
HAL Id: tel-01017860
https://theses.hal.science/tel-01017860

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A symbolic-based passive testing approach to detect
vulnerabilities in networking systems

Pramila Mouttappa

To cite this version:
Pramila Mouttappa. A symbolic-based passive testing approach to detect vulnerabilities in net-
working systems. Other [cs.OH]. Institut National des Télécommunications, 2013. English. �NNT :
2013TELE0023�. �tel-01017860�

https://theses.hal.science/tel-01017860
https://hal.archives-ouvertes.fr


                                                                                                                                        
 

DOCTORAT EN CO-ACCREDITATION 

TELECOM SUDPARIS ET L’UNIVERSITE EVRY VAL D’ESSONNE 
 

 

Spécialité : Informatique 
 

 

 Ecole doctorale : Sciences et Ingénierie 

 

Présentée par 

Pramila MOUTTAPPA 
 

Pour obtenir le grade de 

DOCTEUR DE TELECOM SUDPARIS 
 

 

A Symbolic-based Passive Testing approach 
to detect Vulnerabilities in Networking 

Systems 
 

Thèse dirigée par Ana CAVALLI 
 
Soutenue le  16 Décembre 2013 devant le jury composé de : 
 
 
Rapporteurs :   Fatiha ZAÏDI   - Université Paris Sud XI 
   Franz WOTAWA  - Graz University of Technology 
 
Directrice de thèse : Ana CAVALLI  - Mines Télécom-Télécom SudParis 
 
Examinateurs :  Stéphane MAAG  - Mines Télécom-Télécom SudParis 
      Sébastien TIXEUIL  - Université Pierre et Marie Curie 
   Michel BOURDELLES - Thales Communications 

 
Thèse N° 2013TELE0023 



Abstract

Due to the increasing complexity of reactive systems, testing has become an im-

portant part in the process of the development of such systems. Conformance testing

with formal methods refers to checking functional correctness, by means of testing, of a

black-box system under test with respect to a formal system specification, i.e., a spec-

ification given in a language with a formal semantics. In this aspect, passive testing

techniques are used when the implementation under test cannot be disturbed or the

system interface is not provided. Passive testing techniques are based on the observa-

tion and verification of properties on the behavior of a system without interfering with

its normal operation, it also helps to observe abnormal behavior in the implementation

under test on the basis of observing any deviation from the predefined behavior.

The main objective of this thesis, is to present a new approach to perform passive

testing based on the analysis of the control and data part of the system under test.

During the last decades, many theories and tools have been developed to perform con-

formance testing. However, in these theories, the specifications or properties of reactive

systems are often modeled by different variants of Labeled Transition Systems (LTS).

However, these methodologies do not explicitly take into account the system’s data,

since the underlying model of LTS are not able to do that. Hence, it is mandatory to

enumerate the values of the data before modeling the system. This often results in the

state-space explosion problem. To overcome this limitation, we have studied a model

called Input-Output Symbolic Transition Systems (IOSTS) which explicitly includes all

the data of a reactive system.

Many passive testing techniques consider only the control part of the system and

neglect data, or are confronted with an overwhelming amount of data values to process.

In our approach, we consider control and data parts by integrating the concepts of

symbolic execution and we improve trace analysis by introducing trace slicing techniques.

Properties are described using Input Output Symbolic Transition Systems (IOSTSs) and

we illustrate in our approach how they can be tested on real execution traces optimizing

the trace analysis. These properties can be designed to test the functional conformance

of a protocol as well as security properties.

In addition to the theoretical approach, we have developed a software tool that

implements the algorithms presented in this paper. Finally, as a proof of concept of our

approach and tool we have applied the techniques to two real-life case studies: the SIP

and Bluetooth protocol.



Acknowledgements

It gives me great pleasure in expressing my gratitude to all those people who have

supported me and had their contributions in making this thesis possible. First and

foremost, I would like to thank, Professor Ana Cavalli, for her valuable time, guidance

and funding to make my Ph.D. experience productive. I owe my deepest gratitude to

my supervisor, Professor Stéphane Maag, for the patient guidance, encouragement and

advice he has provided throughout my time as his student. I am really fortunate to have

a supervisor who cared so much about my work, and who responded to my questions

and query so promptly.

My sincere thanks must also go to the members of my thesis advisory and exam

committee: Fatiha Zäıdi, Franz Wotawa, Michel Bourdelles and Sébastien Tixeuil. They

generously gave their time to offer me valuable comments toward improving my work.

It is no easy task, reviewing a thesis, and I am grateful for their thoughtful and detailed

comments

I would like to extend my thanks to Prof. Nina Yevtushenko, Prof. Anis Laouiti

and Dr. Alessandra Bagnato for their valuable comments, moral support and friendly

advices.

My sincere thanks to Mme. Brigitte Laurent, for all the support she had given me

in completing the non-technical part of my work.

My special thanks to my LOR friends: Felipe, Anderson, Khalifa, Xiaoping, Natalia,

Jorge, Olga, Jimmy, Joao and Mohammed. They have been a source of friendship as

well as contributed immensely to my personal and professional time.

I owe a lot to my parents, Savariraj and Mary, who encouraged and helped me at

every stage of my personal and academic life, and longed to see this achievement come

true. I also want to thank my in-laws for their unconditional support and confidence

they had given me all these days. I am grateful to my sisters Sophia and Sheela and

specially my brother Joe, who boosted me morally and provided me great information

resources. My sincere thanks to my brother-in-law and sister-in-law for their valuable

encouragement and support. Finally, I would like to dedicate my thesis to my lovable

husband, David and my son Mervyn, who have always stood by me through the good

and bad times. Thank you for your love, support, and unwavering belief in me.

Thanks a lot.

ii



Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 8

2.1 Formal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Active testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Passive testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2.1 Labeled Transition Systems (LTS) . . . . . . . . . . . . . 13

2.1.2.2 Input-Output Labeled Transition Systems (IOLTS) . . . 13

2.1.2.3 Symbolic Transition Systems (STS) . . . . . . . . . . . . 14

2.1.2.4 Finite State Machines (FSM) . . . . . . . . . . . . . . . . 15

2.1.2.5 Extended Finite State Machines (EFSM) . . . . . . . . . 16

2.2 Symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Parametric trace analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Runtime Verification (or Runtime Monitoring) . . . . . . . . . . . . . . . 26

3 Methodology for Symbolic Passive Testing 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Symbolic transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Semantics of an IOSTS . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2.1 Examples of a SIP property defined as an IOSTS . . . . 34

3.2.2.2 Registration Property in SIP . . . . . . . . . . . . . . . . 35

3.2.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Parametric Trace Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Parametric Trace Slicing Algorithm . . . . . . . . . . . . . . . . . 44

3.4 Testing the IOSTS property on real execution traces . . . . . . . . . . . . 46

3.4.1 Evaluation of a Property on Trace slices . . . . . . . . . . . . . . . 46

3.4.2 Evaluation of Property/Attack on the Implementation Traces . . . 50

iii



Contents iv

3.5 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Complexity of our approach . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1.1 Complexity of Slicing logic . . . . . . . . . . . . . . . . . 51

3.5.1.2 Complexity of Evaluation logic . . . . . . . . . . . . . . . 51

3.5.2 Comparison with other Passive Testing tools . . . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Application to Real-Time Case Studies 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Case study 1: The Session Initiation Protocol (SIP) . . . . . . . . . . . . 56

4.2.1 Basic overview of the IMS . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Overview of SIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2.1 SIP components . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2.2 Message Syntax . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2.3 SIP transactions and Dialogs . . . . . . . . . . . . . . . . 61

4.2.3 IOSTS modeling of SIP behaviors/attacks . . . . . . . . . . . . . . 62

4.2.3.1 Registration Hijack attack in SIP . . . . . . . . . . . . . 63

4.2.3.2 Denial of Service (DoS) attack in SIP . . . . . . . . . . . 65

4.2.3.3 Session Establishment Property in SIP . . . . . . . . . . 66

4.2.3.4 Session Teardown attack in SIP . . . . . . . . . . . . . . 67

4.2.4 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Case study 2: Bluetooth Protocol . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Overview of Bluetooth protocol . . . . . . . . . . . . . . . . . . . . 76

4.3.1.1 Bluetooth Stack . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 IOSTS modelling of a Bluetooth behavior/attack . . . . . . . . . . 79

4.3.2.1 Bluetooth call establishment property . . . . . . . . . . . 80

4.3.2.2 Bluetooth attack - Bluestabbing . . . . . . . . . . . . . . 81

4.3.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 General Conclusion 86

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Symbolic Framework for Passive Testing 92

A.1 Trace Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 Trace Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Final Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B Inputs to the TestSym-P 96

B.1 Raw Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 Guard-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2.0.1 Guard-conditions table - SIP . . . . . . . . . . . . . . . . 97

B.2.0.2 Guard-conditions table - Bluetooth . . . . . . . . . . . . 98



Contents v

B.3 Symbolic state details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.3.0.3 Symbolic state table - SIP . . . . . . . . . . . . . . . . . 99

B.3.0.4 Symbolic state table - Bluetooth protocol . . . . . . . . . 99

Bibliography 100



List of Figures

1.1 Functional and Structural testing . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Property - Request followed by Acknowledgment response . . . . . . . . . 4

2.1 Active testing approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 General passive testing approach . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Example of value determination approach and the associated problem . . 17

2.4 Symbolic execution of a sample program . . . . . . . . . . . . . . . . . . . 23

3.1 Architecture of our Symbolic Passive Testing approach. . . . . . . . . . . 29

3.2 SIP: Registration Property in SIP . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Symbolic Execution of IOSTS. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Example illustrating the symbolic execution of one transition . . . . . . . 39

4.1 An IMS Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 SIP Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Example of a SIP message. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Dialog and transactions during the establishment of a SIP session. . . . . 63

4.5 SIP: Registration Hijack Attack . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Denial of Service Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 SIP: Session Establishment Property in SIP. . . . . . . . . . . . . . . . . . 66

4.8 Session Teardown Attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Symbolic Execution of IOSTS with Security Attack scenarios. . . . . . . 69

4.10 Sample SIP trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Effect of filters on sample SIP traces (Table 4.4) . . . . . . . . . . . . . . 74

4.12 Overview of the SUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Bluetooth Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.14 HCI packets flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 A piconet hacked by an attacker . . . . . . . . . . . . . . . . . . . . . . . 79

4.16 Bluetooth Call establishment and Bluestabbing attack. . . . . . . . . . . . 80

4.17 Symbolic execution of IOSTS. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.18 Sample Bluetooth trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 TestSym-P, the prototype tool. . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 A snapshot of the trace parsing table. . . . . . . . . . . . . . . . . . . . . 93

A.3 A snapshot of the trace slicing table. . . . . . . . . . . . . . . . . . . . . . 94

A.4 A snapshot of the trace evaluation table. . . . . . . . . . . . . . . . . . . . 94

B.1 SQL table for Guard conditions - SIP . . . . . . . . . . . . . . . . . . . . 97

B.2 SQL table for Guard conditions - Bluetooth protocol . . . . . . . . . . . . 98

vi



List of Figures vii

B.3 SQL table for Symbolic state details - SIP . . . . . . . . . . . . . . . . . . 99

B.4 SQL table for Symbolic state details - Bluetooth protocol . . . . . . . . . 99



List of Tables

3.1 Slice table L for a sample SIP trace ρ. . . . . . . . . . . . . . . . . . . . . 45

3.2 Evaluation table for each trace slice. . . . . . . . . . . . . . . . . . . . . . 47

3.3 Time complexity - Different Passive Testing tools. . . . . . . . . . . . . . 52

4.1 SIP messages mandatory header fields . . . . . . . . . . . . . . . . . . . . 62

4.2 Results of Testing the Session Registration Property on sample SIP traces
(Without Filters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Results of Testing the Session Establishment Property on sample SIP
traces (Without Filters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Results of Testing the Session Registration Property on sample SIP traces
(With Filters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Results of Testing the Session Establishment Property on sample SIP
traces (With Filters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Prototype Tool results on sample Bluetooth traces ρ. . . . . . . . . . . . . 84

viii



Chapter 1

Introduction

1.1 General Context

The advent of high-performance networks has led to the development of a new set of

technologies and new communication protocols and services for the systems. Reliable

communication can be ensured only if the protocol implementations used within each

system conform to their specifications. Although the application of these protocols and

services in real-time may be satisfiable, still there can be flaws in the implementation

which could be exploited by an attacker to compromise the network. Testing is then an

activity in which the testers try to conform or guarantee that the protocol or service

processes without fault or at least meets the requirements, but also to check security

properties.

Software testing [Beizer 1990] distinguishes structural and functional testing. As

shown in Figure 1.1 structural testing or white-box testing is based on the analysis of

the internal structure of an implementation, while functional testing, also called black-

box testing consists of checking whether an implementation of the software or hardware

satisfies its specification without making any reference to its internal structures.

In this work, we are interested in so-called conformance testing where the aim is to

check conformance of the implementation under test (IUT) to a set of desired properties

and behaves in accordance with some predefined requirements. In general, conformance

testing is understood as functional black-box testing, i.e., an IUT is given as a black-box

and its functional behavior is defined in terms of inputs to and corresponding outputs

1



Chapter 1. Introduction 2

Figure 1.1: Functional and Structural testing

from the IUT. In this work we only take into account the black box conformance testing,

where conformance testing refers to the activity of showing that the IUT executions

follow all the properties defined in the corresponding specification. In order to say it

informaly, if it deviates from the expected behavior we would like to see if it matches

with any attack scenario.

Testing is generally performed based on the formal models. Conformance testing

with formal methods refers to checking functional correctness, by means of testing, of a

black-box system under test with respect to a formal system specification, i.e., a specifi-

cation given in a language with a formal semantics. These formal specifications enables

the analysis of systems and the reasoning about them with mathematical precision which

aids testing. Commonly, two main classes of formal testing techniques are applied to

check the conformance of protocols and software: active and passive testing (monitoring)

techniques.

Most of the formal testing [Bentakouk et al. 2011, Gaston et al. 2006, Martijn et al.

2007, Rusu et al. 2005, Weiglhofer et al. 2010] approaches are said to be active which

means that test cases are extracted from the specification and experimented on the im-

plementation to conclude whether a test relation is satisfied. Active methods require to

deploy a pervasive test environment (test architecture) to execute test cases and to ob-

serve implementation reactions. They may also interrupt the system normal functioning

arbitrarily, for example by resetting it after each test case execution. However, when

a system is deployed in an integrated environment, it becomes quite difficult to access

it. Moreover, active methods may disturb the natural operation of the implementation

under test. So, these ones may not be suitable in regards to the tested system. Passive

testing represents another interesting alternative, which offers several advantages, e.g.,

to not disturb the system while testing.



Chapter 1. Introduction 3

Since the early 1980s there has been ongoing interest in passive testing, technically

defined as a testing activity in which a tester does not influence (stimulate) an IUT in

any way, it does not apply any test stimuli. Rather, the usual approach of passive testing

consists on recording the trace (i.e., sequence of exchange of messages) produced by the

implementation under test and mapped to the property to be tested or specification

if it exists. Passive testing helps to observe abnormal behavior in the implementation

under test on the basis of observing any deviation from the predefined behavior. This

deviation can also sometimes match with certain attack patterns. Moreover, it is usually

considered that the implementation is taken without knowledge of its internal state that

is to say that we do not consider the event trace record to start from the initial state or

a predefined state.

It is worth to point out that our passive testing approach is somehow related to run-

time verification [Falcone et al. 2013] since they share similar objectives and procedures.

Runtime verification techniques are used to dynamically verify the behavior observed

in the target system with respect to some requirements. These requirements are often

formally specified and verification techniques are used both to check that the observed

behavior matches the specified properties and to explicitly recognize undesirable behav-

iors in the target system.

1.2 Motivation and Objectives

Reactive systems [Harel and Pnueli 1985] interact permanently with its environment by

continuously exchanging information. Many systems in the real world can be considered

as reactive: communication protocols, embedded systems, smart cards, etc. It is essential

to realize how crucial reactive systems can be, and how important it is to perform

testing or other validation techniques on them. For example, in network protocols,

communication is established by exchanging messages between the entities, where each

entity can independently act as an emitter or receiver. As the systems evolve, messages

become richer with data values. These messages are defined as control and data portions

based on the function of the protocol. Many works on passive testing [Andrés et al.

2008; 2012, Cavalli and Tabourier 1999, Lee et al. 1997] are focused only on checking

the control portion of the protocol without taking into account the data part. However,

it may result in producing false positive verdicts as illustrated below with an example.



Chapter 1. Introduction 4

(a) Control portion

(b) Control and data portion

Figure 1.2: Property - Request followed by Acknowledgment response

Let us consider a property, where a user A sends a request say, Request(from:aron@ti.

com, to:ben@info.com) and expects for an acknowledgment response from user B, Ack

(from:aron@ti.com, to:ben@info.com). In Figure 1.2(a), the control portions are alone

monitored. We observe from the system trace that the property of having a request

followed by an acknowledgment is satisfied, hence the verdict for the trace results pass.

But if we include the data portions of the messages then the verdict for the trace in

Figure 1.2(b) results fail or inconclusive. It fails because there is no acknowledgment

response from user B as required by the property where we could only see the acknowl-

edgment response from a different user, Ack(from:carl@pouf.com, to:ben@info.com) and

the verdict is inconclusive if the length of the trace is not sufficient to prove the invari-

ant. Hence the data relationship between messages must be given importance to avoid

such false positive verdicts.

In order to overcome the above problem, the data part of the protocols must also be



Chapter 1. Introduction 5

taken into account. This led to the development of specifications as extended finite state

machines (EFSMs). In an EFSM, the transition can be expressed by an ”if condition”.

If the trigger conditions are satisfied then the transition from one state to another

is performed and the specified data operations are executed. However, applying the

EFSM in passive testing requires the enumeration of data values which is a huge, time

and space consuming activity. To overcome the problem of data enumeration for testing

large reactive systems, we have adopted a symbolic approach, by modeling the properties

of the system using an IOSTS formalism. In the IOSTS formalism, we represent the

data in the form of symbols rather than concrete data values, which helps to avoid data

enumeration.

1.3 Contributions

In the previous section we briefly described the current testing methods and its prob-

lems. In order to easily understand the contributions, we provide a short outline of

our approach. In this work, the passive testing of a property on a real execution trace

integrates two important techniques: symbolic execution of an Input-Output Symbolic

Transition Systems and a parametric trace slicing approach. Input-Output Symbolic

Transition Systems (IOSTS) are commonly used for formally modeling communicating

systems interacting with their environment. In IOSTS, the parameters and variable val-

ues are represented by symbolic values (called fresh variables) instead of concrete ones.

Enumeration of data values is therefore not required. This allows to reduce the huge

amount of data values commonly applied in many passive testing approaches. In [Mout-

tappa et al. 2012b] we proposed this approach to monitor the conformance property

alone and then as an improvement in [Mouttappa et al. 2012a] we monitored a property

and an attack scenario. A more extended version of our approach is provided in the

Journal article [Mouttappa et al. 2013b] to specify the protocol properties as well as

several kinds of attack patterns. This helps to detect conformance as well as security

anomalies.

Besides, a Parametric trace slicing technique [Chen and Rosu 2009] is used for trace

analysis. Trace analysis plays a very important part in passive testing. A parametric

trace is defined as a trace containing events with parameters that have been bound to a

concrete data value (i.e., valuation) and parametric trace slicing is defined as a technique



Chapter 1. Introduction 6

to slice (or cut) the real protocol execution trace into various slices based on the valua-

tion. Each slice corresponds to a particular valuation. These trace slices merged together

constitutes the execution trace. We then apply the symbolic execution of our properties

on the trace slices to provide a test verdict Pass/Fail/Attack-Pass/Inconclusive. The

proposed symbolic passive testing approach was implemented in a tool called TestSym-P

and applied to two different protocols: Session Initiation Protocol (SIP) and Bluetooth

Protocol.

1.4 Thesis plan

This manuscript is organized as follows:

1. Chapter 2 presents the state of the art of conformance testing techniques. We begin

with the general concepts of conformance testing and then present the different

testing families, i.e. active and passive testing, as well as the different formalisms

that have been identified to perform conformance testing. In addition, we also

provide a general overview and some related works on the symbolic execution and

the parametric trace slicing technique which have been used in our passive testing

methodology.

2. Chapter 3 contains our main contribution. In our work we integrate two main tech-

niques: symbolic execution and parametric trace slicing. First, we define the Input-

Output Symbolic Transition Systems (IOSTSs) formalism that has been adopted

to define the protocol behaviors/attacks. Then we detail how this IOSTS can

be symbolically executed to obtain the tree-like structure, in which the branches

correspond to the property/attack scenario we are interested in. Then, we define

the parametric trace slicing technique that was used for the trace analysis. We

describe the algorithm for the evaluation of the traces against the property/attack.

Finally, we present the complexity of the described methodology and also compare

with other passive testing techniques. The different steps in our methodology are

explained taking a SIP property as an example.

3. Chapter 4 presents the application of the symbolic passive testing methodology to

two illustrative use cases: Session Initiation Protocol (SIP) and Bluetooth protocol.

The experiments and results obtained are detailed in this section.



Chapter 1. Introduction 7

4. The thesis ends with the Chapter 5, where we summarize our contributions in

the field of passive testing and also present some perspectives and possible future

directions to extend our work.



Chapter 2

State of the Art

Contents

2.1 Formal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Active testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Passive testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Parametric trace analysis . . . . . . . . . . . . . . . . . . . . . 24

2.4 Runtime Verification (or Runtime Monitoring) . . . . . . . 26

2.1 Formal Testing

Testing is a way to check the correctness of a system implementation by means of

experimenting with it. In general, tests are applied to the implementation under test

and based on observations made during the execution of the tests, a verdict is given.

The correctness of this verdict is based on the system specification. The main intent of

system test is to find defects and correct them before go-live. Thus testing technique

improves the confidence of the system quality.

Formal specification based testing is dependent on three key concepts: implementa-

tion under test (IUT), specification and conformance. The increasing usability of formal

methods in the software/hardware development processes, as well as new developments

in the theory of testing, have influenced the evolution of testing technology. This led to

a joint project between the International Organization for Standardization (ISO) and

8



Chapter 2. State of the Art 9

the International Telecommunication Union (ITU) on ”Formal Methods in Conformance

Testing” (FMCT) (ISO/IEC, 1996). The main objective of this project was to establish

a theory and framework which may be used to assess conformance of an implementa-

tion to the behavior specified in a formal description. A more detailed definition of

conformance is provided in [Tretmans 1994], and we recall few points here.

1. Implementation Under Test (IUT) is the basic element in testing. A implemen-

tation can be any reactive system i.e., an embedded system, a communication

protocol, or any control system.

2. Specification describes the correct or expected behavior of the IUT. In formal

testing the specification is expressed in some formal language, i.e., a language

with a formal syntax and semantics. The set of all valid expressions (representing

the property/behavior) represented in this language, be denoted by SPEC. If

s ∈ SPEC, then in testing our goal is to check whether the behavior of the IUT

conforms to s.

3. Conformance is a way to check whether the IUT conforms to the specification.

This can be expressed as,

conform− to ⊆ IMPS × SPEC where,

-IMPS is the set of all the implementations and

-SPEC set of all specifications (representing valid expressions).

Conformance can be defined as a relation between the observable behavior of the

IUT and the behavior of the corresponding model, which serves as system specifica-

tion. An IUT conforms to its specification if both, the IUT and the specification,

show the same behavior. Conformance testing belongs to the category of func-

tional testing approaches. An IUT is solely tested according to its specification.

The internal structure of the IUT (the code) is not known. Hence, in conformance

testing, the IUT is a black-box. Only the observable behavior of the IUT, the

interactions of the IUT with its environment, is testable.

Actually, there are three distinct ways of applying the conformance testing : through

a black-box, a white-box or a gray-box approach.

1. Black-box testing, also called functional testing, is unaware of the internal structure

of the IUT, as well as, it only observes the exchanged inputs and outputs between



Chapter 2. State of the Art 10

the tester and the IUT without considering the internal actions. The verdict issued

is based on the analysis of the observed events.

2. Whereas, in White-box or structural testing, the internal structure of the IUT

is known (i.e., knowledge of the implementation code), and in addition to the

observed events the internal actions are also taken into account.

3. Gray-box testing can be considered as an intermediate approach between the black-

box and white-box testing. It is a technique to test the application with limited

knowledge of the internal workings of an application. Unlike black box testing,

where the tester only tests the application’s user interface, in gray box testing, the

tester has access to design documents and the database.

Our approach mainly concentrates on Protocol conformance testing. Protocol con-

formance testing is the process of testing the extent to which implementation of protocol

entities adhere to the requirements stated in the relevant standard or specification. Sim-

ilar to the above stated general conformance testing, this is a type of black-box testing or

functional testing, where the evaluation is done based on the observable behavior (inputs

and output messages) of the IUT. Further, conformance testing can be broadly classi-

fied into two main testing families: the active testing and the passive testing. Each of

these two families encompasses various approaches, and each approach contains different

techniques.

2.1.1 Active testing

In this family of conformance testing, the tester tries to show the conformance relation

by executing a set of test scenarios on an implementation under test (IUT) and verifies

whether its behavior matches with the specified requirements. In this type of test,

the tester interacts directly with the IUT via its interfaces (external). According to the

testing community, it is referred as black-box testing to qualify a test with no information

about the internal structure of the implementation.

The Figure 2.1 depicts the general active testing architecture.

In general the following steps are followed for an active testing approach:



Chapter 2. State of the Art 11

Figure 2.1: Active testing approach

1. generate (automatically) and apply (send) stimuli, or test input data, in order to

control an IUT (mainly the system behavior);

2. observe phenomena as they appear under the influence of applied stimuli;

3. analyze the relation between observed phenomena and some references (such as a

pre-computed, intended behavior);

4. decide on a suitable conformance verdict, which expresses the analysis result.

2.1.2 Passive testing

Passive testing consists in analyzing the traces (i.e., the input and output events)

recorded from the IUT and trying to find a fault by comparing these traces with ei-

ther the complete specification or with some specific requirements (or properties) during

normal runtime. As the name implies, it does not disturb the natural run-time of an

IUT. It is sometimes also referred to as monitoring. The record of the event observation

(input/output) is called an event trace. This event trace will be verified against the

specification (or requirements) in order to determine the conformance relation between

the implementation and the specification. Then based on the result of that relation

a final verdict is produced. We can distinguish two different approaches: Online and

Offline. In the former, the passive tester tries to detect a fault during the execution

of the system [Halle and Villemaire 2009, Simmonds 2011], where as, in the latter, the

evaluation of the system is done by collecting the recorded traces [Alcalde et al. 2004,

Andrés et al. 2008, Che et al. 2012, Lee et al. 1997]. Figure 2.2 shows the general passive

testing architecture.



Chapter 2. State of the Art 12

Figure 2.2: General passive testing approach

The objective of conformance testing is to check that an implementation performs

all what is described in its specification or requirement (that is supposed to be correct).

In order to minimize wrong interpretations of the specification it is preferable to describe

them with the help of a formal language or formal model. According to the literature,

we find that most of the passive testing approaches are based on such formal models or

specifications.

Most of the formal testing [Bentakouk et al. 2011, Gaston et al. 2006, Martijn et al.

2007, Rusu et al. 2005, Weiglhofer et al. 2010] approaches consist in the generation of

test cases that are applied to the implementation in order to check its correctness with

respect to a specification. But, this is not always possible for large systems that are

running continuously and cannot be shutdown or interrupted for a long period of time

and also when direct interfaces are not provided. Indeed, interfering with such systems

can result in misbehavior of the system. In these situations, there is a particular interest

in using other types of validation techniques such as passive testing.

There is another branch of work which got importance in last years called Model

based testing which can be considered as formal, specification based, active, black-box,

functionality testing [Tretmans 2008]. The testing is said to be active here because the

tester controls and observes the IUT in an active way by giving stimuli and triggers

to the IUT, and observing its responses, as opposed to passive testing or monitoring.

Few notable models used for model-based testing like Labeled Transition Systems (LTS)

and its extensions and other important formalisms adopted for conformance testing are

discussed in this chapter.



Chapter 2. State of the Art 13

2.1.2.1 Labeled Transition Systems (LTS)

Most of the classical state-oriented testing approaches are based on simple machine

models such as Labeled Transition Systems (LTS), in which data is represented by con-

crete values [Frantzen et al. 2005]. A labeled transition system is a structure consisting

of states with transitions, labeled with actions, between them. The states model the

system states; the labeled transitions model the actions that a system can perform.

Definition 2.1. (LTS) A Labeled Transition System is a tuple 〈S, s0,Σ,→〉 where,

- S is a (possibly infinite) set of states

- s0 ∈ S is the initial state

- Σ is a (possibly infinite) set of action labels

- → is the transition relation

Nevertheless, the labeled transition system defines the possible sequences of inter-

actions that a system may have with its environment, but still these interactions are

considered to be abstract. That is, there is no fundamental difference between the

controllable (input) and observable (output) actions. However, this difference has a

fundamental role in testing. Many works had been done in this direction, for example,

Input-Output Automata (IOA) was proposed in [Lynch and Tuttle 1989], Input-Output

State Machines (IOSM) [Phalippou 1994], Input-Output (Labeled) Transition Systems

(IO(L)TS) [Jeron 2004, Tretmans 1994].

2.1.2.2 Input-Output Labeled Transition Systems (IOLTS)

An IOLTS consists of states and transitions labeled with actions between them. The

states represent the states of the modeling system and the actions on the transitions

model the actions which can be performed by the system. The Input-Output Labeled

Transition Systems (IOLTS) is a variant of LTS, where the alphabet of observable actions

is separated into two disjoint alphabets of input and output action. As in [Tretmans

1996], we also use the distinction between inputs and ouputs. Outputs are identified by

the symbol !, which denotes the values sent from the system to the environment. Inputs,

are identified by the symbol ?, corresponds to the values sent from the environment to

the system.



Chapter 2. State of the Art 14

Definition 2.2. (IOLTS)An Input-Output Labeled Transition System is a tuple 〈S, s0,Σ,

→〉 where,

- S is a countable, non-empty set of states

- s0 ∈ S is the initial state

- Σ = Σ? ∪Σ! is a countable alphabet of actions which consists of two disjoint alphabets

of input Σ? and output Σ! actions

- →⊂ S × Σ× S is the transition relation

The reactive systems often manipulate complex data structure. Moreover, they can

exchange their data using input and output actions. However, the underlying model of

(IO)LTS does not allow to explicitly describe the data of these systems. Therefore, in

order to model a specification of such reactive system with (IO)LTS, it is necessary to

enumerate values of each datum used by this system. This leads to an explosion of the

state space. To overcome these problems, we introduce the Symbolic Transition Systems

(STS).

2.1.2.3 Symbolic Transition Systems (STS)

The disadvantage of an LTS based transition system is the limited possibility of modeling

data values and variables. For modeling data values and variables with an LTS all data

is encoded in actions representing one concrete value. This mapping then leads to a

state space explosion up to an LTS with infinitely many states. Another disadvantage

of this method is that all additional information about the data, such as constraints,

is lost. In order to model data values and variables without the state space explosion,

and to maintain the additional data information, Symbolic Transition Systems (STS)

have been introduced in [Henzinger et al. 1999]. Instead of mapping actions to concrete

values the data in STS is treated symbolically.

Definition 2.3. (STS) A Symbolic Transition System is a tuple 〈V, θ,Σ, T 〉 where,

- V = 〈v1, v2, · · · , vn〉 is a tuple of variables

- θ is a predicate on V defining the initial condition on the variables

- Σ is a finite alphabet of actions and

- T is a finite set of symbolic transitions. Each symbolic transition is a tuple t =

〈σt, Gt, At〉 consisting of :

- σt ∈ Σ is the action of t



Chapter 2. State of the Art 15

- Gt is the predicate on V which guards the t

- At is the assignment function of t

In our approach, we define an Input-Output Symbolic Transition System (IOSTS)

which is similar to the STS to model a specification behavior (property/attack). The

main difference between IOSTS and IOLTS is the fact that IOSTS are a representation

on a symbolic level, whereas IOLTS deal with concrete data values. This symbolic

representation is enabled by enriching IOSTS with variables and parameters and has

the advantage to avoid the state space explosion problem [Rusu et al. 2000]. But in

our approach we adapt the IOSTS formalism to model a property/attack and perform

the conformance by passive testing. A more detailed explanation of the syntax and

semantics of IOSTS is provided in Chapter 3 of this thesis.

2.1.2.4 Finite State Machines (FSM)

Finite State Machine representation (FSM) which is also called automata has been

widely used in system specification of various areas, like network protocols, high level

software design, real-time reactive systems, etc. Usually, execution traces of the imple-

mentation are compared with the specification to detect faults in the implementation

[Benharref et al. 2007, Cavalli and Tabourier 1999, Lee et al. 1997].

Definition 2.4. (FSM) An FSM is a 6-tuple 〈I,O, S, s0, T, λ〉 where,

- I is a finite non-empty set of input symbols

- O is a finite set of output symbols

- S is a finite non-empty set of states

- s0 is the initial state.

- T : S × I → S is a transition function that brings the system into the state sjwhen

reading the event e in the state si ((si, e) ∈ S × I)

- λ : S × I → O is a transduction function that produces the output o when reading the

event e in the state si ((si, e) ∈ S × I)

So, when the machine is in the state s and receives the input symbol a then it moves

to the state defined by T (s, a) producing the output described by λ(s, a). Although, the

FSM has been used to model simple systems they quickly become complex or unpractical

to use for complex systems. In addition, it has the provision to model only the control

portion of a protocol.



Chapter 2. State of the Art 16

2.1.2.5 Extended Finite State Machines (EFSM)

Real life protocols are too complex to be modeled with a simple Finite State Machine.

In order to specify a real protocol, we then use the Extended Finite State Machine

(EFSM) [Lee and Yannakakis 1996] formalism (i.e there will be internal variables and

parameters).

Definition 2.5. (EFSM) An EFSM is a 6-tuple 〈I,O, S, s0, T, ~x〉 where,

- I is a finite non-empty set of input symbols

- O is a finite set of output symbols

- S is a finite non-empty set of states

- s0 ∈ S is the initial state.

- T is a finite set of transitions

- ~x is a variable vector

Each transition t ∈ T is a 6-tuple t = 〈st, ft, it, ot, Pt, At〉 where,

- st is a starting state

- ft is an ending state

- it is an input symbol

- ot is an output symbol

- Pt(~x) is a predicate on the variable values

- At(~x) is an action on the variable values

An extended finite state machine differs from the traditional finite state machine

in its definitions of the transitions. In a conventional FSM, the transition is associated

with a set of input Boolean conditions and a set of output Boolean operations. In an

EFSM model, the transition can be expressed by an if statement consisting of a trigger

condition and a set of data operations. When the trigger condition is satisfied, the

transition is fired, bringing the machine from the current state to the next state and

performing the specified data operations. In general, the trigger conditions and the data

operations may depend on the primary inputs as well as the data variables. EFSM-

based testing considers the observable (input/output events) behavior of the model as

the control portion and the variable and parameter values as data portion. An EFSM

can be converted to an equivalent FSM for testing, but it might result in state explosion

problem [Hong et al. 2002].



Chapter 2. State of the Art 17

Passive testing by value determination Passive testing using EFSM, mainly con-

centrates on checking the correctness of event sequences (appearing in the collected

trace), but it must also consider the variables and the parameter values. In [Cavalli

and Tabourier 1999], the authors have proposed the first passive testing method based

on deducing the variable and parameter values from an event trace with EFSM spec-

ifications. Figure 2.3(a) shows an example of this deduction process, where there are

two possible transitions from state s1 upon receipt of input a, depending on the current

value of variable x.

(a) Value determination (b) Loss of data problem

Figure 2.3: Example of value determination approach and the associated problem

Let us assume that the current state s1 is known, but that the current value of

variable x is unknown. If the next I/O couple in the trace is a/1, we can deduce that,

after the transition, the machine will be in state s3, and also that variable x = 0. Now

the predicates can be evaluated having known the value of a variable, and will possibly

be modified depending on actions.

According to this approach, a transition is said to be fireable if:

- the input/output of the trace matches the label of the transition; and

- either the predicate is true, or it cannot be evaluated (due to unknown variable values).

There can also be a problem in this type of approach when some variables have

unknown values, since for some transitions, variables whose values had already been

determined may become unknown again. This is defined as loss of value problem illus-

trated in Figure 2.3(b). Here, we assume that the value of variable x has already been

determined say, x = 3 and that the value of y is still unknown. In all cases, both the



Chapter 2. State of the Art 18

transitions s1 → s2 and s1 → s3 are fireable because the observable behavior is the

same for both branches a/0, and in this case, since the two transitions give different

values to x, x becomes undefined.

The proposed algorithm constitutes two important phases: the homing phase and

fault detection phase. In the homing phase the following rules are considered:

- For a given I/O couple, if several transitions are possible resulting in different values

for a variable, then the variable becomes undefined.

- If the predicate holds some undefined or unknown variable value then the predicate is

ignored and only the I/O observations are used as a deciding factor for the execution of

the transition.

In the fault detection phase, the conformance of the remaining trace with respect

to the specification is performed with the intention of finding some faults in the I/O

behavior.

Passive testing by interval determination In the previous approach, the algorithm

suffers from an information loss problem. To overcome this issue, a more efficient passive

testing approach for fault detection was proposed in [Lee et al. 2002]. Three main

concepts are used for value determination.

1. Intervals are used to denote the integer variable values (i.e., the possible integer

variable values). Using intervals, a variable v whose value is between two integers

a and b has an interval R(v) = [a, b], which shows a ≤ v ≤ b. Intervals are used to

determine the satisfaction of predicates later in the evaluation. If the value of v is

known to a, the interval is given by R(v) = [a, a]. The variable v is said decided.

2. The Assertions, assert(~x), records the possible constraints on variables. These

constraints can be obtained from either predicates or actions. According to the

transition rule, a transition is fired, if the predicate of this transition is assumed

to be true and it is added to assert(~x). Assignments with undecided variables on

the right side should also be included into assert(~x) as well as predicates.

3. Candidate Configuration Sets (CCS) are used to represent possible statuses

of the machine. A CCS is a three tuple 〈s,R(~x), assert(~x)〉 where,

- s is the current specification state



Chapter 2. State of the Art 19

- R(~x) is the set of intervals

- assert(~x) is an assertion on ~x

Each candidate is evaluated according to the following rule:

- a transition with event e is possible from state s.

- if the predicate can be evaluated, the evaluation of the predicate holds, else it needs

to be consistent with R(~x) and assert(~x).

If the above criteria are satisfied then a new CCS is created. The actions are

executed and the interval is refined to calculate the R(~x) and assert(~x) for each new

candidate. The algorithm finishes when there is only one candidate left, after which the

fault detection phase starts.

Few more related works on EFSM-based passive fault detection :

In [Ural and Xu 2007] the authors have proposed an approach that provides infor-

mation about possible starting state and possible trace compatibility with the observed

I/O behavior at the end of passive fault detection. In addition, the proposed approach

utilizes an Hybrid method to evaluate constraints in predicates associated with tran-

sitions in an EFSM which combines the use of both Interval Refinement and Simplex

methods for performance improvement during passive fault detection.

Based on the works of [Lee et al. 2002], the authors of [Alcalde et al. 2004] developed

a similar approach of passive testing but following the trace in the backward direction.

In this approach the partial trace is processed backward to narrow down the possible

specifications. The algorithm performs two steps. It first follows a given trace backward,

from the current configuration to a set of starting ones, according to the specification.

The goal is to find the possible starting configurations of the trace, which leads to the

current configuration. Then, it analyzes the past of this set of starting configurations,

also in a backward manner, seeking for configurations in which the variables are de-

termined. When such configurations are reached, a decision is taken on the validity

of the studied paths (traces are completed). Such an approach is usually applied as a

complement to forward checking to detect more errors.

In [Benharref et al. 2007], the backward and forward methods are combined for

online passive testing of web services. Here, the algorithm attempts to find a set of



Chapter 2. State of the Art 20

candidates in the past of the trace, that matches the observed event. Using those

information, passive fault-detection is carried out, using the forward approach.

The EFSM model has additional advantage compared to the classical FSM for spec-

ifications. However, applying the EFSM in passive testing requires the enumeration of

data values which is a huge, time and space consuming activity for complex systems.

Invariant-based passive testing

An invariant-based passive testing is another interesting approach introduced initially

by the authors of [Cavalli et al. 2003]. In this approach a set of properties are extracted

from the EFSM specification, and then the trace resulting from the implementation is

analyzed to determine whether it validates this set of properties. These extracted set of

properties are called invariants because they have to hold true at every moment.

An overview of the different invariant-based passive testing approaches is provided

as follows.

Input/Output invariants An I/O invariant consists of two parts, a preamble and

test. The preamble is a sequence of events that needs to be found on the trace before the

test can be evaluated, three types of such invariants are defined in [Cavalli et al. 2003].

1. Output invariants allow to express properties such as ”immediately after the

sequence preamble we must always have the output test”. Some examples of output

invariants are shown below:

- i1
︸︷︷︸

preamble

/ o1
︸︷︷︸

test

denotes the property ”i1 is always followed by o1”.

- i1/o1, i2
︸ ︷︷ ︸

preamble

/ o2
︸︷︷︸

test

denotes the property ”after the sequence (i1/o1) and the input i2

we always have o2”.

2. Input invariants allow to describe properties such as ”immediately before the

sequence preamble we must always have the input test”. The following are few

examples of input invariants:

- i1
︸︷︷︸

test

/ o1
︸︷︷︸

preamble

denotes the property ”o1 is always preceded by i1”.



Chapter 2. State of the Art 21

- i1
︸︷︷︸

test

/ o1, i2/o2
︸ ︷︷ ︸

preamble

denotes the property ”the sequence (o1, i2/o2) must always be

preceded by i1”.

3. Succession invariants are mostly used to describe complex properties such as

loop problems. For example, the sequence

- i1/o1, i1/o1, i1
︸ ︷︷ ︸

preamble

/ o2
︸︷︷︸

test

denotes that the sequence i1/o1 is repeated twice before the

output o2 is returned. This kind of sequence is usually observed in a protocol while

trying to establish a connection before it returns a failure.

In this approach information was extracted from the specification and then used

to process the trace. However, one of the drawbacks of this work is the limitation

on the grammar used to express invariants.

Simple and Obligation invariants A new formalism to express invariants was pre-

sented in [Arnedo et al. 2003]. In this approach, wild-card characters to represent se-

quences of inputs or a single input/output in invariants was introduced. These invariants

are called simple invariants. For example, an invariant such as i1/o1, · · · , in−1/on−1, in/O

must be interpreted as ”each time the implementation performs the sequence i1/o1, · · · ,

in−1/on−1, in the next observed output belongs to the set O. These are called simple

invariants. In [Arnedo et al. 2003] the authors introduce a new notion of invariant to

express properties as ” if y happens then we must have that x had happened before”.

These invariants are called obligation invariants. Algorithms are also provided to decide

the correctness of the proposed invariants with respect to a given specification.

However, most of the described invariant based testing approaches are derived from

the FSM formalism, where only control parts are considered. Then, the authors of

[Cavalli et al. 2003] proposed a method to extract the constraint information separately

from the involved transitions in addition to extraction of control sequences. According

to their approach the correct sequence must be found and the constraints must hold

true, otherwise a fault is detected. In another work [Arnedo et al. 2003] proposes a

minor modifications to the obligation invariant, to deal with constant data parameters.

This approach paved the way for another work by the authors of [Ladani et al. 2005]

to extend the simple and obligation invariant to match the EFSM formalism. In [Bayse

et al. 2005] the authors assume that the current states of the observed trace are known.

In our case we do not require such assumptions. Moreover, our points of observation are



Chapter 2. State of the Art 22

set in a black-box framework that does not allow any homing phase. Since no formal

specifications of the implementation is provided, the extracted traces are not related

to any known states. Another recent interesting work on invariants was proposed by

the authors in [Lalanne and Maag 2012]. In this approach, the authors discuss the

importance of testing for data relations and constraints between exchanged messages

and they also show how they can be tested directly on traces using logic programming.

2.2 Symbolic execution

Symbolic execution is a technique that consists in executing a program by using arbitrary

symbols instead of real concrete data. Thus, computational operations involving guard

conditions, assignments, etc., receive symbols as inputs and produce symbolic formulas

as outputs. Thus this technique has the advantage of reducing the state space explosion

and also fitting well with the IOSTSs. The main idea is to generate a tree-like structure

which represents all the behaviors accepted by the IOSTS in a symbolic way. It is based

on Input Output Symbolic Transition Systems (IOSTS), which extend Input Output

Labeled Transition Systems (IOLTS) by the use of variables and parameters.

System specifications as well as test purposes/behaviors, which are used in confor-

mance testing to specify what aspects of the system have to be tested, are defined as

IOSTS. However, almost all the related works on symbolic execution are based on active

testing, i.e., it is possible to generate test cases without enumerating the specification’s

state space. The resulting test cases are symbolic and can be made executable by in-

stantiation of their variables. Our approach is different from the others in a way that

we would like to model the behavior/property in the form of IOSTS and symbolically

execute to perform the passive testing.

To have a basic idea of symbolic execution, let us consider the Figure 2.4. Figure 2.4

shows a sample program code and its associated symbolic execution, where for each

variable in the program, a symbol is introduced to denote its initial value. Note that

it has a tree-like structure, for every possible decision a new branch is added to the

tree. This branch represents the decision that was taken or condition that has to be

met in order to reach the states of the branch. Every state has an associated guard

or path condition, which is the set of conditions that have to be met in order to reach



Chapter 2. State of the Art 23

Figure 2.4: Symbolic execution of a sample program

a particular state. In this example, to reach the left branch, a0 must be greater than

or equal to 0 and for the right branch, if a0 is less than 0. In addition to the guard

conditions, each state in the tree can also store the symbols representing the value of

the variables (symbolic values).

The authors of [Gaston et al. 2006] proposed an approach to test whether a system

conforms to its specification given in terms of an Input/Output Symbolic Transition

System. Here the test purposes are directly expressed as symbolic execution paths of

the specification which are finite symbolic subtrees of its symbolic execution. In another

work [Rusu et al. 2000] the authors describe an approach for generating symbolic test

cases, in the form of input-output automata with variables and parameters.

In [Aiguier et al. 2005] the authors define a logic to express the properties of reactive

system represented by IOSTS using F a new temporal logic formula which is an extension

of CTL* 1. Their main aim is to automatically generate test cases from test purposes

given by properties in F . In our approach, we do not have any model of the system,

rather we express the properties using an IOSTS model and then try to verify directly

on the trace by means of passive testing.

The authors of [Gall et al. 2007] propose a conformance testing based approach

to check a refinement relation between reactive system specifications. They model the

systems using IOSTS, a first order automata based formalism. Like the traditional con-

formance testing, some properties or behaviors (observable traces) are selected from the

abstract specification and are submitted to the concrete specification to get a verdict

1CTL* - unifies Linear Temporal Logic (LTL) and Computational Tree Logic (CTL)



Chapter 2. State of the Art 24

about the refinement relation. However, contradicting to conformance testing tech-

niques, the execution of selected behaviors is not a black box procedure but a white box

procedure based on static analysis called symbolic execution technique with constraints

solver. In [Nguyen et al. 2012b] the authors propose a conformance checking framework

based on symbolic models and an extension of the symbolic bisimulation equivalence.

In this approach, the global specification and implementation description are provided

as input to the framework and are transformed into STGs. Later the STGs (comprising

the STG from specification and implementation) are checked for conformance. This

leads to the generation of a large boolean formula which is then verified using SMT

solver to reach a conformance verdict. Although this approach is interesting as it avoids

state space explosion issues but still, complex constraints cannot be resolved and also

it depends on a complete formal specification. The same authors as an improvement in

[Nguyen et al. 2012a] discuss an interesting online verification of service choreographies

considering complex data constraints. However, they assume that the IUT conforms to

the model (which are based on Symbolic Transition Graph with Assignments (STGA))

and also they prove the scalability of their approach for a maximum of 20,000 packets.

But, in our approach we consider only an informal specification to define the properties

and do not depend on any model. In addition, we have proved the scalability of our

approach to very large traces (> 106).

From the literature we see that most of the works stated above and also to mention

few others [Bentakouk et al. 2011, Weiglhofer et al. 2010] are based on active testing

using symbolic execution approach. However, in our work we represent the system

behavior or property in the form of IOSTS and symbolically execute to obtain a tree-

like structure. The branches or the behaviors of the symbolic tree are monitored against

the real system trace using passive testing approach.

2.3 Parametric trace analysis

Trace analysis is a fundamental part in many approaches, such as runtime verification,

testing, monitoring, and specification mining. For example, EAGLE [Barringer et al.

2003] was introduced as a general purpose rule-based temporal logic for specifying run-

time monitors. As an improvement of their work the authors proposed another tool called

RuleR [Barringer et al. 2010] a conditional rule-based system, which is more efficiently



Chapter 2. State of the Art 25

implemented for run-time checking, and into which one can compile various temporal

logics used for runtime verification. The Program Trace Query Language (PTQL), a

language for writing expressive, declarative queries about program behavior was pro-

posed in [Goldsmith and et al. 2005]. EAGLE [Barringer et al. 2003], RuleR [Barringer

et al. 2010], and PTQL [Goldsmith and et al. 2005] are very general trace specification

and monitoring systems, whose specification formalisms allow complex properties with

parameter bindings anywhere in the specification. EAGLE and RuleR are based on

fixed-point logics and rewrite rules, while PTQL is based on SQL relational queries.

These systems try to define general specification formalisms supporting data binding.

In the literature although we come across several techniques that have been pro-

posed to analyze parametric traces, they have limitations: some in the specification

formalism, others in the type of traces they support. For example, JavaMOP [Chen

and Rosu 2007] is an efficient parametric runtime monitoring framework, nevertheless,

it can only handle a limited type of traces, where the first event for a particular prop-

erty instance binds all the property parameters. This limitation prevents JavaMOP

from supporting many useful parametric properties. Parametric trace slicing [Chen and

Rosu 2009] provides solution to parametric trace analysis that is unrestricted by the

type of parametric property or trace that can be analyzed. Trace slicing is actually a

transformation technique that reduces the size of execution traces for the purpose of

testing and debugging. Based on the appropriate use of antecedents, trace slicing tracks

back reverse dependences and causality along execution traces and then cuts irrelevant

information that does not influence the data observed from the trace. Other approaches

that have been proposed to specify and monitor parametric properties are Tracematches

[Avgustinov et al. 2007], J-LO [Bodden 2005]and LSC [Maoz and Harel 2006]. These

ones support a limited number of parameters, and each has its own approach to handle

parameterization specific to its particular specification formalism. On the contrary, the

parametric trace slicing technique is generic in the specification formalism, and sup-

ports unlimited number of parameters. Our work is based on [Chen and Rosu 2009],

performing parametric trace analysis for passive testing.



Chapter 2. State of the Art 26

2.4 Runtime Verification (or Runtime Monitoring)

Usually, testing is performed with active approaches: test cases are generated from the

specification and applied on its implementation to check whether the implementation

meets desirable behaviors which defines the confidence level of the test between the

specification and implementations. Active testing however, may give rise to some incon-

venience of disturbing the implementation. Runtime verification which is also sometimes

referred to as runtime monitoring is also an alternative to the active testing such as the

passive testing approaches.

The primary goal of runtime verification is to check whether an implementation I,

from which traces can be observed, meets a set of properties during the system execu-

tion. With runtime verification, detailed observations of the target system execution

behavior are checked at runtime against properties that specify the intended system be-

havior. These properties are often derived from the target requirement specification, or

indeed the properties to be monitored may form the entire specification. In either case,

the properties are expressed formally, for example, such as regular expressions, tempo-

ral logics or state machines. Both approaches (passive testing and runtime verification)

share some important research directions, such as methodologies for checking test rela-

tions and properties, or trace extraction techniques. However, while passive testing has

the specific purpose of delivering a verdict about the conformance of a black-box imple-

mentation (IUT), runtime verification deals with the more general aspects of property

evaluation and monitor generation, without necessarily attempting to provide a verdict

about the system. The authors of [Leucker and Schallhart 2008] provide a good survey

and introduction of methodologies in runtime verification.

A number of approaches to the runtime monitoring of systems in general have been

suggested over the years, however, we have decided to present few interesting works that

can be compared with ours over here. The authors of [Ghezzi and Guinea 2007] suggests

a framework in which correlations between data in multiple messages are expressed and

can be checked at runtime. To the best of our knowledge, the correlations imply a single

request-response and do not involve messages arbitrarily far apart in time. However, in

our approach the data relationship between messages is not limited to a single request-

response message rather the complete trace is analyzed. In another work [Wehbi et al.

2012] the authors proposes an interesting tool called MMT (Montimage Monitoring



Chapter 2. State of the Art 27

Tool) to perform passive monitoring for network protocols. In this technique, they do

not inject traffic in the network, nor modify the traffic that is being transmitted in the

network which is similar to our passive testing technique. However, enumeration of data

values might be required to test large reactive systems.

In [Halle and Villemaire 2008], the authors suggest a new logic called, LTL−FO+

to model the properties with data parameterization. Here, data is a more significant

part of the definition of formulas and LTL temporal operators are used to indicate

temporal relations between messages in the trace. Messages are expressed as set of

pairs (label, value) which makes the syntax of the logic very flexible. Nevertheless,

when more parameters are added to the syntax it loses its clarity. In our approach we

consider symbolic data values and hence we do not enumerate and remains flexible for

any set of data variables. The concept of parameterized propositions is introduced by

the authors of [Stolz 2008]. In this approach the data values in formulas are fixed (i.e.,

enumerated). Although, it is an interesting approach, it becomes difficult to analyze

large reactive systems which may possess huge set of data values.

Runtime verification has been steadily gaining popularity, but vagueness still exists

regarding its applicability in real-time systems [Colombo et al. 2009]. The introduction

of a monitor overseeing a system, normally slows down the system, which may prove

to affect the system performance or real-time systems. However, the introduction of

monitors also modifies the behavior of the system, changes which may lead to the creation

of new bugs, or the eradication of others. But still, runtime verification and passive

testing has its own pros and cons in the protocol testing domain.



Chapter 3

Methodology for Symbolic

Passive Testing

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Symbolic transition systems . . . . . . . . . . . . . . . . . . . 31

3.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Semantics of an IOSTS . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Parametric Trace Slicing . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Parametric Trace Slicing Algorithm . . . . . . . . . . . . . . . 44

3.4 Testing the IOSTS property on real execution traces . . . . 46

3.4.1 Evaluation of a Property on Trace slices . . . . . . . . . . . . . 46

3.4.2 Evaluation of Property/Attack on the Implementation Traces . 50

3.5 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Complexity of our approach . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Comparison with other Passive Testing tools . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

28



Chapter 3. Methodology for Symbolic Passive Testing 29

3.1 Introduction

Passive testing as the name implies, it is intended to detect faults by passively observ-

ing the input/output actions of the implementation, without interrupting its normal

behavior. Usually, passive testing methods extract traces by means of a trace analyzer

or some sniffer-based tools, running in the same environment as the implementation.

Then, the resulting traces can be used to check that the implementation behavior does

not contradict the specification one, or to check the satisfaction of specific properties

defined by means of some formal models. Hence the basic objective of passive testing is

to provide a verdict about the conformance of an implementation under test, through

the behavior observed in the system trace.

In this chapter we present what we define as the symbolic passive testing technique to

perform conformance testing of communication protocols. In our approach we basically

integrate two important techniques: Symbolic execution and Parametric trace slicing.

Figure 3.1 shows the architecture of our symbolic passive testing approach.

Figure 3.1: Architecture of our Symbolic Passive Testing approach.

Several stages are presented as part of our approach in this architecture.

1. We begin by defining the property/attack (from specification sheet if it exists or

from requirements sheet) using sequence diagrams. The sequence diagram is a

pictorial representation of the dataflow between the entities in the IUT.



Chapter 3. Methodology for Symbolic Passive Testing 30

2. The behavior or attack scenario is then represented using the Input-Output Sym-

bolic Transition Systems.

3. Then the IOSTS is symbolically executed. The basic idea of the symbolic execution

technique is to execute programs or specifications using symbols instead of concrete

data as input values, and to derive a symbolic execution tree to represent all

possible behaviors of the system or IUT in a symbolic way.

4. The guard-conditions are nothing but pre-conditions that must be satisfied by the

states involved in the transition. The details of the guard-conditions are derived

from the symbolic states in the symbolic execution tree.

5. The symbolic trace corresponds to the sequence of symbolic events or messages.

The symbolic trace are the branches of the symbolic execution tree which repre-

sents actually the system behavior and the eventual attack scenarios, that need to

be monitored.

6. Raw traces that are collected using trace analyzers are provided as the main source

of input to the prototype tool, TestSym-P, to perform passive testing.

A detailed description of the implemented prototype tool, TestSym-P, is presented in

Appendices A and B. Combining the techniques of parametric trace slicing and symbolic

evaluation a final verdict Pass/Fail/Inconclusive/Attack-Pass is obtained.

Based on the Chapter 2, we herein focus on the IOSTS formalism to model the

system behavior for the following reasons:

1. IOSTSs introduce the concept of attribute variables. That is, instead of enumer-

ating all possible real data when modeling systems, an IOSTS uses these attribute

variables (also called as fresh variables or symbols). This abstraction of real data

helps to avoid state explosion problem in large reactive systems like communication

protocol, embedded systems, etc.

2. Reduction of non-determinism. IOSTSs introduce the concept of guards, which

are conditions of the transitions. Thus, when there are two transitions leaving

from the same state, one can easily find out which one of the two transitions is

executed.



Chapter 3. Methodology for Symbolic Passive Testing 31

3. IOSTSs are a general abstraction of the IOLTSs. Semantics of an IOSTS is also

given by means of an IOLTS.

Since an IOSTS introduces the notion of attribute variables to represent concrete

data they seem to fit well with the symbolic execution technique. The symbolic execution

trees resulting from the symbolic execution of an IOSTS represents all the possible

behaviors in the system, it suffices to find concrete data for the different symbols in

the corresponding branch satisfying the guard conditions accordingly, so one can reach

a specific state. In addition to verifying the system behaviors we also monitor certain

vulnerabilities eventually described as attack scenarios, which may also be a deviation

from the expected behavior.

Parametric trace slicing technique is used for trace analysis. Trace analysis plays a

very important part in passive testing. A parametric trace is defined as a trace containing

events with parameters that have been bound to a concrete data value (i.e., valuation)

and parametric trace slicing is defined as a technique to slice (or cut) the real protocol

execution trace into various slices based on the valuation. Each slice corresponds to

a particular valuation. These trace slices merged together constitutes the execution

trace. Finally, we apply the evaluation logic on the trace slices to provide a test verdict

Pass/Fail/Attack-Pass/Inconclusive.

In this chapter, we begin with few basic definitions and then define the syntax and

semantics of the IOSTS formalism. Then, we define how an IOSTS can be symbolically

executed in Section 4.2.4. The parametric trace slicing technique is described in Section

3.3 and then the evaluation logic in Section 3.4. We conclude the chapter discussing

on complexity analysis and comparison with other related works in Section 3.5. All of

the concepts introduced will be detailed in the following sections. Part of the work was

published in [Mouttappa et al. 2012b] and a more complete version has been published

in the Computer Networks Journal [Mouttappa et al. 2013b].

3.2 Symbolic transition systems

In this section we formally define the Input-Output Symbolic Transition Systems (IOSTS).

IOSTS is an extended version of IOLTS defined in Subsection 2.2 of Chapter 2. It ex-

plicitly includes data of the reactive systems, and symbolically manipulates with them.



Chapter 3. Methodology for Symbolic Passive Testing 32

An IOSTS is a kind of automata model which is extended with sets of variables and

with guards and assignments on transitions, giving the possibilities to model the system

states and constraints on actions. The fact of using symbolic variables helps to describe

infinite state transition systems in a finite manner i.e., IOSTS represents the finite tran-

sitions of large or infinite state-based systems and in this formalism data are exchanged

in input/output messages. At the beginning of this section, we define few definitions,

then, we define the IOSTS formalism and discuss its syntax and semantics. We present

an example of IOSTS and provide adequate explanation to model protocol behaviors

and certain vulnerabilities.

3.2.1 Basic definitions

Definition 3.1. (Typed Data) Let T = t1, ..., t|T| be a finite set of data types which

consists of basic types, e.g., Boolean, natural, integer, enumerated types, and complex

types obtained by combining two or more basic types, e.g., arrays, records, structures

and queues. Let D = d1, ..., d|D| be a finite set of typed data, where the type of each

datum from D belongs to T.

Definition 3.2. (Well-Typed Expressions) An expression is a combination of values

and/or variables using operators that can be evaluated to a value. A well-typed expres-

sion is an expression, say exp, over the typed data D if the value returned by exp is of

type t ∈ T.

Definition 3.3. (Syntax of IOSTS) An IOSTS M is a tuple 〈D, I, L, l0,Σ, T 〉 where:

- D = V ∪P is a finite set of typed data which consists of set V of variables and set

P of parameters.

- I is the initial condition, a boolean expression on V .

- L is a non-empty, finite set of locations.

- l0 ∈ L is the initial location.

- Σ = Σ?∪Σ! is a non-empty, finite alphabet of actions which consists of two mutually

disjoint alphabets of input actions Σ? and output actions Σ!, i.e., (Σ?∩Σ! = ∅).

For each action a ∈ Σ, its signature sig(a) = 〈p1, ..., pk〉 ∈ P k (k ∈ N) is a tuple of

parameters.

- T is a finite set of symbolic transitions. Each symbolic transition is a tuple t =

〈l, a,G,A, l′〉 consisting of :



Chapter 3. Methodology for Symbolic Passive Testing 33

- a location l ∈ L called the origin of the symbolic transition.

- an action a ∈ Σ called the action of the transition.

- a predicate G on D, called the guard is a boolean expression containing the truth

values true, false.

- a set of assignment A, each assignment is of the form (x := Ax)x∈V ∪P , such

that, for each x ∈ V ∪P , the right-hand side Ax of the assignment is an expression on

V ∪P . These assignments are well-typed, that is, the expressions Ax returns a data type

which is the same as that of x.

- a location l′ ∈ L called the destination of the symbolic transition.

In order to distinguish an input from an output action, we may respectively attach

the ’?’ and ’ !’ symbols to the actions respectively.

Example 3.1. For better understanding of the IOSTS formalism, we consider an ex-

ample based on the SIP protocol with real data and control parts. The IOSTS M shown

in Figure 3.2(b), comprises of:

- the set of typed data, D = vfrom, vto, vcid, vcontact1, vrealm
︸ ︷︷ ︸

V

∪

from0, to0, cid0, contact0, realm0
︸ ︷︷ ︸

P

. We consider here, the sets of symbolic variables V

and parameters P are mutually disjoint.

- the initial condition, vfrom = from− i, vto = to− i, vcid = cid− i.

- the set of locations, L = l0, l1, l2, l1.1

- the initial location, l0 = l0

- the alphabet of actions, Σ = 200Ok, 401Unauth
︸ ︷︷ ︸

input actions

∪Register,Registerw/cred
︸ ︷︷ ︸

output actions

. The set

of input Σ? and output Σ! actions are mutually disjoint.

- the set of transitions, T . For instance t ∈ T is given by,

t : 〈 l0
︸︷︷︸

source

, Register
︸ ︷︷ ︸

a

, true
︸︷︷︸

G

, ((vfrom := from i) ∧ (vcid := cid i) ∧ (vto := to i))
︸ ︷︷ ︸

A

, l1
︸︷︷︸

destination

〉

For instance in the above transition, for any input or output actions (!Register),

if the guard conditions G associated with any transition, say, from location l0 to l1 is

true, then the set of assignments A happens. Note that the sequence involved in each

transition is: first the guard-conditions are verified; if the conditions are satisfied then

a new value for the variables are assigned and finally the system reaches the destination

state.



Chapter 3. Methodology for Symbolic Passive Testing 34

3.2.2 Semantics of an IOSTS

In general, valuation means assigning concrete values to the elements of V or P . In our

approach, the concrete input values and initialization values of variables are replaced

by symbolic ones, called fresh variables. We represent the set of fresh variables by F ,

where F ∩ V = ∅.

Input-Output Labeled Transitions Systems (IOLTS) are rooted from Labeled Tran-

sition systems (LTS) with distinguished inputs and outputs. The semantics of an IOSTS

〈D, I, L, l0,Σ, T 〉 is an IOLTS 〈S, S0,Λ,→〉 defined as:

- the set of states is S = L×V , where V is the set of valuation for the variables

V . Formally a state is a pair 〈l, v〉 where l ∈ L is a location and v ∈ (Vx)x∈V corresponds

to the valuation for the variables x ∈ V .

- the set of initial states is S0 ⊆ S, an initial state is a state 〈l0, v0〉 such that l0 ∈ L

is the initial location and v0 is the valuation of the variables that satisfies the initial

condition I, i.e., S0 = {〈l0, v0〉|v0 ∈ V ∧ I(v0) = true}.

- the set of valued actions Λ = {〈a, ϑ〉|a ∈ Σ, ϑ ∈ Πsig(a)}, where a is an input or

output action and ϑ is a valuation for the parameter(s) carried by the action a. The

set of valued parameters P is given by Π. Πsig(a) corresponds to the all possible

valuations for the parameters seen in the action a.

- → is the transition relation, which is a 3-tuple 〈s, α, s′〉 where, s, s′ ∈ S are the

source and destination states respectively and α is a valued action.

3.2.2.1 Examples of a SIP property defined as an IOSTS

The Session Initiation Protocol (SIP) is an application-layer control protocol for creating,

modifying and terminating sessions with one or more participants [Rosenberg et al.

2002]. These sessions include Internet telephone calls, multimedia distribution, and

multimedia conferences. When users request to use a SIP service, they need to be

registered and authenticated in order to get the service from the proxy server. For a

better understanding of the IOSTS formalism, we represent a sample SIP property called

Registration. For explanation we have considered only few parameters in the IOSTS like

(From, To, and Call-ID fields) corresponding to the SIP protocol. However, a more



Chapter 3. Methodology for Symbolic Passive Testing 35

detailed description of the SIP protocol and its properties with the attack scenarios will

be provided in Chapter 4 of this thesis.

3.2.2.2 Registration Property in SIP

(a) Sequence Diagram

(b) IOSTS model

Figure 3.2: SIP: Registration Property in SIP

The SIP registration mechanism allows a user agent to create a binding in a location

service for a particular domain that associates an address-of-record with one or more

contact addresses. Hence, before a session can be established, a legitimate user sends

a registration request that contains information about the IP address, phone number,

name, an expiration value, etc. Figure 3.2(a) shows the sequence diagram of how two



Chapter 3. Methodology for Symbolic Passive Testing 36

legitimate users A and B register with the domain registrar who is responsible for main-

taining a database of records of all subscribers and Figure 3.2(b) shows the equivalent

manually designed IOSTS model.

In the IOSTS model, as there is no initial condition to begin the transition, we

assume the initial guard-condition (G0) to be true. As per the Definition 3.3, only if

the guard-conditions associated with each state (G) are satisfied or true for any actions

(input or output), there can be a transition from the source state to the destination state

and new assignments (A) performed. If the registrar does not require authentication,

it accepts the registration shown by the transition from state l0-l1 and sends a confir-

mation message 200 Ok, given by the transition from state l1-l2 (Registration done by

user A in Figure 3.2(a)). Otherwise, the registrar will ask the user to identify using a

challenge/response method. The user will have to answer the challenge using a password

that was initially shared with the registrar shown by the transition from state l1-l1.1.

The registrar verifies the response and if the response is as expected, the registrar will

accept the packet given by the transition from state l1.1-l1-l2 (Registration done by user

B in Figure 3.2(a)). After every successful registration the session can be established.

In the next section, we represent the symbolic execution of the IOSTS model rep-

resenting the SIP registration property as a symbolic tree. The branches in the tree

correspond to the behavior of the property presented in the Section 3.2.2.1.

3.2.3 Symbolic Execution

Symbolic execution was first developed for program testing [King 1976]. The interesting

idea behind symbolic execution mainly consists in replacing concrete input values and

initialization values of variables by symbolic ones in order to compute constraints induced

on these variables by different possible executions. Recently, symbolic execution has been

applied on models for verification or conformance testing purposes [Bannour et al. 2012,

Gall et al. 2007, Gaston et al. 2006]. The symbolic execution of an IOSTS results in a

symbolic execution tree with interesting properties which are worth mentioning: (i) each

symbolic state in the tree-like structure can hold any number of child states, there by

each branch in the tree represents a particular property or a vulnerability scenario (ii)

every branch has a unique decision making criteria, which means, the decision that have

to be taken in order to reach a particular state of one branch of the tree are different



Chapter 3. Methodology for Symbolic Passive Testing 37

from the other branches. These decisions or so called guard-conditions are stored in each

symbolic state.

Symbolic execution tree in our work represents the behaviors or attacks in a symbolic

way, thus to passively test each branch, it suffices to find concrete data for the different

symbols in the corresponding branch satisfying the guard-conditions. The symbolic

execution technique has been widely used to test different types of systems, mostly

contributing to the active testing techniques. However, in our work we utilize this

technique to perform passive testing of system behaviors.

Thus, the symbolic execution (SE for short) of IOSTS serves two main objectives: (i)

to use symbolic values (fresh variables) for action messages and initialization values for

IOSTS variables instead of concrete data values (ii) to obtain a tree-like structure which

represents all the behaviors accepted by the IOSTS in a symbolic way. In Figure 4.9, the

symbolic execution of an IOSTS is represented as a tree with different branches (or paths)

in which the vertices’s are symbolic extended states and edges are labeled by symbolic

communication actions, which are computed from the transition communication action

and from the symbolic values associated to attribute variables in symbolic state. The

behavior of an IOSTS, also referred to as semantics, can be represented by the symbolic

traces obtained from it. Traces are nothing but succession of communication actions

that are specified by an IOSTS. In this section we provide the definitions related to

symbolic execution of the IOSTS.

3.2.3.1 Basic definitions

Definition 3.4. (Symbolic extended states) Let M = 〈D, I, L, l0,Σ, T 〉 be an IOSTS

and M
′

= 〈S, S0,Λ,→〉 be the corresponding IOLTS. A symbolic extended state for an

IOSTS is given by the tuple η = (s,A,G) where s ∈ S, A a set of assignments and G a

set of guard conditions.

The above definition clearly states that the symbolic extended states are used to

store information concerning the symbolic execution, the current state of the symbolic

execution, the assignment of symbolic values to the attribute variables, and the con-

straints on those symbolic values after the execution. The constraints which are stored



Chapter 3. Methodology for Symbolic Passive Testing 38

Figure 3.3: Symbolic Execution of IOSTS.

in each symbolic state are called guard-conditions, which are nothing but constraints

that must be satisfied for an execution to follow a particular path.

Definition 3.5. (Satisfiable symbolic state) Let M be an IOSTS, K the set of all

symbolic extended states. A symbolic extended state η is said to be a satisfiable

symbolic state ηsat if the guard conditions G associated with the symbolic state are

evaluated to true. Ksat is the set of all satisfiable symbolic states.

Definition 3.6. (Symbolic execution of a transition) Let M = 〈D, I, L, l0,Σ, T 〉 be

an IOSTS. For any t ∈ T and η ∈ S, a symbolic execution of t from η is defined as a

3-tuple (η, α, η
′

) ∈ S×ΛF×S. The source of the transition (η) is the symbolic state from

which the transition is executed, α is the symbolic interpretation of the communication

actions introduced in the transition, the target of the transition (η
′

) is the symbolic state

reached by the execution. ΛF corresponds to the set of valued communication actions

obtained by assigning fresh variables F as values for the parameters.

Example 3.2. Let us consider the Figure 3.4(a) which depicts a transition of an IOSTS

(the IOSTS represented in Figure 3.2(b) is taken here for illustration). In Figure 3.4(b),

there are two symbolic extended states (as per the Definition 3.6) init and η1.



Chapter 3. Methodology for Symbolic Passive Testing 39

(a) A sample transition of an IOSTS

(b) Symbolic execution of the transition

Figure 3.4: Example illustrating the symbolic execution of one transition

The symbolic state init holds the information before executing the transition: the

associated state of the IOSTS is l0, the assignment of values to the attribute variables

(A0), and the guard conditions (G0). Since it is the initial state, there are no guard

conditions and hence we assume G0 = true. The symbolic transition is labeled with the

communication action of t, substituting the variables with some fresh variables. Here, the

communication action !Register(from0, to0, cid0) contains new values from0, to0, cid0

to be stored in the symbolic variables vfrom, vto, vcid. The symbolic target state is η1,

which has a new set of values for their variables and a set of guard-conditions G1 that

needs to be satisfied.

Subsequently, the symbolic execution of an IOSTS can be depicted as a tree whose

edges are symbolic extended states and vertexes are labeled by symbolic communication

actions. The root is the symbolic extended state made of the IOSTS initial state, the

guard condition true and an arbitrary initialization of the variables to some symbolic



Chapter 3. Methodology for Symbolic Passive Testing 40

values. The symbolic communication action is computed from the transition communi-

cation action and from the symbolic values associated to the attribute variables in η.

A target symbolic state is then computed, it stores the target state of the transition, a

new path condition derived from the path condition of the symbolic extended state and

from the transition guard, and finally the new symbolic values associated to attribute

variables. Now, we formally define the symbolic execution of an IOSTS.

Definition 3.7. (Symbolic execution of an IOSTS) Let M = 〈D, I, L, l0,Σ, T 〉 be an

IOSTS. The root of the symbolic execution tree, is given by init = (S0, A0, true). The

root (init) is a symbolic state made of the IOSTS initial state (S0 ∈ S), the arbitrary

initialization A0 of the variables to some fresh variables F and set of path conditions G0

to be true (there is no constraint to begin the execution). Rsat ⊆ Ksat×ΛF ×Ksat is the

symbolic execution of the transitions of M, where ΛF is the set of valued communication

actions obtained by assigning fresh variables F as values for the parameters and Ksat is

the set of satisfiable symbolic state. Thus, the symbolic execution SE(M) of an IOSTS

can be defined by the tuple (init, Rsat).

Paths of a symbolic execution are the sequences of symbolic transitions that start

at the initial state.

Definition 3.8. (Paths of SE) Let SE(M) = (init, Rsat) be a symbolic execution. Rsat

is the set of symbolic transitions where the symbolic states are satisfiable. The set of

paths of SE(M), denoted by Path(SE(M)), contains all the finite sequences t1...tn of

transitions of Rsat, such that source(t1) = init and for every i, 1 ≤ i ≤ n, target(ti) =

source(ti+1).

• source(t1) = init

• for every i, 1 ≤ i ≤ n, target(ti) = source(ti+1)

Example 3.3. Let us consider the symbolic execution tree in Figure 3.3 representing

the registration property in SIP1 as explained in Section 3.2.2.1. For readability reasons,

the assignments and guard conditions are not directly shown inside the symbolic states

but in separate frames. In this symbolic execution tree we have two different paths.2.

1The symbolic parameters in the message corresponds to the From, To and Call − ID field values
in SIP. However, there is no limitation in choosing the number of parameters.

2Paths of a symbolic execution are the sequences of symbolic transitions that start at the initial state,
as per the Definition 3.8



Chapter 3. Methodology for Symbolic Passive Testing 41

(1) Registration without authentication - (init, !Register(from0, to0, cid0), η1), (η1,

?200Ok(from0, to0, cid0), η2)

(2) Registration with authentication - (init, !Register(from0, to0, cid0), η1), (η1, ?401

Unauth(from0, to0, cid0), η1.1), (η1.1, !Registerw/cred(from0, to0, cid0), η1.2),

(η1.2, ?200Ok(from0, to0, cid0), η2)

We define the behaviors of a symbolic execution by means of its symbolic traces.

Definition 3.9. (Traces of a symbolic execution) Let t1 . . . tn be a finite sequence

of symbolic executions of the transitions of M such that for i, 1 ≤ i ≤ n, we have that

ti = (ηi, αi, ηi+1) and t1 = (init, αi, t2).

Let 〈(init, α1, t2), (t2, α2, t3), ..., (tn, αn, tn+1)〉 ∈ SE(M) be a symbolic trace. We

will say that the sequence 〈α1α2...αn〉 is a symbolic trace of M. We will denote by

Trace(SE(M)) the set of all symbolic traces of M. Let 〈α1α2, ..., αn〉 be a symbolic

trace, we will say that 〈a1, a2, ..., an〉 is the control portion of this trace if, αi = (ai, ϑi)

for 1 ≤ i ≤ n. We will denote the set of traces with only the control portion of the

action by CP [Trace(SE(M))].

Example 3.4. Based on the definition above, we obtain the symbolic traces for the paths

defined in Example 3.3 (for Figure 3.3) ,

Trace(SE(M)) = {!Register(from0, to0, cid0)?200Ok(from0, to0, cid0), !Register(from0, to0,

cid0)?401Unauth(from0, to0, cid0)!Registerw/cred(from0, to0, cid0)?200Ok(from0, to0, cid0)}.

The set of traces with only the control portion of the action is given by,

CP [Trace(SE(M))] = {!Register?200Ok, !Register?401Unauth!Register?200Ok}.

In this section we have obtained the traces of the symbolic execution of an IOSTS

representing a protocol property, in the next section we explain the parametric trace

slicing approach to passively test these symbolic traces on real network traces.

3.3 Parametric Trace Slicing

Parametric traces, i.e., traces containing events or messages with parameter bindings,

observed during the system execution. Parameter bindings are actually abstract param-

eters (i.e., variables) bound to concrete data values during runtime. Most properties of



Chapter 3. Methodology for Symbolic Passive Testing 42

the parametric traces are also found to be parametric. Due to the dynamic nature and

unlimited number of parameter bindings of the parametric properties, formal verification

and testing against implementation under test (IUT) becomes very difficult. However,

in this work we have shown, how we can apply the parametric trace slicing technique to

test system behaviors.

3.3.1 Basic definitions

Trace slicing is a widely used technique for analyzing a real network trace [Chen and

Rosu 2009]. The parametric trace slicing technique splits the real protocol execution

trace into different slices based on the data portions of each event (i.e., packet) in the

trace. The events corresponding to a particular valuation are grouped in the order they

appear in the trace in a particular slice, and all the other events that are unrelated

to the given valuation are dropped. In this section, we first define some basic defini-

tions (parametric/non-parametric events, trace slicing, etc.) and then present an offline

parametric trace slicing algorithm that plays an important part in the passive testing

technique.

Note: In general, valuation means assigning some values to the parameters or

variables (see Section 3.2.2). These values are symbolic in the case of symbolic execution

and concrete in the case of parametric trace slicing. In order to show the relationship

with the symbolic approach and parametric trace slicing, and to ease the reading, we

have decided to use similar notations like Λ, ϑ here also.

Definition 3.10. (Non-Parametric event and traces) A non-parametric event (or

base event), say a ∈ Σ is defined as an event with no data portions or in simple words,

it can be said as an event without parametric bindings (i.e., events that do not carry

concrete data instantiating abstract parameters).

A non-parametric trace is an element in Σ∗, that is a sequence of actions (as defined

by Definition 3.3) without data portions.

Example 3.5. Consider a non-parametric trace ρnon : 〈a1, 〉〈a2, 〉〈a3〉. Each event in

this trace, say a1, a2, a3 can be referred to as a non-parametric event.

Definition 3.11. (Parametric event and traces) A parametric event is defined as an

element in the set of valued actions 〈a, ϑ〉 ∈ Λ.



Chapter 3. Methodology for Symbolic Passive Testing 43

A parametric trace is defined as a word in the set of valued actions Λ∗.

Example 3.6. Consider three valued actions 〈a1, ϑ
′

: (x 7→ 1, y 7→ 2)〉, 〈a2, ϑ
′′

: (x 7→

1, y 7→ 2, z 7→ 3)〉 and 〈a3, ϑ
′′′

: (x 7→ 1)〉. ρ defined as ρ : 〈a1, ϑ
′

〉〈a2, ϑ
′′

〉〈a3, ϑ
′′′

〉 is a

parametric trace. Each valued action in this trace can be referred to as parametric event.

Definition 3.12. (Less and More Informative valued actions.) Let Q ⊆ P be a

set of parameters in an IOSTS. We denote by ΠQ the set of valued parameters Q. Let

ϑ
′

, ϑ ∈ ΠQ be two valuations of the parameters Q, we say that ϑ
′

is less informative

than ϑ (or ϑ is more informative than ϑ
′

), denoted by ϑ
′

⊑ ϑ, if for any q ∈ Q, if

ϑ
′

(q) is defined it implies ϑ(q) is also defined and ϑ(q) = ϑ
′

(q).

Example 3.7. Let us represent two valuations ϑ
′

: 〈x 7→ 1, y 7→ 2〉 and ϑ : 〈x 7→ 1, y 7→

2, z 7→ 3〉. Here, ϑ
′

is less informative than ϑ since all the parameters (x, y) defined in

ϑ
′

are also defined in ϑ and ϑ carries additional information (parameter z).

Definition 3.13. (Trace slicing) Let ρ = (〈a1, ϑ1〉, 〈a2, ϑ2〉, ..., 〈an, ϑn〉) ∈ Λ∗ be a para-

metric trace, and ϑ ∈ ΠQ be a valuation. We define recursively (for i = 1 to n) the

function ρ ↾ϑ as:

ρ ↾ϑ=







<> if ρ =<>

(〈ai, ϑi〉), (〈a2, ϑ2〉, ..., 〈an, ϑn〉) ↾ϑ if ϑi ⊑ ϑ

(〈a2, ϑ2〉, ..., 〈an, ϑn〉) ↾ϑ if ϑi 6⊑ ϑ

It means that for a finite parametric trace ρ, the trace slice for ϑ can be obtained

under two different cases. If ϑi is less informative than ϑ, then the action ai is added at

the end of the trace slice else we leave the trace slice undisturbed as defined above.

Example 3.8. Consider a parametric trace ρ : 〈a1, ϑ
′

: (x 7→ 1, y 7→ 2)〉〈a2, ϑ
′′

: (x 7→

1, y 7→ 2, z 7→ 3)〉〈a3, ϑ
′′′

: (x 7→ 1)〉 and ϑ : 〈(x 7→ 1, y 7→ 2)〉.

The ϑ-trace slice is given by ρ ↾ϑ= a1a3 where a1a3 ∈ Σ∗.

Consider the first event in the trace 〈a1, ϑ
′

: (x 7→ 1, y 7→ 2)〉, since ϑ
′

= ϑ, the action a1

is initially added to ρ ↾ϑ. Then coming to the next event 〈a2, ϑ
′′

: (x 7→ 1, y 7→ 2, z 7→ 3)〉,

since ϑ
′′

is more informative than ϑ, the trace slice is left undisturbed. Coming to the

last event in the trace slice, 〈a3, ϑ
′′′

: (x 7→ 1)〉, ϑ
′′′

is less informative than ϑ, hence the

action a3 is added at the end of the existing trace slice for ϑ.



Chapter 3. Methodology for Symbolic Passive Testing 44

3.3.2 Parametric Trace Slicing Algorithm

In this section the algorithm to build the trace slices of a parametric trace (i.e., a real

execution trace) is presented. This algorithm takes the trace ρ in event order (i.e., from

the first event to the last one) as input and provides ts, the set of all possible trace slices

of ρ as output. ts ∈ Σ∗ is obtained by the table L : Π→ Σ∗ analyzing the valuation of

parameters observed in ρ as defined in Definition 3.13.

Algorithm 1: Parametric Trace Slicing Algorithm

1 Algorithm : Parametric Trace slicing;
Input: parametric trace ρ ∈ Λ∗

Output: A table L : Π→ Σ∗

2 Initialization : L← ǫ; Θ← {ǫ} ;
3 begin
4 foreach ordered parametric event 〈a, ϑ〉 in ρ do

5 foreach parametric instance ϑ
′

in Θ do

6 if (ϑ
′

⊑ ϑ) then
7 L(ϑ)← ρ ↾ϑ a
8 else
9 L(ϑ)← ρ ↾ϑ

10 end

11 end
12 Θ← Θ ∪ {ϑ}

13 end

14 end

The Algorithm 1 is defined as follows. The outer for-loop (lines 4-13) takes each

event 〈a, ϑ〉 incrementally in the trace ρ and the existence of the valuation of the current

event is checked in Θ using the inner for-loop (lines 5-11). If the valuation ϑ
′

is less

informative than ϑ observed in the outer for-loop as per line 6, then the action a is added

at the end of the trace slice as per line 7, if not, the action is not added to the trace

slice. The procedure described for the inner for-loop is continued until all the parametric

instances in Θ are evaluated against 〈a, ϑ〉 in the outer for-loop. Later, Θ is updated

with the new instance ϑ as per line 12. Now, the next event in the outer for-loop is taken

and the whole procedure is repeated until line 12. This procedure is continued until we

reach the end of the trace ρ in the outer for-loop. At the end, we obtain a table L with

all possible trace slices ts and Θ with all possible valuations contained in the trace.

Example 3.9. Consider a sample SIP trace ρ =!Register〈from1, to1, cid1〉

?401Unauth〈from1, to1, cid1〉!Register〈from2, to1, cid2〉!Registerw/cred



Chapter 3. Methodology for Symbolic Passive Testing 45

〈from1, to1, cid1〉?200Ok〈from1, to1, cid1〉?200Ok〈from2, to1, cid2〉.

For simplicity, we only consider the values of (From, To, Call-ID) parameters in

SIP, represented by (from, to, cid) respectively. For clarity we represent the valuations

〈from 7→ from1〉 by 〈from1〉 and 〈from 7→ from1, to 7→ to2〉 by 〈from1, to2〉. Apply-

ing our trace slicing algorithm on ρ we obtain the Table 3.1.

As per the Algorithm 1, initially the trace slice table and Θ are empty. Let us

consider the first event in the trace, !Register〈from1, to1, cid1〉, the action !Register

is added in the trace slice table for the corresponding valuation 〈from1, to1, cid1〉 and

also updated in Θ. Then coming to the next event, ?401Unauth〈from1, to1, cid1〉,

since the valuation is already available in the trace slice, the action ?401Unauth is

appended with the already existing event in the trace slice table. Next for the event,

!Register〈from2, to1, cid2〉 since the valuation 〈from2, to1, cid2〉 does not exist in the

slice table, a new entry is created and the action !Register is added in the trace slice table

for the corresponding valuation 〈from2, to1, cid2〉 and Θ updated. For the next event,

!Registerw/cred〈from1, to1, cid1〉 since the valuation already exists in the trace slice

table, the action !Registerw/cred is appended with the already existing events. Similar

approach is carried out for all the other events in the trace.

For instance, L(〈from1, to1, cid1〉) =!Register?401Unauth!Registerw/cred?200Ok.

Here, L corresponds to the trace slice table that we obtain after applying the trace slicing

algorithm and L(〈from1, to1, cid1〉) gives the trace slice value for the particular valua-

tion, ϑ = 〈from1, to1, cid1〉

Table 3.1: Slice table L for a sample SIP trace ρ.

Valuation (ϑ) ts - the ϑ-trace slice

〈from1, to1, cid1〉 !Register ?401Unauth !Register w/cred ?200Ok

〈from2, to1, cid2〉 !Register ?200Ok

In this section, we have defined an algorithm to slice a real network trace. In the

next section, we discuss how the obtained parametric trace slices are used for evaluating

a SIP property defined as an IOSTS.



Chapter 3. Methodology for Symbolic Passive Testing 46

3.4 Testing the IOSTS property on real execution traces

As stated earlier, our approach is the integration of symbolic execution and parametric

trace slicing technique. In this section, we clearly detail our evaluation logic and the

different verdicts obtained to prove the conformance. Here, we take the advantage of

expressing the parametric properties or the behavior using IOSTS formalism. This gives

a wide space to passively test our symbolic property for all possible parameter instances

(concrete values) observed in the trace.

3.4.1 Evaluation of a Property on Trace slices

Our objective is to check an expected behavior formally specified as an IOSTS property

P against an execution trace slice in ts. We also target here the test of deviant behaviors

for testing. It means that if our conformance property is not satisfied on real traces, we

check the presence of an eventually defined vulnerability/security attack in the monitored

trace.

In our evaluation approach, we evaluate the control and the data portions of the

messages observed in the symbolic traces. CP [Trace(SE(M))] and L(ϑ) are used to

check the control portion. For the data portion, we check the guard conditions associated

with each state in the symbolic execution of the IOSTS. The evaluation is done for each

slice against the symbolic traces and the verdicts Pass, Fail, Inconclusive, Attack-Pass,

Attack-Fail are emitted based on the Table 3.2.

Definition 3.14. (AttackSeq) AttackSeq is a variable defined to differentiate the con-

formance property and the security property during the evaluation.

AttackSeq =







0 for conformance property

1 for security property

Pass and Fail are provided for the test of a conformance property while Attack-Pass

and Attack-Fail are dedicated to the test of a security property. Inconclusive is emitted

if we cannot firmly decide (e.g., in case of a too short execution trace).

A formal description of the different cases involved in the evaluation of the property

on the trace slice is provided below.



Chapter 3. Methodology for Symbolic Passive Testing 47

Table 3.2: Evaluation table for each trace slice.

AttackSeq Control Portion Data Portion Verdict

0 X X Pass

0 X × Fail

1 X X Attack-Pass

1 X × Attack-Fail

0 or 1 × - Inconclusive

• Pass:

– The control portions are identical for two sequences in L(ϑ) and

CP [Trace(SE(M))].

– The data portions are satisfied (all states in SE(M) are satisfiable, Definition

3.5).

∀tsi ∈ ts, (∃X ∈ CP [Trace(SE(M))],X = L(ϑi) ∧ ∀η ∈ SE(M), η ∈ Ksat, AttackSeq = 0)

• Fail :

– The control portions are identical.

– The data portions are not satisfied.

∀tsi ∈ ts, (∃X ∈ CP [Trace(SE(M))],X = L(ϑi))∧∃η ∈ SE(M), η /∈ Ksat, AttackSeq = 0)

• Attack-Pass:

– The control portions are identical for the two sequences: it exists one slice

tsi ∈ ts identical to one element of CP [Trace(SE(M))] holding the attack

sequence.

– The data portions are satisfied.

∀tsi ∈ ts, (∃X ∈ CP [Trace(SE(M))],X = L(ϑi) ∧ ∀η ∈ SE(M), η ∈ Ksat, AttackSeq = 1)

• Attack-Fail :

– The control portions are identical for the two sequences: it exists one slice

tsi ∈ ts identical to one element of CP [Trace(SE(M))] holding the attack

sequence.

– The data portions are not satisfied.

∀tsi ∈ ts, (∃X ∈ CP [Trace(SE(M))],X = L(ϑi) ∧ ∃η ∈ SE(M), η /∈ Ksat, AttackSeq = 1)



Chapter 3. Methodology for Symbolic Passive Testing 48

• Inconclusive , if the control portions are not identical. Indeed, the execution

trace has eventually been extracted from the IUT starting from a time t that does

not correspond to the initial state (reset). Thus, the obtained finite trace may not

be practically sufficient to prove the property or attack on the trace slice, which

results in an inconclusive verdict. Since the control portion is not satisfied we do

not check the data portions.

∀tsi ∈ ts, ∄X ∈ CP [Trace(SE(M))],X = L(ϑi), AttackSeq = 0 or 1

The Algorithm 2 is defined as follows. In order to evaluate the conformance or

security properties on the trace slices, two steps are performed: control portion must be

checked and then we verify the data portion. In line 6, the control portion is checked

by comparing L(ϑi) and Xk. If the sequences are identical and if the verdict is not

Pass, then we process the lines 7-19, else returns Inconclusive and skips the data-

portion checking. In the if-loop, we check for the type of sequence. If (AttackSeq

= 0), then it is a conformance property sequence and the data portion is verified using

the function data-check-fn. In data-check-fn, the set of assignments A corresponding

to each state is performed and the guard conditions are evaluated. If the function

returns a Pass, then the output verdict is Pass else Fail. If (AttackSeq 6= 0) it is

an attack sequence and the data portions are evaluated using the same function. If

the function returns a Pass, then the output verdict is Attack-Pass else Attack-Fail.



Chapter 3. Methodology for Symbolic Passive Testing 49

Algorithm 2: Evaluation on the Trace Slices

1 Algorithm : Evaluation logic for each slice ;

Input: symbolic traces of SE(M), State details of SE(M), AttackSeq, Trace slices

tsi.

Output: verdict(tsi) = Pass/Fail/Inconclusive/Attack − Pass/Attack − Fail

2 Initialization : i← 0 to n, verdict(tsi)← ’ ’;

33 begin

4 foreach (tsi ∈ ts) do

5 foreach (Xk ∈ CP [Trace(SE(M))]) do

6 if (L(ϑi) = Xk) ∧ (verdict(tsi) 6= Pass) then // Control check

7 if (AttackSeq = 0) then

8 if data-check-fn(tsi, G) = Pass then // Data check

9 verdict(tsi)← Pass;

10 else

11 verdict(tsi)← Fail;

12 end

13 else

14 if data-check-fn(tsi, G) = Pass then // Data check

15 verdict(tsi)← Attack − Pass;

16 else

17 verdict(tsi)← Attack − Fail;

18 end

19 end

20 else

21 verdict(tsi)← Inconclusive;

22 end

23 end

24 end

25 end

In the next section, we explain how these results can be used to evaluate a system

implementation I against the property P.



Chapter 3. Methodology for Symbolic Passive Testing 50

3.4.2 Evaluation of Property/Attack on the Implementation Traces

Our main objective is to test if a trace of the black-box implementation I satisfies our

IOSTS behavior P by passive testing. For each trace slice obtained, we check if the

control portion of the protocol is matched with our behavior, if matched we perform the

data portion check, and generate a verdict accordingly. In general, all the trace slices

put together constitutes a trace, thus based on the verdicts obtained for each trace slice

we can conclude if the property is satisfied by the implementation or if there is any

violation leading to an attack.

Finally, based on the verdicts obtained on the slices, we may define the final verdict

of the property testing on the entire real trace by:

• Pass, if (∀V erdict(tsi) = Pass)

• Attack-Pass, if (∃V erdict(tsi) = Attack − Pass)

• Fail, if [(∃V erdict(tsi) = Fail) ∧ (∃V erdict(tsi) 6= Attack − Pass)]

• Inconclusive, if [(∃V erdict(tsi) = Attack − Fail) ∧ otherwise].

The implementation I satisfies the property P results in a Pass if all the trace slices

in ts satisfy the property, i.e., if our evaluation algorithm provides a verdict Pass for

every trace slice in ts. But, during the evaluation if any trace slice results in an Attack-

Pass, then we conclude that the implementation does not satisfy the property, which

implies an attack has happened. But if we do not observe an Attack-Pass and observe a

Fail verdict for any of the trace slice, then the final verdict is Fail. An Attack-Fail, can be

due to the short trace length (or insufficient trace length) then trace slicing will result in

incomplete slices. So, during the evaluation of the trace slices (control portion checking)

it results in Inconclusive and also in all the other cases it results in Inconclusive.

3.5 Time Complexity Analysis

The complexity of an algorithm can be defined as a function f(n) which measures the

time and space used by an algorithm in terms of input size n. The main focus of

complexity analysis is to study on how execution time increases with the data set to



Chapter 3. Methodology for Symbolic Passive Testing 51

be processed. In this section, we present the time complexity analysis of the proposed

algorithms and also the comparison report with other passive testing tools.

3.5.1 Complexity of our approach

The overall time complexity of our symbolic approach depends upon the algorithms

proposed for slicing and evaluation logic in Sections 3.3.2 and 3.4.1 respectively.

3.5.1.1 Complexity of Slicing logic

Our trace slicing logic depends upon the number of messages n in the trace, and the

number of available parametric instances m in the monitored trace. The proposed slicing

algorithm computes trace slices for all the parametric instances observed in the trace

rather than computing all possible combinations of parametric instances. Although, the

complexity remains the same in both cases, yet in our approach the number of slices

would be significantly reduced thereby results in improved evaluation time complexity.

In the best case, the time complexity is linear with respect to the number of messages

in the trace as the number of parametric instances observed in the trace is less than the

length of the trace, m < n. But in the worst case, since m is not constant, the number of

parametric instances can be equal to the length of the trace, m = n, hence we can obtain

a quadratic time complexity. However, practically the number of instances observed in

a trace remains comparatively smaller than the trace length.

We therefore have, Oslicing = O(n × m). In worst case, where m = n, Oslicing =

O(n2).

3.5.1.2 Complexity of Evaluation logic

The proposed evaluation logic depends upon the number of symbolic sequences (property

or vulnerability/attack) that has to be monitored say, tseq (that is, Trace(SE(M)) as

defined in Definition 3.9) and the total number of slices obtained from the slicing logic

ts. As per the parametric trace slicing logic defined in Section 3.3, the number of slices

is dependent directly on the number of different parametric instances observed in the

trace, hence we have ts = m. However, tseq is not significant (can be a constant)



Chapter 3. Methodology for Symbolic Passive Testing 52

compared to the number of slices. The time complexity for the evaluation logic is given

by Oeval = O(ts × tseq). Since ts = m and tseq is merely a constant, Oeval = O(m).

In the worst case, where m = n,Oeval = O(n)

However, theoretically speaking, the number of trace slices obtained is always less

than the trace length, (i.e., ts < n) and the length of the trace sequence is also compar-

atively smaller. Thus, the time complexity is linear.

The overall evaluation time complexity (worst-case) depends upon the proposed two

algorithms and is given by, Ooverall = Oslicing +Oeval

Ooverall = O(n2 + n).

3.5.2 Comparison with other Passive Testing tools

Passive testing mainly deals with monitoring functional and security related properties.

Several research works has been carried out to formalize these properties (e.g., FSM,

EFSM, LTL, etc.). However, each of them has their own limitations in terms of express-

ibility [Hewlett-Packard 2004], specification-dependency [Lee et al. 2002, Ural and Xu

2007], etc. Many passive testing solutions assume that the current state of the observed

trace are known. But, in our approach we do not assume to have any specification of

the implementation under test, hence the extracted traces are not related to any known

states. Table 3.3 shows the analyzed time complexities for different passive testing tools.

Table 3.3: Time complexity - Different Passive Testing tools.

Tool Time Complexity Data constraints
TIPS n2 X

PASTE kn2 + n(p− k) ×
TestInv-P n2 X

DataMon nk X

TestSym-P n2 + n X

Note: p-No. of operators, k-No. of quantifiers, n-No. of messages in the trace.

TIPS (Testing Invariants for Protocols and Services) is an interesting passive testing

tool which considers data and time analysis. As our approach is symbolic, we are not

restricted with specific data values. The time complexity is quadratic, but the authors

have proposed as future work to reduce the time complexity to linear in [Morales et al.

2010]. The tool PASTE (Passive Testing) [Andrés et al. 2012] has efficient passive testing

algorithms implemented in their tool, but they do not consider the causality between



Chapter 3. Methodology for Symbolic Passive Testing 53

the data portions in a trace. TestInv-P efficiently monitors functional and security

requirements on the captured trace considering the data constraints. Nevertheless, the

time complexity still remains quadratic and enumeration of data values is required in

this tool [Bagnato et al. 2010].

DataMon is another interesting tool based on Horn logic [Che et al. 2012], but

the time complexity depends upon the number of quantifiers used in the formula. In

addition, the prototype tool failed to provide verdict for large trace files (> 106) mainly

because of the way of expressing the property and also the need to check the enumerated

values. In our tool, TestSym-P, we give importance in considering the causality between

the data portions in the trace. The worst-case time complexity remains quadratic like

other approaches, practically the complexity remains less than quadratic, based on the

description given in Subsection 3.5.1. Although, the time complexity when compared

to other passive testing approaches was promising but still an inordinate amount of

system memory was required to generate the verdict. During the evaluation, additional

system memory was required to store the resultant slice table and the evaluation output.

Nevertheless, we believe that we can improve the system memory usage by applying

online testing. In order to study the scalability of our tool we have carried experiments

on very large traces (> 106) and the results were promising. The experimental results

are discussed in Chapter 4.

3.6 Conclusion

In this chapter we described our approach for symbolic passive testing, by introducing

the IOSTS structures, which are the basis of the work presented in our thesis. In order

to provide a clear understanding of the approach we have shown an example of a SIP

(Session Initiation Protocol) property. IOSTS are used to model properties or behaviors

of the implementation under test (IUT), which are then symbolically executed to obtain

a tree-like structure that represents all the valid behaviors that any implementation of

the specification should satisfy. IOSTS are executed by applying the symbolic execution

technique, whose main idea is to replace symbols instead of concrete data. The symbolic

traces obtained from the symbolic execution tree serves as the basis when testing the

conformance of the properties with respect to their specifications.



Chapter 3. Methodology for Symbolic Passive Testing 54

Then, we introduced the concepts of parametric trace slicing for trace analysis, where

in, based on the different parametric instances observed in the trace, the trace was cut

into different slices. These slices are validated against the symbolic traces and verdicts

for each trace slice is obtained like pass, fail, attack-pass, attack-fail, inconclusive. After

evaluating each trace slice, the logic for the final evaluation was discussed. For the

final evaluation logic we obtain pass, fail, attack-pass, inconclusive verdicts to prove the

conformance of the properties on the system trace. In the later part of this chapter, we

described the time complexity involved in our approach and also provided a comparison

report with the other existing passive testing approaches.

With the introduction of the symbolic passive testing technique, we are now ready

to show in the Chapter 4 how we have applied the work to two different real case studies:

Session Initiation Protocol (SIP) and Bluetooth protocol.



Chapter 4

Application to Real-Time Case

Studies

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Case study 1: The Session Initiation Protocol (SIP) . . . . 56

4.2.1 Basic overview of the IMS . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Overview of SIP . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 IOSTS modeling of SIP behaviors/attacks . . . . . . . . . . . . 62

4.2.4 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Case study 2: Bluetooth Protocol . . . . . . . . . . . . . . . 75

4.3.1 Overview of Bluetooth protocol . . . . . . . . . . . . . . . . . . 76

4.3.2 IOSTS modelling of a Bluetooth behavior/attack . . . . . . . . 79

4.3.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Introduction

For the validation of efficacy of the proposed symbolic passive testing technique, we

applied it to two different real-time protocols, the SIP and Bluetooth protocol in a real

55



Chapter 4. Application to Real-Time Case Studies 56

network environment. We divide this chapter into two sections comprising a detailed

study of the two case studies. The experimentation and results that have been obtained

are depicted and detailed in this chapter.

4.2 Case study 1: The Session Initiation Protocol (SIP)

This section gives an overview of the 3GPP IP Multimedia Subsystem (IMS), which

is based on the IETF Session Initiation Protocol (SIP) and other protocols. A basic

overview of the IMS Architecture is first introduced and then, technical details of the

SIP protocol are presented. The basic IMS procedures like registration and session

establishment are introduced with the various kinds of threats/vulnerabilities on the SIP

based systems such as flooding attacks (DoS), message flow attacks, etc. Our symbolic

passive testing approach discussed in Chapter 3 is applied to SIP and the experiments

and results are discussed.

4.2.1 Basic overview of the IMS

Figure 4.1: An IMS Architecture.

The IP Multimedia Subsystem (IMS) [IMS 2012] is a standardized framework for

delivering IP multimedia services to users in mobility. The IMS aims at facilitating the

access to voice or multimedia services in an access-independent way in order to develop

the fixed-mobile convergence. Figure 4.1 shows the core of the IMS network consisting

of the Call Session Control Functions (CSCF), which redirect requests depending on

the type of service, the Home Subscriber Server (HSS), a database for the provisioning



Chapter 4. Application to Real-Time Case Studies 57

of users, and the Application Server (AS), where the different services run and inter-

operate. Most communication with the core network and between the services is done

using the SIP. The traces contain all communication between the client, the IMS core,

and the AS. Given the point of observation, messages exchange for the Presence service,

as well as the PoC (Push-to-talk Over Cellular)[Alliance 2006] service can be observed in

the collected traces. In addition to SIP packets other protocols (TCP, RTCP, TalkBurst)

also appears. However, during our experiments we have filtered these protocol packets

by the support of the trace analyzer tool in order to specifically test SIP.

4.2.2 Overview of SIP

The Session Initiation Protocol is a protocol designed to provide session management

functionalities such as establish, terminate and modify multimedia sessions [Rosenberg

et al. 2002]. SIP is a very simple text based protocol similar to that of HTTP and

it follows the request/response model. This has made SIP a very popular protocol in

the VoIP system implementations. H.323 [Vineet Kumar and Sengodan 2001] proto-

col provides very similar functions but the SIP has better features such as simplicity,

extensibility and scalability.

SIP is being widely used in building VoIP networks. Unlike the traditional telephone

networks, VoIP networks do not have a closed communication which makes communi-

cation medium vulnerable to the intruders. The attacks on the SIP systems may cause

severe consequences such as making system unavailable for the services, hijacking of

information or user credentials and more.

4.2.2.1 SIP components

Although SIP works in conjunction with other technologies and protocols, there are two

fundamental components that are used by the Session Initiation Protocol as shown in

Figure 4.2:

• User agents, which are endpoints of a call (i.e., each of the participants in a call)

• SIP servers, which are computers on the network that service requests from clients,

and send back responses



Chapter 4. Application to Real-Time Case Studies 58

Figure 4.2: SIP Components.

User Agents (UA) User agents are both the computer that is being used to make

a call, and the target computer that is being called. These make the two endpoints of

the communication session. There are two components to a User agent: a client and

a server. When a User agent makes a request (such as initiating a session), it is the

User Agent Client (UAC), and the User agent responding to the request is the User

Agent Server (UAS). Because the User agent will send a message, and then respond to

another, it will switch back and forth between these roles throughout a session.

One UA will invite the other into a session, and SIP can then be used to manage

and tear down the session when it is complete. During this time, the UAC will use SIP

to send requests to the UAS, which will acknowledge the request and respond to it.

SIP Server The SIP server is used to resolve usernames to IP addresses, so that

requests sent from one User agent to another can be directed properly. A User agent

registers with the SIP server, providing it with their username and current IP address,

thereby establishing their current location on the network. This also verifies that they

are online, so that other User agents can see whether they are available and invite them

into a session. Since the User agent probably would not know the IP address of another

User agent, a request is made to the SIP server to invite another user into a session. The

SIP server then identifies whether the person is currently online, and if so, compares the

username to their IP address to determine their location. If the user is not part of that

domain, and thereby uses a different SIP server, it will also pass on requests to other

servers.



Chapter 4. Application to Real-Time Case Studies 59

In performing these various tasks of serving client requests, the SIP server will act

in any of several different roles:

• Registrar Server: Registrar servers are used to register the location of a User

agent who has logged onto the network. It obtains the IP address of the user

and associates it with their username on the system. This creates a directory of

all those who are currently logged onto the network, and where they are located.

When someone wishes to establish a session with one of these users, the Registrar

server’s information is referred to, thereby identifying the IP addresses of those

involved in the session.

• Proxy Server: Proxy servers are computers that are used to forward requests on

behalf of other computers. If a SIP server receives a request from a client, it can

forward the request onto another SIP server on the network. While functioning

as a proxy server, the SIP server can provide such functions as network access

control, security, authentication, and authorization.

• Redirect Server: The Redirect servers are used by SIP to redirect clients to the

User agent they are attempting to contact. If a User agent makes a request, the

Redirect server can respond with the IP address of the User agent being contacted.

This is different from a Proxy server, which forwards the request on your behalf,

as the Redirect server essentially tells you to contact them yourself.

4.2.2.2 Message Syntax

Since SIP is a text-based protocol like HTTP, it is used to send informations, as a

series of requests and responses between clients and servers, and User Agent clients and

User Agent servers. When requests are made, there are a number of possible signaling

commands that might be used:

• REGISTER: Used when a User agent first goes online and registers their SIP and

IP addresses with a Registrar server.

• INVITE: Used to invite another User agent to communicate, and then establish a

SIP session between them.



Chapter 4. Application to Real-Time Case Studies 60

• ACK: Used to accept a session and confirm reliable message exchanges.

• OPTIONS: Used to obtain information on the capabilities of another User agent,

so that a session can be established between them. When this information is

provided a session is not automatically created as a result.

• SUBSCRIBE: Used to request updated presence information on another User

agent’s status. This is used to acquire updated information on whether a User

agent is online, busy, offline, and so on.

• NOTIFY: Used to send updated information on a User agent’s current status.

This sends presence information on whether a User agent is online, busy, offline,

and so on.

• CANCEL: Used to cancel a pending request without terminating the session.

• BYE: Used to terminate the session. Either the User agent who initiated the

session, or the one being called can use the BYE command at any time to terminate

the session.

When a request is made to a SIP server or another User agent, one of a number

of possible responses may be sent back. These responses are grouped into six different

categories, with a three-digit numerical response code that begins with a number relating

to one of these categories. The various categories and their response code prefixes are

as follows:

• Informational (1xx): The request has been received and is being processed.

• Success (2xx): The request was acknowledged and accepted.

• Redirection (3xx): The request cannot be completed and additional steps are re-

quired (such as redirecting the User agent to another IP address).

• Client error (4xx): The request contained errors, so the server cannot process the

request.

• Server error (5xx): The request was received, but the server cannot process it.

• Global failure (6xx): The request was received and the server is unable to process

it.



Chapter 4. Application to Real-Time Case Studies 61

SIP headers follow similar grammar rules to HTTP headers. Requests and responses

share a common message format which consists of a start-line, one or more header fields,

an empty line indicating the end of the header fields, and an optional message-body. The

start-line in SIP messages can be either a request or a status line as shown in Figure 4.3.

Request messages use the request line to set the type of request. Response messages

indicate whether the processing of a request is successful or not in the status line.

Figure 4.3: Example of a SIP message.

SIP message headers consist of fields with name value pairs. Where some fields

are optional such as content type and length, some fields are mandatory for every SIP

message. Table 4.1 lists the mandatory header fields for SIP messages.

4.2.2.3 SIP transactions and Dialogs

Although SIP messages are sent independently over the network, they are usually ar-

ranged into transactions by User agents and certain types of proxy servers. Hence, SIP

is said to be a transactional protocol. A transaction is a sequence of SIP messages ex-

changed between SIP network elements. A transaction consists of one request and all

responses to that request. That includes zero or more provisional responses and one or



Chapter 4. Application to Real-Time Case Studies 62

Table 4.1: SIP messages mandatory header fields

Field name Description

To The request destination’s SIP address

From Indicates the originator of the request

CSeq The command sequence that ensures messages
are dealt with, in the order they were generated.

Call-ID A randomly generated string that uniquely iden-
tify SIP sessions. SIP proxy servers use Call-ID
to identify messages belonging to a SIP session.

Via Contains information about SIP devices a mes-
sage has passed through as it moves between
caller and callee. The Via field is also used to
route responses in the reverse direction.

Contact Contains the actual location of the callee, which
might be different from the address of the orig-
inator in the From header

more final responses (remember that an INVITE might be answered by more than one

final response when a proxy server forks the request).

If a transaction was initiated by an INVITE request then the same transaction also

includes ACK, but only if the final response was not a 2xx response. If the final response

was a 2xx response then the ACK is not considered part of the transaction.

SIP dialogs represent peer-to-peer relationships between two SIP endpoints. It

provides the context for sequencing and routing of messages between SIP User agents.

Dialogs are identified by the following: Call-ID header, and the From Tag and To Tag

parameters. The value of these three fields are the same for messages that belong to

the same dialog. The header field CSeq is used to sequence messages within a dialog.

The value is increased monotonically from request to request, thereby identifying the

transactions within a dialog. In effect, a dialog is a sequence of transactions. This is

illustrated in Figure 4.4.

4.2.3 IOSTS modeling of SIP behaviors/attacks

In Chapter 3, we discussed our approach considering the SIP registration property as

an example. In this section, we describe the IOSTS modeling of the de-registration

attack and DoS scenarios associated with SIP registration and also session establishment

property with their associated attack scenarios.



Chapter 4. Application to Real-Time Case Studies 63

Figure 4.4: Dialog and transactions during the establishment of a SIP session.

4.2.3.1 Registration Hijack attack in SIP

In general, the user’s registration will be valid for the time period specified in the expires

field in the contact parameter or in expires parameter in SIP packets [Collier 2005].

The user has to send periodical refreshing registration requests to the registrar to keep

its contact valid; if not the user contacts will be removed after the expiration time.

In registration hijacking attack, the attacker is assumed to impersonate a legitimate

User agent, de-registers all the existing contacts and register their own device as the

appropriate contact address, thereby directing all requests for the legitimate user to the

attacker’s device. Figure 4.5(a) shows the sequence diagram of how a legitimate user A

performs registration with a registrar and how an attacker performs a registration hijack

attack. The corresponding IOSTS model is shown in Figure 4.5(b).

The state transitions for the legitimate registration of user A is shown by l0-l1-l2 (as

explained in Subsection 3.2.2.2). The attacker performs the de-registration of a User

agent by sending a registration request with all the message headers and parameters

retaining the same as the legitimate user A, except for the parameters in the contact

field (contact: *, expires: 0) as shown by the state transition from l2-l3 (Registration

done by attacker C in Figure 4.5(a)). Since the registrar takes the From address as

the asserted identity of the originator of the request, all the contacts of the affected

User agent are removed given by the state transition from l3-l4. Now, the attacker



Chapter 4. Application to Real-Time Case Studies 64

(a) Sequence Diagram (b) IOSTS model

Figure 4.5: SIP: Registration Hijack Attack

can register himself by modifying the contact address (contact: Attacker C’s address,

expires: 1 day) shown by the state transition from l4-l5. The registrar accepts the new

registration request and sends a confirmation message 200 Ok shown by the transition

from l5-l6. After this attack, if the legitimate user A tries to establish a session, the

user’s identity might have been removed and would need to register with the registrar

again.



Chapter 4. Application to Real-Time Case Studies 65

(a) Sequence Diagram (b) IOSTS model

Figure 4.6: Denial of Service Attack

4.2.3.2 Denial of Service (DoS) attack in SIP

Usually, during the registration phase, the user might be challenged by the registrar.

Figure 4.6(a) shows how an attacker C tries to create a denial of service attack. An

equivalent IOSTS model for DoS attack is represented as an infinite loop as shown in

the Figure 4.6(b). The attacker C during the challenge/response method tries to respond

to the challenge using fake passwords shown by the transition from the state l1.1-l1. If

the registrar finds the user credentials send by the faulty attacker, the message 401

Authorization required (the challenge/response method) would be send until the user

credentials are proved to be correct as shown by the state transition from l1-l1.1. This

might result in a DoS attack causing a heavy traffic on the registrar which might hinder

the registrar to provide services to the legitimate users. The unfolding of this loop

during the symbolic execution (explained in Section 4.2.4) may produce paths of an

infinite length. To ensure that the computation terminates, we need to define a bound

to limit the unfolding of those loops. Hence, we decided to manually terminate the

unfolding of the loop to a certain definite length (In our case, we decided to allow n ∈ N

consecutive occurrences, the bound was set to, n = 10).



Chapter 4. Application to Real-Time Case Studies 66

(a) Sequence Diagram (b) IOSTS model

Figure 4.7: SIP: Session Establishment Property in SIP.

4.2.3.3 Session Establishment Property in SIP

Figure 4.7(a) shows the sequence diagram for SIP session establishment between the

user’s using a single proxy. The formal IOSTS model is shown in Figure 4.7(b). If

the user A is previously registered to the proxy server, then an Invite request is send

via a proxy server to the user B shown by the state transition from l0-l1. The Invite

request asks the server to establish a dialog. A 100 Trying response is send back to

the proxy server to indicate that it has received the Invite and is processing the request

which is shown by the state transition from l1-l2. 180 Ringing response is send back to

user A to indicate the SIP phone of user B is ringing shown by l2-l3. Then the user

B can respond with a 200 Ok response if it accepts the call from the user A, l3-l4. A

200 Ok response to an Invite establishes a session, and it also creates a dialog between

the user A that issued the Invite and the user B that generated the 200 Ok response.

Now, the user A needs to send an Ack for every final response it receives from the user

B shown by the state transition from l4-l5. In another scenario, if the server requires

the authorization credentials from the user A before establishing the call, the server



Chapter 4. Application to Real-Time Case Studies 67

sends a 407 Proxy Authorization response containing the challenge information shown

by the state transition from l1-l1.1. A new Invite is then send containing the correct

credentials, l1.1-l1 , if the information are verified correct by the proxy, the call proceeds

as described earlier and the session is established successfully.

4.2.3.4 Session Teardown attack in SIP

(a) Sequence Diagram (b) IOSTS model

Figure 4.8: Session Teardown Attack.

An attacker can cause session teardown attack by sending Cancel/Bye message as

shown in Figure 4.8(a). The corresponding IOSTS model is shown in Figure 4.8(b). A

Cancel message is used to cancel the ongoing transaction (before the session is estab-

lished, i.e. before receiving the 200 Ok response from the other user) as shown by the

transition from state l3-l2.1. In this attack the attacker impersonates as a legitimate

user A and send the Cancel request to cancel the Invite request generated by a user A1.

1http://tools.ietf.org/html/rfc3665



Chapter 4. Application to Real-Time Case Studies 68

Thus, the attacker send a Cancel and gives up on the call before user B answers (send a

200 OK response). Any Cancel message is acknowledged with a 200 OK on a hop by hop

basis, rather than end to end as shown by the state transition from l2.1-l2.2. The proxy

server that receives a Cancel requests for an Invite, but has not yet send a final response,

would respond to the Invite with a 487 Request Terminated error response as shown by

the state transition from l2.2-l2.3 and finally the call termination is acknowledged by

the user A by sending an Ack shown by the state transition from l2.3-l2.4.

In the next section, we represent the symbolic execution of the IOSTS model rep-

resenting the SIP properties and attacks as a symbolic tree. The branches in the tree

correspond to the behavior of the property and attack scenarios presented in this section.

4.2.4 Symbolic Execution

Example 4.1. Let us consider the symbolic execution tree in Figure 4.9(a) representing

the registration property and attacks in SIP2 as explained in Section 3.2.2.1. For read-

ability reasons, the assignments and guard conditions are not directly illustrated inside

the symbolic states but in separate frames. In this symbolic execution tree we have four

different paths.3

(1) Registration without authentication - (init, !Register(from0, to0, cid0), η1), (η1, ?200Ok

(from0, to0, cid0), η2)

(2) Registration with authentication - (init, !Register(from0, to0, cid0), η1), (η1, ?401Unauth

(from0, to0, cid0), η1.1), (η1.1, !Registerw/cred(from0, to0, cid0), η1.2), (η1.2, ?200Ok(from0,

to0, cid0), η2)

(3) Registration Hijack attack - (init, !Register(from0, to0, cid0), η1), (η1, ?401Unauth(from0

, to0, cid0), η2), (η2, !Register(from0, to0, cid0), η3), (η3, ?200Ok(from0, to0, cid0), η4), (η4,

!Register(from0, to0, cid0), η5), (η5, ?200Ok(from0, to0, cid0), η6)

(4) DoS attack - (init, !Register(from0, to0, cid0), η1), (η1, ?401Unauth(from0, to0, cid0),

η1.1), (η1.1, !Registerw/cred(from0, to0, cid0), η1.2), (η1.2, ?401Unauth(from0, to0, cid0)

, η1.1), (η1.1, !Register(from0, to0, cid0), η1.2), (η1.2, ?401Unauth(from0, to0, cid0), η1.1)

2The symbolic parameters in the message corresponds to the From, To and Call − ID field values
in SIP (dialog parameters). However, there is no limitation in choosing the number of parameters.

3Paths of a symbolic execution are the sequences of symbolic transitions that start at the initial state
(Section 3.2.2, Page 25 of [Bannour 2012]).



Chapter 4. Application to Real-Time Case Studies 69

(a) SIP - Registration

(b) SIP - Session Establishment

Figure 4.9: Symbolic Execution of IOSTS with Security Attack scenarios.

Based on the definition 3.9, we obtain the symbolic traces for the paths defined

above(for the Figure 4.9(a)) ,

Trace(SE(M)) = {!Register(from0, to0, cid0)?200Ok(from0, to0, cid0), !Register(from0, to0,



Chapter 4. Application to Real-Time Case Studies 70

cid0)?401Unauth(from0, to0, cid0)!Registerw/cred(from0, to0, cid0)?200Ok(from0, to0, cid0)

, !Register(from0, to0, cid0)?200Ok(from0, to0, cid0)!Register(from0, to0, cid0)?200Ok

(from0, to0, cid0)!Register(from0, to0, cid0)?200Ok(from0, to0, cid0), !Register(from0, to0,

cid0)?401Unauth(from0, to0, cid0)!Registerw/cred(from0, to0, cid0)?401Unauth(from0, to0,

cid0)!Registerw/cred(from0, to0, cid0)?401Unauth(from0, to0, cid0)}

.

The set of traces with only the control portion of the messages is given by,

CP [Trace(SE(M))] = {!Register?200Ok, !Register?401Unauth!Register?200Ok, !Register

?200Ok!Register?200Ok!Register?200Ok, !Register?401Unauth!Register?401Unauth

!Register?401Unauth}.

A similar description can be given for the Figure 4.9(b) denoting the session estab-

lishment property and attacks. The symbolic execution tree constitutes three different

paths:

(1)Session establishment without authentication - (init, !Invite(from0, to0, cid0), η1), (η1,

?100Trying(from0, to0, cid0), η2), (η2, ?180Ringing(from0, to0, cid0), η3), (η3, ?200Ok

(from0, to0, cid0), η4), (η4, !Ack(from0, to0, cid0), η5)

(2)Session establishment with authentication - (init, !Invite(from0, to0, cid0), η1), (η1, ?407

Proxy-Auth(from0, to0, cid0), η1.1), (η1.1, !Invite+ Auth(from0, to0, cid0), η1.2), (η1.2,

?100Trying(from0, to0, cid0), η2), (η2, ?180Ringing(from0, to0, cid0), η3), (η3, ?200Ok(

from0, to0, cid0), η4), (η4, !Ack(from0, to0, cid0), η5)

(3)Session Teardown attack - (init, !Invite(from0, to0, cid0), η1), (η1, ?100Trying(from0

, to0, cid0), η2), (η2, !Cancel(from0, to0, cid0), η2.1), (η2.1, ?200Ok(from0, to0, cid0), η2.2),

(η2.2, ?487Request-terminated(from0, to0, cid0), η2.3), (η2.3, !Ack(from0, to0, cid0), η2.4)

The symbolic traces for the above defined paths are,

Trace(SE(M)) = {!Invite(from0, to0, cid0)?100Trying(from0, to0, cid0)?180Ringing

(from0, to0, cid0)?200Ok(from0, to0, cid0)!Ack(from0, to0, cid0), !Invite(from0, to0, cid0)

?407Proxy-Auth(from0, to0, cid0)!Invite+ Auth(from0, to0, cid0)?100Trying(from0,

to0, cid0)?180Ringing(from0, to0, cid0)?200Ok(from0, to0, cid0)!Ack(from0, to0, cid0),

!Invite(from0, to0, cid0)?100Trying(from0, to0, cid0)!Cancel(from0, to0, cid0)?200Ok

(from0, to0, cid0)?487Request-terminated(from0, to0, cid0)!Ack(from0, to0, cid0)}.

Likewise, the set of traces with only the control portion of the messages is given by,

CP [Trace(SE(M))] = {!Invite?100Trying?180Ringing?200Ok!Ack, !Invite?407Proxy-Auth



Chapter 4. Application to Real-Time Case Studies 71

!Invite+ Auth?100Trying?180Ringing?200Ok!Ack, !Invite?100Trying!Cancel?200Ok?487

Request-terminated!Ack}.

These symbolic traces and the state details of the SE tree (i.e., guard-conditions and

assignments) are provided as input to the tool (Tool description is provided in Appendix

A of this thesis). These symbolic traces are validated against the trace slice (as discussed

in Chapter 3 of this thesis) to provide the final verdict for the identified SIP properties

and attacks/vulnerabilities discussed in this section.

4.2.5 Experimental results

For the experiments, SIP traces were obtained from two different sources: (A) Trace 1 in

Table 4.2 was obtained from a production IMS implementation, provided by the Alcatel-

Lucent company and extracted from the interfaces of the IMS core as shown in Figure

4.1. (B) Traces 2-7 in Table 4.2 were obtained from SIPp [Hewlett-Packard 2004]. SIPp,

provided by the Hewlett-Packard Company, is an Open Source SIP implementation of a

test system conforming to the IMS as well as a testing tool and traffic generator for the

SIP protocol. The SIP traces were captured using the protocol trace analyzer Wireshark

[Wireshark 2006] as text format (.txt). The implementation and the sample files used for

the experiments can be found at [TestSym-P 2013]. For the prototype tool description,

TestSym-P, please refer to Appendix A and B.

In order to evaluate the efficiency of our approach, we performed our experiments

in two ways: with unmodified traces and by manually introducing some errors like

modifying the From, To parameter fields in few packets and also by introducing few

attack messages (as defined in Section 3.2.2.1) in the real traces (for traces 1,2,3,4). The

resultant output verdicts4 are shown in Table 4.2 and 4.3 for the session registration and

establishment property in SIP respectively5.

For example, consider the following sample messages taken from SIP trace, here

we have modified the From field in message 2 from sip : zack@ims04.alu.net to sip :

XXX@ims04.alu.net.

4Final Verdicts: P-Pass, F-Fail, I-Inconclusive, AP-Attack pass.
5Note: The Attack Fail verdict is only obtained during the trace slice evaluations. For the final

verdict, the Attack Fail is considered to be an Inconclusive (I) verdict (refer Subsection 3.4.2)



Chapter 4. Application to Real-Time Case Studies 72

Figure 4.10: Sample SIP trace

Table 4.2: Results of Testing the Session Registration Property on sample SIP traces
(Without Filters).

Trace No.Packets No.Slices Trace Output without errors Trace Outputs with errors and attacks
P F I Verdict P F I AP Verdict

1 5000 2719 680 - 2039 I 679 1 2039 - F
2 25000 13895 3468 - 10427 I 3467 - 10427 1 AP
3 50000 27084 6764 - 20320 I 6762 1 20320 1 AP
4 100000 53286 13304 - 39981 I 13303 - 39981 1 AP
5 500000 272717 68179 - 204538 I 68179 - 204538 - I
6 1000000 522102 130525 - 391577 I 130525 - 391577 - I
7 5000000 1580288 395070 - 1185218 I 395070 - 1185218 - I

Table 4.3: Results of Testing the Session Establishment Property on sample SIP
traces (Without Filters).

Trace No.Packets No.Slices Trace Output without errors Trace Outputs with errors and attacks
P F I Verdict P F I AP Verdict

1 5000 2719 122 - 2597 I 121 - 2597 1 AP
2 25000 13895 328 - 13567 I 327 1 13566 1 AP
3 50000 27084 1282 - 25802 I 1280 2 25802 - F
4 100000 53286 3307 - 49979 I 3303 4 49979 - F
5 500000 272717 13635 - 259081 I 13636 - 259081 - I
6 1000000 522102 26106 - 495996 I 26106 - 495996 - I
7 5000000 1580288 79014 - 1501274 I 79014 - 1501274 - I

Introducing errors in the message caused the guard conditions associated with a

symbolic state to Fail. The results were successful and the errors and attacks introduced

were correctly detected by the tool. Table 4.2 and 4.3 provide the verdicts obtained

before and after introducing the errors and attack (before using filters). We observe

that there are many inconclusive verdicts in our results. The main reason is that the

trace is not filtered to verify a particular SIP property, hence the trace slicing will result

in many unwanted slices (other SIP properties like subscription, notify, etc).

So experiments were conducted on unmodified sample SIP traces and the results

obtained before and after adding filters are shown in Table 4.4 and 4.5 respectively.

As a result, we were able to obtain improvement in the evaluation time6. Nevertheless

adding filters improved the number of inconclusive verdicts. It could be further improved

6Evaluation Time is represented by - days:hrs:min:sec



Chapter 4. Application to Real-Time Case Studies 73

if time constraints are included, as we need not wait until the end of the trace to provide

the verdict.

Table 4.4: Results of Testing the Session Registration Property on sample SIP traces
(With Filters).

Trace No.Packets Before filters After filters
Time I No.Slices Time I No.Slices

1 5000 00:00:01:36 2039 2719 00:00:01:17 680 1360
2 25000 00:00:19:49 10427 13895 00:00:15:56 3480 6948
3 50000 00:01:12:02 20320 27084 00:00:48:40 6778 13542
4 100000 00:05:37:11 39981 53286 00:02:29:38 13341 26646
5 500000 01:02:07:26 204538 272717 00:23:35:20 68179 136358
6 1000000 03:20:31:19 391577 522102 03:01:14:40 130526 261051
7 5000000 19:06:25:14 1185216 1580288 17:23:24:15 395075 790145

Table 4.5: Results of Testing the Session Establishment Property on sample SIP
traces (With Filters).

Trace No.Packets Before filters After filters
Time I No.Slices Time I No.Slices

1 5000 00:00:01:30 2597 2719 00:00:01:18 1237 1359
2 25000 00:00:28:46 13567 13895 00:00:19:29 6619 6947
3 50000 00:01:12:04 25802 27084 00:00:49:49 12260 13542
4 100000 00:04:01:15 49979 53286 00:02:51:29 23333 26640
5 500000 00:23:15:20 259081 272717 00:18:24:32 122713 136349
6 1000000 03:04:37:08 305996 522102 02:18:55:13 234932 261038
7 5000000 18:21:13:32 1501274 1580288 17:13:08:54 711126 790140

In [Che et al. 2012] the prototype tool failed to provide verdict for large trace files

(> 106), because of the way of expressing the property, analyzing them on the traces

and the need to check the enumerated values. But we were able to successfully apply

our approach to such traces to study the scalability and the results were promising.

Moreover, the evaluation time taken for passively testing the SIP properties was also

lesser than their approach. From the Figure 4.11, we observe that the filters have reduced

the number of inconclusive verdicts, improved the evaluation time and also reduced the

number of unwanted slices.



Chapter 4. Application to Real-Time Case Studies 74

Figure 4.11: Effect of filters on sample SIP traces (Table 4.4) .



Chapter 4. Application to Real-Time Case Studies 75

4.3 Case study 2: Bluetooth Protocol

As Information and Communication Technology (ICT) systems become more and more

part of our daily lives, current and future vehicles are more and more integrated into

ICT networks. The consumer’s smart phones, multimedia devices etc. are linked to the

vehicles and allow the drivers or passengers to use the internet, to access their private

phone books or to run their individual applications through the vehicle’s integrated

infotainment systems. Today’s most common technology to link consumer devices to

in-vehicle electronics is Bluetooth [A.Miller and Bisdikian 2000], which latest version is

4.0. Such a wireless connection provides the most comfortable way for the driver to

access a variety of services. However, this connection also implies the risk of possible

misuse which leads to enhanced security issues and risks for the automotive electronics

and with that for the passengers.

Recently the complexity of ICT systems and automotive electronics increases dras-

tically and requires modern testing and validation methods, which allow handling of

complex systems fast and efficient way. This is what we address in the automotive case

study, where in we had access to the real infotainment platform through the ITEA2

DIAMONDS project7. This case study is provided by Dornier Consulting, an interna-

tional consulting and project management company that operates in the fields of: traffic,

transport, the environment and water.8. The System Under Test (SUT) or IUT is an

automotive connectivity module, which provides the driver an ability to connect a mo-

bile phone to the infotainment system. The module itself is connected via the controller

area network (CAN) bus to the vehicle. The phone can be linked via the Bluetooth

technology. In this case study, the Bluetooth specification 2.0 [Group 1999] was used.

An overview of the SUT is shown in Figure 4.12. The connection to a mobile phone is

possible over the Bluetooth network, whereas additional USB devices can be attached

via a USB interface. In this section we illustrate our symbolic passive testing approach

by its application to a set of real execution traces extracted from a real automotive

Bluetooth framework with functional and security properties. Part of this work was

published in [Mouttappa et al. 2013a].

7Research supported by the European project DIAMONDS (EUREKA-ITEA2 project (2010-
2013)(http://www.itea2-diamonds.org/index.html)

8http://www.dornier-consulting.com/



Chapter 4. Application to Real-Time Case Studies 76

Figure 4.12: Overview of the SUT

4.3.1 Overview of Bluetooth protocol

The Bluetooth protocol operates at 2.4 GHz frequency in the free ISM-band (Industrial,

Scientific, and Medical) by using frequency hopping. Bluetooth is a technology for short

range wireless data and real-time two-way voice transfer providing data rates up to 3

Mb/s. Moreover, Bluetooth networks are formed by radio links, which means that there

are additional security aspects whose impact is not yet well understood. Almost any

device can be connected to another device by using Bluetooth.

Bluetooth devices that communicate with each other form a piconet. The device

that initiates a connection is the piconet master. One piconet can have a maximum of

seven active slave devices and one master device. All communication within a piconet

goes through the piconet master. The clock of the piconet master and frequency hopping

information are used to synchronize the piconet slaves with the master. Two or more

piconets together form a scatternet, which can be used to eliminate Bluetooth range

restrictions. A scatternet environment requires that different piconets must have a

common device, called a scatternet member, to relay data between the piconets. Many

kinds of Bluetooth devices, such as mobile phones, headsets, PCs, laptops, printers, mice

and keyboards, are widely used all over the world.

4.3.1.1 Bluetooth Stack

The core protocols form a five-layer stack as shown in Figure 4.13 consisting of the

following elements:



Chapter 4. Application to Real-Time Case Studies 77

Figure 4.13: Bluetooth Stack

• Radio: Specifies the details of the air interface, including frequency, the use of

frequency hopping, modulation scheme, and transmit power.

• Baseband: Concerned with connection establishment within a piconet, addressing,

packet format, timing, and power control.

• Link Manager Protocol (LMP): Responsible for linking setup between Bluetooth

devices and ongoing link management (this includes security aspects such as au-

thentication and encryption, plus the control and negotiation of baseband packet

sized).

• Logical Link Control and Adaptation Protocol (L2CAP): Adapts upper-layer pro-

tocols to the baseband layer. L2CAP provides both connectionless and connection-

oriented services.

• Service Discovery Protocol (SDP): Device information, services, and the charac-

teristics of the services can be queried to enable the establishment of a connection

between two or more Bluetooth devices.

The stack is primary divided into a Controller part and a Host part. The Controller

comprises of the Bluetooth Radio, Baseband and the Link Manager Protocol. It is per-

formed in hardware for obvious reasons. Host deals with high level data, and is usually

built in software. Between the Host and the Controller, there is an Host/Controller

Interface (HCI), whose messages are mainly considered for our analysis in this thesis.



Chapter 4. Application to Real-Time Case Studies 78

Figure 4.14: HCI packets flow

Host Controller Interface (HCI) The Host Controller Interface (HCI) forms the

interface between the software protocol stack and the Link Manager underneath it,

which is implemented in the firmware of a Bluetooth device. Notice that this is a packet-

oriented communication between HCI and the Link Manager rather than a device driver.

The difference is that HCI does not access the register and the memory locations of a

Bluetooth device directly. Instead, it sends command and data packets to the device

and receives data packets and event-message packets from this device, see Figure 4.14.

This means that the Host Controller Interface offers a uniform interface for accessing

the hardware.

The Bluetooth standard for the host controller interface defines the following:

- Command packets used by the host to control the module

- Event packets used by the module to inform the host of changes in the lower layers

- Data packets to pass voice and data between host and module

- Transport layers which can carry HCI packets

• HCI Commands: The host to control the Bluetooth module and to monitor its sta-

tus uses HCI commands. Commands are transferred using HCI command packets.

If a command can complete immediately, an HCI-Command-Complete is returned

to indicate that the command has been dealt with. If a command cannot com-

plete immediately, an HCI-Command-Status event is returned immediately, and

another event is returned later when the command has completed.



Chapter 4. Application to Real-Time Case Studies 79

Figure 4.15: A piconet hacked by an attacker

• HCI Data Packets: HCI Data Packets are used to pass both data (ACL) and voice

(SCO) information over the HCI. Different packets are used for ACL and SCO

data.

• HCI Event Packets: The format of the HCI event packets is similar to the HCI

Command Packets. They carry an event code identifying the event.

• The HCI Transport Layer: A transport layer is required to get HCI packets from

the host to the Bluetooth module.

4.3.2 IOSTS modelling of a Bluetooth behavior/attack

In Bluetooth, a piconet is a basic networking unit consisting of one master and a maxi-

mum of 7 active slave devices. The smallest piconet consists of two Bluetooth devices,

one master and one slave as shown in Figure 4.15. The device which initiates the process

of forming a piconet is considered as the master and the device which is ready to get

connected with the master is considered as the slave. Like many other communication

technologies, Bluetooth is composed of a hierarchy of components referred to as a stack

[Group 1999]. The automotive case study partners provided us few traces mainly con-

cerning the HCI layer messages to depict the device discovery and connectivity behavior

between the Bluetooth devices. We tried to apply our symbolic passive testing approach

to verify the aforementioned Bluetooth protocol behaviors.



Chapter 4. Application to Real-Time Case Studies 80

(a) Sequence Diagram (b) IOSTS model

Figure 4.16: Bluetooth Call establishment and Bluestabbing attack.

4.3.2.1 Bluetooth call establishment property

Figure 4.16(a) shows the message sequences captured from the HCI layer of the master

(car’s Bluetooth device) while trying to achieve the Bluetooth connectivity with the

slave device (mobile phone). Each Bluetooth device has a device local name, a user-

friendly name to identify the different Bluetooth devices. This device name can be

initially configured by each host by sending an hci-change-local-namemessage to the host

controller (HC/LM-A). A Bluetooth device in discoverable mode can communicate or be

visible to other Bluetooth devices. If it does not prefer to be visible, it could be in non-

discoverablemode. Devices which are in discoverable mode are only eligible to participate

in the piconet. So when one Bluetooth device wants to connect to another one, it must go

through certain steps to learn and authenticate with the remote device. The master first

finds the other devices which are in ”discoverable” mode, and then performs an inquiry

on each device by sending an hci-inquiry message. Thus the inquiry process gives the

master a list of hardware addresses called bd addr which are available to be connected

and the important device feature information. The bd addr is a unique address of a

Bluetooth device, similar to MAC address of a network device. This address is needed for



Chapter 4. Application to Real-Time Case Studies 81

further communications with a device. Having received the slave addresses, the master

can establish an actual connection with one or more of the devices it found via the paging

process. During the paging process the master sends an hci-create-connection message

to establish a connection with a particular slave (based on the parameter bd addr).

The connection is successfully established upon receiving an hci-connection-complete

message. Authentication can be explicitly executed at any time after a connection has

been established by an hci-auth-req message. And the established connection can be

anytime detached by the master device by an hci-disconnect message [Group 1999].

4.3.2.2 Bluetooth attack - Bluestabbing

Usually, the list of discovered Bluetooth devices displays only the name of the located

device, and it does not show the actual Bluetooth address. If the slave devices are

familiar with the located device name they are in discoverable mode else invisible. This

local name can be changed anytime by any one, hence prone to Bluestabbing attack

[Browning and Kessler 2009] as shown in Figure 4.16(a). In the Bluestabbing attack,

the attacker impersonates as a legitimate user and modifies the Bluetooth device name of

a legitimate user by resending an hci-change-local-name message with a badly formatted

device name by causing the slave device to confuse during the device discovery phase

(Inquiry). But this attack could be more severe, if the Bluetooth attacker modifies

his own local device name as a legitimate user’s device name, and tries to establish a

connection with the other Bluetooth device by capturing the passwords and sensitive

informations from the device.

For a better understanding of the IOSTS formalism, we represent the Bluetooth

behavior along with the attack scenario in Figure 4.16(b). We observe that there is

a transition from state l5 to state l5.1, a deviation from the regular scenario due to

the hci-change-local-name message inserted by the attacker, during the device inquiry

phase, resulting in the Bluestabbing attack. For explanation we have considered only few

parameters bd addr, loc name corresponding to the Bluetooth protocol, but in practice

there is no limitation in considering the number of parameters. In Figure 4.16(b),

vloc name and v bd addr belongs to the set of system variables V and loc name0 and

bd addr0 constitutes the set of formal parameters P . In an IOSTS, all the values of the

parameters and variables are represented symbolically. Intuitively, variables are data



Chapter 4. Application to Real-Time Case Studies 82

Figure 4.17: Symbolic execution of IOSTS.

to be compared with and parameters are data to communicate with the environment.

For instance, the IOSTS tuple for the symbolic transition t ∈ T from l0 to l1 can be

expressed as below.

t : 〈l0, (hci -change-local -name), true, ((vloc name := loc name i)), l1〉

Here, for any output action say, hci-change-local-name, if the guard-condition as-

sociated with the state is true, then there is a transition from state l0 to l1 and new

assignments for the variables (vloc name := loc name i) are performed.

4.3.3 Symbolic Execution

Figure 4.17 shows the symbolic execution of an IOSTS, where in the branches depicts

the call establishment and security vulnerabilities in Bluetooth protocol. The symbolic

execution tree consists of two paths:



Chapter 4. Application to Real-Time Case Studies 83

(1)Call establishment - (init, !hci-change-local-name(loc name0), η1), (η1, ?hci-command

-complete, η2), (η2, !hci-inquiry, η3), (η3, ?hci-inquiry-complete, η4), (η4, !hci-create-

connection(bd addr0), η5), (η5, !hci-connect-complete(bd addr0), η6), (η6, !hci-auth-req

(bd addr0), η7), (η7, !hci-auth-complete, η8), (η8, !hci-disconnect, η9), (η9, !hci-disconnect-

complete, η10)

(2)Bluestabbing attack - (init, !hci-change-local-name(loc name0), η1), (η1, ?hci-command

-complete, η2), (η2, !hci-inquiry, η3), (η3, !hci-change-local-name(loc name0), η3.1), (η3.1, !hci-

command-complete, η3), (η3, ?hci-inquiry-complete, η4), (η4, !hci-create-connection(bd addr0),

η5), (η5, !hci-connect-complete(bd addr0), η6), (η6, !hci-auth-req(bd addr0), η7), (η7, !hci-auth-

complete, η8), (η8, !hci-disconnect, η9), (η9, !hci-disconnect-complete, η10)

The symbolic traces for the above defined paths are,

Trace(SE(M)) = {!hci-change-local-name(loc name0)?hci-command-complete!hci-inquiry

?hci-inquiry-complete!hci-create-connection(bd addr0)!hci-connect-complete(bd addr0)!hci-

auth-req(bd addr0)!hci-auth-complete!hci-disconnect!hci-disconnect-complete, !hci-change-

local-name(loc name0)?hci-command-complete!hci-inquiry!hci-change-local-name(loc name0)

!hci-command-complete?hci-inquiry-complete!hci-create-connection(bd addr0)!hci-connect-

complete(bd addr0)!hci-auth-req(bd addr0)!hci-auth-complete!hci-disconnect!hci-

disconnect-complete}.

The set of traces with only the control portion of the messages is given by,

CP [Trace(SE(M))] = {!hci-change-local− name?hci-command-complete!hci-inquiry?hci-

inquiry-complete!hci-create-connection!hci-connect-complete!hci-auth-req!hci-auth-complete

!hci-disconnect!hci-disconnect-complete, !hci-change-local-name?hci-command-complete

!hci-inquiry!hci-change-local-name!hci-command-complete?hci-inquiry-complete!hci-

create-connection!hci-connect-complete!hci-auth-req!hci-auth-complete!hci-disconnect!hci-

disconnect-complete}.

4.3.4 Experimental Results

For the experiments, 10 traces for a Bluetooth session establishment were provided by

the Dornier Consulting company. Each of the obtained Bluetooth trace had different

device local name. Figure 4.18 shows a snapshot of the sample Bluetooth trace. In order

to evaluate the efficiency of our approach, we performed our experiments in two ways:



Chapter 4. Application to Real-Time Case Studies 84

Table 4.6: Prototype Tool results on sample Bluetooth traces ρ.

Trace No. Messages No.Slices Trace Output without errors Trace Outputs with errors and attacks
P F I Final O/P P F I AP Final O/P

1 81 2 1 - 1 I - 1 1 - F
2 89 3 1 - 2 I - - 2 1 AP
3 81 2 1 - 1 I - 1 1 - F
4 81 2 1 - 1 I - - 1 1 AP
5 81 2 1 - 1 I - 1 1 - F
6 81 2 1 - 1 I - - 1 1 AP
7 81 2 1 - 1 I - - 1 1 AP
8 81 2 1 - 1 I - - 1 1 AP
9 81 2 1 - 1 I - 1 1 - F
10 81 2 1 - 1 I - - 1 1 AP

Verdicts: P-Pass, F-Fail, I-Inconclusive, AP-Attack pass

Figure 4.18: Sample Bluetooth trace

with unmodified traces and by manually introducing errors and also by introducing few

fake messages to create a vulnerability in the real trace. For example, in the traces

1,3,5,9 we tried to modify manually the parameter bd addr in Bluetooth message like

hci-connect-complete so that we can obtain Fail verdict. Introducing error in the message

caused the guard conditions associated with the symbolic state η5 to Fail as shown in

Figure 4.17.

In order to detect the attack scenario explained in the Section 4.3.2.2, we introduced

few fake messages to the traces 2,4,6,7,8,10 to create a Bluestabbing attack scenario.

For example, as shown in the Figure 4.17 we manually introduced fake message like hci-

change-local-name before the inquiry complete phase in the real-time trace obtained.

The attacks introduced were also correctly detected by our tool.

The verdicts obtained before and after introducing the errors are provided in the

Table 4.6. The evaluation time to passively test the sample traces were approximately

less than 1 second for each trace. As the main objective of the automotive case study

was to detect some abnormalities during the Bluetooth connection establishment phase,

only HCI layer messages were monitored. That was the reason for the short traces



Chapter 4. Application to Real-Time Case Studies 85

in our experiments, however, we would like to extend our approach to passively test

more complex systems as future works. Our prototype and the sample files used for

the experiments can be found at http://www-public.it-sudparis.eu/~mouttapp/

TestSym.html.

4.4 Conclusion

In this chapter we presented the results of applying our symbolic passive testing approach

to two different case studies: Session Initiation Protocol (SIP) and Bluetooth protocol.

In our work, the sequence of observed events which are called traces are collected offline

and are analyzed to check whether they meet the defined property or system behaviors.

Our approach is the integration of two different techniques, symbolic execution to model

the property/attack and parametric trace slicing to perform trace analysis. The proper-

ties to passively test are modeled using the IOSTS (Input-Output Symbolic Transition

Systems) formalism and the system trace are partitioned into several slices based on the

different parametric instances of the trace. The symbolic property is verified against the

trace slices and a verdict (Pass/Fail/Inconclusive/Attack-Pass) on the conformance of

the property is provided.

In order to prove the efficiency of the implemented approach, failures and attacks

were manually added to the system traces and analyzed. Experimental results for the

two case studies prove the capability of the implemented approach to detect failures

and attacks in the traces. Although the number of parameters that were considered in

the messages seems to be small, there is actually no limit in the number of parameters,

which seems to be an added advantage of this approach. Some perspectives regarding

the future works and research ideas are provided along with the general conclusion of our

work in the following chapter and a more detailed study of the implemented prototype

model, TestSym-P is given in the Appendix A and B.

The work done so far in the course of this thesis already contributes to the efficiency

and scalability of passive testing technique. Further, it stimulates further research in

the field of symbolic passive testing.



Chapter 5

General Conclusion

Contents

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Summary

Motivation The main objective of the presented work was to address some of the

limitations of the existing passive testing for conformance, and to present a new symbolic

passive testing approach applicable to communication protocols (i.e. message-based or

text-based protocols).

This thesis has been placed in the area of black-box conformance testing for reac-

tive systems. In general, the model of IOLTS is more suitable for the testing of reactive

systems than the FSM. Nevertheless, the theories and tools based on IOLTS are some-

what limited, i.e., they do not explicitly take into account the system data because

the underlying model of IOLTS does not allow to do it. Thus, in order to formally

model the properties of the reactive system modeled by an IOLTS, it is necessary to

enumerate the values of each datum used by the system. This may result in the classical

state-space explosion problem. Another important aspect that needs to be considered

is the data relationship between the messages. Most of the current passive conformance

testing approaches focuses only on monitoring the control portion of the messages ne-

glecting the data portion. Considering the control portion alone sometimes leads to

86



Chapter 5. General Conclusion 87

several false-positive verdicts (as explained with an example in Chapter 1) which needs

to be eliminated or reduced during passive testing. In addition to the aspects mentioned

above, we are also interested in the practical implementation of the proposed work, as

a tool TestSym-P.

Summary of the Thesis. In Chapter 1, we introduced the importance of reactive

systems in daily life. Such systems are usually large and complex, and it can be error

prone. Even a small error may lead to serious dis-functioning of the system. In this thesis

we focused our work on passive testing techniques to monitor the system behaviors and

attacks leading to the misbehavior of the system. In Chapter 2, we first presented briefly

the state of the art of the most relevant works in the active and passive conformance

testing families with formal specification. Some of these techniques have been based on

the model of Finite State Machines (or FSM), and others on the model of (Input-Output)

Labeled Transition Systems (or (IO)LTS).

In order to solve the issues mentioned above, we proposed a new symbolic passive

testing approach in Chapter 3, which extends the Input-Output labeled transition sys-

tems (IOLTS) with variables, symbolic constants and communication parameters. These

systems are called Input-Output Symbolic Transition Systems (or IOSTS). The symbolic

passive testing technique integrates the concepts of Symbolic execution and Parametric

trace slicing techniques. We have identified in the state of the art that the existing

formalism for modeling large systems (property or behavior) lacks to define the data

relationship between the messages and also have problem with data enumeration which

results in state explosion. To avoid these problems, we adapted the symbolic execution

technique, where the variables and parameters are represented as symbolic values rather

than concrete data. In the traditional dynamic symbolic execution technique the data

dependencies for symbolic variables are well captured. This symbolic representation

eliminates the necessity for data enumeration.

In our work, we have defined the syntax and semantics of the IOSTS model and

described how the symbolic formalism can be used to represent the system behavior and

eventual vulnerabilities or attacks. This IOSTS formalism has the ability to model the

system behavior by taking into account the control and data portion, thereby, defining

the data relationship between the messages which helps to reduce false-positive verdicts.

The symbolic execution of the IOSTS, basically results in a tree-like structure with



Chapter 5. General Conclusion 88

different branches constituting the behavior or attack scenarios that need to be passively

tested.

For the trace analysis, we adapted the parametric trace slicing technique. The most

important aspect in passive testing is the homing-phase, that is identification of the cur-

rent configuration of the IUT. However, in our approach we do not consider the homing

phase because the system trace is split into different slices based on certain parametric

instance of interest. These slices are then monitored against the symbolic property. As

mentioned in the Chapter 2, the identified trace analysis technique is formalism inde-

pendent, hence could be applied to any existing formalism. An algorithm to perform

the parametric trace slicing is defined in our work, which considers all the parametric

instances observed in the system trace. An algorithm to evaluate the symbolic property

against the obtained trace slices was implemented. The evaluation logic checks the data

relationship between the messages by taking into account the control and data portions

of the messages and provides a final verdict Pass/Fail/Inconclusive/Attack-Pass.

Finally, we presented in Chapter 4, the applicability of our symbolic passive testing

procedure in the course of two case studies. The first case study dealt with the Session

Initiation protocols (SIP) and interesting scenarios and attacks were defined and modeled

using our symbolic approach. The second case study is of industrial relevance since it has

been processed on a popular protocol, Bluetooth used in various devices, e.g., phones,

laptop, etc. Our approach has been implemented into a prototype framework (TestSym-

P, a brief discussion is provided in Appendix A and B of this thesis) and experimental

traces have been provided to illustrate how properties and attack scenarios are defined

with our symbolic methodology. We also discussed the results obtained to illustrate the

effectiveness of the approach to detect correct and incorrect behaviors.

We believe that our symbolic passive testing approach deserves future attention, and

that research to come can improve its applicability to industrial reactive systems. The

perspectives that can be drawn from the case studies will be discussed in the following

section.



Chapter 5. General Conclusion 89

5.2 Perspectives

In our work, we have provided a novel symbolic approach for testing conformance prop-

erties, which provides an interesting work when compared to testing of data portion in

other passive testing approaches. Although interesting results have been obtained (see

Chapter 4), there is still room for improvement. The future aspects and other possible

improvements to our approach are discussed in the following.

Time constraints As it can be seen in the experimental results provided in Sec-

tion 4.2.5, the number of inconclusive verdicts obtained was large. For this reason,

we introduced filters in our work to monitor only specific protocol properties, the re-

sults obtained were so promising since it reduced the number of inconclusive verdicts.

However, it would be an added advantage to include time constraints in the definition

of properties, whenever provided by the protocol specification or requirements. Tim-

ing constraints can reduce further the number of inconclusive verdicts by limiting the

evaluation algorithm to a set of well defined slices.

In order to include time constraints, we need to formally model our properties using

Timed Input-Output Symbolic Transition System (TIOSTS). This model is actually an

extension of two existing models: Timed Automata and IOSTS. Basically, a TIOSTS

is an automaton with a finite set of locations, variables used to represent the system

data, and a finite set of clocks used to represent time evolution. An edge comprises

a guard on variables and clocks, an action carrying parameters for the communication

with its environment, an assignment of variables, and resets of clocks. Extending the

current semantics and evaluation algorithm should be simple enough to handle the time

constraints.

Fuzzing technique In order to prove the efficiency of the implemented prototype,

the obtained traces are manually modified to include attack scenarios and to report

failure verdicts. However, it would be interesting to apply fuzzing approaches to modify

the data parameters in the trace automatically instead of manually as performed in the

current work. The proposed trace slicing algorithm considers the order of the message

in the trace, so introducing fuzzing concepts to introduce fake messages in the system

trace should be carefully studied.



Chapter 5. General Conclusion 90

Modeling the system properties In the present work, the identified properties

and attack scenarios are shown as sequence diagrams and then manually modeled using

IOSTS formalism. However, in many cases it would be interesting to obtain the IOSTS

model automatically. For this purpose, if we could represent the behaviors and attack

scenarios using UML State Charts then we can use an already existing software for

translating UML State Charts into IOSTS [Thurnher 2008]. By allowing the user to

define system behaviors via UML State Charts, a better support for the modeling of

large systems is provided.

The symbolic execution tree obtained by symbolically executing the IOSTS is also

performed manually. Nevertheless, an algorithm can be implemented to obtain the

symbolic execution tree from the IOSTS model. Thus, automatizing the formal modeling

of system properties can avoid errors due to human interpretation and also saves lot of

time.

Online testing Online testing, i.e., evaluation of properties as the implementation is

being run, might also be a desired improvement, for instance for the detection of certain

attacks and abnormal behavior of the implementation. Currently, we have applied our

methodology to test a trace length > 106, to study the scalability. Although, the time

complexity when compared to other passive testing approaches was promising but still an

inordinate amount of system memory was required to generate the verdict. The reason

is that, the large trace which was several GigaBytes was stored as SQL database in our

prototype framework. During the evaluation, additional system memory was required

to store the resultant slice table and the evaluation output. Nevertheless, online testing

could hopefully improve the system memory usage, but the question of how the trace

can be collected online and stored in the disk for processing requires some study.

Improvements on the evaluation logic In the IOSTS formalism, the transition

between any two states is actually controlled by the guard-conditions. In the current

logic, the guard-conditions are limited to ’=’ and ′ 6=′ (i.e., SQL logic was defined to

perform pattern matching or string comparison) hence, a simple improvement can also

be provided as future works to allow to define more complex relations between data

fields. Addition of complex relations between the data fields in the guard-conditions,

can definitely improve the testing of complex system properties and attack scenarios.



Chapter 5. General Conclusion 91

Although, the current evaluation logic is computationally solvable in principle, but still

it can be improved by considering parallel processing of the evaluation properties.



Appendix A

Symbolic Framework for Passive

Testing

TestSym-P is a tool that implements the symbolic passive testing methodology intro-

duced in Chapter 3 in order to perform conformance testing and also to analyze some

misbehaviors of the IUT. The proposed symbolic tool was implemented using SQL.

SQL is used to process the huge amount of data contained in the captured traces.

The architecture of the TestSym-P tool comprises of three key modules: Trace pars-

ing, Trace slicing and Trace evaluation. Figure A.1 shows the input/output interac-

tion between the key modules. A brief illustration of each module is described in

the following sections. More details on the symbolic tool is available at the URL

http://www-public.it-sudparis.eu/~mouttapp/TestSym.html

A.1 Trace Parsing

Trace parsing is mainly performed to filter the trace files keeping only the relevant

information for the protocol(s) under test. The raw trace file collected from Wireshark

or any network analyzer is exported in the form of raw text (.txt format) file and is

given as input to the trace parsing module. The tool converts the text file format

.txt to a tabular file format, dbo.InputoExcel with the required parameters. This table

dbo.InputoExcel becomes the source database table for SQL. A snapshot of the database

table obtained after parsing the SIP trace is shown in Figure A.2.

92



Appendix A. Symbolic Framework for Passive Testing 93

Figure A.1: TestSym-P, the prototype tool.

Figure A.2: A snapshot of the trace parsing table.

A.2 Trace Slicing

The traces are sliced based on certain parameters of interest, say for example, for SIP

the dialog parameters: Call-ID, From Tag and To tag was chosen.Call-ID is a unique

string that identifies a call, From tag is generated by the caller and uniquely identifies the

dialog in the caller’s user agent. To tag is generated by a callee and uniquely identifies



Appendix A. Symbolic Framework for Passive Testing 94

the dialog in the callee’s user agent. In this module, the trace slicing algorithm presented

in Section 3.3 is implemented. The formatted trace file dbo.InputoExcel is provided as

input to the trace slicing module and the resultant slice table dbo.Slices is obtained as

output. A snapshot of the resultant trace slicing table for SIP is shown in Figure A.3.

Figure A.3: A snapshot of the trace slicing table.

Figure A.4: A snapshot of the trace evaluation table.

A.3 Final Evaluation

The evaluation algorithm defined in Section 3.4.1 is implemented in the evaluation en-

gine module. Inputs to this module are: the trace slice table, dbo.Slices, a table compris-

ing the symbolic traces, Trace(SE(M)), total number of states involved in the symbolic

execution of the IOSTS and a table with the set of associated guard-conditions G for

each state of the symbolic execution. First, the evaluation is carried on for each trace

slices and the verdicts Pass/Fail/Inconclusive/Attack-Pass/Attack-Fail are obtained. A



Appendix A. Symbolic Framework for Passive Testing 95

snapshot of the verdicts obtained for each trace slice is shown in Figure A.4. The final

evaluation logic is dependent on the verdicts obtained for each trace slice (as defined

in Section 3.4.2) to prove the conformance of the system property on the trace. As a

result, we obtain the final evaluation verdicts Pass/Fail/Inconclusive/Attack-Pass.



Appendix B

Inputs to the TestSym-P

The symbolic passive testing architecture, TestSym-P presented in Appendix A requires

three different inputs (colored blue) as shown in the Figure A.1 in Appendix A:

- The communication traces represented in .txt format (captured using Wireshark for

instance).

- The Guard conditions associated with each state of the symbolic executions.

- The symbolic traces collected from the symbolic execution of the IOSTS property,

Traces(SE(M)) (i.e. the property that is to be verified on the IUT traces) and the

number of states involved.

B.1 Raw Traces

The raw traces for the analysis are obtained by using a trace analyzer. The traces are

exported in the form of raw text files (.txt) and these text files are provided as one of

the input to the tool. For example, the SIP traces were collected using Wireshark and

exported as text files for the analysis and for the Bluetooth protocol, Bluetooth sniffer

was used to capture the traces from the Bluetooth stack implementation.

B.2 Guard-conditions

Guard-conditions are the necessary conditions that are required for the transition from

one state to another in an IOSTS. These guard conditions are provided as SQL tables

96



Appendix B. Inputs to the TestSym-P 97

to the tool. This table consists of two columns, the ID and the GuardCondition. The

SQL procedures defined in the tool check the satisfiability of these guard-conditions for

each defined state.

B.2.0.1 Guard-conditions table - SIP

Figure B.1 shows the snapshot of the guard-conditions table for the SIP properties

explained in Chapter 4. For explanation, we have taken very few constraints mainly

based on the SIP dialog parameters, i.e., Call-ID, To-tag, From-tag. However, the tool

has no limitations on the number of parameters that can be defined to illustrate the

constraints of the symbolic state.

(a) Registration property

(b) Session establishment property

Figure B.1: SQL table for Guard conditions - SIP



Appendix B. Inputs to the TestSym-P 98

B.2.0.2 Guard-conditions table - Bluetooth

For the Bluetooth protocol, bd-addr was the most interesting parameter in the Bluetooth

messages. The symbolic states with no guard-conditions are marked NULL in the table.

Figure B.2 shows the guard-conditions table for analysing the Bluetooth trace.

Figure B.2: SQL table for Guard conditions - Bluetooth protocol

B.3 Symbolic state details

The symbolic state table provides the following details:

(i) the symbolic sequence, Seqs, which represents the property or attack scenario (with

symbolic data)

(ii) the ID number from the guard-conditions table, GuardCondRowNr,associated with

each sequence

(iii) number of states in the symbolic sequence, NrOfStates and

(iv) the type of sequence, AttackSeq, i.e., if AttackSeq = 0, it corresponds to a property

else an attack sequence.

The SQL procedure uses this table to validate all the traces in the database.



Appendix B. Inputs to the TestSym-P 99

B.3.0.3 Symbolic state table - SIP

Figure B.3 shows the snapshot of the symbolic state details for the identified properties

and attack scenarios in SIP.

(a) Registration property

(b) Session establishment property

Figure B.3: SQL table for Symbolic state details - SIP

B.3.0.4 Symbolic state table - Bluetooth protocol

Figure B.4 shows the snapshot of the symbolic state details for the identified property

and attack scenario in Bluetooth protocol.

Figure B.4: SQL table for Symbolic state details - Bluetooth protocol

Based on the final evaluation Algorithm illustrated in Chapter 3 (Section 3.4.2),

the tool outputs the final verdict Pass/Fail/Inconclusive/Attack-Pass. A Pass if the

property is satisfied, a Fail, if the property is not satisfied (i.e., if any of the guard-

conditions fail to satisfy), an Attack-pass, if the attack sequence is satisfied and an

Inconclusice, if the trace length is not sufficient to prove the verdict.



Bibliography

Aiguier, M., Gaston, C., Gall, P. L., Longuet, D., and Touil, A. (2005). A temporal logic

for input output symbolic transition systems. In Proceedings of the 12th Asia-Pacific

Software Engineering Conference, pages 43–50.

Alcalde, B., Cavalli, A. R., Chen, D., Khuu, D., and Lee, D. (2004). Network protocol

system passive testing for fault management: A backward checking approach. In

Formal Techniques for Networked and Distributed Systems (FORTE), pages 150–166.

Alliance, O. M. (2006). Push to talk over cellular requirements, approved ver. 1.0.

A.Miller, B. and Bisdikian, C. (2000). Bluetooth Revealed: The Insiders Guide to an

Open Specification for Global Wireless Communications. Prentice-Hall, NJ, USA.

Andrés, C., Merayo, M. G., and Núñez, M. (2008). Passive testing of timed systems. In

Automated Technology for Verification and Analysis (ATVA), pages 418–427.

Andrés, C., Merayo, M. G., and Núñez, M. (2012). Formal passive testing of timed

systems: theory and tools. Software: Testing, Verification and Reliability, 22:365–

405.

Arnedo, J., Cavalli, A., and Núñez, M. (2003). Fast testing of critical properties through

passive testing. In TestCom 2003, pages 295–310.

Avgustinov, P., Tibble, J., and de Moor, O. (2007). Making trace monitoring feasible.

In In: OOPSLA07: ACM Conference on Object-Oriented Programming, Systems and

Languages, pages 589–608.

Bagnato, A., Raiteri, F., Mallouli, W., and Wehbi, B. (2010). Practical experience

gained from passive testing of web based systems. In Third International Conference

on Software Testing, Verification, and Validation Workshops, pages 394–402.

100



Bibliography 101

Bannour, B. (2012). Symbolic analysis of scenario based timed models for component

based systems: Compositionality results for testing. PhD thesis, Institut CARNOT

CEA LIST.

Bannour, B., Escobedo, J. P., Gaston, C., and Gall, P. L. (2012). Off-line test case

generation for timed symbolic model-based conformance testing. In ICTSS, volume

7641 of Lecture Notes in Computer Science, pages 119–135. Springer.

Barringer, H., Goldberg, A., Havelund, K., and Sen, K. (2003). Rule-based runtime

verification.

Barringer, H., Rydeheard, D., and Havelund, K. (2010). Rule systems for run-time

monitoring: From eagle to ruler. J. Log. Comput.,, 20:675–706.

Bayse, E., Cavalli, A., Núñez, M., and Zaidi, F. (2005). A passive testing approach

based on invariants: Application to the wap. Computer Networks, 48:247–266.

Beizer, B. (1990). Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,

New York, NY, USA.

Benharref, A., Dssouli, R., Serhani, M. A., En-Nouarry, A., and Glitho, R. (2007).

New approach for efsm-based passive testing of web services. In 7th International

Conference on Testing of Software and Communicating Systems, pages 13–27.

Bentakouk, L., Poizat, P., and Zaidi, F. (2011). Checking the behavioral conformance

of web services with symbolic testing and an smt solver. In Proceedings of the 5th

international conference on Tests and proofs, pages 33–50.

Bodden, E. (2005). J-lo, a tool for runtime-checking temporal assertions. Master’s thesis,

RWTH Aachen University.

Browning, D. and Kessler, G. (2009). Bluetooth hacking: A case study. In Proceedings

of the Conference on Digital Forensics, Security and Law, pages 20–22.

Cavalli, A., Prokopenko, S., and Gervy, C. (2003). New approaches for passive test-

ing using an extended finite state machine specification. Information and Software

Technology, 45:837–852.

Cavalli, A. and Tabourier, M. (1999). Passive testing and application to the gsm-map

protocol. In Information and Software Technology, pages 813–821.



Bibliography 102

Che, X., Lalanne, F., and Maag, S. (2012). A logic-based passive testing approach for

the validation of communicating protocols. In Proceedings of the 7th International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),

pages 53–64.

Chen, F. and Rosu, G. (2007). Mop: An efficient and generic runtime verification

framework. In Proceedings of the OOPSLA’07, pages 569–588.

Chen, F. and Rosu, G. (2009). Parametric trace slicing and monitoring. In 15th Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), pages 246–

261.

Collier, M. (2005). VoIP Vulnerabilities - Registration Hijacking. Technical report,

SecureLogix Corportion.

Colombo, C., Pace, G. J., and Schneider, G. (2009). Safe runtime verification of real-time

properties.

Falcone, Y., Havelung, K., and Reger, G. (2013). A Tutorial on Runtime Verification. In

Manfred Broy, Doron Peled, G. K., editor, Engineering Dependable Software Systems,

volume 34, pages 141–175. IOS Press.

Frantzen, L., Tretmans, J., and Willemse, T. A. C. (2005). Test generation based on

symbolic specifications. In FATES 2004, number 3395 in LNCS, pages 1–15. Springer-

Verlag.

Gall, P. L., Rapin, N., and Touil, A. (2007). Symbolic execution techniques for refinement

testing. In 1st International conference on Tests and proofs (TAP’07), pages 131–148.

Gaston, C., Gall, P. L., Rapin, N., and Touil, A. (2006). Symbolic execution tech-

niques for test purpose definition. In 18th IFIP Testing of Communicating Systems

(TestCom), pages 1–18.

Ghezzi, C. and Guinea, S. (2007). Run-time monitoring in service-oriented architectures.

In Test and Analysis of Web Services 2007, pages 237–264.

Goldsmith, S. and et al. (2005). Relational queries over program traces.

Group, B. S. I. (1999). Bluetooth specification version 2.0 + edr [vol 0]. Website.

http://www.bluetooth.org/.



Bibliography 103

Halle, S. and Villemaire, R. (2008). Runtime monitoring of message-based workflows

with data. In EDOC, pages 63–72. IEEE Computer Society.

Halle, S. and Villemaire, R. (2009). Runtime monitoring of web service choreographies

using streaming xml. In Proceedings of the 2009 ACM symposium on Applied Com-

puting, pages 2118–2125.

Harel, D. and Pnueli, A. (1985). Logics and models of concurrent systems. chapter On

the development of reactive systems, pages 477–498. Springer-Verlag New York, Inc.,

New York, NY, USA.

Henzinger, Mazumdar, T. A., and Rupak (1999). A classification of symbolic transition

systems.

Hewlett-Packard (2004). SIPp. Website. http://sipp.sourceforge.net/.

Hong, H. S., Lee, I., Sokolsky, O., and Ural, H. (2002). A temporal logic based theory

of test coverage and generation. In TACAS 2002, pages 327–341.

IMS (2012). Ims procedures and protocols: The lte user equipment perspective. White

Paper.

Jeron, T. (2004). Contribution la gnration automatique de tests pour les systmes ractifs.

PhD thesis, Universit de Rennes.

King, J. (1976). Symbolic execution and program testing. In Com. ACM’76, pages

385–394.

Ladani, B., Alcalde, B., and Cavalli, A. R. (2005). Passive testing - a constrained invari-

ant checking approach. In 17th IFIP Testing of Communicating Systems (TestCom),

pages 9–22.

Lalanne, F. and Maag, S. (2012). A formal data-centric approach for passive testing of

communication protocols. IEEE/ACM Transactions on Networking, PP(99).

Lee, D., Chen, D., Hao, R., Miller, R. E., Wu, J., and Yin, X. (2002). A formal approach

for passive testing of protocol data portions. In 10th IEEE International Conference

on Network Protocols (ICNP 2002), pages 122–131.



Bibliography 104

Lee, D., Netravalli, A. N., Sabnani, K. K., Sugla, B., and John, A. (1997). Passive testing

and applications to network management. In Proceedings of International Conference

Network Protocols, pages 113–122.

Lee, D. and Yannakakis, M. (1996). Optimization problems from feature testing of

communication protocols. In Proceedings of the ICNP, pages 66–75.

Leucker, M. and Schallhart, C. (2008). A brief account of runtime verification.

Lynch, N. A. and Tuttle, M. R. (1989). An introduction to input/output automata.

CWI Quarterly, 2:219–246.

Maoz, S. and Harel, D. (2006). From multi-modal scenarios to code: compiling lscs into

aspectj. In in SIGSOFT FSE.

Martijn, O., Vlad, R., Jan, T., G., D. V. R., and C., W. T. A. (2007). Integrating

verification, testing, and learning for cryptographic protocols. In Proceedings of the

6th international conference on Integrated formal methods, IFM’07, pages 538–557.

Morales, G., Maag, S., Cavalli, A., Mallouli, W., and de Oca, E. (2010). Timed extended

invariants for the passive testing of web services. In Proceedings of the 8th IEEE ICWS,

pages 592–599.

Mouttappa, P., Maag, S., and Cavalli, A. (2012a). Improving protocol validation by

an iosts based passive testing approach. In System Testing and Validation Workshop

(STV’12), pages 87–95.

Mouttappa, P., Maag, S., and Cavalli, A. (2012b). An iosts based passive testing ap-

proach for the validation of data-centric protocols. In 12th International Conference

on Quality Software (QSIC’12), pages 49–58.

Mouttappa, P., Maag, S., and Cavalli, A. (2013a). Monitoring based on iosts for testing

functional and security properties: application to an automotive case study. In 37th

Annual IEEE International Computer Software and Applications Conference (COMP-

SAC 2013).

Mouttappa, P., Maag, S., and Cavalli, A. (2013b). Using passive testing based on sym-

bolic execution and slicing techniques: Application to the validation of communication

protocols. Computer Networks, 57:2992–3008.



Bibliography 105

Nguyen, H. N., Poizat, P., and Zäıdi, F. (2012a). Online verification of value-passing

choreographies through property-oriented passive testing. In HASE, pages 106–113.

Nguyen, H. N., Poizat, P., and Zaidi, F. (2012b). A symbolic framework for the confor-

mance checking of value-passing choreographies. In Proceedings of the ICSOC, pages

525–532.

Phalippou, M. (1994). Relations d’Implantations et Hypothses de Test sur les Automates

Entrees et Sorties. PhD thesis, Bordeaux.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M., and Schooler, E. (2002). SIP: Session Initiation Protocol. RFC 3261.

Technical report, Internet Engineering Task Force.

Rusu, V., du Bousquet, L., and Jéron, T. (2000). An approach to symbolic test gen-

eration. In 2nd International Conference on Integrated Formal Methods (IFM 2000),

pages 338–357.

Rusu, V., Marchand, H., and Jéron, T. (2005). Automatic verification and conformance

testing for validating safety properties of reactive systems. In International Symposium

of Formal Methods Europe, pages 189–204.

Simmonds, J. (2011). Dynamic Analysis of Web Services. PhD thesis, University of

Toronto.

Stolz, V. (2008). Temporal assertions with parameterized propositions. Journal of Logic

and Computation., 20(3):743–757.

TestSym-P (2013). Symbolic passive testing tool. Website. http://www-public.

it-sudparis.eu/~mouttapp/TestSym.html.

Thurnher, C. (2008). Model transformation from uml state machines to input/output

symbolic transition systems. Master’s thesis, Institute of Information Systems - Vienna

University of Technology.

Tretmans, J. (1994). A formal approach to conformance testing. In The 6th International

Workshop on Protocol Test Systems, pages 257–276.

Tretmans, J. (1996). Test generation with inputs, outputs ans repetitive quiescence. In

Software - concepts and tools, pages 103–120.



Bibliography 106

Tretmans, J. (2008). In Hierons, R. M., Bowen, J. P., and Harman, M., editors, Formal

methods and testing, chapter Model based testing with labelled transition systems,

pages 1–38. Springer-Verlag, Berlin, Heidelberg.

Ural, H. and Xu, Z. (2007). An EFSM-based passive fault detection approach. In Testing

of Software and Communicating Systems, 19th IFIP, pages 335–350.

Vineet Kumar, M. K. and Sengodan, S. (2001). IP Telephony with H.323. Wiley, 605,

Third aveneue, New York, NY10158-0012.

Wehbi, B., de Oca, E. M., and Bourdelles, M. (2012). Events-based security monitoring

using mmt tool. Software Testing, Verification, and Validation, 2008 International

Conference on, 0:860–863.

Weiglhofer, E. J. M., Aichernig, B. K., and Wotawa, F. (2010). When bdds fail: Con-

formance testing with symbolic execution and smt solving. In ICST, pages 479–488.

Wireshark (2006). Wireshark network analyser. Website. http://www.wireshark.org/.


