
HAL Id: tel-01017083
https://theses.hal.science/tel-01017083v1

Submitted on 1 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient end-to-end monitoring for fault management in
distributed systems

Dawei Feng

To cite this version:
Dawei Feng. Efficient end-to-end monitoring for fault management in distributed systems. Ma-
chine Learning [cs.LG]. Université Paris Sud - Paris XI, 2014. English. �NNT : 2014PA112044�.
�tel-01017083�

https://theses.hal.science/tel-01017083v1
https://hal.archives-ouvertes.fr

 UNIVERSITE PARIS-SUD

ÉCOLE DOCTORALE : Informatique de Paris-Sud
Laboratoire de Rechercher en Informatique

DISCIPLINE Informatique

THÈSE DE DOCTORAT

soutenue le 27/03/2014

par

Dawei FENG

Efficient End-to-End Monitoring for Fault

Management in Distributed systems

Directeur de thèse : Cécile Germain-Renaud Directrice de thèse (Université Paris Sud, LRI/TAO)

Composition du jury :

Président du jury : Joffroy Beauquier Président du jury (Université Paris-Sud, LRI/ParSys)
Rapporteurs : Lorenza Saitta Rapporteur (Università del Piemonte Orientale)
 Johan Montagnat Rapporteur (CNRS)
Examinateurs : Michèle Sebag Examinatrice (CNRS)

Xiangliang Zhang Examinatrice (King Abdullah University of Science &
Technology)

 Irina Rish Examinatrice (IBM T. J. Watson Research Center)

Abstract

In this dissertation, we present our work on fault management in distributed systems,

with motivating application roots in monitoring fault and abrupt change of large computing

systems like the grid and the cloud. Instead of building a complete a priori knowledge of the

software and hardware infrastructures as in conventional detection or diagnosis methods,

we propose to use appropriate techniques to perform end-to-end monitoring for such large

scale systems, leaving the inaccessible details of involved components in a black box.

For the fault monitoring of a distributed system, we first model this probe-based appli-

cation as a static collaborative prediction (CP) task, and experimentally demonstrate the

effectiveness of CP methods by using the max margin matrix factorization method. We

further introduce active learning to the CP framework and exhibit its critical advantage in

dealing with highly imbalanced data, which is specially useful for identifying the minority

fault class.

Further we extend the static fault monitoring to the sequential case by proposing the

sequential matrix factorization (SMF) method. SMF takes a sequence of partially observed

matrices as input, and produces predictions with information both from the current and

history time windows. Active learning is also employed to SMF, such that the highly

imbalanced data can be coped with properly. In addition to the sequential methods, a

smoothing action taken on the estimation sequence has shown to be a practically useful

trick for enhancing sequential prediction performance.

Since the stationary assumption employed in the static and sequential fault monitoring

becomes unrealistic in the presence of abrupt changes, we propose a semi-supervised online

change detection (SSOCD) framework to detect intended changes in time series data. In this

way, the static model of the system can be recomputed once an abrupt change is detected.

In SSOCD, an unsupervised offline method is proposed to analyze a sample data series.

The change points thus detected are used to train a supervised online model, which gives

online decision about whether there is a change presented in the arriving data sequence.

State-of-the-art change detection methods are employed to demonstrate the usefulness of

the framework.

All presented work is verified on real-world datasets. Specifically, the fault monitoring

experiments are conducted on a dataset collected from the Biomed grid infrastructure within

the European Grid Initiative, and the abrupt change detection framework is verified on a

1

dataset concerning the performance change of an online site with large amount of traffic.

2

Acknowledgements

First and foremost, I want to thank my PhD. supervisor, Cecile Germain-Renaud. With-

out her help and dedicated assistant throughout my three and half years’ Phd. time, this

dissertation would have never been accomplished. I would like to express my immense

gratitude for her support and understanding over these past 42 months.

I would also like to thank Michele Sebag. For all the discussions she had enlightened

me, and the comments as well as suggestions for my research. It has been a real pleasant

experience to work with her.

I would also like to show gratitude to my committee: Joffroy Beauquier, Lorenza Saitta,

Johan Montagnat, Xiangliang Zhang and Irina Rish. Thank Lorenza and Johan for review-

ing my manuscript, giving comments and suggestions on it. This will be very helpful for

my future career. Special thank to Xiangliang Zhang, for the pleasant journey in KAUST

as well as all the help she gave on my research. Many thanks to the TAO team member. I

thank Julien NAUROY, Lovro Ilijasic, Riad AKROUR and Tristan Glatard at INSA Lyon.

They helped me a lot on my research in these years.

The accomplishment of my dissertation required more than academic support. I thank

my friends for all the assistants they gave and the pleasant memories we had together:

Yangbin Tang, Weijia Wang, Wusheng Jiang, Yufei Han, Weihua Yang, Bo Li, Jingyi Bin,

Ning Chu, Jianqiang Chen, Guohua Zhang, Jialin Liu, Jonathan, and many other people.

I would also like to express special thank to Yifan Yang and Chuan Xu, for translating the

French abstract of my dissertation.

Most importantly, this dissertation is dedicated to my family, especially my parents.

Nothing would have come true without their support. All I have and will accomplish are

only possible because of their love.

3

4

Contents

1 Introduction 15

2 Fault Monitoring 19

2.1 Introduction . 19

2.2 Fault management for distributed middleware 20

2.2.1 Data acquisition . 21

2.2.2 Fault analysis . 24

2.2.3 Motivating application . 31

2.2.4 Diagnosis at work . 33

3 Collaborative Fault Monitoring 37

3.1 Collaborative prediction for fault inference 37

3.1.1 Motivation . 37

3.1.2 Fault inference as a matrix completion problem 38

3.1.3 Collaborative prediction . 40

3.1.4 Goals and methods . 45

3.1.5 Matrix completion . 46

3.2 Experimental setting . 49

3.2.1 The data sets . 49

3.2.2 Evaluation methodology . 53

3.2.3 Computational cost . 54

3.3 Experimental results with MMMF . 55

3.3.1 Static-uniform . 55

3.3.2 Active probing . 59

3.3.3 Cost sensitive + Active probing . 61

5

3.4 AUC optimization within MMMF . 62

3.5 Mixed membership matrix factorization . 65

3.6 Conclusion . 69

4 Sequential Fault Monitoring 71

4.1 Introduction . 72

4.1.1 Motivation . 72

4.1.2 Categorization . 73

4.1.3 Problem statement . 74

4.2 Background . 76

4.2.1 Temporal methods . 76

4.2.2 Collapsed methods . 78

4.2.3 Tensor factorization . 79

4.3 Sequential matrix factorization . 82

4.3.1 SMF algorithm . 82

4.3.2 Sequential matrix factorization with active sampling 85

4.3.3 Smoothing the outputs . 86

4.3.4 Summary . 88

4.4 Experiments . 88

4.4.1 Data description . 89

4.4.2 MMMF, SMF, MMMFA . 91

4.4.3 Method by method analysis . 93

4.4.4 Comparisons between methods on noncurated dataset 101

4.4.5 Curated dataset . 103

4.4.6 Method by method analysis on curated dataset 105

4.4.7 Comparisons between methods on curated dataset 113

4.4.8 Improving prediction performance on curated dataset 114

4.5 Conclusion . 116

5 Sequential Change Detection 119

5.1 Introduction . 119

5.2 Change point detection . 120

5.2.1 Problem statement . 120

6

5.2.2 Topology of offline methods . 122

5.2.3 Topology of online methods . 125

5.2.4 Performance criteria . 127

5.3 Semi-supervised online change detection . 130

5.3.1 Motivation . 130

5.3.2 Semi-Supervised online change detection framework, SSOCD 132

5.3.3 Offline segmentation methods . 134

5.3.4 Supervised Bayesian online change point detection 137

5.4 Experimental setting . 141

5.4.1 Dataset . 141

5.4.2 Change detection under the SSOCD framework 145

5.5 Experimental results . 146

5.5.1 Active data . 146

5.5.2 Passive data . 152

5.6 Conclusion . 159

6 Conclusions and Perspectives 161

6.1 Summary . 161

6.2 Perspectives . 163

7

8

List of Figures

2-1 MAPE-K loop, autonomic computing . 20

2-2 Illustrative system, dependency matrix and Bayesian network 27

2-3 Diagnosis flow chart . 29

2-4 Grid architecture . 34

2-5 Dependency matrix example . 35

3-1 Illustration of matrix recovery . 39

3-2 Failure rates on a 0.00 - 1.00 scale; the mean and standard deviation are

computed over the experiments . 50

3-3 Rejection rates on a 0.00 - 1.00 scale; the mean and standard deviation are

computed over the experiments . 51

3-4 The CE-SE matrix. Black = failed, white= ok 53

3-5 Accuracy for the Static-Uniform probe selection. 55

3-6 Rank comparison for the Static-Uniform probe selection 56

3-7 ROC-related metrics, Static-Uniform probe selection 57

3-8 Accuracy for the Static-Uniform probe selection, curated srm-ls. 58

3-9 Accuracy comparison between the Static-Uniform and Active probe selection,

curated srm-ls for the five benchmarks . 58

3-10 Performance comparison for Static-uniform and Active Probing, curated srm-

ls; , (a), (b) and (c) for the five benchmarks, (d) for all days. 60

3-11 Cost and performance comparison between the Cost-Sensitive and Cost-

Insensitive active probing, curated srm-ls for the five benchmarks. 61

3-12 AUC optimization on srm-ls, with λ1 = 0.5, λ2 = 10. 65

3-13 M3F-TIB vs. static MMMF, m3f stands for M3F-TIB and st means static

MMMF. 66

9

3-14 M3F-TIB vs. active MMMF, m3f stands for M3F-TIB and act means active

MMMF. 67

4-1 An illustrative example of sequential fault prediction problem 75

4-2 Illustration of heuristics in SMF . 85

4-3 Statistics of dataset. 90

4-4 Performance comparison between MMMF, SMF and MMMFA. 94

4-5 Performance measurement for SSVD. 96

4-6 Performance measurement for MMMF. 98

4-7 Performance measurement for SMFA. 100

4-8 Performance measurement for tensor. 102

4-9 Performance comparison for SSVD*, MMMF*, SMFA*, TENSOR, SMF*

and MMMFA*. 104

4-10 Statistics of curated dataset. 105

4-11 Performance comparison of MMMF, SMF and MMMFA on curated dataset. 107

4-12 Performance measurement for SSVD on curated dataset. 109

4-13 Performance measurement for SMFA on curated dataset. 111

4-14 Performance measurement for TENSOR on curated dataset. 112

4-15 Performance comparison for SSVD*, MMMF*, SMFA*, TENSOR, SMF*

and MMMFA* on curated dataset. 115

4-16 Method performance on curated dataset. 116

5-1 Supervised change point detection framework 133

5-2 An illustrative example of BOCPD on artificial data 140

5-3 An illustrative example of converting raw passive data into time series . . . 143

5-4 Example of active and passive data . 144

5-5 Offline segmentation on active data . 148

5-6 P-values of Kolmogorov-Smirnov test for neighbouring segmentations of of-

fline results, active data . 149

10

5-7 Run length distribution of unsupervised BOCPD (IFM) on active dataset,

with probability threshold 0.96. In the middle panel of Fig. 5-7(a), red crosses

represent change points detected by online algorithm and green lines repre-

sent change points proposed by offline method. A same representation is

used in the following figures. 151

5-8 Result of supervised BOCPD (IFM) on active dataset, with probability

threshold 0.96. 153

5-9 Median run length comparison between unsupervised and supervised IFM on

active dataset . 154

5-10 ECP on passive data. 155

5-11 Run length distribution of unsupervised BOCPD (GPCP) on passive data,

with probability threshold 0.96 . 156

5-12 Run length distribution of supervised BOCPD (GPCP) on passive data, with

probability threshold 0.96 . 158

5-13 Median run length comparison between unsupervised and supervised GPCP

on passive dataset. The green rectangles highlight the difference in median

run length between the two methods. 159

11

12

List of Tables

3.1 Five example datasets . 52

4.1 Summary of sequential methods . 88

4.2 Illustration of duration length for OK and Failure 90

4.3 Summary of methods’ parameter setting . 92

4.4 Average performance comparison for MMMF, SMF, MMMFA 93

4.5 Average performance comparison of SSVD with EWMA, SSVD* 95

4.6 Average performance comparison of MMMF, with EWMA, MMMF* 97

4.7 Average performance comparison SMFA, with EWMA, SMFA* 99

4.8 Average performance comparison TENSOR, with EWMA, TENSOR* 101

4.9 Average performance of SSVD*, MMMF*, SMFA*, TENSOR, SMF*, and MMMFA*

. 103

4.10 Average performance comparison of MMMF, SMF and MMMFA on curated dataset 106

4.11 Average performance of SSVD on curated dataset 108

4.12 Average performance of SMFA on curated dataset 110

4.13 Average performance of TENSOR on curated dataset 110

4.14 Average performance of TENSOR*, SSVD*, SMF*, MMMFA*, SMFA* and MMMF*

on curated dataset . 114

4.15 Average performance of SMFA* with different sampling rate, curated dataset . . 116

5.1 Categorization of change detection methods and representative examples 122

5.2 Illustration of relationship between c, r and τ . Each segment is represented using

different symbols (N, �, H, F). 138

5.3 Data property description . 142

5.4 Offline algorithm parameters setting . 146

13

5.5 Similarity between results of online and offline methods on active test set . 152

5.6 Similarity between results of online and offline methods on passive test set . 157

14

Chapter 1

Introduction

We depend on computer systems that are not dependable: the pervasiveness of real-world

large scale distributed systems in modern Information Technology infrastructures and usage

is now well established, and such systems have been characterized decades ago as those where

“the failure of a computer you didn’t even know existed can render your own computer

unusable”.

Computer Science research has worked on fault management for such systems since very

long, with two main directions: discovering faults, and/or coping with them. The main

change associated with the advent of truly massively distributed systems with complex

structures is that rich monitoring information has become available. While full knowledge,

and the very concept, of the state of a distributed system remains infeasible for fundamen-

tal reasons, the availability of equally massive information has make possible to consider

estimating elements of the system state as a realistic goal. Specifically some of fault man-

agement questions can be re-casted as inference problems.

Moreover, estimates in the area of fault discovery in turn provide useful information

for the next task of coping with them, as such systems are normally highly redundant

and heavily supervised; thus in many cases, alternatives to the faulty components can

be proposed; in these cases, a well organized fault management system will conceal the

hardware and software dysfunctions and will be capable to provide a transparent service

that is a crucial ingredient of Quality of Experience. Irrecuperable faults, on the other

hand, must be signaled as fast as possible to the human of automatic supervision. Overall,

this amounts to re-evaluate the role of monitoring in fault management, and to consider

15

the monitoring task as an inference in a spatio-temporal domain.

The focus of this dissertation is on the specific aspect of fault monitoring which is fault

discovery. More precisely, we consider two modalities of faulty behavior: on the one hand,

service availability considered in a binary setting - that is, the service is either available

or not-, and on the other hand performance of the service, where a quantitative drop in

performance defines a fault. In the first case, we model the components of a large distributed

system as the row- or column- entities in a system status matrix, while their interconnection

status are entries in this matrix. The main task of fault monitoring is therefore to predict

the whole status matrix with a partially observed entry set as input. In the performance

monitoring case, our goal is to detect change of a service performance in an online manner.

Different types of performance measurements describing the real-time behavior of a service

are collected and analyzed online, decisions about whether there is a change and when the

change took place are made from the performance data stream.

The final goal of fault discovery is to improve system availability and reliability in

terms of providing users or the higher level of the monitoring system with accurate and

meaningful information on existing or possible faults. The most straightforward approach

is then detection and/or diagnosis, where a detailed internal model of the system is exploited

to pinpoint the faulty components or at least the possibilities of faults. The root causes of

the faults can be diagnosed through various techniques like statistical inference, log-based

causality analysis or deterministic replay. This fault diagnosis can be seen as the process of

recognizing the most likely explanation for the symptoms based on some causal and effect

models among the propositions of interest in the problem domain.

While such approaches maximize the usefulness of monitoring data, they face some po-

tentially significant practical limitations. The first is simply scalability. Moreover, assuming

that a decent model of the system is available may often be unrealistic. As a consequence,

this work formulates the fault discovery problem in a black-box fashion: only (possibly

faulty) end-to-end connections are visible.

Within this framework, in order to be realistic, inference has to address two specific

difficulties. Firstly, strongly imbalanced distributions must be assumed, as faults are hope-

fully much less represented than nominal behavior; this belongs to the spatial aspect of

inference. Second, in the temporal domain, one cannot assume that measurements could

be kept fully up-to-date, as these systems are highly dynamic environments.

16

Fortunately, the same strategy has been successful in various context to address both

imbalanced distributions and noisy information: Active Learning selects most-informative

samples in order to best improve the prediction accuracy. On the other hand, and always

with realism in mind, Active Learning has the drawbacks to slow down the fault discovery

process and to make it more complicated, thus more fault-prone itself. A transversal goal

of this work is thus to evaluate the contribution of the Active Learning ingredient in the

fault inference methods that we propose.

The motivating application of this thesis is the fault management of large comput-

ing systems like the grid and the cloud. Grids have become to be considered somehow

old-fashioned, thus a few words about their relevance might be necessary. The specific

technologies that have been used to build grids in the 2000’s have of course been super-

seded by cloud-related ones. However, the essential paradigm of grid is organized sharing:

safely and fairly federating hardware, software and data resources from multiple indepen-

dent providers. Thus grids exemplify both the physical problems of worldwide scale systems,

and the additional and major issues associated with a multi-owned multi-operated system.

Based on above motivations, this thesis is mainly devoted to monitor system fault and

performance change in large scale system with assistant technologies from the machine

learning field. The main contributions can be summarized as follows:

1. For the fault monitoring of components interconnection in a distributed system, we

first model this probe-based application as a collaborative prediction (CP) task, and

use the max margin matrix factorization to experimentally show the effectiveness of

collaborative prediction methods. We further introduce active learning to the existed

CP methods, and exhibit its critical advantage in the fault monitoring application[51,

50].

2. A second contribution concerns the extension of the static fault monitoring to the

sequential case. The proposed sequential matrix factorization (SMF) method, takes

a sequence of partially observed matrices as input, and produces predictions with

information both from the current and history time windows. The extension of SMF

with active learning (SMFA) is also proposed in the sequential case, where its ability to

make accomplished predictions is exhibited in a highly imbalanced dataset. In addition

to the sequential methods, a smoothing action taken on the estimation sequence of

each algorithm has shown to be a practical useful trick which brings better prediction

17

performance.

3. The third contribution focuses on the online change detection in time series data.

A semi-supervised change detection framework is proposed to detect the preferred

changes in an online data sequence. Labels of preferred changes (significant changes)

are firstly learned by offline segmentation algorithm, and online change detection

algorithm is trained on the learned label set in a supervised way. Decision about

whether there is a change presented in the arriving data sequence is finally made by

the learned online change detection algorithm.

4. Last but not least, we have verified the proposed methods on real-world datasets. More

exactly, for the fault monitoring, we have verified the proposed collaborative methods

on a dataset collected from the Biomed grid infrastructure within the European Grid

Initiative, i.e., predicting the functional availability between computing elements (CE)

and storage elements (SE) in the Biomed grid. For the performance monitoring, we

have verified the proposed method on a dataset collected from an online site with large

amount of user traffic, i.e., uncovering the change patterns of a site’s performance.

The manuscript of this dissertation is organized as follows: contents mainly concerned

with fault monitoring are described in Chapter 2 and 3. More exactly, Chapter 2 reviews the

state of the art research on fault management in distributed systems. Chapter 3 discusses

our work on the prediction of a partially observed status matrix in a static way, under the

assumption that the system status is static in the tested time window. Additionally, efforts

have been put into dealing with the more realistic sequential fault monitoring problem

in Chapter 4. Specifically, the static monitoring described in Chapter 3 is extended to a

sequential formulation, such that predictions are produced based on a sequence of partially

observed matrices. Chapter 5 discusses the problem of performance change detection of an

online service with large traffic. A semi-supervised framework which combines the offline

segmentation and online change detection techniques is proposed and validated on a real-

world online site. Some conclusions and future perspectives are presented in Chapter 6.

18

Chapter 2

Fault Monitoring

2.1 Introduction

Isolating the end users of an Information Technology system from the hardware and software

malfunctions is recognized as a critical component of Quality of Experience [134]. To

give only one example, the crash of the Amazon Cloud [25] highlighted the importance

of timely discovery of failures: a local, limited error may result in a global catastrophe.

More generally, fault management of distributed systems has conventionally been of vital

importance both to the management of systems and to the service level agreement. It has

attracted much attention both from the academic and industrial fields with the extensive

deployments of large scale systems like clouds and grids in recent years [146] [60] [180] [102]

[83] [38] [76] [85] [165] [42]. From the system point of view, a well operated fault management

system is the basic support of its services, and can be widely used in applications like

resource scheduling and allocation, performance optimizing for services and middleware,

security monitoring.

In large distributed systems, faults are not only unavoidable, but frequent, and a major

goal is to cope with routine faults. As Autonomic Computing (AC) [88] has been a ma-

jor conceptual framework for designing and analyzing truly large distributed systems, it is

worth briefly positioning this work in the AC context. The AC approach at large is based on

the so-called MAPE-K loop: monitor/analyze/plan/execute, all organized around a Knowl-

edge component (Fig. 2-1). Fundamental results [61] limit the accuracy of this knowledge

in principle, and its approximations cannot be built a priori, but must be inferred from

behavioral data: a significant part of the software infrastructure of large scale distributed

19

Control data

Managed element

Autonomic
Manager

Control
data

Monitor

Analyze Plan

Execute

co
n

tr
o

l

Knowledge

Figure 2-1: MAPE-K loop, autonomic computing

systems, collects information (monitoring) that will be exploited to discover (knowledge) if,

where, or when the system is faulty.

This chapter discusses more precisely which kind of knowledge is actually reachable

when faults are concerned, in order to set up fault inference as a realistic objective for a

fault monitoring strategy. In particular, we report on our attempts to model the faults of a

subsection of a real-world distributed system, EGI (the European Grid Initiative), and we

motivate the selection of end-to-end probing as the class of monitoring techniques.

2.2 Fault management for distributed middleware

Fault tolerance and fault management are two widely used techniques in developing a robust

and secure distributed system against faults. While fault tolerance strives for tolerating sys-

tem faults (either hardware or software) and continuing its intended service at a contracted

level, instead of failing down completely, fault management focuses on improving availabil-

ity and reliability in terms of providing users with accurate and informative information of

existing faults.

As the complexity of distributed computing systems increases, various efforts have been

put into the filed of fault management. [143] attempts to build a proactive prediction

20

and control system for large clusters. Event logs concerning various system reliability,

availability and serviceability are collected from a relatively large (350 node) cluster, and

used for system performance prediction. Time-series prediction, Bayesian network models,

and rule based classification algorithms are evaluated on the dataset, showing a feasible

result of system performance predicting. [41] proposes a self-healing method for autonomous

detection and handling of operational incidents in scientific work-flow activities. Incident

degrees of work-flow activities are measured by metrics like long-tail effect [37] (a commonly

encountered problem for users who have to wait for a long time to retrieve the last few

pieces of their computations), application efficiency, data transfer issues, and site-specific

problems. A rule based method which captures the correlations between incident levels is

applied for selecting healing actions. In the aim of improving grid application performances,

[104] introduces a stochastic model to describe the behavior of a complex grid workload

management system. Model parameters are learned from historical grid activity traces and

used for optimizing a simple job resubmission strategy. As shown in the paper, the proposed

model is able to provide a quantitative results for enhancing job submission performance

and a quantified impact for measuring faults and outliers on grid operations. [180] proposes

to organize fault management in distributed systems into mainly three steps, i.e., fault

detection, fault diagnosis and evidence generation. More exactly, the first step is to monitor

the system behaviors and check the observation against predefined system specifications,

i.e., discover if any of the components is faulty. While the second step which exhibits all

faulty components and the root cause of the fault is triggered once a fault in step one is

detected. Finally, evidences which describe the assertions drawn from system diagnosis in

detail are generated to system administrators.

In the following, we will use a different terminology: monitoring is ambiguous, as it

can describe the low-level data acquisition as well as the exploitation of the resulting in-

formation, which involves the whole loop MAPE-K loop in the Autonomic context, or the

diagnosis and high-level reporting. We choose to use monitoring in the second sense, and

reserve acquisition for the restricted sense.

2.2.1 Data acquisition

Before applying any fault detection algorithm we need firstly to collect data from the sys-

tem. There are generally two classes of approaches depending on whether a method actively

21

performs measurements (e.g., using benchmarking algorithms) or passively collects perfor-

mance data from platform specific facilities [39] [173] [12]: passive data collection by

injecting monitoring scripts into the system to collect runtime data inside the system, and

active data collection by launching testing probes for inspection from outside.

In the passive data collection, a special designed device, like Sniffer in the network

traffic monitoring [127] or designed code woven in software via AOP (Aspect Orientated

Programming) in the software behavior monitoring [35], is used to watch and collect system

information. The data is collected periodically or triggered by some predefined events and

alarms are bubbled up to the management system when certain conditions are satisfied

or threshold exceeded. Many approaches can be categorized into the passive class. Com-

mands such as top(CPU utilization information of each process), vmstat (memory and cpu

utilization statistics) are commonly used passive monitoring tools in Unix systems. More

sophisticated implementations are designed for application specific problem. [23] introduces

a passive DNS analysis approach, EXPOSURE, for detecting domain names that are in-

volved in malicious activity. In contrast to active DNS monitoring in [74], which uses probes

for detecting suspected malicious domains, the passive method in [23] is stealthy and does

not trigger any extra malicious activity in order to obtain information about the domain.

This contributes to an advantage that the attackers have no means to block or hinder the

performed analysis (in contrast to active approaches). [66] uses a centralized manager to

identify the problem by correlating the received alarms, which are collected at runtime using

injected codes in each monitored device. Ganglia [116] is a scalable distributed monitoring

system for high performance computing system such as clusters, grids. It provides the user

with a remote live view or historical statistics (such as CPU load averages or network uti-

lization) for all machines being monitored. More passive monitoring based applications can

be found in [173].

Passive data collection can provide an extremely detailed view of the system, e.g., run-

time function call tree or individual packets passing through a monitored network device,

thus it is more appropriate for supporting fine-grained operations (e.g., deep packet in-

spection) and accounting purposes (e.g., resource utilization accounting) [12]. The key

advantage of this technique, compared with active counterparts, is its non-intrusive na-

ture. The active monitoring schema generates an unavoidable overhead due to the probes

launched for testing the system, which if not managed properly, will cause a harmful impact

22

to the target system. On the other hand, passive data collection observes the whole system

in a silent way, without bringing any network overhead, and is able to provide fine-grained

system information. However, the passive data collection deploys heavy instrumentation

on the target system. Once deployed it is not easy to be modified at runtime, making it

unfeasible to meet a changing monitoring requirement in an on-the-fly manner. Moreover,

in order to manage the monitoring procedure at a relative low cost, it is not advisable to

exert much complex computation work on the large amount of fine-grained data at runtime.

As a consequence, passively collected data are more often used in off-line analysis, such as

system log inspection [179] and root causes diagnosis [172].

In contrary, the active data collection relies on the capability of sending test probes

to the target system, tracing them and measuring obtained results. According to [136] a

probe is a test transaction whose outcome depends on some of the system components.

The ping and trace route commands are two widely used probes in distributed systems for

detecting network availability. Other specific probes, such as glite [98] command srm-ls for

testing the list ability from a computing element (CE) to a storage element (SE) in the grid

environment, provide more sophisticated, application-level functionalities. A typical usage

of the active monitoring in a distributed system is the end-to-end performance estimation

between two nodes, such as round-trip time of HTTP requests, connection bandwidth or

availability, network delays or latencies. Applications of such end-to-end performance esti-

mation include selecting the lowest-latency peers to communicate with in P2P networks, or

choosing a high-bandwidth storage element (SE) from/towards which to download/upload

files in grid system.

Extensive applications can be categorized into the active class. [5] proposes QMON, a

QoS-capable monitoring system which adapts its monitoring frequency and data volumes

to obtain a balance between monitoring overheads and the improvements in utility of the

performance data. Nagios [2] is an open source tool for monitoring IT infrastructure, which

provides monitoring of hosts and services in both active and passive ways. The active

monitoring is initiated by the Nagios process and run on a predefined schedule, while the

passive monitoring is initiated and performed by external applications, whose results are

submitted to Nagios for processing. [111] proposed another hybrid topology-aware approach

for monitoring the grid network. Passive measurements are first used to obtain topology

information in the aim of discovering bottleneck links. These bottleneck links are later

23

monitored actively. In order to manage the invasive measurements at a low level, active

measurements are only used when none application is running, and passive measurements

are applied when there are running applications. ActiveMon [1] is monitoring framework

for generating and analysis of active measurements which can be used for routine network

health monitoring. Network metrics such as route changes, delay, jitter, loss, bandwidth

and MOS are supported by ActiveMon and are initiated in a regulated and non-conflicting

fashion between multiple measurement servers distributed at strategic points in a network.

It can also be used to aid in determining end-to-end network performance bottlenecks along

measured paths.

The active approach generates extra artificial traffic or requests to the system in a

controllable way, which is the probe schedule. This explicit control opens the possibility

of a dynamic and adaptive probe dispatch. Because probes are pure overhead, the general

objective is obviously an optimal tradeoff between the number of probes, and the quality of

their description of faults. Thus, two issues have to be addressed. The first one is the goal:

what description are we looking for? The second one is the methods to reach this goal: are

they amenable to adaptivity, and most importantly, some level of anytime-ness, in our case

being able to return meaningful information even with a suboptimal number of probes.

2.2.2 Fault analysis

Given the data collected either passively or actively, fault analysis plays a key role in

fault management as it reveals valuable information of the target system. Generally, fault

analysis can be seen as a task of detecting, diagnosing or inferencing the malfunction or

malicious behaviors of a given system or its involved components. Two types of causes may

be responsible for faults in distributed systems. Software errors which usually existed in

the system design, implementation and configurations can result in a functional fault or

performance degeneration of the system. On the other hand, malicious nodes in a system

such as attackers in an open P2P community may render the whole system disorganized or

even chaotic.

Detection and diagnosis

Without loss of generality, a target system can be seen as a set of hardware and software

components, then the task of fault analysis is to discover the status of involved components,

24

either functioning correctly (UP) or not (DOWN). Fault detection is the step of discovering if

any of the components is DOWN, while diagnosis aims at exhibiting all DOWN components

or root causes. Fault inference focuses on inferring unknown status of some components

based on information of the others. More exactly, in detection [180], information about the

execution of a distributed system are verified against some predefined specifications, which

can be in the form of expected properties, state machine model, or reference implementation.

Once any fault is detected, fault diagnosis is utilized to identify the nature of the fault and

track the root causes. Fault inference, on the other hand, does not inspect the details of a

fault, but instead looking for a global view of the system based on partial observation of it.

[180] categorized the mechanisms of fault detection into three classes, i.e., invariant

checking, reference implementation, and model checking. In the invariant checking, the

desired system behavior is defined as a set of invariants and information about system state

is collected either by inserting additional statement (e.g., Pip [133] and P2Monitor [151]) or

by modifying underlying operating system (e.g., WiDs [109] and D3S [108]). The acquired

system state data are checked against invariants either by online assertions or through offline

analysis. Reference implementation (e.g., PeerReview [68]) assumes a deterministic model

of system behaviors, and detects faults through a comparison between the actual system

and its corresponding reference implementation. In model checking, system behavior is

formalized as a state machine for simulating all possible execution paths. The target system

is driven to follow each of the execution paths to check whether it behaves correctly.

Further more, fault diagnosis can be divided into three classes [180]: log-based causality

analysis, deterministic replay and statistical inference. The log-based causality analysis

uses statements woven in the source code of target system to expose expected system state.

Based on the log traces of system state, it is able to reason about the causality paths and

reveal the root causes of faults. Pip [133], XTrace [52] and D3Scite [108] are representative

examples of this approach. In deterministic replay, all non-deterministic events are recorded

at runtime through a set of predefined watchpoints and breakpoints. Once a system fault

is detected, these collected events are used for reproducing as well as diagnosing the fault.

Liblog [59], Friday [58], WiDS [109], MaceMC [89] can be categorized into this class. In

statistical inference, a target system is modeled as a set of system components, which are

treated as black-boxes. Run time system state are recorded in the form of execution paths

consisting of involved system components. Algorithms such as clustering are used to reveal

25

the correlation of detected faults and recorded components. Magpie [18] and Pinpoint [34]

are systems adopt this mechanism.

All these approaches mentioned above depend on the passive data collection. For ex-

ample, both the invariant checking and log-based causality analysis rely on the collection

of logs and snapshots either by annotating source code or injecting state exposers into the

underlying operating system. In reference implementation, non-deterministic events, such

as read/write of files, are recorded at runtime. Deterministic replay uses watchpoints or

breakpoints to monitor system events corresponding to data or control flow. Statistical

inference also record the involved system components on an execution path at runtime.

On the other hand, methods for diagnosing the actively collected data usually assume a

dependency model between the probes and the system components. A diagnostic approach

based on end-to-end probing was firstly proposed in [56] and later developed in [30] and [31].

Suppose a distributed system consists of a set of nodes N = {N1, N2, ..., Nn}. Each node

represents a monitored system component in the system, e.g., a server, a database, a router

and etc., and can have the state of either up (function correctly) or down (otherwise). A

probe p, which tests a subset of N , can either have the result OK, if all its tested components

are up, or failed, if any of its tested components is down. We further use N(p) to denote

the set of components tested by p. Given a probe set P = {P1, P2, ..., Pk} and node set

N = {N1, N2, ..., Nn}, the dependency matrix DP,N is defined by[136]:

DP,N (i, j) = 1 ifNj ∩N(pi) 6= φ

= 0 otherwise.

where each row of DP,N represents a probe and each column represents a node. Figure 2-2

illustrates the core idea of this approach. Probe p16, as shown in the figure, tests the path

from N1 to N6. Its components set N(p16) = {N1, N4, N6}, thus the value of row p16 is

(1, 0, 0, 1, 0, 1, 0, 0).

Besides the dependency matrix, Bayesian network is another commonly used model for

fault diagnosis [137] [136] [36] [177] [22]. The Bayesian network is a graph model which

depicts the relationship between network nodes and probes (The network nodes and probes

share the same definition as in that in the dependency matrix). For example, the dependency

matrix in Fig. 2-2(b) can be converted into a two-layer Bayesian network as in Fig. 2-2(c).

26

N1 N2

N4 N5

N6 N7 N8

N3

(a) End-to-end (b) Dependency matrix

X4 X5X3 X6 X7 X8X2X1

P3P2P1

(c) Bayesian network

Figure 2-2: Illustrative system, dependency matrix and Bayesian network

27

Every vertex in the figure represents a random variable, the upper layer variables correspond

to system components while the lower-layer denotes variables of probes. The set of parents

of pj (set of components tested by probe pj) is denoted as N(pj). Joint distribution of this

Bayesian network can be written as follows [137]:

Pr(x, p) =
n∏
i=1

Pr(xi)
n∏
j=1

Pr(pj |N(pj)), (2.1)

assuming that state variables xi are marginally independent, and that each probe result

depends only on components covered by it. Pr(xi) specifies the prior probability of system

state, while the conditional probability Pr(pj |N(pj)) depicts the dependency of probe result

on the components tested. Diagnosis of fault is accomplished by probabilistic inference using

Bayesian network, i.e., finding Pr(Z|Y = y), the posterior probability of set of variables Z

given observations of some other variables Pr(Y = y). For example, we could update the

fault probability of every single node, based on the tested probe results.

As described in Fig. 2-3, there are several common steps to carry out to complete the

fault diagnosis of a distributed system using active probing. At the beginning, an initial

set of probes are selected either randomly or heuristically, then probes are queried to the

running system and the returned results are analyzed. If any other information is needed for

the identification of a detected problem, probes are further selected, queried and analyzed

until the problem is diagnosed.

In the active data collection context, the task of fault detection is to find the smallest set

of probes such that, whenever a problem occurs, some probes will fail, whereas task of fault

diagnosis is to find the smallest probes set such that, once a problem has occurred, the exact

problem can be identified from the probes’ results. Both cases assume a priori knowledge

of the components of the system, as well as knowledge of the dependency matrix, which

describes the outcome of each probe given the status (up or down) of these components.

However, as shown in [136], finding the optimal set for both problems are NP-hard.

Discussion

The obvious advantage of detection and diagnosis is that they provide an accurate explana-

tion of the failure, by exhibiting culprits. On the other hand, it strongly relies on a priori

knowledge which components are required for a probe to succeed through the dependency

28

Select init probe set

Query probe result

Analyze probe result Select additional probes

Additional probes needed?
Yes

No

Problem diagnosed

Figure 2-3: Diagnosis flow chart

matrix. However, being accurate implies more complexity. One thing brings complexity in

active monitoring is the deterministic dependency model which gives an explicit descrip-

tion of the relationship between probes and components tested. The basic assumption of

deterministic dependency can be questioned along multiple axes in the case of large scale

dynamic systems.

Firstly, is it simply possible to have a complete a priori knowledge of the structure of

the system? These systems are themselves very complex: they integrate heterogeneous

hardware and distributed software stacks which functionalities are only partially known.

Deterministic dependency analysis requires an accurate graph of the involved components

and their relationships in a system with tens of thousands of components, as well as an

exact knowledge of the relationship of a probe and a component. For massively distributed

systems, Lamport’s famous definition ”A distributed system is one in which the failure of

a computer you didn’t even know existed can render your own computer unusable” applies

very concretely, and Section 2.2.4 will show an example.

Secondly, the deterministic dependency model assumes that if one of the components

being tested is failed, then all tests cover this component will fail [136]. However, large

scale systems are intrinsic dynamic and evolving. In other words, not only is the structure

difficult to describe, but the very concept of a static structure might inadequately model

29

these systems because of system dynamics.

Dynamism of a distributed system can be introduced in several ways:

High availability In order to provide high availability of a distributed system, system

resources like processes and data are always replicated. Moreover, replication, concurrency

as well as failures should be transparent to end users so as to equip a smooth and fluent user

experience. Once any failure exhibited in these replications, a rearrange of the relationship

will carried out among involved components, thus dynamism appears [57].

Elasticity and scalability In the cloud computing paradigm, servers are required to

adapt rapidly to dynamic workload such as the frequently changing amount of client requests

per time unit. As a consequence, the need of elasticity and scalability are introduced to

manage variable and potentially high workloads, which intensifies the inherent dynamism

of such systems and applications [176].

Dynamic environment The environments where distributed systems operated are

complex and dynamic [57]. Dynamic environments like changing interconnection between

components, power supply levels, CPU/network bandwidth, latency/jitter, unpredictable

user behaviors have a deep interaction with the running system, and without any omen,

will affect or even crash the system.

Thirdly, multiple simultaneous faults are common in large scale distributed systems.

Unfortunately, when diagnosing multiple simultaneous faults the complexity of determinis-

tic model either using dependency matrix or Bayesian network increases significantly with

the number of possible faults. More exactly, to diagnose multiple simultaneous faults the

number of probes needed by dependency matrix increases exponentially in the number of

possible faults. Then again, the complexity of Bayesian network increases with an increas-

ing number of simultaneous faults and depends on the efficiency of representing a priori

knowledge Pr(X) as well as the efficiency of probabilistic inference and the computation

cost of active probe selection [137].

To sum up, for massively distributed systems, assuming a priori knowledge is hazardous

in principle and hard to achieve in practice. Therefore, in this part we only deal with the

end-to-end fault inference problem with the goal of minimizing the number of launched

probes.

30

Fault inference

Fault inference, instead of exhibiting all possible faulty components, focuses on inferring the

status of system nodes based on observed results of other nodes. Various applications like

congestion control [166] [147], streaming application [150], QoS verification [5], download

server selection [97] and service selection [171] can benefit from fault inference. In this

case, the overall infrastructure is a black box, with no a priori knowledge of its structure.

End-to-end probes are designed to test a functional property of this black-box, and can be

meaningfully replicated in the system. For instance, in the example that will be further

described in Section 2.2.3, the functionality is related to file access, and the probes are

launched from the computing nodes to the storage nodes. Then, we formulate the objective

as a classification problem: from a selection of the probes (the training set), the outcomes

of the other probes are inferred.

In the following, this inference action will be called fault prediction, because the term

is traditional for the relevant contexts in Machine learning: supervised learning at large,

and more specifically Collaborative Prediction. However, it must be stressed that there is

no temporal dimension here: the goal is to build a generative model of the probe outcome.

In practice, of course, this generative model will be used as a predictive one.

2.2.3 Motivating application

The European Grid Initiative

Two approaches have been proposed to provide computational resources at a large scale:

the grid and the cloud. In the grid model, institutions acquire resources and make them

available to e-science users; the key point is sharing, as stated by Foster et al. in [54]:

“resource providers and consumers defining clearly and carefully just what is shared, who

is allowed to share, and the conditions under which sharing occurs.” In the cloud model,

the resources are leased to users, and the key point is the capacity of dynamic resource

provisioning (on-demand availability), coined as elasticity by Amazon EC2 [9]. Since 2000,

a production grid at European level and beyond has been developed through the successive

DataGrid (2001-2004), EGEE (2004-2010) and EGI-Inspire (2010-2014) projects co-funded

by the EU. It enables access to computing resources for European researchers from all

fields of science, including high energy physics, humanities, biology and more. In 2013,

31

the infrastructure federates some 350 sites world-wide, gathering more than 250,000 cores,

which makes it the largest non-profit distributed system in the world.

Organized sharing is a fundamental requirement for large scientific collaborations run-

ning immensely large simulations on a timescale of tens of years, such as in the High Energy

Physics (HEP) community. This characteristic has had considerable impact on the grid de-

sign, with the concept of Virtual Organizations (VO): the access rights to EGI are primarily

organized along this concept. The resulting complexity is high: the general logic of IT sys-

tems is more oriented towards individual than collective rights, and the VOs are orthogonal

to institutional ownership and administration of the resources. The EGI initiative, which

steers the EGI-Inspire infrastructure, is presently experimenting a Federated Cloud infras-

tructure; the main difference is that the local node is no more a batch system, but becomes

a cloud; while this has significant effects on the Quality of Experience for the final end

user (elasticity and responsiveness), the fundamental issue of sharing remains, with the

associated added complexity.

Hardware and software failures are intrinsic to such large-scale systems. Resource avail-

ability in production is about 90%, and middleware e.g., gLite [98] , Globus [53] or ARC [46]

cannot handle this without substantial human intervention. Each of the 200 VOs has to be

specifically configured on its supporting sites, which adds complexity and introduces extra

failures. User communities exploit two strategies to cope with faults: overlay middleware

e.g., dirac [160], diane [120], AliEn [17] and PaNDA [114], implements specific fault-

tolerance strategies to isolate users from the vagaries of the infrastructure; and monitoring

identifies problems and quantifies performance w.r.t. quality of service agreements.

Monitoring for the Biomed VO

The target system of this work is the Biomed VO. Biomed has access to 243 Computing Ele-

ments (CEs) and 131 Storage Elements (SEs), approximately. CEs are shares of computing

resources, implemented as queues of each site manager (e.g., PBS), and SEs are shares of

storage resources; the formal definition is part of the Glue Information model [11]. Testing

the availability of all CE-SE pairs is one of the most challenging issues encountered daily by

monitoring operators. The original method is brute force: it periodically launches a fully

distributed all-pairs availability test, for a total of 31833 tests, multiplied by the number of

capacities to test at each run. Human operators cannot handle so many results; in practice,

32

only a few issues are reported, with questionable selection criteria.

A significant reduction of the number of tests providing nearly similar availability eval-

uation performance would be highly beneficial: besides a better frequency/intrusiveness

trade-off, the selection of reported incidents would become more informative.

2.2.4 Diagnosis at work

Figure 2-4 illustrates a typical view of software and hardware stack for a Grid system [15].

Four layers are considered here: fabric, core middleware, user-level middleware, and appli-

cations and portals layers. The fabric layer is the fundamental of a running grid, which

consists of distributed resources such as computers, networks, disks and scientific instru-

ments. The core grid middleware provides many key services like process management,

co-allocation of resources, storage access, security, and etc. It can be seen as an abstraction

of the fabric layer for providing a consistent view to access distributed resources. Higher

level of abstractions are further provided by the user level middleware in the form of ap-

plication development environments, resource brokers and task schedulers. The top layer is

the Grid application and portals, where end-users can use it for submitting and collecting

their jobs on remote resources through the Web-enabled services.

Given on the layers of the grid architecture, we designed a diagnosis system for testing

the availability of the CEs and SEs in the Biomed VO. For simplicity, only the key services

like srmls, lcgcp, lcgcr, LFC (logical file catalog), VOMS (Virtual Organization Manage

System), BDII (Berkeley Database Information Index), SRM (Storage Resource Manager),

network and a few corresponding hardwares are considered. Figure 2-5 gives a basic idea

of the relationship between designed probes and components. One thing to mention is that

the variable in the brackets after each component denotes the number of that component.

The definition of the variables is given as following:

• G = 1, number of user account, can easily be higher if we want to test several different

types of user account;

• k = 131, number of SEs;

• n = 243, number of CEs, i.e., probe station;

• N = 1, number of gridftp server, currently we are not able to identify the gridftp

servers behind an SRM endpoint, whose actual number is several hundreds.

33

Networked resources across organizations

computers networks storages Data sources Scientific instruments

Local resource managers

OS Queuing systems Libraries & app kernels … Internet protocols

Security layer

security information Data process trading QoS

Distributed resources coupling services

…

Resource management, selection, and aggregation (Brokers)

Languages/compliers libraries Debuggers monitors Web tools

Development environments and tools

…

…

Scientific Engineering Collaboration Prob. Solving Env. Web enabled apps…

Applications and portals Applications

User levels
middleware

Core
middleware

Fabric

Figure 2-4: Grid architecture

Let DM represents the dependency matrix, number of rows in DM is: n ∗ (4 + k ∗ 5) =

160, 137, and number of columns in DM is: 4∗n+3∗k+9 = 1374. thus the total number of

entries inDM is: 220,028,238. Even though, this huge matrix is only a coarse approximation

of the system, without considering many components like libraries, queuing system, brokers

and etc. The complex dependency model hinders us from a deeper exploration on the

diagnosis way, and making us resort to the fault inference solution.

34

S
rm

-l
s

 c
m

d
lf

c
 c

m
d

lc
g

 c
m

d
L

F
C

 s
e

rv
ic

e
L

F
C

 h
d

N
1

N
2

 (
k

)
S

R
M

 (
k

)
S

R
M

 h
d

 (
k

)
N

3
V

O
M

S
V

O
M

S
 h

d
N

4
 (

n
)

B
D

II
 c

o
n

fi
g

 (
n

)
B

D
II

 (
n

)
B

D
II

 h
d

 (
n

)

L
c
g

-c
r

(G
*k

*n
*N

)
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1

L
fc

-l
s
 (

G
 *

 n
)

0
1

0
1

1
1

0
0

0
0

0
0

1
0

0
0

n
m

a
p

 (
L

F
C

 i
s
 c

lo
s
e
d

)
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0

n
m

a
p

 (
L

F
C

 i
s
 o

p
e
n

)
 (

n
)

0
0

0
0

1
1

0
0

0
0

0
0

1
0

0
0

V
o

m
s
-p

ro
x
y
-i

n
it

 (
o

n
ly

 o
n

 U
I)

0
0

0
0

0
0

0
0

0
1

1
1

1
,o

n
ly

 o
n

c
e

0
0

0

n
m

a
p

 (
V

O
M

S
 i
s
 o

p
e
n

)
0

0
0

0
0

0
1

1
0

0
0

0
1

0
1

0

S
rm

-l
s

(k

 *
 n

 *
 G

)
1

0
0

0
0

1
1

1
1

0
0

0
1

0
0

0

n
m

a
p

 (
S

R
M

 i
s
 o

p
e
n

)
(k

 *
 n

)
0

0
0

0
0

0
1

1
1

0
0

0
1

0
0

0

L
c
g

-i
n

fo
s
it

e
s
 (

lo
c
a
l
B

D
II
)

(n
)

0
0

0
0

0
0

0
1

0
0

0
0

1
0

1
1

n
m

a
p

 B
D

II
 (

n
)

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

L
c
g

-c
p

 (
G

 *
 k

 *
 n

)
0

0
1

1
1

1
1

1
1

0
0

0
1

1
1

1

Figure 2-5: Dependency matrix example

35

36

Chapter 3

Collaborative Fault Monitoring

This chapter addresses the knowledge building step, and the knowledge/monitoring loop,

with the formulation of the fault inference task as a Collaborative Prediction (CP) problem.

Our main goal is to highlight in which directions the general CP framework should be

adapted to this new application area. Results on an extensive experimental dataset from

the EGI grid demonstrate the excellent performance of a combination of the Maximum

Margin Matrix Factorization approach to CP and Active Learning.

3.1 Collaborative prediction for fault inference

In this section we formalize the problem of fault inference in a distributed system as a

collaborative prediction task.

3.1.1 Motivation

We first show that, from a strictly formal point of view, end-to-end performance monitoring

such as fault inference can be naturally modeled as a matrix completion problem. Collabo-

rative Prediction (CP) associated with end-to-end probing, with the components structure

considered as a black box, participates in the general Quality of Experience (QoE) approach

[134]. More precisely, an important ingredient separating QoE from QoS is binary (possibly

extended to discrete) classification. Most work in this area is devoted to network-based

services (e.g., among many others [159]). Z. Zheng and M.R. Lyu propose explicit users

collaboration for estimating failure probabilities [178]; while their end-to-end framework

is related to ours, the goal is more in line with QoS (estimating the full distribution of

37

probability instead of binary classification), and the correlation amongst users or services

is modeled by ad hoc methods.

The key insight to go beyond such ad-hoc methods is to leverage the considerable amount

of theoretical and experimental work developed for Collaborative Prediction. Before QoE

became a popular keyword, Rish and Tesauro [138] explored the combination of CP and

Active probing for the selection of good servers in various distributed and P2P systems.

Our work combines the goal of proposing fault-free services to the user exemplified in

[136, 178], and the CP approach of [138]. To actually solve the problem, Collaborative

prediction, which is often associated with matrix completion, is a good candidate; however,

its efficiency strongly depends on the selected algorithm. In the next section, we briefly

present collaborative prediction, and motivate its relevance by the empirical properties of

the fault production process in large scale distributed systems.

3.1.2 Fault inference as a matrix completion problem

End-to-end performance estimation has many applications like congestion control [166]

[147], streaming application [150], QoS verification [5], download server selection [97] and

service selection [171]. It can be converted into a matrix completion problem naturally. Take

the download server selection for example, in the content distribution networks (CDNs)

replications of content servers are geographically distributed across the Internet and clients

are redirected to the server with the lowest latency[97], such that the download time of a

content from the server is reduced. In order to measure the latency, active probes like ping

and traceroute are launched at runtime to gather network information between clients and

servers. The collected measurements form a latency matrix between clients and servers.

However due to the huge number of clients on the Internet, it is too costly to exhaustively

measure each client-server pair. Thus it is more appropriate to only measure part of the

matrix entries and estimate the left others. This formulation is fundamentally a matrix

completion task: given a very sparse client-by-server latency matrix, whose non-zero entries

represent known latencies, predict the unknown entries of the matrix[138].

End-to-end fault inference has strong relation with the server selection issue: the perfor-

mance that we want to estimate is the capacity to deliver the requested service. Then, end-

to-end fault inference can be formalized as a matrix completion problem as well, where each

entry in the matrix will represent the end-to-end service functionality status between cor-

38

Figure 3-1: Illustration of matrix recovery

responding service provider and requester. From the fault inference as a matrix completion

task, we focus on fault inference between end-to-end points, and the overall infrastructure

is treated as a black box, with no a priori knowledge of its structure.

For most of this chapter, a basic assumption is staticity. By this, we mean that the

underlying physical process that generates faults does not change over the time window

where the input data are collected and the prediction is made. Then, it is natural to

formalize the inference task as a matrix completion problem: if X is the observed (sparse)

matrix, the CP problem is to find a full, real-valued, matrix Y of the same size that

approximates X, i.e., that minimizes some measures of discrepancy between Y and X.

When Y is required to be equal to X on the known entries, the problem is termed exact

completion, and approximate otherwise.

For the fault inference problem, X is the results of the selected probes and Y is the

predicted matrix. An illustration of selected and predicted matrices are given in Fig. 3-

1. For now, the unknown matrix Y will be assumed to be deterministic; then, the data

available for prediction can be considered as a sample of the entries of the full deterministic

unknown matrix. The probe selection process defines the sampling distribution.

With such a general setting, the problem is hopelessly ill-defined: in order to guess the

missing entries in Y , some assumptions have to be made about the matrix to recover Y .

In recent period, the common assumption has been to look for low-rank matrices. The

motivation for the low-rank objective function stems from the fact that the underlying

39

structure of the matrices in many applications can be formalized as a matrix completion

problem.

For simplicity, at this level of generality, we state the problem in the exact completion

form; the actual measure of discrepancy will be introduced later. Let S be the set of known

entries; Y is the solution of

Minimize rank(Y)

subject to Yij = Xij for all (i, j) ∈ S (3.1)

The existence and unicity of a solution to 3.1 is a complicated problem (see e.g., [32]). Any-

way, this formulation is not very helpful, as rank minimization is NP-hard and not feasible

practically even for small sizes. However, it has paved the way for efficient algorithms, both

for exact and approximate completion. We defer the presentation of these algorithms to

Section 3.1.5. Before, we have to examine the relevance of the low rank hypothesis in our

case.

3.1.3 Collaborative prediction

CP and matrix completion

CP is originally a technique for predicting unknown ratings of products for a particular user,

based on observed data from other users and products. It can be applied to various domains

such as online recommendation, link prediction and end-to-end performance estimation and

etc.. One important characteristics of CP is that it requests no additional information for

accomplishing the prediction task. Take the user-movie recommendation for example, the

only input for CP is a partially observed rating matrix whose observed entries are the ratings

given by users on those movies they have already watched. In contrary, conventional feature-

based prediction approaches (e.g., content based prediction) request external information

of user features (e.g., gender, age) and movie features (e.g., genre, year, actors, external

reviews) to fill the partially observed matrix. Since the rating information is collaboratively

shared among users in the CP, better performance of using CP than of using feature-based

methods is observed in a sparse matrix.

A common approach to CP is to fit a low-dimensional factor model to the data, i.e.,

learn a hidden structure for describing the data. The foundation for the success of a

40

low-dimensional factor model relies on the hypothesis that a small number of hidden and

partially shared factors affect the matrix entries. For the end-to-end fault inference case, the

latent factors learned by CP can be the common shared components or services between

nodes. For example, two nodes in the system may share factors like geo-location (with

associated network connectivity issues) or use of a particular instance of any middleware

service (e.g., brokering, authentication), such that the functionality between nodes may be

affected similarly.

In a linear factor model, each factor can be seen as a preference vector. Take the user-

movie case for example, each user’s preference is represented by a linear combination of

these factors with user-specific coefficients (similarly for the movies). Thus, for n users and

m movies, the preferences of a k factor model can be expressed by a product of a n × k

coefficient matrix U and a k ×m factor matrix V ′. This factor model describes each user

through a coefficient vector, capturing each user’s underlying preference separately.

This amounts to express the Y matrix of (3.1) as

Y = UV ′, (3.2)

thus looking for a low-rank matrix is equivalent to looking for a low-dimensional factoriza-

tion. This approach is termed matrix factorization.

If one of the matrices, say U , is fixed, and only V needs to be learned, then fitting

each column of the target matrix X is a separate linear prediction problem. Each row of

U is a feature vector, and each column of V ′ is a linear predictor, predicting the entries

in the corresponding column of X based on the features in U . However, in our case,

both U and V are unknown and must be learned. This can be considered as equivalent

to extract feature vectors (rows in U) for each of the rows of X, in order to create good

linear predictors (columns of V ′) across all of the prediction problems (columns of X)

concurrently. The features are learned without any external information or constraints. This

would be impossible for a single prediction task. The enabling characteristic of collaborative

prediction is that the prediction tasks are related, and the same features can be used for all

of them, though with different importances.

For completeness, we recall the definition of singular value decomposition (SVD). SVD [62]

is a factorization of a real or complex matrix. For a full matrix Y , a compact SVD repre-

41

sentation of Y is given by

Y = UΣV T , (3.3)

if we use R to denote the rank of Y , then U and V are orthogonal matrices of sizes M ×R

and N ×R, respectively, and Σ is a diagonal matrix of singular values σ1 ≥ σ2 ≥ ... ≥ σR.

A common approach in low-rank matrix factorization is to fit a target matrix X with a low

rank matrix Y through SVD and by minimizing the sum-squared loss. This method, as we

show in later section, is not well applicable in the collaborative prediction case where data

classes in X are highly imbalanced.

Once again, before going to our main point, we examine the alternative approaches to

matrix factorization that have been proposed in the context of Collaborative Prediction.

CP methods

[154] categorized various collaborative prediction techniques into three classes, i.e., memory

based CP, model based CP and hybrid recommender. Neighborhood methods like KNN

(K-nearest neighbors) and item or user based top-N methods are representative examples

of memory based CP. In memory based CP, the entire or a sample of the user-item dataset

is used to produce a prediction. Every user contributes to a group of people with similar

interests, where each user’s preference is generated by identifying its neighbors in the group.

Normally, memory based CP enjoys its advantages in aspects like easy implementation,

incremental new data processing, need no consideration of item’s content and scale well with

co-rated items. However, on the downside, its disadvantages are also obvious: dependent

on human ratings, poor performance on sparse data, can not recommend new users or items

and limited scalability for large datasets. In our case, the incremental capacity is irrelevant,

and the poor performance on sparse data is unacceptable.

Model based approaches are the state of the art in Collaborative Prediction. They

include Bayesian models, clustering models, and dependency networks; they learn a complex

pattern from the training data, and then make predictions on the test data or real-world

data, based on the learned models. Both categorical and numerical data can be easily

handled by different model methods. Compared to memory based CP, model based CP

has been shown to provide better performance on addressing problems like data sparsity,

scalability and etc. Moreover, an improved prediction performance as well as an intuitive

42

interpretability are also yielded by applying the model based methods. Nonetheless, to build

a useful model, especially on a large dataset, it is computationally expensive. Further, the

trade-off between prediction performance and scalability needs careful tuning.

The matrix factorization approach [152, 145, 156] can be considered as a special and el-

ementary form of the model-based approach: the generic model is linear, and its coefficients

are learned from the data. The Maximum Margin Matrix Factorization (MMMF) [152] will

be described in more details later.

In general, matrix factorization considers that all data are equally relevant to the pre-

diction task: the values are generated using the same factor vector. This approach, which

assumes a strong homogeneity of the data, has been termed continuous latent factor by [113].

Other continuous latent factor methods such as PMF [118] and BPMF[144] can be seen as

graphical models in which entries in X are directly connected with latent factor variables

in a probabilistic graph. [144] is oriented towards imbalanced ratings (some users rate a

lot, other not). This leads to two independent categories of hidden information: the topics,

and their distribution, instead of only one, the topics, which is not at all our case, as we

can freely select the probes.

Despite good prediction performance, these latent factor methods are blamed for their

static way of predicting missing entries in X, as all the missing entries in a row of X are

produced by using a same factor vector, without considering the context [113]. Therefore,

various improvements have been carried out to make the continuous latent factor model

context-aware. This alternative model-based approach considers that the data should be

contextualized through bias terms included in the model. The most frequent justification

for such contextualization is temporal variation; in recommendation systems, the context

can be the mood of the user, or even the fact that two users share a common Internet access.

Y. Koren and the BellKor team, winners of the highly published Netflix prize, pro-

posed explicit modeling of various contexts, including temporal drifts and spikes [94]. They

remarked that a basic model, which captures context effects but disregards user-item in-

teractions, explains more of the data variability than the commercial Netflix Cinematch

recommender system. However, the model selection for bias is largely based on the specifici-

ties of users behavior in movie recommendation, thus not easily extendable. Alternatively,

block models [126, 7] propose a fully generative model and leverage the older neighborhood

method [71] based on clustering. The specific application to CP is Bi-LDA [126]. Al-

43

though LDA (Latent Dirichlet Allocation) also embodies the discovery of latent (hidden)

factors, the key difference between Bi-LDA and matrix factorization is that the relationship

(user/product in recommendation systems) is allowed to select a new topic (factor) for each

interaction.

In dynamic distributed system, transient failures are well attested, and the frequency

of switching between functioning/malfunctioning can be high; such context bias could be

anything like a middleware installed temporary down, or too many concurrent write requests

issued to a server, making context-awareness appealing. However, Bi-LDA is known to

exhibit relatively poor predictive performance, probably due to an exclusive modeling of

interaction of clusters (through topics); in other words, the expression of the specificity of

individual interactions (this particular user/CE with this particular movie/SE) is lost.

Recently, Mackey proposed a Bayesian approach to reconcile Matrix Factorization and

probabilistic topic selection with Mixed Membership Matrix Factorization (M3F) [113],

introducing context dependence in a more general way than the a priori formulation of [93].

Moreover, in recommendation systems, the greatest performance improvements with M3F

occur for the high-variance, sparsely-rated objects, suggesting a good capacity at capturing

the transients that are a serious issue for system operation managers.

Specificities of CP for fault inference

The key point is that monitoring large scale distributed systems differs from usual CP

applications (personalized recommendation), in two major ways. On the bright side, while

users cannot be queried for specific recommendations, probes can be launched at will. On

the downside, the distribution of the probe results is highly skewed, faults being a small

fraction of the total population. In turn, the unbalanced distributions stem from two

origins: firstly, fault causes are hopefully rare; and second, some of the faults are transients.

In the recent years, CP methods highlighting the role of various bias have received a lot

of attention, partially due to their success in the BellKor solution that won the Netflix

challenge [95], and specifically address time variability.

By using CP in end-to-end fault inference, we basically assume an idealized situation

where the acquired data are a snapshot of a stable one, however, under a continuous moni-

toring situation, where faults are changing from one time window to another, a sequential

analysis method is needed. We present our work on sequential collaborative fault inference

44

in Chapter 4.

3.1.4 Goals and methods

Objectives

As described in the previous section, the goal is to minimize the number of probes, for

a given quality of prediction. The precise definition of quality is deferred to 3.2.2, but is

naturally related to the mis-prediction risks. Minimizing the number of probes encompasses

two distinct issues: intelligent probe selection, and an efficient matrix completion algorithm.

Probe selection strategies

Algorithm 1: Generic active probing algorithm

input : Initial partially observed binary(-1/+1) matrix M0, threshold λ, max #
of new samples N , active-sampling heuristic h

output : Full binary-valued matrix MTi predicting unobserved entries of M0

initialize: Initialize the vars
S(T0) = S(M0) /*currently observed entries set*/ ;1

i = 0 /*current iteration times*/ ;2

n = 0 /*current number of new samples*/ ;3

while (n < N) do4

MTi = StandardMC(S(Ti)) /*Prediction based on observed entries via standard5

matrix completion (MC) procedure*/ ;
S′(Ti) = ActiveSampling(MTi , h, λ) /*Actively choose the next set of new6

samples and query their labels*/ ;
S(Ti+1) = S(Ti) ∪ S′(Ti) ;7

n = n+ #S′(Ti);8

i = i+ 1 ;9

We consider three probe selection methods.

• Static-Uniform. The probes are selected uniformly at random amongst all (CE,SE)

pairs. In this setting, the probe selection and the prediction are completely indepen-

dent: the prediction step has no influence over the choice of the probes. This would

be unrealistic in recommendation systems (users do not select uniformly the products

they rate amongst all proposed), but can be fully implemented in probe selection.

Moreover, for the subsequent prediction task, uniform sampling provides theoretical

bounds on the MMMF generalization error.

45

• Active Probing. Active Probing instantiates the general Active Learning approach:

incrementally building the learner by querying the information source for labeled ex-

amples. With Active Probing, the set of probes is constructed dynamically, with

an initial set of probes selected for instance by the Static-Uniform method, and run

through the system to get basic information; then, additional probes are selected and

launched with the goal of maximizing some measure of information. Algorithm 1 il-

lustrates the process: a predicted matrix is first given by standard Matrix Completion

(MC) based on some pre-selected samples (step 5) , then some heuristics are used for

filtering the next subset of samples, which are labeled by actually running the probes

and observing their outcome (step 6). After several iterations, a final prediction is

returned. In this setting, the CP method used for MC impacts the probe selection.

In this work, the min-margin heuristic [158] is used for selecting additional probes.

Min-margin favors exploration over exploitation: it chooses the probe where the un-

certainty of the classification result is maximal, and has been demonstrated to be

efficient for CP problems [138].

• Differentiated costs. In the two previous methods, the same penalty is associated

with both kinds of mispredictions. It might be argued that a false negative (predicting

success while the actual result is a failure) is more harmful than a false positive

(predicting failure while the actual result is a success), because the federated nature

of the computational resources offers multiple options to users. Unbalanced costs (in

either direction) arise in many other contexts, e.g., medical testing [119], and can be

integrated in the core learning step, as shown in the next section.

3.1.5 Matrix completion

This section first discusses the relevant theoretical results, then presents the Maximum

Margin Matrix Factorization algorithm.

Theoretical bounds

Going back to the low-rank formalization of the exact completion problem (eq. 3.1), two

questions make sense. Firstly, is there an information theoretic lower bound on the number

of entries that should be observed, whatever matrix structure and completion algorithm,

in order to recover unequivocally a matrix of given rank? Second, is recovery practically

46

possible, and at which conditions on the matrix structure? A significant literature has been

devoted to this subject (for a review, see [130]), which provides some insight to our results,

although our framework is quite different, as we are looking for approximate completion

with an unknown rank in a binary context.

Concerning the information theoretic lower bound, [32] shows that it is in the order of

nr log n, where n is the linear size of the (square) matrix to recover and its rank is at most

r, and the entries are sampled uniformly. For instance, with a 10% sampling and n = 200

(we will have use of this case later), the matrix can be recovered uniquely only if its rank

is at most 3. A tighter bound with a much simpler proof is presented in [130], and is close

to optimality.

A more elementary lower bound is based on the number of degrees of freedom Y through

its SVD, and is 2nr − r2[32], giving a maximal rank of 10 for our example. This bound is

more realistic from an applicative point of view: the information theoretic bound takes into

account the coupon collector effect, while the actual sampling (probing) is not bound to be

truly uniform, and will avoid repetitions.

An important ingredient to the two first bounds is the role of what this literature calls

coherence. This indicator can be viewed as an algebraic equivalent of the mutual information

between entries. For example, consider the rank one matrix which is equal to 1 in one entry

and zeros everywhere else. The coherence is maximum, and all entries must be observed to

exactly recover the matrix. More generally, the row (resp. column) coherence describes to

which extent each entry can be expected to provide about the same amount of information

for its row (resp. column), with minimal coherence when all the entries are equal. In our

case, a probe that gives a consistent result on most of its line (or column) is likely to have

uncovered a solid cause of failure. The coherence problem will show in the experimental

section.

As explained in Section 3.1.3, direct minimization of the rank is not feasible. The main

insight for matrix completion is to use instead the trace (or nuclear) norm minimization.

Then, Eqn. 3.1 is replaced by:

Minimize ||Y ||Σ

subject to Yij = Xij for all (i, j) ∈ S, (3.4)

47

where the trace norm ||Y ||Σ of a matrix Y is defined as the sum of its singular values,

||Y ||Σ =

r∑
i=1

σi(Y).

In a nutshell, [131] and [32] show that most low rank matrices could be recovered from

most sufficiently large sets of entries by computing the matrix of minimum trace norm that

agreed with the provided entries. The minimal size of the set of entries is an increasing

function of the coherence indicators. The intuition behind this surrogate objective is that

the rank function counts the number of non null singular values, the trace norm sums their

amplitude; this is analogous to the fact that the l1 norm is a useful surrogate for counting

the number of non zeros in a vector. Moreover, and very importantly, the trace norm

subject to equality constraints can be minimized by convex programming. The technical

reason is that the trace norm is the best convex lower bound of the rank function on the

set of matrices whose singular values are all bounded by 1[153].

Maximum Margin Matrix Factorization

The Maximum Margin Matrix Factorization (MMMF) [152] exploits the same approach as

in exact recovery for approximate recovery. Instead of finding a low rank approximation

(e.g., SVD), MMMF minimizes the trace norm of estimated matrix Y under the constraint of

no (hard-margin), or small (soft-margin), discrepancy between estimation and observation.

This formulation, unlike the low-rank approximation, is convex, thus it is guaranteed to

find the global optimal solution. Let S be the set of known entries in X. Two objective

functions can be considered.

• Hard-margin: minimize ‖Y ‖Σ under the constraints

YijXij ≥ 1 for all ij ∈ S;

• Soft-margin: minimize

||Y ||Σ + C
∑
ij∈S

max(0, 1− YijXij). (3.5)

48

As the minimization procedure produces a real-valued matrix, a decision threshold (e.g.,

positives values give +1, negatives give -1) gives the final predicted binary matrix.

The soft-margin factorization can be extended with the general robust strategy described

by [103] for integrating differentiated costs (or unbalanced positives and negatives examples)

in Support Vector Machines: the regularization parameter C in eq. 3.5 is split in two, C+

(resp. C−) for positive (resp. negative) examples. The only important parameter is the

ratio C+/C−.

As we have stated, the key insight in MMMF is to replace the rank minimization with

a trace norm (‖Y ‖Σ) minimization, under the constraint of no or small discrepancy. In this

formulation, the dimensionality of the feature space is no longer bounded, but regularized

by a low-norm factorization. As a consequence, the only parameter in MMMF is the

regularization term between the trace norm and the loss function, which makes it very

appealing when compared with methods like graphical models.

Despite the different types of matrix factorization methods introduced in previous sec-

tions, we only consider the very simple yet powerful approach, i.e., MMMF, in the first

part of the experiment. However, these objective functions, as well as the general matrix

completion technique are not the only possible choices for implementing the CP approach

to failure prediction. Alternatives which introduces contextual bias, i.e., M3F , will be

discussed in Section 3.5.

3.2 Experimental setting

3.2.1 The data sets

The probes

Different capabilities have to be tested; in the following, we consider three of them: probe

srm-ls tests the list ability from a CE to a SE, probe lcg-cr tests the read ability from

a CE to a SE, and probe lcg-cp tests the write ability alike. Thus, each CE works as a

probe station, launching probes to test the functionalities between itself and each SE. For

the Biomed grid a whole set of testing transactions (as we mentioned before: 31833) were

launched each day for each of the three probe classes. After nearly two months running,

information for 51 validated days were collected. In other words, 51 fully observed SE-by-

CE result matrices were obtained for each probe. Figure 3-2 shows the statistical profile

49

0 5 10 15 20 25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Day

fa
ilu

re
 r

at
e

lcgcp, MV=0.16, SD=0.0246
lcgcr, MV=0.16, SD=0.0245
srmls, MV=0.44, SD=0.0231

Figure 3-2: Failure rates on a 0.00 - 1.00 scale; the mean and standard deviation are
computed over the experiments

of the probe outcomes1. Failure rates of lcg-cp and lcg-cr are almost identical (range from

10% to 25%), while failure of srm-ls is significantly higher (ranges from 40% to 50%).

Monitoring issues

The probes themselves are gLite jobs, run by a regular Biomed user. Some of them fail

(rejection) in the sense that gLite is not able to complete the job, denoting that some

job management services may be down or misconfigured (e.g., authentication, brokering

etc.). The rejected probes entries in Fig. 3-3 shows the ratio of unsuccessful probes over

all launched probes in this sense. In the following, we consider only the accepted probes,

i.e., those which run to completion, reporting success or failure; this approach amounts

to consider that the data access capacities are independent from job management. This

is a reasonable hypothesis in a gLite infrastructure because file transfers involved in job

management use dedicated storage space independent from the one tested by our probes.

Separate testing is good practice in general; in this specific case, the high rejection rate

(average 40%) and the high failure rate would act as a massive noise on each other, and

1Note that here and on Fig. 3-6 and 3-7(b), only the points associated to each experiment are meaningful;
the lines between the experiments are added only for readability purpose.

50

0 5 10 15 20 25 30 35 40 45 50
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Day

re
je

ct
io

n
ra

te

rejected probes, MV=0.3924, SD=0.0495

Figure 3-3: Rejection rates on a 0.00 - 1.00 scale; the mean and standard deviation are
computed over the experiments

would make CP more difficult if we tried a global approach.

Empirical analysis

We selected five days for detailed performance analysis benchmarks. Table 3.1 shows some

basic characteristics of the fully observed entries; the fourth column gives the failure rate

when all probes are considered and exemplifies the need for inferring the structure of the

apparently massive randomness. Figure 3-4 illustrates the structure for lcg-cr and srm-ls

on day 5 (’07-05-2011’), where rows represent CEs and columns stand for SEs. Each entry

is the probe result between the corresponding CE and SE. Black columns correspond to

prolonged SE downtimes while black rows are CE failures leading to complete inability

to communicate with any SE (e.g., network downtime or configuration issue). These are

usually easily detected and reported by human operators with only a few incident reports.

The scattered points correspond to local or transient issues, which are very difficult to handle

due to the amount of incident reports independently generated. The higher failure rate of

srm-ls compared with lcg-cr appears to be associated with an inadequate port number in

some probes, and may be considered as an example of user error.

51

Table 3.1: Five example datasets

Name Date Probe Failed Failed
Native Curated

lcg-cp 0.15 0.04
1 2011.04.21 lcg-cr 0.16 0.05

srm-ls 0.45 0.02
lcg-cp 0.14 0.03

2 2011.05.14 lcg-cr 0.15 0.03
srm-ls 0.43 0.01
lcg-cp 0.16 0.03

3 2011.05.25 lcg-cr 0.15 0.03
srm-ls 0.43 0.02
lcg-cp 0.16 0.05

4 2011.06.09 lcg-cr 0.16 0.05
srm-ls 0.42 0.01
lcg-cp 0.16 0.06

5 2011.07.05 lcg-cr 0.16 0.07
srm-ls 0.45 0.04

The curated dataset

It could be argued that other, global (EGI-wide) monitoring tools should report on these

systematic failures, and that the probe selection and prediction methods should be applied

only to the more elusive causes of errors. While this is disputable (remember that all

probes succeed as jobs, thus at least the CEs are up and running), it is worth assessing the

performance of the methods when these systematic errors are eliminated. Therefore, we

designed a second set of experiments, with curated matrices as the reference fault structure.

A curated matrix is a new original matrix, where the lines and columns with only failed

entries (black ones in Fig. 3-4) have been removed prior to analysis. Their basic statistics

are shown in the last column of Table 3.1. In this case, srm-ls shows a lower error rate than

the other probes.

Section 3.1.5 has presented informally the theoretical coherence indicator. Getting rid

of the systematic faults drastically increases the coherence of the target matrix (recall that

coherence as defined in [32] is maximum when only one entry is 0, and minimum when all

entries are equal, on a line or on a column), making the theoretical lower bound on the

number of samples equivalently larger, and the overall problem more difficult.

52

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

SE

C
E

(a) lcg-cp

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

SE

C
E

(b) srm-ls

Figure 3-4: The CE-SE matrix. Black = failed, white= ok

3.2.2 Evaluation methodology

From this dataset, evaluating probe selection is straightforward. Figure 3-1 illustrates the

general work-flow of the selection-prediction process. The Original matrix is the ground

truth: a fully observed result matrix obtained from the all-to-all monitoring runs (Sec-

tion 2.2.3). Value -1 stands for probe result ok (negative) and 1 means failed (positive).

The Selected matrix is generated by deleting a proper proportion of entries in the Original

one. In a real-world, probe selection-based, monitoring, the remaining entries would be the

only actually launched probes. The Predicted matrix is the recovery result generated by

the prediction algorithm based on the known entries in Selected, where the X entries are

now set to 1 or -1. In the real-world scenario they would be delivered to users.

Contrary to the recommendation systems, where there is no ground truth as wish (the

users do not rate all products), the collection of data presented in Section 3.2.1 provides

the true values. Thus, the classical performance indicators for binary classification can be

measured. They describe the various facets of the discrepancy between the Original and

the Predicted matrices.

• Accuracy: the ratio of correctly predicted entries over the total number of entries to

be predicted.

• Indicators associated with the risks (confusion matrix): sensitivity, the proportion

of actual positives that are correctly predicted; specificity, the proportion of actual

negatives that are correctly predicted; precision, the ratio of true positives over all

53

predicted positives, and the MCC (Matthews Correlation Coefficient), a correlation

coefficient between the observed and predicted binary classifications that is relatively

insensitive to unbalanced positives and negatives.

• The Area Under ROC (Receiver Operating Characteristic) Curve (AUC), which sum-

marizes the intrinsic quality of a binary classifier independent of the decision threshold.

The interest of MCC and AUC comes from the fact that, in the optimization step of MMMF,

the classification error on the Selected matrix is a reasonable estimation of the prediction

error, while this hypothesis is less natural for estimating MCC and AUC [84]. Thus, MCC

and AUC provide a comparison indicator of the performance of the methods beyond their

explicit optimization target.

In order to evaluate the contribution of the prediction (or coupled selection-prediction)

methods, we compare their results with a simple baseline, called Rand Guess in the fol-

lowing. Rand Guess predicts entries following the distribution of the sample set (Selected

matrix). For example if the ratio of positive:negative entries in a sample set is 1:4, then

Rand Guess would predict an unknown entry as failed or positive with a probability of 20%

and as ok or negative with a probability of 80%.

3.2.3 Computational cost

CP methods have to be scalable, as they target enormous data sets such as the Netflix

database. The computational cost of the optimization problem of learning a MMMF es-

sentially depends on the number of known entries in the Selected matrix, or equivalently

on the probe fraction. Technically, the optimization is performed through a sparse dual

semi-definite program (SDP), with the number of variables equal to the number of observed

entries. We used YALMIP [110] as the model tool and CSDP [26] as the SDP solver.

Empirically, the time needed for computing one MMMF increases exponentially with the

number of entries in the Selected matrix. In practice, in our case, computation time was

not an issue: less than 30 seconds with 2000 entries (15% probes) on a standard worksta-

tion. More generally, the scalability of Matrix Factorization techniques based on low-rank

regularizers has been demonstrated many times, and regularizers that converge even faster

than the trace norm one have been proposed [100].

54

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1

A
cc

u
ra

cy

Probe fraction

04-21 static
05-14 static
05-25 static
06-09 static
07-05 static

04-21 random
05-14 random
05-25 random
06-09 random
07-05 random

(a) lcg-cp

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1

A
cc

u
ra

cy

Probe fraction

04-21 static
05-14 static
05-25 static
06-09 static
07-05 static

04-21 random
05-14 random
05-25 random
06-09 random
07-05 random

(b) srm-ls

Figure 3-5: Accuracy for the Static-Uniform probe selection.

3.3 Experimental results with MMMF

In this section we first show the experiment results of MMMF using three different probe

selection strategies, i.e., static-uniform, active probing, cost sensitive. Then AUC orientated

optimization is proposed for dealing with the strong imbalance between positive and nega-

tive examples. In the end, one implementation of mixed membership matrix factorization

which aims at curing the loss of contextual bias is compared with active MMMF on the

curated dataset.

3.3.1 Static-uniform

For each result matrix M different fractions of its entries are deleted uniformly and a series

of partially observed matrices M ′1, M ′2, ... are generated. For these new matrices, the task

is only to predict the deleted entries from the selected ones by MMMF-based CP. Figure 3-5

shows the prediction accuracy as a function of the fraction of launched probes, for the five

benchmarks. The results are averages over ten experiments. As lcg-cp and lcg-cr behave

similarly, only one is shown. The first and striking result is that an excellent performance can

be reached with a tiny fraction of the original probes, typically 5%. The Rand Guess results

are plotted for comparison purpose, but can be approximated easily: if q is the fraction

of positive entries in the original matrix, then in the deleted part, P (True Positive) =

P (Positive)P (Predicted Positive) = q2, and similarly P (True Negative) = (1− q)2; overall,

the accuracy is q2+(1−q)2. With the values of q from Table 3.1, the accuracy of Rand Guess

55

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

R
a
n
k

Day

lcg-cp predicted
lcg-cp real

lcg-cr predicted

lcg-cr real
srm-ls predicted

srm-ls real

Figure 3-6: Rank comparison for the Static-Uniform probe selection

is in the order of 0.7 for lcg-cp and lcg-cr, and 0.5 for srm-ls.

In the CP interpretation, the rank of a result matrix corresponds to the hidden causes.

Figure 3-6 shows the ranks of the predicted and original matrices. The ranks of the predicted

matrices are significantly lower than the original ones, showing that a small number of causes

dominates the overall behavior. The number of hidden causes is much larger for lcg-cp and

lcg-cr than for srm-ls, confirming the empirical evidence that the srm-ls faults are more

deterministic. However, the rank is far above the theoretical lower bound described in

Section 3.1.5. In other words, the sample size is too low to produce a unique solution. By

the choice of this low sampling ratio, the method cannot narrow down to the exact factors,

and produces a more imprecise and redundant model than the theoretically optimal one.

Figure 3-7(a) is the classical visualization of the confusion matrix in the ROC space for

all the 51 days at 90% deletion rate (keeping 10% of the probes). Note the range of the

axes, which cover only the small part of the ROC space where the results belong, thus the

diagonal line is not visible on the plot. Perfect prediction would yield a point in the upper

left corner at coordinate (0,1) of the ROC space, representing 100% sensitivity (no false

negatives) and 100% specificity (no false positives). The srm-ls dataset shows excellent

56

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1

T
P
R

:
Tr

u
e
 P

o
si

ti
v
e
 R

a
te

FPR: False Positive Rate

static_lcgcp
static_lcgcr
static_srmls

(a) ROC space (partial)

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 20 30 40 50

A
U

C
:

A
re

a
 U

n
d

e
r

C
u

rv
e

Day

lcgcp lcgcr srmls

(b) AUC

Figure 3-7: ROC-related metrics, Static-Uniform probe selection

prediction performance, being mostly very close to (0,1); lcg-cp and lcg-cr exhibit close

ROC value distributions, definitely much better than a random guess, which lies on the

diagonal line. The other indicators also show excellent performance: the AUC (Fig. 3-7(b))

as well as the MCC are close to 1. The case is closed for the initial problem.

The problem becomes much more difficult when the systematic faults are excluded,

thus taking the curated matrices as inputs. Figure 3-8 shows the prediction accuracy on

the curated srm-ls example (figures for the other probes are equally excellent, and are

omitted; note that, from Table 3.1, this probe is the most challenging one). As before, at

most 10% of the whole probes is needed to reach a promising accuracy, greater than 98%.

However, as the number of failed entries left in the curated matrices is much less than in

the noncurated ones, e.g., the fraction of failed entries on day 1 (srm-ls, 04-21-2011) drops

from 45.37% to 2.25%, accuracy is not meaningful: predicting all entries as negative would

give a similar result. The ability of making good prediction on the failed entries should be

valued more. And the relevant performance indicators are not so good, except for day 5, as

shown in Fig. 3-10: for the same example (day 1), at 10% deletion rate, sensitivity is 0.32,

meaning that 68% of the failures are not predicted, and precision is 0.49, meaning that

amongst the predicted failures, 51% are spurious. The first strategy to tackle this issue is

Active Probing.

57

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1

A
cc

u
ra

cy

Probe fraction

04-21
05-14
05-25
06-09
07-05

Figure 3-8: Accuracy for the Static-Uniform probe selection, curated srm-ls.

Figure 3-9: Accuracy comparison between the Static-Uniform and Active probe selection,
curated srm-ls for the five benchmarks

58

3.3.2 Active probing

In this experiment, we compare the Active Probing strategy with the Static one at equal

probing cost: first, a Static-Uniform method is applied, in order to get the reference infor-

mation, then more probes are selected with the min-margin heuristic for Active Probing,

while for the Static-Uniform method, the same number of probes are selected uniformly at

random.

Active Probing does improve accuracy over Static-Uniform, as shown in Fig. 3-9. How-

ever, as explained in the previous section, the quality of failure prediction is the most

important goal in this context. Figure 3-10 compares the relevant indicators: sensitivity,

precision and the MCC. They are detailed for the initial probe fraction equal to 5%, then

adding probes by step of 5% fractions. The results are given for a total of 10% and 15%

probes. The first result is that Active Probing always outperforms Static-Uniform. More

importantly, acceptable results can be obtained with a relatively small number of probes

(15%), albeit larger than in the much easier noncurated case: in all cases, more than 90%

of predicted failures are actual ones (Fig. 3-10(b)), even for the very difficult day 2; the

probability of predicting an actual failure (Fig. 3-10(a)) increases from 43% to 67% on day

1, from 39% to 62% on day 3 and from 14% to 48% on day 4. In other words, and as

expected, Active Probing singled out the failures as the most uncertain data, adaptively

building its own training set.

The performance greatly varies with the benchmark, and the variation is somehow

related to the failure rate of the benchmark (Table 3.1): larger failure rates in the original

curated matrix help uncovering the structure of the faults, even at quite low levels: with

4% failure rate, the 07-05-2011 (day 5) benchmark exhibits acceptable performance when

keeping only 5% of the probes and the Static-Uniform strategy; conversely, for day 2, with

a low failure rate (1%), sensitivity remains bad, predicting at best 19% of the actual faults,

although active probing allows for a good precision. However, the failure rate does not tell

the full story: days 2 and 4 have the same low one, but the performance on day 4 is much

better. The likely explanation is that faults on day 2 do not present much correlation, while

faults on day 4 derive from a small number of shared causes.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

S
e
n

si
ti

v
it

y

Benchmark number

0.05-mean tpr
0.1-mean tpr -S

0.1-mean tpr -A
0.15-mean tpr -S

0.15-mean tpr -A

(a) Sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

P
re

ci
si

o
n

Benchmark number

0.05-mean ppv
0.1-mean ppv -S

0.1-mean ppv -A
0.15-mean ppv -S

0.15-mean ppv -A

(b) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

M
C

C
:

M
a
tt

h
e
w

s
co

rr
e
la

ti
o
n
 c

o
e
ffi

ci
e
n
t

Benchmark number

0.05-mean mcc
0.1-mean mcc -S

0.1-mean mcc -A
0.15-mean mcc -S

0.15-mean mcc -A

(c) MCC (d) ROC space

Figure 3-10: Performance comparison for Static-uniform and Active Probing, curated srm-
ls; , (a), (b) and (c) for the five benchmarks, (d) for all days.

60

 400

 600

 800

 1000

 1200

 1400

1 2 3 4 5

C
o
st

Benchmark number

0.05-mean cost -INS
0.05-mean cost -ST
0.1-mean cost -INS

0.1-mean cost -ST
0.15-mean cost -INS
0.15-mean cost -ST

(a) Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

S
e
n

si
ti

v
it

y

Benchmark number

0.05-mean tpr -INS
0.05-mean tpr -ST
0.1-mean tpr -INS

0.1-mean tpr -ST
0.15-mean tpr -INS
0.15-mean tpr -ST

(b) Sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

P
re

ci
si

o
n

Benchmark number

0.05-mean ppv -INS
0.05-mean ppv -ST
0.1-mean ppv -INS

0.1-mean ppv -ST
0.15-mean ppv -INS
0.15-mean ppv -ST

(c) Precision

Figure 3-11: Cost and performance comparison between the Cost-Sensitive and Cost-
Insensitive active probing, curated srm-ls for the five benchmarks.

3.3.3 Cost sensitive + Active probing

Finally, we sketch the results of the cost-sensitive MMMF. The C+/C− ratio is set equal

to 10. The optimization target being soft-margin, the results for the initial Static-Uniform

at 5% probe fraction are slightly different from the previous experiments. Figure 3-11

compares Active probing with and without cost weighting. Higher penalization of false

negatives almost always decreases the final mis-prediction costs (Figure 3-11 (a)). Figure 3-

11 (b) and (c) give the explanation: while sensitivity is indeed increased, the number of

false positives also increases, leading to slightly lower precision, but the overall impact is

favorable.

61

3.4 AUC optimization within MMMF

As Section 3.1.5 shows, multiple approaches can be considered within the general framework

of Collaborative Prediction. An important experimental result of sections 3.3.1 and 3.3.2

is that static probe selection leaves significant room for improvement, and that adding

active learning based on the min-margin heuristic largely fills the performance prediction

gap. We need to disentangle as far as possible the contributions of the various ingredients.

More precisely, could we remediate to the inefficiencies of the Static Probing MMMF either

within the Matrix Factorization framework, or by an altogether different CP approach,

while retaining the Static strategy?

In Section 3.3.2, we have exposed the intuitive motivation for Active Probing: static CP

applied to fault prediction might underperform because of the strong imbalance between

positive and negative examples. This section proposes two static probe selection methods

that are optimized towards dealing with this imbalance. If both were to fail, a strong

indication would be given towards the role of Active Learning.

MMMF is theoretically grounded only for uniform random selection of examples, which

is just the opposite of the active learning approach. Section 3.3.3 shows that the most

classical method addressing this issue within the Static Probing strategy provides actual

but limited improvement. Thus, a first question is to which extent a more specific algo-

rithm would not successfully compete with Active Probing. We designed one: it integrates

MMMF and optimization of the area under the ROC curve (AUC). AUC is a natural and

useful performance measure for evaluating classifiers when the class distributions are heavily

skewed, because it is invariant to a priori class distribution [28].

Reformulation of the objective function

Intuitively, AUC expresses the probability that a decision function f assigns a higher value

to a randomly selected positive example x+ than to a randomly selected negative example

x−:

AUC(f) = Pr(f(x+) > f(x−)).

AUC refers to the true distribution of positive and negative instances, and can be estimated

through sampling. The normalized Wilcoxon-Mam-Whitney statistic gives the maximum

62

likelihood estimate of the true AUC given n+ positive and n− negative examples [169] :

ÂUC(f) =

∑n+

i=1

∑n−

j=1 1f(x+i)>f(x−j)

n+n−
. (3.6)

The AUC score is determined by the number of correctly ranked sample pairs; therefore, to

maximize the AUC we could maximize the number of correctly ranked sample pairs, which

meet f(x+) > f(x−).

Here we extend the standard Maximum Margin Matrix Factorization (MMMF) with the

object of AUC optimization. In the MMMF problem, we use the partially observed sparse

matrix X to recover Y under the constrain of a L2 norm discrepancy for each predicted and

observed entry, i.e YijXij ≥ 1 − ξ. However, this entry-wise constraint contains no order

information between sample pairs, i.e., order between the pair 〈Xi, Xj〉 where i 6= j and

Xi ∈ S+, Xj ∈ S−. Here, in the aim of AUC score maximization, we add the sample pairwise

order constraints to the MMMF objective function and derive the following reformulation.

min ‖Y ‖Σ + λ1

∑
k∈S

ξk + λ2

∑
i∈S+,j∈S−

δij (3.7)

s.t. YkXk ≥ 1− ξk (3.8)

Y +
i X

+
i + Y −j X

−
j ≥ 1− δij , (3.9)

where S is the set of known entries in X, S+ and S− are the positive and negative entry

sets, ξk is the entry-wise constraint on Xk, δij is the pairwise order constraint on 〈Yi, Yj〉,

λ1 and λ2 are the regularization terms. One thing to mention is that the number of con-

straints in the second regularization term is quadratic with the sample size, thus leading

to a more complex optimization problem. Inspired by the idea in [161], instead of adding

all constraints at once, we add the most important constraint iteratively, with the price

of iterative computation. However, in practice, the total number of added constraints on

all test sets proved to be quite limited, never exceeding 12, in accordance with a similar

observation in [161].

63

Algorithm 2: AUC optimization within Matrix Factorization

input : Initial partially observed binary(-1/+1) matrix M0, max number of
iteration N

output : Full binary-valued matrix MTi predicting unobserved entries of M0

initialize: Initialize the vars
S(T0) = S(M0) /*current constraint set*/ ;1

i = 0 /*current iteration times*/ ;2

while (i < N) do3

MTi = StandardMC(S(Ti)) /*Prediction based on observed entries via standard4

MC procedure*/ ;
S′(Ti) = MostV iolatedAUC(MTi) /*Calculate and select the most violated AUC5

pair */ ;
if #S′(Ti) > 0 then6

S(Ti+1) = S(Ti) ∪ S′(Ti) ;7

i = i+ 1 ;8

else9

break /*No violated AUC pair*/ ;10

Algorithm Framework

Algorithm 2 illustrates the process of AUC-oriented MMMF (AUC-MMMF). We use a

standard MMMF procedure for the recovery of a partially observed matrix, then the AUC

value on the training set is computed according to Eqn. 3.6 and the most violated AUC pair

is added into the current constraint set for the next iteration. The loop terminates when

there is no more violated pairs in the sample set or the maximum number of iteration is

reached.

Experimental Results

The trade-off coefficients λ1 and λ2 are chosen via cross-validation. We ran each experiment

5 times and average the results correspondingly. The performance of AUC-MMMF with

static and active MMMF are compared at different sample rate levels on the curated srm-ls

benchmarks. Figure 3-12(a) shows that AUC-MMMF always outperforms static MMMF,

by about 3% − 6% on benchmarks 1, 2, 3, 4. However, Active Probing outperforms or is

equivalent to AUC-MMMF in most cases. In other words, the Active Probing strategy

actually discovers the violated constraints through focusing on the most uncertain -and

very often positive (failure)- cases.

64

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Benchmark number

A
U

C

0.05−nopt 0.05−opt 0.1−nopt 0.1−opt

0.15−nopt 0.15−opt 0.2−nopt 0.2−opt

(a) Static vs AUC optimization

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Benchmark number

A
U

C

opt−0.1 act−0.1 opt−0.15 act−0.15

(b) Active vs AUC optimization

Figure 3-12: AUC optimization on srm-ls, with λ1 = 0.5, λ2 = 10.

3.5 Mixed membership matrix factorization

As we pointed out in Section 3.1.5, continuous latent factor models such as MMMF pro-

duce the predictions in a static way, without considering the contextualization. This might

be insufficient when dealing with complex distributed systems, where contextual bias like

transient failures and site specific middleware temporary down are frequent. In this sec-

tion we apply one implementation of the Mixed Membership Matrix Factorization on the

curated probing dataset and compare its performance with static and active MMMF. For

better understandability, we describe the M3F Topic-Index Bias (TIB) model of [113] in

recommendation terms. The model is an implementation of M3F where the context bias

can be additively decomposed into a user bias and an item bias. Both bias are influenced

by counterpart’s selected topic, i.e., the user bias is influenced by the item’s topic and vice

versa. In M3F-TIB each user and each item has its own latent factor vectors (au and bj)

and topic distribution parameters (θUu and θMj). To rate an item, first both the involved

user and item draw a topic, zUuj for user side topic and zMuj for item side topic, from their

distributions. Then, a rating bias, βikuj , is jointly specified by the user and item topics, i

and k, and the identity of the user and item, u and j. Last, a complete rating is given by

the sum of a user-item-specific static rating au · bj and a contextual bias βikuj , along with

some noise. For simplicity, a rating r can be expressed as following:

ruj ∼ N(βikuj + au · bj , σ2),

65

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

S
en

si
tiv

ity

0.05−m3f 0.05−st 0.1−m3f 0.1−st 0.15−m3f 0.15−st

(a) Sensitivity

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

P
re

ci
si

on

0.05−m3f 0.05−st 0.1−m3f 0.1−st 0.15−m3f 0.15−st

(b) Precision

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

M
C

C
: M

at
th

ew
s

co
rr

el
at

io
n

co
ef

fic
ie

nt

0.05−m3f 0.05−st 0.1−m3f 0.1−st 0.15−m3f 0.15−st

(c) MCC

Figure 3-13: M3F-TIB vs. static MMMF, m3f stands for M3F-TIB and st means static
MMMF.

66

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

S
en

si
tiv

ity

0.05−m3f 0.05−act 0.1−m3f 0.1−act 0.15−m3f 0.15−act

(a) Sensitivity

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

P
re

ci
si

on

0.05−m3f 0.05−act 0.1−m3f 0.1−act 0.15−m3f 0.15−act

(b) Precision

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Benchmark number

M
C

C
: M

at
th

ew
s

co
rr

el
at

io
n

co
ef

fic
ie

nt

0.05−m3f 0.05−act 0.1−m3f 0.1−act 0.15−m3f 0.15−act

(c) MCC

Figure 3-14: M3F-TIB vs. active MMMF, m3f stands for M3F-TIB and act means active
MMMF.

67

βikuj = χ0 + cku + dij ,

where σ is a Gaussian noise and χ0 is a fixed global bias, cku is the bias for user u under

item topic j and dij is the bias for item j under user topic i.

For M3F-TIB, we used a dynamic threshold for labeling the predicted real-valued matrix,

as predicted values provided by M3F-TIB are nearly always negative, which makes a fixed

threshold like 0 unreasonable. More precisely, we choose the threshold which assigns the

final label of each predicted entry as following: first the proportion of positive samples,

θ = S+/S, is calculated from the training set, then for all the predicted values, we choose

the first θ percent as positive entries and the other part as negative ones, in other words

assuming that the fraction of positive entries in the training set should approximate the one

in the whole set. For M3F-TIB, the model parameters are set as following: numFacs = 20,

KU = 2, KM = 2, the Gibbs sampler is initialized using a Maximum A Posteriori (MAP)

estimator, and run 500 samples for prediction, without any discarded samples for ’burn-in’.

All results are averaged over 10 runs.

Figure 3-13 illustrates the comparison of different classifier measurements between M3F-

TIB and static MMMF. On benchmark 1 and 3, M3F-TIB shows a better performance than

the static MMMF over all three metrics, except that the precision of M3F-TIB on benchmark

3 is slightly lower than with static MMMF when the size of training set increases. At

the same time sensitivity is significantly better than with MMMF, which implies that the

dynamic threshold based M3F-TIB tends to have less false negative than false positives.

On the other hand, static MMMF performs better than M3F-TIB on benchmark 2, 4, 5.

Interestingly, on benchmark 4, both algorithms tend to have similar MCC values, but

behave oppositely on sensitivity and precision: M3F-TIB has better sensitivity while static

MMMF has better precision.

Similar comparison of these metrics between M3F-TIB and active MMMF is demon-

strated in Fig. 3-14, showing that M3F-TIB is less competitive than active MMMF on

all benchmarks. This was to be expected, as M3F-TIB is essentially comparable to static

MMMF in our case.

In conclusion, given the operational goal as they are - essentially low intrusiveness

probing - the capacity of actively selecting the most informative probes provides a much

more efficient method to capture the time variability than M3F.

68

3.6 Conclusion

The Achille’s heel of large scale production grids and clouds is reliability. At the scale

of these systems, classical detection or diagnosis would require a complete a priori knowl-

edge of the software and hardware infrastructures that might remain definitely inaccessible.

Quality of Experience at reasonable human cost requires extracting the hidden information

from monitoring data whose intrusiveness should be limited. Collaborative Prediction is

one of the promising and scalable strategies that can address this new challenge. Compared

with the recommendation context, monitoring enjoys a decisive advantage, being allowed to

adaptively build knowledge. Through experiments on a large dataset, this chapter demon-

strates the effectiveness of combining Collaborative Prediction and Active Leaning. The

min margin heuristic has shown to be versatile enough to address two difficult issues quite

specific to the fault prediction problem, and of very different nature: the spatial one, the

imbalance of positive and negative examples; and the temporal one, the transients. Clean-

ing the data and eliminating the noise, for instance through bias modeling, have been shown

essential for recommendation systems. In our active monitoring setting, things go in the

reverse way, to the same goal: instead of acquiring all data, then discarding the most noisy

of them, which would be for example the result of a fixed frequency probing strategy, Active

Probing adaptively adjusts its acquisitions and the internal model. The next step would

be to go for a fully personalized recommendation system, taking into account not only the

infrastructure, but also the particular user, whose specificities may also create failure risks.

69

70

Chapter 4

Sequential Fault Monitoring

This chapter provides detailed discussions on the sequential monitoring of a distributed

system. The overall goal is exactly the same as in Chapter 3 : predict the fault behavior with

limited probe information. The difference is that we want to take into account the fact that

the system dynamically evolves at various time scales. Addressing this issue brings us closer

to a model consistent with the practitioners expectations, but turns out to be significantly

more difficult than the previous and more idealized setting. Not surprisingly, we cope

with this difficulty by exploiting the dynamic setting for enriching the static information

presented in the previous chapter with time-related information: sequential monitoring deals

with a sequence of partially observed matrices and makes prediction using information both

from the current and previous time windows. Besides the spatial information preserved

in neighboring data points, sequential correlation concealed in consecutive data points is

another key feature of sequential data. These sequential patterns are important because

of their value which, if exploited properly, can improve the prediction performance of the

classifiers.

The main contributions of this chapter are twofold.

• A detailed analysis of the algorithmic alternatives, that contributes to disentangle

the components of performance and substantiate the claim that sequential patterns

should be exploited;

• An algorithm that efficiently combines the spatial and temporal information sources.

Its major strength is to balance exploration and exploitation in a way that formalizes

the multi-scale intuition of the practitioner and successfully exploits it.

71

The organization of this chapter is as follows. Section 4.1 presents the empirical motivation

and the formal description of the problem. For clarity, we have structured the rest of the

chapter by presenting first all the algorithms that are considered for evaluation, including

classical ones and our proposals, followed by the experimental evaluation. Thus, the moti-

vation for proposing new methods will become more evident only in the last two sections.

Section 4.2 walks through the various ways to organize spatial and temporal information.

Section 4.3 proposes a new algorithm, SMF (Sequential Matrix Factorization), and its Ac-

tive Learning version, SMFA (Sequential Matrix Factorization with active learning). Then,

Section 4.4 presents a detailed experimental evaluation, conducted on real-world data from

the same source as in the previous chapter. The vanilla algorithms are combined in various

ways with agnostic optimizations (smoothing) and information-oriented ones (strategies for

active learning).

4.1 Introduction

4.1.1 Motivation

In Chapter 3 we have described a method to handle the fault monitoring task of a distributed

system based on a collaborative prediction approach. Although this method significantly

reduces the number of required probes for acquiring a whole view of the system, it is

somehow static. Specifically, the input of this method is a single static matrix describing

the current state of the system, without any information from the past.

This setting has two drawbacks. Firstly, it might be appropriate for getting a short

time system snapshot; however, due to the ever-changing characteristic of system status it

could easily expose its disadvantage when dealing with a long term task. For example, in

a large distributed system, there are some stable system components, whose status might

be consistent most of the time, while there are also some other components whose status

may fluctuate intensely at peak time and remain stable at off-peak time. Second, transient

faults are systematically observed: transients are faults that go on and off at high frequency

and should be considered as noise; practitioners do not have a clear explanation for them,

and they might as well be produced by flaws in the monitoring software itself. Of course,

the problem is to disentangle them from real, but short-lived faults.

A further motivation is to explore the possibility of getting rid of Active Learning. In

72

the previous chapter, we have shown that Active Learning was a required ingredient for

efficient prediction in the curated case. On the other hand, Active Learning is somehow

inconvenient: it requires a feedback loop and more complicated software than the passive

setting. At grid scale, any unnecessary source of complexity should be eliminated. Thus,

we explore the hypothesis that the past provides enough information to be equivalent to

the one obtained by selectively querying the present.

4.1.2 Categorization

To cope with this sequential fault prediction, a natural extension is to introduce historical

information into the framework and to consider fault monitoring as a sequential task. Hence,

in this chapter, we reconsider the collaborative monitoring task with a series of time-based

inputs and perform the collaborative prediction in a sequential manner.

Generally, there are two types of input information that can be utilized in the sequential

case: information from collaborators and information from the past. For simplicity, we call

the former one spatial information and the latter one temporal information. For a compo-

nent of the distributed system, the spatial information is the current status information of

the other components in the system, while the temporal information is its own historical

information from the past. In our approach, which is based only on end-to-end probing,

the components are the probes’ outputs.

Depending on which information a method uses as input, we further divide the methods

into three categories.

• The pure spatial methods only use information available from the current timestamp;

the methods that we described in the previous chapter belong to the pure spatial

category. In this chapter, they will be exemplified by MMMF.

• The pure temporal methods take the entry-wise historical sequences as inputs, inde-

pendently; they predict entry-wise too, based on time series methods, e.g., Moving

Average. In this chapter, they will be exemplified by the EWMA method presented

in Section 4.2.1.

• The integrated methods use both information categories as input. In the classical Col-

laborative Filtering framework, the so-called Tensor method exemplifies this approach

and is discussed in Section 4.2.3. Our algorithms, SMF and SMFA (Section 4.3), fall

73

into this category. The collapsed methods are a subcase - they straightforwardly trans-

fer those employed in static matrix based prediction to the sequential situation and

are the simplest approach to integration: first, the temporal information is exploited

to build a summary, then a purely spatial method uncovers its hidden structure. In

this chapter, they will be exemplified by the SSVD method presented in Section 4.2.2.

As our goal is to exploit temporal information, purely spatial methods will be considered

here as a baseline; as we have seen before, MMMF has excellent results in the non-curated

case and MMMFA exhibits superior performance in the curated case, thus both will be used

as a baseline for comparison. The choices that we want to explore are, in increasing order

of complexity: purely temporal methods, collapsed methods and fully integrated methods.

4.1.3 Problem statement

We first introduce the formulations and notations of this chapter.

• Xt ∈ BM×W denotes the partially observed matrix at time t.

• Ŷt ∈ RM×W is the result of a prediction algorithm.

• Yt ∈ BM×W be the binary version of Ŷt using a binarization threshold ρ.

The binarized YT (i, j) is obtained from ŶT (i, j) using a threshold ρ as following:

YT (i, j) =

 −1 if ŶT (i, j) ≤ ρ,

1 otherwise.
(4.1)

Since we use ’−1’ and ’1’ representing the negative and positive binary values, respectively,

if not mentioned, ρ = 0 is used as the binarization threshold throughout this thesis.

For a time sequence 1, ..., T , X1, ..., XT are the series of partially observed matrices.

We denote this sequence as a cube ZT = (X1, ..., XT), ZT ∈ BM×W×T , thus we have

Z(i, j, t) = Xt(i, j). We define the task of sequential matrix prediction in this chapter as:

given a partially observed cube (tensor) Zt = (X1, ..., Xt), predict the fully estimated matrix

Yt. A simple illustration of this task is shown in Fig. 4-1. As we can see from it, given

X1, ..., Xt as a sequence of partially observed matrices, at each time step t, a matrix Yt is

estimated by the algorithm using information from the observation sequence X1, ...Xt and

estimation sequence of Y1, ...Yt−1. In our proposed algorithms, only Yt−1 is used most of

the time.

74

X_1 X_2 X_t

……

time

X_3

Y_1 Y_2 Y_t

……

Y_3

OK FAILURE UNKNOWN ESTIMATED

Figure 4-1: An illustrative example of sequential fault prediction problem

75

With this formalism, temporal methods, that only rely on the entry-wise historical

information, try to complete the prediction of YT (i, j) only based on information of entry

(i, j), which could be only the Xt(i, j), t = 1, ..., T or include Yt−1(i, j), t = 2, ..., T . Many

commonly used methods like Moving Average(MA), Hidden Markov Model(HMM) can be

categorized into this framework.

In spatial methods, where only information of the current time window is available, the

prediction of YT (i, j) is completed only using knowledge captured in XT . The underlying

assumption of the spatial approach is that for two row-items i1 and i2, if they share similar

results on a column-item j1, e.g., XT (i1, j1) and XT (i2, j1) are similar, then they are more

likely to have alike results on another column-item j2, e.g., XT (i1, j2) and XT (i2, j2) are

close. Methods like max margin matrix factorization and singular value decomposition are

exemplars of this category.

The integrated methods utilize both spatial and temporal information to make a pre-

diction of YT . Precisely, to produce a prediction of YT (i, j) information encapsulated in

Xt and Yt−1 for t = 1, ..., T are exploited. The end of integrated methods is to perform

a fully exploration and exploitation on both spatial and temporal information. Exemplar

methods of this category are tensor factorization based methods and the sequential matrix

factorization (SMF) proposed in a later section.

4.2 Background

In this section we first discuss the options for temporal methods, in relation with their

intended application to the large scale prediction issue; then present the collapsed approach,

followed by a brief survey on the tensor based methods.

4.2.1 Temporal methods

There are extensive types of temporal methods proposed for the sequential prediction,

among which auto regressive moving average (ARMA), hidden Markov model (HMM) and

exponentially weighted moving average (EWMA) are three commonly used examples. In

ARMA, a (weakly) stationary stochastic process is modeled using two polynomials, one for

the auto regression and the other for the moving average. Parameters of the AR (auto

regression) and MA (moving average) models are learned from the past values of an entry.

76

In HMM, data series is described by a statistical Markov model, and the system being

modeled is assumed to be a Markov process with hidden states. A transition matrix is

estimated to give the probability of an entry’s value based on its last values in HMM.

In the collaborative monitoring case, ARMA or HMM would need to learn a set of model

parameters and update them for each entry in the target (monitored) matrix. This leads to

a complexity of O(KMN), where K is the order of a HMM or ARMA model and M and

N are the corresponding number of rows and columns in the target matrix, respectively.

Computational complexity severely hinders the use of these two methods when dealing with

large scale data sets. Thus in this chapter we only consider a simpler temporal method:

EWMA, and use it as the base line for comparison with other methods.

Exponential weighted moving average (EWMA) [112] is a classical technique in

time series, which can be used either for producing smoothed data representation, or for

making predictions. Unlike simple moving average where equal weights are assigned to the

past observations, exponentially weighted moving average gives exponentially decreasing

weights to data over time.

yt =

 x1, t = 1,

θxt + (1− θ)yt−1, t > 1
, (4.2)

where θ ∈ (0, 1) is a damping factor used to control the impact of past data, xt is the

observation at time t and yt is the EWMA value at time t. A higher θ would discount the

older observations faster.

In the sequential monitoring task, at a time step T the way we use EWMA to produce

an estimation for an entry (i, j) of its current status based on its history observations is as

following:

ŶT (i, j) =

 X1(i, j), T = 1,

θXT (i, j) + (1− θ)ŶT−1(i, j), T > 1
. (4.3)

Note that in Eqn. 4.3, ŶT (i, j) is estimated based on information only from the entry’s

past observation sequence Xt(i, j), t = 1, ...T , making it a pure temporal method. For

simplicity, in the following we keep the EWMA name for the point wise application of

EWMA to the matrix entries.

77

Steps of using EWMA to estimate YT are given in Algorithm 3. The last L time window

sample sequence XT−L+1, ..., XT is used as input for EWMA. However, it is possible that

all of these are missing, that no probe has been launched on this particular (i, j) pair

in the window: for instance, if h2 is uniform over space with a 10% selection rate and

L = 20, the probability of a missing entry is ∼ 12%. In this case, the missing entry in ŶT is

filled with the corresponding entry in ŶT−1, as the best available estimate. For ensuring a

starting point, at the initial stage, Yinit is computed as the exponentially weighted moving

average of a sequence of fully observed matrices with length L, i.e., X1, X2, ..., XL. Because

X1, X2, ..., XL are fully observed matrices, no missing entry exists in Yinit.

Algorithm 3: Exponentially Weighted Moving Average, EWMA

Input: N , number of random samples;
Yinit, initial value for each entry;
ρ, threshold for binarization;
Xl,l=t−L,...,t−1, history sample sequence;

Output: Full binary-valued matrix Yt
Initialize: Xt ← 0, Y1 ← X1, init random sample heuristic h2

Sr ← Sample(h2, N) /*Select N random sample indexes*/;1

Xt(Sr)← QueryLabels(Sr) /*Query the true labels for entries in Sr*/;2

Ŷt ← θXt + (1− θ)Ŷt−1 ;3

I ← findMissingEntries(Ŷt) ;4

for i ∈ I do5

Ŷt(i)← Ŷt−1(i)6

Yt ← binarization(Ŷt, ρ) /*Turn the real-valued Yt into Binary matrix*/;7

return Yt8

4.2.2 Collapsed methods

Principle

The idea behind collapsed methods is to exploit a full matrix built by a temporal method:

predictions are produced based on a full matrix X ′t. Going back to the essential intuition

that we are looking for low-rank approximation, dimension reduction methods are then

employed on X ′t for matrix factorization. Thus, in this section, we test the adaptation

of Singular Value Decomposition to the the sequential case under the name of sequential

singular value decomposition, SSVD (mentioned as Truncated SVD in [3]).

78

Sequential Singular Value Decomposition, SSVD

The rank-R SVD approximation of a matrix X is given by:

X ≈ URΣRV
T
R ≈

R∑
k=1

σkukv
T
k , (4.4)

where V T is the transpose of V . Given a partially observed matrix Xt, the way we predict

Yt by using SSVD is described in Algorithm 4. In the first step of SSVD, missing values in

Xt are imputed using the method ImputeMatrix (described in Algorithm 5). An EWMA

imputation is implemented in ImputeMatrix which replaces the missing entries using an

exponentially weighted moving average of its past values. Besides this EMWA based impu-

tation, other alternatives like KNN imputation, column (row) wise imputation for missing

entries in a matrix are also commonly used methods. In the second step of SSVD, a SVD

decomposition is employed on the imputed matrix and then the top R-rank approximation

is binarized and returned as the estimated matrix of SSVD.

Discussion

Another possible collapsed method would be to build a partial matrix X ′t from the past,

but including only the actually observed past entries, and then perform matrix completion,

e.g., MMMF, on the not so sparse X ′t. As we mentioned in Chapter 3, the MMMF method

regards each observed entry in X as a constrained variable in the prediction process, and

the computational complexity increases drastically with the number of involved constraints.

Therefore, it is not appropriate to use a MMMF method on the collapsed matrix.

4.2.3 Tensor factorization

A number of approaches have been proposed for the sequential matrix completion problem

based on either tensor or matrix factorization. For the recommendation application, [101]

splits the sequential data into several coarse time domains. It then assumes a static group-

level rating distribution and a slightly drifting individual user interests across the time

domains. A cross-domain CP framework is used to share the static group-level rating

matrix, together with a Bayesian latent factor model for capturing the drifting behavior

of an individual user. The inference model is learned using Gibbs sampling. This method

79

Algorithm 4: SSVD, sequential R-rank SVD approximation

Input: N , number of random samples;
R, # of top singular components to select;
ρ, threshold for binarization;
l, # of past observations used for imputing missing entries;

Output: Full binary-valued matrix Y ′t
Initialize: Xt ← 0
Sr ← Sample(h2, N) /*Select N random sample indexes*/;1

Xt(Sr)← QueryLabels(Sr) /*Query the true labels for entries in Sr*/;2

X ′t ← ImputeMatrix(Xt, Xt−l,...,t−1) /*Impute missing entries in Xt;3

[U,Σ, V t] = SV D(X ′t) /*SVD decomposition of X ′T */ ;4

Ŷt ← URΣRV
t
R /*Top R-rank approximation*/ ;5

Y ′t ← binarization(Ŷt, ρ) /*Turn the real-valued Yt into Binary matrix*/;6

return Y ′t7

Algorithm 5: ImputeMatrix, impute missing entries in a matrix

Input: Xt, matrix with missing entries ;
Xt−l,...,t−1, matrix sequence for imputing missing entries;

Output: X ′, imputed matrix
X ′ ← Xt ;1

I ← findMissingEntries(Xt) /*find missing entries in Xt*/ ;2

for i ∈ I do3

X ′t−l ← Xt−l ;4

for j = t− l + 1, ..., t− 1 do5

X ′j(i)← θXj(i) + (1− θ)X ′j−1(i) /*Impute missing entries via EWMA*/6

X(I)′ ← X ′t−1(I) ;7

return X ′8

is suitable for modeling relative long term (coarse time domains) user interests, however,

not appropriate for capturing system transients. A user’s interest will certainly last for a

relatively long time, but a component’s status in a complex system may fluctuate frequently.

[106] extends the low-rank matrix completion to the tensor case by proposing the trace

norm for tensors. As in the matrix completion case, the tensor completion is formulated as a

convex optimization problem, and is solved by three heuristic methods proposed by the user.

A recent method concerning sequential active matrix and tensor completion is proposed in

[96]. The proposed algorithms in this paper employ adaptive sampling schemes to obtain

strong performance for the low-rank matrix and tensor completion problem. Entries which

are informative for learning the column space of the matrix (tensor) are identified through an

adaptivity exploitation. Theoretical results of the sufficient number of adaptively selected

80

samples for an exact recovery are given both for the matrix and tensor case. See [63] and [92]

for additional research on this topic. Despite extensive alternatives, in this thesis, we only

test the raw tensor factorization method since it’s simple, easy to implement and can serve

as a base line for the tensor based approaches. In the following, we will firstly go through

the basics of tensor factorization, and then discuss its applicability for our problem.

A tensor is a multidimensional array. A N-way (or Nth-order) tensor can be described

as the product of N vector spaces. This decomposition can be used to reveal underlying

linear structures in the data, and has applications like noise reduction or data compression.

Generally speaking, two particular tensor decompositions are widely discussed: CANDE-

COMP/PARAFAC (CAPA for short) and Tucker [92]. The CAPA decomposes a tensor

as a sum of rank-one tensors, and the Tucker decomposes a tensor into a set of matrices

and one small core tensor. For higher dimensional N -way tensor (like the 3-way monitoring

dataset), we could use the tensor decomposition technique straightforwardly, without any

preprocessing like collapsing the tensor into a flat matrix.

The benefits brought by not collapsing the tensor data into a flat matrix but keeping its

natural high dimensional structure are two fold: firstly, the underlying patterns in multi-way

datasets are preserved. Because the collapsing of data along any dimension will cause a loss

of information in that dimension, it is therefore beneficial to keep the natural structure as

much as possible. Secondly, CAPA yields a highly interpretable factorization that includes a

time dimension, and patterns in the time dimension can be extracted out straightforwardly.

Unlike matrix based prediction which is limited to predict for a single time step, CAPA can

be used in both single step and periodic temporal prediction problems.

Compared with the Tucker decomposition, the CAPA model is more advantageous in

terms of interpretability, uniqueness of solution and determination of parameters [29]. A

CAPA mode-3 decomposition can be expressed as either a sum of rank-one tensors (each of

which has an outer product of vectors ar, br, cr and a weight λr) or factor matrices:

Z ≈
R∑
r=1

λr(ar ◦ br ◦ cr) ≡ [λ;A,B,C], (4.5)

where Z represents the raw data tensor and R specifies the number of rank-one components.

a◦bmeans the outer product of a and b. Take the sequential monitoring for example, we have

a partially observed third-order tensor ZT , Z ∈ BM,N,T at time T , and the CAPA tensor

81

factorization decomposes ZT into a set of rank-one components. Then the missing entries

in ZT can be recovered by making an outer product of the first R rank-one components.

Theoretically, the tensor factorization based method is able to deal with sequential ma-

trix factorization in a promising way. Because information along the temporal dimension is

processed straightforwardly without any collapse, the temporal transition can be preserved

in the factorization. However, practically, tensor factorization without any regularization

can be seen as a simple linear regression exerted along each dimension, thus only those

principally important factors are kept in the result. It is more appropriate to introduce

regularization on some specific observations (e.g., positive in our case), and orientate the

regression as we want. Moreover, entries are equally weighted in a tensor factorization

method, which might impede the method’s suitability, especially in the sequential fault

prediction case where the most recent information should weight more than the far past

one.

4.3 Sequential matrix factorization

4.3.1 SMF algorithm

As mentioned before, there are two types of information available in the sequential monitor-

ing: spatial and temporal information. The spatial information can be thoroughly exploited

by a collaborative prediction method like MMMF, while on the other hand, the temporal

information which concerns the entries’ evolving characteristics provides extra opportunity

for improving the prediction performance. Specifically, at each time step t we have a se-

quence of history predictions Y1, ..., Yt−1 and for each estimated value in Yi,i=1,...,t−1 we

could measure our confidence in prediction as each entry’s distance to the separation hyper-

plane. Thus two types of predictions emerge: those predictions close to the separation

plane and those far from the separation plane. We call the former one the most uncertain

predictions and the latter the most confident predictions. From the system point of view,

the most uncertain predictions are related to those components with short term status like

the transient faults. On the other hand, the most confident predictions are related to those

components with relatively long term stable status. Hardware permanent failures or mid-

dleware deployment bugs may create the most stable faults; at the intermediate time scale,

some software components that may be significantly malfunctioning when overloaded would

82

provide a relatively stable result.

In this section, we propose an algorithm, sequential matrix factorization (SMF), to

utilize both the spatial and temporal information, such that both the long term and short

term status behavior can be exploited. In the following discussion, we use Su, Sc and Sr

as the index set in matrix X, where each of them denotes the most uncertain prediction

set, most confident prediction set and the random sample set, respectively. Recall that the

objective function of MMMF is:

arg min
Y
||Yt||Σ + CLh(Yt(Sr), Xt(Sr)), (4.6)

where C is a regularization coefficient, Sr is the randomly sampled set inXt, and Lh(Yt(Sr), Xt(Sr))

is the hinge loss between Y and X defined as:

Lh(Yt(Sr), Xt(Sr)) =
∑
ia∈Sr

max(0, 1− YiaXia). (4.7)

The objective function (Enq. 4.6) is composed of two terms, where the first one is the trace

norm of the estimated matrix Yt and the second term is the discrepancy between estimation

and observation. In the following we will develop the objective function of SMF by adding

the most uncertain and the most confident information to Eqn. 4.6, incrementally.

First we consider the most uncertain information. Similar to the most uncertain heuristic

applied in the active probing in Section 3.3.2, in the sequential case the most uncertain

prediction set Su (entries with small margin to the classification hyper-plane) can be derived

from Yt−1 and their labels at time t can be queried from the system. Hence, the ground

truth of those most uncertain predictions in Yt−1 are available in the sample set Xt. We

denote this as Xt(Su).

The second information is the most confident predictions concealed in the history esti-

mation. For these most confident entries Sc, instead of sampling their true labels at time

t, their previous predictions can be used straightforwardly in the next run. Specifically, in

SMF we choose those most confident predictions from Yt−1 and assume their states remain

unchanged at time t with a consistency level γ. We compute γ in terms of the difference

between Yt−1 and Xt, i.e., difference between last estimation and current observation. Typ-

ical classification criteria like sensitivity (TPR) or FSCORE can be used for measuring this

83

consistency. The most uncertain prediction set Su plus the random sample set Sr constitute

the observed set in X, i.e., X(Su ∪ Sr). The consistency level γ can be calculated between

Xt(Su ∪ Sr) and Yt−1(Su ∪ Sr) as following:

γ = TPR(Yt−1(Su ∪ Sr), Xt(Su ∪ Sr)), (4.8)

where TPR(A,B) is a function for computing the sensitivity (true positive rate) of A

according to the ground truth set B. In the prediction, γ is used as an adaptive cost ratio

which adjusts the weight (penalty) of the heuristic information in the objective function

(similar to the coefficient C in Eqn. 4.6). The reason we choose TPR as the penalty lies in

the fact that in distributed system monitoring a successful discovering of a failure becomes

more important than an false alarm.

In addition to the most uncertain set Su and most confident set Sc, we also introduce

a random set Sr in the objective function of SMF. It serves as a term for avoiding over-

fitting in the history information, where sudden change between the last estimation and the

current observation might occur. To sum up, the SMF has the following formula:

arg min
Y
||Yt||Σ + CLh(Yt(S)−Xt(S)) + CγLh(Yt(Sc)− Yt−1(Sc)), (4.9)

where S = Su ∪ Sr is the sample set we query labels at time t and Sc is the most confident

prediction set we inherit from t − 1. The difference between Eqn. 4.6 and 4.9 is exhibited

by the selection of Su and the presence of Sc. As is the same in Eqn. 4.6, Eqn. 4.9 is also

convex, and the method we have described in Chapter 3 can be used to find the global

minimum directly.

Figure 4-2 illustrates the basic idea of the heuristics mentioned above. The most uncer-

tain and most confident predictions are selected from Yt−1, where labels of the former set are

further queried at time t, and labels of the latter set are inherited from the corresponding

estimation values in the last run.

Algorithm 6 describes the pseudocode of SMF. At the beginning, the sample set S of

Xt is generated by a combination of selecting the most uncertain predictions from Yt−1 and

a random sampling (line 1 to 3). Then the true labels of S are quired from the system and

are used as ground truth for evaluating the discrepancy between Yt−1 and Xt (line 4, 5).

The most confident predictions in Yt−1 are selected in the following step and used as input

84

Xt

Yt‐1 Yt

Most uncertain predictions Most confident predictions

OK FAILURE UNKNOWN ESTIMATED

Figure 4-2: Illustration of heuristics in SMF

for the current estimation. In the final step Yt is derived by finding an estimation which

minimizes Eqn. 4.9.

4.3.2 Sequential matrix factorization with active sampling

Like in the active matrix factorization, another intuitive way to improve the sequential

prediction performance is to choose the sample entries in Xt actively and iteratively. In

SMF, there are three ways to select sample entries: random, most uncertain and most

confident. The latter two strategies rely on information from the last prediction Yt−1. The

selection of active samples is completed all at once in SMF. No further actions are taken after

its first estimation of Y 1
t

1. However, heuristic information like most uncertain and most

confident prediction also exist in Y 1
t or its following estimations Y i

t , i = 2, 3, If exploited

properly, it can also profit the estimation. For example, samples in the active MMMF are

selected using the most uncertain heuristic from the last prediction iteratively and actively

until the maximum number of samples is reached. With the progress of each iteration,

confidence as well as prediction performance in the estimation increase simultaneously.

Based on the above observation, in this section we propose the sequential matrix fac-

torization with active learning (SMFA) based on an iterative use of SMF. Steps of this

algorithm are described in Algorithm 7. For simplicity, we denote the estimation matrix

1Here we use Y i
t to denote the estimation at time t in the ith iteration

85

Algorithm 6: Sequential Matrix Factorization (SMF)

Input: Ŷt−1, last prediction;
Nu, number of most uncertain samples from Yt−1;
Nc, number of most confident samples from Yt−1;
Nr, number of random samples;
C, slack penalty.

Output: Full real-valued matrix Ŷt

Initialize: Init h1, h2, h3, /*Initialize the most uncertain, most confident and
random sampling heuristic, respectively*/;

Su ← Sample(h1, Nu, Ŷt−1) /*select Nu most uncertain sample indexes from Ŷt−1*/;1

Sr ← Sample(h2, Nr), /*select Nr random sample indexes*/;2

S ← Su ∪ Sr ;3

Xt(S) ← QueryLabels(S), /*query the true label for entries in S*/ ;4

γ ← TPR(Xt(S), Yt−1(S)) /*given Xt(S) (true labels for entries in S), compute the5

sensitivity of Yt−1(S)*/;
Sc ← Sample(h3, Nc, Yt−1), /*select Nc most confident samples from Yt−1*/;6

Ŷt ← arg minY ||Ŷt||Σ + CLh(Ŷt(S)−Xt(S)) + CγLh(Ŷt(Sc)− Ŷt−1(Sc)) /*find an7

estimation that minimizes the objective function*/;
return Ŷt8

at time t of the ith iteration as Y i
t . At the beginning, we use the SMF to get an initial

estimation Y 0
t from Yt−1 (line 4), then an iterative estimation is employed on the prediction

sequence Y i
t , i = 1, 2, ... until the maximum number of samples is reached (line 5 to 9).

Active sample selection is engaged each time the SMF algorithm selects the most uncertain

and most confident predictions from the last estimation.

4.3.3 Smoothing the outputs

Although one of the key features in SMF or SMFA is to preserve the continuity of predictions

between consecutive time windows, this can still be enhanced by smoothing the output

sequence of a method. Smoothing method, e.g., EWMA, can be applied on the output

sequence: Y1, Y2, ..., Yt, such that the prediction is relatively consistent in time. Smoothing

the prediction sequence using EWMA can be achieved as follows:

Y ′k(i, j) =

 Yk(i, j), k = t− l + 1,

θYk(i, j) + (1− θ)Y ′k−1(i, j), k = t− l + 2, ..., t
, (4.10)

where θ ∈ (0, 1) is an user defined damping factor, and l is the lag window length.

86

Algorithm 7: Sequential Matrix Factorization with Active sampling (SMFA)

Input: N , max # of new samples;
Ŷt−1, last prediction;
P0, initial sample rate for the 1st prediction;
Pa, active sample rate at each iteration;
ρ, ratio of random samples and most uncertain samples for Pa;
C, slack penalty.

Output: Full real-valued matrix Ŷt
initialize: Init(Nc) /*Initialize the number of most confident samples to select in

each iteration*/;
i = 0 /*current iteration index*/ ;1

n = N × P0 /*current number of new samples*/ ;2

[Nu, Nr]← getSampleSize(n, ρ) /*Get random and most uncertain sample size for3

the initial prediction*/;
Ŷ i
t ← SMF (Ŷt−1, Nu, Nc, Nr, C);4

while (n < N) do5

[Nu, Nr]← getSampleSize(N × Pa, ρ) /*Get random and most uncertain sample6

size according to ρ and Pa*/;
Ŷ i+1
t ← SMF (Ŷ i

t , Nu, Nc, Nr, C);7

n = n+Nu +Nc +Nr ;8

i = i+ 1 ;9

Ŷt = Ŷ i
t ;10

return Ŷt11

87

4.3.4 Summary

In the previous sections, we have introduced several methods concerning the application of

sequential fault monitoring. We have given a brief summary on their input, output data

and related parameters in Table 4.1. In addition to the raw methods, we also proposed a

smoothing version for each of them. For a method A, we mark its smoothed version as A*

(e.g., the smoothed version of SMF is marked as SMF* in later section).

Table 4.1: Summary of sequential methods

Input Data Output Data Parameters

EWMA Xt−L+1, ..., Xt−1, Xt Yt

N, # of samples;
θ, damping factor;

L, lag window length.

SSVD Xt Yt

N, # of samples;
R, rank of SVD approximation;

L, lag window length for imputation.

MMMF Xt Yt

N, # of samples;
C, coefficient for slack penalty;

Σ, norm used for distance measurement.

SMF Xt, Yt−1 Yt

Nr, # of random samples;
Nc, # of most confident samples.
Nu, # of most uncertain samples;

C, slack penalty.

SMFA Xt, Yt−1 Yt

N, # of total samples;
C, slack penalty;

P0, initial sample rate;
Pa, active sample rate at each iteration;

ρ, ratio of random sample and most uncertain sample for Pa;

TENSOR Xt−L+1, ..., Xt−1, Xt Yt

N, # of samples in Xt;
R, # of rank-1 components;

λ, R× 1 vector, with each one be the
weight of an outer product of a sub-dimension;

L, lag window length for factorization.

MMMFA Xt Yt

N, # of total samples;
C, slack penalty;

P0, initial sample rate;
Pa, active sample rate at each iteration;

ρ, ratio of random sample and most uncertain sample for Pa;

A* Yt−L+1, ..., Yt Y ′t
L, lag window length;

θ, damping factor for smoothing.

4.4 Experiments

This section provides a view of the result of previously proposed algorithms on a real-world

dataset. Similar to the dataset used in Chapter 3, this one is also collected on the EGI grid

infrastructure, describing the status of distributed gird CEs and SEs in a time series.

88

4.4.1 Data description

The dataset was collected on the EGI by submitting a series of jobs to 212 CEs every two

hours between Mon Nov 12 15:52 CET 2012 and Sat Nov 24 09:54 CET 2012, which is

about 282 hours in total. The goal of these jobs was to collect service availability information

between CEs and SEs. Specifically, in this experiment the probe lcg-cp was launched from

each CE to test its connection to all SEs. 96 SEs were tested every two hours from each CE.

To make the validation of the algorithm more convincing, we remove those CEs with less

than 7000 observed entries and those time windows with less than 50% observations from

the dataset. The final data is a cube of size 79×96×119, with each dimension corresponding

to CE, SE, and time window, respectively.

The goal of our experiment is to predict whether the jth SE is accessible from the ith

CE at a given time window t. We use 0 to represent a missing observation, 1 for a Failure

connection, and −1 for an OK connection. This notation is in accordance with the general

meaning of positive (abnormal) and negative (normal) in statistics.

For simplicity, let M be the total number of CEs, W be the total number of SEs, and

tk,k=1,2,...,T be the time window sequence, we further note Ntk as the number of observed

entries at tk and N+
tk

be the number of positive entries (failures) at tk, then the observation

rate and test failure rate at tk is defined as:

rtk =
Ntk

M ×W
,

and

ftk =
N+
tk

M ×W
,

respectively. Figure 4-3(a) illustrates the observation rate (rtk) and failure rate (ftk) of

the dataset, where most of the observation rates stay above 70% and the failure rates are

less than 20%. A high observation rate ensures a more reliable result when comparing

different algorithms since we have more ground truth information at hand, on the other

hand, a relatively stable failure rate implies a consistent system status in consecutive time

windows. However, as shown in the figure there are several sudden changes of the failure

rate presented in the data, e.g., the sharp drop from 18.74% to 12.57% at the 101st time

window. Their impact on the algorithm performance is discussed in later experiments.

89

sequence 1 1 0 1 1 1 -1 0 -1 -1

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

duration 2 1 3 2 1 1 2 1

Table 4.2: Illustration of duration length for OK and Failure

0 20 40 60 80 100 120

0.5

0.6

0.7

0.8

0.9

1

O
bs

er
va

tio
n

ra
te

Time window

0 20 40 60 80 100 120

0.1

0.12

0.14

0.16

0.18

0.2
F

ai
lu

re
 r

at
e

observation rate failure rate

(a) Observation rate and failure rate over time

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time window

C
D

F

failure
ok

(b) CDF of duration of OK and Failure

Figure 4-3: Statistics of dataset.

Another interesting aspect of the data is the duration distribution of each system status

(i.e., OK or Failure). The duration length of a system status is defined as the number of time

windows the status spans until a different status is observed in the sequence. Suppose we

have a sequence a = {1, 1, 0, 1, 1, 1,−1, 0,−1,−1}. An illustrative example of the duration

length caculation for OK and Failure is displayed in Table 4.2. After computing the duration

length of each observed entry, we compute the CDF of it and show the result in Fig. 4-

3(b). As we can see, the proportion of duration length 1 for failure is about 25%, while

this number for OK is about 9%. Both failure and OK have about 80% entries with a

duration length around 30. Since missing entries are neglected during the caculation this

measurement is actually a lower bound estimation of the duration length of OK and Failure.

In other words, the real duration length should be longer if we take into account the missing

entries.

To conduct the comparison, two versions of the dataset are used in the experiments:

the raw dataset and the curated dataset. As before the curated one is the same as the

raw dataset except those rows or columns with more than 98% failed entries are removed

90

(column or row with 100% failed entries does not exist in this dataset). In the sequential

setting, testing algorithms on the raw dataset is as meaningful as on the curated one. As the

CDF of duration length of the failure entries depicts more than 40% of the duration lengths

are less than 5, implying that failure status is changing relatively rapid. A systematic

failure presented at this timestamp might recover at the next timestamp. Hence, in the

experiments we test all the methods on both datasets.

In the following sections, performance evaluation of the above methods are carried out

on the noncurated and curated datasets. Section 4.4.2 compares methods between using

history information and without using history information on the noncurated dataset. Then

a method by method analysis as well as a summarized comparison for all six approaches,

i.e., SMF, MMMF, MMMFA, SSVD, TENSOR and SMFA, are discussed in Section 4.4.3

and 4.4.4, respectively. In addition, experiments on the curated dataset are also presented.

Statistics of the curated dataset is described in Section 4.4.5, followed by a method by

method performance analysis on the curated dataset in Section 4.4.6. In Section 4.4.7,

we give an overall comparison of all methods on the curated dataset and analyze each

method’s suitability for dealing with highly imbalanced data. Conclusions of the sequential

fault monitoring are drawn in Section 4.5.

For all experiments below we use the first 20 matrices, i.e., X1, X2, ..., X20, as the initial

input set (parameters tunning), and compare each method on the average of 10 times

repeats. Concrete parameter settings for these methods are listed in Table 4.3. Parameters

marked with a ’+’ in the table are selected via a train and validation on the first 20 time

windows.

4.4.2 MMMF, SMF, MMMFA

We show the performance evaluation on SMF, MMMF and MMMF with active learning

(MMMFA) on the noncurated dataset, i.e., a comparison between method with (SMF) and

without (MMMF and MMMFA) history information. As presented in Table 4.3, all three

methods select 10% of the total entries as training set (i.e., N = 10% × M × W). In

addition, SMF and SMFA select another 10% of the most confident entries with values

from Yt−1 according to Algorithm 6. The adaptive weight for these most confident entries

is computed according to line 5 in Algorithm 6.

Figure 4-4 illustrates the result. SMF exhibits a significant advantage on six metrics over

91

Table 4.3: Summary of methods’ parameter setting

Parameters

EWMA
θ = 0.5, damping factor;

L = 20, input window length;
N, 10% of random samples in Xt.

SSVD
N, 10% of random samples in Xt;

R+ = 10, rank of SVD approximation;
L = 20, lag window length for imputation.

MMMF
N, 10% of random samples in Xt;

C+ = 10, coefficient for slack penalty;
Σ+ =’max norm’.

SMF

Nr, 5% of random samples in Xt;
C+ = 10, slack penalty;

Nu, 5% of most uncertain samples in Xt;
Nc, 10% of most confident samples from Yt−1.

SMFA

N, 10% of total samples;
C+ = 10, slack penalty;

P0 = 5%, initial sample rate;
Pa = 1%, active sample rate at each iteration;
Nc, 10% of most confident prediction from Yti ;

ρ+ = 0.5, equal size of random samples and most uncertain samples at each active iteration.

TENSOR

N, 10% of random samples in Xt;
R+ = 10, # of rank-1 components;

λ=ones(10,1), equal weight on each sub-dimension;
L=20, lag window length for factorization.

MMMFA

N, 10% of total samples;
C+ = 10, slack penalty;

P0 = 5%, initial sample rate;
Pa = 1%, active sample rate at each iteration;

ρ+ = 0.5, equal size of random samples and most uncertain samples at each active iteration;

A*
L = 20, lag window length;
θ = 0.5, damping factor.

the other two methods, except that MMMFA reaches a higher performance on sensitivity.

Reason for the high sensitivity of MMMFA is as following: positive entries (failures) occupy

a much smaller proportion than negative entries (OKs) in X (ground truth), they are

therefore more difficult to be detected and are easily fall into the most uncertain prediction

set. As a consequence, they are also more likely to be selected out as the most uncertain

predictions in the active sampling stage, which in the end results in a high sensitivity of

MMMFA.

On the other hand, in addition to most uncertain predictions, SMF also takes the most

confident information from the last prediction Yt−1. Given the large proportion of negative

entries in X, the majority part of most confident entry set are negative values, which leads

to a low FPR for SMF. However, from a balanced measurement view, SMF has the highest

92

average MCC and FSCORE (Fig. 4-4(e)), which in other words it performs the best in

keeping balance between false positive rate and false negative rate.

Similar result can also be observed in the ROC scatter plot. A more concentrated

distribution is exhibited by result of SMF in Fig. 4-4(d), showing a lower false alarm rate

than the MMMF and MMMFA. Another interesting result is the sharp drop of performance

of SMF at the 81st time window (recall that we use 20 time windows as initial input, so this

is the 101st time window in the original data). As mentioned before, this is caused by the

abrupt changes between observations in two adjacent time windows. Therefore, in this case

the history information does not help, but instead impedes the improvement on algorithm’s

performance. The average result with corresponding standard deviation on five criteria on

the test set is presented in Fig. 4-4(e), which from another point of view highlights the

superiority of SMF over MMMF. Detailed numeric result of the average performance is

illustrated in Table 4.4.

The above analysis emphasizes the effectiveness of using both spatial and temporal

information for sequential matrix factorization. On the noncurated dataset, it beats both

the simple matrix factorization method (MMMF) and its enhanced version with active

sampling strategy (MMMFA). Therefore, a clear conclusion is that, for the noncurated

dataset, a proper synthesized use of spatial and temporal information is significantly better

than a single usage of spatial information, even with active sampling strategy. Here we

only illustrate the algorithms’ result without a smoothing on the outputs. However, on the

downside, as shown in Section 4.4.4, the smoothed MMMFA* is better than SMF*.

Table 4.4: Average performance comparison for MMMF, SMF, MMMFA

TPR SPC PPV MCC FSCORE

MMMF 0.713±0.040 0.970±0.010 0.824±0.045 0.725±0.051 0.764±0.041
SMF 0.747±0.047 0.985±0.006 0.901±0.038 0.791±0.046 0.816±0.040
MMMFA 0.789±0.037 0.959±0.013 0.800±0.048 0.752±0.052 0.793±0.041

4.4.3 Method by method analysis

Benefits of using temporal information for the prediction is shown in Section 4.4.2, in this

section we present the results of SSVD, MMMF, SMFA and TENSOR on the raw dataset.

For each method, EWMA is used as a base line for comparison.

93

0 10 20 30 40 50 60 70 80 90 100

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Time window

M
ea

su
re

m
en

t

MMMF SMF MMMFA

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time window

M
ea

su
re

m
en

t

MMMF SMF MMMFA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time window

M
ea

su
re

m
en

t

MMMF SMF MMMFA

(c) Specificity

0 0.02 0.04 0.06 0.08 0.1 0.12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FPR

T
P

R

MMMF
SMF
MMMFA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

MMMF SMF MMMFA

(e) Average Performance

Figure 4-4: Performance comparison between MMMF, SMF and MMMFA.

94

SSVD

Comparison of SSVD, EWMA and SSVD∗ is presented in Fig. 4-5. As is clearly shown in the

precision (Fig. 4-5(a)) and specificity (Fig. 4-5(c)), SSVD (SSVD∗) performs significantly

better than EWMA. In the average performance plot (Fig. 4-5(e)), the SSVD (SSVD∗)

exhibits a better performance than EWMA on all the seven measurements except sensitivity.

This is reasonable if we have noticed the large FPR value of EWMA. In the ROC scatter

plot (Fig. 4-5(d)), we can see that results of EWMA are distributed more sparsely on the

right (the upper-left corner (0, 1) is a theoretic optimal point), while SSVD and SSVD∗

tend to concentrate tightly to the left Y-axis.

On the other side, there is a visible improvement on the results given by SSVD∗ to

that of SSVD on all measurements, both on individual time (Fig. 4-5) window and on

average (Table 4.5), implying that preserving continuity in estimation sequence is beneficial

for SSVD. An average performance comparison among these three algorithms is given in

Fig. 4-5(e), and its numeric result is shown in Table 4.5.

Table 4.5: Average performance comparison of SSVD with EWMA, SSVD*

TPR SPC PPV MCC FSCORE

SSVD 0.645±0.060 0.992±0.004 0.941±0.028 0.747±0.047 0.763±0.046
EWMA 0.699±0.054 0.944±0.011 0.703±0.052 0.643±0.046 0.699±0.037
SSVD* 0.635±0.063 0.997±0.004 0.974±0.034 0.757±0.050 0.767±0.050

Discussion

For an imbalanced matrix with negative as the majority, the principal factors preserved

after a singular value decomposition mainly reflect the negative population. Those isolated

random positive entries are always seen as noise in the SVD and are more likely to be

removed after a top rank eigenvector reconstruction. This is the reason why SSVD tends

to have a perfect average specificity (0.997± 0.004 for the SSVD*) while performs badly on

the sensitivity (0.635± 0.063). In contrast to SSVD, EWMA tends to favor a positive pre-

diction, which consequently leads to a relative high sensitivity compared with SSVD. Recall

that MCC is a balanced measure which considers true and false positives and negatives

simultaneously. Therefore, from the balanced point of view, SSVD is superior to EWMA

95

10 20 30 40 50 60 70 80 90

0.4

0.5

0.6

0.7

0.8

0.9

1

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(b) True Positive Rate

10 20 30 40 50 60 70 80 90

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FPR

T
P

R

SSVD
SSVD*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

SSVD EWMA SSVD*

(e) Average Performance

Figure 4-5: Performance measurement for SSVD.

96

since its average value of MCC is clearly better than that of EWMA.

MMMF and MMMF*

Figure 4-6 explains the detailed performance comparison of MMMF, MMMF* and EWMA

on individual time windows, where a clear observation is that MMMF∗ is significantly

superior to MMMF and EWMA on precision and specificity. For the sensitivity (TPR),

MMMF and MMMF∗ show similar stable result, while EWMA fluctuates heavily over time.

On average, difference in sensitivity is not visible on the three algorithms (Table 4.6).

Table 4.6: Average performance comparison of MMMF, with EWMA, MMMF*

TPR SPC PPV MCC FSCORE

MMMF 0.713±0.040 0.970±0.010 0.824±0.045 0.725±0.051 0.764±0.041
EWMA 0.699±0.054 0.944±0.011 0.703±0.052 0.643±0.046 0.699±0.037
MMMF* 0.700±0.045 0.990±0.004 0.933±0.031 0.778±0.041 0.799±0.037

Discussion

Both MMMF and SSVD can be seen as matrix factorization methods. For SSVD we have

seen its tendency of predicting a value (negative in our case) being the majority class of the

training set, which results in a low sensitivity and high specificity. For MMMF, as shown in

Table 4.6, its sensitivity is better than that of SSVD and EWMA, indicating the MMMF is

able to capture the minority positive information during the factorization. Another inter-

esting point is that MMMF is better than MMMF* on sensitivity, but worse on precision,

which indicates after a smoothing, the decrease of false positives (higher precision) is ac-

companied with the increase of false negatives (lower sensitivity). However, the smoothing

is still beneficial on average since MMMF* gives palpably better result on the balanced

measure MCC and FSCORE.

SMFA

Results of SMFA, EWMA and SMFA∗ are presented in Fig. 4-7. The performance of

SMFA and SMFA∗ are considerably better than EWMA on all 7 measurements, both on

average and on individual time windows. Moreover, SMFA∗ beats SMFA notably on all

measurements but sensitivity, on which the two share similar performance on individual

97

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time window

M
ea

su
re

m
en

t

MMMF
MMMF*
EWMA

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Time window

M
ea

su
re

m
en

t

MMMF
MMMF*
EWMA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t

MMMF
MMMF*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FPR

T
P

R

MMMF
MMMF*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

MMMF EWMA MMMF*

(e) Average Performance

Figure 4-6: Performance measurement for MMMF.

98

time windows and SMFA∗ is slightly better than SMFA on average. Average performance

comparison of the three is shown in Table 4.7 and Fig. 4-7(e). Take the integrated criteria

MCC and FSCORE for example, compared with EWMA the improvement of SMFA∗ on

MCC is 34.5% and on FSCORE is 26.5%.

Table 4.7: Average performance comparison SMFA, with EWMA, SMFA*

TPR SPC PPV MCC FSCORE

SMFA 0.826±0.047 0.983±0.007 0.907±0.033 0.840±0.046 0.864±0.038
EWMA 0.699±0.054 0.944±0.011 0.703±0.052 0.643±0.046 0.699±0.037
SMFA* 0.827±0.047 0.991±0.005 0.950±0.028 0.865±0.041 0.884±0.036

Discussion

The first message delivered in Table 4.7 is the high sensitivity value of SMFA and SMFA*,

remarkably better than those of previous mentioned methods. This highlights the advantage

of using active sampling as an aid for revealing those difficult to predict positive entries.

Positive entries are the minority part of the whole population in our case, it is therefore

difficult to uncover them by using any conventional method with equal cost on positive and

negative entries. However, with the aid of active sampling it is possible to unveil those

difficult to predict entries, since they are more likely to be exposed and labeled during the

active sampling process. Another message lies in the result that SMFA* shows a constantly

better performance on all metrics compared with SMFA. In contrast to MMMF* where a

decrease in sensitivity is observed after smoothing, SMFA* improves both true positive and

true negative rates.

To sum up, sequential matrix factorization with active learning (SMFA) exhibits ab-

solute advantage over single temporal prediction (EWMA), and the smoothing based en-

hancement (SMFA∗) does benefit the raw SMFA.

TENSOR

Instead of utilizing information one time window after another, tensor based methods make

use of the whole information till the current time window all at once. More precisely,

the temporal information that we explored through smoothing or temporal constraint in

99

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(b) True Positive Rate

10 20 30 40 50 60 70 80 90

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

FPR

T
P

R

TMFA
TMFA*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

SMFA EWMA SMFA*

(e) Average Performance

Figure 4-7: Performance measurement for SMFA.

100

the matrix based methods is processed straightforwardly as a separate dimension in tensor

based method.

Figure 4-8 illustrates the comparison between EWMA and tensor factorization method.

For simplicity, we denote the tensor factorization based method as TENSOR in the following

discussion. Parameters setting of this approach can be found in Table 4.3. Similar to the

matrix based methods, TENSOR also shows a clear superiority to EWMA on most of the

criteria, both on individual time windows and on average (Figure 4-8). However, when

comparing sensitivity, TENSOR performs worse than the EWMA, almost on all individual

time windows. The poor performance of TENSOR on sensitivity is also shown in the

averaged measurements (Table 4.8), where TENSOR is superior to EWMA on all criteria

but sensitivity. However the higher sensitivity of EWMA is accompanied with a higher

false positive rate. This relatively poor performance of TENSOR is partially due to the

fact that in tensor factorization (CAPA) we only perform a single least square estimation

for the observed entries, without introducing any regularization.

Another interesting result is that, unlike the matrix based methods, discrepancy be-

tween results of TENSOR and TENSOR∗ is not significant. This is clearly exhibited on

almost all the criteria (Fig. 4-8 and Table 4.8). One reason may contribute to this phe-

nomenon is TENSOR employs a regression on the time dimension straightforwardly, thus

continuity in estimation sequence is already captured, leaving no room for a smoothing

based enhancement.

Table 4.8: Average performance comparison TENSOR, with EWMA, TENSOR*

TPR SPC PPV MCC FSCORE

TENSOR 0.613±0.071 0.981±0.006 0.859±0.043 0.684±0.055 0.713±0.053
EWMA 0.699±0.054 0.944±0.011 0.703±0.052 0.643±0.046 0.699±0.037
TENSOR* 0.608±0.072 0.981±0.005 0.856±0.043 0.678±0.057 0.708±0.054

4.4.4 Comparisons between methods on noncurated dataset

To complete the experiments on the noncurated dataset, we show the comparison between

different methods in this section. For each method and its smoothed version the one with

better MCC value is presented for comparison. Figure 4-9 illustrates the result of each

algorithm on individual time windows, where a few conclusions are drawn as following:

101

0 10 20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

FPR

T
P

R

TENSOR
TENSOR*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

TENSOR EWMA TENSOR*

(e) Average Performance

Figure 4-8: Performance measurement for tensor.

102

• SMFA* dominates the other five competitors on three criteria: MCC, FSCORE and

sensitivity (Table 4.14). On the other hand, SSVD* dominates all the other algorithms

on precision and specificity (Fig. 4-9(c) 4-9(a)), but with a sacrifice of performing

badly on sensitivity, MCC and FSCORE, indicating its tendency to favor negative

predictions. From a balanced measurement point view, the superiority of SMFA*

over other methods on MCC and FSCORE exhibits its ability to control the quality

of prediction in terms of balancing true and false positives and negatives.

• The two methods with active sampling, i.e., MMMFA* and SMFA*, occupy the first

and second place in the comparison of MCC and FSCORE, respectively, implying

that it is always beneficial to introduce active sampling strategy when applicable.

• Except TENSOR, the smoothing trick does help in improving the prediction perfor-

mance for proposed methods.

• When only compare methods on sensitivity, MCC and FSCORE, their descending

order of quality is: SMFA* > MMMFA* > SMF* > MMMF* > SSVD* > TENSOR.

To sum up, in the noncurated dataset, although SMFA∗ does not give the best (but ac-

ceptable) result on specificity and precision, it is still recommended as the best choice for

a sequential collaborative prediction task. Under the situation when active sampling is

not applicable, e.g., too expensive to launch an active probe, the SMF* would be a good

alternative.

Table 4.9: Average performance of SSVD*, MMMF*, SMFA*, TENSOR, SMF*, and MMMFA*

TPR SPC PPV MCC FSCORE

SSVD* 0.635±0.063 0.997±0.004 0.974±0.034 0.757±0.050 0.767±0.050
MMMF* 0.700±0.045 0.990±0.004 0.933±0.031 0.778±0.041 0.799±0.037
SMFA* 0.827±0.047 0.991±0.005 0.950±0.028 0.865±0.041 0.884±0.036
TENSOR 0.613±0.071 0.981±0.006 0.859±0.043 0.684±0.055 0.713±0.053
SMF* 0.716±0.071 0.993±0.005 0.947±0.042 0.797±0.053 0.813±0.051
MMMFA* 0.788±0.039 0.987±0.005 0.924±0.029 0.826±0.038 0.850±0.032

4.4.5 Curated dataset

As we have discussed in Chapter 3, it might be more favorable to eliminate the systematic

failures in an observed matrix from the reality point of view. Therefore, in this section we

evaluate the methods on the curated dataset. Figure 4-10 exhibits the basic statistic of the

103

0 10 20 30 40 50 60 70 80 90 100

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t
PPV

SSVD* MMMF* SMFA* TENSOR SMF* MMMFA*

(a) Precision

0 10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time window

M
ea

su
re

m
en

t

TPR

SSVD* MMMF* SMFA* TENSOR SMF* MMMFA*

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time window

M
ea

su
re

m
en

t

SPC

SSVD* MMMF* SMFA* TENSOR SMF* MMMFA*

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

FPR

T
P

R

SSVD*
MMMF*
SMFA*
TENSOR
SMF*
MMMFA*

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

SSVD* MMMF* SMFA* TENSOR SMF* MMMFA*

(e) Average Performance

Figure 4-9: Performance comparison for SSVD*, MMMF*, SMFA*, TENSOR, SMF* and
MMMFA*.

104

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

O
bs

er
va

tio
n

ra
te

Time window

0 20 40 60 80 100 120

0.02

0.04

0.06

0.08

0.1

0.12

F
ai

lu
re

 r
at

e

observation rate failure rate

(a) Observation rate and failure rate over time

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time window

C
D

F

failure
ok

(b) CDF of duration of OK and Failure

Figure 4-10: Statistics of curated dataset.

curated dataset. Compared with the noncurated data in Fig. 4-3(a), the observation rate of

the curated dataset is slightly lower, but a remarkable decrease in the failure rate is clearly

presented, approximately from 15% to 5% on average. This means the curated dataset is a

highly imbalanced, with the minority holds only 5%. Moreover, the CDF of duration length

of failure also experiences a sharp change. The percentage of length-one duration of failure

increases from 25% to about 60%, and the percent of failure duration length less than 20

grows from 75% to approximately 92%. In other words, after the elimination of systematic

failures, the proportion of short term failure increases, significantly.

4.4.6 Method by method analysis on curated dataset

In this section we show the results of previous methods on the highly imbalanced curated

dataset. Parameters setting for the methods tested here are the same as in Table 4.3. Instead

of using precision as one of the measurements for comparison in individual time window, in

the curated dataset we exhibit the MCC as a replacement, in the aim of comparing methods

from a balanced point of view.

SMF, MMMF, MMMFA

Figure 4-11 shows the comparison among SMF, MMMF, MMMFA on individual time win-

dows. Average results are given in Table 4.10. To begin with, recall that in the noncurated

dataset the SMF exhibits a clear better performance over MMMF and MMMFA on the

criteria of specificity, precision, MCC and FSCORE (Table 4.4), however, on the curated

105

dataset, SMF loses its advantage. Specifically SMF and MMMF give similar results on the

averaged MCC and FSCORE, but behave oppositely on specificity (SPC) and sensitivity

(TPR). The opposite performance of SMF on the two datasets reveals the difference between

the two datasets. In the noncurated case, faults tend to have relatively longer duration,

while in the curated case they are more transient. Therefore, in the curated case, heuristic

information from the last estimation might not be helpful for discovering the faults in the

curated dataset.

Secondly, similar to the noncurated dataset, the sensitivities of MMMFA and MMMFA*

are also significantly better than the other two methods and their corresponding smoothed

version. In other words, the active sampling strategy is still able to find those positives

in the curated case. The superiority obtained by MMMFA on sensitivity, PPV, MCC

and FSCORE among the comparison of three non-smoothed methods demonstrates the

effectiveness of the active sampling strategy.

Thirdly, a clear result between the non-smoothed and smoothed version of listed methods

is the notable improvement on precision. There is nearly a double growth on precision for

each of the method after taking a smoothing on each one’s estimation sequence. This

is mainly because many false positives in the non-smoothed version are corrected after a

smoothing. However, there is a minor cost for this improvement, as shown in Table 4.10,

the averaged sensitivity experiences a decrease for each algorithm. From a balanced point

of view, it is still beneficial to take a smoothing as a remarkable progress on MCC is clearly

exhibited for all three methods.

Table 4.10: Average performance comparison of MMMF, SMF and MMMFA on curated dataset

TPR SPC PPV MCC FSCORE

MMMF 0.319±0.102 0.968±0.011 0.427±0.110 0.328±0.106 0.361±0.107
SMF 0.362±0.074 0.960±0.009 0.374±0.078 0.326±0.075 0.365±0.074
MMMFA 0.482±0.081 0.959±0.014 0.471±0.080 0.436±0.080 0.471±0.077
MMMF* 0.318±0.072 0.995±0.002 0.832±0.073 0.493±0.074 0.455±0.082
SMF* 0.306±0.059 0.996±0.003 0.821±0.081 0.481±0.058 0.441±0.065
MMMFA* 0.454±0.078 0.988±0.005 0.739±0.071 0.554±0.073 0.558±0.075

106

0 10 20 30 40 50 60 70 80 90 100

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Time window

M
ea

su
re

m
en

t
SPC

MMMF SMF MMMFA

(a) Specificity

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time window

M
ea

su
re

m
en

t

TPR

MMMF SMF MMMFA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time window

M
ea

su
re

m
en

t

MCC

MMMF SMF MMMFA

(c) MCC

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FPR

T
P

R

MMMF
SMF
MMMFA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

MMMF SMF MMMFA

(e) Average Performance

Figure 4-11: Performance comparison of MMMF, SMF and MMMFA on curated dataset.

107

SSVD

Figure 4-12 compares the performance of EWMA, SSVD and SSVD* on individual time

windows on the curated dataset. For the sensitivity, both SSVD and SSVD* fail to obtain a

comparable result with EWMA, (with 0.084 and 0.175 for SSVD and SSVD*, respectively)

meaning that both SSVD and SSVD* fail to detect most of the positives. However, this is

reasonable since in such a highly imbalanced dataset the minority part is only around 5%.

Predictions produced by methods (e.g., SSVD) only consider preserving the main factors are

unavoidable to be biased by the majority population in the dataset. EWMA, on the other

side, procures a relatively high sensitivity but a low precision, indicating there are many false

positives concealed in the predictions. Last, SSVD* exhibits constantly better performance

than SSVD both on individual time windows and on average (Table 4.11), implying a

smoothing action for SSVD is always helpful. To sum up, the low sensitivity of SSVD and

SSVD* expose their inability to deal with the highly imbalanced data. Techniques like

weighted synthetic oversampling [70] might be a remedy to this.

Table 4.11: Average performance of SSVD on curated dataset

TPR SPC PPV MCC FSCORE

EWMA 0.396±0.069 0.955±0.007 0.392±0.066 0.347±0.053 0.389±0.051
SSVD 0.084±0.076 0.993±0.004 0.398±0.211 0.150±0.124 0.130±0.112
SSVD* 0.175±0.053 0.999±0.002 0.905±0.087 0.378±0.067 0.289±0.074

SMFA

Results for comparison among EWMA, SMFA and SMFA* on individual time windows are

given in Fig. 4-13. The first observation is that SMFA and SMFA* show a much better

performance over EWMA both on average and on individual time windows. Additionally,

SMFA* is constantly better than SMFA on all criteria but sensitivity. As we explained

previously, this is due to the corrections made by SMFA* on the result of SMFA are accom-

panied with a small part of mistakes. Specifically, a clear improved precision and specificity

can be observed in the result of SMFA*, which indicates a decrease on the number of false

positives. However this improvement is accompanied with a sacrifice on the sensitivity.

In other words, after a smoothing, the number of false positives is significantly smaller

108

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(a) MCC

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t

SSVD
SSVD*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FPR

T
P

R

SSVD
SSVD*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

EWMA SSVD SSVD*

(e) Average Performance

Figure 4-12: Performance measurement for SSVD on curated dataset.

109

(0.993 > 0.986, specificity in Table 4.12) in SMFA* than in SMFA, meanwhile as a cost

the number of true positives in SMFA* is decreased compared with SMFA (0.562 < 0.569,

TPR in Table 4.12). Nevertheless, this is affordable from the balanced measurement point

of view. Because there is an obvious improvement on MCC after exerting a smoothing,

both on individual time windows (Fig. 4-13(a)) and on average (Table 4.12).

Table 4.12: Average performance of SMFA on curated dataset

TPR SPC PPV MCC FSCORE

EWMA 0.396±0.069 0.955±0.007 0.392±0.066 0.347±0.053 0.389±0.051
SMFA 0.569±0.076 0.986±0.006 0.743±0.079 0.628±0.080 0.642±0.076
SMFA* 0.562±0.078 0.993±0.003 0.853±0.053 0.675±0.069 0.675±0.070

TENSOR

Figure 4-14 illustrates the comparison of different classifier measurements among TENSOR,

TENSOR* and EWMA. The TENSOR and TENSOR* demonstrate similar results on the

curated dataset. However, similar to SSVD there is a high specificity (Fig. 4-14(c)) but low

sensitivity (Fig. 4-14(b)) for TENSOR and TENSOR*, implying the predicted negatives

are almost correct while the majority of true positives are miss classified. This is caused

by the same reason responsible for the poor performance of SSVD: dimension reduction

orientated methods are not appropriate in recovering a partially observed highly imbalanced

matrix. From the ROC scatter plot (Fig. 4-14(d)), we can see the difference among the three

algorithms: results of tensor based methods illustrate their distribution in the lower-left

corner of the figure, indicating a lower FPR as well as a lower sensitivity, while the result

of EWMA scatters on the upper right, meaning it obtains a better sensitivity with a cost

of higher FPR. On average, the result of TENSOR* has a more concentrated distribution

compared with the other two methods.

Table 4.13: Average performance of TENSOR on curated dataset

TPR SPC PPV MCC FSCORE

EWMA 0.396±0.069 0.955±0.007 0.392±0.066 0.347±0.053 0.389±0.051
TENSOR 0.275±0.065 0.990±0.003 0.661±0.094 0.397±0.068 0.381±0.069
TENSOR* 0.271±0.068 0.991±0.004 0.692±0.101 0.405±0.059 0.381±0.068

110

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(a) MCC

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t

SMFA
SMFA*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FPR

T
P

R

SMFA
SMFA*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

EWMA SMFA SMFA*

(e) Average Performance

Figure 4-13: Performance measurement for SMFA on curated dataset.

111

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(a) MCC

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time window

M
ea

su
re

m
en

t

TENSOR
TENSOR*
EWMA

(c) Specificity

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FPR

T
P

R

TENSOR
TENSOR*
EWMA

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

EWMA TENSOR TENSOR*

(e) Average Performance

Figure 4-14: Performance measurement for TENSOR on curated dataset.

112

4.4.7 Comparisons between methods on curated dataset

We show the average result of the above algorithms on the curated dataset in Fig. 4-15,

corresponding numerical results are listed in Table 4.14. As in the noncurated case, for

each method and its corresponding smoothing version we show the one with a better MCC

result in the comparison.

Unsurprisingly, on this extreme imbalance dataset all algorithms except SMFA* show

a sharp decrease on their performance. For example, none of the algorithms in SSVD*,

MMMF*, TENSOR* and SMF* show an average MCC value greater than 0.50, and none

of them exhibit a sensitivity better than 0.4. In other words, these methods are unable to

discover more than 40% of the faults in the curated situation. On the other hand, methods

with active learning like MMMFA* and SMFA* present a drastic advantage over the other

algorithms on metrics like MCC and FSCORE, sensitivity and precision. This sharp pre-

domination for MMMFA* and SMFA* instructs us the importance of active sampling while

dealing with highly imbalanced dataset.

In detail, compared with other methods SSVD* and TENSOR* show a low average

sensitivity (Fig. 4-15(b)) but a high specificity (Fig. 4-15(c)), exposing their weakness in

discovering faults in the prediction. As we discussed before this is because that in both

methods predictions can be seen as being produced through a single factorization without

regularization, which is inappropriate for dealing with highly imbalance dataset.

On the contrary, from Table 4.14 we can see that methods based on max margin matrix

factorization (MMMF* and SMF*) obtain a better performance than SSVD* and TEN-

SOR* on discovering the faults (higher sensitivity) and balancing the predictions (higher

MCC value). However, the performance is still not good enough in practice since the sen-

sitivity of these two methods is around 30% on average.

Nevertheless, among all the methods MMMFA* and SMFA* procure accomplished per-

formance due to the use of active sampling. Specifically, SMFA* obtains the best per-

formance on sensitivity, MCC and FSCORE, and it’s the only method that is capable of

discovering more than 50% of the faults while preserving a balanced average MCC value

at 0.675 on the curated dataset. Another point is that SMFA* is constantly better than

MMMFA* both on average and on individual time windows, suggesting that it is beneficial

to make use of temporal information with active sampling in the curated case. If we only

113

compare methods on sensitivity, MCC and FSCORE, their descending order of quality is:

SMFA* > MMMFA* > MMMF* > SMF* > TENSOR > SSVD*.

Active sampling has been shown to be the key to discover the minority class for a

prediction task on an imbalanced dataset. The performance obtained by SMFA* is the best

compared with the other discussed alternatives, however, in practice further improvement

may still needed to meet the application specific requirements, e.g., to discover at least 70%

of the faults. In the next section, we try to reform the prediction performance in terms of

increasing the active sample size.

Table 4.14: Average performance of TENSOR*, SSVD*, SMF*, MMMFA*, SMFA* and MMMF*

on curated dataset

TPR SPC PPV MCC FSCORE

TENSOR* 0.271±0.068 0.991±0.004 0.692±0.101 0.405±0.059 0.381±0.068
SSVD* 0.175±0.053 0.999±0.002 0.905±0.087 0.378±0.067 0.289±0.074
SMF* 0.306±0.059 0.996±0.003 0.821±0.081 0.481±0.058 0.441±0.065
MMMFA* 0.454±0.078 0.988±0.005 0.739±0.071 0.554±0.073 0.558±0.075
SMFA* 0.562±0.078 0.993±0.003 0.853±0.053 0.675±0.069 0.675±0.070
MMMF* 0.318±0.072 0.995±0.002 0.832±0.073 0.493±0.074 0.455±0.082

4.4.8 Improving prediction performance on curated dataset

The curated dataset is a highly imbalanced dataset, within which there are only about 5%

positive entries. This imbalance causes the classification a real awkward problem to attack

and leads to the poor performance of many existed algorithms. Reasons for the ineffec-

tiveness of traditional algorithms on imbalanced datasets lie in the factor that traditional

algorithms are accuracy driven, with the aim of minimizing the overall error on which the

minority class has little impact. Besides, equal distribution as well as equal cost for the

majority and the minority classes are assumed in the algorithms, which of course is not

true in real world application. However, among various candidates active learning based

methods have their ability to deliver a compelling result. Therefore, in the last part we

put our emphasis on the active learning based method and explore a higher training sample

rate of SMFA∗ in the aim of obtaining a more persuasive prediction.

Figure 4-16 illustrates the result of using three sample rates, i.e., 10%, 15% and 20%,

of the SMFA∗ on the curated dataset. Results are averaged on a 5-run experiments. As

114

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time window

M
ea

su
re

m
en

t

MCC

TENSOR* SSVD* SMF* MMMFA* SMFA* MMMF*

(a) MCC

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time window

M
ea

su
re

m
en

t

TPR

TENSOR* SSVD* SMF* MMMFA* SMFA* MMMF*

(b) True Positive Rate

0 10 20 30 40 50 60 70 80 90 100

0.88

0.9

0.92

0.94

0.96

0.98

1

Time window

M
ea

su
re

m
en

t

SPC

TENSOR* SSVD* SMF* MMMFA* SMFA* MMMF*

(c) Specificity

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FPR

T
P

R

TENSOR*
SSVD*
SMF*
MMMFA*
SMFA*
MMMF*

(d) ROC Scatter

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

A
vg

. M
ea

su
re

m
en

t

TENSOR* SSVD* SMF* MMMFA* SMFA* MMMF*

(e) Average Performance

Figure 4-15: Performance comparison for SSVD*, MMMF*, SMFA*, TENSOR, SMF* and
MMMFA* on curated dataset.

115

FPR TPR ACC SPC PPV MCC FSCORE
0

0.2

0.4

0.6

0.8

1

av
g

m
ea

su
re

m
en

t

SMFA*−0.1 SMFA*−0.15 SMFA*−0.2

Figure 4-16: Method performance on curated dataset.

illustrated, with the increase of training sample rate in SMFA∗ a steady and notable im-

provement is exhibited, together with a significant increase in computational cost. For

example, when we take a sample rate of 20%, it is able to find out 72% of the faults while

keeping a balanced MCC value of 0.825 on average (Table 4.15). The good news is that it

is guaranteed to improve the prediction performance steadily with the increase of sample

rate even in the curated situation. However, to control the computational cost within an

acceptable level, accelerating methods like Fast MMMF proposed in [132] might be consid-

ered.

Table 4.15: Average performance of SMFA* with different sampling rate, curated dataset

TPR SPC PPV MCC FSCORE

SMFA*-0.1 0.562±0.078 0.993±0.003 0.853±0.053 0.675±0.069 0.675±0.070
SMFA*-0.15 0.664±0.076 0.997±0.002 0.947±0.031 0.780±0.057 0.778±0.059
SMFA*-0.2 0.720±0.074 0.998±0.002 0.970±0.033 0.825±0.051 0.825±0.054

4.5 Conclusion

The challenge as well as opportunity brought by sequential data reside in the sequential

correlation between consecutive data points. These sequential patterns, as we have shown

in this chapter, if exploited properly, can play an important role in improving the prediction

performance.

In this chapter, we have introduced several basic methods like EWMA, SSVD, MMMF

116

and TENSOR to complete the sequential fault prediction task. In order to make full use of

both spatial and temporal information concealed in the data, we also propose a sequential

matrix factorization method (SMF). Through practice, we have found the effectiveness of

using a smoothing action on each method’s estimation sequence to improve the prediction

performance. Active learning is also employed in combination with the MMMF and SMF

such that samples are selected iteratively and actively with the help of inferred heuristic

information from the prediction sequence.

To sum up, the following observations can be obtained from the above analysis:

• A smoothing action exerted on the estimation sequence of each algorithm is helpful

in improving the overall prediction performance of all methods except that on the

noncurated dataset TENSOR exhibits a minor decrease.

• Methods like SSVD and TENSOR are not appropriate in coping with highly imbal-

anced dataset, e.g., the curated dataset. This is because these methods are designed to

minimize the overall error, thus in the highly imbalanced dataset they are unavoidable

to favor the majority class and neglect most of the minority class. To deal with the

imbalanced dataset, MMMF and SMF do show better performance than SSVD and

TENSOR, but are still not applicable on curated dataset. Methods with active sam-

pling strategy procure accomplished results on both datasets, implying the usefulness

of active learning in dealing with highly imbalanced dataset.

• An increase in the size of sample set brings an improvement in prediction performance,

steadily. However, accelerating methods may be needed to reduce the computational

complexity.

Among all the discussed methods, SMFA* shows the best performance on the two mentioned

datasets, thus it is recommended as a first choice in this sequential prediction application.

Besides algorithms described in this chapter, there are also other alternatives like HMM

(Hidden Markov Model) [128], Markov Random Fields (MRF) [91] can be considered. We

leave this as a future work to research.

117

118

Chapter 5

Sequential Change Detection

5.1 Introduction

The two previous chapters are built on two different assumptions about the temporal be-

havior of the data. In Chapter 3, time was considered irrelevant (static assumption), as all

data in a given period were collapsed into one observed matrix. In Chapter 4, the implicit

assumption was stationarity, or at least that the past can provide an information about the

future. Then, the behavioral model integrates all past (possibly dampened) information.

An alternative approach is to consider that ruptures happen, and that the model should

be rebuilt at these change points. Because non-stationarity is increasingly recognized as a

pervasive phenomenon, change point detection has caught extensive research within diverse

areas and application domains. A broad range of real-world applications such as intrusion

detection, bio-informatics, system fault management, fraud detection, signal segmentation

in data stream are related to the change detection problem. To cite a few, in genomics the

goal is to discover changes in gene copy numbers or in the compositional structure of the

genome [124, 122]; while in finance, the focus is to detect changes in volatility of time series

[6, 10]. For large scale systems, the massive data motivated new data streaming approaches

for scaleably and traceably monitoring the system state, involving a self-calibration of the

model based on scale invariance [175].

As a consequence, we now consider the change point detection problem. This chapter

does not propose to add a new algorithm to the enormous body of existing change detection

methods, but to define and evaluate a new framework, the semi-supervised online change

detection (SSOCD). SSOCD integrates offline and online change point detection and exploits

119

them efficiently.

The chapter is organized as follows. Section 5.2 briefly surveys the change point de-

tection literature in the parts that are relevant for this work. Section 5.3 presents the

motivations for our approach in relation with end-to-end monitoring, and formalizes the

SSOCD framework. Section 5.4 describes the experimental setting, which is different from

the ones in the previous chapters. Section 5.5 presents the results.

5.2 Change point detection

5.2.1 Problem statement

A data sequence can be seen as an ordered series of data with types like binary, discrete, and

continuous. Detecting a change in a sequence amounts to identifying the data indexes in the

sequence where a sudden change of its properties, e.g., mean, variance, or both, takes place.

A more general statistical formulation of change point detection is given by considering the

probability distribution from which data before and after a target time point are generated.

Let X = {x1, x2, ..., xn} denote the series of observations, and τ ≥ 0 be a determin-

istic unknown change point (the minimax formulation, see [125]), such that for Xτ
1 =

{x1, x2, ..., xτ} follow a distribution P∞ with density f∞ and Xn
τ+1 = {xτ+1, xτ+2, ..., xn}

follow another distribution P0 with density f0. For τ = 0, it means there is a change at

the very beginning of the sequence, and for τ = ∞, it means no change is present in the

sequence. In addition, for d = {0,∞}, let f
(n)
d (·) be the density of probability measures Pnd .

The density of a change point τ , pτ (X), is given as following:

pτ (X) = (

τ∏
j=1

f (j)
∞ (Xj |Xj−1

1))× (

n∏
j=τ+1

f
(j)
0 (Xj |Xj−1

1)), (5.1)

where f
(j)
∞ (Xj |Xj−1

1) and f
(j)
0 (Xj |Xj−1

1) are the conditional densities of the j-th observation,

Xj , given past observation sequence Xj−1
1 , j ≥ 1. Equation 5.1 is a very general formulation,

without any assumption neither on independence nor on homogeneity of the data, i.e.,

the observations can be arbitrary dependent and non-identically distributed [125]. This

formulation can be concreted into a more prevalent form where observations are assumed

120

to be independently and identically distributed (i.i.d):

pτ (X) = (

τ∏
j=1

f0(Xj))× (

n∏
j=τ+1

f1(Xj)), (5.2)

where f0(x) and f1(x), f0(x) 6= f1(x), are two density functions of observations before and

after the change point τ . In the following paper, without particular explanation, we will

only focus on the i.i.d. case.

Based on the way the observed data being processed, detection approaches can be di-

vided into two classes: offline (batch) and online (sequential) change detection.

• Offline change detection (batch): In this case, the task is to find whether or not one

or several change points exist in a sequence of n observations, X = {x1, ..., xn}. All

available information, i.e., all the n observations, are used to determine whether a

change has occurred at a specific point in X.

• Online change detection (sequential): In this case, the length of the sequence is not

fixed, but instead, is growing with new arriving observations over time. In contrast

to batch methods, the online change detection algorithm makes a decision each time

a new observation arrived only based on observations received so far. Observations

are processed in a sequential way until a change is detected - the algorithm signals,

which in a monitoring context entails raising an alarm. Then the detection algorithm

will restart from the next observation in the sequence.

Generally, a change detection method is shaped by the employed techniques, e.g., statis-

tical test, information criterion or optimization method used. Based on the extent to which

the changes are detected, we categorize the change detection methods into three classes:

statistical test based methods, optimization based methods and learning based methods.

Table 5.1 illustrates the topology (just another word for categorization) of this classification

and a few representative methods in each class. We do not show a concrete example in the

class of optimization based methods for online change detection, as we consider most of the

related works fall into the other two categories. Any way, this categorization is not a precise

description of the enormous change detection filed, but instead one of many attempts to

characterize different approaches from various points of view. In the following, we take a

brief survey on several representative methods in each category.

121

Table 5.1: Categorization of change detection methods and representative examples

Statistical test based methods Learning based methods Optimization based methods

Offline
Energy statistic [139, 82];

F-test, Levene’s test, Bartlett’s test;
Student t-test, Mann-Whitney test.

Bayesian models [20, 27, 47, 48, 168];

Pruned Exact Linear Time method [90];
Total Variation Denoising [105];

Segment Neighborhood [16];
Optimal Partitioning [170, 81];

Minimum Description Length [43].

Online

Shewhart control chart;
CUSUM;

Page-Hinkley test;
Generalized likelihood ratio test.

Bayesian online methods [4, 49];
Kernel change detection [44];
Density-ratio estimation [86];

Switch distribution [163];
Singular Spectral Analysis [121].

5.2.2 Topology of offline methods

Statistical test based methods

Let Dk,n denote the two sample test statistic for the sequence X = {x1, x2, ..., xn} at time

k (1 ≤ k ≤ n), hk,n denote the decision threshold. Since the location of a change point is

unknown in advance, Dk,n is always computed over all possible k, for 1 ≤ k ≤ n. Under the

assumption that there is at most one change point in X, the test statistic Dn is computed

as following [140]:

Dn = |max
k

Dk,n − µDk,n

σDk,n

| 1 ≤ k ≤ n, (5.3)

where µDk,n
and σDk,n

are the mean and standard deviation of Dk,n, respectively.

The null hypothesis that no change in presented in X can be rejected if Dn ≥ hn

for some threshold hn. hn is selected such that the overall false alarm rate α (type-I

error) is bounded. However, due to the lack of an analytic finite-sample expression of

Dk,n, it is generally hard to define an exact threshold hk,n that meets the type-I error

α. For some specific test statistics Dk,n, its asymptotic distribution of Dn can be derived

as a replacement. For instance, [123] gave the distribution for the Mann-Whitney test,

[69] derived the distribution when Dk,n is associated with the Student-t test, and in [167]

a general procedure for computing asymptotically bounding Dn of other classes of test

statistics is derived. The problem of these asymptotic distribution lies in the inaccuracy

when the length of X is finite. To ease this, numeric simulations such as MCMC can be

employed to estimate the distribution [140].

Change detection methods based on conventional statistical tests generally rely on the

122

assumption of the distribution of the data, e.g., normality. To overcome this, James et.

proposed a hierarchical nonparametric method based on the energy statistic [139] for change

analysis in [82]. The only assumption on data is, for some α ∈ (0, 2], the absolute αth

moment exists, and data are independent over time. It is capable of detecting any type of

distributional change like change in mean, variance, tail. We will give a detailed introduction

of this method in Section 5.3.3.

Optimization based methods

Another line of research of offline change detection directs to identify the locations of mul-

tiple change points based various optimization techniques, e.g., dynamic programming,

genetic optimization. A general considered objective function is to minimize a loss function

within each split segment, coupled with an information criterion for avoiding over fitting

(Eqn. 5.4).

m+1∑
i=1

[C(Xτi
τi−1+1)] + βf(m), (5.4)

where C is a segment based cost function and βf(m) is a penalty to avoid over fitting. A

commonly used cost function C within each segment is twice the negative log likelihood [75,

33]. Other cost functions such as quadratic loss [135], cumulative sums [79] and combined

loss based on both the segment log-likelihood and segment length [174] are also proposed

for alternative selection.

The penalty function βf(m) for controlling the number of change points also exists

several choices. The most common one in practice is a linear penalty with the number

of change points, i.e., βf(m) = βm. AIC [8], (β = 2p), BIC [148] (also known as SIC,

β = p log n) are typical examples of this linear penalty (Here p is the number of additional

parameters brought by adding a new change point). In addition, difference between consec-

utive segments is also used to penalize the selection of change points [105]. Other choices

other than these penalties are discussed in [67, 124, 24].

Typical methods like Segment Neighborhood (SN), Optimal partitioning (OP), Pruned

exact linear time method (PELT), Total variation denoising (TVD, see Section 5.3.3.) fall

into this category.

123

SN is a method proposed by [16] for multiple change points detection. Its essence is to

define a measure of data fit and penalty function as in Eqn. 5.4, and use a dynamic pro-

gramming to search the entire sequence. It begins by setting a maximum number of change

points, Q, and then computes the cost function for all possible segments, i.e., segments with

between 0 and Q change points. The computational cost of this method is O(Qn2) because

of the exhaustive search for all possible segments.

An Optimal partitioning approach (OP) which aims at minimizing Eqn. 5.4 with f(m) =

m is proposed in [170] and [81]. A dynamic programming is employed for an iterative opti-

mization of the objective function. According to [81] the OP method is able to automatically

determine the number of change points and is guaranteed to find the exact global optimum

with a time complexity of O(n2).

Moreover, to make the computation of OP even more efficient, a modified method with

O(n) complexity, denoted as PELT (pruned exact linear time method, see Section 5.3.3),

is proposed in [90]. The key improvement in PELT is to discard those candidate change

points which can never be a minimum of the objective function in OP.

Other than Eqn. 5.4 objective function based on the minimum description length (MDL)

is also considered for offline segmentation. The MDL principle [65] is a formalization of

Occam’s Razor, which selects the best model for a given set of data as the one with the best

compression of the data. To find the best set of change points under the MDL criterion,

genetic algorithm is used for searching the objective in [43].

Learning based methods

Besides the above mentioned methods, algorithms based on statistical learning also emerged

for offline segmentation. [27] described a Bayesian method that identifies DNA segments

using a hidden Markov chain model. [20] proposed a product partition model (PPM) which

assumes observations as well as probability of a change occurring at an observation are in-

dependent. The observation sequence can be split into an unknown number of K segments,

with each admitting an Gaussian distribution independently. Under the assumption that

different segments are non-overlapping, Fearnhead developed an efficient dynamic program-

ming methods for the exact computation of the posterior over the number and location of

change points in time series [47, 48]. Xuan and Murphy [168] extended Fearnhead’s ap-

proach to multidimensional time series by introducing sparse Gaussian graphical models to

124

shape the correlation structure of the vector-valued observations in high dimensions.

In the Bayesian model, numerical simulations such as MCMC and reversible jump

MCMC are always applied to generate samples from the posterior distribution, such that

change points and their positions as well as the segment-wise parameters can be estimated.

However, this simulation process is always computational expensive and is hard to detect its

convergence, thus efforts have been put for the improving the simulation efficiency. [45] pro-

posed a two-stage forward-backward algorithm for hidden Markov models in this aim, where

a forward pass through the data is conducted in the first stage, following by a simulation

of change points backwards in time. Similar work can be found in [19, 107].

5.2.3 Topology of online methods

In this section, we will discuss the online change detection problem under the i.i.d. assump-

tion. Particularly, methods are classified into two categories: methods based on statistical

test (e.g., CUSUM, Shewhart control charts), and methods based on learning techniques

(e.g., Bayesian online change detection, kernel change detection).

Statistical test based methods

Alike the offline case, the likelihood ratio can also be used for the online change point

detection. Formally, let Γ be the change point variable, the observation sequence X has

probability mass function (p.m.f.) f0 before the change point, and f1 after the change point.

The log-likelihood ratio for observations Xk
j (observations from xj to xk) can be defined as:

Skj =

k∑
i=j

s(xi) =

k∑
i=j

ln
f1(xi)

f0(xi)
, (5.5)

where s(xi) is called the sufficient statistic [21] with expected positive value under f1 and

negative value under f0. The sign of the mean log-likelihood ratio is used to indicate the

change of the parameters. According to the Neyman-Pearson lemma, the optimal decision

rule d is given as follows:

d =

 0 if SN1 < h; choosing H0

1 otherwise; choosing H1,
(5.6)

125

where h is pre-defined a threshold.

Many conventional methods are based on an extension of the likelihood ratio test, which

basically can further be divided into two classes: pre-change and post-change distributions

are known, and pre-change distribution is known while post-change distribution is unknown.

Methods like the Shewhart control chart, geometric moving average (GMA), CUSUM and

Page-Hinkley test are representative examples in the first class. On the other hand, weighted

CUSUM and the generalized likelihood ratio test (GLR) are two commonly used techniques

in the second class [21].

Learning based methods

As introduced in Section 5.2.2, a wide range of retrospective Bayesian approaches have

been proposed to the offline change point detection problem. Here we give a brief review of

typical learning based online change detection methods .

[4] proposed an online approach based on Bayesian analysis, whose key concept is the

time since the last change point, i.e., run length. An online prediction for the run length

is conducted at every observation, given an underlying predictive model (UPM) and a

hazard function learned from past observation. More details of this Bayesian online change

detection will be given in Section 5.3.4 under the SSOCD framework. In [49], an online

algorithm for exact filtering of multiple change points is introduced, in which the simulation

for the number and location of the change points are performed from their corresponding

true joint posterior distribution. In addition to the Bayesian models, [44] presented an

online kernel change detection algorithm, in which the dissimilarity between consecutive

subsequences is measured on their feature space using a soft margin single class SVM.

[163] identifies the catch-up phenomenon as a new explanation for the slow convergence of

Bayesian methods, and proposes a modification of Bayesian predictive distribution, named

as the switch distribution, for the task of result prediction, model selection and adaptive

estimation. This switch distribution is statistically consistent under fairly weak conditions,

and adaptive estimation based on it has shown to be optimal relative to the cumulative

Kullback-Leibler risk in a general i.i.d. data setting.

Another line of this category directs to subspace analysis. [121] performs the change

detection by first using a sequential application of singular-spectrum analysis (SSA) to

the sub-series of original data to learn a basic subspace, and then tracking the quality

126

of the approximation of other parts of the data series on the learned subspace. In [87] a

geometric method is used to estimate the linear state-space model (SSM) of time-series data.

Change point detection is achieved in terms of estimating the column space of the extended

observability matrix of the learned SSM, and evaluating the subsequence of new-arrived

data based on this subspace.

Besides the above model based methods, a number of general model-free methods have

also been proposed for change detection. [86] proposed a non-parametric method using a

direct density-ratio estimation which does not rely on a strong model assumption. Other

typical examples are time-frequency approaches [99], wavelet approaches [40, 72], spectral

coefficients approaches [149].

5.2.4 Performance criteria

Theoretical criteria

The classical performance criteria for evaluating the theoretical performance of change point

detection algorithms are [21]:

• probability of false detection

• probability of nondetection

• accuracy of the change time and magnitude estimates

• mean delay for detection

• mean time between false alarms

As we will show below, they are ill-suited to empirical validation. We briefly discuss them

nonetheless.

The first three criteria are related to off-line change detection. They address two ques-

tions: whether there is change in the sequence and where (change time estimation). The first

two criteria (probability of false detection and probability of nondetection) simply rephrase

the usual power and size criteria of hypothesis testing, or sensitivity and specificity in clas-

sification vocabulary. The accuracy and magnitude criteria derive from the probability

distribution of the change time estimation error, e.g., P (t̂0 = t0 ± n) or P (|t̂0 − t0| ≤ n),

with t0 be the true change point location and t̂0 be its estimation.

In the online change detection problem, the mean delay of detection and mean time be-

tween false alarms enrich the sensitivity/specificity indicators with timeliness-related char-

127

acteristics. Generally, the objective is to minimize the delay of detection for a fixed mean

time between false alarms. A composite measure for investigating the properties of online

change detection algorithms called Average Run Length (ARL) was proposed in [14], with

a focus on the expected interval between false positives. Intuitively, a lower value of the

ARL leads to a faster change detection, at the sacrifice of higher false positives. In the

theoretical case, computing closed forms for the ARL of a detection method is generally

impossible and replaced by Monte Carlo estimation (see e.g., [13] for a recent survey).

Empirical criteria

The above mentioned criteria are well-suited to a theoretical context, where validation

assumes the availability of ground truth in the form of probability distributions for the

data, or at least knowledge of the change points. In the fault monitoring context, properly

labelled dataset do not exist (see Section 5.3.1). Then, the performance of a change detection

algorithm must be evaluated only from its own output. We briefly describe here two possible

approaches.

The first one considers the general context of distribution equality. Specifically here,

the question is whether two consecutive segments have the same distribution. As there is

no reason to assume normality (t-test), the classical indicator is the Kolmogrov-Smirmov

statistic. For the sake of completeness, we briefly recall its definition and properties.

Kolmogrov-Smirmov statistic and test. The two-sample Kolmogorov-Smirmov

statistic [115] is a nonparametric and distribution-free statistic that measures the difference

between the empirical distribution function of two data samples. It has the advantage

of making no assumption on the distributions. The statistic is calculated under the null

hypothesis (that samples are from the sample distribution) as following:

Dn,m = sup
x
|F1,n(x)− F2,m(x)|, (5.7)

where F1,n and F2,m are the empirical distribution functions of the first and second sample

respectively.

Many other distance measures can be considered, in particular, from an information

theoretic approach, those related to mutual information, e.g., Kullback-Leibler or Jensen-

Shannon divergences. However, they are less easily amenable to testing.

128

The second approach considers segmentation as a clustering, where the clusters are the

segments. Without label, the rand index is a frequently used measure in clustering which

evaluates the agreement between two segmentations of the same data.

Rand Index [129]. Suppose a sample set X with T observations are given by two

partitions U = {U1, ..., Ua} and V = {V1, ..., Vb}, with a and b segments, respectively. For

these two partitions, two variables are defined:

• #A, number of pairs of observations in X that are in the same set in U and in the

same set in V ;

• #B, number of pairs of observations in X that are in different sets in U and in different

sets in V ,

then the Rand Index is calculated as following:

R =
#A+ #B

(T2)
. (5.8)

Intuitively, #A+#B can be seen as the number of agreements between U and V . One simple

example, suppose X = {x1, x2, x3, x4, x5}, and the two partitions U = {< x1, x2, x3 >,<

x4, x5 >}, V = {< x1, x2 >,< x3, x4, x5 >}, then according to the definitions given above

#A = 2, #B = 4, and the rand index is R = 2+4
(25)

= 0.6.

However, one disadvantage of the Rand Index is that it is not suitable for comparing

two different estimated segmentations because of its inability to evaluate the discrepancy

from a given baseline model. As pointed out in [77], the Rand Index does not take on a

constant value when comparing two random clusterings (The expected value of the rand

index of two random partitions does not take a constant value, e.g., 0.). Therefore, in [77]

and [55] a hyper-geometric model of randomness which conditions on both the number of

clusters and their sizes is introduced. An Adjusted Rand Index is then defined as:

AR =
R− E(R)

1− E(R)
, (5.9)

where E(R) is the expected Rand Index and 1 corresponds to the maximum Rand Index

value. This adjusted index has expected value zero for independent clusterings and max-

imum value one for identical clusterings. The adjusted Rand Index value of the above

example is: AR = 0.6−0.52
1−0.52 = 0.1667.

129

5.3 Semi-supervised online change detection

This section first motivates SSOCD (section 5.3.1) , then defines and formalizes it (section

5.3.2). The next sections are devoted to a detailed descriptions of its components.

5.3.1 Motivation

The major problem of online change detection methods is their inability to look ahead,

lacking a global view compared to their offline (retrospective) counterparts. However, in

the monitoring context, online detection is obviously required. Another major application

of online monitoring is data streaming, when the amount of data is too large to be processed

in as a whole; although this is not the main focus here, algorithmic scalability has to be

assessed in this perspective.

We first summarize the configuration of online change point detection for fault moni-

toring, then detail each of its points.

• Completely non-supervised online change point detection is likely to be ineffective in

a noisy environment.

• Ground truth is not available.

• Relatively reliable labels can be obtained.

• Finally, we propose to use the better quality labels to overcome the limitations of the

non-supervised approach.

In Section 5.2.3 we have introduced the current work on the unsupervised online change

point detection, where methods depend either on detecting changes in statistical properties

of the data or on the analysis of subspaces where data sequence are constrained [78, 121, 87].

Although these methods provide extensive means for change detection, the completely un-

supervised manner which works as a black box might bring undesirable results in detection.

Firstly, all sorts of changing behavior in the data sequence might be altered as change

points regardless of their irrelevance. Specifically, various types of changes like transient

change, oscillating change, periodical change and long term evolving trend may present

simultaneously in the data sequence. However, despite the diversity of changes only a

few of them are of real interest. Thus online algorithm which is capable of detecting the

intended changes as the offline alternatives becomes increasingly important in real appli-

cations. Moreover, noise, outliers as well as contamination are common ingredients of real

130

world data. These unimportant but harmful parts, if not properly processed, may result in

the ineffectiveness of online methods.

To make situation worse, in the online change detection setting a careful preprocess

of these undesired data is always unavailable due to the time demand of online detection

application. Thus, if a detection method is not robust enough, one simple expectable con-

sequence is a high false alarm rate of it brought by these small ”salts”. Lastly, methods like

CUSUM and Page-Hinkley test heavily rely on a predefined threshold for change detection,

which makes the tradeoff balancing between false alarm rate and detection delay a complex

task in terms of tuning the threshold.

Nevertheless, a supervision in training the detection model when labels are available

would yield better performance in detecting desired changes. One could train the algorithm

to detect only those types of wanted changing behaviors by feeding change labels. Practi-

cally, in many applications a set of well labeled change points may be correlated to desirable

events which are of vital application specific interests, thus a change point model trained

on labeled data set might be more appropriate for detecting desired changes.

On the downside, one factor that hinders the spread of supervised change detection

method lies in the difficulty of acquiring labeled change points. The acquisition of labeled

change points from a large data sequence often requires a skilled human expert (e.g., audio

segmentation) or a physical experiment (e.g., determining the 3D structure of a protein).

In the monitoring case, ground truth would require to actually know what was the cause

of the fault; we explained in the previous chapters why automating this discovery is not

realistic. The human experts would be the system operators, notoriously difficult to enroll

in a non-operational program. Overall, this process of labeling is always expensive, difficult

or time consuming which renders a fully labeled training set infeasible.

Meanwhile, unlabeled offline data are always easy to obtain, but are only processed by

offline segmentation algorithms. Offline methods described in Section 5.2.2 like the segment

neighborhood (SN) provide plenty choices for dealing with data series. Since a global view

of the data set is available, a more reliable exact partition is easy to obtain using offline

segmentation with desired features. With the assistance of offline segmentation methods,

relatively reliable change point labels become available.

Based on the above analysis, we propose a semi-supervised online change detection

framework to facilitate the online detection of desired changes in the next section. Different

131

to conventional semi-supervised learning methods where typically a small amount of labeled

data and a large amount of unlabeled data are available, only unlabeled data is available

in our situation. ”Virtual” labels obtained by unsupervised offline methods are used to

train supervised online detection methods. Since our work is an attempt to combine the

unsupervised offline and the supervised online leaning methods, we name the framework as

a semi-supervised one. In the following, we first propose the framework in Section 5.3.2, and

then introduce possible choices for the unsupervised offline and supervised online change

detection methods in Section 5.3.3 and 5.3.4, respectively.

5.3.2 Semi-Supervised online change detection framework, SSOCD

Our main contribution in this chapter is to propose a semi-supervised online change detec-

tion framework, SSOCD. To the best of our knowledge, this is the first attempt to bridge

the unsupervised offline segmentation and supervised online change detection methods, such

that changes can be detected online and intendedly. Specifically, as shown in Fig. 5-1, in

the SSOCD framework the change detection process is divided into two steps: offline stage

and online stage. In the offline stage, unsupervised segmentation method is employed to

label change points in unlabeled training data sequence, then these labeled change points

are used as training set to train the supervised change detection model. With the learned

model, in the online stage, data is processed sequentially and those intended changes con-

cealed in the data stream which are usually captured by offline methods are therefore be

detected in an online way.

Algorithm 8 describes the pseudo code of this framework. The first step in SSOCD is

to label the desired change points in the training data using designed unsupervised offline

segmentation method. Benefit from the global view of the data set, it is achievable to design

segmentation method which gives an exact split of the data with changes meet intended

requirements, e.g., only detect change in mean greater than a given threshold. In the second

step, a significance test is exerted on the derived segments, such that change points labeled

by the offline methods are those real changes meet the specified requirements. Depend on

the property of intended changes, various statistic significance tests (see Section 5.2.4) as

well as customized test can be used to check the quality of the learned results. In the next

step, the refined labels are used to train the supervised change detection model. Many online

change detection methods can be adapted to the supervised case, such as the supervised

132

Figure 5-1: Supervised change point detection framework

version of Bayesian online change point detection [162] and supervised CUSUM which uses

the criterion given in [64] to maximize the detection power based on labeled change points.

In the online stage, the trained model is used to detect changes in the sequential data.

Decision about whether a pre-specified change is presented in the data is made each time a

new data arrives.

The success of the SSOCD framework depends on the quality of labeled results given by

the unsupervised offline segmentation method, and also the power of the supervised online

change detection method. In the following, we test several alternatives for both cases, and

evaluating their performance on a real-world dataset.

Algorithm 8: Semi-Supervised Online Change Detection, SSOCD

Input: Xtrain, train set;
Xtest, sequentially arriving test data;
ρ, significance threshold.

Output: Monline, online change detection model learned from offline methods
τ , detected change points

Offline Stage:1

τoffline ← stand offline segmentation(Xtrain) //segment the training data offline2

τ
′
offline ← significance test(Xtrain, τoffline) //test the significance of offline result3

Monline ← supervised train(Xtrain, τ
′
offline, ρ) //train the online CPD model4

Online Stage:5

τ ← stand online CPD(Monline, Xtest) //detect change point online6

return τ7

133

5.3.3 Offline segmentation methods

Offline labeling of multiple change points can be seen as a process of splitting a non-

stationary observation sequence into several contiguous stationary segments. In this section

we introduce three typical examples of offline multiple change points estimation as the

candidate algorithms for the SSOCD framework, i.e., piece wise constant segmentation

based on total variation denoising (TVD), pruned exact linear time (PELT) method, and

hierarchical multiple change point estimation (ECP).

Total variation denoising, TVD

In piecewise constant segmentation (PWC) the basic task is to recover a N sample signal

mi from the observed signal xi, where xi is corrupted by an additive noise random process

ei, i.e.,

x = m+ e. (5.10)

As stated in [105], most PWC denoising methods can be expressed as the following form:

H[m] =
N∑
i=1

N∑
j=1

Λ(xi −mj ,mi −mj , xi − xj , i− j), (5.11)

where x and m are the input output signal of length N , respectively. xi −mj , mi −mj ,

xi−xj and i−j are the value differences (d) of input-output, output-output, input-input and

sequence index, respectively. Kernel functions (non-negative symmetric functions) and loss

functions (non-negative functions) can further be developed on the value differences term

d. More detailed explanations can be found in table 1 in [105]. Equation 5.11 assembles

the error incurred by every difference into the loss function Λ. H[m] is the summation of

Λ over all pairs of indices in the input and output signals to be minimized with respect to

the output m.

Among various generalized functions for PWC noise removal, total variation denoising

(TVD) has been an intensively explored topic since its first proposal in [142]. The loss

function Λ in TVD is:

Λ =
1

2
|xi −mj |2I(i− j = 0) + γ|mi −mj |I(i− j = 1), (5.12)

134

where I(S) is an indicator function such that I(S) = 1 if the condition S is true, and

I(S) = 0 otherwise. I(i−j = 0) selects only terms that have the same index and I(i−j = 1)

selects only sequentially adjacent terms. γ is a regularization term. As is shown in [105]

Eqn. 5.12 is convex and can be solved by methods like quadratic programming, Finite

differencing, Coordinate descent, Least-angle regression path follower [157] and Piecewise

linear regularization path follower [141, 73]. Time complexity of the TVD depends on the

chosen optimization method, normally a complexity of O(knlog(n)) (k is the number of

maximum number of change points) can be achieved using the LARS/LASSO algorithm.

Pruned exact linear time method, PELT

The PELT is based on the optimal partitioning (OP) method proposed in [170] and [81].

The OP is a search algorithm aims at minimizing

m+1∑
i=1

[C(x(τi−1+1):τi) + β], (5.13)

where C(·) is the cost function of a segment, m is the number of segments and β is a penalty

to avoid over fitting. According to [81] the OP finds the change points in a recursive way.

Formally, let F (s) be the minimization of Eqn. 5.13 for data x1:s and τs = {τ : 0 = τ0 <

τ1 < ... < τm < τm+1 = s} be the set of possible vectors of change points for the data. Set

F (0) = −β. Then F (s) can be written recursively as:

F (s) = min
τ∈τt
{
m+1∑
i=1

[C(x(τi−1+1):τi) + β]}

= min
t
{min
τ∈τt

m∑
i=1

[C(x(τi−1 + 1) : τi) + β] + C(x(t+1):n) + β},

= min
t
{F (t) + C(y(t+1):n) + β}. (5.14)

Equation 5.14 finds the minimal cost for data x1:s in terms of the minimal cost for data

x1:t for t < s. For a data sequence of length n, the total time cost for computing F (s) is

quadratic in n.

Though the OP provides a more efficient method than SN method, it is still compu-

tational costly with a computing time complexity of O(n2). In the aim of improving the

computational efficiency of the OP, [90] proposed a pruning method named PELT with a

135

time complexity of O(n). This method (PELT) is guaranteed to find the same optimal as

the OP. The basic idea for improving efficiency in PELT is to discard those values of change

points which can never be the optimal during the optimization process of the OP.

Hierarchical nonparametric multiple change point analysis, ECP

Based on the divergence measure proposed by Szekely and Rizzo [155, 139], James et.

proposed a hierarchical nonparametric multiple change point analysis method in [82]. ECP

is capable of detecting any type of distributional change in the data, e.g., change in mean,

variance, tail etc.. The only assumption that the method exerts on data is, for some

α ∈ (0, 2], the absolute αth moment exists, and data are independent over time.

Suppose X,Y ∈ Rd, and X ∼ F1 and Y ∼ F2, with characteristic functions φx(t)

and φy(t), respectively. The divergence measure which used for determining whether two

independent random vectors X and Y are identically distributed is defined as follows:

D(X,Y ;α) =

∫
Rd

|φx(t)− φy(t)|2ω(t;α)dt (5.15)

=

∫
Rd

|φx(t)− φy(t)|2(
2πd/2Γ(1− α/2)

α2αΓ[(d+ α)/2]
|t|d+α)−1dt, (5.16)

where ω(t;α) is a positive weight function defined by Matteson and James in [117]. Based

on the divergence measure given in Eqn. 5.16, location of multiple change points can be

estimated iteratively, either divisively or agglomeratively. Since the divisive way of change

estimation shows strong consistency (not the agglomerative way), we only introduce the

divisive multiple changes estimation in this thesis. A complete introduction of the agglom-

erative algorithm and the whole method can be found in [82].

Algorithm 9 presents the procedure of hierarchical divisive change point estimation. At

the beginning, a distance matrix based the divergence measure in Eqn. 5.16 is computed

for each observation in the data sequence X. Then at each iteration, the most likely change

point location is estimated and its statistic significance is tested by a permutation test. If the

estimated change point is statistic significant, then the segment it belongs to is divided into

two subsegments at the estimated location. Further estimation and division is progressed

until no significant change point is found. The process of divisive change point estimation

can be viewed as a binary tree. In this tree, the root node represents the situation of no

change point, and contains the whole data series. Its children nodes are either the same as

136

their parent nodes, or correspond to one of the new segments created by their parent nodes

by introducing a change point. The time complexity of the ECP is O(kn2), where k is the

number estimated change points [82].

Algorithm 9: ECP, Hierarchical divisive multiple change point estimation [82]

Input: X, data series
p0, significance level
m, minimum segment length
R, maximum number of permutations for the permutation test
eps, uniform resampling error bound
h, epsilon spending rate h
α, the αth moment with α ∈ (0, 2].

Output: A segmentation of the data series
Initialize: Initialize the distance matrix Xα

ij = |Xi −Xj |α

while Exist a statistically significant change point do1

Estimate the next most likely change point location2

Test the significance of estimated change point3

if Estimated change point is statistically significant then4

Update segmentation5

return Final segmentation6

5.3.4 Supervised Bayesian online change point detection

In this section, we first introduce the basic unsupervised BOCPD model and then show

the augmented supervised BOCPD with noisy training labels. Notations in this section are

similar to those in [162].

BOCPD was first introduced in [4] and [49]. The basic model is: given a data observa-

tion sequence x1, ..., xT , predict the run length at each time step via an underlying predictive

model (UPM) and a hazard function H(·). The run length (r) is defined as the time of no

change detected since the last change point. The UPM can be seen as a base model whose

parameters η change at each new observation with respect to fixed model hyper-parameters

θm. The hazard function H(r|θh) ∈ N → [0, 1] can be thought as the prior probability of a

change point occurring given a run length rt.

Formally, let x1, ..., xt denote the observation sequence, rt be the run length at time

t. rt is incremented at each time step until there is a change point detected after when

it is reset to 0. For simplicity, let r0 = 0, meaning there is a change point at t = 0, τi

be the time of the ith change point, therefore, τ0 = 0. For the hyper-parameters, define

137

θ := {θm, θh}, where θm and θh are the hyper-parameters of UPM and hazard function,

respectively. Further, let ct ∈ {0, 1} be the change point vector at time t, where ct = 1 if

there is a change point at t and 0 otherwise. The relationship between these variables is

illustrated in Table 5.2, and their formal relationship can be described as following:

rt =

 0 , ct = 1

rt−1 + 1, ct = 0
,

τi∑
t=1

ct = i, cτi = 1. (5.17)

Table 5.2: Illustration of relationship between c, r and τ . Each segment is represented using

different symbols (N, �, H, F).

t: 0 1 2 3 4 5 6 7 8 9
c: 1 0 0 0 0 1 1 0 0 0
r: 0 1 2 3 4 0 0 1 2 3
τ : τ0 τ1 τ2

N N N N � H F F F

Moreover, variables c, r and τ are used to denote latent (true) change points and c̃, r̃

and τ̃ for the labeled (observed) change points. Given these notations the generative model

can be summarized as:

log p(x1:T , c1:T |θ) = log p(x1:T |c1:T , θm) + logP (c1;T |θh) (5.18)

=
M∑
i=0

log p(xτi+1:τi+1 |θm) (5.19)

+

T∑
t=1

log(H(rt−1 + 1))ct + log(1−H(rt−1 + 1))(1− ct).

Equation 5.19 can be seen as the sum of the log marginal likelihood of x within each segment

and the sum of the log probabilities of the run length exhibited by the hazard function H(·).

Conditional on a given run length rt, the marginal predictive distribution p(xt+1|x1:t)

can be computed by integrating out the run length variable:

p(xt+1|x1:t) =
∑
rt

p(xt+1|x1:t, rt)P (rt|x1:t)

=
∑
rt

p(xt+1|x(r))P (rt|x1:t), (5.20)

138

where x(r) refers to the last r observations of x, and p(xt+1|x(r)) is computed via the UPM.

The run length posterior can be computed by normalizing the joint likelihood as:

P (rt|x1:t) =
p(rt, x1:t)∑
rt
p(rt, x1:t)

, (5.21)

where the joint likelihood p(rt, x1:t) can further be computed online in a recursive way:

χt := p(rt, x1:t) =
∑
rt−1

p(rt, rt−1, x1:t)

=
∑
rt−1

p(rt, yt|rt−1, x1:t−1)p(rt−1, x1:t−1)

=
∑
rt−1

P (rt|rt−1)p(xt|rt−1, x(r))p(rt−1, x1:t−1)

=
∑
rt−1

P (rt|rt−1)p(xt|rt−1, x(r))χt−1. (5.22)

Equation 5.22 shows the message passing scheme for recursively computing χt from χt−1.

P (rt|rt−1) is the probability over rt given rt−1 in the hazard function. p(xt|rt−1, x(r)) is the

predictive distribution in the UPM over the last newly observed data, given the data since

the last change point.

Besides the basic constant hazard function H(r|θh) := θh = c (c ∈ [0, 1] indicates the

probability of a change point), other alternatives like logistic hazard:

H(t) = hσ(at+ b), (5.23)

where hyper-parameters θh = {h, a, b} and σ(·) is the logistic sigmoid, are also available.

For the UPMs, there are also extensive choices such as Gaussian process time series (GPTS),

Auto regressive Gaussian process (ARGP), and Dirichlet process. More detailed work about

hyper-parameter learning and the underlying predictive models can be found in [162].

Figure 5-2 gives an illustrative example of the BOCPD method on an artificial data. The

artificial data includes seven random generated data segments, where data inside a segment

follow a normal distribution. The top panel displays the artificial data (blue dots) and

detected change points (red crosses). The bottom illustrates the cumulative distribution

function (CDF) of the run length, where the darker the area, the greater the probability of

139

500 1000 1500 2000 2500 3000 3500 4000

−10

−5

0

5

10

15

O
bs

er
va

tio
ns

R
un

 le
ng

th

500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

Figure 5-2: An illustrative example of BOCPD on artificial data

corresponding run length1. However, as shown in the figure, the problem exhibited by the

artificial data is an easy one. As a consequence, the run length distribution area is almost

black, implying a strong confidence in the detection result.

Supervised BOCPD The supervised BOCPD was proposed in [162], whose basic idea

is to first train a change point model on a data set with labeled change points, and then

use the learned model for online detection. More exactly, in the offline step the hyper-

parameters of a Bayesian change detection model is learned on a labeled dataset, i.e., given

a sequence of training observations x1:T and a corresponding change points label sequence

c̃1:T , learn a model M . Then at the online detection step, new observations are arriving in a

stream and the model M is fed with data sequence till the current time t, i.e., x1:t, the run

length distribution P (rt|x1:t) is computed each time a new observation arrives. One thing

to mention is that in the offline training step, noise in the location of the change points

might be considered, since the change point labels might be missing, incorrect and spurious.

Generally speaking, there are two ways to train a supervised BOCPD, either generatively

or discriminatively. In the former case the hyper parameters θ are learned using generative

1At each time index, the probabilities of different run lengths are cumulated in decreasing order of run
length, thus an increasing probability (darker color) is observed with the decrease of run length at each time
index.

140

likelihood p(x1:T , c1:T |θ), and in the latter case the hyper parameters are learned through

the discriminative likelihood P (c1:T |x1:T , θ). Both methods can be augmented with a noise

model which considers jitter (temporal segmentation error) in the labels. Parameters of

the noise model are denoted as θn, thus the whole hyper-parameters can be summarized as:

θ := {θh, θm, θn}.

In the noise model the data sequence x1:T is assumed to be conditionally independent

of the label noise. For each change point εi is used to denote the difference between the

observed time of the ith change point τ̃i (observed) and the ith latent (true) change point τi.

The zero mean discrete Laplacian (DL) [80] can be used to model the jitter εi := τ̃i−τi ∈ Z

as:

P (εi) = DL(εi|γ) :=
1− γ
1 + γ

γ|εi|. (5.24)

εi is assumed to be symmetric with mean µ = 0 and the noise parameters are only the DL

dispersion parameter: θn := γ ∈ [0, 1). The ”probability of everything” (joint distribution

of corresponding variables) in the noisy model is:

p(x1:T , τ̃ , τ |θ) = p(x1:T |τ, θm)P (τ |θh)P (τ̃ |τ, θn) (5.25)

= pGen

M∏
i=1

DL(τ̃i − τi|γ), (5.26)

where pGen = p(x1:T |τ, θm)P (τ |θh) is used to represent the generative likelihood. Given the

noisy model the hyper-parameters θ can be learned by maximizing the p(x1:T , τ̃ |θ) with the

latent change points τ integrated out from Eqn. 5.25. More details of how to train a noisy

supervised BOCPD can be found in [162].

5.4 Experimental setting

5.4.1 Dataset

As we have shown in Fig. 4-3(a), the failure rate of Biomed dataset exhibits a relatively con-

sistent evolving behavior along the time scale, except only one significant change is present

at the 101th time window. However, in order to learn a supervised change detection model,

there should be enough normal data as well as the changes in the training set. Therefore we

141

consider another end-to-end performance monitoring dataset, the IPLab dataset, to verify

our proposed work. The IPLab dataset contains performance measurements of large online

websites. Specifically, metrics which measure a site’s performance (e.g., the page load time

on an end-user side) are collected from the end-user point of view. Two types of information

are collected for online web sites: active data and passive data. The active data is collected

by using performance probes (e.g., probe to test a page’s loading time of a site) from probe

stations located at the backbone providers every five minutes. On the other hand, the pas-

sive data is collected from end-user’s web browsers by executing specific monitoring script

(e.g., a javascript program to collect end-user information on an user’s browser) while user

visiting a site page.

Compared with the passive data where the diversity of end-user properties might lead to

large variance in measuring the site performance, the active data is able to provide a more

reliable view of the server’s performance during the monitoring, since the probe stations

are run on the server side and located at the backbone providers. However, the advantage

of passive data lies in its ability to uncover the QoS on the end-user side directly. For this

dataset, we use the properties described in Table 5.3 to identify different end-users and

target sites. Specifically, we use the tuple < site, page > for the identification of a site,

and the tuple < OS,Browser,DeviceType,Model, Provider, Land > for an end-user, i.e.,

end-users with the same tuple value are classified as the same group.

Table 5.3: Data property description

Property Comments

Site Target online site for performance monitoring;
Page Page of a target site;
OS Operating System, e.g., Windows, Linux, Android, Apple;
Browser Browser of the end-user, e.g., IE, Firefox, Chrome, UC Web;
DeviceType Device type of the end-user, e.g., Tablet, Personal Computer, Mobile, Portable media player;
Model Model of the device, e.g., 1CPU, 2CPU, 4CPU, ipad, iphone;
Provider Provider of the network, e.g., Orange, SFR;
Land Geo-location of the end-user, e.g., Ile-de-France, Rhone-alpes.

The experimental data set was collected between 20-Sep-2013 and 27-Sep-2013, with a

duration of 8 days. In contrast to the active data where samples are collected at a given

frequency (every five minutes), the passive data is collected each time an end-user accessing

the site. Therefore an obvious characteristic for the passive samples is its high correlation

with end-users’ daily schedule (e.g., most samples are collected at peak-hours like 9 AM

142

Xt1

Xt2
Xt3 Xt4

Xt5

Xt6

Xt7

Va
lu
e

Time

Figure 5-3: An illustrative example of converting raw passive data into time series

and very few samples are gathered at off-peak hours like mid-night). In order to facilitate

the comparison, we convert the raw passive data sequence into time series data with a same

sample frequency as the active one. Each sample in the new time series is acquired by the

median value of all raw data present in the sample interval. Missing values are imputed

using the moving average on a length 5 lagging time windows. Figure 5-3 illustrates the

transformation process. Within each new time window t, the new sample Xt is taken as the

median of all raw values within t (e.g., Xt1 , ..., Xt5 in the figure). Since no raw observation

is presented in time t6, Xt6 is interpolated by the exponentially weighted moving average

of its former five values with a damping factor 0.5, i.e., Xt6 is derived from Xt1 , ..., Xt5 .

Figure 5-4 gives an example of the active and transformed passive data of a site. The

illustrated active data measures the base page load time of a site’s page from four probe

stations located at different backbone providers, and the passive data describes the full page

load time of a site’s page of three end-users. As is shown, the active data is approximately

piece-wise constant with a small variance and the passive data exhibits a periodic and

nonlinear temporal correlations with a large variance.

143

20−Sep 21−Sep 22−Sep 23−Sep 24−Sep 25−Sep 26−Sep
0

1

2

3

4

5

6

Time

B
as

e
pa

ge
 lo

ad
 ti

m
e,

 lo
g1

0

Provider1
Provider2
Provider3
Provider4

(a) Active data example

20−Sep 21−Sep 22−Sep 23−Sep 24−Sep 25−Sep 26−Sep

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time

P
ag

e
lo

ad
 ti

m
e,

 lo
g1

0

user1 user2 user3

(b) Passive data example

Figure 5-4: Example of active and passive data

144

5.4.2 Change detection under the SSOCD framework

Performance evaluation of the SSOCD framework is measured on both the active and passive

example data. To conduct a semi-supervised change detection, three offline segmentation

methods are evaluated on the dataset, and the one with the best performance is selected

to train the supervised online algorithms. Throughout this chapter, we use the ks-test with

a threshold 0.1 to evaluate the significance of the offline result (line 3 in Algorithm 8).

Refined change points (labels) are used to train the online change detection algorithms.

Comparison between the unsupervised and supervised online change detection algorithms

is carried out on both datasets.

For the active dataset, we select three data series of a target site, with each series

representing the probing result of a probe station located at a different network provider. For

the passive dataset, we select three user data series with the largest number of observations

in the raw series. Each data series is further split into two parts: the first 1000 observations

as training set for parameters learning and the left observations as test set for performance

comparison. Each of the data series is standardized, with the mean and scale estimated only

from the training data. For the performance evaluation, we use the asymptotic p-value of

the ks-test to measure the discrepancy between neighboring segmentations. The p-value can

be seen as the probability of observing the given samples, or one more extreme, under the

null hypothesis that data in two different sets are from the same continuous distribution.

Hence a large p-value indicates an inclination to accept the null hypothesis and a small

p-value implies a rejection.

Three different offline segmentation methods were compared on the active data: PELT,

ECP, TVD. Final parameter settings of each algorithm are listed in Table 5.42.

For the supervised online change detection method, we test the BOCPD (Section 5.3.4)

with two UPMs: the IFM (Independent factor model with a changing mean function for

change detection) and the GPCP (Gaussian process time series designed for change point

detection). The IFM is appropriate for modeling the piece wise constant data series, while

the Gaussian Process based change point detection method (GPCP) is capable of modeling

the nonlinearity within data series intrinsically, help us dealing with periodicity, short term

correlations, long term trend and etc. Thus in order to highlight our emphasize on the semi-

2Note that for ’PELT’ and ’ECP’ we use the R packages of changepoint [90], ecp [82], respectively, and
for ’TVD’ we use the method in [105].

145

supervised learning framework, we use the IFM to model the piece wise constant active data

and the GPCP to describe the nonlinear passive data series. [162] gives a more detailed

introduction about the GPCP and the IFM.

The two BOCPD models use the logistic hazard function (Eqn. 5.23), with corresponding

parameters learned during training. A rational quadratic (RQ) covariance function together

with a constant covariance is used for the GPCP. The hyper-parameters of GPCP are learned

on the training set with five runs, choosing the one with a best function value.

Due to the similarity between different data series (e.g., as delivered in Fig. 5-4, data

series of different provider have a similar trend and distribution in the active data), exper-

imental result on the selected data series share a similar pattern. Therefore, for simplicity,

we only show the result of a single data sequence for each active and passive dataset in the

following section.

Table 5.4: Offline algorithm parameters setting

parameters

PELT

penalty=’Manual’3;
penalty.value=60;
method=’PELT’;

test.stat=’Normal’.

ECP

significance level=0.05;
Max number of random permutation=50;

moment index=1;
min segment size=40.

TVD
lambda=1;

max iteration=60;
stop tolerance=1e-3.

5.5 Experimental results

5.5.1 Active data

Offline segmentation Figure 5-5 shows the segmentation results of three offline algorithms

on the active dataset, with vertical lines indicating the detected change point positions and

3Because there are too many noisy change points in the results of using an auto penalty of either ’SIC’
or ’AIC’, here we use the ’Manual’ penalty for PELT instead. Penalty value is selected on the first 1000
observations.

146

horizontal bar representing the segment means. Corresponding p-values of the ks-test at

the significance level of 0.05 for the neighboring segments are given in Fig. 5-6.

The PELT segments the data sequence into 26 subparts, with some of which being

very short, e.g., the 7th, 13th, 22nd, and 24th segment have lengths of 14, 5, 12, and 16,

respectively. Moreover, the intra-segment difference is not always significant in the result

of PELT. For example, among the 25 detected change points, 7 of them have the p-value

of a ks-test with 5% significance level for consecutive segments greater than 0.1, indicating

the hypothesis that samples in two consecutive segments are from the same continuous

distributions can not be rejected at the specified significance level. Similar result can also

be found in TVD. The TVD splits the data sequence into 26 segments. The p-values of the

ks-test for the segmentation are illustrated in Fig. 5-6(c). Among the 26 detected change

points, 7 of them are associated with a p-value greater than 0.1.

On the contrary, the segment-wise difference of result of ECP is quite remarkable, whose

p-values of the ks-test between segments are all less than 1e−6 (Fig. 5-6(b)). In other words,

the hypothesis that samples in consecutive segments are from different distribution can not

be rejected. To sum up, on the active data set, the ECP method outperforms PELT and

TVD, in terms of intra-segment difference; and is more appropriate for estimating the

number of change points and their corresponding locations in practice.

Unsupervised IFM Result of unsupervised BOCPD with IFM on the active dataset

is illustrated in Fig. 5-7(a), with corresponding p-values of the ks-test shown in Fig. 5-

7(b). Standardized data sequence (blue) is shown in the top panel in each figure, and the

proposed change points (green lines and red crosses) are illustrated in the middle panel. The

vertical green lines mark the locations of change points proposed by offline segmentation

and the red crosses mark the locations of change points detected by online algorithms, with

a probability under the BOCPD posterior exceeds a threshold mentioned in the figure’s

caption. The bottom panel in each sub-figure shows the run length CDF (cumulative

distribution function) and its median (solid red).

As we can see from the run length distribution, IFM gives very spiky median run length,

implying a low prediction confidence in the results given by underlying models. Moreover,

the average median run lengths (red curve in each sub-figure’s bottom panel) of it is very

short, with the maximum median run length of IFM is less than 40 (Fig. 5-7(a)). As a

consequence, there are many proposed change points with a probability under the BOCPD

147

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−6

−4

−2

0

2

4

6

Index

Ob
se

rva
tio

ns
 (lo

g1
0)

(a) PELT

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−6

−4

−2

0

2

4

6

Index

Ob
se

rva
tio

ns
 (lo

g1
0)

(b) ECP

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−6

−4

−2

0

2

4

6

Index

Ob
se

rva
tio

ns
 (lo

g1
0)

(c) TVD

Figure 5-5: Offline segmentation on active data

148

5 10 15 20 25

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

change points

P−
va

lue
 of

 ks
tes

t

(a) PELT

2 4 6 8 10 12 14

1

2

3

4

5

6

x 10
−7

change points

P−
va

lue
 of

 ks
tes

t

(b) ECP

5 10 15 20 25

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

change points

P−
va

lue
 of

 ks
tes

t

(c) TVD

Figure 5-6: P-values of Kolmogorov-Smirnov test for neighbouring segmentations of offline
results, active data

149

posterior exceeding 0.96, which in other words, compared with the offline methods the

unsupervised IFM is very sensitive.

The reason responsible for this phenomena lies in the data sequence. Without those

outliers (i.e., the spiky blue line in the raw sequence) the standardized data sequence is

a clean piece wise constant with a zero mean and a relatively small variance. Changes

proposed by the offline segmentation method clearly exhibit the changes between constant

pieces of the clean sequence. These changes represent the macro variation in the data.

They are easy to be detected and are actually detected by the unsupervised IFM, since for

almost every change given by the offline method (green line) is associated with a candidate

change point proposed by the unsupervised method (red cross). However, besides the macro

changes those transient ones are also captured by the unsupervised methods. The IFM tends

to raise a change point each time there is an outlier (Many spiky vertical blue lines in data

sequence are associated with a red cross).

The p-values of ks-test between neighboring segments of the unsupervised IFM are shown

in Fig. 5-7(b). On this active dataset, IFM proposes 59 change points, with 21 of which have

p-value less than 0.1 and the others are greater than 0.1. Since the p-value is concerned with

the probability of observing samples in two segments from a same continuous distribution,

those change points with p-value greater than 0.1 can thus be seen as non significant ones.

To sum up, the trivial and transient changes proposed by the IFM exposes its sensitivity

and vulnerability to noise and outliers. Consequently, a high false alarm rate is anticipated

for both methods.

Supervised IFM Performance evaluation of the supervised IFM on the active data is

illustrated in Fig. 5-8. Compared with the unsupervised versions, run length distributions

of supervised IFM is much more smooth. The average median run lengths of IFM becomes

longer, e.g., the maximum median run length of IFM is about 250 (The peaked median run

length of supervised IFM around time index 1250 is not a valid one, because it does not grow

gradually to the peak value). The smooth and dark run length distributions exhibit the

high confidence in the predictions. As a consequence, for the supervised IFM the number

of proposed change points with a probability under the BOCPD posterior exceeding 0.96

decreases obviously, from 59 to 14.

The p-value of the ks-test on neighboring segments in Fig. 5-8(b) verifies the improved

result. Contrast to the unsupervised case, in supervised IFM only one change point is

150

200 400 600 800 1000 1200 1400 1600 1800 2000

−4

−2

0

2

4

S
ta

nd
ar

di
ze

d
O

bs
er

va
tio

n

200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

 le
ng

th

Time
200 400 600 800 1000 1200 1400 1600 1800 2000

5

10

15

20

25

30

(a) Run length distribution

5 10 15 20 25 30 35 40 45 50 55

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

change points

P
−

va
lu

e
of

 k
st

es
t b

et
w

ee
n

ne
ig

hb
or

 s
eg

m
en

ts

(b) p-value of ks-test

Figure 5-7: Run length distribution of unsupervised BOCPD (IFM) on active dataset, with
probability threshold 0.96. In the middle panel of Fig. 5-7(a), red crosses represent change
points detected by online algorithm and green lines represent change points proposed by
offline method. A same representation is used in the following figures.

151

Table 5.5: Similarity between results of online and offline methods on active test set

Adjusted Rand index Rand index

Unsupervised IFM 0.3317 0.9333

Supervised IFM 0.8006 0.9701

observed to have a p-value greater than 0.1. This attest to the conclusion that most of

the change points proposed by supervised IFM are statistically significant. The comparison

of median run lengths for unsupervised and supervised IFM is shown in Fig. 5-9, where

a striking contrast is exhibited on the two methods’ results. In contrast to an oscillating

and transient median run length distribution demonstrated by the unsupervised method,

the supervised IFM delivers a smooth and long term run length growth. Accordingly, a

stronger confidence in predictions of supervised IFM is expectable.

The Rand Index and its adjusted version evaluate clustering similarity by assessing the

segment membership of pairs of data points. In this section, we use the results given by

ECP as the base model, and compute the rand index (adjusted rand index) by comparing

its segmentation result and the unsupervised/supervised IFM. Table 5.5 illustrates the

comparison between the two IFMs. In contrast to unsupervised IFM whose adjusted rand

index is low, the supervised IFM shows a much higher adjusted rand index, attesting to the

effectiveness of supervised learning in the framework.

5.5.2 Passive data

This section gives the experimental results of various methods on the passive data. As we

show in previous section, ECP gives much better segment results than the PELT and TVD,

hence we only employ ECP to segment the passive data sequence. The parameters setting

for ECP is the same as in the active experiment.

Figure 5-10(a) illustrates the partition result of ECP and Fig. 5-10(b) shows the cor-

responding ks-test result. ECP proposes 27 change points on the passive data, where 26

of them are statistically significant according to their ks-test results and one is treated as

insignificant as it has a p-value (0.12) of the ks-test greater than the threshold 0.05.

Unsupervised GPCP Performance evaluation of unsupervised GPCP is shown in

Fig. 5-11. The data sequence is split into 32 segments with a posterior probability greater

152

200 400 600 800 1000 1200 1400 1600 1800 2000

−4

−2

0

2

4

S
ta

nd
ar

di
ze

d
O

bs
er

va
tio

n

200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

 le
ng

th

Time
200 400 600 800 1000 1200 1400 1600 1800 2000

50

100

150

200

250

300

350

(a) Run length distribution

0 2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

0.12

change points

P
−

va
lu

e
of

 k
st

es
t b

et
w

ee
n

ne
ig

hb
or

 s
eg

m
en

ts

(b) p-values of ks-test

Figure 5-8: Result of supervised BOCPD (IFM) on active dataset, with probability thresh-
old 0.96.

153

200 400 600 800 1000 1200 1400 1600 1800 2000

50

100

150

200

250

300

350

Time index

M
ed

ia
n

ru
n

le
ng

th

sp. IFM
uns. IFM

Figure 5-9: Median run length comparison between unsupervised and supervised IFM on
active dataset

than 0.96 (threshold). In contrast to the unsupervised IFM on the active dataset, the

unsupervised GPCP exhibits a stronger confidence in the run length distribution (smooth

median run length curve). Most of the proposed change points are relatively significant, as

most of the p-values of the ks-test for neighboring segments are less than 0.1 (Fig. 5-11(b)).

Nevertheless, there are two change points do not deliver convincing results, i.e., the 15th

and the 31st change points have p-values greater than 0.1. In other words, observations

from segments separated by these two change points have a relative high probability of

generated from the same distribution.

Despite the good prediction performance of unsupervised GPCP, a clear fluctuation is

exhibited on its median run length curve (red line in the bottom panel in Fig. 5-11(a)).

The jagged shape of this curve implies a fluctuation in the prediction confidence. In a

word, the unsupervised GPCP is able to capture the nonlinear correlation and detect those

changes in the data sequence. A notable inter-segments dissimilarity is shown in the derived

segmentations, but a clear fluctuation is concealed in the run length distributions as well.

Supervised GPCP The hyper-parameters of supervised GPCP are learned on the

training set using the segmented result of ECP as labels, and performance evaluation is

154

0 500 1000 1500 2000

−
4

−
2

0
2

4
6

Index

O
bs

er
va

tio
ns

(a) Segmentation result

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

change points

P
−

va
lu

e
of

 k
st

es
t b

et
w

ee
n

ne
ig

hb
or

 s
eg

m
en

ts

(b) p-values of ks-test

Figure 5-10: ECP on passive data.

155

200 400 600 800 1000 1200 1400 1600 1800 2000

−4

−2

0

2

4

6

S
ta

nd
ar

di
ze

d
O

bs
er

va
tio

n

200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

 le
ng

th

Time
200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

(a) Run length distribution

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

change points

P
−

va
lu

e
of

 k
st

es
t b

et
w

ee
n

ne
ig

hb
or

 s
eg

m
en

ts

(b) p-value of ks-test

Figure 5-11: Run length distribution of unsupervised BOCPD (GPCP) on passive data,
with probability threshold 0.96

156

Table 5.6: Similarity between results of online and offline methods on passive test set

Adjusted Rand index Rand index

Unsupervised GPCP 0.6002 0.9405

Supervised GPCP 0.5991 0.9395

carried out on the test set. The first change point proposed by ECP is removed from the

training set, since it exceeds the p-value threshold in the significance test. Figure 5-12

illustrates the result of supervised GPCP on the passive dataset. The data sequence is split

into 28 partitions under a probability threshold 0.96, less changes than in the unsupervised

case. The p-values of ks-test for the segmented result are shown in Fig. 5-12(b), where three

of the proposed change points have a p-value close to or greater than 0.1.

Another difference of the two GPCPs lies in the derived run length distributions. As

shown in Fig. 5-13, the median run length curve of the supervised GPCP is always above

that of unsupervised GPCP, indicating a stronger in its predictions. Besides, as shown

by the four marked green rectangle area in the figure, the result of supervised method is

smoother than that of its counterpart. This observation also confirms the improvement in

prediction confidence.

To compare the similarity of online methods against the offline alternative, we use the

partitions of ECP as the base model to compute the rand index (adjusted rand index) of

unsupervised/supervised GPCP. Table 5.6 illustrates the results of two GPCPs. Different

to the result on active dataset, difference between the unsupervised and supervised methods

is inapparent. This is because the change points proposed the two methods are actually

similarly distributed. The adjusted rand index between the two GPCPs is 0.850 on the test

set.

In summary, compared with the unsupervised GPCP, the supervised GPCP is capable

of sharpening as well as smoothing the run length distribution and median run length,

such that the underlying prediction confidence is enhanced. However, the inter-segments’

difference of the supervised GPCP’s result does not show an advancement.

157

200 400 600 800 1000 1200 1400 1600 1800 2000

−4

−2

0

2

4

6

S
ta

nd
ar

di
ze

d
O

bs
er

va
tio

n

200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

 le
ng

th

Time
200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

140

(a) Run length distribution

5 10 15 20 25

0.02

0.04

0.06

0.08

0.1

0.12

change points

P
−

va
lu

e
of

 k
st

es
t b

et
w

ee
n

ne
ig

hb
or

 s
eg

m
en

ts

(b) p-value of ks-test

Figure 5-12: Run length distribution of supervised BOCPD (GPCP) on passive data, with
probability threshold 0.96

158

200 400 600 800 1000 1200 1400 1600 1800 2000

20

40

60

80

100

120

140

Time index

M
ed

ia
n

ru
n

le
ng

th

uns. GPCP
sp. GPCP

Figure 5-13: Median run length comparison between unsupervised and supervised GPCP on
passive dataset. The green rectangles highlight the difference in median run length between
the two methods.

5.6 Conclusion

There are different approaches in which change point detection can be performed, from

sequential (online) change analysis to retrospective (offline) data segmentation. However,

making a decision about changes in a data sequence either online or offline is determined by

the practical demand of an application. In this chapter, we are mainly concerned with the

online change detection problem. We propose our attempt to bridge the offline and online

methods by using the SSOCD framework, within which the unsupervised offline approaches

are employed to producing change point labels for training a supervised Bayesian online

change detection model, and the trained model is then engaged in detecting changes online.

In such a way, we are aiming at attacking two problems for supervised online change

detection: the shortage of labeled change points and the undesired detected changes. The

former problem is solved by learning labels using unsupervised offline methods on the raw

data set. In the offline case, the whole data set is available for involved method, thus

an optimal partition of the data sequence meeting specific requirements is possible if the

segmentation procedure is well designed. The later problem can be alleviated by choosing

159

intended labels for training the supervised model. Intended change points can be obtained

either by designing specific offline method or by filtering the result of offline method.

The usefulness of the proposed framework is verified on a real world dataset. Specifically,

we compared three state-of-the-art offline segmentation methods, i.e., ECP, PELT, TVD,

on the dataset. Because of the significance of its proposed change points, ECP is selected

as the offline method to provide labels for the supervised training. The supervised Bayesian

online change detection model is trained on the derived labels. Two underlying prediction

models (UPM), IFM and GPCP, are employed to model the linear and nonlinear character-

istics in two different data, respectively. The result given by the supervised IFM on a piece

wise constant data demonstrates the effectiveness of the framework, a remarkable improve-

ment against unsupervised version both in prediction accuracy and confidence. A similar

advancement in prediction confidence is also presented in the result of supervised GPCP

on a nonlinear dataset. However, the improvement in prediction accuracy is not clearly

exhibited, instead the supervised GPCP shows a similar segmentation to its unsupervised

counterpart.

160

Chapter 6

Conclusions and Perspectives

Reliability of large scale production grids and clouds is always the main concern both from

the system administration and end-users’ experience view. Instead of building a complete

a priori knowledge of the software and hardware infrastructures as in most conventional

detection or diagnosis methods, we propose to use appropriate techniques to perform end-to-

end fault monitoring for such large scale systems, leaving the inaccessible details of involved

components in a black box. The way we progress our research can be summarized by a series

of assumptions about the temporal behavior of the data: 1) static, 2) stationary, 3)non-

stationary, with each assumption corresponds to work in Chapter 3, 4 and 5, respectively.

In the following, we first summarize the key issues touched in previous chapters in the order

of employed assumptions, and then discuss the main research perspectives opened for future

work.

6.1 Summary

• Static Chapter 3 considers the temporal behavior of data as an irrelevant factor in

a given period, and performs the prediction task on a collapsed observation matrix.

Specifically, the collaborative prediction is employed as a scalable and promising strat-

egy to extract hidden information from the monitoring data with a limited intrusive-

ness to the target system. In contrast to recommendation context, the monitoring task

embraces a decisive advantage on the ability of adaptively building intended knowl-

edge. Effectiveness of a combination of Collaborative Prediction and Active Learning

has been demonstrated on a large dataset collected from a production grid (EGI).

161

Basically, two key issues in the fault prediction problem are thoroughly explored with

an active strategy based on min-margin prediction heuristic: the imbalance of positive

and negative examples (in real systems faults are always the minority group), and the

transient faults. The internal prediction model of Active Probing is updated with the

adaptive acquisitions of new knowledge, such that hidden information of monitoring

data is uncovered iteratively and progressively.

• Stationary Chapter 4 assumes an implicit stationary model on the temporal be-

havior of the data, i.e. information from the past can benefit the prediction for the

future. Specifically, the sequential correlations between consecutive data observations

are explored using the sequential matrix factorization (SMF) method, which exploits

both the spatial knowledge (information from collaborators) and temporal knowl-

edge (information from the past) concealed in the data. Moreover, Active learning

is also employed in combination with the SMF (SMFA) in the aim of alleviating the

imbalance data class problem and the transient fault problem. Besides, through prac-

tice, a smoothing action taken on the estimation sequence of a method has shown

to be beneficial to improve the prediction performance. Through the comparison of

SMF/SMFA with several basic methods like EWMA, SSVD, MMMF and TENSOR

on a large sequential dataset, we have exhibited the strength of SMF/SMFA. A prac-

tical conclusion of experiments on the stationary assumed sequential dataset is SMFA

with a smoothing action provides a promising solution for the sequential end-to-end

fault prediction task, however, in the presence of abrupt changes an utter degradation

of prediction performance is unavoidable. (See the 101th time window example in

Section 4.4.2). This directs us to the research of the next topic: detecting changes in

the observation sequence.

• Non-stationary In the aim of detecting abrupt changes in the observation sequence

of end-to-end fault monitoring, Chapter 5 assumes a non-stationary model on the

temporal behavior of the data. A semi-supervised online change detection framework,

i.e. the SSOCD, is proposed to bridge the unsupervised offline and supervised online

approaches. Specifically, in SSOCD the unsupervised offline segmentation approaches

are employed to producing change point labels to train a supervised Bayesian online

change detection model, and the trained model is then engaged in detecting changes

online. In this way, two problems in supervised online change detection are under

162

target: the shortage of labeled change points and the undesired detected changes. The

former problem is solved by learning labels using unsupervised offline methods on the

raw data set. With a global view of the whole data set available for offline method, an

optimal partition of the data sequence meeting specific requirements becomes possible

if the segmentation procedure is well designed. The later problem is alleviated by

selecting intended labels for training the supervised model. Intended change points

can be obtained either by designing specific offline method or by filtering the result

of offline method.

The effectiveness of the proposed framework is verified on a real world performance

monitoring dataset. Specifically, three state-of-the-art offline segmentation methods,

i.e. ECP, PELT, TVD, as well as the supervised Bayesian online change detection

model with two underlying prediction models (UPM), i.e. IFM and GPCP, are tested

in this framework. The result given by the supervised IFM on a piece wise constant

data demonstrates a remarkable improvement against the unsupervised version both

in prediction accuracy and confidence. A similar advancement in prediction confidence

is also presented in the result of supervised GPCP on a nonlinear dataset. However,

the improvement in prediction accuracy is not clearly observed, but the supervised

GPCP shows a similar segmentation to its unsupervised counterpart.

6.2 Perspectives

This thesis provides many opportunities for future work, both algorithmic and applicative.

To begin with, as we have shown in Section 4.4.2, due to the assumption of stationary data

sequence, the presence of abrupt changes in the data will result in an evident degradation

of the performance of prediction algorithms. A valuable direction would be to integrate

the change detection framework and the sequential fault monitoring method, such that if

a significant change is detected in the data sequence, the fault monitoring model can be

rebuilt.

Another direction for further research considers the sampling strategy in sequential pre-

diction. Currently, samples in SMFA are selected with two strategies: the most uncertain

predictions in the last run guides the selection of samples to enhance the current prediction

confidence and the random sampling strategy to avoid an overfitting of the past knowledge.

163

The current sample ratio between the two strategies is fixed and set to 1 : 1. However, given

this exploitation (benefits lie those most uncertain predictions) and exploration (random

samples) problem, a straightforward extension is to consider this problem under the sequen-

tial decision optimization framework. Hybrid optimization indicator mentioned in [164] can

be considered to make a balance between the exploitation and exploration trade-off.

Besides the above directions, the unclear theoretic properties like convergency and con-

sistency of the SSOCD framework remains a major concern for further study. Specifically,

a few questions of the SSOCD may be proposed: given concrete an offline segmentation

method and a supervised online change detection method, what is the theoretic error bound

between the two? If the result of an offline method is consistent, under what condition will

the supervised online approach has the same property?

A long term applicative direction is to study how the SSOCD framework can be applied

in to various online change detection applications: intrusion detection, target detection in

video stream and etc. Namely, the task to design a specific offline approach to learn the

labels of intended changes or targets, and train a supervised online detection model based

on the learned labels. After then the hidden changes or targets can be detected by the

trained model in an online manner.

164

Bibliography

[1] Activemon, https://www.oar.net/initiatives/itecohio/activemon, November 2013.

[2] Nagios, http://www.nagios.org/, November 2013.

[3] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. Link prediction on evolv-
ing data using matrix and tensor factorizations. In Data Mining Workshops, 2009.
ICDMW’09. IEEE International Conference on, pages 262–269. IEEE, 2009.

[4] Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection.
arXiv preprint arXiv:0710.3742, 2007.

[5] Sandip Agarwala, Yuan Chen, Dejan Milojicic, and Karsten Schwan. Qmon: Qos-
and utility-aware monitoring in enterprise systems. In Autonomic Computing, 2006.
ICAC’06. IEEE International Conference on, pages 124–133. IEEE, 2006.

[6] Reena Aggarwal, Carla Inclan, and Ricardo Leal. Volatility in emerging stock markets.
Journal of Financial and Quantitative Analysis, 34(1), 1999.

[7] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed
membership stochastic blockmodels. Journal of Machine Learning Research (JMLR),
9:1981–2014, 2008.

[8] Hirotugu Akaike. A new look at the statistical model identification. Automatic Con-
trol, IEEE Transactions on, 19(6):716–723, 1974.

[9] EC Amazon. Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute
Cloud (Amazon EC2), 2010.

[10] Elena Andreou and Eric Ghysels. Detecting multiple breaks in financial market volatil-
ity dynamics. Journal of Applied Econometrics, 17(5):579–600, 2002.

[11] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs
Konya, Maarten Litmaath, Paul Millar, and JP Navarro. Glue specification v. 2.0. In
Open Grid Forum Recommendation Documents. Open Grid Forum, 2009.

[12] Sergio Andreozzi, Augusto Ciuffoletti, Antonia Ghiselli, Demetres Antoniades,
Michalis Polychronakis, Evangelos P Markatos, and Panos Trimintzios. On the in-
tegration of passive and active network monitoring in grid systems. In Integrated
Research in GRID Computing, pages 147–161. Springer, 2007.

[13] Yupaporn Areepong. Explicit formulas of average run length for a moving average
control chart for monitoring the number of defective products. International Journal
of Pure and Applied Mathematics, 80(3):331–343, 2012.

165

[14] Leo A Aroian and Howard Levene. The effectiveness of quality control charts. Journal
of the American Statistical Association, 45(252):520–529, 1950.

[15] Parvin Asadzadeh, Rajkumar Buyya, C Ling Kei, Deepa Nayar, and Srikumar Venu-
gopal. Global grids and software toolkits: A study of four grid middleware technologies.
Wiley Press, New Jersey, USA, 2005.

[16] Ivan E Auger and Charles E Lawrence. Algorithms for the optimal identification of
segment neighborhoods. Bulletin of mathematical biology, 51(1):39–54, 1989.

[17] Stefano Bagnasco, L Betev, P Buncic, F Carminati, C Cirstoiu, C Grigoras,
A Hayrapetyan, A Harutyunyan, AJ Peters, and P Saiz. Alien: Alice environment
on the grid. In Journal of Physics: Conference Series, volume 119, page 062012. IOP
Publishing, 2008.

[18] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using magpie
for request extraction and workload modelling. In OSDI, volume 4, pages 18–18, 2004.

[19] Daniel Barry and John A Hartigan. Product partition models for change point prob-
lems. The Annals of Statistics, pages 260–279, 1992.

[20] Daniel Barry and John A Hartigan. A bayesian analysis for change point problems.
Journal of the American Statistical Association, 88(421):309–319, 1993.

[21] Michele Basseville and Igor V Nikiforov. Detection of abrupt changes: theory and
applications. Journal of the Royal Statistical Society-Series A Statistics in Society,
158(1):185, 1995.

[22] Gowtham Bellala, Jason Stanley, Clayton Scott, and Suresh K Bhavnani. Active
diagnosis via auc maximization: An efficient approach for multiple fault identification
in large scale, noisy networks. arXiv preprint arXiv:1202.3701, 2012.

[23] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. Exposure: Find-
ing malicious domains using passive dns analysis. In NDSS, 2011.

[24] Lucien Birgé and Pascal Massart. Minimal penalties for gaussian model selection.
Probability theory and related fields, 138(1-2):33–73, 2007.

[25] H. Blodget. Amazon’s cloud crash disaster permanently destroyed many customers’
data, April 2011.

[26] B. Borchers. Csdp, a c library for semidefinite programming. Optimization Methods
and Software, 11(1):613–623, 1999.

[27] Richard J Boys and Daniel A Henderson. A bayesian approach to dna sequence
segmentation. Biometrics, 60(3):573–581, 2004.

[28] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

[29] Rasmus Bro. Parafac. tutorial and applications. Chemometrics and intelligent labo-
ratory systems, 38(2):149–171, 1997.

166

[30] Mark Brodie, Irina Rish, and Sheng Ma. Optimizing probe selection for fault local-
ization. 2001.

[31] Mark Brodie, Irina Rish, and Sheng Ma. Intelligent probing: A cost-effective approach
to fault diagnosis in computer networks. IBM Systems Journal, 41(3):372–385, 2002.

[32] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Trans. Inf. Theor., 56(5):2053–2080, 2010.

[33] Jie Chen and A Arjun K Gupta. Parametric Statistical Change Point Analysis: With
Applications to Genetics, Medicine, and Finance. Springer, 2012.

[34] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. Pin-
point: Problem determination in large, dynamic internet services. In Dependable
Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on,
pages 595–604. IEEE, 2002.

[35] Betty HC Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper
Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, et al. Software
engineering for self-adaptive systems: A research roadmap. Springer, 2009.

[36] Lu Cheng, Xuesong Qiu, Luoming Meng, Yan Qiao, and Raouf Boutaba. Efficient
active probing for fault diagnosis in large scale and noisy networks. In INFOCOM,
2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[37] Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Lúıs Fabŕıcio W Góes, and
William Voorsluys. On the efficacy, efficiency and emergent behavior of task replica-
tion in large distributed systems. Parallel Computing, 33(3):213–234, 2007.

[38] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons.
Correlating instrumentation data to system states: A building block for automated
diagnosis and control. In OSDI, volume 4, pages 16–16, 2004.

[39] Les Cottrell, Warren Matthews, and Connie Logg. Tutorial on internet monitoring &
pinger at slac, 2000.

[40] Matthew S Crouse, Robert D Nowak, and Richard G Baraniuk. Wavelet-based statis-
tical signal processing using hidden markov models. Signal Processing, IEEE Trans-
actions on, 46(4):886–902, 1998.

[41] R Ferreira Da Silva, T Glatard, F Desprez, et al. Self-healing of workflow activ-
ity incidents on distributed computing infrastructures. Future Generation Computer
Systems, 2013.

[42] Scott W Davenport, Tarik Pertev Soydan, and Louis Yonlo Tsien. Method and sys-
tem for platform independent fault management, May 31 2011. US Patent App.
13/118,723.

[43] Richard A Davis, Thomas C M Lee, and Gabriel A Rodriguez-Yam. Structural break
estimation for nonstationary time series models. Journal of the American Statistical
Association, 101(473):223–239, 2006.

167

[44] Frédéric Desobry, Manuel Davy, and Christian Doncarli. An online kernel change
detection algorithm. Signal Processing, IEEE Transactions on, 53(8):2961–2974, 2005.

[45] Idris A Eckley, Paul Fearnhead, and Rebecca Killick. Analysis of changepoint models.
2011.

[46] Mattias Ellert, Michael Grønager, Aleksandr Konstantinov, Balázs Kónya, Jonas Lin-
demann, Ilja Livenson, Jakob Langgaard Nielsen, Marko Niinimäki, Oxana Smirnova,
and Anders Wäänänen. Advanced resource connector middleware for lightweight com-
putational grids. Future Generation computer systems, 23(2):219–240, 2007.

[47] Paul Fearnhead. Exact bayesian curve fitting and signal segmentation. Signal Pro-
cessing, IEEE Transactions on, 53(6):2160–2166, 2005.

[48] Paul Fearnhead. Exact and efficient bayesian inference for multiple changepoint prob-
lems. Statistics and computing, 16(2):203–213, 2006.

[49] Paul Fearnhead and Zhen Liu. On-line inference for multiple changepoint problems.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):589–
605, 2007.

[50] Dawei Feng, Cécile Germain, and Tristan Glatard. Efficient distributed monitor-
ing with active collaborative prediction. Future Generation Computer Systems,
29(8):2272–2283, 2013.

[51] Dawei Feng, Cecile Germain-Renaud, and Tristan Glatard. Distributed monitoring
with collaborative prediction. In 12th Int. Symp. On Cluster, Cloud and Grid Com-
puting, pages 376–383, 2012.

[52] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Stoica. X-
trace: A pervasive network tracing framework. In Proceedings of the 4th USENIX
conference on Networked systems design & implementation, pages 20–20. USENIX
Association, 2007.

[53] I. Foster. The globus toolkit for grid computing. In IEEE Int. Symp. on Cluster
Computing and the Grid, 2001.

[54] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International journal of high performance computing
applications, 15(3):200–222, 2001.

[55] Edward B Fowlkes and Colin L Mallows. A method for comparing two hierarchical
clusterings. Journal of the American statistical association, 78(383):553–569, 1983.

[56] A Frenkiel and H Lee. Epp: A framework for measuring the end-to-end performance
of distributed applications. In Proc. Performance Engineering Best Practices Confer-
ence, number 1999, 1999.

[57] Garcıa-Neiva et al. A characterisation of dynamic distributed systems. Technical
report, Institut Universitari Mixt Tecnologic deInformatica, 2012.

[58] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Friday: Global comprehension for distributed replay. In NSDI, volume 7, pages 285–
298, 2007.

168

[59] Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debug-
ging for distributed applications, volume 68. 2006.

[60] Debanjan Ghosh, Raj Sharman, H Raghav Rao, and Shambhu Upadhyaya. Self-
healing systemssurvey and synthesis. Decision Support Systems, 42(4):2164–2185,
2007.

[61] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[62] Gene H Golub and Christian Reinsch. Singular value decomposition and least squares
solutions. Numerische Mathematik, 14(5):403–420, 1970.

[63] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-
rank tensor approximation techniques. arXiv preprint arXiv:1302.7121, 2013.

[64] Olivia A Grigg and David J Spiegelhalter. An empirical approximation to the null
unbounded steady-state distribution of the cumulative sum statistic. Technometrics,
50(4):501–511, 2008.

[65] Peter D Grünwald, In Jae Myung, and Mark A Pitt. Advances in minimum description
length: Theory and applications. MIT press, 2005.

[66] Boris Gruschke et al. Integrated event management: Event correlation using de-
pendency graphs. In Proceedings of the 9th IFIP/IEEE International Workshop on
Distributed Systems: Operations & Management (DSOM 98), pages 130–141, 1998.

[67] Xavier Guyon and Jian feng Yao. On the underfitting and overfitting sets of models
chosen by order selection criteria. Journal of Multivariate Analysis, 70(2):221–249,
1999.

[68] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical
accountability for distributed systems. ACM SIGOPS Operating Systems Review,
41(6):175–188, 2007.

[69] Douglas M Hawkins. Testing a sequence of observations for a shift in location. Journal
of the American Statistical Association, 72(357):180–186, 1977.

[70] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and
Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[71] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorith-
mic framework for performing collaborative filtering. In 22nd ACM SIGIR conference
on Research and development in information retrieval, pages 230–237, 1999.

[72] Eric Hitti and Marie-Françoise Lucas. Wavelet-packet basis selection for abrupt
changes detection in multicomponent signals. In Proc. EUSIPCO, pages 8–11, 1998.

[73] Holger Hoefling. A path algorithm for the fused lasso signal approximator. Journal
of Computational and Graphical Statistics, 19(4):984–1006, 2010.

[74] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C Freiling. Measuring
and detecting fast-flux service networks. In NDSS, 2008.

169

[75] Lajos Horváth. The maximum likelihood method for testing changes in the parameters
of normal observations. The Annals of statistics, 21(2):671–680, 1993.

[76] Chengdu Huang, Ira Cohen, Julie Symons, and Tarek Abdelzaher. Achieving scal-
able automated diagnosis of distributed systems performance problems. Enterprise
Systems and Software Laboratory, HP Laboratories Palo Alto. Palo Alto, CA. Rep.
HPL-2006-160, 1, 2007.

[77] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,
2(1):193–218, 1985.

[78] Tsuyoshi Ide and Hisashi Kashima. Eigenspace-based anomaly detection in com-
puter systems. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 440–449. ACM, 2004.

[79] Carla Inclan and George C Tiao. Use of cumulative sums of squares for retrospective
detection of changes of variance. Journal of the American Statistical Association,
89(427):913–923, 1994.

[80] Seidu Inusah and Tomasz J Kozubowski. A discrete analogue of the laplace distribu-
tion. Journal of statistical planning and inference, 136(3):1090–1102, 2006.

[81] Brad Jackson, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter
Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao
Tsai. An algorithm for optimal partitioning of data on an interval. Signal Processing
Letters, IEEE, 12(2):105–108, 2005.

[82] Nicholas A James and David S Matteson. ecp: An r package for nonparametric
multiple change point analysis of multivariate data. Technical report, Technical report,
Cornell University, 2013.

[83] Ravi Jhawar, Vincenzo Piuri, and Marco Santambrogio. Fault tolerance management
in cloud computing: A system-level perspective. 2012.

[84] T. Joachims. A support vector method for multivariate performance measures. In
International Conference on Machine Learning (ICML), pages 377–384, 2005.

[85] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Pad-
hye, and Paramvir Bahl. Detailed diagnosis in enterprise networks. ACM SIGCOMM
Computer Communication Review, 39(4):243–254, 2009.

[86] Yoshinobu Kawahara and Masashi Sugiyama. Change-point detection in time-series
data by direct density-ratio estimation. In SDM, volume 9, pages 389–400, 2009.

[87] Yoshinobu Kawahara, Takehisa Yairi, and Kazuo Machida. Change-point detection
in time-series data based on subspace identification. In Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on, pages 559–564. IEEE, 2007.

[88] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[89] Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat. Life, death, and
the critical transition: Finding liveness bugs in systems code. NSDI 07: Networked
Systems Design and Implementation, pages 243–256, 2007.

170

[90] Rebecca Killick, Paul Fearnhead, and IA Eckley. Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association,
107(500):1590–1598, 2012.

[91] Ross Kindermann, James Laurie Snell, et al. Markov random fields and their appli-
cations, volume 1. American Mathematical Society Providence, RI, 1980.

[92] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[93] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In 14th ACM SIGKDD int. conf. on Knowledge discovery and data
mining, pages 426–434, 2008.

[94] Yehuda Koren. Collaborative Filtering with Temporal Dynamics. In 15th ACM
SIGKDD international conference on Knowledge Discovery and Data Mining, pages
447–456, 2009.

[95] Yehuda Koren. The BellKor Solution to the Netflix Grand Prize. Technical report,
Yahoo! Research, 2009.

[96] Akshay Krishnamurthy and Aarti Singh. Low-rank matrix and tensor completion
via adaptive sampling. In Advances in Neural Information Processing Systems, pages
836–844, 2013.

[97] Rupa Krishnan, Harsha V Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. Moving beyond end-to-end path
information to optimize cdn performance. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, pages 190–201. ACM, 2009.

[98] Erwin Laure, A Edlund, F Pacini, P Buncic, M Barroso, A Di Meglio, F Prelz,
A Frohner, O Mulmo, A Krenek, et al. Programming the grid with glite. Technical
report, 2006.

[99] Helene Laurent and Christian Doncarli. Stationarity index for abrupt changes detec-
tion in the time-frequency plane. Signal Processing Letters, IEEE, 5(2):43–45, 1998.

[100] Jason Lee, Ben Recht, Nathan Srebro, Joel Tropp, and Ruslan Salakhutdinov. Prac-
tical large-scale optimization for max-norm regularization. In Advances in Neural
Information Processing Systems, pages 1297–1305, 2010.

[101] Bin Li, Xingquan Zhu, Ruijiang Li, Chengqi Zhang, Xiangyang Xue, and Xindong
Wu. Cross-domain collaborative filtering over time. In Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence-Volume Volume Three,
pages 2293–2298. AAAI Press, 2011.

[102] Zhichun Li, Ming Zhang, Zhaosheng Zhu, Yan Chen, Albert G Greenberg, and Yi-Min
Wang. Webprophet: Automating performance prediction for web services. In NSDI,
volume 10, pages 10–10, 2010.

[103] Yi Lin, Grace Wahba, Hao Zhang, and Yoonkyung Lee. Statistical properties and
adaptive tuning of support vector machines. Machine Learning, 48:115–136, Septem-
ber 2002.

171

[104] Diane Lingrand, Johan Montagnat, Janusz Martyniak, and David Colling. Optimiza-
tion of jobs submission on the egee production grid: modeling faults using workload.
Journal of Grid Computing, 8(2):305–321, 2010.

[105] Max A Little and Nick S Jones. Generalized methods and solvers for noise removal
from piecewise constant signals. i. background theory. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, 467(2135):3088–3114, 2011.

[106] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion
for estimating missing values in visual data. In Computer Vision, 2009 IEEE 12th
International Conference on, pages 2114–2121. IEEE, 2009.

[107] Jun S. Liu and Charles E. Lawrence. Bayesian inference on biopolymer models.
Bioinformatics, 15(1):38–52, 1999.

[108] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, M Frans Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed
systems. In NSDI, volume 8, pages 423–437, 2008.

[109] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. Wids checker: Combating
bugs in distributed systems. In NSDI, 2007.

[110] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. 2004.

[111] Bruce B Lowekamp. Combining active and passive network measurements to build
scalable monitoring systems on the grid. ACM SIGMETRICS Performance Evalua-
tion Review, 30(4):19–26, 2003.

[112] James M Lucas and Michael S Saccucci. Exponentially weighted moving average
control schemes: properties and enhancements. Technometrics, 32(1):1–12, 1990.

[113] Lester W. Mackey, David Weiss, and Michael I. Jordan. Mixed membership matrix
factorization. In 27th International Conference on Machine Learning (ICML-10),
2010.

[114] T Maeno. Panda: distributed production and distributed analysis system for atlas.
Journal of Physics: Conference Series, 119(6):062036, 2008.

[115] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the
American statistical Association, 46(253):68–78, 1951.

[116] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[117] David S Matteson and Nicholas A James. A nonparametric approach for multiple
change point analysis of multivariate data. arXiv preprint arXiv:1306.4933, 2013.

[118] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages 1257–1264, 2007.

[119] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining statistical
learning with a knowledge-based approach - a case study in intensive care monitoring.
In 16th Int. Conf. on Machine Learning, pages 268–277, 1999.

172

[120] J. T. Moscicki. Diane - distributed analysis environment for grid-enabled simulation
and analysis of physics data. In Nuclear Science Symposium Conference Record, 2003
IEEE, volume 3, pages 1617–1620 Vol.3, 2003.

[121] Valentina Moskvina and Anatoly Zhigljavsky. An algorithm based on singular spec-
trum analysis for change-point detection. Communications in Statistics-Simulation
and Computation, 32(2):319–352, 2003.

[122] Adam B Olshen, ES Venkatraman, Robert Lucito, and Michael Wigler. Circular bi-
nary segmentation for the analysis of array-based dna copy number data. Biostatistics,
5(4):557–572, 2004.

[123] AN Pettitt. A non-parametric approach to the change-point problem. Applied statis-
tics, pages 126–135, 1979.

[124] Franck Picard, Stephane Robin, Marc Lavielle, Christian Vaisse, and Jean-Jacques
Daudin. A statistical approach for array cgh data analysis. BMC bioinformatics,
6(1):27, 2005.

[125] Aleksey S Polunchenko and Alexander G Tartakovsky. State-of-the-art in sequen-
tial change-point detection. Methodology and Computing in Applied Probability,
14(3):649–684, 2012.

[126] Ian Porteous, Evgeniy Bart, and Max Welling. Multi-hdp: a non parametric bayesian
model for tensor factorization. In 23rd Conf. on Artificial Intelligence, pages 1487–
1490, 2008.

[127] Mohammed Abdul Qadeer, Mohammad Zahid, Arshad Iqbal, and MisbahurRahman
Siddiqui. Network traffic analysis and intrusion detection using packet sniffer. In
Communication Software and Networks, 2010. ICCSN’10. Second International Con-
ference on, pages 313–317. IEEE, 2010.

[128] Lawrence Rabiner and B Juang. An introduction to hidden markov models. ASSP
Magazine, IEEE, 3(1):4–16, 1986.

[129] William M Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, 66(336):846–850, 1971.

[130] Benjamin Recht. A simpler approach to matrix completion. J. Mach. Learn. Res.,
12:3413–3430, 2011.

[131] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM Rev.,
52(3):471–501, 2010.

[132] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

[133] Patrick Reynolds, Charles Edwin Killian, Janet L Wiener, Jeffrey C Mogul, Mehul A
Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed systems. In
NSDI, volume 6, pages 115–128, 2006.

173

[134] H. Rifai, S. Mohammed, and A. Mellouk. A brief synthesis of QoS-QoE methodologies.
In 10th Int. Symp. on Programming and Systems, pages 32–38, 2011.

[135] Guillem Rigaill. Pruned dynamic programming for optimal multiple change-point
detection. arXiv preprint arXiv:1004.0887, 2010.

[136] Irina Rish and al. al. al. al. Adaptive diagnosis in distributed systems. IEEE Trans.
Neural Networks, 16(5):1088–1109, 2005.

[137] Irina Rish, Mark Brodie, Natalia Odintsova, Sheng Ma, and Genady Grabarnik. Real-
time problem determination in distributed systems using active probing. In Network
Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP, volume 1,
pages 133–146. IEEE, 2004.

[138] Irina Rish and Gerald Tesauro. Estimating end-to-end performance by collaborative
prediction with active sampling. In Integrated Network Management, pages 294–303,
2007.

[139] Maria L Rizzo and Gábor J Székely. Disco analysis: A nonparametric extension of
analysis of variance. The Annals of Applied Statistics, 4(2):1034–1055, 2010.

[140] Gordon J Ross. Parametric and nonparametric sequential change detection in r: The
cpm package. Journal of Statistical Software, 2013.

[141] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths. The Annals
of Statistics, pages 1012–1030, 2007.

[142] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[143] Ramendra K Sahoo, Adam J Oliner, Irina Rish, Manish Gupta, José E Moreira,
Sheng Ma, Ricardo Vilalta, and Anand Sivasubramaniam. Critical event prediction
for proactive management in large-scale computer clusters. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 426–435. ACM, 2003.

[144] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In Proceedings of the 25th international conference
on Machine learning, pages 880–887. ACM, 2008.

[145] Ruslan Salakhutdinov and Nathan Srebro. Collaborative filtering in a non-uniform
world: Learning with the weighted trace norm. In 24th Conference on Neural Infor-
mation Processing Systems (NIPS), pages 2056–2064, 2010.

[146] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys (CSUR), 42(3):10, 2010.

[147] Judith Samson and Manfred Warmuth. Predicting round trip time for the tcp proto-
col. 2013.

[148] Gideon Schwarz. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

174

[149] Mouhamadou Seck, Ivan Magrin-Chagnolleau, and Frédéric Bimbot. Experiments on
speech tracking in audio documents using gaussian mixture modeling. In Acoustics,
Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE Interna-
tional Conference on, volume 1, pages 601–604. IEEE, 2001.

[150] Beilu Shao, Daniele Renzi, Peter Amon, Georgios Xilouris, Nikos Zotos, Stefano Bat-
tista, Anastasios Kourtis, and Marco Mattavelli. An adaptive system for real-time
scalable video streaming with end-to-end qos control. In Image Analysis for Multi-
media Interactive Services (WIAMIS), 2010 11th International Workshop on, pages
1–4. IEEE, 2010.

[151] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel. Using queries
for distributed monitoring and forensics. ACM SIGOPS Operating Systems Review,
40(4):389–402, 2006.

[152] Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola. Maximum-margin matrix
factorization. In Advances in Neural Information Processing Systems 17, pages 1329–
1336, 2005.

[153] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Learning
Theory, pages 545–560. Springer, 2005.

[154] Xiaoyuan Su and Taghi M Khoshgoftaar. A survey of collaborative filtering tech-
niques. Advances in artificial intelligence, 2009:4, 2009.

[155] Gabor J Szekely and Maria L Rizzo. Hierarchical clustering via joint between-within
distances: Extending ward’s minimum variance method. Journal of classification,
22(2):151–183, 2005.

[156] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable col-
laborative filtering approaches for large recommender systems. Journal of Machine
Learning Research (JMLR), 10:623–656, 2009.

[157] Ryan Joseph Tibshirani. The solution path of the generalized lasso. Stanford Univer-
sity, 2011.

[158] Simon Tong and Daphne Koller. Support vector machine active learning with appli-
cations to text classification. J. Mach. Learn. Res., 2, March 2002.

[159] Hai Tran and Abdelhamid Mellouk. Qoe model driven for network services. In
Wired/Wireless Internet Communications, volume 6074 of LNCS, pages 264–277.
2010.

[160] A Tsaregorodtsev and al. al. al. al. DIRAC3 . The New Generation of the LHCb Grid
Software. Journal of Physics: Conference Series, 219(6):062029, 2009.

[161] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453–1484, September 2005.

[162] Ryan Darby Turner. Gaussian processes for state space models and change point
detection. 2012.

175

[163] Tim van Erven, Peter Grünwald, and Steven de Rooij. Catching up faster by switching
sooner: a predictive approach to adaptive estimation with an application to the aic–bic
dilemma. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
74(3):361–417, 2012.

[164] Weijia Wang and Michèle Sebag. Hypervolume indicator and dominance reward based
multi-objective monte-carlo tree search. Machine learning, 92(2-3):403–429, 2013.

[165] Wenwei Weng, Minghui Zhu, and Vishnu Kant Varma. Auto probing endpoints for
performance and fault management, November 19 2010. US Patent App. 12/950,916.

[166] Keith Winstein and Hari Balakrishnan. End-to-end transmission control by modeling
uncertainty about the network state. In Proceedings of the 10th ACM Workshop on
Hot Topics in Networks, page 19. ACM, 2011.

[167] KJ Worsley. An improved bonferroni inequality and applications. Biometrika,
69(2):297–302, 1982.

[168] Xiang Xuan and Kevin Murphy. Modeling changing dependency structure in multi-
variate time series. In Proceedings of the 24th international conference on Machine
learning, pages 1055–1062. ACM, 2007.

[169] Lian Yan, Robert H. Dodier, Michael Mozer, and Richard H. Wolniewicz. Opti-
mizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney
Statistic. In 20th International Conference on Machine Learning (ICML-03), pages
848–855, 2003.

[170] Yi-Ching Yao. Estimation of a noisy discrete-time step function: Bayes and empirical
bayes approaches. The Annals of Statistics, pages 1434–1447, 1984.

[171] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1):6,
2007.

[172] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pa-
supathy. Sherlog: error diagnosis by connecting clues from run-time logs. In ACM
SIGARCH Computer Architecture News, volume 38, pages 143–154. ACM, 2010.

[173] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid monitoring systems.
Future Generation Computer Systems, 21(1):163–188, 2005.

[174] Nancy R Zhang and David O Siegmund. A modified bayes information criterion with
applications to the analysis of comparative genomic hybridization data. Biometrics,
63(1):22–32, 2007.

[175] Xiangliang Zhang, Cyril Furtlehner, Cecile Germain-Renaud, and Michèle Sebag.
Data stream clustering with affinity propagation. IEEE Transactions on Knowledge
and Data Engineering, 2014.

[176] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, and Simon Gibbs. To-
wards an elastic application model for augmenting the computing capabilities of mo-
bile devices with cloud computing. Mobile Networks and Applications, 16(3):270–284,
2011.

176

[177] Alice X Zheng, Irina Rish, and Alina Beygelzimer. Efficient test selection in active
diagnosis via entropy approximation. arXiv preprint arXiv:1207.1418, 2012.

[178] Zibin Zheng and Michael R. Lyu. Collaborative reliability prediction of service-
oriented systems. In 32nd ACM/IEEE Int. Conf. on Software Engineering, 2010.

[179] Ziming Zheng, Zhiling Lan, Byung-Hoon Park, and Al Geist. System log pre-
processing to improve failure prediction. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on, pages 572–577. IEEE, 2009.

[180] Wenchao Zhou. Fault management in distributed systems. 2010.

177

	Modele_page_de_titre_UPS - en
	main
	Introduction
	Fault Monitoring
	Introduction
	Fault management for distributed middleware
	Data acquisition
	Fault analysis
	Motivating application
	Diagnosis at work

	Collaborative Fault Monitoring
	Collaborative prediction for fault inference
	Motivation
	Fault inference as a matrix completion problem
	Collaborative prediction
	Goals and methods
	Matrix completion

	Experimental setting
	The data sets
	Evaluation methodology
	Computational cost

	Experimental results with MMMF
	Static-uniform
	Active probing
	Cost sensitive + Active probing

	AUC optimization within MMMF
	Mixed membership matrix factorization
	Conclusion

	Sequential Fault Monitoring
	Introduction
	Motivation
	Categorization
	Problem statement

	Background
	Temporal methods
	Collapsed methods
	Tensor factorization

	Sequential matrix factorization
	SMF algorithm
	Sequential matrix factorization with active sampling
	Smoothing the outputs
	Summary

	Experiments
	Data description
	MMMF, SMF, MMMFA
	Method by method analysis
	Comparisons between methods on noncurated dataset
	Curated dataset
	Method by method analysis on curated dataset
	Comparisons between methods on curated dataset
	Improving prediction performance on curated dataset

	Conclusion

	Sequential Change Detection
	Introduction
	Change point detection
	Problem statement
	Topology of offline methods
	Topology of online methods
	Performance criteria

	Semi-supervised online change detection
	Motivation
	Semi-Supervised online change detection framework, SSOCD
	Offline segmentation methods
	Supervised Bayesian online change point detection

	Experimental setting
	Dataset
	Change detection under the SSOCD framework

	Experimental results
	Active data
	Passive data

	Conclusion

	Conclusions and Perspectives
	Summary
	Perspectives

