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Prolegomenon

As the title indicates, periodic Reeb orbits are at the centre of this work. The general
framework is contact geometry. A contact structure on a manifold M of dimension 2n — 1
is a hyperplane field £ which is maximally non integrable; i.e if we write locally £ = ker «
where « is a differential 1-form, then a A (da)"~! # 0 everywhere. If « is globally defined,
we say that £ is coorientable and we call « a contact form. In this thesis we consider only
coorientable contact structures. The 1-form « is not unique; for any function f: M — R,
the 1-form efa defines the same contact structure. The Reeb vector field R, associated
to a contact form « is the unique vector field on M characterized by: ¢(Ry)da = 0 and
a(Rq) = 1. Since this vector field does not vanish anywhere, there are no fixed points of
its flow. Periodic orbits are thus the most noticeable objects in the flow. Poincaré pointed
out their interest in his “traité de la mécanique céleste”:

“Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire,
la seule breche par ol nous puissions essayer de pénétrer dans une place jusqu’ici réputée
inabordable.”

Does there exist a periodic Reeb orbit for any contact form on any manifold?

The answer to this question is negative as shown by the following example. Let R?"~! be
endowed with the “standard” contact form

n—1
a=dz— indyi.
i=1

The Reeb vector field is given by R, = d,, and there are no periodic Reeb orbits.

The same question for a compact oriented manifold endowed with a contact 1-form is
still open. It is called the Weinstein conjecture. Some partial results are known. Taubes
answered positively this question for manifolds in dimension 3.

Theorem 0.0.1 ([Tau07]) IfY is a closed oriented three-manifold with a contact form,
then the associated Reeb vector field has a closed orbit.

In higher dimensions, only partial results have been obtained. Let us mention a first result
due to Viterbo:
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Theorem 0.0.2 ([Vit87]) If ¥ C (R®*",wy) is a compact hypersurface of “contact type”,
then X has at least one periodic Reeb orbit.

More recently Albers and Hofer proved:

Theorem 0.0.3 ([AHO09]) Let (M,&) be a closed “PS-overtwisted'” contact manifold.
Then the Reeb vector field associated to any contact form « inducing € has a contractible
periodic orbit.

One could also quote many particular results related for example to Hamiltonian dynamics.

Another natural question is to ask how many periodic Reeb orbits can exist. Since
any periodic orbit can be iterated any number of times, it is more reasonable to ask how
many geometrically distinct periodic orbits can exist. Consider the sphere S?"~!, naturally
embedded in R?”, endowed with the standard contact structure,

a = astd

= Zl(x dy' — y'dz")) I
1=

The Reeb vector field is Ry = Y11 2(2'8,i — y'0,:) and all Reeb orbits are periodic. On
the other hand, if we look on the same sphere at the “deformed” contact form

Zal (2'dy’ —y'da’)| ,

n—1

where all the a; are rationally independent, the Reeb vector field is Ry = > 1" 4 o 2 (g 'O,
y'0,:). There are only n distinct periodic Reeb orbits, one in each “coordinate plane .
Now the contact forms « and o’ on the sphere are isotopic (i.e. there exists a smooth path
of contact forms on the sphere joining them). Gray’s stability theorem asserts that there
exists a diffeomorphism of the sphere, which maps the contact structure & = ker o/ to the
contact structure £ = ker o. Hence, depending on the contact form defining the standard
contact structure on the sphere, one can get different answers concerning the number of
distinct periodic orbits. In view of this fact, a natural question is:

If (M,¢) is a compact contact manifold, can one say something about the
minimal number of geometrically distinct periodic Reeb orbits for any
contact form a (eventually in a subclass) defining the contact structure 7

In particular what is the answer for the sphere? Some results are known in this case; in
particular, it was solved in dimension 3 by Hofer, Wysocki and Zehnder for the class of
“dynamically convex” contact forms.

We refer to the cited reference for a precise definition. It will not be used in the sequel
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Theorem 0.0.4 ([HWZ98]) Assume the contact form o = f - agy on S is dynamically
conver?, where f : S% — (0,00) is a smooth, positive function. Let R, be the associated
Reeb vector field. Then there are either precisely 2 or infinitely many periodic orbits of R,,.

In higher dimensions, less is known :

Theorem 0.0.5 ([LZ02]) Any strictly convex, compact hypersurface ¥ C R?" carries at
least | 5] + 1 geometrically distinct periodic Reeb orbits.

Theorem 0.0.6 ([WHLO7]) Any strictly convez, compact hypersurface > C R carries
at least 3 geometrically distinct periodic Reeb orbits.

Theorem 0.0.7 ([EL80, BLMRS85]) Let ¥ be a contact type hypersurface in R?™. Let
€ = kera be the contact structure induced by the standard contact form on R?™. Assume
there exists a point xg € R2" and numbers 0 < r < R such that:

R
VeeX, r<l|z—zo| <R with = <V2
r

Assume also that Vo € ¥, (vs(z),z) > r where vs(x) is the exterior unit normal vector
of ¥ at x. Then % carries at least n geometrically distinct periodic Reeb orbits.

A first result of this thesis is an alternative (geometric) proof of this result when all periodic
Reeb orbits on ¥ are non degenerate®. A reasonable conjecture is that any starshaped
hypersurface in R?" carries at least n distinct periodic Reeb orbits.

For other manifolds than the sphere, very little is known; in dimension 3, Cristofaro-
Gardiner and Hutchings proved :

Theorem 0.0.8 ([CGH12]) Every (possibly degenerate*) contact form on a closed three-
manifold has at least two embedded periodic Reeb orbits.

In higher dimensions, a recent result is the following:

Theorem 0.0.9 ([Kanl3]) Suppose that a closed contact manifold (M,§) of dimension
2n—1 admits a displaceable exact contact embedding into a symplectic manifold (W,w = d\)
which is convex at infinity® and satisfies (cy (W), ma(W)) = 0.

Assume that at least one of the following conditions is satisfied

1. H,(Wy, M;Q) # 0 for some x € 2N — 1

2We refer to the cited reference for precise definitions. It will not be used in the sequel.
3The definition of a non degenerate orbit is given in Definition 1.1.5.

4A contact form is non degenerate if all its periodic Reeb orbits are non degenerate.
5We refer to the cited reference for precise definitions. It will not be used in the sequel.
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2. H.(Wy, M;Q) = 0 for all even degree * < 2n — 4

where Wy 1is the relatively compact domain of W bounded by M. Then there are at least
two periodic Reeb orbits contractible in W for any nondegenerate contact form o on (M, )
such that a — A, is exact.

In this thesis I present new results on the minimal number of periodic Reeb orbits on
some contact type hypersurfaces in negative line bundles (Proposition 0.0.15 and Theorem
0.0.16).

Strategy followed in this thesis

The problem of finding periodic Reeb orbits on a contact manifold which is embedded in a
symplectic manifold can often be translated into the problem of finding periodic orbits of
a Hamiltonian vector field on a prescribed energy level. For instance, if C is a starshaped
domain in R?” such that 0 € Int C, finding periodic orbits of the Reeb vector field on the
boundary of C (for the standard contact form o) amounts to finding periodic orbits of
the Hamiltonian vector field defined by a power of the gauge function, on the boundary of C'
which is a level set of this Hamiltonian. Indeed, the gauge function of C, jc : R** — [0, c0)

is defined by
jo(z) :==min{\|§ € C}

and the Hamiltonian vector field associated to Hg = jo(x)? is Xp, = gRasctd.

The first idea to tackle the question of the minimal number of periodic Reeb orbits
was to use a homological invariant of the contact structure, constructed from periodic
Reeb orbits. To build such an invariant is the aim of contact homology. At the time
of this writing, contact homology is still in development and encounters “transversality”
problems. Instead we consider positive S'-equivariant symplectic homology which is built
from periodic orbits of Hamiltonian vector fields in a symplectic manifold whose boundary
is the given contact manifold. In this spirit, Bourgeois and Oancea, in [BO12], relate, in
the case where it could be defined, the linearised contact homology of the boundary to
the positive S'-equivariant symplectic homology of the symplectic manifold. The positive
Sl-equivariant symplectic homology is one of the main objects considered in this thesis.

Our first aim is to analyse the relation between the symplectic homologies of an exact
compact symplectic manifold with contact type boundary (also called Liouville domain)
and the periodic Reeb orbits on the boundary. The next point is to prove some properties
of these homologies. For a Liouville domain embedded into another one, we construct a
morphism between their homologies. We study the invariance of these homologies with
respect to the choice of the contact form on the boundary. Finally, we use the positive
Sl-equivariant symplectic homology to give a new proof of Theorem 0.0.7 and see how it
can extend to the framework of hypersurfaces in negative line bundles.

4
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Another approach to solve the question of the minimal number of periodic Reeb orbits
on hypersurfaces in R?", developed by Long, uses variational methods and a thorough
study of their Conley-Zehnder index. With this in mind, we study the generalisation of the
Conley-Zehnder index defined for any path of symplectic matrices. This led us to analyse
in details normal forms of symplectic matrices. Those results could be useful to study
degenerate orbits.

Content of the thesis and statements of the results

The first four chapters develop the approach using positive S'-equivariant symplectic ho-
mology.

In Chapter 1, we recall the definition of positive S'-equivariant symplectic homol-
ogy, first describing Floer homology (Section 1.1), symplectic homology (Section 1.2.2),
positive symplectic homology (Section 1.2.4), then recalling two equivalent definitions of
Sl-equivariant symplectic homology in Sections 1.3.2 and 1.4.

The link between the generators of positive S'-equivariant symplectic homology and
periodic Reeb orbits is explained in Chapter 2. The explicit computation gives the following
result:

Theorem 0.0.10 Let (W, \) be a Liouville domain. Assume there exists a contact form
a on the boundary OW such that the Conley-Zehnder index of all periodic Reeb orbits have
the same parity. Then
1
SHY*(W.Q) = P Q)

’YGP(RQ)

where P(R,) denotes the set of periodic Reeb orbits on OW .

In Chapter 3, we show that positive S'-equivariant symplectic homology has good
functorial properties. In the first section, we construct a “transfer morphism” between all
the above mentioned variants of symplectic homology in the case of two Liouville domains
embedded one into the other. This construction generalises a construction given by Viterbo
([Vit99]). We prove that this morphism has nice composition properties:

Theorem 0.0.11 Let (Vi, Ay;) C (Va, Av,) € (V3, Avy) be Liouville domains with Liouville
embeddings. Then the following diagram commutes:

¢T t
V3,Vo Vo, V1

¢
SHY(V3, \y,) ——= SHT(Va, \y) ——= SHT(V1, \y)

T

where t can be any of the following symbol: 0, +, S, (S, +).



CONTENTS

where SH denotes the symplectic homology, SH™, the positive symplectic homology, SH?* '
the S'-equivariant symplectic homology and S H® '+ the positive S'-equivariant symplectic
homology.

The second section of Chapter 3 is dedicated to the invariance of the different variants
of symplectic homology. In particular, we prove

Theorem 0.0.12 Let (Wp, \o) and (W1, A1) be two Liouville manifolds® of finite type such
that there exists a symplectomorphism f : (Wo, Ag) = (W1, A1). Then

SHT(Wo, \o) = SHT (W1, \1).

Theorem 0.0.13 Let (Mo, &) and (M1,&1) be two contact manifolds that are exactly fil-
lable; i.e. there exist Liouville domains (Wy, o) and (Wi, A1) such that OWy = Moy,
o = ker(Aoj,, ), OW1 = My and § = ker()\1|Ml). Assume there exists a contactomor-
phism ¢ : (Mg, &) — (My,&1). Assume moreover that & admits a contact form ag such
that all periodic Reeb orbits are nondegenerate and their Conley-Zehnder indices have all
the same parity. Then

SHSl’+(W0, )\0) = SHSl’+(W1, )\1)

This Theorem, together with Theorem 0.0.10 reproves Ustilovsky’s result on the existence
of non diffeomorphic contact structures on the spheres S***1. The original proof depends
on a theory of cylindrical contact homology, which is not yet rigorously established due to
transversality problems.

Theorem 0.0.14 ([Ust99]) For each natural number m, there exist infinitely many pair-
wise non isomorphic contact structures on Sam+1,

In Chapter 4 we use positive S'-equivariant symplectic homology to give a new proof of
Theorem 0.0.7, about the minimal number of periodic Reeb orbits on some hypersurfaces
in R?", when all periodic Reeb orbits on ¥ are non degenerate. It appears as Theorem
4.1.1 in the following.

We extend the definitions of positive symplectic homology and positive S!-equivariant
symplectic homology in Sections 4.2.1 and 4.2.2 to the non exact case. It allows us to extend
the techniques developed for the proof of Theorem 0.0.7 to start the study of hypersurfaces
in negative line bundles. This framework is a natural generalisation of hypersurfaces in
C". Indeed the sphere is the boundary of the ball in C* ~ R?" but also the boundary of
the ball blown up” at the origin. The blown up ball, at the origin, in C" is

B = {(z, 1)) eCr xCP™ |z € [t]}.

5We refer to Definition 3.2.8 for a precise definition of Liouville manifold.
"We refer to [MS98] for a detailed definition of blow ups
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It is canonically isomorphic to the canonical disk bundle over CP™~! which is a subbundle
of the tautological complex (negative) line bundle over CP™~!

O(-1) — cpP™ .
This generalisation gives:

Proposition 0.0.15 Let ¥ be a contact type hypersurface in a negative line bundle over
a closed symplectic manifold L — B such that the intersection of ¥ with each fiber is a
circle. The contact form is the restriction of 120V where 6Y is the transgression form on
L and r is the radial coordinate on the fiber. Then X carries at least Z?QO B; geometrically
distinct periodic Reeb orbits (the [3; are the Betti numbers of B).

Theorem 0.0.16 Let 3 be a contact type hypersurface in a negative line bundle L, over
a symplectic manifold B. Suppose that there exists a Liouville domain W' (such that its
first Chern class vanishes on all tori) whose boundary coincides with the circle bundle of
radius Ry in L, denoted SR%. Suppose there exists a Morse function f : B — R such that
all critical points of f have a Morse index of the same parity. Let o be the contact form on
Y induced by 20V on L (0V is the transgression form on L and r is the radial coordinate
on the fiber). Assume that ¥ is “pinched” between two circle bundles Sgz and Sgz of radii

Ry and Ry such that 0 < R < Rso and % < /2. Assume that the minimal period of

any periodic Reeb orbit on ¥ is bounded below by R3. Then ¥ carries at least Z?Zo Bi
geometrically distinct periodic Reeb orbits, where the [5; denote the Betti numbers of B.

In this Theorem, the assumption on the existence of a Morse function all of whose critical
points have Morse indices of the same parity is of a technical nature. Its purpose is to
bring the situation within the scope of Theorem 0.0.10, which is our tool for computing
the positive S!'-equivariant symplectic homology. The lower bound on the period of any
periodic Reeb orbit is semi-technical; it is now the only way we have to distinguish the
images of the orbits. The “pinching” assumption is more conceptual, its main implication
is that the “n first generators” of the positive S'-equivariant symplectic homology are
simple orbits.

The techniques developed in the thesis should prove, extending the homologies to the
setup of monotone compact symplectic manifolds using coefficients in the Novikov ring,
the following:

Conjecture 0.0.17 Let ¥ be a contact type hypersurface in a negative line bundle, L,
over a closed monotone symplectic manifold B. The bundle is endowed with a hermitian
structure and a connection. Suppose there exists a Morse function f: B — R such that all
critical points of f have a Morse index of the same parity. Let o be the contact form on
Y induced by 120V on L. Assume that ¥ is “pinched” between two circle bundles Sg, and
Sr, of radii Ry and Ry respectively such that 0 < Ry < Ry and % < V2. Assume that the

7
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minimal action of any periodic Reeb orbit on X is bounded below by R3. Then X carries at
least Z?QO Bi geometrically distinct periodic Reeb orbits.

The last two chapters are a contribution to a detailed study of indices. I hope it can be
used in the future to tackle the study of degenerate periodic orbits. The Conley-Zehnder
index is an integer associated to a path of symplectic matrices. It relies on a precise
description of symplectic matrices. Chapter 5, which will appear as a paper in Portugaliae
Mathematica, gives new normal forms for symplectic matrices. Let us present here the
normal form on the generalised eigenspace of eigenvalue +1.

Theorem 0.0.18 Any symplectic endomorphism A of a finite dimensional symplectic vec-
tor space (V,Q) is the direct sum of its restrictions A|V[A] to the real A-invariant symplectic
subspace Vy) whose complezification is the direct sum of the generalized eigenspaces of
etgenvalues A, %,X and %
V[% =E\®FE1 ®F; 0 E:.
b) x

If X € {£1}, there exists a symplectic basis of Vin) @n which the matriz representing the
restriction of A to Viy is a symplectic direct sum of matrices of the form

(SR )

where C(rj,sj,\) = J(A\,r;)~" diag(O,...,O,sj) with s; € {0,1,—1} and where J(A\,rj)
is the elementary Jordan matriz of dimension r; associated to X\. If s; = 0, then r;
is odd. The dimension of the eigenspace of the eigenvalue X\ is given by 2Card{j|s; =
0} + Card{yj|s; # 0}.

The number of s; equal to +1 (resp. —1) arising in blocks of dimension 2k (i.e. with
corresponding r; = k) is equal to the number of positive (resp. negative) eigenvalues of the
symmetric 2-form

Q%\k : Ker((A — /\Id)Qk) x Ker ((A _ )\Id)2k> SR

(v,w) = AQ((A = AId)Fv, (4 — A1d)*tw).
The decomposition is unique up to a permutation of the blocks and is determined by X, by

the dimension dim(Ker(A — /\Id)"‘) for each v > 1, and by the rank and the signature of
the symmetric bilinear 2-form Q%‘k for each k > 1.

The last Chapter, which will appear as a paper in Annales de la faculté des Sciences de
Toulouse, is devoted to the study of a generalised version of the Conley-Zehnder index
defined by Robbin and Salamon in [RS93]. We start by giving a new formula for the
“classical” Conley-Zehnder index.

8
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Theorem 0.0.19 Let v : [0,1] — Sp(R?"*,Qq) be a continuous path_of matrices linking the
matriz Id to a matriz which does not admit 1 as an eigenvalue. Let v : [0,2] — Sp(R?™, Q)
be an extension such that {/; coincides with ¥ on the interval [0,1], such thatjpv(s) does not
admit 1 as an eigenvalue for all s > 1 and such that the path ends either at 1 (2) = W+ :=
—1d either at 12(2) =W~ :=diag(2,—1,...,—1, %, —1,...,—=1). The Conley-Zehnder index
of 1 is equal to the integer given by the degree of the map p* o 1/; . 0,2] — St

pez() = deg(5 o ) (1)

for ANY continuous map p : Sp(R?*",Qq) — S' which coincides with the (complex) de-
terminant detc on U(n) = O (R*") N Sp (R*™,Q); so that p(W~) € {1} and so that

0 0o -—ls2

deo (72 _ ) 0 Idy,o1 O 0

eg(p® otpa) = n—1 for o : t € [0,1] = exptndo | 1000 0 0 0 . In
0 0 0 Tdn_:

particular, two alternative ways to compute the Conley-Zehnder index are :

e Using the polar decomposition of a matriz, pcz(v) = deg(det@2 oUo J) where U :
Sp(R?™,Q) — U(n) : A — AP~! with P the unique symmetric positive definite
matriz such that P? = ATA.

e Using the normalized determinant of the C-linear part of a symplectic matriz,

0 T R n . dete (% (A—JoAJy)
() = deg(5 o 5) where p: Sp(RH, Q) > S 5 A s j(A) = e FE=)

with Jy = (I% _Old) the standard complex structure on R?".

We give a characterisation of the generalised the Conley-Zehnder index defined by Robbin
and Salamon.

Theorem 0.0.20 The Robbin-Salamon index for a continuous path of symplectic matrices
1s characterized by the following properties:

e (Homotopy) it is invariant under homotopies with fized end points;

e (Catenation) it is additive under catenation of paths;

e (Zero) it vanishes on any path 1 : [a,b] — Sp(R*™, Q) of matrices such that dim Ker (¢ (t)—

Id) = k is constant on [a,b];

e (Normalization) if S = ST € R?"2" js q symmetric matriz with all eigenvalues of
absolute value < 2m and if 1(t) = exp(JoSt) for t € [0,1], then prs(¢)) = 4 Sign S
where Sign S is the signature of S.

We give a new way to compute this index.
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Theorem 0.0.21 Let ¢ : [0,1] — Sp(R?",€) be a path of symplectic matrices. Decom-
pose (0) = *(0) @ Y1 (0) and (1) = *(1) @ Y1 (1) where *(-) does not admit 1 as
eigenvalue and (M (-) is the restriction of () to its generalized eigenspace of eigenvalue
1. Consider a continuous extension W : [—1,2] — Sp(R?", ) of ¥ such that

o U(t) =1(t) fortel0,1];

o U(—3) =¢*(0)® (¢, 9 ) and ¥ (t) = ¥*(0) ® ¢o(t) where ¢o(t) has only real
positive eigenvalues for t € ]

d
(-3
e U(3) =)o (e_(l)ld [) aT]Ld U(t) = ¥*(1) & ¢1(t) where ¢1(t) has only real

positive eigenvalues for t €

e U(—1) = W*, ¥(2) = W* and U(t) does not admit 1 as an eigenvalue for t €
[—1,—%] and fort € [%,2].

Then the Robbin Salamon indez is given by

prs(¥) = deg(5” 0 W) Z Sign (Q"*) - %Z Sign Q™)

k>1 k>1
with p as in theorem 0.0.19, and with
04 . Ker <(A - Id)2k> x Ker ((A - Id)2k> SR
(v, w) = Q((A = 1d)*v, (A — Id)" ).

The advantage of this new formula is that we can compute the index of any path without
perturbing the path. The drawback is that we have to extend the initial path.

10



Prolégomenes

Les orbites périodiques de Reeb sont au centre de ce travail. Le cadre général est la
géométrie de contact. Une structure de contact sur une variété M de dimension 2n — 1
est un champ d’hyperplans £ maximalement non intégrable; i.e. si on écrit, localement,
¢ = ker a ou « est une 1-forme différentielle, alors o A (da)™ ! est partout non nulle. Si «
est globalement définie, on dit que £ est coorientée et on appelle a une forme de contact.
Dans cette these, nous ne considérons que des structures de contact coorientées. La 1-
forme o n’est pas unique; pour toute fonction f : M — R, la 1-forme ef o définit la méme
structure de contact. Le champ de vecteurs de Reeb R, associé a une forme de contact
« est I'unique champ de vecteurs sur M caractérisé par: ¢((R,)da = 0 et a(R,) = 1. Ce
champ de vecteurs ne s’annulant nulle part, son flot n’a pas de point fixe. Les orbites
périodiques sont donc les objets les plus remarquables de ce flot. Poincaré en a montré
I'intérét dans son “Traité de la mécanique céleste”:

“Ce qui nous rend ces solutions périodiques si précieuses, c¢’est qu’elles sont, pour ainsi dire,
la seule breche par ot nous puissions essayer de pénétrer dans une place jusqu’ici réputée
inabordable.”

Existe t-il une orbite de Reeb périodique pour toute forme de contact sur
n’importe quelle variété?

La réponse & cette question est négative comme illustré par 'exemple suivant. Soit R?"~!
muni de la forme de contact “standard”

n—1
a=dz— indyi.
i=1

Le champ de vecteurs de Reeb est donné par R, = 0., et il n’y a pas d’orbites de Reeb
périodiques.

La méme question pour des variétés compactes orientées munies d’une 1-forme de con-
tact est toujours ouverte; c’est la conjecture de Weinstein. Quelques résultats partiels sont
connus. Taubes a répondu de maniere affirmative a cette question pour les variétés de
dimension 3.

11
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Theorem 0.0.22 ([Tau07]) SiY est une variété fermée, orientée, de dimension 3, munie
d’une forme de contact, alors le champ de vecteurs de Reeb associé posséde une orbite
périodique.

En plus grande dimension, seuls des résultats partiels sont connus. Nous commencons par
mentionner un résultat di a Viterbo.

Theorem 0.0.23 ([Vit87]) Si ¥ C (R?",wg) est une hypersurface de “type contact”,
alors 3 posséde au moins une orbite de Reeb périodique.

Plus récemment, Albers et Hofer ont prouvé:

Theorem 0.0.24 ([AHO09]) Soit (M,&) une variété de contact fermée et “PS-vrilléed”.
Alors le champ de vecteurs de Reeb associé a n’importe quelle forme de contact a déterminant
&, posséde au moins une orbite de Reeb périodique et contractible.

Nous pourrions citer beaucoup d’autres résultats, par exemple liés a la dynamique Hamil-
tonienne.

Une autre question naturelle est de demander combien d’orbites de Reeb périodiques
peuvent exister. Comme toute orbite de Reeb périodique peut étre itérée un nombre
arbitraire de fois, il est plus raisonnable de demander combien d’orbites de Reeb périodiques
géométriquement distinctes peuvent exister. Considérons la sphere S?"~! naturellement
plongée dans R?”, munie de la structure de contact standard,

Z*E (a'dy" — y'dx"))
=1

S2n—1 2 £

astd

a = .
S2n—1

Le champ de Reeb est Ry = Y1 2(2'8, — y'8,i) et toutes les orbites de Reeb sont
périodiques. D’un autre c6té, si nous regardons la méme spheére munie de la forme de
contact “déformée”

1 o o
o = 3 Z; ai(z'dy" — y'dz*)
1=

g2n—1’

olt tous les a; sont rationnellement indépendants, le champ de Reeb est Ry = >0 4 a% (xiayi —
y'0,:). 11 y a seulement n orbites de Reeb géométriquement distinctes, une dans chaque
“plan de coordonnées”. Les formes de contact o et o’ sur la sphere sont isotopes (i.e. il
existe un chemin lisse de formes de contact sur la sphere les reliant). Le théoreme de sta-
bilité de Gray assure l’existence d’un difféomorphisme de la spheére envoyant la structure
de contact & = ker o’ sur la structure de contact £ = ker a. Donc, en fonction de la forme
de contact définissant la structure de contact standard sur la sphere, nous pouvons avoir
différentes réponses concernant le nombre d’orbites périodiques distinctes. En vue de quoi,
une question naturelle est

8Nous référons & la référence citée pour une définition précise qui ne sera pas utilisée dans la suite de
ce travail.
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Si (M, &) est une variété de contact compacte, que pouvons-nous dire sur le
nombre minimal d’orbites de Reeb périodiques et géométriquement distinctes
pour toute forme de contact a (éventuellement dans une sous-classe)
définissant la structure de contact £7

En particulier, quelle est la réponse pour la sphere? Quelques résultats sont connus dans
ce cas. Le probléme a été résolu en dimension 3 par Hofer, Wysocki et Zehnder pour la
classe des formes de contact “dynamiquement convexes”.

Theorem 0.0.25 ([HWZ98]) Supposons que la forme de contact o = f - agyq sur S° est
dynamiquement conveze®, ou f : 83 — (0,00) est une fonction lisse positive. Soit Ry le
champ de vecteurs de Reeb associé. Alors il y a soit exactement 2 soit une infinité d’orbites
périodiques de Ry .

En grande dimension, moins de choses sont connues:

Theorem 0.0.26 ([LZ02]) Toute hypersurface ¥ C R?" compacte et strictement conveze
possede au moins |5 | + 1 orbites de Reeb périodiques géométriquement distinctes.

Theorem 0.0.27 ([WHLO7]) Toute hypersurface ¥ C RS compacte et strictement con-
vexe posséde au moins 3 orbites de Reeb périodiques géométriquement distinctes.

Theorem 0.0.28 ([EL80, BLMRS85]) Soit ¥ une hypersurface de type contact dans R?".
Soit € = kera la structure de contact induite par la forme de contact standard sur R*".
Supposons qu’il existe un point xo € R?™ et des nombres 0 < r < R tels que:

R
VeeX, r<|z—zo| <R avee — <2
r

Supposons également que Vx € 3, (vs(x),z) > ou vs(x) est le vecteur unitaire normal
extérieur a X en x. Alors Y posséde au moins n orbites de Reeb périodiques géométriquement
distinctes.

Un premier résultat de cette these est une preuve alternative (géométrique) de ce résultat
quand toutes les orbites de Reeb périodiques sur ¥ sont non dégénérées'®. Une conjecture
raisonnable est que toute hypersurface étoilée dans R?" possede au moins n orbites de Reeb
périodiques géométriquement distinctes.

Pour d’autres variétés que la sphere, fort peu est connu; en dimension 3, Cristofaro-
Gardiner et Hutchings ont prouvé:

9Nous référons & la référence citée pour une définition précise qui ne sera pas utilisée dans la suite de
ce travail.
10La définition d’orbites non dégénérée est donnée Définition 1.1.5.
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Theorem 0.0.29 ([CGH12]) Toute forme de contact (possiblement dégénéréel! ) sur une
variété de dimension 3 possede au moins 2 orbites de Reeb périodiques plongées.

En plus grande dimension, un résultat récent est le suivant:

Theorem 0.0.30 ([Kanl3]) Supposons que la variété de contact fermée (M,&) de di-
mension 2n — 1 admet un plongement de contact exact et déplacable dans une variété sym-
plectique (W,w = d)\) convexe a Uinfini'? et satisfaisant {(c1 (W), m2(W)) = 0. Supposons
qu’au moins une des conditions suivantes est satisfaite

1. H,(Wy, M;Q) # 0 pour un x € 2N — 1
2. H.(Wy, M;Q) = 0 pour tout degré pair x < 2n — 4

ot Wy est le domaine relativement compact de W bordé par M. Alors il y a au moins 2
orbites de Reeb périodiques contractibles dans W pour toute forme de contact non dégénérée
a sur (M,§) telle que o — |, est exacte.

Dans cette these, je présente de nouveaux résultats sur le nombre minimal d’orbites de
Reeb périodiques géométriquement distinctes sur certaines hypersurface dans des fibrés en
droites négatifs (Proposition 0.0.36 and Théoréme 0.0.37).

Stratégie suivie dans cette these

Le probleme de trouver des orbites de Reeb périodiques sur une variété de contact plongée
dans une variété symplectique peut souvent étre traduit en le probleme de trouver des
orbites périodiques d’un champ de vecteurs Hamiltonien sur un niveau d’énergie fixé. Par
exemple, si C' est un domaine étoilé dans R?" tel que 0 € Int C, trouver les orbites de Reeb
périodiques sur le bord de C' (pour la forme de contact standard agd) revient a trouver
les orbites périodiques du champ de vecteurs Hamiltonien défini comme une puissance de
la fonction de jauge, sur le bord de C' qui est un niveau de ce Hamiltonien. En effet, la

fonction de jauge de C, jo : R?™ — [0, 00), est définie par
jo(z) == min{A|% € C}

et le champ de vecteurs Hamiltonien associé & Hg = jo(x)” est XH, = gRasm.

La premiere idée pour aborder la question du nombre minimal d’orbites de Reeb
périodiques était d’utiliser un invariant homologique de la structure de contact construit
a partir des orbites de Reeb périodiques. La construction d’un tel invariant est le but de
I’homologie de contact. Actuellement, I’homologie de contact est toujours en développement

1 Une forme de contact est non dégénérée si toutes ses orbites de Reeb périodiques sont non dégénérées.

1 02 N s02 I s o e s . . “1e 2 .

2Nous référons & la référence citée pour les définitions précises qui ne seront pas utilisées dans la suite
de ce travail.
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et rencontre des problemes de “transversalité”. Nous considérons, a la place, 'homologie
symplectique S'-équivariante positive construite a partir d’orbites périodiques de champs
de vecteurs Hamiltoniens sur une variété symplectique dont le bord est la variété de contact
considérée. Dans cet esprit, Bourgeois et Oancea [BO12] ont lié, ’homologie de contact
linéarisée du bord (dans le cas ot elle peut étre définie) avec I’homologie S!'-équivariante
positive de la variété symplectique. L’homologie symplectique S'-équivariante positive est
un des objets principaux considérés dans les quatre premiers chapitres de cette these.

Notre premier but est d’analyser les relations entre les homologies symplectiques d’une
variété symplectique exacte avec un bord de type contact (également appelé domaine de
Liouville) et les orbites de Reeb périodiques sur le bord. Le point suivant est de prouver
quelques propriétés de ces homologies. Pour un domaine de Liouville plongé dans un
autre, nous construisons un morphisme entre leurs homologies. Nous étudions I'invariance
de ces homologies par rapport au choix d’une forme de contact sur le bord. Finalement,
nous utilisons I’homologie S'-équivariante positive pour donner une nouvelle preuve du
Théoreme 0.0.28 et regardons comment elle peut s’étendre au cadre d’hypersurfaces dans
des fibrés en droites négatifs.

Une autre approche a la question du nombre minimal d’orbites de Reeb périodiques
sur des hypersurfaces dans R?", développée par Long, utilise des méthodes variationnelles
et une étude détaillée de l'indice de Conley-Zehnder. Dans cette optique, nous étudions
une généralisation de l'indice de Conley-Zehnder définie pour tout chemin de matrices
symplectiques. Ceci nous a mené & une analyse détaillée de formes normales de matrices
symplectiques. Ces résultats peuvent étre utiles pour une étude d’orbites dégénérées.

Contenu de la thése et énoncés de résultats

Les quatre premiers chapitres développent ’approche utilisant ’homologie symplectique
Sl-équivariante positive.

Dans le Chapitre 1, nous rappelons la définition de I'homologie symplectique S'-
équivariante positive. Nous présentons 1’homologie de Floer (Section 1.1), I’homologie
symplectique (Section 1.2.2), 'homologie symplectique positive (Section 1.2.4). Ensuite
nous exposons deux définitions équivalentes de I’homologie symplectique S'-équivariante
positive dans les Sections 1.3.2 et 1.4.

Le lien entre les générateurs de 'homologie symplectique S'-équivariante positive et les
orbites de Reeb périodiques est expliqué dans le Chapitre 2. Un calcul explicite donne:

Theorem 0.0.31 Soit (W, \) un domaine de Liouville. Supposons qu’il existe une forme
de contact o sur le bord OW telle que les indices de Conley-Zehnder de toutes les orbites
de Reeb périodiques ont la méme parité. Alors

SHY+W.Q) = P Q)

YEP(Ra)

ot P(Ry) est l’ensemble des orbites de Reeb périodiques sur OW .
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Dans le Chapitre 3, nous montrons que ’homologie symplectique S'-équivariante pos-
itive a de bonnes propriétés de fonctorialité. Dans la premiere Section, nous construisons
un “morphisme de transfert” pour toutes les variantes précitées d’homologie symplectique
dans le cas de deux domaines de Liouville emboités. Cette construction généralise une
construction de Viterbo ([Vit99]). Nous prouvons que ce morphisme posséde de bonnes
propriétés de composition:

Theorem 0.0.32 Soit (Vi,A\v;) C (Va,A\y,) € (V3,A\y,) des domaines de Liouville avec

des plongements de Liouville. Alors le diagramme suivant commute:

T T
Va,Vp

¢ ¢
SHT(V37)‘V3) ﬂiSHT(VQa)‘VQ) HSHT(VD)‘V&)

ou T est l'un des symboles suivants: 0,4+, S, (S, +).

ou SH dénote ’homologie symplectique, SH™T, ’homologie symplectique positive, SH* '
’homologie symplectique S'-équivariante et SH?® K ’homologie symplectique S!-équivariante
positive.

La seconde Section du Chapitre 3 est consacrée a 'invariance des différentes variantes
d’homologie symplectique. En particulier, nous prouvons

Theorem 0.0.33 Soit (Wy, \o) et (Wi, 1) deux variétés de Liouville'® de type fini tels
que il existe un symplectomorphisme f : (Wp, No) — (W1, A1). Alors

SHY(Wo, Xo) = SHT (W1, \p).

Theorem 0.0.34 Soit (My,&y) and (My,&1) deux variétés de contact exactement rem-
plissables; i.e. il existe des domaines de Liouville (Wy, Ag) et (W1, \1) tels que OWy = My,
& = ker()\o‘MO), oWy = My and & = ker()\lwl). Supposons qu’il existe un contactomor-
phisme ¢ : (Mo, &) — (M1,&1). Supposons de plus que & admet une forme de contact
aq telle que toute les orbites de Reeb périodiques sont non dégénérées et leurs indices de
Conley-Zehnder ont tous la méme parité. Alors

SHS'™(Wo, \o) = SHS (W1, A).

Ce Théoreme, couplé au Théoreme 0.0.31 donne une preuve du résultat d’Ustilovsky sur
I'existence de structures de contact non difféomorphes sur les spheres S4™*1. La preuve
originelle repose sur une théorie d’homologie de contact cylindrique qui n’est pas encore
établie rigoureusement.

3Nous référons & la Définition 3.2.8 pour une définition précise de variété de Liouville.
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Theorem 0.0.35 ([Ust99]) Pour tout nombre naturel m, il existe une infinité de struc-
tures de contact non isomorphes sur S*™+1.

Dans le Chapitre 4, nous utilisons I’homologie symplectique S'-équivariante positive
pour donner une nouvelle preuve du Théoreme 0.0.28 sur le nombre minimal d’orbites de
Reeb périodiques sur certaines hypersurfaces dans R?” quand toutes les orbites de Reeb
sont non dégénérées. Cela apparait dans la suite comme le Théoreme 4.1.1.

Nous étendons les définitions d’homologie symplectique positive et d’homologie sym-
plectique S'-équivariante positive au cas non exact dans les Sections 4.2.1 et 4.2.2. Ceci
nous permet d’étendre les techniques développées pour la preuve du Théoreme 0.0.28 pour
commencer 'étude d’hypersurfaces dans des fibrés en droites négatifs. Ce cadre est la
généralisation naturelle d’hypersurfaces dans C". En effet la sphere est le bord de la boule
dans C" ~ R?" mais également de la boule éclatée!® & I’origine. La boule éclatée en ’origine
dans C" est

B = {(z, 1) eC* xCP" |z € [t]}.

Elle est canoniquement isomorphe au fibré en disques canonique au-dessus de CP*~! qui
est un sous-fibré du fibré en droites complexes négatif tautologique au-dessus de CP"~1

O(-1) — cp™ L,
Cette généralisation donne:

Proposition 0.0.36 Soit X une hypersurface de type contact dans un fibré en droites
négatif au-dessus d’une variété symplectique fermée L — B tel que l'intersection de ¥ avec
chaque fibre est un cercle. Alors ¥ posséde au moins E?ZO B; orbites de Reeb périodiques
et géométriquement distinctes (les B; étant les nombres de Betti de B).

Theorem 0.0.37 Soit 3 une hypersurface de type contact dans un fibré en droites négatif
L au-dessus d’une variété symplectique B. Supposons qu’il existe un domaine de Liouville
W' (tel que sa premiére classe de Chern s’annule sur tous les tores) dont le bord coincide
avec le fibré en cercles de rayon Ry dans L, denoté SR%. Supposons qu’il existe une fonction
de Morse f : B — R telle que tous les points critiques de f ont un indice de méme parité.
Soit € = ker v la structure de contact sur ¥ induite par 20V sur L (0Y étant la forme
de transgression sur L et r est la coordonnée radiale dans la fibre). Supposons que ¥ est
“pincée” entre deux fibrés en cercles S’R% et SR% de rayon Ry et Ry tels que % < V2.
Supposons que la période minimale de toute orbite de Reeb périodique sur 3 est bornée
inférieurement par R2. Alors ¥ posséde au moins Z?QO Bi orbites de Reeb périodiques et

géométriquement distinctes, ot les B; sont les nombres de Betti de B.

Nous référons & [MS98] pour une définition détaillée d’éclatement.
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Dans ce Théoreme, I’hypothese de 'existence d’une fonction de Morse dont tous les points
critiques ont un indice de méme parité est de nature technique. Son but est de nous
amener dans les hypotheése du Théoreme 0.0.31, qui est notre outil pour calculer I’homologie
symplectique S'-équivariante positive. La borne inférieure sur la période de toute orbite
de Reeb périodique est semi-technique; c’est le seul moyen actuellement de distinguer les
différentes images des orbites. L’hypotheése de “pincement” est plus conceptuelle, son
implication majeure est que les “n premiers générateurs” de ’homologie symplectique S*-
équivariante positive sont des orbites simples.

Les techniques développées dans cette thése devraient prouver, en étendant les ho-
mologies au cadre des variétés symplectiques compactes et monotones, et en introduisant
I’anneau de Novikov comme anneau de coefficients, le résultat suivant:

Conjecture 0.0.38 Soit > une hypersurface de type contact dans un fibré en droites
négatif L au-dessus d’une variété symplectique fermée et monotone B. Le fibré est muni
d’une structure hermitienne et d’une connexion. Supposons qu’il existe une fonction de
Morse f : B — R telle que tous les points critiques de f ont un indice de méme parité.
Soit ¢ = kera la structure de contact sur ¥ induite par v20Y sur L (0Y étant la forme
de transgression sur L et r est la coordonnée radiale dans la fibre). Supposons que ¥ est
“pincée” entre deux fibrés en cercles Sgz et Spy de rayon Ry et Ry tels que % < V2.
Supposons que la période minimale de toute orbite de Reeb périodique sur X est bornée
inférieurement par R3. Alors ¥ posséde au moins Z?Zo B; orbites de Reeb périodiques et

géométriquement distinctes, ou les B; sont les nombres de Betti de B.

Les deux derniers chapitres sont une contribution a une étude d’indices de type Conley-
Zehnder. J’espere que cela pourra étre utilisé pour I’étude des orbites périodiques dégénérées.
L’indice de Conley-Zehnder généralisé est un entier associé a un chemin de matrices sym-
plectiques. Notre étude s’appuie sur une description détaillée de matrices symplectiques.
Le Chapitre 5, qui apparaitra comme article dans Portugaliae Mathematica, donne de nou-
velles formes normales des matrices symplectiques. Nous présentons ici la forme normale
sur l'espace propre généralisé de valeur propre +1.

Theorem 0.0.39 Tout endomorphisme symplectique A d’un espace vectoriel symplectique
de dimension finie (V,Q) est la somme directe de ses restrictions A|V[A] au sous-espace
symplectique réel A-invariant Viyy dont la complezification est la somme directe de ses
espaces propres généralisés de valeur propre A, %,X et %
C ._
VW = E)\EDE% @EX@E%.
Si A € {£1}, il existe une base symplectique de V|5 dans laquelle la matrice représentant
la restriction de A a Viy est une somme directe symplectique de matrices de la forme:

("7 %)
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ot C(rj,85,A) = J(A\, ;)" diag(O,...,O,sj) avec s; € {0,1,—1} et ot J(A\,rj) est la
matrice de Jordan élémentaire de dimension r; associée a X. Si s; = 0, alors r; est
impair. La dimension de l’espace propre de valeur propre \ est donnée par 2 Card{j|s; =
0} 4+ Card{j|s; # 0}.

Le nombre de s; égauzr a +1 (reps. —1) apparaissant dans des blocs de dimension 2k (i.e.
avec rj = k) est égal au nombre de valeurs propres positives (resp. négatives) de la 2-forme
symétrique

O, : Ker((A — Md)?*) x Ker ((A - >\Id)2k> SR

(v,w) = AQ((A = AId)Fv, (A — AId)*tw).

La décomposition est unique a permutation des blocs pres et est déterminée par X\, par la
dimension dim (Ker(A - A Id)r) pour tout r > 1 et par le rang et la signature de la 2-forme

bilinéaire symétrique Q%‘k pour tout k > 1.

Le dernier Chapitre, qui apparaitra comme article dans les Annales de la faculté des Sci-
ences de Toulouse, est dévolu a I’étude d’une version généralisée de I'indice de Conley-
Zehnder définie par Robbin et Salamon dans [RS93]. Nous commencgons par donner une
nouvelle formule pour I'indice de Conley-Zehnder “classique”.

Theorem 0.0.40 Soit 1 : [0,1] — Sp(R?",€) un chemin continu de matrices symplec-
tiques liant la matrice Id a une matrice n’admettant pas 1 comme valeur propre. Soit
¥+ 0,2] — Sp(R*", Q) une extension telle que Y coincide avec 1 sur Uintervalle [0, 1], telle
que w( ) n’admette pas 1 comme valeur propre pour tout s > 1 et telle que le chemin se ter-
mine soit en(2) = Wt := —1Id, soit en ¢(2) = W~ := diag(2, —1,...,—1,1,-1,...,~1).
L’indice de Conley-Zehnder de v est égal a l'entier donné par le degre de Uapplication
Potp:[0,2] » S

poz(v) = deg(p* 0 ) (2)

pour TOUTE application continue j : Sp(R®, ) — S! coincidant avec le déterminant
compleze detc sur U(n) = O (R?*") N Sp (R*™,Qp); telle que p(W™) € {1} et telle que

0 0 -—le2 9
dee (52 _ ) 0 Idyy O 0
eg(p®oa) = n—1 pour iy : t € [0,1] = exptndo | 1002 . o o . En
0 0 0 Idi

particulier, deux maniéres alternatives de calculer l’indice de Conley-Zehnder sont:
o En utilisant la décomposition polaire des matrices, poz(v) = deg(dete? o U o {bv) ot
U : Sp(R*™,Q) — U(n) : A — AP™! avec P l'unique matrice symétrique déifie
positive telle que P2 = ATA.

o En utilisant le déterminant normalisé de la partie C-linéaire d’une matrice sympplec-
tique,
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o~ " R detc (2 (A—JoAJ
pez(y) = deg(02 ot)) ot p: Sp(R*™, Q) — S : A p(A) = |det§§§§AJ§AJ§§;|

0
IdO

avec Jy = ( ) la structure complexe standard sur R>™.

Nous donnons une caractérisation de I'indice de Conley-Zehnder généralisé défini par Rob-
bin et Salamon.

Theorem 0.0.41 L’indice de Robbin-Salamon pour un chemin continu de matrices sym-
plectiques est caractérisé par les propriétés suivantes:

e (Homotopie) il est invariant par homologies a extrémités firées;
e (Caténation) il est additif sous caténation de chemins;

e (Zéro) il s’annule sur tout chemin de matrices v : [a,b] — Sp(R**, Q) tel que
dim Ker (¢(t) — Id) = k est constant sur [a, b];

e (Normalisation) si S = S™ € R?"*2" est une matrice symétrique dont toutes les
valeurs propres sont en valeur absolue < 27 et si Y(t) = exp(JoSt) pour t € [0,1],
alors prs(y) = %SignS ot Sign S est la signature de S.

Nous donnons une nouvelle facon de calculer cet indice.

Theorem 0.0.42 Soit ¢ : [0,1] — Sp(R?*,) un chemin de matrices symplectiques.
Décomposons 1(0) = *(0) @ p1M(0) et (1) = ¢*(1) ® M (1) ot *(-) n'admet pas 1
comme valeur propre et 1/1(1)(~) est la restriction de ¥(-) a son espace propre généralisé de
valeur propre 1. Considérons une extension continue ¥ : [—1,2] — Sp(R?",€y) de v telle
que

U(t) =(t) pourt € [0,1];

(-1 = y*(0) @ (¢ —1Id 9,) et P*(0) @ ¢o(t) ot ¢po(t) n'a que des valeurs
propres réelles pour t 6 [ 0]

T(3) = (1) @ (< 0) et W(t) = ¥*(1) ® bi(t) 0ik du(t) n'a que des valeurs
propres réelles pour t € [17 %] :

U(-1) = W*, ¥(2) = W* et U(t) n’admet pas 1 comme valeur propre pour t €
[—1,—%] and fort € [%,2].

Alors, l'indice de Robbin-Salamon est donné par

prs() = deg(5 o 0) Z slgn(Qk ) _ %Z Sign@gp(n))

k>1 k>1
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avec p comme dans le Théoréeme 0.0.40, et avec

Q. Ker ((A - Id)2k> x Ker ((A — Id)2k> SR
(v,w) = Q((A —Id)*v, (A — 1d)* ).

L’avantage de cette nouvelle formule est de pouvoir calculer I'indice de tout chemin sans
avoir a la perturber. L’inconvénient est que nous devons étendre le chemin initial.
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1.1

Background on symplectic homology

Floer Homology

Let (W, w) be a compact symplectic manifold. For simplicity of the presentation, we assume

Assumption 1.1.1 that W is symplectically aspherical, i.e the symplectic form vanishes
on the second fundamental group

(w, m(W)) = 0,

Assumption 1.1.2 and that the first Chern class of the manifold (i.e. the first Chern
class of its tangent bundle, endowed with a compatible almost complex structure) vanishes
on the second fundamental group

(1 (W), m(W)) = 0.

Assumption 1.1.1 will ensure that the action of a contractible loop is well-defined. To
deal with other free homotopy classes of loops, one has to assume a stronger version of
atoroidality. Assumption 1.1.2 implies that the Conley-Zehnder index of a 1-periodic orbit
of a Hamiltonian is well-defined on Z. One can get rid of this assumption by looking at
the homology with coefficients in the Novikov ring. Both assumptions will ensure that
there are no holomorphic spheres, which is a necessary requirement for the moduli spaces
of Floer trajectories to be nice manifolds with boundaries.

Floer homology for W is a kind of Morse homology on the loop space of W, L(W).
It has been developed in the late eighties [Flo89, FHS95]; a detailed account with proofs
can be found in the book [AD10]. This homology is based on functionals defined on the
space of contractible loops Lcont(W); this is the connected component of the loop space
containing the constant loops. A functional A on Lo (W) is associated to a time
dependent Hamiltonian on W, H : R x W — R such that H(t + 1,2) = H(t,z) for all
t € R. Since the Hamiltonian is periodic in the R variable, we will see H as a function
St x W — R and denote by 6 the variable in S = R/7,.
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Definition 1.1.3 The Hamiltonian action functional A : Leontr(W) — R is defined by

1
A () :——/Du*w—/o H(6,~(0))d6

where D denotes the disk, D = {z € C||z| < 1}, and where u is an extension of 7 to the
disk : u: D — W with u(e?™) = ().

This functional is well-defined (independent of the choice of «) thanks to assumption 1.1.1.

Lemma 1.1.4 A loop v is a critical point of Ag if and only if it is induced by a 1-periodic
solution v : R — W of the Hamiltonian system

A(t) = X (1(1))

where the vector field X%, is the Hamiltonian vector field corresponding to the function

H(t,), i.e. o(Xi)w=dH(t,-).

Such a 1-periodic solution will be called a 1-periodic orbit of Xz and we shall denote by
P(H) the set of contractible 1-periodic orbits of Xp. If v is a 1-periodic orbit of Xy with
7(0) = 2 and if ¢*# denotes the flow of the time dependent vector field Xp, then x is a
fixed point of the flow after time 1, cp{(H (z) = x, and the differential of gof(H at x yields an
endomorphism of T, W which preserves w,; it is called the Poincaré return map.

Definition 1.1.5 A 1-periodic orbit v of Xy is non degenerate if 1 is not an eigenvalue
of the Poincaré return map.

We look only at Hamiltonians whose 1-periodic orbits are all non degenerate; this implies
that the 1-periodic orbits are isolated. Such a Hamiltonian is called non degenerate. We
associate to each 1-periodic orbit its Conley-Zehnder index which is an integer, defined as
follows. We choose as above an extension u of the orbit v to the disk, u : D — W; we
choose a symplectic trivialization of the bundle on the disk defined by the pullback by u
of the tangent bundle to W since the differential of the flow of the Hamiltonian vector
field 4,05( " at x = v(0) yields a symplectic endomorphism from T,qW to T,y W, it is
represented in the trivialization by a symplectic matrix. We associate in this way a path
¥ 1 [0,1] = Sp(R?™, Q) of symplectic matrices, starting from the identity and such that 1
is not an eigenvalue of 1(1). The Conley-Zehnder index of the orbit v is defined to be the
Conley-Zehnder index of the path v as defined in section 6.2.

This index does not depend on the chosen trivialisation of «*TW, and is invariant
under a continuous deformation of the extension u. If two extensions u and v differ, up to
homotopy, by an element S in mo (W), the difference between the Conley-Zehnder indices
of «v is equal to twice the evaluation of the first Chern class of W on this element S (see,
for instance, [MS98]). The assumption 1.1.2 ensures that the Conley-Zehnder index does
not depend on the choice of the extension wu.
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1.1. Floer Homology

The Floer complex is the Z-vector space generated by the contractible 1-periodic orbits
of Xy, graded by minus their Conley-Zehnder index.

In Morse homology, to define the boundary operator, one has to count negative gradient
trajectories between critical points. In our setting, to define negative gradient trajectories
of A, one needs a metric on the loop space. One chooses a smooth loop J : St —
End(TW) : 6 — JY of almost complex structures on W which are compatible with w, i.e
w(JPX,JY) = w(X,Y) for all X,Y € TW and w(X,J?X) >0 for all 0 # X € TW. The
resulting inner product on the tangent space to the loop space at the loop v, T, (E(W)) =
(S, v*TW), is defined by

€= [ o (€0). 7 GO)n(0) a0

Lemma 1.1.6 Negative gradient trajectories of Ay correspond to maps u : R x St — W
satisfying perturbed nonlinear Cauchy-Riemann equations called Floer equations:

%(8’ 0) + Je(u(s, 9)) <?g(s,9) - XY (u(s, 9))) =0 (1.1)

with 1(X%)w = dH (6, -).

Such maps are called Floer trajectories. As in Morse theory, we want to “count” the
number of negative gradient trajectories between some pairs of critical points.

A first important issue is to know whether a Floer trajectory converges to 1-periodic orbits.
We define the energy of a Floer trajectory as

2
E(u) ;:;/SI/R<|?;;|2+ O — Xy ol )dsdez/SI/R\ggfdsda.

Proposition 1.1.7 ([Flo89], see also [AD10] theorem 6.5.6) A Floer trajectory with
finite energy converges at oo to 1-periodic orbits of X, assuming that all the 1-periodic
orbits of Xy are non degenerate.

Let us consider the space M of contractible smooth Floer trajectories with finite energy.
By contractible, we mean that u(s,-) : S' — W is contractible for one, and hence all, s € R.
This contractibility assumption is considered only when studying contractible 1-periodic
orbits.

M :={u:Rx S' — W |u is a contractible solution of (1.1), C* and F(u) < oo}.
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Theorem 1.1.8 ([Flo89], see also [AD10], theorem 6.5.4 ) M is compact in Cp%.(Rx
SL W), where Cre. is the space of smooth maps endowed with the topology of uniform con-

vergence on compact subsets.

Let v~,7" be two 1-periodic orbits of Xy and let M(y~,~", H,J) denote the space of
u € M such that

. _ : 4
Sg@wu(s, )=~ and Sginoo u(s,-) =~".

A naive but crucial remark is that one can “count” the points of a 0-dimensional compact
set. One shows that the space of Floer trajectories between two 1-periodic orbits of the
Hamiltonian vector field X g is a manifold, provided one has perturbed a little -if needed-
the Hamiltonian. The way to prove that is to describe M(y~,y*, H,J) as the zero set
of a smooth Fredholm map between two Banach manifolds. The perturbation of H is

introduced so that the differential of the map is surjective at all solutions. Indeed recall :

Proposition 1.1.9 Let £ (resp. F) be a connected Banach manifold, locally modelled on
the Banach space E (resp. F). Let D : & — F be a smooth map which is Fredholm, i.e.
such that the differential at each point x € €, T, D : E — F is a Fredholm operator. Let
y be an element in F. If, for any u € D~(y), the differential -also called linearization-
T.D : E — F is surjective, then D~1(y) is a submanifold; its dimension is the index of
T.D (which is independent of u) and its tangent space at u is the kernel of T,/ D.

For D~1(y) to be a manifold, it is enough, (since the set of Fredholm operators is open in
the set of bounded linear maps), to show that 7, D is Fredholm and surjective at any point
u € D1(y), and to prove that the index of T, D is constant on D~1(y).

To do this in the Floer homology context, one considers the Floer operator 0 defined, given
a Hamiltonian H and a loop of almost complex structures J, by

J:C(Rx S W) = C2 (R x S W)
au 0 3u 0
u»—>£+J ou(%—XHou>

and one extends it to suitable Banach spaces.
Theorem 1.1.10 ([Flo89]; see also [AD10] theorem 8.1.5) The linearization D,, of

the Floer operator at the point u is a Fredholm operator whose index is equal to the difference
of the Conley-Zehnder indices of the limiting 1-periodic orbits

index(Dy) = poz(v") — pez(v7).

To apply Proposition 1.1.9, one shows the existence of a pair (H, J) so that the correspond-
ing linearisation D,, is surjective for all u € M(y~,y", H,J) and for all v~,41 1-periodic
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1.1. Floer Homology

orbits of Xp. One first shows that the set of all Floer trajectories X' (y~,~",J) defined for
a fixed J and for a Hamiltonian varying in a class Hg + h for Hy fixed, non degenerate,
and h in a Banach space B (so that the 1-periodic orbits remain unchanged -and non de-
generate) is a Banach manifold. For this, one considers X(y~,~v",J) as the set of zeroes
of the section ¢ defined by Floer equations

ou ou

U(u,h)za—i-Jeou(——X%O_,_hou)

and one uses the following proposition.

Proposition 1.1.11 Let Z 5 P be a Banach vector bundle over a Banach manifold and
let 0 : P — Z be a smooth section. Then the intersection of o and the 0-section is a
Banach manifold, whenever the section o is transversal to the 0-section at every point of
the intersection.

One then considers the natural projection 7(o(u,h)) = h from this Banach manifold
X(y~,~",J) on the Banach manifold B and one uses Sard-Smale theorem.

Proposition 1.1.12 (Sard-Smale) Let 7 : X — B be a smooth map between Banach
manifolds, whose differential is a Fredholm operator. Then the set of reqular values of w is
of second Baire category, i.e. is the intersection of a numerable set of open dense subsets.

Let us observe that the regular values of 7w are exactly the elements h € B such that, for
any u € M(y~,v", H,J), the linearized map D,, is surjective. Let us denote by (HJ )req
the space of all pairs (H,J) such that the 1-periodic orbits of X are all nondegenerate
and the operator D, is surjective for all u € M(y~,y", H,J) and all 1-periodic orbits
~v~,7". One gets

Theorem 1.1.13 ([FHS95]) Let (W,w) be a compact manifold. Let J € J(W,w) and
Hy : St x W — R be a Hamiltonian such that the 1-periodic orbits of Xp, are all non-
degenerate. Denote by C°°(Hy) the set of Hamiltonians that coincide with Hy up to the
second order on the 1-periodic orbits of Xp,. Then the set

Hreg ={H € C™(Ho) |(H,J) € (HT )reg}
is dense (of second Buaire category) in C°°(Hy).
This implies :

Theorem 1.1.14 ([Flo89, FHS95]; see also [AD10] Theorem 8.1.2) For a generic
choice of the Hamiltonian H (by this we mean a H in Hyey) and every v~ ,yT, 1-periodic
orbits of Xg, each M(y~,y", H, J) is a smooth compact manifold of dimension ucz(y")—

pez(y”)-
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

We assume in what follows that the Hamiltonian H is generic in the above sense. There
is an R-action on M(y~,y*, H, J) defined by reparametrization of u in the s coordinate.
Thus, if pcz(y") = pez(y~) + 1, the quotient M(y~,v", H,J)/R of M(y~,~",H,J)
under this R-action is O-dimensional. In order to get compact spaces, one studies the limit
of a sequence of Floer trajectories.

Theorem 1.1.15 ([Flo89] or for instance [AD10] Theorem 9.1.6) Let (u,) be a se-
quence of elements in M(v1,v2, H,J). There exists

1. a subsequence of (uy);

2. a finite number of critical points xo = vy1, X1,...,%141 = Y2 of Ag;
3. sequences of real numbers (s%) for 0 <i <1;

4. elements u* € M(z;, 401, H,J) for 0 <i <1 ;

such that, for 0 <i <l
nh_)n(r)lo Up - Sy = U’ in Cpy.

with (u-s)(s',t) :=u(s + ¢, t).

This means that, up to the R-action, the limit of a sequence of Floer trajectories can be
a broken Floer trajectory. We define the closure of M(y~,y*, H,J)/R as the union of
M(y~,v",H,J)/R and all those broken trajectories (up to reparametrization) so that
those closures are compact. In particular, when ucz(v~) = pez(y") — 1 the space
M(y~,y", H,J)/R is equal to its closure and is thus compact. This means it consists
of a finite number of points.

Each of these points comes with a sign induced by the choice of a system of coherent
orientations; for simplicity, we postpone their description to section 1.1.1. Without those
orientations, everything is well defined for a Z/97, valued Floer homology.

Definition 1.1.16 The Floer complex is the Z-vector space generated by the 1-periodic
orbits of X, graded by minus their Conley-Zehnder index

FC(H,J):= @ z(v).

YEP(H)
The Floer differential 0 : FC.(H,J) — FC._1(H,J) is defined by
0(v7) = > #M 4N H )R AT

yTeP(H)
—poz(Y)=—poz(vH)+1

where # is a count of points with signs. (Those signs are defined in section 1.1.1).
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1.1. Floer Homology

The fact that 9% = 0 follows from the study of the boundary of M(y~,~*, H,.J)/R when
the difference of the Conley-Zehnder indices is 2. When —ucz(y~) = —pucz(y") + 2,
the space M(y~,v", H,J)/R is of dimension 1. Its boundary M /R consists of an even
number of points and is given by

U M(’Y_,CL‘,H,J)/RXM(‘T,’Y—F,H,J)/R.
{z| —noz(@)=—pcz(v+)+1}

The coefficient of ¥ in 9%(y7) is given by

{z| —pcz(@)=-pcz(y+)+1}

(see the end of section 1.1.1).

Definition 1.1.17 Floer homology is defined as the homology of the Floer complex with
the Floer differential, for a pair (H,J) € (HJ )reg; it is denoted FH,(H,J) :

FH.(H,J):=H,(FC.(H,J),0).

Theorem 1.1.18 ([Flo89], see also [AD10] chapter 11) Floer homology does not de-
pend on the choice of the reqular pair (H,J). It is isomorphic to the singular homology of
w.

Corollary 1.1.19 ([Flo89]) The number of 1-periodic orbits of a non degenerate time
dependent periodic Hamiltonian on a compact symplectic manifold W is bounded below by
the sum of the Betti numbers of W.

Remark 1.1.20 One can replace assumptions 1.1.1 and 1.1.2 by a monotonicity condition
namely there exist k& > 0 such that [w] = k[c1]. Then the action functional is defined on
a cover of the loop space and the Conley-Zehnder index depends on the choice of the
trivialisation disk. The way to deal with this is to look at Floer homology with coefficients
in the Novikov ring. We shall not use this generalisation here.

Parenthesis : A glimpse on signs

We indicate in this section how to define the signs attached to Floer trajectories, and
mention the steps which prove that #9M /R = 0 ( and hence, by the above, that 9% = 0).
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Operator gluing lemma
We look at operators
D: WH(R x ST, R*) — LP(R x S, R*™),
with p > 2, which are of the form
D =05+ J0: + S(s,t)

with S(s,-) — S4(-) for s — +oo, where S1 belongs to the following space S of loops of
symmetric matrices. Given a loop S of symmetric matrices, one considers the corresponding
path 1 of symplectic matrices defined by the differential equations zp = JS¢. The loop S
belongs to the space S if and only if 1 is not an eigenvalue of ¢ (1), i.e. det(¢(1) —1Id) # 0.
We denote by O(R x S';S_,S,) the space of such operators.

For R >> 0 big enough and S1,S € &, one defines a gluing operation

ORx S5 ,8) x ORx S%:8,8,) =+ ORxSS_,S,): (Dy,Dy) — Di#rDs

in the following way. Fix a smooth function 8 : R — [0, 1] such that 3(s) = 0 for s < 0,
B(s) =1 for s > 1.Define,

Dff := 0,4 J0, + S(t) + B(—s + R)(Si(s,t) — S(t)) fori=1,2
The glued operator, D1# rD> is defined by

DE(s+ R) ifs<0

D Dy = .
1# D2 {D?(SR) if 5 >0

Theorem 1.1.21 (Operator gluing lemma) Assume D; and Dy are surjective. Then
D1#RrDs is surjective for R >> 0 and has uniformly bounded right inverse.

PrOOF: Choose @1, @2, right inverse for Dy, Dy. We first construct an approximate right
inverse T for Dr = D1#rD> i.e an operator

Tg: LP(R x ST, R?") — WHP(R x St R?™)

such that
|DrTR —Id|| < 5 and Tg is uniformly bounded.

Then Qg := Tr(DgTr)™! is a genuine right inverse for Dy and is uniformly bounded.
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We construct Tr according to the following diagram:

LP(R x S1,R2") x [P(R x §!,R2n) 91Xz

o o

LP(R x S',R?") in ~ WLP(R x ST, R

WLP(R x ST, R?™) x WIP(R x S1,R?")

We define T := Gr o Q1 X Q2 o Sgp where G is a “gluing map” and Sg is a “splitting
map”. The splitting map is defined as

Cl(sv ) = (1 - /8(8 - R))C(S - R, )

Sr(¢) = (G1,¢2) - with {42(3, ) = B(s+ R)C(s + R,")

Given L > 0, we define fr(s) := 6(%) and we assume that  is such that S (s) = 0 for
s €]0,1] if L is big. We define the gluing map to be

Gr(€1:&) = (1= B2(5))u(s + B) + (1= Bu(—s) ) &als — R).

Note that since Gg and Sg are uniformly bounded, so is Tg.
To conclude the theorem, one can show that

|IDrTr —1d|| — 0 as R — oc.

Coherent orientations

Let D : X — Y be a Fredholm operator. Its determinant is the 1-dimensional vector space
det(D) := A" ker(D) ® A™* (coker(D))v.

An orientation of D is an orientation of this vector space.
One considers the real line bundle det — F(X,Y") over the space of Fredholm operators,
whose fiber above D is det(D).

Lemma 1.1.22 Assume D; € O(Rx S, S_,S) and Dy € O(R x S';S,5,) are surjective.
For R big enough, if Dr := Di1#rDs and Qg is its right inverse, there is a canonical
isomorphism
¢r : ker(Dq) @ ker(D32) — ker(Dpg)
defined by
¢r = (Id—QrDR) o Gr

where G is the gluing map defined above.
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A consequence of this Lemma is that there is a canonical isomorphism

det(D;) ® det(D3) — det(Dg) for R > 0. (1.2)

Definition 1.1.23 A system of coherent orientations on the space of operators
{OR x S, S_,5,)|S_, S as above }

is an orientation of the determinant line bundle over each O(R x S1; S S.), which is
compatible with the gluing operation via the canonical isomorphism (1.2):

det(_Dl#RDQ) ~ det(Dl) ® det(Dg).
This can be done because O(R x S';S_,S,) is contractible.

Theorem 1.1.24 ([FH94, BM04, BO09b]) There exists a system of coherent orienta-
tions.

Definition 1.1.25 Assume a system of coherent orientations is given. We shall define the
sign attached in Floer coboundary operator to a Floer trajectory between two 1- periodic
orbits with a difference of Conley-Zehnder index equal to 1. The space of trajectories
is of dimension 1, its quotient by the action of R, M(y~,~"), is of dimension 0. Given
[u] € M(y~,~4"), the dimension of ker(D,,) is equal to 1; this ker(D,,) is spanned by (9su).
The sign associated to [u], €([u]), is given by

{—i—l if orientation of ker(D,,) given by (Jsu) coincides with the coherent orientation

—1 if it is not the case.

Proposition 1.1.26 Consider two broken Floer trajectories ([u], [v]) and ([u], [v]) which
are the two ends of a 1-dimensional moduli space M(x,y). Then

e([u]) - e([v]) + e([w]) - ([v]) = 0.
This shows that #0M(x,y) = 0.

Symplectic Homology

Symplectic homology is defined for a compact symplectic manifold W with boundary of
contact type. It is defined as a direct limit of Floer homologies of the symplectic completion
of W, using some special Hamiltonians. This homology was developed by Viterbo in
[Vit99], using works of Cieliebak, Floer, Hofer [FH94, CFH95]. The class of admissible
Hamiltonians was extended by Oancea in his PhD thesis [Oan08]. The case of autonomous
Hamiltonians is treated by Cieliebak-Floer-Hofer-Wysocki, Hermann, Bourgeois-Oancea in
[CFHW96, Her98, BO09b].
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1.2.1 Setup

Let (W,w) be a compact symplectic manifold with contact type boundary M := OW. This
means that there exists a Liouville vector field X (i.e. a vector field X such that Lxw = w)
defined on a neighbourhood of the boundary M, and transverse to M. In the sequel, we
shall assume that the Liouville vector field has been chosen and we shall denote by (W, w, X)
such a manifold. We denote by A the 1-form defined in a neighbourhood of M by

A= u(X)w
and by « the contact 1-form on M which is the restriction of A to M:
o= ((X)w)

We denote by & the contact structure defined by «, i.e & := kera. The Reeb vector field
R, is the vector field on M defined by :

[ar

The action spectrum of (M, «) is the set of all periods of the Reeb vector field
Spec(M, ) := {T € R™ | 3y periodic orbit of R, of period T'}.
The symplectic completion of (W, w, A) is the symplectic manifold defined by

W= W JM x RY) = (W U (M x [6,40])) /.,
G

with the symplectic form

~Jw on W
d(ePa) on M x [—6,+o0]

The equivalence ~¢, between a neighbourhood U of M in W and M x [—6,0], is defined
by the diffeomorphism

G:Mx[-5,00=U: (p,p) ¢, (p)
where ¢~ is the flow of the Liouville vector field X. This is always possible since
G*w = e’(da+dp A a) = d(efa).
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Observe indeed that G, ) ((%) = Xap)r G (Yy) = (cpff)*y Y,. Since A\(X) =
(L(X)w)(X) = 0, we also have Lx\ = X and (goff)* A = eP\. Hence, VY, Z, € T,M :

9 X
(@) (%) = s (Yot (55, )
_ <(¢§)*w>y (X,.Yy) = ePdN(X,,Y,) = ¢ (LxN), (V)
0
=el(d dp N\ —.Y,
o (21
* X X
(G*) ) Y Zo) =, ((03),, Yor (03),, 2)
= ((‘Pf)*w)y (Yy, Zy) = ePdr (X, Y,) = e’day(X,,Y,)
=e’(da+dpNa)(Yy, Zy).
We still assume throughout that w is symplectically aspherical and that the first Chern
class vanishes on the second fundamental group.

1.2.2  Symplectic homology

Given a time-dependent Hamiltonian H : S' x W — R, we define for each 6 € S' the
Hamiltonian vector field X?{ by

o(XY%,)=dH(,-), 6eS.

Definition 1.2.1 The class Hgq of admissible Hamiltonians consists of smooth functions
H : S' x W — R satisfying the following conditions:

1. H is negative and C%-small on S* x W ;

2. there exists py > 0 such that H(0,p,p) = Be? + B’ for p > py, with 0 < ¢
Spec(M, ) and ' € R;

3. H(0,p,p) is C%-close to h(e”) on S* x M x [0, po], for h a convex increasing function.

We say furthermore that it is non degenerate if all 1-periodic orbits of Xy are nondegen-
erate, i.e the Poincaré return map has no eigenvalue equal to 1.

The complex SC(H, J) considered is the Floer complex, i.e. the complex generated by
1-periodic orbits of the Hamiltonian vector field Xz with boundary ¢ defined as before
through Floer trajectories.
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1.2. Symplectic Homology

Remark 1.2.2 Condition 1 implies that the only 1-periodic orbits of Xy in W are con-
stants; they correspond to critical points of H. On S! x M x [0, +-oc], if a Hamiltonian is
the pullback of a function on [0, +o00[, H1(0,p, p) = h1(e”), then the corresponding Hamil-
tonian vector field is proportional to the Reeb vector field, X%l (p,p) = —hl(e?)Ra(p).
Hence, for such a Hamitonian H;, with hy increasing, the image of a 1-periodic orbit of
Xp, is the image of a periodic orbit of the Reeb vector field —R,, of period T := h/(e”)
located at level M x {p}. In particular, condition 2 implies that there is no 1l-periodic
orbit of Xgy in M X [pg, +oo[ for a Hamiltonian H in Hgq; indeed; h(e?) = Be? + ' so
B (e?) = B which is assumed to be different from the period of any closed orbit of the Reeb
vector field. Condition 3 ensures that for any non constant 1-periodic orbit vy of Xy for
a Hamiltonian H in Hgq, there exists a closed orbit of the Reeb vector field R, of period
T < B (with 8 the slope of H “at 00”), such that vy is close to this closed orbit of (minus)
the Reeb vector field located in M x {p} with T' = h/(e”).

Remark 1.2.3 We can consider a larger class of admissible Hamiltonians, removing con-
ditions 1 and 3. It will not change the definition of the symplectic homology. However
condition 1 allows to identify 1-periodic orbits of small action with critical points of H in
W. It will be important in the definition of positive symplectic homology.

We denote again by P(H) the set of 1-periodic orbits of X .

Definition 1.2.4 The class J of admissible J : St — End(TW) : 0 J consists of
smooth loops of compatible almost complex structures J? on W, such that, at infinity (i.e.
for p large enough) J is autonomous (i.e. independent of 6), invariant under translations
in the p variable, and satisfies

J%¢=¢  J%0,) = Ra.

The space W is not compact; it is proven in [FH94, CFH95, FHS95, Vit99, Oan08] that
the Floer homology SH(H,J) := HSC((H,J),0) is well-defined for a pair (H,J) in a set
of so-called regular pairs (HJ)req which is of second Baire category in the set of pairs of
admissible non degenerate Hamitonians and admissible loops of almost complex structures.
One can even fix a non degenerate admissible H and the set of H-regular J’s, i.e. admissible
J so that (H,J) € (HJ)reg, is of second Baire category in the set of admissible loops of
almost complex structures. Furthermore, SH(H,J) is independent of the choice of the
H- regular J [Flo89]. It is however dependent of the choice of H. An important point in
the proofs is that the Floer trajectories with finite energy are confined due to a maximum
principle.

The symplectic homology is defined as a direct limit of SH (H, J) over H non degenerate
in Hgq. To define the direct limit one needs a partial order < on Hgq and morphisms
SH(Hy,J1) — SH(Hj, J2) whenever H; < Hjy are non degenerate, and these morphisms
should have nice composition rules.
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e The partial order on Hgq is given by Hy < Hy if Hi(0,z) < Ha(0,z) for all (0,z) €
St x W (for more general Hamiltonians, it is enough to have H;(6,z) < Hy(6,x) for
all (0, x) outside a compact domain).

—

e Let (Hy,Jp) and (Ha, J2) be two regular pairs for (W, @) with Hy < Hj, and consider
a smooth increasing homotopy of regular pairs between them, (Hs, Js) where s € R
and (Hg, Js) is constant for |s| large. By increasing, we mean d;Hs > 0 (again for
more general H it is enough to consider d; Hs; > 0 outside a compact subset to be able
to define as below a continuation map). The morphism SH(Hy,J1) — SH(Hs, J2)
is the continuation map induced by this increasing homotopy, when it is regular, as
described below.

Consider the Floer equation

ou
——i—Jgou(%—on_Isou):O (1.3)
defined on the set of maps v : R x St — W of class Cro. Ifu:Rx S' 5 W is a solution
of (1.3), we define its energy to be

Blu) = /:O IAE

The fact that the homotopy is increasing insures that Floer trajectories with finite energy
are confined. Let 1 € P(H;) and 2 € P(H3), we denote by M (~1, 72, Hs, Js) the space of

solutions u : Rx §1 — W of (1.3) with finite energy, E(u) < oo such that lims_,_ u(s, ) =
1 and limg 400 u(s, ) = 72. Remark that in this case there is no R-action on the space

M(ryhf)@a HS) Js)

2
0ull” 4pds. (1.4)
S

Theorem 1.2.5 ([Oan08, FHS95]) For a generic choice of the homotopy (Hs, Js), the

spaces M(y1,72, Hs, Js), are manifolds of dimension (—pcz(m)) — (—pcz(v2)) for all
Y1 € P(H1) and v2 € P(Hz). Moreover, if pcz(m) = poz(v2), then M(y1,72, Hs, Js) is
compact.

We will call such a homotopy, regular.

—

Definition 1.2.6 Let (Hy,J;) and (Ha, J2) be two regular pairs for (W,&) with H; < Hs,
and consider a smooth regular increasing homotopy (Hj, Js) between them. Such a regular
homotopy induces a morphism, called a continuation morphism

¢(H5,J5) . SC*(HL J1> — SC*<H27 JQ)

- > H#M(v,y Hy, Jo)y
v €P(Hz)
—pcz(Y)==pcz()

where, again, # is a count of points in a compact 0-dimensional space, with signs.
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The fact that it is a chain map relies on the study of the boundary of the 1-dimensional
manifold M(y1, 72, Hs, Js) with —ucz(71) = —pez(y2) + 1.

Theorem 1.2.7 (for instance [AD10] theorem 11.3.10) Let (uy,) be a sequence of el-
ements in M(v1,7v2, Hs, Js). There exists

1. a subsequence of (up),
o =M1, T1,- .., T} critical points of Ag,,

Yoy - - - Yi—1, Y1 = Y2 critical points of Am,,

e e

sequences of real numbers (st,) for 0 <i < k—1 and (sd) for 0 < j <1—1 such that
sfz oo —00 and S —rn—eo 400,

5. elements u' € M(x;, xi41, Hy,J1) for 0 <i <k —1 and, for 0 < j <1 — 1, elements
vl € M(ijyj-HvH??J?):

6. an element w € M(xg,yo, Hs, Js)

such that, for 0 <i<k—1and for 0 <j<l—-1,

lim w, st =u’ lim w, -s7 =v’ in C°
n—-+oo " n ’ n—-+oo " n loc

with (u-s)(s',t) = u(s +§,t), and such that

: _ . 00

nll}rfoo Up = W in Chy..
Theorem 1.2.8 (for instance [AD10] proposition 11.2.8) At the homological level,
the induced morphism, ¢*s+75) is independent of the choice of the reqular homotopy between
(Hl, Jl) and (HQ, JQ).

The theorem above is one of the versions of the so-called “homotopy of homotopies” theo-
rem; we give a proof in section 1.2.3.

The fact that the continuation morphisms SH(Hy,J1) — SH(Hz, J2) for Hy < H com-
pose nicely results from the following theorem.

Theorem 1.2.9 (for instance [AD10] proposition 11.2.9) Consider three reqular pairs
(Hy, J1), (Ha, Jo) and (Hs, J3) for (W,3). Let (Hy, Jg) and (H', J') be two reqular homo-
topies between (Hy,J1) and (Ha, J2) and (Ha, J2) and (Hs, J3) respectively. Then there ex-
ists a reqular homotopy (H”,J") between (Hy,J1) and (Hs, J3) such that ¢(Hs7s) o ¢(Hs: %)
and ¢HIE) induces the same homomorphism in homology.

This theorem is based on the gluing lemma as explained in subsection 1.1.1 (see also
Theorem 3.1.13).
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Definition 1.2.10 The symplectic homology of (W, w) is defined as the direct limit

SH,(W,w,X) = lim SH,(H,J)
HEHstd

where, for each H, J : St — End((F(Tﬁ/\)) is chosen so that (H,J) is a regular pair.

Example: the ball B?"

We consider the ball B?" with the symplectic form which is the restriction of the standard
symplectic 2-form wyq = 5d2Adz on C" and with the Liouville radial vector field defined by

Xirad = %(z@z + z03). The completion is given by B2n = C" with the standard symplectic
form wgiq = 5dz A dz. We look at Hamiltonians

Ho:C" =5 R:ze Cllz)?

such that % ¢ Z. These Hamiltonians are not in Hgqg but form an admissible cofinite
family by Remark 1.2.3. For each C, the Hamiltonian vector field is

Xp, = —2iC (20, — 203).
The integral trajectories are of the form z(t) = e~2“tzy; therefore, the only 1-periodic
orbit of Xy is the critical point z = 0. The Floer chain groups are thus

Z if x = —pcz(0)
0 otherwise

SC,(He) = {

and, since the differential is 0, the homology groups are the same as the chain groups.
The Conley-Zehnder index of the constant orbit at z = 0 depends on C and is given by

—ncz(0) =2n {CJ + n.

™

Let Cj := km + ¢ where k € N>g and € > 0. The continuation maps ¢y : SCx(H¢,) —
SC«(Hc,,,) are all identically zero, thus the symplectic homology is also 0

SH,(B*™, wyd, Xrad) = lim SH.(Hc,) = 0.
k

Parenthesis on the homotpy of homotopies Theorem

This classical material can be found, for instance, in [AD10, Sal99, Rit].

Definition 1.2.11 Let H; and Hs be two Hamiltonians. We say that an increasing ho-
motopy Hs between H; and Hjy is regular if for all 1-periodic orbits 71 € P(H;) and
Yo € P(H3), M(v1,72, Hs, Js) is a manifold of dimension —ucz(v1) + poz(72)-

38



1.2. Symplectic Homology

Theorem 1.2.12 The morphism
(25 : SH(Hl, Jl) — SH(HQ, JQ)
is independent of the choice of the reqular homotopy between Hy and Ho.

PRrOOF: Consider two regular homotopies Ky and K; joining H; and Hs. We are going to
construct an homotopy between ¢%0 and ¢! in other word a

S SC*(Hl,Jl) — SC*+1<H2,J2)

satisfying the relation
¢K1 7¢K0 = SoaHl +8H2 oS.

Consider a homotopy of homotopies K,, n € [0,1] such that in a neighbourhood of 0,
K, = Kj and in a neighbourhood of 1, K,, = K;. For 1 € P(H1), 72 € P(H>) and 1 fixed,
we denote by M(v1, 72, K;) the space of Floer trajectories u : R x ST R

Osu + Jn(agu — XKn) =0
and define the parametrized moduli space

MK(/-YI)’YQ) = U M(’YlaW,Kn)-
n€f0,1]
We now use the following two theorems:

Theorem 1.2.13 If ucz(71) — pez(y2) +1 =0, then ME(v1,72) is a compact manifold
of dimension 0.

Theorem 1.2.14 ([AD10]) Let us define

HK(’Ylv’}Q) = U M(’yh/yiqule)/RXMK(’YL’YQ)
v EP(H1)
pez(v)—poz(y)=1

U U MX (b, 78) x M(vh, 72, Ha, Jo) [
Yo €P(Hz)
ez (vy)—pez(v2)=1

If uez(m) = poz(12), then ME (v, v2) UTTE (v1,v2) is a compact manifold of dimension
1 with boundary equal to

IT% (y1,72) U ({0} x M(71,72, Ko)) U({1} x M(71,72, K1)).

with opposite orientation

39



1.2.4

1. BACKGROUND ON SYMPLECTIC HOMOLOGY

We are now ready to proceed with the proof of Theorem 1.2.12. We define the homotopy
S :SC.«(Hy, J1) = SCyy1(Ha, J2) as follows: if 44 € P(H7) such that pcz(v1) = k then

Setn) = >, #ME(m,2)e

12€P(H2)
pez(v2)=k+1

We have, for v, € P(H;) such that pcz(y1) =k,

So 8Hl (’71) + aHz o S(Vl)
=Sk Y, (F#MO H D)/ A0, Y, #ME(,9h)0%

v EP(H1) Y,EP(Hz)
poz(vy)=k—1 pez(Yh)=k+1

- Z Z (H#M (1,7, Hy, 1) ) #ME (1, 72)72

v2€P(H2) v €P(H1)
poz(v2)=k poz(v))=k-1

+ Y Y #ME () (M7, Ha, Ba) ) e

72€P(H2) ~v4€P(Hz2)
rez(v2)=k pez(vg)=k+1

= ) #(,)e

Y2 €P(Hz2)
poz(v2)=Fk

On the other side

¢fr—pfo =~ N (F#M, v Ko)) e+ D>, (#MOn, 72, K1)
Y2€P(Hz) Y2€P(Hz)
nez(v2)=k pez(v2)=k
Therefore we reach the conclusion using theorem 1.2.14. | %

Positive symplectic homology

Let (W,w, X) be a compact symplectic manifold with contact type boundary, satisfying
assumptions 1.1.1 and 1.1.2 and let (W,CJ) be its symplectic completion. The idea of
positive symplectic homology is to “remove” the data of constant 1-periodic orbits from
symplectic homology.

We assume in this section that (W,w, X) is an exact symplectic manifold, i.e. there
exists a globally defined 1-form A such that d\ = w. We need this assumption in order to

identify the set of critical points of a Hamiltonian with its 1-periodic orbits of small action.
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Let H: S' x W — R be a Hamiltonian in Hstq (cf. Definition 1.2.1). Recall that the
Hamiltonian action functional Ay : O, (S1, W) — R is defined as

Ap(y) = —/DQ a*a—/slﬂ(a,ry(e))de

where o : D2 — T is an extension of ~ to the disc D?. When the symplectic form is exact,
w = d\, the action becomes

Aui= = [ = [ HOA0) 0.
St St
The 1-periodic orbits of H € Hgq fall into two classes (see Remark 1.2.2)

1. critical points in W; whose action is strictly less than some small positive constant
¢; indeed, if (6, x) is a critical point of H, the action of the constant orbit is equal to
—H(0,z);

2. non-constant periodic orbits lying in W \ W whose action is strictly greater than e;
indeed, the action of such an orbit is close, for a given p in [0, po] with "= h'(e”) in
Spec(M, ), to the action of the orbit of the vector field —h/(e”) R, located in M x{p};
this is given by — [, e?a(—h(e”) Ry )df— [¢1 h(eP)df = ePh! (e”)—h(eP) = ePT—h(e’);

it is positive since h is convex.

The € above is chosen (for instance) as half the minimal value of the periods of closed orbits
of the Reeb vector field on M = dW. Functions H are chosen so that the value of |H| in
ST x W is less than €, so that h(e”) is less than Je (hence e”T — h(e”) is greater than 3e)

and the C2-closeness to an autonomous function is such that the actions differ at most by

1
56.

Lemma 1.2.15 The action decreases along Floer trajectories, i.e. if u: R x ST — Wisa
solution of equation (1.1) such that

i ) =370 and i () =70)
then
A(y7) = A(v ).

For a proof we refer to the more general case of lemma 1.3.18.

Let SC=¢(H,.J) be the complex generated by the 1-periodic orbits of action no greater
than e. It is built out of critical points of H and it is a subcomplex of SC(H, J). It has
been proven by Viterbo in [Vit99, Proposition 1.3] that

H,(SC=¢(H,.J),d) = Hyyp,(W,0W).
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Definition 1.2.16 The positive Floer complex is defined as the quotient of the total com-
plex by the subcomplex of critical points;

SC*(H,J) := SC(H, NI sce(n, 1)

Remark that the differential induces a differential on the quotient which we still denote 9.

Positive symplectic homology is defined as a direct limit over non degenerate H € Hgiq
of the homology of SC*(H,J). The continuation morphisms defined in Definition 1.2.6
descend to the quotient since the action decreases along a solution of (1.3) cfr lemma 1.3.18
(when the homotopy is increasing everywhere).

Definition 1.2.17 The positive symplectic homology of (W, w) is defined as

SHT(W,w,X) := lim H.(SC](H,J),)
HeHstd

Remark 1.2.18 The short exact sequence
0— SCS%(H,J)— SC(H,J) = SCT(H,J) =0
induces a long exact sequence in homology

H, (W, 0W) SH,(W,w, X) . (1.5)

3 /

SHf(W,w, X)

Positive symplectic homology can be defined in a wider context. We refer to section 4.2.1
for an explicit construction on compact symplectic manifold with contact type boundary
satisfying assumptions 1.1.1 and 1.1.2.

Example: the ball B?"

We use the long exact sequence :

H*+n(B2",8BQ” = S2n71) SH*(B2n;wstd7Xrad)

[_1] /

SH?(BQna Wstds Xrad)

and the fact that SH, (B2n) = 0 to deduce that
SH:_(ana Wstd Xrad) = H*Jrnfl(BQn’ S2n_1)‘
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1.3. Sl-equivariant symplectic homology

To compute the relative homology H,(B?*",5?"~1), we use the exact sequence

H*(SQn—l) H*(BQn) .

[71] /

H*<B27'L7 SQn—l)

Thus we have
Z if x=2n

H*(BQn’ SQn—l) — '
0 otherwise

and this implies
Z ifx=n+1,

SHI (B, weq, Xrad) =
( std> Xrad) {0 otherwise.

In particular the positive symplectic homology of the ball has only one generator. This
shows that this homology invariant cannot detect all distinct periodic Reeb orbits on the
sphere (with a contact structure which is non degenerate).

Sl-equivariant symplectic homology

Sl-equivariant homology

Let X be a topological space endowed with an S'-action. If the S'-action is free, X/g1
is a topological space. The aim of S'-equivariant homology is to build on the space X
a homology which coincides, when the action is free, with the singular homology of the
quotient. One considers the universal principal S'-bundle ES' — BS'.The diagonal action
on X x ES' is free and one denotes by X x g1 ES! the quotient (X x ES')/g1.

Definition 1.3.1 (Borel) Let X be a topological space endowed with an S'-action. The
S1-equivariant homology of X with Z-coefficients is

H5 (X) = H,(X xg ES",Z).

An axiomatic definition of equivariant homology was stated later by Basu, [Bas|, based on
the following Proposition:

Proposition 1.3.2 The S'-equivariant homology with Z-coefficients is a functor Hfl from
the category of S'-spaces and S'-maps to the category of abelian groups and homomor-
phisms. Let X be a topological space endowed with a S'-action, Hfl associates to X
a sequence of abelian groups: HiS1 (X,Z),i > 0. Let f: X = Y be an S'-equivariant
map between topological spaces endowed with an S'-action. It induces homomorphisms
f{gl : Hisl(X, 7) — HZSl(Y, Z). The functor H*S1 satisfy the two following conditions:
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1. If the S*-action on X is free, then HS' (X,Z) = H,(X/g1,Z) (the singular homology
of X/s1)-
2. If f: X = Y induces an isomorphism f. : H.(X,Z) — H.(Y,Z), then it also induces
an isomorphism f5' : HS' (X,7) — HS' (Y, 7).
Any functor satisfying the two conditions of Proposition 1.3.2 is given by Definition 1.3.1.

Indeed, the projection pri : X x ES' — X : (z,e) = x is an S'-equivariant map which
induces an isomorphism

pri,: Ho(X x ESYZ) — H.(X,7Z)
since ES' is contractible. By 2, pri, induces an isomorphism
S HS' (X x BSY,Z) - HS' (X, 7).
Condition 1 then implies

H5 (X,7) = H.(X xq ES", 7).

Sl-equivariant symplectic homology

The setup is the same as for symplectic homology (cf. section 1.2.1). The S!-equivariant
symplectic homology is defined for any compact symplectic manifold with contact type
boundary (W, w, X). The S'-action we are referring to in this section is the reparametriza-
tion action on the loop space,

p-7(0) =~(0 — )
not an action on W. This homology was first introduced by Viterbo in [Vit99]; a different

approach, which will be presented in section 1.4 was sketched by Seidel in [Sei08] and a
detailed study by Bourgeois and Oancea appears in [BO12, BO10, BO13b].

The functional

Viterbo’s idea is to adapt Borel’s construction for Morse theory to the space of contractible
loops in W with the S'-action. We consider the model of ES! given as a limit of spheres
S2N+1 for N going to oo with the Hopf S'-action. To provide S'-invariant functionals, we
use S'-invariant Hamiltonians : H : S* x W x $2N+1 3 R. The S'-invariance condition

reads,
HO+ ¢,z,0z) = H(0,z,2), V0, p e Stz e §2VHL

The action functional A : C>(S1, /W) x 82N+l R, called the parametrised action func-
tional, is defined as

Ay, z) == — /D2 oW — /Sl H(0,~(0),2)db. (1.6)
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where o : D2 — W is _an extension of v to the disc D?. Tt is invariant under the diagonal
Sl-action on C®(S1, W) x §2N+1,
The critical points of the parametrised action functional are pairs (v, z) such that

v€P(H,) and /Sl %]?(9,7(9))d9 =0, (1.7)

where H, is the function on S! x W defined by H.(0,x) := H(0,z,z) and where P(H,)
denote, as before, the set of 1-periodic orbits of Xy, . The set of critical points of A,
denoted by PS' (H), is St-invariant. If ¢ = (v,z) € PS (H), we denote by S, the S'-orbit
of q

Sq={p-a=¢ (v.2) = (¢ 7.92) |9 €S}
Such an S, is called nondegenerate if the Hessian d?.A(7, z) has a 1-dimensional kernel for
some (and hence any) (v, z) € Sy.

Definition 1.3.3 An S'-invariant Hamiltonian H is called admissible if H, is in Hsiq (as
in Definition 1.2.1) with constant slope independent of z for all z € S?N*! and if for any
critical point ¢ € PSI(H), the S'-orbit S, is non degenerate. Let #HS"N be the family of
such hamiltonians.

Again, one can consider more general Hamiltonian in Hgq; the main point is that it
coincides with a linear function with constant slope outside a compact set.

Proposition 1.3.4 ([BO10], Proposition 5.1) The set HSWN s of second Baire cate-
gory in the space of S'-invariants Hamiltonians H such that H, is in Hgq with constant
slope independent of z for all z € S*NTL,

The chain complex

The chain complex of our homology will be generated by the set of S'-orbits of critical
points of A.

Definition 1.3.5 ([BO13b]) The parametrized index of a non degenerate circle of critical
points S,, with ¢ = (7, 2), is defined as follows. The Hamiltonian H : ST x W x §2N+1 5 R
is extended to a function H : S* x W x T*$2N+1 5 R by pullback

H(0,2,(2,¢) =H(0,7,2) = H,(0, ).

The cotangent bundle 7%S?N*! is endowed with its canonical symplectic structure dz A d¢
and one considers the Hamiltonian vector field X7 = Xp, — %—E@C. The 1-periodic orbits
of X are of the form 5 := (y(-),2,{(-)) with v a l-periodic orbit of H, and ((6) =
¢(0)— 09 91 (0, 4(¢"), 2)d0’ with (v, z) a critical point of the parametrized action functional
and where ¢(0) can be chosen arbitrarily in 77 S?V+1.
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The parametrized index of the circle of critical points S, .y, fparam (S(%Z)), is defined
as the Robbin-Salamon index (see section 6.4) of the path of symplectic matrices defined
by the differential of the flow of X 5 along 7 using a trivialisation of T(/W x T* 82N “) over
a disk bounded by 7.

The grading in the chain complex of the element S, is equal to —ptparam (Sq) + N.

Floer trajectories

To define negative gradient trajectories of the parametrized action functional A, one needs
a metric on the loop space and on the sphere. One chooses again a parametrized smooth
loop J : S' x S2N+1 5 End(TW) of almost complex structures on W which are compatible
with w, and a metric g on S?"*!; since the functional is S' invariant, we want the following
S1 invariance.

Definition 1.3.6 A parametrized loop of almost complex structures
J 1S x §2NFL s End(TW), (0, 2) — J?

is called S'-invariant if
Jore=Jl,  V0,pe S vz e PN

and is called admissible if for all z in S?N*1 the loop of almost complex structures J, is
in J as defined in Definition 1.2.4.
We denote by J SUN the set of pairs (J,g) consisting of an admissible S'-invariant

parametrised loop of almost complex structures and an S'-invariant Riemannian metric g
on §2N+1.

Definition 1.3.7 Given H € H5"N, (J,9) € TSN and g, ¢t € P (H), we denote by

M (Sq—»Sq+; H, J, g) the set of Sl-equivariant Floer trajectories, consisting of pairs (u, z)
with u: R x ST — W and 2z : R — S2N*1! such that

Osu + Jg(s) o u(dgu — X}o_lz(s) ou) =0
(1.8)

with the asymptotic conditions

lim (u(s,-),2(s)) € S,-, lim (u(s,-), 2(s)) € Sy+.

S§——00 S——+00

By ﬁzH(G, x, z), we mean the gradient at the point z with respect to the metric g, of the
function on $?"! defined by H(0,x,-).
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Proposition 1.3.8 ([BO10], Proposition 5.2) Assume S,-,S,+ C PS'(H) are non-
degenerate. Then for any (u,z) € /T/I\(Sqf,Squ;H, J,g), the linearisation D, . of the
equation (1.8), extended to suitable Banach spaces is Fredholm of index —fiparam (Sq—) +
Hparam (Squ) + 1.

Transversality results

Bourgeois and Oancea have proven a transversality result involving the two following classes
of Hamiltonians (section 7 of [BO10)):

1. Generic Hamiltonians. The set, denoted Hgepn, of Hamiltonians H < H5'N such
that:

a) For all (v,z) € PS'(H), 7 is a simple embedded curve ;
b) For all distinct elements (71, 21), (72, 22) € PS'(H), we have 1 # 7.

2. Split Hamiltonians. The set, denoted Hgp, of Hamiltonians H € HS'N of the
form K(x)+ f(z), with K C?-small on W such that K has either constant and non
degenerate 1-periodic orbits, or non constant and transversally non degenerate ones
and f is an S'-invariant function.

We denote by H, the union of those two sets: H. = Hgen U Hspiit-

Definition 1.3.9 ([BO12]) An admissible Hamiltonian H € 5"V is called strongly
admissible if

1. For every (v,z) € PS'(H) such that 7 is not constant, we have
X% (v(0)) #£0, voe S
2. For every (vy,z) € PS5 (H) such that v is constant (equal to z € /W), there exists a

neighbourhood U of {z} x (S'-2) in W x S2N+1 such that H(0,2',2') = K (/) + f(2)
for all § € S* and for all (2/,2") € U. Moreover, x is an isolated critical point of K.

Remark that any Hamiltonian in H, is strongly admissible.

Definition 1.3.10 ([BO12]) Given a strongly admissible Hamiltonian H, a pair (J, g) €
TSN s called adapted to H if the following hold :

1. For every (v, z0) € PS' (H), we have

[JZGX%Z,X%Z] (v(0)) ¢ Span(JfX%z,X%Z), Vo e Stz e St 2.
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2. for every (7,z0) € P (H) such that v is constant (equal to z € /W), there exists a
neighbourhood U of {z} x (S - 2) in W x S?N*+1 such that J? is independent of
and z on U, i.e. J?(2') = J(a') for all (2/,2) € U and 6 € S'.

We denote by HJ' the set of triples (H, J, g) such that H is a strongly admissible Hamil-
tonian and (J, g) is adapted to H and we denote by H..J’ the subset of H.J’ corresponding
to elements H € H,, asking, furthermore, if H € Hgpy;, that J is independent of 8, of p
and of z for p > 1.

Given H € ’HSl’N, we say that a pair (J,g) € TSN s regular for H if the linearisation
D, . of the equation (1.8), extended to suitable Banach spaces, is surjective for any ¢, gt €
PSI(H) and any (u, z) € ./T/I\(Sqf, S,+3H,J,g). We denote the set of those regular pairs by

Trag™ (H).

Theorem 1.3.11 ([BO10], Theorem 7.4) There exists an open subset T, C HJT'
which is dense in a neighbourhood of H.J' C HJ' and consisting of triples (H,J,g) such

that H € HS"N and (J,g) € J%N(H)-

For (H,J,g) € HJ/,,, the moduli space /(/I\(Sqf,SqﬂH, J,g) is a manifold whose di-
mension is —flparam (Sq_g + Uparam (Sq+) + 1 ; it carries an action of R (by reparametriza-
tion in the s-variable) and an action by S' coming from the S'-invariance of the action
A and of the almost complex structure (J,g). We denote by /\/lsl(Sq—,Sq+;H, J,g) the
moduli space quotiented by those two actions. It is a smooth manifold of dimension

—Mparam (Sq_) + Hparam (Sq“‘) - L

Definition 1.3.12 The S'-equivariant Floer complex SCfl’N(H, J, g) is the following chain
complex:

SCSN(H) = SCSN(H, J,9) = @ %S,
S,ePS (H)
where the grading is defined by |S;| = —ftparam (Sq) + N. The S'-equivariant differential

is defined as ) ) )
0% - SCIN(H, 7, 9) — SCZ Y (H, T, g)

% (S = Y #MI(S, S H, T g)S
S+ CPS' (H)
|Sq*|7|sq+|:1

where # is a count with signs defined in [BO12|, obtained by comparing the coherent
orientations on M?® 1(S’T,Sﬂfr;lﬁf ,J,g) with the orientation induced by the infinitesimal
generator of the action.

The fact that it is indeed a differential follows from:
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Proposition 1.3.13 ([BO13a], Proposition 2.2) The map 85" satisfies 05 095" = 0.
Definition 1.3.14 The S'-equivariant Floer homology groups are defined as

SHS"N(H, J,g) :== H.(SC"N (H),5%")
The S'-equivariant Floer homology groups are independent of the choice of the regular
pair (J, g).
Proposition 1.3.15 ([BO13a]) Given a Hamiltonian in HS'N | and two regular pairs

1

for H, (J1,91) and (J2,g2) in j;ig’N, there exists a canonical isomorphism

SHIWN(H, Jy, 1) = SHI N (H, Jo, go).

In the sequel we shall denote SHfl’N(H, J,g) by SHfl’N(H).

1
Let H,Hs € eréN be two S'-invariant Hamiltonians and let Hs be an increasing
homotopy between them (i.e ;Hs > 0 and there exists sp such that for |s| > sg, we have
H_|, = Hy and H|, = Hy). We consider the solutions of

Osu + Jg{z(s) (Oou — Xn, ., (u)) =0

- 1.9
Z(s) — . V.H(s,0,u(s,0),2(s))dd =0 (1.9)

with the asymptotic conditions

lim (u(s,),2(s)) € Sq, lim (u(s,-),2(s)) € S,

§——00 s—+400

where q; € P5'(H,) and ¢o € PS' (Hy). Let M(Sq,,Sq., Hs, Js, gs) be the space of solu-

tions of (1.9) ; it carries an S'-action (but no R-action) and we denote the quotient by
1

M (Sq, Sg, Hs, Js, gs)-

Proposition 1.3.16 ([BO12], Proposition 2.1) Forall q; € P° (H,) and go € P°' (Hsy),
the M5 (Sq1»Sqo, Hs, Js, gs) are smooth manifolds of dimension —ptiparam (Sq, )+ Eparam (Sgs ) -

We can define the continuation morphism :

¢ SC’fl’N(Hb Ji,91) = SCEI’N(HQ, J2,92)

by
$(Se) = > #M (S, S He, Js, 95) Sga (1.10)
Sgy CPS' (Ha)
|S£11’7|SQ2|:1
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

where q; € P° ' (Hy) and ¢o € P° ' (Hz). These morphisms are chain maps and thus pass to
the quotient where we still denote them by ¢. As previously, we define the S'-equivariant
homology groups of W to be the direct limit over continuation maps of the S'-equivariant
Floer homology groups

SHEN(W,w,X):= lim SHIN(H). (1.11)
HenS N

We then take the direct limit over N with respect to the S'-equivariant embeddings
1 1

S§2N+1 <y G2N+3 which induce maps SHY ¥ (W,w, X) — SHy "YW, w, X) for each

N.

Definition 1.3.17 The S'-equivariant symplectic homology of W is

SHS (W,w, X) := lim SHS"N (W, w, X).
N

Example: the ball B?"

The idea is the same as in section 1.2.2. We take a Hamiltonian
He:C" x PN R (2,p) = C|l2))* + F(p)

where f is the S'-invariant lift of a perfect Morse function on CP" L. The critical points

of Ay are (0,po),...,(0,pn—1) where {p;|i =0... N —1} = Crit(f). The index of (0, p;)

1S

C .
_Nparam(oypz’) + N =2n \‘TI'J +n + 2.
Therefore

. C ..

SCS'N (Hy) — Z if x :gn £ +n+2iie{0,...N -1}

0 otherwise

. g . : SN S'.N
and, the differential is 0 since the complex is lacunary, thus SHY " (H¢) ~ SCY ' (He).
1

If we let Cp = km(1 + 2N) + € for € > 0, the continuation maps ¢ : SCy ’N(Hck) —
SCfl’N(HCkH) are identically 0 and thus

SHS"N(B* wyg, Xyag) = limlim SHS" N (He, ) = 0.

— =
N k
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1.3.3

1.3. Sl-equivariant symplectic homology

Positive S'-equivariant symplectic homology

As in section 1.2.4, we assume that (W, w) is an exact compact symplectic manifold with
contact type boundary in order to identify the complex generated by 1-periodic orbits of
X of action < € with the complex generated by the critical points of H. To see that it is
a subcomplex, we study the action along the Floer trajectories.

Proposition 1.3.18 The action decreases along a parametrized Floer trajectory; i.e a so-
lution of (1.9).

PROOF: Since the action for the Hamiltonian Hy along the pair (u(s,-), z(s)) is given by

AHS,Z(S) (u(sa ')7 Z(S)) = - /D2 0';&\) - /Sl H(S, 0, u(s, 9), Z(S))

where o, : D? — W is an extension of vs = u(s,-) to the disc D?. By the asphericity

condition, ng orw = fD2 05w+ fslx[so,s] u*w so that

2.AH (u(s, ), 2(s)) = —/ w(0su, Ogu)do —/ gH(s,9,u(s,9),z(s))a@u(s,9)d9
88 s,z(s) g1 g1 u S

1 V.H(s,0,u(s,0),2(s)) - 2(s)df

o

) %H(s, 0,u(s,0), z(s))d9

= —/ w(0su, Ogu)dh — dH (Osu)db
St St

=

1 2H(s,0,u(s,0),2(s))do - . ﬁzﬂ(s, 0,u(s,0),2(s))do

_ /51 %H(S,H,U(37‘9>vz<8>)d6

T
<

- 2
The last two terms — Hfsl VZH(S,Q,u(s,Q),Z(s))dHH and — [ %H(s,ﬁ,u(s,@),z(s))d@
are clearly non positive. The first line can be rewritten as

—/ w(0su, Ogu)dd — | w(Xpg,0su)dd = —/ w(Osu, Ogu — Xp,,,)db
S1

St S1

- _ /sl w(0su, Jf(s)asu)de = _ ||85u\|§ng<s) <0.

| %

Corollary 1.3.19 The action decreases along a solution of (1.8).
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Let H € H5V, By the above Corollary, the complex generated by 1-periodic orbits of
Xp of action < e (denoted SC’Sl’N’SE(H, J,g)) is a subcomplex of SCSI’N(H, J,g). Tt is
built out of critical points of H. As in Viterbo [Vit99, Proposition 1.3] we have

H(SCSN=4(H, J,g),05) = HE,,(W,0W).

where the S'-action on the pair (W, W) is the trivial one.

Definition 1.3.20 Let H € H;geléN be a Hamiltonian. The positive S'-equivariant complex
is defined as

1 1
SC*NE(H, T, g) = SC¥N(H, J,9)/ 908" Nze( 1, )

Remark that the differential induces a differential on the quotient which we still denote 8° "
The continuation morphisms defined in equation (1.10) descend to the quotient since the
action decreases along a solution of (1.9) cfr Proposition 1.3.18. The positive S'-equivariant
Floer groups are defined as

SHYNH(H) .= H(SCS N+ (H),0%).
Definition 1.3.21 The positive S'-equivariant symplectic homology is defined as

SHZ W (Wow, X)i=limg iy SHZV ().
N pens'y

Example: the ball B?"
The short exact sequence

0 — SCS"NSe(H, J,q) — SC5N(H, J, g) — SC"NH(H, J,g) = 0
induces a long exact sequence in homology

HS., (B>, 0B = §21) SHS" (B, wad, Xrad) -

1
SHE ,+(an, Wstds Xrad)

(1.12)
The fact that SHfl’N(B2”,wStd,de) = 0 implies

1 1 _
SH:? ’+(32n,wstd,de) o Hf+n_1(32n, SQn 1).
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1.4. An alternative presentation of the S'-equivariant symplectic homology

The S*-action on the pair (B?", 52" 1) is trivial ; therefore
Hfl(Ban Sanl) _ H*(BQTL’ S2n71) ® H*(le)

We have as in 1.2.4 that

H,(B2, §21) = Z it x = 2”
0 otherwise.

Thus,
7Z ifx=n+14+2i €N,

SHS (B2 wy, Xrad) =
( std> Xraa) 0 otherwise.

An alternative presentation of the S'-equivariant symplectic homology

The definition of S'equivariant symplectic homology that we have presented fits nicely in
the general picture of symplectic homologies but is hard to tackle. An alternative homology
has been suggested by Seidel in [Sei08] and developed by Bourgeois and Oancea in [BO12].
It has the advantage to use a special class of Hamiltonians and simplified equations for
Floer trajectories, so that properties and computations are often feasible. The important
point is that this homology coincides with the S'equivariant symplectic homology defined
above.

We shall look at a subfamily of the S! equivariant Hamiltonians HS'N as defined in
Definition 1.3.3. We shall define the generators of our complex and the equations for the
Floer trajectories considered to define a differential.

The data

We consider a compact symplectic manifold with compact type boundary (W,w, X). We
choose a perfect Morse function f : CPY — R and a Riemannian metric § on CPV for
which the gradient flow of f has the Morse-Smale property (and this will be for each N).
Let f: S2N*!1 5 R be the S'-invariant lift of f. Let ¢ be the lifted S! invariant metric
on the sphere S?V*1. We denote by Crit( f) the critical set of f; it is a union of circles.
We choose a point zg on each critical circle and we fix a local slice transverse in S2V*! to
the circle in Crit( f ) at 2o, considering the hypersurface T, spanned by the stable and the
unstable manifold at zy (with respect to the gradient Vf of f with respect to g). Let U
be a neighbourhood of Crit(f) and let j: S2V+1 — R be a cut-off function on U which is
equal to 1 in a neighbourhood U’ C U of Crit(f) and 0 outside U. We define

= i \i H>0.
= it [V
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Class of admissible Hamiltonians

We look at the subfamily #° LN (f) c H® LN consisting of Hamiltonians of the form H + f
with H : 81 x W x §2N+1 5 R in #5"N (cf. Definition 1.3.3) such that

1. Each critical point (v,z) of the parametrized action functional A, 7 defined by

o+ f lies over a z which is a critical point of f ;

2. For every z € Crit(f), H(-,-,z) has non degenerate periodic orbits;

3. H+ f has nondegenerate S'-orbits;
4. HﬁzH(H,a:,z)H <, for all z € SN\ U;
5. Forall z e U, V.H-Vf(z) = 0.

Remark 1.4.1 Condition 3 can be replaced by the following : near every critical orbit of
f, we have H(0,xz,2z) = H'(§ — ¢.,x), where ¢, € S' is the unique element such that the
action of its inverse brings z into T, i.e. p;tz € T,, and H' € Hgq. In fact, we shall
consider elements H which are built from an H' : S x W — R in Hgiq as in Definition
1.2.1, close to an autonomous Hamiltonian; we shall develop this in the next chapter.

The chain complex

Given an admissible H + f, the set pS (H + f) of critical points (7, z) of the parametrized
action functional Ay 7 arise in circles and each one of those circle gives a generator of the
chain complex. So the complex is generated by the set

{S(%Z) =St (v, z)}

The index of the generator S, .y is defined to be

M(S'y,z) = —MCZ(’Y) + MMorse(Z; _f)

The differential operator

Let (J?) be an S'-invariant family of almost complex structures independent of z along
each local slice. Let p~ = (y7,27) and p* = (v7,27) be two critical points of Ay, 7.

We denote by /T/l\(Spf,SpHH, f,J?,g) the space of solutions (u,z), u : R x St — T//I\/,
z: R — 2N+ to the system of equations

dsu + Jf(s) ou(agu — XHZ<3) ou) =0
2—=Vf(z)=0
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with the conditions

lim (u(s,-),2(s)) € S,- lim (u(s, ), 2(s)) € Sp+. (1.13)

§—>—00 S§—00 p

This system is to be compared to the system (1.9).

If S,- # Sp+, we denote by M(S,-,S,+; H, f, JY, g) the quotient of M\(Sp— Sp+s H, f, J%.9)
by the reparametrization R-action. M(S,-,S,+; H, f, J?, g) carries a free S'-action and
we denote by Msl(Sp—,Sp+;H, f,J%, g) the quotient of M(S,-, S,+; H, f, J% g) by this
Sl-action.

Proposition 1.4.2 ([BO12]) For generically chosen J° and g, the spaces
./\/lsl(Sp_,Sp+; H,f,J? g) are smooth manifolds of dimension —p(Sp-) + u(Sp+) — 1.

The chain complex is defined as:

SCENH. )= P LS.
S,CPS' (H+f)

The differential 85" : SC N (H, f) — SC"N (H, f) is defined by

85 (S,-) = 3 AME (S, Sy H, f,0%,9)S,r
S cPS! (H+f)
H(S,—) (S ,4)=1

with signs defined in [BO12|. The fact that the homology defined above is the same as the
one defined in section 1.3.2 is proven in:

Theorem 1.4.3 ([BO12], Proposition 2.7) For any non degenerate K € HSN that
coincides with H+ f outside a compact set and for any pair (J',g') € TSN which is reqular
for K and coincides with (J, g) outside a compact set, there is a canonical isomorphism

SHE"W(K,J',¢') ~ H.(SCS"N(H, f),0%).

Continuation maps are defined as usual, using the space of solutions (u, s) of

(1.14)

Osu + Jf}z(s) o u((%u - Xu, ., ° u) =0
i —Vf(z)=0

with Hy + f an increasing homotopy between Hy + f and Hy + f. The isomorphisms of
Theorem 1.4.3 commute with continuation maps when Hy < H; and when N — oco.
Hence we have an alternative definition:
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Definition 1.4.4 The S'-equivariant Floer homology groups are defined as
SHEN(H, f,J,9) == H.(SCJVN(H, f),0%)
The S'-equivariant symplectic homology groups of W are defined as

SHY (W,w, X)=lim lim SHIN(H, [, J.g)

We show here below that the action decreases along these new trajectories. This allows
to define SHS"+ in the context of exact compact symplectic manifolds with contact type

boundary.

Proposition 1.4.5 Let Hy+ f and Hy + f be Hamiltonians in HSI’N(f) and let Hy :=
H, + f be an increasing homotopy between Ho + f and Hy + f. If (u,2), u: R x St — W

and z : R — S?N*+1 s a solution of

{ Osu+ JY g 0 u(Opu — X, ou) =0
:—Vf(z)=0
with
Jim (u(s, ), 2(s)) = (v7(),27) end - Tim (u(s,-), 2(s)) = (77 (), 27)
then

A(y727) 2 AT, 2T).

PROOF: The proof proceeds as in proposition 1.3.18. The parametrized action for the

Hamiltonian Hg + f on the pair (u(s, ), z(s)) is given by

_/D2 g;@—/SI(HSJrf) (0,u(s,0),2(s))do
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where o, : D? — W is an extension of vs = u(s,-) to the disc D?. By the asphericity
condition, ng orw = ng asow + fSlx[so J u*w so that

(;ZAHSM;(U(S, ), 2(s)) = — /S1 w(0su, Ogu)dh — /S1 %HS(Q,U(S,9),2(8))%u(8,0)d9

V. (Hs + [)(8,u(s,0), 2(s)) - 2(s)d6

1

(55 (s + 1)) (6, (5,0, 2(5)) df

1

w(0su, Ogu)dh — / dH, () (Osu)dd
S1

||
m\
—

<u

L(Hs + f) (s,@,u(s,ﬁ),z(s)) . ﬁf(z)dﬁ

1

. S (Hy + [)(0,u(s,0), 2(s))do.

— o

The first line can be rewritten as

—/ w(@su,&gu)dﬂ—/ w(XH, ., Osu / w(Osu, Ogu — Xg, ., )d0
st st St

2
/Slw (Du, J? (s)0su)db = — ||88quJg<S> <0.

The last two terms rewrite as

_/ (2(H, + 1)) (6, u(s,0), 2(s))d

)
Ll

H(s,0,u(s,0),2(s)) - Vf(2)df

Condition 4 and 5 conclude. |

Remark 1.4.6 With the assumptions of Proposition, 1.4.5, it appears in the proof above
that

[0l g dsdo < Al 27) — A2,
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1. BACKGROUND ON SYMPLECTIC HOMOLOGY

Definition 1.4.7 Let H € HSI’N(f) be a Hamiltonian. The positive S'-equivariant com-
plex is defined as

SCSNH(H, ) = SCTN(H, )] g@st vz, gy

where Sésl’N’Se(H, f) is the set of critical points of AH+f of action less than e. The dif-

ferential passes to the quotient where we still denote it 95" and the positive S'-equivariant
Floer groups are defined as

SHS"NH(H, f) = H(SCYN*(H, f),8%).
Observe that the f should more precisely read fn in all the above construction.

Definition 1.4.8 The positive S'-equivariant symplectic homology is defined by

SH517+(W)W7X) = llm h_H)l SH517N7+(H7fN)

H. 1
N gens N (fy)

We assume (W, w, X) to be exact and we assume the function f to be small in order to a
identify 1-periodic orbits of small action with a pair (p, z), p a critical points of H.
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SHSl’Jr and periodic Reeb orbits

The goal of this section is to relate the positive S'-equivariant homology of an exact
compact symplectic manifold (W, d\), which is a so-called Liouville domain, to the Reeb
orbits on (M = OW,a = )|, ); this relation is expressed in Theorem 2.2.2. We use the
alternative description of S'-equivariant symplectic homology ([Sei08] , [BO12]) presented
in section 1.4, for a nice subclass of Hamiltonians.

Liouville domains

Definition 2.0.9 A Liouville domain (also called compact symplectic manifold with re-
stricted contact type boundary) is a compact manifold W with boundary OW = M, to-
gether with a 1-form A such that w := d\ is symplectic and the Liouville vector field X
defined by ¢(X)w = A points strictly outwards along OW. The Liouville domain will be
denoted (W, \).

Let us observe that the asphericity condition is automatically satisfied. We still assume
that (c1(TW), me(W)) = 0. We have defined the (symplectic) completion of a compact
symplectic manifold with contact type boundary in section 1.2.1. We consider the comple-
tion

W =WuU(@W x Rt)

of a Liouville domain (W, \), built from the flow of the Liouville vector field X. We denote
by A the 1-form on W defined by A on W and by e’a on W x RT with a := Alpy - The

completion will be denoted (W, ).

The multicomplex defining positive S!-equivariant homology

The “nice subclass” of Hamiltonians that we use was introduced in [BO12]. The Hamilto-
nians are constructed using elements in Hgq which are small perturbations of autonomous
Hamiltonians as we shall now indicate.
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2.1.1

2.1.2

1
2. SHSt AND PERIODIC REEB ORBITS

Construction of admissible Hamiltonians from elements in Hq.

As in section 1.4, we fix a sequence of perfect Morse functions fy : CPY — R, which are
C?-small, together with a Riemannian metric gy for which the gradient flow of fy has the
Morse-Smale property. For instance, we can take

Z;‘V:O a; ’wj’2

N 12
Zj:o |w |

(W’ cwN])) =C

with a;41 > a; € Rand C <0 € R

and the standard metric.

We denote by fy : S2V*1 — R their S'-invariant lift, and by Crit(fN) the set of critical
points of fy (which is a union of circles).

We choose a point z; on the critical circle which projects on the critical point of —fn
of index 2j. In our example, the point z; € S2N+1 can be taken as the point (w?, ..., w")
with w' = 5;

We fix a local slice transverse in S?N*! to the circle in Crit(fy) at zj. This local slice
is the hypersurface T, spanned by the stable and the unstable manifold at z; (with respect
to the gradient V fy of fy with respect to gn). In our example, T, = {(w...,wN) €
SN i € R},

We consider Uy a neighbourhood of Cm't(fN) and py : SVt & R a S! invariant
cut-off function on Uy which is equal to 1 in a neighbourhood Uy C Uy of Crit( fn) and

6f§v(z)H > 0.

If H € Hgtd; we can create an Sl invariant Iiamﬂtonian H:S'x W x §2N+1 4 R
from H' and f. Define H : S' x W x Uy — R by H(0,z,2) := H' (0 — ¢, x) where ¢, € S*
is the unique element such that ¢;!- 2 € T,; when z is close to the critical circle including
z;. We extend Hto H:S'x W x SN+ 5 R, by

0 outside Un. We set ey := min, cgoni1\yy,

H(0,2,2) = pn(2)H(0,7,2) + (1 — pn(2)) B(x)H' (8, ) (2.1)

using the cutoff function py on SZV+! and a function 3 : W — R which is 0 where H’ is
time-dependent and equal to 1 outside a compact set. The element H is admissible, i.e. is
in 5N (f) as defined in section 1.4, when assumption 4 is satisfied; this will be the case
when we restrict ourselves to a subclass of H' € Hq, consisting of small perturbations of
some autonomous functions. This will be developed in section 2.1.3.

The complex for a subclass of special Hamiltonians

Let H' : S'xW — Rin Hsta be fixed, with non degenerate 1-periodic orbits. We conside~r a
sequence Hy € HSI’N, N > 1 such that Hy(0,x,2) = H'(0 — ¢,, x) for every z € Crit(fn)
(see for instance construction 2.1) and a sequence Jy € J° "N such that Jy is regular for
Hy.
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2.1. The multicomplex defining positive S'-equivariant homology

Let g : CPN «— CPN*L [0 oo iV s w0 ... wiv_l : 0] and i1 : CPN —
CPNH:fw w5 (0w wN T and denote by dg 0 SN — §PNHS - 2
(2,0) and 77 : SZ2NHL — S2NH3 . 215 (0, 2) their lifts. We assume:

1. Im(7p) and Im(iy) are invariant under the gradient flow of fyy1;

2. fn = fyy1000 = fyy10i01 +cest and ifgn+1 = i§gn+1 = gy (this will be true for our
example when a;41 = a; + 1 for all 7);

3. HN+1 ('7 ')gl(z)) - HN+1('7 '750(2)) — HN(a y Z),
4. JN+1,21(z) = JN+1,EO(,2) = JN,z

The critical points of Ay, 7 are pairs (72, z) where z is a critical point of fy and
where v, is a ¢.-translation of a 1-periodic orbit v of H in 1% (i.e v2(0) = v(0 — ¢,) which
writes 7, = ¢, - y). We have thus a natural identification (with gradings)

SO N (Hy, fy) = Zlu) 1 @z SC.(H', J)
St (2, 25) = ! @y =1 uly
where z; is the chosen critical point of — fn of index 27 and w is a formal variable of degree

2.
The differential, under this identification of complexes, writes

l
0% (u' @) =D u' T @ (7). (2:2)
j=0

for maps
©j 250*(H/)—>SC*+2]‘_1(H/), jZO,...N

defined by counting elements of Msl(S( X S s Hy, fn, JJN, gn) which is the quo-

"/z_j 32j (’Y;'E) 720) ’

tient by the R and the S'-action of the space of solutions of

Osu + Jf(s) o u(@gu - XHN,Z(S) o u) =0
5 —Vf(z)=0

going from S* - (7,0 25) to St (v, 20).
It follows from the assumptions (1), (2), (3) and (4) that for a fixed j, the maps ¢,
obtained for varying values of N > j coincide. Therefore we can encode the limit as

N — oo of all the Séfl’N(HN, fn) into a complex denoted
SCS' (H') := Z[u] ®7 SC.(H')
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2. SHSt AND PERIODIC REEB ORBITS

with differential induced by (2.2) that we can formally write as

85" = po+utor +uT2ps + ...

As before, there are well-defined continuation maps induced by increasing homotopies of
Hamiltonians and we have

Proposition 2.1.1 [BO12] The S' equivariant homology of W is given by:

SHS' (W) :=  lim H(Sé’fl(H/),551>.
HEHstd

Perturbation of Morse-Bott Hamiltonians

We show that we have a good control on the generators of the complex SC,(H') defining
symplectic homology when we choose the admissible Hamiltonian H' in Hgq to be close to
an autonomous Hamiltonian. We shall use techniques taken from [BO09b] where symplectic
homology is computed directly from autonomous Hamiltonians.

This we do in the context of a compact symplectic manifold with contact type boundary
(W,w, X). We denote by M the boundary 0W. As before, we denote by (W,@) the
completion, by p the second coordinate on M x RT, and by « the contact form on M
defined by a = (X )w‘ - We denote by R, the corresponding Reeb vector field.

Definition 2.1.2 Let Hyp be the set of Hamiltonians H : W — R such that

1. Hy, is a negative C?-small Morse function;

w

2. H(p,p) = h(p) outside W, where h is a strictly increasing function, which coincides
with h(p) = ae” + b for p > po, a,b € R and a ¢ Spec(M, a), and we assume that
h" —h' >0 on [0, po).

Note that the 1-periodic orbits of Xz in W, for H € Hyg, are constant and non degenerate
by assumption 1. For (p,p) € M x Rt and H € Hyp, we have

Xu(p,p) = —e"h'(p) Ra. (2.3)

Thus the 1-periodic orbit of Xy are either critical points of H in W or non constant 1-
periodic orbits, located on levels M x {p},p € (0, pp), which are in correspondence with
periodic —R,-orbits of period e”h’(p).
Since H is autonomous, every 1-periodic orbit, v of X7, corresponding to the periodic
Reeb orbit v, gives birth to a S family of 1-periodic orbits of Xz which is denoted by S,
We shall modify an element H € Hyp, as in [CFHW96], to deform this autonomous
Hamiltonian into a time-dependent Hamiltonian Hs with only non degenerate 1-periodic
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2.2. Computing SHS'F

orbits. The Hamiltonian Hs(6#, p) will coincide with H(p) outside a neighbourhood of the
image of the non-constant 1-periodic orbits of Xz. We proceed as follows:

We choose a perfect Morse function on the circle, f : ST — R.

For each 1-periodic orbit vy of Xy, we consider the integer [, so that vy is a [,,-fold
cover of a simple periodic orbit:

Ly, ==max{k € N|yg(0+ ) =yu(0) Vo€ S'}.

This number /., is constant on the S L_family of 1-periodic orbits of Xz corresponding to
the periodic Reeb orbit v. We set [, = [,,, = % where T is the period of ~.

We choose a symplectic trivialization v := (11, 12) : Uy — V C S* x R?"~! between open
neighborhoods U, C W x Rt C W of the image of vz and V of S' x {0} such that
U1(vu(9)) = 1,0. Here S x R*"~1 is endowed with the standard symplectic form. Let
g:S'x R*=1 5 [0,1] be a smooth cutoff function supported in a small neighborhood of
St x {0} such that g‘slx{o} = 1. We denote by ffy the function defined on S, by fo wl\sy

For § > 0 and (0,p, p) € S x U,, we define

Hs(0,p,p) := h(p) + 63 (p, p)) f (¥1(p, p) — 40). (2.4)

The Hamiltonian Hj coincides with H outside the open sets S x U,.

Lemma 2.1.3 ([CFHW96, BO09b]) The 1-periodic obits of Hg, for 6 small enough,
are either constant orbits (the same as those of H) or nonconstant orbits which are non
degenerate and form pairs (Ymin, YMax,) Which coincide with the orbits in Sy starting at the
minimum and the maximum of f7 respectively, for each Reeb orbit vy such that S, appears in
the 1-periodic orbits of H. Their Conley-Zehnder indez is given by pioz(Ymin) = poz(y)—1
and picz(ax) = poz(y)-

Computing SHS"*

We consider now the symplectic homologies with coefficients in Q, denoted SH T(I/V, Q)
on a Liouville domain (W, \). The goal of this section is to show that if the Conley-
Zehnder indices of all periodic Reeb orbits on M = OW have the same parity, then the
positive S! equivariant symplectic homology is generated by those periodic Reeb orbits.
Let fy : CPY — R be as before a sequence of perfect Morse functions, which we assume
here to be C2-small.

The class of Hamiltonians

We consider a Hamiltonian denoted Hs n which is a S L_equivariant lift, as in construction
2.1, of a Hamiltonian Hgs which is a perturbation, as in section 2.1.3, of a Hamiltonian H
in Hyp (cf definition 2.1.2) such that the slope a is big and pg is small.
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As mentioned before, the non constant critical points of A Hyn+fy A€ Dairs (72, z) where

z 1s a critical point of fn and where 7, is a ¢,-translation of a non constant 1-periodic orbit
v of Hs in W. Such a v/ is of the form ~pin or YMax, located on a level M x {p}, p € (0, po)
corresponding to a periodic orbit of —R,, of period T = e?h/(p).

Remark 2.2.1 The action of this critical point is given by

—/ W;X—/ (Hy + ) (0,7-(0), ) db.
St St

With our assumptions (f small, py small), the second term is close to zero. The first term
is equal to — | g1 (7/)*A and this is given by e’T. Recall that T is called the contact action
of the Reeb orbit v of period T'. Hence the action of this critical point is close to T'.

We shall take f and H so that the difference between the action of a non constant
critical orbit and the period T of the corresponding Reeb orbit is, for any critical orbit,
smaller than a quarter of the smallest period, the smallest spectral gap and the smallest
distance between two geometrically distinct periodic Reeb orbits.

Theorem 2.2.2 Let (W, \) be a Liouville domain. Assume there exists a contact form o
on OW such that the Conley-Zehnder index of all periodic Reeb orbits have the same parity.
Then

SHY+W.Q) = P Q)

'YEP(Ra)
where P(Ry) denotes the set of periodic Reeb orbits on OW .

PROOF: Let H be a Hamiltonian in Hyp such that the action is distinct for S'-families of
orbits corresponding to Reeb orbits of different period. This is possible by Remark 2.2.1.
We consider, as mentionned above, the S'-equivariant functions H;s n which are lifts of a
perturbation Hgs of H. We use the natural identification, described in section 2.1.2:

SO N (Hy, fv) = Zlul/ v 41 @ SCF (Hy)

and the description of SC*(Hs) given by Lemma 2.1.3.
The complex SCSI*N’JF(H(;,N, fn) is filtered by the action thanks to Proposition 1.4.5.
We take the filtration FpSCsl’N"F(H&N, fN),p € Z such that for every p € Z, the quotient

Fp+1SéSl’N’+(H57N, fN)/Fpgésl,N#(HéN, fn) is a union of sets

{1 & YMaxs - - - 7UN & YMax, 1 & Yminy « « - 7UN ®’Ymin}

corresponding to underlying Reeb orbits v of the same period T'.
We consider the zero page of the associated spectral sequence.

oO,N ._ ~SYTN,+ ~
Epq = Fpr1SCy " (Hon IN) 5, s GSIN (B, v, fx)
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We have “twin towers of generators”, one tower corresponding to each periodic Reeb orbit
of period T on OW,

N ¥0 N
U @ YMax <—— U & VYmin

uler

2 ¥o 2
U” & YMax < U” @ Ymin

$o

1 ® YMax 1 ® Ymin

with induced differential as in the above diagram with the notation of section 2.1.2. The
differential between two elements in distinct towers vanishes. Indeed the corresponding
Reeb orbits are geometrically distinct in OW so any Floer trajectory linking elements in
distinct towers should satisfy

/ ||asu||§Jf(s) dsdf > dist(y~, 7).
On the other hand, by Remark 1.4.6,

/H@MEﬁ( ) dsdd < A(y~,27) — A(vT, 21

<T, -T

>+ + 3 min{distance between two distinct Reeb orbits}.

So there cannot be a Floer trajectory between elements in different towers.
To study any given tower, we use the explicit description of ¢y and ;.

1. [BO09b, Lemma 4.28] Let Ymin, Max and Hg be as above. For ¢ small enough, the
moduli space M (Ymin, YMax; Hs, J)/R consists of two elements; they have opposite
signs, due to the choice of a system of coherent orientations, if and only of the
underlying Reeb orbit v is good. This implies that in our case,

wo = 0.
2. [BO12, Lemma 3.3] The map 1 : SC;7(Hs) — SCF, (Hs) acts by

kyymin  if 7y is good,

P1(MMax) = {0 if v is bad.
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where k, is the multiplicity of the underlying Reeb orbit v i.e. v is a k,-fold cover of
a simple periodic Reeb orbit. A Reeb orbit is called bad if its Conley-Zehnder index
is not of the same parity as the Conley-Zehnder index of the simple Reeb orbit with
same image.

The factor ky comes from the fact that ymin(€) = YMax (6 + 70) for a real number 7y
and that if the underlying Reeb orbit is of multiplicity £y, Ymin(¢) = Ymin (9 + é)
So that Ymin(0) = YMax (0 + 70 + %) for any integer 0 < m < k,. We have here £k,
trajectories and they all appear with the same sign.

To compute the first page E;év of the spectral sequence we have the complex ngév :

0 (Xky) (xk~) 0 (xk~) 0

Q Q Q Q

Q Q

and thus, in the homology E;év , we are left with one copy of Q in degree —ucz(7y) and
one copy of Q in degree —ucz(y) + 2N. The first page is given by

EW = B Qnia) ® QY @ yimin)-

YEP(Hs)

Due to the assumption, the differential on the first page of the spectral sequence vanishes
(because of the same parity of the Conley-Zehnder indices) therefore, for N large enough,
it gives the homology

SH517N7+(H(5,N) = @ Q<’7Max> ©® Q<UN ® 'Ymin>-
YEP(Hs)

The morphism induced by a regular homotopy between two such Hamiltonians (built from
standard Hamiltonians close to Morse Bott Hamiltonians) respects the filtration, thanks
to proposition 1.4.5. We can therefore take the direct limit on the pages over those Hamil-
tonians which form a cofinal family. The inclusion S?V+1 < §2N+3 induces a map

E"N = P QyMax) ® Qu” @ ymin) — BV
’YGP(RQ)

which is the identity on the first factor and zero on the second factor. Taking the direct
limit over the inclusion S2N*+1 < §2N+3 we have

SHYH(W:Q) =lmE" = ) Q).
N ’YG'P(RQ)
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Remark 2.2.3 Stricto sensu, in the above Theorem, we have only proven that

SHS*(W,Q) = P Q)

’Yeﬁ(Ra)

where P(R,) are the periodic Reeb orbits contractible in the Liouville domain W. Nonethe-
less Theorem 2.2.2 is true after extending the definition of SH51’+(H) to all 1-periodic
orbits of H. This is done in section 2.2.2.

An orbit vy is bad if the underlying Reeb orbit is bad.

Proposition 2.2.4 There are no bad orbits in the generators of the S'-equivariant sym-
plectic homology.

PROOF: In the spectral sequence, as above, the twin tower over a bad orbit is as follows:

x(£2)
u @ YMax < uN & Ymin

X (£2)
u? X YMax <—— u? & Ymin

\
x(£2)

U & YMax U & Ymin
\
X (£2)

1® YMax 1® “Ymin

So the complex is:
x (£2) 0 0 X (£2) 0 x (£2)
Q Q e Q Q Q Q.
LN L

Therefore, on the first page of the spectral sequence, E,; = 0.

Corollary 2.2.5 The only generators that may appear in the positive S*-equivariant ho-
mology are of the form u® ® YMax With YMax @ good orbit.

Corollary 2.2.6 The number of good periodic Reeb orbits of periods < T is bounded below
by the rank of the positive S'-equivariant symplectic homology of action < T.
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Theorem 2.2.2 establishes a link between periodic orbits of the Reeb vector field of a contact
form on M and the positive S'-equivariant symplectic homology of an exact symplectic
filling W of M (i.e. a compact symplectic manifold (M,w = d\) with contact type bound-
ary such that OW = M, a = ). We shall study, in chapter 3, the invariance of positive
Sl-equivariant symplectic homology. The idea is to use this homology to get information
on Reeb orbits on some contact manifolds.

The example of Brieskorn spheres

The Brieskorn manifold X(ay,...,ay), with all a; > 2 positive integers is defined as the
intersection of the singular hypersurface {(zo, ..., 2,) € C*"*1 200 + ... + 2% = 0} in C**!
with the unit sphere S?"*! c C"*!. It is a smooth 2n — 1-dimensional manifold which
admits a contact form

. n

i .

a=g z% aj(z;dz; — Z;dz;)
]:

with corresponding Reeb vector field

43 43
R, = (Zzo,...,lzn> .

ap Gn

For any odd number n = 2m + 1 and any p = £1 mod 8, the Brieskorn manifold
Y(p,2,...,2) is diffeomorphic to the standard sphere S4™*! [Bri66]. One defines the con-
tact structures &, on S4m+1 defined as the kernel of the contact form oy with

i i«
ap = gp(zod% — ZT)dZ()) + 1 Z(ZJdZ — Zdz])
j=1

The fact that the Brieskorn sheres are exactly fillable can be found, for instance, in the
book of Geiges [Gei06].

Proposition 2.2.7 For p; # po, the positive S' equivariant homologies of symplectic fill-
ings of the Brieskorn spheres are different.

PrOOF: We consider the description of the chain complex for those homologies in terms
of good periodic orbits of the Reeb vector field, graded by minus their Conley indices. We
shall show that all Conley-Zehnder indices are even. To compute them, the first thing to
do is to build an explicit perturbation of the contact form so that all periodic Reeb orbits
are non degenerate. We proceed as in [Ust99]. For that one makes the change of coordinate

w2 1 1 7 225 .
wy = 20, W1 = 2 =— . , forj > 1.
e 1(w2j+1) \/§<1 Z><Z2j+1 /
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In these coordinates

m
2 2
wg +wi + 2 E W jW2j+1 = 0, ’U)| =
Jj=1

Y(p,2,...2) ={ we C!

Consider the real positive function f : X(p,2,...2) — R given by

m

flw Z |w2j| |w2j+1|2), where 0 < ¢; < 1.

The contact form fa defines the same contact structure on X(p,2,...2) as « and its
associated Reeb vector field is given by

Ryo(w) = <4le, 2iwr, 2i(1 + €1 )wa, 2i(1 — €1 )ws, .. ., 2i(1 + em)wn_t, 2i(1 — em)wn>.

If all the €; are irrational and linearly independent over Q, the only periodic orbits are

4it

Y(t) = (Tep irze® 0, . 0), r>0,7"+r2=1,0<t<pm;
v
1+¢’

Vi (t) = (0,...,0,e2it(1+fj>,o,...,o), 0<t< i=1,...,m;
2

v; () = (0,...,0,e2“<1—5f>,0,...,0), 0<t<
241

1_63,j:1,...,m

and all their iterates, 'yév , 'yj'N, 'yj_N, for all N > 1. Their Conley-Zehnder index is given
by

poz(1') = 2Np(n — 2) + 4N;
)2l ] B P

All indices have the same parity, thus applying Theorem 2.2.2, theS!-equivariant positive
symplectic homologies are generated by the periodic orbits of the Reeb vector field graded
by their Conley indices. If p; # pg, those positive S'-equivariant symplectic homologies
are different as proven in [Ust99].

Homology with non contractible orbits

To deal with non contractible orbits, one chooses for any free homotopy class of loops a,
a representative [, and one chooses a trivialisation of the tangent space along that curve.
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For the free homotopy class of contractible loop, Iy is chosen to be constant loop with
constant trivialisation. One ask moreover that [,-1 is [, in the reverse order and with the
corresponding trivialisation. One replaces assumption 1.1.1 of asphericity by an assumption
of atoroidality namely for any v : T? — W

/ v’w = 0.
T2

We also replace assumption 1.1.2, asking that the first Chern class of the tangent bundle
vanishes on all toruses inside W. The action functional induced by a Hamiltonian H
becomes

Ay) = — / wo— [ H0,~(6))d6
[0,1]x St St

where u : [0,1] x St — W is a homotopy from [, to 7.

For any loop « belonging to the free homotopy class a, one chooses a homotopy u :
[0,1] x St — W from [, to v and one considers the trivialisation of TW on + induced by
u and by the choice of the trivialisation along [,. Let us observe that any Floer trajectory
can only link two orbits in the same free homotopy class and as before, the action decreases
along Floer trajectories.

As before, the Floer complex is generated by the 1-periodic orbits of H graded by
minus their Conley-Zehnder index. The differential “counts” Floer trajectories between
two orbits whose difference of grading is 1.

The positive version of symplectic homology is defined as before since the set of critical
points of H is still a subcomplex : Floer trajectories can only link a critical point to a
contractible orbit.

All the results stated above extend to this framework.
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Structural properties of symplectic
homology

Transfer morphism

In this section, we prove that symplectic homology, positive symplectic homology, S'-
equivariant symplectic homology and positive S'-equivariant symplectic homology are
functors (reversing the arrows) defined on the category where objects are Liouville do-
mains, and morphisms are embeddings. Precisely, we construct a morphism between the
(S'- equivariant positive) symplectic homologies when one Liouville domain is embedded in
another one, and we show that those morphisms compose nicely. Such a morphism, called
a transfer morphism, has been studied by Viterbo [Vit99] in the case of the symplectic
homology. We adapt his construction to extend it to all the variants of the symplectic
homology considered above.

Recall definition 2.0.9: A Liouville domain (W, \) is a compact manifold W with bound-
ary OW = M, together with a 1-form A such that w := d\ is symplectic and such that
the Liouville vector field X defined by ¢(X)w = A points strictly outwards along 0W. We
still assume that (¢ (TW),mo(W)) = 0. We have defined the (symplectic) completion of
a compact symplectic manifold with contact type boundary in section 1.2.1. We consider
the completion

W =WuU(@W x Rt)

of a Liouville domain (W, \), built from the flow of the Liouville vector field X. We denote

by X the 1-form on W defined by A on W and by e’a on OW x RT with o := Algy - We
shall denote by SHT(W, \) the symplectic homology SHT(W,d\, X).

Definition 3.1.1 Let (V, Ay) and (W, A\iy) be two Liouville domains. A Liouville embed-
ding 7 : (V,Av) = (W, \w) is a symplectic embedding j : V — W with V and W of
codimension 0 such that j*A\yy = Ay. (One can consider, more generally, a symplectic
embedding j of codimension 0 such that Ay coincides in a neighbourhood of j(9V') in W

with Ay + df.)
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The goal of this section is to adapt Viterbo’s definition of transfer morphisms between
symplectic homology [Vit99] so that it extends to

SHY (W, \w) = SHT(V, \y)

with ¥ = +, St or (S, +).

We first present the construction for symplectic and positive symplectic homology. The
idea, as in [Vit99], is to use increasing homotopies between Hj : St x WoRe Heta(W)
and an Ho : ST x W S Rina special class Hgiqir (V, W).

Let U be a neighbourhood of dV in W \ V so that (U,wy) is symplectomorphic to
(aV X [0,6],d(e”av)).

Definition 3.1.2 A Hamiltonian Hy : St x W — Ris in Hstair (V, W) if and only if
e on S!' x V, Hy is negative and C%-small ;

e on S' x U = S x 9V x [0, 6], with p the last coordinate, Hy is of the following form
-there exists 0 < pg < 0 such that Hy(0,p,p) = Be’ + B for pg < p < § — po,

with 0 < 8 ¢ Spec(dV, ) U Spec(0W, ) and ' € R;
-H3(0,p, p) is C%-close on S* x 9V x [0, po] to a convex increasing function of e’

which is independent of 8 and p;

-H(0,p, p) is C%-close on S x OV x [§ — po, d] to a concave increasing function
of e” which is independent of 6 and p;

e on S' x W\ (VUU), Hy is C?-close to a constant ;

e on S x OW x [0, +ool, with p’ the R coordinate on OW x R*, Hj is of the following
form

-there exists p| > 0 such that Ho(0,p, p) = pe? + p' for p' > py, with 0 < p ¢
Spec(dV, a) U Spec(OW, ), u < B, i’ € R;

-Hy(0,p, p') is C?-close on S' x OW x]0, p/] to a concave increasing function of
e which is independent of § and p;

e all 1-periodic orbits of X%Q are non-degenerate, i.e the Poincaré return map has no
eigenvalue equal to 1.

A representation of Hy is given in Figure 3.1.

The 1-periodic orbits of Hj lie either in the interior V (which we call region I), either in
OV x [0, po] (region II), either in OV x [§ — po, §] (region III), either in W\ (V UU) (region
IV) or in OW x [0, p1] (region V). We consider their action using the following obvious
lemma:
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3.1. Transfer morphism

Figure 3.1: Example of Hs on w

Lemma 3.1.3 Let H and H be two C2-close Hamiltonians and let v € P(H) and 7 €
P(H) be C?-close. Then

A(7y) is close to A(7)

PROOF:

An() = Az = | [ 73+ [ B050) - [ va- [ 10.40)]

< /S 0 G0) = A0 (3(6))|a0

)
S1

<e

H(60,7(0)) — H(6,(0)) a0

| 9

I In region I, there are only critical points so the action of the critical point ¢ is non
negative and small (< €).

IT In region II, Hy is C*-close to a convex function H = h(r) (with r = e”); since
dH = b (r)dr = «(Xg)ww = o(Xg)d(ray) = o Xg)(dr A ay + rday),

we have Xy = —h/(r)R4, where R, is the Reeb vector field on 9V associated to
the contact form ay = Ay|,,. So an orbit of Xy lies on a constant level for r and
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its action is given by:
rev) = [ H(0)a0

J 1
=~ [ tavw () = [ nryas
/S Tozv(—h/(r)RaV) — h(r)

= h'(r)r — h(r).

Since pg is small we have e”® ~ 1 and h(e”®) ~ 0, so the actions of 1-periodic orbits
of Hs in this region are close to the periods of closed orbits of the Reeb vector field
on the boundary of V' of periods T' < 8 and they are greater than e.

IIT In region III, the computation is similar to the case of region II:
A(vm,) is close to h/(r)r — h(r) which is close to €’ (T — ) < 0
hence the actions of 1-periodic orbits of Hy in this region are negative.

IV In region IV, there are only critical points so the action of the critical point ¢ is given
by —Ho(q) which is close to —e®f.

V In region V, the computation of the action is similar to the case of region II:
A(7) is close to W' (r)r — h(r) with 7 = e”’.

Observe that here the 1-periodic orbits are close to 1-periodic orbits of —h/(r)Rq,,
where now R, is the Reeb vector field on OW. The action of any 1-periodic orbit of
H, in this region is close to e” T' — h(e”") where T” is the period of a closed orbit of
the Reeb vector field on the boundary of W with 77 < u < 3 and where h(ep/) > €.

So, for nice parameters (for instance pj < ), we have
A(IV) < A(I11), A(V) <0< A(I) < e < A(II).

We denote by CTV- VI (Hy J) the subcomplex of the Floer complex for Ho generated by
critical orbits lying in regions IV, III, V, and I and by C'V-/I1.V(H,, J) the subcomplex of
the Floer complex for Hs generated by critical orbits lying in regions IV, III and V. Observe
that CIV-IILVI (Ho,J) coincides with the subcomplex generated by 1-periodic orbits of
action < e and CTV-IIIV (Hy, J) coincides with subcomplex generated by 1-periodic orbits
of action < —n (for a well chosen small positive n). With similar notations, we have the
identifications:

L (Hy, J) = CIV’]H’V’I’H(H%J)/CIV,ULV(H%J) = SC(H2,J),a)/scﬁfn(]{%(])’a),
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C(Hy, J) = CIVHIV-LI () J)/CIV,III,V,I(H27 7= SC(Ho, J),&)/che(H% 7),0)"

Since the action decreases along Floer trajectories, the Floer differential passes to the
quotient where we still denote it 9. Remark that the function Hj is not in Hgq(V). We
want to relate the homology of (CI 11 (Hy, ), 8) to the homology of a function in Hgq(V).

Definition 3.1.4 Let Hy € Hgqair (V, W); we denote by S the slope of the linear part close
to OV, as in Definition 3.1.2. The associated function H = vy (Hs) € Hgta(V), defined on
S1 x V, is the function which coincides with Hy on V U (OV x [0,8 — po]) and which is
linear with slope 8 “further” in the completion: H(6,e?) = Bp + ' for all p > 6 — pp.

Proposition 3.1.5 Let Hs be an function in Hsiqir and let H = 1y Ho be the associated
function in Hgq(V) as defined above. We assume furthermore that the Hamiltonians are
generic in the sense that the homologies are well-defined for a good choice of J’s. Then

H(CHMI(Hy, J),0) = H(SC(H,J))  and  H(C'(Ha,J),0) = H(SC*(H,J)).

PROOF: We need to check that there is no Floer trajectory v : R x ST — W going from an
orbit in CH!T (resp. C'1) to an orbit in C!! (vesp. C') with points in W\ (UUV). We
prove it by contradiction, as a direct application of Abouzaid maximum principle which
we prove below as theorem 3.1.6. Assume that u : R x S' — W is a Floer trajectory
whose image intersects W\ (UUV). We consider the intersection of the image with a slice
OV x {p} for any py < p < § — pp and we choose a regular value py + € of pou. The
manifold W' := W\ (VU (8V x [0, po + €[)) is symplectic with contact type with boundary
OV x {po+ €} and Liouville vector field pointing inwards. Let S be the inverse image of W’
under the map w; it is a compact Riemann surface with boundary ; the complex structure
j is the restriction to S of the complex structure j on the cylinder defined by j(0s) = 0.
We define 8 to be the restriction of df to S. The fact that u is a Floer trajectory is
equivalent to (du — Xy ® 8)%! := 1 ((du — Xy ® B) + J(du — Xg ® B)j) = 0, where du is
the differential of the map w viewed as a section of T*S ® u*TW’'. Then theorem 3.1.6,
which is slight generalisation of a theorem of Abouzaid, concludes.

Theorem 3.1.6 (Abouzaid, [Rit13]) Let (W' ,w' = d)\') be an exact symplectic mani-
fold with contact type boundary OW', such that the Liouville vector field points inwards.
Let p be the coordinate near OW' defined by the flow of the Liouville vector field starting
from the boundary and let r := eP; near the boundary the symplectic form writes W' = d(r«)
with « the contact form on OW' given by the restriction of N'. Let J be a compatible almost
complex structure such that J*N = dr on the boundary. Let H : W' — R be non negative,
and such that H = h(r) where h is a convex increasing function near the boundary. Let
S be a compact Riemann surface with boundary and let § be a 1-form such that dB > 0.
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Then any solution u : S — W' of (du — Xg ® B8)%! = 0 with u(dS) C OW’ is entirely
contained in OW'.

PROOF: The energy of a map u : S — W’ is defined as
1 2
E(u) =g |du — X ® B|“vols
S

where du is viewed as a section of T*S @ u*TW'. If s+ it is a local holomorphic coordinate
on S, so that j(0s) = ¢ and volg = ds A dt we have

1
glldu— Xy @ Bl*vols = o' (Osu — X B(0s), Opu — Xu (D)) ds A dt

= (w'(8su, Opu) — dH (8yu)B(0s) + dH (95u)B(0;)) ds A dt
='W +u*(dH) A B.

It is obviously non negative for any path. Since d(u*H ) = u*(dH) A 8+ uw*Hdj3, we have
——

>0

E(u) = /Su*d)\/ +u*(dH)N B < /Sd(u*)\/) +d(uwHpB) < /as wN - N(Xg)B

using Stokes’s theorem and H = h(r) < rh'(r) = ra(h/(r)Ra) = =N (Xg) on u(dS) C 8V

:/ )\/(du—XH®5)=/ ~NJ(du— Xy ® B)j since(du—XH@)B)O,l:O
oS a8

= / —dr(du — Xy ® B)j since J*N = dr along u(dS) C OW’
oS

= / —drduj since dr vanishes on Xy on u(9S) C OW’
oS

Let v be the outward normal direction along 0S. Then (v, jv) is an oriented frame, so 95
is oriented by jv. Now dr(du)j(jv) = d(r o u)(—v) > 0 since in the inward direction, —v,
r owu can only increase because 7 is minimum on OW’. So E(u) < 0 hence E(u) = 0. This
implies that du — X ® 8 = 0 which shows that the image of du is in the span of Xy which
is the span of R, € TOW' on OW’'. Hence the image of u is entirely in contained in OW".

For any element Hy € Hgq(W), one can consider an element in Hy € Hgqair(V, W)
such that Hy and Hj coincide “far in the completion”, i.e. on OW x [ph, +00[C W. Let
H = 1y(H3) € Hga(V). We want to build a morphism from the homology defined by
H; to the homology defined by H. We shall first construct a morphism in the homology
defined by Ho. With Hy € Hyq(W) and Hy € Hspair(V, W) as above, we can consider an
increasing homotopy Hy, s € R, between H; and Ho, i.e %H s > 0, with the property that
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3.1. Transfer morphism

there exists sg such that Hy = Hy for s < —sg and Hy = Hy for s > sy3. We define a
morphism SC(Hy, J1) — SC(Hs, J3) by counting Floer trajectories for the homotopy.

Denote by M(v1,v2, Hs, Js) the space of Floer trajectories from 7 to 72 i.e maps
u:R x St — W such that:

5(]37]{5 (u) = Osu + JSH o u(agu — X%S o u) =0 (3.1)
dim u(s)=n()  and lim u(s.) = ()

Again it is proven in [Oan08, FHS95] that for a generic choice of the pair (Hs, J5), the spaces
M(71,72, Hs, J5) are manifolds of dimension pcz(v2) — nuoz(1) for any v in P(H;) and
v2 in P(Hz). Let us observe that there is no general R-action on this space.

The homotopy H; gives rise to a morphism

d)HS : SC(Hl,Jl) — SC(H2,J2)

71 — Z #M(’717727HS7J5)72

y2€P(Hz)
pez(v2)=pcz(n)

where the count involves, as always, signs.
Proposition 3.1.7 The morphism ¢m, is a chain map.

PROOF: As before this follows from the study of the boundary of a space of Floer tra-
jectories. Let 1 € P(H;p) and 2 € P(Haz) be such that ucz(v1) = poz(y2) + 1. The
1-dimensional manifold M(v1, 72, Hs, Js) has the following boundary

U’yG’P(Hl)M(’YlvVa Hlv Jl)XM(’Ya’YQv HSa JS) U U%eP(Hz)M(’Yla% HS) JS)XM(§7725 H27 JZ)

The first part yields the coefficient of v2 in ¢p, o dp, (1) and the second part corresponds
to 8H2 O¢HS(’)/1). L

So ¢p, induces a morphism in homology, still denoted by ¢ g,
(Z)H5 : SH(Hl, J) — SH(HQ, J)

The fact that ¢g, is independent of the choice of the homotopy is a consequence of the
homotopy of homotopies theorem (section 1.2.3). We denote it by ¢m, H,.

Definition 3.1.8 Given an element H; in Hgq(WW), consider an element Hy € Hgpair (V, W)
such that Hy and Hj coincide “far in the completion”, and let H = 1y (Ha) € Hga(V). We
define the transfer morphism

SH(H,,J) — SH(H,J') = SH(H,,J), 0/ SH1(Hy, J),0) = H(CH(Hy, J),0)
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which is the composition of ¢, i, followed by the natural projection.The action decreases
along Floer trajectories, so this maps SH<¢(Hy,J) to SHS(Hs, J), 8)/SH5_’7(H2 7))
and induces a transfer morphism for the positive homology

SH*(Hy,J) = SHY(H,J') = SHY(H2, 1),0)] g pr<-—n(g1,. 7). o) = B (C" (Ha, 1), ).

With our identification, the map is obtained by counting solutions of

Ju
a6

going from a 1-periodic orbit of Xg, to a 1-periodic orbit of Xg, lying in region I or I1.

@—Fjsou(

0s X, Ou) =0

The homotopy of homotopies theorem shows that the map does not depend on the choice
of stair function Hy such that ¢y Hy = H and such that H; and Hs coincide far in the
completion; we shall denote it qﬁgl. It also shows that the map ¢y, p, commutes with
continuation, i.e if p; : SH(H;) — SH(H}) is a continuation for H; and pg : SH(H2) —
SH(HY) is a continuation for Hy then

Gy HL © P1 = P20 OH,H,-

Proposition 3.1.9 The transfer map qbgl : SH(Hy,J) — SH(H,J") commutes with con-
tinuations.

PRrROOF: To show this, we still have to show that a continuation map built in W from
SH(Hs,J) to SH(HY},J'), defined by an increasing homotopy Hy : St x W — R, induces
a continuation map in V' from SH(H = ty(Hs),J) to SH(H' = vy(H}),J’). For this, it
is enough to check that there is no Floer trajectory corresponding to the homotopy, i.e.
u:R x S — W solution of

ou ou

o5 +Jsou (%
going from an orbit in CH/(Hy, J) (vesp. C1(Hz,J)) to an orbit in CTI(HS, J') (resp.
C!(H},J")) with points in W\ (UUV). We prove it by contradiction, proceeding as in
the proof of Proposition 3.1.5, using a generalized Abouzaid maximum principle which we
prove below as proposition 3.1.10. Assume that v : R x S' — W is a Floer trajectory
whose image intersects /V[7\ (UUV). We consider the intersection of the image with a slice
OV x {p} for any py < p < 6 — pp and we choose a regular value py + € of p o u. The
manifold W’ := W\ (VU(OV x [0, po+€])) is symplectic with contact type with boundary
OV x {po + €} and the Liouville vector field pointing inwards. Let S be the inverse image
of W' under the map wu; it is a compact Riemann surface embedded in the cylinder with

—XHSou>:O,
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boundary ; the complex structure j is the restriction to S of the complex structure j on
the cylinder defined by j(0s) = 9Jp. The fact that u is a Floer trajectory is equivalent
to (du — Xpg, ® d9)*! := 1 ((du — Xp, ® df) + J(du — X, ® df)j) = 0, where du is the
differential of the map u viewed as a section of T*S ® u*TW’'. Then Proposition 3.1.10
concludes. | %

Proposition 3.1.10 Let (W' w' = d\') be an exact symplectic manifold with contact type
boundary OW', such that the Liouville vector field points inwards. Let p be the coordinate
near OW' defined by the flow of the Liouville vector field starting from the boundary and
let v := eP. Let J be a compatible almost complex structure such that J*N = dr on the
boundary. Let H : R x S' x W' — R be an increasing homotopy, such that H(s,0,p,p) =
H%(p,p) = hs(r) where hy are convex increasing functions near the boundary. Let S be
a compact Riemann surface with boundary embedded in the cylinder. Then any solution

u:S — W of (du— Xg, ®df)>' =0 with u(dS) C W’ is entirely contained in OW'.

PROOF: The proof starts as in Theorem 3.1.6. The energy of u is non negative and given
by

1
E(u) := 5 /S |du — X5, ® df)||*vols = /Su*w’ + u*(dH?) A df.

We have u*(dH?) A df = d(u*H) A df — uw*0sHds A db, for v/ : S — R x S* x W’ which
—_—

>0
maps an element (0, s) € S to the element (s,6,u/(6, s)). Hence

B(u) = / WA 4wt (dH) A dB
S
< / d(u*N) + d(u*Hde) < / W\ = N (X, )do
S oS
using Stokes’s theorem and H = hy(r) < ra(h}(r)Ra) = =X (Xn,) on u(dS) C OV

= / N(du — X, ® db)
oS

and the proof proceeds as in Theorem 3.1.6. | 9

Corollary 3.1.11 The transfer maps {qﬁgl Yinduce a transfer map:
dwyv : SH(W, A\w) — SH(V, Ay).
and, on the quotient, the morphism

¢ =Py SHE (W, Aw) = SHT(V, Ay).
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Theorem 3.1.12 (Composition) Let (Vi,Ay;) C (Va, Ay,) C (Vs, Ayy) be Liouville do-
mains with Liouville embeddings. Then the following diagram commutes:

+ +

¢ )
SH*(Vs, Avy) —22 SH*(Va, M) —2% SHT(VA, Avy) (3.2)

+
W

PROOF: The proof results from the comparison of a count of Floer trajectories. On one
hand, one counts Floer trajectories corresponding to an increasing homotopy Hig, going
from a 1-periodic orbit of Xp, for an admissible Hamiltonian H; on S* x V3 to the ctht
part of a stair Hamiltonian Hs with two “steps”. On the other hand, one counts trajectories
relative to the composition of two increasing homotopies, Hi2 going from H; to Hs (a stait
hamiltonian with one step) and Hs3 going from Hs to Hs. The property is a consequence

of the composition of homotopies that we now present. | 9

Let Hy, Ho, H3 be three Hamiltonians on the completion of a symplectic manifold (W, w)
with contact type boundary such that there exist two increasing homotopies Hyo from Hi
to Ho and Hos from Hy to Hs. We assume, as always here, that there exists so such that
Hys = Hy for s < —sp and Hio = Hs for s > sg and similarly for Hosz . Denote, for
ReR, R>sg>>0, by Ho#rHos the gluing of the two homotopies;

H12(S—|-R,',‘) s<0

H12#RH23 B { H23(S - R7 " ) >0

The almost complex structures Ji2 and Jog are glued similarly. We choose J12 and Jo3 such
that the operators D'? and D?3, which linearize the equations (3.1) on the Banach tangent
space to a Floer trajectory, are surjective at any solution. By the operator gluing lemma
(cfr section 1.1.1), the operator D24z D?3, corresponding to the linearisation of the Floer
equation for Hio# rHas, is surjective and the index of D'2#zD?3, is the sum of the indices
of D'2 and D?*. Hence the space of Floer trajectories M (71,73, Hio# rHo3, J1o# rJ23),
for y1 € P(Hy) and 73 € P(Hs), is a smooth manifold of dimension pcz(v1) — poz(y3)-

Theorem 3.1.13 Let v1 € P(H1) and v3 € P(Hs) such that pcz(vi1) = pcz(y3). Then
for R’ large enough,

My, 7, Hiottp Has, Jo#trJos) = | M, 72, Hiz, J12) X M(y2,73, Has, Jos)
Y2€P(H2)

PROOF: Let us consider the 1-dimensional manifold defined as the union of O-dimensional
manifolds:

| | M, vs, Hio# rHas, Jio#trJos).

R>R'>sg
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3.1. Transfer morphism

Its boundary consists of M(v1,v3, Hio# r Has, Ji2# rrJo3) and of broken trajectories. It
can not include

L] MO, His i) x M(y, 33, Hio# pHas, Ji2# rJ23).
~yeP(H1)

since the elements of M(v1,~, Hy,J1) have index at least equal to 1 and the elements in
M(v,73, Hio# rHas, Jio# rJ23) are of index at least 0. Thus this boundary is just

M7, Hiot#tre Haz, ot reJos) | M, 72, Hiz, Ji2) X M(v2, 73, Has, o).

The conclusion follows. | %

Transfer morphism for S'-equivariant symplectic homology

We extend the definition of the transfer morphisms of the previous section to S'-equivariant
and positive S'-equivariant symplectic homology.

We consider two embedded Liouville domains (V,A\y) C (W, A\yy) and we want to define
a morphism SHS' (W, \w) — SHS' (V,A\y). We use the alternative definition of the S
equivariant symplectic homology, considering the cofinal family of Hamiltonians which are
built as in section 2.2 : starting with autonomous Hamiltonians H in Hgq, we do small
Morse Bott type deformations Hs as presented in section 2.1.3 and then lift those to S'-
equivariant functions H év as in section 2.1.1. In this setting, the S'-equivariant symplectic
homology can be computed by a simplified complex as described in proposition 2.1.1:

SCS" (Hy) = Z[u] @z SC..(Hj)

with differential o
0% = o +utor +u o+ ..

where the maps ¢, counts Floer trajectories for parametrized Hamiltonians

Osu + Jf(s) o u(@gu — XH[;\; o u) =0

(s)
i —Vf(z)=0

going from S' - (y7,2;) to St (yF,20) with z; the critical point of f of index —2j.

We have seen in section 2.2 that the action of the element represented by u* ® ~ is
very close to the action of . To define transfer morphisms, we start with an autonomous
Hamiltonian Hy in Hgq(W) and an autonomous Hs in Hgqi (W), and we do small Morse
Bott type deformations Hqs et Hos. We define as in the previous section the subcomplex
Z[u) @z (CTLIV:V(Hys)) corresponding to points with negative action and we identify the
quotient Z[u] ®z SC(Has)/7[u] @z (CTTIIVV (Hyy)) to Zlu) @y, CT 11 (Hys). We consider
the Hamiltonian vy Hos in Hgq(W).
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Proposition 3.1.14 For § small enough, the S* equivariant homology of the quotients
coincide with the S' equivariant homology of the small domain:

H(Z[u] ®7 CHM (Hos),0) = H(SC(Z[u] @7 SC (v Has)))
H(Z[u] @7 O (Hos),0) = H(SCT(Z[u] ®z SC (v Has)))

PrOOF: What remains to be checked is again there is no parametrized Floer trajectory
w:R xSt = W going from an orbit in CT/7(Hys) to an orbit in C1/1(Hys) with points
in W \ (U UV). This is proven by contradiction. If there was a parametrized trajectory
going from an orbit in CT//(Hys) to an orbit in C!/!(Hys) with points in W \(UuV)
for all ¢’s, then, by a theorem of Bourgeois and Oancea [BO09b, Proposition 4.7], there
would be such a broken trajectory for the autonomous Hamiltonian and we have proven in
Proposition 3.1.5 that this can not exist.

To get a transfer map, we use an autonomous increasing homotopy between Hi and Hs
and we deform it into an increasing homotopy between Hys and Hygs; this induces a map
Z[’U,] X7 SC*(Hh;) — Z[U] X7, SC*(H%)

This map decreases the action (which is defined on the second factor) and commutes with
the differential so it induces a map going to the quotient

H((Z[u] ®z SC4(H5,0)) — H(Z[u] ®z C'(Has), 0).

This maps commutes with continuation maps.

Proposition 3.1.15 Ford small enough, a continuation map in the homology defined from
an Hys induces a continuation continuation map in the homology defined from vy Hog.

PROOF: One checks again that there is no parametrized Floer trajectory, corresponding

to a homotopy, going from an orbit in CH1(Hys) to an orbit in CHII(H)s) with points in

W\\ (UUV). This is done as in the former proposition, using the fact that the existence of
such a trajectory for all §’s would imply the existence of such a broken trajectory for the
autonomous Hamiltonian and we have proven in Proposition 3.1.9 that this can not exist.

| %

We thus get a transfer morphism
divy + SHY (W Aw) — SHY (V. ).
and, on the quotient, the morphism
5 = gy s SHS (W, dw) — SHT (V).

By the same arguments as before, those morphisms compose nicely.
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3.2. Invariance of symplectic homology

Theorem 3.1.16 (Composition) Let (Vi,Ay;) C (Va, Ay,) C (Vs, Ayy) be Liouville do-
mains with Liouville embeddings. Then the following diagram commutes:

¢sl,+ st
SHS'* (Vi ) =2 SHS' (V, vy ) =22 SHS'H(V1, Ay ) (3:3)
o5
3:V1

Invariance of symplectic homology

In this section, we study the invariance of the (S'-equivariant) positive symplectic ho-
mology with respect to the choice of the Liouville vector field in a neighbourhood of the
boundary. This has been studied by Viterbo [Vit99], Cieliebak [Cie02] and Seidel [Sei08]
in the case of the symplectic homology, in the framework of Liouville domains.

Lemma 3.2.1 Let (W,w, X) be a compact symplectic manifold with contact type boundary
and let k be a positive real number. Then

SHY(W,w, X) = SHY (W, kw, X).
Where t denotes any of the variants that we have considered (), +,S* or (S, +).

ProoOF: The symplectic completions are (/W,@) and (W, kw); the chain complexes for a
pair (H,.J) on (W, w) and the pair (kH, J) on (/W, kw) are the same, since the 1 periodic or-
bits are the same, and the Floer trajectories satisfy the same equations; indeed X% = X fﬁ
Similarly, continuation maps are equivalent taking as homotopies Hg and kH,. The result
follows, observing that kH form a cofinal family.

For positive or S'-equivariant positive homology, we clearly assume that we are in a frame-
work where it is well-defined.

Lemma 3.2.2 Let (W,w,X) and (W' ,w', X") be two compact symplectic manifolds with
contact type boundary. If there exists a symplectomorphism ¢ : W — W' such that
P(OW) = W', and such that p(X) = X' on a neighbourhood of OW then

SH'(W,w,X) = SHN (W', X").

PROOF: We can extend ¢ to a symplectomorphism Q: W — W' of the completions. For J’

an almost complex structure on W', we take the corresponding almost complex structure
J on W defined by
J(E = @:Il le) J(’%(I) (o) @*m

and if H' is a Hamiltonian on W' , we take the Hamiltonian H on W defined by H := o*H'.
Then the 1 periodic orbirs are in bijection and so are the Floer trajectories. The subfamily
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{¢*H'} of Hamiltonians is cofinal and thus we reach the conclusion. A

We now restrict our attention to Liouville domains, also called symplectic manifolds
with restricted contact type boundary. Recall that a Liouville domain is a compact man-
ifold W with boundary, together with a one form A such that w := d\ is symplectic and
the Liouville vector field X defined by ¢(X)w = A points strictly outwards along OW.

The asphericity condition being satisfied, we assume that (ci (TW), m2(W)) = 0. Recall
that the completion of a Liouville domain (W, ) is W = W U (OW x RT) with symplectic
form given by @ = w on W and @ = de’A,,, on OW x R*T. We refer to section 1.2.1

for more details. We denote, as in the previous chapter, by SHT(W,\) the symplectic
homology SHT(W,d\, X).

Lemma 3.2.3 Let (W, \) be a Liowville domain. Then for all R € RT, we have
SHY(W,\) = SH (W U (W x [0, R]),\)

where the 1-form N on OW x [0, R] is the restriction of the 1-form X, thus (e’a) with

Q= )\|8W'

PROOF: Denote by ¢ the flow of X; since LxA = A we have X"\ = e!\. This gives a
symplectomorphism

o - (Weftw) = (WU (OW x [0, R]), o)

mapping the boundary OW to the boundary {R} x W and such that @ﬁ*/\ = eft).
One concludes by the two lemmas above. Explicitely, the diffeomorphism cpg W =W
maps Hamiltonian vector fields as follows : (o5 )«(Xp) = Xy when H' = e f(p%)*H;
hence <p§ gives a bijection between 1-periodic orbits of Xy and 1-periodic orbits of Xy,
and, with suitable choices of J’s, a bijection between Floer trajectories between 1-periodic
orbits of Xy and Floer trajectories between 1-periodic orbits of Xz. Hence it yields an
isomorphism

SHY (W, e *(px) H) = SH' (W U (OW x [0, R]), H).

Furthermore, the diffeomorphism goﬁ intertwines a continuation morphism defined by a
homotopy H to the corresponding continuation morphism defined by Hg when again H] =

e B(pX)*Hs. This yields the isomorphism mentionned above.

Lemma 3.2.4 The transfer morphism
SHY(W U (OW x [0, R]),N) = SHT(W, \)

18 an isomorphism which coincides with the natural identification of Lemma 3.2.35.
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PROOF: Let H be an admissible Hamiltonian for WU(OW x [0, R]). Consider the homotopy

H} = e_f(s)gp;((s)*H with f : R — [0, R] a smooth function so that H! = H for large

negative s and H}! = H:= e By ) H for large positive s. The set of 1 periodic orbits for
H! is constant (since, as in the Lemma above, the diffeomorphism % (s) of the completion is

a bijection between 1-periodic orbits of X1 and 1-periodic orbits of X ). This homotopy
defines the “transfer morphism”

¢: SH(W U @OW x [0,R]),H) — SH(W, H).

Let {H{},c0,1] be a family of homotopies (with non fixed endpoint) such that HY is the
constant homotopy H? = H for all s, and such that all H¢ are of the form e~ 1'(sm) goif,(sm)*H
with f'(.,n) : R — [0,nR] and f'(.,1) = f. We have H = e*nRganR*H = H}_l(nR). The
set of 1-periodic orbits of H{ is in bijection with the set of orbits of H. We consider, for a
given 1, the space of Floer trajectories

M(H], J]) == U ML AL HYL T
(V1 A)EP(H? )xP(HY )
nez(v)=ncz(v}])

and the parametrized moduli space

M{HD I = | M(HL T

n€l0,1]
which could have boundaries for some 1 # 0, 1. It defines a cobordism between M (H?, J?)
and M(HL, J}). Now M(HY, J?) = M(H, J) is the space of constant trajectories { u(s, ) =
Y0(*)|v0 € P(H)}. Thus for small n’s, say n < 1, the cobordism is a bijection, M(H{, J)
consists of exactly one Floer trajectory starting from each orbit in P(H) and arriving at
the corresponding orbit in P(H ). The morphism induced by H{ is thus the natural
identification of periodic orbits. Hence the transfer

¢: SH(W U QW x [0,R]), H) — SH(W U (dW x [0, R — €]), e“pX " H)
is the natural identification for ¢ = n9R. Now we use the flow of the Liouville vector

field, X, to carry all this construction further and we get the natural identification as the
transfer morphism

¢: SH(W U (OW x [0,R—d]),e“px"H) = SH(W U (OW x [0, R — 2¢]), e o5 H).

By induction and functoriality, we get the result. | %
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Lemma 3.2.5 Let W be a compact symplectic manifold with contact type boundary. Let
At, t € 10,1] be an isotopy of Liouville forms on W such that in a neighbourhood U of the
boundary, Ay = Ag. Then

SHT (W, Xo) = SHT(W, \y).

PROOF: Remark that we do not require the d\; to be equal.
Let X; be the time dependent vector field defined by

UX o) (dAs) = = (FAD),)

and let ¢; be its flow. In the neighbourhood U, the vector field vanishes, X; = 0, and so
ViA1= A1 = Ap on U . Furthermore ¢id\; = d)\¢ because

%s@?kt‘s = 502(% ) eLxAs
— QD:(% S) + 05 (U X )dAs + du( X))
= (et (\(X2).

This implies that the completions for A\g and ¢jA; are the same, therefore, by lemma 3.2.2,
SHY (W, A1) = SHI (W, ¢1\) = SHT (W, Ao).
| 9

Theorem 3.2.6 Let W be a compact symplectic manifold with contact type boundary. Let
Aty t € [0,1] be a homotopy of Liouville forms on W. Then

SHT(W, Xo) = SHT (W, \y).

To prove this Proposition, we use the following Proposition from Cieliebak and Eliashberg:

Proposition 3.2.7 ([CE12], Proposition 11.8) Let W be a compact symplectic man-
ifold with contact type boundary. Let A\, t € [0,1] be a homotopy of Liouville forms on
W. Then there exists a diffeomorphism of the completions f : V[//}O — W//\'l such that
f*M — Ao = dg where g is a compactly supported function.

PROOF OF THEOREM 3.2.6: There exists a positive real py such that supp(g) C W U
(OW x [0, po]). We choose positive real numbers pi, pjy and p} such that f~H(W U (W x
[0, p1]) contains W U (OW x [0, po]), f~HW U (OW x [0,p1])) € W U (OW x [0, pj]) and
WU (OW x [0, ph]) C fHW U (OW x [0, p}])). The situation is represented in Figure 3.2
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fHOW x {p1}) fHOW < {pi})

Figure 3.2: The choice of py, p1, py and p)

The diffeomorphism f and the flow of X; on /Wl give
(F7H W U @W x [0, p1])), FA1) = (W U (OW x [0, p1], A1) = (W, PP Ay).

The completion of (f~1(W U (8W x [0, p1])), f*)\l) coincides with (WO,XE) since close to
the boundary f,Xo = X;.

SH(W, A1) = SH(W U (0W x [0,p1]), A1) by Lemma 3.2.3

(OW x [0, p1])), f* )\1) by Lemma 3.2.2

(OW x [0, p1])), Xo + dg) by Proposition 3.2.7
(OW x [0, p1])), A ) by Lemma 3.2.5.

W

Denoting by (pf(o the flow of Xy and by Wy the manifold W U (W x [0, po]), we have

eX, (W) = fH(W U (0W x [0, 1))

and

Do (Wo) = W U (OW x [0, pf])

Using the functoriality of the transfer morphism,

/i\

W1), ho) —= SH(@0 | (Wo), Ao) —= SH (W, ho) —= SH (W, No);

\T/

SH(SOP' —P1 (
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therefore
SH(W, A1) 2 SH(Wyi, o) = SH(Wy, Ag) = SH(W, \g).

|

Seidel in [Sei08] has extended the definition of symplectic homology (and all its variants)
to Liouville manifolds.

Definition 3.2.8 (see for instance [CE12]) A Liouwville manifold is an exact symplec-
tic manifold (W, w, X), where the vector field X is an expanding Liouville vector field, i.e
Lxw = w and ¢w = e'w such that

e the vector field X is complete and

e the manifold is convex in the sense that there exists an exhaustion W = u,?;lwk
by compact domains Wi C W with smooth boundaries along which X is outward
pointing.

In the following we will denote a Liouville manifold either by (W,w,X) or by (W, X :=
L(X)w).
The set

Skel(V,w, X) := U ﬂ O (WF)
k=11t>0

is called the skeleton of the Liouville manifold (W, w, X). It is independent of the choice
of the exhausting sequence of compact sets W*. A Liouville manifold (W,w, X) is said
to be of finite type if its skeleton is compact. Every finite type Liouville manifold is the

completion of a Liouville domain®.

Definition 3.2.9 ([Sei08]) Let (W, w, X) be a Liouville manifold non necessarily of finite
type and let W* be an exhaustion by compact domains W), € W with smooth boundaries
along which X is outward pointing such that W* ¢ W¥**+!l. The symplectic homology
(and its variants) of (W, \) is defined as the inverse limit of the symplectic homologies of
(W5 L)

SHY(W,\) == lm SHT(W* A ).
P w
The morphisms appearing in this inverse limit are the transfer morphisms.

This definition is independent of the chosen exhaustion. Remark that in the case of finite
type Liouville manifolds, this definition coincides with the previous one.

1We refer to the book by Cieliebak and Eliashberg for more details, [CE12, Chapter 11]
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Proposition 3.2.10 Let (Wp, \g) and (W1, A1) be two Liouville manifolds not necessarily
of finite type. Assume there exists an exact symplectomorphism f : Wy — Wy i.e. such
that f*A1 — Ao = dg with g a function on Wy. Then

SHY (W, Xo) = SHT (W71, \p).

PROOF: Let Wé“ be an exhaustion for Wy and Wlk be an exhaustion for Wy such that for
all k,
W W) c Wt

where the inclusion at each level means the inclusion in the interior of the next compact
space. Let 7 be a smooth function 7 : Wy — [0, 1] such that 7 = 1 in a neighbourhood of
U f~1(0WF) and n = 0 in a neighbourhood of U2 OWF. We define the 1-form A on
Wy to be

A= X +d(ng).

We have
SH(WE,No) 2 SHWS,A) and SH(WT, i) = SH(fH(WF),\).

The functoriality of the transfer morphism implies that the following diagram is commu-

tative:/_\ /\

s = SH(fTHWFTH,A) ——> SHWFT, X) —— SH(f (W), \) ——>= SH(WF,X) —> - .
Therefore, \/
~ 1 k ~ 1 k
SH(Wy, Xo) = @SH(WO,AO) = hilSH(WO )
~ T —1/y17k ~ T k
= lim SH(f ' (W}),A) = lim SH(WY, f.))
o @SH(Wf, A1) = SH(W, M.

The above result may be extended thanks to the following Lemma:

Lemma 3.2.11 ([BEE12], see also [CE12], Lemma 11.2) Any symplectomorphism be-
tween finite type Liouville manifolds f : (Wp,No) — (W1, \1) is diffeotopic to an exact
symplectomorphism.

We have thus

Theorem 3.2.12 Let (Wy, o) and (W1, \1) be two Liouville manifolds of finite type such
that there exists a symplectomorphism f : (Wo, Ao) — (W1, A1). Then

SHT(Wo, o) = SHT (W1, Ay).
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3. STRUCTURAL PROPERTIES OF SYMPLECTIC HOMOLOGY

Invariance of the homology of contact fillings

In this section we shall prove:

Theorem 3.2.13 Let (M, &) and (M1,&1) be two contact manifolds that are exactly fil-
lable; i.e. there exist Liouville domains (Wo, Xo) and (Wi, \1) such that OWy = My,
& = ker()\o|MO), oWy = My and & = ker()\1|Ml). Assume there exists a contactomor-

phism ¢ : (Mo, &) — (My,&1) which is “oriented” in the sense that go*)\l‘Ml =
Assume moreover that there exists a contact form &g on My such that all periodic Reeb
orbits are nondegenerate and their Conley-Zehnder index have all the same parity. Then

SHS"(Wo, o) = SHS (W1, Ay).

Lemma 3.2.14 ([Cie02]) Let (at)e(o,] be a smooth family of contact forms on a closed
manifold M of dimension 2n—1. Then there ezists a R > 0 and a non-decreasing function
f:10,R] — [0,1] such that f =0 close to p=0 and f =1 close to p = R and

d(epozf(p)) is symplectic on M x [0, R]
PRrROOF: The proof is a computation:

d(ePag(p)) = e’dp Ny + e’dagy) + € f'(p)dp N égp).

n n . n—1

(d(erasip)) " =nem (do A (agip) + F(0)agip) A (dagi)" ")
and thus d(epaf(p)) is symplectic if and only if (ozf(p) + f’(p)df(p)) (Raf(m) > 0. This is
true if f’ is small. | %

Lemma 3.2.15 If (M,§) is a compact contact manifold which is exactly fillable by a Li-
ouwville domain (W, \g) (i.e. OW = M and & = ker oy where ag = )\O‘M) then, for any
contact form ay such that £ = ker a; (and oy defines the same orientation on M ), there

exists a homotopy of Liouville form As,s € [0,1] on W such that )q}M = 7.

PROOF: Since oy = e?ay, for a smooth function g on M, we consider the smooth family of
contact forms oy = e9ayg,t € [0,1]. We define on W U M x [0, R] C W the 1-form A:

5\ - )\0 on M
B ePayy on M x [0, R]

with f as in Lemma 3.2.14, so that d) is symplectic. The flow of the vector field X, where
U(X0)dAo = o, ©° induces a diffeomorphism from W U M x [0,7] to W. The pull-back

T

by this flow of e "\ gives the desired A F(r)- | 9
Combining with Theorem 3.2.6 and Theorem 2.2.2, this yields
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Lemma 3.2.16 Let (My,&y) be a contact manifold that is exactly fillable by the Liouville
domains (Wy, Ao). Assume that there exists a (oriented) contact form &g on My such that
all periodic Reeb orbits are mondegenerate and their Conley-Zehnder index have all the
same parity. Then

SHY T (Wo,x) = P Q)

’VE’P(R&O )

where P(Rs,) denotes the set of periodic Reeb orbits on (My, &yp). | 9

PROOF OF THEOREM 3.2.13: Given the contactomorphism ¢ : (Mg, &) — (M1,&1) and
the contact form &g, we define the form &; := (o~ 1)*ay; it is a contact form on M; and
its periodic orbits are non degenerate, in bijection with those of &y with the same Conley-
Zehnder index. We apply twice Lemma 3.2.16; once for (W, A, &) and for (W7, A1, &1). | 9

This gives a tool to prove Ustilovsky’s Theorem.

Corollary 3.2.17 (Ustilovsky, [Ust99]) For each natural number m, there exist in-
finitely many pairwise non isomorphic contact structures on S*™m+1.

PROOF: We see that one can build contact structures on S¥"*1 which are exactly fillable,
but which do not yield isomorphic SH St homologies of the filling. The result then fol-
lows from Theorem 3.2.13. The contact structures in question are those defined by the
Brieskorn sheres; see section 2.2.1. The fact that the homologies are different follows from
proposition 2.2.7.
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4.1

On the minimal number of periodic Reeb
orbits

We shall now use the properties of positive S'-equivariant symplectic homology to get
results on the minimal number of geometrically distinct periodic Reeb orbits on some
contact manifolds. We first give an alternative proof of a result of Ekeland and Lasry
on the minimal number of distinct periodic Reeb orbits on a hypersurface in R*?. We
also obtain information on the minimal number of simple periodic Reeb orbits on some
hypersurfaces in some negative complex bundles over a compact symplectic manifold. We
extend our machinery to some non exact symplectic manifolds with contact type boundary.

Minimal number of periodic Reeb orbits on a hypersurface in R?"

We show how to use the transfer morphism to give an alternative proof of a result by
Ekeland and Lasry concerning the number of simple periodic Reeb orbits on a hypersurface
in R??, pinched between two spheres, endowed with the restriction of the standard contact
form on R2".

Theorem 4.1.1 (Ekeland, Lasry, [EL80, Eke90]) Let ¥ be a contact type hypersur-
face in R?". Let € = kera be the contact structure induced by the standard contact form
on R?™. Assume there exists a point xo € R?™ and numbers 0 < Ry < Ry such that:

R
VzeX, Ry<|z— x| <Ry withR—2<\@
1

Assume also that Vo € ¥, T,X N Bg,(x9) = 0. Assume moreover that all periodic Reeb
orbits are non degenerate. Then X carries at least n geometrically distinct periodic Reeb
orbits.

Remark 4.1.2 The assumption Vz € 3, T, N Br,(z9) = 0 (which is weaker than
convexity) can be stated as
(vs(z),2) > Ry, VzeX (4.1)

93



4. ON THE MINIMAL NUMBER OF PERIODIC REEB ORBITS

where vy (z) is the exterior normal vector of ¥ at point z and (-,-) denotes the Euclidean
scalar product on R?".

PROOF: We consider ellipsoids, very close to the spheres, defined by

Sk, = {Za y)2)=R?}

with a; < --- < a, real numbers arbitrarily close to 1 and ratlonally independent, and
Sk, = {214y "((#%)?% + (y')?) = R3}, and we denote by S iy 5 and S}, the compact
regions in R?” bounded respectively by S R,» 2 and S’ Ry endowed with the restriction of
the standard symplectic form w on R?". We take the parameters a; sufficiently close to 1

so that we have the inclusion
S’ cYC S’

of Liouville domains. The contact form on the boundaries is the one induced by ¢(X,qq)w,
where X4 is the radial vector field X,qq = 5 Z 20, +y 8 . The completion of those L1—
ouville domain is (R?", w). By Theorem 3.1.16, the transfer morphlsrns yields the following
commutative diagram:

SHS'* (S, w) —2> SHS'+ (5, w) —= SHS (ST, | w). (4.2)

o)

We can consider the positive S'-equivariant symplectic homology truncated by the action at
level < T, SH® " +T | Since all Floer trajectories inducing the morphisms lower the action,
we still have the commutative diagram for the truncated positive invariant symplectic
homology:

SHS' T (S7 w) 2= SHS'+T(S,w) — SH +T (S}, | w). (4.3)

where we have chosen a number T such that
na,R3 < T < 2ma; R}, (4.4)

This is possible thanks to the “pinching” hypothesis % < V2.

By Theorem 2.2.2, SHS W+ T( R, w) is generated by n elements U0 RV s - - - U0 @Y, cOT
responding to n simple periodic Reeb orbits on S}b’ 7L, ..., 4" of action mai RS, ..., ma, R3.
The analogous is true for SHS' T( R, »w) with actions ra R2, ... ma, R2.

By (4.3), SHS"7T(3,w) is thus of rank at least n. All applications in the above dia-
grams decrease the action thus the action of each of those n generators in SH* 1’+’T(Z, w)N
Im(¢) is pinched between 7a; R? and 7a, R3 < 27a; R?.
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By Corollary 2.2.5, the only generators that may appear in SH* 1’+’T(§], w) are elements
of the form u® ® Yyax With v a good Reeb orbit on X.

It remains to prove that the n elements in the image of ¢ are geometrically distinct.
By the pinching condition on their action, we know that they are not iterate one from
another but we still need to prove that two of them can not be the iterates of a same orbit
of smaller action. This we do by proving that the smallest possible action for any periodic
Reeb orbit on ¥ is greater than ma; R3.

Let v:[0,7] — ¥ be a simple periodic Reeb orbit. We have :

T
2T = /O oy (Y(t)) dt
T
_ /0 G, Jyn))dt  since ap(X,) = (X, Jx)

T T
— [ (G003 with 3l =0 - [ e
0 0

< ¥z 7l
< ||7H%2% via the Wirtinger’s inequality

T (7.
=5 | Ik
T T

=2 1(Ra)~ 1 dt (4.5)

Indeed, R, is proportional to Jvs since ¢(Jvs)da = 0 because t(Jvs)da(Y) = w(Jvs,Y) =
—(vs,Y) =0 for all Y € TY. Thus R, = cJvy with |¢| = ||Ra||. But az(Ra,) =1 =
FHeadvsy(z), Ja) = % (vs(x), ). Therefore, by assumption (4.1), ¢, = <Vg(2m) o < R%. And
thus (4.5) < %T%. Then 27T < 2T% and we reach the conclusion

1 Ty

For any point z in X, the norm of the Reeb vector field is bounded by [|(Rq)z| < R%.

T > R

Hence the conclusion of the Theorem. | 9

The original proof of Theorem 4.1.1 uses variational methods that work only in R?".
This new proof may extend to other cases such as hypersurfaces in negative line bundles.
For this, we have to extend our machinery to some non exact compact symplectic manifolds
with contact type boundaries.
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Extension of the definitions

Let (W,w, X) be a compact symplectic manifold with contact type boundary, satisfying
assumptions 1.1.1 and 1.1.2 and let (W, w) be its symplectic completion. We want to define
the positive symplectic homology and the positive S'-equivariant symplectic homology of
(W,w). In this general situation, the action does not distinguish between constant and non-
constant 1-periodic orbits since we have no control on the disk bounded by a 1-periodic

orbit.

Positive symplectic homology

This section is joint results with Strom Borman.

Definition 4.2.1 Let H be a Hamiltonian in Hsq. The submodule of the Floer complex
generated by the critical points of H is denoted by SC; (H,J).

We restrict ourselves to the cofinal family of perturbation of Morse-Bott Hamiltonians as
defined in section 2.1.3. We use the same notations as in section 2.1.3.

Theorem 4.2.2 Let H be a Hamiltonian in Hyp. There exists a real number dg > 0
such that for all § < &g, the submodule SC (Hs,J) is a subcomplex of the Floer complex
SC(Hs,J).

PrOOF: We prove this by contradiction, assuming that no such §y exists. Then there is
a decreasing sequence J, converging to 0 such that SC; (H;, ,J) is not a subcomplex of
SC.(Hs,,J). This implies that for all n, there exists a Floer trajectory for Hs, going from
a fixed critical point of Hs, to a nonconstant 1l-periodic orbit of Hs, . We can assume
(considering, if needed, a subsequence) that the 1-periodic orbit is the same for all n.
This sequence of Floer trajectories converges to a Floer trajectory for the autonomous
Hamiltonian by the following theorem due to Bourgeois and Oancea:

Theorem 4.2.3 ([BO09b], Proposition 4.7) Letv, € M(y~,y", Hs, ,J) be a sequence
of Floer trajectories with d, — 0 as n — oco. Then there exists a Broken Floer trajectory
with gradient fragments u and a subsequence (still denoted by v, ) such that v, — u.

To conclude the proof of theorem 4.2.2, we shall now prove that it is impossible for an
autonomous Hamiltonian H to have such a Floer trajectory. Precisely, we shall show that,
for any critical point p of H and any nonconstant 1-periodic orbit v of H, the moduli space
M(p,~; H, J) of solutions u : R x ST — W of the Floer equation

8su+Jou(39u—XHou) = 0
u(—o0, -) = p (critical point) (4.6)
u(+00,-) = () COW x{py}
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is empty. (We have considered the image of 7 sitting in OW x{p,}.) We choose a compatible
almost complex structure J i.e a J € End(T(dW x RT)) such that do(-,J-) > 0 on
£ C OW x RT, such that J¢ = ¢ and such that Jd, = R, near the Hamiltonian orbits.
We assume u is a Floer trajectory, solution of (4.6), and we consider a real number sy € R
such that u(s,-) stays in a neighbourhood of « for all s > sy9. We can decompose u:

u(s,0) == (f(s,0),a(s,0)) € OW x R*
with a(s,0) close to py for s > so. We distinguish two cases:
Case 1: there exist s and 6 such that a(s, ) > p;
Case 2: a(s,0) < p, forall s and 6.

We shall see that neither case can arise, and this will conclude our proof.

Case 1

We prove by contradiction that it can not happen, as a direct application of Abouzaid
maximum principle (proven above as theorem 3.1.6). Assume that u : R x S — W is
a Floer trajectory whose image intersects /V[7\ (W U (OW x [0,p,])). There exists § > 0
such that the intersection of the image of u with a slice W x {p} is non-empty for any
py < p < py+ 0 and we choose between them a regular value p, + € of p o u.

The manifold W’ := /W\ (WU(OW %[0, py+e€[)) is symplectic with contact type bound-
ary OW x {po+ €} and Liouville vector field pointing inwards. Let S be the inverse image of
W' under the map u; it is a compact Riemann surface with boundary embedded in R x S*;
the complex structure j is the restriction to .S of the complex structure j on the cylinder de-
fined by j(0s) = 0y. We define § to be the restriction of df to S. The fact that u is a Floer
trajectory is equivalent to (du— Xy ® )% := 1 ((du — Xy ® B) + J(du — Xg ® B)j) = 0,
where du is the differential of the map u viewed as a section of T*S®u*TW'. Then theorem
3.1.6 concludes.

Case 2

To prove that this situation can not happen, we use an argument taken from Bourgeois
and Oancea [BO09a]. We restrict to s € [sp,00) and we define a(s) = [q a(s,6)dd.
Equation (4.6) decomposes as:

0sa — a(Ogf) —e W (a) = 0
a(0s[) + Osa 0 (4.7)
7e(0sf) +me(JOpf) = 0

where 7¢ : T(OW x R) — £ is the projection on & along R(9,) ® R(R,). The first equation
of (4.7) implies

dsa(s) = /Sl a(0pf)do + /51 h'(a)e~*df < / a(Opf)d0 +T (4.8)

Sl
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where T' = h/(p,)e?r. The inequality is true since h’(b)e~ is increasing in b.
For sy < s < s, we have, by Stokes,

/51 o (9pf(s',0))db — /S o (9 f (5, 0))d6 = /{wwl Fda (4.9)
and

/ ffda >0 (4.10)
[s,8']xS1

because da(-,.J-) > 0 on the contact distribution and do “kills” 9, and R,; we assume
of course that f is non constant. Hence the map s — [q 04(89 f(s, 9))d9 is an increasing
function. Since we know that lims_,~ f(s,60) = +/(—=T6), where 7/ is the corresponding
Reeb orbit, we have

/S a9 f (+00,0))db = ~T. (4.11)

Hence

Osa(s) < /51 (g f(s,0))dd +T < 0. (4.12)

Now a(+00) = py since (a(+00,0), f(+00,6)) = (py,7'(—=10)). Since a < p, by assump-
tion and since a(s) is non increasing by the above, we have

a(s,0) = ps. (4.13)

So (4.7) becomes:

a(Opf) —h'(a)e™® = 0
a(0sf) =0 (4.14)
me(df 0 j) = Jme(df) = 0
Thus a(dyf) = W' (a)e”* = W' (py)eP” = constant. Using (4.9), we get
/ frda =0 (4.15)
[s0,00) xSt
which implies that f is constant, which yields a contradiction. | 9

We denote by H.,, the subfamily of Hamiltonians in Hgq such that the conclusion of
Theorem 4.2.2 holds.

Definition 4.2.4 Let H; be a Hamiltonian in ., we define the positive Floer complex
to be the quotient

SCI (Hs, J) := SC.(Hs, J)/ o=y, J)
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4.2. Extension of the definitions

We would like to define as in section 1.2.4 the direct limit over Hamiltonians of the positive
homologies defined by those quotients.

Theorem 4.2.5 Let Hos and His be two Hamiltonian in H.,; such that Hys < Hy5. Let
Hg be a increasing homotopy between them. The continuation map maps SC, (Hy, Jo) to
SC*_ (Hlu Jl) °

PROOF: Let Hi be the Hamiltonian in Hyg from which His is the perturbation. It suffices
to show, as before, that for any nonconstant orbit v of Hy the moduli space M(p,v; Hs, Js)
of solutions u : R x S — W to the Floer continuation equation

(9Su—|—JSou(69u—XHSou) =0
u(—00, ) = p (critical point) (4.16)
u(+00, ) = (ty,7(=T9))

is empty.

We consider again a real number sy € R such that u(s, 0) stays in a neighbourhood of
the image of v for all s > sy and such that H; is constant (in s) for s > s9. We can again
decompose u in

u(s,0) = (f(s,0),a(s,0)) € M x R".

Again,we distinguish two cases:

1. there exist s and 6 such that a(s,8) > p;

2. a(s,0) < p, Vs,0.
The proof to rule out the second case is the same as in Theorem 4.2.2.
For the first case, the argument is the same and the conclusion comes from the generalised
version of “Abouzaid maximum principle” stated in proposition 3.1.10.

We are now ready to define the positive symplectic homology in the framework of a

compact symplectic manifold with contact type boundary (W, w) which is aspherical and
such that its first Chern class vanishes on the second homotopy group :

Definition 4.2.6 The positive symplectic homology of (W,w) is defined as

SHY(W,w) := lim H.(SC}(H,J),d).
HeH 4
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4. ON THE MINIMAL NUMBER OF PERIODIC REEB ORBITS

4.2.2 Positive S'-equivariant symplectic homology

4.3

We shall use the special complex in the alternative definition of S'-equivariant symplectic
homology presented in section 2.1.2. One considers an autonomous Hamiltonian H in Hyp
(cf definition 2.1.2) such that the slope a is big and pg is small; one denotes by Hs a small
perturbation, as in section 2.1.3. One defines the positive S'-equivariant Floer complex of
Hs by

SCY (Hy) = Zlu] @z SCF (Hy)

with differential induced by the differential given by (2.2). The fact that SCZ 1’_(H(;) is a
subcomplex of SC? I(Hg) for § small enough is a consequence of Theorem 4.2.3, extended
to parametrized Floer trajectories in chapter 5.2 of [BO13a]; one reduces the problem to
the situation of Theorems 4.2.5 and 4.2.2. Similarly, there are well-defined continuation
maps induced by increasing homotopies of Hamiltonians and we have

SHS'" T (W) := lim SHS*(Hy).
* iy *
H5€H;td

Reeb orbits on hypersurfaces in negative line bundles

We sketch a procedure to detect a minimal number of geometrically distinct periodic Reeb
orbits for hypersurfaces in some negative line bundles.

Symplectic structure on the complement of the zero section

Our framework here is a complex line bundle £ 5 B?" over a closed symplectic manifold
(B?",wp), endowed with a Hermitian structure h and a connection V. We assume L to be
negative i.e.

c1(£) = —klws]
for a real number k > 0. The transgression 1-form, ¥ € Q' (E \ Og,]R) is defined by
0, 6Y(iu) = o= ue L\O¢

{ 0, (u) -

2
0V|gv = 0 where HY is the horizontal distribution.

(4.17)

We have
doV = kn*wp.

We denote by r the radial function on the fiber, i.e. 7: £ — R:u = hy(u, u)% =: |ul.

Observe that d(r?0V) is symplectic except on the zero section Oy. We want to have
information about the minimal number of periodic orbits of the Reeb vector field on a
hypersurface in £\ Oz endowed with the contact form defined by the restriction of (r26")
to 2.
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4.3. Reeb orbits on hypersurfaces in negative line bundles

Reeb orbits on the circle bundle with varying radius

Let f: B — R be a smooth function. Define the contact hypersurface
(Ser = fu e £]jul = 37O} 0= (267, )
The Reeb vector field on S,s is given by:
Ry = e~/ (m(w) (27r89 + Xf) (4.18)

where 0y is the infinitesimal rotation in the fiber (g at the point u identifies with iu), where
X is the Hamiltonian vector field on B corresponding to the function f (i.e. «(X¢)wp = df)
and where X denotes the horizontal lift of a vector X € TB. The periodic Reeb orbits
correspond to the critical points of f. The contact action (i.e. the period) of a simple orbit
~ which lies above a critical point p is

A(y) = /P, (4.19)

The Conley-Zehnder index of an orbit which is a k iterate of a simple orbit over the critical
point p is given by

pez(y) = 2k — %Sign(Hessp f) (4.20)

It is given by the Conley-Zehnder index of the path of symplectic matrices,

é: [O’Gf(p)} — Sp(R*™, Q) ¢(t) := (@f“)

*q

&q

given by the expression of the differential of the flow in a symplectic trivialisation of the
contact structure & along .
We have thus proven the following, using Morse’s inequalities:

Proposition 4.3.1 Let X be a contact type hypersurface in L such that the intersection of
Y with each fiber is a circle. The contact form is the restriction of 120V . Then Y carries at
least ngo Bi geometrically distinct periodic Reeb orbits, where 5; denote the Betti numbers

of B. |

We do not make here any assumptions on B except that B is closed.

Symplectic structure on a negative line bundle

Definition 4.3.2 Let p : [0,00[— [0,1] be a smooth decreasing function such that on a
neighbourhood of 0, p is equal to 1 and p vanishes outside a compact set. Let ¢ > 0 be
such that 27 + €p/(r) > 0. The two form defined by

Wpe = d(r20V) + ed(p(r)0Y) (4.21)
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4. ON THE MINIMAL NUMBER OF PERIODIC REEB ORBITS

is smooth and well defined on £; indeed, it is obviously well defined (and exact) on £\ O.
On the zero section, it coincides with the sum of en*(wp) and the standard form on the
fiber. It is symplectic, non exact. For a fixed e those forms are cohomologous. For two
different choices of € and p, one can interpolate between w, ¢, and w,, ., staying in the
class of elements of the form w,.

When the circle bundle is the boundary of a Liouville domain

Theorem 4.3.3 Let X be a contact type hypersurface in L, negative line bundle over a
symplectic manifold. Suppose that there exists a Liouville domain W' (such that its first
Chern class vanishes on all tori) whose boundary coincides with the circle bundle Spz-
Suppose there exists a Morse function f : B — R such that all critical points of f have a
Morse index of the same parity. Let o be the contact form on % induced by r26Y on L.
Assume that X is “pinched” between two circle bundles Sgz and Sgz of radit Ry and Ry

such that 0 < R; < Ro and % < V2. Assume that the minimal action of any periodic

Reeb orbit on ¥ is bounded below by R?. Then X carries at least Zfﬁo Bi geometrically
distinct periodic Reeb orbits, where the 3; denote the Betti numbers of B.

In this Theorem, the assumption on the existence of a Morse function all of whose critical
points have Morse indices of the same parity is of a technical nature. Its purpose is to
bring the situation within the scope of Theorem 2.2.2, which is our tool for computing
the positive S'-equivariant symplectic homology. The lower bound on the period of any
periodic Reeb orbit is semi-technical; it is now the only way we have to distinguish the
images of the orbits. The “pinching” assumption is more conceptual, its main implication
is that the “n first generators” of the positive S'-equivariant symplectic homology are
simple orbits.

PRrROOF: The proof is the same as for Theorem 4.1.1 using transfer morphisms for Liouville
domains. We see the hypersurfaces as lying in the completion of the Liouville domain w’
which we assumed to exist. We find a small € so that the convex domain ¥ bounded by
the hypersurface ¥ is such that

SR%eef cXcC SRgeef cw!

where :9'; is the domain bounded by S;. We can compute the positive Sl-equivariant
symplectic homology, which is spanned by periodic orbits of the Reeb vector field by
Theorem 2.2.2.

This is possible by the pinching condition. One uses then the transfer morphisms with
truncated action. We have seen that there are Z?Zo Bi simple periodic orbits on Sp, .ef
whose actions are very close to R? and the same number of simple periodic orbits on S Roecf
whose actions are very close to R%. The transfer morphism imply the existence of at least
Z?ZO ; periodic orbits on X with action between R et R3. Since we have assumed here
that the minimal action of any periodic Reeb orbit on ¥ is bounded below by R?, those
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4.3. Reeb orbits on hypersurfaces in negative line bundles

orbits are geometrically distinct. | 9

Symplectic homology for a hypersurface in a negative line bundle

Let W C L be a compact symplectic manifold of codimension 0 in £ with contact type
boundary such that Oy C W; the symplectic form on W is Woie|yy We choose the function
p such that p vanishes in a neighbourhood of the boundary of W. For the symplectic
homology to be well-defined, we assume that the closed symplectic manifold B is atoroidal
and that the first Chern class of its tangent bundle vanishes on the tori. We first ob-
serve that symplectic homology does not depend on the choice of such a function p. The
completions (L) are all symplectomorphic outside a neighbourhood of O.

Lemma 4.3.4 The (positive, S*-equivariant, positive S*-equivariant) symplectic homology
of W is independent of p and €.

The proof is the same as that of Lemma 3.2.5, using the fact that for a fixed € the difference
of two of those symplectic forms is exact.
We even have a stronger result:

Lemma 4.3.5 Let 3 be a positive real number and consider Hamiltonians Hg : SUxW —
R and Hgl :§1 x W x S2N+L — R which are of the form Br + B for v big. Then SH(Hpg)
and SH® (Hg) are independent of p and e.

PROOF: We consider a curve wy, t € [0,1] of symplectic structures in our class and two
1-periodic orbits v_,v4+ of Hg. Remark the those orbits are the same for all ¢ since the
symplectic forms coincide on OW x Ry in the completion. We consider the moduli spaces
Me(v=, Vs Hgt, Ji,) built from Floer trajectories which are solutions of

(3u_

7+Jfou(%

o Xjy, 0 u) =0 (4.22)

going from one of these orbits to the other, where X, is the Hamiltnian symplectic vector
field corresponding to H for the symplectic structure w;. Observe that this equation coin-
cides with the classical Floer equation (with no ¢ dependance) outside a compact set. So
it behaves in the same way as the continuation equation 1.3 for a homotopy with compact
support. Hence it defines a map which intertwines the differential. This gives an isomor-
phism in homology, since an inverse is defined by following the path of symplectic matrices
in the reverse way.

One does a similar reasoning to see that this isomorphism commutes with continuation
maps. Hence we get
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4. ON THE MINIMAL NUMBER OF PERIODIC REEB ORBITS

Lemma 4.3.6 The symplectic homology SH (W) of W is independent of p and e.

Remark that in this case of negative line bundle, the first term in the action i.e. f D2 0 Wp e
where o : D? — W with Olop2 =7 is given by

/D2 o wpe = /D2 o*(d(r?0V) + ed(p(r)6Y))
= /D2 J*d(r20v)+/ o*ed(p(r)8Y)

D2

_ /S A6 + e / o*d(p(r)6Y).

D2

For a chosen Hamiltonian Hg (or an S equivariant lift H 3), one chooses € sufficiently small
so that the actions are close to

Any(0) = = [ %) = [ s (0.500)

Ag,:2) == [ a0 = [ Hs(0.400).).

and by close we mean that the difference with the action is smaller than the smallest
value of the action and smaller than the difference of two actions (this is possible since,
for a given (3, we only have a finite number of 1-periodic orbits). We proceed equivalently
for non contractible orbits for pullbacks on tori linking the orbit to a given loop in the
same homotopy class defined on the manifold B. This allows, when looking at a “stair
Hamiltonian” to define a transfer morphism, to use the action to distinguish the different
subcomplexes. The transfer is then defined as in section 3.1. All reasonings are the same,
since the exactness of the symplectic form was only used to distinguish different classes
of orbits by the value of their action. To see that the transfer does not depend on €, one
proceeds as in Lemma 4.3.5.

At this point, extending the above results to the positive S' equivariant homology, we
would have a theorem for hypersurfaces in negative line bundles over atoroidal symplectic
closed manifolds endowed with a Morse function such that all critical points of f have a
Morse index of the same parity. This is asking too much. So we should use the wider context
of symplectic manifolds which are monotone and work in the homology with coefficients in
the Novikov ring. Everything should extend to this new setup and should lead to

Conjecture 4.3.7 Let X2 be a contact type hypersurface in L, negative line bundle over a
closed monotone symplectic manifold. The bundle is endowed with a hermitian structure
and a connection. Suppose there exists a Morse function f : B — R such that all critical
points of f have a Morse index of the same parity. Let o be the contact form on ¥ induced
by 720V on L. Assume that ¥ is “pinched” between two circle bundles Sg, and Sg, of radii
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4.3. Reeb orbits on hypersurfaces in negative line bundles

R and Ro respectively such that 0 < Ry < Ro and % < V2. Assume that the minimal
action of any periodic Reeb orbit on ¥ is s bounded below by R?. Then X carries at least

Z?go ;. geometrically distinct periodic Reeb orbits; where the 5; are the Betti numbers of
B.
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Normal forms for symplectic matrices

This chapter is to appear as an homonymous paper in Portugaliae Mathematica [Gutb].

We give here a self contained and elementary description of normal forms for symplectic
matrices, based on geometrical considerations. The normal forms in question are expressed
in terms of elementary Jordan matrices and integers with values in {—1,0,1} related to
signatures of quadratic forms naturally associated to the symplectic matrix.

Let V' be a real vector space of dimension 2n with a non degenerate skewsymmetric
bilinear form €. The symplectic group Sp(V, ) is the set of linear transformations of V'
which preserve §2:

Sp(V,Q) ={A:V — V| A linear and Q(Au, Av) = Q(u,v) for all u,v € V' }.

A symplectic basis of the symplectic vector space (V,{2) is a basis {ej,...,es,} in which
the matrix representing the symplectic form is Qg = (_OId 151). In a symplectic basis, the

matrix A’ representing an element A € Sp(V, ) belongs to
Sp(2n,R) = { A" € Mat(2n x 20, R) | A0 A’ = Qo |

where (-)7 denotes the transpose of a matrix.

Given an element A in the symplectic group Sp(V, ), we want to find a symplectic basis
of V in which the matrix A’ representing A has a distinguished form; to give a normal
form for matrices in Sp(2n,RR) means to describe a distinguished representative in each
conjugacy class. In general, one cannot find a symplectic basis of the complexified vector
space for which the matrix representing A has Jordan normal form.

The normal forms considered here are expressed in terms of elementary Jordan matrices
and matrices depending on an integer s € {—1,0, 1}. They are closely related to the forms
given by Long in [LDO00, Lon02] ; the main difference is that, in those references, some
indeterminacy was left in the choice of matrices in each conjugacy class, in particular when
the matrix admits 1 as an eigenvalue. We speak in this case of quasi-normal forms. Other
constructions can be found in [Wim91, LM74, LMX99, Spe72, MT99] but they are either
quasi-normal or far from Jordan normal forms. Closely related are the constructions of
normal forms for real matrices that are selfadjoint, skewadjoint or unitary with respect
to an indefinite inner product where sign characteristics are introduced; they have been

107



5. NORMAL FORMS FOR SYMPLECTIC MATRICES

studied in many sources; for instance -mainly for selfadjoint and skewadjoint matrices-
in the monograph of I. Gohberg, P. Lancaster and L. Rodman [GLRO05], and for unitary
matrices in the papers [AYLR04, GR91, Meh06b, Rod06]. Normal forms for symplectic
matrices have been given by C. Mehl in [Meh06a] and by V. Sergeichuk in [Ser87] ; in those
descriptions, the basis producing the normal form is not required to be symplectic.

We construct here normal forms using elementary geometrical methods.

The choice of representatives for normal (or quasi normal) forms of matrices depends
on the application one has in view. Quasi normal forms were used by Long to get precise
formulas for indices of iterates of Hamiltonian orbits in [Lon00]. The forms obtained here
were useful for us to give new characterisations of Conley-Zehnder indices of general paths
of symplectic matrices [Guta]. We have chosen to give a normal form in a symplectic basis.
The main interest of our description is the natural interpretation of the signs appearing
in the decomposition, and the description of the decomposition for matrices with 1 as an
eigenvalue. It also yields an easy natural characterization of the conjugacy class of an
element in Sp(2n,R). We hope it can be useful in other situations.

Assume that V decomposes as a direct sum V = V; & Vo where V; and V5 are Q-
orthogonal A-invariant subspaces. Suppose that {e1,..., e} is a symplectic basis of V;

in which the matrix representing Aly, is A’ = (j:é ﬁz ) Suppose also that {fi,..., fo} is

A// AII

447 ). Then
{e1, o vely f1ye vy J1s€katy €%, f141,-- -, for} 18 a symplectic basis of V' and the matrix
representing A in this basis is

a symplectic basis of V5 in which the matrix representing Aly, is A” =

AL 0 4, 0
0 A" 0 Al
A, 0 A, 0

0 A 0 Ay

The notation A’@® A” is used in Long [Lon00] for this matrix. It is “a direct sum of matrices

with obvious identifications”. We call it the symplectic direct sum of the matrices A’ and
A”.

We C-linearly extend € to the complexified vector space VC and we C-linearly extend
any A € Sp(V, Q) to VC. If vy denotes an eigenvector of A in VC of the eigenvalue \, then

Q(Avy, Avy) = Q(Avox, poy) = Au(vy, vy), thus Q(vy,v,) = 0 unless g = 5. Hence the
eigenvalues of A arise in “quadruples”

(A := {Aixi} (5.1)
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We find a symplectic basis of V€ so that A is a symplectic direct sum of block-upper-
triangular matrices of the form

<J(A’0k)1 JOuRy > ( o >

or B
J(k)~ 0 Id 0 0 D(ks)
JNK)TE < Id D(k,s) 0 )
JONK)T Id 0 ’
or -
JOk) 1! 0 d 0 0 S(ks)\)
J(\Ek+1)71 ( Id S(k,s,\)”™ 0 )
Jk)T 1d 0 ’
0 J(\Ek+1)7 Id

Here, J(A, k) is the elementary k x k Jordan matrix corresponding to an eigenvalue A,
D(k, s) is the diagonal k x k matrix

D(k, s) = diag(0,...0,s),

and S(k,s,\) is the k x (k + 1) matrix defined by

0..0 0 0
S(k,s,\) = A K
0..0 %is Xis

with s an integer in {—1,0,1}. Each s € {£1} is called a sign and the collection of such
signs appearing in the decomposition of a matrix A is called the sign characteristic of A.
More precisely, on the real vector space V', we shall prove:

Theorem 5.0.8 (Normal forms for symplectic matrices) Any symplectic endomor-
phism A of a finite dimensional symplectic vector space (V,Q) is the direct sum of its
restrictions Ale to the real A-invariant symplectic subspace V|y; whose complezification is

the direct sum of the generalized eigenspaces of eigenvalues X\, X’X and %

Vi =A@ EL O B0

i.

A

We distinguish three cases : A ¢ S', A= =+1 and A € S'\ {*1}.
Normal form for Ay, for A ¢ St

Let A ¢ S be an eigenvalue of A. Let k := dimc Ker(A — A1d) (on VC) and q be the
smallest integer so that (A — A1d)? is identically zero on the generalized eigenspace E).

109
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e If \ is a real eigenvalue of A (X & S so X\ # +1), there exists a symplectic basis of
Viz) in which the matriz representing the restriction of A to Viy is a symplectic direct
sum of k matrices of the form

( T TOugy )

with g = q1 > q2 > -+ > q and J(A\,m) is the elementary m x m Jordan matrix
associated to \

0 i

A
This decomposition is unique, when \ has been chosen in {\, A\71}. It is determined
by the chosen A and by the dimension dim(Ker(A — )\Id)’") for each r > 0.

o If\=re® ¢ (SYUR) is a complexr eigenvalue of A, there exists a symplectic basis of
Viz) in which the matriz representing the restriction of A to Viy is a symplectic direct
sum of k matrices of the form

< JR (re_i¢, 2qj)_1 0 >
0 Jr(re=,2q¢;)"

with g =q1 > g2 > -+ > qi and JR(rei‘f’, 2m) is the 2m x 2m block upper triangular
matriz defined by

R(re*?) 1d
R(re'®) Id 0
R(re*?) 1d
Jr(re®, 2m) := N
0 R(re**) 1d
R(re*?) 1d
R(re'?)

with R(re'?) = (rcow —TsinqS)'

rsing rcos¢

This decomposition is unique, when X\ has been chosen in {\,A71 X, X_l}. It is is
determined by the chosen A and by the dimension dim(Ker(A—)\Id)’") for eachr > 0.

Normal form for A\V[A] for A=+1:
Let A\ = £1 be an eigenvalue of A. There exists a symplectic basis of V|y in which the
matriz representing the restriction of A to Vi is a symplectic direct sum of matrices of

the form
J()\,T‘j)fl C(Tj,Sj,)\)
0 J(A )7
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where C(rj,s5,A) == J(A,r;)7* diag(O,...,O,sj) with s; € {0,1,—1}. If s; = 0, then r;
is odd. The dimension of the eigenspace of the eigenvalue X\ is given by 2Card{j|s; =
0} 4+ Card{j|s; # 0}.

The number of s; equal to +1 (resp. —1) arising in blocks of dimension 2k (i.e. with
corresponding r; = k) is equal to the number of positive (resp. negative) eigenvalues of the
symmetric 2-form

Q% : Ker((A — Ad)%*) x Ker ((A _ )\Id)Zk) R

(v,w) = AQ((A = AId)Fv, (4 — A1d)*tw).
The decomposition is unique up to a permutation of the blocks and is determined by A, by
the dimension dim(Ker(A — )\Id)r) for each r > 1, and by the rank and the signature of
the symmetric bilinear 2-form Qé\k for each k > 1.
Normal form for Ay, for A e ST\ {£1}:
Let A € S', X\ # £1 be an eigenvalue of A. There exists a symplectic basis of Vin in which

the matriz representing the restriction of A to V]y is a symplectic direct sum of 4k; x 4k;
matrices (kj > 1) of the form

0 0
— —1
Jr(N2k;) : s Vi (9) s V2 (9)
(R ]) 0 0 J k] J kj (52)
0 | (J(R2k;))
and (4k; +2) x (4k; + 2) matrices (k; > 0) of the form
0 ..0
— -1 N —s;
((2k) |5 UR @] 1 FVE@) SIVL@)|UL @)
0" 0
0 0 ..0 1 0 j si
COS¢ S5 s(;n¢ (53)
0 : (m(X2ky)" '
0 0
0 —sjsing | 0 ... O 0 —8; cos ¢

where Jr(e'?,2k) is defined as above, where (Vklj (p) szj (¢)) is the 2k; x 2 matriz defined

by '
(1) L R(e?)

(Vklj () Vi (¢)) = : (5.4)
R(e'®)

with R(e'®) = (Cosqj _Sin¢>, where

sin¢ cos¢

(U @ U (@) = (Vi () VE(9)) (R)) (5.5)
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and where s; = £1. The complex dimension of the eigenspace of the eigenvalue X\ in VC s
given by the number of such matrices.

The number of s; equal to +1 (resp. —1) arising in blocks of dimension 2m in the normal
decomposition given above is equal to the number of positive (resp. negative) eigenvalues
of the Hermitian 2-form Qf‘n defined on Ker((A — /\Id)m) by:

Q)+ Ker((A—AId)™) x Ker((A—A1d)™) — C
(v,0) = FQ((A = AId)kv, (A — XId)*'w)  if m = 2k
(v,w) — i Q((A — A1d)*v, (A — X1d)*w) if m =2k + 1.

This decomposition is unique up to a permutation of the blocks, when A has been chosen in
{\A}. It is determined by the chosen X, by the dimension dim(Ker(A — AId)") for each
r > 1 and by the rank and the signature of the Hermitian bilinear 2-form Q;\n for each
m > 1.

The normal form for A|V[A] is given in Theorem 5.2.1 for A ¢ S', in Theorem 6.5.1 for

A = 41, and in Theorem 5.4.2 for A € S*\ {£1}. The characterisation of the signs is given
in Proposition 5.3.3 for A = &1 and in Proposition 5.4.4 for A € S\ {£1}.

A direct consequence of Theorem 5.0.8 is the following characterization of the conjugacy
class of a matrix in the symplectic group.

Theorem 5.0.9 The conjugacy class of a matric A € Sp(2n,R) is determined by the
following data:

e the eigenvalues of A which arise in quadruples [\] = {\, 71\, X_l};

e the dimension dim(Ker(A — )\Id)’”) for each r > 1 for one eigenvalue in each class

[Al;

o for A = £1, the rank and the signature of the symmetric form Qg‘k for each k > 1
and for an eigenvalue \ in S'\ {1} chosen in each [\, the rank and the signature
of the Hermitian form Q) for each m > 1, with

QN Ker((A — A1d)™) x Ker((A — AId)™) — C
(v,w) = $Q((A = AId)*v, (A = XId)*'w)  if m = 2k
(v,w) = i Q((A = A1d)*v, (A — X1d)*w) if m=2k+1.

Preliminaries

Lemma 5.1.1 Consider A € Sp(V,9Q) and let 0 # A € C. Then Ker(A — X1d)7 in VC is
the symplectic orthogonal complement of Im(A — %Id)j.
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5.1. Preliminaries

PROOF:
Q((A = Ad)u, Av) = Q(Au, Av) — AQ(u, Av) = Q(u,v) — AQ(u, Av)
- ol 4- )
and by induction

Q((A — ATd)u, Aly) = (—A)jﬂ(u, (A - ;m)%). (5.6)

The result follows from the fact that A is invertible. | 9

Corollary 5.1.2 If E) denotes the generalized eigenspace of eigenvalue A, i.e Ey := {U €
VE | (A= XId)Jv =0 for an integer j > 0}, we have

Q(EN,Ey) =0 when Ap# 1.

Indeed the symplectic orthogonal complement of E\ = U; Ker(A—A1d) is the intersection
of the Im(A — % Id)’. By Jordan normal form, this intersection is the sum of the generalized
eigenspaces corresponding to the eigenvalues which are not %

If v = u+iu' is in Ker(A—\1d)/ with  and v’ in V then 7 = u—iv/ is in Ker(A—\1d)’
so that E) @ F5 is the complexification of a real subspace of V. From this remark and
corollary 5.1.2 the space

W[)\] = EA@EEEBEXEBE% (5.7)
is the complexification of a real and symplectic A-invariant subspace V} and

V=V © Vg © - @ Viagg (5:8)
where we denote by [A] the set {\, A, I, %} and by [A],...,[ k] the distinct such sets

exhausting the eigenvalues of A.
We denote by Afy,) the restriction of A to V. It is clearly enough to obtain normal forms
for each Apy,) since A will be a symplectic direct sum of those.

We shall construct a symplectic basis of Wy (and of V}y) adapted to A for a given
eigenvalue A of A. We assume that (A—AId)P*! = 0 and (A—\1d)? # 0 on the generalized
eigenspace Ey. Since A is real, this integer p is the same for X. By lemma 5.1.1, Ker(A —
AId)/ is the symplectic orthogonal complement of Im(A — % Id)j for all j, thus dim Ker(A—
A1Id)7 = dim Ker(A — %Id)]; hence the integer p is the same for A and %

We decompose Wy (and V[,\Q into a direct sum of A-invariant symplectic subspaces.
Given a symplectic subspace Z of V] which is A-invariant , its orthogonal complement
(with respect to the symplectic 2-form) V' := Z12 is again symplectic and A-invariant.
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The generalized eigenspace for A on V'C are E;L =VCn E,,, and the smallest integer p’
for which (A — A1d)?” ! = 0 on E} is such that p/ < p.

Hence, to get the decomposition of Wy (and V) it is enough to build a symplectic
subspace of Wy} which is A-invariant and closed under complex conjugation and to proceed
inductively. We shall construct such a subspace, containing a well chosen vector v € E) so
that (A — A1Id)Pv # 0.

We shall distinguish three cases; first A ¢ S* then A = 41 and finally A\ € S*\ {£1}.

We first present a few technical lemmas which will be used for this construction.

A few technical lemmas

Let (V,Q) be a real symplectic vector space. Consider A € Sp(V,) and let A\ be an
eigenvalue of A in VC.

Lemma 5.1.3 For any positive integer j, the bilinear map
Qj : Ex/Ker(A — A1d)7 x E1 /Ker(A— $1d)’ = C

([v), [w]) = Q;([v], [w]) == Q((A = AldJo,w)  veEyweE: (5.9)

is well defined and non degenerate. In the formula, [v] denotes the class containing v in
the appropriate quotient.

PROOF: The fact that @j is well defined follows from equation (5.6); indeed, for any integer
7, we have

Q(A = M), v) = (~AVQ(Au, (4 - $1a)"0). (5.10)

The map is non degenerate because ij ([v], [w]) = 0 for all w if and only if (A—AId)v =0
since € is a non degenerate pairing between E) and FE 1, thus if and only if [v] = 0. Similarly,

Q; ([v], [w]) = 0 for all v if and only if w is Q-orthogonal to Im(A — AId)7, thus if and only
if w € Ker(A — 1d)’ hence [w] = 0. | 9

Lemma 5.1.4 For any v,w € V, any A € C\ {0} and any integers i > 0, j > 0 we have:
Q((A - Ad)'v, (A — L1d)’ L0((A = A1), (A — L1a)
((A=210)'v, (A= 310)w) = —3Q((A-A)* v, (A= F1d)'w)  (5.11)

Lo((A- A1), (A - L1a) !
(-0 (- $10) ).

In particular, if X is an eigenvalue of A, if v € E) is such that p > 0 is the largest integer
for which (A — A1d)Pv # 0, we have for any integers k,j > 0:

Q((A = Nd)P Ty, w) = (—)\Q)jQ((A — APy, (A - ;m)jw) (5.12)
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so that
(A = M) v, w) = (~N2)PQ(v, (A - 1 10)"w) (5.13)

and
Q((A= A1), (4~ {1a)'w) =0 if k+j>p. (5.14)

Proor: We have:
Q((4 - A1a)'v, (4 - $1d) w)

_ —iﬂ((A ~ AId—A) (A~ Ad)iv, (A~ 1d)"w)

= —10((A - A1), (4 - L))

+

Ml k>

Q(A(A = ATd)'v, (4 - $1d) (4 - §10) " w)

Q((A - A10)* 1o, (4 - $1d) w)

+

Q((4- A1)y, (4 - $1a) )

x| -

(A4 - ATd)'v, (4 - }10) " w)

and formula (5.11) follows.
For any integers k,j > 0 and any v such that (A — AId)Pv = 0, we have, by (5.6),

(—)\)jQ((A — ANd)PTEH=iy (A — %Id)jw) = Q((A - AId)PH 1y, Aw) = 0.
Hence, applying formula (5.11) with a decreasing induction on j, we get formula (5.12).

The other formulas follow readily. | 9

Definition 5.1.5 For A € S an eigenvalue of A and v € E) a generalized eigenvector, we

define
1

T; (v) := — Q((A - Nd)'v, (A - X)jﬂ). (5.15)
N
We have, by equation (5.11) :
T;j(v) = =Tit1,5(v) — Tigr,5-1(v), (5.16)
and also,
T j(v) = =Tji(v). (5.17)
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Lemma 5.1.6 Let A € S* be an eigenvalue of A and v € Ey be a generalised eigenvector
such that the largest integer p so that (A — NId)Pv # 0 is odd, say, p = 2k — 1. Then, in
the A-invariant subspace EY of E\ generated by v, there exists a vector v' generating the
same A-invariant subspace Eﬁl = EY, so that (A — AId)Pv' # 0 and so that

T,;(v") =0 foralli,j<k-—1.

If X is real (i.e. 1), and if v is a real vector (i.e. in'V ), the vector v’ can be chosen to be
real as well.

PRrROOF: Observe that

Tik—1(v) = —Tpk(v) —Ti—1,(v) by (5.11)
— Ty_ix(v) by (5.14)
= Tipi-1(v) by (5.17)

is real and can be put to d = %1 by rescaling the vector. We use formulas (5.11) and (5.17)
and we proceed by decreasing induction on i + j as follows:

o if Tj,_1 ;—1(v) = a1, this aq is purely imaginary, we replace v by

Py Y p .
v = 2)\d(A Ald)v;

clearly EY = EY and T; ;(v') = T} ;(v) for i + j > 2k — 1 but now

a1

2d

ay

T j—1(v) — 50

Te-1k-1(v") = a1 — Ty—1,k(v) =0;
so we can now assume Tj_j z—1(v) = 0; observe that if A is real and v is in V/, then

a1 =0 and v/ = v;

o if Tj 95—1(v) =as = —Tj_1—2(v), this oy is real and we replace v by
Oé2 2 .
v — 2)\2d(A — Ald)“v;

the space EY does not change and the quantities T; j(v) do not vary for i+j > 2k —2;

now -
Qg Q2

2d 2

hence also Tj_1 y—2(v') = 0; observe that if X is real and v is in V, then v’ isin V.

Tiok—1(V) = — =T x-1(v) Tr—2p+1(v) =0,

e we now assume by induction to have a J > 0 so that 7T; j(v) = 0forall0 <4,j < k-1
so that i +75 > 2k —1—J,;
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o if Tk—J,k—l(U) = aj, then Tk—J,k—l(U) = (—1)J_1Tk_1’k_J(U) so that oy is real when
J is even and is imaginary when J is odd; we replace v by

— A—XId) v;
v 2>\Jd( ) 'U,
the space EY does not change and the quantities 7; ;(v) do not vary for i+j > 2k —J;
but now
o= g, Y _
Thgr—1(v) = oy 54 Ty p—1(v) 54 kT k+J—1(0)
ag Jog
= - —= —(=1)Y==0.
A
Hence also Tj—ji14-2(v") = 0,... Tp—1,—s+1(v") = 0; so the induction proceeds.
Observe that if A is real and v is in V' then v/ is in V.
| 9
We shall use repeatedly that a n x n block triangular symplectic matrix is of the form
, (B C B= (D7) !
A= ( 0 p ) EPCERIS o _ (D19 with S symmetric. (5.18)

Normal forms for Ay, when A ¢ S*.

As before, p denotes the largest integer such that (A — A1d)P does not vanish identically on
the generalized eigenspace E). Let us choose an element v € E) and an element w € E1

A
such that

@p([UL [w}) = Q((A — Ald)Pw, w) £ 0.

Let us consider the smallest A-invariant subspace EY of E\ containing v; it is of dimension
p+ 1 and a basis is given by

{ap:==v,...,a; = (A— Md)', ..., a, = (A - Ald)Po}.

Observe that Aa; = (A — A1d)a; + Aa; so that Aa; = Aa; + a;41 for i < p and Aa, = ap.
Similarly, we consider the smallest A-invariant subspace EY of E 1 containing w; it is

A
also of dimension p + 1 and a basis is given by

{bo =w,...,bj = (A— %Id)jw,...bp = (A— %Id)pw}.
One has
Q(ai,a;) =0 and Q(b;, bj) = 0 because Q(Ey, E,) = 0 if Ap # 1;
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Q(a;,bj) = 0 if i + j > p by equation (5.14) ;

Qa;, bp—;) = (;—;)p_iﬂ((A — A1d)"v, w) by equation (5.12) and is non zero by the
choice of v, w.

The matrix representing € in the basis {b,, ..., bo, ao,...,ap} is thus of the form

0 0% 0

*

¥
0 0

*| O
*

o ¥lo o
with non vanishing *. Hence (2 is non degenerate on EY @ EY which is thus a symplectic
A

A-invariant subspace.
We now construct a symplectic basis {bfy, b, a0,...,a,} of EY @ EY, extending
A

{ao, ..., ap}, using a Gram-Schmidt procedure on the b;’s. This gives a normal form for A
on EY ® EY.
A

If X is real, we take v, w in the real generalized eigenspaces E;l? and Eﬂf and we obtain a
A
symplectic basis of the real A-invariant symplectic vector space , E%”@Eﬂfw. If X\ is not real,
— A JR—
one considers the basis of Eg@ EY defined by the conjugate vectors {b,,,...,b), a0, ..., ap}

A
and this yields a conjugate normal form on E5 & FE1, hence a normal form on W and
A

this will induce a real normal form on V]y;.
We choose v and w such that Q((A — %Id)pw, v) = 1. We define inductively on j
V) = ar—bp = by;

p Q(bp,ao) P

_ 1
Vi = a7 (bo—i — Ly Ubp—js ar)bl, ),
so that any b;- is a linear combination of the b, with r > j.

In the symplectic basis {b;, o bhsao, . ,ap} the matrix representing A is
B 0
0 J\p+1)
where
*a
A1 0
J(A\,m) = (5.19)
0 X
A
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is the elementary m x m Jordan matrix associated to A. Since the matrix is symplectic,
B is the transpose of the inverse of J(A,p+ 1) by (5.18),s0 B = J(\,p+1)~%
This is the normal form for A restricted to EY @ EY.

. A
If A = e’ ¢ R we consider the symplectic basis {by,, .-, by, a0, ... ,ap} of EY @ EY as
A

above and the conjugate symplectic basis {b, ... .00, @0, ..., ap} of Eg @ EY. Writing b, =
x

%(uj +iv;) and a; = %(wj —dzj) for all 0 < j < p with the vectors u;,v;, w;, z; in the
real vector space V, we get a symplectic basis {up,vp ..., ug, v, wo, Zg . .., wp, xp} of the

real subspace of V' whose complexification is EY @& EY & Eg@ EY. In this basis, the matrix
X x

representing A is

( Je(h2(p+1)) " 0 )

0 Jr(N,2(p+1))"

where Jg(re'?,2m) is the 2m x 2m matrix written in terms of 2 x 2 matrices as

R(re!*) 1d
R(re’?) 1d 0
‘ R(re'?) 1d
Jr(re'®,2m) == N (5.20)
0 R(re'®) 1d
R(re'®) 1d
R(re'?)

with R(re'®) = (:g?ﬁg ;Tczisnf). By induction, we get
Theorem 5.2.1 (Normal form for A}y, for A ¢ S'.) Let A ¢ S! be an eigenvalue of

A. Denote k := dimc Ker(A—\1Id) (on V) and p the smallest integer so that (A—\1d)P+!
1s identically zero on the generalized eigenspace E).

o If A # =1 is a real eigenvalue of A, there exists a symplectic basis of Viy in which
the matrixz representing the restriction of A to Viy is a symplectic direct sum of k
matrices of the form

J(A\,pj +1)71 0
0 J(/\,pj + 1)7—

withp =p1 > pa > -+ > pr and J(\, k) defined by (5.19). To eliminate the ambiguity
in the choice of X in [\] = {\,A\™1} we can consider the real eigenvalue such that X\ >
1. The size of the blocks is determined knowing the dimension dim (Ker(A — \1d)")
for each r > 1.

o IfA=re'® ¢ (STUR) is a complex eigenvalue of A, there exists a symplectic basis of
Viz) in which the matriz representing the restriction of A to Viy is a symplectic direct
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sum of k matrices of the form

( JR(re_i‘b, 2(pj + 1))_1

0
0 Jr (re*id’, 2(p; + 1))T >

with p = p1 > pa > --- > pi, and Jr(re'®, k) defined by (5.20). To eliminate the
ambiguity in the choice of X in [A] = {\, A7\, X_l} we can choose the eigenvalue X
with a positive imaginary part and a modulus greater than 1. The size of the blocks
is determined, knowing the dimension dimc (Ker(A — A1d)") for each r > 1.

This normal form is unique, when a choice of A in the set [\ is fized.

5.3 Normal forms for AIV[A] when \ = +1.

In this situation [A] = {A} and V], is the generalized real eigenspace of eigenvalue A, still de-
noted —with a slight abuse of notation— F). Again, p denotes the largest integer such that
(A — XId)P does not vanish identically on E). We consider @p : Ex/Ker(A — A1d)P x
Ex/Ker(A — A1d)? — R the non degenerate form defined by @p([v], w]) = Q4 -

/\Id)pv,w). We see directly from equation (5.13) that @, is symmetric if p is odd and
antisymmetric if p is even.

531 Ifp=2k—1isodd

we choose v € E) such that

Q(10]. o)) = (A~ ALdPw,v) £0
and consider the smallest A-invariant subspace EY of E\ containing v; it is spanned by
{ap == (A= AId)Pv,...,a; == (A - Md)v,..., ap = v}.
We have
Qaj,a5) =01if i + j > p+ 1(= 2k) by equation (5.14);
Q(a;, ap—i) # 0; by equation(5.12) and by the choice of v.

Hence EY is a symplectic subspace because, in the basis defined by the e;’s, {2 has the

0
triangular form ( > and has a non-zero determinant.

* *
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5.3. Normal forms for A|V[>\] when A = +1.

We can choose v in E\ C V so that Q((4 — A1d)*v, (A — AId)*"1v) = As with s = &1 by
rescaling the vector and one may further assume, by lemma 5.1.6, that

11 : ; .
T;j(v) = ;EQ((A — Ald)'v, (A= AId)’v) =0 forall 0<i,j<k-—1.
We now construct a symplectic basis {a;,, e, @, g, . ,%-1} of EY, extending
{ao,...,ax—1}, by a Gram-Schmidt procedure, having chosen v as above. We define induc-

tivelyon 0 < j <k —1

I 1 .
P "= Qap,a0) WP

a

/ _ 1 L ) ’
Uy = Dy (W3 = Ly Upgs k), ),
so that any a; is a linear combination of the a,’s with r > j and in particular

ro_ 1 k-1 )
@ = sxk + 2521 GOt -

In the symplectic basis {a;, ...,a},ap,...,ak_1} the matrix representing A is

A= ( o J(fk)T )

with J(A, m) defined by (5.19) and with C identically zero except for the last column, and
the coefficient C,’; = sA. Since the matrix is symplectic, B is the transpose of the inverse
of JI\,p+ 1) by (5.18), so B = J(A, k)~! and J(\, k)C is symmetric with zeroes except
in the last column, hence diagonal of the form diag (0, ..., 0, s). Thus

( JN k)T J(X k)" diag(0,. . ., 0, s) >
0 J(\E)T ’

with s = %1, is the normal form of A restricted to EY. Recall that
s = A1 Q((A - A1d) v, (A — A1d)* o).

If p =2k is even
we choose v and w in E) such that
Q([v], [w]) = Q((A — AId)Pv,w) = AP = 1

and we consider the smallest A-invariant subspace EY @® EY of E\ containing v and w. It
is of dimension 4k + 2. Remark that Q((A — Ald)Pv, v) = 0. We can choose v so that

1
- /\r+s

Ty s(v) Q((A—=AId)"v, (A= AId)*v) =0 forall r,s.

Indeed, by formula (5.11) we have T; j(v) = —Tj11,j(v) —Tj41,j—1(v). Observe that T; j(v) =
—Tj(v) so that T; ;(v) = 0 and T} ;(v) = =T} i+1(v)—Tj—-1,i+1(v). We proceed by induction,
as in lemma 5.1.6 :
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e T, o(v) = 0 implies T)_,,(v) =0 for all 0 < r < p by equation (5.12).

e We assume by decreasing induction on J, starting from J = p, that we have T; j(v) =
0 for all i +j > J. Then we have Ty_1_;5(v) = =Ty_1—5.54+1(v) = Tj—2—s s+1(v); the
first term on the righthand side vanishes by the induction hypothesis, so T)j_; o(v) =
(1) Ty_1—ss(v) = (=1)" Ty y-1(v) = (=1)/Ty_1.

If Ty_10(v) =a # 0, J must be even and we replace v by
V' =0+ 552 (A = Ad)P .

Then v' € EY @ EY, EY @ EY = EY @ EY, Q((A — A1d)Pv',w) = W and Tj;(v') =
T; j(v) =0 for all i + j > J but now
TJ,L()(’U,) = TJ,L()(U) + ﬁ ((A — )\Id)pw,v)
+55Q((A = A1d) o, (A — ATd)P~ T w)
F22O((A = Ad)Pw, (A — ATd)P~7Hw)
a o«

= ————:0
YT

so that T; j(v") =0 for all i + j > J — 1 and the induction proceeds.

We assume from now on that we have chosen v and w in E) so that
Q((A = AId)Pv,w) =1 and Q((4 — AId)"v, (A — £ Id)*v) = 0 for all r, s.
We can proceed similarly with w so we can thus furthermore assume that
Q((A = A1dyw, (A~ A1d)*w) =0 for all j. k.

A basis of EY @ EY is given by

{ap = (A= X1d)Pv,...,a0 =v,bp = w,...,b, = (A — A1d)Pw}.
We have
Q(a;,aj) = 0 and Q(b;, bj) = 0 by the choice of v and w;
Q(ai,bj) = 0if i+ j > p by equation (5.14) ;
Q(ai, bp—;) # 0 by equation (5.12) and the choice of of v, w.

The matrix representing €2 has the form hence is non singular and the

0 ' *
subspace EY®FEY is symplectic. We now construct a symplectic basis {a;,, sy ahy boy bp}
of EY@® EY, extending {bo, ...,b,}, using a Gram-Schmidt procedure on the a;’s. We define
A

inductively on j
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ro_ 1 )
p = Qlap bo) P

_ 1
ay_j = W(% = Yok Uap—j, br)a, ),
so that any a is a linear combination of the aj, with k£ > j.

In the symplectic basis {a;, ceosag, bo, - ,bp} the matrix representing A is

(0 sopsnr)

<J(A’p0+ U s 1>T>

is a normal form for A restricted to EY @ EY. Thus we have:

Hence, the matrix

Theorem 5.3.1 (Normal form for Ale for A =41.) Let A = +1 be an eigenvalue of
A. There exists a symplectic basis of V|y in which the matriz representing the restriction
of A to V| is a symplectic direct sum of matrices of the form

(5" %)

where C(rj, 85, \) = J(A\, )7t diag(O,...,O,sj) with s; € {0,1,—1}. If s; = 0, then

rj is odd. The dimension of the eigenspace of eigenvalue 1 is given by 2Card{j|s; =
0} 4+ Card{j|s; # 0}.

Definition 5.3.2 Given A € {£1}, we define, for any integer £ > 1, a bilinear form Qg‘k
on Ker ((A — A1d)?%):

0. : Ker ((A _ )\Id)2k> X Ker( A—\Id Qk) SR
(v,w) = AQ((A = Ad)Fv, (A — ATd)*tw). (5.21)

It is symmetric.

Proposition 5.3.3 Given A € {£1}, the number of positive (resp. negative) eigenvalues
of the symmetric 2-form Qg‘k is equal to the number of s; equal to +1 (resp. —1) arising
in blocks of dimension 2k (i.e. with corresponding r; = k) in the normal decomposition of
A on Vi given in theorem 6.5.1.

On Vi), we have:
dimV

Z sj = Z Signature(Q3;,) (5.22)

k=1
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PRrROOF: On the intersection of Ker ((A — )\Id)%) with one of the symplectically or-

thogonal subspaces EY constructed above for an odd p # 2k — 1, the form Qé\k vanishes
identically. On the intersection of Ker ((A — /\Id)%) with a subspace EY for a v so that
p=2k—1and Q((A—AId)*v, (A — AId)*~1v) = As the only non vanishing component is

Qé\k(v, v) = s.
Indeed, Ker ((A — A1d)*) N EY is spanned by

{(A=AId)"v;r>0and r+2k > p},

and Q((A — ANId)*7v, (A — AId)**""v) = 0 when 2k +r + 7' — 1 > p so the only non
vanishing cases arise when r =1’ = 0 and p = 2k — 1.
Similarly, the 2 form Qé\k vanishes on the intersection of Ker ((A - Id)%) with a subspace

EY ® EY constructed above for an even p. | 9

The numbers s; appearing in the decomposition of A are thus invariant of the matrix.

Corollary 5.3.4 The normal decomposition described in theorem 6.5.1 is determined by
the eigenvalue X, by the dimension dim(Ker(A - )\Id)’”) for each v > 1, and by the rank

and the signature of the symmetric bilinear 2-forms Q%‘k for each k > 1. It is unique up to
a permutation of the blocks. O

Normal forms for Ay when A = e e ST\ {£1}.

We denote again by p the largest integer such that (A — AId)P does not vanish identically
on F) and we consider the non degenerate sesquilinear form
Q : BEx/Ker(A — A1d)? x Ex/Ker(A — A1d)P — C
Q([v], [w]) = APQ((A — A1d)Pv, ).

Since @ is non degenerate, we can choose v € Ej such that Q([v],[v]) # 0 thus (A —
Ald)Pv # 0 and we consider the smallest A-invariant subspace, stable by complex conju-
gaison, and containing v : EY @ Eg C E\ @ E5. A basis is given by

{a; == (A= A1d)"v,b; == (A —XId)’v 0<4,j<p}
We have a; = b; and
e Qa;,a;) =0, Q(b;,bj) =0 because Q(Ey, Ey) = 0;
e Qa;,bg) =0ifi+ k> p+1 by equation (5.14);
o Qa;,br) #0if p =i+ k by equation (5.12) and by the choice of v.

We conclude that EY @ Eg is a symplectic subspace.
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5.4. Normal forms for Ay when A = el e ST\ {£1}.

If p=2k—11is odd

observe that Ty j_1(v) = +Q((A — Md)¥v, (A — XId)*~'0) = s is real and can be put
to +1 by rescaling the vector (we could even put it to 1 exchanging if needed A\ and its
conjugate). One may further assume, by lemma 5.1.6 that

11 . .
T;(v) = ;j]Q((A — Ald)'v, (A= A1d)’v) =0 forall 0<i,j<k-—1.
A
We consider the basis {agk—_1,...,ak,bp, ..., bk, bo,...bg—_1,0a0,...ar_1} for such a vector v

with T}, y—1(v) = s = +1 and Tj ;(v) = 0 for all 0 <4, j < k — 1; the matrix representing

has the form
¥ 0

*|
*

*1
*

0 %
and we transform it by a Gram-Schmidt method into a symplectic basis composed of pairs
of conjugate vectors, extending {by, ..., bx_1, ao,...,ar_1} on which € identically vanishes.
We define
, 1
Qop_1 = &7 5 02k-1
2l Q(azk-1,bo) ’
1

k1 o bak—1 = dy,
- -1 = Qg4
Q(bag—1,a0)

and, inductively on increasing j with 1 < j <k

1 =
hes = iy (s Lyt

r=1

/ _ /
2%k—j = Qo

Any a’%_ j is a linear combination of the ag;_; for 1 <4 < j; reciprocally any agg—; can be
written as a linear combination of the a’%ﬂ. for 1 < i < j, and the coefficient of a’%f j is
equal to Q(agr—j,bj—1).

The basis {ay, _,...,a;,b5 _1,...,b,bo,...,bp_1,0a0,...,ar_1} is symplectic, and in that
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5. NORMAL FORMS FOR SYMPLECTIC MATRICES

basis, since A(a;) = Aa, + a,41 and A(b,) = \b, + b,y1 for all r < 2k — 2, the matrix
representing A is of the block upper triangular form

x 0 0 C
* C 0
T\ k)T 0

0 JA k)T

where C is a k X k matrix such that the only non vanishing terms are on the last column
(Cij = 0 when j < k) and CF = Q(ay,bg—1) = sA. The fact that the matrix is symplectic
implies that S := J(\, k)C is hermitean; since S’ij = 0 when j # k, we have,

0..00
0 .. 0s

and the matrix of the restriction of A to the subspace EY © Eg has the block triangular
normal form

J\ k)7L 0 0 C(k,s,\)
J\ K™Y Ck,s,N) 0
JOE)T 0 (5.23)
0 JO k)T

szriting a’2k7j = %(ezj_l — ieg;), b’2k7j = a’%_j = %(egj_l + iegj), as well as a;_; =
ﬁ(fgj_l — ’ifzj) and bj_l = aj—1 = %(fzj_l + ifQj) for 1 < J < k, the vectors ei,fj all
belong to the real subspace denoted V[K] of V' whose complexification is EY @ Eg and we
get a symplectic basis

{617‘°'762k>f17"'>f2k}

of this real subspace [K}. The matrix representing A in this basis is :

(Jr(X2K) " Cr(k,s, )

58 A) 5.24
( 0 (Jr(X, 2k)) (5:24)
where Jg(e'®,2k) is defined as in (5.20) and where Cg(k,s,e'?) is the (p + 1) x (p + 1)

matrix written in terms of two by two matrices as
0 e 0 0
Cr(k,s,e?)" =s 0 0 0 (5.25)
(—1)*F=1R(e*®) .. —R(e12%) R(ei%)
. ; cos¢p —sing
th R(e®) = ( .
with (e'?) sing cos¢

restricted to V[K]; recall that

> as before and s = £1. This is the normal form of A

s = A1 Q((A - A1d)*v, (A - N1d)"19).
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5.4. Normal forms for Ay when A = el e ST\ {£1}.

If p =2k is even

we observe that Q((4 — A1d)"v, (A — A1d)*v) is purely imaginary and we choose v so that
it is Q((A — A1d)*v, (A — A1d)*v) = si where s = £1 (remark that the sign changes if one
permutes A and \). We can further choose the vector v so that :

0 ((A-A1)fo, (A - X1 7) = %Asi (5.26)
1

T, ;(v) := Q((A—AId)'v, (A—XIdYw) = 0 forall 0 <i,j <k — 1;

AN

Indeed, as before, by (5.11), we have T; ;(v) = —Tjt1,(v) — Tit1,j-1(v) and T;;(v) =
—Tj(v) and we proceed as in lemma 5.1.6 by decreasing induction on ¢ + j:

o if T} —1(v) = aq, since Tj_q (v) = st — T} ,—1(v) the imaginary part of aq is equal

to %si and we replace v by v — 55 (A — AId)v; it generates the same A-invariant
subspace and the quantities 7T j(v) do not vary for i+j > 2k but now Ty, x1(v) = a1 —
AT k1 (v) + LT (v) = a1 — 301 — 3071 = 3si since Ty (v) = —Ths14-1(0) =

—s1; 80 we can now assume Ty ;—1(v) = %si;

o if T} ,—1(v) = ag, this ay is purely imaginary and we replace v by v — ot (A —
A1d)%v; it generates the same A-invariant subspace and the quantities 7; ;(v) do not
vary for i +j > 2k — 1; now Tp_14—1(v) = a2 — §2 T 1 6—1(v) + 52 Th—1k4+1(v) =
Qg — %052 + %072 = 0. We may thus assume this property to hold for v.

o ifTj 90p—1(v) =asz=—Tp_1,-1(v)=Th-1k—2(v) = Th—2,—1(v), this a3 is real and we
replace v by v — 57— (A— A Id)3v; it generates and the the same A-invariant subspace
and the quantitiesiTivj(v) do not vary for i + j > 2k — 2; now Tj_o—1(v) = a3 —
5o T 1,k-1(0) + 52 Th—2k42(v) = 0, since Ty11 5-1(v) = =Tk (v) = —Thgk42(v) =
st; hence also Tj—1 —2(v) = 0;

e we now assume by induction to have a J > 1 so that T; j(v) =0forall 0 <i4,j < k—1
so that i +j > 2k —1— J;

o if Tk_JJﬁ_l('U) = ajy1, then Tk_JJg_l(U) = (*1)J_1Tk_17k_(](v) so that a1 is real

. . . . . . gy
when J is even and is imaginary when J is odd; we replace v by v — 577 +1si(A —

Ad)/*lo; it sgenerates the same A-invariant subspace and the quantities T; ;(v)
do not vary for i + j > 2k — J, but now Tj_j,_1(v) = aji1 — aé];lTk_H,k_l(v) +

TJ; Tk—J,k+J(U) =yl — % + (_1)J+1 aJ2+1 = 0.

Hence also Ty, j11 5-2(v) =0,... Ty—1 x—s+1(v) = 0; so the induction step is proven.
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5. NORMAL FORMS FOR SYMPLECTIC MATRICES

Remark 5.4.1 For such a v, all T; ;(v) are determined inductively and we have

T,;(v) = 0 ifi+j>2k+1 and forall0<i,j<k-—1
Thrpir(v) = (=1)"Tlsi  forall 0<r<k
B g1 81 (r +m)(r —1)!
Tk—r,k—i—m(v) = (71) EW for all 0 S m S T S ]C, r>1
T, ;(v) = Tj(v) foralli,j.

With the notation a; = (A — A\1d)v, b; = (A — X1d)"0, we consider the basis

{G’Qk?' . '7ak+17b2k7 .. '7bk+17bk;b07 s 7bk‘717a07 s 7ak717ak‘}

for such a vector v; the matrix representing {2 in this basis has the form

* 0
0 0 0 0 0
* *
* 0
0 0 0 0 0
* *
0 0 0 0 * * | st
* * *
0 0 0 0
0 * *
* * *
0 0 0 0
0 * | o*
0 0 —Si| ke ok 0 0

We transform (by a Gram-Schmidt method) the basis above into a symplectic basis,
composed of pairs of conjugate vectors (up to a factor) and extending

bUa"'abk—laa()a""ak—l
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on which € identically vanishes. We define inductively, for increasing j with 1 < j <k —1

1 1
A— A- Ny = ——
2k Q((A—/\Id)%v,@)( yre Qazk,by)

1 1 —
— _ A-NId)p = ——— by = a!
2k ( ) (b, o) 2k = Qo

Q((A - X1d)%*, 3, v)
1

!
Ao, — < | a2k— Q agk a
2k—j Q(GQk J,b ( —J § : ]7 2k—r

1 Jj—1 _
/ _ L . / _
. mb)(b ZTZOQ(Z’Q’“‘””Z’?’”) B

!/
a, = a— ZQ ak, a’2k: r

1
/ = —_ Q r = — / .
b Q(bk, a) (bk Z (by; @ 2kr> is K

Each a’%_j is a linear combination of the (A — )\Id)%*”v for 0 < r < j. The basis

/ / / / /. /
{a2k,...,ak+1, kst k+17 k,bo,...,bk_l,a,(],...’ak_]_,ak.}

is now symplectic. Since A(a,) = Aa, + a4 for all r < 2k, and A(asi) = Aagg, the matrix
representing A in that basis is of the form

2k g2k
A 0 0 0o :
Gkl gkl

0 0 0 J\k+1)7

with A(bp_1) = Abp_1 —|— Z?:o ekti b;c_w, Alak—1) = Xag—1 + a), + Z?Zl ckﬂa;Hj and
A(a},) = Aaj, + Z?Zl dk‘”a%ﬂ-.

/
Since a matrix ( 13 g ) is symplectic if and only if A’ = (D7)~ and DT E is
symmetric, we have

A= TN k) Ay =J(\k+1)7"
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5. NORMAL FORMS FOR SYMPLECTIC MATRICES

and
2k T

2k g2k e
J(/\,k‘)(o : : ): JNE+1D) [ o

. . k1
k1 gh+1 e

This implies

2k g2k 00 € 0
JOEY[ o = JNE+D) | Gu =1
( k) k2 k2 0 0 (A, ) e’;*? 0
okF1 gkl 51 82 € : g;

e

so that s = AcFt! and s9 = Ad*T1. Now
jm@:A@+Z@mJﬂ%MM+Zﬁ%M
j>1 Jjz1

= Aag + apy Uagi1, 1) ZF akﬂﬂ
j>1

so that d**!' = Q(apy1,bp_1) = M\%is and so = Ais. We also have
Aag—1) = Xag_1 + ax = Aag_1 + aj, + Qag, bp—1)apq + Z Gjagﬁ_j
Jj=>2

so that 1 = Q(ay, bp_1) = )\%is and s1 = %is.
We have thus shown that the matrix representing A in the chosen basis has the block
upper-triangular normal form

JO k)7L 0 0 JO\k)7LS
JNE+D)™L TN kE+1)7LsT 0
Tk 0 (5:27)
0 J\k+1)7
where S is the k x (k + 1) matrix defined by
0 0 O 0
S =Sk dN:=|° o | 5.28
( ) 0O ... 0 0 0 ( )
0 ... 0 %is Ais

. 1 . — 1 .
We write a’%ﬂfj = ﬁ(egj,l — iegj), b'%“,j = a’2k+1_j = ﬁ(egj,l + ieg;), as well
as aj_1 = %(fQj—l —ify;) and bj_y = @1 = %(f2j—1 +ifg;) for 1 < j < k, and

af, = “=(eapt1 + id for1), b, = —idal, ::455(—j§k+1-— idegy1). The vectors e;, f; all

S
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5.4. Normal forms for Ay when A = el e ST\ {£1}.

belong to the real subspace V[K} of V' whose complexification is EY @ Eg and we get a
symplectic basis

{e1, ..., eamt1, f1,. .-, font1}

of V[K} In this basis, the matrix representing A is :

0 ..0
(eG2m) " |sU26) |2 3VEe) FVA) [UM9)
0" 0
0 cosp |0 ... 0 1 0 ssin ¢
0 0
0 : (Fa(R2w))” :
0 0
0 —ssing |0 ... O 0 —5 cos ¢

where s = 1, U(¢),U?(¢), V1(¢) and V?(¢) are real 2k x 1 column matrices such that

(-1 R()
(Vi@ VZ(9)) = :
R(e'?)

(_1)k—1R(ei(k+1)¢>)
(U (9) U(9)) = z = (V(9) VA(9) (R(c)).
R(e™)

This is the normal form of A restricted to V[K] Recall that

s = iQ((A - A1d)*v, (A — N1d)*w).

Theorem 5.4.2 (Normal form for Ay, for A € S\ {£1}.) Let A € St\ {£1} be an
eigenvalue of A. There exists a symplectic basis of V|5 in which the matriz representing
the restriction of A to V|5 is a symplectic direct sum of 4k; x 4k; matrices (k; > 1) of the
form

0 0

(5.29)
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and (4k; +2) x (4k; + 2) matrices (k; > 0) of the form

(Jeh2k) " |55 U2,(9) V@) VL) UL ©)
0 1 0 j si
COS¢ S s(;nqﬁ (530)
0 : (Je(X2k5)) :
0 0
0 —s;sin¢ 0 -5 cos ¢

where Jr (€', 2k) is defined as in (5.20), where (Vklj (¢) Vij (gi))) is the 2k; x 2 matriz defined

by .
(_1)kj—1R(ezkj¢)

(V@) VE(9)) = ; (5.31)
R(e'?)
with R(e'?) = ( Z‘:;i _C(iisnf ), where
(U ) U (6)) = (Vit (0) V2 (9)) (R(e)) (5.32)

and where s; = £1. The complex dimension of the eigenspace of eigenvalue \ in Ve s
given by the number of such matrices.

Definition 5.4.3 Given \ € ST\ {#£1}, we define, for any integer m > 1, a Hermitian
form @7, on Ker ((A — A1d)™) by:

Q) ¢ Ker((A—MId)™) x Ker((4 —A1d)™) — C
(v,w) = 1Q((A = A1d)*v, (A — X1d)*'w)
(v,w) = i Q((A = A1d)*v, (A — X1d)*w)

if m =2k
ifm=2k-+1.

Proposition 5.4.4 For A € S'\{£1}, the number of positive (resp. negative) eigenvalues
of the Hermitian 2-form Q) is equal to the number of s;j equal to +1 (resp. —1) arising in
blocks of dimension 2m in the normal decomposition of A on Vi given in theorem 5.4.2.

PRrROOF: On the intersection of Ker((A — )\Id)m) with one of the symplectically or-
thogonal subspaces EY @ Eg constructed above from a v such that (A — A1d)Pv # 0 and

(A—XId)P*ty = 0, the form Qﬁb vanishes identically, except if p = m — 1 and the only non
vanishing component is Q)),(v,v) = s.
Indeed, Ker((A — A1d)™) N EY is spanned by

{(A=AId)"v;r>0and r+m > p},
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and Q;\n((A —Ald)"v, (A — )\Id)T’v) = 0 when m +r + 1" —1 > p so the only non van-
ishing cases arise when 7 = 7/ = 0 and m = p + 1 so for Q;\n(v,v). This is equal to
iQ((A — Ald)*v, (A — X1d)*"19) = As = s if m = 2k, and to i Q((A — A1d)*v, (A —
X1d)FD) = i(—is) = s if m = 2k + 1. | 9

The numbers s; appearing in the decomposition are thus invariant of the matrix.

Corollary 5.4.5 The normal decomposition described in theorem 5.4.2 is unique up to a
permutation of the blocks when the eigenvalue X has been chosen in {\,\}, for instance by
specifyng that its imaginary part is positive. It is completely determined by this chosen A,
by the dimension dimg (Ker(A — )\Id)r) for each v > 1 and by the rank and the signature
of the Hermitian bilinear 2-forms Qf‘n for each m > 1. O

133






6.1

Generalised Conley-Zehnder index

This chapter will appear as an homonymous paper in Annales de la Faculté des Sciences
de Toulouse, [Guta).

The Conley-Zehnder index associates an integer to any continuous path of symplectic
matrices starting from the identity and ending at a matrix which does not admit 1 as
an eigenvalue. We give new ways to compute this index. Robbin and Salamon define a
generalization of the Conley-Zehnder index for any continuous path of symplectic matrices;
this generalization is half integer valued. It is based on a Maslov-type index that they define
for a continuous path of Lagrangians in a symplectic vector space (W, Q), having chosen a
given reference Lagrangian V. Paths of symplectic endomorphisms of (R?", () are viewed
as paths of Lagrangians defined by their graphs in (W = R?" @ R Q) = Qg & —Q)
and the reference Lagrangian is the diagonal. Robbin and Salamon give properties of this
generalized Conley-Zehnder index and an explicit formula when the path has only regular
crossings. We give here an axiomatic characterization of this generalized Conley-Zehnder
index. We also give an explicit way to compute it for any continuous path of symplectic
matrices.

Introduction

The Conley-Zehnder index associates an integer to any continuous path ¢ defined on the

interval [0,1] with values in the group Sp <R2”,Q0 = (_OId Ig)) of 2n x 2n symplectic

matrices, starting from the identity and ending at a matrix which does not admit 1 as an
eigenvalue. This index is used in the definition of the grading of Floer homology theories.
If the path ¢ were a loop with values in the unitary group, one could define an integer by
looking at the degree of the loop in the circle defined by the (complex) determinant -or an
integer power of it. The construction [SZ92, Sal99, AD10] of the Conley-Zehnder index is
based on this idea. One uses a continuous map p from the sympletic group Sp(R?",€))
into S and an “admissible” extension of 1) to a path e [0,2] — Sp(R?",€)) in such a
way that p? o J : [0,2] — S'is a loop. The Conley-Zehnder index of ¢ is defined as the
degree of this loop

pez () = deg(p® o 1))
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We recall this construction in section 6.2 with the precise definition of the map p. The
value of p(A) involves the algebraic multiplicities of the real negative eigenvalues of A and
the signature of natural symmetric 2-forms defined on the generalised eigenspaces of A for
the non real eigenvalues lying on S'. We give alternative ways to compute this index :

Theorem 6.1.1 Let ¢ : [0,1] — Sp(R?", Q) be a continuous path of matrices linking the
matriz Id to a matriz which does not admit 1 as an eigenvalue. Let 1) : [0,2] — Sp(R*™, Q)
be an extension such that 1) coincides with v on the interval [0, 1], such that 1 (s) does not
admit 1 as an eigenvalue for all s > 1 and such that the path ends either at ¢ (2) = W+ :=

—1d either at 1;(2) =W~ :=diag(2,—1,...,—1, %, —1,...,=1). The Conley-Zehnder index
of ¥ is equal to the integer given by the degree of the map p2 o : [0,2] — S
nez(v) = deg(p® o ) (6.1)

for ANY continuous map p : Sp(R?", Qo) — S* with the following properties:
1. p coincides with the (complex) determinant detc on U(n) = O (R?*™) N Sp (R?",Q);
2. p(W™) e {#1};

3. deg (P ot ) =n—1

0 0 -&2 g

0 Idypy O 0
for o it €[0,1] — exptnJy g2 g ! 0 0

0 0 0 Idus

In particular, two alternative ways to compute the Conley-Zehnder index are :

e Using the polar decomposition of a matriz,

pez(1) = deg(dete? o U o 1)) (6.2)

where U : Sp(R?,Qg) — U(n) : A AP~! with P the unique symmetric positive
definite matriz such that P? = ATA.

e Using the normalized determinant of the C-linear part of a symplectic matrix,

pez(v) = deg(p® o ) (6.3)

n n . dete (L (A—JpAJ
where p: Sp(R2", D) = S5 A p(4) = i rAn)

with Jo = (I% *Old) the standard complex structure on R".

In [RS93], Robbin and Salamon define a Maslov-type index for a continuous path A
from the interval [a, b] to the space E(Wﬁ) of Lagrangian subspaces of a symplectic vector

space (W, ), having chosen a reference Lagrangian L. They give a formula of this index
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for a path having only regular crossings. A crossing for A is a number t € [a, b] for which
dim Ay N L # 0, and a crossing t is regular if the crossing form I'(A, L, t) is nondegenerate.
We recall the precise definitions in section 6.3.

Robbin and Salamon define the index of a continuous path of symplectic matrices
¥ :[0,1] — Sp(R?™, Q) : t + 1y as the index of the corresponding path of Lagrangians in
(W :=R?" x R?" Q) = —Qq x ) defined by their graphs,

A=Gry:[0,1] = Lyyg  t = Groy = {(z, )|z € R2"}.

The reference Lagrangian is the diagonal A = {(z, )|z € R?"}. They prove that this
index coincide with the Conley Zehnder index on continuous paths of symplectic matrices
which start from the identity and end at a matrix which does not admit 1 as an eigenvalue.
To be complete, we include this in section 6.4. They also prove that this index vanishes
on a path of symplectic matrices with constant dimensional 1-eigenspace. Robbin and
Salamon present also another way to associate an index to a continuous path 1 of symplectic
matrices. One chooses a Lagrangian L in E(R2H’QO) and one considers the index of the path
of Lagrangians t — ¥y L, with L as the reference Lagrangian. We show in section 6.4.2 that
those two indices do not coincide in general.

We use the normal form of the restriction of a symplectic endomorphism to the general-
ized eigenspace of eigenvalue 1 obtained in [Gutb] to construct special paths of symplectic
endomorphisms with a constant dimension of the eigenspace of eigenvalue 1. This leads
in section 6.5 to a characterization of the generalized half-integer valued Conley Zehnder
index defined by Robbin and Salamon :

Theorem 6.1.2 The Robbin-Salamon index for a continuous path of symplectic matrices
is characterized by the following properties:

e (Homotopy) it is invariant under homotopies with fized end points;

e (Catenation) it is additive under catenation of paths;

e (Zero) it vanishes on any path 1 : [a,b] — Sp(R?", Q) of matrices such that dim Ker (¢ (t)—

Id) = k is constant on [a,b];

e (Normalization) if S = ST € R?"2" js q symmetric matriz with all eigenvalues of
absolute value < 2w and if P¥(t) = exp(JoSt) for t € [0,1], then prs(y) = %SignS
where Sign S is the signature of S.

The same techniques lead in section 6.6 to a new formula for this index :

Theorem 6.1.3 Let ¢ : [0,1] — Sp(R?", ) be a path of symplectic matrices. Decompose
¥(0) = ¥*(0) ® vM(0) and (1) = *(1) @ V(1) where ¢*(-) does not admit 1 as
eigenvalue and (M (-) is the restriction of () to its generalized eigenspace of eigenvalue
1. Consider a continuous extension W : [—1,2] — Sp(R?", ) of ¥ such that
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U(t) =(t) fort €]0,1];
U(—3) =v*0) @ (*, 9

positive eigenvalues for t €

) and U(t) = ¥*(0) @ ¢o(t) where ¢o(t) has only real
0]

Id
(-3
U(3) =yvr(1) @ (eflld ) and U(t) = ¢¥*(1) & ¢1(t) where ¢1(t) has only real
positive eigenvalues for t e [ ]

V(1) = WE, ¥(2) = W* and U(t) does not admit 1 as an eigenvalue for t €
[—1,—%] and fort € [%,2].

Then the Robbin Salamon index is given by

prs () = deg( ,0 o) Z Slgn( )) _ %Z Sign(Qgp(l)D

k>1 k>1

with p as in theorem 6.1.1, and with
QY : Ker ((A - Id)%) x Ker ((A - Id)2k> —R
(v, w) — Q((A - Id)*v, (A — Id)k_lw).

In the theorem above, we have used the notation A @ B for the symplectic direct sum of
two symplectic endomorphisms with the natural identification of Sp(V’, ) x Sp(V", Q")
as a subgroup of Sp(V' @ V", Q' & Q"). This writes in symplectic basis as

A1 0 A2 O
A®B:= <£3 B9 %2) fora=(4142), B=(05).
0 Bs 0 By

We recall the definition of the Conley-Zehnder index in section 6.2 and obtain a new way
of computing this index in Proposition 6.2.7 and its corrolaries (stated above as Theorem
6.1.1). In sections 6.3 and 6.4, we present known results about the Robbin Salamon index
of a path of Lagrangians and the Robbin Salamon index of a path of symplectic matrices,
including the fact that it is a generalization of the Conley-Zehnder index; in section 6.4.2, we
stress the fact that another index introduced by Robbin and Salamon does not coincide with
this generalization of the Conley-Zehnder index. In section 6.5, we give a characterization
of the generalization of the Conley-Zehnder index (stated above as Theorem 6.1.2). Section
6.6 gives a new formula to compute this index (stated above as Theorem 6.1.3).

The Conley-Zehnder index

The Conley-Zehnder index is an application which associates a integer to a continuous
path of symplectic matrices starting from the identity and ending at a matrix in the set
Sp*(R?", Q) of symplectic matrices which do not admit 1 as an eigenvalue.
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Definition 6.2.1 ([SZ92, Sal99]) We consider the set SP(n) of continuous paths of ma-
trices in Sp(R?", ) linking the matrix Id to a matrix in Sp*(R?", Q) :

SP(n) = {¢ 1 10,1] - Sp(R2", ) | ¥(0) =1d and }

1 is not an eigenvalue of (1)

Definition 6.2.2 ([SZ92, AD10]) Let p: Sp(R**, Q) — S! be the continuous map de-
fined as follows. Given A € Sp(R?", ), we consider its eigenvalues {);}. For an eigenvalue
A= e e S\ {£1}, let mT()\) be the number of positive eigenvalues of the symmetric
non degenerate 2-form () defined on the generalized eigenspace E) by

Q:E\xE\—R: (2,2)— Q(z7) :=Im Q(z, 7).
Then

pA)= (D T A (6.4)
AEST\{£1}

where m™ is the sum of the algebraic multiplicities m) = dim¢ E) of the real negative
eigenvalues.

Proposition 6.2.3 ([SZ92, AD10]) The map p : Sp(R?**,Qy) — S* has the following
properties:

1. [determinant] p coincides with detc on the unitary subgroup

p(A) = detcA if A € Sp(R*", Q) N O(2n) = U(n);

2. [invariance] p is invariant under conjugation :

p(kAk™") = p(A) Vk € Sp(R*", Qo);

3. [normalisation] p(A) = +1 for matrices which have no eigenvalue on the unit circle;
4. [multiplicativity] p behaves multiplicatively with respect to direct sums : if A= A'@A”

with A" € Sp(R?™, ), A” € Sp(R2™=™) Q) and @ expressing as before the obvious
identification of Sp(R?™, Q) x Sp(R2"=™) Q) with a subgroup of Sp(R?", Q) then

p(A) = p(A")p(A").

The construction [Sal99, AD10] of the Conley-Zehnder index is based on the two following
facts
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e Sp*(R?", Q) has two connected components, one containing the matrix W+ := —Id
and the other containing

1
W= = dlag<27 _17 EERE _17 57 _17 ct _1>7

e any loop in Sp*(R?",€)) is contractible in Sp(R?", Q).

Thus any path ¢ : [0,1] = Sp(R?", Q) in SP(n) can be extended to a path [0,2] —
Sp(R?", ) so that

o U(t) =1p(t) for t < 1;
o {/}V(t) is in Sp*(R?", () for any t > 1;
. $(2)

Observe that (p(Id))2 =1 and (p(Wi))2 =1 so that p2 o) : [0,2] = S is a loop in S*
and the contractibility property shows that its degree does not depend on the extension
chosen.

W,

Definition 6.2.4 The Conley-Zehnder index of v is defined by:

picz s SP(n) = Z: ¥ pez(vh) := deg(p® o 1) (6.5)

for an extension 1 of ¥ as above.

Proposition 6.2.5 ([Sal99, AD10]) The Conley-Zehnder index has the following prop-
erties:

1. (Naturality) For all path ¢ : [0,1] — Sp(R?", Q) we have

pez(ove) = pez(v);

2. (Homotopy) The Conley-Zehnder index is constant on the components of SP(n);

3. (Zero) If (s) has no eigenvalue on the unit circle for s > 0 then
poz(y) = 0;
4. (Product) If n' +n" =mn, , if ' is in SP(n') and " in SP(n"), then

pez( &Y' = pez(¥) + pez(");

with, the identification of Sp(R2™, Qo) x Sp(R*"” Q) with a subgroup of Sp(R?"™, Qp);
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5. (Loop) If ¢ : [0,1] — Sp(R?"™,€) is a loop with ¢(0) = (1) = 1d, then

pez(d) = pez(¥) + 2u(9)
where p(¢) is the Maslov index of the loop ¢, i.e. u(¢) = deg(po ¢);

6. (Signature) If S = S™ € R?*2" js q symmetric non degenerate matriz with all
eigenvalues of absolute value < 2w (||S| < 2m) and if Y (t) = exp(JoSt) fort € [0,1],
then pez(v) = 4 Sign(S) (where Sign(S) is the signature of S).

7. (Determinant) (—1)" #cz(¥) = sign det(Id—v(1))
8. (Inverse) ucz(¥™1) = pez(V") = —pez ()

Proposition 6.2.6 ([Sal99, AD10]) The properties 2, 5 and 6 of homotopy, loop and
stgnature characterize the Conley-Zehnder indez.

PROOF: Assume ' : SP(n) — Z is a map satisfying those properties. Let ¢ : [0,1] —
Sp(R?",§)g) be an element of SP(n); Since 1 is in the same component of SP(n) as its
prolongation 1 : [0,2] — Sp(R?", Q) we have i/ (v) = 1’ ().

Observe that W+ = expw(JpS™) with ST =1d and W~ = exp7(JpS~) with

0 o0 -2 g
- 0 Idpr O 0
S — ) n—1
ez 0 0
0 0 0 Idy

The catenation of ¢ and 15 (the path 1 in the reverse order, i.e followed from end
to beginning) when 1o : [0,1] — Sp(R?", Q) t +— exptnJoST is a loop ¢. Hence Y is
homotopic to the catenation of ¢ and 13, which is homotopic to the product ¢is (see, for
instance, [Gutb]).

Thus we have p/ (1)) = p/(p)2). By the loop condition p/(¢we) = ' (12) +2u(¢) and by
the signature condition 4'(y2) = 1 Sign(S*). Thus

1.
W (W) = 2(9) + 5 Sign(S%).
Since the same is true for pcz(1), this proves uniqueness. | %

Remark that we have only used the signature property to know the value of the Conley-
Zehnder index on the paths 1ot : t € [0,1] — exptmr.JoST. Hence we have :

Proposition 6.2.7 Let ) € SP(n) be a continuous path of matrices in Sp(R2"™, Q) linking
the matriz 1d to a matriz in Sp*(R**,Q0) and let ¢ : [0,2] — Sp(R*", Q) be an extension
such that v coincides with 1 on the interval [0,1], such that ¢ (s) € Sp*(R?", ) for all
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s > 1 and such that the path ends either in (2) = —Id = W either in ¢(2) = W~ :=

diag(2,-1,...,—1, %, —1,...,-1). 7:he Conley-Zehnder index of v is equal to the integer
given by the degree of the map p* o) : [0,2] — S :
pez(y) = deg(5* o 9) (6.6)

for any continuous map p : Sp(R*™, Q) — S* which coincide with the (complex) determi-
nant detc on U(n) = O (RZ") N Sp (R2”,QO), such that p(W~) = £1, and such that

deg (p?othe_ ) =n—1 for 1o :t€[0,1] — exptmoS~.

PROOF: This is a direct consequence of the fact that the map defined by deg(p? o 1;) has
the homotopy property, the loop property (since any loop is homotopic to a loop of unitary
matrices where p and detc coincide) and we have added what we need of the signature
property to characterize the Conley-Zehnder index. Indeed %Sign ST =n-18" =

Idsy,, 4 Sign St =n and
exptrnJoST = exptr (Ic(lJn _Bd”) = (COSMM" _Sin”tld”) is in U (n)

sinmtId,, coswtlds,

so that j? (exp tr (Ign ~ i )) = ¥t and deg(p? o Yay) = n. | 9

Corollary 6.2.8 The Conley-Zehnder index of a path ¢ € SP(n) is given by
pez(1) = deg(dete? o U o 9)) (6.7)

where U : Sp(R?™,Qq) — U(n) is the projection defined by the polar decomposition U(A) =
AP~ with P the unique symmetric positive definite matriz such that P? = ATA.

PROOF: The map p := detc o U satisfies all the properties stated in proposition 6.2.7; it is
indeed continuous, coincides obviously with detc on U (n) and we have that

_log?2
exptmJy < _Sﬁ N ) = (2(; 29t ) is a positive symmetic matrix so that U(exp tnJyS™) =

1 0 0 0
0 cosmtldp—1 0 —sinmwtld,—1 .
0 0 1 0 ’

0 sinwtldy,—1 0 coswtld,—1

hence det? o U(exptrJoS™) = 2=Vt and deg(detc?o U oty ) =n — 1. | 8

Formula (6.7) is the definition of the Conley-Zehnder index used in [dG09, HWZ95].
Another formula is obtained using the parametrization of the symplectic group introduced
in [RR&9]:

Corollary 6.2.9 The Conley-Zehnder index of a path ¢ € SP(n) is given by
nez(¥) = deg(p* o 1) (6.8)
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6.3. The Robbin-Salamon index for a path of Lagrangians

where p : Sp(R?™, Qg) — St is the normalized complex determinant of the C-linear part of
the matrix:

(6.9)

PROOF: Remark that for any A € Sp(R?",€)) the element C4 := (A — JyAJy), which
clearly defines a complex linear endomorphism of C™ since it commutes with Jy, is always
invertible. Indeed for any non-zero v € V'

4(20(0,41/, J()CA’U) = QQ()(U, J()’U) + Qo(AU, J()A’U) + Qo(AJ()U, J()AJ()U) > 0.

If A€ U(n), then Cy = A so that p(A) = detc(A) hence p is a continuous map which
coincide with detc on U (n). Furthermore

% ((2(; 29t) —Jo (2(; 29t) JO) = % (QtJFOTt 2,5_824) hence its complex determinant is equal

to %(2t+2_t) and its normalized complex determinant is equal to 1 so that p(exp twJyS™) =
emi(n=1t and deg(p?op ) =n—1.

The Robbin-Salamon index for a path of Lagrangians

A Lagrangian in a symplectic vector space (V,€) of dimension 2n is a subspace L of V' of
dimension n such that |, ; = 0. Given any Lagrangian L in V, there exists a Lagrangian
M (not unique!) such that L @ M = V. With the choice of such a supplementary M
any Lagrangian L’ in a neighborhood of L (any Lagrangian supplementary to M) can be
identified to a linear map a : L — M through L' = {v + a(v) |v € L}, with « such that
Q(a(v),w) +Q(v,a(w)) = 0 Vv, w € L. Hence it can be identified to a symmetric bilinear
fooma:LxL—R:(v,0)— Q(v, a(v’)). In particular the tangent space at a point L
to the space L(y,) of Lagrangians in (V,Q) can be identified to the space of symmetric
bilinear forms on L.

If A:la,b] = Ly = Lmen g, t + Ay is a smooth curve of Lagrangian subspaces in
(R?" Q) , we define Q(Ay,, A¢,) to be the symmetric bilinear form on Ay, defined by

igt(v,v') = iQ(U,OZt(U,)) (6.10)

. N
Q(Ato’Ato)(U7v)_ dt . T at ,
0 0

where oy : Ay, — M is the map corresponding to A; for a decomposition R = A;, & M
with M Lagrangian. Then [RS93] :

e the symmetric bilinear form Q(Ay,, As,) : Ay, X Ay, — R is independent of the choice
of the supplementary Lagrangian M to A,;
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e if 1) € Sp(R?"*,€)) then
Q(wAtoa¢Ato)(1/wa 77/”/) = Q(AtoaAto)(v7U/) VU, v' € AtO' (6'11)

Let us choose and fix a Lagrangian L in (R?",€)). Consider a smooth path of La-
grangians A : [a,b] — L,,. A crossing for A is a number ¢ € [a, b] for which dim A, N L # 0.
At each crossing time ¢ € [a,b] one defines the crossing form

L(A,Lt) = Q(As, At)‘ (6.12)

AL

A crossing t is called regular if the crossing form I'(A, L, t) is nondegenerate. In that case
AsN L = {0} for s # ¢ in a neighborhood of ¢.

Definition 6.3.1 ([RS93]) For a curve A : [a,b] — L£,, with only regular crossings the
Robbin-Salamon index is defined as

1 1
nrs(A, L) = 5 SignT(A, L, a) + > SignT(A, L,t) + 5 Sign (A, L.b). (6.13)

a<t<b
t crossing

Robbin and Salamon show (Lemmas 2.1 and 2.2 in [RS93]) that two paths with only regular
crossings which are homotopic with fixed endpoints have the same Robbin-Salamon index
and that every continuous path of Lagrangians is homotopic with fixed endpoints to one
having only regular crossings. These two properties allow to define the Robbin-Salamon
index for every continuous path of Lagrangians and this index is clearly invariant under
homotopies with fixed endpoints. It depends on the choice of the reference Lagrangian L.
Robbin and Salamon show ([RS93], Theorem 2.3):

Theorem 6.3.2 ([RS93]) The index urs has the following properties:
1. (Naturality) For ¢ € Sp(R*™,Q) prs(WA, L) = urs(A, L).
2. (Catenation) For a < c <b, prs(A, L) = prs(Ay, ;. L) + prs(Ay, . L)

3. (Product) If ' +n" = n, identify L, x Lp» as a submanifold of L, in the obvious
way. Then pps(AN & A", L' & L") = prs(N', L") + prs(A”, L").

4. (Localization) If L = R™x {0} and A(t) = Gr(A(t)) where A(t) is a path of symmetric
matrices, then the index of A is given by
prs(A, L) = 3 Sign A(b) — £ Sign A(a).

5. (Homotopy) Two paths Ao, A1 : [a,b] — L,, with Ao(a) = A1(a) and Ao(b) = A1(D)
are homotopic with fized endpoints if and only if they have the same index.

6. (Zero) Every path A : [a,b] — Xp(V), with 3(V) ={M € L, | dmMNL =k},
has index prs(A, L) = 0.
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6.4 The Robbin-Salamon index for a path of symplectic matrices

6.4.1 Generalized Conley-Zehnder index

Consider the symplectic vector space (R?® x R?" Q) = —Qq x €). Given any linear map
Y : R?" — R?" | its graph
Gry = {(z,yz)|z € R*"}

is a 2n-dimensional subspace of R?"® x R?" which is Lagrangian if and only if ¢ is symplectic

(w € SP(RQna QO)) :
A particular Lagrangian is given by the diagonal

A = Grld = {(z, z)|z € R*"}. (6.14)

Remark that Gr(—v) is a Lagrangian subspace which is always supplementary to Gr ) for
¥ € Sp(R?™, Q). In fact Gr ¢ and Gr) are supplementary if and only if ¢ — is invertible.

Definition 6.4.1 ([RS93]) The Robbin-Salamon index of a continuous path of symplectic
matrices 1 : [0,1] — Sp(R?",Qg) : t — 1 is defined as the Robbin-Salamon index of the
path of Lagrangians in (R?" x R?" Q),

A=Gry:[0,1] = Loy : t — Gry
when the fixed Lagrangian is the diagonal A:

prs () = prs(Grip, A). (6.15)

Note that this index is defined for any continuous path of symplectic matrices but can have
half integer values.
A crossing for a smooth path Gr is a number t € [0, 1] for which 1 is an eigenvalue of
iy and
GrieNA={(z,z) |z =z}

is in bijection with Ker(¢; — Id).
The properties of homotopy, catenation and product of theorem 6.3.2 imply that [RS93]

e [irg is invariant under homotopies with fixed endpoints,
e [ ps is additive under catenation of paths and

e s has the product property prs(¥’ @ ") = prs(¥') + nrs(¥”) as in proposition
6.2.5.

The zero property of the Robbin-Salamon index of a path of Lagrangians becomes:
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Proposition 6.4.2 If1 : [a,b] — Sp(R?",Q) is a path of matrices such that dim Ker (¢ (t)—
Id) = k for all t € [a,b] then urs(¢) = 0.

Indeed, Gry;NA = {v € R*"|¢);v = v} so dim(Gr;NA) = k if and only if dim Ker(¢(t) —
1d) = k.

Proposition 6.4.3 (Naturality) Consider two continuous paths of symplectic matrices
¥, ¢ [0,1] = Sp(R?™, Q) and define ¢' = ¢pipp~t. Then
prs(¥') = prs(¥)
PROOF: One has
A= Groyp = {(z, ¢ribig; ') [z € R}

= {(dw, driby) |y € R*"}

= (¢t x @) Grojy

= (¢t X ¢t)As

and (¢; x ¢¢)A = A. Furthermore (¢; x ¢;) € Sp(R?" x R?", Q).
Hence t € [0, 1] is a crossing for the path of Lagrangians A’ = Gr if and only if dim Gr ¢;N
A # 0 if and only if dim(¢; X ¢¢)(Griy N A) # 0 if and only if ¢ is a crossing for the path
of Lagrangian A = Gr.

By homotopy with fixed endpoints, we can assume that A has only regular crossings
and ¢ is locally constant around each crossing ¢ so that

w00 = duoi
Then at each crossing
D(Gry',At) = Q(A;aA/t)‘ergnA

= Q¢ x D) As, (B¢ X S)M)| (6, x60) Granna

= QU Aarpnac (67" x o) @ (¢ x o)
in view of (6.11), so that

SignT'(Gr)', A, t) = SignT'(Gr, A, t).
| 9

Definition 6.4.4 For any smooth path v of symplectic matrices, define a path of sym-
metric matrices S through

Ur = JoSity.
This is indeed possible since 1y € Sp(R?", Q) V¢, thus 1, L4y is in the Lie algebra sp(R?™, )
and every element of this Lie algebra may be written in the form .JyS with S symmetric.
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The symmetric bilinear form Q(Gr 1, %Gr ) is given as follows. For any ¢ € [0, 1], write
R?" x R*" = Gr 4y, ® Gr(—1y,). The linear map oy : Grajy, — Gr(—1)y,) corresponding to
Gr 1)y is obtained from:

(z, Y1) = (y, Ytoy) + (Y, Yroy) = (¥, Yroy) + (wy, —r,cny)
if and only if (Id +a¢)y = = and 4, (Id —a:)y = ¢z, hence 1/1t_01wt(1d +ay) = Id —ay and

d .

1 -1
P —§¢t0 (e

ar = (Id 4+ ) " (Id —y ')

to

Thus
d
Q (GI‘ 77/}1507 % Gr wto> ((U7 wtov>a (’Ul, wtovl))

= %ﬁ((v, wtov)a at(vla ¢tovl))

_ %ﬁ((v, Yrov), (@20, — ey @r0'))

idv v’)
’dt tto
= QO(’U7’¢7§)1¢150’U/)
- Qo(wtovajostowtovl)'

Hence the restriction of @ to Ker(t;, — Id) is given by

to

to

= =20 (v

Q(Gr Uty % Gr ¢t0) ((v, Piv), (v, T/Jtovl)) =07 Sv" Y, v € Ker(¢y, — 1d).

A crossing ty € [0, 1] is thus regular for the smooth path Gr) if and only if the restriction
of Sy, to Ker(¢y, — Id) is nondegenerate.

Definition 6.4.5 ([RS93]) Let v : [0,1] — Sp(R?*",Qp) : ¢ ~ ¢ be a smooth path of
symplectic matrices. Write ¢t = JoSty with t — S; a path of symmetric matrices. A
number ¢ € [0,1] is called a crossing if det(¢y —Id) = 0. For ¢ € [0, 1], the crossing form
(¢, t) is defined as the quadratic form which is the restriction of S; to Ker(y; — Id). A
crossing tg is called regular if the crossing form I'(v, ) is nondegenerate.

Proposition 6.4.6 ([RS93]) For a smooth path v : [0,1] — Sp(R?"*,€Qy) : t — 1y having
only regular crossings, the Robbin-Salamon index introduced in definition 6.4.1 is given by

prs() = 5 ST, 0) + Y Sianl(6,1) + 5 Sian (1) (6.16)

t crossing,

t €]0,1[
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Proposition 6.4.7 ([RS93]) Let v : [0,1] — Sp(R?*,Qy) be a continuous path of sym-
plectic matrices such that ¢(0) = Id and such that 1 is not an eigenvalue of ¥ (1) (i.e.
1 € SP(n)). The Robbin-Salamon index of 1 defined by (6.15) coincides with the Conley-
Zehnder index of 1 In particular, for a smooth path 1) € SP(n) having only reqular cross-
ings, the Conley-Zehnder index is given by

poz(h) = fslgnr $,0)+ Y SignT(¥,t)
ot
= 781gn (So) + Z SignT'(¢, t) (6.17)
ttcgiziwlu[]

with So = —J()Lbo.

PROOF: Since the Robbin-Salamon index for paths of Lagrangians is invariant under ho-
motopies with fixed end points, the Robbin-Salamon index for paths of symplectic matrices
is also invariant under homotopies with fixed endpoints.

Its restriction to SP(n) is actually invariant under homotopies of paths in SP(n) since
for any path in SP(n), the starting point ¢y = Id is fixed and the endpoint ¢ can only
move in a connected component of Sp*(R?", Q) where no matrix has 1 as an eigenvalue.

To show that this index coincides with the Conley-Zehnder index, it is enough, in view
of proposition 6.2.6, to show that it satisfies the loop and signature properties.

Let us prove the signature property. Let 1y = exp(tJpS) with S a symmetric nondegen-
erate matrix with all eigenvalues of absolute value < 27, so that Ker(exp(tJoS)—1d) = {0}
for all ¢ €]0,1]. Hence the only crossing is at t = 0, where 9y = Id and Uy = JoS1y so that
Sy = S for all ¢t and

1 . 1 .
ez (V) = 5 Sign So = 5 Sign 5.

To prove the loop property, note that ppg is additive for catenation and invariant under
homotopies with fixed endpoints. The path (¢) is homotopic to the catenation of ¢ and 1;
it is thus enough to show that the Robbin-Salamon index of a loop is equal to 2 deg(po ¢).
Since two loops ¢ and ¢’ are homotopic if and only if deg(po ¢) = deg(po @), it is enough
to consider the loops ¢, defined by

on(t) = <00827mt —sin27mt) ( a(t

sin2mnt  cos2mnt
with a : [0,1] — RT a smooth curve with a(0) = a(1) =
p(on(t)) = e*™ we have deg(¢n) = n.
The crossings of ¢, arise at ¢ = 7 with m an integer between 0 and n. At such a crossing,

Ker(¢n(t)) is R* for 0 <t < 1 and is R*" for t = 0 and ¢ = 1. We have
. “D1 o
)= (e (01 ) ent0
a(t)

)Id 0
0 a(t)~t Id>
1 and a(t) # 1 for ¢ €]0, 1]. Since
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so that, extending @ to symmetric matrices in the obvious way;,
0o -4t
500 = (5@ (L, o)
Thus SignI'(¢y,t) = 2 for all crossings t = 7, 0 < m < n. From equation (6.16) we get
1. : L.
nrs(on) = 5 Signl(6n,0)+ > SignT(¢n, %) + 5 SignT(¢n, 1)

0<m<n
= 14+2(n—1)+1=2n=2deg(po o)

and the loop property is proved. Thus the Robbin-Salamon index for paths in SP(n)
coincides with the Conley-Zehnder index.

The formula for the Conley-Zehnder index of a path ¢ € SP(n) having only reg-
ular crossings, follows then from (6.16). Indeed, we have Ker(yy — Id) = {0}, while
Ker(1 — Id) = R2" and ['(1,0) = Sj. | 9

Another index defined by Robbin and Salamon

Definition 6.4.8 A symplectic shear is a path of symplectic matrices of the form vy =
(Iéi Blg)) with B(t) symmetric.

Proposition 6.4.9 The Robbin-Salamon index of a symplectic shear 1y = (Ig Blg)> , with

B(t) symmetric, is equal to

() = 3 Sien B(0) —  Sign B(1).

ProOF: We write B(t) = A(t)"D(t)A(t) with A(t) € O(R™) and D(t) a diagonal matrix.

The matrix ¢; = (A(g)T A(()t)) is in Sp(R?",€)) and

o= owior = (9 00).

By proposition 6.4.3 urs(¢) = urs(¢’); by the product property it is enough to show that
prs(1) = 3 Signd(0) — 5 Signd(1) for the path

$110,1] = SR, Qo) 1 = v = (H40).
Since prs is invariant under homotopies with fixed end points, we may assume 1), =
a d
<CZ; o)1 (1E:L(t)c(t)) ) with a and ¢ smooth functions such that a(0) =1, a(1) = 1, a(0) #
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0,a(l) # 0 and a(t) > 1 for 0 <t < 1; ¢(0) = ¢(1) = 0, ¢(t)d(t) > 0 Vt and ¢&(t) # 0
(resp.= 0) when d(t) # 0 (resp.= 0) for t =0 or 1.
The only crossings are t = 0 and ¢ = 1 since the trace of ¥(t) is > 2 for 0 < t < 1. Now,

at those points (¢t = 0 and t = 1) ¢); = <d(t) a(t) ) so that Sy = —Jypp 1 =

" " e(t) —a(t)+d(t)e(t)
et —al(t
( —a(t) a(t)d(t)—d(t) ) :

Clearly, at the crossings, we have Kerv; = R? iff d(t) = 0 and Ker1; is spanned by
the first basis element iff d(¢) # 0, so that from definition 6.4.5 I'(¢,¢) = (¢(t)) when

d(t) # 0 and I'(¢,t) = (4?(15) 7%(1‘/)) when d(t) = 0. Hence both crossings are regular

and SignI'(¢y,t) = Signé(t) when d(t) # 0 and SignI'(¢,t) = 0 when d(¢f) = 0. Since
d(t)e(t) > 0 for all ¢, we clearly have Sign¢(0) = Signd(0) and Signé(1) = — Signd(1).
Proposition 6.4.6 then gives prs(y) = 2T'(1,0) + 1 SignT'(1, 1) = § Signd(0) — 4 Sign d(1).

| %

Remark 6.4.10 Robbin and Salamon introduce another index p, ¢ for paths of symplectic
matrices built from their index for paths of Lagrangians. Consider the fixed Lagrangian
L = {0} x R™ in (R?",)), observe that AL is Lagrangian for any A € Sp(R?*",Qy), and
define, for v : [0,1] — Sp(R?*, Q)

prs(¥) = prs(¥L, L). (6.18)
This index has the following properties [RS93] :

e it is invariant under homotopies with fixed endpoints and two paths with the same
endpoints are homotopic with fixed endpoints if and only if they have the same /g
index;

e it is additive under catenation of paths;

e it has the product property fgs(v' & ¢) = jrs (1) + prs (1");

e it vanishes on a path whose image lies in
{A € Sp(R*™, Q) | dim ALNL =k}
for a given k € {0,...,n};
o tips(¥) = % Sign B(0) — § Sign B(1) when vy = (11 500,

Robbin and Salamon [RS93] prove that those properties characterize this index.
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6.5. Characterization of the Robbin-Salamon index

The two indices urg and ppg defined on paths of symplectic matrices DO NOT coincide
in general. Indeed, consider the path ¢ : [0,1] — Sp(R?",€p) : t > ¢y = <0185) I%). Since
W LNL=L Vt pgg(¥) =0. On the other hand, if ¢ = (4 151) and ¢’ = ¢1p¢~!, then

¢ =(9-C0). Then

1. 1 ..
Hirs(¥') = 5 Sign C(1) =  Sign C(0)

which is in general different from pj¢(1). Whereas, by (6.4.3), prs(¢) = prs(¥').

The index g vanishes on a path whose image lies into one of the (n+1) strata defined
by {A € Sp(R?",€) | dim AL N L = k} for 0 < k < n, whereas the index pugrg vanishes on
a path whose image lies into one of the (2n + 1) strata defined by the set of symplectic
matrices whose eigenspace of eigenvalue 1 has dimension & (for 0 < k < 2n).

However, the two indices prg and pig coincide on symplectic shears.

Characterization of the Robbin-Salamon index

In this section, we prove theorem 6.1.2 stated in the introduction. Before proving this
theorem, we show that the Robbin-Salamon index is characterized by the fact that it
extends Conley-Zehnder index and has all the properties stated in the previous section.
This is made explicit in Lemma 6.5.2. We then use the characterization of the Conley-
Zehnder index given in Proposition 6.2.6 to give in Lemma 6.5.3 a characterization of the
Robbin-Salamon index in terms of six properties. We use explicitly the normal form of the
restriction of a symplectic endomorphism to its generalised eigenspace of eigenvalue 1 that
we have proven in [Gutb] and that we summarize in the following proposition

Proposition 6.5.1 (Normal form for Ay, for A= +1.) Let A = +£1 be an eigenvalue

of A € Sp(R?™,9) and let Viz) be the generalized eigenspace of eigenvalue X. There exists
a symplectic basis of Vi in which the matriz associated to the restriction of A to Viy is a
symplectic direct sum of matrices of the form

( T r)™Y Clrj,dj, N >
0 JO 1)

where C(rj,dj,\) == J(A, ;)" diag(O,...,O,dj) with d; € {0,1,—1}. If dj = 0, then
rj is odd. The dimension of the eigenspace of eigenvalue 1 is given by 2 Card{j|d; =
0} 4+ Card{j | d; # 0}.
For any integer k > 1, the bilinear form on Ker ((A — )\Id)zk) defined by

Qr : Ker ((A - )\Id)%) x Ker ((A - )\Id)%) —R

(v,w) = Q((A = AId)*v, (A — N1d)FLw) (6.19)
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18 symmetric and we have

Z dj = A Z Signature(Qp,) (6.20)

j E>1
Lemma 6.5.2 The Robbin-Salamon index is characterized by the following properties:

1. (Generalization) it is a correspondence prs which associates a half integer to any
continuous path v : [a,b] — Sp(R?™, Q) of symplectic matrices and it coincides with
oz on paths starting from the identity matrixz and ending at a matrix for which 1 is
not an eigenvalue;

2. (Naturality) if ¢, : [0,1] — Sp(R??,Qq), we have prs(dpd—1) = prs(v);

(Homotopy) it is invariant under homotopies with fized end points;
(Catenation) it is additive under catenation of paths;

5. (Product) it has the product property pps(¢¥’' ® ") = prs(¥') + prs(¥”);

6. (Zero) it vanishes on any path v : [a,b] — Sp(R?*", Q) of matrices such that
dim Ker (¢ (t) — Id) = k is constant on [a,b];

7. (Shear)on a symplectic shear 1) : [0,1] — Sp(R?", Q) of the form
Y= 1) =expt (5 ") = et (§ 3)
with B symmetric, it is equal to prs(1)) = 5 Sign B.

PROOF: We have seen in the previous section that the index ugrg defined by Robbin and
Salamon satisfies all the above properties. To see that those properties characterize this
index, it is enough to show (since the group Sp(R?",€)) is connected and since we have
the catenation property) that those properties determine the index of any path starting
from the identity. Since it must be a generalization of the Conley-Zehnder index and must
be additive for catenations of paths, it is enough to show that any symplectic matrix A
which admits 1 as an eigenvalue can be linked to a matrix B which does not admit 1 as
an eigenvalue by a continuous path whose index is determined by the properties stated.
From proposition 6.5.1, there is a basis of R?" such that A is the symplectic direct sum of
a matrix which does not admit 1 as eigenvalue and matrices of the form

A0 J(1,r;)~1 J(1,r;) 71 diag(0,...,0,d;) \ .
Tj,d; 0 J(1,r)7 ’

(1)

with d; equal to 0,1 or —1. The dimension of the eigenspace of eigenvalue 1 for A, d; is
equal to 1 if d; # 0 and is equal to 2 if d; = 0. In view of the naturality and the product
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property of the index, we can consider a symplectic direct sum of paths with the constant
path on the symplectic subspace where 1 is not an eigenvalue and we just have to build
a path in Sp(R?7,Qq) from AS) d; to a matrix which does not admit 1 as eigenvalue and
whose index is determined by the properties given in the statement. This we do by the
catenation of three paths : we first build the path 1y : [0,1] — Sp(R?74,€)) defined by

— [ D(tr))~* D(t,r;)~" diag(c(t).0,....0,d(t))
i(t) = ( OJ ’ D(tg«]-)T )

11-t 0 .. .. 0
0e 1t 0 .. 0
with D(t,r;)=1: 0 . . 0o : [,
0 .. 0 e 1—t 0
0 o o 0 e 1t
0 ... .. .. 0 ¢
and with ¢(t) = td;, d(t) = (1 — t)d;. Observe that ¢1(0) = A(T;)dj and ¥1(1) is the

.. —ds “'d,, 0 . .
symplectic direct sum of ((1] C(l)l_df ) and (e 0’ ! eld,. . ) and this last matrix does not
T

admit 1 as eigenvalue.

Clearly dimker(t;(t) —Id) = 2 for all ¢ € [0,1] when d; = 0; we now prove that
dimker(e(t) — Id) = 1 for all t € [0,1] when d; # 0. Hence the index of ¢ must always
be zero by the zero property.

To prove that dim ker(1)1(t) —1Id) = 1 we have to show the non vanishing of the determinant
of the 2r; — 1 x 2r; — 1 matrix

Et, .. . E{Tj ct) 0 .. 0 E{Tjd(t)
e"t—1EL, . Ej, 0 0 .. 0 B d@
0
Letol E;irlrj 0 0 .. 0 Eﬁjflrjd(t)
0 .. 0 et~1 0 0 .. O e~td(t)
0 .. 0 0 l1-tet—1 0 . 0
0 0 1—t et—1 . 0
0 0o . 0
0 0 0 0 0 1-t et-1

where E! := D(t, rj)_l is upper triangular. This determinant is equal to

(1) F () (e = 1) et = 1) (1) (8 (1 — ) det B (¢)
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where E’(t) is obtained by deleting the first column and the last line in E(t) — Id so given
by the (r; — 1) x (r; — 1) matrix

(t—1)e=t (t—1)2e~2t (t—1)"3 te (g1t
e7t—1  (t—1)e~2t (t—1)2e~3¢ (t—1)"3 "2~ (=Dt
0 e7t—1  (t—1)e 2t (t—1)" 3= =Dt
e~ t—-1 (t—1)e~2 (t—12)e—3¢
0 0 e~t—1 (t—1)e=2

Thus det E'(t) = (t — 1)(e™" — (7" — 1)) det F;.,_5(t) where

(t—1)e=2t (t—1)2e—3t (t—1)"3 "2~ (g~
et=1  (t=1)e? (t—1)"3 3= (g =2t
0 e7t—1  (t—1)e~2t (t—1)"3 "3~ (=)t
Fo(t) =
e t-1 (t—1)e—2 (t—12)e—3¢
0 0 e t—1 (t—1)e—2t

and we have det F},,(t) = ((t—1)e 2 —(e7t=1)(t—1)e ") det F,,_1(t) = (t—1)e~" det Fy,_1(t)
so that, by induction on m, det F,,(t) = (t — 1)™e~("+D? hence the determinant we have
to study is
(=17 te(t)(2 — et — e ) + d(t)(t — 1) det Fy.,_5(t) which is equal to
(1) te(t)(2 —ef —e t)r 14 d(t)(t —1)7(t — 1) 2e~ (=Dt hence to

c(t)(e! —2) T+ d(t) (1 — )22 (T

which never vanishes if ¢(t) = td; and d(t) = (1 — t)d; since €' + e~ ' — 2 and (1 — t) are
> 0.

We then construct a path 1 : [0, 1] — Sp(R?"4, Q) which is constant on the symplectic
subspace where 1 is not an eigenvalue and which is a symplectic shear on the first two
dimensional symplectic vector space, i.e.

. e 11d,._ 0
wQ(t) = ([1) (1 f)d3> ) < 0 i eIde1> ;

then the index of 1, is equal to % Signd;. Observe that 19 is constant if d; = 0; then the
e 11d,._
index of 1y is zero. In all cases 12(1) = Ide @ < Is it eIdO ) )
ri—
We then build 15 : [0, 1] — Sp(R?"7, Q) given by

,t elld., 1 0
P3(t) := <e0 gf) @ ( 0’ eIdel)
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which is the direct sum of a path whose Conley-Zehnder index is known and a constant
path whose index is zero. Clearly 1 is not an eigenvalue of 13(1).

Combining the above with the characterization of the Conley-Zehnder index, we now
prove:

Lemma 6.5.3 The Robbin-Salamon index for a path of symplectic matrices is character-
ized by the following properties:

e (Homotopy) it is invariant under homotopies with fized end points;
e (Catenation) it is additive under catenation of paths;

(Zero) it vanishes on any path v : [a,b] — Sp(R?", Q) of matrices such that
dim Ker (¢ (t) — Id) = k is constant on [a,b];

e (Product) it has the product property prs(v' ®¥") = urs(Y') + prs(¥’”);

e (Signature) if S = S™ € R*™*2" s a4 symmetric non degenerate matriz with all
eigenvalues of absolute value < 2w and if ¥(t) = exp(JoSt) for t € [0,1], then
urs(v) = %SignS where Sign S is the signature of S;

e (Shear) if ¢y = exptdo (9 %) for t € [0,1], with B symmetric, then pps() =
1 a:
5 Sign B.
2

PROOF: Remark first that the invariance by homotopies with fixed end points, the
additivity under catenation and the zero property imply the naturality; they also imply
the constancy on the components of SP(n). The signature property stated above is the
signature property which arose in the characterization of the Conley-Zehnder index given
in proposition 6.2.6. To be sure that our index is a generalization of the Conley-Zehnder
index, there remains just to prove the loop property. Since the product of a loop ¢ and a
path ¢ starting at the identity is homotopic to the catenation of ¢ and ), it is enough to
prove that the index of a loop ¢ with ¢(0) = ¢(1) = Id is given by 2deg(p o ¢). Since two
loops ¢ and ¢’ are homotopic if and only if deg(po ¢) = deg(po@’), it is enough to consider
the loops ¢y, defined by ¢y, (t) := (p32mnt = sin2mnt ) 3 1d: since ¢y, (t) = (¢1 (t))n, it is enough
to show, using the homotopy, catenation, product and zero properties that the index of
the loop given by ¢(t) = (s2ml = sin27t) for ¢ € [0,1] is equal to 2. This is true, using the
signature property, writing ¢ as the catenation of the path 1 (¢) := gb(%) =expto(F9)
for t € [0,1] whose index is 1 and the path ¥y(t) := (%) = exptJo (F2) for ¢ € [1,2].
We introduce the path in the reverse direction 15 () := exp —tJy (§ 2) for ¢ € [0, 1] whose
index is —1; since the catenation of 1, and o is homotopic to the constant path whose

index is zero, the index of ¢; is given by the index of v; minus the index of ¢, hence is
equal to 2.
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We are now ready to prove the characterization of the Robbin-Salamon index stated in the
introduction.

PROOF OF THEOREM 6.1.2: Observe that any symmetric matrix can be written as the
symplectic direct sum of a non degenerate symmetric matrix S and a matrix S’ of the form
(8 %) where B is symmetric and may be degenerate. The index of the path v, = exp t.JyS’
is equal to the index of the path ¢, = expt\JyS’ for any A > 0. Hence the signature
and shear conditions, in view of the product condition, can be simultaneously written as:
if § = 57 € R?™2" is a symmetric matrix with all eigenvalues of absolute value < 27
and if 1(t) = exp(JoSt) for t € [0,1], then pgrs(y)) = 5 SignS. This is the normalization
condition stated in the theorem.

From Lemma 6.5.3, we just have to prove that the product property is a consequence
of the other properties. We prove it for paths with values in Sp(R?", Q) by induction on
n, the case n = 1 being obvious. Since v’ & 1" is homotopic with fixed endpoints to the
catenation of ¢’ @ (¢"(0)) and (¢/(1)) ®¢”, it is enough to show that the index of A ® v
is equal to the index of v for any fixed A € Sp(RQ”/, Qo) with n’ < n and any continuous
path ¢ : [0,1] = Sp(R?"" Q) with n” < n.

Using the proof of lemma 6.5.2, any symplectic matrix A can be linked by a path ¢(s)
with constant dimension of the 1-eigenspace to a matrix of the form exp(JyS’) with S” a
symmetric n’ x n/ matrix with all eigenvalues of absolute value < 27. The index of A @ 1)
is equal to the index of exp(JyS’) @ ¢; indeed A & 1) is homotopic with fixed endpoints to
the catenation of the three paths ¢g @ 1(0), exp(JpS’) @ ¢ and the path ¢s @ (1) in the
reverse order, and the index of the first and third paths are zero since the dimension of the
1-eigenspace does not vary along those paths.

Hence it is enough to show that the index of exp(JpS’) @ ¢ is the same as the index
of 4. This is true because the map p sending a path 1 in Sp(R?"", Q) (with n” < n)
to the index of exp(JpS’) @ ¢ has the four properties stated in the theorem, and these
characterize the Robbin-Salamon index for those paths by induction hypothesis. It is clear
that p is invariant under homotopies, additive for catenation and equal to zero on paths v
for which the dimension of the 1-eigenspace is constant. Furthermore p(expt(JyS)) which
is the index of exp(JoS') Bexp t(JoS) is equal to 1 Sign S, because the path exp tJo(S' @ S)
whose index is % Sign(S' @ S) = % Sign S’ —I—% Sign .S is homotopic with fixed endpoints with
the catenation of exp t(Jo.S’) ®Id = exp t.Jo(S' @ 0), whose index is £ Sign §’, and the path
exp(JoS’) ® expt(JpS). | 9
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6.6 A formula for the Robbin-Salamon index

Let ¢ : [0,1] — Sp(R?", ) be a path of symplectic matrices. The symplectic transforma-
tion (1) of V = R?" decomposes as

P(1) = (1) @M (1)

where *(1) does not admit 1 as eigenvalue and ¥(1)(1) is the restriction of ¥(1) to the
generalized eigenspace of eigenvalue 1

YDy, -

By proposition 6.5.1, there exists a symplectic matrix A such that Azp(U(l)A—l is equal to
@y [ ) ) g g (i Ol )

P*(1) @ ( . J(1>7'11)T DD . J(LTI;;)T (6.21)

o ("“’%”‘1 J(l,()sly) SRR (J(Lgl)_l J(l?szY)

with each d§1) = 41. Since Sp(R?", Q) is connected, there is a path ¢ : [0,1] — Sp(R?", Q)
such that ¢(0) = Id and ¢(1) = A. We define
n -1
r :0,1] = Sp(R*™, Qo) = t = @(t)1b(t) (#(t))

It is a path from (1) to the matrix defined in 6.21. Clearly, urs(¢r) = 0 and p is constant

on ’QZ)].
Let 77 : [0,1] — Sp(R?", ) be the path from (1) to

(1) (1) -
e (14 )e-o (14 ) o(tDe oD e (<399

defined as in the proof of lemma 6.5.2 in each block by

(D(t,rj)_l D(t,ry)~" diag (tdD 0,....0,(1—1)d) >

0 D(t,r))T
11-t 0 .. .. 0
0e 1-t 0 .. 0
with D(t,r;) = : o . e 0 : |. Note that ugs(xr;) = 0 since the eigenspace of
0 .. 0 e 1-t 0
0 e o 0 e 1t

0 .. o ... 0 €t
eigenvalue 1 has constant dimension and p is constant on .
We define vy : [0,1] — Sp(R?™, ) from 9;7(1) to
v e () ® (<M. 5)

157



6. GENERALISED CONLEY-ZEHNDER INDEX

which is given on each block (é d%”) by ((1) (l_tl)dg'l) ) Note that prs(¥rrr) = %ZJ dg.l)
by proposition 6.4.9 and p is constant on yy;.
Finally, consider ¢y : [0,1] — Sp(R?",Qq) from 1777(1) to

’l’b*(l) © (e_éld e?d)

0 e
on vy and ¥y (1) is in Sp*(R?*, Q). Since two paths of matrices with fixed ends are
homotopic if and only if their image under p are homotopic, the catenation of the paths
rrr and ry is homotopic to any path from (1) to ¥*(1) @ (eéd e,QId) of the form
P*(1)®) @ ¢1(t) where ¢1(t) has only real positive eigenvalues. We proceed similarly for

1(0) and we get

which is given by ¥*(1) @ (67’S Ot) &> (37(1)1d e?d)' Note that ugrs(¢rv) = 0, p is constant

Theorem 6.6.1 Let ¢ : [0,1] — Sp(R?",€) be a path of symplectic matrices. Decompose
¥(0) = *(0) ® v1M(0) and (1) = *(1) ® D (1) where ¥*(0) (resp. *(1)) does not
admit 1 as eigenvalue and Y (0) (resp. v ()(1)) is the restriction of 1¥(0) (resp. ¥(1)) to
the generalized eigenspace of eigenvalue 1 of ¥(0) (resp. 1(1)). Consider a prolongation
W [~1,2] = Sp(R?*™,Qq) of ¥ such that

o U(t) =1(t)Vt e |0,1];
o \I/(—l) = ¢*(0) ® (e_(l)ld A ) and W(t) = *(0) ® ¢o(t) where ¢o(t) has only real

d
positive eigenvalues for t € [ % ] :
¢« U(3) =)@ (e_(l)ld ) and U(t) = ¢*(1) @ ¢1(t) where ¢1(t) has only real
positive eigenvalues for t € [ ]

o U(—1)=W=, U(2) = W= and U(t) € Sp*(R?™, Qo) fort € [—-1,—3] U [3,2].
Then )
1rs (1) = deg(p® o W) Z d” - - > di.

Remark that we can replace in the formula above p by p as in proposition 6.2.7.
By proposition 6.5.1, we have theorem 6.1.3 :

dsz dsz

prs (1) = deg(p? o U) Z Slgn( ) - = Z Slgn( )

Remark 6.6.2 The advantage of this new formula is that to compute the index of a path
whose crossing with the Maslov cycle is non transverse we do not need to perturb the path.
The drawback is that we have to extend the initial path.
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Summary

This thesis deals with the question of the minimal number of distinct periodic Reeb
orbits on a contact manifold which is the boundary of a compact symplectic manifold.

The positive S'-equivariant symplectic homology is one of the main tools considered
in this thesis. It is built from periodic orbits of Hamiltonian vector fields in a symplectic
manifold whose boundary is the given contact manifold.

Our first result describes the relation between the symplectic homologies of an exact
compact symplectic manifold with contact type boundary (also called Liouville domain),
and the periodic Reeb orbits on the boundary. We then prove some properties of these
homologies. For a Liouville domain embedded into another one, we construct a morphism
between their homologies. We study the invariance of the homologies with respect to the
choice of the contact form on the boundary. We use the positive S'-equivariant symplectic
homology to give a new proof of a Theorem by Ekeland and Lasry about the minimal
number of distinct periodic Reeb orbits on some hypersurfaces in R?". We indicate how it
extends to some hypersurfaces in some negative line bundles.

We also give a characterisation and a new way to compute the generalized Conley-
Zehnder index defined by Robbin and Salamon for any path of symplectic matrices. A tool
for this is a new analysis of normal forms for symplectic matrices.

Résumé

Le sujet de cette these est la question du nombre minimal d’orbites de Reeb distinctes
sur une variété de contact qui est le bord d’une variété symplectique compacte.

L’homologie symplectique S'-équivariante positive est un des outils principaux de cette
these; elle est construite a partir d’orbites périodiques de champs de vecteurs hamiltoniens
sur une variété symplectique dont le bord est la variété de contact considérée.

Nous analysons la relation entre les différentes variantes d’homologie symplectique d’une
variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son
bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de
Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies.
Nous étudions ensuite l'invariance de ces homologies par rapport au choix de la forme
de contact sur le bord. Nous utilisons I’homologie symplectique S'-équivariante positive
pour donner une nouvelle preuve d’'un théoreme de Ekeland et Lasry sur le nombre minimal
d’orbites de Reeb distinctes sur certaines hypersurfaces dans R?”. Nous indiquons comment
étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs.

Nous donnons une caractérisation et une nouvelle facon de calculer 'indice de Conley-
Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplec-
tiques. Ceci nous a mené a développer de nouvelles formes normales de matrices symplec-
tiques.
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