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Summary

For durability analysis and economic design (less material) of structures made of concrete-like
materials, modeling of cracking process and failure is essential. In the framework of continuum
mechanics, an internal length is introduced in nonlocal models to remedy the problem related to
mesh sensitivity which is a pathology of classical damage models, when dealing with softening
materials. However, the assessment of the internal length from heterogeneities of the material
is still a difficult question, which makes an obscure issue in using nonlocal models. Our work
concerns developing of a numerical tool based on the Lattice Element Method (LEM) which is a
discrete model for simulating and predicting fracture in concrete(-like) material. Using the lattice
model at the mesoscopic scale, there is no need to introduce any internal length in the constitutive
law, as done in nonlocal models, and we can enfranchise this parameter by explicitly introducing
the material mesotructure via geometric description. Based on the developed numerical tool, we
studied, by performing numerical uniaxial tensile tests, the geometric influence of the material
mesotructure as well as the influence of the boundary conditions and specimen sizes (that result in
different stress gradient and material rotation field) on the size of the FPZ (Fracture Process Zone)
and on the characteristic length of the homogenized quasi-brittle material. These studies provide
recommendations/warnings when extracting an internal length required for nonlocal damage
models from the material microstructure. Moreover, the studies contribute a direct insight into the
mesoscale origin of the FPZ size and the material characteristic length, and consequently into the
origin and nature of the nonlinear behavior of the material.

Then, we implemented the lattice model into SOFA library developed by INRIA for realiz-
ing the coupling with the Finite Element Method (FEM) in order to deal with large-scale structures.
We proposed a strong coupling algorithm between a macroscopic approach represented by FEM
and a mesoscopic approach dealt by LEM within an adaptive manner. The coupling model is first
used to validate the multiscale approach proposed on heuristic simulations. And in the long term,
it provides a promising tool for simulations of large-scale structures made of quasi-brittle materials
of real life.

Keywords: Quasi-brittle materials, material internal length, characteristic length, fracture,
cracking, failure, multiscale modeling, LEM, FEM.
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Résumé

Pour l’analyse de durabilité et la conception économique (moins de matériau) des structures en
matériaux ressemblant à béton, la modélisation de la rupture est essentielle. Dans le cadre de
la mécanique des milieux continus, une longueur interne est introduite dans les modèles non
locaux pour remédier le problème lié à la sensibilité du maillage qui est une pathologie des
modèles d’endommagement classiques, lorsqu’on fait face aux matériaux adoucissants. Toutefois,
l’évaluation de la longueur interne à partir des hétérogénéités du matériau est toujours une question
difficile, ce qui rend obscur en utilisant des modèles non locaux. Nos travaux portent sur le
développement d’un outil numérique basé sur la méthode des éléments de lattice (LEM) qui est un
modèle discret pour la simulation et la prévision de la rupture des structures en béton. En utilisant
le modèle de lattice à l’échelle mésoscopique, il n’est pas nécessaire d’introduire une longueur
interne dans la loi de comportement, comme cela se fait dans les modèles non locaux, et nous
pouvons affranchir ce paramètre en introduisant explicitement la mesotructure du matériau via une
description géométrique. Basé sur l’outil numérique développé, nous avons étudié, en effectuant
des tests numériques de traction uni-axiale, l’influence géométrique de la mesotructure du matériau
ainsi que l’influence des conditions aux limites et de tailles des échantillons (qui se traduisent par
la différence du gradient de sollicitation et du champ de rotation matériel) sur la taille de la FPZ
(fracture process zone) et sur la longueur caractéristique du matériau quasi-fragile homogénéisé.
Ces études fournissent des recommandations/avertissements lors de l’extraction d’une longueur
interne nécessaire pour les modèles non locaux à partir de la microstructure du matériau. Par
ailleurs, les études contribuent un aperçu direct de l’origine mésoscopic de la taille de la FPZ et la
longueur caractéristique du matériau, et par conséquent sur l’origine et la nature du comportement
non linéaire du matériau.

Ensuite, nous avons implanté le modèle de lattice dans la bibliothèque de SOFA développé
par l’INRIA pour réaliser le couplage avec la méthode des éléments finis (MEF) afin de faire
face aux structures à grande échelle. Nous avons proposé un algorithme de couplage entre une
approche macroscopique représentée par MEF et une approche mésoscopique représentée par
LEM au sein d’une manière adaptative. Le modèle de couplage est d’abord utilisée pour valider
l’approche multi-échelle proposée sur des simulations heuristiques. Et à long terme, il fournit un
outil prometteur pour des simulations des grandes structures en matériaux quasi-fragiles de la vie
réelle.

Mots-clés: Matériaux quasi-fragiles, la longueur interne, la longueur caractéristique, fracture,
fissuration, rupture, approche multi-échelle, LEM, MEF.
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Introduction

Background, context and objective

Concrete is widely used in our world today due to its simplicity in elaboration, low cost and high
performance in heat resistance, compared to other materials such as metals, wood. Indeed, structures
made of concrete have become ubiquitous, and it is really hard to imagine modern life without them.
However in practice, structures made of concrete are actually more or less full of cracks due to
extreme mechanical loadings, shrinkage or temperature changes. Furthermore, for any reinforced
concrete structures, cracking is the entering point to aggressive contaminants (chloride and other
ions from road salts, marine environments, and ground soils, etc.) that react either with hydrates or
aggregates of concrete or with rebars. The increase of transfer properties will drastically reduce the
service life duration of the structures. Therefore, knowledge about the fracture process in concrete
is very useful for both conception and durability analysis of structures.

In engineering field, numerical modeling of failure of the material is very important because
the description of structural behavior by experimentation might not be feasible due to too high cost,
inaccessibility of input and output data because of too large dimensions of structures which are not
compatible with human dimensions, etc. In addition, numerical modeling can provide fundamen-
tal understanding of the fracture process, which will be of great benefit in terms of design (less
material), of service life and at the end for environment.

Nowadays, modeling of fracture of heterogeneous quasi-brittle materials including concrete,
ceramics, rocks is evolving over the past twenty years, and becomes a key part of engineering and
science development. It is well known that quasi-brittle materials are characterized initially by a
quasi elastic stage, and before reaching the peak, microcracks begin to appear. Nearly from the peak,
localization of damage occurs in a narrow band with finite size which is called the fracture process
zone (FPZ). The macrocrack develops in the localization zone and gradually grows through the
specimen, which causes the gradual drop in load carrying capacity, until fully separation. Because
of this softening character, numerical simulations of quasi-brittle materials using continuum theory
requires the use of models with a representative internal length accounted for the interactions of
the material constituents at the microscale, e.g. nonlocal models (gradient or integral form), to
remedy the problem of mesh sensitivity of the numerical solution with respect to the element size
of the discretization. Physically, the internal length is related to the effective size of the FPZ. The
internal length cannot be directly measured but can be indirectly inferred from experiment results.
Based on experiments, the literature often reports a linear or affine relation between the internal
length and the maximum size of aggregates, or between the internal length and the characteristic
size of a structure in the size effect plot. But actually, varying the aggregate size or the specimen
size in experiments may lead to a number of changes in the aggregate structure characterized by
many other parameters such as the volume fraction of aggregate, their size dispersion, their fabric
or connectivity, or in stress field, respectively. Accordingly, the proposed relations in the literature
can hardly be considered as general rules. Since so far no explicitly reliable relation is proposed for
the assessment of the internal length, it makes obscure in using the nonlocal models and one usually
bases on a manual trial-and-error technique.

From that, the main motivation is to develop a numerical model that does not introduce any
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internal length in the constitutive law and can enfranchise this parameter by explicitly introducing
aggregates in the geometric description. Moreover, through this model, a study of the influence of
the microstructure of the material on its behaviors at both prepeak and postpeak regimes can be
regarded. Then, an internal length required for nonlocal models is tried to be extracted from the
microstructure of the material or at least a better understanding of key features that may affect the
internal length can be provided from such study.

We interest particularly in lattice models which have become pertinent tools for studying the
fracture of heterogeneous materials. In fact, the lattice approach is very suitable for simulations of
fracture process because firstly the discontinuous displacement field is well captured thanks to the
intrinsic discrete feature of the models. Secondly, by using lattice approach with introduction of
the material heterogeneity by generating the material constituents, the crack propagation and crack
opening are explicitly produced, which are a direct tool in durability analyses of (concrete) structures
instead of estimating them from a continuum-based approach. In addition, lattice approach provides
a direct insight into the origin and nature of the nonlinear behavior of the material and can also
reflect physical effects observed in experiments such as grain decohesion, microcracking and crack
bridging observed in concrete. However, simulations with the lattice model at the mesoscale require
fine resolutions of the discretized mesh. Together with dealing with large-scale structures, they thus
lead to a vast number of degrees of freedom, in particular for three-dimensional analyses. Therefore,
the analysis of realistic large structures only with lattice models at the mesoscale is not feasible. So,
it seems that an appropriate combination of discrete approach at the mesoscale dealt by the lattice
approach and continuous approach at the macroscale treated by the finite element method (FEM),
which results in a multiscale approach, is essential

The objective of the research presented in this thesis is to develop a numerical tool based on lat-
tice models that allows for simulating the fracture process of quasi-brittle heterogeneous materials.
Based on this tool, a study of the mesoscale origin of the FPZ size and the material characteristic
length is performed in order to find out a correlation between the material mesostructure and the
internal length used in nonlocal models or simply to clarify the role of the mesotructure in the re-
sulting FPZ size. Because of the localized nature of the fracture process in the softening branch, the
specimen size and boundary conditions must have a significant effect on the fracture process. Their
influence can be analyzed as well from this numerical tool. And in the long term, such numerical
tool should be capable of modeling the failure of large structures made of quasi-brittle materials in
civil engineering via a multiscale numerical approach.

An overview of the work done can be synthesized as follows:

� Developing a computational code based on the lattice models (normal-shear spring and beam
elements).

� Studying the influence of the material mesostructure on the characteristic length and the frac-
ture process zone size of the heterogeneous material using the lattice model at the mesoscale
with an explicit description of material microstructure.

� Analyzing the effect of the specimen size and boundary conditions (or generally the stress
gradient) on the characteristic length and the fracture process zone size.

� Implementing the lattice model into SOFA library developed by INRIA in order to perform
the coupling with finite elements.

� Developing the coupling algorithm provided for parallel computations and implementing such
coupling algorithm into SOFA architecture. However, the implementation of the full coupling
algorithm has not been accomplished yet.

The model, which will be outlined in this thesis, adopts a perfectly elastic brittle fracture law
at the mesoscale (aggregate particle scale) of the material and is capable of simulating crack face
bridging in the softening regime quite realistically. It is well known that, using the lattice models
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with the assumption of the brittleness of single lattice elements, the response of the material is too
brittle, particularly in two-dimensional simulations, when neglecting small particles in the material
microstructure. Nevertheless, in our studies, within the philosophy of keeping the simplicity of the
model with a limited number of parameters and the complexity of macroscopic response coming
from a rich geometric description of material microstructure, the brittleness assumption of lattice
elements is kept holding. Another reason why lattice elements with brittle elastic parameters are
used in the thesis is that, by performing the study on the influence of the material mesostructure, the
specimen size, boundary conditions on the characteristic length and the fracture process zone size,
we would like to analyze only the “physical” influence (coming from the aggregate structure, the
specimen size, boundary conditions) and not that of model softening parameters. The study is first
performed on elastic brittle model material by two-dimensional simulations. Then in the long term,
the study should be performed by three-dimensional (3D) simulations which provide a 3D effect of
cracking process as in structures of real life.

Scope and outline

The research presented in this thesis concerns the computational modeling of quasi-brittle materials
with an emphasis on concrete, subjected to mechanical loadings. The study is restricted to mode-
I failure problems occurring with small deformations under quasi-static loading conditions. The
continuum mechanics is assumed to hold on the macroscopic scale if there are more than one length
scale involved in the model. When there is only one scale involved in the model, the discrete lattice
model is used at the mesoscopic scale to better capture failure mechanisms at the material scale, and
the continuum mechanics is no longer assumed to hold. The term “multiscale” should be understood
as multiple (more than one) length scales that are included in the same framework.

The manuscript is composed of four chapters. Chapter 1 briefly describes what is currently
known about the behavior, particularly related to cracking of quasi-brittle materials with an emphasis
on concrete. From this, an overview of the state-of-the-art of numerical models dealing with such
materials is given. The pathologies of each model are pointed out, which lead to the goals of the
research.

Chapter 2 presents the lattice model that is used to deal with failure of concrete-like materials.
Formulation and implementation of the model will be outlined. The identification procedure of the
model parameters is next discussed before validating the model by some tests.

In Chapter 3, the influence of the material microstructure on the characteristic length of the ma-
terial and the FPZ size is analyzed by using the lattice model with an explicit geometric description
of aggregate structure. The study of the influence of the specimen size and boundary conditions
which result in different stress gradient on the FPZ size is pointed out as well. These studies provide
recommendations/warnings when extracting an internal length required for nonlocal damage models
from the material microstructure.

To deal with failure of large scale structures in civil engineering, Chapter 4 presents a coupling
procedure between the beam lattice model and finite elements in a multiscale framework with par-
allel computations.

Finally, the thesis is ended by summarizing the key issues of the work presented in this report
and posting recommendations and perspective for future research.
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Nowadays, quasi-brittle materials such as ceramics, rocks or specially concrete are widely used
in industry or civil engineering. Concrete, reinforced concrete and prestressed concrete struc-

tures have become ubiquitous, and in fact it is hard to imagine modern life without them. For
designing structures made of concrete, it is essential to know the strength of the concrete material
and the process of fracture growth in concrete under different loading conditions. Indeed reinforced
concrete is a composite material designed such that the tensile stresses are mainly carried by rein-
forcements while the compressive stresses are assured by concrete. This is the main reason why, in
contrary to other industrial materials, it is of a great importance to understand and model the crack-
ing process of the concrete even beyond the maximum bearing capacity (peak load). The tensile
strength of concrete is about 10% of the compressive strength. Because of this, the reinforcement
(mostly by steel) is used to increase the bearing capacity of the material and to control the develop-
ment of cracks when concrete is loaded in tension. Knowledge about the fracture process in concrete
is also very useful for durability analysis of structures. Indeed, the life time of a reinforced concrete
structure not only depends on strength of materials (steel, concrete) under mechanical loading but
also on the corrosion of reinforcing steel coming from the ingress of chloride and other ions from
road salts, marine environments, and ground soils. So, close attention has to be paid to the transport
properties of concrete (diffusivity, permeability, absorptivity, etc.) which are mainly related to the
cracking of concrete material. Therefore, cracking in concrete and its mechanism play an essential
role in the behavior and durability of concrete structures. It should be noted that although shrinkage
and temperature changes can lead to cracking, only cracks due to mechanical loadings are analyzed
in this report.

Modeling is an indispensable design tool for concrete structures since it provides a prediction of
the behavior of structures. However, the accuracy of the prediction mostly depends on the reliability
of described material models. Therefore, material models have to be derived from a measurement
of the behavior of the material in an experiment. The mechanical behavior of quasi-brittle materials
with an emphasis on concrete is briefly presented in the next section before reviewing the latest nu-
merical methods/models to deal with such materials. Furthermore, a short summary of the contents
of this report will be given.

1.1 Mechanical behavior of heterogeneous quasi-brittle materials

Quasi-brittle materials, such as concrete, exhibit a complex fracture mechanism involving micro-
cracks and macrocracks under extreme loading conditions. This complex fracture mechanism is
clearly related to their disordered microstructure. Before reviewing the fracture of these materials, it
is necessary to illustrate their heterogeneous microstructure, which might give a better understand-
ing and an explanation for their failure mechanisms.

1.1.1 Heterogeneity: the complexity of concrete microstructure

Concrete has a heterogeneous material structure at a certain level of observation. Varying from
millimeters to nanometers, its material structure contains different random constituents, in which
each constituent can be considered as a new composite material when seen at lower length scale,
refer to Figure 1.1.

At the length scale of millimeters, concrete (Figure 1.1a) can be considered as a mortar-large
aggregate random composite, where large aggregates can range from 3mm to 30mm. Figure 1.1b
shows an optical micrograph of the matrix phase from the previous image. The mortar now is
itself seen as a cement paste-sand composite, where aggregate size varies from a millimeter or so
down to a few tenth of a millimeter. Downing the scale on the order of micrometers, cement paste
is also a composite material as shown in Figure 1.1c. It is made up of unreacted cement, capillary
pores, and various other chemical phases that are a result of the hydration actions between water and
cement (Taylor, 1997). The calcium silicate hydrate gel (C-S-H) produced via a hydration reaction
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(a) Concrete [� mm]. (b) Motar [� 10!1 mm].

(c) Cement paste [� �m]. (d) C-S-H gel [� nm].

Figure 1.1 – Material structure of concrete at different length scales. Based on (Garboczi and Bentz, 1995).

that holds the cement paste together is equally seen to be a complex material with a random porous
nanostructure, see Figure 1.1d. The reader is referred to Garboczi and Bentz (1995) for details.

All of these point out that concrete is a non-homogeneous material with a wide range of degree
of heterogeneity. It is evident that several parameters such as shape, size and distribution of the
constituents and interfaces between them have strong influence on the mechanical behavior of con-
crete. However, despite the complex microstructure, concrete is usually considered to be a uniform
material at the length scale of structures (10!1 m and above - the usual engineering length scale,
or the macroscopic scale) with the bulk properties such as tensile strength, compressive strength,
and other postpeak properties such as fracture energy, toughness, etc.Of course, these properties
are directly influenced by its underlying microstructure. The size, shape, volume fraction, spatial
distribution, and mechanical properties of each constituent making up of the microstructure all have
a significant effect on the behavior of concrete observed at the macroscopic scale. Furthermore, the
microstructure of concrete can be changed because of the external loading acting on the material
at the macroscale, e.g., cracking appears in the mortar matrix or in the interfacial transition zone
between mortar and aggregates in concrete.

For ordinary concrete, gravel, crushed stone and sand are primary aggregates used. It depends
on each type of concrete but in general, aggregates account for 60-80% of the volume of concrete.
They can be divided into two distinct categories, fine and coarse. The fine ones consist in most
particles passing through a 4:75-mm sieve. The coarse ones occupy around 40-50% of the concrete
volume. Gravels constitute the majority of coarse aggregate used in concrete while crushed stone
makes up most of the remainder (Portland Cement Association, 2013). The shape of aggregate
particles depends on the aggregate type. Generally, gravel aggregates have a rounded shape whereas
crushed stone aggregates have an angular shape (Wang et al., 1999).

In practice, to study the influence of the constituents on the macroscopic properties and also to
gain insight into the origin and nature of the nonlinear behavior, concrete is often seen at the so-
called mesoscopic scale (millimeter scale) where three main components are separated: (i) coarse
aggregates, (ii) homogeneous mortar matrix with fine aggregates dissolved in it, and (iii) the inter-
facial transition zone (ITZ) between them . Porosities within the matrix is usually disregarded at
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this length scale. The ITZ is about 20-100�m thickness (Liao et al., 2004). The experimental bond
strength of the ITZ is about 33% to 67% of the tensile strength of the matrix (Hsu and Slate, 1963).
The latter is in turn about 30% to 50% the tensile strength of aggregates (Alexander et al., 1968;
Husem, 2003). Furthermore, for the normal-weight concrete, the aggregates are about twice to three
times stiffer than the mortar matrix. These ratios were used for modeling concrete behaviors at the
mesoscale, see, e.g., Schlangen and Garboczi (1997), Sagar and Prasad (2009), and Grassl et al.
(2012).

Let us first present the macroscopic phenomena observed in experiments, which characterize
the behavior of concrete related to mechanical failure. This will give an overview of characteristics
of concrete and might provide a basic for finding the relation between macroscopic properties and
microstructure or trying to reproduce these macroscopic phenomena by the numerical models.

1.1.2 Softening and localization of deformation

The mechanical behavior of concrete, under external mechanical loading, is characterized initially
by a quasi elastic stage, which means that the material will return to its original configuration if
unloaded. Then, upon the loading increase, the microcracks appear before the peak stress is reached.
The microcracks evenly coalesce to form the macrocrack(s). This/these macrocrack(s) will grow
and propagate up to complete failure. Along with the growth of cracks, concrete shows a gradual
decrease of their load-carrying capacity when deformed beyond a certain limit, refer to Figure 1.2.
Therefore, concrete is called “softening” material. The softening behavior of concrete is observed
under both compressive and tensile loadings (Bažant, 1976; van Mier, 1984; Torrenti et al., 1993;
Markeset and Hillerborg, 1995; Jansen and Shah, 1997).

Figure 1.2 – Concrete behavior under axial loadings: traction (a) (Terrien, 1980) and compression (b) (Geel
and Eindhoven, 1998).

Under either (uniaxial) tensile or compressive loadings, microcracking occurs before the peak
stress (van Mier, 1986). In the first stage, microcracks arise at the interface between aggregate and
mortar then at a higher load level, they also arise in the mortar. When the load reaches its maximum,
microcracks start to interact and coalesce to form a macrocrack. The latter grows and traverses the
sample. The difference between developments of microcracks in compression and in tension is the
direction of microcracks. Under tension, microcracks develop to form the macrocrack perpendicular
to the loading direction, whereas under compression, microcracks develop in a direction parallel to
the (major) compressive direction due to the extension in the direction perpendicular to compressive
loading, as schematically shown in Figure 1.3. Moreover, under uniaxial compression, the macroc-
racks can be found to be inclined to the loading direction when, e.g., the high friction exists between
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the sample and the press, see Torrenti et al. (1993). This is because the boundary conditions that
turn the principal direction of extension.

Figure 1.3 – Macroscopic failure modes under uniaxial tension (a) and uniaxial compression (b) (van Mier,
2008).

Specimen size and boundary conditions have strong effects on the softening behavior of con-
crete. Figure 1.2b shows that, for different size of specimens, before the peak, almost identical
stress-strain behavior are obtained whereas in the softening regime, different-size specimens result
in different shape of softening curve. More discussions about the size and boundary dependences
can be found, e.g., in Hordijk (1991) and van Mier et al. (1996).

In uniaxial loading conditions, localization of deformation occurs from the peak. Under tension,
strain localizes in a narrow band with finite size, which is called mode I localization. In multiaxial
compression (with low confinement i.e. below the brittle-to-ductile transition), localization becomes
manifest along shear bands, which is called mode II localization. Furthermore, in uniaxial compres-
sion, a shear band can be found when the specimen gets very short (van Mier, 1984; Desrues and
Viggiani, 2004). Outside the localization zone, the material exhibits elastic unloading. The macro-
crack develops in the localization zone and gradually grows through the specimen, which causes
the gradual drop in load carrying capacity, until fully separation. Otherwise, the macrocrack does
not develop continuously from one side to the other of the specimen, it might be formed from the
bridging and branching mechanisms of microcracks, refer to the next section 1.1.3. Or conversely,
the macrocrack can develop from one side and at a time, it bifurcates then might coalesce to attain
the other side.

In summary, based on observations of fracture process in concrete, van Mier (2008) proposed
four stages for behaviors of concrete in tension and in compression, see Figure 1.4:

(O) Elastic stage

(A) Microcracking stage

(B) Critical crack growth

(C) Crack bridging in tension and frictional restraint in compression, that cause some residual
stress in the behavior.

It should be noted that, under multiaxial compressive loadings with high levels of confinement
(i.e. above the brittle-to-ductile transition), microcracks are hard to nucleate and propagate, and fail-
ure occurs with the propagation of few macrocracks without any distributed microcracking. There
is no softening behavior, instead the response exhibits a monotonically decreasing slope tending
toward a plateau (Sfer et al., 2002). These observations for concrete are in good agreement with



10 Chapter 1. Cracking of quasi-brittle materials

Figure 1.4 – Four-stage fracture process in concrete under uniaxial tension (a) and uniaxial compression (b).
After van Mier (2008).

earlier similar observations in rocks by Bésuelle et al. (2000). Yet, the localization of deformation
is always found and described in terms of shear band orientation and patterning.

Van Mier has pointed out that the onset of localization, i.e. microcracking process, appears to
be an important point. It seems that the actual microcracking process determines the macroscopic
strength of the material before the peak is reached. The macroscopic strength has no relation on
localization and softening in post-peak regime which is nothing more than the global failure of the
specimen. These observations can be found in Prado and van Mier (2003) and van Mier (2008)
or recently in van Mier and Man (2009). Therefore, it is important that the microcracking process
is considered in more details when analyzing the fracture behavior of quasi-brittle materials, par-
ticularly of concrete. This remark on the microcracking has to be taken into consideration for the
modeling of failure of structures and materials.

Softening and localization behaviors are not only observed in concrete but also in other quasi-
brittle materials as rock, ice or in cohesionless materials like sand (Desrues and Viggiani, 2004). For
a more detailed description on softening behavior and strain localization, the reader is referred to
van Mier (1984), Gopalaratnam and Shah (1985), van Mier (1991), and Sluys (1992) and references
therein or recently van Mier and Man (2009).

The schematic representations of localization in tension and in compression are shown in Fig-
ure 1.5. Here, assuming that the total work, Wf , necessary for failure of the specimen, is equal to
the work needed for failure of the localization zone (region D in Figure 1.5a) (Bažant and Planas,
1998), one defines the specific fracture energy, Gf , as

Gf D Wf

A
D htf (1.1)

in which ht is the characteristic length of the localization zone, f stands for the area of the softening
portion of the stress-strain curve.

It is noted that in compression, at the residual stress level, the specimen can still carry some
load due to frictional restraint in localization zone. The specific fracture energy of concrete in
compression is defined in the relation with the area under stress-strain curve in the softening regime
with a cut-off at the ultimate strain "cu (Figure 1.5b). This energy which is often termed as the
crushing energy (Petryna and Krätzig, 2005), denoted by Gc

f
, is given by

Gc
f D

W c
f

A
D hc

c
f (1.2)
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Figure 1.5 – Strain localization in concrete under traction (a) and compression (b) loadings (Markovič et al.,
2012).

It has been recognized that the specific fracture energies of concrete, Gf andGc
f

, that are determined
from experiments e.g. (RILEM, 1985), depend on various parameters such as material microstruc-
ture, water-cement ratio, specimen size and geometry, temperature or even on the boundary condi-
tions of the experiment, see e.g., (Bažant and Kazemi, 1991; Guo and Gilbert, 2000). The specific
fracture energy in compression is about 200-500 times larger than that in tension. The tensile specific
fracture energy of normal concrete varies from 39 N/m (Maturana et al., 1990), 63.5 N/m (Bažant
and Pijaudier-Cabot, 1989) to 144.2 N/m (Cifuentes et al., 2013) whereas the compressive specific
fracture energy is about 20000 N/m (Jansen and Shah, 1997).

1.1.3 Fracture toughness and crack topology

As mentioned in the Section 1.1.2, macrocrack growth and localization of deformation occurs in
the post-peak part of the softening curve. During softening in quasi-brittle materials, load-carrying
capacity decreases gradually, however, it does not vanish totally. Some remaining stress can be
observed under both tensile and compressive loading conditions. This can be explained by the
mechanism called crack face bridging in tension and frictional restraint in compression. Crack face
bridging is a mechanism observed in heterogeneous materials such as concrete, sandstone, and rock
where two tips of neighboring cracks avoid each other rather than coalesce. Bridging mechanism
that emanate simply because the growth of macrocracks from microcracks is not continuous but
shows crack overlaps within a non-uniform process, as schematically shown in Figure 1.6.

The material structure, in all its details, has an influence on the microcrack process that leads
to the macrocrack process with the bridging mechanism or not. Chiaia et al. (1998) analyzed the
crack growth mechanisms in four different concretes that contained either river gravel with max-
imum aggregate size equal to 2 and 16 mm, phosphorous-slag aggregates, and Lytag aggregates,
subjected to indirect tensile loading. They showed that aggregate structures have a strong effect on
the microscopic cracking that in turn has a strong influence on strength, toughness, and ductility of
concrete. Bridging mechanism was found in the sample with phosphorous-slag aggregates while a
single crack was observed in the sample with river gravel aggregates (dmax D 2mm), see Figure 1.7.
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(a) (b)

Figure 1.6 – Microcracking and crack face bridging in tension (a); Microcracking and frictional restraint in
compression (b). Based on (van Mier and Man, 2009).

However, in both cases, cracks occur at the weakest link which is generally the ITZ between matrix
and aggregates. This leads to the observation that cracks get around the aggregates. The macrocrack
obtained is not straight but is tortuous, which leads to the roughness (or fractality) of the crack faces.

(a) (b)

Figure 1.7 – Crack face bridging in the phosphorous-slag concrete (a) while a single crack was found in the
river gravel concrete (dmax D 2 mm) (b), after (Chiaia et al., 1998).

Crack growth within microcracking-to-macrocracking process can be detected using either a
digital image correlation (DIC) technique, a high resolution optical microscope or a scanning elec-
tron microscope (SEM) technique. Using a DIC technique, Vasseur et al. (2009) measured the crack
bridging of CFRP (carbon fiber reinforced polymer) strengthened concrete by means of both aggre-
gate bridging and CFRP bridging, influencing the crack pattern, see Figure 1.8. Figure 1.9 shows
cracks occurring in a concrete sample using a SEM technique. These figures are considered as the
examples to confirm that the crack process in concrete is characterized by interfacial cracks growing
through the matrix and joining into macrocracks. Microcracking, crack bridging and aggregate in-
terlocking are the observed mechanisms that contribute to the tendency of the main crack to follow
a discontinuous and tortuous path.

In compression, the roughness of crack faces plays a dominant role for the toughening during the
softening process. In fact, the friction due to the roughness of crack faces causes the residual stress
at the tail of the softening curve. The frictional stress between crack faces may be enhanced when
the material is subjected to confinement. This explains why the stress in the tail part of the softening
curve increases when increasing the confinement and the behavior may change from softening to
hardening if the confinement is very important, see for example (Sfer et al., 2002).
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Figure 1.8 – Crack pattern obtained by a digital image correlation (DIC) technique (Vasseur et al., 2009).

Figure 1.9 – Scanning electron microscope (SEM) images of fracture in concrete. Taken from (Musielak,
2012).
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For many years, one of the challenges has been the question that whether there is any correlation
between fracture properties and the roughness of crack faces. When analyzing the fracture surfaces
of three different size wedge-splitting specimens with four different maximum aggregate sizes, Issa
et al. (2003) found a clear correlation between roughness (fractal dimension) and fracture toughness:
the tougher the material, the higher the fractal dimension. It was found that roughness increases with
an increase in both specimen and maximum aggregate size, see Figure 1.10. The reader is referred

Figure 1.10 – Roughness (fraction dimension) dependency on specimen and aggregate size after (Issa et al.,
2003).

to Issa et al. (2003) and references therein for more description about fractal dimension and the
correlation with fracture toughness in concrete.

Thus, in summary, fracture process in concrete under both tensile and compressive loadings
comprises of many mechanisms that absorb energy during crack growth. Under tensile loading, the
growth of macrocracks is accompanied with branching and bridging mechanisms that make the ma-
terial fail gradually under rather large deformations (compared with those of brittle materials). The
size of the ligament between the two overlapping (bridging) cracks depends on the microstructure
of the material. In compression, two mechanisms are active as well: the growth of a macrocrack
and the frictional restraint due to the friction on the rough crack faces. The higher the friction, the
higher the tail of the softening curve and the higher the toughness of the material. It is obvious
that the friction between crack faces depends on the roughness of crack surfaces which is related to
the material microstructure. Accordingly, from the modeling viewpoint, it seems to be important to
employ/develop a model that can explicitly represent the microstructure of the material rather than
phenomenological models to better capture these observed mechanisms during the fracture process
of quasi-brittle materials.



Mechanical behavior of heterogeneous quasi-brittle materials 15

1.1.4 Size effect

The rupture of structures made of quasi-brittle materials exhibits size effect, i.e. the nominal strength
and nominal fracture energy of these structures strongly depends on their size. The size effect
analysis is of interest because often the behavior of real size structures is estimated from tests of
laboratory size structures. The effects of structure sizes on their nominal characteristics have been
known for several centuries. In the 16th century, Leonardo da Vinci observed and mentioned an
inversed proportionality of length of a cord and its strengths: the longer the cord the weaker the
strength is. The questions of size effects in various materials and structures have been next studied
by many authors for over 500 years (Mariotte, 1686; Young and Kelland, 1845; Griffith, 1921;
Fisher and Tippett, 1928).

From the last century, attentions have been paid on the size effects in quasi-brittle materials and
structures made of these materials. Numerous size effect experiments with different geometries,
loading conditions, and size variations have been performed on concrete and other geomaterials.
Different loading conditions were tested in either tension, compression, shear, bending or splitting
tests. One of the difficulties in experiments comes from the test of the large scale samples. Therefore,
the size effects were only observed in a limited size range. Furthermore, when performing a size
effect experiment, the question of how to scale the sample sizes, in one, two or three dimensions
should be answered. Ideally, specimens should be scaled in three dimensions. However, this makes a
size effect experiments more massive. It is common in practice to scale specimens in two dimensions
only and keep the third dimension, usually the thickness, constant. Regardless of these discussible
features, the dependency of strengths of structures made of quasi-brittle materials on their sizes
has been observed by many authors: tests of concrete by Şener (1997) and van Vliet and van Mier
(2000), of sea ice by Dempsey et al. (1999a,b). Size effects are commonly represented by plotting
data in a log (nominal strength) versus log (characteristic size) diagram. Van Vliet and van Mier
(2000) tested concrete and sandstone under uniaxial tension with a size range of 1:32 and showed
a size effect as depicted in Figure 1.11. One of the largest beams ever tested should be the 36 m
long beam using for analysis of shear strength in reinforced concrete structure (Shioya et al., 1990).
A set of sea-ice specimens from laboratory- to field-experiments with the largest size is 80 m and a

Figure 1.11 – Size effect from experimental tests of concrete under uniaxial tension after (van Vliet and van
Mier, 2000).

size range of 1:800 was tested by Dempsey et al. (1999a,b) who showed a size effect on the normal
tensile strength, see Figure 1.12.

However, the real structure size is much larger than those could be tested in laboratory. The two
main questions should be considered are: (i) what is the physical reason for the size effect observed
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Figure 1.12 – Size effect of sea ice by Dempsey et al. (1999a).

in experiments?, and (ii) how to extrapolate to the strength of real full scale structures from those
obtained from small size structure in laboratory?

When the first question is solved, i.e. the reason for the decrease of strength is known, ex-
trapolation of results for larger structure sizes will be performed in a simple and straightforward
manner.

To answer the first question, various theories have been developed and proposed. Weibull (1939)
is the first, who tried to explain the effect of sizes on material strength based on the statistical
theory. In fact, he suggested that the larger the structure the greater the probability to encounter in
its volume a material element of a given critically small strength that may lead to complete failure.
This approach, the so-called Weibull theory, is also known as the weakest link theory, in which the
structure is assumed to be failed as soon as the first critical defect fails like in the series coupling.
The relationship between nominal strength �N and characteristic size D based on Weibull theory
reads (Bažant et al., 1991)

�N / D! n
m (1.3)

where m denotes Weibull modulus and n stands for number of dimensions, n D 2 for two-
dimensional problems whereas n D 3 for three-dimensional ones. Based on the results of direct
tensile tests of concrete (Zech and Wittmann, 1978), m is approximately equal to 12 for concrete.
The Weibull theory is purely statistical and is expressed as random variations of strength within the
structure and may ignore the fact that in quasi-brittle materials, there is a growth of stable large
fracture (micro- and macro-cracks) prior to failure.

Taking into account the stress redistributions and energy release due to the growth of micro- and
macro-cracks, Bažant (1984) proposed a size effect law (SEL), namely, deterministic energetic size
effect law, that reads

�N D Bft
s

1C D

D0

(1.4)

in which ft is the tensile strength, D is the characteristic size of the structure, B is a geometrical
factor that depends on the form of the structure, D0 is an empirical constant, Bft and D0 are
determined by fitting test results from geometrically similar specimens. It should be noted that this
size effect law is applicable to geometrically similar structures containing large cracks or notches
because it is constructed from the energy balance condition where energy release rate is equal to
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the energy dissipated per unit area of the crack surface to propagate a preexisting crack. Bažant
(1997) extended (1.4) to deduce the size effect for crack initiation in the boundary layer from a
smooth surface of structures i.e. without notches. The so-called universal size effect law (also called
energetic-statistical size effect) for notched and unnotched structures expressing the relationship
between nominal strength �N and characteristic size D, reads

�N D �0

�

1C D

D0

�!1=2
¼

1C
��

N�C D

Db

��

1C D

D0

��!1
½

(1.5)

where �0, D0, Db , N� are the constants. We do not go further in detail here, the interested reader is
refer to Bažant (1984) for more information.

Another explanation for the size effects based on the fractal geometry of the (final) fracture
surfaces was proposed by Carpinteri and Ferro (1994) and Carpinteri et al. (1995). They assumed
a multifractality for the damaged material microstructure and proposed the so-called multifractal
scaling law (MFSL) as

�N D
r

AC B

D
(1.6)

in which D stands for the characteristic structural size, A is a constant with dimensions of the
square of stress (Pa2), and B is a constant with dimensions of the square of stress intensity factor
(Pa2 �m). From a physical viewpoint, the MFSL emphasizes that the material microstructure disorder
becomes less important on the mechanical behavior of progressively larger scale structures (for large
D and D ! 1) whereas it has a fundamental effect for smaller scales (for small D and D ! 0).
Equation (1.6) can be rewritten in a more meaningful form which related to a limit nominal strength
ft and maximum aggregate size dmax as

�N D ft

r

1C ˛dmax

D
(1.7)

in which ˛ and ft are two constant parameters to be determined from the fit of experimental data.
Figure 1.13 shows previous three theories of size effects together with the range of the major-

ity of experimental data (till now!). The experimental range is small compared to the real scale
structures, e.g. spans of bridges are about several hundreds of meters. On other hand, these theo-
ries are all phenomenological. Either structural geometry, role of microcrack development or crack
roughness may not be taken into consideration by these approaches. It has widely been recognized
that size effect seems to depend not only on the material microstructure, e.g. the shape of aggre-
gates or aggregate density, but also on boundary conditions i.e. the structural effects. Therefore, it
seems that numerical modeling is of interest when dealing with large scale structures in both senses:
(i) either directly model the large scale structures to get the nominal strength with constitutive laws
accounting for size effect, or (ii) only model small scale structures but the numerical results should
reproduce reliable size effects for extrapolating to large scale structures.

1.2 Modeling of macroscopic behaviors of quasi-brittle materials

1.2.1 Modeling scales

Quasi-brittle materials are usually heterogeneous. Concrete can be considered as a good example.
It is obvious that the heterogeneous characteristic influences directly on the mechanical behavior
of concrete. Therefore, it is important to take into consideration the heterogeneity when modeling
the behavior of concrete. However, as mentioned before, concrete has a complex microstructure
depending on the scale at which the material is observed. Wittmann (1983) proposed three scale
levels for modeling concrete behavior as depicted in Figure 1.14.

At the microlevel, concrete is considered (modeled) as the structure of the hardened cement paste
which is itself highly heterogeneous including unreacted cement particles, capillary pores and other
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Figure 1.13 – Representation of size effect laws.

(a) Microlevel. (b) Mesolevel. (c) Macrolevel.

Figure 1.14 – Three level approaches after Wittmann (1983).
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hydration products. At the mesolevel, concrete is modeled as the structure of aggregates embedded
in mortar matrix with interfacial transition zones between them. Finally, concrete is treated as
homogeneous material upon the macroscopic modeling viewpoint where its behavior is described
by phenomenal constitutive laws.

From the numerical viewpoint, to deal with softening, strain localization during fracturing pro-
cess and size effect problems in quasi-brittle materials, one has to base on a numerical technique
accompanied with a numerical (constitutive) model. Finite element method (FEM) is the most suc-
cessful numerical technique used in engineering and science research because it has great robustness
and flexibility in the treatment of material heterogeneities, complex boundary conditions and non-
linear calculations. Because of its popular utilization and for the sake of completeness, the FEM is
briefly described in the Section 1.2.3. Numerical models that may implemented in a FEM (or other
method) code for dealing with softening, strain localization and reproducing size effects are next
pointed out.

1.2.2 Formulation of a boundary value problem

Considering a solid�with its boundary � , as shown in Figure 1.15, that is subjected to a quasi-static
mechanical excitation. Prescribed traction Nt is applied on �t � � and an imposed displacement Nu
is effected on �u � � where �t \ �u D 0.

Figure 1.15 – A two-dimensional body � subjected to a traction Nt, a body force b and an imposed displace-
ment Nu.

The posing problem is to seek an unknown displacement field u such that it satisfies, under the
small perturbation assumption, the governing equation set

div � C b D 0 in � (1.8a)

" D 1

2

 

grad u C .grad u/T
�

(1.8b)

� D f ."; �/ (1.8c)

� � n D Nt on �t (1.8d)

u D Nu on �u (1.8e)

where � is the second order Cauchy stress tensor, b is the body force vector, " is the strain tensor and
n denotes outward unit normal vector on �t . In the above, (1.8a) is the equilibrium equation, (1.8b)
is the kinematic equation, (1.8c) is the constitutive equation that expresses the relation between
stress and strain tensors with the so-called internal variables � D .�1; �2; : : : ; �n/, (1.8d) and (1.8e)
are the Neumann and Dirichlet boundary conditions, respectively.

Multiplying (1.8a) by the so-called virtual displacement v� such that

v�: � ! R
3; v� D 0 on �u; (1.9)
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yields
v�T div � C v�T b D 0 in � (1.10)

To develop the weak form of the equation (1.8a), (1.10) is integrated over the volume � as

Z

�

v�T div � d�C
Z

�

v�T b d� D 0 (1.11)

Applying integration by parts yields

Z

�

div .v�T � / d�!
Z

�

� div v�T d�C
Z

�

v�T b d� D 0 (1.12)

By applying the Gauss divergence theorem for the first term of (1.12), one gets

Z

�

v�T � n d� !
Z

�

� div v�T d�C
Z

�

v�T b d� D 0 (1.13)

As v� D 0 on �u by definition and noting that div v�T D ".v�/T , we substitute the Neumann
boundary condition (1.8d) into Equation (1.13), the weak form of the equilibrium equation is ob-
tained from (1.13) as

Z

�

".v�/
T

� d� D
Z

�

v�T b d�C
Z

�t

v�T Nt d� (1.14)

The problem is now to find an unknown displacement field u such that it satisfies Equation (1.14).

1.2.3 The finite element method

The aim of this section is to present a short introduction to the FEM that is partially used in this
thesis. This provides a basic knowledge about the FEM which is useful for developing a multi-
scale numerical tool later. For a more detailed description of the method, the reader is referred
to textbooks, e.g., see (Belytschko et al., 2000; Hughes, 2000) or (Zienkiewicz and Taylor, 2000;
Zienkiewicz et al., 2005).

The domain � is discretized into Ne elements �e, e D 1; 2; : : : ; Ne, by Nn nodes as depicted
in Figure 1.16. The finite element process will seek the solution of u in the approximate form

u � Ou D
Nn
X

iD1

Niai D Niai (1.15)

where Ni is the shape functions or interpolation functions associated to node i ; ai is the vector of
nodal displacements that are unknown. It is noted that the shape functions are defined locally for
elements that satisfy

ne
X

eD1

Ne D 1 (1.16)

in which ne is the number of nodes of element e. Therefore, the displacement inside element �e as
well as the virtual displacements are also approximated by

u.x/ D N.x/ae (1.17a)

v�.x/ D N.x/a�
e (1.17b)

in which x 2 �e , ae is the vector of nodal displacement of element e and a�
e denotes arbitrary

virtual displacement parameters of element e.
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Figure 1.16 – Discretization of body� by FEM mesh.

Using Equation (1.8b), the strain inside the element �e as well as the strain due to virtual
displacements v� are given by

".u/ D Beae (1.18a)

".v�/ D Bea�
e (1.18b)

where Be is the strain-displacement matrix of element e defined as Be D ŒB1;B2; : : : ;Bne
� with Bi

being given by

Bi D

2

6

6

6

6

6

6

4

Ni;x 0 0

0 Ni;y 0

0 0 Ni;z

Ni;y Ni;x 0

0 Ni;z Ni;y

Ni;z 0 Ni;x

3

7

7

7

7

7

7

5

(1.19)

where a comma denotes differentiation with respect to the variable which follows.
The integral over � of the weak form (1.14), is computed as the sum of integrals over element

domains �e. Substituting Equations(1.17b) and (1.18b) into the weak form (1.14) gives

Ne
X

eD1

�Z

�e

a�T
e BT

e �e d�
�

D
Ne
X

eD1

�Z

�e

a�T
e NT

e be d�
�

C
Ne
X

eD1

�Z

�te

a�T
e NT

e
Nte d�

�

(1.20)

One defines the global nodal displacement vector a that contains the displacements of all nodes
of the mesh. The elementary nodal displacement vectors ae are related to a by

ae D Lea (1.21)

where Le is the location matrix, which is a sparse, boolean matrix containing 1 at the location of
element e, and 0 elsewhere. Similarly, the virtual nodal displacements of element e is expressed as
a�

e D Lea�. With this, Equation (1.20) becomes

Ne
X

eD1

�Z

�e

a�T LT
e BT

e �e d�
�

D
Ne
X

eD1

�Z

�e

a�T LT
e NT

e be d�
�

C
Ne
X

eD1

�Z

�te

a�T LT
e NT

e
Nte d�

�

(1.22)
Since the above holds for any virtual displacement a�T , one obtains

Ne
X

eD1

�

LT
e

Z

�e

BT
e �e d�

�

D
Ne
X

eD1

�

LT
e

Z

�e

NT
e be d�

�

C
Ne
X

eD1

�

LT
e

Z

�te

NT
e

Nte d�
�

(1.23)

or equivalently
fint.� / D fext (1.24)
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where

fint.� / D
Ne
X

eD1

LT
e

�Z

�e

BT
e �e d�

�

(1.25)

and

fext D
Ne
X

eD1

LT
e

�Z

�e

NT
e be d�C

Z

�te

NT
e

Nte d�
�

(1.26)

are internal and external nodal force vectors, respectively.
In the case of linear elasticity, the constitutive relation (1.8c) can be expressed directly as

� D D" (1.27)

where D is the material “tangent” matrix, a fourth order tensor, constructed from elastic moduli of
the material. Substituting Equation (1.18a) into Equation (1.27) and then substituting the obtained
equation into Equation (1.25), one obtains the internal nodal force vector

fint D
Ne
X

eD1

LT
e

�Z

�e

BT
e DBeae d�

�

D
Ne
X

eD1

LT
e

�Z

�e

BT
e DBe d�

�

Lea D Ka (1.28)

where Equation (1.21) has just been applied; K is the linear stiffness matrix given by

K D
Ne
X

eD1

LT
e

�Z

�e

BT
e DBe d�

�

Le (1.29)

The problem to be solved is simply
Ka D fext (1.30)

The solution of this equation is obtained by using a linear solver which can be a direct solver using
direct method such as, e.g., Gaussian elimination or Cholesky decomposition method or can be
an iterative solver using, e.g., the Preconditoned conjugate gradient method. Details can be found
in Press et al. (2007).

However, in many situation, it is necessary to use nonlinear or time-dependent constitutive re-
lations under the general form (1.8c), and the solution will be obtained by solving Equation (1.24).
We can rewrite (1.24) by defining a residual vector r as

r D fext ! fint.a/ D 0 (1.31)

since � is also a function of nodal displacement vector a. The problem is now to seek a nodal
displacement vector anC1 at current loading level or time step from the known previous one an, that
satisfies

rnC1 D r.anC1/ D fextjnC1 ! fint.anC1/ D 0 (1.32)

and
anC1 D an C�an (1.33)

Because an is a solution, one always has

rn D 0; a D an; fext D fextjn (1.34)

The solution of the problem posed by Equations (1.32, 1.33, 1.34) requires an iterative solver
using an iterative method such as Newton-Raphson method which approximate Equation (1.32) as

r.aiC1
nC1/ � r.ai

nC1/C
�

@r

@a

�i

nC1

ıai
n: (1.35)
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The nodal displacement vector at level load nC 1 and at iteration i C 1, aiC1
nC1, is computed as

aiC1
nC1 D ai

nC1 C ıai
nC1 D an C�ai

n (1.36)

where

�ai
n D

i
X

kD1

ıak
n (1.37)

ıai
n D .Ki

T /
!1r i

nC1 (1.38)

in which Ki
T is the stiffness matrix at iteration i is defined from Equation (1.35) as

Ki
T D !

�

@r

@a

�i

nC1

D
�

@fint

@a

�i

nC1

D
Ne
X

eD1

LT
e

�Z

�e

BT
e Di

T Be d�
�

Le (1.39)

in which Di
T is the tangent modulus tensor for stress-strain relation. It is noted that the above relation

is similar but not identical to that of linear elasticity (1.29).
For softening materials, beyond the peak force, the behavior exhibits a crop of force with an

increasing displacement. Thus, a displacement control or an arc-length control is needed to follow
the path of this behavior. We refer to textbooks, e.g., Zienkiewicz et al. (2005) for details.

It is noted that the integral of elementary quantities
R

�e
q.�/ d� is computed numerically us-

ing a quadrature rule, e.g. Gauss-Kronrod quadrature, where a suitable set of NIP points �i and
corresponding weights !i is chosen to approximate the integral as

Z

�e

q.�/ d� �
NIP
X

iD1

!iq.�i / (1.40)

1.2.4 Continuum-based models for concrete behaviors

For studying fracture problems in quasi-brittle materials, the FEM is a tool which is generally used.
The FEM describes the material as a continuum and the nonlineariry is implemented by using mea-
sured softening behaviors. Two main numerical approaches can be distinguished in the context of
the FEM framework, namely, (i) discontinuous approach using discontinuous models and (ii) con-
tinuous approach using continuous models. The interested reader is referred to Appendix A for an
overview of discontinuous models and of continuous models including smeared crack model, crack
band model and anisotropic damage model.

1.2.4.1 Isotropic damage models

Under the assumption that the Poisson’s ratio remains constant throughout the damage evolution, a
softening material can be described by an isotropic damage model which specifies the stress-strain
relation as (Lemaître, 1996)

� D .1 ! d/C W " (1.41)

with d the scalar damage variable and C the fourth order elastic stiffness tensor. The damage
variable grows from 0 (intact material) to 1 (completely damaged material) according to a damage
evolution law such that

d D d.�/ (1.42)

in which � is the history variable representing the largest strain ever reached during the loading
history. The history variable � is defined via the following loading function f

f . Q"; �/ D Q" ! � (1.43)
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with Q" the scalar-valued function of the strain tensor ". The loading function f defines an elastic
surface, i.e., the set of states for which damage does not evolve. The damage only increases when
the current threshold of deformation (the current largest strain) � is exceeded, i.e., the damage does
not change during an unloading stage or an elastic loading stage. This is expressed mathematically
by the Kuhn-Tucker condition

f � 0; P� � 0; P�f D 0 (1.44)

Different damage models distinguish themselves by specifying different damage evolution
laws (1.42) and different definition of the equivalent strain Q". It has been shown, experimentally,
that concrete exhibits a highly asymmetric behavior under tensile and compressive loading condi-
tions. Taking into account this characteristic, Mazars (1984) and Mazars and Pijaudier-Cabot (1989)
proposed the definition

Q" D

p

3
X

iD1

.h"i iC/
2 (1.45)

with "i the principal strains and the McCauley’s brackets hxiC denote the positive part of a scalar x,
which means hxiC D max.x; 0/. A contour plot for Q" D 1 in the principal stress space is given in
Figure 1.17a with Young’s modulus E D 30 GPa and Poisson’s ratio � D 0:2. Figure 1.17b shows
the same plot but under the plane stress condition (�3 D 0).
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Figure 1.17 – Contour plots for the equivalent strain of Mazars in principal stress space (a) and in the plane
�1-�2 (�3 D 0) (b).

The equivalent strain (B.5) can produce a good approximation of the failure envelope of con-
crete under biaxial tension and under tension combined with compression. However, under biaxial
compression, the shape of the failure envelope is not realistic. This can be improved by adjusting
the multiplicative factor to the above definition of the equivalent strain as

Q" D 

p

3
X

iD1

.h"i iC/
2 (1.46)
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with

 D

�p

3
X

iD1

.h�ii!/
2

3
X

iD1

h�ii!

if
3
X

iD1

h�ii! ¤ 0

1 otherwise

(1.47)

where hxi! denotes the negative part of x, which means hxi! D ! min.x; 0/. The modified equiv-
alent strain according to (1.46) is graphically represented in Figure 1.18.
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Figure 1.18 – Contour plots for the modified equivalent strain of Mazars in the plane �1-�2 (�3 D 0).

From the definitions of the equivalent strain and in order to capture the differences of material
responses in tension and in compression, Mazars and Pijaudier-Cabot (1989) proposed a damage
evolution law as

d D ˛
ˇ
t dt C ˛ˇ

c dc (1.48)

where dt and dc are the damage variables in tension and compression, respectively. The exponent
ˇ > 1 slows down the evolution of damage under shear loading (Pijaudier-Cabot et al., 1991),
usually its value is fixed at 1:06. The coefficients ˛t , ˛c take into account the character of the stress
state, which are given as

˛t D
3
X

iD1

"t i h"iiC

Q"2
; ˛c D 1! ˛t (1.49)

where "t i ; i D 1; 2; 3 are the principal strains due to positive stresses, i.e., the principal values of
"t D C!1 W hC W "i. The damage variables in tension and compression, dt and dc , are given by

dk D
(

1! .1 ! Ak/
"d0

�
! Ak expŒ!Bk.� ! "d0/� if � � "d0

0 if � < "d0

; k D t; c (1.50)

where "d0 is the equivalent strain at the onset of nonlinearity, and At , Bt , Ac , Bc are material
parameters related to the shape of the uniaxial stress-strain diagrams. It should be noted that the
damage evolution law (1.50) allows an independent control of the tensile and compressive stress-
strain curves. However, it leads to a tension/compression dissymmetry of the elasticity limit usually
not large enough.

Based on the von Mises equivalent strain, de Vree et al. (1995) proposed an equivalent strain
adapted to concrete, which included the ratio k of the uniaxial compressive strength and the uniaxial
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tensile strength. This proposition is given by

Q" D k ! 1
2k.1 ! �/I1 C 1

2k

s

.k ! 1/2
.1 ! 2�/2 I

2
1 C 6k

.1C �/2
J2 (1.51)

in which I1 D "kk is the first invariant of the strain tensor and J2 D eij eij is the second invariant
of the deviatoric strain tensor eij D "ij ! .1=3/"kk . The graphical representation of this equivalent
strain scaling to Q" D 1 is given in Figure 1.19 with k D 10, E D 30 GPa and � D 0:2.
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Figure 1.19 – Contour plots for the equivalent strain of de Vree in principal stress space (a) and in the plane
�1-�2 (�3 D 0) (b).

From the definition of the equivalent strain (1.51), Peerlings et al. (1998) proposed an evolution
law of damage variable as

d.�/ D 1! �0

�
.1 ! ˛ C ˛ expŒ!ˇ.� ! �0/�/ (1.52)

with �0 the initial threshold at the onset of damage, ˛ and ˇ two other model parameters. These
parameters were taken as �0 D 2:1 � 10!4, ˛ D 0:96 and ˇ D 350 for concrete by Peerlings et al.
(1998).

1.2.4.2 Nonlocal damage models

Nonlocal continuum theory abandons the classical assumption of locality and considers that a state
variable (e.g., stress) at a certain point not only depends on the state of other variables (e.g., strain) at
that point but also in general on the distribution of state variables of the neighboring points. Applying
nonlocal continuum to damage models, there exist mainly two formulations, i.e., the integral-type

nonlocal and gradient-enhanced damage models.

Integral-type nonlocal damage models To restore the well-posedness of the boundary value
problem when softening occurs, Pijaudier-Cabot and Bažant (1987) proposed to compute damage
variable from the nonlocal equivalent strain. This means that the local value Q" in the loading func-
tion (1.43) is replaced by its corresponding nonlocal definition as

N".x/ D 1

Vr.x/

Z

�

 .x; �/ Q".�/ d� with Vr.x/ D
Z

�

 .x; �/ d� (1.53)
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where  .x; �/ is a nonlocal weight function that depends on the distance between the “source” point
� and the “receiver” point x, r D kx ! �k. The history variable � is then the largest previously
reached value of the nonlocal equivalent strain.

Several forms have been proposed for the weight function. It is often taken as the Gaussian
distribution function

 .x; �/ D exp

�

!4r
2

`2
c

�

(1.54)

with `c an internal length of the model reflecting the nonlocality characteristic of the model. Another
possible form for the weight function is the truncated polynomial function (Bažant and Ožbolt, 1990)

 .x; �/ D
�

1 ! r2

R2

�2

(1.55)

where h�i denotes always the positive part of a scalar, R is a parameter related to the internal length,
which is called the interaction radius since it corresponds to the largest distance of point � affecting
the nonlocal average at the point x.

In the above formulations, the internal length `c or R is constant during the damage process.
However, experimental observations from acoustic emission analyses provide that the FPZ expands
from its initiation in the course of damage process (Haidar et al., 2005). Taking into account this
behavior, a modified nonlocal damage model in which the internal length is evolved during the
damage process depending on the local equivalent strain, was proposed by Pijaudier-Cabot et al.
(2004). The weight function now reads

 .x; �; Q".�// D exp

�

! 4r2

`2
c . Q".�//

�

(1.56)

and the internal length increases in a linear form

`c. Q"/ D f̨d . Q"/C `c0 (1.57)

where fd is a function increase from 0 to 1 corresponding to the damage level, ˛ is a material
constant, `c0 is related to initial defects in the material. This model introduces, however, in addition,
one more material constant ˛ if we assume that fd is a linear function.

Based on the work of Pijaudier-Cabot and Dufour (2010) showing that the nonlocality corre-
sponds to a stress redistribution due to the present of deffects, Giry et al. (2011) proposed a nonlocal
damage model in which the nonlocal interaction, i.e. the internal length, evolves over time depend-
ing on the stress state of the neighboring material points. The weight function proposed by Giry
et al. (2011) has the same form as (1.54) but the internal length `c was proposed as

`c D `c0 � �.x;�prin.�// (1.58)

where `c0 is the intrinsic length that can be correlated with aggregate size of the material, � repre-
sents the evolution of the internal length during the damage process and depends on the principal
stress state of the point located at �.

Based on thermodynamic formulation, the nonlocal damage models have also been proposed,
see e.g., Comi (2001) and references therein or a model with evolving nonlocal interactions
(Nguyen, 2011).

It should be noted that the integral-type nonlocal formulations can be developed to regularize
not only for isotropic damage models but also for other constitutive models with softening such
as smeared crack models (Bažant and Lin, 1988), microplane models (Bažant and Ožbolt, 1990),
anisotropic damage models (Desmorat et al., 2007). A good survey of process of nonlocal integral
formulations can be found in Bažant and Jirásek (2002).
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Gradient-enhanced damage models Gradient models incorporate the influences of gradients
(of the first or higher order) of internal variables into constitutive relations. This concept was pio-
neered by Aifantis (1984). Gradient formulations was first applied into gradient-dependent plasticity
model (de Borst and Mühlhaus, 1992). Applying this concept to damage models, there exist two
formulations the explicit and implicit ones. Gradient-enhanced damage models have been proposed
by Peerlings et al. (1996, 1998).

Explicit gradient formulation The damage evolution is assumed to be driven not only by the
local equivalent strain Q" but also by its Laplacian r2 Q". This means that in the loading function (1.43),
the equivalent strain Q" is replaced by the corresponding nonlocal one defined as

N" D Q"C l2r2 Q" (1.59)

where l is a material parameter with dimension of length.
When the strain distribution remains uniform (as in uniaxial tensile test before the peak), the

equivalent strain Q" is also uniform, and thus its Laplacian vanishes, leading to the same responses
between local and nonlocal models. After the onset of localization, the strain distribution becomes
nonuniform leading to the nonzero value of its Laplacian, and the internal length of the model l
plays a role of localization limiter. However, as shown in Peerlings et al. (1996), using the explicit
formulation (1.59) requires the C

1-continuity for the displacement field, i.e. higher order FEs, when
implemented in a FEM code. This disadvantage can be avoided by using the implicit gradient
damage formulation.

Implicit gradient formulation By differentiating equation (1.59) twice and substituting the
obtained expression back into (1.59), Peerlings et al. (1996) proposed an implicit definition of the
nonlocal equivalent strain

N" ! l2r2 N" D Q" (1.60)

The solution N" of the above equation is obtained from the boundary value problem posed
by (1.60) and the Neumann boundary condition imposed on the boundary of the domain

r N" � n D 0 (1.61)

with n the external normal unit vector of the boundary.
Peerlings et al. (2001) showed that the solution N" of (1.60) and (1.61) is of the form

N".x/ D
Z

�

G.kx ! �k/ Q".�/ d� with G.r/ D 1

4�lr
exp

�

! rp
l

�

(1.62)

where G is the Green’s function of (1.60). This means that the implicit enhancement is exactly the
integral-type nonlocal damage model with the Green’s function G as the weight function.

In summary, the common point of the nonlocal models is the introduction of an internal length.
The question has to be posed is that how to determine the link between the characteristic length of
the material (e.g., aggregate sizes) and the internal length of the nonlocal model. Critical discussions
about this subject will be presented in Chapter 4, Section 4.1.

1.2.5 Internal length value

The common characteristic of the above nonlocal techniques (integral and gradient formulations) is
the introduction of an internal length in the constitutive law, used as a localization limiter, to prevent
the spurious localization of damage, to avoid the ill-posedness of the boundary value problem, and
thus to avoid the mesh sensitivity. This internal length controls the spread of the nonlocal weight
function. At this point, it is important to note that there is a difference between the notions of an
internal length and of a characteristic length of the material. The former is a model parameter and
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the latter is the length that characterizes the material and is an intrinsic length of the material e.g.
aggregate sizes or, in general, heterogeneity of the material.

Physically, the internal length is related to the effective size of the FPZ whose evolution depends
(at least) on details of material microstructure and on the specific failure mechanism that develops
for a given type of loading (Jirásek et al., 2007; Giry et al., 2011).

The internal length cannot be directly measured but can be indirectly inferred from experimental
results. For instance, the internal length can be determined by inverse analysis based on computa-
tions of size effect tests (Bellégo et al., 2003) or by comparing the energy dissipated in two kind of
experimental tensile tests: (i) those leading to localized damage and (ii) those where the damage
remains distributed (Bažant and Pijaudier-Cabot, 1989). However, the former procedure requires
many computations and is still based on a manual trial-and-error technique and is held for a limited
size range of specimens while the latter procedure exhibits the sensitivity to boundary conditions
where the condition that the strain remains homogeneous throughout the specimen is difficult (even
impossible) to assure. Furthermore, such calibration procedures are only based on one characteristic
heterogeneity of the material and lead to observations that the internal length is proportional to the
characteristic size D0 in the size effect plot or to the maximum aggregate size dmax. So, they can
hardly be considered as a general rule.

An alternative technique to determine the internal length is that based on experiments with
acoustic emission analysis (Maji and Shah, 1988). Acoustic emission is an experimental tool well
suited for monitoring the fracture process (and its size, of course). Haidar et al. (2005) showed, with
acoustic emission analyses, that the FPZ widens in the course of degradation processes. This led to
the idea that the internal length not only depends on the geometric aspects of the material but also
on the strain and/or stress state.

All of these explain the fact that calibration of the internal length of nonlocal models is still a
difficult question since it seems to depend not only on the heterogeneity of the materials but also on
the boundary conditions and of strain and stress fields in the FPZ.

Mathematically, the internal length is described by a function of at least two variables: one
standing for the material microstructure m and other accounting for the form of the stress field s

`c D f .m; s/ (1.63)

The material microstructure variable m is again a function of the size and spacial distribution of
the constituents (i.e. the characteristic length of the material) and of their corresponding strengths,
which might be known. However, the function f is unknown. One possible suggestion is proposed
by Giry et al. (2011), in which the internal length is described by the product of two functions: one
is a function of the characteristic length of the material while other is a function of the stress field
and strength of the material (refer to Equation (B.8) with �prin.�/ is a function of the stress field
and the material strength, proposed by Giry et al. (2011)). The influence of the stress field is easily
accessible by the boundary conditions. The remaining question is to deal with the characteristic
length of the material, i.e. determining the function to relate `c0 (see Equation (B.8)) to the intrinsic
length of the material (e.g. aggregate sizes). In what follows, for simplicity, `c0 is also called the
internal length.

As of today, no explicit relationship between the internal length and the characteristic length of
the material has been devised for nonlocal models. This motivates to develop a numerical model that
does not introduce any internal length and can enfranchise this parameter by explicitly introducing
aggregates in the geometrical description. Moreover, through this model, a study of the influence
of the microstructure of the material on its behaviors at both prepeak and postpeak regimes can be
carried out. We then extract an internal length required for continuum nonlocal (integral or gradient
type) damage models from the microstructure of the material. The talking model belongs to the
class of discrete models which are next presented.
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1.3 Discrete models

The above continuum-based models generally neglect the heterogeneity of the material and con-
sider it as a homogeneous material with homogenized properties at the macroscale. These models
disregard the randomness of material microstructure properties and consequently are unsuitable for
characterizing entirely the complex fracture process from initiation, propagation and coalescence of
microcracks to the formation of macrocracks. Moreover, the determination of homogenized proper-
ties of the material at the macroscale is not always feasible and these models do not always reflect
all physical effects observed in experiments through their internal variables, e.g. grain decohesion,
microcracking and crack bridging observed in concrete. Therefore, it is hardly to consider them as
relevant models to provide a comprehensive understanding of the fracture process of heterogeneous
materials.

Even though the mesoscopic approach using continuum-based models was proposed by,
e.g., Vonk et al. (1991), Eckardt et al. (2004), Wriggers and Moftah (2006), and Nguyen et al.
(2010), they cannot take into consideration the discrete nature of cracking and thus cannot repro-
duce exactly the crack opening which is an important parameter for durability analyses of structures.
Discrete models used at the mesoscale seem to be the most useful approach for modeling the dis-
crete character of cracking. Moreover, they can be considered as the useful approach for studying
the influence of the concrete composition on the macroscopic properties and also to gain insight into
the origin and nature of the nonlinear behavior of concrete.

Furthermore, when using continuum-based nonlocal models, an internal length has to be intro-
duced as discussed above. Since the internal length results from microcracks and their interactions,
thus, if a model could directly describe these phenomena, it would be consider as a better approach
than the continuous ones. This is another key reason for using a discrete model.

For modeling of behaviors of quasi-brittle materials, there exist at least three types of discrete
numerical methods/models that one can cite here: (i) the discrete element method, (ii) the molecular
dynamics, and (iii) the lattice model.

1.3.1 Discrete element and molecular dynamics methods

The discrete element method (DEM) was initiated by Cundall and Strack (1979). The development
of DEM has been growing fast for advanced applications in granular materials and geomaterials like
soil, rock and concrete (Shiu et al., 2009; Nicot et al., 2011; Tran et al., 2011; Scholtès and Donzé,
2012a,b). The key concept of DEM is that the medium is divided into an assemblage of rigid or
deformable geometric elements such as disks, ellipses, polygons (in two dimensions) or spheres,
ellipsoids, polyhedra (in three dimensions), etc. Each element has a movement that is governed by
the fundamental principles of dynamics, derived from Newton’s second law and by the intergranular
interaction laws.

Mainly due to the explicit representation of the discrete nature of the discontinuities when deal-
ing with large scale problems of fractures, fragmentation or even flow of materials, DEM is widely
used for applications in geomaterial mechanics and engineering (Scholtès et al., 2009). Neverthe-
less, there exist some shortcomings of DEM, e.g., extensive computational cost when dealing with
large-scale problems, or when the equivalence with the continuum is required, homogenization is
needed but is often a difficult task.

Having the same concept as DEM but the molecular dynamics (MD) method has atoms and
molecules as the basic elements. MD can be used as a powerful tool to explain mechanical phe-
nomena at atomic scale, e.g., studying the brittle to ductile transition in intrinsic fracture of crys-
tals (Cheung and Yip, 1990), or studying the crack properties of crystalline metals (Farkas et al.,
2002; Hasnaoui et al., 2003). Nevertheless, when using MD to deal with granular materials for
solving problems in engineering, since the model consists of a vast number of degrees of freedom to
include all atoms in a macroscopic system, the calculation time becomes unreasonable. Therefore,
one could reduce the size of the system under consideration (usually to the representative volume
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element), so that a MD simulation is possible. So, applications of MD for granular materials are
limited to small-scale problems.

The methods of DEM and MD are relatively easy to understand because they are based on the
numerical solution of Newton’s second law. They have been widely applied with success. However,
long MD and DEM simulations are mathematically ill-conditioned, generating the cumulative errors
in numerical calculations. Based on the concept of “interaction” between particles, DEM and MD
are most appropriate for non-cohesive granular materials like sand. They are out of the scope of this
thesis since we only focus on concrete-like materials which are cohesive materials. The interested
reader is referred to Donzé et al. (2009) for the latest DEM’s developments in rock, soil and concrete
mechanics, or to Radjaï and Dubois (2011) for a full description of discrete-element modeling of
granular materials.

1.3.2 Lattice models

Lattice models for heterogeneous materials derive from the Lattice Element Method (LEM) which
is based on lattice-type discretization of the medium (Radjai et al., 2010). The earliest lattice model
was proposed by Hrennikoff (1941) for solving problems in linear elasticity by means of regular
triangular lattice of truss elements. Later, lattice models have been broadly used to model the failure
in brittle heterogeneous materials by physicists (Burt and Dougill, 1977; Herrmann et al., 1989).
Nowadays, lattice models have become more popular in fracture modeling of heterogeneous mate-
rials due to the increase of computer performance. Just like DEM, for the problems in which the
discontinuities are dominant, lattice models are considered as a suitable tool because they provide a
discrete representation of material disorder and failure. However, lattice models, compared to DEM,
are appropriate for fracture modeling of cohesive granular materials like concrete and have a major
advantage in terms of numerical calculations.

There exist two different types of lattice models. In the first type of lattice models, called classi-
cal lattice models, the material is discretized as a network of two-node springs or beams (Schlangen
and van Mier, 1992a, 1992b; Schlangen, 1993; van Mier and Vervuurt, 1995). The second type of
lattice models, called particle lattice models, are classified as a discrete element method (Kikuchi
et al., 1992) in which the material is discretized as an assemblage of rigid particles interconnected
along their boundaries through normal and shear springs (Kawai, 1978). The models in this category
also include the rigid-body-spring networks (Bolander Jr et al., 2000), bonded-particle model (Po-
tyondy et al., 1996), random particle models (Bažant et al., 1990), beam-particle model (D’Addetta
et al., 2002; Delaplace, 2005), confinement-shear lattice model (Cusatis et al., 2003). The main
advantage of particle lattice models with respect to classical lattice models is that they account for
the fact that crack surfaces may act on each other causing the repulsive force during the loading
process. So the particle lattice models are more suitable for predicting the failure behavior in mode
II or mode I under cyclic loadings whereas the classical ones are enough when the mode I failure
prevails.

In both types of lattice models, fracture initiation and propagation are modeled by either
removing brittlely, from the lattice, the elements in which the stress/strain exceeds the critical
value (Schlangen and van Mier, 1992a; D’Addetta et al., 2002) or degrading their elastic proper-
ties via a softening response (Bolander Jr. and Saito, 1998; Arslan et al., 2002).

There exist at least two ways to describe the mesostructure of the material. In the first way, using
by the particle lattice models, the particles are used to model the grains whereas in the second way,
using by the classical lattice models, an aggregate structure is usually mapped onto the lattice and
then different material properties are assigned to the elements representing the different material
phases (grain, mortar matrix and the ITZ in the case of concrete). The first way is characterized
by the computational efficiency with respect to the second one since a coarser resolution can be
used. The second approach requires a finer resolution, however, it can produce more tortuous crack
patterns.
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Besides the attractiveness of lattice models such as simplicity or direct insight into the fracture
process at the mesostructure level, they exhibit, however, mesh bias on crack propagation. Such
limitation can be minimized by using a random mesh instead of a regular one and by introducing
the material heterogeneities not only by incorporating the grain structure but also by assigning the
random local material strength after a Weibull or Gaussian distribution.

The simplest lattice model is the central force model in which only the normal forces are con-
sidered as interaction forces. Nevertheless, this model exhibits a known restriction is that, when
modeling the homogeneous materials (without inclusions), it produces a fixed value of Poisson’s ra-
tio, namely 1

3
for two dimensional cases (Chang et al., 2002b) and 1

4
for three dimensional problems

(Ostoja-Starzewski, 2002). With such a restriction this model is not suitable for modeling many ma-
terials with different values of Poisson’s ratio. It is overcome by introducing the shear interactions in
the model. The normal-shear lattice models can reproduce a Poisson’s ratio within the range !1 and
1
3

(Schlangen and Garboczi, 1996). Therefore, they are more suitable for modeling many materials
in civil engineering like concrete, soil, sandstone, etc.

In this thesis, we focus mostly on mode-I failure of the material submitted to monotonic me-
chanical loadings. Moreover, for studying the influence of the material microstructure on the frac-
ture process zone which related to the characteristic length of the material, a detailed description of
tortuous crack patterns is of importance. Therefore, a lattice model, based on the classical lattice
models, in which the normal and shear springs are introduced, is fully developed in three dimen-
sions for applications in both two and three dimensional problems. The model also includes a more
realistic estimate of cross-section areas assigned to lattice springs for better reflecting the random
mesostructure of the material. The lattice model is detailed in Chapter 2.

However, when more detail on the material microstructure is required, a fine mesh has to be used
for incorporating small grains and/or when dealing with fracture of large-scale structures, especially
in three dimensional problems, the lattice model exhibits limitation in computational time since it
consists of a vast number of degrees of freedom. To deal with such problems within a reasonable
computation time, improvements in numerical solver is proposed in Chapter 2 to speed up in finding
the solution of the equilibrium equations, but on the other hand it seems necessary to couple the
lattice model at the mesoscale level with the finite element method used to macroscopically model
the material at regions that undergo elastic processes. This is the multiscale coupling, the so-called
FEM–LEM coupling, proposed in Chapter 4. In the next section, an overview of multiscale tech-
niques for modeling of heterogeneous materials is presented.

1.4 Multiscale approaches

Multiscale modeling has emerged as one of big challenges in material sciences and engineering
due to its efficiency. We provide a comprehensive, though not exhaustive, overview of commonly
multiscale techniques used to deal with heterogeneous materials. This overview is used in the thesis
to classify and motivate the proposed multiscale approach. Traditionally, multiscale modeling of
heterogeneous materials is performed either within the framework of “homogenization methods” or
within the framework of “concurrent methods”. In the former, the models include more than one
length scales that are completely separated while in the latter, scales remain coupled.

1.4.1 Homogenization methods

Homogenization is a technique lied on complete scale separation to determine the apparent (or
overall) properties of a heterogeneous material by considering it as an homogeneous material with
the equivalent effective properties, see Figure 1.20. This means that the equivalent macroscopic
properties are obtained from quantitative information at microlevel.

Depending on microstructure characteristics, the effective properties of heterogeneous materials
can be determined by various approaches. In the case of materials with linear constitutive behavior,
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Figure 1.20 – Homogenization of a heterogeneous material. Based on Temizer and Zohdi (2007).

if the microstructure is sufficiently regular to be considered periodic, the effective properties may
be determined by mathematical asymptotic homogenization techniques, documented in Bensous-
san et al. (2011). Using the mathematical asymptotic homogenization techniques, the strain and
stress fields are asymptotically expanded on the scale parameter, which is the ratio of a character-
istic size of the heterogeneities and a measure of the macrostructure. These analytical techniques
can be extended to applications of nonlinear materials (Christman et al., 1989; Yi et al., 1998; Fish
et al., 1999; Miehe et al., 2002). If the microstructure is not regular, concrete for example, the
effective properties cannot be determined exactly by analytical homogenization techniques. How-
ever, they can by estimated in terms of bounds, which depend on some parameters characterizing
the microstructure such as volume fraction of inclusions in a matrix. For heterogeneous materials
having linear constitutive behavior, Voigt assumes that strain field is uniform in each phase, arriving
to estimate

NL D
N
X

rD1

L.r/c.r/ (1.64)

where L.r/ and c.r/ are respectively the elastic tensors and the volume fraction of r phase of an
N -phase material, NL is the homogenized elastic tensors of the material. A dual assumption of Voigt
is made by Reuss who approximates the stress field is uniform in each phase, leading to
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Hill, 1952 and Paul, 1959 observed that Voigt estimate and Reuss estimate are respectively the
upper and lower bounds of the effective properties. Bound estimates for materials with nonlinear
behavior was also proposed, e.g.,the models of Talbot and Willis (1985) and Castañeda (1991) based
on variational principles, the Hill’s incremental model (Hill, 1965).

When dealing with nonlinear analysis of heterogeneous materials in which the information of
the material microstructure is taken into account in the multiscale framework, there currently exist
two main approaches based on homogenization methods: (i) Unit cell methods, and (ii) multiscale
computational homogenization techniques.

Unit cell methods (Christman et al., 1989; Sluis et al., 2000) are classified as the explicit version
of homogenization-based multiscale techniques in which the constitutive relations are explicitly con-
structed on the macrolevel with parameters subsequently identified by homogenization techniques
and the knowledge of the material microstructure. These approaches have been used in a great
number of different applications, e.g., the correlation between local and global damage effects of
fiber-reinforced composites (Voyiadjis and Kattan, 1993), modeling of granular materials (Cambou
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et al., 1995; Emeriault et al., 1996). However, when dealing with highly nonlinear materials that
exhibit softening and strain localization resulted from geomaterial and physical changes of the mi-
crostructure, it is difficult to establish a priori the suitable form of constitutive relations. Hence this
makes the unit cell methods less appropriate for materials with complex microstructure.

In multiscale computational homogenization techniques (Smit et al., 1998, 1999; Feyel, 2003),
constitutive equations on the macrolevel are not defined explicitly but they are implicitly provided
by the macro-meso-macro connection. Therefore, these techniques are classified as the implicit ver-
sion of homogenization-based multiscale techniques. Two distinct stages, namely downscaling and
upscaling, are typical for this kind of technique, see Figure 1.21. The procedure of computational
homogenization technique shown in Figure 1.21, which is called the first-order homogenization,
can be briefly described as follows. A solid �M is modeled as homogeneous at macrolevel. At a
material point, e.g., integration point in the FE method, instead of inserting the macroscopic strain
"M into the phenomenological constitutive box to obtain macroscopic stress �M , the macroscopic
strain is imposed on the external boundary �m of the micro/meso sample (RVE) �m. The equilib-
rium of the micro/meso sample is obtained after solving the boundary value problem (BVP). The
macroscopic stress is then defined as the volume average of the microscopic stress over the RVE
and the macroscopic tangent moduli DM can be directly obtained from the RVE stiffness matrix.
They are then transferred to the macroscopic level at that material point. In case the FEM is used
at both scales to solve the entire problem as a nested BVP, the method is known as FE2 scheme
(Feyel, 1999). Different kinds of boundary conditions (Miehe and Koch, 2002) can be chosen, such
as linear displacements, constant tractions or periodic deformation and antiperiodic tractions on the
boundaries, which highly influence the behavior at the boundaries of the RVE. Although the con-
stitutive behavior is not need on the macrolevel, it must be included on the microlevel to produce
the behavior of RVEs. If continuum-based approaches are used, the constitutive behavior of RVEs
can be described by any model of those presented in Section 1.2.4 and in Appendix A of which pa-
rameters have to be identified prior to the simulation, but now applied for individual microstructural
constituents and interfacial transition zones between them. However, identification of parameters
for the interfacial transition zones is always a difficult question. Alternatively, constitutive models
for each constituent and the interfacial transition zones at the microlevel can be defined using a
homogenization technique by downing one more scale.

The main assumption of the homogenization techniques is the existence of the RVE. However,
when dealing with strain localization and failure phenomena in softening materials, a RVE for soft-
ening regime cannot be found using the “standard” averaging technique over the microscopic sample
volume since the material loses statistical homogeneity upon strain localization. On the other hand,
the macroscopic discretization might suffer from mesh dependency and, at ultimate loading stages,
the macroscopic BVP becomes ill-posed if there is no regularization technique adopted thereby.
Furthermore, if a regularization technique is provided at the macrolevel, we turn back to the prob-
lem of identifying the internal length, see Section 1.2.5. Those drawbacks have been recently found
by Gitman et al. (2008) and Bažant (2010). As a result, the numerical solution obtained is not ob-
jective and shows the dependence on both macrolevel mesh size and micro/meso level RVE size if
the first-order multiscale scheme is used.

Several strategies have been proposed to overcome these sensibilities for decades. One of them
is the use of gradient formulations (Kouznetsova et al., 2002; Kaczmarczyk et al., 2008) by incor-
porating a microscopic length scale, which is called the second-order homogenization. However,
the method cannot properly resolve macroscopic localization bands beyond a quadrature nature of
the displacements (Geers et al., 2010). In addition, the second-order scheme only overcomes depen-
dence on the macrolevel discretization and does not solve the mesolevel RVE size dependence in
case of softening response. These have been shown by Gitman et al. (2005, 2007). They proposed
an alternative multiscale scheme which could resolve the macrolevel discretization sensitivity and
the mesolevel RVE size dependency simultaneously, the coupled-volume approach (Gitman et al.,
2008). An alternative approach is that called multiscale aggregating discontinuities (MAD), which
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Figure 1.21 – Multiscale modeling of heterogeneous material with the computational homogenization.

has recently developed by Belytschko and Song (2010). The essential feature in the MAD approach
is that, when material instabilities such as cracks or shear bands, occur in the micromodel, an equiv-
alent discontinuity is computed and injected into the macromodel, which is treated by the extended
finite element method (XFEM) (Belytschko and Black, 1999). Nguyen et al. (2011) proposed the
failure zone averaging scheme for the multiscale computational technique in that only the active
inelastic responses occurring in the microsample are extracted (rather than the whole responses in
the microsample as in standard homogenization schemes) to determine the equivalent macroscopic
ones. To better capture the discontinuities at the macro and micro levels in the limit case where
the localization is intense, recent developments, can be found in Loehnert and Belytschko (2007)
and Belytschko et al. (2008), are related to the continuous-discontinuous homogenization scheme
in which the XFEM is used to take into account macrocracks as well as microcracks. However, the
main drawback of all these techniques is that they provide a simplified representation of fracture i.e.,
cracks, strain localization, etc., at the macrolevel. Accordingly, they might fail to fully capture the
more complex failure effects e.g., crack orientation, crack tortuosity, bridging, branching, etc., due
to the heterogeneity of the micro/meso-structure. Moreover, the multiscale homogenization scheme,
where the localization zone can steadily evolve in width (as experimentally observed for softening
materials), is still open and raises challenges for researchers.

1.4.2 Concurrent methods

Concurrent multiscale techniques are characterized by the simultaneous resolution of the macrolevel
and the mico/meso-level(s). This means that scales are coupled in the same framework and thus,
global equilibrium and displacement compatibility need to be enforced on the whole structure. Con-
current methods have been developed in the context of continuum/continuum coupling, atomistic/
continuum coupling i.e., MD-FEM coupling, and discrete/continuum coupling e.g., DEM-FEM cou-
pling, where MD stands for molecular dynamic and DEM accounts for discrete element method.
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For continuum/continuum coupling, we can refer to the works of Garikipati (2002), Larsson
and Runesson (2008), and Mergheim (2009), which are based on the variational multiscale method
(VMM) introduced by Hughes et al. (1998) or to the works of Schrader and Koenke (2011) and
Lloberas-Valls et al. (2012a,b), which are based on domain decomposition techniques (Quarteroni
and Valli, 1999). The basis of VMM is a decomposition of the field variables into a coarse-scale
and a fine-scale contribution, the latter incorporating the local behavior whereas the domain decom-
position techniques are based on a primal and dual spatial assembly (Tallec et al., 1991). The main
drawback of continuum/continuum coupling is difficulties met when dealing with crack initiation
and propagation. Indeed, different numerical methods have been proposed to model a propagating
crack such as the strong discontinuity approach (Simo et al., 1993; Oliver et al., 2003), (widely used)
XFEM approach (Babuška and Melenk, 1997; Belytschko and Black, 1999; Moës et al., 1999), dis-
continuous element with phantom-node method (Song et al., 2006). Even though these methods are
appropriate in some particular cases e.g., a simple fracture mechanism without branching, bridging
cracks, they are unsuitable to fully capture more complex failure mechanisms where the continuity
of each crack path might be assured.

For multiscale approaches affected by MD-FEM coupling, we refer to an overview reported
in Curtin and Miller (2003). Different methods have been proposed to handle the coupling. Xiao and
Belytschko (2004) proposed a method to couple the continuum and molecular domains by bridging
subdomains where the kinematic compatibility is strongly enforced by Lagrange multipliers, or
Saether et al. (2009) suggested a method that replaces a direct linkage of individual MD atoms and
FE nodes with a statistical averaging of atomistic displacements in local atomic volumes associated
with each FE node in an interface region. Continuum and atomic scales are also coupled by MD and
XFEM approaches in which a molecular dynamic approach describes fracture at the crack tip with
an extended finite element method used for discretizing the remainder of the domain (Aubertin et al.,
2010). MD and MD-FEM coupling are suitable for simulations at the material scale, however they
are not appropriate for modeling at the scale of structures in civil engineering due to the important
number of atomic degrees of freedom.

DEM-FEM coupling has been proposed for modeling of large structures in civil engineering.
Localization due to impact on concrete structure was analyzed in the multiscale context by Frangin
et al. (2006) and Rousseau et al. (2009), in which the coupling is handled by a transition bridging
zone based on the method proposed by Xiao and Belytschko (2004) for MD-FEM coupling. Within
the transition bridging zone, the total energy is defined as linear combination of discrete and continu-
ous energies and compatibility is ensured through kinematic constraints by means of Lagrange mul-
tipliers in the strong form (strong coupling), refer to Figure 1.22a. Weak DEM-FEM coupling has
alternatively been proposed that based on the Arlequin method (Dhia and Rateau, 2005). Alerquin
method applied to DEM-FEM coupling is also based on a bridging domain with a weak formulation
of the kinematic relations where displacements of the DEs at the transition zone are projected over
shape functions of the FEs in assuming field continuity. This method is also used for multiscale sim-
ulations of cohesive granular materials (Rojek and Oñate, 2007) or of non-cohesive ones (Wellmann
and Wriggers, 2012). The bridging zone has been proposed to reduce spurious wave reflections. It
has been shown that, with increasing the width of the bridging domain, the spurious wave reflec-
tions reduce. Furthermore, if the Hamiltonian is defined with a nonlinear evolution of the weight
parameter, it yields superior reflection reduction compared to a linear one. We refer to Rousseau
et al. (2009) and Wellmann and Wriggers (2012) for more details. In static analysis, the coupling
between DE and FE can also be performed without the transition zone, cf. Figure 1.22b, in which
DEM particles are considered as directly slave of the FEM mesh (Azevedo and Lemos, 2006).

The previous DEM-FEM coupling strategies are classified as the “volume” couplings or the
spatial couplings since the whole structures are split into subdomains, each of which is then adapted
by DEM or FEM approach. The so-called “surface” couplings have been proposed as well by
Nakashima and Oida (2004) and Onate and Rojek (2004) or recently, by Fakhimi (2009) and Villard
et al. (2009) for dynamic analyses of geomaterials. The surface coupling techniques concern the
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(a) Bridging domain coupling in dynamic
analysis (Rousseau et al., 2009).

(b) Non-overlapping coupling in static anal-
ysis (Azevedo and Lemos, 2006).

Figure 1.22 – Two strategies applied to DEM–FEM coupling.

detection of contacts between finite elements and DEM particles. As an example of this coupling,
the impact of the projectile against a thick rock plate is illustrated in Figure 1.23.

Figure 1.23 – Impact of projectile (Onate and Rojek, 2004).

Volume and surface couplings can be combined in some particular applications, e.g. the pile
installation. The compacted soil under the pile tip is modeled by DEM, the pile itself modeled by
FEM (here we have the surface coupling) and the rest of the soil domain simulated by FEM, see
Figure 1.24.

The multiscale approach of the present work based on the LEM-FEM coupling falls in this group
and shows similarities with the volume couplings. Different coupling algorithms will be pointed out
in order to define a “dynamic” coupling at the crack tip where the strain localization is the most
intense, see Chapter 4.
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Figure 1.24 – Sample deformation during pile installation (Wellmann and Wriggers, 2012).
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This chapter deals with the concept of the numerical model for the simulations of crack propaga-
tion and failure of concrete-like materials in three dimensions (3D). However, when needed, the

simulation can be performed in two dimensions (2D) as well. The procedure for crack propagation
to simulate fracture is introduced. Moreover, the way in which the heterogeneity of the material
structure is implemented is discussed. The identification of model parameters is presented before
some applications of tensile tests with the post-processing treatment.

2.1 Introduction

Fracture process is a fundamental phenomenon related to cracking and failure of quasi-brittle mate-
rials (Bažant, 2003). As discussed in Chapter 1, for modeling the behavior of quasi-brittle materials
at the aggregate scale, lattice models are considered as a better tool than continuum-based models.
In fact, lattice models are suitable for problems in which discontinuities are dominant since they
can describe a discrete nature of cracking when materials subjected to extreme loading conditions.
Lattice models are simple but provide a direct insight into the fracture process and thus information
of cracking such as crack opening can be extracted for durability analyses. Unlike the continuous
approaches in which many internal parameters (sometimes with no physical meaning) have to be
introduced to describe the material behaviors, lattice models can reproduce complex crack patterns
and a global softening behavior within a limited number of parameters. Due to these advantages,
lattice models have been widely used in fracture modeling of quasi-brittle materials (Schlangen and
van Mier, 1992a, 1992b; Chiaia et al., 1997; van Mier and Vervuurt, 1997; Lilliu and van Mier,
2003).

However, lattice models exhibit mesh bias on crack propagation i.e. the direction and size of
elements have an influence on the direction of the cracks. This drawback can be minimized by
using a random mesh instead of a regular one and by introducing the material heterogeneities not
only by incorporating the grain structure but also by assigning the random local material strength
and stiffness. Moreover, the random mesostructure of the material can be better reflected by a
procedure presented in Section 2.2.3.2 in which a more realistic estimate of cross-section areas
is assigned to lattice elements. The second limitation of lattice models is that a big computation
effort is needed when dealing with large structures. To reduce it, besides the improvements in
numerical solver presented in Section 2.2.5, it seems that a coupling between the lattice model
dealing with discontinuities and fracture process of the regions with nonlinear behavior and the
continuum model representing the zones with elastic behavior is needed. This motivated multiscale
coupling is proposed in Chapter 4 within a dynamic manner.

Another disadvantage of lattice models is that the response of the material is too brittle, partic-
ularly in 2D simulations, if the brittleness of single lattice elements is assumed. Nevertheless, in
our studies, within the philosophy of keeping the simplicity of the model with a limited number of
parameters and the complexity of macroscopic response coming from a rich geometric description
of material microstructure, the brittleness assumption of lattice elements is kept holding and the
ductility of global response is improved by 3D simulations and consideration of very small parti-
cles (Lilliu, 2007).

The adopted 3D lattice model is presented in details in the next section for a general purpose of
three-dimensional calculations and coupling with continuum model (see Chapter 4) although most
of simulations in the thesis performed on a 2D model due to a large amount of parametric studies.

2.2 The 3D lattice model

2.2.1 Concept

Lattice model is a numerical method based on a discretization of a continuum media by one-
dimensional elements that can transfer loads. It depends on how many load components that an
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element can carry, lattice is distinguished in different type models: normal spring, normal-shear
spring, or beam model. The normal spring elements can transfer only the normal force (Meakin et
al., 1989; Bažant et al., 1990; Bolander Jr. and Saito, 1998) while the normal-shear spring element
can also support shear forces (Schlangen and Garboczi, 1997). The normal or normal-shear spring
elements are generally called truss elements. In turn, the beam element can transfer in addition
bending moment and torque. Lattice model using truss elements corresponds to a discrete Cauchy
continuum whereas lattice model using beam element corresponds to a discrete Cosserat (microp-
olar) medium (Ieşan, 1969; Chang and Ma, 1990; Eringen, 1996; Chang et al., 2002b; Karihaloo
et al., 2003) which accounts for a micro-rotation at the material scale.

The adopted lattice model used in this thesis is a beam model. However, for problems in which
mode-I failure prevails, the normal-shear spring model can be used to gain in computational time
since it is known that the rotational degrees of freedom and the corresponding moment transmitting
in the medium do not play an important role in mode-I failure (Chang et al., 2002a).

2.2.2 Elastic formulation

The 3D beam element has two nodes, each nodes has six degrees of freedom including three transla-
tions and three rotations along three axes of local coordinate system 1-2-3 (Figure 2.1a). Each beam
element can transmit axial force, shear forces, bending moments and torsional moment as shown in
Figure 2.1b. Within the assumption of infinitesimal deformations, the vector of nodal displacements

(a) (b)

Figure 2.1 – Nodal displacements (translations and rotations) (a) and nodal forces (b) on local coordinate
system within a single element.

and rotations of an element are related to the vector of nodal forces and moments by the element
stiffness matrix

�

Ke

�

as

¶

Fe

·

D
�

Ke

� ¶

Ue

·

(2.1)
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The vector of nodal element forces and moments Fe , the vector of nodal element displacements and
rotations Ue and element stiffness matrix are then given as follows:

¶
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D
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»

(2.2a)
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with
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and identically for
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·

and
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Uj

·

. T denotes the transpose of a matrix. The sub-matrices ŒKi i �,
ŒKij �, ŒKj i � and ŒKjj � are of the size 6 � 6. They are
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(2.8)

In Equations (2.6) to (2.8), E is the Young’s modulus, G is the shear modulus, A is the cross-
sectional area of the element, I2, I3 are the second moment of area about the 2-axis and 3-axis (in
local coordinate system), respectively. I1 is the polar second moment of area (with respect to the
1-axis) of the cross section of elements, l is the length of the element.
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In the global coordinate system x-y-z (Figure 2.2), the vector of nodal displacements and rota-
tions is related to the vector of nodal forces and moments as
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� ¶
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are the vectors of nodal forces and nodal displacements expressed in the global
coordinate system x-y-z.
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is the corresponding element stiffness matrix.
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where
�

T
�

is the transformation matrix from the local to the global coordinate system.

Figure 2.2 – Global and local coordinate systems.

The element ij which is attached to the local coordinate system 1-2-3 with the unit basic vectors
En, Es, Et are shown in the global coordinate system in Figure 2.2. Note that the direction of En is chosen
from i to j for the numerical implementation later. The choice of Es and Et is not unique. For the
implementation, Es and Et are computed as follows

Et D
(

Ei if En k Ej
En � Ej otherwise

Es D Et � En
(2.13)

with Ei and Ej the unit vectors of x- and y-axis, respectively. The relationship between the two, global
and local, coordinate systems is characterized by the transformation matrix
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of 12 � 12 and in the form of
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in which the sub-matrix Œt� having the size of 3 � 3 is given by

Œt� D
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cos ˛n cos ˛s cos ˛t

cosˇn cos ˇs cosˇt

cos n cos s cos t

3

5 (2.15)

where nine direction cosines are defined. These direction cosines are the cosines of the angles
between the unit basic vectors En, Es, Et and the three unit basic vectors Ei , Ej , Ek of the global coordinate
system.

In principle, a beam element can be schematically represented by three types of spring which are
used to describe the stiffness between two particles, namely, a normal spring with normal stiffness
Kn, a shear spring with shear stiffness Ks and a rotational spring with rotational stiffness Kw that
includes the twisting stiffness Kt and the bending stiffness Kb (see Figure 2.3).

Figure 2.3 – Three types of spring: normal, shear and rotational spring. The bottom figure represents the three
springs.

The relationship between the nodal kinematic and static vectors of the three springs is exactly
the same as equation (2.3) in which the sub-matrices of stiffness ŒKi i �, ŒKij �, ŒKjj � are given by
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(2.16)
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It is noticed that the Equations (2.6) to (2.8) and the Equations (2.16) to (2.18) are identical if the
following relationships hold true:

Kn D EA
l

Ks D 12EI
l3

Kt D GI1

l

Kb D EI
l

(2.19)

in which I D I2 D I3 in the case of circular cross section. This means that by selecting appropriate
spring stiffnesses, the behavior of a lattice network of beams can be identically represented by a net-
work of springs with four types of stiffness Kn, Ks , Kt and Kb . This facilitates the comprehension
in which the particle rotation and moment transmission is neglected and the medium is represented
by a normal-shear spring network with only two stiffnesses Kn and Ks .

Since the units of nodal forces and of nodal moments are different, the global stiffness matrix
of lattice network

�

Kg
�

may contain a big gap (in magnitude) between the largest of the Kg
ij

0s

and the smallest of the Kg
ij

0s, and possibly leading to the situation where the matrix could be
ill-conditioned. To improve the accuracy of the resolution method which will be described in the
following paragraph and speed up the solving process, all terms of the stiffness matrix

�

Kg
�

related
to nodal moments and the corresponding nodal rotations should be normalized by a quantity hli
which is the arithmetic mean of length of the lattice elements of the analyzed domain. The vectors
of nodal statics and kinematics at node i is now given by
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and the sub-matrices of stiffness become

ŒKi i � D

2

6

6

6

6

6

6

6

6

6

6

4

Kn 0 0 0 0 0

Ks 0 0 0 Ksl
2hli

Ks 0 !Ksl
2hli

0

Kt

hli2 0 0

sym Ksl2

4hli2 C Kb

hli2 0

Ksl2

4hli2 C Kb

hli2

3

7

7

7

7

7

7

7

7

7

7

5

(2.22)



46 Chapter 2. Lattice model for concrete failure
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The beam lattice model corresponds to the discrete representation of micro-polar continuum.
However, it is desirable to use the non-polar (the normal-shear spring lattice) model because of
some reasons:

� Many of damage/fracture models presented in the literature have been based on the classical
continuum. So the non-polar provides a direct comparison to these models.

� Degrees of freedom of non-polar model are twice less than those of polar one. Therefore,
using non-polar model in the appropriate cases can strongly save computational cost.

� It is also interesting to know how much difference there is between the polar and the non-polar
models. It provides an understanding on the effect of moment transfer in the system.

By neglecting all variables associated with rotations (i.e., the components
¶

M1k M2k M3k

·

of
the nodal vector of statics and the corresponding components

¶

�1k �2k �3k

·

; k D i; j of the
nodal vector of kinematics) of the beam lattice model, the normal-shear spring lattice model can be
defined by only two stiffness constants, normal stiffness Kn and shear stiffness Ks . If we define two
parameters En and Es the normal and shear moduli of each element, Kn and Ks can be expressed
as

Kn D EnA

l
; Ks D EsA

l
(2.25)

where A and l can be generated from the mesh, two elastic parameters of the normal-shear spring
lattice model are En and Es .

2.2.3 Lattice geometry

2.2.3.1 Mesh generation

The random lattice network is used because it was found to better simulate the fracture process
of concrete. In fact, the random lattice can reduce the influence of the mesh alignment on the
crack patterns (Jirásek and Bazant, 1995; Schlangen and Garboczi, 1996). Moreover, the triangular
lattice is found to better simulate the heterogeneous structure of the material than the rectangular
one (Arslan et al., 2002). The lattice elements are obtained from the edges of the simplices of the
Delaunay triangulation. In two dimensions the simplices of Delaunay triangulation are triangles, in
three dimensions they are tetrahedra, see Figure 2.4.
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(a) (b)

Figure 2.4 – 2D random triangular lattice (a); and 3D random tetrahedron lattice (b).

Despite the fact that a random lattice obtained from Delaunay triangulation is employed, some
privileged orientations can be found because of the specimen boundaries for which the elements are
more or less orthogonal (see Figure 2.5). Figure 2.5b shows the orientation angles of the elements
compared with the horizontal axis. It is seen that the horizontal and vertical elements dominate due
to boundary effects and make the specimen less isotropic. Isotropy, in this sense, is characterized
by a homogeneous distribution of a large enough number of lattice elements with respect to their
orientation. To obtain a more isotropic mesh, one can define circles (or spheres in 3D case) whose
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Figure 2.5 – Delaunay triangulation mesh (a); and distribution of element orientations (b).

centers are the nodes themselves and whose diameters are lmin which is the minimum length of
lattice elements. lmin is chosen to avoid overlapped circles/spheres. Each node can be now moved
randomly (see Figure 2.6). Numerically, this can be done by adding to the position of the nodes a
displacement vector �p defined by

�p D .r sin � cos�; r sin � sin�; r cos �/ (2.26)

in which r is an uniformly random number generated between 0 and lmin, � and � are two uniformly
random angles generated between 0 and 2� . In two dimensions, �p reduces to

�p D .r cos�; r sin�/ (2.27)
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(a) (b)

Figure 2.6 – Random moving nodes (a); and more isotropic mesh obtained (b).

By applying this method, the more isotropic mesh comparing to the mesh in Figure 2.5 can be
obtained (see Figure 2.7).
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Figure 2.7 – More isotropic mesh (a); and distribution of element orientations (b).

It should be noted that when applying this procedure on specimen boundaries, it reduces the
mesh alignment on the boundaries and makes sense for problems of crack initiation in which the
structural geometry is positive, i.e., without notches, even though one loses the straightness of the
boundaries. One can also use this procedure to generate a random lattice from the regular one.

Figure 2.8 shows the distribution of the lattice element length of the mesh shown in Figure 2.7a.
By fitting the distribution with the probability density function (pdf) of a Gaussian distribution, one
gets the mean value and the standard deviation of the lattice element length which are 2:72 mm and
0:6 mm, respectively. It is seen that the random aspect of the mesh is assured, here the element
length l , and thus the elastic parameters Kn, Ks , etc.

2.2.3.2 Mesh properties

A cross-sectional area needs to be assigned to each lattice element generated from a mesh (gen-
erated by the Delaunay triangulation). This can be done by using a dual graph of the Delaunay
triangulation. A well known dual graph of the Delaunay triangulation is the Voronoi tessellation
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Figure 2.8 – Distribution of lattice element length.

(see Figure 2.9). However, a vertice of Voronoi tessellation which corresponds to a simplex of De-
launay triangulation (triangle in 2D and tetrahedron in 3D) can lie outside the latter itself, e.g., the
vertices 2 and 4 in Figure 2.9. Thus, in order to better estimate the geometrical heterogeneity due
to the random mesh, a new tessellation is adopted based on the one of Cusatis et al. (2006) except
that the particle diameters are zero for our lattice model. It is exemplified in Figure 2.10a for two
dimensions and in Figure 2.10b for three dimensions.

Figure 2.9 – Delaunay triangulation on top of Voronoi tessellation (in red lines).

Let us consider two-dimensional case first. Figure 2.10a shows the element P1P3 shared by
two adjacent triangles P1P2P3 and P1P3P4 of the Delaunay triangulation. The definition of the
sectional line (or, in 3D case, sectional area) of this element is obtained by connecting the points
M13, G123 and G134. M13 is the midpoint of this element P1P3. Points G123 and G134 are the
centroids of the triangles P1P2P3 and P1P3P4, respectively. Once having the sectional line, it is
possible to define the cross-sectional area of the element by projecting this sectional line onto the
line being perpendicular to the element. Finally, the cross-section of the element which is assumed
to be rectangular, may be expressed as

A D b � t (2.28)

where b D G123M
0
13 CG134M

00
13 is the height of the cross-section (bold solid lines in Figure 2.10)

and t is the out-of-plane thickness (which can be assigned equal to unity or the specimen thickness).
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We may note that the area associated with each lattice node can also be determined as follows:

(a) (b)

Figure 2.10 – Definition of characteristic points of the tessellation in 2D (a) and 3D (b).

� The area of each triangle is apportioned to its vertices using the centroid and three midpoints
of three sides. For example, the area formed from the polygon P1M12G123M13 is associated
to the lattice node P1 (the dashed lines in Figure 2.10a).

� The total area associated to each lattice node is obtained by summing up the contributions of
all the adjacent triangles.

This procedure is applied to any of triangles from Delaunay triangulation, so each lattice element
is assigned a cross-sectional area, each lattice node is associated with one and only one cell, whose
area is well known.

Extension to three dimensional case is quite straightforward. Figure 2.10b shows a tetrahedron
P1P2P3P4 of the Delaunay triangulation in three dimensions. The sectional areas belonging to
elements P1P2, P1P3, P1P4 (the ones belonging to elements P2P3, P3P4 and P2P4 can also be
defined, but for the sake of clarity, they are not shown) are defined from the characteristic points
G1234, g123, g124, g134, M12, M13, M14. These points are defined in the same way as those
defined in two-dimensional case, i.e., they are the midpoints and the centroids of corresponding
objects. Point G1234 is the centroid of the tetrahedron. Points gijk (i; j; k D 1; : : : ; 4I i < j < k)
are the centroids of triangular faces of the tetrahedron. Points Mij (i; j D 1; : : : ; 4I i < j ) are
the midpoints of the edge PiPj of the tetrahedron. This procedure of tessellation is applied to any
of tetrahedra from Delaunay triangulation so that each lattice element possesses a sectional area
as shown in Figure 2.11a. In general, the sectional area S is not planar and not orthogonal to the
lattice element. Therefore, the cross-sectional area of the element can be computed as follows. First,
one projects S on the plane, which contains the midpoint M of the tessellation, orthogonal to the
element (Figure 2.11b). Then the equivalent diameter Ds of the projected area Sp is defined (see
Figure 2.11c), given by

Ds D 2

r

Sp

�
(2.29)
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(a) (b) (c)

Figure 2.11 – Section area of lattice element (a); projected sectional area (b); and equivalent circular sectional
area (c).

The cross-section of the lattice element in three dimensional case is considered as circular with the
area is simply computed by

A D �D2
s

4
(2.30)

2.2.3.3 Element size adaptation

The question raised here is that how to determine the lattice element size when using the lattice
model. One can get the answer when responding two questions: (i) can the lattice model reproduce
the isotropy of an homogenized material, if so is there the effect of the lattice element sizes on the
isotropy of the modeled material?, and (ii) how detail of the aggregate structure that we want to
introduce in the model? The element size can be deduced by the minimum of the sizes determined
by answering these two questions.

Element size determined from isotropy requirement The lattice approach should be able to
model the linear elastic behavior of a macroscopically isotropic homogenized material. If so, it
should guarantee the isotropy of the material, i.e., the material behavior is not affected by the loading
directions. One can choose the global elastic properties such as Young’s modulus and Poisson’s
ratio computed under different loading directions to verify whether the lattice model can provide
an isotropic response of the material. Furthermore, different discretizations (the different element
sizes) of the lattice can also affect the global elastic properties of the material.

To verify whether the response of the lattice model is isotropic and to study the influence of
the element sizes on that isotropy, the Young’s modulus and Poisson’s ratio are computed from the
uniaxial tensile tests loaded in x and in y direction with different relative discretization size B=lm,
see Figure 2.12. B stands for the specimen size and lm is the mean length of the lattice elements. The
input parameters for the elastic analysis are taken from Table 2.1. Moreover, for each discretization
with lm, the nodes of the mesh are randomly moved by the procedure described in Section 2.2.3.1
(except the boundary nodes) to avoid some possible privileged orientations of the elements and then
the average value Nlm of lm is also computed. The average response of each discretization is then
computed with the corresponding standard deviation. Young’s modulus and Poisson’s ratio in y

Table 2.1 – Input parameters.

B D H En Es

[mm] [GPa] [GPa]
100 37.66 12.55
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Figure 2.12 – Uniaxial tensile test loaded in y direction (a) and x direction (b).
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in which Fi;y , Fj;x are the reaction forces of nodes i and j in y and x direction of the boundaries,
respectively; ıuj;x , ıui;y are the corresponding displacements; t is the thickness of the specimen.

The more the ratio Ex=Ey or �x=�y differs from 1 the more anisotropic the material will be.
Thus these ratios are called the degree of anisotropy. Figure 2.13 shows the relation between the
degree of anisotropy for the elastic properties and the relative discretization size B=Nlm. The main
observation is that with respect to Young’s modulus the lattice can be considered quasi-isotropic.
For the Poisson’s ratio, directional differences are important when the relative size B=Nlm is small.
When B=Nlm � 40, the lattice can be considered again quasi-isotropic. In addition, when B=Nlm < 40,
the elastic properties are very sensitive for changes in element orientations obtained by randomly
moving the nodes. The bigger the value of B=Nlm the smaller the value of the standard deviations.
All of these observations can probably be explained by the boundary effects to lattices with finite
dimensions. In fact, the larger the value of B=Nlm the greater the number of lattice elements will
be and thus the effects of the boundaries are less important to the inner nodes. Moreover, the
orientations of the elements become dominant when there are less elements in the lattices and this
obviously makes the directional differences in the elastic properties.

The conclusion is that the isotropy of the lattice can be obtained if the discretization is fine
enough. Giving the characteristic size B of a specimen to be modeled, the mean size of the lattice
elements is determined as

lm � B

40
(2.32)

Element size determined from the minimum aggregate size It is worth mentioning that the
relative ratio between the minimum particle size dmin and the average length lm of lattice elements
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Figure 2.13 – Ratios Ex=Ey and �x=�y for different relative sizes B= Nlm of the lattice discretization.

plays an important role in modeling the aggregate structure of the material. In Figure 2.14 a gener-
ated aggregate structure is projected on the lattice of different element lengths. Here only two mate-
rial phases are distinguished, the aggregate and matrix phases. As shown the detail of the model is
affected by the element length. The finest aggregates can only captured if the lattice element size is
small enough. Thus the richer model is obtained (Figure 2.14c compared to Figure 2.14b) with the
lower element size (lm D 0:6mm (Figure 2.14c) compared to lm D 4mm (Figure 2.14b)). However,
the number of elements rapidly increases (the total number of elements ne D 78975 (Figure 2.14c)
compared to ne D 2134 (Figure 2.14b)) which results in the tremendous computational time. Con-
sequently, the balance between detail and computational time should be analyzed attentively.

(a) (b) (c)

Figure 2.14 – (a) Generated grain structure of concrete with 4 � d � 10 mm and grain density = 0.5; (b) a
coarse (lm D 4 mm); and (c) a fine (lm D 0:6 mm) lattice overlay.

One question that one should answer when using the lattice model is that how small the size
of the finest particles which are of interest to be directly introduced in the model. Once having the
answer, an aggregate grading with the particle sizes from dmin to dmax could be known for generating
the aggregate structure mapped into lattice discretizations. From that, the maximum mean length of
the lattice elements can be determined by the empirical relation

lm � dmin

3
(2.33)

so that there are always a large enough number of lattice elements within the finest aggregate dmin
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but the total number of degrees of freedom is still limited.

2.2.4 Crack growth procedure

2.2.4.1 Fracture criteria and elimination algorithm

Fracture criteria A breaking rule has to be defined to simulate fracture. Many fracture criteria
can be found in the literature (Herrmann et al., 1989; Pompe et al., 1991; Schlangen and Garboczi,
1997; Arslan et al., 2002; D’Addetta et al., 2002). The choice of fracture criterion depends on the
type of lattice element in the model (e.g. axial spring elements, normal-shear spring elements or
beam elements). The idea is that an element will be broken when some quantity of it, for example
tensile stress, tensile strain or elastic energy is exceeded the predefined threshold in that element. In
heterogeneous cohesive frictional materials such as concrete, the fracture process is caused by tensile
failure (D’Addetta et al., 2002). Therefore, the fracture occurs solely in the case of elongation of the
elements representing the meso-scale of that kind of material.

Several fracture laws have been implemented in the calculation code. It is worth first of all noting
that the torque of lattice elements under mode-I failure is generally small and is not introduced in
failure criteria. The classical failure criterion is the Mohr-Coulomb criterion describing the response
of materials such as rock or concrete to shear stress as well as normal stress. Because concrete has a
very low tensile strength as compared with their compressive strength and shear strength, the Mohr-
Coulomb surface with tension cut-off (Bolander Jr. and Saito, 1998) is adopted. The criterion can
be expressed by the following two inequations

Pij .�n; �s/ D

˚

�n

�s0= tan '
C j�s j

�s0
� 1

�n

�n0
� 1

(2.34)

where �n D fn

A
and �s D fs

A
are the normal and shear stresses, respectively; A is the cross-section

area of elements. �n is related to the threshold value of the normal stress �n0, while �s is related to
the threshold value of the shear stress �s0. ' is the friction angle. The element breakage is controlled
by three parameters, �n0, �s0 and ' as shown in Figure 2.15a. The axial force fn and shear force
fs are given by

fn D !N1i D N1j D Knın (2.35a)

fs D
q

T 2
2i C T 2

3i D
q

T 2
2j C T 2

3j (2.35b)

where, ın D u1j ! u1i is the axial elongation; T2j , T3j (idem for T2i , T3i ) are given by

T2j D Ks.ıs2
! l�!3/ (2.36a)

T3j D Ks.ıs3
C l�!2/ (2.36b)

where, ıs2
D u2j ! u2i , ıs3

D u3j ! u3i are the relative shear displacements about 2-axis and 3-

axis, respectively; �!2
D �2i C�2j

2
; �!3

D �3i C�3j

2
are the averaged angular rotations about 2-axis

and 3-axis, respectively.
Derived from Mohr-Coulomb criterion, one can also use the fracture criterion, namely, the gen-

eral fracture law which is expressed in the form

Pij .�n; �s/ D �n

�n0
C
� j�sj
�s0

�n

� 1 (2.37)

in which the power parameter n � 1 representing how much the influence of shear stress is taken
into account. The bigger the value of n the smaller the influence of shear stress. Depending on the
value of n, the failure surface is varied from the linear form (n D 1) corresponding to the classical
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Figure 2.15 – Mohr-Coulomb strength surface with tension cut-off (a), general strength surface with n D 5

(b).

Mohr-Coulomb law to the nonlinear form (n > 1). Figure 2.15b shows the failure surface with
n D 5.

The criterion that is used for the simulations later in the thesis will be mentioned after studying
the influence of the fracture criteria on the failure of the material, detailed in Section 2.2.4.2.

Elimination algorithm At each time step, the elements that fulfill the condition Pij � 1 are
removed from the simulation. This means that the behavior of the elements is brittle elastic. It is
possible to remove more than one element within each time step. However, if more than one element
are removed during one time step, non-physical results can be obtained and the mechanical response
depends on the loading magnitude (Delaplace, 2008). Therefore, in order to avoid those drawbacks,
a solving procedure called elastic prediction algorithm (Delaplace and Desmorat, 2007) is preferred.
Just one element is removed from the lattice network during one step. So, a unique response of the
system can be obtained. The algorithm is described as follows. At each time step, an infinitesimal
loading is applied. The meaning of infinitesimal loading is that no lattice element breaks under this
loading. Afterward, a constant ˛ is determined such that one would just break the element that has
stress state being the closest to the strength surface. That means that the element ij is looked for,
for which the coefficient ˛ that satisfies the equality

Pij .˛�n; ˛�s/ D 1 (2.38)

is the smallest. If the Mohr-Coulomb law with tension cut-off is employed (Equation (2.34)), (2.38)
implies

Pij .˛�n; ˛�s/ D ˛ � max

�

�n

�s0= tan '
C j�sj
�s0

;
�n

�n0

�

D 1 (2.39)

or if the general fracture law is used (Equation (2.37)), Equation (2.38) implies

Pij .˛�n; ˛�s/ D �n˛

�n0
C
� j�sj˛
�s0

�n

D 1 (2.40)

In other words, under the infinitesimal loading, we calculate for each lattice element ij the constant
˛

˛ D 1

max

�

�n

�s0= tan '
C j�sj
�s0

;
�n

�n0

� (2.41)

or ˛ satisfying Equation (2.40) which is solved numerically by using a combination of Newton-
Raphson and bisection algorithms (Press et al., 2007). The element that has the smallest value of
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˛ (the so-called ˛min) is removed from the lattice model. Before removing the element having ˛min

from the lattice network, the displacement and force fields of all elements are recomputed due to the
homothety with the factor ˛min as

fn 7! ˛minfn

fs 7! ˛minfs

ın 7! ˛minın
ıs2

7! ˛minıs2

ıs3
7! ˛minıs3

(2.42)

Those updated values are stored for the post-process analysis. After removing one element the
system is relaxed again. The procedure is repeated in order to determine the next element that will
break. The system stiffness gradually decreases after removing elements in a sequence at each time
step. Parallel to this stiffness degradation, the micro and then macro cracks develop. When the last
element connecting two parts of the system, separated by the macro crack, breaks, the system falls
apart and the breaking procedure is stopped. The total number of elements that had to be broken
to attain this state is called nr . After this state all ˛ would normally be infinite. Accordingly, the
stopping of breaking procedure may be controlled by a predefined constant ˛cr . The computation
is hold off as long as the condition in equation (2.43) is fulfilled.

˛min > ˛cr (2.43)

2.2.4.2 Influence of fracture criteria

It is noticed that different fracture criteria have been implemented in the calculation code for testing
purposes. To analyze the influence of the fracture criteria on the material behaviors represented
through, e.g., crack patterns and load-displacement curves, and thus decide which one is adopted for
further studies, numerical simulations of double-edge-notched specimen loaded in uniaxial tension
are carried out as shown in Figure 2.16. Note that this geometry (two notches) of the specimen
is used here because it will reused for the simulations later. It is necessary to mention that the
conclusions that will be drawn on the influence of the fracture criteria on the material behavior
should be hold partially since only one type of geometry/loading is analyzed.

For the sake of simplicity, 2D non-polar (normal-shear spring) lattice model is used. Two types
of fracture criteria, namely, the Mohr-Coulomb cut-off (2.34) and the fracture criterion (2.37) are
used in which the influence of individual parameters ' and n is analyzed by varying their values,
respectively, 10°, 20°, 40° for ' and 1, 2, 5 for n. The values of the input parameters are listed in
Table 2.2.

Table 2.2 – Input parameters.

En Es �n0 �s0

[GPa] [GPa] [MPa] [MPa]
26 8.7 9 18

The crack patterns of the simulations are shown in Figure 2.17. It shows that the friction angle
mostly has no influence on the crack patterns, see Figures 2.17a to 2.17c. That is because almost all
elements break due to the tensile stress as shown in Figure 2.18. Furthermore, the Mohr-Coulomb
cut-off criterion (2.34) results in the too brittle behaviors in terms of force-displacement curve (see
Figure 2.19 for the different values of '). When the influence of the shear stress is higher by using
the fracture criterion (2.37), a curve crack is obtained with n D 1, see Figure 2.17d. That is because
more elements break due to both tensile and shear stresses as shown in Figure 2.18. Decreasing
the influence of the shear stress by increasing the value of n, straighter cracks are obtained, see
Figures 2.17e and 2.17f. Indeed, the straight cracks are expected in the uniaxial tensile test because
the homogeneous material with weak resistance in tension and higher resistance in shear is used.
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Figure 2.16 – Uniaxial tensile test.

Nevertheless, the more ductile behavior in term of force-displacement curve is obtained in the case
of n D 5, see Figure 2.19. Thus, the general fracture law (2.37) with n D 5 is adopted for the
following simulations.

(a) ' D 10° (b) ' D 20° (c) ' D 40°

(d) n D 1 (e) n D 2 (f) n D 5

Figure 2.17 – Crack patterns obtained when using the Mohr-Coulomb cut-off criterion with different values
of friction angle ' (a, b, c), and those obtained when using the fracture criterion (2.37) with different values
of n (d, e, f).

It should be noted that the force-displacement curves shown in Figure 2.19 are smoothened by
the procedure described in Section 2.4.3.
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2.2.5 Solvers

At each time step, after applying the boundary conditions, specimen will be loaded and one should
find its new equilibrium configuration p. From the initial configuration p0 which is considered as
the reference state, the nodal displacement vector u can be deduced by

u D p ! p0 (2.44)

It should be noted that the hypothesis of infinitesimal deformations is assumed. There are several
ways to determine the equilibrium position of lattice network. In our calculation codes, two methods
are implemented. The first one concerns the balance of nodal forces and the second one concerns
the minimization of the potential energy of the system.

For the first one, a global vector of nodal forces F is constructed. The j th components of F is
the vector force at node j which is the sum of nodal forces of nv elements belonging to this node
(bold lines in Figure 2.20),

Fj D
nv
X

iD1

�

T
�

k
F e

i (2.45)

where
�

T
�

k
is the transformation matrix from the local coordinate system to the global one of the

element k. The equilibrium position of the system is obtained by setting the balance of all nodal

Figure 2.20 – Elements belonging to node j .

forces which means finding the solution such that

F ! 0 (2.46)

where, 0 denotes the null vector. It returns to solve a set of linear algebraic equations

A � u D b (2.47)

where, A is the global stiffness matrix, u is the displacement vector, b is the global vector of external
forces.

The second method looking for the equilibrium position is based on the idea of minimizing the
potential energy of the system. The equilibrium of the system is set at a position when its potential
energy function at this position is minimum. For the lattice of beam elements, the potential energy
of one element k are defined as

U k
p D 1

2

Z lk

0

�

N 2
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C �Q

T 2
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T 2
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C M 2

1
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C M 2

2
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3

EI3

�

k

dl (2.48)

in which, �Q is the form factor which is dependent on the shape of the cross section, �Q D 1:18 for
the circular section; internal forces of element k are given by

N D Knın (2.49)
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C l�!2/ (2.51)

M1 D Ktı!1
(2.52)

M2 D !Ks
l

2
ıs3

CKs
l2

2
�!2

!Kbı!2
(2.53)

M3 D Ks
l

2
ıs2

CKs
l2

2
�!3

!Kbı!3
(2.54)

In these equations, ın D u1j !u1i is the axial elongation; ıs2
D u2j !u2i , ıs3

D u3j !u3i are the
relative shear displacements about 2-axis and 3-axis, respectively; ı!1

D �1j !�1i , ı!2
D �2j !�2i ,

ı!3
D �3j ! �3i are the difference of angular rotations at two ends of the lattice element about 1-

axis, 2-axis, 3-axis, respectively; �!2
D �2i C�2j

2
; �!3

D �3i C�3j

2
are the averaged angular rotations

about 2-axis and 3-axis, respectively. For each element k, the internal forces are constant along the
axial direction of the element, so its potential energy is
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(2.55)

The total potential energy of the system is the sum of the potential energy of all elements in the
system, is given by

Up D f .u/ D
Nc
X

kD1

U k
p (2.56)

where, Nc is actual total contact number (the number of unbroken elements). This function is a
quadratic form and is a function of displacement vector u.

The conjugate gradient method (Press et al., 2007) is used to solve the set of linear equa-
tions (2.47) or to minimize the global potential energy function (2.56). Furthermore, solving equa-
tion (2.47) is equivalent to minimize the quadratic function

f .u/ D 1

2
u � A � u ! b � u (2.57)

since this function is minimized when its gradient

rf D A � u ! b (2.58)

is zero, which is equivalent to Equation (2.47). One disadvantage of the method based on solving
Equation (2.47) is that the global stiffness matrix has to be constructed explicitly. This does require
a large amount of computer memory when dealing with a large system. Therefore, the method based
on minimizing the potential energy of the system is used for the simulations in the thesis.

The vector displacement u is solved iteratively by minimizing Equation (2.56) until the precision
threshold tol is attained. When the equilibrium of system is found at each time step, the breaking
procedure is proceeded to remove an element as discussed in Section 2.2.4. After removing one
element, in the next time step this element will not be taken into account in the summation of the
Equation (2.56).

It is noted that removing an element from the system has a local effect. This means that removing
an element from the system only implies small changes in the displacement vector and in the total
potential energy of the system. Therefore, at any time step, if the initial guess u0 of the displacement
vector is taken from the converged displacement vector of the previous step, the conjugate gradient
method for finding the equilibrium position only needs a few iterations to converge. This was
presented in Schlangen and Garboczi (1996) and is confirmed by our simulation in which only
about 30 minutes are needed to totally break a specimen under tensile loading whereas 10 hours are
required for the same simulation if the initial guess u0 is always taken as a null vector.
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2.3 Numerical implementation

2.3.1 Accounting for material heterogeneities

At the mesoscale, concrete is substantially random and inhomogeneous and is consider as a three
phase material including coarse aggregates, mortar matrix and an interfacial transition zone ITZ
between them, see Section 1.1.1. The fracture is strongly influenced by the material structure.
Thus, the heterogeneity has to be implemented in the model to better capture the fracture process of
concrete.

For the sake of simplicity, in our studies, the aggregates introduced in the model are assumed
as circular (in two dimensions) or spherical (in three dimensions) inclusions. However, it should
be noted that other forms of the inclusions can also be modeled, such as ellipsoidal inclusions
or angular ones, see Wang et al. (1999) and Häfner et al. (2006) but the geometrical description
of these forms is more complex than the spherical ones. Moreover, an aggregate structure with
realistic aggregate shapes obtained from the computed tomography (CT-scan) can be implemented
in the lattice model (Man and van Mier, 2008).

In our model, the heterogeneities are introduced at two levels representing coarse aggregates
explicitly and fine aggregates implicitly. From a given discretization, the average element size is
known, a minimum threshold dmin can be determined such that an inclusion with diameter dmin can
contain a large enough number of lattice elements to describe aggregates. In our simulations, this is
approximated by choosing dmin greater than or equal to three times the average element size. As an
example shown in Figure 2.21 in which the values of dmin are taken equal to three times the average
element size for two different discretizations. The aggregates having diameters greater than dmin

are considered as the coarse inclusions which are modeled directly by assigning different material
properties to lattice elements corresponding to the material phases. Whereas the aggregates having
diameters less than dmin are considered to be dissolved in the mortar matrix and the ITZs and they
are modeled by assigning random strength values following the Gauss or Weibull distribution to the
mortar matrix and the interface phases. The identification of the distribution parameters (e.g., the
mean and standard deviation of the Gaussian distribution) of the strengths of the lattice elements is
discussed in Section 2.5.2. The fine aggregates are modeled by the random fields since they do not
contain a large enough number of lattice elements to be directly modeled as the coarse aggregates.

Figure 2.21 – The values of dmin is of 6 mm and 14 mm which are determined from a given discretization
with the average element size is of 2 mm (a) and 7 mm (b), respectively.

Note that to directly include the finest aggregates in the model, the finer discretization has to
be used. This results in, however, an increase in the number of degrees of freedom of the system
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and thus leading to an augmentation of the computational cost. We return to this problem in Sec-
tion 2.2.3.3.

2.3.1.1 Coarse aggregate modeling

Aggregate size distribution Modeling of coarse aggregates requires the information of the gra-
dation of the aggregates. The gradation can be taken from an aggregate grading curve of a real
material obtained from sieve analysis in which a relation between the sizes of a set of standard
sieves and the corresponding total amount of aggregates passing through that sieves, is defined.
However, if one lacks data from experiments, aggregate grading can also be described by means
of “ideal” grading curves which provide good aggregate packing. An aggregate gradation provided
from “ideal“ grading curve is well-graded which means that there are many different grain sizes, so
that small grains fit into the voids between larger grains. There are different types of “ideal” curves
worked out on the basis of practical experiments and theoretical calculation such as Bolomey’s,
Fuller’s, Faury’s curves (Fuller and Thompson, 1906; Dewar, 1999). The most known of them is the
“ideal” Fuller’s curve which is described by

p.d/ D 100% �
s

d

dmax
(2.59)

where p denotes the percentage of the aggregates that are finer than d , dmax is the maximum aggre-
gate size.

Taking an example to demonstrate that the Fuller’s curve can provide an aggregate packing
from a real concrete. Table 2.3 shows the aggregate gradation of high performance concrete M75C

(compressive strength fc D 75 MPa) used in Gaweska Hager (2004). The corresponding grading
curve is shown in Figure 2.22. Based on the sizes of used aggregates (maximum aggregate size
is 25 mm), a Fuller’s curve is also plotted in that figure. Since the plot of aggregate gradation of
concrete M75C is close to the Fuller’s curve, the aggregate of M75C is well-graded. Or inversely,
the Fuller’s curve can approximate a well gradation of a real concrete.

Table 2.3 – Grain sizes and cumulative sieve passing of an aggregate grading.

Class No Aggregate size [mm] Sieve passing [%]
12 0–1.25 22
11 1.25–2.5 35
10 2.5 –3.15 40
9 3.15–4 43
8 4–5 47
7 5–6.3 49
6 6.3–8 54
5 8–10 62
4 10–12.5 73
3 12.5–16 86
2 16–20 97
1 20–25 100

As mentioned above, only aggregates having diameters greater than dmin are directly modeled as
inclusions in the lattice model. Therefore, if the gradation of a real grading curve is based on, only
those of aggregates passing the sieve size being greater than dmin are used to generate the spherical
aggregate structure. In the case of the gradation of the Fuller’s curve is based on, we can define a
gradation of the aggregates having sizes from dmin to dmax as

p.d/ D 100% �
s

d ! dmin

dmax ! dmin
(2.60)
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Figure 2.22 – Grading curve of concreteM75C .

From the grading curve, the relative amount of aggregates within the grading segment Œds; dsC1�

can be obtained as
VAggŒds; dsC1� D p.dsC1/ ! p.ds/ (2.61)

To generate the material structure, an aggregate volume fraction Pa has to be defined. Depending on
each type of concrete, aggregates take up to 50%–90% of the total volume of concrete. The absolute
volume fraction of aggregates within the grading segment Œds; dsC1� is given by

V abs
AggŒds; dsC1� D Pa � VAggŒds; dsC1� (2.62)

As an example, Table 2.4 shows the volume fraction and absolute volume fraction (with Pa D
75%) of each aggregate grading segment generated using Fuller’s grading with dmin D 2:5 mm and
dmax D 16 mm. The corresponding Fuller’s curve is shown in Figure 2.23.

Table 2.4 – Volume fraction of each aggregate class.

Aggregate class
Sieve
size

Sieve
passing

Volume
fraction
of each
class

Volume fraction
of each aggre-
gate class with
Pa D 75%

[mm] [mm] [%] [%] [%]
– 2.5 0

2.5 - 3.15 3.15 21.94 21.94 16.46
3.15 - 4 4 33.33 11.39 8.54

4 - 5 5 43.03 9.70 7.27
5 - 6.3 6.3 53.05 10.02 7.52
6.3 - 8 8 63.83 10.77 8.08
8 - 10 10 74.54 10.71 8.03

10 - 12.5 12.5 86.07 11.53 8.65
12.5 - 16 16 100 13.93 10.45

Taking and placing processes After dividing the gradation of aggregates into segments, a spher-
ical aggregate structure has to be generated to assure the volume fraction of each grading segment
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Figure 2.23 – Grading curve with dmin D 2:5 mm and dmax D 16 mm.

of aggregates as well as the total volume fraction of the aggregates. Depending on the type of cre-
ation of the specimen that one would like to simulate, i.e., the specimen created when sawing from
the bigger sample or when directly casting in a mold, overlap between the aggregates with spec-
imen boundaries is allowed or not when mapping the aggregates on the lattice mesh. In the case
of allowing that overlap, only the parts of aggregates belonging to specimen are taken into account
(hatched fields of Figure 2.24). In this section, the procedure to generate an aggregate structure with
overlapping between aggregates and specimen boundaries is presented.

(a) (b)

Figure 2.24 – Limiting of grain positions and effective parts of aggregates (hatched fields) in 2D (a) and 3D
(b).

The taking and placing processes start with the grading segment containing the largest size
particles and repeat for the next smaller size grading segment and then again for successively smaller
size grading segment until the last one has been generated. For each grading segment Œds; dsC1�, the
aggregates are generated by the following steps:

Step 1. Calculate the aggregate volume to be generated V r
Agg in the grading segment.

Step 2. Generate a random number di defines the particle size and a random vector xi defines the
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position of the centroid of the particle. Assuming that the aggregate size di has a uniform
distribution between ds and dsC1, and the particle has also a uniform distribution throughout
the specimen, they are expressed as

di D �.dsC1 ! ds/C ds (2.63)

where � is a random number uniformly distributed between 0 and 1, and

xi D �.xmax ! xmin C di /C xmin ! di

2
(2.64)

in which xmin, xmax are the minimum and maximum coordinates of the specimen, xmax !xmin

defines the specimen sizes L, H and D as shown in Figure 2.24; vector di D .di ; di ; di /; �

are the three independent random numbers uniformly distributed between 0 and 1.

Step 3. Check if the particle does not overlap any previously placed particles. Moreover, the dis-
tance between any two centroids of particles i and j has to be equal or larger than d0 expressed
as

d0 D 1:1.
di

2
C dj

2
/ (2.65)

so that a minimum mortar thickness between two aggregates is always assured. If the condi-
tions of this step is not satisfied, repeat the step 2.

Step 4. Calculate the volume fraction of the generated aggregate particle and add it to the total
generated volume fraction of the current grading segment V g

Agg. Note that only the part of the
aggregate belonging to the specimen is taken into account.

Step 5. Repeat steps 2, 3, 4 until relative error between the total generated volume fraction of the
grading segment and the required volume fraction to be generated of the grading segment is
smaller than some predefined threshold tol , e.g. 0.1%. This is expressed as

err D 1 !
V

g
Agg

V r
Agg

< tol: (2.66)

The remaining aggregate volume to be generated V r
Agg ! V

g
Agg is then transferred to the next

grading segment.

As an example, Figure 2.25 shows the aggregate structures generated with 2:5 mm � d �
16 mm and aggregate volume fraction Pa D 75% in two and three dimensional cases.

Note that if overlapping between aggregates and specimen boundaries is not allowed, the taking
and placing processes should be performed separately since there is no overlapping between aggre-
gates and specimen boundaries and thus the volume fraction of the generated grain can be calculated
disregarding its position generated by the placing process, see e.g., Wang et al. (1999). The advan-
tage of separately performing the taking and placing processes is that one can place the generated
aggregate particles from the taking process, largest size first and smallest size last. Whereas in the
above procedure, the particles are placed from the largest size grading segment to the smallest one
but within one grading segment the particles are not placed as largest size first and smallest size
last because of random generation of particle sizes. However, this difficulty can be reduced when
reducing the gap in magnitude between ds and dsC1 of the grading segment.

Material phase definition and property assignment After generating the aggregate structure,
different material phases can be defined and different local mechanical properties are assigned to
the elements falling in each phase. At the mesoscale, three phases can be distinguished: aggregate,
matrix and interfacial transition zone (ITZ), see Figure 2.26a. If both ends of an element are located
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(a) (b)

Figure 2.25 – Generated aggregate structure with dmin D 2:5 mm, dmax D 16 mm and Pa D 75% in two
dimensions (a) and three dimensions (b).

in the same phase, then this element is assigned the same mechanical properties of the corresponding
phase (aggregate or matrix), otherwise it is considered as interface or aggregate element depending
on the location of its midpoint, see Figure 2.26b. If its midpoint is located within the particle, the
element is classified as aggregate element, or else it will be ranked as ITZ element. The reason
for this definition of ITZ element is that the resulting density of aggregates (the ratio between the
number of aggregate elements and the total number of elements) is closer to desired density of
aggregates in material than those developed by other authors (Schlangen and van Mier, 1992a;
Lilliu and van Mier, 2003; Sagar and Prasad, 2009). In their models, all elements that connect two
different zones of particle structures are considered as ITZ elements.

(a) (b)

Figure 2.26 – Distinction between aggregate, matrix and ITZ phase according to the location of a lattice
element in the particle structure (a); Definition of aggregate element or ITZ element from the element that
connect two zones of particle structure (b).

As presented in Chapter 1, for concrete, the aggregates are about twice to three times stiffer
than the mortar matrix. The strengths of the aggregates are about 2 to 3.33 times greater than those
of the mortar matrix. For the interface zones, it is found that their strength is about 33% to 67%
of the tensile strength of the matrix. These relative differences of stiffnesses and strengths can be
assigned to the corresponding lattice elements to simulate the mesostructure of concrete. However,
in the lattice models, the length of the lattice elements is significantly greater than the width of
the interfacial transition zone (about 20-100�m). Therefore, the Young’s modulus of the interface
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elements can be taken as the Harmonic mean of that of aggregate and matrix elements (Grassl and
Jirásek, 2010)

2

EI

D 1

EM

C 1

EA

(2.67)

in which the subscripts I , M and A refer to the interface, matrix and aggregate elements, respec-
tively.

2.3.1.2 Statistical distribution of local failure properties

It is recalled that the coarse aggregates that have diameters greater than dmin are directly modeled
by generating the particle structure and then assigning different material properties corresponding
to the material phases, see Section 2.3.1.1. If we assume that the macroscopic behavior of the
material is primarily driven by the coarse aggregates, since at the softening regime, because of
the localization of damage, the representative volume element is no longer existed, then we can
disregard the influence of the fine aggregates. However, if we would like to take into account the
contribution of the fine aggregates into the material behavior, the heterogeneities represented by
the fine aggregates can be modeled by assigning random fields of local tensile and shear strengths,
�n0 and �s0 to the matrix and ITZ phases. The Gauss and Weibull distributions are usually used,
see e.g., van Mier et al. (2002).

A random variable x with the Gaussian distribution has the probability distribution function
expressed as

f .x/ D 1

�x

p
2�
e

! 1
2

�

x! Nx
�x

�2

(2.68)

in which Nx and �x are the mean and the standard deviation of x, respectively. If x has the Weibull
distribution, its probability distribution function is given by

f .x/ D
(

k
�

�
 

x
�

�k!1 � e!.x
� /

k

if x � 0

0 if x < 0
(2.69)

where k > 0 is the shape parameter and � > 0 is the scale parameter of the distribution.
When the tensile strength �n0 and the shear strength �s0 are generated by Equation (2.68)

or Equation (2.69) a minimum threshold value �0;min has to be defined (in our simulations, the value
�0;min D 1 � 10!6 MPa is used) to avoid null or negative generated strength values which cause
unstable responses. When the generated strength value is smaller than �0;min, a new value will be
regenerated. As an example, Figure 2.27 shows the generated distributions after Gauss and Weibull
distributions of the local shear strength �s0 of 22812 mortar elements of the specimen presented
in Figure 2.25a.

2.3.2 Numerical procedure

During the thesis, the lattice model is firstly implemented in our self-writing C++ code. The code
consists of three modules presented in Figure 2.28. The input meshes for the pre-processing stage
are generated by the finite element grid generator Gmsh (Geuzaine and Remacle, 2009). Image
processing and visualization in the post-processing stage are done with the aids of the open-source
software Paraview (Ahrens et al., 2005; Squillacote, 2007).

The lattice model is next implemented in the existing open-source code SOFA (Allard et al.,
2007; Faure et al., 2007) to avail some efficient calculation algorithms such as parallel computation
and to couple the lattice model with the finite elements for dealing with large scale structures.
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Figure 2.27 – Generated distribution of local shear strength �s0 of 22812 mortar elements after Gauss dis-
tribution (a) with N�s0 D 0:6 MPa, ��s0

D 0:3 MPa and after Weibull distribution (b) with k D 1:5 MPa,
� D 1 MPa.

Figure 2.28 – Three modules of the calculation code.
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2.4 Post-processing treatment

To analyze the behavior of the material at the mesoscale using the lattice model, the stress and strain
should be computed from the lattice network. There are two methods for calculating the tress. By
the first one, the stress tensor is computed based on the equivalence of strain energy stored in a
cell of volume V . In the second one, stress in some direction is a measure of the resulting force
on a surface perpendicular to that direction divided by area of that surface. The resulting force is
calculated by defining a cutting plane and summing the force vector of all elements “cut” by that
cutting plane. The strain tensor is computed by averaging the displacement gradient over a volume
V . Otherwise, strain in some direction can be calculated by measuring the displacement in that
direction by means of LVDT-type (linear variable differential transformer) transformer. Thereafter,
estimates of local stress and strain fields are obtained.

2.4.1 Stress calculation

2.4.1.1 Mean stress

The Cauchy stress tensor in a discrete medium can be calculated from the contact forces (here the
forces of lattice elements) and the geometrical characteristics of the lattice. For the specimen with a
volume V , the stress tensor is calculated by (Bathurst and Rothenburg, 1990; Bagi, 1996)

� D 1

V

Nc
X

kD1

f k ˝ lk (2.70)

in which, ˝ denotes the outer product. The sum is with respect to all remaining elements (unbroken
elements) within the volume V . f k and lk are the force and contact vectors, respectively, of element
k with the Cartesian components

f k D f k
n nk C f k

s sk C f k
t tk D f k

x i C f k
y j C f k

z k

lk D lkx i C lky j C lkz k
(2.71)

in which, nk , sk, tk are the three unit basic vectors of the local coordinate system of element k.
It is noted that for problems in which a concentration of stress occurs, the mean stress obtained

by Equation (2.70) over the whole specimen volume V does not reflect that concentration. Instead
one can define a subdomain with volume Vs around the stress concentration zone and the stress
tensor is computed by averaging on that volume

� D 1

Vs

X

k2Vs

f k ˝ lk (2.72)

Note that if the chosen volume Vs is too large compared to the volume of the concentration zone, the
concentration of stress is lost, whereas if it is too small, the sum in Equation (2.72) is not “stable”.

Alternative to Equation (2.72), the stress in some direction can be induced by the resulting forces
on a cutting plane. This is presented in the next section.

2.4.1.2 Stress measure by resulting forces on a cutting plane

Defining a cutting plane (cp) with normal vector N which separates system into two parts as shown
in Figure 2.29, the resulting force vector is obtained by summing up all the force vectors of the
elements cut by this plane

F D
X

k\ .cp/¤0

 

f k
n nk C f k

s sk C f k
t tk

�

(2.73)
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The stress is then computed by averaging the resulting force over an area S of the intersection
surface defined between the cutting plane and the specimen

� D F

S
(2.74)

Figure 2.29 – Cutting plane.

It is worth noting that, for problems in which the stress is nearly homogeneous, the stress in
a certain direction given by Equation (2.74) and the stress in that direction derived from the stress
tensor given by Equation (2.70) are the same. This is verified by our simulations. For problems in
which the strong concentration of stress occurs, by defining an appropriate volume Vs , the stress
in the concentration zone can be measured by Equation (2.72) whereas the average stress over the
specimen’s cross-section (in the localization zone) along a direction can be easily, in practice, com-
puted by using Equation (2.74). Two methods for measurement of stress are implemented in the
computational code. Depending on the situation, they can be used alternatively.

2.4.2 Strain calculation

2.4.2.1 Mean strain

Similarly to the relationship between mesoscopic forces and macroscopic stress as described in
Equation (2.70), the macroscopic strain is related to the mesoscopic displacements by (see Bagi
(1996))

" D 1

V

Nc
X

kD1

�

uk
j ! uk

i

�

˝ aij (2.75)

in which, uk
i and uk

j are the displacements of element kth at the endpoints i and j respectively; the

area vector, aij , is defined as the vector directed from the end i to the end j of the element kth with
its magnitude is equal to the area of the element k, see Figure 2.30. This macroscopic strain tensor
is calculated by averaging over a volume V with respect to all elements having not broken yet.

The mean strain tensor computed by Equation (2.75) is only adapted for problems in which the
strain is rather homogeneous. For problems in which the strong localization of strains occurs within
certain zones, the average strain over the whole specimen size does not make sense. Similar to the
way to compute the stress tensor, a subvolume Vs of the localization zone can be defined and the
mean strain is computed over it

" D 1

Vs

X

k2Vs

�

uk
j ! uk

i

�

˝ aij (2.76)
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Figure 2.30 – Three modules of the calculation code.

Alternatively, the strain in certain direction can be induced by directly measuring the displace-
ment in that direction. This is presented in the next section.

2.4.2.2 Strain induced by displacement measurement

The displacements can be also measured by defining a LVDT-type sensor as in experiments. The
sensor is defined by PiPj with the length L0 as shown in Figure 2.31, where Pi belongs to triangle
i and Pj belongs to triangle j of the lattice mesh. After deformation, the positions of Pi and Pj are
determined by the interpolation from the positions of triangles i and j using the shape function

Pk D
3
X

nD1

N k
n P

k
n with k D i; j (2.77)

here, N k
n ; n D 1; 2; 3 are the shape functions of triangle k (k D 1; 2); P k

n ; n D 1; 2; 3 are the
position of three vertices of triangle k. The new length L of this sensor will be defined as the
distance between Pi and Pj . The relative displacement and strain measured by this sensor are

u D L ! L0

" D u
L0

(2.78)

Figure 2.31 – LVDT-type sensor.

2.4.3 Envelope of global behavior curves

After simulating the fracture process of a specimen using the lattice model, the global behavior
of the specimen can be determined by means of a force-displacement or a stress-strain curve. A



72 Chapter 2. Lattice model for concrete failure

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

Fo
rc

e
[N

]

Displacement [�m]

84

88

92

96

4 5

Real output
Envelope

Figure 2.32 – Force-displacement curve obtained from an uniaxial tensile simulation.

force-displacement curve of an uniaxial tensile test is shown in Figure 2.32. As described above, the
fracture process is simulated by removing the elements whose stress states exceed the critical value.
Since the failure of lattice elements is brittle, a sudden decrease of the measured load and possibly
the accompanying displacement is observed see Figure 2.32. Each point of the force-displacement
curve represents the state of the specimen when removing a lattice element. Connecting these points
leads to the global behavior curve. However, it differs from the experiments in which the displace-
ment is controlled. In fact, the last one is characterized by a monotonic increase of the displacement.
Therefore, in order to have a corresponding response, the “envelope” of the numerical curve should
be taken. The envelope curve is obtained by the so-called smoothing procedure. The procedure
is described as follows. By connecting from the first to the last point that describes the specimen
state and as soon as a decrease of the displacement is observed, the decrease of the computed load
is kept vertically until an intersection with the original curve is observed. The envelope curve then
follows the original curve until the new decrease of the displacement is met again and the procedure
is repeated. The zoom-in figure in Figure 2.32 shows the procedure.

Note that envelope curves were also proposed by Arslan et al. (1995) and Vervuurt (1997).
However, when using the envelope curve alone, some essential information may be lost such as a
possible snap-back. Also the area under the envelope curve is overestimated.

2.5 Numerical applications

2.5.1 Identification of elastic parameters

Depending on the type of the lattice model used (the beam or normal-shear spring model), the
corresponding parameters should be identified so that the model can represent the “macroscopic
homogeneous” material with the elastic properties: Young’s modulus E and Poisson’s ratio �. Since
almost all simulations performed in the thesis are in two dimensions, the following identification
procedure of model parameters is only valid for 2D lattice model.

To determine the model parameters, elastic analyses are carried out with different model param-
eters and the corresponding macroscopic elastic properties E and � are computed. The procedure to
compute E et � is described in Section 2.2.3.3. From that a relation between the model parameters
and the macroscopic elastic properties can be deduced. The elastic analyses are performed on the
mesh whose element size is satisfied the condition B=lm � 40 as discussed in Section 2.2.3.3. The
mesh with B=lm D 60 was used in our studies.
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2.5.1.1 Beam lattice model

To distinguish the macroscopic and the local elastic property notations, all the elastic properties of
the beam elements are written with a subscript b. As shown in Section 2.2.2, the local properties
of the beam elements, with the subscript b standing for “beam”, are: the Young’s modulus Eb , the
cross-section area Ab , the beam length lb and the second moment of area Ib. Note that the polar
second moment of area Ib1 D 2Ib for the circular section. Since the torsional moments of the beam
elements are generally small under mode-I of failure, the shear modulus nearly has no influence on
the material behavior. The Poisson’s ratio of the beam elements �b is set at 0:2, arbitrarily, through
the lattice geometry. Two parameters Ab and lb are imposed by the mesh geometry. Two remaining
parameters Eb and Ib are related to the macroscopic parameters E et �. Similar to Delaplace and
Desmorat (2007), an adimensional parameter � D 64Ib=.�D

4
s / with Ds the equivalent diameter of

the cross section (see Equation (2.29)) is used instead of Ib . The model parameters are now Eb and
�.

Uniaxial tensile simulations are performed with varying the model parameter � as in Table 2.5.
For each value of �, eight uniaxial tensile simulations corresponding to eight values of Eb taken
from Table 2.5 are carried out. There are 104 cases in total of elastic analysis performed. The
Young’s modulus E and Poisson’s ratio � are computed for each case. An interesting observation is
that when keeping � constant and varying Eb , the computed values of � and E=Eb do not change,
refer to Figure 2.33 in which the evolutions of � and E=Eb with respect to Eb for two values of �
(0:1 and 1) are shown. This means that � and E=Eb are only proportional to the parameter �.
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Figure 2.33 – Evolutions of � and E=Eb with respect to Eb when � equals to 0:1 and 1.

Table 2.5 – Varying of beam model parameters.

� [-] 0 0.05 0.1 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0 4.0
Eb [GPa] 5 10 20 40 60 80 100

The evolution of � with respect to � is shown in Figure 2.34a while that between E=Eb and �
is shown in Figure 2.34b.

Moreover, the fitted relations which describe the evolutions of � and E=Eb with respect to � are
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Figure 2.34 – Evolution of elastic properties with respect to the beam model parameters: Poisson’s ration �
(a) and normalized Young’s modulus E=Eb (b) depend on the parameter �.

given as

� D 1! a�
3C b�

(2.79a)

E

Eb

D 1C c�

1:52C d�
(2.79b)

in which a D 0:3, b D 0:425, c D 0:38, and d D 0:23. The plots of the numerical and fitted
relations of � and E=Eb with respect to � are also shown in Figure 2.34. For example, to represent
a homogeneous material with E D 30 GPa and � D 0:2, the beam model parameters are Eb D
37:88 GPa and � D 1:03.

2.5.1.2 Normal-shear spring lattice model

The normal-shear spring lattice model is characterized by the local elastic properties of the elements:
the normal and shear moduli En and Es , the cross-section area A and the element length l . Param-
eters A and l are imposed from the mesh. Two remaining parameters En and Es are identified to
have the macroscopic homogeneous elastic parameters E and � of the material. To this end, differ-
ent simulations are performed by varying the value of the parameter En as shown in Table 2.6. For
each value of En, different values of Es=En ratio in Table 2.6 are also assigned to the simulations.
There are totally 36 simulations carried out.

Table 2.6 – Varying the parameters of the normal-shear spring model.

Es=En [-] 0.1 0.2 0.4 0.6 0.8 1.0
En [GPa] 1 20 40 60 80 100

The main observation is that the computed values of Poisson’s ratio � and of the E=En ratio do
not change when keeping the ratio Es=En constant and varying En, see Figure 2.35 in which the
evolutions of � and E=En with respect to En corresponding to two values of Es=En (0:1 and 0:8)
are shown. This means that � and E=En are only proportional to the ratio Es=En and not to the
individual values of En or Es . The evolutions of � and E=En with respect to the ratio Es=En are
shown in Figure 2.36.

Similar to the previous section, the fitted relations that relate macroscopic elastic properties and
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the model parameters are given by

� D 1!Es=En

3CEs=En
(2.80a)

E

En
D 2.1C Es=En/

3CEs=En
(2.80b)

or equivalently by

En D E

1 ! � (2.81a)

Es D E.1! 3�/
1 ! �2

(2.81b)

Note that the relation (2.80a) is exactly the same as that of the analytical analysis, see Chang et al.
(2002b). While the ratioE=En of the relation (2.80b) is less than that of the analytical analysis a fac-
tor of

p
3. The difference is probably explained by the randomness of the lattice model because the

analytical relation is obtained from the regular triangular lattice with periodic boundary conditions.
As an example, to represent the homogeneous material withE D 30GPa and � D 0:2, the identified
parameters of the normal-shear spring lattice model are: En D 37:5 GPa and Es D 12:5 GPa.

2.5.2 Identification of failure parameters

When using the fracture criterion (2.37) with n D 5, two parameters the local normal and shear
strengths, �n0 and �s0, have to be identified such that the material strengths are obtained correctly.
It is recalled that whether the fine aggregates are introduced in the lattice model, values of these two
parameters are randomly assigned to the lattice elements or are taken as the same for all elements.
First, we present the procedure to identify �n0 and �s0 when disregarding the influence of fine
aggregates. The identification procedure when taking into account the fine aggregates is presented
in the next paragraph. Generally speaking, the two parameters �n0 and �s0 are identified from
two material strengths, the tensile and compressive strengths, ft and fc , respectively. However, the
thesis is only focused on tensile failure of the material. So, the local normal strength �n0 is identified
from the material tensile strength ft and a study on the influence of the local shear strength �s0 on
ft will be analyzed. To this end, the uniaxial tensile test on the lattice 100 � 100 mm2 with the
relative size B=lm D 60 is carried out by varying the values of �n0 and �s0 as in Table 2.7. For each
value of �n0, the value of �s0 is assigned to the lattice elements depending on the ratio �s0=�n0 as
in Table 2.7. Consequently, there are 30 simulations in total. The tensile strength of the material is
calculated as the maximum tensile stress.

Table 2.7 – Varying the parameters of �n0 and �s0.

�n0 [MPa] 1 3 5 7 9
�s0=�n0 [-] 0.1 0.5 1 1.5 2 4

The main observation is that ft is only influenced by �n0 and the relation is linear, see Fig-
ure 2.37a. When keeping a certain value of �n0 constant, varying �s0 does hardly influence on ft ,
see Figure 2.37b. Therefore, �n0 can be directly identified from the tensile strength of the material.
The value of �s0, however, should be identified from the compressive test. However, this is out of
the scope of the thesis. For the following, the local shear strength �s0 is taken as two or three times
greater than the normal one which seems reliable (Grassl and Jirásek, 2010). As an example, to
obtain ft D 3 MPa, the identified value of �n0 after Figure 2.37a is of 4:4 MPa.

When taking into account the fine aggregates, the local normal and shear strengths are randomly
assigned to the lattice elements with the corresponding mean and standard deviation values N�n0,
��n0

, N�s0 and ��s0
. As above, the material tensile strength ft allows to identify the mean value
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Figure 2.37 – Evolution of the tensile strength ft of the material with respect to �n0 (a) and evolution of ft

with respect to �s0 when keeping �n0 constants (b).

N�n0 whereas the assumed value of N�s0, does not affect mode I failure. To study the evolution of
the material tensile strength with respect to the mean value N�n0 and the standard deviations ��n0

,
��s0

, a series of uniaxial tensile tests on the above specimen is performed by varying the parameters
taken in Table 2.8. The mean value N�s0 is taken 5 MPa for all simulations. Moreover, The standard
deviations of �n0 and �s0 are taken equal. For each value of N�n0, the standard deviation is varied
0.5, 1.5 and 3.0 MPa. There are 18 cases of simulations.

Table 2.8 – Varying the mean value of �n0 and the standard deviation of �n0, �s0 when keeping the mean
value of �s0 D 5 MPa.

N�n0 [MPa] 1 3 5 7 9
N�s0 [MPa] 5
��n0;�s0

[MPa] 0.5 1.5 3.0

Figure 2.38 shows the evolutions of ft with respect to N�n0. The relation is linear when the value
of the standard deviation is less than the values of N�n0 (the case of the standard deviation equals
to 0.5 MPa). When increasing the value of the standard deviation, the material tensile strength ft

decreases whereas its standard deviation increases. It is excepted for the case in which the value of
the mean is less than that of the standard deviation (cases N�n0 D 1 MPa and the standard deviation
D 1:5, 3:0 MPa) since all the negative generated values are replaced by the generated positive
ones, see Section 2.3.1.2. This leads to more elements are assigned with larger values of �n0 when
increasing the value of the standard deviation. This also causes the nonlinear evolution between ft

and N�n0 close to the point in which the standard deviation is greater than the mean value. However,
going far from that point, the relation becomes again linear. The maximum standard deviation of
ft is of 0.2 MPa for the case in which the standard deviations of �n0 and �s0 are of 3:0 MPa.
Whereas they are of 0:1 MPa and 0:08 MPa for the cases in which ��n0

D ��s0
D 1:5 and 0.5 MPa,

respectively.
To identify the values of the mean and the standard deviation of the local strengths, experimental

data of multiple tests in which the mean and the standard deviation of the strength of the material
has to be provided. In the lattice model, the material tensile strength ft D 3MPa is obtained with a
standard deviation of 0:2 MPa with the parameters N�n0 D 6:9 MPa and ��n0

D ��s0
D 3 MPa.

2.5.3 Model parameters for heterogeneous materials

If the generated grain structure is used to implement heterogeneity, different strengths and stiff-
nesses are assigned to the lattice elements according to their position. The ratios of the different
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Figure 2.38 – Evolution of the tensile strength ft of the material with respect to N�n0.

stiffnesses and strengths between the phases (aggregate, matrix and ITZ) are important. These ra-
tios can be related to experiments. The stiffness and strengths of the matrix phase can be regarded
as reference values. Once the reference values are known, the values of stiffnesses and strengths of
the other phases can be easily deduced from the ratios of stiffnesses and of strengths between the
corresponding phase (aggregate or ITZ) and the matrix phase, respectively.

A tensile test can be carried out on a specimen with an explicit representation of the generated
grain structure in order to identify the reference values of stiffnesses and strengths of the matrix
phase such that the specimen can represent a material with given macroscopic properties such as
Young’s modulus, Poisson’s ratio and material tensile strength.

It is clear that when the ratios of the different stiffnesses and strengths between the material
phases change, other values of the identified parameters will be obtained. Therefore, it does not
exist a unique set of parameters for a given macroscopic properties.

The following example shows a procedure to identify the parameters of the normal-shear spring
lattice model so that the modeled material can represent the heterogeneous material with the macro-
scopic properties: Young’s modulus E D 30 GPa, Poisson’s ratio � D 0:2, and tensile strength
ft D 2:4 MPa. The composition of the grain structure with dmax D 12:5 mm is shown in Table 2.9
with the total volume fraction of grain is of 45%. The tensile test is carried out on the specimen
100 � 100 mm2 with the notch of 10 � 2 mm2, see Figure 2.39. The ratios of the different stiff-
nesses and strengths between the matrix (M ), the aggregate (grain) (A) and the ITZ (I ) are given in
Table 2.10. The values of these ratios are chosen in the same order of magnitude of the differences
of stiffnesses and strengths between the aggregate, mortar and ITZ of concrete material, see, e.g.,
Hsu and Slate (1963). With these assumed ratios, the parameters of the lattice model are only the
stiffnesses and strengths of the matrix phase.

The tensile test is carried out using the normal-shear spring lattice model with the fracture
law (2.37) with n D 5 and the used mesh has the size ratio B=lm D 100 with B the specimen
width and lm the mean length of the elements. The identified parameters of the matrix phase are:
En D 24:5 GPa, Es D 6:5 GPa, �n0 D 13:5 MPa, �s0 D 27 MPa in order to have the macroscopic
properties E D 30 GPa, � D 0:2, and ft D 2:4 MPa. The corresponding values of the aggregate
and ITZ phases can be easily deduced from Table 2.10.

2.5.4 3D tensile test of homogeneous material

The uniaxial tensile test is carried on the cubic specimen of 100�100�100 mm3 using the normal-
shear spring lattice model with the parameters given in Table 2.11. The corresponding macroscopic
properties and tensile strength are: E D 19:5 GPa, � D 0:25 and ft D 3 MPa. The specimen
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Table 2.9 – Volume fraction of each aggregate segment of the aggregate structure obtained from the Fuller’s
grading.

dmax

Aggregate
segment

Sieve
size

Sieve
passing VAgg V abs

Agg

Œmm� Œmm� Œmm� Œ%� Œ%� Œ%�

12.5

0–3.15 3.15 0 0 0
3.15–4 4 30.15 30.15 13.57
4–5 5 44.48 14.33 6.45
5–6.3 6.3 58.04 13.56 6.10
6.3–8 8 72.02 13.98 6.29
8–10 10 85.59 13.57 6.11
10–12.5 12.5 100 14.41 6.48

Figure 2.39 – Tensile test on the specimen 100 � 100 mm2 with the notch of 10 � 2 mm2.

Table 2.10 – Ratios of the different stiffnesses and of strengths between the matrix phase (M ), aggregate
phase (A) and the ITZ (I ).

En, Es �n0, �s0

A
M

ratios 3 2

I
M

ratios 1:5 0:33
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is loaded by imposing the vertical displacement increment to the nodes on its top boundary while
vertically fixing the nodes on the bottom boundary. This simulates the loading due to the non-
rotating end platens. Since the computational effort increases considerably in 3D simulations, a
coarse mesh with B=lm D 20, where B stands for the specimen size and lm is the mean length
of the lattice elements, is used. Neither generated grain structure nor random field of strengths is
introduced in the description of the material. The fracture law expressed by Equation (2.37) with
n D 5 is used in the simulation.

Table 2.11 – Input parameters for 3D simulation.

En Es �n0 �s0

[GPa] [GPa] [MPa] [MPa]
33.5 11 6 12

The development of cracks in the specimen is shown by plotting crack history at different
stages, see Figure 2.40. The labels in Figure 2.40 indicate the corresponding positions in the load-
displacement curve (see Figure 2.41). Figure 2.41 shows the load-displacement curve of the simula-
tion. The envelope of the load-displacement curve is shown as well. The displacement is measured
by the LVDT-type sensor with the length of 60 mm mounted along the vertical direction in the mid-
dle of the specimen volume. It is seen that the microcracks develop before the peak load is reached.
It is in agreement with the observation in concrete material, see e.g., Prado and van Mier (2003) and
van Mier (2008).

Moreover, it is observed that the load-displacement response is more brittle than the response
usually observed for concrete material. The reason here is that the element length is very large
and, as a result, small material bridges could not be obtained, in conjunction with the brittle elas-
tic parameters used. Nevertheless, the load-displacement response should be less brittle when the
heterogeneity of the material is introduced by including a grain structure in the model.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.40 – Development of cracks in homogeneous material using the 3D lattice simulation.
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Figure 2.41 – Load-displacement curve of the homogeneous material at the different stages corresponding to
the labels shown in Figure 2.40.

2.5.5 3D tensile test of heterogeneous material

The same specimen geometry and boundary conditions as in the previous section are used here for
studying the cracking process of heterogeneous material. Only three grain particles with diameters
equal to 26, 40, 26 mm are introduced in the simulation, see Figure 2.42a. The same mesh as the
previous section is used. The material is modeled as the three-phase material with the weak ITZ
(I ) in-between the matrix (M ) and aggregate (A) phases. The ratios of the different stiffnesses and
strengths between the matrix, the aggregate, and the ITZ are given in Table 2.10, see Section 2.5.3.
For a comparison with the homogeneous material case in terms of the load-displacement curve
(Figure 2.41), the parameters of the model for the heterogeneous material are identified such that
the load-displacement curve has the same initial slope and the peak load as those of the homogeneous
material. The identified parameters of the matrix phase are: En D 30 GPa, Es D 8 GPa, �n0 D
7:4 MPa, �s0 D 14:7 MPa.

Figure 2.42 shows the development of cracking process in the heterogeneous material. The
labels of the crack patterns indicate the corresponding position in the load-displacement curve (see
Figure 2.43). Figure 2.43 shows the load-displacement curve of the simulation together with its
envelope. The displacement is again measured by the LVDT-type sensor with the length of 60 mm
mounted along the y-direction in the middle of the specimen volume like in the simulation of the
homogeneous material. The main observation is that the crack is initiated at the ITZs which are
the weakest links of the material (Figure 2.42b). Then, the microcracks develop also in the matrix
phase before the peak load is reached (Figure 2.42c). After that, upon the loading increase, the
microcracks appear more and more and coalesce to form a curved crack surface, making the load-
carrying capacity decreases gradually. This accounts for the softening behavior in the post-peak
regime.

By plotting the envelopes of the load-displacement curves of both the homogeneous and het-
erogeneous materials in the same diagram, cf. Figure 2.44, it is seen that the load-displacement
response of the heterogeneous material is less brittle than that of the homogeneous material. Quite
obviously, this is due to the effect of the grain particles that make the crack surface more tortuous,
which leads to the roughness of the crack faces (cf. Figure 2.42h compared to Figure 2.40h). It leads
to the conclusion that when more small grain particles are introduced in the model, the brittleness
of the load-displacement response should be decreased. However, doing so, the mesh size is needed
to be reduced as well, which leads to a massive computational effort.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.42 – Development of cracks of the heterogeneous material using 3D simulation.
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Figure 2.43 – Load-displacement curve of the heterogeneous material at the different stages corresponding to
the labels shown in Figure 2.42.
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Figure 2.44 – Load-displacement responses of the homogeneous (grain particles are not included) and hetero-
geneous (grain particles are included) materials.

2.5.6 2D single-edge-notched tensile test

The single-edge-notched (SEN) specimen used to identify the model parameters for heterogeneous
material, see Section 2.5.3, is reused in this section for performing the tensile test. The specimen
dimension is 100� 100 mm2 with the notch of 10� 2 mm2. The simulation is carried out using the
normal-shear spring lattice model with the parameters, the mesh used and the grain structure with
dmax D 12:5 mm, described in Section 2.5.3. The material is modeled as the three-phase material.
The specimen is pulled out by imposing the vertical displacement on the nodes on the top boundary
while vertically fixing all the nodes of the bottom boundary.

Figure 2.45 shows the load-displacement response of the specimen and its envelope. The dis-
placement is computed by the LVDT-type sensor with the length of 35 mm mounted along the
vertical direction in the middle of the specimen. The crack patterns corresponding to the positions
(a), (b), (c) and (d) of the load-displacement curve are shown in Figure 2.46. It is seen again that
the microcracks appear at the ITZ positions before the peak load is reached. From the peak load to
the (c) position, the load-carrying capacity of the specimen decreases with respect to the increase
of the measured vertical displacement. At the (c) position, two main separated cracks are formed,
cf. Figure 2.46c. There is no doubt that the heterogeneity of the material increases due to these two
cracks. From the (c) position, under the prescribed displacement, it is quite possible that the mate-
rial is rotated in the middle of the bridge between these two cracks. This leads to the fact that the
load-carrying capacity of the specimen increases upon crack bridging. After finishing the bridging
process, only one main crack is finally formed and crosses the specimen section, cf. Figure 2.46d.

The broken elements of the final crack pattern shown by black dots in Figure 2.46d can be
separated by the elements with largest opening, shown by the black dots in Figure 2.47a, and the
remaining broken elements shown by the blue dots. The black and blue dots can be read as the
macrocrack and the microcracks, respectively. The cumulative fracture energy dissipated (Nm) by
these broken elements is shown by the colormap in Figure 2.47b.

2.6 Conclusions

The concept of the lattice model has been presented in this chapter. Local fracture of elements
is brittle. Different fracture criteria are implemented for studying their influence on the failure
behavior of the material. From that, one fracture criterion which is appropriate for mode I failure
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Figure 2.45 – Load-displacement response of the SEN tension test.

(a) (b)
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Figure 2.46 – Cracks develop in the specimen at different stages with the labels corresponding to the positions
of the load-displacement response shown in Figure 2.45.
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(a)
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1e-7

2e-7
2.2e-7

(b)

Figure 2.47 – The black dots indicate broken elements with the largest opening – read as the macrocrack –
while the blue dots stand for the remaining broken elements – read as the microcrack (a); Colormap of the
cumulative fracture energy of the elements (Nm), the grain structure is superimposed and represented by the
light gray dots (b).

is adopted for later simulations. Methods used to implement the heterogeneity of the material are
also presented in details. The determination of the size of lattice elements is discussed as well. The
parameter study is performed to identify the model parameters so that the lattice model can simulate
a material with given elastic properties and failure strength. Several tensile tests on 2D and 3D
specimens are performed to show the capacity of the lattice model. The following conclusions can
be drawn:

� The model is extremely simple since it only makes use of a linear elastic analysis.

� The lattice model is very suitable for studying of cracking process in heterogeneous material.

� Even though only the brittle elastic parameters are used, a global ductile behavior can be
obtained by implementing the heterogeneity of the material.
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This chapter deals with agents at the mesoscopic scale such as size, volume fraction, size disper-
sion of the aggregate structure as well as at the macroscopic scale like stress gradient, boundary

conditions etc., that affect the resulting size of the Fracture Process Zone (FPZ) and the character-
istic length of concrete-like material. The reason for that study is addressed first. Methods for the
assessment of the FPZ size and the characteristic length of the material are next presented. Then,
parameters that control the aggregate structure of the material are shown, followed by an extensive
study of their effects on the FPZ size and characteristic length of the material. The chapter is closed
by some drawing conclusions.

3.1 Introduction

Fracture of quasi-brittle materials is characterized by a zone with a finite size around and ahead the
crack tip, in which damage occurs and causes the softening behavior of the materials. This is the
fracture process zone (FPZ). For concrete, as stated before, the size (width) of the FPZ, denoted by
`FPZ hereafter, is believed to be proportional to the maximum aggregate size dmax, see, e.g., Bažant
and Oh (1983) and Pijaudier-Cabot and Bažant (1987). Therefore, in nonlocal models (gradient or
integral form), the FPZ size which only depends on the internal length `c introduced, depends on
(is proportional to) the maximum aggregate size. Accordingly, neither loading nor structural effect
is considered to affect the resulting size of the FPZ except in the latest integral nonlocal model
proposed by Giry et al. (2011). However, in the latter, the internal length parameter is related to
the maximum aggregate size and also depends on the stress state. Figure 3.1 shows a schematic
representation of modeling procedure using a nonlocal model.

input: `c output: `FPZ

dmax

?

Figure 3.1 – Based on the maximum aggregate size dmax, a value of `c is chosen as an input of a nonlocal
model for fracture analysis which provides a FPZ size `FPZ.

The literature often reports a linear or affine relation between `c and dmax, see, e.g., Bažant and
Pijaudier-Cabot (1989) and Otsuka and Date (2000). But actually, varying dmax in experiments may
lead to a number of changes in the aggregate structure characterized by other parameters such as the
volume fraction of aggregate, their size dispersion, their fabric or connectivity. Basic questions may
be raised: what does affect the internal length of a nonlocal model? Is it only the maximum size of
aggregates or some less obvious parameter(s)? Does the loading or the structure size itself play a
role in the internal length?

To address these questions, numerical simulations of uniaxial tensile tests are carried out using
the lattice model in which the geometry and mechanical properties of the material mesostructure
are explicitly introduced. The output of the simulations is the FPZ size `FPZ and the characteristic
length of the material. The characteristic length is a priori regarded as the internal length that would
be introduced in nonlocal models. The same notation `c is thus used in the following. From the
lattice simulations, we would like to find out the relation between the two lengths `FPZ and `c, and
some relevant characteristics of the material mesostructure. The study is restricted to the case of
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two-dimensional analysis of a brittle elastic model material with circular inclusions. The presence
of a weak interfacial transition zone (ITZ) in-between inclusions and matrix is whether considered
or not.

It is important to stress before reading the following that the inclusions and matrix have a brittle
elastic behavior together with highly simplified geometry. Since we are on the way to approach
the behavior of concrete material, the terms inclusions and matrix are often willingly replaced by
aggregates and mortar, respectively, just like in concrete. We are aware that this is a misnomer given
the complexity of real concrete mesostructure, but it allows one to keep in mind the primary goals
of the study. As a consequence, our observations and conclusions must be translated with caution to
the case of real concrete.

3.2 Determination of FPZ size and material characteristic length

3.2.1 Fracture process zone size

In the model, the overall energy is stored in the form of elastic energy in each element. The fracture
energy of the entire material is the sum of all elastic energy dissipated by the rupture of each element.
A density map of the dissipated elastic energy can thus be drawn. Based on this map, the size of
the FPZ can be determined by analyzing the density distribution of dissipated energy around the
macrocrack. This distribution, when represented as a probability density function (pdf), can be
fitted by a Gaussian distribution in order to extract a width. Rather than that, we choose to rely on
the cumulative density function (cdf) of the dissipated energy to determine the size of the FPZ since
that curve can be more smoothly defined by sorting the dissipated energy along a direction. The
direction chosen here is the one perpendicular to the mean direction of the final crack which may
not be strictly perpendicular to the loading direction depending on the microstructure setting. As
shown in Figure 3.2, the cdf will be generated along the y1-direction set perpendicular to the mean
direction x1 of the final crack. Doing so, the difference in y-direction between two end points of the
final crack is not taken into account in the resulting fracture process size.

x

y

y1

x1

Figure 3.2 – The mean direction of the final crack.

The cumulative form of the dissipated energy density is then fitted by the cdf of a normal distri-
bution expressed as

F.x/ D 1
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x ! �
�
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2

��

(3.1)

where ’erf’ stands for the Gauss error function defined by two parameters: the mean � and the
standard deviation � . The width of the FPZ is hence estimated four times larger than the value of
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the standard deviation � . This approximation provides a width of the zone that contains about 95%
of the dissipated energy. An example to determine the FPZ size based on the lattice simulation is
presented in Section 3.2.4.

3.2.2 Material characteristic length

As stated in Chapter 1 a length parameter (internal length), denoted as `c, is required for simulating
the failure of the heterogeneous material using continuum nonlocal models. This length is required
for reproducing the heterogeneity of the material. This length is directly related to the characteristic
length of the material. However, it is not simple to deduce the value of the internal length from the
characteristics of the material such as the size and the distribution of the constituents at the material
scale, e.g., the aggregate scale. To better understand the correlation between the internal length
and the characteristic of the material mesostructure, numerical simulations using the lattice model
are proposed since the variation of the size and the distribution of the material constituents can be
explicitly and easily introduced for verifying their influence on the internal length. To estimate
the value of the internal length of the material which is modeled by the lattice model, we use the
method proposed by Bažant and Pijaudier-Cabot (1989). The basic idea is that the internal length
of the material is approximated as the effective width h of the zone in which the fracture energy
of the material is dissipated. This effective width is defined as the ratio of the fracture energy Gf

(energy per unit area of crack surface) dissipated by the cracking that localizes in a narrow band of
the specimen in one type of the tensile test and the energy density Ws dissipated by the cracking that
is nearly homogeneously distributed in the whole volume of the specimen of the same material in
another type of tensile test. Finally, the internal length of the material is given by

`c ' h D Gf

Ws
(3.2)

To evaluate `c by the lattice model, both numerical tensile tests have to be performed to deter-
mine Gf and Ws . Gf is determine from the tensile test performed on a notched specimen so that
the damage can be localized whereas Ws has to be determined from the tensile test carried out on an
unnotched specimen such that the damage is as homogeneously as possible distributed in the spec-
imen volume. To this end, the numerical simulations of tensile tests using the lattice model can be
performed in which the tensile loading is indirectly applied to the notched and unnotched specimens
by elongating the steel bars “glued” to the specimens as proposed by Bažant and Pijaudier-Cabot
(1989), see Figure 3.3. The main difference between the two types of tensile tests is that the steel
bars are only glued to the ends of the notched specimen within a certain length while they are en-
tirely glued to the unnotched specimen within the whole height of the specimen. For the following,
the tensile tests performed on notched specimens, where the Location of Damage is forced, are
referred to as LD-tests. The tensile tests performed on unnotched specimens, designed to identify
Distributed Damage, are mentioned as the DD-tests. These tests are known as the PIED (Pour Iden-
tifier l’Endommagement Diffus) tests in the French community, as introduced by Fokwa (1992).
Note however that a diffused damage is actually not achievable, that is why we prefer to talk about
distributed rather than diffused damage. In the lattice simulations, the steel bars are also discretized
by the lattice elements but their stiffnesses are set 10 times greater than those of the material tested
and they always have an elastic behavior. An example to point out the measurement of the internal
length `c by lattice simulations is presented in Section 3.2.4.

3.2.3 Numerical samples and mechanical parameters

Tensile tests using the lattice model are carried out to determine the FPZ size `FPZ and the material
characteristic length `c. The FPZ size `FPZ is determined by fitting the cumulative density curve of
the dissipated energy of a localized tensile test while the characteristic length `c is assessed from
the dissipated energies of both localized and distributed tensile tests on notched and unnotched
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Figure 3.3 – The tensile test performed on the notched specimen to obtain the localized cracking process (a)
and on the unnotched specimen to obtain the distributed cracking process (b).
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specimens, respectively. Figure 3.3 shows the configuration of the specimens used in the study. Six
types of localized tensile tests, A-type, B-type, B1-type, C-type, C1-type and D-type, in which there
are differences in specimen size, notch types (two or only one notch), loading equipment (with or
without steel bars) are performed to examine the effect of specimen size and boundary conditions on
`FPZ, with the dimensions given in Table 3.1. Only A-type tensile tests are carried out by elongating
the steel bars glued to the specimen. B-, B1-, C-, C1- and D-type specimens are loaded in tension
by directly imposing the vertical displacement increment on the nodes of the top boundary of the
specimens while vertically fixing the nodes of their bottom boundaries. C1- and D1-type specimens
have only one notch on the left side whereas A-, B-, C- and D-type specimens have two symmetric
notches on left and right sides. The six types of LD-tests are schematically shown in Figure 3.4.
The characteristic material length `c is determined from the A-type localized tensile tests and the
distributed tensile tests (Figure 3.3b).

Table 3.1 – Specimen dimensions [mm].

Tests designed for:
Localized damage Distributed

damageA-type B-type B1-type C-type C1-type D-type

Sizes
a 40 40 40 40 40 40 40
b 160 160 160 40 40 20 160

Left notch
c1 5 5 5 5 5 5 0
d1 1 1 1 1 1 1 0

Right notch
c2 5 5 0 5 0 5 0
d2 1 1 0 1 0 1 0

Unglued height e 90 – – – – – 0

As presented in Chapter 2, in the mode-I failure, the normal-shear spring model can be used
instead of the beam model to gain in computational time. The model parameters are shown in Ta-
ble 3.2. It is noted that we are only interested in the influence of the size and the distribution of the
aggregate particles of concrete-like material on the resulting FPZ size and characteristic length. The
stiffnesses and strengths of the aggregates are taken 10 times higher than those of the matrix while
in turn the stiffnesses and strengths of the matrix are twice greater than those of the ITZ. These
relative magnitudes of the stiffnesses and strengths are used for the following studies even though
the relative stiffnesses and strengths between aggregates and matrix are higher than those of a real
concrete. Using the parameters given in Table 3.2, a tensile test performed on the A-type speci-
men made of the three-phase material defined by explicitly generating a monodisperse aggregate
structure with the size and volume fraction of aggregate particles are 6 mm and 45%, respectively,
provides the macroscopic properties of the modeled material being: E D 25 GPa, � D 0:2 and the
tensile strength ft D 2:4 MPa.

Table 3.2 – Elastic and strength parameters used in the bulk of each phase.

Matrix Aggregates Interface
En [GPa] 16.50 165.00 8.25
Es [GPa] 5.10 51.00 2.55
�n0 [MPa] 6.07 60.70 3.04
�s0 [MPa] 18.21 182.10 9.11

3.2.4 Practical examples for the assessment of FPZ size and characteristic length

The aggregate structure used in this section has the monodisperse distribution with the aggregate
size d D 6 mm. The reference volume fraction of aggregates is 45%. The A-type localized tensile
test and the distributed one are used. The tested specimens are discretized with the mean length
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Figure 3.4 – Six types, A-, B-, B1-, C-, C1- and D-type, of localized tensile tests used to study the influence
of the stress gradient applied to the tested specimens on the resulting FPZ size `FPZ.
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of the lattice elements is of lm D 0:95 mm. The material is modeled as the three-phase one and
no random field of strengths is introduced in the mortar phase. For stress and strain analysis, the
out-of-plane dimension is unity, i.e. 1 mm.

Figure 3.5 shows the force-displacement curve obtained from the localized tensile test and the
stress-strain curve given by the distributed tensile test. The corresponding crack patterns are also
presented. It is seen that there is only one macro crack which traverses the notched specimen while
about fifteen macro cracks cross over the unnotched specimen. The FPZ size `FPZ is obtained by
fitting the cumulative density curve of the dissipated energy of the localized tensile test as shown
in Figure 3.6. It is noteworthy that the cumulative dissipated energy is normalized between 0 and 1
in order to be fitted by a cdf of the Guassian distribution. The FPZ size is taken as 4 times the fitted
standard deviation resulting in `FPZ D 4:92 mm.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

L
oa

d
[N

]

Displacement [�m]

Numerical result
Envelope

(a) (b)

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
tr

es
s

[M
Pa

]

Strain Œ%�

Numerical result
Envelope

(c) (d)

Figure 3.5 – The force-displacement curve (a) and the corresponding crack pattern (b) of the localized tensile
test on the notched specimen; the stress-strain curve (c) and the crack pattern (d) of the distributed tensile test
on the unnotched specimen.

The characteristic length `c of the material is evaluated from the dissipated energy per unit area
of crack surfaceGf and from the dissipated energy densityWs of the localized and distributed tensile
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Figure 3.6 – Fitting the cumulative density curve of the dissipated energy of the notched specimen by the
cdf of Guassian distribution with two parameters � D 82:17 mm and � D 1:23 mm; the corresponding
probability density function (pdf) is also shown.

tests, respectively. The values of Gf and Ws are 3:95 N/m and 809:43 N/m2, respectively, which
result in the value of `c to be 4:88 mm. Note that the values of Gf and Ws should not be taken from
the corresponding areas under the macroscopic force-displacement and stress-strain curves since the
last ones often overestimate the values of Gf and Ws . Gf and Ws were directly computed from the
stored elastic energies of the broken elements instead.

It is, however, necessary to point out that the FPZ size `FPZ and the characteristic length of
the material `c also result from the mesh size, i.e. the lattice element size. In fact, the non-null
values of `FPZ and `c are obtained from the localized and distributed tensile tests in which the same
parameters as before are used except that no aggregate structure is introduced, i.e., the material is
modeled as homogeneous with only one matrix phase. The behavior curves and the corresponding
crack patterns of the localized and distributed tensile tests are shown in Figure 3.7. It is observed that
the straighter macrocrack is obtained for the localized tensile test and there are about 18macrocracks
crossing over the specimen of the distributed tensile test. Using the same method as before, one gets
`FPZ D 2:11 mm and `c D 2:34 mm. As expected, these values are smaller than the values of the
heterogeneous material. In the case of homogeneous material, the FPZ size and the characteristic
length are proportional to the mesh size which has a finite value. This is a transparent problem and is
acceptable because of the non-null size of the lattice elements. However, it is expected that the FPZ
size and the characteristic length due to the mesh do statistically tend to zero under mesh refinement.
An analysis of the mesh-size influence on the FPZ size is presented in Section 3.2.5.

3.2.5 Mesh-size induced length

To analyze the influence of lattice element sizes on the FPZ size, a series of tensile tests on the
notched specimen (Figure 3.3a) is performed in which the specimen is discretized with five different
mean values of the mesh size lm. Furthermore, for each discretization, five independent meshes are
generated by randomly moving the nodes using the procedure presented in Section 2.2.3.1 to take
into consideration of mesh orientation effect on `FPZ. Accordingly, it results in 25 generated meshes
that are used for the simulations of tensile tests. The same model parameters are used as above and
the material is modeled as homogeneous with the matrix phase. The tensile tests are carried out and
then the cumulative density curve of the dissipated energy of each tensile test is fitted by the cdf of
a Gaussian distribution in order to determine `FPZ.



96 Chapter 3. Studying the origin of characteristic length and FPZ size

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

L
oa

d
[N

]

Displacement [�m]

Numerical result
Envelope

(a) (b)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
tr

es
s

[M
Pa

]

Strain Œ%�

Numerical result
Envelope

(c) (d)

Figure 3.7 – The force-displacement curve (a) and the corresponding crack pattern (b) of the A-type localized
tensile test on the notched specimen; the stress-strain curve (c) and the crack pattern (d) of the distributed
tensile test on the unnotched specimen.
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Figure 3.8 shows the dependence of the PFZ size `FPZ on the mesh size. Nlm is the average value
of the discretization size. The best linear fit of the variation of the `FPZ with respect to the mesh size
is also illustrated. As expected, the FPZ size does statistically tend to “zero” upon mesh refinement.
Note however that the intercept of the fit is not exactly zero, its value is of 0:18. This is probably
due to the fact that there are only five discretizations were used and there was not any mesh finer
than 1 mm to be generated for the sake of saving computational time.
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Figure 3.8 – Evaluation of the FPZ size with respect to mesh size: the FPZ size `FPZ does statistically vanish
under mesh refinement.

3.3 Parameters controlling the aggregate structure

As mentioned in Section 1.1.1, concrete has a complex aggregate structure with a wide range of
particle sizes. Moreover, going from one type of concrete to the other, many characteristics of the
aggregate structure may change such as aggregate volume fraction, particle size, aggregate grading
and of course aggregate distribution (spacial distribution). Accordingly, directly taking all of these
variations to analyze their influences on the FPZ size as well as the material characteristic length
of a concrete-like material by a numerical model can make complicated the situation. The better
way to study the influences of the aggregate structure on the PFZ size `FPZ or the characteristic
length `c is to separate its individual characteristics. This makes easy to understand the effect of
each characteristic of the complex structure. Besides, from the numerical point of view, one can first
consider a monodisperse structure of aggregates for the sake of simplicity and then may approach
to a polydisperse one like that of the real concrete material.

3.3.1 Monodisperse distribution

In the first approach, we consider the monodisperse distribution of aggregate structures. In order
to study the effects of the size d and the volume fraction Pa of aggregates on the FPZ size, three
variations of aggregate structures are considered as schematically shown in Figure 3.9:

(I) varying d while the positions and the number of aggregates remain the same;

(II) varying d while Pa is kept at 45%;

(III) varying Pa for a given aggregate diameter d D 8 mm.

It must be recognized that the volume (surface) fraction of aggregates that is kept at 45% is the
ratio of the area occupied by all aggregate particles and the total area of the specimen (by the
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Figure 3.9 – Schematic representation of three variations of the aggregates.

continuous manner). This is mentioned as the “reference” value of Pa. However, when the aggregate
particles are introduced in the lattice model, Pa is recomputed as the ratio of the number of elements
representing the aggregates and the total number of elements. As a result, the obtained value of Pa

is smaller than the reference value but tends to it under mesh refinement.
Aggregate structures have to be generated from these three aggregate variations and are intro-

duced to the lattice model for an individual study. In addition to the variation of particle structure, a
weak interfacial transition zone (ITZ) between aggregate and matrix phases can be introduced in the
model and this will be explicitly mentioned for the individual studies in which the ITZ is whether or
not defined. Without weak ITZ, only two phases (2') were modeled in the sense that the properties
are either those of aggregates or of matrix. With weak ITZ, a weaker and less stiff thin phase (one
element) is added in-between aggregates and matrix, bringing the number of phases to three (3').

In the studies presented in the following sections, d is varied by taking the values of 4, 6, 8 and
10 mm. The generated aggregate structures are mapped on the lattice mesh used in the simulations
thereafter to define the material phases. And when the ITZ is introduced between the aggregates
and the matrix (3'), the three above variations, (I), (II) and (III), of aggregate size and volume
fraction are represented by three variation paths in the (Pa – d ) parameter space as in Figure 3.10.
Without introducing the ITZ (2'), the path (I) is also shown in Figure 3.10. Note that only the path
(I) is shown here for the two-phase material since it will be used later to study the influence of the
presence of the ITZ on the FPZ size. It is seen that Pa varies roughly like d2 for the variation path
(I). Note however that the volume fraction is not exactly kept constant at 40%1 for the variation path
(II) when changing the particle size. This is because of the fact that the smaller the particle size, the
greater the number of particles are needed, resulting in a greater number of the ITZ elements and
consequently leading to a smaller number of aggregate elements.

3.3.2 Polydisperse distribution

In order to better match the aggregate structure of a real concrete, a polydisperse distribution of
the particle structure is used in the second approach. As mentioned in the literature that the FPZ
size may only be proportional to the size of the largest aggregates, therefore to study the influ-
ences of the aggregate sizes on the FPZ size `FPZ, we vary the maximum aggregate size dmax of
a polydisperse aggregate structure as schematically shown in Figure 3.11. To this end, four types
of aggregate structures are generated using the Fuller’s grading in which the minimum aggregate
size dmin D 3:15 mm and the maximum aggregate size dmax is varied by taking the values of 6:3,

1It is noted that, in reality, the “real” aggregate volume fraction Pa is determined by the ratio of the aggregate elements
and the total number of elements, which is smaller than the “reference value” of the aggregate fraction (45%). The real
aggregate volume fraction tends to the reference value upon mesh refinement.
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Figure 3.10 – Three variation paths (I), (II) and (III) for three-phase material (3') and the variation path (I)
for two-phase material (2') in the (Pa – d ) parameter space for the monodisperse distribution of aggregate
particles.

8, 10 and 12:5 mm while keeping the “reference” volume fraction of aggregates constant at 45%.
This aggregate size variation is denoted as the variation (IV). Table 3.3 shows the volume fraction of
each aggregate segment of the four types of aggregate structures obtained from the Fuller’s grading,
in which V abs

Agg D 45% � VAgg is the absolute volume fraction of aggregates with VAgg the volume
fraction of each aggregate segment, generated by the Fuller’s grading.

Figure 3.11 – Schematic representation of the mesostructure variation by varying the size of the largest ag-
gregate particles while keeping the size of the fine particles nearly the same from a polydisperse aggregate
structure to the other.

As for the monodisperse aggregate distribution, generated aggregate structures from the varia-
tion (IV) are mapped on the used mesh to define material phases for the studies thereafter. In the
case of taking into account the ITZ between the aggregate and matrix phases, the aggregate size
variation (IV) is shown in the (Pa – dmax) parameter space in Figure 3.12. Similarly, the obtained
volume fractions of aggregates are smaller than the reference value (45%) and they are not exactly
kept constant as expected due to the fact that the number of aggregates increases for the smaller dmax

value leading to an increase of the number of ITZ elements and thus a decrease of the number of
aggregate elements.
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Table 3.3 – Volume fraction of each aggregate segment of four types of aggregate structures of the variation
(IV) obtained from the Fuller’s grading.

dmax

Aggregate
segment

Sieve
size

Sieve
passing VAgg V abs

Agg

Œmm� Œmm� Œmm� Œ%� Œ%� Œ%�

6.3

0–3.15 3.15 0 0 0
3.15–4 4 51.95 51.95 23.38
4–5 5 76.64 24.69 11.11
5–6.3 6.3 100 23.36 10.51

8

0–3.15 3.15 0 0 0
3.15–4 4 41.86 41.86 18.84
4–5 5 61.76 19.90 8.95
5–6.3 6.3 80.59 18.83 8.47
6.3–8 8 100 19.41 8.73

10

0–3.15 3.15 0 0 0
3.15–4 4 35.23 35.23 15.85
4–5 5 51.97 16.74 7.53
5–6.3 6.3 67.81 15.84 7.13
6.3–8 8 84.14 16.33 7.35
8–10 10 100 15.86 7.13

12.5

0–3.15 3.15 0 0 0
3.15–4 4 30.15 30.15 13.57
4–5 5 44.48 14.33 6.45
5–6.3 6.3 58.04 13.56 6.10
6.3–8 8 72.02 13.98 6.29
8–10 10 85.59 13.57 6.11
10–12.5 12.5 100 14.41 6.48
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Figure 3.12 – The variation path (IV) in the (Pa – dmax) parameter space for the polydisperse distribution of
aggregate particles.
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3.4 Key features that may influence the FPZ size

To study key features that may influence the FPZ size, numerical tensile tests are performed using
the normal-shear spring lattice model, presented in the following sections. The mesostructure of the
material is modeled by explicitly introducing an aggregate structure. The mesostructure is varied ac-
cording to the variation paths (I), (II), (III) for the case of monodisperse aggregate size distribution
and the path (IV) for the case of polydisperse one, refer to Section 3.3. Five independent uniformly
random distributions of aggregate positions are generated for each considered case of the mesostruc-
ture. The FPZ size will be assessed for each considered tensile test. Evolutions of the mean value
of the FPZ size `FPZ (the average value of `FPZ over five realizations of aggregate positions) with
respect to the aggregate size d (or dmax for polydisperse size distributions), or to the volume fraction
of aggregates Pa, will be shown. The standard deviations of `FPZ obtained from five realizations of
aggregate positions will also given by means of the vertical bars attached to the mean values of `FPZ

in each plot.
The model parameters shown in Table 3.2 are used in the simulations hereafter. Note that no ran-

dom field of strengths is introduced in the matrix phase such that one could study only the influences
of coarse aggregates on `FPZ. Only in Section 3.4.2, a random field of strengths is introduced in the
matrix phase to mimic the effect of fine aggregate particles. When fine aggregates are introduced by
a random field of the failure parameters in the matrix phase, the values of �n0 and �s0 of the matrix
phase given in Table 3.2 are taken as the mean values and the corresponding values of the standard
deviation will be pointed out in Section 3.4.2.

3.4.1 Interfacial transition zone

The interfacial transition zone (ITZ) between the aggregate particles and the matrix, plays an im-
portant role in the size of the FPZ. As known, for concrete-like materials, the ITZ has the weakest
strength compared to that of the aggregate particles and the matrix. Therefore, the failure of that
kind of materials, and thus the FPZ size, is driven by the ITZ.

To study the effect of the bond strength and to verify whether the ITZ has an influence on the
size of the FPZ, the following numerical campaign of uniaxial tensile tests is performed. In this
campaign, the tensile tests performed on the specimen of A-type are carried out. Two cases are
considered. The first concerns the specimen made of the three-phase material in which the ITZ is
considered as the third phase in addition to the aggregate and matrix phases. The ITZ is introduced
in the model by the procedure described in Section 2.3.1.1. In the second case, the ITZ is excluded
in the description of the material and the specimen is made of two phases. For each case of the two-
phase and three-phase materials, the aggregate structure is also varied to account for the variation of
aggregate volume fraction and aggregate size. The aggregate structures of the path (I) of variation
are used in the study, i.e., varying the size d while the positions and the number of aggregates remain
the same.

The model parameters shown in Table 3.2 are used in the simulations. Note that no random field
of strengths is introduced in the matrix phase such that one could study the individual influences of
coarse aggregates on `FPZ.

Figure 3.13 shows the evolution of the FPZ size `FPZ with respect to the size of the aggregate
particles d , in which each point corresponds to the mean of `FPZ of 5 uniformly random distributions
of the position of the aggregate particles. The corresponding standard deviations are also shown by
means of a vertical bar attached to it. As presented in Section 3.2.5, the size of the lattice elements
also provide a non null `FPZ. The value of `FPZ due to the lattice elements’ size can be calculated
from the “homogeneous” tensile test in which no aggregate structure is introduced. The lattice mesh
used in the simulations provides a width of the FPZ equals to 2:1 mm. Besides, the best fits of the
variation of the mean value of `FPZ with respect to the aggregate size d for the two- and three-phase
materials are shown in the figure as well. It is noted that these fits are calculated only from the
mean values of `FPZ in the cases of aggregate particles are introduced, so the value of `FPZ of the
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homogeneous material is not taken into consideration in the fits. Also, the displayed fitted lines do
not necessary mean that an affine relation is enlightened. It must rather be seen as a rough tendency
since the data presents significant variations. As a consequence, the intersection of the fitted line
with the vertical axis has no particular meaning.
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Figure 3.13 – Effect of the weak interface zone between the aggregates and the matrix on the FPZ size.

The main observation from the Figure 3.13 is that when the aggregates are introduced, they have
a strong effect on the FPZ size in both two- and three-phase materials. First, the mean values of `FPZ

in the case of heterogeneous material are greater then the value of `FPZ in the case of homogeneous
one. Second, in the case of aggregate particles are introduced, the fitted slope of the mean values of
`FPZ of the three-phase material is greater than that of the two-phase material. This means that when
the ITZ is taken into account, the aggregate size plays a stronger effect on the variation of `FPZ than
the case in which the ITZ is not taken into consideration. Moreover, it reveals that the greater the
value of the aggregate size, the higher the difference of the mean value of `FPZ between the two-
and three-phase materials is. This is probably explained by the increase of the ITZ fraction when
increasing the aggregate size of the three-phase material, see Figure 3.14. Here, the ITZ plays a role
of attractive zones for the crack propagation. Accordingly, the greater fraction of the ITZ results
in the larger mean value of `FPZ compared to the mean value of `FPZ of the two-phase material (in
which the ITZ fraction is zero). In the case of d D 4 mm, the mean value of `FPZ of the three-phase
material does not differ from that of the two-phase one. This is related to the fact that the matrix
prevails in the mesostructure in the case of d D 4 mm, as shown in Figure 3.14, and thus few
aggregate particles are found on the crack path, see Figure 3.15.

Furthermore, bigger values of the standard deviations are observed when increasing the particle
size of the three-phase material as well as of the two-phase one even though this is less clearly
observed in the two-phase material than the three-phase one. This is probably due to the fact that
increasing the aggregate size results in the increase of the aggregate fraction and as a result, the
spacial distribution of aggregate particles plays a stronger role in the resulting value of `FPZ. In
two-phase material, by comparison between d D 8 mm and d D 10 mm, the standard deviation
of `FPZ does not significantly change. This is due to the fact that from d D 8 mm, the aggregate
particles get dense in the mesostructure of the material, which leads to the fact that a change of the
position of the aggregate particles does not have a strong effect on the value of `FPZ. However, in
three-phase material, the spacial distribution of aggregate particles still make sense on the variation
of `FPZ even though the aggregate particles get dense. This is reflected by the greater value of the
standard deviation of `FPZ in the case of d D 10 mm than that in the case of d D 8 mm, of the
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three-phase material. There is no doubt that this is due to the effect of the ITZ.
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Figure 3.14 – Evaluation of volume fraction of each phase.

(a) `FPZ D 3:37 (b) `FPZ D 2:12

Figure 3.15 – Crack patterns and the corresponding value of `FPZ of the two-phase (a) and three-phase (b)
materials with a random distribution of aggregate structure of d D 4 mm.

For the sake of clarity when accounting for the standard deviation of `FPZ, the crack patterns of
two different random positions of the aggregate structure with d D 8 mm in the case of two-phase
material are shown in Figure 3.16. The corresponding fits of the cumulative energy dissipation after
the normal distribution are shown in Figure 3.17. It is shown that depending on the distribution of the
aggregates in the specimen, the resulting FPZ has the different size. Since there is no aggregate along
the line joining the two notches in the case shown in Figure 3.16a, the final crack can easily cross
the specimen through the narrow band between the aggregates and connects the two notches. In this
case, it seems that the aggregates play a role as a blocking against the development of microcracks.
Whereas an aggregate is found in front of the notches in the case of Figure 3.16b, and thus, the
failure of the specimen is characterized by the crack that has to dodge the aggregate to find enough
space for the development of microcracks. Consequently, a much larger FPZ is obtained compared
to the case of Figure 3.16a, leading to the high value of the standard deviation for this aggregate
structure.

It is worth noting that the difference of the size of the FPZ between the two- and three-phase
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(a) `FPZ D 3:29 (b) `FPZ D 14:27

Figure 3.16 – Crack patterns of the two-phase material with different distributions of the aggregate structure
of d D 8 mm.
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Figure 3.17 – The best fit of the cumulative energy dissipation after the cumulative distribution function of
the normal distribution.
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materials strongly depends on the relative position of the aggregate particles with respect to the
position of the notches. Indeed, as shown in Figure 3.18, the value of `FPZ of the three-phase
material is smaller than that of the two-phase material of the same aggregate structure (the same
size and position of aggregate particles). This is simply due to the fact that the aggregate particle
without the ITZ in two-phase material, found in front of the notches, plays a role as a blocking
against the development of the FPZ whereas this particle with the ITZ being more or less aligned
with the notches in three-phase material plays a role as an attraction to the crack. Accordingly, the
crack can cross the specimen section with a straighter path in three-phase material than in two-phase
one. Nevertheless, as shown in Figure 3.19, when the position of the aggregate particles changes,
which leads to a change of the relative position between the aggregate particles and the notches, the
value of `FPZ in three-phase material is now greater than that in two-phase material.

(a) `FPZ D 14:27 (b) `FPZ D 5:90

Figure 3.18 – Crack patterns of the two-phase (a) and three-phase (b) materials for the same aggregate distri-
bution of the aggregate size d D 8 mm.

(a) `FPZ D 2:91 (b) `FPZ D 16:16

Figure 3.19 – Crack patterns of the two-phase (a) and three-phase (b) materials for the same aggregate distri-
bution of the aggregate size d D 8 mm but differs from the aggregate distribution shown in Figure 3.18.

Compared with Figure 3.18a, in Figure 3.19a there are now two aggregate particles located along
the line joining the two notches that play a role as a strong obstacle, and this explains for the fact
that the crack is initiated at the right notch but finally it cannot propagate to cross the specimen
section and another straight crack eventually extends over the specimen section. It is in contrast
to Figure 3.18a in which there is only one obstacle particle, so the crack initiated at the right notch
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tries to elude the particle and join the other notch. In the end the crack fails to join the left notch but
this try leads to the greater value of `FPZ. In the case of three-phase material, two obstacle particles
shown in Figure 3.19b now allows of the development of microcracks around them via the ITZ,
which leads to a larger value of `FPZ compared to that shown in Figure 3.18b.

3.4.2 Fine aggregates (matrix heterogeneity)

As known, in the lattice model, the heterogeneity due to fine aggregates can be modeled by a random
distribution of the failure parameters. The procedure to identify the random parameters is presented
in Section 2.5.2. Here we focus on the effect of the fine aggregates introduced by the random field
in the matrix to the size and the variation of the FPZ. To this end, the uniaxial tensile tests are per-
formed on specimens made of the material in which the mesostructure is modeled by two manners.
In the first one, only the coarse aggregates are directly introduced by mapping the aggregate parti-
cles on the lattice mesh. The uniaxial tests performed on specimens made of the material modeled
by this manner are denoted as “NFA” series. In the second manner, the random fields of the failure
parameters are introduced in addition to the coarse aggregates to simulate the effect of fine aggre-
gates of the material mesostructure. The uniaxial tensile tests performed on the specimens made of
the material modeled by the second manner are denoted as “FA” series. In both series, the influence
of the coarse aggregates is studied by varying the size of the aggregate particles.

The numerical simulations of tensile tests in this section are performed on the specimen of A-
type. The material is modeled as the three-phase one with the weak ITZ phase in-between aggregate
and matrix phases. The same model parameters as before are used, see Table 3.2. Only for the
FA series of tensile tests, two additional parameters being the standard deviations of the failure
parameters: �n0 and �s0, denoted by ��n0

and ��s0
, are used to generate random fields in the matrix

phase. In the study, the value of ��n0
and ��s0

is of 2 MPa. Note that the value of ��n0
and ��s0

should not be too large to ensure the fact that no matrix element has the generated values of �n0

and �s0 which are smaller than the corresponding values of ITZ elements. If not, the physical
meaning of the mesostructure is lost. That is why the value of 2 MPa but not a larger value is used
for ��n0

and ��s0
. The aggregate size is varied while keeping the number of aggregate particles

and their position unchanged. This concerns the path (I) variation of the aggregate structure. Five
independently random distributions of aggregate particles are generated for each aggregate size.

Figure 3.20 demonstrates the relations of the FPZ size and the size of the aggregate particles for
two series tests. The best fits of these relations are shown as well. The standard deviations of `FPZ

obtained from five realizations of aggregate distributions are also given by means of the vertical bars
attached to the mean values of `FPZ. It exhibits that the mean value of `FPZ of the FA tests is always
greater than that of the NFA tests disregarding the size of the coarse aggregates. This is of course
due to the effect of the fine aggregates considered dissolved in the matrix. The fine aggregates not
only show the effect on the size of the FPZ for a certain size of the coarse aggregates but also on
the variation of the FPZ size in respect of the coarse aggregates’ size. Indeed, the slope of the fit of
the FA tests is about 30% greater than that of the NFA tests. In consequence, a stronger effect of the
coarse aggregates’ size on the FPZ is obtained when the fine aggregates are taken into account in the
model. This result may lead us to think, by extrapolation, that if the material is modeled with more
complex mesostructure, the effect of the coarse aggregates to the FPZ size could be even greater.

It reveals again in the “FA” series tests that increasing the aggregate size leads to an increase of
the standard deviation of the mean value of `FPZ as in the “NFA” series observed previously. The
reason for that is still the same: increasing aggregate size leads to an increase of the volume fraction
of aggregates, and obviously the sensitivity of `FPZ to the distribution of aggregate particles becomes
more important.
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Figure 3.20 – Evolution of `FPZ with respect to d of three-phase concrete-like material.

3.4.3 Stress gradient and material rotation

The above studies are related to the influence of the material characteristics on the FPZ size. They
were performed through the uniaxial tensile tests on the specimen of the A-type by changing the
material properties. An interesting question is that whether the size of the FPZ and its variation re-
lated to the changes of the aggregates’ size are also driven by the stress gradient due to the boundary
conditions. In order to provide an answer to that question, the following campaign are carried out,
in which the stress gradient applied to tested specimens is varied by either changing the specimen
size to make the boundary conditions closer to or further from the notch position, or changing the
type of the boundary conditions such as loading equipments or notch types (symmetric or not). The
test campaign consists of uniaxial localized tensile tests performed on six different-sized specimens
and boundary conditions. They are labeled as A-, B-, B1-, C-, C1- and D-types. The dimensions
as well as the boundary conditions of these types of localized tensile tests are clearly described
in Section 3.2.3.

For each A-, B- and B1-type tensile test, the aggregate size is varied as the set of variation (I)
of aggregates (i.e. changing the aggregate size d while keeping the position and the number of
aggregates constants) described in Section 3.3.1. The aggregate structures of the C-, C1- and D-type
tests are exactly the same as those of A-, B1- and B-type tests such that one can imagine that the
C-, C1- and D-type specimens are created by sawing the specimens of the A-, B1- and B-type tests,
respectively, in the zone around the notches. The model parameters are always taken as above and
the material is model as three-phase one with a weak ITZ between the aggregate and the matrix
phases. Here, no random field of strengths is introduced in the matrix phase such that one can study
the individual influences of coarse aggregates on `FPZ.

Figure 3.21 shows the relations between the mean of `FPZ and the aggregate volume fraction
Pa for the six types of tensile tests. The best fits for each relations are also presented. Note that
the dimension of the fitted slopes is mm/%, i.e. when the aggregate volume fraction changes 1%, it
leads to the change of `FPZ of the quantity being equal to the value of slope times 1 mm. So, do not
surprise for the small values of the fitted slopes shown in Figure 3.21. The figure reveals that the
stress gradient via changing the type of boundary conditions and specimen size has a strong effect
on the variation of `FPZ with respect to the aggregate volume fraction which in turn is proportional
the aggregate size d . Indeed, the fitted slope of the B1-type tests has the maximum value compared
to that of other type tests. For the B-, C- and D-type tests, the larger the value of specimen height,
the greater the value of the fitted slope is. Between the B- and B1-type tests or between the C- and
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C1-type tests, the fitted slope of the one-notch specimens, B1- and C1-type, is higher than that of
the corresponding two-notch specimens, B- and C-type, respectively. For the specimens of the same
size and the same number of notches, by comparison with the fitted slope of the B-type tensile tests,
the fitted slope of the A-type ones has a greater value.

These observations mean that the relation between the FPZ size and the aggregate size/ratio is

also influenced by the specimen size or generally the boundary conditions that result in different

stress gradient and material rotation fields. The effect of the boundary conditions on the FPZ size

might be explained by the fact that the intensity of the stress gradient and the nonuniformity of the

strain across the specimens is more or less important. Actually, when it exists an intense stress

gradient that involves in the specimens, the failure position is strongly imposed which brings the

FPZ into being narrower than in the case of a weak stress gradient. And when the nonuniformity of

the strain is important through the cross section of the specimens, it results in a relative rotation of

the upper and the lower parts of the specimens separated by the macrocrack and thus this provokes

the change of the principal direction of the loading that probably allows the FPZ evolves in a wider

zone.
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Figure 3.21 – Influence of the stress gradient, when changing whether the specimen sizes or the type of
boundary conditions, on the values and variations of `FPZ with respect to the aggregate volume fraction Pa.

Figure 3.22 shows the distribution of the “mesoscopic force”, i.e. the resultant force of the stress
over an area being equal to the cross-sectional area of the lattice elements, through the cross section
of the B-, C- and D-type specimens in the vertical direction just before complete failure. It unveils
that the distribution of stress in the C- and D-type specimens is more varied from the left side to the
right side than that in the B-type specimen. This means that the stress in C- and D-type specimen
is not as uniform as in the B-type one, and thus the stress gradient through the specimen cross-
section must be accounted for the smaller value of the FPZ size `FPZ and for the weaker influence
on the variation of `FPZ with respect to aggregate sizes. Moreover, some negative mesoscopic forces
are found in C- and D-type specimen which means that the principal direction of loading is locally

changed and the elements undergoing the negative forces probably play the role as a blocking against
the development of the FPZ. By comparison between the mean values of `FPZ and their variations
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with respect to the aggregate size d of the B-, C- and D-type specimens, it is worth stressing that
the difference of stress gradient seems to play a higher role in the variation of `FPZ with respect to d
than in the mean value of `FPZ between the B- and C-type specimens whereas it plays an important
role in both the values and the variations of `FPZ between B- and D-type specimens, see Figure 3.21.
This may come from the fact that there is not enough space for the FPZ to develop in the D-type
specimens.
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Figure 3.22 – Distribution of the vertical force fyy through the specimen section at the position of 10 mm
above the notch position of the B-, C- and D-type specimen made of the material with d D 8 mm.

Figure 3.23 shows the plot of strains measured by LVDT gages mounted on the left and right
sides (in the middle of the vertical direction) of each type of specimens. Here the case of the
aggregate structure d D 8 mm is presented and the corresponding crack patterns of a random
distribution of the aggregates are shown in Figure 3.25. The length of the LVDT gages of the A-,
B-, B1-, C- and C1-type specimens is 30 mm while that of the D-type specimen is 15 mm since
the height of the D-type specimen is only of 20 mm. It is seen that the nonuniformity of the strain
is found to be the most important for the B1-type specimen and then for the A-type specimen.
The important difference of these strains of the A- and B1-type specimens means that the material
undergoes bending. For the A-type specimen, this is because the tension was indirectly applied to
the specimen through the steel bars that allows the relative rotations between the top and bottom
boundaries of the specimen in the softening regime. For the B1-type specimen, even though the way
in which the tension was applied at the top and bottom boundaries prevented in advance a rotation
possibility between these boundaries, there is no doubt that the asymmetry of the specimen geometry
due to the notch motivates a relative rotation between the upper and the lower parts of the specimen
around the notch along with the development of the macrocrack. Whereas the prevention of a
rotation between the top and bottom boundaries of the B-, C- and D-type tests accompanying with
the symmetry of the specimen geometries prevent any bending effect in the specimens. However,
when the specimen is long i.e. the boundary effect is far from the notches, the presence of the
rotation effect is more important than in the short specimen. It is shown that the asymmetry of the
strains in the B-type specimen is more notable than in C- and D-type specimens. The asymmetry of
the strains is again observed more notable in C-type specimen than in the D-type one.

It is interesting to point out that the distribution of the aggregate structure plays an important
role on the nonuniformity of the strains measured in the material. Figure 3.24 shows a plot of strains
in the vertical direction measured by LVDT gages with the length of 30 mm mounted in the left
and right sides, normalized by the maximum strain "max, of the B1-type specimens made of the
homogeneous material and the heterogeneous material with two different random distributions of
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Figure 3.23 – Nonuniformity of strains in each side of the specimens.

aggregate structure with d D 8 mm (a and b). The homogeneous material is modeled as one-
phase material with the matrix phase while the heterogeneous material is modeled as the three-
phase one. It is seen that the nonuniformity of strains has not the same magnitude. Indeed, for the
heterogeneous material, depending on the distribution (the position) of the aggregates with respect
to the notch position, the crack is initiated at the ITZ phase at the different positions and thus
propagated in different ways which result in a different degree of nonuniformity of strains measured
in the specimens. For the case of the homogeneous material, the crack is exactly initiated at the
notch and propagated forward to the other side of the specimen, which obviously reproduces the
highest value of the strain nonuniformity. It all accounts for the fact that not only does the FPZ size
vary with the boundary conditions but also with the aggregate position for a fixed aggregate size and
of course with the aggregate size itself.
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Figure 3.24 – Nonuniformity of strains in the left and right sides of the B1-type specimens.

In short, the results highlight the dependence of the size and of the variation of the FPZ with
respect to the size/volume fraction of the aggregates on both the stress gradient and the rotation
effect. Nevertheless, it is shown that the influence of the rotation effect on `FPZ can be different
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(a) A-type test (b) B-type test (c) B1-type test

(d) C-type test (e) C1-type test (f) D-type test

Figure 3.25 – Crack patterns of the different types of tensile test with the aggregate structure d D 8 mm.
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in the specimens with different values of the stress gradient. It is observed from Figure 3.21, by
comparison the B- and B1-type tests with the C- and C1-type tests, that when the stress gradient is
less important in the B- and B1-type specimens (since the specimens are longer than in the C- and
C1-type specimen), the rotation effect becomes dominant and strongly influences on the variation
of `FPZ. This is exposed by the fitted slope of the B1-type tests is clearly higher than that of the
B-type ones. Whereas, in the C- and C1-type tests, the stress gradient is more important since the
tested specimens are shorter than those of the B- and B1-type tests, leading to the fact that the high
stress gradient seems to decrease the influence of the rotation effect on the variation of `FPZ. This is
shown by the slightly higher value of the fitted slope of the C1-type tests compared with that of the
C-type tests.

An important observation from the Figure 3.21 is that the effect of the boundary conditions on
the FPZ size becomes more remarkable when the aggregate size increases. Actually, it is seen that
for a fixed greater value of the aggregate size d , changing the boundary conditions leads to a wider
deviation of the values of the FPZ size `FPZ. This is simply explained by the fact that within the
aggregate structure with higher aggregates’ size, the higher volume fraction of the aggregates is
found leading to the greater area of the weak ITZ, and thus, the rotation effect due to the boundary
conditions plays a more significant role in the failure of the material.

3.4.4 Aggregate size with fixed volume fraction

To evaluate the influence of the aggregate structure on the FPZ size `FPZ, the above studies were
related to the path (I) of variation, i.e., the aggregate size d is varied while the positions and the
number of aggregates remain unchanged in the numerical simulations. This results in changing the
size and the volume fraction of aggregates at the same time. In the present section, we are address-
ing the question of the influence of the aggregate size d on the FPZ size `FPZ when only the size
d of aggregates is varied whereas the volume fraction of aggregates is kept as constant as possible.
The reason of this choice relies on the fact that the fundamental role of aggregate size d must be
checked while keeping other parameters unchanged to suppress their possible effect. Furthermore,
in experiments with real concrete, the admixture formulation targets a given compressive strength
usually controlled by the water/cement ratio and maximum aggregate size. Consequently, the vol-
ume fraction of aggregates is not explicitly controlled. However, we believe that the volume fraction
of aggregates might not be significantly changed when varying maximum aggregate size in real con-
crete admixture. In other words, the volume fraction of coarse aggregates hardly changes in reality.
Therefore, the path (II) of variation (see Section 3.3.1) is used in this section to study the influence
of the aggregate size d on the FPZ size `FPZ, in which the “reference” aggregate volume fraction is
kept constant at 45% when changing the aggregate size.

The numerical simulations of tensile tests in this section are performed on the specimen of A-
type. The same model parameters as before are used. The material is modeled as the three-phase one
with the weak ITZ phase in-between the aggregate and matrix phases. In addition, no random field
of strengths is introduced in the matrix phase such that one could study the individual influences of
coarse aggregates on `FPZ.

Figure 3.26 shows the plot of the mean value of the FPZ size `FPZ with respect to the size d
of aggregates of the path (II) of variation. For the sake of comparison, the same plot of the path
(I) is shown as well. Each point corresponds to the mean value of five values of `FPZ with five
independently random distributions of the aggregates in the specimen. The standard deviation of
each mean value is also presented. Surprisingly, it exhibits that the mean value of the FPZ size does
not depend on the aggregate size for the path (II) of variation. It means that the FPZ size developed
in this type of model material (brittle elastic) may not always be related to the aggregate size itself
as usually observed in the literature. The observation is in agreement with that of Skarżyński et
al. (2011), in which the width of the FPZ was experimentally measured on the surface of concrete
specimens using a Digital Image Correlation (DIC) technique. However, it is in contrast to the
results of Mihashi and Nomura (1996) and Otsuka and Date (2000) for concrete material, in which
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the experiments were carried out with X-rays and three-dimensional Acoustic Emission techniques
leading to the conclusion that the width of the FPZ increases with the increase of the maximum
aggregate size. But for the path (I) of variation, as previously shown, it is seen that the mean
values of `FPZ increases with the increase of aggregate size d that also results in the increase of the
aggregate volume fraction.
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Figure 3.26 – Relation between the FPZ size `FPZ and aggregate size d with respect to the variation paths (I)
and (II).

Figure 3.27 shows the crack patterns and the corresponding value of `FPZ obtained when chang-
ing the aggregate size d within the variation path (II). The figure shows for each aggregate size d
only one random distribution of aggregates in the specimen. It seems that the position of aggregates
around the notches have an essential role on the resulting FPZ size. In fact, the crack is always
initiated at the weak ITZ between the aggregate and matrix phases. With regard to the position of
a notch – that can also be seen as a “weak link” – the crack is then propagated via the develop-
ment of microcracks and at the end the macrocrack is formed by connecting the notch(es) and the
broken elements (mainly in the ITZs). However, sometimes an aggregate is found just in front of
the notch(es) and it plays a role of an obstacle that prevents the rupture of elements in the vicinity
of the notch(es) and consequently, disconnects the macrocrack from the notch(es). In this case, the
macrocrack is finally formed by mainly connecting the broken ITZ elements. Therefore, the spacial
distribution (positions) of the aggregate particles actually have an important role on the FPZ size in
conjunction with the size of the aggregate particles. Nevertheless, for the case where the reference
volume fraction of aggregate is kept almost constant (path (II)), the spacing between the aggregate
particles seems to be constant regardless of the size of the particles, and thus the spacial distribution
of the particles prevails more and more on their size in the resulting FPZ size `FPZ. Actually, as
shown in Figure 3.28 in which four different sets of aggregate positions with the diameter being
6 mm, the values of `FPZ are finally different depending on the spacial distribution of the aggregate
particles with regard to the notch position. This explains why changing the size of the aggregate par-
ticles according to the path (II) does not change the value of `FPZ averaged over five random spacial
distributions of aggregate particles. On the contrary, within the path (I) of variation, changing the
aggregate size leads to a change in the aggregate volume fraction together with the spacing between
aggregate particles, and the FPZ size is affected by not only the size of aggregate particles but also
the other structuring parameters (position and volume fraction of aggregates in our case). Still, the
smaller the aggregate particle size, the larger the spacing between the particles is in the path (I).
This leads to the weaker influence of the spacial distribution of aggregate particles observed on the
FPZ size. It is revealed in Figure 3.26 by the value of the standard deviation that is increased with
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the aggregate size.

(a) d D 4, `FPZ D 5:47 (b) d D 6, `FPZ D 4:94

(c) d D 8, `FPZ D 12:46 (d) d D 10, `FPZ D 4:75

Figure 3.27 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the
specimen made of the material with different aggregate size d [mm] of the variation path (II).

In summary, after the study of tensile tests on a fixed-size specimen made of a brittle elastic
model material with aggregate particles (inclusions), the results highlight that the FPZ size `FPZ is
related to the characteristics of the aggregate structure including aggregate size, aggregate distribu-
tion/position, aggregate volume fraction as well as aggregate spacing. Depending on the situation,
one of the characteristics prevails. Anyway, the spacial distribution of aggregates always impacts
`FPZ, and this is exposed via the non-null standard deviation in the above studies. If the aggregate
spacing is kept constant by keeping the reference volume fraction of aggregate particles unchanged
while changing the size of the aggregate particles, the mean value of `FPZ seems to be independent
from the aggregate size. When the aggregate volume fraction/spacing changes due to the change of
aggregate size while keeping the same position for different aggregate sizes, the mean value of `FPZ,
taken by averaging the FPZ sizes of several (five in the study) random distributions of aggregates of
the same size, increases with the increase of the aggregate size. Now, it remains to be seen the influ-
ence of the aggregate structure on `FPZ when keeping the aggregate size constant and changing the
aggregate volume fraction that leads to the change of the aggregate spacing. This study is outlined
in the next section.
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(a) `FPZ D 10:60 (b) `FPZ D 14:01

(c) `FPZ D 3:81 (d) `FPZ D 4:94

Figure 3.28 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the
specimen made of the material with aggregate size d D 6mm with four different distributions of the aggregate
particles.
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3.4.5 Fraction of aggregates with fixed size

In order to evaluate the only influence of the aggregate volume fraction (or equivalently the aggregate
spacing, since the latter is inversely proportional to the former) on the FPZ size `FPZ, numerical
tensile tests are carried out on the specimen made of the brittle elastic model material in which
the aggregate volume fraction is varied while keeping the aggregate size constant. This concerns
the path (III) of variation in which the size of aggregates is held constant at 8 mm. Moreover, for
each value of the aggregate volume fraction, five independently random distributions of aggregate
positions are generated so that the mean value of `FPZ is utilized for studying the effect of the
aggregate volume fraction.

The numerical simulations of tensile tests in this section are performed on the specimen of A-
type. We use the same model parameters as before. The material is modeled as the three-phase one
with the weak ITZ phase in-between aggregate and matrix phases. In addition, no random field of
strengths is introduced in the matrix phase such that one could study only the influence of coarse
aggregates on `FPZ.
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Figure 3.29 – Variation of `FPZ according to the aggregate volume fraction Pa of the three variation paths (I),
(II) and (III) of aggregate variations.

Figure 3.29 shows the variation of the mean value of `FPZ with respect to the aggregate volume
fraction Pa when changing the aggregate volume fraction according to the path (III) of variation
(hold the aggregate size d D 8 mm). For the sake of comparison, the results of above studies for
the variation paths (I) and (II) are plotted as well, but in the (`FPZ–Pa) space. For each size of
aggregate particles, five independently random distributions of positions are generated and used in
the numerical simulations. Figure 3.29 also shows the best fits of the variation of `FPZ corresponding
to the three variation paths (I), (II) and (III). The main observation is that the mean value of `FPZ of
the path (I) and the path (III) does increase with the increase of the aggregate volume fraction Pa,
whereas that of the path (II) does not change. This is simply explained by the fact that the spacing
between aggregate particles decreases with the increase of the aggregate volume fraction within the
variation paths (I) and (III), whereas it seems to be “constant” (or slightly changed) within the path
(II). By comparison the path (III) with the path (I), it is observed, however, that the increase rate
of `FPZ with respect to Pa, which is represented by the fitted slope, of the path (III) is smaller than
that of the path (I). A suitable explanation for this observation is that within the path (I), the size of
and the spacing between the aggregate particles do change (increase and decrease, respectively) at
the same time with respect to the increase of Pa whereas only the spacing of the aggregate particles
does decrease with respect to the increase of Pa within the path (III).

Therefore, the observation could lead to the evidence that the FPZ size depends on both the
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aggregate spacing (which is just a consequence of the aggregate volume fraction) and aggregate

size.

Figure 3.30 shows the crack patterns and the corresponding values of `FPZ of four different
values of Pa in the path (III) with d D 8 mm. By comparison between Figures 3.30b and 3.30c,
it is however seen that the aggregate volume fraction and the FPZ size are not always in direct
correlation (even if an affine relationship with positive slope is actually observed when averaging
over several realizations of specimens). In fact, the value of Pa in Figure 3.30b is smaller than that
in Figure 3.30c but the value of `FPZ of Figure 3.30b is greater than that of Figure 3.30c. In this case,
again, the relative position of the aggregate particles and the notches seems to have important sense.
Similarly, as shown in Figure 3.31, in which the total number of aggregate particles is kept constant

(a) Pa D 10:52, `FPZ D 3:60 (b) Pa D 22:49, `FPZ D 11:92

(c) Pa D 27:57, `FPZ D 8:60 (d) Pa D 33:72, `FPZ D 8:44

Figure 3.30 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the
specimen made of the material with different aggregate volume fraction Pa [%] and the aggregate size is of
8 mm of the variation path (III).

at 50 particles within the path (III) so that the reference aggregate volume fraction is held almost
constant, different values of `FPZ are obtained with regard to the relative position of the aggregate
particles and the notches. These all account for the standard deviations of `FPZ shown in Figure 3.29.
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(a) Pa D 25:17, `FPZ D 4:20 (b) Pa D 24:96, `FPZ D 7:90

(c) Pa D 22:49, `FPZ D 11:92 (d) Pa D 25:96, `FPZ D 11:56

Figure 3.31 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the
specimen made of the material with aggregate size d D 8mm with four different distributions of the aggregate
particles with the corresponding aggregate volume fraction Pa [%].
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3.4.6 Aggregate size dispersion at constant volume fraction

The previous studies concern the influence of the aggregate structure on the FPZ size. However, the
aggregate structure was restricted to the case of monodispersion. In the present study, an approach
to a more realistic aggregate structure of concrete is performed in which a polydisperse aggregate
structure is generated for studying the influence of the maximum aggregate size on the FPZ size.
For this end, the variation path (IV), see Section 3.3.2, in which an aggregate structure is generated
using the Fuller’s grading, is utilized for numerical simulations of tensile tests by changing the
maximum aggregate size dmax to 6:3, 8, 10, 12:5 mm. The minimum aggregate size is 3:5 mm. The
reference aggregate volume fraction is kept constant at 45% while changing dmax. Furthermore, for
each aggregate structure with a value of dmax, five independently random distributions are generated
so that the mean value of `FPZ is adopted for studying the effect of the maximum aggregate size.

The numerical simulations of tensile tests in this section are performed on the specimen of A-
type. We use the same model parameters as before. The material is modeled as the three-phase one
with the weak ITZ phase in-between aggregate and matrix phases. In addition, no random field of
strengths is introduced in the matrix phase such that one could study only the influences of coarse
aggregates on `FPZ.

Figure 3.32 shows the variation of the mean value of the FPZ size `FPZ of the polydisperse
aggregate structures of the path (IV) variation. For sake of comparison, the result of the monodis-
perse aggregate structures when varying the aggregate size d and holding the reference aggregate
volume fraction constant at 45% (the variation path (II)) is also presented. It is seen that, similar
to the monodisperse aggregate distribution, when keeping the reference aggregate volume fraction
constant and varying the maximum aggregate size dmax of the polydisperse aggregate structure, the
mean value of `FPZ does not seem to change significantly with respect to dmax. However, the mean
value of `FPZ for the polydisperse aggregate structure is found to be slightly higher than that of the
monodisperse one. It is likely due to the fact that for reaching the reference aggregate volume frac-
tion 45%, a greater number of aggregate particles is needed for the polydisperse structure than for
the monodisperse one. It results in a greater number of ITZ elements in the polydispersion case (see
Figure 3.33 for evidence), which in turn obviously has a significant effect on the FPZ size.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

`
F

P
Z

[m
m

]

d; dmax [mm]

Polydisperse, (IV)
Monodisperse, (II)
Homo
mean value 7.04
mean value 6.42

Figure 3.32 – Influence of the dispersion of the aggregate structure on the FPZ size `FPZ when keeping the
reference aggregate volume fraction constant at 45% and changing the aggregate size d for the monodisperse
or dmax for the polydisperse distributions of aggregate particles.

Figure 3.34 shows the crack patterns and the corresponding values of `FPZ for four aggregate
structures with different values of dmax within the variation path (IV). Besides, Figure 3.35 shows
the crack patterns and the corresponding values of `FPZ for four independently random distributions
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of aggregate particles of the polydisperse structure with dmax D 12:5 mm. It is seen again that the
relative positions between the aggregate particles and the notches have a significant effect on the
value of `FPZ. As shown in Figure 3.35 for a fixed value of dmax, it strongly depends on the position
of the aggregate particles with respect to the position of the notches, a wide range of `FPZ can be
obtained. It is, however, noted that the maximum-size aggregates are not always found around the
notches since the specimen is slender, and of course this is considered as a drawback for an attempt
to correlate the FPZ size and the maximum aggregate size. This leads us to think that it would be
better if the study is performed on a square specimen so that the maximum-size aggregates can be
more “representatively” distributed along the crack path within the specimen. We will refer to the
length of that crack path across the specimen as the ligament size. Furthermore, to extend the study
of the influence of the aggregate size dispersion on `FPZ, the ligament size between the notches
should be enlarged so that more “biggest aggregates” can be represented within the ligament.

3.4.7 Ligament size

Since the above studies are performed on slender specimens (small ligament size compared with
dmax, in the order of 3 � dmax) which causes a less frequent occurrence of the maximum-size ag-
gregates in the zone of interest around the FPZ, tensile tests are carried out, this time, on square
specimens. In this way, the ligament size is increased while the slenderness is reduced to 1 in order
to limit the number of elements. The maximum-size aggregates can more systematically be found
around the notch position and play their influences on the FPZ size. In addition, the influence of
the ligament size on the value and the variation of the FPZ size `FPZ with respect to the maximum
aggregate size dmax is pointed out as well.

The specimen geometry is shown in Figure 3.36 and the dimensions of the specimens used in
the test are given in Table 3.4, with the same size but with different notch length that results in
different ligament length: 90, 80, 65 and 50 mm. They are labeled by L, M, S and XS respectively
for convenience.

In order to study the influence of the maximum aggregate size dmax on the FPZ size, the tensile
tests are performed on the specimens made of the material with a polydisperse aggregate structure
with dmax being 6:3, 8, 10, 12:5 and 16 mm and the reference aggregate volume fraction is kept
constant at 45%. The aggregate structures with dmax being 6:3, 8, 10, 12:5 mm have the same
aggregate grading of that of the path (IV) presented in Section 3.3.2. The additional aggregate
grading with dmax D 16 mm is shown in Table 3.5. All the aggregate gradings are generated by
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(a) dmax D 6:3, `FPZ D 4:82 (b) dmax D 8, `FPZ D 5:63

(c) dmax D 10, `FPZ D 5:15 (d) dmax D 12:5, `FPZ D 4:71

Figure 3.34 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the spec-
imen made of the material with different maximum aggregate size dmax [mm] of the polydisperse aggregate
structure of the variation path (IV).

Table 3.4 – Specimen dimensions [mm].

Ligament size Long (L) Medium (M) Small (S) eXtra Small (XS)
Specimen size: a 100 100 100 100
Notch length: c 10 20 35 50
Notch width: d 2 2 2 2
Ligament length: a ! c 90 80 65 50
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(a) `FPZ D 9:30 (b) `FPZ D 2:91

(c) `FPZ D 4:71 (d) `FPZ D 9:49

Figure 3.35 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the A-type tensile tests on the
specimen made of the material with the maximum aggregate size dmax D 12:5 mm with four independently
random distributions of aggregate particles.

Figure 3.36 – Specimen geometry.
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the Fuller’s curve. In the study, for each aggregate grading up to dmax, five aggregate structure
realizations are generated with independently random distribution of aggregate positions.

Table 3.5 – Volume fraction of each aggregate segment of the aggregate structure with dmax D 16mm obtained
from the Fuller’s grading.

dmax

Aggregate
segment

Sieve
size

Sieve
passing VAgg V abs

Agg

Œmm� Œmm� Œmm� Œ%� Œ%� Œ%�

16

0–3.15 3.15 0 0 0
3.15–4 4 25.72 25.72 11.57
4–5 5 37.94 12.22 5.50
5–6.3 6.3 49.51 11.57 5.21
6.3–8 8 61.44 11.92 5.36
8–10 10 73.01 11.58 5.21
10–12.5 12.5 85.30 12.29 5.53
12.5–15 15 96.03 10.73 4.83
15–16 16 100 3.97 1.79

The numerical simulations of tensile tests are performed using the lattice model with the same
model parameters as before. The material is modeled as the three-phase one with the weak ITZ phase
in-between aggregate and matrix phases. In addition, no random field of strengths is introduced
in the matrix phase such that one could study only the influences of coarse aggregates on `FPZ.
The specimens are loaded in tension by directly imposing the vertical displacement increment on
the nodes of the top boundary of the specimens while vertically fixing the nodes of their bottom
boundaries.

Figure 3.37 shows the relationship between the FPZ size `FPZ with respect to the maximum
aggregate size dmax for the specimens corresponding to four ligament lengths L, M, S and XS. The
figure also shows the FPZ size of L, M, S, XS specimens in which no aggregate structure has been
introduced and the material is modeled “homogeneously” by only the matrix phase. It is seen that,
when the aggregate structures are introduced, it always results in a larger FPZ size computed with
the homogeneous cases. For given value of dmax, the mean value of `FPZ is systematically increased
when the ligament size is increased. In addition, the increase rate of `FPZ is also increased with
dmax. It results in an higher slope of variation of `FPZ as a function of dmax for a larger ligament
size. This is shown in Figure 3.38 where the increase factor of `FPZ (slopes in Figure 3.37) is
plotted as a function of the ligament ratio, that is ligament size compared to the specimen width.
The dotted line in Figure 3.38 is used as a guide that extrapolates the slope variation over all the
possible values of ligament ratio. Interestingly, with the specimen dimensions used, a stabilized
value of variation slope of `FPZ is achieved only for ligament size in the order of specimen width.
For ligament size below a half of specimen width, the variation slope is negligible, which means that

the aggregate size appears to have no influence on the mean value of `FPZ. Between these limits, the

slope variation evolves progressively, indicating that both the aggregate structure and the specimen

dimension itself can play a role on the FPZ size. It all may suggest that the FPZ is not completely

developed within the specimens with “too short” ligament length. The maximum-aggregate-size
independence of `FPZ of the specimens with too short ligament length is in agreement with the
previous study performed on the A-type specimen which also has a short ligament length.

Figure 3.39 shows the crack patterns (selected among several realizations of aggregate positions)
and the value of `FPZ corresponding to the smallest aggregate sizes (dmax D 6:3mm) and the biggest
ones (dmax D 16 mm) for the two extremum ligament lengths (XS and L). In the case of XS speci-
mens (Figures 3.39a and 3.39c), whatever the maximum aggregate size, a crack without bifurcation
crosses the ligament by connecting ITZ elements with a path that seems to be the shortest. Whereas,
in the case of L specimens (Figures 3.39b and 3.39d), even if only one crack finally crosses the
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ligament, a number of bifurcations occur either side of the aggregates. As a consequence, the FPZ
size is in direct proportion with the maximum aggregate size in the latter case. This is one more time

an illustration of the possible predominant effect of the stress gradient on the development of the

FPZ that can partly hide the influence of the aggregate structure.

XS

(a) dmax D 6:3, `FPZ D 7:97

L

(b) dmax D 6:3, `FPZ D 8:57

(c) dmax D 16, `FPZ D 8:27 (d) dmax D 16, `FPZ D 16:60

Figure 3.39 – Crack patterns and the corresponding FPZ size `FPZ [mm] of the XS specimens (left) and the L
specimens (right), both made of the material with dmax D 6:3 mm (top) and dmax D 16 mm (bottom). The
black dots indicate broken elements with the largest opening – read as the macrocrack – while the blue dots
stand for the remaining broken elements – read as the microcrack.

3.5 Material characteristic length versus FPZ size

In Section 3.4, the influence of the material mesostructure on the FPZ size has been studied. The
aim is now to question whether the same influence can be observed on the characteristic length of
the material. Although many simulations were carried out to answer this question, we only focus
herein on two mesoscopic features that may influence the characteristic length `c, the aggregate size
with (i) fixed position and (ii) fixed volume fraction.

A practical example for the assessment of the characteristic length of the material using the
lattice model is presented in Section 3.2.4 in which the LD and DD tensile tests are performed to
determine the fracture energy Gf and dissipation energy density Ws , respectively, and the charac-
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teristic length is determined by Equation (3.2).

In this section, the numerical simulations of LD tensile tests are performed on the specimen of
A-type. The dimensions of LD and DD specimens tested are shown in Table 3.1. The same model
parameters as previous are used, see Table 3.2. The material is modeled as the three-phase one
with a weak ITZ phase in-between aggregate and matrix phases. In addition, no random field of
strengths is introduced in the matrix phase such that the influence of coarse aggregates on `c can be
individually studied.

3.5.1 Aggregate size with fixed positions

First, the lattice simulations are performed by varying the aggregate size while both the positions and
the number of aggregates remain unchanged. This concerns the path (I) of mesostructure variation
in which the monodisperse diameter of aggregates is changed by setting their values to 4, 6, 8, and
then 10 mm. Five independent realizations of aggregate positions are performed for each aggregate
size.

Figure 3.40 shows the relation between the characteristic length `c and the aggregate size d . For
a comparison with the FPZ size `FPZ, the relation between `FPZ, computed from the LD tests, and
the aggregate size is shown as well. The standard deviations of `c and `FPZ are always shown by the
vertical bars attached to the corresponding mean values.

The main observation is that `c and `FPZ have the same order of magnitude and trend with

respect to the aggregate size.
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Figure 3.40 – Variation of the internal length of the material `c and the FPZ size `FPZ with respect to the
aggregate size d within the path (I) of variation.

The increase in d results in an increase of standard deviations of `c as previously observed
in the variation of the FPZ size `FPZ. The reason may still be related to the fact that upon the
aggregate size increase, the volume fraction of aggregate particles, and thus the number of ITZ
elements, increases and as a consequence, the spacial distribution of aggregate particles with respect
to the notch position has a more important role in the resulting characteristic length of the material.
This remark highlights the fact that not only the aggregate size but also other less obvious features,
affected themselves by the aggregate size, influences `c (idem for `FPZ).
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3.5.2 Aggregate size with fixed volume fraction

Now the question is whether the variation of the characteristic length `c with respect to the aggregate
size d still follows the variation of the FPZ size `FPZ with respect to d if we only do vary the size
d of aggregates while keeping the volume fraction of aggregates as constant as possible? For this
end, the path (II) of the mesostructure variation (see Section 3.3.1) is used to study the influence
of the aggregate size d on the characteristic length `c, in which the “reference” volume fraction of
aggregates is kept at 45% when changing the aggregate size.

Figure 3.41 shows the characteristic length of the material `c as a function of the aggregate size
d . The plot between the FPZ size `FPZ and d is shown as well. It exhibits that increasing d does
not lead to an increase of `c, as previously observed in the case of `FPZ. With a fixed value of the
aggregate size, the resulting characteristic length of the material varies upon the spacial distribution
of aggregate particles. However, the mean value of the characteristic length with respect to the
spacial distribution of aggregate particles seems to be unchanged upon the increase of the aggregate
size. The reason for this non-sensitivity may be related to the fact that the spacing between the
aggregate particles, thus the spacing between the ITZs, seems to be insignificantly changed when
the aggregate size is increased, as previously shown for the case of the FPZ size, see Section 3.4.4.
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Figure 3.41 – Variation of the internal length of the material `c and the FPZ size `FPZ with respect to the
aggregate size d within the path (II) of variation.

In addition, the standard deviations of `c behave in the same way as that of `FPZ. This means
that if `FPZ varies within a wide range then the range of deviation of `c is also wide and of the same
order. This remark stands also for small standard deviations of `FPZ and `c. It illustrates once more

that a certain equivalence exists between `FPZ and `c. The difference is that the assessment of `FPZ

only requires one LD test whereas the assessment of `c requires both LD and “diffused damage”
tests; but unfortunately the latter cannot be practically performed, at best the damage is distributed
in the form of cracks overall the specimen in the so-called DD tests. For this reason, and given that
`FPZ and `c have been shown to behave similarly (in spite of a small difference in their values), the
conclusions drawn in Section 3.4 for `FPZ can be extrapolated for `c.

3.6 Conclusions

Two types of tensile tests were performed to study the key features that influence the FPZ size `FPZ

and the material characteristic length `c. The assessment of `FPZ is achieved via localized damage
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(LD) tests while `c is measured via both LD tests and distributed damage (DD) tests. The numerical
simulations are performed on the brittle elastic model material with inclusions which are called
aggregates. The material is then modeled as the two-phase material with the aggregate and matrix
phases that constitute the mesostructure of the material or as the three-phase one with the interfacial
transition zone (ITZ) is defined in addition in-between aggregate and matrix phases. Not only the
mesostructure of the material but also the specimen geometry and boundary conditions are varied
in order to analyze their effect on the resulting FPZ size and material characteristic length. Five
independent realizations of aggregate positions are generated for each case of the mesostructure so
that the average values of `FPZ and of `c over that five realizations are used to analyze the effect of
the mesostructure. The study has been pointed out the influences of: the ITZs, the fine aggregate
particles, the applied stress gradient and material rotation, the aggregate size with fixed volume
fraction, the aggregate volume fraction with fixed size, the aggregate size dispersion and the ligament
size of the specimen on `FPZ and `c.

From that extensive study, the following conclusions can be drawn:

� It appears that not basically the size, but other parameters that characterize the aggregate struc-
ture of the material such as the volume fraction, the size dispersion, the fabric, the connectiv-
ity, and interface properties. . . strongly affects the size of the FPZ, and thus the characteristic
length of the material.

� The measured value of the FPZ size is also dependent on the local stress level and/or on the
stress gradient which may be related to the specimen geometry or the boundary conditions for
instance. Therefore, it is difficult to avoid the conclusion that the FPZ size is not an intrinsic
property of the material as usually believed. However, it seems true that the FPZ size remains
in the same order when the tested system is the same (mesostructure, global geometry and
dimensions, loading conditions. . . ).

� The assessment of the characteristic length of the material is essential for using its value as
the internal length in nonlocal models. However, just like the FPZ size, it is difficult to avoid
structural effects in the method of measurement of the characteristic length.
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This chapter deals with the coupling between the numerical continuum-based approach and dis-
continuous approach for simulation of the fracture process of quasi-brittle materials. The nu-

merical methods used for continuum based model and discrete model are the Finite Element Method
(FEM) and the Lattice Element Method (LEM), respectively. The reasons for this coupling are dis-
cussed in the first section. Then, a selection of an algorithm for the coupling is proposed. The
algorithm of the proposed algorithm will be presented in details before dealing with the numerical
implementation. The chapter is closed by some applications and conclusions.

4.1 Introduction

Numerical simulations are an indispensable part of the current engineering and science develop-
ment. Modeling of fracture of heterogeneous quasi-brittle materials (concrete, rocks, ceramics) is
evolving over the past twenty years. The lattice element method (LEM) has become a useful tool
for studying the fracture of heterogeneous materials. In fact, the lattice approach is very suitable for
simulation of fracture process because firstly the discontinuous displacement field is well captured
thanks to the intrinsic discrete feature of the model. Secondly, the crack patterns and crack opening
are explicitly produced at the mesoscale when the heterogeneity of the material is introduced by gen-
erating the material constituents, see Chapter 2. In contrast, the continuum-based approaches used
at the macroscale are unsuitable (or, not easy because of complex constitutive laws as, for example,
shown in Bažant and Planas (1998) and Jirasek and Bažant (2002)) to capture the post-peak stage
in terms of stress-strain curves, crack patterns and crack opening. However, simulations with the
lattice model at the mesoscale require fine resolutions of the discretized mesh, leading to the model
with a large number of degrees of freedom in particular for three-dimensional analyses. Indeed,
three-dimensional analyses by the lattice model seem to be necessary since the two-dimensional
ones may misrepresent important aspects of three-dimensional fracture process such as the ductility
in the post-peak regime. Therefore, the analysis of realistic large structures only with the lattice
model at the mesoscale with a vast number of degrees of freedom is not feasible (or, not economic
if it is feasible). So, it seems that an appropriate combination of discrete approach at the mesoscale
dealt by the lattice model and continuous approach at the macroscale treated by the finite element
method (FEM), which results in a multiscale approach, is essential. Using the multiscale approach,
average values of variables at the structural level are available and where needed, we have the pos-
sibility to zoom in and get a fine resolution of the crack topology at the mesoscale. This will be of
a great interest both for graphical simulation and for transfer properties analysis in a post-treatment
procedure, e.g., analyzing the interaction between material damage and transport properties of con-
crete (Pijaudier-Cabot et al., 2009). In addition, this approach may provide a direct tool in durability
analyses of (concrete) structures since crack propagation and crack opening are directly furnished
instead of estimating them from the continuum-based approach (Dufour et al., 2012).

The key issue of the multiscale approach proposed in this study is that the macroscopic approach
by FEM and mesoscopic approach by LEM are coupled within an adaptive multiscale procedure to
model large-scale structures with localized fracture processes. This means that only the fracture
process zone and its immediate vicinity are modeled by the lattice model at the mesoscale. The
material surrounding the lattice network is represented by finite elements (FE) and is assumed to
be linear elastic at the macroscale. As the fracture process evolves, the coupling model is updated
by a zoom-in procedure in which certain zones represented by the FE, satisfying a specific criterion
(which is defined later), are switched to be represented by the lattice model at the mesoscale.

Despite the attractiveness of the multiscale approach in terms of computational cost, dealing
with a (very) fine resolution even on a reduced area (near the crack front) require high levels of
performance to process a large simulation in three dimensions. Therefore, parallel computation
should be anticipated for the LEM-FEM multiscale coupling. It accounts for the implementation
of the coupling procedure into SOFA architecture presented hereafter. The coupling is restricted to
small deformations under quasi-static loading conditions.
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4.2 Selection of an algorithm

4.2.1 A conspicuous algorithm

If the stiffness of a lattice cell is equivalent to that of a FE, the coupling procedure LEM-FEM
can be conceptually performed as follows. The structure is initially modeled by FEM with linear
elastic elements. As the load increases, the FE that satisfies a specific criterion, e.g. based on stress/
strain quantity, is supposed to behave nonlinearly. And just before the criterion is verified, that FE
is replaced by a lattice network of the same size and the coupling is performed by restraining the
boundary nodes of the lattice network by the displacement field at the boundaries of the FEs at
the moment of replacement. The simulation is continued by performing nonlinear analysis on the
lattice network and then transferring the stress field at the boundary nodes of the lattice network
to the neighboring FEs, see Figure 4.1. The simulation is pursued so that the next FE fulfills the
criterion of nonlinearity and is replaced by another lattice network. The above procedure is repeated
until complete failure of the structure.

Ke

Ke
eq

�

�

Figure 4.1 – Replacing a FE by a lattice cell of the same size.

However, the coupling procedure is only valid if and only if the lattice network and the replaced
FE have the same Young’s modulus, Poisson’s ratio and elementary stiffness matrix, i.e., they are
representing the same material. In order to verify whether a lattice network can represent the same
material represented by a FE, the following test is carried out. For the sake of simplicity, the simplest
FE which is a four-node quadrilateral element (QUA4) with 8 degrees of freedom and the normal-
shear spring lattice network are used in the test. The size of the FE and the lattice cell are 1�1mm2.
The lattice cell is discretized so that the isotropy requirement is satisfied, i.e., the macroscopic
Young’s modulus and Poisson’s ratio obtained from the lattice cell in x- and y-direction are not
significantly different, see Section 2.2.3.3. This accounts for the ratio B=lm D 60 is used in the
study with B D 1 mm the size of the cell and lm the mean size of the lattice elements. The material
is used in the test with the Young’s modulus E D 30 GPa and the Poisson’s ratio � D 0:2. First the
parameters of the lattice network En, Es are identified so that the macroscopic Young’s modulus
and Poisson’s ratio obtained from the lattice cell are 30 GPa and 0:2 respectively. This leads to
En D 37:5 GPa and Es D 12:5 GPa. The FE QUA4 which represents the continuum with two
parameters E D 30 GPa and � D 0:2 has its individual stiffness matrix. The remaining problem is
to check whether the lattice cell has the same stiffness matrix with the FE QUA4 in order to ensure
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that they are modeling the same material.

Figure 4.2a shows the FE QUA4 1 � 1 mm2 with four nodes 1, 2, 3, and 4. The lattice cell
of the same size with four macroscopic nodes 1, 2, 3, and 4 are shown in Figure 4.2b. Since the
displacement field in the FE QUA4 is bilinear, so in order to compare the stiffness matrix of the FE
with the equivalent stiffness matrix of the lattice cell with respect to the four macroscopic nodes,
the latter has to be determined by the way such that the displacement field of the lattice cell is
also linear. It is numerically determined as follows. First, the elastic analysis is performed on the
lattice cell by imposing the unit displacements at the macroscopic nodes, one by one, with respect
to the degrees of freedom in x- and y-direction, and also linearly imposing the displacements to
the nodes located on the boundaries containing the current macroscopic node with respect to the
unit displacement imposed on the current macroscopic node and the zero displacements on the
neighboring macroscopic nodes, while fixing all remaining nodes located on the boundaries that
do not contain the current macroscopic node in the same direction with the unit displacement. For
example, to compute the equivalent stiffness with respect to the degree of freedom u1, one imposes
the unit displacement at the macroscopic node 1 in the x-direction and all nodes belonging to the
boundaries 1-4 and 1-2 are linearly imposed also in the x-direction from the unit displacement at
node 1 to the zero displacements at nodes 4 and 2, see Figure 4.2b, while all nodes located on
the boundaries 2-3 and 3-4 are fixed in x-direction for the elastic analysis. Then, the forces are
measured at the macroscopic nodes 1, 2, 3 and 4 in x- and y-direction which are the components
of the equivalent stiffness matrix. By doing so, the equivalent stiffness matrix of the lattice cell is

QUA4

1 2

34
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1

4

1
1
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Figure 4.2 – Continuum medium represented by a FE QUA4 (a) and by a lattice network (b).
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in which the unit is kN/mm. The stiffness matrix of the FE QUA4 in the case of plane strain with
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two parameters E D 30 GPa and � D 0:2 is given by
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where the unit is again kN/mm. It is shown that a significant difference between the stiffness matrix
of the lattice cell and that of the FE QUA4 is observed. In particular, the non-diagonal terms of
the equivalent stiffness matrix of the lattice cell is significantly smaller than those of the FE QUA4.
Note that the difference between the two matrices not only is observed on the magnitude but also on
the sign. Moreover, the non-equal values among diagonal terms of Ke

LEM mean that the macroscopic
behavior of the lattice cell is not isotropic with respect to the directions of the macroscopic degrees
of freedom. It all may be related to the discretization fineness of the used mesh and/or to the fact
that the rotational degrees of freedom are not taken into account in the lattice cell.

In order to verify the effect of the discretization fineness on the equivalent stiffness matrix, an
analysis with the same model parameters but on the lattice cell with a finer discretization than above
is carried out. The discretization mesh with the ratio B=lm D 100 is used in the present study to
determine the equivalent stiffness matrix of the lattice cell. By doing the same elastic analysis as
above, the equivalent stiffness matrix of the lattice cell is now given by (kN/mm)
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It is shown again that the difference with the stiffness matrix of the FE QUA4 persists. The non-
equal values of the diagonal terms of Ke

LEM are seen yet. It exhibits that a better value of the term k18

(0:0072) but a worse value of k14 (0.0494) than the values in the case of the mesh with B=lm D 60

are obtained when comparing those values with the corresponding values of Ke
FEM. However, the

smaller magnitudes of the non-diagonal terms compared to those of the stiffness matrix of the FE
QUA4 are always observed. This leads us to think that the rotational degrees of freedom, when
activated, may play a vital role in the transfer of load and thus have a significant effect on the
equivalent stiffness matrix of the lattice cell.

In order to take into account the rotational degrees of freedom when computing the equivalent
stiffness matrix of the lattice cell, the beam lattice model is used in the elastic analysis. The beam
lattice model has two elastic parameters which are the Young’s modulus Eb of the beam lattice
elements and an adimensional parameter � that is related to the second moment of area, see Sec-
tion 2.5. These parameters are identified so that the macroscopic Young’s modulus and Poisson’s
ratio obtained from the lattice cell are 30 GPa and 0:2 respectively. They are Eb D 37:88 GPa and
� D 1:03. The mesh with the ratio B=lm D 100 is used. With the same procedure as above, the
elastic analyses are carried out to compute the equivalent stiffness matrix of the beam lattice cell.
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The obtained stiffness matrix is given by (kN/mm)
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As expected, it is seen that the smaller difference between Ke
LEM and Ke

FEM than in the case of the
normal-shear spring lattice cell is obtained. The values of the non-diagonal terms are now close to
those of the FE QUA4. The sign of the terms is now correctly obtained. However, the non-equal
values of the diagonal terms are still observed. It again means that the macroscopic behavior of the
beam lattice cell is not perfectly isotropic with respect to the directions of the macroscopic degrees
of freedom. Moreover, the obtained stiffness matrix is no longer symmetric. This is clearly due to
the effect of the transfer of moments and shear forces when the rotational degrees of freedom are
activated.

To sum up, the above studies lead to the logical conclusion that the lattice model with the ap-
propriate parameters can macroscopically represent the material with the given Young’s modulus
and Poisson’s ratio as the FEM does. However, in terms of stiffness, a lattice cell reproduces a
different stiffness matrix compared to that of a FE of the same size. This seems likely due to the
“structural effect” of the lattice model. Nevertheless, the equivalent stiffness matrix of a lattice cell
reproduced by the beam lattice model is closer to the stiffness matrix of a FE than that reproduced
by the normal-spring lattice model. Quite obviously, this is due to the influence of rotational degrees
of freedom on the transfer of moments and shear forces. Since the stiffness matrices of a lattice cell
and of a FE are not equivalent, this leads us to use another algorithm for the LEM-FEM coupling.

4.2.2 The proposed algorithm

Since a lattice cell does not yield the same stiffness matrix as a FE of the same size even though
they can macroscopically represent a material with the same elastic parameters like Young’s mod-
ulus and Poisson’s ratio, the above algorithm for LEM-FEM coupling is not valid. Therefore, we
propose another algorithm in which the structure is also initially modeled by the FEM, however the
stiffness matrix of a FE is not constructed by integration over the volume/area of that FE but it is
computed by means of a homogenization process over a LEM cell of the same size. FEs where the
behavior remains below a threshold, the material is supposed to behave elastically and the initial
stiffness matrices are kept. FE, where the threshold is overtaken, is replaced by a LEM cell on
which an update of the stiffness matrix is performed by means of a nonlinear analysis of the LEM
cell when restraining the boundary nodes of the LEM cell by the strain field at the boundaries of
the neighboring FEs. Then, the stress field at the boundaries of the LEM cell is transfered to the
neighboring FEs. Since the beam lattice model produces the equivalent stiffness matrix of a LEM
cell which is closer to the stiffness matrix of a FE than the normal-shear spring lattice model, the
former is used in the LEM-FEM coupling.

Moreover, the algorithm of the LEM-FEM coupling should be provided for parallel computation
in order to deal with large-scale structures in general purposes. In the context of continuum based
approach, for dealing with large-scale system in three dimensions, the dual-primal finite element
tearing and interconnecting (FETI-DP) method (Farhat et al., 2000, 2001), which are a family of
domain decomposition (DD) algorithms, has been developed during the last decade for the parallel
iterative solution of large-scale system of equations arising from the finite element discretization of
partial differential equations. Within the dual-primal DD method, the reference problem is split into
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subdomains and the coarse problem is numerically built by choosing some “corner node” degrees
of freedom (DOF) as basics unknowns. The key issue of only choosing DOFs of corner nodes as
unknowns is to reduce the size of the coarse problem in order to speedup the computational time
compared to the basic FETI (Farhat and Roux, 1991) and FETI-2 (Farhat and Mandel, 1998) meth-
ods. The continuity between subdomains is assured by Lagrange multipliers. Parallel computing is
achieved by mapping one or several subdomains onto a processor. For this reason, the method is
capable of delivering a larger speedup for a larger number of processors with respect to the number
of subdomains. This is the parallel scalability. For more details about the FETI-DP method and its
scalability, the reader is referred to Farhat et al. (2000, 2001) and references therein.

In order to keep the parallel scalability of the LEM-FEM multiscale approach, the coupling
algorithm is based on the idea of the FETI-DP methodology. The difference with the latter is that
the solution of the fine scale is affected by LEM approach. Details of the LEM-FEM coupling
algorithm are presented in the next section. For the sake of simplicity, demonstrations in what
follows are shown by two-dimensional figures even though the algorithm is fully applied to three-
dimensional problems.

4.3 Algorithm for concurrent LEM-FEM coupling

4.3.1 Meso-macro description

The starting point is that the structure is discretized by a fine mesh and is decomposed into sub-
domains with compatible interfaces, defined by the coarse nodes. The fineness of the mesh is
determined by the lattice model described in Chapter 2. The fact that the mesh decomposition is
performed is for the purpose of parallel computation. The LEM description based on the fine mesh
is firstly constructed for all the subdomains with an explicit representation of aggregate structure
of the material at the mesoscale, see Figure 4.3a. Then, the FEM approach is constructed on the
whole structure based on the coarse mesh defined by the coarse nodes in which each macro zone
is considered as a FE whose the stiffness matrix is constructed by performing a homogenization

process over the corresponding LEM description of that macro zone, see Figure 4.3b. It is noted
that by this way, the FEM description is just seen as a discrete set of macro nodes interconnecting
by the homogenized stiffnesses. It is in contrast to the “real” FEM in which the stiffness matrices of
FEs are constructed by numerical integration over the element volume using the shape functions and
the matrix of elastic properties. It exhibits that, by this meso-macro description, each macro zone
possesses its own fine mesh described by LEM approach and during the simulation, when needed,
these fine zones will be activated.

The simulation is initially carried out by the FEM approach. As the loading increases, certain
subdomains, in which the criterion (called the switch criterion) defined later is satisfied and the
material is supposed to behave nonlinearly, are upgraded one by one to their corresponding fine
resolution represented by LEM approach. Figure 4.4a shows the first mesozone which is activated to
replace the corresponding FE. Subsequently, cracking process occurs in the mesozone by performing
elastic analysis on that mesozone. If in the meantime, the switch criterion is fulfilled in another FE,
the corresponding mesozone will be activated to substitute the FE, see Figure 4.4b. However, the
fracturing process still takes place in the first mesozone. When a crack fully crosses the LEM cell,
i.e., the latter is totally broken and will be deactivated. The corresponding FEM cell is reactivated
but is decomposed into two FEs by the mean path of the crack in order to maintain the mass of
the structure, see Figure 4.4c. The cracking process now takes place in the second mesozone. The
simulation is continued by repeating the meso-macro procedure.

In short, in order to develop the multiscale coupling LEM-FEM approach, one has to tackle five
issues: (i) the homogenization from the meso- to the macroscale, (ii) the connection of fine and
coarse subdomains (incompatible mesh connection), (iii) the connection of fine and fine subdomains
(compatible mesh connection), (iv) the transition from the macro- to the mesoscale by a zoom-in
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(a)

(b)

coarse nodemacro zone

Figure 4.3 – LEM description based on the fine mesh which is decomposed into the subdomains defined by
the coarse nodes (a) and FEM description based on the coarse mesh defined by the macro zones (elements)
with macro (homogenized) stiffnesses computed by homogenization on the corresponding LEM description
of each macro zone (b).
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meso-macro interface meso zone

(a)

(c)crack mean path of crack

meso-meso interface
(b)

Figure 4.4 – The first mesozone is activated and the corresponding FE is deactivated (a); the second mesozone
is activated if the switch criterion is fulfilled in the corresponding FE, but the cracking process still takes place
in the first mesozone (b); when the first one which is completely failed, it is deactivated and the corresponding
FE is reactivated but is decomposed into two FEs by the mean path of the crack to maintain the mass of the
structure (c).
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technique and (v) the transition from the meso- to the macroscale by a zoom-out technique applied
on the LEM cells that are completely damaged. These issues will be addressed (not in the order) in
the subsequent sections.

4.3.2 Subdomain connections

Two types of subdomain connections can be encountered, see Figure 4.4:

� connection of LEM and FEM subdomains

� connection of LEM and LEM subdomains

4.3.2.1 LEM and FEM connection

For the LEM-FEM coupling, it would be useful first of all to recall the continuum theory which is
the basic of FEM approach. Under the small perturbation assumption, in addition to the small strain
tensor which is given by

" D 1

2
.ru C ruT / (4.1)

with u the displacement field, we can also have the infinitesimal rotation tensor linked to the rigid
body rotation of a body, which is solely induced by the displacement field, given by

W D 1

2
.ru ! ruT / (4.2)

In fact, the infinitesimal rotation tensor W is just the skew-symmetric part of the displacement
gradient tensor. Since W is a skew-symmetric tensor, then for any vector dx we have

W � dx D � � dx (4.3)

where � is called the rotation vector of the skew-symmetric tensor. From Equations (4.2) and (4.3),
the rotation vector can be expressed as

� D 1

2
r � u (4.4)

In the concurrent multiscale analysis, at a certain moment LEM and FEM coexist in the same
framework. A strategy is needed to assure the kinematic continuity at the interface of LEM and FEM
subdomains. Let us consider two neighboring subdomains LEM and FEM,�L and�F respectively
with the local interface � , see Figure 4.5. Along this interface, the FEM subdomain only shares two
coarse nodes, which are common to the LEM subdomain.

�L �F

� nL

LEM
nodes (j)

FEM
nodes (c)

Figure 4.5 – Interface of LEM and FEM domains.
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It is worth noting that the LEM nodes are equipped with translational and rotational DOFs
whereas the FEM nodes have only translational DOFs. Therefore, for the continuity of kinematics,
the translational DOFs of LEM nodes at the interface have to be tied to the translational DOFs of
FEM nodes whereas the rotational DOFs of LEM nodes at the interface should be anchored to the
rotation vector of the skew-symmetric tensor which derived from the displacement field of the FE.
Let uF be the displacement filed in the FEM subdomain. Let uL, �L be the vectors of discrete
displacement and of discrete rotation, respectively, of the LEM subdomain. The continuity of kine-
matics between LEM and FEM subdomains at the interface is expressed by following constraint
equations

uL
j D uF .xj /;8j D f1; 2; : : : ; nLg (4.5)

and

�L
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r � uF .xj /;8j D f1; 2; : : : ; nLg (4.6)

where uL
j and �L

j are the vector of three translations and of three rotations of the LEM node j on

the interface, respectively; uF .xj / is the translational displacement vector of FEM subdomain at the
corresponding interface position while �F .xj / is the rotation vector at the position of LEM node j
of FEM subdomain linked to the rigid body rotation defined by Equation (4.4); nL is the number of
LEM nodes on the interface.

Furthermore, on the FEM domain, the coarse element is built from the coarse nodes with its
shape functions N D

�

Nc.x/
�

. Consequently, the displacement field uF can be interpolated from
the coarse node displacements uF

c D
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·

. The Equation (4.5) is rewritten as
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j D N � uF

c D Nc.xj / � uc ;8j D f1; 2; : : : ; nLg (4.7)

in which the summation notation is applied over all coarse nodes c. Likewise, the rotations �L
j

can be also obtained from the coarse node displacements uF
c through the rotation coupling matrix
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as
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j D R � uF

c D Rc.xj / � uc ;8j D f1; 2; : : : ; nLg (4.8)

where the rotation coupling matrix is derived from Equations (4.2) and (4.4) when applying the
interpolation of the displacement filed uF to the coarse node displacements
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.rN ! rNT / (4.9)

4.3.2.2 LEM and LEM connection

LEM subdomains might be activated and thus coexist in the same framework before the complete
failure of one of them. In order to assure the continuity between these LEM subdomains, constraint
conditions have also to be fulfilled.

It is recalled here that the LEM subdomains are initially built from a fine mesh, compatible on
the interface. Let us consider two adjacent LEM subdomains �L1 and �L2 that share nL common
nodes on the interface � , see Figure 4.6. Assuming that the cracking process is occurring within the
subdomain �L1 .

On the compatible interface, the translation and rotation continuities simply read

u
L2

j D u
L1

j ;8j D f1; 2; : : : ; nLg (4.10)

and
�

L2

j D �
L1

j ;8j D f1; 2; : : : ; nLg (4.11)

which mean that the displacement vectors of the nodes on the interface of the subdomain �L2 are
imposed by the displacement vectors of the corresponding nodes on the interface of the subdomain
�L1 .
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�L2

�L1

�

nL nodes

Figure 4.6 – Interface of two neighboring LEM subdomains.

4.3.3 Numerical homogenization of a fine subdomain by LEM approach

Within a concurrent multiscale approach proposed here, the discrete and continuum models provided
by LEM and FEM approaches, respectively, should represent the same material on different scales.
Consequently, the elastic mechanical properties of both approaches should coincide. Therefore, we
adapt the geometry and material parameters of the lattice model and consider them as the parameters
of the multiscale approach. The mechanical properties of the continuum model at the macroscale
are deduced from a homogenization scheme. Homogenizations for each suddomains are realized in
the preliminary stage for the transition from the meso-to the macroscale.

Considering a LEM subdomain �s with an explicit representation of an aggregate structure at
the mesoscale, see Figure 4.7. The material is described within this subdomain by the lattice model
in which each lattice beam element has a stiffness matrix expressed by Equations (2.16) to (2.18).
The subdomain-related nodes are classified into the corner nodes (c), the internal nodes (i) and the
non-corner boundary nodes (b), refer to Figure 4.7.

The assembled stiffness matrix Ks , the solution displacement vector (including translation and
rotation DOFs) u

s and the loading vector f s can be partitioned as

Ks D

2

4

Ks
i i Ks

ib
Ks

ic

Ks
bi

Ks
bb

Ks
bc

Ks
ci Ks

cb
Ks

cc

3

5 ; u
s D

8

<

:

u
s
i

u
s
b

u
s
c

9

=

;

; f s D

8

<

:

f s
i

f s
b

f s
c

9

=

;

(4.12)

The equilibrium equation of this subdomain, omitting the superscript s for the simplification, is
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(4.13)

In order to determine the stiffness matrix with respect to the corner nodes, a macroscopic field
has to be applied to the mesoscopic level, i.e. one has to deal with the boundary conditions. Three
classical boundary conditions are (i) linear displacement (Dirichlet), (ii) constant tractions (Neu-
mann), and (iii) periodic displacements and antiperiodic tractions on the opposite sides (Miehe and
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internal node (i)

corner node (c)

boundary node (b)

�s

Figure 4.7 – Classification of LEM subdomain nodes.

Koch, 2002). These boundary conditions correspond to a modeling of the loadings applied by the
neighboring subdomains. The main difficulty is the choice of a suited boundary condition to be
applied to the LEM subdomain. However, in the multiscale framework proposed here, the transition
from the meso-to the macroscale only takes into account for the corner nodes i.e. the resulting macro
subdomain is linear in terms of displacement. Furthermore, the strong coupling between LEM and
FEM subdomains is affected through linear interpolation as in Equation (4.7). Accordingly, the
linear displacement boundary condition has to be applied for the homogenization scheme.

The linear displacement boundary condition can be defined from the constant macroscopic strain
and rotation tensors, N", N!, respectively, at each node q of the boundaries (q includes corner nodes
(c) and non-corner boundary nodes (b)) as

uq D N"xq; wq D N!xq (4.14)

or shortly
uq D N‡ xq (4.15)

where N‡ stands for the coupling strain-rotation tensor. By introducing a matrix D
T
q that depends

on the coordinates of the boundary node q in the reference configuration, we may represent Equa-
tion (4.15) in the form

uq D D
T
q

N‡ (4.16)

It can be repartitioned as
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Incorporating the boundary constraint (4.17) in the equilibrium equations (4.13), which leads to

2

4

Ki i Kib Kic

Kbi Kbb Kbc

Kci Kcb Kcc

3

5 �

8

<

:

ui

D
T
b

N‡b

D
T
c

N‡c

9

=

;

D

8

<

:

fi

fb

fc

9

=

;

(4.18)

The macroscopic stiffness on the corner DOFs of the LEM subdomain is obtained by condensing
the internal DOFs ui , then in the second stage, D

T
b

N‡b onto the corner DOFs. As a result, one
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gets the following expression for the macroscopic (homogenized) stiffness KH and the macroscopic
(homogenized) generalized force fH from (4.18):

KH D
T
c

N‡c D fH (4.19)

By applying the boundary condition such that D
T
c

N‡c equals unity on the corner nodes, the macro-
scopic stiffness on the corner DOFs amounts to the generalized force measured on the boundaries,
given by

KH D fH (4.20)

4.3.4 Zoom-in procedure and criterion to trigger zoom-in events

In the previous sections, the homogenization method was presented to obtain the macroscopic stiff-
nesses for the macro subdomains. Therewith the connection method on interfaces of LEM and
FEM subdomains was also discussed. But during the analysis upon the loading increases, how are
macro FEM subdomains upgraded to corresponding LEM subdomains? In this section, we deal with
this transition from low resolution representation by FEM approach to high resolution one by LEM
approach. This is accomplished by the so-called zoom-in procedure.

A key issue of the present multiscale framework is the assumption that a macroscopic description
by FEM approach with homogenized stiffness matrices obtained from the mesoscale LEM descrip-
tion suffices during the linear elastic analysis. It is recalled that there is no homogenized nonlinear
law introduced in the FEM approach, all nonlinearities come from the LEM approach with brittle
elastic parameters. The nonlinear analysis accounted for the LEM approach only occurs in the non-
linear zone by “switching” the certain FEM subdomains to the corresponding LEM subdomains.
Consequently, a criterion for this transition that are linked to the prediction of nonlinearities has to
be adopted.

To this end, we monitor the evolution of an internal variable which is assumed to be represen-
tative for the linear/nonlinear character of each domain. Here, we propose to employ the nonlocal
equivalent strain N" from the nonlocal damage theory (Pijaudier-Cabot and Bažant, 1987) for dic-
tating the nonlinearities of the material in each domain. Its representative value for each domain
is denoted by N".s/. It is computed as the maximum value over the points that correspond to the
integration points when considering each domain as a macro element:

N".s/ D max
n
. N"n/ (4.21)

At a known loading stage, only the domain that has the largest N".s/ and fulfills the condition:

N".s/ � ˛�0 (4.22)

is switched into LEM approach. Here, �0 is adopted as a damage initiation threshold and ˛ a
parameter close to 1 but is always lower than 1, e.g. 0.98, that allows the zoom-in event occurs right
before the damage initiates.

It should be mentioned that there always exists one and only one FEM subdomain having the
largest equivalent strain for both homogeneous and nonhomogeneous loadings at a given stage.
For nonhomogeneous loadings which mean that stress fields of all domains are not equal, it is
obvious that there is only one domain undergoing the largest N".s/. For homogeneous loadings,
the macroscopic stiffness matrices of FEM subdomains are different since they are obtained from
the homogenization scheme with a random distribution of the aggregate structure, which leads to
the different strain field of subdomains.

When more than one LEM domains coexist, the nonlinear LEM solver is only applied for the
domain in which cracks are being propagated whereas the LEM domain that has just been zoomed
in is solved by the linear solver. When the former domain is completely cracked and is zoomed out
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to two FEs by the mean path of the crack (see Section 4.3.5), the nonlinear LEM solver is employed
for the next LEM domain.

It is noted that the proposed zoom-in condition Equation (4.22) is restricted to monotonic load-
ing conditions. For the cyclic loadings, one should define a loading function formulated in term
of the nonlocal equivalent strain and a parameter that stores the maximum value of the nonlocal
equivalent strain reached at each domain to handle the hardening parameter and distinguish among
linear loading, nonlinear loading and linear unloading. The reader is referred to Lloberas-Valls et al.
(2012a) for more details.

4.3.5 Zoom-out procedure and criterion to trigger zoom-out events

When a LEM subdomain is completely cracked, instead of removing it from the system, it would
be better to macroscopically represent the subdomain by a FEM approach in order to maintain the
mass of the structure. This can be accomplished by the so-called zoom-out procedure in which
the transition from high resolution representation by LEM approach to low resolution one by FEM
approach that is solely done by deactivating the LEM approach of the subdomain and reactivating
the corresponding FEM approach. However, we must take into account the discontinuity of the
kinematics due to the crack. Within the assumption that there is only one macrocrack that traverses
the LEM subdomain, the discontinuity due to the crack can be accounted for decomposing the
corresponding FEM subdomain into two FEs after the mean crack path. Nevertheless, to guarantee
the continuity with the crack in the neighboring subdomains, we propose to decompose the FEM
subdomain into two FEs by the path that connects the starting point and the ending point of the crack
in the LEM subdomain (the points A and B in Figure 4.8).

The decomposition of the FEM subdomain can be performed by adding four nodes correspond-
ing to the position of the points A and B of the crack, see Figure 4.8b. The two new resulting FEs
1-6-5-4 and 60-2-3-50 have the stiffness matrix that is computed by discretizing the domains repre-
sented by these two FEs with the fine resolution meshes, and then the stiffness matrix is computed
by the homogenization scheme using the lattice approach. It is worth noting that by this way, the
structure is not planed for a change of the loading direction since the new nodes 5 and 50, 6 and 60

can slide freely on each other. In order to assure the discontinuity due to the crack and at the same
time provide for a change of loading direction inducing crack-closing, a zoom-out procedure to the
macroscopic element represented by XFEM should be used.

(a) (b)

1 2

34

1 2

34
5; 50

6; 60A

B

Figure 4.8 – Zoom-out procedure.

For the zoom-out procedure to be carried out, a criterion for the transition from the mesoscopic
approach by LEM to the macroscopic approach by FEM, that are linked to the prediction of complete
failure of a LEM subdomain, has to be adopted. This is simply accomplished by the fact that the
parameter ˛ controlling the elimination of the lattice elements is greater than a predefined constant
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˛cr , given by
˛min > ˛cr (4.23)

as presented in Section 2.2.4.

4.3.6 General procedure multiscale LEM-FEM coupling for large-scale structures

The proposed multiscale framework allows the solver to deal with different models in an adaptive
manner by the concurrent coupling. The flowchart of the multiscale approach is shown in Fig-
ure 4.9. In the study of the heterogeneous material, a homogeneous bulk is considered with the
equivalent elastic stiffness matrices for the coarse domains. The equivalent elastic stiffness matrices
are retrieved from the numerical homogenization method at each domain. The criterion is adopted
to indicate the linear/nonlinear character of the material in each domain. When nonlinearities oc-
cur in a certain domain, a zoom-in event takes place and the macroscopic continuous approach by
FEM is replaced by the mesoscopic discrete approach by LEM. The nonlinear analysis is only per-
formed on subdomains represented by the LEM approach. When a LEM subdomain is completely
cracked, a zoom-out event carries out and the cracked LEM subdomain is replaced by two new FEs
obtained from a decomposition of the corresponding FEM subdomain. The continuity of displace-
ments among FEM and LEM subdomains (Equations (4.7) and (4.8)) is assured by the so-called
“master/slave” approach (Belytschko et al., 2000). The FEM subdomain is the master whereas the
LEM is the slave. Equations (4.7) and (4.8) can be written in the general form as

uS D
�

J
�

uM (4.24)

in which vector uS collects the displacements (translations and rotations) of the slave node and uM

collects the displacements of the master node;
�

J
�

is the combined matrix of shape function matrix
and rotation matrix for LEM-FEM connection.

The internal forces PM at the master nodes, which include the effect of slave nodes, can be
calculated from the principal of virtual work by imposing the condition that

u
T
M PM D u

T
M

OPM C u
T
S

OPS (4.25)

where OPM and OPS are the internal forces of the master and slave nodes, respectively, considered
unconstrained.

By substituting (4.24) into (4.25), one obtains

PM D OPM C
�

J
�T OPS (4.26)

Since the proposed multiscale approach is based on the domain decomposition of FETI-DP
method, it allows to deal with the large scale structures by parallel computations. The parallel
computing can be designed as One Subdomain per Processor approach. This approach has been
particularly typical of implementations on Distributed Memory (DM) architecture. However, this
kind of implementations requires an increasing number of processors when dealing with an increas-
ing number of subdomains for large scale structures. Alternatively, the parallel implementations can
be affected on the Distributed Shared Memory (DSM) architecture where the simulation can be re-
alized with the number of subdomains independent of the number of processors, see e.g. (Lesoinne
and Pierson, 1998).

4.4 Implementation into SOFA architecture

The purpose of this work is to implement the LEM approach into the open-source software
SOFA and then develop the coupling algorithm with FEM approach for multiscale simulations of
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Figure 4.9 – Flowchart of the proposed multiscale approach by LEM-FEM coupling.
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failure of large structures. One of the reasons why SOFA framework is used in the thesis is that it is
based on the open-source philosophy which allows one’s ability to freely improve/modify/reuse the
existing code-base and implement a new model as a plugin.

4.4.1 What is SOFA?

SOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted
at real-time simulation, with an emphasis on medical simulation. It is mostly intended for the re-
search community to help develop newer algorithms, but can also be used as an efficient prototyping
tool (http://www.sofa-framework.org/home).

SOFA is currently developed by 3 INRIA teams: Shacra, Evasion and Asclepios but the project
also benefited from the help of the CIMIT Sim Group, ETH Zurich and CSIRO.

4.4.2 Philosophy of SOFA

In SOFA, a complex object of a problem of physics can be simulated by decomposing it into com-
ponents. Each component describes one feature of the model, such as state vectors (displacement,
acceleration), force vectors, constraints, integration schemes, and solving processes. The compo-
nents are designed independently and organized as a hierarchical data structure similar to a scene
graphs used in graphic libraries.

One of the innovative concepts of SOFA architecture is the multi-model representation. The
simulated object can be decomposed into multiple partial models if needed. Typically, a physical
object in SOFA can be described using three partial models: a mechanical model with constitu-
tive law, a collision model with contact geometry, and a visual model with detailed geometry and
rendering parameters. Each model can be designed independently of the others. These models are
synchronized during run-time using a generic mechanism called mapping to propagate force and
displacement vectors. The interesting thing is that a combination between mechanical models is
possible through the same mechanism mapping, e.g. coupling of FEM model and LEM model.

Because of the flexibility in the notion of components and the use of scene-graph to organize
and process the simulation, the simulation can be computed on the GPU instead of CPU to exploit
the computational power of modern hardware architecture by simply replacing the solver and the
state vectors (by editing an XML file), all the rest remains unchanged.

4.4.3 Why SOFA?

SOFA is designed within a highly modular efficient framework. It allows to focus on our own
domain of expertise, while re-using other advanced contributions such as computationally efficient
algorithms, multi-threading, or the capability for computations on the modern hardware architecture
such as the GPU, etc. So it is considered as a high-performance C++ library.

Moreover, the code is open-source and the license is LGPL. The new model is built upon SOFA
using the plug-in system. The new plug-in can have an other license than LGPL. Consequently, there
is a considerable freedom to use SOFA to help the development and the sharing of new algorithms
and models.

That are the reasons why SOFA is used. The lattice model has been implemented as a plug-in.
Several constraint algorithms have been developed in addition to adapt the simulation of bound-
ary conditions in mechanical engineering test. With the re-using of FEM model from the SOFA’s
contribution, the coupling with lattice model has been developed.

4.4.4 Implementations

For the LEM-FEM coupling, the beam lattice model is first implemented into SOFA library. Then
two different strategies for coupling lattice elements with finite elements are implemented. The
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3D beam lattice model is successfully implemented into SOFA where some numerical applications
have been shown in Section 2.5. Here we will show a simple simulation using the lattice model
with elastic parameters and compare the output with analytical results in order to demonstrate the
capability of the implemented lattice model, refer to Section 4.4.4.1. The two implemented strategies
for coupling the beam lattice model with finite elements will be shown by two simple examples
presented in Sections 4.4.4.2 and 4.4.4.3.

4.4.4.1 Beam lattice model

The implemented beam lattice model is used here to model a cantilever beam subjected to a force
P in y-direction and/or a bending moment M in xy-plane, see Figure 4.10. The beam has a length
l D 1 m, a circular cross-section with the area A D 2000 mm2, and the Young’s modulus E D
35 GPa.

The cantilever beam is discretized by 10 lattice elements whose length is 0:1 m. Each element
is assigned a cross-sectional Ab which equals to 2000 mm2. Two elastic parameters of the beam
lattice model are Eb D 35 GPa and � D 4�Ib

A2
b

D 1 with Ib the second moment of area being equal

to the second moment of area of the cantilever beam I .

P

l

x

y

M

Figure 4.10 – Cantilever beam.

Figure 4.11a shows the deformed configuration of the cantilever beam subjected to a force P D
!10 kN in y-direction. Each discretized node is attached to a local coordinate system in order to
show the nodal rotations. The deformed configuration of the cantilever beam subjected to a bending
moment M D !10 kNm in xy-plane (z-direction) is shown in Figure 4.11b.
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Figure 4.11 – Deformed configuration of the cantilever beam subjected a force P D !10 kN in y-direction
(a) or a bending momentM D !10 kNm in z-direction (b).

The analytical deflections of the cantilever beam subjected to a force P and a bending moment
M are given by, respectively

�y D !Px2

6EI
.3l ! x/ (4.27)

and

�y D !Mx2

2EI
(4.28)
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The numerical deflection of each node is shown in Figure 4.12 by means of an arrow whose mag-
nitude is equal to the value of the deflection. The nodal deflections are compared with analytical
deflections which are also plotted in Figure 4.12. It is shown that the numerical deflections are
exactly the same as the analytical ones. This means that the implemented lattice model works cor-
rectly.
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Figure 4.12 – Deflection of the cantilever beam subjected a force P D !10 kN in y-direction (a) or a bending
momentM D !10 kNm in z-direction (b).

4.4.4.2 Elementary coupling

A simple example for the coupling between finite elements and lattice elements is performed in order
to show the principle of SOFA and how the two types of elements are tied during the simulation.
The work to be done concerns the coupling of an object described by two hexahedral eight-node FEs
and a beam represented by two lattice elements, as shown in Figure 4.13 in which four nodes of one
FE are fixed in all directions whereas the beam is vertically loaded by imposing the displacement at
an end. The whole system simulates a cantilever beam.
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Figure 4.13 – Schematic representation of coupling between a hexahedral eight-node FE and a beam repre-
sented by two lattice elements.

In SOFA, the simulated objects are described as components. Figure 4.14a shows the two main
components of the simulated cantilever beam. The Node “FEM” is used to store all components
related to the hexahedral FEs and the Node “LEM” stores those related to the lattice elements. The
RegularGridTopology describes the shape of the FEs and all the degrees of freedom of the FEs
are stored in the component MechanicalObject. By the same way, all the degrees of freedom of
the lattice model are stored in another MechanicalObject in the LEM Node. In order to find the
static equilibrium of the system, the solver StaticSolver is added in the Node “Root” which is the
parent of the FEM and LEM Nodes. It is worth noting that the hierarchy is important. The solver
is added in a higher level compared to the LEM and FEM Nodes which means that it is used to
solve the equilibrium of the whole system. The StaticSolver uses an auxiliary component, the
CGLinearSolver, to solve the equations of equilibrium of the system.
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Root

FEM

LEM

Figure 4.14 – Step by step to build the scene graph of the coupling.

So far, only the DOFs of the FEM and LEM are added in the model. The concept of forces
and stiffnesses are handled by components called ForceField in SOFA. As shown in Figure 4.14b,
the HexahedronFEMForceField component is used to describe the behavior of the hexahedral FEs
while the LEMForceField describes the behavior of the lattice elements. Moreover, within the FEM
Node, the component BoxROI is added to captured all the indices of the nodes to be fixed. Then
the component FixedConstraint is used to set to zero the displacements of all the DOFs of the cap-
tured nodes provided by BoxROI. Similarly, the component PartialLinearMovementConstraint

is added within the LEM Node to impose the vertically prescribed displacement to simulate the load
applied to the lattice node at the beam end.

Next, for the valid model, the coupling between the two types of elements FEM and LEM has
to be accomplished. The strategy of coupling is described as follows. The lattice node inside the
FE, the node 13 in Figure 4.13, is classified as another LEM object. It is stored in the Node “con-
nectedLEM” which is considered as the slave of the FEM Node, see Figure 4.14c. The DOFs of
that node is described using another MechanicalObject component. In order to tie that node to the
FE, we implemented into SOFA a component called the LEMBarycentricMapping which is used
to map the displacement field of the FE to the displacement of that node while the force at that node
is transferred back to the FE nodes. Finally, we should describe the link between the FE with an
embedded LEM node 13 stored in the FEM Node and the lattice element 14-15 stored in the LEM
Node by the “external” lattice element 13-14. This is performed by adding the component LEM-

ForceField in the Root Node. Note that, by this coupling strategy, the implemented component
LEMForceField is derived from a PairInteractionForceField component such that it can describe
an “interaction” between two MechanicalObjects. With several “default” components such as the
VisualStyle, the InteractiveCamera, etc., the complete scene graph of the coupling is shown in
Figure 4.15.

The elastic parameters of the two FEs are Young’s modulus E D 25 GPa and Poisson’s ratio
� D 0:2. The beam lattice elements are assigned the values of Young’s modulus and cross-sectional
area being Eb D 35 GPa, Ab D 0:1 m2, respectively.

The initial and deformed configurations of the model provided by SOFA simulation is shown
in Figure 4.16. The simulation shows that the coupling strategy works well. However, a drawback
of this coupling strategy is that one has to distinguish the lattice nodes inside and outside a FE,
called embedded LEM nodes and free LEM nodes described by two different MechanicalObjects,
and from that two types of lattice elements are built. The first type of lattice elements is those
connecting the embedded LEM nodes with the free LEM nodes and the other consists of those
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Figure 4.15 – Scene graph of the coupling.

connecting the free LEM nodes. Therefore, in the case that the lattice elements are generated from
a fine mesh using a component topology, the connectivities have to be changed to adapt to two
different MechanicalObjects. And this makes complicated the coupling procedure. Nevertheless,
this coupling procedure can be easily done in the case that two type of lattice elements are generated
from two meshes with compatible connectivities. But how to produce these two meshes? Rather than
that, another coupling strategy is proposed to adapt the fact that the lattice elements are generated
from only one mesh.

(a) (b)

Figure 4.16 – A hybrid model constituted by two hexahedral FEs and two lattice elements in series: the initial
configuration (a) and the deformed one (b). Note that in SOFA a hexahedral FE is represented by a colored
box whose size is smaller than the size of the FE, this is not at all related to the deformation of the element.

4.4.4.3 Alternative coupling strategy

The work to be done concerns the coupling of a hexahedral FE and a cell of the same size represented
by the lattice model. The system represents the structure under uniaxial tension in which four FE
nodes in the bottom are fixed why the LEM nodes of the top boundary are vertically imposed by the
prescribed displacement, as schematically shown in Figure 4.17.

The scene graph of the coupling is shown in Figure 4.18, in which the Node “FEM-LEM system”
consists of two main Nodes “FEM” and “Free LEM”. Similarly, the DOFs in each Node are stored
in the component MechanicalObjects. Two different components BoxROI are added in each Node

to capture the nodes whose DOFs are fixed and the DOFs to be imposed by the prescribed displace-
ment. The behavior of the FE is described by using the component HexahedronFEMForceField.

The key issue of the coupling strategy, different from the previous strategy, is that the third Node

“LEM” is added, which is the child of both the “FEM” and the “Free LEM” Nodes. This results
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Figure 4.17 – Schematic representation of coupling between a hexahedral FE and a lattice cell of the same
size under uniaxial tension.
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Figure 4.18 – Scene graph of the coupling.
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in the so-called MultiNode. The MultiNode “LEM” consists of a component, the LEMLoader,
that loads the topology of the lattice cell from an input mesh. Again, the DOFs of the lattice cell is
stored in the MechanicalObject and the behavior of the lattice model is described by the component
LEMForceField. The coupling is done via the implemented component LEMMulti2Mapping in
which the displacement of all the LEM DOFs attached to the nodes found on the surface of the FE
are mapped to the displacement field of the FE whereas the displacement of all the remaining LEM
DOFs are mapped to the displacement of the DOFs in “Free LEM” Node. Of course, the forces are
mapped in the inverse order. By this way, it is not necessary to split the lattice elements into two
categories as done in the previous strategy. Therefore, the connectivities of the lattice elements are
directly taken from those of the lattice mesh.

It should be noted that the in-plane lattice elements found on the interface plane between the
FE and the lattice cell are removed from the lattice description. In fact, it is necessary to avoid the
double of stiffness on the coupling interface since if it is not the case, the stiffnesses of the FE and
the lattice elements are both taken into consideration on the interface.

The coupling model in SOFA is shown in Figure 4.19.

Figure 4.19 – The coupling configuration between a hexahedral FE and a LEM cell of the same size in SOFA.
Note again that in SOFA the hexahedral FE is represented by a colored box whose size is smaller than the
size of the FE.

4.4.5 On the complete implementation of the LEM-FEM coupling procedure

The above implementations have been done for the LEM-FEM coupling. However, they are re-
stricted to the elementary level, i.e. it exists only two MechanicalObjects in which one describes
the FEM and the other accounts for the LEM. The implementation for the full multiscale procedure
with the zoom-in, zoom-out techniques, presented previously, has not, however, been performed.
Therewith, the parallel characteristic of the algorithm has not been exploited either. This simply
due to the fact that the exploitation of the multiple parallel resources such as parallel computa-
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tion on GPUs requires a significant programming effort. Furthermore, since the concept of SOFA
is strongly modular, sometimes the flexibility of the implementation of the coupling algorithm is
limited.

Moreover, using a developing software for a general purpose, not all features related to mechan-
ical simulations had been introduced. In addition to the LEM approach, we have developed during
the thesis, three new components implemented in SOFA. The PartialLinearMovementConstraint

and the PartialFixedConstraint are used to give ability to impose a prescribed displacement and fix
the displacement, respectively, only within a given direction. The component PauseAnimationOn-

Event serves to pause the animation of a simulation when, e.g., the complete failure of the lattice
model attains. It all accounts for the time consuming of the implementation.

4.5 Conclusions

The study of the equivalence of the stiffness matrix between a lattice cell and a finite element of
the same size has been performed. It is observed that with the appropriate parameters, a lattice cell
can represent a material with given macroscopic properties such as Young’s modulus and Poisson’s
ratio like a FE does. However in terms of the stiffness, the study shows that the stiffness matrix of
the lattice cell is not exactly equivalent to that of the FE for a reasonable space discretization. An
interesting observation is also provided from the study is that the beam lattice model reproduces a
“closer” stiffness matrix to the stiffness matrix of the FE than the normal-shear spring lattice model.

It all leads to the proposed algorithm for coupling between the beam lattice approach and the
finite element approach, in which the structure is initially modeled by FE approach but the stiffness
matrix of a FE is not constructed by integration over the volume/area of that FE but it is computed
by means of a homogenization process over a lattice cell of same size.

The following conclusions can be drawn on the proposed coupling algorithm between the lattice
model and the finite element approach:

� The LEM-FEM coupling algorithm is proposed within an adaptive manner. This means that
the LEM approach is not present in the zone in which the FPZ is known to occur in advance,
but as the FPZ evolves, a FE is replaced by a lattice cell of same size for the nonlinear analysis
of the material behavior.

� The coupling algorithm is provided for parallel computations.

� The proposed algorithm is a strong coupling. This means that the continuity of the displace-
ment field on the coupling interface is assured by the master/slave algorithm. The translational
and rotational displacements of the lattice nodes on the interface coupling are restrained to the
displacement field and the rotational vector of the skew-symmetric tensor which derived from
the displacement field of the FE, respectively. The stress field at the interface coupling of the
lattice cell is transfered to the neighboring FEs. It does not exist a homogenized nonlinear
behavior of the lattice approach that is introduced in a integration point of a FE like many
works proposed by other authors which are weak couplings.

However, the implementation of the proposed coupling procedure in SOFA framework is still
restricted to the elementary coupling. It requires future works in order to implement the complete
algorithm into SOFA.
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Conclusions and discussions

By presenting the mechanical behavior of concrete-like materials at the beginning of this report, we
highlighted that the behavior of such materials exhibit a complex fracture mechanism under extreme
loading conditions. Indeed, the fracture mechanism is characterized by microcracking occurring
before the peak load is reached. Nearly from the peak, localization of damage occurs in the fracture
process zone with finite size, the microcracks continue to develop and coalesce for the formation
of macrocrack(s). The macrocrack gradually grows which causes the gradual drop in load carrying
capacity, until it gets through the structure and separates the latter into two parts. This complex
fracture mechanism is clearly related to the disordered microstructure of the materials. An overview
of the existing numerical models for modeling the behavior of such materials was stated in Chapter 1.
We showed that continuum-based models which generally neglect the heterogeneity of the materials
are not suitable for characterizing entirely the complex fracture process from initiation, propagation
and coalescence of microcracks to the formation of macrocrack(s). Furthermore, these models do
not always reflect all physical effects observed in experiments through their internal variables, e.g.,
grain decohesion, microcracking and crack bridging observed in concrete. In addition, to remedy
the problem related to mesh sensitivity when dealing with softening materials, an internal length has
to be introduced as done in nonlocal models, used as a localization limiter, to prevent the spurious
localization of damage under mesh refinement. However, as stated, the assessment of the internal
length from the heterogeneity of the material is still a difficult question, which is an obscure issue in
using nonlocal models.

We highlighted that lattice models are very good candidates to model the fracture mechanism
of concrete-like materials. Using the lattice models at the mesoscale, it is no need to introduce
any internal length parameter together with many advantages of the lattice model stated previously
in the report. Instead, the mesotructure of the material can be introduced explicitly. However,
using the lattice models at the mesoscale, especially for large scale three-dimensional structures,
requires tremendous computational efforts due to a vast number of degrees of freedom. Therefore,
a multiscale approach performed by coupling between discrete approach at the mesoscale dealt by a
lattice approach and continuous approach at the macroscale treated by the finite element method is
essential.

The objective of Chapter 2 is to present the lattice model that was used in the thesis. The model
is extremely simple since it only makes use of a linear elastic analysis. The material is represented
as a network of lattice elements. Local constitutive law of elements is elastic brittle. By performing
some test cases, we demonstrated that, when accounting for material heterogeneities by generating
an aggregate structure, a global ductility behavior can be obtained. Moreover, by performing 3D
tensile tests it was shown that fracture is a three-dimensional phenomenon, which leads to the fact
that the attention should be paid when drawing conclusions from the results of two-dimensional
simulations since the global behavior of 2D simulations is more brittle than that of 3D ones.

Two types of lattice elements are implemented in the SOFA framework: normal-shear spring
elements and beam elements. The normal-shear spring lattice model is originally part of our self-
writing code using C++ programing language. The normal-shear spring elements can transfer the
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normal and shear forces. The beam elements can transfer in addition bending moment and torque.
The difference between simulation results when using the normal-shear spring and beam lattice
models are negligible on mode-I of failure. Therefore, in order to gain in computational time, almost
all simulations in the thesis were performed using the normal-shear spring lattice model because we
only focused on mode-I failure of the material. The beam lattice model is used for the coupling
with finite elements for simulations of real structures subjected to mixed mode failure in general
purposes. To better estimate the geometrical heterogeneity due to the random mesh, and thus reduce
the mesh bias on crack propagation which is an inherent feature of lattice models, a new tessellation
is adopted to assign the cross section areas to lattice elements, refer to Section 2.2.3.2.

From the numerical tool, we performed two types of numerical tensile tests: localized damage
tests and distributed damage tests on specimens made of brittle elastic model material with varying
aggregate (inclusion) structure, boundary conditions and specimen size. The fracture process zone
size and the material characteristic length were measured from these tests in order to study the in-
fluence of different parameters that characterize the mesotructure of the material and of the stress
gradient and material rotation (resulting from different boundary conditions and specimen size) on
their values. The assessment of the fraction process size `FPZ is achieved via localized damage tests
while the material characteristic length `c is measured via both localized and distributed damage
tests. The results were presented in Chapter 3. The study pointed out the influences of: the inter-
facial transition zones (ITZs), the fine aggregate particles (matrix heterogeneity), the applied stress
gradient and material rotation, the aggregate size with fixed volume fraction, the aggregate volume
fraction with fixed size, the aggregate size dispersion and the ligament size of the specimen on the
fracture process zone size. The study of the material characteristic length was only concerned with
the size of aggregates placed at fixed positions on the one hand, and placed so that their volume frac-
tion is nearly the same on the other hand. The main observations and conclusions can be discussed
as follows:

� When the ITZ is considered in-between the aggregate and matrix phases (the material is mod-
eled as three-phase material instead of two-phase one when the ITZ is not taken into consid-
eration), not only the value but also the variation of the FPZ size with respect to the aggregate
size is higher than that of the case of two-phase material. So, for better simulating and pre-
dicting fracture in concrete(-like) material, interfacial transition zones have to be taken into
consideration in numerical models.

� When a random field of the local strengths are introduced to the matrix elements to mimic
the effect of fine aggregate particles (since the latter was not explicitly introduced like the
coarse aggregates to reduce computational time), we showed that, again, not only the value
but also the variation of the FPZ size with respect to the aggregate size is higher than that of
the case in which no random field of strengths is introduced. This leads to the conclusion that,
in addition to the coarse aggregates, the fine aggregates need to be introduced in numerical
models in order to better simulate and predict fracture in concrete(-like) material. We suggest
that the fine aggregates should be explicitly introduced like the coarse aggregates if possible
since a limitation of the method of mimicking the effect of the fine aggregates by introducing
a random field of strengths to the matrix phase is that, if too large values of the standard de-
viations of the local strengths of the matrix phase are introduced, the physical meaning of the
mesostructure can be lost because of the fact that the matrix elements can have the generated
values of strengths which are smaller than the corresponding values of ITZ elements.

� Since the numerical simulations required for assessment of the FPZ size take less time than
those for assessment of the characteristic length (only one-type of localized damage tests
needed vs. both types of localized and distributed damage tests needed), many studies were
performed concerning the FPZ size. However, by the studies performed on the influence of
aggregate size with fixed positions and of the aggregate size with fixed volume fraction, we
demonstrated that the characteristic length of the material and the FPZ size have the same
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order of magnitude. Also, the variations of the material characteristic length and of the FPZ
size with respect to the aggregate size have the same tendency (increase with an increase
of aggregate size). Moreover, the standard deviations of the material characteristic length,
obtained from difference positions of aggregates, behave in the same way as that of the FPZ
size. This leads to the logical conclusion that a certain equivalence exists between the FPZ size
and the material characteristic length. For this reason, the conclusions drawn in Section 3.4
for the FPZ size can be extrapolated for the characteristic length of the material.

� It appears that not basically the size, but other parameters that characterize the aggregate
structure of the material such as the volume fraction, the size dispersion, the fabric, the con-
nectivity, the spacial distribution, and the aggregate spacing, strongly affects the size of the
FPZ, and thus the characteristic length of the material. Furthermore, the measured value of
the FPZ size is also dependent on the local stress level and/or on the stress gradient which
may be related to the specimen geometry or the boundary conditions for instance. Therefore,
it is difficult to avoid the ascertainment that the FPZ size is not an intrinsic property of the
material as usually believed. Likely, characterizing the heterogeneity of the material by only
single scalar value called the material characteristic length seems debatable. However, it was
checked that the FPZ size, thus the (conventional) characteristic length, remains in the same
order when the tested system is the same (mesostructure, global geometry and dimensions,
loading conditions. . . ).

� The assessment of the characteristic length of the material is essential for using its value
as the internal length in nonlocal models. However, just like the FPZ size, it is difficult to
avoid structural effects in the measurement of the characteristic length (at least for the current
method used in the study). Moreover, the fact that determining the internal length for nonlocal
models based only on the maximum aggregate size, as usually reported in the literature, does
not deserve to be accepted, according to the author’s opinion.

� Despite the fact that, in our studies the characteristic length and the FPZ size were not mea-
sured upon the course of the fracture process, given the development of cracking process
from our simulations, there is no doubt that the FPZ size, as well as the characteristic length,
evolves during the fracture process, as observed experimentally in the literature by acoustic
emission analyses, for example.

� The fact that dissociating the internal length of the classical nonlocal model into two parts: the
geometric and the structural parts, as in the nonlocal model proposed by Giry et al. (2011), to
take into account the evolution of the FPZ size over time and the structural effect on the FPZ
size, seems interesting. However, for an apparent use of this nonlocal model, the geometric
part of the internal length should be identified. But, so far the method for assessment of
the geometric part of the internal length has not been uncovered. We hopefully suggest that,
for example, the geometric part of the internal length can be measured from a tensile test
performed on a very large-scale specimen so that the structural effect can be imperceptible
from the internal length viewpoint. Or, possibly, the geometric part can be determined from
two tensile tests from which the structural part of the internal length could be revoked.

� It should be noted that, since many simulations are needed in our studies, so to have a rea-
sonable computational time, our studies were performed only on 2D specimens and only five
realizations of aggregate positions are generated for each considered case of the mesostruc-
ture. Therefore, if 3D simulations and more realizations of aggregate positions can be carried
out (for future works), the conclusions drawn in Chapter 3 can be more or less robust. This
is simply because the fracture process is a three-dimensional phenomenon, as shown in Sec-
tion 2.5.4.
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� It is however worth stressing that we only did focus on the geometric influence of the
mesotructure of the material on the FPZ size and on the material characteristic length. The me-
chanical properties, especially, the changes of ratios of the different stiffnesses and strengths
of the material phases have been set aside. This should be planed for future works.

Until the geometric part of the internal length is reliably determined for using as an internal
variable of nonlocal models, we suggest using the lattice model with an explicit description of the
mesostructure of the material for better simulating and predicting fracture in concrete(-like) material.
However, as stated, simulations of a complete large-scale structure using the lattice model at the
mesoscale requires tremendous computation and storage efforts due to a vast number of degrees of
freedom. In Chapter 4, we presented the original algorithm for coupling the beam lattice model with
finite elements within a multiscale framework to reduce the computational effort. By analyzing the
equivalence of the stiffness matrix between a lattice cell and a finite element of the same size, we
demonstrated that a lattice cell can represent a material with given macroscopic properties such as
Young’s modulus and Poisson’s ratio like a FE does. However in terms of stiffness, it was seen that
the stiffness matrix of the lattice cell is not exactly equivalent to that of the FE. We also showed the
beam lattice model reproduces a more accurate stiffness matrix compared to the stiffness matrix of
the FE of same size than the normal-shear spring lattice model. Therefore, we decided to couple
the beam lattice model with finite elements. Let us summarize the coupling strategy as follows.
First, a structure is modeled only with elastic finite elements. However the stiffness matrix of a FE
is not constructed by integration over the volume/area of that FE but it is computed by means of a
homogenization process over a lattice cell of same size. As soon as somewhere in the structure, a
certain (to be defined) maximum strain level is reached, the finite element represented that part is
substituted by a beam lattice cell of same size. Subsequently, fracturing takes place in that lattice
cell by performing elastic analysis on the lattice cell. The global nonlinear behavior of the structure
can be obtained. The continuity of the displacement field on the coupling interface is assured by
the master/slave algorithm. The translational and rotational displacements of the lattice nodes on
the interface coupling are restrained to the displacement field and the rotational vector of the skew-
symmetric tensor which derived from the displacement field of the FE, respectively. The stress field
at the interface coupling of the lattice cell is transfered to the neighboring FEs. If in the meantime,
the strain state of another finite element reaches the maximum strain, this element is replaced by a
lattice cell of same size. The continuity of the displacement between two adjacent lattice cells is also
assured. When a lattice cell is completely cracked, it is removed again and two half finite elements
are replaced by the zoom-out technique.

Note that the coupling is strong. Nonlinearities of structures come from the lattice approach.
It does not exist a homogenized nonlinear behavior of the lattice approach that is introduced in a
integration point of a FE like many works proposed by other authors, which are weak couplings.
Moreover, the coupling algorithm is provided for parallel computations.

For the numerical implementation of the algorithm into SOFA framework, our works have been
accomplished for elementary coupling, i.e., only two objects (one represented by finite elements and
other represented by lattice cells) are coupled. Two strategies of coupling were implemented into
SOFA, as presented in Chapter 4. The full coupling algorithm with zoom-in, zoom-out techniques,
criteria that allow the zoom-in and zoom-out events occur, and parallel computation scheme have
not been implemented yet. Future works on such implementation are required.

Perspectives

Before going into more complex applications on modeling of large-scale structures made of
concrete-like materials, using whether nonlocal models or a multiscale approach via LEM-FEM
coupling, different works to do, in our view, in order to better simulate and predict fracture process
in such materials, are:
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� Studying the influence of the mesostructure on the FPZ size and the characteristic length of
the material by 3D simulations using the lattice model. From that, one should identify/extract
the “geometric” part from the characteristic length of the material for using its value as the
internal length in nonlocal models.

� Analyzing the effect of the mechanical properties, especially the ratios of the different stiff-
nesses and strengths of the material phases, on the resulting FPZ size and material character-
istic length.

� Implementing a softening constitutive law for the matrix phase (e.g. a bilinear law with a
softening branch) while the behavior of the aggregate and ITZ phases can be assumed linear
elastic, in order to get closer to a global behavior of concrete in terms of ductility. From that,
studying the influence of softening parameter(s) on the FPZ size and on the characteristic
length of the material.

� Comparing with experimental tests in order to validate the identified geometric part of the
characteristic length.

� Implementing the full LEM-FEM coupling algorithm with zoom-in, zoom-out techniques in
order to deal with large-scale structures.

� Further, if the tool based on LEM-FEM coupling is available, studying the statistical size
effect performed by multiscale 3D simulations in order to provide insight into the origin and
nature of size effect of quasi-brittle materials observed in experiments.
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Appendix A

Continuum-based models

A.1 Discontinuous models

As the name implies, in discontinuous models, the displacement field exhibits a sharp jump due to
an apparition of a crack that could be modeled by a numerical tool.

For quasi-brittle materials, the fracture behavior is greatly influenced by the Fracture Process
Zone (FPZ) with a finite size in front of a crack tip. FPZ is defined as the zone in which damage oc-
curs and causes the softening behavior of the material. The linear elastic fracture mechanics (LEFM)
fails to describe the behavior of quasi-brittle materials because it cannot account for the PFZ and
assumes that the stress concentration only occurs at a point (the crack tip) leading to a brittle failure.
In other words, the LEFM is only applicable when the FPZ size is small compared to crack size and
specimen size (Bažant and Planas, 1998). Based on the work of Barenblatt (1959) who assumed that
a small zone near the crack ends where cohesive forces act on the faces of the crack, Hillerborg et al.
(1976) proposed a cohesive crack model for concrete. As shown in Figure A.1a, the model includes
a softening process zone through a fictitious (cohesive) crack ahead of the initial (pre-existing) crack
such that there is no stress concentration at the initial crack tip. On the faces of the fictitious crack,
cohesive forces act as closing forces that vary from 0 at the initial crack tip to the value of the tensile
strength of the material ft at the tip of the fictitious crack. In other words, the model includes a

Figure A.1 – Cohesive crack model of Hillerborg et al. (1976) (a) and cohesive law (b).

cohesive law (also called tension-separation law) that relates the crack opening w to the cohesive
stress �c , see Figure A.1b

�c D g.w;ˇ/ (A.1)

where ˇ represents some internal variables characterizing cracking phenomenon. It is noted that,
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in the cohesive crack model, the energy produced by the applied load is assumed to be completely
balanced by the cohesive stress. Hillerborg et al. (1976) introduced the fracture energy GF that is
defined as the area under the cohesive law’s curve

GF D
Z wc

0

�c.w/ dw (A.2)

where wc is the critical crack opening. Together with tensile strength ft , GF is also considered as a
material property. They are determined by experimental tests, see e.g., (Hillerborg, 1985) or (Shah
and Carpinteri, 1991).

From a numerical viewpoint, various shapes of the cohesive laws have been used to approximate
the fracture energy GF including linear (Hillerborg et al., 1976), bilinear (Roesler et al., 2007),
trilinear (Liaw et al., 1990), exponential (Gopalaratnam and Shah, 1985) or power (Foote et al.,
1986) curves. Reviews can be found in Murthy et al. (2009) or in Zhao et al. (2010). It should be
noted that, in comparison with a cohesive law, a separate criterion for crack growth is needed when
using cohesive crack models because the former does not predict a damage initiation or propagation
at all.

When using cohesive crack models in the FEM framework, two constitutive relations are needed
to be implemented to describe the behavior of a solid, namely, the standard cohesive equation (1.8c)
for the bulk material and the cohesive law (A.1) for the material in the cohesive zone. One of the
challenges in using cohesive crack models is how to deal with displacement discontinuities. Var-
ious techniques have been used in the literature such as inserting interface elements (Carpinteri,
1989; Ortiz and Pandolfi, 1999; Tijssens et al., 2000), using elements with embedded disconti-

nuities (Oliver, 1996; Wells and Sluys, 2000; Linder and Armero, 2007) or employing adaptive
remeshing techniques (Bouchard et al., 2000, 2003). However, inserting interface elements into
inter-elements prior to simulations requires that the crack path is known a priori. Remeshing tech-
niques are required when the crack path is not known in advance. This is expensive in term of the
computational time. Embedding discontinuities into an element level provides a way to propagate
intraelement cracks and has an advantage that the method can be directly implemented in the exist-
ing FEM code. Nevertheless, some disadvantages of these techniques were pointed out in Jirásek
(2000) such as the problem of reflecting the kinematics of a completely open crack or the problem
of loss of well-posedness of the boundary value problem (de Borst et al., 1993).

Nowadays, the extended finite element method (XFEM) (Moës et al., 1999) that exploits the
partition of unity (PU) of finite element shape functions (Melenk and Babuška, 1996) and allows
local enrichments on the element level by defining additional unknowns and an enrichment function
is widely used to model displacement discontinuities. Modelings of cohesive cracks using XFEM
are found in Wells and Sluys (2001), Moës and Belytschko (2002), and Cox (2009). However,
implementing XFEM in the existing FEM code is not straightforward and requires an important
effort of programing. Computer implementations of XFEM are presented in Sukumar and Prévost
(2003), Bordas et al. (2007), Giner et al. (2009), and Shi et al. (2010). An overview of XFEM and
its applications can be found in Fries and Belytschko (2010).

A.2 Continuous models

The approach using continuous models considers that the displacement filed is continuous and the
cracking description consists of introducing a softening behavior between stress and strain in a
continuous medium.

A.2.1 Smeared crack models

Instead of directly modeling a crack by a geometric discontinuity, Rashid (1968) introduced a
smeared crack model based on the concept of replacing a crack by a continuous medium with al-
tered physical properties. This means that when the major principal tensile stress exceeds the tensile
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strength of the material, the isotropic stress-strain relation is replaced by an orthotropic law with
n; s-axes the axes of orthotropy (see Figure A.2) expressed in plane stress condition as (Rashid,
1968)

Figure A.2 – Orthotropy axes aligned with the crack.
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where n is the direction normal to the crack and s is the direction tangential to the crack. This
concept has an advantage that it is simple to implement in a FEM code because one can avoid
the problems coming from changes of mesh topology. However, the concept of Rashid (1968)
where the normal and shear stiffnesses were set to zero upon crack initiation results in premature
convergence difficulties, unrealistic crack patterns and brittle failures. Many enhancements have
been developed to reproduce the experimental observed characteristic behavior of concrete. Cope
et al. (1980) introduced the so-called shear retention factor ˇ to reduce the numerical difficulties
and improve the physical reality of crack patterns. Moreover, concrete is not a perfectly brittle
material in the Griffith sense but shows some residual load-carrying capacity after reaching the peak
load observed in displacement control experiments. In the similar way of using the shear retention
factor, a normal reduction factor � was inserted in the secant orthotropic stiffness matrix. Finally,
the secant stiffness matrix is defined as

Ds
ns D

2

4

�E 0 0

0 E 0

0 0 ˇG

3

5 : (A.5)

The local relation (A.3) is transformed into those in the global x; y-coordinate system via the
standard transformation matrix T as

�xy D TT .�/Ds
nsT .�/"xy (A.6)

with �ns D T .�/�xy and "ns D T .�/"xy ; � is the angle from x-axis to the n-axis. If � is fixed
upon crack initiation, the approach is known as fixed smeared crack model whereas if � changes
continuously to keep the direction of the crack orthogonal to the direction of the major principal
stress, the rotating smeared crack model is obtained (Rashid, 1968).

The smeared crack models discussed above are based on total strain concepts leading to the
situation where cracking and other nonlinear phenomena such as creep, shrinkage, thermal effects
are not combined properly. The non-orthogonal crack model was proposed by de Borst and Nauta
(1985) and de Borst (1987) that based on the decomposition of the total strain into two parts –
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one corresponds to the deformation of the uncracked material, and the other is the contribution of
cracking. This reads

" D "e C "c (A.7)

in which the crack strain "c can be decomposed further so that

"c D "c
1 C "c

2 C : : : (A.8)

which allows to multiple cracks develop such that "c
1 owing to the primary crack, "c

2 owing to the
secondary crack and so on. It is noted that each crack is fixed upon its initiation and this results in
the so-called multiple fixed smeared crack model. A general classification of smeared crack models
is presented in Weihe et al. (1998).

A.2.2 Crack band model

The above smeared crack models, when implemented in a FEM code, suffer from the mesh sensitiv-
ity i.e., the crack propagation is dependent on the mesh refinement (Crisfield, 1982). To remedy this
problem, the concept of fracture energy of Hillerborg et al. (1976) has been proposed and consid-
ered as a material property. Adapting this concept of energy release upon crack propagation, Bažant
and Oh (1983) introduced the crack band model (CBM) in which the fracture energy introduced by
Hillerborg is smeared out over the width wb of the area in which the crack localizes (the FPZ), see
Figure A.3. For simplicity, consider a uniaxial situation. The constitutive law in the crack band is

Figure A.3 – Schematic representation of the CBM of Bažant and Oh (1983).

described in the general form
� D f ."/ (A.9)

in which the total strain is decomposed into an elastic part and a fracture (inelastic) part as

" D "e C "f (A.10)

The fracture strain in turn can be derived from the traction-separation law of a discrete cohesive
crack where the cracking opening w is smeared over a band width wb

"f D w

wb

D g!1.�c/

wb

(A.11)

in which g!1 is the inverse function of the traction-separation law (A.1). Combining (A.10)
and (A.11) gives an inverse stress-strain relation in the crack band as (see Figure A.4)

" D "e C "f D �

E
C g!1.�c/

wb

(A.12)

We refer to Bažant and Oh (1983) for more details.
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Figure A.4 – Constitutive diagram of the CBM derived from a traction-separation law.

The energy dissipates upon crack propagation is given by

GF D 1

2

�

1

E
C 1

Et

�

f 2
t wb (A.13)

where Et stands for the tangent softening modulus of the material. When the CBM is implemented
in a FEM code, it exhibits the mesh sensitivity as shown in Bažant and Cedolin (1983): the dissi-
pated energy decreases with a decrease in size of the finite elements with an observation that the
localization of deformation occurs only in a single finite element. This causes crack localization
in a band of width zero in the extreme case of elements with vanishing size, thus yielding a null
dissipated energy ( lim

wb!0
GF D 0). This spurious mesh sensitivity is only solved by adjusting the

dependence of the tangent softening modulus on the finite element size h as

Et D
�

2GF

f 2
t h

! 1

E

�!1

: (A.14)

The reader is referred to Bažant and Oh (1983) for further discussions.
So far, the above models have been used for simple applications under simple boundary condi-

tions. For applications in three dimensions under complex boundary conditions, they are not suitable
because, for example, the CBM does not take into consideration the third dimension (the deep) of
the FPZ. The progressive deterioration of the material can be described by a more formal treatment
that considers the softening behavior of the material coming from the degradation of the material
stiffness. This kind of treatment is referred to damage models.

A.2.3 Anisotropic damage models

The above isotropic damage models are based on the assumption that the material stiffness degra-
dation is isotropic, i.e., stiffnesses corresponding to different directions decrease proportionally,
independently of the direction of the loading. However, in most situations, specially in compression
and shear problems or in analysis of reinforced concrete problems, damage is not isotropic but has
preferential directions. To take into account the anisotropy induced by damage, Dragon et al. (1994)
and Halm and Dragon (1996) proposed an anisotropic damage model by mesocrack growth of brittle
materials and applied for simulation of the behavior of Fontainebleau sandstone. Later, many de-
velopments have been taken place accounting for induced anisotropy, dilatancy, etc., of quasi-brittle
materials that one can cite here the work of Desmorat et al. (2007) who proposed an anisotropic
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damage model for concrete. In this model, anisotropic damage is represented by a tensorial ther-
modynamics variable D (Chaboche, 1978; Chow and Wang, 1987; Lemaitre et al., 2000), a second
order tensor, so that the strain tensor " is related to the effective stress tensor Q� by

" D 1C �

E
Q� ! �

E
tr Q�1 (A.15)

where the symmetric effective stress tensor is defined as

Q� D .H� DH/
D C 1

3

�

htr � i
1 ! tr D

! h! tr � i
�

1 (A.16)

with .�/D D .�/ ! 1
3

tr.�/1 the deviatoric part of �, 1 the identity tensor, H D .1 ! D/!1=2 the
effective damage tensor. This effective stress-strain relation is again complemented by a damage
loading function f described by Equation (1.43) in which the scalar history variable � reads
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with �0 the damage threshold, a and A two damage parameters determine the damage evolution
such that
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PQ" (A.18)

where h"iC denotes the positive part (in terms of principal components) of the strain tensor. It is
noted that a single set of damage parameters A and a is sufficient and valid for both tensile or com-
pressive loading. The reader is referred to Fichant et al. (1999), Dragon et al. (2000), Lemaitre et al.
(2000), and de Borst (2002) and references therein for more details on anisotropic damage mod-
els. Though anisotropic damage models can better describe the behavior of concrete compared to
isotropic damage models since they induce damage anisotropy that is responsible for the dissymme-
try tension/compression. However, this type of models is still complex, not easy to implement and
the computational efficiency has not yet been proven for structural applications (of course, compared
to isotropic damage models).

When the above damage models are implemented in the FEM code, they suffer, however, from
the spurious mesh sensitivity in the postpeak regime, which yields nonobjective results with regard
to the choice of the mesh, see (Murakami and Liu, 1996). This nonphysical response is, math-
ematically, caused by localization instabilities due to loss of ellipticity of the partial differential
governing equations and - more importantly - singularity of damage rate at the crack tip (Peerlings
et al., 2002). It is noted that the mesh sensitivity is not unique for damage models, but also occurs
in softening plasticity and other continuous representations of material degeneration that based on
the local formulation, see e.g., (Pietruszczak and Mróz, 1981; Bažant et al., 1984). In the context of
damage models, to overcome the mesh sensitivity problems, nonlocal continuum approach has been
proposed.
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Résumé étendu de la thèse en français

Introduction

Contexte et objectif

La motivation principale est de développer un modèle numérique qui n’introduit pas de longueur
interne dans la loi de comportement du matériau et on peut affranchir ce paramètre en introduisant
explicitement des agrégats dans la description géométrique. En outre, grâce à ce modèle, une étude
de l’influence de la microstructure du matériau sur ses comportements à la fois pré-pic et régimes de
post-pic peut être considérée. Ensuite, une longueur interne nécessaire pour les modèles nonlocaux
est tentée d’être extrait à partir de la microstructure du matériau ou du moins une meilleure compré-
hension des éléments clés susceptibles d’influer sur la longueur interne peut être fournie à partir de
cette étude.

Nous nous intéressons en particulier dans les modèles de lattice qui sont devenus des outils per-
tinents pour l’étude de la rupture des matériaux hétérogènes. En fait, l’approche de lattice est très ap-
propriée pour des simulations de processus de rupture. D’abord, parce que le champ de déplacement
discontinu est bien capturé grâce à la caractère discrète intrinsèque de ces modèles. Deuxièmement,
en utilisant l’approche de lattice avec l’introduction de l’hétérogénéité du matériau en générant les
constituants du matériau, la propagation des fissures et l’ouverture des fissures sont produits expli-
citement, qui sont un outil direct dans les analyses de la durabilité des structures en béton au lieu de
les estimer à partir d’une approche continue. En outre, l’approche de lattice fournit un aperçu direct
de l’origine et de la nature du comportement non linéaire du matériau et peut également refléter
les effets physiques observés dans des expériences telles que la décohésion du grain, microfissures
et le pontage des fissures observées dans le béton. Cependant, des simulations avec le modèle du
lattice à la méso-échelle exigent les résolutions fines du maillage discrétisé. Pour les structures à
grande échelle, ils conduisent donc à un grand nombre de degrés de liberté, en particulier pour les
analyses en trois dimensions. Par conséquent, l’analyse de grandes structures seulement par des mo-
dèles de lattice à la méso-échelle n’est pas possible. Ainsi, il semble qu’une combinaison appropriée
de l’approche discrète à la méso-échelle représentée par l’approche de lattice et l’approche continue
à l’échelle macroscopique traitée par la méthode des éléments finis (MEF), qui se traduit par une
approche multi-échelle, est essentielle.

L’objectif de la recherche présentée dans cette thèse est de développer un outil numérique basée
sur les modèles de lattice qui permet de simuler le processus de rupture des matériaux hétérogènes
quasi-fragiles. Basé sur cet outil, une étude de l’origine mésoscopique de la taille de la process zone
(FPZ) et la longueur caractéristique du matériau est effectuée dans le but de trouver une corrélation
entre la mésostructure du matériau et la longueur interne utilisée dans les modèles nonlocaux ou
simplement pour préciser le rôle de la mesotructure sur la taille de la FPZ. En raison de la nature
localisée du processus de rupture dans le régime adoucissant, la taille de l’échantillon et des condi-
tions aux limites doivent avoir un effet significatif sur le processus de rupture. Leur influence peut
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être analysée utilisant cet outil numérique. Et à long terme, tel outil numérique doit être capable
de modéliser la rupture des grandes structures en matériaux quasi-fragiles en génie civil via une
approche numérique multi-échelle.

Cadre et plan de la thèse

La recherche présentée dans cette thèse concerne la modélisation des matériaux quasi-fragiles en
insistant sur le béton, soumis à des sollicitations mécaniques. L’étude est limitée aux problèmes de
rupture sous mode I survenant aux petites déformations dans des conditions de chargement quasi-
statique. La mécanique des milieux continus est supposée tenir à l’échelle macroscopique s’il y a
plus d’une échelle de longueur impliqués dans le modèle. Quand il y a une seule échelle impliqué
dans le modèle, le modèle de lattice discret est utilisé à l’échelle mésoscopique pour mieux capturer
les mécanismes de rupture à l’échelle matérielle, et la mécanique des milieux continus n’est plus
supposée tenir. Le terme « multi-échelle » doit être compris comme plusieurs (plus d’un) échelles
de longueur qui sont inclues dans le même système.

Le manuscrit se compose de quatre chapitres. Chapitre 1 décrit brièvement ce que l’on sait
actuellement sur le comportement, en particulier lié à la fissuration des matériaux quasi-fragiles en
insistant sur le béton. Une vue d’ensemble de l’état de l’art des modèles numériques traitant de ces
matériaux est donnée. Les pathologies de chaque modèle sont signalées, qui conduisent aux objectifs
de la thèse.

Chapitre 2 présente le modèle de lattice qui est utilisé pour simuler la rupture des matériaux
quasi-fragiles comme le béton. La formulation et l’implantation du modèle seront présentées. La
procédure d’identification des paramètres du modèle est ensuite examinée avant de valider le modèle
par quelques essais.

Dans Chapitre 3, l’influence de la microstructure du matériau sur la longueur caractéristique
du matériau et de la taille de la FPZ est analysée en utilisant le modèle de lattice avec une des-
cription géométrique explicite des agrégats. L’étude de l’influence de la taille de l’échantillon et
des conditions aux limites qui résultent en différent gradient de contrainte sur la taille de la FPZ
est aussi précisée. Ces études fournissent des recommandations/avertissements lors de l’extraction
d’une longueur interne nécessaire pour les modèles d’endommagement nonlocaux à partir de la
microstructure du matériau.

Pour simuler la rupture des structures à grande taille en génie civil, Chapitre 4 présente une
procédure de couplage entre le modèle de lattice et les éléments finis dans une approche multi-
échelle avec des calculs en parallèle.

Enfin, la thèse se termine en résumant les principaux enjeux du travail présentés dans ce rapport
puis elle affichera des recommandations et des perspectives pour la recherche au futur.
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Chapitre 1
Fissuration des matériaux quasi-fragiles : l’état de l’art

Aujourd’hui, les matériaux quasi-fragiles tels que la céramique, les roches ou en particulier le béton
sont largement utilisés dans l’industrie ou dans le génie civil. La fissuration du béton et son méca-
nisme jouent un rôle très important dans le comportement et la durabilité des structures en béton. La
modélisation est un outil indispensable pour la conception des structures en béton, car il fournit une
prédiction du comportement des structures. Toutefois, la précision de la prédiction dépend surtout de
la fiabilité des modèles décrivant les comportement des matériaux. Par conséquent, les modèles de
matériaux doivent être dérivés à partir d’une mesure expérimentale du comportement du matériau.

1.1 Comportement mécanique des matériaux quasi-fragiles hétérogènes

Matériaux quasi-fragiles, tels que le béton, présentent un mécanisme de fracture complexe impli-
quant des microfissures et macrofissures sous des charges extrêmes. Ce mécanisme de fracture
complexe est clairement lié à leur microstructure hétérogène. Le béton présente une structure hé-
térogène du matériau à un certain niveau d’observation. Variant de millimètres à nanomètres, sa
structure contient des différents constituants aléatoires, dans lesquels chaque constituant peut être
considéré comme un nouveau matériau composite lorsqu’il est vu à l’échelle de longueur inférieure
(voir Figure B.1).

(a) Béton [� mm]. (b) Mortier [� 10!1 mm].

(c) Pâte de ciment [� �m]. (d) Gel C-S-H [� nm].

FIGURE B.1 – La structure du béton à différentes échelles de longueur. Basé sur (Garboczi and Bentz, 1995).

Pour le béton ordinaire, le gravier, la pierre concassée et le sable sont des agrégats primaires
utilisés. Cela dépend de chaque type de béton, mais en général, les agrégats représentent 60-80%
du volume de béton. Ils peuvent être divisés en deux catégories distinctes, fin et grossier. Les fins
constituent la plupart des particules passant à travers un tamis de 4; 75 mm. Les plus gros occupent
environ 40-50% du volume du béton. Graviers constituent la majorité des agrégats grossiers utilisés
dans le béton tandis que la pierre concassée constitue l’essentiel du reste (Portland Cement Associa-
tion, 2013). La forme des particules d’agrégats dépend du type d’agrégats. En général, les graviers
ont une forme arrondie alors que les pierres concassées ont une forme angulaire (Wang et al., 1999).
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En pratique, pour étudier l’influence des constituants sur les propriétés macroscopiques et égale-
ment d’avoir un aperçu sur l’origine et la nature du comportement non linéaire, le béton est souvent
considéré à l’échelle mésoscopique (échelle millimétrique) où trois composants principales sont
séparés : (i) gros granulats, (ii) homogène matrice de mortier avec des fins granulats qui y sont
dissous, et (iii) la zone de transition interfaciale (ITZ) entre eux . Les pores au sein de la matrice est
généralement ignorés à cette échelle de longueur. La ITZ est d’environ 20-100�m d’épaisseur (Liao
et al., 2004). La résistance expérimentale de l’ITZ est d’environ 33% to 67% de la résistance à la
traction de la matrice (Hsu and Slate, 1963). Cette dernière est à son tour d’environ 30% to 50%
de la résistance à la traction des agrégats (Alexander et al., 1968; Husem, 2003). En outre, pour le
béton de poids normal, les agrégats sont environ deux fois à trois fois plus rigide que la matrice
de mortier. Ces ratios ont été utilisés pour la modélisation de comportements du béton à l’échelle
mésoscopique, voir, e.g., Schlangen and Garboczi (1997), Sagar and Prasad (2009), and Grassl et al.
(2012).

Le comportement mécanique du béton, sous une charge mécanique extérieure, se caractérise
d’abord par un stade quasi-élastique, ce qui signifie que le matériau revient à sa configuration d’ori-
gine si déchargé. Puis, au fur et à mesure que les charges augmentent, les microfissures apparaissent
avant le pic de contrainte est atteinte. Les microfissures fusionnent également pour former la (les)
macrofissure(s). Cette macrofissure va croître et se propager jusqu’à la rupture complète. Paral-
lèlement à la croissance de fissures, le béton montre une diminution progressive de leur capacité
portante lorsqu’il est déformé au-delà d’une certaine limite, voir Figure B.2. Par conséquent, le bé-
ton est appelé matériau « adoucissant ». Le comportement adoucissant du béton est observée à la
fois sous compression et traction (Bažant, 1976; van Mier, 1984; Torrenti et al., 1993; Markeset
and Hillerborg, 1995; Jansen and Shah, 1997). La taille des spécimens et les conditions aux limites

FIGURE B.2 – Comportement du béton sous sollicitations axiales : traction (a) (Terrien, 1980) et compres-
sion (b) (Geel and Eindhoven, 1998).

ont des effets importants sur le comportement adoucissant du béton. Figure B.2b montre que, pour
différentes tailles des échantillons, avant le pic, le comportement contrainte-déformation presque
identiques sont obtenus alors que dans le régime adoucissant, les échantillons de tailles différentes
se traduisent par différentes courbes adoucissantes. Plus de discussions sur les dépendances de la
taille et des conditions aux limites peuvent être trouvées, e.g., dans Hordijk (1991) and van Mier
et al. (1996).

Dans des conditions de chargement uniaxial, la localisation de la déformation se produit à partir
du pic. Sous tension, la déformation se localise dans une bande étroite de taille finie, qui est appelé
la localisation de mode I. En compression multiaxiale (à faible confinement i.e. en dessous de la
transition fragile- ductile), la localisation se manifeste le long de bandes de cisaillement, ce qui est
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appelée la localisation de mode II. En outre, en compression uniaxiale, une bande de cisaillement
peut être trouvée si l’échantillon est très courte (van Mier, 1984; Desrues and Viggiani, 2004). En
dehors de la zone de localisation, le matériau présente un déchargement élastique. La macrofissure
se développe dans la zone de localisation et croît progressivement à travers l’échantillon, ce qui
provoque la chute progressive de la capacité portante, jusqu’à ce que la séparation complète. Autre-
ment, la macrofissure ne se développe pas de façon continue d’un côté à l’autre de l’échantillon, elle
peut être formée à partir des mécanismes de pontage et de branchement. Ou à l’inverse, la macro-
fissure peut se développer à partir d’un côté, et à un moment il pourrait alors se bifurquer et puis se
coalescer pour atteindre l’autre côté de l’échantillon.

La rupture des structures en matériaux quasi-fragiles présente un effet d’échelle, i.e. la résis-
tance nominale et énergie nominale de rupture de ces structures dépendent fortement de leur taille.
L’analyse de l’effet d’échelle est d’intérêt parce que souvent le comportement des structures réelles
est estimé à partir des essais de structures de taille petite au laboratoire.

Diverses théories ont été développées et proposées pour expliquer l’effet d’échelle. Weibull
(1939) est la première personne, qui a tenté d’expliquer l’effet d’échelle sur la résistance du matériau
basée sur la théorie statistique. En fait, il a suggéré que plus la structure est large plus la probabilité
de rencontrer dans son volume un élément matériel avec une faible résistance qui peut conduire à
une rupture complète. Cette approche, la théorie de Weibull, est également connue comme la théorie
du maillon faible.

Compte tenu de la redistribution de contrainte et la restitution de l’énergie en raison de la crois-
sance des micro- et macro-fissures, Bažant (1984) a proposé une loi de l’effet d’échelle (SEL),
à savoir, la loi de l’effet d’échelle énergétique déterministe. Une autre explication pour les effets
d’échelle basée sur la géométrie fractale des les surfaces de rupture (à l’état final) a été proposée
par Carpinteri and Ferro (1994) and Carpinteri et al. (1995). Ils ont supposé une multifractalité pour
la microstructure endommagée du matériau et ont proposé la loi d’échelle multifractale (MFSL). La
Figure B.3 montre les trois précédentes théories des effets d’échelle avec la gamme de la majorité
des données expérimentales (jusqu’à présent !). Le domaine expérimental est petit par rapport aux
structures à échelle réelle. D’autre part, ces théories sont toutes phénoménologiques. Soit la géomé-
trie structurale, rôle du développement des microfissures soit la rugosité de la fissure ne peut pas
être prise en considération par ces approches. Il a été largement reconnu que l’effet d’échelle semble
dépendre non seulement de la microstructure du matériau, e.g., la forme ou la densité des agrégats,
mais aussi sur des conditions aux limites i.e. les effets structuraux. Par conséquent, il semble que
la modélisation numérique est intéressante lorsqu’on traite des structures à grande échelle dans les
deux cas : (i) soit modéliser directement des structures à grande échelle pour obtenir la résistance
nominale avec des lois de comportement représentant l’effet d’échelle, soit (ii) modéliser seulement
des structures à petite échelle, mais les résultats numériques doivent reproduire des effets d’échelle
fiables pour l’extrapolation à des structures à grande échelle.

1.2 Modélisation des comportements macroscopiques des matériaux quasi-fragiles

Pour modéliser la rupture des matériaux quasi-fragiles, la méthode des éléments fins (MEF) est un
outil qui est généralement utilisé. La MEF décrit le matériau comme un milieu continu et la non-
linéarité est implantée à l’aide des comportements adoucissants mesurés.

1.2.1 Modèles d’endommagement isotropes

Sous l’hypothèse que le coefficient de Poisson reste constant tout au long de l’évolution de l’endom-
magement, un matériau adoucissant peut être décrite par un modèle d’endommagement isotrope qui
spécifie la relation contrainte-déformation en (Lemaître, 1996)

� D .1 ! d/C W " (B.1)
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FIGURE B.3 – Représentation des lois de l’effet d’échelle.

avec d la variable scalaire d’endommagement et C le tenseur de rigidité élastique du quatrième
ordre. La variable d’endommagement se développe à partir de 0 (matériau intact) à 1 (matériau
complètement endommagé) selon une loi d’évolution de l’endommagement telle que

d D d.�/ (B.2)

dans lequel � est la variable d’historique qui représente la plus grande déformation jamais atteinte
lors de l’histoire de chargement. La variable d’histoire � est définie par une surface de charge f

f . Q"; �/ D Q" ! � (B.3)

avec Q" la fonction scalaire du tenseur de déformation ". La surface de charge f définit une surface
élastique, i.e., l’ensemble des états pour lesquels les endommagements n’évoluent pas. L’endomma-
gement n’augmente que lorsque le seuil actuel de déformation (la plus grande déformation actuelle)
� est dépassée, i.e., l’endommagement ne change pas au cours d’une étape de déchargement ou un
stade de chargement élastique. Cela se traduit mathématiquement par la condition de Kuhn-Tucker :

f � 0; P� � 0; P�f D 0 (B.4)

Différents modèles d’endommagement se distinguent en spécifiant différentes lois d’évolution
d’endommagement (B.2) et différente définition de la déformation équivalente Q". Mazars (1984) a
proposé la définition

Q" D

p

3
X

iD1

.h"i iC/
2 (B.5)

avec "i les déformations principales et les crochets de McCauley hxiC désigne la partie positive
d’un scalaire x, ce qui signifie hxiC D max.x; 0/.

Il y a aussi autres formulations de la déformation équivalente et de la loi d’évolution de l’en-
dommagement, voir de Vree et al. (1995) and Peerlings et al. (1998). Cependant, tous ces modèles
d’endommagement isotropes, lorsqu’ils sont implémentés dans un code de MEF, souffrent de la sen-
sibilité de maille i.e., la propagation de la fissure est dépendante de la finesse du maillage. Pour y
remédier, la théorie de continuum nonlocal est appliquée aux modèles d’endommagement.
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1.2.2 Modèles d’endommagement nonlocaux

Il existe principalement deux formulations nonlocales du modèle d’endommagement, i.e., nonlocal

intégral et nonlocal en gradient.

Modèle nonlocal intégral La valeur locale Q" dans la fonction de chargement (B.3) est remplacée
par sa définition nonlocale correspondante comme

N".x/ D 1

Vr.x/

Z

�

 .x; �/ Q".�/ d� with Vr.x/ D
Z

�

 .x; �/ d� (B.6)

où  .x; �/ est une fonction de poids nonlocale qui dépend de la distance entre la « source » � et le
« récepteur » x, r D kx ! �k. La variable d’histoire � est alors la plus grande valeur précédemment
atteinte de la déformation équivalente nonlocale.

Plusieurs formes ont été proposées pour la fonction de pondération. Il est souvent considéré
comme la fonction de distribution gaussienne

 .x; �/ D exp

�

!4r
2

`2
c

�

(B.7)

avec `c une longueur interne du modèle qui reflète la caractéristique de non-localité du modèle.
Basé sur le travail de Pijaudier-Cabot and Dufour (2010) montrant que la non-localité correspond

à une redistribution de contrainte due à la présence de défauts, Giry et al. (2011) a proposé un
modèle d’endommagement nonlocal dans lequel l’interaction nonlocale, i.e. la longueur interne,
évolue dans le temps en fonction de l’état de contrainte des points matériels voisins. La fonction de
poids proposée par Giry et al. (2011) a la même forme que (B.7) mais la longueur interne `c a été
proposée comme

`c D `c0 � �.x;�prin.�// (B.8)

où `c0 est la longueur intrinsèque qui peut être corrélée avec la taille des agrégats, � représente
l’évolution de la longueur interne au cours du processus d’endommagement et dépend de l’état de
contrainte principale du point situé à �.

Modèle nonlocal en gradient Il existe deux formulations de la régularisation en gradient le
modèle explicite et celui implicite. Les modèles d’endommagement en gradient ont été proposés
par Peerlings et al. (1996, 1998). La déformation équivalente nonlocale est définie sous la formula-
tion explicite comme

N" D Q"C l2r2 Q" (B.9)

où l est un paramètre du matériau avec la dimension de la longueur. Avec la formulation implicite,
la déformation équivalente nonlocale est définie comme

N" ! l2r2 N" D Q" (B.10)

En résumé, le point commun des modèles nonlocaux est l’introduction d’une longueur interne.
La question doit être posée est que comment déterminer le lien entre la longueur caractéristique du
matériau (e.g., la taille des agrégats) et la longueur interne du modèle nonlocal.

1.2.3 Valeur de la longueur interne

Physiquement, la longueur interne est liée à la taille effective de la FPZ dont l’évolution dépend
(au moins) des détails de microstructure du matériau et du mécanisme de rupture spécifique qui se
développe pour un type donné de chargement (Jirásek et al., 2007; Giry et al., 2011).

La longueur interne ne peut pas être mesurée directement mais peut être indirectement déduite de
résultats expérimentaux. Par exemple, la longueur interne peut être déterminée par analyse inverse
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sur la base de calculs des essais de l’effet d’échelle (Bellégo et al., 2003) ou par comparaison de
l’énergie dissipée dans les deux types d’essais de traction : (i) ceux menant à des endommagements
localisés et (ii) ceux où l’endommagement reste distribué (Bažant and Pijaudier-Cabot, 1989). Ce-
pendant, la première procédure nécessite un nombre important de calculs et est toujours basé sur une
technique d’essai-erreur manuelle et est réalisée pour une gamme de taille limitée des échantillons
alors que la dernière procédure présente la sensibilité aux conditions aux limites où la condition que
la déformation reste homogène tout au long de l’échantillon est difficile (voire impossible) à assurer.
En outre, de telles procédures ne sont basées que sur une hétérogénéité caractéristique du matériau
et conduisent à des observations que la longueur interne est proportionnelle à la taille caractéris-
tique D0 dans la courbe de l’effet d’échelle ou de la taille maximale des agrégats dmax. Ainsi, elles
peuvent difficilement être considérées comme une règle générale.

Une autre technique pour déterminer la longueur interne qui est basée sur des expériences avec
l’analyse par émission acoustique (Maji and Shah, 1988). Haidar et al. (2005) a montré que la FPZ
s’élargit au cours des processus de dégradation. Cela a conduit à l’idée que la longueur interne ne dé-
pend pas seulement des aspects géométriques du matériau, mais aussi de la déformation/contrainte.

Toutes ces raisons expliquent le fait que le calage de la longueur interne des modèles nonlocaux
est toujours une question difficile car elle semble dépendre non seulement de l’hétérogénéité du
matériau, mais aussi des conditions aux limites et de contrainte et de déformation dans la FPZ.

Jusqu’à présent, aucune relation explicite entre la longueur interne et la longueur caractéris-
tique du matériau a été élaborée pour les modèles nonlocaux. Cela motive à développer un modèle
numérique qui n’introduit pas de longueur interne et peut affranchir ce paramètre en introduisant
explicitement des agrégats dans la description géométrique. De plus, grâce à ce modèle, une étude
de l’influence de la microstructure du matériau sur ses comportements aux deux régimes de prépic
et postpic peut être réalisée. Nous tirons alors une longueur interne nécessaire pour le continuum
nonlocal (type intégral ou gradient) à partir de la microstructure du matériau. Le modèle parlant
appartient à la classe des modèles discrets qui sont présentés par la suite.

1.3 Approches discrètes

Pour la modélisation des comportements des matériaux quasi-fragiles, il existe au moins trois types
de méthodes numériques discrètes que l’on peut citer ici : (i) la méthode des éléments discrets,
(ii) la dynamique moléculaire, and (iii) le modèle de lattice.

La méthode des éléments discrets (MED) a été initiée par Cundall and Strack (1979). Le concept
de MED, c’est que le milieu est divisé en un assemblage d’éléments géométriques rigides ou défor-
mables tels que des disques, des ellipses, des polygones (en deux dimensions) ou des sphères, des
ellipsoïdes, des polyèdres (en trois dimensions), etc. Chaque élément a un mouvement qui est régi
par les principes fondamentaux de la dynamique, issus de la deuxième loi de Newton et par les lois
d’interaction intergranulaires. Ayant le même concept que MED mais la dynamique moléculaire
(DM) a des atomes et des molécules comme les éléments de base. Les méthodes de MED et DM
sont relativement faciles à comprendre parce qu’elles sont basées sur la solution numérique de la
deuxième loi de Newton. Elles ont été largement appliquées avec succès. Toutefois, les simulations
longues de DM et MED sont mathématiquement mal conditionnés, générant des erreurs cumulées
dans les calculs numériques. Les MED et DM sont les plus appropriées pour les matériaux granu-
laires non cohérents comme le sable.

Les modèles de lattice pour les matériaux hétérogènes dérivent de la méthode des éléments
en treillis (Lattice element method–LEM) qui est basé sur la discrétisation de treillis du milieu
(Radjai et al., 2010). Tout comme MED, pour les problèmes dans lesquels les discontinuités sont
dominants, les modèles de lattice sont considérés comme un outil approprié, car ils fournissent
une représentation discrète de l’hétérogénéité matérielle et de la rupture. Cependant, les modèles
de lattice, par rapport à MED, sont appropriés pour la modélisation de la fracture de matériaux
granulaires cohésives tels que le béton et ont un avantage majeur en termes de calculs numériques.
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Dans cette thèse, nous nous concentrons principalement sur le mode I de rupture du matériau
soumis à des charges mécaniques monotones. Un modèle de lattice, dans lequel les ressorts nor-
males et de cisaillement sont introduits, est entièrement développé en trois dimensions pour des
applications à la fois en deux et trois dimensions. Le modèle comprend également une estimation
plus réaliste des sections transversales assignées aux éléments de lattice pour mieux refléter la mé-
sostructure aléatoire du matériau.

1.4 Approches multi-échelles

La modélisation multi-échelle des matériaux hétérogènes est effectuée soit dans le cadre de « mé-
thodes d’homogénéisation » ou dans le cadre de « méthodes concurrentes ». Dans le premier, les
modèles incluent plusieurs échelles de longueur qui sont complètement séparées et dans le second,
les échelles restent couplées.

L’hypothèse principale des techniques d’homogénéisation est l’existence du volume élémentaire
représentatif (VER). Cependant, lorsqu’il s’agit de la localisation des déformations et des phéno-
mènes de rupture dans les matériaux adoucissants, un VER pour le régime adoucissant ne peut pas
être trouvé puisque le matériau perd homogénéité statistique sur la localisation des déformations
(Gitman et al., 2008; Bažant, 2010).

Plusieurs stratégies ont été proposées pour remédier ces problèmes tels que l’homogénéisation
du second ordre (Kouznetsova et al., 2002; Kaczmarczyk et al., 2008), l’approche de volume cou-
plé (Gitman et al., 2008), la méthode de discontinuités d’agrégation multi-échelles (Belytschko and
Song, 2010). Toutefois, le principal inconvénient de toutes ces techniques est qu’elles fournissent
une représentation simplifiée de rupture i.e., les fissures, la localisation des déformations, etc., à
l’échelle macroscopique.

Les techniques multi-échelles concurrentes sont caractérisées par la résolution simultanée des
échelles macroscopique et méso/microscopique. Cela signifie que les échelles sont couplées dans le
même cadre et donc, l’équilibre global et la compatibilité de déplacement doivent être assurés sur
l’ensemble de la structure, voir e.g. Garikipati (2002), Larsson and Runesson (2008), and Mergheim
(2009).
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Chapitre 2
Modèle de lattice pour la rupture du béton

Le modèle de lattice est une méthode numérique basée sur une discrétisation d’un milieu continu par
des éléments à une dimension (1D) qui permet de transférer des charges, voir Figure B.4a. Les lois
de comportement des éléments 1D sont des relations élastiques linéaires dans les directions normale
et tangentielle définies par chaque élément. Si le système subit de très petites perturbations autour
de son état initial, les positions des nœuds sont supposées fixes et des variables inconnues sont les
déplacements des nœuds Eu. La direction axiale Enij

0 et la direction transversale Et ij0 associées à chaque

élément ij restent ainsi fixées. Les variations de longueur entre le nœud i et j sont définies par ıij
n D

.Eui ! Euj / � Enij
0 et ıij

t D .Eui ! Euj / � Et ij0 pour les directions normales et tangentielles, respectivement.

Les forces sont liées à ces variations de longueur par f ij
n D K

ij
n ı

ij
n et f ij

t D K
ij
t ı

ij
t , oùKij

n et Kij
t

sont les raideurs normales et de cisaillement de l’élément, respectivement.

i

j

t
ij
0

i

j

n
ij
0

t
ij
0

ui

uj

Aij

!"# !$#

FIGURE B.4 – Elément 1D avec son système de coordonnées local (a) et sa largeur effective Aij (b).

L’approche consiste à trouver l’ensemble des déplacements des nœuds ŒEu� – dont certains sont
imposés – qui minimisent l’énergie élastique totale du système :
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Pour faire cette minimisation, la méthode du gradient conjugué est utilisée avec la définition suivante
du gradient :
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où Ee˛ représente les deux directions du système de coordonnées global.
L’endommagement du système de lattice est pris en compte en enlevant chaque élément qui

casse selon un critère  .f ij
n ; f

ij
t / � 0. Parce que le béton es très faible en résistance à la traction

par rapport à sa résistance au cisaillement, la surface de Mohr-Coulomb avec une coupure de la
résistance à la traction (Bolander Jr. and Saito, 1998) peut être adoptée. Cependant, nous avons
choisi d’utiliser une autre surface qui a l’avantage d’être plus générique alors qu’elle est exprimée
dans une seule fonction :
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où �0
n et �0

t sont les seuils de contraintes normale et tangentielle, respectivement ; n est un paramètre
positif qui modifie la surface de charge à partir d’une forme linéaire (n D 1) – correspondant au
critère de Mohr-Coulomb classique – en une forme non-linéaire (n > 1).

Les hétérogénéités du matériau sont introduites par une structure des inclusions. La dernière peut
être générée par le processus « take-and-place » (Wang et al., 1999; Häfner et al., 2006). Après la
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génération de la structure d’inclusions, les différentes phases de matériau sont définies et différentes
propriétés mécaniques locales sont affectées à des éléments tombant dans chaque phase. A l’échelle
mésoscopique, trois phases peuvent être distinguées : l’inclusion, la matrice et la zone de transition
d’interface (ITZ), voir Figure B.5. Si les deux extrémités de l’élément sont situées dans la même
phase, cet élément est attribué les mêmes propriétés mécaniques de la phase correspondante (inclu-
sion ou matrice), sinon il est considéré comme l’élément d’interface ou d’inclusion en fonction du
emplacement de son point médian. Si son point médian se trouve dans le grain, l’élément est classé
comme élément d’inclusion, ou bien il sera classé comme élément ITZ. La raison de cette définition
de l’élément ITZ, c’est que la fraction résultante d’inclusions (le rapport entre le nombre d’éléments
d’inclusion et le nombre total d’éléments) est plus proche de la fraction désirée des inclusions en
matériau que celles développées par d’autres auteurs (Schlangen and van Mier, 1992a; Lilliu and
van Mier, 2003; Sagar and Prasad, 2009). Dans leurs modèles, tous les éléments qui relient deux
zones différentes de structures de grains sont considérés comme des éléments ITZ.

(a) (b)

FIGURE B.5 – Distinction entre l’inclusion, la matrice et la phase ITZ selon l’emplacement d’un élément
de lattice dans la particule (a) ; Définition de l’élément de l’inclusion ou élément d’ITZ en fonction de la
localisation du point médian de l’élément (b).
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Chapitre 3
Étude de l’origine de la longueur caractéristique et la taille de la FPZ

Pour étudier le rôle joué par des plus grosses inclusions dans la longueur interne, plusieurs simula-
tions ont été effectuées. Dans la modélisation de la mésostructure du matériau, les inclusions sont
prises en compte, qui sont noyées dans la matrice séparées par des zones de transition d’interface
(ITZ). Les inclusions, la matrice et les ITZs sont supposées être linéaires élastiques fragiles. Les
inclusions sont également supposées être plus rigides et plus résistantes que la matrice, alors que les
ITZs sont supposées être moins rigides et ayant une résistance inférieure à celle de la matrice. Dans
les simulations suivantes, la rigidité et la résistance des inclusions est de 10 fois plus grandes que
celles de la matrice. À son tour, la rigidité et la résistance de la matrice est de 2 fois plus grandes que
celles de ITZs. Les paramètres élastiques et de résistance de la matrice sont donnés dans le tableau
B.1, et ils sont maintenus fixes pour toutes les simulations.

TABLE B.1 – Paramètres élastiques et de résistance utilisés pour la phase de matrice. Module de Young et le
coefficient de Poisson au niveau macroscopique sont également indiqués.

Phase ' NKn
NKt �0

n �0
t E �

(GPa) (GPa) (MPa) (MPa) (GPa) (–)
Matrix 16.50 5.10 6.07 18.21 13.20 0.20

Deux types de la structure des inclusions sont étudiées : monodispersité et polydispersité. Dans
le premier cas, la façon que les inclusions sont structurées est limitée à deux caractéristiques : le
diamètre de grain d et leur fraction volumique Pa. Dans l’espace des paramètres Pa – d , voir Fi-
gure B.6, trois chemins de variation sont envisagés :

(I) varier d tandis que les positions des inclusions restent les mêmes, Pa varie donc à peu près
comme d2,

(II) varier d tandis que Pa est maintenue à 40%1,

(III) varier Pa pour un diamètre donné de l’inclusion d D 8 mm.

Dans le cas de polydispersité, quatre types de la structure d’inclusions sont générés dans lesquels
la taille minimum de l’inclusion dmin D 3:15 mm et la taille maximum de l’inclusion dmax est
variée en prenant les valeurs de 6:3, 8, 10 and 12:5 mm tout en conservant la fraction volumique de
« référence » des inclusions constante à 40%. Ce chemin de variation est noté le chemin (IV), voir
Figure B.7.

Différentes caractéristiques de la mésostructure telles que la présence ou non de la zone d’in-
terface ITZ, l’effet des plus petites inclusions, la taille et la fraction volumique des inclusions qui
peuvent influencer sur la taille de la FPZ sont analysées. En outre, les influences des paramètres
structuraux comme la taille, la forme des échantillons, la manière que les charges sont appliquées
(via des barres métalliques ou tirer directement sur les échantillons) et la taille du ligament sont
aussi étudiées.

Le résultat montre que lorsque la ITZ est prise en compte, la taille des inclusions joue un effet
plus fort sur la variation de la taille de la FPZ que le cas dans lequel la ITZ n’est pas prise en
considération. Lorsque les agrégats fins sont pris en compte dans le modèle, un effet plus important
de la taille des agrégats grossiers sur la taille et la variation de la FPZ est obtenu. Ce résultat peut
nous conduire à penser, par extrapolation, que si le matériau est modélisé avec la mésostructure plus
complexe, l’effet des agrégats grossiers à la taille de la FPZ pourrait être encore plus grand.

1Notez cependant que la fraction de surface des inclusions n’est pas exactement maintenue constante à 40% lors du
changement de la taille de l’inclusion. Ceci est dû au fait que plus la taille de l’inclusion, plus le nombre de particules
sont nécessaires, ce qui entraîne un plus grand nombre d’éléments de ITZ et conduisant donc à un plus petit nombre
d’éléments d’inclusion.
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FIGURE B.6 – Trois chemins de variation (I), (II) and (III) pour le matériau de trois phases (3') et le chemin
de variation (I) pour le matériau deux phases (2') dans l’espace de paramètres (Pa – d ) dans le cas de
distribution monodisperse de la structure des inclusions.
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Les analyses sur les influences de la taille et de la forme des échantillons montre que la re-
lation entre la taille de la FPZ et la taille des inclusions est également influencée par la taille de
l’échantillon ou en général des conditions aux limites qui résultent en différents champs de gradient
de contrainte et de rotation du matériau. L’effet des conditions aux limites sur la taille de la FPZ
pourrait s’expliquer par le fait que l’intensité du gradient de contrainte et la non-uniformité de la dé-
formation pour les échantillons sont plus ou moins importantes. En fait, quand il existe un gradient
de contrainte intense qui consiste dans les échantillons, la position de rupture est fortement imposée
qui amène la FPZ en étant plus étroite que dans le cas d’un faible gradient de contrainte. Et lorsque
la non-uniformité de la déformation est importante à travers la section transversale des échantillons,
elle se traduit par une rotation relative de la partie supérieure et la partie inférieure des échantillons
séparées par la macrofissure et donc cela provoque le changement de la direction principale de la
charge qui permet probablement la FPZ d’évoluer dans une zone plus large.

Après l’étude des essais de traction sur une éprouvette de taille fixe en un matériau de modèle
élastique fragile avec des inclusions variées selon les chemin de variation (I) et (II), les résultats
mettent en évidence que la taille de la FPZ `FPZ est liée aux caractéristiques de la structure des
inclusions, y compris leur taille, leur répartition/position, leur fraction volumique ainsi que la dis-
tance entre les inclusions. Selon la situation, l’une des caractéristiques prévaut. Quoi qu’il en soit, la
répartition spatiale des inclusions impacts toujours `FPZ, et cela est exposé via l’écart-type non-nul
des tailles de la FPZ. Si la distance entre les inclusions est maintenue constante en maintenant la
fraction volumique de référence des inclusions inchangée tout en modifiant la taille des inclusions,
la valeur moyenne de `FPZ semble être indépendante de la taille des inclusions. Lorsque la fraction
volumique/la distance entre les inclusions change due à la variation de la taille des inclusions tout
en gardant la même position pour les différentes tailles des inclusions, la valeur moyenne de `FPZ,
prise par la moyenne des tailles de la FPZ obtenues par des distributions aléatoires des inclusions de
la même taille, augmente avec l’augmentation de la taille des inclusions.

L’étude de l’influence de la taille du ligament sur la taille de la FPZ est effectuée. On voit
que, pour la taille de ligament en dessous d’une moitié de la largeur de l’éprouvette, la pente de
la variation de la FPZ en fonction de la taille des inclusions est négligeable, ce qui signifie que
la taille des inclusions ne semble avoir aucune influence sur la valeur moyenne de `FPZ. Entre ces
limites, la pente de variation évolue progressivement, ce qui indique à la fois la structure d’inclusions
et la dimension de l’échantillon elle-même peuvent jouer un rôle sur la taille de la FPZ. Tout peut
suggérer que la FPZ n’est pas complètement développée dans les échantillons avec le ligament « trop
petit ».

L’étude de l’influence de la mésostructure sur la longueur caractéristique du matériau est égale-
ment effectuée. L’observation principale est que la longueur caractéristique et la largeur de la FPZ
ont le même ordre de grandeur et la même tendance par rapport à la taille des inclusions.

À partir de toutes ces études, les conclusions suivantes peuvent être tirées :

� Il apparaît que non essentiellement la taille, mais les autres paramètres caractérisant la struc-
ture des inclusions du matériau telle que la fraction volumique, la dispersion de taille, le tissu,
la connectivité, et les propriétés d’interface. . . affectent fortement la taille de la FPZ, et ainsi
la longueur caractéristique du matériau.

� La valeur mesurée de la taille de la FPZ dépend également du champ de la contrainte locale et/
ou du gradient de contrainte qui peut être lié à la géométrie de l’éprouvette ou des conditions
aux limites, par exemple. Par conséquent, il est difficile d’éviter la conclusion que la taille
de la FPZ n’est pas une propriété intrinsèque du matériau comme on le croit généralement.
Cependant, il semble vrai que la taille de la FPZ reste dans le même ordre de grandeur quand
le système testé est le même (la mésostructure, la géométrie, les dimensions, et les conditions
de chargement. . .).

� L’évaluation de la longueur caractéristique du matériau est essentielle pour l’utilisation de la
valeur comme étant la longueur interne dans les modèles nonlocaux. Cependant, tout comme
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la taille de la FPZ, il est difficile d’éviter des effets de structure de la méthode de mesure de
la longueur caractéristique.
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Chapitre 4
Couplage multi-échelle

Ce chapitre traite du couplage entre l’approche continue et l’approche discontinue pour la simula-
tion de rupture des matériaux quasi-fragiles. Les méthodes numériques utilisées pour les modèles
continue et discret sont la méthode des éléments finis (MEF) et la méthode des éléments de lattice
(LEM), respectivement. Cela est tout à fait pertinent sachant qu’il est inutile de modéliser par des
éléments de lattice, coûteux en terme de résolution numérique, l’ensemble d’une structure alors que
les zones endommagées sont généralement localisées, et leur position peut-être connue.

Puisque une cellule de lattice ne produit pas la même matrice de rigidité en tant qu’un élément
fini (EF) de la même taille, même si ils peuvent représenter macroscopiquement un matériau ayant
les mêmes paramètres élastiques telles que le module d’Young et le coefficient de Poisson. Par
conséquent, nous proposons un algorithme dans lequel la structure est aussi initialement modélisée
par la MEF, mais la matrice de rigidité d’un EF n’est pas construite par intégration sur le volume/
la surface de cet EF, mais elle est calculée au moyen d’une procédure d’homogénéisation sur une
cellule LEM de la même taille. Les EFs où le comportement reste inférieure à un seuil, le matériau
est supposé de se comporter de manière élastique et les matrices de rigidité initiales sont conservées.
Le EF, lorsque le seuil est dépassé, est remplacé par une cellule LEM sur laquelle une mise à jour de
la matrice de rigidité est effectuée au moyen d’une analyse nonlinéaire de la cellule LEM lorsque les
noeuds de frontière de la cellule LEM sont retenus par le champ de contrainte au niveau des bords des
éléments finis voisins. Ensuite, le champ de contraintes aux bords de la cellule LEM est transféré
aux éléments finis voisins. Quand une cellule LEM est complètement fissurée, un événement de
zoom arrière est effectué et la cellule LEM fissurée est remplacée par deux nouveaux EF obtenus à
partir d’une décomposition du EF correspondant. La continuité des déplacements entre les cellules
LEM et MEF est assurée par la méthode « maître/esclave » (Belytschko et al., 2000).

La méthode multi-échelle proposée permet le solveur de traiter avec différents modèles d’une
manière adaptative par le couplage simultané. Elle est basée sur la méthode de la décomposition
de domaine FETI-DP (Farhat et al., 2000, 2001), elle permet alors de traiter les structures à grande
échelle par des calculs parallèles.

Dans ce travail, tout d’abord l’approche LEM est implantée dans le logiciel open-source SOFA.
Puis, l’algorithme de couplage avec l’approche MEF est proposé et implanté. Une des raisons pour
lesquelles SOFA est utilisé dans la thèse est qu’il est basé sur la philosophie open-source qui nous
permet à améliorer/modifier/réutiliser librement la base de code existante et mettre en œuvre un
nouveau modèle comme un plugin.

Les conclusions suivantes peuvent être tirées à partir de l’algorithme de couplage proposé entre
le modèle de lattice et l’approche par éléments finis :

� L’algorithme de couplage LEM-MEF est proposé dans une manière adaptative. Cela signi-
fie que l’approche LEM n’est pas présente dans la zone dans laquelle la FPZ est connue à
l’avance, mais que la FPZ évolue, un EF est remplacé par une cellule de lattice de même taille
pour l’analyse non linéaire du comportement du matériau.

� L’algorithme de couplage est prévu pour des calculs parallèles.

� L’algorithme proposé est un couplage fort. Cela signifie que la continuité du champ de dé-
placement de l’interface de couplage est assuré par l’algorithme « maître/esclave ». Les dé-
placements de translation et de rotation des noeuds du lattice sur l’interface de couplage sont
retenus par le champ de déplacement et le vecteur de rotation du tenseur antisymétrique qui
dérive du déplacement du EF, respectivement. Le champ de contrainte au niveau du couplage
de l’interface de la cellule de lattice est transféré aux EFs voisins. Il n’existe pas un com-
portement nonlinéaire homogénéisé de l’approche de lattice qui est introduit dans un point
d’intégration du EF comme des travaux proposés par d’autres auteurs qui sont des faibles
couplages.
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Cependant, la mise en œuvre de la procédure de couplage proposée dans SOFA est encore limitée
au couplage élémentaire. Il nécessite des travaux futurs afin d’implanter l’algorithme complet dans
SOFA.
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Conclusions et perspectives

Dans la thèse, nous avons souligné que les modèles de lattice sont de très bons candidats pour modé-
liser le mécanisme de rupture des matériaux quasi-fragiles comme le béton. En utilisant les modèles
de lattice à l’échelle mésoscopique, il n’est pas nécessaire d’introduire une longueur interne et ils
ont de nombreux avantages indiqués précédemment dans le rapport. La mesotructure du matériau
peut être introduite de manière explicite. Cependant, en utilisant les modèles de lattice à l’échelle
mésoscopique, en particulier pour les structures 3D à grande échelle, il exige des efforts énormes de
calcul en raison d’un grand nombre de degrés de liberté. Par conséquent, une approche multi-échelle
réalisée par un couplage entre approche discrète à l’échelle mésoscopique traitée par une approche
de lattice et l’approche continue à l’échelle macroscopique traitée par la méthode des éléments finis
est essentielle.

Le modèle de lattice est très simple, car il ne fait que l’utilisation d’une analyse élastique linéaire.
Le matériau est représenté comme un réseau d’éléments de lattice. La loi de comportement locale
des éléments est élastique fragile.

Deux types d’éléments de lattice sont implantés dans SOFA : des éléments de ressort normal
et de cisaillement, et des éléments de poutre. Le modèle de ressort normal et de cisaillement est à
l’origine partie de notre code d’auto-écrit en utilisant le langage C++.

À partir de l’outil numérique, nous avons réalisé deux types d’essais de traction numériques :
tests de l’endommagement localisé et tests de l’endommagement réparti sur des spécimens en ma-
tériau modèle élastique fragile avec des variations de la structure des agrégats (inclusions), des
conditions aux limites et la taille des échantillons. La taille de la Fracture Process Zone et la lon-
gueur caractéristique du matériau ont été mesurées à partir de ces tests en vue d’étudier l’influence
des différents paramètres caractérisant la mesotructure du matériau et du gradient de contrainte et la
rotation matérielle (par suite des différentes conditions aux limites et tailles du spécimen) sur leurs
valeurs. L’évaluation de la taille de la FPZ `FPZ est obtenue via des tests de l’endommagement lo-
calisé tandis que la longueur caractéristique `c est mesurée via les deux tests de l’endommagement
localisé et réparti. Les résultats ont été présentés dans Chapitre 3.

Jusqu’à ce que la partie géométrique de la longueur interne est déterminée de manière fiable pour
l’utiliser comme une variable interne dans les modèles nonlocaux, nous vous conseillons d’utiliser le
modèle de lattice avec une description explicite de la mésostructure du matériau pour mieux simuler
et prédire la fracture dans les matériaux quasi-fragiles. Toutefois, comme indiqué, les simulations de
l’ensemble d’une structure à grande échelle en utilisant le modèle de lattice à l’échelle mésoscopique
nécessite des efforts énormes de calcul et de stockage en raison d’un grand nombre de degrés de
liberté. Dans Chapitre 4, nous avons présenté l’algorithme original pour coupler le modèle du lattice
de poutre avec des éléments finis dans un cadre multi-échelle afin de réduire l’effort de calcul. Il est
le couplage bord à bord et est prévu pour des calculs en parallèle.

Pour la mise en œuvre numérique de l’algorithme proposé dans SOFA, nous avons réalisé le
couplage élémentaire. Le couplage complet avec les techniques zoom avant, zoom arrière, les cri-
tères qui permettent le zoom avant et zoom arrière se produisent, et schéma de calcul parallèle n’ont
pas encore été mis en œuvre. Les travaux futurs sur cette implantation sont nécessaires.

Il s’agit d’une première étape pour étudier l’influence des propriétés d’inclusion sur la longueur
caractéristique. Plusieurs conclusions qualitatives intéressantes sur le matériau modèle numérique
ont déjà été signalés. Pour les travaux futurs, nous prévoyons d’étudier l’effet des propriétés méca-
niques, en particulier les rapports des différentes rigidités et des différentes résistances des phases
du matériau, sur la taille de la FPZ résultant et la longueur caractéristique du matériau. Les dévelop-
pements futurs viseront également à développer le modèle numérique d’être plus représentatif des
matériaux quasi-fragiles, en particulier en béton.
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