Biological multi-functionalization and surface nanopatterning of biomaterials - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2013

Biological multi-functionalization and surface nanopatterning of biomaterials

Multi-fonctionnalisation et micro-, nanostructuration de la surface de biomatériaux

Résumé

The aim of biomaterials design is to create an artificial environment that mimics the in vivo extracellular matrix for optimized cell interactions. A precise synergy between the scaffolding material, bioactivity, and cell type must be maintained in an effective biomaterial. In this work, we present a technique of nanofabrication that creates chemically nanopatterned bioactive silicon surfaces for cell studies. Using nanoimprint lithography, RGD and mimetic BMP-2 peptides were covalently grafted onto silicon as nanodots of various dimensions, resulting in a nanodistribution of bioactivity. To study the effects of spatially distributed bioactivity on cell behavior, mesenchymal stem cells (MSCs) were cultured on these chemically modified surfaces, and their adhesion and differentiation were studied. MSCs are used in regenerative medicine due to their multipotent properties, and well-controlled biomaterial surface chemistries can be used to influence their fate. We observe that peptide nanodots induce differences in MSC behavior in terms of cytoskeletal organization, actin stress fiber arrangement, focal adhesion (FA) maturation, and MSC commitment in comparison with homogeneous control surfaces. In particular, FA area, distribution, and conformation were highly affected by the presence of peptide nanopatterns. Additionally, RGD and mimetic BMP-2 peptides influenced cellular behavior through different mechanisms that resulted in changes in cell spreading and FA maturation. These findings have remarkable implications that contribute to the understanding of cell-extracellular matrix interactions for clinical biomaterials applications.
Le but de la conception d’un biomatériau est de mimer les modèles qui puissent être représentatifs de la matrice extracellulaire (MEC) existant in vivo. Cet objectif peut être atteint en associant une combinaison de cellules et des facteurs biologiques à un biomatériau sur lequel ces cellules peuvent se développer pour reconstruire le tissu natif. Dans cet étude, nous avons crée des surfaces bioactives nanostructurées en combinant la nanolithographie et la fonctionnalisation de surface, en greffant un peptide RGD ou BMP-2 (bone morphogenetic protein 2). Nous avons étudié l’effet de cette nanodistribution sur le comportement des cellules souches mésenchymateuses en analysant leur adhésion et différentiation. Nous notons que la nanodistribution des peptides induit une bioactivité qui a un impact sur l’organisation du cytosquelette, la conformation des fibres de stresse de l’actin, la maturation des adhésions focales (AFs), et le commitment des cellules souches. En particulier, l’aire, la distribution, et la conformation des AFs sont affectes par la présence des nanopatterns. En plus, le RGD et le BMP-2 changent le comportement cellulaire par des voies et des mécanismes différents en variant l’organisation des cellules souches et la maturation de leurs AFs. La nanodistribution influence de façon évidente les cellules souches en modifiant leur comportement (adhésion et différenciation) ce qui a contribué et ce qui contribuera à améliorer la compréhension des interactions des cellules avec la MEC.
Fichier principal
Vignette du fichier
CHENG_ZHE_2013.pdf (4.54 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01016695 , version 1 (01-07-2014)

Identifiants

  • HAL Id : tel-01016695 , version 1

Citer

Zhe Annie Cheng. Biological multi-functionalization and surface nanopatterning of biomaterials. Other. Université Sciences et Technologies - Bordeaux I; Université catholique de Louvain (1970-..), 2013. English. ⟨NNT : 2013BOR15202⟩. ⟨tel-01016695⟩

Collections

CNRS STAR INC-CNRS
176 Consultations
1160 Téléchargements

Partager

Gmail Facebook X LinkedIn More