
HAL Id: tel-01017117
https://theses.hal.science/tel-01017117

Submitted on 1 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of two-phase flows by domain decomposition
Thu Huyên Dao

To cite this version:
Thu Huyên Dao. Simulation of two-phase flows by domain decomposition. Other. Ecole Centrale
Paris, 2013. English. �NNT : 2013ECAP0025�. �tel-01017117�

https://theses.hal.science/tel-01017117
https://hal.archives-ouvertes.fr

École centrale des arts et manufactures

Mathématiques Appliques aux systèmes

Thèse
présentée en première version en vu d’obtenir le grade de Docteur,

spécialité « Mathématiques appliquées »

par

DAO Thu Huyen

Simulation numérique
d’écoulements diphasiques par

décomposition de domaine

À mes parents

v

Titre Simulation numérique d’écoulements diphasiques par décomposi-
tion de domaine

Résumé Ce travail a été consacré à la simulation numérique des équa-
tions de la mécanique des fluides par des méthodes de volumes finis im-
plicites.
Tout d’abord, nous avons étudié et mis en place une version implicite du
schéma de Roe pour les écoulements monophasiques et diphasiques com-
pressibles. Grâce à la méthode de Newton utilisée pour résoudre les sys-
tèmes nonlinéaires, nos schémas sont conservatifs. Malheureusement, la
résolution de ces systèmes est très coûteuse. Il est donc impératif d’utiliser
des algorithmes de résolution performants. Pour des matrices de grande
taille, on utilise souvent des méthodes itératives dont la convergence dé-
pend de leur spectre. Nous avons donc étudié le spectre du système li-
néaire et proposé une stratégie de Scaling pour améliorer le condition-
nement de la matrice. Combinée avec le préconditionneur classique ILU,
notre stratégie de Scaling a réduit de façon significative le nombre d’ité-
rations GMRES du système local et le temps de calcul. Nous avons éga-
lement montré l’intérêt du schéma centré pour la simulation de certains
écoulements à faible nombre de Mach.
Nous avons ensuite étudié et implémenté la méthode de décompostion de
domaine pour les écoulements compressibles. Nous avons proposé une
nouvelle variable interface qui rend la méthode du complément de Schur
plus facile à construire et nous permet de traiter les termes de diffusion.
L’utilisation du solveur itératif GMRES plutôt que Richardson pour le sys-
tème interface apporte aussi une amélioration des performances par rap-
port aux autres méthodes. Nous pouvons également découper notre do-
maine de calcul en un nombre quelconque de sous-domaines. En utilisant
la stratégie de Scaling pour le système interface, nous avons amélioré le
conditionnement de la matrice et réduit le nombre d’itérations GMRES de
ce système. En comparaison avec le calcul distribué classique, nous avons
montré que notre méthode est robuste et efficace.

Mots-clés Equations d’Euler - Equations de Navier-Stokes - Modèle bi-
fluide - Volumes finis - Schéma de Roe - Schéma implicite - Méthode de
Newton - Préconditionneur - Décomposition de domaine - Complément
de Schur - Calcul parallèle

Title Simulation of two-phase flows by domain decomposition

Abstract This thesis deals with numerical simulations of compressible
fluid flows by implicit finite volume methods.
Firstly, we studied and implemented an implicit version of the Roe scheme
for compressible single-phase and two-phase flows. Thanks to Newton
method for solving nonlinear systems, our schemes are conservative. Un-
fortunately, the resolution of nonlinear systems is very expensive. It is
therefore essential to use an efficient algorithm to solve these systems. For
large size matrices, we often use iterative methods whose convergence
depends on the spectrum. We have studied the spectrum of the linear
system and proposed a strategy, called Scaling, to improve the condition
number of the matrix. Combined with the classical ILU preconditioner,
our strategy has reduced significantly the GMRES iterations for local sys-
tems and the computation time. We also show some satisfactory results
for low Mach-number flows using the implicit centered scheme.
We then studied and implemented a domain decomposition method for
compressible fluid flows. We have proposed a new interface variable
which makes the Schur complement method easy to build and allows us
to treat diffusion terms. Using GMRES iterative solver rather than Richard-
son for the interface system also provides a better performance compared
to other methods. We can also decompose the computational domain into
any number of subdomains. Moreover, the Scaling strategy for the inter-
face system has improved the condition number of the matrix and reduced
the number of GMRES iterations. In comparison with the classical distri-
buted computing, we have shown that our method is more robust and
efficient.

Keywords Euler equations - Navier-Stokes equations - Two-fluid model
- Finite volume methods- Roe scheme - Implicit scheme - Newton method
- Preconditioner - Domain decomposition - Schur complement - Parallel
computing

vii

Table des matières

Table des matières viii

Liste des figures ix

Introduction générale 1

1 Hyperbolic Systems of Conservation Laws 7

1.1 Hyperbolic Systems . 9

1.2 Weak Solutions . 10

1.3 Mathematical Entropy and Entropy Solution 11

1.4 Numerical Schemes for Hyperbolic Systems 12

1.4.1 Finite Volume Method 12

1.4.2 Roe Scheme . 13

1.4.3 Newton Method for the Implicit Scheme 16

1.4.4 Boundary Conditions . 17

1.4.5 Entropy Fix for Roe Scheme 18

2 Some Basics on Linear Systems and Their Solvers 19

2.1 Direct Solvers for Linear Systems 21

2.2 Iterative Solvers for Linear Systems 22

2.2.1 Classical Iterative Methods 22

2.2.2 Projection Methods . 23

2.3 Preconditioner . 26

2.3.1 Incomplete LU Preconditioners 26

2.3.2 Schur Complement Techniques 28

3 Numerical Simulation of Compressible flows 29

3.1 Single-phase Flows . 31

3.1.1 Compressible Navier-Stoke equations 31

3.1.2 Numerical Scheme . 33

3.1.3 Scaling Strategy . 36

3.1.4 Numerical Results . 37

3.2 Two-phase Flows . 52

3.2.1 Compressible Two-phase Flows 52

3.2.2 Numerical Scheme . 57

3.2.3 Roe Matrix for Isentropic Two-fluid Model 58

3.2.4 The Entropy Correction 61

3.2.5 Incompressible Limit of Two-phase Flows 61

3.2.6 Numerical Results . 64

4 Domain Decomposition Method 81

4.1 Review on Domain Decomposition Methods for Finite
Element Methods . 83

4.1.1 Overlapping and Nonoverlapping Schwarz Methods . . . 84

4.1.2 Substructuring Methods 86

4.2 Domain Decomposition Methods for Finite Volume

Methods . 89

4.2.1 Explicit Coupling . 90

4.2.2 Implicit Coupling . 90

4.2.3 Dolean’s Interface Variable 91

4.2.4 A New Interface Variable 92

5 Domain Decomposition Method for Compressible flows 95

5.1 Validation . 97

5.2 Study of Parallel Scalability 100

5.2.1 Definition of Scalability 100

5.2.2 Numerical Results and Scalability 104

5.2.3 Comparison of Our Method with Dolean Method 105

5.2.4 Strong Scalability . 105

5.3 Study of the Spectrum of the Interface System 108

Conclusion générale 115

6 Annexe 117

Annexe 117

6.1 Primitive Variables and Its Computation from Conser-
vative Variables . 117

6.2 Jacobian Matrix of the Incompressible Limit of the

Two-phase Flow . 119

6.3 Spectrum of the Jacobian Matrix 121

Bibliographie 123

Liste des figures

1 Schéma simplifié d’un réacteur nucléaire à eau pressurisée . 2

3.1 The computational domain 37

3.2 Initial state . 38

3.3 Steady State, Explicit scheme 39

3.4 CFL = 100, 16 time steps . 39

3.5 CFL = 400, 4 time steps . 40

3.6 CFL = 800, 2 time steps . 40

3.7 CFL = 1600, 1 time step . 41

3.8 Steady state, upwind scheme 42

3.9 Steady state, centered scheme 42

ix

3.10 Number of GMRES iterations for the upwind scheme, CFL
1000 . 43

3.11 Number of GMRES iterations for the upwind scheme, mesh
100× 100 . 43

3.12 Computational time for the upwind scheme, CFL 1000 . . . 43

3.13 Computational time for the upwind scheme, mesh 100× 100 44

3.14 Number of GMRES iterations for the centered scheme, mesh
50× 50 . 44

3.15 Number of Newton iterations for the centered scheme,
mesh 50× 50 . 44

3.16 Computational time for the centered scheme, mesh 50× 50 45

3.17 Computational time for the centered scheme, mesh 50× 50 45

3.18 Initial state . 46

3.19 Profile of the pressure after 5 time steps 46

3.20 Profile of the pressure after 10 time steps 47

3.21 Explicit upwind scheme . 48

3.22 Implicit centered scheme . 48

3.23 CFL 1, 10× 10 cells, condition number = 4.4e4 49

3.24 CFL 10, 10× 10 cells, condition number = 3.3e5 50

3.25 CFL 50, 10× 10 cells, condition number = 3.8e5 50

3.26 CFL 1, 10× 10 cells, condition number = 6.2e4 51

3.27 CFL 10, 10× 10 cells, condition number = 3.6e5 51

3.28 CFL 50, 10× 10 cells, condition number = 4e5 52

3.29 Void fraction initial state . 65

3.30 Pressure initial state . 65

3.31 Gas velocity initial state . 66

3.32 Liquid velocity initial state . 66

3.33 Void fraction, before blowing up 67

3.34 Pressure, before blowing up 67

3.35 Gas velocity, before blowing up 68

3.36 Liquid velocity, before blowing up 68

3.37 Void fraction, time step 168 69

3.38 Pressure, time step 168 . 69

3.39 Gas velocity, time step 168 . 70

3.40 Liquid velocity, time step 168 70

3.41 Void fraction . 71

3.42 Pressure . 71

3.43 Gas velocity . 72

3.44 Liquid velocity . 72

3.45 Illustration of Ransom’s water faucet problem 73

3.46 Gas volume fraction for the water faucet, 101, 201, 1001 grid
points . 74

3.47 Pressure for the water faucet, 101, 201, 1001 grid points . . . 74

3.48 Gas velocity for the water faucet, 101, 201, 1001 grid points 75

3.49 Liquid velocity for the water faucet, 101, 201, 1001 grid points 75

3.50 Initial state . 76

3.51 Final state . 77

3.52 Void fraction, sedimentation 78

3.53 Pressure, sedimentation . 78

3.54 Gas velocity, sedimentation 79

3.55 Liquid velocity, sedimentation 79

5.1 Mesh . 97

5.2 Processor position . 97

5.3 Processor position . 98

5.4 Profile of the pressure at time step 5 on one processor . . . 98

5.5 Profile of the pressure at time step 5 on two processors . . . 99

5.6 Profile of the pressure at time step 5 on four processors . . . 99

5.7 Profile of the pressure at time step 10 on one processor . . . 99

5.8 Profile of the pressure at time step 10 on two processors . . 100

5.9 Profile of the pressure at time step 10 on four processors . . 100

5.10 Streamlines of Vx on one processor 101

5.11 Streamlines of Vx on two processor 101

5.12 Streamlines of Vx on four processor 101

5.13 Streamlines of Vx on one processor 102

5.14 Streamlines of Vx on two processor 102

5.15 Streamlines of Vx on four processor 102

5.16 Parallel efficiency for 2D Lid driven cavity 104

5.17 Parallel efficiency for 3D Lid driven cavity 104

5.18 Comparisons of parallelism in 3D Detonation, global mesh
= 50× 50× 50 . 105

5.19 Time of computation for one time step, global mesh = 96×
96× 96, CFL 20 . 106

5.20 Time of computation for one time step, global mesh =
96x96x96, CFL 20 . 106

5.21 Time of computation for one time step, global mesh = 96×
96× 96, CFL 10 . 107

5.22 Time of computation for one time step, global mesh = 96×
96× 96, CFL 20 . 107

5.23 CFL 1, 40× 40 cells, 2 processors 108

5.24 CFL 10, 40× 40 cells, 2 processors 109

5.25 CFL 50, 40× 40 cells, 2 processors 109

5.26 CFL 1, 40× 40 cells, 4 processors 110

5.27 CFL 10, 40× 40 cells, 4 processors 110

5.28 CFL 50, 40× 40 cells, 4 processors 111

5.29 CFL 1, 40× 40 cells, 2 processors 111

5.30 CFL 10, 40× 40 cells, 2 processors 112

5.31 CFL 50, 40× 40 cells, 2 processors 112

5.32 CFL 1, 40× 40 cells, 4 processors 113

5.33 CFL 10, 40× 40 cells, 4 processors 113

5.34 CFL 50, 40× 40 cells, 4 processors 114

Introduction générale

La recherche d’un meilleur rendement et d’une sûreté optimale des cen-
trales nucléaires en France est depuis longtemps un enjeu industriel

majeur. La modélisation et la simulation numérique jouent à ce titre un
rôle clé. Elles permettent la compréhension et la prédiction des phéno-
mènes physiques mis en jeu au sein d’un réacteur nucléaire.

Le parc nucléaire français est composé en grande partie de réacteurs
à eau pressurisée. Le réacteur peut se diviser en trois parties principales :
le circuit primaire, le circuit secondaire et le circuit de refroidissement. Le
circuit primaire est associé au processus de chauffage du fluide calopor-
teur qui est, dans ce cas, l’eau. Il s’agit d’un circuit fermé qui se situe dans
une enceinte de confinement. On y retrouve la cuve qui contient le coeur
du réacteur nucléaire où la réaction en chaîne se produit. Le combustible
nucléaire est assemblé sous forme de crayons et des barres de contrôle
permettent de gérer le taux de réaction nucléaire. L’eau présente est chauf-
fée à une température de l’ordre de 300˚C mais reste sous forme liquide
grâce à un pressuriseur assurant une pression dans le circuit d’environ
155 bars. Cette eau chaude circule ensuite dans le générateur de vapeur
permettant l’échange de la chaleur emmagasinée avec de l’eau froide
aux pressions de 75 bars. Le générateur de vapeur fait partie du circuit
secondaire. L’eau froide qui y est présente est donc chauffée jusqu’à l’état
vapeur. Cette vapeur chaude va alors entraîner des turbines réliées à des
alternateurs et l’energie mécanique est ainsi transformée en électricité.
Enfin, la même vapeur est recondensée en eau liquide par contact avec
l’eau du circuit de refroidissement puis recircule dans le générateur.

Nous voyons donc, par cette description simplifiée, que de nombreux
phénomènes physiques entrent en jeu au cours du processus de produc-
tion d’électricité. Des écoulements diphasiques eau-vapeur évoluent dans
quasiment toutes les parties de la centrale.

1

2 Introduction générale

Figure 1 – Schéma simplifié d’un réacteur nucléaire à eau pressurisée

Au Laboratoire de Modélisation et de simulation à l’Échelle Compo-
sant (LMEC) du Commissariat à l’Énergie Atomique et aux Alternative
de Saclay, où j’ai effectué ma thèse, plusieurs outils informatiques sont
développés et améliorés dans le but de simuler ces écoulements. Par-
mis les logiciels scientifiques disponibles, on peut tout d’abord citer
FLICA-4 Toumi et al. (2000), utilisé principalement pour la simulation
des écoulements diphasiques dans le coeur du réacteur nucléaire. Le
modèle mathématique utilisé dans FLICA-4 est un modèle de mélange à
quatre équations en milieux poreux. Un modèle de mélange , comme son
nom l’indique, représente l’évolution du fluide grâce à des équations de
conservation écrites sur les grandeurs physiques associées au mélange :
la masse, la quantité de mouvement et l’énergie. Le modèle est complété
par des fermetures algébriques exprimant l’équilibre cinématique entre
ces deux phases. Un autre code en cours de développement est FLICA-
OVAP Fillion et al. (2009). Son architecture est orientée objet et dédiée à la
simulation de plusieurs modèles. Différents modèles de mélange sont im-
plémentés ainsi que des modèles multichamps qui permettent de décrire
plus finement la dynamique des écoulements à plusieurs phases via des
lois de conservation sur les grandeurs physiques. Parmis les modèles, le
modèle dit bifluide à une pression est le plus utilisé pour la représentation
des écoulements diphasiques eau-vapeur. Contrairement au modèle de
mélange de FLICA-4, tout les déséquilibres entre les phases sont pris en
compte. Tous les efforts visent à développer ce logiciel avec des solveurs
numériques et des modèles physiques permettant de répondre aux be-
soins de simulation thermodydraulique diphasique des coeurs pour les
échelles de modélisation “3D-poreuse” ou locale.

Mes travaux de thèse ont été financés par le CEA. Le contexte de ma
thèse est celui de la simulation réaliste d’écoulements multiphasiques

Introduction générale 3

par des modèles 3D instationnaires, résolus sur des architectures massi-
vement parallèles (sur des machines du Centre de Calcul Recherche et
Technologie-CCRT). Plus précisément, l’objectif est d’améliorer le speed-
up (facteur d’accélération) des calculs réalisés avec le code FLICA-OVAP
sur des machines multiprocesseurs afin d’obtenir des temps de calcul
raisonnables sur des géométries aussi complexes que celle d’un coeur de
réacteur. La formulation implicite des schémas de calcul permet l’em-
ploi de pas de temps élévés, mais demande à chaque pas de temps la
résolution d’un système linéaire AX = b d’autant plus mal conditionné
que le nombre de mailles et le pas de temps sont grands. Ces systèmes
doivent donc être préconditionés afin de permettre une résolution précise
et une augmentation modérée du temps de calcul avec la taille du système.

Lorsque le système est de grande taille, la résolution parallèle sur
plusieurs processeurs devient essentielle pour obtenir des temps de calcul
raisonnables. Actuellement la matrice et le second membre sont distri-
bués sur plusieurs processeurs et on résout le système en parallèle avec un
algorithme de type GMRES. Malheureusement les préconditionneurs clas-
siquement utilisés pour la résolution en parallèle ont des performances
décevantes à cause des coûts de communication et certains présentent des
problèmes de robustesse. Des tests ont été réalisés sur différents cas tests
de FLICA-OVAP et aboutissent à la sévère conclusion qu’il vaut mieux
dans certains cas 3D ne pas utiliser les préconditionneurs en parallèle. La
puissance de calcul disponible n’est alors pas utilisée de manière optimale.

Ces différents points motivent l’emploi d’une approche de résolution
parallèle alternative qui s’adapte mieux aux calculs parallèlles que la
distribution classique sur plusieurs processeurs. Nous avons choisi d’étu-
dier la méthode de décomposition de domaine. Elle représente une voie
naturelle et efficace vers le parallélisme. Elle permet également de traiter
facilement des géométries complexes en associant plusieurs modèles ou
schémas de calcul.

L’idée consiste à ramener le problème global à un ensemble de pro-
blèmes locaux, auxquels s’ajoute une condition de raccord qui assure
le recollement de la solution aux interfaces de la décomposition. L’idée
d’utiliser une méthode itérative remonte à Schwarz (1869). On se donne
tout d’abord des conditions aux limites arbitraires aux interfaces. On est
alors en mesure de résoudre les problèmes locaux. La solution calculée
dans un sous-domaine permet de mettre à jour les conditions aux limites
pour les sous-domaines voisins. On passe ensuite à l’iteration suivante.
Cet algorithme est naturellement parallélisable, puisque les résolutions
locales à chaque itération sont totelement découplées.

L’objectif de cette thèse est d’étudier et implémenter la méthode de
decomposition de domaine dans une maquette d’un code C++ proche de
FLICA-OVAP mais avec des modèles plus simples comme les équations
de Navier-Stokes compressibles et modèle bifluide isentropiques. Cette
maquette doit être suffisamment souple et évolutive et posséder une
interface public que ICoCo (Interface for Code Coupling Perdu (2006))

4 Introduction générale

permettant le couplage de plusieurs instances du code. Elle a pour but
d’être utilisée pour étudier de façon expérimentale les propriétés de la
méthode et effectuer une comparaison entre le calcul distribué et la mé-
thode de décomposition de domaine. Elle est appelée ParaFlow et tous les
résultats dans cette thèse sauf le problème de backward-facing step ont
été réalisés en utilisant cette maquette.

Déroulement de la thèse

– Dans un premier temps nous avons étudié et implémenté la méthode
de décompostion de domaine pour les écoulements monophasiques
(équations de Navier-Stokes compressibles). Nous avons proposé
une nouvelle variable interface (Dao et al. (2011a)) inspirée par
l’approche présentée dans Dolean and Lanteri (2001). Notre variable
interface rend la méthode du complément de Schur plus facile à
construire que celle utilisée dans Dolean and Lanteri (2001). De
plus, elle permet de traiter les termes de diffusion. Nos schémas
sont conservatifs grâce à la méthode de Newton utilisée pour ré-
soudre les systèmes non linéaires. L’utilisation du solveur itératif
GMRES plutôt que Richardson pour le système interface apporte
aussi une amélioration des performances par rapport à Dolean and
Lanteri (2001). Nous pouvons également découper notre domaine
de calcul en un nombre quelconque de sous-domaines.

Nous avons aussi étudié le spectre du système linéaire et proposé
la stratégie de Scaling (Dao et al. (2011b)) pour améliorer le condi-
tionnement de la matrice A. Cette stratégie est une transformation
similaire de la matrice (en utilisant son spectre) pour que les coeffi-
cients en dehors de la diagonale aient le même d’ordre de grandeur.
Combinée avec le préconditionneur classique ILU, notre stratégie de
Scaling a réduit de façon significative le nombre d’itération GMRES
du système local et le temps de calcul. Les résultats numériques
ont aussi montré que cette stratégie a aidé à améliorer le condition-
nement de la matrice du système interface et à réduire le nombre
d’itérations GMRES de ce système.

– Dans un deuxième temps, notre travail de thèse a porté sur la
simulation numérique des écoulements diphasiques (Dao et al.
(2012a), Dao et al. (2012b)). Nous avons étudié et implémenté les
schémas numériques de type Roe pour le modèle bi-fluide. Nous
avons également proposé une correction entropique pour rendre le
schéma de Roe positif. Des tests classiques (comme le tube à choc, la
sédimentation etc ..) ont été réalisés pour montrer le bon comporte-
ment de ce schéma. Nous avons également étudié le comportement
asymptotique du modèle bi-fluide dans le cas où les deux phases
sont supposées incompressibles. Cela donne un système de deux
équations aux dérivées partielles du premiers ordre dont il est plus
simple à étudier l’hyperbolicité ainsi que le comportement lorque
un des phases disparaît.

Introduction générale 5

Nous avons ensuite appliqué la méthode de décomposition de do-
maine au modèle bi-fluide et étudié son comportement dans le cas
diphasique.

– Suite au succès de la stratégie de Scaling pour les écoulements mo-
nophasiques, cette stratégie a été appliquée au cas diphasique et elle
a amélioré les performances.

1Hyperbolic Systems of
Conservation Laws

Contents
1.1 Hyperbolic Systems . 9

1.2 Weak Solutions . 10

1.3 Mathematical Entropy and Entropy Solution 11

1.4 Numerical Schemes for Hyperbolic Systems 12

1.4.1 Finite Volume Method . 12

1.4.2 Roe Scheme . 13

1.4.3 Newton Method for the Implicit Scheme 16

1.4.4 Boundary Conditions . 17

1.4.5 Entropy Fix for Roe Scheme 18

In this chapter, we briefly describe the basic ingredients of the theory
of hyperbolic systems of conservation laws. These ingredients allow us

to better understand the mathematical properties of these systems. We
then describe the finite volume method for hyperbolic systems. We are
especially interested in the Roe approximate Riemann solver. Different
schemes with different orders are also presented. As usual with implicit
schemes, at each time step, we need to solve a nonlinear system. To keep
the conservation property of our finite volume scheme, Newton method is
used to solve the nonlinear system. We end the chapter by describing the
boundary conditions of the problem and presenting some entropy fix for
the Roe scheme. More detailed description of these systems and methods
can be seen in Godlewski and Raviart (1996) and LeVeque (2002).

7

1.1. Hyperbolic Systems 9

1.1 Hyperbolic Systems

Let us consider a system of partial differential equations (PDEs), ari-
sing from the modeling of the conserved quantities,

∂U

∂t
+

d

∑
i=1

∂

∂xi
Fi(U) = 0, x = (x1, . . . , xd) ∈ R

d, t > 0, (1.1)

where d is the space dimension, U : (x, t) ∈ Rd × R 7−→ U(x, t) ∈ Rp

is the unknown vector of conserved quatities, p is the number of unk-
nowns. The flux functions Fi : U ∈ Rp 7−→ Fi(U) ∈ Rp, 1 ≤ i ≤ d are
differentiable with respect to the state vector U. In general, the flux func-
tions are nonlinear functions of U. The fundamental characteristic of the
system (1.1) is the conservation of each component of U.
One says that the system (1.1) is written in conservation form. The sys-
tem (1.1) can be also written in the non conservation form or quasilinear
form as

∂U

∂t
+

d

∑
i=1

∂Fi(U)

∂U

∂U

∂xi
= 0, (1.2)

or :
∂U

∂t
+

d

∑
i=1

Ai(U)
∂U

∂xi
= 0. (1.3)

For better understanding of the system (1.3), we recall the following
basic definitions and properties :

Definition 1.1 The system (1.3) is called hyperbolic provided that the matrix A(U,ω) =

∑
d
i=1 Ai(U)ωi is diagonalizable in R i.e A(U,ω) has p real eigenvalues

λ1(U,ω) ≤ λ2(U,ω) ≤ . . . ≤ λk(U,ω) ≤ . . . ≤ λp(U,ω), λk(U,ω) ∈ R,

and p linearly independent corresponding eigenvectors rk ∈ Rp and :

A(U,ω) · rk(U,ω) = λk(U,ω)rk(U,ω).

In addition, the system (1.3) is called strictly hyperbolic if the eigenvalues of
A(U,ω) are all distinct for any unitary vector ω = (ω1, · · · ,ωd).

Property 1.1 The hyperbolicity property is invariant by the change of variables.

Definition 1.2 The system (1.3) is called symmetrizable if there exists a matrix A0(U) symmetric
positive definite such that the matrices

A0(U)Ai(U), 1 ≤ i ≤ d

are symmetric.

In fact, little is known about systems in more than one space va-
riable unless they are symmetrizable. Fortunately, most of the systems
of conservation laws arising in practice are symmetrizable ; this is a conse-
quence of the existence of an entropy function. And symmetrizable sys-
tems of conservation laws are clearly hyperbolic (see Godlewski and Ra-
viart (1996)).

10 Chapitre 1. Hyperbolic Systems of Conservation Laws

Cauchy Problem For hyperbolic systems, the most important problem is
the initial value problem (IVP), i.e the Cauchy problem : Find a function
U(x, t) ∈ Rdx[0,∞) 7−→ U(x, t) which is the solution of

∂U

∂t
+

d

∑
i=1

∂

∂xi
Fi(U) = 0, (1.4)

U(x, t = 0) = U0(x), (1.5)

where U0(x) : Rd 7−→ Rd is a given initial condition of the vector U.
In one-dimensional space, if the function U0 has the following particular
form,

U0 =

{

Ul , x < 0
Ur, x > 0

(1.6)

the Cauchy problem is called the Riemann problem.

1.2 Weak Solutions

A function U : Rd ×R+ 7−→ Rp is called a classical solution of the
Cauchy problem (1.4), (1.5) if U ∈ C1 and satisfies the equations (1.4)-(1.5)
pointwise. Unfortunately, a fundamental feature of nonlinear conserva-
tion laws is that discontinuous solutions can be easily obtained even from
smooth initial data. So the classical solution is not a convenient notion to
study the solutions of (1.4)-(1.5). This leads us to introducing weak solu-
tions (solutions in the sense of distributions) of the Cauchy problem as
follows :

Definition 1.3 A mesurable and locally bounded function U : Rd×R+ 7−→ Rp is called a weak

solution of the Cauchy problem (1.4), (1.5) if for any function φ ∈ C1 having
compact support in Rd ×R+ we have :

∫ ∞

0

∫

Rd

(

∂φ

∂t
·U+

d

∑
j=1

Fj(U) · ∂φ

∂xj

)

dxdt+
∫

Rd
φ(x, 0)U0(x)dx = 0. (1.7)

By construction, any classical solution of the problem (1.4)-(1.5) is also
a weak solution. Conversely, we have :

Proposition 1.1 If U0 ∈ C1 and U ∈ L∞
loc(R

d ×R+)p is a weak solution of the Cauchy problem
(1.4)-(1.5) and moreover U ∈ C1, then U(•, •) is a classical solution of the
Cauchy problem (1.4)-(1.5).

Considering now the case where the function U(•, •) is smooth except
on the smooth orientable surfaces Σ. We say that a function U(•, •) is
“piecewise C1” if there exists a finite number of smooth orientable surfaces
Σ such that the function U(•, •) is a C1 function in (Rd× [0,∞[) and across
the surfaces Σ, U(•, •) has a jump discontinuity i.e the function U(•, •)
has a limit on the left and on the right at any point (x, t) ∈ Σ. In one-
dimensional space, if the curves Σ are parametrized by x = ξ(t), where
ξ(t) is a function of class C1, we have

U+(ξ(t), t) = lim
ε→0+

U(ξ(t) + ε, t), (ξ(t), t) ∈ Σ

1.3. Mathematical Entropy and Entropy Solution 11

U−(ξ(t), t) = lim
ε→0+

U(ξ(t)− ε, t), (ξ(t), t) ∈ Σ.

We now show that even in the frame of “piecewise C1”functions not every
discontinuity is admissible. The admissible functions have to satisfy the so
called Rankine-Hugoniot relation :

Theorem 1.1 Let F ∈ C1 and the initial condition U0 be a piecewise C1 function. Then a mesu-
rable and locally bounded function U in the class of piecewise C1 functions is a
weak solution of the Cauchy problem (1.4)-(1.5) if and only if
• U is a classical solution of (1.4)-(1.5) in the domain Rd × [0,∞[where U

is C1.
• U satisfies the Rankine-Hugoniot relation :

(U+ −U−)nt +
d

∑
j=1

(Fj(U+)− Fj(U−))nxj
= 0 on Σ (1.8)

along the surfaces of discontinuity, where n = (nt, nx1 , nx2 , . . . , nxd
) is the

exterior normal vector of Σ.

1.3 Mathematical Entropy and Entropy Solution

However, when considering the solution in the sense of distributions,
we lose the uniqueness of the solution. It is thus necessary to introduce a
criterion that enables us to choose the “physicaly revelant” solution among
all the weak solutions of (1.4)-(1.5). This criterion is based on the concept
of entropy.

Definition 1.4 Assume that Ω is convex. Then, a convex function S : U ∈ Ω → R is called an
entropy of the system (1.1) provided that there exists d functions Gj : Ω → R,
1 ≤ j ≤ d called entropy fluxes, such that :

S′(U)F′ j(U) = G′ j(U), 1 ≤ j ≤ d

where

S′ =
(

∂S

∂U1
, . . . ,

∂S

∂Up

)

, G′j =
(

∂Gj

∂U1
, . . . ,

∂Gj

∂Up

)

, F′j =
(

∂Fij

∂Uk

)

1 ≤ j, k ≤ p.

Definition 1.5 A measurable and locally bounded function U : Rd × R+ 7−→ Rp is called a
weak entropy solution of the Cauchy problem (1.4)-(1.5) if for any function
φ ∈ C1 having compact support in Rd ×R+, φ ≥ 0 , we have :

∫ ∞

0

∫

Rd

(

∂φ

∂t
· S(U) +

d

∑
j=1

Fj(U) · ∂φ

∂xj

)

dxdt+
∫

Rd
φ(x, 0)S(U0(x))dx ≥ 0.

(1.9)

Theorem 1.2 Let F ∈ C1 and let the initial condition U0 be piecewise C1. A measurable and
locally bounded function U in the class of piecewise C1 is called a weak entropy
solution of the Cauchy problem (1.4), (1.5) if and only if :
• U is the classical solution of (1.4)-(1.5) in the domains Rd × [0,∞[where
U is a C1 function

• U satisfies the Rankine-Hugoniot relation (1.8)

12 Chapitre 1. Hyperbolic Systems of Conservation Laws

• U satisfies the following inequality

nt[S(U)] +
d

∑
j=1

[Gj(U)]nxj
≤ 0. (1.10)

1.4 Numerical Schemes for Hyperbolic Systems

1.4.1 Finite Volume Method

As we saw in the previous sections, the conservative form (1.1) enables
us to define the concept of weak solutions, which can be discontinuous
ones. Discontinuous solutions such as shock waves are of great impor-
tance in transient calculations. In order to correctly capture shock waves,
one needs a robust, low diffusive conservative scheme. The finite volume
framework is the most appropriate setup to write discrete equations that
express the conservation laws at each cell. For finite volume method, we
decompose the computational domain Ω into N disjoint cells Ci with vo-
lume vi. Two neighboring cells Ci and Cj have a common boundary ∂Cij

with area sij. We denote N(i) the set of neighbors of a given cell Ci and nij

the exterior unit normal vector of ∂Cij . On Ci, U(., t) is approximated by
a constant Ui(t) which means

Ui(t) ∼=
1
vi

∫

Ci

U(x, t)dx.

Integrating the system (1.1) over Ci gives

1
vi

∫

Ci

(

∂U

∂t
+∇ � (F(U))

)

dU = 0. (1.11)

Applying the Green-Ostrogradski theorem to the formula (1.11), we have

∂

∂t

(

1
vi

∫

Ci

U(x, t)dx
)

+
1
vi

∑
j∈N(i)

∫

∂Cij

F(U).nij ds = 0. (1.12)

The first term of (1.12) is naturally approximated by :

∂

∂t

(

1
vi

∫

Ci

U(x, t)dx
)

∼= ∂Ui(t)

∂t
.

We then denote Un
i the numerical approximation over the cell Ci at nth

time step and we obtain

∂

∂t

(

1
vi

∫

Ci

U(x, t)dx
)

∼= Un+1
i −Un

i

∆t
.

Since the approximation is not continuous across ∂Cij, we have to dis-
cretize

∫

∂Cij
F(U).nij ds, which represents the flux across the boundary

∂Cij. The problem is then to define the numerical flux approximating
∫

∂Cij
F(U).nij ds, using only the values Ui(t). The usual way consists in

introducing a numerical flux function Φij such that

Φij
∼= 1

sij

∫

∂Cij

F(U).nij ds.

1.4. Numerical Schemes for Hyperbolic Systems 13

Φij is a function of Un
i or Un+1

i that approximates the interfacial fluxes. We
obtain the numerical scheme for system (1.1)

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

1
vi

Φijsij = 0. (1.13)

So what are the desirable properties of such fluxes ? First of all, the
obtained finite volume scheme needs to be stable. Unfortunately, the sta-
bility of the scheme is not enough to ensure the quality of the solution. The
Lax-Wendroff scheme which is stable gives rise to an oscillatory solution
in the neighborhood of strong gradients. So we need to look for schemes
which respect the “profile” of the solution.
In the scalar case, A.Harten (1984) suggests to formalize this property by
using the TVD (total variation diminishing) criterion. With such criterion,
the obtained schemes avoid oscillations. We can prove that the upwind
scheme is TVD. Unfortunately, the TVD criterion is not applicable to sys-
tems.
In the following, we present a common way to build the numerical flux
Φij.
The value of the flux Φij at the interface between two cells Ci and Cj can
be determined precisely using a Godunov method which exactly solves
the Riemann problem between the two cells. However, we do not use
this method because of the expensive computation cost. We use instead
approximate Riemann solvers. One of the best methods of approximate
Riemann solvers is the Roe (1981) scheme which we will briefly describe
below. This method consists in replacing the exact Riemann problem bet-
ween two cells Ci and Cj by a locally linearized one.

1.4.2 Roe Scheme

Consider the Riemann problem at the interface between the two neigh-
boring cells Ci and Cj respectively on the left and on the right of ∂Cij :







∂U
∂t +∇ � (F(U)) = 0

U(x, t) =
{

Ui if x ∈ Ci

Uj if x ∈ Cj
.

(1.14)

We rewrite the divergence term using three directions of space using the
coordinates (n, τ1, τ2) with n exterior unit normal to ∂Cij and τ1, τ2 the
two unit tangents of that interface. We introduce the normal flux vector
Fn = F.n and the tangent flux vectors Fτ1 = F.τ1, Fτ2 = F.τ2 which are the
three columns of the flux matrix F written in coordinates (n, τ1, τ2). The
equations of the system (1.14) can be written as

∂U

∂t
+

∂Fn
∂n

+
∂Fτ1

∂τ1
+

∂Fτ2

∂τ2
= 0.

As the initial data is independent of τ1 and τ2, the solution of (1.14) will
not depend on τ1 and τ2. We would like to determine an approximation of
the normal flux crossing the interface using the one dimensional Riemann
problem :

{

∂U
∂t + ∂Fn

∂n = 0 U(x, t) =
{

Ui if x.n < 0
Uj if x.n > 0

. (1.15)

14 Chapitre 1. Hyperbolic Systems of Conservation Laws

The term ∂Fn
∂n is linearized in the neighborhood of the interface between

two cells Ci and Cj, and involves the Roe matrix A(Ui,Uj,nij) which we
denote by ARoe,nij

. This matrix should satisfy the following conditions :

1. respect the hyperbolicity of the system, which means ARoe,nij
should

be diagonalizable in R;

2. be consistent with the jacobian matrix of the flux F in the direction
n :

ARoe,nij
(Ui,Ui) = ∇Fn(Ui);

3. ensure the conservation principle across the boundary :

∀(Ui,Uj), (F(Ui)− F(Uj)).nij = ARoe,nij
(Ui −Uj).

We remark that in general such a linearization is not uniquely defined.
The (first order accurate) numerical flux of Roe’s can be given by :

Φij =
F(Ui) + F(Uj)

2
.nij + |ARoe,nij

|Ui −Uj

2
, (1.16)

where |ARoe,nij
| is the absolute value of the Roe matrix.

On a cartesian mesh, the Roe scheme is consistent with (1.14) and conser-
vative. Hence the Lax-Wendroff theorem (given in LeVeque (2002), Section
12.10) implies that if the method converges, then it will converge to a
weak solution of the conservation law (1.14).
The Roe scheme is a simple method which presents a minimal numerical
diffusion, and which propagates all the waves with good speed. However,
the computation of the absolute value of a matrix is not always obvious
because we need to know the matrix and the sign of its eigenvalues. We
will thereafter provide an efficient method for the computation of that
value.

Let A be a diagonalizable matrix in R, then we can write A = TDT−1

with D the diagonal of A and we define A± = TD±T−1 such that :

diag(D+) = {λ/λ = λk > 0},

diag(D−) = {λ/λ = λk < 0}.
We then have

A = A+ + A−,

and

A+ =
A+ |A|

2
, (1.17)

A− =
A− |A|

2
. (1.18)

For the computation of A+ et A− we can use the following formulations :

A =
p

∑
k=1

λklk ⊗ rk,

1.4. Numerical Schemes for Hyperbolic Systems 15

where λk are the eigenvalues of A and lk, rk are the corresponding left and
right eigenvectors of A, respectively.
We then have the following expressions :

A+ =
p

∑
k=1

λklk ⊗ rk, λk > 0, (1.19)

and

A− =
p

∑
k=1

λklk ⊗ rk, λk < 0. (1.20)

By definition, ARoe,nij
is diagonalizable in R and we have :

ARoe,nij
= Tdiag (λ1, . . . ,λd)T

−1,

then
∣

∣

∣ARoe,nij

∣

∣

∣ = Tdiag (|λ1|, . . . , |λd|)T−1.

The formula (1.16) can be written as follows :

Φij = F(Ui)nij +
F(Uj)− F(Ui)

2
nij +

1
2

∣

∣

∣
ARoe,nij

∣

∣

∣
(Ui −Uj)

= F(Ui)nij +
1
2
ARoe,nij

(Uj −Ui) +
1
2

∣

∣

∣
ARoe,nij

∣

∣

∣
(Ui −Uj)

= F(Ui)nij + A−Roe,nij
(Uj −Ui).

This flux can also be written in the following equivalent form :

Φij = F(Uj)nij − A+
Roe,nij

(Uj −Ui).

We inject those formulae and use the property ∑ F(Ui)nij =
−→
0 to

obtain our numerical scheme :

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
A−Roe,nij

(Uj −Ui) = 0. (1.21)

The formulation (1.21) leads to two types of schemes : explicit and impli-
cite schemes.

Explicit Scheme

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
A−Roe,nij

(Un)(Un
j −Un

i) = 0,

or
Un+1

i = Un
i − ∆t ∑

j∈N(i)

sij

vi
A−Roe,nij

(Un)(Un
j −Un

i).

The advantage of the explicit scheme is clear. The solution at time step
(n+ 1) is explicitly computed using the solution at the previous time step

16 Chapitre 1. Hyperbolic Systems of Conservation Laws

without matrix inversion. This method typically require less computatio-
nal work and are simpler both in derivation, application and paralleliza-
tion than implicit ones. Unfortunately, explicit schemes are generally cha-
racterized by a stability condition which is expressed by a CFL (Courant-
Friedrichs-Lewy) condition. This condition depends on the fastest waves
travelling the system and on the smallest cell of the mesh. In the context
of high performance computing, the simulation of a large industrial pro-
blem often requires local refinements of the mesh to capture small scale
phenomena such as boundary layers. Hence, the finer the local mesh is,
the higher the number of time steps have to be performed using an explicit
scheme.

Implicit Scheme

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
A−Roe,nij

(Un+1)(Un+1
j −Un+1

i) = 0

Implicit methods, though computationally expensive, have less stringent
stability conditions, and generally allow the use of larger time steps. Im-
plicit schemes are usually chosen to capture solutions which require fine
grid space, and to solve time scales that are not necessarily those of the
fastest waves. For instance, in steady-state calculations we wish to inte-
grate from some arbitrary initial guess to a steady solution which is often
dominated by matter waves. Unfortunately, for implicit schemes, a non
linear system has to be solved at each time step. We will therefore use
Newton method to solve this system.

1.4.3 Newton Method for the Implicit Scheme

We denote by f the vector function with value in RN×m whose com-
ponent i is

f (U)|i =
Ui −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
{A−Roe(U))}(Uj −Ui).

We have to find the zero of f assuming all Un
i are known. For the sake of

simplicity in the notations we remove the indices i. We start with U0 = Un,
and we construct a sequence (Uk)k≥0 that tends to a zero of f . We compute
f (Uk+1) from f (Uk) by the Newton iterative algorithm :

f (Uk+1) ∼= f (Uk) + f ′(Uk)(Uk+1 −Uk) = 0.

We use an approximation of f ′(Uk) :

f ′(Uk) ≃ ∆t−1I + ∑
i

∑
j∈N(i)

sij

vi

(

A−(Uk
Roe)

)

eij

which means we do not differentiate the matrices A− with regard to U.
We have therefore the following system which results from Newton me-

1.4. Numerical Schemes for Hyperbolic Systems 17

thod :

Uk+1
i −Uk

i

∆t
+ ∑

j

sij

vi

[

A−(Uk
Roe))

] [

(Uk+1
j −Uk

j)− (Uk+1
i −Uk

i))
]

+
Uk

i −Un
i

∆t
+ ∑

j

sij

vi

[

A−(Uk
Roe)+

]

(Uk
j −Uk

i) = 0.

By denoting δUk+1 = Uk+1 −Uk, the variation of the k− th iteration that
approximates the solution at time step n + 1, we have a linear system of
unknown δUk+1 to solve :

δUk+1

∆t
+ ∑

j

sij

vi

[

A−(Uk
Roe)

] (

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

∆t
−∑

j

sij

vi

[

A−(Uk
Roe)

]

(Uk
j −Uk

i).

Defining the unknown vector U = (U1, . . . ,UN)
t, each Newton iteration

for the computation of U at time step n+ 1 requires the numerical solution
of the following linear system :

A(U k)δU k+1 = b(U n,U k). (1.22)

1.4.4 Boundary Conditions

In order to make the problem well-posed (at least for the numerical
simulation) we need to set the boundary conditions. We will see in this
paragraph how to manage these conditions. The idea is to include a few
additional cells on the boundary, called ghost cells, whose values are set at
the beginning of each time step in some manner. Here, we are interested in
four types of boundary conditions : solid wall, inlet, outlet, and Neumann
boundary conditions.

Solid Wall Boundary Conditions In the case of solid wall boundary
condition, the ghost cell is determined such that we impose a non friction
at the boundary. So in our problem, if vin is the velocity of the fluid in
the boundary cell of the computational domain we define the velocity of
the ghost cell vout.n = −vin.n where n is the exterior normal vector and
vout.τ = vin.τ where τ is a tangent vector.

Neumann Boundary Conditions In this case, we prescribe the gra-
dient normal to the boundary of a variable at the boundary. Usually, we
take the state of the ghost cell equal to the internal state.

Inlet Boundary Conditions In this case, we prescribe the velocity
and the temperature of the ghost cells. The pressure at the inlet is taken
equal to that of the internal state.

Outlet Boundary Conditions At the outlet, the pressure is imposed
while all other quantities are extrapolated from the interior domain.

18 Chapitre 1. Hyperbolic Systems of Conservation Laws

1.4.5 Entropy Fix for Roe Scheme

It is well-known that the Roe’s linearization may lead to non-entropic
weak solutions of the governing equations due to the linearization of the
Riemann problem. It often occurs when the exact solution consists a trans-
onic rarefaction wave that is, when an eigenvalue λk of the jacobian matrix
changes its sign (Toro (2009), Sec. 11.4). We are particularly interested in
this situation because the eigenvalues of the jacobian matrix of cross flows
(as we are interested in two-phase flows) may change sign (3.38).
In the Roe scheme, the numerical diffusion is proportional to the eigenva-
lues. Hence, when an eigenvalue is close to zero, the amount of numerical
viscosity might be too small to prevent an entropy-condition violation.
Several remedies are conceivable. Here we will outline the entropy fix
presented by A.Harten (1983) .

Harten’s Entropy Fix Harten’s entropy fix (A.Harten (1983)) can be re-
garded as an addition of numerical diffusion to the kth field if the eigenva-
lue λk is too close to zero. Then instead of using |ARoe,nij

| in (1.16), we use
AH,nij

with the same eigenvectors but the eigenvalue λk has been replaced
by Φδ(λk). Φδ(λk) defined by :

Φδ(λk) =







|λk| if |λk| ≥ δ

λ2
k+δ2

2δ if |λk| < δ
,

with δ a given positive constant. An advantage of this approach is its easy
implementation as we use only the eigenvalues of the jacobian matrix. A
disadvantage, on the other hand, is that the parameter δ must typically be
depending on the problem.

2Some Basics on Linear
Systems and Their Solvers

Contents
2.1 Direct Solvers for Linear Systems 21

2.2 Iterative Solvers for Linear Systems 22

2.2.1 Classical Iterative Methods 22

2.2.2 Projection Methods . 23

2.3 Preconditioner . 26

2.3.1 Incomplete LU Preconditioners 26

2.3.2 Schur Complement Techniques 28

In this chapter, we are interested in the solution of linear systems of
dimension n

Ax = b, (2.1)

where A is a nonsingular square matrix. Such systems can be encountered
in almost every problem in scientific computing. Since the algorithms for
solving linear systems are widely used in a large range of applications,
the methods must then be efficient, accurate, reliable and robust.
Two classes of methods for solving those systems are of interest : direct
methods and iterative methods. In a direct method, the matrix of the initial
linear system is transformed or factorized into a simpler form, involving
diagonal or triangular matrices, using elementary transformations, which
can be solved easily. The exact solution is obtained in a finite number of
arithmetic operations, if not considering numerical rounding errors. The
most prominent direct method is the Gaussian elimination. Iterative me-
thods, on the other hand, compute a sequence of approximate solutions,
which converges to the exact solution in the limit, i.e., in practice until a
desired accuracy is obtained.
For a long time, direct methods have been preferred to iterative methods
for solving linear systems, mainly because of their simplicity and robust-
ness. However, the emergence of conjugate gradient methods and Kry-
lov subspace iterations provided an efficient alternative to direct solvers.
Nowadays, iterative methods are almost mandatory in complex applica-
tions, notably because of memory and computational requirements that

19

20 Chapitre 2. Some Basics on Linear Systems and Their Solvers

prohibit the use of direct methods. Iterative methods usually involve a
matrix-vector multiplication procedure that is cheap to compute on mo-
dern computer architectures.

2.1. Direct Solvers for Linear Systems 21

2.1 Direct Solvers for Linear Systems

At first, we introduce direct methods to solve the linear system (2.1).
We are especially interested in the LU factorization.

Definition 2.1 To compute the factorization LU of the nonsingular matrix A is to determine L,
a lower triangular matrix, and U, an upper triangular matrix, such that A = LU.

Once the LU is obtained, the system Ax = b can be solved in two
steps : solving the system Ly = b, then the system Ux = y. Since L is a
lower triangular matrix, the system Ly = b can be solved by successive
substitutions from the first to the last row. This step is called “forward
substitution”.
The forward substitution algorithm can be written as follows :

for i = 1 to n do

for j = 1 to i− 1 do

bi = bi − lij.yj

endfor

if lii = 0 then error !
else yi = bi/lii
endfor

Likewise, since U is an upper triangular matrix, the system Ux = y
can be solved by “backward substitution”, which means successive substi-
tutions from the last to the first row. The backward substitution algorithm
can be written as follows :

for i = n to 1 do

for j = i+ 1 to n do

yi = yi − uij.xj

endfor

if uii = 0 then error !
else xi = yi/uii

endfor

The principal cost of direct methods lie on the factorization step. Here
we give the algorithm of the Gauss factorization :

for k = 1 to n− 1 do

for i = k+ 1 to n do

if akk = 0 then error !
else aik = aik/akk

endfor

for j = k+ 1 to n do

for i = k+ 1 to n do

aij = aij − aik.akj

endfor

endfor

endfor

The algorithm builds, in the case of existence, the Gauss factorization
of the matrix, A = LU, where L is a lower triangular matrix whose diago-

22 Chapitre 2. Some Basics on Linear Systems and Their Solvers

nal entries are 1 and U is an upper triangular matrix.

Unfortunately, not all matrices can be factorized into LU form. For
example, it is easy to verify that a11 = l11u11. Therefore, if a11 = 0, then at
least one of l11 and u11 has to be zero. The product LU becomes singular,
while A is not necessarily singular. This means such matrices cannot be
LU decomposed. To overcome this limitation, we use a LU decomposition
with partial (or full) pivoting. That is, we left-multiply (or left and right
multiply) A with a permutation matrix. This matrix reorders the rows
(or rows and columns) of A. After reordering, the resulted matrix can be
factorized in the LU form (Trefethen and D. Bau (1997), Lecture 20). As
we often have to reorder the rows (or rows and columns) of the matrix
A when performing the LU decomposition, it make the procedure very
costly when we use parallel computing. In Okunev and Johnson (2005),
the authors provided the necessary and sufficient conditions for existence
of the LU factorization of an arbitrary matrix which states as follows :

Theorem 2.1 A square matrix A = (aij) has an LU factorization iff it satisfies the conditions :

rankA[{1...k}] + k ≥ rankA[{1...k}, {1...n}] + rankA[{1...n}, {1...k}],

for all k = 1, ..., n.

2.2 Iterative Solvers for Linear Systems

If the size of the system (2.1) is very large, direct method are very
expensive in memory and computational time. For example, the Gauss
factorization algorithm has a complexity of O(n3) and there are no algo-
rithms whose complexity is linear. Moreover, from a sparse matrix, when
using direct methods we obtain a dense matrix which is not possible to be
stored in memory.
In those cases, we use iterative methods. There are two main types of ite-
rative methods : the classical and the projection ones.

2.2.1 Classical Iterative Methods

These methods are generally analyzed in terms of splitting the matrix
A. Given a nonsingular matrix P, the splitting A = P − N defines an
iterative method as follows : Starting from an initial approximation x0, we
compute um+1 by solving the following linear system :

Pum+1 = Nxm + b, (2.2)

or, equivalently,
um+1 = Bxm + c, (2.3)

where B = P−1N is the iteration matrix and c = P−1b. P should be an “in-
expensive” matrix. For example, in the Jacobi method, P is the diagonal
part of A, and in the Gauss-Seidel method, P is the lower part of A ; see
for instance [Varga (2000), chapters 3 and 4].
Since B does not depend on the iteration count m, these iterative me-
thods are called stationary. The method (2.3) converges for any x0 provided

2.2. Iterative Solvers for Linear Systems 23

ρ(B) = ρ(I− P−1A) < 1. Note that (2.2) can be rewritten in an equivalent
form as

P(um+1 − xm) = rm, (2.4)

where rm ≡ b− Axm is the residual of the linear system at the m-th step.
This leads to the class of Richardson methods ; see Varga (2000) and Saad
(2000) for more details. Richardson methods contain all the main features
of modern iterative methods : the scheme consists of matrix-vector pro-
ducts, vector-vector products, and vector updates, plus the solution of a
linear system.
In modern times, classical iterative methods are seldom used in practice,
whereas they are often employed as preconditioners for a more perfor-
ming iterative procedure like the projection methods, covered in the follo-
wing section.

2.2.2 Projection Methods

The idea of projection methods is to find an approximate solution from
a well-chosen subspace of Rn. This subspace, say Vm, will be of dimension
m (generally m ≪ n) ; therefore the candidate solution will be found out
by imposing m contraints. A typical way of describing these constraints
is to impose m (indenpent) orthogonality conditions. In general, given an
approximate solution xm, the residual rm is constrained to be orthogonal
to m linearly indenpent vectors, which define another subspace, say Wm,
of dimension m. The spaceWm is called the subspace of constraints.
Generally, we may define a projection method for the solution of (2.1) as a
process which finds an approximate solution xm by imposing the Petrov-
Galerkin condition that xm belongs to the affine space x0 + Vm and that
the new residual vector must be orthogonal toWm :

{

Find xm ∈ x0 + Vm such that
b− Axm⊥Wm.

(2.5)

To obtain a matrix representation of problem (2.5), let Vm = [v1, ..., vm] be
an nxm matrix whose column vectors form a basis of Vm and, similarly,
Wm = [w1, ...,wm] be an nxm matrix whose column vectors form a basis of
Wm. Writing the approximate solution as

xm = x0 +Vmym, ym ∈ C
m, (2.6)

the orthogonality condition leads to the system of equations

WT
m(b− Ax0 − AVmym = 0),

and therefore
xm = x0 +Vm(W

T
mAVm)

−1WT
mr0.

Clearly, this approximate solution xm is defined only when the matrix
WT

mAVm is nonsingular, which, for arbitrarily chosen spaces Vm andWm is
not guaranteed to be true even though A is nonsingular. It can be shown
that WT

mAVm is nonsingular for any basis Vm and Wm of Vm and Wm, res-
pectively, if A is positive definite andWm ≡ Vm, or if A is nonsingular and
Wm ≡ AVm ; see for instance, Saad (2000).

24 Chapitre 2. Some Basics on Linear Systems and Their Solvers

In modern iterative methods, the subspaces Vm and Wm are Krylov
subspaces, that is subspaces spanned by vectors of the form Pm(A)v,
where Pm(A) is a polynomial of degree m in A, and v is a vector. The
Krylov subspace Vm may be defined as

Km = Km(A; r0) = span {r0, Ar0, ..., Am−1r0}.
The main classes of Krylov subspace iterative methods fall into three cate-
gories, depending on the choice ofWm :

– The Ritz-Galerkin approach (Wm ≡ Vm) : build xm for which the
residual is orthogonal to the current space. When the matrix A is
symmetric positive definite, this choice minimises the A norm of the
error xm − u. An example is the Conjugate Gradient (CG) method of
Hestenes and Steifel (1952) ;

– The minimum residual approach (Wm ≡ AVm) : determine xm which
minimises the residual norm ||b− Axm||2. Examples are the GMRES
method of Saad and Schultz and its variants (Saad (2000)) ;

– The Petrov-Galerkin approach : find xm so that the residual is or-
thogonal to some other m-dimensional space. A possible choice is
Wm ≡ Km(AT, r̃0), where r̃0 is a vector nonproportional to r0. This
choice was designed for nonsymmetric problems, and may pro-
vide a short-term recurrence relation for the Krylov subspace bases.
Examples are the Bi-CG method of Fletcher (1976), the CGS method
of Sonneveld (1989), the Bi-CGSTAB method of van der Vorst (1992),
and the QMR method of Freund and Nachtigal (1991).

As a general rule, we can say that if the matrix is symmetric posi-
tive definite, the CG method is the best choice, while for nonsymmetric
problems usually GMRES is the most stable of all methods. Many other
methods have been proposed in literature, like FOM, ORTHOMIN, OR-
THODIR, ORTHORES, MINRES, SYLMMLQ. For an exhaustive presenta-
tion the reader is addressed to Saad (2000).

GMRES Method In the sequel, we describe in some details the GMRES
method. This method was proposed by Saad and Schultz (1986) for the
solution of large nonsymmetric problems.
For the sake of generality, we describe this method for linear systems
whose entries are complex. Everything also applies to real entries.
Let x0 ∈ Cn be an initial guess for the linear system (2.1) and r0 = b− Ax0
be its corresponding residual. At step m, the GMRES algorithm builds an
approximation of the solution of (2.1) under the form

xm = x0 +Vmym, (2.7)

where ym ∈ Cm and Vm = [v1, ..., vm] is an orthonormal basis for the Krylov
space of dimension m defined by

Km = Km(A; r0) = span {r0, Ar0, ..., Am−1r0}.
The vector ym is determined so that the 2-norm of the residual rk = b−
Axk is minimized over x0 + Km. The basis Vm for the Krylov subspace

2.2. Iterative Solvers for Linear Systems 25

Km is obtained via the well-known Arnoldi process (Arnoldi (1951)). The
orthogonal projection of A onto Km results in an upper Hessenberg matrix
Hm = VT

m AVm of order m. The Arnoldi process satisfies the relationship

AVm = VmHm + hm+1,mvm+1e
T
k , (2.8)

where em is the mth canonical basis vector. Equation (2.8) can be rewritten
in a matrix form as

AVm = Vm+1H̄m,

where

H̄m =

[

Hm

0...0 hm+1,m

]

is an (m+ 1)×m matrix.
Let v1 =

r0
β where β = ||r0||2. The residual rm which is associated with the

approximate solution xm defined by (2.7), satisfies

rm = b− Axm = b− A(x0 +Vmym)

= r0 − AVmym = r0 −Vm+1H̄mym

= Vm+1(βe1 − H̄mym).

Because Vm+1 is a matrix with orthonormal columns, the residual norm
||rm||2 = ||βe1 − H̄mym||2 is minimized when ym solves the linear least-
squares problem

min
y∈Cm

||βe1 − H̄my||2. (2.9)

We denote by ym the solution of (2.9). Therefore, xm = x0 + Vmym is an
approximate solution of (2.1) for which the residual is minimized over
x0 + Km. The GMRES method owes its name to this minimization pro-
perty that is its key feature as it ensures the decrease of the residual norm
associated with the sequence of iterates.

An appealing property of GMRES is that, in exact arithmetic, the me-
thod cannot breakdown or, more precisely, it can only breakdown when
it delivers the exact solution. However, GMRES is not limited-memory :
Vm has to be stored completely. Every iteration, a new basis vector has
to be computed and stored. Orthogonalization of new basis vectors also
becomes increasingly more expensive with m. A restarted GMRES can
be employed to reduce memory requirements, at the price of possibly
non-convergence of the scheme. This restarted method is usually called
GMRES(k), where k is the maximal dimension of the Krylov subspace.

For the convergence of GMRES method, from Trefethen and D. Bau
(1997), we have

‖rm‖
‖b‖ ≤ inf

p∈Pm

‖pm(A)‖ ≤ κ(V) inf
p∈Pm

max
λ∈σ(A)

|p(λ)|, (2.10)

where Pm denotes the set of polynomials of degree at most m with
p(0) = 1, V is a nonsingular matrix of eigenvectors of A (assuming A is
diagonalizable), and σ(A) is the set of eigenvalues of A. Roughly spea-
king, this says that fast convergence occurs when the eigenvalues of A are
clustered away from the origin and A is not too far from normality.

26 Chapitre 2. Some Basics on Linear Systems and Their Solvers

2.3 Preconditioner

The convergence of iterative methods depends on the spectral proper-
ties of the linear system matrix. We define the condition number of the
matrix by K(A) = ‖A‖‖A−1‖. The basic idea of preconditioning is to re-
place the original problem (2.1) by

M−1Ax = M−1b

(left-preconditioning), or by

AM−1Mx = b

(right-preconditioning), using a linear transformation M−1, called precon-
ditioner, in order to reduce the condition number of the preconditioned
matrix. In general terms, a preconditioner is any kind of transformation
applied to the original system which makes it easier to solve.
In a modern prespective, the general problem of finding an efficient pre-
conditioner is to identify a linear operator M having the following proper-
ties :

1. M is a good approximation of A in some sense. Although no general
theory is available, we can say the M should act so that M−1A is
near to being the identity matrix and its engenvalues are clustered
within a sufficiently small region of the complex plane ;

2. M is efficient, in the sense that the iteration method converges much
faster, in terms of CPU time, for the preconditioned system. In other
words, preconditioners must be selected in such a way that the cost
of constructing and using them is offset by the improved conver-
gence properties they allow to achieve ;

3. M or M−1 can take advantage of the architecture of modern super-
computers, that is, can be constructed and applied in parallel envi-
ronments.

The choice of M varies from “black-box” algebraic techniques which can
be applied to general matrices to “problem dependent” preconditioners
which exploit special features of a particular class of problems.

2.3.1 Incomplete LU Preconditioners

A broad class of effective preconditioners for sparse matrices is ba-
sed on incomplete factorization of the matrix, and it is usually indicated
as ILU. A general algorithm for building ILU preconditioner can be de-
rived by performing Gaussian elimination and dropping some elements
in predetermined nondiagonal positions. This algorithm can be written as
follows :
for k = 1 to n− 1 do :

for i = k+ 1 to n do

if aik 6= 0 :
if akk = 0 then error !

2.3. Preconditioner 27

else aik = aik/akk

for j = k+ 1 to n do :
if aij 6= 0 then aij = aij − aikakj

endfor

endfor

endfor

Here, the matrix which we implicitly define preserve the sparse struc-
ture of A. This simple ILU factorization is known as ILU(0). Although
effective, in some cases the accuracy of the ILU(0) may be insufficient to
yield an adequate rate of convergence. More accurate factorizations will
differ from ILU(0) by allowing some fill-in. The resulting class of methods
is called ILU(k) where k is the level of fill-in. A level of fill-in is attributed
to each matrix entry that occurs in the incomplete factorization process.
Fill-ins are dropped based on the value of the level of fill. The level
of fill should be indicative of the size of the element : the higher the le-
vel of fill, the less sparse the matrix. This method is detailed in Saad (2000).

Alternative dropping techniques can be based on the numerical size of
the element to be discarded. The general strategy is to compute an entire
row of the L and U matrices, and then keep only the entries that larger
than a threshold. In this way, the amount of fill-in is controlled ; however,
the structure of the resulting matrices is undefined. That factorization is
referred to as ILUT. In the following algorithm, w is a full-length working
row which is used to accumulate linear combinations of sparse rows in
the elimination, wk is the kth entry of this row and ai∗ denotes the ith row
of A.
for i = 1 to n do :

w := ai∗
for k = 1 to i− 1 do

if wk 6= 0 :
if akk = 0 then error !
else wk = wk/akk

Apply a dropping rule to wk

if wk 6= 0 : then w = w − wkuk∗
endfor

Apply a dropping rule to w
for j = 1 to i− 1 do :

lij = wj

endfor

for j = i to n do :
uij = wj

endfor

w := 0
endfor

Notwishstanding their popularity, incomplete factorization methods
have their limitations. In fact, one can only prove the existence of the ILU
preconditioner for an M-matrix (Meijerink and van der Vorst (1977)) and a
H-matrix (Varga et al. (1980)). Also, the ILU factorization may breakdown
or become indefinite for a positive matrix. They also add more difficulties
in the parallelization, and lack of algorithmic scalability.

28 Chapitre 2. Some Basics on Linear Systems and Their Solvers

Many other variants have been presented in the literature. Latest develop-
ments concern multilevel methods, like ILUM (Saad (2000)), or BILUM
(Saad and Zhang (1999)), or ARMS (Saad and Suchomel (2002)). These
approaches try to combine the “general-purpose” approach of ILU-type
preconditioners with the superior convergence rate of multilevel methods,
and of multigrid methods, using some ideas from domain decomposition
methods.

2.3.2 Schur Complement Techniques

Let I and B be two disjoint sets of indices, whose cardinality is nI

and nB, respectively, such that a generic vector x ∈ Rn can be written as
x = [xI , xB], and a generic matrix A ∈ Rnxn can be reordered consistently
with I and B,

A =

(

AI I AIB

ABI ABB

)

(2.11)

where AI I and ABB are square matrices.

Definition 2.2 If AI I is nonsingular, we define

S ≡ A/AI I = ABB − ABIA
−1
I I AIB. (2.12)

If AI I is singular, we define

S ≡ A/AI I = ABB − ABIA
+
I IAIB, (2.13)

where A+
I I is the pseudo-inverse (Moore-Penrose) inverse of matrix AI I . S is called

the Schur complement of A with respect to AI I .

Note that S is the matrix that results when we eliminate the block ABI

using block Gaussian elimination with AI I as pivot block. In fact, the block
matrix triangular factorisation of A is readily found to be

A =

(

II 0
ABIA

−1
I I IB

)(

AI I 0
0 S

)(

II A−1I I AIB

0 IB

)

, (2.14)

where II and IB are the identity matrices whose dimensions are nI and nB

respectively. Then, the inverse of A may be expressed using A−1I I and the
inverse of Schur’s complement (if it exists) as

A−1 =
(

II −A−1I I AIB

0 IB

)(

A−1I I 0
0 S−1

)(

II 0
−ABIA

−1
I I IB

)

(2.15)

or, equivalently

A−1 =
(

A−1I I + A−1I I AIBS
−1ABIA

−1
I I −A−1I I AIBS

−1

−S−1ABIA
−1
I I S−1

)

. (2.16)

Then if we can approximate the inverse of AI I and S we can use (2.16) to
approximate the inverse of A and use that as a preconditioner.

3Numerical Simulation of
Compressible flows

Contents
3.1 Single-phase Flows . 31

3.1.1 Compressible Navier-Stoke equations 31

3.1.2 Numerical Scheme . 33

3.1.3 Scaling Strategy . 36

3.1.4 Numerical Results . 37

3.2 Two-phase Flows . 52

3.2.1 Compressible Two-phase Flows 52

3.2.2 Numerical Scheme . 57

3.2.3 Roe Matrix for Isentropic Two-fluid Model 58

3.2.4 The Entropy Correction . 61

3.2.5 Incompressible Limit of Two-phase Flows 61

3.2.6 Numerical Results . 64

In this chapter, we first describe in Sec. 3.1, the mathematical and compu-
tational framework of the compressible single-phase flows considered

for our purpose. Using the finite volume method described in Sec. 1.4,
we obtain conservative schemes for the compresible single-phase flow. We
then present different test cases utilized from now on. Those tests are aca-
demic ones and allow us to verify our schemes and study the spectrum of
our matrices. The Scaling strategy, which improves the condition number
of the matrix, is introduced in Sec. 3.1.3. This strategy is a similarity trans-
formation of the matrix, so that the off diagonal entries of the matrix have
the same order of magnitude. Numerical results show that this method
reduces the computational cost and accelerates the convergence of both
linear system and Newton scheme iterations.

The mathematical and computational framework of the compressible
two-phase flows are presented in Sec.3.2. As in the case of single-phase
flows, we separate the convection flux and the diffusion flux. We pay
special attention to the discretization of the convective flux. Since the
convective flux consists of nonconservative terms, we need to find an

29

30 Chapitre 3. Numerical Simulation of Compressible flows

appropriate way to locally linearize those terms. We also study the
asymptotic behavior of the isentropic two-fluid model in the case where
the two phases are assumed incompressible. That hypothesis gives a sys-
tem of two partial differential equations of first order. This system allows
us to easily study its hyperbolicity and its behavior when one of the
phases vanishes. Also, we introduce an entropy fix that helps obtaining
a positive Roe’s scheme. We then present the numerical test cases and
numerical resutls.

3.1. Single-phase Flows 31

3.1 Single-phase Flows

3.1.1 Compressible Navier-Stoke equations

In mechanics, the Navier-Stokes equations describe the motion of fluid
substances. These equations arise from applying Newton’s second law to
fluid motion, together with the assumption that the fluid stress is the sum
of a diffusive viscous term and a pressure term. There exists various forms
of the Navier-Stokes equations. For the sake of simplicity, we present here
a simple form. It consists of the following three balance laws for mass,
momentum and energy :























∂ρ
∂t + ∇.q = 0

∂q
∂t + ∇.

(

q⊗ q
ρ + pId

)

− ν∆(qρ) = 0

∂(ρE)
∂t + ∇.

[

(ρE+ p)qρ

]

− λ∆T = 0,

(3.1)

where ρ is the density, v is the velocity vector, q = ρv is the momentum, p

is the pressure, ρe is the internal energy, ρE = ρe+ ||q||2
2ρ is the total energy,

T is the absolute temperature, ν is the viscosity, and λ is the thermal
conductivity.

In order to close the systeme, we have to add an equation of state (EOS)
which is a relation between the density, the velocity and the pressure of
the fluid. For ideal gases with the ratio of specific heats γ (γ > 0), this
relation is written as :

p = (γ− 1)ρe. (3.2)

By denoting U =





ρ
q

E



 , the Navier-Stokes equations can be written as

a system of conservation laws :

∂U

∂t
+∇ � (Fconv(U)) +∇ �

(

Fdi f f (U)
)

= 0, (3.3)

where

Fconv(U) =







q

q⊗ q
ρ + pId

(ρE+ p) q
ρ







is the convective flux, and

Fdi f f (U) =







0
−ν
−→∇ (qρ)

−λ
−→∇T







is the diffusive flux.
We would like to set the (3.3) in the quasilinear form (3.4) using an ortho-
normal basis (n, τ1, · · · τd−1) of the d dimensional space Rd :

∂U

∂t
+ An(U)

∂U

∂n
+ Aτ1(U)

∂U

∂τ1
+ · · · Aτd−1(U)

∂U

∂τd−1
(3.4)

+ Dn(U)
∂U

∂n
+ Dτ1(U)

∂U

∂τ1
+ · · ·Dτd−1(U)

∂U

∂τd−1
= 0.

32 Chapitre 3. Numerical Simulation of Compressible flows

As we use the finite volume method, we will focus on the determination
of An and Dn with n is the unit vector normal to the interface between
two neighboring cells.
Because we are only interested in An and Dn, we will only regard the
terms involving ∂U

∂n , and for the simplicity of writing, we often replace
contributions of ∂U

∂τi
by · · · . As an example of this convention, the equation

3.4 can be written as

∂U

∂t
+ An(U)

∂U

∂n
+ · · ·+ Dn(U)

∂U

∂n
+ · · · = 0,

where the coefficient matrices An and Dn are the Jacobian matrices

An =
∂Fconv(U)

∂n
, Dn =

∂Fdi f f (U)

∂n
.

Analysis of the convective part The Jacobian matrix An is

An(U) =









0 nt 0
γ−1
2
‖q‖2

ρ2
n− v · nq

ρ
q
ρ ⊗ n− (γ− 1)n⊗ q

ρ + n.qρ Id (γ− 1)n

(γ−1
2
‖q‖2

ρ2
− H)v · n Hnt − (γ− 1)v · nq

ρ
t

γv · n









,

(3.5)
where H is the total enthalpy and is defined by

H = γE+
γ− 1
2

||q||2
ρ2

.

The eigenvalues λk of that matrix are given as follows :






λ1 = v · n− c
λ2 = · · · = λd+1 = v · n
λd+2 = v · n+ c,

where c is the sound speed.
The left eigenvectors lk and right eigenvectors rk associated to these eigen-
values can be taken equal to

– v · −c :

r1 =





1
q
ρ − c n

H − v · nc



 and l1 =
1
2c2







γ−1
2
‖q‖2

ρ2
+ v · nc

(1− γ)qρ − c nij

(γ− 1)






,

– v · n+ c :

rd+2 =





1
q
ρ + c n

H + v · n c



 and ld+2 =
1
2c2







γ−1
2
‖q‖2

ρ2
− v · nc

(1− γ)qρ + c n

(γ− 1)






,

– v · n :

r2 =







1
q
ρ

H − c2

γ−1






and l2 =

γ− 1
c2







H − ‖q‖2
ρ2

q
ρ

−1






,

3.1. Single-phase Flows 33

then, let (ep)1≤p≤d−1 be an orthonormal basis of the hyperplane or-
thogonal to n. We have :

rp+2 =





0
ep
q
ρ .ep



 and lp+2 =





−q
ρ · ep
ep
0



 .

As the eigenvalues λk are all real and the eigenvectors rk form a complete
set of linearly independent eigenvectors, the convective part of the Navier-
Stokes equations (3.1) is hyperbolic.

Analysis of the diffusive part The Jacobian matrix Dn of the diffusive
part is

Dn(U) =







0 0 0
νq
ρ2

−ν
ρ Id 0

λ
Cv

(

CvT
ρ − ||q||2

2ρ3

)

q tλ
ρ2Cv

− λ
Cvρ






,

where Cv is the heat capacity at constant volume.

3.1.2 Numerical Scheme

The conservation form (3.3) allows us to use the numerical scheme
described in Sec.1.4. We decompose the computational domain into N
disjoint cells Ci with volume vi. Integrating the system (3.3) over Ci,

∫

Ci

{

∂U

∂t
+∇ � (Fconv(U)) +∇ �

(

Fdi f f (U)
)

}

dx = 0

yields
∫

Ci

∂U

∂t
dx + ∑

j∈N(i)

∫

∂Cij

Fconv(U).nij ds+ ∑
j∈N(i)

∫

∂Cij

Fdi f f (U).nij ds = 0,

(3.6)
or, equivalently

∫

Ci

∂U

∂t
dx + ∑

j∈N(i)

sijΦ
conv
ij + ∑

j∈N(i)

sijΦ
di f f
ij = 0, (3.7)

where ∂Cij is the common boundary of two neighboring cells Ci and Cj,
N(i) is the set of neighbors of a given cell Ci and nij the exterior unit
normal vector of ∂Cij. We also denote sij the area of ∂Cij.
We will build the numerical fluxes of convection and diffusion separately.

Convection Discretization We define the numerical flux of convection

Φconv
ij =

1
sij

∫

∂Cij

(Fconv(U)) .nijds,

using the Roe flux as follows :

Φconv
ij =

Fconv(Ui) + Fconv(Uj)

2
.nij +Dij

Ui −Uj

2
(3.8)

= Fconv(Ui).nij + A−ij (Uj −Ui) (3.9)

= Fconv(Uj).nij − A+
ij (Uj −Ui), (3.10)

34 Chapitre 3. Numerical Simulation of Compressible flows

where Dij is an upwinding matrix, ARoe,nij
is the Roe matrix and A±ij =

1
2 (ARoe,nij

± Dij). The choice Dij = 0 gives the centered scheme, whereas
Dij = |ARoe,nij

| gives the upwind scheme.
We now have to determine the Roe matrix A−Roe,nij

. In order to deter-
mine the Roe matrix we use the following Roe-averaged state :

Definition 3.1 The state URoe,(i,j) is called the Roe-averaged state of two states Ui and Uj provided
that

ARoe,nij
= A(URoe,(i,j),nij),

where A(U,n) is the Jacobian matrix of Fconv(U).n.

If the states Ui and Uj have densities, velocities and enthapies ρi, vi Hi

and ρj, vj Hj respectively , the Roe-averaged state URoe,(i,j) is given by :

ρRoe,(i,j) =
√

ρiρj, (3.11)

vRoe,(i,j) =

√
ρivi +

√
ρjvj√

ρi +
√

ρj
, (3.12)

HRoe,(i,j) =

√
ρiHi +

√
ρjHj√

ρi +
√

ρj
. (3.13)

For the computation of the Roe-averaged state, one can see (Godlewski
and Raviart (1996), page 211).
We now study the matrix A(URoe,(i,j),nij).
We can build ARoe explicitly :

ARoe =









0 nt
ij 0

γ−1
2
‖q‖2

ρ2
nij − v · nij

q
ρ

q
ρ ⊗ nij − (γ− 1)nij ⊗ q

ρ + nij.
q
ρ Id (γ− 1)nij

(γ−1
2
‖q‖2

ρ2
− H)v · nij Hnt

ij − (γ− 1)v · nij
q
ρ
t

γv · nij









.

As in the equations (1.19) and (1.20) of chapter 1, we have :

ARoe =
n

∑
k=1

λklk ⊗ rk,

A−Roe =
n

∑
k=1

λklk ⊗ rk, λk < 0.

Diffusion Discretization In a similar way, we can define the numerical
flux of diffusion :

Φ
di f f
ij =

1
sij

∫

∂Cij

Fdi f f (U).nijds, (3.14)

and choose the following discretization that is exact on cartesian meshes

Φ
di f f
ij = D(Udi f f ,(i,j))(Uj −Ui). (3.15)

In the following, we introduce the interface state for diffusion Udi f f ,(i,j) and
discretize the differential operators at the interface to obtain the diffusion
matrix D.

3.1. Single-phase Flows 35

Definition 3.2 If Ui =





ρi

qi

ρiEi



 and Uj =





ρj

qj

ρjEj



, the state

Udi f f ,(i,j) =
1
2





ρi + ρj

qi + qj

ρiEi + ρjEj





is called the interface diffusion state of Ui and Uj.

We then obtain the diffusion matrix

D(U) =







0 0 0
νq
ρ2

−ν
ρ Id 0

λ
Cv

(

CvT
ρ − ||q||2

2ρ3

)

q tλ
ρ2Cv

− λ
Cvρ






.

Using the numerical scheme (3.7), we obtain two types of schemes :

Explicit scheme

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
{A−(Un

Roe,(i,j)) + D(Un
di f f ,(i,j))}(Un

j −Un
i) = 0,

(3.16)
or, equivalently

Un+1
i = Un

i − ∆t ∑
j∈N(i)

sij

vi
{A−(Un

Roe,(i,j)) + D(Un
di f f ,(i,j))}(Un

j −Un
i).

Implicit scheme

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
{A−(Un+1

Roe,(i,j)) + D(Un+1
di f f ,(i,j))}(U

n+1
j −Un+1

i) = 0.

(3.17)
We use the Newton method (Sec.1.4.3) to solve the system in the case of
the implicit scheme. Then, by denoting δUk+1 = Uk+1 −Uk, the variation
of the k − th iteration that approximates the solution of time step n + 1,
we have a linear system of unknown δUk+1 to solve :

δUk+1
i

∆t
+ ∑

j

sij

vi

[

A−(Uk
Roe,(i,j)) + D(Uk

di f f ,(i,j))
] (

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

∆t
−∑

j

sij

vi

[

A−(Uk
Roe,(i,j)) + D(Uk

di f f ,(i,j))
]

(Uk
j −Uk

i).

(3.18)

Defining the unknown vector U = (U1, . . . ,UN)
t, each Newton iteration

for the computation of U at time step n+ 1 requires the numerical solution
of the following linear system :

A(U k)δU k+1 = b(U n,U k). (3.19)

36 Chapitre 3. Numerical Simulation of Compressible flows

3.1.3 Scaling Strategy

The larger the time step, the worse the condition number of the matrix
A in (3.19). As a consequence, it is important to apply a preconditioner be-
fore solving the linear system. The most popular choice is the Incomplete
LU factorization (later named ILU, see Benzi (2002) for more details). The
error made by the approximate factorization using an ILU preconditioner
depends on the size of the off diagonal coefficients of the matrix. For a
better performance of the preconditioner, it is desirable that off diagonal
entries of the matrix have small magnitudes.

As we are interested in convection dominated flows, the main contri-
butions to the matrix A comes from the convective part of the equations
through the matrix A− in the equation 3.18 (we neglect D in first ap-
proximation). Unfortunately, the coefficients of the Roe matrix have very
different magnitudes for low Mach number flows. Consequently, A− and
hence A have coefficients with very different magnitudes.

We are now going to detail a procedure that scales the matrix coeffi-
cients so that they have the same magnitude. The matrix A− can be ex-
pressed using a complete eigenstructure decomposition of the Roe matrix :
A = ∑k λkL

k ⊗ Rk. The three eigenvalues of the Roe matrix are vn + c, vn

(multiplicity d), and vn − c. As we are interested in flows at low Mach
number, we can assume ~v ≈ 0 and in that case the eigenvalues of A be-
come λ− = −c,λv = 0, and λ+ = +c. The right and left eigenvectors R±

and L± associated to the sound waves are :

R± = (1, ±cn,
c2

γ− 1
)t, L± =

1
2
(0, ±1

c
n,

γ− 1
c2

)t. (3.20)

We have :

A− = −cL− ⊗ R− for the upwind scheme,

A− =
1
2
(cL+ ⊗ R+ − cL− ⊗ R−) for the centered scheme.

One sees from (3.20) that the disequilibrium in A− coefficients comes from
the difference in the magnitude of the components of the left and right ei-
genvectors of A. If we multiply the local matrix A− to the left (respectively
to the right) by a diagonal matrix with the coefficients

dsca =







1 0 0
0 cn 0
0 0 c2

γ−1






,

d−1sca =





1 0 0
0 1

cn 0
0 0 γ−1

c2
)



 ,

where n is the unit normal vector, we obtain vectors and matrices with
better balanced coefficients :

d−1scaR
± = (1,±n, 1)t, dscaL

± = (0,±n, 1)t,

L± ⊗ R± =
1
2







0 0 0
± 1

cn n⊗ n ± c
γ−1n

γ−1
c2

±γ−1
c nt 1






,

3.1. Single-phase Flows 37

dscaL
± ⊗ R±d−1sca =

1
2





0 0 0
±n n⊗ n ±n

1 ±nt 1



 .

Hence it is possible to balance the coefficients of A− using a similarity
transformation. Any mesh can be associated with two diagonal matrices
Dsca and D−1sca having the size of the mesh and containing the successive
coefficients of the local matrices dsca and d−1sca. Instead of solving system
(3.19), one can rather solve :

ÃV = b̃, (3.21)

where Ã = DscaAD−1sca , V = DscaU and b̃ = Dscab. System (3.21) can be
resolved more easily using an ILU preconditioner. Once the solution V is
obtained we compute D−1scaV to obtain the original unknown vector U .

3.1.4 Numerical Results

We implemented the scheme (3.7) in the C++ code ParaFlow and vali-
dated it on two test cases : Lid driven cavity and Detonation problem.

Lid Driven Cavity

Problem Description This test consists of a steady-state single-phase la-
minar flow in an entrained cavity. The flow domain is a square with the
upper lid moving at a uniform horizontal velocity. The no-slip condition
v = (0, 0) is applied on the other walls of the cavity (see Fig. 3.1).

Figure 3.1 – The computational domain

The initial conditions are imposed as follows :
– The temperature T = 35K
– The dynamic viscosity ν = 0.025kg.m−1.s−1

– The thermal conductivity λ = 0.0027W.m−1.K−1

– The pressure P = 1 bar.
The dymanic viscosity is chosen in order to have a Reynolds number equal
to 400 with a horizontal velocity of the lid vx = 1m.s−1 (Re = ρvxL/ν).

Explicit Scheme vs Implicit Scheme The respective merits of explicit
and implicit schemes have been extensively discussed in the literature

38 Chapitre 3. Numerical Simulation of Compressible flows

(Pulliam (2011)). Here, we compare the two schemes in the solutions of
the lid driven cavity test case. We first use an upwind explicit scheme to
obtain the stationary state of the problem at time t = tstat. We then use the
upwind implicit scheme with different CFL numbers to obtain the solution
at t = tstat. We compare the solutions and computational times obtained
with the two methods.

Figure 3.2 – Initial state

Fig. 3.3, 3.4, 3.5, 3.6, and 3.7 present the streamlines of the steady state
result obtained using respectively the upwind explicit scheme and the up-
wind implicit scheme with CFL 100, 400, 800, and 1600. It can be seen
that the solution of the implicit scheme with small CFL (100 , 400) is simi-
lar with that of explicit scheme. The solution of the implicit scheme with
larger CFL (800 , 1600) is more diffusive than that of the explicit scheme.
However, when we increase the number of time steps (4 instead of 2 for
CFL = 800, 3 instead of 1 for CFL = 1600) of the implicit scheme, we
obtain a solution similar to that of the explicit scheme.
Even though the implicit scheme is more diffusive than the explicit one,
we see on practical cases that the implicit method has a much more rea-
sonable computational time. Here, the explicit scheme needs 156 seconds
to compute the steady state, while using the implicit with CFL = 1600
one needs less than 0.4 seconds. If one increases the number of cells for
a better precision, the difference between the two families of schemes is
more impressive.

Upwind Scheme vs Centered Scheme Figs. 3.8 and 3.9 present the
streamlines of the steady state results obtained using either the upwind or

3.1. Single-phase Flows 39

Figure 3.3 – Steady State, Explicit scheme

Figure 3.4 – CFL = 100, 16 time steps

40 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.5 – CFL = 400, 4 time steps

Figure 3.6 – CFL = 800, 2 time steps

3.1. Single-phase Flows 41

Figure 3.7 – CFL = 1600, 1 time step

CFL 0.5 100 400 800 1600

Number of time steps 3152 16 4 2 1

Time of computation 155.987 3.55 1.079 0.634 0.34

Table 3.1 – Comparison of computational time, implicit vs explicit

the centered schemes to discretize the convective part of the Navier–Stokes
equations. Our test case is the same lid driven cavity test case presented
in the previous section, solved on a cartesian 50× 50 cell mesh. This case
is a classical benchmark in the literature (see Ghia et al. (1982)) to vali-
date numerical methods for the Navier-Stokes equations. The lid speed is
1m/s, the maximum Mach number of the flow is 0.008. The Roe approxi-
mate Riemann solver (Roe (1981)) employed for the convection fluxes is
known to have problem solving such low Mach number flows when the
scheme is explicit, especially on multidimensional cartesian meshes (see
Dellacherie (2010)). It can be seen on Fig. 3.8 that the upwind scheme does
not capture the correct streamlines. However, on Fig. 3.9, it can be seen
that the implicit centered scheme is much less diffusive and captures the
correct solution with its expected three vortices.

Assessment of the Scaling strategy We now study the performance of
our numerical methods on the same lid driven cavity test case presented in
the previous section. In this section, we vary the time step (consequently
the CFL number) and the mesh size. We also compare the direct solver
with the iterative one and the effect of different preconditioners on the
resolution of the linear systems.

42 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.8 – Steady state, upwind scheme

Figure 3.9 – Steady state, centered scheme

Considering first the upwind scheme, we remark that the ILU precon-
ditioner with no level of fill-in performs well. Figs. 3.10 and 3.11 show
the average number of GMRES iterations at each Newton iteration. We ob-
serve that the use of our Scaling strategy presented in Sect. 3.1.3 reduces
more than twice the iteration numbers.

When we use the centered scheme, the system matrix has a poor diago-

3.1. Single-phase Flows 43

Figure 3.10 – Number of GMRES iterations for the upwind scheme, CFL 1000

Figure 3.11 – Number of GMRES iterations for the upwind scheme, mesh 100× 100

Figure 3.12 – Computational time for the upwind scheme, CFL 1000

44 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.13 – Computational time for the upwind scheme, mesh 100× 100

Figure 3.14 – Number of GMRES iterations for the centered scheme, mesh 50× 50

Figure 3.15 – Number of Newton iterations for the centered scheme, mesh 50× 50

3.1. Single-phase Flows 45

Figure 3.16 – Computational time for the centered scheme, mesh 50× 50

Figure 3.17 – Computational time for the centered scheme, mesh 50× 50

nal, and ILU preconditioner with no fill-in is not efficient in preconditio-
ning the linear system. One needs to use an incomplete factorisation with
two levels of fill-in to solve the linear system up to the CFL 100, and the
Scaling strategy enables to save a considerable number of iterations (Fig.
3.14). Beyond that value, only a direct solver is able to solve the system.
However, one can remark that the Scaling strategy enables a reduction of
the number of Newton iterations using a direct solver (Fig. 3.15). We also
stress that the steady state solution obtained with very large CFL numbers
is still accurate and displays the expected vortices.

Detonation Problem

Problem Description The problem consists of a pressurized ball of
constant size (independent of the mesh) in a closed box at the initial state
as presented in Fig.3.18. The pressure at the center of the box is imposed
at 1.1 bar and the pressure outside the center is set to 1 bar. We then expect
to see waves spread and reflect in the box. We neglect viscous and diffu-

46 Chapitre 3. Numerical Simulation of Compressible flows

sive terms in the model. We use this test case to check the conservative
property of our scheme.

Numerical Solutions Figs. 3.19 and 3.20 show the profile of the pressure
obtained using the upwind scheme to discretize the Euler equations (Eq.
(3.1) with no viscosity and heat conductivity terms) on a cartesian 200x200
cell mesh. We use the fully implicit method with CFL = 10.

Figure 3.18 – Initial state

Figure 3.19 – Profile of the pressure after 5 time steps

3.1. Single-phase Flows 47

Figure 3.20 – Profile of the pressure after 10 time steps

Backward-facing Step

This test case is computed with FLICA-OVAP (Fillion et al. (2009)).

Problem Description This test consists of a steady-state single-phase la-
minar flow over a 2D backward-facing step. This case is also a well-known
problem in the literature, with experiment in Armaly et al. (1983) and nu-
merical results in Wan et al. (2002) and Zhu (1995). The initial conditions
are set as follows :

– uniform velocity : v = (1.0, 0.0)m/s,
– uniform pressure : 105Pa
– uniform enthapy : 4.105 J/kg
– Reynolds number : 25

A uniform profile of velocity like in the initial conditions is imposed at
the inlet, and a uniform profile of pressure like in the initial conditions is
imposed at the outlet.

Upwind vs Centered Figs. 3.21 and 3.22 present the streamlines of the
steady state result obtained using either the upwind or the centered
schemes to discretize the convective part of the Navier–Stokes equations.
We solved the problem on a cartesian 220× 10 cell mesh. It can be seen on
Fig. 3.21 that the upwind scheme does not capture the correct streamlines.
However, on Fig. 3.22, it can be seen that the implicit centered scheme is
much less diffusive and captures the correct solution (see Wan et al. (2002))
with its expected vortex.

Study of the Spectrum of the Matrices

It is well-known that the number of steps required for the convergence
of a linear system Ax = b to a satisfactory precision typically depends on

48 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.21 – Explicit upwind scheme

Figure 3.22 – Implicit centered scheme

the spectral properties of the matrix A. For example, the conjugate gra-
dient iteration is guaranteed to solve a hermitian positive definite system
quickly if the eigenvelues of A are clustered well away from the origin.
In fact, for the conjugate gradient method, the appropriate approximation
problem involves the A-norm and from Trefethen and D. Bau (1997), we
have :

Theorem 3.1 If the conjugate gradient iteration has not already converged before step m then we
have

‖em‖A

‖e0‖A
= inf

p∈Pm

‖p(A)e0‖A ≤ inf
p∈Pm

max
λ∈σ(A)

|p(λ)|, (3.22)

3.1. Single-phase Flows 49

where em is the error at step m, Pm denotes the set of polynomials of degree at
most m, and σ(A) is the set of eigenvalues of A.

In the general case, where A is not positive definite and for the GMRES
method, from Trefethen and D. Bau (1997), we have

‖rm‖
‖b‖ ≤ inf

p∈Pm

‖pm(A)‖ ≤ κ(V) inf
p∈Pm

max
λ∈σ(A)

|p(λ)|, (3.23)

where Pm denotes the set of polynomials of degree at most m with
p(0) = 1, V is a nonsingular matrix of eigenvectors of A (assuming A
is diagonalizable), and σ(A) is the set of all eigenvalues of A. Roughly
speaking, this theorem says that fast convergence occurs when the eigen-
values of A are clustered away from the origin and A is not too far from
normality.

We then study the spectrum of our matrices. As we mentioned in
the previous sections, the larger the time step, the worse the condition
number of the matrix A.

In Figs 3.23 , 3.24 and 3.25, we present the spectrum and the condition
number of the matrix A using the upwind scheme on a cartesian 10× 10
cell mesh respectively with CFL equal 1, 10 and 50. We can see that the
conditon number increases with the CFL and the eigenvalues of A are
clustered more closely to the origin. Fortunately, the classical preconditio-
ner ILU works well for the upwind scheme matrix.

Figure 3.23 – CFL 1, 10× 10 cells, condition number = 4.4e4

50 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.24 – CFL 10, 10× 10 cells, condition number = 3.3e5

Figure 3.25 – CFL 50, 10× 10 cells, condition number = 3.8e5

3.1. Single-phase Flows 51

Figure 3.26 – CFL 1, 10× 10 cells, condition number = 6.2e4

Figure 3.27 – CFL 10, 10× 10 cells, condition number = 3.6e5

52 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.28 – CFL 50, 10× 10 cells, condition number = 4e5

In Figs 3.26 , 3.27 and 3.28, we present the spectrum and the condition
number of the matrix A using the centered scheme on a cartesian 10× 10
cell mesh respectively with CFL equal 1, 10 and 50. We can see that the
condition number increases with the CFL and the eigenvalues of A are
clustered differently from those of the upwind scheme. This may be the
reason why the classical preconditioner ILU does not performs well in the
case of the centered scheme although the condition number of the two
matrices is not very diffirent.

3.2 Two-phase Flows

3.2.1 Compressible Two-phase Flows

In fluid mechanics, two-phase flows occur in a system containing
gas and liquid with a meniscus separating the two phases. The most
distinguishing feature of a two-phase flow is the presence of interfaces
separating the phases, and across which some of the fluid properties are
discontinuous. The geometry of the interfaces has lead to a classification
of the flow regimes : bubble, plug, slug, annular, etc. The description of
the interfaces is a very difficult computational task because of the complex
geometries and regime transitions. Depending on the problem at hand,
the desired level of detail, and the computational resources available, there
exists a range of techniques for the numerical simulation of two-phase
flows. These techniques may be divided into three following categories :

3.2. Two-phase Flows 53

– Interface-tracking methods The interfaces between two phases are
fully resolved.

– Particle-tracking methods The bubbles or droplets are treated as
point particles, and their indivivual trajectories are calculated.

– Two-fluid methods Macroscopic models have been developed that
focus on the evolution of averaged quantities. No explicit informa-
tion of the interface is retained.

The interface-tracking methods are generally the most expensive in com-
putational time for a given physical domain. The two-fluid methods are
less so, whereas the particle-tracking methods reside somewhere in bet-
ween.
In this thesis, we study the two-fluid method for the simulation of two-
phase flows, typically gas-liquid flows.
The two-fluid model equations for two-phase flows are obtained by avera-
ging the balance equations for each separated phase, using space, time
or ensemble averaged quantities (see Ishii (1975) and Drew and Pass-
man (1999)). The unknown physical quantities are the volume fraction
αk ∈ [0, 1], the density ρk ≥ 0, and the velocity uk of each phase. The sub-
script k stands for l if it is the liquid phase and g for the gas phase. The
common averaged pressure of the two phases is denoted by p. In our mo-
del, pressure equilibrium between the two phases is postulated. For the
sake of simplicity, we study the isentropic two-fluid model. This model
can be written as follows :































































∂(αgρg)
∂t + ∇ · (αgρgug) = 0

∂(αlρl)
∂t + ∇ · (αlρlul) = 0

∂(αgρgug)
∂t + ∇ · (αgρgug ⊗ ug) + αg∇p

+ ∆p∇αg −∇ · (αgνg∇ug) = αgρgg

∂(αlρlul)
∂t + ∇ · (αlρlul ⊗ ul) + αl∇p

+ ∆p∇αl −∇ · (αlνl∇ul) = αlρlg,

(3.24)

with αg + αl = 1, and the two equations of state(EOS) ρg = ρg(p) and
ρl = ρl(p). In our problem, we use the stiffened equation of state. Here,
g is the gravity, νk is the viscosity of phase k, and ∆p denotes the pres-
sure default p− pk between the bulk average pressure and the interfacial
average pressure. In the following, we denote α := αg and so we have
αl = 1− α.

54 Chapitre 3. Numerical Simulation of Compressible flows

By denoting mk = αkρk, qk = αkρkuk the system (3.24) can be written
as :































































∂mg

∂t + ∇ · qg = 0

∂(ml)
∂t + ∇ · ql = 0

∂qg

∂t + ∇ · (qg ⊗ qg

mg
) + αg∇p

+ ∆p∇αg −∇ · (αgνg∇ qg

mg
) = mgg

∂ql

∂t + ∇ · (ql ⊗ ql

ml
) + αl∇p

+ ∆p∇αl −∇ · (αlνl∇ ql

ml
) = mlg.

(3.25)

We will deal with this system from now on. Due to the term αk∇p, the
system cannot be written in conservation form in terms of the variables
mk and qk. Therefore, special care is needed for the spatial discretization
of the system.
In this system, mk and qk are the unknown functions to determine. The
volume fraction αk and the bulk average pressure p can be determined by
the following function :

(

αg

p

)

= f−1
(

αρg

(1− α)ρl

)

,

where the function f is defined as below :

f

(

α
p

)

=

(

αρg(p)
(1− α)ρl(p)

)

. (3.26)

It should be noted here that α and p are defined such that the two phases
have the same pressure which means :

ρ−1g (
mg

αg
) = ρ−1l (

ml

αl
). (3.27)

We also define the sound speed of each phase as

cg =

(

∂ρg

∂p

)− 1
2

, cl =

(

∂ρl

∂p

)− 1
2

.

For the computation of the differential, we also need to introduce the pa-
rameter γ2 which is defined as :

γ2 =
c2gc

2
l

αgρlc
2
l + αlρgc2g

, (3.28)

we obtain the differential form of the pressure and the volume fraction as
follows :

1
γ2dp = ρl dmg + ρg dml ,

1
γ2dαg =

αl

c2l
dmg − αg

c2g
dml .

(3.29)

3.2. Two-phase Flows 55

In a similar way to the single phase flow, by denoting U =









mg

qg

ml

ql









we

can write the system (3.25) as follows :

∂U

∂t
+ Fconv(U) + Fdi f f (U) = S(U). (3.30)

Here, S(U) is a source term (in our case, we consider only the gravity),
and Fconv(U) is the inviscid term and Fdi f f (U) is the viscous term of the
system. One therefore has :

Fconv(U) =

















∇ · qg

∇ · ql

∇ · (qg ⊗ qg

mg
) + αg∇p+ ∆p∇αg

∇ · (ql ⊗ ql

ml
) + αl∇p+ ∆p∇αl

















, (3.31)

Fdi f f (U) =

















0

0

−∇ · (αgνg∇ qg

mg
)

−∇ · (αlνl∇ ql

ml
)

















, (3.32)

and the source term is given by :

S(U) =

















0

0

mgg

mlg

















. (3.33)

Spectrum and Hyperbolicity of the Inviscid Part

For the sake of simplicity, we consider the one-dimensional model and
exclude any source terms. The inviscid part of the two-phase flow can be
written in the quasi-linear form :

∂U

∂t
+ A(U)

∂U

∂x
= 0, (3.34)

where the matrix A is given by

A =













0 1 0 0

γ2
(

αgρl +
αl

c2l
△p
)

− u2
g 2ug γ2

(

αgρg − αg

c2g
△p
)

0

0 0 0 1

γ2
(

αlρl − αl

c2l
△p
)

0 γ2
(

αlρg +
αg

c2g
△p
)

− u2
l 2ul













.

We first want to study the hyperbolicity of the system 3.34. We look for

56 Chapitre 3. Numerical Simulation of Compressible flows

the roots of the characteristic polynomial PA of A. A straightforward com-
putation leads to the following polynomial

PA(X) = (X− ug)
2(X− ul)

2− αgρlγ
2(X− ul)

2− αlρgγ2(X− ug)
2+△pγ2.

(3.35)
The detailed study of this polynomial (Ndjinga (2007b)) proves the impor-
tance of taking into account the interfacial pressure to obtain a well-posed
problem.

To study the roots of PA we use a perturbation method (Toumi et al.
(1999)) by introducing the small ratio

ξ =
ur

am
, (3.36)

where ur = ug − ul is the relative velocity of the two fluids and am is the
“characteristic” speed of sound of the mixture, given by

am =

(

ρm(αgρl + αlρg

ρgρl

)

, ρm = αgρg + αlρl . (3.37)

The first order approximation of the two-fluid system eigenvalues gives














































λ1 =
αlρgug+αgρlul

αgρl+αlρg
+

√

1
αgρl+αlρg

(

△p− αgαlρgρl

αgρl+αlρg
u2

r

)

+O(ξ2)

λ2 =
αlρgug+αgρlul

αgρl+αlρg
−
√

1
αgρl+αlρg

(

△p− αgαlρgρl

αgρl+αlρg
u2

r

)

+O(ξ2)

λ3 =
αlρgug+αgρlul

αgρl+αlρg
− cm +O(ξ2)

λ4 =
αlρgug+αgρlul

αgρl+αlρg
+ cm +O(ξ2).

(3.38)

We see from (3.38) that for small relative velocities, the two eigenvalues λ3
and λ4 are always real and have the order of magnitude of the “charac-
teristic” speed of sound cm. In contrast, if ∆p <

αgαlρgρl

αgρl+αlρg
u2

r , the two other
eigenvalues λ1 and λ2 are complex and the system (3.34) is not hyperbolic.
Hence it is not a well-posed problem. In order to obtain real eigenvalues,
it is neccessary to have :

∆p ≥ αgαlρgρl

αgρl + αlρg
u2

r .

In the literature, several models for the interfacial pressure have been
proposed. However, the physical content is often debatable.
Here, we use the following formula for the interfacial pressure :

∆p = 1.1
αgαlρgρl

αgρl + αlρg
u2

r .

Asymptotic Analysis of the Isentropic Two-phase Model We investi-
gate the behavior of the isentropic two-phase model when the volume
fraction of one of the phases vanishes. We consider, for instance, that the

3.2. Two-phase Flows 57

vapor phase is disappearing which means αg = 0. In this limit case, we
have :

∆p = 0, γ2 =
c2l
ρg

and the matrix A becomes

Aαg=0 =











0 1 0 0
−u2

g 2ug 0 0
0 0 0 1

ρlc
2
l

ρg
0 c2l − u2

l 2ul











which has four real eigenvalues

ug, ug, ul + cl , ul − cl ,

but the matrix is not diagonalizable because there are only three eigenvec-
tors :

~vul±cl = t (0, 0, 1, ul ± cl)

~vug = t

(

ρg

ρl
(
(ug − ul)

2

c2l
− 1), ug

ρg

ρl
(
(ug − ul)

2

c2l
− 1), 1, ug)

)

In fact, the two equations of the vapor phase are idential to a pressureless
gas dynamics system whose eigenvalues are double but whose jacobian
matrix is not diagonalizable. We then lost the hyperbolicity when αg = 0.

3.2.2 Numerical Scheme

Most of the numerical methods used in two-phase flow computer
codes are based upon semi-implicit finite difference schemes with stagge-
red grids and donor-cell differencing. The main features of these schemes
are their efficiency and their robustness. However, these methods have a
large amount of numerical dissipation, giving poor accuracy in smooth
regions of the flow. Moreover, discontinutities are heavily smeared on co-
arse grids and oscillations appear when the grid is refined (Toumi et al.
(2000)).
Here, we propose to use an approximate Riemann solver to discretize and
solve the system (3.25). Using the finite volume method described in Sec.
3.1.2, we obtain the discretized system of (3.25) as follows :

∫

Ci

∂U

∂t
dx + ∑

j∈N(i)

Φconv
ij + ∑

j∈N(i)

Φ
di f f
ij =

∫

Ci

S(U)dx, (3.39)

where Φconv
ij , Φ

di f f
ij denote the numerical flux of convection and diffusion

on the cell Ci in direction of the neighbor cell Cj.
The evaluation of the diffusive contributions requires a knowledge of the
first derivatives of intensive variables as velocities. They are obtained by
a centered difference scheme in which the derivatives are represented by
piecewise constant functions over computational domain as we work with

58 Chapitre 3. Numerical Simulation of Compressible flows

Cartesian mesh. We use the fomula similar to the case of single phase flow
to discretize the numerical flux of diffusion. We describe here the strategy
to discretize the numerical flux of convection.
Due to the αk∇p and ∆p∇αk terms, the inviscid part of the two-phase flow
cannot be written in a conservative form. But this system (in the case of
one-dimensional) can be written in the quasi-linear form :

∂U

∂t
+ A(U)

∂U

∂x
= 0. (3.40)

Under some assumptions, in Toumi and Kumbaro (1999) the authors were
able to obtain a conservative form that allowed them to give a sense to dis-
continous solutions, and were able to develop an approximate Riemann
solver of Roe-type for the system (3.40) providing a local linearization of
the non-conservative term αk∇p. We can also construct other lineariza-
tions than that of Toumi and Kumbaro (1999). Here, we do not propose a
specific linearization but a general method for the construction of the Roe
matrix once we have chosen a linearization. We then define a local invis-
cid flux function Flocand a local Roe matrix ARoe for this linearization. The
inviscid flux in the normal direction to the cell interface ∂Ci,j is given by :

Φconv
ij =

Floc(Ui) + Floc(Uj)

2
.nij +D

Ui −Uj

2
(3.41)

= Floc(Ui).nij + A−(Uj −Ui),

where D is an upwinding matrix, ARoe the Roe matrix and A± = 1
2 (ARoe±

D). The choiceD = 0 gives the centered scheme, whereasD = |ARoe| gives
the upwind scheme.
In the following, we will describe a general method for the construction
of the Roe matrice ARoe.

3.2.3 Roe Matrix for Isentropic Two-fluid Model

In this section, we introduce the Roe matrix for our problem. As we
mentioned before, the system is not a conservative one, there are only
three conservation laws on the variables (mg,ml , qg + ql). We have to res-
trict the distribution solution because neither α or p must be continuous.
Same for ∆p and α. It should be also noted that ∆p depends on ρk, αk, uk.
Due to non-conservative terms, we do not seek a weak solution but a so-
lution almost everywhere satisfing three conservation laws.
Under some simplifying assumptions (δp = 0, cl = ∞, 1D flow) Toumi
and Kumbaro (1999) were able to obtain a conservative form that allowed
them to give a sense to discontinous solutions. It was also under those as-
sumptions that they have been able to develop an approximate Riemann
solver of Roe-type for the system (3.34) providing a local linearization of
the non-conservative term α

∂p
∂x . Those local linearizations are given as fol-

lows :
1
αl

=
1
2

[

1
αl

l

+
1
αr

l

]

, (3.42)

p =
αl

lp
l + αr

lp
r

αl

l + αr

l

, (3.43)

3.2. Two-phase Flows 59

where l, r stand for left and right.
We can also construct other linearizations than that of Toumi and Kum-
baro (1999). In this section, we will not propose a specific linearization but
a general method for constructing the matrix of Roe, once we have chosen
a linearization. Our goal is to develop a finite volume scheme which is
consistent with the system (3.34) and satisfies three conservation laws at
the discrete level. Once we have known the expression of the Roe matrix,
we can develop a linearization which satisfies some non trival properties
such as the positivity of the variable α.
Consider an initial condition which consists of two constant states :

U l =









ml
g

ql
g

ml

l
ql

l









, Ur =









mr
g

qr
g

mr

l
qr

l









. (3.44)

We need to solve the Riemann problem associated with the system (3.34)
and the initial condition (3.44). Due to non-conservative terms, we do not
seek a weak solution but a solution almost everywhere which satisfies
three conservation laws. There are then more than one solution (three
jump relations for four variables). Therefore, the solution depends on the
way of linearizing locally the non-conservative terms. We are interested in
the linearizations which consist in solving the following system of conser-
vation laws

∂mg

∂t
+

∂qg

∂x
= 0

∂ml

∂t
+

∂ql

∂x
= 0

∂qg

∂t
+

∂

∂x

q2g

mg
+ αg

∂p

∂x
+△p

∂αg

∂x
= 0

∂ql

∂t
+

∂

∂x

q2l
ml

+ αl
∂p

∂x
+△p

∂αl

∂x
= 0,

(3.45)

where αk and △p are the functions of UL, UR and satisfy














αg + αl = 1

αk(U,U) = αk(U)

△p(U,U) = △p(U).

(3.46)

The system (3.45) is a system of conservation laws which has the flux

Floc :









mg

qg

ml

ql









→













qg
q2g
mg

+ αgp+△p αg

ql
q2l
ml

+ αlp+△p αl













.

So for each linearization of αk,△p, we need to find a Roe matrix i.e. a
diagonalizable matrix ARoe(U l,Ur) which satisfies

Floc(U l)− Floc(Ur) = ARoe(U l,Ur)(U l −Ur), (3.47)

ARoe(U,U) = ∇Floc(U). (3.48)

60 Chapitre 3. Numerical Simulation of Compressible flows

We want to write the derivative of the flux

∆r
l F

loc = Floc(U l)− Floc(Ur) =













∆r
lqg

∆r
l

q2g
mg

+ αg∆r
l p+△p∆r

l αg

∆r
lql

∆r
l

q2l
ml

+ αg∆r
l p+△p∆r

l αl













,

as a function of ∆r
lU = UL −UR.

We can write ∆r
lqk and ∆r

l

q2k
mk

as a function of ∆r
lmk and ∆r

lqk using the Roe
phasic velocities

uk =

√

ml

ku
l

k +
√

mr

ku
r

k
√

ml

k +
√

mr

k

. (3.49)

This expression does not admit a singularity since we never have mg =
ml = 0 at the same time. Unfortunately, it is more difficult to write the
jump ∆r

l p and ∆r
l α as a function of ∆r

lU which must be consistent with the
equation (3.48).

Computation of Roe matrix : Jump of Pressure To compute the jump of
pressure, we first write ∆r

lmk as a function of ∆r
l p and ∆r

l αk. This expression
can be written as

∆r
lmk = αk

lρk
l − αk

rρk
r

= αk
l(ρk

l − ρk
r) + ρk

r(αk
l − αk

r)

= αk
l∆r

l ρk + ρk
r∆r

l αk

=
αk

l

c2k
∆r

l p+ ρk
r∆r

l αk,

with c2k =
pl−pr

ρl
k−ρr

k

. Since the function ρ → p(ρ) is increasing, we have c2k ≥ 0.

Then to obtain ∆p and ∆α we need to solve the following system :

αg
l

c2g
∆r

l p+ ρg
r∆r

l αg = ∆r
lmg,

αg
l

c2l
∆r

l p+ ρg
r∆r

l αl = ∆r
lml .

Like in the continuous case (3.29), this system has the following solution







1
γ2 ∆r

l p = ρl
r ∆r

lmg + ρg
r ∆r

lml

1
γ2 ∆r

l αg =
αl

l

c2l
∆r

lmg − αg
l

c2g
∆r

lml ,
(3.50)

where γ is defined similarly as in (3.28) :

γ2 =
c2gc

2
l

αg
lρl

rc2l + αl
lρg

rc2g
. (3.51)

Since c2k ≥ 0, we can conclude that γ ≥ 0.
Then a matrix which satisfies the conditions (3.47-3.48) can be written as

3.2. Two-phase Flows 61

follows

ARoe =





















0 1 0 0

αgρl
rγ2 +

αl
l

c2l
γ2△p− u2

g 2ug αgρg
rγ2 − αl

g

c2g
γ2△p 0

0 0 0 1

αlρl
rγ2 − αl

l

c2l
γ2△p 0 αlρg

rγ2 +
αl
g

c2g
γ2△p− u2

l 2ul





















.

The characteristic polynomial of that matrix has the form as in (3.35). So
we can conclude that ARoe is diagonalizable with real eigenvalues if ∆p is
large enough.
This method can be extended to non-isentropic multiphase flows. But here
for simplicity, we restrict ourselves to the isentropic two-phase flow.

3.2.4 The Entropy Correction

In 1.4.5 we saw that the Roe solver is not entropic and that we may
need an entropic correction. As in the case of cross flows, λ1 and λ2
in (3.38) may change sign and in this case the Roe scheme can capture
non entropic weak solution. We therefore propose an entropy fix for the
Roe scheme. Our entropic Roe scheme consists of an upwingding matrix
Dentropic ≥ Dupwind, with a slightly larger diffusion on the characteristics
that changes sign, meant to solve the entropy violation problem. Consider
the Riemann problem between two states UL and UR and a characteristic
λ taking values λL for UL and λR for UR. The corresponding eigenvalue
of the Roe matrix A(UL,UR) is λLR, and for Dentropic it is

λ
entropic
LR = |λLR|+

|λL − λR|
2

.

We analyse the void waves structure in the next section to obtain more
information.

3.2.5 Incompressible Limit of Two-phase Flows

In this section we present a derivation of the incompressible model of
Keyfitz et al. (2003). In that article, the authors studied the non hyper-
bolicity of the system, and proposed to solve Riemann problems for the
nonlinear, nonhyperbolic systems. They introduced the notion of singular
shocks and the Riemann solutions found using those shocks have a rea-
sonable physical interpretation. In this section, we use another approach
to study the incompressible model. In fact, we add the interface pressure
(as in the compresible case) and investigate the Riemann problem of that
model.

62 Chapitre 3. Numerical Simulation of Compressible flows

We consider the one dimensional isentropic two-fluid system










































∂(αgρg)
∂t +

∂(αgρgug)
∂x = 0,

∂(αlρl)
∂t + ∂(αlρlul)

∂x = 0,

∂(αgρgug)
∂t +

∂(αgρgug
2)

∂x + αg∂p+ ∆p
∂αg

∂x = 0,

∂(αlρlul)
∂t + ∂(αlρlul

2)
∂x + αl∂p+ ∆p ∂αl

∂x = 0.

(3.52)

Assume the two phases are incompressible, we obtain the following
system :

∂tαk + ∂x(αkuk) = 0, (3.53)

∂t(αkρiuk) + ∂x(αkρku
2
k) + αk∂xp+ ∆p∂xαk = 0, (3.54)

where
αg + αl = 1.

By assuming smooth solutions we can replace (3.54) by :

αkρk(∂tuk + uk∂xuk) + αk∂xP+ ∆p∂xαk = 0. (3.55)

Thanks to (3.53), we can deduce that :

∂x(αgug + αlul) = 0.

So αgug + αlul is time-dependent but space independent. Thus we define

αgug + αlul = K(t). (3.56)

Then K depends on the boundary condition. If we assume that the flow
conditions are constant at one point, an inflow boundary for example, then
we can say that K is a constant.

From Keyfitz et al. (2003), we introduce new variables :

β = αgρl + αlρg, (3.57)

ω = ρgug − ρlul . (3.58)

The system (3.53) and (3.55) can be written as

∂t(αgρl + αlρg) + ∂x(αgρlug + αlρgul) = 0, (3.59)

αgαl{∂t(ρgug − ρlul) + ∂x(ρg

u2
g

2
− ρl

u2
l

2
) + ∆p∂xαg = 0. (3.60)

We have

αg = −
β− ρg

ρg − ρl
, αl =

β− ρl

ρg − ρl
, (3.61)

ug =
Kρl +

(β−ρl)ω
ρg−ρl

β
, ul =

Kρg +
(β−ρg)ω

ρg−ρl

β
, ug − ul =

ω− K(ρg − ρl)

β
.

(3.62)

3.2. Two-phase Flows 63

Thus, αg, αl , ug, and ul are expressed in terms of β and ω. Using (3.61) and
(3.62) in (3.59) and (3.60), and if we assume ∆p = δpαgαl with a constant
δp , we obtain a system in conservation form for β and ω. By defining the
state variable U = (β,ω)t, we can write the system as :

Ut + Fx = 0,

with flux function :

F =

(

F1
F2

)

=





αgρlug + αlρgul

ρg
u2

g

2 − ρl
u2
l
2 + δpαg



 .

Remember we assume that δp = ∆p
αgαl

is a constant. The flux can be written
as :

F =







K[β(ρg+ρl)−ρgρl]
β +

(β−ρg)(β−ρl)ω

β(ρg−ρl)

(β2−ρgρl)ω
2

2β2(ρg−ρl)
+

Kρgρlω

β2 − K2ρgρl(ρg−ρl)

2β2 − δp(β−ρg)
ρg−ρl






.

From 6.2, we obtain the Jacobian matrix A as follows :

A =







1
β2

[

Kρgρl +
ω(β2−ρgρl)

ρg−ρl

]

(β−ρg)(β−ρl)

β(ρg−ρl)

[ω−K(ρg−ρl)]
2ρgρl

β3(ρg−ρl)
− δp

ρg−ρl

1
β2

[

Kρgρl +
ω(β2−ρgρl)

ρg−ρl

]






.

A is a 2× 2 matrix with two equal diagonal coefficients. Such a matrix
has real eigenvalues provided the extradiagonal terms have the same sign.
So the incompressible limit of the two-fluid model is hyperbolic provided :

∆p ≥ αgαlρgρl

β
(ug − ul)

2 =
αgαlρgρl

αgρl + αlρg
(ug − ul)

2.

And the eigenvalues and the eigenvectors of the matrix A are :

λ1,2 =
αgρlul + αlρgug

β
±
√

1
αgρl + αlρg

(

∆p− αgαlρgρl

αgρl + αlρg
(ug − ul)2

)

(3.63)

=
1
β2

[

Kρgρl +
ω(β2 − ρgρl)

ρg − ρl

]

±
√

1
β

(

∆p+
(β− ρg)(β− ρl)ρgρl

β3 (
ω

ρg − ρl
− K)2

)

,

r1 =











− αgαl(ρg−ρl)
β

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)











, (3.64)

r2 =











αgαl(ρg−ρl)
β

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)











. (3.65)

64 Chapitre 3. Numerical Simulation of Compressible flows

Then, we can see that the eigenvalues may easily change sign. Now we
check if they are either genuinely nonlinear or linearly degenerate.
From Sec. 6.3 we have

∇λ1 · r1 = −3αgαlρgρl(ug − ul)

β3 +

∆pαgαl(ρg−ρl)

β3 +
(ug−ul)

2ρgρlαgαl(αgρl−αlρg−2αgαl(ρg−ρl))
2β4

2
√

1
β

(

∆p− αgαlρgρl

β (ug − ul)2
)

+
α2
l ρg − α2

gρl

β2

√

1
β

(

∆p− αgαlρgρl

β
(ug − ul)2

)

,

∇λ2 · r2 =
3αgαlρgρl(ug − ul)

β3 +

∆pαgαl(ρg−ρl)

β3 +
(ug−ul)

2ρgρlαgαl(αgρl−αlρg−2αgαl(ρg−ρl))
2β4

2
√

1
β

(

∆p− αgαlρgρl

β (ug − ul)2
)

+
α2
l ρg − α2

gρl

β2

√

1
β

(

∆p− αgαlρgρl

β
(ug − ul)2

)

.

Conclusion : The field is neither linearly degenerate nor genuinely nonli-
near.

3.2.6 Numerical Results

Shock Tube

To validate our scheme, we first use the method to solve a Riemann
problem with a pure phase solution.

Problem description This test consists of a Riemann problem with the
initial data αL = αR = 0.5, pL = pR = 1.e5, u1L = −u1R = 1, u2L = −u2R =
−1, PL = PR = 105Pa as in Fig. (3.29, 3.30, 3.31 and 3.32).

In order to assess the influence of the interfacial pressure term on the
solutions of the two-fluid model, we compare the numerical solutions ob-
tained with or without the interfacial pressure. We see that, after 168 time
steps, the solution obtained without the interfacial pressure blows up.
Figs. (3.33, 3.34,3.35 and 3.36) present the solution obtained using upwind
method for a mesh of 100 cells, without the interfacial pressure, before
blowing up of the calculation. We see that, because of the lack of the hy-
perbolicity, the pressure and gas velocity increase excessly and we do not
capture the correct solution.
We then perform the same test but with the interfacial pressure and obtain
the solution as presented in Figs. (3.37 , 3.38, 3.39 and 3.40). We see that,
thanks to the interfacial pressure, the pressure does not blow up at time
step 168 as in the case without the interfacial pressure. Unfortunately, the
gas velocity starts increasing and after some time steps, it blows up. We
suppose it is because the Roe’s approximate Riemann solver has default
of entropy violation. We then apply the entropy fix (presented in the pre-
vious section), and we obtain the final solution as presented in Figs.(3.41 ,
3.42, 3.43 and 3.44).
It is interesting here to note that, even when the gas vanishes at the center
of the computational domain, we can capture its bounded velocity.

3.2. Two-phase Flows 65

Figure 3.29 – Void fraction initial state

Figure 3.30 – Pressure initial state

Ransom Faucet Problem

The Ransom faucet problem is described in Ransom (1987), and it has
become a common test case for one-dimensional two-fluid models.

66 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.31 – Gas velocity initial state

Figure 3.32 – Liquid velocity initial state

3.2. Two-phase Flows 67

Figure 3.33 – Void fraction, before blowing up

Figure 3.34 – Pressure, before blowing up

68 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.35 – Gas velocity, before blowing up

Figure 3.36 – Liquid velocity, before blowing up

3.2. Two-phase Flows 69

Figure 3.37 – Void fraction, time step 168

Figure 3.38 – Pressure, time step 168

70 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.39 – Gas velocity, time step 168

Figure 3.40 – Liquid velocity, time step 168

3.2. Two-phase Flows 71

Figure 3.41 – Void fraction

Figure 3.42 – Pressure

72 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.43 – Gas velocity

Figure 3.44 – Liquid velocity

3.2. Two-phase Flows 73

Figure 3.45 – Illustration of Ransom’s water faucet problem

Problem description Referring to Fig.3.45, the test consists of a vertical
tube 12 m in length and 1 m in diameter. At the initial state, the liquid, sur-
rounded by stagnant gas, has a uniform velocity of u0

l = 10 m/s, the gas
volume fraction is α0

g = 0.2, the pressure is equal to 105Pa, and the tem-
perature is equal to 500 C. Then the gravity force is applied to the fluid,
causing the water column to accelerate and get narrower at the bottom.
The boundary conditions at the inlet are specified velocities of ul = 10
m/s for the liquid and of ug = 0 for the gas (vapor), of αg = 0.2 for vapor
volume fraction, of 500 C for the temperature, and pressure is extrapola-
ted from the computational domain. At the outlet, the pressure is imposed
equal to 105Pa, while all other quantities are extrapolated from the interior
domain.
This problem admits an analytical solution, derived under the assump-
tions that the liquid is incompressible and that variations of pressure in
the liquid may be neglected. Coquel et al. (1997) provided the solution for
the gas volume fraction profile :

αg(x, t) =







1− (1−αg)u0
l√

2gx+(u0
l)

2
if x ≤ u0

l t+
1
2gt

2,

α0
g otherwise,

and the expression for the liquid and velocity is given by

ul(x, t) =







√

2gx + (u0
l)

2 if x ≤ u0
l t+

1
2gt

2,

u0
l + gt otherwise,

Using the explicit upwind scheme, we run the test on numerical grids
ranging from 101, 201, 1001 grid points. The CFL number is 1. First, the
gas volume fraction profiles are presented at time t = 0.6s in Fig.3.46. It
is seen that as the mesh is refined the numerical solution converges to
the exact one, but it is a little slow. In fact, the convergence was less than
first order, even if the scheme is formally first-order accurate in space.
This is perharp due to the discontinuity in the solution. For discontinuous

74 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.46 – Gas volume fraction for the water faucet, 101, 201, 1001 grid points

Figure 3.47 – Pressure for the water faucet, 101, 201, 1001 grid points

3.2. Two-phase Flows 75

Figure 3.48 – Gas velocity for the water faucet, 101, 201, 1001 grid points

Figure 3.49 – Liquid velocity for the water faucet, 101, 201, 1001 grid points

76 Chapitre 3. Numerical Simulation of Compressible flows

solutions, the smooth solution order of the scheme can normally not be
attained (see LeVeque (2002), Section 8.7).

The pressure is by far the most sensitive variable in the faucet case. Fig.
(3.47) presents the pressure profile in our test case. The remaining physical
variables, namely the gas and liquid velocities are displayed in Figs. (3.48

and 3.49). It should be noted here that, in the case of water faucet, both
schemes (with or without entropy fix) give the correct solution.

Sedimentation Problem

This problem is a simplified gravity-induced phase separation problem
proposed by Coquel et al. (1997). The most important characteristic of the
sedimentation problem is the transition from two-phase flow to single-
phase flow.

Problem description The sedimentation problem consists of a vertical
pipe of length L = 7.5m, closed at both ends. Like in the case of the water
faucet, gravity is the only source term considered. Initially it has a uniform
pressure of P = 105 Pa and a volume fraction of αg = αl = 0.5. Velocities at
the top and the bottom boundaries are considered to be zero. The gravity
force provides a separation of the phases for t > 0. The solution at t = ∞

is composed of a pure gas at rest at the top side, and a liquid at rest at the
bottom side of the pipe. A schematic representation of the case is depicted
in Figs.3.50 and 3.51.

Figure 3.50 – Initial state

In fact, Evje and Flatten (2003) derived approximate analytical solu-
tions for the liquid velocity and volume fraction by assuming that the
liquid is accelerated by gravity only, until it is abruptly brought into stag-

3.2. Two-phase Flows 77

Figure 3.51 – Final state

nation at the lower part of the tube :

αl(x, t) =















0 for x ≤ 1
2gt

2,

0.5 for 1
2gt

2 ≤ x ≤ L− 1
2gt

2,

0 for L− 1
2gt

2 ≤ x,

and

ul(x, t) =















√

2gx for x ≤ 1
2gt

2,

gt for 1
2gt

2 ≤ x ≤ L− 1
2gt

2,

0 for L− 1
2gt

2 ≤ x,

After the time

t =

√

L

g
≈ 0.87s,

the phases should be fully separated in the idealized case. Numerical re-
sults have been compared with the previous analytical solution. In the
following, we present the numerical solution obtained using an upwind
scheme with entropy fix on a mesh of 100 cells, CFL = 1. It should be noted
here that only with using entropy fix, we can solve the problem. If we do
not use the entropy fix, the Roe’s approximate Riemann solver does not
work. The computation breaks down because of the negative phasic mass.

78 Chapitre 3. Numerical Simulation of Compressible flows

Figure 3.52 – Void fraction, sedimentation

Figure 3.53 – Pressure, sedimentation

3.2. Two-phase Flows 79

Figure 3.54 – Gas velocity, sedimentation

Figure 3.55 – Liquid velocity, sedimentation

4Domain Decomposition
Method

Contents
4.1 Review on Domain Decomposition Methods for Finite

Element Methods . 83

4.1.1 Overlapping and Nonoverlapping Schwarz Methods . . . 84

4.1.2 Substructuring Methods . 86

4.2 Domain Decomposition Methods for Finite Volume Me-
thods . 89

4.2.1 Explicit Coupling . 90

4.2.2 Implicit Coupling . 90

4.2.3 Dolean’s Interface Variable 91

4.2.4 A New Interface Variable 92

In the numerical resolution of partial differential equations, we generally
have to solve linear or nonlinear systems arising from the discretiza-

tion. The large size and the fact these systems are ill conditionned make a
global resolution difficult. In fact, direct solvers are too costly and iterative
solvers are not robust enough. There is a need for hybrid iterative/direct
solvers : these are domain decomposition methods. Roughly speaking,
the computational domain is decomposed into smaller subdomains. The
problems on the subdomains are independent and can be solved by a
direct or iterative method and the matching of the solutions is imposed
iteratively. Furthermore, with the advent of parallel computers, domain
decomposition methods have enjoyed an increasing popularity among
the scientific community because they are well adapted to parallel com-
puters. Indeed, since early 1980’s, there has been gratifying progress in
the development of domain decomposition algorithms for symmetric
elliptic problems, and a number of fast methods have been designed for
which the condition number of the matrix is uniformly bounded or grows
only in proportion to 1+ ln(H/h) where H is the diameter of a typical
subdomain and h is the diameter of a typical element into which the sub-
domains are divided. Such algorithms are often called optimal or nearly
optimal algorithms, respectively, though we note that these adjectives
pertain to the convergence rate only, and not to the overall computational

81

82 Chapitre 4. Domain Decomposition Method

complexity. For hyperbolic or mixed hyperbolic parabolic problems of
compressible fluid mechanics, the theory to date is far less satisfactory.
For such problems, one has to deal with first-order PDEs characterized by
nonsymmetric operators, with possible singular solutions. The solution
of such problems is often CPU-bound or memory-bound or both on the
fastest and largest computers available.

Nowadays, for linear problems, domain decomposition methods can
be viewed as preconditioners for Krylov iterative methods such as the
conjugate gradient (CG) method or the method of generalized minimum
residual (GMRES). For nonlinear problems, they may be viewed as pre-
conditioners for the solution of the linear systems arising from the use of
Newton’s method or as preconditioners for solvers such as the nonlinear
conjugate gradient method.

As pointed in Smith et al. (1996), the term domain decomposition co-
vers a fairly large range of computing techniques for the numerical so-
lution of partial differential equations (PDEs) in time and space and has
slightly different meanings to specialists within the discipline of PDEs.

– In parallel computing, it means the process of distributing data from
a computational model among the processors in a distributed me-
mory computer.

– In asymptotic analysis, it means the separation of the physical do-
main into regions which can be modeled with different equations.

– In preconditioning methods, it refers to the process of splitting the
global problem into smaller ones that are easily solved and whose
solutions can be used to produce a preconditioner for the original
operator.

Note that all three of these may occur in a single program.

Three of the more important motivations for domain decomposition
methods are

– ease of parallelization and good parallel performance,
– simplification of problems on complicated geometry, and
– superior convergence properties.

Domain decomposition methods are commonly classified according to
a few orthogonal criteria.“Overlapping” and “nonoverlapping” methods
are differentiated by the decomposition into territories on which the ele-
mental subproblems are defined. Overlapping methods generally permit
simple Dirichlet updating of the boundary data of the subdomains at the
expense of extra arithmetic complexity per iteration from the redundantly
defined degrees of freedom. “Additive” (Jacobi-like) or “multiplicative”
(Gauss-Seidel-like) methods are differentiated by the interdependence of
the subdomains within each iteration. For the same number of subdo-
mains additive methods are intrinsically more parallelizable.

In this chapter, we first give an overview of some popular domain de-
composition methods for finite element discretizations. We then introduce
our demain decomposition methods using finite volume discretizations.

4.1. Review on Domain Decomposition Methods for Finite Element Methods 83

4.1 Review on Domain Decomposition Methods for Fi-
nite Element Methods

In this section, we will use an algebraic approach to give an overview
of some popular domain decomposition methods.

Consider a finite element mesh covering the computational domain
Ω. After the discretization, we obtain a linear system Ax = b where A
is a sparse matrix. To describe domain decomposition methods using an
algebraic approach, as in Cai and Saad (1996), we define a connectivity
graph GΩ = (WΩ, EΩ) where the set of graph vertices WΩ = {1, · · · , ne}
represents the ne elements in the finite element mesh and the edges set
EΩ = {(i, j) s.t aij 6= 0} represents the pairs of vertices that are coupled
by a nonzero element in A. Assume that the connectivity graph has been
partitioned resulting in N nonoverlapping subsets Ω0

i whose union is Ω.
These subsets are referred to as subdomains and are also often referred
to as substructures. The Ω0

i can be generalized to overlapping subsets of
graph vertices. In particular, construct Ω1

i , the one-overlap decomposition
of Ω, by taking Ω0

i and including all graph vertices corresponding to im-
mediate neighbours of the vertices in Ω0

i . By recursively applying this
definition, the δ-layer overlap (δ ∈ N) of WΩ is constructed and the sub-
domains are denoted Ωδ

i .
Corresponding to each subdomain Ω0

i we define a rectangular extension

matrix R0
i
T whose action extends by zero a vector of values defined at

mesh vertices associated with the finite elements contained in Ω0
i . The en-

tries of R0
i
T are zeros and ones. For simplicity, we omit the 0 superscripts

and define Ri = R0
i and Ωi = Ω0

i . Note that the columns of a given Ri

are orthogonal, but that between the different Ri’s some columns are no
longer orthogonal. This is due to the fact that some mesh vertives overlap
even though the graph vertices defined by Ωi are nonoverlapping. Let Γi

be the set of all mesh vertives belonging to the interface of Ωi ; that is mesh
vertices lying on ∂Ωi\∂Ω. Similarly, let Ii be the set of all remaining mesh
vertices within the subdomain Ωi (i.e. interior vertices). Considering only
the discrete matrix contributions arising from finite elements in Ωi gives
rise to the following local discretization matrix :

Ai =

(

AIi Ii AIiΓi

AΓi Ii AΓiΓi

)

, (4.1)

where interior vertices have been ordered first. The matrix Ai corresponds
to the discretization of the PDE on Ωi and the one-one block AIi Ii corres-
ponds to the discretization with homogeneous Dirichlet conditions on Γi.
The completely assembled discretization matrix is obtained by summing
the contributions over the substructures/subdomains :

A =
N

∑
i=1

RT
i AiRi. (4.2)

In a parallel distributed environment each subdomain is assigned to one
processor and typically processor i stores Ai. A matrix-vector product is
performed in two steps. First a local matrix-vector product involving Ai

84 Chapitre 4. Domain Decomposition Method

is performed followed by a communication step to assemble the results
along the interface Γi.
For the δ−overlap partition we can define a corresponding restriction ope-
rator Rδ

i which maps mesh vertices in Ω to the subset of mesh vertices as-
sociated with finite elements contained in Ωδ

i . Corresponding definitions
of Γδ

i and Iδ
i follow naturally as the boundary and interior mesh vertices

associated with finite elements in Ωδ
i . The discretization matrix has a si-

milar structure to the one given by (4.1) and is written as

Aδ
i =

(

AIδ
i I

δ
i

AIδ
i Γδ

i

AΓδ
i I

δ
i

AΓδ
i Γδ

i

)

. (4.3)

4.1.1 Overlapping and Nonoverlapping Schwarz Methods

The first domain decomposition methods are most often referred to
as Schwarz methods due to the pioneering work of Schwarz (1869). This
work was not intended as a numerical algorithm but was instead develo-
ped to show the existence of the elliptic problem solution on a complex
geometry formed by overlapping two simple geometries where solutions
are known. With the advent of parallel computing this basic technique,
known as the alternating Schwarz method, has motivated considerable
research activity. In this section, we do not intend to give an exhaustive
presentation of all works devoted to Schwarz methods. Only additive va-
riants that are well-suited to straightforward parallel implementation are
considered. Within additive variants, computations on all subdomains are
performed simultaneously while multiplicative variants require some sub-
domain calculations to wait for results from other subdomains. The mul-
tiplicative versions often have connections to block Gauss-Seidel methods
while the additive variants correspond more closely to block Jacobi me-
thods. We do not further pursue this description but refer the interested
reader to Smith et al. (1996) and Toselli and Widlund (2005).

Additive Schwarz preconditioners

With the notations in the previous section, the additive Schwarz pre-
conditioner is given by

Mδ
AS =

N

∑
i=1

(Rδ
i)

T(Aδ
Ii Ii
)−1Rδ

i . (4.4)

Here the δ−overlap is defined in terms of finite element decompositions.
The preconditioner and the Rδ

i operators, however, act on mesh vertices
corresponding to the submeshes associated with the finite element de-
composition. The preconditioner is symmetric (respectively symmetric po-
sitive definite) if the original system, A, is symmetric (respectively sym-
metric positive definite).
Parallel implementation of this preconditioner requires a factorization of a
Dirichlet problem on each processor in the setup phase. Each invocation of
the preconditioner requires two neighbour to neighbour communications.
The first corresponds to obtaining values within overlapping regions asso-
ciated with the restriction operator. The second corresponds to summing

4.1. Review on Domain Decomposition Methods for Finite Element Methods 85

the results of the backward/forward substitution via the extension opera-
tor.
In general, larger overlap usually leads to faster convergence up to a
certain point where increasing the overlap does not further improve the
convergence rate. Unfortunately, larger overlap implies greater communi-
cation and computation requirements.

Restricted Additive Schwarz preconditioner

A variant of the classical additive Schwarz method is introduced in
Cai and Sarkis (1999) which avoids one communication step when ap-
plying the preconditioner. This variant is referred to as Restricted Addi-
tive Schwarz (RAS). It does not have a natural counterpart in a mesh par-
titioning framework that by construction has overlapping sets of vertices.
Consequently, the closest mesh partitioning counterpart solves a Dirichlet
problem on a large subdomain but considers the solution only within the
substructure. That is

Mδ
RAS =

N

∑
i=1

(Ri)
T(Aδ

Ii Ii
)−1Rδ

i . (4.5)

Surprisingly, Mδ
RAS often converges faster than Mδ

AS and only requires half
the communication making it frequently superior on parallel distributed
computers. Of course it might not be suitable for symmetric positive defi-
nite problems because Mδ

RAS is nonsymmetric even for symmetric matrix
A.

Multiplicative Schwarz Method

The multiplicative Schwarz algorithm is a direct extension of the clas-
sical Schwarz alternating algorithm, introduced in 1969 by H.A. Schwarz
in an existence proof for some elliptic boundary value problems in certain
irregular regions. This method has attracted much attention as a conve-
nient computational method for the solution of a large class of elliptic or
parabolic equations.

Non-overlapping Schwarz method

A variant of the alternating Schwarz algorithm involving indepen-
dant solutions in each subdomains has been developed by Lions (1989)
and Lions (1990) by changing the iterative process, making the algorithm
suitable for parallel computing. As mentionned previously, the conver-
gence speed of the Schwarz algorithm is proportional to the size of the
overlap between the subdomains. A variant can be formulated with non-
overlapping subdomains and the transmission conditions should be chan-
ged from Dirichlet to Robin (Després et al. (1992), Gander et al. (2007)).
These absorbing boundary transmission conditions defined on the inter-
face between the non-overlapping subdomains, are the key ingredients to
obtain a fast convergence of the iterative Schwarz algorithm (Quarteroni

86 Chapitre 4. Domain Decomposition Method

and Valli (1999),Maday and Magoulès (2006)). Despite optimal transmis-
sion conditions can be derived, they consists of non local operators and
thus are not easy to implement in a parallel computational environment.
An alternative consists to approximate these operators with partial diffe-
rential operators as investigated in (Japhet et al. (2001)) for convection dif-
fusion equations, in (Després et al. (1992), Dolean and Lanteri (2001)) for
Maxwell equation, and (Chevalier and Nataf (1998), Gander et al. (2002),
Magoulès et al. (2004a), Gander et al. (2007)) for the Helmholtz equation
where a minimization procedure has been used. An another alternative
consists to approximate the optimal transmission conditions in an alge-
braic way, as investigated in (Roux et al. (2005), Magoulès et al. (2004b)).
At this stage, it is important to mention that the formulation of the non-
overlapping Schwarz algorithm could be re-written as a preconditionned
sub-structuring method.

4.1.2 Substructuring Methods

In this section, substructuring methods, i.e., methods based on nono-
verlapping regions are described. This terminology comes from the struc-
tural mechanics discipline where nonoverlapping ideas were first develo-
ped. In this early work, the primary focus was on direct solvers. Asso-
ciating one frontal matrix with each subdomain allows for coarse grain
multiple front direct solvers, such as in (Duff et al. (1986)). Motivated
by parallel distributed computing and the potential for coarse grain pa-
rallelism, considerable research activity was developed around iterative
domain decomposition schemes (Farhat and Roux (1994)). A very large
number of methods have been proposed and we cannot cover all of them
and here only the main highlights are surveyed.
The governing idea behind sub-structuring or Schur complement methods
is to split the unknowns into two subsets. This induces the following block
reordered linear system :

(

AI I AIΓ

AΓI AΓΓ

)(

xI

xΓ

)

=

(

bI

bΓ

)

, (4.6)

where xΓ contains all unknowns associated with subdomain interfaces and
xI contains the remaining unknowns associated with subdomain interiors.
The matrix AI I is block diagonal where each block corresponds to a sub-
domain interior. Eliminating xI from the second block row of equation
(4.6) leads to the reduced system

SxΓ = bΓ − AΓIA
−1
I I bI , where S = AΓΓ − AΓIA

−1
I I AIΓ, (4.7)

and S is referred to as the Schur complement matrix. This reformulation
leads to a general strategy for solving (4.6). Specifically, an iterative me-
thod can be applied to (4.7). Once xΓ is determined, xI can be computed
with one additional solve on the subdomain interiors. Further, when A is
symmetric positive definite, the matrix S inherits this property and so a
conjugate gradient method can be employed.
Not surprisingly, the structural analysis finite element community has
been heavily involved with these techniques. Not only is their definition

4.1. Review on Domain Decomposition Methods for Finite Element Methods 87

fairly natural in a finite element framework but their implementation can
preserve data structures and concepts already present in large engineering
software packages.
Let Γ denote the entire interface with Γ = ∪Γi where Γi = ∂Ωi \ ∂Ω. As in-
terior unknowns are no longer considered, new restriction operators must
be defined as follows. Let RΓi

: Γ → Γi be the canonical pointwise res-
triction which maps full vectors defined on Γ into vectors defined on Γi.
Analogous to (4.2), the Schur complement matrix (4.7) can be written as
the sum of elementary matrices

S =
N

∑
i=1

RT
Γi
SiRΓi

, (4.8)

where
Si = AΓiΓi

− AΓi Ii A
−1
Ii Ii

AIiΓi
(4.9)

is a local Schur complement and is defined in terms of submatrices from
the local matrix Ai given by (4.1). Note that this form of the Schur comple-
ment has only one layer of interface unknowns between subdomains and
allows for a straight-forward parallel implementation.
While the Schur complement system is significantly better conditioned
than the original matrix A , it is important to consider further precondi-
tioning when employing a Krylov method. It is well- known, for example,
that K(A) = O(h−2)when A corresponds to a standard discretization (e.g.
piecewise linear finite elements) of the Laplace operator on a mesh with
spacing h between the grid points. Using nonoverlapping subdomains ef-
fectively reduces the condition number of the Schur complement matrix
to K(S) = O(h−1) and it is possible to further improve this condition
number.

The Neumann-Dirichlet preconditioner

When a symmetric constant coefficient problem is sub-divided into
two non-overlapping domains such that the subdomains are exact mirror
images, it follows that the Schur complement contributions from both the
left and right domains are identical. That is, S1 = S2. Consequently, the
inverse of either S1 or S2 are ideal preconditioners as the preconditioned
linear system is well-conditioned, e.g. SRT

Γ1
S−11 RΓ1 = 2I. A factorization

can be applied to the local Neumann problem (4.1) on Ω1 :

A1 =

(

II1 0
AI1Γ1A

−1
I1 I1

IΓ1

)(

AI1 I1 0
0 S1

)(

II1 A−1I1 I1
AΓ1 I1

0 IΓ1

)

,

to obtain

S−11 = (0 IΓ1)(A1)
−1
(

0
IΓ1

)

.

In general, most problems will not have mirror image subdomains and so
S1 6= S2 . However, if the underlying systems within the two subdomains
are similar, the inverse of S1 should make an excellent preconditioner. The
corresponding linear system is

(I + RT
Γ1

S−11 RΓ1S2)xΓ = RT
Γ1

S−11 RΓ1(bΓ − AΓIA
−1
I I bI),

88 Chapitre 4. Domain Decomposition Method

so that each Krylov iteration solves a Dirichlet problem on Ω2 (to apply
S2) followed by a Neumann problem on Ω1 to invert S1. The Neumann-
Dirichlet preconditioner is introduced in Toselli and Widlund (2005).
Generalization of the Neumann-Dirichlet preconditioner to multiple do-
mains can be done easily when a red-black coloring of subdomains is pos-
sible such that subdomains of the same color do not share an interface. In
this case, the preconditioner is just the sum of the inverses corresponding
to the black subdomains :

M = ∑
i∈B

RT
Γi
(Si)

−1RΓi
, (4.10)

where B corresponds to the set of all black subdomains.

The Neumann-Neumann preconditioner

Similar to the Neumann-Dirichlet method, the Neumann-Neumann
preconditioner implicitly relies on the similarity of the Schur complement
contribution from different subdomains. In the Neumann-Neumann ap-
proach the preconditioner is simply the weighted sum of the inverse of
the Si. In the two mirror image subdomains case, the preconditioner ma-
trix is defined as

MNN =
1
2
(RT

Γ1
S−11 RΓ1 + RT

Γ2
S−12 RΓ2).

This motivates using the following preconditioner with multiple subdo-
mains :

MNN =
N

∑
i=1

RT
Γi
Di(Si)

−1DiRΓi
, (4.11)

where Di are the diagonal weighting matrices corresponding to a partition
of unity. That is,

N

∑
i=1

RT
Γi
DiRΓi

= IΓ.

The simplest choice for Di is the diagonal matrix with entries equal to the
inverse of the number of subdomains to which an unknown belongs. The
Neumann-Neumann preconditioner was first discussed in Bourgat et al.
(1989) and further studied in Tallec et al. (1991) where different choices
for weight matrices are discussed. It should be noted that the matrices Si

can be singular for internal subdomains because they correspond to pure
Neumann problems. The Moore-Penrose pseudo-inverse is often used to
the local Schur complement inverse in (4.11) but other choices are possible
such as inverting Ai + ǫI where ǫ is a small shift.
The Neumann-Neumann preconditioner is very attractive from a parallel
implementation point of view. In particular, all interface unknowns are
treated similarly and no distinction is required to differentiate between
unknowns on faces, edges, or cross points as it might be the case of other
approaches.

4.2. Domain Decomposition Methods for Finite Volume Methods 89

4.2 Domain Decomposition Methods for Finite Volume

Methods

As mentioned in the previous section, domain decompositon me-
thods for finite element method have been widely studied in the past
decades. On the contrary, the situation is less clear for hyperbolic or
mixed hyperbolic-parabolic problems using finite volume methods. These
problems often arise from the modeling of compressible fluid flows.

The object of the present work is to solve the compressible fluids (both
single-phase and two-phase flows) by a nonoverlapping domain decom-
position method, and more precisely by a Schur complement method. A
simple attempt is to adapt the principle of the domain decomposition me-
thod for elliptic problems to our problems. As in the case of elliptic pro-
blems, the principle is that we decompose the global problem into inde-
pendent subproblems which are solved by each processor. More precisely,
assume that we want to solve the problem :







∂U

∂t
+ Fconv(U) + Fdi f f (U) = 0 in Ω

BU = g on ∂Ω
(4.12)

by a domain decomposition method with a partition of the computational
domain Ω = ∪N

I=1ΩI and where Fconv(U) and Fdi f f (U) are respectively the
convection and diffusion terms of the system. Let Un

I be an approximation
of the solution U in the subdomain ΩI at time step n. The algorithm of the
domain decomposition method by Schur complement is written as











∂UI

∂t
+ Fconv(UI) + Fdi f f (UI) = 0 in ΩI

BUI = g on ∂Ω ∩ ∂ΩI

CIUI = CIUJ on ∂ΩI ∩ ∂ΩJ

(4.13)

where CI is an interface operator which we will clarify later.

However, the implementation of these ideas in hyperbolic problems
raises some technical difficulties such as :

– The scheme must be conservative ;
– In the finite volume formulation, there is no unknown defined at the
interface ;

– The boundary condition of the hyperbolic systems must depend on
the characteristics of the problem.

Those difficulties are solved in Dolean and Lanteri (2001) for the Euler
equations by replacing the interface variables in the context of elliptic
problems by the interface fluxes in the context of hyperbolic problems
(4.2.3).

90 Chapitre 4. Domain Decomposition Method

4.2.1 Explicit Coupling

We recall the explicit scheme (3.16)

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
{A−(Un

Roe) + D(Un
di f f)}(Un

j −Un
i) = 0 (4.14)

where Un
i is the numerical approximation over the cell Ci at nth time

step. Un
Roe, U

n
di f f are respectively the Roe-averaged state and the interface

diffusion state of the value of Un in the two neigboring cells Ci and Cj.
The matrices A− and D are the aproximations of the jacobian matrices of
the convection and diffusion parts.

We would like to solve (4.14) on N processors and each processor
works on one subdomain. Then, for the cell i, which belongs to the sub-
domain I, neighboring of the cell j, which belongs to the subdomain J,

the only missing term is
[

A−(Un
Roe) + D(Un

di f f)
]

Un
j which is known by

the neighboring domain. So processor I needs information from proces-
sor J in order to build Un

Roe, U
n
di f f and Un

j . We use MPI (message passing
interface) to exchange the information and then all processors can work
simultaneously.

4.2.2 Implicit Coupling

We recall the implicit scheme (3.17) :

Un+1
i −Un

i

∆t
+ ∑

j∈N(i)

sij

vi
{A−(Un+1

Roe) + D(Un+1
di f f)}(Un+1

j −Un+1
i) = 0 (4.15)

To solve this nonlinear system, we use the Newton method (sec. 1.4.3).
Then, at each Newton iteration, we need to solve the following linear sys-
tem

δUk+1

∆t
+ ∑

j∈N(i)

sij

vi

[

A−(Uk
Roe) + D(Uk

di f f)
] (

δUk+1
j − δUk+1

i

)

(4.16)

= −Uk
i −Un

i

∆t
− ∑

j∈N(i)

sij

vi

[

A−(Uk
Roe) + D(Uk

di f f)
]

(Uk
j −Uk

i)

where δUk+1 denotes the variation of the kth iteration that approximates
the solution of time step n + 1. As in the case of the explicit scheme, we
would like to solve (4.16) on N processors and each processor work on
one subdomain. We see that it lacks δUk+1

j to the computational unit of
the subdomain I if the cell j belongs to another subdomain, and it is not
calculable by the system since δUk+1

j is to be calculated. Then the processor

I needs from the processor J the value δUk+1
j which is not yet available.

Conversely, the processor J needs δUk+1
i from the processor I.

4.2. Domain Decomposition Methods for Finite Volume Methods 91

4.2.3 Dolean’s Interface Variable

In the article of Dolean and Lanteri (2001), the authors do not consider
the diffusion term, then the system (4.16) becomes

δUk+1

∆t
+ ∑

j∈N(i)

sij

vi
A−(Uk

Roe)
(

δUk+1
j − δUk+1

i

)

(4.17)

= −Uk
i −Un

i

∆t
− ∑

j∈N(i)

sij

vi
A−(Uk

Roe)(U
k
j −Uk

i).

Then, in order to obtain independent subsystems, Dolean et al. introduce
a redundant flux variable δφDo

ij at the domain interface between two neigh-
boring cells Ci and Cj which belong to different subdomains :

δφDo
ij = A+(Uk

Roe)δU
k+1
i − A−(Uk

Roe)δU
k+1
j (4.18)

where A+ is defined as in (1.18). Then by defining the orthogonal projec-
tors P±Do(U

k
Roe) on the eigenvector subspaces such that :

P−Do(U
k
Roe)δφDo

ij = A−(Uk
Roe)δU

k+1
j , P+

Do(U
k
Roe)δφDo

ij = −A+(Uk
Roe)δU

k+1
i .

The system (4.17) can be written as

δUk+1

∆t
+ ∑

j∈I,j∈N(i)

sij

vi
A−(Uk

Roe)
(

δUk+1
j − δUk+1

i

)

− ∑
j∈I,j∈N(i)

sij

vi
A−(Uk

Roe)δU
k+1
i

(4.19)

= −Uk
i −Un

i

∆t
− ∑

j∈N(i)

sij

vi
A−(Uk

Roe)(U
k
j −Uk

i)− ∑
j 6∈I,j∈N(i)

sij

vi
P−Do(U

k
Roe)φ

Do
ij .

By defining UI = (U1, . . . ,Um)t the unknown vector of the subdomain I
and

δφI = (δφij)i∈I,j∈J,j∈N(i) (4.20)

and by denoting AI the local Neumann matrix of the subdomain I and PI

all the projectors P−Do in the subdomain I, they can write the linear system
as

A(Uk)δUk+1
I = bI(U

n,Uk)− PIδφDo
I (4.21)

By taking into account Eqs. (4.18), (4.20) and (4.21), and denoting

δΦDo = (δφDo
I), I = 1 . . . N,

they obtain an extended system that distinguishes the internal unknowns
from the interface ones :













A1 0 P1
0 A2 0 . . . P2
.
0 0 . . . AN PN

M1 MN I

























δU1
δU2
. . .

δUN

δΦDo













=













b1
b2
. . .
bN

bDo
Φ













(4.22)

92 Chapitre 4. Domain Decomposition Method

where AI is the matrix that couples the unknowns associated with inter-
nal cells of ΩI whereas MI links δUI to δΦDo through (4.18).

The internal unknowns in (4.22) can be eliminated in favor of the in-
terface ones to yield the following interface system :

SδΦDo = bDo
Φ (4.23)

with

(SδΦDo) = δΦDo +
N

∑
I=1

MIAI
−1PIδφDo

I

(bDo
Φ) =

N

∑
I=1

MIAI
−1bI

Unfortunately, this strategy can only be applied to the Euler equations
using the upwind scheme.

4.2.4 A New Interface Variable

In order to include diffusion terms in the model and to use various
schemes and various systems, we introduce a new interface flux variable
δφij at the domain interface between two neighboring cells Ci and Cj which
belong to different subdomains :

δφij = δUj − δUi (4.24)

In the case where the cell i of the subdomain I is at the boundary and
has to communicate with the neighboring subdomains, we can rewrite the
system (4.16) as :

δUk+1
i

∆t
+ ∑

j∈I,j∈N(i)

sij

vi

[

A−(Uk
Roe) + D(Uk

di f f)
] (

δUk+1
j − δUk+1

i

)

= −Uk
i −Un

i

∆t
− ∑

j∈N(i)

sij

vi

[

A−(Uk
Roe) + D(Uk

di f f)
]

(Uk
j −Uk

i)

− ∑
j 6∈I,j∈N(i)

sij

vi

[

A−(Uk
Roe) + D(Uk

di f f)
]

δφk+1
ij

As similar to the previous section, we define UI = (U1, . . . ,Um)t the unk-
nown vector of the subdomain I and

δφI = (δφij)i∈I,j∈J,j∈N(i). (4.25)

We also denote AI the local Neumann matrix of the subdomain I and
PI = ∑j 6∈I,j∈N(i)

sij
vi

[

A−(Uk
Roe) + D(Uk

di f f)
]

, we can write the linear system
as :

AI(U
k)δUk+1

I = bI(U
n,Uk)− PIδφI (4.26)

By taking into account Eqs. (4.24), (4.25) and (4.26),and denoting

δΦ = (δφI), I = 1 . . . N

4.2. Domain Decomposition Methods for Finite Volume Methods 93

we can build an extended system that distinguishes the internal unknowns
from the interface ones :













A1 0 P1
0 A2 0 . . . P2
.
0 0 . . . AN PN

M1 MN I

























δU1
δU2
. . .

δUN

δΦ













=













b1
b2
. . .
bN

bΦ













(4.27)

where AI is the matrix that couples the unknowns associated with inter-
nal cells of ΩI whereas MI links δUI to δΦ through (4.24). Then, in this
case, MI comprises only 0 or ±1.

The internal unknowns in (4.27) can be eliminated in favor of the in-
terface ones to yield the following interface system :

SδΦ = bΦ (4.28)

with

(SδΦ) = δΦ +
N

∑
I=1

MIAI
−1PIδφI

(bΦ) =
N

∑
I=1

MIAI
−1bI

The computation of the matrix S is so costly as we have to inverse the
local matrix AI . Fortunately, we do not have to compute explicitly the co-
efficients of S. All we need is to design the operator δΦ → SδΦ. Then the
equation (4.28) can be solved by, e.g., GMRES, BICGStab, or the Richard-
son methods.

Once we have solved the interface system, we know δΦ and then we
can solve the internal unknowns on each processor using the equation
4.26.
We now present the procedure of the resolution of our interface system.

Implementation

We first initialize δΦ = 0. Then, we build the right-hand-side
bΦ = ∑

N
I=1 bI,Φ with bI,Φ = MIxI where xI is obtained through the

local solution : AIxI = bI .

Then, given δΦ we need to build the matrix-vector product SδΦ. This
procedure can be performed by solving the local system 4.26. We define
RI(δΦ) the solution of 4.26. Then, we have :

A−1I bI = RI(0)

A−1I (PIδφI) = RI(0)− RI(δΦ) (4.29)

From (4.29), we deduce :

(SδΦ) = δΦ +
N

∑
I=1

MI (RI(0)− RI(δΦ)) (4.30)

Equation (4.30) shows that we can obtain the matrix-vector product
(SδΦ) once we have known the local solution RI(δΦ). We do not need to
compute S explicitly and we have done that in our codes.

94 Chapitre 4. Domain Decomposition Method

Interface System

A New Boundary Condition As we have introduced a new interface
flux variable, we need to add that variable to the code. When the cell is
at the interface between two neighboring subdomains, according to (4.26),
we need to add

−PIδφI

to the right hand side of the system.

Since PI = ∑j 6∈I,j∈N(i)
sij
vi

[

A−(Uk
Roe) + D(Uk

di f f)
]

which contains all the va-
lues at the previous step and δφI is a given values, the computation of
−PIδφI is possible.

Code Management and MatShell We solve the system SδΦ = bΦ

by an iterative method such as GMRES, BICGStab etc. Fortunately, it
is possible to do this using Petsc (Balay et al. (2012)) without explicitly
coefficent computing S. This requires to use a special type of matrix, the
MatShell, which are only defined by the operators, so we need to make
sense of the product Sδφ. It means that we need to design the operator
δΦ 7→ SδΦ.

For a given processor I, we have the following algorithm to compute
SδΦ

– Receive δφI = (δφij)i∈I,j∈J,j∈N(i) from all neighboring processors
using MPI ;

– Build and solve the local system (4.26) ;
– Take the trace on the interface which is neighboring with other sub-

domains (processors) ;
– Send the result for parallel addition as in the equation 4.24.

We can see that the compution of SδΦ can be performed in parallel,
and it is an advantage of our method. Unfortunately, we have not found
any way to precondition the operator. And we need to further work on
this issue.

5Domain Decomposition
Method for Compressible
flows

Contents
5.1 Validation . 97

5.2 Study of Parallel Scalability 100

5.2.1 Definition of Scalability . 100

5.2.2 Numerical Results and Scalability 104

5.2.3 Comparison of Our Method with Dolean Method 105

5.2.4 Strong Scalability . 105

5.3 Study of the Spectrum of the Interface System 108

In this chapter, we will present our numerical results for the compresible
Navier-Stokes equations and the isentropic two-fluid model in various

2D and 3D configurations and various schemes. The results show that our
method is robust and efficient. We also study the scaling strategy (3.1.3)
to improve the condition number of the interface system. Comparisons of
performances with classical distributed computing with up to 512 proces-
sors are also reported.

95

5.1. Validation 97

5.1 Validation

In order to validate our methods, we compare the solutions obtained
using single or multiple domains. As usual, we use a cartesian mesh as
presented in Fig 5.1. We then decompose the computational domain into
2 and 4 subdomains as showed in Figs. 5.2 and 5.3

Figure 5.1 – Mesh

Figure 5.2 – Processor position

98 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.3 – Processor position

Figure 5.4 – Profile of the pressure at time step 5 on one processor

Figs.5.4, 5.5 and 5.6 present the profile of the pressure after 5 time steps
using the upwind scheme (3.18) with CFL = 10 for the Euler equations
(Equation (3.1) without viscosity and heat conductivity terms) on 1, 2 and
4 processors. Our initial state is a pressurized ball at the center of a closed
box and for t > 0 there are waves which propagate and reflect all over the
box. The gas expands in the box and we can see the shock waves and the
rarefaction waves. The solution is solved on a cartesian mesh of 200× 200
cells.

In Figs.5.7, 5.8 and 5.9 we show the results obtained with the same
test but at time step 10. We can see that the solutions with the domain

5.1. Validation 99

Figure 5.5 – Profile of the pressure at time step 5 on two processors

Figure 5.6 – Profile of the pressure at time step 5 on four processors

Figure 5.7 – Profile of the pressure at time step 10 on one processor

100 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.8 – Profile of the pressure at time step 10 on two processors

Figure 5.9 – Profile of the pressure at time step 10 on four processors

decomposition method are the same as that of the sequential one.

Figs. 5.10, 5.11 and 5.12 present the streamlines of the steady state
obtained using the centered scheme (3.18) to solve a lid driven cavity flow
at Reynolds number 400 on a cartesian 50 × 50 mesh. The lid speed is
1m/s, the maximum Mach number of the flow is 0.008.

We then show in Figs. 5.13, 5.14 and 5.15 the results obtained with the
same test but using upwind scheme. According to these results, we obtain
the same solutions by using single or multiple domains.

5.2 Study of Parallel Scalability

5.2.1 Definition of Scalability

Several types of scalability are formally defined in the parallel compu-
ting literature, and numerous other operational definitions of scalability

5.2. Study of Parallel Scalability 101

Figure 5.10 – Streamlines of Vx on one processor

Figure 5.11 – Streamlines of Vx on two processor

Figure 5.12 – Streamlines of Vx on four processor

102 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.13 – Streamlines of Vx on one processor

Figure 5.14 – Streamlines of Vx on two processor

Figure 5.15 – Streamlines of Vx on four processor

exist in different scientific subcommunities, making semantic digression a
necessity before any consideration of the scalability of domain decomposi-

5.2. Study of Parallel Scalability 103

tion methods. Given a performance metric that is a function of parameters
{π1,π2, · · · }, we study the variation of the metric as the πi are varied,
independently or on some constrained manifold. If the metric exhibits
acceptable behavior over some region of parameter space, performance
is said to “scale” over that region. Scalability of interesting numerical
algorithms is rarely uniform over the entire parameter space, so claims of
scalability should ordinarily be accompanied by a statement of applicable
domain (Keyes (1998)).

We consider as parameters N, the numbers of cells, and P, the number
of processors employed, and performance metric η, the parallel efficiency.
The variation of η(N, P) as P varies with fixed N is the “fixed-problem-
size” scaling. The variation of η(N, P) as N and P vary with N/P fixed
is the “fixed- storage-per-processor” scaling. If computational work is
not linear in N, then a fixed-work-per-processor scaling may be use-
ful to consider. The expression of scalability may be inverted, e.g., the
isoefficiency function, N(P), of an algorithm may be sought such that
η(N(P), P) = constant, as P varies.

Fixed-storage-per-processor is arguably the most interesting limit
from an architectural point of view, for three reasons. First, the propor-
tion of memory to processors is typically fixed (at purchase). Second,
work and communication are designed to scale as different powers of
N/P in domain decomposition methods. If N/P varies, the ratio of com-
munication to work varies, becoming more parasitic as N/P becomes
smaller. Third, the performance of a single processor-memory unit may
vary considerably with local problem size, due to cache effects. There
are often thresholds of workingset size, across which performance jumps.
Careful attention to data locality smooths out these thresholds, providing
a range of problem size over which performance is nearly level, but if such
thresholds are not controlled for, they may obscure parallel performance
evaluation. Keeping N/P constant avoids the possibility of threshold
effects. Despite the aesthetic superiority of fixed-storage-per-processor
scaling, fixed-size scaling is often performed in practice because, for ins-
tance, grid generation is more responsive to discretization demands than
parallelization opportunities. Since fixed-size scalability is more difficult
to achieve (because of the second point above), we measure it, rather than
fixed-storage-per-processor scalability.

Absolute efficiency on P processors is defined as the speedup divided
by P

η(N, P) =
1
P
.
T(N, 1)
T(N, P)

, (5.1)

where T(N, P) is the execution time on P processors. Over smaller ranges
of variation of processor number, it is useful to define the relative effi-
ciency, in going from Q to P processors (P > Q)

η(N, P/Q) =
Q

P
.
T(N,Q)

T(N, P)
. (5.2)

104 Chapitre 5. Domain Decomposition Method for Compressible flows

5.2.2 Numerical Results and Scalability

We now study the robustness and the scalability of our numerical me-
thod using the lid driven cavity test. In Figs. 5.16 and 5.17, we compare
the parallel efficiency of different preconditioners on 2D and 3D computa-
tions and with Q = 2 and P = 4. We see that without the preconditioner

Figure 5.16 – Parallel efficiency for 2D Lid driven cavity

Figure 5.17 – Parallel efficiency for 3D Lid driven cavity

the solver is scalable. However, when we use the ILU preconditioner, the
scalability is not optimal especially for 3D problems. In the two cases, our
method proves better than ILU when we increase the number of cells in
each subdomain. It can be also seen that we need at least 1000 cells in each
subdomain to make the parallel computing rentable in comparison to the
sequential one.

5.2. Study of Parallel Scalability 105

5.2.3 Comparison of Our Method with Dolean Method

Figure 5.18 – Comparisons of parallelism in 3D Detonation, global mesh = 50× 50× 50

In Fig. 5.18, we compare the robustness of different methods using the
detonation problem. We use this problem because there is no viscosity
and we can perform the computation with Dolean method. This problem
is solved on a catersian 50 × 50 × 50 cell mesh on two processors. The
computation time of Dolean and Lanteri method increases rapidly because
it requires many Newton iterations for convergence at each time step.

5.2.4 Strong Scalability

In order to assess our method, we compare the computation time of
the ILU preconditioner, our method and our method with Scaling strategy
(3.1.3).

Fig. 5.19 presents the computational time required to perform a time
step of a fixed global problem of size one million. We compare the compu-
tational time required using the classical distributed method (red curve),
the domain decomposition method (blue curve) and the domain decom-
position method with scaling (green curve). We vary the number of pro-
cessors up to 128. One can see that the domain decomposition method is
comparable with classical distributed method and using scaling (3.1.3) is
better.

In Fig 5.19 we see only two curves. This is because, in this case the clas-
sical distributed method does not converge as we use the centered scheme.
Domain decomposition is the only method that converges. Similarly, we
can see in Figs 5.21 and 5.22 the results obtained in the case of the two-
phase flow.

106 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.19 – Time of computation for one time step, global mesh = 96× 96× 96, CFL
20

Figure 5.20 – Time of computation for one time step, global mesh = 96x96x96, CFL 20

5.2. Study of Parallel Scalability 107

Figure 5.21 – Time of computation for one time step, global mesh = 96× 96× 96, CFL
10

Figure 5.22 – Time of computation for one time step, global mesh = 96× 96× 96, CFL
20

108 Chapitre 5. Domain Decomposition Method for Compressible flows

5.3 Study of the Spectrum of the Interface System

In the domain decomposition method it is very important to reduce
the number of the interface system. Unfortunately, as we use the MatShell
matrix to build the matrix S. We are not able to precondition the matrix
with ILU before solving it. In order to better understand the structure of
that important matrix, in this section, we propose to study its spectrum.

Figure 5.23 – CFL 1, 40× 40 cells, 2 processors

In Figs. 5.23, 5.24 and 5.25 we show the spectrum of the interface sys-
tem on two processors using upwind scheme with CFL = 1, 10 and 50
respectively. The global mesh is 40× 40 cells. We can see that when we in-
crease the CFL, the eigenvalues of the interface system are clustered closer
to the origin. It make the interface system more difficult to solve.

Figs 5.26, 5.27 and 5.28 present the spectrum of the interface system
on four processors using the upwind scheme with CFL = 1, 10 and 50
respectively. It can be seen that the spectrum of those cases is very different
from the previous ones. And we see some isolated eigenvalues. If we could
eliminate those eigenvalues, may be we would obtain a better solver for
the interface system.

In Figs. 5.29, 5.30 and 5.31 we present the spectrum of the interface
system on two processors using the centered scheme with CFL = 1, 10 and
50 respectively. The global mesh is 40× 40 cells.

Figs 5.32, 5.33 and 5.34 present the spectrum of the interface system

5.3. Study of the Spectrum of the Interface System 109

Figure 5.24 – CFL 10, 40× 40 cells, 2 processors

Figure 5.25 – CFL 50, 40× 40 cells, 2 processors

110 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.26 – CFL 1, 40× 40 cells, 4 processors

Figure 5.27 – CFL 10, 40× 40 cells, 4 processors

5.3. Study of the Spectrum of the Interface System 111

Figure 5.28 – CFL 50, 40× 40 cells, 4 processors

Figure 5.29 – CFL 1, 40× 40 cells, 2 processors

112 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.30 – CFL 10, 40× 40 cells, 2 processors

Figure 5.31 – CFL 50, 40× 40 cells, 2 processors

5.3. Study of the Spectrum of the Interface System 113

Figure 5.32 – CFL 1, 40× 40 cells, 4 processors

Figure 5.33 – CFL 10, 40× 40 cells, 4 processors

114 Chapitre 5. Domain Decomposition Method for Compressible flows

Figure 5.34 – CFL 50, 40× 40 cells, 4 processors

on four processors using the centered scheme with CFL = 1, 10 and 50
respectively. We can see that like the case of the upwind scheme, there are
some isolated eigenvalues. Then if we could eliminate those eigenvalues,
we would obtain a faster solver.

Conclusion générale

Ce travail a été consacré à la simulation numérique des équations de
la mécanique de fluides par des méthodes de volumes finis implicites.

Tout d’abord, nous avons étudié et mis en place une version implicite
du schéma de Roe pour les écoulements monophasiques compressibles.
Grâce à la méthode de Newton pour résoudre les systèmes nonlinéaires,
nos schémas sont conservatifs.
Les schémas de volumes finis décentrés habituels sont peu satisfaisants
lorsque le nombre de Mach devient faible (Guillard and Viozat (1999),
Guillard and Murrone (2004) et Dellacherie (2010)). La solution calculée
dépend fortement du nombre de Mach et du maillage. Ainsi, il est prati-
quement impossible de calculer un écoulement multidimensionel à Mach
10−2 sur un maillage “raisonable”. A cette fin, on a proposé d’utiliser le
schéma centré implicite Dao et al. (2011b) (qui est inconditionellement
stable et d’ordre 2). Les essais numériques effectués dans cette thèse ont
montré que ce schéma peux capturer la bonne solution. Malheureuse-
ment, pour les schémas implicites il faut résoudre un système nonlinéaire
à chaque pas de temps. Cette résolution peut représenter plus de 80%
du temps de calcul total du code. Il est donc impératif d’utiliser des al-
gorithmes de résolution performants. Pour des matrices de taille grande,
on utilise souvent des méthodes itératives dont la convergence dépend
de leur spectre. Nous avons donc étudié le spectre du système linéaire et
proposé la stratégie de Scaling pour améliorer le conditionnement de la
matrice. Cette stratégie est une transformation similaire de la matrice (en
utilisant son spectre) pour que les coefficients en dehors de la diagonale
aient le même d’ordre de grandeur. Combinée avec le préconditionneur
classique ILU, notre stratégie de Scaling a réduit de façon significative le
nombre d’itération GMRES du système local et le temps de calcul. Cette
stratégie a fait l’objet d’une publication Dao et al. (2011b).

Nous avons ensuite étudié et implémenté la méthode de décompos-
tion de domaine pour les écoulements monophasiques (équations d’Euler,
équations de Navier-Stokes compressibles). Nous avons proposé une nou-
velle variable interface inspirée par l’approche présentée dans Dolean and
Lanteri (2001). Notre variable interface rend la méthode du complément
de Schur plus facile à construire que celle utilisée dans Dolean and Lanteri
(2001). De plus, elle permet de traiter les termes de diffusion. Nos schémas
sont conservatifs grâce à la méthode de Newton utilisée pour résoudre
les systèmes non linéaires. L’utilisation du solveur itératif GMRES plutôt
que Richardson pour le système interface apporte aussi une amélioration
des performances par rapport à Dolean and Lanteri (2001). Nous pouvons
également découper notre domaine de calcul en un nombre quelconque

115

116 Conclusion générale

de sous-domaines.
En utilisant la stratégie de Scaling pour le système interface, nous avons
amélioré le conditionnement de la matrice et à réduire le nombre d’itéra-
tions GMRES de ce système.
Une publlication Dao et al. (2011a) est consacrée à ce travail.

Dans un second temps, notre travail de thèse a porté sur la simulation
numérique des écoulements diphasiques. Nous avons étudié et implé-
menté les schémas numériques de type Roe pour le modèle bi-fluide.
Nous avons également proposé une correction entropique pour rendre
le schéma de Roe positif. Des tests classiques (comme le tube à choc, la
sédimentation etc ..) ont été réalisés pour montrer le bon comportement
de ce schéma.

Nous avons également étudié le comportement asymptotique du mo-
dèle bi-fluide dans le cas où les deux phases sont supposées incompres-
sibles. Cela donne un système de deux équations aux dérivées partielles
du premiers ordre dont il est plus simple à étudier l’hyperbolicité ainsi
que le comportement lorque un des phases disparaît. Ce travail donne
suite à un stage (en ce moment) et une thèse qui commencera l’année
prochaine.

Nous avons ensuite appliqué la méthode de décomposition de do-
maine au modèle bi-fluide et étudié son comportement dans le cas
diphasique. En comparaison avec le calcul distribué classique, nous avons
montré que notre méthode est plus robust et efficace.
Suite au succès de la stratégie de Scaling pour les écoulements monopha-
siques, cette stratégie a été appliquée au cas diphasique et elle a amélioré
les performances.
Ce travail a donné lieu aux publications Dao et al. (2012a) et Dao et al.
(2012b).

Les méthodes de décomposition de domaine que nous avons mises au
point pourront être, par la suite, utilisées dans des logiciels scientifiques
simulant les écoulements dans le circuit primaire d’un réacteur nucléaire
à eau sous pression comme FLICA-4 (Toumi et al. (2000) ou FLICA-OVAP
(Fillion et al. (2009)). Grâce à l’utilisation de l’interface ICoCo (Perdu
(2006)) et la nouvelle variable interface, on peut facilement appliquer la
méthode à d’autres modèles écoulements avec la possiblité de changer
de loi d’état, de géometrie. On peut aussi appliquer la méthode aux pro-
blèmes de couplage entre les écoulements monophasique et diphasique.

On peut aussi améliorer la méthode de decomposition de domaine en
cherchant des nouveaux préconditionneurs pour le système interface. On
peut également chercher des nouvelle variable interface pour améliorer la
condition de tranmission entre les subdomaines voisins.

6Annexe

6.1 Primitive Variables and Its Computation from

Conservative Variables

Primitive Aariables To obtain the quasi-linear form of the two-fluid mo-
del, we have defined the vector of conservative variables

U =t
(

mg, qg, ml , ql

)

. (6.1)

however, the variables which is used in the Jacobian matrix and its spec-
trum are called primitive variables

V =t
(

αg, p, ug, ul

)

, (6.2)

Here, we are interested in the computation of V from U.
When computing uk from the conservative variables mk, qk by the formula
uk =

qk

mk
, we have a singularity of the type 0

0 when phase k is absent.
The computation of αg and p is more complicated because we have to
solve the equation

f

(

αg

p

)

=

(

mg

ml

)

. (6.3)

Before solving this equation, we need to prove that it has solutions. The
Jacobian matrix of f and its determinant are determined from the system
(3.26) :

∇ f =

(

ρg
αg

c2g

−ρl
αl

c2l

)

, |∇ f | = γ−2.

For physically acceptable values we have : γ2 > 0 and |∇ f | 6= 0. Then
the matrix ∇ f is always inversible. Therefore f is locally invertible and its
inverse has Jacobian matrix :

(∇ f)−1 = γ2

(

αl

c2l
− αg

c2g

ρl ρg

)

.

117

118 Chapitre 6. Annexe

Newton Method for α and p We can solve the system (6.3) by New-
ton iterative method :

Vk+1 = Vk − (∇ f)−1
Vk (f (V

k)− fobj), (6.4)

where Vk denotes the current approximate vector t(αg, p) and fobj =t

(mg, ml) is the objective value of f .
By detailing the equation of Newton scheme (6.4) we obtain

αg
k+1 = αg

k − γ2

[

αl

c2l

(

αgρg −mg

)

− αg

c2g
(αlρl −ml)

]k

(6.5)

pk+1 = pk − γ2
[

ρl

(

αgρg −mg

)

+ ρg

(

αlρl −ml

)]k

. (6.6)

It is well known that the Newton scheme convergence is quadratic if the
initial guess is close to the exact solution. In the general case, the Newton
method may have problem of oscillation or even divergence, and we can
not assure that the inegality 0 ≤ αg

k+1 ≤ 1 will be satisfied. When αg
k+1 ≤

0, it is better to use a different method, such as bisection for αg
k+1. By

denoting

∆αg
Newton = −γ2

[

αl

c2l

(

αgρg −mg

)

− αg

c2g
(αlρl −ml)

]k

,

β =
9
10

αg

∆αg
Newton

,

the algorithm consists in dividing the value of αg by 10 can be written as
a relaxed Newton method :

Vk+1 = Vk − β(∇ f)−1
Vk (f (V

k)− fobj), (6.7)

Condition number of the function f The solution of f = 0 is a ill-
conditioned problem. To prove that, we compute the condition number of
∇ f :

(∇ f)t(∇ f) =





ρg
2 +

αg
2

c4g

αgαl

c2gc
2
l

− ρgρl

αgαl

c2gc
2
l

− ρgρl ρl
2 + αl

2

c4l



 ,

trace(∇ f t∇ f) = ρg
2 + ρl

2 +
αg

2

c4g
+

αl
2

c4l
,

det(∇ f t∇ f) =

(

αgρl

c2g
+

αlρg

c2l

)2

,

∆(∇ f t∇ f) =

(

(ρg +
αl

c2l
)2 + (ρl +

αg

c2g
)2
)(

(ρg −
αl

c2l
)2 + (ρl −

αg

c2g
)2
)

,

λ± =
1
2
(trace±

√
∆)

6.2. Jacobian Matrix of the Incompressible Limit of the Two-phase Flow 119

Considering that αl

c2l
≪ ρg and αg

c2g
≪ ρl we find the limit values λ+ ≈

1
2 (ρg

2 + ρl
2) and λ− ≈ 1

2 (
αg

2

c4g
+ αl

2

c4l
). Hence we have

κ(∇ f) =

√

√

√

√

ρg
2 + ρl

2

αg
2

c4g
+ αl

2

c4l

≈
ρlc

2
g

αg
.

For typical air water mixture at a pressure of 1 bar (αg = αl = 0.5, ρg =
1, ρl = 1000, cg = 330, cl = 1500),

κ(∇ f) = 2. 108,

which makes the Newton scheme poorly reliable.

In the limit αg = 0 While the Newton method (6.5-6.6) does not
assure that 0 ≤ αg

k+1 ≤ 1, in the case mg = 0, we directly have αg
k = 0

and we need only perform the second iteration

pk+1 = pk − cl(p
k)2

(

ρl(p
k)−ml

)

,

which converges in practice.

6.2 Jacobian Matrix of the Incompressible Limit of the

Two-phase Flow

In this section, we want to give the Jacobian matrix of the incompres-
sible limit of the two-phase flow. We recall that the flux of the incompres-
sible system is given as :

F =







K[β(ρg+ρl)−ρgρl]
β +

(β−ρg)(β−ρl)ω

β(ρg−ρl)

(β2−ρgρl)ω
2

2β2(ρg−ρl)
+

Kρgρlω

β2 − K2ρgρl(ρg−ρl)

2β2 − δp(β−ρg)
ρg−ρl







Then, from (3.61) and (3.62) we have :

∂βαg = −
1

ρg − ρl
, ∂ωαg = 0 (6.8)

∂βαl =
1

ρg − ρl
, ∂ωαl = 0 (6.9)

∂βug =
ρl(

ω
ρg−ρl

− K)

β2 =
ρl(ug − ul)

β(ρg − ρl)
, ∂ωug =

αl

β
(6.10)

∂βul =
ρg(

ω
ρg−ρl

− K)

β2 =
ρg(ug − ul)

β(ρg − ρl)
, ∂ωul = −

αg

β
(6.11)

Jacobian matrix :

A =







∂F1
∂β

∂F1
∂ω

∂F2
∂β

∂F2
∂ω







120 Chapitre 6. Annexe

∂F1
∂β

= ρlug
∂αg

∂β
+ ρlαg

∂ug

∂β
+ ρgul

∂αl

∂β
+ ρgαl

∂ul

∂β

=
1

ρg − ρl
{ρgul − ρlug +

(ug − ul)

β
(αgρ2l + αlρ

2
g)}

=
1

β(ρg − ρl)
{(ρgul − ρlug)(αgρl + αlρg) + ug − ul)(αgρ2l + αlρ

2
g)}

=
αgρlul + αlρgug

β

∂F1
∂ω

= ρlαg
∂ug

∂ω
+ ρgαl

∂ul

∂ω
= −αgαl(ρg − ρl)

β

∂F2
∂β

= ρgug
∂ug

∂β
− ρlul

∂ul

∂β
+ δp

∂αg

∂β

=
ρgρlug(ug − ul)

β(ρg − ρl)
− ρgρlul(ug − ul)

β(ρg − ρl)
− δp

ρg − ρl

=
(ug − ul)

2ρgρl

β(ρg − ρl)
− δp

ρg − ρl

∂F2
∂ω

= ρgug
∂ug

∂ω
− ρlul

∂ul

∂ω
=

αgρlul + αlρgug

β

Then, we have the Jacobian matrix :

A =







αgρlul+αlρgug

αgρl+αlρg
− αgαl(ρg−ρl)

αgρl+αlρg

(ug−ul)
2ρgρl

(αgρl+αlρg)(ρg−ρl)
− δp

ρg−ρl

αgρlul+αlρgug

αgρl+αlρg







Or we can write A as follows :

A =







1
β2

[

Kρgρl +
ω(β2−ρgρl)

ρg−ρl

]

(β−ρg)(β−ρl)

β(ρg−ρl)

[ω−K(ρg−ρl)]
2ρgρl

β3(ρg−ρl)
− δp

ρg−ρl

1
β2

[

Kρgρl +
ω(β2−ρgρl)

ρg−ρl

]







∂λ1

∂β
=

−2Kρgρl

β3 +
2ωρgρl

(ρg − ρl)β3

+
−∆p

β2 − ρgρl

β5

[

(β− ρg)(−β + 2ρl) + (β− ρl)(−β + 2ρg)
]

(ω
ρg−ρl

− K)2

2
√

1
β

(

∆p+
(β−ρg)(β−ρl)ρgρl

β3 (ω
ρg−ρl

− K)2
)

∂λ1

∂ω
=

β2 − ρgρl

β2(ρg − ρl)
+

(β− ρg)(β− ρl)ρgρl(
ω

ρg−ρl
− K)

β4(ρg − ρl)

√

1
β

(

∆p+
(β−ρg)(β−ρl)ρgρl

β3 (ω
ρg−ρl

− K)2
)

6.3. Spectrum of the Jacobian Matrix 121

6.3 Spectrum of the Jacobian Matrix

From 3.64, we obtain the following eigenvectors of the Jacobian matrix :

r1 =











− αgαl(ρg−ρl)
β

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)











(6.12)

r2 =











αgαl(ρg−ρl)
β

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)











(6.13)

These eigenvectors can be written as :

r1 =









(β−ρg)(β−ρl)

β(ρg−ρl)
√

1
β

(

∆p+
(β−ρg)(β−ρl)ρgρl

β3 (ω
ρg−ρl

− K)2
)









(6.14)

r2 =









− (β−ρg)(β−ρl)

β(ρg−ρl)
√

1
β

(

∆p+
(β−ρg)(β−ρl)ρgρl

β3 (ω
ρg−ρl

− K)2
)









(6.15)

From 3.63, the eigenvalues of A are given by :

λ1,2 =
αgρlul + αlρgug

β
±

√

1
αgρl + αlρg

(

∆p− αgαlρgρl

αgρl + αlρg
(ug − ul)2

)

x

(6.16)

=
1
β2

[

Kρgρl +
ω(β2 − ρgρl)

ρg − ρl

]

±
√

1
β

(

∆p+
(β− ρg)(β− ρl)ρgρl

β3 (
ω

ρg − ρl
− K)2

)

122 Chapitre 6. Annexe

Then, we have

∂λ1

∂β
=

2ρgρl(ug − ul)

β2(ρg − ρl)
−

∆p
β2 +

(ug−ul)
2ρgρl(αgρl−αlρg−2αgαl(ρg−ρl))

2β3(ρg−ρl)

2
√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)

∂λ2

∂β
=

2ρgρl(ug − ul)

β2(ρg − ρl)
+

∆p
β2 +

(ug−ul)
2ρgρl(αgρl−αlρg−2αgαl(ρg−ρl))

2β3(ρg−ρl)

2
√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)

∂λ1

∂ω
=

α2
l ρg − α2

gρl

β2 − αgαlρgρl(ug − ul)

β3

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)

∂λ2

∂ω
=

α2
l ρg − α2

gρl

β2 +
αgαlρgρl(ug − ul)

β3

√

1
αgρl+αlρg

(

∆p− αgαlρgρl

αgρl+αlρg
(ug − ul)2

)

Thus, we have :

∇λ1 · r1 = −3αgαlρgρl(ug − ul)

β3 +

∆pαgαl(ρg−ρl)

β3 +
(ug−ul)

2ρgρlαgαl(αgρl−αlρg−2αgαl(ρg−ρl))
2β4

2
√

1
β

(

∆p− αgαlρgρl

β (ug − ul)2
)

+
α2
l ρg − α2

gρl

β2

√

1
β

(

∆p− αgαlρgρl

β
(ug − ul)2

)

∇λ2 · r2 =
3αgαlρgρl(ug − ul)

β3 +

∆pαgαl(ρg−ρl)

β3 +
(ug−ul)

2ρgρlαgαl(αgρl−αlρg−2αgαl(ρg−ρl))
2β4

2
√

1
β

(

∆p− αgαlρgρl

β (ug − ul)2
)

+
α2
l ρg − α2

gρl

β2

√

1
β

(

∆p− αgαlρgρl

β
(ug − ul)2

)

Bibliographie

A.Harten. High resolution schemes for hyperbolic conservation laws. J.
Comput. Phys., 49, 1983.

A.Harten. On a Class of High Resolution Total-Variation-Stable Finite-
Difference Schemes. SIAM J. Numer. Anal., 21, 1984.

B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schoung. Experimental and
theorical investigation of backward-facing step flow. J. Fluid Mech., 127,
1983.

W. E. Arnoldi. The principle of minimized iterations in the solution of the
matrix eigenvalue problem. Quart. Appl. Math., 9(1), 1951.

Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kau-
shik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and
Hong Zhang. PETSc Web page, 2012. http ://www.mcs.anl.gov/petsc.

Michele Benzi. Preconditioning Techniques for Large Linear Systems : A
Survey. J. Comput. Phys., 182, 2002.

V. Bergeaud, P. Fillion, and J. Dérouillat. Etude bibliographique sur l’in-
version parallèle des matrices ovap. Technical report, Rapport CS/311-
1/AB06A002-010/RAP/07-065 version 1.0, 2007.

J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu. Variational for-
mulation and algorithm for trace operator in domain decomposition cal-
culations. In T.F. Chan, R. Glowinski, J. Périaux, O.B. Widlund editors.
In Domain Decomposition Methods, 1989.

X. C. Cai and Y. Saad. Overlapping domain decomposition algorithms for
general sparse matrices. Numer. Lin. Alg. Applic., 3, 1996.

X. C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for
general sparselinear systems. SIAM Journal on Scientific Computing, 21,
1999.

Philippe Chevalier and Frédéric Nataf. Symmetrized method with optimi-
zed second-order conditions for the Helmholtz equation. In Domain de-
composition methods, 10 (Boulder, CO, 1997), pages 400–407. Amer. Math.
Soc., Providence, RI, 1998.

F. Coquel, K. El Amine, E. Godlewski, B. Perthame, and P. Rascle. A
Numerical Method Using Upwind Schemes for the Resolution of Two-
Phase Flows. J. Comput. Phys., 136, 1997.

123

124 Bibliographie

T.H. Dao, M. Ndjinga, and F. Magoulès. A schur complement method for
compressible Navier-Stokes equations. In Proceedings of the 20th Interna-
tional Conference on Domain Decomposition Methods, 2011a. In press.

T.H. Dao, M. Ndjinga, and F. Magoulès. Comparison of Upwind and Cen-
tered Schemes for Low Mach Number Flows. In Proceedings of the In-
ternational Symposium Finite Volumes for Complex Application VI. Springer
Proceedings in Mathematics 4, 2011b.

T.H. Dao, M. Ndjinga, and F. Magoulès. A Schur Complement Method for
Compressible Two-Phase Flow Models. In Proceedings of the 21th Inter-
national Conference on Domain Decomposition Methods, 2012a. Submitted.

T.H. Dao, M. Ndjinga, and F. Magoulès. A Schur complement method for
compressible flows, 2012b. In preparation.

S. Dellacherie. Analysis of Godunov type schemes applied to the com-
pressible Euler system at low Mach number. J. Comput. Phys., 229, 2010.

B. Després and François Dubois. Systèmes hyperboliques de lois de conserva-
tions. Les Editions de l’Ecole Polytechnique, 2005.

Bruno Després. Domain decomposition method and the Helmholtz pro-
blem.II. In Second International Conference on Mathematical and Numerical
Aspects of Wave Propagation (Newark, DE, 1993), pages 197–206, Philadel-
phia, PA, 1993. SIAM.

Bruno Després, Patrick Joly, and Jean E. Roberts. A domain decomposition
method for harmonic Maxwell equations. In Iterative methods in linear
algebra, pages 475–484, Amsterdam, 1992. North-Holland.

V. Dolean and S. Lanteri. A domain decomposition approach to finite vo-
lume solution of the Euler equations on unstructured triangular meshes.
Int. J. Numer. Meth. Fluids, 37(6), 2001.

D. A. Drew and S. L. Passman. Theory of Multicomponents Fluids. Springer-
Verlag, New York, 1999.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, London, 1986.

S. Evje and T. Flatten. Hybrid flux-splitting schemes for a common two-
fluid model. J. Comput. Phys., 192, 2003.

C. Farhat and F. X. Roux. Implicit Parallel Processing in Structural Mechanics,
volume 1–124. North Holland, 1994.

P. Fillion, A. Chanoine, S. Dellacherie, and A. Kumbaro. FLICA-OVAP :
a New Platform for Core Thermal-hydraulic Studies. In NURETH-13,
2009.

R. Fletcher. Conjugate gradient methods for indefinite systems. Lecture
Notes in Mathematics, 506, 1976.

R. W. Freund and N. M. Nachtigal. QRM : a quasi-minimal residual me-
thod for non-Hermitian linear systems. Numeriske Mathematik, 60, 1991.

Bibliographie 125

Martin J. Gander, Frédéric Magoulès, and Frédéric Nataf. Optimized
Schwarz methods without overlap for the Helmholtz equation. SIAM
J. Sci. Comput., 24(1) :38–60, jan 2002. ISSN 1064-8275.

Martin J. Gander, Laurence Halpern, and Frédéric Magoulès. An optimi-
zed Schwarz method with two-sided Robin transmission conditions for
the Helmholtz equation. Int. J. for Num. Meth. in Fluids, 55(2) :163–175,
2007.

U. Ghia, K.N. Ghia, and C.T. Shin. High-Re Solutions for Incompressible
Flow Using the Navier-Stokes Equations and a Multigrid Method. J.
Comput. Phys., 48, 1982.

E. Godlewski and P.A. Raviart. Numerical Approximation of Hyperbolic Sys-
tems of Conservation Laws. Springer Verlag, 1996.

H. Guillard and A. Murrone. On the behaviour of upwind schemes in the
low Mach number limit : II. Godunov type schemes. Computers & Fluids,
33, 2004.

H. Guillard and C. Viozat. On the behaviour of upwind schemes in the
low Mach number limit. Computers & Fluids, 28, 1999.

M. Hestenes and E. Steifel. Method of conjugate gradients for solving
linear systems. Journal of Research, 20, 1952.

M. Ishii. Thermo-fluid Dynamic Theory of Two-phase Flow. Eyrolles, Paris,
1975.

Caroline Japhet, Frédéric Nataf, and Francois Rogier. The optimized order
2 method. Application to convection-diffusion problems. Future Genera-
tion Computer Systems, 18(1) :17–30, 2001.

D. E. Keyes. How scalable is domain decomposition in practice ? In Procee-
dings of the 11th International Conference on Domain Decomposition Methods,
1998.

B. L. Keyfitz, R. Sanders, and M. Sever. Lack of hyperbolicity in the two-
fluid model for two-phase incompressible flow. Discrete and continuous
dynamical systems-Series B, 3, 2003.

P. G. LeFloch. Hyperbolic Systems of Conservation Laws. Springer, 2002.

R.J. LeVeque. Numerical Methods for Conservation Laws. Springer, 1992.

R.J. LeVeque. Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

Pierre-Louis Lions. On the Schwarz alternating method. II. In Tony Chan,
Roland Glowinski, Jacques Périaux, and Olof Widlund, editors, Domain
Decomposition Methods, pages 47–70, Philadelphia, PA, 1989. SIAM.

Pierre-Louis Lions. On the Schwarz alternating method. III : a variant
for nonoverlapping subdomains. In Tony F. Chan, Roland Glowinski,
Jacques Périaux, and Olof Widlund, editors, Third International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations ,
held in Houston, Texas, March 20-22, 1989, Philadelphia, PA, 1990. SIAM.

126 Bibliographie

Y. Maday and F. Magoulès. Absorbing interface conditions for domain
decomposition methods : a general presentation. Computer Methods in
Applied Mechanics and Engineering, 195(29-32) :3880–3900, 2006.

F. Magoulès, P. Ivànyi, and B.H.V. Topping. Non-overlapping Schwarz me-
thods with optimized transmission conditions for the Helmholtz equa-
tion. Computer Methods in Applied Mechanics and Engineering, 193(45-47) :
4797–4818, 2004a.

F. Magoulès, F.-X. Roux, and S. Salmon. Optimal discrete transmission
conditions for a non-overlapping domain decomposition method for the
Helmholtz equation. SIAM Journal on Scientific Computing, 25(5) :1497–
1515, 2004b.

J. A. Meijerink and H. A. van der Vorst. An Iterative Solution Method
for Linear Systems of Which the Coefficient Matrix is a Symmetric M-
Matrix. Math. Comp., 31, 1977.

S. T. Munkejord. Analysis of the two-fluid model and the drift-flux model for
numerical calculation of two-phase flow. PhD thesis, Norwegian University
of Science and Technology, 2005.

M. Ndjinga. Quelques aspects d’analyse et de modélisation des systèmes issus
des écoulements diphasiques. PhD thesis, Ecole Centrale Paris, 2007a.

M. Ndjinga. Influence of interfacial pressure on the hyperbolicity of the
two-fluid model. C. R. Acad. Sci. Paris, 344, 2007b.

M. Ndjinga. Spectral stability of finite volume schemes for linear hyper-
bolic systems. C. R. Acad. Sci. Paris, 349, 2011.

M. Ndjinga, A. Kumbaro, F. De Vuyst, and P. Laurent-Gengoux. Nume-
rical simulation of hyperbolic two-phase flow models using a Roe-type
solver. Nucl. Eng. Design, 238, 2008.

P. Okunev and C. R. Johnson. Necessary and sufficient conditions
for existence of the lu factorization of an arbitrary matrix, 2005.
http ://arxiv.org/abs/math.NA/0506382.

F. Perdu. Proposition d’une interface de couplage en vue des couplages
de codes dans neptune version 1. Technical report, CEA, 2006. Note
technique.

T.H. Pulliam. Development of implicit methods in CFD NASA Ames Re-
search Center 1970s-1980s. Computers Fluids, 41, 2011.

A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Diffe-
rential Equations. Oxford University Press, USA, 1999.

V. H. Ransom. Numerical Benchmark Tests. Multiphase Science and Techno-
logy, 3, 1987.

P.L Roe. Approximate Riemann solvers, parameter vectors and difference
schemes. J. Comput. Phys., 43, 1981.

Bibliographie 127

F.-X. Roux, F. Magoulès, L. Series, and Y. Boubendir. Approximation of op-
timal interface boundary conditions for two-Lagrange multiplier FETI
method. In Proceedings of International Conference on Domain Decompo-
sition Methods. Springer Lecture Notes in Computational Science and
Engineering, 2005.

Y. Saad. Iterative Methods for Sparse Linear Systems, Second Edition. Siam,
2000.

Y. Saad and M. H. Schultz. GMRES : A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 7(3), 1986.

Y. Saad and B. Suchomel. ARMS : an algebraic recursive multilevel solver
for general sparse linear systems. Numer. Linear Algebra Appl., 5, 2002.

Y. Saad and J. Zhang. BILUM, Block versions of multi-elimination and
multilevel ILU preconditioner for general sparse linear systems. SIAM
Journal on Scientific and Statistical Computing, 20, 1999.

H. A. Schwarz. Uber einige Abbildungensaufgaben. J. Reine Angew. Math.,
70, 1869.

B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition : Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge Univer-
sity Press, 1996.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM Journal on Scientific and Statistical Computing, 10, 1989.

P. Le Tallec, Y.-H. De Roeck, and M. Vidrascu. Domain-decomposition me-
thods for large linearly elliptic three dimensional problems. J. of Compu-
tational and Applied Mathematics, 34, 1991.

Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dyna-
mics : A Practical Introduction. Springer, 2009.

A. Toselli and O. Widlund. Domain Decomposition Methods-Algorithms and
Theory. Springer Verlag, 2005.

I. Toumi and A. Kumbaro. An Approximate Linearized Riemann Solver
for a Two-Fluid Model. J. Comput. Phys., 124, 1999.

I. Toumi, A. Kumbaro, and H. Paillère. Approximate riemann sovlers and
flux vector splitting schemes for two phase flows. Technical report, CEA,
1999. Rapport CEA-R-5849.

I. Toumi, A. Bergeron, D. Gallo, E. Royer, and D. Caruge. FLICA-4 : a three-
dimensional two-phase flow computer code with advanced numerical
methods for nuclear applications. Nuclear Engineering and Design, 200,
2000.

L. N Trefethen and III D. Bau. Numerical Linear Algebra. Society for Indus-
trial and Applied Mathematics, 1997.

H. van der Vorst. BI-CGSTAB : A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on
Scientific and Statistical Computing, 13, 1992.

R. Varga. Matrix Iterative Analysis, Second Edition. Springer-Verlag, Berlin,
2000.

R. S. Varga, E. B. Saff, and V. Mehrman. Incomplete factorizations of ma-
trices and connections with H-matrices. SIAM J. Numer. Anal., 17, 1980.

D. C. Wan, B. S. V. Patnaik, and G. W. Wei. Discrete Singular Convolution-
Finite Subdomain Method for the Solution of Incompressible Viscous
Flows. J. Comput. Phys., 180, 2002.

J. Y. Zhu. The 2nd-order projection method for the backward-facing step
flow. J. Comput. Phys., 117, 1995.

Titre Simulation numérique d’écoulements diphasiques par décomposi-
tion de domaine

Résumé Ce travail a été consacré à la simulation numérique des équa-
tions de la mécanique des fluides par des méthodes de volumes finis im-
plicites.
Tout d’abord, nous avons étudié et mis en place une version implicite du
schéma de Roe pour les écoulements monophasiques et diphasiques com-
pressibles. Grâce à la méthode de Newton utilisée pour résoudre les sys-
tèmes nonlinéaires, nos schémas sont conservatifs. Malheureusement, la
résolution de ces systèmes est très coûteuse. Il est donc impératif d’utiliser
des algorithmes de résolution performants. Pour des matrices de grande
taille, on utilise souvent des méthodes itératives dont la convergence dé-
pend de leur spectre. Nous avons donc étudié le spectre du système li-
néaire et proposé une stratégie de Scaling pour améliorer le condition-
nement de la matrice. Combinée avec le préconditionneur classique ILU,
notre stratégie de Scaling a réduit de façon significative le nombre d’ité-
rations GMRES du système local et le temps de calcul. Nous avons éga-
lement montré l’intérêt du schéma centré pour la simulation de certains
écoulements à faible nombre de Mach.
Nous avons ensuite étudié et implémenté la méthode de décompostion de
domaine pour les écoulements compressibles. Nous avons proposé une
nouvelle variable interface qui rend la méthode du complément de Schur
plus facile à construire et nous permet de traiter les termes de diffusion.
L’utilisation du solveur itératif GMRES plutôt que Richardson pour le sys-
tème interface apporte aussi une amélioration des performances par rap-
port aux autres méthodes. Nous pouvons également découper notre do-
maine de calcul en un nombre quelconque de sous-domaines. En utilisant
la stratégie de Scaling pour le système interface, nous avons amélioré le
conditionnement de la matrice et réduit le nombre d’itérations GMRES de
ce système. En comparaison avec le calcul distribué classique, nous avons
montré que notre méthode est robuste et efficace.

Mots-clés Equations d’Euler - Equations de Navier-Stokes - Modèle bi-
fluide - Volumes finis - Schéma de Roe - Schéma implicite - Méthode de
Newton - Préconditionneur - Décomposition de domaine - Complément
de Schur - Calcul parallèle

Title Simulation of two-phase flows by domain decomposition

Abstract This thesis deals with numerical simulations of compressible
fluid flows by implicit finite volume methods.
Firstly, we studied and implemented an implicit version of the Roe scheme
for compressible single-phase and two-phase flows. Thanks to Newton
method for solving nonlinear systems, our schemes are conservative. Un-
fortunately, the resolution of nonlinear systems is very expensive. It is
therefore essential to use an efficient algorithm to solve these systems. For
large size matrices, we often use iterative methods whose convergence
depends on the spectrum. We have studied the spectrum of the linear
system and proposed a strategy, called Scaling, to improve the condition
number of the matrix. Combined with the classical ILU preconditioner,
our strategy has reduced significantly the GMRES iterations for local sys-
tems and the computation time. We also show some satisfactory results
for low Mach-number flows using the implicit centered scheme.
We then studied and implemented a domain decomposition method for
compressible fluid flows. We have proposed a new interface variable
which makes the Schur complement method easy to build and allows us
to treat diffusion terms. Using GMRES iterative solver rather than Richard-
son for the interface system also provides a better performance compared
to other methods. We can also decompose the computational domain into
any number of subdomains. Moreover, the Scaling strategy for the inter-
face system has improved the condition number of the matrix and reduced
the number of GMRES iterations. In comparison with the classical distri-
buted computing, we have shown that our method is more robust and
efficient.

Keywords Euler equations - Navier-Stokes equations - Two-fluid model
- Finite volume methods- Roe scheme - Implicit scheme - Newton method
- Preconditioner - Domain decomposition - Schur complement - Parallel
computing

