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Abstract

Computer screens are very small compared to the size of large information spaces
that arise in many domains. The visualization of such datasets requires multis-
cale navigation capabilities, enabling users to switch between zoomed-in detai-
led views and zoomed-out contextual views of the data. Designing interfaces that
allow users to quickly identify objects of interest, get detailed views of those ob-
jects, relate them and put them in a broader spatial context, raise challenging
issues. Multi-scale interfaces have been the focus of much research effort over
the last twenty years.

There are several design approaches to address multiscale navigation issues. In
this thesis, we review and categorize these approaches according to their level of
content awareness. We identify two main approaches : content-driven, which op-
timizes interfaces for navigation in specific content; and content-agnostic, that
applies to any type of data. We introduce the content-aware design approach,
which dynamically adapts the interface to the content. The latter design ap-
proach can be used to design multiscale navigation techniques both in 2D or 3D
spaces. We introduce Arealens and Pathlens, two content-aware fisheye lenses
that dynamically adapt their shape to the underlying content to better preserve
the visual aspect of objects of interest. We describe the techniques and their im-
plementation, and report on a controlled experiment that evaluates the usability
of Arealens compared to regular fisheye lenses, showing clear performance im-
provements with the new technique for a multiscale visual search task. We intro-
duce a new distortion-oriented presentation library enabling the design of fisheye
lenses featuring several foci of arbitrary shapes. Then, we introduce Gimlens, a
multi-view detail-in-context visualization technique that enables users to navi-
gate complex 3D models by drilling holes into their outer layers to reveal objects
that are buried into the scene. Gimlens adapts to the geometry of objects of inter-
est so as to better manage visual occlusion problems, selection mechanism and
coordination of lenses.

Keywords : graphical user interface, multi-scale visualization, focus+context,
detail-in-context, content-aware, lenses, design approach, presentation library



Résumeé

Les écrans d’ordinateurs sont de trés petite taille comparés a celles des jeux
de donnés dans de nombreux domaines. Pour pallier au probleme de visualisa-
tion de grandes quantités de données, les interfaces de navigation multi-échelles
rendent possible I’exploration interactive des données, en facilitant la transition
entre vues zoomées et dé-zoomées afin de permettre a I’utilisateur d’examiner les
informations en détail ou de pouvoir les interpréter dans un contexte plus global.
L’ étude de ces interfaces est un domaine important de la recherche en Interaction
Homme-Machine, et de nombreuses techniques de navigation ont été proposées
lors des vingt dernieres années.

Nous proposons une nouvelle approche de conception pour les interfaces de navi-
gation multi-échelles dites content-aware. Cette approche est basée sur I’adapta-
tion dynamique d’éléments de I’interface au contenu de la scene que 1’ utilisateur
est en train de visualiser, permettant ainsi de proposer des représentations plus
pertinentes. Nous présentons trois nouvelles techniques de navigation basées sur
cette approche de conception, qui montrent comment appliquer celle-ci pour
traiter différents problemes de navigation, aussi bien en 2D qu’en 3D. Nous
présentons dans un premier temps Arealens et Pathlens, deux lentilles de gros-
sissement 2D dont la forme va s’adapter a la géométrie des objets d’intéréts afin
de proposer une meilleur intégration de la vue zoomée dans son contexte envi-
ronnant. Une expérience de laboratoire contrdlée de Arealens met en évidence
un gain de performance de ce type de lentille par rapport aux lentilles de gros-
sissement classiques pour une tiche de recherche visuelle. Nous introduisons
ensuite Gimlens, une lentille de grossissement 3D permettant 1’exploration de
modeles complexes. Gimlens permet d’identifier rapidement les objets d’intérét
de la scene, d’afficher des vues détaillées de ces objets, de parcourir des orbites
autour de ceux-ci et de les mettre en perspective dans leur contexte environnant.
L utilisateur peut également combiner les lentilles pour afficher simultanément
différentes vues complémentaires de la scene.

Mots clés : interface graphique, visualisation multi-€chelles, focus+context,
détail-in-context, sensible au contenu, lentille, méthode de conception, librairie
de présentation,
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Introduction

The digital universe keeps expanding faster, between 2001 and 2006 its size in-
creased by a factor of 10 and it is foreseen to keep expanding by a factor of 10
every 5 years [53]. Computer screens are our windows to the digital universe, but
yet they remain very small compared to the size of information spaces we need
to understand. Large datasets arise in many domains. Geographical Information
Systems produce world maps at street level, such as OpenStreetMap [120] that
would require 18 - 10'5 pixels to rasterize. Astronomical space telescope Spitzer
took in 2008 an infrared picture of the inner part of our Galaxy, made of thou-
sands of frames stitched together to produce a 4.7 billion pixel image. Artists
stitch together several thousands of pictures taken by conventional SLR came-
ras to create gigapixels images, such as the 272 gigapixels panorama of Shan-
ghai [121]. Various industries involve in their processes capture, generation or
real-time analysis of huge amounts of data. Financial firms, retailers or content
providers generate huge visualizations to understand trends, find patterns and de-
cide business strategy. Manufacturing industries involve CAD modeling throu-
ghout the production pipeline, resulting in large 3D models.

Gaining insight into such datasets, seeking for a particular piece of information,
or only browsing with no particular purposes in mind but exploration requires
multiscale navigation capabilities. Shneiderman developed a general mantra to
guide the design of interfaces supporting visual information seeking : “Overview
first, zoom and filter, then details-on-demand” [108]. In fact, in some situations,
users are very likely to zoom-in first and reach for details to see what it looks
like then zoom-out to understand where they were and then zoom-in again to
change location and compare against another part. However the core idea is that
multiscale navigation systems, to support the exploration of large information
spaces, must allow users to view the dataset at multiple scales.

Designing multiscale navigation techniques typically involves one of three main
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interface schemes or combination thereof [35] : overview+detail, which uses
spatial separation between focus and context views, zooming which uses tem-
poral separation, and focus+context which blends seamlessly the focus view into
its surrounding context. Typical implementations of the latter are magnification
lenses and their derivatives.

Magnification lenses usually feature a large, possibly full screen view of the data
at low scale, providing users with a global overview. Users can instantiate lenses
to get detailed views of the datasets through a movable display region, that they
can freely move onto the context view. Using lenses to successively magnify
regions allows for showing details surrounded by their context and thus reduce
visual discontinuity between the views. A feature that reduces mechanical and
cognitive overhead for users shifting their attention successively between details
and context, as reported by Grudin [55].

Multiscale Navigation Issues

Designing magnification lenses that allow users to successfully navigate large
information spaces involves the three following challenges, that we try to address
in this thesis.

Detail in Context Integration

Plumlee and Ware identified linking [94] as one of the main challenges for de-
signing magnification lenses. It refers to the cognitive process of understanding
the relationship between the focus and the context views. For users to fully be-
nefit from two views at different scales, they must understand the zoom ratio,
translation and tilt involved in the magnification. Many techniques emerged in
the literature for linking multiscale 2D views such as distortion that integrates
smoothly the focus view into the context view ; view proxy ; line tethers [134] ;
or other visual artifacts that help linking.

How to integrate magnified regions into a context view has been the focus of
a lot of research effort. See [35] for a review of techniques and comparative
experimental evaluations of them. Though many techniques improve navigation
performance, many issues remain to be addressed.

Distortion was introduced to provide seamless focus-in-context integration. While
it guarantees visual continuity, it also causes problems of interpretation[32, 28],
focus targeting [3, 56, 93] and virtual navigation. Indeed, most techniques are
based on lens shapes defined statically by distance functions obtained through



L(P)-metrics [29]. They often fail to provide relevant magnifications of object(s)
of interest whose distorted representation prevents users from recognizing them.

View proxies, directional indicators and tethers were introduced to integrate a
focus view into a context view. While they support linking in sparse scenes —
Plumlee implemented them for navigation in ocean data [95], which are sparse
and flat — they fail to ease linking when the object under focus is invisible in the
context view. Which is frequent when navigating complex 3D scenes that feature
numerous parts clustered closely together, generating a lot of visual occlusion.
Such environments require new techniques for linking focus and context views.

Interaction

As suggested by Mackinlay [82], navigating large information spaces requires
more than static magnification lenses. Interfaces must let users interactively read-
just the view parameters. Indeed, identification of regions of interests, getting de-
tails of these regions, relating them, and putting them in a broader spatial context,
requires tedious reconfiguration of the lens viewport. Introduced by Ware and
Lewis, the DragMag [134] provides two strategies of interaction to control po-
sition and zoom level of the magnified view. Either users interact “through” the
lens, which thus behaves as a zooming window : dragging adjusts the position
of lens’ viewport and a zoom slider controls the scale of the magnification ; or
users interact “through” the context view directly pointing at regions of interest
to adjust the lens’ focus accordingly. Combining two such strategies is actually a
benefit of magnification lenses. Focus interaction allows to inspect the surroun-
dings of a region of interest, and context interaction allows to quickly switch
from one region to another.

Highly occluded environments caused by a high density of numerous overlap-
ping objects clustered closely together, and possibly including one into each
other are notoriously difficult challenges to address for implementing such in-
teraction models for complex 3D scenes.

Combining multiple lenses

General exploration often involves pattern matching when trying to understand
the general structure of a dataset. Plumlee and Ware showed that users could si-
gnificantly benefit from multi-view interfaces for comparison tasks, as those help
decrease visual memory load [96]. Another advantage of magnification lenses is
that they allow for multiple lenses on the same display, letting users inspect seve-
ral parts of the datasets in parallel, and thus favor comparison tasks. Multi-view
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interfaces are of special interest as well for large display environments such as
the one described in [89], or CAVEs [41], where multiple collocated users could
collaborate navigating to different parts of the information space. However multi-
view interfaces can be cumbersome, and generate overhead for users as they in-
crease complexity of the interface [131]. The design of such techniques must
provide the right mechanisms to combine, coordinate and manipulate multiple
lenses to support navigation.

Approach of the Thesis

We identify two categories of design approaches for multiscale navigation. The
first, that we term content-agnostic design approach, only depends on the dimen-
sionality of the representation (1D, 3D or 3D) and provides generic navigation
techniques suited for any type of data. Pan&Zoom, fisheye lenses or standard
overview+detail (see [36]) are examples of techniques that follow this approach.
The second, that we term content-driven design approach, assumes some geo-
metrical characteristics of the representation (for instance a layout, or particular
shapes of the information objects) specific to a dataset, to provides navigation
techniques that help users display relevant views of the datasets. The Perspec-
tive Wall [82] and the Document Lens [99] are notable examples of this design
approach.

In this thesis we adopt a third design approach : the content-aware design ap-
proach. It dynamically adapts the navigation technique to the representation
being visualized to improve navigation. The approach is conceptually situated
between the two aforementioned approaches, while the content-driven design
approach relies on global characteristics of the representation to provide static
optimization of the navigation technique, the content-aware approach relies on
local characteristics to locally optimize navigation, which tends to result in na-
vigation techniques that apply to a larger range of data and representation.

Contribution of this Thesis

The main contributions of this thesis are :

1. We introduce a new approach for the design of multiscale navigation.
We propose a new design approach enabling the design of navigation tech-
niques that dynamically adapt depending on the content of the scene, allo-
wing local optimization of the presentation or interaction mechanisms.
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2. We present two adaptive distortion-based magnification techniques.
Distortion allows to seamlessly integrate focus into context. However it
hinders visualization as objects of interest can be distorted. We introduce
two techniques that provide distortion-based magnification lenses whose
shapes will adapt so as to preserve objects’ visual appearance as much as
possible.

3. We propose a library that enables the interactive rendering of
distortion-oriented presentations with possibly multiple foci of arbi-
trary shapes that adapt dynamically to the object they magnify. The
framework was designed to support parallel rendering on the GPU to achieve
interactive rendering of complex lenses. The framework furthermore intro-
duces fine controls over the distribution of the distortion, allowing high
expressiveness and rendering of a wide range of lenses. Implementation of
the framework allowed us to implement fully functional prototypes of the
two aforementioned adaptive distortion-based magnification techniques.

4. We introduce magnification lenses for navigation in complex 3D mo-
dels. The technique introduces cone-cut, a new content-aware 3D occlu-
sion management technique that supports 3D linking in dense scenes and
that supports drilling as well, which allows quick selection of objects of in-
terest in dense scenes. The technique supports parallel exploration as well
by coupling and handling conflicts between several lenses. The technique
was successfully implemented and tested against several types of 3D mo-
dels.

Outline of the Dissertation

The dissertation is organized as follows :

In the first chapter we will give a general introduction to multiscale navigation
and present content-aware approaches for the design of multiscale navigation
techniques. This chapter will serve two purposes : introduce terminology used
throughout the dissertation, and better situate our work in the wider scope of vi-
sualization. In the second chapter we will present Pathlens, a fisheye lens whose
shape adapts to the content of the scene to optimize distortion. We will high-
light how content-aware design approaches allow to improve over state of the
art fisheye lenses. In the third chapter we will present Arealens,a fisheye lens
featuring multiple foci enabling users to navigate in object fields by expanding
objects of interest piecewise. Again, content-awareness allows for better occlu-
sion management and more relevant magnification standard techniques. In the
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fourth chapter we will present the overall framework used to build both Arealens
and Pathlens techniques, which is an image warping technique allowing to render
distortion-oriented presentations that feature multiple arbitrary-shaped lenses. In
the fifth chapter we will present Gimlenses which are used to navigate complex
3D scenes that couple an automatic 3D occlusion management technique that
reveals current object of interest in the scene with a navigation technique allo-
wing users to drill down into the scene reaching for objects buried possibly deep
into the model. In the sixth chapter we will discuss the general content-aware
approach, its implications for design, present a set of principles drawn from our
experience implementing those techniques . We will also raise issues to be ad-
dressed in future work to improve integration in end-user systems.



Chapitre 1

Multiscale Navigation in Large
Datasets

This chapter provides a high-level introduction to multiscale navigation and si-
tuates it in the more general context of interactive visualization. Concepts used
for the rest of this Dissertation will be introduced and we will present the ap-
proach of this thesis for addressing issues related to multiscale navigation.

1.1 What is Multiscale Navigation ?

Multiscale navigation enables users to explore large information spaces. Helping
users make sense of data is the very purpose of visualization. However, the gro-
wing size of datasets leads to the inability to convey all the information with
a single static illustration. The interface is then tied to display only a subset of
the data and requires multiscale navigation capabilities to let viewers interacti-
vely reconfigure what portion of the representation is being examined. We define
multiscale navigation as navigation within very large information spaces where
users need to view datasets at different magnification, or scales.

Navigation is a concept that originates from the physical world. It was then
ported to electronic worlds, when monitor screens allowing to visually explore
virtual information stored into computers’ hard-drives, were introduced. Some
concepts from navigating the physical world, such as landmarks and routes were
therefore evaluated, and sometimes applied, in these new spaces [42]. Although,
navigation in virtual worlds is ruled by completely different laws than naviga-
tion in physical world, Spence noticed that the questions asked are identical in
both worlds : Where am [ ? Where can I go ? How do I get there ? What lies

13
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beyond ? [111]. In virtual worlds, locomotion, object visibility and shapes are
not ruled by the laws of physics and can be altered for the sake of navigation
and visibility. If this new freedom provides new opportunities to solve naviga-
tion issues[67], Spence acknowledged that, however, they ““ undoubtedly posed
challenges for the interaction designer.”’[111]

We will give a concrete example of multiscale navigation taken from an every
day life scenario, we will give also more examples of large datasets we are strug-
gling to navigate in the remainder of this section.

1.1.1 What is Visualization ?

We define visualization as the use of computer-supported, interactive, visual re-
presentation of data to support its understanding. Pictures are powerful vectors
for information, it has been a mechanism of communication long before the for-
malization of writing. A single picture can convey a lot more information, is qui-
cker to interpret compared to a equivalent page of words. Among our perceptual
senses, we rely heavily on our sight for everyday tasks and our visual processing
pipeline is tremendously efficient [133]. This is partly due to the fact that human
beings process images in parallel and can handle lots of information, as oppo-
sed to hearing which is processed sequentially, word after word, which leaves
us unable to follow two conversations at the same time. Visual representations
hence offer a much higher bandwidth for communication than other representa-
tions (sounds, smells etc...) and is a good choice for conveying great amounts of
information.

The goal of visualization is to convey information from datasets to the users
through all types of communication technology. On the one side we have users
with their efficient pattern recognition capabilities coupled with their expecta-
tions on the data and decision making capabilities. On the other side we have
computers with information stored on hard drives, computing power and display
technology. Visualization lies at the interface between the two worlds, trying to
take the best of all the resources available to help users in their understanding of
datasets.

The design of visualization interfaces is challenging and builds upon visual per-
ception, cognition, and requires a good understanding of the various technologies
available for implementing interactive programs.
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FIGURE 1.1: llustration of the Context Loss Problem that arise during navigation with
the Google Maps interface. A user is searching for Notre Dame de Paris. (a) large over-
view allows to spot the fle Saint-Louis. (b) zooming shows more detailed representations.
(c) however zooming too much shows less contextual information and users are likely to
get lost. A small overview provides more context and reveals that the target is across the

river. (d) Notre Dame de Paris.

1.1.2 An Everyday Life Example

We use multiscale navigation interfaces on a day to day basis. Geographic In-
formation Systems (GIS) providing representations of the whole world, from a
rough overview down to every single streets, are an example of such multiscale

datasets whose understanding requires multiscale navigation capabilities. Google
Maps, Microsoft Bing Maps and their community-based open source equivalent
OpenStreetMap, provide web platforms giving access to such datasets far too
big to fit on a screen — rasterization of the OpenStreetMap would require at the
highest level of detail an 18 peta-pixels bitmap.

Since their introduction in the beginning of the early 2

1th

Century, web mapping

services gained tremendous popularity and they soon incorporated other types
of representations, such as satellite views, or the well-known Google Street View
allowing users to walk through streets of a city thousands miles away. Users

rapidly took the habit to use such services.

To illustrate challenges awaiting designers of interfaces for navigating such da-
tasets, we consider the simple following scenario. A person from the north of
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FIGURE 1.2: The Boeing 777 airliner was modeled in detail. The resulting dataset —
which includes countless cables, screws, pipes, valves, nuts and bolts — is organized
into more than 13,000 files. The raw Polygon representation, made of 350 Millions of
triangles, is almost 12 Gbytes. Such datasets are notoriously difficult to navigate and
require multiscale capabilities to let users drill into the model to view parts buried deep
into the model. Taken from [44].

France travels south to visit the cathedral Notre Dame de Paris. On the way
she must travel through Amiens which stands between Lille and Paris. Crossing
Amiens is challenging because or the many turns needed in small streets, and
requires a detailed map, but she must not lose sight of the overall purpose of the
journey, which is to reach Paris and its Cathedral. For this reason the driver is
usually to be found switching between two paper based maps, one with detail
representation of the streets and the other one providing an overview.

An interface supporting navigation in GIS must provide access to both overview
and detailed views of the map. Figure 1.1 presents the Google Maps interface.
The multiple scales of the dataset are accessible by zooming the view (1.1 (a)
and (b)). But as users keep zooming, less geographical cues (the river, subway
stations, streets names etc...) necessary to know where we are into the data, are
visible to users who eventually get lost in the vicinity of Notre Dame (Figure
1.1 (c)). This problem is known as the Context loss problem.

Google Maps provides a feature to address the Context loos problem : clicking in
the arrow at the bottom right corner pops-up a small window that shows an over-
view of the data, bringing back some context information, and allowing users to
locate their final destination and adjust their position accordingly. This interface
scheme has been identified as one of the main multiscale interface scheme and
was termed Overview+Detail[35].

1.1.3 Motivations

The amount of data produced worldwide keeps increasing at an ever faster rate [53].
Acquired or generated, both are stored in huge databases and advances in many
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domains depend on our ability to make sense of all those datasets.

Many scientific disciplines depend heavily on observations of the world. Buil-
ding scientific knowledge heavily depends on what we are able to observe. Im-
provements to our ability to capture the world surrounding us leads to larger and
larger datasets. Recently, the Spitzer Space Telescope took a 4.7 billion-pixels
infra-red picture showing the inner part of our Galaxy. It allows astrophysicists
to observe unprecedented pictures of our galaxy. Visualization of these images
is of main importance for confirmation of theories or building new ones and
scientists need tools to inspect from a large overview of the image down to each
pixels.

Many manufacturing companies such as the aerospace, automotive or electronic
industries, rely heavily on modeling of their product throughout the production
chain. They allow to simulate behaviors of the system, explore different design at
lower cost. The Boeing 777 airliner was entirely modeled using CAD software,
resulting in a complex 3D model (Figure 1.2) featuring more than 350 millions
polygons [44]. Evolution of technology often moves toward smaller electronic
components assembled in very dense environment to match industry standards
resulting in more complicated datasets.

The goal of this Thesis is to design interfaces that better help users to make
sense of large datasets. This thesis introduces a new design approach to design
multiscale navigation, we then apply this approach to design several techniques
addressing several issues of multiscale navigation. The techniques are demons-
trated on various datasets that we selected to cover a wide range of data types.
We use maps taken from OpenStreetMap or Google Maps, two web mapping
services or satellite views of the earth. We use diagrams and WIMP interfaces
representations. We use 3D CAD models such as a car engine or a plant model.

On the following Sections, we will first introduce a simple visualization pipeline
to better understand where does fit such interface into a standard visualization
platform. Then we will present the main interface schemes that support navi-
gation in large datasets. Finally we will introduce the original approach of this
Thesis along with two others design approaches that we identified from revie-
wing the literature related to multiscale navigation.

1.2 The Multiscale Navigation Process

Here we briefly introduce a high-level multiscale navigation pipeline. We present
all the stages involved in the design of a software aiming at the exploration of
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large information spaces. The first stage is to find a mapping between the data
and a graphical representation. The second stage is to display the visual repre-
sentation on the screen. The third and last stage is designing the interaction that
let users select what subset of the information space they want to display.

1.2.1 Representation

Carpendale defines the representation as “the act of creating an image that cor-
responds to the information” [29]. This visual representation of the data is meant
to convey relevant information to be displayed on a visual display. The image
can be of several types : pixel-based or vector-based for 2D visualization, voxel-
based (volumetric data) or meshes for 3D visualization. Representation starts
with an analysis of the data available to extract information needed by users, and
then map data to visual signs to convey information graphically. There are many
ways in which data can be represented : color, line thickness, filling pattern and
spatial arrangement (layout) among others. Readers should refer to the following
readings [133, 54, 132, 110] for in-depth presentation of the field. In the scope
of this thesis we rather focus on the type of data to be displayed.

Ware [133] suggests that there are two fundamental forms of data : entities and
relationships. Entities are the objects we wish to visualize and relationships de-
fine structures and patterns that relate entities to one another.

Entities

Entities are the objects we want to visualize. There can be many kinds of entities.
Often, visualization techniques are classified according to the type of entities
they were designed to display. In the case of a geographical map, entities could
be roads, motor ways, monuments, gas stations, water pond or any feature that a
map can display. Users, depending on their need, might be interested by a subset
of them only. Hence, a good visualization should let users choose what entities to
display. For instance many GPS system let users decide or not to display Points
of Interest while driving or not, depending on whether they are looking for a
particular POI (a gas station for instance) or if they want to reduce visual clutter
on the screen while they are driving.

Data Structure

The data structure is the set of relationships that exist between the different enti-
ties of the dataset. There can be many kinds of relationships as in “a key is part-
of a keyboard” or “two soccer players belong to the same team”. Sometimes the
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structure is provided explicitly as in the visualization of a company’s organizatio-
nal chart. The visualization aims at conveying the structural information. Some
other times, it can be a mean to support navigation. For instance, while browsing
the internet, users can bookmark pages and group them into folders. They create
a structure that allows them to access items of the dataset faster. Sometimes it
is the very purpose of the visualization to find the structure. For instance while
browsing pictures taken from a digital camera, users can tag photos to distinguish
those to be kept and those to be discarded.

Attributes

Both entities and relationships can have attributes. Their purpose is to describe
the entity or the relationship. They should not be considered entities on their own.
Sometimes it is not that straightforward to distinguish entities from attributes. An
attribute can be of many types and dimensions. Coordinates of a multidimensio-
nal attribute are syntactically linked together as they are all defining the position
of an element in the information space.

Image

Images also originate from digital capture of the world : SLR cameras take RGB
pictures, Kinect add a depth component to RGB pixels, 3D scanners build 3D
meshes from real objects and medical MRI build volumetric data form leaving
bodies. Such captured images are fundamentally different from representations
generated from abstract data, in that entities and structures are not readily avai-
lable. Representations are built to highlight some structure of the data, captured
images need to be processed first to access structural information.

1.2.2 Presentation

As defined by Carpendale in [29], presentation “is the act of displaying [the re-
presentation], emphasizing and organizing areas of interest”. Two main classes
of presentation techniques exist. The first are the zooming presentation tech-
niques which feature a full window representation of the data. Such interfaces
usually let users navigate by adjusting what regions of the representation to dis-
play and at what zoom level. Such presentation techniques are prone to context
loss problem when users zoom too much into the representation.

The other main class of presentation techniques are the multi-foci techniques,
which combine into the interface several regions of the representation, possi-
bly at various scales. Under this class fall many techniques such as traditional
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FIGURE 1.3: The space-scale diagram is a representation allowing visualization and ana-
lysis of the role of scale in multiscale navigation (From [52]). The interface’s viewing
window (bolt square) : (a) is shifted rigidly around the 3D diagram to obtain all possible
pan/zoom views of the original 2D surface, for example ; (b) a zoomed-in view of the
circle overlap; (c) a zoomed-out view including the entire original picture ; and (d) a
shifted view of a part of the picture.

overview+detail (illustrated in Figure 1.1), the DragMag technique [134], and
fisheye lenses and their derivatives. The goal of such techniques is to provide
users with both detail and contextual representations of the dataset at the same
time so as to avoid getting lost in the representation. However, to fully benefit
from such techniques, users need to understand the spatial relationship between
detail and context views. This cognitive process termed linking (or 3D linking
when dealing with 3D data [95]) can be very demanding. The various visual cues
introduced in the interface to ease linking are referred to as the integration.

1.2.3 Interaction

As suggested by Mackinlay [82], navigating large information spaces requires
more than a static presentation of the representation. Interfaces must let users
interactively readjust the view parameters and select what regions of the repre-
sentation to display.

Many navigation controls such as zooming or panning depend on selecting ob-
jects, specifying a direction or positioning a target within the representation. For
example in some interfaces, zooming may require users to point in the repre-
sentation to specify the zoom center, while other interfaces let users select a set
of objects that the interface will fit on the screen by adjusting pan and zoom
parameters. Therefore how is the representation mapped onto the visual display
impact significantly such navigation techniques.

Other presentation techniques such as the standard overview-+detail feature wid-
gets to support linking, that users can interact with to navigate. For example, the
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view proxy of the Google Map interface (in blue in Figure 1.1(c) and (d)) can
be grabbed and drag, allowing users to move the detailed representation’s focus
point.

Those features are based on the principles of direct manipulation [109] as they
allow users to control parameters of the view by directly interacting with objects
of the representation or elements of the presentation technique. Interaction and
presentation are intimately linked.

1.3 Multiscale Interfaces

In this section we present the main interface schemes introduced in the litera-
ture to support multiscale navigation. Cockburn [35] introduced a classification
featuring four main strategies to blend detailed and contextual views. The four
interface schemes are : zooming interfaces which use a temporal separation ;
overview+detail which uses a spatial separation ; focus+context which blends
smoothly the detailed view into the contextual view and cue-based techniques
which provide navigational cues by adding visual artifacts to the scene.

1.3.1 Zooming

The first basic category of interfaces supporting both focused and contextual
view is based on zooming which involves temporal separation. Zooming tech-
niques let users get a detailed representation by displaying a smaller region of
the representation into the application window, leaving more space to show more
details.

Many applications feature a full-zooming interface and let users select interac-
tively what subset of the representation to display. They present a wide range
of input mappings to control pan and zoom, combining conventional input de-
vices such as mouse and keyboard, or providing control via WIMP interfaces or
multi-touch interaction. We give a more comprehensive review of the topic in
Section 1.4.1.

The Pad system [90] introduced by Perlin and Fox, was the first fully zoomable
desktop environment. They consider the desktop as an infinite two dimensional
information plane in which data can be browse by successively zooming into
subset of that space. This work introduces two fundamental concepts : semantic
zooming which allows different representations of the information for different
scales, and portals, which allow links between data objects and filters on their re-
presentation. To support research on zoomable interfaces, several toolkits where
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introduced to ease development of such interfaces including Pad++ [14], Pic-
colo [13] or ZVTM [91],

Introduced by Furnas and Bederson space-scale diagram integrate representa-
tions of the dataset at several scales into a visualization allowing to view pan and
zoom navigation as spatial movement into a dataset, see Figure 1.3. This frame-
work provides a general approach to understand view navigation in multiscale
datasets.

However, full zooming techniques suffer from context-loss problems. Detail-in-
context interpretation required relying on short term visual memory, which is
cognitively demanding and prone to loss of context. To address this issue other
interface schemes were introduced such as overview-+detail and focus+context.

1.3.2 Overview+Detail

The overview-+detail techniques provide both a detailed view and an overview of
the information space simultaneously, each in distinct presentation spaces.

The standard overview+detail interface, as Cockburn names it [35], is the one
implemented by Google Maps, shown in Figure 1.1, which introduces a small
overview of the map on the bottom right corner of the window, providing users
with more contextual information. This technique has been widely implemen-
ted in video games, more particularly strategy games or sports games where a
small representation of the entire map helps users situate their current location,
or desktop applications such as image-editing tools.

Lenses

The aforementioned standard overview+detail technique arranges detail and context
views by juxtaposing them, meaning that views are laid out next to each other.
Other interfaces propose to separate them on the z axis, allowing to stack views
one on top of each other.

s

FIGURE 1.4: Magic Lenses allow to magnify objects however, the representation re-
quires more space and the lens overlaps with the surrounding representation and lead to
a loss of surrounding context— taken from [17]

gic Lenses
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Mag Window

Zoom Window

FIGURE 1.5: DragMags shift the magnified representation to a movable lens that user
can move to reveal surrounding context— taken from [134].

Bier et al. [17] introduced magic lenses, which are resizable see-through win-
dows. They allow users to transform the visualization of underlying objects, to
allow focused viewing of specific attributes. Magic lenses allow to magnify un-
derlying object however, the representation requires more space, and the lens
overlaps with the surrounding representation and leads to a loss of surrounding
context as illustrated in Figure 1.4.

Introduced by Ware and Lewis, the DragMag|[134] interface addresses the sur-
rounding context loss problem by shifting the magnified representation to a mo-
vable lens that users can freely move and resize to reveal the surrounding context
(see Figure 1.5). View proxy and line tethers link the lens to the location of the
magnified information object in the overview to help interpret the presentation.
DragMag provides two strategies of interaction to control position and zoom le-
vel of the magnified view. Either users interact “through” the lens, which thus
behaves as a zooming window : dragging adjusts the position of lens’ view-
port and a zoom slider controls the scale of the magnification ; or users interact
“through” the context view directly pointing at regions of interest to adjust the
lens’ focus accordingly.

1.3.3 Focus+Context

The third interface scheme, called focus+context, integrates focus and context
into a single display, displaying the focus seamlessly within its surrounding
context.

Focus+context techniques were inspired by fisheye lenses used by photographers
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which would capture the world in a similar manner than how a fish would per-
ceive the outside world from under the water. Governed by Snell’s laws, rays of
light would be deflected when entering water depending on their slope with the
surface. Rays almost normal to the surface won’t be deviated resulting in an al-
most un-distorted magnified image at the center. While rays with a shallow angle
are deviated, what results is a compressed picture on the periphery.

This image was then captured by Furnas [51], resulting in a metaphor saying
that people need a way to pay attention to particular detail they are focusing on,
yet also need some surrounding context. Later, the metaphor was implemented
into graphical views that express Furnas’ formalism. More screen real-estate is
allocated to a magnified representation of the data — the focus region — laid out
near the point of interest and directly encircled by a less magnified representation
of the surrounding information space — the Context region. Between the two
regions, a distorted presentation of the image achieves a smooth integration of
both : the Transition region (see Figure 1.6 for an illustration).

Mackinlay et al.[82] provided the first implementation of a focus+context tech-
nique with the Perspective Wall shown in Figure 1.7. The technique compresses
the context using a linear transformation, which achieve the perspective effect,
and allows to fit a larger representation into the display space.

1.4 Design Approaches to Multiscale Navigation

Two main trends emerged in the design of multiscale navigation systems. The
first is a content-agnostic design approach, that only depends on the dimensio-
nality of the representation and provides generic navigation techniques suited
for any type of data. Pan&Zoom, fisheye lenses or standard overview-+detail
(see [36]) are examples of techniques that follow this approach. The second is a
content-driven design approach, that assumes some geometrical characteristics
of the representation (size, shape, volume of the objects or a particular layout)
specific to a dataset so as to provide navigation techniques that help users display
relevant views of the datasets.

While these two approaches cover most of the techniques introduced in the field,
another approach emerged recently : a content-aware design approach. In this ap-
proach, the navigation dynamically adapts to the representation being visualized
to improve user navigation. The approach is conceptually situated between the
two aforementioned approaches. While the content-driven design approach relies
on global characteristics of the representation to provide static optimization of
the navigation technique, the content-aware approach relies on local characteris-
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FIGURE 1.6: Graphical Fisheye views are focus+context multiscale interfaces : the Fo-
cus region provides an in-place magnification of the picture, smoothly integrated by the
Transition region into the Context region

tics to locally optimize navigation. which tends to result in navigation techniques
that apply to a larger range of data and representation.

We will introduce successively the three approaches and provide some design
examples taken from the literature. We will then discuss potential outputs of the
content-aware design approach, challenges involved by such design approach
and future work.

1.4.1 Content-Agnostic Design Approach

This design approach provides interfaces suitable for navigation of any data type.
It only takes into account the dimensionality of the representation, i.e three di-
mensional (3D), two-dimensional (2D) or linear (1D) spaces. Such techniques
provide controls for adjusting the camera configuration allowing navigation in
the targeted space.

3D Spaces

Three dimensional spaces allow for camera movements and rotations about each
of the three axes. Control of the camera varies across interfaces and across input
modalities provided by the platform.
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Most desktop applications will allow camera manipulation via keyboard and
mouse input. They let users sequentially operate the camera by either transla-
ting along the viewing plane (panning), translating along the viewing direction
(zooming) or rotating around the current pivot point (rotating). Usually users
are required to first activate the desired mode (usually via WIMP interface com-
ponents or shortcuts mapped to keys or mouse buttons) and perform dragging
gesture on the viewport, which adjust the corresponding camera parameter ac-
cordingly. Implementations can be found in popular 3D modeling applications
such as Blender [119], Autodesk Maya [118] or Freecad [116] among others.
The recently release, Leap-Motion [117] hand-tracking device allows mid-air
3D camera control in a desktop environment.

Other environments such as high-resolution wall-sized displays or immersive en-
vironments such as CAVEs provide more exotic input devices : motion-tracking
system, gesture enabled trackpad, tablets or mid-air pointing devices just to name
a few. They allow users to walk into virtual spaces [34], control camera through
head motion or mid-air gestures.

These interfaces are generic, they are suited for navigation of both volume and
surface (implicit or explicit) representations of the data.

2D spaces

Two dimensional space is the most common type of virtual space for data vi-
sualization. Camera configuration involves positioning the viewpoint relative to
a surface. Controls for zooming are commonly provided as toolbar widgets such
as slider or push button. For applications that support a zoom mode (such as
Adobe Reader), mouse drags are interpreted as zoom controls. Pinching allows
to control zoom on multi-touch enabled devices, as well as mouse wheel when
available. Controls for panning are, as well, provided via toolbar widgets, and
more commonly via drags gesture on the viewport. Other gestures specific to
touch-screen such as flicking allow to pan.

Such interfaces are very popular and part of many end-user application. Most
PDF viewers, web browsers, word processor, image editing software, all imple-
ment pan & zoom technique to navigate content.

More recently, CycloPan & CycloZoom+ [84] allow to control with a single
continuous repetitive gesture both pan and zoom. Wall-sized displays let users
control pan and zoom with many different devices, in particular motion-tracking
allows for mid-air interaction [89].
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FIGURE 1.7: The Perspective Wall is a distortion oriented, focus+context presentation
technique : a rectangular region, providing a zoomed-in view of the data, is surrounded
with two panels, showing the data linearly distorted, to provide an overview. The tech-
nique is based on the data-driven design approach : it was designed for navigating data
featuring a linear structure, here projects’ files of an architect are laid out by creation
time—Taken from [82].

Some applications extend pan & zoom with the standard overview+detail in-
terface (presented in Section 1.3.2). Geographical map systems, strategy video-
games, are among the most representative of such applications.

Fisheye lenses are generic interfaces as well. However despite their versatility,
they are seldom adopted because of some usability issues, refer to Section 2.2
for a review and discussion of related work.

Linear spaces

Fewer degrees of freedom are available in linear spaces. The most common im-
plementation only provide controls for position. Scroll bars, slider, lists allow
to position the view through drag events. Fisheye lenses implemented in the
Mac OS X Dock, provide both zooming and positioning. The OrthoZoom tech-
nique [4] allows to control both panning and zooming parameters from a single
gesture, for navigating along linear structure.
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FIGURE 1.8: The Document Lens magnifies a region of the data and distorts linearly the
surrounding documents both in x and y axis. This technique, based on the content-driven
design approach, was designed for navigating documents featuring a grid layout. Indeed,
a linear distortion preserves grids and is thus well suited for showing overview of such
documents — taken from [99].

1.4.2 Content-Driven Design Approach

Design of a visualization starts by an analysis of the data and depends on the un-
derstanding of what users are expecting from those data. From this analysis will
result choices about the way to represent the information, and some structure or
entities will be highlighted by mean of visual representation. The content-driven
design approach to multiscale navigation takes advantage of visual structure to
optimize navigation techniques to help users display relevant views of the data-
set.

We will illustrate this process with brief analysis of the design of two navigation
techniques taken from the literature.

The first case we consider is the design of the Document-Lens [99] introduced by
Robertson et al. It was designed to navigate collections of paper documents laid
out in rectangular array in a large table. The purpose of the interface was to show
both the global context and details of documents as well. While pointing out
that fisheye lenses failed to adequately show the context, they drew two design
choices from the layout of the documents to match the desired goal and improve
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FIGURE 1.9: Fisheye menus allow to navigate large lists of items. The presentation tech-
nique takes advantage of the linear organization of the items to provide a smooth inte-
gration of magnified items surrounded by less magnified items — taken from [11].

understanding of the global context. First the technique would feature a rectangu-
lar lens larger than the width of a line to encompass a whole chunk of text with
no need for horizontal scanning. Second, affine transformation would be used
to stretch the rest of the document to make it fit into the window. A property
of affine transformations is that they preserve lines. Hence the grid structure is
still understandable after transformation and provides users with understandable
global context : questions such as “How many columns are before or after the
document ?” or “How many paragraphs are left before the end of the column ?”
can be answered easily from the visualization.

The second case is the design of the Perspective-Wall [82] by Mackinlay et al.
Studying work processes of an architect, they pointed out that “work practices
cause information to have a linear temporal structure” [82] and designed the
Perspective-Wall to visualize the number of work documents emitted and ob-
serve their distribution over time. They report that the technique successfully
allowed to draw insightful discovery of patterns in the architect’s work-flow. The
first design step was to identify time as a spanning property which they use to
lay out document emission in an horizontal axis accordingly. Using bar height
to encode number of emissions. As the resulting representation features a large
ratio, they use an affine transformation to make it fit on screen, allowing linear
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structure to be viewed as a whole. In particular, linear distortion allows to allo-
cate more compression on the horizontal axis (time axis) and less on the vertical
axis (document emission) and allows viewers to see greater time intervals while
preserving understanding of document emission evolution. Here, the interpreta-
tion of evolution of document emissions takes precedence over interpretation of
time for understanding trends or identifying patterns.

This design approach has been implemented in a number of cases reported by
literature in the field.

FIGURE 1.10: Cone Trees represent trees by 3D cones. The representation conveys effi-
ciently hierarchical structure by cascading cones — taken from [100].

Cone-Tree [100] represents trees as 3D cones, where each node forms with its
children a cone aligned with the viewing plane (see Figure 1.10). Navigation is
achieved by rotating the cones resulting in the permutation of the closest child.
The technique takes advantage of the 3D cone representation to support naviga-
tion. Lamping et al. designed a navigation technique that maps huge hierarchies
to a unit disk, using hyperbolic geometry [76]. Navigation is achieved by mo-
ving a focus point within the hierarchy. This technique relies on radial layout of
the hierarchy suitable for mapping to a disk. Schaffer et al. introduced variable-
zoom[105] technique for navigating, which relies on a hierarchical clustering of
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the nodes which allows for dynamic expansion and shrinking of clusters being
visited by users. Readers can refer to [59] for a survey of the many techniques
introduced to navigate graphs.

Some techniques were introduced to navigate calendars, a particular type of tem-
poral data. Spiral Calendar [83]relies on the cyclic structure of time to represent
calendar in a spiral layout. Users select the part of the calendar they want to
view, which results in rotation and translation of the spiral to bring the selected
part into focus. Again the navigation technique relies on a representation layout
drawn from data analysis. Another calendar navigation technique was implemen-
ted into a calendar application for PDA. The datelens [12] automatically resizes
selected event to show more details.

(b)

FIGURE 1.11: Melange fits large information spaces by folding the space between se-
veral flat focus regions. The affine transformation used to fold the space is particularly
well suited for grid structured representations as it preserves lines — taken from [47].
Many techniques to navigate table like structured data relies on the grid layout
specific to tables. Melange [47], a technique that fits different focus regions of
large information spaces by folding the space between the different focus re-
gions, was shown to be more efficient on adjacency matrices (see Figure 1.11).
Melange implements an affine transformation suited for grid structured repre-
sentations (affine transformation preserve lines, thus grid layout understanding).
The table lens is a focus+context technique designed for navigation in large
tables [98]. Magnification of a cell is achieved by magnifying its corresponding
row an column. Fisheye menus [11] aim at the visualization of large lists of menu
items. The design implements a fisheye effect on a per row basis meaning that
a magnification factor is assigned to each row to achieve smooth integration of
zoomed-in view of focus items into the menu (see Figure 1.9).

1.4.3 Content-Aware Desigh Approach

The content-aware design approach is based on the concept of extending tradi-
tional techniques by taking into account various characteristics of content begin
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FIGURE 1.12: Two techniques implementing content-aware design approach. (a)
content-aware scrolling [64] adapts the scrolling direction to the content of the docu-
ment, here viewport automatically jumps from the bottom of a column to the top of the
next one. (b) a window management technique that adjust window transparency to reveal
underlying content [63].

visualized to determine how to view and interact with it.

Under this approach fall several techniques to navigate documents. Content-
aware scrolling was introduced by Ishak and Feiner [64]. The technique improves
traditional scrolling by adapting the scrolling direction, speed and zoom depen-
ding on characteristics of the document. As an example, the technique supports
scrolling of multi-column documents by automatically repositioning the view-
port at the top of a column when it reaches the bottom of the previous one, as
shown in Figure 1.12-(a). Cockburn et al. improved scrolling device performance
(such as the scrolling wheels, scroll-point joystick ! or trackpad) by adapting the
scroll gain depending on the document length. A controlled experiment showed
an increase in performance for both large and small documents.

The content-aware design approach was implemented as well for layout ma-
nagement techniques. Ishak and Feiner introduced a content-aware free-space
transparency technique to interact with the otherwise hidden content of obscured
regions [63]. The technique adjusts transparency settings of the windows on a
per-pixel basis to allow users to see-through and reveal underlying content (see
Figure 1.12-(b)). Ishak and Feiner also introduced a content-aware layout tech-
nique [65] that automatically adjusts the layout of multiple-window applications
depending on the content of each window. An example application for this ap-

1. A scroll point is a joystick used as a scrolling device, typically mounted in a mouse, movement on
the stick are echoed in movement of the document on screen.
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FIGURE 1.13: Sarkar et al. introduced graphical Fisheye views of graphs that take ad-
vantage of the graph structure, and the nodes sizes to provide magnification of sub-parts
of the representation integrated into the less-magnified surrounding context — taken from
[102]

proach was to improve word search in a text document. The technique rearranges
each window showing the word searched for, so as to align occurrences of the
word to reduce eye movement.

Other implementations target trees or graph navigation. Topology-aware navi-
gation, introduced by Moscovich et al. [88] allows navigation in large graphs
and introduces two techniques. “Link sliding” is a technique for sliding along
the links. Once engaged in an edge, panning is constraint to a path that fol-
lows the edge, navigation comes down to controlling the traversal progression
along the link. Zoom level is adjusted so as to provide the user with additional
context while sliding along the link. “Bring & go” brings adjacent nodes close
to the node upon selection to help users to better decide what link to follow
[88]. Both techniques exploit the connection information provided by the net-
work to support users navigation. Sarkar and Brown designed graphical fisheye
views for navigating graphs [102] (illustrated in Figure 1.13). Their techniques
achieve magnification of a node smoothly integrated into an undistorted context.
The technique relies on node size and graph connectivity to achieve a dynamic
layout management that is suited for any type of graph. Blanch and Lecolinet
introduced multiscale navigation for navigating treemaps [19]. The technique
allows to zoom into hierarchical treemaps, adapting zoom-level to the desired
targeted layer.

Finally we found examples of this design approach for improving 3D navigation.
Khan et al. introduced a new interaction technique for supporting users in close
inspection of 3D surfaces. Hovercam [71] keeps the camera at constant distance
from the surface while users are panning the view, automatically adjusting tum-
bling, panning, and zooming of the camera. This technique relies on the mesh
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description of the 3D surface. McCrae et al. introduced a multiscale 3D naviga-
tion technique, that extends a 3D interface with a look-and-fly capability to reach
remote parts of the scene. Trajectory and flying speed are adjusted depending on
size, distance and visual clutter of the scene.

The content-aware design approach was successfully involved in the design of
several techniques in a wide range of application. This approach is being applied
throughout this thesis to address issues raised by multiscale navigation.



Chapitre 2

Fisheye Lens for Steering Paths

In this chapter, we present Pathlens, a fisheye lens whose regular shapes dyna-
mically adapts to the shape of the underlying objects of interest. Fisheye lenses
often cause perception issues by changing the apparent shape of objects falling
under the spatially distorted transition region. Pathlenses provide visualizations
of higher relevance by optimizing what regions fall under focus, context and
transition domains, preserving as much as possible objects of interest from the
negative effect of distortion.

In the first section we introduce the problem of mismatch between lens’ and ob-
jects’ shapes that causes misinterpretation of objects of interest. We introduce
also an interaction metaphor to address this issue. The second section discusses
related work. In the third section, we will present an implementation of the me-
taphor based on implicit surfaces. The fourth section presents the image warping
technique we designed for achieving arbitrary shaped lenses. We will conclude
with discussion and future work.

2.1 Introduction

2.1.1 The Shape Mismatch Problem

Fisheye lenses use distortion to guarantee visual continuity between the focus
and context regions. However, as reported by Carpendale in [32], distortion
causes confusion and disorientation : objects of interest get distorted, which pre-
vents users from recognizing them.

Indeed, most techniques are based on statically defined lens shapes relying on

35
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distance functions obtained through L(P)-metrics [29] that often fail to provide
relevant magnifications of the object(s) of interest : either the lens is small, pre-
serving context but requiring extensive navigation to explore the region of in-
terest when the latter does not fit in the focus (Figure 2.1-a); or the lens is big,
showing a larger portion of the region of interest at the expense of the context
(Figure 2.1-b). Moreover, distortion impedes comprehension, even more so when
the lens’ and objects’ shapes differ significantly.

We present an interactive focus+context technique called Pathlens, that dyna-
mically adapts to the geometry of object(s) of interest. Pathlenses optimize what
regions fall into the focus, context and spatially-distorted transition regions based
on user interaction, providing detail-in-context visualizations of higher relevance
than existing distortion-oriented magnification lenses (Figure 2.1-c).

2.1.2 The Water Drop Metaphor

Pathlens consists of a lens attached to the mouse cursor, that adapts its shape,
circular by default, to the geometrical representation of the nearest objects consi-
dered of interest. Intuitively, Pathlenses behave approximately like water drops
on a spider net, or more generally speaking like drops on an irregular surface
featuring elements of varying affinity [127].

In the following, we show how this metaphor fits the formalism introduced by
Furnas in the seminal paper “Generalized Fisheye Views”[51]. This formalism
expresses the idea that users need to focus on details but as well need context
information. It was later implemented into graphical interfaces leading to the
graphical fisheye views and its derivatives.

In its original formulation, this formalism is more general. Here we apply it to
the context of pixel-image distortion-based presentation, considering pixels as
the core unit of information. Each pixel is assigned a “degree of interest” (DOI)
defined as the contribution of two functions :

DOIsheye(x]. = y) = API(z) — D(z,y)

where API(x) is the a priori importance and D(z, y) is the distance to the users’
current focus of attention. This formula expresses two ideas : that users are less
concerned by what is far away from their center of attention ; and that users are
variably interested in the content of a scene, some content have more importance
than others for understanding information — for instance the actual content of a
webpage is more interesting that an advertisement banner.
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FIGURE 2.1: (a) Venice and the Lido. (b) a small fisheye can magnify a portion of the
island from the Adriatic sea shore to the Laguna Veneta, but fails to show the entire
island, requiring extensive navigation to see it in detail ; (c) a large fisheye magnifies
a bigger portion of the island, but at the cost of severe distortion of almost the entire
image, hiding other islands ; (d) a Pathlens automatically adapts its shape to the region
of interest, magnifying as much relevant information in the focus region as (c) while
better preserving the context : surrounding islands are left almost untouched from (b).

Then the design of the fisheye lens comes down to defining an a priori inter-
est function, choosing the distance function and defining the proper threshold %
which decides what to keep and what to filter-out from the focus region : pixels
with a higher “degree of interest” DOI > k are displayed at full magnification
and those with a lower DOT are displayed at smaller scale. Threshold k captures
the fact that users can process a limited amount of information at a time and then
filter out the surplus, less interesting information. Furnas suggests that systems
should support this process by filtering out less relevant information.
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FIGURE 2.2: The three regions defined by a constrained lens : focus region F magni-
fying the region of interest, context region C, and smooth transition 7 between F and C
achieved through distortion.

The water drop metaphor ca capture the latter for pictorial representations.

The amount of information users will process corresponds to the focus region’s
surface area. The focus region will morph, maintaining a constant surface area,
to encompass as few pixels of low interest as possible, relegating them to the
transition or the context regions. Doing so, it will leave more room in the focus
region for encompassing more pixels of higher interest. Which visually behave
like a water drop on a spider net.

An important feature of this metaphor is its universal characteristics. Inspired
from the physical world, it becomes straightforward for users to understand how
it is supposed to behave, and then allows predictive behavior which is always a
desirable feature when designing adaptive interfaces.

2.1.3 Overall Process

Adapting a Pathlens to match the geometry of the region of interest is a three-
step process. The first step consists of obtaining information about the geometry
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FIGURE 2.3: Navigating a subway line with a Pathlens let the users view magnification
of both the subway line and the corresponding stations.

of objects of interest in the scene, that the lens will adapt to. This step is heavily
dependent on the nature of the graphics visualized : the geometry information is
readily available in 2D vector graphics scenes, as well as in 3D scenes, but not
in pixel-oriented scenes where the objects of interest are arbitrary sets of conti-
guous pixels on a bitmap. In the latter case, the geometry information has to
be obtained through some external means, such as feature extraction algorithms
applied dynamically to the image, or metadata generated through manual annota-
tions packaged with the original image. At this point we simply emphasize that a
Pathlens does not necessarily have to adapt to all graphical objects in a scene ; it
can ignore those considered as not particularly relevant for some particular task.
For instance, the lens in Figure 2.2 only takes roads on the blue itinerary into
account, ignoring all other graphical features in the adaptation process.

The second step consists of computing the lens shape according to its position in
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the visualization and to the geometry of nearby object(s) of interest (information
obtained through the first step). This step, which is the core of the adaptation
process, defines how the lens behaves as it gets repositioned by the user in the
visualization using the mouse. In Figure 2.2, the lens adapts its shape to match
that of the portion of the object of interest (the itinerary) around the mouse cursor.
The adaptation method of Pathlens is presented in Section 2.3.

The last step is the rendering of the region seen through the lens and is described
in Section 2.4.

2.2 Related Work

Distortion-oriented visualizations often rely on metaphors inspired by the physi-
cal world : magnifying glasses [99, 56], stretchable rubber sheets [104] and, more
generally, surface deformations [30]. Other techniques work with more funda-
mental concepts : hyperbolic projection [76], non-linear magnification fields [69]
or complex logarithmic views [22].

Early systems made the distortion extend to the boundaries of the representation
[76, 77,99, 102, 104], thus affecting the entire display. More recent techniques
use a locally-bounded distortion function, leaving a large part of the context un-
touched, which reduces the negative impact of distortion [57, 93]. Such lenses,
usually termed constrained lenses, can be created using 3-dimensional pliable
surfaces [30] and the framework for unifying presentation space [29, 28], non-
linear magnification fields [69], conformal mapping [139], or the Sigma Lens
framework [3, 93].

Magic Lens filters [17] were among the first interface components based on
constrained lenses to actually support elaborate, non-regular shapes. Magic Lenses
are graphical filters that can modify the appearance of objects seen through them
in various ways. Magnification is only one of the many powerful transforma-
tions that they make possible. However, to our knowledge, their shape is defi-
ned statically (no dynamic content-aware adaptation), a limitation shared with
more recent lenses that support irregular shapes but do not adapt their geome-
try [30, 139], including the recent undistort lenses [23].

Other techniques have been developed for 3D datasets. A first set of techniques
deform 3D representations by projecting a texture on a mesh that models the dis-
tortion, as do pliable surfaces for 2D representations [30]. LaMar et al.’s mag-
nification lenses [75] are based on homogeneous texture coordinates and special
geometries. They can be applied to both 2D and 3D representations but are li-
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mited in the type of distortion and lens shapes they can model. Non-linear pers-
pective projections [137] project the RGB image produced by a 3D pipeline on a
surface shape inserted in front of the flat projection plane. Related to the latter is
Brosz et al.’s single camera flexible projection framework [24], which is capable
of modeling non-linear projections through the parametric representation of the
viewing volume.

There is also an impressive set of space deformation techniques, ranging from
early works on the deformation of solid primitives [7, 107] to view-dependent
geometry [97] and deformation based on hardware-accelerated displacement map-
ping [40, 106] and deflectors [73]. These techniques distort 3D geometry, but
often do so in an object-centric manner, and are thus not well suited to the im-
plementation of focus+context navigation lenses, which deform a region of the
current display, i.e., a subsection of the current viewing frustum that intersects
a set of objects, some of them only partially. Camera textures [112] are among
the few to actually apply constrained magnification lenses to 3D meshes, but
the technique requires a sufficient level of tessellation of the target mesh to pro-
duce distortions of good quality. Wang et al.’s technique [129] is designed to
minimize distortion, but applies to 3D objects only and, relying on a grid-based
energy optimization model, is limited to basic shapes between the magnified and
compressed regions.

Bottger et al. [21] recently introduced a domain-specific warping technique that
distorts a city’s geographical map to match the layout of subway stations from
the corresponding schematic transit map. Distortion is not used to magnify a re-
gion of interest, but rather to establish a correspondence between an ordinary
map, that is geographically accurate, and a schematic map optimized for the rea-
dability of a specific network. While very different from our approach in terms of
visual output, interaction, and usage, map warping and Pathlenses have concep-
tual similarities : they both make use of the geometry of particular objects of
interest in the visualization to adapt the distortion.

Finally, Pathlenses are also conceptually related to the numerous content-aware
image resizing techniques that have emerged recently, from seminal work on
seam carving [5] to Laffont et al.’s image zooming technique [74]. However,
those are not focus+context interaction techniques, as they do not provide users
with explicit control of the magnification (factor, region), and in many cases do
not preserve context.
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FIGURE 2.4: PathLens morphing effect : the shape of the lens morph into the shape of
the objects of interest. We use the morphing technique for identification of both the focus
and the context regions.

2.3 Instantiating the Metaphor

Design of an adaptive fisheye, whose shapes change to adapt to the content of
the scene, is a delicate feature. First, because the animation caused by the adap-
tation might generate distraction. Changing the shape of the lens while users is
inspecting a representation, generate moving patterns that can draw their atten-
tion away from their current center of attention. Misused animation might impair
performance.

According to the principle of Congruence [115], to lower the distraction impact,
animation should conform to actual changes in the content of the scene. In the
case of a moving lens, this means that animation should blend to the shape of the
changing objects surrounding the moving lens’ focus point. Hence, success of
the animation depends on its ability to reflect changes that occur in the vicinity
of the focus point.

Secondly, adaptation might generate frustration. Adaptation of the interface is
made to provide better visualization, however, if users do not understand why is
the interface being updated, they become anxious [109], and expect new changes
to occur at any time. The adaptation mechanism should be clear to users, so as he
can predict changes of the interface and adapt their own behavior accordingly to
take full advantage of the technique. The interface must no mislead users, once
users have acquired such an understanding, the adaptation must comply to the
model.

The water-drop metaphor we introduced, to base the adaptation upon, addresses
both these issues. A water drop sliding along spider net, morphs its shape and
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FIGURE 2.5: Implementation of the Pathlens morphing effect is based on an implicit
definition of the shape. Implicit definition of objects were heavily investigated for mo-
deling [114], animation [20] and transformation [135].

reflect changes of the underlying spider thread. And, it provides users with an
comprehensible picture of how the interface behave. However, success of the
adaptation technique, depends heavily on the fidelity of the implementation to
the metaphor.

2.3.1 Water Drop Implicit Modeling

In terms of implementation, we need a technique that, according to geometrical
description of objects of interest, the cursor’s position, and a desired surface area,
generates a shape that morphs to adapt to the geometry of objects of interest. The
shape should adapt smoothly to the objects in the vicinity of the cursor, as it is
being moved. “Metaballs”, “Blobbies”, “Soft Objects” [135, 136], “Algebraic
Surfaces” [20] or “Implicit Shapes™ [114]- all referring to the same concept of
implicit definition — are convenient models for modeling water effects.

The definition of surfaces in computer graphics usually falls into two categories :
explicit and implicit. An explicit definition would give a straight description of
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the surface as a list of vertices and edges. Where an implicit surface is defined as
the set of all points which satisfy some equation

F(z,y,2)=s

where s is the iso-value determining the surface. The technique was first introdu-
ced by Blinn who applied it to algebraic surfaces[20]. The Wyvill brothers later
introduced Soft-Objects [135, 136] that extend the approach further for mode-
ling and animating objects in 3D space. The term Metaball was later introduced
to designate the general approach of implicit definition of 3D models.

In practice, implicit surfaces are used for modeling and animating. Surfaces are
then converted into polygonal meshes (explicit definition) for rendering or addi-
tional processing. This is usually achieved by extracting the mesh using a mar-
ching cube algorithm [81]. The space is partitioned into a grid of cubes whose di-
mensions depend on the required precision. Then the algorithm travels the cubes,
evaluating the function at each vertex and comparing it to the threshold s, a heu-
ristic based on what vertices are greater and lower than the threshold, which
allows to approximate the portion of the surface crossing the cube.

We adapted this approach to 2D spaces for implementing the water drop effect.
The desired morphing effect is illustrated in Figure 2.4. Many effects achieved by
mean of implicit surfaces (some of them exhibited in Figure 2.5) feature smooth
blending of blobby entities that recall behavior of water drops. The challenge is
to define the functions that model correctly enough the metaphor so as to find the
proper threshold. The extraction of the polyline is then achieved by means of a
marching square algorithm, an adaptation of the marching cube algorithm to 2D
spaces.

2.3.2 Function Definition

Implicit surfaces allow to achieve smooth blending effects as exemplified by the
well-known Metaballs demo effect (see 2.5-a) showing two spheres merging to-
gether into one unique sphere. The idea behind this effect is to consider each
sphere as a radius of influence around each particle. Then, the merging can be
considered as the accumulation of both particles’ influence. Each particles is as-
signed a density field that decreases and tends toward 0 as distance to the particle
increases. The surface is implied by taking an iso-surface of the accumulation of
both density fields. When particles are far away from each other, the surface im-
plied features two spheres whose radius depends on the iso-value — the higher
the value, the nearer it will be to the particle. Then the merging effect is achieved
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by moving particles towards each other. The resulting density field increases and
results in the merging effect.

The key to implicit surfaces is the definition of the density fields to achieve the
desired effect. Implementation of the metaphor comes down to the definition of
two density fields, one for the lens (lens(x)), centered on the users’ focus of
attention (the cursor position : ¢) and one for the objects of interest (data(x)).

As for Metaballs, the contribution of objects of interest to the field will drop
down to 0 as distance increases, relying only on lens(x) for the definition of the
shape. While when distance decreases, data(x) increases, perturbing the lens’
shape, which eventually results in the desired blending effect. Finally, as distance
approaches 0, objects’ contribution takes over, fully defining the shape which, as
a result, morphs itself to match the shape of those objects. At this point, the lens
contribution still influences the shape by constraining its extent.

Lens Contribution

The definition of the lens must feature a circular shape with the focus point at
its center, when beyond the radius of influence of objects of interest. This is
achieved by making its definition rely only on distance to the cursor. We want
to arrange the field to tend toward —oco with distance approaching 0 and tend to-
ward +o0o when distance increases, as these properties allow to select the shape’s
surface area from a wide range of values. Large thresholds yield small shapes,
and conversely, small thresholds yield large shapes.

Following the aforementioned requirements, we define the lens’ contribution

field as follows : 1

[Ix — ¢l

—lx—d| 2.1)

lens(x,c) =

where c is the cursor’s position.

Objects Contribution

As mentioned earlier, how to obtain the geometry of objects of interests is hea-
vily context dependent (see Section 2.1.3) : it can be readily available via the
accessibility API; or it can result from feature extraction algorithms ; or it can
be authored manually by users. In all cases, it is very likely that the geometry
comes as an explicit definition.

Translation from explicit to implicit shapes is a common process in computer
graphics. Popular methods usually rely on object distance fields, which can be
approximated by various methods : fast sampling on the GPU [60], adaptive
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sampling [50] or vanishing-gradient approximation [18]. Their popularity goes
beyond pure computer graphics ; they can be used for proximity queries [61], and
apply to various fields such as digital design, organic forms, arts and fractals [49,
50].

For our model, we extend the function introduced by Wyvill e al. [136] G(t), to
arbitrarily shaped objects of interest. It features the following desirable proper-
ties. The field is continuous, and it has no influence beyond a certain distance /3
(its radius of influence). Its maximal value is achieved when distance is null (i.e.
within the objects of interest). And it features the following properties, G'(0) = 0
and G'() = 0 which are suitable for achieving a smooth blending effect [136].
The contribution is then defined as :

data(x) = G (%) 2.2)

with G(x) being Wyvill’s function :

3 _ 2 - .
G(r) ={ 2r" = 3" L if r< L 2.3)

0 otherwise

and D(x) being the distance between x and the closest object of interest. We no-
tice that the description of the entire scene relies on a single distance field. As
naive implementations of D(x) might be computationally demanding, depen-
ding on the number of objects and the precision of their description, developers
can rely on one of the aforementioned techniques to sample the distance field.
As precision is not critical for modeling the lens, we opted for the regular grid
sampling on the GPU described in [60]. An example of such a distance used on
a map of the greater Boston area is shown in Figure 2.6-(3)

Again, we make the overall field value the accumulation of the two contributing
functions.

f(x,c) = lens(x, c) + data(x) (2.4)

where c is the cursor’s coordinates.

2.3.3 Focus, Context : Balance Control

A lens is defined by two shapes. One for delimiting the focus region and one for
delimiting the context region. We rely on the same function for the two shapes,
we only change the surface area adjusting the iso-value for each region.
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FIGURE 2.6: Illustration of the adaptation and rendering pipeline for PathLens : the
region of interest is identified as a function of cursor position (1) and distance fields (2) ;
the lens is then adapted to match this shape and rendered with a shading effect (3) —
actual rendering displayed to the user, red contour excepted.
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As the model introduced does not provide a straightforward control over the
surface area, we implemented an energy based optimization method, where we
iteratively adjust the iso-value s up to the desired value.

To this end we define the following energy :

u(s) = (area(c, s) — A)? (2.5)

where A is the targeted area and area(c, s) is the actual area of the shape im-
plicitly defined by f(x, c) and the threshold s. To evaluate area(c, s) at a given
threshold s, we evaluate an explicit extraction of the shape by a marching square
algorithm. In the following I'(s) defines the shape defined at the iso-level s :
I'(s) ={P € R|f(x,c) = s}.

FIGURE 2.7: We use a gradient descent optimisation method to estimate the iso-level
satisfying the desired surface area. The gradient require the derivative of the surface area
of the shape that we evaluate by estimating the surface area of the region in-between the
two shapes I'(s) and T'(s + ds).

We use a gradient descent method for solving this system, we compute the gra-
dient based on a estimation of the variation of the surface area.

_ ,Oarea(c, s)

u'(s) = QT X (area(c,s) — A) (2.6)

darea(c,s)
Js
and I'(s) (see Figure 2.7). To evaluate this area, we define v; the distance between

the two shapes at each point P; surface elements over the shape. The derivative
is then evaluated as :

The derivative is the surface area of the region in-between I'(s + ds)
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darea(c,s) | 3l1P = Prallv; 2.7)
Os ds

The level set theorem tells us that the V f(P;) is orthogonal to the shape at P;.
The gradient is then the direction of the shortest path from each point to the other
shape. v; satisfies then :

which leads to :

V(P)
IVF(P)]

with dot(., , ) being the euclidean scalar product,

F(Py) +v; x dot(V f(Py), ) — f(P) = ds

v x VAPl = ds
and finally :

ds
IVF(P)|

Vi =

Replacing v; into (2.7) we obtain an evaluation of M%Z(C’S) :

darea(c,s) >, |[B — Pl
0s V(P

And finally the formula to evaluate u/(s) :

Z 1P |Vf RHH X (area(e,s) — A) (2.8)

As stated earlier, a lens is defined by two shapes. The above method is applied
twice, with two different targeted surface areas A, to compute both the focus
and context regions’ contours. Care must be taken to avoid that both contours
overlap, bearing in mind that the focus’ contour is going to be magnified by a
factor of . The context contour must be made large enough.
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2.3.4 Achieving a Seamless Morphing Effect

The above method achieves the morphing effect. However, while the lens ap-
proaches an object of interest, some discontinuities in the resulting shape might
happen as the two contributions lens(x,c) and data(x) merge. To avoid any
unpleasant artifact, parameter 5 , which influences the lens’ aspect when ap-
proaching an object of interest, must be tuned with great care.

Parameter 3 defines the radius of influence of the objects of interest. To unders-
tand the influence of this parameter, let us first consider the case when 3 tends
towards oo. The contribution of function data is canceled, resulting in a lens
with constant circular shape. When /3 tends towards 0, the contribution of ob-
jects of interest drops off abruptly, which tends to fit the object’s geometry more
accurately but leads to discontinuity problems. When the cursor is hovering over
an object, we want data’s contribution to be as in this second case, making the
lens shape match the object’s geometry more strongly. Conversely, when the cur-
sor gets away from any object, we want to transition to the first case and avoid
any discontinuity. This is done by making 3 dependent on the distance from the
cursor position to the object : ranging from a minimum value as distance tends
towards 0 and a maximum value as distance increases and reaches a maximum
radius of influence.

2.4 Rendering Arbitrary Shape Lens

Constrained lenses are defined by (Figure 2.2) a focus region F, often termed
fat-top ; a context region C left untouched by the lens; a transition region 7,
sometimes termed compression region ; a magnification factor y ; a focus point
P that will be the center of magnification. Focus region F is the region of interest
to be magnified. This region is a flat magnification that is not affected by spatial
distortion. It is bounded by a non self-intersecting contour (a simple polygon).
Context region C is the region left untransformed by the lens. It is bounded by
two contours : another non self-intersecting contour on the inside and the image’s
boundary rectangle on the outside. Regions F and C are disjoint : F N C = ().
Region 7 then corresponds to the region in between the two contours. This is
the region where distortion occurs, in the form of compression to allocate more
screen real-estate to the magnified region of interest.

We use the adaptation algorithm twice to generate both the focus and context
shapes. The focus shape is then magnified by y to define the focus region, requi-
ring the generation of a context shape big enough to encompass the focus shape
once magnified.
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Common focus+context distortion techniques operate on vector-based represen-
tations [104], pixel-based representations [69, 93] or both graphic modes [29].
We implemented a pixel-based distortion technique for two reasons. First this is
the most general approach as all representations eventually get rasterized to map
screen pixels and eventually allow to adapt the technique to any kind of data.
Second, the amount of pixels to displace is bound by the size of the screen while
this is not the case for vector-based representation where the size of the repre-
sentation can increase and impair performance. As an example, an export of the
Paris area with OpenStreetMap for a 1440x900 pixel image leads to a 2.4MB
PNG pixel file and a 71.5MB SVG vector file (tested on OpenStreetMap’s offi-
cial website [120]).

In the following, point coordinates are bold, scalars are in ¢talics, and values
defined relative to the source image are primed. The transformation to render
points in the focus is straightforward :
x —P
I
The transformation is formulated as a reverse mapping. For each pixel coordi-

x=Tp(X)=P+

(2.9)

nates X on screen, i.e., in the destination image, we must find the corresponding
point in the source image, x'. Pixels in the context region are mapped to them-
selves : X' = x,Vx € C. The inverse of function T is applied to pixels falling
into the focus region x' = T} (x),Vx € F. For pixels that fall in region 7, we
compute the weighted average of the context and focus regions’ contributions :

~wp(x) - TRt (x) + we(x) - x
Tix) = e e T (2.10)

where weights are defined as follows :
1
)bF7 we = (

dZStF (X)
with distp and diste functions returning the distance to the focus and context

1

be
Tiste) @.11)

U)F:<

region contours, respectively.

Parameters b and bc determine how the relative influence of the two regions fall
off as a function of distance. As pointed out in [29] : “creating a distortion pre-
sentation is all about finding a balance between the magnification required and
some compensatory compression”. Various profiles have been proposed to spe-
cify how to distribute the compression in the distortion, including linear, Gaus-
sian and inverse cosine drop-off functions. Setting b > 1 will achieve a smooth
transition at the boundaries of the corresponding region. Setting b < 1 will result
in a sharper transition.
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FIGURE 2.8: (a) Pathlens adapting its shape to the subway lines in various regions of
interest on a Hong Kong Mass Transit Railway map (Sunny Bay, Yau Ma Tei, Tai Wai).
(b) Comparison with a conventional graphical fisheye of constant shape and size, ma-
gnifying areas of lesser relevance.

We implemented this algorithm in C++ and OpenGL, delegating the spatial
transformation to programmable graphics hardware. Mapping function 7' (Equa-
tion (2.10)) is based on the computation of distance fields to each region involved
in the adaptation. Which distance fields get used can vary from one frame to the
next. Before each frame update, distance fields are rendered offscreen by the
GPU-accelerated technique introduced in [61], and stored into a depth texture,
which is then accessed through simple bilinear interpolation. A shading effect
can be added at rendering time, to enhance distortion comprehension [32].
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2.5 Discussion and Future Works

We introduced Pathlens, a content-aware adaptive technique extending standard
fisheye lenses by adapting the shape of the lens to the content of the scene. We
introduced a rendering technique allowing to generate free-form magnification
lenses. We introduced a metaphor conveying the idea that the focus region adapts
and morphs to the underlying object of interest and we described an implemen-
tation of this metaphor.

Pathlenses break the usual behavior of fisheye lenses by proposing to dynami-
cally change their geometry while preserving visual continuity between the focus
and context regions. While optimizing what regions get distorted yields more re-
levant visualizations, it is still unclear how dynamic changes of the shape and dis-
tortion can affect users perception and interaction. Some studies are necessary to
help better understand some phenomenons from a human-computer interaction
perspective. How do the more complex lens shapes affect distortion comprehen-
sion and focus targeting ? Should the focus and context contour adaptations take
into account the same objects or does independent adaptation yield more mea-
ningful magnifications ? More generally speaking, what is the optimal way of
specifying objects/regions of interest ? All these questions are likely dependent
on the context of use (task, characteristics of the representation), that must be
addressed through controlled experiments.

Adaptation of the navigation tools also raises potential benefits for high-level
navigation processes such as construction of the internal representation of the
information space [111]. In the same way as disruptions in the physical environ-
ment (such as stairs, elevator, doors) are navigational cues and help people find
their way in a physical world, as reported by Jul and Furnas in [67], the evo-
lution of the shape of the lens provides navigational cues that could help users
remember what part of the virtual space they already examined. Experimental
evaluation and comparison against standard technique are needed to better un-
derstand such impacts.

Pathlens is based on a content-aware design approach. The adaptation process
relies on the geometry of some objects considered of interest. As discussed ear-
lier, identifying objects to take into account during the magnification process is
both a matter of deciding what objects are relevant for a given task, a highly
domain-dependent problem, and obtaining the geometry of those objects. The
latter question is highly dependent on the nature of the graphics. Figures 2.2,
2.3, 2.8 and 2.6 illustrate the use of Pathlenses on vector graphics, that make
geometry information readily available. Figures 2.1-c and 3.1 show lenses ap-
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plied to a satellite picture, i.e., a bitmap that only contains pixels. In such cases,
geometry information can be obtained, e.g., using image processing algorithms
that can extract relevant features from the original image, or through manual
annotations performed by a domain expert.

However when the information about the geometry is not available, allowing
users to specify objects of interest on-the-fly, e.g., by sketching, involving them
more explicitly in the adaptation process, is an interesting venue for future work.
Possible modalities to consider for such interaction could involve brushing[69],
gesture interaction or multi-touch modeling on tactile surfaces. On the contrary,
sometimes, several layers of geometry are available : for instance a public trans-
port map featuring buses, subways and trains networks. Steering along an itine-
rary involving each type of transportation, users might want to interactively se-
lect what networks Pathlens will adapt to, enabling to jump from a bus to catch a
train connection and follow this line further, and later jump back to a bus line that
they will follow. Design and evaluation of such techniques would contribute to
better understand the impact of the content-aware approach on navigation, both
in terms of human-computer interaction and integration into end-user applica-
tion.



Chapitre 3

Fisheye Lens for Expanding
Objects in 2D Fields

In this chapter we introduce Arealens a content-aware focus+context visualiza-
tion technique that gradually expands objects of interest depending on user input,
smoothly integrating them into the surrounding context.

Arealenses implement a new distortion-oriented presentation technique that en-
ables rendering magnification lenses featuring multiple, arbitrarily shaped foci.
This allows to preserve the aspect of objects of interest when they are begin
magnified.

The first section introduces in greater depth the issues raised by expanding ob-
jects in dense scenes. The following sections present our algorithm for expanding
objects and the technique for rendering lenses. We then report on the results of
a controlled experiment that compared Arealens to regular graphical fisheyes on
a visual search task. We conclude by discussing and presenting future work for
Arealens.

3.1 Introduction

Fisheye techniques come in two categories. Techniques that magnify a region of
interest around the user’s focus of attention, and techniques that expand objects
of interest depending on the user’s focus of attention. Pathlens belongs to the first
category : a focus region is attached to the mouse cursor and dynamically adapts
its shape to encompass objects falling beneath, as users move the cursor. Howe-
ver, this approach showed its limits when navigating dense scenes. A Pathlens

55
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needs space between objects of interest to accommodate the distorted transition
region, as it would otherwise distort objects of interest, which leads to problems
of interpretation [32].

We introduce Arealens, a fisheye technique based on the second category that
addresses problems of objects of interest getting distorted by a fisheye (the shape
mismatch problem that we introduced previously in Section 2.1.1). Expanding
objects of interest smoothly allows to better preserve their visual aspect while
transitioning between context regions and full magnification.

Expanding objects on a 2D layout raises the following challenges.

Object visibility : expanding objects might make them overlap with surroun-
ding objects and lead to occlusion. We need a layout management tech-
nique that spatially rearranges and shrinks objects so as to both handle
magnification of objects of interest and preserve them from self-occlusion.
This management technique must bound the spatial rearrangement to a cer-
tain radius around the focus of attention so as to preserve context from any
perturbation.

Visual continuity : objects of interest highlight interesting regions of the infor-
mation space. However, useful information might still be present between
objects. We need to ensure visual continuity for the whole information
space as objects get expanded, moved or shrunk.

Arealens introduces a new mapping algorithm achieving smooth expansion of
objects of interest within dense fields while ensuring objects visibility. Arealens
also implements a new distortion-oriented presentation technique allowing to
magnify piecewise the multiple objects of interest accommodating distortion in-
between.

3.1.1 Related Work

Arealenses are related primarily to the following topics : fisheye visualization ;
focus+context visualization ; and content-aware image resizing techniques ; that
we all presented earlier in the Section 2.2.

Arealenses are also related to the target expansion techniques. Few implementa-
tions of this approach were introduced in the literature Bederson presented Fi-
sheye Menus [11] that magnify items of a linear menu. McGuffin [86] studied the
usability of target acquisition in such interfaces. However both works only deal
with linear 1D layouts. Some implementations can also be found in commercial
systems. Integrated in the Mac OSX operating system since early versions, it is
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a popular feature of the Dock ' — a launch bar allowing users to pin icons of ap-
plications, folders or files for quick access. With the accumulation of items, the
bar, which quickly grows larger than the screen, is shrunk and a magnification
effect increase visibility of icons. However we need support for 2D layout. The
above only support linear representation, and magnification is made possible by
stretching the bar to make room for the expanding icons, which impedes target
acquisition [86, 138].

3.1.2 Overall Process

Arealens allows navigation of large datasets by successively magnifying objects
within a representation. An information space does not represent only meaning-
ful information and, depending on the scenario, the task, or the interest of users
the information they are seeking for is very likely to be encountered in a set of
information objects of the scene. Overall, Arealens is based on the same overall
process as Pathlens techniques presented in previous Chapter. As explain in Sec-
tion 2.1.3, how to obtain geometrical description about these information objects
is very dependent on the nature of the graphics. In the example presented throu-
ghout this Section we obtained the geometrical description with various means.
We authored pictures for Figures 3.1, 3.2 and 3.5-(b) because neither Google
API nor Mac OS X API provide easy access to this information. We extracted it
from vector files for Figures 3.3 and 3.5-(a) and HTML file for Figure 3.5-(c).

Once we obtained the geometrical description, we have to compute a new layout
for the objects depending on the actual users input so as to achieve smooth ex-
pansion of the objects. We describe our method in the next Section.

3.2 Expansion of 2D Objects with Occlusion Manage-
ment

We introduce a mapping technique that achieves magnification of objects of in-
terest as user’s focus of attention approaches them while preventing objects from
overlapping others.

Coupling expansion with occlusion management leads to the following scenario
for an object that gets crossed by the user’s focus of attention. When distance is
greater than a certain radius of influence (a parameter of the technique, equivalent
to the radius of the context region in a regular circular fisheye lens), the object
is left untouched at context scale. Once within the lens’ radius of influence, the

1. http ://en.wikipedia.org/wiki/Dock_(OS_X)
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FIGURE 3.1: (a) The Aegean islands (no lens applied). Red contours indicate regions of
interest. (b) an Areal.ens preserves the islands’ appearance (piecewise magnification),
putting most of the distortion in the ocean.

object is smoothly shrunk and moved toward the border of the lens as if it were

stuck to it, so as to make room for magnified objects. Then, as distance decreases,
objects stop shrinking and start to magnify and move toward the focus point,
eventually reaching their final magnification. As the cursor goes over them and
distance eventually increases, objects go through all these stages in reverse order,
to finally revert to their initial position.

Achieving this behavior entails the following requirements :
R1 Visibility : magnified objects should not overlap any other object.

R2 Smooth animation : sudden changes in the layout of a visualization are dis-
ruptive since they prevent users from tracking changes over time [115].
Hence objects should move smoothly.

R3 Map consistency : rearranging data to better fit the available space does not
necessarily impairs comprehension, as demonstrated by the use of distor-
tion in many maps of transport systems [122, 123]. However layout should
preserve topological consistency, i.e., the relative positioning of objects
with respect to one another.

R4 Steady Context : bounding lens perturbations to a certain area around the
focus of attention allows for better focus acquisition [87, 138].

An Areal.ens affects each object that falls into its area of influence. Objects that
fall outside of it form the context and are left untouched. As illustrated in Figure
3.1, the object(s) closest to the mouse cursor get magnified, piecewise, so as to
preserve their aspect (no distortion). To make room for these objects, the objects
that are farther away from the cursor but that still lie within the lens’ area of
influence get offset and scaled down to prevent overlap between them.

The area of influence takes the form of a box centered on the lens’ focal point,
usually corresponding to the cursor. This box delimits the region beyond which
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the lens no longer affects the visualization, thus leaving the context region un-
touched, thus complying with R4.

We use two concurrent mapping algorithms to achieve the other three require-
ments : the magnification mapping, and a dispersion mapping. The purpose of
the dispersion mapping is to push objects away and shrink them to accommodate
the objects that will get magnified. The purpose of the magnification mapping is
to pull objects towards the cursor and magnify them. The magnification map-
ping takes as input the cursor position and identifies the closest objects, to be
magnified. The dispersion mapping takes as input this set of magnified objects
and spreads out the remaining objects (R7). We term magnified objects the ob-
jects identified by the magnification mapping, and movable objects the remaining
ones, spread out by the dispersion mapping.

The overall algorithm processes objects one by one iteratively according to their
distance to the cursor (closest first). The routine assigns the object its final confi-
guration by applying magnification mapping and then assigns the remaining ob-
jects to a temporary configuration by applying the dispersion mapping. The al-
gorithm then considers the next closest object and stops when no more objects
are left to be processed.

A description of the magnification mapping and the dispersion mapping follow.

3.2.1 Expanding Objects

Full expansion of an object is achieved by applying the following transformation,
where P is the focal point (cursor) and y the lens’ magnification factor :

However, when processed, the objects might not be lying at their initial position
and might have been moved and shrank by the dispersion mapping (presented
in the next section) to prevent occlusion at a previous iteration. Hence full ex-
pansion must be mixed with objects’ actual position to ensure smooth transition
between full expansion and full shrinking as the cursor crosses the object. This
is achieved by applying the following transformation :

wx T(x)+ (1 —w) xx'

dist_ ¢ the initial position, X’ the current position, radius a
radius

parameter specifying the lens’ operating range and dist its distance to the cursor.

where w = 1 —
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3.2.2 Content-Aware Occlusion Management

The purpose of the dispersion mapping is to ensure that no objects overlap. We
apply it at each iteration on the objects that are not yet assigned to their final
position (the movable objects), so that at each step no objects overlap in the
scene.

Objects of a scene vary in size and in shape, and do not generate the same visual
occlusion. As a result, they do not require the same amount of compression and
offset to avoid overlap. For instance, small objects do not need to be shrunk as
much as big objects do. Because a naive content-agnostic approach would apply
the same treatment to all objects, it would have apply the same compression
and displacement to all object, which would lead to a far-from-optimal solution.
On the contrary, adopting a content-aware approach, we can adapt scaling and
offset depending on the shape and size of objects and consequently accommodate
compression and displacement in a more relevant manner. An object-dependent
occlusion technique allows for better use of screen real-estate.

The dispersion mapping algorithm shrinks and moves movable objects to make
room for the objects already magnified, which are non-movable objects. The
movable objects are free of any occlusion prior to the expansion of magnified
objects.

The dispersion mapping consists of two steps. First, it moves every movable
object according to a displacement vector. Then, it shrinks every one of them
according to a scale factor. The displacement vector is computed as a weighted
average of displacement contributions from each magnified object. Each displa-
cement contribution is responsible for preventing a magnified object from over-
lapping a movable object. Each contribution is computed as D,,, = X' —x, where x
is the point within the magnified object at its initial position (i.e., before magnifi-
cation) that is closest to the considered movable object, and where X’ is the same
point on the magnified object at its final position (i.e., after magnification). The
displacement contribution moves objects away, guaranteeing that objects don’t
overlap (R2) and roughly preserving the relative position of objects (R3).

Weights are computed as the inverse distance from a movable object to each
magnified object. An additional contribution is assigned to the area of influence’s
bounding box to stabilize the position of objects as it approaches them, with a
null displacement vector and a weight that is the inverse of the distance to the
object. As the first step of the dispersion might not be sufficient to guarantee that
no overlapping occurs (R1), we shrink movable objects by iteratively applying a
scaling transformation to them using a constant reduction ratio until they do not
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FIGURE 3.2: (a) Map of Los Angeles neighborhoods (no lens applied). (b) ArealLens
smoothly expanding neighborhoods of Hollywood and part of West Hollywood.

overlap anymore.

3.3 Rendering Multiple Foci Lenses

The expansion mapping algorithm results in the displacement and scaling of each
object. While the dispersion mapping guarantees that no overlap occurs between
objects of interest, objects of interest can still occlude the information space



62 CHAPITRE 3. FISHEYE LENS FOR EXPANDING OBJECTS IN 2D FIELDS

between objects. We need a distortion technique that maps objects of interest
to their final configuration and map the information space between objects of
interest so that it integrates smoothly with objects of interest.

We present a technique that extends the warping technique introduced in Section
2.4 by allowing to render magnifying lenses, with possibly multiple focus regions
featuring arbitrary shapes.

The Warping Technique

The warping technique is based on the same approach presented earlier for ren-
dering Pathlenses, except that instead of interpolating only between two regions
(the focus region inside the context region), it considers as many focus regions
as needed inside the context region.

The expansion mapping technique introduced in the previous section assigns
each object a displacement vector P; and a scale factor y; leading to the magni-
fication transformation :

x=T(x)=P;+ —— (3.1)

The general mapping function is then a weighted average over the contributions
of all involved regions :

izo wi - T, (x)

T(x) = 2ie i (3.2)

where weights are defined as follows :

1

b;

with dist; functions returning the distance to the each objects of interest contours,
respectively. One of the regions is the context region. It encompasses all other
ones and is assigned the identity transformation.

Tuning the Distortion

As parameters br and be determined how the relative influence of the two focus
and context regions fall off as distance increases for Pathlenses, b; control the
influence of each regions of interest. Tuning those parameters makes it possible
to adjust the compression relatively to each region. They allow to independently
control the shape of the transition at each regions boundary. Setting b > 1 will
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achieve a smooth transition at the boundaries of the corresponding region. Set-
ting b < 1 will result in a sharper transition.

The other parameters a; are parameters that change the relative flatness of the
flat-tops for optimal adaptation. When a; = 0, strength is infinite for pixels on
the contour (dist;(x) = 0) leading to a flat mapping inside the corresponding
focus region. When a; > 0, this flatness constraint is relaxed a bit, enabling a
better packing of foci through partial distortion.

This can be interesting in cases where the information space is densely popula-
ted with regions of interest, as illustrated in Figure 3.2. Indeed, in dense environ-
ments, the transition region is small compared to that of the regions of interest
and cannot absorb all the distortion. Allowing distortion in the regions of inter-
ests distributes it over a wider area and attenuates it.

3.4 Evaluation

The different multi-scale interface schemes (focus + context, overview + de-
tail, zooming) all have their advantages and drawbacks, depending on the user’s
task and on the nature of the visualization ; their empirical comparison has been
the topic of several papers [35, 62, 92]. Our primary goal is to empirically eva-
luate the potential benefits and pitfalls of adaptive lenses compared to statically-
defined lenses. The purpose of this experiment was both to evaluate the actual
performance gain under different conditions, if any, and to assess the potential
negative impact of the dynamically changing geometry, that might cause confu-
sion and visual discomfort. For this first experiment, we compared regular fi-
sheyes (circular shape, Gaussian drop-off) to Areal.enses, that have a stronger
impact in terms of visual changes than PathLenses, as they affect more objects
and are thus more likely to suffer from this, especially in dense configurations.

The task was an abstract multi-scale visual search task, operationalized so as to
test the following two hypotheses, based on the expectation that by adapting their
shape to match that of object(s) of interest, Areal.enses should provide more re-
levant detail-in-context visualizations than regular fisheyes, requiring less virtual
navigation while minimizing the negative effects of distortion that impede com-
prehension :

H, Arealens performs better than fisheye when the objects of interest have ir-
regular shapes, as the focus of Areal.ens adapts to those shapes while that
of fisheye does not ;

H, Arealens performs worse when the density of objects of interest is high, as
this leads to more visual distraction caused by the movement of a larger
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SHAPE = Circle & DENSITY = Low SHAPE = Circle & DENSITY = High

SHAPE = Blob & DENSITY = Low SHAPE = Blob & DENSITY = High

FIGURE 3.3: Screenshots of the four maps combining two different SHAPE and DEN-
SITY. Users were to find a target hidden in one of the island, visible only when magnified
with the lens. We compared performance of an Arealens against performance of a static
fisheye lens of same focus region surface area.

number of objects.

3.4.1 Task and Procedure

In all trials, the information space was made of islands on an ocean (Figure 3.3).
The task consisted in finding a red cross that was positioned on one of the is-
lands, by magnifying each island in turn. The red cross was not visible at context
scale and could only be revealed when the corresponding region was magnified
through the lens. We used the same texture to represent the ocean in all trials
(bathymetric data). Forest textures used to fill the islands all looked similar, so
as to ensure that the red cross would be equally difficult to visually differentiate
from the background on all islands.

To operationalize H1, we considered two types of shapes (factor SHAPE) : islands
were either circles (Circle, Figure 3.3-top) or elongated blobs (Blob, Figure 3.3-
bottom). All islands had the same surface, to make sure that differences could
be attributed across conditions to variations in shape, as opposed to area. To
ensure fair treatment of both techniques, we made the Fisheye’s flat-top the exact



3.4. EVALUATION 65

same size as the circular islands. Thus, for each condition, the flat-top of both
lenses and the islands had the same surface. We did not make the flat-top of the
Fisheye lens larger to avoid problems caused by the distortion of larger context
areas, that impede focus targeting, and thus task performance, and make context
information difficult (at best) to understand in real world cases, as illustrated in
Figure 2.1.

To operationalize H2, we tested two different object densities (factor DENSITY) :
a Low density with a significant amount of empty space (ocean) between islands
(Figure 3.3-left) ; and a Higher density (Figure 3.3-right) with more islands pa-
cked in the same space. ArealLenses would cause more visual disturbance in the
High condition : more objects had to be moved and resized to accommodate the
magnified object of interest, as their was less empty space to “absorb” distortion.

Randomly placing the cross before a trial starts would obviously have been a si-
gnificant source of noise in the experimental data depending on how lucky parti-
cipants were in each trial. As this chance factor cannot be balanced across condi-
tions, we artificially forced chance upon participants, following the approach
described in previous work on the operationalization of multi-scale search tasks
[92]. We introduced a secondary factor, NAVLENGTH, that determines when, ra-
ther than where the cross appears, based on what fraction of the entire scene
(considering island surfaces only) the participant had already visited with the
lens. Thus, for a value X of factor NAVLENGTH for a given trial, the red cross
only appeared after participants had visited X % of the total surface of all islands,
no matter in what order those islands had been visited. The cross appeared right
next to the lens, according to the current exploration trajectory. NAVLENGTH
was set to one of three values, 30%, 55% or 80%. Participants were completely
oblivious of this trick, and were told about it only after the end of the experiment.

Twelve unpaid volunteers (two females), daily computer users, age 24 to 36 year-
old (average 30.3, median 30.5), served in the experiment. All had normal or
corrected-to-normal vision and did not suffer from any form of color blindness.
We conducted the experiment on a 2x2.26GHz Mac Pro workstation running
Mac OS X, equipped with an NVIDIA GeForce GT 120 512 MB driving a 30”
LCD monitor (2560x 1600, 100 dpi), and a standard optical mouse set at 400 dpi
resolution and default system acceleration.

To summarize, the experiment was a 2x2x2x3 within-participants design with
the following factors :

— 2 techniques (TECH) : Fisheye and Arealens ;
— 2 types of shape (SHAPE) : Circle and Blob ;
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— 2 types of shape density (DENSITY) : Low and High ;

— 3 navigation lengths (NAVLENGTH) : 0.3, 0.55 and 0.8.
We grouped trials into two blocks, one per TECH. Half of the participants started
with AreaLens ; the other half with Fisheye. Both blocks started with a training
session consisting of 3 repetitions of each of the 12 SHAPE x DENSITY X NAV-
LENGTH conditions presented in a random order. The operator used the first few
training trials to explain the task and techniques. After the training trials, each
block continued with a series of measured trials, consisting of 6 repetitions of
the same 12 conditions presented in a random order. Participants were instructed
to perform the task as fast as possible while minimizing the number of errors.
To complete a trial, participants had to reveal the red cross through the lens and
click the mouse button with the cross still visible. To avoid participants rushing
through the experiment, mouse clicks that occurred while the cross was outside
of the lens were counted as errors, but did not end the trial ; participants still had
to find the cross to complete the trial. The average duration of the experiment
was 30 minutes per participant.

3.4.2 AQuantitative Results

B Fisheye O Arealens

MT (in seconds)

Circle Blob

FIGURE 3.4: Quantitative results of the controlled experiment. MT (tasks completion
time) for both Fisheye and Arealens techniques and for the two SHAPE conditions. Error
bars show the 95% confidence limit.

We used R (http://www.r-project.org) for our statistical analysis and in par-
ticular the aov command from the stat package. Our main measure was task
completion time MT. As participants had to successfully complete each trial, er-
rors were integrated in MT and were thus not studied on their own. We performed
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a full factorial nominal ANOVA for the following model :
MT ~ TECH X SHAPE X DENSITY x Random(PARTICIPANT).

We did not include NAVLENGTH in the model as we consider it as a secondary
“ecological” factor whose purpose is to prevent noise due to chance, as explai-
ned earlier. We removed a few outliers : 1.44% of all trials, with unreasonable
(> 1) residual/predicted ratio. Those were equally distributed among ArealLens
and Fisheye conditions.

The ANOVA reveals a significant effect of TECH on MT (F 1; = 17.3,p = 0.0016).
AreaLens is significantly faster than Fisheye, yielding a 24% speed-up. As expec-
ted, we find a significant interaction TECHX SHAPE (F7,11 = 13.3, p = 0.0039)
that can be observed in Figure 3.4. A post-hoc t-test with Bonferroni correc-
tion shows that Arealens is significantly faster than Fisheye for both Circle
(p = 0.0002) and Blob (p < 0.0001) island shapes, but the magnitude of the
difference is larger for Blob (25.8%) than for Circle (21.6%). Thus, hypothesis
H1 is supported by our data.

The ANOVA also reveals a significant effect of DENSITY (F71; = 119.5, p <
0.0001), participants being significantly faster in Low density conditions. This
was expected as, by design, the High density condition requires more naviga-
tion for the same value of NAVLENGTH. However, the ANOVA reveals neither a
TECHXDENSITY nor a TECH X SHAPE X DENSITY interaction. This implies that
we cannot say more than what is said in the previous paragraph on the difference
between Arealens and Fisheye with respect to the DENSITY factor (ArealLens is
significantly faster than Fisheye for both densities, but the data does not show an
effect of DENSITY on this difference). Thus, H2 is not supported by the results
of the experiment. Note, however, that AreaLens is significantly faster in Circle
than Blob conditions. This might be due, in part, to the higher amount of visual
change in the latter case.

3.4.3 AQualitative Results

At the end of the experiment, participants were asked to rank AreaLens and Fi-
sheye, and were encouraged to provide feedback. Eight participants out of twelve
ranked AreaLens first. The other four ranked ArealLens and Fisheye ex-aequo (no
participant ranked Fisheye first). This is consistent with quantitative results and
supports HI. Among participants who ranked Arealens and Fisheye ex-aequo,
two said that they preferred AreaLens in the Blob condition and Fisheye in the
Circle condition. Two participants found the ArealLens deformations sometimes
annoying, though this did not impact navigation between shapes significantly.
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Overall, participants did not find the changing lens shape particularly distrac-
ting ; even if more predictable, distortion when moving classical fisheyes also
entails constantly changing shapes. Some participants commented on the diffe-
rence between passively watching the interface and actively operating ArealLens,
confirming our own observations that while shape changes can be distracting in
the former case, they are not in the latter. We tentatively attribute this to opera-
tors being more tightly integrated in the feedback/ feedforward loop than people
passively watching the screen, and already having their attention focused on the
region of interest when relocating the lens, thus better anticipating changes. One
remark that came often (formulated differently) is that Fisheye requires more
concentration because both navigation and visual search (looking for the cross)
have to be performed simultaneously. Performing the task with AreaLens is cog-
nitively less demanding, as the two tasks can be sequentialized : one can jump to
the next shape and then perform the search on the entire island at once. Another
frequent remark was that Fisheye is more annoying because it deforms (distorts)
the islands, something that does not happen with AreaLens.

3.4.4 Summary

The results of this experiment are very encouraging : the AreaLens significantly
outperformed a classical fisheye lens in all conditions, including Circle. It was
not obvious that dynamic adaptation would provide any advantage in this case,
given that a Fisheye already provides a good match in terms of shape adaptation,
and that it does not suffer from potential problems of visual distraction due to
dynamically changing geometry. The results indicate that the latter is actually
not a significant usability issue, as it did not negatively impact AreaLens perfor-
mance. In terms of subjective preferences, we received positive feedback from
the participants. In accordance with quantitative measurements, participants did
not report being distracted by the visual changes in regions of interest when using
AreaLens. This confirms that this potential problem has a very limited impact, if
any, though further investigation is required to generalize this particular finding.

3.5 Discussion and Future Works

We introduced Arealens, a multi-foci fisheye lens that achieves interactive expan-
sion of objects in dens fields while preserving continuity. We introduced both
a mapping technique for expanding objects within 2D fields, and a distortion-
oriented presentation technique allowing for lenses featuring multiple foci of
arbitrary shape.
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FIGURE 3.5: The Arealens technique applied to : (a) a part of the OpenGL state ma-
chine block diagram; (b) magnifying a group of widgets in a user interface (Adobe
Photoshop) ; and (c¢) the Los Angeles Times Web homepage.

Arealenses can also apply to different contexts. For instance, they could be used
as accessibility helpers for visually impaired users, to magnify widgets or groups
of widgets in desktop user interfaces (Figure 3.5-b), or to magnify portions of
Web pages such as a newspaper homepage (Figure 3.5-c). The technique makes
it possible to display an overview of the full page, and to browse it at a rea-
dable level, somewhat like Fishnet [8] does. This can be useful in the context
of users who need accessibility features, but also on mobile devices such as ta-
blets and e-readers, that have limited screen real-estate. Note that in both of the
above examples, finding objects of interest and obtaining information about their
geometry is relatively straightforward : in the case of user interfaces, accessibi-
lity/automation APIs enable the automatic discovery of the UI widget hierarchy ;
in the case of Web pages, the CSS box model and HTML page structure can help
identify and segment relevant parts of the web page. Another interesting family
of graphics are block diagrams. Figure 3.5-a shows an example depicting part of
the OpenGL state machine. Again, it is possible in such cases to automatically
find objects of interest, e.g., sets of boxes, paths connecting components, or co-
herent sets of connected entities that form components of higher abstraction.

One of our main concerns about Arealens was the potential distraction caused by
the constantly moving shape of the lens. Our experiment showed that this had no
significant negative effect on the user who is operating the lens. Users reported
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being distracted while observing others using the lens, though. This might be
due to the fact that when operating the lens, user’s focus of attention matches
the center of the lens, lying within the main flat top, where only few changes
occur. While, on the contrary, observers might focus on other locations in the
scene, and be more affected by the moving shape. This effect might have more
consequences on collaborative navigation for instance, and further empirical eva-
luation is required to better understand this phenomenon.

Arealenses rely on geometrical description of the content of the scene identified
as being of main interest. While in many cases this information is readily ac-
cessible, sometimes the description is overwhelming : too much information is
available and users need to select layers, group or a granularity within the content
that they want the Arealens to adapt to. For instance, in the HTML source of a
web page, users might be interested in pictures, blocks of text, menus or hyper-
links. Techniques letting users select, within a scene, a specific semantic struc-
ture, would allow for improved usability of Arealenses.

Arealens and Pathlens are based on the same approach. Both propose adaptive
fisheye lenses, whose shape adapts to the geometry of the content of the scene,
identified as being of interest for the user. However Pathlenses adapt to path, and
Arealenses expand objects in dense 2D fields. Whether to use one or the other
is a matter of content, and also of user’s interest. For instance, inspecting a 2D
graphics scene users might first choose Pathlens to inspect shapes of objects,
and then choose Arealens for inspection of the filling content. Actually choosing
between Arealens and Pathlens is a matter of what users are interested in.



Chapitre 4

The Jellylens Library

In this chapter, we present the Jellylens library that was created for the deve-
lopment of distortion-oriented presentation techniques, featuring multiple foci
of arbitrary shape. The library is based on a simple mathematical formulation
providing easy controls : users only manipulate the geometry of each foci, the
mapping inside each foci, and a few parameters to generate a wide range of
presentation techniques integrating each foci into the surrounding context conti-
nuously. The formulation is compatible with a GPU implementation achieving
interactive rendering, which allows for dynamic adaptation of lenses.

The library was fully implemented and was used for prototyping the two tech-
niques introduced in chapters 2 and 3.

4.1 Introduction

Focus+context multiscale interfaces integrate smoothly several representations
of a datasets at different levels of magnification. In-place magnification of re-
gions of a dataset entail some compensatory compression to avoid occlusion of
the surrounding contextual information. Although distortion enables a smooth
transition between the different scales of representation, it also causes problems
of recognition and interpretation.

Many approaches have been described in the literature for stretching and distor-
ting spaces to produce multiscale presentations of data. Such techniques have
been reviewed previously in Section 2.2. A first major limitation of the work in-
troduced earlier, was referred to as the “tyranny of the foci” by Keahey [69] :
most of the techniques introduced rely on the definition of centers of magnifica-
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tion and provide magnification fields that smoothly interpolate with the various
foci. Such techniques are : polyfocal projection [68], fisheye views and its de-
rivative [51, 103] or distortion-oriented presentation[77, 76]. Other techniques
allow to define foci with arbitrary shapes such as : 3-dimensional pliable sur-
faces[30] and non-linear magnification fields[69]. They integrate continuously
the foci using distortion. However these technique do not allow to define the
shape of the context region to constrain distortion to a certain region.

Most of previous work in that area focused more on how to tune the distortion
profile in the transition region than the shape of the distortion region. The pro-
blem of mismatch between the shape of the lens and the geometry of objects of
interest, described in Section 2.1.1 pointed out that problems of interpretation
are caused by objects of interest falling in the spatially distorted region. In other
words, we argue that what regions distortion affects is of greater importance than
how it affect it. We then need techniques affording greater control over the shape
of the distorted region.

We introduce a new presentation technique that enables fine control over the
shape of the region where distortion happens. Users manipulate handles, which
are regions where data is magnified with no distortion — resulting in the so cal-
led flat-tops— and define an overall encompassing shape delimiting the context
region. Our technique accommodates distortion in the regions in-between to inte-
grate continuously each focus region and the context region. The library provides
as well controls allowing to tune distribution of compression, allowing to achieve
several distortion profiles such as sharp or smooth transitions at the boundary of
each focus.

We formally introduce the technique and then present our GPU implementa-
tion. We will present then other use that we investigated with this technique and
conclude with discussion and future work.

4.2 Lens Formulation

When developing the Jellylens library, a distinction was made between represen-
tation of the dataset and its presentation. The Jellylens library does not consider
the representation of the information. Users of the library are required to provide
an image representing the data. Although the library could handle both pixel-
based and vector-based images, during this thesis we only provided an imple-
mentation for pixel-based representations.

The base elements of the library are the glasses. Glasses are handles to control
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the presentation. A glass is defined by a region of the information space. A few
parameters are used to tune the overall distortion in the transition region, and
they apply a transformation to magnify, compress, translate or rotate locally the
presentation.

To understand the role of a glass, let’s first consider the case where only one
glass is placed on the presentation space. In this case, actions on the handle such
as : moving, scaling or rotation, are directly echoed on the entire presentation
space, resulting on the moving, scaling and rotation of the whole representation.

When two glasses are placed on the presentation space, each glass echoes di-
rectly the transformations to the region it is attached to. And the region in-
between is distorted to produce a single continuous presentation integrating smoothly
both regions’ mapping.

The second entity of the library is a lens. Lenses are made of several glasses. A
typical lens includes glasses to define each focus with their respective magni-
fication transformation. Another glass that encompasses all the other glasses is
defined and associated to the identity transformation to handle the unmagnified
context region. The distortion will be constrained to regions in-between all the
glasses that we call the transition region.

Mathematics :

Glasses allow to define linear mappings into regions of the presentation space.
The distortion within the transition region achieving the smooth integration of all
the glasses is defined as an interpolation of the transformation of each glass. The
mathematics were already introduced in Chapter 3. They are briefly summarized
here :
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where 7; are the transformations associated to each glass, and weights are defi-
ned as follows :
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with dist; functions returning the distance to each glass, respectively.

This formulation allows to define precisely the geometry of foci free of any dis-
tortion and the transition region smoothly integrating all glasses. It provides also
two parameters to adjust the profile of the distortion assigned to each glass.

Tuning the distortion



74 CHAPITRE 4. THE JELLYLENS LIBRARY

Parameters b; control the influence of each glass. Tuning those parameters makes
it possible to adjust the compression relatively to each glass. They allow to in-
dependently control the shape of the transition at each glass boundary. Setting
b > 1 will achieve a smooth transition at the boundaries of the corresponding
glass. Setting b < 1 will result in a sharper transition.

The other parameters a; are parameters that change the relative flatness of the
flat-tops for optimal adaptation. When a; = 0, strength is infinite for pixels on
the contour (dist;(x) = 0) leading to a flat mapping inside the corresponding
glass. When a; > 0, this flatness constraint is relaxed a bit, enabling a better
packing of foci through partial distortion.

This can be interesting in cases where the lens is composed of several glasses
close to each other . Such configuration results in a small transition region for
accommodating the distortion which yields high compression factors that can
lead to discontinuity or create disruptive visual artifacts such as Ghosts (reported
by Beier [15] when studying image warping techniques to achieve image meta-
morphosis). Allowing distortion in the glasses distributes the distortion over a
wider area and attenuates it.

Design Considerations

The Jellylens library allows to define magnification lenses with as many foci
as necessary with the only restriction that glasses must not overlap. Otherwise,
discontinuities will occur at the boundary of the foci. However users must bear in
mind that combining glasses whose magnification, offset or rotation varies with
great amplitude yield great compression ratio in the transition region which need
space to absorb the distortion. In some extreme cases, where the layout call for
small transition regions, users can tune parameters a; to leave distortion inside
glasses.

Combining Multiple Lenses

The Jellylens library supports multiple lenses into a presentation space, to create
rich presentations featuring several fisheye lenses. However, combining several
lenses that do not constrain their distortion into a bounded context region is not
the purpose of this library and leads to discontinuity in the overall presentation.
Equation (4.1) defines presentation for each lens independently from others.

4.3 Implementation

One of the main requirement for the Jellylens library was to achieve interactive
framerate rendering, while shapes of lenses could change from one frame to
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FIGURE 4.1: Implementation of the Jellylens library involve the Fast Distance Fields
Computation on the GPU introduced in [60]. The technique involves representing each
shape by a distance mesh : the distance meshes used for a point (a) and a line segment
(b) shown with the XY plane above each mesh. The distance mesh for a polyline (c) seen
from above. Taken from [60].

the next. Hence Jellylens library is compatible with parallel rendering and we
implemented the library on the GPU using C/C++, OpenGL and GLSL shaders.
In this section we give details on its implementation.

The overall image is first rendered to provide the overall context region on a first
pass. Then, each lens is rendered independently. For each lens, users specify the
viewport on which to render the lens. To save some computation, a good practice
is to define the viewport as the bounding rectangle of the lens.

Distance Fields

The definition of the overall mapping requires to compute the distance of each
point on the presentation to each glass which can be resource demanding and
thus time consuming. Before each frame update, distance fields are rendered
offscreen by the GPU-accelerated technique introduced by Hoff in [60]. The me-
thod consists of converting each polyline into a distance mesh (see Figure 4.1).
Rendering into a depth texture results in the sampling of the distance fields. The
texture is then accessed through simple bilinear interpolation to obtain the dis-
tance at each point.

Distance fields are generated for all glasses into as many depth textures. The
number of textures allowed by OpenGL drivers, which varies across platforms
and hardware, can induce a limitation on the number of glasses allowed by the
library.

Displacement Map

Once the distance fields are generated for each glass, we can render the presenta-
tion. The overall mapping (4.1) is applied to each point on the presentation space
to render the presentation.

The interpolation method was implemented in a GLSL shader. The shader to use
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depends on the number of glasses to interpolate, which can vary over time. To
this end, we implemented a run-time generation of the shader, that generate the
appropriate shader depending on the number of glasses.

Shading

Carpendale [32] proposed to use shading to make distortion more comprehen-
sible by users and alleviate problem of interpretation. Our library allows to add
shading to the rendering of lenses.

To add shading to the rendering, we first render an off-screen height map. Each
glass is associated with a height corresponding to the magnification factor of
their respective transformation. Theses heights are interpolated before the rende-
ring and rendered into a texture resulting in a height map. The interpolation is
defined as a weighted average over all involved glasses.

T(x) = ZZOZ” 'jf(x) (4.3)
=0 "7

where h; encode the respective height of each glass. The weights are defined as
in Equation (4.1) by

1

b;

During rendering, the gradient of the height map is used as a surface normal n in
a Lambertian shading model :7 = C X dot(n, 1), with 1 the light source direction,
and C' a constant. ] is the resulting luminosity, see Figure 2.8 for results.

4.4 Applications

Although the Jellylens library has originally been designed and implemented
for prototyping both the Arealens and Pathlens techniques, we found it conve-
nient for investigating other problems. Creating presentation techniques simply
by controlling the flat-tops (glasses) appears to be a clear and intuitive paradigm
for fast prototyping, which eases investigation of distortion-oriented presentation
techniques. Here we present two examples. The first addresses issues related to
the use of multiple lenses on a display. The other one addresses problems related
to physical navigation in wall-sized display environments. Both prototypes only
required less than 50 lines of code, using the Jellylens library.

Fisheye Merging
Using multiple fisheye lenses on a display has multiple benefits : it allows several
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FIGURE 4.2: Two fisheye merging. (a) flat-tops with the same magnification factor
merge, requiring similar magnification factor ; (b) flat-tops with distinct magnification
factors are cropped.

people to collaborate for navigating a dataset and it eases comparison tasks as
two lenses can focus at the same time on remote parts of the information space.
However, a fisheye alters representation of the region beneath, and conflict must
be handle as two lenses come in the vicinity of each other. A simple solution is
to prevent them from overlapping by blocking the lenses. Thus, regions beneath
a lens cannot be explored with another one. Another solution, introduced by
Carpendale [28], is to let lenses overlap and combine their magnification power.
However, this solution allows to explore the information “through the eye” of
the first lens. The transition region of the first lens still appears distorted when
magnified by the second lens.

Addressing this issue, we designed two solutions that we were able to prototype
quickly with the Jellylens library. Both are based on the same idea, that transform
the two single-focus fisheye lenses into one double-foci fisheye lens when their
transition regions overlap. This allows a lens to explore the region falling under
the transition region of the other lens, flattening the presentation locally. The
two techniques diverge on how to handle conflict of the two focus regions. They
apply to two different context.

The first technique makes the two focus regions, merge into one single large
focus region, encompassing the two others. We implemented the merging with
a Metaball effect as illustrated by Figure 4.2-(a). However, merging two focus
regions require them to have the same magnification factor, which constrains
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navigation strategies.

The second technique does not impose any requirement on the fisheye lenses.
The idea is to crop focus regions when they come in the vicinity of each other,
thus preventing them from overlapping (see Figure 4.2-b). This approach results
in two smaller focus regions, which hinder visibility a bit.

Some evaluation would be necessary to compare these two techniques, and to
better understand their benefits and drawbacks from a usability perspective. Im-
plementation of both techniques involved controlling 2 to 4 glasses, setting their
shape, mapping transformation and distortion parameters : their implementation
with the library required less than 100 lines of code.

Offsetting Views
Another problem Jellylenses could provide a solution for is a visibility issue
raised by wall-sized displays.

Wall-sized displays made of tiled monitors feature both a high resolution (typi-
cally 100 DPI) and large display surface area. Such environments provide unpre-
cedented capabilities to display large amounts of data with high level of details.
They usually require, users to move inside the room to view all the details of the
representation. We usually refer to this as physical navigation which can be cou-
pled with virtual navigation, such as techniques described in [89, 43]. To inspect
the details of a representation, users typically approach the display, and move
away to embrace a more general overview of the dataset. However, the different
regions of the display are more or less accessible to the users, due to their remote
location. For instance, the bottom row of monitors requires users to bend over
to view details. The top row might not even be accessible to users depending on
how tall they are.

Some works address virtual navigation into wall sized displays [89], however,
physical navigation is still needed to appreciate the full resolution provided by
the display. Some other address the problem of occlusion generated by the frame
so the monitor [43]. Problem of visibility of remote region of the screen was
studied from users perception point of view in [16], and [70] introduced the
Frisbee widget allowing to display remote regions, however do not guarantee
continuity.

We introduce a technique based on the observation that users tend to allocate
themselves columns of the display while inspecting the display closely. Indeed,
users generate occlusion while approaching the wall. This occluded region gets
momentarily inaccessible to other users that thus have to wait, or to deport their
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attention to other regions. As a result, users often end lining-up in a row facing
the display, switching their position for navigating. Building upon this idea, we
decided to allocate to each user a column of the display. A user can use this row
to offset the top or bottom regions (see Figures 4.4 and 4.5). The technique uses
distortion to ensure visual continuity between the offset region and the rest of the
display. With such a technique, users can temporarily raise the lower part or pull
down the upper row, improving their visibility, and the navigation comfort at the
same time.

We implemented a prototype on desktop computers with less than fifty lines
of code, using the Jellylens library. Only two glasses are need, one to offset
the region and the other one to constraint the distortion to a bounded region.
Providing support for Jellylens rendering on cluster-driven wall-sized displays,
requires some future work that we discuss in the following Section. However,
with such support, the code could be ported as is to achieve a fully functional
prototype, running on wall-sized displays.

4.5 Discussions and Future Work

We introduced a library for creating distortion-oriented presentations techniques.
The library introduces a simple interface consisting of composing lenses with
glasses elements. The library was fully implemented and used for prototyping
both Arealens and Pathlens techniques. The library allowed us to investigate two
other problems related to the merging of fisheye lenses, and to the accessibility
of remote display region on a wall-sized display.

However several issues remain to be addressed.

Ghost Effect

The library successfully provides fine grain control over where to accommodate
the distortion, and how to accommodate it. However, in some extreme cases,
when transition regions are small and magnification ratios are high, some dis-
ruptive visual artifacts can occur (for example, the black hole in Figures 4.4 and
4.5), namely Ghosts which were first reported by Beier [15]. The library pro-
vides users with controls to let glasses absorb the distortion, which minimizes
the effect. However, this increases the burden of prototyping. Other interpola-
tion methods guaranteeing bijection between the source and the target images
could be investigated, bearing in mind that the method must be compatible with
parallel rendering.
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FIGURE 4.3: Sharpe edges caused by the distance fields’ Topological Skeleton, can ap-
pear in lenses whose shapes feature sharp angles.

Porting to Cluster-Driven Wall-Sized Display

As illustrated by the application introduced in Section 4.4, the Jellylens library
could be used for designing wall-sized display presentation techniques. Howe-
ver, such displays are usually made of multiple monitors tiled together and dri-
ven by a cluster of computers, each computer driving one or two screens. Most
graphics cards cannot handle textures large enough to cover wall-sized displays,
because of hardware video memory limitations and restrictions on maximum tex-
ture size in OpenGL. The mapping allowed by the library requires, in extreme
situations, loading and rendering the entire representation on a single screen,
putting a heavy load on the associated cluster node. This require techniques al-
lowing management of large tiled images by modern graphics hardware. A pos-
sible solution would use virtual texture management, such as the one implemen-
ted in [43].

Topologicol Skeleton

We observed some sharp edges generated by some lenses created by the Jellylens
Library (see Figure 4.3). Those edges are caused by the topological skeleton of
the distance fields of convex shapes. This problem can be addressed by sampling
the distance field at a lower resolution, which would blur the distance fields,
thus the topological skeleton. However this would as well blur the boundary of
glasses. A solution would be to combine two levels of sampling, to perserve
glasses boundaries and blur internal edges.
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FIGURE 4.4: The top row of a wall-sized display made of several monitors tiled together,
is offset down to the row below, to improve its visibility by users. This presentation
technique has been implemented with the Jellylens library with less than fifty lines of
code.
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FIGURE 4.5: Pulling up the bottom row by two rows improves its visibility by users who
do not need to bend over.



Chapitre 5

Magnifying Lens for Drilling into
Complex 3D Scenes

Complex 3D virtual scenes such as CAD models of manufactured objects or re-
presentation of the human body are hard to visualize. Those models are made of
numerous parts of varying shape, size and geometry, that are clustered closely
together and generate a lot of visual occlusion. Indeed, some parts partially oc-
clude, or, sometimes fully surround another, which are then impossible to view
from any angle.

Navigating 3D models with conventional zooming interfaces is prone to the
“Context lost” problem which leads users to be lost when zooming to much into
the model. In this chapter, we introduce Gimlenses (Figure 5.1), detail-in-context
visualization technique that enables users to navigate complex 3D models by in-
teractively drilling holes into their outer layers to reveal objects that are buried,
possibly deep, into the scene. Those holes get constantly adjusted, depending
on the parent view and the current object currently under focus, to guarantee
visibility of objects of interest from the parent view.

Gimlenses also provide support for navigation using several lenses allowing to
inspect simultaneously remote parts of the scene. And lenses can be cascaded and
constrained with respect to one another, providing synchronized, complementary
viewpoints of the objects under focus. Gimlenses enable users to quickly identify
elements of interest, get detailed views of those elements, relate them, and put
them in a broader spatial context.

Gimlenses implement a content-aware design approach : they adapt to the content

83
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of the scene to provide visualizations of higher relevance. Awareness of the ob-
jects of interest allows to better tune both visualization and interaction techniques
easing the display of objects of interest.

The first section identifies three main challenges entailed by the design of detail-
in-context interfaces for navigating 3D scenes : 3D linking — support the un-
derstanding of spatial relationships between the magnified and context views ;
3D navigation — allow to quickly select objects to focus-on, adjust zoom-factor
and view angle ; and combining multiple lenses — handle lens conflicts and co-
ordinate them to support navigation. We then give an overview of the interface,
and address each question in the following sections. We will then conclude with
future work and discussion.

5.1 Introduction

Three-dimensional computer modeling has become an essential activity in many
domains : the movie industry, medicine, scientific visualization at large, and the
automotive, aerospace and electronics industries, which sometimes rely on 3D
modeling throughout the design and production chain (Computer-Aided Design
and Manufacturing). Processing and graphics rendering capabilities now make
it possible to model and visualize extremely complex datasets on widely va-
rying types of displays : desktop workstations featuring one or multiple screens,
ultra-high-resolution wall-sized displays [89], and virtual reality environments
such as CAVEs [41]. For instance, Boeing’s 777 airliner was entirely modeled
using CAD software, resulting in a very complex and dense 3D scene featuring
more than 350 million polygons [44]. Highly-detailed models of the entire hu-
man anatomy, of complex mechanical components and even entire cities are now
available, usually for a price given the difficulty of creating such datasets.

As their real-world counterparts, complex 3D models are difficult to inspect, be-
cause they are made of numerous distinct parts assembled together into dense
scenes that generate a lot of visual occlusion. Constituent elements will often
partially occlude or even fully surround one another, and can also have widely
varying sizes (e.g., an airplane’s wings compared to a bolt). Quickly identifying
elements of interest, getting detailed views of those elements from different pers-
pectives, putting them in a broader spatial context, and relating them to other
elements are all challenging tasks. Often, several designers will be working col-
laboratively on these datasets, requiring support for merging their work into a
single assembly : detecting and understanding conflicts such as, e.g., intersec-
ting parts due to problems of scaling and positioning.
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These different tasks involve setting up multiple cameras and manipulating them
to inspect elements from different angles and at different scales, as well as chan-
ging the visibility settings of elements that lie in the line of sight between the
observer and the objects of interest. Those interactions are tedious to perform
and cause significant distraction.

Focus-in-context interpretation of the object focused by the lens depends on
users’ ability to understand spatial relationships between the focus and the context
views. This cognitive process, called 3D linking, was identified as one of the
main challenges of the design of multi-view interfaces, by Plumlee and Ware[94].
This problem is being further complicated by the visual occlusion generated by
the many constituent parts typically found in complex 3D models, which are of-
ten clustered closely together. Indeed, most of the time, the part magnified by
the lens is occluded by other parts and not visible in the context view, which
prevents users from interpreting it with respect to the context view. Gimlenses
introduce a new content-aware 3D occlusion management technique, called the
cone-cut technique, that reveals the object under focus within the context view.
The cone-cut technique trades the visibility of the focused object against some
surrounding contextual information which cant get partially or even fully hidden.
Gimlenses rely on a content-aware approach, dynamically adjusting the cone-cut
technique to the geometry of the objects and the parent view, so as to provide a
visualization of higher relevance.

Successful 3D navigating involves allowing the quick identification of an object
of interest, putting it under focus and adjusting the zoom level, and camera orien-
tation. Gimlenses draw upon magnification lenses interfaces [134] and provide
two methods to control view settings : “through” the lens interaction which al-
lows to inspect focused objects and their surroundings, and “through” the context
interaction, where users interact directly within the context view, allowing to
switch easily between remote objects of interest. Enabling users to reach for ob-
jects buried into the model, Gimlenses introduce a new drilling navigation tech-
nique which, coupled with the cone-cut technique, allows to drill holes to put in
focus the successive underlying objects. The drilling technique eases depth na-
vigation by implementing the content-aware approach. It adjusts the lens’ focus
point’s depth depending on objects’ geometry, and makes the focus point switch
from one object to the one beneath.

Providing support for multiple lenses has benefits for comparison tasks[96] and
collaborative navigation. However, the 3D occlusion management technique im-
pairs context representation and generates conflict when two lenses come in the
vicinity of each other. Lenses also provide support for combining complemen-
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tary views on a focused object. Gimlenses thus allows to cascade and constrain
the lens’ orientation to automatically adapt it when users move the lens’ focus
point. We identified four types of constrains, that prove useful for distinct scena-
rios. The constraints define different frames of reference for the orientation, that
depends on the focused object’s geometry such as the surface normal, or parent
view setting such as the view direction.

We will first give an overview of related work before describing Gimlenses’ main
interface. We then discuss how Gimlenses addresses each one of theses chal-
lenges.

5.2 Related Work

Gimlenses build upon work in multi-scale visualization, 3D navigation and smart
visibility techniques for CAD.

5.2.1 Multi-scale Visualization

Gimlenses are essentially detail-in-context representations, providing multiple
simultaneous points of view on the 3D model at different scales. Gimlenses are
categorized as an overview+detail technique [35] : they relate one or more detai-
led views, called focus regions, into a larger, less detailed contextual view of the
dataset. Among the multi-scale visualization technique reviewed in Section 2.2,
Gimlenses are more specifically drawing upon the DragMag [134], a technique
that offsets the magnified view and visually relates it to the corresponding region
in the context view using simple line segments.

In the realm of 3D multi-scale visualization, Carpendale et al. [31] transposed
the general focus+context approach [35] based on spatial distortion to 3D data
cubes. The technique guarantees the visibility of particular cells in a cube by
moving and resizing the surrounding ones. The concept was generalized to arbi-
trary meshes using an energy grid optimization model [130]. The technique only
magnifies objects in-place, though, and does not address the problem of visibi-
lity in dense scenes. Magic Volume Lenses [128] provide in-place magnification
and can reveal some details hidden behind outer layers, but the detailed view is
necessarily oriented according to the context view, and magnification factors are
severely limited by both the spatially-distorted transition and problems of quan-
tization [3] due to the single focus region. The DragMag technique mentioned
earlier was also transposed to 3D in [95], providing users with a multi-window
detail-in-context visualization technique that somewhat resembles ours. Howe-
ver, the technique was designed for navigating in oceanic data, i.e., relatively flat
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3D scenes compared to car engines or layered models of the human anatomy.
Thus the technique does not deal with problems of visual occlusion typically
encountered in complex, dense 3D scenes.

Magic Lenses [17] are lenses that are used to modify the rendering of objects
seen through them. The concept is very generic and powerful. Examples more
closely related to our work are lenses that render, e.g., a wireframe version of the
original object. Originally designed for 2D graphics, Magic Lenses were later
extended to work with 3D graphics [124, 101].

5.2.2 3D Navigation

Numerous techniques have been designed to make navigation into 3D environ-
ments more efficient than when using the usual pan, zoom and rotate functions
found in most 3D user interfaces, using different metaphors such as that of a
flying vehicle. [113] combines speed-coupled flying with orbiting. McCrae et
al. [85] adapt the travel speed of the flying vehicle in a space-scale-aware man-
ner using a cubemap technique to enable navigation in multi-scale environments.
Navidget [58] is a gesture-based interactive widget that enables users to get a pre-
view from a different perspective on the scene before actually repositioning and
reorienting the main camera to match this new point of view. Another way to ease
navigation is to constrain camera movements to objects dependent surfaces [71]
or authored surfaces [27].

5.2.3 Smart Visibility

Smart Visibility originates from static technical illustrations [125]. It aims at
conveying the most information possible using a single, often static illustration
by unveiling its most important parts. Smart visibility techniques are based on
cut-away views [48, 79], ghosted-views [25, 126, 72, 38, 39] or spatial rearran-
gement [78, 87]. Burns et al. [26] propose adaptive cutaways that adapt their
geometry to guarantee the visibility of predefined parts of interest. While some
of these techniques do make it possible to interactively select the main point of
interest to be revealed [79, 78], these are still aimed at producing static illustra-
tions. They do not provide a true solution for exploring complex 3D scenes.

5.2.4 3D Occlusion Management

Gimlenses are conceptually related to the 3D occlusion management techniques
surveyed in [46], and more specifically to the x-ray category of tools : perspec-
tive cutout [37], x-ray tunnels [6], and the looking glass from [80]. Such tech-
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niques also provide solutions for revealing hidden parts of a 3D scene, as do
Gimlenses. However, those techniques are used in addition to a 3D navigation
technique, which increases the burden put on users, who have to handle both
navigation and visual occlusion management conjointly but sequentially. On the
contrary, Gimlenses integrate occlusion management with 3D navigation, auto-
matically revealing the focused part of the scene to the observer. This integration
facilitates exploration no matter the type of display, but is especially useful in
contexts where input capabilities are limited or where interaction is more chal-
lenging than on a desktop workstation such as, e.g., wall-sized displays operated
from a distance or via a touch-sensitive surface. Another distinctive feature of
Gimlenses compared to earlier work are their capacity to get coordinated and
cascaded, as detailed in Section 5.6.

5.3 Interface Overview

Gimlenses are magnification lenses. They provide one or more detailed views,
called focus regions, into a larger, less detailed contextual view of the dataset.
This presentation space, called the context view (Figures 5.1-a and 5.2-a), pro-
vides conventional navigation techniques, pan, zoom and rotation, to adjust the
view frustum and fit the whole scene into the view. Users can freely rotate around
the model and zoom into the data as needed.

Once they have adjusted the context view, users can instantiate one or several
Gimlenses to inspect details of the scene, displaying magnified representations
within the view window of the lens. The view window (Figure 5.2-b) is a viewport
that users can freely resize and move. Usually, the view window will be adjusted
so as no to occlude, within the context view, the region to be inspected. Each
Gimlens is also composed of three other main elements : the object selector, the
view proxy and the cone-cut.

The object selector, is a ring (in blue in Figure 5.2-c), that both identifies within
the context view the current object under focus, and, shows precisely the location
of the focus point lying over this object. A Gimlens visually links together its
object selector and its view window with two lines, called tethers. Such interface
elements were introduced by Ware and Lewis in the DragMag magnification
technique for 2D visualization [134].

The view proxy is a cone ( in green in Figure-5.2-d) orbiting around the object
selector that indicates from what angle is the focused object being viewed by the
Gimlens. The cone orientates itself such that its axis aligns with the Gimlens’
line of sight, its tip pointing at the observer. The cone is rendered as an opaque
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FIGURE 5.2: A Gimlens allows to magnify parts buried deep inside the model, here a
knot inside a car engine. The main interface component are : the context view (a), the
Gimlens view window (b), the object selector (c), and the view proxy (d).

object, with a smooth Lambertian shading effect to better convey the direction
information. To help evaluate its position within the scene, the cone is rendered
with its occluded part slightly blended with the occluding objects, as if it were
translucent ( as illustrated in Figure-5.1-c (red cone) ).

We did not introduce dedicated interface elements to convey information about
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the distance between Gimlens’ viewpoint and the focused object. Designing the
interface, we first mapped the view proxy to the location of the viewpoint, as in
the GeoZUI interface designed by Plumlee and Ware[95]. However, constantly
changing its distance to the focused object, the view proxy was less easy to find
within the scene, which impeded the readability of the interface. The problem
was further complicated when several lenses were populating the scene. Even-
tually, we discarded this feature. Although other visual cues could have been
implemented, such as a slider showing the distance to the focused object, we
thought it was causing visual overload for no clear added value. Contrary to
orientation, distance to the focused object is not a critical information for re-
lating magnified and context objects. Indeed, when seen from different angles,
the aspect of an object can vary a lot, while, it does not when distance varies.
Actually comparing the size of both representation of an objects is sufficient to
understand the distance.

This set of interface elements is sufficient to relate the content of the view win-
dow to that of the context view, as long as the focused object is visible within the
context view [95]. Gimlens features another main element : the cone cut, which
is a cut shaped as a cone, whose purpose is to reveal the Gimlens’ focused object
within the context view by removing portions of occluding objects found within
the cone. The cuts generated by a cone-cut are outlined to ease their understan-
ding ( Figure 5.2, outlined yellow cuts into the cylinder head cover and beyond).
The cone-cut technique is further presented in Section 5.4.1.

To improve the overall readability of this relatively complex representation, the
object of interest is further emphasized by outlining it in both the view window
and the context view (knot with green outline, Figure 5.2-b and 5.2-c).

Please note that the colors of the various interface elements vary between illus-
trations. We adjusted them so that they better contrast with the colors used in the
underlying scene.

5.4 Focused Object Occlusion Management

Gimlens integrates a detailed view into a larger less detailed contextual view
of a 3D scene. Focus-in-context interpretations of the content magnified by a
Gimlens, depend on users’ ability to understand spatial relationships between
the focus and the context views. The basic interface elements we introduced in
the previous section successfully support linking for sparse scenes, i.e., when
the focused object is always visible in the context view. To address the linking
problem in dense, highly occluded scenes, Gimlens integrates a 3D occlusion
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management technique, that reveals the focused object within the context view,
by removing portions of the occluding object falling inside a cone.

We present in this section the cone-cut technique. How to change what object is
in focus and select among the scene’s objects is detailed in the next section.

5.4.1 Object-Dependent Cone Cut Technique

The design of an occlusion management technique for the purpose of detail-
in-context visualization involves finding a balance between the visibility of the
focused object and some compensatory elision. Revealing an object within a 3D
scene typically involves adjusting the visibility settings of the occluding objects,
which leads to losing some contextual information. Some conventional tech-
niques implemented in 3D CAD viewing applications hide objects with respect
to their relative position to a plane (clipping plane), that users position within the
scene. Other techniques let users toggle visibility of each object. Although they
successfully reveal objects of interest, such techniques typically remove impor-
tant amount of the content of the scene, impeding seriously interpretation of the
scene. Indeed, in case of clipping planes, revealing an objects in the middle of the
model, typically entail hiding half of the model. The visibility of objects buried
into the scene, is obtained at the cost of removing some contextual information,
so as to clear a line of sight to the focused object.

As the occlusion generated by each object depends on its size and shape, we
adopted a content-aware approach, where the parameters of the cut adjust to
both the geometry of the focused object and to the geometry of the occluding
objects.

The Cone

The cone, illustrated in Figure 5.3, is define implicitly as a piecewise function
depending on the position of the point M being processed in eye-space coordi-
nates. With p the position of the focus point, we define x, the projection of M on
the cone’s axis, and v, its distance to the cone’s axis, as follows :

_dot(M.p) M xp]

2|l ol

Y Y

with dat (M, p) being the dot product between both vectors. The near base, with
a radius of S, controls the wideness of the aperture. We note n the distance from
the near base to the camera’s position. The far base is positioned at the focus
point. f, its distance from the observer in eye space coordinates, is equal to ||p||.
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FIGURE 5.3: The cone-cut is a 3D occlusion management technique that is designed to
reveal the object currently under the focus of a Gimlens. Its shape is defined implicitly
by a piecewise function, delimiting a cone ended by a sphere to avoid any sharp edges.
Every region of objects falling within the cone are hidden.

In front of the cone :  if x < n.
From the users’ viewpoint, the base of the cone delimits the shape of the cut.
Hence, a point gets discarded when its distance to the cone’s axis is greater than
the radius of the front base. In eye-space coordinates, the cone appears to extend
to the front by another cone shrinking up to the position of the eye. A point is
discarded if :

y < Sxx/n.

Between the front and the far base of the cone :  ifn <z < f.
This is the actual body of the cut shape as an inverted-cone. A point gets discar-

ded if :
s S

Behind the far base : ifx < f.

To avoid sharp edges, that could be confused with actual edges in the model,
the cone ends as a sphere that fits the far base. A point behind the far base gets
discarded if :

B il < sl

Adjusting the Front and Far Bases

(5 —9)

= (f 5+ —

DI

Adjusting the front and far bases controls the size of the cone, and allows to
balance between focused object visibility and some compensatory information
elision. Typically, enlarging the front base .S favors the visibility of what is inside
the cut, but more of the model gets hidden. Users can control this parameter,
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but we have found a base radius that corresponds to roughly 25% of the main
viewport’s size to yield a good compromise. The front base is placed at the same
distance to the eye than the distance to the first intersection so as to be laying on
the first layer of the model.

The cone does not need to reveal more than the focused object. Hence, the radius
of the far base s, gets adjusted so that the object of interest can fully fit within
the cone. However, some of the objects could be larger than the front base. To
prevent degeneration of the cone, we constrain the size of the far base to be
smaller than that of the front base. Hence for large objects, the cone-cut only
reveals a portion of them. Another solution would have been to enlarge the front
base to fit the whole object, which would have caused severe context loss in
recurring situations.

Degeneration of the cone occurs as well when the focused object is both small
and close to the front base. The cone’s angle reaches too high values, causing
unpleasant visual artifact. In this case, we found it more convenient to enlarge
the cone, revealing more information to avoid such visual artifacts. We then also
constrain the cone’s angle to be lower than a certain value (we found that 20°
was convenient).

Finally, small parts that lie within the cut cone but are not causing significant
obstruction should not be hidden, as they will often provide interesting contex-
tual information (see Figure 5.2). Hence, the cone-cut also adapts to the size of
occluding objects. It provides another cone, with smaller base radius, that cuts
little holes when a small object is overlapping the focused object. The occlusion
management technique is made of two cone-cuts. A large one for large objects
that cause significant visual occlusion, and another one, smaller, to drill small
holes into small objects. To discriminate between the large objects and the small
ones, we compare their projected screen sizes (the size of their image on the
screen) to that of the focused object.

Depth Cues

In addition to revealing the focused object, the cone-cut technique conveys visual
cues about the depth of the objects. Indeed, thanks to the cone shape, the strokes
caused by the cut are visible to the user, who can then see how many layers have
been cut to reveal the object. This information allows users to roughly understand
how deep inside the model the object is. Distance between each strokes also
conveys information on the depth distribution of the various layers. We decided
to emphasized this effect by drawing the strokes.
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5.4.2 Adaptation of The Cone’s Shape

Before opting for a truncated cone shape, we experimented with a content-aware
dynamically-adapting cut shape similar to the technique presented in [26]. The
cut was adapting to the geometry of the Gimlens’ current object of interest. Our
intuition was that by adapting the shape of the cut to the shape of the content, we
would optimize the portion of the scene to be cut, thus preserving more context
information, in the same spirit as the Pathlenses we presented in Chapter 2, which
dynamically adapt the shape of a fisheye to optimize the focus, context and dis-
torted regions to provide more relevant focus+context representations.

However, an informal evaluation performed in our laboratory revealed that users
preferred to interact with cuts that always had a cone-based shape. The cut shape
radically changing its geometry depending on the geometric characteristics of
the various objects of interest was found to be disturbing, as it was both unstable
and unpredictable.

Moreover, depending on the shape of the focused object, the cut could induce
sharp edges in the scene, that were misinterpreted by users as sharp edges in the
objects.

5.4.3 Discussion

As users explore the model, they inspect successively the objects of the scene.
Switching from one object to another one, the cone-cut technique adapts automa-
tically to provide better balance between focused object visibility and context in-
formation. This adaptation results in animations that could possibly distract users
from their original goal. We tested two approaches, the first involving changes in
the size of a cut shaped as cone, and the other changes in the shape of the cut. The
second approach could presumably provide better visualization, as the shape was
optimized to reveal exactly the object of interest, and doing so better preserves
context information. However, distracting effects caused by the animation were
significantly different. We thus opted for the first approach.

This design choice points out a characteristic of the content-aware design ap-
proach. If adaptation of the interface is meant to optimize the visualization de-
pending on the content being displayed, this adaptation result in some necessary
animations which could distract users and lower efficiency of the interface. The
interface proposed results from trying to strike a balance between optimal adap-
tation and the resulting distracting animation.

Although, we originally designed the cone-cut technique to reveal the focused
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, orient:surface

FIGURE 5.4: Cone-cut might sometimes hide information important to users.are might
sometime hide A Gimlens used to check the surface intersection between a connecting-
rod and a camshaft. (a) Enabling the cut reveals the object of interest during exploration
but hides its neighbors. (b) Disabling the cut enables users to see both parts.
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object in the context view, we found that it could be useful as well in the view
window. As users move the focus of attention in the context view, it might very
well happen as well that the object of interest is hidden in the focus view, requi-
ring 3D occlusion management capabilities. We then implemented the cone-cut
technique as well in the view window, coupling the near base to the apex of
the lens’ viewing frustum so that the object of interest always remains visible
no matter how the former gets positioned. However, this behavior is not always
desirable. For instance, when instantiating a Gimlens to inspect the intersection
between the surfaces of two distinct parts in the model, the cut cone would hide
one of those surfaces, hence hiding an important piece of information, as illus-
trated in Figure 5.4. Cuts performed inside the lens’ view window can thus be
toggled on/off.

5.5 3D Navigation

The goal of navigation is to help users explore complex 3D models. The interface
must provide controls for focusing successively on the various objects of the
scene, adjust the view angle and the zoom level. Users switch from one control
to the next in a seamless manner, without being distracted from their primary
goal.

Complex 3D scenes are difficult to explore because many objects are buried deep
into the model and are not visible under any view angle. We introduce a set of
navigation techniques which build upon the 3D occlusion management technique
we introduced previously, that enables the exploration of such environments.

Gimlens, inspired by the DragMag technique [134], implements two different
navigation methods. The first consists of interacting “through” the lens, and al-
lows inspection of the focused object and its surroundings. The second one is
the interaction “through” the context view, allowing users to directly point the
context view to the object they want to focus on. To avoid constant switching
between the view window and the context view, we also implemented interaction
allowing to control Gimlens’ orientation directly within the context. Both inter-
action methods are complementary and we observed users making intensive use
of both during informal evaluation of the prototype.

A typical scenario involves first, interaction “through” the context to roughly
explore the scene. Then, once an object of interest has been identified, users set
it under focus, and then switch to the view window to proceed to the inspection
of the details displayed by the lens.
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5.5.1 Navigating through the Lens

Users can freely reconfigure the Gimlens’ viewing frustum by interacting within
the lens’ view window. Controls should be mapped to the input device provided
by the visualization platform (desktop, wall sized display or immersive environ-
ment). For a conventional implementation for desktop applications, pan, rotation
and zoom to dragging gestures over the view window, assigning each mode to a
mouse button. Mode switching could also be implemented, as in some 3D mo-
deling software to some keyboard shortcuts.

During navigation, as users zoom, orbit and switch between neighboring ob-
jects, Gimlens other interface elements automatically update to help users relate
the magnified content displayed by the lens to the context’s point of view. The
positions of the object selector and the view proxy are updated accordingly, repre-
senting Gimlens’ view configuration. If users reach an object that is not visible in
the context view, the cone-cut automatically adjusts to reveal the focused object.

While for now we only support conventional panning, zooming and rotating, we
believe Gimlens could benefit form adding other navigation techniques, such as
Hovercam, allowing to orbit around a model at a constant distance, which proved
convenient for close inspection of models. However, it is not clear yet how to
provide users with the possibility to switch between objects of interest with this
technique.

This first method of navigation allows fine configuration of the Gimlens’ view
frustum, allowing to precisely adjust the content being magnified by the lens.
However, it is not suited to the exploration of large models.

5.5.2 Navigating through the Context

Users can interact directly within the context view. This method is convenient
for switching between remote objects in the scene. It allows to make big jumps
from one part of the scene to another.

Users can grab the object selector and drag it in the context view causing the
Gimlens’ focus point to slide on the surface of the model, following the object
selector. While moving the selector, the focus is given to the object currently
falling under the object selector.

Gimlens adjusts the content displayed in the view window, following the focus
point. The orientation of the lens is also adjusted depending on some properties
detailed later. The default behavior is to keep the same orientation as the focus
point or the focused object gets updated.
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When users make the object selector leave the scene (no other object falls under
the object selector), it does not control any more the Gimlens’ focus point, until
it re-enters the scene.

Users can also grab the view proxy and drag it in the context view to adjust the
orientation of the lens. The view proxy orbits around the focus point at a certain
radius. Thus, when users move the view proxy within a disk around the object
selector that is the size of this radius, the position of the view proxy is mapped to
the projection of the selector on the sphere. Leaving and re-entering this sphere
causes the view proxy to slide to the other side of the sphere and allows to inspect
the back side of the focused object. This interaction was inspired by a similar
interaction introduced in Navidget [58].

In our prototype we did not implement controls for the zoom factor from within
the context view. Mapping this control to the mouse wheel would have been a
straightforward solution, however we already use this input channel for control-
ling the drilling technique described in the next section.

All the previous techniques altogether only allow for navigating on the first layer
of the model. Many objects, are enclosed inside the model and most of them are
not visible from any angles without drilling into the model.

5.5.3 Drilling Technique

We introduce the drilling technique, providing support for depth navigation in
the model. Drilling into the model allows for navigating through the several
depth layers of the scene. Invoking the technique on the current part of inter-
est (on which the selector lies) cuts out a hole in it and moves the focus point on
the surface below, that was just revealed by the cut. Users can also climb back,
filling the holes previously cut in reverse order, with the focus point and object
of interest getting updated accordingly.

Gimlenses keep a history of what parts got cut, allowing the user to drag the focus
point from one part of interest to the next and drill down iteratively (Figure 5.5
illustrates the overall process). This navigation method can be seen as an easy
way of toggling the visibility of the successive parts that the focus point falls
on during the drilling process, except that each part’s visibility is only affected
locally around the line of sight so as to better preserve context.

During navigation, the cone-cut automatically adjusts its geometry to reveal the
current focused object, adapting to its size and position, following the focus point
controlled with the selector.
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FIGURE 5.5: Side view illustrations of how the drilling technique behaves. The focus
point lies on the frontmost part, which is then considered the focused object (green).
(a) This part gets drilled into (in yellow the strokes generated by the cut) , revealing the
other part behind it, which becomes the focused object. (b) Users drag the object selector
(blue ring) on the screen, which slides the focus point up to the next visible part, which
in turn becomes the focused object, (c) and drags the object selector back to the previous
object. (d) Users cut through the second layer, (e) slide the focused object, (f) go back to
the original object (g) and go back to original position.

On a desktop workstation, the technique is operated with the mouse wheel. In
other environments, such as virtual reality platforms or wall displays, the corres-
ponding actions have to be mapped to a linear continuous input control channel
on one of the available interaction devices.

Originally designed for selecting objects in the context view, the drilling tech-
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nique is actually useful in the focus view as well. However, it works slightly dif-
ferently. Instead of being controlled by a ring (the object selector in the context
view), the focused point is controlled by a sight situated at the center of the view
window (the green cross in Figures 5.1 and 5.2 ; and red cross in Figures 5.4,5.7
and 5.8). When the lens’ view get readjusted, the position of the focus point get
adjusted in the model to be aligned with the sight of the lens, drilling cut the
object beneath the sight.

5.5.4 Discussions

We designed a navigation technique that allows to drill into dense, highly oc-
cluded scenes. Gimlenses allow either to interact directly with the lens content,
“through” the lens viewport, or with its proxy in the context view. This enables
users to benefit fully from context information. Users can drill into the model, cut
holes on the successive parts, revealing the part below, to inspect objects buried
into the model.

A key point of this navigation technique is that it indexes the lens view confi-
guration by objects of interest instead of view point. Once an object has been
identified as of interest by users, they directly point at it to see it magnified by
the lens. Instead, with conventional 3D navigation techniques, they have to figure
out how to adjust panning, rotation and zooming, to eventually view the object
magnified, which can be very tedious.

Pointing at an object of interest with a Gimlens is made particularly easy by the
content-aware approach of the drilling technique. The drilling technique brings
3D navigation back to a 2D interaction task. Users do not need to adjust the focus
point depth component. Instead, the scene is considered as stacks of 2D layers,
and users only control which layers the focus point slides on. This results from
the conjunction of a depth navigation technique with a content-aware approach.
Instead of providing linear controls for the depth dimension of the focus point,
the drilling technique adjusts the step at each increment of the depth component,
allowing to jump directly from one object to the next below. Hence, this tech-
nique depends on proper segmentation of the scene into distinct parts, and is not
suited to unstructured scenes such as sets of unorganized triangles. We discuss
this issue in more detail in the Section 5.7.
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5.6 Combining and Cascading Lenses

5.6.1 Handling Cone-cut Conflicts

Multiple Gimlenses can be instantiated simultaneously to provide users with dif-
ferent perspectives on the 3D model : different locations, different scales, and
different angles. This is useful, e.g., when comparing multiple parts of a model,
such as two knots inside an engine. For instance, Gimlenses can be created for
both knots, the user then drilling towards each knot, adjusting the view and then
orbiting these two objects of interest.

Gimlenses can also be cascaded, in a way somewhat similar to what PolyZoom
does for 2D maps [66]. Cascaded lenses share the same focus point. They enable
users to easily get multiple views on the same object of interest at varying scales
and from different angles. Figure 5.8 gives an example. A user wishes to inspect
a steal pipe in an air distillation plant. She cascades several Gimlenses, that give
her points of view on the region of interest at different scales.

Multiple Gimlenses reveal as many objects in the context view which can ge-
nerate conflict when the cone-cut are in the vicinity of one another. Indeed, one
cone-cut is likely to hide the very object another Gimlens is focusing on. To
resolve this issue, our technique renders a circular portion of the object that is
the source of the conflict around the focus point using alpha blending to make it
translucent. The part is thus revealed, without hiding the second focus point. See
details in Figure 5.6 and the overall interface in Figures 5.9, 5.10, 5.11 and 5.12.

Although it has been reported that the use of semi-transparency in visualization
may result in “high visual complexity and imposes a high cognitive load on the
user’” [46], it is still of interest for revealing only one object. The complexity ge-
nerated by semi-transparency depends on the context, increasing with the num-
ber of layers. In our case, it is only used to reveal one layer at a time, keeping a
low impact on user cognition, and resolving efficiently the cone-cut conflicts.

5.6.2 Cascading Gimlenses

Inspecting 3D objects involves viewing them from varying viewpoints. Users can
cascade several Gimlenses, focusing each one on the same point or object. Any
readjustment of the focus point or switching of focused object, are transmitted to
every cascaded Gimlenses, sparing users the burden of readjusting each lens one
by one.

Cascaded lenses let users adjust view angle and zoom level independently for
each lens, allowing users to combine different complementary viewpoints. Which
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FIGURE 5.6: Exploring a brain. (a) A first Gimlens gets instantiated and delves deep
inside the head, hiding several objects in the process. (b) A second Gimlens gets instan-
tiated to look at an object that lies in the cut cone of the first lens, causing a conflict.
The portion of this object that lies near the focus point of the second lens gets rendered
translucently.

configurations users need depends on their goal. For instance, if users are loo-
king for potential intersections between two objects, they would likely set one
view from above the surface, with another one with a shallow angle relative to
the surface to observe the interface between surfaces. Although both lenses will
follow the focus point, when users proceed to the inspection, they will require
readjustment of their orientations as surfaces change.

To spare users the burden of constantly readjusting each lens orientation, Gim-
lenses let users choose between several orientation constraints for each lens,
that will readjust automatically the view angle during navigation. The choice
of orientation constrain depends on the scenario. For the intersection inspection
scenario introduced previously, users could choose the Surface constraint for
both Gimlenses, which would automatically update the lens orientation so as to
maintain the same relative view angle at the focus point with respect to the ob-
ject’s surface normal. With the Surface constraint, the first lens will maintain a
view from above on the surface, and the second a shallow angle as users move
the focus point on the surface.

As the focus point jumps from one polygon to the next, Surface orientation
constraints might cause the view in the lens to change abruptly. To avoid this, we
smoothly animate the transition over 100ms.

We define three orientation constrain that enable different behaviors. Figure 5.7
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FIGURE 5.7: Three Gimlenses combined to explore the inside of the maxillary dental
arcade of a patient using different orientation constraints. Dragging the single focus point
that controls all three lenses updates all views automatically, providing complementary
perspectives on the successive teeth.
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illustrates the potential of this feature. The first lens is set up with a Pivot constraint,
that maintains the camera position in-place as it pivots around to follow the fo-
cus point. This is particularly useful when exploring the inside of cavities (Fi-
gure 5.7-bottom lens). The two other lenses are set up with a Parent orientation
constraint. This means that their orientations are defined relative to the one of
their parent lens (the first lens). With these constraints set up, as we slide the fo-
cus point along the teeth from left to right, the lenses automatically move along
and rotate, maintaining views from both inside and outside the patient’s mouth
without the need for users to make any adjustment themselves.

5.7 Discussions

We presented magnification lenses for navigating complex 3D scenes. As de-
monstrated throughout the chapter, the technique can prove useful in a variety of
domains : for inspecting an industrial CAD model of a car engine, for exploring
an anatomical representation of the human head, or walking through a 3D map
of a plant.

Gimlenses are based on a content-aware design approach. The cone-cut 3D oc-
clusion management technique adapts to the size of the parts to provide a better
trade-off between visibility of the focused object and context preservation. The
drilling navigation technique which allows quick selection of objects in dense
scenes, adjusts the position of the focus point depending on the geometry of the
underlying object. And the orientation management system allowing to update
view angle of cascaded lenses also depends on geometry of focused objects.

The content-aware design approach allowed for better optimization of the inter-
face to the content of the scene. However, it requires the data to be well segmen-
ted into distinct part. Some datasets, such as results from 3D scanners are made
of unorganized triangles. These datasets typically do not support navigation with
Gimlenses as is. They require first to be segmented. If automatic algorithms exist
to segment 3D data, they are prone to making mistakes, and it would be interes-
ting to see how Gimlens could help in monitoring such segmentation processes.
Assigning each triangle a category typically requires detail-in-context interpre-
tation, and Gimlens could be a valuable support for such decision making.

From an implementation point of view, we wrote a fully functional prototype
of Gimlenses for desktop environments, using C/C++ with OpenGL running on
the Qt framework. Some effects, such as semi-transparent spots for handling
conflict between two cone-cuts were achieved with GLSL shaders. Besides using
an AABB tree data structure to optimize the navigation technique which makes
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FIGURE 5.8: Exploring an air distillation plant. Three Gimlenses are cascaded to ma-
gnify a steal pipe. (a) shows a view from the left to better situate the focused part within
the shed, (b) and (c) apply magnification successively. (d) and (e) magnify a distinct part
of the plant.
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intensive use of ray-casting into the model to find the projection of the object
selector in the scene. We achieved interactive frame-rate rendering without any
further optimization, on a high-end computer ' for all our three models : the Air
Plant, the car engine and the anatomical head, featuring respectively : 1600, 266,
58 Millions of triangles each. However implementation supporting the interac-
tive rendering of more complex datasets, or on computers with less computing
power, requires further optimization in the rendering pipeline, such as the one
introduced in [9].

A venue for future work, would be to investigate how Gimlens could support col-
located collaborative exploration in wall-sized display environments. The design
of large 3D models require the collaboration of several designers, and yet their
is no system that provides them with support for collaborative inspection of their
work, looking for conflicts, understanding them and taking design decisions.
Wall-sized displays running Gimlenses could offer the opportunity for such na-
vigation. However, porting Gimlens to wall-sized displays raises the question of
the mapping of Gimlens parameters to user interface controls and input channels.
While the mapping to wheel-equipped mice or even a gesture-enabled trackpad
for a laptop or desktop workstation is straightforward, the mapping to the more
exotic input devices typically used in CAVEs or when interacting with wall-sized
displays (motion tracking, mid-air pointing device, etc.) will require more thin-
king and empirical testing.

Another issue related to collaboration with Gimlenses is the definition of rules of
ownership for the lenses. Each Gimlens generates occlusion that prevents explo-
ration of some part of the scene by other users. Users could be tempted to adjust
the content of the same Gimlens. And in such environments, it is not obvious
who is interacting which lens. This requires some rules of ownership to prevent
conflicts.

1. The computer was an HP Z-series 800 PC equipped with an nVidia Quadro 4000, and an Intel Xeon
E5-1650 CPU running at 3.20GHz.
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FIGURE 5.9: Exploring a brain with Gimlenses — Plate 1
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FIGURE 5.10: Exploring a brain with Gimlenses — Plate 2. Our technique handles conflict
between lenses (see Section 5.6.1).
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FIGURE 5.11: Exploring a brain with Gimlenses — Plate 3.
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FIGURE 5.12: Exploring a brain with Gimlenses — Plate 4. Our technique handles conflict
between lenses (see Section 5.6.1).






Chapitre 6

Conclusion and Future
Research Directions

We introduced several techniques for multiscale navigation in large datasets, all
based on a content-aware design approach. We have discussed their potential
applications for supporting collaborative navigation on large displays. We have
discussed how they may be integrated in a navigation pipeline. And we have also
discussed several drawbacks and benefits related to this general approach, and
began to discuss their implication for design. This chapter, after summarizing
contributions of the thesis, outlines future research directions along all of these
three paths.

6.1 Summary of Contributions

6.1.1 Design Approach to Multiscale Navigation

In this dissertation we introduced a new design approach to multiscale naviga-
tion. The content-aware design approach adapts the interface to the content of
the scene, to provide visualizations of higher relevance, and ease the understan-
ding of objects of interest. The techniques introduced in the dissertation showed
that the approach can help design efficient navigation techniques. A controlled
experiment showed increases in performance for the Arealens technique over a
conventional fisheye lens on a multiscale search task.

Content-awareness complements two other design approaches to multiscale na-
vigation that we identified in Section 1.4 : content-agnostic, that provides tech-
niques allowing navigation in datasets ; and content-driven, that provides navi-
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gation in more specific category of representations, thus optimizing the visua-
lization. While the content-driven approach provides global optimization of the
interface over a certain type of data and representations, the content-aware ap-
proach allows local optimization of the interface.

The design of content-aware navigation techniques involves adaptation of the in-
terface that could potentially distract users. The design of Pathlens and Gimlens
showed that relying on known metaphors helps solve this problem by improving
the predictability of changes in the interface. The design of adaptive interfaces is
a matter of finding a trade-off between visualization of higher relevance and the
necessary animated changes caused by the adaption.

6.1.2 Multiscale Navigation Techniques

We have presented three novel multiscale navigation techniques for large data-
sets. Each technique is based on the content-aware design approach.

In this thesis, we break the usual behavior of fisheye lenses by proposing to
dynamically change their geometry while preserving visual continuity between
the focus and the context regions. In Chapters 2 and 3 we introduced two tech-
niques, Pathlens and Arealens. Pathlens improves upon regular fisheye lenses by
adapting the shape of the lens to the geometry of the underlying content, better
accommodating distortion to better preserve the surrounding context. The adap-
tation of the lens is based on a novel water-drop metaphor, of which we describe
an original implementation based on implicit surfaces. Arealens is a multi-foci
fisheye lens that achieves interactive expansion of objects in dense fields while
preserving continuity between magnified and context regions. The technique in-
troduces a mapping algorithm for expanding objects in 2D fields while preven-
ting objects from overlapping each other. An empirical evaluation, reported in
Section 3.4 showed that Arealenses outperform regular fisheyes for a multiscale
visual search task.

We introduced a library for creating distortion-oriented presentation techniques
allowing to render fisheye lenses featuring possibly multiple flat tops of arbitrary
shape. The library introduces a simple interface for creating lenses, that consists
of defining geometry and mapping of flat tops. The library ensures continuity in-
between Each flat-tops get integrated into a singles continuous presentation by
the library that distorts the representation in-between to integrate them smoothly.
The Jellylens library was used to design and implement both Arealens and Path-
lens techniques, and proved useful for fast prototyping of rich distortion-oriented
presentation technique.
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The content-aware design approach was also instrumental for the design of Gim-
lens which are magnification lenses allowing detail-in-context navigation in large
complex 3D models. We introduced a 3D occlusion management technique al-
lowing to reveal objects of interest in dense scenes featuring numerous parts
clustered closely together. Gimlens also introduces a new drilling technique al-
lowing exploration of such scenes. Gimlens provides support for navigating a
scene with multiple lenses, allowing to cascade and coordinate views, relieving
users from intensive camera readjustments while navigating.

6.2 Principles of Content-Aware Design Approach

6.2.1 Understanding Adaptation

Content-aware navigation techniques involve two distinct types of adaptation.
Either the adaptation concerns the interface, providing visualization of higher
relevance (such as the lens shape of Arealens and Pathlens techniques, and the
size of the aperture of the 3D occlusion management technique of Gimlens);
or it concerns the interaction technique allowing users to display certain parts
of the visualization easier (such as the drilling technique of Gimlenses). The
kind of adaptation we consider in this section is the adaptation of the interface.
The design of the various navigation techniques introduced in this thesis reveals
new potential benefits and drawbacks of the content-aware design approach. We
discuss them in this section and we propose future work to improve our unders-
tanding of the mechanisms involved in this design approach. As a general goal,
we would like to set research directions that would help draw rules to guide the
future implementation of content-aware techniques.

About adaptive interfaces, Shneiderman [ 109] reported that unpredictable changes
in the interface may cause user anxiety : as they do not understand why the inter-
faces changes, users are anxious about potential further changes. Shneiderman
was actually commenting interfaces based on an autonomous agent interaction
model, which predicts users’ interest and anticipates their needs by adapting the
interface. However, such interaction models are very likely to make mistakes,
and change the interface against users’ immediate own interest. As a result,
users do not understand why the interface changed, and they become anxious
that the interface would change again. The content-aware design approach is dif-
ferent and less likely to suffer from this problem. Instead of adapting to predicted
changes of users’ interests, we adapt the interface depending on the content of
regions of the representation users are focusing on. As users see changes in the
scene, they better anticipate and understand changes of the interface. However,
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the success of such interfaces depends on their ability to reflect changes of the
scene. As shown by the design of Pathlens, the use of interaction metaphors can
help design predictable adaptation.

The design of Arealens and Gimlens both pointed-out a second issue : adaptation
of the interface could cause user distraction. Although the results of one parti-
cular controlled experiment (presented in Section 3.4) do not show significant
impact on Arealens performance, users still reported being disturbed when the
lens was being operated by someone else. Possible further work includes trying
to measure at a perceptual level the impact on navigation tasks performance, of
animated patterns moving at varying speeds, and at varying distances from users’
focus of attention. Such controlled experiments could help better understand how
animation in adaptive interfaces affect navigation, and provide guidelines to sup-
port future design of content-aware navigation interfaces.

The design of adaptive interfaces revealed potential advantages beyond provi-
ding visualizations of higher relevance. As reported by Jul and Furnas, disrup-
tions in the physical environment (such as stairs, elevator, doors) are navigational
cues that help people find their way in the physical world [67]. In the same spirit,
we argue that changes in an interface also disturb virtual navigation and, could
provide navigational cues that would help users remember specific locations. Of
course empirical evaluations are needed to validate this hypothesis.

6.2.2 Interface Performance

The controlled experiment reported in Section 3.4 revealed that Arealenses out-
perform conventional fisheye lenses on a visual search task. Other recent naviga-
tion techniques have been shown to perform better than the technique they build
upon [35], yet, they tend not to be adopted in end-user applications. This gap bet-
ween the introduction of new navigation techniques and their adoption by soft-
ware designers affects interaction techniques at large [10]. Possible causes may
be design and implementation costs [10]. Designers need to learn new design
practices. Developers may have to re-implement the new interaction techniques
from scratch, while conventional techniques are available off the shelf in popular
GUI frameworks.

This issue is further aggravated in the case of navigation techniques, as often
those are designed for specific types o data and representations. This is the case
for most of the graph navigation techniques, and all the techniques we reviewed
as a presentation of the content-driven designed approach in Section 1.4.2. This
case-by-case design approach, results in the introduction of new navigation tech-
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nique for each data type. Which leads to non-reusable navigation techniques and
extensive costs for both designers and developers, thus making integration more
tedious and unlikely to happen.

From this perspective, the content-aware design approach seems a viable ap-
proach to improve integration of the resulting navigation techniques into end-
user applications. Indeed, the techniques introduced in this thesis work with a
wider range of data representations. Arealens and Pathlens could be used to navi-
gate in many different sets of data including GUISs, graphs, street/transport maps.
While Gimlens could navigate in very different 3D models such as CAD mo-
dels of manufactured objects featuring highly regular shapes, to the very noisy
surfaces of the scanned 3D models.

Pushing this comparison further would require an indicator to better quantify the
wideness of the range of data types that suit a navigation technique. There are
several ways to evaluate the performance of navigation technique [35]. However,
very low attention was given to the evaluation of the versatility of navigation
techniques, which plays an important role in their integration. Understanding
how content-aware techniques could make those techniques more versatile could
help better understand potential impact on adoption by users.

6.3 Objects Definition

The content-aware navigation techniques introduced in this thesis require some
geometrical information about the objects of interest populating the scene. In-
deed, to provide visualization of higher relevance, the techniques adapt some of
their parameters to the geometry of the objects of interest. The type of this in-
formation depends on the nature of the representation : Arealens and Pathlens
require the 2D contour of the regions of interest populating the scene, and Gim-
lens requires the 3D surface model of the objects.

As discussed earlier, the acquisition of this geometrical information is highly
dependent on the nature of the graphics. Vector-based representations such as
SVG files, HTML source of web pages or 3D CAD models, all make this data
readily available. On the contrary, raw images (possibly resulting from captures
of the world such as 3D scanned models, 2D pixel images or 3D volumes) pro-
vide complex highly unstructured datasets. For the latter category of datasets,
we can apply some segmentation algorithms to extract the geometry informa-
tion, that we provide, then, as input to the adaptation techniques. However, in
both cases, the identification of objects of interest is highly task-dependent, and
providing a predefined set of objects assumes that users know in advance what
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they are looking for, and where those objects are. Which is very unlikely during
exploratory visualization of data, when users refocus their attention, and read-
just their navigation goals as new information is encountered. Enabling users to
interact with objects of interest could improve exploration of large datasets with
content-aware navigation techniques. This involves dynamically changing the set
of objects identified as being of interest, switching between several predefined
sets, or adjusting the objects’ geometry. Those are challenging issues that require
further investigation.

Sketching or gesture-based interaction techniques could let users draw shapes
that could be used directly, without further processing, to define the geometry of
the objects the navigation technique adapt to. Or, when information geometry is
available, the sketched shapes could be matched against the shapes found in the
scene (implementing techniques in the spirit of [45] ) thus acting as a selection
mechanism. This could be used to let users readjust the set of objects of inter-
est while navigating. In cases where the geometry information is structured —
such as in transportation or street maps that group objects by category : routes,
sightseeing, water pond — such selection techniques could be further extended to
select a whole category of objects at once.

In cases where no geometry is available, allowing users to define the shape of
objects of interest while navigating provides an interesting alternative to auto-
matic segmentation algorithms. Applying smart selection tools from image edi-
ting software, such as the Magic Wand or the Quick Selection Tool from Adobe
Photoshop, would allow for interactive definition of regions of interest based on
pixel colors and user input.

The Histomages technique [33] provides another promising approach for inter-
actively defining geometries of objects of interest. Indeed, Histomages considers
color histograms as spatial rearrangements of image pixels. It provides views
allowing to choose between several histograms of pixels (red, green and blue
channels, lightness, hue or saturation), along with simple selection tools (rec-
tangle or lasso selection) to select pixels. Users can combine several views to
achieve rich image selection, allowing to refine the selection according to locali-
zation of pixels and other attributes (see Figure 6.1).

Extending Histomages selection capabilities into an overall interactive image
segmentation technique to define regions of interest require the identification of
relevant attributes to support meaningful region selection. In particular, combi-
ned with Arealens or Pathlens, it could help define the geometry of the objects
of interest on the fly while navigating large datasets.
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Lightness

FIGURE 6.1: Histomages [33] considers color histograms as spatial rearrangements for
achieving rich pixel selection : (a) pixels are rearranged into a lightness histogram ; (b)
pixels are rearranged into a hue histogram and yellow pixels are filtered out with “sub-
tract” selection brush (bottom). Missing pixels are added with the “add” selection brush
on the image (top); (c) selecting and resizing blue pixels in the saturation histogram
allow to enhance the sky.

Building on the Histomages approach, we are working on an interface provi-
ding support for 3D surface selection. The interface provides several histograms,
rearranging each one of the graphics primitives (triangle, edge or point) accor-
ding to one particular geometrical attribute. The view maintains visual continuity
while switching histograms by animating graphics primitives from their current
location to the final position in the histogram. While switching between two
different graphics primitive representation, for instance from a triangle histo-
grams to a edge histograms, animation fades out the former primitives while the
new graphics primitives fades in. Allowing to coordinate selection across several
combined views showing different histograms, the interface provides support for
elaborate selections and refinement thereof.

Although we support various geometrical attributes for each one of the graphics
primitives (area and orientation for triangles, length and curvature for edges,
and coordinated for points) identification of the relevant properties to support
meaningful selection of the 3D surface remains an open questions.

The integration of such approach into a multiscale interface such as Gimlens
could provide an efficient selection tool, allowing interactive segmentation of
raw 3D surfaces like scanned surfaces. This approach could be particularly rele-
vant, as deciding what object each triangle belongs to is a matter of interpreting
details (the triangle) within their surrounding context (the overall model).

Supporting interaction with the objects in the scene in the interface and com-
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FIGURE 6.2: Grinder considers rearrangement of triangles, edges or points of 3D sur-
faces into histograms to support rich selection capabilities. Combining multiple views
allows to perform a rectangle selection on a histogram (right) while the selected primi-
tives are highlighted on a 3D view of the model (left). Triangles can be binned by their
surface area (a) or orientation (b) ; edges can be binned by length (d) or surface curvature
(e) ; points can be binned by x-coordinate (c).

bining it with interaction for navigation raises new questions. Users no longer
simply explore a dataset, but also manipulate it, grouping the graphics primitive
into meaningful entities, adjusting finely each groups’ delimitation. The evalua-
tion of interfaces resulting from this approach, are necessary to understand the
high-level impact on navigation performance.

6.4 Application to Wall-Sized Displays

This thesis focused on detail-in-context magnification lens techniques. In addi-
tion to easing navigation and interpretation, they support simultaneous zoomed-
in views to explore remote regions of the datasets concurrently. Such functio-
nality is particularly relevant to support collaborative navigation on wall-sized
displays. However it raises challenges for both interaction design and implemen-
tation.

Wall-sized displays feature rich input capabilities to visualize and manipulate
very large datasets. They are usually driven by a cluster of computers. Porting
graphics and visualization libraries, such as the Jellylens library presented in
Chapter 4, raises several implementation issues discussed in Section 4.5. Distri-
buting distortion-oriented rendering techniques and managing very large datasets
among several cluster nodes is challenging. Especially given the comparatively
low video memory resources provided by graphics hardware. Similar issues must
be addressed to successfully port Gimlenses to such visualization platforms.
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Mapping input to control actions to navigate and manipulate large visualizations
on wall displays is complex, especially given the large variety of input devices.
Hand-held input devices such as tablets or remote controllers and game pads
embedding joystick, and all the mid-air interaction capabilities provided by 3D
motion tracking systems, offer interaction designers a wide range of solutions,
which can be confusing. Identifying good practices, interaction models and de-
sign guidelines to support the design of navigation techniques the effective explo-
ration of large datasets on such platforms is a challenging but interesting venue
for future work.

Multiple users navigating the same datasets with magnification lenses are very
likely to interact with one another, or could be getting in each others’ way. In-
terfaces supporting efficient collaborative navigation will have to manage such
interactions, and provide support to deal with potential conflicts between mul-
tiple users, enabling the sharing and locking of views.
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