Search for clues of life or habitability on Mars:

Laboratory simulation of organic molecules evolution at the surface of Mars

Olivier POCH

Thesis advisors: Patrice COLL and Cyril SZOPA

The question of the origin of life

How life originated on Earth?

> Does life also appeared elsewhere in the cosmos?

images : NASA/ESA/OSIRIS/L.Bret pour C&E

Search for clues of life on Mars

Search for clues of life on Mars

Search for organic molecules on Mars

2.5

Emergence of life?

< 1 % of the 3.5 Archean surface

50 % of the 3.7 Hesperian 3.0 surface

Amazonian

Proterozoic

0.5 Phanerozoic

Ga

images : NASA/ESA/OSIRIS/L.Bret pour C&E

Search for organic molecules on Mars

Viking 1 and 2 1976

No definitive evidence of organic molecules in the soil

WHY?

⇒ analytical limitations of the instruments?
 ⇒ choice of the landing sites?
 ⇒ evolution of the organic molecules on Mars?

Current conditions at the surface of Mars

Environmental conditions likely to induce physico-chemical processes affecting organic matter at the surface of Mars:

What is the evolution of selected organic molecules, in their mineral matrix, exposed to Martian UV and oxidation processes of the surface of Mars?

What is the evolution of organic molecules in current Mars surface conditions?

Scientific issues:

It is essential to know the evolution of organic molecules on Mars in order to:

Guide the analyses performed in situ: What molecules to search for?

Interpret the analyses performed in situ: What is the origin of the detected molecule?

What is the evolution of organic molecules in current Mars surface conditions?

Adopted methodology:

Simulate in the laboratory the evolution of selected organic molecules, in a relevant mineral matrix, in the environmental conditions of the surface of Mars

qualitative and quantitative data supporting the research of molecules on Mars.

Organic molecules brought by exogenous sources:

Carbon influx from micrometeorites estimated to **2,4** × **10**⁸ g an⁻¹ (Flynn 1996)

➢ soluble phase (1-25%):

insoluble phase (75-99%):

Pizzarello 2006, 2008

Bibliographic study of tracer molecules of the sources:

Sources	Exogenous	Atmospheric	Hydrothermal	Magmatic	Biologic
glycine		1			1
urea					
adenine		-			
propanoic acid					
dodecanoic acid					
PAH (pyrene, phenanthrene, chrysene)	•	-			
linear hydrocarbons (octadecane)	-	-	-	-	-
mellitic acid					
porphyrin					

= potential tracer of this source

Bibliographic study of tracer molecules of the sources:

Sources	Exogenous	Atmospheric	Hydrotherr	mal Magmatic	Biologic			
glycine								
urea								
adenine				Porphyrin : a universal molecule				
propanoic acid		-		in terrestria	in terrestrial life			
dodecanoic acid								
PAH (pyrene, phenanthrene, chrysene)			~					
linear hydrocarbons (octadecane)			-					
mellitic acid				Suo et al., 2007	Suo <i>et al.,</i> 2007; Lindsey <i>et al.,</i> 2011			
porphyrin								

= potential tracer of this source

Organic molecules selected:

Organic molecules selected:

- The simplest amino acid
- Evolution under UV radiation well documented in the litterature
- Reference

Stoker et Bullock 1997; ten Kate et al. 2005; Stalport et al. 2008

Organic molecules selected:

Navarro-Gonzalez et al., 1981; Masuda 1980; Kenyon 1969

Organic molecules selected:

Tracer of the nucleobases (DNA/RNA)
 Purine base: potentially more resistant to UV

Wang 1976; Barbatti et Ullrich 2011

Organic molecules selected:

endogenous sources

Botta et Bada 2002; Clemett et al., 1998; Steele et al., 2012

Organic molecules selected:

 Oxidation product of molecules having a benzene ring
 Resistance to oxidation and UV

Benner et al., 2000; Stalport et al., 2009; Archer 2010

Mineral matrix selection

Nontronite

- ➤ A clay mineral: large surface of adsorption, layers → high preservation potential
- Detected several times on Mars (Ehlmann et al., 2012)
- Found in Gale crater (Curiosity) (Milliken et al., 2010)
- Possibility of production of pure organicfree nontronite via hydrothermal synthesis (Andrieux et Petit, 2010)

H₂O

layered structure

Mineral matrix selection

Nontronite

➤ A clay mineral: large surface of adsorption, layers → high preservation potential

Detected several times on Mars (Ehlmann et al., 2012)

Found in Gale crater (Curiosity) (Milliken *et al.*, 2010)

Possibility of production of pure organicfree nontronite via hydrothermal synthesis (Andrieux et Petit, 2010)

23

Gale crater

NASA/JF

Sample preparation

Type 1: pure organic molecule

molecule deposit

MgF₂ optical window

Deposited by sublimation/recondensation

thickness of 10 to 100 nm

Type 2: organic molecule with nontronite

Deposited by evaporation/sedimentation of a suspension of nontronite in an aqueous solution of the organic molecule

thickness of **2 to 10 µm**

Evolution under simulated conditions

Type 1: evolution of pure organic molecules under UV

UV

Direct photolysis: molecule + $hv \rightarrow$ products Type 2: evolution of organic molecules with nontronite under UV and oxidation

scheme of the MOMIE setup:

scheme of the MOMIE setup:

scheme of the MOMIE setup:

Optimization of the MOMIE setup

- Limited duration of the simulations at mean Martian temperature and pressure
 extension of the duration of the simulations from 8h to 72h
- In situ qualitative and quantitative analyses via FTIR.
 ⇒ ex situ analysis of the residue via UV spectrometry and GC-MS
 ⇒ in situ analysis of the gas phase via a mass spectrometer

UV irradiance variability from one experiment to another.
 in situ measure of UV irradiance with a spectroradiometer, taking into account all sources of variability of this irradiance
 improved extrapolation of the data to the surface of Mars

The most efficient experience to date to simulate the evolution of organic molecules on Mars

Optimization of the MOMIE setup

Measurement of the UV irradiance reaching the sample

Scientific objective and expected results

What is the evolution of organic molecules in these simulated conditions of the surface of Mars?

\Rightarrow Photo-products analysis, solid and gaseous

> Suggestion of molecular targets to search for on Mars, in the atm.?

\Rightarrow Kinetics of degradation or evolution

Stability in Martian environment? Extrapolated half-life?

Evolution of glycine under UV radiation

Poch et al., Planetary and Space Science 85, 188-197, 2013

Evolution of glycine under UV radiation

ex-situ analyses of the residue before/after UV irradiation:

→ Extraction/Derivatization (MTBSTFA) prior to GC-MS

No glycylglycine detected → Extraction? Cyclic polypeptide? other molecule?

→ Pictures of the sample

\rightarrow UV spectrum

 \Rightarrow change of the cristalline state of glycine during the UV irradiation

Evolution of glycine under UV radiation

Poch et al., Planetary and Space Science 85, 188-197, 2013

Hypothesis: optically thin deposit

 \Rightarrow dN = N.J.dt

 \Rightarrow N_(t) / N_(t=0) = e^{-J.t}

Photolysis constant:

$$\begin{split} \mathbf{J} &= \int_{\lambda} \Phi_{\lambda} \, . \, \sigma_{\lambda} \, . \, \mathbf{F}_{\lambda} \, . \, d\lambda \\ & \Phi_{\lambda} : \text{photodissociation quantum yield fo the molecule} \\ & \sigma_{\lambda} : \text{absorption cross section of the molecule} \\ & \mathbf{F}_{\lambda} : \text{photon flux} \end{split}$$

Data production:

Qualitative : solid phase chemistry

Quantitative: kinetics of degradation

Extrapolation of the temporal data to the photon flux at the surface of Mars:

	inside MOMIE:	on Mars:
Photons flux (200-250 nm) photons m ⁻² s ⁻¹	3,9 ± 3,0 × 10 ¹⁹	7,6 × 10 ¹⁷ (Patel <i>et al.</i> , 2002)
t _{1/2}	340 ± 29 min	310 ± 240 h
J	2,06 ± 0,18 × 10 ⁻³ s ⁻¹	1,7 ± 1,3 × 10 ⁻⁶ s ⁻¹

41

Quantitative results

Molecule	Sample thickness	Photolysis constant	Half-life time	Photodissociation efficiency 200-250 nm
	(nm)	J (s ⁻¹)	t1/2 (hours)	(molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
Chucino	295 ± 19	$2.0 \pm 1.7 \times 10^{-6}$	330 ± 280	$9.0 \pm 7.6 \times 10^{-3}$
Glycine	295 ± 19	$1.8 \pm 1.5 \times 10^{-6}$	300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
	322 ± 80	$1.6 \pm 1.3 \times 10^{-6}$	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
	499 ± 80	$9.1 \pm 7.1 \times 10^{-7}$	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
Urea	119 ± 257	$1.5 \pm 1.1 \times 10^{-6}$	320 ± 250	$1.5 \pm 7.5 \times 10^{-3}$
	164 ± 257	$8.4 \pm 6.5 \times 10^{-7}$	590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
Adenine	27 ± 32	N.D.	380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
	70 ± 32	N.D.	1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
	100 ± 3	N.D.	4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
	1300	N.D.	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
Chrysene	35 ± 7	$3.7 \pm 2.9 \times 10^{-7}$	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

Poch et al.. in preparation

Poch et al., in preparation

Molecule	Sample thickness (nm)	Photolysis constant J (s ⁻¹)	Half-life time t1/2 (hours)	Photodissociation efficiency 200-250 nm (molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
Chusina	295 ± 19	$2.0 \pm 1.7 \times 10^{-6}$	330 ± 280	$9.0 \pm 7.6 \times 10^{-3}$
Glycine	295 ± 19	$1.8 \pm 1.5 \times 10^{-6}$	300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
	322 ± 80	$1.6 \pm 1.3 \times 10^{-6}$	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
	499 ± 80	$9.1 \pm 7.1 \times 10^{-7}$	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
Uraa	119 ± 257	$1.5 \pm 1.1 \times 10^{-6}$	320 ± 250	$1.5 \pm 7.5 \times 10^{-3}$
Urea	164 ± 257	$8.4 \pm 6.5 \times 10^{-7}$	590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
	27 ± 32	N.D.	380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
Adenine	70 ± 32	N.D.	1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
	100 ± 3	N.D.	4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
	1300	N.D.	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
Chrysene	35 ± 7	$3.7 \pm 2.9 \times 10^{-7}$	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

\Rightarrow Half-life times of the order of 10 to 1000 hours on Mars

Poch *et al.,* in preparation

Molecule	Sample thickness (nm)	Photolysis constant J (s ⁻¹)	Half-life time t1/2 (hours)	Photodissociation efficiency 200-250 nm (molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
Chusing	295 ± 19	$2.0 \pm 1.7 \times 10^{-6}$	330 ± 280	$9.0 \pm 7.6 \times 10^{-3}$
Glycine	295 ± 19	$1.8 \pm 1.5 \times 10^{-6}$	300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
	322 ± 80	$1.6 \pm 1.3 \times 10^{-6}$	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
-	499 ± 80	$9.1 \pm 7.1 \times 10^{-7}$	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
liree	119 ± 257	$1.5 \pm 1.1 \times 10^{-6}$	320 ± 250	$1.5 \pm 7.5 \times 10^{-3}$
Orea	164 ± 257	$8.4 \pm 6.5 \times 10^{-7}$	590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
and the second	27 ± 32	N.D.	380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
	70 ± 32	N.D.	1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
Adenine	100 ± 3	N.D.	4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
	1300	N.D.	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
Chrysene	35 ± 7	$3.7 \pm 2.9 \times 10^{-7}$	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

 \Rightarrow Error bars of the order of ± 70 à 80 % due to uncertainties of the UV irradiance

Poch *et al.,* in preparation

	Molecule	Sample thickness	Photolysis constant	Half-life time	Photodissociation efficiency 200-250 nm
to and				t1/2 (hours)	(molecule photon)
In ora	er to compai	re two values of	τ _{1/2} ,	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
the error bai	rs have to be	read <u>for the sa</u>	<u>me photon</u>	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
	<u>f</u>	<u>ux</u>		330 ± 280	9.0 ± 7.6 × 10 ⁻³
				300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
t _{1/2} values fo	or a	t _{1/2}	values for a	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
high photon flux low photon flux			photon flux	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
				320 ± 250	1.5 ± 7.5 × 10 ⁻³
				590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
				380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
				1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
		\rightarrow		4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
		t _{1/2} (ho	ours)	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
				1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
The come	Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

 \Rightarrow Error bars of the order of ± 70 à 80 % due to uncertainties of the UV irradiance

Poch et al., in preparation

Molecule	Sample thickness	Photolysis constant	Half-life time	Photodissociation efficiency 200-250 nm
	(nm)	J (s ^{⁻¹})	t1/2 (hours)	(molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
Glycino	295 ± 19	$2.0 \pm 1.7 \times 10^{-6}$	330 ± 280	$9.0 \pm 7.6 \times 10^{-3}$
Giycine	295 ± 19	$1.8 \pm 1.5 \times 10^{-6}$	300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
	322 ± 80	$1.6 \pm 1.3 \times 10^{-6}$	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
	499 ± 80	$9.1 \pm 7.1 \times 10^{-7}$	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
Uroa	119 ± 257	$1.5 \pm 1.1 \times 10^{-6}$	320 ± 250	$1.5 \pm 7.5 \times 10^{-3}$
Urea	164 ± 257	$8.4 \pm 6.5 \times 10^{-7}$	590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
	27 ± 32	N.D.	380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
Adonino	70 ± 32	N.D.	1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
Adennie	100 ± 3	N.D.	4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
	1300	N.D.	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
Chrysene	35 ± 7	$3.7 \pm 2.9 \times 10^{-7}$	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

 \Rightarrow Measured half-life values depend on the initial thickness of the irradiated sample

Dependency of half-life times with the thickness of the deposits

> May explain the differences between half-lives determined in the literature for similar molecules

Of interest in the context of the evolution of molecular layers on Mars

Dependency of half-life times with the thickness of the deposits

May explain the differences between half-lives determined in the literature for similar molecules

> Of interest in the context of the evolution of molecular layers on Mars

Molecular layers might be formed in sedimentary? or evaporitic environements? on Mars

Molecular layers are found in micrometeorites:

Dobrica et al., 2012

Flynn et al., 2010

What is the evolution of these layers on Mars?

Photostability of organic layers on Mars

Poch *et al.,* in preparation

Molecule	Sample thickness	Photolysis constant	Half-life time	Photodissociation efficiency 200-250 nm
	(nm)	J (s ⁻¹)	t1/2 (hours)	(molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
Clucino	295 ± 19	$2.0 \pm 1.7 \times 10^{-6}$	330 ± 280	$9.0 \pm 7.6 \times 10^{-3}$
Glycine	295 ± 19	$1.8 \pm 1.5 \times 10^{-6}$	300 ± 240	$7.0 \pm 5.7 \times 10^{-3}$
	322 ± 80	$1.6 \pm 1.3 \times 10^{-6}$	330 ± 260	$7.1 \pm 6.2 \times 10^{-3}$
	499 ± 80	$9.1 \pm 7.1 \times 10^{-7}$	550 ± 430	$6.0 \pm 4.9 \times 10^{-3}$
Urea	119 ± 257	$1.5 \pm 1.1 \times 10^{-6}$	320 ± 250	$1.5 \pm 7.5 \times 10^{-3}$
	164 ± 257	$8.4 \pm 6.5 \times 10^{-7}$	590 ± 470	$1.1 \pm 4.5 \times 10^{-3}$
Adenine	27 ± 32	N.D.	380 ± 290 *	$8.2 \pm 27 \times 10^{-5}$
	70 ± 32	N.D.	1910 ± 1500 *	$1.1 \pm 1.0 \times 10^{-4}$
	100 ± 3	N.D.	4420 ± 3440 *	$1.10 \pm 0.9 \times 10^{-4}$
	1300	N.D.	N.D.	$1.0 \pm 0.9 \times 10^{-4}$
Chrysene	35 ± 7	$3.7 \pm 2.9 \times 10^{-7}$	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$
Mellitic trianhydride	33 ± 70	$6.0 \pm 4.6 \times 10^{-7}$	780 ± 600	$4.7 \pm 24 \times 10^{-5}$

Poch *et al.,* in preparation

Molecule	Sample thickness (nm)	Photolysis constant J (s ⁻¹)	Half-life time t1/2 (hours)	Photodissociation efficiency 200-250 nm (molecule photon ⁻¹)
	295 ± 19	$1.4 \pm 1.1 \times 10^{-6}$	310 ± 230	$4.6 \pm 3.4 \times 10^{-3}$
	295 ± 19	$1.7 \pm 1.3 \times 10^{-6}$	310 ± 240	$4.1 \pm 3.2 \times 10^{-3}$
		í.		2

 \Rightarrow The calculated photodissociation quantum yields are molecular values

Interest of these photodissociation quantum yields in the search for organic molecules on Mars:

Molecular values:

indicate the chemical **potential of resistance to UV** radiation for each molecular structure, can be applied to isolated molecules

Values independent of the photon flux:

extrapolation of the life times of organics at the scale of the Martian globe via numerical models

 \Rightarrow Aromatic structures are 10 to 100 times more resistant to UV at the surface of Mars

UV

 \Rightarrow Determination of a new value of the photodissociation efficiency of glycine

UV

In which products are processed these molecules when exposed to UV from the surface of Mars?

In which products are processed these molecules when exposed to UV from the surface of Mars?

resistant chemical structures?

transformation products? decomposition products?

58

adenine

59

Compounds resistant to UV at the surface of Mars⁶⁰

Compounds resistant to UV at the surface of Mars⁶¹

Compounds resistant to UV at the surface of Mars⁶²

Compounds resistant to UV at the surface of Mars⁶⁴

Production of a photoresistant compound observed during the UV irradiation of adenine

Compounds resistant to UV at the surface of Mars⁶⁵

Production of a photoresistant compound observed during the UV irradiation of adenine

C, N, H photoresistant macromolecule Similar to HCN polymers or Titan's tholins?

Qualitative evolution of aromatic molecules

Chemical pathways of aromatic molecules under UV radiation of the surface of Mars ?

Formation of macromolecular compounds resistant to UV

Photodecomposition in volatile fragments (hydrocarbons, CH₄?)

Qualitative evolution of aromatic molecules

Summary of the qualitative evolutions

Summary of the qualitative evolutions

Identification of the gaseous products

Issues:

Clarify the chemical pathways, the mass balances

Source of gases in the near surface atmosphere of Mars?

Effect of the nontronite on the evolution

What is the effect of nontronite clay on the evolution of organic molecules?

UV

 \Rightarrow protection of the molecules? \Rightarrow or catalysis of the degradation processes?

 \Rightarrow new products?

What is the effect of nontronite on the evolution?

72
What is the effect of nontronite on the evolution?⁷³

New product(s) detected in presence of nontronite?

	NO	MAYBE	YES		
Glycine	FTIR, GC-MS				
Adenine	FTIR	GC-MS			
Urea		GC-MS	FTIR		

> interaction of OCN⁻ or
O=C=N−H with Fe³⁺ or nontronite
> no NH₄⁺ detected

Effect of nontronite on the evolution

Selective protection of organic molecules by nontronite on Mars?

Summary of the results

Chemical evolution on Mars, Molecular targets to search for

Extrapolated Half-life times on Mars and photodissociation efficiencies:

pure molecule + UV:			molecule + nontronite + UV :	
molecule	t _{1/2} on Mars (h)	yields (molecule/photon)	yields (molecule/photon)	No catalytic effect
glycine	310 ± 230	6,3 ± 5.2 × 10 ⁻³	$1.2 \pm 0.5 \times 10^{-3}$	the degradation of
urea	320 ± 250	< 7.3 × 10 ⁻³	$3.0 \pm 2.3 \times 10^{-3}$	glycine and adenine in presence of
adenine	380 ± 290	$1.0 \pm 0.9 \times 10^{-4}$	$2.0 \pm 1.4 \times 10^{-5}$	nontronite clay
chrysene	1280 ± 990	$4.9 \pm 4.1 \times 10^{-5}$	N.D.	

 \Rightarrow input data for global modeling of the evolution of organic matter on Mars

Experimental perspectives:

Clarify the effect of nontronite: why a photoprotective effect? selective protection?

New molecule+mineral couples: urea+montmorillonite, urea+zeolithe, sulfates etc.

Study organic molecules: hydrocarbons, fatty acids, porphyrins.

Influence of perchlorates (ClO₄-) on the evolution of organic molecules under UV radiation?

Clarify the dependency of the half-life time of the deposits with their thickness: simulations, numerical model.

Search for organic molecules on Mars

Preliminary results of the search for organic molecules on Mars by the Curiosity rover :

Organic matter in not abundant in the Rocknest dune,

> No-detection of polycyclic aromatic hydrocarbons (PAH),

> Detection of HCN and C_2H_3N .

Leshin et al., 2013; Mahaffy et al., 2013

Search for organic molecules on Mars

> No-detection of polycyclic aromatic hydrocarbons (PAH)

Cabane et al., 2013

> This work:

Search for organic molecules on Mars

Detection of HCN and C₂H₃N

Stern et al., 2013

> This work:

Resistance of C,H,N macromolecules to Martian UV photons

The search for organic molecules on Mars continue!

The search for organic molecules on Mars continue!

⇒ Curiosity will soon expore nontronite outcrops in the Gale crater!

Terrains at the base of Mount Sharp (Aeolis Mons) NASA/JPL/MSSS/Ronald pour UMSF