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i 

 

Abstract 

 

The EU-project “GENIUS” is targeted at the investigation of generic diagnosis methodologies 
for different Solid Oxide Fuel Cell (SOFC) systems. The Ph.D study presented in this thesis 
was integrated into this project; it aims to develop a diagnostic tool for SOFC system fault 
detection and identification based on validated diagnostic algorithms, through applying the 
SOFC stack as a sensor. 

In this context, three algorithms, based on the k-means clustering technique, the wavelet 
transform and the Bayesian method, respectively, have been developed. The first algorithm 
serves for ex-situ diagnosis. It works on the classification of the polarization measurements of 
the stack, aiming to figure out the significant response variables that are able to indicate the 
state of health of the stack. The parameter “Silhouette” has been used to evaluate the 
classification solutions in order to determine the optimal number of classes/patterns to retain 
from the studied database. 

The second algorithm allows the on-line fault detection. The wavelet transform has been used 
to decompose the SOFC’s voltage signals for the purpose of finding out the effective feature 
variables that are discriminative for distinguishing the normal and abnormal operating 
conditions of the system. Considering the SOFC as a sensor, its reliability must be verified 
beforehand. Thus, the feature variables are also required to be indicative to the state of health 
of the stack.  

When the stack is found being operated improperly, the actual operating parameters should be 
estimated so as to identify the system fault. To achieve this goal, a Bayesian network has been 
proposed serving as a meta-model of the stack to accomplish the estimation. 

At the end, the databases originated from different SOFC systems have been used to validate 
these three algorithms and assess their generalizability.      
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Résumé 

 

Le projet Européen « GENIUS » ambitionne de développer les méthodologies génériques 
pour le diagnostic de systèmes piles à combustible à haute température de type oxyde solide 
(SOFC). Le travail de cette thèse s’intègre dans ce projet ; il a pour objectif la mise en œuvre  
d’un outil de diagnostic en utilisant le stack comme capteur spécial pour détecter et identifier 
les défaillances dans les sous-systèmes du stack SOFC.  

Trois algorithmes de diagnostic ont été développés, se basant respectivement sur la méthode 
de classification k-means, la technique de décomposition du signal en ondelettes ainsi que la 
modélisation par réseau Bayésien. Le premier algorithme sert au diagnostic ex-situ et est 
appliqué pour traiter les donnés issues des essais de polarisation. Il permet de déterminer les 
variables de réponse significatives qui indiquent l’état de santé du stack. L’indice Silhouette a 
été calculé comme mesure de qualité de classification afin de trouver le nombre optimal de 
classes dans la base de données.  

La détection de défaut en temps réel peut se réaliser par le deuxième algorithme. Puisque le 
stack est employé en tant que capteur, son état de santé doit être vérifié préalablement. La 
transformée des ondelettes a été utilisée pour décomposer les signaux de tension de la pile 
SOFC dans le but de chercher les variables caractéristiques permettant d’indiquer l’état de 
santé de la pile et également assez discriminatives pour différentier les conditions d’opération 
normales et anormales.  

Afin d’identifier le défaut du système lorsqu’une condition d’opération anormale s’est 
détectée, les paramètres opérationnelles réelles du stack doivent être estimés. Un réseau 
Bayésien a donc été développé pour accomplir ce travail.  

Enfin, tous les algorithmes ont été validés avec les bases de données expérimentales 
provenant de systèmes SOFC variés, afin de tester leur généricité. 
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Abbreviation 

AC   Alternating Current 

AI   Artificial Intelligence 

AIC   Akaike’s Information Criterion 

ANN   Artificial Neural Network 

APU   Auxiliary Power Unit 

ASE   Anode Supported Electrolyte 

ASR   Area Specific Resistance 

AU   Air Utilization 

BIC   Bayesian Information Criterion 

BN   Bayesian Network 

BoP   Balance of Plant 

BP   BackPropagation 

CBM   Condition Based Maintenance 
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CO   Carbone Monoxide 

CPD   Conditional Probability Distributions 

CPO   Catalytic Partial Oxidation 

CPT   Conditional Probability Table 

DAG   Directed Acyclic Graph 

DESIGN  Degradation Signatures Identification for Stack Operation Diagnostics 

DIR   Direct Internal Reforming 

ECM   Equivalent Circuit Model 

ECM   Equivalent Circuit Model 

EIS   Electrochemical Impedance Spectroscopy 

F   Fault 

FC   Fuel Cell 

FFT   Fast Fourier Transformation 

FU   Fuel Utilisation 



 

 

 

GENIUS  GEneric diagNosis InstrUment for SOFC System 

IE   Inference Engine 

IIR   Indirect Internal Reforming 

ITSOFC  Intermediate Temperature Solid Oxide Fuel Cell 

JPD   Joint Probability Distribution 

KBES   Knowledge-Based Expert System 

LSM   LaSrMnO3 

MCMC  Markov Chain Monte Carlo 

MEA   Membrane-Electrode-Assembly 

ML   Maximum Likelihood 

MPD   Marginal Probability Distribution 

NG   Natural Gas 

OC   Operating Condition 

OCV   Open Circuit Voltage 

PEMFC  Proton Exchange Membrane Fuel Cell  

PID   Proportional–Integral–Derivative 

PM   Preventive Maintenance 

RBFNN  Radial Basis Function Neural Network 

RWE   Relative Wavelet Entropy 

RWP   Relative Wavelet entroPy 

S   Symptom 

SOFC   Solid Oxide Fuel Cell 

SoH   State of Health 

SR   Satisfaction Rate 

STFT   Short Time Fourier Transform 

TPB   Triple-Phase-Boundary 

TWP   Total Wavelet entroPy 

WP   Wavelet Packet 

WT   Wavelet Transform 

YSZ   Yttria-Stabilized Zirconia 

  



 

 

 

Symbols 

<s(x)>   Average silhouette of the cluster x 

C(u,s)   Wavelet coefficient  

cAj   Approximation subsignal obtained in the jth level of decomposition 

cDj   Detail subsignal obtained in the jth level of decomposition 

d(.)   Distance between two points 

e
-
   Electron 

Ej
d Wavelet energy of a detail subsignal obtained in the j

th level of 

decomposition 

Fair   Flow rate of air 

FH2   Flow rate of hydrogen 

fs   Sampling frequency of signal 

I   Fuel cell or stack current 

J   Current density 

j   Level of decomposition 

K2   Bayesian score algorithm 

N   Length of signal 

O2-
   Oxygen ion 

pj
d Percentage ratio of wavelet energy of a detail subsignal obtained in the 

j
th level of decomposition  

Pr(.) or p(.)  Probability 

Pr(.| .)   Conditional probability 

s   Scale parameter of wavelet 

S   Symptom 

s(x)   Silhouette of the cluster x 

SWT   Total wavelet entropy 

SWT(.|.)  Relative wavelet entropy 

Tf   Furnace temperature 

Ts   Stack temperature 

U   Fuel cell or stack voltage 

u   Translation parameter of wavelet 

µ   Mean value of a set of data 

σ   Standard deviation 
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General Introduction 

1 

 

General introduction 

The gradual maturation of fuel cell technologies presents an opportunity to achieve significant 
improvements in electric power generation efficiencies and reduce greenhouse gases 
emissions. Among various types of fuel cells, Solid Oxide Fuel Cells (SOFCs) have attracted 
increasing attentions, owing to their fuel flexibility and the suitability for natural gas internal 
reforming. Moreover, due to the high operating temperature, this type of fuel cells enables 
Combined Heat and Power (CHP) generation for attaining higher system efficiency (up to 
90%). These features make them a promising technology for energy conversion. However, to 
bring out the advantages of this technology, system-level reliability and cost reduction issues 
regarding its application must be addressed. A European project, titled “GEneric diagNosis 
InstrUment for SOFC Systems (GENIUS)”∗, was therefore carried out with the aim of 
developing generic diagnosis methodology to ensure the required stability level for SOFC 
systems so that the lifetime of the fuel cell stack could be extended.  

In this project, an entire SOFC system is separated into two parts: 1) the SOFC stack; 2) the 
rest of the system, known as Balance of Plant (BoP). It is believed that the severe degradation 
in the stack can be often attributed to improper operating conditions resulted from the faults in 
the BoP part, such as gas leakage in the joint point between the pipe and the manifold of the 
stack, temperature control failure, air blower failure and so on. The ultimate aim of the 
GENIUS project is hence to diagnose the BoP faults. Nevertheless, in order to avoid 
complicating the supervised system and increasing the diagnostic cost, no additional sensors 
are permitted to be superimposed on the system. To meet this requirement, an innovative idea 
is given in the GENIUS project, that is, to treat the SOFC stack as a specific sensor to support 
for the diagnosis.  

Under this context, FCLAB, as one of the participant organization in the GENIUS project, 
proposed 3 steps to complete the on-line diagnosis for the BoP part. Firstly, the specific 
sensor, i.e. the SOFC stack, must be confirmed a priori being in a good state of health. Then, 
the fault detection is performed to see whether or not the stack is operated in normal condition. 
If not, a meta-model is activated to estimate the actual operating parameters, aiming at BoP 
fault identification. The implementation of all these 3 steps is demanded only based on the 
stack’s voltage and/or current density measurements. In addition, for off-line diagnosis, 
FCLAB suggested to work on the fuel cell’s polarization test data, applying classification 
technique to implement data analysis and fault indicator research.  

Based on these concepts, 3 algorithms are developed to achieve SOFC systems’ off-line and 
on-line (or on-board) diagnosis. The first algorithm, pointing to the off-line diagnosis, is 
based on the k-means clustering technique for data analysis and knowledge extraction. The 
second algorithm works for the confirmation of the state of health of SOFC and the 
ascertainment of the occurrence of BoP fault. It resorts to wavelet transform technique to 
realize SOFC voltage signal processing and fault indicators extraction. The third algorithm 

                                                           
∗
 Refer to the web page: https://genius.eifer.uni-karlsruhe.de/ 
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relies on a Bayesian network model used to estimate the stack’s actual operating parameters. 
These parameters could help identify or position the fault.   

All these algorithms are asked to be validated by experimental data. 5 datasets obtained from 
different SOFC system tests are thus prepared. The first dataset includes the historical 
polarization measurements originated from a series of SOFC stacks’ tests on a Hexis system. 
These tests were devoted to a previous European project which aimed to increase 
understanding in SOFC degradation mechanisms. This dataset will be used for the off-line 
diagnosis algorithm validation. The second and the third datasets issue from two rounds 
experiments carried out on an SOFC test bench in VTT laboratory for the GENIUS project. 
The fourth and the fifth datasets are from FCLAB’s historical experimental database. These 
four datasets serve for the validation of the on-line diagnosis algorithms. Since they are 
obtained from different SOFC test benches, the generalizability of the algorithms could be 
tested, as well.  

This thesis presents our works in the framework of the GENIUS project. It is composed of 5 
chapters: 

• The 1
st
 chapter firstly presents the state of the art about the SOFC technologies in 

terms of stack configurations and cell materials. Then, the durability issues of SOFC 
system are overviewed. They are summarized into two types: the SOFC stack failure 
and the BoP fault. The SOFC failure can be in depth divided into two categories: soft 
and hard failures. The soft failures are reversible while the hard failures are 
irreversible. SOFC degradation mechanisms related to these failures are introduced. 
The causal relationships between some of these failures and the relevant BoP faults are 
also mentioned. The diagnosis methodology developed in the framework of GENIUS 
project aims principally at detecting abnormal operating conditions caused by the BoP 
faults so as to avoid consequent SOFC failures.  

• The 2
nd

 chapter is focused on the introduction of three basic diagnosis approaches, i.e. 
the model-based, the signal-based and the knowledge-based approaches. A literature 
research on the applications of these approaches in the field of fuel cell diagnosis is 
presented. This work has been published in [Wang'11a] and [Wang'11b]. In the 
GENIUS project, FCLAB is in charge of developing the non-model based approaches 
in the application of SOFC system diagnosis. The signal-based approach is selected 
for the fault detection while the knowledge-based approach for the fault identification. 
In order to realize the usage of these approaches in the on-line diagnosis, the wavelet 
transform and the Bayesian network-based inference are used. The data clustering 
method is considered for the implementation of the off-line diagnosis. The databases 
originated from 5 tests on the different SOFC systems are prepared for the algorithms’ 
validation. The descriptions about these tests are given in the end of this chapter. 
The following 3 chapters are the main part of this thesis. Each of them is dedicated to 
one of the developed diagnosis algorithms (the data clustering based algorithm, the 
wavelet transform based algorithm and the Bayesian network based algorithm), 
introducing its principles, clarifying its application in SOFC system diagnosis, and 
presenting the validation results.      
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• The 3
rd

 chapter reviews two clustering techniques: the k-means and the fuzzy k-means 
clustering. The former belongs to hard data classification. The later is one of the soft 
data classification methods. It has already been applied in FCLAB to analyze 
electrochemical impendence measurements for Proton Exchange Membrane Fuel 
Cells (PEMFCs) diagnosis. In this work, the k-means clustering is exploited for off-
line SOFC stack and system diagnosis, working on the analysis of the polarization 
measurement data of the stacks. The application of this algorithm starts by the 
classification of the operating variables’ data, in order to discriminate the different 
operating conditions of interest. Then, it is used to classify the stacks’ response 
variables data to see if the result is in accordance with that of the previous 
classification. The objective is to find out the significant response variable(s) able to 
indicate the actual operating condition and the state of health of the SOFC stacks. 

• The 4
th

 chapter presents the wavelet-transform based algorithm. This algorithm is an 
extension on the work of Nadia Steiner [Steiner'09] (performed between FCLAB and 
EIFER) who developed a wavelet-packet-transform based method for PEMFC 
diagnosis. Wavelet transform is a technique for signal decomposition, which allows 
analyzing signals in time-scale domain. We use this technique to study the fluctuations 
present in the SOFC’s voltage signals. These fluctuations are considered able to 
indicate the operating condition of the system as well as the state of health of the fuel 
cell. Their indicative capability is validated with 4 groups of data. 

• The 5
th

 chapter clarifies how to employ Bayesian network to achieve SOFC system 
diagnosis. Firstly, the principles of Bayesian network are introduced. Then, a Bayesian 
network model is proposed for the estimation of SOFC operating parameters based on 
its electrical output measurements (the stack voltage and current), with the aim of fault 
identification. This model is parameterized and validated by the experimental data 
from two different SOFC test benches. A part of this work has been published in 
[Wang'12].  
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Chapter I Introduction 

 

 

 

ccording to the 2007 report of the U.S. Department of Energy on greenhouse gases, 
the combustion of fossil fuels gives per year a net increase of around 10.65 billon 
tones of atmospheric carbon dioxide [Akorede'12], which will in turn have adverse 

effects on the environment for human survival. In order to slow down the increasing trend of 
CO2 emissions, the European Union (EU) has in accordance with the Kyoto Protocol 
committed itself to reducing its greenhouse gas emissions by 8% during the period 2008–2012 
compared to its levels in 1990. In January 2007, new emission-reduction target was 
established by European leaders for the post-2012 period in the Commission’s 
Communication, which increased the reduction goal to 20% by 2020. To meet these goals, a 
series of mitigation measures have been proposed such as carbon sequestration, clean 
development mechanism and most importantly use of non-polluting sources of renewable 
energies like solar, wind, geothermal energy sources [VijayaVenkataRaman'12] as well as 
fuel cells. The later can generate clean, highly efficient power onsite from a wide variety of 
fuel sources. Fuel cell is a device able to directly convert chemical energy of fuel gases into 
electrical work without the requirement of combustion. It is much more efficient than 
conventional power generation and thus considered as an alternative to the medium- and 
large-scale heat engines and the batteries. 

Different fuel cell types have been tried and developed in the decades to solve the 
fundamental problems regarding reaction rate and hydrogen availability [Larminie'03]. 
Among, the Proton Exchange Membrane Fuel Cells (PEMFCs) and the Solid Oxide Fuel 
Cells (SOFCs) have both attracted the most attentions. The formers operate at low 
temperatures (around 80°C) with a polymer electrolyte. Their electrical efficiency is about 40% 
to 50% and adaptable for mobile applications. In contrast, the SOFC, operating at high 
temperatures (700°C–900°C) to reach the electrolytes ionic conductivity requirement, can 
achieve a slight higher electrical efficiency up to 60%. The high operating temperature makes 
it suitable for added-value utilization by heat recovery for cogeneration in the case of which 
the overall efficiency can reach close to 90%. Apart from the higher energy conversion 
efficiency, high operating temperature also enables internal fuel reforming inside SOFCs. 
Owing to the tolerance to impurities in the fuel, SOFCs can be used with a number of 
hydrocarbons as fuel. The solid electrolyte avoids any corrosion and electrolyte management 
problems encountered in liquid electrolyte [Nesaraj'10]. The flooding phenomenon occurred 

A 
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on the membrane of PEMFC is not present in SOFC either, because the produced water is in 
gaseous form under high operating temperature and thus can be easily moved out with the fuel 
flow. However, the high-temperature environment also imposes some challenges on SOFC 
fabrication (e.g. stability of materials and sealing under high temperature) and application (e.g. 
thermal management issues). For the reason that the time required to reach the operating 
temperature is significant, and due to the limits on start-up/shut-down cycles, SOFCs are more 
suited to stationary power supply applications. They are also applied as auxiliary power units 
(APUs) for vehicles. 

This chapter gives an introduction to SOFCs as well as to the major challenges and problems 
in their practical applications.  

 

I.1. The solid oxide fuel cell 

I.1.1. Basic principles 

The development of SOFC can be traced back to the 1890s when Nernst firstly found that 
stabilized zirconia (ZrO2) was ion-conductive in red hot conditions, between 600°C and 
1000°C. In the late 1930s, this discovery regained attentions of researchers after Baur and 
Preis using it in a fuel cell concept. Until today, the most favoured electrolyte for SOFCs is 
the fluorite-structured electrolytes, especially the Yttria-Stabilized Zirconia (YSZ, a 
zirconium-oxide based ceramic) which can become a conductor of oxygen ions above 800°C. 
Other fluorite-structured oxide ion conductors, such as doped ceria, have also been proposed 
as the electrolyte materials for SOFCs, especially for a reduced temperature operation at 
temperatures between 600 °C and 800°C [Singhal'03].  

In an SOFC, the solid electrolyte is sandwiched around by two electrodes: the anode and the 
cathode. During operation, hydrogen is fed into the anode and oxygen/air is carried to the 
cathode where oxygen atoms are electrochemically reduced into oxygen ions (O2-) by 
consuming the electrons transported through the external circuit. Then, the oxygen ions flow 
through the electrolyte towards the anode side and react with hydrogen. Electrons (e-) are 
released from this reaction and flow to the cathode through the external electrical connection 
(see Figure 1-1). In this way, as long as the supply of fuel and oxygen/air is not cut off, 
oxygen ions can be continuously yielded and transported from the cathode to the anode, 
which maintains overall electrical charge balance and ensures the electric power generation.  
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Figure 1-1 Charge flow in a SOFC*  

The allowance of internal reforming is one of the attractive features of SOFC. Due to this 
capability, it can also use, apart from hydrogen, other fuels such as gaseous hydrocarbons (e.g. 
methane) and carbon monoxide (CO). These fuels can directly react with steam on the anode 
in the presence of required catalysts at reaction sites. For example, fuel reforming can take 
place on Ni/YSZ anode. Ni/YSZ is a cost-effective material and can provide catalytic 
reforming activity for the reaction between methane and steam to produce CO and H2. CO 
then continues to react with the steam, releasing more hydrogen. In this shift reaction, CO2 is 
the other product and will be transferred out of the fuel cell together with the produced steam 
(H2O) and the unused fuel. The chemical equations of the steam reforming and shift reactions 
are given below: 

Steam Reforming: CH4 + H2O → CO + 3H2 

Water-gas Shift Reaction: CO + H2O → CO2 + H2 

Additionally, methane may be reformed with CO2: 

Dry Reforming: CH4 + CO2 → 2CO + 2H2 

The reforming procedure discribed above is called Direct Internal Reforming (DIR), in which 
the reforming reaction occurred simultaneously with electrochemical reaction at the anode 
side of SOFC and thus a high heat transfer rate can be achieved. Nevertheless, the anode 
material for DIR-SOFC must be optimized for both reactions as it is susceptible to 
deactivation and poor durability due to carbon deposition. Moreover, direct internal reforming 
gives rise to a sharp endothermic cooling effect at the cell inlet, generating inhomogeneous 
temperature distributions and a steep temperature gradient along the length of the anode, 

                                                           
* Source: Robert J.K. & Zhu H., Oral presentation: Solid-oxide fuel cells (SOFC) with hydrocarbon and 
hydrocarbon-derived fuels, International Symposium on Combustion, USA, 29 July, 2004  

Eq. 1-1 

Eq. 1-2 

Eq. 1-3 
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which is very difficult to control and can result in cracking of the anode and electrolyte 
materials [Singhal'03].  

There is another approach known as Indirect Internal Reforming (IIR), in which a reformer is 
integrated in close thermal contact with the anode side of SOFC so that the catalyst for 
reforming reaction at the reformer part and the material for electrochemical reactions at the 
anode side can be optimized individually, which prevents the anode from the possible 
degradation caused by carbon deposition [Laosiripojana'07]. Another advantage of indirect 
over direct reforming is that, from a thermodynamic standpoint, it is much easier to control 
[Singhal'03]. However, for most SOFC systems, the gas reforming is often performed outside 
the stack.  

For the conventional concept of the electrochemical reaction in SOFCs, the substance reacting 
finally with oxygen is always H2, no matter what kind of fuel is used as the inlet gas [Tu'04]. 
The electrochemical reaction and the oxygen reduction reaction taking place on the electrodes 
are formulated as follow: 

At the anode:  H2 + O2- → H2O + 2e- 

At the cathode: O2 + 4e- → 2O2- 

The steam as a product of the hydrogen oxidation can be directly re-circulated for the internal 
reforming such that less steam must be pre-produced in comparison with external reforming, 
improving the system efficiency. The steam reforming (endothermic) and the water-gas shift 
(exothermic) reactions can be combined to be an auto-thermal process in which the partial 
combustion of a portion of the hydrocarbon provides the heat required by the endothermic 
reforming reactions to proceed. This process is known as autothermal reforming. 

 

I.1.2. SOFC components and materials 

A SOFC is mainly composed of 4 elements: the anode, the cathode, the electrolyte and the 
interconnector, as shown in Figure 1-2. Each of them serves several functions and has to 
fulfill different requirements. For instance, electrolyte and interconnector have to be gas tight 
and purely ion-conducting membranes whereas the electrodes must allow the transport of 
electrons, gaseous reactants and products [Ivers-Tiffée'01]. However, they also have certain 
common requirements to meet, such as [Stambouli'02]: 

• Proper stability (chemical, phase, morphological and dimensional); 

• Proper conductivity; 

• Chemical compatibility with other components; 

• Similar thermal expansion to avoid cracking during the high-temperature operation; 

• High strength and toughness properties; 

• Fabricability; 

Eq. 1-4 

Eq. 1-5 
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• Low cost. 

 

 

Figure 1-2 Cross-flow planar SOFC* 

 

I.1.2.1. Anode 

The anode is the part of SOFC where the electrochemical reaction takes place and the 
electrons are released. It is thus very crucial with respect to the FC performance. The material 
of the anode not only requires having the catalytic capability to promote fuel oxidation but 
also should be of high electrical conductivity to convey the liberated electrons to the current 
collector. In addition, the anode needs to provide a large number of active reaction sites for 
the fuel to react with the oxygen ions. Therefore, the structural concept for the anode (also for 
the cathode) always involves the creation of a porous system, which aims to increase the 
reactive surface and additionally ensures that the gaseous reactants can easily penetrate from 
the electrode surface at the side of gas supply channels to the electrochemical reaction zone. 

Until now, a lot of investigations have focused on these requirements in order to develop an 
anode of high performance; and researches on this topic are still continuing. Early in the 20th 
century, many candidate anode materials were tested, including precious metals like platinum 
and gold, and transition metals such as iron and nickel [Singhal'03]. At last, the nickel was 
selected for the anode as the best suitable material in terms of both the catalytic and cost 
efficiencies. However, the nickel-based anode did not success until the 1970s when Spacil 
solved the nickel aggregation problem by combining it with YSZ electrolyte particles. 

While the nickel (Ni) plays the role to meet the main requirements for the anode regarding 
electrical performance and conversion kinetics, the YSZ is added into the anode in order to 
support the Ni particles, to maintain the stability of their electronically conductivity, and to 

                                                           
*Source: University of Cambridge, DoITPoMS > TLP Library > Fuel cells > Solid oxide fuel cells,   
http://www.doitpoms.ac.uk/tlplib/fuel-cells/high_temp_sofc.php 
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provide an anode thermal expansion coefficient close to the one of the zirconia based 
electrolyte. Currently, such a cermet (a combination of ceramic and metal) anode has been 
widely used in SOFC technology. It is commonly made from YSZ and NiO powders. This 
NiO powders can be reduced in situ to nickel metal when exposed to the reductive 
environment as the fuel is continuously fed over the anode; as a result a porous Ni–YSZ 
composite will be formed. This composite has a homogeneous or graded structure consisting 
of three phases, Ni, YSZ and gases. The line where these three phases meet is referred to as 
the triple-phase-boundary (TPB) and is considered to be electrochemically active. The length 
of TPB has been found correlated with the rate of the electrochemical reaction on the anode 
and is thus significant to the fuel cell performance. 

One significant disadvantage of Ni-based anode is that it is not suitable for operation with 
hydrocarbon fuels, due to carbon deposition that we will introduce in detail in the Section 
I.2.1.1.2. Addressing to this problem, some strategies have been proposed. One of the 
solutions is to add other metals such as Cu. Cu is an excellent electronic conductor but a poor 
catalyst for C-C bond formation (a reaction related to carbon formation). The addition of Cu 
in the Ni-YSZ anode can inhibit Ni’s catalysis on coke formation. In [Park'09], the 
experimental result showed that in the same operating time (5 hours), the amount of carbon 
deposited on the Cu–Ni–YSZ anode was from 30% to 50% less than that on the Ni-YSZ 
anode. However, on the other hand, Cu is also a very poor catalyst for activation of 
hydrocarbons [Gorte'03], which will reduce the reaction rate of fuel reforming. Accordingly, a 
compromise must be reached between the positive and negative effects of Cu when it is 
considered as a component part of SOFC anode. In the recent decade, new materials such as 
Cu–CeO2–YSZ composite [Lu'04, Park'09] have emerged to deal with carbon formation 
problem of the Ni-based the anode.  

 

I.1.2.2. Cathode 

On the SOFC cathode, the oxygen is reduced into oxygen ions which then migrate through the 
electrolyte to the anode. Similar to the anode, it is also made from porous ceramic materials. 
Perovskite materials such as LaSrMnO3 (LSM) are the most commonly used SOFC cathode 
material. They can offer excellent thermal expansion match with zirconia electrolytes and 
provide good performance at operating temperatures above 800°C [Stambouli'02]. In order to 
obtain better performance, SOFC manufacturers explored a composite cathode by mixing the 
electrolyte materials (YSZ) with LSM. This incorporation increases the ionic conductivity of 
the LSM-based cathode and the volume of active sites available for the full electrochemical 
reduction of oxygen. Furthermore, the obtained LSM–YSZ cathode exhibits an improvement 
of performance at lower temperatures [Gong'11]. Like in the anode, three-phase (LSM, YSZ 
and air/oxygen) sites also exist in the cathode. Due to the low ionic conductivity in the bulk 
LSM, the active sites for the full electrochemical reduction of oxygen are largely confined to 
the length of this TPB at the cathode side [Liu'09, Mizusaki'91]. 
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I.1.2.3. Electrolyte 

For optimal cell performance, SOFC electrolyte should have the conductivity value for 
oxygen ions close to 1 while for electrons close to 0 as possible. It also must be free of 
porosity so as not to allow gases to permeate from one side of the electrolyte to the other 
[Singhal'00]. Using YSZ as the electrolyte, SOFC is restricted to operate in high temperatures 
(around 1000°C) because of the thermal activation requirement for the oxide ion conductivity 
of YSZ. A 10% decrease in temperature will result in about 12% drop in cell performance, 
due to the increase of the internal resistance to the oxygen ions transport [Stambouli'02]. 
While the high temperature requirement enables internal reforming and co-generation 
application of SOFCs, it equally brings challenges and problems to SOFCs manufacturing and 
commercialization. Materials problems associated with this high operating temperature 
include electrode sintering, interfacial diffusion between electrolyte and electrode and 
mechanical stress due to different thermal expansion coefficients [Souza'97]. In addition, 
expensive high temperature alloys and ceramics are required respectively to house the cell and 
to serve as interconnection materials, increasing the cost of fuel cell substantially 
[Stambouli'02]. In applications, a long-term heat-up process is necessitated by SOFC systems 
so that quick start-up/shut-down cycling is likely impossible to be achieved. SOFCs also 
suffer from the thermal cycling issue and the temperature gradient problem in operating 
conditions.  

On the other hand, decreasing the operating temperature of SOFCs can lower the ion 
conductivity of the electrolyte and result in large internal resistance. For instance, a SOFC 
with YSZ as the electrolyte, Ni–YSZ cermet as the anode and a LSM–YSZ composite as the 
cathode is able to operate in a temperature range from 1000°C to 850°C whereas at lower 
temperatures, the polarization resistances are too large such that the efficiency or power 
density is not satisfying [Ivers-Tiffée'01]. Furthermore, the reactions at the electrodes will 
become less active when the operating temperature is reduced. Additionally, natural gas 
reforming necessities an undermost operating temperature of about 650°C, which leads to a 
very limited room for operating temperature reduction [Ivers-Tiffée'01]. These limitations 
promoted researchers to seek the substitutes for YSZ electrolyte which are expected to have 
high ion conductivity in medium operating temperatures (600°C–800°C).  

Doped-ceria based electrolytes have been studied as alternative for oxygen ion conductors for 
Intermediate Temperature SOFC (ITSOFC) [Badwal'00, Zhu'01]. This kind of materials has a 
high concentration of oxygen-ion vacancies, exhibiting high ionic conductivity. For example, 
the conductivity of Gd–doped ceria at 800°C is about 0.1 S/cm and is approximately one 
order of magnitude higher than that of YSZ [Joshi'04]. However, their electronic conductivity 
can increase with the increasing degree of non-stoichiometry (increasing temperature and 
decreasing oxygen partial pressure) [Badwal'00], resulting in an internal short circuit in the 
cell. Lanthanum gallate (Sr and Mg doped LaGaO3, LSGM) based electrolyte has been also 
found to have relatively high ionic conductivity at 800°C in both oxidizing and reducing 
atmospheres [Feng'94, Ishihara'94,, Huang'98 Joshi'04]. However, the use of LSGM–based 
electrolyte can also provoke problems in the aspects of durability and cost, due to the low 
mechanical stability of LSGM and the high costs of Gallium [Ivers-Tiffée'01]. Currently, the 
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oxygen ion conducting electrolyte materials for intermediate temperature are still on research 
stage, being accompanied by the development of suited electrode and interconnector materials. 

Another approach to counteract the increase of the electrolyte ohmic resistance at lower 
temperature is to decrease the electrolyte thickness [Souza'97, Charpentier'98, Will'00, 
Gannon'09]. For example, for an area-specific resistance (ASR) of 0.15 Ω.cm2, the decrease in 
thickness of a 10 mol% YSZ electrolyte from 15 µm to 500 nm allows a decrease of operating 
temperature from 700°C to approximately 525°C [Steele'01, Litzelman'08]. The thickness-
reduced electrolyte looks like a thin film supported by one of the electrodes. Since the 
electrolyte resistance accounts for a large proportion of SOFC internal resistance, the usage of 
thin-film electrolyte contributes to a significant reduction of the ohmic resistance of the cell. 
This effect offsets the negative influence caused by the lowering of the operating temperature 
of SOFCs. With such thin electrolytes, ohmic losses are no longer rate-controlling, thereby 
making polarization losses the dominant loss mechanism for fuel cell performance [Chao'11].    

  

I.1.2.4. Interconnector 

The interconnector is an important component for a fuel cell stack. Thanks to it, the individual 
fuel cells can be electrically connected in series to form a stack in order to meet higher 
voltage requirement in practical applications. The interconnector physically connects the 
anode of a fuel cell to the cathode of the adjacent fuel cell in the stack, serving as an electrical 
connection and acting as a physical barrier to segregate the air electrode side and the fuel 
electrode side. Since the interconnector is simultaneously exposed to an oxidizing atmosphere 
and to a reducing environment during the fuel cell operation, it must be made of chemically 
stable materials with high oxidation resistance. In addition, it should have a high electrical 
conductivity to allow the transport of the electronic current between the individual cells and 
towards the external circuit [Cabouro'06]. The interconnector also serves as a transport 
channel to provide the reactants to both the anode and the cathode side, and to allow the 
reaction products flowing out of the cell so that electrochemical reaction can proceed [Zhu'03].  

Two main types of material, i.e. ceramic or metallic, are commonly used for the 
interconnection of SOFCs. The doped lanthanum and yttrium chromites (LaCrO3) based 
compounds with the perovskite structure are the most promising ceramic material for SOFC 
interconnectors, owing to their high electrical conductivity and high corrosion resistance 
under both oxidizing and reducing atmospheres in high temperature (around 1000°C). 
Nevertheless, certain weaknesses of LaCrO3 are obvious [Wu'10]: (i) LaCrO3 is a p-type 
semiconductor, and its conductivity decreases with decreasing oxygen partial pressure as 
lanthanum chromite becomes oxygen deficient; (ii) compared with typical engineering 
materials, lanthanum, being a rare-earth element, is more expensive; (iii) LaCrO3 is difficult 
to sinter to a high relative density so the processing of a hermetic LaCrO3 layer is quite 
difficult. By contrast, metallic materials show many advantages such as low cost, easy 
manufacture and good workability. Furthermore, they also have higher electronic and thermal 
conductivities. The crucial barrier for the metallic interconnectors to be used in SOFC is their 
high temperature corrosion in long-term operation. Fortunately, recent researches succeeded 
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in lowering operating temperature of SOFCs have relieved this concern and favoured the use 
of metal interconnectors in planar-type SOFC.  

For the ITSOFCs operated in the range of 600–800°C, ceramic interconnectors are not 
applicable because their electrical conductivity will greatly decline when the operating 
temperature is reduced to below 800 °C [Piccardo'09]. In this case, low cost metallic alloys 
are proposed as interconnectors [Huang'00, Zhu'03, Cabouro'06]. To have high corrosion 
resistance, a protective layer is needed on the surface of the metallic interconnector. Alumina, 
silica and chromium can all provide excellent protective surface scales by means of the 
oxidization to form Al2O3, SiO2, Cr2O3, respectively. Nevertheless, the former two oxides 
have much lower electrical conductivity than the third one, leading to unacceptably high 
electrical resistances at the current-connector/interconnect interface [Fergus'05]. Hence, only 
chromia-forming alloys were explored in the last decade as the best candidate of metallic 
interconnectors. Using this kind of alloys can bring considerable cost reduction in the 
fabrication of SOFCs without sacrificing the cell performance. However, many issues 
concerning the chemical stability of these alloys in the real operating condition of SOFCs 
must be primarily handled [Sakai'06].  

The chromia-forming alloys mainly involve three categories: the chromium Cr-based, the iron 
Fe-based and the Ni–based alloys. Among, the Cr–based alloys are developed for electrolyte-
support planar SOFC that typically operate around 1000°C because their thermal expansion 
behaviours in the temperature range of 25°C–1000°C exhibit considerable similarity to that of 
the  other ceramic components [Piccardo'09]. But for the ITSOFCs operating around 800°C,  
Fe– or Ni–based alloys are more favoured owing to the reduced cost and improved ductility 
[Zhu'03]. Moreover, the Fe–based alloys, i.e. stainless steels, also have the advantage on the 
thermal expansion coefficient which is preferably matched with those of other ITSOFC 
components.  

In spite of using different metal as the base, all the alloys mentioned above contain chromium 
for forming corrosion-resistant Cr2O3 scale in the presence of oxidant. However, due to the 
high oxidation rate of chromium, this scale is instable in oxidizing environment (locating not 
only at the higher oxygen pressure end of the cathode but also at one end of the anode side 
where the hydrogen has been diluted by produced water gas) and can be further oxidized, 
forming volatile gaseous Cr species such as CrO3 or CrO2(OH)2 which leads to higher 
oxidation rates [Fergus'05] and fuel cell poisoning [Fontana'09, Piccardo'06] . One solution is 
to add into the alloys other chemical elements such as Mn and Ti, or reactive elements such as 
La, Nd, Y, etc. Another solution is to coat these alloys with a protective oxide layer to 
suppress the volatilization of chromium.  

In a planar-type SOFC stack, the interconnector is repeatedly deposited between the 
individual cells. Using metallic interconnectors will obviously increase the overall weight of 
the stack. According to [Cable'07], the metallic interconnectors can account for up to 75% of 
the stack weight. Furthermore, the formation of oxide scales on the surface of such repeated 
element leads to significant ohmic losses. In addition, the contact resistance between the 
interconnector and the adjacent ceramic-contained components is also important. Serving as 
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an electrical conduction between the cells and the external circuit, the interconnector plays a 
crucial role in the stack. The failure of one interconnector means the failure of the whole stack.  

 

I.1.3. SOFC geometries and stack configuration 

SOFCs come in several different designs, including tubular and planar geometries and other 
novel designs. 

 

I.1.3.1. Tubular SOFC 

The tubular SOFC was pioneered by the US Siemens-Westinghouse Power Corporation in the 
late 1970s [Larminie'03] and has been greatly developed. It is in configurationally a long tube 
with the electrolyte and the anode built up in layers on the air electrode, as shown in Figure 1-
3. The fuel flows on the external surface of the tube while the air is fed into the cell through a 
thin delivery tube. An axial interconnector is deposited on the cathode for conducting the 
electrons to the external circuit and allowing cells to be connected in series. In tubular SOFC 
stack, the outer anode layer of one tubular cell is connected to the inner cathode layer of the 
next tube by the interconnector. With the tubular design, the input air can be directly heated 
up to the operating temperature by the heat released from the cell internal reactions. Moreover, 
the dimension of the interconnector is much smaller when compared to the planar SOFC so 
that the high cost ceramic interconnectors still play a dominant role in tubular design SOFCs 
where only small amounts of interconnects are required [Tietz'02]. However, this design 
results in a long current path inside the cell (see Figure 1-4), leading to large Joule heats 
production. 

 

Figure 1-3 Siemens-Westinghouse single tubular SOFC* 

                                                           
*Source : http://www.stubhollow.com/Transportation/Electric/boats/fuelcellboats.htm 
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Figure 1-4 Single tubular SOFC operation and current path* 

 

I.1.3.2. Planar SOFC 

The development of planar SOFCs started later than that of tubular SOFCs. They are built 
analogously to other types of fuel cells, such as PEMFCs [Bagotsky'09]. The planar SOFC 
displays much higher power density (which can reach about 2 W/cm2 at 1000°C) than that of 
the tubular SOFCs (about 0.25–0.30 W/cm2 at 1000°C) [Mench'08]. This design enables the 
simple cells connection with shorter current path and favours the application of low-cost stack 
fabrication methods such as screen printing and tape casting [Larminie'03]. Unlike the tubular 
SOFC in which the reactant gases flow in an open passage along the electrode surface, in the 
planar SOFC the fuel and the air flow down along the parallel channels located on the two 
sides of the bipolar plate interconnector (see Figure 1-2). According to the flow directions of 
the fuel and the air, planar SOFCs can be further divided into 3 types: co-flow, cross-flow and 
counter-flow. The parts sandwiched by two bipolar interconnectors are the core of the fuel 
cell. They are always assembled together and known as membrane-electrode-assembly (MEA) 
which can also appear in various configurations such as anode-support, electrolyte-support, 
and cathode-support. From the point of view of manufacturing, a key issue in planar SOFC 
design is the difficulty of sealing the flow fields at the edges of the fuel cell, due to non-
matched thermal expansion properties of materials over the large temperature variation. 

 

I.1.3.3. Hexis SOFC 
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There is another attractive SOFC design developed by Sulzer Hexis Ltd. who targets to the 
application in small-scale combined heat and power (CHP) system. In this design, the stack is 
cylindrical, composed by a series of repeated units in planar design and with a round hole in 
the center. Each unit contains a disk-shaped electrolyte supported cell and a metallic 
interconnector in the same form (see Figure 1-5). The active area per cell is roughly 100 cm2. 
During operation, the fuel (reformed natural gas) is fed along the centre axis of the cylindrical 
stack and radially diffuses into the fuel channels of each unit’s bipolar interconnector while 
the air is directly blown into the air channels. The excess fuel will mix with the air around the 
cylinder surface and then be burnt off surrounding the stack to maintain the operating 
temperature (850°C–900°C). Such design minimizes demands on seals and simplifies the 
thermal management of the system [Mai'11]. Based on such SOFC stack, Hexis has 
developed a micro-CHP unit known as Galileo 1000 N system which covers both the entire 
heat requirements and the basic requirements for electrical power of a single-family home. 
This system can supply an electrical power of 1 kW and a thermal capacity of 2kW with an 
overall efficiency of more than 90% [Nerlich'10].  

  

Figure 1-5 Hexis SOFC stack* 

 

I.1.4. Summary of the advantages and disadvantages of SOFC 

Compared to other fuel cell systems, the SOFC has many advantages: 

1. High operating temperature increases the reaction rate and eliminates the need for 
expensive catalysts. It also enables internal reforming of complex fuels. 

2. SOFCs can operate with various types of fuels such as methanol and hydrocarbons and 
is tolerant to carbon monoxide which is a major poison to PEMFC. 

                                                           
*Source : http://www.hexis.com/en/graphical-material 
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3. They produce high quality heat by-product which can be used for CHP applications so 
as to attain higher overall efficiencies. 

4. They have a potential long life expectancy of 40000–80000 hours [Stambouli'02, 
Tu'04]. 

However, SOFC is not a perfect fit for all applications and has some technical challenges to 
overcome. Although the high-operating-temperature nature brings many benefits, it is the 
principle origin of most problems encountered in the SOFC application, such as the following 
issues:  

1. A significant start-up time is required for the system to elevate the stack temperature 
to the operating value. 

2. High operating temperature increases the difficulty of temperature control and is 
related to the SOFC degradation in various cycling conditions such as thermal cycle, 
redox cycle and load cycle.  

3. It causes thermal stresses and microstructural changes on the fuel cell components in 
long-term operation, resulting in irreversible damages to SOFC. 

Although the operating temperature of SOFC has been decreased with the development of 
new electrolyte materials in recent years, these issues still remain and limit the reliability and 
lifetime of SOFC stacks. Moreover, the usage of metallic interconnector in ITSOFC stacks, in 
spite of the attractive benefit on cost reduction, also evokes new problems such as cathode 
catalysis degradation [Matsuzaki'01]. Accordingly, durability extension is a continual 
improvement process for SOFC system, as for any other ones.  

 

I.2. Durability and reliability issues of SOFC system 

For the purpose of commercialization, SOFCs are asked to have a small degradation rate 
during a cell and/or stack lifetime more than 40000 hours for stationary application and up to 
20000 hours as auxiliary power units (APU) for transportation. Although this type of fuel 
cells themselves has a potentially long life in the order of 40000–80000 hours, rare SOFC 
systems to date can satisfy this demand.  

The degradation/failure of SOFCs can be generally attributed to two aspects: either to the 
material selection mistakes as well as the defective design on the fuel cell/stack itself, or 
being caused by the improper system operations. In the past decades, great investigative 
efforts, including the improvement on the compatibility of materials for SOFC repeat unit and 
the optimisation for the stack configuration, have been contributed to solve the problems in 
the first aspect in order to achieve higher cell performance and reliability, whereas the later 
aspect had been ignored. It was until the recent years that the researchers began to attach the 
importance to the effect of system failures upon the SOFCs’ durability. It is worth noting that 
the system failure mentioned in here is referring to the malfunction that occurs in the sub-
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systems and components other than the fuel cell stack itself. This part is the so-called balance 
of plant (BoP) which, together with the stack (s), forms the fuel cell system [Larminie'03].     

A BoP failure, being either a control mistake or an equipment fault, can lead to accelerated 
aging/ degradation of fuel cells. This kind of failures often takes place incidentally and is 
difficult to perceive in the early stage of occurrence when their effect upon the fuel cell 
performance is not significant. However, at the end, they always result in catastrophic damage 
to the fuel cells.    

Normally, the BoP failure does not have direct impact on the SOFC but induces a progressive 
deviation of operating condition from the rated one. Since the cell performance and its state of 
health are both sensitive to the operating condition, the later is a key issue in the investigation 
of fuel cell systems’ reliability and durability.  

Improper operating conditions can lead to a variety of degradation mechanisms in SOFCs 
[Yokokawa'08]. For the stationary applications, the chemical instability at the interfaces of 
FC’s components is a key issue. In the transportation applications where frequent thermal 
cycles are required, the thermo-mechanical instability of FC materials is a crucial problem 
[Yokokawa'03].  

In a SOFC stack, degradation is inhomogeneous on the whole active cell surfaces. Moreover, 
different degradation phenomena could occur simultaneously, interacting and being 
cumulated [Larrain'06]. In such a case, the degradation behaviour observed in stacks is 
difficult to interpret. It is therefore essential to increase the understanding in SOFC 
degradation mechanisms. Such investigation is also helpful for differentiating the abnormal 
operating conditions from the normal and tolerant ones. 

This section gives a literature overview on fundamental mechanisms of the aging and 
degradation in SOFCs as well as on different types of BoP failures.  

 

I.2.1. SOFC degradation mechanisms 

SOFC failures can be divided into two types: (i) hard failures caused by the mechanical 
damages such as physical breaking and delamination of layers; and (ii) soft failures due to the 
chemical instability of materials and the consequent microstructural changes. The hard 
failures are inherently irreversible whereas the soft ones could be recovered in specific 
environments. Though, the later can eventually lead to hard failures if none of corrective 
actions is taken.    

 

I.2.1.1. Soft failures 

I.2.1.1.1 Ni–based  anode reoxidation 
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One of the challenges related to Ni-based anode is the problem of redox instability. The anode 
in a factory-fresh anode supported electrolyte (ASE) SOFC is commonly a combination of 
NiO and YSZ powders. On the first operation of the cell, the NiO is reduced in situ to metallic 
nickel when exposed to the heated fuel stream and a porosity structure is obtained. When the 
metal content of the composite is sufficiently increased, the randomly packed well conductive 
metal particles start to connect with each other and form percolating networks with the 
insulating ceramic matrix [Pihlatie'10]. The connected nickel-nickel particles, on the one hand, 
serve as an electronic conductor and as a catalyst for the electrochemical reaction; on the 
other hand, they cause several undesirable characteristics. A crucial one is their chemical 
instability under high temperature conditions. This drawback leads to the risk of Ni 
reoxidation, that is, the so-called ‘redox’ phenomenon. 

As the anode is maintained in a reduced state (through continuously providing fuel to the 
anode), the anode redox does not happen. However, once the fuel supply is interrupted (either 
intentionally or as the result of a fault), the oxygen ions that have passed through the 
electrolyte will cumulate on the anode side, resulting in an oxidizing atmosphere in which Ni 
will be re-oxidised into NiO.  

Because the solid NiO is larger (about +70%) than the Ni particles in the volume 
[Sarantaridis'07], its expansion will block up the pores in the composite, obstructing the 
penetration of reactants and decreasing the TPB, and finally impacting the electrochemical 
reaction rate. In more serious cases, this will give rise to internal stress in the composite when 
the accommodation of the porosity is not sufficient and thereby alter the microstructure of the 
anode [Pihlatie'10]. As a consequence, cracks and fractures in the NiO scale will take place 
and open up pathways for inward oxygen diffusion, aggravating the anode reoxidation 
[Pihlatie'09]. Furthermore, the expansion of NiO can bring about shear forces at the electrode-
electrolyte interfaces [Tu'04] which lead to the delamination between the anode and the 
electrolyte layers. Even if subsequent restoration of the fuel can convert the NiO back to Ni, 
the original state of the anode is not very likely to be recovered after such kind of mechanical 
damage. In practice, the SOFC stack is combined with a nitrogen supply sub-system which 
reacts for start-up, shut-down and emergency cases where it provides nitrogen gas to flush the 
anode so as to protect it from air inflow and consequently oxidation. 

Besides, local anode reoxidation can also occur in long-term operation [Ma'10]. It is related to 
high vapour content in the situation of fuel starvation. The later is usually attributed to the 
high fuel utilisation which is applied in order to attain high system efficiency. In addition, the 
fuel supply state could be another factor causing high local vapour content if the flow rate is 
too low to effectively move away the oxidation products from the reactive sites. Due to the 
low electrical conductivity of the NiO, a significant decline on cell performance can happen. 
However, differing from the mechanical damage, this kind of alteration (on the electrical 
property) is reversible at a lower degree of oxidation. The process of Ni oxidation in the 
temperature range of 600°C–1000°C begins with the adsorption of the oxygen atoms on the 
surface of the metal [Pihlatie'10]. After the initial oxide, a thin film is established on the metal 
surface and will thicken logarithmically. Thus, as long as the reductive atmosphere can be 
regained over the anode during the initial oxide, the oxidation of Ni can be effectively 
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inhibited and reverted. The reduction of NiO particles occurs at the interface between NiO 
and previously reduced porous Ni at an approximately linear rate [Sarantaridis'07].  

Although the anode reoxidation is reversible at the primary stage, the irreversible 
microstructural changes in the anode are inevitable in the reduction and reoxidation cycles. 
According to [Cassidy'96], the initial reduction of NiO in anode cermet does not affect 
electrode structure and performance but the reoxidation has indeed a negative effect. In order 
to extend the lifetime of the SOFC, it is preferable to control the kinetics of the anode 
degradation. The later, according to the investigations on this topic [Fouquet'03, Hagen'06, 
Iwata'96], is mainly related to the operating parameters such as temperature, gas composition, 
especially the partial pressure of water and the current density when the SOFC is operated in 
steady mode [Yokokawa'08]. However, for transportation applications where the SOFC is 
expected to sustain as many as possible redox cycles, material solutions to enhance redox 
reliability of the Ni-based anode are still important [Yokokawa'08]. 

 

I.2.1.1.2 Carbon deposition 

Another undesirable characteristic of the Ni-based anode is the problem of carbon deposition 
(coking). It is encountered in the direct internal reforming (DIR) SOFCs operated with 
carbon-contained fuels such as the methane. In an environment full of hydrocarbons, Ni has 
the propensity to catalyse carbon formation especially under high temperature environment 
[Baker'75, Keep'77]. The formed carbon will deposit on the surface of Ni, blocking up the 
anode pores, hindering the fuel transport and decreasing the electrical conductivity of the 
anode, and as a consequence reduces the electrical efficiency as well as the durability of the 
fuel cell [Park'09, Lorente'12].  

In order to avoid this drawback without sacrificing the advantage of SOFCs in fuel flexibility, 
a number of investigations had been conducted attempting to replace the Ni in the anode 
cermet with other metals. However, because of its high catalytic activity for both 
electrochemical and reforming reactions, Ni remains the most promising anode material for 
SOFCs. In this context, some researchers have turned efforts on suppressing the carbon 
forming reaction on the anode. With this view, the understanding in carbon formation 
mechanism as well as in the reactions kinetics is essential.  

Take the methane-fuelled SOFC as an example. When the mixture of CH4 and vapour is feed, 
steam reforming and shift reaction can occur at the anode catalyst (i.e. on the surface of Ni) to 
generate H2, CO and CO2. Simultaneously, decomposition of CH4 and Boudouard reaction 
take place and the carbon is formed. The relative chemical equations are: 

Methane Cracking: CH4 ↔ C + 2H2 

Boudouard Reaction: 2CO ↔ C + CO2 

In high temperature, these two reactions are the major pathways for carbon formation 
[Laosiripojana'07]. The high temperature will then dissolve the carbon and precipitate it into 

Eq. 1-6 

Eq. 1-7 
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the bulk of the metal nickel, forming a graphite fibre [Kim'06]. Moreover, it was reported that 
the amount of carbon adsorbed on the anode could increase progressively and become more 
strongly bound with the rise of reaction temperature [Finnerty'98]. 

The double headed arrows in the above chemical equations imply the recoverability of the 
anode coking. From the point of view of chemical kinetics, the risk of carbon formation could 
be reduced by moving the reaction equilibrium point towards the left side. In this regard, the 
literature suggests several methods to change the concentration of reactants, such as 
increasing the Steam-to-Carbon (S/C) ratio of input fuel or the current density. Note that 
although temperature has a major effect on the rate of chemical reaction, it is not 
recommended to deal with the carbon deposition problem in a DIR SOFC by changing 
operating temperature because its variation can incur permanent mechanical degradation 
inside the fuel cell.  

The addition of excess steam into the fuel is an effective method to not only inhibit carbon 
formation but also for the removal of pre-formed carbon deposits. The principle is to promote 
the water gas shift reaction so as to reduce the amount of CO produced from the reforming 
reaction whilst increasing those of CO2 and H2 on parallel such that Boudouard and methane 
cracking reactions could be reversed. Besides, high steam content is favourable to carbon 
gasification process that occurs via the following reaction: 

Carbon Gasification: C + H2O → CO + H2 

He et al. (2007) [He'07] reported that the addition of excess steam to the methane could 
decrease the carbon amount by about 20%. Usually, carbon deposition problems for SOFCs 
running on hydrocarbons can be avoided when an appropriate S/C ratio of more than 2 : 1 is 
applied [Novosel'08]. 

On the other hand, however, the addition of excess steam can cause a huge energy waste for 
extra steam generation and lead to a drop of open circuit voltage of the fuel cell at high steam 
contents, resulting in a significant reduction of the overall efficiency of the system. 
Furthermore, this method risks of deactivating the metal catalyst by oxidation. Accordingly, 
in practice, the adequate S/C ratio for internal reforming must be carefully determined to 
restrict the carbon formation in a safety range. In fact, the addition of only a small quantity of 
steam to the methane can lead to a significant lowering of the rate of carbon formation on the 
Ni-YSZ anode [Finnerty'98].      

Apart from S/C ratio, current density also has a significant impact on carbon deposition 
[Mermelstein'10]. As the current density increases, the concentration of oxygen ions at the 
anode side rises simultaneously, promoting the methane partial oxidation reaction (as 
represented in Eq. 1-9). 

Methane Partial Oxidation: CH4 + 4O2- → 2H2O + CO2 +8e- 

Alzate-Restrepo et al. (2008) [Alzate-Restrepo'08] found that the carbon formed under 
working condition was more weakly bound to the Ni–YSZ than that formed at open circuit 
condition. 

Eq. 1-8 

Eq. 1-9 
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In addition, the quantity of the carbon formed in a certain amount of time may be related to 
the fuel flow rate. Under a homogeneous formation rate, more carbon deposits with longer 
residence times, corresponding to lower flow rates [Kim'06].  

In summary, carbon deposition on the anode is relevant to a series of operating parameters 
(temperature, S/C ratio, current density and fuel flow rate). Proper selection and optimisation 
of the operating condition is hence significant for the durability of stationarily operated SOFC 
stacks.  

 

I.2.1.1.3 Sulphur Poisoning on the anode  

Anode poisoning is one of the degradation mechanisms in the practical application of the DIR 
SOFCs, due to their limited tolerance to the impurities contained in the natural gas or coal 
syngas. These commercial fuels can contain tens to thousands parts per million (ppm) of H2S 
which is known to have detrimental effects on SOFC performance [Lussier'08]. Although a 
desulphurizer unit is always available for SOFC to clean up the fuel before being entered, 
minor content of sulphur (around 0.1–10ppm) still exists in the post-processed gas and can 
degrade the fuel cell during long-term operation. For example, Sasaki et al. (2011) [Sasaki'11] 
observed in an SOFC a slightly higher cell degradation rate of 0.68%/1000hours with 5ppm 
H2S compared to the value of 0.3%/1000hours without H2S. In addition, breakthrough of 
sulphur impurity can be encountered when accidental desulphurizer failure happens. 
Fortunately, it has been found in many investigative experiments that cell degradation caused 
by low content sulphur poisoning could be recovered after the removal of H2S. The degree of 
remedy (fully or partially) was found dependent on the operating conditions and the 
concentration of H2S in the fuel. Li et al. (2010) [Li'10] had investigated the effects of 
operating current density and temperature upon the sulphur poisoning deterioration and upon 
the recovery degree. They concluded that a relatively high current density could not only 
reduce the H2S poisoning effect but also help with cell performance recovery. In addition, 
they reported that the temperature was not an independent factor influencing H2S behaviour 
although the increase in it could be favourable for the recovery process.     

Typical Ni-based anode poisoning by H2S is a stepwise degradation procedure. When H2S is 
present at the anode side, it can react with the oxide ions and form sulphur on the surface of 
Ni. A wide range of sulphur adsorption is energetically favoured under SOFC operating 
conditions. It is considered as the predominant mechanism for the sulphur-induced 
performance degradation, especially at low temperatures where the adsorpted sulphur is more 
stable on the Ni surface [Gong'07] so that the sulphur poisoning becomes irreversible. In 
contrast, at high temperatures, low concentrations of sulphur in the feed gas can be tolerated. 
Additionally, at high current density, a large amount of O2- is transported to TPBs and can 
oxidize the excess H2S and the pre-formed S into SO2 [Li'10]. Since the sulphur dioxide is 
considered less adverse for SOFC, sulphur poisoning can be mitigated in this condition. The 
corresponding chemical reactions are given in the following: 
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H2S + O2- → S + H2O + 2e- 

H2S + 3O2- → SO2 + H2O + 6e- 

S + 2O2- → SO2 + 4e- 

H2S can also sulfurize Ni in a H2S-rich fuel environment, due to the high vulnerability of Ni 
to sulfur poisoning. The formula of the possible sulfurization reactions can be generalized as 
follow: 

3Ni + xH2S → Ni3Sx + xH2 

The nickel sulfide formation influences the electrical conductivity of the anode. It can thus be 
regarded as a key contribution for the sharp cell current/voltage drop encountered in the 
beginning of introduction of the rich-H2S-contained fuel.  

In sum, the performance loss of SOFC anode due to sulphur poisoning can be related to 3 
major factors which are respectively influenced by 3 different physicochemical degradation 
mechanisms [Cayan'08]: 

1. Decrease in the mass transport of fuel gas molecules due to physical adsorption of the 
sulphur on the anode surface and consequent blockage of gas diffusion channels; 

2. Decrease in the catalysis of Ni toward chemical and electrochemical reactions because 
the sulphur atoms from H2S deactivate the active sites (due to dissociative adsorption 
mechanism); 

3. Decrease in the electrical conductivity of Ni due to compound formation. 

 

I.2.1.1.4 Effect of air humidity on cathode performance degradation 

In fuel cell operation, considerable heat is set free from the electrochemical reaction and 
produced due to the Joule losses. Part of them is absorbed by the endothermic internal 
reforming reactions while the rest must be eliminated in order to avoid high thermal stresses 
inside the fuel cell. In power plants with SOFCs, it is often required to blow the air of the 
amount much larger than that needed for the reaction so as to take off the excess heat. This 
measure may provoke a relatively high concentration of the impurities (contained in ambient 
air) at the cathode side and induce cathode degradation in long-term operation.    

The water gas existing in ambient air, in spite of accounting for only several percentages in 
volume, has considerable effects on the performance of SOFC cathode in operating condition. 
This effect had been proven irrelevant with the gas composition but related to cathode 
polarisation [Nielsen'10]. Hagen et al. (2009) [Hagen'09] had tested a series of SOFCs firstly 
with dry air and then with the air of ~4% humidity (air was humidified by leading it through a 
water flask at room temperature, giving a humidity of ~4%). In the former case, no cell 
voltage degradation was observed whereas in the later case, the cell voltage degraded 

Eq. 1-10 

Eq. 1-11 

Eq. 1-12 

Eq. 1-13 
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progressively. The impedance spectrum given in Figure 1-6 reveals this degradation. 
Moreover, after shifting the cathode gas to dry air, the voltage was found being partially 
regained. They concluded that there were two mechanisms of humidity-induced cathode 
degradation: one was reversible, the other was irreversible. The former was explained by the 
promoted mobility of impurities in steam and polarization condition which makes them 
concentrate around the TPB points and thereby leads to performance degradation. When the 
humidity is removed, these impurities could return to their original locations and the TPB is 
re-freed for electrochemical reaction so the performance is recovered. The irreversible 
degradation mechanism could be explained by the catalysis of water vapour to the 
decomposition of perovskite LSM cathode [Liu'11]. In high steam concentration, LSM may 
decompose to LaO3 and Mn2O3, leading to fatal degradation of the cathode.   

 

Figure 1-6 Impedance spectra recorded under current density at 750°C and 0.75A/cm2 just 
before starting the 4% humidification of air, right after start and after one day in humid air 

[Hagen'09]. 

 

I.2.1.2. Hard failures 

Hard failures in SOFC mainly mean structural failure that is usually irrecoverable. General 
structural failures in SOFCs can be categorized into cohesive and adhesive failure. Cohesive 
failure refers to the fracture (cracking) of individual materials or components. These cracks 
may be pre-existing defects formed during the production or be initiated during operation due 
to inadequate material selection. Adhesive failure refers to delamination that often occurs at 
the interfaces formed by dissimilar materials or components in the cell or the stack. It can be 
encountered during the operation of the cell/stack in which high temperature gradient appears, 
leading to thermal stress generation due to the mismatch of cell materials in thermal 
expansion coefficients. A splitting force consequently arises from this stress and can detach 
the assembled cell components when it increases to a certain degree. At the place where the 
delamination is present in the SOFC, both the current path and the reactive sites are destroyed. 
In galvanostatic mode, the cell will deliver a constant current while the voltage declines. 
Since no electron can flow in the degraded interface, the remaining intact areas have to supply 
extra current paths to sustain the current density. Due to the non-negligible ohmic resistance, 
considerable Joule heat may be locally produced and bring about high temperature gradient 
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over the cell unit, which risks provoking one and another delamination event as a domino 
effect. Such kind of delamination often extends between interconnector and electrode or 
between interconnector and current connector, being reflected by a progressive increase in 
contact resistance. It would finally result in individual cell failure and can even spread to 
adjacent cells in the same stack. In case of low current delivery, however, owing to the high 
electronic conductivity of the metallic material in the interconnector, the extension of 
delamination is not very likely to occur. 

In addition to the area on the interconnector, the delamination can take place at the interface 
between electrode and electrolyte as well. The electrode/electrolyte detachment is usually a 
consequence of thermal cycling or rapid heating [Gazzarri'08]. Its impact upon the cell 
performance is higher than that of interconnector detachment because this phenomenon can 
not only impede the ionic transport but also irrecoverably reduce the length of TPB, thereby 
directly leading to partial or complete cell deactivation. The open gap arising from the 
delamination contributes to a large resistance to the oxide ions transport. This will build up a 
cumulated internal pressure at the cathode/electrolyte interfaces and cause total cathode 
cracking. Once the cathode has delaminated, subsequent degradation will continue to occur 
and at an accelerated pace [Virkar'10]. When the cell sealing is destroyed, leakage of oxygen 
toward the anode side may occur, leading to anode destruction by re-oxidation. Generally, gas 
leakage increases with the increasing of the stack temperature. It can cause direct combustion 
of gases inside the fuel cell, leading to local heating [Yokokawa'12]. In the extreme case, a 
negative voltage could exhibit at the troubled cell. It has been demonstrated that one of the 
cells operating under negative voltage would be prone to the stack degradation, especially for 
planar type stacks [Virkar'10]. It is thus suggested to measure the voltage across each cell 
during real operation so as to prevent catastrophic failure of the whole stack. More than that, 
monitoring and ensuring every cell operated above 0.5 V is recommended, because anode 
oxidation of nickel catalysts can be accelerated if the SOFC is operated below 0.5V. The 
event that individual cell’s voltage decreases to less than 0.5V is easy to happen, due to flow 
misdistribution, degradation, cold temperature, or other influences [Mench'08].  

 

I.2.2. BoP failures 

The Balance of Plant (BoP) is the sum of all equipments for safe operation and the technical 
coordination of all concerned parts of an energy system. It consists of the remaining systems, 
components, and structures that are not included in the prime energy generation unit (fuel cell 
stack in this case). In an SOFC system, BoP equipment can include reformer, ejector, burner, 
air blower, pipe and other ancillary components to support safe operation of the fuel cell. It 
can account for around 75% of the volume of the entire FC system. To operate effectively and 
efficiently, fuel cell systems must have a reliable BoP, which is yet very difficult to achieve. 
In real applications, poor durability of FCs is often attributed to BoP failures. According to 
the research of Ramesohl et al. (2011) on several different SOFC CHP systems [Ramesohl'11], 
49%–56% of the system failures or accidental shut-down are caused by the faults in the BoP 
part. .  



Chapter I: Introduction 

26 

 

For a SOFC system, the common and frequent-occurred BoP failures include stack 
temperature control failure, mistakes in fuel supply control, air blower failure, no water 
supply, gas leakage due to untight pipes, load failure (too high current or load rejection), 
desulphurizer failure and so on. Their occurrence frequencies vary for different system 
designs and are strongly related to how the component or the sub-system is being used. These 
failures take place suddenly or progressively and would not be easily detected by the sensors. 
Furthermore, sensor failure is also a usual and crucial event during long-term high 
temperature operations, leading to fatal mistake in controlling and thereby catastrophic system 
failure. Hence, supervision relying on single sensor monitoring is not an effective way to 
ensure the reliability of SOFC systems. 

In this context, a number of mathematical and statistical methods have been developed to 
quantify the frequency of BoP component failures, serving for preventive/scheduled 
maintenance purpose. It must be emphasized that it is not necessary to consider all BoP 
failures for the reliability estimation of the system. Generally, the supervision tool is 
developed based on a graphical fault tree that is afore-constructed with the expert knowledge 
to portray logical occurrence of undesired faults. Relying on it, not only the detection 
mechanism of a given fault can be determined but also the consequences of the fault could be 
deduced. Arsie et al. (2010) [Arsie'10] had set up such fault trees for the failures regarding air 
supply and temperature control in the SOFC system. In each fault tree, the analysed failure 
was linked to the possible mechanisms or consequent events and the associations were 
extended to the operating variables that may be influenced by the fault. In the study of Åström 
et al. (2007) [Åström'07], a fault tree had also been established for a 20kW SOFC system for 
the purpose of developing a simulation algorithm serving for system reliability analysis.  

 

I.3. Solutions to ensure SOFC system durability and reliability  

The issues of materials degradation and the problems in the BoP equipment have great 
negative impacts on the reliability, durability and cost of SOFC system. That is the barrier 
which prevents SOFC from a successful replacement of the traditional fuel-combustion 
system for power generation. With the development of manufacturing techniques and 
emergence of new materials, lowering the operating temperature is widely believed being a 
solution able to extend SOFC’s durability and cut down its cost. However, it does not allow 
solving the problem of system reliability.  

SOFC system is usually combined with other sub-system or auxiliary components for 
cogeneration in order to gain higher efficiency. Such a complicated system is more vulnerable 
to faults, malfunctions and unexpected operating modes. Hence, a reliable and universal 
monitoring tool is particularly necessary and important in the application of this kind of 
complex system.  

Classical methods for system monitoring are mainly based on specific sensors to check if the 
characteristic parameters of an individual component are within acceptable bounds. For a 
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SOFC system with a large number of components and combined with various sub-systems, 
this kind of method is obviously not applicable because: 

1. Install additional sensors on each component to monitor will further increase the 
complexity of the entire system, and can lower  the system reliability instead of being 
favourable to; 

2. The addition of specific sensors and extra equipments for signal transfers will result 
in higher cost for system supervision, not meeting to the requirement of 
commercialisation;  

3. Some measurements may become unavailable or have low precision in the situation 
where the process does not stay in steady-state and the monitored variables change 
dynamically following different operating points, which could lead to diagnostic 
mistake or failure; 

4. At last, measuring a great number of variables by sensors can result in a large 
dimensional database which complicates the reliability analysis, increasing the 
difficulty of information extraction from the measurement data, and diminishing the 
real-time applicability of the algorithm. 

Nowadays, a supervision tool allowing to prevent catastrophic failure is popularly required for 
large-scale power system. This implies that the tool must be capable of detecting the failure at 
the early stage of its occurrence. To achieve this goal, the fault diagnosis procedure should be 
implementable in real time. 

For the case of SOFC system where many components are present in a high temperature 
condition, the diagnosis work is even more complex and difficult. As introduced in the last 
section, not only the SOFC stack but also its sub-systems can have a failure or degradation in 
long-term operations, leading to breakdown of the system. Furthermore, a single fault may 
have a chain of influences on the fuel cell, giving rise to more severe problems. For instance, 
a fuel leakage event at the outside of the stack (classified to the BoP failure) can cause 
partially anode reoxidation due to local fuel starvation. The anode reoxidation can influence 
the anode microstructure and may provoke severe electrode degradation. Since the limitation 
on the number of actual monitoring sensors restricts the achievability of fault allocation, the 
original cause of the system failure may fail to be recognized, resulting in misdiagnosing. 
Under this background, innovative diagnosis concepts should be developed for SOFC systems. 

To meet this requirement, an R&D European project program, titled as “GEneric diagNosis 

InstrUment for SOFC Systems (GENIUS)”, was proposed aiming to develop universal 
diagnosis methodologies applicable for different SOFC systems. Its interest and innovative 
part is that it proposes to use the SOFC/stack as a “sensor” for diagnosing the failures in the 
BoP by using only the existing sensors in the system whereas the addition of extra sensors is 
not allowed. Artificial intelligence, data mining and signal processing techniques are 
recommended to apply in this project to accomplish intelligent analytic algorithms for both 
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off-line and on-board diagnosis applications. More details about the GENIUS as well as our 
tasks in this project will be introduced in the next chapter. 

 



Chapter II: GENIUS project & Diagnosis approaches for FC systems 

29 
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II.1. Introduction to the GENIUS project 

The GENIUS project∗ is a response to the call for proposals from the Fuel Cell and Hydrogen 
Joint Undertaking APPLICATION AREA SP1-JTI-FCH.3: STATIONARY POWER 

GENERATION & CHP topic Operation diagnostics and control for stationary applications. It 
was developed in coordination with the “ASSENT” and the “EuroFC-life” proposals that aim 
to address system efficiency optimization and improve the understanding about FC 
degradation mechanisms. 

 

II.1.1. Concept and objectives 

The GENIUS project targets to the development of GENERIC methodologies applicable for 
diagnosing different SOFC systems. The final outcome of this project is a device integrated 
with generic diagnostic algorithms. This device is permitted to apply only the existing sensors 
on the supervised system. Under this limitation, an innovative idea is proposed, that is, to use 
the FC stack as a special sensor for system monitoring. All available measurements on the FC 
can be regarded as the outputs of this “sensor”, serving for the system diagnosis. The 
developed algorithms should enable either on-board or off-line diagnosis. Once a fault is 
detected and identified, counter-measures, such as the optimisation of operating parameters, 
could be carried out by the control system in order to maintain the system reliability or at least 
mitigate the influence of the fault upon the state of health of the fuel cell.  

 

II.1.2. Consortium members and their roles 

GENIUS is a collaborative project. It consists of 4 academia (EIFER, UNIGE, UNISA, 
FCLAB) and 7 industrial partners (CFCL, EBZ, Hexis, HTceramix, Topso Fuel cell, Wärtsilä, 
VTT), as shown in Figure 2-1. The 3 academia (UNIGE, UNISA, EIFER and FCLAB) are in 
                                                           
∗
 Refer to the web page: https://genius.eifer.uni-karlsruhe.de/ 
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charge of diagnosis algorithm development. EIFER and the industrial partners are mainly in 
charge of systems testing to generate and collect experimental data as well as validation tests 
of the developed algorithms. They choose themselves the appropriate operation level for their 
own stack/system, defining the range of the operating parameters.  

 

Figure 2-1 Map of the consortium of GENIUS 

The development of diagnosis methodologies is preceded in 3 different directions, based on 3 
approaches of fault diagnosis, respectively, i.e. model-based, signal-based and knowledge-
based approaches. UNIGE and UNISA focus their efforts on the first approach, trying to 
establish models (grey-box and black-box) to simulate the FC performance at the normal state 
and in abnormal operating conditions. FCLAB mainly applies the later two approaches to 
achieve the SOFC systems’ fault diagnosis in real-time. It is worth noting that the modern 
diagnosis system is usually required to not only realize the fault detection and 
identification/isolation but also able to estimate the fault magnitude. In our case, however, the 
developed diagnostic tool is only asked to implement the former task. . 

 

II.1.3. Potential contribution to condition-based maintenance  

Development of real-time fault detection and identification technologies will allow a 
migration from expensive scheduled maintenance (also known as preventive maintenance) to 
the more efficient, less costly alternative of condition-based maintenance (CBM) [Chebil'09]. 
The basic principle of CBM is to continuously monitor the considered system, based on the 
sensors data, so as to prevent the system from a possible malfunction or damage before it 
happens [Abdelghani'00]. It extends the concepts of preventive maintenance (PM) which is 
currently the most widely accepted approach applied to maintain electrical equipment and 
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power supply system [Dileo'99]. In these years, the interest in CBM has greatly increased in 
industrial applications [Cadick. PE'99]. 

For a SOFC system, due to the relatively high failure risk caused by its operating condition 
and the high cost of fuel cell materials and fabrication, “run it until it breaks” is obviously not 
a reasonable and wise strategy for its application; neither is the predictive maintenance 
strategy which only serves to exploit SOFC benefits throughout its lifetime instead of 
ensuring the system reliability cannot be guaranteed; nor is the PM that intends to replace the 
SOFC/stack before the end of their useful life. In contrast, the CBM displays potential 
benefits in ensuring the reliability of such kind of “costly” systems in long-term operation 
without the need of interruption. Its primary advantage is the capability of performing 
maintenance only when it is needed and at the most opportune times, through actively 
managing the health condition of the core or the ensemble of the system. Such concept allows 
thus an attractive reduction in the maintenance cost and exploiting the lifetime of the 
supervised component/system.  

 

Figure 2-2 The complete process of condition-based maintenance  [SRI'09]  

To carry out an effective CBM, 5 sequential stages can be followed before performing 
maintenance activities, i.e.: data acquisition, feature extraction, fault detection, fault 
diagnosis/identification and prognosis at the end (see Figure 2-2). The difficulty and 
complexity of the implementation will increase along the steps. Diagnosis and prognosis are 
two important procedures in the CBM program. Most difficulties in the realization of the 
CBM lie in these two phases. According to [Lewis'97, Jeong'06], diagnosis is the process of 
finding the source of a failure (that is, a fault) while prognosis is the process of 
estimating/predicting a coming failure. The main aim of diagnosis is to provide early warning 
signs to engineers when the monitored equipment/system is operating in abnormal conditions. 
Although the equipment/system is running in abnormal/deterioration state, this does not mean 
that it has failed but just signs that a failure would be caused by the fault after a certain 
amount of time [Ahmad'12]. Concerning when this failure will take place, it is the prognosis 
that addresses this issue.    

The GENIUS project is planned for the implementation of the diagnosis for SOFC system, 
thereby only covering the first 4 stages of the CBM program. It is expected that the diagnosis 
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results can provide information on the actual operating condition of the stack, supporting for 
the prognosis for the state of the system.  

 

II.2. Diagnosis methodologies for FC system 

In the field of system maintenance, fault diagnosis has become an issue of primary importance 
in modern process automation as it provides the prerequisites for the purpose of system failure 
prevention. When a physical parameter change due to the fault has occurred in a system, the 
fault effect will hardly be visible in the output performance [Athamena'03]. The classic fault 
diagnosis methods mainly rely on a set of different sensors integrated into the system, 
intending to capture the variation of eventually impacted variables that could indicate 
occurrence of the fault. This kind of methods can lead to great maintenance cost as well as 
poor system reliability, because a complicated system is often more subject to malfunction. 
Furthermore, noise-corrupted measurements and unreliable sensors can also influence the 
reliability of the diagnostic result.  

In order to go beyond the restriction in the number of sensors and the limitation of the 
capacity of the sensors themselves, process modelling was introduced into the concept of fault 
diagnosis. The fundamental idea is to generate signals that reflect inconsistencies between 
nominal and faulty system operating conditions. Owing to the analytic models, the values of 
significant characteristic variables could be easily estimated without relying on the specific, 
costly sensors. However, the processes of the complex systems are often difficult to model 
with physical equations; and even if it could be, the modelling procedure would be very 
complicated, usually necessitating a set of auxiliary parameters which, however, is usually 
unavailable or incomplete. Furthermore, the higher accuracy is demanded, the more 
complicated the model will become and thus more time will be required for the simulation, 
which is not permitted in real-time diagnostics. To overcome these problems, new diagnostic 
methodologies have to be developed. 

A number of researchers work on developing intelligent fault diagnosis methods by using the 
artificial intelligence technologies arisen with the application of mathematical and computer 
sciences. These technologies, such as data mining and pattern recognition, had been 
successfully applied in the field of business and finance (ex: customer relationship 
management, risk management, market forecasting where studying on large volumes of data 
is always involved) and demonstrated good practicability. During the recent decade, their 
application has extended to various domains and disciplines (ex: machinery, medicines, 
aerospace, communication industry, engineering etc.), helping realize the automatization of 
the data analysis as well as the procedure of decision-making. Likewise, the development of 
fault diagnosis techniques has also benefited from these technologies for achieving real-time 
system supervision and maintenance. 

To date, different methods are available for carrying out fault diagnosis. They can be classified 
into three categories: 1) model-based approach; 2) signal-based approach; and 3) knowledge-
based approach in which category the methods can be further divided into two types: pattern-
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based and rule-based. In this section, these approaches are outlined, respectively. The 
corresponding techniques that have been applied for FC system diagnosis are overviewed. 

 

II.2.1. Model-based approach 

The design of a diagnostic tool begins usually by mathematically modelling the process of the 
considered entity so as to simulate its behaviours mostly without faults. Then, through a 
comparison between the measured parameters and the simulated ones without the presence of 
fault, a residual vector can be generated and evaluated to determine if a fault has happened. 
The residuals should be ideally close to zero under fault-free conditions, minimally sensitive 
to noises and disturbances, and maximally sensitive to the studied faults [Athamena'03]. Once 
the fault is confirmed being present, a decision-making process will be performed to identify 
its type based on a pre-constructed fault signature matrix. Sometimes, models for specific 
faults can also be set up to support for fault identification. Such a model-based diagnosis 
procedure is illustrated in Figure 2-3. 

 

Figure 2-3 Schema of process model-based fault diagnosis [Isermann'06]  

In fuel cell engineering, the application of the model-based approach has been investigated for 
fuel cell and/or system diagnosis. Escobet et al. (2009) [Escobet'09] used it to diagnose six 
faults of interest in the PEMFC systems: 1) increase of the friction in the compressor motor 
and 2) its overheating, 3) blocking of the channels in the diffusion layer of the fuel cell, 4) 
leakage in the air supply manifold, 5) the compressor motor control failure and 6) the stack 
temperature control failure. Four fault feature variables, i.e. the oxygen excess ratio, the 
compressor’s current density and its speed as well as the stack voltage, were used to 
characterize these faults. The sensitivity of the residual to a fault was studied in order to 
differentiate the faults. A theoretical relative fault sensitivity matrix with the residual 
sensitivity in the row and the faults in columns was derived as a reference to support for fault 
identification. In the research of Steiner et al. (2010) [Steiner'10], a model was built and used 
to estimate the cathode pressure drop based on the stack current, the dew point temperature, 
the stack temperature and the air inlet flow rate, with the aim of diagnosing flooding 
phenomenon in a PEMFC stack. Then, they developed the model to estimate another feature 
variable, i.e. the stack output voltage, for diagnosing both the flooding and the drying failures 
in the PEMFC [Steiner'11b].  
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A fundamental difficulty related to the model based diagnosis approach is the fact that there 
are always modelling uncertainties due to unmodelled disturbances, simplifications, 
idealizations, linearization, model parameter inaccuracies and so on, which restrict the 
generalizability of the model. Another difficulty concerns the intrinsic non-linear 
characteristic of most engineering systems [Patan'08] because conventional analytical models 
can only be applied to linear systems. In this context, the black-box modelling method based 
on artificial neural networks is considered as a solution.  

 

II.2.1.1. Black-box model 

The black-box model is used to predict the response of a device, a system or an object without 
any knowledge on their internal working behaviours. It can be derived from a data set based 
on a neural network. With artificial intelligence techniques, the network is capable of learning 
and generalizing non-linear functional relationships between input and output that are 
described by the data.  

 

II.2.1.1.1 Artificial neural network 

These years, some researchers [Arriagada'02, Milewski'09] have successfully applied artificial 
neural network (ANN) to model the operating behaviour of SOFC stacks and evaluate their 
performance. These models belong to the class of feed-forward network that is constructed 
with a certain number of single processing units which are analogous to the brain neurons of 
human. These “neurons” are associated and grouped into several layers. Similar to the 
cerebral behaviour, in a neural network, information (vector input) is delivered to the neurons 
in which it is weighted, synthesized (summed up), shifted by a bias to form a net input which 
is then treated by a transfer function; the processed information is passed on to the next layer 
(called hidden layer) for further treatment; at the end, the response to the input can be 
estimated in the last layer of neurons (called output layer). The weight and bias for every 
neuron are adjustable scalar parameters. For a neural network with more than one output 
variables (as shown in Figure 2-4), each layer of neurons is characterized by a weight matrix 
and a bias vector (denoted by “W” and “b”, respectively) as well as the selected transfer 
function. In the learning stage, the elements in the weight matrix and in the bias vector are 
repeatedly adjusted by the back-propagation (BP)-type learning algorithm, based on the input-
output pair data, until that the network model attains the desired simulation accuracy. Such 
parameterization procedure is also known as data-driven training/learning. Note that instead 
of “the higher the better” approach, the fitness of the model to the training data must be 
restricted at a reasonable level in order to avoid overfitting.  
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Figure 2-4 A feed-forward 2-layer neural network [Wang'11b]  

The main difficulty to establish an ANN based model is the selection of the number of hidden 
layers and neurons. Until now, there are no effective tools or methods to automatically find 
out optimal network structure. Generally, modellers must try and train several networks of 
different structures with the same training algorithm and data, and then select the pertinent 
one according to the model’s performance in specified aspects such as accuracy and 
computing time.   

 

II.2.1.1.2 Radial basis function neural network 

There is another feed-forward neural network structure known as radial basis function neural 
network (RBFNN) which has also demonstrated good performance in SOFC modelling 
[Wu'07, Huo'08,]. Its structure is much simpler than that of the multiple-layers ANN, only 
including an input layer, a non-linear hidden layer and a linear output layer.  Differing form 
the ANN in which the transfer functions are selectable, RBFNN uses only Gaussian function 
which is parameterized by the centre and the width of symmetric Gauss curve. As illustrated 
in the Figure 2-5, the inputs are respectively assigned to the nodes in the input layer of the 
RBFNN and then delivered to the neurons in the next layer without being weighted. In the 
hidden layer, non-linear responses are calculated as a function of the Gauss curve width as 
well as the Euclidean distances between the centres and the input vector. These responses will 
be finally weighted and summed up in the last layer to produce an output. To accomplish a 
model with multiple outputs, individual RBFNNs should be established for estimating each 
output variable. They are then connected in parallel to compose a large neural network.    

Like the ANN, the training for the RBFNN is also based on the data. The parameters in the 
Gaussian function (the centre and the width of the Gauss curve) and the weights are the 
network model parameters. They are adjustable during the learning procedure. The learning 
algorithm involves data mining techniques such as clustering methods used for determining 
the centres. It can also automatically try and compare different network structures so as to 
determine the optimal number of neurons in the hidden layer. However, this automated 
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network structure discovery procedure will take a lot of time if the optimal number of neurons 
is very large.  

 

Figure 2-5 A simple radial basis function neural network [Wang'11b]  

 

II.2.1.2. Equivalent circuit model based on electrochemical impedance 

spectroscopy technique 

Another interesting model for the fuel cell is the equivalent circuit model (ECM), an 
interpretation of the AC impendence spectroscopy of the fuel cell/stack. It is often constructed 
with electrical elements such as parallel R-C circuit and electrical resistance (take Figure 2-6 
as an example) which represent the resistances to the individual processes (such as mass 
transfer, chemical and electrochemical reactions) at different FC components. These 
resistances are often demonstrated in sum as a total internal resistance of the fuel cell in the 
time domain but are differentiable in the frequency domain. They are thus usually represented 
in the form of impedances. With the help of electrochemical impedance spectroscopy (EIS), 
different types of polarisations present on the fuel cells or batteries can be separated. EIS 
measurement is carried out by exciting the fuel cell with small voltage/current sinusoidal 
signals of various frequencies so as to obtain current/voltage AC responses in the same 
frequency bands. The divisions between the excitations and the corresponding responses yield 
a group of electrochemical impedances over a wide range of frequencies. Through fitting the 
equivalent circuit model to these impedance data, the parameters of the electrical elements in 
the model could be empirically determined. In the diagnosis application, these parameters are 
employed as indicators to reflect the actual state of health of the fuel cell/stack, such as in 
[Fouquet'06].  

 

Figure 2-6 An equivalent circuit model for SOFC stack established by [Lang'08]  
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However, the EIS measurement is often time-consuming, especially for the measurement of 
impedances at low frequency band. During the measurement, the operating condition may 
slightly vary so that the state of the system reflected by the subsequently measured 
impedances is not in accordance with that reflected by the previously measurements. Such a 
set of impedance data cannot be used for the ECM parameterization or else misunderstanding 
may occur in the diagnosis phase. In addition, the EIS measurement is subject to noises. This 
issue can have negative effects upon the reliability of the ECM-based diagnosis and thus 
requires special attention. 

Besides the ECM, other models have also been developed to represent the electrochemical 
impedance spectrum of a FC/stack in operation, for the purpose of stack diagnosis. For 
example, Onanena et al. approximated the real part of a PEMFC’s impedance with a model of 
four parameters related to a “logsig” function [Onanena'10, Onanena'11]. In this study, the 
four parameters in the model were treated as the feature variables for the state of health of FC.  

 

II.2.2. Signal-based approach 

Diagnosis by signal analysis arises from the fact that many processes, whether being normal 
or faulty, can be characterized by their oscillating, fluctuating or cyclic time behaviour. This 
fact inspired some researchers applying simple and effective transform to the original signals, 
in order to discover the important information contained in these signals and extract the 
dominant fault features for the diagnosis use. Since the frequency composition of the response 
signal contains information on the state of the system, analysing frequency characteristics of 
the signals plays a significant role in the signal-based diagnosis method. 

 

II.2.2.1. Frequency analysis 

There are many transformation techniques available for analysing signals in the frequency 
domain. Among, Fast Fourier Transformation (FFT) is the most commonly used, which is 
particularly suitable for analysing stationary signals whose frequency components are 
supposed to be invariant from the beginning of the signal to the end. However, in the field of 
diagnosis, since the time when the fault happens is usually unknown, the measured signals 
can cover both the normal and the faulty mode periods. This means that the studied signals are 
non-stationary, that is, its frequency composition is varied over the time. For this case, both 
FFT and other frequency domain techniques are not adaptable any more. To extract 
information from this kind of signals, especially for the implementation of CBM in which 
early fault diagnosis is demanded, not only the frequency domain but also the time domain 
must be taken into account in the signal analysis.  

 

II.2.2.2. Time-frequency analysis 
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II.2.2.2.1 Short time Fourier transform & Wavelet transform 

Hitherto, a number of time-frequency domain signal analysis techniques have been proposed, 
including the Short Time Fourier Transform (STFT) and the recently developed Wavelet 
Transform (WT). These methods consist in mapping a one-dimensional signal to a two-
dimensional function of time and frequency/scale. Both the STFT and the WT recur to a 
window function sliding on the time axis to scan and transform the signal segment by segment. 
However, the STFT uses a constant frequency resolution for the time-evolving window 
function, which means that if we use wide window to obtain a good frequency resolution for 
the analysis of low-frequency components, we would not be able to obtain good time 
resolution (narrow window) for analysing high-frequency components [Peng'04]. To address 
this problem, the usage of flexible window function with varied frequency appears in the WT 
method.  

In the WT, the flexible windows are in fact referring to a group of wavelets that evolved from 
a basic wavelet function, known as “mother wavelet”. These wavelets represent different 
time-scale resolutions. Based on them, the WT possesses the ability of adaptive time-
frequency analysis.    

 

II.2.2.2.2 Application of wavelet transform in fault diagnosis   

The WT, as other kinds of transformation, is merely a method of signal decomposition which 
yields a new representation for the signals that are initially shown by the time series. After the 
transformation, a matrix of wavelet coefficients is obtained to re-depict the studied signal in 
the time-frequency domain. This feature provides a breakthrough for the detection and timing 
location of the fault. From the wavelet coefficient matrix, different parameters could be 
extracted to reproduce the information hidden in the signal. If the signal involves the 
occurring period of a fault, these parameters could be treated as fault features for diagnosis 
use. According to Peng et al. (2004) [Peng'04], such fault features could be roughly classified 
into 4 categories: the wavelet coefficients based, the wavelet energy based, the singularity 
based and the wavelet function based features. The last category is often used for image 
processing. Here, we only introduce the first three categories.  

• In the wavelet coefficients based method, the wavelet coefficients that are greater 
than the threshold value are kept to be fault features while other smaller ones are 
discarded. The retained coefficients are then analysed by a classification machine in 
order to identify the type of the fault.  

• In the wavelet energy based method, the wavelet energy is calculated for each 
component of the signal such that the energy distribution over the different frequency 
bands could be studied. This distribution can be treated as a representation of the 
information on the system process described by the studied signal. It can be quantified 
with the Shannon entropy proposed in information theory [Shannon'48] and be 
compared to a reference in order to determine if a fault has happened.  
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• The singularity based diagnosis method is developed aiming to find out the 
singularity points that indicate the fault, such as the peaks, the discontinuities and the 
jumps points present in the signals. Since the local weak singularities could be masked 
by the polynomial trends in the signals [Peng'04], they are often invisible and thus not 
easy to capture. Owing to the WT, the polynomial trend can be removed from the 
original signal so as to uncover the high frequency sub-signals on which the 
singularity points could be clearly shown up. Based on wavelet modulus maxima 
method, the modulus lines can be drawn to go through these points in the time-scale 
(or time-frequency) plane in order to stick out the singularities. In the review paper of 
Peng et al. (2004) [Peng'04], a figure of the wavelet modulus maxima lines of a 
vibration signal sampled from a defect rotor (see Figure 2-7) is given as an example to 
demonstrate this method in the use of machinery diagnosis. 

 

Figure 2-7 (a) the vibration signal; (b) its wavelet modulus maxima [Peng'04]. 

In the fuel cell diagnosis domain, the WT method has been successfully used for PEMFC 
diagnosis by Steiner et al. (2011) [Steiner'11a] to detect the flooding phenomenon in a 
PEMFC. In their investigation, the wavelet energy was applied to select the significant 
component of the signal and treated as the basis of the fault feature. Yet, the potential of this 
method for high temperature fuel cells or their systems diagnosis has not been explored.   

 

II.2.3. Knowledge-based approach 

In the afore-introduced approaches, fault features, being produced either by residual 
generation or relying on signal decomposition, play an important role in the fault diagnostic 
task that generally involves two sequential procedures: fault detection and fault identification. 
Differing from such diagnostic concept, in knowledge-based approach, these procedures are 
merged into a single diagnostic step by means of simulating human reasoning activities. Such 
one-step diagnosis usually refers to a decision-making process that can be automated by an 
expert system based on artificial intelligence technology. This knowledge-based expert 
system (KBES) is expected to be able to not only interpret real-time signals but also to deliver 
the required control action, to conduct test and to recommend diagnostic procedures 
[Angeli'10]. The reasoning performed by such a system is actually an inference process that 
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aims to determine the possible fault based on the existing knowledge about the system as well 
as the observations [Sajja'10].  

A KBES consists of a knowledge base and an inference engine (IE). The knowledge base is a 
repository of expert knowledge. The IE is an algorithm which analyses the available 
information and performs reasoning based on the knowledge base. Constructing the 
knowledge base for the KBES involves two key issues: knowledge acquisition and knowledge 
representation.  

 

• Knowledge acquisition  

Fault diagnosis for technical systems and processes requires both empirical knowledge and 
scientific knowledge [Angeli'10]. According to Sajja et al. (2010) [Sajja'10], database is a 
form of information; empirical knowledge is a result of processing such information by means 
of synthesis, filtration, comparison and analysis. In the situation where the scientific 
knowledge that involves physical concepts is not available, data collection and information 
extraction become significant for knowledge acquisition. In fact, in fault diagnosis domain, 
empirical knowledge is more useful than scientific knowledge, since the target in the 
diagnostic phase is to find the specific faulty element instead of representing the system 
behaviour. On the contrary, scientific knowledge plays the dominant role in the prognostic 
phase in which the prediction of eventual failure or consequent system activity is considered 
as an essential objective.  

To obtain empirical knowledge of the domain of interest, data collection is usually 
implemented by performing groups of goal-oriented experiments and measurements. Then, 
knowledge extraction can be carried out either by using statistical data mining techniques to 
analyse and model the probability distribution of the data, or by applying computational data 
mining techniques such as clustering methods which aim to retain patterns from the data. The 
applications of these two categorical methods in the field of fuel cell diagnosis have been 
exploited by Hernandez et al. (2006) [Hernandez'06] and Hissel et al. (2007) [Hissel'07].  

The statistical data mining and the computational data mining can be separately used to solve 
a single problem from two different points of view, or applied together to solve a series of 
problems. Hernandez et al. (2006) [Hernandez'06] intelligently used their combination to 
settle the fault diagnosis problem in PEMFC. They employed the stochastic distribution of 
cell voltage measurements to characterize various FC working conditions (including several 
faulty operating modes). Then, clustering approach was applied to define, in the space of the 
characteristic variables, the zones representing the normal operation and the failures.      

 

• Knowledge representation  

No matter which data mining approach is used, a model should be yielded after the data 
analysis to synthetically organise and represent the obtained knowledge in a numerical 
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formation. This model, as an extensible knowledge base, can interact with the information 
coming from on-board sensor measurements (signals) in order to identify the state of the 
monitored system. The system state identification is actually a decision-making process that is 
automated by algorithmic reasoning technique, allowing the on-line diagnosis. An appropriate 
knowledge representation is favourable to the diagnostic reasoning. It has dominant effect 
upon the diagnosis performance.  

Two different methods can be considered to represent the knowledge obtained from the data 
mining:  

1) Categorization & Instantiation. Knowledge is possible to be categorized and then 
interpreted with the typical instances that are well known by experts. Based on this 
form of knowledge, pattern matching can be performed to relate the observed 
phenomenon to the similar instance and interpret it. This method is known as pattern-
based method. It is often carried out after the data classification phase, taking each 
class of data as a paradigm to describe a category of knowledge. Owing to clustering 
techniques, the dataset that constructs a paradigm can be modelled to a cluster 
characterized by several geometrical parameters. Any observation that falls in this 
cluster is considered having the same meaning/label with the paradigm.   

2) Describe the knowledge by a collection of if-then rules. It is analogous to that one 
or several human experts make reasoning with propositional logics created according 
to their own area of expertise, in order to solve a problem or give advice. Within this 
approach, the knowledge is represented declaratively instead of explicitly. For 
example, we can declare that smoking causes the lung cancer even if we do not 
understand how it causes the cancer. However, we cannot be sure that lung cancer 
must be caused by smoking unless having relevant evidences. This example involves 
two types of rules of encoding the necessary domain knowledge: i) causal rules and 2) 
diagnostic rules. Causal rules describe the relationship between the causes and their 
results in a direct way. Diagnostic rules work in the opposite way, allowing the 
reasoner to infer possible causes from observed events/symptoms [Rodionov'96]. 
Generally, a causal rule is easier to establish and has higher reliability than a 
diagnostic rule, because the former can be easily acknowledged and confirmed 
through experiments, whereas the later can only be ensured by empirical knowledge.  

In order to increase the credibility of inference, the idea to capture the inherent degree 
of uncertainty in the expert knowledge has been popularly considered in the concept 
of modern KBESs. Under this idea, a certainty factor is usually integrated into each of 
rules so as to declare the degrees of belief in that the rule is true. Bayesian theory is a 
typical technique concerned with this method, which performs the effect-to-cause 
inference based on the probabilistic logic. Another uncertainty design is the fuzzy 
logic. It is mathematically similar to the probabilistic logic but declares the degrees of 

truth.  

The problems of rule extraction and construction can be solved by machine learning. 
The later is a branch of AI technology, serving for finding relations and regularities 
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present in the data. Machine learning is capable of relieving data analysts from the 
dull and complex work in information collection and synthesis. With this technique, 
the database relevant to the studied problem will be the only material required for 
building a knowledge base.  

The following paragraphs will be focused on introducing the application of these two kinds of 
knowledge representation in online FC system diagnosis. The AI techniques serving for 
knowledge learning will be mentioned.     

 

II.2.3.1.  Pattern-based method 

The pattern-based knowledge representation that relies on classification techniques aims to 
regroup the information present in the data into several classes such that each class represents 
a single pattern of interest. Since the computational classification is always based on data 
spatial distribution, this kind of knowledge representation is very sensitive to the data 
structure. According to the classification expectation, the number of classes can be 
determined beforehand. After being classified, the data attributed to a class should be 
carefully studied in order to confirm the information covered by the data is in accordance with 
the expected class definition. It is important that the class labelling process should be 
objectively performed based on the data information, since the target is to represent the 
knowledge rather than to create it. Any subjective assuming for class labellization will impact 
the quality of the knowledge base. 

There are various methods available for implementing the classification. Among, clustering 
method has been tried in FC durability analysis. It is able to find the centre point for each 
class so that the data in the class could be represented in geometrical way by its distance to 
the centres. Hissel et al. (2007) [Hissel'07] used fuzzy k-means clustering to classify the data 
of two hyperparameters extracted from EI measurements, in order to set up patterns to 
represent the states of a PEMFC system. As a result, the classification results corresponded 
with the expectation—three distinguishable clusters which are labelled with the “young”, the 
“old-ageing condition 1” and the “old-ageing condition 2” stage during the FC lifetime, 
respectively.  

After the clustering, a set of centre points and a distance threshold can be yielded to position 
the clusters and limit their dimension so as to avoid overlapping region. These geometrical 
parameters and the labels of the clusters constitute the knowledge base. Relying on it, a 
geometric classifier could be set up to implement the recognition for the state of the studied 
system.                     

 

II.2.3.2. Rule-based methods 

As afore-mentioned, domain knowledge can be represented into two kinds of rules, causal 
rules or diagnostic rules. To predict the failure eventually occurring in the future time when a 
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fault has happened (prognosis), the propagation of observed symptoms to the eventual failure 
can be declared with causal rules, by following cause-effect relationships, whereas to infer the 
fault which results in these symptoms (diagnosis), a backward reasoning following effect-
cause chains is needed. In CBM maintenance (see Figure 2-8), the symptoms are regarded as 
intermediate events that causally associate the upstream faults (cause) to the downstream 
failures (result). No matter for the fault diagnosis or for the failure prognosis, the inference 
starts always from the same point, i.e. the observed symptoms/events. Merely, the directions 
of inference are opposite—one toward the reason whereas the other pointing to the ultimate 
effect. Here, we only talk about the diagnostic inference (i.e. event-to-fault reasoning).  

 

Figure 2-8 Diagnosis and prognosis procedures in CBM maintenance 

 

II.2.3.2.1 Neuro-fuzzy system 

To declaratively represent event-to-cause relationships, a semantic network that consists of a 
series of if-then (or if-then-thus) statements could be established. These reasoning statements 
can be converted to fuzzy logic that involves linguistic variables. A linguistic variable is 
allowed to have qualitative values such as “low” or “high”, or “very high”. Using this kind of 
interpretable variables can facilitate the expression of rules and facts. For instance, a rule 
could be described as follow:  

If the variable A is very low and the variable B is high, then the fault is critical. 

This description captures the imprecise modes of reasoning that play an essential role in the 
human ability to make decisions in an environment of uncertainty and imprecision [Jang'93].  

In general, a basic fuzzy logic system is composed of a set of membership functions, a 
linguistic rule base and a defuzzification unit. The membership functions firstly transform a 
number of variables into a fuzzy result, producing membership degrees to measure the 
belongingness of the inputted numerical value to each linguistic value. This procedure is 
known as fuzzification. Then, the linguistic rule base maps this fuzzy result to a qualified 
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consequent (linguistic). In the defuzzification process, the linguistic result is reconverted to a 
quantitative result by another set of membership functions (see Figure 2-9).  

 

Figure 2-9 A Sugeno-type fuzzy model [Hissel'04]  

The parameters in membership functions and the rule base are two key factors which 
determine the quality of a fuzzy logic system. Owing to the development of AI techniques, 
both of them can be solved by data learning. In practical applications, this work is usually 
taken by neural network which is combined with the fuzzy system to form a hybrid neuro-
fuzzy system. The basic idea behind this combination is to use a fuzzy system to represent 
knowledge in an interpretable manner and apply the learning ability of the neural network for 
parameter optimisation and rule learning. On-line parameter tuning is also possible to be  
achieved by using adaptive neuro-fuzzy system [Jang'93].    

Hissel et al. (2004) [Hissel'04] had applied a Sugeno-type fuzzy model  to produce a so-called 
satisfaction rate parameter for diagnosing a PEMFC stack, based on the actual stack voltage 
and current. Figure 2-10 and Figure 2-11 demonstrate the indicative capability of the yielded 
SR for detecting the drying and the flooding phenomenon in the studied PEMFC.  

 

Figure 2-10 Evolution of voltage and SR 
when the flooding phenomenon occurs; (a) 
FC voltage and (b) SR value [Hissel'04].  

 

Figure 2-11 Evolution of voltage and SR 
for different operating temperatures. (a) At 

18°C; (b) at 50°C (drying) [Hissel'04] 
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II.2.3.2.2 Bayesian method 

Fuzzy logic offers a way to quantify the uncertainty of our expression. However, it doesn’t 
permit to revise this uncertainty when new evidence appears, due to the parallelization of the 
fuzzy if-then rules. To address this problem, Bayesian probability could be considered. The 
use of probability to quantify the uncertainty in diagnostic rules is similar with the use of 
membership degrees in fuzzy logic reasoning system. It is not an ad-doc choice but is 
inevitable if we have to respect common sense while making rational coherent inferences 
[Bishop'06].  

Probabilities are generally viewed in term of frequencies of random, repeatable events. For 
example, in a system where there are 3 possible faults to happen, the probabilities of 
occurrence for each fault are 20%, 50% and 30%, respectively, according to the expertise. In 
Bayesian view, these probabilities are prior probabilities purely determined by subjective 
assessment of experienced expert. If now a symptom (S) (or an evidence) to one of the faults 
is observed, our belief in the occurrence of this fault (F) will increase. In this case, the 
probability of occurrence for this fault should be revised. In Bayesian statistics, the updated 
probability is called posterior probability, denoted by p(F|S). Bayes’ theorem provides an 
equation to calculate it from the prior probability, by incorporating the evidence from the 
observed data. In this equation, the conditional probability, p(S|F), (referring to the occurring 
probability of the observed symptom given the fault, which can be evaluated from data) and 
the prior probability of the symptom, p(S), are assumed being known. Details about this 
equation are given in Chapter 5.  

From the causality point of view, the fault (F) is the cause and the observed symptom (S) is 
the effect. Hence, p(S|F) captures the uncertainty of the causal rule that: 

If F has happened, then S will be observed, 

Whereas p(F|S) represents the uncertainty of the diagnostic rule that:  

If S is observed, then the fault is F. 

If a second symptom (S’) is sequentially observed, the equation can continue to be used to 
update the probability of the assumed diagnostic result to p(F|S,S’), which declares the 
uncertainty of the interpolated diagnostic rule that: 

If S is observed and S’ is also observed, then the fault is F. 

Evidently, the rule expression manner in the Bayesian method is more flexible than that in the 
fuzzy logic. The feature of Bayes’ theorem is that, on the one hand, it differentiates the effect-
cause fashion from the cause-effect relationship and on the other hand it mathematically 
associates them together from the probabilistic viewpoint.  

In the Bayesian method, the causal rules are graphically represented by a network structure. It 
employs nodes to represent variables and arrows to imply the cause-effect relationship 
between them. In a simple Bayesian network, one node is defined either as the cause or as the 
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effect. This kind of network is called naïve Bayesian classifier (see Figure 2-12). In a complex 
Bayesian network where intermediate events are present to relate the initial cause to the final 
result, the node is allowed to play the cause and the effect roles in parallel. When the node 
locates at the beginning of the arrow, it is the factor that has an effect upon the state of the 
node located at the end of this arrow. The conditional probabilities that encode the uncertainty 
of causal rules are registered in the nodes (since prior knowledge often comes in causal form). 
They will serve for the calculation of posterior probabilities that quantify the uncertainty of 
diagnostic rules in the effect-to-cause reasoning process. 

 

• Naïve Bayesian classifier 

Naïve Bayesian classifier applies the class specific density to characterize the relation 
between an observation and a certain class. In diagnosis application, the class specific density 
measures how likely this observation can be obtained if the assumed fault (correspondent to 
the class label) happens. Naïve Bayesian network has a very simple structure, consisting of 
only two layers, one is the cause layer (with only one node) and the other is the symptom 
layer (including more than one characteristic node/variable). All arrows start from the cause 
and point to the symptoms. In diagnosis application, the cause node represents a discrete 
variable that has qualitative values which express the faults; the symptom nodes represent 
feature variables that commonly characterise each fault. Inputting the values of symptom 
variables into the network, the classifier will work to calculate probabilities of the cause 
variable at each of its value. It is worth noting that in a naïve Bayesian classifier, arrows only 
serve to indicate the cause towards the effect rather than to represent causal relationships. 
Similar to fuzzy logic, Naïve Bayesian network only declares cause-observation relationships 
rather than explicates.  

 

Figure 2-12 A Naïve Bayesian classifier for PEMFC fault diagnosis [Wasterlain'10]  

Wasterlain et al. (2010) [Wasterlain'10] had tried to use Naïve Bayesian classifier to identify 
the faults in their PEMFC stack. The classifier structure is shown in Figure 2-12. In their 
research, six fault types were pre-determined, including the normal operating mode and 5 
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failure modes, i.e. minor membrane drying, moderate drying, slight flooding, minor flooding 
and moderate flooding. Six impedance points (that is, 6 real parts and 6 imaginary parts) were 
selected to characterise the state of the studied PEMFC stack. In the validation phase, they 
obtained a high rate of good classification up to 91.2%. 

 

• Bayesian network 

Comparing with Naïve Bayesian classifier, Bayesian network gives us a much better intuitive 
grasp of the causal relationships. It allows incorporating individual cause-effect relationships, 
aiming to show up complex relationships among a large number of variables. The causal 
relationships in a Bayesian network can be determined either by expert knowledge or be 
learnt from data with the aid of AI based machine learning techniques. In practice, the prior 
knowledge is used in conjunction with the data-based knowledge so as to determine 
reasonable causal rules. Since Bayesian network has both causal and probabilistic semantics, 
it is an ideal representation for combining prior knowledge and data [Heckerman'96].  

Riascos et al. (2007) [Riascos'07] proposed a Bayesian network expert system to diagnose 
four types of faults in the PEMFC’s BoP system: 1) faults in the air fan (aF); 2) faults in the 
refrigeration system (rF); 3) faults of the fuel crossover (Jn); and 4) faults in the hydrogen 
pressure (H2). These faults were characterized by 5 symptoms: the change of ourput power 
(Pow), the stack‘s current (IFC) and voltage (V), the temperature (T) and the pressure of input 
hydrogen (pH2). The cause-effect (or fault-symptom) relationships were pre-determined by 
the expert knowledge. Then, they were optimised according to the data-based knowledge 
learnt from a database which was generated by a PEMFC physical model. As shown in Figure 
2-13, this Bayesian network has a 3-layer structure. The nodes related to the studied faults are 
organised in the upper layer; the middle layer involves the nodes for the intermediate 
events—the faults that may occur in the fuel cell due to the BoP faults; passing through them, 
the ones of the measurable variables can be found in the bottom layer. All of these nodes 
represent Boolean variables which have only two qualitative values: normal (0) and abnormal 
(1). In the on-line diagnosis application, this diagnostic tool is designed to be activated only 
when the sensors capture abnormal variations during the FC operation. According to the 
authors, in all validation tests, this Bayesian network could always indicate the actual cause as 
the most probable fault cause. 
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Ov: Overload; Fl: Volume of air flow; λ: Stoichiometrical air relationship;  
Qg: Generated heat; F: Flooding at electrodes; HR: Relative humidity;  
Dr: Membrane Drying; Pow: Power difference; IFC: Electric current;  

V: Output voltage; T: Temperature; pH2: H2 pressure. 

Figure 2-13 A Bayesian Network Structure for PEMFC’s BoP system Fault Diagnosis 

 

II.2.4. Summary 

Figure 2-14 shows a summary of the methods that have been used for fuel cell system 
diagnosis to date. Except for the analytical model, all the others are based on data analysis and 
learning (the signals are time-series data). Since the experiments on a FC system are complex 
and time-consuming, having considerable uncertainties and are not possible to cover all 
operating points, analytical models can be applied for data generation.   

 

Figure 2-14 Classification of the considered diagnosis methods for FC system 
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II.3. About this work 

The majority of the above-classified methods have been successfully applied in PEMFC 
system diagnosis. However, their application for SOFC system diagnosis has not been 
explored. In the framework of GENIUS, only data-based methods are considered for the 
development of SOFC system diagnosis methodology. The available data in this project are 
all collected from the real experiments. Since these experiments are performed on different 
SOFC systems, the measurement conditions are not identical and restricted by the concept of 
the tested system and the corresponding experimental design. Because of this, the selection of 
an appropriate data mining method should take into account the features of datasets (such as 
structure, sampling rate, etc) and be based on the available information on the experiments for 
data generation.  

 

II.3.1.  Our diagnostic strategy  

As mentioned in the first section, in GENIUS project, FCLAB is mainly in charge of 
exploring the signal-based and the knowledge-based approaches in the application of SOFC 
system diagnosis. According to our experiences in PEMFC diagnosis, applying a single 
approach to independently realise the diagnostic process is very difficult and restricted. 
Moreover, the assertion of treating FC stack as a sensor for system fault detection evokes the 
concerns on the reliability of such special “sensor”. Since degradations and failures can take 
place in the FC stack as well as in the BoP part, the state of health (SoH) of the FC must be 
confirmed before diagnosing BoP faults.  

In this context, an integrated strategy for the diagnosis of SOFC systems is established. It is 
composed by three sequential stages, including 

a) off-line diagnosis and knowledge acquisition,  

b) FC SoH monitoring and on-line BoP fault detection, and  

c) SOFC operating state estimation.  

Three different data/signal-based algorithms are selected, respectively orienting to the 
implementation of one of the stages. They are the clustering algorithm, the WT-based 
algorithm and the Bayesian network algorithm. These algorithms have been proven able to 
solve the diagnosis problem independently. However, their applications are often 
circumscribed in certain operating conditions. In our diagnostic strategy, the selection of data 
analysis algorithm depends greatly on the organisation of the database, the way the data is 
generated and the aims of the analysis.  

 

II.3.2. Data generation 
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In this work, there are several databases available for validating our diagnostic strategy as 
well as the algorithms. They were collected in the experiments on different SOFC test 
benches, i.e. the Hexis 5-cells system, the VTT system and the FCLAB’s test bench with a 
HTceramix SOFC stack. In this sub-section, the experiments for the data generation are 
outlined.       

 

II.3.2.1. Hexis system tests  

The Hexis system database is originated from the experiments in the framework of RealSOFC 
project∗. This European project aimed to gaining knowledge on the effects of the operating 
conditions upon the degradation of planar SOFCs’ components, in order to find solutions to 
reduce ageing rate to below 0.5%/1000hours and to improve fuel cell materials. The 
experiments were performed on the same test rig, with the stacks of the same design but under 
different operating conditions. All of the tested stacks consisted of 5 cells and had been kept 
working stationarily in long term until severe degradation was observed. Since thermal 
cycling tolerance is one of the important requirements for SOFC commercialisation, a certain 
amount of thermal cycles were arranged into these experiments. In addition, redox cycling 
was also performed in some experiments. In order to follow the evolution of the SoH of the 
stacks, the experiments were designed to be discontinuous so that polarisation tests could be 
carried out during the out-of-service intervals. Each SOFC stack was supplied with reformed 
natural gas (NG) (4g of NG per hour and per cell) resulting from the Catalytic Partial 
Oxidation (CPO) and operated at full load conditions with constant current density. Air was 
introduced to the stack via an air pre-heater. A simplified flow chart of the test rig is given in 
Figure 2-15. Under different temperatures, the composition of the gases yielded from the CPO 
reformer is different. This gaseous mixture is mainly composed by H2, CO, H2O, CO2, 
nitrogen from the air and a small quantity of unreacted CH4. Their concentration percentage in 
a mol unite of CPO gas is a function of the reforming temperature, as shown in Figure 2-16.  

      

 

Figure 2-15 Simplified flow chart of the Hexis SOFC system 

                                                           
∗
 Refer to the web page: http://www.real-sofc.org/ 
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Figure 2-16 Effect of CPO temperature on reformed gas composition 

The database includes two kinds of data matrix. One contains the time-series measurements in 
every hour during the stationary operation; the other is the polarisation measurement data 
matrix. The time points where the thermal or redox cycle took place are also known. After a 
polarisation test, the operating condition might be slightly varied. In every time-series data 
matrix, there are more than 15 variables and 20 to 2000 samples.  

 

II.3.2.2. VTT system tests  

Two rounds of tests were performed on the VTT’s SOFC system in the framework of 
GENIUS project. A 6-cell S-design SOFC stack fabricated by HTCeramix was used for each 
test. A furnace was present in the system in order to keep the stack in desired temperatures. In 
the 1st round the pure humidified hydrogen was fed into the stack, while in the 2nd round the 
directly supplied fuel was a gaseous mixture composed of CH4, CO2, H2, H2O and N2. The 
composition of such fuel is equivalent to the water reforming result of S/C ratio equal to 2 
constant throughout the test. Both the tests were carried out following a full factorial test 
matrix according to the design of experiments (DoE) methodology. The effect of fuel 
utilization (FU), air utilisation (AU), current density (J) and furnace temperature (Ts) were 
determined by operating the stack in a total of 16 different operating conditions symmetrically 
around a nominal operating point. These 16 non-rated operating points demarcate a bounded 
area for tolerant/safety operating conditions in which the fuel cell is permitted to work.  

These tested points in the 1st and the 2nd round tests were listed in Table 2-1 and Table 2-2, 
respectively. Steady state values were measured by allowing the stack to stabilize for 3 to 5 
hours between every experiment point. All operating point transitions were done gradually, by 
“small” step-wise changes. The stack was galvanostatically controlled therefore the average 
current density was set directly. Similarly, the stack fuel utilization was also set directly by 
adjusting the fuel components’ mass flow accordingly. The furnace temperature was regulated 
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at the given set-point by a PID controller. The stack I-U characteristic curve in nominal 
conditions was measured repeatedly, after different operating hours, in order to examine the 
SoH of the stack. 

Table 2-1 The DoE of 1st round test 

Point 

No. 

Furnace 

Temp. 

(°C) 

J 

(A/cm2) 
FU  AU 

0 760 0.3 0.5 0.4 
1 700 0.1 0.4 0.3 
2 700 0.1 0.4 0.5 
3 700 0.1 0.6 0.3 
4 700 0.1 0.6 0.5 
5 700 0.5 0.4 0.3 
6 700 0.5 0.4 0.5 
7 700 0.5 0.6 0.3 
8 700 0.5 0.6 0.5 
9 820 0.1 0.4 0.3 

10 820 0.1 0.4 0.5 
11 820 0.1 0.6 0.3 
12 820 0.1 0.6 0.5 
13 820 0.5 0.4 0.3 
14 820 0.5 0.4 0.5 
15 820 0.5 0.6 0.3 
16 820 0.5 0.6 0.5 

Tested  

stack 

HT Ceramix, S-design short stack with 6 
cells, 50 cm2 active area/cell 

Fuel H2/N2/H2O mixture 

Table 2-2 The DoE of 2nd round test 

Point 

No. 

Furnace 

Temp. 

(°C) 

J 

(A/cm2) 
FU  AU 

0 760 0.3 0.5 0.235 
1 730 0.2 0.4 0.17 
2 730 0.2 0.4 0.3 
3 730 0.2 0.6 0.17 
4 730 0.2 0.6 0.3 
5 730 0.4 0.4 0.17 
6 730 0.4 0.4 0.3 
7 730 0.4 0.6 0.17 
8 730 0.4 0.6 0.3 
9 790 0.2 0.4 0.17 

10 790 0.2 0.4 0.3 
11 790 0.2 0.6 0.17 
12 790 0.2 0.6 0.3 
13 790 0.4 0.4 0.17 
14 790 0.4 0.4 0.3 
15 790 0.4 0.6 0.17 
16 790 0.4 0.6 0.3 

Tested  

stack 

HT Ceramix, S-design short stack with 6 
cells, 50 cm2 active area/cell 

Fuel CH4/CO2/H2/N2/H2O mixture 

 

 

II.3.2.3. FCLAB’s SOFC stacks tests  

On the FCLAB’s SOFC test bench, two tests were performed during former Ph.D thesis 
[Chnani'08] & [Gay'12]. One test used a stack with three S-design SOFCs; the other used a 6-
cell stack with the same design. They were both fabricated by HTCeramix. The stacks were 
operated in galvanostatic mode.  

1) The 3-cell stack was fed with H2/N2/CO/CO2/H2O gaseous mixture which aimed to 
simulate the output gases from a reforming unit at the upstream of the stack. During 
the experiment, the stack temperature and the current density were variable while the 
other operating parameters (such as the flow rate of the fuel and the air, the anode and 
the cathode stoichiometry) were all kept constant. At the end of the experiment, the 
performance of the stack was found greatly degraded. From the measurement data, the 
voltage signals where the stack was stationarily operated under the temperature of 
770°C and the current density of 10A were picked up. These signals were measured at 
different times of the operation and could reflect the evolution of the state of health of 
the stack. (Refer to [Chnani'08] for more details about the experiment.)  
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2) The 6-cell stack was fed with pure hydrogen and air. The stack was operated under a 
variety of temperatures from 700°C to 805°C and different current densities between 
0–30A. Other operating parameters were constant. According to the I-U characteristic 
curves measured at different times of the operation, the stack did not have severe 
degradation. The data measured when the stack was operated under different 
temperatures were picked up and grouped into a database. (Refer to [Gay'12] for more 
details about the experiment). 

 

II.3.3. Utilization of the databases for the algorithms’ validation 

II.3.3.1. For the clustering algorithm 

The advantage of clustering algorithm consists in its capability of classifying large volume 
data into groups so that the information is homogeneous in each group and heterogeneous 
among groups. With this algorithm, the information is just re-categorized, neither changed on 
the representation nor reduced on the content. This algorithm is very useful in case where the 
individual datasets have been merged together into a large-size database such that the 
phenomena/events described by these datasets could not be differentiated. The clustering aims 
at decomposing such database so as to implement information re-separation.  

The historical database from the RealSOFC project∗ is similar to this kind of database. It was 
cumulated from the different experiments, each of which was designed orienting to a specific 
objective and had produced a data set. The datasets from some experiments may contain the 
same information and be different from others. In this work, these datasets are firstly merged 
into a single data matrix which is then re-organized by the clustering algorithm. The 
classification results are examined with the real information obtained from the experimenters 
as well as other relevant data, in order to evaluate the performance of the clustering in the 
differentiation of the states of health of SOFC stack. Details about this validation work are 
given in Chapter 3.   

 

II.3.3.2. For the wavelet-based algorithm 

The wavelet transform mainly serves for signal processing. The fluctuating behaviors of 
signals are supposed to be related with the operating condition of the fuel cell stack that could 
reflect the state of health of both the system and the fuel cell. In this work, wavelet energy-
based variables are extracted to quantify the signal fluctuation and used to characterize the 
operating condition as well as the state of health of SOFCs. The voltage signals from the VTT 
system tests and from the 3-cell stack test (in which the stack was degraded) performed in 
FCLAB are used to validate the indicative capacity of these feature variables. Chapter 4 is 
focused on this algorithm’s introduction and validation. 

                                                           
∗
 Refer to the web page: http://www.real-sofc.org/ 
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II.3.3.3. For the Bayesian network model 

The Bayesian network model is used to estimate the actual SOFC operating parameters for the 
purpose of providing analysable information on the actual state of the system. The data from 
the 1st round test on the VTT system and from the test of the 6-cell SOFC stack performed in 
FCLAB are used for the Bayesian network structure optimisation, parametrization and 
validation. This work is introduced in detail in Chapter 5.  

  

II.3.3.4. Summary 

The algorithms and the corresponding validation-oriented datasets are summed up in Table 2-
3.  

Table 2-3 The experimental datasets used for the algorithms validation 

Algorithms 

Hexis 

System 

Data 

VTT System Data FCLAB’s Data 

1st round 2nd round 
3-cell 

stack 

6-cell 

stack 

Clustering �     
Wavelet 

transform  � � �  
Bayesian 
network  �   � 

 

 

II.3.4. Goals of this work 

The essential objective of this work is to achieve the detection of SOFC system faults in the 
early stage. In our study, the tested stacks are all in small size, composed by 3, 5 or 6 single 
cells, serving for laboratory investigation. Unlike the large-scale SOFC systems where the 
stack operating temperature could be ensured by the heat released from the electrochemical 
reactions taken place inside the FCs, such “short” stacks always recur to (are situated in) a 
furnace  in order to keep their temperature in the desired range. For this kind of small-scale 
SOFC systems, the faults of interest could be gas leakage in the inlet manifold (or due to 
untight pipes), furnace failure, fault of temperature control, too high load current, load 
rejection and desulphurization failure. They are usually the problems difficult to capture by 
normal sensors. In the framework of the GENIUS project, these failures were generalized to 
several improper operating conditions in which the stacks were tested.  

However, it is not recommended to experiment the stacks in severe operating conditions that 
may lead the FCs to rapid degradation and thereby disable the stack acting as a sensor for 
system fault detection. Moreover, rapid degradation can greatly shorten the testing time and 
limit the time for the data generation and acquisition, resulting in incomplete database and 
information loss. In addition, the cost of experiments would also rise. Therefore, it is 
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preferable to operate the FC stack in the conditions that are mildly biased from the rated one, 
so as to ensure the availability of the data of interest and prolong the test time on a single FC 
stack as much as possible.  

In this work, the tests from which the validation-oriented data were originated were all carried 
out under this concept. The biased operating points considered in each of these tests sketch 
the contours of safe and tolerant conditions that the fuel cell stacks are permitted to be 
operated in. When the real operating point falls around the demarcation of the safe operating 
region, an alarm should be given by the diagnosis tool to warn that the operation of the system 
is proceeding towards undesired direction and a fault must have happened. Another function 
of the diagnosis tool is to diagnose the FC stack. Being used as a specific sensor, the state of 
health of the stack (or the sensor) must be confirmed beforehand. 
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n the field of fuel cell engineering where a number of experiments are involved, large 
quantities of data are usually available for pattern recognition and information elaboration. 
In practice, most industrial data analysis is based on manual selection of variables and 

extraction of features. This procedure is often time consuming and subject to the expectations 
of the engineer so that the data may be subjectively regrouped and interpreted. In the artificial 
intelligence technology, a lot of techniques could be used to achieve “objective” data analysis. 
Unsupervised classification is a candidate method for data mining. In case where the number 
of patterns is known but their label (or the class’s definition) is unknown, unsupervised 
classification method can be used to partition hidden patterns which are homogeneous in the 
measured data based on their statistical regularities [Hu'09]. Then, through analyzing the data 
assigned to each class and according to expert knowledge, the labels (or meaning) of these 
patterns could be determined.  

There are two classic methods of unsupervised classification: clustering and dimensionality 
reduction [Zheng'09]. The former aims to find patterns in a dataset containing independent, 
identically distributed samples [Grossman'01] while the later is essential for the compact 
representation of patterns [Zheng'09].  

In this thesis, only clustering method is studied. It is employed to analys the polarization test 
data in order to implement SOFC off-line diagnostic algorithm.  

 

III.1. Introduction of clustering analysis 

In the field of data analysis for knowledge discovery, it is often encountered that a dataset 
contains a large number of observations for various variables. Clustering analysis can be a 
means to partition these observations into groups or clusters, in such a way that the profiles of 
observations in the same cluster are very similar and the profiles of observations in different 
clusters are quite distinct [Mathworks'96]. This technique is particularly useful for the 
extrapolation of interactions between variables (for multi-dimensional data). It allows 
assessing the data structure and exploring dissimilarity among the groups of observations (for 

I 
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each dimension). Hissel et al. (2007) and Steiner et al. (2011) [Hissel'07, Steiner'11a] used 
both the clustering algorithm on the fault features’ data in order to identify the indicative 
capability of the feature variables to the states of health of PEMFC stack. Besides, the 
application of clustering analysis for feature extraction and identification has also been 
exploited in other fields: Yang et al. (2010) [Yang'10] used it to classify the precipitation of a 
city, Hu et al. (2009) [Hu'09] for texture classification and Clement et al. (2002) [Clement'02] 
for image analysis.  

Nevertheless, there is no direct measure to validate the classification results yielded by 
clustering analysis. In practice, one must resort to heuristic arguments for the judgment of 
classification quality [Zheng'09] and for the cluster labellization. In addition, clustering 
technique is a purely computerized procedure in which the practical significations of the 
variables are not considered. It is thus possible that the clustering result is not able to offer the 
useful information relevant to the research goal. In other words, the clustering behaviours may 
not concentrate on patterns of interest but waste time on discovering patterns the user has not 
asked for [Hung'04].  

In general, raw data is highly susceptible to noise, missing values, and inconsistency. Its 
quality can greatly affect the data mining results. In order to improve the quality of data, raw 
data must be pre-processed so as to ameliorate its representativeness to the information that 
we are interested in. Moreover, this work can increase the efficiency of the data mining 
process. A basic data pre-processing starts usually from the selection of significant variables, 
based on the expertise knowledge. Sometimes, the considered variables of interest are not 
measurable and should be extracted or estimated. In addition, we must decide whether to 
standardize the variables in some way so that they all contribute equally to the distance or 
similarity between data.  

Apart from the purpose of partition, clustering technique serves sometimes to arrang the 
clusters into a natural hierarchy. This process involves a successive grouping of the clusters so 
that each level of the hierarchy clusters within the same group is more similar to each other 
than those in different groups [Giudici'09]. 

There is rich literature on both hierarchical and partitional clustering methods. This chapter 
only focuses on the non-supervised partitional clustering technique. 

 

III.2. Clustering algorithms 

Clustering aims to partition the observations into groups so that the pair-wise dissimilarities 
between those assigned to the same cluster tend to be smaller than those in different clusters 
[Zheng'09]. In this section, two of the most representative clustering techniques are reviewed:  

1) K-means clustering; 

2) Fuzzy k-means clustering.  
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III.2.1. Basic principles 

For better understanding, a simple mono-dimensional example is given to explain these two 
clustering methods. Give a certain data set (including only one variable). Distribute the data 
on an axis as shown in the Figure 3-1: 

 

Figure 3-1 Values of variable distributed on x axis 

The points scattering along the axis can be divided into two clusters (A and B) according to 
the data concentrations. Using k-means algorithm, the membership of all the points assigned 
to the cluster A is set to 1; and for other points which are grouped into the cluster B, their 
membership to this cluster is 0, as shown in Figure 3-2: 

 

Figure 3-2 Classification by k-means method 

In fuzzy k-means algorithm, a datum does not belong exclusively to a well defined cluster; 
instead, it is supposed to belong to all clusters but the belongingness to each of them is 
different. As shown in Figure 3-3, the membership of the points to cluster A is a continuous 
variable, which measures the degrees of belongingness.  

 

Figure 3-3 Classification by fuzzy k-means method 

Essentially, the fuzzy k-means clustering algorithm is more flexible than the basic k-means 
clustering, owing to the integration of fuzzy logic theory that is usually applied for the 
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problems that do not require hard solutions [Nasser'06]. In sum, k-means technique gives hard 
clustering solution in which a point belongs to only one cluster, while fuzzy k-means 
discovers soft clusters by considering that a particular point can belong to more than one 
cluster with certain probability. Therefore, the former is also known as “hard clustering” and 
the later as “soft clustering”. 

The common ground of these two algorithms is that they are both sensitive to the initial 
placement of the cluster centres. With different sets of initial cluster centres, the clustering 
results could be different [Li'08]. In practical applications, the clustering algorithm is usually 
performed several times with different randomly selected cluster centres; then, the clustering 
results are assessed with users’ knowledge to determine the best one.  

 

III.2.2. Distance functions 

Clustering technique utilizes the distance between observations to determine their similarity.  
There are many algorithms to measure the distance, such as the Euclidean distance, the 
Manhattan distance, the correlation distance, the Pearson cosine distance and so on (refer 
to [Deza'09]). In this sub-section, we will introduce these distances and talk about their 
applications in data classification.  

• Euclidean distance (2-norm distance): 

It calculates the length of the line segment connecting two points. Suppose that there are two 
points (observations) � = (��, ��, … , �	) and � = (��, ��, … , �	) in n-dimensional space (n 
variables). Then the distance from P to Q (or from Q to P) is given by: 

(�, �) = �(�� − ��)� + (�� − ��)�+ ⋯ + (�	 − �	)� 

= ��(�� − ��)�	
��� = ‖� − �‖� 

The drawbacks of Euclidean distance are treating all features (variables) in the same way and 
the tendency of large-scaled feature to dominate the others [Zou'08]. 

 

• Manhattan distance, also known as city-block distance (1-norm distance): 

It is the sum of the lengths of the projections of the line segment between the points onto the 
coordinate axes.  

(�, �) = �|�� − ��|	
��� = ‖� − �‖� 

Eq. 3-1 

Eq. 3-2 
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• Pearson correlation distance: 

It is based on the Pearson correlation coefficient that is calculated from the sample values 
and their standard deviations. The data should be standardized by  (� − �)/� 

where �  is a point value in one dimension, µ is the mean of data and σ is the standard 
deviation. This normalization is based on the assumption that distance values have a Gaussian 
distribution [Qian'04]. The Pearson correlation coefficient (r) between two standardized 
vectors P

’
= {P

’
1, P

’
2,…, P

’
n} and Q

’
= {Q

’
1, Q

’
2,…, Q

’
n} (the mean is 0 and the standard 

deviation is 1) is defined by 

� = 1� � �′�. �′�
	
�  

which takes values from -1 (large negative correlation) to 1 (large positive correlation). The 
Pearson correlation distance is calculated by: (�, �) = 1 − � 

And thus takes values between 0 (two samples are most similar) to 2. 

 

• Cosine distance 

It measures the similarity of two vectors by the cosine of the angle (θ) between them (as 
shown in Figure 3-4). It is defined as: 

(�, �) = cos($) = �%&. �%&'(�%&. �%&)(�%&. �%&) 

This measure normalizes the feature vector to unit length and makes it invariant against 
relative in-plane scaling transformation [Zou'08]. It gives a good normalized measure of 
similarity ranging in [0, 1] ($ ∈ [0, - 2⁄ ]) but does not consider the magnitude (which is, 
taken into account by Euclidean distance. Consequently, the Euclidean distance (the straight 
line denoted with “d” in Figure 3-4) and the cosine distance provide similarity measures with 
different aspects. In [Zou'08, Zheng'09], a distance measure combining both cosine and 
Euclidean distances was used and it yielded a higher accuracy of data partitioning.  

Eq. 3-3 

Eq. 3-4 

Eq. 3-5 

Eq. 3-6 
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III.2.3. Classification algorithms

III.2.3.1. K-means 

K-means algorithm was proposed in 1967
scientific research as a classic clustering algorithm. 
selecting k observations from 
Then, each of the leaving observations
nearest to the datum. After assignments of all ob
cluster is updated to be the mean point
its coordinates are the arithmetic mean for each dimension 
cluster). This centre will be repeated
criterion for k-means algorithm usually uses squared error criterion function, defined 

where ‖� − 1�‖�� represents the squared Euclidean distance of the point 
of the i-th cluster. It is also known as
distances of each point to the centr
value must be minimized at the end of the clustering.

Since k-means is applied to a finite number of points, th
convergence of the objective 
determined to set a stopping condition
difference between two successive values of 
will stop.  

However, the arithmetic mean 
raw dataset. Addressing to this problem, 
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Figure 3-4 Cosine distance 

 

Classification algorithms 

eans algorithm (hard clustering) 

means algorithm was proposed in 1967 by MacQueen [MacQueen'67] and is widely used in 
classic clustering algorithm. This algorithm starts by randomly 

from studied dataset and treats them as initial centres of 
servations is assigned to the cluster whose centre (or centroid)

After assignments of all observations in the dataset, the centre 
mean point of all the observations assigned in the cluster (t

its coordinates are the arithmetic mean for each dimension separately over all the points in the 
repeatedly updated until the criterion function converges. The 

means algorithm usually uses squared error criterion function, defined 

2 = � � ‖� − 1�‖��3∈45
6

���  

the squared Euclidean distance of the point x to the centre point 
. It is also known as arithmetic mean. E is the sum of squared Euclidean 

distances of each point to the centre of its assigned cluster. It is the objective variable whose 
the end of the clustering. 

means is applied to a finite number of points, this algorithm 
convergence of the objective E. In some cases, a small tolerance, denoted by

set a stopping condition for the optimisation of clusters’ centre: once
successive values of E is less than this small tolerance

n is sensitive to outliers, data errors or glitches
Addressing to this problem, k-medians clustering is an alternative, 

outliers. For this case, the Manhattan distance instead of squared 
Euclidean distance should be used to define the following criteria: 

2 = � � ‖� − 1�‖�3∈45
6

���  

line diagnosis 

and is widely used in 
This algorithm starts by randomly 

as initial centres of the k clusters. 
cluster whose centre (or centroid) is 

, the centre of each 
observations assigned in the cluster (that is, 

separately over all the points in the 
until the criterion function converges. The 

means algorithm usually uses squared error criterion function, defined by: 

to the centre point 1� 
the sum of squared Euclidean 

It is the objective variable whose 

algorithm can ensure the 
, denoted by ε,  is pre-

for the optimisation of clusters’ centre: once the 
small tolerance, the iteration 

outliers, data errors or glitches presented in the 
is an alternative, which is 

he Manhattan distance instead of squared 

Eq. 3-7 

Eq. 3-8 
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because the median is the point that minimizes the total 1-norm distance from all points to it 
[Bradley'97]. Similar to k-means clustering, the value of E in k-medians clustering can also 
converge. Nevertheless, the k-medians clustering is not trivially adapted to classify 
normalised data [Anderson'06].  

 

III.2.3.2. Fuzzy k-means algorithm (soft clustering) 

Fuzzy k-means algorithm was proposed by James Bezdek in 1981 [Bezdek'81] as an 
improvement of k-means algorithm. The underlying idea is that each data point belongs to all 
clusters with a certain degree of membership; this degree depends on the distance to each 
cluster centroid. Fuzzy k-means clustering can be implemented by 5 steps: 

1) Randomly select k data points from a data set with n observations to be the initial 
centres of k clusters. A cluster-centre matrix W(0) is created to include these 
centres vectors. 

2) The membership of each point to each cluster is evaluated by: 

7�,8(0) = 9 1:;8 − <�:�= �>?�

∑ 9 1:;8 − <A:�= �>?�6A��
B  

where 

 C	E�	F ∈ G1,2, … HI, representing the i-th cluster; 
 J ∈ G1,2, … �I, representing the j-th point; 
 m fixes the degree of fuzziness of the algorithm and K ∈ [1, ∞] (typically =2); 
 P	represents the data point in multi-dimensional space; 
 W represents the centre of cluster in the same space. 

This formula normalizes memberships in unit length ( uNO ∈ [0,1] ) and the sum of 

memberships of a datum to all clusters is equal to 1, like: 

� 7�,8 = 16
���  

3)  Calculate the new cluster-centre matrix W by: 

P� = ∑ (7�,8> ∙ ;8)	8�� ∑ 7�,8>	8��R  

4) Repeat (2) until the criteria function converges: 

Eq. 3-9 

Eq. 3-10 

Eq. 3-11 
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S>(T, U) = � � 7�,8> ∙ :;8 − <�:��
6

���
	

8��  

5) either until V7�,8(iteration) − 7�,8(iteration − 1)V > ^ 

6) or until iteration > _	K_�CK7K	��`aC�`. 

 

III.2.4. Selection of the number of clusters 

Both two clustering algorithms introduced above necessitate determining beforehand the 
number of clusters to retain from data. It requires the analyzer having expertise knowledge on 
the studied object which could help forecast the number of patterns. In practice, however, we 
rarely find ourselves in such a favourable position [Borgelt'06]. For example, in this work, the 
test from which the data were collected was made by the industrial partners who know very 
well the characteristics of the studied entity, while as the data analyser, we do not have much 
knowledge on it. In this case, the choice of clusters number seems to be a matter of trials and 
see. In other words, we have to cluster the given data set several times, setting a different 
amount of clusters for each time. To determine the best number of clusters, the classification 
results should be analysed to evaluate the clustering quality for each specific amount of 
clusters. Thus, the key issue lies in how to measure the quality of classification. 

The average silhouette of the data is a useful criterion for evaluating the clustering result. The 
silhouette of a datum measures how close it is to the assigned cluster’s centre and how 
dispersed to the neighbouring cluster’s centre. A silhouette takes value from -1 (negative 
value implies that the datum is in a wrong cluster) to 1 (positive value implies that the datum 
is assigned into an appropriate cluster).  

Assume the data have been classified into k clusters. For each datum x, let a(x) be the average 
distance of x to all other data within the same cluster. Then calculate the average distance of x 
to the data of another single cluster. Repeat this for every cluster and let b(x) denote the 
smallest average distance. The cluster relevant to this smallest average distance is called as 
“neighbouring cluster” of the cluster that x is assigned to. We define: 

b(�) = c(�) − _(�)K_�G_(�)d, dc(�)I 

For a silhouette s(x) to be close to 1, we have a(x) << b(x), which implies that the datum x is 
well matched to its assigned cluster. If s(x) is close to -1, we have a(x) >> b(x), which implies 
x would be more appropriately assigned into its neighbouring cluster. An s(x) near zero means 
that this datum is on the border of two natural clusters.  

The average silhouette <s(x)> of a cluster is the mean value of the silhouettes of all data 
assigned in this cluster. It measures how appropriately (or tightly) the data has been clustered 
[Rousseeuw'87]. When a poor choice of cluster number is made in the k-means algorithm, the 

Eq. 3-12 

Eq. 3-13 
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average s(x) will be much smaller than 1. Based on this parameter, we can easily compare the 
classification results and select the most appropriate cluster number. 

Apart from the average silhouette, there are other cluster validation indices able to help find 
an appropriate number of clusters, such as the elbow method which looks at the percentage of 
variance explained as a function against the number of clusters, the information criterion 
approach which uses log-likelihood as model selection criteria including Akaike’s 
Information Criterion (AIC) [Akaike'74] and Bayesian Information Criterion (BIC) 
[Schwarz'78] to estimate the value of k. 

 

III.3. The context and the clustering-based diagnosis strategy 

In the field of fuel cell engineering where a certain number of experiments are involved, large 
quantities of data are usually available for information elaboration. These data may have been 
analyzed for a specific study to which the experiments were oriented whereas its potential to 
other investigations may not be fully exploited. In our case for example, the data originated 
from the experiments for RealSOFC project∗ had been analyzed for the purpose of optimizing 
the design of SOFC stacks so as to extend their lifetime and to improve their performance in 
long-term operation. However, its value for the development of SOFC diagnosis technology 
had not been exploited. Therefore, in GENIUS project, we have firstly worked with this data, 
aiming at determining significant response variables that could indicate accelerated 
degradation in the FC stack after the occurrence of an emulated BoP fault.     

Clustering technique allows the classification of data so as to separate different patterns that 
are not known beforehand. In this work, the data set has a large size and involves many 
different variables. We selected k-means hard clustering algorithm to classify system outputs 
(measured and extracted) data. Each of the obtained classes was then labelled to indicate one 
of the considered states of health of SOFC stack, e.g. the normal and the accelerated 
degrading state. Since the change of system operating condition can also lead to variation of 
the outputs, the effect of operating condition upon the stack responses has to be taken into 
account so as to avoid wrong judgment on the stack health. Accordingly, there would be more 
than two classes for the states of SOFC stack that should be considered before performing the 
data classification.  

After the classification, each datum will be labelled by the number of its assigned class. Since 
clustering is a purely computerized procedure, post-classification analysis must be carried out 
in order to give each class practical meanings. Through analysing the data in each class, 
significant variables whose data have played a decisive role for the classification result could 
be found and considered as the feature variables to represent the state of health of SOFC stack.  

In the experiments for the RealSOFC project, the SOFC stacks were tested in mildly different 
operating conditions, respectively. On the one hand, setting each of these conditions to be a 

                                                           
∗
 Refer to the web page: http://www.real-sofc.org/ 
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class is not necessary and may complicate data classification procedure. On the other hand, it 
is difficult for us to select the significant operating conditions, due to lack of knowledge on 
the stacks’ characteristics. For simplicity, it is better to firstly classify the integrated 
measurements of the operating variables so that the data describing the similar operating 
conditions could be grouped together in a single class to study.  

After classifying the operating conditions, we group the response data in the same way to see 
if each class of the data orients towards one the operating conditions recognized in the 
classification of the operating variables’ data (see Figure 3-5). If yes, it means that the studied 
response variables do be indicative to the operating condition.  

 

Figure 3-5 The diagnosis strategy based on the classification method  

In each operating condition of interest, the stack may suffer from degradation in a long-term 
test. To extract this information, the responses data categorized to the same operating 
condition would be further partitioned to differentiate the normal and the degrading states of 
the stack.  

After performing a classification, the data assigned in the same class must be analysed and 
interpreted, in order to confirm that the information retrieved from the data corresponds to the 
expectations of the analyzer.  

 

III.4. Application of k-means clustering for SOFC stack off-line diagnosis  

III.4.1. Description of the tests 

The datasets used to validate the clustering based off-line diagnosis algorithm are from the 
RealSOFC project which aimed at increasing the understanding on the degradation 
mechanisms of SOFC stacks. They were collected on the HEXIS 5-cells test rig in the long-
term experiments (more than 6000 hours) carried out respectively on 4 SOFC stacks of 
identical type and fabricated with the same technology. During each experiment, the 
polarization tests were repeatedly performed in order to monitor the evolution of the stack’s 
state of health. Totally, there are 30 polarization tests in the 4 experiments.  

Redox cycling and/or thermal cycling were experimentally done in the test for each stack. The 
former was emulated by switching off the gas and the current in a specific temperature. The 
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later was realized by making an abrupt reduction for the fuel supply. According to the 
investigation performed in the RealSOFC project, the negative impact of thermal cycling to 
the health of stack is greater than the impact caused by redox cycling.  

 

III.4.2. Data preparation  

III.4.2.1. Selection of significant variables  

From each polarization test of a stack, we could obtain a data matrix including the temporal 
measurements of the stack’s input and output variables. Nine variables of interest were 
selected and divided into two groups: 

1) Controllable operating variables:  

Natural gas flow (g/h); 

CPO air flow (l/h); 

Cathode air flow (g/h); 

Preheating CPO (%)
∗
; 

Preheating air (%). 

2) Measured response variables: 

Temperature at bottom of stack (°C); 

Temperature at top of stack (°C); 

Input fuel temperature of CPO (°C); 

Output gas temperature of CPO (°C). 

The first group of variables are the input of the stack (here the CPO and the SOFC stack are 
taken as a whole to diagnose, as shown in Figure 2-12 in Chapter 2); the second involves the 
responses of the stack. In addition, the current and the voltage data are picked up to plot the 
polarization curves (or called I-U curves). 

 
III.4.2.2. ASR estimation  

The area specific resistance (ASR, in unit “mΩ/cm2”) and the open circuit voltage (OCV, in 
unit “mV”) are two of important variables used to reflect the state of health of the stack. The 
ASR of a fuel cell cannot be directly measured by a sensor. However, it is possible to estimate 
it from I-U characteristic measurements. Generally, the middle part of the I-U curve in the 
region of ohmic polarization is a quasi-straight line whose slope can be roughly viewed as 
fuel cell’s ASR, as shown in Figure 3-6.  

                                                           
∗ The percentage values for both the “preheating CPO” and the “preheating air” denote the ratio of the real power 
used by the heater to the maximal rated heating power. 
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Figure 3-6 ASR and OCV given by an I-U curve∗  

 

Figure 3-7 An example for the polarization curve fitting 

In this work, simple linear regression was applied to estimate the slope of each available 
polarisation curve, based on the linear model represented by  e = _� + c 

where a is the slope of the polarisation curve; y denotes the stack voltage and x is the stack 
current. Relying on the polynomial regression algorithm, the values of a and b can be 
empirically yielded from the data of an I-U curve. An example is given in Figure 3-7 to 
demonstrate the curve fitting result from a set of the polarization data. 

 

III.4.2.3. Extraction of other informative data 

                                                           
∗
 Source of the polarization curve and the information in the background figure: Fuel cell handbook [electronic 

resource] / EG&G Technical Services, Inc. Morgantown, WV : U.S. Dept. of Energy, Office of Fossil Energy, 
National Energy Technology Laboratory, 2004.  
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In order to learn the causes of stack degradation, it is necessary to know what the stack had 
experienced before every polarization test. After analyzing the entire experimental data, three 
parameters are calculated. They are, respectively, the operation time (hours), the number of 

redox cycles and the number of thermal cycles (total cycles from the start-up). These 3 
variables’ data are not involved in the dataset to classify but serve as heuristic arguments for 
classification result evaluation and class labelization.  

 

III.4.2.4. Addition of a disturbing variable 

In the Hexis 5-cells test rig, there are two valves to control the mass flow of the natural gas 
inputted to the CPO. One of them was kept closed in the experiments. However, the mass-
flow sensor next to it was always active, which produced a sequence of meaningless data with 
small values. These data were labelled as ‘2nd natural gas flow’ in the raw data sheet. This 
variable was inserted into the group of the operating variables with the aim of checking if the 
clustering procedure is subject to the disturbing variable.  

 

III.4.2.5. Summary 

In sum, there are in total 16 variables’ data (columns) extracted from the data sheets of 30 raw 
polarization tests. They are divided into 3 groups:  

1) Controllable operating variables’ data set;  
2) Response variables’ data set; 
3) The data set that contains the information about what the stacks had experienced in the 

tests, such as the emulated redox or thermal cycling or the operational time. 

For simple visualization purpose, the controllable and response variables’ average values in 
each polarization test were computed and shown in the table of Appendix-I.   

In the data analysis phase, according to Figure 3-5, the k-means clustering algorithm was 
firstly performed on the first data set in order to find how many significant operating 
conditions should be considered in the diagnosis procedure. Based on the result of the first 
classification, the second data set was then classified to see whether the responses of the stack 
could reflect the system operating condition and indicate the acceleration of stack degradation 
happened under each of these conditions. 

 

III.4.3. Classification results analysis 

In cluster analysis, the type of measure for the distance between observations must be 
determined first of all. It depends greatly on what type of data do we have. The most used 
distance, the Euclidean distance, suffers from the disadvantage that it is sensitive to the units 
of measurement for the variables [Norušis'03]. If the variables are measured on different 
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scales, the variables with large ranges contribute more to the distance measure than the 
variables with small values, and thereby have a significant effect on the partitioning of the 
data. Moreover, the variable that has a much wider range than others will tend to dominate the 
classification solution [Cornish'07]. To get around these problems, each variable must be 
standardized to have zero for the mean value and one for the standard deviation.  

Another concern is about the dependency between the clustering variables. For example, 
among the response variables studied in this work, the stack temperature (top & bottom) can 
influence two other variables considered in the clustering variable set: the ASR and the OCV 
of the stack. Since the clustering procedure does not differentiate the variables in a conceptual 
sense, if highly correlated variables are used for cluster analysis, irrelevant aspects covered by 
these variables will be overrepresented in the clustering solution[Mooi'11]. Accounting for 
this point, the factor, correlation between variables, must be also taken into account when 
measuring the distance between two observations. Hence, the Pearson correlation distance 
was chosen as the distance measure in this work. Based on it, all variables had been 
standardized by Eq. 3-3 before the classification.  

The classifications on both the two data sets (one for the controllable variables and the other 
for the response variables) were executed under MATLAB by using ‘k-means’ function 
(based on k-means clustering method). The number of iterations was fixed to 50 (It is an 
empirical selection. In this work, the clustering solution became stable after 10 iterations). 
After each iteration, a new placement of the initial clusters’ centres was randomly determined. 
Several values for the number of classes k (from 2 to 6) were tried and the best one was 
determined according to the average silhouette value of the classification.  

 

III.4.3.1. For the controllable variables’ data 

According to the average silhouette value for the classifications on the controllable variables’ 
data shown in Figure 3-8, two-cluster is the most appropriate choice for the number of classes 
k. The result of this classification, given in Table 3-1, implies that the first 11 polarization 
tests were carried out in a different operating condition from that of the rest of the tests. 

 

Figure 3-8 The average silhouettes of the classifications for the controllable variables’ data 
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Table 3-1 The result of classification on the controllable parameters 

  

It is necessary to find out the significant variable that has played a decisive role on the 
clustering solution so that we could easily understand the basic difference between these two 
classes of operating condition. Feature selection technique can help achieve this goal. It seeks 
to identify the variables that have the most discriminative power among the set of all the 
considered variables [Boutsidis'09]. Under MATLAB, there is a function called “rankfeatures” 
which is able to assess the significances of the variables in a two-cluster separation, relying on 
the absolute values of the cross-correlation coefficient between the candidate variable and all 
previously selected variables. This function regards the variables in the data matrix as features 
and ranks them by using an independent evaluation criterion which permits to assess the 
significance of every feature for separating two labelled groups. Owing to this function, the 
controllable operating variables were ranked according to their significance value relative to 
the solution of the classification. It turned out that the variable “CPO Air flow” held the 
highest ranking position, followed by the variable “Preheat CPO”. According to this result, 
we assert that the difference between the yielded two classes of operating condition is 
determined by the variation of the air flow inputted into the CPO. 

In addition, the “rankfeatures” function assigned the variable ‘2nd natural gas flow’ to the last 
position of ranking, which implies that the classification was not disturbed by this variable’s 
data. 

Class No.

Stacks test
NG flow 

(g/h)

2nd NG for 

5 g/h Stack 

(g/h)

CPO Air 

flow 

(l/h)

Cathode 

air flow 

(g/h)

Preheat 

Air 

Preheat 

CPO  

2 

clusters

1 19,98 0,23 71,03 1001,41 24,83% 68,18% 2

2 19,97 0,24 70,98 1001,32 28,75% 67,58% 2

3 19,98 0,26 71,03 999,66 28,48% 68,65% 2

4 19,99 0,26 71,06 1000,28 29,36% 68,89% 2

5 19,92 0,07 70,61 1000,73 34,22% 40,93% 2

6 19,92 0,10 70,61 999,45 31,68% 43,87% 2

7 19,91 0,06 70,63 1000,22 33,74% 35,92% 2

8 20,05 0,12 70,72 1000,31 30,36% 82,33% 2

9 20,08 0,18 70,79 999,74 25,89% 78,35% 2

10 20,10 0,20 70,82 999,32 23,80% 84,57% 2

11 20,09 0,20 70,79 1000,56 24,88% 88,97% 2

12 19,98 0,13 65,59 999,45 37,76% 46,07% 1

13 19,96 0,15 65,61 999,48 39,46% 42,80% 1

14 19,96 0,16 65,58 999,71 39,71% 42,64% 1

15 19,96 0,13 65,59 999,99 39,17% 41,24% 1

16 19,95 0,15 65,58 999,92 39,72% 42,56% 1

17 19,97 0,15 65,59 1000,11 39,58% 41,36% 1

18 19,94 0,13 65,59 1000,67 39,32% 40,03% 1

19 19,97 0,15 65,58 999,32 39,41% 41,61% 1

20 19,96 0,14 65,58 999,71 39,39% 42,24% 1

21 19,97 0,15 65,58 999,91 39,52% 41,01% 1

22 19,98 0,14 65,59 999,10 39,19% 40,84% 1

23 19,97 0,13 65,59 1000,09 39,27% 39,67% 1

24 19,96 0,13 65,59 1000,07 39,39% 40,61% 1

25 19,97 0,15 65,57 1000,46 36,94% 43,94% 1

26 19,98 0,13 65,59 999,92 36,81% 41,76% 1

27 19,97 0,14 65,58 1000,31 39,15% 41,78% 1

28 19,95 0,12 65,60 1000,28 39,15% 40,87% 1

29 19,97 0,12 65,59 999,67 39,26% 40,33% 1

30 19,98 0,16 65,57 999,86 39,09% 46,18% 1

HP080025

CONTROLLABLE PARAMETERS

HP060030

HP060031

HP060045
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According to the numeration of the classes in Table 3-1, we labelled the Class-2 “Operating 
Condition 2 (OC2)” and the Class-1 ‘‘Operating Condition 1 (OC1)”. If the degradation in the 
stacks were accelerated, the classification on the response variables’ data should produce 4 
clusters to indicate 4 states of the stack: “Normal in OC1”, “Accelerated degradation in OC1”, 
“Normal in OC2” and “Accelerated degradation in OC2”. In the next sub-section, we will 
analyse the results of classification for the response variables’ data and find out the significant 
response indicative to the state of health of the SOFC stacks. 

 

III.4.3.2. For the response variables’ data 

Figure 3-9 shows that for the response variables, the best value for the number of classes k 

should be 4. It indicates that in addition to the amount of operating modes, there are two more 
patterns/classes involved in this data set. This result is in accordance with the solution 
concluded in III.4.3.1.   

 

Figure 3-9 The average silhouettes of the classifications for the response variables’ data 

It is noteworthy that the 5-cluster classification also shows a high quality of data partitioning, 
for which the silhouette average value is 0.85, just a little lower than 0.86 for the 4-cluster 
classification. The solutions of these two classifications are given in Table 3-2. The difference 
between them is that in the 5-cluster classification, the test No.11 is separated from the test 
No. 10 and assigned into an individual class, due to a lower stack top temperature. In fact, the 
data of these two tests describe the same information, that is, the degradation of the stack. 
Merely, the degradation of the stack in the Test No.11 is severer that in the Test No.10. 
Therefore, we only consider 4 clusters for this data set.  

For a 2-clusters classification, the solution coincides with that of the operating variables’ data 
(see Table 3-1). However, when the number of classes is increased to 4, each of these clusters 
is divided into two sub-clusters, respectively. The “rankfeatures” function was used to find 
out the significant variable for separating the sub-clusters No.2 and No.4 as well as the one 
for separating the sub-clusters No.1 and No.3. As a result, it turned out that the stack top 
temperature and the ASR are the significant features.  
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Table 3-2 The solution of classifications on the response variables’ data 

   

The result of the 4-cluster classification reveals that the degradation in the stacks HP060031, 
HP060045 and HP080025 had been accelerated, as explained in the paragraphs below. The 
information described by the third data set (including 3 variables: the operation time, the 
number of redox cycles and the number of thermal cycles) is helpful for explaining these 
incidents:   

• Firstly, as has been concluded from the result of classification on the operating 
parameters, there are two significant operating conditions in which the stacks were tested. 
This result is correspondent with the solution of the clustering on the response variables’ 
data to which the 2-cluster classification separates the tests No.1-No.11 from the rest of 
the tests (see Table 3-2). The feature ranking shows that the stack bottom temperature’s 
data has a dominant effect on this classification. This implies that that the stack bottom 
temperature can reflect the variation in the CPO air flow rate (its data decided the 
solution of the classification for the operating conditions).  

• Secondly, according to the third data set (information on stack operation experience), a 
thermal cycle had taken place in the stack HP060031 (test No.5-7) after 2354 hours of 
stationary operation. This event must have provoked significant stack degradation which 
resulted in an important temperature gradient inside the stack, because the stack top-
temperature decreased from 933°C to 821°C in the following polarization test, whereas 
the bottom-temperature remained at the same value. In the stack HP060045, the stack 
top temperature also has a significant decrease in the tests No.10-11. We attribute it to 
the accelerated aging phenomenon of the fuel cell, because when this event happened, 

Stacks test

T stack 

bottom

(°C) 

T stack 

Top

(°C)  

T CPO 

out

(°C) 

T CPO 

in

(°C) 

ASR 

(mΩ/cm2)

OCV 

(mV)

Operation 

time   

(hours)

Redox 

cycles

Thermal 

cycles 

4 

clusters

3 

clusters

2 

clusters

5 

clusters

1 949,33 962,62 730,77 761,05 59,17 4800,26 49 0 0 2 2 2 2

2 949,48 961,29 722,69 761,17 69,75 4875,03 2354 0 1 2 2 2 2

3 949,51 959,93 724,08 760,85 72,29 4844,81 4865 0 1 2 2 2 2

4 948,44 959,90 732,87 760,43 77,55 4887,23 5471 0 1 2 2 2 2

5 949,30 953,28 727,86 770,67 57,82 4690,39 49 0 0 2 2 2 2

6 949,53 933,78 726,39 780,71 72,10 4767,30 2354 0 1 2 2 2 2

7 949,61 851,47 721,93 780,13 72,97 4705,95 3690 0 1 4 2 2 4

8 949,26 956,31 722,42 730,55 55,04 4837,18 39 0 0 2 2 2 2

9 949,67 922,68 702,25 730,62 65,48 4942,47 3297 0 0 2 2 2 2

10 949,70 830,05 701,40 740,55 76,89 4914,70 6065 0 0 4 2 2 4

11 949,36 818,05 707,88 741,85 90,60 4921,11 6998 0 0 4 2 2 5

12 849,26 857,51 720,05 774,88 92,53 4807,58 41 0 0 1 1 1 1

13 849,44 858,11 720,45 763,36 87,62 4833,83 612 0 0 1 1 1 1

14 849,28 858,20 719,54 760,51 86,40 4837,18 689 1 0 1 1 1 1

15 849,47 858,40 720,76 761,88 88,08 4826,50 828 1 0 1 1 1 1

16 849,46 858,45 719,68 761,04 85,98 4845,42 877 2 0 1 1 1 1

17 849,41 858,61 719,13 754,76 87,44 4828,64 952 2 0 1 1 1 1

18 849,38 858,58 719,54 754,26 89,59 4820,40 976 3 0 1 1 1 1

19 849,42 858,51 720,11 758,81 90,52 4835,35 1000 4 0 1 1 1 1

20 849,39 858,51 719,99 761,65 90,90 4858,24 1024 5 0 1 1 1 1

21 849,48 858,74 719,97 758,62 93,57 4848,17 1048 6 0 1 1 1 1

22 849,37 858,88 719,84 758,34 97,62 4841,15 1121 7 0 1 1 1 1

23 849,35 858,97 719,48 756,23 99,86 4843,29 1145 8 0 1 1 1 1

24 849,32 859,02 719,65 758,63 102,18 4853,36 1169 9 0 1 1 1 1

25 849,41 858,50 720,28 770,06 138,02 4891,20 1211 11 1 1 1 1 1

26 850,59 859,12 722,37 776,47 226,77 4867,09 1283 11 1 3 3 1 3

27 850,35 859,18 721,04 770,97 167,86 4877,77 1313 12 1 3 3 1 3

28 850,17 858,74 721,08 772,05 195,72 4865,87 1337 13 1 3 3 1 3

29 850,20 858,88 720,25 769,12 216,13 4862,82 1362 14 1 3 3 1 3

30 850,40 858,94 719,62 775,35 216,88 4899,75 1381 14 1 3 3 1 3

HP080025

MEASURED PARAMETER EXTRACTED Stack Operation Experience

HP060030

HP060031

HP060045

CLASSIFICATION RESULTS
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the stack had been continuously operated for 6000 hours. The fact that the response 
variables’ data in the test No.7, 10 and 11 were assigned into a single cluster (Class-4) 
implies that the studied variables are indicative to the state of health of the stack. We 
label this cluster “Severely degraded in OC2”.  

• The data measured on the stack HP080025 are divided into two individual clusters. This 
stack passed firstly 11 redox cycles during which its degradation rate was not influenced. 
However, it started to quickly degrade when a thermal cycle happened after 1211 hours 
of stationary operation. This event is indicated by the sharp increase of the ASR value 
after the occurrence of the thermal cycle. The classification procedure has captured the 
variation of the ASR value. As a result, the data in the tests No. 26-30 were assigned into 
another independent cluster (Class 3), being distinguished from those for the previous 
tests. We labelled this cluster “Severely degraded in OC1”. However, differing from the 
accelerated degradation happened in OC2, this degradation acceleration can be only 
reflected by the ASR value.  

In fact, the ASR is a very useful indicator capable of reflecting the fuel cell degradation. 
According to its values, all the first three stacks were actually degraded during the 
operation. However, the k-means algorithm had only found out the degradation in the 
stack HP060031 and in the stack HP060045, while the degradation in the first stack was 
not diagnosed. This can be attributed to the difference of the degradation mechanisms 
for these stacks. Since the significant temperature gradient was present in both the stacks 
HP060031 and HP060045, they might suffer from mechanical damage such as 
delamination between cell components. In contrast, the stack HP060030 did not have 
significant temperature gradient; its degradation may be relative to other mechanisms.    

• Finally, the data observed in the tests where the stacks were in the good state (Test 12-25 
and Test 1-6, 8-9) are correctly assigned into the other two clusters which indicate the 
normal operation in “OC1” and “OC2”, respectively. 

 

III.4.4. Analysis of the silhouettes of the classified data 

As introduced in the sub-section III.2.4, the silhouette of a datum measures how close it is to 
the assigned cluster’s centre and how dispersed it is to the neighbouring cluster’s centre. This 
parameter can give us insight into the performance of the clustering.  

Figure 3-10 illustrates the mean of silhouette value for the classified response observations in 
each polarization test. The 4 colours indicate the 4 labelled classes, respectively. According to 
these silhouette values, we can conclude that the 1st stack (HP060030) remained in good state 
of health throughout the experiment whereas the other 3 stacks were severely degraded during 
the experiments.  
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Figure 3-10 The silhouettes of the response variables’ data classified into 4 clusters  

For the stack HP060031, its silhouette value for the class “Normal operation in OC2” shows a 
decline of 20% in the second polarization test, which indicates the state of the stack is less 
well correspondent to the normal state. It implies a considerable degradation having occurred 
in the stack, due to the occurrence of a thermal cycle. Then, after continuing to operate for 
another 1200 hours, the stack’s degradation became more and more severe. The same 
analytical result can be yielded according to the silhouette value (up to 0.83) of the Test-7 for 
a different class, which implies the significant disagreement between the observations in this 
polarization test and those of the former two tests (Test-5 & 6).  

For the stack HP060045, the degradation is mainly attributed to the aging mechanism. During 
the first 3000 hours of operation, the silhouette values of the first two polarization tests (Test-
8 & 9) are quite close, which indicates that the state of health of the stack was stable in the 
earlier operating period, just like the class label describes. However, severe degradation of the 
stack appeared in the terminal phase of the operation (after 6000 hours). That is the reason 
why the observations of the polarization tests (Test-10 & 11) in this period are separated into 
the class of “stack degradation”.   

For the stack HP080025, its degradation is mainly attributed to the thermal cycling that 
accidently took place after 1200 hours of continuous operation. Before this incident, the 
stack’s state of health was reasonably stable and showed insusceptible to the redox cycling, 
because the silhouette values for the tests carried out during this period are nearly identical. 
However, after the advent of a thermal cycle, the silhouette value (for Test-25) decreases 
about 40%. The data of the sequential tests (Test-26 to 30) are assigned into another class, 
indicating that the stack had been severely degraded. Among these tests, the silhouette value 
of the Test 27 is 40% less than those of the other tests due to its much lower ASR value. It 
proves the dominant effect of ASR on this classification solution. In addition, even through 
the observation in Test-25 is assigned to the class “Normal operation in OC2”, its relatively 
low silhouette value implies that the state of health of the stack had started to change. In this 
case, the silhouette variable shows potential as a prognostic indicator.     

HP060030 HP060031 HP060045 HP080025

Normal in OC2 Severely degraded in OC2 Normal in OC1 Severely degraded in OC1



Chapter III: K-means clustering algorithm for SOFC off-line diagnosis 

76 

 

III.5. Conclusion 

In this chapter, an algorithm is proposed to implement SOFC system off-line diagnosis. This 
algorithm is based on the k-means clustering technique serving for hard-classification on the 
stacks’ response data. The application of feature ranking technique is exploited to analyse the 
classification result and find out the significant response variables indicative to the state of 
health of SOFC stack in different operating conditions. The parameter “average silhouette” is 
computed to assert the classification quality and determine the natural number of clusters 
within the studied datasets. The silhouette for the data of each polarization test is also studied. 

The algorithm is validated by using the data of polarization tests from the RealSOFC project. 
This dataset involves 4 patterns, defined as follow (see Table 3-3): 

Table 3-3 The patterns within the dataset for validation 

Pattern 1 Pattern 2 Pattern 3 Pattern 4 

Operating 

condition OC 2 OC1 OC1 OC2 

State of health 

of the stack  
Normal Normal Severe 

Degraded 
Severe 

Degraded 

 

Based on the classification result, we conclude that the thermal cycling is very harmful to the 
health of SOFC. Only one thermal cycle is able to provoke significant acceleration to SOFC 
stack degradation. In contrast, the investigated stacks seem insusceptible to the redox cycling. 
Moreover, in one of the studied operating conditions, the difference between the stack’s top 
and bottom temperatures is found being able to indicate the degradation of the stacks. This 
implies that the profile of the stack internal temperature is quite relevant with the observed 
degradations. Finally, it is found that the silhouette value of the datum to their assigned class 
has potential ability to demonstrate the degrees of the stack degradation, which is useful in the 
fuel cell prognostic application.  
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Chapter IV Wavelet transform based algorithm for 

SOFC system online diagnosis  

 

 

 

In this chapter, another diagnosis method based on wavelet-transform signal analysis is 
introduced. The wavelet transform technique has been employed and greatly developed in the 
field of mechanical system diagnosis [Paya'97, Peng'04, Bartelmus'09] . Here, we use it to 
realize online detection of the BoP fault and the failure inside the SOFC stack/cells. 

For a FC stack operated in galvanostatic mode, it is considered that its voltage signal involves 
rich information regarding the operating condition and the state health of the cells. However, 
such significant information is often not readily available in the raw temporal signals. To 
address this problem, the signals should be transformed to another representation so that the 
desired information could become more noticeable and easy to extract. 

In our case, since the occurrence of the fault may affect the stationarity of the system process, 
the wavelet transform technique pointing to non-stationary signal analysis was selected as the 
basic method for the signal treatment.  

It is noteworthy that the signal processing cannot solve the diagnosis problem but is the first 
phase in the whole process of diagnosis. The wavelet transform contributes to representing the 
signals in another manner such that effective and sensitive fault indicators could be easily 
discovered and extracted from the new representation of the signal.  

Steiner et al. (2011) [Steiner'11a] had successfully used the wavelet transform to decompose 
signals in order to find out effective fault features for the state of health of PEMFC stack. 
However, the application of this method for the SOFC and system diagnosis has not been 
exploited. Hence, the emphasis of this chapter focuses on studying how to use the wavelet 
transform to implement SOFC system diagnosis. The determination, extraction and validation 
of SOFC system’s fault indicators are presented following an introduction to the wavelet 
transform technique. 
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IV.1. Introduction to wavelet transform 

IV.1.1. Basic principles 

Wavelet Transform (WT) belongs to the multi-resolution analysis method class. It is similar 
to the Short Time Fourier Transform (STFT), implemented by means of multiplying the 
signal with a window function. These methods aim at mapping a signal into a two-
dimensional function of time and frequency. They can extract, from a temporal signal, the 
information about both when and at what frequencies a single event occurs.  

The difference between STFT and WT mainly lies in their windowing technique. In STFT, 
the window function is invariable, keeping the same window for all frequencies [Polikar'96a]. 
In WT, however, the window function can be varied based on a “mother wavelet” function, 
denoted by “Ψ”. Owing to this feature, the wavelet analysis allows the use of long-term 
intervals where we want more precise low-frequency information, and shorter regions where 
we want high frequency information [Misiti'09].  

The term “wavelet” means a small wave. The smallness refers to the condition where the 
function is of finite length. The wave refers to the condition where this function is oscillatory 
[Polikar'96b]. The term “mother” implies that the wavelet is the basic waveform for the other 
wavelets derived from this mother wavelet function. 

The continuous WT is defined by: 

f(7, b) = 〈a, Ψi,j〉 = 1√b m a(n). o∗ qn − 7b r n 

where f(t) is the original signal and C(u,s) denotes the transformed signal;  u and s denote 
respectively the translation and scale parameters.  

The translation parameter is related to the location of the window, as the window is shifted 
along the time axis of the raw signal. It corresponds to time information in the transform 
domain. The scale parameter is proportional to 1/frequency. Similar to the scale used in maps, 
high scales (low frequency) correspond to a non-detailed global view of the signal. It is 
related to the frequency of the wavelet and low scales (high frequency) correspond to a 
detailed view. The variation of the scale results in a scaling action (either dilate or compress) 
on the mother wavelet, which will yield a set of window functions (wavelets). Larger scales 
correspond to dilated (or stretched out) mother wavelet and small scales correspond to 
compressed mother wavelet.  

For a pair of (u,s), C(u,s), also known as wavelet coefficient, measures the similarity between 
the corresponding wavelet and the windowed section of the signal. The higher its value is, the 
more similar they are. Once the mother wavelet is chosen, the computation starts with s=1 and 
continues for the increasing values of s. In other words, the continuous WT starts from high 
frequencies and proceed towards low frequencies.  

After having selected the mother wavelet, a continuous WT can be completed by repeatedly 
performing the following steps: 

Eq. 4-1 
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1. Place the wavelet at the beginning of the signal at the point which corresponds to time 
t=0 (see Figure 4-1-a). The wavelet function at s=1 is multiplied by the signal and then 
integrated over all times. The result of integration is then multiplied by the constant 
number 1/√s for energy normalisation purpose. The final result is the value of the 
transformation at time u=0 and scale s=1. 

2. The wavelet at scale s=1 is shifted towards the right until the location u=u1 (see Figure 
4-1-b); compute C(u1,1) with Eq. 4-1. This procedure is repeated until the wavelet 
reaches the end of the signal. As a result, a vector of wavelet coefficients for the scale 
s=1 will be obtained. 

3. Then, s is increased by a small value to get a new scale value s1, which results in a 
stretched-out wavelet (see Figure 4-1-c). Repeat the Step 2 to obtain another vector of 
wavelet coefficients.  

4. Step 3 is repeated for every value of s.  

When the process is completed for all desired values of s, the continuous WT of the signal has 
been completed.   

 

Figure 4-1 The translation and the scaling of the wavelet [Misiti'09]. 

 

IV.1.2. Discrete wavelet transform 

Calculating wavelet coefficients at every possible scale and position leads to a great amount 
of work and generates a huge amount of data, which is not always necessary. In order to make 
the analysis much more efficient and just as accurate, the scales and positions can be chosen 
based on powers of two—the so-called dyadic scales and positions, defined as: 

7 = F. 28, b = 28, Jstu, F = 1, 2, … , t28 

where N is the length of the digital signal. In this case, the transformed signal is a function of j 
and k. This transformation belongs to discrete wavelet transform, in which the time parameter 
is discretized with respect to the scale parameter in a variant sampling rate [Polikar'96c].  

For j = 1, discrete WT is equivalent to a practical filtering algorithm. As illustrated in Figure 
4-2, the digital signal (S) in length of N is inputted into a low-pass and a high-pass filter, 
respectively. The output signals are then downsampled (one point out of two is sampled), 
producing two subsignals. The one obtained from the low-pass filter is the approximation of 
the original signal and the one from the high-pass filter is known as the detail of the signal. 

(a) (b) (c)

Eq. 4-2 
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The approximation subsignal corresponds to the low frequency (or high scale) band of the 
original signal while the detail subsignal corresponds to the high frequency (or low-scale) 
band.  

For j > 1, the discrete WT can be implemented by simply iterating the above decomposition 
process, with successive approximations being decomposed in turn (as in Figure 4-3), so that 
the signal is broken down into many lower resolution components. After each level of 
decomposition, the sampling frequency is reduced by half. Note that the discrete WT can 
consist of log2(N) stages at most. In other words, the decomposition levels allowed for a 
signal equals to the number of iterations that the signal length N could be divided by 2 
repeatedly.  

 

Figure 4-2 Schematic diagram of one-stage filtering [Misiti'09]  

 

 

Figure 4-3 Discrete wavelet decomposition tree  

S
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…
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Figure 4-4 Wavelet packet decomposition tree for a digital signal sampled in frequency fs 

[Misiti'09]  

 

IV.1.3. Wavelet packet transform 

As the WT decomposes only the approximation signals, some problems may be encountered 
in applications if the important information is located in higher frequency domain 
[Steiner'11a]. To solve this problem, a solution is to use Wavelet Packet (WP) transform 
which decomposes not only the approximation subsignals but also the detail ones (as shown 
in Figure 4-4). This transformation leads to a large number of detail signals over a ser of 
frequency bands divided equally and being narrower than those in the discrete wavelet 
transform.  

 

IV.2. Discussions 

The WT is just a method for signal decomposition. It cannot solve the diagnosis problems. In 
diagnosis application, the objective of signal decomposition is to enable the analysis of the 
signal over different frequency bands so as to find out the significant signal components or 
features relevant to the identification of the fault.  

Before ploughing into the fault diagnosis by using WT, it is necessary to consider some 
questions concerning which type of signals (steady or transient) to analyse, what kind of 
indicators to extract (wavelet coefficient-based, singularity-based or wavelet energy-based) 
and which method (discrete WT or WP transform) to use for signal transformation. These 
questions contribute to a deep view into the application of the WT based diagnosis method. 
Answering them beforehand could help us have a clear train of thought and a specific goal in 
the discovery of effective fault indicators. In the following paragraphs, discussions on these 3 
questions will be given. The reasons justifying the answer to each of them will be clarified.  

 

IV.2.1. About the selection of signals to analyze 
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The WT can be used to treat both steady-state and transient signals. According to the design 
of the diagnostic strategy in this work, the action of fault detection aims at capturing the 
happened fault, by means of comparing the stack’s post-fault response with the afore-fault or 
reference one so as to determine the occurrence of the fault.  

In practice, a FC system fault such as gas leakage may lead to a continuous decline of the FC 
voltage until the fault is found out and corrected. In laboratory experiments, however, this 
kind of faults is usually emulated by artificially changing the FC operating condition to a 
specific one. Thus, for a laboratory research, the investigated fault is actually referring to a 
faulty operating mode/condition applied on the FC stack rather than a faulty action. 
Accordingly, it is reasonable to select FCs’ steady signals under different operating conditions 
as the investigated object. Comparing with transient signals, they can more exactly represent 
the state of stack at a certain operating point.  

In addition, due to the safe operation design integrated in the system control, a contrived 
variation on an operating parameter may lead to the change of other operating parameters 
settable by the automatic control system, aiming to restrict FC stack to operate in safe range 
so as to avoid serious stack failure and accidental system shut-downs. For instance, a man-
made decrease at the input fuel flow rate may activate the control unit to automatically modify 
the current density in order to protect the stack from overload operation; a designed reduction 
of the input air flow rate may result in a reaction of the control unit to decrease the stack 
temperature. Due to such chain activities from the control system, the stack will pass a 
relatively long time before reaching steady state at the new operating point.  

The transient FC voltage signal obtained during this period presents the dynamic evolution of 
the FC operating condition. It reflects the integration of the effects caused by a series of 
modification on the operating parameters. In order to figure out the individual influence of a 
fault on the FC voltage signal, the pure effect caused by this fault of interest (ex: modification 
of fuel flow) upon the FC behavior must be separated from that originated from other factors 
(ex: current density modification). However, it is often difficult to implement by the study on 
the transient signal. By contrast, investigating the stationary signals could get round this 
difficulty, simplifying the problem to a comparative study, i.e. comparing the stack’s states 
before and after the advent of fault.  

In sum, the voltage signals to study in this work should be the ones obtained when the whole 
FC system restores its stationarity after an operating-condition-change manipulation.   

 

IV.2.2. About the property of the indicators 

In Chapter 2, three categories of WT-based indicator adopted for diagnosis purpose have been 
enumerated and introduced. The singularity based indicators, essentially relying upon the 
singularity points in the signals to implement fault indication, are generally obtained from 
non-stationary signals. Now that the steady-state signals have been determined as the only 
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investigated object in this work for indicator research, the singularity-based diagnosis method 
is not applicable in our case.  

As for the wavelet coefficients based method, it leads usually to a large volume of feature 
parameters. Since the wavelet coefficients are only a representational manner for a signal and 
carry no physical signification, the users usually have to use classification technique to 
analyze these parameters in order to achieve fault discrimination. This method requires users 
to empirically define relevant thresholds for the wavelet coefficients in order to separate the 
fault-free area. In our work, due to the lack of the expertise knowledge on the studied FC 
stack, it is very hard for us to correctly determine these thresholds. Hence, the wavelet 
coefficients based method is not applicable for our case, either.      

 

Figure 4-5 The decline of PEMFC stack voltage caused by experimental membrane flooding 
[Steiner'11a]  

The wavelet energy based indicator seems to be a potential selection. A successful example 
has been made by Steiner et al. (2011) [Steiner'11a] who used wavelet energy parameters to 
establish two feature vectors for detecting flooding phenomenon occurred in a PEMFC stack. 
Through performing clustering analysis, the indicative capability of these features was proven 
effective. It is noteworthy that in their investigation, there is only one fault (FC flooding) 
under study. It was artificially created inside a PEMFC stack operated in nominal condition. 
This fact implies that the features’ discriminative capability for distinguishing the good and 
the bad state of the stack is limited only to the case where the FC is operated in the 
rated/nominal condition. From their experiments, it was found that the decrease of the FC 
voltage linked to the FC flooding (emulated by increasing the inlet gases dew point 
temperature) was quasi-linear and proceeding in an oscillating manner as shown in Figure 4-5. 
In other words, the oscillation observed in the decreasing trend of the voltage signal is related 
directly to the flooding phenomenon. Based on this feature, Steiner and the co-workers put 
their efforts on the characterization of the oscillating behaviour present in the voltage signal’s 
trend component. Based on the WP transform, they extracted the approximation subsignal 
from the raw voltage signal for fault indication, because the former involves the oscillating 
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component of the signal. That is why at the end of this research paper, the feature extraction 
was only carried out on the approximation wavelet packet (i.e. the packet 7 declared in the 
article). The finally validated feature vectors consisted of the normalized wavelet energy 
values in this significant packet.  

Relatively being more complex in our case, however, the FC stack is operated continuously in 
different (normal and abnormal) operating conditions. This means that our fault indicators 
must permit to distinguish 3 basic cases of operation, i.e.  

1) The fault-free case: the whole FC system is operated properly; 

2) BoP fault: the FC stack is operated in an improper condition but the health of the stack 
is at the normal state. 

3) FC failure: one or several FCs in the stack has a serious degradation or has been 
broken so that the stack could neither be used as a sensor for system state diagnosis 
nor continue to work for power generation.  

In addition, in the experiments contributed to the GENIUS project, there are as many as 17 
operating points of interest (including the nominal one) having been tested. Taking into 
account the FC failure case, there are at least 18 modes of operation to consider. In this case, 
the oscillation present in the voltage trend signal is not likely to be discriminative enough for 
distinguishing all these operating modes.  

Furthermore, it has been determined that only steady-state signals are under investigation, 
which signifies that the analysed signals should be stable at a certain voltage value and thus 
their trend signal is much likely to be a smooth average line. In this situation, we must turn 
the focus from the approximation subsignal (the oscillating component of the signal) to the 
detail subsignals (the fluctuating part of the raw signal).   

The fluctuating behaviour of a detail subsignal at some frequency band can be synthetically 
described by its wavelet energy. Based on this parameter, every investigated mode of 
operation, being represented by a voltage signal of FC, could be characterized by the 
distribution of the wavelet energies over different frequency components of this signal. As 
long as the high-frequency fluctuations of the steady-state signals observed in the normal and 
the faulty cases are distinguishable, we could adopt them to indicate the state of health as well 
as the operating condition of the FC.  

Following this idea and based on the practical situation of this work, the wavelet energy 
present in the high-frequency components of the signals (i.e. detail subsignals obtained from 
WT) will be used for fault indicators establishment. 

 

IV.2.3. About the selection of the signal transform method 

Selecting the discrete WT or the WP transform as the signal processing method requires 
considering 3 factors: 
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1) The sampling rate of the available signals; 
2) The signals’ length; 
3) The computing time permissible for a complete transformation. 

The first factor limits the richness of the information that a signal contains. In the field of 
signal analysis, it is widely believed that the higher the sampling rate is, the more exactly and 
in detail the signal can describe the information. Because the physical and electrochemical 
processes inside the FC occur very fast, the major information on the FC behaviours should 
lie in high frequency bands. Unfortunately, in the available database of , the maximal 
sampling rate for the signal measurement is only 3 Hz (on FCLAB’s test bench) and even less 
(1Hz for the VTT system). With such a low sampling rate, the information available in the 
signal about FC stack behaviours is very limited. If the WP transform is used to process the 
signal, the detail component of the signal where the significant information locates will be 
decomposed as well, resulting in a set of refinedly separated detail subsignals (see Figure 4-4), 
that is, the “details of the detail” which are often not useful for the study of low-frequency 
sampled signals. From the point of view of information theory, the super-decomposition on 
the detail leads the similar information to being dispersed over more discrete frequency bands, 
making them less noticeable and even covered by interfering noises. As a result, the 
extraction of fault-relevant information will become very difficult. That is the reason why the 
WP transform method is not suitable for this work.  

As for the other two factors, i.e. the signal length and the computing time required for signal 
transformation, there is some relationship between them. For a steady signal, its length 
determines the redundancy of the digital representation (i.e. the signal) for the information. 
For our case where the signal data were collected at low sampling rate, the longer the signal is, 
the more information could be captured from the signal, and thereby the easier for us to learn 
about the symptoms of the state of the stack. 

Nevertheless, a long signal means a long extra time needed for accurate enough measurement 
of the symptoms, which leads to a considerable delay for the diagnosis. Fortunately, the 
selected discrete WT algorithm is very simple and can be implemented rapidly. In comparison 
with WP transform, discrete WT can economize at least 50% of computational time (refer to 
Figure 4-3 and Figure 4-4).  

 

IV.3. The diagnostic method 

Generally, the measured steady voltage signal of FC involves fluctuations (refer to the signal 
S in Figure 4-7). When FC is operated in normal conditions, these fluctuations are regarded as 
random noises that exist universally in electrical signal. Their presence is unavoidable and 
could be considered as a natural phenomenon. However, when the state of the FC system is 
abnormal, unwanted fluctuations will appear in the FC’s response signal, superposing directly 
on the afore-mentioned natural ones. These interfering fluctuations can lead to changes of the 
fluctuating energy distribution of the signal. So, as long as being able to recognize the 
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variation of the signal’s high-frequency fluctuations, the change of the state of system could 
be detected. 

Suppose that the frequency spectrum of the FC’s voltage signal appears as presented in Figure 
4-6-a in normal operating conditions and as presented in Figure 4-6-b in a faulty condition. 
Comparing them, we can find that the faulty condition has provoked shifting of the centre of 
the dominant high-frequency band from 50 Hz to 68Hz. If the sampling frequency for signal 
measurement is high enough (ex: 100Hz), the diagnosis problem could be solved according to 
the location of the dominant high-frequency component of the signal on the frequency axis. 
Nevertheless, in case where the sampling frequency is very low, for example 1 Hz in our case, 
the available spectrum of the voltage signal will be only restricted to the range of frequencies 
below 1Hz, excluding the significant frequency band relevant to the faulty condition.  

Zooming in the low-frequency area of these two spectra (see Figure 4-6-c and Figure 4-6-d), 
we can still observe the difference between them in the frequency band of [1/16, 1] Hz. 
Merely, it is not as obvious as that in the dominant frequency band. To utilize such 
unapparent difference to indicate the faulty condition, it must find an effective way to 
singularize this difference. 

The idea is to calculate the spectral energy for each frequency value and analyze the energy 
distribution over the whole frequency band of interest. As spectral energy equals to the square 
of amplitude, it permits to amplify the difference between the two studied spectra. 

 

Figure 4-6 An example of the different spectral distributions of signal in the normal and the 
faulty conditions; (a) the spectral of a signal for the normal condition; (b) the spectral of a 
signal for the normal condition; (c) and (d): the zooms for the low-frequency part of the 

spectrum in (a) and in (b).    
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Performing a 4-level discrete WT on a FC’s voltage signal sampled in 1Hz, the frequency 
band [1/16, 1] Hz will be dyadicly divided into 4 sequential bands, i.e. [1/2, 1] Hz, [1/4, 1/2] 
Hz, [1/8, 1/4] Hz and [1/16, 1/8] Hz. Under the normal condition, the spectral curve (see 
Figure 4-6-c) is smooth and thus the variation of the amount of energy lying in these bands 
should follow a decreasing order because the bandwidth becomes narrower and narrower. By 
contrast, the form of the spectral curve in the faulty condition (see Figure 4-6-d) reveals some 
differences, which may lead to the change in the energy distribution over these 4 frequency 
bands. Accordingly, the key to solve the fault detection problem lies in revealing and 
quantifying the energy distribution of the signal under study. 

In the field of WT, there are three kinds of parameters that could be applied to analyze the 
energy distribution of signals: relative wavelet energy, total wavelet entropy and relative 

wavelet entropy. In the diagnosis application, we can use them as feature variables to 
indicate the studied fault.    

 

IV.4. The indicative variables and their definitions 

According to the principle of discrete wavelet transform, it can dissect the steady signal into 
essential part and fluctuation. The fluctuating part is then stripped off and the essential part 
further dissected into even more essential parts and fluctuations on them, and so on, as shown 
in Figure 4-3. For n-levels decomposition, n approximation components and n detail 
components of the signal S (sampled in fs Hz) can be obtained during the transform. In WT 
field, each of these components is represented by a vector of wavelet coefficients, denoted by 
cAj (for the approximation component) or cDj (for the detail component) where j denotes the 
number of the transform level, and is related to a specific frequency band. The wavelet 
coefficients in cDj, calculated at the scale 2j and the position k.2j, are denoted by Cj

d(k).  

It is possible to remap these wavelet-coefficients described components back to the time-
domain space through inverse wavelet transform. As a result, a group of subsignals (denoted 
by aj or dj) of the original signal could be obtained.  

Figure 4-7 gives an example to illustrate the result of a 5-level discrete WT on a steady 
voltage signal composed of 2000 samples. The sampling time for measuring this signal is 1s. 
The curve a5 is the approximation subsignal obtained at the decomposition of the final level, 
relevant to the frequency band of 0-1/32 Hz. It is a smoother set of time series, consisting of 
the essential part of the raw signal and the lowest frequency oscillations. The following curves 
(d5 to d1) are the detail subsignals obtained at the decompositions of the 5 levels. They 
illustrate fluctuating behaviours of the analysed signal at higher frequency bands that have 
different widths and don’t interlap (d1→[1/2 , 1]Hz; d2→[1/4 , 1/2]Hz; d3→[1/8 , 1/4]Hz; 
d4→[1/16 , 1/8]Hz; d5→[1/32 , 1/16]Hz).  

In this subsection, three WT-based variables are introduced to characterize fluctuating 
behaviors of signal.  
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Figure 4-7 An example to show the results of a 5-level discrete WT on an SOFC’s voltage 
signal (the original signal: S) 

 

IV.4.1. Wavelet energy and its normalization 

In the time domain, the energy of a signal is the sum of the squares of its time-series values. 
Similarly, the energy of a subsignal obtained from discrete WT is the sum of squares of its 
wavelet coefficients. Therefore, in the field of WT, this energy is also known as wavelet 

energy.  

For a detail subsignal at level j, its energy, denoted by Ej
d , can be computed by  

28v = �Vf8v(F)V�
A 	

where d signs that the calculated energy is contained in a detail subsignal and j is the number 
of decomposition level. 

By summing up all energies of the detail subsignals, the value of the total energy of 
fluctuations in the studied raw signal is produced (as expressed in Eq. 4-4). Based on it, each 
of detail subsignals’ energy can then be normalized into the percentage form (denoted by pj

d 
in Eq. 4-5), called as relative wavelet energy.    
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2wxwv = � �Vf8v(F)V� = � 28v8A8  

�8v = 28v2wxwv  

The wavelet energy of a detail subsignal measures the strength of fluctuation of the original 
signal at the relevant frequency band. Normalizing it to the relative wavelet energy is 
favorable to study the signal’s energy distribution over discrete frequency bands. 

 

IV.4.2. Total wavelet entropy 

The Total Wavelet entroPy (TWP), denoted by SWT, originates from the Shannon entropy 
theory that applies the notion of entropy to measure the amount of information contained in a 
signal. In this work, we use it to measure the degree of order/disorder of the energy 
distribution in the fluctuation components of the studied signals [Rosso'01]. The TWP is a 
function of relative wavelet energies, defined as 

yz{ = − � �8v ∗ ln	(�8v)8 . 
A small value of TWP indicates that the energy distribution is in a high degree of regularity. 

 

IV.4.3. Relative wavelet entropy 

The Relative Wavelet entroPy (RWP) measures the degree of similarity of the energy 
distribution between in two different signals. It is expressed as the summation of wavelet 
coefficients within a selected frequency range over the time [Emre Cek'10], formulated by  

yz{(�|�) = � �8v ∗ ln(�8v�8v)8  

where qj
d denotes the relative energy of the j-th level detail subsignal of a reference signal. In 

this work, the voltage signal measured in the nominal condition is taken as the reference 
signal. The RWP is positive and vanishes when {pj

d }≡{qj
d}. 

 

IV.5. Application 

IV.5.1. Prepare the signals to study  

Four groups of SOFC cell voltage signals are prepared for indicators validation.  

Eq. 4-4 

Eq. 4-5 

Eq. 4-6 

Eq. 4-7 
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1) The first group of signals are picked up from the 1st round test on the VTT system. 
They are all measured at the steady state. Each of them corresponds to an operating 
condition. Throughout this test, there is no severe degradation observed in the cells. 
The signals are used for the validation of the WT-based parameters’ indicative 
capability to the FCs’ operational condition in the case where the stack is fuelled with 
pure hydrogen. 

2) The second group of signals are from the 2nd round test on the VTT system. At the 
beginning of this experiment, one of the cells (the Cell 3) in the stack was accidentally 
broken. This event provoked an unknown effect upon the performance of its adjacent 
cell—the Cell 4. The polarization curves shown in Figure 4-8 demonstrate this 
undefined effect. Except this, however, neither the proceeding of the experiment nor 
the performance of other cells was influenced by this incident. Therefore, the second 
group includes only the voltage signals of the good-state cells (the Cell 1, 2, 5 and 6). 
They also serve to assess the performance of the indicators in terms of distinguishing 
the normal/tolerant operating conditions from the harmless ones for the SOFCs that 
are operated with reformed natural gas. 

 

Figure 4-8 The polarization curves of the good-state cells measured in the 5 repetitions of 
nominal operating condition  

3) The voltage signals of the broken cell and one of the good-state cells (the Cell 1) in the 
2nd round test on the VTT system are gathered in the third group. They serve to 
evaluate the indicators’ ability of recognizing the state of health of the FC under 
various operating conditions. For simplicity, we consider only two states of health for 
the SOFCs: “good” or “broken”. 

4) The fourth group involves the voltage signals measured at different time on a cell in 
the 3-cell SOFC stack stationarily operated on the FCLAB’s test bench. This cell had 
progressively degraded in the proceeding of the test. They are used to see whether the 
indicator is able to reflect the degrading process of the cell.             

On the VTT’s test bench, the sampling frequency for signal measurement is 1Hz; on the 
FCLAB’s test bench, it is 3Hz. For the signals from the 1st round test on the VTT test bench, 
each of them consists of 2000 time-series samples while for the signals from the 2nd round 
experiment, the length of signals is reduced to 1200. This design aims to see if the fault 
symptom could be captured by a shorter signal measurement. The shorter the analyzed signal, 
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in the lower delay could the diagnosis start after a fault takes place. As for the signals from 
the FCLAB’s test bench, since their sampling frequency is relatively higher, they should 
theoretically contain more detailed information on the state of health of the stack (because this 
information usually locates in high frequency band). Thus, the length of these signals could be 
further reduced. Their length is fixed to 800.        

 

IV.5.2. Implementation of signal decomposition 

The analysis on each signal starts with a 5-level discrete WT which is automatically 
implemented by using the “dwt” function under Matlab. The selected mother wavelet is the 
Daubechies 4 (or ‘db4’) [Daubechies'92], as shown in Figure 4-9. The ‘db4’ WT can 
redistribute the energy of a signal and compress most of energy in the final obtained 
approximation subsignal [Walker'08]. After performing the ‘db4’ WT on each signal, we can 
obtain a series of detail subsignals which are represented by a vector of wavelet coefficients, 
respectively. Each of them contains an amount of energy. It is from these detail subsignals 
that the parameters described in Section IV.4 are extracted. 

 

Figure 4-9 Daubechies-4 wavelet 

To examine the performance of the indicative variables, the essential work is to confirm if the 
wavelet energy distribution in the fluctuating components of a cell voltage signal is capable of 
indicating the operating condition and the state of health of the FC. 

 

IV.5.3.  Results  

IV.5.3.1. For the 1
st
 group signals  

In the experiments carried out on the VTT system, the stack was operated continuously in 17 
operating conditions (the nominal one is denoted by C0; the bias ones are denoted by C + the 
experiment number declared in Table 2-1) through modifying the inputs of the FC stack. The 
test started in the nominal condition and then repeatedly returned to this operating point after 
having operated in every 4 bias conditions. In order to provide a direct view to the SOFC’s 
operating state in these conditions, we joined together the stack’s steady voltage signals 
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measured in every operating condition and represented them on the same axes in the real 
experimental order, as shown in Figure 4-10.  

 

Figure 4-10 Stationary signals of the stack voltage in 20 tests (from VTT 1st test round data) 

 

a. The Relative Wavelet Entropy (RWE) values: 

Figure 4-11 gives the calculated RWE values of the detail subsignals of the cells for different 
operating conditions. Analyzing the diagrams of the last row, we can find that the variation of 
the energy in the detail subsignal obtained at each level of decomposition follows a 
progressively descending trend when the stack is operated in the nominal condition. In other 
words, with the proceeding of the wavelet transformation level after level, the filtered-out 
detail/fluctuation component of the signal contains less and less energy. According to the 
RWE value, nearly a half (50%) of fluctuation energy is contained in the 1st level detail 
subsignal which is related to the frequency interval of [0.5, 1] Hz.  

However, in several bias operating conditions such as C4, C10, C11 and C12, this frequency 
band is not in dominant place. Instead, the fractions of energy lying in the different frequency 
bands (that is, in the subsignals of different levels) are very close to each other. Here we 
transform the operating parameters’ numerical values corresponding to these 4 conditions into 
qualitative values (see Table 4-1) for generalization. This gives prominence to the innate 
character of the studied conditions. 

C0-1 C1 C2 C4 C3 C0-2 C7 C8 C6 C5 C9 C12 C11C10C0-3 C15 C16 C14 C13C0-4 C0-5

Ustack (mV)
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Figure 4-11 The RWE values of the detail components in the cells’ voltage signals associated 
to different operating conditions 

Table 4-1 The undesired operating conditions 

Condition  Tf J FU AU 

4 LOW LOW HIGH HIGH 

12 HIGH LOW HIGH HIGH 

10 HIGH LOW LOW HIGH 

11 HIGH LOW HIGH LOW 

 

Based on our expertise on SOFC degradation mechanisms, the variable FU is considered to be 
strongly linked with FC degradation. At high FU, the partial pressure of fuel can locally be 
close to zero due to the dilution of reaction product. In such case of local fuel depletion and 
high water vapour concentration, the fuel atmosphere is no longer reductive, leading to a local 
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reoxidation of the nickel anode. Moreover, this phenomenon can easily occur in low-loading 
situations where the fuel flow is kept at a low level to meet the requirement of constant fuel 
utilisation. Accordingly, C4 and C12 can be viewed as critical operating conditions which are 
harmful to the health of SOFC.  

In addition, C10 and C11 represent commonly a high-temperature situation, especially in C11 
where both Tf and FU are at their high level, which risks of accelerating the degradation of FC. 
In C10, the air utilization is high and the current density is low, which implies that the air 
flow rate is at a very low level. This condition is harmful for the stack in a large-scale system 
where the air flow should be kept at a relatively higher level than needed in order to remove 
the produced heat in the stack. Therefore, both of these two conditions are undesired. 

 

b. The Total Wavelet entroPy (TWP) values:  

Figure 4-12 demonstrates the evolution of the TWP values of the cell voltage signals along 
the shifting of the operating condition. The last 4 points at the end of each curve correspond to 
the TWP values in the 4 repetitions of experiments in the nominal condition. Among, the 
maximal one determines the height of the dash lines. It is easy to observe that for every cell, 
the TWP point at the harmful conditions (C4, C10, C12 and C11) goes beyond its criterion 
line.  

 

Figure 4-12 The TWP values in the bias and the nominal operating conditions for every cell  
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In addition, the value of TWP at C2 is also higher than the value obtained in the nominal 
condition. C2’s qualitative description (see Table 4-2) implies that this condition may be 
related to the part-loading state of the system. Although this has no negative effect upon the 
FC, from the efficiency point of view, this operating condition is still undesirable for a power 
system. However, this aspect is out of the scope of our research.    

Table 4-2 The operating parameters for C2 

Condition  Tf J FU AU 

2 LOW LOW LOW HIGH 

 

 

c. The Relative Wavelet entroPy (RWP) values:  

Figure 4-13 illustrates the varying process of the RWP values of the voltage signals with the 
shifting of the operating condition. These plots demonstrate that RWP is able to make 
prominent the critical operating conditions (i.e. C4 and C12).  

 

Figure 4-13 The RWP values of the voltage signals measured in the16 bias operating 
conditions for every cell  
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IV.5.3.2. For the 2
nd

 group signals 

The stack tested in the 2nd round experiment on the VTT’s test bench experienced 16 bias 
operating points, plus the nominal one. The operating parameters’ numerical values 
corresponding to these points are listed in Table 4-3 following the order of tests. Their 
qualitative values are the same as those considered in the 1st round experiment. So, we could 
pre-determine C4, C12, C10 and C11 to be undesired operating conditions beforehand. Then, 
we analyze the values of the indicative parameters extracted from the signals of this group in 
order to see if these parameters are able to reveal the abnormal operations on the FCs.     

Table 4-3 Operating conditions for the 2nd test round in VTT (listed in the real condition 
shifting order) 

Operating 

condition 
Tf [°C] J [A/cm2] FU AU 

C0-1 760 0.3 0.5 0.235 
C10 790 0.2 0.4 0.300 
C6 730 0.4 0.4 0.300 
C4 730 0.2 0.6 0.300 

C16 790 0.4 0.6 0.300 
C0-2 760 0.3 0.5 0.235 
C1 730 0.2 0.4 0.170 

C13 790 0.4 0.4 0.170 
C7 730 0.4 0.6 0.170 

C11 790 0.2 0.6 0.170 
C0-3 760 0.3 0.5 0.235 
C9 790 0.2 0.4 0.170 
C2 730 0.2 0.4 0.300 
C8 730 0.4 0.6 0.300 

C15 790 0.4 0.6 0.170 
C0-4 760 0.3 0.5 0.235 
C12 790 0.2 0.6 0.300 
C3 730 0.2 0.6 0.170 
C5 730 0.4 0.4 0.170 

C14 790 0.4 0.4 0.300 
C0-5 760 0.3 0.5 0.235 

 

 

a. The RWE values 

According to the RWE values shown in Figure 4-14, we can see that the distribution of the 
wavelet energy in the voltage signals of the mixture gases-fuelled SOFC cells also follows a 
regularly decreasing rule when the stack is operated in the nominal condition. By comparison, 
we can pick up 5 bias operating conditions in which the cell signals’ RWE distribution looks 
abnormal. They are the pre-determined undesired/critical operating conditions (C4, C12, C10 
and C11) and C1. The later is meant to a part loading condition of system (refer to the values 
of the operating parameters given in Table 4-4). Since only short stacks are studied in this 
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research, we put the emphasis onto the recognition of the critical operating conditions, that is, 
C4 and C12.  

Table 4-4 The qualitative value of the operating parameters in C1 

Condition  Tf J FU AU 

1 LOW LOW LOW LOW 

 

Figure 4-14 The RWE values of the good-state cells’ signals (c1, c2, c5 and c6) under 
different operating conditions 
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this line are different. Especially for the Cell 6 where the majority of the TWP values are 
higher than this threshold, it is unreasonable to say that the operating conditions relevant to 
these values are all unsuitable for this cell. Hence, we conclude that the TWP is not 
representative and indicative to the abnormal operating condition of the SOFC stack tested in 
the 2nd round test where emulated reformed natural gas was provided as the fuel.   

 

Figure 4-15 The TWP values for the good state cells under different operating conditions 

 

c. The RWP values 

For the 1st group signals, we have seen that RWP is a perfect indicator to the critical operating 
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5th detail subsignal of the Cell 1 is unreasonably higher than those of the other cells, which 
decreases the RWE of the detail subsignals of the 1st and the 2nd level. This phenomenon can 
also be found in the signals of Cell 1 and Cell 2 when operated in C5. Accordingly, it is 
necessary to re-compute the RWP for each signal by only considering the details of the first 3 
levels.  

Figure 4-17 illustrates the optimized RWP values. This time, the RWP effectively 
differentiates the critical conditions C4, C1, C11 and C12 from other moderate bias operating 
conditions. However, it is not capable of indicating the C10 (which has been pre-determined 
as one of the critical operating conditions). 

 

Figure 4-16 The RWPs in the 16 bias 
conditions (5 details) 

 

Figure 4-17 The RWPs in the 16 bias 
conditions (3 details) 
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Figure 4-18 The polarization curves of Cell 3 in the 5 repetitions of the nominal condition 

 

Figure 4-19 The polarization curves of the Cell 3 measured when the operating condition 
(load current excluded) was set at each of the bias operating points  
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we can see that the slope of the polarization curve in C11 is much smaller (about 25 mΩ) than 
those in other conditions (which are above 200 mΩ), implying that the cell is partly recovered. 
In addition, after C11, the cell’s performance had been staying in a recovered state in C9 and 
C2 until the operating condition was shifted to other points. However, the reason to explain 
such a temporal recovery is unknown. 
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The Cell 3’s voltage signals in the investigated operating conditions are sequentially shown in 
Figure 4-20. Their RWE, TWP and RWP values are given and analyzed in the following 
paragraphs. 

 

Figure 4-20 The voltage signals of the Cell 3 in the different operating conditions 

 

Figure 4-21 Distribution of wavelet energies in the Cell 3’s voltage signals for the different 
operating conditions 
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to the RWE values. To solve this problem, we can calculate the TWP value of the signals in 
order to quantitatively analyze the wavelet energy’s distributions.    

 

b. The TWP values 

Figure 4-22 gives the TWP values of Cell 3’s signals. For comparison, the TWP points of the 
Cell 1’s signals are plotted in the same axes as well. The horizontal dash-dot line indicates the 
TWP value of the cell 3’ signal when it was in a good state and operated in the nominal 
condition (C0-1). We can see that, except for C10, all of the TWP points of the Cell 3 for the 
other bias conditions locate above this reference line. In addition, they are higher than the 
TWP points of the good-state cell, i.e. the Cell 1, except for C11 where the health of Cell 3 
was partially recovered. Nonetheless, it is still hard to quantitatively differentiate the system 
fault, that is, the improper operation from the cell failure by TWP.  

 

Figure 4-22 The TWPs for the degraded cell (Cell 3) and the good-state cell (Cell 1) in the 
different operating conditions (5 details) 

 

c. The RWP values 

In Figure 4-23, the RWP values of the signals for both Cell 3 (the broken cell) and Cell 1(the 
good cell) are illustrated in the same axes. We can observe that in all the operating conditions 
that Cell 3 experienced after C10, the RWP points of Cell 3’s signals are all higher than those 
of Cell 1’s. Their values are generally greater than 0.5. As for C10 in which Cell 3 remained 
in a good state of health, its signal’s RWP is identical to that of Cell 1’s.  

Additionally, in C0-3 where the polarization curve of Cell 3 demonstrates that the 
performance of this cell was partially recovered, the RWP value is greatly smaller than in C0-
2 and C0-4 for which the cell was severely damaged. 
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Figure 4-23 The RWPs for the degraded cell (Cell 3) and the good-state cell (Cell 1) in the 
different operating conditions (5 detail subsignals considered) 

Looking back to the raw signals of Cell 3 shown in Figure 4-20, it is easy to find that the 
amplitudes of the fluctuations in the negative signals are obviously larger than those in the 
positive signals. If this phenomenon is related to the nature of the voltage sensor, a question 
should be considered: is the perturbation in the sensor or the state of the FC that the RWP 
really reflects? Since our aim is to diagnose the early fault of FC which usually contributes to 
reducing the voltage rather than reversing, it is necessary to further validate the indicative 
capability of RWP to the state of health of the cell whose voltage remains positive.  

 

Figure 4-24 The RWP values of the 6 cells’ signals measured in C0-3 
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obvious large-amplitude voltage fluctuations). The RWP values of these signals are illustrated 
in Figure 4-24. Comparing to the good-state cells, the RWP of the broken cell’s signal is one 
order of magnitude greater, up to 0.7. Therefore, this parameter is indeed able to differentiate 
the state of health of SOFC. 
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IV.5.3.4. For the 4
th

 group signals 

The voltage signals in the 4th group are shown in Figure 4-25. All of them were measured on a 
3-cell SOFC stack for the same operating condition. From the polarisation curves showed in 
Figure 4-26, we can see that this stack had progressively degraded during the experiment.  

 

Figure 4-25 The voltage signals of a progressively degraded SOFC stack measured at 
different time when operated in an specific condition (Ts=770°C and I=6A). 

The RWP values of these signals are calculated through treating the first signal as the 
reference. They are plotted along the measurement time and shown in Figure 4-27. We can 
find that the evolution of the RWP value follows an increasing trend which is similar to the 
degrading process of the stack that is implied by the polarization curves shown in Figure 4-26. 
Accordingly, we can conclude that RWP is an effective indicator to the state of health of the 
SOFC stack.  
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Figure 4-26 Polarization curves of the SOFC stack  

 

Figure 4-27 Evolution of the RWP value of the degraded stack’s voltage signal 
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For the 1st group of signals, through comparing the energy distribution (described by RWE 
values) of the signals in the bias operating conditions and those in the nominal operation, 4 
conditions were picked up and viewed as undesired operating conditions. Among them, 2 
critical ones could be effectively indicated by the signal’s RWP value. Numerically, the TWP 
permits to distinguish all of the 4 deprecated conditions from the tolerant ones. However, this 
parameter is less discriminative than the RWP. Then, the capabilities of the RWE and the 
TWP to indicate undesired operating conditions are also validated by the 2nd group signals, 
which demonstrates that the investigated WT based diagnostic method is generic for different 
SOFC systems (in our case, the 1st and the 2nd group signals are from two different 
experiments on the same test bench. The difference of the experiments is that one used pure 
hydrogen as the SOFC’s fuel while the other used emulated reforming gases). However, for 
the 2nd group signals, the significant frequency band is only restricted to the frequency range 
between 1/8Hz and 1Hz, instead of the range [1/32, 1] Hz as for the 1st group signals. It was 
found that over the later frequency range, the RWP values were not discriminative for 
differentiating the undesired operating conditions from the normal/tolerant ones. 
Consequently, before carrying out the diagnosis, it is important to analyze and precisely 
determine the significant frequency band that is relevant to the fault.  

The 3rd and the 4th group signals were used to validate these 3 parameters’ capability of 
indication to the damaged or degraded SOFC/stack. Through comparison, we conclude that 
the RWP is the most effective indicator for the state of health of SOFC. It permits not only to 
find out the damaged cell in a SOFC stack but also reflect the degrading process of a 
stationarily operated SOFC.   

Finally, by comparing the results of analysis on the 2nd and the 3rd group signals, 2 threshold 
values (i.e. 0.05 and 0.5) could be yielded to divide the RWP values into 3 classes, each of 
them indicating the state of health of the SOFC, that is:    

1) Normal operation for the interval [0, 0.05]; 

2) Abnormal operation for (0.05, 0.5]; 

3) Stack broken for (0.5, ∞). 

In this diagnostic method, RWE mainly serves for the analytical phase, helping confirm if the 
measured signal contains useful information on the state of SOFC and determine the 
significant frequency band relevant to the fault.   

As for TWP, although it is not as effective as RWP for fault indication, this parameter is able 
to reflect the deviating process of the operating condition from the nominal/desired operating 
point. It is thus useful for tracking the variation of the system operation.  
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For a FC system, generally, the operating point of the system is characterized by a series of 
input variables of the FC stack, such as the load current density, the furnace temperature (for 
short stack), the fuel and air flow rates, etc. The measurement on these variables can provide 
information useful for checking the current operating condition of the system. Hence, in most 
cases, the system monitoring is implemented by relying on the specific sensors pointing to 
their measurements. However, in some cases such as gas leakage in the inlet manifold of FC, 
the sensor may not be able to detect the problem if it is located in the upper stream of the 
faulty location.  

Under the concept of using the FC stack as a sensor for the system diagnosis, the FCs’ outputs 
are considered being able to reflect the actual operating state of the system. When a system-
level fault occurs, the operation for the FC stack will deviate from the nominal condition, 
which leads to abnormal FC responses.  

In Chapter 4, the wavelet transform based diagnosis algorithm has been validated being able 
to recognize the normal and the abnormal responses of FC and giving the location of fault (in 
the BoP part or in the FC itself). However, it cannot provide more detailed information on the 
state of the system such as the operating parameters so that the engineers could determine 
relevant remedial measures. 

To solve this problem, it is necessary to develop an intelligent meta-model capable of 
mapping the FC response to the corresponding input such that we could obtain an insight on 
the current system operating condition.  

For complex systems (such as fuel cell systems), an analytical model is often not available or 
is too complex to be used in diagnosis. Such systems are currently supervised by a human 
operator who has to find the fault by means of his experience about the process behaviour. 
Such experience does not refer to quantitative measurements but includes assertions about 
operating conditions or sequences of operating points, which can be represented by sequences 
of symbols. Typically, process diagnosis uses alarm messages rather than numerical 
measurement data [Lunze'02]. Consequently, from a diagnosis point of view, it will be more 
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useful if the model could provide qualitative information on the operating parameters rather 
than numerical value. Thus, discrete Bayesian network approach was selected in this research 
for the model establishment. 

In this chapter, the theory of Bayesian approach will be firstly introduced. Then, we will talk 
about how to use a Bayesian model to solve diagnosis problems. For the application, a 
Bayesian network (BN) based meta-model will be built and then tested by using two groups 
of experimental data, respectively. The results will be given and analysed at the end.   

 

V.1. Introduction to Bayesian network (BN) and Bayesian approach  

A BN model can serve for two different applications, either as a knowledge basis or as a 
reasoner; the former encodes what we know while the later acts on the knowledge basis to 
answer queries of interest [Darwiche'09]. As a knowledge base, BN is usually used for 
prediction, calculating the probability of the results given a cause; in contrary, for reasoning 
purpose, it is used as a diagnostic support to infer the corresponding cause as a symptom is 
observed. Note that the reasoning process requires the prime knowledge base acting as 
speculative foundation.  

For diagnosis purpose, the BN model serves as a reasoner and its construction leads thereby to 
two targets: 1) build a knowledge base about the input-output causal relationship of the 
studied entity and 2) enable automated reasoning.  

 

V.1.1. Configuration of BN 

A BN is a representational device that is meant to organize one’s expert knowledge on a 
particular aspect of the studied problem. It relies on the basic awareness that the independence 
forms a significant aspect of beliefs and that it can be interpreted relatively easily using the 
language of graphs [Darwiche'09]. It consists of two components as shown in Figure 5-1, one 
qualitative and another quantitative. The former, shown as a directed acyclic graph (DAG), 
corresponds to the structure of BN, demonstrating the features/variables of interest 
(represented by nodes) and conveying information about the causalities between them 
(represented by arrows). The arrow from X1 to X2, for example, implies a direct causal 
influence of X1 on X2; thereby, we say that X1 is a parent of X2 and conversely, X2 is a 
descendant of X1. The quantitative part, known as conditional probability tables (CPTs), 
quantifies these causal relationships by conditional probabilities (CPs) derived from a sample 
dataset. The CP measures the probability in the occurrence of a certain event when knowing 
its relative event(s) has (have) happened. 
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Figure 5-1 An example of Bayesian network 

Taking the Figure 5-1 as an example, the CPT for variable X2 provides the probability of each 
value of X2 and every instantiation∗ of its parent X1. For example, Pr(X2=True|X1) denotes 
the probability of occurrence of the event that X2 is true when having known the value of X1. 
For Boolean variable, it must have  

Pr(X2|X1) + Pr(X2VX1) = 1. 
This equation implies that when X1 happens, there are only two possible values for X2. 

In fact, CPTs are consequence of BN parametrization. Hence, BN is usually mathematically 
represented by a pair (G, Θ), where G denotes a DAG and Θ is a set of CPTs for each 
variable/node. We also use θ(X|U) to denote a single CPT that lists CPs between a variable X 
and its parents U. Note that the size of a CPT is exponential in the number of parents U.  

 

V.1.2. Baye’s theory 

With a BN, if a cause is given, it is easy to infer the possible effect(s) by following in a top-
down way the causal chains defined in the DAG and then to ascertain the most possible value 
for it/them based on computed conditional probabilities. In another case, however, where a 
mediated event like X2 in Figure 5-1 for example, instead of the primary cause, is given, we 
may also consider X5 as an effect other than X4. The reason is that having known X2 = true 
(X2 happens), we trust that X1 has very likely happened and thus following the chain X1 → 
X3 → X5, it is “reasonable” to consider that X5 is possible to occur. Such a prediction 
involves a reasoning behaviour from X2 to X1, which leads to calculating Pr(X1|X2); yet the 
CPTs provide only causal conditional probabilities while the inverse ones are unknown. 
Bayes’ theorem allows us to implement this calculation. It is defined as follows: 

                                                           
∗
 An assignment of values to a network variable is called an instantiation of a variable.. 

CPT of node X2

X1 P(X2=True|X1) P(X2=False|X1)

True 0.9 0.1

False 0.7 0.3

X1

X3X2

X4 X5

Eq. 5-1 
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Given two events E and F such that Pr(E)≠0 and Pr(F)≠0,we have 

Pr(E|F) = Pr(F|E)Pr(E)Pr(F) 		or		Pr(F|E) = Pr(E|F)Pr(F)Pr(E)  

These formulae imply that Bayes’ theorem supports both causal (top-down) and evidential 
(bottom-up) reasoning. However, the common usage of Bayes’ equation is when the event E 
is perceived to be a cause of the event F because the belief in an effect given its cause, Pr(F|E), 
is usually more readily available than the belief in a cause given its effect, Pr(E|F).  

It is worth noting that in BN, both Pr(E|F) and Pr(F|E) are the subjective probabilities 

instead of the relative frequency of the occurrence for an event. According to the probability 
theory, the relative frequency is computed with a subset of data which is randomly sampled 
from the complete outcome population. For example, in a trial of flipping a two-sided coin, 
there are two possible outcomes, “head” and “tail’. Repeating this trial 1000 times, the 
obtained 1000 outcomes must include “heads” as well as “tails”. Differing from this example, 
for an improperly operated SOFC, the eventual faults that may occur are usually unknown. In 
one experiment, there might be 4 events/symptoms that could be observed while in another 
identical experiment, there might be 7. Neither of the outcomes yielded from these two 
identical experiments is able to represent the outcome population. For this case, the 
probability of an event that is computed with the data from one of the experiments expresses 
actually the degree of belief in the occurrence of the event for this individual experiment. In 
BN, it is this kind of probability that is used to measure individualistic uncertainty.         

When we collect the data from a test on a FC system, the values for FC input will not be 
randomly sampled from a population in statistics; rather we design the tests so as to let FC 
operate in specific operating conditions, because the test’s objective is to obtain the 
corresponding output space given an input of interest. For this case, the relative frequency is 
not available to depict the occurring probability of a specific output.  

Fortunately, BN meta-model can address this circumstance. It describes a subjective 
probability distribution based on a careful analysis of the situation, such like a physical model 
which is usually built under a series of pre-defined assumptions. Just because of this, BN is 
quite attractive in the case that the experiment is designed for a specific purpose. Finally, it is 
worthy to note that even if the probabilities in a BN are not the actual relative frequencies but 
the estimates, a CPT can be still obtained from relative frequency data [Neapolitan'03].  

 

V.1.3. Inference based on BN 

Consider a situation where there is an entity characterized by a group of features, and where 
some of these features have a direct influence on the others. For example, in our research, the 
SOFC is the studied entity, its operating point is interpreted by a set of feature parameters, i.e. 
the operating variables (the input of SOFC, e.g. current density, gas and air flow rates, furnace 
temperature, input flow pressure, etc) and the FC response variables (the output of SOFC, e.g. 
voltage, output flow pressures, stack temperature, etc.). Among, some of the operating 

Eq. 5-2 
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variables have direct influence on the responses while others have indirect influence. 
Moreover, some output variables of the FC possess also direct influences on other outputs in 
an uncertain domain. For example, the furnace temperature could determine the stack 
temperature while the later is one of the important factors capable of determining the FC’s 
output voltage. So, the furnace temperature possesses an indirect effect upon the FC 
performance through the stack temperature.  

We wish to determine the actual state of this entity referring to the measurements of these 
variables, whereas some measurements are not reliable. In this situation, we would set up a 
BN and use Bayes’ theorem to make a probabilistic inference for the states of uncertain 
variables, relying on the certain ones. Essentially, this activity aims to obtain the marginal 
probability distribution (MPD) for a subset of network variables. The MPD can be viewed as 
a projection of the joint distribution on a smaller set of variables [Darwiche'09].  

In the field of statistics, given a sample space for a set of independent random variables, we 
could translate it to a joint probability distribution (JPD) of events. Conditioning on a given 
state of a variable, this JPD should be updated because the awareness on this variable may 
decrease our belief in some events whereas increase that in others. Such updated JPD is 
known as a posterior probability distribution. As shown in the last column of Table 5-1, the 
probability for each instantiation is modified based on the joint probabilities listed in the third 
column, given the new information “Y1 is true”. Owing to this information, our belief on the 
instantiation No.3 is greatly increased while at the same time, we believe that the 
instantiations No.5 to No.8 are not possible to happen for sure.  

Table 5-1 An example of a JPD 

Instantiation Y1 Y2 Y3 Pr(.) Pr(.|Y1=TRUE) 

1 TRUE TRUE TRUE 0.056 0.236 

2 TRUE TRUE FALSE 0.017 0.072 

3 TRUE FALSE TRUE 0.163 0.688 

4 TRUE FALSE FALSE 0.001 0.004 

5 FALSE TRUE TRUE 0.615 0 

6 FALSE TRUE FALSE 0.067 0 

7 FALSE FALSE TRUE 0.009 0 

8 FALSE FALSE FALSE 0.072 0 

 

In practice, however, the interesting variables are not always independent. Instead, one 
variable may have an effect upon one or several variables. Indeed, Bayesian network is 
favourable to model the causal relationship between the variables. It is not impossible but 
inefficient to represent the causal relationship between all the information of the specific 
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domain in real world [Hwang'11]. Therefore, in a BN, the variables are supposed to be 
conditionally independent, under which the JPD for the network instantiation z can be 
obtained by multiplying all network parameters that are compatible with z, as the following 
definition: 

Given a Bayesian network (G, Θ), over a set of n random variables, X={X1, X2, …, Xn}, the 
joint probability for a network instantiation z=(x1, x2, …, xn) is given by Pr(X� = ��, X� = ��, … , X	 = �	)

= � Pr(X� = �NVX8 = �8 	for	each	X8 	which	is	a	parent	of	X�)		
���  

Each multiplication factor at the right side of Eq. 5-3 can be determined with the help of DAG 
and their value can be found in one of the CPTs. This formula is based on the chain rule and 
the conditional independence in probability theory. The independence is the underlying 
assumption of Bayesian network. It is particularly important to Bayesian inference and 
usually used in three cases: in a BN,  

1) If two nodes X1 and X2 are independent of each other, we have Pr(X�	, 	X�) = Pr(X�) . Pr(X�) 

2) If two nodes have the same immediate parent node(s), for instance, there is a chain X4 
← X3 → X5, they are conditionally independent given the state of the direct parent 
node, i.e. Pr(X�|X�	, 	X�) = Pr(X�|X�) 

3) For any non-descendant node, it is conditionally independent of its non-direct parent 
nodes given the states of all its direct parent nodes. For the example in Figure 5-1, we 
can have Pr(X�|X�	, 	X�		, 	X�	, 	X�) = Pr(	X�|	X�	, 	X�) 

Given a joint distribution of a set of variables X={X1, X2, … , Xn}, the MPD over a subset of 
X, i.e.  X’={x1, x2, … , xm} where m ≤ n, can be obtained by summing the joint probabilities 
of all instantiations to the complementary set of X’, that is,  X”={xm+1, xm+2, … , xn}, 
formulated by 

Pr	(��, ��, … , ��) = � Pr(��, ��, … , ��) .��,	����,…,��
 

Take Table 5-1 as an example, we can obtain  Pr(Y1 = true, Y2 = true) = Pr	( Y1 = true, Y2 = true, Y3 = true) + Pr(Y1 = ture, Y2 = true, Y3 = false) = 0.056 + 0.017 = 0.073 

Eq. 5-3 

Eq. 5-4 

Eq. 5-5 

Eq. 5-6 

Eq. 5-7 
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When being conditioned on a certain evidence e, the MPD, known as Marginal Posterior 
Distribution (MPD), is computed by the equation: 

Pr(��, ��, … , ��|e) = � Pr(��, ��, … , ��|e)3�,	3���,…,3�
 

 

V.1.4. Parameterization of BN by data learning 

The quantitative dependencies between variables are specified by a set of parameterized 
conditional probabilities which finally determine the JPD over all variables of BN. Given the 
BN structure, the goal of this part is to learn the set of parameters θθθθ    of the BN from a database. 
The basic method of parameter learning from complete data is Maximum Likelihood (ML) 
parameter estimation. 

Assume we have a data set d of N independent observations (samples) over m discrete 
variables [X1, X2,…, Xm]: d = {S

(1), S(2),…, S(N)} and S(i) = (x1
(i)

, x2
(i)

,…, xm
(i)). The likelihood 

of observing the given data set d equals to the product of the conditional probabilities of all 
the observations given the parameters θ θ θ θ = {θ1, θ2, ... , θm}: 

Pr(�|�) = � Pr	(y(�)V�)�
���  

The parameters are unknown and we wish to estimate them from data. Given BN structure G, 
the ML learning focuses on the problem of estimating a single θθθθ which maximizes the 

likelihood Pr(d|θθθθ). Equivalently we can maximize the log-likelihood: 

ℒ(θ) = log Pr(�|�) = � log Pr(y(N)V$)�
��� = � � log Pr ��8(N)�$8 , y���(N)  �

8��
�

���  

= � ℒ8($8)�
8��  

where S
(i)

PAj is the i-th observation of XPAj, the parent variables of Xj. Each ℒ8  can be 

maximized independently as a function of θθθθj [Ghahramani'03]. It is worthy to note that the 
likelihood function is positive while the log-likelihood function is negative. However, 
maximizing these two functions are equivalent. θθθθj is the conditional probability table for Xj 
given its parents.  

The distribution of conditional probability estimate θθθθj
k for the k-th instantiation of (Xj, XPAj) is 

asymptotically normal and can be approximated by a normal distribution: 

 

Eq. 5-8 

Eq. 5-9 

Eq. 5-10 
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¡ ¢Pr ��8��£¤�  , Pr ��8��£¤�  �1 − Pr ��8��£¤�  t. Pr ��£¤�  ¥,	 
where each Pr(.) is computed from the training data set in statistics. This formula implies that 
the variance of the estimate θθθθj

k will decrease as the size N of the data set increases. 

 

V.2. Conception of a BN model for FC system diagnosis use 

The WT based diagnosis algorithm proposed in the last chapter is capable of differentiating 
the normal and abnormal operating conditions as well as the good and poor state of health of 
FC. However, it is not able to provide other information such as the value of operating 
variables. To face this drawback, we developed another diagnostic algorithm based on 
Bayesian network which serves for estimating the significant operating parameters.   

In practical application, the developed Bayesian network is treated as a model. It is used to 
map the measurements of the electrical variables of the FC to a relevant operating condition. 
The input variables of this model are the FC’s current density and the voltage response. The 
outputs will be a group of feature parameters that could characterize the operating condition 
of the FC. For simplicity and being intuitive, each variable in the model is designed to have 
qualitative values, such as “low”, “normal”, “high” or “very high”. Comparing with numerical 
value, qualitative value corresponds better to the way of human thinking. It allows offering 
straightforward information to the expert so that the later is able to quickly make a decision 
on the actual state of the supervised FC system. In addition, using this kind of linguistic 
variables is favourable to the generalizability of the model for different types of SOFC.  

Since the estimation performed by the BN model is an inference process, the input variables 
are also known as evidential variables. The output variables, representing the questions to 
answer, are called query variables. Differing from traditional models that yield a precise 
value to a variable, the BN model estimates the conditional probability for each value of the 
query variable. The value that has the maximal probability will be picked up to be the answer 
of the query.  

For different diagnostic goals, the FC’s BN based model would be applied in the different 
manners. When being used to position the BoP fault, each of query variables in the BN model 
could be related to the state of certain equipment integrated in the system. For instance, the 
furnace temperature variable can be regarded as an indicator to the state of the heater; the 
flow rate of input fuel can reflect whether gas leakage happens at the inlet manifold. When the 
diagnosed object is the entire FC system, all query variables, together, should be viewed as a 
feature vector to indicate the state of the overall system.  

For our case, the BN model is mainly used to infer in real time the details on the actual 
operating condition of the FC stack. This information is favourable to track the system’s 
operational activity and predict its evolution. The model will be parameterized with the 

Eq. 5-11 
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datasets from the 1st round test on the VTT test bench contributed to the GENIUS project and 
from the experiment of a 6-cell SOFC stack on the FCLAB’s test bench, respectively. These 
two tests were both designed to operate the FC stack in mild operating conditions in order to 
avoid fast FC degradation. Therefore, the obtained experimental data actually outline a 
limited safety operational range for the studied FC stack. Using them to parameterize the BN, 
the later will become a knowledge base to mathematically represent such safe operation space. 
In other words, the BN has learned the information contained in the data. For an input that lies 
in this space, the BN model can infer a significant response with the relevant knowledge that 
it has obtained. While given an input locating outside of this space, the model will not be able 
to recognize it and as a result, it will set the probability of each instantiation of query 
variables to zero. In simulation application, this is a null response. However, for diagnosis 
purpose, this output implies that the FC stack is being operated in an unsafe condition. Owing 
to this feature, hence, the BN model can also serve for system diagnosis use.  

Following this conception, a Bayesian network model was built up. The process of its 
establishment will be presented in the next section. It is worth noting that this BN model is 
designed only for purpose of recognizing FC stack’s operating condition. In other words, it is 
oriented to system fault diagnosis. In case that the FC stack is damaged, this model will 
become ineffective for the diagnosis purpose, because one of its inputs, i.e. the stack’s voltage, 
is no longer relevant to the operating condition but greatly influenced by the current state of 
health of the FC.  

 

V.3. Establishment of the Bayesian network  

V.3.1. Preparation of the experimental data 

The performance of a BN model depends greatly on the network structure as well as on the 
quality of experimental data and their formalization. In this work, two datasets are prepared 
for the BN’s structure learning and parameterizations. One is originated from the signals 
measured in the 1st round test of the VTT system; the other is from the 6-cell SOFC stack’s 
test on FCLAB’s test bench.  
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Table 5-2 The operating conditions of the 1st round test in VTT (listed in the real condition 
shifting order; Tf: furnace temperature; J: current density; FU: fuel utilization; AU: air 

utilization) 

 

 

 

V.3.1.1. The 1st dataset formalization (the 1st round experiment on VTT’s 

test bench) 

In VTT’s 1st round test, the SOFC system was continuously tested in 17 operating conditions. 
These conditions were shifted from one to another by on-line modifying the 4 operating 
parameters’ value (see Table 5-2). All operating point transitions were done gradually, by 
“small” step-wise changes. In order to have more operating points, the steady state values 
measured at these steps were picked up and combined with the data obtained during 
polarization curve measurements to compose an experimental data set. This data set was then 
randomly divided into two groups, one used as the training data for BN structure learning and 
parameterization and the other for the model validation. The training dataset involves 46000 
samples; the validation dataset has 15400 samples. 

 

Operating 

condition 
Tf [°C] J [A/cm2] FU AU 

C0-1 760 0.3 0.5 0.4 
C1 700 0.1 0.4 0.3 
C2 700 0.1 0.4 0.5 
C4 700 0.1 0.6 0.5 
C3 700 0.1 0.6 0.3 

C0-2 760 0.3 0.5 0.4 
C7 700 0.5 0.6 0.3 
C8 700 0.5 0.6 0.5 
C6 700 0.5 0.4 0.5 
C5 700 0.5 0.4 0.3 

C0-3 760 0.3 0.5 0.4 
C9 820 0.1 0.4 0.3 

C10 820 0.1 0.4 0.5 
C12 820 0.1 0.6 0.5 
C11 820 0.1 0.6 0.3 
C0-4 760 0.3 0.5 0.4 
C15 820 0.5 0.6 0.3 
C16 820 0.5 0.6 0.5 
C14 820 0.5 0.4 0.5 
C13 820 0.5 0.4 0.3 
C0-5 760 0.3 0.5 0.4 
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V.3.1.2. The 2
nd

 dataset formalization (6-cells SOFC stack on FCLAB’s test 

bench )  

In FCLAB, the SOFC stack was tested under different operating temperatures and load 
current densities while the other controllable parameters (such as the gases flow rates) were 
kept constant [Gay'12]. The hydrogen stoichiometry is set to 1 and the air stoichiometry is 2. 
For implementing these experiments, the fuel cell stack operated 8 hours every day in the 
tested condition when being fed by pure hydrogen. Then, it was manipulated in stand-by 
mode for the other 16 hours, being provided with a mixture of gases consisting of 5% H2 and 
95% N2. The flow rate of the fuel (pure H2) is 1.8 NL/min and 8.6 NL/min for the air flow 
rate. The experimented stack temperature varied between 700 °C and 805°C, increasing or 
decreasing in a step wise of 15°C. Under every pre-designed stack temperature, a polarization 
measurement was manually carried out, through either increasing or decreasing stepwise the 
current density between 0A and the maximal value, as summarized in Table 5-3. Moreover, 
the SOFC stack had also been steadily operated in 78 operating points under various current 
density and stack temperatures (see Table 5-4). 

Table 5-3 Polarization curve measurement under different stack temperatures (6-cell SOFC 
stack on FCLAB’s test bench) 

                    TStack                         
Current  

700 °C 715°C 730°C 745°C 760°C 775°C 790°C 805°C 

0-3A/3-0A �   � �     �   � �   �     � 

3-6A/6-3A �     � �     �   � �   �     � 

6-9A/9-6A �     � �     �   � �   �     � 

9-12A/12-9A �     � �     �   � �   �     � 

12-15A/15-12A �       �     

� 

              

15-18A/18-15A �       �               �   

18-21A/21-18A     �   �   �   � �     � �   

21-24A/24-21A         �   �   � �     � �   

24-27A/27-24A             �   � �     � �   

27-30A/30-27A                   � �     � �   

 

Additionally, the effect of the stack temperature evolutions upon the fuel cell performance 
had been investigated. The temperature was manually varied (upwards or downwards) in 
some constant current density value or in a range, as indicated in Table 5-5. Since these 
experiments covered rich operating points, the measurement data from them are involved in 
the training data set as well.   
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Table 5-4 The 78 designed stationary operating conditions 

                     TStack  
 
Current (A) 

700°C 715°C 730°C 745°C 760°C 775°C 790°C 805°C 

0 � � � � � � � � 

3 � � � � � � � � 

6 � � � � � � � � 

9 � � � � � � � � 

12 � � � � � � � � 

15 � � � � � � � � 

18 � � � � � � � � 

21 � � � � � � � 

24   � � � � � � 

27     � � � � � 

30         � � � � 

 

Table 5-5 Testing data from 12 experiments 
(the symbol “→” indicates the varying direction of the temperature) 

                TStack 
Current 

700°C 715°C 730°C 745°C 750°C 760 775°C 790°C 805°C 

21A-0A →     

12A 
      → 

    ← 

15A →   → → 

18A → ← ←   

23A-12A ←           

30A           ← ← 

 

 

V.3.2. The state of health of the stacks 

Since the FC stack is used as a sensor to examine the state of the system, its state of health 
throughout the system diagnosis process should not have considerable variation. Otherwise, 
the evolution of the stack responses can also be related to a stack failure, which will influence 
the judgement on the system state.  

Figure 5-2-a demonstrates the polarization curves measured at the five nominal operating 
points before, during and after the test on VTT system. From the slope of these curves, we can 
find that the stack’s performance does remain reasonably well constant throughout the test.  
The average standard deviation at each I-U point is less than 7mV. 
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As for the test performed in FCLAB, only two repetitions of polarization measurement were 
carried out. The I-U curves are plotted and shown in Figure 5-2-b. From these curves, we can 
see that the SOFC stack did not degrade but showed improved performance after 216 hours of 
operation. However, the reason why this phenomenon could occur is unclear. (There may be a 
change of the micro-structure of the cells.)  A significant stack temperature hysteresis effect 
can be observed in the polarization curves. For the earlier polarization measurement, the 
difference of the stack voltage measurements in the current interval between 15A and 20 A is 
up to 400mV. For the other one (after 216 hours), the maximal difference of the voltage 
measurements keeps the same but happens in the range of current from 18A to 23A. 

 
(a) 

 
(b) 

Figure 5-2 The I-U characteristic curves measured at different operating time (t0= after start-
up phase). (a) In VTT: in nominal condition of Tf=760°C, FU=50% and AU=27.75%; (b) In 

FCLAB: in nominal condition of Tf=750°C, FH2=1.8NL/min and Fair=8.5NL/min. 
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V.3.3. Determination of the network variables and structure 

V.3.3.1. The BN variables 

The network’s variables can preliminarily define the scope of study. They are used to 
represent the features that characterize the system state in the domain of interest. Under the 
galvanostatic control, the voltage of the stack, easily and cheaply measurable, is one practical 
variable for deducing FC operation. Under regular operating conditions, the voltage depends 
greatly on the load current density but can be also influenced indirectly by other inputs such 
as hydrogen and air flows and the furnace temperature. 

Since the BN serves as a meta-model of the SOFC, the network is designed to have three 
layers: the upper layer represents the input side of the SOFC stack and the variables in this 
layer are directly operated by the system; the middle layer is related to the FC operating 
conditions and the bottom layer represents the output side. The variables in each layer are 
listed in Table 5-6. In the application of the BN, U and I (the evidential variables) are 
provided to the model as evidences for operating parameters’ state estimation. 

Table 5-6 BN variables determination 

Upper 

layer 

Stack 
Current      

(I) 

H2 flow 
rate     

(FH2) 

Air flow 
rate      

(Fair) 

Furnace 
temperature 

(Tf) 

Middle 

layer 

Fuel 
utilization 

(FU) 

Air 
utilization 

(AU) 

Stack 
temperature 

(Ts) 
 

Bottom 

layer 

Stack 
voltage  

(U) 
   

 

 

V.3.3.2. The BN structure 

Determining the BN structure is equivalent to defining the causal relationships between 
variables. It can be completed by hand and with expert knowledge about the studied system. 
In the field of artificial intelligence, some algorithms for structure learning are available to 
automate the BN structure definition. This kind of algorithms repeatedly executes a seeking 
procedure in order to search and specify a set of network variables as the direct causes (or 
parents) for a certain variable. Riascos et al. (2007) [Riascos'07] used respectively Bayesian-
score (K2) algorithm and Markov Chain Monte Carlo (MCMC) algorithm to learn Bayesian 
networks for the purpose of PEMFC diagnosis. They combined the network structures 
obtained by these two algorithms and optimized it with the expert knowledge. K2 is a search-
and-score algorithm and requires initially setting an order of the nodes to which the quality of 
the network structure is sensitive. MCMC algorithm searches the best network graph in a set 



Chapter V: Bayesian network based algorithm for SOFC system online diagnosis 

121 

 

of samples from the structure space. Details about these two algorithms can be found in 
[Cooper'92] and in [Pearl'00].  

In our work, the network structure was determined with the knowledge and experience on the 
diagnosed systems. K2 algorithm was used to construct a Bayesian network from the dataset 
of records. This network served as a reference to validate the causalities defined in the 
expertise-based network and find implicit dependencies between the variables. The final BN 
structure is shown in Figure 5-3.  

 

Figure 5-3 The structure of the proposed BN model 

Note that the variables in the first layer are considered independent between each other 
because of the fact that their values are set in the experiments by the system control unit. The 
association between I and Ts is due to heat production of ohmic resistances in the stack. Even 
after data discretization, this relation could still be found out by using K2 algorithm. However, 
the known impact of Fair upon Ts was not observed in the network learnt by K2 algorithm 
because it is insignificant for a short stack and was not present in the experimental dataset. 
Therefore, the dependence between these two variables was neglected. It is noteworthy that 
since the Bayesian network is used as a knowledge base retrieved from the data, the 
determined relations between the variables of the network should be in accordance with the 
information represented by the training data. 

 

V.3.4. Discretization of the data 

Before being used to fit the BN model, the prepared two groups of data should be respectively 
discretized because the BN involves only discrete variables, which is also known as discrete 
BN. This raises a question that should be answered in advance: how many distinct 
values/intervals to define for each variable? The solution is usually unapparent and should be 
found in the context of specific examples [Darwiche'09]. Computing time and accuracy issues 
should be taken into account because a great number of values for query variable may result 
in a long time of network parameterization as well as poor accuracy in reasoning. Wasterlain 

FairI Tf

U

AU

FH2

FU Ts
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et al. (2010) [Wasterlain'10] had tried and compared three different classification methods, 
namely the segmented tree [Hartigan'79], the manual discretization and the k-means clustering 
algorithm, in the construction of a naïve BN classifier used for PEMFC diagnosis. For their 
study, the classification rates of these methods were 91.2%, 89.2% and 88.2%, respectively. 

In our investigation, the data discretization was carried out manually according to the 
practical situation of the systems. For the operating variables, the faulty modes of operation 
that may cause SOFC degradation were taken into account. Larrain et al. (2006) [Larrain'06] 
had reported that the degradation rate of SOFC was mostly dependent on stack temperature. 
They proposed hence to minimize the stack temperature to 750°C or lower in order to 
decrease the FC degradation rate. Tu et al. (2004) [Tu'04] also discussed the advantage of 
operating temperature below 800°C with respect to the cost of stack and BoP, the capability 
of thermal cycle and the reduction of corrosion rate in long-term operation.  

In addition, for a short time, Larrain et al. (2006) and Comminges et al. (2012) 
[Comminges'12, Larrain'06] believe that fuel shortage is the principal cause of stack 
degradation even in unloaded conditions. Therefore, according to these investigations, the fuel 
utilization factor should be kept in a narrow range during the FC operation, on the one hand 
for maintaining the system efficiency and on the other hand for extending the stack lifetime.  

In this work, the safe operating temperature range for a SOFC stack was determined between 
720°C and 780 or 790°C for the temperature variable. The normal fuel utilization was defined 
in the range between 45% and 55%.  

For our case, the design of query variables’ discretization is based on the design of 
experiments as well as according to the literature research presented in the previous 
paragraphs. These variables were discretized around the center domain (the rated value). The 
number of distinct values for each query variable was limited to 5. The labels were defined as 
low/center/high or very-low/low/center/high/very-high (Refer to Table 5-7 & Table 5-8). 

Table 5-7 Query variables discretization for VTT’s data 

 
Very 

low 
Low Center High 

Very 

high 

FH2 

(Nl/min) 
< 0.4 [0.4,0.9) [0.9,1.5) [1.5,2.2) >=2.2 

 Low Center High 

Fair 

(Nl/min) < 5 [5, 10) > = 10 

Tf (°C) < 730 [730, 790) > = 790 

FU (%) < 45 [45, 55) > = 55 

AU (%) < 15 [15, 30) > = 30 

Ts (°C) < 720 [720, 780) > = 780 
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Table 5-8 Query variables discretization for FCLAB’s data 

 
Very 

low 
Low Center High 

Very 

high 

FH2 

(Nl/min) 

< 
0.4 

[0.4,0.9) [0.9,1.5) [1.5,2.2) >=2.2 

 Low Center High 

Fair 

(Nl/min) < 7.1 [7.1, 9.9) > = 9.9 

Tf (°C) < 700 [700, 780) > = 780 

FU (%) < 45 [45, 55) > = 55 

AU (%) < 15 [15, 30) > = 30 

Ts (°C) < 720 [720, 790) > = 790 

 

Table 5-9 Evidential variables discretization 

Interval 

label 
I (A) U (V) 

1 < 3 < 4 

2 [3, 6) [4, 4.3) 

3 [6, 9) [4.3, 4.6) 

4 [9, 12) [4.6, 4.9) 

5 [12, 15) [4.9, 5.2) 

6 [15, 18) [5.2, 5.5) 

7 [18, 21) [5.5, 5.8) 

8 [21, 24) [5.8, 6.1) 

9 [24, 27) [6.1, 6.4) 

10 > = 27 > = 6.4 

 

For the discretization of the evidential variables (i.e. I and U), it is better to design a larger 
number of distinct values for each of them. From pattern recognition point of view, such 
design leads to refined discretization/classification which is favourable to discrimination 
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ability of the evidence variables in terms of the heterogeneity between classes and the 
homogeneity within the classes. As a result, the input (evidence) could have higher directivity 
to the corresponding pattern. However, differing from the query variables, it is not necessary 
to give descriptive statement to the distinct values of the evidential variables. In this work, we 
have designed the same discretization rules of evidential variables for the FCLAB’s and 
VTT’s data sets (see Table 5-9). 

 

V.3.5. Parameterization of the BN model with the experimental data 

With the BN approach, the dependencies between variables are quantified by parameterized 
conditional probability distributions (CPD). The computation of CPDs is a process of BN 
parameterization based on data learning. The basic method of parameter learning from 
complete data is Maximum Likelihood (ML) parameter estimation. Details about this method 
can be found in [Ghahramani'03]. 

In this work, we used this method to estimate the BN parameters from the discretized training 
data. For the BN prepared for the FCLAB test bench, the training dataset included 28000 
samples; and for the VTT system, there were 46000 samples. The parameterization procedure 
was carried under Matlab, using the Bayes Net toolbox available in [Murphy'07]. 

 

V.4. Results and analysis 

V.4.1. Validation of the BN model 

In the model validation, the values of I and U were inputted into the BN as evidences to 
compute the posterior probability distribution over the distinct values of every query variable 
based on Eq. 5-2 and the formula introduced in Section V.1.3. The junction tree algorithm is 
available in the Bayes Net toolbox, which allows transforming the graph of the network into 
an appropriate data structure and performing the probability computation for the inference 
exactly and efficiently (refer to [Darwiche'09] for details). Finally, the value having the 
maximal probability was selected as the estimated state for the variable. An example on the 
SOFC operating parameters estimation based on this BN model is given in Appendix-II.  
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Figure 5-4 The estimation accuracy of the BNs 

The ratio of correct estimates for every query variable is shown in Figure 5-4. 15400 samples 
from VTT database and 12000 samples from the FCLAB 6-cell stack experimental database 
were used for the validation. Because the fuel and air flows were maintained constant in the 
FCLAB test bench, the estimation by the BN model showed a perfect accuracy, up to 100% 
for these variables. By contrast, the estimation accuracy on Tf and Ts were lower since the 
stack was operated under varying temperature conditions. For the VTT system, all of 
operating parameters are variable, which leads to a greater number of operating conditions. 
Some of them may correspond to the same (I, U) pair whereas the BN model can only 
associate the given/measured (I, U) pair to a single operating condition. This issue will be 
further analyzed and discussed in the next sub-section.  

The adaption of the model in diagnosis application depends on the fault(s) that the users 
intend to diagnose. As discussed in Chapter 4, the operating modes with high FU and high 
stack temperature are considered as the fault to diagnose. Among the testing data from VTT 
system, there are 1449 samples related to this faulty operating mode. We used these samples 
to validate the diagnostic ability of the BN model. As a result, the ratio of accurate diagnostic 
is about 67%. 

 

V.4.2. Analysis 

Generally speaking, the established BN model plays a role of knowledge base which depicts 
the information contained in the training data with causal relationships and utilizes the 
probability theory for the causalities quantification so that inference based on this knowledge 
base could be achieved by means of computation. In order to examine the goodness of the 
model in knowledge representation, we can compare the information of the training data with 
the knowledge represented by the model so as to analyze their accordance.   

In this work, the discrete BN is used to estimate SOFC operating variables given the value of 
I and U. It is thus equivalent to projecting the (I, U) point to a specific space of the SOFC’s 
operating conditions.  

100% 100%

79,22%

99,40% 99,57%

83,00%

58,03%
62,86%

74,45% 76,68%
74,01% 77,74%

F_H2 F_air Tf FU AU Ts
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According to the severity ranking of SOFC degradation phenomena yielded from the 
DESIGN (Degradation Signatures Identification for Stack Operation Diagnostics) 
project*, the parameter FU is recognized as an important source of failure or severe 
performance degradation: it indeed causes anode oxidation. At high FU, the partial pressure 
of fuel can locally be close to zero since the fuel is diluted by the produced steam. In case of 
local fuel depletion and high water vapour concentration, the atmosphere at the anode side is 
no longer reductive, leading to a local reoxidation of the nickel anode. In addition, according 
to VTT, Ts is also an important parameter that should be closely supervised during the 
operation. 

Therefore, we put our efforts on studying the performance of the BN model for FU and Ts 
estimations. For easier understanding, we designed an I-O (Input-Output) map to reveal the 
mapping relations between each of these two query variables and the evidential variables that 
are modelled by the BN, by using a 2D I-U plant grid with colours (see Figure 5-5). For 
comparison, the discretized training data are illustrated in the same way.  

 

V.4.2.1. Projection of FU on the I-U grid 

Figure 5-5 displays the I-U planes which are divisionalized into a rectangular grid according 
to the evidential variables’ discretization rules (see Table 5-9). In Figure 5-5-b, the coloured 
rectangular paves compose a region that the training data locate. In Figure 5-5-a, there is the 
same coloured region on the grid, which implies that the BN model has well learnt the scope 
of the SOFC operation that is described by the training data. The coloured region includes 3 
colours, each of which corresponds to a state of the studied variable: the blue represents the 
low level; the gray-blue for the central level and the light blue (cyan) for the high level. 
Comparing with the I-U measurements obtained in the different operating conditions (shown 
by coloured symbols), we can find that the edge of the coloured region outlines a zone that 
involves all the polarization curves. In case that all the I-U measurements are obtained when 
the SOFC stack is operated in normal mode, this zone can be considered as a representation of 
the safe operating range for the SOFC whereas the dark region (paved by gray rectangles) is 
relevant to the improper operations.  

In Figure 5-5-a, the majority of rectangles are related to the low FU conditions while two are 
assigned to the conditions with normal FU and the other two rectangles at high current density 
are relevant to high FU.  However, according to the training data, the distribution of the FU 
values on the I-U grid is very different.  

From Figure 5-5-b, we can see that the value of FU in some rectangles (in hot colours: red, 
orange, yellow and light green) is ambiguous, especially at high current densities where a I-U 
pave is relevant to two or three different states of FU. This is due to the fact that the limited 
variation of the FU (from 40% to 60%) emulated in the test did not provoke considerable 
change upon the stack performance. The polarization points measured at different FU values 

                                                           
*
 Refer to http://cordis.europa.eu/projects/rcn/97933_en.html 
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prove it. We can see in Figure 5-5-a that the green circular symbols relevant to the low FU 
generally overlap with the yellow triangular symbols correspondent to the high FU. 

Since the case of fuel starvation was not well experimented, the BN model has only learned 
the information on the system when being operated in a narrow range of FU variation in 
which the variation of the stack voltage is not apparent. Comparing Figure 5-5-a and Figure 5-
5-b, it is easy to know that the estimation mistakes made by the BN model mainly take place 
when the diagnosed system is fully loaded. 
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(a) 

 
 (b) 

Figure 5-5 (a) The BN estimated distribution of FU values & (b) The 
real distribution of FU values on the I-U grid with a colormap 

 
(a) 

 
 (b) 

Figure 5-6 (a) The BN estimated distribution of Ts values & (b) The 
real distribution of Ts values on the I-U grid with a colormap 
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Projection of Ts on the I-U grid 
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Referring to Figure 5-6-b, we can find that when the stack current is greater than 8A and has a 
higher voltage, the value of Ts is hard to be determined between the centre and the high level 
(the orange zones labelled by italic numbers). Fortunately, the BN model can compute the 
probability for each level. The probability distributions over the stack temperature’s values 
related to the orange rectangles are illustrated by a histogram in Figure 5-7. We can see that, 
apart from the pave No.4, the probabilities of the 3 Ts levels in the other cases are 
discriminative enough so that the users could easily determine the value of Ts. 

However, for the red area of the I-U grid in Figure 5-6-b (labelled by bold numbers) where 
the current density is lower, the value of Ts is hard to determine, because the I-U 
measurements in this area are overlapped. The probability distributions calculated by the BN 
model reveal this overlapping further. In Figure 5-8, we can see that, except for the red paves 
No. 2, 3, 4, 6 and 7, it is difficult to determine the Ts’s value for other I-U paves since the 
probabilities for two of the three values (low/center/high) are very similar. For example, in the 
red pave No.1, the probability that Ts is at the center level is very close to the probability for 
Ts at the high level. Wrong estimation may thus be encountered when the measured I-U point 
falls in this kind of zones. 

 

V.5. Conclusion 

In many cases, the degradation of a fuel cell originates from improper operation. The sensors 
used to measure the operating parameters may be not reliable when a system fault has 
happened. Under the requirement of GENIUS to diagnose the fault with no additional sensors, 
this problem can be addressed by developing an on-board diagnosis algorithm to recognize 
the system operating conditions.  

Following this idea, a static discrete BN was built for SOFC system fault diagnosis. Two tests 
were carried out respectively on FCLAB’s and VTT’s test benches on HTceramix 6-cell short 
stacks. The network structure (the same for the two considered SOFC systems) was 
determined upon expert knowledge about the SOFC system. It was validated with the 
experimental data sets obtained from the two systems by applying the K2 structure learning 
algorithm. Then, the BN was parameterized by using the ML parameter learning method to fit 
the discretized experimental data sets, respectively. The final discrete BN models were found 
to be capable of estimating the values of the operating variables based on the stack electrical 
output measurements, that is, only the current density and the stack voltage.  

For simple fault detection use, the BN model is able to outline a zone on the I-U plane to 
indicate the safe operation scope for the SOFC stack, based on the training data. When the I-U 
measurement lies outside this zone, the model will output null probability distributions for all 
query variables to declare that the SOFC stack is operated in an abnormal mode. For early 
fault diagnosis use, the operating conditions with high FU and high Ts were considered as 
faulty mode in our work to diagnose. The ratio of right diagnostic for the VTT system was 
about 67%.  
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Finally, a three-dimensional I-O map (a two-dimensional grid plane covered by coloured 
paves) was proposed to illustrate the mapping relation between the (I, U) pair and a single 
operating variable that is modelled by the BN. This map is a useful tool for the estimation and 
analysis of the BN model’s performance.  
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Conclusions and perspectives 

1. Summary of findings and conclusions 

Durability is one of the crucial issues for the practical application and commercialization of 
fuel cell (FC) technology. A great amount of research efforts has been and continues to be 
made on the improvement of FCs or stacks’ design and materials in order to increase their 
effective lifetime in stationary operation. On the contrary, the influences of system component 
failures upon the durability of FC have not been given enough attentions. In this context, an 
EU project RealSOFC∗ had been performed to study the degradation in solid oxide fuel cell 
(SOFC) stacks as a function of the operating conditions. Following it, another EU integrated 
project GENIUS was proposed to achieve SOFC system diagnosis, accomplishing the 
detection and identification of improper operating conditions. 

The work of this thesis was carried out in the framework of GENIUS project which asserts the 
usage of the SOFC stack as a sensor for system diagnosis implementation. This thesis 
investigates non-destructive diagnostic methodology for different SOFC systems on the basis 
of data mining, signal analysis and statistical modeling. The ultimate objective is to maintain 
the SOFC system in proper operating condition so as to extend the lifetime of the SOFC stack 
as long as possible.  

In this work, three algorithms have been developed: one aims at SOFC stack off-line 
diagnosis, working on polarization test data; the other two serve for on-line fault detection 
and identification, relying on SOFC voltage and/or current signal or actual measurements. For 
the on-board diagnosis, the importance of the state of health of the stack, as a specific sensor, 
was remarked. We proposed to firstly verify this point before performing any diagnosis for 
the system. 

The three algorithms are based on k-means clustering, wavelet transformation and Bayesian 
network model, respectively. The selection of these data analysis techniques was made in the 
consideration of the given type of data and based on the corresponding goals. 5 databases 
originated from different SOFC stack tests were selected to validate these algorithms and their 
generalizability. 

In off-line diagnosis, the analyzer always has to work on a massive process data. Analyzing it 
by manual selection of variables and extraction of features is time consuming and prone to 
bias due to the expectations of the analyzer (the data may be subjectively interpreted). 
Moreover, the data is usually a rich collection of full-scale experiments designed by process 
operators. For the analyzer who lacks of expertise knowledge/information about the design 
and the real procedure followed in the experiments, performing the segmentation on data for 
individual case analysis can be a difficult and heavy work. In the consideration of this 
situation, k-means clustering was selected in this work for organizational learning and pattern 
recognition from the data. We firstly used this technique to classify the SOFC operating 

                                                           
∗
 Refer to the web page: http://www.real-sofc.org/ 
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variables’ data in order to know in what significant operating conditions the stacks had been 
tested. Then, the SOFC response variables’ data were classified by the same means. As a 
result, not only the two different operating modes were correctly found out, the severe 
degradation of the stacks in each operating mode was also recognized in the data 
classification process. In order to determine effective indicators for stack degradation, feature 
ranking technique was applied to sort the response variables based on their determinant 
degree on the classification solution. It was found that in the first operating mode with a 
higher air flow rate to CPO∗, the stack’s severe degradation could be indicated by the stack 
top temperature. However, in the other operating mode, this variable is not indicative to the 
state of health of the stack. The severe degradation of the stack in this mode can only be 
indicated by the ASR value. In addition, a meaningless variable was arranged into the 
operating variable set with the aim of checking the sensitivity of the clustering algorithm to 
the disturbance data. Finally, we found that the clustering solution was not influenced by this 
disturbing variable. 

For on-line diagnosis, a 3-steps diagnostic method had been proposed beforehand: the former 
two steps for SOFC failure and system fault detection, the last for system fault identification. 
In this thesis, the system fault was represented by a kind of abnormal operating conditions 
where the SOFC delivers a low-level current density but is operated with high-level fuel 
utilization. Besides, the conditions with high fuel utilization and high stack temperature were 
considered harmful to the SOFC stack, as well.  

The wavelet transform based algorithm serves for the fault detection phase. The wavelet 
transform is used to decompose steady-state voltage signal of SOFC. The basic diagnostic 
principle is to employ the fluctuating behaviors of the signal to indicate the actual state of 
health of the fuel cell. Three feature variables were extracted to characterize the fluctuating 
behaviors present in a signal. They are the relative wavelet energy (RWE), the total wavelet 
entropy (TWP) and the relative wavelet entropy (RWP), respectively. In the validation phase, 
we found that these variables were not only indicative to the state of health of SOFC, but also 
discriminative enough for distinguishing the SOFC failure from the system faults. In other 
words, the two steps pre-designed for the fault detection phase could be simultaneously 
accomplished by the wavelet-based algorithm. In addition, the RWE also showed the 
capability to reflect the progressive degradation process of the SOFC. The validation was 
carried out with the signals from two different SOFC test benches. The results demonstrate 
that this diagnostic algorithm is generic for different SOFC systems. The testing signals were 
in different lengths. For those sampled at 1Hz, the minimal length that allows fault indication 
is 1000, that is, about 17 minutes of diagnosis delay. For the signals sampled at 3 Hz, the 
minimal length for the signal decreases to 800, that is, less than 5 minutes of delay for 
diagnosis implementation. It is worth noting that this signal-based fault detection algorithm is 
an extension on the work of Nadia Steiner who developed a wavelet-packet-transform based 
algorithm for PEMFC diagnosis in her Ph.D study [Steiner'09]. Compared with this previous 
achievement, our algorithm reveals several advantages in the aspect of practical application: 

                                                           
∗ CPO: Catalytic Partial Oxidation. The Hexis SOFC system includes a natural gas reformer. 
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1) The algorithm is relying on discrete wavelet transform which takes less computational 
time than the wavelet package transform; 

2) It allows a lower requirement for the sampling rate of the signals under study. 

3) The proposed feature variables are much effective for the faults indication so that the 
decision-making tool based on in-depth feature data analysis is not required.  

Finally, the Bayesian network based algorithm supports system fault identification. It is based 
on a Bayesian model which is used to estimate the actual operating parameters of the SOFC 
given only the measurements of stack voltage and current. A Bayesian network was proposed 
as a meta-model to represent the causal relationships between the SOFC’s operating and 
response variables. The structure of this model was set up by our expertise knowledge and 
validated according to the network structures learnt from two experimental databases from 
different test benches. The model was then trained (or parameterized) by two discretized 
datasets which involved polarization test data and the measurements in the transients during 
operating point changes. In this way, the information on the SOFC performance in different 
operating conditions could be learnt and represented by the Bayesian network. The model’s 
estimation accuracy for each query variable was calculated and given in Chapter 5. Its 
capability for the system fault identification was also tested with the experimental data from 
the VTT system test. As a result, the Bayesian model could identify 67% of the 1449 samples 
measured in the faulty operating modes. Finally, a three-dimensional I-O map (a two-
dimensional grid plane covered by coloured paves) was proposed to illustrate the mapping 
relation between the (I, U) pair and a single operating variable that was modelled by the 
Bayesian network. On this map, there is a zone covered by coloured paves, which represent 
the region where all the polarization data lie in. This map gives an insight into the problem of 
the Bayesian model in the estimation of two operating variables of interest, i.e. the fuel 
utilisation and the stack temperature. Based on this map, we found that when the (I, U) points 
are not discriminative for distinguishing different operating conditions, the model will give an 
incorrect estimation to the operating variables. Additionally, besides the estimation ability, the 
parameterized Bayesian model can also been viewed as a knowledge base used to verify the 
state of health of the SOFC stack. As the given (I, U) point lies outside and especially below 
the coloured region, the model would not be able to recognize it and thereby output null value 
for all query variables. Such an output implies that the SOFC stack is in a severely degraded 
state. 

Both of these two algorithms have been validated for two different SOFC test benches (in 
VTT and FCLAB). The overall in-situ diagnosis process for SOFC system based on them is 
illustrated in the figure below. 
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2. Recommendations for future work 

In this thesis, the validities of the developed diagnostic algorithms were all tested off-line. 
The Bayesian network model was parameterized and validated by steady and transient 
experimental data whereas the wavelet transform based algorithm was tested with only the 
steady-state signals measured when the system regained the stability after the change of 
operating condition. 

Consequently, in the future work, it is necessary to check the indicative capability of the 
proposed feature variables with transient signals. It is recommended that this validation could 
be carried out on-line on a real system with several stacks which will be a valuable test bench 
for the real usability of this signal-based diagnostic algorithm. For such a large-scale system, 
realistic errors and considerable noises will be present in the process signals, which is 
favourable to test the robustness of the indicators.   

The Bayesian network-based modelling for SOFC could also be improved. In this work, we 
had carried out a “hard” discretization procedure in the data pre-processing phase in order to 
transform the quantitative variables to the qualitative ones. The definition of the intervals for 
the values of each variable was determined based on the expertise knowledge and the nature 
of the data. Thus, for a different SOFC system and/or database, the discretization rules must 
be re-defined. Furthermore, the boundary of single intervals and the transition between the 
intervals of a variable is abrupt rather than “smooth”, which may result in mistaken 
qualitative definition to an observation of an input variable and leads to a wrong estimation 
result. To automate the parameterization of the Bayesian model, it is required to develop a 
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generalizable and “soft” method for the data discretization (or variable transformation). The 
fuzzy logic method, which allows transforming variables with continuous numerical values 
into non-numeric linguistic variables (refer to the content in Chapter II.2.3.2.1), might be a 
solution.  

Finally, we could also test the applicability of the k-means clustering algorithm to the 
impedance spectroscopy data of SOFC, for the purpose of determining the significant 
impedances discriminative and representative to the state of health of the fuel cell. Since the 
electrochemical impedance measurements could be performed in-situ, it is possible to develop 
this algorithm for the in-situ diagnosis application. In addition, the index “Silhouette” shows 
potential as an indicator for fuel cell prognostic application. This index may be useful for on-
line fuel cell health assessment. For example, it is possible to prepare two groups of data: one 
represents the good state of health of fuel cell and the other for the degraded state. To 
implement the prognostic, the silhouette value of the fuel cell’s observation relative to these 
two groups of data could be calculated and be used to indicate the actual state of health of the 
fuel cell. 
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Appendix-I.  

    CONTROLLABLE  PARAMETERS MEASURED RESPONSES (RES.) EXTRACTED RES. Stack Operation Experience 

Stacks test 
NG 
flow 
(g/h) 

2nd NG 
for 5 g/h 

Stack 
(g/h) 

CPO 
Air 

flow 
(l/h) 

Cathode 
air flow 

(g/h) 

Preheat 
Air  

Preheat 
CPO   

T stack 
bottom 

(°C)  

T stack 
Top  
(°C) 

T CPO 
out  
(°C) 

T CPO  
in  

(°C) 

ASR 
(mΩ/cm

2
) 

OCV 
 (mV) 

Operation 
time   

(hours) 

Total 
redox 
or/and 
thermal 
cycles 

Redox 
cycles 

Thermal 
cycles  

HP060030 

1 19,98 0,23 71,03 1001,41 24,83% 68,18% 949,33 962,62 730,77 761,05 59,17 4800,26 49 0 0 0 

2 19,97 0,24 70,98 1001,32 28,75% 67,58% 949,48 961,29 722,69 761,17 69,75 4875,03 2354 1 0 1 

3 19,98 0,26 71,03 999,66 28,48% 68,65% 949,51 959,93 724,08 760,85 72,29 4844,81 4865 1 0 1 

4 19,99 0,26 71,06 1000,28 29,36% 68,89% 948,44 959,90 732,87 760,43 77,55 4887,23 5471 1 0 1 

HP060031 

5 19,92 0,07 70,61 1000,73 34,22% 40,93% 949,30 953,28 727,86 770,67 57,82 4690,39 49 0 0 0 

6 19,92 0,10 70,61 999,45 31,68% 43,87% 949,53 933,78 726,39 780,71 72,10 4767,30 2354 1 0 1 

7 19,91 0,06 70,63 1000,22 33,74% 35,92% 949,61 851,47 721,93 780,13 72,97 4705,95 3690 1 0 1 

HP060045 

8 20,05 0,12 70,72 1000,31 30,36% 82,33% 949,26 956,31 722,42 730,55 55,04 4837,18 39 0 0 0 

9 20,08 0,18 70,79 999,74 25,89% 78,35% 949,67 922,68 702,25 730,62 65,48 4942,47 3297 0 0 0 

10 20,10 0,20 70,82 999,32 23,80% 84,57% 949,70 830,05 701,40 740,55 76,89 4914,70 6065 0 0 0 

11 20,09 0,20 70,79 1000,56 24,88% 88,97% 949,36 818,05 707,88 741,85 90,60 4921,11 6998 0 0 0 

HP080025 

12 19,98 0,13 65,59 999,45 37,76% 46,07% 849,26 857,51 720,05 774,88 92,53 4807,58 41 0 0 0 

13 19,96 0,15 65,61 999,48 39,46% 42,80% 849,44 858,11 720,45 763,36 87,62 4833,83 612 0 0 0 

14 19,96 0,16 65,58 999,71 39,71% 42,64% 849,28 858,20 719,54 760,51 86,40 4837,18 689 1 1 0 

15 19,96 0,13 65,59 999,99 39,17% 41,24% 849,47 858,40 720,76 761,88 88,08 4826,50 828 1 1 0 

16 19,95 0,15 65,58 999,92 39,72% 42,56% 849,46 858,45 719,68 761,04 85,98 4845,42 877 2 2 0 

17 19,97 0,15 65,59 1000,11 39,58% 41,36% 849,41 858,61 719,13 754,76 87,44 4828,64 952 2 2 0 

18 19,94 0,13 65,59 1000,67 39,32% 40,03% 849,38 858,58 719,54 754,26 89,59 4820,40 976 3 3 0 

19 19,97 0,15 65,58 999,32 39,41% 41,61% 849,42 858,51 720,11 758,81 90,52 4835,35 1000 4 4 0 

20 19,96 0,14 65,58 999,71 39,39% 42,24% 849,39 858,51 719,99 761,65 90,90 4858,24 1024 5 5 0 

21 19,97 0,15 65,58 999,91 39,52% 41,01% 849,48 858,74 719,97 758,62 93,57 4848,17 1048 6 6 0 

22 19,98 0,14 65,59 999,10 39,19% 40,84% 849,37 858,88 719,84 758,34 97,62 4841,15 1121 7 7 0 

23 19,97 0,13 65,59 1000,09 39,27% 39,67% 849,35 858,97 719,48 756,23 99,86 4843,29 1145 8 8 0 

24 19,96 0,13 65,59 1000,07 39,39% 40,61% 849,32 859,02 719,65 758,63 102,18 4853,36 1169 9 9 0 

25 19,97 0,15 65,57 1000,46 36,94% 43,94% 849,41 858,50 720,28 770,06 138,02 4891,20 1211 12 11 1 

26 19,98 0,13 65,59 999,92 36,81% 41,76% 850,59 859,12 722,37 776,47 226,77 4867,09 1283 12 11 1 

27 19,97 0,14 65,58 1000,31 39,15% 41,78% 850,35 859,18 721,04 770,97 167,86 4877,77 1313 13 12 1 

28 19,95 0,12 65,60 1000,28 39,15% 40,87% 850,17 858,74 721,08 772,05 195,72 4865,87 1337 14 13 1 

29 19,97 0,12 65,59 999,67 39,26% 40,33% 850,20 858,88 720,25 769,12 216,13 4862,82 1362 15 14 1 

30 19,98 0,16 65,57 999,86 39,09% 46,18% 850,40 858,94 719,62 775,35 216,88 4899,75 1381 15 14 1 
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Appendix-II.  

An example is given below to illustrate the estimation process based on the established BN 
model. Inputting the numbers of the level in which the current and the voltage lie, the model 
will output a probability distribution over the values of each query variable. The value having 
the maximal probability will be picked up as the estimate of the variable. Finally, all estimates 
compose a signature to indicate the current system state. The solid arrows represent cause-to-
effect inference while the dash ones imply effect-to-cause reasoning. 
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Résumé :

Le projet Européen � GENIUS � ambitionne de développer les méthodologies génériques pour le
diagnostic de systèmes piles à combustible à haute température de type oxyde solide (SOFC). Le
travail de cette thèse s’intègre dans ce projet ; il a pour objectif la mise en œuvre d’un outil de diag-
nostic en utilisant le stack comme capteur spécial pour détecter et identifier les défaillances dans
les sous-systèmes du stack SOFC. Trois algorithmes de diagnostic ont été développés, se basant
respectivement sur la méthode de classification k-means, la technique de décomposition du signal
en ondelettes ainsi que la modélisation par réseau Bayésien. Le premier algorithme sert au diag-
nostic ex-situ et est appliqué pour traiter les donnés issues des essais de polarisation. Il permet
de déterminer les variables de réponse significatives qui indiquent l’état de santé du stack. L’indice
Silhouette a été calculé comme mesure de qualité de classification afin de trouver le nombre op-
timal de classes dans la base de données. La détection de défaut en temps réel peut se réaliser
par le deuxième algorithme. Puisque le stack est employé en tant que capteur, son état de santé
doit être vérifié préalablement. La transformée des ondelettes a été utilisée pour décomposer les
signaux de tension de la pile SOFC dans le but de chercher les variables caractéristiques permettant
d’indiquer l’état de santé de la pile et également assez discriminatives pour différentier les condi-
tions d’opération normales et anormales. Afin d’identifier le défaut du système lorsqu’une condition
d’opération anormale s’est détectée, les paramètres opérationnelles réelles du stack doivent être
estimés. Un réseau Bayésien a donc été développé pour accomplir ce travail. Enfin, tous les algo-
rithmes ont été validés avec les bases de données expérimentales provenant de systèmes SOFC
variés, afin de tester leur généricité.

Abstract:

The EU-project “GENIUS” is targeted at the investigation of generic diagnosis methodologies for dif-
ferent Solid Oxide Fuel Cell (SOFC) systems. The Ph.D study presented in this thesis was integrated
into this project; it aims to develop a diagnostic tool for SOFC system fault detection and identifi-
cation based on validated diagnostic algorithms, through applying the SOFC stack as a sensor. In
this context, three algorithms, based on the k-means clustering technique, the wavelet transform and
the Bayesian method, respectively, have been developed. The first algorithm serves for ex-situ diag-
nosis. It works on the classification of the polarization measurements of the stack, aiming to figure
out the significant response variables that are able to indicate the state of health of the stack. The
parameter “Silhouette” has been used to evaluate the classification solutions in order to determine
the optimal number of classes/patterns to retain from the studied database. The second algorithm
allows the on-line fault detection. The wavelet transform has been used to decompose the SOFC’s
voltage signals for the purpose of finding out the effective feature variables that are discriminative for
distinguishing the normal and abnormal operating conditions of the system. Considering the SOFC
as a sensor, its reliability must be verified beforehand. Thus, the feature variables are also required
to be indicative to the state of health of the stack. When the stack is found being operated improperly,
the actual operating parameters should be estimated so as to identify the system fault. To achieve
this goal, a Bayesian network has been proposed serving as a meta-model of the stack to accomplish
the estimation. At the end, the databases originated from different SOFC systems have been used to
validate these three algorithms and assess their generalizability.
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