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Chapter 0

Introduction

Les concepteurs de systèmes radars et d’antenne se sont intéressés à l’étude théorique
de la diffusion des ondes électromagnétiques. L’intérêt pour ce sujet a suscité des
recherches intensives dans ce domaine depuis longtemps. Les innovations tech-
nologiques et informatiques ont permis un développement de la modélisation et
notamment pour la modélisation de la diffusion des ondes électromagnétiques. Mais
les méthodes numériques utilisent en général un grand nombre d’inconnues pour la
description des champs électromagnétiques, notamment à haute fréquence.

Dans les études de problème de dispersion on considere souvent un objet par-
faitment conducteur recouvert ou non d’une couche. Cette couche mince peut être
une surface homogène, chirale ou une surface sélective en fréquence (FSS). Les FSS
sont très utilisées dans la modélisation d’antennes.

Il existe deux méthodes importantes pour résoudre les équations de Maxwell
en régime harmonique. La première méthode est la méthode des volumes. Elle
permet de calculer les champs sur tout le volume. Si le domaine de calcul est
non borné, on peut par exemple utiliser des conditions aux limites sur une frontière
artificielle. Elle tient compte des caractéristiques physiques des matériaux étudiés et
des effets d’anisotropie, mais elle nécessite un grand nombre d’inconnues. La seconde
méthode est la méthode intégrale. Elles consistent à calculer les courants électrique
et magnétique sur la surface de l’objet rayonnant. Ici, nous allons utiliser la méthode
intégrale pour la résolution du problème de diffraction d’une onde électromagnétique
en régime harmonique.

Il est nécessaire de considérer des conditions aux limites sur la surface de l’objet
rayonnant pour que le problème soit bien posé. Cette condition approchée aux lim-
ites sur l’objet fait intervenir un opérateur intégral appelée opérateur d’impédance
Z dont la forme la plus simple est Z est constant appelée condition de Léontovitch.
On sait que cette condition trouve ses limites quand le matériau a une épaisseur
proche de la longueur d’onde. C’est pourquoi, dans cette thèse nous développons
une nouvelle méthode dans laquelle l’opérateur d’impédance tient compte de l’angle
d’incidence appelée conditions aux limites d’impédance d’ordre supérieur (HOIBC).

Dans [R-Sb, R-Sa], les auteurs ont proposé une méthode d’approxiamtion de
l’opérateur d’impédance qui tient compte de l’angle d’incidence en dimension 2 et 3.
Des résultats numériques sont donnés notamment dans le cas d’un cylindre recouvert
d’un diélectrique et pour la sphère.

D’autres travaux dans ce domaine existent, voir [BSb, BSc, BS, BSa].

L’objectif principal de cette thèse est donc de proposer une nouvelle formulation
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variationnelle du problème de diffraction électromagnétique en utilisant une méthode
purement intégrale couplée avec des conditions d’impédance d’ordre élevée. Nous
résolvons ici les équations de Maxwell en régime harmonique.

Dans le chapitre 1, le problème de diffusion en regime harmonique des ondes
électromagnétiques par un obstacle est décrit comme un système d’équations avec
des conditions au bord. L’unicité de la solution de ce problème est montré. Nous
présentons la formulation intégrale des équations de Maxwell pour utiliser la méth-
ode intégrale. Dans le chapitre 2, nous introduisons des espaces fonctionnels de base
et les opérateurs qui sont utilisés dans la suite.

Le but de cette thèse est d’écrire une formulation variationnelle. On est donc
obligé d’écrire l’opérateur d’impédance Z en fonction d’opérateurs intégraux pour
pouvoir l’introduire dans la formulation. Les chapitres 3-4 sont consacrés à cette
étude.

Dans le chapitre 5, on propose une formulation variationnelle en 2D et on étudie
l’existence et l’unicité. Dans le chapitre 6, on discrétise la formulation et on donne la
forme explicite de toutes les matrices et on donne de nombreux résultats numériques
qui valident la méthode.

En dimension 3, on se heurte à la définition des opérateurs intégraux. Deux ap-
proches sont proposées. Dans le chapitre 7, nous formulons le problème en utilisant
des multiplicateurs de Lagrange discrétisés avec les fonctions de Bendali. Nous étu-
dions l’existence et l’unicité de la solution pour cette formulation. Dans le chapitre
suivant, la discrétisation du problème est étudiée. Dans le chapitre 9, nous proposons
une autre méthode qui utilise les fonctions de base de Buffa-Christiansen. Quelques
résultats numériques du cas tridimensionnel sont présentés dans le chapitre 10 pour
la formulation étudiée dans le chapitre 7.



Chapter 0

Introduction

Radar and antenna system designers are interested in the theoretical study of the
scattering of electromagnetic waves. Interest in this topic has prompted intensive
research in this area long time ago. However rigorous analysis was not performed
until recently. The development of the computing technology improves modeling
possibility and it increases the interest in the scattering problem of electromagnetic
waves. The difficulties of numerical methods include the necessity of using a large
number of unknowns in the description of high frequency electromagnetic fields.

The scattering problem is being studied for conducting bodies and for a perfect
conducting body covered by a complex layer. The complex layer is considered
as a homogeneous surface, as a chiral surface or as a frequency selective surface.
Presently, the frequency selective surface is important for design artificial coatings
of antenna.

There are two important methods for solving the Maxwell’s equations in har-
monic regime. The first method is the volume method. It locates their computations
all over the volume internal and external objects. It uses a domain containing the
obstacles bounded by an artificial border. It considers the physical characteristics of
the media, in particular the effects of anisotropy, but it requires a large number of
unknowns and the management of explicit boundary conditions. The second one is
the integral method. It places unknowns on the boundaries of the object and it takes
into account the boundary conditions. It allows reducing the external problem to a
system of integral equations defined on the surface of the obstacle. However, they
can only be applied to homogeneous bodies. We can use this method for a three
dimensional domain and for a two dimensional domain. Here, we are interested in
solving time-harmonic scattering problem for a coated body by the integral method.

In order to ensure a unique solution to the boundary value problem it is nec-
essary to apply boundary condition. Generally, we take the constant impedance
operator, known as standard or Leontovich impedance boundary conditions. This
approximation does not depend on incident angle at all. In this thesis we deal with
higher order impedance boundary conditions.

Recently, the higher order impedance boundary conditions have been studied in
[R-Sb, R-Sa]. These conditions take into account the incident angle at each point of
the surface and include derivatives of tangential components of the fields that are
equivalent to transverse wave numbers. Y. Rahmat-Samii and D.J. Hoppe present
the numerical results for two dimensional cylinders with lossy and lossless dielectric
coatings and for three dimensional body of revolution. The system was solved for
tangential electric E and magnetic H fields.
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Later, the higher order impedance boundary condition is applied to study the
scattering problem from a finite planar or curved infinitesimally thin frequency selec-
tive surface embedded in a dielectric layer [BSb, BSc, BS, BSa]. B.Stupfel introduces
differential operators to express higher order impedance boundary conditions. He
solves combined field integral equation for unknown current density J.

The main subject of this thesis is to propose a new variational formulation of elec-
tromagnetic scattering problem with approximate impedance boundary conditions.
The impedance depends on the coating layer thickness, the dielectric characteristics
and the incident angle. In practice the incident angle is unknown. Therefore our
purpose was to write the formulation that is valid in a large angular range. We pro-
posed the differential forms of the impedance boundary condition. The formulation
is presented for both two and three dimensional models. It includes both the electric
and magnetic current densities J and M as unknowns. We studied existence and
uniqueness for the variational problems in both models.

In chapter 1, the time-harmonic scattering problem of electromagnetic waves by
an obstacle is described as a system of equations with boundary conditions. The
uniqueness of the solution of this problem is shown. We present integral formulation
of Maxwell’s equations to use the integral method. In chapter 2, we introduce some
basic functional spaces and operators that is used in this thesis.

Chapters 3-4 are devoted to impedance boundary conditions. We consider thin
dielectric layer in chapter 3. The impedance operator is approximated as a ratio of
polynomials of differential operators, so that the boundary conditions are presented
as an equation of these polynomials. We call this condition as higher order IBC
(HOIBC). HOIBC of first and second order for two dimensional case are described.
Using differential operators first order IBC is proposed for three dimensional case.
We propose sufficient uniqueness conditions that imply restrictions on the coeffi-
cients of HOIBC. In chapter 4, different ways to find the coefficients for HOIBC
using the exact IBC are described.

Chapters 5-6 of the thesis deal with the two dimensional case. In chapter 5,
we assemble the variational formulation with the first or the second order HOIBC.
The existence and uniqueness of the solution of this problem are shown. The dis-
cretization of two dimensional problem is proposed in chapter 6 and the calculation
of matrices are described to solve this problem. We present numerical results.

In chapter 7, we formulate three dimensional problem and we study the existence
and uniqueness of the solution. Chapter 8 is concerned with the discretization of
three dimensional problem. The problem with auxiliary unknowns is discretized with
help of Rao-Wilton-Glisson basis functions for mesh triangulation. In the chapter
9, we introduce Buffa-Christiansen basis functions and propose a method to apply
these functions for three dimensional HOIBC formulation. Some numerical results
of three dimensional case are presented in chapter 10.



Chapter 1

Scattering problem

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Mathematical model of physical problem . . . . . . . . . . . 5

1.3 Uniqueness of the scattering problem . . . . . . . . . . . . . 7

1.4 Integral formulation of Maxwell’s equations . . . . . . . . . 9

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction

We present the scattering problem as the system of equations. The system includes
boundary conditions on the surface of an object and radiation conditions far from
an object. Here, we prove the uniqueness theorem and we introduce an integral
formulation of the problem as well.

1.2 Mathematical model of physical problem

We consider the scattering problem of electromagnetic waves (E, H) by a perfect
conducting body with a complex coating, as depicted in figure 1.1. We denote Ω an
open domain in R

n (with n = 2, 3) with a Lipschitz-continuous boundary Γ = ∂Ω,
which can be equipped with an exterior unit normal vector field n. Electromagnetic
waves propagate in Ω+ = R

n\Ω. We illuminate this system by incident electromag-
netic waves. Scattering waves occur when incident waves bounce off an object in a
variety of directions. The amount of scattering waves that take place depends on
the wavelength of the incident waves and structure of the object. We determine
total electromagnetic fields (E,H) in Ω+ as:{

E = Einc +Esc

H = Hinc +Hsc
(1.1)

Superscripts inc and sc characterize incident and scattered fields, respectively.
Waves propagation medium is described by two values ε (electrical permittivity)
and μ (magnetic permeability), where we have ε = ε0 and μ = μ0 for free space.
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Figure 1.1: Scattering Problem

We are interested in the time-harmonic electromagnetic fields that are defined as{
E(x, t) = �(E(x)eiωt)
H(x, t) = �(H(x)eiωt) (1.2)

where ω denotes the pulsation. The fields outside the body are governed by
Maxwell’s equations for a free space. The harmonic solution verifies following equa-
tions: {

rotE+ iωμH = 0

rotH− iωεE = 0
(1.3)

The fields inside the coating are governed by a set of equations that take into account
the detailed electromagnetic properties of the coating.

We consider boundary condition that binds the tangent electric and magnetic
fields. The medium characteristics give an impedance at each point of the surface
Γ.

Etg − Z(n×H) = 0 on Γ (1.4)

where Z is impedance operator that depends on incident angle, medium thickness
and characteristics ε and μ. Subscript tg denotes tangent component on the surface
Γ defined as:

Etg = n× (E× n).
The boundary condition (1.4) is called impedance boundary condition (IBC). The
simplest form of which is known as Leontovich IBC or standard IBC (SIBC), where
Z = constant. [R-Sb, SV, TL] The IBC can be partially constant (if the object is
formed by different materials) or more different.

For the correct formulation of the problem, we should introduce asymptotic
behavior of the fields (E,H), the Silver-Müller radiation condition:

lim
r→∞ r(E× nr +H) = 0, (1.5)
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where r = |x| and nr =
x

|x| , x ∈ R
3.

So, we have next problem:

Problem 1.2.1 Find (E,H) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rotE+ ik0μH = 0 in Ω+

rotH− ik0εE = 0 in Ω+

Etg − Z(n×H) = 0 on Γ

limr→∞ r(E× nr +H) = 0

(1.6)

1.3 Uniqueness of the scattering problem

Let E be a solution of the problem (1.6) therefore it verifies Helmholtz equation

ΔE+ k2E = 0. (1.7)

We recall the Rellich lemma.

Lemma 1.3.1 (Rellich): Let Ω be the open complement of a closed domain and
u ∈ L2(R3 − Ω) is a solution of the Helmholtz equation, satisfying

lim
r→∞

∫
|x|=r

|u(x)|2dx = 0. (1.8)

Then u = 0, in R
3 − Ω.

Below we propose the uniqueness theorem [BSa, FL]. It gives us sufficient con-
dition on characteristics of medium to get unique solution of the problem 1.2.1. The
existence will be shown later in this thesis.

Theorem 1.3.1 The problem 1.2.1 admits a unique solution, if following relations
are verified: ⎧⎪⎪⎨

⎪⎪⎩
�(μ) ≤ 0,

�(ε) ≤ 0,

�(k0
∫
ΓE

∗ · (n×H)ds) ≥ 0.

(1.9)

Proof. : Let E is a non-zero solution of scattering problem. Let BR is a ball of
radius R that is big enough for Ω ⊆ BR and nR be an exterior unit normal vector
of BR. We remember that n is an exterior unit vector of Γ = ∂Ω. From Maxwell’s
equations we have

rot(μ−1rotE)− k20εE = 0 in BR\Ω.
Then we write this equation in variational form. We take E∗ (conjugate to E) as a
test function and we integrate over volume BR\Ω:∫

BR\Ω−
rot(μ−1rotE) ·E∗ − k20εE ·E∗dω = 0. (1.10)
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We use integration by parts∫
BR\Ω

μ−1rotE · rotE∗dω +
∫
∂BR

(nR × μ−1rotE) ·E∗ds

−
∫
Γ
(n× μ−1rotE) ·E∗ds−

∫
BR\Ω−

k20εE ·E∗dω = 0 (1.11)

According to Maxwell’s equations (1.6) we replace rotE by next relation

rotE = −ik0μH in BR\Ω.
So we get next two equations

−
∫
Γ
(n× μ−1rotE) ·E∗ds = ik0

∫
Γ
E∗ · (n×H)ds∫

∂BR

(nR×μ−1rotE)·E∗ds = −ik0
∫
∂BR

E∗ ·(nR×H)ds = −ik0
∫
∂BR

H·(E∗×nR)ds

Since ∣∣∣∣
∫
∂BR

−H · (E∗ × nR)− |H|2ds
∣∣∣∣ =
∣∣∣∣
∫
∂BR

−H · (E∗ × nR +H∗)ds
∣∣∣∣

≤
∫
∂BR

|H||E∗ × nR +H∗|ds

and for sufficiently big R, because of the behavior of the fields at infinity (Silver-
Müller radiation condition):

−ik0 lim
R→∞

∫
∂BR

H · (E∗ × nR)ds = −ik0 lim
R→∞

∫
∂BR

|H|2ds

Finally

lim
R→∞

∫
∂BR

ik0|H|2ds+
∫
Γ
ik0E

∗ · (n×H)ds+

∫
BR\Ω−

μ−1|rotE|2 − k0ε|E|2dω = 0

We take imaginary part

lim
R→∞

∫
∂BR

k0|H|2ds+
∫
Γ
k0�(E∗·(n×H))ds+

∫
BR\Ω−

�(μ−1)|rotE|2−k0�(ε)|E|2dω = 0

According to the theorem hypothesis every integral of the last equation is not
less than zero, so each should be equal to zero. Particularly the first integral is zero.
The Rellich lemma gives that H = 0, which implies that E = 0 and we have the
uniqueness of a solution.

That is how we get sufficient uniqueness condition (SUC) in general form

�(k0
∫
Γ
(n×H) ·E∗) ≥ 0 (1.12)

From a physical point of view, this condition has its own meaning. In some
studies described the condition necessary for conservative or dissipative system.
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1.4 Integral formulation of Maxwell’s equations

We will use this integral method to solve problem. We express the electromag-
netic field as a function of potentials defined on Γ. The Stratton-Chu formulation
(B.20) helps us to characterize the electromagnetic fields in terms of surface current
densities. These current densities are uknowns in the integral formulation of the
problem.

We introduce current densities J and M on the boundary Γ as follows

M = [E× n]+− J = [n×H]+−

where [ ]+− denotes difference between upper (+) and lower (-) values of interface, n
is the exterior normal vector to the surface.

We introduce the variational form of the operators (B − S), (P + Q) and I as
follows

〈(B − S)A,ψ〉 = i

∫∫
Γ
kGA ·ψ − 1

k
G∇y ·A∇x ·ψdydx (1.13)

〈(P +Q)A,ψ〉 = 1

2

∫
Γ
ψ · (n×A)dx+

∫∫
Γ
(ψ ×A) · ∇xGdydx (1.14)

〈IA,ψ〉 =
∫
Γ
A ·ψdx (1.15)

Therefore we can rewrite the Stratton-Chu formulation (B.20) in terms of these
operators:

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< IEinc,ΨJ > (1.16)

− < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< IH inc,ΨM > (1.17)

Note however that these two equations are completely equivalent. Later, we will use
the crossing relations between the different fields to complete the system, such as
impedance boundary conditions. It is also clear from (B.19) that the knowledge of
M and J on the contour of the volume is sufficient to determine the field throughout
the space.

1.5 Conclusion

We have established a system of equations (1.6) describing the scattering problem
of a coated object with the boundary condition on Γ. We have introduced the
impedance boundary conditions (IBC). IBC is essential to our work. Radiation
conditions helped us to establish the conditions (1.9) that give the uniqueness of
solution.

The Stratton-Chu formulation indicates how the volume problem reduced to the
problem on a surface of an object. This constitutes the main concept of integral
method. Moreover numerical results derived with help of the code of Dassault
Aviation (Thanks a lot), that is based on these equations.
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2.1 Introduction

In this chapter we give some definitions for differential operators in Ω+ and in
Γ = ∂Ω. We define Sobolev spaces with their norms that necessary to establish the
variational formulations. We introduce scalar and vectorial Laplacian operators on
the surface. We recall Green formula and trace results.

Integral operators (B − S) and (P +Q) with Green kernel will be defined. We
saw them in the previous chapter. Here, we will propose their properties. At the
end we present two Fredholm alternatives. They are interesting for existence and
uniqueness theorem.

2.2 Definitions of differential operators

2.2.1 Differential operators in Ω

We define well-known differential operators such as gradient, divergence and curl:

∇ : D′(Ω)→ D′(Ω)3

v → (
∂v

∂x1
,
∂v

∂x2
,
∂v

∂x3
)

div : D′(Ω)3 → D′(Ω)
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v = (v1, v2, v3)→
3∑

i=1

∂vi
∂xi

rot : D′(Ω)3 → D′(Ω)3

v = (v1, v2, v3)→ (
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)

These operators have next properties:{
rot∇v = 0 ∀v ∈ D′(Ω)
div rotv = 0 ∀v ∈ D′(Ω)3

It means that the kernel of rot includes image of ∇ and kernel of div includes
image of rot: {

Im∇ ⊂ ker rot

Im rot ⊂ ker div

Let Ω be an open set in R
3. We briefly recall the definition and the main

properties of the Sobolev spaces on Ω.
First, we define following space:

H1(Ω) = {v ∈ L2(Ω),∇v ∈ L2(Ω)3},
equipped with the norm

‖v‖H1(Ω) = (‖v‖2L2(Ω) + ‖∇(v)‖2L2(Ω))1/2.
Then, we introduce

H(div,Ω) = {v ∈ L2(Ω)3, div(v) ∈ L2(Ω)}
with the norm

‖v‖H(div,Ω) = (‖v‖2L2(Ω) + ‖div(v)‖2L2(Ω))1/2

and the space
H(rot,Ω) = {v ∈ L2(Ω)3, rot(v) ∈ L2(Ω)3}

equipped with the norm

‖v‖H(rot,Ω) = (‖v‖2L2(Ω) + ‖rot(v)‖2L2(Ω))1/2.
We assume next hypothesis:

• Γ is a bounded Lipschitz boundary.

• Ω is placed locally on one side of the Γ.

We recall the following results

Lemma 2.2.1 The space D(Ω)3 is dense in H(div,Ω) and in H(rot,Ω), as D(Ω)

is dense in H1(Ω). [MC]
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2.2.2 Differential operators on Γ

Now we are going to define differential operators on the surface Γ, with help of scalar
and vector functions defined on the same surface:

f ∈ D(Γ)→ f̃ ∈ D(R3) such that f̃ |Γ = f

and
g ∈ D(Γ)3 → g̃ ∈ D(R3)3 such that g̃|Γ = g

where n · g = 0.

Definition 1 On the surface Γ we have the tangential rotational vector for f ∈
D(Γ):

rotΓf(x) = ∇f̃(x)× n = rot(nf(x)). (2.1)

And the scalar surface rotational vector for g ∈ D(Γ)3 such that n · g = 0:

rotΓg(x) = n · rotg̃(x). (2.2)

Definition 2 On the surface Γ we have the scalar Laplacian or Laplace-Beltrami
operator acting on a function f ∈ D(Γ) is

ΔΓf(x) = divΓ∇Γf(x) = −rotΓrotΓf(x). (2.3)

The vectorial Laplacian or Hodge operator acting on a tangent vector field g ∈ D(Γ)3

is
ΔΓg = ∇ΓdivΓg − rotΓrotΓg. (2.4)

The surface divergence for g ∈ D(Γ)3 such that n · g = 0:

divΓg(x) = −rotΓ(g(x)× n) (2.5)

The tangential gradient for f ∈ D(Γ):

∇Γf(x) = −n× (n×∇f̃(x)) (2.6)

Proposition 2.2.1 The operators rotΓ and rotΓ extend in unique way to D′(Γ)3

and D′(Γ) by relations:{
< rotΓf,ψ >= − < f, rotΓψ > ∀f ∈ D′(Γ), ∀ψ ∈ D(Γ)3 such that ψ · n = 0

< rotΓg, φ >= − < g, rotΓφ > ∀g ∈ D′(Γ)3 such that g · n = 0, ∀φ ∈ D(Γ)

The operators ∇Γ and divΓ extend in unique way to D′(Γ) and D′(Γ)3 by rela-
tions:{

< ∇Γf,ψ >= − < f, divΓψ > ∀f ∈ D′(Γ), ∀ψ ∈ D(Γ)3 such that ψ · n = 0

< divΓg, φ >= − < g,∇Γφ > ∀g ∈ D′(Γ)3 such that g · n = 0, ∀φ ∈ D(Γ)
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Proposition 2.2.2 From the definition of surface divergence (2.5), we give next
equations for all g ∈ D′(Γ)3 such that g · n = 0:

divΓg = −divΓ(n× (n× g))

divΓ(n× g) = −rotΓg

Now we are going to define Sobolev spaces on the surface Γ. The spaces
H−1/2(div, Γ) and H−1/2(rot, Γ) are defined as follows:

H−1/2(div, Γ) = {g ∈ H−1/2(Γ)3, g · n = 0, divΓ(g) ∈ H−1/2(Γ)}

‖g‖−1/2,divΓ =
(
‖g‖2−1/2,H(Γ) + ‖divΓ(g)‖2−1/2,H(Γ)

)1/2
and

H−1/2(rot, Γ) = {g ∈ H−1/2(Γ)3, g · n = 0, rotΓ(g) ∈ H−1/2(Γ)3}

‖g‖−1/2,rotΓ =
(
‖g‖2−1/2,H(Γ) + ‖rotΓ(g)‖2−1/2,H(Γ)

)1/2
Proposition 2.2.3 We have duality relations:(

H−1/2(rot, Γ)
)′
= H−1/2(div, Γ) and

(
H−1/2(div, Γ)

)′
= H−1/2(rot, Γ)

and ∀f ∈ H−1/2(div, Γ); ∀g ∈ H−1/2(rot, Γ) we have

‖f‖(−1/2,rotΓ)′ = sup
g �=0∈H−1/2(rot,Γ)

< f ,g >

‖g‖−1/2,rotΓ
= ‖f‖−1/2,divΓ

‖g‖(−1/2,divΓ)′ = sup
f �=0∈H−1/2(div,Γ)

< g, f >

‖f‖−1/2,divΓ
= ‖g‖−1/2,rotΓ

Green’s Formula: For all u,v ∈ H(rot,Ω)∫
Ω
(u · rot(v∗)− rot(u) · v∗)dx = < n× u|Γ ,n× (n× v|Γ) > (2.7)

where < ., . > denotes antiduality product H−1/2(div,Γ)−H−1/2(rot,Γ).

2.2.3 Trace results

The following trace theorems are basic in fundamental analysis for electromagnetism
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Theorem 2.2.1 We define a linear application γ0 by:

∀u ∈ H1(Ω), γ0u = u|Γ

Then γ0 is continuous from H1(Ω) to H1/2(Γ) equipped with the norm and also we
have:

∀u ∈ H1(Ω), ‖γ0u‖1/2,H(Γ) ≤ C(Γ)‖u‖H1(Ω)

∀f ∈ H1/2(Γ), ∃u ∈ H1(Ω) such that

f = γ0u and ‖u‖H1(Ω) ≤ C(Γ)‖f‖1/2,H(Γ)

Proof. : See [TE] pp.110-113.

Theorem 2.2.2 We define linear application γn as:

∀u ∈ [H1(Ω)]3, γnu = −n× u|Γ

Then, γn extends in unique form to a continuous linear application from H(rot,Ω)

to H−1/2(div,Γ) and also we have:

∀u ∈ H(rot,Ω), ‖γnu‖−1/2,divΓ ≤ C(Γ)‖u‖H(rot,Ω)

∀f ∈ H−1/2(div,Γ), ∃u ∈ H(rot,Ω)

such that f = γnu and ‖u‖H(rot,Ω) ≤ C(Γ)‖f‖−1/2,divΓ

Proof. : See [TE] pp.124-125

Theorem 2.2.3 We define linear application ΠΓ as:

∀u ∈ [H1(Ω)]3, ΠΓu = −n× (n× u|Γ)

Then, ΠΓ extends in unique form to a continuous linear application from H(rot,Ω)

to H−1/2(rot,Γ) and also we have:

∀u ∈ H(rot,Ω), ‖ΠΓu‖−1/2,H (rot,Γ) ≤ C(Γ)‖u‖H(rot,Ω)

∀g ∈ H−1/2(rot,Γ), ∃u ∈ H(rot,Ω)

such that g = ΠΓu and ‖u‖H(rot,Ω) ≤ C(Γ)‖g‖−1/2,rotΓ

Proof. : See [TE] pp.125-126
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2.3 Properties of integral operators

Some solutions of the problems of diffraction of electromagnetic waves can be ex-
pressed with the help of potential and in particular the potential of single and dual
layer defined on the surface of the obstacle. We present here the properties of the
harmonic potential.

Definition 3 We introduce the potentials (B − S) and Q, that are defined by

(B − S)J :=

∫
Γ

(
G(x, y)J(y) +

1

k2
∇xG(x, y)divΓJ

)
dΓ(y) (2.8)

QM :=

∫
Γ
∇yG(x, y)×MdΓ(y) (2.9)

and G(x, y) is the Green kernel giving the outgoing solutions to the scalar Helmholtz
equation:

• in 2D case

G(x, y) :=
π

i
H
(2)
0 (k|x− y|), ∇xG(x, y) := − πk

i|x− y|H
(2)
1 (kj |x− y|)(x− y)

(2.10)

• in 3D case

G(x, y) :=
e−ik|x−y|

4π|x− y| , ∇xG(x, y) := −(1 + ik|x− y|)
4π|x− y|3 e−ik|x−y|(x− y)

(2.11)

According to the theorem 4.6 in [TL](Chapter I, p.43) we have:

Theorem 2.3.1 The operator Q is continuous from H−1/2(div,Γ) to H−1/2(rot,Γ)
and we have that:

|(n×Q+
I

2
)M|−1/2,divΓ ≤ C|M|−1/2,divΓ ∀M ∈ H−1/2(div,Γ) (2.12)

And according to theorem 2.2 in [TL](Chapter II, p.61) we have:

Theorem 2.3.2 The operator (B − S) is an isomorphisme from H−1/2(div,Γ) to
H−1/2(rot,Γ) and it verifies the inequality:

‖(B − S)φ‖−1/2,rotΓ ≤ C‖φ‖−1/2,divΓ (2.13)

and the coercivity relation ∀φ ∈ H−1/2(div,Γ):

�(< φ, (B − S)φ >) ≥ C‖φ‖2−1/2,divΓ (2.14)

Let us mention the abstract theorems known as Fredholm alternative [JCN].
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2.3.1 Fredholm alternative

Theorem 2.3.3 : Let V be a Hilbert space. Let H be a Hilbert space which contains
V . Let a(u, v) be continuous bilinear form on V × V which satisfies:

�[a(u, v)] ≥ α‖u‖2V − c‖u‖2H , α > 0, ∀u ∈ V. (2.15)

We consider the variational problem

a(u, v) = (g, v); ∀v ∈ V ; g ∈ V ∗.

Suppose that the injection of V into H is compact. Then the variational problem
(VP) satisfies the Fredholm alternative i.e.

- either it admits a unique solution in V ,
- or it has a finite dimension kernel, and a unique solution upto any element

in this kernel, when the duality product of the right-hand side g vanishes on every
element in this kernel.

We take existence and uniqueness theorem from [JCN](p.245, Theorem 5.6.1).

Theorem 2.3.4 (Existence and Uniqueness): Let V and W be Hilbert spaces. Let
A(., .) be a bilinear form continuous on V × V which satisfies

�[A(u, ū)] ≥ α‖u‖2V − C‖u‖2H , α > 0, ∀u ∈ V (2.16)

where H is Hilbert space containing V . Let B(q, v) be a bilinear form continuous on
W × V which satisfies:

sup
‖u‖V =1

|B(q, u)| ≥ β‖q‖W − C‖q‖L, β > 0, ∀q ∈W (2.17)

where L is a Hilbert space containing W .
Consider the following variational problem, with g1 ∈ V ∗ and g2 ∈W ∗:{

A(u, v) +B(p, v) = (g1, v) ∀v ∈ V

B(q, u) = (g2, q) ∀q ∈W
(2.18)

Denote by V0 the kernel of the bilinear form B in V , i.e.

V0 = {u ∈ V, B(q, u) = 0, ∀q ∈W}
Suppose that the injection form V0 into H is compact and the injection from W into
L is compact. Suppose that there exists an element ug2 ∈ V such that:

B(q, ug2) = (g2, q), ∀q ∈ V.

Then the variational problem (2.18) satisfies the Fredholm alternative, i.e.
-either it admits a unique solution in V ×W ,
-or it admits a finite dimension kernel, and a solution defined up to any element

in this kernel, when the right-hand side (g1, g2) vanishes on any element in this
kernel.
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2.4 Conclusion

In this chapter, we defined the vectorial Laplacian or Hodge opertor (2.4). Stupfel
uses this operator to define higher order impedance boundary conditions [BSb]. We
defined some Sobolev spaces such as H−1/2(div,Γ) and H−1/2(rot,Γ), that are usu-
ally taken as a spaces of unknowns. In the previous chapter we introduced integral
equations (1.16) and (1.17) with operators (B − S) and Q. Here we defined these
operators more precisely. We will use their inequalities to show the continuity and
the coercivity of a bilinear form of the problem. And last two Fredholm alternative
theorems are very important to prove the existence of a solution to the scattering
problem in two and three dimensional cases.
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3.1 Introduction

In this chapter, we introduce exact impedance operators Zex on infinitesimally thin
tangent plane [R-Sb]. Stupfel derives the same impedance operators in [BS]. In
Appendix C, we propose his calculation of exact impedance operators. Rahmat-
Samii introduced the same tensor of exact impedance. He approximated Zex as
a ratio of polynomial of differential operators in [R-Sb]. We use decomposition of
Hodge operator to approximate the impedance operator in the three dimentional
case. Whence we reduce to two dimentional impedance boundary conditions, as in
[R-Sb, BSb]. We will determine sufficient uniqueness conditions based on uniqueness
theorem (1.3.1) from chapter 1.

3.2 Differential forms of impedance boundary conditions

We approximate impedance at each point of the surface as impedance for infinite
plane layer. An incident wave has different incident angles at different points of the
surface. We take the boundary conditions as invariant to incident angle, herewith
it takes into consideration that incident angle varies. We consider a plane isotropic
medium with a local orthogonal basis (x,y,z) on a tangent plane, where a normal vec-
tor n is in z-direction and (x,y) is a tangent plane. The following exact impedances
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are obtained for the dielectric plane layer [R-Sb, BS]

Zxy(kx, ky) = Zyx(kx, ky) = i

√
μ

ε

kxky
kkz

tan[kzd] (3.1)

Zxx(kx, ky) = −i
√

μ

ε

k2xk
2
z + k2yk

2

kkz(k2x + k2y)
tan[kzd] (3.2)

and

Zyy(kx, ky) = −i
√

μ

ε

k2yk
2
z + k2xk

2

kkz(k2y + k2x)
tan[kzd]. (3.3)

Z is the impedance tensor of wave numbers (kx, ky), wave frequency and coating at
each point of a surface.

We assume that the plane-wave fields are written in the following forms:

E(r, t) = e1E0e
−ik·r+iωt

H(r, t) = e2H0e
−ik·r+iωt

where e1, e2 are two constant real unit vectors; E0, H0 are complex amplitudes
which are constant in space and time. [JDJ]

E(r) = E0e−i(kxx̂+kyŷ+kz ẑ)·r

∂xE(r) = −ikxE(r)
∂2xE(r) = −k2xE(r)

So we can replace partial derivatives by kx and ky components

∂x = −ikx and ∂y = −iky (3.4)

or
∂2x = −k2x, ∂2xy = −kxky and ∂2y = −k2y. (3.5)

In [R-Sb] the impedance boundary conditions are written using the spectral
domain approach and are approximated as a ratio of second order polynomials for a
coating, invariant under rotation. Those approximation equations could be written
as

(1+b1∂
2
x+b2∂

2
y)Ex+(b1−b2)∂

2
xyEy = (a1−a2)∂

2
xyHx−(a0+a1∂

2
x+a2∂

2
y)Hy (3.6)

and

(b1−b2)∂
2
xyEx+(1+b2∂

2
x+b1∂

2
y)Ey = (a0+a2∂

2
x+a1∂

2
y)Hx+(a2−a1)∂

2
xyHy (3.7)

Note that n×H = −Hyx+Hxy. And HOIBC is written in matrix form[
1 + b1∂

2
x + b2∂

2
y (b1 − b2)∂

2
xy

(b1 − b2)∂
2
xy 1 + b2∂

2
x + b1∂

2
y

](
Ex

Ey

)
=

[
a0 + a1∂

2
x + a2∂

2
y (a1 − a2)∂

2
xy

(a1 − a2)∂
2
xy a0 + a2∂

2
x + a1∂

2
y

]( −Hy

Hx

)
(3.8)
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3.2.1 3D case form

Now we are going to replace partial derivatives by differential operators, the com-
ponents of Hodge operator LD and LR [BSb]. We define the operators LD and LR

for all vector function A sufficiently smooth, such that A · n = 0

LD(A) = ∇tg(divtgA)

LR(A) = rottg(rottgA)

and we remember Hodge operator that was defined earlier in (2.4) chapter 2

L = LD − LR = ∇tgdivtg − rottgrottg.

We know that:
LDA = ∇tg(divtgA) = ∇tg(∂xAx + ∂yAy) =

= (∂2xAx + ∂2xyAy)x+ (∂2xyAx + ∂2yAy)y (3.9)

and

LRA = rottg(rottgA) = rot{n(rotA)n} = rot{n(∂xAy − ∂yAx)} =

(∂2xyAy − ∂2yAx)x+ (∂2xyAx − ∂2xAy)y. (3.10)

In equations (3.6) and (3.7) we can replace tangential derivatives by these oper-
ators LD and LR.

x·(Etg+b1LDEtg−b2LREtg) = x·(a0(n×H)+a1LD(n×H)−a2LR(n×H)) (3.11)

and

y·(Etg+b1LDEtg−b2LREtg) = y·(a0(n×H)+a1LD(n×H)−a2LR(n×H)). (3.12)

So, we propose three dimensional HOIBC approximation as

Z3D : (I + b1LD − b2LR)Etg = (a0I + a1LD − a2LR)(n×H) . (3.13)

3.2.2 First order form in 2D case

Here we need to consider two different situations. In the first one, we consider case
when the electric field is perpendicular to the incident plane, as shown on figure
(3.1 a). Incident, scattered and transverse electric fields are directed toward the
viewer. The direction of magnetic field was chosen such that energy current has
positive direction, i.e. direction of wave propagation. We call this case, transverse-
electric (TE) polarization. In the second case electric fields are parallel to incident
plane, as shown in figure (3.1 b). In this case we call it transverse-magnetic (TM)
polarization.
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Figure 3.1: Reflection and refraction with (a) TE and (b) TM polarizations.

We assume that the incident fields propagate perpendicular to the cylinder axis,
so that ∂/∂y = 0. And fields are polarized either with the electric field in the y

direction (E polarization or TM), or with the magnetic field in the y direction (H
polarization or TE). In two dimensional case we have that ∂y ≡ 0, so(

1 + b1∂
2
x 0

0 1 + b2∂
2
x

)(
Ex

Ey

)
=

(
a0 + a1∂

2
x 0

0 a0 + a2∂
2
x

)( −Hy

Hx

)
(3.14)

So we get that in two dimensional TE polarization, we have

(1 + b1∂
2
x)Ex = −(a0 + a1∂

2
x)Hy

and in TM polarization, we have

(1 + b2∂
2
x)Ey = (a0 + a2∂

2
x)Hx.

So, for a plane wave the first order IBC (3.14) can be written as(
1− b1k

2
x 0

0 1− b2k
2
x

)(
Ex

Ey

)
=

(
a0 − a1k

2
x 0

0 a0 − a2k
2
x

)( −Hy

Hx

)
(3.15)

According to (C.9), we get first order approximation of impedance in two di-
mensional cases for each polarization

Z2Dj : (1 + bj∂
2
x)Etg = (a0 + aj∂

2
x)n×H (3.16)

and the impedance Z2Dj is the following rational function of k2x

Z2Dj =
a0 − ajk

2
x

1− bjk2x
, j = 1, 2 (3.17)



3.2. Differential forms of impedance boundary conditions 23

The coefficients indicated by j = 1, 2 correspond to polarizations TE and TM re-
spectively. These coefficients (a0, aj , and bj) are determined by equating this first
order impedance Z2Dj and the exact impedance. From (C.11) and (C.12) we can
express exact impedance for TE and TM polarization:

Zex
TE =

√
μ

ε

kz
k
tan (kzd) = z0

√
μrεr −

(
kx
k0

)2
tan

⎛
⎝
√

μrεr −
(
kx
k0

)2
k0d

⎞
⎠/εr

(3.18)

Zex
TM =

√
μ

ε

k

kz
tan (kzd) =

z0μr tan

(√
μrεr −

(
kx
k0

)2
k0d

)
√

μrεr −
(
kx
k0

)2 (3.19)

If θ = 0, we get that a0 = Z(0) = Zex(0), for a normally incident wave, which
is known as the Leontovich boundary condition and we get

a0 =

√
μ0μr

ε0εr
tan (ω

√
μ0μrε0εrd)

We calculate other coefficients aj and bj , using two arbitrary angles θ1 and θ2 by:

(
aj
bj

)
=

[
−k2x(θ1) k2xZ

ex
j (θ1)

−k2x(θ2) k2xZ
ex
j (θ2)

]−1(
Zex
j (θ1)− a0

Zex
j (θ2)− a0

)

The indices correspond to TE and TM polarizations, as in (3.17). The arbitrary
angles θ1 and θ2 should be in the angle range ]0, π/2[. Here we take k2x = k20 sin

2(θ)

as [BSb].
Note that in two dimensional case we suppose that ∂y = 0. The three dimen-

sional impedance Z3D should correspond to Z2Dj in two dimensional case. Coeffi-
cients a1, b1 and a2, b2 should correspond to those in two dimension, TE and TM
coefficients, respectively.

3.2.3 Second order form in 2D case

The equation (3.16) can be extended to second order polynimials in ∂2x:

Etg + bj∂
2
xEtg + b′j∂

4
xEtg = a0(n×H) + aj∂

2
x(n×H) + a′j∂

4
x(n×H) (3.20)

or it can be reduced to constant:

Etg = a0(n×H). (3.21)

We will call the equation (3.20) second order IBC (IBC2), the equation (3.21) zeroth
order IBC (IBC0), which is also known as Leontovich IBC. And we will call the
eqution (3.16) as first order IBC (IBC1). Note that (3.20) with a′j = b′j = 0 derives
to (3.16). As well as with aj = bj = 0, the equation (3.16) derives to (3.21).
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3.3 Sufficient uniqueness conditions

We have defined HOIBC. Now we want to establish sufficient uniqueness conditions
(SUC) for the solutions of Maxwell’s equations associated with these IBCs, with
help of the uniqueness theorem mentioned earlier in chapter 1.

Problem 3.3.1 Find (E,H) such that⎧⎪⎪⎨
⎪⎪⎩
rotE+ ik0μH = 0 in Ω+

rotH− ik0εE = 0 in Ω+

limr→∞ r(E× nr +H) = 0

(3.22)

with a boundary conditions

Etg = Z(n×H) on Γ

where Z = Z1τ + Z2ν is a matrix with constant values.

The following theorem gives us sufficient uniqueness conditions for this problem.

Theorem 3.3.1 The problem 3.3.1 admits a unique solution if the following re-
lations are verified ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(μ) ≤ 0,

�(ε) ≤ 0,

�(Z1) ≥ 0,

�(Z2) ≥ 0.

(3.23)

Proof. According to the theorem 1.3.1 from chapter 1, the problem admits a
unique solution if

�
(
k0

∫
Γ
(n×H) ·E∗

)
≥ 0.

The boundary condition of the problem 3.3.1 says that Etg = Z(n×H) = −Z1Hντ+

Z2Hτν, where Z1 and Z2 are complex constants. So we need to show that

0 ≤ �
∫
Γ
−Hν(−Z∗1H∗

ν ) +Hτ (Z
∗
2H

∗
τ ) = �

∫
Γ
Z∗1 |Hν |2 + Z∗2 |Hτ |2

And with theorem hypothesis:

�(Z∗1 ) = �(Z1) ≥ 0 and �(Z∗2 ) = �(Z2) ≥ 0,

the hypothesis (1.9) are verified. So the problem with IBC0 admits a unique solution.
Q.E.D.

[BSc].
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The condition �(Z) ≥ 0 is invariant to incident angle, so applying it for SIBC
we get that coefficient a0 in HOIBC also should verify condition

�(a0) ≥ 0.

We are going to study a more complicated boundary condition, that is called
first order IBC. For the problem 3.22 with a boundary condition IBC1

Etg + bjL(Etg) = a0(n×H) + ajL(n×H) on Γ, (3.24)

where L is a complex differential operator, also known as Hodge operator. We
assume that{

(n×H) · τ = (n×H) · ν = 0 on ∂Γ if Γ is open,

Etg · τ = Etg · ν = 0 on ∂Γ if Γ is open.
(3.25)

Theorem 3.3.2 The Maxwell problem (3.22) with the boundary conditions (3.24)
and (3.25) has a unique solution if the following relations are verified⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(μ) ≤ 0,

�(ε) ≤ 0,

aj − b∗ja0 �= 0,

�(aj − b∗ja0) = 0,

�(a∗0aj)�(aj − b∗ja0) ≥ 0,

�(bj)�(aj − b∗ja0) ≥ 0.

(3.26)

Proof. see [BSc].

We study yet another more complicated HOIBC, which is called second-order
IBC that increases power of Hodge operator. For the SUC of the problem (3.22)
with IBC2, we assume that

Etg+ bjL(Etg)+ b′jL
2(Etg) = a0(n×H)+ajL(n×H)+a′jL

2(n×H) on Γ, (3.27)

where L2(·) = L ◦ L(·). And all coefficients aj , a
′
j , bj and b′j are defined locally and

depend on incident angle. With a next conditions on a bound⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n×H) · τ = (n×H) · ν = 0 on ∂Γ if Γ is open,

Etg · τ = Etg · ν = 0 on ∂Γ if Γ is open

X1 · ν = X2 · ν = Y1 · ν = Y2 · ν = 0 on ∂Γ if Γ is open

X1 · τ = X2 · τ = Y1 · τ = Y2 · τ = 0 on ∂Γ if Γ is open.

(3.28)

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1 = ∇ΓdivΓEtg = LDEtg

X2 = ∇ΓdivΓ(n×H) = LD(n×H)

Y1 = rot(n(rotΓEtg)) = LREtg

Y2 = rot(n(rotΓ(n×H))) = LR(n×H)

(3.29)

So for the IBC2 we have following uniqueness theorem
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Theorem 3.3.3 The Maxwell problem (3.22) with a boundary condition (3.27),
(3.28) and (3.29) admits a unique solution if next relations are verified⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(μ) ≤ 0,

�(ε) ≤ 0,

Δ �= 0,

�[Δ∗(ajb′∗j − a′jb
∗
j )] = 0,

�[Δ∗(a′j − a0b
′∗
j )] = 0,

α�b′j + β�(bjb′∗j ) ≤ 0,

α�(a′ja∗0)− β�(a′ja∗j ) ≤ 0,

−α�bj + β�b′j ≤ 0,

α�(aja∗0)− β�(a′ja∗0) ≥ 0

(3.30)

with
Δ = (a0b

∗
j − aj)(ajb

′∗
j − a′jb

∗
j )− (a′j − a0b

′∗
j )

2

α = �[Δ∗(ajb′∗j − a′jb
∗
j )]

β = �[Δ∗(a0b′∗j − a′j)]

Proof. see [BSc].

All these three theorems are based on the theorem 1.3.1 and its condition
�(k0

∫
ΓE

∗ · (n × H)ds) ≥ 0. So, to verify this condition, coefficients of HOIBC
should verify conditions mentioned in these theorems.

3.4 Conclusion

We assume that imedance operator Z is equal to Zex on infinitesimally thin tangent
plane, where tangent plane and surface of the object have the same properties (ε, μ,
d). We introduced the approximation of impedance boundary conditions by equation
(3.13) for three dimentional case and equation (3.16) for two dimentional case. We
proposed zero order IBC that is known as Leontovich IBC, and second order HOIBC
with different coefficients a0, a1, a2, b1 and b2. We calculate coefficients as a solution
of a system of linear equations. We defined coefficients for 2D case and we use them
for 3D case. Further in next chapter we will propose different ways to determine
the coefficients. The sufficient uniqueness conditions are represented as restrictions
on coefficients.
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4.1 Introduction

In this chapter, we propose some different methods to calculate coefficients for
HOIBC [BS, R-Sb]. The impedance operator for normal incident wave is equal
to constant a0 that is known as Leontovich IBC (or standard IBC). As was men-
tioned earlier, the impedance operator depends on layer thickness, on the dielectric
characteristics of medium of this layer. Also it depends on the incident angle of
the incident electromagnetic plane wave. So another two coefficients depend on the
incedent angle in 2D first order IBC. Numerical results demonstrates the relative
advantages of calculations using IBC0, IBC1 and IBC2 with respect to the angle of
incidence.

4.2 Approximation of coefficients

Wave formulas of electromagnetic fields give the quantity of wave number x-
component, that was noted in the previous chapter, at calculation coefficients of
approximate polynomials. Where from we denote ξ = −(kxk0 )2 = − sin2(θ) and
input it in the exact impedance values (3.18), (3.19), we get:

Zex
TE(ξ) = z0

√
μrεr + ξ tan

(√
μrεr + ξk0d

)
/εr

Zex
TM (ξ) =

z0μr tan
(√

μrεr + ξk0d
)

√
μrεr + ξ

.

Here we approximate impedance as ratio of polynomials of ξ.
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The simplest IBC is Leontovich IBC, as were already mentioned several times
Z = const. Usually, it is taken for incident wave perpendicular to plane

Z1 = Z2 = Zex
1,2(θ = 0)

a0 = z0

√
μr

εr
tan (

√
μrεrk0d) (LIBC)

In fact, we can take an arbitrary angle value in permitted range [0, π/2]. If the
angle is not zero, then impedances are different to each other

Z1 = Zex
1 (θ) and Z2 = Zex

2 (θ)

in different polarizations.

4.2.1 First order IBC

First order polynomial
The accuracy of the boundary condition may be improved by including the

coefficient a1, thus approximation derive first order polynomial form [R-Sb]. Let
coefficient a0 = Zex

1 (0) and aj is defined for arbitrary θ1 ∈]0, π/2[

aj =
Zex
j (θ1)− a0

ξ(θ1)

bj = 0.

We can approximate impedance Zex as the first order Taylor polynomial for ξ

near to zero [Stupfel], which yields

a1 = z0
k0d

2εr
+ z0

tan(
√
μrεrk0d)

2
√
μrεrεr

+z0
k0d tan

2(
√
μrεrk0d)

2εr
(Taylor)

b1 = 0.

Ratio of polynomials
Now we suppose that b1 is different to zero and we approximate the impedance

as ratio of polynomials. Stupfel mentioned Padé approximation, which considers
second order Taylor approximation as follows

Zex
1 (ξ) = c0 + c1ξ + c2ξ

2 +O(ξ2) ≈ a0 + a1ξ

1 + b1ξ
, (4.1)

where coefficients c0, c1 and c2 are Taylor coefficients:

c0 = z0

√
μr

εr
tan (

√
μrεrk0d)
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c1 = z0
k0d

2εr
+ z0

tan(
√
μrεrk0d)

2
√
μrεrεr

+z0
k0d tan

2(
√
μrεrk0d)

2εr

c2 =
z0k0d

8ε2rμr
+

(
z0k

2
0d

2

4εr
√
εrμr

− z0

8εr(εrμr)3/2

)
tan(

√
εrμrk0d)

+
z0k0d

8ε2rμr
tan2(

√
εrμrk0d) +

z0k
2
0d

2

2εr
√
εrμr

tan3(
√
εrμrk0d).

By multiplying this Taylor polynomial by denominator polynomial and equating the
product to the numerator polynomial, we derive equations, where coefficients of Pade
approximation may be determined through coefficients of Taylor approximation. So,
from (4.1) we have

a0 + a1ξ ≈ c0 + (c1 + c0b1)ξ + (c2 + c1b1)ξ
2 +O(ξ2),

that gives following equations
a0 = c0,

a1 = c1 + c0b1

0 = c2 + c1b1.

Finally, we get the coefficients of Pade approximation

b1 = −c2
c1
,

a1 = c1 − c0
c2
c1

(Pad).

Another method to calculate the coefficients was used in previous chapter. For
different θ1, θ2 from ]0, π/2[, we get different values of ξi = −k20 sin2(θi) and two
linear equations [R-Sb]

Zex
1 (ξ1)− b1ξ1Z

ex
1 (ξ1)− a0 + a1ξ1 = 0

Zex
1 (ξ2)− b1ξ2Z

ex
1 (ξ2)− a0 + a1ξ2 = 0.

That can be solved in matrix form as follows(
aj
bj

)
=

[
ξ1 −ξ1Zex

j (ξ1)

ξ2 −ξ2Zex
j (ξ2)

]−1(
Zex
j (ξ1)− a0

Zex
j (ξ2)− a0

)

and we get the coefficients of so-called Collocation approximation [BS]

a1 =
−ξ2Zex

j (ξ2)(Z
ex
j (ξ2)− a0) + ξ1Z

ex
j (ξ1)(Z

ex
j (ξ2)− a0)

ξ1ξ2(Zex
j (ξ1)− Zex

j (ξ2))

b1 =
−ξ2(Zex

j (ξ1)− a0) + ξ1(Z
ex
j (ξ2)− a0)

ξ1ξ2(Zex
j (ξ1)− Zex

j (ξ2))
.
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4.2.2 Second order IBC

We can apply all methods that were proposed earlier for IBC2, too. We get Taylor
approximation, if we admit that bj and b′j are zero. If they are not zero, we get
ratio of polynomials approximation. Padé approximation uses fourth order Taylor
expansion. Whence we get five equation for five unknown coefficients. And in the
last method, the coefficients are calculated by solving system of linear equations for
different θk ∈]0, π/2[, k = 1, 2, 3, 4⎛

⎜⎜⎜⎝
aj
a′j
bj
b′j

⎞
⎟⎟⎟⎠ =

⎡
⎣ ξ1 ξ21 −ξ1Zex

j (ξ1) −ξ21Zex
j (ξ1)

2

... ... ... ...

ξ4 ξ24 −ξ4Zex
j (ξ4) −ξ24Zex

j (ξ4)
2

⎤
⎦
−1
⎛
⎜⎜⎜⎝

Zex
j (ξ1)− a0

...

...

Zex
j (ξ4)− a0

⎞
⎟⎟⎟⎠

Here, we suppose that in the last two methods we get invertible matrices.

4.3 Numerical results

In order to illustrate the relative accuracy of approximated boundary conditions
compared to the exact IBC, we present here some examples. And we will see that
HOIBC consider the incident angle parameter. We will see the difference between
IBC0 and exact IBC.

Let us consider a mono-layer dielectric coating with characteristics εr = 4.0,
μr = 1.0 and d = 0.005λ0. Figure 4.3 shows values exact IBC, Leontovich IBC, first
order and second order impedance boundary conditions, in TE polarization. Where
the angle of incidence of the plane wave φ has angle range ]0, π[. The IBC0 was
taken as an impedance of a perpendicular incidence wave. To calculate first-order
IBC approximation we used φ = 0 , π/6 , π/3. To calculate second-order IBC we
used φ = 0 , π/8 , π/6 , π/4 , π/3.

On the figure 4.3, we can easily see that the difference between IBC0 and exact
IBC increases. While the difference between exact IBC and IBC1 is very small, as
the difference between exact IBC and IBC2.

But we can see the error of IBC1 and IBC2 approximations on the figure 4.4. As
the angle of incidence increases the error of first-order IBC approximation reaches
0.39Ω.
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Figure 4.1: Comparison of the exact impedance, Leontovich impedance (IBC0),
first-order (IBC1) and second-order (IBC2) IBC in TE polarisation.

Figure 4.2: Errors of first-order (IBC1) and second-order (IBC2) IBC in TE polar-
isation.
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Figure 4.3: Comparison of the exact impedance, Leontovich impedance (IBC0),
first-order (IBC1) and second-order (IBC2) IBC in TM polarisation.

Figure 4.4: Errors of first-order (IBC1) and second-order (IBC2) IBC in TM polar-
isation.
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5.1 Introduction

We recall integral form of Maxwell’s equations with help of the operators (B − S)

and Q

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< IEinc,ΨJ > (5.1)

− < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< IH inc,ΨM > . (5.2)

The variational form of scattering problem of electromagnetic waves with a constant
or Leontovich impedance boundary condition is well-known [TL]. And the existence
and uniqueness theorems were proved.

Here we apply the first and second order HOIBC for two dimensional problem
that were defined in chapter 3. The problems for TE and TM polarizations will be
presented separately. The existence and uniqueness theorems based on alternative
of Fredholm or theorem 2.3.3. The continuity and coercivity conditions impose their
own restrictions on HOIBC.

5.2 Variational problem with impedance boundary con-
dition

Two dimensional case system is invariant in one direction, so object surface Γ be-
comes a curved contour, that we will call C. We have the curvilinear abscissa l along
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C and normal to the contour unit vector n. We set the local frame (τ , ν, n), where
τ is a unit vector tangent to the contour C in l direction, and ν can be defined as
ν = n × τ . We suppose that our two dimensional system does not depend on ν

parameter, however variable ν component is depend on l.
We said that impedance boundary conditions are described by the following

Etg = Z(n×H).

According to the definition of electromagnetic current densities, we have

Etg = n× (E× n) = n×M on Γ;

n×H = J on Γ.

So we rewrite impedance boundary condition as follows

n×M = ZJ. (5.3)

And we approximate the operator Z, as a ratio of polynomials of differential oper-
ators, as indicated in chapter 3. So, we recall first order IBC

(1 + bjd
2
l )(n×M) = (a0 + ajd

2
l )J (5.4)

and the second order IBC

(1 + bjd
2
l + b′jd

4
l )(n×M) = (a0 + ajd

2
l + a′jd

4
l )J (5.5)

where j = 1, 2 correspond to TE and TM polarizations, respectively. The invariance
in one direction for two dimensional model allow us to simplify the Hodge operator
as the second partial derivative on the contour. Where the electromagnetic current
densities n×M and J have τ direction for TE polarization, and ν direction for TM
polarization.

• TE: ∂2xJ = τ∂2xJτ = τd2l Jτ and ∂2x(n×M) = −τ∂2xMν = −τd2lMν ;

• TM: ∂2xJ = ν∂2xJν = νd2l Jν and ∂2x(n×M) = ν∂2xMτ = νd
2
lMτ .

Next, we consider the integral form of the boundary conditions and we present
variational formulation of the problem with these IBC1 and IBC2 conditions.

5.2.1 Problem with first order IBC

We weakly write the equation (5.4), we multiply it by a test function and integrate
along the contour C. In EFIE test function is noted as Ψj , so we use it to insert
our boundary condition in this equation.∫

C
(1 + bjd

2
l )(n×M) ·ΨJdl =

∫
C
(a0 + ajd

2
l )J ·ΨJdl.
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That gives us∫
C
(n×M) ·ΨJdl =

∫
C
(a0 + ajd

2
l )J ·ΨJdl −

∫
C
bjd

2
l (n×M) ·ΨJdl.

We put it in the operator P and obtain:

< PM,ΨJ >=
1

2

∫
C
(n×M) ·ΨJdl =

a0
2

∫
C
J ·ΨJdl

+
aj
2

∫
C
d2l J ·ΨJdl − bj

2

∫
C
d2l (n×M) ·ΨJdl (5.6)

We use (n×ΨM ) as a test function, to insert IBC1 in MFIE∫
C
(1 + bjd

2
l )(n×M) · (n×ΨM )dl =

∫
C
(a0 + ajd

2
l )J · (n×ΨM )dl.

We take the first part of right side∫
C
J ·(n×ΨM )dl =

1

a0

∫
C
(1+bjd

2
l )(n×M) ·(n×ΨM )dl− 1

a0

∫
C
ajd

2
l J ·(n×ΨM )dl.

And using the formula of vector analysis

ΨM · (n× J) = −J · (n×ΨM ),

we put it in P operator with weakly form of IBC1

< PJ,ΨM >=
1

2

∫
C
(n× J) ·ΨMdl = −1

2

∫
C
J · (n×ΨM )dl =

= − 1

2a0

∫
C
(n×M) · (n×ΨM )dl − bj

2a0

∫
C
d2l (n×M) · (n×ΨM )dl

+
aj
2a0

∫
C
d2l J · (n×ΨM )dl (5.7)

First, we observe TE polarization, where P operator becomes:∫
C
PMν ΨJτdl =

a0
2

∫
C
Jτ ΨJτdl +

a1
2

∫
C
d2l Jτ ΨJτdl +

b1
2

∫
C
d2lMν ΨJτdl

and∫
C
PJτ ΨMνdl = − 1

2a0

∫
C
Mν ΨMνdl− b1

2a0

∫
C
d2lMν ΨMνdl− a1

2a0

∫
C
d2l Jτ ΨMνdl

for EFIE and MFIE, respectively.
We put them in the variational equations (1.16) and (1.17) and get:

iZ0

∫∫
C
kG(l, l′) Jτ (l′) ΨJτ [τ (l

′) · τ (l)]− 1

k
G(l, l′) d′lJτ (l

′) dlΨJτ (l) dl
′dl
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+

∫∫
C
ΨJτ (l) Mν(l

′) [τ (l)× ν(l′)] · ∇ΓG(l, l
′) dl′dl

+
a0
2

∫
C
Jτ ΨJτdl +

a1
2

∫
C
d2l Jτ ΨJτdl

+
b1
2

∫
C
d2lMν ΨJτdl =

∫
C
Einc

τ ΨJτdl (5.8)

and

−
∫∫

C
ΨMν(l) Jτ (l

′) [ν(l)× τ (l′)] · ∇ΓG(l, l
′)dl′dl

+
i

Z0

∫∫
C
kG(l, l′) Mν(l

′) ΨMν(l)[ν(l
′) · ν(l)]dl′dl

+
1

2a0

∫
C
Mν ΨMνdl +

bj
2a0

∫
C
d2lMν ΨMνdl

+
aj
2a0

∫
C
d2l Jτ ΨMνdl =

∫
C
H inc

ν ΨMνdl (5.9)

for EFIE and MFIE, respectively.
In the equations (5.8) and (5.9) we have scalar products [τ (l′)·τ (l)] = 1 and [ν(l)·

ν(l′)] = 1, and vector products [τ (l)×ν(l′)] = n(l) and [ν(l)×τ (l′)] = −n(l′). The
operator S contains surface divergence operator that becomes differential operator

divΓJ = divΓ(τJτ ) = dlJτ ;

divΓM = divΓ(νMν) = dνMν ≡ 0,

because the model is invariance in ν parameter.
By doing integration by parts, we have

b1
2

∫
C
d2lMν(l)ΨJτ (l)dl = −b1

2

∫
C
dlMν(l) dlΨJτ (l)dl. (5.10)

Finally we combine two equations (5.8)-(5.9) to present next variational problem:

Problem 5.2.1 Find U = (Jτ ,Mν) ∈ [H1(C)]2 such that:

A(U,Ψ) =

∫
C
Einc

τ ΨJτdl +

∫
C
H inc

ν ΨMνdl (5.11)

for all Ψ = (ΨJτ ,ΨMν) ∈ [H1(C)]2, where the bilinear form A is defined as:

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′)Jτ (l′)ΨJτ [τ(l) · τ(l′)]− 1

k
G(l, l′)d′lJτ (l

′)dlΨJτ (l)dl
′dl

+

∫∫
C
ΨJτ (l)Mν(l

′) n(l) · ∇ΓG(l, l
′)dl′dl +

∫∫
C
ΨMνJτ n(l′) · ∇ΓG(l, l

′)dl′dl
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+
i

Z0

∫∫
C
kG(l, l′)Mν(l

′)ΨMν(l)dl
′dl +

a0
2

∫
C
JτΨJτdl +

1

2a0

∫
C
MνΨMνdl

−a1
2

∫
C
dlJ dlΨJτdl−b1

2

∫
C
dlM dlΨJτdl− b1

2a0

∫
C
dlM dlΨMνdl− a1

2a0

∫
C
dlJ dlΨMνdl

(5.12)

We present similar variational problem for TM polarization:

Problem 5.2.2 Find U = (Jν ,Mτ ) ∈ [H1(C)]2 such that:

A(U,Ψ) =

∫
C
Einc

ν ΨJνdl +

∫
C
H inc

τ ΨMτdl (5.13)

for all Ψ = (ΨJν ,ΨMτ ) ∈ [H1(C)]2, where the bilinear form A is defined as:

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′)Jν(l′)ΨJνdl

′dl −
∫∫

C
ΨJν(l)Mτ (l

′) n(l′) · ∇ΓG(l, l
′)dl′dl

−
∫∫

C
ΨMτJν n(l) · ∇ΓG(l, l

′)dl′dl +
i

Z0

∫∫
C
kG(l, l′)Mτ (l

′)ΨMτ (l)[τ(l) · τ(l′)]

−1
k
G(l, l′)d′lMτ (l

′)dlΨMτ (l)dl
′dl +

a0
2

∫
C
JνΨJνdl − 1

2a0

∫
C
MτΨMτdl

−a2
2

∫
C
dlJ dlΨJνdl+

b2
2

∫
C
dlM dlΨJνdl+

b2
2a0

∫
C
dlM dlΨMτdl− a2

2a0

∫
C
dlJ dlΨMτdl

(5.14)

5.2.2 Problem with second order IBC

The equation (5.5) passes the same way as IBC1 to become weak. The weak for-
mulations replace operator P in EFIE and MFIE equations. Finally, we assemble
them to define the bilinear form:

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′)Jτ (l′)ΨJτ [τ (l) · τ (l′)]− 1

k
G(l, l′)d′lJτ (l

′)dlΨJτ (l)dl
′dl

+

∫∫
C
ΨJτ (l)Mν(l

′) n(l) · ∇ΓG(l, l
′)dl′dl +

∫∫
C
ΨMνJτ n(l′) · ∇ΓG(l, l

′)dl′dl

+
i

Z0

∫∫
C
kG(l, l′)Mν(l

′)ΨMν(l)dl
′dl +

a0
2

∫
C
JτΨJτdl +

1

2a0

∫
C
MνΨMνdl

+
a1
2

∫
C
d2l JτΨJτdl +

b1
2

∫
C
d2lMνΨJτdl +

b1
2a0

∫
C
d2lMνΨMνdl +

a1
2a0

∫
C
d2l JτΨMνdl

+
a′1
2

∫
C
d4lMν ΨJτdl+

b′1
2

∫
C
d4lMν ΨJτ +

b′1
2a0

∫
C
d4lMν ΨMνdl+

a′1
2a0

∫
C
d4l Jτ ΨMνdl
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for TE polarization. And with integration by parts, we get

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′)Jτ (l′)ΨJτ [τ (l) · τ (l′)]− 1

k
G(l, l′)d′lJτ (l

′)dlΨJτ (l)dl
′dl

+

∫∫
C
ΨJτ (l)Mν(l

′) n(l) · ∇ΓG(l, l
′)dl′dl +

∫∫
C
ΨMνJτ n(l′) · ∇ΓG(l, l

′)dl′dl

+
i

Z0

∫∫
C
kG(l, l′)Mν(l

′)ΨMν(l)dl
′dl +

a0
2

∫
C
JτΨJτdl +

1

2a0

∫
C
MνΨMνdl

−a1
2

∫
C
dlJτ dlΨJτdl−b1

2

∫
C
dlMν dlΨJτdl− b1

2a0

∫
C
dlMν dlΨMνdl− a1

2a0

∫
C
dlJτ dlΨMνdl

+
a′1
2

∫
C
d2lMν d

2
lΨJτdl+

b′1
2

∫
C
d2lMν d

2
lΨJτ+

b′1
2a0

∫
C
d2lMν d

2
lΨMνdl+

a′1
2a0

∫
C
d2l Jτ d

2
lΨMνdl

Problem 5.2.3 Find U = (Jτ ,Mν) ∈ [H1(C)]2 such that

A(U,Ψ) =

∫
C
Einc

τ ΨJτdl +

∫
C
H inc

ν ΨMνdl

for all Ψ = (ΨJτ ,ΨMν) ∈ [H1(C)]2.

5.3 Existence and uniqueness theorem

We are going to show that our variational problem in TE has a unique solution using
theorem 2.3.3 from chapter 2. For TM problem it will be analogous. It is necessary
to determine the continuity and the coercivity of the bilinear form A(U,Ψ).

For the sake of simplicity we consider the operator A(U,Ψ) as a sum of three
bilinear operator

A1(U,Ψ) =

∫∫
C
Z0(B−S)JτΨJτdl

′dl+
∫∫

C

1

Z0
(B−S)MνΨMνdl

′dl+
∫∫

C
QMνΨJτdl

′dl

+

∫∫
C
QJτΨMνdl

′dl +
a0
2

∫
C
JτΨJτdl +

1

2a0

∫
C
MνΨMνdl

A2(U,Ψ) = −a1
2

∫
C
dlJ dlΨJτdl − b1

2a0

∫
C
dlM dlΨMνdl

and
A3(U,Ψ) = −b1

2

∫
C
dlM dlΨJτdl − a1

2a0

∫
C
dlJ dlΨMνdl

where
A = A1 +A2 +A3
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5.3.1 Continuity

Lemma 5.3.1 The bilinear form A(U,Ψ) (6.1) is continuous on [H1(C)]2.

Proof. : To prove the continuity of the bilinear form A(U,Ψ), we have to show that
there exists β > 0 such that

|A(U,Ψ)| ≤ β‖U‖H1(C)‖Ψ‖H1(C) (5.15)

for all U,Ψ ∈ H1(C).
From the works in the past [TL], we have that for operator A1(U,Ψ) there exists

constant β1 > 0 such that

|A1(U,Ψ)| ≤ β1‖U‖H1(C)‖Ψ‖H1(C)

It remains to prove continuity for last integrals in bilinear form. Using Cauchy-
Schwarz inequality we get:

|A2(U,Ψ) +A3(U,Ψ)| ≤∣∣∣∣a12
∫
C
dlJ dlΨJτdl

∣∣∣∣+
∣∣∣∣b12
∫
C
dlM dlΨJτdl

∣∣∣∣+
∣∣∣∣ b12a0

∫
C
dlM dlΨMνdl

∣∣∣∣+
∣∣∣∣ a12a0

∫
C
dlJ dlΨMνdl

∣∣∣∣ ≤∣∣∣a1
2

∣∣∣ ‖dlJ‖L2‖ΨJτ‖L2+
∣∣∣∣b12
∣∣∣∣ ‖dlM‖L2‖ΨJτ‖L2+

∣∣∣∣ b12a0
∣∣∣∣ ‖dlM‖L2‖ΨMν‖L2+

∣∣∣∣ a12a0
∣∣∣∣ ‖dlJ‖L2‖ΨMν‖L2

≤ β2‖U‖H1(C)‖Ψ‖H1(C) , where β2 ≥ 0.

Finally, we take β = β1 + β2 ≥ 0 for which (5.15) is true.

5.3.2 Coercivity

Lemma 5.3.2 The bilinear form A(U,Ψ) is coercive on H1(C); i.e., there exists
γ > 0 and γ′ such that

�[A(U,U∗)] ≥ γ‖U‖2H1(C) − γ′‖U‖2L2(C), ∀U ∈ [H1(C)]4.

Proof. First of all, we take Ψ = U∗ and get

A(U,U∗) = iZ0

∫∫
C
kGJτJ

∗
τ [τ (l

′) · τ (l)]− 1

k
d′lJτ (l

′)dlJ∗τ (l)dl
′dl

+

∫∫
C
J∗τMνn(l) · ∇ΓGdl′dl +

∫∫
C
M∗

νJτn(l
′) · ∇ΓGdl′dl

+
i

Z0

∫∫
C
kGMνM

∗
ν [ν(l

′) · ν(l)]dl′dl + a0
2

∫
C
JτJ

∗
τ dl +

1

2a0

∫
C
MνM

∗
ν dl

−a1
2

∫
C
dlJτ dlJ

∗
τ dl−

b1
2

∫
C
dlMν dlJ

∗
τ dl−

b1
2a0

∫
C
dlMν dlM

∗
ν dl−

a1
2a0

∫
C
dlJτ dlM

∗
ν dl

(5.16)
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As in continuity, from works in the past [TL], we have that there exists γ1 > 0

for the operator A1(U,Ψ), such that ∀U ∈ V

�[A1(U,U
∗)] ≥ �(a0)

2
‖Jτ‖2L2(C) +

�(a0)
2|a0|2 ‖Mν‖2L2(C) + γ1

(
‖Jτ‖2H1(C) + ‖Mν‖2H1(C)

)
Next we take operator A2

A2 = −a1
2

∫
C
dlJτ dlJ

∗
τ dl −

b1
2a0

∫
C
dlMν dlM

∗
ν dl

where real part

�(A2) = −�(a1)
2

‖dlJτ‖2L2(C) −�(
b1
2a0

)‖dlMν‖2L2(C)

And it remains

A3 = −b1
2

∫
C
dlMν dlJ

∗
τ dl −

a1
2a0

∫
C
dlJτ dlM

∗
ν dl

where real part

�(A3) = �
(
−b1
2

∫
C
dlMν dlJ

∗
τ dl −

a1
2a0

∫
C
dlJl dlM

∗
ν dl

)
=

= −�
[(

b1
2
+

a∗1a0
2|a0|2

)∫
C
dlMν dlJ

∗
τ dl

]
=

= −�
[∫

C

1

|a0|1/2
(
b1
2
+

a∗1a0
2|a0|2

)1/2
dlMν · |a0|1/2

(
b1
2
+

a∗1a0
2|a0|2

)1/2
dlJ

∗
l dl

]

We note q = b1|a0|+ a∗1a0/|a0|, so

�(A3) ≥ −|q|
4
‖dlJτ‖2L2(C) −

|q|
4|a0|2 ‖dlMν‖2L2(C).

Sufficient uniqueness conditions (3.26) says that �(a1 − b∗1a0) = 0 or �(a1) =
�(b1a∗0). So the sum of operators A2 and A3 get

�(A2) + �(A3) ≥

−1
2

(
�(a1) + |q|

2

)
‖dlJτ‖2L2(C) −

1

2|a0|2
(
�(a1) + |q|

2

)
‖dlMν‖2L2(C)

So, if �(a1) + |q|
2 = 0, we get that

�(A) = �(A1) + �(A2) + �(A3) ≥

≥ γ1‖U‖2H1(C) − c‖U‖2L2(C)
That gives us coercivity of bilinear form A(U,Ψ).
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Theorem 5.3.1 The problem (5.11) admits a unique solution U ∈ [H1(C)]2 for
any Ψ ∈ [H1(C)]2, if coefficients satisfy

�(a1) + |a0||b1 + a∗1/a∗0|
2

= 0. (5.17)

Proof. Lemmas 5.3.1-5.3.2 give us that the bilinear form A(U,Ψ) verifies hypothesis
of the theorem 2.3.3.

5.4 Conclusion

We include 2D HOIBC in integral equations by replacing operator P and combined
EFIE and MFIE to represent variational form of 2D scattering problem. The
problem presentation helps us to determine the functional spaces of the problem.
The integrals are taken over curvilinear contour. The existence and uniqueness the-
orem is important contribution to work with HOIBC. The coercivity of an operator
A requires restriction (5.17) on the coefficients. Further we propose discretization
of the two dimensional problem and numerical results.
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Two dimensional discretization
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6.1 Introduction

We again recognize that the two dimensional case is invariant in one direction and
a two dimensional object has a unidimensional boundary. So we will use finite
element method on a curvilinear contour. We use auxiliary variables X,Y that were
mentioned in [BSb], to avoid integration by parts. So we take formulation of bilinear
form A(U,Ψ) presented in the previous chapter before carrying out integration by
parts

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′)Jτ (l′)ΨJτ [τ(l) · τ(l′)]− 1

k
G(l, l′)d′lJτ (l

′)dlΨJτ (l)dl
′dl

+

∫∫
C
ΨJτ (l)Mν(l

′) n(l) · ∇ΓG(l, l
′)dl′dl +

∫∫
C
ΨMνJτ n(l′) · ∇ΓG(l, l

′)dl′dl

+
i

Z0

∫∫
C
kG(l, l′)Mν(l

′)ΨMν(l)dl
′dl +

a0
2

∫
C
JτΨJτdl +

1

2a0

∫
C
MνΨMνdl

+
a1
2

∫
C
d2l J ΨJτdl +

b1
2

∫
C
d2lMΨJτdl +

b1
2a0

∫
C
dlMΨMνdl +

a1
2a0

∫
C
d2l JΨMνdl

(6.1)
where we replace dlJτ and dlMν by auxiliary variables X and Y , respectively. And
we introduce two weak equations∫

C
(X − dlJτ ) X

′dl = 0;
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∫
C
(Y − dlMν) Y

′dl = 0.

And finally we get bilinear form for U = (Jτ ,Mν , X, Y ) ∈ [H1(C)]4

A(U,Ψ) = iZ0

∫∫
C
kG(l, l′) Jτ (l′) ΨJτ [τ (l

′) · τ (l)]− 1

k
G(l, l′) d′lJτ (l

′) dlΨJτ (l)dl
′dl

+

∫∫
C
ΨJτ (l) Mν(l

′) n(l) · ∇ΓG(l, l
′)dl′dl +

∫∫
C
ΨMν Jτ n(l′) · ∇ΓG(l, l

′)dl′dl

+
i

Z0

∫∫
C
kG(l, l′) Mν(l

′) ΨMν(l)dl
′dl +

a0
2

∫
C
Jτ ΨJτdl +

1

2a0

∫
C
Mν ΨMνdl

+
a1
2

∫
C
dlX ΨJτdl +

b1
2

∫
C
dlY ΨJτdl +

b1
2a0

∫
C
dlY ΨMνdl +

a1
2a0

∫
C
dlX ΨMνdl

+ c1

∫
C
X X ′dl − c1

∫
C
dlJτ X ′dl + d1

∫
C
Y Y ′dl − d1

∫
C
dlMν Y ′dl (6.2)

for all Ψ = (ΨJτ ,ΨMν , X
′, Y ′) ∈ [H1(C)]4.

Here, we study only TE polarization case. We assume that TM polarization has
analogous results.

6.2 Discretization

We approximate the curve C by means of N straight line segments Ci, satisfying
the general overlapping conditions for a finite element method. The line segments
are also called elements and provide a contour piecewise linear approximation Ch =

∪N
i=1Ci, where h is a positive parameter such that limh→0N(h) = +∞. Curvilinear

structures include geometry modeling errors in this approach. These errors can
only be reduced by decreasing the segments lengths; i.e. by increasing the number
of segments N . We denote nodes from 1 to N . We consider Vh a finite dimensional
subspace of H1(Ch)

Vh =
{
vh : C

h → R, vh ∈ H1(Ch), vh|Ci ∈ P1, ∀i ∈ 1, ..., N
}
⊂ H1(Ch)

where P1 is the space of first degree polynomials, and

Wh =
{
wh : C

h → R, wh ∈ H1(Ch), wh|Ci ∈ P0, ∀i ∈ 1, ..., N
}
⊂ L2(Ch)

where P0 is the space of constant functions.
We observe discretization of the unknowns by basis functions

Jτ ≈ Jh
τ (l) =

N∑
i=1

Jτiφi(l) ∈ Vh (6.3)

Mν ≈Mh
ν (l) =

N∑
i=1

Mνiψi(l) ∈Wh (6.4)
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X ≈ Xh(l) =
N∑
i=1

Xiψi(l) ∈Wh (6.5)

and

Y ≈ Y h(l) =
N∑
i=1

Yiψi(l) ∈Wh. (6.6)

where φi ∈ Vh and ψi ∈Wh

So the bilinear form A(U,Ψ) in (6.2) can be written as

A(Uh,Ψh) = iZ0

N∑
i,j=1

(∫∫
Ch

kG φj φi [�τj(l
′) · �τi(l)]− 1

k
G d′lφj dlφi dl

′dl
)
Jh
τj

+
N∑

i,j=1

(∫∫
Ch

ψj φi ni · ∇ΓGdl′dl
)
Mh

νj

+
N∑

i,j=1

(∫∫
Ch

φj ψi nj · ∇ΓGdl′dl
)
Jh
τj +

i

Z0

N∑
i,j=1

(∫∫
Ch

kG ψj ψi dl
′dl
)
Mh

νj

+
a0
2

N∑
i,j=1

(∫
Ch

φj φidl

)
Jh
τj +

1

2a0

N∑
i,j=1

(∫
Ch

ψj ψidl

)
Mh

νj

+
a1
2

N∑
i,j=1

(∫
Ch

dlψj φidl

)
Xh

j +
b1
2

N∑
i,j=1

(∫
Ch

dlψj φidl

)
Y h
j

+
b1
2a0

N∑
i,j=1

(∫
Ch

dlψj ψidl

)
Y h
j +

a1
2a0

N∑
i,j=1

(∫
Ch

dlψj ψidl

)
Xh

j

+
N∑

i,j=1

(∫
Ch

ψj ψidl

)
Xh

j −
N∑

i,j=1

(∫
Ch

dlψj ψidl

)
Jh
τj

+
N∑

i,j=1

(∫
Ch

ψj ψidl

)
Y h
j −

N∑
i,j=1

(∫
Ch

dlψj ψidl

)
Mh

νj

In order to simplify the equations in matrix form we define the following matrices

(B − S)ij = i

∫∫
Ch

kG(l, l′) φj(l
′) φi [τj · τi]− 1

k
G(l, l′) d′lφj(l

′) dlφi(l) dl
′dl

Qij =

∫∫
Ch

φi(l) ψj(l
′) ni · ∇ΓG(l, l

′) dl′dl

Bij = i

∫∫
Ch

kG(l, l′) ψj(l
′) ψi(l) dl

′dl

I1ij =

∫
Ch

φi(l) φj(l) dl
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I2ij =

∫
Ch

ψi(l) ψj(l) dl

D1ij =

∫
Ch

φi(l) dlψj(l) dl

D3ij =

∫
Ch

ψi(l) dlψj(l) dl

D5ij =

∫
Ch

ψi(l) dlφj(l) dl

Note: [I2] is the nonsingular diagonal matrix, therefore it is invertible.
So we can write our system in a matrix form:⎡

⎢⎢⎢⎣
Z0[B − S] + a0

2 [I1] [Q] a1
2 [D1]

b1
2 [D1]

[Q]T 1
Z0
[B] + 1

2a0
[I2] a1

2a0
[D3] b1

2a0
[D3]

−[D5] 0 [I2] 0

0 −[D3] 0 [I2]

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎜⎝

J
h

M
h

X
h

Y
h

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

E
h

H
h

0

0

⎞
⎟⎟⎟⎠

(6.7)
Where right-side vectors E

h, Hh are defined as follows:

Eh
i =

∫
Ch

Einc · φidl;

Hh
i =

∫
Ch

Hinc ·ψidl.

And vectors J
h and M

h are unknowns.
From the last two lines in (E.1), we get

−[D5] Jh
+ [I2] X

h
= 0 → X

h
= [I2]−1 [D5] Jh

;

−[D3] Mh
+ [I2] Y

h
= 0 → Y

h
= [I2]−1 [D3] Mh

.

We put X,Y in first two equations.

[
[A1] [A2]

[A3] [A4]

](
J
h

M
h

)
=

(
E

h

H
h

)
(6.8)

where matrices are defined as

[A1] = Z0[B − S] +
a0
2
[I1] +

a1
2
[D1] [I2]−1 [D5]

[A2] = [Q] +
b1
2
[D1] [I2]−1 [D3]

[A3] = [Q]T +
a1
2a0

[D3] [I2]−1 [D5]

[A4] =
1

Z0
[B] +

1

2a0
[I2] +

b1
2a0

[D3] [I2]−1 [D3].
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Finally we get the matrix equation to be solved. The matrices [I1] and [I2] are
simple. In [D1], [D3] and [D5] we use differentials that was defined in (6.11)-(6.12).
Matrices [B − S] and [Q] are more complicated, they involve double-integral with
the Green function.

6.3 Assembly of matrices

Basis and test functions for values tangent to boundary in τ direction depend on l,
denoted by φi, which belongs to class P1 - partially continuous first degree polyno-
mials. Basis and test functions for values tangent to boundary in ν direction depend
on l, denoted by ψj , which belongs to class P0 - partially constant (see Fig.6.1 a-b).
Hence, we define functions φi and ψj as

φi(x) =

⎧⎪⎨
⎪⎩

x−xi−1
xi−xi−1 x ∈ [xi−1, xi]
xi+1−x
xi+1−xi

x ∈ [xi, xi+1]
0 x /∈ [xi−1, xi+1].

(6.9)

ψj(x) =

{
1

xj+1−xj
x ∈ [xj , xj+1]

0 x /∈ [xj , xj+1].
(6.10)

a) b) c) d)

Figure 6.1: Basis functions a)P1 type and b)P0 type. Derivative of basis functions
c)P1 type and d)P0 type

We observe that the derivative of a P1 function is a function of class P0. Thus
we can express dlφi with the basis functions ψj . Whereas the derivative of functions
ψj , we express as difference of Dirac functions in breaking points (see Fig.6.1 c-d):

dlφi(l) = ψi−1(l)− ψi(l); (6.11)

dlψj(l) = δj − δj+1. (6.12)

We use Gaussian quadrature to calculate the integral

∫
Cj

f(x)dx ≈
ng∑
g=1

f(xg)pg.
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6.3.1 Calculation of the matrix (B-S)

The element of the matrix (B−S) are calculated on segments associated to functions
φi and φ′j .

(B − S)ij = i

∫∫
C
G(l, l′)(kφ′jφi[�τ

′
j · �τi]−

1

k
d′lφ

′
jdlφi)dl

′dl =

= i

∫
Ci+Ci−1

dl

∫
C′j+C′j−1

G(l, l′)(kφ′jφi[�τ
′
j · �τi]−

1

k
(ψ′j−1 − ψ′j)(ψi−1 − ψi))dl

′

For the sake of simplification, we want to show calculation of the simple part

Intij = i

∫∫
CiC′j

G(l, l′)(kφ′jφi[�τ
′
j · �τi]−

1

k
ψ′jψi)dl

′dl

where ψi =
1

xi+1−xi
is a constant on the element Ci and ψ′j =

1
xj+1−xj

on C ′j .
According to features of Green’s function G(l, l′), we separate calculation into

two cases. First case when arguments l and l′ are apart from each other.

Apart elements
If the elements have enough big distance from each other, we can be sure in

convergence of integral and we use Gauss points approach:

Intij ≈ i

ng∑
g=1

n′g∑
g′=1

pgp
′
g

π

i
H
(2)
0 (kρgg′)

[
kφ′jg′φig[�τ

′
j · �τi]−

1

kh′jhi

]

Close elements
On the other hand if the elements are close to each other, we should expand

Green function:

G =
π

i
H
(2)
0 (kρ) =

π

i
H
(2)
0 (kρ) + 2 ln(ρ)︸ ︷︷ ︸

→G|1

− 2 ln(ρ)︸ ︷︷ ︸
→G|2

(6.13)

When ρ→ 0, we have

G|1 = π

i
H
(2)
0 (kρ)− 2 ln(ρ)→ π

i
− 2(γ + ln(

k

2
)) (6.14)

So for the calculation of double integral Intij |1 we can use Gauss points approach:

Intij |1 ≈ i

{
π

i
− 2(γ + ln(

k

2
))

} ng∑
g=1

n′g∑
g′=1

pgp
′
g

[
kφ′jg′φig[�τ

′
j · �τi]−

1

kh′jhi

]

and to calculate the remaining part, we integrate over Γ with help of Gauss points
and over Γ′ we use analytical integral

Intij |2 ≈ −2i
ng∑
g=1

pg

∫
Cj

ln(ρ(lg, l
′))

[
kφ′jφig[�τ

′
j · �τi]−

1

kh′jhi

]
dl′.
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6.3.2 Calculation of the matrix Q

The elements of matrix Q are calculated on segments associated to functions φi and
ψ′j .

Qij = −i
∫∫

C
φi(l)ψj(l

′)ni · ∇ΓG(l, l
′)dl′dl

where function ψ′j is defined only on a segment Cj and gradient of Green function
∇G is expressed

∇G(l, l′) = −πk

iρ
H
(2)
1 (kρ)�ρ.

So we can write

Qij = i

∫
Ci+Ci−1

∫
Cj

φi(l)ψj(l
′)
πk

ρ
H
(2)
1 (kρ)ni · �ρ.

As in (B − S) matrix, for apart elements we use Gauss points approach.

Close elements
According to the property of H(2)

1 (kρ) for ρ→ 0

k

ρ

[
H
(2)
1 (kρ)− 2i

πkρ
+

i

π
kρ ln(ρ)

]
→ − i

π
k2 ln(k/2) + k2

(
1

2
+

i

2π
(1− 2γ)

)

∇G(l, l′) = − πkj
iρ

[
H
(2)
1 (kρ)− 2i

πkρ
+

i

π
kρ ln(ρ)

]
�ρ︸ ︷︷ ︸

→GG|1

−
[
2

ρ2
− k2 ln(ρ)

]
�ρ︸ ︷︷ ︸

→GG|2
For ρ small enough

GG|1 ≈ −i
[
k ln(k/2)− π

i
k2
(
1

2
+

i

2π
(1− 2γ)

)] ng∑
g=1

ng′∑
g′=1

pgp
′
gφigψ

′
jg′ni · �ρgg′

and

GG|2 ≈ i

ng∑
g=1

ng′∑
g′=1

pgp
′
gφigψ

′
jg′

[
2

ρgg′
− k2 ln(ρgg′)

]
ni · �ρgg′ .

6.4 Numerical results

6.4.1 Radar cross section

Radiation theory teaches us that the energy is intercepted by an object can be
reflected, absorbed or transmitted through the target. We can assume that most
of the energy is reflected. The spatial distribution of this energy depends on the
size, shape and composition of the target, and on the frequency and nature of the
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incident wave. This distribution of energy is called scattering, and the target itself
is often referred to as a scatterer. The radar cross section (RCS) of the body is a
measure of the energy scattered in a particular direction for a given illumination
[R-Sb].

Bistatic scattering is the name given to the situation when the scattering di-
rection is not back toward the source of the radiation. If E and H represent fields
scattered by an object illuminated by incident plane wave Einc traveling in the direc-
tion of the unit vector k, the bistatic radar cross section in the observation direction
r is

σ(r,k) = lim
r→∞ 4πr2

|E|2
|Einc|2 .

This cross section is defined as the area through which an incident plane wave carries
sufficient power to produce, by omnidirectional radiation, the same scattered power
density as that observed in a given far field direction. The monostatic radar cross
section is defined as the radar cross section observed in the back scattering direction,
σ(−k,k).

In two dimensions, the bistatic radar cross section for scattering by a cylindrical
object illuminated by an incident plane wave Einc traveling in the direction of the
unit vector k normal to the cylinder axis is

σ(ρ,k) = lim
ρ→∞ 2πρ

|E|2
|Einc|2 .

This cross section is the equivalent width across which an incident plane wave carries
sufficient power to produce, by omnidirectional radiation, the same scattered power
density as that observed in a given far field direction. The monostatic radar cross
section is σ(−k,k). That is defined for cylinders as the ratio of the total scattered
power per unit length to the power density of the incident wave.

The units for RCS are square meters. As RCS can span a wide range of values,
a logarithmic decibel scale is also used with a typical reference value σref equal to
1m2:

σdBm2 = 10 log10(
σ

σref
) (6.15)

6.4.2 Numerical tests

Let us consider conducting circular cylinder depicted in figure 6.2 coated with thin
dielectric layer. The radius of the inner conductor is r = 50mm and the thickness of
the coating is d. It is assumed that the incident field is propagating normal to the
axis of the cylinder. And we consider both TE and TM polarizations. In order to
illustrate several key points the case of a simple dielectric coating will be considered.

An exact solution of the scattering problem depicted in figure 6.2 is obtained by
expanding the incident field, the scattered field outside the cylinder, and the total
field inside the cylinder coating in terms of a series of cylindrical wave functions and
applying the appropriate boundary conditions at each interface.
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Since the coefficients appearing in the HOIBC were derived by considering the
planar canonical problem it is expected that the solution should be most accurate
for cylinders with large radius of curvature and thin coating, where the geometrical
approximation is a good one.

In order to illustrate these points scattering by three typical coated cylinders
will be considered next. Figures 6.4-6.5 show the monostatic RCS for a coated
conducting cylinder with inner radius λ0, coating thickness d = 0.1λ0, and coating
parameters εr = 4.0−0.5i and μr = 1.0. The exact series solution is presented along
with the HOIBC and SIBC solutions. We computed monostatic RCS for different
frequencies to see how do results depend on frequency. In TE-polarization we can
see that results of SIBC jumps in range between 6GHz and 8GHz (see fig. 6.4).
Much bigger difference, we can see in TM-polarization between 7GHz and 9GHz

(see fig. 6.5).
Next we consider bistatic RCS for different scattering angles. Figures 6.6-6.7

show the bistatic radar cross section for a coated conducting cylinder with inner
radius λ0, coating thickness d = 1.5mm, and coating parameters εr = 10 − 5i and
μr = 1, for fixed frequency f = 6.8GHz in TE and TM polarizations. The exact
series solution is presented along with the SIBC and HOIBC order 1 and order 2
solutions.

After we increase thickness of a boundary and decrease frequency, so we consid-
ered bistatic RCS for different scattering angles. Figures 6.8-6.9 shows the bistatic
radar cross section for a coated conducting cylinder with inner radius λ0, coating
thickness d = 3mm and frequency f = 3.4GHz, coating parameters εr = 10 − 5i

and μr = 1.0, in TE and TM polarizations. The exact series solution is presented
along with the SIBC and HOIBC order 1 and order 2 solutions.

Here we comput bistatic RCS for coated circular cylinder with parameters, d =
0.1λ0, εr = 4− 0.5i and μr = 1. And we compare to Rahmat-Samii results for same
test. The backscatter direction is φ = 180◦. Results for exact formulation, SIBC or
Leontovich IBC formulation and the formulation based on the planar higher order
IBC are presented in the figure 6.10. As can be seen in the figure, the results using
the planar HOIBC are in excellent agreement with the exact solution over most
of the angular range, while SIBC solutions give only the average behavior of the
scattered field.

Next we consider conducting plate with open boundary thin dielectric layer (see
fig. 6.3). Figures 6.11-6.12 show the bistatic RCS for layer thickness d = 4mm and
frequency f = 6.8GHz. This example is interesting because it shows that method
works even for open boundaries. And we can see that it solves problem much better
than with Leontovich IBC. But it is difficult to see difference between first order
and second order IBCs.
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Figure 6.2: Cylinder

Figure 6.3: Plate with thin layer
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Figure 6.4: Monostatic RCS for a coated circular cylinder, when d = 0.1λ0, εr =
4.0− j0.5 and μr = 1.0, with TE polarization



54 Chapter 6. Two dimensional discretization

Figure 6.5: Monostatic RCS for a coated circular cylinder, when d = 0.1λ0, εr =
4.0− j0.5 and μr = 1.0, with TM polarization
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Figure 6.6: Bistatic RCS for a coated circular cylinder, when d = 1.5mm, εr =

10− 5j, μr = 1.0, and f = 6.8GHz with TE polarization
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Figure 6.7: Bistatic RCS for a coated circular cylinder, when d = 1.5mm, εr =

10− 5j, μr = 1.0, and f = 6.8GHz with TM polarization
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Figure 6.8: Bistatic RCS for a coated circular cylinder, when d = 3mm, εr = 10−5j,
μr = 1.0, and f = 3.4GHz with TE polarization
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Figure 6.9: Bistatic RCS for a coated circular cylinder, when d = 3mm, εr = 10−5j,
μr = 1.0, and f = 3.4GHz with TM polarization
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Figure 6.10: Bistatic RCS for a coated circular cylinder, when d = 0.1λ0, εr =

4− 0.5j, μr = 1 with TE polarization
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Figure 6.11: Bistatic RCS for a coated 2D plate, when d = 4mm, εr = 10 − 5j,
μr = 1.0, and f = 6.8GHz with TE polarization
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Figure 6.12: Bistatic RCS for a coated 2D plate, when d = 4mm, εr = 10 − 5j,
μr = 1.0, and f = 6.8GHz with TM polarization
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7.1 Introduction

The difficulties of three dimensional scattering problem is that we cannot use the
polarization decomposition as in the two dimensional case, because the incident wave
that perform in one point as TE polarization could perform as TM polarization in
another point. Hence, we cannot combine them under the banner of one polarization.
So in three dimensional case we combine TE and TM polarizations.

Recently, in different studies different ways to solve this problem were found.
For the scattering problem with Leontovich boundary condition, system doesn’t
depend on incident angle, cause impedance assumed as constant [TL]. Rahmat-
Samii used higher order boundary condition for body of revolution. They break three
dimensional body into two dimensional strips and apply well known two dimensional
methods.

We try to stay in three dimensional geometry.

7.2 Problem with HOIBC

Remind that we want to use integral methods to solve Maxwell’s equations. Here
we also apply system of integral equations

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< IEinc,ΨJ > (7.1)
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− < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< IHinc,ΨM > (7.2)

where the operators (B − S) and (P + Q) are defined in chapter 1. And we recall
impedance boundary condition (5.3) that relates current densities J and M

n×M = ZJ. (7.3)

where Z is the impedance operator. We approximate impedance operator Z as dif-
ferential form that was mentioned in (3.13) chapter 3 and we call it three dimensional
HOIBC:

(I + b1LD − b2LR)(n×M) = (a0I + a1LD − a2LR)J ; (7.4)

where differential operators LD and LR are acting on a vector field V tangent to
the surface Γ

LD(V) = ∇Γ(divΓV)

LR(V) = rotΓ(rotΓV).

We multiply three dimensional HOIBC (7.4) by test functions and integrate on
the surface Γ, that gives us a weak form of the boundary condition. So, we take ΨJ

and n×ΨM as test functions to get the weak forms for EFIE and MFIE, respectively∫
Γ
(I + b1LD − b2LR)(n×M) ·ΨJds =

∫
Γ
(a0I + a1LD − a2LR)J ·ΨJds, (7.5)

∫
Γ
(I+ b1LD− b2LR)(n×M) · (n×ΨM )ds =

∫
Γ
(a0I+a1LD−a2LR)J · (n×ΨM )ds

(7.6)
where from∫
Γ
(n×M) ·ΨJds =

∫
Γ
(a0I + a1LD− a2LR)J ·ΨJ − (b1LD− b2LR)(n×M) ·ΨJds

(7.7)
and ∫

Γ
J · (n×ΨM )ds =

1

a0

∫
Γ
(I + b1LD − b2LR)(n×M) · (n×ΨM )ds

− 1

a0

∫
Γ
(a1LD − a2LR)J · (n×ΨM )ds (7.8)

We insert the HOIBC into EFIE through (7.7) replacing the operator P that
was defined in (1.14):

< PM,ΨJ >=
1

2

∫
Γ
ΨJ · (n×M)ds

=
a0
2

∫
Γ
J ·ΨJds+

a1
2

∫
Γ
LDJ ·ΨJds− a2

2

∫
Γ
LRJ ·ΨJds

−b1
2

∫
Γ
LD(n×M) ·ΨJds+

b2
2

∫
Γ
LR(n×M) ·ΨJds.
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And using the formula of vector analysis

ΨM · (n× J) = −J · (n×ΨM ),

we put weak form of HOIBC (7.8) into MFIE by replacing < PJ,ΨM >:

< PJ,ΨM >=
1

2

∫
Γ
ΨM · (n× J)ds = −1

2

∫
Γ
(n×ΨM ) · Jds

=
−1
2a0

∫
Γ
(n×M)·(n×ΨM )ds− b1

2a0

∫
Γ
LD(n×M)·(n×ΨM )ds+

b2
2a0

∫
Γ
LR(n×M)·(n×ΨM )ds

+
a1
2a0

∫
Γ
LDJ · (n×ΨM )ds− a2

2a0

∫
Γ
LRJ · (n×ΨM )ds.

According to properties of vector analysis [VB], we have

< LDA,ΨΓ >=

∫
Γ
∇Γ(divΓA)·ΨΓds = −

∫
Γ
(divΓA)(divΓΨΓ)ds+

∫
∂Γ
(divΓA)(ΨΓ·ν)dl

< LRA,ΨΓ >=

∫
Γ
rotΓ(rotΓA)·ΨΓds =

∫
Γ
(rotΓA)(rotΓΨΓ)ds+

∫
∂Γ
(rotΓA)n·(ΨΓ×ν)dl =

=

∫
Γ
divΓ(n×A)divΓ(n×ΨΓ)ds−

∫
∂Γ
divΓ(n×A)(ΨΓ · τ )dl

So we get for EFIE

< PM,ΨJ >=
a0
2

∫
Γ
J ·ΨJds (7.9)

−a1
2

∫
Γ
divΓJ divΓΨJds− a2

2

∫
Γ
divΓ(n× J) divΓ(n×ΨJ)ds

+
b1
2

∫
Γ
divΓ(n×M) divΓΨJds+

b2
2

∫
Γ
divΓM divΓ(n×ΨJ)ds

+
a1
2

∫
∂Γ
divΓJ (ΨJ · ν)dl + a2

2

∫
∂Γ
divΓ(n× J) (ΨJ · τ )dl

−b1
2

∫
∂Γ
divΓ(n×M) (ΨJ · ν)dl + b2

2

∫
∂Γ
divΓM (ΨJ · τ )dl;

and for MFIE
< PJ,ΨM >=

−1
2a0

∫
Γ
M ·ΨMds (7.10)

+
b1
2a0

∫
Γ
divΓ(n×M) divΓ(n×ΨM )ds+

b2
2a0

∫
Γ
divΓM divΓΨMds

− a1
2a0

∫
Γ
divΓJ divΓ(n×ΨM )ds+

a2
2a0

∫
Γ
divΓ(n× J) divΓΨMds

− b1
2a0

∫
∂Γ
divΓ(n×M) (ΨM · τ )dl − b2

2a0

∫
∂Γ
divΓM (ΨM · ν)dl
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+
a1
2a0

∫
∂Γ
divΓJ (ΨM · τ )dl − a2

2a0

∫
∂Γ
divΓ(n× J) (ΨM · ν)dl

We suppose that boundary Γ is closed, so all integrals on ∂Γ are zero. We put (7.9)
and (7.10) in the variational problem (7.1) and (7.2) respectively. Now we define
bilinear operator

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0
< (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0
2

< J,ΨJ > +
1

2a0
<M,ΨM >

−a1
2

< divΓJ, divΓΨJ > −a2
2

< divΓ(n× J), divΓ(n×ΨJ) >

+
b1
2

< divΓ(n×M), divΓΨJ > −b2
2

< divΓM, divΓ(n×ΨJ) >

− b1
2a0

< divΓ(n×M), divΓ(n×ΨM ) > − b2
2a0

< divΓM, divΓΨM >

+
a1
2a0

< divΓJ, divΓ(n×ΨM ) > − a2
2a0

< divΓ(n× J), divΓΨM >

that combines integral equations (7.1)-(7.2), where operator P parts are replaced.
Finally, we introduce the following problem:

Problem 7.2.1 Find U = (J,M) such that

A(U,Ψ) = F (Ψ) (7.11)

for all Ψ = (ΨJ ,ΨM ). Where

F (Ψ) =

∫
Γ
Einc ·ΨJds+

∫
Γ
Hinc ·ΨMds.

Since rotΓA and divΓ(n × A) do not make sense for A ∈ H−1/2(div,Γ), we
follow the method that we see in [BA]. We introduce auxiliary unknowns J̃ and M̃

from H−1/2(div,Γ) with test functions Ψ̃J and Ψ̃M such that∫
Γ
λJ · (Ψ̃J − n×ΨJ)ds = 0

∫
Γ
λM · (Ψ̃M − n×ΨM )ds = 0∫
Γ
λ′J · (J̃− n× J)ds = 0∫

Γ
λ′M · (M̃− n×M)ds = 0

where λJ ,λM ,λ′J ,λ
′
M are known as Lagrange multipliers. Under these assumptions,

we will replace (n×ΨJ ,n×ΨM ,n× J,n×M) by (Ψ̃J , Ψ̃M , J̃, M̃), respectively.
And we will write the problem as
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Problem 7.2.2 Find U = (J,M, J̃, M̃) ∈ V = [H−1/2(div,Γ) ∩ L2(Γ)]4 and λ =

(λJ ,λM ) ∈ [H−1/2(Γ)]2 such that

{
A(U,Ψ) +BT (λ,Ψ) = F (Ψ)

B(U, λ′) = 0
(7.12)

for all Ψ = (ΨJ ,ΨM , Ψ̃J , Ψ̃M ) ∈ V = [H−1/2(div,Γ)∩L2(Γ)]4 and λ′ = (λ′J ,λ
′
M ) ∈

W = [H−1/2(Γ)]2.

Where right hand side operator is defined as next

F (Ψ) =

∫
Γ
Einc ·ΨJds+

∫
Γ
Hinc ·ΨMds.

Bilinear operator with Lagrange multiplier λ is

B(U, λ′) =
∫
Γ
λ′J · (J̃− n× J)ds+

∫
Γ
λ′M · (M̃− n×M)ds

and

A(U,Ψ) = iZ0

∫∫
Γ
kG (J ·ΨJ)− 1

k
G divΨJ divJdsds′ (7.13)

+
i

Z0

∫∫
Γ
kG (ΨM ·M)− 1

k
G divΨM divMdsds′

+

∫∫
Γ
∇′G · (ΨJ ×M)dsds′ − i

∫∫
Γ
∇′G · (ΨM × J)dsds′

+
a0
2

∫
Γ
J ·ΨJds+

1

2a0

∫
Γ
M ·ΨMds

−a1
2

∫
Γ
divΓJ divΓΨJds− a2

2

∫
Γ
divΓJ̃ divΓΨ̃Jds

+
b1
2

∫
Γ
divΓM̃ divΓΨJds− b2

2

∫
Γ
divΓM divΓΨ̃Jds

− b1
2a0

∫
Γ
divΓM̃ divΓΨ̃Mds− b2

2a0

∫
Γ
divΓM divΓΨMds

+
a1
2a0

∫
Γ
divΓJ divΓΨ̃Mds− a2

2a0

∫
Γ
divΓJ̃ divΓΨMds

is the bilinear operator on V × V .
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7.3 Existence and uniqueness theorem

According to theorem 2.3.4 from chapter 2, there exists a unique solution of the
problem 7.2.2, if the bilinear operator A(U,Ψ) verifies the continuity and coercivity
conditions and the operator B(U, λ′) satisfies the Ladyzhenskaya-Babuška-Brezzi
(LBB) condition, also known as inf-sup condition.

For the sake of simplicity we consider the operator A(U,Ψ) as a sum of three
bilinear operator

A1(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0
< (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0
2

< J,ΨJ > +
1

2a0
<M,ΨM >

A2(U,Ψ) = −a1
2

< divΓJ, divΓΨJ > −a2
2

< divΓJ̃, divΓΨ̃J >

− b1
2a0

< divΓM̃, divΓΨ̃M > − b2
2a0

< divΓM, divΓΨM >

and
A3(U,Ψ) =

b1
2

< divΓM̃, divΓΨJ > −b2
2

< divΓM, divΓΨ̃J >

+
a1
2a0

< divΓJ, divΓΨ̃M > − a2
2a0

< divΓJ̃, divΓΨM >

where
A = A1 +A2 +A3

7.3.1 Continuity of operator A

Lemma 7.3.1 The bilinear operator A(U,Ψ) (7.13) is continuous on V for all Ψ ∈
V .

Proof. : We have to show that there exists C > 0 such that for all Ψ ∈ V

|A(U,Ψ)| ≤ C‖U‖V ‖Ψ‖V
According to theorems 2.3.1 - 2.3.2 and triangle inequality (property of a norm) we
have

|A1(U,Ψ)| ≤ | < Z0(B−S)J,ΨJ > |+|Z−10 | | < (B−S)M,ΨM > |+| < QM,ΨJ > |

+| < QJ,ΨM > |+ |a0|
2
| < J,ΨJ > |+ 1

2|a0| | <M,ΨM > | ≤

≤ ‖Z0(B − S)J‖−1/2,rotΓ‖ΨJ‖−1/2,divΓ
+|Z−10 |‖(B − S)M‖−1/2,rotΓ‖ΨM‖−1/2,divΓ + ‖QM‖−1/2,rotΓ‖ΨJ‖−1/2,divΓ

+‖QJ‖−1/2,rotΓ‖ΨM‖−1/2,divΓ +
a0
2
‖J‖L2(Γ)‖ΨJ‖L2(Γ) +

1

2a0
‖M‖L2(Γ)‖ΨM‖L2(Γ)
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≤ C1‖U‖V ‖Ψ‖V
We consider the rest part as a sum of A2(U,Ψ) +A3(U,Ψ):

|A2(U,Ψ) +A3(U,Ψ)| ≤ |a1|
2
| < divΓJ, divΓΨJ > |+ |a2|

2
| < divΓJ̃, divΓΨ̃J > |

+
|b1|
2
| < divΓM̃, divΓΨJ > |+ |b2|

2
| < divΓM, divΓΨ̃J > |

+
|b1|
2|a0| | < divΓM̃, divΓΨ̃M > |+ |b2|

2|a0| | < divΓM, divΓΨM > |

+
|a1|
2|a0| | < divΓJ, divΓΨ̃M > |+ |a2|

2|a0| | < divΓJ̃, divΓΨM > |

that gives us the following inequality

|A2(U,Ψ)+A3(U,Ψ)| ≤ |a1|
2
‖divΓJ‖−1/2,H(Γ)‖divΓΨJ‖−1/2,Γ+

|a2|
2
‖divΓJ̃‖−1/2,Γ‖divΓΨ̃J‖−1/2,Γ

+
|b1|
2
‖divΓM̃‖−1/2,Γ‖divΓΨJ‖−1/2,Γ +

|b2|
2
‖divΓM‖−1/2,Γ‖divΓΨ̃J‖−1/2,Γ

+
|b1|
2|a0|‖divΓM̃‖−1/2,Γ‖divΓΨ̃M‖−1/2,Γ +

|b2|
2|a0|‖divΓM‖−1/2,Γ‖divΓΨM‖−1/2,Γ

+
|a1|
2|a0|‖divΓJ‖−1/2,Γ‖divΓΨ̃M‖−1/2,Γ + ‖

|a2|
2|a0|‖divΓJ̃‖−1/2,Γ‖divΓΨM‖−1/2,Γ

≤ C2‖U‖V ‖Ψ‖V
So, the sum of these two parts gives us |A(U,Ψ)| = |A1+A2+A3| ≤ |A1(U,Ψ)|+

|A2(U,Ψ) +A3(U,Ψ)| ≤ C‖U‖V ‖Ψ‖V where C = C1 + C2.

7.3.2 Coercivity of operator A

Lemma 7.3.2 Bilinear form A(U,Ψ) verifies coercivity inequality for all U ∈ V =

[H−1/2(div,Γ) ∩ L2(Γ)]4.

Proof. : We have to show that there exist α > 0 such that

�[A(U,U∗)] ≥ α‖U‖2V − C‖U‖2H , ∀U ∈ V.

From [TL], we know that there exists α1 such that

�(A1) = �(< Z0(B − S)J,J∗ >) + �(< Z−10 (B − S)M,M∗ >) + �(< QM,J∗ >)

−�(< QJ,M∗ >) + �(a0
2

∫
Γ
J · J∗ds) + �( 1

2a0

∫
Γ
M ·M∗ds) ≥
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≥ α
(
‖J‖2−1/2,divΓ + ‖M‖2−1/2,divΓ

)
+
�(a0)
2

‖J‖2L2(Γ) +
�(a0)
2|a0|2 ‖M‖

2
L2(Γ)

We can easily show that

�(A2) = −�(a1
2

∫
Γ
divΓJ divΓJ

∗ds)−�(a2
2

∫
Γ
divΓJ̃ divΓJ̃

∗ds)

−�( b1
2a0

∫
Γ
divΓM̃ divΓM̃

∗ds)−�( b2
2a0

∫
Γ
divΓM divΓM

∗ds) =

−�(a1)
2

‖divΓJ‖2L2(Γ) −
�(a2)
2

‖divΓJ̃‖2L2(Γ)

−�(b1a
∗
0)

2|a0|2 ‖divΓM̃‖
2
L2(Γ) −

�(b2a∗0)
2|a0|2 ‖divΓM‖

2
L2(Γ)

For the rest, we do as follows:

�(A3) = �(b1
2

∫
Γ
divΓM̃ divΓJ

∗ds)−�(b2
2

∫
Γ
divΓM divΓJ̃

∗ds)

+�( a1
2a0

∫
Γ
divΓJ divΓM̃

∗ds)−�( a2
2a0

∫
Γ
divΓJ̃ divΓM

∗ds) =

= �
{(

b1
2
+

a∗1
2a∗0

)∫
Γ
divΓM̃ divΓJ

∗ds
}

−�
{(

b2
2
+

a∗2
2a∗0

)∫
Γ
divΓJ̃

∗ divΓMds

}
=

= �
{∫

Γ

1

|a0|1/2
(
b1
2
+

a∗1a0
2|a0|2

)1/2
divΓM̃ · |a0|1/2

(
b1
2
+

a∗1a0
2|a0|2

)1/2
divΓJ

∗ds

}

−�
{∫

Γ
|a0|1/2

(
b2
2
+

a∗2a0
2|a0|2

)1/2
divΓJ̃

∗ · 1

|a0|1/2
(
b2
2
+

a∗2a0
2|a0|2

)1/2
divΓMds

}

We note q1 = b1|a0|+ a∗1a0/|a0| and q2 = b2|a0|+ a∗2a0/|a0|, so

�(A3) ≥ −|q1|
4
‖divΓJ‖2L2(Γ) −

|q1|
4|a0|2 ‖divΓM̃‖

2
L2(Γ)

−|q2|
4
‖divΓJ̃‖2L2(Γ) −

|q2|
4|a0|2 ‖divΓM‖

2
L2(Γ)

We have conditions on coefficients from two dimensional case, which say that
�(aj) + |qj |

2 = 0, where j = 1, 2 (see equation (5.17) in chapter 5); and from the
sufficient uniqueness conditions we have that �(aj) = �(b∗ja0). So for the A2 and
A3, we have

�(A2) + �(A3) ≥ 0.

Finally we have for the entire operator A that

�(A) = �(A1) + �(A2) + �(A3) ≥

≥ α
(
‖J‖2−1/2,divΓ + ‖M‖2−1/2,divΓ

)
+
�(a0)
2

‖J‖2L2(Γ) +
�(a0)
2|a0|2 ‖M‖

2
L2(Γ)
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7.3.3 Ladyzhenskaya-Babuška-Brezzi condition

Lemma 7.3.3 Bilinear form B(U, λ) verifies next inequality

sup
‖U‖V =1

|B(U, λ)| ≥ β‖λ‖W , ∀λ ∈W = [H−1/2(Γ)]3 × [H−1/2(Γ)]3

where U ∈ V = [H−1/2(div,Γ) ∩ L2(Γ)]4 and β > 0.

Proof. : Here we have to show that there exists β > 0 such that

sup
‖U‖V =1

∣∣∣∣
∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥ β‖λ‖W

First we take

J = 0; M = 0; J̃ =
Ĵ

‖Ĵ‖V
and J̃ =

M̂

‖M̂‖V
where

Ĵ =

∫
Γ\x

λJ

|x− y|dsy and M̂ =

∫
Γ\x

λM

|x− y|dsy

so we get following inequality

sup
‖U‖V =1

∣∣∣∣
∫
Γ
λJ · (J̃− n× J) + λM · (M̃− n×M)ds

∣∣∣∣ ≥
≥ 1

‖Ĵ‖−1/2,divΓ

∫∫
ΓΓ

λJ(x)λJ(y)

|x− y| dsydsx +
1

‖M̂‖−1/2,divΓ

∫∫
ΓΓ

λM (x)λM (y)

|x− y| dsydsx

(7.14)
Since each of double-integrals verifies the Planchard-Nédélec inequality, [CD, NP]∫∫

ΓΓ

λ(x)λ(y)

|x− y| dsydsx ≥ β‖λ‖2−1/2,Γ (7.15)

So we get

(7.14) ≥ 1

‖Ĵ‖−1/2,divΓ
βJ‖λJ‖2−1/2,Γ +

1

‖M̂‖−1/2,divΓ
βM‖λM‖2−1/2,Γ (7.16)

Also, we have that there exist CJ > 0 and CM > 0 such that, [CD, NP]

‖Ĵ‖−1/2,divΓ ≤ CJ‖λJ‖−1/2,Γ and ‖M̂‖−1/2,divΓ ≤ CM‖λM‖−1/2,Γ (7.17)

Finally

(7.16) ≥ βJ
CJ
‖λJ‖−1/2,Γ +

βM
CM

‖λM‖−1/2,Γ ≥ β‖λ‖W (7.18)

where β = min(βJ/CJ ;βM/CM ).
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Theorem 7.3.1 The problem (7.2.2) admits a unique solution U ∈ V =

[H−1/2(div,Γ) ∩ L2(Γ)]4 and λ ∈ [H−1/2(Γ)]2, if coefficients satisfy

�(aj) +
|a0||bj + a∗j/a

∗
0|

2
= 0 for j = 1, 2. (7.19)

Proof. Lemmas 7.3.1-7.3.3 give us that the bilinear forms A(U,Ψ) and B(U, λ)

verify hypothesis of the theorem 2.3.4.

7.4 Conclusion

In this chapter, we set 3D HOIBC (7.4) into EFIE and MFIE (7.1 - 7.2) and we in-
troduce the problem 7.2.1. We introduce the problem 7.2.2 by introducing auxiliary
variables J̃ and M̃ and Lagrange multipliers λJ and λM . We proved the coercivity
and continuity of the operator A(U,Ψ) and that the operator B(U, λ) satisfies the
Inf-Sup condition. And according to Fredholm alternative from chapter 2, it follows
that there exists the unique solution of the problem. We should note that the re-
strictions on the coefficients in 2D case were used for 3D case. Further we propose
the discretization of the problem 7.2.2 in chapter 8 and the problem 7.2.1 in chapter
9.
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3D discretization
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8.1 Introduction

In this chapter, we will see discretization of variational problem 7.2.2 based on Rao-
Wilton-Glisson basis functions and auxiliary basis functions introduced by Bendali
[BA] for Lagrange multipliers. We recall bilinear form that was formulated in the
previous chapter. So we solve the problem{

A(U,Ψ) +BT (λ,Ψ) =< Einc,ΨJ > + < Hinc,ΨM >

B(U, λ′) = 0
(8.1)

where

B(U, λ′) =< λ′J , J̃ > − < λ′J ,n× J > + < λ′M , M̃ > − < λ′M ,n×M >

and
A(U,Ψ) =< Z0(B − S)J,ΨJ > +Z−10 < (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0
2

< J,ΨJ > +
1

2a0
<M,ΨM >

−a1
2

< divΓJ, divΓΨJ > −a2
2

< divΓJ̃, divΓΨ̃J >

+
b1
2

< divΓM̃, divΓΨJ > −b2
2

< divΓM, divΓΨ̃J >

− b1
2a0

< divΓM̃, divΓΨ̃M > − b2
2a0

< divΓM, divΓΨM >

+
a1
2a0

< divΓJ, divΓΨ̃M > − a2
2a0

< divΓJ̃, divΓΨM >
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The discretization of unknowns J and M should verify a condition – flow con-
servation of these currents. One way to ensure this is to use the basis functions of
Rao-Wilton-Glisson.

In [BA] were introduced basis function for Lagrange multipliers, so that they
can express J in terms of M according to boundary condition equation given below∫

Γ
L · (n×M− ikZJ)ds = 0.

We use these basis functions to eliminate auxiliary unknowns.

8.2 Discretization

The first step is to approach the surface of the obstacle by a surface Γh composed
of finite number of two dimensional elements. These elements are triangular facets
denoted by Ti for i = 1 to NT :

Γh =

NT⋃
i=1

Ti.

We will call it an initial mesh (or original mesh). We denote by Ne the total number
of edges of the mesh component Γh. Let {fi}i=1,Ne be a base of Rao-Wilton-Glisson
functions, where each function correspond to one edge. We decompose the electric
and magnetic currents:

J(y) =

Ne∑
l=1

Jlfl(y), M(y) =

Ne∑
l=1

Mlfl(y),

and auxiliary unknowns

J̃(x) =

Ne∑
l=1

J̃lfl(x), M̃(x) =

Ne∑
l=1

M̃lfl(x).

And Lagrange multipliers are represented as

λJ =

Ne∑
k=1

λJkgk, λM =

Ne∑
k=1

λMkgk,

where gk are basis functions that we will define later with help of functions intro-
duced by Bendali.

Considering to these assumptions we are looking for approximated solution of
the problem (8.1). We introduce the following system{

Ah(Uh,Ψh) +Bh(λh,Ψh) =
∑Ne

i=1 < Einc, fi > +
∑Ne

i=1 < Hinc, fi >

Bh(Uh, λh) = 0
(8.2)
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where

Ah(Uh,Ψh) =

Ne∑
i,j=1

< Z0(B − S)fj , fi > Jj + Z−10
Ne∑

i,j=1

< (B − S)fj , fi > Mj

+

Ne∑
i,j=1

< Qfj , fi > Mj−
Ne∑

i,j=1

< Qfj , fi > Jj+
a0
2

Ne∑
i,j=1

< fj , fi > Jj+
1

2a0

Ne∑
i,j=1

< fj , fi > Mj

−a1
2

Ne∑
i,j=1

< divΓfj , divΓfi > Jj − a2
2

Ne∑
i,j=1

< divΓfj , divΓfi > J̃j

+
b1
2

Ne∑
i,j=1

< divΓfj , divΓfi > M̃j − b2
2

Ne∑
i,j=1

< divΓfj , divΓfi > Mj

− b1
2a0

Ne∑
i,j=1

< divΓfj , divΓfi > M̃j − b2
2a0

Ne∑
i,j=1

< divΓfj , divΓfi > Mj

+
a1
2a0

Ne∑
i,j=1

< divΓfj , divΓfi > Jj − a2
2a0

Ne∑
i,j=1

< divΓfj , divΓfi > J̃j ;

and

Bh(Uh, λ
′
h) =

Ne∑
i,k=1

< gk, fi > J̃i −
Ne∑

i,k=1

< gk,n× fi > Ji

+

Ne∑
i,k=1

< gk, fi > M̃i −
Ne∑

i,k=1

< gk,n× fi > Mi

In order to express our problem in matrix form we define the following matrices

(B − S)i,j = i

∫∫
Γh

kG(s, s′)fj(s′) · fi(s)− 1

k
G(s, s′)(divΓfi)(div′Γfj)dsds

′

Qi,j = −i
∫∫

Γh

[fi(s)× fj(s
′)] · ∇′ΓG(s, s′)dsds′

Ii,j =

∫
Γh

fi · fjds

Di,j =

∫
Γh

(divΓfj)(divΓfi)ds

CHi,j =

∫
Γh

gi · fjds

CKi,j =

∫
Γh

gi · (n× fj)ds

Note: We will define gi basis function such that [CH ] is a nonsingular diagonal
matrix, therefore it is invertible.
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For the sake of simplicity we define

[A1] = [(B − S)] +
a0
2
[I]− a1

2
[D], [A2] = [(B − S)] +

1

2a0
[I]− b2

2a0
[D]

According to the equation system (8.2), we get the following matrix form equa-
tion⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[A1] [Q] 0 b1
2 [D] [CK ]

T 0

[Q]T [A2] − a2
2a0

[D] 0 0 [CK ]
T

0 − b2
2 [D] −a2

2 [D] 0 [CH ]
T 0

a1
2a0

[D] 0 0 − b1
2a0

[D] 0 [CH ]
T

[CK ] 0 [CH ] 0 0 0

0 [CK ] 0 [CH ] 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J

M

J̃

M̃

λJ

λM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E

H

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where right-side vectors E, H are defined as follows:

Ei =

∫
Γh

Einc · fids;

Hi =

∫
Γh

Hinc · fids.

The last two lines of the system give us

[CK ]J + [CH ]J̃ = 0→ J̃ = −[CH ]
−1[CK ]J

[CK ]M + [CH ]M̃ = 0→ M̃ = −[CH ]
−1[CK ]M

(8.3)

The third and fourth lines with (8.3) give us expression of Lagrange multipliers
in terms of J and M

−b2
2
[D]M − a2

2
[D]J̃ + [CH ]

TλJ = 0→

λJ =
b2
2
[CH ]

−T [D]M +
a2
2
[CH ]

−T [D]J̃ =

=
b2
2
[CH ]

−T [D]M − a2
2
[CH ]

−T [D][CH ]
−1[CK ]J (8.4)

a2
2a0

[D]J − b1
2a0

[D]M̃ + [CH ]
TλM = 0→

λM = − a2
2a0

[CH ]
−T [D]J +

b1
2a0

[CH ]
−T [D]M̃ =

= − a2
2a0

[CH ]
−T [D]J − b1

2a0
[CH ]

−T [D][CH ]
−1[CK ]M (8.5)

So we replace the unknowns (8.3), (8.4) and (8.5) in first two lines and if we
define [CKH ] = [CH ]

−1[CK ] and [CKH ]
T = [CK ]

T [CH ]
−T , we get[

[A1]− a2
2 [CKH ]

T [D][CKH ] [Q] + b1
2 [D][CKH ] +

b2
2 [CKH ]

T [D]

[Q]T + a2
2a0

[D][CKH ]− a1
2a0

[CKH ]
T [D] [A2]− b1

2a0
[CKH ]

T [D][CKH ]

](
J

M

)
=

(
E

H

)
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8.3 Assembly of matrices

We introduce local numbering of a triangle T . The vertices (aTj )j=1,3 are arranged in
clockwise order. Triangle edges are numbered so that the edge T ′j connects vertices
aTj and aTj+1.

Moreover, we give an orientation νn to each edge n. Consider the two triangles
sharing this edge. We note T+n the triangle so that the direction of the edge n

coincides with the forward direction (locally defined) of this triangle. For the other
triangle, which we will denote T−n , the direction of the edge coincides with the
indirect sense.

Figure 8.1: Triangles T+n and T−n adjacent to edge n

8.3.1 RWG basis functions

Each basis function is associated with an edge and ensures the conservation of flux
through this edge. If we denote |T | the area of a triangle T , the nth basis function
is defined as follows:

Definition 4 If n is the ith local edge of triangle T+n and the jth of triangle T−n
then:

fn(x) =

⎧⎪⎪⎨
⎪⎪⎩

ln
2|T+n |(x− a+i−1) if x ∈ T+n
ln

2|T−n |(a
−
j−1 − x) if x ∈ T−n

0 if x /∈ T+n ∪ T−n

(8.6)
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The density is proportional to divΓfn, where

divΓfn(x) =

⎧⎪⎪⎨
⎪⎪⎩
+ ln
|T+n | on T+n

− ln
|T−n | on T−n

0 elsewhere.

(8.7)

Figure 8.2: Rao-Wilton-Glisson basis function on triangle elements associated to
the edge n

On each triangle, the current is written as a linear combination of three basis
functions associated to three edges of a triangle. Since the basis function is defined
on two triangles, namely adjacent to edge i, T+i and T−i , we define [(B−S)] matrix
elements

(B−S)i,j = iZ0

Ntr∑
t1,t2=1

Jj

∫
Tt1

∫
Tt2

kG(s, s′)fj(s′)·fi(s)−1
k
G(s, s′)(divΓfi)(div′Γfj)ds

′d =

∫
T+i ∪T−i

∫
T+j ∪T−j

kG(s, s′)fj(s′) · fi(s)− 1

k
G(s, s′)(divΓfi)(div′Γfj)ds

′ds.

Analogically

Qi,j = −i
∫
T+i ∪T−i

∫
T+j ∪T−j

[fi(s)× fj(s
′)] · ∇′ΓG(s, s′)ds′ds.

For lonely integrals we have

Ii,j =
a0
2

Ntr∑
t=1

Jj

∫
Tt

fj · fids =
∫
T+i ∪T−i

fj · fids.
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We should note that the integral is not zero only if j is a number of edge of the
triangles T+i and T−i . Analogically, we define

Di,j =

∫
T+i ∪T−i

(divΓfj)(divΓfi)ds.

8.3.2 Basis functions proposed by Bendali

Now we discretize the Lagrange multipliers λ and λ̃. There was no a-priori to satisfy
conservation of flow, therefore no reason to prefer a decomposition of the same
elements as the currents. We will therefore choose a discretization that simplifies
the elimination of both M̃ and J̃ according to equation

∫
Γ λ̃J · (J̃− n× J)ds = 0.

For simplicity, we will take the basis functions of degree 1 for the decomposition
of multipliers. Thus the integrated term is at most of degree 2 and the integration
of triangle can therefore be carried out accurately by a sum of the midpoints of the
edges.

Figure 8.3: Basis function proposed by Bendali on triangle elements

∫
T
λ̃J · J̃ds =

3∑
i=1

|T |
3
λ̃J(a

T
i+1/2) · J̃(aTi+1/2),

where aTi+1/2 denotes the middle point of the local ith edge of triangle T .
It is then interesting to choose a decomposition of λJ of the basis functions

vanishing on two of these three points and having the direction of the edge on
the third. It is therefore natural that we come to the basis functions proposed by
Bendali, Fares and Gay [BA]. Function associated to the edge n which is common
to the triangles T+n and T−n (notation according to the orientation of the edge) is
defined by:
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gn(x) =

{
(1− 2ω+i+2(x))(νn × n+), ∀x ∈ T+n

(1− 2ω−j+2(x))(νn × n−), ∀x ∈ T−n
(8.8)

where νn is a direction vector of the edge n and {ωi}i=1,3 are barycentric coordinates.
So

∫
T
λ̃J · J̃ds = 1

2

Ne∑
n=1

(∫
T+n

λ̃ · J̃ds+
∫
T−n
λ̃ · J̃ds

)

=
1

2

Ne∑
n=1

⎛
⎝ |T+n |

3

3∑
i=1

λ̃J(a
+
i+1/2) · J̃(a+i+1/2) +

|T−n |
3

3∑
j=1

λ̃J(a
−
j+1/2) · J̃(a−j+1/2)

⎞
⎠

=
1

2

Ne∑
n=1

⎛
⎝ |T+n |

3

3∑
i=1

λ̃(i,T+n )J(i,T+n ) +
|T−n |
3

3∑
j=1

λ̃(j,T−n )J(j,T−n )

⎞
⎠ ,

where we tentatively adopt the local numbering: (i, T+n ) denotes the ith edge of the
triangle T+n .

Elimination of auxiliary currents
Suppose that λ̃n has all its coefficients zero except that associated to the nth

edge that is 1. The integration on the surface is reduced to integrals on the triangles
T+n and T−n

∫
Γ
gn(s) · J̃ds = |T+n |+ |T−n |

3
J̃n.

On the other side we have∫
Γ
gn(s) · (n× J)ds =

∫
T+n ∪T−n

gn(s) · (n× J)ds,

that is calculated with help of Gaussian quadrature. And we get next equation

|T+n |+ |T−n |
3

J̃n =

∫
T+n ∪K−n

gn(s) · (n× J)ds (8.9)

and

J̃n =
3

|T+n |+ |T−n |
∫
T+n ∪T−n

gn(s) · (n× J)ds (8.10)

on each edge of the mesh.
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Matrix form of system
The integrals with Lagrange multipliers have their own special place. And ap-

proximation of these integrals were discussed while defining of basis functions for
Lagrange multipliers. So we define

CHi,j =

{ |T+i |+|T−i |
3 for i = j

0 else,

so CH is the diagonal and invertible matrix. And CK is

CKi,j =

∫
T+i ∪T−i

gi · (n(s)× fj(s))ds.

Finally, if we combine all edges together, equation (8.9) can be written in matrix
form as [CH ]J̃ + [CK ]J = 0 and equation (8.10) as J̃ = −[CH ]

−1[CK ]J.

8.4 Conclusion

We discretized the surface of a three dimensional object by triangulation. We ap-
proximated the unknowns in terms of RWG basis functions and the Lagrange mul-
tipliers in terms of the basis functions that introduced by Bendali. These specially
constructed basis functions allow us to get diagonal matrices. So we eliminated the
Lagrange multipliers and the auxiliary unknowns. And we propose the matrix form
of the discrete problem for unknowns (J,M).
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9.1 Introduction

We are going to define another set of basis functions, which was introduced by
Christiansen. We call them Buffa-Christiansen (BC) functions [FAa, FAb]. We are
not going to discuss the advantages or disadvantages of this type of discretization
or discuss its properties. We propose the way to use it in solving 3D scattering
problem.

We recall bilinear operator that we consider in three dimensional case

A(U,Ψ) =< Z0(B − S)J,ΨJ > +
1

Z0
< (B − S)M,ΨM >

+ < QM,ΨJ > − < QJ,ΨM > +
a0
2

< J,ΨJ > +
1

2a0
<M,ΨM >

−a1
2

< divΓJ, divΓΨJ > −a2
2

< divΓ(n× J), divΓ(n×ΨJ) >

+
b1
2

< divΓ(n×M), divΓΨJ > +
b2
2

< divΓM, divΓ(n×ΨJ) >

− b1
2a0

< divΓ(n×M), divΓ(n×ΨM ) > − b2
2a0

< divΓM, divΓΨM >

+
a1
2a0

< divΓJ, divΓ(n×ΨM ) > − a2
2a0

< divΓ(n× J), divΓΨM > (9.1)

and the problem that was introduced in chapter 7.
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Problem 9.1.1 Find U = (J,M) such that

A(U,Ψ) = F (Ψ) (9.2)

for all Ψ = (ΨJ ,ΨM ). Where

F (Ψ) =

∫
Γ
Einc ·ΨJds+

∫
Γ
Hinc ·ΨMds.

9.2 Barycentric refinement. The Buffa-Christiansen
functions

Figure 9.1: Buffa-Christiensen function

The barycentric refinement of Γh is defined by dividing each triangle T ∈ Γh,
into six triangles by drawing the six edges joining the barycenter of T with vertexes
as well as the midpoints of edges. The barycentric refinement of Γh is denoted Γb

h

and we will call it barycentric mesh.
Generally speaking, basis and testing functions can be categorized into two dif-

ferent kinds: the divergence-conforming and curl-conforming functions. A typical
divergence-conforming function is the curvilinear Rao-Wilton-Glisson (RWG) func-
tion. In this chapter, we will denote RWG functions as fR. By rotating it with
respect to the normal vector, a commonly used curl-conforming function n× fR can
be obtained. The Buffa-Christiansen (BC) basis functions are defined on triangles
of a barycentric mesh that have common vertex with reference edge (see Fig. 9.1),
denoted as fB. These functions are div-conforming on this barycentric mesh. The
Buffa-Christiansen basis functions are also quasi-curl-conforming on the original
mesh. [YJN]
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• RWG function fR is a divergence-conforming

• rotation of RWG function n× fR is a curl-conforming

• BC function fB is a quasi-curl-conforming on original mesh, and div-
conforming on a barycentric mesh

• rotation of BC function n × fB is a quasi-divergence-conforming on original
mesh, and curl-conforming on a barycentric mesh.

The figure 9.2 shows the definition domains of this four functions. We denote the
space combined by the Rao-Wilton-Glisson functions, as XRWG. Xb

RWG is the space
of functions combined by the RWG functions f b defined on a berycentric mesh. The
Buffa-Christiansen functions are linear combinations of f b ∈ Xb

RWG functions. And
we denote the space of combinations of BC functions as XBC .

Figure 9.2: The outline of the definition domains of the basis functions and its’
rotations: (a)-(b) Rao-Wilton-Glisson function f and n × f , resp.; (c)-(d) Buffa-
Christiansen functions fBC and n× fBC , resp.

We introduce two operators K and R from [FAa] (K was denoted as P in [FAa]),
such that

K : Xb
RWG → XBC R : Xb

RWG → XRWG

In the formulation (9.1), we have terms with divergence of rotation of unknowns.
These terms have no sense if we take these unknown as divergence-conforming func-
tions. For this reason we want to represent rotation of unknowns in terms of RWG
functions on barycentric mesh.

9.3 Matrices form

We introduce Rao-Wilton-Glisson {fRi}Ni=1 and Buffa-Christiansen {fBj}Nj=1 the ba-
sis functions on initial mesh. And {f bi }N

b

i=1 Rao-Wilton-Glisson basis function on
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barycentric mesh. We can represent RWG functions fRj on initial mesh as a linear
combination of functions f bi on barycentric mesh

fRj =
Nb∑
l=1

cjlf
b
l = (cj1, .., cjNb)

⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠

And we will define BC functions fBj as a linear combination of RWG functions f bi
on barycentric mesh

fBi =

Nb∑
k=1

dikf
b
k = (di1, .., diNb)

⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠

The operators K and R are transition matrices [K] and [R] that express functions
in XBC and XRWG as linear combinations of functions in Xb

RWG, respectively.⎛
⎜⎝ fR1

...
fRNe

⎞
⎟⎠ =

⎡
⎢⎣ c11 · · · c1Nb

... cjl
...

cNe1 · · · cNeNb

⎤
⎥⎦
⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠ = [R]

⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠

⎛
⎜⎝ fB1

...
fBNe

⎞
⎟⎠ =

⎡
⎢⎣ d11 · · · d1Nb

... dik
...

dNe1 · · · dNeNb

⎤
⎥⎦
⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠ = [K]

⎛
⎜⎝ f b1

...
f b
Nb

⎞
⎟⎠

We develop the unknown function J on RWG basis function

J =

Ne∑
i=1

JifRi = (J1, .., JN )

⎛
⎜⎝ fR1

...
fRN

⎞
⎟⎠ = J

T

⎛
⎜⎝ fR1

...
fRN

⎞
⎟⎠ ,

as well as test function

ΨJ =

Ne∑
i=1

fRi = (11, .., 1Ne)

⎛
⎜⎝ fR1

...
fRNe

⎞
⎟⎠ = I

T

⎛
⎜⎝ fR1

...
fRNe

⎞
⎟⎠ .

Now we develop rotation of unknown function J

n× J =

Ne∑
i=1

Jin× fRi = J
T

⎛
⎜⎝ n× fR1

...
n× fRNe

⎞
⎟⎠ .

We apply Gram matrix [G] between n×fR and fB that links the two basis [FAa],
such that ⎛

⎜⎝ n× fR1
...

n× fRNe

⎞
⎟⎠ = [G]

⎛
⎜⎝ fB1

...
fBNe

⎞
⎟⎠ .
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So we get

n× J = J
T
[G]

⎛
⎜⎝ fB1

...
fBNe

⎞
⎟⎠

Analogically

n×ΨJ = I
T
[G]

⎛
⎜⎝ fB1

...
fBNe

⎞
⎟⎠ . (9.3)

In the formulation (9.1) we use the following integrals that we express in matrices
form

< divΓJ, divΓΨJ >=

Ne∑
i,j

Jj

∫
Γh

divΓfRi divΓfRjds =

= I
T
[∫

Γh

divΓfRi divΓfRjds

]
J = I

T
[LD]J

and

< divΓ(n× J), divΓΨM >=

Ne∑
i,j

Jj

∫
Γh

divΓfRi divΓ(n× fRj)ds =

= I
T
[∫

Γh

divΓfRi divΓfBjds

]
[G]TJ.

Anallogically

< divΓJ, divΓ(n×ΨM ) >= I
T
[G]

[∫
Γh

divΓfBi divΓfRjds

]
J

< divΓ(n× J), divΓ(n×ΨJ) >= I
T
[G]

[∫
Γh

divΓfBi divΓfBjds

]
[G]TJ

Here, we define the following matrices

[LD] =

[∫
Γh

divΓfRi divΓfRjds

]

[LDC ] =

[∫
Γh

divΓfRi divΓfBjds

]
[G]T

[LDB] = [G]

[∫
Γh

divΓfBi divΓfRjds

]
and

[LDBC ] = [G]

[∫
Γh

divΓfBi divΓfBjds

]
[G]T .

We will call them "div-div" matrices.
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And by defining the following matrices, we can propose matrices form of the
problem.

[A1] = Z0[(B − S)] +
a0
2
[I]− a1

2
[LD]− a2

2
[LDBC ]

[A2] = [Q] +
b1
2
[LDC ] +

b2
2
[L]DB

[A3] = [Q]T − a2
2a0

[LDC ] +
a1
2a0

[LDB]

[A4] =
1

Z0
[(B − S)] +

1

2a0
[I]− b2

2a0
[LD]− b1

2a0
[LDBC ]

In the bilinear form A(U,Ψ) we will write as the following matrix equation:[
A1 A2

A3 A4

](
J

M

)
=

(
E

H

)

9.4 Assembly of elementary matrices

9.4.1 div-div matrices

In order to calculate the matrix [LDB], we have to know the following matrix[∫
Γh

divΓfBi divΓfRjds

]
=

where we use operators K and R to express fBi and fRj in terms of RWG function
on barycentric mesh

=

⎡
⎣ Nb∑
k,l=1

dikcjl

∫
Γb
h

divΓf
b
kdivΓf

b
l ds

⎤
⎦

=

⎡
⎢⎣ d11 · · · d1Nb

... dik
...

dNe1 · · · dNeNb

⎤
⎥⎦
[∫

Γb
h

divΓf
b
kdivΓf

b
l ds

]⎡⎢⎣ c11 · · · c1Nb

... cjl
...

cNe1 · · · cNeNb

⎤
⎥⎦
T

= [K]

[∫
Γb
h

divΓf
b
kdivΓf

b
l ds

]
[R]T

We define matrix of div-/div-conforming functions on barycentric mesh

[Lb
D]kl =

∫
Γb
h

divΓf
b
k divΓf

b
l ds.

Finally, we get

[LDB]J = [G]

[∫
Γh

divΓfBi divΓfRjds

]
J = [G][K][Lb

D][R]
TJ

And we obtain three matrices



9.4. Assembly of elementary matrices 89

• [LDC ] = [R][Lb
D][K]T [G]T

• [LDB] = [G][K][Lb
D][R]

T

• [LDBC ] = [G][K][Lb
D][K]T [G]T

9.4.2 Gram matrix [G]

We take [G] as the invers Gram matrix between n × f and fBC that links the two
discretizations in [FAa]. Where the author Andriulli defines it as

[G] = ([R]T [Gb][K])−1

where [Gb] ∈ R
Nb×Nb is the Gram matrix linking div- and rot-conforming RWG

functions defined on barycentric mesh

Gb
i,j =

∫
Γb
h

n× f bi · f bj ds.

9.4.3 [R] and [K] matrices

This method was described in [FAa]. The [R] matrix means the expansion of the
Rao-Wilton-Glisson basis functions on the original mesh in terms of the Rao-Wilton-
Glisson basis function on the barycentric mesh.

[R] : f =
14∑
i=1

cif
b
i ,

f(x) = − l

l2
f2(x) +

l

6l3
f3(x)− l

3l4
f4(x) +

l

3l6
f6(x) + f7(x)+ (9.4)

+f8(x)− l

3l9
f9(x) +

l

3l11
f11(x)− l

6l12
f12(x) +

l

l14
f14(x) ∀x ∈ Γ

(see (2.42) in [FAa]), where li denotes edge length in the barycentric mesh and l is
length of the reference edge, see figure 9.3.

And, the [K] matrix means expansion of the Buffa-Christiansen basis func-
tions on the original mesh in terms of the Rao-Wilton-Glisson basis function on
the barycentric mesh.

[K] : fBC =
∑

cif
b
i ,

(see (2.45) in [FAa]), where the coefficients are

c0 =
1

2l0
, c1 =

4

10l1
, c2 =

3

10l2
, c3 =

2

10l3
, c4 =

1

10l4
, c5 = 0

c6 = − 1

10l6
, c7 = − 2

10l7
, c8 = − 3

10l8
, c9 = − 4

10l9
, c0′ = − 1

2l0′
, c1′ = − 3

8l1′

c2′ = − 2

8l2′
, c3′ = − 1

8l3′
, c4′ = 0, c5′ =

1

8l5′
, c6′ = − 2

8l6′
, c7′ =

3

8l7′
. (9.5)

see figure 9.4. These coefficients were found and defined in [FAa].
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Figure 9.3:

Figure 9.4:

9.5 Conclusion

In this chapter, we discretized the problem 9.1.1 with help of Buffa-Christiansen
basis functions. We proposed decompositions of RWG and BC basis functions on
initial mesh in terms of RWG basis functions on barycentric mesh. That permitted
us to calculate divΓ(n × J), divΓ(n ×M). The Gram matrix links rotated RWG
basis functions on initial mesh with BC basis functions. Finally, we proposed the
matrix form of discretization of the problem 9.1.1. The matrices [R], [K] and [G]

are studied more precisely in [FAa].
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In previous chapters we proposed the variational formulation and discretizations
for tri-dimesional scattering problem. Here we present our numerical results.

10.1 Structure of the code

The scheme of the code can be seen in the figure below (figure 10.1).The code
begins in the main file named leonto.f . The main file calls matleos.f to assemble
the matrix MAT (ndl, ndl) of the problem; ssmbg.f determines the second member
SMB(ndl) of the system. To solve this system of linear equations we use Gauss
method that we apply in gaussc.f , then we obtain the solution SOL(ndl). The last
subroutine ser.f calculates bistatic RCS in angular range [0◦, 180◦].

Figure 10.1: The scheme of the ucp code
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The subroutine matleos.f applies to next scheme (see figure 10.2). The subrou-
tines ctsb1.f , ctsb2.f and ctsb3.f calculate three double-integrals. The impedance
boundary conditions are calculated in choibc.f , that we use to calculate both leon-
tovich and higher order IBCs.

Figure 10.2: The scheme of the subroutine matleos.f .
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10.2 Singular integrals

The main difficulty in calculating double-ingerals is the singularity. In ctsb1.f and
ctsb2.f , we encounter singularity because of Green function. To avoid this problem,
we use the analytical method proposed by Salles [NS]. And in case there is no
singularity threat we use Gaussian quadrature with 9 and 6 gauss points (see figure
10.3).

Figure 10.3: The subroutines ctsb1.f , ctsb2.f and ctsb1.3.
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10.3 Tests on a perfect electric sphere

First to validate the code, we test it on a perfect electric conducting (PEC) sphere
with different incident fields’ frquencies and different sphere-meshes and we com-
pare it with Mie series. In figure 10.4, we take the sphere’s radius is 1m; incident
frequency ω = 1.2GHz. We plot RCS in TM polarization calculated by Mie Series
(continuous red line); blue dash-dot line is the ucp code calculated on the mesh λ/3;
and green dash-dot line is the ucp code calculated on the mesh λ/4.

Figure 10.4: PEC Sphere ω = 1.2GHz; Mie series, ucp code for meshes λ/3 and
λ/4
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In figure 10.5, we take the sphere’s radius is 1m; incident frequency ω =

2.82GHz. As in previous figure we plot RCS in TM polarization calculated by
Mie Series (continuous red line); blue dash-dot line is the ucp code calculated on
the mesh λ/1; and green dash-dot line is the ucp code calculated on the mesh λ/2.

Figure 10.5: PEC Sphere ω = 2.82GHz; Mie series, ucp code for meshes λ/1 and
λ/2

We can see that it improves with the refined mesh.
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10.4 Some results with Higher Order Impedance Bound-
ary Conditions

Here we propose some numerical results on PEC spheres with a thin dielectric layer.
We compare Mie series with leontovich and higher order impedance boundary con-
ditions calculted by ucp code.

First we take the sphere with radius 1m, frequency of incident fields ω = 1.2GHz,
layer thickness d = 0.05m, layer caracteristics are εr = 3 and μr = 1, and the
sphere is meshed as λ/3. We plot RCS in TM polarization calculated by Mie Series
(continues red line); blue dash-dot line is the ucp code calculated for leontovich IBC;
and green dash-dot line is the ucp code calculated with higher-order IBC (see figure
10.6).

Figure 10.6: Coeted Sphere λ/3, frequency ω = 1.2GHz, layer thickness d = 0.05m,
εr = 3 and μr = 1.
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In the second test, we take sphere with the same charateristics as in the previous
test, but the sphere is meshed as λ/4. We plot RCS in TM polarization calculated
by Mie Series (continuous red line); blue dash-dot line is the ucp code calculated for
leontovich IBC; and green dash-dot line is the ucp code calculated with higher-order
IBC (see figure 10.7) .

Figure 10.7: Coeted Sphere λ/4, frequency ω = 1.2GHz, layer thickness d = 0.05m,
εr = 3 and μr = 1.
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The last case, we test on a sphere with radius 1m, frequency of incident fields
ω = 2.82GHz, layer thickness d = 0.05m, layer characteristics are εr = 3 and
μr = 1, and the sphere is meshed as λ/1. We plot RCS in TM polarization calculated
by Mie Series (continuous red line); blue dash-dot line is the ucp code calculated for
leontovich IBC; and green dash-dot line is the ucp code calculated with higher-order
IBC (see figure 10.8).

Figure 10.8: Coeted Sphere λ/1, frequency ω = 2.82GHz, layer thickness d =

0.05m, εr = 3 and μr = 1.



10.5. Conclusion 99

10.5 Conclusion

In this chapter we tested our code on the spheres meshes that are not very small.
But even in these tests we see that higher order impedance boundary conditions
method approaches to the exact solution more than the leontovich IBC method. So
we expect that we can get the more precise results if we test it with a mesh λ/10. In
a refined mesh, triangles that are close to each other can issue singularity problem.
So to avoid this problem we should use the same analitycal method of Salles for
triangles that have common vertex or edge.





Conclusion

The main subject of this thesis is to propose a new formulation of electromagnetic
scattering problem with higher order impedance boundary condition. We proposed
both two dimensional and three dimensional formulation. We saw that, if though we
do not know the incident angle, the HOIBC takes this angle into account. There-
fore, the solution of our formulation is more accurate than that with Leontovich
impedance boundary condition. We saw that the definition of HOIBC in [R-Sb] and
in [BSb] is the same in the two dimensional case. Even if [R-Sb] used partial differen-
tials and [BSb] used Hodge differential operator. We proposed to define 3D HOIBC,
which was introduced in [R-Sb], in terms of decomposed Hodge operators (LD and
LR). TE and TM polarizations help us to decompose problem on two simple ones
in two dimentional case, where we can easily determine coefficients for 2D HOIBC
and utilize them for 3D HOIBC too. We have proved the existence and uniqueness
theorems, hence we set some restrictions on the coefficients. We proposed new 3D
problem formulation. We found that 3D formulation has difficulties with operators.
And we proposed two different way to avoid this difficulties in discrete problem.
Finally we presented some 3D numerical results for scattering problem.

In [R-Sb] it was discussed HOIBC that includes curvature of a coating. In [BS]
it was studied multi-layer coating cases. In practice the surfaces are inhomogeneous.
We might have interest to pursue further research in these topics.





Appendix A

Notations and Physical constants

A.1 Notations

• Bold v denotes vector in R
3 on (x, y, z) basis;

• overline A is a vector of discretization values, so unknown X ≈∑Ne
i=1Xifi or

X ≈ X · f ;
• we denote matrices in square brackets [B];

• complex number z ∈ C decompose as real part zr = �z and imaginary part
zi = �z;

• power aster means complex conjugated value z∗ = zr − izi;

• sometimes partial derivatives ∂
∂x are denoted by ∂x.

A.2 Physical constants

• π = 3, 1415926535897932384 ;

• c = 299, 792458 speed of light;

• μ0 = 4π · 10−7 free space permeability in (Henry/m);

• ε0 = 10−12/(μ0c2) free space permittivity in (Farad/m);

• Z0 =
√

μ0/ε0 = μ0c · 106 impedance in (Ohm);

• ω = 2πf ;

• λ =
c

f
wave length;

• k0 = ω
√
ε0μ0 =

ω

c
wave number.





Appendix B

Integral formulations

The integral method places their unknowns on the boundaries of the object and it
takes into account the boundary conditions. It consists in expressing the electromag-
netic field as a function of potentials defined on Γ. The Stratton-Chu formulation
helps us to characterize the electromagnetic fields in terms of surface currents and
charges [TL]. These currents and charges are solutions of integral equations on Γ.

B.1 Integral formulation of the problem

We are looking for a presentation of the fields (E,H) outside the object in terms
of electromagnetic currents (J,M) on the surface Γ [JCN]. We have Maxwell’s
equations on the surface Γ :{

rotE− ikZ0H =MδΓ

rotH+ ikZ−10 E = JδΓ
(B.1)

Superposition theorem lets us consider two cases. In the first case we suppose
thatM = 0, in the second J = 0. In both cases we want to get E andM expressions
in terms of J and M. After we combine these cases to get general form of fields E
and M.

In case M = 0, we are looking for E in the form

E = A+∇V (B.2)

with Lorentz gauge condition divA = k2V . The divergence of the second equation
of (B.1) with support of gauge condition, shows that V satisfies scalar Helmholtz
equation

ikZ−10 divE = divJ (B.3)

divA+ div∇V =
1

ikZ−10
divJ (B.4)

ΔV + k2V = −ik−1Z0divJ (B.5)

It can be expressed as a potential simple layer density of −ik−1Z0divJ

V (x) = ik−1Z0
∫
Γ
G(x, y)divΓJ(y)dy (B.6)

In this expression G is the Green kernel, fundamental solution of Helmholtz equation,
i.e. verifies Maxwell’s equations and radiation condition.
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We have that A verifies the next vector Helmholtz equation

ΔA+ k2A = ∇divA− rot(rotA) + k2A (B.7)

According to earlier condition right side of first term equals to k2∇V . When (B.2)
allows us to express (B.7) as

= k2∇V − rot(rotA) + k2E− k2∇V = k2E− rot(rotE) = −ikZ0J

The last equivalence derived from Maxwell’s equations (B.1).
Then A is a potential of simple layer density −ikZ0J. So we can write

A(x) = ikZ0

∫
Γ
G(x, y)J(y)dy (B.8)

E(x) = ikZ0

(∫
Γ
G(x, y)J(y)dy +

1

k2
∇x

∫
Γ
G(x, y)divΓ · J(y)dy

)
(B.9)

H(x) =
1

ikZ0
rotE = rot

∫
Γ
G(x, y)J(y)dy (B.10)

We write them via the operators{
E(x) = ikZ0(B − S)J(x)

H(x) = −QJ(x) (B.11)

where (B − S) and Q are the potentials defined in chapter 1:

(B − S)J(x) =
∫
Γ
G(x, y)J(y) +

1

k2
∇xG(x, y)divΓJ(y)dy (B.12)

QJ(x) = −rotx
∫
Γ
G(x, y)J(y)dy =

∫
Γ
∇xG(x, y)× J(y)dy (B.13)

By an argument of symmetry, the second case J = 0 derives the same way

E(x) = rotx

∫
Γ
G(x, y)M(y)dy (B.14)

H(x) = −ikZ−10
(∫

Γ
G(x, y)M(y)dy +

1

k2
∇y

∫
Γ
G(x, y)divΓM(y)dy

)
(B.15)

Potentials express {
E(x) = QM(x)

H(x) = −ikZ−10 (B − S)M(x)
(B.16)

Finally we combine (B.11) and (B.16) to get Stratton-Chu formula:{
E(x) = ikZ0(B − S)J(x)−QM(x)

H(x) = −QJ(x) + ikZ−10 (B − S)M(x)
(B.17)
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These expressions are valable in external domain Ω+. The impedance condition
associates fields values on a boundary Γ. We have to determine external limit values
on Γ. Using the classical jump relations, we can express the respective limiting
boundary tangential values of E and H by{

Einc
tg = ikZ0(B − S)J(x)−QM+ 1

2Etg

Hinc
tg = −QJ+ ikZ−10 (B − S)M(x) + 1

2Htg

(B.18)

We recall that on a boundary, we have

Etg = n×M

Htg = −n× J
where the subscript t designates the tangential component Etg := n × (E × n) of
the respective vector field on Γ.

Thus the electromagnetic field can be expressed in Ω+ in terms of the equivalent
currents and charges by the familiar Stratton-Chu formula{

Einc
tg = ikZ0(B − S)J(x)−QM+ 1

2n×M
Hinc

tg = −QJ+ ikZ−10 (B − S)M(x)− 1
2n× J

(B.19)

Or in integral form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Einc
tg = ikZ0

∫
Γ

(
G(x, y)J(y) + 1

k2
∇xG(x, y)divΓJ

)
dy

+1
2n×M− ∫Γ∇xG(x, y)×Mdy

Hinc
tg = −1

2n× J− ∫Γ∇xG(x, y)× Jdy

+ikZ−10
∫
Γ

(
G(x, y)M(y) + 1

k2
∇xG(x, y)divΓM

)
dy

(B.20)

Later, to write variational formulation, we will multiply it by a test function and
integrate over the surface Γ.

B.2 Double-integral formulation

We are looking for a variational formulation, for the sake of which we multiply the
integral equations (B.20) by test functions and integrate it over the boundary Γ.
Note that the integral over Γ must be comprise in the sense of an integral over
Γ\{y}. We will keep this notation thereafter. We will use a divergence-conforming
functions ψ such that div(ψ) is defined on the surface and ψ · n = 0 on Γ. For the
sake of simplicity, we index the gradients that are related to the index values. We
deduce: ∫

Γ
Einc

tg ·ψdx =
∫
Γ

[
1

2
n×M+ ikZ0

∫
Γ
G(x, y)Jdy

+
iZ0
k

∫
Γ
∇xG(x, y)divΓJdy −

∫
Γ
∇xG(x, y)×Mdy

]
·ψdx (B.21)
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We may change this formula thanks to the relations between the operators [VB]

∇xG(x, y) ·ψ(x) = divΓ(Gψ)−GdivΓψ

so that: ∫∫
ΓΓ

Z0
k
divΓJ(y)∇xG(x, y) ·ψ(x)dydx (B.22)

=

∫∫
ΓΓ

Z0
k
divΓJ(y)divΓ[G(x, y)ψ(x)]dydx−

∫∫
ΓΓ

Z0
k
G(x, y)divΓJ(y)divΓψ(x)dydx

We are interested in the first term of this equality and replace the integral on Γ by
an integral over the volume Ωε = ε × Γ based on this surface and height ε. The
surface integral is the limit of this integral when ε→ 0:∫∫

ΓΓ

Z0
k
divΓJ(y)divΓ[G(x, y)ψ(x)]dydx = lim

ε→0

∫∫
ΩεΓ

Z0
k
divΓJ(y)divΓ[G(v, y)ψ(v)]dydv

=

∫
Γ

Z0
k
divΓJ(y)

{
lim
ε→0

∫
Ωε

divΓ[G(v, y)ψ(v)]dv

}
dy (B.23)

And using the definition of the divergence, the boundary condition and the invari-
ance of ψ along z and along the depth of the volume Ωε:∫

Ωε

divΓ[G(v, y)ψ(v)]dv = −
∫
Γ
G(x, y)ψ(x) · ndx

= −
∫
side surface

G(x, y)ψ(x) · ndx = εC (B.24)

where C is a constant. This integral tends to 0 when ε goes to 0, so the first term
on the right in (B.22) is zero:∫∫

ΓΓ

Z0
k
divΓJ(y)∇xG(x, y)dy ·ψ(x)dx = −

∫∫
ΓΓ

Z0
k
G(x, y)divΓJ(y)divΓψ(x)dydx

(B.25)
So we replace these integrals in (B.21). Another term combination product will be
written as:

[∇yG(x, y)×M(y)] ·ψ(x) = −[ψ(x)×M(y)] · ∇yG(x, y) (B.26)

By injection (B.25) and (B.26) in (B.21), we arrive at:∫
Γ
Einc

tg ·ψdx = −i
∫∫

ΓΓ

[
kZ0G(x, y)J ·ψ − Z0

k
G(x, y)divΓJdivΓψ

]
dydx

+
1

2

∫
Γ
ψ · (n×M)dx+

∫∫
ΓΓ
(ψ ×M) · ∇yG(x, y)dydx (B.27)

We develop the second equation of (B.20) in the same way. Finally, we get double
integral formulation (1.16)-(1.17):

< Z0(B − S)J,ΨJ > + < (P +Q)M,ΨJ >=< IEinc,ΨJ > (B.28)

− < (P +Q)J,ΨM > + <
1

Z0
(B − S)M,ΨM >=< IH inc,ΨM > (B.29)

with the operators (B − S) and (P +Q) defined in (1.13)-(1.14).
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Exact impedance boundary
conditions

Here, we derive an exact tensor IBC for one layer of isotropic material, set on a
perfect electric conductor (PEC) medium, that is mentioned in [R-Sb](equations
(3.19)-(3.20)), by a technique that presented in [BS]. We consider a plane isotropic
medium infinite in the x and y directions, the z axis is directed normal to the coating
medium and n is a normal vector. In the thin layer, we represent Ex(z) by its Taylor
series expansion around z0, that is fixed value of z in thin layer. Separating odd
and even power terms

Ex(z) =
∞∑
n=0

(z − z0)
2n

(2n)!
∂2nz Ex(z0) +

∞∑
n=0

(z − z0)
2n+1

(2n+ 1)!
∂2n+1z Ex(z0). (C.1)

The Cartesian components of E satisfy Helmholtz equation in thin layer. Hence,
∂2zEx(z) = −(k2 + ∇2

tg)Ex(z), and ∂2nz Ex(z) = (−1)n(k2 + ∇2
tg)

nEx(z). Conse-
quently

∞∑
n=0

(z − z0)
2n

(2n)!
∂2nz Ex(z0) = cos[(z0 − z)

√
k2 +∇2

tg]Ex(z0). (C.2)

Also, we have ∂2n+1z Ex(z) = (−1)n(k2 + ∇2
tg)

n∂zEx(z) and, from Maxwell’s equa-
tions, ∂zEx(z) = −i(∂2yzHz(z)− ∂2zHy(z))/(ωε). Because Hy(z) satisfies Helmholtz
equation and ∇·H = 0, we get ∂Ex(z) = −i(k2Hy(z)−∂2xyHx(z)+∂2xHy(z))/(ωε).
Hence

∞∑
n=0

(z − z0)
2n+1

(2n+ 1)!
∂2n+1z Ex(z0) =

i

ωε

sin[d
√

k2 +∇2
tg]√

k2 +∇2
tg

×[k2Hy − ∂2xyHx + ∂2xHy

]
(z0).

(C.3)
Finally, inserting (C.2) and (C.3) in (C.1), we obtain

Ex(z) = cos[(z0−z)
√

k2 +∇2
tg]Ex(z0)+

i

ωε

sin[d
√

k2 +∇2
tg]√

k2 +∇2
tg

×[k2Hy − ∂2xyHx + ∂2xHy

]
(z0)

(C.4)
Similarly, we obtain for Ey(z)

Ey(z) = cos[(z0−z)
√

k2 +∇2
tg]Ey(z0)− i

ωε

sin[d
√

k2 +∇2
tg]√

k2 +∇2
tg

×[k2Hx − ∂2xyHy + ∂2yHx

]
(z0).

(C.5)
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That we can write in vector form as

Etg(z) = cos[(z0 − z)
√

k2 +∇2
tg]Etg(z0)

+
i

ωε

sin[d
√

k2 +∇2
tg]√

k2 +∇2
tg

[
k2 + ∂2x ∂2xy
∂2xy k2 + ∂2y

]
[n×H](z0) (C.6)

Now, we take z = −d on the interface between thin layer and PEC, and z0 = 0 is on
the interface between freespace and dielectric layer. So Etg(z) = 0 and (z0− z) = d,
and we obtain

Etg(0) = − i

ωε

tan[d
√

k2 +∇2
tg]√

k2 +∇2
tg

[
k2 + ∂2x ∂2xy
∂2xy k2 + ∂2y

]
[n×H](0) (C.7)

We assume that the plane-wave fields are written in the following forms:

E(r, t) = e1E0e
−ik·r+iωt

H(r, t) = e2H0e
−ik·r+iωt

where e1, e2 are two constant real unit vectors, and E0, H0 are complex amplitudes
which are constant in space and time.

E(r) = E0e−i(kxx̂+kyŷ+kz ẑ)·r

∂xE(r) = −ikxE(r)
∂2xE(r) = −k2xE(r)

So we can replace partial derivatives by kx and ky components

∂x = −ikx, and ∂y = −iky (C.8)

or
∂2x = −k2x, ∂2xy = −kxky and ∂2y = −k2y. (C.9)

We obtain

Etg(0) = −i
√

μ

ε

(
tan[kzd]

kkz

)[
k2 − k2x −kxky
−kxky k2 − k2y

]
[n×H](0) (C.10)

where ∇2
tg = ∂2x + ∂2y , k = ω

√
με and kz =

√
k2 − k2x − k2y. We should make some

calculations

(k2x − k2)

kkz
=
(k2x − k2)(k2x + k2y)

kkz(k2x + k2y)
=

k2x(k
2
x + k2y − k2)− k2k2y
kkz(k2x + k2y)

= − k2xk
2
z + k2k2y

kkz(k2x + k2y)

So the following exact impedances are obtained for the dielectric coated conductor

Zxy(kx, ky) = Zyx(kx, ky) = i

√
μ

ε

kxky
kkz

tan[kzd] (C.11)
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Zxx(kx, ky) = −i
√

μ

ε

k2xk
2
z + k2yk

2

kkz(k2x + k2y)
tan[kzd] (C.12)

and

Zyy(kx, ky) = −i
√

μ

ε

k2yk
2
z + k2xk

2

kkz(k2y + k2x)
tan[kzd]. (C.13)

Z is the impedance tensor of wave numbers kx, ky, wave frequency and coating
at each point of a surface.





Appendix D

Coefficients calculation MATLAB
script

function [ a0 a1 a2 b1 b2 ] = coe f 2 ( )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% a0 = ik0 Z0 ethan (0) Leontovich IBC
%
% TE po l a r i z a t i o n
% ik0 Z0 ethan ( t h e t a ) = ( a0 + a1∗ k s i )/(1 + b1∗ k s i )
% ou k s i = −( k0 ∗ s in ( t h e t a ) )^2
%
% TM po l a r i z a t i o n
% ik0 Z0 ethan ( t h e t a ) = ( a0 + a2∗ k s i )/(1 + b2∗ k s i )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c i = sqrt (−1); %complex number
c = 299792458; %Speed o f l i g h t m/s
mu0 = 4∗pi∗1e−7; %Free space p e rmeab i l i t y
eps0 = 1e−12/(mu0 ∗ c ^2) ; %Free space p e rm i t t i v i t y
z0 =376.73; %Free space impedance

Theta = [ pi /6 ; pi / 3 ] ; %angular range
eps = 5 ; %Re l a t i v e p e rm i t t i v i t y
mu = 1 ; %Re l a t i v e p e rmeab i l i t y
f = 0 . 4 5 ; % frequency GHz
d = 0 . 0 5 ; %Layer t h i c kn e s s

k0 = 20.96∗ f ; %Free space wave number
k = sqrt (eps∗mu)∗ k0 ; %Wave number

%Leontovich impedance cons tant
a0 = c i ∗k0∗ z0∗sqrt (mu/eps )∗ tan ( k∗d ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pol = 1 ; % TE po l a r i z a t i o n
Zexct = Zexx2 (Theta , eps , mu, d , pol , f ) ;
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k s i = −k0^2∗( sin (Theta ) . ^ 2 ) ;

a1b1 = [ k s i −k s i .∗ Zexct ]^(−1) ∗( Zexct − a0 ) ;

a1 = a1b1 ( 1 ) ;
b1 = a1b1 ( 2 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pol = 2 ; % TM po l a r i z a t i o n
Zexct = Zexx2 (Theta , eps , mu, d , pol , f ) ;

k s i = −k0^2∗( sin (Theta ) . ^ 2 ) ;

a1b1 = [ k s i −k s i .∗ Zexct ]^(−1) ∗( Zexct − a0 ) ;

a2 = a1b1 ( 1 ) ;
b2 = a1b1 ( 2 ) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function Z = Zexx2 (Theta , eps ,mu, d , pol , f )
% Ca l cu l a t i on o f Z_exact ( t h e t a )
%a0 = c i ∗k0∗ z0∗ s q r t (mu/ eps )∗ tan ( k∗d ) ;

c i =sqrt (−1); %complex number
c = 299792458;
mu0 = 4∗pi∗1e−7;
eps0 = 1e−12/(mu0 ∗ c ^2) ;
z0 = 376 . 7 3 ;
k0 = 20.96∗ f ;

tankd = tan ( k0∗sqrt (eps∗mu − sin ( Theta ) .^2 )∗d ) ;

i f ( po l==1)
Z = c i ∗k0∗ z0∗sqrt (eps∗mu − sin ( Theta ) . ^ 2 ) . ∗ tankd/eps ;

e l s e i f ( po l==2)
Z = c i ∗ z0∗mu∗ tankd . / sqrt (eps∗mu − sin ( Theta ) .^2 )/ k0 ;

else
Z = 0 ;
sprintf ( ’ should ␣be␣ pol=1␣ f o r ␣TE␣and␣ pol=2␣ f o r ␣TM’ )

end
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2D discretization matrices

We introduce basis matrices,

Eij =

{
1 i = j − 1

−1 i = j

}

Mij =< ψj , ψi >= { 1
hi

i = j}

where [M ] is an invertible diagonal matrix.

Sij =< dlψj , φi >=

{
1
hj

i = j

− 1
hj

i = j + 1

}

Pij =< dlψj , ψi >=
1

2

{
1

hihj
i = j − 1

− 1
hihj

i = j + 1

}

where basis functions φ and ψ are defined earlier in (6.9)-(6.12) in chapter 6.
Note: Here matrices [M ], [S] and [P ] correspond to matrices [I2], [D1] and

[D3] from the chapter 6, respectively.
Now we define matrix [T ] that corresponds to matrix [D5] in chapter 6:

Tij =< dlφj , ψi >=< ψj−1 − ψj , ψi >= (ME)ij .

And matrices:

M−1
ij = {hi i = j}

(M−1P )ij =
1

2

{
1
hj

i = j − 1

− 1
hj

i = j + 1

}

We need to find next matrices from (6.8):

[D1][I2]−1[D5] ≡ [S][M ]−1[M ][E] ≡ [S][E]

(SE)ij =

⎧⎪⎨
⎪⎩

1
hi

i = j − 1

−( 1hi
+ 1

hi−1 ) i = j
1

hi−1 i = j + 1

⎫⎪⎬
⎪⎭

[D1][I2]−1[D3] ≡ [S][M ]−1[P ]
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(SM−1P )ij =
1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
hihj

i = j − 1

− 1
hi−1hj

i = j

− 1
hihj

i = j + 1
1

hi−1hj
i = j + 2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

[D3][I2]−1[D5] ≡ [P ][M ]−1[M ][E] ≡ [P ][E]

(PE)ij =
1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
hihj−1 i = j − 2

− 1
hihj

i = j − 1

− 1
hihj−1 i = j
1

hihj
i = j + 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

[D3][I2]−1[D3] ≡ [P ][M ]−1[P ]

(PM−1P )ij =
1

4

⎧⎪⎨
⎪⎩

1
hihjhj+1

i = j − 2

− 1
hihj

( 1
hj−1 +

1
hj+1

) i = j
1

hihi−1hj
i = j + 2

⎫⎪⎬
⎪⎭

For IBC2 we have next matrix of a problem:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z0[B − S] + a0
2 [I1] [Q] a1

2 [D1]
b1
2 [D1] 0 0

a′1
2 [D1]

b′1
2 [D1]

[Q]T 1
Z0
[B] + 1

2a0
[I2] a1

2a0
[D3] b1

2a0
[D3] 0 0

a′1
2a0

[D3]
b′1
2a0

[D3]

−[D5] 0 [I2] 0 0 0 0 0

0 −[D3] 0 [I2] 0 0 0 0

0 0 −[D3] 0 [I2] 0 0 0

0 0 0 −[D3] 0 [I2] 0 0

0 0 0 0 −[D3] 0 [I2] 0

0 0 0 0 0− [D3] 0 [I2]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E.1)
with auxiliary unkowns X2, Y2, X3, Y3, such that

< d4l J, ψj >=< d3lX1, ψj >=< d2lX2, ψj >=< dlX3, ψj >

We have next equations form

< X3, ψj >=< dlX2, ψj > ⇒ [I2]X3 = [D3]X2 ⇒ X3 = [I2]−1[D3]X2

< X2, ψj >=< dlX1, ψj > ⇒ [I2]X2 = [D3]X1 ⇒ X2 = [I2]−1[D3]X1

< X1, ψj >=< dlJ, ψj > ⇒ [I2]X1 = [D3]J ⇒ X1 = [I2]−1[D3]J

The same equations for Y3, Y2, Y1 and M . Finally, we need to find next matrices

[D1] ([I2]−1[D3])2 [I2]−1[D5] ≡ [S] ([M ]−1[P ])2 [M ]−1[M ][E] ≡ [S] ([M ]−1[P ])2 [E]
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(S(M−1P )2E)ij =
1

4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
hihi+1hj−1 i = j − 3

− 1
hihi+1

( 1hj
+ 1

hi−1 ) i = j − 2

− 1
hi
( 1
hihi−1 +

1
hihi+1

− 1
hi−1hi+1

) i = j − 1
1

hi−1hi−1 (
1

hi−2 +
1
hi
) + 1

hihi
( 1
hi−1 +

1
hi+1

) i = j
1

hi−1 (
1

hi−1hi−2 +
1

hihi−1 − 1
hihi−2 ) i = j + 1

− 1
hi−1hi−2 (

1
hi
+ 1

hj−1 ) i = j + 2
1

hi−1hjhj+1
i = j + 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[D1] ([I2]−1[D3])2 [I2]−1[D3] ≡ [S] ([M ]−1[P ])2 [M ]−1[P ] ≡ [S] ([M ]−1[P ])3

(S(M−1P )3)ij =
1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
hihi+1hjhj−1 i = j − 3

− 1
hihi−1hjhj−1 i = j − 2

− 1
hihj

( 1
hjhj−1 +

1
hjhj+1

+ 1
hj−1hj−2 ) i = j − 1

1
hi−1hj

( 1
hjhj−1 +

1
hjhj+1

+ 1
hj−1hj−2 ) i = j

1
hihj

( 1
hjhj−1 +

1
hjhj+1

+ 1
hj+1hj+2

) i = j + 1

− 1
hi−1hj

( 1
hjhj−1 +

1
hjhj+1

+ 1
hj+1hj+2

) i = j + 2

− 1
hihjhj+1hj+2

i = j + 3
1

hi−1hjhj+1hj+2
i = j + 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[D3] ([I2]−1[D3])2 [I2]−1[D5] ≡ [P ] ([M ]−1[P ])2 [M ]−1[M ][E] ≡ [P ] ([M ]−1[P ])2 [E]

(P (M−1P )2E)ij =
1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
hihi+1hi+2hj−1 i = j − 4

− 1
hihi+1hjhj−1 i = j − 3

− 1
hihi+1

( 1
hihi+1

+ 1
hi+1hj

+ 1
hihi−1 ) i = j − 2

1
hihi+1

( 1
hihi+1

+ 1
hi+1hj+1

+ 1
hihi−1 ) i = j − 1

1
hihi−1 (

1
hihi+1

+ 1
hi−1hi−2 +

1
hihi−1 ) i = j

− 1
hihi−1 (

1
hihi+1

+ 1
hi−1hj−1 +

1
hihi−1 ) i = j + 1

− 1
hihi−1hjhj−1 i = j + 2

1
hihi−1hjhj+1

i = j + 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[D3] ([I2]−1[D3])2 [I2]−1[D3] ≡ [P ] ([M ]−1[P ])2 [M ]−1[P ] ≡ [P ] ([M ]−1[P ])3

(P (M−1P )3)ij =
1

16

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
hihi+1hjhj−1hj−2 i = j − 4

− 1
hihi+1hjhj

( 1
hj−1 +

1
hj+1

)− 1
hihjhj−1hj−2 (

1
hi−1 +

1
hi+1

) i = j − 2
1

hihi−1hj
( 1
hjhj−1 +

1
hjhj+1

+ 1
hj−1hj−2 )

+ 1
hihi+1hj

( 1
hjhj−1 +

1
hjhj+1

+ 1
hj+1hj+2

) i = j

− 1
hihi−1hjhj

( 1
hj−1 +

1
hj+1

)− 1
hihjhj+1hj+2

( 1
hi−1 +

1
hi+1

) i = j + 2
1

hihi−1hjhj+1hj+2
i = j + 4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭





Appendix F

Mie Scattering

The Mie solution to Maxwell’s equations (also known as the Lorenzo-Mie solution,
the Lorenzo-Mieo-Debye solution or Mie scattering) describes the scattering of elec-
tromagnetic radiation by a sphere. The solution takes the form of an analytical
infinite series. It is named after Gustav Mie.

F.1 Mie coefficients for coated spheres

Mie coefficients an and bn of coated spheres can to compute cross sections and
scattering diagrams. The coated sphere has an inner radius R with size parameter
x = kR (k is the wave number in the ambient medium) amd m1 is the inner-medium
refractive index relative to the ambient medium (which is suppose to be PEC), a
coating of outer radius R + d (d is the thickness of coated layer) with relative
refractive index m2, and size parameter y = k(R+ d).

One form used to compute the Mie coefficients of coated spheres is th following:

an =
(D̃n/m2 + n/y)ψn(y)− ψn−1(y)
(D̃n/m2 + n/y)ξn(y)− ξn−1(y)

; bn =
(m2G̃n + n/y)ψn(y)− ψn−1(y)
(/m2G̃n + n/y)ξn(y)− ξn−1(y)

D̃n =
Dn(m2y)−Anχ

′
n(m2y)/ψn(m2y)

1−Anχn(m2y)
; G̃n =

Dn(m2y)−Bnχ
′
n(m2y)/ψn(m2y)

1−Bnχn(m2y)

An = ψn(m2x)
mDn(m1x)−Dn(m2x)

mDn(m1x)χn(m2x)− χ′n(m2x)
;

Bn = ψn(m2x)
Dn(m1x)/m−Dn(m2x)

Dn(m1x)χn(m2x)/m− χ′n(m2x)
; m =

m2

m1

F.2 The scattered far field

If the detailed shape of the angular scattering pattern is required, e.g. to get the
phase matrix or phase function for radiative-transfer calculations (Chandrasekhar,
1960), the scattering functions S1 and S2 are required. These functions describe the
scattered field Es. The scattered far field in spherical coordinates (Esθ, Esφ) for a
unit-amplitude incident field (where the time variation exp(−iωt) has been omitted)
is given by

Esθ =
eikr

−ikr cosφ · S2(cos θ)

Esφ =
eikr

ikr
sinφ · S1(cos θ)

(F.1)
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with the scattering amplitudes S1 and S2

S1(cos θ) =
∑∞

n=1

2n+ 1

n(n+ 1)
(anπn + bnτn);

S2(cos θ) =
∑∞

n=1

2n+ 1

n(n+ 1)
(anτn + bnπn)

(F.2)

Esθ is the scattered far-field component in the scattering plane, defined by the in-
cident and scattered directions, and Esφ is the orthogonal component. The angle φ

is the angle between the incident electric field and the scattering plane. The func-
tions π(cos θ) and τ(cos θ) describe the angular scattering patterns of the spherical
harmonics used to describe S1 and S2 and follow from the recurrence relations

πn =
2n− 1

n− 1
cos θ · πn−1 − n

n− 1
πn−2; τn = n cos θ · πn − (n+ 1)πn−1 (F.3)

starting with (Deirmendjian, 1969)

π0 = 0; π1 = 1; π2 = 3 cos θ; τ0 = 0; τ1 = cos θ; τ2 = 3 cos(2θ)

F.3 The exact RCS

The bistatic radar cross section, defined at φ = 0 as (for TE polarization)

RCS(θ) = 10 log

(
4π

k20
|S2(cos θ)|2

)

and at φ = π/2 as (for TM polarization)

RCS(θ) = 10 log

(
4π

k20
|S1(cos θ)|2

)
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Electromagnetic Scattering Problem with Higher Order
Impedance Boundary Conditions and Integral Methods.

Abstract: The main subject of this thesis is to propose a new variational for-
mulation of electromagnetic scattering problem with approximate impedance bound-
ary conditions. We consider a perfect conductor coated with a thin dielectric layer.
The impedance operator is approximated as a ratio of polynomials of differential
operators, so that the boundary conditions are presented as an equation of these
polynomials. We call this condition as higher order IBC (HOIBC). We propose
the formulation of the problem, the discretization and the numerical results in two
dimensional case. Also we elaborate the formulation and some different methods
of discretization for three dimensional case. Finally we presented some numerical
results of three dimensional case.

Keywords: Higher-order impedance boundary conditions, scattering
problem, integral method, three dimensional method.

Résumé Dans cette thèse, on a étudié le problème de diffraction d’une onde
électromagnétique en régime harmonique. On se place dans le cas d’un objet parfait-
ment conducteur recouvert d’une couche mince de diélectrique. On présente en 2D
et 3D une nouvelle formulation intégrale couplée avec des conditions d’impédance
d’ordre élevée. On fait l’étude théorique pour l’existence et l’unicité pour chaque
formulation. Des résultats numériques sont donnés et valident les méthodes. En
3D une autre approche est proposée en utilisant les fonctions de base de Buffa-
Christiansen.

Mots clefs: Conditions aux limites d’impédance d’ordre élevée, problème
de diffraction, méthode intégrale, méthode tridimensionnel.


