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Introduction

Dans cette these, nous étudions quelques questions liées & la théorie de grossissement de
filtration dans le but de les appliquer a des modéles financiers. Nous nous concentrons sur
deux approches classiques pour grossir la filtration de référence: le grossissement initial et le
grossissement progressif. Dans les deux cas, une nouvelle source d’information est ajoutée
de maniére correspondante: initialement ou progressivement. Plus précisement, si £ est
une variable aléatoire, la filtration grossie initialement, F7(&) est la plus petite filtration G
continue & droite contenant F et telle que & est Gp-mesurable. Si 7 est un temps aléatoire
(c’est a dire une variable aléatoire positive) alors la filtration grossie progressivement, F7, est
la plus petite filtration G continue & droite contenant F et faisant de 7 un G-temps d’arrét.
En d’autres termes

FFO Ny Favol€) et FT =gy FsVolrAs).

La théorie de grossissement de filtration a été développée dans les années 70 et 80 dans les
travaux de It6, Barlow, Jacod, Jeulin et Yor, portant esentiellement sur le comportement
de F-(semi)martingales dans la filtration grossie. Trois ouvrages ont été consacrés a ce
sujet: Jeulin [Jeu80|, Jeulin et Yor [JY85], Mansuy et Yor [MYO06]; on trouve également
de nombreux résultats dans le livre de Jacod |[Jac79|. Pour un panorama de la théorie, les
lecteurs peuvent se référer aux chapitres correspondants dans les livres [DMM92, JYCO09,
Pro04, Yor92|.

Une premiére question a porté sur la stabilité de la propriété de martingale. Brémaud and
Yor [BY78| ont donné, dans le cas ou G est une filtration (continue & droite) quelconque
contenant F, une condition nécessaire et suffisante (connue sous le nom d’ hypothése (#))
pour que toutes les F-martingales soient des G-martingales. Le cas du grossissement initial a
été étudié en particulier dans Ito [[t676], Jacod [Jac85] et Yor [Yor85b|, puis dans les théses
de Amendinger [Ame99|, Ankirchner [Ank05|, Song [Son87| et dans les articles associés
de Amendinger, Imkeller et Schweizer [AIS98|, Ankirchner, Dereich et Imkeller [ADIO6,
ADIO07|, Ankirchner et Imkeller [AI07]. Le cas du grossissement progressif et les propriétés
de temps aléatoires ont été examinés dans Azéma [Azé72|, Jeulin et Yor [JYT78|, Williams
[Wil02], Barlow [Bar78|, Nikeghbali et Yor [NY06|, Nikeghbali [Nik07|, Jeanblanc et Song
[JS11a, JS11b] et sont présentés dans le survey paper de Nikeghbali [Nik06] ot 'auteur se
restreint au cas ou toutes les F-martingales sont continues (condition (C)) et ou 7 évite les
F-temps d’arrét (condition (A)). Plus récemment, des résultats importants pour un type de
grossissement progressif avec une filtration, ont été obtenus par Kchia et Protter [KP14],
Kchia, Larsson et Protter [KLP14] et dans la thése de Kchia [Kch12].
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La théorie de grossissement de filtration s’est avérée étre un cadre adéquat pour modéliser
plusieurs phénomeénes financiers, puisque l'information supplémentaire conduit naturelle-
ment & ajouter de 'infomation a la filtration de référence. Ainsi, un certain type d’asymétrie
d’information existant sur le marché financier peut étre capturé en regardant diverses filtra-
tions.

Des études de délit d’initié basées sur la théorie de grossissement de filtration ont été en-
treprises par Karatzas et Pikovsky |[PK96] et Grorud et Pontier [GP98, GP01]. Dans le
premier article, les auteurs s’intéressent au profit qui peut étre réalisé par un investisseur;
dans le second article, les auteurs généralisent la premiére étude et montrent comment dé-
tecter les délits d’initiés. Dans ces deux articles, la filtration de référence est une filtration
continue. Dans certains cas, travailler avec des informations supplémentaires donne les op-
portunités d’arbitrage; autrement dit, I'information supplémentaire permet un plus grand
profit. Le méme probléme est étudié dans un modéle présentant des sauts par Elliott et
Jeanblanc [EJ98| et dans Hillairet et Jiao [HJ13| dans un cadre de risque de crédit. Des
applications & la modélisation des événements de défaut ont commencé avec les articles de
Kusuoka [Kus99| et Elliott, Jeanblanc et Yor [EJY00]. Dans le premier article, 'auteur
étudie le role de I'hypothése (H); dans le deuxiéme article, les auteurs présentent un modéle
ou cette hypothése n’est pas verifiée, et développent une méthode d’évaluation de produits
soumis au défaut.

Cependant, dans la construction d’un modéle financier, on doit veiller & ce que ce mod-
éle n’admette pas d’opportunités d’arbitrage. FEn particulier, il faut préciser quel type
d’arbitrages, le cas échéant, 'information supplémentaire peut apporter. Des opportunités
d’arbitrage obtenues au moyen d’information supplémentaire ont été étudiés dans Coculescu,
Jeanblanc et Nikeghbali [CIN12|, Imkeller [Imk02|, Zwierz |Zwi07|, Fontana, Jeanblanc et
Song [FJS12]. Dans les trois derniers articles, les auteurs travaillent avec un grossissement
progressif spécifique, plus précisément, un grossissement obtenu en travaillant avec des temps
honnétes, et ils limitent leur attention au cas ou la filtration de référence F est continue et ol
le temps aléatoire 7 évite les F-temps d’arrét. Dans Imkeller et Zwierz, les auteurs prétent
attention au drift d’information et & ses propriétés d’intégrabilité; les preuves dans Fontana
et al. sont basées sur une décomposition multiplicative de la supermartingale d’ Azéma,
établie dans Nikeghbali et Yor [NY06] sous les conditions (CA). Aprés une premiére version
des reésultats de cette these, Acciao et al. [AFK14] ont produit une étude intéressante sur
les problémes d’arbitrage jusqu’a un temps aléatoire, en utilisant une méthode différente
que celle présentée dans cette thése, et ont obtenu la méme caractérisation de non arbitrage
pour tous les prix et une condition suffisante pour un prix donné (cette condition étant un
cas particulier de la notre).

Cette these est divisée en deux parties: la premiére partie traite des problémes généraux de la
théorie de grossissement de filtration, tandis que la deuxiéme partie est consacrée a ’absence
d’arbitrage en présence d’information supplémentaire, pour différents notions d’arbitrage.
Dans les deux parties nous nous intéressons particuliérement aux cas discontinus, c’est-a-dire
quand il existe une martingale discontinue dans la filtration de référence et au cas de temps
aléatoires qui n’évitent pas les F-temps d’arrét.

Dans la premiére partie de cette thése, nous étudions les propriétés de différentes classes de
temps aléatoires. Nous commencons avec la notion classique de temps honnéte et pseudo-
temps d’arrét qui généralisent la notion de temps d’arrét. Par ailleurs, nous considérons les



deux classes de temps aléatoires qui sont les plus connues dans les applications au risque
de crédit, c’est-a-dire les temps de Cox et les temps initiaux. Les questions posées sur les
temps aléatoires sont liées a leurs propriétés du point de vue du grossissement de filtration.
La F-projection duale optionnelle associée & un temps aléatoire représente un important
information, est disponible dans la filtration de référence, sur ce temps aléatoire et s’avére
étre une notion trés utile pour traiter divers problémes.

La deuxiéme partie de cette these est consacrée a I’étude de conditions de non-arbitrage
dans les filtrations grossies progressivement et initialement. Nous commencons par fournir
des exemples dans les cas progressif dans le cadre de filtration de référence engendrée par
un mouvement brownien ou un processus de Poisson. Le résultat principal consiste en une
analyse compléte qui nous conduit & une condition suffisante et nécessaire pour non-arbitrage
avant le temps aldtoire apportant de l'information. Finalement, nous regardons ’absence
d’arbitrage dans le cas de filtration grossie initialement.
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Introduction

In this thesis, we study some questions settled in the enlargement of filtration theory with
finance in view. We focus on the two classical ways to enlarge a reference filtration F,
namely the initial and progressive enlargements. In each of those cases, a new stream of
information is added in the corresponding manner: initially or progressively. More precisely,
letting € be a random variable, the initially enlarged filtration F7(©) is the smallest right-
continuous filtration G containing F such that ¢ is Gp-measurable. Letting 7 be a random
time (i.e., a positive random variable), the progressively enlarged filtration F7 is the smallest
right-continuous filtration G containing F and making 7 a G-stopping time. In other words,

FFO =Ny Favo©) and F7 =Ny Fs Vo(rAs).

The theory of enlargement of filtration was developed during the 70’s and 80’s, starting with
the works of It6, Barlow, Jacod, Jeulin and Yor. Main questions refer to the behaviour of
[F-(semi)martingales in enlarged filtration. Three lecture notes volumes have been devoted
to this subject; Jeulin [Jeu80|, Jeulin and Yor [JY85], Mansuy and Yor [MY06], and many
results are given in Jacod [Jac79]. For an overview of the theory, the reader can also refer
to related chapters in the books [DMM92, JYC09, Pro04, Yor92].

The stability of the martingale property, called (#) hypothesis (that is when all F-martingales
are G-martingales, for a general enlargement G) is studied in details in Brémaud and
Yor [BY78]. The initial enlargement case was studied in particular in It6 [It676], Jacod
[Jac85] and Yor [Yor85b|, then later in the theses of Amendinger [Ame99|, Ankirchner
[Ank05], Song [Son87] and in the related papers of Amendinger, Imkeller and Schweizer
[AIS98], Ankirchner, Dereich and Imkeller [ADI06, ADIO7], Ankirchner and Imkeller [AI07].
The case of progressive enlargement and properties of random times were investigated in
Azéma [AzE72|, Jeulin and Yor [JY78], Williams [Wil02], Barlow [Bar78|, Nikeghbali and
Yor [NY06], Nikeghbali [Nik07]|, Jeanblanc and Song [JS1la, JS11b| and presented in the
survey paper Nikeghbali [Nik06] where the author restricts his attention to the case where all
F-martingales are continuous (condition (C)) and when 7 avoids F-stopping times (condition
(A)). More recently, important results for another kind of enlargement, namely progressive
enlargement with filtration, are obtained in Kchia and Protter [KP14], Kchia, Larsson and
Protter [KLP14] and in Kchia thesis [Kch12].

The theory of enlargement of filtration turned out to be an adequate setting to model several
financial phenomena, since additional information flow can be seen as an enlarged filtration.
Thereby, the asymmetric information existing on the financial market can be captured by

11
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considering more than one filtration. Insider trading studies relying on enlargement of
filtration theory started with Karatzas and Pikovsky [PK96], Grorud and Pontier [GP9S,
GPO01]. In the first paper, the authors are interested in the profit that can be done by
an investor, in the last paper, the authors generalize the study and answer the question
to detect insider trading. In some cases, working with additional information leads to
arbitrage opportunities; otherwise, the additional information leads to a larger profit. The
same problem is studied in a model with jumps in Elliott and Jeanblanc [EJ98] where the
presence of jumps leads to different conclusions and in Hillairet and Jiao [HJ13] in a credit
risk setting. Applications to credit events modelling began with the papers of Kusuoka
[Kus99] and Elliott, Jeanblanc and Yor [EJY00]. In the first paper, the author investigates
the role of the (H) hypothesis; in the second paper, the authors present some model where
this hypothesis does not hold, developing a pricing methodology.

While building a financial model, an important question to ask is if it is arbitrage-free set-
up. In particular, one has to make precise what kind of arbitrages, if any, the additional
information can produce. Arbitrage opportunities arising from additional flow of informa-
tion were investigated in Coculescu, Jeanblanc and Nikeghbali [CJN12|, Imkeller [Imk02],
Zwierz |Zwi07], Fontana, Jeanblanc and Song [FJS12]. In the three last papers, the authors
are working with a specific progressive enlargement, namely with honest times, and they
restrict their attention to the case where the reference filtration F is continuous and where
the random time 7 avoids the F-stopping times. In Imkeller and Zwierz, the authors pay
attention to the information drift and its integrability properties; the proofs in Fontana
et al. paper are based on the multiplicative decomposition of the Azéma supermartingale,
established in Nikeghbali and Yor [NY06], valid only under the (CA) conditions. After that
a first version of the results of this thesis was posted on arkiv, Acciao et al. [AFK14] pro-
duced an interesting study of the arbitrage problems up to a random time, using a different
method, with the same results.

This thesis consists of two parts: the first part treats pure enlargement of filtration problems,
while the second part focuses on absence of arbitrages in different enlarged markets and for
different notions of non-arbitrage. In both parts, we are particularly interested in discontin-
uous cases, i.e., when there exist discontinuous martingales in the reference filtration F and
in the case of random times which do not avoid F-stopping times.

In the first part of this thesis, we study the properties of several families of random times.
We start with the classical notion of honest times and the notion of pseudo-stopping times
which both generalize the notion of stopping times. Furthermore, we consider two other
classes of random times which are mostly known from their applications in credit risk mod-
elling, namely Cox’s times and initial times. Questions on random times are related to their
properties from enlargement of filtration point of view. The F-dual optional projection asso-
ciated with the random time represents an important information, available in the reference
filtration, about this random time and proves to be a very useful notion in treating several
problems.

The second part of the thesis is devoted to the study of non-arbitrage conditions in progres-
sively and initially enlarged filtrations in a financial framework. We start with providing
some examples in progressive setting for Brownian and Poisson filtrations. Then, as a main
result, we carry out a complete analysis up to random time, providing necessary and suffi-
cient conditions for no-arbitrage. Finally, we turn our attention to absence of arbitrage in



13

initially enlarged filtration.

There are links between the chapters of this thesis, nevertheless each one can be read in-
dependently. Here we would like to emphasis, that only some notations are global, the
remaining ones are introduced locally in each chapter. For this reason, each chapter begins
with the introduction of an appropriate set-up. Below we summarize the content of each of
the seven chapters of this thesis.

Chapter 1: General theory.

This chapter collects some known results which will be useful in further developments of the
thesis. If the result can be found in the literature, we provide a reference. If not, i.e., if we
did not find any reference, we provide a proof.

Chapter 2: Thin random times.

This chapter is based on joint work with Tahir Choulli and Monique Jeanblanc [ACJ14b].
We classify random times into thin and strict random times. Taking as a starting point the
assumption on avoidance of all stopping times from the reference filtration, we define a class
of thin random times. Then, we define a decomposition of a random time into thin and
strict parts in analogous way to the stopping time decomposition into accessible and totally
inaccessible parts. The notion of dual optional projection plays a crucial role. Furthermore,
we develop properties of thin random times, namely relationship of thin honest times with
a jumping filtration, and entropy of a thin random time. The importance of thin honest
times is remarkable for non-arbitrage consideration presented in Section 7.4. In fact, the
arbitrage problem was our motivation for the analysis of thin random times.

Chapter 3: Pseudo-stopping times and enlargement of filtration.

This chapter is based on joint work with Libo Li [AL14]. We study the properties of
pseudo-stopping times in the context of enlargement of filtration theory. Based on the ex-
ample given by Williams, the concept of a pseudo-stopping time was formally introduced
by Nikeghbali and Yor [NY05]. As its name suggests, the class of pseudo-stopping times
is a class of non-stopping times, which enjoy stopping time like properties. We examine
the relationship between the hypothesis (H) and pseudo-stopping times and we provide al-
ternative characterization of the hypothesis (H). We as well discuss several classification
results for pseudo-stopping times, honest times and stopping times. Moreover we extend the
construction of Nikeghbali and Yor of pseudo-stopping times by relaxing continuity assump-
tions. For that construction, we study the hypothesis (H') in the progressive enlargement of
filtration setting, where we find useful viewing the problem as an excursion straddling on a
random time. We finish this chapter with looking at pseudo-stopping times recovered from
Jeanblanc-Song model [JS11b].

Chapter 4: On some classes of random times.

This chapter consists of three independent sections. In Section 4.2, which is based on a
joint work with Monique Jeanblanc and Shiqi Song [AJS14|, we consider a question how
the pseudo-stopping time property is affected by equivalent change of measure. Contrary to
stopping time, the definition of pseudo-stopping time does depend on probability measure
and the pseudo-stopping time property is not in general stable under equivalent change of
measure. In Section 4.3, we firstly focus on some bagic properties of honest times, then we
study an example of last passage time which is not honest. In Section 4.4, we look at the
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classical Cox’s construction with discontinuous hazard processes.
Chapter 5: Arbitrages in a progressive enlargement setting.

This chapter is based on a joint paper with Tahir Choulli, Jun Deng and Monique Jeanblanc
[ACDJ14al. It completes the analysis of Chapter 6 and contains two principal contributions.
The first contribution consists of providing and analysing many practical examples of mar-
ket models, while the second contribution lies in providing simple proofs for the stability
of the No Unbounded Profit with Bounded Risk (called NUPBR hereafter). In this paper,
we treat the question whether the non-arbitrage conditions are stable with respect to pro-
gressive enlargement of filtration. We focus on two components of the No Free Lunch with
Vanishing Risk concept, namely on No Arbitrage Opportunity and No Unbounded Profit
with Bounded Risk. The problem is divided into stability before and after the random time
containing extra information.

The question regarding the No Arbitrage Opportunity condition is answered in the case of
Brownian filtration and Poisson filtration for the special case of an honest time. Particular
examples of non-honest times are described, and explicit arbitrage strategies are given. Both
Brownian and Poisson filtrations possess the important Predictable Representation Prop-
erty, which implies that the financial market is complete, and will be crucial to obtain the
arbitrages strategies. One may further investigate similar problem without assuming mar-
ket completeness. One considers also some example/classes of non-honest random times.
Afterwards, we deal with stability of NUPBR concept in very particular situations, namely
when the reference filtration is a continuous filtration, or the filtration generated by a stan-
dard Poisson process or the filtration generated by a Lévy process. We provide results with
simple proofs in those particular situations, giving the deflator in a closed form. Combining
results on the NA and the NUPBR conditions we conclude that some local martingales in
the enlarged filtration are in fact strict local martingales, which provides a way to construct
strict local martingales in enlarged Brownian and Poisson filtrations.

Chapter 6: Non-Arbitrage up to Random Horizon and after Honest Times for
Semimartingale Models.

This chapter is based on joint paper with Tahir Choulli, Jun Deng and Monique Jean-
blanc [ACDJ14b]. It addresses the question of how an arbitrage-free semimartingale model
is affected when stopped at a random horizon. We focus on No-Unbounded-Profit-with-
Bounded-Risk concept, which is also known in the literature as the first kind of non-arbitrage.
For this non-arbitrage notion, we obtain two principal results. The first result lies in de-
scribing the pairs of market model and random time for which the resulting stopped model
fulfills NUPBR condition. The second main result characterises the random time models
that preserve the NUPBR property after stopping for any market model. These results
are elaborated in a general market model, and we pay attention to some particular and
practical models. The analysis that drives these results is based on new stochastic develop-
ments in semimartingale theory with progressive enlargement. Furthermore, we construct
explicit martingale densities (deflators) for some classes of local martingales when stopped
at a random time.

Chapter 7: Optional semimartingale decomposition and NUPBR condition.

This chapter is based on joint paper with Tahir Choulli and Monique Jeanblanc [ACJ14a].
Our study addresses the same question as in Chapter 6 in two different settings, i.e., how an
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arbitrage-free semimartingale model is affected when stopped at a random horizon or when
a random variable satisfying Jacod’s hypothesis is incorporated. We recover some results
from the previous chapter using a different approach. In the general semimartingale setting,
we provide a necessary and sufficient condition on the random time for which the non-
arbitrage is preserved for any process. Analogous result is formulated for initial enlargement
with random variable satisfying Jacod’s hypothesis. The crucial intermediate results in
enlargement of filtration theory are obtained. For local martingales from the reference
filtration we provide special optional semimartingale decomposition up to random time and
in initially enlarged filtration under Jacod’s hypothesis. We observe an interesting link with
absolutely continuous change of measure problem.
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Part 1

Random times and enlargement of
filtration
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Chapter 1

(General theory

In this chapter, we recall some well known facts from the general theory of stochastic pro-
cesses with an emphasis on enlargement of filtration theory in Section 1.2 and properties
of random times in Section 1.3. In Section 1.4 we summarize results needed in Part II on
arbitrage problem of this thesis. We give the proofs of new results.

For further details and proofs we address the reader to Rogers and Williams [RWO00b,
RWO00a|, Chesney, Jeanblanc and Yor [JYC09], Dellacherie and Meyer [DM75, DM80], Del-
lacherie, Meyer and Maisonneuve [DMM92|, He, Wang and Yan [HWY92|, Revuz and Yor
[RY99| and Protter [Pro04].

Let (©,G,F,P) be a filtered probability space where F is a filtration satisfying usual
conditions of completeness and right continuity. Recall that the optional o-field on € x
R,, denoted by O, is the o-field generated by all cadlag F-adapted processes and the
predictable o-field on 2 xR, denoted by P, is the o-field generated by all left-continuous
F-adapted processes. A stochastic set or process is called optional (respectively predictable)
if it is O-measurable (respectively P-measurable).

For an F-semimartingale Y, the set of F-predictable processes integrable with respect to Y
is denoted by L(Y,F) and for H € L(Y,F), we denote by H .Y the stochastic integral
fd H,dY;.

As usual, for a process X and a random time ¥, we denote by XV the stopped process.

The set of martingales for the filtration F under P is denoted by M(F,P). As usual,
AT (F) denotes the set of increasing, right-continuous, F-adapted and integrable
processes. If C(F) is a class of F-adapted processes, we denote by Cy(F) the set of processes
X € C(F) with X¢ = 0, and by Cj, the set of processes X such that there exists a sequence
(T,)n>1 of F-stopping times that increases to oo and such that the stopped processes X Tn
belong to C(F). We put Co joc(IF) = Co(F) N Croe(F).

For a given semimartingale X, £(X) stands for the stochastic exponential of X.

The continuous local martingale part and the jump process of a semimartingale X
are denoted respectively by X¢ and AX.

19
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1.1 Stochastic processes

1.1.1 DMonotone class theorem

The Monotone Class Theorem allows us to work with a generating family instead of the
whole family of functions or sets (see [HWY92, Theorems 1.2, 1.4], [JYC09, p.4], [DM75,
Chapter 1]) and is an important tool in proving various results.

Theorem 1.1. Let C be a class of sets on Q x Ry such that ANBeC if A,BeC, and H
be a vector space of stochastic processes on 2 x Ry. If the following conditions are satisfied:
(a) 1€H

(b) if X, € H, X;, T X, X is finite (respectively bounded) then X € H

(c)if AcC then 14 € H

then H contains all o(C)-measurable real (respectively bounded) processes on € x R..

1.1.2 Random times and stopping times

Let T' be a random time, i.e., an Ry U{oo} valued random variable. Let us recall the notions
of graph of a random time

IT] = {(w,t) € A xRy : T'(w) =t}
and restriction of a random time to a given set

Ta(w) := {Zo(“’) Z ; j. (1.1)

For two random times T and S such that S < T, the following stochastic intervals are
defined:

[S,T] = {(w,t) e A xRy : S(w) <t <T(w)},
[S, T[] ={(w,t) € A xRy : S(w) <t <T(w)},
15, 7] ={(w,t) e @ xRy : S(w) <t < T(w)},
15, T[={(w,t) e xRy : S(w) <t <T(w)}

Definition 1.2. For a random time T we define the o-fields Fr_ and Fr as

Fr— :=oc{Hrp : H is an F-predictable process on [0, 0]},
Fr:=oc{Hr: H is an F-optional process on [0, co]}.

Here, in each case, Hy, can be an arbitrary F,.-measurable random variable.

Proposition 1.3. Let T be a random time.

(a) For any Fpr_-measurable random variable k, there exists an F-predictable process k such
that kT = k.

(b) For any Fr-measurable random variable k, there exists an F-optional process k such that

kT:/i.
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Proof. (a) By definition, Fpr_ = o{Hp : H is an F-predictable process}. We show that
H = {Hr : H is an F-predictable process} is already a o-field. Set A belongs to H if
there exists an F-predictable process H and a set B € B(R) such that A = H;'(B).
Then, A° € H as A° = H;'(B°). Let A = |22, A, with A, = (H})"'(B,) where
H" is a predictable process and B, € B(R). Then, A, = {w : (w,T(w)) € T'y}, where
T, = {(w,t) : H(w) € B,}. And it is easy to see that A = H;'(B), for Hy(w) = lp(w,t)
with I = (2 ; T, predictable set and B =]0, 1]. So indeed we have Fr_ = H. This implies
that for Fp_-measurable x there exists a predictable process k with kp = . If moreover k
is bounded then k can be chosen with the same bounds.

(b) follows by the same argumentation. [

We restrict our attention to the class of stopping times, providing the result on stopping
time decomposition.

Definition 1.4. A random time 7T defined on (2, G) is called an F-stopping time (or simply
stopping time) if for each t > 0, {T' <t} € F;.

Lemma 1.5. For a stopping time T we have the following alternative characterization of

o-fields Fr and Fp_

Fr={Ae€ Fy:Vt, An{T <t} € }},
Fro=FoVo({T >t}NA: Aec F,t>0).

In order to classify stopping times we introduce the following definition; see [JYC09, Defi-
nition 1.2.3.1], [HWY92, Definition 3.34].

Definition 1.6. (a) A stopping time T is predictable if there exists an increasing sequence
(Th)n>1 of stopping times such that a.s. lim, o T, =T and T;, < T for every n on the set
{T > 0}. The sequence (7},) is then called foretelling sequence.

(b) A stopping time T is accessible if there exists a sequence (7,) of predictable stopping
times such that [T] C U, [T%]-

(c) A stopping time T is totally inaccessible if P(T' = S < oo) = 0 for any predictable
stopping time S.

Each stopping time can be decomposed into accessible and totally inaccessible parts as
stated in [HWY92, Theorem 4.20].

Theorem 1.7. For each stopping time T there exists A € Fr_ such that A C {T < oo},
T =Ty is accessible and T' = Ty is totally inaccessible. Such set A is a.s. unique.

In particular, any stopping time T can be decomposed into accessible and totally inaccessible
parts as T =T AT and [T] = [T*] U [T7].

1.1.3 Thin sets and processes

Let us recall the definition of a thin set, see [HWY92, 3.13], which generalizes the notion of
graph of a stopping time.
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Definition 1.8. A stochastic set I" is called a thin set, if there exists a sequence of stopping
times (7},), such that I' = J,,[T%]-

(a) A thin set T is said to be a predictable thin set if each T;, is a predictable stopping time.
(b) A thin set I is said to be an accessible thin set if each T;, is an accessible stopping time.
(c) A thin set T" is said to be a totally inaccessible thin set if each T, is a totally inaccessible

stopping time.

We define a thin process as follows (it corresponds to summation process from [HWY92,
7.39]).

Definition 1.9. A process X is thin if there exist a sequence of random variables &, and
a sequence of stopping times (7},) with disjoint graphs such that X; = > 2 {17, oof- Its
paths vary on a thin set only: e 7,1+ X =307 Lypp« X = 3200 Uyp, oo AXT,.

1.1.4 Section theorem

Section theorem allows us to look at stochastic processes only at stopping times, see [HWY92,
Theorems 4.7, 4.8|, see [DM80, Theorems 84 and 85].

Theorem 1.10. Let A be an optional (respectively predictable) set. For any given € > 0
there exists a (respectively predictable) stopping time T such that

(a) [T] € A,

(b) B(T < o0) > P(r(A)) — ¢,

where w(A) is the projection of A onto 2, ie., m(A) ={w:3Jt < oo (w,t) € A}.

1.1.5 Projections and dual projections

Projections and dual projections onto the reference filtration F play an important role in the
theory of enlargement of filtrations. First we recall the definition of optional and predictable
projections, see [HWY92, Theorems 5.1 and 5.2] , [JYCO09, p.264-265].

Definition 1.11. Let X be a measurable bounded (or positive) process. The optional
projection of X is the unique optional process °X such that for every stopping time T we

have
E(XTH{T<OO}|~FT) = OXTH{T<OO} a.s..

The predictable projection of X is the unique predictable process PX such that for every
predictable stopping time T" we have

E(XrLircooy|Fr-) = Xrlircey  ass..

Projections depend on the filtration. In case of various filtration we shall denote FX the
F-optional projection of X and PFX the F-predictable projection of X.
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For definition of dual optional projection and dual predictable projection see [JYCO09, p.265],
[Pro04, Chapter 3 Section 5|, [DM80, Chapter 6 Paragraph 73 p.148|, [HWY92, Sections
5.18, 5.19).

Definition 1.12. (a) Let A be a cadlag pre-locally integrable variation process (not nec-
essary adapted). The dual optional projection of A is the unique optional process A° such

that for every optional process H we have

E( mMJ:E< mmg.
[0,00( [0,00(

(b) Let A be a cadlag locally integrable variation process (not necessary adapted). The
dual predictable projection of A is the unique predictable process AP such that for every

predictable process H we have

E< mMQ:E< mMQ.
[0,00[ [0,00[

Dual projections depend on the filtration. In case of various filtration we shall denote A%F
the F-dual optional projection of A and APF the F-predictable projection of A.

The following result links the jump of the dual projection with the projection of the jump.
See [DM80, Theorem 76 p.149-150] or [HWY92, Theorem 5.27 p.150].

Lemma 1.13. Let A be an integrable increasing process. Then

AA° = °(AA) and AAP = P(AA).

Proof. We focus on the predictable case, the optional one follows by the same type of
arguments. Let T be a predictable stopping time and F' € Fr_. Then from the definition
of the dual predictable projection of A applied to the predictable process H = L gl we
obtain

Thus for any predictable stopping time 7' we have
E(AAT N {7eooy | Fr—) = BE(AAL L {pcooy | Fro)
and by Section theorem 1.10 we conclude that AAP = P(AA). [

Let us now recall [RW00a, Theorem VI.21.4)].

Lemma 1.14. Let A be an integrable increasing process. Then, AP is the unique predictable

integrable increasing process such that °A — AP is a martingale.

Example 1.15. A useful application of the previous lemma is the relation between square
and predictable brackets. Namely, for two semimartingales X and Y, we have that [X,Y]P =
(X,Y) and [X,Y] — (X,Y) is a martingale.
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1.1.6 Quasi-left continuity

Quasgi-left continuity will play an important role in various proofs concerning semimartingale
models and arbitrage problem, see [HWY92, 4.22].

Definition 1.16. Let X be an adapted cadlag process. Let (7),) be a sequence of stopping
times exhausting the jumps of X, i.e., {AX # 0} = {J,,[7]. Then,

(a) We say that X has only accessible jumps if each T, is an accessible stopping time.

(b) We say that X has only totally inaccessible jumps if each T, is a totally inaccessible

stopping time. Then, X is said to be quasi-left continuous.

Alternative characterization is given in the next theorem, see [HWY92, 4.23|.

Theorem 1.17. Let X be an adapted cadlag process. Then the following statements are
equivalent:

(a) X is quasi-left continuous;

(b) For every predictable time T' > 0, X7 = Xp_ a.s. on {T' < co};

(c¢) If (T},) is an increasing sequence of stopping times and T = lim,,_o0 T}y, then lim, oo X7, =

X7 a.s. on {T < co}.

We recall the notion of quasi-left continuous filtration, see [HWY92, Definition 3.39, Theo-
rem 3.40] [Pro04, p.189].

Definition 1.18. A filtration F is quasi-left continuous if for any predictable stopping time
T, Fr=Fr_.

Theorem 1.19. (a) A filtration F is quasi-left continuous if and only if each accessible
stopping time is predictable.

(b) Suppose that F is quasi-left continuous. Then for any sequence of stopping times (T},)
we have F\, 1, = VnFT,.

Theorem 1.20. If the filtration F is quasi-left continuous then each F-martingale is a quast

left continuous process.

Lemma 1.21. Let X be a quasi-left continuous semimartingale. Then (X) is continuous.

Proof. As (X) is a dual predictable projection of [X] = (X¢)+3 (A X)? it is enough to prove
the continuity of dual predictable projection of (AX )%HHT,OO]] for any totally inaccessible
stopping time 7. By Lemma 1.13 and since T is totally inaccessible we have

A((AX) 717 o0))P = P((AX)F17y) = 0.
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1.1.7 Predictable Representation Property

The Predictable Representation Property presented in this section plays an important role
in financial considerations, i.e., it corresponds to market completeness. See [HWY92, ch.
XI1I].

Definition 1.22. Let M be a local martingale with My = 0 and
N(M):={H .M : H is a predictable process, integrable with respect to M}.

We say that M has the Predictable Representation Property if N (M) = M, .

Example 1.23. We recall the following examples where the Predictable Representation
Property holds.

(a) A Brownian motion W has the PRP in its natural filtration.

(b) The martingale M; = N; — nt where N is a standard Poisson process with parameter 7
has the PRP in its natural filtration.

1.1.8 Optional stochastic integral

The notion of optional stochastic integral (or compensated stochastic integral) is defined in
[Jac79, Chapter I11.4.b p.106-109] and also studied in [DM80, Chapter VIII.2 sections 32-40
p.356-366]. The notion of optional stochastic integral is a crucial tool for developments
presented in Chapter 6.

Definition 1.24. Let N be an F-local martingale with continuous martingale part N¢, and
let H be an F-optional process.
(a) The process H is said to be integrable with respect to N if »FH is N¢ integrable and

the process
1/2

3 (HSANS - p’]F(HAN)s)Q

s<t

is locally integrable. The set of integrable processes with respect to N is denoted by
°L! (N,F).

loc

(b) For H € °L}

loc

(N, T), the optional stochastic integral of H with respect to N, denoted
by H ® N, is the unique local martingale M which satisfies

M¢=PFH.N® and AM = HAN — PF(HAN).

Among the most useful results of the literature involving this integral, there is the following
(see [DM80]).

Proposition 1.25. Let H € °L}

loc

(N,F) and let M = H ® N be the optional stochastic
integral of H with respect to N.



26 CHAPTER 1. GENERAL THEORY

(a) M is the unique F-local martingale such that, for any F-bounded martingale Y, the
process [M,Y] — H .[N,Y] is an F-local martingale.

(b) For any F-local martingale Y we have [M,Y] € Ajo.(F) if and only if HJ[N,Y] € Ajoe(F)
and in this case we get
<M7 Y>F = (H " [Na Y])ij .

1.1.9 Random/Jump measures

In this section we recall the notion of jump measure associated to a semimartingale. Let S
be an F-semimartingale valued in R%. We denote

O(F) := O(F) @ B(RY),  P(F):=P(F) @ B(R?),

where B(R?) is the Borel o-field on R?. The jump measure of S is denoted by p, and is
given by

/L(dta d:E) = z H{AsuyéO}é(u,ASu)(dta dZL‘) : (12)
u>0

For a product-measurable functional W > 0 on © x [0, 00[xR? we denote by W % p (or
sometimes, with abuse of notation W (x) x ) the process

t
W i ::// W(u, z)p(du, dz) = W (u, ASy)Lras,£01- 1.3
= ) L W) = 3 W ASI Vs (19

O<u<t

Also on Q x [0, 00[xR?, we define the measure ME =P® u by fVVcLMELD = E(W * o)
(when the integrals are well defined).
The conditional "expectation" given P(F) of a product-measurable functional W, is the

unique P(F)-measurable functional W =: ME’ (W}ﬁ (F)) satisfying

E(Wly * peo) = E (W]lg *,u,oo) . for all ¥ € P(F).

The random measure v is called the compensator of random measure p if for each 73(IF)—
measurable W the process W % v is predictable and E(W « pio) = E(W x ).

1.1.10 Representation of Local Martingales

This section recalls an important result on representation of local martingales. This re-
sult relies on the continuous local martingale part and the jump random measure of a
given semimartingale. Thus, throughout this section, we suppose given a d-dimensional
semimartingale, S = (S¢)o<i<7. To this semimartingale, we associate its predictable char-
acteristics that we will present below (for more details about these and other related issues,
we refer the reader to [JS03, Section I1.2]). The random measure u associated to the jumps
of S is defined in 1.2. The compensator of the random measure p is denoted by v. For a
truncation function h : R? — RY, (i.e., h is bounded, with compact support and satisfies
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h(z) = x in a neighbourhood of 0) we denote by B the predictable part of the special semi-
martingale S — > (AS — h(AS)). The continuous local martingale part of S is denoted by
S¢. The matrix C is given by C¥ := (§%! §J). Then, the triplet (B, C, v) is called pre-
dictable characteristics of S. This leads to the following decomposition, called the canonical
representation (see [JS03, Theorem 2.34, Section 11.2]), namely the decomposition:

S=Sy+5°+hx(p—v)+ B+ (x—h)*p.
Furthermore, we can find a version of the characteristics triplet satisfying
B=b.A and C=c.A and v(w, dt, dz) = dAy(w)F(w, dz).

Here A is an increasing and predictable process which is continuous if and only if S is quasi-
left continuous, b and ¢ are predictable processes, Fy(w, dz) is a predictable kernel, b (w) is
a vector in IR? and ¢;(w) is a symmetric d x d-matrix , for all (w, t) € Q x [0, T]. In the
sequel we will often drop w and ¢ and write, for instance, F'(dx) as a shorthand for F}(w, dz).

The characteristics, B =b. A, C, and v, satisfy

Fi(w, {0}) =0, /(m? A)Eyw, dz) <1,

AB; = b AA, = /h(x)l/({t}, dx), and c=0 on {AA#0}.

We set
vi(dz) == v({t},dz), a;:= Vt(]Rd) = Af_ltFt(]Rd) <1.

For the following representation theorem, we refer to [Jac79, Theorem 3.75, page 103]| and
to [JS03, Lemma 4.24, Chap III].

Theorem 1.26. Let N € Mg ,.. Then, there exist a predictable S¢-integrable process 3,
N+ € Mo oe with N+ and S orthogonal (i.e., [S, N*] € Mo o) and functionals f € P and
g e O such that

1/2 1/2
(1) (Loce (A8 W iass0y)  and (e 5(AS)2 W as,09)  belong to Af,.
P 5y P
(b) M,(g|P)=0, Mj,-as.
(c) The process N satisfies

N=B.S+Wx(u—v)+grxu+ N>, where W:f—i—%ﬂ{ad}.
Here f, = [ fi(z)v({t},dz) and f has a version such that {a =1} C {f: 0}.
Moreover

~

AN; = (ft(ASt) + gt(ASt)>]1{ASt;£O} - %H{Ast:()} + AN

The quadruplet (57 59, NL) 1s called the Jacod’s parameters of the local martingale N with
respect to S.
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1.2 Enlargement of filtration

Enlargement of filtration theory is settled in general theory of stochastic processes. We
consider an enlarged filtration G, i.e., a filtration satisfying F C G, i.e., F; C G; for every
t > 0. We may ask the question whether an F-semimartingale is still a G-semimartingale.
In case it is, we are interested in how semimartingale decomposition writes in filtration G.
There are two classical hypotheses linked with those questions, namely:

Definition 1.27. (a) Hypothesis (H) is satisfied for F C G if every F-martingale is a
G-martingale. For ease of language, when the hypothesis () is satisfied for F C G, we shall
often say F is immersed in G and write F — G.

(b) Hypothesis (H') is satisfied for F C G if every F-martingale is a G-semimartingale.

In some sense, the inverse question is answered in the following useful theorem, see [Str77].

Theorem 1.28 (Stricker’s Theorem). Let X be a G-semimartingale which is adapted to a

right-continuous subfiltration F. Then X is also a F-semimartingale.

It is worth noting that an F-adapted G-local martingale is not necessary an F-local mar-
tingale as it may not be possible to choose a localizing sequence in the filtration F (see
[FP11]).

Two particular cases of enlargement of filtration were widely studied in the literature, that is
to say initial and progressive enlargements. Initial enlargement of filtration F with a random
variable ¢ is defined as

F =N (F Vo). (1.4)

s>t
Progressive enlargement of filtration F with a positive random variable 7 is defined as

Fl =) (Fsvolrs)). (1.5)

s>t

In the following subsections we recall classical results from these studies.

1.2.1 Initial enlargement with atomic o-field

In this section, we recall results on initial enlargement with a random variable £ which takes
countably many values or equivalently initial enlargement with atomic o-field (&), i.e., there
exists a partition (Cy,)nen such that P(Cy,) > 0 for every n € N generating o(§). For each set
Ch,, we denote by (z]');>0 the F-martingale z]* = P(C,|F;). We have {inf, 2 = 0} NC,, = 0.

Let us define FC as an initial enlargement of the filtration F with an atomic o-field C =

U((Cn)n>-

The next lemma expresses projections on the filtration FC in terms of projections on F, see
[Jeu80, Lemme (3,1)].
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Lemma 1.29. Let H be a measurable bounded process. Then,

(a) the FC-optional projection of H is given by

Z]lcn —F(1¢, H);
nel

(b) the FC-predictable projection of H is given by

Z Ilcn o ]lCnH)
nel

In this case of enlargement the hypothesis (H') is satisfied and semimartingale decomposition
is given in the next theorem, see [Jeu80, Theorem 3,2], [Mey78|.

Theorem 1.30. The filtration FC satisfies (H') hypothesis and each F-martingale X can be

decomposed mn F as
=X, + E 1
t Cﬂ/ o

where X is an FC-local martingale.

d(X,z")s,

S—

1.2.2 [Initial enlargement under Jacod’s hypothesis

Previous results can be generalized to any random variable £ taking values in Lusin space
(U,U) and satisfying Jacod’s hypothesis, see [Jac85]. We recall as well a stronger version of
this hypothesis, namely the equivalence Jacod’s hypothesis, studied and used in the literature
e.g. [Ame99, EJJ10, EJJZ14, JL09].

Definition 1.31. (a) A random variable ¢ satisfies Jacod’s hypothesis if there exists a o-
finite positive measure 77 such that for every t > 0 P(€ € du|F;)(w) < 77(du) P-a.s.

(b) A random variable { satisfies the equivalence Jacod’s hypothesis, if for every ¢ > 0
P(¢ € dulFy)(w) ~ n(du) P-a.s.

As shown by Jacod, without loss of generality, n can be taken as the law of £ in the above
definition.

The following result is due to Jacod [Jac85, Lemme 1.8]. We recall here the formulation of
Amendinger as it provides nice measurability property [Ame99, Remark 1 p.17].

Proposition 1.32. For £ satisfying Jacod’s hypothesis, there exists a positive O ® U-
measurable function (t,w,u) — qi(w,u) cadlag in t such that

(a) for every u, the process (gi',t > 0) is an F-martingale, and if
R" =inf{t: ¢ =0} (1.6)

we have ¢* > 0 and ¢* > 0 on [0, R*] and ¢* =0 on |R", o],
(b) for every t > 0, the measure ¢i'(w)n(du) is a version of P(1 € du|Fy)(w).
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In the following lemma the F-predictable and F-optional projections of particular Fo(€)-
adapted processes are given. The first part in due to Jacod [Jac85, Lemme (1.10)], the
second part can be found in Amendinger [Ame99, Lemma 1.3].

Lemma 1.33. (a) Let the function (t,w,u) — Y*(w) be P ® U-measurable, positive or
bounded. Then, the F-predictable projection of the process (Yf)tzg s given by

pJF(Y{)t :/IU 'qi-n(du) t>0.

(b) Let the function (t,w,u) — Y*(w) be O @ U-measurable, positive or bounded. Then, the
F-optional projection of the process (Yté)tzo s given by

O,F(Yﬁ)t:/ “giii(du) t > 0. (1.7)

As noticed in [Jac85, Corollary (1.11)], Lemma 1.33 implies in particular that
RE=00 P—as. (1.8)

with R" defined through (1.6), or equivalently qf > 0 and qff > 0 for ¢ > 0 P-a.s. Then,

the F?©_optional process (t) is well-defined.
9/ £>0

Proposition 1.34. Assume that & satisfies Jacod’s hypothesis. Let X be an F-martingale.
Then

t
~ 1
X, :Xt+/ (X, q") e (1.9)
0 ¢

where X is an F©) _local martingale.

Example 1.35. Let £ be a random variable which takes only countably many values (¢, )nen.
So &=, lc,c, where (Cp)nen is a partition of Q (for each n, P(Cy,) > 0). Then, the law
of £ and the conditional law of £ with respect to the o-field F; can be written as

P( € du) = ZIP’ 'n)0c, (

P(¢ € dulF;) = ZIP’C\]—} en (W) du

where J., denotes the Dirac measure with mass at ¢,. In particular, the random variable T’
has a density ¢ satisfying

Chn
P € du|lF) = ¢;P(§ € du) and ¢ = Z Mﬂ{cn_u}

n

The next theorem introduces particular change of measure making the reference filtration
F and the random variable ¢ independent, see [Son87|, [Ame99, Proposition 1.6], [GP98,
GPO1].
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Theorem 1.36. Assume the equivalence Jacod’s hypothesis is satisfied. Then
1

(a) the process £ 15 an Fo© -martingale.

b) the probability measure P*, defined as

( y
dIP)*‘ 1
T o(§) — T¢

has the following properties:
(i) under P*, 7 is independent from Fy for any t, (ii) P*|7, = P|x,, (i) P*|5¢) = Ply(e)-

1.2.3 Progressive enlargement

The filtration G is the smallest right-continuous filtration which contains F and makes 7 a
stopping time. In the probabilistic literature, G is called the progressive enlargement of F
with 7.

A central object for progressive enlargement of filtration is the process A := 1|, o[, where
7 is a random time. We define two supermartingales associated with a random time 7 and
the reference filtration F, namely

Zy = (Lo, pe = P(r > t|F) (1.10)
Zy = " (L) = P(r > t|F). (1.11)

The supermartingale Z is right-continuous with left limits and coincides with the F-optional
projection of Wy -, while Z admits right limits and left limits only and is the F-optional
projection of Iy ;. Moreover we consider two increasing processes associated with the
random time 7, namely

A7 = (o)t and AP = (I )P
Let us define the F-martingales n and m as
neg:=E(AL + Zo|F) and  my = E(AS + Zoo| Fr).
Then, the supermartingales Z and Z decompose as
Zy=m —AY, Z;=my— A7, and 7 =m— A°. (1.12)
The supermartingales Z and Z are related through

Z=Z+AA° and Z=7_+ Am. (1.13)

In the literature (e.g. [MYO06]), there are two standard assumptions about (progressive)
enlargement of filtration problem, namely

Definition 1.37. We say that:
assumption (C) is satisfied if all F-martingales are continuous;

assumption (A) is satisfied if the random time 7 avoids all F-stopping times.
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The first one concerns the reference filtration F and the second one the random time 7.
If assumption (C) or (A) is satisfied, then Z = Z. Under assumptions (C') and (A), the

supermartingale Z = Z is a continuous process.

Conditional expectations with respect to progressively enlarged filtration can be rewritten,
on appropriate intervals; as given in the following proposition, see [Del70, BR04].

Proposition 1.38. Let X € G be an integrable random variable. Then

E(XL<ry|Ft)

E(X|FH)1 =1 _
( ’ t) {r>t} {r>t} P(T > t|ft>

and

E(X[|F )<y = L E(X[F V Ax),
where the filtration A is generated by the process A = 17 -

The following result states that any F-martingale stopped at 7 remains an F”-semimartingale,,
i.e., hypothesis (H’) is satisfied up to random time 7. We recall a result from [JY78], [Jeu80,
Proposition (4,16)].

Proposition 1.39. Let M be an F-local martingale. Then, M™ is an F7-semimartingale

which can be decomposed as

S

P tAT 1
M7 :MH—/ ——d(M,m)¥ (1.14)
0o Zs—
where M s an F™-local martingale.

In the next proposition we present equivalent characterizations of hypothesis (H) in the
progressive enlargement case, see [JYC09, p.323].

Proposition 1.40. In the progressive enlargement setting, (H) holds between F and F™ if
and only if one of the following equivalent conditions holds

(a)¥(t,s),s <t P(1<s|Fx)=P(r <s|F),

(b)) vt P(r < t|Fx) =P(r < t|F).

1.3 Random times

In this section four classes of random times are presented: honest times, pseudo-stopping
times, initial times and Cox times. We recall definitions and the most useful properties in
the context of enlargement of filtration. In the following chapters of this thesis we will rely
on those properties in answering posed questions.

1.3.1 Honest times

An important class of random times is the class of honest times. It is a class which generalizes
the notion of stopping time. We recall its definition and alternative characterization, see
[Jeu80, Chapter 5, p.73|.



1.3. RANDOM TIMES 33

Definition 1.41. A random time 7 is an F-honest time if for every ¢t > 0 there exists an

Fi-measurable random variable 7; such that 7 = 7, on {7 < t}.

Note that each stopping time 7 is an honest time. It is enough to take 7, = 7 A L.

We will often use following lemma while working with honest times.

Lemma 1.42. (a) A random time 7 is an F-honest time if for every t > 0 there exists an
Fi—-measurable random variable 7, such that 7 = 1, on {1 < t}.
(b) A random time T is an F-honest time if for every t > 0 there exists an Fy-measurable

random variable 7, such that T = 1, on {7 < t}.

Proof. Using notation from Definition 1.41 we define the process o~ (this is the process A in
the proof of Theorem 1.43 in [Jeu80]; and the process R in [Karlda]) as a; = Sup,cq ,«; Tr-
This definition implies that o~ is an increasing, left-continuous, adapted process such that
a; =7 on {r <t} and (a) is proved.

Denote by « the right-continuous version of o™, i.e., ay = a;, . Then, « is an increasing,
cadlag, adapted process such that a; = 7 on {7 < t} and 7 = sup{t : a = t} and (b) is
proved. [

Next theorem gives characterisations of an honest time, see [Jeu80, Proposition (5,1) p.73].

Theorem 1.43. Let 7 be a random time. Then, the following conditions are equivalent:
(a) T is an honest time;

(b) there exists an optional set T such that T(w) = sup{t : (w,t) € T'} on {1 < o0};

(c) Zy =1 a.s. on {r < oc};

(d) T =sup{t: Z; = 1} a.s. on {1 < co};

(e) PTljo,00 s generated by Pljooof and [0, 7], where PT is the predictable o-field linked to
R

(1) A3 = Ag,.

Proof. The equivalence among conditions (a), (b), (c), (d) and (e) is stated in Theorem
(5,1) from Jeulin [Jeu80]. Implication (a)=(f) comes from analogous arguments as in Azéma
[Azé72|. To finish the proof, we show implication (f)=-(b). Let A be the support of the
measure dA°, i.e.,

I'={(w,t): Ve >0 Af(w) > A7 __(w)}.
The set T' is optional since A° is an optional process. Then, [7] C T and A9 = A9, . imply
that indeed 7 is the end of T on {7 < oo}. n

Analogous result to Proposition 1.38 (a) after honest time is given in the following Propo-
sition.
Proposition 1.44. Let 7 be an honest time. Then, for G-measurable integrable random

variable X and s <t we have

T E(X]l{‘rgs}‘]:t)
E(X|F ) r<s = H{TSS}W
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Proof. Note that for each G € F there exists F' € F; such that GN{r < s} = Fn{r < s}
as, by Monotone Clags Theorem 1.1, it is enough to check it for G € F; for which it is
obviously satisfied and for G = {r € B} where B is a Borel set for which, by honest time
property, we have

{reBln{r<s}={mseB}n{r <s}
with {7; € B} € Fs C F;.
Then, we have to show that
E (XH{TSS}P(T < S|~Ft)’]:t7) = n{TSs}E(Xn{Tgs}’E)'
For any G € F] we choose F' € F; such that GN {7 < s} = FN{r < s}, and we get
E(X1g<qng P(T < slF)) =E(XL<gnr P(T < s|F))

=E (H{TSS}QF E(Xn{rgs}’]:t))
=K (H{TSS}OG E(XH{T§5}|ft)) :

which ends the proof. ]

For the progressive enlargement with honest time hypothesis (H') is satisfied (not only for
F-local martingales stopped at 7), the decomposition is given in [Jeu80].

Proposition 1.45. Let M be an F-local martingale. Then, there exists an ¥ -local martin-
gale M such that:

P tAT t 1
M, = M, +/ (M, m), —/ (M, m).. (1.15)
0 T

|/

S—

Example 1.46. Let W be a Brownian motion. Then we define an honest time o as follows:
o =sup{t < Ty : W; =0}, where T} = inf{t : W; = 1}. So o is the last zero of the process
W before it reaches 1. Moreover it is an finite honest time (in the definition of honest time
we take oy = sup{t <t AT} : Wy = 0}). The supermartingale Z associated with ¢ can be

computed as:
Zy=P(o > t|F) =1— (W™")T,
which implies that the biggest predictable set situated on the left of o] equals
F={Z_ =1})={(tw): W (w) <0} =[0,T1] N {W; <0}.
We recall the following useful simple lemma.

Lemma 1.47. Let 7 be the last passage time of an F-adapted process A below a deterministic

level a, i.e., T =sup{t : Ay < a}. Then, T is an honest time.

Proof. On the set (7 < u), we have that 7 = 7, for 7, = sup{t < uw : Ay < a} and 7, is
Fu-measurable. m
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1.3.2 Pseudo-stopping times

Another generalization of the class of stopping times is the class of pseudo-stopping times.
The class of pseudo-stopping times was introduced by Nikeghbali and Yor in [NY05] as an
extension of Williams’ example in [Wil02]| and also as an example where the supermartingale
Z is decreasing, but where the hypothesis (H) is not satisfied for the progressive enlargement.

Let us recall its definition, see [Wil02], [NY05].

Definition 1.48. A random time 7 is an FF-pseudo-stopping time if for every bounded
F-martingale M, we have E(M,) = E(My).

The name of pseudo-stopping time is connected to Knight-Maisonneuve characterization of
F-stopping times given in [KM94], i.e., a random time 7 is an F-stopping time if and only if
for any bounded F-martingale M one has E(My|F;) = M;.

Example 1.49 (|[Wil02]). Let F be the filtration generated by a Brownian motion B. Let o
be the honest time from Example 1.46. Then, the random time p = sup{t < o : Wy = W/}
with W} = sup,<, W, is a pseudo-stopping time. This follows from the next proposition

and the fact that the dual predictable projection of the process A = 1, [ equals (W1,

In [NYO05], the definition of pseudo-stopping times was limited to finite random times. Here
we recall their result with slight extension (to random times which may take the value
infinity).

To avoid confusion at infinity, for any process V', we set Voo := limy,_,00 Vi, if the limit exists.

Proposition 1.50 ([NY05]). Let 7 be a random time and A := 1. . Then, the following
siz conditions are equivalent:

(a) T is an F-pseudo-stopping time;

(b) A% =P(1 < 00| Foo);

(¢c) m=1;

(d) °A = A°;

(e) for every F- local martingale M, the process M7 is an F™-local martingale.

(f) Z is a decreasing caglad process.

Proof. Let us start with the equivalence (a) <= (b). Let M be a bounded F-martingale.
Integration by parts formula gives

Moo Ay = Mo 8+/ Ag_dMs+/ M_dA? + [A°, M)
0 0
= MoA§ + / A9_dM, + / M,_dAS + / AM,dA°
0 0 0
= MyAg + / A°_dM; + / M,dA°
0 0

:/ A% _dM; + MdA?.
0 0,00
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Then, by the definition of dual optional projection, we have

E(M,1(rc00)) = E( M,dA?) = E(M A2).
[0,00[

Therefore, the equality E(M;) = E(My) holds true for every bounded F-martingale M if
and only if A9 = P(7 < 00|Fu), since
E(M:) = IE(]\4‘r]1{r<c>o}) + E(Mooﬂ{Tzoo})
E(MxAL,) + E(MooP(1T = 00| Fx))
E(Muo (A2, + P(7 = 00| Fx))).

and one can look at martingales

M} = E(Ljag ~p(r<oolFu)}|Fe) and M7 =E(l{ag <p(r<oo/Fu)} Ft)-

To show the equivalence (b) <= (c), we work with an F-predictable process X :=
Lo lp, where t is fixed and F; € F;. Then,

E(Zidg) = E(lanlplreny) + E(Li—o 1R)
=E(ILp, (A% — A7) + E(Lfr—) 1 F,)

which implies that Z; = E(AS, + 1 ;—}[F) — A7 and indeed, A%, = P(7 < 00| Fwo) if and
only if m = 1.

The equivalence (¢) <= (d) and the implication (e) = (a) are straightforward, while
the implication (¢) = (e) comes from general decomposition result for stopped martingales.
The implication (¢) = (f) comes from (1.13). To show (f) = (c¢) we also use (1.13), i.e.,
Z =m — A°. (f) implies that m is a continuous finite variation martingale thus it is a
constant, m = 1. n

1.3.3 Cox times

The Cox’s construction of a random time is commonly used in credit risk modelling literature.
Cox times are not F,-measurable.

Definition 1.51. A random time 7 is an F-Cox time if it is of the form 7 := inf {s : X, > U},
where X is an F-adapted cadlag non-decreasing process and U is a positive random variable

independent from F.

Moreover, for each Cox time 7, hypothesis (#) is satisfied. Thus, in particular, 7 is a
pseudo-stopping time.

1.3.4 Initial times

The class of initial times is linked with Jacod’s hypothesis, see Definition 1.31 (a). This
class of random times appears in credit risk literature, see [EJJ10], [EJJZ14].
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Definition 1.52. A random time 7 is called an initial time if it satisfies Jacod’s hypothesis.

For initial times, hypothesis (H') is satisfied, and the decomposition is given as follows, see
[JLO9|. Note that this is a mixture of the result up to random time and Jacod’s decompo-
sition after random time.

Proposition 1.53. Let M be an F martingale. Then

t
1
d<M7m>s+/ p d<M7qu>s|u:T

5— T 45—

P tAT
Mo
0

where M is an FT martingale

1.4 Arbitrages

1.4.1 Classical Arbitrages and No Free Lunch with vanishing Risk

In this section, we recall the basic definitions on arbitrages, and we give sufficient conditions
for no arbitrages in a market with zero interest rate.

Let S be an F-semimartingale. For a € Ry, an element § € L(S,F) is said to be an
a-admissible F-strategy if (6.S5), = limy_o (0.5), exists and V4(0,0) := (6.5), > —a
P-a.s. for all t > 0. We denote by A,(F) the set of all a-admissible F-strategies. A process
0 € L(S,F) is called an admissible F-strategy if 0 € A(F), where A(F) := U,er, Aa(F).

An admissible strategy yields an Arbitrage Opportunity if V' (0,0) > 0 P-a.s. and
P(V (0,0),, > 0) > 0. In order to avoid confusions, we shall call these arbitrages classical
arbitrages. If there exists no such § € A(F) we say that the financial market M(F) :=
(Q,F,P; S) satisfies the No Arbitrage (NA) condition.

No Free Lunch with Vanishing Risk (NFLVR) holds in the financial market M(F) if
and only if there exists an Equivalent Martingale Measure in F, i.e., a probability measure
Q, such that Q ~ P and the process S is a (Q, G, F)-local martingale. If NFLVR holds, there
are no classical arbitrages.

We recall that NFLVR holds if and only if both NA and NUPBR hold (see [DS94, Corollary
3.4] and [KKO07, Proposition 3.6]. NUPBR condition is presented in the next section.

1.4.2 No Unbounded Profit with Bounded Risk

This section is contained in the paper [ACDJ14b|. We focus here on No Unbounded Profit
with Bounded Risk condition of no arbitrage.

We introduce the non-arbitrage notion that will be addressed in this thesis, in particular in
Chapter 6.
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Definition 1.54. An F-semimartingale X satisfies the No- Unbounded-Profit-with- Bounded-
Risk condition! under (F, Q) (hereafter called NUPBR(F, Q)) if for any 7' €]0, oo the set

Kr(X,F) := {(H.X)T | HeL(X,F), and H. X > —1 }
is bounded in Q-probability, i.e.,

lim sup Q((H «X)r| >c)=0.
€7 (H.X)reKr(X,F)

When Q ~ P, we simply write, with an abuse of language, X satisfies NUPBR(TF).

Recall that a process X is said to be a o-martingale if it is a semimartingale and if there
exists a predictable process ¢ such that 0 < ¢ <1 and ¢ . X is a local martingale.

Remark 1.55. (a) It is important to notice that this definition of NUPBR condition first
appeared in [Karl4b]| (up to our knowledge), and it differs when the time horizon is infinite
from that of the literature given in Delbaen and Schachermayer [DS94], Kabanov [Kab97]
and Karatzas and Kardaras [KK07]. It is obvious that, when the horizon is deterministic
and finite, the current NUPBR condition coincides with that of the literature. We could
name the current NUPBR as NUPBR,., but for the sake of simplifying notation, we opted
for the usual terminology.

(b) In general, when the horizon is infinite, the NUPBR condition of the literature implies
the NUPBR condition defined above. However, the reverse implication may not hold in
general. In fact if we consider S; = exp(W; +t), t > 0, then it is clear that S satisfies our
NUPBR(F), while the NUPBR(F) of the literature is violated. To see this last claim, it is
enough to remark that

lim (S;—1)=00 P—as. S'—1=H.S5>-1 H:=I1ljy.

t—00

The following proposition slightly generalizes Takaoka’s results obtained for a finite horizon
(see Theorem 2.6 in [Tak13]) to our NUPBR context.

Proposition 1.56. Let X be an F-semimartingale. Then the following assertions are equiv-
alent.

(a) X satisfies NUPBR(F).

(b) There ezist a positive F-local martingale, Y and an F-predictable process ¢ satisfying
0 < ¢ <1 such that Y(¢.X) is an F-local martingale.

Proof. The proof of the implication (b)=- (a) is based on [Tak13] and is omitted. We now
suppose that assertion (a) holds. A direct application of Theorem 2.6 in [Tak13] to each
(Xtan)t>0, leads to the existence of a positive F-local martingale Y™ and an F-predictable

'This condition is also known in the literature as the first kind of non-arbitrage
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process ¢, such that 0 < ¢,, < 1 and Y (¢,, . X™) is a local martingale. Then, it is obvious
that the process
o
Ni=) 1

n=1

ﬁ

is a local martingale and Y := £(N) > 0. On the other hand, the F-predictable process
¢ = Zn21 1}y —1,n]Pn satisfies 0 < ¢ <1 and Y (¢ . X) is a local martingale. This ends the
proof of the proposition. ]

For any F-semimartingale X, the local martingales fulfilling the assertion (b) of Proposition
1.56 are called o-martingale densities for X. The set of these o-martingale densities will be
denoted by

LEF,X):={Y € Mie(F)| Y >0, 3¢ € P(F), 0< <1, V(. X) € Me(F)}

where, as usual, P(F) stands for the predictable o-field on 2 x [0, oo and by abuse of notation
¢ € P(F) means that ¢ is P(F)-measurable. We state, without proof, an obvious lemma.

Lemma 1.57. For any F-semimartingale X and anyY € L(F, X), one hasPF(Y|AX|) < oo
and PP (Y AX) =

Remark 1.58. Proposition 1.56 implies that for any process X and any finite stopping
time o, the two concepts of NUPBR(F) (the current concept and the one of the literature)

coincide for X°.

Below, we prove that, in the case of infinite horizon, the current NUPBR condition is
stable under localization, while this is not the case for the NUPBR condition defined in the
literature.

Proposition 1.59. Let X be an F-adapted process. Then, the following assertions are
equivalent.

(a) There ezists a sequence (T),)n>1 of F-stopping times that increases to oo, such that for
each n > 1, there exists a probability Q, on (0, Fr,) such that Q, ~ P and X' satisfies
NUPBR(F) under Q.

(b) X satisfies NUPBR(F).

(c) There exists an F-predictable process ¢, such that 0 < ¢ < 1 and (¢ « X) satisfies
NUPBR(F).

Proof. The proof for (a)<=(b) follows from the stability of NUPBR condition for a finite
horizon under localization which is due to [Takl13] (see also [CS13| for further discussion
about this issue), and the fact that the NUPBR condition is stable under any equivalent
probability change.

The proof of (b)=(c) is trivial and is omitted. To prove the reverse, we assume that (c)
holds. Then Proposition 1.56 implies the existence of an F-predictable process ¢ such that
0 <1 <1 and a positive F-local martingale Y such that Y ()¢ . X) is a local martingale.
Since 1 ¢ is predictable and 0 < ¥¢ < 1, we deduce that X satisfies NUPBR(F). This ends
the proof of the proposition. [ ]
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We end this section with a simple, but useful result for predictable process with finite
variation.

Lemma 1.60. Let X be an F-predictable process with finite variation. Then X satisfies
NUPBR(F) if and only if X = Xo (i.e. the process X is constant).

Proof. Tt is obvious that if X = X, then X satisfies NUPBR(F). Suppose that X satisfies
NUPBR(F). Consider a positive F-local martingale Y, and an F-predictable process ¢ such
that 0 < ¢ <1 and Y (¢.X) is a local martingale. Let (T},)n>1 be a sequence of F-stopping
times that increases to oo such that Y7» and Y7 (9. X)T» are true martingales. Then, for
eachn > 1, define Q,, := (Y7, /Yo)-P. Since X is predictable, then (¢.X )7 is also predictable
with finite variation and is a Q,-martingale. Thus, we deduce that (¢ . X)™» = 0 for each
n > 1. Therefore, we deduce that X is constant (since X'» — X = ¢~ 1. (¢. X)T» = 0).
This ends the proof of the lemma. ]

Definition 1.61. Consider an F-semimartingale X. Then, X is said to admit an F-
supermartingale deflator if there exists a strictly positive F-supermartingale Y such that
Y(1+ H.X) is a supermartingale for any H € L(X,F) such that H. X > —1.

For supermartingale deflators, we refer the reader to Rokhlin [Rok10]. Again, the above
definition differs from that of the literature when the horizon is infinite, while it is the same
as the one of the literature when the horizon is finite (even random). Below, we slightly
generalize [Rok10] to our context.

Lemma 1.62. Let X be an F-semimartingale. Then, the following assertions are equivalent.
(a) X admits an F-supermartingale deflator.
(b) X satisfies NUPBR(F).

Proof. The proof of this lemma is straightforward, and is omitted. ]



Chapter 2

Thin random times

2.1 Introduction

This chapter is based on a joint paper with Monique Jeanblanc and Tahir Choulli [ACJ14b].

Motivated by arbitrage questions from [CADJ14| we develop the decomposition of an arbi-
trary random time into thin and strict parts. This decomposition can be seen as analogous
to stopping time decomposition. It is based on dual optional projection of a jump process
associated with random time. Furthermore, we observe that thin random times appear
naturally in various contexts linked to enlargement of filtration literature.

2.2 Decomposition of a random time

We work on a filtered probability space (2,G,F,P), where F denotes a filtration satisfying
the usual conditions such that F,, C G. We consider a random time 7 and the associated
progressively and initially enlarged filtrations F” and F¢ (7) respectively. For the process
A = N[, o[, we denote by AP its F-dual predictable projection and by A? its F-dual optional
projection. The supermartingales Z and Z are associated with 7 through (1.10) and (1.11).
By the abuse of language, A° is also called the dual optional projection of 7. As the dual
optional projection will play a crucial role in this chapter, we recall two equalities where it
appears. By (1.12) and (1.13) we have

A°=m—7 and AA°=Z_— 7.

2.2.1 Definition and first properties

Taking the assumption (A) (in Definition 1.37) as a starting point and motivation we define
two classes of random times.

41
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Definition 2.1. A random time 7 is called

(a) a strict random time if [7] N [T] = 0 for any F-stopping time T,

(b) a thin random time if its graph [r] is contained in a thin set, i.e., if there exists a
sequence of F-stopping times (7},)72; with disjoint graphs such that [7] C J,,[Tn]. We say
that such a sequence (7},), exhausts the thin random time 7 or that (7)), is an exhausting

sequence of the thin random time 7.

A strict random time coincides with a kind of random time often considered in the literature,
namely it is a random time which avoids F-stopping times, i.e., P(1 =T < 00) = 0 for any
F-stopping time T

On the other hand, a thin random time 7 is completely built with F-stopping times, i.e.,
T =1l¢g,00+ >, I, T, where (T},), is an exhausting sequence for 7 and

Co={r=00} and C,={r=T,<o0} for n>1. (2.1)

We denote by 2" the F-martingale with terminal value P(C,,|Foo) namely
zit = P(Ch|F). (2.2)
Note that for a thin random time an exhausting sequence (7). is not unique. The notion

of thin random time is already mentioned in [DMT78] under the name wvariable aléatoire
arlequine.

As a simple observation, we state in the next lemma that those two classes of random times
have trivial intersection.

Lemma 2.2. A random time 7 belongs to the class of strict random times and to the class

of thin random times if and only if T = oo.

In the following definition, we introduce the main concept of this section. Note that 7 is not
necessarily Foo-measurable.

Definition 2.3. Consider a random time 7. The pair of random times (71, 72) is called the

(*)-decomposition of 7 if 7 is a strict random time, 79 is a thin random time, and

T=T1 AT 1V To = 0.

In the next theorem we state that such a decomposition can be found for any random
time. The decomposition of a random time into strict and thin parts is congruent with the
decomposition of a stopping time into totally inaccessible and accessible parts.

Theorem 2.4. Each random time T has a (x)-decomposition (11,72).

Proof. Tt is enough to take 71 and 79 of the following form

T1 = T{AA2=0} and Ty = T{AA2>0}>
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where 7¢ is a restriction of a random time 7 to the set C' defined in (1.1). Properties of dual
optional projection ensure that 7 and 7o satisfy the required conditions. Namely, the time
71 18 a strict random time as

P(ry =T < o0) = E(Mlr—ry lgaae—01 L(7<o0))
oo
= E(/ Ir—ryllgasg—01dAy) = 0.
0
and the time 79 is a thin random time as
[ro] = [FIn{a4° >0} = [ n|J [Tu] < | (7],
n n
where the sequence (T},),, exhausts the jumps of the cadlag process A°,
ie, {AA° >0} =U,[Tn] |
Corollary 2.5. (a) A random time is a strict random time if and only if its dual optional
projection is a continuous process.

(b) A random time is a thin random time if and only if its dual optional projection is a pure

jump process.

Proof. Let 7 be a random time and A° the dual optional projection of 7.

(a) Take an F-stopping time 7. Since E(AAZ1 7 )) = P(r = T < oo) and A is an
increasing process we get that P(1 = T < oo) = 0 if and only if AA% = 0. By Section
theorem 1.10, we conclude that 7 is a strict random time if and only if A° is continuous.
(b) For (T,,), a sequence of F-stopping times with disjoint graphs, we have

S P(r=T,<o0) =Y E(AAS iz, <op).

Since E(AS ;<)) = P(7 < o0) and A is an increasing process, we conclude that the
sequence (77,), satisfies the condition ) P(r = T;, < oo) = P(7 < o0) if and only if it
satisfies the condition E(AZ N1, co0y) = >, E(AAS 17, <)) In other words, 7 is a thin
random time if and only if A° is a pure jump process. ]

For i € {1, 2}, corresponding to the two (x)-parts of a random time, i.e., 71 and 72, we define
A" := 1, oo Then A"P and A"° are respectively the F-dual predictable projection and the

F-dual optional projection of A’. Let us denote by Z* and A supermartingales associated
with 7. Then, the following relations hold.

Lemma 2.6. Let T be a random time and (71, 72) its (x)-decomposition. Then, the super-
martingales Z and Z can be decomposed in terms of the supermartingales Z', Z? and Zl,
Z? as:

Z=7'+2*-1 and Z=2'+27%-1.

Proof. The result follows from the property that 7 V 70 = oco. ]

Lemma 2.7. Let 7 be a thin random time and (2")p>1 the family of F-martingales associated
with T through (2.2). Then

(a) 2" >0 and 2" >0 a.s. on Cy, for each n,

(b)1—2Z; >0 a.s. on{T < oo}
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Proof. (a) Define the F-stopping time S = inf{t > 0: 2> = 0}. As 2" is a positive cadlag
martingale, by [RY99, Proposition (3.4) p.70], it vanishes on [S{, co[. Then:

{5 < o0} = {irtlf z =0} ={z, =0}.
Moreover, the equality

0=E(25Lzn —0y) = E(Le, Lizn —oy)

implies that C,, N {zL = 0} = 0, so as well C,, N {inf; z}* = 0} = (. We obtain that z" > 0
and 2" > 0 a.s. on C,,.
(b) We have Z, =), 1¢,Zr, and

1 —Zr, =P(r <T,|Fr,) =2 P(r = Tu| Fr,) = 27, -
This implies that 1 — Z > 0 a.s. ]

The next result provides the supermartingales Z and Z of a thin random time and its
decompositions (1.12) in terms of its exhausting sequence and the associated martingales
defined in (2.2). We omit the proof as it is straightforward.

Lemma 2.8. Let 7 be a thin random time with exhausting sequence (Ty,)n>1. Then,

Zy = Zn ]l{thn}Ztnv Zy = Zn ﬂ{t<Tn}Z?v Af = Zn ﬂ{tzTn}Z%La my = Zn ZZL/\TH'

We finish this subsection with a remark on the (x)-decomposition of a random time 7 as an
F7-stopping time.

Remark 2.9. We can also decompose the random time 7 into two parts. Then, we consider

a decomposition of 7 onto three parts as:

_ 1 __ a __
TL=T{AAo=0}s T2 = T{AA2>0, AAP—0} and  T5 = T(Ap0s0, AAP>0}-

Then 71 A 74 is an F7-totally inaccessible part and 7§ is an F7-accessible part of the F7-
stopping time 7. These types of results are already shown in [Jeu80, p.65] and [Coc09]. We
note that 7 is an F7-predictable stopping time if and only if 7 is an F-predictable stopping
time. Moreover, a filtration F” such that 73 the accessible thin part of 7 is not an F-stopping
time is not quasi-left continuous. The last observation provides a systemic way to construct

examples of non quasi-left continuous filtrations.

2.2.2 The hypothesis (H')

In this part we focus on the hypothesis (H') and the (x)-decomposition of a random time.
First, in section 2.2.2.1, we examine the case of thin random times. Then, in section 2.2.2.2,
we work with general random times.
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2.2.2.1 Thin random time case

In establishing the following theorem on hypothesis (#') for thin random times, Theorem
1.30 plays a crucial role. Let FC denote the initial enlargement of filtration F with atomic
o-field

C:=0(Cp,n=>0)

with C), defined in (2.1), i.e.,
FE = ﬂ]:s Vo(Cp,n >0).
s>t

Moreover consider filtrations F7 and F?(7) defined as, respectively, progressive and initial
enlargement of filtration F with random time 7, i.e.,

Fi = m‘FS Vo(rAs) and ]:f(T) = ﬂ]:s Vo(r).

s>t s>t

Then, we have the following sequence of filtrations inclusions:
FcF cFCcro.
For the next result, particularly important is that F™ c FC.

Theorem 2.10. Let 7 be a thin random time. Then the hypothesis (H') is satisfied between

F and F™. Moreover, each F-local martingale X can be decomposed in F7 as

X; = X\'t + fOtAT Zs%d<X’ m>5 + Zn 1o, f(f H{S>Tn}zs%d<Xa Z”>S

where X is an FT-local martingale.

Proof. We give an analogical proof as in [Jeu80, Lemma (4,11)|. The first part remains the
same (argument about the hypothesis (H')). In order to find the decomposition, we consider
an F7-predictable process H. Then, [Jeu80, Lemma (4,4)] implies that

Hy =1y Ji + ]1{7.<t}Kt(T) t>0

where J is an F-predictable process and K : Ry x Q@ x Ry — R is P ® B(R;) measurable.
As 7 is thin, we can rewrite the F7-predictable process H as

Hy = Jll<ry + Z Wy, <y Kie(To) e,

with C,, = {r = T},}. Note that each process H{Tn<t}Kt(Tn) is F-predictable. We continue
as in the original proof. ]

We may see that the progressive enlargement of filtration with a thin random time as an
alternative generalization of Theorem 1.30 to generalization based on density hypothesis in
progressive setting (initial times from [JL09]).

We finish this section with a result linking processes in F™ and F€. It can be seen as an
alternative aproach to show the decomposition in Theorem 2.10 using Theorem 1.30. It is
as well related to the aproach in [CJZ13].
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Proposition 2.11. Let X be a process such that X = 1y, o+ X. Then

(a) The process X is an FC-(super-, sub-) martingale if and only if the process X is an
F7-(super-, sub-) martingale.

(b) Let ¥ be an FC-stopping time. Then 9V 7 is an FT-stopping time.

(c) The process X is an FC-local martingale if and only if the process X is an F7-local

martingale.

Proof. (a) Note that the filtrations F7 and F¢ are equal after 7, i.e., for each ¢ and for each
set G € FF there exists a set ' € FJ such that

(r<tinG={r<tinF. (2.3)

To show (2.3), by Monotone Class Theorem 1.1, it is enough to consider G = C), and to
take F' = C,, N {7 < t} which belongs to F{ as C, € FI by [HWY92, Corollary 3.5]. That
implies that the process 1y, [+ X is F"-adapted if and only if it is FC-adapted. Equivalence
of (super-, sub-) martingale property comes from (2.3).

(b) For each t we have {9V 7 <t} = {9 <t}n{r <t} e F by (2.3).

(c) We combine two previous points. [

2.2.2.2 General random time case

In this section we work with (71, 72) the (x)-decomposition of random time 7. We define the
following enlarged filtrations F™, F™2 and F™"™ as

F ::ﬂfs\/a(n/\s) for i=1,2

s>t

fz—lﬂé L= mf:;\/a(Tl/\s)\/O-<T2/\s).
s>t

Lemma 2.12. Let 7 be a random time and (71, 72) its (x)-decomposition. Then, the hypoth-
esis (H') is satisfied for F C F7 if and only if the hypothesis (H') is satisfied for F C F™.

Proof. First we show the following inclusions of filtrations for ¢ = 1, 2:
F C ]FTi C ]FTl,TQ — FT‘

1) To show F™ C F7, take B in the set of generators of F;*. If B € F;, then obviously
B e F[. If B={m <s} with s <t, then

B:{7‘SS}ﬂ{AA$:0}=ﬂ{T§S}ﬁ{T#Tn}E]:;—, and B € F] since F, C F/.

2) To show F™2 C F7, take B in the set of generators of F/?. If B € F;, then obviously
B e F[. If B={m < s} with s <t, then

B={r<s}n{AA2>0}=| J{r<s}n{r=T,} € F], and B e F] since F] C F/.
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3) F™™2 C F7 is due to the two previous points.
4) To show F7 C F™™2 take B in the set of generators of F;. If B € F;, then obviously
Be F'?. If B={r < s} with s <t, then

B={n <s}U{rn <s}eF'™cCF"™
Then, the necessary condition comes from Stricker’s Theorem 1.28 and the sufficient condi-

tion comes from Lemma 2.10 for the thin random time 7. [

In the next lemma we see that 7y and 79 are in some sense orthogonal (in terms of semi-
martingale decomposition and associated supermartingales, which is due to 71 V 75 = 00).

Lemma 2.13. The F-supermartingale Z? of a thin random time 7o coincides with the FT'-
supermartingale Z>F" of 7o, i.e., P(mo > t|F) = P(me > t|F[").

Proof. Let T be an F-stopping time. For each A € F/', there exists B € F; such that
An{r=T}=Bn{r =T}, so P(t =T|F) =P(r = T|F;*) which ends the proof. [

2.3 Thin honest times

In this part we restrict our attention to a special class of random times, namely to honest
times (see Definition 1.41).

2.3.1 Fundamental properties

Lemma 2.14. Let 7 be an honest time and denote by (11, 72) its (x)-decomposition. Then,

the times 71 and o are honest times.

Proof. On the set {7 < oo}, 7 is equal to v, the end of the optional set I' (Theorem 1.43).
Then, as {7 < oo} C {7 < oo}, on the set {r; < oo}, one has 71 =, so 71 is an honest
time. Same argument for 7. ]

We also give a simple characterisation of honest times avoiding F- stopping times.

Lemma 2.15. A random time T is an honest time and aqvoids F-stopping times if and only
if Zr =1 a.s. on {1 < c0}.

Proof. Assume that 7 is an honest time avoiding F-stopping times. Honesty, by Theorem
1.43, implies that Z; = 1 and the avoiding property implies the continuity of A° since for
each F-stopping time 7', E(AA%) = P(1 =T < oo) = 0. Then, the relation Z =7+ AA°
leads to the result.

Assume now that Z; = 1 on the set {7 < oo}. Then, on {7 < oo} we have 1 = Z < Z. <1,
so Z; = 1 and 7 is an honest time. Furthermore, as AA? = Z. —Z, = 0, for each F-stopping
time 1" we have

P(r=T<o0) = E(llfr—ryliaag—011(r<c0))

= E(/o Ly=7}L{an9=0}d A7) = 0.
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So 7 avoids F-stopping times. ]

Lemma 2.16. Let 7 be an honest time with (x)-decomposition (11,72). Then, Z; =1 on
{r=n<o0}and Z. <1 on {17 =1 < c0}.
Proof. From the honest time property of 7 and Lemma 2.6, on the set {7 < oo}
\=Z, =2+ 22— 1.
On the set {7 = 7 < oo}, we have
\=2Z +2% —1=22,

where the last equality comes from Lemma 2.15. Now let us compute Zfl
2 _ 2 20 _ 72 _
Zr =27 —AAL =77 =1,

where we use the strict random time property of 71, i.e., {AA2° > 0} = |, [T,] (with (T3,)
being an exhausting sequence of 75) and P(m; = T, < co) = 0. Finally, on {7 =7 < o0}

Z,=2ZL +Z% —-1=1.
On the set {7 = 1 < 00},
Z, =2 +Z7Z2 -1< 72 <1,
where the last inequality is due to Lemma 2.7. ]

Lemma 2.17. Let 7 be a thin honest time and 1, be associated with T as in Definition 1.41.
Then, for each n:
(a) on {T,, =1} ={T,, =7 <t} we have z{'! =1 — Z;, A} = zpoand 1 —my = 2" — 27 ;

(b) on {T),, <t} we have 2" = Wy 7,1 (1 — Z;) and z = Wr—7,1 (1 = Z;—); in particular

1-— Zt = Z ]l{TtZTn<t}(1 - 2,5) and 1— Zt_ = Z ll{TtITn<t}(1 — Zt_).

Proof. (a) Using properties of 73 we have
]l{Tn:Tt}zt" =P(T, =7 <t,r=T,|F) =Pt <t,T,, =1 =7|F)
=P(r <t, T, =n|F) = H{Tn:n}(l — 7).

The dual optional projection of a thin random time equals

yr,—ry A7 = Z L7,y 1<ty 21, = L(Ty—r} 215
A

where the second equality is due to the facts that (7},),, have disjoint graphs and that 7, <t
a.s. Combining the two previous points, we conclude that 1 —m; =1—2Z; — A} = 2" — 27,
on the set {7}, = 7}
(b) Again using properties of random variable 7, we get

g, enzf =P(r =T, =7 <t|F) = g —rery (1 = Z4),

]1{Tn<t}z?_ = P(T = Tn =T < t|]:t7) = ]1{Tn:7't<t}(1 — Zt,).

Then, Lemma 2.8 completes the proof. [
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Remark 2.18. For a thin honest time 7, the two following decomposition formulas coincide

R tAT 1
X =X
t t+/0 7

R tAT
Xi ZXt+/
0

where the first one comes from Theorem 2.10 and the second one comes from Theorem 1.45.

t
1
ax,m)? +3 1, / Lo (X, 2"},
n 0 S—

t
1
d(X, m)§ + / H{S>T}ﬁd<X7 1—m)§
0

S— S—

Proof. Tt is enough to show that

t 1 ¢ 1
Digom———d(X,1—m)f = ncn/ns —d(X, 2"
| ton—gatxa—m Do, [ Doty i)

This is a simple consequence of the set inclusion {r < s} N {r =T,} C {1, = 7s < s} and
Lemma 2.17 (a):

t t

1 F 1 .

/0 ]1{5>r}ﬁd<X, 1-— m>g = Z/{; ﬂ{5>r}ﬁ{T:Tn}ﬁd<X, 1- m>5
' 1 n n \F
=> ; Lssrintr=ra} o X, 26 = 21, )s

t
1
— § :ncn/ Lgsor,y—d(X, M
n 0 Zs

2.3.2 Relation with jumping filtration

In this section we develop relation between jumping filtration and thin honest times. Let us
first recall the definition of a jumping filtration and the main result obtained in [JS94].

Definition 2.19. A filtration F is called a jumping filtration if there exists a localizing
sequence (0y,)n, i.e., a sequence of stopping times increasing a.s. to oo, with 6y = 0 and such
that for all n and ¢ > 0 the o-fields F; and Fp, coincide up to null sets on {6, <t < 0,41}

The sequence (6,,),, is then called a jumping sequence.

There exists an important alternative characterization of jumping filtration in terms of
martingale’s variation ([JS94, Theorem 1]).

Theorem 2.20. The two following conditions are equivalent:
(a) a filtration F is a jumping filtration;

(b) all martingales in the filtration F are a.s. of locally finite variation.

In the remaining part of this section we investigate relation between jumping filtration and
the condition stating that All honest times in the filtration F are thin honest times.

We start with showing that there does not exist strict honest time in a jumping filtration.



20 CHAPTER 2. THIN RANDOM TIMES

Proposition 2.21. If F is a jumping filtration then all F-honest times are thin.

Proof. Let T be an honest time. Then, take the same process « as in the proof of Lemma
1.42, ie., a is an increasing, cadlag, adapted process such that oy = 7 on {7 < ¢} and
T =sup{t : ¢ = t}. Let us define the partition (Cy,)22, such that

Cn = {Gn—l <7< Hn}

forn > 1 and Cy = {7 = oo} with (6,),, being a jumping sequence for the jumping filtration
F. On each C,, with n > 1 we have

T=T,:=inf{t>0,_1:t=ay,_}.

From the jumping filtration property, we know that ag,_ is Fpy, , measurable so each T}, is
a stopping time and [7] C (J,_,[Z,] which shows that the honest time 7 is a thin random
time. ]

In the next proposition we focus on condition (b) in Theorem 2.20. As a first step we
restrict our attention to continuous martingales which are not constant (i.e., which have
infinite variation). The connection with the studied condition that All honest times in the
filtration F are thin honest times is announced.

Proposition 2.22. Let M be a continuous F-local martingale with Mo = 0. Define the
F-stopping time S1 = inf{t > 0: (M) = 1}. Then, the F-honest time

T:=sup{t < Sy : M, =0}
15 a strict honest time.

Proof. This follows from [RY99, Exercise (1.26) p.235].
Let us denote by Z(w) := {t : My(w) = 0}. The set Z(w) is closed and Z¢(w) is the union
of countably many open intervals. We call G(w) the set of left ends of these open intervals.
In what follows we show that for any F-stopping time T we have P(T' € G) = 0. Define the
F-stopping time

Dy :=inf{t > T : My =0}

and note that
{T € G} ={Mpr=0}n{T < Dr} € Fr.

Assume P(T' € G) = p > 0. Consider the following process
Vi = Lyreay I Mr+elLjo<i<pr -1}
We check it is an (Fri)i>o-martingale, for s < ¢ we have
E(Yi|Fris) = Lireaysgn(Mri) E(Mrt L < pr1y [ Frts)
=Tyreqysen(Mryt) (Mryslis<pr—1y — E(Ls<pr—ry Uies ey B(Mr 4| Fpy ) | Fross))

=Ys — Wypeqysen(Mr ) E(L o< pr—ry e D1y MDDy | Frs)
:Yts
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where we used martingale property of M and Mp, = 0. Moreover Yy = 0 and there exists
€ > 0 such that
P(My = 0,Dp — T > ¢) z§>0.

Since Ye = Nypr—0y Lypr—7>c} [ Mrie| > 0 and P(Yz > 0) > 0, we have E(Y:) > 0 = Yp. So,
P(T € G) = 0. Finally, as 7 € G a.s. we conclude that 7 is a strict honest time. |

The proof of the previous proposition cannot be extended to the case of any infinite variation
martingale M as on the interval [T, Dp[ the sign of the martingale M may change.

Nevertheless we give two examples of strict honest times associated with purely discontinuous
semimartingales of infinite variation. In the first Example 2.23 the case of Azéma martingale
is studied (see [Pro04, IV.8 p.232-237]). In the second Example 2.24 we recall the example
2.1 from [Karl4a] on "Maximum of downwards drifting spectrally negative Lévy processes
with paths of infinite variation".

Example 2.23. Let B be a Brownian motion and F := FZ. Define the process
gt :=sup{s < t: Bs = 0}.

The process
pe == sgn(B) vVt — g

is a martingale with respect to the filtration G := (Fy,1)¢>0 and is called the Azéma mar-

tingale. Then, the random time
Ti:=sup{t <1:pu =0}

is a G-strict honest time. This is due to the fact that 7 = 78 := sup{t < 1: B; = 0} and

78 is an F-strict honest thus G-strict honest time as well.

Example 2.24. Let X be a Lévy process with characteristic triplet (o, 02 = 0, v) satisfying
v(]0,00[) =0, o + f:olo zv(dx) < 0 and f81 |z|v(dx) = co. Then, p = sup{t: X;— = X }

with X} = sup,<; X; is a strict honest time.

Problems related to purely discontinuous martingale filtrations are treated in [Han03].

2.3.3 Examples of thin honest times

2.3.3.1 Compound Poisson process: last passage time at a barrier a

Let us consider the filtration F generated by a Compound Poisson Process (CCP) X, defined

as
Ny
Xt = Z Yna
n=1
where N is a Poisson process with parameter n and sequence of jump times (6,,)5 ;, and

where (Y,,)2%, are i.i.d. positive random variables, independent from N, with cumulative
distribution function F.
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In this section, we study several honest times in the filtration of X which are thin honest
times, and are not stopping times. In a progressive enlargement framework, in order to study
the F7-semimartingale decomposition of F-martingales before 7, one needs to compute the
martingale m = Z + A°. Therefore, we shall present the computations of A° (hence m) in
all these examples.

Define a random time 7 as
T:=sup{t: ut — Xy < a} (2.4)

with a > 0 and a constant p.

pt — Xy

a ____________

0 2 / . .
0, 0 To 05 by 05 05 To t
2,

1 —_

\II(O ———————————— ‘( ————————————
0 : : -

Ty 03 01 65 Ty t

Figure 2.1: Higher line represents ut — X;. (T,)» is the exhausting sequence of 7, given in (2.5). Lower
line represents the supermartingale Z associated to 7, given in (2.7). The supermartingale Z associated to
7, given in (2.6), is a right-limit of Z.

From now on we assume that ;1 > nE(Y7). Under this condition, the random time 7 is finite
a.s.. Since T is a last passage time as in Lemma 1.47, it is an honest time in the filtration
F. Furthermore, since the process ut — X; has only negative jumps, one has ur — X; = a.
This time 7 does not avoid F-stopping times as we shall see below.

Lemma 2.25. The honest time 7 is a thin random time with exhausting sequence (Ty,)n>1

given by

Ty :=inf{t >0: ut — Xy =a} and (2.5)
T,:=inf{t >T, 1 :put—Xy=a} for n>1.

Each T, is a predictable stopping time. Furthermore Z; < 1.



2.3. THIN HONEST TIMES 23

Proof. The first part of the lemma is trivial. Sets (Cy)22, with C,, = {7 = T},} form a
partition of Q. Then, 7 = >">° (T, 1ic,. Note that 7 is not an F-stopping time as C), ¢ Fr,
for any n.

To show that each T;, is predictable, let us define the stopping times Jy and J, as

Jg=1inf{t >0: put — Xy =a,ut — Xy < a}
Jy=1nf{t >0: put — X4 > a,ut — Xy = a}.

First observe that [Jg] € U,[0»] and [J.] C U, [0n]. For each n, we have P(Jg = 6,) =0
as

P(Jg=0n) =E (P (Ja=0,|Fs,_,)) =E (11Ud>9n71}19> (1bn — Xo,_, = alFp,_,))

— ub,— X,
<E <IP> <9n =t :ﬁ s |fen1)> =0,

so we conclude that J? = oo a.s. For each n, we have P(J, = 6,,) = 0 as

P(Jy =0,) =E (P (Ju =0,|Fy, , Vo(Yy))) =E (n{JOQH}P (16 — Xo,, = a|Fp,_, Vo (Yn)))

— b, — X Ya
<E (P <9n —Op1 = =t 1 _L et |‘F9n71 v U(Yn)>> -0

so we conclude that J, = oo a.s. Now, for each n > 1, we simply define an announcing
sequence (T, m)m>1 for T), as

1
Tpm = inf{t > Ty pt — Xy > a— —}}
m

with Tp = 0. We see that J; = oo and J,, = oo a.s. ensure that each sequence (75, m)m is
indeed an announcing sequence of T,. ]

Let us remark that in fact the random time 7 (defined in (2.4)) can be seen as the end of
the optional set I' = J,,[7%.] as

T(w) = sup{t: (w,t) € T'}.
Proposition 2.26. The supermartingales Z and Z associated with the honest time T are

given by
Zt = \I’(/J,t — Xt — a)ll{ut,tha} + ﬂ{,utht<a}7 (26)

Zt =W(ut — X¢ — a)ﬂ{,uthz>a} + L x,<a}s (2.7)
where W(x) is the ruin probability associated with the process ut — Xy, i.e., for every x >0
U(z) :=P(t" <oo) with t*:=inf{t:z+ put—X; <0}. (2.8)

The function V satisfies the following properties:

(1) for © < 0 we have ¥(x) = 1;

(ii) the function U is continuous and decreasing on |0, co[;
(1) for x =0, we have ¥(0) = % < 1.
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l—s—% where Kk = i
nE(Y7)

The supermartingale Z admits the decomposition Z = m — A° where

In particular, Z; =

my=(1=0(0))> Nsr,) + Uut — Xi — )Ly, >0y + Ljp—x,<a)

A= (1= 0(0) Y Loy

The F-dual optional projection and the F-dual predictable projection of 1, o are equal, i.e.
A° = AP,
Proof. The form of Z follows from the stationary and independent increments property of
pt — Xy
P(r > t|F) = IP)(iI;ft(,us - X5) < alF)
5>
= B(inf (u(s — 1) — (X, ~ X)) < a— pt + Xi|F)
= \I’(ut — Xy — a)]l{,ut—XtZa} + ]l{,ut—Xt<a}'

Let us now compute the dual optional projection A? of the process 1, . For any bounded
optional process X we have

E(X;) =E()_ L=y X1,) = ) E(X7,E(Lr=r,)| Fr,))
which implies that A% = > E((;—1,)|Fr,) N1, 00)- To compute E(1—7 1| Fr,) let us
define the stopping time SI = inf{t > T : z + ut — X; < 0} and notice that
E(L{r=r,)|Fr,) = E(SZ; = 00| Fr,) = E(S) = 00) = 1 — ¥(0).

Then, A° = (1 — ¥(0)) >_, U1, o[- This is also the dual predictable projection as, by
previous lemma, T;, are predictable stopping times. The martingale m = Z + A° equals
then

me=E((1 - 0(0) Y Uiz, o) )
=(1=TON> Tgory + U(pt — Xi = a)l - x,50) + Lipe—x,<a}-

Finally, from the general relation Z=27+ AA°, we conclude the form of Z. ]

If F'is an exponential distribution with parameter 3, then (see [AA10, p.78-79])

1
U(u) = o5 &P ( — 1118,iu> for w>0.

In this case, the supermartingale Z is

1 k0
Zt = Xp ( - 7(Mt - Xt — a)) ﬂ{,uthtza} + ﬂ{utht<a}

1+/<ce 1+k
1 l‘iﬁ t Rﬁ
= T+ r exp ( — 71 n K(Mt - a))e"“ exp <71 n ,%Xt — 77/€t) ll{ut—XtZa} + n{ut—Xt<a}'
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Let us note that for ¢ such that [, e® dF(dy) < oo, the process

exp <cXt —nt /R(ecy - 1)dF(dy)>,

is a martingale ([JYCO09, Proposition 8.6.3.4]). Using the fact that, for an exponential law
with parameter (3, fR(exp(ﬁ—ﬂHy) —1)dF(dy) = k, and n = ﬁ—“ﬁ, the supermartingale Z can
be written as

1 KB kS
7y = 1+ r exp ( ~1x ﬁ(ut — a)) exp(nkt) exp (th — nmt) U x>ay + Lip—x,<a)-
Then,
el
Zy = m‘ftﬂ{ut—XtZa} + n{ut—Xt<a}7

where V; := exp (%(Xt — ut)) is a martingale.

2.3.3.2 Brownian motion: local time approximation

We give an example related to an approximation result for the local time. Let B be a
Brownian motion. For € > 0, define a double sequence of stopping times by

Us =0, V5=0
U, =inf{t>V:_ | :B;=¢}, V;=inf{t>U;:B; =0}

We consider the random time

7 = sup{Vy : VE < Ty} (2.9)

with 77 = inf{¢ : B; = 1}. Let us introduce the processes X¢, Y¢ and J¢

X; =sup{s <tAT):Bs=¢}
YS :=sup{s <tAT,:Bs; =0}

Jp = Tyxesyey
and the function ¢
((z) =P (Thy<Th)=1—2x, for x€]0,1].
The supermartingale Z° of 7° is equal to

Zi = J;((Beary) + (1 = J5)C(e)
= Ji(L=Binr) + (1 = J7)(1 —¢)
=1—JBing, — (1— Jf)e
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Let us define the process Df = max{n : V, < t} which indicates the number of downcrossings
of Brownian motion from level € to level 0 before time ¢. By integration by parts we get

t ¢
BuJ;i +e(1—-J7) = / J: dBs +/ BsdJ; +¢(1 - Jf)
0 0
t
:/ J;dBs +eDj +¢€
0
The dual optional projection of 7¢ equals

Af = (Ly>rey)! = eDipp, +¢

and we easily see that it is a pure jump process with the property

[AA® >0} = [0,T1] N D Vel

n=0

We can interpret the sequence 7 with € going to zero as an approximation of the strict
honest time 7 given by
T =sup{t <11 : B; =0}, (2.10)

as 7 — 7 P a.s. (by time reversal at 7). The supermartingale Z of 7 equals

tATy 1 0
Zt = 1 —/ H{B.§>O}dB3 - §Lt/\T1
0

and, by [RY99, Chapter VI Theorem (1.10)] and the fact that E(y/T1) < oo, we have the
following convergence for dual optional projections

) 1
lim E(sup [eDipp, — iLt/\Tl ) =0.

e—0 t

Lemma 2.27. Let F" be a progressive enlargement of the filtration F with random time /"

defined in (2.9) and F® be a progressive enlargement of the filtration F with random time T
defined in (2.10). Then, for each t, the sequence of o-fields (F}'), converges weakly to F¢°.

Proof. We have to check that for each F' € F°, P(F|F") converges in probability to 1.
We limit our attention to the sets I’ belonging to the generator of F°. If I' € F;, the
condition is obviously satisfied. If F = {7 < s} for s < t, using Proposition 1.44 and the
honesty of 71/™, we have

n E(]l 7<s ’]:t) n—00
E(n{7§5}|ft):n{Tl/nSS}E(n{TSSH;Ef):n{TI/nSS}M 2Ny as.

1/n

where the convergence comes from 7/ — 7 a.s. ]

2.4 Entropy of thin random time

Additional information carried by enlarged filtration and its measurement was studied by
several authors. Already in [Mey78| and [Yor85a| the question on stability of martingale
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spaces with respect to initial enlargement with atomic o-field was asked. From more recent
studies, generalizing and applying previous results in different contexts, we would like to
recall [AIS98], [ADIO6], [ADIO7|, [AIO7].

In this section we find a simple connection between progressive enlargement, with thin ran-
dom time and conditional entropy of a partition associated to this time. In [Mey78| the
author asks the question about additional knowledge associated with thin random time:

Un probléme wvoisin, mais plus intéressant peut-étre, consiste & mesurer le bouleversement
produit, sur un systéme probabiliste, non pas en forcant des connaissances o 'instant 0, mais
en les forcant progressivement dans le systéme.

In the case of initial enlargement with partition (Cy, )., the additional knowledge is measured
by entropy, namely

H(C) == — ¥, B(C) 1og B(C).

In the case of progressive enlargement with thin random time, we suggest the measurement
of additional knowledge by

H(r):=-Y,E(l¢,log Z%L) . (2.11)

Remark 2.28. (a) If 7 is an F-stopping time then H(7) = 0.

(b) If for any n the set C,, is in Fp, then we do not gain any additional information since

1c, logzy =1¢,logle, = 0.

(¢c) H(r) is invariant under different decompositions of 7 since for F-stopping times T', T}
and Ty such that [T N [T2] =0 and {7 =T} = {r =T1} U {7 = T} we have

H{TZT} log IP(T = T|fT) = H{TZTl} log P(T = T‘.FT) + ﬂ{T:TQ} log P(T = T’fT)

= LopylogP(r = T1|Fry) + Lir=ryy log P(1 = 15| Fr, ).

For any p € [1,00[ we denote HY, and HE, Banach spaces consisting respectively of local
martingale and semimartingale equipped with the following norms:
— a continuous F-local martingale X belongs to Hp, if

| X1z, = [{(X)oolr < 005

— a continuous F-semimartingale X belongs to HE,, if

(o.9]
| XNz, = {M)oolr + II/0 |dVi][ e < oo

The following proposition combines existing results from [Yor85a, Yor85¢| and gives justifi-
cation to (2.11) as an appropriate measure in a progressive setting.
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Proposition 2.29. Assume that all F-local martingales are continuous and H(T) < oo. Let
an F-local martingale X be an element of H*(F). Then, the FT-semimartingale X is an

element of H'(F7).

Proof. We consider separately X — X™ and X”. For X — X7 we refer the reader to [Yor85a,
Theorem 2, p.47-50]. The F7-semimartingale X — X" has decomposition

. 1
X -X"=X+(X, E ﬂcn]l]]Tmoo[[an -2
n

where X and 7" for each n are FT local martingales. Denote by Y =" ]lcnll[Tmoo)zin - Z"
an F7 local martingale. Then,

s = (3 o) <5 (5 [ o)

Consider now the function f : Ry — Ry defined as f(z) = z — xlogz for x > 0 and
f(0) = 0. Then, 1td’s formula implies

00 1 % q
f(zl) = f(=1,) —/ log z}'dz]" — 2/ —d(=";.
n Ty Zt
Since f(z1) = ¢, and f(z} ) = 2 — 2 log 2}, we get
zp = zp — 27, logzp — 5]E </ —d(z >t~FTn>
W A

so finally

ZE (/T Zd 2"V ) = —QZn:E(z%nlogz%n) = 2H(7) < 0.

For X7, see [Yor85c, p.120-121]. [

Remark 2.30. (a) The condition H(r) = =3 E(l¢,log 2} ) < oo is weaker than the
condition H(C) = =), E (¢, logP(Cy)) < co. In this sense, the previous theorem de-
scribes a new result.

(b) In the example of local time approximation in Brownian motion case one has
H(t) = —loge.



Chapter 3

Pseudo stopping times and

enlargement of filtration

3.1 Introduction

This chapter is based on the joint paper with Libo Li [AL14].

Starting with the Example 1.49 given in Williams [Wil02], the concept of a pseudo-stopping
time was formally introduced by Nikeghabli and Yor in [NYO05] (see Definition 1.48). As its
name suggests, the class of pseudo-stopping times is larger that the one of stopping times,
which enjoy stopping times like properties.

The aim of this chapter is to examine the relationship between hypothesis (H) (see Definition
1.27) and pseudo-stopping times. In [BY78]|, several characterizations of the hypothesis (H)
have been given. In [NY05] the authors have observed that given two filtrations F and
G such that F is immersed in G, then every G-stopping time is an F-pseudo stopping
time. Our main result, given in Theorem 3.1, shows that the converse is true and an
alternative characterization of hypothesis (#) can be given using the optional and the dual
optional projections. Inspired by this new characterization, we characterize all G-stopping
times in Lemma 3.4, and we show, roughly speaking, that any G-stopping time can be
written as the minimum of a thin F-pseudo stopping time and an F-Cox time. The present
chapter is devoted mostly to the study of pseudo-stopping times. However, we also explore
the relationship between pseudo-stopping times and other classes of random times, namely
honest times, thin times and Cox’s times.

3.2 Pseudo-stopping times and hypothesis ()

We work on a filtered probability space (€2, G,F,P), where F denotes a filtration satisfying
the usual conditions.

The next theorem holds for a general enlargement of filtration, namely F C G where G is

59
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not obtained in a specific way.

Theorem 3.1. Given two filtrations F and G such that F C G, the following conditions are
equivalent:

(a) every (bounded) F-martingale is a G-martingale, i.e., the hypothesis (H) is satisfied for
F C G;

(b) every finite G-stopping time is an F-pseudo-stopping time;

(c) the F-dual optional projection of any cadlag G-adapted process of pre-locally integrable

variation is equal to its F-optional projection.

Proof. To show (a) = (b), let M be a bounded F-martingale and ~y a finite G-stopping
time. Then, from hypothesis (H), M is a G-martingale and E(M,) = E(Mj), which implies
that v is an F-pseudo-stopping time.

To show (b)) = (a), suppose that M is a bounded F-martingale and v a finite G-
stopping time. Since every finite G-stopping time is an F-pseudo stopping time, we have
E(M.,,) = E(Mjy) . The last equality holds for each finite G-stopping time, which, by [JYCO09,
Proposition 1.2.3.7], implies that M is a G-martingale.

The implication (¢) = (b) follows directly from Proposition 1.50 (d). To complete the
proof, we show the implication (b)) = (c¢). We will use monotone class type of arguments,
which are presented in the following five steps.

Step 1. Define
1% := {[y, 00 : v is a G-stopping time}

H = {Y : cadlag G-adapted of pre-locally integrable variation such that >fy = yoF}.

We note that TI® is a m-class on Q x [0, 00 and H is linear space such that for each T’ € TI®
we have Ilp € H by (b) and Proposition 1.50 (d).

Step 2. Let Y be a cadlag G-adapted process of pre-locally integrable variation. Then,
Y can be decomposed as a difference of two increasing G-optional processes of integrable
variation, i.e.,

Y =Yt —Y . So, as H is a linear space, without loss of generality, we may assume that ¥’
is an increasing G-optional process of integrable variation. It can be approximated by

. n2™ 1 . : . "
VoS L i spomefeviz )
k=1

Then, for every w we have Y*(w) 1 Y;(w) for every ¢ > 0. Since each S} is a G-stopping
time and H is a linear space, we also have Y™ € H for each n.

Step 3. Let T' be an F-stopping time. For n > m we have Y — Y" > 0 on {T" < oo}.
From the definition of the optional projection we have that {Y;' = Y;*} C {°Y} = °Y;*}
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and {°Y} < °Y"} € Fr. Combining all the properties listed in this step, we obtain

0 <E ((V = Vi) ovpeovp) Liress) )
=B (V3 = V) oz covpyIrancy ) <0

and finally °Y7 > °Y/". From Section theorem 1.10, we conclude that °Y™ > °Y™ for
n > m. Since Y" € H for each n, we have that °Y"™ = Y™ which implies that each °Y™
is an increasing process. Therefore, (°Y™),, is an increasing sequence of increasing processes.

Step 4. Using the Lebesgue convergence theorem and step 3., we check the definition of
the optional projection of Y:

E ("Yilren)) = E (Yl {reoy) = E (lim Y7z )

n—o0

= lim E (Y/'lircoa) = lim E (Y7 {r<o))

n—o0

—E (lim Vil iren ).

n—o0

We conclude that °Y"™ 1 °Y .

Step 5. Finally, to show that Y° = °Y, it is equivalent to show that IE(f[O OC)[Xsale) =
E(f[o oo Xd°Yy) for any F-optional process X. To this end, let us define

¥ := {[0,T[: Tis an F-stopping time}

HY = {X K X dYs) = E( X.d°Y,)}.
[0,00] [0,00(

First, we prove that Ilp € HY for each I € II¥. We start with

; </[o,oo[ ol (SWS> - (12%% Y) —F <12¢“T1 Jirm, Yt") - (JLH;O lim Yt”> ,

where the last equality comes from exchanging the limits in n and ¢, which can be done
as Y;" is increasing in both n and in ¢. We continue using twice the Lebesgue convergence
theorem and the fact that E (Yj’}_) =E (OYTCL_) for Y™ € H. This gives

E ( lim lim Yt") = lim E <lim Yt”> = lim E (lim OYt") =E ( lim lim 0Yt”> .

n—oo 17T n—00 T n—00 T n—oo 1T

We end the proof with

E < lim lim OY;”) =E <lim lim OYt”> =E (lim 0Yt> =E (/ 1 T[(s)dOYS> .
n—00 T’ T n—o0 T [0,00] ’

where the first equality is due to the exchange of limits, which can be done as °Y}" is
increasing both in n and in ¢ (step 3) and the second equality is due to step 4. So indeed
H[O,T[ S HY.
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We note that ITF is a 7-class on © x [0,00[ and HY is a linear space such that

1) 1eHY,

2) X" ¢ HY, 0 < X" 1 X, X is finite, implies X € HY,

3) Ipr € HY for each T € TIF.

Then, by Monotone Class Theorem 1.1 we obtain that E( f[ 0,00[ X5 dYy) f[o Xd°Y5)
for any F-optional process X. ]

Alternative proof of implication (a) = (c) in Theorem 3.1. Without loss of generality
we may assume that Y is an increasing G-optional process of integrable variation. Since
under the hypothesis (H), we have E(Y; | F;) = E(Y;| Fo) (see [Jeall, Proposition 3.1.1]
or [ES01]), the process °Y is increasing and of integrable variation. Therefore °Y — Y is
an uniformly integrable martingale of finite variation and is of the form

(°V —Y°), =E((°Y)oo — (Y°)oo | F) for every ¢ > 0. (3.1)

For any F € Fu, set Q := E(1p|F;) for every t € Ry. Let (T,)nen be a localizing
sequence such that, after applying the integration by parts formula,

E(QE(Y -Y)%) =E(Q)" (Y —Y)]") +E (Z AQ/"A(Y — YO)%) . (32)

Since we know that °(AY) = A(Y?), to show that the sum of jumps in (3.2) is zero, it is
therefore sufficient to show that °(AY) = A°(Y). For any finite stopping time T, we have

OAY)p = °(V)r — °(Y_)pr and A°Yp = °(Y)pr — (V)

therefore we have reduced the problem to show that the processes °(Y)_ and °(Y_) are
indistinguishable under the hypothesis (#). To this end, we first notice that °(Y)_ is
caglad, therefore F-predictable. On the other hand, from hypothesis (H), we have for every
finite stopping time T,

Y )r =E(Yr_ | Foo) -

Since Y is cadlag, we can deduce from the above and dominated convergence theorem that
°(Y_) is also caglad and therefore F-predictable. Therefore, to show that the processes
°(Y)- = P(Y_) and °(Y_) are indistinguishable, it is enough to show that for any finite
[F-predictable stopping time v, the equality °(Y),— = °(Y-), holds.

Let v be any F-predictable stopping time, then v is foretellable and suppose that (v,)nen is
an announcing sequence for v, then by hypothesis (H) and dominated convergence theorem
we have

(Yo)y =E (Y- | Foo) = lim E(Y,, | Fx)

n—o0

and once again by hypothesis (H), E(Y,, | Foo) = E (Ya, | Fv,) and

hm E(Yvn "F'Un) = hm O(Y)'Un = O(Y)'U_'

n—o0 n—oo

Therefore, going back to (3.2), the jump terms disappear and in order to take the limit in
(3.2) as n — o0, it is enough to notice that @ is bounded and

(Y = Y)2] < Y oo + YV
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where the right-hand side is integrable since Y is increasing and of integrable variation.
Then, by the dominated convergence theorem, we obtain

E(Lr(°Y — Y°)a) =0
for all F' € Fu, and from (3.1) we see that °Y = Y?°. [

Example 3.2. For any stopping time 7', one can shrink F to Fp := (Frat)i>0. Every

F-stopping time is an Fp-pseudo stopping time since Fr is immersed in F.

Inspired by Theorem 3.1, we suppose that the hypothesis (H) is satisfied for F C G and
we characterize G-stopping times. We first give an auxiliary lemma, which is to some
extent known in the current literature (see [Gapl4, Jeall]), however the assumption on the
invertibility of the supermartingale Z is unclear. Therefore, we will give a concise proof and
extend the result to the case of non-finite random times.

In the remaining part of this chapter, since we have to study several random times together,
for a random time 7 we shall denote by A7%F the F-dual optional projection of A7 := Ly oof-
When there is no ambiguity about the filtrations we simply note A7°. We denote by Z7
and Z7 the supermartingales associated with v. We are not using stopped processes in this
chapter so there is no ambiguity.

Proposition 3.3. If the hypothesis (H) is satisfied for F C G and if v is a G-stopping time
that avoids all finite F-stopping times then

(a) the Foo-conditional distribution of A% is uniform on the interval [0, AX’[, with an atom
of size 1 — AL’ at AY’;

(b) the G-stopping time v is an F-barrier hitting time, meaning it satisfies

y=inf{t >0:A)° > AT°}.

Proof. To show (a), we compute the Foo-conditional distribution of A%, that is

E (ﬂ{sz‘)Su} F oo) —E (H{WSM

Let us set C' to be the right inverse of A7, then the first term in the right-hand side in the
above equality is

]:oo) Drycazey + Lpusazey

E (H{A1’°§1t}]l{cu<oo} )foo) =E (Lgy<e,p Lo, <o0} | Feu)
= (°A")c, 1ic, <o0}
= (A")c, 1ic, <o0}
= ulfucary
where we have applied Theorem 3.1 in the third equality, while the last equality follows
from the fact that Agj = u, since A7? is continuous. This implies that the F..,-conditional

distribution of A7 is uniform on [0, A%’[, with an atom of size 1 — AL’ at AL’
To show (b), we first define another random time ~v* by setting

v i=inf{t > 0: A]° > A7}
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To see that v* = ~ (it is obvious that v* < ), we use the fact that the support of A7 is
contained to the support of A7° (see Chapter IV, Lemma 4.2 of [Jeu80]). ]

As a special case, if we work under the same conditions as Proposition 3.3 and assume that
7 is a finite G-stopping time, then AX’ =1 and A7 is independent from F, and uniformly
distributed on the interval [0,1]. In this case, the stopping time = is truly a F-Cox time.

Corollary 3.4. If v is a G-stopping time, then it can be written as v¢ A 7%, where ¢ is
a G-stopping time that is an F-barrier hitting time avoiding F-stopping times and 7% is a
G-stopping time whose graph is contained in the graphs of F-stopping times.

Proof. By Theorem 2.4, v has the representation v = v% A v°. The fact that v¢ and ~° are
G-stopping times follows from the observation {AA? > 0} € F, (from Corollary 3.23 in
[HWY92] and Monotone Class Theorem 1.1). The G-stopping time ¢ avoids all F-stopping
times and we conclude by applying Proposition 3.3. ]

Unlike stopping times, the minimum and maximum of two F-pseudo-stopping times is in
general not a F-pseudo stopping time. The above corollary suggests that the minimum of a
Cox time with a F-pseudo stopping time is again a F-pseudo stopping time. In the following,
we explore extensions to Proposition 4. in [NY05], which states that the minimum of a
pseudo-stopping time p with an FP-stopping time is an F-pseudo stopping time.

Lemma 3.5. Let p be an Foo-measurable F-pseudo-stopping time and 7 be a random time

such that F is immersed in F7, then 7 A\ p is an F-pseudo stopping time.

Proof. Proposition 1.50 (f) and Theorem 3.1 imply that both ZP and Z™ are decreasing
caglad processes. To compute the supermartingale Z7? associated to 7 A p, we write

P(T>tp >t Foo) = Loy P(T > HFuc) = Loy P (7 > t] 1)
This implies that
ZI =B (1> t,p > t| Foo) |F) = P(r > H{F)P(p > t|Fy) = Z] Zf,

so 2™ is a decreasing caglad process. Thus, by Proposition 1.50 (f), we conclude the
assertion. -

We observe that, under the same assumptions as in Lemma 3.5, since p is Foo-measurable
and F is immersed in F7,

P(r>t|FL)=P(7>t|Feo) =P (7 >t| F)
and by taking the F/-conditional expectation, we obtain
P(r>t|F)=P(r>t|F).

Combined together it implies that P(r > t|F%) = P(r > t|Ff), i.e., F? < FA7. This gives
us the following extension.

Lemma 3.6. Suppose that p is an F-pseudo-stopping time and 7 is an FP-pseudo-stopping

time, then T A\ p is again o F-pseudo stopping time.
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Proof. We compute directly E(M;,,) for M a bounded F-martingale. Using the properties
of the dual optional projection, we see that

E(M,n,) = E( / Mpp dATF" ),
[0,00]

and by Proposition 1.50 (e), the process ]\/4\u := Myny is a bounded FP-martingale. Thus
E( / Mpu dATOF") = E(My, dATOF") = B(Moo ALY = B(M,)
[0,00] [0,00]
and therefore 7 A p is an F-pseudo-stopping time. ]

Finally, we relate pseudo-stopping times with honest times. Under assumption (C), a result
of similar spirit was presented in [NY05, Proposition 6]. The authors gave a distributional
argument. Here, we use path properties to show that the same kind of result holds in full
generality.

Lemma 3.7. Let 7 be a random time. The following conditions are equivalent
(a) T is equal to an F-stopping-time on {T < co};

(b) 7 is an F-pseudo stopping time and an F-honest time.

Proof. The implication (a) = (b) is trivial. To show (b) = (a) let us note that the
honest time property of 7 implies 7 = sup{t : Z] = 1} on {7 < oo} (Proposition 1.43) and
the pseudo-stopping time property of 7 implies Z] =1 — A7? (Proposition 1.50 and (1.12)).
Moreover we use the general relation (stated in (1.13)) Z7—Z7 = AA™°. Then, on {7 < oo}
we obtain

T =sup{t: ZtT =1} =sup{t: Z] + AA]° =1}
=sup{t:1— A7+ AA]’ =1} =sup{t: A7’ =0}
=inf{t: A7’ > 0}.

So, 7 equals an F-stopping time on {7 < oo}. [
As a simple consequence of Lemma 3.7 and Theorem 3.1, we see that

Corollary 3.8. If 7 is an F-honest time which is not equal to an F-stopping time on
{7 < o0}, then the hypothesis (H) is not satisfied for F C F".

3.3 Time change construction of pseudo-stopping times

In this subsection, we revisit and extend the construction of pseudo-stopping times suggested
in [NY05]. In that paper, an honest time 7 is given and under the assumptions (C) and (A),
a pseudo-stopping time p is constructed by setting

p=sup{t <7:Z] =inf<; Z7}. (3.3)
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The goal of this section is to demonstrate that the honest time 7 which appears in (3.3) can
be replaced by an arbitrary finite random time and that assumptions (C) and (A) can be
relaxed in certain cases, which allows us to construct an F-pseudo-stopping time which is
also an F-thin time.

In the following, we assume that an arbitrary random time 7 is given and we define the
processes D and G:
Dy :=inf{s >t: Z] = inf Z] },
u<s

Gy :=sup{s<t:Z] = iréf Z0}.

Lemma 3.9. The processes D and G are increasing and cadlag. The process D is a right-

inverse of G.

Proof. From [DMM92, Paragraph 1 Chapter XX] we know that D is a right-continuous
process, and, since the set I' := {(w,?) : Z7 (w) = infs<; Z7(w)} is right closed (as Z7 is
cadlag process), G is a right-continuous process as well. To show that the process D is the
right-inverse of G, i.e., D; = inf{u : G, > t} let us fix t and w. Then we have:

1) If u € [Gy, Dy[ then, since |Gy, Di[¢ T, we get G, = Gy < t.

2) If D, = t and u > Dy then, since there exists s €]D;,u] such that s € I', we get
Gy >Ds>5s>t.

3) If Dy > t and w > Dy then, since there exists s € [Dy,u] such that s € ', we get
Gy > Dy >t

And the proof is completed. ]

We denote by d the left limit of D, i.e., d; := D;_. Note that d is the left-inverse of G, i.e.,
dy = inf{s : G5 > t}. For each F-stopping time T, Dy and dp are F-stopping times. Let p
be defined as in (3.3), then we have

{p=T} = {7 > dr}. (3.4)

Lemma 3.10. Let p be defined by (3.3). Then
(a) the F-dual optional projection of AP is given by AP° = (A}’)°,
(b) the F-supermartingale Z° is given by Z° = °(Z7).

Proof. (a) For any F-optional process X we have

E(X,) =E(Xg,) = E( [ [XGSdA?O)
0,00

=E( o [XGCSH{CS<oo} ds),

where the second equality follows from the fact that X, is F-optional (see [Mey73|) and the
third from a time change in the integrals with C being the right-inverse of A™° (see [HWY92,

Lemma 1.38]). Using once again time change in the integrals, as G¢ is right-inverse of A},
we obtain:

E(X,) = E( X, dATY).
[0,00] °
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(b) From the definition of the optional projection and the identity (3.4), for every F-stopping
time T',

Zh0 1oy = B (Lgpory lireoc | Fr)
= E (Lgrzar) Ldr<oo) Lireoo) | Fr) + E (Lirsoo) Ligr=oo} L1 <o) | F7)
since 7 is assumed to be finite
=E (E (1r2dp) Uar<oo} | Far) | F7) Lircso)
=E (ZVZl—Tﬂ{T<m} ‘ ]:T) ,

which shows the assertion.

Proposition 3.11. Suppose that for every F-stopping time T

Zj = inf Z7. (3.5)

s<T

Then, p (given in (3.3)) is an F-pseudo-stopping time and th =infsy Z7.

Proof. By the assumption (3.5) and Lemma 3.10, we get that

Zi W resey = “(Zg ) Uirency = O(Sig,f’,, Z ) pey = inf Z5 1 {r<oo}-

Then, by Section theorem 1.10, we conclude that Zr = infgy Z7 is a decreasing caglad
process, thus, by Proposition 1.50 (f), p is an F-pseudo stopping time. [

The equality (3.5) is rather technical and cannot be checked in general without knowing
the exact structure of the processes Z7 and Z7. In the following, we give examples of
constructions where (3.5) is satisfied.

Example 3.12 (Poisson filtration example). We present here an example without assuming

neither (C) nor (A) nor the fact that the process infs<; Z7 is continuous.

We take as 7 the random time defined in (2.4) and studied in Section 2.3.3.1. Supermartin-
gales Z and Z computed in Proposition 2.26 satisfy condition (3.5) and p, given by (3.3), is
an F-pseudo-stopping time with Z° = inf,<; Z7 and Z° = inf,<; Z7.

If one looks closer, the infimum process of Z7 has only one negative jump at the predictable
stopping time
T) :=inf{t > 0: ut — X; — a = 0},

where the process Z7 jumps from 1 to 1(0). That implies that T is the only F-stopping

time which p intersects.

Example 3.13 (Thin pseudo-stopping times). In the following we work under the assump-
tion that inf Z™ and A™° are continuous. We show that one can systematically construct a

thin pseudo-stopping times in the following manner.
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Let (e0,€1,...,en) be a positive decreasing sequence of real numbers bounded by 1. We

define the following sequence of F-predictable stopping times

T,=inf{t>0: 125 ZT =en}, Tni1 =
s<

and the F-adapted decreasing caglad process V' = eolljo 7,7 + Zﬁ[:l enlyr,_, 1,1 Moreover

we set

Vi=sup{s <t:Z] =V}
dj:=inf{s>t:Z] =V}
and note that the process V is such that Vp = Vd/T for all stopping time 7. The process

d' is the left inverse of G’ since the set {Z™ = V'} is a closed random set, (see [EWTT], the

reason is that for each fixed w, it contains only a finite number of points).

Let us define p := G%.. Clearly it is a thin random time as [G}] C |J,[T%]. Similarly to the

proof of Lemma 3.11, we compute Zéi]l{T@o} for an F-stopping time T

Zpr<oy = E (Lgpamy Lir<cc | Fr)
=k (ﬂ{@d/T}ﬂ{d/T@o} ‘ fT) L{r<ocy
=B (73, Uty <0} | 1) Lircce)
:E<m%m%<wﬂ]%)nﬁzm}
= Vrl{rcso),

where the fourth equality comes from continuity if A™° (i.e., Z™ = Z7) and Zy = Va.. One
T
can conclude that p is an F-pseudo-stopping time (Proposition 1.50 (f)). The random time

p is an F-thin time, since A”° =1 — V, is a pure jump process.

Example 3.14 (Continuous infimum example). Let 7 be a random time such that the
running infimum of the supermartingale Z7 is continuous. Then, the condition (3.5) is
satisfied.

(a) Take the random time 7 := zb(fooo f(s)dBS), where ¢ : R — R* is a deterministic,
strictly increasing, square integrable function and B is a Brownian motion. Its supermartin-
gale Z7 equals to
() — ﬂt)
o(t) ’
where 3; = fot f(s)dBs, o*(t) = [ f*(s)ds, and @ is the cumulative distribution function

of standard normal law. Then

Zg:1—¢(

Br—v () _
o(t) u<t o(u)

p::sup{t<7:

is a pseudo-stopping time.
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(b) Take the random time 7 := AGY = I eQB&ﬂ)du, where Bﬁ‘” := B, — 4t with B a

Brownian motion. The supermartingale Z7 equals to

- t _ Al(e_'y)
Zi = T(W)
t
where Y (z) :=P (Af;”) > :c) Then
Ly =AY u— A
pimsw{t < AV LR — ot |

is a pseudo-stopping time.

3.4 Hypothesis (#') and semimartingale decomposition

In this section, we give some conditions so that hypothesis (H') is valid between F and
F?, for random times constructed in (3.3) and, in that case, we give the semimartingale
decomposition. We find it useful to change the point of view and consider the problem by
examining the beginning and the end of the excursion of the process

Y= 2] —inf 27 (3.6)

straddling the random time 7. That is
p(r) :=sup{t <71:2Z] — iréf;ZST =0} =sup{s < 7:Y] =0},
RIS

o(T) ::inf{tZT:Zg—irng:0}:inf{t27:YT:O}.

When 7 is an honest time, one is able to apply results from Jeulin [Jeu80| without referring
to the specific structure of the excursion. However, once we replace 7 by a general random
time, to retrieve the decomposition, we exploit the structure of the excursion. We notice
that, in view of enlargement of filtration, the properties of the beginning and the end of the
excursion are symmetric.

In the following, we shall examine properties of the three random times 7, p := p(7) and
d := (1) in view of enlargement of filtration. For simplicity, we assume that the random
time 7 is finite.

Lemma 3.15. We have the following relations between the random times 7, p and 6 and
associated enlarged filtrations:
(a) the random time § is an FP-stopping time;

(b) the random time p is an F® and FT-honest time.

Proof. Assertion (a) follows as the random time

S=inf{t>7:Y7 =0} =inf{t>p:Y] =0}
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is a first passage time in F?, therefore is an FP-stopping time. To show (b), it is enough to
see that the random time

p=sup{t<7:Y7 =0} =sup{t<35:Y] =0}
is a last passage time in F? and F7, therefore an F°-honest time and F7-honest time. ]

Proposition 3.16. If the hypothesis (H') is satisfied between filtrations F and F7, then
(a) the hypothesis (H') is also satisfied between F and FP;
(b) the hypothesis (H') is also satisfied between F and F°.

Proof. (a) Note that p is an honest time in the filtration F”. Let us introduce the progressive
enlargement of F” with p which is denoted by F™*. Take any F-martingale M, then, since
the hypothesis (H’) is satisfied between F and F7, the process M is an F7-semimartingale.
On the other hand, the random time p is an honest time in F7. Then, by classic results (see
[Jeu80]), the process M is an F™P-semimartingale. Finally, from Stricker’s Theorem 1.28,
the process M is an FP-semimartingale.

(b) It is sufficient to notice that F € F0 C F7, as § is an F"-stopping time. Then, by Stricker’s
Theorem 1.28, if hypothesis (') is satisfied between F and F?, it is satisfied between F and
Fe. |

Proposition 3.17. The hypothesis (H') is satisfied between F and FP if and only if the
hypothesis (H') is satisfied between F and F°.

Proof. Note that F C F? C F% = F?, where the last equality follows from (a) of Lemma,
3.15. Using (b) of Lemma 3.15, we see that p is an F°-honest time and this implies that the
hypothesis (H') is satisfied between F and F?. If the hypothesis (H') is satisfied between
F and F9 therefore the hypothesis (') is satisfied between F and F?. The converse follows
easily from Stricker’s Theorem 1.28. ]

In the next proposition we give a FP-semimartingale decomposition for F-local martingales
stopped at ¢ (which, by Lemma 3.15, is an F-stopping time). This result is in the same
spirit as [Jeu80, Corollary 5.21]. Here we consider the particular case of the beginning and
the end of an excursion. We do not use properties of the middle time 7. Moreover, the
decomposition is given for stopped processes. It can be seen as extension of classical Fr-
semimartingale decomposition for F-local martingales stopped at p up to the end of the
excursion.

Proposition 3.18. Let M be an F-local martingale M. Then, the process

5
M, — [ Zé d(X,m?)E — [" ﬂ{p<s}ﬁd<X7 m® — mP)§

is an FP-local martingale.

Proof. We use analogical arguments to [Jeu80, section V-3|. As each local martingale is
locally in H}, it is enough to consider M € H} (F). By Lemma 3.15, [Jeu80, Proposition
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(4,16) 2)] and [Jeu80, Théoréme (5,10)] we get that M.ns € HL, (F°) so M.ns € HL  (F?).
Let H be an Fr-predictable bounded process. Then Hljgs) = J L o + J*]l]]pﬂ, where
J~ and JT are F-predictable processes. F-predictability of J~ comes from [Jeu80, Lemme
(4,4) b)]. Since p is an F-honest time (Lemma 3.15 (b)), by [Jeu80, Proposition (5,3) a)],
J* can be chosen to be Fo-predictable. Next, using again [Jeu80, Lemme (4,4) b)], the
F-predictability of J+ follows.

By the same arguments as in the proof of [Jeu80, Théoréme (5,10)], based on properties of
dual optional projections, we get

E(H.M)s) =E (Lo~ « M)oo) +E (13,597 + M) o)
=E((J .M),)+E((J".M);) —E((J".M),)
:E(Aw@dmmwﬂ>+E<Aw@wmamﬂwﬂg>
:E(ApgiﬂMﬂMg>+E<Aa@f%zlﬂMmﬁ_m@®.
And the proof is completed. S

Remark 3.19. Let us remark that all results from this section stay valid if we replace
process Y7 defined in (3.6) by any F-optional process Y. We focused on Y to illustrate the

situation from previous section.

3.5 Construction from Jeanblanc-Song model

In this section, we present another technique to construct pseudo-stopping times which
is based on Jeanblanc-Song model. Authors in [JS11b| present solutions to the following
problem: construct random times on an extended space with a given supermartingale Z =
Ne I, where N is a continuous local martingale and I is a continuous increasing process.
In our case, it would be then enough to take N = 1. The solution is expressed through
increasing family of martingales {(M}*)¢> : u € [0, 00[} such that M* > M for t > u > v.
Namely, given an F-martingale Y and a Lipschitz function f with f(0) = 0, for each u the
following SDE is considered:

3.7
MY =1-eTu (3.)

{mw# = M{f(M{ = (1 —eT))dY, for t>u

These martingales are proved to take values in [0, 1].

Lemma 3.20. Let f(x) =z, Y = B be a Brownian motion and I'ac = 00. For M*" solution
of SDE (3.7) we have MY =0 or MY =1.
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Proof. As M™ is a bounded martingale, we have
oo 2
0o > E(MP — MY)? = E(/ MU(ME — (1 - e*Fs))st)
t
—B( [ PO - - e T)2ds)
t
— [ B - @ - e TR
t

This implies that lims oo E((M*)2(M* — (1 — e71%))?) = 0. From dominated convergence
theorem and positivity of (M%)?(MY — 1) we finally receive the assertion. [

Lemma 3.20 and M > My for t > u > v allow us to define the random time 7 in the
following way.

Let us take the cadlag version of the process (MY ),>0 and define a random time 7 as

7= inf{u : M¥% =1} (3.8)

Lemma 3.21. Let 7 be defined in (3.8). Then
(a) M3, = Tg,<yy and 7 is Foo-measurable;

(b) the supermartingale Z7 equals Z™ = e~ ' and T is an F-pseudo-stopping time.

Proof. (a) comes from monotonicity of the family {M*" : u} and Lemma 3.20.
(b) Using (a) and properties of the family {M" : u} we write that

ZT=E(1 - M |F)=1-M =e'

Thus, Z7 is decreasing and continuous and by Proposition 1.50 we conclude that 7 in a
pseudo-stopping time. ]



Chapter 4

On some classes of random times

4.1 Introduction

In this chapter we collect several results concerning different classes of random times. The
first subsection, based on a joint work with Monique Jeanblanc and Shiqi Song [AJS14], is
devoted to stability of pseudo-stopping time property with respect to equivalent change of
probability measure. Unlike to stopping time property which depends only on the filtration,
pseudo-stopping times are not in general invariant with respect to equivalent change of
probability measure. In the second section we study basic properties of honest times like
stability under maximum and minimum, and their intersection with initial times. Moreover
an example of last passage time which is not honest is presented. This example relies
on taking non-adapted barrier and is closely related to Brownian bridge construction. Last
section is dedicated to Cox’s construction where a hazard process is not necessary continuous.

4.2 Pseudo-stopping times and change of measure

In this section, we are concerned with change of measures. Hence, we shall make precise in
our notation the probability measure under which we are working.

Let (Q,G,F,P) be a filtered probability space where F is a filtration satisfying usual con-
ditions of completeness and right continuity. Let 7 be a random time with associated
P-supermartingale ZF. Denote by F7 a progressive enlargement of filtration F. Let Q
be an equivalent probability measure defined on G given by Radon-Nikodym derivative (,
i.e., ¢ is a G-measurable strictly positive random variable with Ep({) = 1. Define the Q-
supermartingale associated with 7 by Z@, namely Z2 := Q(r > t|;). In this section, we
look for ¢ such that 7 is a (Q, F)-pseudo-stopping time. Note that we do not assume that 7
is a (P, F)-pseudo-stopping time.

73
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Denote by ¢, ¢* and ¢? the processes related to the change of measure ¢ (a is for "after 7"
and b is for "before 7"):

Go=Ep(C|F), ¢ = EBp(ClraylFr), ¢ o= Bp(Cll(rsg| Fr)- (4.1)

Obviously, we have the following decomposition ¢ = (*+¢?. The Doob-Meyer decomposition
of the F-submartingale ¢ is of the form (* = N + B, where N is an F-martingale and B is
an F-predictable process of finite variation.

We start with analysing some specific situations. Lemma 3.7 implies that if 7 is an honest
time which is not a.s. equal to an F-stopping time on {7 < oo}, then there is no equivalent
probability measure QQ such that 7 is a Q-pseudo-stopping time. The next example concerns
hypothesis (H) and exhibits a change of measure which preserves the pseudo-stopping time
property of 7.

Example 4.1. Suppose that for a random time 7, the hypothesis (H) is satisfied for F C F”
under P. In particular, 7 is a P-pseudo-stopping time. Consider an equivalent probability
measure Q such that % = ( is Foo-measurable. Then, for any bounded (Q,F)-martingale

M, we have
Eq(M;) = Ep(M;Ep(¢|F])) = Ep(¢- M;) = Ep(CoMo) = Eq(Mo).

The second equality comes from immersion, i.e., the process ((;)¢>0 defined in (4.1) is F"-
martingale and the fact that ¢ is an Fo.-measurable random variable, which altogether imply
that Ep(¢|F:) = Ep(¢|Fy). The third equality is due to the martingale property of ((M):
under P and hypothesis (H). We conclude that 7 is a Q-pseudo-stopping time.

The following example deals with the case of an initial time 7 (see Definition 1.52).

Example 4.2. Let 7 be an initial time satisfying the equivalence Jacod’s hypothesis with
density process ((¢¥)i>0,u € RT) with respect to its law 7. Let Q be given by %b:tvg(ﬂ =

q%. Then, for any bounded Q-martingale M we have
t

Eo(Mqn) = Ep (J‘f]) —E ( I Mwmdu)) = | Be (Mup) () = Eq(M),

t

where the second equality comes from (1.7) and the last equality from Q|r, = P|z, (see
Theorem 1.36). Thus 7 is a Q-pseudo-stopping time.

In the following last particular case we focus on some changes of measure breaking the
pseudo-stopping time property.

Example 4.3. Let 7 be a finite P-pseudo-stopping time. Suppose that Fy is trivial and
consider a non trivial change of probability ¢ such that Ep(¢|F]) = 1 and ¢, is not identically
equal to 1 with process ((;); defined in (4.1). Additionally suppose that ¢ is bounded from
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below by a strictly positive constant. For the (Q,F)-bounded martingale (M;)i>0 = (¢ )iso0
we have

Eq(M,) = Ep(CM,) = Ep(M,) = Ep <<1) > IEPECT) — 1= Eg(Mp)
1

where the inequality comes from Jensen’s inequality with the convex function ¢ on x > 0,
and the last equality comes from the P-pseudo-stopping time property of 7. That proves

that 7 is not a Q-pseudo-stopping time.

In the next proposition we investigate how the dual optional projection of the process
A := 1[; o[ changes under equivalent change of probability measure. We focus our attention
on dual optional projection in view of Proposition 1.50 (d).

Proposition 4.4. Denote by AT the P-dual optional projection of the process A. Let Q be
an equivalent measure on G given by Ccllp = ¢ and ¢ = Ep(C|Fy). Then, the Q-dual predictable
projection of A under Q equals Af’ fot L dAOP, where k is the F-optional process such
that k; = Ep((|F7).

In particular, if T is a P-pseudo-stopping time and (; = Ep((|F;) then T is a Q-pseudo-

stopping time.

Proof. For any F-optional process H, we have

]EQ(HTI]-{T<OO}) = EP(CHTI[{T<OO}) = EP(HTEP(C|‘FT)]]‘{T<OO})'

By Proposition 1.3 (b) there exists an F-optional process k such that k; = Ep({|F;) and we
get

Ep (Hr krllrcooy) = E]p( Hyky dAZ’P> = Ep (g / H, ]szo]P>
[0,00] [0,00[ w

=Eg (/ H, deO“”)
[0,00[ Cu

Above computations show that A?’Q = f[o " ]Z“ dA%Y. The particular case follows from

Proposition 1.50 (d). [

Let us remark that the condition of the form (; = Ep((|F;) was studied in the literature.
We refer the reader for example to [NY05]. Authors therein give also an example when that
condition is not satisfied.

In the remaining part of this section we work under assumptions (C) and (A) (see Definition
1.37). Note that under (A) the dual optional projection A%F and the dual predictable
projection APF are equal. Let us introduce two additional assumptions which will be used
in the upcoming part of this section.

Assumption 4.5.

Assumption (P) is satisfied if Z; €]0, 1] for all ¢ €]0, oo].

Assumption (I) is satisfied if the process APF is increasing at 0, i.e., for each & > 0, we have
APE > 0.
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In order to prove Proposition 4.8 we give some preliminary results in the two following
lemmas.

Lemma 4.6. The following statements hold.

(a) Assume (P). Then for any t €]0,00[, (¢ > 0 and ¢ > 0.

(b) Assume (1) and ¢ > ¢ > 0. Then the F-dual predictable projection of (1|, [ is increasing
at 0.

(c) Assume (C) and (A). Then the processes (, N, B, APY Z (%, ¢* and ZQ are continuous.

Proof. (a) Let T be a stopping time and introduce F' = {(}. = 0, T' €]0, oo[}. Since F' € Fr
we have

0= 1rEp(CL;<)|Fr) = Ep(CL(7<1)LF|Fr),
which, combined with the strict positivity of ( gives
0 =Ep(l(r<m)lp|Fr) = UpP(r < T|Fr).

Therefore, 1 — Zp vanishes on the set F', i.e., for the F-stopping time T (using the convention
(1.1)), 1 — Zp, = 0 on the set {Tr < oo}. Assumption (P) implies P(F') = 0. From the
Section theorem 1.10 we get P(V¢ €]0,00[ ¢ > 0) = 1. More precisely, let C' = {(w, ) :
(M (w) = 0} and assume P(w(C)) > 0. Then, there exists a stopping time T such that
[T] € C and P(n([T])) > 0. Therefore,

0 < P(r([T])) = P(¢% = 0,T < oc) = P(F) = 0.

This contradiction leads to the conclusion that P(7(C)) = 0. The proof for ¢® follows by
the same argumentation.

(b) Let H be a bounded F-predictable process. Then, denoting by V' the F-dual predictable
projection of (1, [, we have

EIF’ ( 0 [Ht th> = EP(CHT) = EP(HTEP(CLF’T—))

From Lemma 1.3, there exists an F-predictable process k such that k, = Ep({|F,—) and

k > ¢, thus
Ep ( H, d%) — Fp ( / k, H, dAf’]P> ,
[0,00[ [0,00]

where APF is the dual predictable projection of llj, oof. So, V; = f[o g ks dAPY. Assumption
(I) and k£ > ¢ imply the assertion. [

Lemma 4.7. Assume (C) and (A). Then, the random time 7 is a Q-pseudo-stopping time

if and only if % = A%Q = APQ js g finite variation process.

Proof. The process Z2 can be expressed in terms of the processes ¢ and ¢, as

Ep(CUr<plFt) e

Q_q_ —
7= T RR) &
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Assumptions (C) and (A) are valid under Q and Proposition 1.50 implies that 7 is a Q-
pseudo-stopping time if and only if ZQ is a decreasing process. Since Z@ is a supermartingale,
we conclude that 7 is a Q-pseudo-stopping time if and only if % is a finite variation process
[

The next proposition describes the Q-pseudo-stopping time property in terms of the process
¢” defined in (4.1).

Proposition 4.8. Let assumptions (C), (A), (P) and (I) be satisfied. Assume that( > ¢ >0
and E((?) < co. Then, the following two conditions are equivalent:

(a) the random time T is a Q-pseudo-stopping time;

(b) the process (% satisfies

u

(i) B(J5° ghpd(c)) < oe,

(ii) E(C% . N) is a (P, F)-uniformly integrable martingale,
(i) Co = E(Z + N)ao.

Proof. (a) = (b) Lemma (4.7) gives us that % has finite variation, hence %b has finite

variation as well. Then, It6’s formula applied to %b leads to

oo [Sacs [ S+ [ Lack i
“ ([ g [[Go) s ([ Guons @ [Gom),

The martingale part of %b must vanish, i.e.,

¢

La ¢(—N >Ld¢
g N gt
Since assumption (P) and Lemma 4.6 imply that ¢¢ > 0 for any ¢ €]0, col, it is equivalent to
Gt d _
S d(¢ = N)i = dG. (4.2)

Using properties of the stochastic exponential, we can obtain another equivalent condition.
Indeed, if the previous equality C%d(g — N) = d¢ holds, then

1 tq
o= (fc )~ [ o)

where the second equality comes from Yor’s exponential formula. So that §; = fe”t where
vy 1= f dB Since ¢ = ¢ + (2, this is equivalent to

(A-e)=cn
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Now, we transform the last condition into
_ 1
G =at-e)=¢ (5
Taking the logarithm of both sides for ¢ > 0, we get

In¢ =In€& <Cb (¢ — N)) +1In(1 —e™ ™).
t

The left-hand side, for each £ > 0, can be written as

t
1
In¢! =In¢®+ / —dN, +/ ——dBy / QL (G
and the right-hand side as

L —e ) = tl - L[ b n(l—e ™
1n<(@<< N»)+mu )= [ e =3 [ e+ ma- e

As martingale parts of both sides are equal, for each ¢ > ¢ > 0, we obtain that

J/ = J/ o

From the last integral equality, we conclude that
(i) the stochastic integral [ C%dNu exists as

([ ) -5( [ o = (0r) <

where the last inequality comes from the fact that E(¢%) < E(¢?) < oo and we apply [RY99,
Corollary (1.25) Chapter IV].
1
G=¢(Gen) .
t ca t

(ii) since
we have that E(C% . N) is uniformly integrable (P, F)-martingale.

(iii) moreover,
00 oo — =& a "
G =¢ <C >

(b) = (a) We will show that S~ has finite variation and conclude that 7 is a Q-pseudo-
stopping time from Lemma ( 6 We have

&= Gag o [Tt o [ an

where the last equality comes from the fact that £ (C—a . N) and ¢ are uniformly integrable

(M) e

t

and finally from (4.2) that

P-martingales with the same terminal values (¢ = (. We see that % is an increasing
process, so 7 is a Q-pseudo-stopping time. ]

We would like to note that the stability of pseudo-stopping time property under equivalent
change of measure was also studied in [Krel3, Krel4|.



4.3. LAST PASSAGE TIMES 79
4.3 Last passage times

This section consists of several problems connected to honest times. In Section 4.3.1 we
study stability of honest times under maximum and minimum. In Section 4.3.2 we look at
the intersection of the sets of honest and initial times. Finally in Section 4.3.3 we consider
a particular last passage time which is not honest.

4.3.1 Maximum and minimum of honest times

In Lemma 4.9 we show that maximum of two honest times is honest. In Lemma 4.10 we
claim that for every honest time there exists a stopping time such that honest time property
is broken for the minimum of the two. This asymmetry comes from characterization of
honest time as last passage time, or, in other words, as the end of an optional set, which
corresponds to taking the maximal element satisfying certain condition.

Lemma 4.9. Let 7 and T be two honest times. Then 7V T is an honest time.

Proof. First proof. As 7 and 7 are honest, for every ¢ > 0, there exist two random variables
7+ and 73 which are F; measurable and satisfy

Thiray = Ttl(r<yy  and Tl = Tl <.
Then, we have
(TVv 77)]1{7\/‘?<t} =(TV 77)]1{7<t,?<t} =(n V 7~'t>]1{r<t,‘?<t} = (Vv 7~'t)]1{r\/?<zt}7

which proves that it is in fact an honest time.

Second proof. Here, we give an alternative proof. From [Jeu80, Proposition 5.1 | we know
that 7 (respectively 7) is an honest time if and only if 7 (respectively 7) is the end of an
optionnal set T' (respectively I') on the set {7 < oo} (respectively {7 < co}). Then we can
express the supremum 7V 7 as the end of the optional set T' U T on the set

{TVT <o} ={r <00} N{T < o0}.

(T VT rvrco) = Thirvicooy V T rvzcoo)
= (sup{t : (1) € T} {rurcoy) V (sup{t: (@,1) € THL(rvrcncy)
= (sup{t: (w,t) € T} Vsup{t: (w,1) € T}) Tjpvrco)
= sup{t: (w,t) € PUT}H {700y

It is easy to see that the result can be obtained for countable set of honest times (77)77,

i.e., sup, 7" is an honest time with associated optional set (J,, I'", where for each n, Iy is
an optional set associated to 7.

Lemma 4.10. Let 7 be an honest time which is not a stopping time. There exists a stopping

time T such that TN\ T 4s not an honest time.
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Proof. Let us assume that for all stopping times 71" the random time ¢ := 7 AT is an honest
time. Then, 7° = ﬂ[[O’T]]ZT and by Proposition 1.45, ¢ is an honest time if and only if
Z7 =1 on {o < 00}. On the set {r < T}N{r < oo}, 0 = 7 = sup{t : Z¢ = 1} thus the
honest time condition is satisfied. On the set {T' < 7} N{T < oo}, 0 = T and the honest
time condition is satisfied if and only if Z} = 1. Thus we get that for each stopping time
T, Z7 =1 on {T <7} N{T < oo}, and by Section theorem 1.10 we obtain that Z7 =1 on
{t < 7}. The last property implies that {Z7 = 1} = {7 > ¢} thus {r < t} € F; for each t
and we get a contradiction with the assumption that 7 is not a stopping time. ]

4.3.2 Honest — initial times

The next lemma gives a characterization of honest times satisfying Jacod’s hypothesis. This
class of honest times is limited to honest times taking countably many values.

Lemma 4.11. Let 7 be an honest time. Then T satisfies Jacod’s hypothesis if and only if T

takes countably many values.

Proof. If T takes countably many values then Jacod’s hypothesis is satisfied (Example 1.35).
For any bounded Borel function f

E(f(m)F) = E(f(7)Lr<t) | F2) + E(f(T)Liropy| )
— -z B ([ ez
t
In particular, for f(s) = lyssy), We get
P(r > u|Fy) = Lirnuy (1= Zy) + B (AZ, — ALl Fe)

- / (1 — Z1)6,,(ds) + E (A% — ALl F).

Assume that n the law of 7 is not purely atomic. Denote by D the set of atoms of 17 and take
t such that 1([0,¢[\D) > 0. Then, the first term of conditional law 0, 1y = 6114y is
not absolutely continuous with respect to n P-a.s. as it is enough to take set {7 € [0,¢[\D}
which has positive probability. ]

4.3.3 Non honest last passage time

We study the enlargement of filtration formula for a particular case of last passage time
which is not an honest time. Let W be a Brownian motion and F its natural filtration.
Define the random time 7 as

T:=sup{t <1:W; —2W, = 0}. (4.3)

The aim is to study the hypothesis (H') and the semimartingale decomposition of F-
martingales in progressively enlarged filtration with time 7 given in (4.3). We consider
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three enlarged filtrations FCW BT and FCW17 defined as

]_-tU(W1) — m (-7'—3 v U(W1)) (4~4)
s>t
F =) (FeVo(rrs))
J—_-to'(Wl),T — ﬂ (FsVa(Wh) Vo(rAs))

Both filtrations FCW1) and F7 are subfiltrations of FCW1):™ but we cannot order FFW1) and
F7. Let us note that 7 is not an F-honest time so we cannot apply standard decomposition
formula for honest times. The random time 7 is neither an FU(WI)—stopping time, but it is
an FeW1)_honest time.

Lemma 4.12. (a) After 7, the filtration F°W1) is o subfiltration of the filtration F7, i.e
for all t and for all F € fg(Wl) we have FN{t> 71} € FJ.

(b) After T, the filtration FCWDT coincides with filtration F7, i.e., for all t and for all
Fe ff(Wl)’T we have FN{t > 1} € F].

Proof. (a) Take F from the generator of ]-"ta(Wl). If F € F;, then the assertion is clear. If
F={W; <a}, then FN{t> 71} ={2W,; <a}n{r <t} and 2W,; <a}N{r <t} € F}
as 7 is an F7-stopping time.

Note that the opposite inclusion F™ C F7W1) is not true as {7 < t} ¢ ]:f(wl). For a general
set I’ we conclude from Monotone Class Theorem 1.1.

(b) We use the same argument as in (a). [

Relying on [JY79, Theorem 3] we provide the following result.

Theorem 4.13. Let X be an F-local martingale with representation X, = Xo + fot psdWs
for an F-predictable process ¢ such that fo ©2ds < oo. Then, the following conditions are
equivalent:

(a) X is an F7-semimartingale;

(b) fol |os] \W1:ZVS\dS < 00 P-a.s.;

(c)fl |% ~ds < 00 P-a.s.

Moreover, if those conditions are satisfied, the F™-semimartingale decomposition of X, for

t <1, is given by

Xi= Xo+ f gode \[fmr 25/2 exp{ 2(11[/25) } sgn(Wy)ds

(4.5)
L T t 1 0%
=+ j; Ps i—s ds — fT Ps 1—eXp{ 2Ws Wy — } 1 15d8

2(1—s)




82 CHAPTER 4. ON SOME CLASSES OF RANDOM TIMES

where W is an FT-Brownian motion and

2 (Y
Zy=1—h <\/|‘1/V;—|t> with  h(y) = \/;/0 22 e "2y,

Proof. 1) By [JY79, Theorem 3], W is an F(W1)_semimartingale with decomposition given
by

—~ LW — Wy
Wy =W + 17d$,
0 1-—s

where W is a F°"1)_Brownian motion. s
2) Since 7 is an FCW1)_honest time, (H') is satisfied between FCW1) and FeWO.T and W
decomposes as

__ _ tAT 1 v S pe(w) t
Wt = Wt + 7Y d(m 7W>s -
0 5— T

Fe(W1)
s 9

v o~
17Y87d<m W)

where W is a F*(W1)7_Brownian motion and Y; := P(t > t|Ff(W1)), mY is the martingale

< >]F(7(W1)
)

part from optional decomposition of Y and means that the bracket is computed

in FeW),
3) Two previous points ensured that W is an FeW1)7_semimartingale with decomposition
given by

B t W, — Wg tAT 1 — t
W, =W+ [ ——2ds +/ —d(mY WY —/
o l-—s 0o Ys- T

d(mY , WHET"Y.

1-Y,_

4) By Stricker’s Theorem 1.28, W is an F7-semimartingale. Before 7, we have the standard
decomposition for random time (see Proposition (1.39)). After 7, by Lemma 4.12 (b), we
have the same decomposition as in FZ(W1).7.

P tAT
Wy =W, -I-/
0

1 CWy — Wy b —~ o
d<m,W>{§+/ l_sds—/ ———d(m” W] e

where W is an F7-Brownian motion.

By [JYCO09, Proposition 4.3.5.3.] we have

a(W- W2 —2W; W1
Y, =P(r > |77 ") = Low, <, w0y + €xp {12(1_;)} Liowi>wi>0)

W2 — 2W,W;
+ Liow,>w,,w, <o} + €xp oot L eow, <wy <o}-

2 —~
Note that after 7, Y; = exp {W} Since W is continuous, for ¢t > 7, we have

Tx\ Jfo —~ o 2 _ 2 .
d(m W)™ = aty, W)™ = dlexp {W} Y

u? — 2uW
— d(exp {2(1—t)} ,W>f|u:W1,
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then, by It6’s lemma

441

i\ Fe(W1)

dt.

Summing up

t 1 — ) t 1 Wy
d(m* W)t 1:/ ds.
/Tl}/s <m7 >s 7—1—}/8_11*58

The supermartingale Z is given in [JYC09, page 302]. Then, we compute (m, W)F as follows

o, wf = —atn (P ) wf = i (L Y agw, w;

That ends the proof of the decomposition formula (4.5) for Brownian motion W.

For a general F-local martingale X = Xo+ ¢.W, we deduce equivalence between conditions
(a), (b) and (c) from [JY79, Theorem 3] and the fact that 7 < 1 a.s. since the integrability
problem appears close to 1. (For ¢t < 1, the random variable W7 satisfies Jacod’s hypothesis.)
[

We want to remark here that above decomposition can be obtained (and is obtained) using
methodology presented in [Son13].
Theorem 4.13 shows that the hypothesis (H') is not satisfied for the studied enlargement.

In the remaining part of this section, we study second example of last passage time which
is not honest. Instead of Brownian motion we use geometric Brownian motion to define it.
Let S be defined through dS; = 0.5:dWs, Sp = 1, where W is a Brownian motion and o a
constant. Let

™ i=sup{t<1: 8 —2S; =0} (4.6)

with sup{(l} = oo, that is the last time before 1 at which the geometric Brownian motion is
equal to half of its terminal value at time 1. Define filtration F™ asa progressive enlargement

of F with random time 79, i.e.,

.7-73 = ﬂ (Fs Vo(rd As)).

s>t

Lemma 4.14. (a) The random time 7°

is an F-pseudo-stopping time and the process S7 is
a FTS—martmgale,

(b) The process S is a FT" -semimartingale.

Proof. (a) Note that

{ngt}:{ inf 255251}:{ inf 255>51}

t<s<1 t<s<t Sy — S



84 CHAPTER 4. ON SOME CLASSES OF RANDOM TIMES

Since 2=, s >t and 2t are independent from F;
St ’ St 9

t<s<1 Sy S t<s<1
where ®(u) = P(infs<, 2S5 > S,,). It follows that the supermartingale Z; := P(7° > t|F;)
is a deterministic decreasing function, hence, by Proposition 1.50, 7 is a pseudo-stopping
time and S7 is a F"-martingale.
(b) Let us consider the initial enlargement of F with 1/, namely the filtration F7(W1) defined
in (4.4). By [JY79, Theorem 3|, S is a F°("W1)_semimartingale as

1 2
1
/ exp {UWS — Js} ds < oo.
0 2 1-—s

The random time 7° in an F°W1)_honest time as

1 1
= sup{t <1: W+ —In2+ 50(1 —t)=Wi}.
o
Thus, denoting by Ff(Wl)’TS = Nyoy Fs Vo(Wi) Va(r5As), S is Fo(W1)7°_semimartingale
(follows from (1.15)). Finally, by Stricker’s theorem, as F™> c Fe0V)™ and § is F™°-
adapted, we conclude that S is a IFTS—semimartingale. [

4.4 Cox’s times

In this section, we are interested in a standard construction of a random time in credit risk
modelling, namely Cox’s construction. For a cadlag increasing F-adapted process I', we

define a Cox’s time as
7:=inf{t: I} > O}

where © is a random variable independent from F., which has exponential law with param-
eter 1. The process I' is called the hazard process of 7. We denote by F7 the progressive
enlargement of F with random time 7. Since {7 >t} ={© >} and {r >t} = {0 > T,_}
the supermartingales associated with 7 can be written as

Zy=e¢ T and Zy=e Tt (4.7)

Note that in this case Z = Z_.

We focus our attention on the F"-compensator of the default process Ay = <4y, i.e., the
increasing F7-predictable process A such that A — A is an F™-martingale. The compensator
A is characterized in Proposition 3.1.5 in [BJR09| which says that the process M given by
the formula

tAT 1

0o Zs—
is a F7-martingale. Thus, Ay = g/\T idA‘? . Moreover, if A is absolutely continuous with
respect to Lebesgue’s measure, it can be expressed as Ay = JAT Asds. Then, the process A

is called the intensity of the default time 7.
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Let us remark that if we assume that the hazard process I' is continuous then A} = 1—e~ 1t =

1+ fot e Tsdl'y and Ay = —T'4p-. In the case of discontinuous T, this is no longer valid, see
Section 4.4.3.

We would like to recall that compensators were studied for example in the papers [GZ08,
JMP11].

4.4.1 Stability over supremum and infimum

Proposition 4.15. If 7 and m are constructed as in the Cox model such that the associated
random couple (©1,©2) is jointly independent from Fuo. Then 7 ATy and 71V T satisfy the

immersion property.

Proof. We use the characterization of hypothesis (H) in a progressive enlargement of filtra-
tion setting given in Proposition 1.40. As 7; for ¢ = 1,2 are Cox times we can express them
as

m =inf{t: T} >0'Y and m=inf{t:T? > 6%

where I for ¢ = 1,2 are increasing, cadlag, F-adapted processes and © for i = 1,2 are two
exponentially distributed random variables with mean 1, and jointly independent from F.
For the infimum we obtain

P(Tl N To > t|]:oo) = P(Tl > 1,79 > t|~7'—oo) = P(@l > Ftl,@g > FtQ|]'-oo),
P(1i ATy > t|F) =P(1r1 > t,m > t|F;) = P(©; > T}, 0, >T32|F).

Then, as ©; for i = 1,2 are independent from F,, (so from F; as well) and I'; for i = 1,2
are Fi-measurable (so F-measurable as well), we get that

P(11 AT > t|Fao) = P(m1 Ao > t|F;) = (T}, T%)
where ¢ (z,y) = P(©1 > x,02 > y). In a similar way, we obtain
P(r V72 < t|Fso) = P(11 V1o < t|F) = (T}, T2)

where @Z(x, y) =P(01 < 2,09 < y). Thus the supremum and infimum of Cox’s times fulfil
the immersion property. ]

4.4.2 Dual optional projection and general hazard process

Lemma 4.16. (a) The F-dual optional projection of A equals A° =1 — e,
(b) An exhausting sequence for a thin part of T coincides with exhausting sequence of the

Jumps of T.

Proof. (a) This is a direct application of (2.4) and (4.7).
(b) is a consequence of (a) and Lemma 2.8. [
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Lemma 4.17. Let Y be a bounded F-optional process. Then for any t <T < oo

T
E(Y:L<r<ry|FY) = H{T>t}€FtE< —/ Ygde_rs|]-}>.
t

Proof. In the first step, we use the Lemma 1.38
E(Y:lyerery | F) = ]l{T>t}6FtE(YTIl{t<T§T}“Ft)'
Now it is enough to show that for each set B € F; we have
T
E(Y,1jerepylp) = IE( - 113/ ste*Fs).
t

This follows from the property of the dual optional projection of the process Yl rjllp. =

4.4.3 Examples of pure jump process as hazard process

4.4.3.1 Compound Poisson process example

Let us take a compound Poisson process X with intensity 1 and jump size distribution F'
(with no atoms at 0 and with support in R") as hazard process I'. Equivalently X; =
Zf:[;l Y,, where N is a Poisson process with intensity n and Y,, are i.i.d. random variables
with distribution F' independent from N. Let 6,, denote the time of the n-th jump of N with
0o = 0. We also consider v a positive finite measure on R such that v(dy) = nF(dy) and u

a measure on (R, B(R)) such that u(dt,dy) = > 77, 0, v, (dt,dy). Then, the Doob-Meyer
decomposition of the supermartingale Z is given by

t
e Xt =1 —I—/O /R(e_(X“er) — e %) (n(du, dy) — duv(dy))
t
—I-/ /(6_(X”+y) — e ) (dy)du.
0 JR
Then, by (4.8), the compensator of [, [ can be computed as

tAT
Ay :/ eXu- /(e_X“‘ — e~ Xu=tV))y (dy)du
0

R
_ /OMT/R(I — e V)u(dy)du

and the intensity equals to A = [, (1—e ¥)v(dy). In the case of Poisson process the intensity
equals A = n(1 —e 1),

4.4.3.2 Marked point process example

Let ® = ((0,,Yn))n be a marked point process (MPP), i.e.,
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1. (6,)n is a sequence of stopping times satisfying 0 < 6,, < 0,41,
2. Y, are random variables, linked with the stopping times 6,with values in R, called

marks.

We associate a pure jump process X to MPP & such that X; = >, 9, <t Yn- Moreover
we define the counting measure p of the MPP & which is a random measure on Ry x R

such that p(dt,dy) = > .02 0p,.v,(dt,dy) (i.e. p(dt,dy) = > o7 0p, Ax,(dt,dy)). The
notion of integral process with respect to random measure p will be important for further
consideration. In regards to that, let us first consider functions H on 2 x R4 x R which
are measurable with respect to the o-field O ® B(R). A function H is predictable if it is
measurable with respect to the o-field P ® B(R).

We recall two definitions [Pri03, Definition 1.1.39] and [Pri03, Definition 1.1.40].

Definition 4.18. The integral process denoted by H % u is given by

= [ [ Hopntn ),

if f(f Jg [H (u,y)|p(du, dy) is finite and is equal to oo otherwise.

Definition 4.19. The compensator of a random measure g is the unique random measure
v such that

(a) v is a predictable random measure, i.e., H * v is predictable for each predictable

function H,

(b) u — v is a local martingale measure, i.e. for every predictable function H such that
|H| % p is increasing and locally integrable, the process (H  u — H * v) is a local

martingale.

Now it is possible to compute the Doob-Meyer decomposition of the supermartingale Z =
e~X. We have

t
X =1 [ (e X udu,dy) vl dy)
0 JR

t
—|—/ /(e_(X“+y) — e X u(du, dy).
0 JR

Then, the compensator of 1, [ is equal to
tAT
Ay :/ eXu= /(e_X“ — e~ Xu=t0Yy (du, dy)
0

R
:/OMT/R(l—e_y)y(du,dy).

The intensity exists if and only if the compensator measure v is absolutely continuous in the
first parameter with respect to Lebesgue measure, i.e., v(dt,dy) = v(t,dy)dt. In this case
intensity is equal to A\; = [o(1 — e ¥)D(t, dy).
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Arbitrages in enlarged markets
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Chapter 5

Arbitrages in a progressive

enlargement setting

5.1 Introduction

This chapter is based on a joint paper with Tahir Choulli, Jun Deng and Monique Jeanblanc
[ACDJ14a].

We study a financial market in which some assets, with prices adapted with respect to a
reference filtration F, are traded. One then assumes that an agent has some extra infor-
mation, and may use strategies that are predictable with respect to a larger filtration F7.
This extra information is modeled by the knowledge of some random time 7, when this time
occurs. We restrict our study to progressive enlargement of filtration setting, and we pay a
particular attention to honest times. Our goal is to detect if the knowledge of 7 allows for
some arbitrage, i.e., if using F7-predictable strategies, the agent can make profit.

In this chapter we consider two main notions of no-arbitrage, namely no classical arbitrage
and No Unbounded Profit with Bounded Risk. To the best of our knowledge, there are no
references for the case of classical arbitrages in a general setting. The goal of the present
chapter is firstly to introduce the problem, to solve it in some specific cases and to give some
explicit examples of classical arbitrages (with a proof different from the one in [FJS12]), and
secondly to give, in some specific models, an easy proof of NUPBR condition.

In the case of honest times avoiding stopping times in a continuous filtration, the same prob-
lem was studied in [FJS12] where the authors have investigated several kinds of arbitrages.
We refer the reader to that paper for an extensive list of related results in the literature.

This chapter is organized as follows: Section 2 presents the problem and recalls some defini-
tions and results on arbitrages. In Section 3, we study two classical situations in enlargement
of filtration theory, namely immersion and positive density hypothesis cases. Section 4 con-
cerns honest times, and we show that, in case of a complete market, there exist classical
arbitrages before and after the honest time, and we give a way to construct these arbitrages.
This fact is illustrated by many examples, where we exhibit these arbitrages in a closed form.
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In Section 5, we study some examples of non-honest times. In Section 5.6, we study NUPBR
condition before a random time and after an honest time, in some specific examples. The
general study will be done in Chapter 6 and Chapter 7.

5.2 General framework

We consider a filtered probability space (2, G,F,P) where the filtration [ satisfies the usual
hypotheses and Fo, C G, and a random time 7. We assume that the financial market where
a risky asset with price S (an F-adapted positive process) and a riskless asset S° (assumed,
for simplicity, to have a constant price so that the risk-free interest rate is null) are traded is
arbitrage free. More precisely, without loss of generality we assume that S is a (P, F)-(local)
martingale. In this paper, the horizon is equal to co. We denote by F” the progressively
enlarged filtration of F by 7, i.e., FT = (F] )¢>0 with

Fo=()(FsVa(rhs)).

s>t

As in Section 1.2.3, we associate to 7 two F-supermartingales by
Zy:=P(r > t|F) and Z, :=P(r > t|F).

Let us denote by A° the F-dual optional projection of A := 1. and define the F-
martingale

me = Zt + Ag (51)

We start by an elementary remark: assume that there are no arbitrages using F”-predictable
strategies and that P is the unique probability measure making S an F-martingale. So, in
particular, the (S, F) market is complete (i.e., the market where (S, S%) are traded). Then,
roughly speaking, S would be a (Q,F7)-martingale for some equivalent martingale measure
Q, hence would be also a (Q,F)-martingale’ and Q will coincide with P on F. This implies
that any (Q,F)-martingale is a (Q, F7)-martingale.

Another trivial remark is that, in the particular case where 7 is an F-stopping time, the en-
larged filtration and the reference filtration are the same. Therefore, no-arbitrage conditions
hold before and after .

5.2.1 Illustrative examples

We study here two basic examples, in order to show in a first step how arbitrages can
occur in a Brownian filtration, and in a second step that discontinuous models present some
difficulties.

'Note that if S is a (Q,F7)-strict local martingale for some equivalent martingale measure Q, one can

not deduce that it is also a (Q, F)-local martingale.
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5.2.1.1 Brownian case

Let dS; = SiodW,, where W is a Brownian motion and ¢ a constant, be the price of the
risky asset. This martingale S goes to 0 a.s. when ¢ goes to infinity, hence the random time
T :=sup{t : S; = S*} where S* = sup,~( Ss is a finite honest time, and obviously leads to
an arbitrage before 7: at time 0, buy one share of S (at price Sp), borrow Sy, then, at time
7, reimburse the loan Sy and sell the share of the asset at price S;. The gain is S; — Sy > 0
with an initial wealth null. There are also arbitrages after 7: at time 7, take a short position
on S, i.e., hold a self financing portfolio with value V' such that dV; = —dS;, V; = 0. Usually
shortselling positions are not admissible, since V; = —5; 4+ S; is not bounded below. Here
—S; + S, is positive, hence shortselling is an arbitrage opportunity.

5.2.1.2 DPoisson case

Let N be a Poisson process with intensity n and M be its compensated martingale. We
define the price process S as dSy = Si_ydM;, Sy = 1 with @ is a constant satisfying ¢ > —1
and v # 0, so that

St = exp(=AYt + In(1 4+ ) Ny) .

Since % goes to A a.s. when ¢ goes to infinity and In(1+ ) — ¢ < 0, S; goes to 0 a.s. when
t goes to infinity. The random time

T:=sup{t : Sy = 95"}
with S* = sup,>( S5 is a finite honest time.

If » > 0, then S; > Sy and an arbitrage opportunity is realized at time 7, with a long
position in the stock. If ¢ < 0, then the arbitrage is not so obvious. We shall discuss that
with more details in Section 5.4.2.

There are arbitrages after 7, selling at time 7 a contingent claim with payoff 1, paid at the
first time ¢ after 7 when S; > sup,<, Ss. For ¢ > 0, it reduces to S; = sup,<, Ss, and, for
1 < 0, one has S;_ = sup <, Ss. At time to = 7, the non informed buyer will agree to pay
a positive price, the informed seller knows that the exercise will be never done.

5.3 Some particular cases

5.3.1 Immersion assumption, equivalence Jacod’s hypothesis

Firstly we look at the case where the filtration F is immersed in F” (see Definition 1.27).

Lemma 5.1. If the immersion property is satisfied under a probability Q on F™, such that
S is a (Q,F)-martingale, all the three concepts of NFLVR, NA and NUPBR hold.

Proof. Let S be a (Q,F)-local martingale, then it is a (Q,F7)-local martingale as well. m

The second case considered in this section corresponds to a random time 7 satisfying equiv-
alence Jacod’s hypothesis (see Definition 1.31 (b)).
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Lemma 5.2. If S is a (P,F)-martingale and if the random time T satisfies the equivalence
Jacod’s hypothesis then NFLVR, NA and NUPBR hold for FT.

Proof. By Theorem 1.36, there exists an equivalent measure P* under which the immersion
is satisfied. It is now obvious that, if S is a (P, F)-martingale, NFLVR holds in the enlarged
filtration FV o(7), hence in F”. Indeed, the (P, F)-martingale S is - using the independence
property - a (P*,FV o(7))-martingale, so that S, being F7-adapted, is a (P*,F”)-martingale
and P* is an equivalent martingale measure. If S is only a (P,F)-local martingale, then
one proceeds as follows. Let {7}, },en be an F-localizing sequence for S, meaning that S7»
is a (P,F)-martingale, for every n € N. Then, repeating previous resoning, it holds that
STn is a (P*,F7)-martingale. Thus S is a (P*,F7)-local martingale and P* is an equivalent
martingale measure. ]

5.4 Classical arbitrages for a class of honest times

We start with the following obvious (but useful) result. Note that it is valid for any random
time, not necessary an honest time.

Lemma 5.3. Assume that the financial market (S, ) is complete and let ¢ be a F-predictable
process satisfying m = 14 .S, where m is defined in (5.1). If m; > 1 and P(m,; > 1) >0,
then, the F7-predictable process ¢lg 1] 15 a classical arbitrage strategy in the market "before

7" e, in (ST,F7).

Proof. The F-predictable process ¢ exists due to the market completeness. Hence Lo ¢
is an F7-predictable admissible self-financing strategy with initial value 1 and final value
m, — 1 satisfying m,; — 1 > 0 a.s. and P(m, —1 > 0) > 0, so it is a classical arbitrage
strategy in (S7,F7). n

Herein, we generalize the results obtained in [FJS12| — which are established for honest times
avoiding F-stopping times in a complete market with continuous filtration — to any complete
market and to a much broader class of honest times that will be defined below. Throughout
this section, we denote by T the set of all F-stopping times, 7T; the subset of all F-honest
times, and R the set of random times given by

R = {7’ random time ‘ dI' € Gand T € T, such that 7 =T + oo]lpc}. (5.2)

Note also the connection between the class R and Lemma 3.7. R consists precisely of
random times which are honest times and pseudo-stopping times.

Proposition 5.4. The following inclusions hold

Ts CR CTh.

Proof. The first inclusion is clear. For the inclusion R C T, we give, for ease of the reader
two different proofs. Let us take 7 € R, i.e., 7 = Tllp + collpe for T an F-stopping time and
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regd.

1) On{r <t} ={T <t} NT, we have 1 =T At and T At is F;-measurable. Thus, 7 is an
honest time. N

2) By Theorem 1.43 (c) it is enough to show that on {7 < oo}, Z; = 1. Indeed,

Z = LirsyP(T|F) + P(T°|F),
so that

LcoyZr = UrlirenyZr = Irlireay (Lirsmy P(D|Fr) + P(T°|Fr))
= Irllres) = Lircoo)-

This proves that 7 is an honest time. ]

The following theorem represents our principal result in the general framework.

Theorem 5.5. Assume that (S, F) is a complete market and let ¢ be an F-predictable process
satisfying m =14 ¢ . S. Then the following assertions hold.

(a) If T is an honest time, and T ¢ R, then the FT-predictable process ¢® = ol is a
classical arbitrage strategy in the market "before 7", i.e., in (ST,F7).

(b) If T is an honest time, which is not an F-stopping time, and if {1 = 0o} € Fuo, then the
F7-predictable process p* = —plly; g1, with F"-stopping time defined as

0 :=inf{t >7:7Z < #}, (5.3)

is a classical arbitrage strategy in the market "after 7" i.e., in (S — S7,F7).

Proof. (a) From m = Z + A° and Z, = 1, we deduce that m, > 1. Since 7 ¢ R, one
has P(m, > 1) = P(A2_ > 0) > 0. Then, by Lemma 5.3, the process ¢’ = ¢lor is an
arbitrage strategy in (S7,F7).

(b) From m = Z + A° and Theorem 1.43 (d), one obtains that, for t > 7, my — m,; =
Zy — Z; > —1. On the other hand, using m = 7+ A° , one obtains that, for ¢ > 7,
me—m, = Z; — 1+ AA2. Assumption {7 = 0o} € Fo ensures that Ty = I{;—sy and
in particular {7 < oo} C {Zs = 0}. So, the F™-stopping time ¢ defined in (5.3) satisfies
{¥ < 00} = {7 < c0}. Then,

AA° — 1

mg—mT:Zg—1+AA2§ <0,

and, as 7 is not an F-stopping time,
P(my —m, <0) =P(AA2 <1)>0.
Hence — th/\ﬂ psdSs = Mmepr — My 18 the value of an admissible self-financing strategy

¢* = —@ly; 9 with initial value 0 and terminal value m,; —my > 0 which satisfies
P(m; —my > 0) > 0. This ends the proof of the theorem. [
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Remark 5.6. To make a link to Section 5.3.1 we recall that:

(a) if 7 is a finite honest time and is not an F-stopping time, then, by Corollary 3.8, immersion
does not hold;

(b) if 7 is an honest time which does not take only countably many values, then, by Lemma

4.11, the density hypothesis is not satisfied.

5.4.1 Classical arbitrage opportunities in a Brownian filtration

In this section, we develop practical market models S and honest times 7 within the Brownian
filtration for which one can compute explicitly the arbitrage opportunities for both before
and after 7. For other examples of honest times, and associated classical arbitrages we refer
the reader to [FJS12] (Note that the arbitrages constructed in that paper are different from
our arbitrages). Throughout this section, we assume given a one-dimensional Brownian
motion W and F is its augmented natural filtration. The market model is represented by
the bank account process which is the constant one and one stock price process which is
given by

1
Sy = exp(oW; — 50225), o > 0 given.

It is worth mentioning that in this context of Brownian filtration, for any process V with
locally integrable variation, its F-dual optional projection is equal to its F-dual predictable
projection, i.e., VoI = VPF All the examples given below correspond to random times that
are the end of optional sets, hence are honest times.

5.4.1.1 Last passage time at a given level

Proposition 5.7. Consider the following random times

T:=sup{t : S;=a} and V:=inf{t>7 : 5

IA
vl
—

where 0 < a < 1. Then, the following assertions hold.
(a) The model "before 7" (S™,F7) admits a classical arbitrage opportunity given by the F7-

predictable process
1
= Ais<aljon)-

(b) The model "after 7" (S — ST, F7) admits a classical arbitrage opportunity given by FT-

predictable process
1
Pt = — - Ls<aplyra)-

Proof. 1t is clear that 7 is a finite honest time [Theorem 1.43 (c)|, and does not belong to
the set R defined in (5.2). Thus 7 fulfills the assumptions of assertions of Theorem 5.5. We
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now compute the predictable process ¢ such that m =1+ ¢ . 5. To this end, we calculate
Z as follows. Using [JYC09, Exercise 1.2.3.10], we derive

1-Z,=P(supS, <a|F | =P supgugg]]-} —o (2
t<u u St St

where S, = exp(aV[N/u — %azu), 1% independent of F; and

=~ 1 1 1
O(z) =P Sy < =P(=<a2)=P(=-<U)=(1-2)*
(@) =P (sup3, <o) =P(; <) =P <U) = (1- )"
where U is a random variable with uniform law. Thus we get Z; = 1—(1— %)* (in particular
7, =7 = 1), and
1 1

where (% is the local time of the S at the level a (see [HWY92, p.252] for the definition of
the local time). Therefore, we deduce that

m=1+¢.5S.

Note that ¥ :=inf{t >7 : S; <&} =inf{t >7 : 1-(1— %)* < £}, so ¥ coincides with
(5.3). Theorem 5.5 ends the proof of the proposition. [

5.4.1.2 Last passage time at a level before maturity

Our second example of random time in this section, takes into account finite horizon. In
this example, we introduce the following notation

H(zy,s) = e N (ZSJ_;/> F VN <_zs\/§_y> : (5.4)

where N (z) is the cumulative distribution function of the standard normal distribution.

Proposition 5.8. Consider the following random time (an honest time)

T :=sup{t <1: S =b}

where b is a positive real number, 0 <b <1 . Let V and 8 be given by

Inb
Vii=ma—~vt—W; witha:—n and v = —
o

| Q

B = eV (YH (v, [Vil, 1 = t) + sgn(V) Hy (v, |Vil, 1 = 1))

with H defined in (5.4), and let ¥ be as in (5.8). Then, the following assertions hold.
(a) The model "before 71" (S™,F7) admits a classical arbitrage opportunity given by the

F7-predictable process

1
b._
= Eﬂtﬂ[[o,n}]-
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(b) The model "after 7" (S — S™,F7) admits a classical arbitrage opportunity given by

F™-predictable process

a

1
P = _Eﬂtﬂ]]ﬁﬂ]]'

Proof. The proof of this proposition follows from Theorem 5.5 as long as we can write
explicitly the martingale m as an integral stochastic with respect to S. This is the main
focus of the remaining part of this proof. By Theorem 1.43 (c), the time 77 is honest. It is
a finite random time. Honest time 71 can be seen as

71 = sup{t<1:yt+Wy=a}=sup{t<1:V, =0}

Setting Tp(V) = inf{t : V; = 0}, we obtain, using standard computations (see [JYCO09,
p.145-148))
1= 2= (1= ™V H(v,|Vi|, 1 = ) Iigyvy<e<ty + L1y,

where H is given in (5.4). In particular Z, = Z, = 1. Using It6’s lemma, we obtain the
decomposition of 1 — eVt H (v, |V;|,1 —t) as a semimartingale. The martingale part of Z is
given by dmy = B dW; = %StﬁtdSt, which ends the proof. [

5.4.2 Arbitrage opportunities in a Poisson filtration

Throughout this section, we suppose given a Poisson process N, with intensity rate n > 0,
and natural filtration F. For n € N, let ,, denote the time of the n-th jump of N with
0o = 0. The stock price process is given by

dSt = Stfdet, S() = 1, Mt = Nt - 77t,

or equivalently S; = exp(—nyt+1In(141)N;), where ¢ > —1. In what follows, we introduce
the notation
ny

P+ o)

so that Sy = exp(—In(1+1)Y};). We associate to the process Y its ruin probability, denoted
by ¥(z), given in (2.8) by

a:=1In(1+1), and Y} := ut — Ny,

U(x) =P(t" <oo) with t*=inf{t:z+Y; <0} forevery x>0.

5.4.2.1 Last passage time at a given level

The next proposition answers an arbitrage question in the case of the honest time defined
by (2.4) and studied in Section 2.3.3.1.

Proposition 5.9. Suppose that ¢ > 0 and let a := —é Inb and

. V(Y- —a— Dy sqp1y — V(Y- —a)lyy >0 + Uy caqry — Ly ca)
= e .
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For 0 < b < 1, consider the following random time

T:=sup{t: Sy > b} =sup{t: Y <a}

Then the following assertions hold.

(a) The model "before 7" (ST,F7) admits a classical arbitrage opportunity given by the F™-
predictable process p° := elo 7]

(b) The model "after 7" (S — S™,F7) admits a classical arbitrage opportunity given by the
F7-predictable process ¢ := —ply, g1, with ¥ as in (5.3).

Proof. Since 1 > 0, one has p > 71 so that Y goes to oo as t goes to infinity, and 7 is finite.
The supermartingale Z associated with the time 7 is

Zy = V(Y — a)ly;>0) + Liyicay = 14 Lpyinay (U(Y: —a) — 1)
See Section 2.3.3.1 for more details on this example.

We set 1= & — 1, and deduce that ¥(0) = (14 &)~! (see [AA10]). Define
n

Ty =inf{t >0:Y; =a}
and then, for each n > 1, T,, = inf{t > T}, : Y; = a}. It is proved in Proposition 2.25 that
the times (7,,), are F-predictable stopping times. By Lemma 2.8, since

K
14k’

P(r = To|Fr,) =1—-¥(0)

the F-dual optional projection A? of the process 1, o[ equals

o __ K
A= o 2 Mool

n

As a result the process A° is predictable, and hence Z = m — A° is the Doob-Meyer decom-

position of Z. Thus we can get
Am=7—- 7

where PZ is the F-predictable projection of Z. To calculate PZ, we write the process Z in a
more adequate form. To this end, we first remark that

II-{YZQ} = ﬂ{y72a+1}AN + (1 — ANﬂl{Y,Za}
Livaap = Ly <oy AN + (1= AN)Iiy o4y

Then, we obtain

Am = V(Y- —a— )y sqq13 — U(Y- — )y >y + Dy cary — Ly <o) AN
=US_pAM = pAS.

Since the two martingales m and .S are purely discontinuous, we deduce that m =14+ ¢.S.
Therefore, the proposition follows from Theorem 5.5. ]
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5.4.2.2 Time of supremum on fixed time horizon

The second example requires the following notations Sf := sup,<; Ss, and
Bz, t) :=P(SF > ), B(t):=P(SF <1), ®(x,t):=P(S] < x) (5.5)

Proposition 5.10. Consider the random time 7 defined by

T:=sup{t <1:85, =5/}

where Sy = supy,<; Ss. Then, the following assertions hold.
(a) The random time T is an honest time.
(b) For 1) > 0, define the F™-predictable process ¢ as

pr = T [cI) (max(%, 1),1— t) ~3 (Ej—: 1 t)}

t—
~

Tlis cs_ara)) P —1)

+ [ﬂ{max(Sf_,Sl_(1+<f’))=So} - ﬂ{max(Sfi,&,):So}} Dyp—1y-

Then, @ := @lo is an arbitrage opportunity for the model (S™,F7), and ¢® := —pl, g|
is an arbitrage opportunity for the model (S — S™,F7). Here ® and ® are defined in (5.5),
and 9 is defined similarly as in (5.3).

(c) For —1 < < 0, define the F-predictable process

z 1 S5 = S
B Plygr—s, 1 (55, L =) + P57y L = 1) — (5= 1 - 1)

s 55,
Then, ¢ := ¢lljo,-) s an arbitrage opportunity for the model (ST,F7), and ¢ := —@l}, g)
is an arbitrage opportunity for the model (S — S™,F7).

Proof. Note that, if —1 < ¢ < 0 the process S* is continuous, S; < ST = sup(g 1] St on
the set {7 < 1} and S;— = S7_ = sup;cpo 1] St- f ¥ >0, S < S < supyejo1) St on the
set {7 < 1}.

Define the sets (E,)22, such that Ey = {7 = 1} and E, = {7 = 0,} with n > 1, with
(0r)rn being the sequence of jumps of the Poisson process N. The sequence (E,,)7, forms a
partition of Q. Then, 7 = g, + > -~ 0,1 ,. Note that 7 is not an F stopping time since

E, ¢ Fp, for any n > 1.

The supermartingale Z associated with the honest time 7 is

Zy = P(sup Ss> sup Sq|F) =P( sup §s > S—t]]-"t)
se(t1] s€[0,4] s€[0,1—1] St
_g*
= D ®(,1-t),

E?
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with S an independent copy of S and ®(x,t) is given by (5.5).
As{r=0,} C {7 <6,} C{Zp, <1}, we have

Zr =Ny Zi+ Y gy Ze, <1, and {Z=0<Z_}=0.
n=1

In the following, we will prove assertion (b). Thus, we suppose that ¢ > 0, and we calculate
A7 = Plr=1UF)lgs1y + > P =0,F,) L0,

= lygrogoe>13 + Z Lyp, <1 S;n7<59n}P( ES[lelpl[Ss < 56, | Fo, ) Lir>6,1

= lgsimspzy + ) Lo, <155 <, (148)} P(L = 0n)Lg>0,3,
n

with @ is given by (5.5). As before, we write

A7 = Dsr_sylpsy + 3 Tieaylgs: s, 1a)) @(1— s)AN,

s<t

tAl
]1{51‘150}]1{7521} +/0' ]1{5:_<Ss_(1+<i>)} (I)(l - S) dMS

tAl
+’f]/0 ]1{5;_<53_(1+<i>)} q)(l — S)dS.

Remark that we have
Lisy=s0y = {n{max(5f7,517(1+<i>)):50} = Dpimax(sy_ 51 )=50} | AM1
+ 1 fmax(s7_ .81 )=So}-

and
Am=AZ+AA° =7 — P(Z)+ AA° — P(AA°).

Then we re-write the process Z as follows

*

_ S* _ (ST
Z = ]1[[071[[@ <max(s_<1+§)), 1), 1-— t) AM + (1 — AM)]l[[OJ[[(b (&, 1-— t> .

This implies that

B S* B S*
Z—-PZ)y=1 ) —— ), 1—-t]—-®|=—,1—-t)| AM.
(@)= [ (max(g g 01— 1) — @ (o1 1))
Thus by combining all these remarks, we deduce that
Am =7 — P(Z)+ AA° — P(AA°) = pAS,

where we used the fact that ?(Z) = Z_ and Z = Z + AA°. Then, the assertion (b) follows
immediately from Theorem 5.5.
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Next, we will prove assertion (¢). Suppose that —1 < 1) < 0, and we calculate
AP =P(r = 1|F) gy + Y P(T = 00| Fp, ) Lisn0,,)

= lsi—s, =1} + D 1o, <155 =50, 1P ES[lelpl[Ss < Sp, 1 Fo, ) Lgi>0,3
n S ny

~ Sy, —
= lygr=g,1>13 + E Lgg,<1,55 =5p,_}® ( S, 1= 9n> Lii>0,3
n n
with ®(z,t) is given by (5.5). In order to find the compensator of A°, we write

/1
A? = Usimsy Loy + ) seny Usi=s, 3@ (1+<I>’ 1- 5) AN
s<t

tA1
~ 1
= Lisi=siy L=y +/0 Iig:—g, }® <1+<1>’ 1— s) dM,

tAl " 1
+ Tyge S| ——=,1—5]) ds.
n/{; {Ss SS—} <1 +(I) >

As a result, due to the continuity of the process S*, we get
~ 1
Ay — P(A%) = Mggr_g, 1@ ——=,1—1t | AM,
¢ — (A% (5:=5_1 <1 s ) t

B S B S*
Zi— 7, = |®|—A—1—-t] -0 t,l—t)]AN.
A o R Rl et I

This implies that

Amy = Zy— PZ 4+ A7 — p(AO)t
_ ~ 1 — SF
= Ol o Ol ——.1—1¢ O —"t 1 _¢ AN,
{ {57 =5} <1+¢’ >+ <&_a+@r >} !

_ [/ S*
(=L 1—¢t) AN,
e (g pan

Since m and S are pure discontinuous F-local martingales, we conclude that m can be
written in the form of

m=mo+¢- 5,

and the proof of the assertion (c) immediately follows from Theorem 5.5. This ends the
proof of the proposition. ]
5.4.2.3 Time of overall supremum

Below, we present our last example of this subsection. The analysis of this example is based
on the following three functions. Here S* = sup, S;.

O(z) =P(S* >z), ®=P(S*<1), and &(x)=P(S* < ). (5.6)
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Proposition 5.11. Consider the random time T given by

T :=sup{t: S = S;}.

Then, the following assertions hold.
(a) The random time T is an honest time.
(b) For ¢ >0, define the F™-predictable process ¢ as

& T S* =, S
a H{S:7<St7(1+fi>)}q) +o (max(m7 1> — (I)(sf*—)

Pt = St,é

Then, ¢ = @lo is an arbitrage opportunity for the model (S™,F7), and ¢* := —pllj, g|
is an arbitrage opportunity for the model (S — ST,F7). Here ® and ® are defined in (5.6),
and v is defined in similar way as in (5.3).

(c) For —1 <1 <0, define the F-predictable process ¢ as

= §* = G* ~ _
P(5iray) — 2(50) + Uis—s y2(15)®
®S_ ’

p =

Then, ¢ = o7 is an arbilrage opportunily for the model (S7,F7), and ¢* := 2
is an arbitrage opportunity for the model (S — S™,F7). Here again ¥ is defined as in (5.3).

Proof. 1t is clear that 7 is an I honest time. Let us note that 7 is finite and, as before, if
-1 <9 <0, S <8; =sup; Sy and S* is continuous and if ¢ > 0, S; = S} = sup; S;.
The supermartingale Z associated with the honest time 7 is

Zy =P( sup S5 > sup Ss|Fi) =P( sup S, > i\]—'t) =® <St) ’
s€(t,00) se0,4] s€[0,00] St St

with S an independent copy of S and ® is given by (5.6). As a result, we deduce that
Z; < 1. In the following, we will prove assertion (b). We suppose that 1 > 0, denoting by
(0 )n the sequence of jumps of the Poisson process N, we derive

A9 =) P(7 = 00| Fo, ) Lii50,)
= Z ﬂ{sgn_<sgn}P(SS;19P Ss < Sp,|Fo, ) Lit>0,)
= s <5y, 18 Pliza.,

with ® = P(sup, Ss < 1) given by (5.6).
We continue to compute the compensator of A°
A7 =D Mis: es_ran AN,

s<t
t

t
= /0' ]1{3;‘_<Ss_(1+<f>)}q)dM5 + 77/0 ]1{5:_<S,9_(1+<i>)}q)d8'
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Now as we did for the previous propositions, we calculate the jumps of m. To this end, we
re-write Z as follows

o [(T) (maX(S_(li-@)’ 1)) @(gi )] AM + @(gi)

This implies that

Hence, we derive

~ - S* _ ST
Am = [H{S:<Ss(1+<1>)}q) +o <maX(S_(1+(i)), 1)) - q’(s_)] AM.

Since both martingales m and M are purely discontinuous, we deduce that m = mgy+ ¢..S.
Then, the proposition immediately follows from Theorem 5.5.

In the following, we prove assertion (c¢). To this end, we suppose that —1 < ¢ < 0, and we
calculate

= ZP T = 0n|Fo,) L{1>0,)

= Z Iis; =sp,- (S;lep Ss < Sp,—|Fo,) Lir>0,1

So,,
with ®(z) = P(sup, S5 < ). Therefore,

1
A7 = lsss, }q>< +(I))AN

s<t

! ~ (1 t ~ (1
= Trgiz d| ——= | dM; Lo ® | ——= ) ds.

Since in the case of ® < 0, the process S* is continuous, we obtain

o ) ()]

~ 1
A° — P(A°) = ljgi_e 1P| ——= | AM.
(A°) (5*=5_} <1+q))

n

) n{t>9 b

Therefore, we conclude that
Am = Z— PZ+ A°— P(A°)
= S* = (5" ~ 1 =
= <P — | —D( = Tigicg & ——= )P, AN.
{(srm) 2 (5) ros® (53)9)

This implies that the martingale m has the form of m = 1 4+ ¢ - S, and assertion (c)
immediately follows from Theorem 5.5, and the proof of the proposition is completed. ]
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5.5 Arbitrage opportunities for non-honest random times

This section is our second main part of this chapter. Herein, we develop a number of practical
examples of market models and examples of random times that are not honest times, and
we study the existence of classical arbitrages. This section contains two subsections that
deal with two different situations.

5.5.1 In a Brownian filtration: example from section 4.3.3

We present here an example where 7 is a pseudo stopping-time.

We take into consideration the random time studied in (4.6). We recall its definition once
again here. Let S be defined through dS; = ¢S;dW,, where W is a Brownian motion and o
a constant. Let

5 =sup{t<1:5 —25 =0}

with sup{(l} = oo, that is the last time before 1 at which the price is equal to half of its
terminal value at time 1.

Proposition 5.12. (a) NFLVR property holds in the model "before 7" (S7,FT).
(b) NA and NUPBR properties fail in the model "after 7" (S — S™,F7).

Proof. (a) NFLVR property holds up to 7° as S remains a F™-martingale up to time 7 by
Lemma 4.14 (a).

S S

(b) There are obviously classical arbitrages after 77, since, at time 77, one knows the value
of 8 and S; > S,. In fact, for t > 7°, one has S; > S,, and the arbitrage occurs at any
time before 1. The arbitrage strategy is given by ¢ = lj.s 17(2).

The NUPBR condition is not satisfied after 7°. Indeed, NUPBR condition is equivalent
to the following statement: there does not exist an arbitrage of the first kind, i.e., the
random variable £ > 0 with P(§ > 0) > 0 such that for every x > 0 there exits a strategy
0% € A*(F7) satisfying V(z,0%) > &. Here it is enough to take the random variable

= %Sl as an arbitrage of the first kind, since, for t > 7% and = > 0, one has, for 6 = 1y

o4 [50,dSy =2+ S — S, =x+ &> ¢ .

5.5.2 In a Poisson filtration

This section develops similar examples of random times as in the Brownian filtration of the
previous section.

In this section, we will work on a Poisson process N with intensity n and the compensated
martingale My = Ny — nt. Denote

O, =inf{t >0: N, > n}, and H] = lyg,<p, n=12.
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The stock price S is described by
dSy = Si_ypdMy, where, ¥ > —1, and ¢ # 0,
or equivalently, S; = Sp exp(—nyt + In(1 + ¢)N;). Then,

Mt1 = Htl —n(tANby) = Ht1 — A},
M{ = Hf —(n(tAb) —n(tA6y))) = H — A7

are two F-martingales. Remark that if ¢» €] — 1,0[, between T} and T3, the stock price
increases; if 9» > 0, between 77 and 75, the stock process decreases. This would be the
starting point of the existence of arbitrages.

5.5.2.1 Convex combination of two jump times

Below, we present an example of random time that avoids stopping times and the non-
arbitrage property fails.

Proposition 5.13. Consider the random time

T 1= klel + kz@g

that avoids F stopping times, where k1+ko = 1 and k1, ko > 0. Then the following properties
hold.

(a) The random time T is not an honest time.

(b) Zr = Zy = e 10200 <1 and {Z =0< Z_} = [6:].

c) There is a classical arbitrage "before 7", given b
g g Y

ko 1

—nk2(1g
Yt == —e 77kl (t 1) (H{Nt,21} — H{Nt—ZQ}) th]l{tﬁT}

(d) There exist arbitrages "after T": if b € (—1,0), buy at T and sell before O2; if 1 > 0,
short sell at T and buy back before 0.

Proof. First, we compute the supermartingale Z:
P(T > t|ft) = 11{01>t} + ﬂ{glgt}ﬂ{92>t}P(k191 + kol > t’]:t)

On the set E = {0; <t} N {0y > t}, the quantity P(k161 + k262 > t|F;) is Fp,-measurable.
It follows that, on F,
k101 + koby > t,02 > t|Fp,) _ —nki—01)

P
P(k161 + kobo > t|F;) = ( P(6y > t|Fp,) -
1

where we used the independence property of #; and 65 — #;. Therefore, we deduce that,

k1
Zy = P(T >t’.7:t) = ﬂ{€1>t}+]1{91§t}]1{92>t}6 nkQ(t 01)_
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: 1 1 2\, —ik (t=01) :

Since Z; = (1 — H;) + H;(1 — Hf)e "* , we deduce, using the fact that
k

¢l = ap),

LS k P
7, = e """ (CH2dH} - B} dH?) - HN(1 - HY)e "R ay

ko
—nil (t— k kL
= —¢ nk;(t Ql)dHtQ _néHtl(l _HtQ)e T]k;(t Hl)dt
—nEL (- k k1
2
where
k
dmy = —e "R g2,
Hence

Tk Tk
mTzl—/ e MR 01)thz:1_|_/ e TR 61)77dt> 1.
0 01

Now we will start proving the proposition. B
i) Since 7 avoids stopping times, Z = Z. Note that Z, = Z, = e~k ( < 1. Hence, 7
is not an honest time. Thus, we deduce that both assertions (a) and (b) hold.

02—01)

ii) Now, we will prove assertion (c). We will describe explicitly the arbitrage strategy. Note
that {62 <t} = {N; > 2}. We deduce that

MtQ = ﬂ{@ggt} — A% = Il{NtZ?} - A? = ]l{Nt,Zl}ANt + H{Nt—22}(]‘ — ANt) - A?
Hence,

AM} = M{— P(M?); = (Lgn,_>1y — Ly, >2p) AN
= (Lvizy = Lgw_s2y) AMy.

Since M? and M are both purely discontinuous, we have m; = 1+ (¢p. M), = 1+ (. S,

where
1
Ly, >13— gy, >0y), and @ = ¢t¢5t :

b = 76—77%@—91) (

iii) Arbitrages after 7: at time 7, the value of 63 is known for the one who has F"-information.
If ¢ > 0, then the price process decreases before time 65, however, waiting up time 65 does
not lead to an arbitrage Setting A = 0 —7 (which is known at time 7), there is an arbitrage
selling short S at time 7 for a delivery at time 7 + %A. The strategy is admissible, since
between 01 and 63, the quantity S; is bounded by Sp(1 + ¢). This ends the proof of the
proposition. [

5.5.2.2 Minimum of two scaled jump times

We give now an example of a non honest random time, which does not avoid F stopping
time and induces classical arbitrage opportunities.
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Proposition 5.14. Consider the same market as before, and define

T := 01 N abs

where 0 < a <1 and B =n(1/a —1). Then, the following properties hold.

(a) The random time T is not an honest time neither a pseudo-stopping time and does not
avoid F-stopping times.

(0) Zy = Lig,sapyye "2 (Baba+1) < 1, Zr = Lip wappye "9 (Baba+1)+1 g, <apye ¥t < 1,
and {Z =0< Z_} = 0.

(¢) There exist arbitrages "after 7": if 1 € (—=1,0), buy at T and sell before T/a; if ¥ > 0,
short sell at 7 and buy back before T/a.

Proof. First, let us compute the supermartingale Z,

P(CL@Q > t, 91 > t)
P(91 > t)

Z = ﬂ{91>t}P(a92 > t|F) = Lip, >4y

_m(t_
= Lypsne” E(Lgp e e 07y

t/a .
= ]1{91>t}e’7t/ e*"(E*x)ne*”Idx—i-11{91>t}e”t // ne” Mdy
t t

a

= ]1{91>t}€_’8t(,8t +1),

where 8 =n(1/a —1). In particular Z, = g, 49,16 "% (Baby + 1) < 1.
Thus, Z;— = Lyg,>ne P(Bt +1). As

AAY =P(afy > 61]Fp,) = e 7%

we have that B
Zp = g, spe P (Bt + 1) + Mg, (£)e 7.

In particular Z, = Lig,>apsye %2 (Babs + 1) + Lyp, <ap,ye P < 1.

Moreover, F-martingale m has single jump at 6y, i.e., Amg, = —B61e%%. Thus m # 1 and
by Proposition 1.50 (¢), it is not an F-pseudo-stopping time. This proves assertions (a) and
(b).

The proof of assertion (c) follows the same proof of assertion (d) of Proposition 5.13. This
ends the proof of the proposition. ]

5.6 NUPBR for particular models

In this section, we address some interesting practical models, for which we prove that the
NUPBR condition remains valid up to 7. The originality of this part — as we mentioned in
the introduction — lies in the simplicity of the proof. A general and complete analysis about
the NUPBR condition is addressed in full generality in Chapter 6 of this thesis. Throughout
this section, we will assume that Z > 0.
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5.6.1 Before 7

Let m be the F7-martingale stopped at time 7 associated with m by (1.14), on {t < 7}

. / T d(m, m)
i :

mg == Mmy — 7
s

5.6.1.1 Case of continuous filtration
We start with the particular case of continuous martingales and prove that, for any random
time 7, NUPBR holds before 7.

We note that the continuity assumption implies that the martingale part of Z is continuous
and that the optional and Doob-Meyer decompositions of Z are the same.

Proposition 5.15. Assume that all F-martingales are continuous. Then, for any random
time 7, NUPBR holds before 7. An F7-local martingale deflator for S™ is given by
dLy = —%diny, Lo = 1.

Proof. We make a use of Theorem 1.56 and we provide an F7-local martingale deflator for
S7. Define the positive F7-local martingale L as dL; = —%dT/T\Lt, Ly = 1. Then, if SL is a
F7-local martingale, NUPBR holds. Recall that, using (1.14) again,

. tAT d<S m>IE‘
Sy = S] —/ — 8
! ! 0 Zs

is a F7-local martingale. From integration by parts, we obtain (using that the bracket of
continuous martingales does not depend on the filtration)

d(LST), = LdS] + SedL; + d(L,ST);
F™—mart 1 F 1 ~\FT
= Li— =L
tth<S,m)t + Z ¢d(S, m),

T _mar 1
T L (d(S,m), — d(S,m),) = 0
t
where X 7 2" ¥ is a notation for X — Y is an F-local martingale. ]

Remark 5.16. If 7 is an honest time and Predictable Representation Property holds with
respect to S then, as a consequence of Theorem 5.5, NA condition does not hold, hence
NFLVR condition does not hold neither. That in turn implies that all the F7-local martingale

deflators for S7 are strict F™-local martingales.
5.6.1.2 Case of a Poisson filtration
We assume that S is an F-martingale of the form dS; = S;_1:dM;, where v is a predictable

process, satisfying ) > —1 and ¢ # 0, where M is the compensated martingale of a standard
Poisson process.
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In a Poisson setting, from Predictable Representation Property, dm; = j;dM; for some
F-predictable process j, so that, on t < 7,

. 1 N
dm; = dmy — Zd(m,m>t =dmy — ZA]Edt.

Proposition 5.17. Let F be a Poisson filiration and T be any random time satisfying
fOT L¢z,_4+j—0ydt =0 a.s. Then, NUPBR holds before T since

1 N 7 —
L=¢(- ) =&(- M),
< 7+ m) ( 7+ >

is a F7-local martingale deflator for S7.

Proof. We make a use of Theorem 1.56 and we are looking for an [F7-local martingale
deflator of the form dL; = L;— k¢ dmy (and ¢k, > —1) so that L is positive and S7L is an
F7-local martingale. Integration by parts formula leads to (on t < 7)

d(LS)t = L;_dS; + Si_dL; + d[L, S}t

F7— 1 ‘

KU wt7d<M, m), + Li— Si— K41y jid Ny

t_

F™—mart 1 . . 1

= Ly Sphy—gsAdt 4 Ly Sy ke g Jie (1 4 ——ji)dt

Ty Zi_
Li Si i je A ! + k(1 + L ) ) dt
= _ _ —_— K —_ .
t— Ot— Yt Jt 70 t 7, Jt
Therefore, for xk; = —ﬁ, which is well-defined thanks to fOT iz, +j—01dt =0 a.s., one

obtains a deflator. Note that

. 1 . T
dL; = Li_kidim; = —Ltfm]tht

is indeed a positive F7-local martingale, since ﬁ Je < 1. ]

Remark 5.18. If 7 is an honest time and Predictable Representation Property holds with

respect to S, then all the F™-local martingale deflators for S7 are strict F7-local martingales.

5.6.2 After 7

We now assume that 7 is an honest time, which satisfies Z; < 1 (for integrability reasons).
Equivalently, by Lemma 2.16, we may assume that 7 is a thin honest time. Note also that,
in the case of continuous filtration, and Z, = 1, NUPBR fails to hold after 7 (see |[FJS12]).

After (1.15), for any F-martingale X (in particular for m and S)

R tAT d(X m>IF t d<X m>IF
X, = X, — N s N s
! ! /0 Zs +/t/\7' 11— Zs

is a F7-local martingale.
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5.6.2.1 Case of continuous filtration

We start with the particular case of continuous martingales and prove that, for any honest
time 7 such that Z, < 1, NUPBR holds after 7.

Proposition 5.19. Assume that T is an honest time, which satisfies Z. < 1 and that all IF-

martingales are continuvous. Then, for any honest time 7, NUPBR holds after 7. A F™-local

martingale deflator for S — ST is given by dL; = —1ftZt dmy.

Proof. We use Theorem 1.56 as usual. The proof is based on It6’s calculus. Looking for
an F7-local martingale deflator of the form dL; = L;kidmy, and using integration by parts
formula, we obtain that, for k = —(1—2) 7!, the process L(S—S7) is an F™-local martingale.
[

Remark 5.20. If Predictable Representation Property holds with respect to S then, as a
consequence of Theorem 5.5, the NA condition does not hold, hence NFLVR condition does
not hold neither. That in turn implies that all the F7-local martingale deflators for S — S7

are strict F"-local martingales.

5.6.2.2 Case of a Poisson filtration
We assume that S is an F-martingale of the form dS; = S;_1ydMy, with 9 is a predictable
process, satisfying ¢ > —1.

The decomposition formula (1.15) reads after 7 as

t
~ 1
Sy = (]l]]r,oo[[ : S)t + >‘/ 71'5%53—61&

tvr + T ZS—

Proposition 5.21. Let F be a Poisson filtration and T be an honest time satisfying Z, < 1
and fTOO ﬂ{l,zt_,jtzo}dt =0 a.s. Then, NUPBR holds after T since

1 R j -
L: _— = _— .
5(1—Z_—j m) 5(1_2__],]1]7.700[ M),

is an F7-local martingale deflator for S — S7.

Proof. We make a use of Theorem 1.56 and we are looking for an F”-local martingale deflator
of the form dL; = Ly_kidmy (and Yk > —1) so that L is positive F7-local martingale and
(S8 —S87)L is an F7-local martingale. Integration by parts formula leads to

A(L(S—ST)y =  Lyd(S—ST)+ (See — ST )dLy+d[L,S — S

FT—mart

. 1 .
= _)\Ltfstfjtwtﬁﬂ{lbr}dt + Li— St—kethegil {5y dNy

r
- tht)> dt.

+ k(1 —

F™—mart ] 1
m AL St gi {41y <_ 1-2
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Therefore, for k; = T{%, which is well-defined thanks to fToo Iz, _j=01dt =0 as.,
one obtains an F7-local martingale deflator. Note that

1 —
dLy = Ly_kydimy = Ly —————7j; 11 dM,
t t— Rty t=1_ 70 _jt]t {t>7} @
is indeed a positive F7-local martingale, since #:Jt Jt ANy > —1. ]

Remark 5.22. If Predictable Representation Property holds with respect to .S then, all the

F7-local martingale deflators for S — S7 are strict F"-local martingales.

5.7 Conclusions

In this chapter we have treated the question whether the no-arbitrage conditions are stable
with respect to progressive enlargement of filtration. We focused on two components of
No Free Lunch with Vanishing Risk concept, namely on No Arbitrage Opportunity and No
Unbounded Profit with Bounded Risk. The problem was divided into stability before and
after random time containing extra information.

The question regarding No Arbitrage Opportunity condition was answered in the case of
Brownian filtration and Poissonian filtration for special case of honest time, moreover par-
ticular examples of non-honest times were described. Both, Brownian and Poissonian fil-
trations possess an important, and crucial from our problem point of view, characteristic of
Predictable Representation Property. One may further investigate a similar problem with-
out assuming market completeness. One may as well consider other examples/classes of
non-honest random times.

Afterwards, we handled the stability of NUPBR. concept in some very particular situations,
namely in continuous martingale case, standard Poisson process case and Lévy process case.
We provided results with simple proofs in those particular situations. We emphasize again
that in full generality the problem is solved in Chapter 6 revealing as well results within
progressive enlargement of filtration theory.

Combining results on NA and NUPBR conditions, we concluded (in Remarks 5.16, 5.18, 5.20,
5.22) that some F7-local martingales are in fact F7-strict local martingales. That provides
a way to construct strict local martingales in enlarged Brownian and Poisson filtrations.



Chapter 6

Non-Arbitrage up to Random

Horizon for Semimartingale Models

6.1 Introduction

This chapter is based on a joint paper with Tahir Choulli, Jun Deng and Monique Jeanblanc
[ACDJ14b].

In this chapter, we consider a general semimartingale model S satisfying the NUPBR prop-
erty under the public information denoted by F and an arbitrary random time 7 and we
answer to the following questions:

for which pairs (S, 7), does the NUPBR property hold for S7?7 (P1)
for which 7, is NUPBR preserved for any S after stopping at 77 (P2)

To deepen our understanding of the precise interplay between the reference market model
and the enlarged model, we address these two principal questions separately in the case of
quasi-left-continuous models, and then in the case of thin processes with predictable jumps.
Afterwards, we combine the two cases and state the results for the most general framework.

This chapter is organized as follows. The next section (Section 6.2) presents our main results
in different contexts, and discusses their meaning and/or their economical interpretations
and their consequences as well. Section 6.3 develops new stochastic results, which are the
key mathematical ideas behind the answers to (P1)-(P2). Section 6.4 gives an explicit
form for the deflator in the case where S is quasi-left continuous. Section 6.5 contains
the proofs of the main theorems announced, without proofs, in Section 6.2. The chapter
concludes with an Appendix, where some classical results on the predictable characteristics
of a semimartingale and other related results are recalled. Some technical proofs are also
postponed to the Appendix, for the ease of the reader.

113
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6.2 Main results and their interpretations

This section is devoted to the presentation of our main results and their immediate con-
sequences. To this end, we start specifying our mathematical setting and the economical
concepts that we will address.

6.2.1 Notations

We consider a complete probability space (£2,G,P) and the filtration F = (F;)>0 satisfying
the usual hypotheses (i.e., right continuity and completeness), and F, € G. Financially
speaking, the filtration F represents the flow of public information through time. On this
basis, we consider an arbitrary but fixed d-dimensional cadlag semimartingale S. This rep-
resents the discounted price processes of d-stocks, while the riskless asset’s price is assumed
to be constant.

Beside the reference model (Q2,G,F,P,S), we consider a random time 7, i.e., a non-negative
G-measurable random variable. To this random time, we associate the process A and the
filtration F™ which is the progressive enlargement of F with 7, given by

A=, Fi=(F )0, Ft = m (.7:5 Vo(rA s))

s>t

Asin Section 1.2.3, in addition to F™ and A, we associate to 7 two important F-supermartingales
given by

Zt::P(7'>t‘.7'"t) and Zt::P<72t‘}}). (6.1)
The decomposition of Z leads to an important F-martingale m, given by
m = Z + A°F, (6.2)

where A°" is the F-dual optional projection of A (see Sectionl.1.5 for more details).

6.2.2 The quasi-left-continuous processes

In this subsection, we present our two main results on the NUPBR condition under stop-
ping at 7 for quasi-left-continuous processes (see Section 1.1.6). The first result consists of
characterizing the pairs (S, 7) of market and random time models, for which S7 fulfills the
NUPBR condition. The second result focuses on determining a necessary and sufficient con-
dition on 7 such that, for any semimartingale S enjoying NUPBR(F), the stopped process
ST enjoys NUPBR(F7) .

The following theorem gives a characterization of F-quasi-left continuous processes that
satisfty NUPBR(F™) after stopping with 7. The proof of this theorem will be given in
Subsection 6.5.1, while its statement is based on the following F-semimartingale (we use the
notation from Section 1.1.9)

SO .= Tl py—ocz_} * 1, where 1) := ME (]l{§>0}‘75 (F)) . (6.3)
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Theorem 6.1. Suppose that S is F-quasi-left-continuous. Then, the following assertions
are equivalent.

(a) ST satisfies NUPBR(FT).

(b) For any 6 > 0, the process

iz 5651 (S - S(O)) satisfies NUPBR(F).

(c) For any n > 1, the process (S — S0 satisfies NUPBR(F), where
op=inf{t >0 : Z; <1/n}.

Remark 6.2. (a) From assertion (c) one can understand that the NUPBR(FT) property for
ST can be verified by checking whether S — S satisfies NUPBR(F) up to o := sup,, on.
This last fact means that (S — S(©)7 satisfies NUPBR(F) for any F-stopping time 7" such
that [0,7] € {Z_ > 0}. It is important to mention that this property (i.e. the NUPBR(F)
up to 00) may not be equivalent to the NUPBR(F) of Z_.(S —S(©), which is equivalent to
the NUPBR(F) of I;5_ -0y« (S — 5)) due to Proposition 1.59. We believe that a counter-
example can be found in the same spirit of Remark 1.55—(b).

(b) The functionals ¢ and f,, (defined as Z_ + f,, := ME)(ZW(]F)) satistfy

=0} ={Z_+ fn=0}C{Z=0}, M —ae. (6.4)

Indeed, due to Z <1 we have

{Z>0}’
0<Z_+ frn =M (Z} 75(15‘)) <.

Thus, we get {tp = 0} C {Z_ + f,n =0} C {Z =0} M}, — a.e. on the one hand. On the

other hand, the reverse inclusion follows from
P P
0= My (Lz sl (zogy) = M (Lizt7,=00)

(c) As a result of remark (b) above and {Z = 0 < Z_} C [0s], we deduce that S©
is a cadlag F-adapted process with finite variation with var(S®)s < |ASs o Mg <o0}

Furthermore, it can be written as

0) .
S( ) T ASUWH{ZUMZOZ¢(UM7ASOOO)7 ZO'oo—>0}II-[[O'OO’OOH.

The following corollary is useful for studying the problem (P2), and it describes examples
of F-quasi-left-continuous model S that fulfill the conditions of Theorem 6.1 as well.

Corollary 6.3. Suppose that S is F-quasi-left-continuous and satisfies NUPBR(IF). Then,

the following assertions hold.
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(a) If (S, S ) satisfies NUPBR(F), then S™ satisfies NUPBR(FT).

(b) If S(© =0, then the process ST satisfies NUPBR(F7).

(c) If {AS £0}N{Z=0<Z_} =0, then S7 satisfies NUPBR(FT).

(d) If Z > 0 (equivalently Z > 0 or Z_ > 0), then ST satisfies NUPBR(F").

Proof. (a) Suppose that (S, S(O)) satisfies NUPBR(F). Then, S — S satisfies NUPBR(F),
and assertion (a) follows from Theorem 6.1.

(b) Since S satisfies NUPBR(F) and S = 0, then (S, S(U)) = (5,0) satisfies NUPBR(TF),
and assertion (b) follows from assertion (a).

(c) It is easy to see that {AS # 0}N{Z =0 < Z_} = () implies that S0) =0 (due to (6.4)).
The fact that Z > 0 is equivalent to Z > 0 or to Z_ > 0 follows from the fact that the three
sets have the same début (see the following Proposition 6.16) Hence, assertions (c¢) and (d)
follow from assertion (b), and the proof of the corollary is completed. |

Remark 6.4. It is worth mentioning that X —Y may satisfy NUPBR(H), while (X,Y") may
not satisfy NUPBR(H). For a non trivial example, consider X; = nt and Y; = N; where N

is a Poisson process with intensity 7.

We now give an answer to the second problem (P2) for quasi-left-continuous semimartin-
gales. Later on (in Theorem 6.15) we will generalize this result.

Proposition 6.5. The following assertions are equivalent.

(a) The thin set {Z =0 < Z_} is accessible.

(b) For any (bounded) S that is F-quasi-left-continuous and satisfies NUPBR(IF), the process
ST satisfies NUPBR(FT).

Proof. The implication (a)=-(b) follows from Corollary 6.3(c), since we have

{AS£0}n{Z=0<2Z_}=0.

We now focus on proving the reverse implication. To this end, we suppose that assertion (b)
holds, and we consider an F-stopping time o such that [o] C {Z =0 < Z_}. It is known
that o can be decomposed into a totally inaccessible part ¢* and an accessible part ¢ such
that o = o/ A 0@ (see Theorem 1.7). Consider the quasi-left-continuous F-martingale

M=V =V & Mqg,o(F)

where V' := 1, oo and V := VPF_ Tt is known from [DMM92, paragraph 14, Chapter XX],
that N
{Z =0} and {Z_ = 0} are disjoint from [0, 7]. (6.5)

That implies that 7 < 0 < 0 P — a.s.. Hence, we get M7 = VT s F7-predictable. Since
M7 satisfies NUPBR(F7), then we conclude that this process is null (i.e., V™ = 0) due to
Lemma 1.60. Thus, we obtain

0=FE (\Z) —E </UOO stf/s) =E (Zyi Liyicoc})
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or equivalently Z,i 15y =0 P-as. This is possible only if o' = oo P-a.s. since on
{o" < 00} C {0 = 0" < o0}, one has Z,i_ = Z,_ > 0. This proves that o is an accessible
stopping time. Since {Z = 0 < Z_} is an optional thin set, assertion (a) immediately
follows. This ends the proof of the proposition. ]

6.2.3 Thin processes with predictable jump times

In this subsection, we outline the main results on the NUPBR condition for the stopped
accessible parts of F-semimartingales with a random time. This boils down to consider thin
semimartingales with predictable jump times only. We start by addressing question (P1)
in the case of single jump process with predictable jump time. (See Section 1.1.3 for the
definition of a thin process.)

Theorem 6.6. Consider an F-predictable stopping time T and an Fr-measurable random
variable £ such that E(\fH Fr-) < oo P-a.s. and define S := iz, o\ U oo Then the
following assertions are equivalent.

(a) ST satisfies NUPBR(FT).

(b) The process S = 51{2T>0}]l[[T,oo[[ = ]l{Z>0} . S satisfies NUPBR(F).

(¢) There ezists a probability measure on (2, Fr), denoted by Qr, such that Qr is absolutely
continuous with respect to P, and S satisfies NUPBR(F, Q).

The proof of this theorem is long and requires intermediary results that are interesting in
themselves. Thus, this proof will be given later in Section 6.5.

Remark 6.7. (a) The importance of Theorem 6.6 goes beyond its vital role, as a building
block for the more general result. This theorem provides two different characterizations for
NUPBR(F7) of S™. The first characterization is in terms of NUPBR(F) of .S under absolutely
continuous change of measure, while the second characterization uses a transformation of
S without any change of measure. Furthermore, Theorem 6.6 can be easily extended to
the case of countably many ordered predictable jump times Tp = 0 < 77 < T < ... with
sup,, I, = oo P-a.s.

(b) In Theorem 6.6, the choice of S having the form S := {15, <0117 o0[ is nOt Testrictive.
This can be understood from the fact that any single jump process S can be decomposed

as follows

S = N oop = ENqzp o3 U r00f + E1{zr =0} LTio0] = S + S.

Thanks to {I' < 7} C {Zr— > 0}, we have S7 = €11z, _yLip<rlprop = 0 is (ob-
viously) an FT-martingale. Thus, the only part of S that requires careful attention is

S =&z, o700

The following result is a complete answer to (P2) in the case of predictable single jump
processes.
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Proposition 6.8. Let T be an F-predictable stopping time. Then, the following assertions
are equivalent.
(a) On {T < oo}, we have

{Zp =0} C {Zp_ =0}. (6.6)

(b) For any F-martingale M := &g oo where § € L>(Fr) such that E({|Fr_) =0, M"
satisfies NUPBR(FT).

Proof. We start by proving (a) = (b). Suppose that (6.6) holds; due to Remark 6.7(b), we
can restrict our attention to the case M := {1z, <o\ l[7 oo Where § € L(Fr) such that

E(¢]Fp_) = 0. Since assertion (a) is equivalent to [T]N{Z =0 < Z_} = 0, we deduce that

M = f]l{ZT>0}]1{ZT,>0}]1[[T,oo[[ =M is an F-martingale.

Therefore, a direct application of Theorem 6.6 (to M) allows us to conclude that M7 satisfies
the NUPBR(F™). This ends the proof of (a)= (b). To prove the reverse implication, we
suppose that assertion (b) holds and consider

M = 511[[T,oo[[7 where £:=1 P(ET = 0|]:T—)-

{Zr=0} —
From (6.5), we obtain {T' < 7} C {Zp > 0} C {Zp_ > 0} which implies that
MT = —IP’(ZT = 0| Fr-)Uyp<ylfr o[ is decreasing process.

Therefore, M7™ satisties NUPBR(F7) if and only if it is a constant process equal to My = 0.
This is equivalent to

0 =E(P(Zr = 01Fr ) renlirese) = E(Zr-15,_g 1eny)-

The last equality is equivalent to (6.6), and assertion (a) follows. This ends the proof of the
theorem. |

We now state the following version of Theorem 6.6, which provides, as already said, an
answer to (P1) in the case where there are countable many arbitrary predictable jumps.
The proof of this theorem will be given in Subsection 6.5.3.

Theorem 6.9. Let S be a thin process with predictable jump times only and satisfying
NUPBR(F). Then, the following assertions are equivalent.

(a) The process ST satisfies NUPBR(FT).

(b) For any 6 > 0, there exists a positive F-local martingale, Y, such that PF (Y|AS|) < oo

and

F (YASIL{ZN]’ 2_25}) —0.

Remark 6.10. (a) Suppose that S is a thin process with predictable jumps only, satisfying
NUPBR(F), and that {Z = 0 < Z_}N{AS # 0} = § holds. Then, S” satisfies NUPBR(F").
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This immediately follows from Theorem 6.9 by using Y € £(S,F) and Lemma 1.57.

(b) Similarly to Proposition 6.5, we can easily prove that the thin set {Z =0< Z_}is
totally inaccessible if and only if X7 satisfies NUPBR(F7) for any thin process X with
predictable jumps only satisfying NUPBR(IF).

6.2.4 The general framework

Let H € {F,F"}. Throughout the remaining part of this chapter, to any H-semimartingale,

X, we associate a sequence of H-predictable stopping times (T Jn>1 that exhaust the ac-

cessible jump times of X. Furthermore, we decompose X as follows.

X =x06) 4 x x@.=qp . X, X6 := X - X, Ty = JI)]. (6.7)

n=1

The process X(@ (the accessible part of X) is a thin process with predictable jumps only,
while X () is an H-quasi-left-continuous process (the quasi-left-continuous part of X).

Lemma 6.11. Let X be an H-semimartingale. Then X satisfies NUPBR(H) if and only if
X (@) gnd X(9°) satisfy NUPBR(H).

Proof. Thanks to Proposition 1.56, X satisfies NUPBR(H) if and only if there exist an H-
predictable real-valued process ¢ > 0 and a positive H-local martingale Y such that Y (¢.X)
is an H-local martingale. Then, it is obvious that Y (¢Ir, « X) and Y (¢lIp,c.X) are both
H-local martingales. This proves that X () and X(9¢) both satisfy NUPNR(H).
Conversely, if X(® and X(@© satisfy NUPNR(H), then there exist two H-predictable real-
valued processes ¢1,¢2 > 0 and two positive H-local martingales Y1 = £(L1), Y2 = £(Lo9)
such that Yi(¢1 . (I, . S)) and Ya(¢2 . (Ir,c . X)) are both H-local martingales. Remark
that there is no loss of generality in assuming L; = llp, « L1 and Ly = llpc . Lo. Setting

Ly:=1ry«Li+lMpyeeLo  and ¢3:= ¢1llry + ¢olipe,

one obtains that £(Ls) > 0, and the processes £(L3) and £(Ls3)(¢3 . S) are H-local martin-
gales, ¢3 is H-predictable and 0 < ¢3 < 1. This ends the proof of the lemma. ]

Below, we answer to question (P1) in this general framework, which, using Lemma 6.11 will
be a consequence of Theorems 6.1 and 6.6.

Theorem 6.12. Suppose that S satisfies NUPBR(F). Then, the following assertions are
equivalent.

(a) The process ST satisfies NUPBR(FT).

(b) For any 6 > 0, the process

Iiz 55y (89 — S0y =1y S5, (5@) — Lpe. 5SO)
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satisfies NUPBR(F), and there exists a positive F-local martingale, Y, such that
PF(Y|AS]) < oo and

F (YASI[ — 0.

{Z>0, 2_25})

Proof. Due to Lemma 6.11, it is obvious that S7 satisfies NUPBR(F7) if and only if both
(ST and (S(®)7 satisfy NUPBR(F7). Thus, using both Theorems 6.1 and 6.9, we deduce
that this last fact is true if and only if for any § > 0, the process 17 >4+ (80 —lip.S©)
satisfies NUPBR(F) and there exists a positive F-local martingale Y such that

PE(YIAS]) = PF(V|AS@]) < oo and

P.F (YAS]l ) — pF (YAS(“)II

(Z>0, Z_>6} {Z>o0, Zfzé}> =0.

This ends the proof of the theorem. ]

Corollary 6.13. The following assertions hold.

(a) If either m is continuous or Z is positive (equivalently Z > 0 or Z_ > 0), ST satisfies
NUPBR(F™) whenever S satisfies NUPBR(IF).

(b) If S satisfies NUPBR(F) and {AS # 0} N{Z = 0 < Z_} = 0, then ST satisfies
NUPBR(F").

(c) If S is continuous and satisfies NUPBR(F), then for any random time 7, S7 satisfies
NUPBR(F7).

Proof. 1) The proof of the assertion (a) of the corollary follows easily from Theorem 6.12.
Indeed, in the two cases, one has {Z = 0 < Z_} = () which implies that {Z =0, Z_ >} =0
and S0 = 0 (due to (6.4)). Then, due to Lemma 1.57, it suffices to take Y € L(F,S) —
since this set is non-empty — and to apply Theorem 6.12.

2) Tt is obvious that assertion (c¢) follows from assertion (b). To prove this latter, it is enough
to remark that {AS £ 0} N{Z =0, Z_ > §} = 0 implies that

]1{2725} . S(qc,O) =0 and AS1 = AS]I{Z,Z(S}'

{Z>0,Z_>6}

Thus, again, it is enough to take Y € L(F,S) and to apply Theorem 6.12. This ends the
proof of the corollary. ]

Remark 6.14. Any of the two assertions (a) or (c¢) of the above corollary generalizes the
main result of [FJS12|, obtained under some assumptions on the random time 7 and the

market model as well.

Below, we provide a general answer to question (P2), as a consequence of Theorems 6.1,
6.5 and 6.9.

Theorem 6.15. The following assertions are equivalent.
(a) The thin set {Z =0 < Z_} is evanescent.
(b) For any (bounded) X satisfying NUPBR(F), X7 satisfies NUPBR(FT).
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Proof. Suppose that assertion (a) holds, and consider a process X satisfying NUPBR(IF).
Then, X0 .= Ire . X© = 0, where X is defined as in (6.3). Hence
Lz s« (X9 —Tpe . XO) = 15 55 . X satisies NUPBR(F) for any ¢ > 0, and
the NUPBR(F7) property for (X(9))7 immediately follows from Theorem 6.1 on the one
hand. On the other hand, it is easy to see that X(® fulfills assertion (b) of Theorem 6.9
with Y € L(F, X) due to Lemma 1.57. Thus, thanks to Theorem 6.9 (applied to the thin
process X (@ satisfying NUPBR(F)), we conclude that (X(®))7 satisfies NUPBR(F7). Thus,
due to Lemma 6.11, the proof of (a)=-(b) is completed.

We now suppose that assertion (b) holds. On the one hand, from Proposition 6.5, we
deduce that {Z = 0 < Z_} is accessible and can be covered with the graphs of F-predictable
stopping times (7),)n>1. On the other hand, a direct application of Proposition 6.8 to

all single predictable jump F-martingales, we obtain {Z =0< Z_}N[T] = 0 for any
F-predictable stopping time T'. Therefore, we get

{Z:0<Z_}:G({Z:O<Z_}m[[Tn]]):®.

n=1

This proves assertion (a), and the proof of the theorem is completed. =

6.3 Stochastics from—and—for informational non-arbitrage

In this section, we develop new stochastic results that will play a key role in the proofs and /or
the statements of the main results outlined in the previous section. The first subsection
compares the F7-compensators and the F-compensators, while the second subsection studies
an F7-martingale that is vital in the explicit construction of deflators.

Lemma 6.16. Let Z and Z be the two supermartingales given by (6.1).
(a) The three sets {Z = 0}, {Z = 0} and {Z_ = 0} have the same début which is an
F-stopping time that we denote by

R:=inf{t >0: Z;_ =0}. (6.8)

Note that 7 < R.
(b) The F™-predictable process

Hy = (Z) " (1), (6.9)
s F7 -locally bounded.

Proof. From [DMM92, paragraph 14, Chapter XX], for any random time 7, the sets {Z =0}
and {Z_ = 0} are disjoint from ]0, 7] and have the same lower bound R, the smallest F-
stopping time greater than 7. Thus, we also conclude that {Z = 0} is disjoint from ]0, 7[.
This leads to assertion (a). The process X := Zilllﬂoﬁ[[ being a cadlag F7-supermartingale
[Yor78], its left limit is locally bounded. Then, due to

(Z-) "o = X,

the local boundedness of H follows. This ends the proof of the lemma. ]
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6.3.1 Relationship between dual predictable projections under F” and F

The main results of this subsection are summarized in Lemmas 6.17 and 6.18, where we
address the question of how to compute F7-dual predictable projections in term of F-dual
predictable projections and vice versa. These results are essentially based on the following
standard result on progressive enlargement of filtration (see Proposition 1.39).

Let M be an F-local martingale. Then, for any random time 7, the process

P tAT d(M F
M, = M;/ <Zm> (6.10)
0 s—

is an F7-local martingale, where m is defined in (6.2).

In the following lemma, we express the F7-dual predictable projection of an F-locally in-
tegrable variation process in terms of an F-dual predictable projection, and F”-predictable
projection in terms of F-predictable projection.

Lemma 6.17. The following assertions hold.

(a) For any F-adapted process V' with locally integrable variation, we have
T g - - a]F
(VTP =(Z_) My (Z.V) (6.11)

(b) For any F-local martingale M, we have, on [0, 7]

. <A£\/[> _ P (AM1{2>0}) and PET < 1) _ M (6.12)

7 Z_ 7 Z_

(¢) For any quasi-left-continuous F-local martingale M, we have, on [0, 7]

AM 1 1
p7FT 2 _ p,FT s _
( Z > 07 a/nd <Z_ + Am(qc)> Z_ )

where m\99 s the quasi-left-continuous F-martingale defined in (6.7).

Proof. (a) Using the process H introduced in (6.9), the equality (6.10) takes the form
M™ =M + Hlg . (M,m) .
By taking M =V — VPF we obtain

. = — 1
VT = Do, - VP Mt Hiljo o (Vom) = M4 Dy« V¥ o =Ty (Am V)P,

which proves assertion (a).
(b) Let M be an F-local martingale, then, for any positive integers (n, k) the process
y (k) . — > A7M]1{|AM‘2,€,17 Fon-1} has locally integrable variation. Then, by using the
known equality ¥ (AV) = A(VPF") (see Lemma 1.13), and applying assertion (a) to the
process V%) we get, on ]0, 7]

P <A£w]1

1 F
7 Liampzr, Z>n—1}> = (2

{|AM|>k1, ZZn_1}> .
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Since M is a local martingale, by stopping, we can exchange limits with projections in both
sides. Then by letting n and k go to infinity, and using the fact that Z > 0 on ]0, 7], we
deduce that

(8) = (o).

This proves the first equality in (6.12), while the second equality follows from Z=Am+27Z_
(see [JYT78]):

Z_ P (2—1) — PFT ((Z — Am) /Z) —1- PFT (Am/Z)

=1-(z_)"'rF <Amﬂ{2>o}) =1-n (H{Z:o}) = p’F(ﬂ{Z>o}> :

In the above string of equalities, the third equality follows from the first equality in (6.12),
while the fourth equality is due to »¥(Am) = 0 and Amllz_ oy =—Z-1 This ends
the proof of assertion (b).

{Z=0}

(c) If M is a quasi-left-continuous F-local martingale, then P (AMH{Z>0}) = 0, and

the first property of the assertion (c) follows. Applying the first property to M = m(?®) and
using that, on ]0, 7], one has Am( (Z_ + Am)™' = Am(e©) (Z-+ Am(qc))_l, we obtain

1 Z_ _ (e Ama©) _ 1
Z_ Z_ + Am(9©) Z_ 7Z_ + Amlq©) 7Z_

This proves assertion (c), and the proof of the lemma is achieved. |

The next lemma proves that A *1]1]]07711 is Lebesgue-Stieljes-integrable with respect to any
process that is F-adapted with F-locally integrable variation. Using this fact, the lemma
addresses the question of how an F-compensator stopped at 7 can be written in terms of an
F7-compensator, and constitutes a sort of converse result to Lemma 6.17(a).

Lemma 6.18. Let V be an F-adapted cadlag process. Then the following properties hold.
(a) If V belongs to A" (F) (respectively V € A*(F)), then the process

loc

U:=Z2"1y,.V, (6.13)

belongs to Al (F7) (respectively to AT (F7)).
(b) If V' has F-locally integrable variation, then the process U is well defined, its variation is
F7-locally integrable, and its F7-dual predictable projection is given by

T

p,F

UpET — (%]1]]077}] . V> = Z%ﬂ]]oﬂ] . (]1{2>0} . V)pJF. (6.14)

In particular, if suppV C {Z > 0}, then, on 0, 7], one has VP¥ = Z_ ,UPF".
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Proof. (a) Suppose that V € A;ZC(F). First, remark that, due to the fact that Z is positive
n 0, 7], U is well defined. Let (9,)n,>1 be a sequence of F-stopping times that increases
to oo such that E (Vy,) < oco. Then, if E (Uy, ) < E (Vy, ), assertion (a) follows. Thus, we

calculate
n 1 Un P(T > t|F)
E < /O ﬂ{o<tsT}Zd‘4> =E ( /0 Zﬂ{zpo}dvt)

< E(W,)-

E (Uy,)

The last inequality is obtained due to Z; := P(7 > t|F;). This ends the proof of assertion
(a) of the lemma.

(b) Suppose that V' € Ao (F), and denote by W := VT4V~ its variation. Then W € A} (F),
and a direct application of the first assertion implies that

(2)71 o, - W € Af (7).

As a result, we deduce that U given by (6.13) for the case of V = V' — V™ is well defined

and its variation is equal to (2) 1jo-j » W which is F7-locally integrable. By setting
Un == Tjgr (2_1]1{221/71} . V), we derive, due to (6.11),

FT 1 pF
(U)P :ZnﬂoJﬂ.(n{Zﬁ/n}.v) .

Hence, since UPF" = lim,, o (Uy,)? 7 by taking the limit in the above equality, (6.14)
immediately follows, and the lemma, is proved. ]

6.3.2 An important F"-local martingale

In this subsection, we introduce an F"-local martingale that will be crucial for the construc-
tion of the deflator.

Lemma 6.19. The following nondecreasing process

Vi = S PE (n{zzo})un{ug} (6.15)

0<u<t
1s F7-predictable, cadlag, and locally bounded.

Proof. Let us define R= R{ZR=O<ZR,

R was defined in Lemma 6.16. Then, one has

VI = Y P (Wpiaeny) Mz = D 7 (Ugz), B

0<u<t 0<u<t

} using the convention introduced in (1.1) and where

= > (A(]l[[é,oo[[):F Lu<ry = (“néa,mu)i'

0<u<t
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Here R® is the accessible part of E, and there exists a sequence of F-predictable times with
disjoint graphs v, such that

p,F ~,
(ﬂﬂﬁ‘l,ooﬂ> = ZP(R = Un’fvn—)]l[vn,oo[[-
The result follows. ]

The important F7-local martingale will result from the optional integral recalled in this
thesis in Section 1.1.8.

Now, we are ready to define the F7-local martingale which will play the role of deflator for
a class of processes.

Proposition 6.20. Consider the following F7-local martingale
. 1

— F
m = ]1]]077.}] M — ZHHO’TH . (m> R

and the process
Z2 Ly
72 + A(m)F 7 1o
(m,F7) defined in Definition 1.24. Furthermore, the

K =

Then, K belongs to the space °L}

loc

F7-local martingale
L:=—-Kom, (6.16)
satisfies the following:
(a) E(L) >0 (or equivalently 1 + AL > 0);
(b) for any M € Mg o.(F), setting M:=M" - Z:lll[[ojﬂ] (M, m)¥, we have

o~

(L, M] € Apo(F7) (i,e., (L, M ea:ists) . (6.17)

Proof. We shall prove that K € °L],_(m,F7) in the appendix 6.6.2.
We now prove assertions (a) and (b). Due to (6.45), we have, on ]0, 7],
. N -1
AL = KAm - PP (KAR) =1 Z_ (Z) - va(n {220}).

Thus, we deduce that 1 + AL > 0, and assertion (a) is proved. In the rest of this proof,
we will prove (6.17). To this end, let M € M o(F). Thanks to Proposition 1.25, (6.17) is
equivalent to

— —~

K .[m, M] € Aj,.(F7) or equivalently E]lﬂoﬂ] m, M € Ao (FT)

for any M € Mg joc(F). Then, it is easy to check that

}Zvn}](),r]] [, M) = %11]]0,71] « [m, M) — Zlgﬂ]]o,ﬂ] [(m)F, M]
= l’*']1]]07']} . [va} - ;]1]]07] . [’I?’L, <M1 m>]F]
/A Z_7Z 7
1

———1oq - [(m)", M] +

A E oo, m)F.
7 5 77 7 o] [((m)", (M, m)"]
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Since m is an F-locally bounded local martingale, all the processes
[, M, [m, (M, m)"], [(m)¥, M], and [(m)", (M,m)"]

belong to Aj.(F). Thus, by combining this fact with Lemma 6.18 and the F™-local bound-
edness of Z_"1y ;) for any p > 0, it follows that A € Ajo.(F7). This ends the proof of the
proposition. ]

6.4 Explicit deflators

This section describes some classes of F-quasi-left-continuous local martingales for which
the NUPBR is preserved after stopping with 7. For these stopped processes, we explicitly
describe their local martingale densities in Theorems 6.21-6.25 with an increasing degree of
generality. We recall that m(?®) was defined in (6.7) and L was defined in Proposition 6.20.

Theorem 6.21. Suppose that S is a quasi-left-continuous F-local martingale. If S and T
satisfy
{AS£0}N{Z_>0=2}=0, (6.18)

then the following equivalent assertions hold.
(a) E(L) ST is an F7-local martingale.
(b) € (]1{2:0<Z_} ©) m(qc)> S is an F-local martingale.

Proof. We start by giving some useful observations. Since S is F-quasi-left-continuous, on
the one hand we deduce that (T, is defined in (6.7))

(S,m)F = (S, mUNF = (S 1pe vm)F. (6.19)

On the other hand, we note that assertion (a) is equivalent to £(L{49))ST is an FT-local
martingale, where L(99) is the quasi-left-continuous local martingale part of L given by
L) = Ipe L=-KO m(9°). Here K is given in Proposition 6.20 and

mlao) .— Ljo. - m(a9 _ (Z-)1jo - (mlaoNF.
It is easy to check that (6.18) is equivalent to

Ly, oz [Sm] =0. (6.20)

We now compute —(L(1¢), S V" where S is the F™-local martingale given by
S:=8" — (Z_)’lll}]oﬂ] (S, m)F.

Due to the quasi-left continuity of S and that of m(4°) | the two processes (S, m)¥ and (m(29))F
are continuous and [S,m(9)] = [S,m]. Hence, we obtain

K.[5,ml)) = K.[S,m4) - KAmY)(Z_ ). (8,m)F
(Z2) Myo,rq « [S,m %) = (Z2) Mg 11« [S, ).
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It follows that

(L0, 8)F7 = (K 8, m )P = ((Z) Mgo 09 - [Som] )
= (Z,)_l]l}]oﬂ_]] . (]1{2>0} . [S, m])pﬁ

_ p.F
= (2 My (Nmgey - [S,m])
ym)" 4 (Z-) " o7+ (S, iz 0z 3@ mUNE (6.21)
The first and the last equality follow from Proposition 1.25 applied respectively to L(29) and

—1 (F=0<z_}© m{4°). The second and the third equalities are respectively due to (6.19) and
(6.14).

Now, we prove the theorem. Thanks to (6.21), it is obvious that assertion (a) is equivalent
to (S, W5 oez 1 © m4)F = 0 which in turn is equivalent to assertion (b). This ends the
proof of the equivalence between (a) and (b).

It is also clear that the condition (6.18) or equivalently (6.20) implies assertion (b), due to
[]I{Z:0<Z—} ©mlt), 5] = Lz ocz_y- [m, 5] =0. n

Remark 6.22. Suppose that S is a quasi-left-continuous F-local martingale and let

Ry:=R (6.22)

{Zr=0}
where R was defined in 6.8 and we use the convention (1.1). Then, £ (L)S" is an F™-local

martingale, where

5im 0 1 (A T )

Indeed, writing
S.= S Ro _ ASROH[[RO,OO[[ + (ASROH[[R(J,OO[[)I)’]F

it is easy to see that the condition (6.18) is satisfied for S.
Corollary 6.23. If S is quasi-left continuous and satisfies NUPBR(F) and
{AS£0}N{Z_>0=2} =0,

then S satisfies NUPBR(F7).

Proof. This follows from Proposition 1.59, Theorem 6.21 and the fact that, for any proba-
bility measure QQ equivalent to P, we have

{(Z_>0n{Z=0}={2%> 0 n{z%=0}.

Here Zé@ = Q(7 > t|F:) and Z@ = Q(7 > t|F;). This last claim is a direct application of
the optional and predictable Section theorem 1.10. [

In order to generalize the previous result, we need to introduce more notation and recall
some results that are delegated in the Appendix. For the random measure p defined in (1.3),
we associate its predictable compensator random measure v.
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Definition 6.24. For a quasi-left-continuous process, G} .(u,F) (respectively H;. (1, F)) is
the set of all P(F)-measurable functions (respectively all O(F)-measurable functions) W
such that

VW2xpu e Al (H).

A direct application of Theorem 1.26, to the martingale m, leads to the existence of a local
martingale m* as well as a process B, € L(S¢,F), a P(F)-measurable functional f,, and an
O(F)-measurable functional g, such that fm, € GL (1, F) and g, € H}, (1, F) such that

M = B« S+ fn * (1t — V) 4 g % o +m>. (6.23)

We introduce pf" := Lo,-] x p and its F™ compensated measure

(e, dx) = (1 + S (@) ) Z ) po 7 (t)v(dt, dz). (6.24)

We now state our general result that extends the previous Theorem 6.21.

Theorem 6.25. Suppose that S is an F-quasi-left-continuous local martingale. Consider
SO 4, and L defined in (6.3) and (6.16). If (S, S’(O)) is an F-local martingale, then
E (L + L(l)) S™ is an F7-local martingale, where

T T 1 - /lp
LW = L d ggi=—" 1 .
g1 % (p v ), and ¢ Lt fon) 2 {>0}

Proof. We start by recalling from (6.4) that {¢» = 0} = {Z_ + f,,, = 0}, ME)—a.e. Thus the
functional g1 is a well defined non-negative P(F)-measurable functional. The proof of the
theorem will be completed in two steps. In the first step, we prove that the process L() is a
well defined local martingale, while in the second step, we prove the main statement of the
theorem.

1) Herein, we prove that the integral g; * (MFT — I/FT) is well-defined. To this end, it is
enough to prove that g; « uf € A+ (F7). Therefore, remark that

(1= )z y = M, (]1{2:0<Z7}|73(F)> =M, (ﬂ[[RO]]\P(F)> Tio<z 3,
(where Ry is defined in 6.22) and calculate

E (91 *M]i:) = E (glg*ﬂoo>

IN

E (ILjgy) * Hoo) =P (ASR, # 0, Rg < 00) <1
Thus, the process L) is a well defined F™-martingale.

2) In this part, we prove that & (L + L(l)) S7 is an F7-local martingale. To this end, it is
enough to prove that (S7, L + L(M))F" exists and

T T FT
ST+ <ST, L+ g1 % (,u]F —F >> is an F7-local martingale. (6.25)
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Recall that
zZ? Ly o
—_—— — m
Zz + A<m>F Z ﬂovTﬂ )
and hence (S™,L)f" exists due to Proposition 6.20(b). By stopping, there is no loss of

generality in assuming that S is a true martingale. Then, using similar calculation as in the
first part 1), we can easily prove that

L:

E [|5C\91 *Mg} < E (JASR [ 1{gy<oo}) < 0.

This proves that <ST, L+ L(1)>FT exists. Now, we calculate and simplify the expression in
(6.25) as follows.

T T F™ = 1 T T

ST+ <ST,L + g1 % (,uF —F )> =S+ 7HHO’TH (S, m)F + (97, L) gy xF
1 p,F .
= S + i]l]]oﬂ_]] . <S, m> — ZHHO’TH . II'{Z>O} . [S, m]) —+ g1 *I/F

~ F -
P
= S + ZHHO,T]] . (II'{ZZO} . [S, m]) + iEM# (II'{Z=0<Z_}‘7D(]F)> H{Z—"!‘fm>0}]lﬂ0ﬂ']] * UV

= § — I'ME (H{Z=O<Z_}‘5(F)) ]l{wzo}]l]]oﬂ_]] *x UV = § S MZOC(FT).

The second equality is due to (6.21), while the last equality follows directly from the
fact that S is an F-local martingale (which is equivalent to rly—o<cz_y *v = 0) and

ME (n{2:0<2_}|ﬁ(F)> = llyo<z_}(1 —¢). This ends the proof of the theorem. [

Remark 6.26. (a) Both Theorems 6.21-6.25 provide methods that build-up explicitly o-
martingale density for S7, whenever S is an F-quasi-left-continuous that is a local martingale
under a locally equivalent probability measure, and fulfilling the assumptions of the theorems
respectively.

(b) The extension of Theorem 6.21 to the general case where S is an F-local martingale (not
necessarily quasi-left-continuous) boils down to find a thin predictable process ® such that
Y := &(®. L) will be the martingale density for S™. Finding the process ® will be easy to
guess when we will address the case of thin semimartingale. However the proof of Y is a
local martingale density for S7 is very technical. The extension of Theorem 6.25 to the case
of arbitrary F-local martingale S requires additional careful modification of the functional
g1 so that 1 + ®(AL + AL(l)) remains positive. While both extensions remain feasible, we

opted to not overload the paper with technicalities.

6.5 Proofs of main theorems

This section is devoted to the proofs of Theorems 6.1, 6.6 and 6.9. They are quite long,
since some integrability results have to be proved. We write the canonical decomposition of
S (see Section 1.1.10)

S=8g+ S +hx(u—v)+b. A+ (z—h)*pu,
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where h is defined as h(r) := 1, <1; is the truncation function and v is the compensator
of . The canonical decomposition of S™ under F” is given by

S7=So+ 8¢+ hok (W =T+ Dty g A LU g kv + b AT (@ — h) %
where " and v and (B, fm) are given in (6.24) and (6.23) respectively and

Te c 1 c
S¢ = ]1]]0’71] S — ZHHO’TH . (m, S >]F

6.5.1 Proof of Theorem 6.1

The proof of Theorem 6.1 will be completed in four steps. The first step provides an equiva-
lent formulation to assertion (a) using the filtration F instead. In the second step, we prove
(a)=(b), while the reverse implication is proved in the third step. The proof of (b)<= (c)
is given in the last step.

Step 1. Formulation of assertion (a). Thanks to Proposition 1.56, S™ satisfies NUPBR(FF7)
if and only if there exist an F7-local martingale LF" with 1+ALF" > 0 and an F™-predictable
process ¢" such that 0 < ¢f" <1 and & (LFT) ((bFT . ST) is an F7-local martingale. We can
reduce our attention to processes L¥  such that

LF = 37080+ (f7 = 1) % (b =)
where 7 € L(S\C,IFT) and fF is positive and such that ff — 1€ GL (uf",F7).
Then, one notes that &£ (LFT) (quFT . ST) is an F7-local martingale if and only if ¢ . S™ +
[¢F" . ST, LF] is a F7-local martingale, which in turn, is equivalent to

o |z () — h(x)| (1 + fr;(x)> Lo,y v € Af(F7), (6.26)
and P® A — a.e. on [0,7] (using the kernel F defined in Section 1.1.10 and studied in

Appendix 6.6.1)

b+ c(%’j +65) + / [(xfw (z) — h(x)) (1 + f’;@) + h(x)f”%(_x)} F(dz) =0. (6.27)

From Lemma 6.33, there exist ¢ and 8 two F-predictable processes and a positive ﬁ(F)—
measurable functional, fF, such that 0 < ¢F < 1,

B =", ¢" =", f7 =" on [0,7]. (6.28)

Then, from Proposition 6.34 we deduce that (6.26)—(6.27) imply that, on {Z_ > ¢}, we have
F._ F Jm(2) 1

W= [ [(xf () — h(z))| [ 1+ ~ F(dz)<oo P®A-—ae, (6.29)

and P® A-a.e. on {Z_ > 6}, we have

b+c (BF + gm) —/ h(z)ﬂ{¢_0}F(dl‘)+/ |:fo($)(1 + fZ(x)) — h(IE) ]l{¢>0}F(d$) =0.

(6.30)
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This latter equality follows as {¢) =0} = {Z_ + f, = 0} (see 6.4).

Step 2. Proof of (a) = (b). Suppose that S7 satisfies NUPBR(F7), hence (6.29)—(6.30)
hold. To prove that 1yz>5 « (S — Sy satisfies NUPBR(F), we consider

B = (ﬂn”‘+5)]1{z25} and f:fJF(l fm>]120+1128,

where o := {Z_ > 6, ¢ > 0}. If B € L(S%,F) and (f — 1) € G} (1, F), we conclude that
L':=B3.54+(f-1)*(u—v)

is a well defined F-local martingale. Choosing ¢ = (1 + WFH{Zizcg})il where WF is de-
fined in (6.29), using (6.30), and applying Ito’s formula for (L) (¢l >4 - (S — S(O))),
we deduce that this process is an F-local martingale. Hence, 117 >s} - (S — S(O)) satisfies
NUPBR(F), and the proof of (a)=(b) is completed.

Now, we focus on proving 8 € L(S¢F) and (f — 1) € Gl (u,F) (or equivalently
V/(f = 1)2 % pu belongs to A (F)). Since By, € L(5¢,F), then it is obvious that %H{Z >5}
belongs to L(SC7 F) on the one hand. On the other hand, (85)7cf¥1; 545y . A € A} (F)
due to (8) e AT = (BF)Tepf" L AT € Al (F7) and Appendix Proposition 6.34(c). This
completes the proof of g € L(S¢,F).

Now, we focus on proving (f — 1) € Gl (u,F). Since S is quasi-left-continuous, this is
equivalent to prove \/(f —1)2%p € Al (F). Thanks to Appendix Proposition 6.34 and
VOF =125 45 = \/( fF7 —1)2 % 4" belongs to A (F7), we deduce that

(fF =1 g 1|<a}le{Z soy*pand |5 — 1[I pe 1|>a}Z]1{Z o) %1€ A (F).

By stopping, there is no loss of generality in assuming that these two processes and [m,m)|
are integrable. Then,

f—1:(fF—1) (1+§j> Iy, + é”j 5o = h1 + ho.

Therefore, we derive that

2
E [h%]l{\fF—llﬁa}*“OO} < 0E {(fF— 1) (Z- +fm)2ﬂ{IfF—1|<a}]l{Z—26}*“°°]

IN

2 -
) |:(f]F — 1) Z]l{|f]F—1|§oc}]1{Zfz5} */LOO:| < 00,
and

E [[hll{j-1ja) *boc] < §TE[If =1 1Z- + finllgs 150y Uiz 55y * too]
SR [|f — 1|Z]l{‘f,1|>a}]l{z_25} *,uoo} < 0.

V2 e Ar (F

loc

By combining the above two inequalities, we conclude that (h% * ,u) (F). It is easy

to see that (h3 * p) 2 ¢ Ajb (F) follows from

E[h3 % pics] < 0 2E [f2 % fioo] < 0°E [(Am)? % pioo] < 6°E[m,m] < oo.
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Step 3. Proof of (b) = (a). Suppose that for any ¢ > 0, the process ;7 _>s} . (S — S(O))

satisfies NUPBR(F). Then, there exist an F-local martingale LF and an F-predictable process
¢ such that 0 < ¢ <1 and & (LF) [(Z)ﬂ{z_zg} . (S — S(O))] is an F-local martingale. We can
restrict our attention to the case

LF =85S+ (ff = 1) * (n—w),

where B € L(S¢ F) and f¥ is positive such that f¥ —1 € G _(u,F).

Thanks to [t6’s formula, the fact that € (LF) [gf)]l{z_ >5) » (S — S(O))} is an F-local martingale
implies that on {Z_ > §}

KF / 12fF (@) L payo0y — h(@)|F(de) < oo P A—ae.
and P® A-a.e. on {Z_ > 6}, we have

b— /h(l‘)ﬂ{w:U}F(dfﬂ) + CﬂF + / [l’f]F(w) — h(a:) ﬂ{w(x)>0}F(d1‘) =0. (6.31)
Recall that {¢) =0} = {Z_ + f,,, = 0} and consider

- Bm - fr
B = <ﬁF - Z) ljo, and f* = mﬂ{wo}ﬂﬂo,ﬂ] + Lyp—0}ulr,00[-

If we assume that
B e L(S¢,F) and (fF —1)egL.(u"), (6.32)

then, necessarily LF" := gF",§¢ 4 (fF" = 1) (uF" —F7) is a well defined F™-local martingale
satisfying £(LF") > 0. Furthermore, due to (6.31) and to {¢) = 0} = {Z_ + f,, = 0} (sece
(6.4)), on ]0, 7] we obtain

b+e <5FT + ?”) +/ (:z:fFT (1 + ?) - h(:c)) F(dz)=0. (6.33)

By taking ¢ := (1+ kﬁ?]l{ziz(;})_l, and applying It6’s formula to (¢]FT]1{2725}.ST)5(LFT),
we conclude that this process is an F7-local martingale due to (6.33). Thus, Ty >5 . S7
satisfies NUPBR/(F") as long as (6.32) is fulfilled.

Since Z‘l]l[[O’T[ is F7-locally bounded, then there exists a family of F7-stopping times (75)s>0
such that [0,75] C {Z_ > ¢} (which implies that ;5 >4y . S7"™ = S7') and 75 increases
to infinity when & goes to zero. Thus, using Proposition 1.59, we deduce that ST satisfies
NUPBR(F7). This achieves the proof of (b)=(a) under (6.32).

To prove that (6.32) holds true, we remark that Z:l]l]]oﬁ]] is F7-locally bounded and both
Bm and ¥ belong to L(S¢ F). This, easily, implies that g% ¢ L(@,FT).
Now, we prove that /(fF" — 1)2% uF™ € A}F (F7). Since /(fF — 1)2% p € A (F), Propo-

sition 6.34 allows us to deduce that

(fF = 1Ny qj<ay * 1 € AL(F) and 5 = 1Ty o150y * 1 € AL (F).



6.5. PROOFS OF MAIN THEOREMS 133

Without loss of generality, we can assume that these two processes and [m, m| are integrable.
Put
Z_(f7 - 1)

. _ fm
ff-1= n{w>0}ﬂﬂ0’Tﬂm - ﬂ{w>o}ﬂ]]0,r]]m = fi+ fo

Then, we calculate

E <f1211{fm+2—>6/2}ﬂ{|fF—1\Sa} *,}E;) <(3)°E ((fF — 1?15 1)<ay *uoo) < o0

and
E<\/f2]1 ) < GE(1 Z 1
Ptz <s/ngii—ti<ay * M ) S 0B(Lyp, 1z <oy (Z- + fm) ™ x i (00))
< E(Lyp,126/2) * 1(00))
4o
< ﬁE([mvm]OO)
< ©oQ.

This proves that \/ffllﬂfF,llSa} * pF" € A (FT). Similarly, we calculate

loc

E (AL apay <#5) < E(AIL g 1psay < #2)

IfF =1 Fr
D <1 + fm/Z— ﬂ{‘fﬂr—lba} * oo
< E(f7 = g gjsag * i)
< ©00.

IN

Thus, by combining all the remarks obtained above, we conclude that /7 * " is F™-locally
integrable. For the functional fs, we proceed by calculating

E(fgn{fm+z_>5/2} *ME;) < (2/5)21[*:(]031*/%0) < (2/5)2E([m, m]oo) < 00,

and

E(]fm|Lf,. 2672} * 1(00))
(2/8)E(f * 1(0))
(2/8)E([m, m]oo)

E (\/ffﬂ{fmz <5/2} * ,ﬁgg)

AN VAN VAN VAN

This proves that /f3 x uf™ is F7-locally integrable. Therefore, we conclude that (6.32) is
valid, and the proof of (b)=-(a) is completed.

Step 4. Proof of (b) <= (c). For any § > 0, we denote
75 == sup{t : Z;_ > d}.
Then, due to |R,o00[C {Z_ =0} C {Z_ < §}, we deduce

o1s <178 <R and Z; >0>0 P—as. on {75 <oo}
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where o, are defined in Theorem 6.1 and R is defined in Proposition 6.16. Furthermore,
setting 3 1= (), (0n < R), we have

on YXN{R< o0} Zr_-=0, and 75 <R P—a.s.

We introduce the semimartingale X := S —S©_ For any § > 0, and any H predictable such
that Hs := Hlliz >5 € L(X,F) and Hs- X > —1, due [DM80, Theorem 23 p.346],

(H5 . X)T = (Hg . X)T/\TS, and on {9 Z Tg} <H5 : X)T = (H5 . X)T/\g.
Then, for any T € (0,00), we calculate the following

P((Hs - X)T >c)=P(Hs - X)r>c, opb >75)+P(Hs- X)r > ¢, op < 7'5)

6.34
<2 sup P((¢p- X)gonr > )+ P(op, <715 AT). (6.34)
GEL(Xon): X" > 1

It is easy to prove that P(o, < 75 AT) — 0 as n goes to infinity. This can be seen due to
the fact that on X, we have, on the one hand, 75 AT < R (distinguish the two cases whether
R is finite or not). On the other hand, the event (0, < R) increases to ¥ with n. Thus, by
combining these, we obtain the following

Plop, <ms ANT)=P((00 < Ts NT)NE) +P((0p, < 5 ANT) N XC)
(6.35)
<P(o, <15 ANT < R)+P((c0, < R)NX°) — 0.

Now suppose that for each n > 1, the process (S — S(©) satisfies NUPBR(F).
Then a combination of (6.34) and (6.35) implies that for any 6 > 0, the process
iz 55« X == Nz 55+ (S — Sy satisfies NUPBR(F), and the proof of (c)= (b) is
completed. The proof of the reverse implcation is obvious due to the fact that

[0,0,] C{Z_>1/n}C{Z_>6}, for n<é !,

which implies that (17 >+ X)?" = X7". This ends the proof of (b) <=>(c), and the proof
of the theorem is achieved.

6.5.2 Intermediate results

The proofs of Theorems 6.6 and 6.9 rely on the following intermediatory result about F-
martingales with a single jump, which is interesting in itself.

Proposition 6.27. Let M be an F-martingale with Mo = 0 gwen by M := {17 o[, where
T is an F-predictable stopping time, and & is an Fp-measurable random variable. Then the
following assertions are equivalent.

(a) M is an F-martingale under Qr given by

d 1,: ~
Qr _  {Zr>ora) ey, D(T):={P(Zr > 0|Fr_) > 0}. (6.36)

dP " P(Zr > 0| Fr_)
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(b) On the set {T < oo}, we have
E (Ml _y| Fr) =0, P-as. (6.37)
(¢) M7 is an F™-martingale under Q% := (U* (T)/E(U (T)| F r-)) - P where

. Zr_
U™ (T) = N ygon + n{TST}ZL > 0. (6.38)
T

Proof. The proof will be achieved in two steps.

Step 1. Here, we prove the equivalence between assertions (a) and (b). For simplicity we
denote by Q := Qr, where Qr is defined in (6.36), and remark that on {Zr_ = 0}, Q
coincides with PP and (6.37) holds, due to {Z7y— = 0} C {Zr = 0}. Thus, it is enough to
prove the equivalence between (a) and (b) on the set {T' < oo, Zp_ > 0}. On this set, due
to E(§|Fr—) =0, we derive

~ -1
EUE|Fr) = Bl 5, 0|7 ) (PZr > 0|Fr))
— —E(l5,_q)|Fr-) (P(Zr > o\fT_)))fl.

Therefore, we conclude that assertion (a) (or equivalently EQ(¢|Fr_) = 0) is equivalent to
(6.37). This ends the proof of (a) <= (b).

Step 2. To prove (a)<=>(c), we first notice that thanks to (I' < 7) C (Zp > 0) C (Zp_ >
0), on {T' < 7} we have

~ T - Z —
P (Zr>0|Fr ) EY (¢77.) = E (ZTT@{TST}!F%> = E(¢1(7,.0/1-)

= E@ (£|.7:T,)P (ZVT > O’fT—> .

This equality proves that M7 € M(Q% ,F7) if and only if M € M(Q,F), and the proof of
(a)<=>(c) is completed. This ends the proof of the theorem. [

6.5.3 Proof of Theorem 6.6

For the reader convenience, in order to prove Theorem 6.6, we state a more precise version
of the theorem, in which we explicitly describe some possible choices for the probability
measure Qr.

Theorem 6.28. Suppose that the assumptions of Theorem 6.6 are in force. Then, the

assertions (a) and (b) of Theorem 6.6 are equivalent to the following assertions.

(d) S satisfies NUPBR(IF,@T), where Qr is

~ ZT
Qr = (ZT_H{ZT—>0} + H{ZT—:0}> P,

(e) S satisfies NUPBR(F,Qr), where Qr is defined in (6.36).
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Proof. The proof of this theorem will be achieved by proving (d) <= (e) <= (b) and
(b) = (a) = (d). These will be carried out in four steps.

Step 1. In this step, we prove (d) <= (e). Since S is a single jump process with predictable
jump time 7', it is easy to see that the fact that S satisfies NUPBR under some probability
Q* is equivalent to the fact that 1 4.5 and 1 4.5 satisfy NUPBR(Q*) for any Fr_-measurable
event A. Hence, it is enough to prove the equivalence between the assertions (d) and (e)
separately on the events {Zp_ = 0} and {Zp_ > 0}. Since {Zp_ = 0} C {Zp = 0} and
E(Zp|Fr_) = Zp_ on {T < oo}, by putting T := {P(ZT > 0| Fro) = o}, we derive

E (Zr-lpynr<sc}) = E <2T]1Foﬁ{T<oo}) =0,

and
o:@({ZT,ZO}m{ZT>0}m{T<oo})

=E (Lzr_—opnir<oetP (Zr > 0|Fr-))

These equalities imply that on {T" < oo}, P — a.s., we have
{Zpr_ =0} =Ty c {Zp = 0}. (6.39)

Thus, on the set {T" < oo} NIy, the three probabilities P, Q7 and @T coincide, and the equiv-
alence between assertions (d) and (e) is obvious. On the set {T' < oo, P(Zr > 0|Fr-) > 0},
one has Qr ~ Qr, and the equivalence between (d) and (e) is also obvious. This achieves
this first step.

Step 2. This step proves (e)<=> (b). Again thanks to (6.39), we deduce that on {Z7_ = 0},
one has § = 5 = 0 and Qp coincides with P as well. Hence, the equivalence between
assertions (e) and (b) is obvious for this case. Thus, it is enough to prove the equivalence
between these assertions on {T' < co, P(Zp > 0|Fp_) > 0}.

Assume that (e) holds. Then, there exists an Fp-measurable random variable, Y, such that
Y >0 Qr —a.s. and on {T < oo}, we have

EQT (Y| Fr_) =1, EQ7(Y|¢||Fr_) < o0, and IEQT(Ygll{ZT>O}|J-‘T_) =0.
Since Y > 0 on {Zp > 0}, by putting

~ Yl
Y1 = Y]l{ZT>O} + H{ZTZO} and Y1 = W,

it is easy to check that Y7 > 0, Vi > 0,

E [an{ZT>O}\fT,]

=0.
E[Y|Fr_]

E[VilFr-| = Land E Vil g, | Fr-| =

Therefore, S is a martingale under P* := Y} - P ~ P, and hence S satisfies NUPBR(F). This
ends the proof of (e)=-(b).
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To prove the reverse sense, we suppose that assertion (b) holds. Then, there exists Y € L°(Fr),
Y >0, such that E[Y|¢[1 5 o\ [Fr-] < oo, E[Y[Fp_] =1and E[Y{L, 5 o\ [Fr-] =0 on
{Z7_- > 0}. Then, consider

Yz 0 P(Zr > 0| Fr-) 1
BV, o Fr] e

Y2 =

Then it is easy to verify that Yo > 0 Qr — a.s.,

E (Y€ 5 0 Fr

E[YH{ZT>O} | Fr—]

ECT (Yo|Fro) =1, and E% (Yaéll(y, -olFr-) =
This proves assertion (e), and the proof of (e)<=>(b) is achieved.

Step 3. Herein, we prove (a) = (d). Suppose that ST satisfies NUPBR(F7). Then there
exists a positive F7-measurable random variable Y¥' such that IE[fY]FT]l{TST}\]:%_] =0on
{T' < oo}. Due to Lemma 6.33(a), we deduce the existence of a positive Fr-measurable
variable Y¥ such that YFT]I{TST} = YF]L{TST}. Then, on {T' < oo}, we obtain

Lir<ry

0 = ElY Lpran |F7_) = EIEY" Zr|Fr-] =

Therefore, by taking conditional expectation in the above equality, we get

7 _ _
0= EEYF%H{ZT)O}VTJ =B (YT Fr ]z, w0y = B[SV | Fro].

This proves that assertion (d) holds and the proof of (a)=-(d) is achieved.

Step 4. This last step proves (b)=-(a). Suppose that S satisfies NUPBR(F). Then, there
exists an Fp-measurable, integrable r.v. Y such that on {T' < oo} we have

E[Y|Fr]=1, Y >0, E[Y|g|lz olFr]<oco, P—as.
and
E[YEL 5, o)l Fr]=0.
Then by considering Q* :=Y - P ~ P, we get
EY [Sr|Fr_] =E¥ (€15 ooyl Fr-] =0.
Therefore, assertion (a) directly follows from Proposition 6.27 applied to M = S under

Q* ~ P (it is easy to see that (6.37) holds for (S, Q%), i.e. EQ*(gTﬂ{ZT:U}LFT—) = 0). This
ends the fourth step and the proof of the theorem is completed. ]
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6.5.4 Proof of Theorem 6.9

To highlight the precise difficulty in proving Theorem 6.9, we remark that on {T" < oo},

Fr _ R
U (1) _1+ALr—AVE o S
EUT (DA 1-AG

where U™ (T) is defined in (6.38) and V¥ and L are defined in (6.15) and (6.16). This
highlights one of the main difficulties that we will face when we will formulate the results
for possible many predictable jumps that might not be ordered. It might not be possible to
piece up
FT Aan
U (Tn) =1-—= H{Tn<’r}a n =1,
Zr B

n

to form a positive F7-local martingale density for the process (1ypr,)+S)".

Thus, in virtue of the above, the key idea behind the proof of Theorem 6.9 lies in connecting
NUPBR with the existence of a positive supermartingale (instead) that is a deflator for the
market model under consideration.

Now, we start giving the proof of Theorem 6.9.

Proof of Theorem 6.9. The proof of the theorem will be given in two steps, where we prove
(b)=-(a) and the reverse implication respectively. For the sake of simplifying the overall
proof of the theorem, we remark that

{ZQ =0} = {ZT =0}, for any Q ~P and any F-stopping time T, (6.40)

where Z2 := Q[ > t|F]. This equality follows from

E(Zr1zo0y) =E (Tomy 1z ) =0,

(which implies {Z% = 0} C {Zr = 0}) and the symmetric role of Q and P.

Step 1.  Here, we prove (b)= (a). Suppose that assertion (b) holds, and consider a
sequence of F-stopping times (7, ), that increases to infinity such that Y™ is an F-martingale,
where Y is given in Proposition 1.56. Then, setting Q,, := Y, /Yo - P, and using (6.40)
and Proposition 1.59, we deduce that there is no loss of generality in assuming ¥ = 1.
Condition (6.37) in Theorem 6.27 holds for ASTn]I{ZTn>0} and AST,LH{Ean}ﬂ[[Tn,oo[L

Therefore, using the notation V¥ and L defined in (6.15) and (6.16), for each n,
(1+ALp, — AVTnT)ASTn]l{TnST}]]‘HTn,OO[ is an F7-martingale. Then, by a direct application
of Yor’s exponential formula, we get that, for any § € L(S7,F7)

5(nr.L—np.vFT)5(9nr.sf) —£(X)
where

Xi=Up L= 1r. VT + 3 0n, (14 ALz, — AVE) ASE Lz, <o) Ip, o

n>1
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Consider now the F™-predictable process

Z Enllr,]nfo,7] + Lreujroof; where

n>1
271+ EX)p, )"
(1 +E [|ALTH\ \f;ﬂ,} +AVE +E [yeTn 2Ly, <y AST,|

&n

,-])
Then, it is easy to verify that 0 < ¢ <1 and E (|¢+ £(X)|var(00)) < 37,51 27" = 1. Hence,

¢ . g(X) S A(FT) Since ALT,L]l[Tn,oo[[ and (1 + ALTH — AVTnT)ASTHH{T,IST}]I[[T”,OO[[ are

F"-martingales, we derive

(6 £ = 3 61,5, (X) E(A X 05, g oo = —68-(X) . V¥ <0,

This proves that £(X) is a positive o-supermartingale. Thus, thanks to Kallsen |Kal04],
we conclude that it is a supermartingale and (11{2725} . S)T admits a F7-deflator. Then,
thanks to Lemma 1.62, we deduce that (]l{Z_E(;} . S)T satisfies NUPBR(F"). Remark that,
due to the F7-local boundedness of (Z,)_lll[[oj]], there exists a family of F7-stopping times
75, 0 > 0 such that 75 almost surely converges to infinity when & goes zero and

[0,7 A71s] C {Z- > d}.

This implies that S satisfies NUPBR(F7), and the assertion (a) follows from Proposition
1.59 (by taking Q, = PP for all n > 1). This ends the proof of (b)=(a).

Step 2. In this step, we focus on (a)=-(b). Suppose that S” satisfies NUPBR(F7). Then,
there exists a o-martingale density under F7, for 1y, >s5 .57, (6 > 0), that we denote by
DF". Then, from a direct application of Theorem 1.26 and Theorem 6.31, we deduce the
existence of a positive ﬁ(FT)—measurable functional, f¥", such that D¥" := &(NF") > 0,
with

FT F7 F™ F7 F7 F J/&FT FT
N =W" x(uw —v ), W =Ff 1+1_7]l{aw <1}s
where 1" was defined in (6.24),and
FT fm _
xf H{Z >5}*V —a;f (1—|- Z) ]1]]0,7]]]1{Z_25}*V =0. (6.41)

Thanks to Lemma 6.33, we conclude to the existence of a positive ﬁ(F)—measurable func-
tional, f, such that f¥ o7 = fljo,-)- Thus (6.41) becomes

=af <1 + f) porqliz w0y % = 0. (6.42)
Introduce the following notations
po = Lz oz 55 M V0= = holliz_>sy - v, ho = ( {Z>U}|P)
Im
g = Mﬂ{mw} + T gpg—oy, ao(t) := wo({t},RY), (6.43)

ho
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and assume that
(g —1)2%pug € Al _(F). (6.44)

Then, thanks to Lemma 6.32, we deduce that W := (g —1)/(1 — a® +§) € G} (0, F), and
the local martingales

NO. g_l

= m*(ﬂo - VO)? Y0 = g(NO)a

are well defined satisfying 1 + AN? > 0, [NY,S] € A(F), and on {Z_ > 0} we have

pF (YOASIL . )
{Z>0})  _ pF 0 _ pF g
0 _ p ((1 +AN )Asn{2>o}) _ v <1 — +§AS]1{Z>O})
1 7Z_ PE(A
793;% — %V = Axf( + fm/,\ ) * U = Z:li( U)A =0
1-a+7 1-a%+7 1-a%+7

where U is defined in (6.42). This proves that assertion (b) holds under the assumption
(6.44).

The remaining part of the proof will show that this assumption always holds. To this end,
we start by noticing that on the set {hg > 0},

LR I A (R S +Mi‘f(ﬂ{zzoﬂp)
g ho ho Z_hg ho
= g1+ 92+ gs3.

Since ((f — 1)211}]0’7_]] *,u) 1/2 € At

loc

(F7), then due to Proposition 6.34(e)

VU =1Ly o5 % (Z- ) € A5, (F), for any 6> 0.
Then, by a direct application of Proposition 6.34(a), for any 6 > 0, we have

(F = DLt ajca & z 560 % (Z 1)y |f = 1Lgj 150 & 2z 56y % (Z - p) € AL (F).

By stopping, without loss of generality, we assume these two processes and [m,m] belong
to A*(F). Remark that Z_ + f, = MF (Z|75) < MF (11 { 5>0}|75) — ho that follows from

7 < ]1{§>0}. Therefore, we derive

f—=1)72 14 Imy2
E [giljj—1<a} * to(o0)] = E[( (1 + )

h2 -
0
< STE[(f — 1)2(Z- + fa)l{j-1]<a & 755} * Voo

= 0 ’E [(f — 1?15 1)<} * (211{2_25} ' M)oo}
< oo,

L r-1/<a} *Mo(OO>]
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and

£ =10+ 42)
E [g11{/-1j>a) * po(o0)] = E[ o L{j5-11>a} * Ho(00)

fm
= E [\f = HA+ 25150y Lz 26y * v0(o0)
< (5_1E [|f — 1|]1{|f—1\>a} * (Z]I{Z725} . ,U)oo]
< oQ.
Here g and vy are defined in (6.43). Therefore, again by Proposition 6.34-(a), we conclude

that \/g7 * po € AL (F).

ME(AmL, 5, |P
Notice that go + g3 = “< 272?0}' ) . Thanks to Lemma 6.29, we derive

B ~\ 2
7202

E [(92 + g3)* % po(0)] = E * o (o)

M (am)2(P) M (1 5.,/P)
770

IN
=

* f10(00)

ME ((Am)?P

= E 72

Iy >g % p(00)

< 62E[[m, m]ss] < 0.

Hence, we conclude that /(g — 1)2* po € A} (F). This ends the proof of (6.44), and the
proof of the theorem is completed. ]

6.6 Appendix

6.6.1 Representation of local martingales

The following is a simple but useful result on the conditional expectation with respect to
MP.
o

Lemma 6.29. Consider a filtration H satisfying the usual conditions. Let f and g two

nonnegative (5(H)—measumble Junctionals. Then we have
-\ 2 ~ ~
M (fol B) < ME (£ P)ME (2 P),  ME-ae.

Proof. The proof is the same as the one of the regular Cauchy-Schwarz formula, by putting
_ N\ 1/2 N\ 1/2

f=1f (ME) (fQ‘ P)) and g := g/ (ME) (92| P)) and using the simple inequality
ry < (2% + y?)/2. This ends the proof of the lemma. [
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The following lemma is borrowed from [Jac79, Theorem 3.75] (see also [CS13, Proposition
2.2]).

Lemma 6.30. Let E(N) be a positive local martingale and (B,f,g, Nl) be the Jacod’s
parameters of N. Then E(N) > 0 (or equivalently 1 + AN > 0) implies that

f>0 ME—a.e.

Theorem 6.31. Let S be a semimartingale with predictable characteristic triplet
(b,c,v=A®F), N be alocal martingale such that E(N) > 0, and (B, f, g, N') be its Jacod’s
parameters. Then the following assertions hold.

1) E(N) is a o-martingale density of S if and only if the following two properties hold:
/m— )+ 2f(@)|Flde) < oo, P®A—ae.
b+cﬁ+/(mh(m)+xf(m))F(dm) = 0, P®A—a.e.
2) In particular, we have

/ (1+ fi(x))v({t}, dr) = /xa+ﬂ@»ﬂmmA&:o, P— a.e.

Proof. The proof can be found in Choulli et al. [CSL07, Lemma 2.4], and also Choulli and
Schweizer |CS13]. n

Lemma 6.32. ([CS13]). Consider a filtration H satisfying the usual conditions. Let f be
a P(H)-measurable functional such that f > 0 and

(12 u] " € Al m).

-1
Then, the H-predictable process (1 —a"+ ﬁHI) 15 locally bounded, and hence

fi(z) =1 1
W )= ——————— € goc 7H .
t(z) 1— i+ J?tH oc (1, H)
Here, af' = vH({t},RY), = [ fi(x)V®({t},dz) and V™ is the H-predictable random

measure compensator of under H.

6.6.2 Proofof K €°L!}

loc

(m, F7)

We start by calculating on ]0, 7], making use of Lemma 6.17. We denote s := Z2 + A(m)F.
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KAR P (KAG) = B0 28T e (Upos1 22
KZ A
_ (Z2Am =2 A(m)) PR Gy Am)T)  PRAmL 5 ) Z- (6.45)

A K 7 K K
_am _ pF ~ _. _ FT
= Z ]1]]077.]] (ﬂ{Z:0}> ]1]]077]] = AV - AV" .

Here, V", defined in (6.15), is nondecreasing, cadlag and F™-locally bounded (see Proposi-
tion 6.19). Hence, we immediately deduce that S (AVF)2 = AVF" . VF" is locally bounded,
and in the rest of this part we focus on proving /Y (AV)% € A} (F7). To this end, we
consider ¢ € (0,1), and define C := {Am < —0Z_} and C° its complement in Q ® [0, col.
Then we obtain

)2 1/2 m)2 1/2
S@ave < (Z (Agz) ﬂC]l]WJ]]) +(Z (Agz) ﬂccﬂﬂovfo

Am 1 1 12
= Z‘ Z |ﬂcﬂuo,fu 1 s (ﬂuo,ﬂ]Zz-[mD =i+ Vs

The last inequality above is due to /S (AX)2 < S)|AX|and Z > Z_(1—6) on C¢. Using
the fact that (Z_)*I]IHOJ]] is F7-locally bounded and that m is an F-locally bounded mar-
tingale, it follows that V5 is F7-locally bounded. Hence, we focus on proving the F7-local
integrability of V1.

Consider a sequence of F7-stopping times (9, ), that increases to co and

((Z—)_lﬂ]]o,fﬂ)ﬁn <n.

2
For the process V3 := > % consider an F-localizing sequence of stopping times (7).
Then, it is easy to prove

n+9
Up = Z |Am| L Am<—s/ny < 3 Vs,

and to conclude that (U,)™ € A1 (F). Therefore, due to

CcnJo, 7] N [0,9,] = {Am < =5Z_} n]0,9,] N]0, 7]

c Jo,7] nJo,9,] N {Am < —%},

we derive

(Vi < (Z) " Mpog e (U™

Since (U,)™ is F-adapted, nondecreasing and integrable, thanks to Lemma 6.18, we deduce
that the process VIﬁ”AT” is nondecreasing, F7-adapted and integrable. Since ¥, A7, increases
to oo, we conclude that the process Vi is F7-locally integrable. This completes the proof of
K € °L} (m,F7), and the process L (given via (6.16) and Definition 1.24) is an F7-local
martingale.
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6.6.3 [ -localization versus F-localization

We now present results which are important for the proofs of Subsection 6.5.1.

Lemma 6.33. Let HY be a ﬁ(FT)—measumble functional. The following assertions hold.
(a) There ezist an P(F)-measurable functional HF and a B(R,) ® P(F)-measurable func-
tionals K¥ : Ry x Ry x Q x RY = R such that

H (w> t, .%') = H[F(wv t, 90)]1]0,7]] + KF(T(W)v t,w, 'r)]l]]T,OO]] : (646)

(b) If furthermore H® > 0 (respectively H* < 1), then we can choose HY > 0 (respectively
HY <1) such that
HY (w,t,2) 1o 1 = H (w, £, 7)1y 1.

Proof. The proof of assertion (a) exactly mimics the approach of Jeulin[Jeu80|, and will be
omitted. To prove the positivity of H¥ when HF" > 0 holds, we consider

H = (H")" + Lyye_gy > 0,
and we remark that due to (6.46), we have 0,7] C {H" = H'} c {H¥ > 0}. Thus,
we get HF' Lyor = F]Fll]]oﬂ]. Similarly, we consider HF A 1, and we deduce that if H* is
upper-bounded by one, the process H' can also be chosen not to exceed one. This ends the
proof of the proposition. ]

Proposition 6.34. For any o > 0, the following assertions hold.
(a) Let h be a P(H)-measurable functional. Then, \/(h — 1) % p € Al (H) if and only if

(h — 1)2]1{‘h,1‘§a} *ppand |h—1Tp_1jsay * i belong to AL (H).

(b) Let (657),, be a sequence of F-stopping times that increases to infinity. Then, there exists

a nondecreasing sequence of F-stopping times, (oL ),>1, satisfying the following properties

oS AT =05 AT, 0o :=supol >R P—a.s., (6.47)
n

n

and Zyom=0 P—as. on XN(0x <00), (6.48)

where ¥ := m (08 < 0uo)-
n>1
(c) Let V' be an F-predictable and non-decreasing process. Then, V7T € AZZC(FT) if and only

iflyz 5.V € Al (F) for any § > 0.

loc

(d) Let h be a nonnegative and P(F)-measurable functional. Then, hlljo * 1 € Al (F7) of
and only if for all 6 >0, hllz >4 *pul € AF (F), where p := Z . p.

loc

(e) Let f be positive and ﬁ(F)—measumble, and p! = Z. . Then

\/(f — 1)%Wo % p € AL (FT)

if and only if \/(f —1)21yy gy % pt € AL (F), for all § > 0.
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Proof. (a) Put W := (h — 1)2 % u = Wy + Wy, where W; = (h — 1)2]1{‘,1_”3&} * [,
Wy := (h — 1)2]1{|h,1‘>a} * 1. Let us introduce Wy := [h — 1|1l{j,_1|>a} * p- Note that

\/W:\/W1+W2§\/W1+\/WQ§\/Wl—l-Wé.

Therefore /W7 € Afg .and W3 € Afoc imply that W is locally integrable.
Conversely, if VW € A' | then /W, and /W5 are both locally integrable. Since W7 is

loc?
locally bounded and has finite variation, W7 is locally integrable. In the following, we focus

on the proof of the local integrability of W3. Denote
T i=1nf{t >0: V; >n}, where V :=Ws.

It is easy to see that 7, increases to infinity and V_ < n on the set ]0,7,]. On the set
{AV > 0}, we have AV > o?.
By using the elementary inequality /1 + 25 — /25 <1+ 2 -/ <1, when 0 <z < T,

we have

Vo + AV =V > VAV on ]0,7,], where B, = /1 + % - ,/%,
and

i = (£ )" & (Sav9) = () L () e

n

Therefore W) € (A (H))ioe = Af (H).

(b) Thanks to Jeulin [Jeu80], there exists a sequence of F-stopping times (o~ ),, such that

o AT =0F AT (6.49)

n

By putting oy, 1= supy<,, O']IE, we shall prove that

AT =0, AT, (6.50)

On

or equivalently {of A7 < &, A T} is negligible. Due to (6.49) and to the fact that o is
nondecreasing, we derive

n
{of <7} ={c <1} C ﬂ{a?T =o'} c {of =0,}.
i=1

This implies that
{oEnT <o AT} ={0f <7 & ol <0,} =0,

and the proof of (6.50) is completed. Without loss of generality we assume that the sequence
0¥ is nondecreasing. By taking limit in (6.49), we obtain 7 = 0 A 7,P-a.s., which is
equivalent to o, > 7,P-a.s. Since R is the smallest F-stopping time greater or equal than
7 almost surely, we obtain, 0o > R > 7 P-a.s. This achieves the proof of (6.47).

On the set X, it is easy to show that

Lo orp = Lo [ When n goes to oo.
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Then, thanks again to (6.49) (by taking F-predictable projection and let n go to infinity
afterwards), we obtain

Z_ = Z,ILHOJ]}O‘O[ on X.

Hence, (6.48) immediately follows, and the proof of assertion (b) is completed.

(d) Suppose that hllj - *p € Al (FT). Then, there exists a sequence of F7-stopping times

loc

(0F") increasing to infinity such that hlfo . * ,u"lff is integrable. Consider (o,,) a sequence

of F-stopping times satisfying (6.47)-(6.48) (its existence is guaranteed by assertion (b)).
Therefore, for any fixed § > 0

W i= M (ZIP) Lz sshxv™ € AT (F),

or equivalently, this process is cadlag predictable with finite values. Thus, it is obvious that
the proof of assertion (d) will immediately follow if we prove that the F-predictable and
nondecreasing process

W= MF <Z|75) iy ssyhxv s cadlag with finite values. (6.51)

To prove this last fact, we consider the random time 7° defined by
0 =sup{t > 0: Z_ >4}
Then, it is clear that Ij.5 ;- W =0 and
P < R<o. and Zis_>6 P-as. on {T‘S < 0o}

The proof of (6.51) will be achieved by considering three sets, namely {0, = o0},
Y N{ox < 00}, and XN {0 < oco}. It is obvious that (6.51) holds on {0 = c0}. Due to
(6.48), we deduce that 70 < 04, P-a.s. on ¥ N {04 < 00}. Since W is supported on [0, 79],
then (6.51) immediately follows on the set ¥ N {0 < co}. Finally, on the set

YN {00 < o0} = U{O‘n:O'OO} N{0x < 0},
n>1

the sequence o, stationary increases to 0, and thus (6.51) holds on this set. This completes

the proof of (6.51), and hence hll;z 55 % (Z .« p) is locally integrable, for any § > 0.

+
loc

~ n
that increases to infinity and (h]l{z_z(;}Z * u) € A" (F). Then, we have

Conversely, if h]l{Ziz(g}Z*/J, € A (F), there exists a sequence of F-stopping times (73, )n>1

E [hll{z ssil[o * ()] = E [hﬂ{z_za}z* (1) | < oo.

This proves that hll;;_>s [g -jxp is F7-locally integrable, for any § > 0. Since (Z,)_lll[[oj]]
is F™-locally bounded, then there exists a family of F7-stopping times (75)s>0 that increases
to infinity when ¢ decreases to zero, and

[0,7An75] C{Z_- > 6}.
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This implies that the process (hﬂ[[o,r]] * ,u) " is FT-locally integrable, and hence the assertion
(d) immediately follows.

(e) The proof of assertion (e) follows from combining assertions (a) and (d). This ends the
proof of the proposition. ™



148 CHAPTER 6. NON-ARBITRAGE UP TO RANDOM HORIZON



Chapter 7

Optional semimartingale
deomposition and NUBPR condition

in enlarged filtration

7.1 Introduction

This chapter is based on a joint paper with Tahir Choulli and Monique Jeanblanc [ACJ14al].

We study two filtrations F and G such that F C G. We consider the cases where the enlarged
filtration G is constructed in two different ways: progressively and initially. In this chapter
we focus on two specific situations where hypothesis (H') is satisfied. In both situations,
under suitable conditions, we develop the G-optional semimartingale decomposition for ad-
equately changed F-local martingales (Sections 7.2.1 and 7.2.1). An interesting link with
absolutely continuous change of measure problem is observed in Section 7.5. Our study ad-
dresses as well the question of how an arbitrage-free semimartingale model is affected when
stopped at a random horizon or when a random variable satisfying Jacod’s hypothesis is in-
corporated. Precisely, we focus on the No-Unbounded-Profit-with-Bounded-Risk. In Section
7.2.2 we provide alternative proofs of Theorem 6.15, Corollary 6.3 (c) and Corollary 6.13
(b), using a new optional semimartingale decomposition. In Section 7.3.2 analogous results
are formulated for initial enlargement with a random variable satisfying Jacod’s hypothesis.
Finally, in Section 7.4 we study the stability of NUPBR after thin random times.

7.2 Progressive enlargement up to random time

Let (£2,G,P) be a complete probability space and F be a filtration satisfying the usual
conditions. Consider a random time 7. Then, as in Section 1.2.3, we define several processes
associated with 7. Two F-supermartingales are given by

Zy:=P(r > t|F) and Z; :=P(r > t|F).

149
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Let us denote by A° the F-dual optional projection of A := 1, [ and define the F-
martingale
my = Zy + A7.
Then, by (1.13), Z = Z_ + Am.
Since we are here dealing with several enlarged filtrations, we have to change a little bit

the notation used in the previous chapter. We denote by F™ = (F/ )i>0 the progressively
enlarged filtration with random time 7, as defined in (1.5),

Fl o= ﬂ (FsVa(rNs)).

In what follows we will call F™-predictable semimartingale decomposition up to the random
time 7 the equality introduced in Proposition 1.39, i.e., for an F-local martingale X, one has

N tAT
X{=Xt+/
0

where X is an F7-local martingale. Using the F-local martingale N which appears in Kar-
daras multiplicative decomposition [Karl0], i.e.,

1
N = g (Z_H{Z>O} . m) (72)

the F"-predictable decomposition may be written as

R tAT
X7 :Xt+/
0

7 d(X,m)~¥, (7.1)

d(X,N)E. (7.3)

S—

7.2.1 Optional semimartingale decomposition for progressive enlargement

In this section, using the F"-predictable semimartingale decomposition and the results on
various kinds of projections presented in Lemma 6.17 and Lemma 6.18, we derive another
F7-decomposition of the F-local martingales stopped at 7. Let us start by recalling the
definition of the F-stopping time R introduced in (6.8)

R:=inf{t >0 : Z; =0}.
Then, the F-stopping times defined as (using the convention given in (1.1))
R = R{ZR_ZO} R = R

~

R = R{ZR>0}

{Zr=0<Zp_}
have disjoint graphs and R = RARAR. We note that R is an F-predictable stopping time.

We establish an optional decomposition in the following theorem. By abuse of language,
we shall refer to this decomposition as "the" optional decomposition even if there is no
uniqueness for optional decomposition of a semimartingale.

Theorem 7.1. Let X be an F-local martingale. Then the process

p,F

Xom X7 = [ FdlXom)s + (AX Gl g ),

s

1s an F7-local martingale.
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Proof. By predictable decomposition (7.1) and Lemma 6.18 we obtain

T =5 1 pvlF 1 pv]F
X" =X+ Z]l[[o’ﬂ] . (ﬂ{2>0} . [X, m]) —+ ZHHO’TH . (]1{220} . [X, m])

s (1 P 1 PE
=X+ <Z]1HO’TH.[X7m]> +]1[[0,T]]' <Z]l{ZO<Z}'[X’m]> .
Note that
1 1
ZH{Z:0<Z*} . [X, m] = 7Z~ AXEAmE]l[[E,oo[[ = _AXEH[[E,OOIP

R—

where the first equality comes from {Z = 0 < Z_} = [R] and the second equality from

Amg = —Zp_. Thus we obtain

T % 1 "
XT =X+ =l [X,m] = Ao - (A% )

where X is an F7-local martingale. That ends the proof. ]

Remark 7.2. In [DMM92, Paragraph 77, Chapter XX]| an optional semimartingale decom-
position is mentioned (without any proof) in the form: given an F-local martingale X, the

process

_ tAT
X=X —/ —d[X, m]s
0 Zs

is an F7-local martingale. Note that this decomposition is valid for any F-local martingale

if and only if R = .

Remark 7.3. The F"-local martingale introduced in (7.4) can be expressed in terms of the
F-local martingale N defined in (7.2).

X, = X7 /MT L dix, v +<AX 1 )p’]F
t— t 0 NS ) S R [R,OO[[ t/\T.

From equalities N = N_ (]l{Z_>0}Z% + ]l{Z_:O}) and N = 1+N—Z*17]1{Z_>0} .m it follows
that .

N [X7 N] = EH{Z7>0} . [X7 m]
and the fact that Z_ > 0 on [0, 7].

The next lemma presents another form of F7-local martingale introduced in (6.16). Here we
denote it by LP" where "pr" stands for progressive.

Lemma 7.4. (a) The F™-predictable process Z%]l[[o,r}] 15 integrable with respect to m — the
F™-martingale part from the optional decomposition of m.
(b) The F7-local martingale LP" (defined in (6.16)) can be expressed as

zZ2 1

Pr 1 h— L1 7
7 o/ @M = Z=ljos -1,

T 22 Alm)F
where m is F7-local martingale part from predictable decomposition of m and © stands for

the optional integral (see Section 1.1.8).
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Proof. In the proof, we set L = LP* for simplicity.
(a) The process Z%ll[[ﬂ,r]] is caglad so it is locally bounded.

b) The F™-continuous martingale part and the jump part of -1y, 7.7 are given by
z_ 0,71

1 N\ 1 1 c
(Z_nw.m) :Z_nm.(m A >F>
1 _ Am F
A (]1[[0,7}1 m) =~ lpa-" (1) B0

where m¢ is F-continuous martingale part of m. Let us compute now the F”-continuous
martingale part and the jump part of L. By Definition 1.24 of optional stochastic integral
and Lemma 6.17 (b), we have:

7?2 Al
[f= 2= _pF" ([ )1 1.
72 + A(m)F ( Z) [0 =™

F
1 . P z_0cz ) .
Ziﬂ[[oﬂ_]] . mc — {Z } ]1[[077-]] . mc.

As {Z =0 < Z_} is a thin set, so it is {?F(1L
we conclude that

(F=0<7_ }) # 0}, and from continuity of m¢

1 .
LC = 7HH07TH . mc

From the proof of Proposition 6.20, we have that the jump of L equals

Am p,F
AL="lpy -7 (1 720e7 1) Tt (7.5)

That completes the proof. ]

The connection between the F7-local martingale LP" and the F7-adapted process % is
exploited in the next lemma.

Proposition 7. 5 Let N be defined in (7.2).

(a) The process NT 1s an F7-supermartingale of the form

L=¢ (—(Lpr)f - (]ll[ﬁooﬂ)iD |

(b) The process - is an F"-local martingale if and only if R=o0c. Then, ~ ~7 = E(—=(LP)T).

Proof. (a) By It6’s formula and the obvious equality dN = N, —1lyz_~oydm

1 tAT 1 tAT . Z < 1 A >
—=1- Ny + d(N)s + ~_ T N,
NtT 0 N2 0 N3 s<tAT N2 )
tAT 1 tAT 1 (Am )
=1- ———dmgs + - d(m)s + —,
0 NS—ZS— ° 0 NS—Z52— < >S Z Ns—Zs—Zs
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where we have used the fact that Z = Z_ + Am. We continue with
1 A | 1 1 (Am)?
— =1 d|l —.m— = .(m° — Z
Ny o Ns- (Z ) () Z 7 7
S

tAT ,
=1 ’ le_d(zl_.er (nﬂﬁm[[)pF)S

where the second equality comes from Theorem 7.1 applied to the F-martingale m. Finally

we conclude that ) ) .
_ p7
3 =€ (o= (vaa)' )

pF
(b) The process = is an F7-local martingale if and only if (]l = ) = 0. The last
N H}LOO[ AT

equality is equivalent to

0=EK <<ﬂ[[§7oou)f_£) —E (/OOO Zy_d (nﬂﬁjm[)jﬁ) ) (Zﬁ_n{jkoo}) ,

which in turn is equivalent to R = co P-a.s. since Zi_>0on {E < oo} |

7.2.2 NUPBR for progressive enlargement before 7

In this section, we give alternative proofs, based on the optional semimartingale decomposi-
tion, to some results from Chapter 6. In Proposition 7.6 we examine the F™-local martingale
deflator for F-local martingales. In Proposition 7.7, an F7-supermartingale deflator for F-
local martingales is studied.

Proposition 7.6. Let YP' := £ (—LP").Then, for any F-local martingale X, the two pro-

cesses

Ty T T JF r pF
YPXT = 3 VP g PR () AX + Y g - (AXG L )

i Alm, X)E P
YPXT 4 Y2 gy | (AX R = —— )z
R

are F7-local martingales.

In particular, if X 1s quasi-left conlinuous and AXgz = 0 on {fi < oo}, then YP' is an
F7-local martingale deflator for X7.

Proof. In the proof, we set Y = YP" and L = LP* for simplicity. Using integration by parts
and the optional decomposition (7.4) given in Theorem 7.1 for X and then for m, we obtain
YX"=XT.Y+Y_.X"+][Y,X7]

— 1
=X".Y+Y_.X+ Y;EHHO’TH . [m,X] — Y,]l[[oﬂ.]] . (AXR]IHR’OO[[)PJF _ Y,]l[[oﬂ_]] . [L,X]

_ 1 1
=XT.Y+Y_ .X+ Y;EHHO’TH . [m,X] + Yfﬁﬂ[[O,T]] . [[m],X]

1 F F Y =
— Y_Eﬂﬂoﬂ'ﬂ . [(Amﬁﬂ[[ﬁ,oo[[)n ,X] — Y_Il[[oﬂ_]] . (AXEIL[E7ooﬂ)p’ — Zﬂ[[oﬂ_ﬂ . [m,X}

=D+ L+ 13+ 14+ Is + Ig + I7.
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We look closer at the sum of third and seventh term of the last expression

1 1 Am
I3+ I =Y_ <Z - Z) Lo« [, X] = _Y_i [0.7] + [m, X]

- Sy 711[0 AAMAX,

where the third equality comes from the fact that {Am # 0} is a thin set. We add the term
14 to the previous two

A
L+ (I + I ZY~HOTH(Am Pax -3y ;nﬂoTﬂAmAX

Z—ZY 7AX]1[[07’]] ( Am ZAm>

= AXIl[[OT]] “(14s)

where the last equality comes from (7.5). Note that, by Yoeurp’s lemma and properties of
dual predictable projection, the fifth term in the expression for Y X7 is equal to

I = —Y_inﬂoﬁﬂ ((Amp1 X

alia) -

1
[R,c0 [[)p’FaX} = _Y_EHHO’TH f(Amy

= Zy_ =l P (L) AX.
Finally, by Z_ + Am = Z we get
Is + (I4 + I3 +I7 ZY_ — ]1[[07.]1 ( [[R] AX —i—ZY 7AX11[[07}] (HHE}O

_ZYII‘OT]] [[]])A

Summing up we have that

T T Y JF pE
VX" =XT.Y 4+ Yo X+ 3 Vol g P () AX = Vol g« (AX 515 o)

_ Y. .
T 7IF ~ ~
=XT.Y +Y . X+ Y Vol PP AX + g - (1 - [X,m))
Finally, thanks to the predictable semimartingale decomposition of X, we get

_ ~ Y_ p,F
VX7 = XT.Y + Yo X4V P () o X+ = 1o (g - (fma X+ (m, X))

- . A(m, X)E ¥
YT JF _ __ _ " 'R -
=XT.Y+Y_. (X + P (nm) -X> — Y o - <(AXR R )]1[[R,oo[[)

which ends the proof of the first assertion. Since for any F-quasi-left continuous martingale
X, the process (m, X >F is continuous, the particular case follows. [

We shall now use the F"-predictable process introduced in Lemma 6.19 which was crucial
for proofs therein. Denoting by R® the accessible part of the F-stopping time R, we set

V;pr = (ﬂ[[éa’oo[opﬁ .

tAT
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Using the process VP' we study, in the next lemma, the behaviour of a particular F”-
supermartingale.

Proposition 7.7. Let YP' := &(—LP* — V'), Let X be an F-local martingale and H be an
F7-predictable process such that H . X > —1. Then, the process

(1+H.X") VP + H Y™, (Axénmmﬂ)f’i
15 an F7-supermartingale.
In particular, if AXz =0 on {E < oo} then Y is an F7-supermartingale deflator for X7
and X7 satisfies NUPBR(FT).

Proof. In the proof, we set Y =YP, L =L and V = V™ for simplicity. By integration
by parts, we get

(1+H.X")Y=(14+H.X")_.Y4+HY .X"—HY .[X",L]-HY_.[X",V]

Note that

HY_ . [X7,V] =) HY- 1l " () AX.

Then, using the same arguments as in the proof of Theorem 7.6, we get

~ ~ ~ _ ~ p,IF
(I+H.X)Y =(1+H.X")_ .Y +HY .X —HY T . <AXEIL[[E’OO[[>

and the first assertion is proved.
The second assertion comes from Definition 1.61 of the supermartingale deflator and Theo-
rem 1.62. ]

The next result recovers Theorem 6.15 providing explicit local martingale deflators for FF-
local martingales. The proof differs from the proof of Theorem 6.15 and is based on the
optional semimartingale decomposition and direct computations.

Theorem 7.8. The following conditions are equivalent.

(a) The thin set {Z =0< Z,} is evanescent.

(b) The F-stopping time R is infinite (R = o).

(¢) For any F-local martingale X, the process X™ admits an F™-local martingale deflator Y'P*
(and satisfies NUPBR(F™)).

(d) For any (bounded) process X satisfying NUPBR(F), the process X™ satisfies NUPBR(FT).

Proof. The equivalence between (a) and (b) is obvious from definition of R.
The implication (b)=-(c) follows from Proposition 7.6. To prove (¢)=(b) (and (d)=-(b)),
we consider the F-martingale

X =1 (byaag)

Note that P(r = R) = E(AA%) = E(Z; — Z) = 0 (since 0 = Z > Zj; > 0). This implies

R
that 7 < R and
pF

X7 == (ﬂﬂﬁvo‘)[)-m
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is an F7-predictable decreasing process. Thus, X7 satisfies NUPBR(F7) if and only if it is
a null process, due to Lemma 1.60. Then, we conclude that R is infinite using the same
argument as in the proof of Lemma 7.5 (b).

(¢) = (d) Let X be an F-semimartingale satisfying the NUPBR(F). Thanks to Proposition
1.56, we deduce the existence of a real-valued F-predictable process ¢ and a positive F-local
martingale [ such that

0<¢<1 and I[(¢.X) isan F-local martingale.

Then there exists a sequence of F-stopping times (vy,), that increases to infinity such that
the stopped process [Y" is an F-martingale. Put Q,, :=l,, .[P ~ P. Then, by applying (c) to
(¢« X)"" under Q,, we conclude that (¢ . X)""\™ satisfies NUPBR(F") under @Q,. Thanks
to Proposition 1.59, NUPBR(F”) under P of X7 follows immediately. [

7.3 Initial enlargement under Jacod’s hypothesis

The results presented in this section were obtained in parallel and independently to [AFK14].
Let ¢ be a random variable with values in a Lusin space (U, U). We assume that the
random variable £ satisfies Jacod’s hypothesis (Definition 1.31 (a)) with the density process
(¢*,u € U) with respect to the law 77 (Proposition 1.32). We do not impose any conditions
on 7, in particular it is not necessary atomless. Then, let F7(€) = (F7©));>0 be the initial
enlargement of the filtration F with the random variable £, defined as in (1.4),

FO = (F Vo).

s>t

Consider a mapping X : (t,w,u) — X{(w) on Ry x Q x U with values in R. Let J be
a class of F-optional processes, for example the class of F-(local) martingales or the class
of F-locally integrable variation processes. Then, (X" u € U) is called a parametrized J-
process if for each v € U the process X" belongs to J and if it is measurable with respect
to O(F) ® U. The second condition, by [SY78, Proposition 3|, can be obtained by taking
appropriate versions of processes X*.

To ensure the existence of well measurable versions of dual projections of parametrized
process we assume from now on that the space L'(Q2,G,P) is separable. Then we apply
[SY78, Proposition 4.

In the next proposition we state an analogical result to Proposition 1.34 for a bigger class
of processes: parametrized F-local martingales.

Proposition 7.9. Let (X", u € U) be a parametrized F-local martingale. Then

t

= 1

X§ZX§+/ - d(X", "), e
0 gg_

where X¢ is an F7© Jocal martingale.
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Proof. Let X be of the form X}*(w) = g(u)zi(w) where z is an F-martingale. Then,
X¢€ = g(¢)x and for t > s using Jacod’s decomposition (1.9), we have

E(Xf — X§|FTO) = g(&)E(z; — a4 FTO)

t
= g(f)E (/ q;d<x7 qu>v’u=§‘f§(£)>

t
:E</gMX%me«H@>.
sqv_

For a general X, we proceed by Monotone Class Theorem 1.1. ]

7.3.1 Optional semimartingale decomposition for initial enlargement

In this section we develop the F7&)-optional semimartingale decomposition of parametrized
F-local martingales. In order to find it, we decompose the F-stopping time R", introduced
n (1.6), as R* = R* A R* with

R" =Ry, .o and R'=R{. _g. (7.6)

Clearly R" is an F-predictable stopping time and {R* = co} C {R" = 00} s0

JF p.F
(U oe)” e = (Vug) lue:

In the following Lemma, we express the F?(®)-dual predictable projection in terms of the
F-dual predictable projection. This is a result analogous to Lemma 6.17 (a) and Lemma
6.18 for initial enlargement case.

Lemma 7.10. Let (V% ,u € U) be a parametrized F-adapted cadlag process with locally
integrable variation (V € Ajo(F)). Then the following properties hold.
(a) The F7&) _dual predictable projection of V¢ is

1
e (" V") e (7.7)

q-

(Vg)p’FU(E) _

(b) If (V*,u € U) belongs to A}l (F) (respectively V € AT(F)), then the process (U*,u € U)
with

1
Uu = *5 . Vu, (78)
q

belongs to AZ—ZC(F"(E)) (respectively to AT (F7(©)).
(¢)The process (U™, u € U) is well defined, its variation is F7€)-locally integrable, and the
Fo©) -dual predictable projection of US is given by

o (€) w\ D F
(Ug)p’]F = 15, . (ﬂ{qu>0} . V )p u=¢E-

q
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Proof. (a) We apply the predictable semimartingale decomposition given in Lemma 7.9 to
the parametrized F-local martingale (X% u € U) = (V¥ — (V¥)PF 4 € U), obtaining

. 1
Ve =X+ (VPF| e + - (V%47 =
q

vE w\ P, Ag* u e
1
= XS+ — . (¢“ VYPF| e,

which proves assertion (a).
(b) Suppose that (V¥,u € U) € Af (F). For fixed u, let (9,,)n>1 be a sequence of F-stopping
times that increases to infinity such that E (Vﬁun) < 0. Then, E (Ugn) < 00 since

9 9
u " 1 u " ~ u u
E(Uy,)=E </0 ngt ) =K (/o /R]l{qi’>o}77(dy) dv; ) <E(Vy) < oo
t

where the last equality comes from (1.7) applied to q%]l{qgw}.
t

(¢) Suppose that (V% u € U) € Ajoe(F), and denote by W := V* + V= its variation. Then
(W¥,u e U) € Af (F), and a direct application of (b) implies that

(F7).

loc

1
<€.W“,UGU) c At
q

As a result, we deduce that U given by (7.8) for the case of V.= VT — V™ is well defined
and has variation equal to q% . W which is F?©) Jocally integrable. For each n > 1, let us
consider the parametrized process (UY,u € U) with

Uy = 11 (quz1y LV

Due to (7.7), we derive

pFo©) 1
(U)" = Mz - V) e

q
() £\PF
Hence, since (US)PF™ = lim,, o0 (Un) by taking the limit in the above equality, we
get
£) 1 F
UL, = 7 Loy VP e

We are now ready to state, in the next theorem, the main result of this section which is
based on Lemma 7.10.

Theorem 7.11. Let (X", u € U) be a parametrized F-local martingale. Then,

_ p,F
Xf = XF = fy LdlX )+ (AX2, 15 OO[[) e (7.9)

is an F7©)-local martingale. Here, R"* was defined in (7.6).
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Proof. From the predictable decomposition given in Proposition 7.9 and Lemma 7.10 (c)
we develop the decomposition of X¢ as

~ 1 F 1 F
X£ = X& + T . (ﬂ{q“>0} . [X’U«7qu])p ‘UZS + qT . (]l{q“ZU} . [Xu7 qu])p ’

u=¢

1 p,Fo(©) p.F

— 1 p,F
= X* + £ (X%, ¢°] - (AX%HH[[EH,OOD Ju=e

where
1 1 p,Fo©)
vE _ vE_ & & £ il & £

is an F7©)-local martingale. ]

In the next two lemmas we study the properties of the process ¢¢. In Lemma 7.12 we define
particular F()-local martingales based on ¢¢. Then in Lemma 7.13, we focus on the process
q%. We explicitly give the F"(g)—supermartingales decomposition and necessary and sufficient

condition such that X is an Fo€)local martingale. In [Ame99] the process q% was studied
in the case of a random variable £ satisfying equivalence Jacod’s hypothesis. Here we work

under less restrictive assumption.

Lemma 7.12. Let ¢ be the F7©) local martingale part of ¢° given by (7.9), i.e.,

1 p,F
=gt — i 4] — ot - (]l[[éu,oo[) hu=¢-

(a) The Fo©) _predictable process q% is integrable with respect to G&.

(b) The F7©)-local martingale
. 1
L= 4.7 (7.10)
q’
is such that 1 — AL* > 0. Here, the superscript "i" stands for initial.
1

3
¢
(b) The definition of g* implies

Proof. (a) The process — is caglad so it is locally bounded.

which completes the proof. [
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Lemma 7.13. (a) The process q% is an F7©) -supermartingale with decomposition

1 1 p,F
=1—

1
- N -
F= T M) e

(7.11)

Moreover, it can be written as a stochastic exponential of the form

q% =& <—Li — (ﬂmu’oo[[)pﬁ u:§> .

(b) The process qig is an F7©) Jocal martingale if and only if R =00 P® n-a.s. Then
1 ,

= =&(—L").

q&

Proof. (a) (¢*,u € U) is a parametrized F-martingale, then by Proposition 7.9, ¢ is a
Fo€)_semimartingale. By (1.8), ¢¢ is strictly positive. It6’s lemma implies that q% is an

Fo()_semimartingale which can be written as

o e 1 £c\Fo©) 1 1
g @ (gf £ Tt )
1 1 - 1
e i (¢6)> JCOREREDD ((617’5)2_(1’5 (Aqg)z)
=1 (g o e o) (7.12)

Applying (7.9), we finally get that

1 1 1 p,F
—1— 7 _
= 1 . q qé. . (ﬂHRuvooll> |u:§,

p,F
where % (]1[[ Fu OO[[) lu=¢ is an Fo©)_predictable increasing process. The exponential form
q7 b

immediately follows.
F
u=¢ = 0. The

(b) The process q% is an F7(©)-local martingale if and only if (]lmu Oo[[>p’
last is equivalent to have that, for each ¢

0= E (W70 po)? lume) = E ( °F ((ﬂﬂﬁu,oo[[)ﬂ'“:f)t )
~E (/R(n[@um[[)ffqé‘ﬁ(du))
= [ B (0 o) ),

where the second equality comes from (1.7). Next, by Yoeurp’s lemma we conclude that,

for each t
! F
— u —~ p7 e
0= [E( [ ata(g ), )i

N /RE <q%“fﬂ{§“§t}) n(du)
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which in turn is equivalent to R‘>tP® n-a.s. for each t since q~ > 0. Thus, —g is an

Fo(©)-local martingale if and only if R* is infinite P ® n-a.s. ]

In the following proposition, we investigate the F?()-semimartingale decomposition of a
parametrized F-local martingale X when ¢ is plugged in and when multiplied by e from
previous lemma.

Proposition 7.14. Let (X", u € U) be a parametrized F-local martingale. Then )q(—; 5 an

Fo©) -semimartingale with F7©) -local martingale part equal to

Xt 1

& D= i 723
X; (q5)2_-q —l—qg_.X,

and T2 _predictable finite variation part equal to

1 p,F
q£ (Xu [[R“ oo[[) |u:§

Proof. We compute, applying integration by parts formula:
X¢

1 1
== X5+X§.+.Xf+[X5,]
¢ ‘ ¢ ¢ ¢
x¢ Xt pF
= Xg—;.(j{—;.(llm ) e
Vg Uieel) e

1 B 1 1 p,F
+—.X5+—-[X5,q§]—*-(AXEu,ﬂﬁu ) hu=¢
1 1
£ € £ 1g¢
e Ko+ e [¥ )

where the second equality comes from (7.11), (7.12). It follows that

X¢ Xt 1 -
S XS o+ L XS
¢ ° (692 ¢
1 ( pF Agt AXE
— e (KB o) e — e+ X, 0]+ (4]
¢ T\TR IRl T 248 (¢5)2¢¢”
x¢ 1 -, 1 p.F
oyt A e Voo L
= K-t X (KB M o) e

As a corollary, from Proposition 7.14, we recover [IP11, Proposition 5.2] on universal super-
martingale density.

Corollary 7.15. If X is a positive F-supermartingale, then, = is an F?(&)-supermartingale.

Proof. Let X be decomposed as X = M~ — VX where M~ is a positive F-local martingale

and V¥ is an increasing F-predictable process. Then, ]VqISX is an F”(g)—supermartingale since
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p,F
from the positiveness of MX, by Proposition 7.14, we get that q%, . (M}%(ull[[ﬁum[[) lu=¢
is an F?(©)_predictable increasing process. Moreover, as q% is an F?€)_supermartingale and

VX is increasing, the process —‘(/I—? is as well an F?(®)-supermartingale which ends the proof.

7.3.2 NUPBR for initial enlargement

In this section, we focus on the NUPBR condition. Using simple arguments based on the
optional semimartingale decomposition, we prove the NUPBR stability with respect to a
initial enlargement of filtration under Jacod’s hypothesis. In Proposition 7.16 we study the
Fo(®)-local martingale deflators for parametrized F-local martingales. Then in Proposition
7.17 we focus on F?(®)-supermartingale deflators for parametrized F-local martingales. In
Theorem 7.18 we formulate a necessary and sufficient condition such that each parametrized
F-local martingale satisfies NUPBR(F?()). We close this section giving two examples of
very particular initial enlargements under Jacod’s hypothesis. We also address the reader
to [AFK14] for similar study to the one contained in this section.

Proposition 7.16. Let Y := & (—Li). Then, for any parametrized F-local martingale
(X" u € R), the two processes

iy i pFoq o
YIXE =Y v PR (1, Fu

F
4 ‘ A u’Xu = D,
Yixéryi. | (axy, - A XY . ) Lipog] lu=¢
95u_ '

) u P
ﬂ)’u:gAXE +Y". (AX~ ﬂ[[ﬁ“,oo[[) |u:§

are F7©) local martingales.
In particular, if X* is quasi-left continuous and AXI%u =0 on {E“ < o0} P® n-a.s., then
Y is an Fo©) Jocal martingale deflator for X¢.

Proof. Using the optional decomposition (7.9) (Theorem 7.11) of X¢ and ¢* we obtain

ViIXE =XV 4+ YL XS4 [V, X
_ L 1 _ A ,
X' .Y+ YiL XS+ Vi X8, 5 = YL (AXE PP — YL (L, XE]
1
(¢5)%°
Y A N e X6 = VL (AXE N P — e X
—q& . qR“f [R¥,00] u=§> — Re " [R*,00] u=¢ qg - |G, .

[l4°], X°]

. S 1 .
XS Y YL X Y L XS ]+ Y
q
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We continue as

, o YiAg
YiXt=xt. vy 4yl xe -y ==L AXfAerZ E2AXE
P
Y q— 7 u P
F 30 e AXE YL (Axﬁunﬂﬁumﬂ) e
7 VY i p,F u P
=X Y YL X SV P (U ) s AXS - Y (AX (7o Oo[[) e

) o ) Y? p,F
:XE YUY X¢ + ZYZ p7F(ﬂ[§uﬂ)‘u EAX + 5 . (ﬂ[[ﬁu]] [ XY, qu]) ‘UZE‘
Finally, due to the predictable semimartingale decomposition of X¢, we get

iy § yi i yvé i pF - 3 -
YV'Xe=X>.Y'"+Y . X°4+Y" (]l[[Ru]]).X +

e (g (0 X7+ 0, X) " e

F
i i S S u A<qu’Xu> Ru P
:XE Y +Y'. ()(§ + ¥ (ﬂﬂﬁu]]> |u:§ . Xg) <(AXR1L - inR)]l[[E“,oo[[> ’uif
Ru,

which ends the proof. ]

Let us denote by R®4 the accessible part of the F-stopping time R*. Define the process V'

as
Vii= Y pF (nﬂéuﬂ)s lu=g = (nmu,amﬂ)p’F lu—e - (7.13)

0<s<t

Proposition 7.17. Let Y = &(—L' — V%), Let (X%, u € U) be a parametrized F-local
martingale and H be an F7E) -predictable process such that H . X¢ > —1. Then, the process

i i u P
(1+H.X5)Y+HY_.(AX WOO[) lu=¢

is an F7©) _supermartingale.
In particular, if AX]%M =0 on {fi“ < oo} P® n-a.s., then Yi is an Fg(g)—supermartmgale
deflator for X¢.

Proof. By integration by parts, we get
A+H. XY =(1+H.X)_.Y'+HY . XS~ HY' . [X$, L) - HY' . [X5 V).

Note that
- . Si pF
HYLL[XS, V) =Y HY! PR (g0 |l—e AXE.

Then, using the same arguments as in the proof of Theorem 7.16 we get
~. ~. ~. _ ~. p,F
A+ H. XY =1+ H.XS_ Vit HY .XE—HY? (AX i OO[[) e

and the assertion is proved. [
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Theorem 7.18. The following conditions are equivalent.

(a) The thin set {q“ =0< qﬁ} is evanescent for n-a.e.

(b) The F-stopping time R" is infinite P ® 7j-a.s.

(¢) For any parametrized F-local martingale (X", u € U), the process X¢ admits an F(&)-
local martingale deflator q% (and satisfies NUPBR(F?(©))).

Proof. The equivalence between (a) and (b) is obvious from the definition of R
The implication (b) =(c) follows from Theorem 7.16. To prove (c)=-(b), we consider a
parametrized F-martingale (M",u € U) with

M* .

F
= ]l[ﬁzu,oo[ — (]lﬂﬁumﬂ)p .

Then, due to R¢ = co (1.8) it is clear that

¢ p.F

is Fo©-predictable. Thus, M¢ satisfies NUEBR(IF”(O) if and only if it is a null process, due
to Lemma 1.60. Then, we conclude that R is infinite using the same argument as in the
proof of Lemma 7.13 (b). [

In the two following examples we look at two extreme situations.

Example 7.19. Let F be a filtration such that each F-martingale is continuous. Then,
NUPBR is preserved in an initially enlarged filtration for any parametrized F-local martin-

gale from the reference filtration.

Example 7.20. Let B be a G-measurable set such that P(B) = % and consider the filtration
F = (Fi)e>0 defined as

F:={0,Q} for t € [0,1] and F := {0, B,BQ} fort € [1,00].

Define a random variable £ as £ := Ilg 4+ 2 - lgc. The random variable £ satisfies Jacod’s
hypothesis with density (¢“,u € U) equal to

¢ = Dpoap+2- Lye=1y U1 o0
¢* = Lo+ 2 Lyemay Iy oof-

Let the filtration F7¢) = (ff(f))tzo be an initial enlargement of the filtration F with &, i.e.,

F©=1{0,B,B°,9} for te0,00]

Let X be an F-martingale defined as

1
Xi= <ﬂ{51} - 2) I oo

Then, X is an F7®©-predictable process. Thus, by Proposition 1.60 it does not satisfy
NUPBR(F?(©).
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7.4 Thin random times

In this section, we focus our attention again on the progressively enlarged filtration F™. We
assume additionally that 7 is a thin random time with exhausting sequence (7},),, (Definition
2.1). We associate to 7 the partition (Cy,), and the family of F-martingales (2"),, as in (2.1)
and (2.2). Then we study stability of NUPBR after the thin random time 7. We use results
from Section 7.3.2 for the particular random variable £ := )" nllc, which satisfies Jacod’s
hypothesis (Example 1.35). Note that the following filtrations inclusion F™ C F7(&) holds as
Fo() is the initial enlargement of F with an atomic o-field C := o(C,,,n > 0).

In Proposition 7.21 we give an F7-local martingale deflator and an F”-supermartingale de-
flator for F-local martingales after 7. Next in Theorem 7.22 we provide a necessary and suf-
ficient condition such that NUPBR(FT) holds after 7 for any process satisfying NUPBR(F).

Proposition 7.21. Let 7 be a thin random time. Assume that
for each n, the set {AX #0}N{z"=0<2"} N]T,,00] is evanescent. (7.14)

Then

(a) for each F-quasi-left continuous local martingale X, the process

Yth = HS <_]lCn ﬂﬂTn,OO[Zin . Zn>

is an F7-local martingale deflator for 1), o« X; here "th" stands for thin;
(b) for each F-local martingale X, the process

yih=TJe¢ (Ilcn]l]]Tn,oo[[' (Zln 2 (]l[[é"’“voo[)w)>

is an F7-supermartingale deflator for 1y, o+ X.

Proof. (a) The F?®)-local martingale L* defined in (7.10) takes the form
=Yg, .
= Z C’VLZT 2.
~ n

Take a parametrized F-quasi-left continuous local martingale (X™,n € N) with
X" = 1y7, 0o + X Then, by Proposition 7.16 and assumption (7.14), V' = £(—L") is an
F?(©)-local martingale deflator for X¢ = 1jr oo+ X The Fo(&)_local martingale Y X¢ satisfies
YiX§ = Ly7 oof » (Y1X€) thus, by Proposition 2.11, it is an F™-local martingale. Similarly,
by Proposition 2.11, the process

; 1
Y= (-1, - L) =[] € [ —1c, 1 —.z"
(—Ljr oo - L) 1;[ < R >
is an F™-local martingale. Note that Y*h X¢ = (5(—11[[0,7}].Li))_1YiX5 and 5(—]1[[07711.Li)7 >0

and E(—To » LY, € FI so Y™ X¢ is an F"-local martingale. Finally, we conclude that
Yt is an F7-local martingale deflator for L7 oof + X
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(b) Note that Y*h = &(—1, ,of+ (L + V?)) with V? defined in (7.13), thus, by Proposition
2.11, it is an F7-supermartingale. Then, by the same type of computations as in the proof of
Proposition 7.17 we derive that for each F”-predictable process H such that H1j, (. X > —1

the process Y™(1 + H1y; oo« X) is an F7-supermartingale and the assertion follows. |

Theorem 7.22. The following conditions are equivalent.

(a) For each n, the thin set {z" =0 < 2"} N [Ty, 0o[ is evanescent.

(b) For each n, the F-stopping time R™ = 0o on the set {ﬁ" >T,}.

(¢) For any F-local martingale X, the process Djroop « X admits an F7-local martingale
deflator Y (and satisfies NUPBR(FT)).

(d) For any (bounded) process X satisfying NUPBR(F), the process W} o « X satisfies
NUPBR(G).

Proof. The equivalence between (a) and (b) is obvious from the definition of R™.
The implication (b)=-(c) follows from Proposition 7.21. To prove (c)=(b) (and (d)=-(b)),
let us fix n and consider the F-martingale

p,F
X =l — (n[[émoo[) .
Then, since R™ = 00 on C,, we have that
p,F
Lroope X = 3 e, I vop+ X — Lo, U, cof - (nmnm[[)
k#n

and from the assumption it satisfies NUPBR(F"). Take the F7-stopping time v := (T},)¢,
(using the convention given in (1.1)). Then, clearly, the process llj;y, o[ » X satisfies
NUPBR(FT). Note that

Wrvpoof» X = —To, g7, of - (nmnmﬂ)w

is an F7-predictable decreasing process, thus it satisfies NUPBR(F7) if and only if it is a
null process, due to Lemma 1.60. The last assertion is equivalent to

0=E (ﬂcnﬂﬂTmooﬂ ' (ﬂﬂﬁ"v“[[)p,F)

_E </ooo N L (nﬂ@h,mﬂ)j’F)
=E <27§n_ﬂ{Tﬂ,<§<m}> ’

which in turn is equivalent to R" = oo on {R" > T},} since 2%, >0on {R" < oo}

(¢) = (d) Let X be an F-semimartingale satisfying NUPBR(F). Thanks to Proposition
1.56, we deduce the existence of a real-valued F-predictable process ¢ and a positive F-local
martingale [ such that

0<¢p<1 and I(¢.X) isa F-local martingale.
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Then there exists a sequence of F-stopping times (vy,), that increases to infinity such that
the stopped process {*" is a martingale. Put Q,, :=l,,, « P ~ P. Then, by applying (c) to
(¢« X)?" under Q,, we conclude that 1y, [« (¢« X)"" satisfies the NUPBR(F") under Q.
Thanks to Proposition 1.59, the NUPBR(F”) under P of 1}, f - X immediately follows. m

In the next lemma we translate the condition (7.14) and the condition (a) in Theorem 7.22
into another form for the case of thin honest time. To this end we use Lemma 2.17. Then
we easily see that Proposition 7.21 and Theorem 7.22 are one of the results from |[CADJ14]
after thin honest times. Note that honest times studied in [CADJ14], i.e., honest times
satisfying the condition Z, < 1 a.s, are exactly thin honest times (see Lemma 2.16).

Lemma 7.23. Let 7 be a thin honest time. Then,

(a) for each n, the set |T,,,00] N {z" = 0 < 2"} is evanescent if and only if the set
{Z =1> Z_} is evanescent;

(b) for each n, the set {AX # 0}N T, 00[ N {z" =0 < 2™} is evanescent if and only if
the set {AX #0}yN{Z =1> Z_} is evanescent.

Proof. (a) The set {Z =1 > Z_} is evanescent if and only if
]P’(Elt such that 1—Zt:0<1—Zt_) =0.
By Lemma 2.17 (b) and the fact that (7},),>1 have disjoint graphs, it is equivalent to
]P’(EItEin such that » =T, <t and 1—Zt:0<1—Zt_) =0.
The last condition is satisfied if and only if for each n we have
OzP(EIt such that » =T,, <t and 1—Z:O<1—Zt,)
=P (3¢t such that T,, <t and z'=0<2z"),

where the second equality comes from Lemma 2.17 (b). That is exactly the condition that
for each n the set |T),,00] N {z" =0 < 2"} is evanescent.
Assertion (b) follows by the same type of argumentation. ]

7.5 Connection to absolutely continuous change of measure

In this section we look at the relationship between new optional semimartingale decomposi-
tions in progressive and initial enlargement of filtration cases and the optional semimartin-
gale decomposition in absolutely continuous change of measure set-up. First let us recall
|[Pro04, Theorem 42, Chapter III].

Theorem 7.24. Let X be a P-local martingale with Xo = 0. Let Q be a probability measure
absolutely continuous with respect to P, and let (; := Ep(%|ft), Letr :=inf{t >0:( =0}
and 1 := 1,0y Then

X:=X- 2 X+ (AX»,THW,OOH)”’P (7.15)

is a Q-local martingale.
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It is clear that Theorem 7.24 implies the same type of decompositions as the two decompo-
sitions stated in Sections 7.2.1 and 7.3.1.

_ JF
Up to random time 7: X7 = X + % JXT,NT] - (AXR'H[[R' OO[[>p
’ AT

. = u P
Under Jacod’s hypothesis:  X¢ = X + q% (X6 %) — (AXﬁu]l[[Eu,oo[O lu=¢

% Q
Under measure Q:  X9¢ =X + CLQ ([XQ,¢Q - ((AX’FH[[?,OO[[)Z)’P>

In the table above, the superscript ¢ means that we consider the given process under the
measure Q. In each of the three cases, there is a different mechanism to ensure the strict
positivity of N7, ¢¢ and ¢@. In the case of progressive enlargement up to a random time,
we stop at 7. In the case of initial enlargement with random variable satisfying Jacod’s
hypothesis, we plug £&. In the case of absolutely continuous change of measure, we look
through measure Q.

The optional decomposition in the change of measure case can be used in the same way to
obtain similar result on stability of NUPBR condition with respect to absolutely continuous
change of measure.

Let us define Q-local martingale L%, where ( given by (7.15), by

L¢:==.C.

| =

Proposition 7.25. Let Y := £ (—L%). Then, for any P-local martingale X, the process

Y(LX — Z Yf p’P(]l[m])AX + Y_a (AX?.]I[[;:,OO[[)I)’P

is Q-local martingale.
In particular, if X is quasi-left continuous and AXz =0 on {r < oo} P-a.s., then Y? is a
Q-local martingale deflator for X.

Proof. Using integration by parts and the optional decomposition (7.15) given in Theorem
7.24 for X and then for {, we obtain

YVOX =X_.Y'+Y%. X + [V X]

_ 1
=X_ Y4 YO X+ Y X - YO (AXG L )P — YO LY, X]

B
_x_.y* +Yf.X+Yf§ [, X] +Yf§2u<],X]
Ye _
— Yfé [(AGUEaPT, X] = YO 4 (AXG I o) — O]
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We continue as

YOX =X_ .Y 4+Y*. X =) YC_GCACAXAC +> E(Ag)m)(

Yol
+ = PR AX — YV (AXG I o)D"

¢
=XYYL XY YOPP ) AX - YO (AXAL o) (7.16)
_ Ye
=X_ LY Y X+ VPP AX + o (g 9
which ends the proof of the first assertion. Since for any P-quasi-left continuous martingale
X, the process p7P(IL[[;]])AX is null, the particular case follows. [

Let us denote by 7 the accessible part of the stopping time 7, we set

Ve = (Mg o)™

Using the process V¢ we study, in the next lemma, the behaviour of a particular Q-
supermartingale.

Proposition 7.26. Let Y := £(—L* — V®). Let X be a P-local martingale and H be a
predictable process such that H . X > —1. Then, the process

(1+H.X)Y*+HY", (AX;ﬂ[?,oo[[)p’P

15 a Q-supermartingale.
In particular, if AXz =0 on {r < oo} P-a.s., then Y s a Q-supermartingale deflator for
X.

Proof. By integration by parts, we get
I+H.X)Y'=(1+H.X)_.Y°+HY*. X-HY*.[X,L% - HY".[X, V.

Note that N N
HY*.[X, V] =Y HY" PP(I)AX.

Then, using the same arguments as in the proof of Theorem 7.25 to derive (7.16) we get
~ ~ ~ ~ pP
1+ H.X)Vo=(1+H.X)_ .Y+ HY*. X — HY". (Ax;n[[gm[[)
and the assertion is proved. ]

[Fon13, Theorem 5.3| and [Fonl3, Proposition 5.7| are recovered with alternative proof in
the next result.

Theorem 7.27. The following conditions are equivalent.

(a) The thin set {( =0 < (_} is P-evanescent.

(b) The stopping time 7 is infinite P-a.s.

(c) Any P-local martingale X admits Y as a Q-local martingale deflator, so X satisfies
NUPBR(Q).

(d) Any (bounded) process X satisfying NUPBR(P) satisfies NUPBR(Q).
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Proof. The equivalence between (a) and (b) is obvious from the definition of 7.
The implication (b)=(c) follows from Proposition 7.25. To prove (c)=-(b) (and (d)=-(b)),
we consider the P-martingale

P
X = o) = (Iroe))” -
Then, due to ¥ = co Q-a.s. we have that, under Q,
P
X == (Ueep)”

is a predictable decreasing process. Thus, X satisfies NNUPBR(Q) if and only if it is a null
process, due to Lemma 1.60. Then, we conclude that S is infinite using the same argument
as in the proof of Lemma 7.5 (b).

(¢) = (d) Let X be an P-semimartingale satisfying NUPBR(P). Thanks to Proposition
1.56, we deduce the existence of a real-valued predictable process ¢ and a positive P-local
martingale [ such that

0<¢p<1 and I[(¢.X) 1isa P-local martingale.

Then there exists a sequence of stopping times (v, ), that increases to infinity and such that
the stopped process [** is a P-martingale. Put P,, :=1{,, .[P ~ P and

lU'n Un
Qn = C

'Q: -Pn < Pn-
EP (C’Un l'Un ) EP (CUn lUn )

Define (' := Ep, (%\}}) and note that the condition that {{ = 0 < (_} is P-evanescent

implies that {C" =0< Cﬁ} is P,-evanescent. Then, by applying (c) to (¢ . X)"» under P,
we conclude that (¢. X )" satisfies NUPBR(Qy,). Thanks to Proposition 1.59 since Q,, ~ Q,
the NUPBR(Q) property of X immediately follows. [
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