Simulation at 2500Hz on Eq.(5.4) in Chapter 5.3: (a) Measured beamforming
power image yo (17 x 27) (b) Power propagation matrix C (459 x 459) (c) Source power
image x¢ (17 x 27).

with a invariant kernel h to approximate Cx in Eq.(5.4):
Cx~hxxg, (7.2)

where xg denotes the source power image, which is matrix form of vector x;
and h denotes the 2D invariant kernel, with the size of N}, x Nj, (N2 < N);
operator * denotes valid convolution: the output matrix of valid convolution
consists of those overlap parts without zero-padded edges, so that the output
matrix is the same size of input matrix.

In order to derive the 2D-convolution model, it is better to transform 1D
vectors x and y in Eq.(5.4) into 2D matrix forms xy and yq respectively.
We suppose that the source plane is discretized by N = N, x N, identical
grids, where N, and N, denote row and column number respectively, provided
N, < N, for a rectangular plane. We then define a N, x N, source power
image as Xg = |24 with p € [1,--- ,N,] and ¢ € [1,--- , N.]. Then x; can
be vectorized into the vector x in the manner of the column-first order as
shown on the top of Fig.7.8. The relations between z; € x and z,, € X,
y; € x and y,, € yo can be modeled as

Yi = Yp,q > i:p—l_(q_l)NT
where p € [1,--+ ,N,J] and ¢ € [1,--- | N,|.

In Eq.(7.2), owing to convolution approximation, the computational com-
plexity can be significantly reduced from O(N?) into O(N? N), even further
O(N logy N) using the Fast Fourier Transformation (FFT) .

In particular, if the 2D-convolution kernel can be separable into two 1D-
convolution kernels as:
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Proposed convolution models via variant and invariant convolution kernels
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where hy and hy denotes the 1D-convolution kernels, with the size of Ny, x 1.
So that the computational complexity of matrix multiplications Cx can be
greatly reduced into O(2 N, N). The computational complexity comparison
is shown in Table 7.1.

Table 7.1: The computational complexity comparison of operations.

Operation Expression | Complexity | Speed gain
Matrix multiplication Cx O(N?) 1

2D invariant convolution h x xg O(N? N) N/N?

2D separable invariant convolution | hy xhl xxy | O(2 N, N) | N/2 N,

7.2 Proposed convolution models via variant and in-
variant convolution kernels

The power propagation model in Eq.(5.4) reveals that the source power re-
construction can be seen as the image deconvolution from the blurred Beam-
forming result. However, the Beamforming often involves in the convolutions
with spatially variant kernels. This effect is shown in Fig. 7.5(a-b): same
sources produce different shapes of PSFs on different positions, and the cen-
ter PSF has the smallest size, while the ones on the corners have much larger
sizes. But in Fig. 7.5(c), all the PSFs look like similar to each other in the
far-field.

We then derive convolution kernels from the power propagation matrix C
|67, 54]. In the far-field condition, C can be separated into a STBT matrix

151



7.1.3 - Computational complexity in forward model of power propagation
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Figure 7.5: Simulation for 9 monopole sources, 0dB dynamic range, 15cm interval, 2.5cm
grid, 12000 pixels, 64 sensors, 2500Hz, no background noise, no reflection nor refraction:
(a). Source power image (b). Spatially variant PSF in near-field condition (c). Approxi-
mated spatially invariant PSF in far-field condition

C, and two diagonal matrices Dy, Dy as: (See Appendix for details)
C~D,CD,, (7.5)

where D; = Diag [fﬂ and Dy = Diag [7}2} with 4,5 € [1,---, N] denote

the diagonal matrice; 7; = ﬁ 2%21 ri.m denotes the averaged distance from
the 7th source to all microphone sensors; and ¢; ; € C is

2
~ 1 = j%fl (Ti;m="4,m)
Cii = 32 Z e’ e Vi : (7.6)

m=1

Therefore, using ¢;; in Eq.(7.6) to replace ¢;; in Eq.(7.1), the forward
model of acoustic power propagation in Eq.(5.4) can be rewritten as:

N
. X 1
yi:_?Zci,j_—g+ag 5+ &+ (7.7)
2 G2
where n = [ny,--+ ,nn]|7 denotes the approximation error vector. For N

discrete sources, using Eq.(7.5) to replace C in the original forward model of
Eq.(5.4), Eq.(7.7) can be rewritten in a vector form as:

y=Cx+e, (7.8)

where y = Dl_ly denotes the measured Beamforming power vector with
attenuation Dfl; and X = Dyx denotes the source power vector with at-
tenuation Dy; and € = D' (02 1, + € + 1) denotes the convolution model
errors. Since the averaged distance 7; can be easily calculated beforehand,

we take X as x and y as y for symbol simplicity in the followings.
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Proposed convolution models via variant and invariant convolution kernels

According to the STBT matrix C, we can rewrite Eq.(7.8) by using the
2D convolution model as:

y=Hx+e¢€, (7.9)

where matrix H denotes valid convolution matrix, satisfying:
Hx];, = h=*x¢],4, i=p+(¢g—1)N,, (7.10)
where index [-]; represents the ith item of a vector; index [-],, represent the
pth row, ¢qth column item of a matrix; N, denotes row size of the source

plane. To express convolution kernel h, we will discuss the spatially-variant
and spatially-invariant two cases in the following subsections.

Invariant convolution approximation
=

-
1 y=H-x+¢
x::E[S.SH] y:L°x+0 1a+é: y
Y
Array
/'S

m
Phe
ard signall Z,Beamforming

propagation Back projection

z=As+e y = E[HZHZHZ]

Forward model of power propagation

y=C-x+0°1,

. . *
. Discrete source signals § @ Real source signals § @ Measured signals =

Figure 7.6: Illustration of 2D invariant convolution approximation model for acoustic
power propagation.

In Fig.7.6, we show the relationships among the 2D invariant convolu-
tion approximation in Eq.(7.9), the improved power propagation model in
Eq.(5.4) and the conventional one in Eq.(4.46).
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7.2.2 - 2D invariant kernel

7.2.1 2D spatially-variant kernel

According to the STBT matrix C in Eq.(7.8), spatially-variant kernels in
Eq.(7.10) can be derived as [56, 57, 89]:
e Ne
h = DPi P (7.11)
p=1 g¢=1

where DP? denotes the piecewise constant interpolation function [29], which
is non-negative diagonal matrix satisfying Zévzcl Zé\f:cl Dri = T (identity
matrix), and the [th diagonal item is 1 if the [th PSF is in the region of
(p,q). We call h?? the spatially-variant kernel, since h?'? varies along with
the convolution output y; €y, i =p+ (¢ — 1) N, in Eq.(7.9).

According to the expression of C in Eq.(7.6), each item h?4(k,1) € h?9
in Eq.(7.11) is obtained as:

hp,q(k’ l) = 62"j ) (7 12)
h h , .
i=p+(g—1)N,, j=i+ (%] —k)N+ 255 —1
where N x N” denotes the kernel size; k € [1,---, N, 1 € [1,---,N"];
operator |-| denotes integer part.

In brief, h4(k,1) is derived from ¢& ; in three steps: Firstly, h”¢ comes
from the specific ¢; ; which are on the same row of i = p+(¢—1) IV, in matrix
C; Then, the item h?4(k,1) is derived by specific ¢; ; on the column j which
is determined by the known index i, k, [ as shown in Eq.(7.12); Finally, h??
should be flipped up-down, lett-right according to the definition of 2D valid
convolution.

One example of variant convolution kernel derivation is shown in Fig 7.7,
in which, N, = 17, N. = 27 and N = N, x N, = 459, other simulation
configurations are the same as Chapter 5.3.

7.2.2 2D invariant kernel

Owing to the STBT matrix C, its middle row (i = [Y1]) contains most
of the useful items of other rows in C. According to variant kernels in

Eq.(7.12), we can derive an invariant convolution kernel h = [hy,] with
k.l €[l,---,N,] from the middle row of C as:
hig = ¢Cij,
) : L : 7.13
R TR S
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Proposed convolution models via variant and invariant convolution kernels
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Figure 7.7: Illustration of variant kernel derivation at 2500Hz in Eq.(7.12).

where h is can be a N, x N, square matrix, since the STBT matrix C
consists of N, x N, square subblocks. Compared with the ’variant’ kernel
in Eq.(7.12), the 'invariant” kernel in Eq.(7.13) does not change along with
convolution output y;, i = p + (¢ — 1) N,, but remains the same ¢ = [25].

On the top of Fig.7.8, we illustrate how power propagation matrix C can
be approximated to a STBT matrix C. As discussed in Eq.(4.47), 0 < cij <
1 with ¢; ; € C reflects the power contribution rate of the jth discrete source
to the ¢th position on the source plane. On the bottom of Fig.7.8, we illustrate
the geometrical interpretation of ¢; ; € C that for the fixed position 7 and
all the source power x; with j € [1,---, N|, the geometrical distribution of
¢;,; can form a circle with the center ¢ and radius |j — é|, in which, the closer
J is to 4, the larger ¢; ; becomes. In particular ¢; ; = 1 for j = i. Moreover,
c;,; constitutes a quasi-symmetric Teoplitz matrix. Furthermore, since the
index i =p+ (¢ —1) N, for y; and j = p+ (¢ — 1) N, for x; are periodically
varying due to the vectorization from matrix z, , € Xo to vector z; € x in
Eq.(7.3), it yields that C has a quasi-block structure, in which, each subblock
is consisted of a quasi-symmetric Toeplitz matrix. In Appendix C, we discuss
how C can be approximated into a STBT matrix.

According to Eq.(7.13) and Eq.(7.6), h is thus a real and non-negative
symmetric matrix. In Appendix D, we give a detail discussion that h is
also a separable 2D-convolution kernel which can be separated into two 1D-
convolution kernels as discussed in Eq.(7.4). One of the advantages is that
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Figure 7.8: Procedure of 2D invariant convolution approximation.

156



Simulations

the separable 2D-convolution can greatly reduce both the computational cost
and memory requirements of conventional 2D-convolution operation.

In Fig.7.8, we show the whole proposed procedure of 2D invariant convo-
lution approximation for the forward model of power propagation. However,
two essential issues for selecting invariant convolution kernel h = [hy ;] are
kernel values hj; and proper kernel size N, X N,, so that the convolution
operation can be accurately and efficiently performed. We will discuss these
issues on simulations in Section 7.3.

7.3 Simulations

On simulations, we will consider the following aspects:

e Approximation errors between STBT matrix C and power propagation
matrix C;

e Convolution approximated errors for variant, invariant and separable

kernels, as well as different kernel sizes and forms (square or rectangu-
lar);

e Convolution computational time for different kernels;
e Acoustic imaging results based on 2D invariant convolution model;
e Deconvolution performance of 2D separable kernel based on GPU.

e For the inverse problem of the 2D invariant convolution model in
Eq.(7.9), we suppose that convolution approximated errors n = 0 for
simplicity, so that Eq.(7.9) becomes y = Hx+0? 1,+&. Therefore, pro-
posed Bayesian JMAP approach in Chapter 6 can be easily applied on
it. In the case of i # 0, we will investigate the non-stationary distribu-

tion on model errors € and use the Variational Bayesian Approximation
(VBA) to solve Eq.(7.9) in Chapter 8.

The simulation configurations are also the same as the one in Chapter 4.7
as shown in above figure: there are M = 64 non-uniform sensors locating
on the vertical plane. d = 2m is the averaged size of sensor array. D =
4.50m is the distance between the sensor plane and source plane. ¢, =
340m/s is the acoustic speed in the common air. 7" = 10000 is the total
number of samplings. For the simulated sources in Fig.7.13(a), there are
simulated 4 monopoles and 5 complex sources, spaced at least 20cm from
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7.3.2 - Convolution approximated errors for different kernels

each other. Original source powers x* are within [0.08,2] (|-10.3,3.7|dB) and
14dB dynamic range. And power image size is of N, = 27 and N, = 17 as
shown in Fig.7.3(c). The i.i.d AWGN noise power is set 02 = 0.86 (-0.7dB),
thus the averaged SNR is 0dB.

7.3.1 Approximation errors of STBT matrix

1 \ T T T T
5&\\\ | Poozs
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Figure 7.9: Power propagation matrix and its STBT approximation at 2500Hz: (a) C =
[c;;] (b) C =[é,] (c) Approximation error matrix |¢; j — &

In Fig.7.9, the matrix structures of C = [¢; ;] in Eq.(7.1) and C = [ ]
in Eq.(7.6) are quite similar to each other, and the error matrix of STBT
approximation is full of relatively small values compared to C. Therefore, the
power propagation C can be effectively approximated by the STBT matrix

C.

7.3.2 Convolution approximated errors for different kernels

We define the convolution approximated errors as

o2
5, — ly —¥l3

x 100% (7.14)
13

where y refers to the beamforming result of the power propagation model
in Eq.(4.12) as shown in Fig.7.3(a); ¥ refers to the convolution results re-
spectively using variant kernels in Eq.(7.12), invariant kernel Eq.(7.9) and
separable kernel in Eq.(D.5).

In Fig.7.10, we show convolution approximated errors ¢, versus various
kernel sizes. We examine 7 types of kernels with different forms. Firstly,
both the variant and invariant kernel with the largest size of 53 x 33 obtain
the very small convolution errors, which validates our proposed (in)variant
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Figure 7.10: Convolution performance comparisons among variant, invariant and separa-
ble convolution kernels at 2500Hz

convolution models in Eq.(7.11) and Eq.(7.9). Secondly, the larger kernel
size is, the smaller 9, becomes, and both the square and rectangular kernels
obtain similar 9, for each case, so that we can choose the square kernel for
simplicity. Thirdly, the invariant kernel obtains as small ,, as those of variant
kernels, so that we can use invariant model to effectively approximate power
propagation model in Eq.(4.46). Fourthly, when kernel size IV}, approaches
source power image NV, = 17, all 9, of 7 kernels becomes small and remains
stable. Finally, the separable convolution with kernel size N, = 17 also gets
as similar 0, as that of invariant kernel, meanwhile the separability error is
less than 9%, so that we can use separable convolution to further approximate
the invariant convolution for further acceleration.

7.3.3 Convolution computational time

In Fig.7.11, we show computation performance comparisons among invari-
ant and separable convolution using CPU and GPU. The size of the source
power image is enlarged as 30 times as that in Fig.7.3(c). Compared with
CPU, one of the greatest advantages of GPU is the great number of paral-
lel computational cores which contribute much more powerful computation
capability than CPU, but the massive data with non-parallel processing can
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7.3.4 - Acoustic imaging via 2D invariant convolution model
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Figure 7.11: Computation performance comparisons at 2500Hz among invariant and sep-
arable convolution using CPU (3.33Hz clock) and GPU (Tesla C1060: 240 processing
cores, 1.3G Hz clock, 622 GFLOPs (Peak); Using Parallel Computing Toolbox of MAT-
LAB 2012b).

hardly be efficient performed by GPU [17, 100]. The structures of CPU and
GPU are shown in Fig.7.12. For the computing time in Fig.7.11, all the red
curves go up along with the large kernel size, but the separable convolution
based on CPU or GPU keeps a slight increase and maintains the least com-
putation burden, especially when the kernel size is very large. And GPU
greatly increases the computation speed. For the convolution approximated
errors, both the invariant kernel and separable kernel can obtain relatively
small errors when the kernel size is near to the half size of the source power
image.

7.3.4 Acoustic imaging via 2D invariant convolution model

In Fig.7.13, the beamforming merely gives some strong source powers. DR-
DAMAS too much removes noises and fails to detect weak sources. CLEAN is
sensitive to noise interference. Bayesian JMAP method via classical forward
model well detects all source powers except for the weakest monopole source.

In Fig.7.13(f), the Bayesian JMAP method via convolution model can
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Simulations

Figure 7.12: (a) Structures of CPU and GPU [17] (b) Used Tesla C1060 GPU: 240 pro-
cessing cores, 1.3G Hz clock, 622 GFLOPs (Peak).
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Figure 7.13: Simulations at 2500Hz, 0dB SNR, 15dB display: (a) Source powers (b)
Beamforming (¢) DR-DAMAS (d) CLEAN (e) Bayesian JMAP method via conventional
forward model in Chapter 6 (f) Bayesian JMAP method via invariant convolution model

quickly reconstruct most of the sources, but the recovered source patterns
are affected by measured errors.

7.3.5 Deconvolution performance of 2D separable kernel

In Table 7.2, we show the deconvolution performance of 2D separable ker-
nel. In order to make a fair comparison, the Tikhonov regularization method
in Eq.(4.58) is used for deconvolution, since the most time-consuming op-
eration mainly depends on the convolution. The separable convolution op-
eration hy * hl * x is efficiently computed on GPU Tesla C1060 using the
Parallel Computing Toolbox of MATLAB 2012b. In order to show the GPU
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7.3.5 - Deconvolution performance of 2D separable kernel

Table 7.2: Computational time of Tikhonov deconvolution via separable convolution ker-
nels based on GPU Tesla C1060: 240 processing cores, 1.3G Hz clock, 622 GFLOPs
(Peak); Using Parallel Computing Toolbox of MATLAB 2012b. Time results are aver-

aged by 20000 iterations. 6, = XI5 « 100%

113

Power image size 17 x 27 | 255 x 405 | 527 x 837
Invariant kernel size 13 x 13 | 215 x 215 | 415 x 415
Time (ms)/iteration 1.65 7.50 38.3
Deconvolution error d, (%) 19.6 29.6 30.6
Speed gain on Cx (CPU) 0.5 314.7 822.2
Speed gain on h xx (CPU) 0.27 7.1 9.2

Speed gain on h; x hi xx (CPU) | 0.16 5.27 7.02

acceleration, we also use the CPU to completely implement the deconvolu-
tion methods using matrix multiplication Cx, invariant convolution h * x
and separable convolution h; * hl x x respectively. For the computational
time, the bigger kernel size is, the greater the computational speed gain is
obtained. For the deconvolution errors, though the Tikhonov regularization
method does not offer very good results, it still shows the fact that decon-
volution via separable convolution model can be efficiently solved based on
GPU. In order to obtain a fast and effective deconvolution results, it is highly
necessary to optimize the algorithm of proposed Bayesian JMAP based on
GPU parallel structure.

However, for the small image size of 17 x 27, the GPU could not improve
computational efficiency compared with CPU. This is because that the 240
cores of GPU Tesla C1060 can efficiently handle the large dimension of ma-
trices, but small matrix cannot be well suited to the parallel structure of
GPU. Convolution operation realized by MATLAB Parallel Toolbox could
not completely use advantages of the GPU, since it still requires other oper-
ations on CPU and causes frequently data transfers between the GPU and
CPU. Therefore, it is a promising work to implement the whole deconvo-
lution algorithm (not only the convolution operation) completely based on
GPU using the CUDA code library [90]. Moreover, we find out that calcu-
lating invariant convolution h x x based on GPU merely makes use of about
14% of computational power of GPU, while separable convolution hy * h xx
just occupies nearly 7%. So that there will be great potential to develop
our own parallel separable convolution algorithm based on the GPU so as to
make good use of GPU powerful peak computational capacity.
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Wind tunnel experiments

7.4 Wind tunnel experiments

The above figure shows the configurations of the wind tunnel S2A [30], ob-
ject vehicle, NUA array and wind refraction. We suppose that all acoustic
sources locate on the same plane. This assumption is almost satisfied, be-
cause the curvature of the car side is relatively small compared to the distance
D—4.5m between the car and array plane. Since the scanning step is set by
Ap = 5em, the source plane of car side is of 1.5x 5 m? (31x 101 pixels), and
we also focus on a small region of the rearview mirror: 1x1.5 m? (21x31
pixels). On the real data, there are T=524288 samplings with the sampling
frequency f,—2.56x10* Hz. We separate these samplings into I=204 blocks
with L—=2560 samplings in each bloc. The working frequency band is chosen
as [2400,2600]Hz, which is sensitive to human being. The image results are
shown by normalized dB images with 10dB span. For the actual propaga-
tion time 7,,, and distance r,,, in Eq.(3.11), we apply equivalent source to
make refraction correction. For 7_,,, and r_,,, in Eq.(3.11), we use the
mirror source signal s_, to correct the ground reflection. The details of the
propagation corrections are discussed in A and B.

Figure.7.14 illustrates the estimated power images of mentioned meth-
ods at 2500Hz. Due to the high sidelobe effect, beamforming just gives a
fuzzy image of strong sources in Fig.7.14(a). DAMAS well deconvolve the
beamforming image and discovers sources around the wheels and rearview
mirror, however, many false targets are also detected on the air in Fig.7.14(b).
DR-DAMAS in Fig.7.14 eliminates most of the artifacts, but it also harms
weak sources. Figure.7.14(d) show that CLEAN overcomes main drawbacks
of the DAMAS, but unexpected strong points are detected on the ground.
CLEAN has to carefully select some parameters for each case. In Fig.7.14(e)
and (f), the proposed SC-RDAMAS with sparsity constraint and Bayesian
JMAP method via sparse prior not only manages to distinguish the strong
sources around the two wheels, rearview mirror and side window, but also
successfully reconstructs the week ones on the front cover and light.

In Fig.7.14(g), the Bayesian JMAP method via proposed 2D invariant con-
volution model can achieve the source reconstruction as good as the JMAP
via conventional forward model results. In Table 7.3, the computation speed
is greatly improved by 2D invariant convolution model in Eq.(7.9) compared
to conventional model in Eq.(5.4)
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Figure 7.14: Left: real data at 2500Hz (a) vehicle surface (b) Beamforming (¢) DAMAS
(5000i) (d) CLEAN (e) SC-RDAMAS (f) Bayesian JMAP via classical forward model (g)
JMAP via invariant convolution model. Right: hybrid data (a’) 5 simulated complex
sources (b’)-(g’) corresponding methods.
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Conclusions and perspectives

Table 7.3: Computational cost for treating real data of whole car: image 31x101 pixels,
at 2500Hz, based on CPU: 3.33Hz. "JMAP+Conv’ is short for Bayesian JMAP method
via 2D invariant convolution model

Methods | CB | DAMAS | DR-DAMAS | CLEAN | SC-RDAMAS | JMAP | JMAP+Conv

Time (s) | 1 10 11 45 852 1012 180

7.5 Conclusions and perspectives

In this chapter, we propose a convolution model in Eq.(7.9) to approximate
the forward model of source power propagation in Eq.(5.4), so that proposed
Bayesian JMAP method in Chapter 6 is more quickly carried out.

We firstly discuss the 2D-convolution model using a variant kernel in
Eq.(7.13), invariant kernel in Eq.(7.6) and separable convolution kernel in
Eq.(D.5) respectively. Both the variant and invariant kernels (size and item
values) are derived from the Symmetric Toeplitz Block Toeplitz (STBT)
structure of power propagation matrix. Moreover, since the invariant ker-
nel h is a real and non-negative symmetric matrix, h is separated into two
1D-convolution kernels as discussed in Appendix D. One of the advantages is
that the separable 2D-convolution greatly reduces both computational cost
and memory requirements of 2D-convolution operation. And it is well suited
to the parallelization on many-core processors such as the GPU.

On simulations, the main conclusions are:

e There are relatively small approximation errors between STBT matrix
C and power propagation matrix C;

e 2D invariant convolution model successfully approximates the power
propagation model;

e 2D invariant kernel whose size is just the half of the source power image
efficiently performs the 2D convolution model.

e Bayesian JMAP method via 2D invariant convolution model obtains an
acceptable imaging result compared to the conventional power propaga-
tion model;

e For acoustic image with very large size, deconvolution method via 2D
separable convolution is very fast implemented using GPU. Compared
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7.3.5 - Deconvolution performance of 2D separable kernel

to CPU with matrix multiplication Cx, the 2D separable convolution
using GPU achieves the speed gain as high as three order of magnitude;
compared to CPU with 2D non-separable convolution h * x, it gains
two order of magnitude of speed gain; compared to GPU with separable
convolution hy * hi x x, it still obtains nearly one order of magnitude
of speed gain.

On real data and hybrid data, we demonstrate that using 2D invariant
convolution model can greatly accelerate the Bayesian JMAP method and
contribute a rapid implementation for industry application.

In Table 7.4, we give a brief summary for the advantages and drawbacks of
mentioned classic methods, proposed SC-RDAMAS in Chapter 5, proposed
Bayesian JMAP approach in Chapter 6, as well as the Bayesian JMAP ap-
proach via proposed 2D invariant convolution model in this Chapter.

Table 7.4: General performance of classical methods and proposed Bayesian JMAP ap-
proach. ’JMAP+Conv’ is short for the Bayesian JMAP method via the 2D invariant
convolution model.

Methods CBF CLEAN DAMAS | SC-DAMAS | CMF SC-RDAMAS | JMAP JMAP+Conv
Resolutions Low Normal Normal High Higher Higher Higher High
Dynamic Range | Narrow | Normal Normal Normal Wide Wide Wide Normal
Noise Robust | Sensitive | Sensitive | Sensitive Robust Robust Robust | Robust
Computation Least Normal Normal High High High Higher Normal
Samples Normal | Normal Normal Normal More Normal Normal | Normal
Source number No Required | No Required Required | Required No No
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However, there are at least three aspects to be further improved:

e The acoustic image quality using the 2D invariant or separable convolu-
tion model should be carefully refined, and we have to make a necessary
balance between source reconstruction and computational cost, espe-
cially for real data treatment of wind tunnel experiments.

e To improve the source estimation results, it is highly necessary to make
good use of the sparse distribution of source powers. In Chapter 8, we
will investigate a more proper sparsity enforcing prior than the Double
Exponential model used in Chapter 6. Furthermore, the model error €
in the proposed convolution model might not be always Gaussian white
noise distribution, but probably the spatially non-stationary Gaussian
distribution on the different parts of source plane or on the different
microphone sensors. This point will be also discussed in Chapter 8.

e For GPU implementation on the large scale of real data in tunnel ex-
periments, it is quite worthy of optimizing advanced deconvolution algo-
rithms (such as the Bayesian inference) via separable convolution model,
so that the peak-power computation of GPU can be well utilized as
possible as we can, and the drawbacks of limited local on-chip memory
could be avoided to some extend. Instead of using MATALAB Parallel
Toolbox, it is a promising work to implement the whole deconvolution
algorithm (including 2D convolution) mainly based on GPU using the
CUDA code library [90]
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e Dans le monde il n’y a qu'une vérité : étre fidéle a la vie et 'aimer.

Romain Rolland
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Variational Bayesian Approximation
Approach with Students-t prior for acoustic
1maging 1n non-stationary noises

As discussed in Chapter 6, the proposed Bayesian JMAP approach in Eq.(6.8)
suffers from tremendous computational cost and non-quadratic optimization.
The first drawback can be solved by using a 2D invariant convolution approx-
imation in Chapter 7. However, there are still three difficulties: proposed
convolution approximation needs to balance the acoustic imaging quality and
computational cost. Furthermore, the model errors € in the proposed approx-
imated convolution model are no more spatially invariant but non-stationary
on the different parts of source plane. And the sparse distribution of source
powers X = [r1,-+,zy]’ modeled by the Double Exponential (DE) prior
in Eq.(6.6) are improperly assumed to be the same scale parameter § which
controls the same dynamic range of different x,, with n € [1,--- | N]. In fact,
this assumption may not be always satisfied in practice. For example, the
source power on the rearview mirror probably has different dynamic range
from the one on the wheels.

Motivated by the above three remarks, in Chapter 8, we propose the
following changes in the modeling of priors on the noise € and the unknown
source powers X in the convolution forward model y = Hx + €:

e Model error ¢, € € with n € [1,---, N] is no longer assumed spa-
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CHAPTER 8. VARIATIONAL BAYESIAN APPROXIMATION APPROACH
WITH STUDENTS-T PRIOR FOR ACOUSTIC IMAGING IN
NON-STATIONARY NQISES

OWEVeT

sian prior p(eu|vn) = N(€,|0, v, 1) with v, 1 = E[e?] denotes the

variance of €,. For spatially invariant distribution, we suppose that

v, depend on different position n and is not a constant. Further-

more, we assign the unknown variance v, with Gamma distribution
as p(Vnl, ay, by) = G(vpl,a,,b,). This means that €, is modeled to be

the Student-t prior. This is owing to the fact that

St(en\ae):/N(6n|0,ugl)g(yn]a,,,b,,) dv , (8.1)

where o, denotes the degree of freedom, which controls the shape of
St(en|a) distribution; a, = b, = %; and v,, denotes the inverse vari-

PR

ance of €,. Indeed, v, is a hidden variable which can interpret the

Student-t prior by the Normal-Gamma decomposition Owing to v, this

interpretation gives us the possibility to propose a hierarchical prior

model for model error €, as given in Eq.(8.1). For all model errors

€ = [e1, -+, ex]?, their different variances v=! = [t .-+ vt

model the spatially variant distribution.

Therefore, we use Student-t prior St(€|a.) to model a spatial non-

stationary distribution of model errors e.

e For source power x,, € x, we also use the similar hierarchical prior model

as
St(x,|ay) = / N(mn\O,fy;l)g(%\av,bv) dry, (8.2)

where

— «, denotes the degree of freedom, which controls the shape of
St(zy|ay) distribution; a, = b, = <. Knowing also that o, = 1

2

results to Cauchy prior, which can model a sparsity enforcing prob-

ability law with narrow summit and heavy tail; while a,, = oo refers
to Gaussian distribution; 1 < a, < oo still remains the sparsity to

some extend.

— .1 = E[2?] denotes the variance of x,. For spatially invari-
ant distribution, we suppose 7, with n € [1,--- N] is not a
constant. For all x = [x1,---,2zn]7, their different variances

N =y ,7&1]7’ model the spatially variant distribution.

— Student-t distribution is a continuous function over all real values,

while the DE used in Chapter 6 and Laplace are discontinuous at

T, = 0 point.
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Non-stationary Gaussian prior of model errors

Therefore, using Student-t prior St(x|a,) in Eq.(8.2) as a prior model
is a more suitable sparsity enforcing distribution of source powers x.

e VBA estimation. Using the hierarchical prior models on € and x causes
much more complexity for the estimations of x and other parame-
ters based on JMAP estimation. This is because the joint posterior
p(x, 7, v|y) of all the unknown quantities becomes more sophisticated,
since hidden variables v and v are both N-dimensional. An alternate
optimization algorithm respectively with respect to x, v and v may
not, converge. So that we need to use other efficient methods than the
JMAP estimation. For this, we propose to use the Variational Bayesian
Approximation (VBA) method which is a new way for doing more ef-
fective and more precise use of the joint posterior probability law of all
the unknowns.

This chapter is organized as follows: Section 8.1 and 8.2 presents the non-
stationary prior of model errors and more suitable sparsity enforcing prior
of source powers respectively. Section 8.3 introduces the main principles of
Variational Bayesian Approximation (VBA) such as VBA estimation and
computational complexity. Section 8.4 and 8.5 validate the VBA approach
via 2D invariant convolution model on simulations and real data respectively.
Finally Section 8.6 concludes this chapter.

8.1 Non-stationary Gaussian prior of model errors

We reconsider the model errors in wind tunnel experiments. During the
propagation from Acoustic sources to sensor array, the signals are inevitably
deteriorated by complex unknown reverberations caused by multi-path prop-
agation, inherent noises at microphone sensors, background noises in wind
tunnel, as well as the model approximated errors in signal processing tech-
niques. Therefore, model errors are the mixed effects of the above mentioned
factors. Instead of the ideal i.i.d AGWN assumption in previous chapters, we
use Student-t prior St(e|a,) to model a spatial non-stationary distribution
of model errors € in Eq.(8.1).

T

Moreover, we suppose € = [e1, - ,en|" are mutually independent. We

then get multivariate prior of model errors € as

N
St(elae) = [ | St(enlo), (8.3)
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WIICIT

_ T iy
Stleala) =~y (14 22)

where I'(+) denotes the Gamma function, defined as I'(z)
for any variable z; and I'(0) = oo, I'(3) = /7 and I'(1) =

14+ae
2

(8.4)

= [t tetdt
1.
We then use a hidden variable vector v = [v,---,vn|T to interpret

Eq.(8.3) multivariate St(e|a.). So that St(e|a,) can be generated by
marginalizing v as

St(e|lae) = / p(e, v]a.) dv = / p(elv)p(v|ay,) dv . (8.5)
According to the Normal-Gamma decomposition of Student-t distribution
St(en|ae) in Eq.(8.1), we can get from Eq.(8.5) as

N

plelv) = N(elo, 1), p(vlew) = [ [ G(wlan,by), (8:6)

n=1

where 0 = [0] denotes N-dimension 0 value vector; a,, = [a,,b,]T denotes
the hyperparameter of p(v|ay,); X' = Diagly; '] with n € [1, N] denotes
the covariance matrix, which is a diagonal matrix whose diagonal items are
supposed to be non-constant; and G(v,|a,, b,) denotes the Gamma distribu-
tion, defined as

N
G(valay, b)) = [ [ Ilay) ™" (b)) v te e (8.7)

n=1

where a, denotes the shape parameter and b, denotes rate parameter of
G(vnlay, by,). For St(e|a.) in Eq.(8.5), we have a, = b, = 5.

According to proposed convolution forward model y = H x+€ of Eq.(7.9),
the likelihood p(y|x,v) is determined by the conditional prior p(elv) =
N(€]0, = 1) in Eq.(8.6) as:

— 2l/ 1/2 1 — x' — X
plylx,v) = N(ely - Hx, =) = (‘%)'N/Qe -G (gg)

covariance matrix X! = Diag[y;'] with n € [1, N] is a diagonal matrix
whose diagonal items are supposed to be non-constant.
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0.5 I T
- O Normal
g + DE
0.45- I ‘== Laplace ]
ﬂ'* Students-t
04t ggyg .
035 Q P 1

Figure 8.1: Sparse priors modeled by Gaussian normal (Normal), Laplace, Double Expo-
nential (DE) and Student-t.

8.2 More suitable sparsity enforcing prior on source
powers

As discussed in Chapter 6, acoustic source in wind tunnel experiments are
generated by the wind collision on the specific parts of the vehicle surface.
Therefore sources sparsely locate on some particular parts, while on the most
of common parts, there are few sources. Suppose that there are just K
acoustic source on the car surface. After source plane discretization by N
grids with N >> K provided, the discrete source powers x = [x1, -+, zy]T
become the K-sparsity signal whose K items are not zero, while other N — K
items are zero values.

Such a sparsity prior knowledge can be interpreted by a sparse distribution
which has a very high value around the original zero (sparsity) and a long
heavy tail (dynamic range of source powers). In Fig.8.1, we show several
typical sparse priors modeled by Gaussian normal (Normal), Laplace, DE
used in Chapter 6 and Student-t distribution respectively. It is seen that the
Gaussian distribution cannot well model the sparsity since its tail attenuates
very quickly along the big values. The Laplace and DE distribution can well
reflect the sparsity, but they are both discontinuous functions at the zero
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Student—t distribution has three advantages:

e it can achieve the best sparsity enforcing effect among them, since it has
the heaviest tails and relatively narrow summit around zero value;

e it is a continuous function for all values of source powers, and this avoids
the discontinuous problem in DE and Laplace distribution;

e hidden variables v = [y, - ,7n] in Student-t prior can easily model
the different variance of source powers at different positions, while the
DE prior in Eq.(6.6) is improperly assumed to use the same scale pa-
rameter 3 for all the source powers.

Therefore, we choose the Student-t priors [115, 87] to properly enforce
the sparsity and wide dynamic range of source power distribution which is
spatially variant:

St(x|a,) = H St(x,|ay) - (8.9)

Owing to the Normal-Gamma decomposition of Student-t distribution
St(xy|a,) in Eq.(8.2), we use the hidden variables v = [y, -+ ,yn] to inter-

pret St(x|a;) = [, p(x|v) p(vlex,) dv as

N
p(xly) = N0, 271, p(vley) = [ G(mlar.b,), (8.10)
n=1
where o, = [a,,b,]T denotes the hyperparameter of p(v|a,); covariance

matrix E;l = Diagly, '] with n € [1, N] is a diagonal matrix whose diagonal
items are supposed to be non-constant; a, denotes the shape parameter and
b, denotes rate parameter of G(v,|a,, by). For St(v|a,) in Eq.(8.5), we have
ay=by, =%

8.3 Introduction of Variational Bayesian Approxima-
tion (VBA)

The ill-posed inverse problem in the convolution forward model y = Hx + €
of Eq.(7.9) can be effectively solved by the Bayesian inference approaches
[95, 41, 84, 87]. As stated in Chapter 6, Bayesian inference aims to esti-
mate the unknown variables and model parameters by applying the Bayes’
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rule to update the probability laws: the posterior probability p(x,8y) is
derived from the likelihood p(y|x, @) and prior probability p(x, @), in which,
the previous one can be derived from the known data y and forward model
in Eq.(7.9). And the latter can be imposed properly to unknown variables,
such as sparse priors. Compared with the deterministic regularization meth-
ods in Chapter 4 and proposed SC-RDAMAS approach in Chapter 5, the
imposed priors can bring in novel information on the physical characteristics
of unknown variables, which helps to reduce the uncertainty caused by the
ill-posed inverse problem.

As discussed in Chapter 6, the Bayesian inference via JMAP estimation
was expressed as:

y=Hx+¢€
(8.11)

%>

(%,

)srap = argl(fmn {p(x,0y) o< p(y|x,0) p(x,0)}
where

e O represent all the unknown parameters, or other parameters than x.
If we use the Gaussian distribution on model errors € ~ N(€]0, 1)
and the DE prior on source power x ~ DE(x|v, ), so that we get
0 = [02,~, 8] which is 3-dimensional. If we use the Student-t priors on
both € and x in Eq.(8.6) and Eq.(8.10), we then get 8 = [+, v] which
includes as large as 2N dimension of unknown hidden variables.

e According to the Student-t priors St(x|a,) in Eq.(8.10) and St(€|a) in
Eq.(8.6), as well as the likelihood p(y|x,v) in Eq.(8.8), we obtain the
JMAP estimation in Eq.(8.11) as
(%7, 2)aap = arg max {p(x,vly) o< ply|x, 7, 2) p(x|¥) p(¥) p(¥)}

(8.12)
where joint posterior p(x,8|y) can be expressed finite combination of
multivariate Gaussian and Gamma distributions as:

p(x, v, v]y) <« N(y|Hx, * HQ Vn|ay, by,
(8.13)

N (x[o, E Hg ’Yn‘a%

However, in JMAP estimation in Eq.(8.12), it is very hard to estimate N
unknown source powers x and 2N dimensional hidden variables 8 = [v,v].
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we had x with only two parameters such background noise power o2 and
scale parameter 7 in DE prior (8 = 1 was fixed).

For these reasons, we propose here a better way to use the joint poste-
rior distribution. These above limitations can be overcome by the variational
Bayesian approach (VBA) [66, 106, 115, 87]. In VBA, the posterior probabil-
ity p(x, @|y) is approximated by a family of basic easily handled probability
distributions ¢(x, @), which can be estimated by minimizing the Kullback-
Leibler (KL) divergence as

4(x,0) = arg r(r)lcig {KL(q:p)}

q(x, 0) , (8.14)

KL(q:p)Z/ (x,0) o d(x, 0)

x,0\y)

where K L(q : p) divergence can measure the distance between ¢(x,0) and
p(x,0ly).

In Eq.(8.14), minimizing the KL divergence is equivalent to maximizing
the variational bound (free energy) £(q) [06] as

q(x,0) = arg max {£(9)}
B p(x,0,y) , (8.15)
£(q) = /q(X,H) hlmd(?@ 0)

where p(x, 6,y) denotes the total joint probability. To maximize the varia-
tional bound in Eq.(8.15), one of the simplest propositions is to suppose x, 0
to be totally independent as

q(x,0) = q1(x)q2(0) = H qi(z:) H q2;(0;) (8.16)

where z; € x, ; € 6. Then the simple probability functions in Eq.(8.16)

can be obtained by the mean field approximation [121] as
. exp I (z;)
i\Li) =
u(:) [ exp I(z;)da; : (8.17)

I(z;) = — <In p(y,X,0) >4 0:00)

where I(z;) denotes the partition function for probability density function
(PDF) p(z;); operator < p(z,t) = [ q(t) p(z,t)dt denotes the integra-
tion for joint PDF p(x,t), and x_; denotes the parameter vector except the
item x;.
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In Eq.(8.17), an analytical expression of I(z;) can be efficiently obtained
with the help of the conjugate priors [I19]. For example 8 = [v,v], we
call the conditional prior p(x|vy) as the ’conjugate prior’ of the likelihood
p(y|x,v), the reason is that the approximated posterior ¢;(x) can be derived
from the same family as p(x|vy). Similarly, ¢2(7) can come from the same
family as prior p(«y), if p(7) is the conjugate prior of p(x|v); and ¢3(v) can
come from the same family as prior p(v), if p(v) is the conjugate prior of
likelihood p(y|x, V).

8.3.1 VBA estimations

Figure 8.2: Three layers of hierarchical Bayesian Graphical model for N-dimension variable
estimations. Double circle: Observed data; Single circle: Unknown variables; Dash circle:
Hidden variables; Square: Parameters in hidden variable priors; Arrow: Dependency.

In Fig.8.2, the graphical model describes the dependencies between the
observed data y, unknown variables x, their hidden variables 8 = [y, v]T
in conditional priors p(x|v), p(€|v), and parameters ¢ = [a-, b, a,,b,]" in
hidden variable priors.

According to above analysis, we give the VBA estimation framework as
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follows:
( y=Hx+¢€
] = arg min ip) = X M X
i(x.0) = arg miy { K200 ) = [ alx.0) LD i, 0)}
5t(x) = [ pxin sy dy = [ N0, 2 Gl ) dy
4

St(e) = /(|u) )duz/N(e\O,2;1)Q(V|ay,by)du
0 =[y.v]'

p(X>9|Y)O<p(Y|X 0) p(x|v) p(v) p(v)
N(yHx, ") G(v|a,, b,) N(x]0,21) G(v]a,, by)
)

\ q(X;9)0< 01(x) g2(7) g3(v

According to joint posterior p(x,~y,v]y) in Eq.(8.13), we propose to use
the following structure for the approximation:

p(x, v, v]y) x qi(x) () gs(v) - (8.18)

Then, thanks to the conjugate priors, approximated joint posteriors ¢; (x)
of source powers is of multivariate Gaussian distribution, and ¢a2(7), ¢s(v) of
hidden variables are of Gamma distributions as follows |1 15, 87]:

QI(X) - N(X’ﬂxa ﬁ:x)

N ~
= [T g0wla-, )

n=1 )
N

= HQ(Vn|5Lmbﬁ)
n=1

where 1, denotes the mean values of x, which is the objective as the esti-

(8.19)

\

mated source powers; 31, denotes the covariance matrix of x, whose diagonal
elements reflect the estimation uncertainty for each source power z, € x.
Compared with the JMAP estimation in Chapter 6, one of the advantages
of VBA estimation is that the VBA can not only obtain the estimation of
source powers fi,, but also achieve the estimation uncertainty 33, of each
source power.

In Eq.(8.19) all mentioned expectations are calculated as follows |

, 87:
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(- c T
p,=3H <3, >y

Y, =H <X, >H+< X, >)"!

- 1
) &7:a7+§, bgzby+§<xxT>m’ (820)
N . 1
a, = a, + —, b’;:by—l——<eeT>nn
. 2 2

where operator (-),, denotes the nth diagonal item, and < - > denotes
expectation, which are calculated as follows 115, 87]:

p

<X, > = Diag{< v, >}n = Diag{< a, /0" >}n

< X, > = Diag{< v, >}y = Diag{< &7/13: >y 291
T oA /‘T ~ Y ( * )
< XX > =, + 2,

| < ee’ >=yy' —2Ha,y" +H < xx' > H'

All the solutions in Eq.(8.20, 8.21) require the values of these hyperparam-
eters ¢ = [ay, b, a,,b,|T. We can consider their determination as a model
selection. During the iterations of parameter estimations, variables 8 = [x, 6]
are first computed, then the parameters ¢ can be alternatively estimated by
making the first partial derivative of variational bound £¢(¢) equal zero

(637? = 0) as follows [115, 87]:
oe S
a—%:Nlnby—NF(a7)+n§:;<ln%>
N

ob, b, —

$ . | (8.22)
8aV:N1nbU—NF(aV)+;<1DVn>
0L a, a

& Nb—y—nz:;<un>

where < 7, > is computed in Eq.(8.21), and F () denotes the Digamma
function defined by ¢ (x) = I'(z)/T'(x). a,,b, can be simultaneously esti-
mated from the same procedure. Parameter update can be done numerically
by Matlab fzero function.
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8.3.2 VBA computation complexity

From the solutions in Eq.(8.20), 3, involves the matrix inversion which can
not be calculated explicitly nor efficiently. We have to approximate 3, with
a circulant matrix as [115, 87]

S, ~(<v>HH+<75> 1)},
where v = % ZnN:1 Up, 7 = % ZnN:1 ~n denote the arithmetic mean. Then the
products of circulant matrices can be efficiently computed using the Discrete
Fourier Transform (DFT) domain. In Eq.(8.20), the estimated expectation
1. of source powers can be analytically expressed as [115, 87]

S, =H <3, >y,

x

This linear system of equations is solved iteratively with the conjugate gra-
dient algorithm, which requires O(N logy N) computations to treat N di-
mension vector x. If () iterations are needed, total computations are of
O(Q N logs N), which remains moderate burden.

8.4 Simulations

The simulation configurations are also the same as the one in Chapter 4.7
as shown in above figure: there are M = 64 non-uniform sensors locating
on the vertical plane. d = 2m is the averaged size of sensor array. D =
4.50m is the distance between the sensor plane and source plane. ¢, =
340m/s is the acoustic speed in the common air. 7" = 10000 is the total
number of samplings. For the simulated sources in Fig.7.13(a), there are
simulated 4 monopoles and 5 complex sources, spaced at least 20cm from
each other. Original source powers x* are within [0.08,2] (|-10.3,3.7|dB) and
14dB dynamic range. And power image size is of N, = 27 and N, = 17 as
shown in Fig.7.3(c). The non-stationary noises are generated by using the
Gaussian white noises via low pass filter (cut-off frequency 3000Hz), and the
averaged Signal-to-Noise Ratio (SNR) is set as low as 0dB.

In Fig.8.3(b)-(d), the beamforming merely gives some strong source pow-
ers. DR-DAMAS too much removes non-stationary noises, but failed to
distinguish weak sources. JMAP via classical forward model well detects all
source powers except for the weakest monopole source. JMAP via convolu-
tion model quickly reconstruct most of the sources, but the complex source
patterns are affected due to non-stationary noises. However, our proposed
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Figure 8.3: Simulation at 2500Hz, 0dB SNR in non-stationary noises, 14dB display: (a)
Source powers (b) Beamforming powers (¢) DR-DAMAS (d) JMAP via classical forward
model (e) JMAP via invariant convolution model and (f) Proposed VBA via invariant
convolution model.

VBA via convolution model outperforms the other methods, and efficiently

offers more precise localization and pattern estimations, especially for the
better non-stationary noise suppression.

8.5 Wind tunnel experiments

The above figure shows the configurations of the wind tunnel S2A [|36], ob-
ject vehicle, NUA array and wind refraction. We suppose that all acoustic
sources locate on the same plane. This assumption is almost satisfied, be-
cause the curvature of the car side is relatively small compared to the distance
D=4.5m between the car and array plane. Since the scanning step is set by
Ap = 5em, the source plane of car side is of 1.5x 5 m? (31x 101 pixels), and
we also focus on a small region of the rear-view mirror: 1x1.5 m? (21x31
pixels). On the real data, there are T-524288 samplings with the sampling
frequency f,=2.56x10* Hz. We separate these samplings into I=204 blocks
with L=2560 samplings in each bloc. The working frequency band is chosen
as |2400,2600|Hz, which is sensitive to human being. The image results are
shown by normalized dB images with 10dB span. For the actual propaga-
tion time 7, ,, and distance 7, in Eq.(3.11), we apply equivalent source to
make refraction correction. For 7_,,, and r_,,, in Eq.(3.11), we use the
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mirror source signal s_, to correct the ground reflection. The details of the
propagation corrections are discussed in A and B.

Figure.8.4 illustrates the estimated power images of mentioned methods
at 2500Hz. Due to the high sidelobe effect, beamforming just gives a blurred
image of strong sources in Fig.8.4(a). DAMAS well deconvolves the beam-
forming image and discovers sources around the wheels and rearview mirror,
however, many false targets are also detected on the air in Fig.8.4(b). Diag-
onal Removal DAMAS in Fig.8.4 eliminates most of the artifacts, but it also
harms weak sources. Figure.8.4(d) and 8.4(e) show that both CLEAN and
SC-DAMAS overcome the drawbacks of the DAMAS, but unexpected strong
points are detected on the ground due to the parameter selection for each
use. In Fig.8.4(f) and (g), the sparsity constraint and Joint MAP via spar-
sity prior not only manages to distinguish the strong sources around the two
wheels, rearview mirror and side window, but also successfully reconstructs
the week ones on the front cover and light. Finally, the proposed VBA infer-
ence effectively achieve super-resolutions and wide dynamic range on the two
wheels and mirror. furthermore, the suppression of the background noises are
much better than others thanks to the Student-t prior on the non-stationary
noises. From table 8.1, proposed VBA via convolution model is more efficient
realized compared with Bayesian MAP method via classical forward model.

In Fig.8.5, we show the estimation results of source powers x and their
variances (uncertainty) 3., as well as the superposition of the two. In
Fig.8.5(c), the height value denotes the estimated variance of each estimated
source power. The smaller the variance is, the less uncertainty and more
precise the estimation of the source power becomes. It is seen that all of
the estimated variance values are very small (2.5%). So that proposed VBA
estimation is validated to obtain the effective estimations of source powers.
Moreover, the variances of source powers on the rearview mirror and back
wheel are relatively big, while the variances on the front wheel are relatively
small. These phenomena can be explained by the results in Fig.8.5(a) that
stronger source powers on the front wheel are more easily estimated than the
weak ones on mirror and back wheel part, so that the estimation uncertainty
is smaller for strong sources than the weak ones.

182



Wind tunnel experiments

|
|

-10

0

-2

-4

|

0

-2

-4

-6

-8
-10

o T T o

R ; e e ‘ i B
=g E B ; o S "
e TR RN . NN | o

s -8
h 0 | . L I I T Ll I — h; 0 I
; -2 -15 -1 -05 0 0.5 1 15 2 ; -2

Figure 8.4: Left: real data (a) vehicle surface (b) Beamforming (¢) DAMAS (5000i) (d)
CLEAN (e) SC-RDAMAS (f) Joint MAP via classical forward model (g) Joint MAP
via invariant convolution model and (h) Proposed VBA via invariant convolution model.
Right: hybrid data (a’) 5 simulated complex sources (b’-h’) corresponding methods.
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Figure 8.5: Estimation of variances of source powers on the vehicle surface on Simulation
at 2500Hz, 0dB SNR in non-stationary noises: (a) Proposed VBA source power estima-
tion via 2D invariant convolution model (b) Estimated variances (uncertainty) of source
powers. (c¢) Superposition of source power and its uncertainty
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Table 8.1: Computational cost for treating whole car: image 31x101 pixels, at 2500Hz,
based on CPU:3.33GHz. ’JMAP-+Conv’ is short for Bayesian JMAP method via 2D in-
variant convolution model. "VBA+Conv’ is short for Variational Bayesian Approximation
via 2D invariant convolution model.

Methods | CBF | DAMAS | DR-DAMAS | CLEAN | SC-RDAMAS | MAP | MAP+Con | VBA+Con
Time (s) 1 10 11 45 852 1012 180 578

8.6 Conclusions and perspectives

In this chapter, based on the 2D invariant convolution model, we develop
an efficient VBA inference approach via Student-t priors on source powers
and non-stationary noises. Proposed approach obtains efficient and effective
acoustic imaging results with super spatial resolution, wide dynamic range
and robustness to spatially variant model errors.

The main conclusions are:

e For a more suitable sparsity enforcing prior on source power distribu-
tion, we propose to use Student-t prior and bring in hidden variables to
interpret the hierarchical structure of Student-t prior. Compared with
the limitations of Double Exponential prior in Chapter 6 such as single
model parameter and discontinuity at zero, there are three advantages
in using Student-t prior: firstly, it has more heavier tail to enforce the
sparsity and improve the dynamic range of source power distribution.
Secondly, it is decomposed into multivariate Gaussian of source powers
and Gamma, distribution of hidden variables, and this decomposition not
only offers the possibility of using conjugate priors, but also provides an
alternate and easy way for parameter estimations (VBA), rather than
the JMAP estimation. Finally, the hidden variables (non-constant) re-
flect the spatial variances of source powers, so that the estimation of each
hidden variable offers the important result of the uncertainty (variance)
of each estimated source power.

e For a more accurate prior of model errors rather then the i.i.d Gaussian
distribution in the previous chapters, we propose to use the Student-t
prior to model the spatially variant distribution of model errors, whose
variances are not constant, but depending on the different positions.
Owing to the Normal-Gamma decomposition of Student-t prior, we
model the conditional prior of model errors by using a non-stationary
multivariate Gaussian prior with the variance matrix (expressed by hid-
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den variables) being modeled by Gamma prior.

e For a more effective and efficient way of parameter estimations, we apply
the Variational Bayesian Approximation (VBA) estimation via conju-
gate priors. In VBA, the posterior probability is approximated by a
family of basic easily handled probability distributions, which can be
estimated by minimizing the Kullback-Leibler (KL) divergence. So that
VBA estimation contributes a more precise use of the joint posterior
probability laws of all the unknowns.

For the validations of proposed approach, we present method comparisons
based on the simulated and real data in wind tunnel experiments. Proposed
Bayesian achieves much better results than mentioned classical methods in
Chapter 4. It gets more robust estimations than the proposed sparse regu-
larization approach (SC-RDAMAS) in Chapter 5, the JMAP estimation via
proposed 2D convolution forward model (y = Hx + €) in Chapter 7. And
it obtains as good results (a little better) as the proposed JMAP estimation
via original forward model of power propagation (y = Cx + 021, + &) in
Chapter 6.

However, even though using 2D convolution forward model, the compu-
tation cost of proposed VBA approach rests still very high for practical use.
For the original forward model , we do not apply the VBA estimation for the
huge computational cost of matrix multiplication.

In Fig.8.6, we show the main principles and estimation procedures of the
JMAP and VBA methods. The common things between two methods are: (1)
they are both developed based on joint posterior of all unknown quantities;
(2) they all use useful priors on source powers and model parameters such
as model errors, variances etc. But their difference are obvious: (1) JMAP
is based on the alternate optimization of joint posterior, while VBA aims to
approximate the joint posterior by using a family of basically, easily handled
probability density functions (PDF) of unknown quantities; (2) JMAP is the
point estimator of the unknown, while VBA first compute the approximated
separable joint posterior and then estimate the mean values and variance
matrix of the unknown. (3) JMAP is used when simple priors of unknown
variables, while VBA is not only used with simple priors, but also fits well to
the hierarchical priors. (4) JMAP estimates the objective unknown variables
such as source powers, while VBA furthermore estimates the hidden variables
in hierarchical priors and offers the credible interval (variance) estimations
for more complex cases.

186



Conclusions and perspectives

~

Joint posterior

Joint Maximum A Posterior (JMAP'

L X

(b) T

Figure 8.6: Main principles and estimation procedures of the JMAP and VBA methods

[57]:
(VBA)

(a) Joint Maximum A Posterior (JMAP) (b) Variational Bayesian Approximation

For future works, to overcome the computational complexity of VBA,
we propose to use the Graphical Processing Unit (GPU) to implement the
VBA estimation via convolution forward model, so that the computational
speed would be greatly improved. It is also import to investigate the other

hierarchical priors on correlated sources and colored model errors so as to
improve the VBA performance for real applications.

In Table 8.2, we give a brief summary for the advantages and drawbacks of
mentioned classic methods, proposed SC-RDAMAS in Chapter 5, proposed
Bayesian JMAP approach in Chapter 6, as well as the Bayesian JMAP ap-
proach via proposed 2D invariant convolution model in Chapter 7, and VBA
approach in this chapter.
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8.3.2 - VBA computation complexity

Table 8.2: General performance of classical methods and proposed Bayesian JMAP ap-
proach. "JMAP-+Conv’ is short for Bayesian JMAP method via 2D invariant convolution
model. "VBA-+Conv’ is short for Variational Bayesian Approximation via 2D invariant
convolution model.

Methods CBF CLEAN DAMAS | CMF SC-RDAMAS | JMAP JMAP+Conv | VBA+Conv
Resolutions Low Normal Normal Higher Higher Higher High Higher
Dynamic Range | Narrow | Normal Normal Normal Wide Wide Normal Wider
Noise Robust | Sensitive | Sensitive | Robust Robust Robust | Robust Robust
Computation Least Normal Normal High High Higher Normal High
Samples Normal | Normal Normal More Normal Normal | Normal High
Source number No Required | No Required | Required No No No

e Ce qui est le plus pitoyable pour '’homme, c’est de ne pas avoir la con-
naissance et de ne pas pouvoir se contraindre.

Michel Eyquem de Montaigne

188



Conclusions and Perspectives

Acoustic imaging is a standard technique for mapping the positions and pow-
ers of acoustic sources with microphone arrays, which provides insights into
the mechanisms and properties of acoustic sources, especially for evaluat-
ing the acoustic influence in automobile and aircraft industries. However,
acoustic imaging often involves an ill-posed problem and becomes sensitive
to measured errors. Motivated by these challenges, in this thesis, we develop
several effective approaches for acoustic imaging on the vehicle surface in the
wind tunnel experiments.

9.1 Conclusions

The main conclusions of this thesis can be summarized as follows:

e In Chapter 3, we build up a forward model in the frequency domain
for acoustic signal propagation from source plane to microphone sensor
array in Eq.(3.9):

z(fi) = A(P", fi)s*(fi) +e(f)

In this signal model, the novelty is that we improve the propagation
matrix A by considering multi-path propagation effects such as ground
reflection and wind refraction in the wind tunnel. However, this model
is a non-linear function of unknown source signals s* and their unknown
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positions P*. For linearization, we set up a discrete forward model of
acoustic signal propagation based on discretization of the source plane
in Eq.(3.15):

z=A(P)s+e

In this discrete signal model, the discrete source positions P are known;
and P* and s* are supposed to be included in P and s respectively.
Therefore, this model becomes a linear system of equations for discrete
source signals s, but it is an underdetermined model which cause an
ill-posed inverse problem, especially when discrete source number N is
much greater than sensor number M, namely M < N.

In Chapter 4, based on Eq.(3.15) and beamforming method in Eq.(4.12),
we set up a forward model of acoustic power propagation in Eq.(4.46):

y=Cx+0°1,,

where beamforming powers y = E[|Afz|?] with A being the beam-
forming steering matrix which is obtained from A; power propagation
matrix C = |AT A|.%; source power x = diag [E[ss]]; background noise
power o2 = E[efe]. This model is a linear and determined system of
equations for source power x. Since acoustic imaging mainly involves
source power reconstruction and localization, the power propagation
model in Eq.(4.46) can be thus more easily handled than signal prop-
agation model in Eq.(3.15). This is because the signal model contains
more unknown variables such as signal phases than the power model.

We also present the state-of-the-art methods in source localization and
power reconstruction. The classical spatial filter methods, such as the
beamforming, Capon and MUSIC, aim to solve the forward model of
acoustic signal propagation in Eq.(3.15). They can offer a direct esti-
mation for source localization. The deconvolution methods aim to solve
the forward model of acoustic power propagation in Eq.(4.46). They
can iteratively deconvolve the blurry beamforming power result, and can
obtain a high spatial resolution. The regularization methods can further
improve the spatial resolution of deconvolution methods by using the
sparse regularizations ({y, ¢1 or ¢; with 0 < [ < 1 norm), or improve the
robustness to noises owing to the Tikhonov regularization. But the reg-
ularization term inevitably increases method complexity, and selecting
regularization parameter becomes an essential issue for good use. More-
over, Covariance Matrix Fitting (CMF) method can directly estimate
the cross-spectrum matrix of (un)correlated source signals via sparsity
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constraint, but CMF has huge dimension of variables to be estimated.
Therefore, there is no one-fits-all methods. Most of the mentioned suffer
one of the following drawbacks: poor spatial resolution, sensitivity to
background noises, narrow dynamic range or high computational cost.
In addition, some methods need to set important parameters that must
be tuned carefully for each case.

In Chapter 5, based on Eq.(4.46), we propose an improved power prop-
agation forward model for the model robustness to measured errors as
given in Eq.(5.4):

y=Cx+ az 1,4+ &
In this improved power model, the novelty is that we consider the model

uncertainty & caused by multi-path propagation effects in the wind tun-

nel. For this inverse problem, we propose a robust super-resolution
approach with sparsity constraint (SC-RDAMAS) in Eq.(5.6):

(%,02) = arg min {lly — Cx—0o21,|3}

stx >0, ||x[i=8 ¢>>0

The sparsity parameter 3 is interpreted by the total source power. We
adaptively estimated 3 in the proposed Algorithm 1 in Section 5.2.2. For
the approach validation, we present performance comparisons with men-
tioned classical methods. The simulations show that proposed approach
obtained the 5em super resolution compared with the beamforming res-
olution 31lcm at 2500Hz. It achieved 15dB dynamic range of power
estimations, and well detected complex sources with different patterns.
The real data results demonstrate that proposed approach effectively re-
constructed strong sources on front wheels and rear-view mirrors, as well
as the weak sources on back wheels. The hybrid data experiments have
furthermore confirmed the effectiveness for reconstructing the known
synthetic sources and original sources in the real data. We also show
the moderate computational cost of our approach for the acoustic imag-
ing in wind tunnel tests. The main drawback of proposed approach
is the over-winnowing effect that over-estimation or under-estimation
of sparsity parameter 8 could causes many unstructured or shapeless
points, and could not to reconstruct the true source distribution, espe-
cially when acoustic sources model could not be modeled by monopoles.

In Chapter 6, to overcome the limitations of proposed SC-RDAMAS
approach, we propose to use a Bayesian inference approach with a spar-
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sity enforcing prior. We first considered the model uncertainty as a
random variable & ~ N(E|O,0€2), so that the likelihood p(y|x,0:) =
N(y|Cx + 0214, 0¢) can be derived from it (0; = [07,07]"). We then
modeled the sparse distribution of source powers by using the Double
Exponential DE(x) prior model as:

p(xl62) = (1) exp [l

B = 1 greatly improved the spatial resolution, and proper vy promoted
the wide dynamic range of source powers; 85 = [, 8]7. For robust solu-
tion of this inverse problem, we apply the Joint Maximum A Posterior
(JMAP) estimation to jointly estimated source powers x, sparsity pa-
rameter «y, noise power o> and model uncertainty variance ag (B=1

is fixed). Therefore, propose Bayesian JMAP approach can be summa-
rized as: (see Eq.(6.2) and Eq.(6.8))

(

y=Cx+0°1, +¢&
(x.0) = argmin{J(x.0)} . J(x.6) = —In p(x.6]y)
p(x, 0ly) o p(ylx, 01) p(x|62) p(62) p(61)

N
) J0) = 5lly = Cx— ol Lo+ glxlly +7 Inog = Nlny

sl
2
20

3 S 1 ' -
parseprior Hyperparameter prior

Likelihood
s.t. XEO,JSEO,JEEO,vtO

91 - [0-270-2]T7 02 =7, 0 = [91762]T

\

v||x|]1 can be interpreted as the regularization form F(x) in Eq.(4.58),
and hyperparameter v takes the similar effect of the regularization pa-
rameter. This optimization is carried out by alternate estimations for
the unknown variables and hyperparameters in Eq.(6.9). By simula-
tions, real data and hybrid data, the proposed Bayesian JMAP ap-
proach achieved better performance than proposed SC-RDAMAS. How-
ever, JMAP estimation confronts the non-quadratic optimization and
requires large computational cost.

In Chapter 7, to reduce the computational time of proposed Bayesian
JMAP approach, we propose to use the 2D invariant convolution to
approximate the power propagation model as given in Eq.(7.9):

y=Hx+e¢€
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We suppose that model errors € consist of background noise power o2,

multi-path uncertainty &, as well as convolution approximated errors n
in Eq.(7.7). H denotes the valid convolution matrix. The 2D invariant
convolution kernel h (size and values) was derived from the quasi Sym-
metric Toeplitz Block Toeplitz (STBT) structure of power propagation
matrix C as given in Eq.(7.13):

{ hig = Cij,

i= M), =i (125 - ) N+ 25—
Moreover, h was regarded as a separable 2D-convolution which could be
separated into two 1D-convolution kernels. One of the advantages is that
2D separable convolution greatly reduces both computational cost and
memory requirements of 2D invariant convolution operation. We also
realized the 2D (in)variant and separable convolutions using MATLAB
Parallel Toolbox based on many-core processors such as the Graphics
Processing Unit (GPU). On simulations and real data, the Bayesian
JMAP method via proposed 2D invariant convolution model obtained
an efficient and acceptable imaging result. For acoustic imaging with
very large size, deconvolution method via 2D separable convolution can
be very fast implemented using GPU. Compared to CPU with matrix
multiplication Cx, the 2D separable convolution using GPU achieves
the speed gain as high as three order of magnitude; compared to CPU
with 2D non-separable convolution hxx, it gains two order of magnitude
of speed gain; compared to GPU with separable convolution h; * hl xx,
it still obtains nearly one order of magnitude of of speed gain.

In Chapter 8, based on 2D invariant convolution model in Eq.(7.9),
we considered the model errors to be spatially non-stationary Gaussian
distribution, rather than i.i.d AGWN used in previous chapters. we
propose to use the Student-t prior to model this kind of errors as given
in Eq.(8.4):

St(elac) = H % (1+ ;—i)_lg%

n=1

One of the attractive properties of the Student-t distributions is that

(elae) = [plelv)p(v]|ae)dv can be decomposed into multivari-
ate Gauss1an Normal distribution p(e|v) = N(€]0, X1 with ¥, =
Diagv,], and Gamma distribution p(v|ee) = []o-; G(vn|ay, b,) with
a, = b, = %. Here v = [1,--- ,vn]T denotes hidden variable vector,

which presents the precision of variable € (credible interval).
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Moreover, we investigated a more proper sparsity enforcing prior on
source power distribution than the Double Exponential prior used in
Chapter 6. The Student-t prior St(x|a,) is more suitable to represent a
sparse distribution owing to its narrow peak and heavy tail. Again
here, using the Normal-Gamma integration property of St(x|a,) =
[ p(x|7y) p(y|cw) d7y, we propose to use a hierarchical model as p(x|y)

N (x]0,27") with X, = Diag[y,] and p(v|az) = [T, G(vlas, b,

)
with ay, = b, = 9. Here v = [y1,---,7n]" denotes hidden variable
vector, which presents the precision of variable x.

For joint estimations of unknown variables (x) and hyperparameters
(v, v ), we could not easily apply the Bayesian JMAP as used in Chap-
ter 6, the reason is that there are too many unknown quantities for
JMAP criterion to get a quadratic optimization. So that we applied the
Variational Bayesian Approximation (VBA) estimation. In VBA, the
joint posterior probability is approximated by a family of basic easily
handled probability distributions, which are estimated by minimizing
the Kullback-Leibler (KL) divergence between the two probability func-
tions. We summarize the proposed VBA approach via 2D invariant
convolution model as follows:

(

y=Hx+¢€
. B . L q(x,0)
(x,0) = arg min {KL(q :p) = / (x,0) Wd(&@)}

St(x) = / p(xl) ply) dy = / N[0, 57 G(v|ar.b,) dy

St(e) = / (elv) p( )dV:/N(e\O, > HG(vlay,b,)dv
0 =[y,v]"
p(x,0ly) < p(y|x, 0) p(x|7) p(7) p(v)
x N(yHx, ;1) G(v]a,, b,) N(x]0,271) G(v]ay, by)
| a(x,0) < ¢1(x) g2(7) 3(v)

This optimization was efficiently solved by using mutually conjugate
priors, that was because the conditional prior p(x|vy) and the likeli-
hood p(y|x, v) were multivariate Gaussian distributions, and p(vy), p(v)
were Gamma distribution, they thus became the ’conjugate priors’, so

7\

that the approximated posterior ¢;(x) derived from the same family as
p(x|7), and §2(7) was as Gamma distribution as p(-y), similarly, ¢3(v)
was as Gamma distribution p(v). Suppose that source powers x and
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hidden variables «, v are mutually independent, we easily obtained the
solutions as given in Eq.(8.19):

([ G1(x) = N(x|f1,, 2)

N
go(v) = [[ G(mmla,. b2)
n=1

N
qA3(V) = H g(Vn|dVv [;Z)
n=1

\

All mentioned expectations and parameters were calculated in Eq.(8.20)
and Eq.(8.21). On simulations and real data in wind tunnel experiments,
we showed the proposed VBA via convolution model achieved much
better results than Bayesian JMAP via convolution model, and it also
obtained the results as good as the Bayesian JMAP via conventional
model. However, the computation cost of VBA approach are still high
for practical use.

To sum up, proposed approaches are compared with some of the state-of-
the-art methods on simulations, real data from wind tunnel experiments of
Renault S2A, as well as the hybrid data. The main advantages are robustness
to background noises, wide dynamic range of acoustic powers, super spatial
resolutions, efficient to use, and not need for the prior knowledge of the source

number or SNR.

In Table 9.1, we show the brief summary of proposed methods for acoustic
Imaging.

9.2 Perspectives

Although we discuss several advantages of proposed approaches, there ex-
ist a great number of important works to correct the drawbacks and refine
our researches of this thesis in the coming future. It is highly necessary to
consider the following aspects:

e Practical applications:

— 3D acoustic imaging on the vehicle surface. This work can be carried
out based on the measured data of vertical and horizontal micro-
phone sensors in wind tunnel S2A. The 3D imaging results can offer
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more detailed acoustic source distribution than 2D results offered
in this thesis.

High-resolution acoustic imaging in lower frequencies (|20,1000]Hz)
should be carefully studied, since some of noisy car sounds are gen-
erated by low frequency acoustic sources on car windows, wheels
and rear-view mirrors etc. But low frequency signals confronts very
low spatial resolution. There might be two ways to do: (1) us-
ing high resolution methods (Capon, MUSIC) to build up a power
propagation model, instead of using beamforming method, since
beamforming has low spatial resolution at low frequencies; (2) di-
rectly dealing with the signal propagation model in Eq.(3.15) rather
than power model, since signal model can provide not only signal
amplitudes and positions, but also signal phase and characteristic
frequencies.

Fast implementation using GPU for real-time acoustic imaging
for industry application. The biggest drawback of the proposed
Bayesian approaches is the huge computation cost. So that it is
an essential issue to optimize proposed deconvolution algorithms
so as to efficiently fit the parallel structure of GPU. Moreover, we
find out that calculating invariant convolution h * x based on GPU
merely makes use of about 14% of computational power of GPU,
while separable convolution h; x hl x x just occupies nearly 7%.
So that there will be great potential to develop our own parallel
separable convolution algorithm based on the GPU so as to make
good use of GPU powerful peak computational capacity.

e Accurate forward model of acoustic signal propagation:

— Sophisticated acoustic source model. The full-wave acoustic prop-

agation models should be investigated [125, 97] in order to get a
more precise forward model in the near-filed according to boundary
conditions. In fact, uncorrelated monopole source model is an over-
simplified source model, which can not describe the non-compact
sources, source correlation, pattern or directivity. It is better to
consider the (in)coherent distributed source model that is modeled
by a parametric angular cross-correlation kernel [99, 76, 92].

Direct acoustic signal reconstruction. In this thesis, we mainly focus
on the acoustic power reconstruction. However, signal propagation
model should be further studied by considering signal amplitude at-
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tenuation and phase shift due to the propagation distance, as well
as the characteristic frequency that contributes to distinct different
acoustic sources. Moreover, the source directivity reconstruction
is also an important and practical issue [73, 23, 92] in theory and
industrial application, since the real source itself has directivity dis-
tribution, and the microphone sensors are not omni-directional but
has a directivity pattern too.

— Complex reverberation effect should be studied for real data pro-
cessing in wind tunnel. In this thesis, we merely model the ground
reflection and wind refraction effects, but there are still unknown
multi-path propagation in wind tunnel, especially for a closed non-
anechoic chamber. In acoustics, reverberation is the convolution
of the original sound with echos from objects surrounding the
sound source. We can apply the blind deconvolution methods
[129, , 75, 83] for dereverberations.

— Measured signal errors should account for non-stationary non-
Gaussian noises in temporal-spatial domain |6, 53], or colored noises
in frequency spectrum domain [51, 78]. In this thesis, we just
consider the i.i.d AWGN noise and spatially non-stationary Gaus-
sian noise for simplicity. This might be because measured signals
are usually deteriorate by complex reverberations, inherent sensor
noises and signal processing models.

e Effective inverse problem methods:

— Direct results of source localization should be further studied. In
this thesis, we just focus on source power estimation, and merely
give a discrete estimation results for source positions. The limit
or Cramér-Rao lower bound (CRLB) of spatial resolution |39, 40]
should be a worthwhile work to measure the method performance
for acoustic imaging.

— More appropriate sparse priors of source power distribution should
be also investigated with physical meaning, such as fractional Lapla-
cian prior [110] which much enforces the sparsity, the Chi-square
distribution [72] which is non-negative sparse distribution of source
powers, as well as the group sparsity priors |64, 61] which can
properly model a sparse distribution of a group of closely spaced
monopole sources on the very large source plane.

— Fast VBA methods such as Tree-structure compressed sensing [101]
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and automatic relevance determination [58] could become promising
works to overcome VBA computation burden. In this thesis, we
merely apply the VBA method to improve the Bayesian estimation,
but it is still the great matter to well study the VBA calculation
complexity and improve its performance and efficiency.

Acoustic source separation in reverberations is an important exten-
sion of source localization and imaging. "cocktail party problem" is
one of typical example of source separation, in which, several acous-
tic signals are mixed together into a combined signal, and the objec-
tive is to recover all the original signal components from the mixed
signals which are often deteriorated by serious reverberations in the
non-anechoic chamber. The acoustic imaging on the car surface in
wind tunnel is as similar as the cocktail party case. We want to
not only distinct the different sources from their different positions
on the car, but also from their physical characteristics such as fre-
quencies, spectrum, directivity or powers. Several approaches have
been proposed to solve this problem such as the principal compo-
nents analysis (PCA) and independent components analysis (ICA),
as well as Bayesian source separation [122, 55, (2, |. It is also
a very promising work to exploit advanced source separation meth-
ods by using some of acoustic imaging techniques discussed in this
thesis.
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Table 9.1: Brief summary of proposed methods for acoustic imaging.

Chapter Chapter 5 Chapter 6 Chapter 7 Chapter 8
Forward model y=Cx+021,+& y=Cx+021,+& y=Hx+021,+€+n y=Hx+e€
Main operation Matrix multiplication Matrix multiplication 2D convolution 2D convolution
Error factor 02: Background noise; &: Multi-path | o2, € 1: Model approximated error; o2, & € includes n, o2, &
propagation uncertainty
Inverse criterion | Minimizing & under sparsity constraint Joint Maximum A Posterior (JMAP) | Joint Maximum A Posterior (JMAP) | Variational Bayesian Approximation
(%,02) = arg max {p(x, 0]y)} (%,02.) = argmax {p(x,0y)} (VBA) 4(x,0)~p(x,0ly)
(5.9) in (-l p(e.0)} | ( (.0) in {— In p(x, 0]y} oy s "y
X, = argmin {—In p(x, 0|y X, = argmin {—In p(x, 0|y . _ q(x,
. ) ) ) = L |lyCx — 02 14| = Ly—Hx—021,)? KL(g:p) = [4q(x,0) p(xfly) d(x,0
Cost function { (%,02¢) = argmin {|ly C’; ~ ¢ Lall3 20 © 20 N p(x,0ly) o« N(yHx, 2,%)G(V|ay
st. x=0, |x[i=8 0220 +'y||x||1+% lnag—Nlny +'y||xH1+% lno‘?—Nln'y N(X|O,Z;1)g(‘y\ary,ba
0 =lo2,02,7T 0 =02,02,9]T, n=0 q(x,0) o q1(x)q2(7) g3(v)
e O¢ er%¢ 0 =[v V]T
Error prior aZ>0 ii.d Gaussian: N (€0, O'g I) ii.d Gaussian: N (€0, Ug I) Student-t  prior: St(e|ae) =
—1 Qe Qe
S N(e0, 271 G(v| %, %) dv
Likelihood - N({ylCx+0214, 07 1) N(yHx + 02 1a, 07 1) N(y|Hx, ;1)
Power prior x>0 Double Exponential: p(x|v,8) = | Double Exponential: p(x|v,B8) = | Student-t prior: St(x|az) =
N N —1 ar Qg
(%) exp [‘7“"“5:1] (%) exp [_’YHX”[?=1] J N(x]o, 35 )g('Y‘Tv &) dy
Hidden variable | - - - ~, v (vector)
Parameter prior | Estimated bound on /8 a2, 037 v (scalar) Jeffrey priors a2, 027 7 (scalar) Jeffrey priors v, v (vector) Gamma priors
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Figure A.1: Wind reflection in wind tunnel experiment.

As shown in Fig.A.1, for source n, we suppose the wind refraction takes
place at point p on the interface between the common air and wind flow. We
firstly calculate the actual propagation path r,,, and then obtain the actual
propagation time 7, .

When the medium is uniform, r,,, is of a geometric distance calculated
as follows:

Tn,m = \/(pnm - pmx)Q + (pny - ﬁmy)2 + (pnz - ﬁmz)2 ) (Al)

201



APPENDIX A. WIND FLOW REFRACTION

where P = [p1,---,Par]? represents 3D coordinates of sensor array; and
sensor m has P, = [Pz, Pmys Pmz)” - The corresponding propagation time is

Tom = Tn.m/Co, With ¢o being acoustic speed in the common air.
When the medium is not uniform due to the wind flow, ry,,, is not a
geometric distance, but composed of two geometric parts as follows:

Tnom = dn,p +d Sy (AQ)

Where d,, , is the geometric distance from source n to refraction point p, and
dym 1s the one from point p to sensor m.

Therefore, actual r,,, can be calculated by knowing the position of re-
fraction point p.

Tn.m Subsequently is made up of two parts:
Toom = Tnp + Tpm = dnp/C1 + dpm/co, (A.3)

where ¢; = ||¢ + ¥]|, with ¥ being the speed vector of the wind flow. Since it
is complicated to obtain c;, we use the equivalent source n’ to calculate the
equivalent 7,/ ,. We suppose that the sensor m seems to receive the signal
from equivalent source n’, instead of the source n, as if there were no wind
influence. This means 7,,, = Tm = dw.m/co. Taking the above equation
into Eq.(A.3), we get

Toom = A p/co + dpm/co - (A4)

Therefore, actual 7,,,, depends on the positions of the equivalent source
n’ and refraction point p.

In Fig.A.1, when the positions of sensor m (Pp = [Pz, Dy, Pmz]’ ) and
source n (Pn = [Pnas Py, Pnz)’) are given, we firstly locate the equivalent
source 0’ (Py = [Purx, Purys Pvz)” ) and then determine the refraction point p

(Pp = [Ppes Doy Dp=]")-

For equivalent source n’, since the wind direction is parallel to the ground,
the displacement exists only in horizontal direction. According to the coor-
dinate in Fig.A.1, p,y can be obtained as:

Pniz = Pan T dn,n/ sy Pn'y = Pnys  Pn'z = Pnz, (A5)
where d,,,, denotes the horizontal displacement, it can be calculated as

dn’,n = dn/7p U/C(), (AG)
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Figure A.2: Solutions of triangle problems.

where d,, can be calculated by solving the triangles Apnn’ and Amnn’ in
Fig.A.2 which is part of Fig.A.1:

v V2 V2 V2
dn’ = | — Wnz — Ppzx S Wnhxe — x2 d2 1—— 1__7
p [CO(p pp)+\/cg(p Ppz)® + d cg) /( cg)

(A.7)
where the wind speed naturally satisfies v < ¢yp. And we can get p,, by
solving the triangle Amn’q on the horizontal plane in Fig.A.1, and similarly
Dpy On the vertical plane. Then p, is calculated by

_ _In Ly 5
Ppx = Lljj-L2pn/x + Llﬂ_szmx

_ 1 L2 n
Dpy = L1+L2pn/y + L1+L2pmy ) (A8)
Ppz = Pmz + Ll

where Ly is the distance from the sensor plane to the wind interface, and Lo is
the distance from the wind interface to the vehicle plane as shown in Fig.A.1.
Let d;, ,, denote the projection of d, s on the ground. If d;, ., = L1 + Lo,
then p, can be directly calculated by Eq.(A.8). If d], . > L1 + L, we solve
the the triangle Amn’q based on solid geometry analysis, and finally we get

the same solution as the Eq.(A.8). Above all, p,/ is obtained by substituting
Eq.(A.8) into Eq.(A.7).

In conclusion, 7, ,, in Eq.(A.2) can be derived from the equivalent source
n’, and 7, ,, in Eq.(A.4) can be calculated from both equivalent source n” and
refraction point p. Therefore the steering vector a(py, fi) in Eq.(3.16) can
be corrected as follow:

1 .
Apm = exp [—J27 fiTw.m] + p

n,m —n,m

exp [—j27 fi T—p m] (A.9)

where a,,, € a(pn, fi) denotes the steering item from source n to sensor m,
and time delay 7_,, ,, of ground reflection will be discussed in B.

Our refraction correction can be extended for the other cases:
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APPENDIX A. WIND FLOW REFRACTION

Case 1: No wind. Since v = 0 and Ly = 0, we have d,y, = d,,, from
Eq.(A.7), and p, = py from Eq.(A.8). That means that both equivalent
source n’ and refraction point p locate at the position of source n. This
conclusion meets the common sense.

Case 2: Wind everywhere. Since v # 0 and L; = 0, we have p, = py,
from Eq.(A.8). This means refraction point p is the same one as the sensor
m, but horizontal displacement d,,,, still takes place according to Eq.(A.7).

0

=
0 L i 5 0 i L i
(a/) -2 -15 -1 -0.5 0 0.5 1 15 2 (b) -2 -15 -1 -0.5 . 1 15 2

Figure A.3: Propagation corrections in wind tunnel: beamforming on the real data at
2500Hz: (a) without corrections and (b) with corrections

In Fig.A.3, we show the improvement of refraction correction. We use the
real data in wind tunnel experiments, and the working frequency is 2500Hz.
Take the beamforming method for example, it is seen that without correc-
tions, all the sources are detected on the right side of their real positions,
and there are the displacements along the wind direction. After corrections,
we get the expected results.
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Ground Reflection
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Figure B.1: Ground reflection in wind tunnel experiment.

In Fig.B.1, we show the ground reflection in wind tunnel. For the sensor
m, its measured signals consists of two parts: the major one from the direct
propagation, the other from the ground reflections. To correct ground reflec-
tion, here we apply the mirror source -n which is symmetric to the ground for
source n. For the sensor m, it seems to receive the signal by way of the direct
path r_, ,, from the mirror source. Therefore, the steering vector a,(p_p, fi)
of the ground reflection depends on the positions p_,, of mirror sources.
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APPENDIX B. GROUND REFLECTION

Considering p,, = [Pna, Pny> Pnz)T are the coordinates of the source n, its
mirror source n’ has the coordinates py = [Pua, 2Pnyy — Pny, Prrz)”, Where
Pny, 15 the vertical coordinate of the ground as shown in Fig.B.1. Since the
original O of coordinate system, we have p,,, = 0, thus the mirror position
iS P_n = [Pnes —Pna» Puz)’ - Therefore the steering vector of ground reflection
a,(p_n, fi) in Eq.(3.16) can be calculated as similarly as the steering vector
of direct path a;(py, fi) in Eq.(3.11). Then the correspond steering vector

of wind refraction ag(p_,, fi) can be corrected according to A.

Base on the analysis of ground reflection, we demonstrate the improve-
ment of propagation corrections in Fig.A.3. As we can see, without correcting
the ground reflection (p = 0), the estimated sources could be involved with
the ghost sources outside and under the car. These ghosts are the influences
of multi-path propagation. After corrections with p = 0.8, the beamform-
ing result has much fewer ghosts in the air, on the center and rear of car
body, and under the car. Furthermore, the potential strong sources are more
concentrated. All the other methods are as improved as to the beamforming.

206



STBT Matrix Approximation
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Figure C.1: Row item distributions of C and invariant convolution kernel h. Simulated
at 2500Hz, other configurations are the same with Chapter 5.3.

For the ith source i € [1,---, N], we suppose that there exists an aver-

. _ M . .
aged distance 7; = ﬁ > 1 Tim from sources to the sensor plane, satisfying

7i/Tim =~ 1 for any sensor m € [1,--- , M].
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APPENDIX C. STBT MATRIX APPROXIMATION

According to the above assumption, each item ¢; ; € Cin Eq.(7.1) can be
approximated by:

M
A 1 1 ) (i =5 m)

CZ?J ~ M 1 € 0
2

1 27 fi , 1

= 7722 75 e’ e (Pi,m—7j,m) =, (C].)
M 1 T
m=

m=1

where 7;,,, denotes the propagation distance from ith discrete source (at the
position p; on the discrete source plane) to the mth sensor; f; denotes the
Ith frequency bin; M is the total number of sensors; 4,5 € [1,--- , N]; and ¢
is the acoustic propagation speed. In Fig.C.1, we show the item distribution
on the rows of C, and the relation between C and invariant convolution
kernel h. The middle row refers to h, and some particular items of this row
constitute the kernel elements.

According to Eq.(C.2), we get &, = ¢, C = CT. Therefore, C is a
symmetric matrix as shown on the top of Fig.(7.8). And C can be expressed
by subblock matrices C,; as follows:

C=[Culvoxn. +Cuu =[G Inen. G =e5€C gy
i=p+(q—1)N,j=k+({—-1)N,

where Cq,l with ¢, € [1,; _ ,Nc]Ndenotes the subblock matrix at gth-row
and [th-column block of C; and C has the number of N. x N, subbolcks
as shown in the middle of Fig.7.8. cz(f,;l) with p,k € [1,--- , N,] denotes the

pth-row and kth-column item of qu, and éqJ has the size of N, x N,.

We then suppose that

l J
‘Ti,m - 7nj,m‘ ~ |ri+1,m - Tj—&-l,m’? LEJ - LEJ ) (q - l) (04)

where |- | denotes the integer part, which reflects that the ¢th and jth, i+ 1th
and j + 1th discrete sources are on the same column on the source power
image. This approximation is shown in the right bottom of Fig.C.2.
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Figure C.2: Assumptions for STBT matrix C approximation (a) Approximation for
Toeplitz in a subblock (b) Approximation for block Toeplitz block

Based on Eq.(C.2), it yields ¢ ; = €141 for ¢ and j belong to one
subblock. Since index ¢ and j are periodically changing, we then have ¢; ; =
CitN,.j+N, 1n two subblock.

According to Eq.(C.3) and (C.4), for any ¢ g gl o C,., we have

o,k 7 Tp+1k+1
c](ill) b1 = Citlj+1 = Cij = 6](;1,’5). Therefore, subblock C,; is a Toeplitz
matrix, as shown in the middle of Fig.7.8.
~(q.,0) ( +1 J1+1) ~(q+1,1+1)

For any ¢ ok € ng and ¢ S éq+1,l+1; we get, Ckl =

~ l ~
Ci+N, j+N, = Cij = cz()’k), and Cq’l — Cy 1741 Therefore, C is a block

Toeplitz matrix, as shown in the middle of Fig.7.8.
Above all, C is proved ton be a STBT matrix, as shown in Fig.7.8.
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Separable Convolution

In order to accelerate the 2D convolution, we here investigate the separability
of the convolution kernel. Firstly, we introduce the separability condition
of 2D convolution kernel [93, 116] as follows:

Let 7(h) denote the rank of a N, x N, convolution kernel h. And hy, hy
denote two column vectors with the same length of N,.. If r(h) = 1, we can
get h = hy x hI. In other words, one operation of 2D convolution can be
replaced by using two operations of 1D convolution, as long as the rank of
the 2D convolution kernel equals one.

For an input vector with the length N, the computational complexity
of 2D convolution (using h) is O(N? N), while the separable convolutions
using hy, hy can be greatly reduced into O(2N, N) as shown in Table 7.1.
Meanwhile, the storage of convolution kernels is also reduced from N? to
2N,.

Even if the separability condition can not be always guaranteed, the 2D
convolution can be also approximated by separable convolution, as long as
the kernel separability is big enough. We define the kernel separability as:

i
__ M D.1
SRS OPY >y
where [A1,- -+, Ay ]T denotes eigenvalues of h, with Ay > Xg--- > Ay > 0.

Then we want to derive the 1D convolution vectors h; and hsy. Since every
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APPENDIX D. SEPARABLE CONVOLUTION

real symmetric matrix h can be diagonalized |59], we take the EigenValue
Decomposition (EVD) of of h as:

Nr
h=UAU" =) " Auu/, (D.2)

where U = |[w;]x is a N, x N, orthogonal matrix, whose columns u; with
i € [1,---,N,] are eigenvectors of h; and A = Diag[\;]n, is a real and
diagonal matrix, whose diagonal values \; are eigenvalues of h.

From Eq.(D.2), we can approximate h by using the biggest eigenvalue A\
and its corresponding eigenvector u; as h ~ Aluluf. Then we define the
approximating error as:

15010 Al |f3

h— A
= b=y 1B 1005 =

x 100%,  (D.3)

2 Ny 42
where the valid convolution satisfies u; * uf = wuju f, and u] =
[u1 N, -+ ,u1 1] denotes symmetric vector of uy = [ug 1, ,u1 n,]. Since
U = [u]y, is an orthogonal matrix, we then have u; u} = I and ]u u;| =1

for i = 7, Julu;| = 0 for i # j. According to Eq.(D.2), || 207, Auyul||3 <
Zfiz M|l uf|3 = 2&2 A?. Finally, according to Eq.(D.3), the upper

1
bound of approximating error is:

N. 2

S A 1

< =270 % 100% = x 100% , D.4
2 Ny 2 1

)‘1 + Zi:2 )‘i P +

where p = denotes the separability degree. The bigger p is, the more

zivz A
separable h becomes. If r(h) = 1, then h = A\ju; * u!, so that ¢ = 0 in
Eq.(D.4) and p — oo in Eq.(D.1). Therefore, we can obtain the 2D separable
convolution kernel as

h ~ hy, = \juy xuf | (D.5)

where A\ denotes the biggest eigenvalue of h; u; denotes the corresponding
eigenvector of h; and u} denotes the symmetric vector of uy. The separability
error € has the upper bound in Eq.(D.4).

In conclusion, if the 2D convolution kernel h is a non-negative, real and
symmetric matrix, it can be approximated by a separable convolution kernel
which consists of the bigger eigenvalue and its corresponding eigenvector of
h. And the approximating error of separable convolution is relatively small,
as long as the kernel separability is big enough.
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Figure D.1: Performance of 2D separable convolution VS 2D invariant convolution

In Fig.D.1, we show the kernel separabilities of three 2D convolution ker-
nels (PSFs) versus different PSF sizes on the same simulation of Chapter 7.3.
The input of source power image x( has the size of N, = 17 x N, = 27. Thus
the propagation matrix C has the size of N = 459 x N = 459. The PSF1
is obtained by the items of ¢; j, j € [1,---, N] on the first line of C; PSF2
is from the middle line (i = 230) of C; PSF3 is from the line of i = 300.
Compared with the 'variant’ kernel in Eq.(7.12), the ’invariant’ kernel is fixed
in Eq.(7.13), and does not varies along with the index of output item.

For three red curves in Fig.D.1, we show the invariant convolution kernel
separabilities of PSF1, PSF2 and PSF3 respectively. All of three separabili-
ties share the same trend and are close to each other. The larger the size is,
the bigger error of separability is. But separability error remains relatively
small (< 11%). Particularly, when kernel size is about 15 x 15 which is close
to N, = 17, the separability error is just around 5%. This is because the
symmetric structures of PSF1, PSF2 and PSF3 can well meet the separable
conditions in Eq.(D.4).

For three blue curves in Fig.D.1, we show the convolution approximating
errors between the invariant convolution model in Eq.(7.13) and simulated
beamforming result in Eq.(4.12). According to the separability errors (blue
curves), the invariant convolutions can be effectively approximated by two
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APPENDIX D. SEPARABLE CONVOLUTION

1D-convolutions. It is seen that the larger the kernel size is, the bigger the
convolution approximating error becomes. But PSF2 can achieve the smallest
convolution approximating errors using a relatively small kernel size (15x 15),
so that PSF2 can be well approximated by a 2D separable convolution.

In conclusion, figure D.1 tells that PSF2 can be a 2D separable convolution
which contributes an efficient and effective convolution to approximate the
forward model of source power propagation in Eq.(5.4).
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Proof: Power propagation matrix C is
non-invertible

As discussed in Eq.(4.49), the power propagation matrix C can be modeled
as

C=|ATA|2, (E.1)

where A = [a;---ay], A € CM*N denotes the beamforming steering ma-
trix, defined in Eq.(4.12); A = [a;---ay], A € CY*¥ denotes the signal
propagation steering matrix, defined in Eq.(3.15); operator | - | denotes the
absolute modulus of each item of a matrix; (-).? denotes the square of each
item of a matrix; C € RV*¥ is a square matrix full of non-negative values.

According to Eq.(E.1) and two non-linear operator (-).2 and| - |, we define
two matrices B and D as

B =ATA =[b; - by]

D = (B)2 =[bl B (E2)
C =|D|. =[bil- b}l
where B = [by,--- ,by] is made of N column vectors b, € C¥*! with
n € [1,---,N]; and B,D € C"M¥ are two square matrices; operator ().?

and ||. respectively denote the square value and absolute value of each item
of matrix or vector. Let matrix rank of rank(B) = K. Since A € CM*¥N
and A € CM*N with M < N, their matrix ranks meet rank(A) < M < N
and rank(A) < M < N. According to the property of matrix rank [59],
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APPENDIX E. PROOF: POWER PROPAGATION MATRIX C IS
NON-INVERTIBLE

B ¢ CV*N has a matrix rank:

rank(B) = K, 0 < K < min{rank(A),rank(A)} <M < N. (E.3)

Therefore, B is a singular matrix and cannot be invertible.

In the followings, we want to firstly prove that matrix D € CV*¥ is also
singular and non-invertible, and then prove that so does matrix C € RV*V.

According to Eq.(E.3), since rank(B) = K < N, there exist K linear-
independent column vectors in B. Suppose that [by, -, bg] are linear-

independent, so that the column vector bg .1 can be a linear combination of
[blu e 7bK]:

K
b =Y by, (B.4)
where o, with m € [1,--- | K] denotes the coefficient (real value), satistying
2521 lam| # 0. Since by, with m € [1,--- | K + 1] is a column vector, we

take the operator of (-).? (item square of a matrix) on both sides of Eq.(E.4),
then it yields

K
bK+1 = (Zm 1 Qm b,,).? (E.5)
= Zm 1 a2 b2 + 2 Zg,nzl,n;ém Qi Oy bm bn ’ ‘

where operator . denotes the vector dot product of two vectors. We discuss
Eq.(E.5) as follows:

e If linear-independent column vectors [by, - - - , bg] are mutually orthog-
onal, it yields by, .b, = 0y for m # n, with Oy = [0,--- ,0]% denotes
the column zero-vector. In this case, equation (E.5) becomes

b1 = Z az, bl + 0y, (E.6)

where a2, with m € [1,--- | K] is a coefficient (real value); since satisfy-
ing S8 Jan| # 0, it yields 25 |a2| # 0. Equation (E.6) shows that
column vector b7, is the linear combination of K number of column
vectors [b?, -+ b%]. According to the definition of matrix D € CV*¥,
it is proved that rank(D) < K < N, so that D € CV*¥ is singular
and non-invertible.

e If linear-independent column vectors [by, - -- , bg| are not mutually or-
thonormal, b, with m € [1,--- , K] can be modeled by K number of
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standard orthonormal basis e; with i € [1,--- | K] as:

K
= Zﬁmiei , (E?)
=1

where (,,; with ¢ € [1,--- , K| denotes the coefficient (real value), satis-
fying Zfil |Bmi| # 0; and orthonormal basis e;.e; = 0 for i # j; e; .€; =
1; for i = j, with 1; = [0,---,1;, -+ ,0]% denotes the column vector

whose ¢th item is 1 and others are 0. Inserting b,, = Zlng:l Bmi -€; of
Eq.(E.7) into Eq.(E.4), it yields

br i1 :ZK 1 O by
- Zm 1am Zz 1ﬂmZeZ (E8)

_ Zz 1(2 105m6mz) €; 7
= Zi:l Vi €

where v; = 2521 Qo B with @ € [1, - -+ | K] denote the coefficient (real

value); since Zfizl || # 0 and Zfil |Bmil # 0, it yields Zi:l v | #
0. Then replacing Eq.(E.8) into Eq.(E.5), it yields

K
b%ﬂ-l = (Zz 1 % 92) 2

- Zz 1 '71 e + 2 Zz ,J=1,i#j Vi €i-€j (Eg)
- Zz 1 ,yz e + 0N7
where K number of vectors e? with i € [1,---, K| are also the stan-

dard orthonormal basis; since 3% _ |y, # 0, it yields Y% _ |42 # 0.
Therefore, equation (E.9) shows that column vector b% _; is the linear
combination of K number of standard orthonormal basis [e,--- ,e%].
According to the definition of matrix D € CV*V it is proved that

rank(D) < K < N, so that D € CV*¥ is singular and non-invertible.

Now we want to prove that matrix C € RV*V is also singular and non-
invertible.
According to the definition of three operators | - |., (-).? and ., they all

manipulate each item of a vector or matrix. For the complex vector by 1,
we have the operator property as

|b%(+1| - ‘bK+1|-2 - bKH'b?{H . (E.10)
Replacing Eq.(E.5) into Eq.(E.10), we get
K K
|b%(+1| (Zm lam bm) (Zm IOdm bT) (Ell)

_Zm lleb |+Zmn 1, m#n OémOénbmbg 7
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NON-INVERTIBLE

where equation (E.11) is quite similar with the Eq.(E.5). So that we can
use the similar methods in Eq.(E.5)-Eq.(E.9) to prove the fact that matrix
C € RY*N is also singular and non-invertible.

218



e La Chine est une fois réveillée, le monde tremblera pour elle.

Napoléon Bonaparte
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Author’s publications during 3 years of PhD

Articles published in journals:

e N. CHU, A. Mohammad-Djafari and J. Picheral, Robust Bayesian super-
resolution approach via sparsity enforcing priors for near-field acoustic

source imaging, Journal of Sound and Vibration, Vol. 332, No. 18,
pp 4369-4389, Feb. 2013. DOI: 10.1016/j.jsv.2013.02.037.

e N. CHU, J. Picheral and A. Mohammad-Djafari, N. Gac, A ro-
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2014.

Preprints in journals:
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tical Society of America
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Talks in seminars
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