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Summaries

English Summary

ISPs are concerned about providing and maintaining the level of security of its End User’s commu-
nications. A communication is initiated by the End User with a name, and goes on by exchanging
packets between two IP addresses. In this thesis, we focused our attention on two main points: (1)
providing a secure Naming service, and (2) making IPsec communication resilient to IP address
modification, addition or lost of an interface. We designed MOBIKE-X for that purpose and pro-
pose it as a standard at the IETF.

The first part is dedicated to the DNS to DNSSEC migration. Performance measurements
show that DNSSEC migration for Resolving Platform requires up to 4.25 times more nodes. ISP’s
hardly cannot afford such increase and considering the differences between DNS and DNSSEC, we
looked how to optimize the Resolving platform so to reduce the number of nodes. More specifically
we are looking to optimize the operations that require most of the resources, that is to say: DNS
Resolutions and DNS cache lookup.

The current architecture uses a load balancer that splits the DNS traffic among the nodes of
the platform according to the IP addresses of the queries. This results in multiple parallel reso-
lutions. In order to avoid the multiple resolutions, we started by splitting the traffic according to
the FQDN rather than the IP addresses. This reduces the required resources by 30%, but these
resources are non uniformly distributed among the nodes of the platform. In order to uniformly
distribute these resources, we looked how the nodes can cooperate between each other, and use for
that purpose a Distributed Hash Table architecture (DHT). Testing different DHT mechanisms
shows that the proactive caching is the most efficient mechanism. Pro-active makes each node
fill the other nodes with its most popular FQDNs. In fact the FQDNs’ popularity of DNS traffic
follows a power distribution, as a result, filling the cache with the most popular FQDNs results in
caching a large part of the DNS traffic.

Another approach is to dissociate the pro-active caching mechanism from the DHT process.
Pro-active caching is a light mechanism, easy to implement that can benefit from the Network
Hardware Acceleration. More specifically, if the DNS query is requesting a FQDN cached in the
Network Hardware Acceleration Card, then the response is provided and the DHT process is not
even aware of it. Both architectures are likely to reduce at least the number of nodes by 4.

The second part is dedicated to IPsec configuration in a Mobile, Multihomed and Multiple
Interface environment. MOBIKE [Ero06] is currently the protocol that deals with IPsec Mobility
and Multihoming. However, MOBIKE only considers the Tunnel mode, and addresses only Mobile
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Nodes with a single interface. MOBIKE-X [Dan09b] extends MOBIKE features to Transport mode
and Multiple Interfaces, which thus provides also Soft Handover Mobility. The Tunnel mode is
usually associated to a security gateway architecture, and the Transport mode is usually associated
to end-to-end security, more or less like TLS.

A key application for MOBIKE-X is the capacity to offload traffic from Radio Access Network
to WLAN. In fact WLAN does not have the same security properties as RAN, which requires
the communication to be secured. One advantage provided by IPsec is that it makes possible to
secure a communication without requiring the application to be modified. With MOBIKE-X, two
architectures are thus possible. The first one consists in tunneling the traffic to a security gateway,
using the IPsec Tunnel mode. The second one consists in providing end-to-end security with the
Transport mode. On an architecture point of view, using end-to-end security avoid tunnel overhead,
security gateway indirections, and decreases the network complexity. Performance measurements
show that with Transport mode, Mobility operation interrupts the communication for ≈ 264ms
which is between 9.3% and 15.6% faster than with the Tunnel mode.

French Summary

Une des problématiques majeures de sécurité pour les opérateur est de permettre à ses utilisateurs
de maintenir la sécurité d’une communication même au travers d’un réseau qui ne soit pas de
confiance. Nous avons pris le parti dans cette thèse de nous intéresser à deux problématiques : la
sécurité du service de résolution de noms DNS et le maintient de la sécurité IPsec des communica-
tions, suite à une changement d’adresse IP, de l’utilisation d’une interface supplémentaire, ou de
la perte d’une interface. Pour l’utilisateur, une communication est établie à partir d’un identifiant
ou nom de domaine. Le système DNS permet d’associer à cet identifiant ou nom de domaine
des adresses IP, qui vont permettre l’échange de paquets entre les deux nœuds. L’opérateur doit
alors permettre à l’utilisateur de s’assurer que les adresses IP associées au nom de domaine sont
légitimes, grâce à DNSSEC. Ensuite, nous avons pris le parti dans cette thèse, d’utiliser IPsec
pour sécuriser la communication. Des mécanismes doivent également être mis en place afin de per-
mettre à l’utilisateur de maintenir la sécurité de cette communication lorsque l’utilisateur change
d’adresses IP, utilise une interface supplémentaire, ou perd la connectivité sur une de ces interfaces.
Ceci est réalisé grâce au protocole MOBIKE-X que nous avons proposé à IETF.

La mise en place d’un service de résolution DNS Sécurisé (DNSSEC) nécessite d’augmenter la
capacité des plateformes de résolution DNS, en multipliant jusqu’à 4.25 fois les ressources néces-
saires. Les opérations qui nécessitent le plus de ressources sont la résolution DNSSEC et le nom-
breux cache lookup. Les architectures actuelles considèrent un load balancer qui réparti le trafic
sur un ensemble de nœuds, en considérant les adresses IP des requêtes. La répartition du trafic est
uniforme, mais de nombreuses résolutions simultanées sont réalisées par la plateforme. Pour éviter
les résolutions parallèles, on répartit le trafic selon les noms de domaines. Cela réduit les ressources
de 30%, mais la répartition est très inégale. Afin de palier à cette inégalité, on a choisit, dans cette
thèse, d’organiser les nœuds de la plateforme en Distributed Hash Table (DHT) afin qu’ils puissent
coopérer entre eux. En testant différentes organisation, on montre qu’un cache pro-actif est le
mécanisme le plus efficace. Le cache pro-actif tire parti de la distribution des requêtes DNS. La
distribution du trafic suit une loi de puissance. Ainsi, les 2000 Fully Qualified Domain Names
(FQDNs) les plus populaires représentent environ 70% du trafic. Par conséquent, cacher ces 2000
FQDNs au sein de tous les nœuds de la plateforme de Résolution évite des résolutions inutiles.

Une autre alternative consiste à implémenter le processus de cache pro-actif en amont du pro-
cessus DHT. Ainsi les requêtes concernant les FQDNs populaires cachés ne seront pas traitées
par le processus DHT. L’avantage est qu’un tel processus peut tourner sur des cartes accéléra-
trice, et ainsi réduire les ressources à fournir par les serveurs DHT. On montre qu’en considérant
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les 2000 FQDNs les plus populaires, on divise par au moins 4 la taille de la plateforme de résolution.

La seconde partie est dédiée à la sécurité IPsec dans un contexte de Mobilité, de Multihoming et
d’Interfaces Multiples. MOBIKE-X [Dan09b] est le protocole qui permet à la couche IPsec de gérer
les opérations de Mobilité, de Multihoming, et d’interfaces Multiples. Si MOBIKE [Ero06] gère la
Mobilité avec un Hard Handover pour le mode Tunnel et pour un terminal n’ayant qu’une unique
interface, MOBIKE-X étend ces fonctionnalités au mode Transport, permet la gestion d’interfaces
multiples ainsi que la Mobilité avec un Soft Handover. L’utilisation du mode Transport revient à
une architecture où la communication est sécurisée de bout en bout, de la même manière qu’avec
TLS.

MOBIKE-X permet aux ISP d’offloader les communications du Réseau Radio d’Accès vers des
réseaux WLAN. L’intérêt d’IPsec est qu’il permet de sécuriser sans modifier l’application. IPsec
propose deux modes: le mode Transport et le mode Tunnel. L’utilisation du mode Tunnel corre-
spond à une architecture où le Nœud Mobile tunnelle l’ensemble du trafic vers un point d’entrée
d’un réseau de confiance —en l’occurrence, celui de l’opérateur. Si les délais de mise à jour,
dans le cas du mode Transport, sont 2.65 fois plus importants que dans le cas du mode Tunnel,
en revanche, l’utilisation du mode Transport simplifie considérablement les opérations réseau, et
permet au système d’être beaucoup plus réactif. Plus exactement, le temps d’interruption d’une
communication d’environ 264ms est entre 9.3% et 15.6% plus rapide avec le mode Transport
qu’avec le mode Tunnel.
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Introduction

This thesis is focused on enhancing communication security. A communication is composed of
packets exchanged between an Initiator and a Responder. The Initiator can be, for example, an
End User or a device. It rarely uses network parameters like IP addresses to initiate the commu-
nication. Instead, it prefers using Names that provide a handsome identifiers for the Responder,
both independent from the IP numbering and with a meaning that is easier to remember than
IP addresses. On the other hand, packets remain exchanged between two IP addresses. Naming
includes an architecture and a set of protocols, that make possible to bind a Name to various IP
addresses. It works similarly to a phone directory, that makes you able to call Daniel rather than
+33670726958. This is why Naming plays a crucial role in today’s communications and can almost
be included in the communication establishment phase. As such, in this thesis, we investigate how
ISPs can provide a Secure Naming Service to both its End Users and for its internal devices and
system configurations.

Once a communication has been established, we consider in this thesis a communication pro-
tected at the IP layer, that is to say, using the suite of IPsec protocols. The main reason we chose
securing the IP datagrams from the Initiator IP address to the Responder IP address is that, ISP
are willing to secure a communication over an untrusted network for example, without modifying
the applications. IPsec completely achieves this goal. However, securing a communication from
one IP address to another IP address, means that the IP address is expected to remain the same
during a communication. This sounds like a reasonable assumption for static communication, but
it is not true any more for Mobile communications. Moreover, communications that are more likely
to require security are those of Mobiles Nodes being connected to multiple Networks. In this thesis,
we assume that such Mobile Nodes, are likely to change the IP address of a given communication.
Furthermore, with multiple interfaces, once a new interface is connected to a new Network, the
Mobile Node is likely to benefit from this new IP address either to inform the Correspondent Node
that the new IP address can be used in case the used IP address is not reachable —Multihoming
—, or to simultaneously use both IP addresses —Multiple Interfaces. As such, in this thesis, we
investigate how a Mobile Node can keep an IPsec protected communication over the previously
mentioned changes of IP addresses. More specifically, we looked how the IPsec configuration can
be updated so to provide an IPsec layer conform to IP address management.

As a result, we considered in this thesis the main two axes:

- How to deploy a Secure Naming Service

- How to provide a Seamless Network Security
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How to Deploy a Secure Naming Service

Context Description

The Naming System provides an abstraction for IP addresses. Designed in the 80’s, the Domain
Name System [Moc87a, Moc87b] associated to a Fully Qualified Domain Name (FQDN) a set of pa-
rameters such as the IP address. This can be useful for End Users that are more likely to remember
Names than IP addresses. Pressing Daniel dials automatically to proper phone number. Not only
to the End Users, the use of Names rather than IP address is also very useful to manage networks.
The reason is that FQDN makes reachability resilient to change of IP addresses. If configurations
of devices like Boxes, phones provided by ISPs were based scripts or pieces of software using IP ad-
dresses, then any modification on the IP address plan would make these devices unable to configure
themselves, and the only way would be to update or reconfigure all these pieces of software with
the proper IP address. On the other hand, using FQDN only requires to modify the DNS, that
centralizes the bindings. Another example is companies’ Intranet, that are managed with DHCP.
DHCP manages IP addresses resources, which results in providing different IP addresses for exam-
ple to different servers. This makes access to these servers impossible with the IP address. However,
DHCP updates the DNS, which provides access to the Server through a properly managed IP plan.
At last DNS is also currently used for balancing load between servers, also called L7 load balancers.
When an End User for example is requesting a connection to www.myvideo.com, myvideo.com may
have multiple servers to handle all connections. In our case, the End User does not care which
server it will be connected to, and the DNS can respond with the IP address of the server that
matches some criteria such as lowest loaded server or closest server to the End Users. This is espe-
cially used for the Content Distribution Networks (CDN). All these examples show how we, End
User and Network Administrators can take advantage of the separation of FQDN and IP addresses.

When designed in the 80’s very few effort —or no effort at all —were provided to secure this
system. Furthermore, at that time, people did not foresee how popular the DNS would become.
So in the late 90’s the IETF started designing a security extension for DNS: DNSSEC [EK97],
published in 97. From this first version of DNSSEC, derived security extensions were used to secure
transactions between servers (TSIG [VGEW00]), or administrative operations to secure question
and response exchanges (SIG(0) [Eas00]). However, it took years to actively promote security
mechanisms that secure the exchanges of any End Users. The second DNSSEC version [Eas99]
in 99 and third version [AAL+05a, AAL+05c, AAL+05b] in 2005 were especially focused on that
point. From 2005 to 2008 the DNSSEC protocol was in a stable version. DNSSEC is an extension
of DNS, but a major extension, and migration from DNS to DNSSEC has a considerable cost.
DNSSEC introduces three security concepts for DNS:

- Chain of Trust: Starting from the Root zone, every zone is able to indicate securely which is
the legitimate sub zone. The identifier used for the subzone is a public key, and the legitimate
subzone is the one owning the corresponding private key. By signing with its private key, the
subzone asserts it owns the private key. The key used for identification is called Key Signing
Key (KSK).

- Authentication and Integrity check of the DNS data: When the End User receives a
DNS response, DNSSEC adds a signature, to indicate who is providing the response, and to
make the End User able to prove the response integrity. The signature is generated by the
server using the Zone Signing Key (ZSK).

- Proof-of-non-existence: When a DNS query has no response, that is to say, the queried
FQDN is not hosted on the zone. DNSSEC makes possible to prove the non-existence of the
queried FQDN. The proof works in a similar way as one would prove a word does not exist
in the dictionary. By ordering the zone file, the server responds something like "the queried
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FQDN does not exist, otherwise it would be between those two FQDNs", with the associated
two FQDNs. In some cases, it can be the hash of the FQDNs, instead of the FQDNs if the
server does not want to send information about the hosted zone.

The DNS architecture is composed of Authoritative Servers, that host the zone files, and Re-
solving Servers that are in charge of resolving queries over the DNS architecture and send the
response back to the client. For Authoritative Servers, DNSSEC makes the Servers sign the zone,
which increases the size of the zone with additional data, and makes the responses larger than with
DNS. For non existing FQDNs, DNSSEC involves hashing operation and comparison which is more
costly than with DNSSEC. Furthermore, by signing the zone, DNSSEC cannot afford to publish a
zone file with a mis-configuration. As a result, DNSSEC requires the existing DNS infrastructure
to be upgraded for DNSSEC with more validation, and automatic key rollover management pro-
cedures. For Resolving Servers, DNSSEC introduces signature checks that make resolution much
more costly than with DNS.

In this thesis, we measured the impact of DNSSEC on Authoritative Servers and Resolving
Servers, and we measured that for Resolving Servers, the CPU resources must be increased by
500%. Given this increase, we designed an optimized Resolving Platform. The main principle of
the architecture we propose in this thesis is to limit the number of resolutions. On multi node
platform, we assign each FQDN a Responsible node, that is the only node likely to perform reso-
lutions for that given FQDN. We show that we can reasonably reduce the involved resources.

Organization of the Material

As mentioned previously, this thesis measured how DNSSEC impacts the resources of a server.
Then, we focus our effort on DNSSEC Resolving platforms, and propose different architectures
that reduce the necessary resources. This section presents the goals and content of each chapter.

Chapter 1, presents the DNSSEC protocol, as well as the different actors that are involved in
the DNSSEC migration. Then it presents the cost measurements of DNSSEC for Authoritative
and Resolving Servers with various implementations.

This chapter introduces DNSSEC, provides input about its current development and deploy-
ment, and urges people that have not yet planned in their road map to migrate to DNSSEC to do
so. The chapter also provides with measurements, an evaluation of the costs the DNS to DNSSEC
migration represents. At the end of the chapter, we sum up the results with the example of an ISP
willing to migrate its Authoritative and Resolving platforms. For Resolving Platform, a 500% of
the resources make DNSSEC migration almost impossible with the current architecture. As such,
optimizing the architecture of the platform is a challenging issue.

Chapter 2 proposes two architectures that optimize the resources involved on a DNSSEC Re-
solving Platform: one using a Load Balancer that load balances the traffic between the nodes of
the platform according to the FQDN, and one that takes advantage of DHT nodes.

These architectures are designed to reduce the number of simultaneous DNSSEC resolutions.
More specifically, current architectures designated as IPXOR involves a Load Balancer that splits
the DNS traffic between different nodes by XORing the IP addresses of the incoming DNS query.
As a result, DNS queries for popular FQDNs are sent to all nodes of the platform, making each
node of the platform perform a DNSSEC resolution. A first architecture considers specific Load
Balancers that balance the traffic to the various nodes according to the hashing value over the
FQDN rather than the IP addresses. By doing so, resolutions of FQDNs are provided by a single
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node, which limit the number of resolutions. With such architectures, for very popular FQDNs,
compared to IPXOR where all nodes perform resolutions, the number of resolutions is limited by n
where n is the number of nodes of the platform. Such architecture also reduces the cache length of
the server, since a node only deals with 1

n of the global traffic. Simulations performed by replaying
the DNS traffic show that Load Balancer balancing traffic according to the FQDN significantly
reduces the resources of the platform —about 30%—, but presents a non uniform distribution of
the resources among the nodes.

Replacing the Load Balancer can hardly be done by operational teams. Load Balancers are
interconnecting the Platform to the CORE network, and under heavy traffic, failing Load Bal-
ancers may make the whole platform unreachable. For that purpose, we also investigate how the
nodes of the platform can cooperate between each other and provide an architecture, that results
in assigning every FQDN a specific Node. Distributed Hash Table (DHT) were designed for that
purpose. The second architecture is derived from the DHT architecture we adapt to our purpose.
In addition, DHT provides two other advantages over the Load Balancer alternative: DHT has
been designed with auto-configuration mechanisms that ease Operation and Management (OAM)
tasks, then, DHT comes with a bench of optimizations, caching or traffic redirection. This chap-
ter tests multiple optimizations provided for DHT. One of the optimization is pro-active caching
that has been designed for Zipf traffic distribution. In our case, the popularity distribution of
the FQDNs looks like a Zipf distribution. This means that very few FQDNs, concentrate a large
part of the traffic. As a result, each node considers the γ most popular FQDNs it is responsible
for, and fills the nodes’ cache of the other nodes of the platform. Caching these FQDNs in all
nodes of the platform can be easily done, because, the number of FQDNs is quite small and would
make every node being able to respond to a large part of the traffic. For the remaining traffic,
the traditional DHT architecture is considered, that is to say, the node receiving the query checks
forwards the query to the Responsible Node of the queried FQDN. The Responsible node is in
charge of providing the response, which is then forwarded to the querying client.

Chapter 3 proposes a similar architecture as the DHT pro active caching architecture. The
main difference is that we are taking advantage of Network Hardware Acceleration Cards that
can handle some tasks of the Resolution on behalf of the Server. In our case, we started from
the DHT pro-active caching architecture, where each node fill the other nodes’ cache with its γ
most popular FQDNs it is responsible for. Instead of making the DHT perform the pro-active
caching process, we make it independent from the DHT and work on front end in the Network
Hardware Acceleration Card. This means that a process runs in the card, intercepts all incoming
DNS packets, and if the packet is querying one of the most popular FQDN, then the Card sends
back the response. In that case, the DHT process is not aware of the query. If the queried FQDN
is not one of the most popular FQDNs, then the Card forwards the query to the DHT process,
that handles the resolution. If the node is the Responsible Node for the FQDN, then it sends the
response, otherwise, it sends a query to the Responsible Node of that FQDN.

How to Provide a Seamless Network Security

Context Description

Before 2007, mobile phones were only carrying voice, and the mobile data only represented a small
share of the global mobile traffic because, mobile data were expensive, applications were not so
user friendly, and we believed there is no demand for these applications. In 2007, the iPhone
provided a platform for applications connected to the Internet. The touch screen and designed
applications were very user friendly, the screen was also attractive. This generates demands for
applications, demand for mobile data, and today, one can hardly find a Mobile Phone and does not
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have a WiFi Interface, that has not been designed to host applications. The demand is so high,
that Cisco [Cis11] foresees the global demand for mobile data are expected to be 50 times greater
than it is today. The Radio Access Network (RAN) will not be able to support this traffic at a
reasonable price, which means that in the future:

- End Users with download limit are encouraged to use WLAN network when possible rather
than RAN.

- ISPs must offload the traffic from RAN to WLAN when possible.

As a result, ISPs [NL11] and End Users are encouraged to use, when possible WLAN over
RAN. A first step consists in configuring the Smartphone, so that when you are at home it uses
the private WLAN instead of the RAN. In order to encourage End Users to offload by themselves
their communication on WLAN, ISPs must provide multiple WLAN access Points. In Europe,
DSL boxes deployed over various DSL End Users provide a good opportunity for a large WLAN
coverage in major cities. In fact most European ISPs are developing WiFi Communities, which
consist of sharing your WLAN Access Point with other End Users. Providing the infrastructure
to encourage End Users to offload by themselves their traffic is a second step. However, in this
thesis, we consider that ISPs are offloading the traffic of their End Users, to be able to manage
RAN resources. This scenario is much restrictive because the ISP must provide the same security
to the communication using the WLAN as on the RAN. Furthermore, the ISP must also provide
the End User the same Quality of Service to its End User as with the RAN.

Security: RAN are trusted Networks whereas WLAN are untrusted. RAN are net-
works owned and managed by the ISP, which means that once the Mobile Node is securely attached
to the antenna, the network behind is considered as a trusted network, and communication does
not have to be protected. For this reason, communications on RAN are using Radio Layer security,
at Layer 2, and any layers above are considered to be in a trusted network. While End Users are
connected to a DSL Access Point, even though, the DSL User and the Mobile Node End User be-
long to the same ISP, there is no trust relationship between these two users, and the Mobile Node
End User cannot assume the DSL End User is not listening to the IP communication. Similarly,
when the End User is attached to a completely untrusted WLAN, like the one provided in a café,
a bar, an hotel or an airport, the Mobile Node has no way to trust this network. As such, the ISP
must secure the communication when it offloads the Mobile Node communications to WLAN.

Security can be handled by different layers, Radio Layer or Layer 2 is not sufficient, but one can
consider the IP Layer, the Transport Layer or the Application Layer. Both Application Layer and
Transport Layer Security require modification on the application source code. Application owed
by the ISP can be adapted for these upper layers security, but third party applications cannot be
secured this way. As a result, the only way to handle offload security remains using IPsec. This is
the reason we considered IPsec security in this thesis.

QoS: RAN are reliable Networks whereas WLAN are unreliable. RAN are managed
by the ISP and RAN is monitored and designed to be resilient to antenna fail over. This is not the
case for WLAN based on DSL boxes for example. The boxes are not monitored —or monitored in
a very light way —, and nothing prevents an End User for example to reboot or switch its box. As
a result, Mobile Node must have mechanisms that prevent the communication to be interrupted
when such events happen. Multihoming has been designed for that purpose. With Multihoming,
the Mobile Node informs its Correspondent Node the IP addresses to which the Mobile Node may
be reachable. Most Mobile Nodes have at least a WiFi and a Radio interface, and one can sup-
pose Mobile Node in the future will have more WLAN Interfaces. With Multihoming, the Mobile
provides the IP address of all its Interfaces and when it is no longer reachable on the running
Interface, the Correspondent Node uses an Alternate Interface. Another mechanism may be the
use of Multiple Interfaces. This means a Mobile Node may have a communication not only with
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one IP address, but with Multiple IP addresses. Multiple Interfaces can ease the Multihoming
decision, without completely switching from one Interface to the other, or can be used to split the
flows for example.

QoS: RAN are managed Network whereas WLAN are unmanaged. At last, Mobile
Nodes are not expected to remain attached to the same WLAN Access Point. As such, the Mobile
Node must be able to change its attachment point, and so its IP address. This is called Mobility.
As with Multihoming, and Multiple Interfaces, Mobile Nodes have connection managers that are
expected to take the proper decision on which interface to use or when the handover should occur.
The huge difference between RAN and WLAN is that such decision used to be taken by the Net-
work, and are now taken by the Mobile Node.

QoS and Security. From the above section, we conclude that communications must be
provided with mechanisms to handle Mobility, Multihoming and Multiple Interfaces. Such mech-
anisms are provided by protocols like Multi Path TCP [FRH+11] (MPTCP) or Stream Control
Transmission Protocol [OY02] (SCTP). However, if communications are IPsec protected, modifi-
cations performed by Mobility, Multihoming, or Multiple Interfaces must not be only handled by
the transport layer but also by the IPsec layer. IPsec can be seen as a firewall, whose rules have
been defined according to the ongoing IP addresses used for the communications. When these IP
addresses change, then the rules must be also updated. Any change or modification sounds more
like creating a new rule rather than updating the already existing rules. The goal of this thesis is
to design a protocol that were designed to update these rules. MOBIKE-X [Dan09b]. Currently
IPsec only has MOBIKE [Ero06] that is providing Mobility and Multihoming mechanisms. How-
ever, MOBIKE is restricted to the IPsec Tunnel mode, and Mobile Node with a single interface.
The purpose of MOBIKE-X is to extend these functionalities to the Transport mode and for Mobile
Nodes with Multiple Interfaces.

IPsec is designed for two modes: Tunnel and Transport modes. Security architectures with
the Tunnel mode most of the time involves a Security Gateway that is like a secure entry point
of a trusted network. Security Gateway architecture come with a few issues. For example, they
are more likely to be overloaded since they are dedicated to the whole offload traffic, the security
gateway may add routing indirections, and the tunnel header may add some latencies as well as
processing. For these reasons, in this thesis, we also consider End-to-End Security architecture.
With End-to-End Security architectures, the Mobile node uses the IPsec Transport mode and is
directly connected to the Service. Of course, for most of the services, the Security Gateway archi-
tecture may be enough, but services with Real Time Applications constraints like Voice Services,
or game Services may benefit from this additional QoS.

Organization of the Material

Chapter 4 presents the protocol MOBIKE-X we design to enable the IPsec layer to handle Mo-
bility, Multihoming and Multiple Interfaces. This chapter provides an in-depth description of the
impact of Mobility, Multihoming and Multiple Interfaces on the IPsec configuration. Then, it
describes the current protocols like IKEv2 [KHNE10] and MOBIKE [Ero06]. The reason we de-
signed MOBIKE-X is that IKEv2 generates an exchange that is more or less like a new negotiation
—CREATE_CHILD_SA exchange. This exchange is complex and not mandatory on the imple-
mentations. MOBIKE, on the other hand has been designed only for the Tunnel mode and Mobile
Nodes with a single Interface.

Chapter 5 measures the performances for Mobility, Multihoming and Multihoming of our
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MOBIKE-X. It compares the performances, when possible with MOBIKE and SCTP mobility
over static IPsec configuration. When IPsec is used with the Transport mode, mobility of the
communication must be handled by an additional protocol at the transport layer. In our case,
we used SCTP. At first we evaluate the impact of IPsec over an SCTP mobility, that is to say
we measure SCTP mobility over non IPsec protected links, and over IPsec protected links. This
makes possible to measure the impact of IPsec and to compare how much the configuring IPsec
stalls the communication. The IPsec impact is estimated for both Tunnel and Transport modes.
From lab measurements, this chapter measures the differences over the different IPsec modes in
a mobile environment, which helps deciding whether a communication should be secured with an
End-to-End architecture or with a Security Gateway architecture. Then this chapter also points
the enhancement provided by MOBIKE-X, even for the tunnel mode. In fact, by enabling the use
of Multiple Interface, MOBIKE-X makes Soft Hand-over possible, as opposed to MOBIKE that
only consider a single Interface.

Chapter 6 is focused on how ISP can offload their End Users communications from RAN to
WLAN. This chapter starts by presenting the economical context of offloading. Then it details
and compares the two possible ways to securely offload an application flow. One way is to consider
End-to-End security, that is to say the communication is secured from the Mobile Node to the
Service. The other way is to consider a Secure entry point to the trusted network of the ISP. The
Mobile Node tunnels its communication via a secure tunnel to that Security Entry point. In both
cases, MOBIKE-X provides advantages over existing protocols. It makes possible the end-to-end
architecture, and provides soft handover to the security gateway architecture. Then, this chapter
focuses on deployment issues, and explains how ISP can deploy offload. Two aspects are considered.
The first one is how an ISP can reasonably deal with offload, without having to deploy a heavy
infrastructure. For that purpose, we suggest to associate different offload strategies depending on
the flows, and the nature of the service. Once a strategy has been chosen for each flow, the chapter
provides input of combination between SCTP and MOBIKE-X so to ease deployment. Different
possibilities are provided and depend especially on the nature of the service. The key point is
how to move a non IPsec protected flow to an IPsec protected flow. In fact, this kind of mobility
differs from regular MOBIKE mobility. The different alternatives exposed are using SCTP which
requires applications to be ported on SCTP, using application resilience mechanisms, or using a
specific configuration for MOBIKE-X. All variants described in this chapter are clearly analyzed
and compared, to provide inputs for taking the proper decision. This chapter does not present a
best solution for all cases. It provides input so it is possible to choose the solution that best fits
the needs.
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Providing Secure Naming Resolution
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Introduction of Part 1

Description of the Work

The DNS(SEC) part is composed of three chapters: Chapter 1 provides experimental measurements
and evaluates the cost of migrating from DNS to DNSSEC.Chapters 2 and 3 evaluate different ar-
chitectures for resolution platforms.

DNSSEC is the DNS Security Extension designed by the IETF [AAL+05a, AAL+05c, AAL+05b].
Chapter 1 presents the main actors involved in the DNSSEC migration as well as the performance
issues DNSSEC introduces. DNS and DNSSEC involve multiple actors such as Network Infor-
mation Center that provides Domain Names, ISPs that performs DNS Resolutions on behalf of
their end users, End Users that request the Naming Resolution Service, manufacturers that de-
ploy platforms, software manufacturers that provide pieces of codes for End User, Resolution and
Authoritative Platform. Deploying DNSSEC requires all these actors to jointly deploy DNSSEC.
Some agree for deployment while others diagree, thus leading to a confused situation for the End
User where DNS and DNSSEC are still used together. Chapter 1, in Section 1.2.2, provides a
description of these actors and focuses on their motivations for deploying DNSSEC and their
DNSSEC deployment status.

The second part of Chapter 1 is dedicated to performance measurements. DNSSEC introduces
signatures checks that require more resources than it used to be with DNS. This section pro-
vides experimental measurements and compares DNSSEC to DNS. Moreover, measurements are
provided for different implementations and for different configurations, that is to say for the Au-
thoritative and Resolving configuration. The measurement platform and procedure are described
in section 1.4, and measurements are provided in section 1.5.

DNSSEC deployment for large ISPs is an important issue since their DNS resolving platform
must be enlarged by up to 5 times. There are mainly two expensive operations in DNS(SEC)
resolutions: signature checks during the DNSSEC resolution and cache lookup when the caches are
hosting a lot of FQDNs. In fact, caches are filled with multiple FQDNs that are never requested.
In order to reduce the necessary resources, this chapter starts with the idea of imitating redun-
dancy of FQDNS among the various cache of the nodes of the platform. To avoid simultaneous
resolutions, this chapter assigns each FQDN a Responsible Node. For each FQDN, any time the
FQDN is requested, the DNS query is forwarded to the Responsible Node. By doing so, at least
for the Most Popular FQDNs, the number of resolutions is reduced by n, if n is the number of
nodes of the platform. Then, depending on the popularity of the FQDN, it can be cached or not
among the other nodes. Caching would avoid multiple forwarding, but in return, will make require
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cache lookup.

In chapter 2, we consider two different approaches to assign for each FQDN a Responsible
Node. One way is to use a hash function and a Load Balancer. The load balancer receives the
DNS traffic of the End User, performs a hash function on the FQDN to determine which node the
query must be forwarded to. In today’s resolving platform, the traffic is split according to the IP
addresses, which can be seen as assigning specific End User to each node. By splitting according to
FQDNs, the Load Balancer assigns a unique Responsible node to each FQDN. Section 2.2 compares
the different characteristics of IP addresses and FQDNs on a real live traffic capture. Section 2.4
runs simulations with real traffic, with different Load Balancing technics and compares how the
resources are spread among the nodes of the platform. We show that such architecture requires
up to 30% fewer nodes.

However, splitting according to the FQDNs still raises few issues: FQDNs have very differ-
ent popularities, which makes the resources non uniformly spread among the nodes. We show in
[MHS+a, XMSF11, FMS11, FMS12] how to overcome this issue, that is how to establish routing
policies for FQDNs so that resources on the platform are uniformly distributed. This modifies a
bit how the Load Balancer works, but provides efficient results. Another issue is that such Load
Balancers are not widely deployed, and in addition Operational teams are not willing to modify the
Load Balancers, as they are crucial elements connecting the Platform to the Core Network. For
all those reasons, we look for an architecture that does not require modifications of the Load Bal-
ancers. In addition, Operations, Administration and Maintenance (OAM) is getting quite complex
with the increasing number of nodes of the platform, and thus we are looking for an architecture
that would provide auto-configuration facilities.

All those requirements make us investigate how could the Distributed Hash Table architecture
(DHT) address these issues. In section 2.5, we describe different DHT architectures. With a live
traffic capture and network measurements described in section 2.6, we evaluate their performances
in section 2.7. We show that some architectures can be at least 4 times more efficient than the
current resolving platform.

Chapter 3 proposes a second architecture solution: PREFETCHX is an architecture to over-
come the ever increasing DNS traffic and the DNSSEC migration for large platforms, mainly hosted
by ISPs. PREFETCHX consists in prefetching and caching the X most popular Fully Qualified
Domain Names (FQDNs), and handling the remaining FQDNs by a Distributed Hash Table (DHT)
architecture. Considering the popularity of each FQDN, we designate by HEADX the most pop-
ular FQDNs and TAILX the remaining FQDNS.

PREFETCHX balances the two different models proposed in chapter 2, that is the Load
Balancer and a Distributed Hash Table (DHT) architectures that assigned to each FQDN a Re-
sponsible node. Then it proceeds differently for HEADX and TAILX .

HEADX , the X most popular FQDNs are prefetched. Prefetching a FQDN means that the
Responsible Node is in charge of populating all caches of the other nodes of the platform with
the associated response of that FQDN. This reduces the impact of very popular FQDNs for the
Responsible Node. In fact the DNS traffic is split by the Load Balancer between the nodes of the
platform. The load balancer XORs the IP addresses which results in a uniformly distributed traffic
among the nodes. Because, the Most Popular FQDNs are cached on all nodes of the platform and
because the DNS traffic is uniformly distributed according to the IP addresses, their associated
traffic is uniformly distributed between the nodes of the platform. Then the number of Most
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Popular FQDNs is relatively small (a few thousands). This means a cache lookup to the cache
associated to HEADX is much smaller than the cache associated to TAILX , and so it makes the
cache lookup much faster. Furthermore a lookup in cache of a few thousand lines can be imple-
mented as an independent process from the DHT, and is a much lighter process. For these reasons,
the process can be applied for any incoming DNS query, and forwarded to the DHT process only
if the queried FQDN is not in HEADX . Because the process is light and independent, we can
take advantage of Network Hardware Acceleration Cards and implement it as a front end process.
Then, this process uses the embedded CPU of the card, keeping of the node’s CPU resources for
the DHT processing.

TAILX is composed of the FQDNs that are not in HEADX , and are handled by the DHT ar-
chitecture. More specifically, queries concerning TAILX are forwarded to the DHT process only if
the Network Hardware Acceleration Card has not been able to respond. TAILX takes advantages
of the DHT architecture and avoids multiple resolutions, and responses are only provided from the
Responsible Node. TAILX is composed of less popular FQDNs, so there is a smaller probability,
it is cached by the platform. The probability the FQDN is cached in a node is even smaller if the
traffic is split among the nodes of the platform by XORing the IP addresses of the query. In this
case, DHT avoids a resolution is performed over the Internet.

Section 3.3 details the goals and motivations for the PREFETCHX architecture as well as
the design of PREFETCHX . Live capture analysis estimates that X = 2000 FQDNs should
be prefetched. Section 3.4 details how to derive X from a traffic analysis. X defines the Most
Popular FQDNs. In addition, executing different theoretical models of DHT architectures concludes
that Pastry-SF, derived from Pastry, improves significantly the performance over IPXOR, —the
currently deployed architecture. Section 3.5 computes the traffic TAILX with different theoretical
models defined in section 2.5. Results are provided in section 3.5 and shows which DHT architecture
best fits our goals with TAILX . The choice of an architecture is driven from models evaluations,
and we need to validate our models are valid. In section 3.6, an Experimental Platform based on
FreePastry confirms our models are valid, and confirm our results are valid.

Notations & Abbreviations

In this part, we are using the following notations and abbreviations:

- AXFR: DNS full zone transfer opcode

- CHR: Cache Hit Rate

- OAM: Operations, Administration and Maintenance

- CPUH : Occupancy time for a Cache Hit.

- CPUR: Occupancy time for a Resolution over the Internet. It occurs when the response is
not already cached.

- DHT: Distributed Hash Table

- DNS: Domain Name System

- DNSSEC: DNS SECurity extension

- FQDN: Fully Qualified Domain Name

- MPFQDN: Most Popular FQDNs

- NIC: Network Information Center

- RT: Response Time
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Chapter 1

A Performance view on
DNSSEC migration

This chapter provided inputs for CNSM’10 [MGL10] and results were presented at IEPG’79 [Mig10].

The mathematical expressions for measurements are provided in Annex A.1, and configuration
files used are provided in Annex A.2.

1.1 Introduction

DNS [Moc87a, Moc87b] defined at the IETF, represents today’s Naming System of the Internet
and makes possible to start communications with names, and thus people to communicate through
the Internet. Fully Qualified Domain Names (FQDN) are often more stable and easier to remem-
ber than IP addresses and people are more likely to deal with names than with IP addresses that
define a network localization. On the other hand, DNS is not only used by end users, but also
by the core network. Convergence between traditional telephone service (PSTN) and Voice over
IP (VoIP) is expected to be done thanks to E.164 NUmber Mapping (ENUM) protocol which is
based on the DNS [MD00, Fal00].

As a crucial element for making the Internet useable, the Internet Community is concerned
about security issues on DNS. The Internet Engineering Task Force (IETF) started designing
DNSSEC in January 97 [EK97], and a final version was issued in March 2005 [AAL+05a, AAL+05c,
AAL+05b].

The DNS architecture is composed of Clients that send DNS queries to Resolving Servers. The
Resolving Servers are responsible to find the responses of the Clients’s queries. Responses are
hosted on Authoritative Servers. The reason Clients do not send their query directly to Authori-
tative Servers is that the DNS is a distributed and hierarchical database. This means that to get
the Response, the Resolving Servers may have to send multiple queries to various Authoritative
Servers, and has to interpret their responses. Another reason is that Authoritative Servers would
not be able to handle all Clients’s DNS traffic.

DNSSEC is the security extension of DNS and provides resolvers with the mechanisms to au-
thenticate the origin of the RRset, integrity protect RRsets, build a chain of trust and prove the
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non-existence of the FQDN or a specific RRset. DNSSEC and DNS are compatible in the sense
that a DNSSEC authoritative or resolving server can treat a DNS request. However DNSSEC
comes with so many changes to the architecture, the servers and network security policies that it
is better to consider it not as an extension of DNS but rather as a new protocol.

Complexity may be the major drawback of DNSSEC, and one of the main reasons for its slow
adoption. Up to 2008, ISPs and regular firms were hardly considering DNSSEC adoption. In fact,
in July 2008 Dan Kaminsky revealed a major flaw in the DNS specifications that makes it sensitive
to cache poisoning attacks [Kam08b, Kam08a]. At that time DNSSEC was considered to be the
long term solution to make DNS robust to cache poisoning attacks and it almost closed the debate
about whether or not DNSSEC was worth being deployed.

This chapter intends to help those organizations to position themselves towards DNSSEC.
At first we show WHY organizations - and ISPs - should start their DNSSEC migration.

More specifically, we detail the current position toward DNSSEC of major actors of the Internet
community, and we show that DNSSEC is part of the Internet evolution. We also describe, for
organizations, the benefit of migrating to DNSSEC. Then we show HOW organizations should
handle DNSSEC migration. This includes considerations on how DNSSEC impacts the network
as well as how platforms should be upgraded with regards to a performance point of view. This
consideration on DNSSEC impacts is intended to help network administrators to plan and evaluate
the cost within their own organization of the DNSSEC migration. Then we focus our concern on
performance and consider how the DNS platform should be upgraded to DNSSEC. We present
experimental measurements for various implementations to compare the cost of DNSSEC over
DNS with various configurations. These are expected to help organizations define the DNSSEC
architecture and the implementations that best fit their requirements as well as clarify how many
servers should be added to the DNS platform, how much response time is increased, how many
DNS update will we be able to be performed.̇.

The remainder of this chapter is organized as follows. Section 1.2 presents the current posi-
tion towards DNSSEC of various actors in the Internet community, as well as considerations of
DNSSEC deployment. Section 1.3 positions our experimental work. Next, sections 1.4 and 1.5
present our experiments. This includes a description of the testing environment, our methodology,
DNSSEC impact on end user side with unitary naming resolution, DNSSEC impact on loaded
servers considering maximum load and the response time for resolution and update operations.
Based on those measurements section 1.6 illustrates how experimental measurements can help the
upgrade of DNS platforms. Section 1.7 discusses these results and points that need to be looked
at while considering DNSSEC migration.

This chapter presents the experimental measurements. Mathematical expression for these mea-
surements are provided by Annex A. These expressions are more handy for modelizations.

1.2 DNSSEC Current Status

1.2.1 DNSSEC Brief Description

As mentioned before, DNSSEC [AAL+05a, AAL+05c, AAL+05b] provides mechanisms to authen-
ticate the origin of the RRset, integrity protect RRsets, build a chain of trust and prove the
non-existence of the FQDN.

Authentication and integrity protection are performed by the signatures (RRSIG). This means
that each DNSSEC zone MUST be somehow assigned an identity – a Key Signing Key (KSK) –
and a key that signs the DNS zone – Zone Signing Key (ZSK). The KSK has also cryptographic
properties and is used both to identify a zone and to sign the ZSK so that ZSK are bound to the
proper KSK. The chain of trust implies that once you trust one entry, you can securely trust the
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subdomains. This trust delegation is performed through the Delegation Signer (DS) RRset, where
a parent specifies the KSK of its child. The proof of non existence can be performed through
two different mechanisms: NSEC [AAL+05a, AAL+05b, AAL+05c] and NSEC3 [LSAB08]. Both
mechanisms are based on ordering all RRsets of a zone file as a dictionary. Each FQDN has a
specific place in the zone file, and NSECx RRsets provide the link between the FQDNs. NSECx
can prove an FQDN does not exist as it can indicate the FQDN is not at the right place. Fur-
thermore, the response is signed by the authoritative server. By ordering and providing FQDN,
NSEC enables zone walking [dns08], that is to say downloading the whole zone file even though the
AXFR is disabled. NSEC3 addresses this problem by considering the hash of the FQDN instead
of the FQDN itself. Since hash are one way function, providing the next hash does not provide
any inputs on the FQDNs hosted in the zone.

1.2.2 DNSSEC Deployment

This section provides current DNSSEC deployment for the various actors of the Internet commu-
nity. This includes Network Information Center (NIC), DNS software companies, OS implementers
and ISPs.

1.2.2.1 Network Information Center (NIC)

NIC are part of the most influent actors in the DNS community, and were the early adopters of
DNSSEC. [Ric09] provides Registries view on DNSSEC deployment, as well as DNSSEC deploy-
ment history. The .se and .cz were the first ccTLD to sign their zone. In the Internet SOCiety
(ISOC) DNS panel in July 2009 James Galvin "Our mission is to serve in the public interest,
so securing our Top Level Domain (TLD) with DNSSEC became a top priority" [Gal09]. Then,
DNSSEC ranks first in US IT priorities for 2009 [Jac09], which results in .gov to be signed. In 2010
TLD that are known to have deployed DNSSEC are : .se (Sep 2005), .ru (Apr 2006), .pr (August
2006), .bg (Jan 2007), .br (Jun 2007), .org (March 2008), .cz (Sep 2008), .gov (Feb 2009), .na (Sep.
2009), .tm (Nov 2009), .li (Feb 2010), .ch (Feb 2010), .arpa (Feb 2010), .th (March 2010), .uk
(Mar 2010), .enum (Mar 2010), .pm (Apr 2010), .edu (Apr 2010), .fr (Jul 2010), .re (Jul 2010), .nl
(Aug 2010), .com (2011), .net (2011). Some of them also offer a DNSSEC delegation and provide
facilities to sign their entries. DNSSEC deployment therefore varies from country to country (or
TLD to TLD) but the trend is that most TLDs will implement DNSSEC [Wou10].

DNSSEC was first designed with the root signed in mind, thus providing a PKI-like infras-
tructure, with a single trust entry point. However it took time until the root zone was finally
signed, which resulted in multiple isolated DNSSEC islands. As such, DNSSECed TLD and other
zones published their own key in Trust Anchor Repository (TAR) and resolvers need to get the
keys from TAR. This mechanism is known as DNS Lookaside Validation (DLV) [AW06, Wei07].
In June 3, 2009, [ICA09], ICANN announced that the root zone would be signed in 2009, and
the Root zone has been signed on July 16 2009. Although it does not change much in terms of
validation, politically it is a major step for DNSSEC and the naming system since it is able to
provide a global chain of trust, with a single entry point.

The advantage of DLV mechanism is that it makes possible to deploy DNSSEC zones without
waiting for the root zone to be signed. The drawbacks were that resolvers have to store multiple
keys as Security Entry Point (SEP), and thus probably scared network administrators or network
architects with this added complexity.
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1.2.2.2 Software Implementers

DNS related software implementers were also heavily committed into the DNSSEC deployment.
In 2010 DNSSEC is part of most DNS implementations - Internet Systems Consortium1 (BIND9),
NLnetLabs2 (NSD3 and UNBOUND4), Microsoft, Nominum (ANS and CNS), Secure64,... and powerdns5

is actively implementing DNSSEC.
Administrative tools are also actively developed Opendnssec 6 is designed to manage security

of Zones. Other pieces of software available are listed on [dnsb, dnsc].

1.2.2.3 OS Implementers

In November 2008, Microsoft announced how DNSSEC would be supported in windows 7 [Ses08].
Resolvers on Windows 7, clients do not perform the validation by themselves, but they let the
trusted DNS resolving server deal with Trusted Anchor management and validation. For complete
end-to-end security, communication between the resolver and the resolving server is expected to
be secured using IPsec. Thus, to take the benefit of DNSSEC, server local policy must implement
the DNSSEC signature check policy by default, and resolver must trust the resolving server. In
other words, network administrators and ISPs have to deploy DNSSEC with signature check in
their resolving servers. In February 2009, Microsoft implemented DNSSEC on Windows Server
2008 R2 [Mic09].

1.2.2.4 ISP

Among ISPs, Comcast [Com] is currently the only one that is publicly advocating DNSSEC adop-
tion, and that, by the end of 2011, will sign its authoritative domains and proceed to DNSSEC
validation7 on its resolving servers [Gri10].

1.2.3 DNSSEC Impacts on the Network

1.2.3.1 DNSSEC Compliant Infrastructure

First of all DNSSEC is complex and operational teams need to become familiar with that protocol.
Procedures are complex and need to be adapted to the operational environment with automatic
procedures. "If your data signatures don’t validate, you’re down! [...] You can’t make a mis-
take!" reports Kevin Oberman in [Obe09]. Then ISP naming infrastructure not only involves
servers (resolving and authoritative) but also middle boxes located in end user’s home. Deploying
DNSSEC requires to validate DNSSEC compatibility across all the network equipments involved
in the naming resolution as well compatibility with our services.

On servers’ side, Comcast reports at NANOG45 [Gri09] that DNSSEC increases memory foot-
print between 5 and 9 times for the authoritative infrastructure and that the recursive infrastructure
requires additional recursive clusters. For middle boxes, like residential Internet router and SOHO

1http://www.isc.org
2http://www.nlnetlabs.nl
3http://www.nlnetlabs.nl/projects/nsd/
4http://www.unbound.net
5http://www.powerdns.com
6http://www.opendnssec.org
7http://blog.comcast.com/2010/02/dnssec.html

24



Section 1.2. DNSSEC Current Status

firewall devices commonly used with broadband services, [BP08] shows that only 25% of the tested
boxes in 2008 were fully DNSSEC compliant.

On the user point of view DNSSEC resolution on small devices may slow down web surfing and
[LCGW09] shows that DNSSEC may not be compatible with the DNS redirect service provided
by ISP. As a result, moving to DNSSEC without breaking connectivity for end users represents a
great challenge.

1.2.3.2 Monitoring DNSSEC

DNSSEC introduces security to the traditional DNS service. However, DNSSEC also brings its
own issues that can make resolutions impossible. One common reason is that DNSSEC packets are
larger than regular DNS packets, and thus may be dropped by network devices. Resolvers advertise
through the EDNS0 option [FM04] a larger packet size than the traditional DNS 512 bytes packet
size. If the indicated packet size is larger than the one accepted by the network for an end-to-end
connectivity, then smaller packet sizes are to be used. This operation is called the Path MTU
walk (PMTU) [rep09]. [ORMZ08] monitors DNSSEC zones and traffic and shows that roughly
20% of the monitored zones suffer availability dispersion, and that PMTU walk is necessary for
roughly 95% of the DNSSEC zones for 1.5% of the time. Finally, [ORMZ08] - maybe no longer
up-to-date - shows that in 2008 97% of the DNSSEC zones were isolated -i.e. not attached to
a TA-, and thus not verifiable. Then 9% of the authentication chain were broken which means
that a DNSSEC resolution would consider the entire subzones as invalid. This usually happens
when a zone is re-signed before updating the delegation. Then, due to the absence of revocation
mechanisms, 19% of the zones had data that are still valid according to their signature expiration
date, but that do no longer exist in the zone file.

1.2.4 ISP Position for Migrating to DNSSEC

This section considers network administrator’s or ISP point of view, and describes their current
position toward DNS. Then we mention how they are impacted by cache poisoning attacks, the
problems encountered to have their infrastructure DNSSEC compliant and the new issues that
come with DNSSEC.

1.2.4.1 ISP Consideration about DNS

ISPs aims at providing Internet connectivity and services to end users. DNS is only one component
to provide this connectivity. Until now DNS architectures for authoritative and resolving servers
were quite scalable, performed well, and were considered as an operational issue rather than a
research issue. This at least explains why they were not that involved at the beginning of DNSSEC
deployment and why DNSSEC seems new to them.

1.2.4.2 Cache Poisoning

With the Kaminsky Attack in July 2008, people became aware that their DNS architecture was
sensitive to DNS cache poisoning. On the other hand ISP providing email facilities are facing
phishing and pharming issues [Oll05] and DNS cache poisoning is one vector for such attacks.
The AntiPhishing Working Group [APW] (APWG) shows that hijacking brand name is still an
increasing issue, [Oll09] reports with concrete examples how valuables are FQDN for companies. As
a result DNSSEC is attractive to protect companies brand, to protect Internet Services – ISP don’t
want for example their end user’s email being redirected nor to provide corrupted DNS resolution
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with corrupted cache. As Chris Griffiths from Comcast reports "Current recursive infrastructure
is not vulnerable but we cannot sit back and wait for the next big bug/exploit." [Gri09].

1.2.4.3 Position toward DNSSEC

ISP’s position toward DNSSEC is balanced between the cost of DNSSEC migration and the impact
of not upgrading their Naming System to DNSSEC. Costs for DNSSEC migration are high for
organizations, since it impacts operational infrastructure, platform and network performances.
However DNSSEC is being deployed by NIC, governmental institutions, and OS implementers,
and end users ask for more security. As such DNSSEC is part of the Internet evolution. Delaying
its migration may only make the cost higher in the future. In fact, today DNSSEC traffic is
quite low, and is expected to increase with DNSEC deployment of major TLDs, end users OS,
organizations... Increase of DNSSEC traffic will make the migration harder, and costs higher. On
the other hand, not migrating to DNSSEC means that we keep the DNS organization into insecure
islands on the Internet. This includes preventing end user from securing their naming resolution,
accepting that end user private data may be redirected to an attacker web site, accepting that our
domain name may be hijacked and our services made unavailable.

1.2.4.4 Elements Helping the migration

Migration to DNSSEC can be done in various way for resolving servers. With current DNS config-
uration, resolving servers only perform DNS resolution. A first DNSSEC configuration can make
them perform DNSSEC with no validation when requested by the end user. Then this configuration
can be extended to all incoming DNS queries. Finally servers can be set to proceed to DNSSEC
validation. This chapter intends to provide input to evaluate the cost of each configuration.

Specifications [AAL+05b, AKB07, Con01, WG03] mention that DNSSEC clients and resolv-
ing servers exchange DNSSEC parameters through three bits : the DO bit (DNSSEC OK), the
AD bit (Authentic Data) and the CD bit (Check Disable). [Con01] specifies that the DO bit
indicates that the client is DNSSEC aware, which means it does understand DNSSEC response
and DNSSEC RRsets. In other words, it does not specify who performs the signature check.
[AKB07, AAL+05b, WG03] define that the AD bit indicates that the resolving server has checked
the signatures according to the records mentioned in the Answer and Authoritative section. This
is an indication, and should not be blindly trusted by the client. [AAL+05b] specifies that CD
bit is set by the client to indicate that the signature check will be processed with the client local
policy rather than the resolving server’s policy.

1.3 Related Work

Most of the DNSSEC deployment guides are configuration oriented [Kol09, CR06, SL10, Cle08].
Some give key elements of the deployment, to help managers taking the decision to migrate to
DNSSEC and to supervise the migration [Ait09, Sar10]. [Gra10] provides a checklist of key points
to consider in the network before enabling DNSSEC on servers. However, all of them assume
that the decision to migrate has been taken, and do not provide inputs so that administrators
can plan DNSSEC migration or evaluate its costs. Performance impact has already been mea-
sured in various ways in previous studies. In 2005, O. Kolkman studied the resource requirements
of DNSSEC for some of the root servers [Kol05]. The same year, B. Ager et al. conducted a
study [ADF05, Age05] on two specific topics. First they observed how the size of the packets is
impacted by switching to DNSSEC. Then they studied how memory and CPU usages are impacted,
both on caching and authoritative servers, for a very specific situation. One year later, A. Guillard
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performed a study [Gui06] focusing on authoritative servers only and testing impact on the zone
and the bandwidth. [MM06] compares IPsec and DNSSEC. Tests were performed on the same
platform, using different tools, and the DNSSEC version was not considering NSEC3 [LSAB08]
but NSEC [AAL+05a, AAL+05c, AAL+05b].

Our work differs from previous work in that we study the impact of DNSSEC on authoritative
servers, resolving servers and resolvers. Performance tests are realized with the DNSSEC NSEC3
option that was not available at the time of previous studies. Performance tests are performed
with DNS and DNSSEC on various implementations. This makes possible to compare the cost
of DNSSEC for a given comparison as well as to compare the performances of each implementation.

1.4 Testing Platform

In this chapter, we consider BIND 9.6.0-P1, UNBOUND 1.2.1 and NSD 3.2.1. Other DNSSEC
implementations were available such as Microsoft DNS, power DNS, Simple DNS plus, Secure 64
and Nominum. We did not take them into consideration because DNSSEC-NSEC3 was partially
implemented (power DNS), they required specific hardware (Secure64), they were not able to work
on a Linux platform (Microsoft DNS), or we did not get the binaries.

NSD - authoritative server - and UNBOUND -recursive server- are both developed by the NLnet
Labs whereas BIND9 is developed by the ISC. Next BIND version, v10, will also be split into
different pieces of code for the authoritative and recursive server, which is expected to improve
its performance. BIND and NSD have distinct designs. BIND loads its zone file whereas NSD
compiles it so that any possible query is handled. As a consequence, updating a zone file requires
recompiling the NSD zone file, and dynamic updates cannot be done with NSD. Nevertheless the
data structures used by both implementations are more or less the same: red-black binary tree
for authoritative data and hash table for cached data. In this chapter resolving servers are used
without cache, except for section 1.5.5 and 1.6 where we look at the impact of caching.

1.4.1 Testing Environment

The hardware configuration used to do the test was based on very old servers and powerful end-
clients. This choice has been made first of all to avoid speed limitation on the client’s side. Secondly,
using servers with limited performance, makes it easier to reach their limits without using multiple
clients or being limited by network bandwidth. For our tests, we used Intel Pentium III ( @ 1GHz
32 bits) CPU, 384MB of RAM for servers with Debian 5.0 (lenny), Linux kernel 2.6.24. To load the
servers, we used an Intel Xeon E5420 (Quad-Core @ 2.5GHz 32bits) CPU, 3GB RAM with Ubuntu
8.10 (hardy) 32 bits version with Linux kernel 2.6.27. The tested BIND version was multithreaded,
but with one CPU we used one thread.

The testing environment was designed to measure DNS and DNSSEC performances on resolving
and authoritative servers. The two configurations are represented in figure 1.2. Time was measured
using Wireshark. Client Processing Time is the time to initiate the query, forge the datagram,
and send it to the outbound network interface, as well as the time to receive the response from
the inbound interface back to the software. ISP Network Latency and Internet Network Latency
are the time datagrams are on the wired network. Cache processing Time is the time a query is
received on the inbound interface, processed, and a resolution is handled plus the time to forward
the response from Internet interface to the client interface. Authoritative Processing Time is the
time authoritative servers take to receive a query and send the response.

The data used for the tests were directly hosted on the authoritative server and we did not
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consider any hierarchy in our Naming architecture, and the naming space was quite flat. When
tests involved DNSSEC, all data in the authoritative server are signed with a single key, and this
key is trusted by the resolving server. We choose the simplest scenario so that more complex
models could be derived.
In this chapter, we consider different configurations for each authoritative and resolving servers.

- Authoritative servers can be configured with DNS or a DNSSEC server.

- Resolving servers can be configured with DNS, DNSSEC and DNSSEC with validation.
The difference between DNSSEC and DNSSEC with validation is that with DNSSEC the
Resolving server requests the additional data like signatures, chain of trust information but
does not perform any signature checks. This can be done for example, if the client ex-
plicitly requests that the Resolving server does not perform the signature checks. With
the DNSSEC validation signature check is performed by the resolving server. This config-
uration is obtained with dnssec-enable yes and dnssec-validation yes for BIND and
module-config "validator iterator" for UNBOUND - Annex A.2 provides the various
configuration files used for those tests.

1.4.2 Testing Tools

Tests were performed with different tools. dnsperf and resperf [dnsa] have been used to send re-
quests or updates to DNS servers. Performance measurements have been made with collectl [col]
and network latency measurements with Wireshark [Wir].

1.4.3 Testing Methodology

For our different tests, we used, when possible the median instead of the mean value. Figure 1.1
gives the distribution of measurements for a specific test, and shows that the median limits the
weight of erroneous measurements. As such we consider it more representative of the data. How-
ever, for tests that involved dnsperf, we considered the mean value since this is the output of
dnsperf.
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Figure 1.1: Experimental Measurement Distribution for a Resolution Time:
Difference between Median and Mean Measured Value
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(a) Authoritative (b) Resolving

Figure 1.2: DNS(SEC) Experimental Platform and Definition of the Measured
Time

1.5 Experimental Work to Measure DNSSEC Impact on Servers
and End Users

1.5.1 Impact of DNSSEC on Unitary Tests

Unitary tests measure the system performance without load considerations. Figure 1.3 provides
time measurements with the same colors or grey level as in figure 1.2. For authoritative servers
(figure 1.3a), implementation comparison provides that NSD always has better performance over
BIND – 60% for DNS and 65% for DNSSEC. NSD also has lower network latency than BIND for
DNS and DNSSEC – 8% for DNS and 7% for DNSSEC.

Protocol comparison shows that NSD is less impacted than BIND by DNSSEC – 8% for NSD
and 25% for BIND. Network latency also increases by 60% with DNSSEC.

For resolving servers (figure 1.3b), the implementation comparison shows that UNBOUND
lowers BIND performance by 67% for DNS, by 68% for DNSSEC without validation and by 46%
for DNSSEC with validation. Migrating from DNS to DNSSEC with no validation adds an extra
time of 9% for UNBOUND and 14% for BIND. On the other hand, migrating from DNS to DNSSEC
with validation adds an extra 253% for UNBOUND and an extra 116% for BIND.

According to unitary tests, NSD is much more efficient than BIND. This can be partly explained
by lighter source code for NSD and by the difference of their architecture. BIND10 should enhance
its performances by splitting the code for authoritative and resolving servers. BIND10 will provide
two distinct pieces of software, and we expect BIND10 to enhance measured BIND’s performance.
Also BIND and NSD have different architectures, BIND uses a table whereas NSD codes any
possible responses. In other words, BIND presents a clear separation between running code and
data, whereas NSD includes data and the running code. This is probably the cost of flexibility.

1.5.2 Impact of DNSSEC on Maximum Load

Figure 1.4 shows the CPU load of authoritative and resolving servers. For authoritative servers,
considering the maximum load qmax, comparison of the different implementations shows that with
DNS the maximum load handled by BIND corresponds to 43% of the maximum load handled by
NSD. With DNSSEC the maximum load handled by BIND corresponds to 41% of NSD’s maximum
load. In other words, with the tested configuration NSD is able to deal with around 2.3 times more
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(b) Resolving with DNS, DNSSEC

and DNSSEC with validation config-
urations

Figure 1.3: DNS(SEC) Experimental Measurements for Unitary Test Latency
for BIND and NSD/UNBOUND implementations

traffic than BIND with DNS or DNSSEC.
We also measured the cost for DNSSEC migration for each implementation. The maximum

load with DNSSEC corresponds to 79% of the maximum load with DNS with BIND and 83%
with NSD. In other words, with both implementations BIND and NSD, the cost of DNSSEC is
estimated roughly at 30% of the DNS traffic.

For resolving servers, with DNS, the maximum query load handled by BIND corresponds to
28% of UNBOUND’s maximum query load. With DNSSEC, resolving servers can proceed to a
signature check (DNSSEC validation) or not. With DNSSEC without validation, the maximum
load handled by BIND corresponds to 29% of UNBOUND’s maximum load. With DNSSEC with
validation, the maximum load handled by BIND corresponds to 55% of UNBOUND’s maximum
load. In other words, with validation UNBOUND is able to deal with around 3.4 times more traf-
fic than BIND. With DNSSEC and validation UNBOUND deals with 1.8 times more traffic than
BIND. Validation lowers the differences between BIND and UNBOUND. A possible explanation
is that signature check is costly, and has equivalent performance on both implementations.

While comparing DNSSEC cost for a given implementation, we can see that BIND with
DNSSEC (without validation) the maximum traffic load (without validation) corresponds to 90%
of the maximum load with DNS. For BIND and DNSSEC with validation the maximum load corre-
sponds to 49% of the maximum load with DNS. For UNBOUND with DNSSEC without validation,
the maximum load corresponds to 86% of the maximum load with DNS. With DNSSEC with vali-
dation, the maximum load corresponds to 25% of the maximum load with DNS. In other words the
cost of DNSSEC without validation represents between approximately 10% and 14% of the DNS
traffic for both implementations. When validation is involved, the cost varies from 75% and 51%
of the DNS traffic. The cost of DNSSEC with resolving server varies more across implementation
than it does with authoritative servers. BIND has lower performance then UNBOUND, but seems
less impacted then UNBOUND by DNSSEC.

1.5.3 Impact of DNSSEC on Network Latency & Response Time

The Response Time is the time is takes the client to get the response from the server, when the
query has been sent by the client to the server. Response Time directly impacts the end user.
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(b) Resolving

Figure 1.4: DNS(SEC) Experimental Measurements for CPU Load on Au-
thoritative and Resolving Servers

Figure 1.5 provides the server processing time of resolving and authoritative servers regarding
the load. For authoritative servers and load below 40%, the response time is quite constant, and
NSD response time is around 50% of BIND’s response time with DNS and 45% with DNSSEC.
Migration to DNSSEC increases response time of 20% for NSD and 10% for BIND. For resolving
servers, and CPU time lower than 50%, the response time is quite stable. UNBOUND response
time is around 35% of BIND’s response time for DNS, 30% for DNSSEC and 75% for DNSSEC
with validation. Migration from DNS to DNSSEC, either with BIND or UNBOUND, does not
significantly change latency. With validation, migration increases response time by 35% for BIND
and 215% for UNBOUND, compared to DNS.

1.5.4 Impact of DNSSEC on DNS Update Operations

Updates are performed using the nsupdate command on BIND only (NSD does not handle dynamic
updates). Possible operations are : add or delete. We first compare costs of add and delete

operations. Since delete must follow an add, to compare the respective cost of those operations,
we actually compared 2.n(add) to n(add + delete) operations. Figure 1.6 shows that tDNS

add =
0.217ms and tDNS

delete = 0.153ms, so add requires 1.42 more time. With DNSSEC tDNSSEC
add =

48.07ms and tDNSSEC
delete = 11.55ms, so add costs 4.16 more time. DNSSEC cost makes add
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Figure 1.5: DNS(SEC) Experimental Measurements for Response Time

operation 221 times longer and delete operation 75 longer.
Tests are performed for one add operation, but nsupdate can perform multiple add operations

at a time. Figure 1.7 shows that sending multiple updates per nsupdate query is more efficient,
both with DNS and DNSSEC. From experimental measurements and the Least Squares method
we derive a mathematical expression to express the rate of addition to a zone that can be done.
This rate is expressed in equation 1.1 as a function of nadd, the number of add sent per nsupdate
message.

Max_add_RateDNS(nadd) = 5000× (1− e−nadd/40)

Max_add_RateDNSSEC(nadd) = 24− 10× e−nadd/2.5

(1.1)

1.5.5 Impact of Cache Hit Rate

Resolving servers have caches and proceed to a resolution only when a cache miss occurs, and all
previous tests consider a Cache Hit Rate (CHR) of 0%. To measure the CHR impact on resolving
servers, we generate traffic with different CHR and for each traffic we figure the CPU time as a
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Figure 1.6: DNS(SEC) Experimental Measurements for Update Rate: Rate
Comparison between Delete and Add
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(b) DNSSEC

Figure 1.7: DNS(SEC) Experimental Measurments for Update Rate with var-
ious number of add per nsupdate query

function of the query rate q. Then from the various curves, we computed the Added Query Ratio

(AQR) AQR(CHR) =
qCPU
CHR−qCPU

CHR=0

qCPU
CHR=0

. For a given CPU load on the platform, and a given query

rate, AQR estimates how CHR increases the query rate qCPU
CHR over the measured query rate defined

for CHR = 0: qCPU
CHR=0.

To generate a DNS traffic with a given CHR we consider two lists of FQDNs : FQDNl list
with long TTL and FQDNs list with short TTL, then we load FQDNl and generate DNS traffic
from the two lists as follows : CHR × FQDNl + (1 − CHR)FQDNs. Figure 1.8 plots result
from a CPU time fixed to 100% and shows that CHR is a major parameter on DNS platform
performance. As expected, the more CPU time is required for a resolution, the more the CHR
enhances performance. As a result, with CPU = 100%, DNSSEC_VAL have an AQR that varies
from 1149% to 1779%. DNSSEC and DNS has an AQR varying from 374% to 592%.

For a given implementation, the AQR has similar values with DNS and DNSSEC without
validation. Although implementations have different performances with DNS and DNSSEC, the
CHR impacts those performance in a similar manner. Comparison across the different implemen-
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tations shows that UNBOUND has a greater AQR than BIND with DNSSEC_VAL. With DNS
and DNSSEC, BIND has a greater AQR.
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Figure 1.8: DNS(SEC) Experimental Measurements: Impact of Cache Hit
Rate on Resolution Platform Performances

1.6 Application for ISPs: Estimation of Costs for Migrating
from DNS to DNSSEC

In this section, we consider the experimental measurements of the previous sections to figure out
how much it costs an ISP to migrate from DNS to DNSSEC. The measured daily query rate on our
operational is 40, 000 q.s−1, with maximum query rates up to 120, 000 q.s−1. The measured CHR
is CHR = 0.7. Thus we designed our platform for 40, 000 q.s1 with a CPU rate of cpumax = 20%.

Tables 1.1 and 1.2 provide, for different configurations, the required number of nodes for each
platform as well as the response time for handling the whole traffic. For authoritative and resolv-
ing server platform, we provide an estimation for each implementation - BIND NSD and UNBOUND

- considering different protocols - DNS, DNSSEC, or DNSSEC-validation. We also provide the
Implementation Ratio (IR) as well as a Protocol Ratio (PR), to compare the implementations
performances as well as the costs generated by the different protocols over DNS. Response time
represents a good estimation on the end user side whereas the number of nodes provides a cost
estimation on the ISP side. One should notice that tables 1.1 and 1.2 considers a platform com-
posed of nodes we used in our experimentation that is to say Pentium IIIs, with 1GHz CPU and
384MB of RAM, which are definitely not the nodes we have in our operational platform. For this
reason, we are more interested in ratio between implementations or between configurations. Such
approximation must be cautiously considered, and performance tests must be done on the specific
hardware used for the operational platform.

For authoritative platforms, migration to DNSSEC impacts more the end users than the ISP.
The number of nodes of the platform increases by 33% whereas the response time increases by up
to 485%. This latest cost deeply depends on the chosen implementation so ISPs must carefully
choose the implementation that fits its required functionalities. For resolving platform costs due
to cryptographic operations seems to be the performance bottleneck, thus the more efficient the
implementation is the most costly is the migration to DNSSEC in term of number of nodes. In
term of response time or the number of nodes, the cost of migrating to DNSSEC-validation can be
up to 499%.
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How these results can be explained according to our experimental measurements of figures 1.4
and 1.8. First these results are provided according to experimental measurements and equations
related to these experimental measurements are provided in section A.1. This paragraph provided
a subjective explanation of these results.

Figure 1.4 shows the CPU consumption on our experimental platform which considered a traffic
with an associated CHR = 0. Then each DNS responses is composed of three fields ANSWER,
AUTHORITY and ADDITIONAL, but only the ANSWER field required a signature check. With
these hypothesis, experimental measurements show that DNSSEC resolutions requires 1.3 times
more CPU than DNS resolution with BIND9 and that UNBOUND requires 3.15 times more CPU
for DNSSEC resolutions than for DNS resolutions.

From this, we measured that real traffic has a CHR of 70%, and we considered that each DNS
response field ANSWER, AUTHORITY and ADDITIONAL generates a signature check.

Considering 3 signature checks instead of one would make DNSSEC resolutions require 4 times
more CPU for BIND9 and 9.45 times more CPU for UNBOUND. On the other hand, considering
higher CHR values reduces this cost. In fact, with a CHR of 0%, each DNS query triggers a
DNSSEC resolution that results in writing a new answer in the cache. Write operations cannot be
done simultaneously by different process. Each time a write operation occurs, the cache is locked,
meaning that other write process (that is to say parallel resolutions) are blocked. This results in
multiple processes waiting to be active generating multiple interruptions. With a CHR = 70%,
70% of the queries do not need resolutions, and are resolved by reading the cache. These read
operations are faster operations, can be performed simultaneously and do not require the cache to
be locked. Overall it makes the server much more efficient by reducing the number of interruptions.
Finally this high CHR decreases the DNSSEC cost overhead from 4 to 2 with BIND9 and from
9.45 to 5 for UNBOUND.

Node DNS DNSSEC DNSSEC-validation

BIND9 80 (1∗) 87 (1.09∗) 160 (2.00∗)

UNBOUND 20 (1∗) 24 (1.20∗) 85 (4.25∗)
UNBOUND

BIND9 (IR∗∗) 0.25 0.28 0.53

(a) Number of nodes

Response Time (µs) DNS DNSSEC DNSSEC-validation

BIND9 1402 (1∗) 1161 (0.80∗) 2300 (1.63∗)

UNBOUND 401 (1∗) 366 (0.92∗) 2000 (4.99∗)
UNBOUND

BIND9 (IR∗∗) 0.20 0.20 0.87

(b) Response Time (µs)

Table 1.1: Example of DNSSEC Impact on Resolving Platform for ISPs– (∗)
PR), (∗∗) IR —query rate q = 40, 000, Cache Hit Rate CHR = 0.7, CPU = 20%

1.7 Conclusion

DNSSEC is deployed to make the Internet more reliable. DNSSEC deployment needs that all
Internet actors move forward to DNSSEC, which has already been started by the registries and the
software industry. The road to DNSSEC is still long and ISPs as well as other network administra-
tors will have to dive soon into it. This chapter presents keys points to consider when migrating
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Node DNS DNSSEC

BIND9 29 (1.00∗) 38 (1.31∗)

NSD 9 (1.00∗) 12 (1.33∗)
UNBOUND

BIND9 (IR∗∗) 0.31 0.32

(a) Number of nodes

Response Time (µs) DNS DNSSEC

BIND9 239.38 (1.00∗) 1161.80 (4.85∗)

NSD 92.27 (1.00∗) 130.42 (1.41∗)
UNBOUND

BIND9 (IR∗∗) 0.39 4.50

(b) Response Time (µs)

Table 1.2: Example of DNSSEC Impact on Authoritative Platform for ISPs –
(∗) PR, (∗∗) IR)

to DNSSEC, so to ease planning this migration.
At first one must be aware that DNSSEC is not a trivial option. People must plan this migra-

tion and consider DNSSEC as a new protocol with its own issues, its own engineering rules... rather
than an option of DNS. However DNS is still compliant to DNSSEC which eases the transition,
and migration should be much faster than IPv4 to IPv6. Then people should not underestimate
the change on the operational procedures. This includes the signing procedures for authoritative
servers, but also monitoring both traffic and deployed DNSSEC zones - at least at the beginning,
so to avoid false positives. Then, DNSSEC deployment on resolving infrastructure should be done
step by step, and opt-in trial is probably the most relevant thing to start with. More specifically,
opt-in trial involves people that are aware of the technology, or that are willing to use it, and
ready to debug encountered corner cases. At last, whatever difficult DNSSEC migration is now,
DNSSEC is on its way to be deployed and migration will become even harder in the future. For
this reason one should start now and small.

Future work should include distributed loader to check large operational platform with real
DNS traffic. Traffic monitoring and traffic analysis should also anticipate DNSSEC issues, and
provide input for new platform architecture. In fact, with high CPU occupancy resolution DHT-
based architectures may outperform traditional resolving servers architecture.

Chapters 2 and 3 are both dedicated to optimize a Resolution Platform. Platforms are designed
to avoid simultaneous resolutions by different nodes of the platform. Thus we assign for each FQDN
a Responsible Node. DHT architectures are evaluated and we take advantage of the law power
distribution of the FQDNs.
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Chapter 2

Overcoming DNSSEC
Performance Issues with FQDN Load

Balancer and Cache Sharing

This chapter reflects some of the work we performed on this topic. It has provided inputs for
[MHS+b, MHS+a, XMSF11, ML11, FMS11, FMS12]

2.1 Introduction

DNS [Moc87a, Moc87b] is the protocol that makes possible communication based on names, by
binding an IP address to a Fully Qualified Domain Name (FQDN). As such end users rely on a
DNS resolving platform to determine the IP address of the target, which makes DNS resolution
platform a critical element of the Internet.

Most of the time, when an end user types www.facebook.com in its browser, the browser sends
a DNS query to the DNS resolving platform of the ISP, which sends back the IP address of
www.facebook.com, so that the browser initiates an http connection to the web server. As a result,
ISP DNS resolving server have become strategic points over the Internet reached by numerous end
users and that define where they will be connected to. In July 2008, Dan Kaminsky showed that
DNS was sensible to cache poisoning attacks [Kam08b, Kam08a], and that the long term solution
was DNSSEC [Hig09]. DNSSEC [AAL+05a, AAL+05c, AAL+05b], was designed by the IETF so
the end user can check if the received DNS responses are legitimate through electronic signatures.
As a consequence, DNSSEC resolution costs a lot more than a DNS resolution. Note the Top Level
Domain (TLDs) have already deployed DNSSEC, making the DNS infrastructure DNSSEC ready.
Then, end users Operation System like Window7 is also DNSSEC ready, which makes ISPs up-
grading their DNS resolving platform to DNSSEC. Lab tests and experimental DNSSEC trials by
major ISPs (Orange, Comcast) [MGL10, Gri09] show that DNSSEC deployment on their resolving
servers requires between 4 and 5 times more resources than with DNS. Thus, for a DNS Resolving
Platform - like it is the case for Orange - currently composed of 18 nodes, migration to DNSSEC
with the current architecture would require 90 nodes. Administrating 20 nodes versus 90 comes
with management as well as organizational issues, that makes DNSSEC hard to be considered by
some ISPs. As such, the primary goal of this chapter is to provide an architecture for a resolving
platform that optimizes resources required for the DNSSEC resolutions. In addition to the mi-
gration performance issue, scalability of the resolving platform is also a priority as traffic keeps
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increasing by 8% per month for the last five years. Moreover, Content Delivery Networks (CDNs)
are more and more popular among ISPs. In fact ISP are heavily involved in deploying CDNs to
deliver content to their end users, in their home network. CDNs usually load balance the traffic
on their content servers by using the DNS with FQDN whose Time To Live (TTL) is in the order
of 30 s. Both CDN development as well as short TTL are expected to increase drastically the DNS
traffic.

As such, this chapter looks for alternative architectures adapted to the upcoming DNS(SEC)
traffic. ISPs have different architectures for their DNS resolution platform. Some have a decentral-
ized architecture where the nodes of the platform are located in the Access Network. Others have
a centralized platform composed of one or few clusters, which responds to all end users queries,
like Orange having 18-node clusters. In this chapter we consider the latest architecture where
load balancers are in charge of splitting the DNS queries among the n different nodes. For each
incoming query, the load balancer XORs the IP source and destination of the query, and then
performs a modulo n operation over the 24 least significant bits [alt03, Rad10]. This traditional
architecture is referred in this chapter as IPXOR.

This chapter considers an alternative architecture FQDN where load balancers split the DNS
queries according to the SHA1 value of the FQDN as represented in figure 2.1a. Compared to
IPXOR, we expect FQDN to be more efficient, more scalable and to better protect the end users’
privacy. Firstly FQDN is expected to be more efficient as it implicitly assigns each FQDN to a
single Home node that is responsible for performing the resolution for that FQDN. Secondly, the
number of resolutions is expected to decrease, thus reducing the CPU consumption. Note that the
efficiency of the DNS resolution platform is measured according to the global CPU consumption
and the distribution of the CPU load among nodes. An optimal platform has the CPU load uni-
formly distributed among the nodes.

In fact if you consider that τ is the maximum number of tasks a node can perform. If tasks
are uniformly distributed, then a n node platform is designed nτ tasks. On the other hand, if
one node always performs twice as the other nodes then the n node platform can only perform
n − 1 τ

2 + τ tasks. In our case, tasks are either resolution (R) or Cache Hit lookup (CH). Each
FQDN is associated a Time To Live (TTL) that indicates how long the FQDN is stored into the
cache. With a traffic analysis of DNS traffic we considered the distribution of Queries, and TTL,
so to evaluate whether distributing tasks on a per FQDN basis may introduce a bias compared to
a per IPs distribution. This chapter shows that FQDN improves the IPXOR platform efficiency by
30%, thus making FQDN more scalable. Moreover, a newly added node in IPXOR has to perform
resolutions that includes the most popular FQDNs, even if the other nodes of the platform have
already resolved them. Adding a node in FQDN does not generate redundant resolutions. Finally,
FQDN better protects the end user’s privacy as the traffic is load balanced according to the FQDN
and not the IP address. Additionally, if a routing table is established based on a traffic analysis,
the privacy of end users is preserved for FQDN, but not for IPXOR as statistics on IP addresses
are needed.

Even though FQDN offers multiple advantages over IPXOR, FQDN presents two major draw-
backs. First load balancers based on FQDN are unusual on the market. Second, FQDN Load
Balancer must be deployed in conjunction of other equipments whose purpose is to define proper
balancing rules according to the running traffic. Third, replacing the load balancer with another
one in the current platforms requires modifying the core network, and thus making network archi-
tects more reluctant for a transition from IPXOR to FQDN. To overcome these issues, we consider
a multi-node platform where each FQDN has been assigned a Home node, and each node is able
to find the Home node of any FQDN. This provides the main FQDN principle which is splitting
FQDN naming space among different nodes. Routing queries to their Home is performed by the
nodes themselves rather than the load balancer. Contrary to FQDN, platform nodes have two
functions: resolving DNS queries and routing queries to the Home node. In this chapter, such
architectures are modeled with Pastry [RD01a] as represented in figure 2.1b.

In this chapter, Pastry is used for a maximum of few hundred nodes, while Pastry was origi-
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nally designed for very large platforms of thousands or billions nodes. As such, we do not consider
the routing discovery mechanisms provided by Pastry, but we take advantage of Pastry auto-
configuration capacity, its robustness to DoS, and its cache sharing mechanisms. By comparing
different cache sharing mechanisms, we show that active cache sharing increases the platform effi-
ciency by more than 3.5.

(a)
FQDN,IPSHA1,IPXOR
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(b) DHT (Pastry)

Figure 2.1: DNS Resolution Platform Architectures base don Load Balancers
and on DHT

Note that this chapter considers how multiple nodes can cooperate and share their cache, so
to improve the efficiency of the DNSSEC resolution platform. The efficiency of the proposed plat-
form results from the combination of the following features: FQDN load balancing, Cache sharing
and active caching. This chapter points the key features for efficiency and propose one way to
implement them. Other alternatives to implement those features or a subset of them may exist,
for example by taking advantage of multi-cores environment and hardware card specificities or by
taking advantage of existing products such as Global Traffic Manager [FN10] where cache may be
pre-populated with the very most popular FQDN.

The chapter is organized as follows. Section 2.2 compares characteristics of FQDN and IP
addresses of DNS queries based on real DNS traffic captures. It shows that using FQDN for load
balancing makes sense and can lead to further considerations. Section 2.3 positions our works.
Section 2.4 simulates, with real DNS traffic, different types of load balancers that consider - like
IPXOR - the IP addresses of the DNS queries, or - like FQDN - the FQDN. FQDN is shown to be
more efficient by up to 30%. Multiple motivations make us considering DHT based architectures
for our platform rather than a single hardware FQDN load balancer. Section 2.5 describes how
we model various DHT Pastry based architectures - with different cache sharing mechanisms.
Section 2.7 gives simulation results about the different modelized DHT architectures and shows
that the proactive cache sharing improves the platform efficiency by 3.5 compared to the traditional
architectures.
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2.2 FQDN or IPs as Load Balancer Criteria

This section compares two load balancing strategies for splitting DNS queries among the nodes:
the IP addresses of the queries as currently used in DNS platforms, and the queried FQDNs. It
shows that it makes sense to consider FQDNs instead of IP addresses. For that purpose, we con-
sider a 10 minute live DNS traffic capture at the rushing hours (19 : 33) on our 18 node platform.

Figure 2.2a (resp. figure 2.2b) illustrates the distribution (resp. the cumulative distribution) of
the queries associated to the FQDNs or IP addresses of the queries. The cumulative distribution
shows the percentage of traffic represented by the x first most popular FQDNs. This distribution is
also known as a Zipf distribution [BCF+99, JSBM01] : There are few very popular FQDNs whereas
most of them are almost never requested. However, we did not find any mathematical proof for it.
It suggests that FQDN and IPs have similarities, but one can also notice that difference between
FQDN popularity is more important than end user querying ability. TTL is the time a FQDN
stays in a cache, so TTL, in conjunction with the FQDN popularity influences the Cache Hit Rate
(CHR). Figure 2.1c represents TTL distributions among the FQDN space (FQDN) - i.e. for a given
TTL value how many different FQDN we have -, and among the DNS query space (IP) - i.e. for a
given TTL value, how many DNS response, whatever the FQDN is, we have. It shows that TTL
distribution in FQDN space(FQDN) and TTL distribution in DNS query space (IP) are similar.
Thus FQDN does not introduce major bias on the CHR over IPXOR. Then, figure 2.1d plots for
each FQDN the TTL value as a function of its popularity or rank. The larger the popularity of a
FQDN is, the larger the TTL variation is. Popular FQDN have TTL similarities, which may not
be considered for less popular FQDNs.

(a) Query Distribution (b) Cumulative Traffic Distribution

(c) TTL Distribution (d) TTL vs. FQDN Rank
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(e) Query/Response/CHR vs.
FQDN Rank

Figure 2.0: Live DNS Traffic Analysis: Comparison of FQDN and IP addresses
Distributions

2.2.1 Measured DNS(SEC) CPUR and CPUH

When a node receives a query, then it performs a cache lookup. If the response is in the cache
then the resolving node sends back the response. If the response is not in its cache, the node
performs a resolution and then inserts the response in the cache. The difference between the two
cache operations is that cache lookup only requires read access to the binary tree, whereas the
insertion requires write access, and so lock the binary tree for some time. This explains the dif-
ference between the CPU Time when a resolution is performed (CPUR) and when a cache lookup
is performed (CPUH). Those values are summed up in table 2.1b. Equation 2.1 expresses the
CPU load as a function of CPUR, CPUH , and the Maximum Load (ML). From figure 2.1f and
[MGL10] we derive a mean CPU per request for different values of the Cache Hit Rate (CHR)
(table 2.1a). More specifically, with CHR = 0, any query triggers a resolution. This means that
for any query a cache lookup is performed, followed by a resolution. With CHR = 100%, any
query triggers a cache lookup. With equation 2.1 we derive for each implementation (BIND9 and
UNBOUND) and protocol (DNS, DNSSEC, DNSSEC_SIG) CPUR and CPUH in table 2.1b.
DNS is the traditional DNS protocol, DNSSEC carries DNSSEC responses, but do not consider
the signature check. DNSSEC_SIG on the other hand considers the signature check.

CPUmax = ML(CPUH + (1− CHR)CPUR) (2.1)

To evaluate the cost of a three signature check response from a single signature check response,
we considered that CPUR is composed of two tasks: one that consists in handling the packet
and inserting the data into the cache, and the other one that consists in checking the signature.
[MGL10] shows that DNSSEC without validation has a 10% overhead on maximum load. Thus
we approximate CPUR

DNSSEC_NO_SIG ≈ 1.10CPUR
DNS . Then we considered CPUR

DNSSEC =

CPUR
DNSSEC_NO_SIG + CPUR

SIG_CHECK . We derive CPUR
SIG_CHEK ( 0.07654052 % CPU

for BIND9 and 0.073271687(% CPU for UNBOUND) and then CPUR
DNSSEC,3SIG_CHECK we

summed up in table 2.1b.
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Cost DNS DNSSEC DNSSEC_SIG

BIND9

CHR = 0% 0.1030927 − 0.188679245283

CHR = 80% 0.0347222 − 0.053191489361

CHR = 100% 0.0148809 0.0151057 −

UNBOUND

CHR = 0% 0.02688172 − 0.10204081

CHR = 80% 0.00984251 − 0.02433090

CHR = 100% 0.00566251 0.005427997 −

(a) Measured % CPU per Request

BIND9 UNBOUND

Single signature check

CPU
H
DNS 0.014880952 0.005662514

CPU
H
DNSSEC 0.015105740 0.005427997

CPU
R
DNS 0.088211799 0.021219210

CPU
R
DNSSEC_NO_SIG − −

CPU
R
DNSSEC 0.173573505 0.096612818

CPUR
DNSSEC

CPUH
DNS

11.66413983 17.06182412

CPUR
DNSSEC

CPUR
DNS

1.967690342 4.553082701

Three signature checks

CPU
R
DNSSEC 0.317833377 0.241034271

CPUR
DNSSEC

CPUH
DNSSEC

19.41673043 38.69695766

CPUR
DNSSEC

CPUR
DNS

3.603071024 11.35924810

(b) CPUH and CPUR

Table 2.1: Deriving CPUH CPUR in various DNS(SEC) configurations from
Experimental Costs Measurements

2.3 Position of our Work

This chapter shows that using a DHT based architecture with proactive cache mechanisms can
improve DNS resolving platform by 2.2. Proactive caching takes advantage of the Zipf distribution
of the FQDN in the DNS traffic. Thus we position our work toward previous work first on DNS
traffic analysis. Then we consider work that optimizes the tasks performed by the resolving nodes,
that is to say optimization of Caching mechanisms and Resolution mechanisms. Note that those
previous work do not consider DNSSEC, and is mainly concerned by optimizing the latency rather
than the CPU Time. At last we consider work that provides a Distributed Hash Table for the
Naming service. Here again DNSSEC was not deployed, thus only DNS was considered. Most
mechanisms are optimizing the latency of the architecture as well as its robustness. Then DHT
was considered as an unlimited database, and most of the work is considering a DHT architecture
to host the zone files rather than for a resolving platform. Multiple mechanisms have been designed
so to optimize the DHT architecture. The one we are more interested in is the Active Caching
that takes advantage of the Zipf distribution of the DNS traffic.
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2.3.1 DNS Traffic Analysis

[BCF+99] analyzes web traffic distribution and shows it follows the Zipf law function. Zipf law
function considers that given the popularity rank i of a page, the probability that a request concerns
a page of rank i is Pi =

Ω
iα . To check these distribution properties, it builds a model, assuming

requests are independent, and derives a few asymptotic results that can be measured with the real
captures. First based on its model, it derives an analytical expression of the Cache Hit rate for an
infinite cache with finite request stream as well as a for a finite cache size with an infinite request
stream. Then still from the models, it derives the distribution of inter-arrival time. Considering
the infinite cache with finite request stream leads to the expression of the Cache Hit Rate as a
function of the number of Request. For the finite cache size with an infinite request stream, this
leads to the expression of the CHR as a function of the cache size. The distribution of inter-arrival
time leads to the expression of the probability that the next request for a given page of rank i is
k requests later. Zipf-like functions are characterized by the alpha parameters, and we then have
three different ways to derive the alpha parameter, and check how their value is similar. The model
matches asymptotic results.

Our chapter considers the DNS traffic, not web traffic. However, as mentioned in the conclu-
sion, Zipf-like function seems inherent to any web access streams, and thus DNS should follow
this distribution. Similarly, the model is expected to match properly asymptotic results, but finer
predictions may have to consider inter-dependence between the data. The caching models are
not valid anymore since DNS data are cached according to the TTL value, and TTL are values
associated to the data, as opposed to a local cache policy.

2.3.2 DNS Cache Optimization

[DBI03] describes a multi-layer cache architecture where multiple local DNS resolving servers check
their cache. If a cache miss occurs, the resolving server performs a cache lookup to a centralized
cache. If the requested data is still not in the centralized cache then local DNS servers perform a
resolution and update the centralized cache. This technique reduces the number of resolutions up
to 26% for corporate environment. If this technique would be applied, it also expected to decrease
the load of Top Level Domain (TLD) authoritative servers by 40%. [DBI03] aims at reducing the
number of resolutions. However, this is intended in order to reduce the Resolution Time or latency
of the end user rather than to reduce the load of the platform. More specifically, ISPs have to deal
with heavy traffic, and it is not evident that the centralized database could support the multiple
parallel read or update operations.

[JSBM01] shows how important caching is for the DNS. It starts by analyzing data collected
from university campus of MIT and KAIST. It shows the log distribution of the Cumulative
Distribution Function (CDF) for latency. It shows that only a small number of requests that have
a low and very large latency resolution. It then shows how the number of referrals (NS) and how
NS Cache Hit (CH) or Cache Miss (CM) affects the CDF of latency. It also analyses unanswered
queries, as well as negative responses. In the section "Effectiveness of Caching", the paper intends
to answer to the following questions:

- How useful is-it to share DNS cache among many client machines?

- How TTL impacts the caching effectiveness of the architecture?

It shows the domain name popularity (i.e. the number of queries associated to a FQDN) fol-
lows a Zipf law. It also plots TTL distribution as well as TTL distribution weighted by popularity.
Then the paper studies how Cache Hit rate is impacted by considering smaller groups of end users,
and shows that most of the benefits are obtained with as few as 10 or 20 end users, which makes
cache sharing not so efficient. To show how TTL impacts the Internet architecture, the paper
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considers a single TTL value for all FQDN and looks at the inter-arrival time. The inter-arrival
time log distribution shows TTL values have few impacts on the CHR. However TTL value of
NS records should not be significantly decreased. [JSBM01] shows that considering large group of
end user does not significantly the CHR properties compared to small groups of 10 or 20 persons.
This can be explained by the power law distribution of FQDN popularity. End users request the
most popular FQDN, and others are only requested by a single user. This suggests that however
numerous is the group of end user, name servers will resolve the same most popular FQDN, and
that all the other names are only resolved by single end users, thus leading to a resolution. This
shows that in order to optimize resources of the platform, the traffic should be split according the
FQDN rather than by IP addresses. Dedicated servers would treat very popular FQDN the others
the isolated requests.

[JBB03] looks at the inter-arrival time of DNS queries and shows the distribution of CHR(TTL)
follows a Pareto distribution law. As a result the CHR increases with TTL reaching 80% for a TTL
= 15 minutes, and with very little increase of CHR for larger TTL. [JBB03] shows that TTL has
an optimum value (15 min that balances CHR maximization and refreshment of the information.
However, CDN, and many popular web sites do use TTL values that are far below that value 30
seconds , and the goal of TTL for wed administrators is more to load the traffic then to optimize
DNS cache. As such TTL may not be chosen adequately so to benefit from CHR. It is true that
there is a close relation between TTL and CHR, however resolution platform undergo such relation
rather than being able to take advantage of it.

2.3.3 DNS Resolution Optimization

[PPPW04b, PPPW04a] describes CoDNS and looks how cooperation between resolvers can improve
the DNS resolution. The main idea is that when one resolver cannot perform a DNS resolution, it
asks its neighbors to perform the resolution on its behalf. This provides significant improvements
because, different resolvers have different policies on which DNS servers to query as well as different
locations and thus different network congestions. The papers start by considering the different
distribution of DNS responses time for various DNS resolvers. From the Cumulative Distribution
Function (CDF) it derives criteria that help defining when a resolution takes too much time. It
then points out what on the resolver side can make resolution fail - among them are packet loss,
Name server overloading, Resource competition, maintenance problems.̇. It also shows that over
a large distribution of nodes, at any time we have above 90% of the resolvers that are healthy.
It then measures the performances of CoDNS vs. the traditional resolution. More specifically, it
shows that with even only two resolvers involved in the CoDNS, delays in resolution is significantly
improved (between 27 and 82%).

The goal of CoDNS is to improve DNS resolution and improve its reliability. Resolution are
performed by multiple nodes, since we saw that there is a high probability that bad performance
resolution do not occurs simultaneously on two different nodes. Our work considers an architecture
point of view and defines how functions (routing/ resolution) should be distributed among the
nodes. CoDNS is a way to improve the resolution function. The goal of our architecture is too
minimize the signature operations between the nodes of the platform, and to load balance the
traffic so that every node performs the same tasks. CoDNS should be considered in the next step
and future work should consider how CoDNS could improve the resolving function of the platform
we design in this chapter.
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2.3.4 DNS service over DHT overlay

Most popular DHT protocols are Chord [SMK+01], Pastry [RD01a], Tapestry [ZHS+04] and
CAN [RFH+01], where nodes are self-organizing, leave and join the ring with no extra burden for
the administrators. Pieces of data are randomly spread among nodes, thus resulting in a greater
robustness against DDoS attacks [CMM02] describes a DNS service based on Chord [SMK+01] and
DHash [DKK+01]. DNS was run over DHT so to get rid of painful name server administration,
and inherit good load balancing and robustness from DHT architecture. The paper reports an
experiment with 1000 nodes in the Chord ring serving as authoritative server. Replication was
turned off, which means that the information stored in a node is not replicated on k other nodes.
However, this architecture considers passive caching, which means that when a node performs a
lookup, it stores the answer. DHash is block driven, which means that files in our case DNS
Responses are not hosted by one node, but blocks of the file may be distributed over multiple
nodes. DHash as well as caching mechanisms provide a well load balanced traffic over the nodes.
However, even though DHash and PAST have different design, since the size of CFS blocks of
DHash are up tens of kilobytes, in our case, DHash and PAST have more or less the same results.
The major issue of the DNS over Chord architecture is that the latency is much too high.

[Mas06, RHM09] analyze how DHT could enhance the robustness of the Naming System. The
robustness of both Chord and DNS considers Data failure rate, Path failure rate and Path length.
The DNS efficiency was proved to be linked to the popularity of its zone and the number of labels
of the domain name, whereas the DHT efficiency is related to the popularity of its RRsets. In fact,
DHT main drawback is its heavy routing algorithms. DHT is also more robust to orchestrated
attacks and could achieve the same availability of the current DNS with added mechanisms like
proactive caching - Beehive [RS04].

Our chapter differs from those papers since the DHT ring is used for hosting authoritative data,
whereas our architecture uses the DHT Pastry [RD01a] as a way to define which is the node that
performs the resolution. As such we do not use caching of the data. The way the data is stored into
the DHT also differs from DHash to PAST. In DHash, blocks of the files are spread over the DHT
nodes, whereas in PAST the whole file is hosted on the node. Our architecture is also expected to
be at maximum at around one or two hundred nodes, whereas the DHT considered in [CMM02]
considers a 1000 node experiment which is mentioned as being a restricted number.

2.3.5 Alternate Naming Architecture

[WBS04] proposes the Semantic Free Referencing, a Naming Architecture to avoid the Web being
constrained by the DNS. The increase of demands for the Web burden the DNS, which results in
slowing the Web. For this reason [WBS04] proposes to name Web objects with a naming system
that differs from the current DNS: the Semantic Free Referencing. The purpose of this architecture
is to use references that are free of semantic —unlike FQDNs for example. This makes the design
of the architecture only concerned on the technical aspects of the resolution, trademarks copyright
are out of scope. Then SFR also addresses the issue of Web object migration. With current DNS
and HTTP infrastructure, Web object migration requires redirections either on the DNS server or
on the HTTP server. These configurations are only available to the owner of the DNS zone files
or web servers, but not the owner of the web content. Similar issues are found for replication.
Thus, SFR consists of web object binary identifiers. Unlike FQDNs, these identifiers have no hu-
man meanings and are names for web objects, instead of servers. This granularity provides much
more independence for each Web Object. These binary identifiers indicates the current location,
or redirect to another binary identifier.

These binary objects are hosted on a global DHT platforms. Note that these DHT platform
are not not relying on flaky personal machines connected via cable modems!. Although there are
work around to enable navigation on a domain while being disconnected from the Internet, the
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basic architecture requires a connectivity and connection on the global DHT platform. Because
all information are shared on a common global platform, the architecture is called fate of share.
Information provided by the identifier can be checked by the client, by providing public key and
signatures. This makes possible to prove the ownership of the content. Similarly, when the owner
of the identifier updates the locations proof-of-ownership uses the public.

The common point with our work is that the architecture is based on DHT. We use Pastry,
they are using Chord and DHash, but in both cases, the architecture may be adapted to one or
the other protocol. More specifically, in both cases, the platform is well administrated by a single
entity. Pastry provides neighbor discovery protocols, but we are not taking advantage of it. We
choose Pastry mostly because we have a Java based implementation, then Pastry hosts the whole
content on the same node, whereas DHash may split a file across multiple nodes. Our work differ
from [WBS04] because, we look at improving the performances of the DNS Resolving platform
whereas [WBS04] proposes an alternate naming infrastructure. Our motivation for improving
the platform is the migration to DNSSEC, whereas DNSSEC is not mentioned in the paper. As
mentioned in the paper, DNS(SEC) is still expected to co-exist with the new naming infrastructure,
and our paper looks to improve the performances of resolving platforms.

2.3.6 Active Caching for DHT architectures

Beehive [RS04] replicates data that follows Zipf-like distribution, to achieve O(1) lookup perfor-
mance over a structure DHT such as Chord [SMK+01] or Pastry [RD01a]. Latency of structured
DHT is in O(ln(n)), and Zipf data’s popularity is i−α. Thus replicating the most popular data
exponentially reduces latency. Beehive describes how to choose the minimum subset of data that
should be replicated at different level so to achieve a 0(1) lookup. Simulations are provided with
DNS traffic, and performances of Pastry, Passive-Caching Pastry and Beehive are compared. With
a platform composed of 1024 nodes, PC-Pastry devises Pastry latency by 1.5 whereas Beehive
divides Pastry latency by 2.3. However Beehive takes 2.3 times more than PC-Pastry to calibrate.
The total number of objects transferred by PC-Pastry is proportional to time, whereas it looks
more like a log function for Beehive. This shows that Beehive reduces the number of transferred
objects. Because data have a Zipf-like distribution, the number of stored object is quite small. It
also shows that Beehive is quite adaptive to changes in traffic.

[RS07] provides results based on Beehive for multiple applications with Zipf-like popularity
distribution, more specifically DNS, WEB and gnutella. For all those traffics it plots the latency
evolution with Pastry and Beehive. It shows that Beehive behaves in a similar way with all those
traffics, and that it can reduce the latency up to 0.5 hops whereas Pastry incurs a 2.5 hop latency.

[RS04, RS07] both deal with DNS traffic. Although the main objective of the papers is to re-
duce latency by replicating the most requested data to multiple nodes. The proposed architectures
are based on DHT which assigns FQDN to specific node as in our chapter. However, the architec-
ture is composed of more than thousands of nodes, and designed to replace authoritative servers
rather than resolving servers. Some of our architectures are also based on Pastry, however, we only
consider the self organization properties of Pastry. Our platform is of small size (less than two
hundred nodes) and we are not concerned with the number of hops, since all nodes are neighbors.
Furthermore, our platform is not used only for storage, but performs DNS or DNSSEC resolution.
In fact Beehive has been designed for authoritative servers. It takes a large benefit over passive
caching by considering updates of the data, rather than the TTL value. As a resolving platform we
can only rely on TTL values so to consider the data valid. So Beehive has not been designed for a
resolving platform whose information validity is based on TTL. However, the replication principle
could be one alternative to reduce the number of resolution to be performed. In fact by assigning
a FQDN to a single node reduces the number of resolution. Since on resolving platform updates
are based on TTL, the number of updates might generate some non negligible traffic among the
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nodes as well as some non negligible computing resources to update caches of each node. Beehive
principle is to propagate the requested data where the queries can be. As such, Active Caching
may be a more efficient alternative to the Passive Caching mechanisms of the DHT.

[CS02, LCC+02] provides replication and search strategies for unstructured Peer-to-Peer net-
works. Such architectures are out of scope of our study. In fact our architecture is considering
DHT in a totally controlled environment.

2.4 Traffic-based Load Balancer Simulation

This section evaluates the efficiency of different load balancing strategies from the same live DNS
capture described in section 2.2. It shows that balancing traffic on the platform according to FQDN
rather than IP address requires 30% less resources.

Evaluation of each strategy considers the distribution of the queries, the resolution, the Cache
Hit Rate (CHR) and the CPU Time (CPU) on the 18 nodes of the platform. The efficiency of the
different strategies is measured by plotting the distribution of CPU of the different nodes of the
platform, which shows the global CPU of the platform, as well as the dispersion of CPU among
the nodes. This section provides two ways to figure out the distribution of CPU of the nodes. One
is derived from the CHR distribution, the other is computed from a simulation.

To compare the efficiency of different load balancing strategies from the CHR distribution as-
sociated to each strategy, we need a link between the CHR and the CPU . For that purpose we
use an experimental benchmarking from [MGL10] with Intel Pentium III (@ 1GHz 32 bits) CPU,
384MB of RAM for servers with Debian 5.0 (lenny), Linux kernel 2.6.24. Node CPU is measured
for traffic with various CHR. For clarity, experimental measurements provided by [MGL10] are
replotted in figure 2.1f. It shows the maximum number of queries accepted by the server for a
traffic with a given CHR. CHR influences the maximum number of accepted queries because, when
a Cache Hit occurs, the node performs a cache lookup and only reads the data. On the other
hand, when a Cache Miss occurs, an insertion is performed which requires to lock the cache. The
advantage of this method is that it only relies on a platform benchmark (figure 2.1f) and a traffic
analysis - the distribution of the CHR, which differs from a simulation.

Another way is to directly compute CPU for the different strategies with an estimation of
CPUH the occupancy time for a cache Hit and CPUR, the occupancy time to perform a Resolu-
tion. CPUH and CPUR are derived from figure 2.1f, by considering specific values of CHR = 0%
and CHR = 100%.

Finally we compare the scalability by measuring the queries, the resolutions and the CHR as-
sociated to each node according to the number of nodes of the platform.

The studied load balancing strategies are based on IPXOR and FQDN as mentioned in sec-
tion 2.1. We also introduce two other strategies: IPSHA1 where splitting is done over the SHA1
value of both IP source and destination of the queries, and Random where the node selection is
randomly performed. IPSHA1 vs IPXOR shows the efficiency of SHA1 vs XOR functions.
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2.4.1 Cache Hit Rate (CHR) Simulation
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Figure 2.1: Live Traffic Analysis: Query, Resolution CHR Distribution

Figure 2.1 represents the distributions of the Queries, (resp. Resolutions and CHR), that is to
say, for a given number of Queries, (resp. Resolution of CHR value), the number of nodes that
receive this amount of Queries (resp. perform this amount of Resolution, or have this CHR value).
Figures 2.1a and 2.1b show the query distribution among the nodes of the platform. Random
provides the best distribution, followed by IPSHA1 and IPXOR, and then by FQDN. IPXOR and
IPSHA1 have almost the same distribution, thus validating this hashing function for load balancing
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traffic. On the other hand, FQDN presents a huge dispersion of the queries, which tends to show
that FQDNs do not provide enough randomness, i.e. some FQDNs unbalance the traffic.

On the other hand, Figures 2.1c and 2.1d show that FQDN distribution of resolution outper-
forms the other distributions, with a mean value of around 56% for IPXOR or IPSHA1 and 44%
for the random distribution. Furthermore the relative dispersion is much smaller with FQDN than
with IPSHA1 or IPXOR but Random still provides smaller dispersion.

For a DNS resolution platform, one distribution performs better if the dispersion of the queries
balances the dispersion of the resolutions. With DNSSEC, unlike DNS, a resolution over the In-
ternet requires signature validation. Thus CPU of the servers is largely influenced by the number
of resolutions the node performs. Furthermore, figure 2.1e shows that FQDN has a mean CHR of
93% whereas IPXOR and IPSHA1 provide 88% and Random 86%.

To estimate the platform’s efficiency when raising CHR by 5% we use [MGL10] that runs an
experimental platform and measures the Maximum Load for DNS(SEC) resolution platform versus
CHR. Results are summed up in figure 2.1f which shows that with a CHR of 93% rather than 88%,
the servers can deal with 1.49% more traffic with UNBOUND (resp. 1.25% with BIND9). As
a result FQDN architecture is likely to reduce the number of nodes by up to 28%. In our case,
our 18 node DNS platform running on BIND9 would become a 90 node platform with DNSSEC
migration. Thus increasing the CHR by 5% with the FQDN architecture reduces the number of
nodes of the DNSSEC platform by 24 nodes.

Note that this is a first estimation since [MGL10] considers a single signature check, and CHR
is provided for a 18 node platform. In fact a resolution may involve more signature checks and 3
signatures may be more appropriated (ANSWER, AUTHORITATIVE and ADDITIONAL). On
the other hand a DNSSEC platform is 5 times larger which decreases the CHR.

Table 2.2 reports the Maximum Load, i.e. the Maximum number of queries the resolving node

Architecture Random IPXOR or IPSHA1 FQDN

CHR 86% 88% 93%

DNS - BIND9 3600 [1.11] 4000 5000 [0.80]

DNS - UNBOUND 12000 [1.06] 12700 14500 [0.87]

DNSSEC - BIND9 2730 [1.13] 3100 4250 [0.72]

DNSSEC - UNBOUND 6400 [1.16] 7450 10000 [0.75]

Table 2.2: Deriving for Measurements how a 5% Cache Hit Rate increase
impact the Maximum Load of a DNS(SEC) Resolving Platform —(queries.s1)

—and number of nodes ratio —[n
Arch

nXOR = MLXOR

MLArch ]
—

2.4.2 CPU Time Simulation : CPUR, CPUH

This section estimates CPU by considering CPUH and CPUR (%CPU) for BIND9 (0.015%CPU ,
0.317%CPU) and UNBOUND (0.005, 0.241). For both BIND9 and UNBOUND, IPXOR and
IPSHA1 are very similar, and perform better than Random. FQDN, on the other hand provides
a bi-cluster distribution: the low CPU and high CPU groups. For DNS, the low CPU group
has a high variance, and the mean CPU of the high CPU group almost equals CPU of IPSHA1

with UNBOUND. With BIND9, the mean CPU is even greater and almost equal to Random. With
DNSSEC results are better, there are still two clusters but they have smaller variance, which means
that the CPU is more uniformly distributed. The mean CPU value of both groups are closer to
each other than in the case of DNS, and in any case much lower than with Random or IPSHA1 /
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IPXOR.
FQDN seems promising since it offers a mean CPU lower than any of the other architectures.

As in section 2.4.1, FQDN happens to be 1.117 more efficient for BIND9 and DNS, respectively
1.172 for UNBOUND and DNS, 1.342 for BIND9 and DNSSEC and 1.409 for UNBOUND and
DNSSEC. However its major drawback is that it presents a non uniform distribution.
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Figure 2.2: Deriving CPU Time for Resolving Platform from real DNS traffic
capture with various DNS(SEC) configurations and various implementations

2.4.3 Scalability Simulation

Figure 2.3 compares the number of queries, resolutions and CHR of nodei versus n the number
of nodes of the platform. It depicts the ratio with IPXOR. For each n value, nodei is randomly
chosen, and the traffic is the same. For a 90 node DNSSEC platform, figure 2.3b shows that
Random performs 30% more resolutions than IPXOR, FQDN performs 61% less resolutions than
IPXOR, and IPXOR requires only 4.8% more than IPSHA1. Figure 2.3b shows that CHR of nodei
is 4.47% lower with Random, (resp. 1.09% IPXOR), and larger by 8.79% with FQDN. Figures 2.3b
and 2.3c also show that the difference between FQDN and IPSHA1 get larger when n increases,
and that IPXOR provides results very close to IPSHA1. Figure 2.3a shows that the distribution of
queries is not optimized with FQDN. The peak for n = 95 and n = 185 probably results from the
fact that nodei is Home for a range of popular FQDNs.

As a result, figure 2.3 shows that FQDN provides a much scalable architecture than IPSHA1.
However, queries are better load balanced by considering the IP addresses.
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Figure 2.3: Scalability vs. Number of Nodes —Queries, Resolutions and Cache
Hit Rate (CHR) ratio are expressed as a ratio with the IPXOR architecture.

2.4.4 Conclusion on Load Balancer

FQDN improves the platform’s efficiency by roughly 30% compared to IPSHA1. However, FQDN
does not present a uniform distribution of the CPU among the nodes. This mostly results from the
difference between FQDN’s popularity which is much higher than user’s query ability. In that sense,
FQDN distribution can not rely on a hash function (SHA1) and we have to check that two popular
FQDNs cannot be assigned to the same Home. Establishing such a distribution is out of scope of
the chapter, however we have several solutions in mind. For instance, for a given hash function, we
can use a salt, concatenate the salt to the FQDN to be hashed and consider hash(FQDN ||salt).
The salt is incremented until it splits properly the most popular FQDNs. Another alternative is
to build a routing table for the most requested FQDNs [XMSF11, FMS11, FMS12] whereas others
are load balanced with the hash function. With Mixed Integer Programming (MIP) and K-mean
techniques, one computes an almost uniform distribution where each node deals with the same
amount of queries and resolutions. In the next sections, we assume such a distribution has been
established and check how FQDN principles can be deployed through Pastry based architectures.
When building the routing table, there is a balance between the number of FQDN to consider,
the algorithm to define the most efficient routing table, and the resources required to compute
it. [XMSF11] provides a good problem description as well as guide lines on how to compute the
routing table by using MIP or K-mean techniques. The computed distribution is such that each
node has to deal with the same number of queries and the same number of resolution.

Current work consists on finding a more efficient algorithm to build the routing table.
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2.5 Modelization of Pastry based Architectures

This section computes IPSHA1, FQDN and various Pastry based architectures. We refer to Pastry
as its architecture is widely known by the community, but other DHT protocol may be considered.
The way we use Pastry [RD01a] differs from what it has originally been designed for. First of
all, the Pastry nodes constitute the platform. As such they belong to the same administrator, are
located in the data center, every node knows all the other nodes. This is plausible since platform
do not expect to be larger than a few hundred nodes. Then, another major difference is that we do
not assert that the node ID is always derived from the data by a simple hash (SHA1) function, but
we may apply a specific distribution known by all nodes. We used Pastry because we want to take
advantage of the auto configuration mechanisms, but we do not consider the routing algorithm. As
such, a light Pastry may be developed. Another advantage of Pastry (or DHT) is the robustness
to DoS attacks [Mas06, RHM09, CMM02], which may balance the sensitivity of DoS attacks intro-
duced by DNSSEC. In fact, resolution in DNSSEC involves signature checks, and thus costs much
more than DNS resolutions. Then NSEC3, and the proof of non-existence, adds another hash to
be performed for both authoritative and resolving servers, and requires hosted hashed data to be
ordered, which makes operation heavier - especially for authoritative servers.

Figure 2.4: Traffic Description going through a Node of the DHT Platform nj

From figure 2.4, we note the following traffic flows:

- Q: the number of queries sent by all end users, and we note q the query rate —queries per
second q.s−1.

- Qj : traffic received by node nj (qj = Lj .q).

- Ij : DNS resolutions performed by nj over the Internet.

- M
′

j (resp. Mj) : the incoming (resp. outgoing) exchanges between nj and the other nodes
of the platform.

The different objects we consider are:

- p(type, IPs, fqdn, t): a DNS packet where type indicates if p is a query or a response, IPs
the IPsource, IPdestination, fqdn the FQDN and t the time at which p is sent.

- fqdn(name, ttl, rank): a FQDN where name designates the FQDN, ttl its associated Time-
To-Live (TTL) and rank its rank which reflects its popularity. Note that ranks is based on
the popularity of the FQDN, i.e. the query rate value associated to that FQDN. However each
FQDN has a distinct rank, which means that when two FQDNs have the same associated
request rate, their associated ranks are r and r + 1.

The following architecture components are:
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- lb : a Load Balancer that splits the traffic among the different nodes of the platform.

- nj : nodej of the n node platform.

We note :

- F = {fr | ∃p ∈ Q, p.fqdn = fr, r ∈ R = card(F)}. F is the ordered list of all FQDNs con-
cerned by the queries of the End Users Q. FQDNs are ranked according to their popularities.

- P = {IPsi | ∃p ∈ Q, p.IPs = IPsi}. P is the list of IP addresses involved in the traffic
between the End Users and the Platform.

- H(fr,r∈R) = {nj |nj is Home for fr, j ∈ [1, ..., n]} defines the set of the nodes that perform
resolution for FQDN fr.

- Cj is the cache of nj .

- CPU , RT defines the CPU Time and the Response Time (RT). RT depends on CPU, and
CPU depends on the action performed (cache lookup CPUH , cache insertion CPUR, query
forwarding CPUFWD...) and the considered protocol (DNS, DNSSEC).

• lI , lISP and lplt represents the network latency on the ISP’s network, over the Internet and
on the platform.

The different probabilities we are considering for each node are :

- Lj = P (p ∈ Qj |p ∈ Q) : the probability that nj receives a packet p of Q.

- Hr,j = P (nj ∈ H(fr)): the probability that nj is Home for fr.

- Φ(r) = P (fqdn = fr, r ∈ R).

- CM = P (p.fqdn /∈
⋃n−1

j=0 Cj ∩ p ∈ Q) the platform probability for a Cache Miss, i.e. the
response is not stored in any cache node Cj of the platform. Respectively CH = P (p.fqdn ∈
⋃n−1

j=0 Cj |∩ ∈ Q) designates the Cache Hit of the platform.

- CMj = P (p.fqdn /∈ Cj ∩ p ∈ Qj) : the probability a packet addressed to nj has not its
response in Cj . Respectively CHj = P (p.fqdn ∈ Cj ∩ p ∈ Qj) represents the Cache Hit of
the node.

- Rj :the probability a packet p in Qj triggers a resolution over the Internet on nj .

- Mj : the probability a packet p in Qj triggers a management operation by nj (like being
forwarded to another node).

Note that we have CM + CH = 1, CMj + CHj = 1 and CMj = Mj + Rj , so an architecture is
fully characterized by CM , Rj and Mj .

2.5.1 Single Node Model: τr

Let us consider the case where a DNS traffic Q is addressed to a single node.

Q = {p(query, IPs, fqdn), fqdn ∈ F , IPs ∈ P}

CMo = P (p.fqdn /∈ C|p ∈ Q)

With the following assumptions :

{

(p.fqdn ∈ F) ⇔ (∃r ∈ R, p.fqdn = fqdnr),
P (fqdn = fqdnr ∩ fqdn = fqdns, ∀r, s ∈ R2, r 6= s) = 0

53



CHAPTER 2. OVERCOMING DNSSEC PERFORMANCE ISSUES WITH FQDN LOAD
BALANCER AND CACHE SHARING

CMo = P (p.fqdn /∈ C|p.fqdn ∈ F)

=
∑

r∈R

P (p.fqdn /∈ C|p.fqdn = fqdnr)

=
∑

r∈R

P (fqdnr /∈ C).P (p.fqdn = fqdnr)

=
∑

r∈R

cmr,p,t.Φ(r)

with cmr,p,t = P (p.fqdnr /∈ C)

Under a constant query rate q, we want to express qτr the number of packets to consider
between t and t− p.fqdnr.ttl. τ depends on the fqdnr.ttl, but if we want to rely on our measure-
ments, especially for Φ(r), we have to consider that measurements have been performed during T
seconds. In this simplified model, we considered as in [JSBM01] a constant TTL for the FQDNs.
When a packet arrives at t, to test if the request is in the cache, we need to consider the previous
q × fqdnr.ttl if t > fqdnr.ttl or q × t if t < fqdnr.ttl.

Let P
′

p be the set of packets we have to consider to express the Cache Miss for a given packet.
Typically, that’s the packets that came between t the time we receive p and t− p.fqdn.ttl.

P
′

p = {p
′

|p
′

∈ P and p
′

.t < t− p.fqdn.ttl}

Assuming all queries are independent, we have :

cmr,p,t = P (p
′

.fqdn 6= fqdnr, ∀p
′

∈ P
′

p)

= (1− Φ(r))card(P
′

p,r)

Let assume that we have a constant query rate q. We thus can derive :

card(P
′

p,r) = q.min(p.t, fqdnr.ttl)

card(P
′

p,r) =
{

q.fqdnr.ttl, when t > fqdnr.ttl
q.t, when t < fqdnr.ttl

Considering τr the associated frequency of fqdnr, τr = 1
q 〈card(P

′

p,r)〉. Then if we derive the
mean value over time, we have :

{

τr = 1
T

[

1
2 .ttl

2
r + ttlr(T − ttlr)

]

, when fqdnr.ttl < T

τr = T
2 , when t < fqdnr.ttl

Then,

〈cmr,p,t〉 = (1− Φ(r))q.τr

And Finally :

CMo =
∑

r∈R

(1− Φ(r))q.τr .Φ(r)

Ro = CM

Mo = 0 (2.2)

We then derive :

CPU(q) = q.CPUH + q.CM.CPUR

RT (q) = lISP + CH.RTH(CPUj) +

CMtraf..(RTR(CPUj) + lI) (2.3)
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2.5.2 IPSHA1 Architecture

In the IPSHA1 architecture traffic is balanced, as represented in figure 2.5a, according to p.IPs.
If we assume that FQDN and IP addresses are independent, then :

P (p.fqdn = p.fqdnr|p ∈ Qj) =

P ((p.fqdn = p.fqdnr|p ∈ Q).P (p ∈ Qj)

P (p ∈ Qj)

Then,

CMj = P (p.fqdn /∈ Cj |p ∈ Qj)

=
∑

r∈R

P (p.fqdn = fqdnr ∩ p.fqdn /∈ Cj |p ∈ Qj)

From equation 2.2 considering that p.fqdn = fqdnr and p ∈ Qj are independent :

CM = P (p.fqdn /∈
n−1
⋃

j=0

Cj |p ∈ Q)

=
n−1
∑

j=0

P (p.fqdn /∈ Cj |p ∈ Qj)

=
n−1
∑

j=0

Lj .CMj

= CMj

CMj =
∑

r∈R

Φ(r).(1− Φ(r))Lj .qτr

Rj = CMj

Mj = 0

(2.4)

Finally :

CPU(qj) = qj .CPUH + qj .CMj .CPUR

RT (qj) = lISP + CHj .RTH(CPUj) +

CMj .(RTR(CPUj) + lI) (2.5)

2.5.3 FQDN Architecture

In FQDN, each FQDN is Homed by one specific node, which performs all resolution over the
Internet for that FQDN. In this section we assume that load balancers redirect each fqdnr to
its Home, as presented in figure 2.5a. How FQDN are assigned to the nodes is out of scope of
this section. However, we show in [XMSF11] that using MIP or K-mean techniques results in a
distribution such that each node has to deal with the same number of queries and the same number
of resolution.

We define Fj the set of FQDN nj is Home for and Rj their associated ranks.

Fj = {fqdn|H(fqdn) = nj , fqdn ∈ F}

Rj = {r|fqdnr ∈ Fj , i ∈ R}
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General partition properties are :
{

F =
⋃n

j=0 Fj

Fi ∩ Fj = ∅ ∀(i, j) ∈ [0, ..., n− 1]2, i 6= j

The specificities of our partition are :






Each node nj receives the same amount of queries.
Each node nj performs the same number of resolutions.
Each node nj is home of the same number of FQDN.

Since {F}j is a partition, the contribution of fqdn ∈ Fj to CMj/CHj is the same as for
CMo/CHo. Using the distribution’s properties, we have (CHj , CMj) = (CHi, CMi), ∀(i, j) ∈
[0, ..., n−1]2. Then CHo (resp. CMo) is the mean of the CHj (resp. CMj) and finally (CHj , CMj) =
(CHo, CMo) ∀j ∈ [0, ..., n− 1].

CM = CMo

CMj = CMo

Rj = CMj

Mj = 0 (2.6)

Finally :

CPU(qj) = qj .CPUH + qj .CM.CPUR

RT (qj) = lISP + CHj .RTH(CPUj) +

CMj .(CPUM (CPUj) + lI) (2.7)

Here follows demonstration for :

(CHj , CMj) = (CHtraf., CMtraf.) ∀j ∈ [0, ..., n− 1]

CHtraf. = P (p.fqdn ∈ C|p ∈ Q)

=
n−1
∑

j=0

P (p.fqdn ∈ C|p ∈ Qj).P (p ∈ Qj)

=
n−1
∑

j=0

P (p.fqdn ∈ Cj |p ∈ Qj).P (p ∈ Qj)

=

n−1
∑

j=0

Lj .CHj

With the distribution we consider,
Lj = L and CHj = CHnode ∀j ∈ [0, . . . , (n− 1)]

Then :

CH =
n−1
∑

j=0

L.CHnode

CH = CHnode

56



Section 2.5. Modelization of Pastry based Architectures

2.5.4 Pastry-based architecture (no cache, no replication)

Pastry-based architectures are a combination of the FQDN (section 2.5.3) and the IPSHA1 (sec-
tion 2.5.2) architecture. Load balancing functions according to the IPs is combined with the use of
Home nodes for each FQDN. The main goal of such architectures is to deploy a set of nodes that
are self-organizing without modifying the current architecture – the heavy loaded load balancer
architecture – while minimizing the numbers of resolutions performed by the platform. With Pas-
try based solutions, all the intelligence is placed on the platform’s nodes. All nodes route queries
to their Home node and resolve the queries they are Home for. The challenge is to find out how
managing the traffic balances the number of avoided DNS(SEC) resolutions. There are various
ways to manage the incoming traffic. In this section, we consider the following mechanisms :

- No cache no Replication (Pastry) : When a node receives a query from an end user and
doesn’t have the response in its cache, then its sends a query to the Home node, and then
forwards the response to the end user.

- Stateless Forwarding (Pastry-SF) : When the Home node receives a query from another
Pastry node, it sends directly the response to the end user, rather than to the Pastry node.

- Passive Caching (Pastry-PC) : works like No mechanism except that the querying node keep
the response in its cache.

- Replication (Pastry-R) : When the Home node performs a resolution, it provides a copy of
the response to k neighbors. This mechanism is mainly used for robustness in case a node
fails.

- Active Caching (Pastry-AC) : takes advantage of the law power distributions. In our case, it
means that a Home node choose to update the other node’s caches with its γ most popular
FQDN. It takes advantage that a small portion of FQDN provides response to a large part
of the traffic.

Pastry, Pastry-SF, Pastry-PC, Pastry-R and Pastry-AC are respectively illustrated by fig-
ures 2.5a, 2.5b, 2.4c, 2.4d, 2.3e and 2.3f.

(a)
IPSHA1:
FQDN
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(b) Pastry

57



CHAPTER 2. OVERCOMING DNSSEC PERFORMANCE ISSUES WITH FQDN LOAD
BALANCER AND CACHE SHARING

��������

��	�
���

������������

�������������
��

������������

�

��� �!������

����	�"#�


(c) Pastry-SF
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(d) Pastry-AC
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(e) Pastry-PC
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(f) Pastry-R

Figure 2.3: Description of DHT Architecture and their Principles

CM = CMo

Rj = Hr,j

∑

r∈R

Φ(r).(1− Φ(r))qτr

Mj =
∑

r∈R

(1−Hr,j)Φ(r) (2.8)

Finally :

CPU(qj) = qj .(CHj +Mj .CH).CPUH +

qj .Mj .CPUFWD +

qj .(Rj +Mj .CM).CPUR

RT (qj) = lISP + CHj .RTH(CPUj) +

Rj .(RTM (CPUj) + lI) +

Mj .(lplt + CHtraf.RTH(CPUj) +

CMtraf.(RTM (CPUj) + lI)) (2.9)

CPUFWD ≈ CPUH since we consider a routing table lookup on a small table, forwarding the
query to the Home node and then forwarding the response to the end user. CPUH considers
reading the DNS query, but this might not be necessary, and redirection may be based on reading
hashing a fixed number of bits at a defined position, as routers do with IP addresses.
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2.5.5 Pastry-Stateless Forwarding (Pastry-SF): (no cache, no replication)

With SF-Pastry nj sends the response directly to the end user rather than to the Pastry node that
has forwarded the query. This means that nj does not have to handle response of packets from
Mj . CMj , Rj and Mj probabilities are the same as in equation 2.8. Finally:

CPU(qj) = qj .(CHj +Mj .CH).CPUH +

qj .Mj .CPUFWD′

+

qj .(Rj +Mj .CM).CPUR

RT (qj) = lISP + CHj .RTH(CPUj) +

Rj .(RTM (CPUj) + lI) +

Mj .(l
query
plt + CHtraf.RTH(CPUj) +

CMtraf.(RTM (CPUj) + lI)) (2.10)

CPUFWD′

≈ CPUH

2 . CPUFWD′

is similar to CPUFWD to the extent that no response is
received and responses are larger than queries.

2.5.6 Pastry-Active Caching (Pastry-AC) (no replication)

Active Caching [RS04] takes advantage of the Zipf distribution of the FQDNs. Each node informs
all other nodes of the γ most popular Homed FQDN. In our model, nodes responsible for the γ
FQDNs are proactive, which means that no cache miss occurs for those FQDNs. If we consider
that all FQDN have the same TTL (as in [JSBM01]), then during TTL nj sends γ responses to all
n−1 nodes and receives the γ most popular FQDN from all n−1 nodes. As a consequence a DNS
query with rank greater than n.γ follows the Stateless Forwarding Pastry resolution procedure.

CM =
∑

r∈R

P ((p.fqdn = fqdnr, r > n.γ) ∩

p.fqdn /∈
n−1
⋃

j=0

Cj |p ∈ Q)

=

r>n.γ
∑

r∈R

Φ(r)(1− Φ(r))q.τr

Rj =
∑

r>n.γ

Hr,jΦ(r)(1− Φ(r))q.τr

Mj =
∑

r>n.γ

(1−Hr,j)Φ(r) (2.11)
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Finally:

CPU(qj) = qj .(CMj +Mj .CH)CPUH +

qj .(Rj +Mj .CM).CPUR +

qj .Mj .CPUFWD′

+
γ

τr
.CPURAC +

CPUFWDAC (2. γ.(n − 1)

τr

)

RT (qj) = lISP + CHj .RTH(CPUj) +Rj .RTM (CPUj) +

Mj .(lplt + CH.RTH(CPUj) +

CM.(RTM (CPUj) + lI)) (2.12)

CPUFWD′

j ≈ CPUH

2 as in equation 2.10. CPURAC

j ≈ CPUH . With CPURDNS the CPU

of a DNS resolution (as opposed to DNSSEC), CPUFWDAC

j ≈ n.CPUR
DNS , since cache updates

are sent in one block, and the updated Active Cache are small. Optimization may also consider
different levels of caches, so to improve cache lookup and interactions between Cj and the Active
Cache.

2.5.7 Pastry-Passive Caching (Pastry-PC) : (cache, no replication)

With Passive Caching, node proceeds as in the regular Pastry, but keeps the response in its cache.
Thus it can respond directly to the end user, even though it is not a Home for that FQDN. Note
that with passive caching, if FQDN is in the cache of one of the other nodes of the platform, then
it is in the cache of its Home node.

CM = P (p.fqdn /∈
n−1
⋃

j=0

Cj |p ∈ Q)

= CMtraf.

Rj =
∑

r∈R

P (p.fqdn = fr ∩H(fr) = nj ∩ fr /∈ Cj)

∑

r∈R

Φ(r).Hr,j .(1− Φ(r))q.τr

Mj =
∑

r∈R

P (p.fqdn = fr ∩H(fr) 6= nj ∩ fr /∈ Cj)

∑

r∈R

(1−Hr,j).Φ(r).(1− Φ(r))q.Lj .τr (2.13)

Finally :

CPU(q) = qj .(Rj +Mj .CM).CPUR +

qj .(CHj +Mj .CH).CPUH +

qj .Mj .CPUFWD
′′

RT (q) = lISP +Rj .RTM (CPUj) + CHj .RTH(CPUj) +

Mj .(lplt + CH.RTH(CPUj) +

CM.(RTM (CPUj) + lI)) (2.14)
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CPUFWD
′′

≈ CPUR
DNS since insertion is performed on a large cache.

2.5.8 Pastry-Replication (Pastry-R): (no cache, replication)

Replication with no cache works like the regular Pastry architecture with no cache except that
when a resolution is performed the response is replicated on k neighbors. This mechanism is close
to the active caching mechanism to the extent that all FQDNs will be replicated, whereas in active
caching we only care about the most popular FQDNs, then replication occurs only to k nodes,
whereas Active Caching replicates the responses on all nodes. When nj does not have the response
in its cache, it proceeds as in Pastry (cf. section 2.5.4). Let N k

j = {l |nl is neighbor of nj , l 6= j}.

CM = CMo

Rj =
∑

r∈R

P (p.fqdn = fr ∩H(fr) = nj ∩ fr /∈ Cj)

=
∑

r∈R

Φ(r).Hr,j .(1− Φ(r))q.τr

Mj =
∑

r∈R

P ((p.fqdn = fr ∩

H(fr) ∈ N k
j ∩ fr /∈ Cj) ∪

(p.fqdn = fr ∩H(fr) /∈ {N k
j , nj}))

=
∑

r∈R

Φ(r).k.Hr,j .(1− Φ(r))q.τr +

Φ(r).(1− (k + 1).Hr,j) (2.15)

PCFWD = P (emitting or receiving a FQDN from peer)

= 2kRj (2.16)

Finally :

CPU(qj) = qj .(CHj +Mj .CH).CPUH +

qj .(Rj +Mj .CM).CPUR +

qj .Mj .CPUFWD′

+

qj .2.k.Rj .CPUFWDPC

RT (qj) = lISP + CHj .RTH(CPUj) +

Rj .(RTM (CPUj) + lI) +

Mj .(lplt + CM.(RTM (CPUj) + lI) +

CH.RTH(CPUj)) (2.17)

CPUFWD′

j ≈ CPUH

2 (cf. equation 2.10). CPUFWDPC

j ≈ 1
2CPUR

DNS since cache update is
performed, but no response is sent nor cache lookup performed.

2.6 Configuration for Simulation

Numerical application of the models requires that we define Φ(r), the experimental popularity
distribution, the occupancy time CPU required for a Cache Hit (CPUH) and for a resolution

61



CHAPTER 2. OVERCOMING DNSSEC PERFORMANCE ISSUES WITH FQDN LOAD
BALANCER AND CACHE SHARING

(CPUR). The values considered for CPUR and CPUH are derived from figure 2.1f, and thus only
consider small cache size. This is a limitation of our model, and results provided for large cache
should be carefully considered (Pastry-AC with large γ, Pastry-PC, and Pastry-R). Response Time
needs to evaluate the latency to reach the ISP DNS platform (lISP ), the latency over the Internet
(lI) and between the nodes of the platform.

Figure 2.4a shows the distribution of the FQDN popularity Φ computed from a 10 minute traffic
of 35, 105, 176 queries and 2, 063, 864 FQDNs. Note that we did not consider the Zipf modelization
and instead considered the measured popularity distribution function so to avoid errors due to
traffic estimations. Figure 2.4b and table 2.3 show latency measurements within Orange network
with different size of packet to compute DNS queries and DNS/DNSSEC responses. Tests are also
summed up in table 2.3 for tests performed every 30 sec from January 31 11 : 16 pm to February
9 23 : 33. Daily peaks are due to the rekeying of the PPP session. We derive latency values
lDNS
ISP = 64ms and lDNSSEC

ISP = 79ms. We also measured lI = 223ms for the Internet and on the
platform lqueryplt = 0.4ms and lresponseplt = 0.6ms.

RTT (ms) Bytes Min Average Max Mdev

DNS - Query 98 46.028 54.676 2810.981 67.424

DNS - Response 282 64.063 73.335 2849.930 67.795

DNSSEC - Response 1198 89.159 103.391 2906.601 69.171

Table 2.3: Maximum Load versus Cache Hit Rate

(a) Popularity (b) Ping

Figure 2.4: Traffic and Network Measured Characteristics: FQDN Popularity
Distribution and Network Latency

2.7 Simulation of Pastry Based Architectures

This section compares the different architectures modeled in section 2.5. Simulations are run with
the data of section 2.6 of our 18 node DNS platform and the experimental measured ranking
of FQDN versus their popularity (Φ(r)) of our 10 minute traffic live capture. We consider that
DNSSEC requires 90 nodes. This section also compares each architecture’ sensibility to criteria,
as the addition of nodes, the variation of the ratio between the cost of a resolution and cache hit
CPUR

CPUH and the variation of the TTL. Platform’s efficiency is measured by the node CPU , and
figures plot for each architecture - IPSHA1, FQDN, Pastry, Pastry-SF, Pastry-AC, Pastry-PC and
Pastry-R - the CPU ratio CPUArch

CPUIPs . We considered IPSHA1 instead of IPXOR as in section 2.4
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because IPXOR has not been modeled, and IPXOR’s efficiency almost equals IPSHA1’ efficiency
(cf. section 2.4).

2.7.1 γ, Neighbors

Pastry-AC and Pastry-R can have different values for γ the number of FQDNs actively cached
or k the number of neighbors the node replicates the responses on. This section shows how they
influence the node’s performance and give estimation for them.

Figure 2.5 shows for DNS and DNSSEC how γ influences the performances. γ is expressed
both as the number of FQDN the node is considering and as well as the percentage of the global
DNS traffic. Correspondence between traffic percentage and Number of FQDN is provided by
figure 2.2b. Note that, that as mentioned in section 2.6 our model does not properly consider large
amount of FQDN.

Figure 2.5 shows the CPUarch.

CPUIPs for the different architectures versus γ. With γ as small as 40
FQDNs, makes Pastry-AC 1.39 (resp. 1.09) times more efficient than IPSHA1 (resp. FQDN) with
DNS. With DNSSEC, this makes Pastry-AC 1.96 (resp. 1.64) times more efficient than IPSHA1

(resp. FQDN). Figure 2.2b shows that 40 FQDNs per node for a 18 node platform makes 56%
of the traffic is cached by the platform. Similarly γ = 200 represents 72% of the traffic and
makes Pastry-AC 2.18 (resp. 1.72) times more efficient than IPSHA1 (resp. FQDN) for DNS. For
DNSSEC, it makes Pastry-AC 3.04 (resp. 2.54) times more efficient than IPSHA1 (resp. FQDN).
γ = 200 may still provide a good compromise between a small table each node is responsible for and
a consequent amount of the DNS traffic stored in cache, however, in the next section we consider
γ = 100. γ = 100 makes Pastry-AC more efficient than Pastry-PC, and keeps the size of the cache
small.

In fact Figure 2.5 also shows that for DNS DHT based architecture have little or no advan-
tage over IPSHA1. In fact IPSHA1 is 1.36 time more efficient than Pastry, respectively 1.06 times
more efficient than Pastry-SF, equivalent to Pastry-PC and 1.04 more efficient than Pastry-R with
k = 3 neighbors. Then, FQDN is 1.27 more efficient than IPSHA1. As a result, FQDN is much
more efficient than IPSHA1, however, DHT based architecture generates management traffic can
not compensate the costs of the DNS resolutions. On the other hand, DHT based architectures
are much more efficient than IPSHA1 with DNSSEC. Pastry (respectively Pastry-SF, Pastry-PC,
Pastry-R) is 1.6 times more efficient than IPSHA1 (respectively 1.82, 3.5, 2.01). FQDN is 2.06
times more efficient than IPSHA1. The difference between FQDN and DHT based architecture
is essentially constituted by management traffic. This management traffic seems negligible with
DNSSEC but not with DNS. Pastry-AC and Pastry-PC are taking advantage of the Zipf distribu-
tion of the FQDN popularity (cf. figure 2.2b). The difference is that Pastry-AC provides to other
node’s cache only the most popular FQDN, whereas Pastry-PC provides all requested FQDN. Our
model does not make any difference between large and small cache, but this consideration makes
our preference for Pastry-AC. However, Pastry-PC is much easier to implement the Pastry-AC,
since no popularity tables are required. In the remaining of this chapter we consider γ = 100.
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Figure 2.5: Evaluation of the Impact of γ on CPU

Figures 2.6b shows how much neighbors should be considered so to maximize Pastry-R. Pastry-
R can be seen as Pastry-SF combined with cache replication mechanism. Any resolution is followed
by a broadcast of the response on k Neighbors. This improves CHR on each node and presents
robustness against node failover. Only traffic with high value of CHR makes Pastry-R worth being
considered, otherwise, the platform would be easily overloaded. However Zipf distribution presents
a heavy tail (cf. figure 2.4) so most FQDN does not need to be cached, since they won’t be
queried twice. Caching unnecessary data results in an increase of the cache size with presents more
power consumption operations. As such cache lookup for a cache of length l has a complexity
of O(log l) and sorting in O(l log l), which makes local cache operation less efficient. Pastry-AC
improves Pastry-R on both points, by considering only the most popular FQDNs. Furthermore
Pastry-AC implements a cache hierarchy that leaves cache updates for popular FQDN aside the
resolution process. This is why we prefer Pastry-AC to Pastry-R. The only advantage of Pastry-R
over Pastry-AC is that Pastry-R does not have to evaluate FQDN popularity.

Figure 2.6 does not consider the overhead of larger cache, but shows that with DNS the number
of neighbors does not influence much, and that Pastry-R is very close to Pastry-SF. This means that
the cost due to replication balances the Cache Miss and management traffic with Pastry-SF, which
does not provide Pastry-R any advantage over Pastry-SF. DNSSEC makes CPUR much more costly
than CPUH , and the replication mechanism makes Pastry-R almost as efficient as Pastry-AC - with
approximation of our model. Pastry-R presents the advantage of being completely deterministic
compared to Pastry-AC, however, We favor Pastry-AC for cache efficiency, and management traffic
optimization. In the remaining of this chapter we consider Neighbors = 3 which makes Pastry
1.707 more efficient than IPSHA1 with DNS (resp. 2.15 with DNSSEC). Figure 2.6b shows
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that Pastry-SF is almost equivalent to Pastry-R with DNS. This means that high CHR of the DNS
traffic makes replication for caching equivalent to forwarding without caching. With DNSSEC
and large values for k, that is to say replication is performed on almost all nodes of the platform,
Pastry-R is almost as efficient as Pastry-AC or Pastry-PC. This means that providing the request
to the querying node on a per-query base is similar to proactively providing the query to all nodes
of the platform. For DNSSEC figure 2.6b shows that for FQDN and Pastry-R are equivalent for k
between 3 and 4. In the remaining of this chapter we consider k = 3.
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Figure 2.6: Evaluation of the Impact of Neighbors on CPU

Simulations are run with n = 18, γ = 100 FQDN per nodes, Neighbors k = 3. All tests below
figure out how stable are the architectures when parameters vary. The considered parameters are:
Number of nodes of the platform, the relative cost CPUR

CPUH , the TTL, and the Query Rate.

2.7.2 CPU & Scalability

Figure 2.7 compares a randomly chosen node’s efficiency when node number varies from 1 to 100.
The considered traffic is a DNS traffic for 18 nodes, and we have seen that migration to DNSSEC
may involve 5 times more nodes. As such, it is valuable to consider nodes for 20 to 100 for a given
traffic. With DNS, and a 18 node platform, Pastry-AC (resp. FQDN performs 1.8 (resp. 1.3)
times better than IPs. Pastry-SF happens to perform better than IPSHA1 for a number of nodes
greater than 40. Pastry never outperforms IPSHA1. However, Pastry-SF and Pastry-R are more
efficient for a number of nodes lower than 49. Pastry architectures clearly show how management
tasks within the platform balances the resolutions tasks. When the number of nodes grows, then
IPSHA1 performs more resolutions, which are costly tasks, whereas Pastry* increases management
tasks that are of lower costs. On the other hand, with DNSSEC resolutions are much more costly,
thus making Pastry architectures more efficient than IPSHA1. Pastry, Pastry-SF and FQDN differ
in the way End Users queries are handled by the requested node. With FQDN, the query is sent to
the Responsible Node, which means there are no interactions with the other nodes when a cache
miss occurs. WithPastry, the requested node may not be the Responsible Node, and in that case,
the requested node has a complete query/response exchange with the Responsible Node. With
Pastry-SF, the exchange with the Responsible Node is reduced, and only the query is forwarded
to Responsible Node. The Responsible Node is expected to send the response directly to the End
User. Considering DNSSEC and n = 90 Pastry-AC (resp. FQDN) performs about 9.5 (resp. 2.38)
times better than IPSHA1.
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Figure 2.7: Evaluation of the impact of the number of Nodes of the platform
on CPU. CPU is presented as a ratio of the CPU required by an architecture vs
the CPU required by IPSHA1

Another representation of the CPU consumption is to represent the maximum query rate for
each architecture as a function of the number of nodes.
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Figure 2.8: Evaluation of the Maximum Query Rate over various Architecture

2.7.3 CPU & CPUR

CPUH

Figure 2.9 compares architecture’s efficiency versus the ratio CPUR

CPUH . The higher CPUR

CPUH is, the
more Pastry-AC, FQDN, Pastry-SF and Pastry are efficient compared to IP. FQDN and Pastry-
AC are always more efficient than IPSHA1, but Pastry (resp. Pastry-SF) are more efficient than
IPSHA1 only for CPUR

CPUH > 5 (resp. CPUR

CPUH > 10.5). In our case we have for a single signature check
CPUR

CPUH = 11.490 for BIND9 (resp. 17.79 for UNBOUND). If one considers that roughly 3 signature
checks may be required - one for the ANSWER, the AUTHORITATIVE and the ADDITIONAL
section -, then CPUR

CPUH = 19.41 for BIND9 (resp. 38.69 for UNBOUND) with 3 signature check per
response. This makes Pastry and Pastry-SF more efficient than IPSHA1.
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CPUH on CPU

2.7.4 Evaluation of TTL impact over CPU

Sensitivity to TTL makes us considering how CDN may impact different architectures with low
TTL values. CDNs are expected to increase queries of most popular FQDN as well as to reduce
their TTL. On the other hand, our model considers a single TTL value for all FQDNs, and we do
not consider more queries. Figure 2.10 stresses that what matters is the number of queries received
during TTL. The higher this ratio is, the more caching architectures like Pastry-PC or Pastry-R
take advantage of it. With DNS, Pastry-PC spends more resources on requesting, caching and
resolving queries from others than only resolving queries for itself. Thus cache sharing is inefficient
with Pastry-PC when TTL becomes lower. With DNSSEC, requesting a node on the platform
avoids signature checks, and makes cache sharing efficient even for Pastry-PC. With large TTL
value, all requested FQDNs are cached on the platform, or on the nodes. Responses cached on the
node increases availability and makes Pastry-AC and Pastry-PC more efficient.
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Figure 2.10: Evaluation of the Impact of TTL on CPU

2.7.5 CPU & Query Rate

Figure 2.8 shows how architectures are affected by small variations over the traffic the platform has
been designed for. Since the number of FQDN is fixed, increasing the number of queries increases
the CHR, after a while there is no more cache insertion to be performed. In other words, our
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model does not consider a simultaneous growth of the traffic as well as the number of different
FQDNs. When everything is cached Pastry architectures’ management tasks are non negligible
and constitutes the main traffic.

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

6.10 4
10 5

5.10 -

C
P

U
(A

rc
h/

IP
S

H
A

1)

Query Rate (q/s)

IPSHA1
FQDN
Pastry

Pastry-SF
Pastry-AC
Pastry-PC

Pastry-R

(a) DNS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

6.10 4
10 5

5.10 -

C
P

U
(A

rc
h/

IP
S

H
A

1)

Query Rate (q/s)

IPSHA1
IPSHA1
FQDN
Pastry

Pastry-SF
Pastry-AC
Pastry-PC

Pastry-R

(b) DNSSEC

Figure 2.11: Evaluation of the Impact Query Rate on CPU

2.8 DNSSEC Migration

2.8.1 Analysis on CPU Time

This section shows the impact of the DNSSEC migration versus DNS for different parameters and
compares it to the IPSHA1.

Figure 2.13a shows that Pastry-R with a replication to less than 15 nodes out of the 18 nodes
presents the most expensive cost for migrating from DNS to DNSSEC with signature.
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2.8.2 Analysis on Response Time (RT)

This section presents the same results as in section 2.8.1 but considers the Response Time (RT)
instead of CPU Time. RT reflects the Quality of Service provided to the End User, whereas CPU
is considered in the design of the platform. CPU and RT are not uncorrelated, in the sense that
servers with large CPU will provide responses with smaller RT. However the difference between RT
provided by an idle server and a loaded server may be negligible compared to the network latency.

In this section since we considered the CPU load to estimate the RT on the platform, we need
to provide different configurations for DNSSEC and DNS. [MGL10] shows a close relation between
RT and CPU of the platform. If we want to take advantage of such measurement, we need to have
realistic configurations for both DNS and DNSSEC. In that sense, simulation with DNS considers
a 18 node platform whereas simulation for DNSSEC considers a platform of 90 nodes. The main
goal is to find an estimation of CPU on each node for each architecture that is between 0% and
100%. We chose n = 90 since migration of the IPSHA1 to DNSSEC requires the number of nodes
to be multiplied by 5.

First of all comparing the different architecture based on the RT do not provide differences
that are over 10%, which may not be sufficient to compete with the differences provided by com-
parison of CPU. CPU shows that Pastry-AC can be up to 350% more efficient than the traditional
architecture. This means that adopting Pastry-AC may reduce a 90 node platform to a 28 node
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platform. Balancing the number of servers to a 10% improvement in term of QoS may not be
reasonable. On the other hand our first conclusion from figures 2.14 and 2.15 is that none of the
proposed architecture may be rejected because of bad QoS.

Then [MGL10] shows that the CPU consumption for both UNBOUND and BIND9 implemen-
tation presents a peak for a given load. This means that with higher load we can measure lower
CPU load. Although no plausible explanation has been provided to explain such phenomenon, but
they might slightly impact the Response time of the platform.
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Figure 2.14: Impact of Traffic parameters (γ and TTL) on the Platform Re-
sponse Time
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Figure 2.15: Impact of Platform Parameters (Neighbors and Nodes) on Re-
sponse Time

2.9 Conclusion

DNSSEC migration of large resolving platforms is expected to increase their size by 5 if one keeps
on using the current DNS Resolving platform architecture. This chapter first evaluates different
load balancing techniques and shows that load balancing according to the FQDN rather than IP
addresses reduces the number of nodes by 30%.

Because FQDN load balancers significantly impact the ISP core network infrastructure and still
providing a single point of failure, we considered Pastry based architectures and their associated
cache sharing optimizations. With the Zipf distribution of FQDNs, we showed that Pastry-AC
with Active Cache sharing mechanisms can be at least 3.5 times more efficient than traditional IP
architectures.

We also have to consider such results regarding the approximations we performed: constant
TTL, we did not consider the impact of the size of the cache on cache lookup or cache insertion.
Then we also considered that IP addresses and FQDN were independent.

Although Pastry-AC is the most efficient architecture presented in this chapter, we believe this
architecture can still be improved. The pro-active mechanism takes advantage of the Zipf distri-
bution of the FQDNs’ popularity. More specifically, the 2000 most popular FQDNs correspond to
70% of the traffic. Thus, populating the cache of the nodes with the most popular FQDNs, results
in increasing the Cache Hit Rate, and distribute the load of the DNS queries between the nodes.
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In fact, when the query is cached, the DNS query is handled by the receiving node and not the
responsible node. With the proactive mechanism, the DHT node considers a common cache for
the FQDNs that are pro-actively cached and the FQDNs the node is responsible for. The number
of FQDNs the DHT node is responsible is quite large, thus increasing the resources needed for a
cache lookup.

A first optimization would be to introduce some levels of caches. A first cache would only
contain the most popular FQDNs —that is to say the pro-actively cached FQDNs —, a second
cache would contain the FQDNs of the DHT. However, this adds complexity to the DHT process.

A second optimization, would consider to keep the DHT process simple, and to take advantage
of hardware acceleration. The proactive mechanism can be extracted from the DHT process, and
be a front end process to the DHT. Maintaining a 2000 entry cache, and performing lookups to this
cache is a relatively light process that can run in Network Acceleration Cards, thus lightening the
DHT process from 70% of the traffic. We believe these front-end processes can be more optimal
than the DHT process.

Other area includes designing a light Pastry for small and managed Network. we re-used the
original version of Pastry, but functions like routing protocols are not involved on our platform.
We encountered some performance issues with our Pastry implementation, and believe that a
Light Pastry protocol may be designed for the Small Managed Network. From this thesis, we
have identified the two following points: (1) removing unnecessary functions —like routing —, and
(2) improve failover recovery mechanisms. However, re-designing a Light Pastry protocol would
require to also reconsider the Operations and Magement’s requirements.
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Chapter 3

PREFETCH

Architecture to overcome DNSSEC
Performance Issue in large Resolving

Platforms

3.1 Introduction

Internet Service Providers (ISPs) have always hosted Domain Name System (DNS) Resolution for
both end users and Machine-to-Machine (M2M) communications. End User use Names because
IP addresses have no meanings for them, but M2M communications are also using Names to make
configuration independent of IP address modifications, like DHCP modifications or IP renumber-
ing. However, little attention was paid to optimize DNS Resolving Platform. Therefore, DNS
Resolving Platform currently consists in large farms of servers, and it is now crucial to optimize
them to face the future demands on DNS and DNS(SEC) evolutions.

First DNS is now a crucial service for ISP’s business. DNS is not only used by end users for web
browsing, but ISP’s services are heavily relying on DNS. Among these services, PSTN-VoIP conver-
gence with E.164 NUmber Mapping (ENUM) [MD00, Fal00], Mobility Services like MIP6 [GKD07]
or HIP [MN06] use DNS to host Rendez-vous Servers and Home Agents. Second, DNS traffic keeps
on increasing by 8% per month over the last 10 years, which shows that the resources allocated
to DNS are now ≈ 1.0812∗10 = 10253 times larger than it was at the beginning. For example
our DNS Resolving Platform is composed of 8 18-node clusters. Third, current Internet sees an
increase of DNS load balancers or CDNs that associate short Time To Live (TTL) to their DNS
responses, thus resulting in increasing the number of resolutions. At last, the DNS Protocol itself
is being replaced by DNSSEC [AAL+05a, AAL+05c, AAL+05b], the DNS SECurity extension.
With signature checks, DNSSEC resolutions require at least 4.25 times more CPU cycles [MGL10]
than DNS’s. DNSSEC is already deployed in most Top Level Domains (TLDs) and ISPs need to
consider that evolution in the design of their Resolving Platforms.

This chapter proposes the PREFETCHX architecture, designed to (1) reduce the number
of nodes (or resources), and to (2) provide management facilities for Operation, Administration
& Management (OAM). Section 3.2 positions the chapter versus existing work. Goals, motiva-
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tions and design for this architecture are presented in section 3.3. PREFETCHX consists in
caching HEADX , the X most popular FQDNs and handling the remaining FQDNs, TAILX by
a Distributed Hash Table (DHT) architecture. In fact, DHT avoids that different nodes perform
resolutions for a given FQDN by assigning, to each FQDN, a node responsible for its resolutions.
Furthermore, DHT protocols like Pastry come with auto-configuration mechanisms. Section 3.4
analyzes a 1 day DNS live capture traffic and derives that prefetching X = 2000 FQDNs results
in a uniform distribution of the required resources among the nodes of the platform. Section 2.5
models different DHT architectures. Section 3.5 executes the different DHT models, as defined
in section 2.5, so to derive the most efficient DHT architecture that deals swith TAILX . This
evaluates PREFETCHX from live traffic analysis and from modelization. Finally, section 3.6
provides experimental measurements that confirm our DHT models. We implement a DHT based
on FreePastry platform, and compare the measured maximum load to the maximum load provided
by our models.

3.2 Related Work

Most popular DHT protocols are Chord [SMK+01], Pastry[RD01a], Tapestry [ZHS+04] and CAN [RFH+01],
where nodes are self-organizing, leave and join the ring with no extra burden for the administrators.
Pieces of data are randomly spread among nodes, thus resulting in a greater robustness against
DDoS attacks. [CMM02] describes a DNS service based on Chord [SMK+01] and DHash [DKK+01].
DNS was run over DHT so to get rid of painful name server administration, and inherit good load
balancing and robustness from DHT architecture. The paper reports an experiment with 1000
nodes in the chord ring serving as an authoritative server. Replication was turned off, which
means that the information stored in a node is not replicated on the k other nodes. However, this
architecture considers passive caching, which means that when a node performs a lookup, it stores
the answer. DHash is block driven, which means that files in our case DNS responses are not
hosted by one node, but blocks of the file may be distributed over multiple nodes. DHash as well
as caching mechanisms provide a well load balanced traffic over the nodes. However, even though
DHash and PAST have different design, since the size of (Cooperative File System) CFS blocks of
DHash are up tens of kilobytes, in our case, DHash and PAST have more or less the same results.
The major drawback of the DNS over Chord architecture is that it results in a too much high
latency.

[Mas06, RHM09] analyze how DHT could enhance the robustness of the Naming System. The
robustness of both Chord and DNS considers Data failure rate, Path failure rate and Path length.
The DNS efficiency was proved to be linked to the popularity of its zone and the number of labels
of the domain name, whereas the DHT efficiency is related to the popularity of its RRsets. In fact,
the DHT main drawback is its heavy routing algorithms. DHT is also more robust to orchestrated
attacks and could achieve the same availability of the current DNS with added mechanisms like
proactive caching - Beehive [RS04].

Many works focused on Web caching architectures. [Wan99] describes different caching ar-
chitectures, providing inputs on where and how placing the cache devices according to the Web
requirements. [TDVK98] introduces a cost comparison to different distributed caching methods.
[WVS+99] investigates the benefits of cooperative caching, and finds out that it might be useless
for a large scale population. The DHT web caching methods are investigated with Squirrel [IRD02],
which is based on Pastry [RD01a]. This paper compares two architectures, one using a home node
dedicated to a bench of web pages and one with a home node that can also delegate the resolution
to other nodes during a flash crowd. Here flash crowd designates an unexpected increase of traffic.
It happens that the less flexible but simpler architecture proved to have better performances.

Our chapter differs from above papers where DHT ring is used for hosting authoritative data,
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whereas our architecture uses the DHT Pastry as a way to define the node responsible for per-
forming the resolutions. The way the data are stored into the DHT also differs from DHash and
we used PAST. In DHash, blocks of the files are spread over the DHT nodes, whereas in PAST
the whole file is hosted on the node. Our architecture is also expected to be at maximum one or
two hundred nodes, whereas the DHT in [CMM02] experiments over a 1000 node platform which
is mentioned as being a restricted number.

3.3 PREFETCH Architecture: Goals and Design

This chapter proposes an architecture that optimizes DNS(SEC) Resolving Platforms. Our current
Resolving Platform is composed of 8 × 18 = 144 nodes, and a migration to DNSSEC would raise
this number to around 144× 4.25 = 612 nodes [MGL10]. Currently, load balancers split the DNS
requests by XORing the IP addresses [alt03]. The proposed architecture must:

- 1. Reduce the number of nodes (or resources), and

- 2. Provides OAM facilities.

3.3.1 Better load balancing and smaller cache for reducing CPU

The resource we care about in this chapter is the CPU which is heavily used for DNS resolution
with signature checks and cache lookup over large caches. As a result our goals are to (1) Reduce
the number of resolutions, (2) Reduce the size of the cache, (3) Reduce the number of cache lookup.

3.3.1.1 Better load balancing

Our current platform IPXOR load balances the DNS requests between the nodes by XORing the
24 lower bits of the IP addresses [alt03]. Hence, the Most Popular FQDNs (MPFQDNs) queries
can be sent to any nodes, triggering redundant resolutions and redundant cache entries. This is
avoided with FQDN that load balances the DNS queries according to the FQDN. Compared to
IPXOR for a n node Resolving Platform, FQDN reduces, for the MPFQDNs, by n the number of
resolutions, number of cache lookup and the cache size of the nodes.

Section 3.4.1 measures, for different Load Balancer, the distribution of the queries, resolutions
and CPU rate over the nodes. Compared to IPXOR, FQDN reduces by 30% the CPU, but its
distribution among the nodes presents too large variations. Variations (or dispersions) are 3.32
larger for DNS and 1.78 times larger for DNSSEC, making FQDN unlikely to be deployed.

One way to overcome the non-uniform CPU distribution is to define a routing table [FN10]
for the MPFQDNs that results in distributing the CPU uniformly among the nodes, whereas the
remaining FQDNs are load balanced with a hash function. This alternative is not considered in
this chapter because it modifies the load balancer which interconnects the platform to the CORE
Network, making this operation too much risky.

Instead, we re-use the IPXOR load balancing and modify the nodes of the platform and cache
the MPFQDNs on all nodes. Considering the traffic associated to the MPFQDNs, IPXOR uni-
formly load balances the queries between the nodes, and thus the associated CPU. In addition,
it avoids computing the routing table for the FQDN load balancer. Because, DNS responses are
cached, this reduces the number of DNS resolutions and partly fulfils goal (1).
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3.3.1.2 Reducing cache size

To completely fulfill goals (1) and (2), nodes are organized in a DHT so each FQDN is associated to
a single node, responsible for its resolution. For MPFQDNs, the Responsible Node (RN) maintains
the cache on every nodes and is expected to prefetch the MPFQDNs, i.e. avoids a cache miss occurs.
For the remaining FQDNs, only the Responsible Node (RN) hosts the response, either in its cache
or after a resolution over the Internet if a cache miss occurs. This DHT architecture reduces the
number of resolutions and reduces the cache size of each node thus fully achieving goals (1) and (2).

3.3.1.3 Reducing the number of cache lookup

It may be surprising to reduce the number of cache lookup by caching the Most Popular FQDNs
(MPFQDNs) on all nodes. In fact, it differs from the one of the DNS(SEC) Resolving Server like
BIND [BIN] or UNBOUND [UNB]. It is much smaller, can be isolated from the Resolving Server,
and in this chapter, we have in mind, that it is hosted in a Network Hardware Acceleration Card
(NHAC) [cav, end] which works as a front end on each node. For each incoming DNS query, a
first cache lookup is performed by the NHAC, and passed to the Server only if a cache miss occurs.
Note that alternative architectures may consider a few front end nodes dedicated to respond to
MPFQDNs queries and to forward the remaining FQDNs queries to a back-end DHT platform. In
all cases, the DNS Resolving Server performs fewer cache lookup, which achieves goal (3).
Note we are taking advantage of cache levels rather than any current cache strategies like Least
Recently Used (LRU) or Most Recently Used (MRU). We believe this is the most efficient strategy
because the cache of the DNS Resolving Server is expected to be large, making any operation very
costly.

3.3.2 Pastry auto-configuration to reduce Operations, Administration
and Maintenance

Operations, Administration and Maintenance (OAM) facilities provided by Pastry [RD01a] are
mainly provided by auto-configuration when a node is added or removed from the platform. Note
that in this chapter we only use a subset of the Pastry functionalities. More specifically, we do
not use the Pastry Dynamic Node Discovery used to define which Pastry node hosts a given con-
tent. This mechanism is quite complex because DHT protocols have been designed for billions of
dynamic nodes, making impossible each node to have a global knowledge of the platform. On the
other hand, our platform is not expected to have more than a (few) hundreds nodes, and all nodes
are administrated by the same ISP. This makes possible each node to consider the other nodes as
its Neighbors, and thus does not require Dynamic Node Discovery. The Pastry mechanisms we are
taking advantage of are: 1) Content distribution among the nodes of the platform —that is to say
in this chapter: which hash function is used —and 2) auto-configuration mechanisms that make
the platform recover from a Neighbor fail over or addition of a new node.

3.3.3 PREFETCHX Architecture Definition

This chapter proposes the PREFETCHX architecture illustrated by figure 3.1b. HEADX stands
for the X Most Popular FQDNs (MPFQDNs) cached in all nodes, and TAILX the remaining
FQDNS. Each FQDN is associated to a Responsible Node (RN), responsible for its resolutions.
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The Load Balancer IPXOR splits the queries between the nodes in an uniform way. Because the
load balancer splits the traffic according to the IP addresses rather than the FQDN, a query for
a given FQDN can be sent to any node with the same probability. PREFETCHX handles the
queries differently, depending on whether it belongs to HEADX or TAILX . When a node receives
a DNS query from the Load Balancer, the query is first handled by the Network Hardware Accel-
eration Card (NHAC). The NHAC is a card placed on front end of the node, with its own CPUs.
Figure 3.1b represents the NHAC connected to the node, facing the Load Balancer. In our case, it
makes possible to proceed to treatments on the query —more or less like a firewall —and forwards
it to the node’s CPU only if necessary. More specifically, NHAC determines whether the queried
FQDN is in HEADX or not. If it is in HEADX , then the NHAC sends back to the End User
the response, and no additional treatment is required from the node. The exchange is completely
handled by the NHAC and is represented in figure 3.1b with the upper response. If the queried
FQDN is not in HEADX , then it is in TAILX and is forwarded to the DHT process of the node.
From now, the resources involved are provided by the node. The node implements Pastry, and
checks if it is responsible for that FQDN. In figure 3.1b, we represent the case where the node
is not the Responsible Node. Thus the node sends to the RN associated to the queried FQDN.
The Responsible Node checks its cache, eventually performs a resolution over the Internet, and
sends the response to the node that in return sends the response to the End User. The response
is represented in figure 3.1b with the lower response.

For simplification, we consider that all nodes have a NHAC, and that the Load Balancer bal-
ances the traffic to all nodes of the platform. Alternative architectures may also consider the Load
Balancer balances the traffic to a subset of the nodes (the front end nodes) and that DHT is de-
ployed on other nodes (back end nodes).

Figure 3.1a provides the FQDN query ratio versus the FQDN Popularity rank. The figure
represents HEADX and TAILX for X = 2000. This value is derived from section 3.4 that defines
how to derive X from a traffic analysis.
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(b) PREFETCH Node Achitecture

Figure 3.1: PREFETCH Node Parameters
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3.4 Deriving X, HEADX, TAILX from live capture traffic

PREFETCHX needs to set HEADX so the dispersion of the CPU resources becomes marginal
—that is to say all nodes of the platform use similar CPU rate for TAILX . HEADX , TAILX

and X are derived from the traffic, and should generate a dispersion that is valid whatever hash
function is used by the DHT network and for any time of the day. In other words, the dispersion
noted δCPUX must be stable (1) to the DHT hash function and (2) to time. For DHT hash
stability, we restrict our analysis to CRC32, MD5 and SHA1. We compute δCPUX from a 10
minute DNS live capture of more than 35 millions queries. For various values of X, we remove the
X most popular FQDNs, and check how the various hash functions distribute the CPU resources
among the nodes of the platform. Then, we compute the dispersion. Note that the dispersion is
a relative value, and thus dispersion δCPUX can be compared for various values of X, as well as
for various distributions. Since PREFETCHX has been designed to enhance IPXOR described in
section 3.4.1, in this chapter, X is chosen as the minimum value with a better δCPUX , compared
to IPXOR. Then, we check δCPUX time stability for the whole day.

Section 3.4.1 points out the uniform resource distribution issue the PREFETCHX architecture
is solving. More specifically, it shows that Load Balancers that balance the traffic according to the
FQDN without removing the caching the X most popular FQDNS results in a very high dispersion
of the resources between the nodes of the platform. Thus, it presents different Load Balancing
techniques, and shows that load balancing according to the FQDN is not convenient without addi-
tional operations. To overcome this issue PREFETCHX proposes to cache HEADX , in all nodes
of the platform. Then to lower the resource consumption of the nodes, PREFETCHX proposes to
export the cache lookup function to a Network Hardware Acceleration Card. Section 3.4.2 defines
δCPUX the CPU dispersion, we compute X = 2000, and section 3.4.3 measures its time stability.
Section 3.4.4 shows that TAILX does not present a uniform popularity distribution, as figure 3.1a
may eventually suggest. As a result, execution of the theoretical DHT models of section 3.5 must
be based on our 10 minute live capture. Finally, section 3.4.5 concludes that prefetching divides
at least by 2 the required resources for PREFETCH2000 compared to IPXOR.

3.4.1 Load Balancer Analysis

This section compares different Load Balancers. On our platform, the Load Balancer IPXOR bal-
ances the DNS queries by XORing the 24 lower bits of the IP addresses. We position IPXOR to
IPSHA1 that performs a SHA1 rather than a XOR and then to FQDN and RANDOM , that re-
spectively balances the DNS queries according to the SHA1 of the FQDN, or by randomly choosing
a node. By comparing IPXOR and IPSHA1 we check whether using a hash function with better
avalanche effect [Fei73] provides better load balancing. FQDN shows that simple Load Balancer
is not sufficient to enhance the Resolving Platform, and that nodes have to work closely with the
Load Balancer. For example, they may agree with the load balancer on balancing policies that
would result in distributing uniformly the resources between the nodes. RANDOM selects a node
independently of incoming packet and provides the best balance we can achieve.

From the live capture traffic, we computed the number of queries, Resolution and Cache Hit
Rate (CHR) on each node. Using CPU measurements in [MGL10], we plot in figure 3.2 the CPU
load of each node for DNS and DNSSEC. Figure 3.2 shows the CPU distribution over the nodes of
the platform. For any value of CPU (on X-axis) the number of nodes (on Y-axis) that associate to
the CPU value. Globally, FQDN provides a 30% optimization over IP∗, and better CHR. On the
other hand, the CPU load distribution is more uniformly distributed with IP∗. In fact, FQDN’s
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popularity distribution follows a Zipf distribution [JSBM01, BCF+99] which makes difficult to
compensate a very popular FQDN, as shown in figure 3.1a. Thus, FQDN is more efficient and
provides a lower mean value for CPU load, but it generates too much dispersion in CPU load. The
goal of PREFETCHX is to take advantage of FQDN efficiency and to lower the CPU dispersion
by choosing proper values for X. In the remaining of this chapter we will be focus on the dispersion
aspect of distribution.
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Figure 3.2: Platform and Traffic Distributions

A good Load Balancer provides uniformly distributed queries and responses among a set of
nodes, so nodes have exactly the same load. The dispersion is relative to the mean value, so we
consider the relative distance to the means value. Figure 3.3 presents the distribution of the rel-
ative query (resp. response) number Q̂i =

|Qi−Q̄|
Q̄

, with Qi the number of queries on node i and

Q̄ the mean query number. Then the dispersion δQ defined in equation 3.2 makes dispersion com-
parison possible between different DHT architectures using different hash, different load balancing
strategies, and different traffic over time.

δQ = |MAX(Q̂i)−MIN(Q̂i)|, i ∈ [1..n] (3.1)

Q̂i =
| Qi − Q̄ |

Q̄
(3.2)

Compared to IPXOR, figure 3.3 shows that IPSHA1 offers the same dispersion for queries δQ and
for resolutions δR. Then RANDOM has similar queries dispersion, but resolutions dispersion is
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between 3 time smaller. At last, with FQDN we have δFQDN
Q ≈ 5δXOR

Q and δFQDN
R ≈ 0.026δXOR

R .
As a result, SHA1 does not provide any benefit over XOR in term of load balancing, which con-
firms the use of XOR for load balancing DNS traffic. Then FQDN is adapted for balancing
resolution whereas XOR is more adapted for query load balancing. Considering that DNSSEC
resolution requires 10.34 more CPU than with DNS, the difference explains why in figure 3.2
FQDN performs better with DNSSEC than with DNS.
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Figure 3.3: Current Platform Distributions

3.4.2 Defining X for a proper δCPUX

To evaluate PREFETCHX , we are concerned about the CPU dispersion over the nodes of the
platform δCPUX . CPU can be expressed on node i as CPUi = Qi.CPUQ +Ri.CPUR, where Qi

(resp. Ri) designates the number of queries (resp. responses) handled by node i, and CPUQ

(resp. CPUR) the CPU required for a query (resp. resolution). One issue is that CPUQ

and CPUR depend on multiple parameters like the implementation, the protocol used (DNS vs
DNSSEC), the FQDNs... If one does not want to rely on those parameters, one may consider
that δCPUX

≤ max(δQX
, δRX

)(CPUQ + CPUR) and look for Xo that makes δQXo
≤ δQXOR

X
and

δRXo
≤ δRXOR

X
, where QXOR

X (resp. RXOR
X ) are the number of queries (resp. responses) resulting

from the IPXOR Load Balancer. Figure 3.4 plots δQX
, δRX

, for various X values and for CRC32,
MD5 and SHA1 as DHT hash functions. IPXOR and FQDN are also provided to visualize the
performances of PREFETCHX over the IPXOR and FQDN Load Balancing architectures.

Table 3.1 compares ratios between PREFETCHX and IPXOR for δQ, δR and δCPU . CPUs
are estimated considering UNBOUND in [MGL10]. Minimum and maximum values depend on the
DHT hash function (CRC32, MD5, SHA1).

Considering separately δQ and δR shows that X = 2000 is the first value that provides
PREFETCHX a better CPU dispersion than IPXOR. On the other hand considering the re-
sulting CPU —instead of δQ and δR —shows that X = 500 would be fine. In fact X = 2000 is
derived by setting 2 conditions whereas X = 500 is derived with a single condition.
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X
δQX

δQXOR

δRX

δRXOR X
δCPUX

δCPUXOR

min max min max DNS DNSSEC

1000 1 1 0.19 0.28 100 2.04 0.4

2000 0.63 0.78 0.32 0.47 250 1 0.2

4000 0.31 0.625 0.13 0.15 500 0.75 0.4

2000 0.25 0.2

Table 3.1: Defining X

3

5

10

20

30

70

100
10 3

10 4
10 5

D
is

pe
rs

io
n 

(%
)

Number of prefetched FQDNs

PREFETCHSHA1
PREFETCHMD5

PREFETCHCRC32
FQDN
IPXOR

(a) δQX

0.8
1

2

3

5

1
1.2

100
10 3

10 4
10 5

D
is

pe
rs

io
n 

(%
) 

Number of prefetched FQDNS

PREFETCHSHA1
PREFETCHMD5

PREFETCHCRC32
FQDN
IPXOR

(b) δRX

Figure 3.4: PREFETCHX δQX
, δRX

Measurements

3.4.3 δCPUX time stability

Figure 3.5 plots δQX
, δRX

and δCHRX
every hour of the day for IPXOR, FQDN and PREFETCHX

with different DHT hash. This is done for various values of X and figure 3.5d plots the maximum
variation of δQX

and δRX
observed during the day.

Figure 3.5a shows that, compared to PREFETCHX , FQDN and IPXOR present the largest
δQX

(35% and 107%), and large variation during the day. In addition, their dispersion is larger
at night when the traffic is quite low. PREFETCHX provides lower δQX

and is more stable to
traffic variations or time.

Figure 3.5d shows that with X = 500 δQX
is below 20%, and that δQX

exhibits logarithmic
growth according to X, the number of prefetched FQDNs. For X = 2000 the maximum dispersion
over the day does not exceed 10%. For δRX

, figure 3.5b shows that IPXOR provides large dispersion,
but any FQDN or PREFETCH provides a less than 8% dispersion. Figure 3.5d exhibits a step
function for δRX

with low values for X the number of prefetched FQDNs greater than X = 2000.
In a word, X = 2000 reduces δResolution by 2.4% and X = 10000 does not significantly improve
X = 2000. δCHRX

in figure 3.5c is impacted by δQX
and δRX

, and shows that PREFETCHX

architecture provides a more uniform efficiency over time than other standard load balancing.
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Figure 3.5: Time Stability

3.4.4 TAILX Distribution

The various DHT models are executed for TAILX , and we check if as suggested by figure 3.1a,
TAILX can be modeled with a uniform popularity distribution. To check whether the TAILX we
perform a χ2. A χ2 test on TAIL2000 and the null hypothesis "TAIL2000 is uniformly distributed"
is rejected. The χ2 test is performed with the subset of FQDNs of our 10 minute capture traffic
which provides a 2, 061, 865 sample size. The test is run with an acceptable level of 0.001, with 100
degrees of freedom, and none of the 101 classes have less than 5 elements. χ2 provides 192907396,
which compared to 149.44 shows that TAIL2000 does not present a uniform FQDN popularity
distribution, as shown in figure 3.6. As a result, DHT must be evaluated by replaying the live
capture for TAILX .

3.4.5 Discussion

The nodes of our DNS Resolving Platform are placed behind an IPXOR Load Balancer and traffic
is uniformly split between the nodes, but results in multiple redundant resolutions. From our 10
minute live capture we derived that caching HEAD2000, the 2000 most popular FQDNs —that
is 67.2% of the traffic —on all nodes, results in uniformly distributing the CPU among the nodes
where each remaining FQDN of TAILX is assigned to a single Responsible Node on the platform.

Because (1) HEADX is not processed by the servers but by the NHAC, (2) TAILX is uniformly
distributed and (3) there is no redundant resolutions, PREFETCH2000 is expected to require
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Figure 3.6: TAIL2000 FQDN Popularity for FQDN with popularity rank below
2000

at least twice fewer nodes than IPXOR. Furthermore, the size of the Server caches has been
reduced, and DHT is also expected to enhance the performances. The latest point is the purpose
of section 3.5. At last X = 2000 can be largely improved, with very few constraints.

3.5 Executing DHT models with TAILX

This section computes the distribution TAIL2000 over various DHT architectures modeled in sec-
tion 2.5. The efficiency of a DHT architecture depends on the relative cost of caching versus
requesting another node. Caching may result in large expensive caches whereas requesting may
result in heavy network operations. Because cache length’s impact on performance is hard to esti-
mate, in our evaluation, we assume that all cache operations have the same cost over the various
DHT architectures. This is true as long as the cache remains small or of the same size.

Figure 3.8 exhibits how modifications of the traffic parameters —like query rate, TTL or the
cost of a resolving versus a caching —impact the CPU ratio CPUDHT

CPUIPXOR

. Architectures based on

routing provide better performances, and are more stable to TTL or query rate variations —with
constant number of FQDNs. Thus Pastry-SF is recommended. Pastry-PC and Pastry-R, especially
for DNSSEC, take advantage of large TTL values and large query Rates because the number of
FQDNs remains constant in our computations. Hence, increasing TTL or query rates result in
increasing the CHR.

Figure 3.8e shows that for RCPU = CPUResolution

CPUCache
≥ 20, DHT provides a clear advantage over

IPXOR, which remains stable for greater values. [MGL10] measured on UNBOUND RDNS
CPU = 3.74

and RDNSSEC
CPU = 38.69, which shows Pastry-SF only requires 55% of IPXOR resources for DNS

and 19.2% for DNSSEC.
Figures 3.8a and 3.8b show that with TAIL2000, TTL above 100 have small impact on the

platform. Furthermore, routing packet is lighter than caching operations, which makes Pastry-SF
and Pastry the recommended architectures for TAILX . Since our simulations run with a constant
number of FQDNs, it reduces the Cache Hit Rate (CHR), and increasing the query rates in fig-
ures 3.8c and 3.8d increases the Cache Hit Rate. This makes Pastry-PC and Pastry-R take much
more advantage to other architecture, especially with DNSSEC. Architectures provide a balance
between caching mechanisms and routing and the efficiency of an architecture really depends on
the traffic characteristics.

Figures 3.7a and 3.7b confirm that DHT architectures reduce by up to 60% the CPU con-
sumption over IPXOR. With DNS, Pastry-PC requires more CPU than IPXOR because DNS
resolutions are light and caching adds an overhead. Then, Pastry-AC is clearly the most scalable
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architecture, and is able to lower the load by expanding the number of prefetched FQDNs. This is
confirmed by figures 3.7e and 3.7f. However, Pastry-AC is redundant with PREFETCHX which
is expected to take advantage of NHAC, and Pastry-SF is the most appropriated architecture in
term of scalability.

Figures 3.7b and 3.7c show that response replication decreases performance with DNS, whereas
it proves to be beneficial with DNSSEC due to the relative costs of caching versus forwarding. How-
ever replication on multiple nodes increases the size of the cache which is not taken into account
in our models. Pastry-R is useful in case of failover and future work should measure how starting
a node with empty cache may impact the platform. If it is of importance, then the marginal cost
provided by figure 3.7b and 3.7c may require to activate replication.
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Figure 3.7: TAIL2000 Architecture Evaluation
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Figure 3.8: TAIL2000 Network Impact

In section 3.4.5, we concluded that prefetching X = 2000 results in dividing the number of
nodes of PREFETCH by 2 compared to IPXOR. In this section we show that, for the remaining
TAILX traffic, DHT can reasonably decrease the necessary resources by 55% and 80%. Note
that TAILX has small CHR, thus combined to prefetching, DHT decreases by roughly between
20% and 35%, which confirms the 30% resource reduction provided by the FQDN Load Balancer.
As a result, PREFETCHX requires at least 4 times fewer nodes than IPXOR. The purpose of
section 3.6 is to validate our models with experimental measurements.
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3.6 Free Pastry Experimentation

This section validates our models by implementing and testing a DNS platform based on FreePas-
try [Fre], results are compared to those provided by the theoretical model of Pastry which models
Pastry without any cache and IPXOR. In this section, a uniform FQDN popularity distribution is
used for the experimentation and the simulation.

First, we measure the performance on a single node, and then extend the platform to 10
nodes. Our 10 node Pastry experimental platform is based on the Java FreePastry library (version
2.1alpha3) [Fre]. FreePastry implements Pastry [RD01a] as the routing protocol between DHT
nodes, PAST [RD01b] implements the DHT, and GCPAST on the top of PAST implements a
garbage collector to remove expired contents. DNS responses are stored in the DHT and indexed
by the hash of the queried FQDN and type, the assigned GCPAST TTL is the one associated to the
DNS response. DNS resolutions and interaction with GCPAST are performed with DNSJava [Wel].

The format of the DHT contents must be chosen carefully, and we choose to store a complete
answer involving multiple RRsets, rather than each RRsets individually. The hash key is built
using the name, class and type of the query field. The main drawback is that it generates a high
redundancy between the RRsets contained in different DHT contents and the size of the DHT
caches on the nodes. For the TTL, we assign to GCPAST the TTL provided for the ANSWER
field in the DNS response.

Our experimental platform is composed of 10 Pentium III and Pentium II servers with Debian
Lenny. Although different configurations were used, the CPU frequency varies from 500MHz to
1GHz, and RAM varies from 128M bytes to 384M bytes. The 10 node platform is loaded with
traffic with a T = 3 minute TTL. We set CHRo = 0.7, so caches are pre-populated with FQDNs
from a list, and 7 out of 10 queries are from this list. Tests last Ttest = 1 minute so with a maximum
of Q = 1100 q.s−1 with Pastry.

Figure 3.9a shows for different numbers of nodes n the percentage of answered queries. We
estimated the Maximum Load (ML) reached when there are more than 2% errors. Figure 3.9b
plots experimental measured ML, and plots the Stand Alone value (for n = 1, ML(1) = 200)
as well as the linear approximation for the experimental value with n ≥ 2: MLPastry(n) =
114.7n − 96.9. In a Stand Alone mode, the whole FreePastry network is supported by the same
hardware, and no routing operations are required. Although in our theoretical model, we neglect
here the routing table lookup, because we have reliable nodes. Our routing discovery protocol is
much lighter than the one originally designed in Pastry, and all CPU estimations have been modeled
by measuring a C implementation of a performance driven server: UNBOUND. In FreePastry and
the DNS module we add results from academic development of a Java software, and routing table
is definitely not negligible. As such, the Stand Alone mode does not provide a good estimation
for the experimental IPXOR measurement. In order to provide a experimental measurement for
IPXOR, we need to estimate the costs of routing table on a FreePastry node. ML(n) estimates
that routing table lookup cost to ≈ 96.9queries.s−1, which leads to the experimental IPXOR

experimental measurement MLIP (n) = 200n− 96.9 queries.s−1.
Figure 3.9c compares our theoretical and experimental results for MLPastry

MLIP (n). Theoretical
and experimental measurements confirm that the ratio between Pastry and IPXOR remains stable
and independent of n. However, theoretical model expects Pastry to be equivalent to IPXOR,
whereas Experimental measurement shows that Pastry costs around twice as much as IPXOR.
The difference between the two results can be explained by the FreePastry implementation and
the testing conditions: 1) FreePastry is not optimized for performance. Profiling the code with
JRat [JRa] revealed that 64% of the time would be spent on insertion and DHT look up, if we were
using FreePastry in synchronous mode. Using asynchronous mode leverages this bottleneck, but
does not mean the code is now optimal. In addition, 2) Routing operations are much heavier than
those we require in Pastry. When we compare the time necessary to perform a resolution in a Stand
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Alone configuration or in a FreePastry configuration we measure that when the DNS response is in
the cache, it takes 5ms to 65ms (resp. 4ms to 300ms) in a Stand Alone mode (resp. in a DHT
mode). When the responses require a resolution it takes 8ms to 175ms (resp. 59ms to 342ms) in
a Stand Alone (resp. DHT) mode. In both cases time variation reveals that optimization may be
improved in event thread synchronization of the FreePastry implementation. On the other hand,
it also shows that the routing function is clearly not negligible in this implementation. At last, the
lake of FreePastry and hardware performance only makes experimental measurements under quite
small load which makes overhead more visible. In our case, routing overhead consists in a bit less
than half of the performance.

Another way to measure the dependence between the experimental and theoretical values is to
derive the sample correlation coefficient as an estimator of the Pearson correlation. For both IPXOR

and Pastry, we consider the set of experimental measurements for Maximum Load: MLexp, and
the set of computed values for Maximum Load: MLmodel. The various values are those measured
and computed with various values of n the number of nodes. We derive rIPMLexpMLmodel

= 0.9991

and rPastry
MLexpMLmodel

= 0.9827. Correlation coefficients are very close to 1 which shows a perfect
positive linear relationship between the measured values and those computed from our models.

As a result, experimental measurements shows our theoretical model does not present major
bias, and confirms the stable ratio of MLPastry

MLIP (n) in the testing conditions. On the other hand it
also shows that a FreePastry implementation may not fill the requirements of our models, and that
further investigation would need specific developments, especially to simplify the routing code and
algorithms.

3.7 Conclusion

This chapter proposes the PREFETCHX architecture which prefetches X FQDNs (HEADX)
and handles the remaining FQDNs (TAILX) with a Distributed Hash Table (DHT) structure.
Traffic analysis sets X = 2000 to uniformly distribute the CPU on the nodes, whatever the Server
implementation, the protocol DNS or DNSSEC is used. Prefetching HEADX reduces the number
of nodes by 2, and DHT reduces nodes for TAILX between 55% and 80%, making PREFETCHX

4 times more efficient than the current IPXOR architecture.
PREFETCHX ’s efficiency can be enhanced by increasing X, providing an adapted light

Pastry-like implementation and reducing the Server’s cache. In this chapter, we keep X small
to limit the exchanges between the nodes to fill their cache. Large values for X require protocols
and architectures optimized for cache updates. Similarly, a light Pastry implementation is also
expected to enhance the architecture, especially if the redirection can be integrated into the multi-
core Network Hardware Acceleration Card (NHAC). At last, DHT reduces the cache sizes on the
nodes over IPXOR, but reducing the number of nodes may counter this benefit. One may take
advantage of multi-core, and start multiple independent (virtual) servers and take advantage of
traffic analysis to define FQDNs that should not be cached. All these aspects are left for future
work.
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Introduction of Part 2

Description of the Work

The second part of the thesis is about Interactions between IPsec [KS05] Mobility, Multihoming
and Multiple Interfaces. The first motivation for this part is to improve the End User experience
for a secured communication. This means enhancing the current combination of IPsec and Mobility
Protocols so to ease Mobility and add other Multiple Interfaces functionalities. Scenarios typically
include an End User connected to its company network via a VPN, or protecting communications
with another terminal or a specific service. Most likely, this user will be Mobile, Multihomed, and
using Multiple Interfaces. Our goal is to optimize Security so the End User keeps on combining
Security and ease of use. Then, Offload combines Security, Mobility, Multihoming and Multiple
Interfaces and constituted the second motivation for this part. Mobile data traffic is expected to
be around 50 times greater than it is today, and upgrading the current 3G / 4G infrastructure for
that traffic represents too much investment compared to using Alternate Networks such as WLAN.
WLAN requires Mobility, Multihoming and Multiple Interfaces agility, to improve the End Users
Experience over unreliable WLAN networks. In fact as opposed to 3G / 4G Networks, WLAN are
neither owned nor managed by ISPs and thus are considered as unreliable in term of availability.
Furthermore, for the same reasons, WLAN cannot be trusted as 3G / 4G Networks. Securing
Radio Access is not enough and higher layer Security is required. The most common way to secure
a communication are: to secure the IP layer with IPsec [KS05], to secure the Transport Layer
with TLS [DR08] or DTLS [Phe08], or that security is handled by the application itself. In the
case of Offload, the Security depends on the Network used and the application may not have been
designed with security. In other words, the same application using 3G / 4G RAN does not need to
secure its communication, whereas it does on WLAN. Implementing application Security or TLS /
DTLS needs to modify the application code, whereas IPsec does not. This is the reason this part
of the thesis focuses on IPsec.

Mobility, Multihoming and Multiple Interfaces are quite intuitive for a Node, and can briefly
be defined as follwos: Mobility, means a Node is changing Access Point. Multihoming means that
a Node provides some IP addresses that may be used in case the currently running address is
not reachable anymore. At last, Multiple Interfaces means that a Node can discover some Net-
work Access Point be attached and get a new IP address and use it while still being connected to
the previous IP addresses. Multiple protocols have been designed for that purpose, among these
SCTP [OY02], SHIM6 [NB09], MPTCP [FRH+11].

IPsec has been designed to protect IP packets. IPsec defines for a given IP packet if it should
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be DISCARDed, BYPASSed or PROTECTed, and in the latest case how the IP packets must be
secured. In that sense, IPsec can be seen as a firewall whose configuration needs to be modified
when IP addresses of the Mobile Node change. IPsec requires to be properly configured so to avoid
blocking connections. This specific configuration is required because (1) IPsec is an independent
layer between the IP and the Transport Layer, (2) IPsec can DISCARD IP packets, and (3) IPsec
Security Rules are based on IP addresses.

MOBIKE [Ero06] is the IPsec Mobility and Multihoming extension. However, it has only been
designed for the VPN with a Node that only has a single interface. In fact, at the time MOBIKE
was designed, Mobile Nodes were labtops rather than Smartphones, and Mobility, Multihoming
requirements were thus much different. More specifically, Mobility was expected to happen only
occasionally, not as a regular base as it is with Smartphones. In addition, Multiple Interfaces was
not considered, nor scenarios that require end-to-end security with a Server rather than with a Se-
curity Gateway. As a result, the second part of the thesis provides IPsec Mobility, Multihoming and
Multiple Interfaces, so that IPsec can be appropriately configured when used with Mobility, Multi-
homing and Multiple Interfaces protocols like SCTP [OY02], SHIM6 [NB09], MPTCP [FRH+11].

It is true, that IPsec needs its own protocol to keep communications secured in a Mobile, Mul-
tihomed and Multiple Interface environment, but does it mean that secure communications could
not have been moved until now? Can’t I really move my VPN? Is IPsec so independent from
transport layer? Why choosing IPsec?

We do not assert ourselves as pioneers in the IPsec Mobility Multihomed and Multiple Inter-
faces Area. At first one should mention MOBIKE that has been designed for one specific use
case: a client VPN connected to a Security Gateway is able to change its IP address, and provide
Alternate IP addresses in case the current running IP address is down. Actually the VPN case
is the most confusing example because, the use of the tunnel mode is using IPsec as a "Trans-
port" protocol, similar to Mobile IP [JPA04]. In the case of the VPN, the VPN client tunnels a
communication to the Security Gateway, and if the End User is changing its IP addresses, only
the outer IP addresses of the Tunnel are modified. Changing the outer IP addresses of the IPsec
Tunnel results in tunneling the ongoing communication to / from one IP address to another IP
address without breaking the communication, thus performing a Mobility. In other words, in that
specific case, IPsec is used both to protect a communication and to carry the data. Of course, if the
communication would not have been tunneled, this would not work. The reasons we are looking
for extending MOBIKE are (1) IPsec is not always a tunnel involving a Security Gateway, (2) we
are interested in protecting communications with end-to-end security (IPsec Transport mode) and
(3) Even for Tunnel mode, we want to provide IPsec Soft Handover so that Mobility be optimized
for Mobile Nodes. These are the goals of our MOBIKE-X protocol that we designed and proposed
to IETF standard.

Independence of the IPsec and transport layer is more obvious when IPsec is used without
tunneling the data, that is to say using the Transport mode. With Transport mode, modifying the
configuration does not result in any Mobility. We are interested in using Transport for End-to-End
connectivity to avoid the Tunnel overhead, especially for Real Time Applications that are sensitive
to large latencies. As a result, we are considering IPsec as an independent layer because we are
not interested in the Tunnel mode only. Then we are also interested in Multiple Interfaces and the
current VPN case only considers a single interface which simplifies the Interface to choose for send-
ing the data and the possible configurations. As a result MOBIKE-X extends MOBIKE features
to the IPsec Transport mode. In addition it also extends MOBIKE to Multiple Interfaces, thus
adding to MOBIKE the possibility of performing Mobility Soft Handover instead of Hard Handover.
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The second part is organized as follows: Chapter 4 presents the various protocols related to
simultaneous support of security, Mobility, Multihoming and Multiple Interfaces. Its goal is to
position and describe the IPsec protocol we designed: MOBIKE-X. More specifically, we start by
defining Mobility Multihoming and Multiple Interfaces, and show how those concepts are handled
by the SCTP Transport Protocol. Then we provide the IPsec Overview and we focus on Mobility
Multihoming and Multiple Interfaces impacts over the IPsec Architecture. A brief description
follows with the already existing IPsec protocol that could currently be used to handle Mobility
Multihoming and Multiple Interfaces: IKEv2 and MOBIKE. Finally chapter 4 provides the use
cases, the problem statement and a brief description of MOBIKE-X.

Chapter 5 is focusing on the performance measurements. This chapters describes the testing
platform used, the different tests performed. This chapter aims at measuring the Mobility and
Multihoming performances of MOBIKE-X versus MOBIKE, as well as the costs of IPsec security
overhead. Costs are measured according to Time, and the major criteria we use are: TSTALLED

the time the connection is stalled and TSY S the time it takes to the system to notice modification
occurs on the Interfaces. To measure the cost of IPsec over a Mobility or Multihoming operation, we
performed Mobility and Multihoming using SCTP with non IPsec-protected connections and with
IPsec protected connections. Considering the Transport and the Tunnel IPsec modes, Transport
reduces both the data to encrypt and the Network Complexity. In fact, encryption has a cost,
but one should not underestimate the interruptions that occur in the Kernel as mentioned in
section 6.3.4.

In fact when we compare SCTP Mobility over two IPsec connections mobility is 2.5 times more
stable and 15% faster. This is mostly explained by the complexity introduced with the Tunnel
mode. In fact in the Linux Kernel, the Tunnel mode requires IP packets to go through the IP
stack twice. Note that those measurements did not introduce any IPsec configuration. The different
involved IPsec connections are established before the SCTP Mobility occurs. The remaining mea-
surements are dedicated to IPsec Mobility and we compare MOBIKE Mobility and Multihoming
top MOBIKE-X’s. MOBIKE is used for the traditional VPN, Mobility is performed by modifying
the outer IP address of the Tunnel header. This is transparent to the communication that is tun-
neled, and so the communication does not need to handle mobility nor multihoming. In the tests
we considered a regular TCP connection. On the other hand, with MOBIKE-X and the Transport
mode, the communication that is protected with IPsec needs to handle Mobility and Multihoming
in the same way as IPsec does. Others might say IPsec must handle Mobility and Multihoming
as the transport protocol. Measuring with those two configurations TSTALLED, we found out that
MOBIKE-X is between 9.3% and 15.6% faster than MOBIKE. This is probably due to the use
of the Transport mode which requires fewer interactions with the routing indirections of the Kernel.

Chapter 6 analyses the Offload use cases. Current mobile data are carried through 3G / 4G also
called Radio Access Network (RAN). Because the demand for mobile data is likely to be 50 times
larger than it is today, and upgrading the RAN Infrastructure represent high costs for a flat rate
subscription, ISPs are investigating on how using alternative Networks like WLAN. WLAN Access
Points are very cheap, and most European ISPs can also take advantage of a WLAN Access provided
by their DSL End Users. In fact, in Europe, ISPs provide their End User a DSL box with a set of
services. WLAN Access can thus easily be deployed in major European cities. Furthermore, most
of those ISPs have already deployed WLAN communities and DSL subscribers are provided with
credentials to benefit from WLAN Access Point of other DSL subscribers. However, in this specific
case, ISPs are providing a best effort service. In the case of offload, the ISPs are using WLAN but
are expected to provide the same End User experience as on a RAN, with equivalent Services as
those on the RAN. More specifically, the ISP is expected to provide the same confidentiality of the
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communication for an offloaded communication as it would be the case on the RAN. Then, in term
of End User experience, the ISP must provide equivalent connectivity with an unreliable WLAN
Network. WLAN Network is claimed as unreliable since it may not be managed by the ISP.

In chapter 6, we provide different architectures for offloading traffic. The offload architecture
should be chosen according to the ISPs’ needs. One way consists of using a specific architecture
dedicated to a service: Offload Service Architecture (OSA). Since this architecture is dedicated to a
given service, the communication can use end-to-end security, and can take advantage of the IPsec
Transport mode. A service may not have a dedicated offload architecture. One reason may be that
the service does not take advantages of the enhancements provided by the use of Transport or end-
to-end connectivity. Another reason may be that deploying multiple dedicated offload architectures
for all services may cost too much, and ISPs want to mutualize an Offload Architecture for multiple
services with the Offload Access Architecture (OAA). Unlike the OSA, OAA tunnels the End User
traffic to a Trusted Entry Point in the ISP CORE Network. This Trusted Entry Point is a Security
Gateway (SG), and communications are using the IPsec Tunnel mode. OAA secures an Access,
and compared to OSA may add latencies because of routing indirections as well as encapsulation
decapsulation operations performed by the SG. Then tunneling packets may also add network
latencies.

The chapter compares OSA and OAA and provides a functional as well as a performance
comparison. The performance comparison is mainly based on experimental measurements provided
in chapter 5. Of course, traffic that does not require security must neither be protected by OSA
nor by OAA. Comparing OSA and OAA does not mean one Architecture has to be chosen and the
other rejected. In fact OSA and OAA address different cases and should be chosen, according to
the Network and Service requirements.

This chapter also explains how to deploy OSA and OAA with limited costs deployment. In fact
OSA and OAA use MOBIKE(-X) for Mobility, Multihoming and Multiple Interfaces facilities. On
the other hand, we cannot rely on MOBIKE(-X) for moving a non IPsec protected communication
on the regular 3G / 4G RAN to the OSA or OAA. The two challenges to overcome are: (1) how to
move from RAN to OSA or OAA and (2) how to optimize IPsec negotiation so the communication
is not blocked during the negotiation. We detail two solutions: one which uses SCTP combined
with IPsec MOBIKE(X) and another one that only uses MOBIKE-X. Once the two deployment
solutions are compared, we provide guidelines and recommendations for ISPs to offload their End
User mobile traffic. First ISPs should split / identify the traffic that does not need protection and
the traffic that requires protection. Then OSA should be dedicated to services with Real Time
constraints. To ease OSA deployment, ISPs may start by deploying OSA with the Tunnel mode
which makes MOBIKE(-X) deal with Mobility on the WLAN. To move from RAN to WLAN,
MOBIKE may also be used at first. This would correspond to a first deployment version of the
ISP Offload Infrastructure. For version 2, we recommend ISPs decide to port application to SCTP
or to configure properly the session resumption mechanisms so that OSA can migrate from Tunnel
to Transport mode and does not rely on MOBIKE for Mobility between RAN and WLAN. For
version 3, we recommend to optimize MOBIKE(-X) so to perform Soft Handover. For version 4,
we recommend ISP to focus on the RAN to WLAN optimization with MOBIKE-X for applications
that are not ported to SCTP.

Notations & Abbreviations

In this part, we are using the following notations and abbreviations:

- AH: Authenticated Header

- CN: designates the Correspondent Node the MN is talking to.

- Communication: designates data exchange between the MN and the CN. Communication
does not specify how the data are exchanged, that is to say how many IP addresses are
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involved, if there are different flows...

- Connection: designates data exchanged through a TCP, SCTP MPTCP socket.

- DF: Don’t Fragment

- DSCP: Differenciated Services Code Point

- E2E: End-to-End Security

- ESP: Encapsulating Security Payload

- EU: End User

- FWDA: Forwarding Architecture

- ISP: Internet Service Provider

- Interface: designates a hardware network Interface. In this thesis we consider that a MN
can have multiple Interfaces, and each Interface is assigned a single IP address. We do not
consider the subtleties of virtual Interfaces, mainly for clarification reason. As a result IP
addresses and Interfaces can be exchanged

- MM: Mobility Multihoming & Multiple Interfaces

- MN: designates a Mobile Multihomed and Multiple Interface Node.

- MNO: Mobile Network Operator

- MTU: Maximum Transmission Unit

- OAA: Offload Access Architecture

- OSA: Offload Service Architecture

- PAD: Peer Authorization Database

- PFP: Populated From Packet

- RAN: Radio Access Network

- RTA: Real Time Applications

- SA: Security Association

- SAD: Security Association Database

- SG: designates a Security Gateway. The MN can be connected to the CN directly, or via an
SG.

- SP: Security Policies

- SPD: Security Policy Database

- SPI: Security Policy Index

- VPN: Virtual Private Network

- WLAN: Wireless LAN
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Chapter 4

Issues and Protocols
Relative to Simultaneous Support of
Security, Mobility, Multihoming and

Multiple Interfaces

4.1 Introduction

This chapter presents an overview of IPsec and how Mobility Multihoming and Multiple Interfaces
impacts IPsec configuration. Then, we present MOBIKE the currently defined protocol that deals
with IPsec Mobility and Multihoming. MOBIKE presents restrictions leveraged by MOBIKE-X
the protocol we designed, implemented, tested and proposed to IETF for standardization.

This chapter is organized as follows: Section 4.1.1 starts by defining the concepts this chapter is
dealing with: Mobility, Multihoming and Multiple Interfaces. This section identifies their meaning
regarding a transport layer like SCTP and then regarding IPsec, and briefly describes SCTP which
is the transport protocol used to evaluate MOBIKE-X. The remaining sections are then exclusively
focused on IPsec protocols.

Section 4.2 describes the IPsec Architecture, that is IPsec principles, the different IPsec com-
ponents and protocols. Section 4.3 focuses on the IPsec databases and section 4.4 shows how
Mobility, Multihoming and Multiple Interfaces impact these IPsec Databases. Once the impacts
on IPsec databases have been clarified, this chapter presents the various IPsec protocols that
have been designed for setting up IPsec configuration between two Nodes. Section 4.5 presents
IKEv2 [KHNE10] the protocol designed for negotiating IPsec parameters. This section especially
describes how IKEv2 is able to create a new Security Association and how IKEv2 can delete a
Security Association. This could be useful for example if a Node wants to add a new Interface
or remove an Interface that is not longer reachable. Then Section 4.6 presents MOBIKE [Ero06],
the protocol designed for Mobility and Multihoming. This protocol has been designed only for the
VPN scenario and thus partly addresses our requirements. Finally, section 4.7 presents MOBIKE-
X. From the use cases, it shows that neither IKEv2 nor MOBIKE addresses them. Then it provides
guide lines on how MOBIKE-X is designed, based on the already existing MOBIKE and it gives a
brief description of the MOBIKE-X exchanges. The goal of this chapter is to design MOBIKE-
X, the MOBIKE Extension for Mobility Multihoming and Multiple Interfaces. The content of this
chapter provided input on book chapters for [JMDJ+07, JMDJ+09], Contributions to a Research
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Project supported by the French National Agency for Research [DMM+09], paper submitted to a
conference [MPL] and Internet drafts [Dan09b, Dan09a, DC12].

4.1.1 Mobility, Multihoming and Multiple Interfaces Definition

This thesis focuses on interactions between IPsec [KS05] and Mobility, Multihoming and Multiple
Interfaces. This chapter defines Mobility, Multihoming and Multiple Interfaces. Each definition
especially focuses on their meaning toward IPsec.

Mobility consists in changing an IP address for a given communication. It can be done through
Hard Handover or Soft Handover. (1) Hard Handover consists in updating the current IP address
of the Mobile Node with the newly acquired IP address. Hard Handover Mobility is performed
by Mobile Nodes with a single interface and always results in interrupting the connection —at
least the time it takes to modify the IP address. More specifically, if the Mobile Node has a single
interface, it will be disconnected during the change of IP address. Note that most of the protocols
—like TCP or SCTP —are not resilient to an IP address update, and this will break the transport
layer. (2) Soft Handover consists in changing the IP address by avoiding this interruption. The
Mobile Node needs two Interfaces, and while the old IP address remains active on one interface,
the other becomes active. When the new IP address gets all the traffic, then the Mobile Node
removes the old IP address. As a result, Soft Handover keeps the Mobile Node connected, and at
least reduces the impact of Mobility compared to Hard Handover.

Multihoming prevents failover of an ongoing communication. We call Primary Interface, the
used interface of the Mobile Node, and Alternate Interfaces, the interfaces that should be used
in case the Primary Interface is not reachable any more. Multihoming differs from Mobility Hard
Handover because Mobile Node provides the Correspondent Node a list of Alternate IP addresses
which makes the Correspondent Node (CN) able to handle the Mobility. When the Mobile Node
is no longer reachable, the Correspondent Node may attempt to reach it through the Alternate In-
terfaces. Note that Multihoming includes a detection delay, and connection managers are expected
to perform Mobility before the Primary Interface is down.

A Node has Multiple Interfaces if it can be attached to Multiple Access Points. It does not
necessarily refer to a Mobile Node, but in this thesis, we consider it as a Mobile Node, which makes
dynamic configuration properties more obvious. Suppose the Mobile Node has a given communi-
cation with a Correspondent Node, the Mobile Node is expected to be able to add the Interface for
the given communication. For a communication adding an Interface can be understood as load bal-
ancing the traffic between the two interfaces. Load balancing can be done by splitting connections
between the two Interfaces, or by splitting a single connection between the two Interfaces. Note
that in the first case each connection can be Multihomed and use the other IP address as an alter-
nate IP. Similarly, a Mobile Node with Multiples Interface must also be able to remove an Interface.

4.1.2 SCTP for Mobility Support

SCTP [Ste07] is a transport protocol designed at the IETF. This protocol has been primarily
designed to provide reliable transfer and multi-stream communications to avoid the head-of-line
blocking. In our case, we use SCTP [Ste07] because 1) it provides Mobility and Multihoming
features for the Mobile Node without requiring the ISP to deploy any infrastructure. Furthermore
2) SCTP is the more mature Mobility and Multihoming protocol with Kernel and User Land im-
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plementations, which ease the deployment of SCTP either within the terminal’s Operating System
or integrated in the applications.

With Multihoming, SCTP can initiate a communication with multiple IP addresses - one Pri-
mary and one or multiple Alternate. In case the Primary IP address is not reachable, the com-
munication switches to the Alternate. SCTP Mobility features are based on Multihoming and
Dynamic Address Reconfiguration [SXT+07] and makes Soft Handover possible, as shown in fig-
ure 4.1. [SXT+07] makes possible the ADDition of a new IP address as an Alternate IP address
—step 2 in figure 4.1 —, as well as the change of the IP address status —step 3 in figure 4.1. Hence,
Soft Handover [RT07] consists in changing an Alternate IP address that is expected to receive the
traffic in a Primary as illustrated in figure 4.1. The MN has established a SCTP association with
the CN. The MN is using IP 1

MN and IP 2
MN and the CN is using IPCN . In step 1, the MN acquires

a new IP address IP ∗
MN and adds this IP address to the SCTP association. IP ∗

MN is considered
as an Alternate IP address. In step 2, the MN agrees with the CN to use IP ∗

MN as the Primary
IP address, and that IP 1

MN is used as an Alternate IP address. In step 3, the MN is no longer
reachable on IP 1

MN and removes this IP address from the SCTP association. Note that SCTP
cannot perform Hard Handover, and Mobility with SCTP requires at least two Interfaces.

With SCTP Kernel based LKSCTP [LKS] and user land (sctplib [sct] ) implementations, ISPs
can provide terminal with SCTP enable kernels, and for terminals that are non SCTP enable
—either old terminal, or terminal provided by other ISPs —ISPs can provide applications that
are SCTP enable. Note that porting TCP applications to SCTP is quite easy with tools such as
withsctp from lksctp-tools.

Although SCTP does not present major deployment issues, there are still few complications
to overcome. First ISP must maintain different TCP and SCTP application versions, then some
applications like FTP interact closely with IP address, and so cannot easily rely on the SCTP
Mobility and Multihoming facilities. At last NAT, firewalls proxies have not yet been configured
for SCTP.

I n i t i a t o r (MN) Responder (CN)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<<< MN using IP 1
MN , IP 2

MN
CN using IPCN >>>

1) MN Acquires IP ∗

MN
ASCONF (ADD IP ∗

MN ) −−>
<−− ASCONF−ACK

<<< MN Multihomed us ing IP 1
MN

IP 2
MN , IP ∗

MN >>>

2) MN Sets IP ∗

MN as Primary
ASCONF (SET_PRIMARY IP ∗

MN ) −−>
<−− ASCONF−ACK

<<< MN Multihomed us ing IP ∗

MN

MN(IP 1
MN , IP 2

MN , IP ∗

MN >>>

3) MN Removes IP 1
MN

ASCONF (DELETE IP 1
MN ) −−>

<−− ASCONF−ACK

<<< MN Multihomed us ing IP ∗

MN , IP 2
MN

CN using IPCN >>>

Figure 4.1: Messages Exchanges for SCTP Soft Handover
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4.2 IPsec Overview

As presented in figure 4.2 IPsec makes possible communication between two Trusted Environ-
ment through an Untrusted Network. IPsec [KS05] secures communications at the IP layer, by
encrypting or authenticating each IP packet. IPsec is standardized by the IETF and includes an
architecture description [KS05], as well as a suite of protocols IPsec is a suite of protocols that
includes Encapsulating Security Payload (ESP) protocol [Ken05b] mostly used for encryption,
Authenticated Header (AH) protocol [Ken05a] mostly used for authentication, and Internet Key
Exchange (IKEv2) protocol [KHNE10] used by both peers to agree on the cryptographic material.

Security Policies define how IPsec handles the traffic and are stored in the Security Policy
Database (SPD). SPD defines if a packet must be DISCARDed, BYPASSed or PROTECTed. As
presented in figure 4.2, for each outgoing packet, IPsec checks the SP in the SPD and determines
whether the IP packet must be dropped, sent, without protection or protected. When the packet
needs to be protected, cryptographic material is stored in Security Association (SA) in the Security
Association Database (SAD). If the SA has not been established yet, then an IKEv2 negotiation
is initiated to set the SA —IKEv2 is triggered with the first packet. For inbound IPsec protected
packet, the packet is decrypted using cryptographic material of the SAD, before checking the de-
crypted packet has been protected according to the proper SP. In case no SA is found or there is
no SP matching, the packet is discarded. Other non IPsec inbound packets are BYPASSed or DIS-
CARDed according to the SPD. The PAD is essentially used by IKEv2 during the authentication.

IPsec databases lookup is complex because (1) lookup depends on the traffic and (2) SPD
and SAD are not central databases, but rather optimized for handling the traffic. Firstly, IPsec
databases lookup is processed differently with inbound and outbound traffic, then lookup is per-
formed differently for protected and non protected inbound traffic. Secondly, SAD and SPD are
not central databases. First SAD and SPD are two distinct databases, but there are highly depen-
dent from each other. As detailed in section 4.3.1, SPD can be cached and decorrelated. When
we specify cache SPD, we mean a SPD that is stored in the kernel and that can be expressed with
packet level information. This is opposed to a SPD where SPs are expressed at a higher level.
More specifically, a SPD can have SP such as "packet exchanged with users of company.com",
whereas the SPD cache only has SP for (IPsource, IPdestination, Portsource, Portdestination). A
decorrelated SPD is a SPD split for IPsec Secured traffic (SPD-S), Inbound non-protected traffic
(SPD-I) and Outbound non-protected traffic (SPD-O). On the other hand, SAD is only cached in
the Kernel, and indexed with SPI or eventually IP addresses that can be read from the inbound
secured packets.

Note that this thesis only considers the case where IP packets are protected with ESP or AH,
but not a combination of those protocols. Combination of the two protocols makes the IPsec packet
go twice through the IPsec process. This is what [KS05] refers as "nested SA" in section 5.1. This
only reason is that combination would make explanations more complex.

Section 4.3 provides a more in depth description of the various database, to point out Mobility,
Multihoming and Multiple Interface related issues.
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Figure 4.2: Diagram of IPsec Principles

4.3 IPsec Databases

As presented in figure 4.2, IPsec deals with traffic thanks to three different Databases: Security
Policy Database (SPD), Security Association Database (SAD) and the Peer Authorization Database
(PAD). This section provides a more detailed description of those Databases, so that we can ex-
pose clearly in section 4.4, how Mobility, Multihoming and Multiple Interfaces impact the IPsec
configuration.

The three IPsec Databases are:

• Security Policy Database (SPD): contains a high level description of the Security Policies
(SP).

• Security Association Database (SAD): contains the Security Association (SA) that hosts the
cryptographic material, and the necessary information to encrypt and decrypt IPsec protected
IP packets.

• Peer Authorization Database (PAD): contains information on who can communicate with
the IPsec layer and how IKEv2 must proceed to the authentication. The PAD should be
seen as a meta database that provides inputs for IKEv2 to configure the Security Policies.

4.3.1 Security Policy Database

The SPD contains a high level description of the Security Policies to apply. We call this high level,
because the description is intended to be generic and more or less human readable. We oppose, in
this section, the high level SPD and the SPD cache where SP are indexed only with information
read from the packet.

The SPD Cache is derived from the SPD, stored in the Kernel whereas the SPD may be stored
at the application layer. More specifically, a given IP packet with IP addresses and Ports IPsrc,
IPdst, Psrc, Pdst will have an exact match in the SPD Cache with eventually some wildcards
(ANY/OPAQUE) to specify that some values must not be looked at or that any value matches.
This is not the case with SP expressed in the SPD (not the SPD cache). A Security Policy in
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the SPD may be "Initiator authenticated from company.com" or "Packet with a this protocol" or
"Packet issued from a subnetwork". In the first case, establishing the SPD Cache entry requires
interactions with IKEv2. IKEv2 proceeds to the authentication and configures the SPD cache
before deriving the SP in the SPD Cache. Deriving such SP could not have been done by reading
information from the packet. In addition, the two other cases exhibit that the SPD must also
specify how the SP of the SPD Cache must be generated. If SPD generates a single SP associated
to a unique SA, then, all IP addresses would share the same cryptographic keys, meaning every one
shares the same "secured" channel. This is not what we are expecting! What we are expecting is
that each IP address is being assigned its own secured channel, that is to say its own cryptographic
keys. This section details how to generate such SPD Cache entries. The SPD Cache indexes its
SP thanks to Traffic Selectors that can be the Source / Destination IP Address, the Next Layer
Protocol, Source / Destination Port or, —when no port is available —the ICMP type / code or
Mobility Header.

For outbound traffic, SPD cache lookup is much faster than SPD lookup, so SPD lookup is
generally performed when a SPD Cache miss occurs. Unless specified, and as represented in fig-
ure 4.2, SPD lookup means SPD Cache lookup followed by high level SPD lookup. This is also
a reason the systems may create an SPD Cache entry with a DISCARD action. A packet that is
not explicitly BYPASSed or PROTECTed should be DISCARDed as a default rule. However, to
define the default rule, we need to perform a SPD lookup. Note that for inbound traffic the SAD
is used instead of the SPD Cache (cf. section 4.3.2). The remaining of this section specifies how
SPD Cache is generated.

A SPD entry associates Traffic Selectors to a processing action. This traffic is not protected,
and the SPD defines:

- 1. if it must be protected or not,

- 2. if protection is required, then how it must be protected and

- 3. how to derive the SPD Cache Entry and the Security Association (SA).

Note that to understand in an easier way how the SPD works, it is recommended to consider in
the first time, the outbound traffic.

- 1. Needs to be secured? To define if the IP packet must be protected or not, the SP uses
PROTECT, BYPASS or DISCARD to designate the processing action.

- 2. How to secure? To define how the packet must be protected, the SP associates to a
PROTECT processing action, information like IPsec mode (Transport or Tunnel), security
protocol(s) (AH and/or ESP), encryption algorithms. If the Tunnel mode is used the outer
IP addresses of the Tunnel are also specified. [KS05] section 4.4.1.3. provides an explicit list
of the SP associated information.

- 3. How to derive the SA? The SPD Cache and associated SAs are derived from the high level
SPD thanks to the Populated From Packet (PFP) Flag. This flag indicates how the Security
Policy must be indexed in the SPD Cache, that is to say whether the SP must be indexed
considering the Traffic Selector value provided by the packet or not. Table 4.1 illustrates the
case of a security Gateway that applies the same SP to all the users of a given company,
but still wants that each member has its own Secure Tunnel, that is to say their own SPD
Cache Entry and their own SA. For that purpose, the SPD indicates that any packet must
be protected by setting the ANY value to all Traffic Selectors of the SPD entry. To mention
that the SP in the SPD Cache is only associated to the source IP address of the packet, and
that any different source IP address must have its own SP, the SPD sets the PFP of the
source IP traffic Selector. Any new inner source IP address should lead to a new SPD Cache
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/ SAD entry. The SP is indexed with IPsrc, the source IP address of the packet and ANY
for the remaining index components (destination IP address, source port and destination
port). As result, any packet sent by the member of the company has IPsrc as the source IP
address, IPdst for the destination IP address, Psrc and Pdst for the source and destination
port. (IPsrc, IPdst, Psrc, Pdst) matches the index (IPsrc, ANY, ANY, ANY) of the SP, and
the packet can be encrypted. Similarly, for inbound traffic the Selectors are (IPsrc, ANY,
ANY, ANY) provided in the SA, which makes possible the SPD check. Remember that SAs
are unidirectional and negotiated by pair.

Note that as mentioned earlier, high level SPD can be expressed according to various Traffic
Selectors, with different granularity, different level of abstraction. This may result in multiple
matches for a given packet. To avoid controversial interpretation, the SPD is an ordered database,
and the first is considered. As detailed later in section 4.4, this may provide a restriction for
Multiple Interfaces Node, that may not perform load balancing between two Interface for a given
connection.

Note that applying [KS05] on Linux, the SPD is mostly managed at the application layer by
IKEv2 for example. IKEv2 defines what are the Traffic Selectors and Security Associations and
then pushes them in the Kernel. In that sense, the Linux Kernel only hosts an SPD Cache.

Packet Traffic Selectors SPD Entry PFP Value in Triggering Packet SPD Cache index /
SAD Selectors

Name FQDN 0 - -
IPdst ANY 0 Destination IP address ANY

IPsrc ANY 1 Source IP address IPsrc IPsrc

Pdst ANY 0 Destination Port ANY

Psrc ANY 0 Source Port ANY

Table 4.1: Deriving SPD Cache Traffic Selectors from Packet Traffic Selector

4.3.2 Security Association Database

Security Associations (SA) contain information relative to:

- 1. Cryptographic material and processing information: that is to say the different keys
and protocols for authentication and encryption, and when the Tunnel mode is used, the
outer IP addresses. First the SA specifies which IPsec mode is used (Transport/ Tunnel). In
case the Tunnel mode is used, the outer IP addresses of the Tunnel are provided. The SA
also specifies if AH is used, and if so, which authentication protocol, as well as its associated
keys. Similarly the SA specifies if ESP is used as well as protocols and associated keys for
authentication and encryption. If AH and ESP are used simultaneously in a combined mode,
the SA specifies authentication and encryption keys and protocol. Finally, the SA also con-
tains the life Time of the SA.

- 2. IPsec signaling: includes SPI, Sequence Number Counter used in the AH or ESP header,
Sequence Counter overflow indicates if roll over is permitted, the Anti Replay Window which
prevents from replay attacks.

- 3. Additional checking information: includes Stateful fragment checking flag, bypass Don’t
Fragment (DF) bit, Differentiated Services Code Point (DSCP) values and path Maximum
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Transmission Unit (MTU).

- 4. Traffic Selectors used in the SPD Cache: The SAD also contains the Traffic Selec-
tors used by the SPD Cache. It serves for inbound packets, as represented in figure 4.2.
SAD lookup is performed according to the SPI and optionally the IP addresses. The IPsec
protected packet is decrypted, according to the information provided by the SA. Then, the
Traffic Selectors are used for checking that the decrypted packet has been encrypted accord-
ing to the appropriate Security Policies.

SAs are indexed with IP Addresses and the Security Parameter Index (SPI). The SAD lookup
is performed first by looking for a match of IP source Address, IP destination Address and SPI,
if no match occurs, then a lookup is performed with IP destination Address and SPI, and then at
last with the SPI only.

4.3.3 Peer Authorization Database

The Peer Authorization Data base (PAD) is a link between IKEv2 and the SPD. IKEv2 au-
thenticates the peer according to an Identifier —a raw Key, a FQDN, email address —and an
authentication method. Then once authenticated, the identifier may be used in the SPD.

4.4 Mobility Multihoming and Multiple Interfaces impacts
on IPsec

Section 4.2 and section 4.3 show that IPsec processing is highly dependent on the IP addresses,
first to index the SP, then to check the SAD. Mobility, Multihoming and Multiple Interfaces result
in modifications of IP addresses associated to a communication. If a Mobile Node wants to take
advantage of Mobility, Multihoming and Multiple Interfaces facilities with an IPsec secured com-
munication, then IPsec databases must be appropriately configured. The goal of this section is to
show how SAD and SPD are impacted by such operations.

In this section, we consider, as represented in figure 4.3, that a Mobile Node (MN) has estab-
lished an IPsec protected communication with a Correspondent Node (CN). The communication
can be protected by tunneling the communication to a Security Gateway (SG) with an IPsec pro-
tected tunnel. It can also be protected with End-to-End Security between the MN and the CN. In
that case, IPsec Transport or Tunnel can be used but we will consider Transport mode for End-
to-End Security and Tunnel mode with the SG. The MN and CN are using respectively (IPMN ,
PMN ) (resp. (IPCN , PCN )) as IP addresses and Ports. The new Interface used by the MN is
noted IP ∗

MN . When the Security Gateway is involved, the IP address of the Security Gateway
is noted IPSG, IPMN is used as the inner IP address and IP o

MN the outer IP address. We note
ENCR = ENCR_3DES (resp. AUTH = AUTH_HMAC_SHA1_96) the encryption (resp.
authentication) algorithms used to secure the IPsec packet.

4.4.1 Initial Configuration at the MN

Figure 4.3 presents the initial network configuration and table 4.2 the corresponding SAD and SPD
configurations. The SPI is highlighted because it is used by the SP as a pointer to the proper SA.
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(Note that the implementation uses other types of links like pointers).
Figure 4.3a, illustrates the case where the communication between the MN and the CN is

protected with End-to-End (E2E) security, that is from the MN to the CN. In that case the com-
munication is protected with the IPsec Transport mode. The communication to be protected is
the one between IPMN and IPCN which defines the SPD Selectors. The encrypted packet is sent
on the network using IPMN and IPCN as well so, they are also used to index the SA. Table 4.2a
provides the corresponding SA and SP.

Figure 4.3b illustrates the case where the MN tunnel its traffic with the CN to a SG. For packets
coming from the MN, the SG decapsulates and forwards them to the CN. Packet coming to the MN
are encapsulated by the SG before being forwarded to the MN. In that case, the communication
is protected from the MN to the SG. Similarly to figure 4.3a, the communication to protect is
the one between IPMN and IPCN which defines the SPD Selectors. Contrary to figure 4.3a, the
encrypted packet is using IP o

MN and IPSG, that is to say the outer IP addresses of the tunnel.
Hence, the outer IP address of the Tunnel IP o

MN and IPSG are used to index the SA. Table 4.2b
provides the corresponding SA and SP, and makes possible configuration comparison between the
Transport and Tunnel mode.

SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Transport

Psrc : ANY Proto. : ESP

Pdst : ANY Algo. : ENCR,
AUTH

SPI

SAD (Outbound Traffic)

SPI : SPI Crypto. : Ke, Ka

IPsrc : IPMN Counters: Cesp, Cw

IPdst : IPCN SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(a) ESP Transport

SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Tunnel

Pdst : ANY IPTunnel
src : IPMN

Psrc : ANY IPTunnel
dst : IPSG

Proto. : ESP

Algo. : ENCR,
AUTH

SPI

SAD (Outbound Traffic)

SPI : SPI Crypto. : Ke, Ka

IPsrc : IP o
MN Counters: Cesp, Cw

IPdst : IPSG IPTunnel
src : IP o

MN

IPTunnel
dst : IPSG

SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(b) ESP Tunnel

Table 4.2: SPD & SAD MN IPsec Configuration: Initial Configuration
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(b) ESP Tunnel

Figure 4.3: Network Initial Configuration for IPsec

4.4.2 Mobility

With Mobility, as represented in figure 4.4 a new IP address IP ∗ is available, and the MN uses this
new IP address instead of the previous IPMN . This section specifies how IPsec must be configured
so the same IPsec protected communication can use IP ∗

MN instead of IPMN . With the Transport
mode, both SA Selectors and SP Traffic Selectors must be updated (cf table 4.3a). With the Tun-
nel mode, only the outer IP address is modified. Thus SP Traffic Selectors are not modified but
only the SA Selectors as well as the SA and SP Tunnel IP addresses information (cf. table 4.3b)
are. SA / SP modifications during the Hard Handover Mobility are indicated with a light grey
background. This is what occurs with MOBIKE [Ero06] as described in section 4.6.
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(b) ESP Tunnel

Figure 4.4: Description of IPsec Mobility with Transport and Tunnel mode

108



Section 4.4. Mobility Multihoming and Multiple Interfaces impacts on IPsec

SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IP ∗

MN Mode : Transport

Pdst : ANY Proto. : ESP

: Algo. : ENCR,
AUTH

SPI

SAD (Outbound Traffic)

SPI : SPI Crypto. : K

IPdst : IPCN Counters: Cesp, Cw

IPsrc : IP ∗

MN SPD Selectors

IPsrc : IP ∗

MN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(a) ESP Transport

SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Tunnel

Pdst : ANY IPTunnel
src : IP ∗

MN

Psrc : ANY IPTunnel
dst : IPSG

Proto. : ESP

Algo. : ENCR,
AUTH

SPI

SAD (Outbound Traffic)

SPI : SPI Crypto. : Ke, Ka

IPdst : IPSG Counters: Cesp, Cw

IPsrc : IP ∗

MN IPTunnel
src : IPMN

IPTunnel
dst : IPSG

SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(b) ESP Tunnel

Table 4.3: SPD & SAD MN IPsec Configuration: Impact of Mobility
4.4.3 Multihoming

Multihoming works like Mobility for the IPsec Databases. The difference with Mobility, is that
MN sends CN (resp. SG) some Alternate IP addresses in the case of Transport (resp. Tunnel),
where the MN may be reached if the MN is no longer reachable on the current IP address. Thus
before the Mobility occurs, the CN (resp. the SG) may check the MN is reachable on its Alternate
IP addresses. For example, MOBIKE [Ero06] defines a Return Routability Check exchange with
COOKIE2 Notify Payload for that purpose. If the MN is reachable on the Alternate IP address,
then the CN (resp. SG) updates the IPsec Databases. If the MN performs the update, Alternate
IP addresses are not used and a Mobility Hard Handover is performed as described in section 4.4.2.
Note that the Return Routability Check is optional, and some protocols like SCTP triggers the
update by directly using the Alternate IP address.

4.4.4 Multiple Interfaces

Contrary to Mobility and Multihoming, adding an interface cannot be handled by updating exist-
ing SP / SA, but, most of the time requires creating a new SP / SA. Suppose MN is connected
with the Transport mode to CN, using IPMN . When the MN acquires IP ∗

MN , it expects to use
both IPMN and IP ∗

MN . Similarly, if the MN tunnels its traffic to a SG using IP o
MN , when it

acquires IP o
MN∗, it expects to tunnel the communication to CN to the SG using both IP o

MN and
IP o

MN∗. This section details for Transport and Tunnel mode, why a new SA and a new SP need
to be created when the MN adds a new interface.

Suppose the MN uses the Transport mode to secure its communication to the CN. The MN is
expected to send packet using IPMN and IP ∗

MN . One way consists of updating the SP index so
a match occurs. SP indexes do not accept lists of IP addresses, so there is no possibilities to add
IPMN and IP ∗

MN . However, SP has wildcards like ANY or OPAQUE, but ANY is not equivalent
to IPMN and IP ∗

MN . As a result adding an Interface with the Transport mode requires the MN
to add a new SP. For inbound traffic, SA are indexed with the IP addresses and the SPI, SAD
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lookup can be done with the SPI only. However, once the packet has been decrypted, the packet
is checked with the Selectors of the SP. SP Selectors in the SA cannot be provided with lists, and
so adding an interface with the Transport mode requires the MN to add a new SA.

Suppose now the MN uses the Tunnel mode. Communication to the CN is tunneled to the SG,
and the MN wants to reach the SG by tunneling both with IP o

MN and IP o
MN∗. With the Tunnel

mode, the SP index is not modified. However, the SP contains information on which IP address to
use for the Tunnel header. The MN has two different possibilities, and the SP cannot contain a list
of IP addresses. Note that if a list of IP addresses could be used, then we assume the SP would be
associated to the same SA for both IP o

MN and IP o
MN∗, which also means the SA would be able to

handle a list of IP address for the Tunnel header. Although not completely impossible, it is hardly
possible adding a new interface would not require the creation of a new SP. For inbound traffic,
the SA is indexed with the outbound IP addresses, and the SPI. The SPI is sufficient to perform
the SAD lookup, but the SA cannot have a list of IP addresses for the Tunnel header. SP Selectors
in the SA cannot be provided with lists, and so adding an interface with the Tunnel mode requires
the MN to add a new SA.

Note that we do not mean that it is completely infeasible to introduce a list of IP addresses
rather than a single IP address for SPD Selectors and SA parameters. However, we found out that
creating a new SA is the easier way to deal with Multiple Interfaces and all IPsec implementations.
In addition it makes possible to configure properly the SAD indexes and provide matches with IP
addresses and SPI. The important thing to note is that the new SP / SA can be derived from the ex-
isting SP / SA, which avoids creating a SP / SA from scratch, an dmakes this operation even easier.

Figure 4.5 and table 4.4 illustrate the SPD and SAD for both Transport and Tunnel mode.
With the Transport mode, MN uses either IPMN or IP ∗

MN to communicate with the CN. The
newly created SP (resp. SA) has different Traffic Selectors (resp. Selectors).

Figure 4.5 and table 4.4b show with the Tunnel mode how using the same Traffic Selectors
impacts the SPD / SAD. This may generate conflicts. As mentioned in section 4.3.1, the SPD is
an ordered Database, and only one SP will be selected for the given Traffic Selectors —the first
SPD match. As a result outbound traffic only uses the same SP. On the other hand, there are two
SAs with different Selectors, so the MN is able to receive inbound traffic on both Interfaces. This is
very convenient for Soft Handover —especially when transport protocols like TCP or UDP are not
able to deal with multiple IP addresses. The MN appends the SP corresponding to the new Inter-
face IP ∗

MN to the SPD, then re-order the SPD. The new SPD tunnels the traffic through IP ∗
MN ,

but still accepts the remaining traffic on IPMN . However, if the MN wants to simultaneously use
for a given SP Selectors both IPMN and IP ∗

MN , then the SPD must be indexed per Interfaces.
Protocols that require such a decorrelated SPD are protocols that have been designed for Multiple
Interfaces, —SCTP or MPTCP —for example to perform bandwidth aggregation. Such protocols
are likely to handle Soft Handover, and doe not require IPsec to perform it on their behalf. In
fact, decorrelating the SPD per Interface prevents IPsec to perform Soft Handover.
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SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Transport

Pdst : ANY Proto. : ESP

Psrc : ANY Algo. : ENCR,
AUTH

SPI

IPdst : IPCN PROTECT

IPsrc : IP ∗

MN Mode : Transport

Pdst : ANY Proto. : ESP

Psrc : ANY Algo. : ENCR,
AUTH

SPI∗

SAD (Outbound Traffic)

SPI : SPI Crypto. : Ke, Ka

IPdst : IPCN Counters: Cesp, Cw

IPsrc : IPMN SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

SPI : SPI∗ Crypto. : Ke, Ka

IPdst : IPCN Counters: Cesp, Cw

IPsrc : IP ∗

MN SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(a) ESP Transport

SPD (Outbound Traffic)

Selectors Processing info

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Tunnel

Pdst : ANY IPTunnel
src : IPMN

Psrc : ANY IPTunnel
dst : IPSG

Proto. : ESP

Algo. : ENCR,
AUTH

SPI

IPdst : IPCN PROTECT

IPsrc : IPMN Mode : Tunnel

Pdst : ANY IPTunnel
src : IP ∗

MN

Psrc : ANY IPTunnel
dst : IPSG

Proto. : ESP

Algo. : ENCR,
AUTH

SPI∗

SAD (Outbound Traffic)

SPI : SPI Crypto. : Ke, Ka

IPdst : IPSG Counters: Cesp, Cw

IPsrc : IPMN IPTunnel
src : IPMN

IPTunnel
dst : IPSG

SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

SPI : SPI∗ Crypto. : Ke, Ka

IPdst : IPSG Counters: Cesp, Cw

IPsrc : IP ∗

MN IPTunnel
src : IP ∗

MN

IPTunnel
dst : IPSG

SPD Selectors

IPsrc : IPMN

IPdst : IPCN

Psrc : ANY

Pdst : ANY

(b) ESP Tunnel

Table 4.4: SPD & SAD MN IPsec Configuration: Impact of Multiple Interfaces
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(b) ESP Tunnel

Figure 4.5: Description of IPsec Multiple Interfaces with Transport and Tunnel
mode

4.5 IKEv2

IKEv2 [KHNE10] is used to negotiate SA between the MN and the CN (resp. between the MN
and the SG). It has been standardized by the IETF. When the MN and the CN (resp. SG) are
negotiating an SA, they first establish an IKEv2 authenticated and secure channel. This channel
is protected by an SA called IKE_SA and is used to exchange IPsec signaling. Presentation will
be limited to the signaling of the creation in section 4.5.1 and deletion in section 4.5.2 of a SP / SA.

4.5.1 CREATE_CHILD_SA Operation

The CREATE_CHILD_SA exchange is used to: (1) rekey a SA, (2) Rekey an IKE_SA, and (3)
Create a new SA. When Traffic Selectors are provided, the Responder knows it is for a CHILD_SA,
and absence of the Notify Payload REKEY_SA indicates the exchange is for a creation. Fig-
ure 4.6, illustrates how Initiators and Responders can create a child SA. More details can be found
in [KHNE10] Section 1.3 and Annex C.4.

Figure 4.6 presents the exchanges for creating a new SA. Many payloads may be involved in
order to deal with all possible configurations, but 4 payloads are mandatory whereas the remaining
payloads mentioned in "[ ]" are optional. As a result, there are three categories of Payloads involved
in the CREATE_CHILD_SA:

- 1. SA Configuration Payloads: When a SA is created, Initiators and Responders agree on:
(1) Which Traffic to protect?. This is done with Traffic Selectors Payloads (TSi, TSr). Then,
(2) How to protect the selected traffic?, that is to say agreeing on which protocol to use.
This is done with the Security Association Payloads (SA). Finally, (3) Which cryptographic
material are we using?. The cryptographic is generally generated from the existing estab-
lished IKE_SA in combination with Nonces. This is done with the Nonce Payload (Ni, Nr).
Eventually Initiators and Responder can agree on another shared secret and proceed to the
Diffie-Hellman exchange with the Key Exchange Payloads (KE).

- TSi, TSr are the Traffic Selectors Payload described in [KHNE10] section 2.9. Traffic
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Selector (TS) Payload consists in a list of Traffic Selectors which are an address range
(IPv4 or IPv6), a port range, and an IP protocol ID. TSi consists in the Traffic Selector
associated to the Source (or the Initiator), TSr those associated to the Destination (or
Responder). SA Payload contains a list of SA proposals. Each proposal has a Number,
a SPI, a protocol —IKE, ESP, AH —. Then follows a list of transforms: Encryption
Algorithm (ENCR), Pseudorandom Function (PRF), Integrity Algorithm (INTEG),
Diffie-Hellman group (D-H), Extended Sequence Numbers (ESN). A proposal can have
multiple values for the same type of transform —typically; a proposal can include mul-
tiple ENCR algorithms. Each Transform can be associated attributes —like the Key
Length. Note there is a single Key Length per transform.

- Ni, Nr are the Nonce Payload and are used to generate the cryptographic material.
New key material is generated with SK_d established during the IKE_SA exchange,
the Nonces (Ni and Nr) and the Diffie-Hellman value if negotiated.

- KEi and KEr are the Key Exchange Payload and are used for the Diffie Hellman ex-
change.

- 2. SA fine-grained Configuration Payloads:

- N(USE_TRANSPORT_MODE) indicates the negotiated SA uses the Transport mode.
If not specified, the Tunnel mode is considered. It must also be included in the Re-
sponse.

- N(IPCOMP_SUPPORTED) indicates the compression algorithms supported by the
Initiator. The Responder must select at most one.

- N(ESP_TFC_PADDING_NOT_SUPPORTED) Notify Payload asserts that packets
containing Traffic Flow Confidentiality (TFC) padding over the Child SA being nego-
tiated will not be accepted.

- N(NON_FIRST_FRAGMENTS_ALSO) Notify Payload indicates how fragmentation
is managed.

- V Notify Payload is a Vendor ID Notify Payload.

- 3. Road Warrior Configuration Payloads: The Configuration Payload (CP(CFG_REQUEST))
is only used with a SG when the MN wants the SG to provide the inner IP address in a
CP(CFG_REPLY) Configuration Payload.

- CP(CFG_REQUEST)

- CP(CFG_REPLY)

The SA Payload sent by the Initiator contains various proposals, with different transforms and
attributes. The proposals are ordered, and the Responder is expected to select different attributes
within a proposal.

Note that SA are unidirectional, thus the SA exchange message results in creating two distinct
SAs on the Initiator and on the Responder. The SPI field corresponds to the one of the sending
entity for its inbound traffic. Once the SA exchange is finished, the Initiator (resp. the Respon-
der) has two SAs: one for inbound traffic whose SPI has been assigned by the node, and one for
outbound which has been assigned by the other node. Each node can chose SPI associated to
inbound traffic so to avoid SPI collision. On the other hand outbound traffic SPI is assigned by
the other peer. This may result in a collision —although it rarely happens in practice. In fact
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SPI collision for outbound traffic does not really matter, since the SA is being provided by the SP,
which most likely addresses the proper SA not using SPI but addresses for an SA structure. On
the other hand, for inbound traffic, the proper SA is identified by the SPI and so must be unique
in the system.

In figure 4.6 HDR is set for the IKEv2 header, and SK indicates that the message is encrypted
and authenticated.

I n i t i a t o r (MN) Responder (CN or SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HDR, SK { [CP(CFG_REQUEST) ] , −−>
[N(IPCOMP_SUPPORTED)+] ,
[N(USE_TRANSPORT_MODE) ] ,
[N(ESP_TFC_PADDING_NOT_SUPPORTED) ] ,
[N(NON_FIRST_FRAGMENTS_ALSO) ] ,
SA, Ni , [ KEi ] , TSi , TSr}

<−− HDR, SK { [CP(CFG_REPLY) ] ,
[N(IPCOMP_SUPPORTED) ] ,
[N(USE_TRANSPORT_MODE) ] ,
[N(ESP_TFC_PADDING_NOT_SUPPORTED) ] ,
[N(NON_FIRST_FRAGMENTS_ALSO) ] ,
SA, Nr , [KEr ] , TSi , TSr ,
[N(ADDITIONAL_TS_POSSIBLE)}

Figure 4.6: Messages Exchange for IKEv2 CREATE_CHILD_SA

4.5.2 DELETE Operation

The DELETE Payload (D) contains a protocol field (ESP, AH, IKE), and a number of SPIs associ-
ated to the sender’s inbound traffic. The Responder sends back a DELETE Payload (D) with the
other SPI associated to its inbound traffic, meaning that both SAs have been deleted. The Delete
exchange is represented in figure 4.7. Similarly to figure 4.6 HDR is set for the IKEv2 header, and
SK indicates that the message is encrypted and authenticated.

I n i t i a t o r (MN) Responder (CN or SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

HDR, SK {D} −−>
<−− HDR, SK {D}

Figure 4.7: Messages Exchange for IKEv2 DELETE

4.6 MOBIKE

This section presents MOBIKE [Ero06], the MOBility and Multihoming IKEv2 extension, defined
at the IETF. The use case considered by MOBIKE is a MN connected to a SG with the Tunnel
and through a single Interface. The communication between IPMN and IPCN is tunneled to the
SG, and the packet on the network has IP o

MN and IPSG as outer IP addresses.

Figures 4.8 and 4.9 illustrate the exchanges between the MN and the SG during Mobility and
Multihoming operations. In both figures, steps 1) and 2) are the IKE_INIT exchanges.
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In step 1, the MN creates the IKE_SA. The IKE_SA is a protected channel used to exchange
IPsec signaling between the MN and the SG. What makes this SA different to the other SA is
that during the IKE_SA negotiation a shared secret is generated between the MN and the SG,
which is used to derive all keys for the next SAs, also called Child SA. The payloads used to
create the IKE_SA are SAi1, KEi, Ni Payloads on the Initiator’s side and SAr1, KEr, Nr on the
Responder’s side. SA(i,r)1, KE(i,r) and N(i,r) Payload works as for the CREATE_CHILD_SA of
section 4.5.1. In step 2, the MN and the SG proceeds to the authentication, network configuration,
Child SA configuration —the SA intended to protect the communication between the MN and the
CN —and MOBIKE configuration. Usually the Child SA (SA2) is the reason why we initiated
the IKE_INIT exchange. Authentication is proceeded by asserting its Identity (ID(i,r)), providing
proof-of-ownership (AUTH(i,r)) and Certificates (CERT(i,r)). Network configuration consists, for
the MN in requesting an IP address to the SG (CP(CFG_REQUEST)), that is provided in the
Configuration Payload (CP(CFG_REPLY)). The creation of the SA requires the MN and the SG
to agree on the traffic to secure with the Traffic Selectors (TSi, TSr) as well as the different protocols
required to secure the communication. These protocols are provided in the Security Association
Payloads (SAi2, SAr2), as described in section 4.5.1. Finally the N(MOBIKE_SUPPORTED)
indicates that the MN and the SG support MOBIKE, and that MN or SG can proceed to further
Mobility or Multihoming operations. A complete security analysis of the Secure Diffie Hellman
and the IKEv2 Initial Exchange is provided in [Roy09, RDM08].

4.6.1 Hard Handover Mobility

This section details, when the MN acquires a new outer IP address IP o
MN∗, and updates its IPsec

Tunnel. The Hard Handover Mobility results in tunneling the communication between the MN and
the CN (IPMN - IPCN ) using IP o

MN∗ and IPSG as outer IP addresses. The scenario is illustrated
in figure 4.4b of section 4.4.2.

When the MN has changed its IP address (IP o
MN∗), it sends the SG a N(UPDATE_SA_ADDRESSES)

Notify Payload as represented in step 3 of figure 4.8. This Payload does not contains any data, like
for example the new IP address IP o

MN∗. Since the MN only has a single interface, and MN sends
the Payload from its new interface, the new IP addresses for the outer header are necessarily those
of the IP header. When the SG receives the N(UPDATE_SA_ADDRESSES) Notify Payload, it
updates the SA indexes and the information associated to the Tunnel in the SA and eventually in
the SP —actually, SP may not be updated, because outer IP addresses are only used to create the
SA. Section 4.4.2 and table 4.3b details how Mobility impacts the IPsec databases.

Since the IP header is not protected, IP addresses are not protected by the IKEv2 channel, and
the Responder may check their validity, before updating the SPs / SAs. The Return Routability
Check exchange using the COOKIE2 Notify Payload has been designed for that purpose and is
represented in step 4 of figure 4.8. Note that with the Tunnel mode, the Traffic Selectors of the
SP are not changed, only the Selectors of the SA, and the Tunnel outer IP addresses are changed,
as mentioned in section 4.4.2.
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I n i t i a t o r (MN) Responder (SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1) (IPMN −> IPSG )
HDR, SAi1 , KEi , Ni −−>

<−− (IPSG −> IPMN )
HDR, SAr1 , KEr , Nr

2) (IPSG −> IPSG )
HDR, SK { IDi , CERT, AUTH,

CP(CFG_REQUEST) ,
SAi2 , TSi , TSr ,
N(MOBIKE_SUPPORTED) } −−>

<−− (IPSG −> IPMN )
HDR, SK { IDr , CERT, AUTH,

CP(CFG_REPLY) ,
SAr2 , TSi , TSr ,
N(MOBIKE_SUPPORTED) }

MN updates IPMN by IP ∗

MN

3) (IP ∗

MN −> IPSG )
HDR, SK { N(UPDATE_SA_ADDRESSES)} −−>

<−− (IPSG −> IP ∗

MN )
HDR, SK {}

SG checks IP ∗

MN with Return Routab i l i t y Check

4) <−− (IPSG −> IP ∗

MN )
HDR, SK { N(COOKIE2) }

(IP ∗

MN −> IP_{SG})
HDR, SK { N(COOKIE2) } −−>

Figure 4.8: Messages Exchanges for IKEv2 MOBIKE Mobility Hard Handover

4.6.2 Multihoming

To indicate Alternate IP addresses may be used for Multihoming, the MN sends N(ADDITIONAL_IP4_ADDRESS)
or N(ADDITIONAL_IP6_ADDRESS) Notify Payload to the SG (resp. CN), as represented in
step 3 of figure 4.9. When the Primary Address is not reachable anymore, the CN checks the
MN is reachable on the Alternate IP addresses via the Return Reachability Check exchange and
N(COOKIE2) Notify Payload. The Routability Check Exchange is illustrated in step 3 of fig-
ure 4.9. Then, the SG (resp. the CN) sends the MN a N(UPDATE_SA_ADDRESSES) Notify
Payload so the MN updates the IP outer addresses of the Tunnel, in step 3 of figure 4.9, as for
Mobility. Unlike with Mobility, the SG (resp. CN) makes the MN updates its own IP address,
rather than the sender’s one.
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I n i t i a t o r (MN) Responder (SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1) (IPMN −> IPSG )
HDR, SAi1 , KEi , Ni −−>

<−− (IPSG −> IPMN )
HDR, SAr1 , KEr , Nr ,

2) (IPMN −> IPSG )
HDR, SK { IDi , CERT, AUTH,

CP(CFG_REQUEST) ,
SAi2 , TSi , TSr ,
N(MOBIKE_SUPPORTED) } −−>

<−− (IPSG −> IPMN )
HDR, SK { IDr , CERT, AUTH,

CP(CFG_REPLY) ,
SAr2 , TSi , TSr ,
N(MOBIKE_SUPPORTED) ,
N(ADDITIONAL_IP4_ADDRESS) }

MN i s not reachab l e on IPMN SG t r i e s IP ∗

MN

3) (IPSG −> IP ∗

MN )
<−−

HDR, SK { N(UPDATE_SA_ADDRESSES) ,
N(COOKIE2) }

(IP ∗

MN −> IPSG ) −−>
HDR, SK {N(COOKIE2) }

Figure 4.9: Messages Exchanges for IKEv2 MOBIKE Multihoming

4.7 MOBIKE-X

This section describes MOBIKE-X, the MOBIKE extension we designed to provide, for both Tun-
nel and Transport mode, IPsec Mobility Hard Handover, Soft Handover, Multihoming and Multiple
Interfaces operations. Section 4.7.1 provides the use cases we consider for IPsec Mobility, that is:
(1) providing IPsec Mobility with Soft Handover, and (2) using IPsec to offload the mobile data
traffic of End users from RAN to WLAN. From the use cases description, section 4.7.2 provides
the problem statement and show why neither MOBIKE nor IKEv2 really address the problem.
Then, section 4.7.3 provides the main guidelines we used to design MOBIKE-X. More specifically
it shows how MOBIKE-X is reusing the design of MOBIKE. Finally section 4.7.4 defines the ex-
changes defined in MOBIKE-X, with the main involved Notify Payload. Currently, Motivations
for designing MOBIKE-X have been published in IETF drafts [Dan09a, DC12]. MOBIKE-X has
been described in [Dan09b].

4.7.1 Use Cases

MOBIKE [Ero06] described in section 4.6 addresses one use case which is a MN with a single
Interface connected to a SG. Since the design of MOBIKE other use cases have emerged, due to
terminal evolutions, new Mobile Usages and Network economy. This section lists the different use
cases we have considered to figure out MOBIKE’s next extensions.
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MOBIKE [Ero06] has been designed and published in 2006. At that time, MNs were not
Smartphones, but rather labtops. The Mobility use case considered in MOBIKE is a labtop VPN
connected through a wired connection in the office, then the labtop may use the company’s WLAN,
eventually the GPRS connectivity or the home WLAN network. The main goal of MOBIKE is
to avoid reconnection that would require the authentication to be replayed, with eventually user
interaction. Thus MOBIKE provides Mobility and multihoming mechanisms that deal with the
change of IP addresses. Note that while using GPRS, mobility is handled by the radio layer,
not MOBIKE, which means that the scenario considered in MOBIKE had very few MOBILITY
operations. In June 2007, the iPhone started modifying the use of Smartphones. They were not
used only for calling / texting, but large screens make possible web browsing, documents reading,
checking and writing emails... Executives started heavily using such devices, which required a pro-
tected access to the office Network. IPsec with SG happens to be the natural solution. Today’s,
IPsec VPN are supported by most Mobile Platforms, iPhones [App] , Android [And], Windows
Mobile [Mic].

Contrary to the use case foreseen in MOBIKE, Smartphones are much more likely to perform
Mobility than labtops. In fact labtop using GPRS for mobility is not likely to happen since labtops
are not easy to handle in buses, underground. On the other hand, Smartphones are much more
convenient for Moving End Users. Then WLAN Access Points are much more common than they
used to be in 2006. Many DSL Boxes provide WiFi Access, and many European ISPs are devel-
oping "WiFi Communities". Furthermore pricing policy makes WiFi Access via WiFi Community
free, whereas 3G data is taxed. As a result, Smartphones are designed for Mobility, and are en-
couraged to use WiFi Access for their VPN. This results in multiple Mobility Operations during a
given communication.

MOBIKE provides Hard Handover Mobility which happens not to fit current usage. In fact
MOBIKE provides Hard Handover Mobility which results in a lost of IP packets. When too many
packets are lost, new arriving packets out of the Anti Replay Attack Windows, are rejected, and
this may result in breaking the connection. To avoid those inconvenient, MOBIKE should be ex-
tended to Soft Mobility.

Mobile data in 2015 are expected to be around 50 times larger than it is today. RAN infras-
tructure will not be able to handle such traffic, and ISPs are looking for offloading this traffic from
RAN to WLAN. Contrary to a pricing policy that encourages the End User to use WLAN rather
than RAN, in this case, the End User requests a RAN connectivity, and the ISP must be able to
provide the End User a connectivity with similar Quality of Service and with the same Security.
Unlike RAN, WLAN may not be managed by the ISP. WLAN Access can be provided by third
party, by individual DSL subscribers... In term of User Experience, the ISP can hardly rely on the
WLAN Access availability. A DSL subscriber is likely to reboot its box for example.

Some protocols like Multi Path Protocol [FRH+11] (MPTCP) and to some extent SCTP have
been designed to establish a communication over unreliable accesses with Multihoming, or with
Multiple Interfaces. ISPs, manufacturers and academics are implementing MPTCP in Smart-
phones, and the offload is one of the two scenarios that motivated MPTCP. On a security point of
view, when the communication is going through a WLAN not owned by the ISP, the ISP has no
guarantee about the privacy, confidentiality of its End User. RAN used to rely on Radio Security.
This was fine since the Access Point belonged to the ISP, thus providing a security entry point
of the ISP trusted network. Offloaded communications cannot rely on Radio or WLAN security,
because the WLAN Access Point may not belong to the ISP. Security must be done at higher
layers and securing the IP layer with IPsec is the only way to secure a communication without
modifying third party applications code. In order to benefit from the MPTCP functionalities with
IPsec protection, we need to provide IPsec the basic Multiple Interface, Multihoming and Mobil-
ity operations. This means that a node must be able to add, remove, update an Interface, and
provide alternate IP addresses in case of failover. This must be done for a single connection or for
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all connections. A MN can benefit from Multiple Interfaces and access (even without MPTCP)
a single SG. On the other hand, for Real Time Traffic, ISPs are interested in avoiding the extra
tunnel overhead, and use Transport mode with dedicated application Servers. MOBIKE should be
extended to Multiple Interfaces, Mobility, and Multihoming for both IPsec Transport and Tunnel
modes.

Some companies use IPsec as a distributed firewall, to protect equipments / resources against
intruders. This is complementary to the access policy provided by a single entry point firewall. In
that case, IPsec Multiple Interfaces, Mobility and Multihoming operations would make possible a
node to preconfigure its IPsec layer while discovering new Interfaces. While the MN discovers the
IP addresses, IPsec won’t need re-authentication. An alternative is to distribute all the company
policies to all MN, which could be avoided with dynamic configuration.

4.7.2 Problem Statement

Today, MNs with Multiple Interfaces are common, and MNs want to take advantage of Multiple
Interfaces to enhance the End User experience or to better use the Network. The scenario addressed
in this thesis is a MN connected to services via Wireless LAN (WLAN) and Radio Access Network
(RAN). Attachment to RAN and WLAN already requires at least two interfaces, but we assume
that the MN has multiple WLAN Interfaces. WLAN may not be managed by the ISP, and thus
may be unreliable. On the other hand, WLAN may provide higher bandwidth and availability
than RAN. So, the MN must take advantage of its Multiple WLAN Interface to balance WLAN
unreliability. More specifically, MN wants to:

- Add an Interface. While the MN is moving and discovering a new Interface, the MN wants
to be able to ADD this new connectivity. If connections are able to use multiple IP ad-
dresses, this interface should be added either to all communication or to a selection of those
communications.

- Remove an Interface. While the MN is moving, some Interfaces may not be reachable. In
that case, the MN should remove those IP addresses from the connections.

- Move traffic from one Interface to the other. Mobility can be associated to some traffic, or
to the whole traffic. Mobility can be done through Hard Handover or Soft Handover.

- Benefit from Multihoming on a connection basis. Multihoming is intended to prevent WLAN
Access Point Failover. Depending on the nature of the traffic, the MN may want to use
different Alternate IP addresses for different traffic. For example, the RAN Interface should
be used only for Real Time Applications, whereas data downloads or emails may only use
other WLAN Access Points.

- Manage one or multiple connections over Multiple Interfaces. More specifically, the MN may
perform bandwidth aggregation by adding an Interface for a single traffic. Similarly, it may
remove traffic on an Interface. In addition, the MN may also be able to move with Soft
Handover or Hard Handover a given connection. At last, the MN may configure the various
connections with different and adapted alternate IP addresses.

Protocols like MPTCP or SCTP provide most of these facilities. The purpose of these protocols
is to carry data. In this thesis, we want that such protocols can benefit from IPsec protection, and
that IPsec does not results in blocking communications. In fact, IPsec can be seen as a firewall,
which if not properly configure can block the traffic and break the communication. Thus, all above
mentioned requirements must be provided for IPsec.
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Section 4.5 shows that IKEv2 provides the CREATE_CHILD_SA and DELETE exchange to
create an SP/SA and to remove it, which makes Multiple Interfaces traffic management, Mobility, as
well as addition, removal and Interface update possible. However, (1) the CREATE_CHILD_SA
exchange is not mandatory especially for light IKEv2 implementation. [KHNE10], section 1.3 The
responder sends a NO_ADDITIONAL_SAS notification to indicate that a CREATE_CHILD_SA
request is unacceptable because the responder is unwilling to accept any more Child SAs on this
IKE SA. This notification can also be used to reject IKE SA rekey. Some minimal implementations
may only accept a single Child SA setup in the context of an initial IKE exchange and reject any
subsequent attempts to add more. (2) CREATE_CHILD_SA and DELETE exchanges are per SA
exchanges. When the MN has multiple SAs with its CN, for example, the MN must initiate multiple
CREATE_CHILD_SA exchanges. The exchanges can be carried in the same INFORMATIONAL
exchange. (3) CREATE_CHILD_SA has much larger Payload. The most basic use case is a MN
connected to a SG or a CN via Multiple Interface and wants to announce that it may be reachable
on an additional Interface. Traffic Selectors (TSi, TSr), Security Association (SA) Nonces (Ni, Nr)
do not necessary have to be specified. (4) CREATE_CHILD_SA exchange requires unnecessary
CPU computation, Keys are derived involving a Pseudo-Random Function (PRF). This may be
insignificant with few SA creations, but with WLAN connectivity, a MN is likely to encounter
multiple WLAN, and so likely to create multiple SAs, which makes us consider this additional
cost.

MOBIKE described in section 4.6 considers mobility and multihoming operations. However (5)
MOBIKE only considers updating the Tunnel mode SA : SP parameters and ignores the Transport
mode. Then, (6) MOBIKE considers with a single Interface, thus Mobility operations are provided
for the entire MN and there is no possibilities to Multihoming or Mobility on a traffic base. More
specifically, traffic based operation are an intermediate between the per SA and the entire MN.
(7) MOBIKE only makes possible Hard Handover because Soft Handover requires two distinct
Interfaces.

4.7.3 Protocol Design

From the problem statement section (section 4.7.2), current IKEv2 [KHNE10] or current MO-
BIKE [Ero06] does not address Mobility, Multihoming and Multiple Interfaces requirements of
current communications. In order to address those requirements, MOBIKE must be extended on
the following points:

- Traffic Selector: the MN MUST be able to explicitly specify which traffic the operation
applies. Expression of the traffic can be done with different granularities to enhance the
IKEv2 per SA or the MOBIKE ALL SAs.

- Multiple Interfaces Management: MOBIKE must consider Multiple Interfaces Management
for operations it has been designed for like Mobility and Multihoming. It must also provide
generic extension to make Multiple Interface Management, such as ADDing, REMOVing or
UPDATing an Interface. Those operations must be defined for both Transport and Tunnel
mode.

- Multihoming for Multiple Interfaces: Multihoming should be provided with different Alter-
nate IP addresses depending on the network the connection is currently working. Note that
it is also related to Multiple Interface Management.

- Mobility: MOBIKE Hard Handover must be extended to the Transport mode. to make
possible Soft Handover for both Transport and Tunnel mode. Note that Soft Handover is
related to Multiple Interfaces Management.

- Mobility for Transport: to support all offload architecture, especially those with End-to-End
Security.
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Note that while we are focused on SP / SA creation / removal / update, we do not have yet
really defined how the IKE_SA is impacted by those operations. The IKE_SA is not used to
carry traffic, but the signaling IPsec messages. The questions are thus: what should we do with
the IKE_SA when the MN adds an Interface? Should we have Soft Handover for the IKE_SA?
How Multihoming and Mobility are performed with the IKE_SA channel?

First, we did not see any benefits for the IKEv2 channel to use Multiple Interfaces. IKEv2
signaling does not require bandwidth aggregation for example, and using Multiple Interface in case
one fails is related to Multihoming. As a result, for simplicity, we consider that IKEv2 channel
uses a single path at a time. These restrictions on the IKEv2 channel simplify the implementa-
tion of MOBIKE-X, by avoiding changes with the IKE_SA. Similarly, we do not see either clear
advantage for Soft Handover. More specifically, IKEv2 has established a channel based on the
IKE_SA. This makes, for example, a MN perform a Mobility, change its IP address and send a
N(UPDATE_SA_ADDRESSES) to the SG, as illustrated in figure 4.8. The Payload is received
by the SG from an unknown IP address, but is not rejected. This means the IKEv2 channel is
not broken when the IP addresses are changed. In addition, IKEv2 exchanges are small, and usu-
ally involve a Question followed by a Response. Only very few exchanges involves more than one
exchange. This means that the probability mobility would occur during a exchange is quite low.
Soft Handover for the IKEv2 channel would consider this corner case, and for simplicity, we did
not consider it in MOBIKE-X and leave it for future MOBIKEv3. As a result, Hard Handover
as defined in MOBIKE seems fine for the IKEv2 channel. Finally, the IKEv2 channel must be
Multihomed, in the same way it is Multihomed with MOBIKE. By Multihomed, we understand,
the application is able to detect an IP address has changed, and do not crash when IP addresses
are changed.

The reason we do not insist on modifying the IKEv2 channel behavior is that the IKEv2 appli-
cation has been designed to handle all those properties, and so modifications on IKEv2 behaviors
would introduce major changes on IKEv2. This is completely different from adding functionalities
to IKEv2. Note that some work has investigated how the IKEv2 application may benefit from
Mobility and Multihoming support provided by the Transport Layer rather than the application
layer. [GTS+06] for example considering using IKEv2 over SCTP. In that sense SCTP would be
able to provide IKEv2 Mobility and Multihoming features as described in section 4.1.2

4.7.4 Protocol Description

This section provides a brief description of the MOBIKE extension MOBIKE-X described in
[Dan09b]. There is an INFORMATIONAL exchange that makes the MN and the CN or the
SG agree on the MOBIKE version. We considered MOBIKE-X as the second version of MOBIKE.

4.7.4.1 MOBIKE-X SELECTORs Notify Payloads

First of all, MOBIKE-X Selectors must not be assimilated to the Traffic Selectors used in the
SPD. MOBIKE-X Selectors are used to Select which SA or SP an UPDATE_SA_ADDRESSES,
an ADD_SA_ADDRESS or a REMOVE_SA_ADDRESS is performed. Selectors are designed
to provide different granularities. In addition to the various granularities, the MN may be able to
select traffic using SPD Selectors Index or SAD Selectors Index. In fact SPD Indexes are more
convenient for applications with no view on the SAD. SAD Indexes are more convenient for lower
layers. However, whatever Selector is used this will generate modifications on at least the SAD
and eventually on SPD.

121



CHAPTER 4. ISSUES AND PROTOCOLS RELATIVE TO SIMULTANEOUS SUPPORT OF
SECURITY, MOBILITY, MULTIHOMING AND MULTIPLE INTERFACES

N(SELECTOR
SELECTOR_SAi+
SELECTOR_SAr+
SELECTOR_SPI+)

N(SELECTOR
SELECTOR_META

. . .
ACTION_1
ACTION_ . . .
ACTION_n

N(END_OF_SELECTOR)

Figure 4.10: Description of the SELECTOR Notify Payload with MOBIKE-X

Figure 4.10 illustrates the structure we used for selecting the traffic. When designing SELEC-
TORs Notify Payload, [Dan09b] considers Traffic Selector Payload designed in [KHNE10] section
3.13. The Traffic Selector Payload contains different Traffic Selectors of type TSi or TSr. There can
be numerous Traffic Selectors, the matching traffic is the one that matches one TSi and one TSr.
We adopt a similar strategy. The SELECTOR Notify Payload contains various types of Selectors:
SELECTOR_SAi, SELECTOR_SAr —that have the same structure as the Traffic Selectors de-
fined in [KHNE10] section 3.13.1. —and SELECTOR_SPI. SELECTOR_SA* carries indication
of the Protocol —TCP, UDP, SCTP —, the port range and the IP range. SELECTOR_SPI carry
the SPI value. There are other specific Selectors. SELECTOR_IPSEC_PROTO that selects the
IPsec protocol —ESP, AH —, SELECTOR_IPSEC_MODE Selects the IPsec Mode —Transport,
Tunnel —, SELECTOR_META that makes possible to select IKE_SA, ALL_NON_IKE_SA...
Within a SELECTOR Notify Payload, the traffic considered is the traffic that matches ALL Se-
lector parameters. If more than one SELECTOR Notify Payload is used, the selected traffic
is the traffic selected by one SELECTOR or another SELECTOR. All actions that follow the
SELECTOR Notify Payload are only applied to the traffic indicated by SELECTOR, until the
END_OF_SELECTOR Notify Payload is encountered.

If the SELECTOR is invalid, or an Action is unexpected an error is reported.
To be compatible with MOBIKE, if no SELECTOR is specified, we assume that Actions apply

for all SAs.

Note that SELECTOR Notify Payload are used to defined the SA the action must be performed.
For each action, —remove, add, update....—, the Responder must check that the action matches
the Security Policies. Checks must be performed for each action, and SELECTORs do not provide
any guarantee, whether an action can or cannot be performed.

4.7.4.2 ADDITIONAL_IP_ADDRESS

The ADDITIONAL_IP_ADDRESS Notify Payload works like the ADDITIONAL_IP4_ADDRESS
and ADDITIONAL_IP6_ADDRESS Notify Payload. The reason we use a single Notify Payload
for both IPv4 and IPv6 addresses is that we use a generic IP parameter in the whole protocol. In
this IP parameter, the version is specified, as well as other information relative to the IP address.

Another difference is that the Alternate IP address is assigned to a single or a set of SAs rather
than to the entire MN. The Selection is performed via the SELECTOR Notify Payload. If not
specified, the Alternate Address applies for the entire MN, that is to say the SAs and the IKE_SA,
as specified in [Ero06].
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4.7.4.3 UPDATE_SA_ADDRESSES Notify Payload

The UPDATE_SA_ADDRESSES Notify Payload has a similar function as the one defined in
[Ero06]. If the Responder receives an UPDATE_SA_ADDRESSES Notify Payload without any
associated parameters, then the Responder extracts the IP addresses of the IP header and updates
all SAs specified by the SELECTORS. For SAs using the Tunnel mode, it works exactly as specified
in [Ero06], and only the outer IP addresses of the Tunnel are updated. Contrary to [Ero06] SAs
using the Transport mode are also updated.

However, it is also possible to specify which IP address is to be replaced (OLD_IP) and the
new value for the IP address (NEW_IP). First for the Tunnel mode, it makes possible to specify
whether the Inner or the Outer IP address needs to be replaced. Then it also makes possible a
simple UPDATE without involving SELECTORs. Suppose a MN is connected via IP_A, IP_B,
IP_C and acquires another IP address (NEW_IP). There is not much signal on IP_B, and the
MN wants to replace IP_B by IP_NEW. This scenario is quite common and does not require
SELECTOR Notify Payloads. For All SAs, the MN wants to replace IP_B by IP_NEW. On the
contrary, if part of the traffic on IP_B is to be moved on IP_NEW, then SELECTOR Notify
Payloads are required.

4.7.4.4 REMOVE_SA_ADDRESS Notify Payload

The REMOVE_SA_ADDRESS Notify Payload is used by the MN to remove an Interface when
the MN is not reachable on this Interface. Similarly to the UPDATE_SA_ADDRESSES Notify
Payload, the REMOVE_SA_ADDRESS Notify Payload specifies the IP address to be removed.
Note that SAs with the matching IP address are removed. When the MN wants to remove a single
SA, it is recommended to use the DELETE exchange as specified in [KHNE10].

4.7.4.5 ADD_SA_ADDRESS Notify Payload

The ADD_SA_ADDRESS Notify Payload is used when the MN get a new Interface. Since IP
addresses are used as Selectors, and Selectors do not allow list of parameters, it is hardly possible
to simply ADD a new IP address to an existing SA. Adding an IP address requires to create a new
SA. This new SA must have its own SPI and we must make both MN and CN (resp. SG) aware
of the SPIs. On the other hand, cryptographic material, counters, selectors are not negotiated
and are derived from an existing SA. Thus the ADD_SA_ADDRESS Notify Payload must carry
the following information: the IP address to be added, the derived SPI, the SA used to derive the
new SA. The new SP/SA can be seen as a copy of the previous SP/SA where SPI, IP address are
modified.

The IP address to modify in the copied SP/SA is always the IP address of the Initiator (or the
MN in our case). With Tunnel mode, the IP parameter specifies whether the inner or outer IP
address is considered.

SPI agreement between the MN and the CN or the SG can be done in various manners. One
way to do so, is that the ADD_SA_ADDRESS carries an SPI specified by the Initiator, and the
SPI of the SA used to derive the new SA. When the responder acknowledges, it must send back the
SPI used for its incoming traffic. This method provides the following advantages: (1) it provides
randomness in the SPI, and (2) it identifies the SA used to derive the new SA. The inconvenient
of this method is that it provides a per SA negotiation, and this is why we designed an alternative
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method that defines a method used to generate the SPI. One way to generate is to provide a Nonce.
When the Responder receives this Nonce, for all SAs indicated by the SELECTOR, or ALL SAs
that are non IKE_SA, it generates a NEW_SA whose content is derived from the selected SA and
whose SPI(NEW_SA) = SPI(SA)+Nonce. The advantage of this method is that is provides a
generic way to derive the new SAs. The inconvenience of the method is that SPIs are not randomly
generated, SPI may encounter SPI collision and, SAs may be unnecessarily created.

SPI are not randomly generated because they are derived from Nonce and a previous SPI value.
SPI are public values, and it does not seem that a lack of randomness may cause any troubles.
On the other hand, generating SPI this way may generate SPI collision. First the MN —or the
Initiator in our case —must choose a Nonce that avoids SPI collision on its side. This means that
for all SAs selected by SELECTOR, there is no SPI of value SPI(SA) +Nonce. Once the Nonce
has been chosen, all inbound and outbound new SAs are created. A collision on outbound SAs SPI
does not really matter, however, when possible, we prefer SPI to be unique. When the Responder
receives the Nonce, it proceeds in a similar way on its side. All new SAs are derived from the
selected SAs. Collision for outbound SAs does not really matter. As mentioned in section 4.4.1
SAs for outbound traffic do not use the SPI as an identifier of the SA. Those SAs are pointed
by the SP, which most of the time uses memory addresses. However, for inbound SA, collisions
are not acceptable. The Responder sends an Error Notify Payload with inbound SAD Selectors
where collision occurs as well as the SPI to be used for inbound SA. Because SPI may not be
unique, we provide all SAD Selectors (IP source, IP destination, SPI). When a large number of
SAs are added, we believe collisions would happen only to a small number of SAs only. When
a collision occurs, we recommend to proceed on a per SA negotiation. If unnecessary SAs have
been created and are not used, then we also recommend to DELETE those SAs. This can happen
when the MN has already three Interfaces connected to the SG. Adding a new Interface will trigger
the creation of three new SAs based on the three existing SAs, but a single SA would have been
sufficient. In that case, we recommend to use SELECTOR to avoid the creation of unnecessary SAs.

MOBIKE recommend that the SG or the CN performs a Return Routability Check when the
MN performs an UPDATE. The Return Routability Check is performed with the COOKIE2 ex-
change, and is intended to check (1) the MN is reachable to the updated IP address and (2) that the
MN is really behind the new IP address. Because MOBIKE only uses a single interface, the inter-
face the MN is reachable on is also the Interface used for the IKEv2 channel. Thus the COOKIE2
exchange is using the IKEv2 channel, while testing the reachability. When the node has Multiple
Interfaces, and wants to check the reachability of the different Interfaces, it cannot use the IKEv2
channel. In section 4.7.2, we specified that IKEv2 channel is using a single interface. Hence, the
COOKIE2 exchange must be sent to the Interface we want to check the reachability, as opposed
to the interface used for the IKEv2 channel. When the MN receives the COOKIE2 exchange, it
SHOULD send it on tested Interface. If that is not possible, the IKEv2 channel can be used. This
would mean at least that the MN is reachable on the new Interface.

Similarly, if the MN sends the ADD_SA_ADDRESS Notify Payload from the newly acquired
IP address, the SG may respond on that new IP address. The COOKIE2 exchange is not neces-
sary only if the new IP address is mentioned in the Notify Payload, that is, if the new IP address
to add is not taken from the IP header. Otherwise, the SG should proceed to a COKKIE2 exchange.

4.7.4.6 Soft Handover and SOFT_HANDOVER Notify Payload

Soft Handover is clearly a combination of adding an Interface followed by removing the previous In-
terface after some delay. This involves two exchanges that are replaced by the SOFT_HAND_OVER
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Notify Payload. This payload includes all necessary arguments for ADD and REMOVE, and op-
tionally a time parameter between ADD and REMOVE. If not specified, the default Time is 2 sec.

Figure 4.10 compares the exchanges for a Soft Handover and a Hard Handover. In figure 4.11a,
step 1 consists in establishing a IKEv2 channel. In this step, MN and CN or SG agree they are
both MOBIKE or MOBIKE-X enabled. The initial IKEv2 exchange is described in section 4.6.In
step 2, the MN sends the SG or the CN an UPDATE_SA_ADDRESSES Notify Payload and
indicates it has already changed its IP address. The message has been sent using the IKEv2 chan-
nel, however, the IP addresses may not have been securely carried. For example, as described in
MOBIKE, the IP addresses are carried in the IP header. The IP addresses may thus have been
forged. Furthermore, the CN or the SG may also want to check whether the MN is reachable at
this IP address. The CN or the SG performs a Return Routability Check in step 3, to check both
reachability and IP ownership.

Figure 4.11b illustrates the case of a Soft Handover where all actions are performed one after
the other. The reason we do not perform all those actions in a single Payload is that the MN
may not know in advance if it has to perform a Soft Handover or not. It can, for example and as
represented in step 1 of figure 4.11b, get a new IP address IP ∗

MNo, but does not really know which
IP address is going to be used later IPMN or IP ∗

MN (o).
With the Tunnel mode, the main advantage of the Soft Handover, is that it can be transparent

to the upper layers. In other words, the Soft Handover can be done with a TCP connection without
breaking it. On the other hand, this advantage makes Soft Handover a bit more complex than
with the Transport mode, and requires to introduce Primary and Secondary Interfaces. If the SPD
is not decorrelated on a per interface base, then a given Traffic Selector, can match multiple SPD.
The SPD is an ordered database, and only the first match will be considered. The first match
corresponds to the IP outer IP address that is said to be Primary. Other SPs that are not selected
correspond to the IP address that is said to be Secondary. Hence, when the MN adds an new
Interface, as represented in step 1 of figure 4.11b, a new SP and a new SA with IP ∗

MN (o) as the
outer Tunnel IP address are created. IP ∗

MN (o) is first considered as a Secondary IP address. This
is performed by appending this SP to the SPD. By being Secondary, the SG or the MN can receive
traffic on that Interface, but will NOT tunnel any traffic on that Interface. This makes possible to
perform the Return Routability Check exchange without disturbing the ongoing communication.
After some time, represented by T1 seconds in figure 4.11b, the MN decides that IP ∗

MN (o) be-
comes a Primary Interface. This is represented in step 2 of figure 4.11b with the SET_PRIMARY
Notify Payload. When receiving this Payload, the SG must "simply" re-order the SPD, so that the
Traffic matches the SPD with outer Tunnel IP address IP ∗

MN (o). From our experience, the easier
way is to remove the SP associated to IPMN and then appends it to the ordered list of Security
Policies. After some time, if IPMN will not be used anymore, the MN may decide to remove the
SP associated to IPMN . The Time is represented with T2 and SP / SA removal is performed in
step 3.

With the Transport mode, Soft Handover must be handled by other protocols than the IPsec
protocol. For example, it can be MPTCP, SCTP or directly the application that decides to use
IP ∗

MN instead of IPMN . This would correspond to step 2) in figure 4.11b, but no signaling are
needed. Then, the application, or the MPTCP or SCTP decides that old IP address IPMN will not
be used anymore, and decide to remove it. This is represented in step 3, and even with Transport
mode would require an exchange.

Figure 4.11b provides a Soft Handover that involves multiple messages exchanges. It is im-
portant that the MN can perform a Soft Handover with a step by step approach, especially when
the MN discovering a new IP address, but has not decided yet if a Mobility should be performed.
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On the other hand, a MN may also perform a Soft Handover while ADDing the new Interface,
or request a Soft Handover, on an IP address that has previously been added. The goal of the
SOFT_HANDOVER Notify Payload is to limit the number of exchanges between the MN and
the SG while doing a Soft Handover. The SOFT_HANDOVER Notify Payload provides param-
eters to indicate the number of seconds T1, the replacing IP address IP ∗

MN , the IP address to be
replaced IPMN , T2. The SOFT_HANDOVER Notify Payload may also be used in conjunction
with the ADD. In order to avoid the COOKIE2 exchange, it is recommended to send the ADD
and SOFT_HANDOVER Notify Payloads from the new Interface. The SOFT_HANDOVER ex-
changes are represented in figure 4.10c.

I n i t i a t o r (MN) Responder (CN or SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<<< No IPsec Protec t i on >>>

1) Se t t ing IKEv2 Channel

SA1
EU , KEMN , NMN −−>

<−− SA1
SG , KESG , NSG

SK {IDMN , AUTH,

SA2
MN , TSMN , TSSG ,

CP (CFGREQUEST ) ,
N(MOBIKE_SUPPORTED)} −−>

<−− SK {IDSG , AUTH,

SA2
SG , TSMN , TSSG ,

CP(CFG_REPLY) ,
N(MOBIKE_SUPPORTED)}

<<< IKEv2 Channel Es tab l i shed
TSMN,SRV Tunneled in IPMN , IPSG >>>

2) Mobi l i ty Hard Handover IP∗

MN

SK {N(UPDATE_SA_ADDRESSES)} −−>
<−− SK {N()}

<<< EU uses IP∗

MN , TSMN,SG unbroken
TSEU,SG Tunneled in IP∗

MN , IPSG >>>

3) Return Routab i l i t y Check
<−− SK {N(COOKIE2)}

SK {N(COOKIE2)} −−>

(a) Hard Handover

I n i t i a t o r (MN) Responder (CN or SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<<< IKEv2 Channel Es tab l i shed
TSEU,SG Tunneled in IPMN , IPSG >>>

1) MN Acquires IP∗

MN

SK {N(ADD_SA_ADDRESS IP∗

MN )} −−>
<−− SK {N()}

Return Routab i l i t y Check
<−− SK {N(COOKIE2)}

SK {N(COOKIE2)} −−>

<<< MN has Mult ip le I n t e r f a c e s IP∗

MN , IPMN

IPMN i s used as Primary
TSMN,SG Tunneled in IP∗

MN , IPSG >>>

<<< After T1 seconds >>>

2) MN Sets Pre f e r ence f o r IP∗

MN

For both TSMN,SG , and IKE
SK {SET\_PRIMARY} −−>

<−− SK {N()}

<<< EU r e c e i v e s t r a f f i c on IP∗

MN .
TSMN,SG i s tunneled and unbroken
MN IPMN i s s t i l l l i s t e n i n g >>>

<<< After T2 seconds >>>

3) Removing IPMN

SK {N(REMOVE_SA_ADDRESSES IPMN )} −−>
<−− SK {N()}

<<< EU uses only IP∗

MN >>>

(b) Soft Handover
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I n i t i a t o r (MN) Responder (CN or SG)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

<<< IKEv2 Channel Es tab l i shed
TSEU,SG Tunneled in IPMN , IPSG >>>

1) MN Acquires IP∗

MN

SK {N(ADD_SA_ADDRESS IP∗

MN ) , −−>
N(SOFT\_HANDOVER, T1 , T2 , IP∗

MN , IPMN )

<<< MN has Mult ip l e I n t e r f a c e s IP∗

MN , IPMN

IPMN i s used as Primary
TSMN,SG Tunneled in IP∗

MN , IPSG >>>

<<< After T1 seconds >>>

2) MN Sets Pre f e r ence f o r IP∗

MN

For both TSMN,SG , and IKE

<<< EU r e c e i v e s t r a f f i c on IP∗

MN .
TSMN,SG i s tunneled and unbroken
MN IPMN i s s t i l l l i s t e n i n g >>>

<<< After T2 seconds >>>

3) Removing IPMN

<−− SK {N()}

Return Routab i l i t y Check
<−− SK {N(COOKIE2)}

SK {N(COOKIE2)} −−>

<<< EU uses only IP∗

MN >>>

(c) SOFT_HANDOVER Notify
Payload

Figure 4.10: Messages Exchanges for MOBIKE(-X) Mobility
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Chapter 5

IPsec Cost Measurement
in Mobile, Multihomed and Multiple

Interfaces Environment

5.1 Introduction

This section measures the cost of IPsec in a Mobility and Multihoming environment. The testing
platform is described in section 5.2. Measurements are provided from an experimental platform.
The IKEv2 implementation we used is strongSwan [str], and our MOBIKE-X implementation is
based on strongSwan.

To measure the IPsec impact on Mobility, we considered:

- 1. How IPsec configured links impact the Mobility? In other words we compare a Mobility per-
formed over non IPsec protected links to a Mobility performed on IPsec-protected links. In
those tests, links are pre-configured, and no IPsec configuration is involved. These tests are
necessary to define the true IPsec impact on Mobility when further IPsec configuration will
be required. In addition, by comparing the different IPsec modes (Transport and Tunnel),
these tests measure the advantages or disadvantages of the Transport mode over the Tunnel
mode, when Mobility is required. Currently, IPsec deployment mostly considers the Tunnel
mode. Tunneling adds bandwidth overhead with the extra IP header, computation overhead
by going twice into the Network stack. Furthermore, sharing a Security Gateway with other
Services and End Users adds routing indirections, and latencies that degrade the End User
experience. In addition, End Users in a Mobile environment are even more sensitive to such
latencies. Comparing Mobility between IPsec protected links with the Transport mode and
the Tunnel mode help deciding whether providing a Service specific architecture using the
Transport mode is better than a Security Gateway architecture using Tunnel mode. Unlike
MOBIKE, that is in charge of the Mobility, in our case the FTP communication is moved
using SCTP. The reason we choose SCTP rather than Multi-Path TCP (MPTCP) is that,
at the time we started deploying the platform, we thought that SCTP would be more stable
and with more advanced developments.

- 2. How IPsec impacts Mobility when IPsec configuration is required? Compared to the previous
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case, this case IPsec requires dynamic configuration of the IPsec stack. When the Tunnel
mode is used with MOBIKE, changing the outer IP address performs a Mobility Hard Hand
over. With the Tunnel mode and MOBIKE-X, Mobility can be done through a Soft Han-
dover. Measuring how MOBIKE impacts the End User makes it possible to check how
services using VPN access are impacted by Mobility, and what Soft Mobility may enhance.
With the Transport mode, IPsec configuration cannot be used to perform Mobility. In that
case, IPsec Mobility configures the IPsec layer so that communication can securely change
its interface, but the communication Mobility must be performed by another protocol. For
our testing platform, we use SCTP to perform Mobility at the transport layer, and ping or
wget to perform the Mobility at the application layer.

With Mobility and Multihoming operations, performances of the various configurations are
evaluated with time durations. One point is to measure the time on our platform, the other is
to evaluate how it impacts the End User experience. In fact, Mobility and Multihoming involves
multiple operations like Interface change detection, communication to the peer of the Interface
change and modifications of the IPsec stack. Thus, to check how updating the IPsec stack impacts
the End User experience, we need to add System time to network Time. System time may be
optimized by the system, and network time depends on the network environment the MN is located.
Our experimental platform uses Ethernet, and to evaluate the time on other network environment
we performed some downloads over different environments. The main characteristic we measured
on each network is the Round Trip Time (RTT ), that provides an indication on the network
latency. The various network environments we considered are:

- Public ISP WLAN (Public HotSpot), which corresponds to a MN connected to a Public
HotSpot provided by the ISP.

- Home WLAN with 1Mbits (HWLAN1Mb) and Home WLAN with 10 Mbits (HWLAN10Mb),
which corresponds to MN connected to their DSL boxes. The scenario addresses the End
User switching a communication from 3G / 4G to its own box, or a End User connected to
DSL boxes that does not belong to him. The latest case addresses the "WiFi Communities"
use case.

- LabP latformEthernet, which corresponds to our experimental platform.

RTT are evaluated using a TCP connection, but we also compared those values to various
exchanges, and the Network Time we measured are:

- TSCTP the necessary time to establish SCTP session.

- TIKE the necessary time to establish an IKEv2 session.

- TRC the necessary time to perform a Return Routability Check exchange. This exchange is
used, for example when the MN is changing its IP address. In MOBIKE, the CN or the SG
thus wants to check that MN is still reachable on the new IP address and that the update
notification comes from the MN.

The System Time we measured are:

- TSY S the time it takes to the system to detect a modification on an Interface and send an
announcement to the peer.

- TUPDATE the time it takes to perform the IPsec update and send a notification back to the
initiator.

Finally, the Time we measured to evaluate how IPsec impacts the End User experience is:

- TSTALLED, the time the connection is stalled.
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Note that measuring how IPsec impacts the End User experience must be evaluated according to
the application. Our measurements only consider the End User experience on a network point
of view. In fact some applications like P2P downloads do not really care about interruptions of
even few minutes. Some applications sensitive to interruptions have their own recovery or buffering
mechanisms that minimize the network interruptions. Other applications that deal with Real Time
Applications like Voice over IP, live video streaming, or interactive gaming applications are very
sensitive to network interruption, added latencies. In this chapter, we are interested in these types
of applications.

Section 5.4 provides measurements when MOBIKE is used. Unlike section 5.2, Mobility re-
sults from IPsec modifications changes. Since SCTP Mobility or Multihoming is not required with
MOBIKE, we used a regular TCP connection. One reason is that SCTP and the Tunnel mode
interacted in unexpected ways, the other is that MOBIKE has been optimized with TCP, and
so the measured stalled time values could be considered as the minimum stalled values for Hard
Handover. MOBIKE stalls the communication for around 300ms when a Mobility is performed.
With Multihoming, one should add a 45ms for the OS to detect the Interface is down. In order
to avoid the 45ms Interface detection, Connection Managers are encouraged to perform Mobility
before the link is down, rather than relying on Multihoming. Reducing stalled time below 300ms
requires additional mechanisms than Hard Handover Mobility, and we propose Soft Handover with
MOBIKE-X.

Finally we measured the performances of our MOBIKE-X implementation. We limited the
measurement to the Transport mode and Mobility. The reason is that our implementation has to
face the issue of selecting the proper interface when Multiple Interfaces operations are expected.
Measuring TSTALLED ≈ 264ms is between 9.3% and 15.6% faster than MOBIKE. This is probably
due to the use of the Transport mode which requires fewer interactions with the routing indirec-
tions of the Kernel.

In the remaining of this chapter, we note MM for Mobility and Multihoming operations. The
content of this chapter provided inputs to [MPH+12b].

5.2 Testing Platform

Our MOBIKE-X implementation is based on strongSwan 4.3 [str] and we measured MN perfor-
mances in various configurations for transport protocol (traditional TCP and SCTP) and IPsec:
ESP (with aes128-sha1) and ESP_NULL (ESP with sha1 and null encryption).

Our experimental platform is shown in figure 5.1, and we used SCTP to perform MM operations,
when we were not using MOBIKE. We used SCTP [Ste07] because that is the most advanced IPv4
protocol that provides End-to-End MM mechanisms. Furthermore, SCTP can be implemented
in the Kernel with stacks like LKSCTP [LKS] or with user land libraries like sctplib [sct]. With
kernel implementation, the ISP provides Smartphones with Multiple Interfaces facilities, whereas
with user land implementation, the ISP has the opportunity to develop specific SCTP applications
even on terminals that are not SCTP enabled. Another advantage is that sctplib is provided both
for UNIX and Windows OS.

To measure MM performance over SCTP (LKSCTP-2.6.28-1.0.10 [LKS]), we developed a
SCTP client and server that runs on Fedora 17 Linux OS 2.6.38-rc7 patched for enabling AS-
CONF [SXT+07] with fastmsctp-2.6.34-rc5.patch. The ASCONF patch makes SCTP to dynami-
cally configure its interface. More specifically, SCTP has been designed for Multihoming, but all
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Network Type Data BR (kb/s) RTT (ms)
Public HotSpot 1021.30 [32.37] 15
HWLAN10Mb 10199.42 [1526.35] 2.14
HWLAN1Mb 2131.87 [13.07] 9.466

LabP latformEthernet 34715.04 0.355 [0.289]

Table 5.1: Experimental Measurements for Data Bit Rate on Operational RAN
and WLAN Networks (mean [standard deviation])

interfaces are provided in the SCTP connection establishment. If an SCTP peer wants to dynami-
cally ADD or REMOVE and Interface, then both SCTP peers need to be patched with ASCONF.
The SCTP client can have up to three different Ethernet interfaces that are connected to the server
via a router.

The router runs dummynet on Ubuntu Linux OS 2.6.28-11-generic. We used dummynet so to
be able to model different types of network. However, changing the bandwidth and delays strongly
affected how LKSCTP detects modifications on the interfaces. Default configuration is provided
for Ethernet links.

Our testing platform uses Ethernet connection. However offloaded Mobile and Multihomed
Node are connected to WLAN Networks, with a higher latency. This means that when exchanges
are required, they may take longer in WLAN situation than the measured duration in an Ethernet
configuration. In order to evaluate the performances over a realistic situation, and estimate how the
EU experience is impacted, we need to consider network latency of WLAN. We measured different
WLAN features (Bit Rate and RTT ) with a FTP download over a day: Public ISP WLAN (Public
HotSpot, RTT = 15ms, Data BR = 1021.30 kbs−1) Home WLAN with 1Mbits (HWLAN1Mb,
RTT = 9.466ms, Data BR = 10199.42 kbs−1) and Home WLAN with 10 Mbits (HWLAN10Mb,
RTT = 2.14ms, Data BR = 2131.87 kbs−1). On our LabP latformEthernet RTT = 0.355ms,
Data BR = 34715.04 kbs−1.

Performance measurements use the candle stick representation to represent the quartiles of

p5p1

p5p2

10.0.2.244

10.0.3.244

eth2

10.0.2.1

eth3

10.0.3.1

10.1.2.1

eth5

10.1.2.244

eth0

Server

Router

Client

Figure 5.1: MOBIKE(-X) Experimental Platform for Mobility and Multihom-
ing Performance

the measured values [Wik].

5.3 SCTP Mobility Multihoming with IPsec

This section analyses how SCTP MM operations are impacted by IPsec. In other words, it measures
how protection with Transport or Tunnel affects SCTP Mobility. SCTP can be used both with
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Transport and Tunnel mode. The MN is attached to multiple WLAN Access Points to prevent
Access Point failure. With Transport mode, the MN has multiple connections with the Service
protected with the Transport mode. With the Tunnel mode, the MN has multiple connections to
the Security Gateway protected with the Tunnel mode. All links have been secured with IPsec
before the Mobility occurs. In that sense, the IKEv2 negotiation and the MN authentication does
not impact the Mobility. Mobility is triggered by the Multihoming SCTP mechanism, that is when
the Primary interface is down, it switches to the Alternate Interface with a Hard Handover. To
compare the various configurations, we measure and compare various time (TSCTP , TIKE , TSY S

and TSTALLED). As a result, we show that MN is more reactive with the Transport mode than
with the Tunnel mode: with Transport mode, the MN detects network changes 2.9 times faster
—TSY S—, and the Mobility is 2.5 times more stable, and 15% faster. Transport mode provides a
clear advanatge over the Tunnel mode.

For all tests, both interfaces p5p1 (10.0.2.244) and p5p2 (10.0.3.244) are configured with various
IPsec configurations. Then, the SCTP communication is initiated with both interfaces. Interface
p5p1 is used a primary interface by SCTP. After a while p5p1 is down, and the traffic switches to
p5p2. Because our SCTP client and server are ASCONF enabled, after around TSCTP ASCONF =
0.46s, the client sends an ASCONF that requests p5p1 to be removed from the SCTP association.

5.3.1 General Input / Output Graphs

Figure 5.2a, (resp. 5.2c) represents the flowchart of MM operations without IPsec protection
(NONE), (resp. measured output). Figure 5.2b (resp. 5.2d 5.2e, 5.2d) represents flowshart (resp.
measured output) where connections are IPsec protected.

Figures 5.2c, 5.2e and 5.2d show that IPsec is not transparent to the transport layer throughput
and behavior, and SCTP may be configured differently for IPsec protected connections than for
NONE IPsec connections. With a NONE IPsec configuration —figure 5.2c—SCTP instantaneously
uses the whole bandwidth. On the other hand, the Transport mode generates a bandwidth gap
when a mobility occurs —figure 5.2d, that is recovered after roughly 10 s. With Tunnel mode,
—figure 5.2e—SCTP and IPsec encapsulation requires modification of the routing policies, which
results in concurrent updates between SCTP and IKEv2. More specifically p5p1 down triggers a
kernel event for both LKSCTP and strongSwan. Since LKSCTP is kernel based, it updates the
routing policies first, followed by IKEv2. This may lock, and delay routing policy stabilization. This
makes Tunnel mode more intrusive than Transport which may result in stalling the communication
whereas Transport modification may be compensated by transport layer mechanisms.

5.3.2 Measured Time Definition: TSCTP , TIKE, TSY S and TSTALLED

Figure 5.3 represents the various negotiations involved in the secured SCTP communication:
TIKE , TSCTP , TSY S and TSTALLED for various IPsec configurations (NONE, ESP_TRANSPORT,
ESP_TUNNEL, ESP_NULL_TRANSPORT, ESP_NULL_TUNNEL). TIKE (resp. TSCTP ) is
the negotiation time for an IKEv2 (resp. SCTP) communication. TIKE is subject to multiple
variations especially because it includes an authentication. In our case, we used a preshared key
for authentication, but common ISP SIM/AKA authentication requires EAP [ETS10] framework
(EAP-SIM [HS06], EAP-AKA [AH06]), which adds the number of exchanges as well as authenti-
cation operations. As a result, the authentication part of the exchange may take longer than the
one we measured. However, in that case, it only delays the initialization of the communication,
and does not impact MM operations. TSY S is the time it takes to the system to detect p5p1 is
down and starts sending on p5p2 which informs the server multihoming occurred. By receiving a
message from p5p2, the server is informed that a multihoming operation has occurred. TSTALLED
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(a) SCTP/IPsecNONE (b) SCTP/IPsec

(c) SCTP/IPsecNONE (d) SCTP/IPsec Trans-
port

(e) SCTP/IPsec Tunnel

Figure 5.2: Multihoming SCTP - Network Flow for Mobility performance with
SCTP over IPsec protected links vs non IPsec protected links

is the time duration the communication is interrupted.

5.3.3 TIKE Analysis

Figure 5.3a shows that although Transport mode includes an added Notify Payload, the IKEv2 ne-
gotiation for all IPsec configuration (ESP/ESP_NULL, Transport / Tunnel) are between 0.25 s and
0.26 s. From section 5.2, measured network latencies are negligible on our LabP latformEthernet

(≈ 2 × 0.355ms), as well as our pre-shared key authentication. Thus, the measured time reflects
the systems configurations (SAD, routing policies...).
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(a) TIKEv2 (b) TSCTP

(c) TSY S (d) TSTALLED

Figure 5.3: Experimental Measurements of IPsec Mobility performance with
SCTP over IPsec protected links vs non IPsec protected links

5.3.4 TSCTP Analysis

SCTP negotiation without IPsec takes 1.2545ms —figure 5.3b. Compared to 2.RTT = 0.71ms,
it takes roughly 0.54ms to set the network stacks. IPsec adds a 0.26ms overhead for Transport
mode vs 0.35ms for Tunnel mode. Compared to RTT delays introduced by IPsec at the connec-
tion initialization should not impact the EU experience. However, the delay introduced by IPsec
between 21 and 27% may impact the servers. ESP versus ESP_NULL has no impact on TSCTP ,
but Tunnel adds a delay 6% higher than the Transport for a mixed transaction of packets between
62 bytes (COOKIE_ACK) and 348 bytes (INIT_ACK).

Finally, initialization times measures how long the connection is delayed. IPsec negotiation
delays the communication by at least 0.25 s which is not negligible even for MN connected to
Public HotSpot with 2.RTT = 30ms. However, the EU experience may not be affected, since it
occurs only at the initialization phase, then this delay may be avoided with pre-authentication.
Similarly, the delay introduced by IPsec for the SCTP negotiation, is not significant for the MN. If
the MN is connected to a Public HotSpot the delay is between 1.73% and 2.23% of the RTT , which
makes it negligible, mostly because it happens only once. However, SCTP initialization exchange
provides an example of small packet exchanges and shows that Transport mode reduces the secu-
rity overhead by 6% over the Tunnel which makes Transport mode more efficient for offloading RTA.

5.3.5 TSY S Analysis

In figure 5.3c IPsec overhead for TSY S is between 161.85ms for Transport and 163.48ms for Tun-
nel. Tunnel presents large variations, and the added delay is up to 469.991ms. Transport mode
makes the System more reactive and stable. The IPsec overhead is the time to activate the dor-
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mant SA and modify the routing tables. Note that in Transport, strongSwan is configured with
the option install_routes=no so it does not interfere with the routing tables. With Tunnel, this
option cannot be used, which makes Transport between 1.01 and 2.90 times faster, and so preferred
for offloaded RTA. IPsec clearly makes the system less reactive, and delays introduced by IPsec
impacts the EU experience. This can be avoided either by tuning the system with IPsec, and
most probably makes various IP/IPsec/transport layer communicating between each other, or by
anticipating a connection is down. In fact connection Managers are expected to decide to switch
on one interface before the running interface is down.

5.3.6 TSTALLED Analysis

Figure 5.3d shows that without IPsec, the communication is stalled for 30.0325ms and 199.587ms
with IPsec, which represents the necessary time for the system to detect events, as well as to make
SAD and SPD operational. Similarly to figure 5.3c tunnelling requires system interactions with
routing tables which result in large variations, stalling the communication up to 499.20ms. IPsec
security overhead results in a longer stalled communication, and clearly impacts the EU experience.
Note that IKEv2 Mobility exchanges are not considered in this section. If so, an exchange would
add another RTT = 15ms on an Public HotSpot. The stalled time may be improved and reduced
by scheduling transport and IPsec stack modifications, as well as by anticipating and allowing
Multihoming Simultaneous Interfaces for a given communication.

5.4 MOBIKE Mobility Multihoming

MOBIKE only considers the Tunnel mode, and a single interface. Thus switching interfaces is per-
formed through a Hard Handover and an UPDATE_SA_ADDRESSES Notify Payload indicates
the new IP addresses to use. In this section we use two different mechanisms to switch from one
interface to the other. We designate by Mobility the operation that consists, for a MN with a single
interface, in changing manually the IP address of the running interface ifconfig p5p1 IPNEW . By
changing the IP address, the MN sends an UPDATE_SA_ADDRESSES Notify Payload. We des-
ignate by Multihoming the operation that consists, for a MN with Multiple Interfaces, to manually
bring the Primary interface down ifconfig p5p1 down. By putting down the Primary Interface, the
MN checks the Alternate Interface is still reachable by performing a Return Routability Check
(RRC), followed by an UPDATE_SA_ADDRESSES as in the Mobility scenario. We consider
those two distinct mechanisms because Mobility may be trigger by a Network Manager, whereas
Multihoming is a mechanism that recovers from WLAN Access Points Failover.

Figures 5.4a and 5.4b (resp. 5.4c) give MM with MOBIKE (resp. with MOBIKE-X). In fig-
ure 5.4b Wireshark represents a packet anytime it passes through the IP stack, that is to say for
both the inner and outer IP header.
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(a) MOBIKE(−X) Mob. / Multih.

(b) MOBIKE (c) MOBIKE −X

Figure 5.4: MOBIKE / MOBIKE-X - Network Flow for Mobility performance
with MOBIKE and MOBIKE-X over IPsec protected links
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137



CHAPTER 5. IPSEC COST MEASUREMENT IN MOBILE, MULTIHOMED AND
MULTIPLE INTERFACES ENVIRONMENT

(g)

T
Multihoming
UPDATE +RoutabilityCheck

Figure 5.4: Experimental Measurements of MOBIKE Mobility performance
with MOBIKE

Figures 5.5a and 5.5b compare TSY S , the time required by the system to trigger Mobility or
Multihoming. With Mobility, the MN triggers the change of IP addresses, and the configuration of
both network and IPsec stack takes 103.71ms. With Multihoming it takes an additional 44.48ms
for the OS to detect the interface is down.

Furthermore, Multihoming requires the Return Routability Check (RRC) exchange which adds
a 16.61ms delay to the TMultihoming

STALLED = 305.9345ms versus 289.318ms for Mobility. We measure
RTT = 15ms with FTP download on Public HotSpot, which makes TMobility

STALLED ≈ 303.96ms and
TMultihoming
STALLED = 335.234ms.

Comparing RTT (0.35ms), TUPDATE (13.60ms) and TRC (66.011ms), TRC is 4.85 times
larger than TUPDATE because kernel operations are performed with higher priority than applica-
tion (polling mode). From TUPDATE ≈ 13.60ms, the IPsec SADs are expected to be updated on
the MN and the server in roughly 25ms. TMobility

STALLED ≈ 289.318ms because not only SADs must
be updated, but also routing policies.

This confirms IPsec configuration time derived from figure 5.3a to create a SA. Furthermore,
comparison between Mobility and Multihoming shows how Network Managers may improve the EU
experience by performing a Mobility and thus avoiding the RRC exchange. Furthermore, Network
Manager may improve further the EU experience by preparing the Mobility and performing a Soft
Handover rather than a Hard Handover. Hard Handover results in a 300ms stalled communication
whereas Soft Handover is expected to no interruption at all. On the other hand, Soft Handover
requires to handle Multiple Interfaces which requires MOBIKE-X extension.

5.5 MOBIKE-X Mobility Multihoming

MOBIKE-X extends MOBIKE for the Transport mode and Multiple Interfaces, which enables Soft
Handover. Soft Handover provides the ability to change interface without losing any packets. In
moving to a new Interface with Hard Handover discards that are on the Network between the time
Hard Handover has been started and the time the Server starts sending on the new interface. From
measurements in figure 5.5h, we estimate that discovering the new interface and starting the IPsec
update takes around TSY S = 110.9095ms, but it may take more time to configure it for example
if authentication to the new Network is required and the IP addresses is obtained via DHCP. Such
delays may not impact the communication if the MN has Multiple Interfaces. If the MN has a
single interface, those delays must be added to TSTALLED.

Our MOBIKE-X implementation always performs Routability Checks, which, for Mobility op-
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eration, may be avoided. Thus TSTALLED ≈ 264ms, which is between 9.3% and 15.6% faster than
MOBIKE.

With Transport mode TUPDATE = 36.6035ms is 2.69 times larger than with the Tunnel mode
because SAD and SPD whereas Tunnel mode only updates SAD. With Soft Handover time and
delay is less critical, it delays slightly the Handover, but does not results in loss of packets. On the
other hand, TUPDATE is around 2.RTT when the MN is offloaded in a Public HotSpot which may
not affect greatly the EU Experience.

TRoutability Check = 39.943ms is smaller than with MOBIKE. RRC is not different from MO-
BIKE, and one way to explain the difference is to consider the testing conditions. With MOBIKE-
X, we measured duration with the ping application whereas MOBIKE has been tested with a TCP
connection. pings probably do not fill the NIC buffer as SCTP/TCP packets do. We used pings
because SCTP does not support mobility operation, that is changing its interface IP address.

Measurements confirm previous results. Using Transport mode reduces interactions with the
Network stacks and communication overheads. In fact Transport avoids tunneling, and do not
need the tunnel IP header. As a result, Mobility is performed faster, changes are detected faster
by the system —for example when Multihoming is performed. This provides competitive advan-
tages for the Transport based architecture compared to Tunnel. This chapter also shows that
Hard Handover always results in degrading the EU experience. However optimized, changing the
IP address of a given communication always requires inter-process communications with their own
latencies. One way to reduce the Mobility impact on the EU experience is to perform Soft Han-
dover. MOBIKE-X provides this facility, which can be used both with Tunnel and Transport mode.

(h) TSY S (i) TSTALLED

(j) TUPDATE (k) TRoutability Check

Figure 5.5: Experimental Measurements of MOBIKE-X Mobility performance
with MOBIKE-X

139



CHAPTER 5. IPSEC COST MEASUREMENT IN MOBILE, MULTIHOMED AND
MULTIPLE INTERFACES ENVIRONMENT

5.6 Conclusion

In the chapter, we measured how IPsec impacts communications when Mobility or Multihoming
is performed. From network measurements, we compare Mobility and Multihoming with different
IPsec transport mode and different ways to perform Mobility or Multihoming. In this chapter,
Mobility and Multihoming is performed by the IPsec layer with MOBIKE(-X) and the Tunnel
mode, by the transport layer with SCTP and by the application with a ping based application.

By measuring network time we derive how the End User experience is affected by a Mobility
or a Multihoming over an IPsec protected communication. In this chapter, we did not consider
mechanisms provided by the application (like buffering or recovery mechanisms) that may counter
the communication interruption. Indeed, we are considering applications that do not have such
mechanisms and whose End User experience directly relies on the network layers variations. Such
applications are Real Time Applications, including gaming and VoIP applications.

First, our measurements show that securing a communication with IPsec clearly impacts the
Mobility and Multihoming mechanisms, at least with SCTP. Using IPsec results in a 200ms stalled
time whereas non IPsec Mobility only stales the connection around 30ms, which results in a 600%
overhead! As a result, the security costs must be balanced with the End User experience, and it
is recommended to secure communications when the Network environment cannot be trusted. In
other words, when the End User is connected to trusted WLAN Access Points, for example trusted
ISP DSL Boxes, relying on the Radio Layer Security may be recommended if the provided security
is sufficient.

When IPsec security is required, the advantages of using IPsec Transport over Tunnel mode
are:

- Transport mode reduces network processing complexity and cryptographic operations. This
significantly reduces the number of CPU cycles (≈ 25% for cryptographic computation).

- Transport mode makes the system more reactive. It detects interface changes around 2.9
times faster

- Transport mode makes the system more stable and presents 2.5 times less variations for both
down interface detection (TSY S) and stalled communications (TSTALLED) (cf. section 5.3).

- Transport mode results in a Mobility performed around 15% faster (section 5.3). On the
other hand, Tunnel mode with more complex routing configurations may result in stalling
the communication for few seconds (figure 5.2e). MOBIKE shows that specific configurations
can partly overcome this issue, but this is done at the expense of layer / process indepen-
dence. Finally Transport mode optimizes MM for secure offloaded communications.

On the other hand, the main advantage provided by the use of the Tunnel mode is that it can
provide Mobility and Multihoming to applications or transport layers that do not provide such
facilities. As a result, the drawbacks of using the Transport mode are:

- Transport mode does not provide Mobility or Multihoming facilities for the communication.
IPsec Mobility only provides a proper configuration for the IPsec layer.

- Transport mode must be combined with upper layers that are Mobility or Multihoming
aware. This can be done by the transport layer with protocols like SCTP or MPTCP. We
have not seen much deployment of SCTP for the End Users applications, and more commonly,
Mobility or Multihoming is handled by the application itself. This is at least the case for
HTTP and FTP applications.
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As a result, Securing Real Time applications with IPsec would favor the Transport mode over
the Tunnel mode. Most probably, strong Real Time requirements will result in a dedicated IPsec
Transport architecture, mainly to avoid traffic congestion and avoid traffic indirection. Even though
Transport mode optimizes MM compared to the Tunnel mode, to reduce drastically MM, the MN
may anticipate MM operations and prefer Soft Handover to Hard Handover as performed by the
current MOBIKE. In fact, Multihoming relies on system interface detection and requires further
network verifications such as Return Routability Check which stalls the communication around
5.7% longer than Mobility. As a result, the Network Manager is encouraged to perform Mobility
operations rather than relying on failover mechanisms like Multihoming.

During this experimentation, we found out that multiple layers (IPsec, SCTP...) interact with
MM. Although they have been designed to work independently, implementations do have strong
interactions. We found a significant interest in specifying interactions between the different layers,
and our current research includes the design of an IPsec API that would make possible applications
and SCTP to take advantage of IPsec features (mobility, multihoming, authentication...).
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Chapter 6

MOBIKE-X & Offload

6.1 Introduction

Mobile data traffic for Smartphone is expected to be 47 times higher by 2015, which makes up-
grading the current 3G / 4G Radio Access Network (RAN) much too expensive. To overcome this
issue, Mobile Network Operators (MNO) are seeking to transfer this traffic on alternate networks:
WLAN. This is problematic is currently known as Offload and is addressed in this chapter.

RAN and WLAN are two different technologies that have been designed with different goals,
for different use cases and with different economic perspectives. To make it simple, people are
subscribing to RAN access for a set of service provided by the Operator —the main service used
to be voice —, where WLAN access was mainly deployed to provide Internet access for End User
in a given place like a campus, a hotel, a station. Hence, convergence between RAN and WLAN
comes with a few challenges to overcome.

Section 6.2 provides an economic view on Offload. It describes the economic advantages of
offloading RAN traffic to WLAN as well as the new business relations, and new actors the WLAN
access introduces. In fact, it is (almost) impossible for an MNO to cover a whole national area
with WLAN Access Point as they used to do with RAN Access Points. WLAN Access is much
more localized to a place like an airport, or a hotel, which makes MNOs deal with new actors like
WLAN Operators, or WLAN aggregators.

The remaining sections of this chapter are focused on technical aspects, and propose Security
Architectures for Offload. As, we have just seen before, with multiple new actors and WLAN
Operators, the End User of an ISP or Operator can be attached to a WLAN that does not nec-
essarily belong to the ISP the End User has subscribed. In other words, the IP network may not
be trusted and the ISP must provide its end user a secure way to access the service. Because
the End User cannot rely on Layer 2 security, in this chapter we adopted layer 3 security with
IPsec. The architectures we proposed in section 6.3 are Offload Service Architecture (OSA) and
Offload Access Architecture (OAA). OSA consists in securing with IPsec the communication to a
given service. In that sense, it is equivalent to the use of TLS. The main advantage over TLS is
that the communication can be secured according to the level of trust of the network, and that
IPsec with MOBIKE-X can deal with Mobility, Multihoming and Multiple Interfaces. On the other
hand, OAA proposes the traditional Security Gateway architecture that tunnels the traffic to a
Trusted Entry Point of the ISP network. The main advantage of OAA, is that the architecture
can be global to multiple services, whereas OSA is dedicated to a single service. The advantage
is provided at the expense of routing indirection, and a Tunnel overhead. Section 6.3 provides
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an in-depth comparison of these two architectures and defines what is addressed by each of the
architecture.

OSA and OAA are two ways to handle the offloaded traffic, and section 6.4 positions these
architectures toward OSA and OAA. One example of alternative architectures is this with HIP.
Section 6.5 defines how ISPs can take advantage of OSA, OAA to offload their end user traf-
fic. In combination to OSA and OAA, ISPs may also use FWDA, the ForWarD Architecture
that consists in forwarding the End User Traffic that does not require any protection. This section
defines how ISP should combine these three architectures to properly offload their End User Traffic.

Once the ISP architecture has been defined, there are multiple ways to implement it. Sec-
tion 6.6 proposed two alternatives, that are cost efficient. One is based on SCTP and MOBIKE-X,
the other one is only using MOBIKE-X. The two implementations are described in this section.
Performances of those two architectures, in a Mobile, Multihomed, and Multiple Interface environ-
ment are provided in section 6.7. In addition, based on performance measurements, this section
provides inputs for ISPs to deploy their Offload architecture.

This chapter provided inputs for the paper [MPH+12a].

6.2 Offload Economics

6.2.1 Increasing Demand for Mobile Data

With raising popularity of tablets and M2M applications, mobile data increase by 92% per year, and
will reach 6.3 1018 bytes.month−1 by 2015 [Cis11]. Mobile-connected tablets will generate in 2015
as much traffic as the entire global mobile network in 2010 - that is to say, 248 1015 bytes.month−1.
Similarly Machine-to-Machine traffic is expected to reach 295 1015 bytes.month−1 in 2015. As a
result, in 2015, the average Smartphone will generate a traffic of 1.3 109 bytes.month−1, which rep-
resents a 16-fold increase over the 2010 average of 79 106 bytes.month−1. In other words, aggregate
Smartphone traffic in 2015 will be 47 times greater than it is today.

6.2.2 Offloading traffic to WLAN: the only viable solution for ISPs

A large part of the ISPs revenues are provided by Services, and not facing this increasing demand
on traffic represents lost of profits. As such ISPs have to make their infrastructure ready to deal
with that traffic. To overcome this traffic growth, ISPs have three alternatives [LM03, Han10,
RA10, Han09, NL11]:

- Upgrade their infrastructure by building the required number of cells.

- Optimize their infrastructure by improving the current technology and increasing each
cell’s capacity

- Offload the traffic on Alternate Networks such as WiFi.

To deal with foreseen mobile traffic, ISPs have two options 1) Optimize and Upgrade their
infrastructure vs 2) Use an alternate WiFi Network. This section compares the cost of various
scenarios and shows that the RAN infrastructure may not require to be upgraded nor optimized if
52% of the traffic growth can be offloaded, and that deploying indoor WiFi Access Points reduces
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the costs by 4.8 over the Optimize and Upgrade scenario.

Radio access optimization and bandwidth optimization represents the fields to improve the
global efficiency of a cell. Radio access may be optimized by migrating the HSDPA infrastructure
to HSDPA+ and then to LTE. Migration from HSDPA to HSDPA+ increases download bandwidth
from 14.Mbits.s−1 to 21Mbits.s−1, and migration to LTE is expected to increases by up to 4 times
the HSDPA performances. Then, bandwidth optimization may increase the coverage of each cell
which provides flexibility for the ISP to design its network. ISP can reduce the number of cells of
under loaded areas and increase the number of cells of heavy loaded areas. In fact the area of the
old GSM 800MHz is three times larger than with a 2.1GHz cell. However optimization increases
the cell capacity by around 4, and so does not present a long term solution to face the forecast
16fold increase of traffic. According to the forecasts traffic growth, ISP must either optimize and
upgrade their infrastructure or offload the traffic to an alternate network.

[NL11] evaluates the costs of three scenarios to deal with an eightfold traffic increase. [NL11]
assumed that 95% of the labtop where used indoor (resp. 5% outdoor), and that 70% of the
Smartphones and tablets were used indoor (resp. 30% outdoor). In conjunction to the great cost
difference between indoor and outdoor WiFi equipments, [NL11] considered the following scenarios:

LTE-only : Consists in optimizing and upgrading the current ISP infrastructure from HSDPA to
HSDPA+ and then to LTE.

indoor-WiFi : Consists in not upgrading the current HSDPA RAN infrastructure and deploying
enough indoor WiFi Access Points so that 52% of the traffic growth can be offloaded. Indoor
Access Points are localized in sheltered places, which makes the costs of those equipments
very low.

in/outdoor-WiFi : Consists in not upgrading the current HSPD RAN infrastructure and deploying
both outdoor and indoor WiFi Access Points are used to reach the 52% traffic growth to be
offloaded. The number of outdoor WiFi Access Points is defined so there are enough Access
Point to cover the whole HSDPA cell.

The LTE-only scenario requires optimizing the 3G cells, to build new LTE cells and to buy
spectrum. Optimizing does not add opex estimated at 30 000EUR. However, building a new
LTE cell is estimated at 110 000EUR, with an added 31 000EUR for the opex. The spectrum
cost is estimated at 0.15EUR/MHz/pop. With a population per site pop = 9600 and a 20MHz
bandwidth, the cost is estimated at 28000EUR. As a result, the costs of LTE-only scenario are
estimated to 600.000EUR per currently HSDPA existing site.

For indoor-WiFi, Access Points hardware is 120EUR, backhaul Network is estimated to 100EUR,
but can be reduced if the provided by the ISP with a total of 450EUR per year and site. Of course,
multiple sites are required with a total cost of 124 910EUR per currently HSDPA existing site.

The in/outdoor-WiFi scenario consists in also deploying outdoor WiFi Access Point so that with
a mesh organization, the outdoor Access Points provide an coverage equivalent to a 500m HSDPA
cell. Outdoor Wifi Access Points estimated to 6.185EUR. With a mesh organization, 10 Access
Points are required. Hardware costs are around 61 850EUR, installation costs are 15 400EUR and
backhaul Network are 7 950EUR. Similarly backhaul network costs can be reduced if provided
by the ISP. Operational and management costs are estimated to 22 900EUR, with a site rent
estimated to 11 000EUR. Of course this depends of the place. This makes the total cost per 3G
site of in/outdoor-WiFi is 260 317EUR.

As a result, the two offload scenarios indoor-WiFi (resp. in/outdoor scenarios reduces the

145



CHAPTER 6. MOBIKE-X & OFFLOAD

costs by 4.8 (resp. 2.3) times over the optimize and upgrade scenario. Despite a great economical
advantage, offload architecture comes with an added complexity, that ISPs have to overcome so to
take the full advantage provided by the offload architectures.

6.2.3 Offload Complex Environment

Currently, the model for Accessing the Internet has been quite simple. The End User subscribes
to a Mobile Network Operator (MNO). This MNO has deployed its network of 3G / 4G Access
Points, and the End User uses the Access Points of the MNO it has subscribed to. In case the
MNO of subscription cannot provide access, the End User uses another Access Point, and MNOs
have roaming agreements between each other. The number of MNOs is quite restricted (around 4
per countries), so the number of agreements to negotiate is quite small.

With WLAN deployment, Access Points cover smaller areas like a bar, a cafe, an airport, an
hotel. Such coverage provides the access of on a localized area, which is fine while the End User
remains in the same place. This does not match the offload requirements that take advantage
of local coverage, but also need to provide coverage between those places. As a result, we have
Local WLAN operators that are in charge of covering a place, and Aggregators that have multiple
agreements with the multiple local operators providing a huge coverage for End Users and even-
tually MNOs. The Cloud [The] is an example of Local WLAN provider, covering multiple places
all over Europe. In order to extend its coverage its has concluded partnerships with MNO such
as Telenor [Tel], Sprint [Spr] AT&T [ATT] as well as Aggregators like iPass [iPa]. Example of
aggregators are: iPass [iPa], Boingo [Boi], Trustive [Tru], WeRoam [WeR].

Main MNO have started deploying WiFi, and for example Orange is said to have deployed in
2011 30.000 Access Points. However, the major advantage of this ISP is that it may take advantage
of its DSL boxes deployed in its DSL End User customer.

6.2.4 Current Offload Deployments

Verizon Communications chief technology officer Tony Melone announced on TIA 2011, that al-
though VZC is deeply involved in deploying 3G/4G network, it also plans to deploy WiFi networks
in stadiums, campuses so to offload mobile data [Fit11]. Furthermore, the main operators like
AT&Ts have set a partnership with the hotspot provider Boingo Wireless, and most of the Eu-
ropean ISPs (Orange, Free, Vodaphone) have deployed WiFi communities. On the ISPs side,
multiple developments have already been performed. AT&T developed WISPr to switch iPhone
applications from RAN the Hotspots. Deutsche Telecom concluded an agreement with iPass to
benefit from multiple WLANs, KDDI and Ruckus Wireless deployed 10 000 indoors WiFi HotSpots,
Republic Wireless provided a hybrid phones that switches to RAN when no WLAN is available,
and states that users are offloaded in 60% of the time. Offloading mobile data to alternate WiFi
networks represents the most efficient way ISPs can deal with the mobile data increase. However,
ISPs’ mission is to provide services to the EU, and the offload architectures MUST not degrade
nor the Quality of Service, nor the Security of the services provided to the EU. More specifically,
WLAN MAY not be trusted, and in this case, the communication must be secured. This adds an
overhead that should not degrade the Quality of Service. Real Time Applications are especially
sensitive to added overhead which adds latencies.

This part provides alternatives to seamlessly switch from one network to the other, with the
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appropriated security, and with the minimum security overhead.

6.3 Offload Service Architecture (OSA) vs Offload Access Ar-
chitecture (OAA)

When mobile End Users are offloaded from a Radio Access Network (RAN) to a WLAN, there are
two ways to secure the communication. On way is to have End-to-End Security between the MN
and the CN. E2E Security can be provided both by the Tunnel mode and the Transport mode. In
this chapter we consider in that case that if Transport mode can be used, then Transport is used
and not Tunnel. Furthermore, in offload scenarios, the MN is most of the time connected to a Ser-
vice, thus we usually call Offload Service Architecture (OSA) the Architecture that corresponds to
a MN connected to the Service with E2E IPsec protected communication. This, of course, requires
the ISP to have a dedicated IPsec infrastructure for that Service.

Another alternative to secure the offloaded communication is to secure the communications of
the MN until a Security Entry Point in the ISP CORE Network. This architecture is based on
a Security Gateway, and the MN tunnels its traffic to the SG. This is the architecture proposed
by I-WLAN [3GP11]. Contrary to OSA, this architecture does not provide E2E security to the
Service and is not dedicated to a Service. All traffic is tunnelled, and we call this architecture the
Offload Access Architecture (OAA).

This section compares the OSA and the OAA Architecture. Section 6.3.1 compares OSA and
OAA on an architecture point of view. Basically, it describes the differences between securing a
Service to an Access. The architecture comparison should be as independent as possible from the
protocols used. Although, the whole thesis is about IPsec, and I-WLAN is using IPsec, one may
expect IPsec to be the Security protocol used for OSA and OAA. In fact Section 6.3.2 lists the Secu-
rity Requirements of OSA and OAA and explains why IPsec is preferred compared to TLS/DTLS
for example. Then because Mobility, Multihoming and Multiple Interfaces operations are required,
section 6.3.3 explains why MOBIKE is not convenient and why MOBIKE-X is convenient for OSA
and OAA. Section 6.3.4 considers the CPU consumption of the Transport mode and the Tunnel
mode. Overall, the benefits of OSA are mostly load reduction and a better End User experience.
First, OSA offloads the ISP CORE and backhaul Networks, then it uses IPsec Transport mode
instead of Tunnel mode, which removes networking and security overhead. This reduces CPU load
by 20% (cf. section 6.3.4), enhances Mobility and Multihoming operations by about 15%, and
makes the system 2.9 times more reactive for detecting modifications of interfaces (cf part 5). On
the other hand, OSA requires a layer that is able to handle Mobility and Multihoming (like SCTP
or MPTCP), whereas OAA works with regular TCP connections. At last section 6.3.5 explains
why OSA represents a new Service ISPs can propose to third party Service providers, and as such
represents a new business opportunity.

6.3.1 OSA and OAA Architecture Comparison

This section compares our OSA to OAA and more specifically the 3GPP I-WLAN Offload Archi-
tecture [3GP11].

I-WLAN illustrated in figure 6.1a is the proposed 3GPP offload architecture. A Smartphone
connected to a WLAN sets up an IPsec tunnel with the ISP Tunnel Terminating Gateway (TTG)
which decapsulates and forwards the traffic. That is, communications with an ISP service hosted
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(a) OAA (I-WLAN) (b) OSA

Figure 6.1: Description of the OSA and OAA Offload Architectures

application are forwarded to the Gateway GPRS Support Node (GGSN), otherwise Internet com-
munications are forwarded to the Packet Data Gateway (PDG). MM is handled by the MOBIKE
extension of IKEv2 [Ero06].

OSA, as illustrated in figure 6.1b, provides End-to-End security. That is, the communication
is encrypted from the MN to the server hosting the service. That is, there is no Security Gateway.

Compared to the OSA, OAA (I-WLAN) suffers from the following drawbacks:

- Cost overhead for the ISP: The main reason for encrypting and redirecting traffic to a
Security Gateway is to protect this traffic. This traffic overloads the ISP CORE Network,
and ISPs have to deploy VPN concentrators, platforms and licenses. With current 3G RAN
architecture, license costs are derived from Packet Data Protocol (PDP) context activation.
When an MN is being offloaded, this requires a new PDP activation which adds unnecessary
costs for the ISP. There are at least two types of traffic that are unnecessarily redirected to
the Security Gateway: (1) Traffic that is not confidential and (2) traffic already protected like
HTTPS for example. Note also that I-WLAN, in addition to the Security Gateway requires
also a Mobile IP infrastructure [Per10] to move EU from RAN to WLAN.

- Latency overhead: The Security Gateway introduces extra latencies by doing extra pro-
cessing over the packet (e.g. encapsulation, forwarding), and routing indirection. Traffic
tunneling adds network complexity as each packet is forwarded twice in the IP stack. Fur-
thermore, an overhead by at least 20 bytes in IPv4 and 40 bytes in IPv6, is introduced and
leads to extra network load and network latency. Tunneling with IPsec requires extra en-
cryption costs of the inner header. Of course, the smaller the application datagram is, the
higher the cryptographic cost is. Section 6.3.4 evaluates the cost of encrypting the inner IP
header.

- Single point of failure : The Security Gateway where all the traffic is going through is
exposed to DoS or DDoS attacks.

On the other hand, the OSA security approach provides the following advantages:

- Per service granularity: The ISP secures only the services that need to be secured.

- ISP Network load reduction: End-to-End communications are not redirected to the
CORE network of the ISP, and eventually not even on the Access Network nor the backhaul
Network of the ISP. We use SCTP [Ste07] in conjunction of IPsec so that Mobility is handled
by the Terminal, and does not require the ISP to deploy any infrastructure like with Mobile
IP [Per10]. Similarly to OAA, OSA needs a Mobility protocol to move from RAN to WLAN.
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However, IPsec Transport mode cannot be used for moving the traffic on its own and OSA
requires a Mobility protocol as SCTP.

- Security overhead reduction: Avoiding some useless traffic encryption, smaller clusters
of VPN concentrators are necessary for deploying the Security Gateway. Using Transport
mode rather then Tunnel mode increases the capacity of each concentrator by reducing both
the cryptographic and the network load.

- Latency reduction: Both in term of network latency and routing indirection.

- Provision of new services: Security can be considered as a service for third service
providers (see section 6.3.5).

As a result, for a given traffic OSA requires a smaller infrastructure than OAA, and provides a
better EU experience, especially for RTA with small datagram. In this chapter, we compare OSA
and OAA and measure how OSA provides a better EU experience. However, OSA is not expected
to replace OAA, we expect ISPs to deploy OSA for high value Services, and OAA for the remaining
traffic of the EU.

6.3.2 IPsec: the Security Protocol for OSA OAA

In order to choose properly the Security protocol, this section lists General requirements the
protocol must fulfil, followed by specific MM requirements.

- Granularity: With E2E, the traffic that is secured depends on the Service, the level of
trust of the Network, so we must be able to define SP using selectors as IP addresses, ports,
application protocols.

- Security Layer: With E2E, a Service Provider must be able to request the ISP to secure
its traffic over untrusted networks like WLAN. The way the ISP secures the Service should
be transparent for the Service Provider. In that sense TLS, for example, requires to modify
the source code of the application.

- Architecture: E2E and I-WLAN are complementary Architectures. E2E addresses traffic
of a specific service whereas I-WLAN address other traffic. For a given service, an ISP may
start to use I-WLAN, and then evolves to E2E. It is thus recommended to use the same
Security Protocol for E2E as the one used for I-WLAN.

- Authentication: Offload Security should support similar authentication mechanisms from
the WLAN and the RAN, for homogeneous network access. This would provide the oppor-
tunity for an EU to initiate a connection directly from WLAN, rather than from RAN before
being offloaded.

This list can be enriched with the MM Security Requirements of [Dan09a]:

- Mobility: A MN must be able to UPDATE the IP address of its interface.

- Multihoming: WLAN Access Point may not be maintained by the ISP, and so may be
unreliable. The MN must be able to provide alternate IP addresses that may be used if the
running IP address is not reachable anymore.

- Multiple Interfaces: Similarly, the MN may be attached to various WLAN Access Points
simultaneously. The MN should be able to ADD, REMOVE or UPDATE an interface to a
given communication.

Comparing TLS [DR08] / DTLS [Phe08] and IPsec shows that IPsec [KS05] is recommended to
Offload Security. TLS/DTLS does not provide other granularity than a service granularity (port).
In other words, DTLS/TLS provides a secure version of a given service. Moreover TLS/DTLS’s
main drawback is that it requires code modifications, and thus makes ISP Offload service of sec-
tion 6.3.5 hard to be deployed for third party. Furthermore, TLS/DTLS has been designed for
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End-to-End connectivity, and may not fit all requirements of a Security Gateway Architecture. At
last, TLS/DTLS does not provide EAP [ABV+04] framework for authentication. On the other
hand, IPsec defines Security Policies according to various Traffic Selectors that includes subnet-
works, IP addresses, ports, and upper layer protocols. Furthermore it secures the IP layer in the
kernel, which does not impact the service, and thus makes possible an ISP to provide a Secured
Offload for a third party service. IPsec has two modes: the Transport mode for End-to-End con-
nectivity and the Tunnel mode to secure the link between the MN and a Security Gateway. At
last, IPsec [ETS10] provides an EAP framework making authentication mechanisms [HS06, AH06]
on RAN possible on WLAN.

6.3.3 MOBIKE-X: Mobility, Multihoming and Multi Interface Security
Protocol for OSA and OAA

6.3.3.1 MOBIKE Does Not Fulfil MM Requirements

MM Security Requirements are partially handled by IPsec MOBIKE [Ero06] extension. MOBIKE
has been designed for a MN with a single interface and the Tunnel mode. More specifically, Trans-
port mode and Multiple Interfaces are not considered.

MN and the Security Gateway agree to use MOBIKE by exchanging a MOBIKE_SUPPORTED
Notify Payload while establishing the IKE channel. If the MN and the Security Gateway sup-
port MOBIKE, when the MN changes its IP address, it sends the Security Gateway an UP-
DATE_SA_ADDRESSES Notify Payload. When receiving this Payload, the Security Gateway
looks at the IP source of the Packet, and for all Security Associations (SA) associated to the MN,
the Security Gateway changes the outer header IP address of the Tunnel. Note that only the
outer header of the SA is a parameter of the SA, and does not affect the Security Policy. The
Security Policy —Tunneling traffic from my inner IP address —is not changed. Thus, the Security
Association Database is impacted; the Security Policy Database remained unchanged. Note that
changing the outer header, results in tunneling traffic to the Security Gateway from IPOLD and
then from IPNEW . This results in a Mobility operation that is transparent to encapsulated traffic.
This MOBIKE Mobility Hard Handover is used in WLAN and takes advantage of the Tunnel mode.

For Multihoming, the MN informs the Security Gateway with ADDITIONAL_IP4/IP6_ADDRESS
Notify Payload that an Alternate IP address may be used, if the MN is not reachable on the Pri-
mary IP address. If the MN happens to be unreachable, the Security Gateway performs a Return
Routability Check to check the MN is still reachable on the Alternate IP address, and in case of
success, it sends an UPDATE_SA_ADDRESSES to the MN so it updates its SAs.

In order to fulfil MM Requirements, MOBIKE-X must:

- Extend MOBIKE Multihoming and UPDATE_SA_ADDRESSES with the IPsec Transport
mode

- Extend MOBIKE Mobility for Multiple Interfaces for both IPsec Transport and Tunnel
modes. Typically this includes functionalities such as ADDing / REMOVing and UPDATING
an Interface to an existing SA.
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6.3.3.2 MOBIKE-X Makes MOBIKE Fulfil MM Requirements

MOBIKE-X [Dan09b] extends MOBIKE [Ero06] to address MM Requirements of section 6.3.3.
MOBIKE-X [Dan09b] extends MOBIKE on at least two aspects. MM operations are extended to
the Transport mode, and to Multiple Interfaces by using ADD_SA_ADDRESS / REMOVE_SA_ADDRESS
Notify Payload.

Modifications in Transport mode are a bit more complex than with the Tunnel mode because
in Transport mode, the IP address impacts both the SAD and the SPD. Then Mobility with
Transport mode does not result in moving the communication as in Tunnel mode. Mobility with
Transport mode updates the SAD and SPD, but other protocols like SHIM6 [NB09], SCTP [Ste07],
mpTCP [FRH+11] have to move the communication from one interface to the other.

Then, Multiple Interfaces requires ADD, REMOVE and UPDATE operations to specify what
needs to be modified. More specifically, MOBIKE, with a single interface, the UPDATE_SA_ADDRESSES
does not carry any information: the new IP addresses are those in the IP header. With Multiple
Interfaces, we use IP PARAMETER to specify the old and new IP addresses. When not explicitly
provided, MOBIKE-X derives the PARAMETERS so to remain compatible with MOBIKE.

Finally MOBIKE-X offers the following advantages over MOBIKE: (1) MOBIKE-X remains
compatible with MOBIKE Payloads, then (2) MOBIKE-X supports Transport mode and makes
E2E possible. (3) with Multiple Interfaces, MOBIKE-X makes Soft Handover possible which
reduces packet loss over Hard Handover. Furthermore, (4) it supports interface traffic management
as the selectors can be renegotiated.

6.3.4 CPU consumption OSA vs OAA

6.3.4.1 Theoretical Estimation

With IPsec, the traffic can be secured with the Tunnel mode as in I-WLAN or with the Transport
mode as in E2E. This section estimates the gains of CPU consumption provided by the use of Trans-
port instead of Tunnel. In the early design of IPsec, [FS00] recommended to remove the Transport
mode because it was considered as a subset of the Tunnel mode, and added complexity that balance
neither the gain on throughput (≈ 3%) nor the cryptographic overhead (≈ 1% [Hob10]. This was
right as long as communications consider large Ethernet datagram of 1500 bytes, but for smaller IP
datagram of 64−200 bytes as those used for RTAs, the overhead of the Tunnel mode is not any more
negligible. [Hob10] measures for Security Gateways the performance impact of Intel AES New In-
struction (AES-NI) for the cryptographic AES-GCM on Linux. For 60 to 180 bytes RTA payloads,
it estimates that removing the encryption of the 20 bytes of the inner IP header reduces the number
of CPU cycles by 10% to 31% with AES-NI and by 6% to 26% with regular software AES imple-
mentation. Furthermore, with AES-NI, for a 200-byte packet (resp. 1500 bytes), the cryptographic
computation consumes 16% (resp. 35%) of the total computation capacity whereas the remaining
CPU cycles are left to the networking process. Thus, this recent performance measurement paper
shows that using Transport mode significantly improves performances, CPU consumption of RTA.
Similarly, [Gar08] evaluates IPsec performances on the 3G/LTE architectures by considering the
tunnel between the eNobeB and the Radio Node Controller. For large packet size traffic (512 -
1420 bytes), IPsec tunnel overhead is shown negligible. However, for traffic with small payload (64
- 500 bytes), IPsec tunnel overhead reduces performances by 60 − 80%. [Gar08, MS10] measure
the effect of IPsec VPN over the offloaded RTA traffic and measures that as soon as network are
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loaded or the Security Gateway is not highly available, the EU experience is impacted. This may
be counter by prioritizing flows. However, prioritization reduces the Security Gateway impact, but
ISPs have no impact the network congestion between the MN and our service. On the other hand
Transport reduces network latencies and [Hob10, Gar08, MS10] conclude that Transport mode for
RTA significantly reduces CPU consumption, and improves EU experience. Note also that with
specific application IPsec links E2E eases flows prioritization in the ISP CORE Network.

6.3.4.2 Experimental Measurements

This section measures the CPU consumption of different IPsec mode and using different algorytms.
Measurements do not take advanatge of the AES-NI for AES-GCM, as described in [Hob10]. For
encryption, we use the default AES encryption (AES 128 CBC), and null otherwise. For integrity
check we use the default SHA1 with 96 bits. A client download from the server a 1GB file with
various IPsec configurations. The Server is a regular PC, and the client is a SAMSUNG NC10
with Intel(R) Atom(TM) CPU N270 1.60GHz. The reason we choose this client is that it is a
low power consumption device, that are likely to be a MN. However, we do not generalize the
experimental results for other architectures, and other tests must be performed. For all tests we
checked the CPU is heavily loaded. For a MTU of 1000, we have for example, 46% with the
NONE IPsec configuration, 60% for the ESP_TUNNEL IPsec configuration and 58% with the
ESP_TRANSPORT mode. The Operating System are Ubuntu 11.10, and we use the system �time
command to evaluate the kernel time, the user time and the elapsed time.

What we are interested in is to evaluate the IPsec overhead on a communication, then, we want
to isolate the networking part to the encryption part, and compare the Transport to the Tunnel
mode. Figure presents the various measured time ratio with the NONE configuration, that is to
say a regular non IPsec protect download.

Measurements are provided for various MTU, because we wanted to check the IPsec overhead
on small datagram that are usually used on Real Time Applications. The MTU fixes the maxi-
mum size of the packet sent on the wire, which is different from the size of the datagram sent by
the application. In fact the ESP [Ken05b] header adds the SPI (4 Bytes), the Sequence Number
(4 Bytes), padding can be between 0 - 255 Bytes, the pad length (1 Byte) the Next Header (1
Byte), and the Integrity Check Value (12 Bytes in our case). The overhead is around 22 bytes for
the Transport mode. With the Tunnel mode, the outer IP addresses are added which makes the
IPsec overhead to 38 Bytes. Thus, in order to have consistent data with the NONE configuration,
the data payload is derived from the MTU by subtracting 20 Bytes for the NONE, configuration,
20 + 22 = 42 for the Transport mode and 32 + 20 = 52 for the Tunnel mode.
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Figure 6.1: CPU consumption of IPsec protected links over non IPsec pro-
tected links

Figure 6.1 shows the IPsec overhead by measuring for an IPsec communication, the elapsed
time, the user time and the kernel time. Elapsed time is the number of seconds it takes to download
the file. User (resp. System) Time is the number of CPU seconds, the process spends in user mode
(resp. in the kernel). For each IPsec protected communication, figure 6.1c presents the ratio with
the non protected communication.

Elapsed Time represented in figure 6.2a is directly associated with the End User Experience.
It shows a 30% overhead for Data Payload below 600 Bytes, a 50% overhead for Data Payload
between 600 and 1100 Bytes, and a 20% overhead for Data Payload over 1100 Bytes. Because the
overhead does not have a linear relation with the Data Payload, we can think that the overhead
is highly impacted by the how the different processes are scheduled. Since the OS and the TCP
stack has been optimized for a Ethernet MTU of 1500 Bytes, the IPsec overhead can be estimated
between 10% and 20%. When scheduler are not working together, it looks that a process is waiting
for the other, which leads to an overhead up to 60%.

Figure 6.1c shows the System Time, that is the time spent in the Kernel. The Kernel is used to
forge and encrypt the IPsec packet [CB03]. Globally, the smaller the Data Packet is the more time
the process requires system CPU time. One possible explanation is that small packet generates
more interruptions for the kernel to perform some tasks. With IPsec, the process spends between
3 and 2 time more time in the kernel. For packets with Data Payload between 600 and 1100 the
process spends almost no additional time in the Kernel for IPsec protected communications. Note
that for Data Payload between 600 and 1100 Bytes, corresponds to the largest elapsed time in
figure 6.2a, and relatively quite large time in the user land in figure 6.2b. Spending more time in
the user land vs kernel means does not necessarily that takes are performed. More particularly, for
synchronized tasks, one may regularly check the other is performed or not. Il looks that for this
range of Data Payload, tasks in the user land are waiting for tasks performed in the kernel.

From figures 6.2a, 6.2b and 6.1c, we measured that encryption hardly influenced the IPsec
overhead. This means that IPsec cost is mainly due to interruption. Similarly, Tunnel mode does
not provide an additional overhead as expected.

6.3.5 OSA New Business Opportunities

Recent works investigated different behaviours for offloading traffic. [HHK+10, HHS10] consider
social networking applications and offload over ad-hoc networks. [LRL+10] evaluates, based on
live traffic, which download strategy saves battery. WLAN offers higher bandwidth than RAN
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which reduces download time and saves battery. With a 1 hour timer before switching to RAN,
the offloaded MN increases by 29% the traffic downloaded from WLAN. Because WLAN provides
higher bandwidth, this reduces downloading time which results in reducing battery consumption
by 20%.

With the delayed strategy, applications use the WLAN when available. When no WLAN is
available, the application waits for a defined delay, and if no WLAN has been found, then the use
the RAN. Using WLAN with greater bandwidth makes networking faster and results in saving
battery. Simulations based on a one week traffic capture showed that already 65% of the traffic
is already offloaded, with the on-the-spot strategy which saves 55% of the battery. With a 100ms
delay, the gain is only about 2 − 3%, but raising the delay to 1 hour increases the offloaded data
by 29% and saves the battery by 20%.

Similarly to application specific download strategies, our chapter optimizes the security accord-
ing to the application security requirements and the network level of trust. More specifically, RAN
is considered secured, and thus layer 2 security is enough. Switching on a WLAN may require
layer 3 security depending on the level of trust of the network and application security require-
ments —i.e. what data are carried, is the communication secured at layer 4 by TLS for example.
Our chapter considers three ways to secure a communication: (1) An optimized security channel
using IPsec Transport mode, (2) a secure network access (OAA) and (3) no security at all. Since
the network defines how security should be deployed, ISPs are good candidates for such services.
Note that security also includes authentication of the MN. With offload, the ISP may also be able
to authenticate a MN with RAN authentication method on behalf of some IP based services.

6.4 Related Works on IPsec based Architectures

Our chapter measures how the OSA secured communication performs during MM operations on to
offloading traffic. We test communications with SCTP over IPsec, so we position our work toward
IPsec, SCTP & IPsec, HIP and MIP.

6.4.1 IPsec Work

Several works [FS00, SGM07, Hob10, Gar08, MS10] analyse IPsec performances in several VPN
configurations.

6.4.2 Interaction between SCTP / IPsec

Bellovin and al. [BIKS03] describes how IKEv1 establishes an IPsec SA with the multiple IP ad-
dresses of the SCTP association. MOBIKE(-X) is based on IKEv2 and [BIKS03] does not consider
dynamic IP addresses management. Other works [CLW+08, HRUT06, CCC07, URJ04, LB08]
evaluate different ways to secure SCTP communications and design TLS based protocol specific
to SCTP: Secure - SCTP and Secure Socket SCTP. IPsec was rejected because of its 4 bytes
overhead over TLS, leading to less than 3% throughput performance loss and a lack of flexibil-
ity for (1) different chunks (specific to SCTP) and (2) with Multihoming and Dynamic Address
Configuration [SXT+07]. None of the previous work considers performance measurements for MM
operations. Our work provides a generic solution MOBIKE-X, not SCTP specific and measures
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performances over MM operations. Note that MOBIKE-X addresses MM IPsec limitations.

Noriega-Vivasand and al [NVCGRGL11] analyses a Home Node B (HNB) in a I-WLAN/3GPP
architecture, with multiple WLAN/WIMAX/UMTS interfaces that use SCTP over MOBIKE so
to select the best interface. This work differs from ours since (1) the architecture is WLAN and
Tunnel based and (2) multihoming is never used for Soft Handover which is reported as a missing
feature. Note that MOBIKE-X addresses that problem.

6.4.3 Alternative protocols: HIP - SHIM6 - MIP6

Other protocols than SCTP could have been selected. We give a special attention to HIP [MN06,
MNJH08, Gur08] that provides both security with IPsec BEET mode [NM08] and MM facilities.
HIP communications are established between crypto identifiers (Host Identity Tags or HIT). HIT
are bound to an IP address. Since HITs remain fixed during the communication, IP addresses can
be changed / added transparently to the application.

Actually HIP takes advantage of the Tunnel and Transport mode with the BEET mode. MM is
transparent to the applications, and there is no tunnel header. More specifically, HIP splits the IP
layer between Identifiers (HITs) and locator (IP addresses). As, described in [NGH10, GKLN08],
this make possible to handle Mobility Multihoming and Multiple Interfaces transparently to the
transport layer. Moreover this makes also possible to simultaneously handle both IPv4 and IPv6
addresses. Despite this new architecture [HG12] reports multiple HIP experimentations, and show
that HIP deployment can be successful.

However, HIP suffers from two drawbacks: (1) Communications are always IPsec protected and
(2) HIP breaks the current IP oriented communications. Protecting all communications adds an
extra overhead on RAN for example, even though it could be reduced by using ESP_NULL.

HIP breaks the current IP-oriented communication model and the non-incremental character-
istic imposes HIP to be deployed between the MN and the server on the RAN. Thus MOBIKE-X
provides the IPsec characteristics of HIP to the IP oriented communications. On the other hand
MOBIKE-X only considers the IPsec layer, and the MM features of the communication must
be provided by other protocol. SHIM6 and SCTP are very good candidates. We choose SCTP
because our platform is IPv4 only, as most of over infrastructure has not been yet deployed in IPv6.

6.4.4 Alternative Architectures

The OSA architecture differs from traditional Mobile IP based architectures [Per10, Per02] as
the MN is managing the MM operation. This may add complexity at the terminal side, but
experimentations have concluded that using MM aware terminal optimizes the MIP mobility op-
eration [SFA04]. Thus we do not consider it is a major constraint. Then, MIP and MOBIKE-X
do not address the same issue. MIP makes the MN reachable with its Home Address, whereas the
OSA provides MM operation for a given communication. As a result simultaneous mobility of the
nodes is not possible with OSA.

[HJH+10] is quite close to OSA architecture, as specific applications benefit from an HIP end-to-
end communication with security and MM features. The remaining communications are tunneled
to a Security Gateway located in the EU private network rather than in its ISP’s core network.
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As mentioned earlier MM can be performed at different layers [Rat04]. Here IPsec MM is
handled at the IPsec layer, independently to other Mobility / Multihoming protocols. Therefore,
we hope MOBIKE-X can be compatible with most of the Mobile / Multihomed architectures.

6.5 ISP FWDA, OSA and OAA combined Offloading Archi-
tecture

Mobility and Multihoming operations are closely linked to security in the case of offload because
the EU interacts between networks with different levels of trust, and thus security requirements.
Mobility and Multihoming Security Requirements are fulfilled if the EU is able to:

- MM1 Move a communication from RAN to WLAN.

- MM2 Move a communication between WLAN Access Points.

- MM3 Move a communication from WLAN to RAN.

- MM4 Provide Alternate IP addresses to recover from a connection fail over.

These Requirements are fulfilled for each type of traffic and each FWDA, OSA and OAA ar-
chitectures. Furthermore for a given architecture Mobility may be handled by various protocols
(SCTP, MOBIKE(-X), Application) in various ways (Soft Handover, Hard Handover). For each
case, we measure how it impacts the EU experience so that ISP can choose the appropriate way
to offload the EU traffic.

Section 6.5 presents FWDA, OSA and OAA. Then section 4.1.2 presents SCTP which provides
Multihoming and Mobility features at the transport layer. Section 4.6 presents the different IPsec
Multihoming and Mobility extensions: MOBIKE [Ero06] and MOBIKE-X [Dan09b]. Then we
compare and position SCTP, MOBIKE and MOBIKE-X for Mobility and Multihoming handling.

Figure 6.2: ISP Offload Infrastructure combining FWDA, OSA and OAA

FWDA: Public Traffic that does not require any protection, or traffic that is already protected
at upper layers is directly forwarded by the WLAN Access Point to the Internet, and is not redi-
rected on the ISP Network (cf figure 6.2).

OSA: Figure 6.1b presents the Offload Service Architecture. Unlike OOA where all the EU
traffic is offloaded, in OSA, each service offloads its own traffic. Advantages of OSA are that
1) Offload is adapted to the Service, and avoids unnecessary encryption. For example, offloaded
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traffic may be secured with IPsec or not depending on upper layer security such as TLS/DTLS
(HTTPS) or whether the traffic needs or not to be secured. 2) Furthermore OSA provides End-
to-End Security which reduces the load especially reduces load on ISP and backhaul network. In
fact, by securing traffic from the EU to the Service with a direct communication avoids going
through the ISP CORE and backhaul network. The EU may benefit from the WLAN Access Point
it is attached to. Moreover OSA 3) reduces the ISP Security Architecture and improves the EU
experience by avoiding Security Gateway. With End-to-End communications, ISP does not have
to deploy Security Gateways, which introduced latency and routing indirection for EU traffic. At
last 4) OSA reduces the Security Overhead by not only reducing the traffic that needs to be IPsec
secured, but also by using Transport mode rather than the Tunnel mode. In fact, End-to-End
communication makes possible the use of Transport mode, which reduces the number of bytes to
be encrypted, as well as the networking overhead required by encapsulation.

OOA: Figure 6.1a presents I-WLAN [3GP11] as an example of Offload Access Architecture.
The current model is that EU trusts its ISP so that - with the exception of legal interception
- none is likely to intercept the EU traffic from its terminal to the Internet. The RAN Security
architecture thus secures the Radio Access Link Layer from the EU Terminal to the eNodeB. Layer
2 security is sufficient since the eNodeB is a trusted entry point to the trusted ISP network. On
the other hand, when the EU is offloaded, WLAN Acces point may not belong to the ISP, and thus
may be not trusted. The EU is attached to the ISP Network via a Security Gateway, at layer 3.
I-WLAN [3GP11] in figure 6.1a establishes an Secure IPsec VPN between the EU and the Security
Gateway, thus providing a Secure Access to the EU. Then the EU uses the MOBIKE extension of
IKEv2 [Ero06] to move from the tunnel from WLAN Access Points, and MIP to move from the
RAN to WLAN.

In I-WLAN, the Security Gateway is called Tunnel Terminating Gateway (TTG). Communica-
tions with an ISP service hosted application are forwarded to the Gateway GPRS Support Node
(GGSN), otherwise Internet communications are forwarded to the Packet Data Gateway (PDG).

I-WLAN is the standardized Offload architecture. In this chapter, we propose OAA which is
similar to I-WLAN, except that we uses SCTP as the Mobility protocol to move from RAN to
WLAN, and MOBIKE-X to extend MOBIKE features. A Mobility protocol other than MOBIKE
is required because MOBIKE(-X) only works for IPsec protected communication. The advantage
of using SCTP is that ISP don’t have to deploy Home Agent required by a MIP infrastructure.

6.6 Deploying FWDA, OSA and OAA

The ISP Offload Infrastructure defines 3 different classes of traffic and associates each class to an
offload architectures. FWDA is associated to traffic without any security requirements, OSA for
traffic that provides End-to-End security, and OOA that tunnels all remaining traffic that needs
to be protected (cf figure 6.2). When possible, Mobility is handled with MOBIKE(-X). However
MOBIKE(-X) provides Mobility only for IPsec with Tunnel mode protected links, and so cannot
deal with FWD and OSA. SCTP can deal with Mobility, and section 6.6.1 how FWDA, OSA and
OAA can be deployed by combining SCTP and MOBIKE(-X). On the other hand, there may be
multiple reasons an ISP does not want to deploy SCTP on its EU Terminal or on its Application.
In that latter case, we detail in section 6.6.2, how ISP can still provide an infrastructure based on
MOBIKE(-X), and/or application ability to deal with Mobility. The performance measurements
of the two alternatives in section 6.7 will provide inputs for ISPs to decide whether SCTP worth
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to be deployed or not. In both sections 6.6.1 and 6.6.2, we define for FWDA, OSA and OAA how
the EU moves between RAN and WLAN as well as between WLAN Access Points.

6.6.1 Deploying FWDA, OSA and OAA with SCTP & MOBIKE(-X)

This section supposes the ISP has deployed SCTP and MOBIKE(-X), and details how FWDA,
OSA and OAA can be deployed.

While connected on the RAN, SCTP Mobility and Multihoming features are not used. SCTP
Multiple Interface ability is used to associate the IP address acquired on the RAN and the WLAN
to a given connection. As represented in figure 4.1, the EU configures the new Interfaces (authenti-
cation, eventually IPsec IKE negotiation...) before sending an ASCONF ADD IP Payload. When
the EU is connected through both IPRAN and IPWLAN , it defines its Primary Address to perform
a Soft Handover. The EU may choose to REMOVE the old IP address, however, we recommend
to keep IPRAN when being offloaded and eventually REMOVEs IPWLAN when it is not reachable
any more. SCTP Multihoming feature is used when the EU is connected on both IPRAN , and
one or multiple IP i

WLAN . When none of IP i
WLAN are reachable anymore, then SCTP is used to

switch on IPRAN

The way Mobility is handled between various WLAN Access Points varies according to the
Offload Architecture

FWDA: Forwards traffic on the Internet. SCTP is used to move the traffic from IPOLD
WLAN to

IPNEW
WLAN with Soft Handover. SCTP Multihoming is also used to prevent breaking the communi-

cation if a WLAN Access Point fails. If the EU has only one WLAN Interface, to avoid breaking
the SCTP connection, it may performs two Soft Handover from IPOLD

WLAN to IPRAN , then ADD
IPNEW

WLAN with an ASCONF before moving again from IPRAN to IPNEW
WLAN .

OSA: provides End-to-End IPsec Security using Transport mode. With the Transport mode,
MOBIKE-X Mobility features must be used in conjunction of SCTP. More specifically, MOBIKE-X
is not used to move the communication, but only to configure IPsec so that IPNEW

WLAN is IPsec ready
to protect the communication on IPNEW

WLAN . Moving the communication from IPOLD
WLAN to IPNEW

WLAN

is performed by SCTP Soft Handover. MOBIKE-X Multiple Interface feature is used to prepare
the Soft Handover and avoid blocking the communication (cf figure 4.11b), and Multihoming is
used in case the Primary Address does not work, and Alternate IP address is used. Multihoming
works for the IKEv2 application, otherwise, with TRANSPORT, SCTP Multihoming must be used
to move the communication from Primary to the Alternate Address.

OAA: The communication is Tunneled to the Security Gateway, and MOBIKE is used to
move within the WLAN with Hard Handover. MOBIKE-X makes Soft Handover possible as pre-
sented in figure 4.11b, which improves the EU experience, by reducing the number of lost packets.
MOBIKE(-X) Multihoming works as with OSA, but with the Tunnel mode, both IKEv2 and the
communication are moved to the Alternate Address. MOBIKE(-X) Multihoming is only used with
the WLAN, the Alternate IP address is on the RAN, then SCTP Multihoming is used to switch
from WLAN to RAN.
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6.6.2 Deploying FWDA, OSA and OAA with only MOBIKE(-X)

This section defines how FWDA, OSA and OAA can be deployed without SCTP.

In section 6.6.1 SCTP is used to switch from RAN to WLAN. Without SCTP, RAN to
WLAN and WLAN to RAN Mobility relies on other mechanism. Most applications like FT-
P/HTTP, have session resumption mechanisms to avoids re-downloading a whole file when a
connection is restarted with first-byte-pos options. Similarly TLS provides also Session Resump-
tion [RRDO10, KES06, SCAC09] mechanisms. The main difference with SCTP is that application
performs Hard Handover, whereas SCTP performs Soft Handover. Hard Handover results in longer
interruption and more packets lost. Then SCTP provides the Mobility and Multihoming framework
for all applications whereas without SCTP each application has to deal with its own session re-
sumption mechanism. However, most EU applications have been designed to be robust to network
failure, and interrupted connectivity: HTTP, HTTPS, FTP have session resumption mechanisms,
Peer-to-peer Files download don’t block when a peer is not reachable, downloading time during
Web Browsing is very short, Video Streaming buffers up to a few seconds of videos. As a result,
only few real time applications like games, chat, VoIP may be impacted by a small interruption.

FWDA: Mobility and Multihoming is completely handled by applications. If an application
cannot handle them, then it should be offloaded with OAA or OSA with Tunnel mode.

OSA: With Transport mode, Mobility must be handled by the application. Thus, moving
from RAN to WLAN is performed as in figure 6.3a, except that Transport mode is used instead of
Tunnel. However, if the application cannot provide Mobility features, the ISP may use OSA with
Tunnel mode. This adds a Security overhead, but still provide End-to-End connectivity as well as
Mobility and Multihoming features on WLAN. In that case it is recommended that IPRAN may
be globally routable, as detailed for OAA.

OAA: OAA tunnels traffic to a Security Gateway. There are three types of traffic: 1) traf-
fic addressed to mobility aware application that requires to be encrypted 2) traffic addressed to
applications that are not mobility aware application that requires to be encrypted and 3) traffic
of FWDA of applications that are not mobility aware. Figure 6.2 presents the RAN to WLAN
Mobility with OAA, indicating between horizontal lines and with a yellow background the time the
communication is stalled. With 1) application moves from RAN to WLAN and WLAN to RAN,
and exchanges are illustrated in figure 6.3a. On WLAN Mobility is handled with MOBIKE(-X) as
in section 6.6.1 (cf figure 4.11a and 4.11b).

For 2) and 3) MOBIKE-X must be used to move the communication between RAN and WLAN.
With 3), the Tunnel may not be encrypted, IPsec is only used to provide Mobility and Multihom-
ing. To move from RAN to WLAN, the main idea is to establish an IPsec Tunnel and then use
MOBIKE-X to move to the WLAN. The EU modifies its SPD from BYPASS to PROTECT for
the given traffic, and initiates an IKE negotiation. The Security Gateway may be configured
with a light authentication, since the EU has been authenticated by the RAN. Then the Security
Gateway must configure the ISP CORE network to become a border router for the IPRAN . In
fact, the EU encapsulates between IPRAN and IPSECURITY GATEWAY the traffic from IPRAN

to IPSERV ER. IPRAN and IPSERV ER are designated as Traffic Selectors (TS). The Security
Gateway decapsulates the traffic and sends it to IPSERV ER on the Internet. In return, when the
Server responds to IPRAN , the IP datagram must be routed to the Security Gateway so that it
can encapsulates it back to the EU. Once the IKEv2 negotiation is finished and the SA config-
ured, the EU can use MOBIKE(-X) Multihoming / Mobility mechanisms to move on WLAN. On
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WLAN, Traffic Selectors are not modified, only the Tunnel outer IP addresses are modified. This
scenario is presented in figure 6.2b. Note that IPRAN must be routable and that the connec-
tion is stalled during the whole IKEv2 negotiation. On the other hand MOBIKE can be used for
that scenario, even though MOBIKE-X may be preferred for Multiple Interface and Soft Handover.

Figure 6.2c shows how to take advantage of MOBIKE-X to avoid stalling the communication
during the IKEv2 negotiation. MOBIKE-X does not require any Routing configuration in the ISP
Network, nor IPRAN to be globally routable. However, using non globally routable IPRAN results
in breaking the connection and rely on application Mobility or recovery mechanisms. The main
idea is to use MOBIKE-X to negotiate the tunnel with an non routable IP address as the inner
IP address, than, to change the inner IP addresses —TS. Once the tunnel is configured with the
proper inner IP addresses, the EU proceeds to the regular MOBIKE(-X) Mobility by changing the
outer IP addresses.

The stalled time will be in the order of a 3RTT , one RTT to change the Traffic Selectors on
the Security Gateway and on the EU, and two RTT to restablish the connection between the EU
the Server. Note that Mobility between RAN and WLAN is always Hard Handover.

WLAN to RAN Mobility is performed using MOBIKE(-X) as if RAN required to be secured.
The EU can either re-negotiate the SA, and remove the encryption in case of another offload.
The EU can also choose to DELETE the SA and provide direct connectivity between the inner
IP address and IPSERV ER. MOBIKE-X Inner mobility may be required to change the IPWLAN

inner IP address to IPRAN .
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(a) Application Mobility

160



Section 6.7. Performance Measurements

���������������������	��
��

����������������������
���������
������

������������������������������������
������������������	�����������������
�������
������
�	����������������������

������������	
�������	��
���������	
��

��

	������������������ ��������������������

�����������������!!��	�	�"�����	�"���	�"

	��#���������$�����������������������
	���%���	�����		�"����������������������

��&�'()��*��	�+����������������������

�&,-.���)	���-����+/�!!��������������
�������������!!�	��#��	�"�����$������
����������������	�	�"%���	�����		�"������

������������������&�'()����0+�������
�����������������&,-.���)	���-����+/
������������������������������������
���������1��2�����	��2���3�(���4�3�
������.������2����1��� �������

������������� �
������������������������������������
����������
%�������5�����65����������

����	���	�"��2���5����������
�������
��

����

�������������������������	��
����

	��#�&������)	�)�����		�	+/�!!�
������������������!!�	��#�&+/

����������2��������
7������	���	�"

�2�6�8��
����	���	�"��2���5����������

7�������
�����

������-115�������7�����������������

(b) MOBIKE
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(c) MOBIKE-X

Figure 6.2: Messages Exchanges for OAA RAN to WLAN Mobility

6.7 Performance Measurements

Section 6.6 describes various ways to deploy FWDA, OSA and OAA by considering either SCTP
traffic or non SCTP traffic. On the WLAN, when the connection is IPsec protected with the Tunnel
mode, OAA uses the standard MOBIKE(-X) for Mobility. OSA with Transport mode combines
MOBIKE(-X) with SCTP, or with application Mobility or Session Resumption mechanisms. The
main issue comes with connections that are not IPsec protected. In that case, standard MOBIKE(-
X) is not supposed to be used. Section 6.6.1 describes how to deploy FWDA, OSA and OOA with
SCTP and section 6.6.2 describes how FWDA, OSA and OAA can be deployed without SCTP,
with only MOBIKE(-X).

This section presents the platform we use to measure how the various Mobility mechanisms
affect the connectivity. Then, given how the EU experience is affected by the various WLAN
Mobility, we provide recommendations for deploying progressively the ISP Offload infrastructure
in section 6.7.3. This is followed in section 6.7.4 by recommendations on the protocols to use to
move between RAN and WLAN, and whether Mobility should be performed by the application or
by SCTP.

6.7.1 Experimental Platform

Our experimental platform is composed of a EU with Multiple Interface running on Fedora 17 Linux
OS 2.6.38-rc7. SCTP implementation is LKSCTP-2.6.28-1.0.10 [LKS] patched with fastmsctp-
2.6.34-rc5.patch to enable ASCONF. IKEv2 implementation uses strongSwan 4.3 [str] and imple-
mented MOBIKE-X [Dan09b] on this version. All tests are performed with HTTP(S) traffic over
Ethernet.

Measurements are performed on Ethernet because, TCP/ SCTP have been configured for this
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CHAPTER 6. MOBIKE-X & OFFLOAD

Network. We provide realistic estimation for EU connected on WLAN, and RAN by measuring
FTP download on various Networks over a day. Public ISP WLAN (Public HotSpot, RTT =
15ms, Data BR = 1021.30 kbs−1) Home WLAN with 1Mbits (HWLAN1Mb, RTT = 2.14ms,
Data BR = 10199.42 kbs−1) and Home WLAN with 10 Mbits (HWLAN10Mb, RTT = 9.466ms,
Data BR = 2131.87 kbs−1). On our LabP latformEthernet RTT = 0.355ms, Data BR =
34715.04 kbs−1.

Measurements show statistical results, and present median as well as quartiles.

6.7.2 Experimental Mobility Measurements
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(b) MOBIKE Mobility
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(d) MOBIKE-X Mobility

Figure 6.2: Experimental Measurements for WLAN Mobility with different
protocols (SCTP, MOBIKE, MOBIKE-X) and different configurations (Mobility,
Multihoming)

FWD: is associated to HTTPS traffic as well as HTTP traffic with no security requirements.
SCTP Mobility is performed with a Multihomed EU by putting down the Primary Interface. The
EU discovers the Primary Interface is down, and switches to the Alternate Interface. Figure 6.3a
sums up the results, and shows that SCTP interrupts the HTTP communication for 1.94 s. SCTP
Multihoming does not require extra messages, thus this time is more or less the same on Public
HotSpot. Figure 6.3a also shows that TLS interacts with SCTP, which results in an 7.01 s interrup-
tion. Finally, Mobility handled with SCTP impacts the EU experience for Real Time Application.
Then LKSCTP and TLS interactions shows that porting application to SCTP is not straight for-
ward and that resources must be dedicated for that task.
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OSA: Figure 6.2d shows that Mobility with MOBIKE-X and Transport mode is independent
from TLS or the use of non encrypted IPsec. On the other hand SCTP and IPsec results in a 20 s
interruption compared to a 2.57 s with TCP. With the Transport HTTP and HTTPS re-initiates
the TCP connection. Comparing the HTTP/HTTPS connection re-establishment to SCTP Mo-
bility shows a difference of 2.57− 1.94 = 0.63 s in favor of SCTP.

OAA: Figures 6.3b (resp. 6.2c) measures MOBIKE Mobility (resp. Multihoming) impact on
the communication. Mobility is performed by changing the IP address the running Interface, as if
the EU had a single Interface. Multihoming requires Interface down detection before switching to
the Alternate Address. Figures 6.3b and 6.2c show that Mobility is neither impacted by the use of
TLS nor the use of null encryption Tunnel. However, SCTP interrupts the communication around
7.02 s compared to 3.72 s with TCP. In fact SCTP and Tunnel interact with the Kernel routing
policies. Figure 6.2c shows that Multihoming performs better than Mobility, probably because
Multihoming orders Kernel events to prepare the Mobility.

6.7.3 Recommendation for Offload Deployment

This section compares the EU experience on WLAN Mobility over FWDA, OSA or OAA, and
provides deployment strategies for the ISP Offload Infrastructure.

FWDA: From figure 6.2d and figure 6.3a SCTP Mobility takes ≈ 1.94 s for non TLS traffic.
For TLS traffic, session resumption would add 3 RTT , and with a measured RTT = 0.015 s on
Public HotSpot, SCTP Mobility for TLS is ≈ 2 s.

OSA: MOBIKE-X and Transport Mobility takes ≈ 2.7 s. For MOBIKE(-X) one can eventually
add 1 or 2 RTT depending whether Return Routability Check is performed or not. This adds a 40%
increase over FWDA, but MOBIKE-X Multiple Interface ability may reduce even further this delay.

OAA: MOBIKE(-X) and Tunnel Mobility takes ≈ 3.8 s, adding 100% over FWDA which
affects the EU experience. This considers neither routing indirection nor latency introduced by
the Security Gateway.

Given how the EU is affected by the various Offload Architecture, we recommend ISPs to
firstly deploy FWDA for all TLS and traffic with no protection requirements. Secondly to deploy
OSA for service with Real Time requirements, and OAA for the remaining traffic. Note those
recommendations match the recommendation to optimize costs deployment of the architecture.
In the second phase, ISP may improve the EU experience by taking advantage of MOBIKE-X
Multiple Interface and deploy Soft Handover. In fact measurements indicate that interruption
mostly results from OS Network Layers configuration rather than Network latencies.

6.7.4 Recommendation on Mobility between RAN and WLAN

This section compares the various ways to move between RAN and WLAN. Then it provides rec-
ommendations on whether Mobility may use SCTP, MOBIKE or MOBIKE(-X) only architecture.

FWDA: SCTP interrupts the communication around 2 s for both non-TLS and TLS traffic.
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OSA: MOBIKE-X and Transport mode interrupts the communication for 1 s with SCTP and
2.74 when the application handles the Mobility.

OAA: SCTP presents similar performances in OAA and FWDA. With MOBIKE we estimate
IKE negotiation TIKE ≈ 60ms with the PSK authentication. PSK authentication is very fast and
including TIKE does not affect MOBIKE Mobility which is ≈ 3.8 s. To avoid TIKE , MOBIKE-X
must modify inner IP address first. This does not affect the Network Layers of the OS as the
outer IP addresses are not modified. In fact only IPsec databases are updated, which should add a
1−2 s delay, leading to a 5.5 s interruption. MOBIKE, even though it includes an IKE negotiation,
provides faster Mobility.

Thus, the first recommendation is to keep the architecture as simple as possible by using
dedicated protocols or limiting Network Layer modifications. If SCTP is available then using
SCTP is recommended, otherwise MOBIKE with fast authentication is recommended (like PSK).
If there are specific needs for the application, or the authentication cannot use PSK, then MOBIKE-
X should be used. In a second phase, ISPs may take advantage of MOBIKE-X Soft Handover, and
inner mobility.

6.7.5 Recommendations on Mobility with SCTP vs Application

This section discusses whether Mobility should be handled by SCTP or by the application itself.
SCTP Mobility is around 2 s for HTTP connection, and around 2.73 s for HTTP with MOBIKE-

X TRANSPORT. SCTP provides a 30% advantage over application. For example wget can be con-
figured for HTTP, HTTPS and FTP with the –read-timeout option that defines, during a download,
the idle after which the TCP connection breaks, –tries specify the number of tries before reporting
a failed download. –wait defines the seconds between retires and –continue avoids restarting the
download from begining. Every timers are configured in second, with MOBIKE-X, Mobility takes
2.73 s, but we may expect slightly better performances with tunned client. However, SCTP advan-
tage must be balanced with the fact that HTTP(S)/FTP clients are very easily configured, and
that slight modifications can generate long delays with SCTP (7 s in TLS, 20 s with TRANSPORT,
routing interaction with Tunnel).

Thus recommendations are to configured Mobility at the application layer for most ISPs appli-
cations, and consider SCTP when the EU experience is impacted by Mobility.

6.7.6 RAN to WLAN Mobility
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Figure 6.3: Experimental Measurements for RAN to WLAN Mobility
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Figure 6.3 shows Interruption Time when moving from non secured communication on a RAN
to a WLAN where the communication is secured with IPsec. Although links are different, the time
the communication is interrupted is around 2 times smaller than in WLAN mobility with SCTP.

6.8 Conclusion

This chapter describes the ISP Offload Infrastructure. Contrary to I-WLAN [3GP11] where ALL
EU traffic is tunnelled to a Security Gateway, the ISP Offload Infrastructure defines 3 types of
traffic which are associated to a specific and dedicated Offload Architecture. Traffic that does not
require any security, or that is already protected by other layers like TLS is associated to FWDA
and is forwarded directly on the Internet. Traffic for specific ISP hosted services is associated to
OSA that provides End-to-End security with Transport mode. The remaining traffic is tunnelled
to the Security Gateway with IPsec Tunnel mode.

By providing an adapted Offload Architecture to each type of traffic, we expect to reduce
drastically the infrastructure ISPs have to deploy, as well as to improve the EU experience. OSA
and OAA are IPsec based architectures and so require the ISP to deploy an IPsec infrastructure.
The IPsec infrastructure can handle Mobility with MOBIKE(-X), but other Mobility protocols are
required when the communication is not protected with the Tunnel mode. This chapter considers
deploying OSA, OAA and FWDA by either using SCTP or by relying on the application session
resumption mechanisms.

For all possible scenarios we measured how Mobility interrupts the communication and may
affect this EU experience, and balance it with the cost of porting application to SCTP.

We find out that ISPs may deploy in a first phase FWDA. Then ISP should deploy OAA and
OSA. To ease OSA deployment, ISPs may start by deploying OSA with the Tunnel mode which
makes MOBIKE(-X) deal with Mobility on the WLAN. To move from RAN to WLAN, MOBIKE
may also be used at first. This would correspond to a first deployment version of the ISP Of-
fload Infrastructure. For version 2, we recommend ISPs decide to port applications to SCTP or to
configure properly the session resumption mechanisms so that OSA can migrate from Tunnel to
Transport mode and do not rely on MOBIKE for Mobility between RAN and WLAN. For version
3, we recommend to optimize MOBIKE(-X) so perform Soft Handover. For version 4, we recom-
mend ISP to focus on the RAN to WLAN optimization with MOBIKE-X for application that are
not ported to SCTP.

Future work includes interactions between IPsec and SCTP, especially for the OSA architecture,
SCTP and MOBIKE-(X) performs Mobility simultaneously for IPsec and SCTP. We believe SCTP
may take advantage of IPsec signaling, using a cross layer communication. This would require the
definition of an IPsec API.
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Conclusion

Designing a Resolving Platform for DNSSEC

This thesis is focused on enhancing security for End Users in a Mobile, Multihomed, and Multiple
Interfaces environment.

The first part of this thesis provides a Resolving Platform architecture. This enables ISP to
provide their End Users a Secure Naming Resolution Service. We started our work with experi-
mental measurements to evaluate the cost of migrating a DNS resolving platform to DNSSEC. By
measuring the CPU consumptions of different implementations we show that DNSSEC requires,
depending on the implementations, between 169% and 500% more resources for the Resolving
platforms and 130% more resources for Authoritative Platforms. ISPs can hardly afford moving
from a 100 node Resolution Platform to a 500 node Resolution Platform. Such an increase of the
number of nodes represents too much Operation and Management (OAM), power supply or space
issues. Then, we design a platform that optimizes the Resolving Platform for DNSSEC.

In order to optimize the resources of the platform, we attempt to limit DNS(SEC) operations
that require a lot of CPU. We identify two major operations : DNS cache lookups and DNSSEC
Resolutions. Current DNS Resolution platforms are composed of a load balancer that splits the
traffic between the nodes by XORing the IP addresses of the DNS query. Each node of the platform
resolves the received DNS query. Such load balancers distribute uniformly the load between the
nodes, but the same FQDN may be sent on different nodes, thus triggering parallel resolutions.

At first, we estimate how splitting the DNS(SEC) traffic between the nodes can significantly re-
duce the load of the platform. We used a load balancer that splits the DNS(SEC) traffic by hashing
the FQDN and showed that globally the DNSSEC Resolution Platform requires 30% fewer nodes,
than with the current architecture. On the other hand, using such a load balancer, results in a very
non uniform distribution of the resources among the nodes of the platform. More specifically, some
nodes receive more queries or perform more resolutions than the others. As a result FQDN load
balancing reduces the necessary resources, but the remaining challenge is to make the resources
uniformly distributed among the nodes.

Resulting in a uniformly distribution of the resources can be done in two ways: one way is
to define specific rules for the load balancer, that result in uniformly distributing the resources
between the nodes. With this solution, all the intelligence is placed in the load balancer, and
the nodes keep on responding to the queries that are sent to them. This alternative has been
developed in [MHS+a], but not in this thesis. In this thesis, we adopted the opposite view, that
is to say, leaving the load balancer unchanged, and placing the intelligence on the nodes of the
Resolving platform. With this architecture, the nodes are cooperating. We based the cooperation
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on Distributed Hash Table (DHT) mechanisms like Pastry. Our motivation for this architecture
is mainly that load balancers are sensible equipments under heavy load which makes operational
teams reluctant to modify the load balancers. Furthermore, modifying the nodes provides much
flexibility for innovation, and we could benefit from multiple mechanisms that have been already
elaborated. We evaluated various Pastry architectures for our platform and showed that pro-active
cache sharing architecture reduces the number of nodes by more than 3.5.

The pro-active mechanism takes advantage of the Zipf distribution of the FQDNs’ popularity.
More specifically, the 2000 most popular FQDNs correspond to 70% of the traffic. Thus, popu-
lating the cache of the nodes with the most popular FQDNs, results in increasing the Cache Hit
Rate, and in distributing the load of the DNS queries between the nodes. In fact, for these queries
cached, the DNS query is handled by the receiving node and not necessarily its Responsible Node.
This results in uniformly distribute the load associated these cached most popular FQDNS, while
still avoiding parallel resolutions.

However, with the proactive mechanism, the DHT node considers a common cache for the
FQDNs that are pro-actively cached and the FQDNs the node is responsible for. The number of
FQDNs the DHT node is responsible for is quite large, thus increasing the resources for a cache
lookup. A first optimization would be to introduce some levels of caches. A first cache would only
contain the most popular FQDNs —that is to say the pro-actively cached FQDNs —, a second
cache would contain the FQDNs of the DHT. However, this adds complexity to the DHT process.
In order to keep the DHT process simple, and to take advantage of hardware acceleration, we
looked how to extract the proactive mechanism from the DHT process. This makes possible to
provide a light process that can be placed in the front end of the platform, dealing with 70%
of the traffic. This leads to the PREFETCHX architecture. We show with simulations that
the performance could at least be improved by 4 over the traditional DNS Resolution Platform
architecture. Furthermore, this architecture is expected to improve much more the performances
by taking advantage of the hardware acceleration. As a result, it is the most promising architecture.

MOBIKE-X: Seamless IPsec Security in a Mobile, Multihomed
and Multiple Interfaces environment

The second part of this thesis is focused on providing mechanisms so End Users can keep their
IPsec protected communication in a Mobile, Multihomed and Multiple Interface environment.

At first, we identified how Mobility Multihoming and Multiple Interfaces impact IPsec con-
figuration. Then, we positioned MOBIKE, the currently defined protocol that deals with IPsec
Mobility and Multihoming. MOBIKE considers mobile nodes with a single interface, and only
considers the IPsec Tunnel mode. We designed MOBIKE-X to overcome these restrictions. Then
we implemented and measured the performances of MOBIKE-X in a lab environment. Because
IPsec mobility and the Transport mode require a protocol that handles the mobility of the com-
munication in combination with IPsec mobility, we used SCTP.

Tests with SCTP show that SCTP Mobility over IPsec protected links take 666% more delay.
Then comparison between using Transport and Tunnel mode shows that securing Real Time appli-
cations with IPsec would favor the Transport mode over the Tunnel mode. Most probably, strong
Real Time requirements will result in a dedicated IPsec Transport architecture, mainly to avoid
traffic congestion and avoid traffic indirection. Transport mode reduces CPU load by 20%, en-
hances Mobility and Multihoming operations by about 15%, and makes the system 2.9 times more
reactive for detecting modifications of interfaces. Transport mode optimizes Mobility Multihoming
and Multiple Interfaces compared to the Tunnel mode. However, to reduce drastically Mobility
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Multihoming and Multiple Interfaces, the MN may anticipate its operations and prefer Soft Han-
dover to Hard Handover as performed by the current MOBIKE. In fact, Multihoming relies on
system interface detection and requires further network verifications such as Return Routability
Check which stalls the communication around 5.7% longer than Mobility. As a result, the Network
Manager is encouraged to perform Mobility operations rather than relying on failover mechanisms
like Multihoming.

To face the huge demand on mobile traffic, ISPs are looking to offload traffic of their Radio
Access Network to WLAN. Currently I-WLAN is the proposed offload architecture by 3GPP which
tunnels the traffic to a Security Gateway.

Thus, we propose for ISPs an ISP Offload Infrastructure which minimizes the infrastructure
cost deployment, and which can be deployed in a very short term. The ISP Offload Infrastruc-
ture classifies the EU traffic into 3 distinct classes and assigns each class a specific and adapted
offload architecture: FoWarD Architecture (FWDA), Offload Service Architecture (OSA) and Of-
fload Access Architecture (OAA). This thesis shows how to deploy each Offload Architecture by
using SCTP in conjunction to MOBIKE(-X) or only MOBIKE(-X). Then we measure how each
Offload Architecture may affect the EU experience, and provide recommendation on how to deploy
and implement the ISP Offload Infrastructure

Perspectives

This thesis focused its effort on two areas, provides significant results, but a lot of work remain
to make these effort deployed on operational networks. Here are some identified topic that worth
being investigated:

Hash Functions for FQDNs: In this thesis we did not pay much attention to the hash
functions that are either used to split the DNS traffic between the nodes of the platform, or to
associate a Responsible Node to a FQDN. In fact we mostly considered cryptographic hash func-
tions, because they provide a good avalanche effect. However these hash functions may not be
very efficient for our purpose, and may require too much resources. We already pointed out that
using XOR or SHA1 on the IP addresses of the DNS query results in similar distribution of the
load among the nodes of the platform. The advantage of XOR is that is requires less resource than
SHA1. As such, we believe work should be done to measure, compare and define a proper hash
function for the DNS traffic. We are looking to a hash function that is very fast and uniformly
spread the FQDNs between the nodes. Here we are not interested in the number of queries and
resolutions associated to each FQDNs.

Light Pastry for Small Managed Networks: Similarly, we re-used the original version of
Pastry, but functions, like routing protocol, are not involved on our platform. We encountered
some performance issues with our Pastry implementation, and believe that a Light Pastry protocol
may be designed for the Small Managed Network. From this thesis, we have identified the two
following points: (1) removing unnecessary functions —like routing —, and (2) improve failover
recovery mechanisms. However, re-designing a Light Pastry protocol would require to also recon-
sider the Operations and Management’s requirements.

Light prefetching daemons Similarly to an adapted Pastry protocol, some work also needs to
be done to finalize the prefetching mechanisms. Implementation work should be done to optimize
the prefetching processes that may run on a Network Hardware Acceleration Card. Optimization
should consider the card architecture. If one supposes the card has multiple cores, one may consider
that different processes running on different cores. The idea is to design the process so that one
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does not block the others. Among all processes we have the "Cache lookup" process that performs
a cache lookup. In case of a cache hit it sends the response, otherwise, it forwards the query to
the DHT process. One should for example, design the cache so to enhance the cache lookup. Then
we have the "Resolving process", which does not have much constraints. In fact, resolutions are
performed in advance, and we would strongly recommend to re-use existing libraries developed for
BIND or NSD. Another process is the "Filling Cache" process that fills every nodes’s cache with
the updated responses. The process may be optimized in various ways. First cache updates should
be optimized because during the update the cache is locked. One may check the best time to
trigger the update, what data to send —incremental versus all data —, the most efficient data to
send —byte code, vs objects, vs abstract description —. Then, multiple processes may be added,
so to check the validity of the prefetched FQDN list, to check the reachability of the nodes. The
issues raised by this item are both design issues that may require simulations and implementation
issues. With an optimized Light prefetching daemon, one should experiment either with real time
measurements the number of FQDNs that can reasonably be prefetched.

Interaction between MOBIKE-X and MPTCP MOBIKE-X has only been implemented
in a beta version, so at first, a finalized implementation should be made available. Then tests
we performed with SCTP should be re-done with MPTCP. We use SCTP in this thesis because
MPTCP was in its early development at the time we performed the tests. Now MPTCP devel-
opments are more advanced. MPTCP has been designed and developed to match our use cases.
Furthermore, it has been designed to enable MPTCP connections to go across middle boxes, which
makes MPTCP compared to SCTP, more likely to be deployed. SCTP in fact has originally been
designed to transmit signalization, and despite efforts has not been adopted by applications. In-
stead it is widely deployed in backhaul Networks which slows down the effort on Mobility. Results
are not expected to differ much from MPTCP and SCTP. However, during the tests, we noticed
that kernel implementations provide unexpected interactions. This is the main motivation to make
MPTCP and IPsec work together. In other word, this thesis has provided by combining IPsec and
SCTP, an IPsec proof-of-concept, and combining IPsec and MPTCP would provide an End User
usability proof-of-concept.

Interaction between IKEv2 and Upper layer applications With MOBIKE-X, IPsec is
able to send information to the peer like adding an interface, removing an interface, performing
mobility with soft / hard Handover or peer unreadability detection. Upper Layer protocols like
SCTP or MPTCP or Connection Manager have their own protocols to provide similar signaling.
Effort should also be made to make upper layer protocols interact with the IPsec layer. More
specifically, IPsec is the lowest layer, and may be used to advertise Interface event to local dae-
mons. In return these local daemon may use IPsec to provide this information to the peer in a
secure way. This requires to design and develop an IKEv2 API.

Adaptative Security With an IKEv2 API, an application is likely to interact with IKEv2 and
IPsec. However, one needs to know when to interact and how. One domain of research would be
to define which security rules should be set in a given environment. The security rule may depend
on the level of security required by the communication, this may be combined with the level of
trust of the network, the type of used terminal or the way the end user has been authenticated.
According to these inputs, the connection manager may define which interfaces should be used, as
well as the security policies to set up.

170



Part III

ANNEX

171





Appendix A

DNS(SEC)
Measurements Complements

A.1 Mathematical Expressions of Experimental Measurements

This section provides for the different configurations and the different implementations numerical
expressions of the curves provided by section 1.5 Experimental Work. Equations provided in this
section are based on experimental results only. Their purpose is only to provide graphical resolu-
tion since equations are easier to handle than graphs.

A.1.1 Expression of Maximum Load

This section provides CPU Load value as a function of the Query Rate per seconds. Equations are
derived from figures 1.4 in Section 1.5.2.

cpuBIND, auth
DNS (q) = 0.012147× q + 3.638841

cpuBIND, auth
DNSSEC (q) = 0.015833× q + 3.842773

cpuBIND, resol
DNS (q) = 0.090918× q + 1.402989

cpuBIND, resol
DNSSEC (q) = 0.102750× q + 0.187266

cpuBIND, resol
DNSSEC−validation(q) = 0.192542× q − 1.897584

cpuNSD, auth
DNS (q) = 0.005263× q − 2.293101

cpuNSD, auth
DNSSEC (q) = 0.006093× q − 0.083391
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cpuNSD, auth
DNS (q) = 0.025499× q − 0.899292

cpuUNBOUND, resol
DNSSEC (q) = 0.031408× q − 1.354852

cpuUNBOUND, resol
DNSSEC−validation(q) = 0.101004× q + 0.554175

A.1.2 Network Latency & Response Time

This section provides the Server Response Time as a function of the CPU Load. Equations are
derived from figure 1.5 in Section 1.5.3.

tBIND, auth
DNS (cpu) = 81.910× 10−6e3.3287×cpu3.2711

+155.99× 10−6

tBIND, auth
DNSSEC (cpu) = 29.004× 10−6e3.8496×cpu1.7598

+187.11× 10−6

tBIND, resol
DNS (cpu) =
{

2× 10−3 × cpu+ 1× 10−3 if cpu ∈ [0%, 60%]

4× 10−3 × cpu+ 3.9× 10−3 if cpu ∈ [60%, 100%]

tBIND, resol
DNSSEC (cpu) =
{

0.8× 10−3 × cpu+ 1× 10−3 if cpu ∈ [0%, 60%]

8.5× 10−3 × cpu+ 1.1× 10−3 if cpu ∈ [60%, 100%]

tBIND, resol
DNSSEC−validation(cpu) =



















2.3× 10−3 if cpu ∈ [0%, 60%]

9× 10−3 if cpu ∈ [60%, 90%]

5× 10−3 if cpu ∈ [90%, 95%]

16× 10−3 if cpu ∈ [95%, 100%]

tNSD, auth
DNS (cpu) = 27.930× 10−6e3.5903×cpu3.2748

+63.739× 10−6

tNSD, auth
DNSSEC (cpu) = 12.772× 10−6e5.1367×cpu8.7832

+117.65× 10−6

tUNBOUND, resol
DNS (cpu) =

{

1× 10−3 × cpu+ 0.2× 10−3 if cpu ∈ [0%, 95%]

7× 10−3 if cpu ∈ [95%, 100%]
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tUNBOUND, resol
DNSSEC (cpu) =

{

0.8× 10−3 × cpu+ 0.2× 10−3 if cpu ∈ [0%, 80%]

30× 10−3 × cpu− 23× 10−3 if cpu ∈ [80%, 100%]

tUNBOUND, resol
DNSSEC−validation(cpu) =



















2× 10−3 if cpu ∈ [0%, 60%]

9× 10−3 if cpu ∈ [60%, 75%]

3× 10−3 if cpu ∈ [75%, 95%]

22× 10−3 if cpu ∈ [95%, 100%]

(A.1)

A.1.3 Update Operation Cost

This section expresses the number of additions that can be accomplished per second according to
nadd, the number of add sent per nsupdate message. Equations are derived from figures 1.6 in
Section 1.5.4.

addNbrDNS(nadd) = 5000× (1− e−nadd/40)

addNbrDNSSEC(nadd) = 24− 10× e−nadd/2.5

A.1.4 Impact of Cache Hit Rate

This section measures the impact of the Cache Hit Rate of the traffic. For traffic with various CHR,
we measure the query rate when the CPU load reaches 100%. Equations express the Added Query
Rate (AQR) for a given CHR, the percentage of added queries that can be treated as compared
to the number of queries treated with a CHR = 0. Equations are derived from figure 1.8 in
Section 1.5.5.

AQRBIND
DNS (CHR) = 1.35 10−4 e15.3CHR0.278

+ 1.25 10−4

AQRBIND
DNSSEC(CHR) = 1.37 10−4 e15.3CHR0.291

+ 1.51 10−4

AQRBIND
DNSSEC_validation(CHR) = 1.66 10−4 e15.7CHR0.429

+ 1.5 10−4

AQRUNBOUND
DNS (CHR) = 1.27 10−4 e15CHR0.210

+ 1.5 10−4

AQRUNBOUND
DNSSEC (CHR) = 1.18 10−4 e15CHR0.204

+ 1.5 10−4

AQRUNBOUND
DNSSEC_validation(CHR) = 1.48 10−4 e16.3CHR0.472

+ 1.5 10−4

(A.2)
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AQR is derived from equations below :

qBIND
DNS (CHR) =
[

1.35× 10−4 e15.3CHR0.278

+ 1.25× 10−4
]

qBIND
DNS (0)

qBIND
DNSSEC(CHR) =
[

1.37× 10−4 e15.3CHR0.291

+ 1.51× 10−4
]

qBIND
DNSSEC(0)

qBIND
DNSSEC−validation(CHR) =
[

1.66× 10−4 e15.7CHR0.429

+ 1.50× 10−4
]

qBIND
DNSSEC−V al(0)

qUNBOUND
DNS (CHR) =
[

1.27× 10−4 e15.0CHR0.210

+ 1.50× 10−4
]

qUNBOUND
DNS (0)

qUNBOUND
DNSSEC (CHR) =
[

1.18× 10−4 e15.0CHR0.204

+ 1.50× 10−4
]

qUNBOUND
DNSSEC (0)

qUNBOUND
DNSSECvalidation(CHR) =
[

1.48× 10−4 e16.3CHR0.472

+ 1.50× 10−4
]

qUNBOUND
DNSSECvalidation(0)

A.2 Configuration files

A.2.1 Authoritative server configuration

For BIND, the following DNSSEC configuration file is used. zone.signed is the zone file, key-directory
defines the directory where keys are located for dynamic updates, and dnssec-enable indicates
the server has to deal with security extensions. This option is set to yes in current BIND9 version.
The DNS configuration file can easily be derived from this one.

zone "."{

type master;

file "/etc/root_zone";

};

zone "test."{

type master;

file "/root/conf/zone.signed";

key-directory "/root/conf/";

};

options{

dnssec-enable yes;

};

For NSD, the following configuration is used. NSD does not support dynamic updates so the key
repository does not need to be specified, and the server enables DNSSEC by default.
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server:

username: ""

chroot: ""

verbosity: 1

debug-mode: yes

port: 53

ip4-only: yes

ip6-only: no

zone:

name: .

zonefile: "/etc/root_zone"

zone:

name: test.

zonefile: "/root/conf/zone.signed"

A.2.2 Resolving server configuration

For BIND, the following configuration file is used. dnssec-validation indicates the server has to
proceed to signature checks and other DNSSEC operations. trusted-keys specifies the keys that
can be trusted by the cache to perform DNSSEC validation.

zone "."{

type hint;

file "/root/conf/cache/db.root";

};

options{

dnssec-enable yes;

dnssec-validation yes;

};

trusted-keys {

"test." 257 3 7 "AwEAA[...]aM/";

};

For UNBOUND, the following configuration file is used. validator iterator specifies that the
resolving server has to proceed to DNSSEC verifications and trust-anchor-file specifies the
trusted keys for the validation.

stub-zone:

name: "."

stub-addr: 192.168.2.2

stub-prime: no

server:

username: ""

chroot: ""

verbosity: 1

logfile: ""

access-control: 0.0.0.0/0 allow

interface: 0.0.0.0

port: 53

do-ip4: yes

do-ip6: no

rrset-cache-size: 20m

module-config: "validator iterator"

trust-anchor-file: "/root/conf/dsset-test."
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A.2.3 Zone files

The zone.signed file for BIND and NSD is as follows. We did not indicate the full value for the keys
and the signatures, and values might differ depending on the tests being performed. We mentioned
in the file the key id used to generate the signature. We can easily derive the zone file used without
DNSSEC.

For DNSSEC, the zone files

; dnssec_signzone version 9.6.0-P1

test. 1 SOA ns.test. username.test. (

42666 ; serial

86400 ; refresh (1 day)

86400 ; retry (1 day)

2419200 ; expire (4 weeks)

3600 ; minimum (1 hour)

)

1 RRSIG SOA [...]; 28550

1 NS ns.test.

1 RRSIG NS [...]; 28550

3600 DNSKEY 256 [...] ; key id = 28550

3600 DNSKEY 257 [...] ; key id = 64095

3600 RRSIG DNSKEY [...] ; 28550

3600 RRSIG DNSKEY [...] ; 64095

0 NSEC3PARAM 1 0 100 42

0 RRSIG NSEC3PARAM [...]; 28550

ns.test. 1 A 192.168.1.2

1 RRSIG A [...]; 28550

test0.test. 1 A 1.2.3.4

1 RRSIG A [...]; 28550

test1.test. 1 A 1.2.3.4

1 RRSIG A [...]; 28550

[...]

VV[...]G4.test. 3600 NSEC3 [...] VV[...]IA A RRSIG

3600 RRSIG NSEC3 7 2 [...]; 28550

VV[...]IA.test. 3600 NSEC3 [...] VV[...]7R A RRSIG
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B.1 Introduction

B.1.1 L’objectif de la Thèse

Une des problématiques majeure de sécurité pour les opérateur est de permettre à ses utilisateurs de
maintenir la sécurité d’une communication même au travers d’un réseau qui ne soit pas de confiance.
Pour l’utilisateur, une communication est établie entre deux identifiants, et ceci indépendamment
des mouvements et changements de réseau de l’utilisateur. Autrement dit, l’opérateur doit perme-
ttre cette communication entre identifiants possible grâce au système DNS [Moc87a, Moc87b], et
fournir les mécanismes réseaux nécessaires afin que la communication puisse être maintenue quand
le client bouge et change d’adresse. Dans cette thèse nous nous somme concentrés sur les aspects
sécurités et plus exactement:

- DNSSEC: DNSSEC [AAL+05a, AAL+05c, AAL+05b] définit comme sécuriser la résolution
d’un nom de domaine. La sécurité a un coût que nous commençons par évaluer avant de
proposer des architectures permettant aux ISPs de migrer des plateformes de Service de
Résolution de DNS vers DNSSEC.

- IPsec: IPsec [KS05, Ken05a, Ken05b, KHNE10, Ero06] définit comment sécuriser une com-
munication IP. Dans cette thèse nous définissons une extension qui permet à un utilisateur
de maintenir une communication sécurisée par IPsec pour un terminal mobile, Multihomé,
et avec de Multiples Interfaces.

DNSSEC: Un utilisateur a rarement la notion de l’adresse IP utilisée. Il établit généralement
des communications sur la base de noms. Le service DNS se charge alors de faire le lien entre le
nom et l’adresse IP. Le nom est généralement appelé Fully Qualified Domain Name (FQDN), et
le Service qui fait la correspondance entre le FQDN et l’adresse IP est le Domain Name System
(DNS) [Moc87a, Moc87b]. Le DNS, défini dans les années 80, n’a pas été conçu afin de sécuriser
l’échange DNS entre l’utilisateur et le correspondant. Il en résulte que le DNS peut être utilisé
afin d’intercepter des communications en fournissant une mauvaise adresse IP. Ainsi, une personne
souhaitant se connecter à un site donnée www.monsite.fr va demander au service DNS l’adresse
IP correspondante. Un service corrompu, va fournir une adresse non légitime, et l’utilisateur se
connectera à un site non légitime, pensant être connecté à monsite.fr. Pour éviter cette situation,
et permettre à tout utilisateur de s’assurer que l’adresse IP renvoyée par le Service DNS est bien
légitime, l’IETF a défini une extension de sécurité DNSSEC [AAL+05a, AAL+05c, AAL+05b].
Cette extension utilise de la cryptographie pour, entre autre, établir une chaîne de confiance entre
les différents domaine DNS et sous domaine —dans notre exemple entre le .fr et www.monsite.fr
—et pour certifier l’information envoyée —dans notre exemple certifier que l’adresse IP envoyée
est bien celle hébergée par le responsable de la zone. Pour un service comme le DNS, défini pour
être "léger", l’ajout de calculs cryptographiques impacte fortement les performances des serveurs.
Entre autres pour les ISP qui doivent traiter un grand nombre de requêtes simultanée, la migration
vers DNSSEC parait difficilement envisageable. Dans cette thèse, nous nous sommes attachés à
mesurer le coût d’une telle migration et à définir et évaluer des architecture permettant d’optimiser
les plateformes de résolution DNSSEC.

IPsec: L’objectif de cette thèse est d’étudier comment établir et conserver une communication
sécurisée de bout en bout dans un environnement Mobile, Multihomé et avec des Interfaces Multi-
ples. On cherche à sécuriser les communications au niveau du réseau de façon à ce que la sécurité
soit indépendante des applications et puisse être implémentée de manière générique et transpar-
ente pour toutes les applications. Cette capacité à fournir un accès sécurisé et transparent pour
les applications intéresse les opérateurs qui peuvent ainsi adapter la sécurité d’une communication
en fonction du réseau utilisé, et ce, de manière transparente pour l’application et l’utilisateur.
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Ainsi une communication au sein d’un réseau de confiance comme le réseau de l’opérateur pourra
se contenter d’une sécurité au niveau radio et sécuriser l’attachement à ce réseau de confiance.
En revanche, lorsque l’utilisateur utilisera des réseaux intermédiaires qui ne sont pas de confi-
ance, une sécurité au niveau IP ou au niveau des couches supérieures est alors indispensable. Une
sécurité au niveau IP n’impacte pas les applications, alors qu’une sécurité au niveau transport
(TLS [DR08]/DTLS [Phe08]) ou au niveau des applications ne se fait pas de manière transparente
pour les applications.
Ainsi, au cours de cette thèse, nous nous sommes concentrés sur le protocole IPsec [KS05] afin
de sécuriser les communications au niveau IP. De manière générale, ces besoins en sécurité sont
nécessaires lorsque l’utilisateur se trouve dans une situation de mobilité, i.e. lorsqu’il n’est ni chez
lui ni sur son lieux de travail. Lorsque l’utilisateur utilise un réseau qui n’est pas maintenu par
son opérateur, l’utilisateur considère ce réseau comme un réseau qui n’est pas de confiance. D’un
point de vue sécurité, cela signifie qu’il doit protéger les communications qui transitent par ce
réseau. D’un point de vue transport, ces réseaux non maintenus par l’opérateur peuvent fournir
une qualité de service moindre. Par exemple, un point d’accès peut se rebooter à tout moment, la
mobilité de l’utilisateur n’est pas gérée comme elle l’est dans les Réseaux d’Accès Radio. Afin de
palier à ces inconvénients, des protocoles de transport comme Stream Control Transmission Pro-
tocol (SCTP) [Ste07] ou Multi Path TCP (MPTCP) [FRH+11] ont été définis. Il permettent entre
autres à un utilisateur de changer l’adresse IP d’une communication (Mobilité), de s’attacher à
plusieurs points d’accès simultanés (Multiples Interfaces), ou de prévenir le correspondant qu’en cas
de rupture de communication, l’utilisateur reste joignable sur une Interface Alternative (Multihom-
ing). Ces protocoles reposent sur une sécurité du mode transport qui reste très liée à l’application.
Par exemple pour SCTP, la sécurité s’inspire beaucoup de TLS. L’idée de cette thèse est de doter
IPsec de fonctionnalités similaires de sorte que les mêmes fonctionnalités puissent être effectuées
avec une communication sécurisée par IPsec.

IPsec et DNSSEC sont complémentaires. Cela signifie, que si DNSSEC n’est pas utilisé et
que le DNS renvoie une adresse non légitime, alors la phase d’authentification d’IPsec devrait
détecter la non légitimité de l’hôte et annuler l’établissement de la communication. En consid-
érant ce cas de figure, c’est bien parce qu’ils sont complémentaires qu’ils assurent la sécurité de
la communication. En effet, DNSSEC évite toute indirection due au DNS. Ce sont des attaques
"facilement" réalisables, dans la mesure où elles reposent sur une faiblesse de conception du proto-
cole DNS [Kam08b, Kam08a], et DNSSEC est la seule alternative à cette faiblesse. DNSSEC n’est
pas suffisant, car si j’envoie un paquet IP vers une certaine destination, IP n’étant pas protégé, je
n’ai aucune garantie que ma communication n’est pas usurpée au niveau IP. Ces attaques semblent
toutefois plus "difficiles" à mettre en œuvre, car elles se font au niveau du routage. IPsec authen-
tifie le nœud correspondant, et donc peut détecter des attaques faites au niveau DNS. En théorie,
c’est effectivement le cas, mais la pratique montre qu’un certificat corrompu ou le bug d’une implé-
mentation sont toujours existants. Ceci est aussi vrai pour les implémentations de DNSSEC, mais
la probabilité de bugs ou failles sur deux protocoles distincts augmente la sécurité. De plus, les
équipes opérationnelles administrant IPsec et DNSSEC sont distinctes. DNSSEC utilise sa propre
structure de clé, alors que IPsec repose sur une PKI pour les authentifications à base de certificats.
Dans cette thèse, nous n’avons pas pas exemple essayer de combiner IPsec à DNSSEC, par exem-
ple en utilisant DNSSEC pour héberger. Bien entendu, lorsque les communications ne sont pas
protégées par IPsec ou TLS / DTLS, DNSSEC tient lieu de garde fou, et vice et versa. Aussi
nous est-il apparu dans cette thèse aussi important de maintenir des communications sécurisées au
cours d’opérations de Mobilité que d’établir une relation de confiance entre le FQDN et l’adresse IP.

181



CHAPTER B. RÉSUMÉ ÉTENDU EN FRANÇAIS

B.1.2 Organisation du résumé

La suite du résumé est construite de la façon suivante. La section B.2, constitue la première partie
de ce résumé. Dans un premier temps, elle mesure les différences de performance entre DNS et
DNSSEC sur plusieurs implémentations. Ensuite, on se base sur ces mesures afin d’évaluer des
architectures qui optimisent les ressources engagées par la plateforme. Le principe des architec-
tures proposée, est de répartir les FQDNs entre les nœuds de la plateforme, afin d’éviter que deux
nœuds effectuent des requêtes similaires. La difficulté consiste à trouver une façon de répartir
les FQDNs parmi les nœuds pour que chaque nœud est une charge équivalente et ainsi éviter les
déséquilibres de charge. La seconde partie est abordée dans la section B.4. Elle est consacrée
à l’utilisation d’IPsec afin de maintenir un niveau de sécurité des communications indépendante
de la confiance associée au réseau utilisé pour les communications de l’utilisateur. Cette section
expose les principes d’IPsec, décrit les impacts de la Mobilité, du Multihoming et des Interface
Multiples sur IPsec. Ensuite elle présente MOBIKE-X [Dan09b], le protocole que nous avons défini
et implémenté ainsi que les performances de ce dernier. Enfin, cette section B.4.5 étudie comment
les ISPs peuvent tirer parti des réseaux WLAN afin de limiter la charge des réseaux 3G / 4G. La
section B.5 conclut ce résumé.

B.2 Optimisation des Architecture de plateformes Résolution
pour le déploiement d’un nommage sécurisé: DNSSEC

Cette partie est essentiellement consacrée à l’étude de la migration des plateformes de résolution
DNS vers DNSSEC. La section B.2.1 présente brièvement DNSSEC, son déploiement actuel, et
montre qu’une migration vers DNSSEC est quasi inévitable. La section B.3 présente des mesures
expérimentales, et évalue le coût de la migration de DNS à DNSSEC. Dans cette section, on se
concentre essentiellement sur les plateformes de résolution. Les deux sections qui suivent proposent
des architectures qui permettent d’optimiser les ressources nécessaires aux plateformes de résolu-
tion. Dans les deux cas, le principe de base est d’éviter que deux nœuds distincts de la plateforme
n’effectuent simultanément la résolution d’un même nom de domaine. Ainsi, on cherche à attribuer
à chaque FQDN un nœud dit Nœud Responsable. La section B.3.3 évalue les performances d’une
plateforme où les nœuds qui la composent sont organisés sous la forme d’un Distributed Hash
Table (DHT) et se répartissent la charge des résolutions. Cette plateforme compare différentes
architectures de DHT. Suite aux bonnes performances des architectures introduisant des mécan-
ismes pro-actifs, la section B.3.4 propose et décrit le déploiement, sur la base d’une capture de
trafic DNS, d’une architecture qui maintient un cache réparti pour les noms de domaines les plus
fréquents, et qui utilise une architecture DHT pour la résolutions des autres noms de domaines.La
section B.3.5 conclut cette partie.

B.2.1 Description de DNSSEC

Le protocole DNSSEC [AAL+05a, AAL+05c, AAL+05b] est l’extension de sécurité qui permet de
sécuriser le système DNS [Moc87a, Moc87b]. Les mécanismes introduits par DNSSEC sont:

- la constitution d’une chaîne de confiance qui permet à une zone père de désigner de manière
sûre sa sous-zone. Pour ce faire, la zone père héberge dans sa zone un enregistrement qui
contient le hash de la clé publique identifiant la zone fille qui est la Key Signing Key ou KSK.
La zone fille prouve alors la possession de la clé privée en signant des enregistrements.
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- la signature des enregistrements d’une zone avec la Zone Signing Key ou Zone Signing Key.

- la preuve de non existence, qui permet à un serveur autoritaire de prouver, en cas d’absence
de réponse, que le FQDN recherché n’existe pas. Cela évite par exemple qu’un tiers ne
réponde qu’un domaine n’existe pas à la place du serveur autoritaire.

Actuellement, la standardisation de DNSSEC au sein de l’IETF est finalisée. DNSSEC a été im-
plémenté au sein de nombreuses distributions - Internet Systems Consortium1 (BIND9), NLnetLabs2

(NSD3 et UNBOUND4), Microsoft, Nominum (ANS and CNS), Secure64. DNSSEC complexifie égale-
ment la gestion des zones et rend les erreurs de signatures très contraignantes dans la mesure où la
zone est inaccessible. Des outils de management sont également disponibles comme Opendnssec5

par exemple. Au niveau du déploiement de DNSSEC, la plupart des Top Levels Domains (TLD)
ont déployé DNSSEC, avec au moins la mise en place de la chaîne de confiance. Côté ISP, seul
Comcast [Com] a effectué officiellement des expérimentation avec DNSSEC.

B.3 Coût d’une migration de DNS vers DNSSEC

Si l’Internet semble progressivement migrer de DNS vers DNSSEC, les Opérateurs qui effectuent
les résolutions DNS, ne semblent pas les plus actifs dans cette migration. Or c’est bien pour eux
que la migration est la plus délicate. Par ailleurs, les ISPs ont également une forte relation de
confiance avec leurs utilisateurs et sont alors poussés à déployer DNSSEC afin de se prémunir
contre les vulnérabilités du DNS dévoilées par Dan Kaminsky [Kam08b, Kam08a].

Des mesures expérimentales nous ont permis de mettre en évidence le coût de la migration de
DNS vers DNSSEC. Les mesures ont été faites à la fois dans le cas d’un serveur autoritaire, et
d’un serveur cache. Nous avons testé plusieurs implémentations BIND9 et UNBOUND/NSD [MGL10,
Mig10]. A partir des performances mesurées, nous pouvons en déduire l’impact sur les ressources
plateforme, i.e. le nombre de nœuds qu’il faudrait ajouter à la plateforme afin qu’elle puisse
traiter un même trafic. Le tableau B.1 met en évidence le nombre de nœuds de la plateforme
pour les différentes configurations ainsi que les différents ratios, entre les configurations ou entre
les implémentations. Notons que seul les ratios sont à considérer car le nombre de nœuds dépend
du type de serveur. Le tableau montre que pour les plateformes de résolution, la migration vers
DNSSEC peut nécessiter jusqu’à 4.25 fois plus de ressources, et que les implémentations présentent
des variations de performances qui vont du simple au double. Pour les serveurs autoritaires, le
coût de la migration vers DNSSEC est d’environ 30%.

Node DNS DNSSEC DNSSEC-VAL

BIND9 80 (1∗) 87 (1.09∗) 160 (2.00∗)

UNBOUND 20 (1∗) 24 (1.20∗) 85 (4.25∗)
UNBOUND

BIND9
(IR∗∗) 0.25 0.28 0.53

(a) plateforme de Resolution

Node DNS DNSSEC

BIND9 29 (1.00∗) 38 (1.31∗)

NSD 9 (1.00∗) 12 (1.33∗)
UNBOUND

BIND9
(IR∗∗) 0.31 0.32

(b) plateforme Authoritaire

Table B.1: Evaluation du nombre de nœuds – (∗) PR), (∗∗) IR

1http://www.isc.org
2http://www.nlnetlabs.nl
3http://www.nlnetlabs.nl/projects/nsd/
4http://www.unbound.net
5http://www.opendnssec.org
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B.3.1 Intérêts d’optimiser des plateformes de résolutions

Il est difficilement concevable pour un ISP de multiplier par 5 la taille de ses plateformes. D’une
part, les plateforme DNS sont assez importantes et, pour les captures que nous avons considérées,
les plateformes de résolution comprennent 4 clusters d’une 20aine de nœuds chacun —La capture
que nous avons utilisé provient d’un cluster de 18 nœuds. De plus les trafic DNS sur les 15 dernières
années n’a cessé d’augmenter d’environ 8% par mois, et il est a craindre qu’avec le déploiement
des CDNs, ou des DNS load balancer qui se basent sur le DNS, ce trafic continue d’augmenter.
En effet, CDNs et DNS Load Balancers utilise le DNS pour rediriger l’utilisateur vers le serveur
de contenu le plus proche ou le plus disponible. La disponibilité d’un serveur varie rapidement,
et pour bénéficier de cette dynamicité, la validité des réponses renvoyées par le serveur DNS ne
doivent pas être trop longue. Il en résulte que les FQDNs sont stockés beaucoup moins longtemps
dans les caches et doivent plus régulièrement effectuer des résolutions pour les noms de domaines
très demandés. Le temps durant lequel la réponse est stockée dans le cache est définie par le
Time To Live (TTL). Ainsi les perspectives d’évolutions du trafic DNS nous poussent à repenser
l’architecture des plateformes de résolutions, et à considérer comment optimiser ces plateformes.

B.3.2 Première Optimisation de la plateforme de Résolution en répar-
tissant le trafic selon les FQDNs

L’architecture actuelle d’une plateforme DNS est un ensemble de nœuds indépendants entre eux
auxquels un Load Balancer envoie des requêtes DNS. Le Load Balancer répartit généralement les
requêtes DNS entre les nœuds en effectuant une fonction de hachage sur les adresses IP. Dans le
cas de nos plateformes opérationnelles, la fonction de hachage est un XOR entre les 24 bits de
poids faibles des adresses source et destination. On nommera IPXOR un tel type de Load Balancer.
L’avantage de IPXOR est qu’il offre une bonne répartition du trafic sur les nœuds, i.e. chaque nœud
reçoit une charge à peu près équivalente. De plus la fonction de hachage est très peu coûteuse, et
travailler sur les adresses IP permet de travailler sur des données fixes et ne nécessite pas d’analyser
le paquet. Il en résulte que les requêtes sont les noms de domaine les plus populaires, sont réparties
de manière uniforme parmis les nœuds. Chaque nœud effectue les résolutions pour ces noms de
domaine, et stockent ces noms de domaines au sein de leur cache. De plus, ces architectures ont du
mal à passer à l’échelle. En effet, lorsque l’on ajoute un nouveau nœud, ce dernier va effectuer des
résolutions en doublon pour les noms de domaine les plus populaires, les stocker dans son cache,
avant de véritablement apporter une plus value en ressources.

Il est clair qu’une telle architecture n’est pas optimale. Pour éviter des résolutions redondantes,
une possibilité est d’assigner chaque nom de domaine à un nœud particulier. Dans une architecture
avec un Load Balancer, —tel que IPXOR—, ceci peut être réalisé en effectuant un hash du FQDN.
On appellera une telle architecture FQDN. Une autre possibilité est de faire coopérer les nœuds
entre eux, et, dans le cas où un nœud reçoit une requête DNS, dont il n’est pas responsable, il
redirigera la requête, ou effectuera une requête vers le nœud responsable. Ce type d’architecture
correspond aux architectures Distributed Hash Table ou DHT. L’avantage de ces deux architectures
est qu’elles réduisent le nombre de FQDNs au sein des caches, et donc accélèrent les cache lookups.
De plus, elles limitent le nombre de résolution DNS à effectuer sur l’Internet. Pourquoi alors ce
type d’architecture n’a-t-elle pas été utilisée dans le cas du DNS? Il y a sans doute plusieurs raisons
à cela. Premièrement le service de résolution DNS, fut pendant longtemps considéré comme un
service nécessitant peu de ressources, fournit gracieusement par l’ISP, et n’ayant pas ou peu de
valeur ajoutée. Ensuite, effectuer avec le protocole DNS une requête sur l’Internet ou auprès d’un
autre nœud de la plateforme est à peu près similaire d’un point de vue ressources consommées,
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à ceci près que les résolutions sur l’Internet introduisent une grande latence. La taille des caches
a complètement été sous-estimée. Par contre, le très gros avantage d’une architecture de type
IPXOR est sa simplicité. Les nœuds sont indépendants, donc ajouter une nœud ou en retirer un
n’impacte pas les autres. En revanche, les architectures de type DHT doivent tenir compte des
interactions entre les nœuds, et les architectures de type FQDN nécessitent de déployer des Load
Balancer spécifiques, et de définir des fonction de répartition du trafic.

La figure B.1 présente les caractéristiques d’un trafic DNS que l’on répartit de différentes
façons. A partir d’une capture de trafic réel prise en heure de pointe traité par une plateforme de
18 nœuds, on rejoue le trafic et représente en ordonnée le nombre de nœuds pour lesquels on mesure
X —nombre de requêtes, nombre de résolutions, ainsi que leur écart relatif à la valeur moyenne—.
IPXOR répartit le trafic en appliquant une fonction de hachage SHA1 sur les adresses IP source
et destination, et FQDN applique cette même fonction de hachage sur les FQDNs de la requête
DNS. XOR répartit le trafic selon les adresses IP et en utilisant la fonction de hachage XOR. Cette
fonction est actuellement déployée dans des Load Balancers de notre plateforme opérationnelle. La
simulation nous permet de comparer l’efficacité de XOR avec SHA1. Enfin RANDOM représente
un Load Balancer qui répartirait le trafic de manière aléatoire, pour chaque requête DNS. Notons
que FQDN définit un Load Balancer qui effectue un hash du FQDN. La répartition des requêtes
et des résolutions qui en résulte est similaire dans le cas où l’on utilise un Load Balancer ou une
architecture DHT.

Synthèse:La figure B.1c montre que FQDN réduit de 60% le nombre de résolutions et que
les résolutions sont réparties de manière uniforme sur les nœuds de la plateforme. La figure B.1d
représente la distribution de l’écart relatif et montre que FQDN présente une très bonne distri-
bution. En revanche les figures B.1a et B.1b montrent que FQDN présente une très mauvaise
répartition des requêtes. Au final, une répartition basée sur les FQDN permet de réduire de 30%
les ressources de la plateforme. Toutefois, pour permettre ce déploiement, il faut trouver un moyen
d’uniformiser la charge parmi les nœuds. Pour cela nous avons envisagé trois méthodes :

- Définir une table de routage qui oriente chaque requête vers un nœud de la plateforme. La
table de routage est calculée de façon à ce que les ressources soient réparties de manière
uniforme [MHS+a]. Cette table de routage peut être déployée au sein d’un Load Balancer.

- Utiliser une architecture DHT qui permet de répartir la charge de requêtes entre les différents
nœuds, et la charge des résolutions soit grâce à une table de répartition définie par [MHS+a],
soit en utilisant des mécanismes de caching proactifs pour les noms de domaine les plus
populaires. Ceci est développé dans la section B.3.3.

- Définir une architecture qui présente en front end des caches avec les noms de domaine les
plus populaires, et en back end, une architecture de type DHT qui traite les autres FQDNs.
On peut considérer cette architecture de deux façons. Une première où les caches et les
nœuds DHT sont distincts. Une seconde façon considère une architecture DHT où le cache
est distribué sur l’ensemble des nœuds. Cela signifie alors que le trafic est uniformément
réparti sur les nœuds DHT via un load balancer, que chaque nœud consulte un premier
cache qui contient les FQDNs les plus populaires, et en cas de cache miss, la requête est
adressée à la partie DHT du nœud qui va se charger de la résolution. Cette architecture peut
tirer partie des cartes réseau accélératrices par exemple. Cette architecture est décrite dans
la section B.3.4.
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Figure B.1: Analyse d’une capture DNS: Distribution des Requêtes, Résolu-
tion et Cache Hit Rate (CHR), sur les nœuds de la plateforme

B.3.3 Seconde Optimisation de la plateforme de Résolution DNSSEC à
l’aide de DHT

Si pour le DNS, les architectures de type DHT présentaient relativement peu d’intérêts d’un point
de vue performances, avec DNSSEC, les ressources économisées peuvent compenser leur complex-
ité. En effet, avec DNSSEC, effectuer une requête DNS auprès d’un nœud nécessite entre 20 et
40 fois moins de ressources CPU. En ce qui concerne l’architecture FQDN, avec l’arrivée de cartes
accélératrices hardware, un load balancing qui nécessite une analyse du paquet est envisageable.
La figure B.2 présente les deux types d’architectures. La figure B.2a représente les architectures de
type load balanncer comme FQDN et IPXOR, et la figure B.2b représente les architectures à base
de DHT, qui impliquent une coopération entre les nœuds. En l’occurrence, la figure B.2b illustre
le protocole DHT Pastry [RD01a].
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Figure B.2: Plateformes de résolution DNS(SEC) basées sur un un Load Bal-
ancer et une coopération entre les nœuds (DHT)

Dans cette section, on cherche à évaluer les performances obtenues en utilisant une architecture
DHT pour la plateforme de résolution. On se base sur le protocole Pastry [RD01a]. Les raisons
pour lesquelles on privilégie une architecture DHT plutôt qu’une architecture utilisant un Load
Balancer sont:

- Fragilité : Les Load Balancers sont des éléments fragiles qui établissent une interconnexion
entre deux réseaux, soumis à un très fort trafic. En cas de dysfonctionnement, toute la
plateforme est hors d’accès.

- Flexibilité : Les contraintes auxquelles les Load Balancers sont soumis réduisent les fonc-
tionnalités de ces derniers. En revanche, les serveurs permettent l’installation de services très
complexes, et n’ont quasiment aucune limitation.

- Auto-configuration : Pastry est un protocole qui offre des fonctionnalités d’auto config-
uration. Ainsi lorsque l’on ajoute un nœud ou que l’on retire un nœud, le système s’auto-
configure.

En revanche lorsque l’on parle de Pastry dans cette thèse, on ne considère qu’un certain nombre
de fonctionnalités de Pastry. En effet, Pastry a été conçu pour héberger des contenus sur des plate-
formes comprenant des millions de nœuds, qui pouvaient dynamiquement joindre la plateforme ou
la quitter. Chaque nœud étant administré de manière indépendante, les nœuds ne pouvaient alors
pas avoir une connaissance de l’ensemble des nœuds de la plateforme. Ceci nécessita la mise en
place d’un protocole de routage assez complexe. Dans notre cas précis, notre plateforme de résolu-
tion n’est composée que d’un nombre restreint de nœuds, ces nœuds ne sont pas sensés quitter et
joindre la plateforme à tout moment et sont administrés par le même administrateur, au sein d’un
même LAN. Ces différences font que le protocole de routage initialement prévu pour Pastry peut
être simplifié. Un autre modification importante est que Pastry répartit des contenus au sein des
nœuds de la plateforme en fonction de la valeur de l’empreinte du contenu. Dans notre cas, on se
permet d’utiliser une fonction différente de celle d’un SHA1, comme par exemple la combinaison
d’une table de routage et d’une fonction de hachage afin d’équilibrer la charge au sein des nœuds
de manière uniforme.

L’architecture Pastry est présentée dans la figure B.2b. L’utilisateur émet une requête DNS
vers un nœud de la plateforme (flèche (1)). Ce nœud effectue une recherche dans son cache afin
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de vérifier s’il ne possède pas la réponse. Si la réponse se trouve dans son cache, il la renvoie à
l’utilisateur. Si la réponse ne se trouve pas dans son cache, le nœuds détermine qui est le Nœud
Responsable associé à ce FQDN. Il émet ensuite une requête vers le Nœud Responsable (flèche
(2)). Ce dernier est chargé de renvoyer la réponse attendue, qui peut se trouver dans son cache
ou nécessiter une résolution sur l’Internet (échange (3) et (4)). La réponse est renvoyée vers le
nœud auquel l’utilisateur s’était adressé (flèche (5)), pour être renvoyée à l’utilisateur (flèche (6))
et éventuellement cachée. Dans cette thèse, lorsque nous parlons de Pastry, nous considérons que
la réponse n’est pas cachée par un nœud non responsable.

Dans cette section, nous envisageons différentes variantes de Pastry représentées dans la fig-
ure B.3. Pastry Straight-Forwarding ou Pastry-SF dont le principe de fonctionnement est décrit
dans la figure B.3a fonctionne comme Pastry mise à part que le Nœud Responsable envoie la réponse
directement à l’utilisateur. Pastry-Passive Caching ou Pastry-PC, dont les échanges sont indiqués
dans la figure B.3b, fonctionne comme Pastry mais ici le nœud cache les réponses qu’il reçoit du
Nœud Responsable et qu’il renvoie à l’utilisateur. Avec Pastry-Replication ou Pastry-R, dont les
échanges sont décrits dans la figure B.3c, chaque fois que le Nœud Responsable effectue une réso-
lution sur l’Internet, il transmet la réponse sur ses k nœuds voisins. Enfin la figure B.3d décrit
Pastry-Active Caching ou Pastry-AC, une architecture où chaque nœud cache pro-activement les
γ FQDN les plus populaires dont il est responsable. Pour toutes ces architecture, on considère que
la répartition des FQDNs est telle que les ressources sont uniformément réparties parmi les nœuds
de la plateforme [MHS+a]. Pour Pastry-AC, cette condition est éventuellement plus discutable.
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(d) Pastry-AC

Figure B.3: Principe des architectures DHT
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En modélisant le fonctionnement d’un nœud et en rejouant une capture de trafic réel, on compt-
abilise les opérations effectuées par chaque nœud et d’après les mesures expérimentales [MGL10,
Mig10], on en déduit le pourcentage CPU nécessaire pour chaque nœud, pour traiter le trafic. La
figure B.4 représente pour DNS et DNSSEC, le ratio des différentes architecture par rapport à
IPXOR, en fonction de γ le nombre de FQDNs que les Nœuds Responsables se chargent de mettre
dans les caches des autres nœuds. La figure B.4 montre que, dans une configuration DNS, les
architectures Pastry-SF, Pastry-PC, Pastry-R ne sont pas rentables en terme de CPU par rapport
à une architecture de type IP . Seules Pastry-AC et FQDN présentent un avantage sur IPXOR.
D’après notre modélisation, la comparaison entre FQDN et IPXOR coïncide avec les résultats de
la simulation en section B.3.1. En revanche, la figure B.4b se place dans le cas où DNSSEC est
utilisé, et montre que les architectures basées sur Pastry sont toutes avantageuse sur IPXOR, et
que Pastry-AC est encore l’architecture la plus avantageuse si les 2000 FQDNs les plus populaires
sont cachés de manière pro-active.
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Figure B.4: Comparaison du ratio CPU des architectures Pastry par rapport
à une architecture traditionnelle de Load Balancer en fonction de γ

Pastry-AC est l’architecture la plus avantageuse car elle tire parti de la distribution en loi de
puissance de la popularité des FQDN. La figure B.5 classe les FQDNs en fonction de leur pop-
ularité et indique en ordonnée le pourcentage du trafic qu’il représente. Avec cette distribution,
l’architecture Pastry-AC permet raisonnablement de diviser par 4 les ressources nécessaires afin de
garantir un service de résolution. Même si les résultats de la figure B.4b montrent que l’on peut
améliorer les performances de Pastry-AC en augmentant le nombre de FQDNs destinés à enrichir
les caches des nœuds, il faut toutefois tenir compte des approximations faites dans nos modèles. En
l’occurrence, nous avons considéré que les mises à jour du cache par les Nœuds Responsables étaient
faites par une seule requête. Si le nombre de FQDNs à cacher augmente, cette approximation n’est
plus vraie. De plus nous n’avons pas pris en compte les coûts dus à l’augmentation de la taille
des caches. Les résultats expérimentaux que nous avons considérés utilisaient des caches avec peu
d’enregistrements.
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Figure B.5: Distribution des FQDNs selon leur popularité

B.3.4 Troisième Optimisation de la plateforme de Résolution DNSSEC
avec une architecture PREFETCH

Dans la section B.3.3, nous avons défini que l’architecture la plus efficace consistait à cacher
les FQDNs les plus populaires sur l’ensemble des nœuds de la plateforme. Ceci est réalisé par
l’architecture Pastry-AC qui tire parti du fait que la distribution de la popularité des FQDNs suit
une loi de puissance.

Dans cette section, nous considérons ce principe mais nous voulons également tirer parti des
performances matérielles et notamment des cartes accélératrices [cav, end], afin d’optimiser les
performances de cache lookup au niveau de nœuds. En effet, les deux opérations principales ef-
fectuées par un nœud sont la résolution des requêtes DNS(SEC) sur l’Internet qui nécessitent
une vérification de signature et les opérations sur les caches. L’architecture Pastry-AC optimise
la consommation CPU, c’est à dire qu’elle limite le nombre de résolutions à effectuer et permet
de répartir uniformément les ressources. Pastry-AC optimise également les opérations de cache
lookup en réduisant la taille des caches des nœuds grâce à la désignation de Nœud Responsable
pour chaque FQDN. Toutefois, les caches restent conséquents, et une consultation de cache reste
un facteur limitant les performances de la plateforme de résolution.
La figure B.5 montre que les 2000 FQDNs les plus populaires représentent environ 70% du trafic.
Par conséquent, pour une architecture de type Pastry-AC 70% des requêtes vont correspondre à
un cache hit. Une opération de cache lookup est coûteuse pour le nœud Pastry car son cache reste
important. Par contre 2000 enregistrements représente peu pour un cache. L’idée de cette section
est d’introduire des niveaux de cache, ou d’installer sur chaque nœud une carte accélératrice qui
pour chaque requête DNS va consulter si la requête correspond à l’un des 2000 FQDN les plus
populaires. Si c’est le cas, la carte renverra la réponse, dans le cas contraire, elle redirigera la
requête au nœud Pastry. Le processus de vérifier dans une liste est très simple et peut être poussé
sur une carte multi-cores, qui aurait alors plusieurs processus légers et indépendants. Ces processus
prendraient en charge 70% du trafic, et les nœud Pastry ne géreraient alors que l’équivalent de
30% du trafic.

A ce stade là, on ne cherche plus à se ramener à une architecture de type Pastry-AC. On con-
sidère plutôt une architecture Pastry dans laquelle chaque nœud possède une carte qui prend en
charge une grande partie du trafic. Les caches des nœuds ne sont pas significativement réduits,
mais le nombre de consultations l’est. Pour des raison de coûts, combinés à une grande efficacité
des cartes accélératrices, on peut souhaiter mutualiser les cartes accélératrices, dans la mesure où
les ressources limitatives sont celles utilisés pour la résolution. La mutualisation des cartes ac-
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célératrices revient alors à considérer un réseau front end qui prend en compte les 2000 FQDNs les
plus populaires, et un réseau back end constitué de nœuds Pastry. Cette architecture est appelée
PREFETCH.

La figure B.6a reprend la distribution de la popularité des FQDNs et définit HEADX , les
FQDNs les plus populaires qui sont cachés soit au sein d’une carte accélératrice, soit au sein
d’un réseau front end. TAILX désigne l’ensemble des FQDNs qui ne sont pas gérés par la carte
accélératrice ou l’architecture front end. X désigne le nombre de FQDNs populaires contenus
dans HEADX , i.e. le nombre d’occurrence de HEADX . La figure B.6b présente un nœud de
l’architecture PREFETCH.
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(b) PREFETCH Node Achitecture

Figure B.6: Description de l’architecture PREFETCH

Pour déterminer X, HEADX et TAILX on analyse une capture de trafic réel. On définit alors
X comme étant le nombre de FQDNs à ôter du trafic afin d’observer une distribution uniforme
des ressources. L’uniformité des ressources peut être estimée selon plusieurs critères. Dans notre
cas, nous avons définit X tel que le nombre de requêtes DNS et le nombre de résolutions effectuées
par chacun des nœud ne présente pas un écart supérieur au cas où une architecture de type Load
Balancing est utilisée. Une fois les X FQDNs ôtés du trafic, l’architecture PREFETCHX est
assimilable à Pastry. Pour que X soit stable vis à vis de la fonction de hachage utilisée, on utilise
plusieurs fonction de hachage comme SHA1, MD5, CRC32. Ensuite, on vérifie la stabilité de X
par rapport au temps, i.e. si la valeur trouvée par l’analyse de notre capture reste toujours valable
au cours du temps. Dans notre cas, nous avons vérifié sur une journée que les données déduites de
notre capture de 10 minutes restent valides.

X, HEADX et TAILX définissent l’architecture PREFETCH. Les FQDNs les plus popu-
laires HEADX sont gérés par la carte accélératrice ou par un front end. TAILX est géré soit par le
nœud Pastry, soit par le réseau en back end. Pour le réseau en back end, on choisit de déployer une
architecture Pastry, essentiellement afin de bénéficier des mécanismes d’auto-configuration. On
peut alors reprendre les modèles sur lesquels nous avons appuyé notre étude dans la section B.3.3.
Toutefois, nous devons les reprendre avec le trafic TAILX . En effet, le trafic de TAILX présente
des caractéristiques différentes du trafic HEADX + TAILX . Si la figure B.6a laisse à penser que
TAILX est uniforme, un test du χ2 avec l’hypothèse nulle "TAILX est uniformément répartie"
rejette cette hypothèse. Les résultats obtenus par nos modèles montrent que l’architecture Pastry-
AC, Pastry-SF et Pastry présentent les meilleures performances. L’avantage d’utiliser Pastry-AC
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pour le réseau back end est que l’on peut alors aussi jouer sur le back end afin d’augmenter le
nombre de FQDNs cachés. Avec DNSSEC, la différence entre Pastry et Pastry-SF n’est pas fla-
grante. Comme les implémentations de Pastry sont davantage disponibles que des implémentations
de Pastry-SF, nous choisissons Pastry dans la suite de cette thèse.

Jusqu’à présent, nous nous sommes appuyés sur une modélisation de notre architecture, mais
nous n’avons jamais validé cette modélisation à l’aide d’une expérimentation. Nous avons implé-
menté une plateforme de 10 nœuds Pastry à l’aide de la libraire FreePastry [Fre]. Avec un trafic
Uniforme, nous chargeons la plateforme, et relevons le trafic maximum traité par la plateforme
lorsque le nombre de nœuds actifs est compris entre 1 et 10. Ces résultats sont alors comparés avec
ceux de nos modèles grâce à la mesure d’un coefficient de corrélation. Le coefficient de corrélation
proche de 1 valide nos modèles.

B.3.5 Discussion

Suite à cette partie sur les architectures de plateformes de Résolution DNSSEC, les opérateurs
sont en mesure de déployer DNSSEC. Les plateformes optimisées ne nécessite pas plus de nœuds
que les architectures actuelles déployées afin d’assurer un service de résolution avec DNS. De plus,
les optimisations décrites dans cette sections permettent me de diminuer, malgré le déploiement
de DNSSEC, la taille des plateformes car à la mutualisation des opérations de résolutions et
l’amélioration des caches.

Ainsi à l’issue de cette section, la problématique de : comment migrer un service de Résolution
DNS vers DNSSEC est résolue. Notons toutefois, que dans cette partie nous avons résolu ce
problème d’un point de vue technique, en dégageant des principes d’architecture. La mise en place
et le déploiement doivent encore prendre en compte des critères économiques, qui dépendent des
constructeurs.

B.4 MOBIKE-X: Extensions IPsec permettant le support si-
multané de la Mobilité, du Multihoming et des Interfaces
Multiples

La seconde partie est dédiée à la sécurité IPsec dans un contexte de Mobilité, de Multihoming et
de Multiples Interfaces. La section B.4.1 décrit brièvement le protocole IPsec, et la section B.4.2
met en évidence l’impact de la mobilité, du multihoming et de Multiples Interfaces sur la config-
uration IPsec. La section B.4.3 présente les protocoles IPsec liés à la Mobilité et au Multihoming
comme MOBIKE [Ero06] et positionne notre protocole MOBIKE-X [Dan09b]. La section B.4.4
mesure les différentes performances en termes de mobilité et de multihoming. Plus précisément, on
mesure le temps de réaction d’un système pour se configurer correctement par rapport aux change-
ments réseau et pour adapter une communication protégée par IPsec d’une interface à une autre.
L’objectif de ces mesures de performances est d’évaluer comment MOBIKE-X permet d’introduire
de nouvelles fonctionnalités et d’améliorer la qualité de service dans un cas de mobilité. Ces
performances sont mesurées selon différentes architectures. En effet, les architectures que nous
considérons sont :

- un client connecté à un serveur avec une communication protégée de bout en bout.

- un client connecté à un serveur via une passerelle de sécurité, et tunnel le trafic jusqu’a la
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Passerelle de Sécurité.

Commecons par considérer l’architecture avec la sécurité de bout en bout. Cette configuration
est un peu semblable à l’utilisation de TLS. La seconde architecture que nous considérons est celle
plus classique d’un client VPN connecté à une Passerelle de Sécurité. L’utilisation d’une commu-
nication avec une protection IPsec de bout en bout n’est pour l’instant pas couramment déployée.
Cependant nous considérons cette architecture car elle présente certains avantages sur l’utilisation
du mode tunnel. D’une part, elle réduit la bande passante ainsi que les opérations de tunneling et
de chiffrement. D’autre part, la communication point à point évite les indirections et permet, par
rapport aux architectures VPN, de dimensionner la plateforme de sécurité par rapport aux services.
Les services cibles sont bien entendu des services avec de fortes exigences temps réel, comme les
services de voix ou de jeux. La section B.4.5 se concentre sur la problématique de l’offload. Les
opérateurs ne pourront pas supporter la demande de trafic mobile d’ici 5 ans, et envisagent de
migrer les flux qui circulent actuellement sur les Réseau d’Accès Radio comme la 3G / 4G vers
des réseaux WLAN. Ces derniers n’appartiennent pas forcément à l’opérateur et donc nécessitent
de sécuriser la communication. Selon la nature du service, l’une ou l’autre des architecture peut
être utilisée. En effet, l’offload pose un double problème. D’une part, un problème de sécurité
car l’on utilise un réseau tiers, et d’autre part une problématique plus générale de mobilité de
communication. Dans cette section, on s’attache à donner des recommandations sur la manière de
gérer l’offload à la fois au niveau des politiques d’offload, et au niveau de la manière de gérer la
mobilité de l’application. Enfin, la section B.4.6 conclut cette partie.

B.4.1 Rappel sur IPsec et définition de la Mobilité, Multihoming et
Multiples Interfaces sur IPsec

Dans cette partie, nous nous attacherons à effectuer un bref rappel sur IPsec et à définir ce que
l’on entend par Mobilité, Multihoming et Multiples Interfaces.

On parle souvent d’IPsec comme un protocole, or il faudrait plutôt le voir comme un ensem-
ble de protocoles permettant de sécuriser les paquets IP d’une communication. Le principe de
base d’IPsec est de protéger chacun des paquets IP d’une communication. IPsec définit alors une
architecture [KS05] qui définit les différents éléments intervenant pour le chiffrement de chacun
des paquets. IPsec définit un protocole IKEv2 [KHNE10] qui permet aux différents nœuds de
négocier le matériel cryptographique nécessaire à la protection de la communication. Enfin, IPsec
définit également des protocoles qui permettent d’authentifier les paquets de la communication:
IP Authentication Header (AH) [Ken05a] ou de chiffrer les paquets IP de la communication avec
IP Encapsulating Security Payload (ESP) [Ken05b].
Lorsque nous parlons, dans cette partie de Mobilité, Multihoming et Multiples Interfaces, nous en-
tendons comment garder cohérente la configuration IPsec par rapport aux modifications d’interfaces
d’un terminal. C’est donc essentiellement définir d’une part les modifications qui doivent être effec-
tuées sur les deux nœuds communicants et, d’autre part, comment les nœuds peuvent signaler entre
eux les modifications de la configuration IPsec à effectuer. Ainsi, on se focalisera sur l’architecture
IPsec qui met en évidence l’impact, sur la couche IPsec, d’une modification au niveau des interfaces
réseaux, comme un changement d’adresse IP, un ajout d’interface, l’injoignabilité d’une interface
par exemple. Ensuite on définira les modifications à apporter au protocole IKEv2 afin de permettre
la signalisation. Ce protocole de signalisation sera appelé MOBIKE-X, et fait l’objet de plusieurs
drafts présentés à l’IETF [Dan09b, Dan09a, DC12].

Le principe de fonctionnement de l’architecture IPsec est résumé par la figure B.7. IPsec permet
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à deux zones de confiance de communiquer via un réseau qui n’est pas de confiance. La zone de
confiance est dite Trusted et le réseau est dit Untrusted. Pour cela, la couche IPsec doit protéger
tous les flux allant de la zone Trusted vers la zone Untrusted et inversement, vérifier les paquets
allant de la zone Untrusted vers la zone Trusted.
Pour chaque paquet IP envoyé sur le réseau, la couche IPsec doit d’abord vérifier le traitement à
effectuer. Le traitement est défini par la Security Policy (SP) qui se trouve au sein de la Secu-
rity Policy Database (SPD) et qui définit les politiques de sécurité. La SPD définit grâce à des
Traffic Selectors (TS) comme les adresses IP ou les ports si le paquet doit être rejeté (DISCARD),
envoyé sur le réseau en clair, i.e. sans être protégé (BYPASS) ou si le paquet doit être protégé
(PROTECT). Nous nous intéressons, dans cette partie, au cas où le paquet doit être protégé, et
la Politique de Sécurité, pointe vers une structure indiquant comment le paquet doit être protégé,
avec notamment le matériel cryptographique nécessaire. Cette structure est appelée Security As-
sociation (SA) et est stockée au sein de la Security Association Database (SAD). Notons qu’il se
peut que la SP ou la SA ne soit pas encore définie au sein du noyau lorsque le paquet est envoyé
sur le réseau. Dans ce cas IKEv2 va négocier la SA et la SP tel qu’elles doivent être stockées au
sein du noyau.
Lorsqu’un paquet, par exemple chiffré, arrive sur l’interface réseau, la couche IPsec doit le déchiffrer
pour l’envoyer vers la zone Trusted. Les paquets qui arrivent ne possèdent par comme pour le trafic
sortant les même sélecteurs. En effet, pour un paquet chiffré, les ports ne sont pas visibles par
exemple, et ne peuvent permettre de sélectionner la SA qui va servir à déchiffrer le paquet. Pour ce
faire, on utilise un index: le Security Parameter Index (SPI) qui doit indexer de manière unique les
associations de securité. Pour un paquet entrant chiffré, la couche IPsec identifie le SPI, déchiffre
le paquet. Outre les clés nécessaires au chiffrement / déchiffrement, la SA contient les Traffic
Selectors qui ont permis de selectionner la SP. La couche IPsec vérifie alors que le paquet possède
bien les bons Traffic Selectors avant de finalement renvoyer le paquet vers la zone Trusted.

Il apparaît donc clairement que les modifications des paramètres réseau comme les adresse IP
vont impacter à la fois les associations de sécurité (SA) et politique de sécurité (SP).
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Figure B.7: Principe de fonctionnement d’IPsec

IPsec possède deux modes : le mode Transport et le mode Tunnel. La figure B.8 décrit les
deux scénarios que nous considérons dans cette thèse, et la table B.2b décrit les configurations
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respectives pour les SAD et SPD. Ainsi, La figure B.8a illustre le cas où le Nœud Mobile (NM)
est connecté directement au Nœud Correspondant (NC). Avec une connexion directe, on s’attend
à ce que ce soit le mode Transport d’IPsec. Les SP et SA correspondantes sont indiquées par la
table B.2a. La SPD indique que tout trafic entre l’adresse IPNM et l’adresse IPNC doit être pro-
tégé, et ce, peu importe le port. La SP indique que c’est le mode Transport qui est utilisé, et que le
chiffrement se fait avec ESP qui utilise ENCR pour l’encryptage et AUTH pour l’authentification.
Nous avons mentionné le SPI dans la SPD comme lien permettant de pointer vers la bonne SA
pour le trafic sortant, plutôt que le SPI, la plupart des implémentations utilisent un lien propre à
l’implémentation comme une adresse de structure par exemple. La SA est indexée par les adresses
IP IPNM et IPNC ainsi que le SPI. Ce sont les seuls champs visibles du trafic entrant. La SA
contient le matériel cryptographique ainsi que les sélecteurs qui ont servi pour la sélection de la
SP.
De manière analogue, l’utilisation du mode Tunnel est représentée par la figure B.8b. Le NM est
connecté au NC et leur communication est établie entre IPNM et IPNC . Chaque paquet IP avec
IPNM comme IP source et IPNC comme IP destination est encapsulé vers la Passerelle de Sécu-
rité en utilisant comme adresses externes IP o

NM et IPPS . Comme indiqué par la table B.2b, les
sélecteurs de la SP sont identiques à ceux du mode Transport, mais dans le cas du mode Tunnel,
le SP mentionne les adresses externes. Ces adresses externes sont également mentionnées dans la
SA, afin de vérifier, une fois le paquet décapsulé qu’il correspond bien à la bonne SP. L’important,
dans le mode Tunnel, est de noter que les sélecteurs correspondent aux adresses internes.
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(b) ESP Tunnel

Figure B.8: Configuration réseau IPsec initiales

B.4.2 Description de l’impact de la Mobilité, Multihoming et Multiple
Interfaces sur IPsec

Dans cette thèse, lorsque l’on parle de Mobilité, cela signifie que le NM change d’adresse. Dans le
cas de la figure B.8a, en mode Transport, le NM utilise IP ∗

NM au lieu de IPNM . Dans le cas du
mode Tunnel, représenté par la figure B.8b, le NM change son adresse IP externe et utilise IP o

NM∗
au lieu de IP o

NM .
Au niveau IPsec, dans le cas du mode Transport, la Mobilité nécessite de changer la SP et la SA.
En effet, la SP doit être modifiée de sorte qu’un paquet utilisant IP ∗

NM puisse être protégé exacte-
ment comme s’il l’était auparavant avec IPNM , et qu’il puisse donc être associé à la même SA.
La SA doit également être mise à jour pour que le trafic entrant puisse être traité. Tout d’abord
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SPD (Trafic Sortant)

Sélecteurs Info Chiffrement

IPdst : IPNC PROTECT

IPsrc : IPNM Mode : Transport

Psrc : ANY Proto. : ESP

Pdst : ANY Algo. : ENCR,
AUTH

SPI

SAD (Trafic Sortant)

SPI : SPI Crypto. : Ke, Ka

IPsrc : IPNM Compteurs: Cesp, Cw

IPdst : IPNC Sélecteurs SPD

IPsrc : IPNM

IPdst : IPNC

Psrc : ANY

Pdst : ANY

(a) Transport ESP

SPD (Trafic Sortant)

Sélecteurs Info Chiffrement

IPdst : IPNC PROTECT

IPsrc : IPNM Mode : Tunnel

Pdst : ANY IPTunnel
src : IPNM

Psrc : ANY IPTunnel
dst : IPPS

Proto. : ESP

Algo. : ENCR,
AUTH

SPI

SAD (Trafic Sortant)

SPI : SPI Crypto. : Ke, Ka

IPsrc : IP o
NM Compteurs: Cesp, Cw

IPdst : IPPS IPTunnel
src : IP o

NM

IPTunnel
dst : IPPS

Sélecteurs SPD

IPsrc : IPNM

IPdst : IPNC

Psrc : ANY

Pdst : ANY

(b) Tunnel ESP

Table B.2: Configuration IPsec des SPD & SAD

l’index de la SA doit être mis à jour avec les bonnes adresses IP. Ensuite, la SA doit mettre à jour
les champs correspondants aux Sélecteurs SPD, afin qu’une fois déchiffré, la couche IPsec puisse
vérifier que le paquet déchiffré correspondait bien à la bonne SP.
Au niveau IPsec, dans le cas du mode Tunnel, la Mobilité ne modifie que les adresses externes.
Cela nécessite de modifier la SA et éventuellement le SP. En effet, si l’on ne modifie pas la SP, pour
le trafic sortant, les adresses internes n’étant pas modifiées, la bonne SP sera toujours sélectionnée
après la mobilité. On peut éventuellement vouloir mettre à jour le contenu de la SP qui précise
les adresses externes du mode Tunnel. Par contre, la SA nécessite d’être mise à jour. En effet,
les adresses IP du Tunnel mentionnées dans la SA doivent être mises à jour afin de permettre la
vérification de la SP une fois le paquet déchiffré. Il est également préférable de mettre à jour les
adresses IP externes utilisées pour identifier la SA, même si le SPI peut suffire.
On notera que dans le cas du mode Tunnel, une Mobilité permet de rediriger une même connexion
—entre IPNM et IPNC —depuis l’interface IP o

NM puis depuis l’interface IP o
NM∗. Grâce au mode

Tunnel, le changement de configuration permet, sans interrompre la communication, d’effectuer
une opération de Mobilité. Ceci n’est, par exemple, pas le cas lorsque l’on utilise le mode Trans-
port. En effet, avec le mode Transport, la mobilité de la communication ne peut être effectuée
par IPsec. La Mobilité IPsec est nécessaire, mais doit être couplée avec un protocole permettant
d’effectuer la mobilité de la communication. SCTP ou MPTCP effectue cette mobilité au niveau de
la couche transport, mais elle peut également être effectuée par l’application avec des mécanismes
de résilience.

Lorsque l’on parle de Multihoming, dans cette thèse, cela signifie que la couche IPsec du NM
fournit au NC une liste d’adresse IP appelée adresses alternatives, qui peuvent être utilisées si
l’adresse initiale ne permet plus de joindre le NM. Si l’adresse IP initiale IPNM n’est plus joignable,
alors le NC utilisera l’adresse alternative IP ∗

NM . Cette opération est assimilable à une opération
de mobilité, à la différence que la mise à jour peut être déclenchée non pas par le nœud sur qui le
changement d’interface intervient, i.e. le NM, mais sur le NC.
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Lorsque l’on parle d’Interfaces Multiples, dans cette thèse, cela signifie qu’un NM communique
avec le NC sur une interface, notée IPNM dans le cas d’une connexion en mode Transport et
IP o

NM dans le cas d’une connexion en mode Tunnel. Le NM s’attache à une seconde Interface,
notée IP ∗

NM en mode Transport et IP o
NM∗ en mode Tunnel. L’idée est de configurer IPsec de

manière à ce que le NM puisse utiliser simultanément les deux interfaces pour la communication
déjà établie.
Pour résoudre ce problème, nous tenons compte des implémentations IPsec existantes qui ne per-
mettent pas, par exemple, d’associer plusieurs adresses IP à une SP ou une SA. Aussi, dans la
cas du mode Transport, l’ajout d’une interface nécessite la création d’une nouvelle SP, avec les
Sélecteurs associées à la nouvelle Interface. De même pour le trafic entrant, une nouvelle SA doit
être créée, avec les sélecteur SPD ainsi que les adresses IP indexant la SA associée à la nouvelle
Interface.
De manière similaire, pour le mode Tunnel, une nouvelles SA doit être créée et associée à la nouvelle
interface, et comme une SPD pointe vers une unique SA, une nouvelle SPD doit être également
créée. Ainsi, pour le mode Tunnel, deux SP avec les même trafic Sélecteurs vont pointer vers
deux SA différentes. Ceci peut alors poser le problème de savoir qu’elle SP sélectionner lorsque
le NM émet du trafic sur le réseau. La SPD est une base ordonnée, et la SP choisie sera celle du
premier match avec le paquet. Si une seule SPD est disponible dans le système, une seule interface
seulement pourra être choisie. Cette propriété peut être utilisée afin de faire un Soft Handover.
En revanche, si l’on veut faire du load balancing, il faut séparer les SPD par interface.

B.4.3 MOBIKE-X

MOBIKE-X [Dan09b] est le protocole qui permet au NM d’effectuer au niveau de IPsec une opéra-
tion de Mobilité, du Multihoming, ou d’ajouter une Interface. MOBIKE-X étend les fonctionnalité
de MOBIKE l’extension de MOBilité et de Multihoming de IKEv2. MOBIKE a été défini pour
les VPNs, la Mobilité ou le Multihoming ne permettent que de faire du Hard Handover. En effet
MOBIKE suppose que le NM ne possède qu’une seule interface active à la fois. MOBIKE-X étend
donc les fonctionnalités de MOBIKE-X et permet par la gestion de plusieurs interfaces de faire du
Soft Handover pour les VPNs. De plus, MOBIKE-X étend également ses fonctionnalité au mode
Transport.

Lorsque la connexion entre le NM (IPNM ) et le Serveur (IPSRV ) est tunnelée vers la Passerelle
de Sécurité, MOBIKE [Ero06] permet d’effectuer un Hard Handover comme représenté à la fig-
ure B.9a. Pendant la phase d’initialisation de la communication (Phase 1), le NM et la Passerelle de
Sécurité, annoncent le support du protocole MOBIKE via le Notify Payload MOBIKE_SUPPORTED.
Les autres Payload mentionnées sur la figure permettent la négociation du matériel de sécurité et
l’établissement de la SA ainsi que la IKE_SA, qui est le canal sécurisé permettant l’échange de
messages IKEv2 entre le NM et le NC. Le NM s’attache à une autre réseau et utilise IP ∗

NM . Il
va alors avertir la Passerelle de Sécurité, qu’il utilise IP ∗

NM à la place IPNM par l’envoie d’un
UPDATE_SA_ADDRESSES Notify Payload . Dans MOBIKE, ce message ne comprend aucune
indication. En effet, MOBIKE suppose que le NM ne possède qu’une seule interface, donc la nou-
velle adresse IP est indiquée dans le header IP du paquet. A la réception de ce paquet la Passerelle
de Sécurité procède à la mise à jour de sa SAD, puis éventuellement procède à un test de joignabil-
ité, le Return Routability Check. L’adresse IP indiquée dans le header IP n’est pas protégée par
IPsec et donc peut être forgée. De plus rien n’indique que le NM est joignable à cette adresse IP.
Afin de s’assurer que le NM est joignable et que cette nouvelle adresse appartient bine au NM, la
Passerelle de Sécurité envoie un COOKIE2 Notify Payload.
Avec MOBIKE-X, la Mobilité Hard Handover peut être effectuée même pour le mode Transport. A
la différence de MOBIKE, il faut négocier MOBIKE-X plutôt que MOBIKE. Pour cela on réutilise
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le Notify Payload MOBIKE_SUPPORTED, mais on spécifie la version de MOBIKE, et on attribue
à MOBIKE-X la version 2. Nous avons également spécifié que MOBIKE-X supporte les interfaces
multiples. Si le NM possède par exemple deux interfaces, et que sur l’une des interfaces est utilisée
par deux connections protégée par IPsec. Cette interface supporte alors également le canal IKEv2.
Le NM peut vouloir bouger une connexion sur la seconde interface, sans que l’autre connexion ou
le canal IKEv2 ne soit impacté. MOBIKE ne permet pas cela, car, par défaut tout le trafic utilise
une unique interface. MOBIKE-X permet une telle opération grâce à des SELECTORs Notify
Payloads. Ces Notify Payload permettent de cibler un trafic, et donc de restreindre la mobilité à
un trafic spécifique.

La figure B.9b et la figure B.9c mettent en évidence la gestions des Interfaces Multiples par
MOBIKE-X. En effet MOBIKE-X permet d’ajouter et de retirer une adresse IP à une ensemble
d’associations de Sécurité. Comme précisé précédemment, MOBIKE-X permet de sélectionner
l’ensemble des SA et SPD concernés par l’ajout ou le retrait d’une interface. Ainsi, le NM envoie
en Phase 1 de la figure B.9b un ADD_SA_ADDRESS Notify Payload. Rappelons que lorsque le
NM ajoute une adresse IP, une nouvelle SA est crée. Lorsque le NM envoie un tel message il doit
alors impérativement spécifier la valeur des SPIs des nouvelles SA. Les SA sont unidirectionnelles,
donc une communication comprend deux SAs, et chaque direction possède son propre SPI. Ce qui
importe, c’est que le SPI du trafic entrant soit unique.
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I n i t i a t e u r (NM) Respondeur (PS)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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N(MOBIKE_SUPPORTED)} −−>
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<<< Canal IKEv2 établi
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2) Mobilité Hard Handover IP∗
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3) Return Routability Check
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(b) Soft Handover
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Figure B.9: Description des échanges de mobilité avec MOBIKE(-X)

B.4.4 Étude des performance d’IPsec dans un environnement Mobile

Ainsi MOBIKE-X étend les fonctionnalités de MOBIKE, et dans cette section, nous souhaitons
évaluer dans quelle mesure cette extension améliore la Qualité de Service des utilisateurs.
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La figure B.10 présente les conditions de tests et les résultats que nous obtenons. La figure B.10a
évalue comment la communication est interrompue dans la cas d’une mobilité avec MOBIKE. On
se place alors dans le cas d’une mobilité de VPN, qui utilise donc le mode Tunnel d’IPsec. La plate-
forme expérimentale et les mesures se font sur Ethernet. On utilise Wireshark afin de visualiser
et mesurer les temps qui nous permettent de comparer MOBIKE et MOBIKE-X, et en particulier
TSTALLED le temps d’interruption de la communication. La figure B.10b mesure l’impacte d’une
mobilité sur une communication protégée par le mode Transport, et où la mobilité est gérée par
MOBIKE-X.
MOBIKE-X utilisé avec le mode Transport, nécessite, lorsqu’une opération de mobilité a lieu, de
mettre à jour à la fois la SAD et la SPD. MOBIKE, en revanche ne nécessite de mettre à jour que
sa SPD. Ainsi, le temps des mises à jour des bases IPsec est quasiment doublé dans le cas du mode
Transport, par rapport au mode Tunnel. La mise à jour des bases de données IPsec met environ
36.6035ms en mode Transport, ce qui est 2.69 plus important que dans le cas du mode Tunnel.
Durant la mise à jour, les bases de donnée IPsec sont bloquées, et donc la communication est
interrompue. Afin d’estimer si ce temps est susceptible d’affecter la communication, on le compare
au Round Trip Time (RTT) qui définit la latence du réseau.
Dans la cas d’un réseau Ethernet, on mesure RTT = 0.355ms, dans le cas d’une réseau WLAN
connecté à une connexion ADSL de 1M, on mesure RTT = 9.466ms, dans le cas d’une connex-
ion ADSL à 10M on mesure RTT = 2.14ms, et, dans le cas d’un HotSpot Public, on mesure
RTT = 15ms. La comparaison du temps de mise à jour par rapport au RTT montre que cette
dernière correspond à 2RTT dans le cas d’une mobilité entre les points d’accès public, et ne devrait
donc pas impacter la Qualité de la Communication.
Si les mises à jour, dans le cas du mode Transport, sont 2.65 fois plus longues que dans le cas du
mode Tunnel, en revanche, l’utilisation du mode Transport simplifie considérablement les opéra-
tions réseau, et permet au système d’être beaucoup plus réactif. En effet, plus le système com-
porte de couches successives, plus les modifications ou les changements prennent du temps avant
d’être effectives. On peut ainsi voir sur la figure B.10 que le temps d’interruption de la commu-
nication est supérieur avec le mode mode Tunnel qu’avec le mode Transport. Plus exactement,
TSTALLED ≈ 264ms est entre 9.3% et 15.6% plus rapide avec MOBIKE-X qu’avec MOBIKE. En
fait, avec le noyau Linux, le mode Tunnel impose les paquets de repasser deux fois dans la couche
IP, ce qui complique ou ajoute des opérations réseau supplémentaires. L’impact de la complexité
des opérations réseaux sur les opérations de mobilité est encore plus flagrant lorsque l’on compare
la mobilité effectuée par SCTP sur une communication non protégée par IPsec, avec une commu-
nication protégée par IPsec. Pour une communication non protégée par IPsec, la Mobilité SCTP
prend 30ms, alors que si les liens sont protégés avec IPsec, elle prend 200ms.

Ainsi MOBIKE-X permet de réduire l’impact d’une Mobilité Hard Handover de deux façons.
MOBIKE-X permet l’emploi du mode Transport qui réduit la complexité réseau, et donc augmente
la réactivité du système. Par ailleurs MOBIKE-X permet le Soft Handover, pour une communica-
tion protégée à la fois par le mode Transport et par le mode Tunnel. Avec la réception simultanée
sur deux interfaces, le Soft Handover diminue la perte de paquets au moment de la mobilité. En-
suite, pour le mode Transport, avec lequel IPsec doit être couplé à un autre mécanisme de mobilité,
le Soft Handover permet de configurer IPsec en avance, et ainsi s’abstraire de la configuration IPsec
au moment de la mobilité.

B.4.5 Architecture d’offload

Dans cette section, on se concentre sur la problématique de l’offload, et on montre comment
MOBIKE-X pourrait être utilisé. On parle d’offload lorsque l’ISP redirige le trafic d’un utilisateur
sur des réseaux WLAN afin de réduire la charge du réseau d’Accès Radio. A la différence du cas
où un utilisateur choisit d’utiliser un réseau WiFi afin d’éviter par exemple de consommer son

200



Section B.4. MOBIKE-X: Extensions IPsec permettant le support simultané de la Mobilité, du
Multihoming et des Interfaces Multiples

(a) MOBIKE (b) MOBIKE −X

Figure B.10: Comparaison d’une Mobilité Hard Handover en mode Tunnel
(MOBIKE) et en mode Transport (MOBIKE-X)

forfait data 3G, dans le cas de l’offload, la décision est prise par l’opérateur. Cela signifie que l’ISP
doit fournir une architecture sécurisée et dimensionnée de manière à ce que la qualité de service
de l’utilisateur ne soit pas impactée. Pour ce faire, on détaille dans la figure B.11 les deux types
d’architectures que nous considérons:

- OAA: Offload Access Architecture. Cette architecture fait intervenir une Passerelle de
Sécurité. Son principe est de tunneler le trafic de l’utilisateur jusqu’à un point d’entrée d’un
réseau de confiance. L’intérêt d’une telle architecture est qu’elle est indépendante du service.
L’inconvénient est qu’elle ne prend pas en compte les spécificités du service, introduit des
indirections, et utilise le mode tunnel qui rajoute du traitement et des overheads. Ce type
d’architecture est similaire à celle définie par IWLAN [3GP11].

- OSA: Offload Service Architecture. Cette architecture utilise le mode Transport et est
véritablement le pendant IPsec d’une communication IPsec. L’avantage est qu’elle est très
spécifique au service, qu’elle évite les indirections et les mécanismes de tunnels.

(a) OAA (I-WLAN) (b) OSA

Figure B.11: Description des architecture OAA et OSA

Les architectures OSA et OAA sont de natures différentes, et la spécificité de OSA pour un ser-
vice revient à poser une première question: Quel service nécessite une architecture OSA spécifique
et ne peut se contenter d’une architecture OAA?. De tels services nécessitent une qualité de ser-
vice qui souffrirait des indirections dues à une Passerelle de Sécurité, et dont l’overhead du tunnel
augmenterait la latence. Nécessairement ces services ont une composante temps réel importante,
et / ou utilisent des paquets de petite taille. En effet, pour un paquet dont le MTU est de 1500
octet, l’overhead du tunnel est négligeable et est inférieur à 3%. Ainsi, les services cibles, sont ceux
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de type Voix ou de jeux où l’aspect temps réel et la confidentialité des données sont primordiaux.
Inversement, on peut également se poser la question: Quels sont les services qui nécessitent une
architecture d’offload sécurisée?. En effet, si un service ne nécessite pas une architecture spécifique,
et peut se contenter d’une architecture OAA, le déploiement de ces architectures restent couteux,
et une architecture OAA continue de charger le réseau CORE de l’opérateur. Ainsi, on peut définir
le trafic qui nécessite une architecture OSA, celui qui ne nécessite aucune sécurité, et par défaut, le
reste du trafic utilisera une architecture OAA en situation d’offload. Il est difficile de caractériser
le trafic qui nécessite d’être protégé, de celui qui ne le nécessite pas, mais on peut supposer que les
services protégés par HTTPS par exemple, ne nécessitent pas de protection supplémentaire. Une
protection via OAA masquerait l’utilisation d’un service par un individu. D’autres trafics comme
du trafic vidéo youtube, constitue une part importante du trafic mobile, et peut également être
jugé comme ne nécessitant pas d’être protégé. Le trafic non protégé est directement traité par
le réseau d’accès et est pris en charge par l’architecture ForWaRD Architecture (FWDA). Cette
différentiation du trafic à laquelle on attribue une architecture d’offload différente est illustrée par
la figure B.12.

Figure B.12: Stratégie d’Offload pour ISPs combinant FWDA, OSA and OAA

Une fois l’architecture d’offload décrite, il reste dans le cas de l’architecture d’OSA, à voir com-
ment déployer des applications adaptées à cette architecture. En effet, OSA n’utilise pas le mode
Tunnel, mais le mode Transport. Cela signifie aussi que la mobilité doit être gérée pour le flux,
parallèlement à IPsec. Cela peut se faire au niveau applicatif, c’est à dire par l’application, ou au
niveau de la couche Transport. Dans cette thèse nous avons étudié le cas où la mobilité s’effectuait
au niveau Transport, et nous avons utilisé, pour cela le protocole SCTP. En effet, si l’opérateur
choisit de faire bénéficier une application de la mobilité au niveau transport, SCTP permet un
portage rapide, soit par l’intermédiaire de librairie, soit par l’implémentation de SCTP au niveau
du noyau. Par exemple, les applications TCP traditionnelles peuvent être portées sur SCTP en
utilisant des primitives du style withsctp. Toutefois, aussi petite soit la modification, porter une
application sur SCTP nécessite une validation, des testes fonctionnels, des testes de charges, ce qui
représente un coût. Ainsi l’offload des applications critiques pour les opérateurs doit tenir compte
de l’infrastructure à déployer ainsi que du portage de l’application.

B.4.6 Discussion

Dans cette partie, nous avons généralisé le protocole MOBIKE afin de permettre à des communica-
tions utilisant le mode Transport de bénéficie de la Mobilité, du Multihoming. Enfin, MOBIKE-X
permet également la gestion d’Interfaces Multiples, et permet de gérer le Soft Handover. Nous
nous sommes concentrés sur la problématique d’offload afin d’illustrer l’utilisation du protocole
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MOBIKE-X. Les aspects Soft Handover semblent les plus prometteurs, et l’extension au mode
Transport pourrait être utilisée pour des services critiques qui nécessitent à la fois une haute pro-
tection des informations ainsi que des besoins en temps réel. Les services qui pourraient bénéficier
de ces fonctionnalités sont vraisemblablement les services voix et jeux. Toutefois, les problèmes
auxquels on se heurte sont: 1) Le faible déploiement d’IPsec, 2) IPsec représente une solution
"Opérateur", qui ne sera vraisemblablement pas privilégiée par les fournisseurs d’applications.

B.5 Conclusion

Dans cette thèse nous avons à la fois exploré comment migrer les plateforme de résolutions DNS
vers DNSSEC. Comparées aux plateformes déployées, les architectures proposées permettent de
réduire au moins par 5 le nombre de nœuds. De plus les architectures proposées sont à base de
DHT et facilitent le management de la plateforme grâce aux fonctionnalités d’auto-configuration.
Dans cette thèse nous nous sommes concentrés sur le protocole DNSSEC, mais les principes peu-
vent également être repris pour d’autres services. En particulier, l’opérateur peut appliquer les
méthodes à la distribution de contenu de manière générale. Pour notre part, le travail effectué
dans cette thèse a été transmis aux équipes opérationnelles qui peuvent tirer parti des résultats.
Outre les résultats de l’étude, nous avons développé un certain nombre d’outils qui permettent de
simuler des architectures à partir d’un trafic réel et d’analyser le trafic DNS(SEC). Ces outils ont
également apporté une valeur ajoutée car d’autres études les réutilisent. Il est prévu de les publier
en open source, et de leur fournir une interface graphique.
Si la mise à disposition des outils constitue l’étape immédiate après avoir rendu le manuscrit,
d’autres études restent a explorer pour optimiser la plateforme de résolutions. Ainsi, on pourra
effectuer une étude sur la qualité et les ressources demandées par les fonctions de hachage. En
effet, dans les architectures proposées, nous avons principalement considérer SHA1 comme la fonc-
tion de hachage par défaut. SHA1 est une fonction de hachage cryptographique surdimensionnée
par rapport à nos besoins. Il reste donc à définir une fonction de hachage adaptée à nos besoin
spécifiques qui optimise la répartition du trafic et minimise le calcul. Par exemple, la comparaison
des répartitions utilisant, sur les adresses IP, une fonction XOR et un SHA1, montre que l’on
obtient une répartition équivalente du trafic. Il reste à mesurer "l’uniformité" des fonctions de
hachage et implémenter une fonction de hachage optimale. Une autre perspective est de définr et
normaliser, à partir de Pastry, le protocole DHT, nécessaire à la plateforme. Plus particulièrement,
nos besoins permettent de simplifier Pastry. Le design doit également soigneusement prendre en
compte les aspects auto-configurations. Une implémentation permettrait de mesurer les limites de
l’architecture en particulier, le nombre optimal de FQDNs à considérer comme populaires.

Ensuite, nous avons décrit, implémenté et testé un protocole qui permet la continuité d’une
communication protégée par IPsec dans une environnement Mobile, Multihomé et avec des Inter-
faces Multiples. La faisabilité a été prouvée au cours de cette thèse, et les avantgaes et inconvénients
entre les différentes configurations ont été identifiés. Toutefois l’utilisation d’IPsec, la mise en place
d’une architecture dédiée à des services, la modification des applications en situation d’offload sont
des choix qui doivent mesurer les gains financiers avec les coûts de déploiement. Cette thèse achève
la partie R&D. La suite immédiate de cette thèse considère le développement et la standardisation
de MOBIKE-X à l’IETF. En particulier des drafts sur le Soft Handover doivent être publiés, ainsi
que sur la gestion des SPIs. Nous souhaitons également développer un client VPN optimisé pour
la mobilité et le distribuer à la fois pour les plateformes Androids, Windows, et Linux.
Aux travaux immédiats, nous pouvons également distinguer d’autre études plus conséquentes.
L’une consisterait à faire ce qui a été fait avec SCTP avec le protocole plus actuel MPCTP.
Il s’agirait de faire fonctionner MPTCP et MOBIKE-X ensemble. Ensuite, il serait également
souhaitable de voir comment MPTCP ou MOBIKE-X pourraient réduire leurs signalisations re-
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spectives. En effet, lors d’un changement d’interface, par exemple, MOBIKE-X et MPTCP com-
munique cette information, il est vraisemblable que l’établissement d’un canal de communication
entre MOBIKE-X et MPTCP optimiserait les opérations de mobilité, multihoming et d’interfaces
multiples. Ces tests doivent également faire l’objet de comparaison avec HIP. IPsec a ses avantages,
mais il serait également avantageux de comparer les performances d’une communication sécurisé
avec TLS / DTLS. Cela inclut une comparaison entre IPsec et TLS/ DTLS à la fois de manière
statique et pour les opérations de mobilité multihoming, et interfaces multiples. Dans cette thèse,
nous nous sommes efforcés, avec SCTP de gérer la mobilité avec SCTP, i.e. au niveau transport. Il
est alors intéressant de positionner une mobilité au niveau transport par rapport à des mécanismes
de type "session resumption" qui peuvent être gérés par l’application.
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Publications

This thesis results in a few publications and we are currently working on publishing the code for
the opensource community. Publications include:

- [MGL10] D. Migault, C. Girard, and M. Laurent. A performance view on dnssec migration. In
CNSM 2010, pages 469–474, oct 2010 presents the DNS to DNSSEC migration problematic,
as well as a DNS and DNSSEC performance comparison.

- [Mig10] D. Migault. Performance Measurements on BIND9/NSD/UNBOUND. In IETF79/IEPG.
IEPG, november 2010 presents the DNS to DNSSEC during an open session at the IEPG
79, before the IETF. Results are provided from [MGL10].

- [XMSF11] Q. Xu, D. Migault, S. Sénécal, and S. Francfort. K-means and adaptive k-means
algorithms for clustering dns traffic. In Proceedings of the 5th International ICST Conference
on Performance Evaluation Methodologies and Tools, VALUETOOLS ’11, pages 281–290,
ICST, Brussels, Belgium, Belgium, may 2011. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering) presents the use of K-mean for an analysis
of the FQDNs.

- [FMS11, FMS12] S. Francfort, D. Migault, and S. Sénécal. A bi-objective mixed integer linear
program for load balancing dns(sec) requests. In Global Annual Symposium on DNS-SSR
the DNS-EASY, DNS-EASY 2011. ACM, october 2011 and S. Francfort, D. Migault, and
S. Sénécal. A bi-objective mixed integer linear program for load balancing dns(sec) requests.
In International Journal of Critical Infrastructure Protection. Elsevier, 2012 presents a de-
scription of the use of Mixed Integer Linear Program (MIP) for load balancing the DNS
load.

- [MHS+a] D. Migault, E. Herbert, S. F. Stanislas, S. Sénécal, and M. Laurent. "analyzing
traffic and building routing tables for increasing dns(sec) resolving platforms efficiency (under
submission)" presents how to distribute properly the traffic between the nodes of the platform.
A K-mean analyses of FQDNs is followed by different algorithms based on Mixed Integer
Linear Program (MIP) and others.

- [ML11] D. Migault and M. Laurent. How dnssec resolution platforms benefit from load bal-
ancing traffic according to fully qualified domain name. In ICSNA International Conference
on Secure networking and Applications (ICSNA), october 2011 presents the DNSSEC migra-
tion costs for an ISP as well as the benefits provided by a FQDN load balancer strategies.

- [MHS+b] D. Migault, E. Herbert, S. F. Stanislas, S. Sénécal, and M. Laurent. "overcoming
dnssec performance issues with fqdn load balancer and cache sharing (under submission)"
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presents the various DHT architectures as an alternate way of FQDN load balancer. This
paper also shows the benefits of the pro-active caching architecture.

- [JMDJ+07, JMDJ+09] C. Jean-Michel, M. Daniel, B. Julien, C. Hakima, and L.-M. Maryline.
Sécurité des réseaux mobiles ip. In Traité IC2 (Hermès) "Sécurité des réseaux sans fil et
mobiles". Lavoisier, 2007 and
C. Jean-Michel, M. Daniel, B. Julien, C. Hakima, and L.-M. Maryline. Security of ip-based
mobile networks. In Wireless and Mobile Network Security, ISTE (International Society for
Technology in Education), London, UK, 2009. Wilet presents the Security of the Mobility
Protocols.

- [MPH+12b] D. Migault, D. Palomares, E. Herbert, W. You, G. Ganne, G. Arfaoui, and
M. Laurent. E2e: An optimized ipsec architecture for secure and fast offload. In International
Workshop on Security of Mobile Applications IWSMA’12 (co-located with the ARES’12),
august 2012 presents the measurement performances of MOBIKE-X in conjunction with
SCTP. It also compares MOBIKE-X and MOBIKE.

- [MPH+12a] D. Migault, D. Palomares, E. Herbert, W. You, G. G. G. Arfaoui, and M. Lau-
rent. Isp offload infrastructure to minimize cost and time deployment. In Proc. of IEEE
Global Telecommunications Conference - Communication and Information System Security
(GLOBECOM ’12), december 2012 presents deployable offload solutions based on MOBIKE,
MOBIKE-X and SCTP + MOBIKE-X. This paper is intended to minimize the cost of offload.

- [DMM+09] M. Daniel, L. Maryline, N. M.Tran, K. Brigitte, A. Achour, S. Nuyen, N. Abid,
N. Boukatem, N. Tran, F. Mirani, and B. Eric. 3ming: Mobility multi-technologie multi-
homing: Wp1 - d1.3. French National Research Association, TELECOM, ANR-07-TLCOM-
01, march 2009 is a State Fund Research project where we first presented MOBIKE-X.

- [MPL] D. Migault, D. Palomares, and M. Laurent. MOBIKE-X to overcome Simultaneous
Support of Security, Mobility, Multihoming and Multiple Interfaces presents MOBIKE-X as
well as its performances.

- [Dan09b, Dan09a, DC12] M. Daniel. MOBIKE eXtension (MOBIKE-X) for Transport Mo-
bility and Multihomed IKE_SA. draft. (Work in Progress) Internet Engineering Task Force,
september 2009, M. Daniel. IPsec mobility and multihoming requirements : Problem state-
ment. draft. (Work in Progress) Internet Engineering Task Force, september 2009 and
M. Daniel and W. Carl. Multiple Interfaces IPsec Security Requirements. draft. (Work
in Progress) Internet Engineering Task Force, july 2012 are contribution for MOBIKE-X at
the IETF.

Pieces of Software

Source code includes:

- DHT simulator: Written in C, this simulator that evaluates the CPU consumption of a
DNS(SEC) platform composed of multiple nodes. The Simulator also computes the Response
Time perceived by the End User. This simulator takes as input distribution for the FQDN
popularity. The distribution can be provided with a mathematical expression or with a
list. From this distribution, the Simulator applies probabilistic model to simulate different
architecture. The considered architectures are:

o IP: where traffic is split between the nodes according tothe IP addresses.

o FQDN: where traffic is split between the nodes according to the FQDN.

o Pastry: where the platform architecture is based on Pastry. Note that we use a config-
uration for Pastry that do not cache responses.

o Pastry-Straight-Forward: which is an enhancement of Pastry, that makes the Respon-
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sible Node sends the response directly to the End User rather then to the Pastry Node
requesting on behalf of the End User.

o Pastry-Passive-Caching: which evaluates how caching all queries and responses affects
the node. Pastry-Pro-Active-Caching: which evaluates how pro-active caching affects
the performances of the platform.

- DNS traffic simulator and traffic analyser. PCAP Analyzer and Simulator written in python.
This script takes a pcap file as input, runs tshark to gather information on FQDN, IP
addresses, or TTL and fill its dictionaries. Once dictionaries are build, Python routines plot
statistics such as distribution of certain network parameters. Python routines also compute
traffic repartition among the nodes of a platform according to different rules. This is the
simulation part.

- MOBIKE-X implementation. This implementation is based on strongSwan 4.3.

- IPsec performance measurements tools. These tools are provided to proceed to performance
tests over various configurations. The tools enables measurements and to figure the results.

- SCTP platform guide lines, with multiple how-to written on a wiki, as well as scripts used
to perform mobility tests.

207





Bibliography

[3GP11] 3GPP-LTE: 3GPP system to Wireless Local Area Network (WLAN) interworking;
System description, TS 23.234, Release 10. ETSI Standard, march 2011.

[AAL+05a] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Intro-
duction and Requirements. URL: http://www.ietf.org/rfc/rfc4033.txt, march
2005. RFC 4033 (Proposed Standard), Updated by RFC 6014.

[AAL+05b] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modifications
for the DNS Security Extensions. URL: http://www.ietf.org/rfc/rfc4035.txt,
march 2005. RFC 4035 (Proposed Standard), Updated by RFCs 4470, 6014.

[AAL+05c] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records for
the DNS Security Extensions. URL: http://www.ietf.org/rfc/rfc4034.txt, march
2005. RFC 4034 (Proposed Standard), Updated by RFCs 4470, 6014.

[ABV+04] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Au-
thentication Protocol (EAP). URL: http://www.ietf.org/rfc/rfc3748.txt, june
2004. RFC 3748 (Proposed Standard), Updated by RFC 5247.

[ADF05] B. Ager, H. Dreger, and A. Feldmann. Exploring the Overhead of DNSSEC. URL:
http://www.net.in.tum.de/~anja/feldmann/papers/dnssec05.pdf, 2005.

[Age05] B. Ager. Performance Evaluation of DNSSEC. URL: http://www.net.t-labs.

tu-berlin.de/papers/A-PEDNSSEC-05.pdf, march 2005.

[AH06] J. Arkko and H. Haverinen. Extensible Authentication Protocol Method for 3rd
Generation Authentication and Key Agreement (EAP-AKA). URL: http://www.
ietf.org/rfc/rfc4187.txt, january 2006. RFC 4187 (Informational), Updated by
RFC 5448.

[Ait09] R. Aitchison. Choosing a DNSSEC Solution. URL: http://www.zytrax.com/books/
dns/info/choosing-dnssec-solution.pdf, may 2009.

[AKB07] R. Arends, M. Kosters, and D. Blacka. DNS Security (DNSSEC) Opt-In. URL:
http://www.ietf.org/rfc/rfc4956.txt, july 2007. RFC 4956 (Experimental).

[alt03] Nortel Networks Alteon OS 21.0, Alteon Application Switch, september 2003.

[And] Android 5 VPN doAndroids. URL: https://play.google.com/store/apps/details?
id=com.doenter.android.vpn.fivevpn&hl=en.

209



BIBLIOGRAPHY

[App] Apple iOS: Setting up VPN. URL: http://support.apple.com/kb/HT1424.

[APW] APWG Anti Phishing Working Group (APWG). URL: http://www.antiphishing.
org.

[ATT] AT&T Corporation originally American Telephone and Telegraph Company. URL:
http://www.att.com/.

[AW06] M. Andrews and S. Weiler. The DNSSEC Lookaside Validation (DLV) DNS Re-
source Record. URL: http://www.ietf.org/rfc/rfc4431.txt, february 2006. RFC
4431 (Informational).

[BCF+99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like
distributions: evidence and implications . In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 1, pages 126 –134 vol.1, march 1999.

[BIKS03] S. Bellovin, J. Ioannidis, A. Keromytis, and R. Stewart. On the Use of Stream
Control Transmission Protocol (SCTP) with IPsec. URL: http://www.ietf.org/
rfc/rfc3554.txt, july 2003. RFC 3554 (Proposed Standard).

[BIN] BIND. URL: http://www.isc.org/bind10.

[Boi] Boingo: The Worldwide Leader in Wi-Fi Software and Services. URL: http:

//www.boingo.com/.

[BP08] R. Bellis and L. Phifer. DNSSEC Impact on Broadband Routers and Firewalls.
Nominet, september 2008.

[cav] cavium. URL: http://www.cavium.com/Table.html.

[CB03] J. L. Cooke and D. Bryson. Strong Cryptography in the Linux Kernel, Discussion
of the past, present, and future of strong cryptography in the Linux kernel, july
2003.

[CCC07] E.-C. Cha, H.-K. Choi, and S.-J. Cho. Evaluation of Security Protocols for the
Session Initiation Protocol. In ICCCN’07, pages 611–616, 2007.

[Cis11] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Up-
date, 2010-2015. URL: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-520862.html, february 2011.

[Cle08] A. Clegg. DNSSEC in 6 minutes. URL: http://www.isc.org/files/DNSSEC_in_6_
minutes.pdf, 2008.

[CLW+08] J. Cao, M. Li, C. Weng, Y. Xiang, X. Wang, H. Tang, F. Hong, H. Liu, and
Y. Wang, editors. IFIP International Conference on Network and Parallel Com-
puting, NPC 2008, Shanghai, China, October 18-21, 2008, Workshop Proceedings,
2008.

[CMM02] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS Using a Peer-to-Peer
Lookup Service. In Revised Papers from the First International Workshop on Peer-
to-Peer Systems, IPTPS ’01, pages 155–165, London, UK, 2002. Springer-Verlag.

[col] Collect for Linux. URL: http://collectl.sourceforge.net.

[Com] DNSSEC Information Center. URL: http://www.dnssec.comcast.net.

210



BIBLIOGRAPHY

[Con01] D. Conrad. Indicating Resolver Support of DNSSEC. URL: http://www.ietf.org/
rfc/rfc3225.txt, december 2001. RFC 3225 (Proposed Standard), Updated by
RFCs 4033, 4034, 4035.

[CR06] R. Chandramouli and S. Rose. Secure Domain Name System (DNS) Deployment
Guide, may 2006.

[CS02] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer
networks. In Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, SIGCOMM ’02, pages
177–190, New York, NY, USA, 2002. ACM.

[Dan09a] M. Daniel. IPsec mobility and multihoming requirements : Problem statement.
draft. (Work in Progress) Internet Engineering Task Force, september 2009.

[Dan09b] M. Daniel. MOBIKE eXtension (MOBIKE-X) for Transport Mobility and Mul-
tihomed IKE_SA. draft. (Work in Progress) Internet Engineering Task Force,
september 2009.

[DBI03] S. M. Das, R. V. Belani, and M. Imhasly. CacheMakers : A Co-operative DNS
Caching Service. In WWW (Posters), 2003.

[DC12] M. Daniel and W. Carl. Multiple Interfaces IPsec Security Requirements. draft.
(Work in Progress) Internet Engineering Task Force, july 2012.

[DKK+01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area co-
operative storage with CFS. In Proceedings of the eighteenth ACM symposium
on Operating systems principles, SOSP ’01, pages 202–215, New York, NY, USA,
2001. ACM.

[DMM+09] M. Daniel, L. Maryline, N. M.Tran, K. Brigitte, A. Achour, S. Nuyen, N. Abid,
N. Boukatem, N. Tran, F. Mirani, and B. Eric. 3ming: Mobility multi-technologie
multi-homing: Wp1 - d1.3. French National Research Association, TELECOM,
ANR-07-TLCOM-01, march 2009.

[dnsa] DNSPerf, ResPerf, DHCPerf. URL: http://www.nominum.com/services/

measurement_tools.php.

[dnsb] DNSSEC Deployment. URL: http://www.dnssec-deployment.org/wiki/index.php/
Tools_and_Resources.

[dnsc] DNSSEC.NET. URL: http://www.dnssec.net/.

[dns08] DNSSEC Walker. URL: https://www.dns-oarc.net/tools/dnssecwalker, january
2008.

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.2. URL: http://www.ietf.org/rfc/rfc5246.txt, august 2008. RFC 5246
(Proposed Standard), Updated by RFCs 5746, 5878, 6176.

[Eas99] D. Eastlake 3rd. Domain Name System Security Extensions. URL: http:

//www.ietf.org/rfc/rfc2535.txt, march 1999. RFC 2535 (Proposed Standard),
Obsoleted by RFCs 4033, 4034, 4035, updated by RFCs 2931, 3007, 3008, 3090,
3226, 3445, 3597, 3655, 3658, 3755, 3757, 3845.

[Eas00] D. Eastlake 3rd. DNS Request and Transaction Signatures ( SIG(0)s ). URL:
http://www.ietf.org/rfc/rfc2931.txt, september 2000. RFC 2931 (Proposed
Standard).

211



BIBLIOGRAPHY

[EK97] D. Eastlake 3rd and C. Kaufman. Domain Name System Security Extensions.
URL: http://www.ietf.org/rfc/rfc2065.txt, january 1997. RFC 2065 (Proposed
Standard), Obsoleted by RFC 2535.

[end] endace. URL: http://www.endace.com.

[Ero06] P. Eronen. IKEv2 Mobility and Multihoming Protocol (MOBIKE). URL: http:
//www.ietf.org/rfc/rfc4555.txt, june 2006. RFC 4555 (Proposed Standard).

[ETS10] P. Eronen, H. Tschofenig, and Y. Sheffer. An Extension for EAP-Only Authen-
tication in IKEv2. URL: http://www.ietf.org/rfc/rfc5998.txt, september 2010.
RFC 5998 (Proposed Standard).

[Fal00] P. Faltstrom. E.164 number and DNS. URL: http://www.ietf.org/rfc/rfc2916.
txt, september 2000. RFC 2916 (Proposed Standard), Obsoleted by RFC 3761.

[Fei73] H. Feistel. Cryptography and computer privacy. Scientific american, 228(5):15–23,
1973.

[Fit11] K. Fitchard. TIA 2011: Verizon to offload 3G/4G data
through free Wi-Fi hotspots. URL: http://connectedplanetonline.

com/3g4g/news/tia-2011-verizon-wireless-to-offload-3g-4g-data\

-through-free-wi-fi-hotspots-0519, may 2011.

[FM04] P. Faltstrom and M. Mealling. The E.164 to Uniform Resource Identifiers (URI)
Dynamic Delegation Discovery System (DDDS) Application (ENUM). URL:
http://www.ietf.org/rfc/rfc3761.txt, april 2004. RFC 3761 (Proposed Stan-
dard), Obsoleted by RFCs 6116, 6117.

[FMS11] S. Francfort, D. Migault, and S. Sénécal. A bi-objective mixed integer linear
program for load balancing dns(sec) requests. In Global Annual Symposium on
DNS-SSR the DNS-EASY, DNS-EASY 2011. ACM, october 2011.

[FMS12] S. Francfort, D. Migault, and S. Sénécal. A bi-objective mixed integer linear
program for load balancing dns(sec) requests. In International Journal of Critical
Infrastructure Protection. Elsevier, 2012.

[FN10] F5-Networks. F5, Networks: BIG-IP Global Traffic Manager: Implementation,
march 2010.

[Fre] Free Pastry. URL: http://www.freepastry.org/.

[FRH+11] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural Guidelines
for Multipath TCP Development. URL: http://www.ietf.org/rfc/rfc6182.txt,
march 2011. RFC 6182 (Informational).

[FS00] N. Ferguson and B. Schneier. A Cryptographic Evaluation of IPsec. Technical
report, Counterpane Internet Security, Inc, 2000.

[Gal09] J. Galvin. .org and DNSSEC: Securing the DNS. URL: http://www.isoc.org/

isoc/conferences/dnspanel, july 2009.

[Gar08] G. L. Garcia. IPSec performance analysis for large-scale Radio Access. In Helsinki
University of Technology, Master Thesis, july 2008.

[GKD07] G. Giaretta, J. Kempf, and V. Devarapalli. Mobile IPv6 Bootstrapping in Split
Scenario. URL: http://www.ietf.org/rfc/rfc5026.txt, october 2007. RFC 5026
(Proposed Standard).

212



BIBLIOGRAPHY

[GKLN08] A. Gurtov, D. Korzun, A. Lukyanenko, and P. Nikander. Hi3: An efficient and
secure networking architecture for mobile hosts. Comput. Commun., 31(10):2457–
2467, 2008.

[Gra10] M. Graff. DNSSEC is coming. Is your organization ready? URL: http://www.isc.
org/blogs/mgraff, may 2010.

[Gri09] C. Griffiths. Comcast DNSSEC Trail Test Bed, january 2009.

[Gri10] C. Griffiths. Comcast Voices : DNSSEC. URL: http://blog.comcast.com/2010/
02/dnssec.html, february 210.

[GTS+06] S. Grau, H. Tschofenig, M. Shanmugam, L. Coene, and S. Gros. IKEv2 Mobility
and Multihoming using SCTP, june 2006.

[Gui06] A. Guillard. DNSSEC Operational Impact and Performance. In Computing in the
Global Information Technology, 2006. ICCGI ’06. International Multi-Conference
on, pages 63–63, august 2006.

[Gur08] A. Gurtov. Host Identity Protocol (HIP): towards the secure mobile Internet.
Wiley series in communications networking & distributed systems. Wiley, 2008.

[Han09] A. Handa. Mobile Data Offload for 3G Networks. URL: http://www.

intellinet-tech.com, october 2009.

[Han10] A. Handa. 3G/WiFi Seamless Offload. URL: http://www.qualcomm.com/documents/
files/3g-wifi-seamless-offload.pdf, march 2010.

[HG12] T. Henderson and A. Gurtov. The Host Identity Protocol (HIP) Experiment
Report. URL: http://www.ietf.org/rfc/rfc6538.txt, march 2012. RFC 6538 (In-
formational).

[HHK+10] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan. Cellular
traffic offloading through opportunistic communications: a case study. In Pro-
ceedings of the 5th ACM workshop on Challenged networks, CHANTS ’10, pages
31–38, New York, NY, USA, 2010. ACM.

[HHS10] B. Han, P. Hui, and A. Srinivasan. Mobile data offloading in metropolitan area
networks. SIGMOBILE Mob. Comput. Commun. Rev., 14:28–30, november 2010.

[Hig09] K. J. Higgins. Kaminsky Calls For DNSSEC Adoption. URL:
http://www.darkreading.com/security/vulnerabilities/showArticle.jhtml?

articleID=214501924, february 2009.

[HJH+10] T. Heer, T. Jansen, R. Hummen, S. Götz, H. Wirtz, E. Weingärtner, and
K. Wehrle. PiSA-SA: Municipal Wi-Fi Based on Wi-Fi Sharing. In ICCCN,
pages 1–8, 2010.

[Hob10] A. Hoban. Using Intel AES New Intsruction and PCLMULQDQ to Significantly
Improve IPSec Performance on Linux. In Intel Corporation, august 2010.

[HRUT06] C. Hohendorf, E. P. Rathgeb, E. Unurkhaan, and M. Tüxen. Secure End-to-End
Transport over SCTP. In G. Müller, editor, Emerging Trends in Information
and Communication Security, International Conference, ETRICS 2006, Freiburg,
Germany, June 6-9, 2006, Proceedings, volume 3995 of Lecture Notes in Computer
Science, pages 381–395. Springer, 2006.

213



BIBLIOGRAPHY

[HS06] H. Haverinen and J. Salowey. Extensible Authentication Protocol Method for
Global System for Mobile Communications (GSM) Subscriber Identity Modules
(EAP-SIM). URL: http://www.ietf.org/rfc/rfc4186.txt, january 2006. RFC
4186 (Informational).

[ICA09] ICANN. Immediate security concerns addressed by DNSSEC. URL: http://www.
icann.org/en/announcements/announcement-2-03jun09-en.htm, june 2009.

[iPa] iPass: Enterprise Mobility Services. URL: http://www3.ipass.com/.

[IRD02] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer web
cache. In 12th ACM Symposium on Principles of Distributed Computing (PODC
2002), july 2002.

[Jac09] W. Jackson. 5 IT priorities for 2009. URL: http://gcn.com/articles/2009/01/12/
5-it-priorities-for-2009.aspx, january 2009.

[JBB03] J. Jung, A. W. Berger, and H. Balakrishnan. Modeling TTL-based Internet
Caches. In IEEE Infocom 2003, San Francisco, CA, april 2003.

[JMDJ+07] C. Jean-Michel, M. Daniel, B. Julien, C. Hakima, and L.-M. Maryline. Sécurité
des réseaux mobiles ip. In Traité IC2 (Hermès) "Sécurité des réseaux sans fil et
mobiles". Lavoisier, 2007.

[JMDJ+09] C. Jean-Michel, M. Daniel, B. Julien, C. Hakima, and L.-M. Maryline. Security
of ip-based mobile networks. In Wireless and Mobile Network Security, ISTE
(International Society for Technology in Education), London, UK, 2009. Wilet.

[JPA04] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. URL:
http://www.ietf.org/rfc/rfc3775.txt, june 2004. RFC 3775 (Proposed Stan-
dard), Obsoleted by RFC 6275.

[JRa] JRat The Java Runtime Analysis Toolkit. http://jrat.sourceforge.net/.

[JSBM01] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and the ef-
fectiveness of caching. In Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement, IMW ’01, pages 153–167, New York, NY, USA, 2001. ACM.

[Kam08a] D. Kaminsky. Dan kaminsly blog. URL: http://www.doxpara.com/?p=1185, july
2008.

[Kam08b] D. Kaminsky. It’s The End Of The Cache As We Know It, or 64K Should Be Good
Enough For Anyone. URL: http://www.doxpara.com/DMK_BO2K8.ppt, july 2008.

[Ken05a] S. Kent. IP Authentication Header. URL: http://www.ietf.org/rfc/rfc4302.txt,
december 2005. RFC 4302 (Proposed Standard).

[Ken05b] S. Kent. IP Encapsulating Security Payload (ESP). URL: http://www.ietf.org/
rfc/rfc4303.txt, december 2005. RFC 4303 (Proposed Standard).

[KES06] T. Koponen, P. Eronen, and M. Särelä. Resilient connections for SSH and TLS.
In Proceedings of the annual conference on USENIX ’06 Annual Technical Con-
ference, pages 30–30, Berkeley, CA, USA, 2006. USENIX Association.

[KHNE10] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange Protocol
Version 2 (IKEv2). URL: http://www.ietf.org/rfc/rfc5996.txt, september 2010.
RFC 5996 (Proposed Standard), Updated by RFC 5998.

214



BIBLIOGRAPHY

[Kol05] O. M. Kolkman. Measuring the resource requirements of DNSSEC. URL: http:
//ripe.net/docs/ripe-352.html, october 2005.

[Kol09] O. Kolkman. DNSSEC HOWTO, a tutorial in disguise. URL: http://www.

nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf, july 2009.

[KS05] S. Kent and K. Seo. Security Architecture for the Internet Protocol. URL: http:
//www.ietf.org/rfc/rfc4301.txt, december 2005. RFC 4301 (Proposed Standard),
Updated by RFC 6040.

[LB08] S. Lindskog and A. Brunstrom. A Comparison of End-to-End Security Solutions
for SCTP. Technical report, Proceedings of the 5th Swedish National Computer
Networking Workshop (SNCNW 2008). Karlskrona, Sweden, april 2008.

[LCC+02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proceedings of the 16th international conference
on Supercomputing, ICS ’02, pages 84–95, New York, NY, USA, 2002. ACM.

[LCGW09] J. Livingood, T. Creighton, C. Griffiths, and R. Webe. Recommended Configu-
ration and Use of DNS Redirect by Service Providers. URL: http://tools.ietf.
org/html/draft-livingood-dns-redirect-00, july 2009.

[LKS] LKSCTP Linux Kernel SCTP. URL: http://sourceforge.net/projects/lksctp/.

[LM03] W. Lehr and L. W. Mcknight. Wireless Internet access: 3G vs. WiFi? Telecom-
munications Policy, 27(5-6):351–370, 2003.

[LRL+10] K. Lee, I. Rhee, J. Lee, Y. Yi, and S. Chong. Mobile data offloading: how much
can WiFi deliver? SIGCOMM Comput. Commun. Rev., 40:425–426, august 2010.

[LSAB08] B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Security (DNSSEC) Hashed
Authenticated Denial of Existence. URL: http://www.ietf.org/rfc/rfc5155.txt,
march 2008. RFC 5155 (Proposed Standard).

[Mas06] D. Massey. A Comparative Study of the DNS Design with DHT-Based Alterna-
tives. In In the Proceedings of IEEE INFOCOM’06, 2006.

[MD00] M. Mealling and R. Daniel. The Naming Authority Pointer (NAPTR) DNS Re-
source Record. URL: http://www.ietf.org/rfc/rfc2915.txt, september 2000. RFC
2915 (Proposed Standard), Obsoleted by RFCs 3401, 3402, 3403, 3404.

[MGL10] D. Migault, C. Girard, and M. Laurent. A performance view on dnssec migration.
In CNSM 2010, pages 469–474, oct 2010.

[MHS+a] D. Migault, E. Herbert, S. F. Stanislas, S. Sénécal, and M. Laurent. "analyz-
ing traffic and building routing tables for increasing dns(sec) resolving platforms
efficiency (under submission)".

[MHS+b] D. Migault, E. Herbert, S. F. Stanislas, S. Sénécal, and M. Laurent. "overcom-
ing dnssec performance issues with fqdn load balancer and cache sharing (under
submission)".

[Mic] Microsoft Mobile VPN. URL: http://msdn.microsoft.com/en-us/library/

cc440255.aspx.

[Mic09] Microsoft. Domain Name System Security Extensions.
URL: http://www.microsoft.com/downloads/details.aspx?FamilyID=

7a005a14-f740-4689-8c43-9952b5c3d36f&DisplayLang=en, february 2009.

215



BIBLIOGRAPHY

[Mig10] D. Migault. Performance Measurements on BIND9/NSD/UNBOUND. In
IETF79/IEPG. IEPG, november 2010.

[ML11] D. Migault and M. Laurent. How dnssec resolution platforms benefit from load
balancing traffic according to fully qualified domain name. In ICSNA International
Conference on Secure networking and Applications (ICSNA), october 2011.

[MM06] D. Migault and B. Marinoiu. Evaluation du coût de la sécurisation du système
dns. In École Supérieure et d’Application des Transmissions, SSTIC’06, pages
340–360, june 2006.

[MN06] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture. URL:
http://www.ietf.org/rfc/rfc4423.txt, may 2006. RFC 4423 (Informational).

[MNJH08] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity Protocol.
URL: http://www.ietf.org/rfc/rfc5201.txt, april 2008. RFC 5201 (Experimen-
tal), Updated by RFC 6253.

[Moc87a] P. Mockapetris. Domain names - concepts and facilities. URL: http://www.ietf.
org/rfc/rfc1034.txt, november 1987. RFC 1034 (Standard), Updated by RFCs
1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035,
4592, 5936.

[Moc87b] P. Mockapetris. Domain names - implementation and specification. URL: http:
//www.ietf.org/rfc/rfc1035.txt, november 1987. RFC 1035 (Standard), Updated
by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308,
2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966.

[MPH+12a] D. Migault, D. Palomares, E. Herbert, W. You, G. G. G. Arfaoui, and M. Laurent.
Isp offload infrastructure to minimize cost and time deployment. In Proc. of IEEE
Global Telecommunications Conference - Communication and Information System
Security (GLOBECOM ’12), december 2012.

[MPH+12b] D. Migault, D. Palomares, E. Herbert, W. You, G. Ganne, G. Arfaoui, and M. Lau-
rent. E2e: An optimized ipsec architecture for secure and fast offload. In Interna-
tional Workshop on Security of Mobile Applications IWSMA’12 (co-located with
the ARES’12), august 2012.

[MPL] D. Migault, D. Palomares, and M. Laurent. MOBIKE-X to overcome Simultaneous
Support of Security, Mobility, Multihoming and Multiple Interfaces.

[MS10] R. Malik and R. Syal. Performance Analysis of IP Security VPN. In International
Journal of Computer Applications, volume 8, pages 0975–8887, october 2010.

[NB09] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol for
IPv6. URL: http://www.ietf.org/rfc/rfc5533.txt, june 2009. RFC 5533 (Pro-
posed Standard).

[NGH10] P. Nikander, A. Gurtov, and T. R. Henderson. Host identity protocol (hip): Con-
nectivity, mobility, multi-homing, security, and privacy over ipv4 and ipv6 net-
works. IEEE Communications Surveys and Tutorials, 12(2):186–204, 2010.

[NL11] T. Norman and R. Linton. The case for Wi-Fi offload: the costs and benefits
of Wi-Fi as a capacity overlay in mobile networks. Technical report, Analysys
Masson, december 2011.

216



BIBLIOGRAPHY

[NM08] P. Nikander and J. Melen. A Bound End-to-End Tunnel (BEET) mode for ESP.
(Work in Progress), IETF, august 2008.

[NVCGRGL11] P. Noriega-Vivas, C. Campo, C. Garcia-Rubio, and E. Garcia-Lozano. Supporting
L3 Femtocell Mobility Using the MOBIKE Protocol. Technical report, ACCESS
2011 : The Second International Conference on Access Networks, april 2011.

[Obe09] R. K. Oberman. DNSSEC Implementation. North American Network Operator’
Group (NANOG45), january 2009.

[Oll05] G. Ollmann. The Pharming Guide : Understanding and Preventing
DNS-related Attacks by Phishers. URL: http://www.ngssoftware.com/papers/

ThePharmingGuide.pdf, august 2005.

[Oll09] G. Ollmann. Measures to Protect Domain Registration Services Against Exploita-
tion or Misuse. URL: http://www.icann.org/en/committees/security/sac040.pdf,
august 2009.

[ORMZ08] E. Osterweil, M. Ryan, D. Massey, and L. Zhang. Quantifying the Operational
Status of the DNSSEC Deployment. Internet Measurement Conference, october
2008.

[OY02] L. Ong and J. Yoakum. An Introduction to the Stream Control Transmission
Protocol (SCTP). URL: http://www.ietf.org/rfc/rfc3286.txt, may 2002. RFC
3286 (Informational).

[Per02] C. Perkins. IP Mobility Support for IPv4. URL: http://www.ietf.org/rfc/

rfc3220.txt, january 2002. RFC 3220 (Proposed Standard), Obsoleted by RFC
3344.

[Per10] C. Perkins. IP Mobility Support for IPv4, Revised. URL: http://www.ietf.org/
rfc/rfc5944.txt, november 2010. RFC 5944 (Proposed Standard).

[Phe08] T. Phelan. Datagram Transport Layer Security (DTLS) over the Datagram Con-
gestion Control Protocol (DCCP). URL: http://www.ietf.org/rfc/rfc5238.txt,
may 2008. RFC 5238 (Proposed Standard).

[PPPW04a] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: improving DNS perfor-
mance and reliability via cooperative lookups. In Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation - Volume 6, pages
14–14, Berkeley, CA, USA, 2004. USENIX Association.

[PPPW04b] K. Park, V. S. Pai, L. Peterson, and Z. Wang. CoDNS: Masking DNS delays
via Cooperative Lookups. In Technical Report TR-690-04. Princeton University
Computer Science, 2004.

[RA10] S. Risto and L. Antti. Operator’s Dilemma : How to take advantage of the grow-
ing mobile Internet. URL: http://www.notava.com/notava/uploads/Whitepapers/

Internet_growth_V10.pdf, may 2010.

[Rad10] Radaware Alteon Application Switch 5412 Case study. URL: http:

//www.radwarealteon.com/wp-content/uploads/Documents/CaseStudies/NAS/

Alteon_Case_Study.pdf, 2010.

[Rat04] M. Ratola. Which Layer for Mobility? - Comparing Mobile IPv6, HIP and SCTP.
HUT T-110.551 Seminar on Internetworking, 2004.

217



BIBLIOGRAPHY

[RD01a] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer
Science, 2218:329, 2001.

[RD01b] A. Rowstron and P. Druschel. Storage management and caching in PAST, a
large-scale, persistent peer-to-peer storage utility. In 18th ACM Symposium on
Operating Systems Principles (SOSP’01), pages 188–201, october 2001.

[RDM08] A. Roy, A. Datta, and J. C. Mitchell. Formal proofs of cryptographic security of
Diffie-Hellman-based protocols. In Proceedings of the 3rd conference on Trustwor-
thy global computing, TGC’07, pages 312–329, Berlin, Heidelberg, 2008. Springer-
Verlag.

[rep09] DNSSEC Reply Size Test Server. URL: https://www.dns-oarc.net/oarc/services/
replysizetest, july 2009.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable
content-addressable network. In SIGCOMM, pages 161–172, 2001.

[RHM09] J. Risson, A. Harwood, and T. Moors. Topology dissemination for reliable one-hop
distributed hash tables. IEEE Transactions on Parallel and Distributed Systems,
20:680–694, 2009.

[Ric09] W. Rickard. The Long Road to DNSSEC Deployment. URL: http://www.isoc.
org/tools/blogs/ietfjournal/?p=1367, september 2009.

[Roy09] Roy. FORMAL PROOFS OF CRYPTOGRAPHIC SECURITY OF NETWORK
PROTOCOLS. URL: seclab.stanford.edu/pcl/papers/Roy-Thesis-Final.pdf,
december 2009.

[RRDO10] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)
Renegotiation Indication Extension. URL: http://www.ietf.org/rfc/rfc5746.txt,
february 2010. RFC 5746 (Proposed Standard).

[RS04] V. Ramasubramanian and E. G. Sirer. Beehive: O(1)lookup performance for
power-law query distributions in peer-to-peer overlays. In Proceedings of the 1st
conference on Symposium on Networked Systems Design and Implementation -
Volume 1, pages 8–8, Berkeley, CA, USA, 2004. USENIX Association.

[RS07] V. Ramasubramanian and E. G. Sirer. Proactive Caching for Better than Single-
Hop Lookup Performance. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=?doi=10.1.1.2.8918, 2007.

[RT07] M. Riegel and M. Tuexen. Mobile SCTP. Internet-Draft (Work in progress), http:
//tools.ietf.org/html/draft-riegel-tuexen-mobile-sctp-09, IETF, november
2007.

[Sar10] P. Saragiotis. Good practices guide for deploying DNSSEC, january 2010.

[SCAC09] J. Schönwälder, G. Chulkov, E. Asgarov, and M. Cretu. Session resumption for
the secure shell protocol. In Proceedings of the 11th IFIP/IEEE international
conference on Symposium on Integrated Network Management, IM’09, pages 157–
163, Piscataway, NJ, USA, 2009. IEEE Press.

[sct] SCTPlib: The SCTP library. URL: http://www.sctp.de/sctp-download.html.

218



BIBLIOGRAPHY

[Ses08] S. Seshadri. DNSSEC on Windows 7 DNS client. URL: http://blogs.technet.

com/sseshad/archive/2008/11/11/dnssec-on-windows-7-dns-client.aspx, novem-
ber 2008.

[SFA04] Space, S. Fu, and M. Atiquzzaman. SCTP: State of the Art in Research, Products,
and Technical Challenges, april 2004.

[SGM07] C. A. Shue, M. Gupta, and S. A. Myers. IPSec: Performance Analysis and En-
hancements. In IEEE International Conference on Communications (ICC), june
2007.

[SL10] S. Seshadri and G. Lindsay. DNSSEC Deployment Guide, march 2010.

[SMK+01] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, volume 31, pages 149–160, New York,
NY, USA, october 2001. ACM Press.

[Spr] Sprint: Global provider of voice, data and Internet services. URL: http://www.

sprint.com/index_p.html?context=CP.

[Ste07] R. Stewart. Stream Control Transmission Protocol. URL: http://www.ietf.org/
rfc/rfc4960.txt, september 2007. RFC 4960 (Proposed Standard), Updated by
RFCs 6096, 6335.

[str] StrongSwan the OpenSource IPsec-based VPN Solution. URL: http://www.

strongswan.org.

[SXT+07] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka. Stream Control
Transmission Protocol (SCTP) Dynamic Address Reconfiguration. URL: http://
www.ietf.org/rfc/rfc5061.txt, september 2007. RFC 5061 (Proposed Standard).

[TDVK98] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond Hierarchies: Design Consid-
erations for Distributed Caching on the Internet, 1998. citeseer.ist.psu.edu/

tewari98beyond.html.

[Tel] Telenor. URL: http://www.telenor.no/privat/.

[The] TheCloud. URL: http://www.thecloud.net/.

[Tru] Trustive | International mobile internet access (3G + WiFi access) in 150 countries
worlwide, including at 300.000 WiFi hotspots from a leading international WiFI
access provider & No1 in Europe. URL: http://www.trustive.com/.

[UNB] UNBOUND. URL: http://unbound.net/.

[URJ04] E. Unurkhaan, E. P. Rathgeb, and A. Jungmaier. Secure SCTP - A Versatile
Secure Transport Protocol. Telecommunication Systems, 27(2-4):273–296, 2004.

[VGEW00] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington. Secret Key Trans-
action Authentication for DNS (TSIG). URL: http://www.ietf.org/rfc/rfc2845.
txt, may 2000. RFC 2845 (Proposed Standard), Updated by RFC 3645.

[Wan99] J. Wang. A survey of Web caching schemes for the Internet. ACM Computer
Communication Review, 25(9):36–46, 1999. citeseer.ist.psu.edu/wang99survey.

html.

219



BIBLIOGRAPHY

[WBS04] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the web from DNS.
In Proceedings of the 1st conference on Symposium on Networked Systems Design
and Implementation - Volume 1, NSDI’04, pages 17–17, Berkeley, CA, USA, 2004.
USENIX Association.

[Wei07] S. Weiler. DNSSEC Lookaside Validation (DLV). URL: http://www.ietf.org/rfc/
rfc5074.txt, november 2007. RFC 5074 (Informational).

[Wel] B. Wellington. dnsjava. URL: http://www.dnsjava.org/.

[WeR] WeRoam: Comfone’s Global Public WiFi Access Solution. URL: http://www.

comfone.com/index.php/weroam.

[WG03] B. Wellington and O. Gudmundsson. Redefinition of DNS Authenticated Data
(AD) bit. URL: http://www.ietf.org/rfc/rfc3655.txt, november 2003. RFC 3655
(Proposed Standard), Obsoleted by RFCs 4033, 4034, 4035.

[Wik] Wikipedia. Quartile. URL: http://en.wikipedia.org/wiki/Quartile.

[Wir] Wireshark. URL: http://www.wireshark.org.

[Wou10] P. Wouters. World Wide DNSSEC Deployment. URL: http://www.xelerance.com/
dnssec/, 2010.

[WVS+99] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and H. M. Levy.
On the scale and performance of cooperative Web proxy caching. In Symposium
on Operating Systems Principles, pages 16–31, 1999.

[XMSF11] Q. Xu, D. Migault, S. Sénécal, and S. Francfort. K-means and adaptive k-means
algorithms for clustering dns traffic. In Proceedings of the 5th International ICST
Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS
’11, pages 281–290, ICST, Brussels, Belgium, Belgium, may 2011. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).

[ZHS+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubia-
towicz. Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, 22(1), january 2004.

220


