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Prolegomenon

As the title indicates, periodic Reeb orbits are at the centre of this work. The general
framework is contact geometry. A contact structure on a manifold M of dimension 2n− 1
is a hyperplane field ξ which is maximally non integrable; i.e if we write locally ξ = kerα
where α is a differential 1-form, then α∧ (dα)n−1 6= 0 everywhere. If α is globally defined,
we say that ξ is coorientable and we call α a contact form. In this thesis we consider only
coorientable contact structures. The 1-form α is not unique; for any function f :M → R,
the 1-form efα defines the same contact structure. The Reeb vector field Rα associated
to a contact form α is the unique vector field on M characterized by: ι(Rα)dα = 0 and
α(Rα) = 1. Since this vector field does not vanish anywhere, there are no fixed points of
its flow. Periodic orbits are thus the most noticeable objects in the flow. Poincaré pointed
out their interest in his “traité de la mécanique céleste”:
“Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire,
la seule brèche par où nous puissions essayer de pénétrer dans une place jusqu’ici réputée
inabordable.”

Does there exist a periodic Reeb orbit for any contact form on any manifold?

The answer to this question is negative as shown by the following example. Let R2n−1 be
endowed with the “standard” contact form

α = dz −
n−1∑

i=1

xidyi.

The Reeb vector field is given by Rα = ∂z, and there are no periodic Reeb orbits.
The same question for a compact oriented manifold endowed with a contact 1-form is

still open. It is called the Weinstein conjecture. Some partial results are known. Taubes
answered positively this question for manifolds in dimension 3.

Theorem 0.0.1 ([Tau07]) If Y is a closed oriented three-manifold with a contact form,
then the associated Reeb vector field has a closed orbit.

In higher dimensions, only partial results have been obtained. Let us mention a first result
due to Viterbo:
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Theorem 0.0.2 ([Vit87]) If Σ ⊂ (R2n, ω0) is a compact hypersurface of “contact type”,
then Σ has at least one periodic Reeb orbit.

More recently Albers and Hofer proved:

Theorem 0.0.3 ([AH09]) Let (M, ξ) be a closed “PS-overtwisted1” contact manifold.
Then the Reeb vector field associated to any contact form α inducing ξ has a contractible
periodic orbit.

One could also quote many particular results related for example to Hamiltonian dynamics.

Another natural question is to ask how many periodic Reeb orbits can exist. Since
any periodic orbit can be iterated any number of times, it is more reasonable to ask how
many geometrically distinct periodic orbits can exist. Consider the sphere S2n−1, naturally
embedded in R2n, endowed with the standard contact structure,

α = αstd
∣∣∣
S2n−1

=
1

2

n∑

i=1

(xidyi − yidxi))
∣∣∣
S2n−1

.

The Reeb vector field is Rα =
∑n

i=1 2(x
i∂yi − yi∂xi) and all Reeb orbits are periodic. On

the other hand, if we look on the same sphere at the “deformed” contact form

α′ :=
1

2

n∑

i=1

ai(x
idyi − yidxi)

∣∣∣
S2n−1

,

where all the ai are rationally independent, the Reeb vector field is Rα′ =
∑n

i=1
2
ai
(xi∂yi −

yi∂xi). There are only n distinct periodic Reeb orbits, one in each “coordinate plane”.
Now the contact forms α and α′ on the sphere are isotopic (i.e. there exists a smooth path
of contact forms on the sphere joining them). Gray’s stability theorem asserts that there
exists a diffeomorphism of the sphere, which maps the contact structure ξ′ = kerα′ to the
contact structure ξ = kerα. Hence, depending on the contact form defining the standard
contact structure on the sphere, one can get different answers concerning the number of
distinct periodic orbits. In view of this fact, a natural question is:

If (M, ξ) is a compact contact manifold, can one say something about the
minimal number of geometrically distinct periodic Reeb orbits for any

contact form α (eventually in a subclass) defining the contact structure ξ?

In particular what is the answer for the sphere? Some results are known in this case; in
particular, it was solved in dimension 3 by Hofer, Wysocki and Zehnder for the class of
“dynamically convex” contact forms.

1We refer to the cited reference for a precise definition. It will not be used in the sequel
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Theorem 0.0.4 ([HWZ98]) Assume the contact form α = f · αstd on S3 is dynamically
convex2, where f : S3 → (0,∞) is a smooth, positive function. Let Rα be the associated
Reeb vector field. Then there are either precisely 2 or infinitely many periodic orbits of Rα.

In higher dimensions, less is known :

Theorem 0.0.5 ([LZ02]) Any strictly convex, compact hypersurface Σ ⊂ R2n carries at
least ⌊n2 ⌋+ 1 geometrically distinct periodic Reeb orbits.

Theorem 0.0.6 ([WHL07]) Any strictly convex, compact hypersurface Σ ⊂ R6 carries
at least 3 geometrically distinct periodic Reeb orbits.

Theorem 0.0.7 ([EL80, BLMR85]) Let Σ be a contact type hypersurface in R2n. Let
ξ = kerα be the contact structure induced by the standard contact form on R2n. Assume
there exists a point x0 ∈ R2n and numbers 0 < r ≤ R such that:

∀x ∈ Σ, r ≤ ‖x− x0‖ ≤ R with
R

r
<

√
2.

Assume also that ∀x ∈ Σ, 〈νΣ(x), x〉 > r where νΣ(x) is the exterior unit normal vector
of Σ at x. Then Σ carries at least n geometrically distinct periodic Reeb orbits.

A first result of this thesis is an alternative (geometric) proof of this result when all periodic
Reeb orbits on Σ are non degenerate3. A reasonable conjecture is that any starshaped
hypersurface in R2n carries at least n distinct periodic Reeb orbits.
For other manifolds than the sphere, very little is known; in dimension 3, Cristofaro-
Gardiner and Hutchings proved :

Theorem 0.0.8 ([CGH12]) Every (possibly degenerate4) contact form on a closed three-
manifold has at least two embedded periodic Reeb orbits.

In higher dimensions, a recent result is the following:

Theorem 0.0.9 ([Kan13]) Suppose that a closed contact manifold (M, ξ) of dimension
2n−1 admits a displaceable exact contact embedding into a symplectic manifold (W,ω = dλ)
which is convex at infinity5 and satisfies 〈c1(W ), π2(W )〉 = 0.

Assume that at least one of the following conditions is satisfied

1. H∗(W0,M ;Q) 6= 0 for some ∗ ∈ 2N− 1

2We refer to the cited reference for precise definitions. It will not be used in the sequel.
3The definition of a non degenerate orbit is given in Definition 1.1.5.
4A contact form is non degenerate if all its periodic Reeb orbits are non degenerate.
5We refer to the cited reference for precise definitions. It will not be used in the sequel.
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2. H∗(W0,M ;Q) = 0 for all even degree ∗ ≤ 2n− 4

where W0 is the relatively compact domain of W bounded by M . Then there are at least
two periodic Reeb orbits contractible in W for any nondegenerate contact form α on (M, ξ)
such that α− λ|M is exact.

In this thesis I present new results on the minimal number of periodic Reeb orbits on
some contact type hypersurfaces in negative line bundles (Proposition 0.0.15 and Theorem
0.0.16).

Strategy followed in this thesis

The problem of finding periodic Reeb orbits on a contact manifold which is embedded in a
symplectic manifold can often be translated into the problem of finding periodic orbits of
a Hamiltonian vector field on a prescribed energy level. For instance, if C is a starshaped
domain in R2n such that 0 ∈ IntC, finding periodic orbits of the Reeb vector field on the
boundary of C (for the standard contact form αstdC ) amounts to finding periodic orbits of
the Hamiltonian vector field defined by a power of the gauge function, on the boundary of C
which is a level set of this Hamiltonian. Indeed, the gauge function of C, jC : R2n → [0,∞)
is defined by

jC(x) := min
{
λ|x
λ
∈ C

}

and the Hamiltonian vector field associated to Hβ = jC(x)
β is XHβ

= β
2Rαstd

C
.

The first idea to tackle the question of the minimal number of periodic Reeb orbits
was to use a homological invariant of the contact structure, constructed from periodic
Reeb orbits. To build such an invariant is the aim of contact homology. At the time
of this writing, contact homology is still in development and encounters “transversality”
problems. Instead we consider positive S1-equivariant symplectic homology which is built
from periodic orbits of Hamiltonian vector fields in a symplectic manifold whose boundary
is the given contact manifold. In this spirit, Bourgeois and Oancea, in [BO12], relate, in
the case where it could be defined, the linearised contact homology of the boundary to
the positive S1-equivariant symplectic homology of the symplectic manifold. The positive
S1-equivariant symplectic homology is one of the main objects considered in this thesis.

Our first aim is to analyse the relation between the symplectic homologies of an exact
compact symplectic manifold with contact type boundary (also called Liouville domain)
and the periodic Reeb orbits on the boundary. The next point is to prove some properties
of these homologies. For a Liouville domain embedded into another one, we construct a
morphism between their homologies. We study the invariance of these homologies with
respect to the choice of the contact form on the boundary. Finally, we use the positive
S1-equivariant symplectic homology to give a new proof of Theorem 0.0.7 and see how it
can extend to the framework of hypersurfaces in negative line bundles.
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Another approach to solve the question of the minimal number of periodic Reeb orbits
on hypersurfaces in R2n, developed by Long, uses variational methods and a thorough
study of their Conley-Zehnder index. With this in mind, we study the generalisation of the
Conley-Zehnder index defined for any path of symplectic matrices. This led us to analyse
in details normal forms of symplectic matrices. Those results could be useful to study
degenerate orbits.

Content of the thesis and statements of the results

The first four chapters develop the approach using positive S1-equivariant symplectic ho-
mology.

In Chapter 1, we recall the definition of positive S1-equivariant symplectic homol-
ogy, first describing Floer homology (Section 1.1), symplectic homology (Section 1.2.2),
positive symplectic homology (Section 1.2.4), then recalling two equivalent definitions of
S1-equivariant symplectic homology in Sections 1.3.2 and 1.4.

The link between the generators of positive S1-equivariant symplectic homology and
periodic Reeb orbits is explained in Chapter 2. The explicit computation gives the following
result:

Theorem 0.0.10 Let (W,λ) be a Liouville domain. Assume there exists a contact form
α on the boundary ∂W such that the Conley-Zehnder index of all periodic Reeb orbits have
the same parity. Then

SHS1,+(W,Q) =
⊕

γ∈P(Rα)

Q〈γ〉

where P(Rα) denotes the set of periodic Reeb orbits on ∂W .

In Chapter 3, we show that positive S1-equivariant symplectic homology has good
functorial properties. In the first section, we construct a “transfer morphism” between all
the above mentioned variants of symplectic homology in the case of two Liouville domains
embedded one into the other. This construction generalises a construction given by Viterbo
([Vit99]). We prove that this morphism has nice composition properties:

Theorem 0.0.11 Let (V1, λV1) ⊆ (V2, λV2) ⊆ (V3, λV3) be Liouville domains with Liouville
embeddings. Then the following diagram commutes:

SH†(V3, λV3)
φ
†
V3,V2 //

φ
†
V3,V1

66
SH†(V2, λV2)

φ
†
V2,V1 // SH†(V1, λV1)

where † can be any of the following symbol: ∅,+, S1, (S1,+).
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where SH denotes the symplectic homology, SH+, the positive symplectic homology, SHS1

the S1-equivariant symplectic homology and SHS1,+ the positive S1-equivariant symplectic
homology.

The second section of Chapter 3 is dedicated to the invariance of the different variants
of symplectic homology. In particular, we prove

Theorem 0.0.12 Let (W0, λ0) and (W1, λ1) be two Liouville manifolds6 of finite type such
that there exists a symplectomorphism f : (W0, λ0) → (W1, λ1). Then

SH†(W0, λ0) ∼= SH†(W1, λ1).

Theorem 0.0.13 Let (M0, ξ0) and (M1, ξ1) be two contact manifolds that are exactly fil-
lable; i.e. there exist Liouville domains (W0, λ0) and (W1, λ1) such that ∂W0 = M0,
ξ0 = ker(λ0|M0

), ∂W1 = M1 and ξ1 = ker(λ1|M1
). Assume there exists a contactomor-

phism ϕ : (M0, ξ0) → (M1, ξ1). Assume moreover that ξ0 admits a contact form α0 such
that all periodic Reeb orbits are nondegenerate and their Conley-Zehnder indices have all
the same parity. Then

SHS1,+(W0, λ0) ∼= SHS1,+(W1, λ1).

This Theorem, together with Theorem 0.0.10 reproves Ustilovsky’s result on the existence
of non diffeomorphic contact structures on the spheres S4m+1. The original proof depends
on a theory of cylindrical contact homology, which is not yet rigorously established due to
transversality problems.

Theorem 0.0.14 ([Ust99]) For each natural number m, there exist infinitely many pair-
wise non isomorphic contact structures on S4m+1.

In Chapter 4 we use positive S1-equivariant symplectic homology to give a new proof of
Theorem 0.0.7, about the minimal number of periodic Reeb orbits on some hypersurfaces
in R2n, when all periodic Reeb orbits on Σ are non degenerate. It appears as Theorem
4.1.1 in the following.

We extend the definitions of positive symplectic homology and positive S1-equivariant
symplectic homology in Sections 4.2.1 and 4.2.2 to the non exact case. It allows us to extend
the techniques developed for the proof of Theorem 0.0.7 to start the study of hypersurfaces
in negative line bundles. This framework is a natural generalisation of hypersurfaces in
Cn. Indeed the sphere is the boundary of the ball in Cn ≃ R2n but also the boundary of
the ball blown up7 at the origin. The blown up ball, at the origin, in Cn is

B̂2n :=
{(
z, [t]

)
∈ Cn × CPn−1 | z ∈ [t]

}
.

6We refer to Definition 3.2.8 for a precise definition of Liouville manifold.
7We refer to [MS98] for a detailed definition of blow ups
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It is canonically isomorphic to the canonical disk bundle over CPn−1 which is a subbundle
of the tautological complex (negative) line bundle over CPn−1

O(−1) −→ CPn−1.

This generalisation gives:

Proposition 0.0.15 Let Σ be a contact type hypersurface in a negative line bundle over
a closed symplectic manifold L → B such that the intersection of Σ with each fiber is a
circle. The contact form is the restriction of r2θ∇ where θ∇ is the transgression form on
L and r is the radial coordinate on the fiber. Then Σ carries at least

∑2n
i=0 βi geometrically

distinct periodic Reeb orbits (the βi are the Betti numbers of B).

Theorem 0.0.16 Let Σ be a contact type hypersurface in a negative line bundle L, over
a symplectic manifold B. Suppose that there exists a Liouville domain W ′ (such that its
first Chern class vanishes on all tori) whose boundary coincides with the circle bundle of
radius R1 in L, denoted SR2

1
. Suppose there exists a Morse function f : B → R such that

all critical points of f have a Morse index of the same parity. Let α be the contact form on
Σ induced by r2θ∇ on L (θ∇ is the transgression form on L and r is the radial coordinate
on the fiber). Assume that Σ is “pinched” between two circle bundles SR2

1
and SR2

2
of radii

R1 and R2 such that 0 < R1 < R2 and R2
R1

<
√
2. Assume that the minimal period of

any periodic Reeb orbit on Σ is bounded below by R2
1. Then Σ carries at least

∑2n
i=0 βi

geometrically distinct periodic Reeb orbits, where the βi denote the Betti numbers of B.

In this Theorem, the assumption on the existence of a Morse function all of whose critical
points have Morse indices of the same parity is of a technical nature. Its purpose is to
bring the situation within the scope of Theorem 0.0.10, which is our tool for computing
the positive S1-equivariant symplectic homology. The lower bound on the period of any
periodic Reeb orbit is semi-technical; it is now the only way we have to distinguish the
images of the orbits. The “pinching” assumption is more conceptual, its main implication
is that the “n first generators” of the positive S1-equivariant symplectic homology are
simple orbits.

The techniques developed in the thesis should prove, extending the homologies to the
setup of monotone compact symplectic manifolds using coefficients in the Novikov ring,
the following:

Conjecture 0.0.17 Let Σ be a contact type hypersurface in a negative line bundle, L,
over a closed monotone symplectic manifold B. The bundle is endowed with a hermitian
structure and a connection. Suppose there exists a Morse function f : B → R such that all
critical points of f have a Morse index of the same parity. Let α be the contact form on
Σ induced by r2θ∇ on L. Assume that Σ is “pinched” between two circle bundles SR1 and
SR2 of radii R1 and R2 respectively such that 0 < R1 < R2 and R2

R1
<

√
2. Assume that the
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minimal action of any periodic Reeb orbit on Σ is bounded below by R2
1. Then Σ carries at

least
∑2n

i=0 βi geometrically distinct periodic Reeb orbits.

The last two chapters are a contribution to a detailed study of indices. I hope it can be
used in the future to tackle the study of degenerate periodic orbits. The Conley-Zehnder
index is an integer associated to a path of symplectic matrices. It relies on a precise
description of symplectic matrices. Chapter 5, which will appear as a paper in Portugaliae
Mathematica, gives new normal forms for symplectic matrices. Let us present here the
normal form on the generalised eigenspace of eigenvalue ±1.

Theorem 0.0.18 Any symplectic endomorphism A of a finite dimensional symplectic vec-
tor space (V,Ω) is the direct sum of its restrictions A|V[λ] to the real A-invariant symplectic
subspace V[λ] whose complexification is the direct sum of the generalized eigenspaces of

eigenvalues λ, 1
λ
, λ and 1

λ
:

V C
[λ] := Eλ ⊕ E 1

λ
⊕ Eλ ⊕ E 1

λ

.

If λ ∈ {±1}, there exists a symplectic basis of V[λ] in which the matrix representing the
restriction of A to V[λ] is a symplectic direct sum of matrices of the form

(
J(λ, rj)

−1 C(rj , sj , λ)
0 J(λ, rj)

τ

)

where C(rj , sj , λ) := J(λ, rj)
−1 diag

(
0, . . . , 0, sj

)
with sj ∈ {0, 1,−1} and where J(λ, rj)

is the elementary Jordan matrix of dimension rj associated to λ. If sj = 0, then rj
is odd. The dimension of the eigenspace of the eigenvalue λ is given by 2Card{j | sj =
0}+Card{j | sj 6= 0}.
The number of sj equal to +1 (resp. −1) arising in blocks of dimension 2k (i.e. with
corresponding rj = k) is equal to the number of positive (resp. negative) eigenvalues of the
symmetric 2-form

Q̂λ2k : Ker
(
(A− λ Id)2k

)
×Ker

(
(A− λ Id)2k

)
→ R

(v, w) 7→ λΩ
(
(A− λ Id)kv, (A− λ Id)k−1w

)
.

The decomposition is unique up to a permutation of the blocks and is determined by λ, by
the dimension dim

(
Ker(A − λ Id)r

)
for each r ≥ 1, and by the rank and the signature of

the symmetric bilinear 2-form Q̂λ2k for each k ≥ 1.

The last Chapter, which will appear as a paper in Annales de la faculté des Sciences de
Toulouse, is devoted to the study of a generalised version of the Conley-Zehnder index
defined by Robbin and Salamon in [RS93]. We start by giving a new formula for the
“classical” Conley-Zehnder index.
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Theorem 0.0.19 Let ψ : [0, 1] → Sp(R2n,Ω0) be a continuous path of matrices linking the
matrix Id to a matrix which does not admit 1 as an eigenvalue. Let ψ̃ : [0, 2] → Sp(R2n,Ω0)
be an extension such that ψ̃ coincides with ψ on the interval [0, 1] , such that ψ̃(s) does not
admit 1 as an eigenvalue for all s > 1 and such that the path ends either at ψ̃(2) =W+ :=
− Id either at ψ̃(2) =W− := diag(2,−1, . . . ,−1, 12 ,−1, . . . ,−1). The Conley-Zehnder index

of ψ is equal to the integer given by the degree of the map ρ̃2 ◦ ψ̃ : [0, 2] → S1 :

µCZ(ψ) = deg(ρ̃2 ◦ ψ̃) (1)

for ANY continuous map ρ̃ : Sp(R2n,Ω0) → S1 which coincides with the (complex) de-
terminant detC on U (n) = O

(
R2n

)
∩ Sp

(
R2n,Ω0

)
; so that ρ̃(W−) ∈ {±1} and so that

deg (ρ̃2 ◦ ψ2−) = n − 1 for ψ2− : t ∈ [0, 1] 7→ exp tπJ0




0 0 − log 2
π

0

0 Idn−1 0 0

− log 2
π

0 0 0

0 0 0 Idn−1


. In

particular, two alternative ways to compute the Conley-Zehnder index are :

• Using the polar decomposition of a matrix, µCZ(ψ) = deg(detC
2 ◦ U ◦ ψ̃) where U :

Sp(R2n,Ω0) → U (n) : A 7→ AP−1 with P the unique symmetric positive definite
matrix such that P 2 = AτA.

• Using the normalized determinant of the C-linear part of a symplectic matrix,

µCZ(ψ) = deg(ρ̂2 ◦ ψ̃) where ρ̂ : Sp(R2n,Ω0) → S1 : A 7→ ρ̂(A) =
detC( 1

2
(A−J0AJ0))

|detC( 1
2
(A−J0AJ0))|

with J0 =
(

0 − Id
Id 0

)
the standard complex structure on R2n.

We give a characterisation of the generalised the Conley-Zehnder index defined by Robbin
and Salamon.

Theorem 0.0.20 The Robbin-Salamon index for a continuous path of symplectic matrices
is characterized by the following properties:

• (Homotopy) it is invariant under homotopies with fixed end points;

• (Catenation) it is additive under catenation of paths;

• (Zero) it vanishes on any path ψ : [a, b] → Sp(R2n,Ω) of matrices such that dimKer
(
ψ(t)−

Id
)
= k is constant on [a, b];

• (Normalization) if S = Sτ ∈ R2n×2n is a symmetric matrix with all eigenvalues of
absolute value < 2π and if ψ(t) = exp(J0St) for t ∈ [0, 1] , then µRS(ψ) =

1
2 SignS

where SignS is the signature of S.

We give a new way to compute this index.
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Theorem 0.0.21 Let ψ : [0, 1] → Sp(R2n,Ω0) be a path of symplectic matrices. Decom-
pose ψ(0) = ψ⋆(0) ⊕ ψ(1)(0) and ψ(1) = ψ⋆(1) ⊕ ψ(1)(1) where ψ⋆(·) does not admit 1 as
eigenvalue and ψ(1)(·) is the restriction of ψ(·) to its generalized eigenspace of eigenvalue
1. Consider a continuous extension Ψ : [−1, 2] → Sp(R2n,Ω0) of ψ such that

• Ψ(t) = ψ(t) for t ∈ [0, 1];

• Ψ
(
−1

2

)
= ψ⋆(0) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(0) ⊕ φ0(t) where φ0(t) has only real

positive eigenvalues for t ∈
[
−1

2 , 0
]
;

• Ψ
(
3
2

)
= ψ⋆(1) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(1) ⊕ φ1(t) where φ1(t) has only real

positive eigenvalues for t ∈
[
1, 32

]
;

• Ψ(−1) = W±, Ψ(2) = W± and Ψ(t) does not admit 1 as an eigenvalue for t ∈[
−1,−1

2

]
and for t ∈

[
3
2 , 2

]
.

Then the Robbin Salamon index is given by

µRS(ψ) = deg(ρ̃2 ◦Ψ) +
1

2

∑

k≥1
Sign

(
Q̂

(ψ(0))
k

)
− 1

2

∑

k≥1
Sign

(
Q̂

(ψ(1))
k

)

with ρ̃ as in theorem 0.0.19, and with

Q̂Ak : Ker
(
(A− Id)2k

)
×Ker

(
(A− Id)2k

)
→ R

(v, w) 7→ Ω
(
(A− Id)kv, (A− Id)k−1w

)
.

The advantage of this new formula is that we can compute the index of any path without
perturbing the path. The drawback is that we have to extend the initial path.
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Prolégomènes

Les orbites périodiques de Reeb sont au centre de ce travail. Le cadre général est la
géométrie de contact. Une structure de contact sur une variété M de dimension 2n − 1
est un champ d’hyperplans ξ maximalement non intégrable; i.e. si on écrit, localement,
ξ = kerα ou α est une 1-forme différentielle, alors α ∧ (dα)n−1 est partout non nulle. Si α
est globalement définie, on dit que ξ est coorientée et on appelle α une forme de contact.
Dans cette thèse, nous ne considérons que des structures de contact coorientées. La 1-
forme α n’est pas unique; pour toute fonction f :M → R, la 1-forme efα définit la même
structure de contact. Le champ de vecteurs de Reeb Rα associé à une forme de contact
α est l’unique champ de vecteurs sur M caractérisé par: ι(Rα)dα = 0 et α(Rα) = 1. Ce
champ de vecteurs ne s’annulant nulle part, son flot n’a pas de point fixe. Les orbites
périodiques sont donc les objets les plus remarquables de ce flot. Poincaré en a montré
l’intérêt dans son “Traité de la mécanique céleste”:
“Ce qui nous rend ces solutions périodiques si précieuses, c’est qu’elles sont, pour ainsi dire,
la seule brèche par où nous puissions essayer de pénétrer dans une place jusqu’ici réputée
inabordable.”

Existe t-il une orbite de Reeb périodique pour toute forme de contact sur
n’importe quelle variété?

La réponse à cette question est négative comme illustré par l’exemple suivant. Soit R2n−1

muni de la forme de contact “standard”

α = dz −
n−1∑

i=1

xidyi.

Le champ de vecteurs de Reeb est donné par Rα = ∂z, et il n’y a pas d’orbites de Reeb
périodiques.

La même question pour des variétés compactes orientées munies d’une 1-forme de con-
tact est toujours ouverte; c’est la conjecture de Weinstein. Quelques résultats partiels sont
connus. Taubes a répondu de manière affirmative à cette question pour les variétés de
dimension 3.
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Theorem 0.0.22 ([Tau07]) Si Y est une variété fermée, orientée, de dimension 3, munie
d’une forme de contact, alors le champ de vecteurs de Reeb associé possède une orbite
périodique.

En plus grande dimension, seuls des résultats partiels sont connus. Nous commençons par
mentionner un résultat dû à Viterbo.

Theorem 0.0.23 ([Vit87]) Si Σ ⊂ (R2n, ω0) est une hypersurface de “type contact”,
alors Σ possède au moins une orbite de Reeb périodique.

Plus récemment, Albers et Hofer ont prouvé:

Theorem 0.0.24 ([AH09]) Soit (M, ξ) une variété de contact fermée et “PS-vrillée8”.
Alors le champ de vecteurs de Reeb associé à n’importe quelle forme de contact α déterminant
ξ, possède au moins une orbite de Reeb périodique et contractible.

Nous pourrions citer beaucoup d’autres résultats, par exemple liés à la dynamique Hamil-
tonienne.

Une autre question naturelle est de demander combien d’orbites de Reeb périodiques
peuvent exister. Comme toute orbite de Reeb périodique peut être itérée un nombre
arbitraire de fois, il est plus raisonnable de demander combien d’orbites de Reeb périodiques
géométriquement distinctes peuvent exister. Considérons la sphère S2n−1 naturellement
plongée dans R2n, munie de la structure de contact standard,

α = αstd
∣∣∣
S2n−1

=
1

2

n∑

i=1

(xidyi − yidxi))
∣∣∣
S2n−1

.

Le champ de Reeb est Rα =
∑n

i=1 2(x
i∂yi − yi∂xi) et toutes les orbites de Reeb sont

périodiques. D’un autre côté, si nous regardons la même sphère munie de la forme de
contact “déformée”

α′ :=
1

2

n∑

i=1

ai(x
idyi − yidxi)

∣∣∣
S2n−1

,

où tous les ai sont rationnellement indépendants, le champ de Reeb estRα′ =
∑n

i=1
2
ai
(xi∂yi−

yi∂xi). Il y a seulement n orbites de Reeb géométriquement distinctes, une dans chaque
“plan de coordonnées”. Les formes de contact α et α′ sur la sphère sont isotopes (i.e. il
existe un chemin lisse de formes de contact sur la sphère les reliant). Le théorème de sta-
bilité de Gray assure l’existence d’un difféomorphisme de la sphère envoyant la structure
de contact ξ′ = kerα′ sur la structure de contact ξ = kerα. Donc, en fonction de la forme
de contact définissant la structure de contact standard sur la sphère, nous pouvons avoir
différentes réponses concernant le nombre d’orbites périodiques distinctes. En vue de quoi,
une question naturelle est

8Nous référons à la référence citée pour une définition précise qui ne sera pas utilisée dans la suite de
ce travail.
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Si (M, ξ) est une variété de contact compacte, que pouvons-nous dire sur le
nombre minimal d’orbites de Reeb périodiques et géométriquement distinctes

pour toute forme de contact α (éventuellement dans une sous-classe)
définissant la structure de contact ξ?

En particulier, quelle est la réponse pour la sphère? Quelques résultats sont connus dans
ce cas. Le problème a été résolu en dimension 3 par Hofer, Wysocki et Zehnder pour la
classe des formes de contact “dynamiquement convexes”.

Theorem 0.0.25 ([HWZ98]) Supposons que la forme de contact α = f · αstd sur S3 est
dynamiquement convexe9, où f : S3 → (0,∞) est une fonction lisse positive. Soit Rα le
champ de vecteurs de Reeb associé. Alors il y a soit exactement 2 soit une infinité d’orbites
périodiques de Rα.

En grande dimension, moins de choses sont connues:

Theorem 0.0.26 ([LZ02]) Toute hypersurface Σ ⊂ R2n compacte et strictement convexe
possède au moins ⌊n2 ⌋+ 1 orbites de Reeb périodiques géométriquement distinctes.

Theorem 0.0.27 ([WHL07]) Toute hypersurface Σ ⊂ R6 compacte et strictement con-
vexe possède au moins 3 orbites de Reeb périodiques géométriquement distinctes.

Theorem 0.0.28 ([EL80, BLMR85]) Soit Σ une hypersurface de type contact dans R2n.
Soit ξ = kerα la structure de contact induite par la forme de contact standard sur R2n.
Supposons qu’il existe un point x0 ∈ R2n et des nombres 0 < r ≤ R tels que:

∀x ∈ Σ, r ≤ ‖x− x0‖ ≤ R avec
R

r
<

√
2.

Supposons également que ∀x ∈ Σ, 〈νΣ(x), x〉 > r où νΣ(x) est le vecteur unitaire normal
extérieur à Σ en x. Alors Σ possède au moins n orbites de Reeb périodiques géométriquement
distinctes.

Un premier résultat de cette thèse est une preuve alternative (géométrique) de ce résultat
quand toutes les orbites de Reeb périodiques sur Σ sont non dégénérées10. Une conjecture
raisonnable est que toute hypersurface étoilée dans R2n possède au moins n orbites de Reeb
périodiques géométriquement distinctes.
Pour d’autres variétés que la sphère, fort peu est connu; en dimension 3, Cristofaro-
Gardiner et Hutchings ont prouvé:

9Nous référons à la référence citée pour une définition précise qui ne sera pas utilisée dans la suite de
ce travail.

10La définition d’orbites non dégénérée est donnée Définition 1.1.5.
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Theorem 0.0.29 ([CGH12]) Toute forme de contact (possiblement dégénérée11) sur une
variété de dimension 3 possède au moins 2 orbites de Reeb périodiques plongées.

En plus grande dimension, un résultat récent est le suivant:

Theorem 0.0.30 ([Kan13]) Supposons que la variété de contact fermée (M, ξ) de di-
mension 2n− 1 admet un plongement de contact exact et déplaçable dans une variété sym-
plectique (W,ω = dλ) convexe à l’infini12 et satisfaisant 〈c1(W ), π2(W )〉 = 0. Supposons
qu’au moins une des conditions suivantes est satisfaite

1. H∗(W0,M ;Q) 6= 0 pour un ∗ ∈ 2N− 1

2. H∗(W0,M ;Q) = 0 pour tout degré pair ∗ ≤ 2n− 4

où W0 est le domaine relativement compact de W bordé par M . Alors il y a au moins 2
orbites de Reeb périodiques contractibles dansW pour toute forme de contact non dégénérée
α sur (M, ξ) telle que α− λ|M est exacte.

Dans cette thèse, je présente de nouveaux résultats sur le nombre minimal d’orbites de
Reeb périodiques géométriquement distinctes sur certaines hypersurface dans des fibrés en
droites négatifs (Proposition 0.0.36 and Théorème 0.0.37).

Stratégie suivie dans cette thèse

Le problème de trouver des orbites de Reeb périodiques sur une variété de contact plongée
dans une variété symplectique peut souvent être traduit en le problème de trouver des
orbites périodiques d’un champ de vecteurs Hamiltonien sur un niveau d’énergie fixé. Par
exemple, si C est un domaine étoilé dans R2n tel que 0 ∈ IntC, trouver les orbites de Reeb
périodiques sur le bord de C (pour la forme de contact standard αstdC ) revient à trouver
les orbites périodiques du champ de vecteurs Hamiltonien défini comme une puissance de
la fonction de jauge, sur le bord de C qui est un niveau de ce Hamiltonien. En effet, la
fonction de jauge de C, jC : R2n → [0,∞), est définie par

jC(x) := min
{
λ|x
λ
∈ C

}

et le champ de vecteurs Hamiltonien associé à Hβ = jC(x)
β est XHβ

= β
2Rαstd

C
.

La première idée pour aborder la question du nombre minimal d’orbites de Reeb
périodiques était d’utiliser un invariant homologique de la structure de contact construit
à partir des orbites de Reeb périodiques. La construction d’un tel invariant est le but de
l’homologie de contact. Actuellement, l’homologie de contact est toujours en développement

11Une forme de contact est non dégénérée si toutes ses orbites de Reeb périodiques sont non dégénérées.
12Nous référons à la référence citée pour les définitions précises qui ne seront pas utilisées dans la suite

de ce travail.
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et rencontre des problèmes de “transversalité”. Nous considérons, à la place, l’homologie
symplectique S1-équivariante positive construite à partir d’orbites périodiques de champs
de vecteurs Hamiltoniens sur une variété symplectique dont le bord est la variété de contact
considérée. Dans cet esprit, Bourgeois et Oancea [BO12] ont lié, l’homologie de contact
linéarisée du bord (dans le cas où elle peut être définie) avec l’homologie S1-équivariante
positive de la variété symplectique. L’homologie symplectique S1-équivariante positive est
un des objets principaux considérés dans les quatre premiers chapitres de cette thèse.

Notre premier but est d’analyser les relations entre les homologies symplectiques d’une
variété symplectique exacte avec un bord de type contact (également appelé domaine de
Liouville) et les orbites de Reeb périodiques sur le bord. Le point suivant est de prouver
quelques propriétés de ces homologies. Pour un domaine de Liouville plongé dans un
autre, nous construisons un morphisme entre leurs homologies. Nous étudions l’invariance
de ces homologies par rapport au choix d’une forme de contact sur le bord. Finalement,
nous utilisons l’homologie S1-équivariante positive pour donner une nouvelle preuve du
Théorème 0.0.28 et regardons comment elle peut s’étendre au cadre d’hypersurfaces dans
des fibrés en droites négatifs.

Une autre approche à la question du nombre minimal d’orbites de Reeb périodiques
sur des hypersurfaces dans R2n, développée par Long, utilise des méthodes variationnelles
et une étude détaillée de l’indice de Conley-Zehnder. Dans cette optique, nous étudions
une généralisation de l’indice de Conley-Zehnder définie pour tout chemin de matrices
symplectiques. Ceci nous a mené à une analyse détaillée de formes normales de matrices
symplectiques. Ces résultats peuvent être utiles pour une étude d’orbites dégénérées.

Contenu de la thèse et énoncés de résultats

Les quatre premiers chapitres développent l’approche utilisant l’homologie symplectique
S1-équivariante positive.

Dans le Chapitre 1, nous rappelons la définition de l’homologie symplectique S1-
équivariante positive. Nous présentons l’homologie de Floer (Section 1.1), l’homologie
symplectique (Section 1.2.2), l’homologie symplectique positive (Section 1.2.4). Ensuite
nous exposons deux définitions équivalentes de l’homologie symplectique S1-équivariante
positive dans les Sections 1.3.2 et 1.4.

Le lien entre les générateurs de l’homologie symplectique S1-équivariante positive et les
orbites de Reeb périodiques est expliqué dans le Chapitre 2. Un calcul explicite donne:

Theorem 0.0.31 Soit (W,λ) un domaine de Liouville. Supposons qu’il existe une forme
de contact α sur le bord ∂W telle que les indices de Conley-Zehnder de toutes les orbites
de Reeb périodiques ont la même parité. Alors

SHS1,+(W,Q) =
⊕

γ∈P(Rα)

Q〈γ〉

où P(Rα) est l’ensemble des orbites de Reeb périodiques sur ∂W .
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Dans le Chapitre 3, nous montrons que l’homologie symplectique S1-équivariante pos-
itive a de bonnes propriétés de fonctorialité. Dans la première Section, nous construisons
un “morphisme de transfert” pour toutes les variantes précitées d’homologie symplectique
dans le cas de deux domaines de Liouville embôıtés. Cette construction généralise une
construction de Viterbo ([Vit99]). Nous prouvons que ce morphisme possède de bonnes
propriétés de composition:

Theorem 0.0.32 Soit (V1, λV1) ⊆ (V2, λV2) ⊆ (V3, λV3) des domaines de Liouville avec
des plongements de Liouville. Alors le diagramme suivant commute:

SH†(V3, λV3)
φ
†
V3,V2 //

φ
†
V3,V1

66
SH†(V2, λV2)

φ
†
V2,V1 // SH†(V1, λV1)

où † est l’un des symboles suivants: ∅,+, S1, (S1,+).

où SH dénote l’homologie symplectique, SH+, l’homologie symplectique positive, SHS1

l’homologie symplectique S1-équivariante et SHS1,+ l’homologie symplectique S1-équivariante
positive.

La seconde Section du Chapitre 3 est consacrée à l’invariance des différentes variantes
d’homologie symplectique. En particulier, nous prouvons

Theorem 0.0.33 Soit (W0, λ0) et (W1, λ1) deux variétés de Liouville13 de type fini tels
que il existe un symplectomorphisme f : (W0, λ0) → (W1, λ1). Alors

SH†(W0, λ0) ∼= SH†(W1, λ1).

Theorem 0.0.34 Soit (M0, ξ0) and (M1, ξ1) deux variétés de contact exactement rem-
plissables; i.e. il existe des domaines de Liouville (W0, λ0) et (W1, λ1) tels que ∂W0 =M0,
ξ0 = ker(λ0|M0

), ∂W1 = M1 and ξ1 = ker(λ1|M1
). Supposons qu’il existe un contactomor-

phisme ϕ : (M0, ξ0) → (M1, ξ1). Supposons de plus que ξ0 admet une forme de contact
α0 telle que toute les orbites de Reeb périodiques sont non dégénérées et leurs indices de
Conley-Zehnder ont tous la même parité. Alors

SHS1,+(W0, λ0) ∼= SHS1,+(W1, λ1).

Ce Théorème, couplé au Théorème 0.0.31 donne une preuve du résultat d’Ustilovsky sur
l’existence de structures de contact non difféomorphes sur les sphères S4m+1. La preuve
originelle repose sur une théorie d’homologie de contact cylindrique qui n’est pas encore
établie rigoureusement.

13Nous référons à la Définition 3.2.8 pour une définition précise de variété de Liouville.
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Theorem 0.0.35 ([Ust99]) Pour tout nombre naturel m, il existe une infinité de struc-
tures de contact non isomorphes sur S4m+1.

Dans le Chapitre 4, nous utilisons l’homologie symplectique S1-équivariante positive
pour donner une nouvelle preuve du Théorème 0.0.28 sur le nombre minimal d’orbites de
Reeb périodiques sur certaines hypersurfaces dans R2n quand toutes les orbites de Reeb
sont non dégénérées. Cela apparâıt dans la suite comme le Théorème 4.1.1.

Nous étendons les définitions d’homologie symplectique positive et d’homologie sym-
plectique S1-équivariante positive au cas non exact dans les Sections 4.2.1 et 4.2.2. Ceci
nous permet d’étendre les techniques développées pour la preuve du Théorème 0.0.28 pour
commencer l’étude d’hypersurfaces dans des fibrés en droites négatifs. Ce cadre est la
généralisation naturelle d’hypersurfaces dans Cn. En effet la sphère est le bord de la boule
dans Cn ≃ R2n mais également de la boule éclatée14 à l’origine. La boule éclatée en l’origine
dans Cn est

B̂2n :=
{(
z, [t]

)
∈ Cn × CPn−1 | z ∈ [t]

}
.

Elle est canoniquement isomorphe au fibré en disques canonique au-dessus de CPn−1 qui
est un sous-fibré du fibré en droites complexes négatif tautologique au-dessus de CPn−1

O(−1) −→ CPn−1.

Cette généralisation donne:

Proposition 0.0.36 Soit Σ une hypersurface de type contact dans un fibré en droites
négatif au-dessus d’une variété symplectique fermée L → B tel que l’intersection de Σ avec
chaque fibre est un cercle. Alors Σ possède au moins

∑2n
i=0 βi orbites de Reeb périodiques

et géométriquement distinctes (les βi étant les nombres de Betti de B).

Theorem 0.0.37 Soit Σ une hypersurface de type contact dans un fibré en droites négatif
L au-dessus d’une variété symplectique B. Supposons qu’il existe un domaine de Liouville
W ′ (tel que sa première classe de Chern s’annule sur tous les tores) dont le bord coincide
avec le fibré en cercles de rayon R1 dans L, denoté SR2

1
. Supposons qu’il existe une fonction

de Morse f : B → R telle que tous les points critiques de f ont un indice de même parité.
Soit ξ = kerα la structure de contact sur Σ induite par r2θ∇ sur L (θ∇ étant la forme
de transgression sur L et r est la coordonnée radiale dans la fibre). Supposons que Σ est
“pincée” entre deux fibrés en cercles SR2

1
et SR2

2
de rayon R1 et R2 tels que R2

R1
<

√
2.

Supposons que la période minimale de toute orbite de Reeb périodique sur Σ est bornée
inférieurement par R2

1. Alors Σ possède au moins
∑2n

i=0 βi orbites de Reeb périodiques et
géométriquement distinctes, où les βi sont les nombres de Betti de B.

14Nous référons à [MS98] pour une définition détaillée d’éclatement.
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Dans ce Théorème, l’hypothèse de l’existence d’une fonction de Morse dont tous les points
critiques ont un indice de même parité est de nature technique. Son but est de nous
amener dans les hypothèse du Théorème 0.0.31, qui est notre outil pour calculer l’homologie
symplectique S1-équivariante positive. La borne inférieure sur la période de toute orbite
de Reeb périodique est semi-technique; c’est le seul moyen actuellement de distinguer les
différentes images des orbites. L’hypothèse de “pincement” est plus conceptuelle, son
implication majeure est que les “n premiers générateurs” de l’homologie symplectique S1-
équivariante positive sont des orbites simples.

Les techniques développées dans cette thèse devraient prouver, en étendant les ho-
mologies au cadre des variétés symplectiques compactes et monotones, et en introduisant
l’anneau de Novikov comme anneau de coefficients, le résultat suivant:

Conjecture 0.0.38 Soit Σ une hypersurface de type contact dans un fibré en droites
négatif L au-dessus d’une variété symplectique fermée et monotone B. Le fibré est muni
d’une structure hermitienne et d’une connexion. Supposons qu’il existe une fonction de
Morse f : B → R telle que tous les points critiques de f ont un indice de même parité.
Soit ξ = kerα la structure de contact sur Σ induite par r2θ∇ sur L (θ∇ étant la forme
de transgression sur L et r est la coordonnée radiale dans la fibre). Supposons que Σ est
“pincée” entre deux fibrés en cercles SR2

1
et SR2

2
de rayon R1 et R2 tels que R2

R1
<

√
2.

Supposons que la période minimale de toute orbite de Reeb périodique sur Σ est bornée
inférieurement par R2

1. Alors Σ possède au moins
∑2n

i=0 βi orbites de Reeb périodiques et
géométriquement distinctes, où les βi sont les nombres de Betti de B.

Les deux derniers chapitres sont une contribution à une étude d’indices de type Conley-
Zehnder. J’espère que cela pourra être utilisé pour l’étude des orbites périodiques dégénérées.
L’indice de Conley-Zehnder généralisé est un entier associé à un chemin de matrices sym-
plectiques. Notre étude s’appuie sur une description détaillée de matrices symplectiques.
Le Chapitre 5, qui apparâıtra comme article dans Portugaliae Mathematica, donne de nou-
velles formes normales des matrices symplectiques. Nous présentons ici la forme normale
sur l’espace propre généralisé de valeur propre ±1.

Theorem 0.0.39 Tout endomorphisme symplectique A d’un espace vectoriel symplectique
de dimension finie (V,Ω) est la somme directe de ses restrictions A|V[λ] au sous-espace
symplectique réel A-invariant V[λ] dont la complexification est la somme directe de ses

espaces propres généralisés de valeur propre λ, 1
λ
, λ et 1

λ
:

V C
[λ] := Eλ ⊕ E 1

λ
⊕ Eλ ⊕ E 1

λ

.

Si λ ∈ {±1}, il existe une base symplectique de V[λ] dans laquelle la matrice représentant
la restriction de A à V[λ] est une somme directe symplectique de matrices de la forme:

(
J(λ, rj)

−1 C(rj , sj , λ)
0 J(λ, rj)

τ

)
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où C(rj , sj , λ) := J(λ, rj)
−1 diag

(
0, . . . , 0, sj

)
avec sj ∈ {0, 1,−1} et où J(λ, rj) est la

matrice de Jordan élémentaire de dimension rj associée à λ. Si sj = 0, alors rj est
impair. La dimension de l’espace propre de valeur propre λ est donnée par 2Card{j | sj =
0}+Card{j | sj 6= 0}.
Le nombre de sj égaux à +1 (reps. −1) apparaissant dans des blocs de dimension 2k (i.e.
avec rj = k) est égal au nombre de valeurs propres positives (resp. négatives) de la 2-forme
symétrique

Q̂λ2k : Ker
(
(A− λ Id)2k

)
×Ker

(
(A− λ Id)2k

)
→ R

(v, w) 7→ λΩ
(
(A− λ Id)kv, (A− λ Id)k−1w

)
.

La décomposition est unique à permutation des blocs près et est déterminée par λ, par la
dimension dim

(
Ker(A−λ Id)r

)
pour tout r ≥ 1 et par le rang et la signature de la 2-forme

bilinéaire symétrique Q̂λ2k pour tout k ≥ 1.

Le dernier Chapitre, qui apparâıtra comme article dans les Annales de la faculté des Sci-
ences de Toulouse, est dévolu à l’étude d’une version généralisée de l’indice de Conley-
Zehnder définie par Robbin et Salamon dans [RS93]. Nous commençons par donner une
nouvelle formule pour l’indice de Conley-Zehnder “classique”.

Theorem 0.0.40 Soit ψ : [0, 1] → Sp(R2n,Ω0) un chemin continu de matrices symplec-
tiques liant la matrice Id à une matrice n’admettant pas 1 comme valeur propre. Soit
ψ̃ : [0, 2] → Sp(R2n,Ω0) une extension telle que ψ̃ coincide avec ψ sur l’intervalle [0, 1], telle
que ψ̃(s) n’admette pas 1 comme valeur propre pour tout s > 1 et telle que le chemin se ter-
mine soit en ψ̃(2) =W+ := − Id, soit en ψ̃(2) =W− := diag(2,−1, . . . ,−1, 12 ,−1, . . . ,−1).
L’indice de Conley-Zehnder de ψ est égal à l’entier donné par le degré de l’application
ρ̃2 ◦ ψ̃ : [0, 2] → S1 :

µCZ(ψ) = deg(ρ̃2 ◦ ψ̃) (2)

pour TOUTE application continue ρ̃ : Sp(R2n,Ω0) → S1 cöıncidant avec le déterminant
complexe detC sur U (n) = O

(
R2n

)
∩ Sp

(
R2n,Ω0

)
; telle que ρ̃(W−) ∈ {±1} et telle que

deg (ρ̃2 ◦ ψ2−) = n − 1 pour ψ2− : t ∈ [0, 1] 7→ exp tπJ0




0 0 − log 2
π

0

0 Idn−1 0 0

− log 2
π

0 0 0

0 0 0 Idn−1


. En

particulier, deux manières alternatives de calculer l’indice de Conley-Zehnder sont:

• En utilisant la décomposition polaire des matrices, µCZ(ψ) = deg(detC
2 ◦ U ◦ ψ̃) où

U : Sp(R2n,Ω0) → U (n) : A 7→ AP−1 avec P l’unique matrice symétrique déifie
positive telle que P 2 = AτA.

• En utilisant le déterminant normalisé de la partie C-linéaire d’une matrice sympplec-
tique,

19



Contents

µCZ(ψ) = deg(ρ̂2 ◦ ψ̃) où ρ̂ : Sp(R2n,Ω0) → S1 : A 7→ ρ̂(A) =
detC( 1

2
(A−J0AJ0))

|detC( 1
2
(A−J0AJ0))|

avec J0 =
(

0 − Id
Id 0

)
la structure complexe standard sur R2n.

Nous donnons une caractérisation de l’indice de Conley-Zehnder généralisé défini par Rob-
bin et Salamon.

Theorem 0.0.41 L’indice de Robbin-Salamon pour un chemin continu de matrices sym-
plectiques est caractérisé par les propriétés suivantes:

• (Homotopie) il est invariant par homologies à extrémités fixées;

• (Caténation) il est additif sous caténation de chemins;

• (Zéro) il s’annule sur tout chemin de matrices ψ : [a, b] → Sp(R2n,Ω) tel que
dimKer

(
ψ(t)− Id

)
= k est constant sur [a, b];

• (Normalisation) si S = Sτ ∈ R2n×2n est une matrice symétrique dont toutes les
valeurs propres sont en valeur absolue < 2π et si ψ(t) = exp(J0St) pour t ∈ [0, 1],
alors µRS(ψ) =

1
2 SignS où SignS est la signature de S.

Nous donnons une nouvelle façon de calculer cet indice.

Theorem 0.0.42 Soit ψ : [0, 1] → Sp(R2n,Ω0) un chemin de matrices symplectiques.
Décomposons ψ(0) = ψ⋆(0) ⊕ ψ(1)(0) et ψ(1) = ψ⋆(1) ⊕ ψ(1)(1) où ψ⋆(·) n’admet pas 1
comme valeur propre et ψ(1)(·) est la restriction de ψ(·) à son espace propre généralisé de
valeur propre 1. Considérons une extension continue Ψ : [−1, 2] → Sp(R2n,Ω0) de ψ telle
que

• Ψ(t) = ψ(t) pour t ∈ [0, 1];

• Ψ
(
−1

2

)
= ψ⋆(0) ⊕

(
e−1 Id 0

0 e Id

)
et Ψ(t) = ψ⋆(0) ⊕ φ0(t) où φ0(t) n’a que des valeurs

propres réelles pour t ∈
[
−1

2 , 0
]
;

• Ψ
(
3
2

)
= ψ⋆(1) ⊕

(
e−1 Id 0

0 e Id

)
et Ψ(t) = ψ⋆(1) ⊕ φ1(t) où φ1(t) n’a que des valeurs

propres réelles pour t ∈
[
1, 32

]
;

• Ψ(−1) = W±, Ψ(2) = W± et Ψ(t) n’admet pas 1 comme valeur propre pour t ∈[
−1,−1

2

]
and for t ∈

[
3
2 , 2

]
.

Alors, l’indice de Robbin-Salamon est donné par

µRS(ψ) = deg(ρ̃2 ◦Ψ) +
1

2

∑

k≥1
Sign

(
Q̂

(ψ(0))
k

)
− 1

2

∑

k≥1
Sign

(
Q̂

(ψ(1))
k

)
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avec ρ̃ comme dans le Théorème 0.0.40, et avec

Q̂Ak : Ker
(
(A− Id)2k

)
×Ker

(
(A− Id)2k

)
→ R

(v, w) 7→ Ω
(
(A− Id)kv, (A− Id)k−1w

)
.

L’avantage de cette nouvelle formule est de pouvoir calculer l’indice de tout chemin sans
avoir à la perturber. L’inconvénient est que nous devons étendre le chemin initial.
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1 Background on symplectic homology

1.1 Floer Homology

Let (W,ω) be a compact symplectic manifold. For simplicity of the presentation, we assume

Assumption 1.1.1 that W is symplectically aspherical, i.e the symplectic form vanishes
on the second fundamental group

〈ω, π2(W )〉 = 0,

Assumption 1.1.2 and that the first Chern class of the manifold (i.e. the first Chern
class of its tangent bundle, endowed with a compatible almost complex structure) vanishes
on the second fundamental group

〈c1(W ), π2(W )〉 = 0.

Assumption 1.1.1 will ensure that the action of a contractible loop is well-defined. To
deal with other free homotopy classes of loops, one has to assume a stronger version of
atoroidality. Assumption 1.1.2 implies that the Conley-Zehnder index of a 1-periodic orbit
of a Hamiltonian is well-defined on Z. One can get rid of this assumption by looking at
the homology with coefficients in the Novikov ring. Both assumptions will ensure that
there are no holomorphic spheres, which is a necessary requirement for the moduli spaces
of Floer trajectories to be nice manifolds with boundaries.

Floer homology for W is a kind of Morse homology on the loop space of W , L(W ).
It has been developed in the late eighties [Flo89, FHS95]; a detailed account with proofs
can be found in the book [AD10]. This homology is based on functionals defined on the
space of contractible loops Lcontr(W ); this is the connected component of the loop space
containing the constant loops. A functional AH on Lcontr(W ) is associated to a time
dependent Hamiltonian on W , H : R ×W → R such that H(t + 1, x) = H(t, x) for all
t ∈ R. Since the Hamiltonian is periodic in the R variable, we will see H as a function
S1 ×W → R and denote by θ the variable in S1 ∼= R/Z.
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1. Background on symplectic homology

Definition 1.1.3 The Hamiltonian action functional AH : Lcontr(W ) → R is defined by

AH(γ) := −
∫

D

u⋆ω −
∫ 1

0
H
(
θ, γ(θ)

)
dθ

where D denotes the disk, D = {z ∈ C| |z| ≤ 1}, and where u is an extension of γ to the
disk : u : D →W with u(e2πiθ) = γ(θ).

This functional is well-defined (independent of the choice of u) thanks to assumption 1.1.1.

Lemma 1.1.4 A loop γ is a critical point of AH if and only if it is induced by a 1-periodic
solution γ : R →W of the Hamiltonian system

γ̇(t) = Xt
H

(
γ(t)

)

where the vector field Xt
H is the Hamiltonian vector field corresponding to the function

H(t, ·), i.e. ι(Xt
H)ω = dH(t, ·).

Such a 1-periodic solution will be called a 1-periodic orbit of XH and we shall denote by
P(H) the set of contractible 1-periodic orbits of XH . If γ is a 1-periodic orbit of XH with
γ(0) = x and if ϕXH denotes the flow of the time dependent vector field XH , then x is a
fixed point of the flow after time 1, ϕXH

1 (x) = x, and the differential of ϕXH
1 at x yields an

endomorphism of TxW which preserves ωx; it is called the Poincaré return map.

Definition 1.1.5 A 1-periodic orbit γ of XH is non degenerate if 1 is not an eigenvalue
of the Poincaré return map.

We look only at Hamiltonians whose 1-periodic orbits are all non degenerate; this implies
that the 1-periodic orbits are isolated. Such a Hamiltonian is called non degenerate. We
associate to each 1-periodic orbit its Conley-Zehnder index which is an integer, defined as
follows. We choose as above an extension u of the orbit γ to the disk, u : D → W ; we
choose a symplectic trivialization of the bundle on the disk defined by the pullback by u
of the tangent bundle to W ; since the differential of the flow of the Hamiltonian vector
field ϕXH

t at x = γ(0) yields a symplectic endomorphism from Tγ(0)W to Tγ(t)W , it is
represented in the trivialization by a symplectic matrix. We associate in this way a path
ψ : [0, 1] → Sp(R2n,Ω0) of symplectic matrices, starting from the identity and such that 1
is not an eigenvalue of ψ(1). The Conley-Zehnder index of the orbit γ is defined to be the
Conley-Zehnder index of the path ψ as defined in section 6.2.

This index does not depend on the chosen trivialisation of u∗TW , and is invariant
under a continuous deformation of the extension u. If two extensions u and u′ differ, up to
homotopy, by an element S in π2(W ), the difference between the Conley-Zehnder indices
of γ is equal to twice the evaluation of the first Chern class of W on this element S (see,
for instance, [MS98]). The assumption 1.1.2 ensures that the Conley-Zehnder index does
not depend on the choice of the extension u.
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1.1. Floer Homology

The Floer complex is the Z-vector space generated by the contractible 1-periodic orbits
of XH , graded by minus their Conley-Zehnder index.

In Morse homology, to define the boundary operator, one has to count negative gradient
trajectories between critical points. In our setting, to define negative gradient trajectories
of AH , one needs a metric on the loop space. One chooses a smooth loop J : S1 →
End(TW ) : θ 7→ Jθ of almost complex structures on W which are compatible with ω, i.e
ω(JθX, JθY ) = ω(X,Y ) for all X,Y ∈ TW and ω(X, JθX) > 0 for all 0 6= X ∈ TW . The
resulting inner product on the tangent space to the loop space at the loop γ, Tγ

(
L(W )

)
=

Γ∞(S1, γ∗TW ), is defined by

〈ξ, η〉 :=
∫

S1

ωγ(θ)
(
ξ(θ), Jθ(γ(θ))η(θ)

)
dθ .

Lemma 1.1.6 Negative gradient trajectories of AH correspond to maps u : R × S1 → W
satisfying perturbed nonlinear Cauchy-Riemann equations called Floer equations:

∂u

∂s
(s, θ) + Jθ

(
u(s, θ)

)(∂u
∂θ

(s, θ)−Xθ
H

(
u(s, θ)

))
= 0 (1.1)

with ι(Xθ
H)ω = dH(θ, ·).

Such maps are called Floer trajectories . As in Morse theory, we want to “count” the
number of negative gradient trajectories between some pairs of critical points.
A first important issue is to know whether a Floer trajectory converges to 1-periodic orbits.
We define the energy of a Floer trajectory as

E(u) := 1
2

∫

S1

∫

R

(∣∣∂u
∂s

∣∣2 +
∣∣∣∂u∂θ −Xθ

H ◦ u
∣∣∣
2)
dsdθ =

∫

S1

∫

R

∣∣∂u
∂s

∣∣2 dsdθ.

Proposition 1.1.7 ([Flo89], see also [AD10] theorem 6.5.6) A Floer trajectory with
finite energy converges at ±∞ to 1-periodic orbits of XH , assuming that all the 1-periodic
orbits of XH are non degenerate.

Let us consider the space M of contractible smooth Floer trajectories with finite energy.
By contractible, we mean that u(s, ·) : S1 →W is contractible for one, and hence all, s ∈ R.
This contractibility assumption is considered only when studying contractible 1-periodic
orbits.

M := {u : R× S1 →W |u is a contractible solution of (1.1), C∞ and E(u) <∞}.
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1. Background on symplectic homology

Theorem 1.1.8 ([Flo89], see also [AD10], theorem 6.5.4 ) M is compact in C∞loc(R×
S1,W ), where C∞loc is the space of smooth maps endowed with the topology of uniform con-
vergence on compact subsets.

Let γ−, γ+ be two 1-periodic orbits of XH and let M(γ−, γ+, H, J) denote the space of
u ∈ M such that

lim
s→−∞

u(s, ·) = γ− and lim
s→+∞

u(s, ·) = γ+.

A naive but crucial remark is that one can “count” the points of a 0-dimensional compact
set. One shows that the space of Floer trajectories between two 1-periodic orbits of the
Hamiltonian vector field XH is a manifold, provided one has perturbed a little -if needed-
the Hamiltonian. The way to prove that is to describe M(γ−, γ+, H, J) as the zero set
of a smooth Fredholm map between two Banach manifolds. The perturbation of H is
introduced so that the differential of the map is surjective at all solutions. Indeed recall :

Proposition 1.1.9 Let E (resp. F) be a connected Banach manifold, locally modelled on
the Banach space E (resp. F ). Let D : E → F be a smooth map which is Fredholm, i.e.
such that the differential at each point x ∈ E, TxD : E → F is a Fredholm operator. Let
y be an element in F . If, for any u ∈ D−1(y), the differential -also called linearization-
TuD : E → F is surjective, then D−1(y) is a submanifold; its dimension is the index of
TuD (which is independent of u) and its tangent space at u is the kernel of TuD.

For D−1(y) to be a manifold, it is enough, (since the set of Fredholm operators is open in
the set of bounded linear maps), to show that TuD is Fredholm and surjective at any point
u ∈ D−1(y), and to prove that the index of TuD is constant on D−1(y).

To do this in the Floer homology context, one considers the Floer operator ∂̄ defined, given
a Hamiltonian H and a loop of almost complex structures J , by

∂̄ : C∞loc(R× S1,W ) → C∞loc(R× S1,W )

u 7→ ∂u

∂s
+ Jθ ◦ u

(∂u
∂θ

−Xθ
H ◦ u

)

and one extends it to suitable Banach spaces.

Theorem 1.1.10 ([Flo89]; see also [AD10] theorem 8.1.5) The linearization Du of
the Floer operator at the point u is a Fredholm operator whose index is equal to the difference
of the Conley-Zehnder indices of the limiting 1-periodic orbits

index(Du) = µCZ(γ
+)− µCZ(γ

−).

To apply Proposition 1.1.9, one shows the existence of a pair (H, J) so that the correspond-
ing linearisation Du is surjective for all u ∈ M(γ−, γ+, H, J) and for all γ−, γ+ 1-periodic
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1.1. Floer Homology

orbits of XH . One first shows that the set of all Floer trajectories X (γ−, γ+, J) defined for
a fixed J and for a Hamiltonian varying in a class H0 + h for H0 fixed, non degenerate,
and h in a Banach space B (so that the 1-periodic orbits remain unchanged -and non de-
generate) is a Banach manifold. For this, one considers X (γ−, γ+, J) as the set of zeroes
of the section σ defined by Floer equations

σ(u, h) =
∂u

∂s
+ Jθ ◦ u

(∂u
∂θ

−Xθ
H0+h ◦ u

)

and one uses the following proposition.

Proposition 1.1.11 Let Z π→ P be a Banach vector bundle over a Banach manifold and
let σ : P → Z be a smooth section. Then the intersection of σ and the 0-section is a
Banach manifold, whenever the section σ is transversal to the 0-section at every point of
the intersection.

One then considers the natural projection π(σ(u, h)) = h from this Banach manifold
X (γ−, γ+, J) on the Banach manifold B and one uses Sard-Smale theorem.

Proposition 1.1.12 (Sard-Smale) Let π : X → B be a smooth map between Banach
manifolds, whose differential is a Fredholm operator. Then the set of regular values of π is
of second Baire category, i.e. is the intersection of a numerable set of open dense subsets.

Let us observe that the regular values of π are exactly the elements h ∈ B such that, for
any u ∈ M(γ−, γ+, H, J), the linearized map Du is surjective. Let us denote by (HJ )reg
the space of all pairs (H, J) such that the 1-periodic orbits of XH are all nondegenerate
and the operator Du is surjective for all u ∈ M(γ−, γ+, H, J) and all 1-periodic orbits
γ−, γ+. One gets

Theorem 1.1.13 ([FHS95]) Let (W,ω) be a compact manifold. Let J ∈ J (W,ω) and
H0 : S1 ×W → R be a Hamiltonian such that the 1-periodic orbits of XH0 are all non-
degenerate. Denote by C∞(H0) the set of Hamiltonians that coincide with H0 up to the
second order on the 1-periodic orbits of XH0. Then the set

Hreg = {H ∈ C∞(H0) | (H, J) ∈ (HJ )reg}

is dense (of second Baire category) in C∞(H0).

This implies :

Theorem 1.1.14 ([Flo89, FHS95]; see also [AD10] Theorem 8.1.2) For a generic
choice of the Hamiltonian H (by this we mean a H in Hreg) and every γ−, γ+, 1-periodic
orbits of XH , each M(γ−, γ+, H, J) is a smooth compact manifold of dimension µCZ(γ

+)−
µCZ(γ

−).

27



1. Background on symplectic homology

We assume in what follows that the Hamiltonian H is generic in the above sense. There
is an R-action on M(γ−, γ+, H, J) defined by reparametrization of u in the s coordinate.
Thus, if µCZ(γ

+) = µCZ(γ
−) + 1, the quotient M(γ−, γ+, H, J)/R of M(γ−, γ+, H, J)

under this R-action is 0-dimensional. In order to get compact spaces, one studies the limit
of a sequence of Floer trajectories.

Theorem 1.1.15 ([Flo89] or for instance [AD10] Theorem 9.1.6) Let (un) be a se-
quence of elements in M(γ1, γ2, H, J). There exists

1. a subsequence of (un);

2. a finite number of critical points x0 = γ1, x1, . . . , xl+1 = γ2 of AH ;

3. sequences of real numbers (sin) for 0 ≤ i ≤ l;

4. elements ui ∈ M(xi, xi+1, H, J) for 0 ≤ i ≤ l ;

such that, for 0 ≤ i ≤ l,
lim
n→∞

un · sin = ui in C∞loc

with (u · s)(s′, t) := u(s+ s′, t).

This means that, up to the R-action, the limit of a sequence of Floer trajectories can be
a broken Floer trajectory. We define the closure of M(γ−, γ+, H, J)/R as the union of
M(γ−, γ+, H, J)/R and all those broken trajectories (up to reparametrization) so that
those closures are compact. In particular, when µCZ(γ

−) = µCZ(γ
+) − 1 the space

M(γ−, γ+, H, J)/R is equal to its closure and is thus compact. This means it consists
of a finite number of points.

Each of these points comes with a sign induced by the choice of a system of coherent
orientations; for simplicity, we postpone their description to section 1.1.1. Without those
orientations, everything is well defined for a Z/2Z valued Floer homology.

Definition 1.1.16 The Floer complex is the Z-vector space generated by the 1-periodic
orbits of XH , graded by minus their Conley-Zehnder index

FC(H, J) :=
⊕

γ∈P(H)

Z〈γ〉.

The Floer differential ∂ : FC∗(H, J) → FC∗−1(H, J) is defined by

∂(γ−) :=
∑

γ+∈P(H)
−µCZ(γ−)=−µCZ(γ+)+1

#M(γ−, γ+, H, J)/R γ+

where # is a count of points with signs. (Those signs are defined in section 1.1.1).
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1.1. Floer Homology

The fact that ∂2 = 0 follows from the study of the boundary of M(γ−, γ+, H, J)/R when
the difference of the Conley-Zehnder indices is 2. When −µCZ(γ−) = −µCZ(γ+) + 2,
the space M(γ−, γ+, H, J)/R is of dimension 1. Its boundary ∂M/R consists of an even
number of points and is given by

⋃

{x | −µCZ(x)=−µCZ(γ+)+1}
M(γ−, x,H, J)/R×M(x, γ+, H, J)/R.

The coefficient of γ+ in ∂2(γ−) is given by

∑

{x | −µCZ(x)=−µCZ(γ+)+1}
#M(γ−, x,H, J)/R #M(x, γ+, H, J)/R = #∂M/R = 0.

(see the end of section 1.1.1).

Definition 1.1.17 Floer homology is defined as the homology of the Floer complex with
the Floer differential, for a pair (H, J) ∈ (HJ )reg; it is denoted FH∗(H, J) :

FH∗(H, J) := H∗
(
FC∗(H, J), ∂

)
.

Theorem 1.1.18 ([Flo89], see also [AD10] chapter 11) Floer homology does not de-
pend on the choice of the regular pair (H, J). It is isomorphic to the singular homology of
W .

Corollary 1.1.19 ([Flo89]) The number of 1-periodic orbits of a non degenerate time
dependent periodic Hamiltonian on a compact symplectic manifold W is bounded below by
the sum of the Betti numbers of W .

Remark 1.1.20 One can replace assumptions 1.1.1 and 1.1.2 by a monotonicity condition
namely there exist k ≥ 0 such that [ω] = k[c1]. Then the action functional is defined on
a cover of the loop space and the Conley-Zehnder index depends on the choice of the
trivialisation disk. The way to deal with this is to look at Floer homology with coefficients
in the Novikov ring. We shall not use this generalisation here.

1.1.1 Parenthesis : A glimpse on signs

We indicate in this section how to define the signs attached to Floer trajectories, and
mention the steps which prove that #∂M/R = 0 ( and hence, by the above, that ∂2 = 0).
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1. Background on symplectic homology

Operator gluing lemma

We look at operators

D :W 1,p(R× S1,R2n) → Lp(R× S1,R2n),

with p > 2, which are of the form

D = ∂s + J∂t + S(s, t)

with S(s, ·) → S±(·) for s → ±∞, where S± belongs to the following space S of loops of
symmetric matrices. Given a loop S of symmetric matrices, one considers the corresponding
path ψ of symplectic matrices defined by the differential equations ψ̇ = JSψ. The loop S
belongs to the space S if and only if 1 is not an eigenvalue of ψ(1), i.e. det

(
ψ(1)− Id

)
6= 0.

We denote by O(R× S1;S−, S+) the space of such operators.

For R >> 0 big enough and S±, S ∈ S, one defines a gluing operation

O(R× S1;S−, S)×O(R× S1;S, S+) → O(R× S1;S−, S+) : (D1, D2) 7→ D1#RD2

in the following way. Fix a smooth function β : R → [0, 1] such that β(s) = 0 for s ≤ 0,
β(s) = 1 for s ≥ 1.Define,

DR
i := ∂s + J∂t + S(t) + β(−s+R)

(
Si(s, t)− S(t)

)
for i = 1, 2

The glued operator, D1#RD2 is defined by

D1#RD2 :=

{
DR

1 (s+R) if s ≤ 0

DR
2 (s−R) if s ≥ 0

.

Theorem 1.1.21 (Operator gluing lemma) Assume D1 and D2 are surjective. Then
D1#RD2 is surjective for R >> 0 and has uniformly bounded right inverse.

Proof: Choose Q1, Q2, right inverse for D1, D2. We first construct an approximate right
inverse TR for DR = D1#RD2 i.e an operator

TR : Lp(R× S1,R2n) →W 1,p(R× S1,R2n)

such that

‖DRTR − Id‖ < 1
2 and TR is uniformly bounded.

Then QR := TR(DRTR)
−1 is a genuine right inverse for DR and is uniformly bounded.
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We construct TR according to the following diagram:

Lp(R× S1,R2n)× Lp(R× S1,R2n)
Q1×Q2 //W 1,p(R× S1,R2n)×W 1,p(R× S1,R2n)

GR

��
Lp(R× S1,R2n)

SR

OO

TR //W 1,p(R× S1,R2n)

We define TR := GR ◦ Q1 × Q2 ◦ SR where GR is a “gluing map” and SR is a “splitting
map”. The splitting map is defined as

SR(ζ) = (ζ1, ζ2) with

{
ζ1(s, ·) =

(
1− β(s−R)

)
ζ(s−R, ·)

ζ2(s, ·) = β(s+R)ζ(s+R, ·)
.

Given L > 0, we define βL(s) := β
(
s
L

)
and we assume that β is such that βL(s) = 0 for

s ∈ [0, 1] if L is big. We define the gluing map to be

GR(ξ1, ξ2) =
(
1− βR

2
(s)

)
ξ1(s+R) +

(
1− βR

2
(−s)

)
ξ2(s−R).

Note that since GR and SR are uniformly bounded, so is TR.
To conclude the theorem, one can show that

‖DRTR − Id‖ → 0 as R→ ∞.

Coherent orientations

Let D : X → Y be a Fredholm operator. Its determinant is the 1-dimensional vector space

det(D) := Λmax ker(D)⊗ Λmax
(
coker(D)

)∨
.

An orientation of D is an orientation of this vector space.
One considers the real line bundle det → F(X,Y ) over the space of Fredholm operators,
whose fiber above D is det(D).

Lemma 1.1.22 Assume D1 ∈ O(R×S1;S−, S) and D2 ∈ O(R×S1;S, S+) are surjective.
For R big enough, if DR := D1#RD2 and QR is its right inverse, there is a canonical
isomorphism

φR : ker(D1)⊕ ker(D2) → ker(DR)

defined by
φR := (Id−QRDR) ◦GR

where GR is the gluing map defined above.
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A consequence of this Lemma is that there is a canonical isomorphism

det(D1)⊗ det(D2) → det(DR) for R≫ 0. (1.2)

Definition 1.1.23 A system of coherent orientations on the space of operators

{O(R× S1;S−, S+)|S−, S+ as above }
is an orientation of the determinant line bundle over each O(R × S1;S−, S+), which is
compatible with the gluing operation via the canonical isomorphism (1.2):

det(D1#RD2) ≃ det(D1)⊗ det(D2).

This can be done because O(R× S1;S−, S+) is contractible.

Theorem 1.1.24 ([FH94, BM04, BO09b]) There exists a system of coherent orienta-
tions.

Definition 1.1.25 Assume a system of coherent orientations is given. We shall define the
sign attached in Floer coboundary operator to a Floer trajectory between two 1- periodic
orbits with a difference of Conley-Zehnder index equal to 1. The space of trajectories
is of dimension 1, its quotient by the action of R, M(γ−, γ+), is of dimension 0. Given
[u] ∈ M(γ−, γ+), the dimension of ker(Du) is equal to 1; this ker(Du) is spanned by 〈∂su〉.
The sign associated to [u], ǫ

(
[u]

)
, is given by

{
+1 if orientation of ker(Du) given by 〈∂su〉 coincides with the coherent orientation

−1 if it is not the case.

Proposition 1.1.26 Consider two broken Floer trajectories ([u], [v]) and ([u′], [v′]) which
are the two ends of a 1-dimensional moduli space M(x, y). Then

ǫ
(
[u]

)
· ǫ
(
[v]

)
+ ǫ

(
[u′]

)
· ǫ
(
[v′]

)
= 0.

This shows that #∂M(x, y) = 0.

1.2 Symplectic Homology

Symplectic homology is defined for a compact symplectic manifold W with boundary of
contact type. It is defined as a direct limit of Floer homologies of the symplectic completion
of W , using some special Hamiltonians. This homology was developed by Viterbo in
[Vit99], using works of Cieliebak, Floer, Hofer [FH94, CFH95]. The class of admissible
Hamiltonians was extended by Oancea in his PhD thesis [Oan08]. The case of autonomous
Hamiltonians is treated by Cieliebak-Floer-Hofer-Wysocki, Hermann, Bourgeois-Oancea in
[CFHW96, Her98, BO09b].
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1.2. Symplectic Homology

1.2.1 Setup

Let (W,ω) be a compact symplectic manifold with contact type boundary M := ∂W . This
means that there exists a Liouville vector field X (i.e. a vector field X such that LXω = ω)
defined on a neighbourhood of the boundary M , and transverse to M . In the sequel, we
shall assume that the Liouville vector field has been chosen and we shall denote by (W,ω,X)
such a manifold. We denote by λ the 1-form defined in a neighbourhood of M by

λ := ι(X)ω

and by α the contact 1-form on M which is the restriction of λ to M :

α :=
(
ι(X)ω

)
|M .

We denote by ξ the contact structure defined by α, i.e ξ := kerα. The Reeb vector field
Rα is the vector field on M defined by :

{
ι(Rα)dα = 0

α(Rα) = 1.

The action spectrum of (M,α) is the set of all periods of the Reeb vector field

Spec(M,α) := {T ∈ R+ | ∃γ periodic orbit of Rα of period T}.

The symplectic completion of (W,ω, λ) is the symplectic manifold defined by

Ŵ :=W
⋃

G

(M × R+) :=
(
W ⊔ (M × [−δ,+∞])

)
/∼G

with the symplectic form

ω̂ :=

{
ω on W

d(eρα) on M × [−δ,+∞]
.

The equivalence ∼G, between a neighbourhood U of M in W and M × [−δ, 0], is defined
by the diffeomorphism

G :M × [−δ, 0] → U : (p, ρ) 7→ ϕXρ (p)

where ϕX is the flow of the Liouville vector field X. This is always possible since

G⋆ω = eρ(dα+ dρ ∧ α) = d(eρα).
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1. Background on symplectic homology

Observe indeed that G⋆(y,ρ)

(
∂
∂ρ

)
= XG(y,ρ), G⋆(y,ρ) (Yy) =

(
ϕXρ

)
⋆y
Yy. Since λ(X) =

(ι(X)ω)(X) = 0, we also have LXλ = λ and
(
ϕXρ

)⋆
λ = eρλ. Hence, ∀Yy, Zy ∈ TyM :

(G⋆ω)(y,ρ)

(
∂

∂ρ
, Yy

)
= ωϕX

ρ y

(
XG(y,ρ),

(
ϕXρ

)
⋆y
Yy

)

=
((
ϕXρ

)⋆
ω
)
y
(Xy, Yy) = eρdλy(Xy, Yy) = eρ (LXλ)y (Yy)

= eρ(dα+ dρ ∧ α)
(
∂

∂ρ
, Yy

)

(G⋆ω)(y,ρ) (Yy, Zy) = ωϕX
ρ y

((
ϕXρ

)
⋆y
Yy,

(
ϕXρ

)
⋆y
Yz

)

=
((
ϕXρ

)⋆
ω
)
y
(Yy, Zy) = eρdλy(Xy, Yy) = eρdαy(Xy, Yy)

= eρ(dα+ dρ ∧ α) (Yy, Zy) .

We still assume throughout that ω is symplectically aspherical and that the first Chern
class vanishes on the second fundamental group.

1.2.2 Symplectic homology

Given a time-dependent Hamiltonian H : S1 × Ŵ → R, we define for each θ ∈ S1 the
Hamiltonian vector field Xθ

H by

ω̂(Xθ
H , .) = dH(θ, ·), θ ∈ S1.

Definition 1.2.1 The class Hstd of admissible Hamiltonians consists of smooth functions
H : S1 × Ŵ → R satisfying the following conditions:

1. H is negative and C2-small on S1 ×W ;

2. there exists ρ0 ≥ 0 such that H(θ, p, ρ) = βeρ + β′ for ρ ≥ ρ0, with 0 < β /∈
Spec(M,α) and β′ ∈ R;

3. H(θ, p, ρ) is C2-close to h(eρ) on S1×M × [0, ρ0], for h a convex increasing function.

We say furthermore that it is non degenerate if all 1-periodic orbits of XH are nondegen-
erate, i.e the Poincaré return map has no eigenvalue equal to 1.

The complex SC(H, J) considered is the Floer complex, i.e. the complex generated by
1-periodic orbits of the Hamiltonian vector field XH with boundary δ defined as before
through Floer trajectories.
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1.2. Symplectic Homology

Remark 1.2.2 Condition 1 implies that the only 1-periodic orbits of XH in W are con-
stants; they correspond to critical points of H. On S1 ×M × [0,+∞[, if a Hamiltonian is
the pullback of a function on [0,+∞[, H1(θ, p, ρ) = h1(e

ρ), then the corresponding Hamil-
tonian vector field is proportional to the Reeb vector field, Xθ

H1
(p, ρ) = −h′1(eρ)Rα(p).

Hence, for such a Hamitonian H1, with h1 increasing, the image of a 1-periodic orbit of
XH1 is the image of a periodic orbit of the Reeb vector field −Rα of period T := h′1(e

ρ)
located at level M × {ρ}. In particular, condition 2 implies that there is no 1-periodic
orbit of XH in M × [ρ0,+∞[ for a Hamiltonian H in Hstd; indeed; h(e

ρ) = βeρ + β′ so
h′(eρ) = β which is assumed to be different from the period of any closed orbit of the Reeb
vector field. Condition 3 ensures that for any non constant 1-periodic orbit γH of XH for
a Hamiltonian H in Hstd, there exists a closed orbit of the Reeb vector field Rα of period
T < β (with β the slope of H “at ∞”), such that γH is close to this closed orbit of (minus)
the Reeb vector field located in M × {ρ} with T = h′(eρ).

Remark 1.2.3 We can consider a larger class of admissible Hamiltonians, removing con-
ditions 1 and 3. It will not change the definition of the symplectic homology. However
condition 1 allows to identify 1-periodic orbits of small action with critical points of H in
W . It will be important in the definition of positive symplectic homology.

We denote again by P(H) the set of 1-periodic orbits of XH .

Definition 1.2.4 The class J of admissible J : S1 → End(TŴ ) : θ 7→ Jθ consists of

smooth loops of compatible almost complex structures Jθ on Ŵ , such that, at infinity (i.e.
for ρ large enough) J is autonomous (i.e. independent of θ), invariant under translations
in the ρ variable, and satisfies

Jθξ = ξ Jθ(∂ρ) = Rα.

The space Ŵ is not compact; it is proven in [FH94, CFH95, FHS95, Vit99, Oan08] that
the Floer homology SH(H, J) := HSC((H, J), ∂) is well-defined for a pair (H, J) in a set
of so-called regular pairs (HJ )reg which is of second Baire category in the set of pairs of
admissible non degenerate Hamitonians and admissible loops of almost complex structures.
One can even fix a non degenerate admissibleH and the set ofH-regular J ’s, i.e. admissible
J so that (H, J) ∈ (HJ )reg, is of second Baire category in the set of admissible loops of
almost complex structures. Furthermore, SH(H, J) is independent of the choice of the
H- regular J [Flo89]. It is however dependent of the choice of H. An important point in
the proofs is that the Floer trajectories with finite energy are confined due to a maximum
principle.

The symplectic homology is defined as a direct limit of SH(H, J) overH non degenerate
in Hstd. To define the direct limit one needs a partial order ≤ on Hstd and morphisms
SH(H1, J1) → SH(H2, J2) whenever H1 ≤ H2 are non degenerate, and these morphisms
should have nice composition rules.
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• The partial order on Hstd is given by H1 ≤ H2 if H1(θ, x) ≤ H2(θ, x) for all (θ, x) ∈
S1 × Ŵ (for more general Hamiltonians, it is enough to have H1(θ, x) ≤ H2(θ, x) for
all (θ, x) outside a compact domain).

• Let (H1, J1) and (H2, J2) be two regular pairs for (Ŵ , ω̂) with H1 ≤ H2, and consider
a smooth increasing homotopy of regular pairs between them, (Hs, Js) where s ∈ R

and (Hs, Js) is constant for |s| large. By increasing, we mean ∂sHs ≥ 0 (again for
more general H it is enough to consider ∂sHs ≥ 0 outside a compact subset to be able
to define as below a continuation map). The morphism SH(H1, J1) → SH(H2, J2)
is the continuation map induced by this increasing homotopy, when it is regular, as
described below.

Consider the Floer equation

∂u

∂s
+ Jθs ◦ u

(∂u
∂θ

−Xθ
Hs

◦ u
)
= 0 (1.3)

defined on the set of maps u : R× S1 → Ŵ of class C∞loc. If u : R× S1 → Ŵ is a solution
of (1.3), we define its energy to be

E(u) :=

∫ +∞

−∞

∫

S1

∥∥∥∥
∂u

∂s

∥∥∥∥
2

dθds. (1.4)

The fact that the homotopy is increasing insures that Floer trajectories with finite energy
are confined. Let γ1 ∈ P(H1) and γ2 ∈ P(H2), we denote by M(γ1, γ2, Hs, Js) the space of

solutions u : R×S1 → Ŵ of (1.3) with finite energy, E(u) <∞ such that lims→−∞ u(s, ·) =
γ1 and lims→+∞ u(s, ·) = γ2. Remark that in this case there is no R-action on the space
M(γ1, γ2, Hs, Js).

Theorem 1.2.5 ([Oan08, FHS95]) For a generic choice of the homotopy (Hs, Js), the
spaces M(γ1, γ2, Hs, Js), are manifolds of dimension (−µCZ(γ1)) − (−µCZ(γ2)) for all
γ1 ∈ P(H1) and γ2 ∈ P(H2). Moreover, if µCZ(γ1) = µCZ(γ2), then M(γ1, γ2, Hs, Js) is
compact.

We will call such a homotopy, regular.

Definition 1.2.6 Let (H1, J1) and (H2, J2) be two regular pairs for (Ŵ , ω̂) with H1 ≤ H2,
and consider a smooth regular increasing homotopy (Hs, Js) between them. Such a regular
homotopy induces a morphism, called a continuation morphism

φ(Hs,Js) : SC∗(H1, J1) → SC∗(H2, J2)

γ 7→
∑

γ′∈P(H2)
−µCZ(γ′)=−µCZ(γ)

#M(γ, γ′, Hs, Js)γ
′

where, again, # is a count of points in a compact 0-dimensional space, with signs.
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The fact that it is a chain map relies on the study of the boundary of the 1-dimensional
manifold M(γ1, γ2, Hs, Js) with −µCZ(γ1) = −µCZ(γ2) + 1.

Theorem 1.2.7 (for instance [AD10] theorem 11.3.10) Let (un) be a sequence of el-
ements in M(γ1, γ2, Hs, Js). There exists

1. a subsequence of (un),

2. x0 = γ1, x1, . . . , xk critical points of AH1,

3. y0, . . . , yl−1, yl = γ2 critical points of AH2,

4. sequences of real numbers (sin) for 0 ≤ i ≤ k− 1 and (s′jn ) for 0 ≤ j ≤ l− 1 such that
sin →n→∞ −∞ and s′jn →n→∞ +∞,

5. elements ui ∈ M(xi, xi+1, H1, J1) for 0 ≤ i ≤ k − 1 and, for 0 ≤ j ≤ l − 1, elements
vj ∈ M(yj , yj+1, H2, J2),

6. an element w ∈ M(xk, y0, Hs, Js)

such that, for 0 ≤ i ≤ k − 1 and for 0 ≤ j ≤ l − 1,

lim
n→+∞

un · sin = ui, lim
n→+∞

un · s′jn = vj in C∞loc

with (u · s)(s′, t) = u(s+ s′, t), and such that

lim
n→+∞

un = w in C∞loc.

Theorem 1.2.8 (for instance [AD10] proposition 11.2.8) At the homological level,
the induced morphism, φ(Hs,Js) is independent of the choice of the regular homotopy between
(H1, J1) and (H2, J2).

The theorem above is one of the versions of the so-called “homotopy of homotopies” theo-
rem; we give a proof in section 1.2.3.
The fact that the continuation morphisms SH(H1, J1) → SH(H2, J2) for H1 ≤ H2 com-
pose nicely results from the following theorem.

Theorem 1.2.9 (for instance [AD10] proposition 11.2.9) Consider three regular pairs

(H1, J1), (H2, J2) and (H3, J3) for (Ŵ , ω̂). Let (Hs, Js) and (H ′s, J
′
s) be two regular homo-

topies between (H1, J1) and (H2, J2) and (H2, J2) and (H3, J3) respectively. Then there ex-
ists a regular homotopy (H ′′s , J

′′
s ) between (H1, J1) and (H3, J3) such that φ(Hs,Js) ◦φ(H′

s,J
′
s)

and φ(H
′′
s ,J

′′
s ) induces the same homomorphism in homology.

This theorem is based on the gluing lemma as explained in subsection 1.1.1 (see also
Theorem 3.1.13).
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Definition 1.2.10 The symplectic homology of (W,ω) is defined as the direct limit

SH∗(W,ω,X) := lim−→
H∈Hstd

SH∗(H, J)

where, for each H, J : S1 → End
(
(Γ(TŴ )

)
is chosen so that (H, J) is a regular pair.

Example: the ball B2n

We consider the ball B2n with the symplectic form which is the restriction of the standard
symplectic 2-form ωstd =

i
2dz∧dz̄ on Cn and with the Liouville radial vector field defined by

Xrad =
1
2(z∂z + z̄∂z̄). The completion is given by B̂2n = Cn with the standard symplectic

form ωstd =
i
2dz ∧ dz̄. We look at Hamiltonians

HC : Cn → R : z 7→ C ‖z‖2

such that C
π
/∈ Z. These Hamiltonians are not in Hstd but form an admissible cofinite

family by Remark 1.2.3. For each C, the Hamiltonian vector field is

XHC
= −2iC(z∂z − z̄∂z̄).

The integral trajectories are of the form z(t) = e−2iCtz0; therefore, the only 1-periodic
orbit of XH is the critical point z = 0. The Floer chain groups are thus

SC∗(HC) =

{
Z if ∗ = −µCZ(0)
0 otherwise

and, since the differential is 0, the homology groups are the same as the chain groups.
The Conley-Zehnder index of the constant orbit at z = 0 depends on C and is given by

−µCZ(0) = 2n

⌊
C

π

⌋
+ n.

Let Ck := kπ + ǫ where k ∈ N≥0 and ǫ > 0. The continuation maps ϕk : SC∗(HCk
) →

SC∗(HCk+1
) are all identically zero, thus the symplectic homology is also 0

SH∗(B
2n, ωstd, Xrad) = lim−→

k

SH∗(HCk
) = 0.

1.2.3 Parenthesis on the homotpy of homotopies Theorem

This classical material can be found, for instance, in [AD10, Sal99, Rit].

Definition 1.2.11 Let H1 and H2 be two Hamiltonians. We say that an increasing ho-
motopy Hs between H1 and H2 is regular if for all 1-periodic orbits γ1 ∈ P(H1) and
γ2 ∈ P(H2), M(γ1, γ2, Hs, Js) is a manifold of dimension −µCZ(γ1) + µCZ(γ2).
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Theorem 1.2.12 The morphism

φ : SH(H1, J1) → SH(H2, J2)

is independent of the choice of the regular homotopy between H1 and H2.

Proof: Consider two regular homotopies K0 and K1 joining H1 and H2. We are going to
construct an homotopy between φK0 and φK1 in other word a

S : SC∗(H1, J1) → SC∗+1(H2, J2)

satisfying the relation
φK1 − φK0 = S ◦ ∂H1 + ∂H2 ◦ S.

Consider a homotopy of homotopies Kη, η ∈ [0, 1] such that in a neighbourhood of 0,
Kη ≡ K0 and in a neighbourhood of 1, Kη ≡ K1. For γ1 ∈ P(H1), γ2 ∈ P(H2) and η fixed,
we denote by M(γ1, γ2,Kη) the space of Floer trajectories u : R× S1 → R

∂su+ Jη(∂θu−XKη) = 0

and define the parametrized moduli space

MK(γ1, γ2) :=
⋃

η∈[0,1]
M(γ1, γ2,Kη).

We now use the following two theorems:

Theorem 1.2.13 If µCZ(γ1)− µCZ(γ2) + 1 = 0, then MK(γ1, γ2) is a compact manifold
of dimension 0.

Theorem 1.2.14 ([AD10]) Let us define

ΠK(γ1, γ2) :=




⋃

γ′1∈P(H1)
µCZ(γ1)−µCZ(γ′1)=1

M(γ1, γ
′
1, H1, J1)/R×MK(γ1, γ

′
1)




⋃




⋃

γ′2∈P(H2)
µCZ(γ′2)−µCZ(γ2)=1

MK(γ′2, γ
′
2)×M(γ′2, γ2, H2, J2)/R


 .

If µCZ(γ1) = µCZ(γ2), then MK(γ1, γ2) ∪ ΠK(γ1, γ2) is a compact manifold of dimension
1 with boundary equal to

ΠK(γ1, γ2) ∪
(
{0} ×M(γ1, γ2,K0)

)
︸ ︷︷ ︸
with opposite orientation

∪
(
{1} ×M(γ1, γ2,K1)

)
.

39



1. Background on symplectic homology

We are now ready to proceed with the proof of Theorem 1.2.12. We define the homotopy
S : SC∗(H1, J1) → SC∗+1(H2, J2) as follows: if γ1 ∈ P(H1) such that µCZ(γ1) = k then

Sk(γ1) =
∑

γ2∈P(H2)
µCZ(γ2)=k+1

#MK(γ1, γ2)γ2.

We have, for γ1 ∈ P(H1) such that µCZ(γ1) = k,

S ◦ ∂H1(γ1) + ∂H2 ◦ S(γ1)
= Sk−1

∑

γ′1∈P(H1)
µCZ(γ′1)=k−1

(
#M(γ1, γ

′
1, H1, J1)/R

)
γ′1 + ∂H2

∑

γ′2∈P(H2)
µCZ(γ′2)=k+1

#MK(γ1, γ
′
2)γ

′
2

=
∑

γ2∈P(H2)
µCZ(γ2)=k

∑

γ′1∈P(H1)
µCZ(γ′1)=k−1

(
#M(γ1, γ

′
1, H1, J1)/R

)
#MK(γ1, γ2)γ2

+
∑

γ2∈P(H2)
µCZ(γ2)=k

∑

γ′2∈P(H2)
µCZ(γ′2)=k+1

#MK(γ1, γ
′
2)
(
#M(γ′2, γ2, H2, J2)/R

)
γ2

=
∑

γ2∈P(H2)
µCZ(γ2)=k

#ΠK(γ1, γ2)γ2.

On the other side

φK1 − φK0 = −
∑

γ2∈P(H2)
µCZ(γ2)=k

(
#M(γ1, γ2,K0)

)
γ2 +

∑

γ2∈P(H2)
µCZ(γ2)=k

(
#M(γ1, γ2,K1)

)
γ2.

Therefore we reach the conclusion using theorem 1.2.14.

1.2.4 Positive symplectic homology

Let (W,ω,X) be a compact symplectic manifold with contact type boundary, satisfying

assumptions 1.1.1 and 1.1.2 and let (Ŵ , ω̂) be its symplectic completion. The idea of
positive symplectic homology is to “remove” the data of constant 1-periodic orbits from
symplectic homology.

We assume in this section that (W,ω,X) is an exact symplectic manifold , i.e. there
exists a globally defined 1-form λ such that dλ = ω. We need this assumption in order to
identify the set of critical points of a Hamiltonian with its 1-periodic orbits of small action.
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Let H : S1 × Ŵ → R be a Hamiltonian in Hstd (cf. Definition 1.2.1). Recall that the

Hamiltonian action functional AH : C∞contr(S
1, Ŵ ) → R is defined as

AH(γ) := −
∫

D2

σ⋆ω̂ −
∫

S1

H
(
θ, γ(θ)

)
dθ

where σ : D2 → Ŵ is an extension of γ to the disc D2. When the symplectic form is exact,
ω = dλ, the action becomes

AH(γ) := −
∫

S1

γ⋆λ̂−
∫

S1

H
(
θ, γ(θ)

)
dθ.

The 1-periodic orbits of H ∈ Hstd fall into two classes (see Remark 1.2.2)

1. critical points in W ; whose action is strictly less than some small positive constant
ǫ; indeed, if (θ, x) is a critical point of H, the action of the constant orbit is equal to
−H(θ, x);

2. non-constant periodic orbits lying in Ŵ \W whose action is strictly greater than ǫ;
indeed, the action of such an orbit is close, for a given ρ in [0, ρ0] with T = h′(eρ) in
Spec(M,α), to the action of the orbit of the vector field −h′(eρ)Rα located inM×{ρ};
this is given by−

∫
S1 e

ρα(−h′(eρ)Rα)dθ−
∫
S1 h(e

ρ)dθ = eρh′(eρ)−h(eρ) = eρT−h(eρ);
it is positive since h is convex.

The ǫ above is chosen (for instance) as half the minimal value of the periods of closed orbits
of the Reeb vector field on M = ∂W . Functions H are chosen so that the value of |H| in
S1 ×W is less than ǫ, so that h(eρ) is less than 1

2ǫ (hence e
ρT − h(eρ) is greater than 3

2ǫ)
and the C2-closeness to an autonomous function is such that the actions differ at most by
1
2ǫ.

Lemma 1.2.15 The action decreases along Floer trajectories, i.e. if u : R×S1 → Ŵ is a
solution of equation (1.1) such that

lim
s→−∞

u(s, ·) = γ−(·) and lim
s→+∞

u(s, ·) = γ+(·)

then
A(γ−) ≥ A(γ+).

For a proof we refer to the more general case of lemma 1.3.18.
Let SC≤ǫ(H, J) be the complex generated by the 1-periodic orbits of action no greater

than ǫ. It is built out of critical points of H and it is a subcomplex of SC(H, J). It has
been proven by Viterbo in [Vit99, Proposition 1.3] that

H∗(SC
≤ǫ(H, J), ∂) ∼= H∗+n(W,∂W ).
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Definition 1.2.16 The positive Floer complex is defined as the quotient of the total com-
plex by the subcomplex of critical points;

SC+(H, J) := SC(H, J)/SC≤ǫ(H, J)

Remark that the differential induces a differential on the quotient which we still denote ∂.

Positive symplectic homology is defined as a direct limit over non degenerate H ∈ Hstd

of the homology of SC+(H, J). The continuation morphisms defined in Definition 1.2.6
descend to the quotient since the action decreases along a solution of (1.3) cfr lemma 1.3.18
(when the homotopy is increasing everywhere).

Definition 1.2.17 The positive symplectic homology of (W,ω) is defined as

SH+(W,ω,X) := lim−→
H∈Hstd

H∗
(
SC+

∗ (H, J), ∂
)

Remark 1.2.18 The short exact sequence

0 → SC≤ǫ(H, J) → SC(H, J) → SC+(H, J) → 0

induces a long exact sequence in homology

H∗+n(W,∂W ) // SH∗(W,ω,X)

vv
SH+

∗ (W,ω,X)

[−1]

hh
. (1.5)

Positive symplectic homology can be defined in a wider context. We refer to section 4.2.1
for an explicit construction on compact symplectic manifold with contact type boundary
satisfying assumptions 1.1.1 and 1.1.2.

Example: the ball B2n

We use the long exact sequence :

H∗+n(B2n, ∂B2n = S2n−1) // SH∗(B2n, ωstd, Xrad)

tt
SH+

∗ (B
2n, ωstd, Xrad)

[−1]

jj

and the fact that SH∗(B2n) = 0 to deduce that

SH+
∗ (B

2n, ωstd, Xrad) ∼= H∗+n−1(B
2n, S2n−1).
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To compute the relative homology H∗(B2n, S2n−1), we use the exact sequence

H∗(S2n−1) // H∗(B2n)

ww
H∗(B2n, S2n−1)

[−1]

hh
.

Thus we have

H∗(B
2n, S2n−1) =

{
Z if ∗ = 2n

0 otherwise

and this implies

SH+
∗ (B

2n, ωstd, Xrad) =

{
Z if ∗ = n+ 1,

0 otherwise.

In particular the positive symplectic homology of the ball has only one generator. This
shows that this homology invariant cannot detect all distinct periodic Reeb orbits on the
sphere (with a contact structure which is non degenerate).

1.3 S1-equivariant symplectic homology

1.3.1 S1-equivariant homology

Let X be a topological space endowed with an S1-action. If the S1-action is free, X/S1

is a topological space. The aim of S1-equivariant homology is to build on the space X
a homology which coincides, when the action is free, with the singular homology of the
quotient. One considers the universal principal S1-bundle ES1 → BS1.The diagonal action
on X × ES1 is free and one denotes by X ×S1 ES1 the quotient (X × ES1)/S1.

Definition 1.3.1 (Borel) Let X be a topological space endowed with an S1-action. The
S1-equivariant homology of X with Z-coefficients is

HS1

∗ (X) := H∗(X ×S1 ES1,Z).

An axiomatic definition of equivariant homology was stated later by Basu, [Bas], based on
the following Proposition:

Proposition 1.3.2 The S1-equivariant homology with Z-coefficients is a functor HS1

∗ from
the category of S1-spaces and S1-maps to the category of abelian groups and homomor-
phisms. Let X be a topological space endowed with a S1-action, HS1

∗ associates to X
a sequence of abelian groups: HS1

i (X,Z), i ≥ 0. Let f : X → Y be an S1-equivariant
map between topological spaces endowed with an S1-action. It induces homomorphisms
fS

1

i : HS1

i (X,Z) → HS1

i (Y,Z). The functor HS1

∗ satisfy the two following conditions:
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1. Background on symplectic homology

1. If the S1-action on X is free, then HS1

∗ (X,Z) = H∗(X/S1,Z) (the singular homology
of X/S1).

2. If f : X → Y induces an isomorphism f∗ : H∗(X,Z) → H∗(Y,Z), then it also induces
an isomorphism fS

1

∗ : HS1

∗ (X,Z) → HS1

∗ (Y,Z).

Any functor satisfying the two conditions of Proposition 1.3.2 is given by Definition 1.3.1.
Indeed, the projection pr1 : X × ES1 → X : (x, e) 7→ x is an S1-equivariant map which
induces an isomorphism

pr1∗ : H∗(X × ES1,Z) → H∗(X,Z)

since ES1 is contractible. By 2, pr1∗ induces an isomorphism

pr1
S1

∗ : HS1

∗ (X × ES1,Z) → HS1

∗ (X,Z).

Condition 1 then implies

HS1

∗ (X,Z) ∼= H∗(X ×S1 ES1,Z).

1.3.2 S1-equivariant symplectic homology

The setup is the same as for symplectic homology (cf. section 1.2.1). The S1-equivariant
symplectic homology is defined for any compact symplectic manifold with contact type
boundary (W,ω,X). The S1-action we are referring to in this section is the reparametriza-
tion action on the loop space,

ϕ · γ(θ) = γ(θ − ϕ)

not an action on W . This homology was first introduced by Viterbo in [Vit99]; a different
approach, which will be presented in section 1.4 was sketched by Seidel in [Sei08] and a
detailed study by Bourgeois and Oancea appears in [BO12, BO10, BO13b].

The functional

Viterbo’s idea is to adapt Borel’s construction for Morse theory to the space of contractible
loops in Ŵ with the S1-action. We consider the model of ES1 given as a limit of spheres
S2N+1 for N going to ∞ with the Hopf S1-action. To provide S1-invariant functionals, we
use S1-invariant Hamiltonians : H : S1 × Ŵ × S2N+1 → R. The S1-invariance condition
reads,

H(θ + ϕ, x, ϕz) = H(θ, x, z), ∀θ, ϕ ∈ S1, ∀z ∈ S2N+1.

The action functional A : C∞(S1, Ŵ )× S2N+1 → R, called the parametrised action func-
tional, is defined as

A(γ, z) := −
∫

D2

σ⋆ω̂ −
∫

S1

H
(
θ, γ(θ), z

)
dθ. (1.6)
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1.3. S1-equivariant symplectic homology

where σ : D2 → Ŵ is an extension of γ to the disc D2. It is invariant under the diagonal
S1-action on C∞(S1, Ŵ )× S2N+1.

The critical points of the parametrised action functional are pairs (γ, z) such that

γ ∈ P(Hz) and

∫

S1

∂Hz

∂z

(
θ, γ(θ)

)
dθ = 0, (1.7)

where Hz is the function on S1 × Ŵ defined by Hz(θ, x) := H(θ, x, z) and where P(Hz)
denote, as before, the set of 1-periodic orbits of XHz . The set of critical points of A,
denoted by PS1

(H), is S1-invariant. If q = (γ, z) ∈ PS1
(H), we denote by Sq the S

1-orbit
of q

Sq := {ϕ · q := ϕ · (γ, z) = (ϕ · γ, ϕz) |ϕ ∈ S1}.
Such an Sq is called nondegenerate if the Hessian d2A(γ, z) has a 1-dimensional kernel for
some (and hence any) (γ, z) ∈ Sq.

Definition 1.3.3 An S1-invariant Hamiltonian H is called admissible if Hz is in Hstd (as
in Definition 1.2.1) with constant slope independent of z for all z ∈ S2N+1 and if for any
critical point q ∈ PS1

(H), the S1-orbit Sq is non degenerate. Let HS1,N be the family of
such hamiltonians.

Again, one can consider more general Hamiltonian in Hstd; the main point is that it
coincides with a linear function with constant slope outside a compact set.

Proposition 1.3.4 ([BO10], Proposition 5.1) The set HS1,N is of second Baire cate-
gory in the space of S1-invariants Hamiltonians H such that Hz is in Hstd with constant
slope independent of z for all z ∈ S2N+1.

The chain complex

The chain complex of our homology will be generated by the set of S1-orbits of critical
points of A.

Definition 1.3.5 ([BO13b]) The parametrized index of a non degenerate circle of critical

points Sq, with q = (γ, z), is defined as follows. The Hamiltonian H : S1×Ŵ ×S2N+1 → R

is extended to a function H̃ : S1 × Ŵ × T ∗S2N+1 → R by pullback

H̃
(
θ, x, (z, ζ)

)
= H(θ, x, z) = Hz(θ, x).

The cotangent bundle T ∗S2N+1 is endowed with its canonical symplectic structure dz ∧ dζ
and one considers the Hamiltonian vector field XH̃ = XHz − ∂H

∂z
∂ζ . The 1-periodic orbits

of XH̃ are of the form γ̃ :=
(
γ(·), z, ζ(·)

)
with γ a 1-periodic orbit of Hz and ζ(θ) =

ζ(0)−
∫ θ
0
∂H
∂z

(
θ′, γ(θ′), z

)
dθ′ with (γ, z) a critical point of the parametrized action functional

and where ζ(0) can be chosen arbitrarily in T ∗z S
2N+1.
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The parametrized index of the circle of critical points S(γ,z), µparam
(
S(γ,z)

)
, is defined

as the Robbin-Salamon index (see section 6.4) of the path of symplectic matrices defined

by the differential of the flow of XH̃ along γ̃ using a trivialisation of T
(
Ŵ ×T ∗S2N+1

)
over

a disk bounded by γ̃.
The grading in the chain complex of the element Sq is equal to −µparam(Sq) +N .

Floer trajectories

To define negative gradient trajectories of the parametrized action functional A, one needs
a metric on the loop space and on the sphere. One chooses again a parametrized smooth
loop J : S1×S2N+1 → End(TW ) of almost complex structures onW which are compatible
with ω, and a metric g on S2n+1; since the functional is S1 invariant, we want the following
S1 invariance.

Definition 1.3.6 A parametrized loop of almost complex structures

J : S1 × S2N+1 → End(TŴ ), (θ, z) 7→ Jθz

is called S1-invariant if

Jθ+ϕϕz = Jθz , ∀θ, ϕ ∈ S1, ∀z ∈ S2N+1

and is called admissible if for all z in S2N+1, the loop of almost complex structures Jz is
in J as defined in Definition 1.2.4.

We denote by J S1,N the set of pairs (J, g) consisting of an admissible S1-invariant
parametrised loop of almost complex structures and an S1-invariant Riemannian metric g
on S2N+1.

Definition 1.3.7 Given H ∈ HS1,N , (J, g) ∈ J S1,N and q−, q+ ∈ PS1
(H), we denote by

M̂(Sq− , Sq+ ;H, J, g) the set of S1-equivariant Floer trajectories, consisting of pairs (u, z)

with u : R× S1 → Ŵ and z : R → S2N+1 such that




∂su+ Jθz(s) ◦ u
(
∂θu−Xθ

Hz(s)
◦ u

)
= 0

ż(s)−
∫

S1

~∇zH
(
θ, u(s, θ), z(s)

)
dθ = 0

(1.8)

with the asymptotic conditions

lim
s→−∞

(
u(s, ·), z(s)

)
∈ Sq− , lim

s→+∞

(
u(s, ·), z(s)

)
∈ Sq+ .

By ~∇zH
(
θ, x, z

)
, we mean the gradient at the point z with respect to the metric g, of the

function on S2n+1 defined by H(θ, x, ·).
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Proposition 1.3.8 ([BO10], Proposition 5.2) Assume Sq− , Sq+ ⊂ PS1
(H) are non-

degenerate. Then for any (u, z) ∈ M̂(Sq− , Sq+ ;H, J, g), the linearisation Du,z of the
equation (1.8), extended to suitable Banach spaces is Fredholm of index −µparam

(
Sq−

)
+

µparam
(
Sq+

)
+ 1.

Transversality results

Bourgeois and Oancea have proven a transversality result involving the two following classes
of Hamiltonians (section 7 of [BO10]):

1. Generic Hamiltonians. The set, denoted Hgen, of Hamiltonians H ∈ HS1,N such
that:

a) For all (γ, z) ∈ PS1
(H), γ is a simple embedded curve ;

b) For all distinct elements (γ1, z1), (γ2, z2) ∈ PS1
(H), we have γ1 6= γ2.

2. Split Hamiltonians. The set, denoted Hsplit, of Hamiltonians H ∈ HS1,N of the
form K(x) + f(z), with K C2-small on W such that K has either constant and non
degenerate 1-periodic orbits, or non constant and transversally non degenerate ones
and f is an S1-invariant function.

We denote by H∗ the union of those two sets: H∗ = Hgen ∪Hsplit.

Definition 1.3.9 ([BO12]) An admissible Hamiltonian H ∈ HS1,N is called strongly
admissible if

1. For every (γ, z) ∈ PS1
(H) such that γ is not constant, we have

Xθ
Hz

(
γ(θ)

)
6= 0, ∀θ ∈ S1.

2. For every (γ, z) ∈ PS1
(H) such that γ is constant (equal to x ∈ Ŵ ), there exists a

neighbourhood U of {x}×(S1 ·z) in Ŵ ×S2N+1 such that H(θ, x′, z′) = K(x′)+f(z′)
for all θ ∈ S1 and for all (x′, z′) ∈ U . Moreover, x is an isolated critical point of K.

Remark that any Hamiltonian in H∗ is strongly admissible.

Definition 1.3.10 ([BO12]) Given a strongly admissible Hamiltonian H, a pair (J, g) ∈
J S1,N is called adapted to H if the following hold :

1. For every (γ, z0) ∈ PS1
(H), we have

[
JθzX

θ
Hz
, Xθ

Hz

](
γ(θ)

)
/∈ Span

(
JθzX

θ
Hz
, Xθ

Hz

)
, ∀θ ∈ S1, z ∈ S1 · z0.
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2. for every (γ, z0) ∈ PS1
(H) such that γ is constant (equal to x ∈ Ŵ ), there exists a

neighbourhood U of {x} × (S1 · z) in Ŵ × S2N+1 such that Jθz is independent of θ
and z on U , i.e. Jθz (x

′) = J(x′) for all (x′, z) ∈ U and θ ∈ S1.

We denote by HJ ′ the set of triples (H, J, g) such that H is a strongly admissible Hamil-
tonian and (J, g) is adapted to H and we denote by H∗J ′ the subset of HJ ′ corresponding
to elements H ∈ H∗, asking, furthermore, if H ∈ Hsplit, that J is independent of θ, of ρ
and of z for ρ ≥ 1.

Given H ∈ HS1,N , we say that a pair (J, g) ∈ J S1,N is regular for H if the linearisation
Du,z of the equation (1.8), extended to suitable Banach spaces, is surjective for any q−, q+ ∈
PS1

(H) and any (u, z) ∈ M̂(Sq− , Sq+ ;H, J, g). We denote the set of those regular pairs by

J S1,N
reg (H).

Theorem 1.3.11 ([BO10], Theorem 7.4) There exists an open subset HJ ′reg ⊂ HJ ′
which is dense in a neighbourhood of H∗J ′ ⊂ HJ ′ and consisting of triples (H, J, g) such

that H ∈ HS1,N and (J, g) ∈ JS
1,N

reg (H).

For (H, J, g) ∈ HJ ′reg, the moduli space M̂(Sq− , Sq+ ;H, J, g) is a manifold whose di-
mension is −µparam

(
Sq−

)
+ µparam

(
Sq+

)
+ 1 ; it carries an action of R (by reparametriza-

tion in the s-variable) and an action by S1 coming from the S1-invariance of the action
A and of the almost complex structure (J, g). We denote by MS1

(Sq− , Sq+ ;H, J, g) the
moduli space quotiented by those two actions. It is a smooth manifold of dimension
−µparam

(
Sq−

)
+ µparam

(
Sq+

)
− 1.

Definition 1.3.12 The S1-equivariant Floer complex SCS
1,N
∗ (H, J, g) is the following chain

complex:

SCS
1,N
∗ (H) := SCS

1,N
∗ (H, J, g) :=

⊕

Sq∈PS1
(H)

Z〈Sq〉

where the grading is defined by |Sq| = −µparam
(
Sq

)
+N . The S1-equivariant differential

is defined as

∂S
1
: SCS

1,N
∗ (H, J, g) −→ SCS

1,N
∗−1 (H, J, g)

∂S
1
(Sq−) :=

∑

S
q+⊂PS1

(H)

|Sq− |−|Sq+ |=1

#MS1
(Sq− , Sq+ ;H, J, g)Sq+

where # is a count with signs defined in [BO12], obtained by comparing the coherent
orientations on MS1

(Sq− , Sq+ ;H, J, g) with the orientation induced by the infinitesimal
generator of the action.

The fact that it is indeed a differential follows from:
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Proposition 1.3.13 ([BO13a], Proposition 2.2) The map ∂S
1
satisfies ∂S

1 ◦ ∂S1
= 0.

Definition 1.3.14 The S1-equivariant Floer homology groups are defined as

SHS1,N
∗ (H, J, g) := H∗

(
SCS

1,N
∗ (H), ∂S

1)

The S1-equivariant Floer homology groups are independent of the choice of the regular
pair (J, g).

Proposition 1.3.15 ([BO13a]) Given a Hamiltonian in HS1,N , and two regular pairs

for H, (J1, g1) and (J2, g2) in J S1,N
reg , there exists a canonical isomorphism

SHS1,N
∗ (H, J1, g1) ≃ SHS1,N

∗ (H, J2, g2).

In the sequel we shall denote SHS1,N
∗ (H, J, g) by SHS1,N

∗ (H).

Let H1, H2 ∈ HS1,N
reg be two S1-invariant Hamiltonians and let Hs be an increasing

homotopy between them (i.e ∂sHs ≥ 0 and there exists s0 such that for |s| ≥ s0, we have
H−|s| = H1 and H|s| = H2). We consider the solutions of





∂su+ Jθs,z(s)
(
∂θu−XHs,z(s)

(u)
)
= 0

ż(s)−
∫

S1

~∇zH
(
s, θ, u(s, θ), z(s)

)
dθ = 0

(1.9)

with the asymptotic conditions

lim
s→−∞

(
u(s, ·), z(s)

)
∈ Sq1 , lim

s→+∞

(
u(s, ·), z(s)

)
∈ Sq2

where q1 ∈ PS1
(H1) and q2 ∈ PS1

(H2). Let M(Sq1 , Sq2 , Hs, Js, gs) be the space of solu-
tions of (1.9) ; it carries an S1-action (but no R-action) and we denote the quotient by
MS1

(Sq1 , Sq2 , Hs, Js, gs).

Proposition 1.3.16 ([BO12], Proposition 2.1) For all q1 ∈ PS1
(H1) and q2 ∈ PS1

(H2),
the MS1

(Sq1 , Sq2 , Hs, Js, gs) are smooth manifolds of dimension −µparam(Sq1)+µparam(Sq2).

We can define the continuation morphism :

φ : SCS
1,N
∗ (H1, J1, g1) → SCS

1,N
∗ (H2, J2, g2)

by

φ(Sq1) :=
∑

Sq2⊂PS1
(H2)

|Sq1 |−|Sq2 |=1

#MS1
(Sq1 , Sq2 ;Hs, Js, gs)Sq2 (1.10)
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where q1 ∈ PS1
(H1) and q2 ∈ PS1

(H2). These morphisms are chain maps and thus pass to
the quotient where we still denote them by φ. As previously, we define the S1-equivariant
homology groups of W to be the direct limit over continuation maps of the S1-equivariant
Floer homology groups

SHS1,N
∗ (W,ω,X) := lim−→

H∈HS1,N

SHS1,N
∗ (H). (1.11)

We then take the direct limit over N with respect to the S1-equivariant embeddings

S2N+1 →֒ S2N+3 which induce maps SHS1,N
∗ (W,ω,X) → SHS1,N+1

∗ (W,ω,X) for each
N .

Definition 1.3.17 The S1-equivariant symplectic homology of W is

SHS1

∗ (W,ω,X) := lim−→
N

SHS1,N
∗ (W,ω,X).

Example: the ball B2n

The idea is the same as in section 1.2.2. We take a Hamiltonian

HC : Cn × S2N+1 → R : (z, p) 7→ C ‖z‖2 + f̃(p)

where f̃ is the S1-invariant lift of a perfect Morse function on CPn−1. The critical points
of AH are (0, p0), . . . , (0, pN−1) where {pi | i = 0 . . . N − 1} = Crit(f̃). The index of (0, pi)
is

−µparam(0, pi) +N = 2n

⌊
C

π

⌋
+ n+ 2i.

Therefore

SCS
1,N
∗ (HC) =

{
Z if ∗ = 2n

⌊
C
π

⌋
+ n+ 2i, i ∈ {0, . . . N − 1}

0 otherwise

and, the differential is 0 since the complex is lacunary, thus SHS1,N
∗ (HC) ≃ SCS

1,N
∗ (HC).

If we let Ck = kπ(1 + 2N) + ǫ for ǫ > 0, the continuation maps ϕk : SCS
1,N
∗ (HCk

) →
SCS

1,N
∗ (HCk+1

) are identically 0 and thus

SHS1,N
∗ (B2n, ωstd, Xrad) = lim−→

N

lim−→
k

SHS1,N
∗ (HCk

) = 0.
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1.3. S1-equivariant symplectic homology

1.3.3 Positive S1-equivariant symplectic homology

As in section 1.2.4, we assume that (W,ω) is an exact compact symplectic manifold with
contact type boundary in order to identify the complex generated by 1-periodic orbits of
XH of action ≤ ǫ with the complex generated by the critical points of H. To see that it is
a subcomplex, we study the action along the Floer trajectories.

Proposition 1.3.18 The action decreases along a parametrized Floer trajectory; i.e a so-
lution of (1.9).

Proof: Since the action for the Hamiltonian Hs along the pair
(
u(s, ·), z(s)

)
is given by

AHs,z(s)

(
u(s, ·), z(s)

)
= −

∫

D2

σ⋆s ω̂ −
∫

S1

H
(
s, θ, u(s, θ), z(s)

)

where σs : D2 → Ŵ is an extension of γs = u(s, ·) to the disc D2. By the asphericity
condition,

∫
D2 σ

⋆
s ω̂ =

∫
D2 σ

⋆
s0
ω̂ +

∫
S1×[s0,s] u

⋆ω̂ so that

∂

∂s
AHs,z(s)

(
u(s, ·), z(s)

)
= −

∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

∂
∂u
H
(
s, θ, u(s, θ), z(s)

)
∂
∂s
u(s, θ)dθ

−
∫

S1

~∇zH
(
s, θ, u(s, θ), z(s)

)
· ż(s)dθ

−
∫

S1

∂
∂s
H
(
s, θ, u(s, θ), z(s)

)
dθ

= −
∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

dH(∂su)dθ

−
∫

S1

~∇zH
(
s, θ, u(s, θ), z(s)

)
dθ ·

∫

S1

~∇zH
(
s, θ, u(s, θ), z(s)

)
dθ

−
∫

S1

∂
∂s
H
(
s, θ, u(s, θ), z(s)

)
dθ

The last two terms −
∥∥∥
∫
S1
~∇zH

(
s, θ, u(s, θ), z(s)

)
dθ

∥∥∥
2
and −

∫
S1

∂
∂s
H
(
s, θ, u(s, θ), z(s)

)
dθ

are clearly non positive. The first line can be rewritten as

−
∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

ω(XH , ∂su)dθ = −
∫

S1

ω(∂su, ∂θu−XHz(s)
)dθ

= −
∫

S1

ω(∂su, J
θ
z(s)∂su)dθ = −‖∂su‖2gJθ

z(s)
≤ 0.

Corollary 1.3.19 The action decreases along a solution of (1.8).
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1. Background on symplectic homology

Let H ∈ HS1,N . By the above Corollary, the complex generated by 1-periodic orbits of
XH of action ≤ ǫ (denoted SCS

1,N,≤ǫ(H, J, g)) is a subcomplex of SCS
1,N (H, J, g). It is

built out of critical points of H. As in Viterbo [Vit99, Proposition 1.3] we have

H∗(SC
S1,N,≤ǫ(H, J, g), ∂S

1
) ∼= HS1

∗+n(W,∂W ).

where the S1-action on the pair (W,∂W ) is the trivial one.

Definition 1.3.20 Let H ∈ HS1,N
reg be a Hamiltonian. The positive S1-equivariant complex

is defined as

SCS
1,N,+(H, J, g) := SCS

1,N (H, J, g)/SCS
1,N,≤ǫ(H, J, g).

Remark that the differential induces a differential on the quotient which we still denote ∂S
1
.

The continuation morphisms defined in equation (1.10) descend to the quotient since the
action decreases along a solution of (1.9) cfr Proposition 1.3.18. The positive S1-equivariant
Floer groups are defined as

SHS1,N,+(H) := H
(
SCS

1,N,+(H), ∂S
1)
.

Definition 1.3.21 The positive S1-equivariant symplectic homology is defined as

SHS1,+
∗ (W,ω,X) := lim−→

N

lim−→
H∈HS1,N

SHS1,N,+
∗ (H).

Example: the ball B2n

The short exact sequence

0 → SCS
1,N,≤ǫ(H, J, g) → SCS

1,N (H, J, g) → SCS
1,N,+(H, J, g) → 0

induces a long exact sequence in homology

HS1

∗+n(B
2n, ∂B2n = S2n−1) // SHS1

∗ (B2n, ωstd, Xrad)

tt

SHS1,+
∗ (B2n, ωstd, Xrad)

[−1]

jj
.

(1.12)

The fact that SHS1,N
∗ (B2n, ωstd, Xrad) = 0 implies

SHS1,+
∗ (B2n, ωstd, Xrad) ∼= HS1

∗+n−1(B
2n, S2n−1).
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1.4. An alternative presentation of the S1-equivariant symplectic homology

The S1-action on the pair (B2n, S2n−1) is trivial ; therefore

HS1

∗ (B2n, S2n−1) = H∗(B
2n, S2n−1)⊗H∗(BS

1).

We have as in 1.2.4 that

H∗(B
2n, S2n−1) =

{
Z if ∗ = 2n

0 otherwise.

Thus,

SHS1,+
∗ (B2n, ωstd, Xrad) =

{
Z if ∗ = n+ 1 + 2i, i ∈ N,

0 otherwise.

1.4 An alternative presentation of the S1-equivariant symplectic homology

The definition of S1equivariant symplectic homology that we have presented fits nicely in
the general picture of symplectic homologies but is hard to tackle. An alternative homology
has been suggested by Seidel in [Sei08] and developed by Bourgeois and Oancea in [BO12].
It has the advantage to use a special class of Hamiltonians and simplified equations for
Floer trajectories, so that properties and computations are often feasible. The important
point is that this homology coincides with the S1equivariant symplectic homology defined
above.

We shall look at a subfamily of the S1 equivariant Hamiltonians HS1,N as defined in
Definition 1.3.3. We shall define the generators of our complex and the equations for the
Floer trajectories considered to define a differential.

The data

We consider a compact symplectic manifold with compact type boundary (W,ω,X). We
choose a perfect Morse function f : CPN → R and a Riemannian metric ḡ on CPN for
which the gradient flow of f has the Morse-Smale property (and this will be for each N).
Let f̃ : S2N+1 → R be the S1-invariant lift of f . Let g be the lifted S1 invariant metric
on the sphere S2N+1. We denote by Crit(f̃) the critical set of f̃ ; it is a union of circles.
We choose a point z0 on each critical circle and we fix a local slice transverse in S2N+1 to
the circle in Crit(f̃) at z0, considering the hypersurface Tz0 spanned by the stable and the
unstable manifold at z0 (with respect to the gradient ~∇f̃ of f̃ with respect to g). Let U
be a neighbourhood of Crit(f̃) and let ρ̌ : S2N+1 → R be a cut-off function on U which is
equal to 1 in a neighbourhood U ′ ⊂ U of Crit(f̃) and 0 outside U . We define

ǫ := min
z∈S2N+1\U ′

∥∥∥~∇f̃(z)
∥∥∥ > 0.
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1. Background on symplectic homology

Class of admissible Hamiltonians

We look at the subfamily HS1,N (f) ⊂ HS1,N consisting of Hamiltonians of the form H + f̃

with H : S1 × Ŵ × S2N+1 → R in HS1,N (cf. Definition 1.3.3) such that

1. Each critical point (γ, z) of the parametrized action functional AH+f̃ defined by

H + f̃ lies over a z which is a critical point of f̃ ;

2. For every z ∈ Crit(f̃), H(·, ·, z) has non degenerate periodic orbits;

3. H + f̃ has nondegenerate S1-orbits;

4.
∥∥∥~∇zH

(
θ, x, z

)∥∥∥ < ǫ, for all z ∈ S2N+1 \ U ′;

5. For all z ∈ U ′, ~∇zH · ~∇f̃(z) = 0.

Remark 1.4.1 Condition 3 can be replaced by the following : near every critical orbit of
f̃ , we have H(θ, x, z) = H ′(θ − φz, x), where φz ∈ S1 is the unique element such that the
action of its inverse brings z into Tz0 , i.e. φ

−1
z · z ∈ Tz0 and H ′ ∈ Hstd. In fact, we shall

consider elements H which are built from an H ′ : S1 × Ŵ → R in Hstd as in Definition
1.2.1, close to an autonomous Hamiltonian; we shall develop this in the next chapter.

The chain complex

Given an admissible H+ f̃ , the set PS1
(H+ f̃) of critical points (γ, z) of the parametrized

action functional AH+f̃ arise in circles and each one of those circle gives a generator of the
chain complex. So the complex is generated by the set

{
S(γ,z) := S1 ·

(
γ, z

)}
.

The index of the generator S(γ,z) is defined to be

µ(Sγ,z) := −µCZ(γ) + µMorse(z;−f̃).

The differential operator

Let (Jθz ) be an S1-invariant family of almost complex structures independent of z along
each local slice. Let p− = (γ−, z−) and p+ = (γ+, z+) be two critical points of AH+f̃ .

We denote by M̂(Sp− , Sp+ ;H, f, J
θ
z , g) the space of solutions (u, z), u : R × S1 → Ŵ ,

z : R → S2N+1 to the system of equations

{
∂su+ Jθz(s) ◦ u

(
∂θu−XHz(s)

◦ u
)
= 0

ż − ~∇f̃(z) = 0
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1.4. An alternative presentation of the S1-equivariant symplectic homology

with the conditions

lim
s→−∞

(
u(s, ·), z(s)

)
∈ Sp− lim

s→∞

(
u(s, ·), z(s)

)
∈ Sp+ . (1.13)

This system is to be compared to the system (1.9).

If Sp− 6= Sp+ , we denote byM(Sp− , Sp+ ;H, f, J
θ
z , g) the quotient of M̂(Sp− , Sp+ ;H, f, J

θ
z , g)

by the reparametrization R-action. M(Sp− , Sp+ ;H, f, J
θ
z , g) carries a free S1-action and

we denote by MS1
(Sp− , Sp+ ;H, f, J

θ
z , g) the quotient of M(Sp− , Sp+ ;H, f, J

θ
z , g) by this

S1-action.

Proposition 1.4.2 ([BO12]) For generically chosen Jθz and g, the spaces
MS1

(Sp− , Sp+ ;H, f, J
θ
z , g) are smooth manifolds of dimension −µ(Sp−) + µ(Sp+)− 1.

The chain complex is defined as:

SC̃S
1,N
∗ (H, f) :=

⊕

Sp⊂PS1
(H+f̃)

Z〈Sp〉.

The differential ∂̃S
1
: SC̃S

1,N
∗ (H, f) → SC̃S

1,N
∗−1 (H, f) is defined by

∂̃S
1
(Sp−) :=

∑

S+
p ⊂PS1

(H+f̃)
µ(S

p− )−µ(S
p+ )=1

#MS1
(Sp− , Sp+ ;H, f, J

θ
z , g)Sp+

with signs defined in [BO12]. The fact that the homology defined above is the same as the
one defined in section 1.3.2 is proven in:

Theorem 1.4.3 ([BO12], Proposition 2.7) For any non degenerate K ∈ HS1,N that
coincides with H+f̃ outside a compact set and for any pair (J ′, g′) ∈ J S1,N which is regular
for K and coincides with (J, g) outside a compact set, there is a canonical isomorphism

SHS1,N
∗ (K, J ′, g′) ≃ H∗

(
SC̃S

1,N
∗ (H, f), ∂̃S

1)
.

Continuation maps are defined as usual, using the space of solutions (u, s) of

{
∂su+ Jθs,z(s) ◦ u

(
∂θu−XHs,z(s)

◦ u
)
= 0

ż − ~∇f̃(z) = 0
(1.14)

with Hs + f̃ an increasing homotopy between H0 + f̃ and H1 + f̃ . The isomorphisms of
Theorem 1.4.3 commute with continuation maps when H0 ≤ H1 and when N → ∞.

Hence we have an alternative definition:
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Definition 1.4.4 The S1-equivariant Floer homology groups are defined as

SHS1,N
∗ (H, f, J, g) := H∗

(
SC̃S

1,N
∗ (H, f), ∂̃S

1)

The S1-equivariant symplectic homology groups of W are defined as

SHS1

∗ (W,ω,X) := lim−→
N

lim−→
H∈HS1,N (f)

SHS1,N
∗ (H, f, J, g)

We show here below that the action decreases along these new trajectories. This allows
to define SHS1,+ in the context of exact compact symplectic manifolds with contact type
boundary.

Proposition 1.4.5 Let H0 + f̃ and H1 + f̃ be Hamiltonians in HS1,N (f) and let H̃s :=

Hs + f̃ be an increasing homotopy between H0 + f̃ and H1 + f̃ . If (u, z), u : R× S1 → Ŵ
and z : R → S2N+1 is a solution of

{
∂su+ Jθs,z(s) ◦ u

(
∂θu−XHs,z(s)

◦ u
)
= 0

ż − ~∇f̃(z) = 0

with

lim
s→−∞

(
u(s, ·), z(s)

)
=

(
γ−(·), z−

)
and lim

s→+∞

(
u(s, ·), z(s)

)
=

(
γ+(·), z+

)

then

A(γ−, z−) ≥ A(γ+, z+).

Proof: The proof proceeds as in proposition 1.3.18. The parametrized action for the
Hamiltonian Hs + f̃ on the pair (u(s, ·), z(s)) is given by

−
∫

D2

σ⋆s ω̂ −
∫

S1

(Hs + f̃) (θ, u(s, θ), z(s)) dθ
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where σs : D2 → Ŵ is an extension of γs = u(s, ·) to the disc D2. By the asphericity
condition,

∫
D2 σ

⋆
s ω̂ =

∫
D2 σ

⋆
s0
ω̂ +

∫
S1×[s0,s] u

⋆ω̂ so that

∂

∂s
AHs+f̃

(
u(s, ·), z(s)

)
= −

∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

∂
∂u
Hs

(
θ, u(s, θ), z(s)

)
∂
∂s
u(s, θ)dθ

−
∫

S1

~∇z(Hs + f̃)
(
θ, u(s, θ), z(s)

)
· ż(s)dθ

−
∫

S1

(
∂
∂s
(Hs + f̃)

)(
θ, u(s, θ), z(s)

)
dθ

= −
∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

dHs,z(s)(∂su)dθ

−
∫

S1

~∇z(Hs + f̃)
(
s, θ, u(s, θ), z(s)

)
· ~∇f(z)dθ

−
∫

S1

∂
∂s
(Hs + f̃)

(
θ, u(s, θ), z(s)

)
dθ.

The first line can be rewritten as

−
∫

S1

ω(∂su, ∂θu)dθ −
∫

S1

ω(XHs,z(s)
, ∂su)dθ = −

∫

S1

ω(∂su, ∂θu−XHs,z(s)
)dθ

= −
∫

S1

ω(∂su, J
θ
z(s)∂su)dθ = −‖∂su‖2gJθ

z(s)
≤ 0.

The last two terms rewrite as

−
∫

S1

(
∂
∂s
(Hs + f̃)

)(
θ, u(s, θ), z(s)

)
dθ

−
∫

S1

~∇zH
(
s, θ, u(s, θ), z(s)

)
· ~∇f(z)dθ

−
∫

S1

∥∥∥~∇f(z)
∥∥∥
2
dθ

≤ 0 .

Condition 4 and 5 conclude.

Remark 1.4.6 With the assumptions of Proposition, 1.4.5, it appears in the proof above
that ∫

‖∂su‖2gJθ
z(s)

dsdθ ≤ A(γ−, z−)−A(γ+, z+).
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1. Background on symplectic homology

Definition 1.4.7 Let H ∈ HS1,N (f) be a Hamiltonian. The positive S1-equivariant com-
plex is defined as

SC̃S
1,N,+(H, f) := SC̃S

1,N (H, f)/SC̃S
1,N,≤ǫ(H, f)

where SC̃S
1,N,≤ǫ(H, f) is the set of critical points of AH+f̃ of action less than ǫ. The dif-

ferential passes to the quotient where we still denote it ∂̃S
1
and the positive S1-equivariant

Floer groups are defined as

SHS1,N,+(H, f) := H
(
SC̃S

1,N,+(H, f), ∂̃S
1)
.

Observe that the f should more precisely read fN in all the above construction.

Definition 1.4.8 The positive S1-equivariant symplectic homology is defined by

SHS1,+
∗ (W,ω,X) := lim−→

N

lim−→
H∈HS1,N (fN )

SHS1,N,+
∗ (H, fN ).

We assume (W,ω,X) to be exact and we assume the function f to be small in order to a
identify 1-periodic orbits of small action with a pair (p, z), p a critical points of H.
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2 SHS1,+ and periodic Reeb orbits

The goal of this section is to relate the positive S1-equivariant homology of an exact
compact symplectic manifold (W,dλ), which is a so-called Liouville domain, to the Reeb
orbits on (M = ∂W,α = λ|M ); this relation is expressed in Theorem 2.2.2. We use the
alternative description of S1-equivariant symplectic homology ([Sei08] , [BO12]) presented
in section 1.4, for a nice subclass of Hamiltonians.

Liouville domains

Definition 2.0.9 A Liouville domain (also called compact symplectic manifold with re-
stricted contact type boundary) is a compact manifold W with boundary ∂W = M , to-
gether with a 1-form λ such that ω := dλ is symplectic and the Liouville vector field X
defined by ι(X)ω = λ points strictly outwards along ∂W . The Liouville domain will be
denoted (W,λ).

Let us observe that the asphericity condition is automatically satisfied. We still assume
that 〈c1(TW ), π2(W )〉 = 0. We have defined the (symplectic) completion of a compact
symplectic manifold with contact type boundary in section 1.2.1. We consider the comple-
tion

Ŵ =W ∪ (∂W × R+)

of a Liouville domain (W,λ), built from the flow of the Liouville vector field X. We denote

by λ̂ the 1-form on Ŵ defined by λ on W and by eρα on ∂W × R+ with α := λ|∂V . The

completion will be denoted (Ŵ , λ̂).

2.1 The multicomplex defining positive S1-equivariant homology

The “nice subclass” of Hamiltonians that we use was introduced in [BO12]. The Hamilto-
nians are constructed using elements in Hstd which are small perturbations of autonomous
Hamiltonians as we shall now indicate.
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2. SHS1,+ and periodic Reeb orbits

2.1.1 Construction of admissible Hamiltonians from elements in Hstd.

As in section 1.4, we fix a sequence of perfect Morse functions fN : CPN → R, which are
C2-small, together with a Riemannian metric ḡN for which the gradient flow of fN has the
Morse-Smale property. For instance, we can take

fN
(
[w0 : . . . : wN ]

)
= C

∑N
j=0 aj

∣∣wj
∣∣2

∑N
j=0 |wj |

2
with ai+1 > ai ∈ R and C < 0 ∈ R

and the standard metric.
We denote by f̃N : S2N+1 → R their S1-invariant lift, and by Crit(f̃N ) the set of critical

points of f̃N (which is a union of circles).
We choose a point zj on the critical circle which projects on the critical point of −fN

of index 2j. In our example, the point zj ∈ S2N+1 can be taken as the point (w0, . . . , wN )
with wi = δij .

We fix a local slice transverse in S2N+1 to the circle in Crit(f̃N ) at zj . This local slice
is the hypersurface Tzj spanned by the stable and the unstable manifold at zj (with respect

to the gradient ~∇f̃N of f̃N with respect to gN ). In our example, Tzj = {(w0 . . . , wN ) ∈
S2N+1 |wj ∈ R+}.

We consider UN a neighbourhood of Crit(f̃N ) and ρ̌N : S2N+1 → R a S1 invariant
cut-off function on UN which is equal to 1 in a neighbourhood U ′N ⊂ UN of Crit(f̃N ) and

0 outside UN . We set ǫN := minz∈S2N+1\U ′
N

∥∥∥~∇f̃N (z)
∥∥∥ > 0.

If H ′ ∈ Hstd, we can create an S1-invariant Hamiltonian H : S1 × Ŵ × S2N+1 → R

from H ′ and f̃ . Define H̃ : S1× Ŵ ×UN → R by H̃(θ, x, z) := H ′(θ−φz, x) where φz ∈ S1

is the unique element such that φ−1z · z ∈ Tzj when z is close to the critical circle including

zj . We extend H̃ to H : S1 × Ŵ × S2N+1 → R, by

H(θ, x, z) := ρ̌N (z)H̃(θ, x, z) +
(
1− ρ̌N (z)

)
β(x)H ′(θ, x) (2.1)

using the cutoff function ρ̌N on S2N+1 and a function β : Ŵ → R which is 0 where H ′ is
time-dependent and equal to 1 outside a compact set. The element H is admissible, i.e. is
in HS1,N (f) as defined in section 1.4, when assumption 4 is satisfied; this will be the case
when we restrict ourselves to a subclass of H ′ ∈ Hstd, consisting of small perturbations of
some autonomous functions. This will be developed in section 2.1.3.

2.1.2 The complex for a subclass of special Hamiltonians

Let H ′ : S1×Ŵ → R in Hstd be fixed, with non degenerate 1-periodic orbits. We consider a
sequence HN ∈ HS1,N , N ≥ 1 such that HN (θ, x, z) = H ′(θ−φz, x) for every z ∈ Crit(f̃N )
(see for instance construction 2.1) and a sequence JN ∈ J S1,N such that JN is regular for
HN .
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2.1. The multicomplex defining positive S1-equivariant homology

Let i0 : CPN →֒ CPN+1 : [w0 : . . . : wN−1] 7→ [w0 : . . . : wN−1 : 0] and i1 : CPN →֒
CPN+1 : [w0 : . . . : wN−1] 7→ [0 : w0 : . . . : wN−1] and denote by ĩ0 : S

2N+1 → S2N+3 : z 7→
(z, 0) and ĩ1 : S

2N+1 → S2N+3 : z 7→ (0, z) their lifts. We assume:

1. Im(i0) and Im(i1) are invariant under the gradient flow of fN+1;

2. fN = fN+1 ◦ i0 = fN+1 ◦ i1+ cst and i⋆1ḡN+1 = i⋆0ḡN+1 = ḡN (this will be true for our
example when ai+1 = ai + 1 for all i);

3. HN+1

(
·, ·, ĩ1(z)

)
= HN+1

(
·, ·, ĩ0(z)

)
= HN (·, ·, z);

4. JN+1,̃i1(z)
= JN+1,̃i0(z)

= JN,z.

The critical points of AHN+f̃N
are pairs (γz, z) where z is a critical point of f̃N and

where γz is a φz-translation of a 1-periodic orbit γ of H ′ in Ŵ (i.e γz(θ) = γ(θ−φz) which
writes γz = φz · γ). We have thus a natural identification (with gradings)

SC̃S
1,N
∗ (HN , fN ) ≃ Z[u]/uN+1 ⊗Z SC∗(H

′, J)

S1 · (γzj , zj) 7→ uj ⊗ γ =: ujγ

where zj is the chosen critical point of −f̃N of index 2j and u is a formal variable of degree
2.

The differential, under this identification of complexes, writes

∂̃S
1
(ul ⊗ γ) =

l∑

j=0

ul−j ⊗ ϕj(γ). (2.2)

for maps
ϕj : SC∗(H

′) → SC∗+2j−1(H
′), j = 0, . . . N

defined by counting elements of MS1
(S(γ−zj ,zj)

, S(γ+z0 ,z0)
;HN , fN , JN , gN ) which is the quo-

tient by the R and the S1-action of the space of solutions of

{
∂su+ Jθz(s) ◦ u

(
∂θu−XHN,z(s)

◦ u
)
= 0

ż − ~∇f̃(z) = 0

going from S1 · (γ−zj , zj) to S1 · (γ+z0 , z0).
It follows from the assumptions (1), (2), (3) and (4) that for a fixed j, the maps ϕj

obtained for varying values of N ≥ j coincide. Therefore we can encode the limit as

N → ∞ of all the SC̃S
1,N
∗ (HN , fN ) into a complex denoted

SĈS
1

∗ (H ′) := Z[u]⊗Z SC∗(H
′)
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2. SHS1,+ and periodic Reeb orbits

with differential induced by (2.2) that we can formally write as

∂̂S
1
= ϕ0 + u−1ϕ1 + u−2ϕ2 + . . .

As before, there are well-defined continuation maps induced by increasing homotopies of
Hamiltonians and we have

Proposition 2.1.1 [BO12] The S1 equivariant homology of W is given by:

SHS1

∗ (W ) := lim−→
H∈Hstd

H
(
SĈS

1

∗ (H ′), ∂̂S
1
)
.

2.1.3 Perturbation of Morse-Bott Hamiltonians

We show that we have a good control on the generators of the complex SC∗(H ′) defining
symplectic homology when we choose the admissible Hamiltonian H ′ in Hstd to be close to
an autonomous Hamiltonian. We shall use techniques taken from [BO09b] where symplectic
homology is computed directly from autonomous Hamiltonians.

This we do in the context of a compact symplectic manifold with contact type boundary
(W,ω,X). We denote by M the boundary ∂W . As before, we denote by (Ŵ , ω̂) the
completion, by ρ the second coordinate on M × R+, and by α the contact form on M
defined by α = ι(X)ω|M . We denote by Rα the corresponding Reeb vector field.

Definition 2.1.2 Let HMB be the set of Hamiltonians H : Ŵ → R such that

1. H|W is a negative C2-small Morse function;

2. H(p, ρ) = h(ρ) outside W , where h is a strictly increasing function, which coincides
with h(ρ) = aeρ + b for ρ > ρ0, a, b ∈ R and a /∈ Spec(M,α), and we assume that
h′′ − h′ > 0 on [0, ρ0).

Note that the 1-periodic orbits of XH inW , for H ∈ HMB, are constant and non degenerate
by assumption 1. For (p, ρ) ∈M × R+ and H ∈ HMB, we have

XH(p, ρ) = −eρh′(ρ)Rα. (2.3)

Thus the 1-periodic orbit of XH are either critical points of H in W or non constant 1-
periodic orbits, located on levels M × {ρ}, ρ ∈ (0, ρ0), which are in correspondence with
periodic −Rα-orbits of period eρh′(ρ).

Since H is autonomous, every 1-periodic orbit, γH of XH , corresponding to the periodic
Reeb orbit γ, gives birth to a S1 family of 1-periodic orbits of XH which is denoted by Sγ .

We shall modify an element H ∈ HMB, as in [CFHW96], to deform this autonomous
Hamiltonian into a time-dependent Hamiltonian Hδ with only non degenerate 1-periodic
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2.2. Computing SHS1,+

orbits. The Hamiltonian Hδ(θ, p) will coincide with H(p) outside a neighbourhood of the
image of the non-constant 1-periodic orbits of XH . We proceed as follows:
We choose a perfect Morse function on the circle, f̌ : S1 → R.
For each 1-periodic orbit γH of XH , we consider the integer lγH so that γH is a lγH -fold
cover of a simple periodic orbit:

lγH := max
{
k ∈ N | γH(θ + 1

k
) = γH(θ) ∀θ ∈ S1

}
.

This number lγH is constant on the S1-family of 1-periodic orbits of XH corresponding to
the periodic Reeb orbit γ. We set lγ = lγH = 1

T
where T is the period of γ.

We choose a symplectic trivialization ψ := (ψ1, ψ2) : Uγ → V ⊂ S1 × R2n−1 between open

neighborhoods Uγ ⊂ ∂W × R+ ⊂ Ŵ of the image of γH and V of S1 × {0} such that
ψ1

(
γH(θ)

)
= lγθ. Here S1 × R2n−1 is endowed with the standard symplectic form. Let

ǧ : S1 × R2n−1 → [0, 1] be a smooth cutoff function supported in a small neighborhood of
S1 × {0} such that ǧ|

S1×{0}
≡ 1. We denote by f̌γ the function defined on Sγ by f̌ ◦ ψ1|Sγ

.

For δ > 0 and (θ, p, ρ) ∈ S1 × Uγ , we define

Hδ(θ, p, ρ) := h(ρ) + δǧ
(
ψ(p, ρ)

)
f̌
(
ψ1(p, ρ)− lγθ

)
. (2.4)

The Hamiltonian Hδ coincides with H outside the open sets S1 × Uγ .

Lemma 2.1.3 ([CFHW96, BO09b]) The 1-periodic obits of Hδ, for δ small enough,
are either constant orbits (the same as those of H) or nonconstant orbits which are non
degenerate and form pairs (γmin, γMax) which coincide with the orbits in Sγ starting at the
minimum and the maximum of f̌γ respectively, for each Reeb orbit γ such that Sγ appears in
the 1-periodic orbits of H. Their Conley-Zehnder index is given by µCZ(γmin) = µCZ(γ)−1
and µCZ(γMax) = µCZ(γ).

2.2 Computing SHS1,+

We consider now the symplectic homologies with coefficients in Q, denoted SH†(W,Q)
on a Liouville domain (W,λ). The goal of this section is to show that if the Conley-
Zehnder indices of all periodic Reeb orbits on M = ∂W have the same parity, then the
positive S1 equivariant symplectic homology is generated by those periodic Reeb orbits.
Let fN : CPN → R be as before a sequence of perfect Morse functions, which we assume
here to be C2-small.

The class of Hamiltonians

We consider a Hamiltonian denoted Hδ,N which is a S1-equivariant lift, as in construction
2.1, of a Hamiltonian Hδ which is a perturbation, as in section 2.1.3, of a Hamiltonian H
in HMB (cf definition 2.1.2) such that the slope a is big and ρ0 is small.
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2. SHS1,+ and periodic Reeb orbits

As mentioned before, the non constant critical points of AHδN+f̃N
are pairs (γz, z) where

z is a critical point of f̃N and where γz is a φz-translation of a non constant 1-periodic orbit
γ′ of Hδ in Ŵ . Such a γ′ is of the form γmin or γMax, located on a level M ×{ρ}, ρ ∈ (0, ρ0)
corresponding to a periodic orbit of −Rα of period T = eρh′(ρ).

Remark 2.2.1 The action of this critical point is given by

−
∫

S1

γ⋆z λ̂−
∫

S1

(HN + f̃N )(θ, γz(θ), z) dθ.

With our assumptions (f small, ρ0 small), the second term is close to zero. The first term
is equal to −

∫
S1(γ

′)⋆λ̂ and this is given by eρT . Recall that T is called the contact action
of the Reeb orbit γ of period T . Hence the action of this critical point is close to T .

We shall take f and H so that the difference between the action of a non constant
critical orbit and the period T of the corresponding Reeb orbit is, for any critical orbit,
smaller than a quarter of the smallest period, the smallest spectral gap and the smallest
distance between two geometrically distinct periodic Reeb orbits.

Theorem 2.2.2 Let (W,λ) be a Liouville domain. Assume there exists a contact form α
on ∂W such that the Conley-Zehnder index of all periodic Reeb orbits have the same parity.
Then

SHS1,+(W,Q) =
⊕

γ∈P(Rα)

Q〈γ〉

where P(Rα) denotes the set of periodic Reeb orbits on ∂W .

Proof: Let H be a Hamiltonian in HMB such that the action is distinct for S1-families of
orbits corresponding to Reeb orbits of different period. This is possible by Remark 2.2.1.
We consider, as mentionned above, the S1-equivariant functions Hδ,N which are lifts of a
perturbation Hδ of H. We use the natural identification, described in section 2.1.2:

SC̃S
1,N,+(Hδ,N , fN ) ≃ Z[u]/uN+1 ⊗ SC+(Hδ)

and the description of SC+(Hδ) given by Lemma 2.1.3.
The complex SC̃S

1,N,+(Hδ,N , fN ) is filtered by the action thanks to Proposition 1.4.5.

We take the filtration FpSC̃
S1,N,+(Hδ,N , fN ), p ∈ Z such that for every p ∈ Z, the quotient

Fp+1SC̃
S1,N,+(Hδ,N , fN )/FpSC̃

S1,N,+(Hδ,N , fN ) is a union of sets

{1⊗ γMax, . . . , u
N ⊗ γMax, 1⊗ γmin, . . . , u

N ⊗ γmin}

corresponding to underlying Reeb orbits γ of the same period T .
We consider the zero page of the associated spectral sequence.

E0,N
p,q := Fp+1SC̃

S1,N,+
p+q (Hδ,N , fN )/FpSC̃

S1,N,+
p+q (Hδ,N , fN )
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2.2. Computing SHS1,+

We have “twin towers of generators”, one tower corresponding to each periodic Reeb orbit
of period T on ∂W ,

uN ⊗ γMax

u−1ϕ1

&&

uN ⊗ γmin
ϕ0oo

...
...

u2 ⊗ γMax

u−1ϕ1

''

u2 ⊗ γmin
ϕ0oo

u⊗ γMax

u−1ϕ1

''

u⊗ γmin
ϕ0oo

1⊗ γMax 1⊗ γmin
ϕ0oo

with induced differential as in the above diagram with the notation of section 2.1.2. The
differential between two elements in distinct towers vanishes. Indeed the corresponding
Reeb orbits are geometrically distinct in ∂W so any Floer trajectory linking elements in
distinct towers should satisfy

∫
‖∂su‖2gJθ

z(s)
dsdθ ≥ dist(γ−, γ+).

On the other hand, by Remark 1.4.6,
∫

‖∂su‖2gJθ
z(s)

dsdθ ≤ A(γ−, z−)−A(γ+, z+)

≤ Tγ− − Tγ+ + 1
2 min{distance between two distinct Reeb orbits}.

So there cannot be a Floer trajectory between elements in different towers.
To study any given tower, we use the explicit description of ϕ0 and ϕ1.

1. [BO09b, Lemma 4.28] Let γmin, γMax and Hδ be as above. For δ small enough, the
moduli space M(γmin, γMax;Hδ, J)/R consists of two elements; they have opposite
signs, due to the choice of a system of coherent orientations, if and only of the
underlying Reeb orbit γ is good. This implies that in our case,

ϕ0 = 0.

2. [BO12, Lemma 3.3] The map ϕ1 : SC
+
∗ (Hδ) → SC+

∗+1(Hδ) acts by

ϕ1(γMax) =

{
kγγmin if γ is good,

0 if γ is bad.
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2. SHS1,+ and periodic Reeb orbits

where kγ is the multiplicity of the underlying Reeb orbit γ i.e. γ is a kγ-fold cover of
a simple periodic Reeb orbit. A Reeb orbit is called bad if its Conley-Zehnder index
is not of the same parity as the Conley-Zehnder index of the simple Reeb orbit with
same image.
The factor kγ comes from the fact that γmin(θ) = γMax(θ + τ0) for a real number τ0
and that if the underlying Reeb orbit is of multiplicity kγ , γmin(θ) = γmin

(
θ + 1

kγ

)
.

So that γmin(θ) = γMax(θ + τ0 +
m
kγ
) for any integer 0 ≤ m ≤ kγ . We have here kγ

trajectories and they all appear with the same sign.

To compute the first page E1;N
p,q of the spectral sequence we have the complex E0;N

p,q :

Q
0 // Q

(×kγ)// . . .
(×kγ) // Q 0 // Q

(×kγ) // Q 0 // Q

and thus, in the homology E1;N
p,q , we are left with one copy of Q in degree −µCZ(γ) and

one copy of Q in degree −µCZ(γ) + 2N . The first page is given by

E1;N =
⊕

γ∈P(Hδ)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉.

Due to the assumption, the differential on the first page of the spectral sequence vanishes
(because of the same parity of the Conley-Zehnder indices) therefore, for N large enough,
it gives the homology

SHS1,N,+(Hδ,N ) =
⊕

γ∈P(Hδ)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉.

The morphism induced by a regular homotopy between two such Hamiltonians (built from
standard Hamiltonians close to Morse Bott Hamiltonians) respects the filtration, thanks
to proposition 1.4.5. We can therefore take the direct limit on the pages over those Hamil-
tonians which form a cofinal family. The inclusion S2N+1 →֒ S2N+3 induces a map

E1;N =
⊕

γ∈P(Rα)

Q〈γMax〉 ⊕Q〈uN ⊗ γmin〉 → E1;N+1.

which is the identity on the first factor and zero on the second factor. Taking the direct
limit over the inclusion S2N+1 →֒ S2N+3 we have

SHS1,+(W ;Q) = lim−→
N

E1;N =
⊕

γ∈P(Rα)

Q〈γ〉.
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2.2. Computing SHS1,+

Remark 2.2.3 Stricto sensu, in the above Theorem, we have only proven that

SHS1,+(W,Q) =
⊕

γ∈P̃(Rα)

Q〈γ〉

where P̃(Rα) are the periodic Reeb orbits contractible in the Liouville domainW . Nonethe-
less Theorem 2.2.2 is true after extending the definition of SHS1,+(H) to all 1-periodic
orbits of H. This is done in section 2.2.2.

An orbit γH is bad if the underlying Reeb orbit is bad.

Proposition 2.2.4 There are no bad orbits in the generators of the S1-equivariant sym-
plectic homology.

Proof: In the spectral sequence, as above, the twin tower over a bad orbit is as follows:

uN ⊗ γMax

0

&&

uN ⊗ γmin
×(±2)oo

...
...

u2 ⊗ γMax

0

''

u2 ⊗ γmin
×(±2)oo

u⊗ γMax

0

''

u⊗ γmin
×(±2)oo

1⊗ γMax 1⊗ γmin
×(±2)oo

So the complex is:

Q
×(±2)// Q 0 // . . .

0 // Q
×(±2)// Q 0 // Q

×(±2)// Q .

Therefore, on the first page of the spectral sequence, E1;N
p,q = 0.

Corollary 2.2.5 The only generators that may appear in the positive S1-equivariant ho-
mology are of the form u0 ⊗ γMax with γMax a good orbit.

Corollary 2.2.6 The number of good periodic Reeb orbits of periods ≤ T is bounded below
by the rank of the positive S1-equivariant symplectic homology of action ≤ T .
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2. SHS1,+ and periodic Reeb orbits

Theorem 2.2.2 establishes a link between periodic orbits of the Reeb vector field of a contact
form on M and the positive S1-equivariant symplectic homology of an exact symplectic
filling W of M (i.e. a compact symplectic manifold (M,ω = dλ) with contact type bound-
ary such that ∂W =M , α = λ|M )). We shall study, in chapter 3, the invariance of positive
S1-equivariant symplectic homology. The idea is to use this homology to get information
on Reeb orbits on some contact manifolds.

2.2.1 The example of Brieskorn spheres

The Brieskorn manifold Σ(a0, . . . , an), with all ai ≥ 2 positive integers is defined as the
intersection of the singular hypersurface {(z0, . . . , zn) ∈ Cn+1 | za00 + · · ·+ zann = 0} in Cn+1

with the unit sphere S2n+1 ⊂ Cn+1. It is a smooth 2n − 1-dimensional manifold which
admits a contact form

α =
i

8

n∑

j=0

aj(zjdzj − zjdzj)

with corresponding Reeb vector field

Rα =

(
4i

a0
z0, . . . ,

4i

an
zn

)
.

For any odd number n = 2m + 1 and any p ≡ ±1 mod 8, the Brieskorn manifold
Σ(p, 2, . . . , 2) is diffeomorphic to the standard sphere S4m+1 [Bri66]. One defines the con-
tact structures ξp on S4m+1 defined as the kernel of the contact form αp with

αp :=
ip

8
(z0dz0 − z0dz0) +

i

4

n∑

j=1

(zjdzj − zjdzj).

The fact that the Brieskorn sheres are exactly fillable can be found, for instance, in the
book of Geiges [Gei06].

Proposition 2.2.7 For p1 6= p2, the positive S1 equivariant homologies of symplectic fill-
ings of the Brieskorn spheres are different.

Proof: We consider the description of the chain complex for those homologies in terms
of good periodic orbits of the Reeb vector field, graded by minus their Conley indices. We
shall show that all Conley-Zehnder indices are even. To compute them, the first thing to
do is to build an explicit perturbation of the contact form so that all periodic Reeb orbits
are non degenerate. We proceed as in [Ust99]. For that one makes the change of coordinate

w0 = z0, w1 = z1

(
w2j

w2j+1

)
=

1√
2

(
1 i
1 −i

)(
z2j
z2j+1

)
, forj ≥ 1.
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2.2. Computing SHS1,+

In these coordinates

Σ(p, 2, . . . 2) =



w ∈ Cn+1

∣∣∣∣w
p
0 + w2

1 + 2
m∑

j=1

w2jw2j+1 = 0, |w|2 = 1



 .

Consider the real positive function f : Σ(p, 2, . . . 2) → R given by

f(w) = |w|2 +
m∑

j=1

ǫj
(
|w2j |2 − |w2j+1|2

)
, where 0 < ǫj < 1.

The contact form fα defines the same contact structure on Σ(p, 2, . . . 2) as α and its
associated Reeb vector field is given by

Rfα(w) =
(
4i
p
w0, 2iw1, 2i(1 + ǫ1)w2, 2i(1− ǫ1)w3, . . . , 2i(1 + ǫm)wn−1, 2i(1− ǫm)wn

)
.

If all the ǫj are irrational and linearly independent over Q, the only periodic orbits are

γ0(t) =
(
re

4it
p , ir

p
2 e2it, 0, . . . , 0

)
, r > 0, rp + r2 = 1, 0 ≤ t ≤ pπ;

γ+j (t) =
(
0, . . . , 0, e2it(1+ǫj)︸ ︷︷ ︸

2j

, 0, . . . , 0
)
, 0 ≤ t ≤ π

1 + ǫj
, j = 1, . . . ,m;

γ−j (t) =
(
0, . . . , 0, e2it(1−ǫj)︸ ︷︷ ︸

2j+1

, 0, . . . , 0
)
, 0 ≤ t ≤ π

1− ǫj
, j = 1, . . . ,m

and all their iterates, γN0 , γ+j
N
, γ−j

N
, for all N ≥ 1. Their Conley-Zehnder index is given

by

µCZ
(
γN0

)
= 2Np(n− 2) + 4N ;

µCZ

(
γ±j

N
)
= 2

⌊
2N

p(1± ǫj)

⌋
+ 2

⌊
N

1± ǫj

⌋
+ 2

m∑

k=1
k 6=j

(⌊
N(1 + ǫk)

1± ǫj

⌋
+

⌊
N(1− ǫk)

1± ǫj

⌋)
+ n− 1.

All indices have the same parity, thus applying Theorem 2.2.2, theS1-equivariant positive
symplectic homologies are generated by the periodic orbits of the Reeb vector field graded
by their Conley indices. If p1 6= p2, those positive S1-equivariant symplectic homologies
are different as proven in [Ust99].

2.2.2 Homology with non contractible orbits

To deal with non contractible orbits, one chooses for any free homotopy class of loops a,
a representative la and one chooses a trivialisation of the tangent space along that curve.

69



2. SHS1,+ and periodic Reeb orbits

For the free homotopy class of contractible loop, l0 is chosen to be constant loop with
constant trivialisation. One ask moreover that la−1 is la in the reverse order and with the
corresponding trivialisation. One replaces assumption 1.1.1 of asphericity by an assumption
of atoroidality namely for any v : T 2 →W

∫

T 2

v⋆ω = 0.

We also replace assumption 1.1.2, asking that the first Chern class of the tangent bundle
vanishes on all toruses inside W . The action functional induced by a Hamiltonian H
becomes

A(γ) := −
∫

[0,1]×S1

u⋆ω −
∫

S1

H(θ, γ(θ))dθ

where u : [0, 1]× S1 →W is a homotopy from la to γ.
For any loop γ belonging to the free homotopy class a, one chooses a homotopy u :

[0, 1] × S1 → W from la to γ and one considers the trivialisation of TW on γ induced by
u and by the choice of the trivialisation along la. Let us observe that any Floer trajectory
can only link two orbits in the same free homotopy class and as before, the action decreases
along Floer trajectories.

As before, the Floer complex is generated by the 1-periodic orbits of H graded by
minus their Conley-Zehnder index. The differential “counts” Floer trajectories between
two orbits whose difference of grading is 1.

The positive version of symplectic homology is defined as before since the set of critical
points of H is still a subcomplex : Floer trajectories can only link a critical point to a
contractible orbit.

All the results stated above extend to this framework.
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3 Structural properties of symplectic

homology

3.1 Transfer morphism

In this section, we prove that symplectic homology, positive symplectic homology, S1-
equivariant symplectic homology and positive S1-equivariant symplectic homology are
functors (reversing the arrows) defined on the category where objects are Liouville do-
mains, and morphisms are embeddings. Precisely, we construct a morphism between the
(S1- equivariant positive) symplectic homologies when one Liouville domain is embedded in
another one, and we show that those morphisms compose nicely. Such a morphism, called
a transfer morphism, has been studied by Viterbo [Vit99] in the case of the symplectic
homology. We adapt his construction to extend it to all the variants of the symplectic
homology considered above.

Recall definition 2.0.9: A Liouville domain (W,λ) is a compact manifoldW with bound-
ary ∂W = M , together with a 1-form λ such that ω := dλ is symplectic and such that
the Liouville vector field X defined by ι(X)ω = λ points strictly outwards along ∂W . We
still assume that 〈c1(TW ), π2(W )〉 = 0. We have defined the (symplectic) completion of
a compact symplectic manifold with contact type boundary in section 1.2.1. We consider
the completion

Ŵ =W ∪ (∂W × R+)

of a Liouville domain (W,λ), built from the flow of the Liouville vector field X. We denote

by λ̂ the 1-form on Ŵ defined by λ on W and by eρα on ∂W × R+ with α := λ|∂V . We

shall denote by SH†(W,λ) the symplectic homology SH†(W,dλ,X).

Definition 3.1.1 Let (V, λV ) and (W,λW ) be two Liouville domains. A Liouville embed-
ding j : (V, λV ) → (W,λW ) is a symplectic embedding j : V → W with V and W of
codimension 0 such that j⋆λW = λV . (One can consider, more generally, a symplectic
embedding j of codimension 0 such that λW coincides in a neighbourhood of j(∂V ) in W

with λ̂V + df .)

71



3. Structural properties of symplectic homology

The goal of this section is to adapt Viterbo’s definition of transfer morphisms between
symplectic homology [Vit99] so that it extends to

SH†(W,λW ) → SH†(V, λV )

with † = +, S1 or (S1,+).

We first present the construction for symplectic and positive symplectic homology. The
idea, as in [Vit99], is to use increasing homotopies between H1 : S1 × Ŵ → R ∈ Hstd(W )

and an H2 : S
1 × Ŵ → R in a special class Hstair(V,W ).

Let U be a neighbourhood of ∂V in W \ V̊ so that (U, ωW ) is symplectomorphic to(
∂V × [0, δ], d(eραV )

)
.

Definition 3.1.2 A Hamiltonian H2 : S
1 × Ŵ → R is in Hstair(V,W ) if and only if

• on S1 × V , H2 is negative and C2-small ;

• on S1 ×U ∼= S1 × ∂V × [0, δ], with ρ the last coordinate, H2 is of the following form

-there exists 0 < ρ0 ≪ δ such that H2(θ, p, ρ) = βeρ + β′ for ρ0 ≤ ρ ≤ δ − ρ0,
with 0 < β /∈ Spec(∂V, α) ∪ Spec(∂W,α) and β′ ∈ R;

-H2(θ, p, ρ) is C
2-close on S1 × ∂V × [0, ρ0] to a convex increasing function of eρ

which is independent of θ and p;

-H2(θ, p, ρ) is C
2-close on S1 × ∂V × [δ − ρ0, δ] to a concave increasing function

of eρ which is independent of θ and p;

• on S1 ×W \ (V ∪ U), H2 is C2-close to a constant ;

• on S1×∂W × [0,+∞[, with ρ′ the R+ coordinate on ∂W ×R+, H2 is of the following
form

-there exists ρ′1 > 0 such that H2(θ, p, ρ
′) = µeρ

′
+ µ′ for ρ′ ≥ ρ′1, with 0 < µ /∈

Spec(∂V, α) ∪ Spec(∂W,α), µ ≤ β, µ′ ∈ R;

-H2(θ, p, ρ
′) is C2-close on S1 × ∂W×]0, ρ′1] to a concave increasing function of

eρ
′
which is independent of θ and p;

• all 1-periodic orbits of Xθ
H2

are non-degenerate, i.e the Poincaré return map has no
eigenvalue equal to 1.

A representation of H2 is given in Figure 3.1.

The 1-periodic orbits of H2 lie either in the interior V̊ (which we call region I), either in
∂V × [0, ρ0] (region II), either in ∂V × [δ− ρ0, δ] (region III), either in W \ (V ∪U) (region
IV) or in ∂W × [0, ρ1] (region V). We consider their action using the following obvious
lemma:
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3.1. Transfer morphism

H2

W U V
I

II

III

IV

V

Figure 3.1: Example of H2 on Ŵ

Lemma 3.1.3 Let H and H̃ be two C2-close Hamiltonians and let γ ∈ P(H) and γ̃ ∈
P(H̃) be C2-close. Then

A(γ) is close to A(γ̃)

Proof:

|AH(γ)−A
H̃
(γ̃)| =

∣∣∣
∫

S1

γ̃⋆λ+

∫

S1

H̃
(
θ, γ̃(θ)

)
−

∫

S1

γ⋆λ−
∫

S1

H
(
θ, γ(θ)

)∣∣∣

≤
∫

S1

∣∣∣λγ̃(θ)
(
˙̃γ(θ)

)
− λγ(θ)

(
γ̇(θ)

)∣∣∣dθ

+

∫

S1

∣∣∣H̃
(
θ, γ̃(θ)

)
−H

(
θ, γ(θ)

)∣∣∣dθ

≤ ǫ

I In region I, there are only critical points so the action of the critical point q is non
negative and small (< ǫ).

II In region II, H2 is C2-close to a convex function H = h(r) (with r = eρ); since

dH = h′(r)dr = ι(XH)ωW = ι(XH)d(rαV ) = ι(XH)(dr ∧ αV + rdαV ),

we have XH = −h′(r)RαV
where RαV

is the Reeb vector field on ∂V associated to
the contact form αV = λV |∂V . So an orbit of XH lies on a constant level for r and
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3. Structural properties of symplectic homology

its action is given by:

A(γ) = −
∫

S1

γ⋆(rαV )−
∫

S1

H
(
γ(θ)

)
dθ

= −
∫

S1

(rαV )γ(θ)
(
γ̇(θ)

)
−

∫

S1

h(r)dθ

= −
∫

S1

rαV
(
−h′(r)RαV

)
− h(r)

= h′(r)r − h(r).

Since ρ0 is small we have eρ0 ∼ 1 and h(eρ0) ∼ 0, so the actions of 1-periodic orbits
of H2 in this region are close to the periods of closed orbits of the Reeb vector field
on the boundary of V of periods T < β and they are greater than ǫ.

III In region III, the computation is similar to the case of region II:

A(γH2) is close to h′(r)r − h(r) which is close to eδ(T − β) < 0

hence the actions of 1-periodic orbits of H2 in this region are negative.

IV In region IV, there are only critical points so the action of the critical point q is given
by −H2(q) which is close to −eδβ.

V In region V, the computation of the action is similar to the case of region II:

A(γ) is close to h′(r)r − h(r) with r = eρ
′
.

Observe that here the 1-periodic orbits are close to 1-periodic orbits of −h′(r)RαW

where now RαW
is the Reeb vector field on ∂W . The action of any 1-periodic orbit of

H2 in this region is close to eρ
′
T ′ − h(eρ

′
) where T ′ is the period of a closed orbit of

the Reeb vector field on the boundary ofW with T ′ < µ < β and where h(eρ
′
) > eδβ.

So, for nice parameters (for instance ρ′1 < δ), we have

A(IV ) < A(III),A(V ) < 0 < A(I) < ǫ < A(II).

We denote by CIV,III,V,I(H2, J) the subcomplex of the Floer complex for H2 generated by
critical orbits lying in regions IV, III, V, and I and by CIV,III,V (H2, J) the subcomplex of
the Floer complex for H2 generated by critical orbits lying in regions IV, III and V. Observe
that CIV,III,V,I(H2, J) coincides with the subcomplex generated by 1-periodic orbits of
action ≤ ǫ and CIV,III,V (H2, J) coincides with subcomplex generated by 1-periodic orbits
of action ≤ −η (for a well chosen small positive η). With similar notations, we have the
identifications:

CI,II(H2, J) = CIV,III,V,I,II(H2, J)/CIV,III,V (H2, J)
= SC(H2, J), ∂)/SC≤−η(H2, J), ∂)

,
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3.1. Transfer morphism

CII(H2, J) = CIV,III,V,I,II(H2, J)/CIV,III,V,I(H2, J)
= SC(H2, J), ∂)/SC≤ǫ(H2, J), ∂)

.

Since the action decreases along Floer trajectories, the Floer differential passes to the
quotient where we still denote it ∂. Remark that the function H2 is not in Hstd(V ). We
want to relate the homology of

(
CI,II(H2, J), ∂

)
to the homology of a function in Hstd(V ).

Definition 3.1.4 Let H2 ∈ Hstair(V,W ); we denote by β the slope of the linear part close
to ∂V , as in Definition 3.1.2. The associated function H = ιV (H2) ∈ Hstd(V ), defined on
S1 × V̂ , is the function which coincides with H2 on V ∪ (∂V × [0, δ − ρ0]) and which is
linear with slope β “further” in the completion: H(θ, eρ) = βρ+ β′ for all ρ ≥ δ − ρ0.

Proposition 3.1.5 Let H2 be an function in Hstair and let H = ιVH2 be the associated
function in Hstd(V ) as defined above. We assume furthermore that the Hamiltonians are
generic in the sense that the homologies are well-defined for a good choice of J ’s. Then

H
(
CI,II(H2, J), ∂

)
= H

(
SC(H, J)

)
and H

(
CII(H2, J), ∂

)
= H

(
SC+(H, J)

)
.

Proof: We need to check that there is no Floer trajectory u : R×S1 → Ŵ going from an
orbit in CI,II (resp. CII) to an orbit in CI,II (resp. CII) with points in Ŵ \ (U ∪ V ). We
prove it by contradiction, as a direct application of Abouzaid maximum principle which
we prove below as theorem 3.1.6. Assume that u : R × S1 → Ŵ is a Floer trajectory
whose image intersects Ŵ \ (U ∪V ). We consider the intersection of the image with a slice
∂V × {ρ} for any ρ0 < ρ < δ − ρ0 and we choose a regular value ρ0 + ǫ of ρ ◦ u. The

manifold W ′ := Ŵ \ (V ∪ (∂V × [0, ρ0+ ǫ[)) is symplectic with contact type with boundary
∂V ×{ρ0+ ǫ} and Liouville vector field pointing inwards. Let S be the inverse image of W ′

under the map u; it is a compact Riemann surface with boundary ; the complex structure
j is the restriction to S of the complex structure j on the cylinder defined by j(∂s) = ∂θ.
We define β to be the restriction of dθ to S. The fact that u is a Floer trajectory is
equivalent to (du−XH ⊗ β)0,1 := 1

2 ((du−XH ⊗ β) + J(du−XH ⊗ β)j) = 0, where du is
the differential of the map u viewed as a section of T ∗S ⊗ u∗TW ′. Then theorem 3.1.6,
which is slight generalisation of a theorem of Abouzaid, concludes.

Theorem 3.1.6 (Abouzaid, [Rit13]) Let (W ′, ω′ = dλ′) be an exact symplectic mani-
fold with contact type boundary ∂W ′, such that the Liouville vector field points inwards.
Let ρ be the coordinate near ∂W ′ defined by the flow of the Liouville vector field starting
from the boundary and let r := eρ; near the boundary the symplectic form writes ω′ = d(rα)
with α the contact form on ∂W ′ given by the restriction of λ′. Let J be a compatible almost
complex structure such that J∗λ′ = dr on the boundary. Let H :W ′ → R be non negative,
and such that H = h(r) where h is a convex increasing function near the boundary. Let
S be a compact Riemann surface with boundary and let β be a 1-form such that dβ ≥ 0.
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3. Structural properties of symplectic homology

Then any solution u : S → W ′ of (du − XH ⊗ β)0,1 = 0 with u(∂S) ⊂ ∂W ′ is entirely
contained in ∂W ′.

Proof: The energy of a map u : S →W ′ is defined as

E(u) :=
1

2

∫

S

‖du−XH ⊗ β‖2volS

where du is viewed as a section of T ∗S⊗u∗TW ′. If s+ it is a local holomorphic coordinate
on S, so that j(∂s) = ∂t and volS = ds ∧ dt we have

1

2
‖du−XH ⊗ β‖2volS = ω′ (∂su−XHβ(∂s), ∂tu−XHβ(∂t)) ds ∧ dt

=
(
ω′(∂su, ∂tu)− dH(∂tu)β(∂s) + dH(∂su)β(∂t)

)
ds ∧ dt

= u∗ω′ + u∗(dH) ∧ β.

It is obviously non negative for any path. Since d(u⋆Hβ) = u⋆(dH)∧ β + u⋆Hdβ︸ ︷︷ ︸
≥0

, we have

E(u) =

∫

S

u⋆dλ′ + u⋆(dH) ∧ β ≤
∫

S

d(u⋆λ′) + d(u⋆Hβ) ≤
∫

∂S

u⋆λ′ − λ′(XH)β

using Stokes’s theorem and H = h(r) ≤ rh′(r) = rα
(
h′(r)Rα

)
= −λ′(XH) on u(∂S) ⊂ ∂V

=

∫

∂S

λ′(du−XH ⊗ β) =

∫

∂S

−λ′J(du−XH ⊗ β)j since (du−XH ⊗ β)0,1 = 0

=

∫

∂S

−dr(du−XH ⊗ β)j since J∗λ′ = dr along u(∂S) ⊂ ∂W ′

=

∫

∂S

−dr du j since dr vanishes on XH on u(∂S) ⊂ ∂W ′

Let ν be the outward normal direction along ∂S. Then (ν, jν) is an oriented frame, so ∂S
is oriented by jν. Now dr(du)j(jν) = d(r ◦ u)(−ν) ≥ 0 since in the inward direction, −ν,
r ◦ u can only increase because r is minimum on ∂W ′. So E(u) ≤ 0 hence E(u) = 0. This
implies that du−XH ⊗β = 0 which shows that the image of du is in the span of XH which
is the span of Rα ∈ T∂W ′ on ∂W ′. Hence the image of u is entirely in contained in ∂W ′.

For any element H1 ∈ Hstd(W ), one can consider an element in H2 ∈ Hstair(V,W )

such that H1 and H2 coincide “far in the completion”, i.e. on ∂W × [ρ′2,+∞[⊂ Ŵ . Let
H = ιV (H2) ∈ Hstd(V ). We want to build a morphism from the homology defined by
H1 to the homology defined by H. We shall first construct a morphism in the homology
defined by H2. With H1 ∈ Hstd(W ) and H2 ∈ Hstair(V,W ) as above, we can consider an
increasing homotopy Hs, s ∈ R, between H1 and H2, i.e

d
ds
Hs ≥ 0, with the property that
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3.1. Transfer morphism

there exists s0 such that Hs ≡ H1 for s ≤ −s0 and Hs ≡ H2 for s ≥ s0. We define a
morphism SC(H1, J1) → SC(H2, J2) by counting Floer trajectories for the homotopy.

Denote by M(γ1, γ2, Hs, Js) the space of Floer trajectories from γ1 to γ2 i.e maps

u : R× S1 → Ŵ such that:

∂̄Js,Hs(u) := ∂su+ Jθs ◦ u(∂θu−Xθ
Hs

◦ u) = 0 (3.1)

lim
s→−∞

u(s, ·) = γ1(·) and lim
s→∞

u(s, ·) = γ2(·).

Again it is proven in [Oan08, FHS95] that for a generic choice of the pair (Hs, Js), the spaces
M(γ1, γ2, Hs, Js) are manifolds of dimension µCZ(γ2)− µCZ(γ1) for any γ1 in P(H1) and
γ2 in P(H2). Let us observe that there is no general R-action on this space.

The homotopy Hs gives rise to a morphism

φHs : SC(H1, J1) → SC(H2, J2)

γ1 7→
∑

γ2∈P(H2)
µCZ(γ2)=µCZ(γ1)

#M(γ1, γ2, Hs, Js)γ2

where the count involves, as always, signs.

Proposition 3.1.7 The morphism φHs is a chain map.

Proof: As before this follows from the study of the boundary of a space of Floer tra-
jectories. Let γ1 ∈ P(H1) and γ2 ∈ P(H2) be such that µCZ(γ1) = µCZ(γ2) + 1. The
1-dimensional manifold M(γ1, γ2, Hs, Js) has the following boundary

∪γ∈P(H1)M(γ1, γ,H1, J1)×M(γ, γ2, Hs, Js)
⋃

∪γ̃∈P(H2)M(γ1, γ̃, Hs, Js)×M(γ̃, γ2, H2, J2).

The first part yields the coefficient of γ2 in φHs ◦ ∂H1(γ1) and the second part corresponds

to ∂H2 ◦ φHs(γ1).

So φHs induces a morphism in homology, still denoted by φHs

φHs : SH(H1, J) → SH(H2, J).

The fact that φHs is independent of the choice of the homotopy is a consequence of the
homotopy of homotopies theorem (section 1.2.3). We denote it by φH1,H2 .

Definition 3.1.8 Given an elementH1 inHstd(W ), consider an elementH2 ∈ Hstair(V,W )
such that H1 and H2 coincide “far in the completion”, and let H = ιV (H2) ∈ Hstd(V ). We
define the transfer morphism

SH(H1, J) → SH(H, J ′) = SH(H2, J), ∂)/SH≤−η(H2, J), ∂)
= H

(
CI,II(H2, J), ∂

)
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3. Structural properties of symplectic homology

which is the composition of φH1,H2 followed by the natural projection.The action decreases
along Floer trajectories, so this maps SH≤ǫ(H1, J) to SH

≤ǫ(H2, J), ∂)/SH≤−η(H2, J), ∂)
and induces a transfer morphism for the positive homology

SH+(H1, J) → SH+(H, J ′) = SH≤ǫ(H2, J), ∂)/SH≤−η(H2, J), ∂)
= H

(
CII(H2, J), ∂

)
.

With our identification, the map is obtained by counting solutions of

∂u

∂s
+ Js ◦ u

(∂u
∂θ

−XHs ◦ u
)
= 0

going from a 1-periodic orbit of XH1 to a 1-periodic orbit of XH2 lying in region I or II.

The homotopy of homotopies theorem shows that the map does not depend on the choice
of stair function H2 such that ιVH2 = H and such that H1 and H2 coincide far in the
completion; we shall denote it φHH1

. It also shows that the map φH1,H2 commutes with
continuation, i.e if ρ1 : SH(H1) → SH(H ′1) is a continuation for H1 and ρ2 : SH(H2) →
SH(H ′2) is a continuation for H2 then

φH′
1,H

′
2
◦ ρ1 = ρ2 ◦ φH1,H2 .

Proposition 3.1.9 The transfer map φHH1
: SH(H1, J) → SH(H, J ′) commutes with con-

tinuations.

Proof: To show this, we still have to show that a continuation map built in W from
SH(H2, J) to SH(H ′2, J

′), defined by an increasing homotopy Hs : S
1 × Ŵ → R, induces

a continuation map in V from SH(H = ιV (H2), J) to SH(H ′ = ιV (H
′
2), J

′). For this, it
is enough to check that there is no Floer trajectory corresponding to the homotopy, i.e.
u : R× S1 → Ŵ solution of

∂u

∂s
+ Js ◦ u

(∂u
∂θ

−XHs ◦ u
)
= 0,

going from an orbit in CI,II(H2, J) (resp. CII(H2, J)) to an orbit in CI,II(H ′2, J
′) (resp.

CII(H ′2, J
′)) with points in Ŵ \ (U ∪ V ). We prove it by contradiction, proceeding as in

the proof of Proposition 3.1.5, using a generalized Abouzaid maximum principle which we
prove below as proposition 3.1.10. Assume that u : R × S1 → Ŵ is a Floer trajectory
whose image intersects Ŵ \ (U ∪V ). We consider the intersection of the image with a slice
∂V × {ρ} for any ρ0 < ρ < δ − ρ0 and we choose a regular value ρ0 + ǫ of ρ ◦ u. The

manifold W ′ := Ŵ \ (V ∪ (∂V × [0, ρ0+ ǫ[)) is symplectic with contact type with boundary
∂V × {ρ0 + ǫ} and the Liouville vector field pointing inwards. Let S be the inverse image
of W ′ under the map u; it is a compact Riemann surface embedded in the cylinder with
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3.1. Transfer morphism

boundary ; the complex structure j is the restriction to S of the complex structure j on
the cylinder defined by j(∂s) = ∂θ. The fact that u is a Floer trajectory is equivalent
to (du − XHs ⊗ dθ)0,1 := 1

2 ((du−XHs ⊗ dθ) + J(du−XHs ⊗ dθ)j) = 0, where du is the
differential of the map u viewed as a section of T ∗S ⊗ u∗TW ′. Then Proposition 3.1.10
concludes.

Proposition 3.1.10 Let (W ′, ω′ = dλ′) be an exact symplectic manifold with contact type
boundary ∂W ′, such that the Liouville vector field points inwards. Let ρ be the coordinate
near ∂W ′ defined by the flow of the Liouville vector field starting from the boundary and
let r := eρ. Let J be a compatible almost complex structure such that J∗λ′ = dr on the
boundary. Let H : R× S1 ×W ′ → R be an increasing homotopy, such that H(s, θ, p, ρ) =
Hθ
s (p, ρ) = hs(r) where hs are convex increasing functions near the boundary. Let S be

a compact Riemann surface with boundary embedded in the cylinder. Then any solution
u : S →W ′ of (du−XHs ⊗ dθ)0,1 = 0 with u(∂S) ⊂ ∂W ′ is entirely contained in ∂W ′.

Proof: The proof starts as in Theorem 3.1.6. The energy of u is non negative and given
by

E(u) :=
1

2

∫

S

‖du−XHs ⊗ dθ‖2volS =

∫

S

u∗ω′ + u∗(dHθ
s ) ∧ dθ.

We have u⋆(dHθ
s ) ∧ dθ = d(u

′⋆H) ∧ dθ − u⋆∂sH
θ
sds ∧ dθ︸ ︷︷ ︸
≥0

, for u′ : S → R × S1 ×W ′ which

maps an element (θ, s) ∈ S to the element (s, θ, u′(θ, s)). Hence

E(u) =

∫

S

u⋆dλ′ + u⋆(dH) ∧ dθ

≤
∫

S

d(u⋆λ′) + d(u
′⋆Hdθ) ≤

∫

∂S

u⋆λ′ − λ′(XHs)dθ

using Stokes’s theorem and H = hs(r) ≤ rα
(
h′s(r)Rα

)
= −λ′(XHs) on u(∂S) ⊂ ∂V

=

∫

∂S

λ′(du−XHs ⊗ dθ)

and the proof proceeds as in Theorem 3.1.6.

Corollary 3.1.11 The transfer maps {φHH1
}induce a transfer map:

φW,V : SH(W,λW ) → SH(V, λV ).

and, on the quotient, the morphism

φ+ = φ+W,V : SH+(W,λW ) → SH+(V, λV ).
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Theorem 3.1.12 (Composition) Let (V1, λV1) ⊆ (V2, λV2) ⊆ (V3, λV3) be Liouville do-
mains with Liouville embeddings. Then the following diagram commutes:

SH+(V3, λV3)
φ+V3,V2 //

φ+V3,V1

55
SH+(V2, λV2)

φ+V2,V1 // SH+(V1, λV1) (3.2)

Proof: The proof results from the comparison of a count of Floer trajectories. On one
hand, one counts Floer trajectories corresponding to an increasing homotopy H13, going
from a 1-periodic orbit of XH1 for an admissible Hamiltonian H1 on S1 × V̂3 to the CII,I

part of a stair HamiltonianH3 with two “steps”. On the other hand, one counts trajectories
relative to the composition of two increasing homotopies, H12 going from H1 to H2 (a stait
hamiltonian with one step) and H23 going from H2 to H3. The property is a consequence

of the composition of homotopies that we now present.

LetH1, H2, H3 be three Hamiltonians on the completion of a symplectic manifold (W,ω)
with contact type boundary such that there exist two increasing homotopies H12 from H1

to H2 and H23 from H2 to H3. We assume, as always here, that there exists s0 such that
H12 ≡ H1 for s ≤ −s0 and H12 ≡ H2 for s ≥ s0 and similarly for H23 . Denote, for
R ∈ R, R ≥ s0 >> 0, by H12#RH23 the gluing of the two homotopies;

H12#RH23 =

{
H12(s+R, ·, ·) s ≤ 0
H23(s−R, ·, ·) s ≥ 0

The almost complex structures J12 and J23 are glued similarly. We choose J12 and J23 such
that the operators D12 and D23, which linearize the equations (3.1) on the Banach tangent
space to a Floer trajectory, are surjective at any solution. By the operator gluing lemma
(cfr section 1.1.1), the operator D12#RD

23, corresponding to the linearisation of the Floer
equation for H12#RH23, is surjective and the index of D12#RD

23, is the sum of the indices
of D12 and D23. Hence the space of Floer trajectories M(γ1, γ3, H12#RH23, J12#RJ23),
for γ1 ∈ P(H1) and γ3 ∈ P(H3), is a smooth manifold of dimension µCZ(γ1)− µCZ(γ3).

Theorem 3.1.13 Let γ1 ∈ P(H1) and γ3 ∈ P(H3) such that µCZ(γ1) = µCZ(γ3). Then
for R′ large enough,

M(γ1, γ3, H12#R′H23, J12#R′J23) =
⋃

γ2∈P(H2)

M(γ1, γ2, H12, J12)×M(γ2, γ3, H23, J23)

Proof: Let us consider the 1-dimensional manifold defined as the union of 0-dimensional
manifolds: ⊔

R≥R′≥s0
M(γ1, γ3, H12#RH23, J12#RJ23).
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3.1. Transfer morphism

Its boundary consists of M(γ1, γ3, H12#R′H23, J12#R′J23) and of broken trajectories. It
can not include

⊔

γ∈P(H1)

M(γ1, γ,H1, J1)×M(γ, γ3, H12#RH23, J12#RJ23).

since the elements of M(γ1, γ,H1, J1) have index at least equal to 1 and the elements in
M(γ, γ3, H12#RH23, J12#RJ23) are of index at least 0. Thus this boundary is just

M(γ1, γ3, H12#R′H23, J12#R′J23)
⋃

M(γ1, γ2, H12, J12)×M(γ2, γ3, H23, J23).

The conclusion follows.

3.1.1 Transfer morphism for S1-equivariant symplectic homology

We extend the definition of the transfer morphisms of the previous section to S1-equivariant
and positive S1-equivariant symplectic homology.
We consider two embedded Liouville domains (V, λV ) ⊂ (W,λW ) and we want to define
a morphism SHS1

(W,λW ) → SHS1
(V, λV ). We use the alternative definition of the S1

equivariant symplectic homology, considering the cofinal family of Hamiltonians which are
built as in section 2.2 : starting with autonomous Hamiltonians H in Hstd, we do small
Morse Bott type deformations Hδ as presented in section 2.1.3 and then lift those to S1-
equivariant functions HN

δ as in section 2.1.1. In this setting, the S1-equivariant symplectic
homology can be computed by a simplified complex as described in proposition 2.1.1:

SĈS
1

∗ (Hδ) := Z[u]⊗Z SC∗(Hδ)

with differential
∂̂S

1
= ϕ0 + u−1ϕ1 + u−2ϕ2 + . . .

where the maps ϕj counts Floer trajectories for parametrized Hamiltonians



∂su+ Jθz(s) ◦ u

(
∂θu−XHN

δ,z(s)
◦ u

)
= 0

ż − ~∇f̃(z) = 0

going from S1 · (γ−, zj) to S1 · (γ+, z0) with zj the critical point of f of index −2j.
We have seen in section 2.2 that the action of the element represented by uk ⊗ γ is

very close to the action of γ. To define transfer morphisms, we start with an autonomous
Hamiltonian H1 in Hstd(W ) and an autonomous H2 in Hstair(W ), and we do small Morse
Bott type deformations H1δ et H2δ. We define as in the previous section the subcomplex
Z[u]⊗Z (CIII,IV,V (H2δ)) corresponding to points with negative action and we identify the
quotient Z[u] ⊗Z SC∗(H2δ)/Z[u]⊗Z (CIII,IV,V (H2δ)) to Z[u] ⊗Z C

I,II(H2δ). We consider
the Hamiltonian ιVH2δ in Hstd(W ).
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3. Structural properties of symplectic homology

Proposition 3.1.14 For δ small enough, the S1 equivariant homology of the quotients
coincide with the S1 equivariant homology of the small domain:

H
(
Z[u]⊗Z C

I,II(H2δ), ∂
)
= H

(
SC(Z[u]⊗Z SC(ιVH2δ))

)

H
(
Z[u]⊗Z C

II(H2δ), ∂
)
= H

(
SC+(Z[u]⊗Z SC(ιVH2δ))

)

Proof: What remains to be checked is again there is no parametrized Floer trajectory
u : R × S1 → Ŵ going from an orbit in CI,II(H2δ) to an orbit in CI,II(H2δ) with points

in Ŵ \ (U ∪ V ). This is proven by contradiction. If there was a parametrized trajectory

going from an orbit in CI,II(H2δ) to an orbit in CI,II(H2δ) with points in Ŵ \ (U ∪ V )
for all δ’s, then, by a theorem of Bourgeois and Oancea [BO09b, Proposition 4.7], there
would be such a broken trajectory for the autonomous Hamiltonian and we have proven in
Proposition 3.1.5 that this can not exist.

To get a transfer map, we use an autonomous increasing homotopy between H1 and H2

and we deform it into an increasing homotopy between H1δ and H2δ; this induces a map

Z[u]⊗Z SC∗(H1δ) → Z[u]⊗Z SC∗(H2δ).

This map decreases the action (which is defined on the second factor) and commutes with
the differential so it induces a map going to the quotient

H
(
(Z[u]⊗Z SC∗(H1δ, ∂

)
) → H

(
Z[u]⊗Z C

II(H2δ), ∂
)
.

This maps commutes with continuation maps.

Proposition 3.1.15 For δ small enough, a continuation map in the homology defined from
an H2δ induces a continuation continuation map in the homology defined from ιVH2δ.

Proof: One checks again that there is no parametrized Floer trajectory, corresponding
to a homotopy, going from an orbit in CI,II(H2δ) to an orbit in CI,II(H ′2δ) with points in

Ŵ \ (U ∪V ). This is done as in the former proposition, using the fact that the existence of
such a trajectory for all δ’s would imply the existence of such a broken trajectory for the
autonomous Hamiltonian and we have proven in Proposition 3.1.9 that this can not exist.

We thus get a transfer morphism

φS
1

W,V : SHS1
(W,λW ) → SHS1

(V, λV ).

and, on the quotient, the morphism

φS
1,+ = φS

1,+
W,V : SHS1,+(W,λW ) → SHS1,+(V, λV ).

By the same arguments as before, those morphisms compose nicely.
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Theorem 3.1.16 (Composition) Let (V1, λV1) ⊆ (V2, λV2) ⊆ (V3, λV3) be Liouville do-
mains with Liouville embeddings. Then the following diagram commutes:

SHS1,+(V3, λV3)
φ
S1,+
V3,V2 //

φ
S1,+
V3,V1

55
SHS1,+(V2, λV2)

φ
S1,+
V2,V1 // SHS1,+(V1, λV1) (3.3)

3.2 Invariance of symplectic homology

In this section, we study the invariance of the (S1-equivariant) positive symplectic ho-
mology with respect to the choice of the Liouville vector field in a neighbourhood of the
boundary. This has been studied by Viterbo [Vit99], Cieliebak [Cie02] and Seidel [Sei08]
in the case of the symplectic homology, in the framework of Liouville domains.

Lemma 3.2.1 Let (W,ω,X) be a compact symplectic manifold with contact type boundary
and let k be a positive real number. Then

SH†(W,ω,X) = SH†(W,kω,X).

Where † denotes any of the variants that we have considered ∅,+, S1 or (S1,+).

Proof: The symplectic completions are (Ŵ , ω̂) and (Ŵ , kω̂); the chain complexes for a

pair (H, J) on (Ŵ , ω̂) and the pair (kH, J) on (Ŵ , kω̂) are the same, since the 1 periodic or-
bits are the same, and the Floer trajectories satisfy the same equations; indeed Xω

H = Xkω
kH .

Similarly, continuation maps are equivalent taking as homotopies Hs and kHs. The result
follows, observing that kH form a cofinal family.

For positive or S1-equivariant positive homology, we clearly assume that we are in a frame-
work where it is well-defined.

Lemma 3.2.2 Let (W,ω,X) and (W ′, ω′, X ′) be two compact symplectic manifolds with
contact type boundary. If there exists a symplectomorphism ϕ : W → W ′ such that
ϕ(∂W ) = ∂W ′, and such that ϕ⋆(X) = X ′ on a neighbourhood of ∂W then

SH†(W,ω,X) ∼= SH†(W ′, ω′, X ′).

Proof: We can extend ϕ to a symplectomorphism ϕ̂ : Ŵ → Ŵ ′ of the completions. For J ′

an almost complex structure on Ŵ ′, we take the corresponding almost complex structure
J on Ŵ defined by

Jx := ϕ̂−1⋆x ◦ J ′ϕ̂(x) ◦ ϕ̂⋆x
and if H ′ is a Hamiltonian on Ŵ ′, we take the Hamiltonian H on Ŵ defined by H := ϕ̂⋆H ′.
Then the 1 periodic orbirs are in bijection and so are the Floer trajectories. The subfamily
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3. Structural properties of symplectic homology

{ϕ̂⋆H ′} of Hamiltonians is cofinal and thus we reach the conclusion.

We now restrict our attention to Liouville domains, also called symplectic manifolds
with restricted contact type boundary. Recall that a Liouville domain is a compact man-
ifold W with boundary, together with a one form λ such that ω := dλ is symplectic and
the Liouville vector field X defined by ι(X)ω = λ points strictly outwards along ∂W .

The asphericity condition being satisfied, we assume that 〈c1(TW ), π2(W )〉 = 0. Recall

that the completion of a Liouville domain (W,λ) is Ŵ =W ∪ (∂W ×R+) with symplectic
form given by ω̂ = ω on W and ω̂ = deρλ|∂W on ∂W × R+. We refer to section 1.2.1

for more details. We denote, as in the previous chapter, by SH†(W,λ) the symplectic
homology SH†(W,dλ,X).

Lemma 3.2.3 Let (W,λ) be a Liouville domain. Then for all R ∈ R+, we have

SH†(W,λ) ∼= SH†
(
W ∪ (∂W × [0, R]), λ′

)

where the 1-form λ′ on ∂W × [0, R] is the restriction of the 1-form λ̂, thus (eρα) with
α := λ|∂W .

Proof: Denote by ϕXt the flow of X; since LXλ = λ we have ϕXt
⋆
λ = etλ. This gives a

symplectomorphism

ϕXR : (W, eRω) →
(
W ∪ (∂W × [0, R]), ω′

)

mapping the boundary ∂W to the boundary {R} × ∂W and such that ϕXR
∗
λ = eRλ.

One concludes by the two lemmas above. Explicitely, the diffeomorphism ϕXR : Ŵ → Ŵ
maps Hamiltonian vector fields as follows : (ϕXR )∗(XH′) = XH when H ′ = e−R(ϕXR )

∗H;
hence ϕXR gives a bijection between 1-periodic orbits of XH′ and 1-periodic orbits of XH ,
and, with suitable choices of J ’s, a bijection between Floer trajectories between 1-periodic
orbits of XH′ and Floer trajectories between 1-periodic orbits of XH . Hence it yields an
isomorphism

SH†(W, e−R(ϕXR )
∗H) ∼= SH†

(
W ∪ (∂W × [0, R]), H

)
.

Furthermore, the diffeomorphism ϕXR intertwines a continuation morphism defined by a
homotopy H ′s to the corresponding continuation morphism defined by Hs when again H ′s =

e−R(ϕXR )
∗Hs. This yields the isomorphism mentionned above.

Lemma 3.2.4 The transfer morphism

SH†
(
W ∪ (∂W × [0, R]), λ′

)
7→ SH†(W,λ)

is an isomorphism which coincides with the natural identification of Lemma 3.2.3.

84



3.2. Invariance of symplectic homology

Proof: Let H be an admissible Hamiltonian forW∪(∂W×[0, R]). Consider the homotopy
H1
s := e−f(s)ϕX

f(s)

⋆
H with f : R → [0, R] a smooth function so that H1

s = H for large

negative s and H1
s = H̃ := e−R(ϕXR )

∗H for large positive s. The set of 1 periodic orbits for
H1
s is constant (since, as in the Lemma above, the diffeomorphism ϕX

f(s) of the completion is

a bijection between 1-periodic orbits of XH1
s
and 1-periodic orbits of XH). This homotopy

defines the “transfer morphism”

φ : SH
(
W ∪ (∂W × [0, R]), H

)
→ SH(W, H̃).

Let {Hη
s }η∈[0,1] be a family of homotopies (with non fixed endpoint) such that H0

s is the

constant homotopyH0
s = H for all s, and such that allHη

s are of the form e−f
′(s,η)ϕX

f ′(s,η)

⋆
H

with f ′(., η) : R → [0, ηR] and f ′(., 1) = f . We have Hη
+∞ = e−ηRϕXηR

⋆
H = H1

f−1(ηR). The

set of 1-periodic orbits of Hη
s is in bijection with the set of orbits of H. We consider, for a

given η, the space of Floer trajectories

M(Hη
s , J

η
s ) :=

⋃

(γη−,γ
η
+)∈P(Hη

−∞)×P(Hη
+∞)

µCZ(γη−)=µCZ(γη+)

M(γη−, γ
η
+, H

η
s , J

η
s )

and the parametrized moduli space

M({Hη
s , J

η
s }) :=

⋃

η∈[0,1]
M(Hη

s , J
η
s )

which could have boundaries for some η 6= 0, 1. It defines a cobordism between M(H0
s , J

0
s )

andM(H1
s , J

1
s ). NowM(H0

s , J
0
s ) = M(H, J) is the space of constant trajectories {u(s, ·) =

γ0(·) | γ0 ∈ P(H)}. Thus for small η’s, say η ≤ η0, the cobordism is a bijection, M(Hη
s , J

η
s )

consists of exactly one Floer trajectory starting from each orbit in P(H) and arriving at
the corresponding orbit in P(Hη

+∞). The morphism induced by Hη0
s is thus the natural

identification of periodic orbits. Hence the transfer

φ : SH
(
W ∪ (∂W × [0, R]), H

)
→ SH

(
W ∪ (∂W × [0, R− ǫ]), eǫϕXǫ

⋆
H
)

is the natural identification for ǫ = η0R. Now we use the flow of the Liouville vector
field, ϕXǫ , to carry all this construction further and we get the natural identification as the
transfer morphism

φ : SH
(
W ∪ (∂W × [0, R− ǫ]), eǫϕǫX

⋆H
)
→ SH

(
W ∪ (∂W × [0, R− 2ǫ]), e2ǫϕ2ǫ

X
⋆
H
)
.

By induction and functoriality, we get the result.

85



3. Structural properties of symplectic homology

Lemma 3.2.5 Let W be a compact symplectic manifold with contact type boundary. Let
λt, t ∈ [0, 1] be an isotopy of Liouville forms on W such that in a neighbourhood U of the
boundary, λt = λ0. Then

SH†(W,λ0) ∼= SH†(W,λ1).

Proof: Remark that we do not require the dλt to be equal.
Let Xt be the time dependent vector field defined by

ι(Xs)(dλs) = −
(
d
dt
λ(t)|s

)

and let ϕt be its flow. In the neighbourhood U , the vector field vanishes, Xs = 0, and so
ϕ⋆1λ1 = λ1 = λ0 on U . Furthermore ϕ⋆1dλ1 = dλ0 because

d

dt
ϕ⋆tλt

∣∣∣
s
= ϕ⋆s

(dλt
dt

∣∣∣
s

)
+ ϕ⋆sLXsλs

= ϕ⋆s

(dλt
dt

∣∣∣
s

)
+ ϕ⋆s

(
ι(Xs)dλs + dι(Xs)λs

)

= d
(
ϕ⋆s

(
λs(Xs)

))
.

This implies that the completions for λ0 and ϕ⋆1λ1 are the same, therefore, by lemma 3.2.2,

SH†(W,λ1) = SH†(W,ϕ⋆1λ1) = SH†(W,λ0).

Theorem 3.2.6 Let W be a compact symplectic manifold with contact type boundary. Let
λt, t ∈ [0, 1] be a homotopy of Liouville forms on W . Then

SH†(W,λ0) ∼= SH†(W,λ1).

To prove this Proposition, we use the following Proposition from Cieliebak and Eliashberg:

Proposition 3.2.7 ([CE12], Proposition 11.8) Let W be a compact symplectic man-
ifold with contact type boundary. Let λt, t ∈ [0, 1] be a homotopy of Liouville forms on

W . Then there exists a diffeomorphism of the completions f : Ŵ0 → Ŵ1 such that
f⋆λ̂1 − λ̂0 = dg where g is a compactly supported function.

Proof of Theorem 3.2.6: There exists a positive real ρ0 such that supp(g) ⊂ W ∪
(∂W × [0, ρ0]). We choose positive real numbers ρ1, ρ

′
0 and ρ′1 such that f−1(W ∪ (∂W ×

[0, ρ1]) contains W ∪ (∂W × [0, ρ0]), f
−1(W ∪ (∂W × [0, ρ1])) ⊂ W ∪ (∂W × [0, ρ′0]) and

W ∪ (∂W × [0, ρ′0]) ⊂ f−1(W ∪ (∂W × [0, ρ′1])). The situation is represented in Figure 3.2
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3.2. Invariance of symplectic homology

supp(g)

∂W × {0}
∂W × {ρ0}

∂W × {ρ′0}

f−1(∂W1 × {ρ1}) f−1(∂W1 × {ρ′1})

Figure 3.2: The choice of ρ0, ρ1, ρ
′
0 and ρ′1

The diffeomorphism f and the flow of X1 on Ŵ1 give
(
f−1(W ∪ (∂W × [0, ρ1])), f

⋆λ̂1
) ∼=

(
W ∪ (∂W × [0, ρ1], λ̂1

) ∼= (W, eρ1λ1).

The completion of
(
f−1(W ∪ (∂W × [0, ρ1])), f

⋆λ̂1
)
coincides with (Ŵ0, λ̂0) since close to

the boundary f⋆X0 = X1.

SH(W,λ1) ∼= SH
(
W ∪ (∂W × [0, ρ1]), λ̂1

)
by Lemma 3.2.3

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1])), f

⋆λ̂1
)

by Lemma 3.2.2

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1])), λ̂0 + dg

)
by Proposition 3.2.7

∼= SH
(
f−1(W ∪ (∂W × [0, ρ1]))︸ ︷︷ ︸

=:W1

, λ̂0
)

by Lemma 3.2.5.

Denoting by ϕX0
t the flow of X0 and by W0 the manifold W ∪ (∂W × [0, ρ0]), we have

ϕX0

ρ′1−ρ1
(W1) = f−1(W ∪ (∂W × [0, ρ′1]))

and
ϕX0

ρ′0−ρ0
(W0) =W ∪ (∂W × [0, ρ′0])

Using the functoriality of the transfer morphism,

SH(ϕX0

ρ′1−ρ1
(W1), λ̂0) //

∼=

44
SH(ϕX0

ρ′0−ρ0
(W0), λ̂0)

∼=

))
// SH(W1, λ̂0) // SH(W0, λ̂0);
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therefore

SH(W,λ1) ∼= SH(W1, λ̂0) ∼= SH(W0, λ̂0) ∼= SH(W,λ0).

Seidel in [Sei08] has extended the definition of symplectic homology (and all its variants)
to Liouville manifolds.

Definition 3.2.8 (see for instance [CE12]) A Liouville manifold is an exact symplec-
tic manifold (W,ω,X), where the vector field X is an expanding Liouville vector field, i.e
LXω = ω and ϕXt ω = etω such that

• the vector field X is complete and

• the manifold is convex in the sense that there exists an exhaustion W = ∪∞k=1W
k

by compact domains Wk ⊂ W with smooth boundaries along which X is outward
pointing.

In the following we will denote a Liouville manifold either by (W,ω,X) or by (W,λ :=
ι(X)ω).

The set

Skel(V, ω,X) :=

∞⋃

k=1

⋂

t>0

ϕX−t(W
k)

is called the skeleton of the Liouville manifold (W,ω,X). It is independent of the choice
of the exhausting sequence of compact sets W k. A Liouville manifold (W,ω,X) is said
to be of finite type if its skeleton is compact. Every finite type Liouville manifold is the
completion of a Liouville domain1.

Definition 3.2.9 ([Sei08]) Let (W,ω,X) be a Liouville manifold non necessarily of finite
type and let W k be an exhaustion by compact domains Wk ⊂W with smooth boundaries
along which X is outward pointing such that W k ⊂ W k+1. The symplectic homology
(and its variants) of (W,λ) is defined as the inverse limit of the symplectic homologies of
(W k, λ|

Wk
)

SH†(W,λ) := lim
←−

SH†(W k, λ|
Wk

).

The morphisms appearing in this inverse limit are the transfer morphisms.

This definition is independent of the chosen exhaustion. Remark that in the case of finite
type Liouville manifolds, this definition coincides with the previous one.

1We refer to the book by Cieliebak and Eliashberg for more details, [CE12, Chapter 11]
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Proposition 3.2.10 Let (W0, λ0) and (W1, λ1) be two Liouville manifolds not necessarily
of finite type. Assume there exists an exact symplectomorphism f : W0 → W1 i.e. such
that f⋆λ1 − λ0 = dg with g a function on W0. Then

SH†(W0, λ0) ∼= SH†(W1, λ1).

Proof: Let W k
0 be an exhaustion for W0 and W k

1 be an exhaustion for W1 such that for
all k,

W k
0 ⊂ f−1(W k

1 ) ⊂W k+1
0

where the inclusion at each level means the inclusion in the interior of the next compact
space. Let η be a smooth function η : W0 → [0, 1] such that η = 1 in a neighbourhood of
∪∞k=1f

−1(∂W k
1 ) and η = 0 in a neighbourhood of ∪∞k=1∂W

k
0 . We define the 1-form λ on

W0 to be
λ := λ0 + d(ηg).

We have

SH(W k
0 , λ0)

∼= SH(W k
0 , λ) and SH(W k

1 , λ1)
∼= SH

(
f−1(W k

1 ), λ
)
.

The functoriality of the transfer morphism implies that the following diagram is commu-
tative:

· · ·
//

''
SH

(

f−1(Wk+1

1
), λ

) //
66

SH(Wk+1

0
, λ)

''
// SH

(

f−1(Wk

1 ), λ
) //

99SH(Wk

0 , λ) //
· · · .

Therefore,

SH(W0, λ0) ∼= lim
←−

SH(W k
0 , λ0)

∼= lim
←−

SH(W k
0 , λ)

∼= lim
←−

SH
(
f−1(W k

1 ), λ
) ∼= lim

←−
SH(W k

1 , f⋆λ)

∼= lim
←−

SH(W k
1 , λ1)

∼= SH(W1, λ1).

The above result may be extended thanks to the following Lemma:

Lemma 3.2.11 ([BEE12], see also [CE12], Lemma 11.2) Any symplectomorphism be-
tween finite type Liouville manifolds f : (W0, λ0) → (W1, λ1) is diffeotopic to an exact
symplectomorphism.

We have thus

Theorem 3.2.12 Let (W0, λ0) and (W1, λ1) be two Liouville manifolds of finite type such
that there exists a symplectomorphism f : (W0, λ0) → (W1, λ1). Then

SH†(W0, λ0) ∼= SH†(W1, λ1).

89



3. Structural properties of symplectic homology

3.2.1 Invariance of the homology of contact fillings

In this section we shall prove:

Theorem 3.2.13 Let (M0, ξ0) and (M1, ξ1) be two contact manifolds that are exactly fil-
lable; i.e. there exist Liouville domains (W0, λ0) and (W1, λ1) such that ∂W0 = M0,
ξ0 = ker(λ0|M0

), ∂W1 = M1 and ξ1 = ker(λ1|M1
). Assume there exists a contactomor-

phism ϕ : (M0, ξ0) → (M1, ξ1) which is “oriented” in the sense that ϕ⋆λ1
∣∣
M1

= efλ0
∣∣
M0

.
Assume moreover that there exists a contact form α̃0 on M0 such that all periodic Reeb
orbits are nondegenerate and their Conley-Zehnder index have all the same parity. Then

SHS1,+(W0, λ0) ∼= SHS1,+(W1, λ1).

Lemma 3.2.14 ([Cie02]) Let (αt)t∈[0,1] be a smooth family of contact forms on a closed
manifold M of dimension 2n−1. Then there exists a R > 0 and a non-decreasing function
f : [0, R] → [0, 1] such that f ≡ 0 close to ρ = 0 and f ≡ 1 close to ρ = R and

d
(
eραf(ρ)

)
is symplectic on M × [0, R]

Proof: The proof is a computation:

d
(
eραf(ρ)

)
= eρdρ ∧ αf(ρ) + eρdαf(ρ) + eρf ′(ρ)dρ ∧ α̇f(ρ).

(
d
(
eραf(ρ)

))n
= nenρ

(
dρ ∧

(
αf(ρ) + f ′(ρ)α̇f(ρ)

)
∧
(
dαf(ρ)

)n−1)

and thus d
(
eραf(ρ)

)
is symplectic if and only if

(
αf(ρ) + f ′(ρ)α̇f(ρ)

)(
Rαf(ρ)

)
> 0. This is

true if f ′ is small.

Lemma 3.2.15 If (M, ξ) is a compact contact manifold which is exactly fillable by a Li-
ouville domain (W,λ0) (i.e. ∂W = M and ξ = kerα0 where α0 = λ0

∣∣
M
) then, for any

contact form α1 such that ξ = kerα1 (and α1 defines the same orientation on M), there
exists a homotopy of Liouville form λs, s ∈ [0, 1] on W such that λ1

∣∣
M

= α1.

Proof: Since α1 = egα0, for a smooth function g on M , we consider the smooth family of
contact forms αt = etgα0, t ∈ [0, 1]. We define on W ∪M × [0, R] ⊂ Ŵ the 1-form λ̃:

λ̃ =

{
λ0 on M

eραf(ρ) on M × [0, R]

with f as in Lemma 3.2.14, so that dλ̃ is symplectic. The flow of the vector field X0, where
ι(X0)dλ0 = λ0, ϕ

X0
−r induces a diffeomorphism from W ∪M × [0, r] to W . The pull-back

by this flow of e−rλ̃ gives the desired λf(r).

Combining with Theorem 3.2.6 and Theorem 2.2.2, this yields
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Lemma 3.2.16 Let (M0, ξ0) be a contact manifold that is exactly fillable by the Liouville
domains (W0, λ0). Assume that there exists a (oriented) contact form α̃0 on M0 such that
all periodic Reeb orbits are nondegenerate and their Conley-Zehnder index have all the
same parity. Then

SHS1,+(W0, λ0) =
⊕

γ∈P(Rα̃0
)

Q〈γ〉

where P(Rα̃0) denotes the set of periodic Reeb orbits on (M0, α̃0).

Proof of Theorem 3.2.13: Given the contactomorphism ϕ : (M0, ξ0) → (M1, ξ1) and
the contact form α̃0, we define the form α̃1 := (ϕ−1)⋆α̃0; it is a contact form on M1 and
its periodic orbits are non degenerate, in bijection with those of α̃0 with the same Conley-
Zehnder index. We apply twice Lemma 3.2.16; once for (W0, λ0, α̃0) and for (W1, λ1, α̃1).

This gives a tool to prove Ustilovsky’s Theorem.

Corollary 3.2.17 (Ustilovsky, [Ust99]) For each natural number m, there exist in-
finitely many pairwise non isomorphic contact structures on S4m+1.

Proof: We see that one can build contact structures on S4m+1, which are exactly fillable,
but which do not yield isomorphic SHS1,+ homologies of the filling. The result then fol-
lows from Theorem 3.2.13. The contact structures in question are those defined by the
Brieskorn sheres; see section 2.2.1. The fact that the homologies are different follows from
proposition 2.2.7.
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4 On the minimal number of periodic Reeb

orbits

We shall now use the properties of positive S1-equivariant symplectic homology to get
results on the minimal number of geometrically distinct periodic Reeb orbits on some
contact manifolds. We first give an alternative proof of a result of Ekeland and Lasry
on the minimal number of distinct periodic Reeb orbits on a hypersurface in R2n. We
also obtain information on the minimal number of simple periodic Reeb orbits on some
hypersurfaces in some negative complex bundles over a compact symplectic manifold. We
extend our machinery to some non exact symplectic manifolds with contact type boundary.

4.1 Minimal number of periodic Reeb orbits on a hypersurface in R2n

We show how to use the transfer morphism to give an alternative proof of a result by
Ekeland and Lasry concerning the number of simple periodic Reeb orbits on a hypersurface
in R2n, pinched between two spheres, endowed with the restriction of the standard contact
form on R2n.

Theorem 4.1.1 (Ekeland, Lasry, [EL80, Eke90]) Let Σ be a contact type hypersur-
face in R2n. Let ξ = kerα be the contact structure induced by the standard contact form
on R2n. Assume there exists a point x0 ∈ R2n and numbers 0 < R1 ≤ R2 such that:

∀x ∈ Σ, R1 ≤ ‖x− x0‖ ≤ R2 with
R2

R1
<

√
2

Assume also that ∀x ∈ Σ, TxΣ ∩ BR1(x0) = ∅. Assume moreover that all periodic Reeb
orbits are non degenerate. Then Σ carries at least n geometrically distinct periodic Reeb
orbits.

Remark 4.1.2 The assumption ∀x ∈ Σ, TxΣ ∩ BR1(x0) = ∅ (which is weaker than
convexity) can be stated as

〈νΣ(z), z〉 > R1, ∀z ∈ Σ (4.1)
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4. On the minimal number of periodic Reeb orbits

where νΣ(z) is the exterior normal vector of Σ at point z and 〈·, ·〉 denotes the Euclidean
scalar product on R2n.

Proof: We consider ellipsoids, very close to the spheres, defined by

S′R1
=

{
n∑

i=1

a−1i
(
(xi)2 + (yi)2

)
= R2

1

}

with a1 < · · · < an real numbers arbitrarily close to 1 and rationally independent, and

S′R2
= {∑n

i=1 a
−1
i

(
(xi)2 + (yi)2

)
= R2

2 }, and we denote by S̃′R1
, Σ̃ and S̃′R2

the compact

regions in R2n bounded respectively by S′R1
, Σ and S′R2

, endowed with the restriction of
the standard symplectic form ω on R2n. We take the parameters ai sufficiently close to 1
so that we have the inclusion

S̃′R1
⊂ Σ̃ ⊂ S̃′R2

of Liouville domains. The contact form on the boundaries is the one induced by ι(Xrad)ω,
where Xrad is the radial vector field Xrad =

1
2

∑
xi∂xi + y

i∂yi . The completion of those Li-
ouville domain is (R2n, ω). By Theorem 3.1.16, the transfer morphisms yields the following
commutative diagram:

SHS1,+(S̃′R2
, ω)

φ //

∼=
55

SHS1,+(Σ̃, ω) // SHS1,+(S̃′R1
, ω). (4.2)

We can consider the positive S1-equivariant symplectic homology truncated by the action at
level ≤ T , SHS1,+,T . Since all Floer trajectories inducing the morphisms lower the action,
we still have the commutative diagram for the truncated positive invariant symplectic
homology:

SHS1,+,T (S̃′R2
, ω)

φ //

∼=
44

SHS1,+,T (Σ̃, ω) // SHS1,+,T (S̃′R1
, ω). (4.3)

where we have chosen a number T such that

πanR
2
2 < T < 2πa1R

2
1. (4.4)

This is possible thanks to the “pinching” hypothesis R2
R1

<
√
2.

By Theorem 2.2.2, SHS1,+,T (S̃′R2
, ω) is generated by n elements u0⊗γ1Max, . . . u

0⊗γnMax cor-

responding to n simple periodic Reeb orbits on S′R2
, γ1, . . . , γn of action πa1R

2
2, . . . , πanR

2
2.

The analogous is true for SHS1,+,T (S̃′R1
, ω) with actions πa1R

2
1, . . . , πanR

2
1.

By (4.3), SHS1,+,T (Σ̃, ω) is thus of rank at least n. All applications in the above dia-
grams decrease the action thus the action of each of those n generators in SHS1,+,T (Σ̃, ω)∩
Im(φ) is pinched between πa1R

2
1 and πanR

2
2 < 2πa1R

2
1.
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4.1. Minimal number of periodic Reeb orbits on a hypersurface in R2n

By Corollary 2.2.5, the only generators that may appear in SHS1,+,T (Σ̃, ω) are elements
of the form u0 ⊗ γMax with γ a good Reeb orbit on Σ.

It remains to prove that the n elements in the image of φ are geometrically distinct.
By the pinching condition on their action, we know that they are not iterate one from
another but we still need to prove that two of them can not be the iterates of a same orbit
of smaller action. This we do by proving that the smallest possible action for any periodic
Reeb orbit on Σ is greater than πa1R

2
1.

Let γ : [0, T ] → Σ be a simple periodic Reeb orbit. We have :

2T =

∫ T

0
αγ(t)

(
γ̇(t)

)
dt

=

∫ T

0
〈γ̇(t), Jγ(t)〉dt since αx(Xx) =

1
2〈Xx, Jx〉

=

∫ T

0
〈γ̇(t), Jγ̄(t)〉dt with γ̄(t) := γ(t)−

∫ T

0
γ(t)dt

≤ ‖γ̇‖L2‖γ̄‖L2

≤ ‖γ̇‖2L2
T
2π via the Wirtinger’s inequality

=
T

2π

∫ T

0
‖γ̇(t)‖2dt

=
T

2π

∫ T

0
‖(Rα)γ(t)‖2dt (4.5)

For any point x in Σ, the norm of the Reeb vector field is bounded by ‖(Rα)x‖ ≤ 2
R1

.
Indeed, Rα is proportional to JνΣ since ι(JνΣ)dα = 0 because ι(JνΣ)dα(Y ) = ω(JνΣ, Y ) =
−〈νΣ, Y 〉 = 0 for all Y ∈ TΣ. Thus Rα = cJνΣ with |c| = ‖Rα‖. But αx(Rαx) = 1 =
1
2〈cxJνΣ(x), Jx〉 = cx

2 〈νΣ(x), x〉. Therefore, by assumption (4.1), cx = 2
〈νΣ(x),x〉 ≤

2
R1

. And

thus (4.5) ≤ 4
R2

1
T T

2π . Then 2T ≤ 2T T
πR2

1
and we reach the conclusion

T ≥ πR2
1.

Hence the conclusion of the Theorem.

The original proof of Theorem 4.1.1 uses variational methods that work only in R2n.
This new proof may extend to other cases such as hypersurfaces in negative line bundles.
For this, we have to extend our machinery to some non exact compact symplectic manifolds
with contact type boundaries.
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4. On the minimal number of periodic Reeb orbits

4.2 Extension of the definitions

Let (W,ω,X) be a compact symplectic manifold with contact type boundary, satisfying

assumptions 1.1.1 and 1.1.2 and let (Ŵ , ω̂) be its symplectic completion. We want to define
the positive symplectic homology and the positive S1-equivariant symplectic homology of
(W,ω). In this general situation, the action does not distinguish between constant and non-
constant 1-periodic orbits since we have no control on the disk bounded by a 1-periodic
orbit.

4.2.1 Positive symplectic homology

This section is joint results with Strom Borman.

Definition 4.2.1 Let H̃ be a Hamiltonian in Hstd. The submodule of the Floer complex
generated by the critical points of H̃ is denoted by SC−∗ (H̃, J).

We restrict ourselves to the cofinal family of perturbation of Morse-Bott Hamiltonians as
defined in section 2.1.3. We use the same notations as in section 2.1.3.

Theorem 4.2.2 Let H be a Hamiltonian in HMB. There exists a real number δ0 > 0
such that for all δ < δ0, the submodule SC−∗ (Hδ, J) is a subcomplex of the Floer complex
SC∗(Hδ, J).

Proof: We prove this by contradiction, assuming that no such δ0 exists. Then there is
a decreasing sequence δn converging to 0 such that SC−∗ (Hδn , J) is not a subcomplex of
SC∗(Hδn , J). This implies that for all n, there exists a Floer trajectory for Hδn going from
a fixed critical point of Hδn to a nonconstant 1-periodic orbit of Hδn . We can assume
(considering, if needed, a subsequence) that the 1-periodic orbit is the same for all n.
This sequence of Floer trajectories converges to a Floer trajectory for the autonomous
Hamiltonian by the following theorem due to Bourgeois and Oancea:

Theorem 4.2.3 ([BO09b], Proposition 4.7) Let vn ∈ M(γ−, γ+, Hδn , J) be a sequence
of Floer trajectories with δn → 0 as n → ∞. Then there exists a Broken Floer trajectory
with gradient fragments u and a subsequence (still denoted by vn) such that vn → u.

To conclude the proof of theorem 4.2.2, we shall now prove that it is impossible for an
autonomous Hamiltonian H to have such a Floer trajectory. Precisely, we shall show that,
for any critical point p of H and any nonconstant 1-periodic orbit γ of H, the moduli space
M(p, γ;H, J) of solutions u : R× S1 → Ŵ of the Floer equation





∂su+ J ◦ u
(
∂θu−XH ◦ u

)
= 0

u(−∞, ·) = p (critical point)
u(+∞, ·) = γ(·) ⊂ ∂W × {ργ}

(4.6)
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is empty. (We have considered the image of γ sitting in ∂W×{ργ}.) We choose a compatible
almost complex structure J i.e a J ∈ End

(
T (∂W × R+)

)
such that dα(·, J ·) > 0 on

ξ ⊂ ∂W × R+, such that Jξ = ξ and such that J∂ρ = Rα near the Hamiltonian orbits.
We assume u is a Floer trajectory, solution of (4.6), and we consider a real number s0 ∈ R

such that u(s, ·) stays in a neighbourhood of γ for all s ≥ s0. We can decompose u:

u(s, θ) :=
(
f(s, θ), a(s, θ)

)
∈ ∂W × R+

with a(s, θ) close to ργ for s ≥ s0. We distinguish two cases:

Case 1: there exist s and θ such that a(s, θ) > ργ ;

Case 2: a(s, θ) ≤ ργ for all s and θ.

We shall see that neither case can arise, and this will conclude our proof.
Case 1
We prove by contradiction that it can not happen, as a direct application of Abouzaid
maximum principle (proven above as theorem 3.1.6). Assume that u : R × S1 → Ŵ is

a Floer trajectory whose image intersects Ŵ \
(
W ∪ (∂W × [0, ργ ])

)
. There exists δ > 0

such that the intersection of the image of u with a slice ∂W × {ρ} is non-empty for any
ργ < ρ < ργ + δ and we choose between them a regular value ργ + ǫ of ρ ◦ u.

The manifoldW ′ := Ŵ \(W ∪(∂W× [0, ργ+ǫ[)) is symplectic with contact type bound-
ary ∂W×{ρ0+ǫ} and Liouville vector field pointing inwards. Let S be the inverse image of
W ′ under the map u; it is a compact Riemann surface with boundary embedded in R×S1;
the complex structure j is the restriction to S of the complex structure j on the cylinder de-
fined by j(∂s) = ∂θ. We define β to be the restriction of dθ to S. The fact that u is a Floer
trajectory is equivalent to (du−XH ⊗β)0,1 := 1

2 ((du−XH ⊗ β) + J(du−XH ⊗ β)j) = 0,
where du is the differential of the map u viewed as a section of T ∗S⊗u∗TW ′. Then theorem
3.1.6 concludes.

Case 2
To prove that this situation can not happen, we use an argument taken from Bourgeois
and Oancea [BO09a]. We restrict to s ∈ [s0,∞) and we define ā(s) :=

∫
S1 a(s, θ)dθ.

Equation (4.6) decomposes as:





∂sa− α(∂θf)− e−ah′(a) = 0
α(∂sf) + ∂θa = 0

πξ(∂sf) + πξ(J∂θf) = 0
(4.7)

where πξ : T (∂W ×R) → ξ is the projection on ξ along R〈∂ρ〉 ⊕R〈Rα〉. The first equation
of (4.7) implies

∂sā(s) =

∫

S1

α(∂θf)dθ +

∫

S1

h′(a)e−adθ ≤
∫

S1

α(∂θf)dθ + T (4.8)
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4. On the minimal number of periodic Reeb orbits

where T = h′(ργ)eργ . The inequality is true since h′(b)e−b is increasing in b.

For s0 ≤ s ≤ s′, we have, by Stokes,

∫

S1

α
(
∂θf(s

′, θ)
)
dθ −

∫

S1

α
(
∂θf(s, θ)

)
dθ =

∫

[s,s′]×S1

f⋆dα (4.9)

and ∫

[s,s′]×S1

f⋆dα > 0 (4.10)

because dα(·, J ·) > 0 on the contact distribution and dα “kills” ∂ρ and Rα; we assume
of course that f is non constant. Hence the map s 7→

∫
S1 α

(
∂θf(s, θ)

)
dθ is an increasing

function. Since we know that lims→∞ f(s, θ) = γ′(−Tθ), where γ′ is the corresponding
Reeb orbit, we have ∫

S1

α
(
∂θf(+∞, θ)

)
dθ = −T. (4.11)

Hence

∂sā(s) ≤
∫

S1

α
(
∂θf(s, θ)

)
dθ + T ≤ 0. (4.12)

Now ā(+∞) = ργ since
(
a(+∞, θ), f(+∞, θ)

)
=

(
ργ , γ

′(−Tθ)
)
. Since a ≤ ργ by assump-

tion and since ā(s) is non increasing by the above, we have

a(s, θ) ≡ ργ . (4.13)

So (4.7) becomes: 



α(∂θf)− h′(a)e−a = 0
α(∂sf) = 0

πξ(df ◦ j)− Jπξ(df) = 0
(4.14)

Thus α(∂θf) = h′(a)e−a = h′(ργ)eργ = constant. Using (4.9), we get

∫

[s0,∞)×S1

f⋆dα = 0 (4.15)

which implies that f is constant, which yields a contradiction.

We denote by H′std the subfamily of Hamiltonians in Hstd such that the conclusion of
Theorem 4.2.2 holds.

Definition 4.2.4 Let Hδ be a Hamiltonian in H′std, we define the positive Floer complex
to be the quotient

SC+
∗ (Hδ, J) := SC∗(Hδ, J)/SC−∗ (Hδ, J)

.
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We would like to define as in section 1.2.4 the direct limit over Hamiltonians of the positive
homologies defined by those quotients.

Theorem 4.2.5 Let H0δ and H1δ be two Hamiltonian in H′std such that H0δ ≤ H1δ. Let
Hs be a increasing homotopy between them. The continuation map maps SC−∗ (H0, J0) to
SC−∗ (H1, J1).

Proof: Let H1 be the Hamiltonian in HMB from which H1δ is the perturbation. It suffices
to show, as before, that for any nonconstant orbit γ of H1 the moduli space M(p, γ;Hs, Js)

of solutions u : R× S1 → Ŵ to the Floer continuation equation





∂su+ Js ◦ u
(
∂θu−XHs ◦ u

)
= 0

u(−∞, θ) = p (critical point)
u(+∞, θ) =

(
tγ , γ(−Tθ)

) (4.16)

is empty.

We consider again a real number s0 ∈ R such that u
(
s, θ) stays in a neighbourhood of

the image of γ for all s ≥ s0 and such that Hs is constant (in s) for s ≥ s0. We can again
decompose u in

u(s, θ) =
(
f(s, θ), a(s, θ)

)
∈M × R+.

Again,we distinguish two cases:

1. there exist s and θ such that a(s, θ) > ργ ;

2. a(s, θ) ≤ ργ ∀s, θ.

The proof to rule out the second case is the same as in Theorem 4.2.2.
For the first case, the argument is the same and the conclusion comes from the generalised
version of “Abouzaid maximum principle” stated in proposition 3.1.10.

We are now ready to define the positive symplectic homology in the framework of a
compact symplectic manifold with contact type boundary (W,ω) which is aspherical and
such that its first Chern class vanishes on the second homotopy group :

Definition 4.2.6 The positive symplectic homology of (W,ω) is defined as

SH+(W,ω) := lim−−−−−→
H∈H′

std

H∗(SC
+
∗ (H, J), d).
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4. On the minimal number of periodic Reeb orbits

4.2.2 Positive S1-equivariant symplectic homology

We shall use the special complex in the alternative definition of S1-equivariant symplectic
homology presented in section 2.1.2. One considers an autonomous Hamiltonian H in HMB

(cf definition 2.1.2) such that the slope a is big and ρ0 is small; one denotes by Hδ a small
perturbation, as in section 2.1.3. One defines the positive S1-equivariant Floer complex of
Hδ by

SC̃S
1,+
∗ (Hδ) := Z[u]⊗Z SC

+
∗ (Hδ)

with differential induced by the differential given by (2.2). The fact that SCS
1,−
∗ (Hδ) is a

subcomplex of SCS
1

∗ (Hδ) for δ small enough is a consequence of Theorem 4.2.3, extended
to parametrized Floer trajectories in chapter 5.2 of [BO13a]; one reduces the problem to
the situation of Theorems 4.2.5 and 4.2.2. Similarly, there are well-defined continuation
maps induced by increasing homotopies of Hamiltonians and we have

SHS1,+
∗ (W ) := lim−→

Hδ∈H′
std

SHS1,+
∗ (Hδ).

4.3 Reeb orbits on hypersurfaces in negative line bundles

We sketch a procedure to detect a minimal number of geometrically distinct periodic Reeb
orbits for hypersurfaces in some negative line bundles.

Symplectic structure on the complement of the zero section

Our framework here is a complex line bundle L π→ B2n over a closed symplectic manifold
(B2n, ωB), endowed with a Hermitian structure h and a connection ∇. We assume L to be
negative i.e.

c1(L) = −k[ωB]
for a real number k > 0. The transgression 1-form, θ∇ ∈ Ω1

(
L \OL,R

)
is defined by

{
θ∇u (u) = 0, θ∇u (iu) =

1
2π u ∈ L \OL

θ∇|H∇ ≡ 0 where H∇ is the horizontal distribution.
(4.17)

We have

dθ∇ = kπ⋆ωB.

We denote by r the radial function on the fiber, i.e. r : L → R : u 7→ hπ(u)(u, u)
1
2 =: |u|.

Observe that d(r2θ∇) is symplectic except on the zero section OL. We want to have
information about the minimal number of periodic orbits of the Reeb vector field on a
hypersurface in L \OL endowed with the contact form defined by the restriction of (r2θ∇)
to Σ.
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4.3. Reeb orbits on hypersurfaces in negative line bundles

Reeb orbits on the circle bundle with varying radius

Let f : B → R be a smooth function. Define the contact hypersurface
(
Sef = {u ∈ L | |u| = e

1
2
f(π(u))}, α := (r2θ∇)|S

ef

)

The Reeb vector field on Sef is given by:

Rα = e−f(π(u))
(
2π∂θ + X̄f

)
(4.18)

where ∂θ is the infinitesimal rotation in the fiber (∂θ at the point u identifies with iu), where
Xf is the Hamiltonian vector field on B corresponding to the function f (i.e. ι(Xf )ωB = df)
and where X̄ denotes the horizontal lift of a vector X ∈ TB. The periodic Reeb orbits
correspond to the critical points of f . The contact action (i.e. the period) of a simple orbit
γ which lies above a critical point p is

A(γ) = ef(p). (4.19)

The Conley-Zehnder index of an orbit which is a k iterate of a simple orbit over the critical
point p is given by

µCZ(γ) = 2k − 1

2
Sign(Hessp f) (4.20)

It is given by the Conley-Zehnder index of the path of symplectic matrices,

φ :
[
0, ef(p)

]
→ Sp(R2n,Ω0) φ(t) :=

(
ϕRα
t

)
⋆q

∣∣∣∣
ξq

given by the expression of the differential of the flow in a symplectic trivialisation of the
contact structure ξ along γ.

We have thus proven the following, using Morse’s inequalities:

Proposition 4.3.1 Let Σ be a contact type hypersurface in L such that the intersection of
Σ with each fiber is a circle. The contact form is the restriction of r2θ∇. Then Σ carries at
least

∑2n
i=0 βi geometrically distinct periodic Reeb orbits, where βi denote the Betti numbers

of B.

We do not make here any assumptions on B except that B is closed.

Symplectic structure on a negative line bundle

Definition 4.3.2 Let ρ : [0,∞[→ [0, 1] be a smooth decreasing function such that on a
neighbourhood of 0, ρ is equal to 1 and ρ vanishes outside a compact set. Let ǫ > 0 be
such that 2r + ǫρ′(r) > 0. The two form defined by

ωρ,ǫ := d(r2θ∇) + ǫd(ρ(r)θ∇) (4.21)
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4. On the minimal number of periodic Reeb orbits

is smooth and well defined on L; indeed, it is obviously well defined (and exact) on L\OL.
On the zero section, it coincides with the sum of ǫπ∗(ωB) and the standard form on the
fiber. It is symplectic, non exact. For a fixed ǫ those forms are cohomologous. For two
different choices of ǫ and ρ, one can interpolate between ωρ0,ǫ0 and ωρ1,ǫ1 staying in the
class of elements of the form ωρ,ǫ.

When the circle bundle is the boundary of a Liouville domain

Theorem 4.3.3 Let Σ be a contact type hypersurface in L, negative line bundle over a
symplectic manifold. Suppose that there exists a Liouville domain W ′ (such that its first
Chern class vanishes on all tori) whose boundary coincides with the circle bundle SR2

1
.

Suppose there exists a Morse function f : B → R such that all critical points of f have a
Morse index of the same parity. Let α be the contact form on Σ induced by r2θ∇ on L.
Assume that Σ is “pinched” between two circle bundles SR2

1
and SR2

2
of radii R1 and R2

such that 0 < R1 < R2 and R2
R1

<
√
2. Assume that the minimal action of any periodic

Reeb orbit on Σ is bounded below by R2
1. Then Σ carries at least

∑2n
i=0 βi geometrically

distinct periodic Reeb orbits, where the βi denote the Betti numbers of B.

In this Theorem, the assumption on the existence of a Morse function all of whose critical
points have Morse indices of the same parity is of a technical nature. Its purpose is to
bring the situation within the scope of Theorem 2.2.2, which is our tool for computing
the positive S1-equivariant symplectic homology. The lower bound on the period of any
periodic Reeb orbit is semi-technical; it is now the only way we have to distinguish the
images of the orbits. The “pinching” assumption is more conceptual, its main implication
is that the “n first generators” of the positive S1-equivariant symplectic homology are
simple orbits.
Proof: The proof is the same as for Theorem 4.1.1 using transfer morphisms for Liouville
domains. We see the hypersurfaces as lying in the completion of the Liouville domain W ′

which we assumed to exist. We find a small ǫ so that the convex domain Σ̃ bounded by
the hypersurface Σ is such that

S̃R2
1e

ǫf ⊂ Σ̃ ⊂ S̃R2
2e

ǫf ⊂ Ŵ ′

where S̃f is the domain bounded by Sf . We can compute the positive S1-equivariant
symplectic homology, which is spanned by periodic orbits of the Reeb vector field by
Theorem 2.2.2.

This is possible by the pinching condition. One uses then the transfer morphisms with
truncated action. We have seen that there are

∑2n
i=0 βi simple periodic orbits on SR1eǫf

whose actions are very close to R2
1 and the same number of simple periodic orbits on SR2eǫf

whose actions are very close to R2
2. The transfer morphism imply the existence of at least∑2n

i=0 βi periodic orbits on Σ with action between R2
1 et R2

2. Since we have assumed here
that the minimal action of any periodic Reeb orbit on Σ is bounded below by R2

1, those
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4.3. Reeb orbits on hypersurfaces in negative line bundles

orbits are geometrically distinct.

Symplectic homology for a hypersurface in a negative line bundle

Let W ⊂ L be a compact symplectic manifold of codimension 0 in L with contact type
boundary such that OL ⊂W ; the symplectic form on W is ωρ,ǫ|W . We choose the function
ρ such that ρ vanishes in a neighbourhood of the boundary of W . For the symplectic
homology to be well-defined, we assume that the closed symplectic manifold B is atoroidal
and that the first Chern class of its tangent bundle vanishes on the tori. We first ob-
serve that symplectic homology does not depend on the choice of such a function ρ. The
completions (L) are all symplectomorphic outside a neighbourhood of OL.

Lemma 4.3.4 The (positive, S1-equivariant, positive S1-equivariant) symplectic homology
of W is independent of ρ and ǫ.

The proof is the same as that of Lemma 3.2.5, using the fact that for a fixed ǫ the difference
of two of those symplectic forms is exact.

We even have a stronger result:

Lemma 4.3.5 Let β be a positive real number and consider Hamiltonians Hβ : S1× Ŵ →
R and H̃β : S1 × Ŵ × S2N+1 → R which are of the form βr + β′ for r big. Then SH(Hβ)

and SHS1
(H̃β) are independent of ρ and ǫ.

Proof: We consider a curve ωt, t ∈ [0, 1] of symplectic structures in our class and two
1-periodic orbits γ−, γ+ of Hβ . Remark the those orbits are the same for all t since the
symplectic forms coincide on ∂W ×R+ in the completion. We consider the moduli spaces
Mt(γ−, γ+, H

ωt

β , Jt, ) built from Floer trajectories which are solutions of

∂u

∂s
+ Jθt ◦ u

(∂u
∂θ

−Xt
Hβ

◦ u
)
= 0 (4.22)

going from one of these orbits to the other, where Xt
H is the Hamiltnian symplectic vector

field corresponding to H for the symplectic structure ωt. Observe that this equation coin-
cides with the classical Floer equation (with no t dependance) outside a compact set. So
it behaves in the same way as the continuation equation 1.3 for a homotopy with compact
support. Hence it defines a map which intertwines the differential. This gives an isomor-
phism in homology, since an inverse is defined by following the path of symplectic matrices
in the reverse way.

One does a similar reasoning to see that this isomorphism commutes with continuation
maps. Hence we get
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4. On the minimal number of periodic Reeb orbits

Lemma 4.3.6 The symplectic homology SH(W ) of W is independent of ρ and ǫ.

Remark that in this case of negative line bundle, the first term in the action i.e.
∫
D2 σ

⋆ωρ,ǫ

where σ : D2 → Ŵ with σ|
∂D2

= γ is given by

∫

D2

σ⋆ωρ,ǫ =

∫

D2

σ⋆
(
d(r2θ∇) + ǫd(ρ(r)θ∇)

)

=

∫

D2

σ⋆d(r2θ∇) +
∫

D2

σ⋆ǫd(ρ(r)θ∇)

=

∫

S1

γ⋆d(r2θ∇) + ǫ

∫

D2

σ⋆d(ρ(r)θ∇).

For a chosen Hamiltonian Hβ (or an S1 equivariant lift H̃β), one chooses ǫ sufficiently small
so that the actions are close to

AHβ
(γ) = −

∫

S1

γ⋆d(r2θ∇)−
∫

S1

Hβ

(
θ, γ(θ)

)

A
H̃β

(γ, z) = −
∫

S1

γ⋆d(r2θ∇)−
∫

S1

H̃β

(
θ, γ(θ), z

)
.

and by close we mean that the difference with the action is smaller than the smallest
value of the action and smaller than the difference of two actions (this is possible since,
for a given β, we only have a finite number of 1-periodic orbits). We proceed equivalently
for non contractible orbits for pullbacks on tori linking the orbit to a given loop in the
same homotopy class defined on the manifold B. This allows, when looking at a “stair
Hamiltonian” to define a transfer morphism, to use the action to distinguish the different
subcomplexes. The transfer is then defined as in section 3.1. All reasonings are the same,
since the exactness of the symplectic form was only used to distinguish different classes
of orbits by the value of their action. To see that the transfer does not depend on ǫ, one
proceeds as in Lemma 4.3.5.

At this point, extending the above results to the positive S1 equivariant homology, we
would have a theorem for hypersurfaces in negative line bundles over atoroidal symplectic
closed manifolds endowed with a Morse function such that all critical points of f have a
Morse index of the same parity. This is asking too much. So we should use the wider context
of symplectic manifolds which are monotone and work in the homology with coefficients in
the Novikov ring. Everything should extend to this new setup and should lead to

Conjecture 4.3.7 Let Σ be a contact type hypersurface in L, negative line bundle over a
closed monotone symplectic manifold. The bundle is endowed with a hermitian structure
and a connection. Suppose there exists a Morse function f : B → R such that all critical
points of f have a Morse index of the same parity. Let α be the contact form on Σ induced
by r2θ∇ on L. Assume that Σ is “pinched” between two circle bundles SR1 and SR2 of radii
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4.3. Reeb orbits on hypersurfaces in negative line bundles

R1 and R2 respectively such that 0 < R1 < R2 and R2
R1

<
√
2. Assume that the minimal

action of any periodic Reeb orbit on Σ is s bounded below by R2
1. Then Σ carries at least∑2n

i=0 βi geometrically distinct periodic Reeb orbits; where the βi are the Betti numbers of
B.

105





5 Normal forms for symplectic matrices

This chapter is to appear as an homonymous paper in Portugaliae Mathematica [Gutb].
We give here a self contained and elementary description of normal forms for symplectic

matrices, based on geometrical considerations. The normal forms in question are expressed
in terms of elementary Jordan matrices and integers with values in {−1, 0, 1} related to
signatures of quadratic forms naturally associated to the symplectic matrix.

Let V be a real vector space of dimension 2n with a non degenerate skewsymmetric
bilinear form Ω. The symplectic group Sp(V,Ω) is the set of linear transformations of V
which preserve Ω:

Sp(V,Ω) = {A : V → V |A linear and Ω(Au,Av) = Ω(u, v) for all u, v ∈ V } .

A symplectic basis of the symplectic vector space (V,Ω) is a basis {e1, . . . , e2n} in which
the matrix representing the symplectic form is Ω0 =

(
0 Id
− Id 0

)
. In a symplectic basis, the

matrix A′ representing an element A ∈ Sp(V,Ω) belongs to

Sp(2n,R) =
{
A′ ∈Mat(2n× 2n,R) |A′τΩ0A

′ = Ω0

}

where (·)τ denotes the transpose of a matrix.
Given an element A in the symplectic group Sp(V,Ω), we want to find a symplectic basis
of V in which the matrix A′ representing A has a distinguished form; to give a normal
form for matrices in Sp(2n,R) means to describe a distinguished representative in each
conjugacy class. In general, one cannot find a symplectic basis of the complexified vector
space for which the matrix representing A has Jordan normal form.

The normal forms considered here are expressed in terms of elementary Jordan matrices
and matrices depending on an integer s ∈ {−1, 0, 1}. They are closely related to the forms
given by Long in [LD00, Lon02] ; the main difference is that, in those references, some
indeterminacy was left in the choice of matrices in each conjugacy class, in particular when
the matrix admits 1 as an eigenvalue. We speak in this case of quasi-normal forms. Other
constructions can be found in [Wim91, LM74, LMX99, Spe72, MT99] but they are either
quasi-normal or far from Jordan normal forms. Closely related are the constructions of
normal forms for real matrices that are selfadjoint, skewadjoint or unitary with respect
to an indefinite inner product where sign characteristics are introduced; they have been
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5. Normal forms for symplectic matrices

studied in many sources; for instance -mainly for selfadjoint and skewadjoint matrices-
in the monograph of I. Gohberg, P. Lancaster and L. Rodman [GLR05], and for unitary
matrices in the papers [AYLR04, GR91, Meh06b, Rod06]. Normal forms for symplectic
matrices have been given by C. Mehl in [Meh06a] and by V. Sergeichuk in [Ser87] ; in those
descriptions, the basis producing the normal form is not required to be symplectic.

We construct here normal forms using elementary geometrical methods.

The choice of representatives for normal (or quasi normal) forms of matrices depends
on the application one has in view. Quasi normal forms were used by Long to get precise
formulas for indices of iterates of Hamiltonian orbits in [Lon00]. The forms obtained here
were useful for us to give new characterisations of Conley-Zehnder indices of general paths
of symplectic matrices [Guta]. We have chosen to give a normal form in a symplectic basis.
The main interest of our description is the natural interpretation of the signs appearing
in the decomposition, and the description of the decomposition for matrices with 1 as an
eigenvalue. It also yields an easy natural characterization of the conjugacy class of an
element in Sp(2n,R). We hope it can be useful in other situations.

Assume that V decomposes as a direct sum V = V1 ⊕ V2 where V1 and V2 are Ω-
orthogonal A-invariant subspaces. Suppose that {e1, . . . , e2k} is a symplectic basis of V1

in which the matrix representing A|V1 is A′ =
(
A′

1 A
′
2

A′
3 A

′
4

)
. Suppose also that {f1, . . . , f2l} is

a symplectic basis of V2 in which the matrix representing A|V2 is A′′ =
(
A′′

1 A′′
2

A′′
3 A′′

4

)
. Then

{e1, . . . , ek, f1, . . . , fl, ek+1, . . . , e2k, fl+1, . . . , f2l} is a symplectic basis of V and the matrix
representing A in this basis is




A′1 0 A′2 0
0 A′′1 0 A′′2
A′3 0 A′4 0
0 A′′3 0 A′′4


 .

The notation A′⊕A′′ is used in Long [Lon00] for this matrix. It is “a direct sum of matrices
with obvious identifications”. We call it the symplectic direct sum of the matrices A′ and
A′′.

We C-linearly extend Ω to the complexified vector space V C and we C-linearly extend
any A ∈ Sp(V,Ω) to V C. If vλ denotes an eigenvector of A in V C of the eigenvalue λ, then
Ω(Avλ, Avµ) = Ω(λvλ, µvµ) = λµΩ(vλ, vµ), thus Ω(vλ, vµ) = 0 unless µ = 1

λ
. Hence the

eigenvalues of A arise in “quadruples”

[λ] :=

{
λ,

1

λ
, λ,

1

λ

}
. (5.1)
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We find a symplectic basis of V C so that A is a symplectic direct sum of block-upper-
triangular matrices of the form

(
J(λ, k)−1 0

0 J(λ, k)τ

)(
Id D(k, s)
0 Id

)
,

or 


J(λ,k)−1 0
J(λ,k)−1

J(λ,k)τ

0 J(λ,k)τ




(
Id 0 0 D(k,s)

Id D(k,s) 0
Id 0

0 Id

)
,

or 


J(λ,k)−1 0
J(λ,k+1)−1

J(λ,k)τ

0 J(λ,k+1)τ




(
Id 0 0 S(k,s,λ)

Id S(k,s,λ)τ 0
Id 0

0 Id

)
.

Here, J(λ, k) is the elementary k × k Jordan matrix corresponding to an eigenvalue λ,
D(k, s) is the diagonal k × k matrix

D(k, s) = diag(0, . . . 0, s),

and S(k, s, λ) is the k × (k + 1) matrix defined by

S(k, s, λ) :=




0 ... 0 0 0
...

...
...

...
0 ... 0 0 0
0 ... 0 1

2
is λis


 ,

with s an integer in {−1, 0, 1}. Each s ∈ {±1} is called a sign and the collection of such
signs appearing in the decomposition of a matrix A is called the sign characteristic of A.

More precisely, on the real vector space V , we shall prove:

Theorem 5.0.8 (Normal forms for symplectic matrices) Any symplectic endomor-
phism A of a finite dimensional symplectic vector space (V,Ω) is the direct sum of its
restrictions A|V[λ] to the real A-invariant symplectic subspace V[λ] whose complexification is

the direct sum of the generalized eigenspaces of eigenvalues λ, 1
λ
, λ and 1

λ
:

V C
[λ] := Eλ ⊕ E 1

λ
⊕ Eλ ⊕ E 1

λ

.

We distinguish three cases : λ /∈ S1, λ = ±1 and λ ∈ S1 \ {±1}.
Normal form for A|V[λ] for λ /∈ S1 :

Let λ /∈ S1 be an eigenvalue of A. Let k := dimCKer(A − λ Id) (on V C) and q be the
smallest integer so that (A− λ Id)q is identically zero on the generalized eigenspace Eλ.
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5. Normal forms for symplectic matrices

• If λ is a real eigenvalue of A (λ /∈ S1 so λ 6= ±1), there exists a symplectic basis of
V[λ] in which the matrix representing the restriction of A to V[λ] is a symplectic direct
sum of k matrices of the form

(
J(λ, qj)

−1 0
0 J(λ, qj)

τ

)

with q = q1 ≥ q2 ≥ · · · ≥ qk and J(λ,m) is the elementary m × m Jordan matrix
associated to λ

J(λ,m) =




λ 1
λ 1 0λ 1

...
...

0 λ 1
λ 1
λ


 .

This decomposition is unique, when λ has been chosen in {λ, λ−1}. It is determined
by the chosen λ and by the dimension dim

(
Ker(A− λ Id)r

)
for each r > 0.

• If λ = reiφ /∈ (S1 ∪R) is a complex eigenvalue of A, there exists a symplectic basis of
V[λ] in which the matrix representing the restriction of A to V[λ] is a symplectic direct
sum of k matrices of the form

(
JR

(
re−iφ, 2qj

)−1
0

0 JR
(
re−iφ, 2qj

)τ
)

with q = q1 ≥ q2 ≥ · · · ≥ qk and JR(re
iφ, 2m) is the 2m× 2m block upper triangular

matrix defined by

JR(re
iφ, 2m) :=




R(reiφ) Id

R(reiφ) Id 0
R(reiφ) Id

...
...

0 R(reiφ) Id

R(reiφ) Id

R(reiφ)




with R(reiφ) =
(
r cosφ −r sinφ
r sinφ r cosφ

)
.

This decomposition is unique, when λ has been chosen in {λ, λ−1, λ, λ−1}. It is is
determined by the chosen λ and by the dimension dim

(
Ker(A−λ Id)r

)
for each r > 0.

Normal form for A|V[λ] for λ = ±1 :
Let λ = ±1 be an eigenvalue of A. There exists a symplectic basis of V[λ] in which the
matrix representing the restriction of A to V[λ] is a symplectic direct sum of matrices of
the form (

J(λ, rj)
−1 C(rj , sj , λ)

0 J(λ, rj)
τ

)
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where C(rj , sj , λ) := J(λ, rj)
−1 diag

(
0, . . . , 0, sj

)
with sj ∈ {0, 1,−1}. If sj = 0, then rj

is odd. The dimension of the eigenspace of the eigenvalue λ is given by 2Card{j | sj =
0}+Card{j | sj 6= 0}.
The number of sj equal to +1 (resp. −1) arising in blocks of dimension 2k (i.e. with
corresponding rj = k) is equal to the number of positive (resp. negative) eigenvalues of the
symmetric 2-form

Q̂λ2k : Ker
(
(A− λ Id)2k

)
×Ker

(
(A− λ Id)2k

)
→ R

(v, w) 7→ λΩ
(
(A− λ Id)kv, (A− λ Id)k−1w

)
.

The decomposition is unique up to a permutation of the blocks and is determined by λ, by
the dimension dim

(
Ker(A − λ Id)r

)
for each r ≥ 1, and by the rank and the signature of

the symmetric bilinear 2-form Q̂λ2k for each k ≥ 1.
Normal form for A|V[λ] for λ ∈ S1 \ {±1} :

Let λ ∈ S1, λ 6= ±1 be an eigenvalue of A. There exists a symplectic basis of V[λ] in which
the matrix representing the restriction of A to V[λ] is a symplectic direct sum of 4kj × 4kj
matrices (kj ≥ 1) of the form




(
JR(λ,2kj)

)−1
0
...
0

···

···

0
...
0

sj V
1
kj

(φ) sj V
2
kj

(φ) )

0
(
JR(λ,2kj)

)τ


 (5.2)

and (4kj + 2)× (4kj + 2) matrices (kj ≥ 0) of the form




(
JR(λ,2kj)

)−1
sj U

2
kj

(φ)

0

...
0

···

···

0

...
0

sj
2
V 2
kj

(φ)
−sj
2
V 1
kj

(φ) U1
kj

(φ)

0 cosφ 0 ... 0 1 0 sj sinφ

0

0

...
0

(
JR(λ,2kj)

)τ
0

...
0

0 −sj sinφ 0 ... 0 0 −sj cosφ




(5.3)

where JR(e
iφ, 2k) is defined as above, where

(
V 1
kj
(φ)V 2

kj
(φ)

)
is the 2kj × 2 matrix defined

by

(
V 1
kj
(φ)V 2

kj
(φ)

)
=



(−1)kj−1R(eikjφ)

...
R(eiφ)


 (5.4)

with R(eiφ) =
(

cosφ − sinφ
sinφ cosφ

)
, where

(
U1
kj
(φ)U2

kj
(φ)

)
=

(
V 1
kj
(φ)V 2

kj
(φ)

)(
R(eiφ)

)
(5.5)
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5. Normal forms for symplectic matrices

and where sj = ±1. The complex dimension of the eigenspace of the eigenvalue λ in V C is
given by the number of such matrices.
The number of sj equal to +1 (resp. −1) arising in blocks of dimension 2m in the normal
decomposition given above is equal to the number of positive (resp. negative) eigenvalues
of the Hermitian 2-form Q̂λm defined on Ker

(
(A− λ Id)m

)
by:

Q̂λm : Ker
(
(A− λ Id)m

)
×Ker

(
(A− λ Id)m

)
→ C

(v, w) 7→ 1
λ
Ω
(
(A− λ Id)kv, (A− λ Id)k−1w

)
if m = 2k

(v, w) 7→ iΩ
(
(A− λ Id)kv, (A− λ Id)kw

)
if m = 2k + 1.

This decomposition is unique up to a permutation of the blocks, when λ has been chosen in
{λ, λ}. It is determined by the chosen λ, by the dimension dim

(
Ker(A − λ Id)r

)
for each

r ≥ 1 and by the rank and the signature of the Hermitian bilinear 2-form Q̂λm for each
m ≥ 1.

The normal form for A|V[λ] is given in Theorem 5.2.1 for λ /∈ S1, in Theorem 6.5.1 for

λ = ±1, and in Theorem 5.4.2 for λ ∈ S1 \ {±1}. The characterisation of the signs is given
in Proposition 5.3.3 for λ = ±1 and in Proposition 5.4.4 for λ ∈ S1 \ {±1}.

A direct consequence of Theorem 5.0.8 is the following characterization of the conjugacy
class of a matrix in the symplectic group.

Theorem 5.0.9 The conjugacy class of a matrix A ∈ Sp(2n,R) is determined by the
following data:

• the eigenvalues of A which arise in quadruples [λ] = {λ, λ−1, λ, λ−1};

• the dimension dim
(
Ker(A − λ Id)r

)
for each r ≥ 1 for one eigenvalue in each class

[λ];

• for λ = ±1, the rank and the signature of the symmetric form Q̂λ2k for each k ≥ 1
and for an eigenvalue λ in S1 \ {±1} chosen in each [λ], the rank and the signature
of the Hermitian form Q̂λm for each m ≥ 1, with

Q̂λm : Ker
(
(A− λ Id)m

)
×Ker

(
(A− λ Id)m

)
→ C

(v, w) 7→ 1
λ
Ω
(
(A− λ Id)kv, (A− λ Id)k−1w

)
if m = 2k

(v, w) 7→ iΩ
(
(A− λ Id)kv, (A− λ Id)kw

)
if m = 2k + 1.

�

5.1 Preliminaries

Lemma 5.1.1 Consider A ∈ Sp(V,Ω) and let 0 6= λ ∈ C. Then Ker(A − λ Id)j in V C is
the symplectic orthogonal complement of Im(A− 1

λ
Id)j .
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Proof:

Ω
(
(A− λ Id)u,Av

)
= Ω(Au,Av)− λΩ(u,Av) = Ω(u, v)− λΩ(u,Av)

= −λΩ
(
u,

(
A− 1

λ
Id

)
v
)

and by induction

Ω
(
(A− λ Id)ju,Ajv

)
= (−λ)jΩ

(
u,

(
A− 1

λ
Id

)j
v
)
. (5.6)

The result follows from the fact that A is invertible.

Corollary 5.1.2 If Eλ denotes the generalized eigenspace of eigenvalue λ, i.e Eλ :=
{
v ∈

V C | (A− λ Id)jv = 0 for an integer j > 0
}
, we have

Ω(Eλ, Eµ) = 0 when λµ 6= 1.

Indeed the symplectic orthogonal complement of Eλ = ∪j Ker(A−λ Id)j is the intersection
of the Im(A− 1

λ
Id)j . By Jordan normal form, this intersection is the sum of the generalized

eigenspaces corresponding to the eigenvalues which are not 1
λ
.

If v = u+iu′ is in Ker(A−λ Id)j with u and u′ in V then v = u−iu′ is in Ker(A−λ Id)j
so that Eλ ⊕ Eλ is the complexification of a real subspace of V . From this remark and
corollary 5.1.2 the space

W[λ] := Eλ ⊕ E 1
λ
⊕ Eλ ⊕ E 1

λ

(5.7)

is the complexification of a real and symplectic A-invariant subspace V[λ] and

V = V[λ1] ⊕ V[λ2] ⊕ . . .⊕ V[λK ] (5.8)

where we denote by [λ] the set {λ, λ, 1
λ
, 1
λ
} and by [λ1] , . . . , [λK ] the distinct such sets

exhausting the eigenvalues of A.
We denote by A[λi] the restriction of A to V[λi]. It is clearly enough to obtain normal forms
for each A[λi] since A will be a symplectic direct sum of those.

We shall construct a symplectic basis of W[λ] (and of V[λ]) adapted to A for a given
eigenvalue λ of A. We assume that (A−λ Id)p+1 = 0 and (A−λ Id)p 6= 0 on the generalized
eigenspace Eλ. Since A is real, this integer p is the same for λ. By lemma 5.1.1, Ker(A−
λ Id)j is the symplectic orthogonal complement of Im

(
A− 1

λ
Id

)j
for all j, thus dimKer(A−

λ Id)j = dimKer
(
A− 1

λ
Id

)j
; hence the integer p is the same for λ and 1

λ
.

We decompose W[λ] (and V[λ]) into a direct sum of A-invariant symplectic subspaces.
Given a symplectic subspace Z of V[λ] which is A-invariant , its orthogonal complement

(with respect to the symplectic 2-form) V ′ := Z⊥Ω is again symplectic and A-invariant.
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5. Normal forms for symplectic matrices

The generalized eigenspace for A on V
′C are E′µ = V

′C ∩ Eµ, and the smallest integer p′

for which (A− λ Id)p
′+1 = 0 on E′λ is such that p′ ≤ p.

Hence, to get the decomposition of W[λ] (and V[λ]) it is enough to build a symplectic
subspace ofW[λ] which is A-invariant and closed under complex conjugation and to proceed
inductively. We shall construct such a subspace, containing a well chosen vector v ∈ Eλ so
that (A− λ Id)pv 6= 0.

We shall distinguish three cases; first λ /∈ S1 then λ = ±1 and finally λ ∈ S1 \ {±1}.
We first present a few technical lemmas which will be used for this construction.

5.1.1 A few technical lemmas

Let (V,Ω) be a real symplectic vector space. Consider A ∈ Sp(V,Ω) and let λ be an
eigenvalue of A in V C.

Lemma 5.1.3 For any positive integer j, the bilinear map

Q̃j : Eλ /Ker(A− λ Id)j × E 1
λ
/Ker

(
A− 1

λ
Id

)j → C

(
[v], [w]

)
7→ Q̃j

(
[v], [w]

)
:= Ω

(
(A− λ Id)jv, w

)
v ∈ Eλ, w ∈ E 1

λ
(5.9)

is well defined and non degenerate. In the formula, [v] denotes the class containing v in
the appropriate quotient.

Proof: The fact that Q̃j is well defined follows from equation (5.6); indeed, for any integer
j, we have

Ω
(
(A− λ Id)ju, v

)
= (−λ)jΩ

(
Aju,

(
A− 1

λ
Id

)j
v
)
. (5.10)

The map is non degenerate because Q̃j
(
[v], [w]

)
= 0 for all w if and only if (A−λ Id)jv = 0

since Ω is a non degenerate pairing between Eλ and E 1
λ
, thus if and only if [v] = 0. Similarly,

Q̃j
(
[v], [w]

)
= 0 for all v if and only if w is Ω-orthogonal to Im(A− λ Id)j , thus if and only

if w ∈ Ker
(
A− 1

λ
Id

)j
hence [w] = 0.

Lemma 5.1.4 For any v, w ∈ V , any λ ∈ C \ {0} and any integers i ≥ 0, j > 0 we have:

Ω
(
(A− λ Id)iv,

(
A− 1

λ
Id

)j
w
)

= − 1

λ
Ω
(
(A− λ Id)i+1v,

(
A− 1

λ
Id

)j
w
)

(5.11)

− 1

λ2
Ω
(
(A− λ Id)i+1v,

(
A− 1

λ
Id

)j−1
w
)
.

In particular, if λ is an eigenvalue of A, if v ∈ Eλ is such that p ≥ 0 is the largest integer
for which (A− λ Id)pv 6= 0, we have for any integers k, j ≥ 0:

Ω
(
(A− λ Id)p+kv, w

)
= (−λ2)jΩ

(
(A− λ Id)p+k−jv,

(
A− 1

λ
Id

)j
w
)

(5.12)
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so that

Ω
(
(A− λ Id)pv, w

)
= (−λ2)pΩ

(
v,

(
A− 1

λ
Id

)p
w
)

(5.13)

and

Ω
(
(A− λ Id)kv,

(
A− 1

λ
Id

)j
w
)
= 0 if k + j > p. (5.14)

Proof: We have:

Ω
(
(A− λ Id)iv,

(
A− 1

λ
Id

)j
w
)

= − 1

λ
Ω
((
A− λ Id−A

)
(A− λ Id)iv,

(
A− 1

λ
Id

)j
w
)

= − 1

λ
Ω
(
(A− λ Id)i+1v,

(
A− 1

λ
Id

)j
w
)

+
1

λ
Ω
(
A(A− λ Id)iv,

(
A− 1

λ
Id

)(
A− 1

λ
Id

)j−1
w
)

= − 1

λ
Ω
(
(A− λ Id)i+1v,

(
A− 1

λ
Id

)j
w
)

+
1

λ
Ω
(
(A− λ Id)iv,

(
A− 1

λ
Id

)j−1
w
)

− 1

λ2
Ω
(
A(A− λ Id)iv,

(
A− 1

λ
Id

)j−1
w
)

and formula (5.11) follows.
For any integers k, j ≥ 0 and any v such that (A− λ Id)pv = 0, we have, by (5.6),

(−λ)jΩ
(
(A− λ Id)p+k+1−jv,

(
A− 1

λ
Id

)j
w
)
= Ω

(
(A− λ Id)p+k+1v,Ajw

)
= 0.

Hence, applying formula (5.11) with a decreasing induction on j, we get formula (5.12).

The other formulas follow readily.

Definition 5.1.5 For λ ∈ S1 an eigenvalue of A and v ∈ Eλ a generalized eigenvector, we
define

Ti,j(v) :=
1

λiλ
j
Ω
(
(A− λ Id)iv, (A− λ)jv

)
. (5.15)

We have, by equation (5.11) :

Ti,j(v) = −Ti+1,j(v)− Ti+1,j−1(v), (5.16)

and also,

Ti,j(v) = −Tj,i(v). (5.17)
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Lemma 5.1.6 Let λ ∈ S1 be an eigenvalue of A and v ∈ Eλ be a generalised eigenvector
such that the largest integer p so that (A − λ Id)pv 6= 0 is odd, say, p = 2k − 1. Then, in
the A-invariant subspace Evλ of Eλ generated by v, there exists a vector v′ generating the
same A-invariant subspace Ev

′

λ = Evλ, so that (A− λ Id)pv′ 6= 0 and so that

Ti,j(v
′) = 0 for all i, j ≤ k − 1.

If λ is real (i.e. ±1), and if v is a real vector (i.e. in V ), the vector v′ can be chosen to be
real as well.

Proof: Observe that

Tk,k−1(v) = −Tk,k(v)− Tk−1,k(v) by (5.11)

= −Tk−1,k(v) by (5.14)

= Tk,k−1(v) by (5.17)

is real and can be put to d = ±1 by rescaling the vector. We use formulas (5.11) and (5.17)
and we proceed by decreasing induction on i+ j as follows:

• if Tk−1,k−1(v) = α1, this α1 is purely imaginary, we replace v by

v′ := v − α1

2λd
(A− λ Id)v;

clearly Ev
′

λ = Evλ and Ti,j(v
′) = Ti,j(v) for i+ j ≥ 2k − 1 but now

Tk−1,k−1(v
′) = α1 −

α1

2d
Tk,k−1(v)−

α1

2d
Tk−1,k(v) = 0;

so we can now assume Tk−1,k−1(v) = 0; observe that if λ is real and v is in V , then
α1 = 0 and v′ = v;

• if Tk−2,k−1(v) = α2 = −Tk−1,k−2(v), this α2 is real and we replace v by

v − α2

2λ2d
(A− λ Id)2v;

the space Evλ does not change and the quantities Ti,j(v) do not vary for i+j ≥ 2k−2;
now

Tk−2,k−1(v
′) = α2 −

α2

2d
Tk,k−1(v)−

α2

2d
Tk−2,k+1(v) = 0,

hence also Tk−1,k−2(v′) = 0; observe that if λ is real and v is in V , then v′ is in V .

• we now assume by induction to have a J > 0 so that Ti,j(v) = 0 for all 0 ≤ i, j ≤ k−1
so that i+ j > 2k − 1− J ;
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• if Tk−J,k−1(v) = αJ , then Tk−J,k−1(v) = (−1)J−1Tk−1,k−J(v) so that αJ is real when
J is even and is imaginary when J is odd; we replace v by

v − αJ
2λJd

(A− λ Id)Jv;

the space Evλ does not change and the quantities Ti,j(v) do not vary for i+j ≥ 2k−J ;
but now

Tk−J,k−1(v
′) = αJ − αJ

2d
Tk,k−1(v)−

αJ
2d
Tk−J,k+J−1(v)

= αJ − αJ
2

− (−1)J
αJ
2

= 0.

Hence also Tk−J+1,k−2(v′) = 0, . . . Tk−1,k−J+1(v
′) = 0; so the induction proceeds.

Observe that if λ is real and v is in V then v′ is in V .

We shall use repeatedly that a n× n block triangular symplectic matrix is of the form

A′ =

(
B C
0 D

)
∈ Sp(2n,R) ⇔

{
B = (Dτ )−1

C = (Dτ )−1S withS symmetric.
(5.18)

5.2 Normal forms for A|V[λ] when λ /∈ S1.

As before, p denotes the largest integer such that (A−λ Id)p does not vanish identically on
the generalized eigenspace Eλ. Let us choose an element v ∈ Eλ and an element w ∈ E 1

λ

such that

Q̃p
(
[v], [w]

)
= Ω

(
(A− λ Id)pv, w

)
6= 0.

Let us consider the smallest A-invariant subspace Evλ of Eλ containing v; it is of dimension
p+ 1 and a basis is given by

{
a0 := v, . . . , ai := (A− λ Id)iv, . . . , ap := (A− λ Id)pv

}
.

Observe that Aai = (A− λ Id)ai + λai so that Aai = λai + ai+1 for i < p and Aap = ap.

Similarly, we consider the smallest A-invariant subspace Ew1
λ

of E 1
λ
containing w; it is

also of dimension p+ 1 and a basis is given by

{
b0 := w, . . . , bj :=

(
A− 1

λ
Id

)j
w, . . . bp :=

(
A− 1

λ
Id

)p
w
}
.

One has

Ω(ai, aj) = 0 and Ω(bi, bj) = 0 because Ω(Eλ, Eµ) = 0 if λµ 6= 1;
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Ω(ai, bj) = 0 if i+ j > p by equation (5.14) ;

Ω(ai, bp−i) =
(−1
λ2

)p−i
Ω
((
A − λ Id

)p
v, w

)
by equation (5.12) and is non zero by the

choice of v, w.

The matrix representing Ω in the basis {bp, . . . , b0, a0, . . . , ap} is thus of the form




0 0
. . .

0 0

∗ 0
. . .

∗ ∗
∗ ∗
. . .

0 ∗

0 0
. . .

0 0




with non vanishing ∗. Hence Ω is non degenerate on Evλ ⊕ Ew1
λ

which is thus a symplectic

A-invariant subspace.
We now construct a symplectic basis

{
b′p, . . . , b

′
0, a0, . . . , ap

}
of Evλ ⊕ Ew1

λ

, extending

{a0, . . . , ap}, using a Gram-Schmidt procedure on the bi’s. This gives a normal form for A
on Evλ ⊕ Ew1

λ

.

If λ is real, we take v, w in the real generalized eigenspaces ER
λ and ER

1
λ

and we obtain a

symplectic basis of the real A-invariant symplectic vector space , ERv
λ ⊕ERw

1
λ

. If λ is not real,

one considers the basis of Ev
λ
⊕Ew1

λ

defined by the conjugate vectors {b′p, . . . , b′0, a0, . . . , ap}
and this yields a conjugate normal form on Eλ ⊕ E 1

λ

, hence a normal form on W[λ] and

this will induce a real normal form on V[λ].

We choose v and w such that Ω
((
A− 1

λ
Id

)p
w, v

)
= 1. We define inductively on j

b′p :=
1

Ω(bp,a0)
bp = bp;

b′p−j =
1

Ω(bp−j ,aj)

(
bp−j −

∑
k<j Ω(bp−j , ak)b

′
p−k

)
,

so that any b′j is a linear combination of the br with r ≥ j.

In the symplectic basis
{
b′p, . . . , b

′
0, a0, . . . , ap

}
the matrix representing A is

(
B 0
0 J(λ, p+ 1)τ

)

where

J(λ,m) =




λ 1
λ 1 0λ 1

. . .
. . .

0 λ 1
λ 1
λ


 (5.19)
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is the elementary m×m Jordan matrix associated to λ. Since the matrix is symplectic,
B is the transpose of the inverse of J(λ, p+ 1)τ by (5.18), so B = J(λ, p+ 1)−1.
This is the normal form for A restricted to Evλ ⊕ Ew1

λ

.

If λ = reiφ /∈ R we consider the symplectic basis {b′p, . . . , b′0, a0, . . . , ap} of Evλ ⊕ Ew1
λ

as

above and the conjugate symplectic basis {b′p, . . . , b′0, a0, . . . , ap} of Ev
λ
⊕Ew1

λ

. Writing b′j =

1√
2
(uj + ivj) and aj =

1√
2
(wj − ixj) for all 0 ≤ j ≤ p with the vectors uj , vj , wj , xj in the

real vector space V, we get a symplectic basis {up, vp . . . , u0, v0, w0, x0 . . . , wp, xp} of the
real subspace of V whose complexification is Evλ⊕Ew1

λ

⊕Ev
λ
⊕Ew1

λ

. In this basis, the matrix

representing A is (
JR

(
λ, 2(p+ 1)

)−1
0

0 JR
(
λ, 2(p+ 1)

)τ
)

where JR(re
iφ, 2m) is the 2m× 2m matrix written in terms of 2× 2 matrices as

JR(re
iφ, 2m) :=




R(reiφ) Id

R(reiφ) Id 0
R(reiφ) Id

. . .
. . .

0 R(reiφ) Id

R(reiφ) Id

R(reiφ)




(5.20)

with R(reiφ) =
(
r cosφ −r sinφ
r sinφ r cosφ

)
. By induction, we get

Theorem 5.2.1 (Normal form for A|V[λ] for λ /∈ S1.) Let λ /∈ S1 be an eigenvalue of

A. Denote k := dimCKer(A−λ Id) (on V C) and p the smallest integer so that (A−λ Id)p+1

is identically zero on the generalized eigenspace Eλ.

• If λ 6= ±1 is a real eigenvalue of A, there exists a symplectic basis of V[λ] in which
the matrix representing the restriction of A to V[λ] is a symplectic direct sum of k
matrices of the form

(
J(λ, pj + 1)−1 0

0 J(λ, pj + 1)τ

)

with p = p1 ≥ p2 ≥ · · · ≥ pk and J(λ, k) defined by (5.19). To eliminate the ambiguity
in the choice of λ in [λ] = {λ, λ−1} we can consider the real eigenvalue such that λ >
1. The size of the blocks is determined knowing the dimension dim (Ker(A− λ Id)r)
for each r ≥ 1.

• If λ = reiφ /∈ (S1 ∪R) is a complex eigenvalue of A, there exists a symplectic basis of
V[λ] in which the matrix representing the restriction of A to V[λ] is a symplectic direct
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sum of k matrices of the form

(
JR

(
re−iφ, 2(pj + 1)

)−1
0

0 JR
(
re−iφ, 2(pj + 1)

)τ
)

with p = p1 ≥ p2 ≥ · · · ≥ pk and JR(re
iφ, k) defined by (5.20). To eliminate the

ambiguity in the choice of λ in [λ] = {λ, λ−1, λ, λ−1} we can choose the eigenvalue λ
with a positive imaginary part and a modulus greater than 1. The size of the blocks
is determined, knowing the dimension dimC (Ker(A− λ Id)r) for each r ≥ 1.

This normal form is unique, when a choice of λ in the set [λ] is fixed.

5.3 Normal forms for A|V[λ] when λ = ±1.

In this situation [λ] = {λ} and V[λ] is the generalized real eigenspace of eigenvalue λ, still de-
noted –with a slight abuse of notation– Eλ. Again, p denotes the largest integer such that
(A − λ Id)p does not vanish identically on Eλ. We consider Q̃p : Eλ/Ker(A− λ Id)p ×
Eλ/Ker(A− λ Id)p → R the non degenerate form defined by Q̃p

(
[v], [w]

)
= Ω

(
(A −

λ Id)pv, w
)
. We see directly from equation (5.13) that Q̃p is symmetric if p is odd and

antisymmetric if p is even.

5.3.1 If p = 2k − 1 is odd

we choose v ∈ Eλ such that

Q̃
(
[v], [v]

)
= Ω

(
(A− λ Id)pv, v

)
6= 0

and consider the smallest A-invariant subspace Evλ of Eλ containing v; it is spanned by

{
ap := (A− λ Id)pv, . . . , ai := (A− λ Id)iv, . . . , a0 := v

}
.

We have

Ω(ai, aj) = 0 if i+ j ≥ p+ 1(= 2k) by equation (5.14);

Ω(ai, ap−i) 6= 0; by equation(5.12) and by the choice of v.

Hence Evλ is a symplectic subspace because, in the basis defined by the ei’s, Ω has the

triangular form

(
0 ∗
. .
.

∗ ∗

)
and has a non-zero determinant.
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We can choose v in Eλ ⊂ V so that Ω
(
(A− λ Id)kv, (A− λ Id)k−1v

)
= λs with s = ±1 by

rescaling the vector and one may further assume, by lemma 5.1.6, that

Ti,j(v) =
1

λi
1

λj
Ω
(
(A− λ Id)iv, (A− λ Id)jv

)
= 0 for all 0 ≤ i, j ≤ k − 1.

We now construct a symplectic basis
{
a′p, . . . , a

′
k, a0, . . . , ak−1

}
of Evλ, extending

{a0, . . . , ak−1}, by a Gram-Schmidt procedure, having chosen v as above. We define induc-
tively on 0 ≤ j ≤ k − 1

a′p :=
1

Ω(ap,a0)
ap;

a′p−j =
1

Ω(ap−j ,aj)

(
ap−j −

∑
k<j Ω(ap−j , ak)a

′
p−k

)
,

so that any a′j is a linear combination of the ar’s with r ≥ j and in particular

a′k =
1
sλ
ak +

∑k−1
j=1 cjak+j .

In the symplectic basis
{
a′p, . . . , a

′
k, a0, . . . , ak−1

}
the matrix representing A is

A′ =

(
B C
0 J(λ, k)τ

)

with J(λ,m) defined by (5.19) and with C identically zero except for the last column, and
the coefficient Ckk = sλ. Since the matrix is symplectic, B is the transpose of the inverse
of J(λ, p + 1)τ by (5.18), so B = J(λ, k)−1 and J(λ, k)C is symmetric with zeroes except
in the last column, hence diagonal of the form diag

(
0, . . . , 0, s

)
. Thus

(
J(λ, k)−1 J(λ, k)−1diag

(
0, . . . , 0, s

)

0 J(λ, k)τ

)
,

with s = ±1, is the normal form of A restricted to Evλ. Recall that

s = λ−1Ω
(
(A− λ Id)kv, (A− λ Id)k−1v

)
.

5.3.2 If p = 2k is even

we choose v and w in Eλ such that

Q̃
(
[v], [w]

)
= Ω

(
(A− λ Id)pv, w

)
= λp = 1

and we consider the smallest A-invariant subspace Evλ ⊕ Ewλ of Eλ containing v and w. It
is of dimension 4k + 2. Remark that Ω

(
(A− λ Id)pv, v

)
= 0. We can choose v so that

Tr,s(v) =
1

λr+s
Ω
(
(A− λ Id)rv, (A− λ Id)sv

)
= 0 for all r, s.

Indeed, by formula (5.11) we have Ti,j(v) = −Ti+1,j(v)−Ti+1,j−1(v). Observe that Ti,j(v) =
−Tj,i(v) so that Ti,i(v) = 0 and Tj,i(v) = −Tj,i+1(v)−Tj−1,i+1(v). We proceed by induction,
as in lemma 5.1.6 :
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• Tp,0(v) = 0 implies Tp−r,r(v) = 0 for all 0 ≤ r ≤ p by equation (5.12).

• We assume by decreasing induction on J , starting from J = p, that we have Ti,j(v) =
0 for all i+ j ≥ J . Then we have TJ−1−s,s(v) = −TJ−1−s,s+1(v)− TJ−2−s,s+1(v); the
first term on the righthand side vanishes by the induction hypothesis, so TJ−1,0(v) =
(−1)sTJ−1−s,s(v) = (−1)J−1T0,J−1(v) = (−1)JTJ−1,0.

If TJ−1,0(v) = α 6= 0, J must be even and we replace v by

v′ = v + α
2λp−J+1 (A− λ Id)p−J+1w.

Then v′ ∈ Evλ ⊕ Ewλ , E
v
λ ⊕ Ewλ = Ev

′

λ ⊕ Ewλ , Ω
(
(A − λ Id)pv′, w

)
= λp and Ti,j(v

′) =
Ti,j(v) = 0 for all i+ j ≥ J but now

TJ−1,0(v
′) = TJ−1,0(v) +

α
2λpΩ

(
(A− λ Id)pw, v

)

+ α
2λpΩ

(
(A− λ Id)J−1v, (A− λ Id)p−J+1w

)

+ α2

4λpΩ
(
(A− λ Id)pw, (A− λ Id)p−J+1w

)

= α− α

2
− α

2
= 0

so that Ti,j(v
′) = 0 for all i+ j ≥ J − 1 and the induction proceeds.

We assume from now on that we have chosen v and w in Eλ so that
Ω
(
(A− λ Id)pv, w

)
= 1 and Ω

(
(A− λ Id)rv, (A− 1

λ
Id)sv

)
= 0 for all r, s.

We can proceed similarly with w so we can thus furthermore assume that

Ω
(
(A− λ Id)jw,

(
A− λ Id

)k
w
)
= 0 for all j, k.

A basis of Evλ ⊕ Ewλ is given by
{
ap = (A− λ Id)pv, . . . , a0 = v, b0 = w, . . . , bp = (A− λ Id)pw

}
.

We have

Ω(ai, aj) = 0 and Ω(bi, bj) = 0 by the choice of v and w;

Ω(ai, bj) = 0 if i+ j > p by equation (5.14) ;

Ω(ai, bp−i) 6= 0 by equation (5.12) and the choice of of v, w.

The matrix representing Ω has the form




0

∗ 0
. . .

∗ ∗
∗ ∗
. . .

0 ∗
0




hence is non singular and the

subspace Evλ⊕Ewλ is symplectic. We now construct a symplectic basis
{
a′p, . . . , a

′
0, b0, . . . , bp

}

of Evλ⊕Ew1
λ

, extending {b0, . . . , bp}, using a Gram-Schmidt procedure on the ai’s. We define

inductively on j
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a′p :=
1

Ω(ap,b0)
ap;

a′p−j =
1

Ω(ap−j ,bj)

(
ap−j −

∑
k<j Ω(ap−j , bk)a

′
p−k

)
,

so that any a′j is a linear combination of the a′k with k ≥ j.

In the symplectic basis
{
a′p, . . . , a

′
0, b0, . . . , bp

}
the matrix representing A is

(
B 0
0 J(λ, p+ 1)τ

)
.

Hence, the matrix (
J(λ, p+ 1)−1 0

0 J(λ, p+ 1)τ

)

is a normal form for A restricted to Evλ ⊕ Ewλ . Thus we have:

Theorem 5.3.1 (Normal form for A|V[λ] for λ = ±1.) Let λ = ±1 be an eigenvalue of
A. There exists a symplectic basis of V[λ] in which the matrix representing the restriction
of A to V[λ] is a symplectic direct sum of matrices of the form

(
J(λ, rj)

−1 C(rj , sj , λ)
0 J(λ, rj)

τ

)

where C(rj , sj , λ) := J(λ, rj)
−1 diag

(
0, . . . , 0, sj

)
with sj ∈ {0, 1,−1}. If sj = 0, then

rj is odd. The dimension of the eigenspace of eigenvalue 1 is given by 2Card{j | sj =
0}+Card{j | sj 6= 0}.

Definition 5.3.2 Given λ ∈ {±1}, we define, for any integer k ≥ 1, a bilinear form Q̂λ2k
on Ker

(
(A− λ Id)2k

)
:

Q̂λ2k : Ker
(
(A− λ Id)2k

)
×Ker

(
(A− λ Id)2k

)
→ R

(v, w) 7→ λΩ
(
(A− λ Id)kv, (A− λ Id)k−1w

)
. (5.21)

It is symmetric.

Proposition 5.3.3 Given λ ∈ {±1}, the number of positive (resp. negative) eigenvalues
of the symmetric 2-form Q̂λ2k is equal to the number of sj equal to +1 (resp. −1) arising
in blocks of dimension 2k (i.e. with corresponding rj = k) in the normal decomposition of
A on V[λ] given in theorem 6.5.1.
On V[λ], we have:

∑

j

sj =

dimV∑

k=1

Signature(Q̂λ2k) (5.22)
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Proof: On the intersection of Ker
(
(A− λ Id)2k

)
with one of the symplectically or-

thogonal subspaces Evλ constructed above for an odd p 6= 2k − 1, the form Q̂λ2k vanishes
identically. On the intersection of Ker

(
(A− λ Id)2k

)
with a subspace Evλ for a v so that

p = 2k− 1 and Ω
(
(A− λ Id)kv, (A− λ Id)k−1v

)
= λs the only non vanishing component is

Q̂λ2k(v, v) = s.
Indeed, Ker

(
(A− λ Id)2k

)
∩ Evλ is spanned by

{(A− λ Id)rv ; r ≥ 0 and r + 2k > p },
and Ω

(
(A − λ Id)k+rv, (A − λ Id)k−1+r

′
v
)
= 0 when 2k + r + r′ − 1 > p so the only non

vanishing cases arise when r = r′ = 0 and p = 2k − 1.
Similarly, the 2 form Q̂λ2k vanishes on the intersection of Ker

(
(A− λ Id)2k

)
with a subspace

Evλ ⊕ Ewλ constructed above for an even p.

The numbers sj appearing in the decomposition of A are thus invariant of the matrix.

Corollary 5.3.4 The normal decomposition described in theorem 6.5.1 is determined by
the eigenvalue λ, by the dimension dim

(
Ker(A − λ Id)r

)
for each r ≥ 1, and by the rank

and the signature of the symmetric bilinear 2-forms Q̂λ2k for each k ≥ 1. It is unique up to
a permutation of the blocks. �

5.4 Normal forms for A|V[λ] when λ = eiφ ∈ S1 \ {±1}.
We denote again by p the largest integer such that (A− λ Id)p does not vanish identically
on Eλ and we consider the non degenerate sesquilinear form

Q̂ : Eλ/Ker(A− λ Id)p × Eλ/Ker(A− λ Id)p → C

Q̂
(
[v], [w]

)
= λpΩ

(
(A− λ Id)pv, w

)
.

Since Q̂ is non degenerate, we can choose v ∈ Eλ such that Q̂([v], [v]) 6= 0 thus (A −
λ Id)pv 6= 0 and we consider the smallest A-invariant subspace, stable by complex conju-
gaison, and containing v : Evλ ⊕ Ev

λ
⊂ Eλ ⊕ Eλ. A basis is given by

{
ai := (A− λ Id)iv, bj := (A− λ Id)jv 0 ≤ i, j ≤ p

}
.

We have ai = bi and

• Ω(ai, aj) = 0, Ω(bi, bj) = 0 because Ω(Eλ, Eλ) = 0;

• Ω(ai, bk) = 0 if i+ k ≥ p+ 1 by equation (5.14);

• Ω(ai, bk) 6= 0 if p = i+ k by equation (5.12) and by the choice of v.

We conclude that Evλ ⊕ Ev
λ
is a symplectic subspace.
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5.4.1 If p = 2k − 1 is odd

observe that Tk,k−1(v) := 1
λ
Ω
(
(A − λ Id)kv, (A − λ Id)k−1v

)
= s is real and can be put

to ±1 by rescaling the vector (we could even put it to 1 exchanging if needed λ and its
conjugate). One may further assume, by lemma 5.1.6 that

Ti,j(v) =
1

λi
1

λ
j
Ω
(
(A− λ Id)iv, (A− λ Id)jv

)
= 0 for all 0 ≤ i, j ≤ k − 1.

We consider the basis {a2k−1, . . . , ak, bp, . . . , bk, b0, . . . bk−1, a0, . . . ak−1} for such a vector v
with Tk,k−1(v) = s = ±1 and Ti,j(v) = 0 for all 0 ≤ i, j ≤ k− 1; the matrix representing Ω
has the form 



0

∗ 0
. . .

∗ ∗
0

0

∗ 0

. . .
∗ ∗

∗ ∗
. . .

0 ∗
0

0

∗ ∗
. . .

0 ∗

0




and we transform it by a Gram-Schmidt method into a symplectic basis composed of pairs
of conjugate vectors, extending {b0, . . . , bk−1, a0, . . . , ak−1} on which Ω identically vanishes.
We define

a′2k−1 =
1

Ω(a2k−1, b0)
a2k−1,

b′2k−1 =
1

Ω(b2k−1, a0)
b2k−1 = a′2k−1

and, inductively on increasing j with 1 < j ≤ k

a′2k−j =
1

Ω(a2k−j , bj−1)

(
a2k−j −

j−1∑

r=1

Ω(a2k−j , br−1) a
′
2k−r

)
,

b′2k−j = a′2k−j .

Any a′2k−j is a linear combination of the a2k−i for 1 ≤ i ≤ j; reciprocally any a2k−j can be
written as a linear combination of the a′2k−i for 1 ≤ i ≤ j, and the coefficient of a′2k−j is
equal to Ω(a2k−j , bj−1).
The basis {a′2k−1, . . . , a′k, b′2k−1, . . . , b′k, b0, . . . , bk−1, a0, . . . , ak−1} is symplectic, and in that
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basis, since A(ar) = λar + ar+1 and A(br) = λbr + br+1 for all r < 2k − 2, the matrix
representing A is of the block upper triangular form




∗ 0 0 C

∗ C 0

J(λ, k)τ 0
0 J(λ, k)τ




where C is a k × k matrix such that the only non vanishing terms are on the last column
(Cij = 0 when j < k) and Ckk = Ω(ak, bk−1) = sλ. The fact that the matrix is symplectic

implies that S := J(λ, k)C is hermitean; since Sij = 0 when j 6= k, we have,

C = J(λ, k)−1
( 0 ... 0 0

...
. . .

...
...

0 ... 0 0
0 ... 0 s

)
= C(k, s, λ)

and the matrix of the restriction of A to the subspace Evλ ⊕ Ev
λ
has the block triangular

normal form 


J(λ, k)−1 0 0 C(k, s, λ)
J(λ, k)−1 C(k, s, λ) 0

J(λ, k)τ 0
0 J(λ, k)τ


 . (5.23)

Writing a′2k−j = 1√
2
(e2j−1 − ie2j), b

′
2k−j = a′2k−j = 1√

2
(e2j−1 + ie2j), as well as aj−1 =

1√
2
(f2j−1 − if2j) and bj−1 = aj−1 = 1√

2
(f2j−1 + if2j) for 1 ≤ j ≤ k, the vectors ei, fj all

belong to the real subspace denoted V v
[λ] of V whose complexification is Evλ ⊕ Ev

λ
and we

get a symplectic basis
{e1, . . . , e2k, f1, . . . , f2k}

of this real subspace V v
[λ]. The matrix representing A in this basis is :

( (
JR(λ, 2k)

)−1
CR(k, s, λ)

0
(
JR(λ, 2k)

)τ
)

(5.24)

where JR(e
iφ, 2k) is defined as in (5.20) and where CR(k, s, e

iφ) is the (p + 1) × (p + 1)
matrix written in terms of two by two matrices as

CR(k, s, e
iφ)τ = s




0 ... 0 0
...

...
...

0 ... 0 0
(−1)k−1R(eikφ) ... −R(ei2φ) R(eiφ)


 (5.25)

with R(eiφ) =

(
cosφ − sinφ
sinφ cosφ

)
as before and s = ±1. This is the normal form of A

restricted to V v
[λ]; recall that

s = λ−1Ω
(
(A− λ Id)kv, (A− λ Id)k−1v

)
.
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5.4.2 If p = 2k is even

we observe that Ω
(
(A− λ Id)kv, (A− λ Id)kv

)
is purely imaginary and we choose v so that

it is Ω
(
(A− λ Id)kv, (A− λ Id)kv

)
= si where s = ±1 (remark that the sign changes if one

permutes λ and λ). We can further choose the vector v so that :

Ω
(
(A− λ Id)kv, (A− λ Id)k−1v

)
=

1

2
λsi (5.26)

Ti,j(v) :=
1

λiλ
j
Ω
(
(A− λ Id)iv, (A− λ Id)jv

)
= 0 for all 0 ≤ i, j ≤ k − 1;

Indeed, as before, by (5.11), we have Ti,j(v) = −Ti+1,j(v) − Ti+1,j−1(v) and Ti,j(v) =

−Tj,i(v) and we proceed as in lemma 5.1.6 by decreasing induction on i+ j:

• if Tk,k−1(v) = α1, since Tk−1,k(v) = si − Tk,k−1(v) the imaginary part of α1 is equal
to 1

2si and we replace v by v − α1
2λsi(A − λ Id)v; it generates the same A-invariant

subspace and the quantities Ti,j(v) do not vary for i+j ≥ 2k but now Tk,k−1(v) = α1−
α1
2siTk+1,k−1(v) +

α1
2siTk,k(v) = α1 − 1

2α1 − 1
2α1 = 1

2si since Tk,k(v) = −Tk+1,k−1(v) =
−si; so we can now assume Tk,k−1(v) =

1
2si;

• if Tk−1,k−1(v) = α2, this α2 is purely imaginary and we replace v by v − α2
2λ2si

(A −
λ Id)2v; it generates the same A-invariant subspace and the quantities Ti,j(v) do not
vary for i + j ≥ 2k − 1; now Tk−1,k−1(v) = α2 − α2

2siTk+1,k−1(v) +
α2
2siTk−1,k+1(v) =

α2 − 1
2α2 +

1
2α2 = 0. We may thus assume this property to hold for v.

• if Tk−2,k−1(v) = α3 = −Tk−1,k−1(v)−Tk−1,k−2(v) = Tk−2,k−1(v), this α3 is real and we
replace v by v− α3

2λ3si
(A−λ Id)3v; it generates and the the same A-invariant subspace

and the quantities Ti,j(v) do not vary for i + j ≥ 2k − 2; now Tk−2,k−1(v) = α3 −
α3
2siTk+1,k−1(v) +

α3
2siTk−2,k+2(v) = 0, since Tk+1,k−1(v) = −Tk,k(v) = −Tk−2,k+2(v) =

si; hence also Tk−1,k−2(v) = 0;

• we now assume by induction to have a J > 1 so that Ti,j(v) = 0 for all 0 ≤ i, j ≤ k−1
so that i+ j > 2k − 1− J ;

• if Tk−J,k−1(v) = αJ+1, then Tk−J,k−1(v) = (−1)J−1Tk−1,k−J(v) so that αJ+1 is real
when J is even and is imaginary when J is odd; we replace v by v − αJ+1

2λJ+1si
(A −

λ Id)J+1v; it sgenerates the same A-invariant subspace and the quantities Ti,j(v)
do not vary for i + j ≥ 2k − J , but now Tk−J,k−1(v) = αJ+1 − αJ+1

2si Tk+1,k−1(v) +
αJ+1

2si Tk−J,k+J(v) = αJ+1 − αJ+1

2 + (−1)J+1 αJ+1

2 = 0.
Hence also Tk−J+1,k−2(v) = 0, . . . Tk−1,k−J+1(v) = 0; so the induction step is proven.
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Remark 5.4.1 For such a v, all Ti,j(v) are determined inductively and we have

Ti,j(v) = 0 if i+ j ≥ 2k + 1 and for all 0 ≤ i, j ≤ k − 1

Tk−r,k+r(v) = (−1)r+1si for all 0 ≤ r ≤ k

Tk−r,k+m(v) = (−1)r+1 si

2

(r +m)(r − 1)!

m!(r −m)!
for all 0 ≤ m ≤ r ≤ k, r > 1

Ti,j(v) = Tj,i(v) for all i, j.

With the notation ai = (A− λ Id)iv, bi = (A− λ Id)iv, we consider the basis

{a2k, . . . , ak+1, b2k, . . . , bk+1, bk; b0, . . . , bk−1, a0, . . . , ak−1, ak}

for such a vector v; the matrix representing Ω in this basis has the form




0 0 0

∗ 0

. . .
∗ ∗

0 0

0 0 0 0

∗ 0

. . .
∗ ∗

0

0 0 0 0 ∗ ... ∗ si

∗ ∗
. . .

0 ∗
0 0 0 0

∗
...
∗

0

∗ ∗
. . .

0 ∗

∗
...
∗

0 0 0

0 0 −si ∗ ··· ∗ 0 0




.

We transform (by a Gram-Schmidt method) the basis above into a symplectic basis,
composed of pairs of conjugate vectors (up to a factor) and extending

b0, . . . , bk−1, a0, . . . , ak−1
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on which Ω identically vanishes. We define inductively, for increasing j with 1 ≤ j ≤ k− 1

a′2k : =
1

Ω
(
(A− λ Id)2kv, v

)(A− λ Id)2kv =
1

Ω(a2k, b0)
a2k

b′2k : =
1

Ω
(
(A− λ Id)2k, v, v

)(A− λ Id)2kv =
1

Ω(b2k, a0)
b2k = a′2k

a′2k−j =
1

Ω(a2k−j , bj)

(
a2k−j −

j−1∑

r=0

Ω(a2k−j , br)a
′
2k−r

)

b′2k−j =
1

Ω(b2k−j , aj)

(
b2k−j −

j−1∑

r=0

Ω(b2k−j , ar)b
′
2k−r

)
= a′2k−j

a′k = ak −
k−1∑

r=0

Ω(ak, br)a
′
2k−r

b′k =
1

Ω(bk, ak)

(
bk −

k−1∑

r=0

Ω(bk, ar)b
′
2k−r

)
=

1

is
a′k.

Each a′2k−j is a linear combination of the (A− λ Id)2k−rv for 0 ≤ r ≤ j. The basis

{a′2k, . . . , a′k+1, b
′
2k, . . . , b

′
k+1, b

′
k; b0, . . . , bk−1, a0, . . . , ak−1, a

′
k}

is now symplectic. Since A(ar) = λar + ar+1 for all r < 2k, and A(a2k) = λa2k, the matrix
representing A in that basis is of the form




A1 0 0


 0

c2k d2k

...
...

ck+1 dk+1




0 A2


 0

e2k

...
ek+1

ek


 0

0 0 J(λ,k)τ 0

0 0 0 J(λ,k+1)τ




with A(bk−1) = λbk−1 +
∑k

j=0 e
k+jb′k+j , A(ak−1) = λak−1 + a′k +

∑k
j=1 c

k+ja′k+j and

A(a′k) = λa′k +
∑k

j=1 d
k+ja′k+j .

Since a matrix

(
A′ E
0 D

)
is symplectic if and only if A′ = (Dτ )−1 and Dτ E is

symmetric, we have

A1 = J(λ, k)−1 A2 = J(λ, k + 1)−1
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and

J(λ, k)

(
0

c2k d2k

...
...

ck+1 dk+1

)
=


J(λ, k + 1)


 0

e2k

...
ek+1

ek





τ

.

This implies

J(λ, k)




c2k d2k

...
...

ck+2 dk+2

ck+1 dk+1


 =

( 0 0
...

...
0 0
s1 s2

)
J(λ, k + 1)




e2k

...
ek+2

ek+1

ek


 =




0
...
0
s1
s2




so that s1 = λck+1 and s2 = λdk+1. Now

A(a′k) = A
(
ak +

∑

j≥1
F jkak+j

)
= λa′k + ak+1 +

∑

j≥1
F jkak+j+1

= λa′k + a′k+1Ω(ak+1, bk−1) +
∑

j≥1
F

′j
k a

′
k+j+1

so that dk+1 = Ω(ak+1, bk−1) = λ2is and s2 = λis. We also have

A(ak−1) = λak−1 + ak = λak−1 + a′k +Ω(ak, bk−1)a
′
k+1 +

∑

j≥2
Gja′k+j

so that ck+1 = Ω(ak, bk−1) = λ1
2 is and s1 =

1
2 is.

We have thus shown that the matrix representing A in the chosen basis has the block
upper-triangular normal form




J(λ, k)−1 0 0 J(λ, k)−1S
J(λ, k + 1)−1 J(λ, k + 1)−1Sτ 0

J(λ, k)τ 0
0 J(λ, k + 1)τ


 (5.27)

where S is the k × (k + 1) matrix defined by

S = S(k, d, λ) :=




0 . . . 0 0 0
...

...
...

...
0 . . . 0 0 0
0 . . . 0 1

2 is λis


 . (5.28)

We write a′2k+1−j = 1√
2
(e2j−1 − ie2j), b

′
2k+1−j = a′2k+1−j = 1√

2
(e2j−1 + ie2j), as well

as aj−1 = 1√
2
(f2j−1 − if2j) and bj−1 = aj−1 = 1√

2
(f2j−1 + if2j) for 1 ≤ j ≤ k, and

a′k = 1√
2
(e2k+1 + id f2k+1), b

′
k = −ida′k = 1√

2
(−f2k+1 − id e2k+1). The vectors ei, fj all
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belong to the real subspace V v
[λ] of V whose complexification is Evλ ⊕ Ev

λ
and we get a

symplectic basis

{e1, . . . , e2k+1, f1, . . . , f2k+1}

of V v
[λ]. In this basis, the matrix representing A is :




(
JR(λ,2k)

)−1
sU2(φ)

0

...
0

···

···

0

...
0

s
2
V 2(φ) −s

2
V 1(φ) U1(φ)

0 cosφ 0 ... 0 1 0 s sinφ

0

0

...
0

(
JR(λ,2k)

)τ
0

...
0

0 −s sinφ 0 ... 0 0 −s cosφ




where s = ±1, U1(φ), U2(φ), V 1(φ) and V 2(φ) are real 2k × 1 column matrices such that

(
V 1(φ)V 2(φ)

)
=



(−1)k−1R(eikφ)

...
R(eiφ)




(
U1(φ)U2(φ)

)
=



(−1)k−1R(ei(k+1)φ)

...
R(ei2φ)


 =

(
V 1(φ)V 2(φ)

) (
R(eiφ)

)
.

This is the normal form of A restricted to V v
[λ]. Recall that

s = iΩ
(
(A− λ Id)kv, (A− λ Id)kv

)
.

Theorem 5.4.2 (Normal form for A|V[λ] for λ ∈ S1 \ {±1}.) Let λ ∈ S1 \ {±1} be an
eigenvalue of A. There exists a symplectic basis of V[λ] in which the matrix representing
the restriction of A to V[λ] is a symplectic direct sum of 4kj × 4kj matrices (kj ≥ 1) of the
form




(
JR(λ,2kj)

)−1
0
...
0

···

···

0
...
0

sj V
1
kj

(φ) sj V
2
kj

(φ) )

0
(
JR(λ,2kj)

)τ


 (5.29)
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and (4kj + 2)× (4kj + 2) matrices (kj ≥ 0) of the form




(
JR(λ,2kj)

)−1
sj U

2
kj

(φ)

0

...
0

···

···

0
...
0

sj
2
V 2
kj

(φ)
−sj
2
V 1
kj

(φ) U1
kj

(φ)

0 cosφ 0 ... 0 1 0 sj sinφ

0

0

...
0

(
JR(λ,2kj)

)τ
0

...
0

0 −sj sinφ 0 ... 0 0 −sj cosφ




(5.30)

where JR(e
iφ, 2k) is defined as in (5.20), where

(
V 1
kj
(φ)V 2

kj
(φ)

)
is the 2kj×2 matrix defined

by

(
V 1
kj
(φ)V 2

kj
(φ)

)
=



(−1)kj−1R(eikjφ)

...
R(eiφ)


 (5.31)

with R(eiφ) =

(
cosφ − sinφ
sinφ cosφ

)
, where

(
U1
kj
(φ)U2

kj
(φ)

)
=

(
V 1
kj
(φ)V 2

kj
(φ)

)(
R(eiφ)

)
(5.32)

and where sj = ±1. The complex dimension of the eigenspace of eigenvalue λ in V C is
given by the number of such matrices.

Definition 5.4.3 Given λ ∈ S1 \ {±1}, we define, for any integer m ≥ 1, a Hermitian
form Q̂λm on Ker ((A− λ Id)m) by:

Q̂λm : Ker
(
(A− λ Id)m

)
×Ker

(
(A− λ Id)m

)
→ C

(v, w) 7→ 1
λ
Ω
(
(A− λ Id)kv, (A− λ Id)k−1w

)
if m = 2k

(v, w) 7→ iΩ
(
(A− λ Id)kv, (A− λ Id)kw

)
if m = 2k + 1.

Proposition 5.4.4 For λ ∈ S1 \{±1}, the number of positive (resp. negative) eigenvalues
of the Hermitian 2-form Q̂λm is equal to the number of sj equal to +1 (resp. −1) arising in
blocks of dimension 2m in the normal decomposition of A on V[λ] given in theorem 5.4.2.

Proof: On the intersection of Ker
(
(A − λ Id)m

)
with one of the symplectically or-

thogonal subspaces Evλ ⊕ Ev
λ
constructed above from a v such that (A − λ Id)pv 6= 0 and

(A−λ Id)p+1v = 0, the form Q̂λm vanishes identically, except if p = m−1 and the only non
vanishing component is Q̂λm(v, v) = s.
Indeed, Ker

(
(A− λ Id)m

)
∩ Evλ is spanned by

{(A− λ Id)rv ; r ≥ 0 and r +m > p },
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and Q̂λm
(
(A − λ Id)rv, (A − λ Id)r

′
v
)
= 0 when m + r + r′ − 1 > p so the only non van-

ishing cases arise when r = r′ = 0 and m = p + 1 so for Q̂λm(v, v). This is equal to
1
λ
Ω
(
(A − λ Id)kv, (A − λ Id)k−1v

)
= 1

λ
λs = s if m = 2k, and to iΩ

(
(A − λ Id)kv, (A −

λ Id)kv
)
= i(−is) = s if m = 2k + 1.

The numbers sj appearing in the decomposition are thus invariant of the matrix.

Corollary 5.4.5 The normal decomposition described in theorem 5.4.2 is unique up to a
permutation of the blocks when the eigenvalue λ has been chosen in {λ, λ}, for instance by
specifyng that its imaginary part is positive. It is completely determined by this chosen λ,
by the dimension dimC

(
Ker(A − λ Id)r

)
for each r ≥ 1 and by the rank and the signature

of the Hermitian bilinear 2-forms Q̂λm for each m ≥ 1. �
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6 Generalised Conley-Zehnder index

This chapter will appear as an homonymous paper in Annales de la Faculté des Sciences
de Toulouse, [Guta].

The Conley-Zehnder index associates an integer to any continuous path of symplectic
matrices starting from the identity and ending at a matrix which does not admit 1 as
an eigenvalue. We give new ways to compute this index. Robbin and Salamon define a
generalization of the Conley-Zehnder index for any continuous path of symplectic matrices;
this generalization is half integer valued. It is based on a Maslov-type index that they define
for a continuous path of Lagrangians in a symplectic vector space (W,Ω), having chosen a
given reference Lagrangian V . Paths of symplectic endomorphisms of (R2n,Ω0) are viewed
as paths of Lagrangians defined by their graphs in (W = R2n ⊕ R2n,Ω = Ω0 ⊕ −Ω0)
and the reference Lagrangian is the diagonal. Robbin and Salamon give properties of this
generalized Conley-Zehnder index and an explicit formula when the path has only regular
crossings. We give here an axiomatic characterization of this generalized Conley-Zehnder
index. We also give an explicit way to compute it for any continuous path of symplectic
matrices.

6.1 Introduction

The Conley-Zehnder index associates an integer to any continuous path ψ defined on the

interval [0, 1] with values in the group Sp
(
R2n,Ω0 =

(
0 Id
− Id 0

))
of 2n × 2n symplectic

matrices, starting from the identity and ending at a matrix which does not admit 1 as an
eigenvalue. This index is used in the definition of the grading of Floer homology theories.
If the path ψ were a loop with values in the unitary group, one could define an integer by
looking at the degree of the loop in the circle defined by the (complex) determinant -or an
integer power of it. The construction [SZ92, Sal99, AD10] of the Conley-Zehnder index is
based on this idea. One uses a continuous map ρ from the sympletic group Sp(R2n,Ω0)
into S1 and an “admissible” extension of ψ to a path ψ̃ : [0, 2] → Sp(R2n,Ω0) in such a
way that ρ2 ◦ ψ̃ : [0, 2] → S1 is a loop. The Conley-Zehnder index of ψ is defined as the
degree of this loop

µCZ(ψ) := deg(ρ2 ◦ ψ̃).
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6. Generalised Conley-Zehnder index

We recall this construction in section 6.2 with the precise definition of the map ρ. The
value of ρ(A) involves the algebraic multiplicities of the real negative eigenvalues of A and
the signature of natural symmetric 2-forms defined on the generalised eigenspaces of A for
the non real eigenvalues lying on S1. We give alternative ways to compute this index :

Theorem 6.1.1 Let ψ : [0, 1] → Sp(R2n,Ω0) be a continuous path of matrices linking the
matrix Id to a matrix which does not admit 1 as an eigenvalue. Let ψ̃ : [0, 2] → Sp(R2n,Ω0)
be an extension such that ψ̃ coincides with ψ on the interval [0, 1] , such that ψ̃(s) does not
admit 1 as an eigenvalue for all s > 1 and such that the path ends either at ψ̃(2) =W+ :=
− Id either at ψ̃(2) =W− := diag(2,−1, . . . ,−1, 12 ,−1, . . . ,−1). The Conley-Zehnder index

of ψ is equal to the integer given by the degree of the map ρ̃2 ◦ ψ̃ : [0, 2] → S1 :

µCZ(ψ) = deg(ρ̃2 ◦ ψ̃) (6.1)

for ANY continuous map ρ̃ : Sp(R2n,Ω0) → S1 with the following properties:

1. ρ̃ coincides with the (complex) determinant detC on U (n) = O
(
R2n

)
∩ Sp

(
R2n,Ω0

)
;

2. ρ̃(W−) ∈ {±1};

3. deg (ρ̃2 ◦ ψ2−) = n− 1

for ψ2− : t ∈ [0, 1] 7→ exp tπJ0




0 0 − log 2
π

0

0 Idn−1 0 0

− log 2
π

0 0 0

0 0 0 Idn−1


.

In particular, two alternative ways to compute the Conley-Zehnder index are :

• Using the polar decomposition of a matrix,

µCZ(ψ) = deg(detC
2 ◦ U ◦ ψ̃) (6.2)

where U : Sp(R2n,Ω0) → U (n) : A 7→ AP−1 with P the unique symmetric positive
definite matrix such that P 2 = AτA.

• Using the normalized determinant of the C-linear part of a symplectic matrix,

µCZ(ψ) = deg(ρ̂2 ◦ ψ̃) (6.3)

where ρ̂ : Sp(R2n,Ω0) → S1 : A 7→ ρ̂(A) =
detC( 1

2
(A−J0AJ0))

|detC( 1
2
(A−J0AJ0))|

with J0 =
(

0 − Id
Id 0

)
the standard complex structure on R2n.

In [RS93], Robbin and Salamon define a Maslov-type index for a continuous path Λ
from the interval [a, b] to the space L(W,Ω) of Lagrangian subspaces of a symplectic vector

space (W,Ω), having chosen a reference Lagrangian L. They give a formula of this index
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for a path having only regular crossings. A crossing for Λ is a number t ∈ [a, b] for which
dimΛt ∩L 6= 0, and a crossing t is regular if the crossing form Γ(Λ, L, t) is nondegenerate.
We recall the precise definitions in section 6.3.

Robbin and Salamon define the index of a continuous path of symplectic matrices
ψ : [0, 1] → Sp(R2n,Ω0) : t 7→ ψt as the index of the corresponding path of Lagrangians in
(W := R2n × R2n,Ω = −Ω0 × Ω0) defined by their graphs,

Λ = Grψ : [0, 1] → L(W,Ω) : t 7→ Grψt = {(x, ψtx)|x ∈ R2n}.

The reference Lagrangian is the diagonal ∆ = {(x, x)|x ∈ R2n}. They prove that this
index coincide with the Conley Zehnder index on continuous paths of symplectic matrices
which start from the identity and end at a matrix which does not admit 1 as an eigenvalue.
To be complete, we include this in section 6.4. They also prove that this index vanishes
on a path of symplectic matrices with constant dimensional 1-eigenspace. Robbin and
Salamon present also another way to associate an index to a continuous path ψ of symplectic
matrices. One chooses a Lagrangian L in L(R2n,Ω0

) and one considers the index of the path
of Lagrangians t 7→ ψtL, with L as the reference Lagrangian. We show in section 6.4.2 that
those two indices do not coincide in general.

We use the normal form of the restriction of a symplectic endomorphism to the general-
ized eigenspace of eigenvalue 1 obtained in [Gutb] to construct special paths of symplectic
endomorphisms with a constant dimension of the eigenspace of eigenvalue 1. This leads
in section 6.5 to a characterization of the generalized half-integer valued Conley Zehnder
index defined by Robbin and Salamon :

Theorem 6.1.2 The Robbin-Salamon index for a continuous path of symplectic matrices
is characterized by the following properties:

• (Homotopy) it is invariant under homotopies with fixed end points;

• (Catenation) it is additive under catenation of paths;

• (Zero) it vanishes on any path ψ : [a, b] → Sp(R2n,Ω) of matrices such that dimKer
(
ψ(t)−

Id
)
= k is constant on [a, b];

• (Normalization) if S = Sτ ∈ R2n×2n is a symmetric matrix with all eigenvalues of
absolute value < 2π and if ψ(t) = exp(J0St) for t ∈ [0, 1] , then µRS(ψ) =

1
2 SignS

where SignS is the signature of S.

The same techniques lead in section 6.6 to a new formula for this index :

Theorem 6.1.3 Let ψ : [0, 1] → Sp(R2n,Ω0) be a path of symplectic matrices. Decompose
ψ(0) = ψ⋆(0) ⊕ ψ(1)(0) and ψ(1) = ψ⋆(1) ⊕ ψ(1)(1) where ψ⋆(·) does not admit 1 as
eigenvalue and ψ(1)(·) is the restriction of ψ(·) to its generalized eigenspace of eigenvalue
1. Consider a continuous extension Ψ : [−1, 2] → Sp(R2n,Ω0) of ψ such that
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6. Generalised Conley-Zehnder index

• Ψ(t) = ψ(t) for t ∈ [0, 1];

• Ψ
(
−1

2

)
= ψ⋆(0) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(0) ⊕ φ0(t) where φ0(t) has only real

positive eigenvalues for t ∈
[
−1

2 , 0
]
;

• Ψ
(
3
2

)
= ψ⋆(1) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(1) ⊕ φ1(t) where φ1(t) has only real

positive eigenvalues for t ∈
[
1, 32

]
;

• Ψ(−1) = W±, Ψ(2) = W± and Ψ(t) does not admit 1 as an eigenvalue for t ∈[
−1,−1

2

]
and for t ∈

[
3
2 , 2

]
.

Then the Robbin Salamon index is given by

µRS(ψ) = deg(ρ̃2 ◦Ψ) +
1

2

∑

k≥1
Sign

(
Q̂

(ψ(0))
k

)
− 1

2

∑

k≥1
Sign

(
Q̂

(ψ(1))
k

)

with ρ̃ as in theorem 6.1.1, and with

Q̂Ak : Ker
(
(A− Id)2k

)
×Ker

(
(A− Id)2k

)
→ R

(v, w) 7→ Ω
(
(A− Id)kv, (A− Id)k−1w

)
.

In the theorem above, we have used the notation A ⊕ B for the symplectic direct sum of
two symplectic endomorphisms with the natural identification of Sp(V ′,Ω′) × Sp(V ′′,Ω′′)
as a subgroup of Sp(V ′ ⊕ V ′′,Ω′ ⊕ Ω′′). This writes in symplectic basis as

A⊕B :=

(
A1 0 A2 0
0 B1 0 B2
A3 0 A4 0
0 B3 0 B4

)
for A =

(
A1 A2
A3 A4

)
, B =

(
B1 B2
B3 B4

)
.

We recall the definition of the Conley-Zehnder index in section 6.2 and obtain a new way
of computing this index in Proposition 6.2.7 and its corrolaries (stated above as Theorem
6.1.1). In sections 6.3 and 6.4, we present known results about the Robbin Salamon index
of a path of Lagrangians and the Robbin Salamon index of a path of symplectic matrices,
including the fact that it is a generalization of the Conley-Zehnder index; in section 6.4.2, we
stress the fact that another index introduced by Robbin and Salamon does not coincide with
this generalization of the Conley-Zehnder index. In section 6.5, we give a characterization
of the generalization of the Conley-Zehnder index (stated above as Theorem 6.1.2). Section
6.6 gives a new formula to compute this index (stated above as Theorem 6.1.3).

6.2 The Conley-Zehnder index

The Conley-Zehnder index is an application which associates a integer to a continuous
path of symplectic matrices starting from the identity and ending at a matrix in the set
Sp⋆(R2n,Ω0) of symplectic matrices which do not admit 1 as an eigenvalue.
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6.2. The Conley-Zehnder index

Definition 6.2.1 ([SZ92, Sal99]) We consider the set SP(n) of continuous paths of ma-
trices in Sp(R2n,Ω0) linking the matrix Id to a matrix in Sp⋆(R2n,Ω0) :

SP(n) :=

{
ψ : [0, 1] → Sp(R2n,Ω0)

∣∣∣∣
ψ(0) = Id and
1 is not an eigenvalue of ψ(1)

}
.

Definition 6.2.2 ([SZ92, AD10]) Let ρ : Sp(R2n,Ω0) → S1 be the continuous map de-
fined as follows. Given A ∈ Sp(R2n,Ω), we consider its eigenvalues {λi}. For an eigenvalue
λ = eiϕ ∈ S1 \ {±1}, let m+(λ) be the number of positive eigenvalues of the symmetric
non degenerate 2-form Q defined on the generalized eigenspace Eλ by

Q : Eλ × Eλ → R : (z, z′) 7→ Q(z, z′) := Im Ω0(z, z′).

Then

ρ(A) := (−1)
1
2
m−

∏

λ∈S1\{±1}
λ

1
2
m+(λ) (6.4)

where m− is the sum of the algebraic multiplicities mλ = dimCEλ of the real negative
eigenvalues.

Proposition 6.2.3 ([SZ92, AD10]) The map ρ : Sp(R2n,Ω0) → S1 has the following
properties:

1. [determinant] ρ coincides with detC on the unitary subgroup

ρ(A) = detCA if A ∈ Sp(R2n,Ω0) ∩O(2n) = U(n);

2. [invariance] ρ is invariant under conjugation :

ρ(kAk−1) = ρ(A) ∀k ∈ Sp(R2n,Ω0);

3. [normalisation] ρ(A) = ±1 for matrices which have no eigenvalue on the unit circle;

4. [multiplicativity] ρ behaves multiplicatively with respect to direct sums : if A = A′⊕A′′
with A′ ∈ Sp(R2m,Ω0), A

′′ ∈ Sp(R2(n−m),Ω0) and ⊕ expressing as before the obvious
identification of Sp(R2m,Ω0)× Sp(R2(n−m),Ω0) with a subgroup of Sp(R2n,Ω0) then

ρ(A) = ρ(A′)ρ(A′′).

The construction [Sal99, AD10] of the Conley-Zehnder index is based on the two following
facts
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6. Generalised Conley-Zehnder index

• Sp⋆(R2n,Ω0) has two connected components, one containing the matrix W+ := − Id
and the other containing

W− := diag(2,−1, . . . ,−1,
1

2
,−1, . . . ,−1);

• any loop in Sp⋆(R2n,Ω0) is contractible in Sp(R2n,Ω0).

Thus any path ψ : [0, 1] → Sp(R2n,Ω0) in SP(n) can be extended to a path ψ̃[0, 2] →
Sp(R2n,Ω0) so that

• ψ̃(t) = ψ(t) for t ≤ 1;

• ψ̃(t) is in Sp⋆(R2n,Ω0) for any t ≥ 1;

• ψ̃(2) =W±.

Observe that
(
ρ(Id)

)2
= 1 and

(
ρ(W±)

)2
= 1 so that ρ2 ◦ ψ̃ : [0, 2] → S1 is a loop in S1

and the contractibility property shows that its degree does not depend on the extension
chosen.

Definition 6.2.4 The Conley-Zehnder index of ψ is defined by:

µCZ : SP(n) → Z : ψ 7→ µCZ(ψ) := deg(ρ2 ◦ ψ̃) (6.5)

for an extension ψ̃ of ψ as above.

Proposition 6.2.5 ([Sal99, AD10]) The Conley-Zehnder index has the following prop-
erties:

1. (Naturality) For all path φ : [0, 1] → Sp(R2n,Ω0) we have

µCZ(φψφ
−1) = µCZ(ψ);

2. (Homotopy) The Conley-Zehnder index is constant on the components of SP(n);

3. (Zero) If ψ(s) has no eigenvalue on the unit circle for s > 0 then

µCZ(ψ) = 0;

4. (Product) If n′ + n′′ = n, , if ψ′ is in SP(n′) and ψ′′in SP(n′′), then

µCZ(ψ
′ ⊕ ψ′′) = µCZ(ψ

′) + µCZ(ψ
′′);

with the identification of Sp(R2n′
,Ω0)×Sp(R2n′′

,Ω0) with a subgroup of Sp(R2n,Ω0);

140



6.2. The Conley-Zehnder index

5. (Loop) If φ : [0, 1] → Sp(R2n,Ω0) is a loop with φ(0) = φ(1) = Id, then

µCZ(φψ) = µCZ(ψ) + 2µ(φ)

where µ(φ) is the Maslov index of the loop φ, i.e. µ(φ) = deg(ρ ◦ φ);

6. (Signature) If S = Sτ ∈ R2n×2n is a symmetric non degenerate matrix with all
eigenvalues of absolute value < 2π (‖S‖ < 2π) and if ψ(t) = exp(J0St) for t ∈ [0, 1] ,
then µCZ(ψ) =

1
2 Sign(S) (where Sign(S) is the signature of S).

7. (Determinant) (−1)n−µCZ(ψ) = sign det
(
Id−ψ(1)

)

8. (Inverse) µCZ(ψ
−1) = µCZ(ψ

τ) = −µCZ(ψ)

Proposition 6.2.6 ([Sal99, AD10]) The properties 2, 5 and 6 of homotopy, loop and
signature characterize the Conley-Zehnder index.

Proof: Assume µ′ : SP(n) → Z is a map satisfying those properties. Let ψ : [0, 1] →
Sp(R2n,Ω0) be an element of SP(n); Since ψ is in the same component of SP(n) as its
prolongation ψ̃ : [0, 2] → Sp(R2n,Ω0) we have µ′(ψ) = µ′(ψ̃).

Observe that W+ = expπ(J0S
+) with S+ = Id and W− = expπ(J0S

−) with

S− =




0 0 − log 2
π

0

0 Idn−1 0 0

− log 2
π

0 0 0

0 0 0 Idn−1


 .

The catenation of ψ̃ and ψ−2 (the path ψ2 in the reverse order, i.e followed from end
to beginning) when ψ2 : [0, 1] → Sp(R2n,Ω0) t 7→ exp tπJ0S

± is a loop φ. Hence ψ̃ is
homotopic to the catenation of φ and ψ2, which is homotopic to the product φψ2 (see, for
instance, [Gutb]).

Thus we have µ′(ψ) = µ′(φψ2). By the loop condition µ′(φψ2) = µ′(ψ2)+2µ(φ) and by
the signature condition µ′(ψ2) =

1
2 Sign(S

±). Thus

µ′(ψ) = 2µ(φ) +
1

2
Sign(S±).

Since the same is true for µCZ(ψ), this proves uniqueness.

Remark that we have only used the signature property to know the value of the Conley-
Zehnder index on the paths ψ2± : t ∈ [0, 1] 7→ exp tπJ0S

±. Hence we have :

Proposition 6.2.7 Let ψ ∈ SP(n) be a continuous path of matrices in Sp(R2n,Ω0) linking
the matrix Id to a matrix in Sp⋆(R2n,Ω0) and let ψ̃ : [0, 2] → Sp(R2n,Ω0) be an extension
such that ψ̃ coincides with ψ on the interval [0, 1] , such that ψ̃(s) ∈ Sp⋆(R2n,Ω0) for all
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6. Generalised Conley-Zehnder index

s > 1 and such that the path ends either in ψ̃(2) = − Id = W+ either in ψ̃(2) = W− :=
diag(2,−1, . . . ,−1, 12 ,−1, . . . ,−1). The Conley-Zehnder index of ψ is equal to the integer

given by the degree of the map ρ̃2 ◦ ψ̃ : [0, 2] → S1 :

µCZ(ψ) := deg(ρ̃2 ◦ ψ̃) (6.6)

for any continuous map ρ̃ : Sp(R2n,Ω0) → S1 which coincide with the (complex) determi-
nant detC on U (n) = O

(
R2n

)
∩ Sp

(
R2n,Ω0

)
, such that ρ̃(W−) = ±1, and such that

deg (ρ̃2 ◦ ψ2−) = n− 1 for ψ2− : t ∈ [0, 1] 7→ exp tπJ0S
−.

Proof: This is a direct consequence of the fact that the map defined by deg(ρ̃2 ◦ ψ̃) has
the homotopy property, the loop property (since any loop is homotopic to a loop of unitary
matrices where ρ and detC coincide) and we have added what we need of the signature
property to characterize the Conley-Zehnder index. Indeed 1

2 SignS
− = n − 1, S+ =

Id2n,
1
2 SignS

+ = n and

exp tπJ0S
+ = exp tπ

(
0 − Idn

Idn 0

)
=

(
cosπt Idn − sinπt Idn
sinπt Idn cosπt Idn

)
is in U (n)

so that ρ̃2
(
exp tπ

(
0 − Idn

Idn 0

))
= e2πint and deg(ρ̃2 ◦ ψ2+) = n.

Corollary 6.2.8 The Conley-Zehnder index of a path ψ ∈ SP(n) is given by

µCZ(ψ) := deg(detC
2 ◦ U ◦ ψ̃) (6.7)

where U : Sp(R2n,Ω0) → U (n) is the projection defined by the polar decomposition U(A) =
AP−1 with P the unique symmetric positive definite matrix such that P 2 = AτA.

Proof: The map ρ̃ := detC ◦U satisfies all the properties stated in proposition 6.2.7; it is
indeed continuous, coincides obviously with detC on U (n) and we have that

exp tπJ0

(
0 − log 2

π

− log 2
π

0

)
=

(
2t 0
0 2−t

)
is a positive symmetic matrix so that U(exp tπJ0S

−) =
(

1 0 0 0
0 cosπt Idn−1 0 − sinπt Idn−1

0 0 1 0
0 sinπt Idn−1 0 cosπt Idn−1

)
;

hence det2C ◦ U(exp tπJ0S
−) = e2πi(n−1)t and deg(detC

2 ◦ U ◦ ψ2−) = n− 1.

Formula (6.7) is the definition of the Conley-Zehnder index used in [dG09, HWZ95].
Another formula is obtained using the parametrization of the symplectic group introduced
in [RR89]:

Corollary 6.2.9 The Conley-Zehnder index of a path ψ ∈ SP(n) is given by

µCZ(ψ) := deg(ρ̂2 ◦ ψ̃) (6.8)
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6.3. The Robbin-Salamon index for a path of Lagrangians

where ρ̂ : Sp(R2n,Ω0) → S1 is the normalized complex determinant of the C-linear part of
the matrix:

ρ̂(A) =
detC

(
1
2(A− J0AJ0)

)
∣∣detC

(
1
2(A− J0AJ0)

)∣∣ . (6.9)

Proof: Remark that for any A ∈ Sp(R2n,Ω0) the element CA := 1
2(A − J0AJ0), which

clearly defines a complex linear endomorphism of Cn since it commutes with J0, is always
invertible. Indeed for any non-zero v ∈ V

4Ω0(CAv, J0CAv) = 2Ω0(v, J0v) + Ω0(Av, J0Av) + Ω0(AJ0v, J0AJ0v) > 0.

If A ∈ U(n), then CA = A so that ρ̂(A) = detC(A) hence ρ̂ is a continuous map which
coincide with detC on U (n). Furthermore
1
2

((
2t 0
0 2−t

)
− J0

(
2t 0
0 2−t

)
J0

)
= 1

2

(
2t+2−t 0

0 2t+2−t

)
hence its complex determinant is equal

to 1
2(2

t+2−t) and its normalized complex determinant is equal to 1 so that ρ̂(exp tπJ0S
−) =

eπi(n−1)t and deg(ρ̂2 ◦ ψ2−) = n− 1.

6.3 The Robbin-Salamon index for a path of Lagrangians

A Lagrangian in a symplectic vector space (V,Ω) of dimension 2n is a subspace L of V of
dimension n such that Ω|L×L = 0. Given any Lagrangian L in V, there exists a Lagrangian
M (not unique!) such that L ⊕ M = V. With the choice of such a supplementary M
any Lagrangian L′ in a neighborhood of L (any Lagrangian supplementary to M) can be
identified to a linear map α : L → M through L′ = {v + α(v) | v ∈ L}, with α such that
Ω
(
α(v), w

)
+Ω

(
v, α(w)

)
= 0 ∀v, w ∈ L. Hence it can be identified to a symmetric bilinear

form α : L × L → R : (v, v′) 7→ Ω
(
v, α(v′)

)
. In particular the tangent space at a point L

to the space L(V,Ω) of Lagrangians in (V,Ω) can be identified to the space of symmetric
bilinear forms on L.

If Λ : [a, b] → Ln := L(R2n,Ω0) : t 7→ Λt is a smooth curve of Lagrangian subspaces in

(R2n,Ω0) , we define Q(Λt0 , Λ̇t0) to be the symmetric bilinear form on Λt0 defined by

Q(Λt0 , Λ̇t0)(v, v
′) =

d

dt
αt(v, v

′)

∣∣∣∣
t0

=
d

dt
Ω
(
v, αt(v

′)
)∣∣∣∣
t0

(6.10)

where αt : Λt0 → M is the map corresponding to Λt for a decomposition R2n = Λt0 ⊕M
with M Lagrangian. Then [RS93] :

• the symmetric bilinear form Q(Λt0 , Λ̇t0) : Λt0 ×Λt0 → R is independent of the choice
of the supplementary Lagrangian M to Λt0 ;
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6. Generalised Conley-Zehnder index

• if ψ ∈ Sp(R2n,Ω0) then

Q(ψΛt0 , ψΛ̇t0)(ψv, ψv
′) = Q(Λt0 , Λ̇t0)(v, v

′) ∀v, v′ ∈ Λt0 . (6.11)

Let us choose and fix a Lagrangian L in (R2n,Ω0). Consider a smooth path of La-
grangians Λ : [a, b] → Ln. A crossing for Λ is a number t ∈ [a, b] for which dimΛt ∩L 6= 0.
At each crossing time t ∈ [a, b] one defines the crossing form

Γ(Λ, L, t) = Q
(
Λt, Λ̇t

)∣∣∣
Λt∩L

. (6.12)

A crossing t is called regular if the crossing form Γ(Λ, L, t) is nondegenerate. In that case
Λs ∩ L = {0} for s 6= t in a neighborhood of t.

Definition 6.3.1 ([RS93]) For a curve Λ : [a, b] → Ln with only regular crossings the
Robbin-Salamon index is defined as

µRS(Λ, L) =
1

2
SignΓ(Λ, L, a) +

∑

a<t<b
t crossing

SignΓ(Λ, L, t) +
1

2
SignΓ(Λ, L, b). (6.13)

Robbin and Salamon show (Lemmas 2.1 and 2.2 in [RS93]) that two paths with only regular
crossings which are homotopic with fixed endpoints have the same Robbin-Salamon index
and that every continuous path of Lagrangians is homotopic with fixed endpoints to one
having only regular crossings. These two properties allow to define the Robbin-Salamon
index for every continuous path of Lagrangians and this index is clearly invariant under
homotopies with fixed endpoints. It depends on the choice of the reference Lagrangian L.
Robbin and Salamon show ([RS93], Theorem 2.3):

Theorem 6.3.2 ([RS93]) The index µRS has the following properties:

1. (Naturality) For ψ ∈ Sp(R2n,Ω) µRS(ψΛ, ψL) = µRS(Λ, L).

2. (Catenation) For a < c < b, µRS(Λ, L) = µRS(Λ|[a,c] , L) + µRS(Λ|[c,b] , L).

3. (Product) If n′ + n′′ = n, identify Ln′ × Ln′′ as a submanifold of Ln in the obvious
way. Then µRS(Λ

′ ⊕ Λ′′, L′ ⊕ L′′) = µRS(Λ
′, L′) + µRS(Λ

′′, L′′).

4. (Localization) If L = Rn×{0} and Λ(t) = Gr(A(t)) where A(t) is a path of symmetric
matrices, then the index of Λ is given by
µRS(Λ, L) =

1
2 SignA(b)− 1

2 SignA(a).

5. (Homotopy) Two paths Λ0,Λ1 : [a, b] → Ln with Λ0(a) = Λ1(a) and Λ0(b) = Λ1(b)
are homotopic with fixed endpoints if and only if they have the same index.

6. (Zero) Every path Λ : [a, b] → Σk(V ), with Σk(V ) = {M ∈ Ln | dimM ∩ L = k },
has index µRS(Λ, L) = 0.
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6.4 The Robbin-Salamon index for a path of symplectic matrices

6.4.1 Generalized Conley-Zehnder index

Consider the symplectic vector space (R2n × R2n,Ω = −Ω0 × Ω0). Given any linear map
ψ : R2n → R2n, its graph

Grψ = {(x, ψx)|x ∈ R2n}
is a 2n-dimensional subspace of R2n×R2n which is Lagrangian if and only if ψ is symplectic(
ψ ∈ Sp(R2n,Ω0)

)
.

A particular Lagrangian is given by the diagonal

∆ = Gr Id = {(x, x)|x ∈ R2n}. (6.14)

Remark that Gr(−ψ) is a Lagrangian subspace which is always supplementary to Grψ for
ψ ∈ Sp(R2n,Ω0). In fact Grφ and Grψ are supplementary if and only if φ−ψ is invertible.

Definition 6.4.1 ([RS93]) The Robbin-Salamon index of a continuous path of symplectic
matrices ψ : [0, 1] → Sp(R2n,Ω0) : t 7→ ψt is defined as the Robbin-Salamon index of the
path of Lagrangians in (R2n × R2n,Ω),

Λ = Grψ : [0, 1] → L2n : t 7→ Grψt

when the fixed Lagrangian is the diagonal ∆:

µRS(ψ) := µRS(Grψ,∆). (6.15)

Note that this index is defined for any continuous path of symplectic matrices but can have
half integer values.

A crossing for a smooth path Grψ is a number t ∈ [0, 1] for which 1 is an eigenvalue of
ψt and

Grψt ∩∆ = { (x, x) |ψtx = x }
is in bijection with Ker(ψt − Id).

The properties of homotopy, catenation and product of theorem 6.3.2 imply that [RS93]

• µRS is invariant under homotopies with fixed endpoints,

• µRS is additive under catenation of paths and

• µRS has the product property µRS(ψ
′ ⊕ ψ′′) = µRS(ψ

′) + µRS(ψ
′′) as in proposition

6.2.5.

The zero property of the Robbin-Salamon index of a path of Lagrangians becomes:
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6. Generalised Conley-Zehnder index

Proposition 6.4.2 If ψ : [a, b] → Sp(R2n,Ω) is a path of matrices such that dimKer(ψ(t)−
Id) = k for all t ∈ [a, b] then µRS(ψ) = 0.

Indeed, Grψt∩∆ = {v ∈ R2n|ψtv = v} so dim(Grψt∩∆) = k if and only if dimKer(ψ(t)−
Id) = k.

Proposition 6.4.3 (Naturality) Consider two continuous paths of symplectic matrices
ψ, φ : [0, 1] → Sp(R2n,Ω0) and define ψ′ = φψφ−1. Then

µRS(ψ
′) = µRS(ψ)

Proof: One has

Λ′t := Grψ′t = {(x, φtψtφ−1t x) |x ∈ R2n}
= {(φty, φtψty) | y ∈ R2n}
= (φt × φt)Grψt

= (φt × φt)Λt

and (φt × φt)∆ = ∆. Furthermore (φt × φt) ∈ Sp(R2n × R2n,Ω).
Hence t ∈ [0, 1] is a crossing for the path of Lagrangians Λ′ = Grψ′ if and only if dimGrψ′t∩
∆ 6= 0 if and only if dim(φt × φt)(Grψt ∩∆) 6= 0 if and only if t is a crossing for the path
of Lagrangian Λ = Grψ.

By homotopy with fixed endpoints, we can assume that Λ has only regular crossings
and φ is locally constant around each crossing t so that

d

dt
(φψφ−1)(t) = φtψ̇tφ

−1
t .

Then at each crossing

Γ(Grψ′,∆, t) = Q(Λ′t, Λ̇′t)|Grψ′
t∩∆

= Q((φt × φt)Λt, (φt × φt)Λ̇t)|(φt×φt)Grψt∩∆

= Q(Λt, Λ̇t)|Grψt∩∆ ◦ (φ−1t × φ−1t )⊗ (φ−1t × φ−1t )

in view of (6.11), so that

SignΓ(Grψ′,∆, t) = SignΓ(Grψ,∆, t).

Definition 6.4.4 For any smooth path ψ of symplectic matrices, define a path of sym-
metric matrices S through

ψ̇t = J0Stψt.

This is indeed possible since ψt ∈ Sp(R2n,Ω0) ∀t, thus ψ−1t ψ̇t is in the Lie algebra sp(R2n,Ω0)
and every element of this Lie algebra may be written in the form J0S with S symmetric.
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The symmetric bilinear form Q
(
Grψ, d

dt
Grψ

)
is given as follows. For any t0 ∈ [0, 1], write

R2n × R2n = Grψt0 ⊕Gr(−ψt0). The linear map αt : Grψt0 → Gr(−ψt0) corresponding to
Grψt is obtained from:

(x, ψtx) = (y, ψt0y) + αt(y, ψt0y) = (y, ψt0y) + (α̃ty,−ψt0α̃ty)

if and only if (Id+α̃t)y = x and ψt0(Id−α̃t)y = ψtx, hence ψ
−1
t0
ψt(Id+α̃t) = Id−α̃t and

α̃t = (Id+ψ−1t0 ψt)
−1(Id−ψ−1t0 ψt) ;

d

dt
α̃t

∣∣∣∣
t0

= −1

2
ψ−1t0 ψ̇t0 .

Thus

Q
(
Grψt0 ,

d

dt
Grψt0

)(
(v, ψt0v), (v

′, ψt0v
′)
)

=
d

dt
Ω
(
(v, ψt0v), αt(v

′, ψt0v
′)
)∣∣∣∣
t0

=
d

dt
Ω
(
(v, ψt0v), (α̃tv

′,−ψt0α̃tv′)
)∣∣∣∣
t0

= −2Ω0

(
v,

d

dt
α̃t

∣∣∣∣
t0

v′
)

= Ω0(v, ψ
−1
t0
ψ̇t0v

′)

= Ω0(ψt0v, J0St0ψt0v
′).

Hence the restriction of Q to Ker(ψt0 − Id) is given by

Q
(
Grψt0 ,

d

dt
Grψt0

)(
(v, ψt0v), (v

′, ψt0v
′)
)
= vτSt0v

′ ∀v, v′ ∈ Ker(ψt0 − Id).

A crossing t0 ∈ [0, 1] is thus regular for the smooth path Grψ if and only if the restriction
of St0 to Ker(ψt0 − Id) is nondegenerate.

Definition 6.4.5 ([RS93]) Let ψ : [0, 1] → Sp(R2n,Ω0) : t 7→ ψt be a smooth path of
symplectic matrices. Write ψ̇t = J0Stψt with t 7→ St a path of symmetric matrices. A
number t ∈ [0, 1] is called a crossing if det(ψt − Id) = 0. For t ∈ [0, 1], the crossing form
Γ(ψ, t) is defined as the quadratic form which is the restriction of St to Ker(ψt − Id). A
crossing t0 is called regular if the crossing form Γ(ψ, t0) is nondegenerate.

Proposition 6.4.6 ([RS93]) For a smooth path ψ : [0, 1] → Sp(R2n,Ω0) : t 7→ ψt having
only regular crossings, the Robbin-Salamon index introduced in definition 6.4.1 is given by

µRS(ψ) =
1

2
SignΓ(ψ, 0) +

∑

t crossing,

t ∈]0, 1[

SignΓ(ψ, t) +
1

2
SignΓ(ψ, 1). (6.16)
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Proposition 6.4.7 ([RS93]) Let ψ : [0, 1] → Sp(R2n,Ω0) be a continuous path of sym-
plectic matrices such that ψ(0) = Id and such that 1 is not an eigenvalue of ψ(1) (i.e.
ψ ∈ SP(n)). The Robbin-Salamon index of ψ defined by (6.15) coincides with the Conley-
Zehnder index of ψ In particular, for a smooth path ψ ∈ SP(n) having only regular cross-
ings, the Conley-Zehnder index is given by

µCZ(ψ) =
1

2
SignΓ(ψ, 0) +

∑

t crossing,

t ∈]0, 1[

SignΓ(ψ, t)

=
1

2
Sign(S0) +

∑

t crossing,

t ∈]0, 1[

SignΓ(ψ, t) (6.17)

with S0 = −J0ψ̇0.

Proof: Since the Robbin-Salamon index for paths of Lagrangians is invariant under ho-
motopies with fixed end points, the Robbin-Salamon index for paths of symplectic matrices
is also invariant under homotopies with fixed endpoints.

Its restriction to SP(n) is actually invariant under homotopies of paths in SP(n) since
for any path in SP(n), the starting point ψ0 = Id is fixed and the endpoint ψ1 can only
move in a connected component of Sp∗(R2n,Ω0) where no matrix has 1 as an eigenvalue.

To show that this index coincides with the Conley-Zehnder index, it is enough, in view
of proposition 6.2.6, to show that it satisfies the loop and signature properties.

Let us prove the signature property. Let ψt = exp(tJ0S) with S a symmetric nondegen-
erate matrix with all eigenvalues of absolute value < 2π, so that Ker(exp(tJ0S)−Id) = {0}
for all t ∈]0, 1]. Hence the only crossing is at t = 0, where ψ0 = Id and ψ̇t = J0Sψt so that
St = S for all t and

µCZ(ψ) =
1

2
SignS0 =

1

2
SignS.

To prove the loop property, note that µRS is additive for catenation and invariant under
homotopies with fixed endpoints. The path (φψ) is homotopic to the catenation of φ and ψ;
it is thus enough to show that the Robbin-Salamon index of a loop is equal to 2 deg(ρ ◦φ).
Since two loops φ and φ′ are homotopic if and only if deg(ρ ◦ φ) = deg(ρ ◦ φ′), it is enough
to consider the loops φn defined by

φn(t) :=

(
cos 2πnt − sin 2πnt
sin 2πnt cos 2πnt

)
⊕

(
a(t) Id 0

0 a(t)−1 Id

)

with a : [0, 1] → R+ a smooth curve with a(0) = a(1) = 1 and a(t) 6= 1 for t ∈]0, 1[. Since
ρ
(
φn(t)

)
= e2πint, we have deg(φn) = n.

The crossings of φn arise at t = m
n

with m an integer between 0 and n. At such a crossing,
Ker

(
φn(t)

)
is R2 for 0 < t < 1 and is R2n for t = 0 and t = 1. We have

φ̇n(t) =

((
0 −2πn

2πn 0

)
⊕

(
ȧ(t)
a(t)

Id 0

0 − ȧ(t)
a(t)

Id

))
φn(t)
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so that, extending ⊕ to symmetric matrices in the obvious way,

S(t) = ( 2πn 0
0 2πn )⊕

(
0 − ȧ(t)

a(t)
Id

− ȧ(t)
a(t)

Id 0

)
.

Thus SignΓ(φn, t) = 2 for all crossings t = m
n
, 0 ≤ m ≤ n. From equation (6.16) we get

µRS(φn) =
1

2
SignΓ(φn, 0) +

∑

0<m<n

SignΓ
(
φn,

m
n

)
+

1

2
SignΓ(φn, 1)

= 1 + 2(n− 1) + 1 = 2n = 2deg(ρ ◦ φn)

and the loop property is proved. Thus the Robbin-Salamon index for paths in SP(n)
coincides with the Conley-Zehnder index.

The formula for the Conley-Zehnder index of a path ψ ∈ SP(n) having only reg-
ular crossings, follows then from (6.16). Indeed, we have Ker(ψ1 − Id) = {0}, while

Ker(ψ0 − Id) = R2n and Γ(ψ, 0) = S0.

6.4.2 Another index defined by Robbin and Salamon

Definition 6.4.8 A symplectic shear is a path of symplectic matrices of the form ψt =(
Id B(t)
0 Id

)
with B(t) symmetric.

Proposition 6.4.9 The Robbin-Salamon index of a symplectic shear ψt =
(

Id B(t)
0 Id

)
, with

B(t) symmetric, is equal to

µRS(ψ) =
1

2
SignB(0)− 1

2
SignB(1).

Proof: We write B(t) = A(t)τD(t)A(t) with A(t) ∈ O(Rn) and D(t) a diagonal matrix.

The matrix φt =
(
A(t)τ 0

0 A(t)

)
is in Sp(R2n,Ω0) and

ψ′t := φtψtφ
−1
t =

(
Id D(t)
0 Id

)
.

By proposition 6.4.3 µRS(ψ) = µRS(ψ
′); by the product property it is enough to show that

µRS(ψ) =
1
2 Sign d(0)− 1

2 Sign d(1) for the path

ψ : [0, 1] → Sp(R2,Ω0) : t 7→ ψt =
(

1 d(t)
0 1

)
.

Since µRS is invariant under homotopies with fixed end points, we may assume ψt =(
a(t) d(t)

c(t) a(t)−1
(
1+d(t)c(t)

)
)

with a and c smooth functions such that a(0) = 1, a(1) = 1, ȧ(0) 6=
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0, ȧ(1) 6= 0 and a(t) > 1 for 0 < t < 1; c(0) = c(1) = 0, c(t)d(t) ≥ 0 ∀t and ċ(t) 6= 0
(resp.= 0) when d(t) 6= 0 (resp.= 0) for t = 0 or 1.
The only crossings are t = 0 and t = 1 since the trace of ψ(t) is > 2 for 0 < t < 1. Now,

at those points ( t = 0 and t = 1) ψ̇t =
(
ȧ(t) ḋ(t)
ċ(t) −ȧ(t)+d(t)ċ(t)

)
so that St = −J0ψ̇tψ−1t =

(
ċ(t) −ȧ(t)
−ȧ(t) ȧ(t)d(t)−ḋ(t)

)
.

Clearly, at the crossings, we have Kerψt = R2 iff d(t) = 0 and Kerψt is spanned by
the first basis element iff d(t) 6= 0, so that from definition 6.4.5 Γ(ψ, t) =

(
ċ(t)

)
when

d(t) 6= 0 and Γ(ψ, t) =
(

0 −ȧ(t)
−ȧ(t) 0

)
when d(t) = 0. Hence both crossings are regular

and SignΓ(ψ, t) = Sign ċ(t) when d(t) 6= 0 and SignΓ(ψ, t) = 0 when d(t) = 0. Since
d(t)c(t) ≥ 0 for all t, we clearly have Sign ċ(0) = Sign d(0) and Sign ċ(1) = − Sign d(1).
Proposition 6.4.6 then gives µRS(ψ) =

1
2Γ(ψ, 0)+

1
2 SignΓ(ψ, 1) =

1
2 Sign d(0)− 1

2 Sign d(1).

Remark 6.4.10 Robbin and Salamon introduce another index µ′RS for paths of symplectic
matrices built from their index for paths of Lagrangians. Consider the fixed Lagrangian
L = {0} × Rn in (R2n,Ω0), observe that AL is Lagrangian for any A ∈ Sp(R2n,Ω0), and
define, for ψ : [0, 1] → Sp(R2n,Ω0)

µ′RS(ψ) := µRS(ψL,L). (6.18)

This index has the following properties [RS93] :

• it is invariant under homotopies with fixed endpoints and two paths with the same
endpoints are homotopic with fixed endpoints if and only if they have the same µ′RS
index;

• it is additive under catenation of paths;

• it has the product property µRS(ψ
′ ⊕ ψ′′) = µRS(ψ

′) + µRS(ψ
′′);

• it vanishes on a path whose image lies in

{A ∈ Sp(R2n,Ω0) | dimAL ∩ L = k}

for a given k ∈ {0, . . . , n};

• µ′RS(ψ) =
1
2 SignB(0)− 1

2 SignB(1) when ψt =
(

Id B(t)
0 Id

)
.

Robbin and Salamon [RS93] prove that those properties characterize this index.
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The two indices µRS and µ′RS defined on paths of symplectic matrices DO NOT coincide

in general. Indeed, consider the path ψ : [0, 1] → Sp(R2n,Ω0) : t 7→ ψt =
(

Id 0
C(t) Id

)
. Since

ψtL ∩ L = L ∀t, µ′RS(ψ) = 0. On the other hand, if φ =
(

0 Id
− Id 0

)
and ψ′ = φψφ−1, then

ψ′t =
(

Id −C(t)
0 Id

)
. Then

µ′RS(ψ
′) =

1

2
SignC(1)− 1

2
SignC(0)

which is in general different from µ′RS(ψ). Whereas, by (6.4.3), µRS(ψ) = µRS(ψ
′).

The index µ′RS vanishes on a path whose image lies into one of the (n+1) strata defined
by {A ∈ Sp(R2n,Ω0) | dimAL ∩ L = k} for 0 ≤ k ≤ n, whereas the index µRS vanishes on
a path whose image lies into one of the (2n + 1) strata defined by the set of symplectic
matrices whose eigenspace of eigenvalue 1 has dimension k (for 0 ≤ k ≤ 2n).

However, the two indices µRS and µ′RS coincide on symplectic shears.

6.5 Characterization of the Robbin-Salamon index

In this section, we prove theorem 6.1.2 stated in the introduction. Before proving this
theorem, we show that the Robbin-Salamon index is characterized by the fact that it
extends Conley-Zehnder index and has all the properties stated in the previous section.
This is made explicit in Lemma 6.5.2. We then use the characterization of the Conley-
Zehnder index given in Proposition 6.2.6 to give in Lemma 6.5.3 a characterization of the
Robbin-Salamon index in terms of six properties. We use explicitly the normal form of the
restriction of a symplectic endomorphism to its generalised eigenspace of eigenvalue 1 that
we have proven in [Gutb] and that we summarize in the following proposition

Proposition 6.5.1 (Normal form for A|V[λ] for λ = ±1.) Let λ = ±1 be an eigenvalue

of A ∈ Sp(R2n,Ω0) and let V[λ] be the generalized eigenspace of eigenvalue λ. There exists
a symplectic basis of V[λ] in which the matrix associated to the restriction of A to V[λ] is a
symplectic direct sum of matrices of the form

(
J(λ, rj)

−1 C(rj , dj , λ)
0 J(λ, rj)

τ

)

where C(rj , dj , λ) := J(λ, rj)
−1 diag

(
0, . . . , 0, dj

)
with dj ∈ {0, 1,−1}. If dj = 0, then

rj is odd. The dimension of the eigenspace of eigenvalue 1 is given by 2Card{j | dj =
0}+Card{j | dj 6= 0}.
For any integer k ≥ 1, the bilinear form on Ker

(
(A− λ Id)2k

)
defined by

Q̂k : Ker
(
(A− λ Id)2k

)
×Ker

(
(A− λ Id)2k

)
→ R

(v, w) 7→ Ω((A− λ Id)kv, (A− λ Id)k−1w) (6.19)
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is symmetric and we have

∑

j

dj = λ
∑

k≥1
Signature(Q̂k) (6.20)

Lemma 6.5.2 The Robbin-Salamon index is characterized by the following properties:

1. (Generalization) it is a correspondence µRS which associates a half integer to any
continuous path ψ : [a, b] → Sp(R2n,Ω0) of symplectic matrices and it coincides with
µCZ on paths starting from the identity matrix and ending at a matrix for which 1 is
not an eigenvalue;

2. (Naturality) if φ, ψ : [0, 1] → Sp(R2n,Ω0), we have µRS(φψφ
−1) = µRS(ψ);

3. (Homotopy) it is invariant under homotopies with fixed end points;

4. (Catenation) it is additive under catenation of paths;

5. (Product) it has the product property µRS(ψ
′ ⊕ ψ′′) = µRS(ψ

′) + µRS(ψ
′′);

6. (Zero) it vanishes on any path ψ : [a, b] → Sp(R2n,Ω) of matrices such that
dimKer(ψ(t)− Id) = k is constant on [a, b];

7. (Shear)on a symplectic shear , ψ : [0, 1] → Sp(R2n,Ω0) of the form

ψt =
(
Id −tB
0 Id

)
= exp t

(
0 −B
0 0

)
= exp tJ0

(
0 0
0 B

)

with B symmetric, it is equal to µRS(ψ) =
1
2 SignB.

Proof: We have seen in the previous section that the index µRS defined by Robbin and
Salamon satisfies all the above properties. To see that those properties characterize this
index, it is enough to show (since the group Sp(R2n,Ω0) is connected and since we have
the catenation property) that those properties determine the index of any path starting
from the identity. Since it must be a generalization of the Conley-Zehnder index and must
be additive for catenations of paths, it is enough to show that any symplectic matrix A
which admits 1 as an eigenvalue can be linked to a matrix B which does not admit 1 as
an eigenvalue by a continuous path whose index is determined by the properties stated.
From proposition 6.5.1, there is a basis of R2n such that A is the symplectic direct sum of
a matrix which does not admit 1 as eigenvalue and matrices of the form

A
(1)
rj ,dj

:=
(
J(1,rj)

−1 J(1,rj)
−1 diag(0,...,0,dj)

0 J(1,rj)
τ

)
;

with dj equal to 0, 1 or −1. The dimension of the eigenspace of eigenvalue 1 for A
(1)
rj ,dj

is
equal to 1 if dj 6= 0 and is equal to 2 if dj = 0. In view of the naturality and the product
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property of the index, we can consider a symplectic direct sum of paths with the constant
path on the symplectic subspace where 1 is not an eigenvalue and we just have to build

a path in Sp(R2rj ,Ω0) from A
(1)
rj ,dj

to a matrix which does not admit 1 as eigenvalue and
whose index is determined by the properties given in the statement. This we do by the
catenation of three paths : we first build the path ψ1 : [0, 1] → Sp(R2rj ,Ω0) defined by

ψ1(t) :=

(
D(t,rj)

−1 D(t,rj)
−1 diag

(
c(t),0,...,0,d(t)

)
0 D(t,rj)

τ

)

with D(t, rj) =




1 1−t 0 ... ... 0
0 et 1−t 0 ... 0
... 0

. . .
. . . 0

...
0 ... 0 et 1−t 0
0 ... ... 0 et 1−t
0 ... ... ... 0 et


,

and with c(t) = tdj , d(t) = (1 − t)dj . Observe that ψ1(0) = A
(1)
rj ,dj

and ψ1(1) is the

symplectic direct sum of
(

1 c(1)=dj
0 1

)
and

(
e−1 Idrj−1 0

0 e Idrj−1

)
and this last matrix does not

admit 1 as eigenvalue.

Clearly dimker
(
ψ1(t) − Id

)
= 2 for all t ∈ [0, 1] when dj = 0; we now prove that

dimker(ψ1(t) − Id) = 1 for all t ∈ [0, 1] when dj 6= 0. Hence the index of ψ1 must always
be zero by the zero property.
To prove that dimker(ψ1(t)−Id) = 1 we have to show the non vanishing of the determinant
of the 2rj − 1× 2rj − 1 matrix




Et
12 ... ... Et

1rj
c(t) 0 ... 0 Et

1rj
d(t)

e−t−1 Et
23

. . . Et
2rj

0 0 ... 0 Et
2rj

d(t)

0
. . .

. . .
...

...
...

...
...

...
. . . e−t−1 Et

rj−1 rj
0 0 ... 0 Et

rj−1 rj
d(t)

0 ... 0 e−t−1 0 0 ... 0 e−td(t)

0 ... 0 0 1−t et−1 0
. . . 0

... ...
... 0 0 1−t et−1

. . . 0
... ...

... 0 ... 0
. . .

. . . 0

0 ... 0 0 0 ... 0 1−t et−1




where Et := D(t, rj)
−1 is upper triangular. This determinant is equal to

(−1)rj+1c(t)(e−t − 1)rj−1(et − 1)rj−1 + (−1)rj−1d(t)(1− t)rj−1 detE′(t)
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where E′(t) is obtained by deleting the first column and the last line in E(t)− Id so given
by the (rj − 1)× (rj − 1) matrix




(t−1)e−t (t−1)2e−2t ... ... (t−1)rj−1
e
−(rj−1)t

e−t−1 (t−1)e−2t (t−1)2e−3t ... (t−1)rj−2
e
−(rj−1)t

0 e−t−1 (t−1)e−2t
. . . (t−1)rj−3

e
−(rj−2)t

...
. . .

. . .
. . .

. . .
...

...
. . . e−t−1 (t−1)e−2t (t−12)e−3t

0 ... 0 e−t−1 (t−1)e−2t




.

Thus detE′(t) = (t− 1)(e−t − (e−t − 1)) detFrj−2(t) where

Fm(t) :=




(t−1)e−2t (t−1)2e−3t ... ... (t−1)rj−2
e
−(rj−1)t

e−t−1 (t−1)e−2t
. . . ... (t−1)rj−3

e
−(rj−2)t

0 e−t−1 (t−1)e−2t
. . . (t−1)rj−3

e
−(rj−2)t

...
. . .

. . .
. . .

. . .
...

...
. . . e−t−1 (t−1)e−2t (t−12)e−3t

0 ... 0 e−t−1 (t−1)e−2t




.

and we have detFm(t) = ((t−1)e−2t−(e−t−1)(t−1)e−t) detFm−1(t) = (t−1)e−t detFm−1(t)
so that, by induction on m, detFm(t) = (t − 1)me−(m+1)t hence the determinant we have
to study is
(−1)rj−1c(t)(2− et − e−t)rj−1 + d(t)(t− 1)rj detFrj−2(t) which is equal to

(−1)rj−1c(t)(2− et − e−t)rj−1 + d(t)(t− 1)rj (t− 1)rj−2e−(rj−1)t hence to

c(t)(et + e−t − 2)rj−1 + d(t)(1− t)2rj−2e−(rj−1)t

which never vanishes if c(t) = tdj and d(t) = (1 − t)dj since et + e−t − 2 and (1 − t) are
≥ 0.

We then construct a path ψ2 : [0, 1] → Sp(R2rj ,Ω0) which is constant on the symplectic
subspace where 1 is not an eigenvalue and which is a symplectic shear on the first two
dimensional symplectic vector space, i.e.

ψ2(t) :=
(

1 (1−t)dj
0 1

)
⊕

(
e−1 Idrj−1 0

0 e Idrj−1

)
;

then the index of ψ2 is equal to 1
2 Sign dj . Observe that ψ2 is constant if dj = 0; then the

index of ψ2 is zero. In all cases ψ2(1) = Id2⊕
(
e−1 Idrj−1 0

0 e Idrj−1

)
.

We then build ψ3 : [0, 1] → Sp(R2rj ,Ω0) given by

ψ3(t) :=
(
e−t 0
0 et

)
⊕

(
e−1 Idrj−1 0

0 e Idrj−1

)
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which is the direct sum of a path whose Conley-Zehnder index is known and a constant
path whose index is zero. Clearly 1 is not an eigenvalue of ψ3(1).

Combining the above with the characterization of the Conley-Zehnder index, we now
prove:

Lemma 6.5.3 The Robbin-Salamon index for a path of symplectic matrices is character-
ized by the following properties:

• (Homotopy) it is invariant under homotopies with fixed end points;

• (Catenation) it is additive under catenation of paths;

• (Zero) it vanishes on any path ψ : [a, b] → Sp(R2n,Ω) of matrices such that
dimKer(ψ(t)− Id) = k is constant on [a, b];

• (Product) it has the product property µRS(ψ
′ ⊕ ψ′′) = µRS(ψ

′) + µRS(ψ
′′);

• (Signature) if S = Sτ ∈ R2n×2n is a symmetric non degenerate matrix with all
eigenvalues of absolute value < 2π and if ψ(t) = exp(J0St) for t ∈ [0, 1] , then
µRS(ψ) =

1
2 SignS where SignS is the signature of S;

• (Shear) if ψt = exp tJ0
(
0 0
0 B

)
for t ∈ [0, 1] , with B symmetric, then µRS(ψ) =

1
2 SignB.

Proof: Remark first that the invariance by homotopies with fixed end points, the
additivity under catenation and the zero property imply the naturality; they also imply
the constancy on the components of SP(n). The signature property stated above is the
signature property which arose in the characterization of the Conley-Zehnder index given
in proposition 6.2.6. To be sure that our index is a generalization of the Conley-Zehnder
index, there remains just to prove the loop property. Since the product of a loop φ and a
path ψ starting at the identity is homotopic to the catenation of φ and ψ, it is enough to
prove that the index of a loop φ with φ(0) = φ(1) = Id is given by 2 deg(ρ ◦ φ). Since two
loops φ and φ′ are homotopic if and only if deg(ρ◦φ) = deg(ρ◦φ′), it is enough to consider
the loops φn defined by φn(t) :=

(
cos 2πnt − sin 2πnt
sin 2πnt cos 2πnt

)
⊕Id; since φn(t) =

(
φ1(t)

)n
, it is enough

to show, using the homotopy, catenation, product and zero properties that the index of
the loop given by φ(t) =

(
cos 2πt − sin 2πt
sin 2πt cos 2πt

)
for t ∈ [0, 1] is equal to 2. This is true, using the

signature property, writing φ as the catenation of the path ψ1(t) := φ( t2) = exp tJ0 ( π 0
0 π )

for t ∈ [0, 1] whose index is 1 and the path ψ2(t) := φ( t2) = exp tJ0 ( π 0
0 π ) for t ∈ [1, 2].

We introduce the path in the reverse direction ψ−2 (t) := exp−tJ0 ( π 0
0 π ) for t ∈ [0, 1] whose

index is −1; since the catenation of ψ−2 and ψ2 is homotopic to the constant path whose
index is zero, the index of φ1 is given by the index of ψ1 minus the index of ψ−2 hence is

equal to 2.
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We are now ready to prove the characterization of the Robbin-Salamon index stated in the
introduction.

Proof of theorem 6.1.2: Observe that any symmetric matrix can be written as the
symplectic direct sum of a non degenerate symmetric matrix S and a matrix S′ of the form(
0 0
0 B

)
where B is symmetric and may be degenerate. The index of the path ψt = exp tJ0S

′

is equal to the index of the path ψ′t = exp tλJ0S
′ for any λ > 0. Hence the signature

and shear conditions, in view of the product condition, can be simultaneously written as:
if S = Sτ ∈ R2n×2n is a symmetric matrix with all eigenvalues of absolute value < 2π
and if ψ(t) = exp(J0St) for t ∈ [0, 1] , then µRS(ψ) =

1
2 SignS. This is the normalization

condition stated in the theorem.

From Lemma 6.5.3, we just have to prove that the product property is a consequence
of the other properties. We prove it for paths with values in Sp(R2n,Ω0) by induction on
n, the case n = 1 being obvious. Since ψ′ ⊕ ψ′′ is homotopic with fixed endpoints to the
catenation of ψ′ ⊕

(
ψ′′(0)

)
and

(
ψ′(1)

)
⊕ ψ′′, it is enough to show that the index of A⊕ ψ

is equal to the index of ψ for any fixed A ∈ Sp(R2n′
,Ω0) with n

′ < n and any continuous
path ψ : [0, 1] → Sp(R2n′′

,Ω0) with n
′′ < n.

Using the proof of lemma 6.5.2, any symplectic matrix A can be linked by a path φ(s)
with constant dimension of the 1-eigenspace to a matrix of the form exp(J0S

′) with S′ a
symmetric n′ × n′ matrix with all eigenvalues of absolute value < 2π. The index of A⊕ ψ
is equal to the index of exp(J0S

′)⊕ ψ; indeed A⊕ ψ is homotopic with fixed endpoints to
the catenation of the three paths φs ⊕ ψ(0), exp(J0S

′)⊕ ψ and the path φs ⊕ ψ(1) in the
reverse order, and the index of the first and third paths are zero since the dimension of the
1-eigenspace does not vary along those paths.

Hence it is enough to show that the index of exp(J0S
′) ⊕ ψ is the same as the index

of ψ. This is true because the map µ sending a path ψ in Sp(R2n′′
,Ω0) (with n′′ < n)

to the index of exp(J0S
′) ⊕ ψ has the four properties stated in the theorem, and these

characterize the Robbin-Salamon index for those paths by induction hypothesis. It is clear
that µ is invariant under homotopies, additive for catenation and equal to zero on paths ψ
for which the dimension of the 1-eigenspace is constant. Furthermore µ(exp t(J0S)) which
is the index of exp(J0S

′)⊕exp t(J0S) is equal to
1
2 SignS, because the path exp tJ0(S

′⊕S)
whose index is 1

2 Sign(S
′⊕S) = 1

2 SignS
′+ 1

2 SignS is homotopic with fixed endpoints with
the catenation of exp t(J0S

′)⊕ Id = exp tJ0(S
′⊕ 0), whose index is 1

2 SignS
′, and the path

exp(J0S
′)⊕ exp t(J0S).
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6.6 A formula for the Robbin-Salamon index

Let ψ : [0, 1] → Sp(R2n,Ω0) be a path of symplectic matrices. The symplectic transforma-
tion ψ(1) of V = R2n decomposes as

ψ(1) = ψ⋆(1)⊕ ψ(1)(1)

where ψ⋆(1) does not admit 1 as eigenvalue and ψ(1)(1) is the restriction of ψ(1) to the
generalized eigenspace of eigenvalue 1

ψ(1)|V[1] .

By proposition 6.5.1, there exists a symplectic matrix A such that Aψ(1)(1)A−1 is equal to

ψ⋆(1)⊕
(
J(1,r1)−1 C

(
r1,d

(1)
1 ,1

)
0 J(1,r1)τ

)
⊕ · · · ⊕

(
J(1,rk)

−1 C
(
rk,d

(1)
k
,1
)

0 J(1,rk)
τ

)
(6.21)

⊕
(
J(1,s1)−1 0

0 J(1,s1)τ

)
⊕ · · · ⊕

(
J(1,sl)

−1 0
0 J(1,sl)

τ

)

with each d
(1)
j = ±1. Since Sp(R2n,Ω0) is connected, there is a path ϕ : [0, 1] → Sp(R2n,Ω0)

such that ϕ(0) = Id and ϕ(1) = A. We define

ψI : [0, 1] → Sp(R2n,Ω0) : t 7→ ϕ(t)ψ(t)
(
ϕ(t)

)−1
.

It is a path from ψ(1) to the matrix defined in 6.21. Clearly, µRS(ψI) = 0 and ρ is constant
on ψI .

Let ψII : [0, 1] → Sp(R2n,Ω0) be the path from ψI(1) to

ψ⋆(1)⊕
(

1 d
(1)
1

0 1

)
⊕ · · · ⊕

(
1 d

(1)
k

0 1

)
⊕ ( 1 0

0 1 )⊕ · · · ⊕ ( 1 0
0 1 )⊕

(
e−1 Id 0

0 e Id

)

defined as in the proof of lemma 6.5.2 in each block by

(
D(t,rj)

−1 D(t,rj)
−1 diag

(
td

(1)
j ,0,...,0,(1−t)d(1)j

)
0 D(t,rj)

τ

)

with D(t, rj) =




1 1−t 0 ... ... 0
0 et 1−t 0 ... 0
... 0

. . .
. . . 0

...
0 ... 0 et 1−t 0
0 ... ... 0 et 1−t
0 ... ... ... 0 et


. Note that µRS(ψII) = 0 since the eigenspace of

eigenvalue 1 has constant dimension and ρ is constant on ψII .
We define ψIII : [0, 1] → Sp(R2n,Ω0) from ψII(1) to

ψ⋆(1)⊕
(
Id 0
0 Id

)
⊕

(
e−1 Id 0

0 e Id

)
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which is given on each block
(

1 d
(1)
j

0 1

)
by

(
1 (1−t)d(1)j

0 1

)
. Note that µRS(ψIII) = 1

2

∑
j d

(1)
j

by proposition 6.4.9 and ρ is constant on ψIII .
Finally, consider ψIV : [0, 1] → Sp(R2n,Ω0) from ψIII(1) to

ψ⋆(1)⊕
(
e−1 Id 0

0 e Id

)

which is given by ψ⋆(1) ⊕
(
e−t 0
0 et

)
⊕

(
e−1 Id 0

0 e Id

)
. Note that µRS(ψIV ) = 0, ρ is constant

on ψIV and ψIV (1) is in Sp⋆(R2n,Ω0). Since two paths of matrices with fixed ends are
homotopic if and only if their image under ρ are homotopic, the catenation of the paths
ψIII and ψIV is homotopic to any path from ψI(1) to ψ⋆(1) ⊕

(
e Id 0
0 e−1 Id

)
of the form

ψ⋆(1)⊕) ⊕ φ1(t) where φ1(t) has only real positive eigenvalues. We proceed similarly for
ψ(0) and we get

Theorem 6.6.1 Let ψ : [0, 1] → Sp(R2n,Ω0) be a path of symplectic matrices. Decompose
ψ(0) = ψ⋆(0) ⊕ ψ(1)(0) and ψ(1) = ψ⋆(1) ⊕ ψ(1)(1) where ψ⋆(0) (resp. ψ⋆(1)) does not
admit 1 as eigenvalue and ψ(1)(0) (resp. ψ(1)(1)) is the restriction of ψ(0) (resp. ψ(1)) to
the generalized eigenspace of eigenvalue 1 of ψ(0) (resp. ψ(1)). Consider a prolongation
Ψ : [−1, 2] → Sp(R2n,Ω0) of ψ such that

• Ψ(t) = ψ(t) ∀t ∈ [0, 1];

• Ψ
(
−1

2

)
= ψ⋆(0) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(0) ⊕ φ0(t) where φ0(t) has only real

positive eigenvalues for t ∈
[
−1

2 , 0
]
;

• Ψ
(
3
2

)
= ψ⋆(1) ⊕

(
e−1 Id 0

0 e Id

)
and Ψ(t) = ψ⋆(1) ⊕ φ1(t) where φ1(t) has only real

positive eigenvalues for t ∈
[
1, 32

]
;

• Ψ(−1) =W±, Ψ(2) =W± and Ψ(t) ∈ Sp⋆(R2n,Ω0) for t ∈
[
−1,−1

2

]
∪
[
3
2 , 2

]
.

Then

µRS(ψ) = deg(ρ2 ◦Ψ) +
1

2

∑
d
(0)
i − 1

2

∑
d
(1)
j .

Remark that we can replace in the formula above ρ by ρ̃ as in proposition 6.2.7.
By proposition 6.5.1, we have theorem 6.1.3 :

µRS(ψ) = deg(ρ2 ◦Ψ) +
1

2

dimV∑

k=1

Sign
(
Q̂

(ψ(0))
k

)
− 1

2

dimV∑

k=1

Sign
(
Q̂

(ψ(1))
k

)
.

Remark 6.6.2 The advantage of this new formula is that to compute the index of a path
whose crossing with the Maslov cycle is non transverse we do not need to perturb the path.
The drawback is that we have to extend the initial path.
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Les Ulis; CNRS Éditions, Paris, 2010.

[AH09] Peter Albers and Helmut Hofer. On the Weinstein conjecture in higher di-
mensions. Comment. Math. Helv., 84(2):429–436, 2009.

[AYLR04] Yik-Hoi Au-Yeung, Chi-Kwong Li, and Leiba Rodman. H-unitary and
Lorentz matrices: a review. SIAM J. Matrix Anal. Appl., 25(4):1140–1162
(electronic), 2004.

[Bas] S. Basu. An introduction to equivariant homology. Available at
www.math.binghamton.edu/somnath/Notes/EH.pdf.

[BEE12] Frédéric Bourgeois, Tobias Ekholm, and Yakov Eliashberg. Effect of legen-
drian surgery. Geom. Topol., 16(1):301–389, 2012.

[BEH+03] F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder. Compact-
ness results in symplectic field theory. Geom. Topol., 7:799–888 (electronic),
2003.

[BLMR85] Henri Berestycki, Jean-Michel Lasry, Giovanni Mancini, and Bernhard Ruf.
Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces.
Comm. Pure Appl. Math., 38(3):253–289, 1985.

[BM04] Frédéric Bourgeois and Klaus Mohnke. Coherent orientations in symplectic
field theory. Math. Z., 248(1):123–146, 2004.

[BO09a] Frédéric Bourgeois and Alexandru Oancea. An exact sequence for contact-
and symplectic homology. Invent. Math., 175(3):611–680, 2009.

[BO09b] Frédéric Bourgeois and Alexandru Oancea. Symplectic homology, au-
tonomous Hamiltonians, and Morse-Bott moduli spaces. Duke Math. J.,
146(1):71–174, 2009.

159



Bibliography

[BO10] Frédéric Bourgeois and Alexandru Oancea. Fredholm theory and transversal-
ity for the parametrized and for the S1-invariant symplectic action. J. Eur.
Math. Soc. (JEMS), 12(5):1181–1229, 2010.

[BO12] Frédéric Bourgeois and Alexandru Oancea. S1-equivariant symplectic homol-
ogy and linearized contact homology. arXiv:1212.3731, 2012.

[BO13a] Frédéric Bourgeois and Alexandru Oancea. The Gysin exact sequence for
S1-equivariant symplectic homology. J. Topol. Anal., 5(4):361–407, 2013.

[BO13b] Frédéric Bourgeois and Alexandru Oancea. The index of Floer moduli prob-
lems for parametrized action functionals. Geom. Dedicata, 165:5–24, 2013.

[Bor53] Armand Borel. Sur la cohomologie des espaces fibrés principaux et des espaces
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Summary

This thesis deals with the question of the minimal number of distinct periodic Reeb
orbits on a contact manifold which is the boundary of a compact symplectic manifold.

The positive S1-equivariant symplectic homology is one of the main tools considered
in this thesis. It is built from periodic orbits of Hamiltonian vector fields in a symplectic
manifold whose boundary is the given contact manifold.

Our first result describes the relation between the symplectic homologies of an exact
compact symplectic manifold with contact type boundary (also called Liouville domain),
and the periodic Reeb orbits on the boundary. We then prove some properties of these
homologies. For a Liouville domain embedded into another one, we construct a morphism
between their homologies. We study the invariance of the homologies with respect to the
choice of the contact form on the boundary. We use the positive S1-equivariant symplectic
homology to give a new proof of a Theorem by Ekeland and Lasry about the minimal
number of distinct periodic Reeb orbits on some hypersurfaces in R2n. We indicate how it
extends to some hypersurfaces in some negative line bundles.

We also give a characterisation and a new way to compute the generalized Conley-
Zehnder index defined by Robbin and Salamon for any path of symplectic matrices. A tool
for this is a new analysis of normal forms for symplectic matrices.

Résumé

Le sujet de cette thèse est la question du nombre minimal d’orbites de Reeb distinctes
sur une variété de contact qui est le bord d’une variété symplectique compacte.

L’homologie symplectique S1-équivariante positive est un des outils principaux de cette
thèse; elle est construite à partir d’orbites périodiques de champs de vecteurs hamiltoniens
sur une variété symplectique dont le bord est la variété de contact considérée.

Nous analysons la relation entre les différentes variantes d’homologie symplectique d’une
variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son
bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de
Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies.
Nous étudions ensuite l’invariance de ces homologies par rapport au choix de la forme
de contact sur le bord. Nous utilisons l’homologie symplectique S1-équivariante positive
pour donner une nouvelle preuve d’un théorème de Ekeland et Lasry sur le nombre minimal
d’orbites de Reeb distinctes sur certaines hypersurfaces dans R2n. Nous indiquons comment
étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs.

Nous donnons une caractérisation et une nouvelle façon de calculer l’indice de Conley-
Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplec-
tiques. Ceci nous a mené à développer de nouvelles formes normales de matrices symplec-
tiques.


