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Chapter 1

Introduction

In March 14, 2013 at Moriond-QCD meeting, preliminary new results by ATLAS and CMS

collaborations from CERN (the European Organization for Nuclear Research) made the

particle physics community more certain that the new resonance in the mass range: 125-

127 GeV, in the search of the Standard Model (SM) Higgs boson, is a Higgs boson!. It was

confirmed that the new discovered particle is of spin-0 nature with positive parity (0+),

which are two fundamental criteria of a Higgs boson consistent with the SM [1, 2, 3, 4, 5].

However, it remains an open question whether this particle is the Higgs boson predicted

by the Standard Model or the lightest boson predicted by some Beyond Standard Model

(BSM) theories (such as Supersymmetric theories for example). In order to identify this

particle, the other properties of the SM Higgs boson should be studied. For example, the

decay rate to allowed particles (as WW and ZZ, bb and ττ) must be compared with the

SM predictions. Nevertheless, the collection of more data is fairly complicated, since the

detection of such boson is very rare. For this reason, the LHC (Large Hadron Collider) is

shut down for two years, and it will be restarted in 2015 at its nominal energy 13-14 TeV.

This will confirm the Standard Model predictions or will open a new area Beyond Standard

Model physics.

(a) (b)

Figure 1.1: a) Expected distributions of q = log(L(JP = 0+)/L(JP = 0−)). The observed value

is indicated by the vertical solid line and the expected medians by the dashed lines, see ref. [1]. b)

Signal of Higgs boson observed at ATLAS, mH is 126.0 ± 0.4(stat) ± 0.4(sys)GeV, see ref. [2].
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The Standard Model is one of the most successful gauge theories, it concerns three

fundamental forces of nature except gravity: electromagnetic, weak and strong nuclear in-

teractions. It describes the interactions between three families of quarks and leptons which

are mediated by twelve gauge bosons: the eight gluons, the two W± bosons, the Z boson

and the photon. The massive gauge bosons (W± and Z) acquire mass after spontaneous

symmetry breaking via the Brout-Englert-Higgs mechanism [6, 7], which requires the exis-

tence of the famous Higgs boson. Each sector of the SM was developed separately in the

context of quantum field theories. The first successful quantum field theory was the Quan-

tum ElectroDynamics or QED, which became the first pillar of the SM and the template

theory for which any theory describing a new interaction is inspired. It shows a successful

marriage between the quantum theory and special relativity, and answers the main criticism

that Einstein conducted over the quantum theory and its incapability to describe the matter

reality in space time[8]. This theory is an abelian gauge theory, it describes how light and

matter interact (the interaction of the photon with any charged particles). Its covariant

formulations leads to its renormalizabilty to all orders of perturbation theory, which makes

it "the jewel of physics" as Richard Feynman has called it [9]. The Weak nuclear interac-

tion is the mechanism responsible for the the radiative decay and the nuclear fusion of the

subatomic particles, it is the only interaction able to change the flavor of the quarks and the

only interaction that violates the parity and the CP symmetry. There were many attempts

to describe this interaction, a famous one was the Fermi theory. However, this interaction is

well understood in the context of the Standard Model of Electro-Weak interaction (EW). The

latter is the theory that unifies the weak and the electromagnetic interactions as two aspects

of the same force, which is called the electroweak force. The strong interaction or the color

force is described by the Quantum Chromodynamics or QCD. It describes the interactions

of the quarks and the gluons inside the hadrons. It is a non-Abelian gauge theory which

belongs to a large group of renormalizable gauge theories called the Yang-Mills theories [10].

To allow these theories to make accurate predictions, higher order (NLO, NNLO, ...)

corrections are strongly needed especially in the new area of the LHC. However, pertur-

bative quantum field theories lead to ultraviolet divergences in the loop diagrams. Such

divergences have been discovered first in Quantum Electrodynamics, where many physicists

have been ready to change some fundamental principle of physics to avoid these diver-

gences. This problem have been solved by Bethe, Feynman, Schwinger, Tomonaga and

Dyson [11, 12] and others by introducing the procedure of renormalization. They have

shown that by the redefinition of some physical quantities as the mass, the couplings ...etc,

one can get finite and sensible results to experiment. This procedure have solved the prob-

lem of the ultraviolet divergences in QED and have led to predictions agree with experiment

to 8 significant digits, which is one of the most accurate calculation in all science. Despite

the success of the renormalization program, many physicists viewed renormalization as an

ad-hoc procedure which is justified only by its physically sensitive results. However, this

idea was revolutionized by K. Wilson in the 1970’s[13]. According to this new point of view,

renormalization is just a simple parameterization of the sensitivity of low energy physics

to high-energies physics, which means that renormalizable field theories are effective field

theories, and explain why nature is described approximately! by renormalizable theories.
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The renormalizabilty of the Yang-Mills theories for both broken and unbroken symmetries

was proven by ’tHooft and Veltman in ref. [14, 15, 16].

The brilliant idea of renormalization is to provide a relationship between the parameters

of the theory at high and low energy scales, in such way that the infinities are absorbed

at high energy. The energy scale is an unphysical scale (it is called renormalization scale),

since it is introduced to regularize the loop integrals by means of the regularization methods

(Pauli-Villars, dimensional regularization ....), then the physical observable will depend on

such scale if their perturbative expansion on the coupling constants is not taken into ac-

count at all orders. On top of that the coupling constant may not be small enough at given

scales to provide precise results at fixed order of the expansion. Since the calculation of the

physical observable at all orders is technically impossible due the dramatic increase of the

Feynman diagrams and their complicated structure, we limit ourselves to some fixed orders

(NLO for example) and the errors has to be included in the theoretical uncertainties. In the

last decades a huge progress has been made in loop calculations (especially one-loop with

multi-particles) in QCD and in EW. Nevertheless, the particle physics community wishes to

enlarge the NLO and NNLO (and beyond!) calculations by including both QCD and EW

radiative corrections. Here, we show a preliminary version of les Houches wish-list of some

processes proposed in les Houches workshop of this year1:

Wish-list Part 1: EW gauge bosons (V=W±, Z)

Process Desired Motivations

V dσ(lept. V decay)@ Precision EW

NNNLO QCD + NLO EW PDFs

MC@NNLO

V + j dσ(lept. V decay)@ Z + j for gluon PDF

NNLO QCD + NLO EW W + c for strange PDF

V + jj dσ(lept. V decay)@ Study of systematic of H + jj

NNLO QCD + NLO EW final state

V V ′ dσ(V decays)@ Off-shell leptonic decays

NNLO QCD + NLO EW TGCs (triple gauge couplings)

gg→ VV dσ(V decays)@ bkg to H → V V

NLO QCD TGCs

V γ dσ(V decays)@ TGCs

NNLO QCD + NLO EW

V bb̄ dσ(lept. V decay)@NNLO QCD bkg for V H → bb̄

V V ′γ dσ(V decays)@NLO QCD + NLO EW QGCs (quartic gauge couplings)

V V ′V ′′ dσ(V decays)@NLO QCD + NLO EW QGCs, EWSB

V V ′ + j dσ(V decays)@NLO QCD + NLO EW bkg to H, BSM searches

V V ′ + jj dσ(V decays)@NLO QCD + NLO EW QGCs, EWSB

1The eighth les Houches workshop took place in les Houches (France), it consist of two sessions. Session

I: 3-12 June 2013 with emphasis on SM-related issues. Session II: 12-21 June 2013 with emphasis on

New-Physics searches, see http://phystev.in2p3.fr/Houches2013/.
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Wish-list Part 2: Jets and heavy quarks:

Process Desired Motivations...............................................

tt̄ dσ(top decays) Precision top/QCD, gluon PDF,

@NNLO QCD + NLO EW effect of extra radiation at high rapidity,

top asymmetries

tt̄+ j dσ(NWA top decays) Precision top/QCD,

@NLO QCD + NLO EW top asymmetry

dijet dσ@ Obs: inclusive jets, dijet mass

NNLO QCD + NLO EW PDF fits (gluon at high x)

fit of the αs
x section, see [3]

3j dσ@NNLO QCD + NLO EW αs at high pT
dom. uncertainty: scales see [4]

γ + j dσ@NNLO QCD + NLO EW gluon PDF, γ + b for bottom PDF

Wish-list Part 3: Higgs (V=W±, Z):

Process Desired Motivations ............

H dσ @NNNLO QCD + NLO EW Higgs branching ratios

MC@NNLO finite quark mass effects@NNLO and couplings

H + j dσ @NNLO QCD + NLO EW H pT
finite quark mass effects@NLO

H + 2j dσ @NNLO QCD + NLO EW Higgs couplings

H + V with H→ bb dσ@NNLO QCD + NLO EW Higgs couplings

tt̄H dσ(NWA top decays) @NLO QCD + NLO EW Top Yukawa coupling

HH dσ@NNLO QCD finite quark mass effects Higgs self coupling

dσ@NNLO QCD

This thesis is in the stream of the GOLEM project or General One Loop Evaluator of

Matrix Elements. Initially, this programs was designed for the automation of one loop

QCD corrections. It is based on the Feynman diagrammatic approach, where the one-

loop diagrams are reduced to basic integrals by means of a traditional reduction method,

called the Golem reduction. It contains a library of all the building blocks of one-loop

calculation, called the Golem95 library. The calculation of one-loop amplitudes in this

framework is organized as the following: 1) generate all contributing Feynman diagrams by

means of QGRAF [17] or FeynArts[18], 2) separate and perform the color algebra, 3) project

on helicity amplitudes, 4) reduce the one-loop diagrams to some set of basic integrals with

up to 4-external legs by means of the Golem reduction[19], 5) evaluate these integrals with

the Golem library (Golem95)[20, 21].

The Golem reduction is performed as the following: each individual Feynman graph is

written as a combination of form factors times some Lorentz structures, then each form

factor is reduced to a particular redundant basic integrals. Certainly, if the form factors are

decomposed in term of only master integrals, i.e the scalar integral up to four-external legs in

n-dimensions, inverse of Gram determinants (det(G)) will appear up to certain powers in the
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coefficients of the decomposition. Whereas the singularities due to the vanishing of det(G)

are spurious, they might embarrass the numerical stability if the later one becomes arbitrary

small, which is one of the major challenges of one-loop calculations. In Golem, this trouble

is avoided by choosing a set of redundant basic integrals, which includes scalar and tensorial

integrals in n or more dimensions (n + 2, n + 4) instead of the master basis of integrals.

The later one form a basis in the mathematical sense, it contains only scalar integrals in n-

dimensions with up to four propagators. However, the former integrals do not form a basis

in the mathematical senses, they can be expressed in term of the master integrals. The

Golem choice of basic integrals guarantees that the coefficients of the expansion are free of

any inverse of Gram determinant. Golem95 set of basic integrals is made, apart some trivial

one and two point functions, of In3 (j1, · · · , j3), In+2
3 (j1), I

n+2
4 (j1, · · · , j3) and In+4

4 (j1),

where the lower index indicates the number of external legs, the upper index indicates

the dimension of space-time and the argument j1, · · · , ji means that at most i Feynman

parameters appear in the numerator (i can be zero which correspond to scalar integrals).

The strategy of avoiding the Gram determinant spurious singularity is the following: in the

phase space region where the det(G) becomes large enough, the extra elements of Golem set

(the redundant integrals) are reduced to the master integrals and computed analytically in

term of logarithms and dilogarithms; and in the phase space region where det(G) becomes

arbitrary small (problematic region), the extra elements of Golem95 are used as irreducible

blocks expressed as one-dimensional integral representations which are explicitly free of any

inverse of Gram determinants, and leads to numerically stable results.

On the other hand, there are other techniques of one-loop reduction, which reduce the

full amplitude at once (without evaluating any Feynman diagram). They are based on the

generalized unitarity cuts of the scattering amplitude[22, 23, 24, 25, 26], or processing the

reduction at the integrand level [27, 28, 29]. In these approaches, the full amplitude is re-

duced to the set of master integrals weighted by some coefficients plus a rational term. Then,

the full amplitude is calculated once these coefficients and the rational term are extracted,

since the master integrals are provided by one-loop libraries as LoopTools[30], OneLoop[31],

...etc. However, the coefficients of the master integrals in this approach contain inverse of

Gram determinants, which hamper the numerical stability if these determinants become

arbitrary small!. In fact, the Golem library can be used as a library of master integrals

as well as a library of the redundant integrals introduced above, since the master integrals

correspond to some form factors which are the building blocks of this library. Then, it can

be used as library for programs based on the generalized unitarity cuts or on the reduc-

tion at the integrand level. In the problematic region (det(G) → 0), the later approaches

breakdown. One then can improve such methods by making use of Golem95. This is can

be done by reconstructing the numerator of the full amplitude by means of the tensorial

reconstruction at the integrand level introduced in [32], which allows to express the full

amplitude as a sum of tensorial integrals up to the highest power of the loop momentum

in the numerator (which cannot exceed the number of the one-loop internal propagators

in renormalizable gauge theories). From there, each tensorial integral is projected into the

Golem redundant basic of integrals by means of Golem reduction. Thence, the unitarity in-

spired approach can be improved in the problematic region. There are automated one-loop

calculation programs using generalized unitarity methods on the market. Each program has

a rescue system which enables to recompute in another way some phase space points which
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have been marked as bad (because of a loss of precision). The rescue system of the GoSam

program [33], which belongs to the list of automated loop calculation programs, relies on

the ability of the Golem95 to avoid the negative powers of the Gram determinants.

The Golem95, initially was designed for QCD, it did not include basic integrals with

internal masses. The generalization to cases involving arbitrary internal masses -to extends

its range of use- is one of the main purposes of this thesis. To handle the det(G) issues, we

provide a one-dimensional integral representation rather than relying on Taylor expansions

in powers of det(G). The later approach may be thought a priori better in term of CPU time

and accuracy, however the order up to which the expansion shall be pushed may happen

to be rather large. Originally, Golem95 uses multi-dimensional numerical integration of the

three-point and the four-point functions, or more precisely a hypercountour deformation

which would be numerically more stable. Yet the computation of these multiple integrals

was both slow and not very precise. The one-dimensional integral representation is more

efficient in term of CPU time and accuracy. Finding such representation for Golem95 basic

integrals, especially the three-point and the four-point integrals, in the most general case,

i.e. involving real and /or complex masses is the main subject of this thesis.

In chapter 2, we will give a brief introduction to gauge theories. In the first two sections

we will discuss the symmetries and the conservations laws, where we will focus on the gauge

symmetries. In the last two sections, we will present the QCD and the Standard Model of

particle physics.

In chapter 3, we will study the main feature of perturbation field theory. In the first section,

we will give a general presentation of the S-matrix theory; its definition, its properties, its

analyticity and its relation to Feynman diagrams. In the second section, we will discuss the

analyticity of the scattering amplitudes by giving the necessary and sufficient conditions for

the occurrence of singularities of individual one-loop Feynman graphs (Landau conditions),

and we will give general criteria to determine the soft and collinear divergences of these

diagrams. In the third section we will present some consequences of the unitarity and the

causality on the scattering amplitude computation (dispersion relation) and we conclude by

giving the Cutkosky cutting rules.

In chapter 4, we will present two reduction methods based on the Feynman diagrammatic

approach: the Passarino-Veltman reduction and the Golem reduction; and two reduction

methods based on the inspired unitarity approaches: Ossola-Pittau-Papadopoulos and the

generalized unitarity. We will close this chapter by presenting an approach uses the tensorial

reconstruction at the integrand level (which is a unitarity inspired approach) and the Golem

reduction (which is a Feynman diagrammatic approach) to improve the unitarity approach

for vanishing Gram determinants.

In chapter 5 (which is the main part of this thesis), we will derive stable one dimensional

integrals representation for each Golem95 basic integral, where will focus on the three and

four point functions in the general massive case. And in chapter 6, we will present briefly

the Golem95 program.
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Introduction (Français)

A Moriond-QCD, le 14 Mars 2013, de nouveaux résultats préliminaires par les collaborations

ATLAS et CMS du CERN (Organisation européenne pour la recherche nucléaire) ont con-

tribué à convaincre la communauté des physiciens des particules que la nouvelle résonance

dans la gamme de masse: 125-127 GeV, est le boson de Higgs du Modèle Standard (MS)!.

Il a été confirmé que la nouvelle particule découverte est de spin-0 avec une parité positive

(0+, Fig. (1.1), qui sont deux critères fondamentaux en cohérence avec le boson de Higgs

du MS [1, 2, 3, 4, 5]. Cependant, il reste une question ouverte de savoir si cette particule

est vraiment le boson de Higgs prédit par le Modèle Standard ou peut être le plus léger bo-

son de Higgs prédit par certaines théories au-delà du Modèle Standard (comme les théories

Supersymétriques par exemple). Afin d’identifier cette particule, les autres propriétés du

boson de Higgs du MS devront être étudiés. Par exemple, les taux de désintégration per-

mis (comme WW et ZZ , bb et ττ ) doivent être comparés avec les prédictions du MS.

Néanmoins, la collecte de données supplémentaires est assez compliquée car la détection

d’un tel événement est très rare. Pour cette raison, le LHC (Large Hadron Collider) redé-

marrera en 2015 à son énergie nominale (13-14 TeV). Cela va confirmer les prédictions du

Modèle Standard ou ouvrir une nouvelle zone pour la physique au-delà du Modèle Standard.

Le Modèle Standard est l’une des théories de jauge les plus réussies, il concerne trois

forces fondamentales de la nature (sauf la gravité): l’interaction électromagnétique, l’interaction

faible et l’interaction forte. Il décrit les interactions entre les trois familles de quarks et

leptons et les douze bosons de jauge: les huit gluons, les deux bosons W±, le boson Z et

le photon. Les bosons de jauge massifs (W± et Z ) acquièrent leur masse après la brisure

spontanée de symétrie via le mécanisme de Brout-Englert-Higgs [6, 7], ce qui nécessite

l’existence du fameux boson de Higgs. Chaque secteur du MS a été développé séparément

dans le contexte de la théorie quantique des champs. La première théorie quantique des

champs construite est l’Electrodynamique Quantique ou QED, qui est devenue le premier

pilier du MS et la théorie modèle dont toute théorie décrivant une nouvelle interaction s’est

inspirée. Elle montre un mariage réussi entre la théorie quantique et la relativité restreinte,

et répond à la principale critique qu’Einstein avait émise sur la théorie quantique et de

son incapacité à décrire la réalité de la matière dans l’espace-temps [8]. Cette théorie est

une théorie de jauge abélienne, elle décrit comment la lumière et la matière interagissent

(l’interaction des photons avec les particules chargées). Sa formulation covariante conduit

à sa renormalisabiltié à tous les ordres dans la théorie des perturbations. L’interaction nu-

cléaire faible est le mécanisme responsable de la désintégration radiative et à l’origine de la

fusion nucléaire dans les étoiles: c’est la seule interaction capable de changer les saveurs de

quarks et la seule interaction qui viole la symétrie CP. Il y a eu de nombreuses tentatives

pour décrire cette interaction, une célèbre tentative a été la théorie de Fermi. Cependant,

cette interaction est bien comprise dans le contexte du Modèle Standard de l’interaction

électrofaible (EW). Cette dernière est la théorie qui unifie les interactions faibles et électro-

magnétiques comme deux aspects de la même force. L’interaction forte est décrite par la

Chromodynamique Quantique ou QCD, elle décrit l’interaction des quarks et des gluons à

l’intérieur des hadrons. C’est une théorie non-abélienne qui appartient au fameux groupe

de théories de jauge renormalisables appelées théories de Yang-Mills [10].
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Pour permettre à ces théories de faire des prédictions précises, des corrections d’ordres

supérieurs (NLO , NNLO , ... ) sont fortement nécessaires, surtout dans des calculs de

précision pour le LHC. Cependant, les théories quantiques des champs perturbatives con-

duisent à des divergences ultraviolettes. Ces divergences ont été découvertes d’abord en

QED, où de nombreux physiciens ont été prêts à changer quelques principes fondamentaux

de la physique pour éviter ces dernières!. Ce problème a été résolu par Bethe, Feynman,

Schwinger, Tomonoga et Dyson [11, 12] et d’autres par l’introduction de la procédure de

renormalisation. Ils ont montré que par la redéfinition de certains quantités physiques

comme la masse, les couplages ... etc, on peut obtenir des résultats finis et comparables

à l’expérience. Cette procédure a permis de résoudre le problème des divergences ultravi-

olettes en QED et a conduit à des prédictions en accord avec 8 chiffres significatifs avec

des résultats expérimentaux, ce qui est l’une des théories les mieux vérifiées dans toutes

les sciences. Malgré le succès du programme de renormalisation, de nombreux physiciens

ont vu la renormalisation comme une procédure ad-hoc qui ne se justifie que par ses ré-

sultats comparables à l’expérience. Toutefois, cette idée a été révolutionné par K. Wilson

dans les années 1970 [13]. Selon ce nouveau point de vue, la renormalisation est un simple

paramétrage! de la sensibilité de la théorie à basse énergie à la physique à haute-énergies,

ce qui justifie pourquoi les théories des champs renormalisables sont efficaces, et explique

pourquoi la nature est décrite par de telles théories. Le renormalisabiltié des théories de

Yang-Mills spontanément brisées ou non-brisées a été prouvée par ’tHooft et Veltman dans

ref. [14, 15, 16].

L’idée géniale de la renormalisation est de fournir une relation entre les paramètres de la

théorie à des échelles à haute et à basse énergies, de telle façon que les infinis à haute

énergie sont absorbés dans quelques paramètres. L’échelle de l’énergie est une échelle non-

physique (elle est appelée échelle de renormalisation), car elle est introduite pour régulariser

les intégrales de boucles au moyen des méthodes de régularisation (comme Pauli-Villars, la

régularisation dimensionnelle .... etc). Les observables physiques ne dépendraient pas de

cette échelle si leur développement perturbatif en fonction des constantes de couplage était

calculé à tous les ordres. Etant donné que le calcul des observables physiques à tous les ordres

est techniquement impossible, en raison de l’augmentation spectaculaire des diagrammes de

Feynman et leur structure complexe, nous nous limitons à certains ordres fixés (par exemple

NLO) et les erreurs doivent être prise en compte dans les incertitudes théoriques .

Dans les dernières décennies, un énorme progrès a été réalisé dans le calcul de boucles

(notamment le calcul à une-boucle avec plusieurs particules externes) en QCD et en EW.

Néanmoins, les physiciens des particules souhaiteraient élargir la liste des processus calculés

aux ordres NLO, NNLO et au-delà! en incluant à la fois les corrections radiatives de QCD

et EW. Dans les tableaux "Wish-list Part1, Part2 et Part3" (voir l’introduction en anglais),

nous montrons une version préliminaire de les Houches Wish list 2013.

Cette thèse est dans le cadre du projet GOLEM ou Gneral One-Loop Evaluator of Matrix

Element. Initialement, ce programme a été conçu pour l’automatisation des corrections

radiatives à une boucle de la QCD. Il est basé sur l’évaluation des diagrammes de Feynman,

où les diagrammes à une boucle sont réduits à des intégrales de base au moyen d’une méthode

de réduction traditionnelle appelée réduction à la Golem. Il possède une bibliothèque qui
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contient tous les building-blocks de n’importe quel calcul à une boucle avec jusqu’à 6-pattes

externes, cette dernière est appelée la bibliothèque Golem95. Le calcul des amplitudes à

une boucle dans ce cadre est organisé comme suit: 1) générer les diagrammes de Feynman

au moyen de QGRAF [17] ou FeynArts[18], 2) séparer et effectuer l’algèbre de couleurs, 3)

réduire les diagrammes à une boucle en un ensemble d’intégrales de base ayant jusqu’à 4

pattes externes en utilisant la réduction à la Golem [19], 4) évaluer ces intégrales en utilisant

la bibliothèque Golem95[20, 21].

La réduction à la Golem est effectuée de la manière suivante: chaque diagramme de

Feynman est écrit comme une combinaison de facteurs de forme fois des structures de

Lorentz, chaque facteur de forme est exprimé en fonction des intégrales de base redondantes.

Certes, si les facteurs de forme sont décomposés en terme de seulement les master intégrales

(les intégrales scalaire à n-dimensions ayant jusqu’à quatre pattes externes, ces intégrales

forment une base au sens mathématique), des puissances négatives du déterminant de Gram

(det(G)) apparaîtront dans les coefficients de la décomposition. Les singularités factices dues

à det(G) → 0 peuvent réduire la stabilité numérique et ce problème est l’un des défis du

calcul à une boucle.

Pour Golem, ce problème est évité en choisissant une base redondante d’intégrales de

base, qui contient des intégrales scalaires et tensorielles en n-dimensions ou plus (n+2, n+4),

au lieu de la base des master intégrales. Ce choix d’intégrales de base garantit que les

coefficients de la réduction sont exempts de toute puissance de l’inverse du déterminant

de Gram. L’ensemble des intégrales de base de Golem95 est donnée par: In3 (j1, · · · , j3),
In+2
3 (j1), I

n+2
4 (j1, · · · , j3) et In+4

4 (j1) et plusieurs fonctions à 2- et 1-point, où l’indice in-

férieur indique le nombre de pattes externes, l’indice supérieur indique la dimension de

l’espace-temps et l’argument j1, · · · , ji signifie qu’au plus i paramètres de Feynman appa-

raissent dans le numérateur (i peut être égal zéro, ce qui correspond aux intégrales scalaires).

La stratégie pour éviter les singularités factices induites par l’annulation de det(G) est la

suivante: dans la région de l’espace de phase où le det(G) devient suffisamment grand, les

intégrales redondantes sont réduites aux master intégrales, et calculées analytiquement en

terme de logarithmes et dilogarithms. Dans la région de l’espace de phase où det(G) devient

arbitrairement petit (région problématique), les éléments supplémentaires (les intégrales re-

dondantes) de Golem95 sont utilisés sous forme de blocs irréductibles exprimées en terme de

représentations intégrales unidimensionnelles qui sont explicitement libres de tout inverse

de det(G), ce qui conduit à des résultats numériquement stables.

D’autre part, il existe d’autres techniques de réduction d’une boucle, qui décompose

l’amplitude complète (sans évaluer des diagrammes de Feynman). Elles sont basées sur les

coupures d’unitarité de l’amplitude de diffusion [22, 23, 24, 25, 26], où la décomposition

se fait au niveau de l’intégrant [27, 28, 29]. Dans ces approches, l’amplitude complète est

réduite à l’ensemble des master intégrales, qui contient seulement des intégrales scalaires

ayant jusqu’à quatre pattes externes en n-dimensions, multipliées par des coefficients plus

un terme rationnel. Ensuite, l’amplitude est calculée une fois ces coefficients et le terme ra-

tionnel extraits, puisque les Master intégrales sont fournis par les bibliothèques à une boucle

comme LoopTools [30], OneLoop [31], etc ... Cependant, les coefficients de ces intégrales

dans ces approches sont proportionnelle à des puissance négatives de det(G), ce qui gêne la

stabilité numérique si ces déterminants deviennent suffisamment petits. En fait, la biblio-

thèque Golem peut être utilisé comme une bibliothèque des master intégrales ainsi qu’une
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bibliothèque d’intégrales redondantes présentées ci-dessus. Alors, elle peut être utilisée en

tant que bibliothèque pour des programmes basés sur la réduction des coupures généralisées

ou sur la réduction au niveau de l’intégrant. Dans la région problématique (det(G) → 0),

les deux dernières approches s’effondrent! On peut alors améliorer ces méthodes en util-

isant Golem95. Ceci peut être fait en reconstruisant le numérateur de l’amplitude complète

au moyen de la reconstruction tensorielle au niveau de l’intégrant introduite dans [32], qui

permet d’exprimer l’amplitude totale comme une somme des intégrales tensorielles avec un

rang jusqu’à la plus haute puissance de l’impulsion tournant dans la boucle (qui ne peut pas

dépasser le nombre de propagateurs internes dans les théories renormalisables). A partir

de là, chaque intégrale tensorielle est projetée dans la base des intégrales redondantes au

moyen de la réduction à la Golem. Par là, l’approche inspirée de l’unitarité est améliorée

dans la région problématique. Chaque programme automatique du calcul à une boucle,

qui existe sur le marché, dispose d’un système de sauvetage qui permet de recalculer d’une

autre manière les points de l’espace de phase qui ont été marqués comme mauvais (à cause

de la perte de précision). Le système de sauvetage de GoSam [33], qui appartient à la liste

des programmes automatiques du calcul de boucles, repose sur la capacité de Golem95 pour

éviter la puissance de l’inverse des déterminants de Gram.

La bibliothèque Golem95, a été initialement conçue pour la QCD, elle ne comprend pas

des intégrales de base avec des masses internes. La généralisation de cette bibliothèque

pour des cas avec des masses arbitraires internes (les masses complexes sont incluses) est

l’un des objectifs principaux de cette thèse. Pour éviter les problèmes dus à det(G) → 0,

nous offrons une représentation intégrale unidimensionnelle plutôt que de s’appuyer sur des

développements de Taylor en puissances de det(G). La dernière approche peut être consid-

érée à priori comme meilleure en terme de temps CPU et de précision, cependant l’ordre

jusqu’à laquelle l’expansion doit être poussée peut être assez grand. A l’origine, Golem95

utilise l’intégration numérique multidimensionnelle des fonctions à quatre et à trois points,

ou plus précisément une déformation d’hypercontour qui serait numériquement plus stable.

Pourtant, le calcul de ces intégrales multiples était à la fois lent et pas très précis. La

représentation intégrale unidimensionnelle est plus efficace en terme de temps CPU et de

précision. Trouver une telle représentation pour toutes les intégrales de base de Golem95,

en particulier, les intégrales à trois points et les intégrales à quatre points dans le cas le plus

général, est l’objectif principal de cette thèse.

Dans le chapitre 2, nous donnerons une brève introduction aux théories de jauge. Dans

les deux premières sections, nous allons discuter les symétries et les lois de conservation, où

nous nous concentrerons sur les symétries de jauge. Dans les deux dernières sections, nous

allons présenter la QCD et le Modèle Standard de la physique des particules.

Dans le chapitre 3, nous étudierons les principales caractéristiques de la théorie des champs

perturbative. Dans la première partie, nous allons donner une présentation générale de la

théorie de la matrice S, sa définition, ses propriétés, son analyticité et sa relation avec les

diagrammes de Feynman. Dans la deuxième section, nous allons discuter l’analyticité des

amplitudes de diffusion en donnant les conditions nécessaires et suffisantes pour l’apparition

de singularités dans les différents diagrammes de Feynman à une boucle (conditions de

Landau), et nous donnerons les critères généraux pour déterminer les divergences molles et
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colinéaires de ces intégrales. Dans la troisième section, nous allons présenter quelques con-

séquences de l’unitarité et de la causalité sur le calcul de l’amplitude de diffusion (relation

de dispersion ) et nous conclurons par les règles de coupure de Cutkosky.

Dans le chapitre 4, nous présenterons deux méthodes de réduction basées sur l’approche

des diagrammes de Feynman: la réduction de Passarino-Veltman et la réduction à la

Golem; et deux méthodes de réduction basées sur l’approche de l’unitarité: Ossola-Pittau-

Papadopoulos et la méthode des coupures d’unitarité généralisées . Nous terminerons ce

chapitre en présentant une approche qui utilise la reconstruction tensorielle au niveau de

l’intégrant (qui est une approche inspirée de l’unitarité) et la réduction à la Golem (qui est

une approche basée sur les diagrammes de Feynman) pour améliorer l’approche d’unitarité

dans la région de l’espace de phase problématique.

Dans le chapitre 5 (qui représente la partie principale de cette thèse), nous dériverons une

représentation intégrale unidimensionnelle stable pour chaque intégrale de base de Golem95,

où nous nous concentrerons sur les fonctions à trois et quatre point dans le cas massif le

plus général. Et dans le chapitre 6, nous présenterons brièvement le programme Golem95.
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Gauge theories play a crucial role in particle physics, they are the most successful the-

ories that describes the dynamics of elementary particles. The term gauge was introduced

by Herman Weyl in his attempt to unify general relativity and electromagnetism 1[34], it

refers to the redundant degrees of freedom in the lagrangian of a given theory, where the

transformation between possible gauges keep the lagrangian invariant, we say that the the-

ory is invariant under gauge symmetry. The gauge transformation form a symmetry group

called gauge group which forms a Lie group. To each generator of this group, it is associ-

ated a massless vector field which is responsible for the mediation of the force of interaction

between the fields of the theory.

There are two type of gauge transformation: the global gauge symmetry where the trans-

formation is identically performed at any point of space-time and the local transformation

which is space-time dependent. The Lie group associated to a given theory may be Abelian

(commutative) and the theory is called Abelian gauge theory, a famous example of such

theories is Quantum Electrodynamics. If the gauge transformation forms a non-Abelian

1Nevertheless, the invariance under such transformation was known long time ago before introduc-

ing this word, where the earliest field theory having a gauge invariance was the Maxwell theory of

electromagnetism[35]. Also, Hilbert have shown that the Einstein equations are invariant under coordi-

nate transformation[36].
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group (non-commutative), the theory is called non-Abelian gauge theory, a well know ex-

ample is Quantum Chromodynamics which is a special case of a large category of gauge

theories called the Yang-Mills theories. The later one was introduced by Chen Ning Yang

and Robert Mills [10] in the context of understanding the strong interaction confining to-

gether the neutron and the proton in the atomic nuclei2.

To each generator of the Lie group, it is associated a vector field which appears in the la-

grangian of the corresponding theory as massless field to insure the gauge invariance. Such

fields are associated to gauge bosons after quantization. If certain bosons are massive, then

gauge invariance of the lagrangian is not satisfied and the symmetry must be broken by

means of the procedure of spontaneous symmetry broken (SSB) and the bosons (massless

before SSB) get masses by means of the Brout-Englert-Higgs mechanism.

In this chapter, we give an introduction to gauge theories. In the first two sections we

discuss the symmetries and the conservations laws, where we focus on the gauge symmetries.

In the last two sections, we present the QCD and the Standard Model of particle physics.

2.1 Symmetries and conservation laws

The fundamental object of field theory is the lagrangian density L which is a Lorentz

invariant function of the fields φi(x) and their gradients ∂µφi

L(φk(x), ∂φk(x)). (2.1.1)

where the fields φk(x) stand for all the fields of the theory (for arbitrary spin).

Let us define the action S which is given by the four-dimensional integral over time and

space

S =

∫ t2

t1

dt

∫
d3xL(φk(x), ∂φk(x)) (2.1.2)

where the variation of these fields at the time t1 and t2 is chosen to be zero.

The Hamilton principle of stationary action states that the real path chosen by the particle

between the position t1 and the position t2 is the path that makes the action S in Eq.

(2.1.2) stationary, i.e. δS = 0. Then, the equations of motion of the system described by

this lagrangian follow this principle which leads to the famous Euler-Lagrange equations of

motion

δL
δφk

= ∂µ
δL

δ (∂µ φk)
(2.1.3)

These equations specify the dynamics of the system, they are Lorentz invariant which

implies that the lagrangian must be Lorentz scalar. The lagrangian formalism provide an

elegant and very convenient way to extract the constant of motion in classical field theory.

It has been shown by Noether (Noether theorem [37]) that starting from a Lorentz invariant

lagrangian density, we can prove that each continuous symmetry for which the lagrangian

and the equation of motion are invariant, leads to conservation theorems and constants of

2The idea of Yang and Mills was the generalization of the electromagnetism Abelian gauge invariance to

non-Abelian symmetry of the isospin group SU(2) where the protons and the neutrons comes in a doublet.
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motion. We distinguish between two kind of symmetries: external symmetries and internal

symmetries. The former symmetries involve the space-time coordinate (through the fields

φk(x)). By making an infinitesimal translation x′µ → xµ + aµ (for a given four-vector

aµ) which let L invariant due to the homogeneity of space, one can prove that the four-

momentum is conserved. Similarly, by making an infinitesimal rotation x′µ → xµ + εµν xν
(with εµν = −ενµ) leads to angular momentum conservation. The internal symmetries will

be presented in the next paragraph.

2.2 Internal symetries: Gauge invariance

We call symetries which do not involve space-time coordinate, internal symmetries. As in

the case of external symmetries, each of these symmetries is given by a field transformation

which leaves the lagrangian density invariant. The field theories that leaves the lagrangian

densities invariant under continuous groups of transformations are called gauge theories,

where we distinguish between Abelian and non-Abelian gauge field theories:

2.2.1 Global gauge symmetry: Abelian case

The symmetry associated to the charge conservation is called global gauge invariance. It is

defined by the phase transformation

φi(x) → φ′i(x) = e−i qi θ φi(x) (2.2.4)

where qi stand for the charge in e units (e stands for the charge of the positron for example)

and θ is an arbitrary parameter. Since the parameter θ is independent of x, then the

derivative of the field φi transforms as the field itself

∂µφi(x) → ∂µφ
′
i(x) = e−i qi θ ∂µφi(x) (2.2.5)

The lagrangian density is made of product of fields φi, their hermitian conjugates φ†i and

their derivatives. Since the charge is conserved in every term of the Lagrangian, each

term involving a given field must be multiplied by its hermitian conjugate. Then, the L is

invariant under the transformation Eq. (2.2.4), or in other words it is independent of the

phases of the fields φi, i.e.

L(φi, ∂µφi) = L(φ′i, ∂µφ
′
i) (2.2.6)

For infinitesimal θ, the variation of the field is given by

δφi(x) = φ′i(x) − φi(x) → −i θ qi φi(x) (2.2.7)

Under this transformation, the variation of the lagrangian must vanish and the equation of

motion defined in Eq. (2.1.3) becomes

−iθ ∂µ
[

δL
δ(∂µφi)

qiφi

]
= 0. (2.2.8)
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This equation shows that the current Jµ associated to this gauge transformation is con-

served, i.e.

∂µJ
µ = 0 (2.2.9)

Jµ = −iqi
δL

δ(∂µφi)
φi (2.2.10)

where Jµ is called the Noether current.

The gauge transformation defined above forms a group since the elements e−iqi θ with

the multiplication (the group law) satisfy the four requirement of the group: 1) closure 2)

Associativity 3) Identity element and 4) Inverse element. It is Abelian since these gauge

transformations commute with each other. These transformations are defined by only one

parameter θ, then the group is one-dimensional. This group is the U(1) or the group of

unitary transformation in one-dimension.

The charges qi are the eigenvalues of an operator, called the charge operator which is

defined by

Q̂ =

∫
d3xJ0(x, t) (2.2.11)

∂

∂t
Q̂ = 0 (2.2.12)

this operator is the only infinitesimal generator of the gauge group U(1).

2.2.2 Local gauge symmetry: Abelian case

The local gauge symmetries consists of the same transformation as above, the only difference

is that the parameter θ depends on the space-time coordinates. Consider the transformation

φi(x) → φ′i(x) = e−i qi θ(x) φi(x) (2.2.13)

where θ is a given analytical function. For infinitesimal θ, we have

δφi(x) = −iqi θ(x)φi(x) (2.2.14)

The terms of the lagrangian containing the fields and their hermitian conjugates are in-

variant under this transformation. However, the terms containing the derivatives are not

invariant since

∂µφi(x) → ∂µφ
′
i(x) = e−iqi θ(x) ∂µφi(x) − iqi (∂µθ(x)) e

−iqi θ(x) φi(x).

the second term in this equation prohibits the derivative to be transformed as the field

∂µφi(x) 6→e−iqi θ(x) ∂µφi(x) (2.2.15)
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To insure the local gauge invariance of the theory, one has to introduce a vector Aµ which

must transform under the local gauge transformation as

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e

∂θ(x)

∂xµ
(2.2.16)

and define the quantity

Dµ = ∂µ + ieqiAµ (2.2.17)

this quantity is called the covariant derivative, since it transforms as

Dµφi(x) = e−iqi θ(x)Dµφi(x) (2.2.18)

This procedure makes the lagrangian invariant under the local gauge invariance by means of

the introduction of the vector Aµ which is interpreted as the boson field that mediates the

interaction of the theory after quantization (the photon in the case of QED for example).

So, we have to add a term to the L to describe the kinetic energy of these fields and which

has to be gauge invariant. This term turns to be3

−1

4
FµνF

µν (2.2.19)

where the strength tensor Fµν is defined by

Fµν = ∂µAν − ∂νAµ (2.2.20)

which is also gauge invariant.

The only mass term which can be added is of the form −1
2 m

2AµA
µ, but it breaks the gauge

invariance. Fortunately, the photon mass equals to zero and the Quantum electrodynamics

is locally gauge invariant (again this transformation form a one-dimensional representation

of the group U(1)).

2.2.3 Global gauge symmetry: non-Abelian case

The generalization of the global gauge symmetry to the non-Abelian case is quite straight-

forward. Let us consider the simplest non-Abelian gauge transformation which is the isospin

invariance. The fields in this case are assumed to come in multiplets

φ =




φ1

φ2
...

φn


 (2.2.21)

the gauge transformation is defined by

φ→ φ′ = e−i
~L·~θφ, (2.2.22)

3The kinetic term of the photon field can be derived from the Hamilton principle of stationary actions,

see Bjorken [38].
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where ~θ = (θ1, θ2, θ3) the three parameters that specify the gauge transformation, Li(i =

1, 2, 3) are n× n matrices, they stand for the representation of the generators of SU(2). In

the case of isodoublet, say proton and neutron, n = 2 and the matrices Li are equals to half

of a Pauli matrices L = 1
2τ (fundamental representation of SU(2)). In the case of isotriplet,

say π+, π0 and π− and (Li)kl = −icjkl (the adjoint representation of SU(2)). The group

SU(2) has three generators Ti which satisfy the commutation relations

[Tj , Tk] = icjkl Tl (2.2.23)

where the cjkl are totally anti-symmetric.

For infinitesimal θ, we have

δφ = −i ~L · ~θφ (2.2.24)

In the case of isodoublet, this reads to

δφ = −i ~τ
2
· ~θφ (2.2.25)

In the case of isotriplet, this reads to

δφi = cjklθkφl (2.2.26)

It is quite straightforward to prove that the lagrangian is invariant under this transforma-

tion.

2.2.4 Local gauge symmetry: non-Abelian case (Yang Mills theories)

The generalization of SU(2) to local gauge symmetry was first introduced by Yang and

Mills in early 1954[10]. This idea was criticized by Pauli[39], since the quanta of Yang-Mills

field must be massless in order to maintain the gauge invariance. This theory was neglected

until when the idea that particles get masses from the spontaneous symmetry breaking was

elaborated.

As we have seen above, the generators of the group obey

[Tj , Tk] = icjkl Tl (2.2.27)

and the field

φ =




φ1

φ2
...

φn


 (2.2.28)

transforms as

φ→ φ′ = e−i
~L·~θ(x)φ = U(θ)φ(x), (2.2.29)

where θi(x)(i = 1, · · · , N) are arbitrary functions of space-time and Li(I = 1, · · · , N) are

n× n matrices representing the generators of the group. The gradient of the field is

∂µφ(x) → U(θ) ∂µφ(x) + ∂µU(θ)φ(x) (2.2.30)
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As in the case QED, we want to define a covariant derivative Dµ which transforms as the

field

Dµφ(x) → D′
µφ(x)′ = U(θ)Dµφ(x) (2.2.31)

To do so, one has to introduce for each dimension of the group a vector field (the analogue

of the photon) in order to keep the L invariant under the local gauge transformation. For

SU(N), the covariant derivative is

Dµφ(x) = [∂µ + ig ~L · ~Wµ(x)]φ(x) (2.2.32)

where g is the coupling constant and the vector field ~Wµ has N components, i.e.

~Wµ = (W 1
µ(x),W 2

µ(x), · · · ,WN
µ (x)) (2.2.33)

To insure the local gauge invariance of the full lagrangian, the vector field ~Wµ must trans-

form as

~L · ~W ′
µ = U(θ) [~L · ~Wµ +

i

g
U−1(θ)∂µU(θ)]U−1(θ) (2.2.34)

one can prove that the infinitesimal transformation of the vector field is given by

δW i
µ(x) =

1

g
∂µθi(x) + cjklθk(x)W

l
µ(x) (2.2.35)

By analogy the kinetic energy term of the gauge boson is given by

L0 = −1

4
GiµνG

i,µν (2.2.36)

where the generalized field tensor is

Gjµν = ∂µW
j
ν − ∂νW

j
µ + gcjklW

k
µW

l
ν (2.2.37)

δGjµν = cjklθkG
l
µν (2.2.38)

L0 is gauge invariant, δL0 = 0. As in the Abelian case, no mass term is allowed since
~Wµ · ~W ν is not gauge invariant. Contrary to the abelian case, this lagrangian leads to self

interaction of the vector field which is given by the term proportional cjkl in the field tensor

(through the term GiµνG
i,µν in L0).

We notice that the labels k of W k
µ stand for the isospin charge in the case of SU(2)

symmetry and the color charge in the case of SU(3).

2.2.5 Spontaneous symmetry Breaking: The Higgs mechanism

Let’s consider a lagrangian density for charged complex scalar field,

L = (∂µφ) (∂µφ∗) − µ2 φφ∗ − λ (φφ∗)2 (2.2.39)

According to the discussion in the previous section, for this lagrangian to be invariant under

the local gauge group U(1). One has to replace the gradient ∂µ by the covariant derivative
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Dµ = ∂µ + ieAµ and add to L the kinetic energy term −1
4FµνF

µν . Then, this lagrangian

becomes,

L = −1

4
FµνF

µν + (Dµφ) (Dµφ)∗ − µ2 φφ∗ − λ (φφ∗)2 (2.2.40)

The local gauge transformation is given by

U(θ) = e−iθ(x) (2.2.41)

where the fields of the theory transform as




φ(x) → φ′(x) = e−iθ(x)φ(x),

φ∗(x) → φ∗′(x) = eiθ(x)φ∗(x),

Aµ(x) → A′
µ = Aµ(x) + 1

e ∂µθ(x).

(2.2.42)

Since the kinematic term of the lagrangian (of the field φ) vanishes at constant value of

φ, the ground state of the system is obtained then by the minimum of the potential V (φ),

where

V (φ) = µ2 φφ∗ + λ (φφ∗)2 (2.2.43)

This potential has a minimum only if λ > 0. So, in the case where µ2 > 0 the minimum

of the potential corresponds to φ = 0. In this case, the lagrangian has a symmetric ground

state. However if µ2 < 0 the minimum is given at

φφ∗ = −µ
2

2λ
, or |φ| =

v√
2

=

√
−µ

2

2λ
(2.2.44)

So, the are infinitely ground states, each of them is not symmetric since it is modified by

the local gauge transformation Eq. (2.2.41). Generally, they take the form,

φvac =
v√
2
eiΛ, for arbitrary real Λ. (2.2.45)

The potential for this case (for µ2 < 0) is given by the famous mexican hat. Every point

of the minima is equivalent since it can be obtained from another one by the local gauge

transformation (the ground state is not unique). So, we say that the symmetry of the orig-

inal lagrangian is spontaneously broken in the case of µ2 < 0.

In the following, we will see how this phenomenon give mass to the gauge boson Aµ.

Let us define the field φ as

φ(x) =
1√
2

[v + ζ(x) + i χ(x)] (2.2.46)

then L becomes

L = −1

4
FµνF

µν +
e2v2

2
AµA

µ +
1

2
(∂µζ)

2 +
1

2
(∂µχ)2

− 1

2
(2λ v2) ζ2 − ev Aµ∂µ∂

µχ+ · · · (2.2.47)
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The amazing surprise of the new form of L is that the gauge vector field involving in

the theory acquire a mass (the mass term in the lagrangian is e2v2

2 AµA
µ) and the gauge

invariance still conserved since this lagrangian is completely equivalent to the previous one.

This lagrangian describes the interaction between the massive vector field Aµ with two scalar

field (the massive field ζ and the massless field χ). The degrees of freedom of L defined in

Eq. (2.2.40) are four (since the massless vector field has two transverse independent modes

and the complex field φ has two independent component). Nevertheless, the later version of

the lagrangian has five degrees of freedom (three for the massive vector field and two of the

two scalar fields). Actually the extra degree of freedom is superficial, since we can absorb

the massless scalar field χ by a suitable gauge transformation. This can done by choosing

the parameter θ(x) to be equal to the phase of the the field (see transformation above).

Then the field φ can be chosen to be real, it can be written as

φ =
1√
2

[v + η(x)]. (2.2.48)

Inserting Eq. (2.2.48) in the original lagrangian, we get

L = −1

4
FµνF

µν +
e2v2

2
AµA

µ +
1

2
(∂µη)

2

− 1

2
(2λ v2) η2 − 1

4
λ η4 +

1

2
e2 (Aµ)

2 (2v η + η2) (2.2.49)

So, to get this lagrangian we fixed a particular gauge called the unitary gauge to remove

that extra degrees of freedom. The new lagrangian is no longer gauge invariant (since the

gauge is fixed), and it has a four degrees of freedom (the unphysical field has been gauged).

It describes the interaction between a massive vector field Aµ and a real scalar field η called

the Higgs field with mass equal to 2λv2 = −2µ2, for more detail see [42].

2.3 Strong interaction and QCD

Quantum Chromodynamics (QCD) is the modern theory of the strong interaction (color

force). It is a non-Abelian gauge theory (the SU(3) Yang-Mills theory) which describes

the interaction between the fundamental ingredients of the theory: the quarks (spin half

particles) and gluons (a set of massless vector boson of spin one).

• The quarks are the matter fields of the theory, the quark field is denoted by ψqaj (x).

They possess an internal degree of freedom called color (denoted by a) which takes

the values a = 1, 2, 3 (very often, we refer to the colors by red, green and blue). The

quarks come in six types known as flavor (denoted by j): u, s and b (up, strange and

bottom) which possess a +2/3 fraction of electric charge and d, c and t (down , charm

and top) which possess a −1/3 fraction of electric charge. Up and down quarks are the

lowest mass quarks, they are stable and the most common in the universe. However

the remaining quarks are not stable, they change to up and down quarks through the

decay phenomenon and they can only be produced in high energy collision (as cosmic

rays and particle accelerators).
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• The gluon fields are the gauge bosons of the theory, they are massless, electrically

neutral and possess a spin 1. They mediate the color force between quarks (as the

photon field in the case of QED). They are denoted by Gbµ where b labels the colors

of the gluon fields (b = 1, · · · , 8).

As in the other Yang-Mills theories, due to the self coupling of the gauge bosons, the

theory possess remarkable properties: i) asymptotic freedom which signifies that at very high

energy, the quarks and the gluons behave as free particle[40, 41], and ii) color confinement

which signifies that the color charged particles (as the quarks and gluons) can not be

observed directly since they cannot be isolated uniquely.

2.3.1 QCD Lagrangian

The classical lagrangian density of QCD is given by the classical lagrangian density of the

Yang-Mills theory for n = 3,

Lclass = −1

4
Gµνb Gbµν + ψ̄qaj (i 6D −mj)ψqaj , (2.3.50)

the field tensor is defined by

Gbµν = ∂µG
b
ν − ∂νG

b
µ + gsfabcG

b
µG

c
ν , (2.3.51)

where fabc are the structure constant of the gauge group SU(3) then the group generators

satisfy

[T a, T a] = ifabcT
c, (2.3.52)

ψqaj refers the quarks fields of the color a (a = 1, 2, 3) and the flavor j (j = u, d, s, c, b, t).

The covariant derivative is defined by

Dµ = ∂µ − igsG
a
µTa, (2.3.53)

According to the appropriate representation of the gauge group, the generators Ta are re-

placed by the matrices ta for a = 1, · · · , 8 , where for the triplet representation of SU(3)

these matrices are just the half of Gell-man matrices λa. Then, if acting on the quark fields,

the covariant derivative becomes (Dµ)ij = δij∂µ−igs(ta)ij Gaµ (with ta = λa/2). If acting on

the gluon, the generator are replaced by the structure constants and the derivative becomes:

(Dµ)bc = δbc∂µ − gsfabcG
a
µ.

If the mass of the quarks mj are set up to zero, then the QCD lagrangian Eq. (2.3.50)

is flavour and chirally symmetric, these symmetries are broken if the quarks acquire masses

by the mechanism of spontaneously symmetry breaking. However, the quarks cannot exist

as free particles due to the color confinement, the quarks masses may be considered as

parameters in the lagrangian to be determined experimentally. Since, the perturbative

calculation is valid only for high energy regime due to the asymptotic freedom (where the

running coupling constant becomes small as we will see below), the masses of the quarks

are not a relevant scale and it is adequate to use the massless lagrangian for the quarks u,

d and s (for the heavy quarks one has to make some modifications to include quark masses

t, b and perhaps c, see [42])
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2.3.2 Comparison between QCD and QED

QED is the reference theory for all quantum gauge theories, QCD and the other are inspired

from QED. So it will be very interesting to make a comparison between this two theories

(see [42]):

• Due to the fact that the gluon carry a charge, the quark current, in contrary to the

electron current, is not conserved, i.e

∂µJ
b
µ 6→0 (2.3.54)

where Jbµ = ¯ψqa iγνt
a
ijψqa j . There exist a conserved Noether current which does not

correspond to the later one and it involves the field tensor Gaµν . This current is given

by

J̃aµ = Jaµ + fabcG
b
µνG

ν
c (2.3.55)

So, unlike QED, the gluon field Gbµ does not couple to a conserved quark current

which is one of the major difference between the two theories.

• The kinetic energy term of Lclass contains the product of three and four gluon fields,

this give rise to the three and four gauge bosons (gluons) self coupling which is not

the case for Abelian gauge theories (the photon field).

• Both QCD current defined above (Jbµ and J̃bµ) are non-gauge invariant. Then,
∫
d3~x[J̃a0 (~x, t), Jbµ(y) or J̃bµ(y)] 6= 0 (2.3.56)

2.3.3 QCD Quantization

As we mentioned above, this lagrangian describes a classical theory. The boson field Gaµ is

defined up to a given gauge transformation, to fix this freedom, one has to fix the gauge.

Two choices of gauge fixing may be proposed: the covariant and the non covariant gauge

fixing. Regarding the former choice, one has to add the following term to the lagrangian

LGauge = − 1

2α

8∑

a=1

(∂µG
µ,a)2, (2.3.57)

− 1
2α is lagrange multiplier. To absorb the non physical degrees of freedom, we have to add

a ghost field such that

LGhost = i(∂ξa1)Dab
µ ξ

b
2, (2.3.58)

the ghost field ξ is a complex scalar field which follows Fermi statistics (for this reason it is

not physical). The other choice of gauge fixation is the non-covariant one

LGauje = − 1

2λ
(qµGaµ)(q

νGaν), (2.3.59)

where q is an arbitrary four vector. This fixation does not require a ghost field but it leads

to complicated gluon propagators.
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2.3.4 The running coupling

Generally, during the perturbative expansion on αs = gs/(4π), we encounter ultraviolet

divergences (UV divergences)4 which must be treated by the renormalisation procedure

[38]. Usually, we continue the space time to regularize these divergences by means of the of

dimensional regularization technique. The later one leads to a new mass scale introduced

to keep the mass dimension of the action equals to zero, this scale is, usually, denoted by

µ. Then, a physical observable R (cross section, decay rate, ...) must be independent of µ,

i.e the derivative of this quantity must vanish

µ2 d

dµ2
R(Q2/µ2, αs) =

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R(Q2/µ2, αs) = 0, (2.3.60)

where Q is a scale assumed to be larger than all the dimensional parameters (for example

the center of mass energy
√
s).

The coefficient of the second term is called the β-function, where

β(αs) = µ2∂αs(µ
2)

∂µ2
, (2.3.61)

In the perturbative region and for a given number nf of flavors of non massive quarks, the

β-function is given by

β(αs) = −bαs [1 + b́αs +O(αs)], (2.3.62)

b =
33 − 2nf

12π
, (2.3.63)

b́ =
153 − 19nf

2π (33 − 2nf )
. (2.3.64)

Neglecting b′ and all higher order corrections, one can prove from Eq. (2.3.61) that the

strong coupling constant at the scale Q is given by

αs(Q
2) =

α(µ2)

1 + αs(µ2)b ln(Q2/µ2)
, (2.3.65)

We see that if ln(Q2/µ2) becomes large, the coupling αs(Q
2) tends to zero, this property

is the asymptotic freedom which is guaranteed if the theory involves 16 or fewer flavors of

quarks (All the Yang-Mills theories possess this property because of the self gluon interac-

tion. ). Since the αs becomes small for high Q, the perturbative calculation in this region

is justified.

2.4 The Standard Model of Electroweak Interactions

The Standard Model (SM) is the theory that describes the interactions between the elemen-

tary particles constituting the matter. It allows to describe with an extreme precision all

4UV divergences occur if the energy becomes very hight (approaching infinity), i.e. the physical phe-

nomena happens at very short distance.
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the known corpuscular phenomenon and it has never been falsified. It is the gauge theory

that bring together three fundamental interactions of nature except gravity. It was believed

that a gauge theory able to unify the electromagnetic and the weak interaction must in-

volve massless matter and mediator fields; however in reality this is not manifestly right.

This challenge was achieved in 1964 by the pioneering idea of spontaneous symetry breaking

introduced by Robert Brout, Francois Englert and Peter Higgs [7, 6]. Before describing this

theory, it will be more convenient to talk briefly about the Fermi theory of β decay.

2.4.1 Fermi theory of β decay

The weak interaction was discovered by Bequerel in 1896. He discovered accidentally that

a nucleus of an atomic number Z may decay into a different nucleus plus β rays (electrons):

A→ B + e− (2.4.66)

Theoretically, the distribution of the energy spectrum of the emitted electron should be

constant

Ee =
m2
A −m2

B +m2
e

2mA
(2.4.67)

where mA and mB are the masses of the nucleus A and B, me and Ee are the mass and the

energy of the electron. On the other side, the experimental situation was quite confusing

since it was definitely showing a continuous energy spectrum (not constant) of the electron

which is in contradiction with the theoretical prediction Eq. (2.4.67) [39]. In that time,

Niels Bohr was ready to abandon the principle of energy conservation. Fortunately, Pauli

suggested that another neutral particle should be emitted with the electron, this particle

was the famous neutrino. Then, the β decay was interpreted as the decay of a neutron

inside the nucleus into a proton and a pair of electron-neutrino:

n→ p+ e− + ν̄e (2.4.68)

In this equation, conservation of the lepton number and the existence of various type of

neutrino are assumed.

In 1934, Enrico Fermi described the β decay in term of field theory. He assumed that the

production of electron-neutrino is analogue to the production of a photon in QED. Then,

one can derive a model for the weak interaction by copying the main feature of QED. The

QED hamiltonian density of interaction is defined by

HInt
eg = e

∫
d3~xAµ ψ̄ γ

µ ψ, (2.4.69)

where ψ describes the charged fermion and Aµ the photon field. The Fermi ansatz for

the interaction (2.4.68) is

HW = GF

∫
d3~x (ψ̄eγµ ψν) (ψ̄p γ

µ ψn). (2.4.70)
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More generally, this can be replaced by (see [39])

HW = GF

∫
d3~x (ψ̄eΓi ψν) (ψ̄p Γi ψn). (2.4.71)

where Γi is 4 × 4 matrix, it can be of:

Γi Tensor character

I S (scalar)

γµ V vector

σµν = i [γµ, γν ]/2 T (anti-symetric tensor)

γµ γ5 A (axial-vector)

γ5 = i γ0 γ1 γ2 γ3 P (pseudoscalar)
.

.

After many years of effort and after many unsuccessful attempts, it was concluded that all

the weak interaction processes could be described by the local current-current interaction

given by the lagrangian 5

L =
GF√

2
J†
µ(x) J

µ(x). (2.4.72)

the current Jµ is called charged current, it is formed by sum of purely hadronic and purely

leptonic currents

Jµ(x) = lµ(x) + hµ(x), (2.4.73)

with

lµ(x) = ψ̄e γµ (1 − γ5)ψνe + ψ̄µ γµ (1 − γ5)ψνµ + ... (2.4.74)

hµ(x) = ψ̄u γµ (1 − γ5)ψd + ψ̄c γµ (1 − γ5)ψs + ... (2.4.75)

the form of this current is dictated by experimental issues, especially the angular distribution

of the decay products. This has a very important consequence which is that only left handed

fermions are sensitive to the weak interactions. From this lagrangian, the weak processes

can be divided in three categories:

- Leptonic process: described by the term l†µ lµ. For example:

µ− → e− + νe + ν̄µ, (2.4.76)

νe + e− → νe + e−. (2.4.77)

the µ-decay and the ν elastic scattering, respectively.

- Semi-leptonic process: described by the term l†µ hµ. For example, the β-nuclear decay:

n→ p+ e− + ν̄e (2.4.78)

- Non-leptonic process: described by the term h†µ hµ. For example, the parity violation

in nuclei:

n+ p→ n+ p. (2.4.79)

5 The form of the V-A interaction was developed independently by Feynman and Gell-man[45] and Su-

darshan and Marshak [46] In this approach, the transition is described by a local current-current interaction

given by the lagrangian Eq. (2.4.72)
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Problems of Fermi theory:

The main problem of this theory is the non-renormalizability. The Fermi coupling constant

has a mass dimension equals to −2, since it is multiplied by an operator of type (ψ ψ)2

which has a 6 mass dimension. On the other side the mass dimension of the lagrangian

equals to 4, then [GF ] = 4 − 6, which means that this theory is not renormalizable.

Also, the cross section of the process

µ− νe → e− νµ (2.4.80)

violated the famous Froissart-Martin unitary bound which requires that

σ ≤ ln2 s, for s→ ∞ (2.4.81)

one can prove that this cross section for the Fermi theory is σ → G2
F s, with s = (pνe +pµ)

2.

To solve this problem, one can introduce a massive charged vector field that mediate the

interaction between the two left handed currents (see [47]). Then, that transition matrix

element of µ-decay is

M = g2
W (ψ̄e γµ (1 − γ5)ψνe)

gµν − qµ qν

M2
W

q2 −M2
W

(ψ̄µ γµ (1 − γ5)ψνµ)† (2.4.82)

where MW is the mass of the vector field, it is given by

M2
W =

√
2
g2
W

GF
(2.4.83)

This leads to a cross section that behaves as Fermi cross section for s << M2
W and as

σ ∝ g4
W

M2
W

s

s+M2
W

, for s >> M2
W (2.4.84)

for more detail see [43].

2.4.2 The Standard Electroweak Theory

The Standard Model is based on the gauge group SU(3)C⊗SU(2)L⊗U(1)Y
6. The SU(3)C

is the QCD gauge group (it is discussed in detail above), it is non-chiral then it acts on

the color indices of the left and right handed quarks. The SU(2)L ⊗ U(1)Y describes the

electroweak sector, in contrast to QCD it is chiral and acts on the flavour indices of the

quarks and the leptons. The SU(2)L has three gauge bosons Wi, i = 1, 2, 3 and a coupling

constant denoted by g, it acts only on flavor indices of the left handed fermions. The

Abelian group U(1)Y is chiral, it has only the gauge boson B and the coupling constant

g′. It acts on flavor indices of the the left handed as well as the right handed fermions

6The subscripts has no mathematical significance: "C" refer to the color coupling nature of SU(3), "L"

refer to the left-chiral nature of the coupling of SU(2) and the "Y " to the weak hyper-charge of U(1).
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but with different charges. The phenomenon of spontaneous symmetry breaking (SSB)

breaks the group SU(2)L⊗U(1)Y into the unbroken U(1)Q (Q refers to the electric charge)

covering the QED theory with the photon as linear combination of the bosons W 0 and B

[44], and gives mass to the Z-boson and to the charged W± bosons which are responsible

to neutral-current and charged current interactions, respectively.

The full SM lagrangian density can be split in four parts

LSM = Lg + Lf + LΦ + LY uk (2.4.85)

The Yang-Mills lagrangian Lg for the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y involves all

the gauge vector fields of the theory (before SSB). It is given by

Lg = −1

4
Gbµν G

b µν − 1

4
W i
µνW

i µν − 1

4
Bµν B

µν . (2.4.86)

Bµν = ∂µBν − ∂νBµ, (2.4.87)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − g εijkW

j
µW

k
ν for i, j, k = 1, ...3, (2.4.88)

Gaµν = ∂µG
a
ν − ∂νG

a
µ − gs fabcG

b
µG

c
ν for a, b, c = 1, ...8. (2.4.89)

where Bµν , W
i
µν and Gbµν are the antisymmetric tensors constructed by the gauge fields Bµ

associated to the gauge group U(1)Y , the gauge field W i
µ associated the three generators

of the group SU(2)L, and the gauge field Gbµ associated the eight generators of the group

SU(3)C , respectively. εijk and fabc are the structure constants of the group SU(2)L and

SU(3)C and g, gs are the coupling constants associated to these gauge groups.

The fermion part of the SM involves 3 families of quarks and leptons. Since, the EW

interaction leads to transition between fermions of different charges and since only the left

handed fermions are sensitive to the EW interaction (and not the right handed) , it will be

more convenient to group each family as follows:

left-doublet: ψLqam
=

(
u

d

)

L

,

(
c

s

)

L

,

(
t

b

)

L

, ψLlm =

(
νe
e−

)

L

,

(
νµ
µ−

)

L

,

(
ντ
τ−

)

L

right-singlet: ψRuam
= (u, c, t)R, ψRνm

= (νe, νµ, ντ )R

right-singlet: ψRdam
= (d, s, b)R, ψRem

= (e−, µ−, τ−)R (2.4.90)

All these fields carry a weak hyper-charge Y (except the neutrinos), which is defined by

Y = Q− T 3
L (2.4.91)

where Q is the electric charge operator and T 3
L is the third generator of SU(2). The Y

eigenvalues (y = q− t3L) of the quark fields ψLqam
, ψRuam

and ψRdam
are given by 1

6 ,
2
3 , and− 1

3 ,

respectively. And for the lepton fields ψLlm , ψRνm
and ψRem

are given by −1
2 , 0, and − 1,

respectively. We notice that the left hand and the right hand components of the fermions

are defined by

ψL,R = [(1 ∓ γ5)/2]ψ (2.4.92)

ψ̄L,R = [(1 ± γ5)/2] ψ̄ (2.4.93)
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where each component has different transformation properties under the SM guage group.

Since the SM is chiral theory, so no fermion mass terms are allowed. Then, the fermionic

lagragian Lf consist only of the gauge covariant kinematic energy terms

Lf = i
F∑

m=1

{
ψ̄Lqam

6DψLqbm
+ ψ̄Llm 6DψLlm + ψ̄Rqam

6DψRqbm
+ ψ̄Rlm 6DψRlm

}
(2.4.94)

where F stands for the number of fermion families, and an implicit sum over the color

indices (a, b = 1, 2, 3) is considered, the index q in ψRqam
(ψ̄Rqa m

) stands for u or d, and the

index l in ψRlm (ψ̄Rlm) stands for ν or e. The general form of the covariant derivatives is given

by:

ψ̄Lqam
6Dµψ

L
qbm

=
3∑

a,b=1

ψ̄Lqam
γµ
[(
∂µI +

ig

2
~τ · ~Wµ +

ig′

6
I Bµ

)
δab +

igs
2
~λab · ~GµI

]
ψLqbm

(2.4.95)

Acting on the remaining particles on the lagrangian Lf , the covariant derivative is given

by:

Dµψ
L
lm =

(
∂µ +

ig

2
~τ · ~Wµ −

ig′

2
Bµ

)
ψLlm (2.4.96)

Dµψ
R
um

=

(
∂µ +

i2g′

3
Bµ

)
ψRum

, Dµψ
R
dm

=

(
∂µ −

ig′

3
Bµ

)
ψRdm

(2.4.97)

Dµψ
R
em

=

(
∂µ − ig′Bµ

)
ψRem

Dµψ
R
νm

= ∂µψ
R
νm

(2.4.98)

where I is the 2 × 2 identity matrix of SU(2). τ and λab are the Pauli and Gell-Mann

matrices.

The Higgs lagrangian part is

Lφ = (Dµφ)†Dµφ− V (φ) (2.4.99)

with

φ =

(
φ+

φ0

)
, φ† =

(
φ−

φ0†

)
(2.4.100)

Dµφ = (∂µ +
i g

2
~τ · ~Wµ +

i g′

2
Bµ)φ (2.4.101)

V is the Higgs potential. Due to the SU(2) ⊗ U(1) invariance and the renormalizability

restriction of the theory, the potential V must take the form

V (φ) = µ2 φ†φ+ λ(φ†φ)2 (2.4.102)

For µ2 < 0 there will be a spontaneous symmetry breaking and the vacuum expectation

value < 0|φ0|0 > (denoted by VEV) generates the masses of the Z and W bosons, for more

detail se paragraph 2.2.5.
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The last part of the lagrangian in Eq.(2.4.85) represents the Yukawa part which describes

the Higgs doublet coupling to the fermions. This term is responsible for the generation of

the fermions masses, it is given by

LY uk = −
F∑

m,n=1

[Γumnψ̄qL
am
φ̃ ψRuam

+ Γdmnψ̄qL
am
φψRdam

+ Γemnψ̄lLmφψ
R
em

+ Γνmnψ̄lLm φ̃ ψ
R
νm

] + h.c. (2.4.103)

φ̃ = iτ2 φ† =

(
φ0†

−φ−
)

(2.4.104)

The F ×F matrices Γu,Γd,Γe and Γν are completely arbitrary, they do not have to be real,

diagonal, symmetric or hermitian (the hermitically of the lagrangian is insured by the term

.h.c.). These matrices introduce the most free parameters of the SM.

After spontaneous symmetry breaking and fixing the unitary gauge, the full Higgs la-

grangian becomes

Lφ = M2
WW

µ+W−
µ

(
1 +

H

ν

)2

+
1

2
M2
ZZ

µZµ

(
1 +

H

ν

)2

+
1

2
(∂µH)2 − V (φ) (2.4.105)

where

φ =
1√
2

(
0

ν +H

)
(2.4.106)

the potential

V (φ) = −µ
4

4λ
− µ2H2 + λνH3 +

λ

4
H4 (2.4.107)

The W± are the complex gauge bosons that mediate the charged current gauge interaction,

they are defined by

W± = (W 1 ± iW 2)
√

2. (2.4.108)

The photon field Aµ and the Z-boson field Zµ are the mediators of the weak neutral-current

interaction, they are expressed in term of the fields Bµ and W 3
µ and the weak mixing angle

as the following7

Aµ = cos θW Bµ + sin θW W 3
µ , (2.4.109)

Zµ = − sin θW Bµ + cos θW W 3
µ . (2.4.110)

θW is the weak angle, it is defined by

tan θW = g′/g, sin θW =
g′

gZ
, cos θW =

g

gZ
, with gZ =

√
g2 + g′2 (2.4.111)

7The weak angle or the weak mixing angle it a parameter in the model of Weinberg-Salam of electroweak

interaction to describe the rotation induced by spontaneous symmetry breaking to the original W 0 and B0

vector bosons to produce the Z0 boson and the photon
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The masses of Z and W bosons are

MW =
gν

2
= 80.398 ± 0.025GeV, MZ =

gZν

2
=

MW

cos θW
= 91.1876 ± 0.0021GeV

(2.4.112)

After spontaneous symmetry breaking, the Yukawa lagrangian become

LY uk = −
F∑

m,n=1

ψ̄Lua,m
Γumn

(
ν +H√

2

)
ψRua,n

+ (d, e, ν) terms + h.c.

= ψ̄Lua
(Mu + huH)ψRua

+ (d, e, ν)terms + h.c. (2.4.113)

where ψ̄Lua
= (ψ̄Lua,1

, · · · , ψ̄Lua,F
) is F-component line vector. Mu

mn = ν√
2
Γumn is the F × F

fermion mass matrix induced by spontaneous symmetry breaking. It can be diagonalized,

for F = 3 its associated diagonal matrix is

Mu
D =



mu 0 0

0 mc 0

0 0 mt


 (2.4.114)

the eigenvalue of this matrix are real, they correspond to the physical mass values of the

charge 2
3 quarks. Similarly we can diagonalized the Yukawa coupling matrix hu where its

eigenvalues are denoted by hu, hc, ht. In a similar way, a diagonal mass matrices and Yukawa

couplings are defined for the remaining particles (ψqu , ψqe and ψqν ), for more detail see [44].
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The procedure of quantization is based on the hamiltonian or the lagrangian formalisms

which take their form from classical mechanics by means of the Bohr correspondence prin-

ciple1. The solution of the equations of motion of a given system can be obtained from the

perturbative expansion of these equations in term of the coupling constant of the interac-

tion (electric charge for example). However two crucial difficulties are faced in perturbation

theory, the infrared divergences (IR) which occur from the fact that the massless nature of

gauge bosons makes the number of zero energy measurement impossible, and the ultraviolet

1Bohr correspondence principle states that the behavior of a system described by the quantum theory

reproduces the classical theory in the limit of large quantum number.
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divergences (UV) which are eliminated by the renormalization procedure. To deal with the

divergences present in quantum field theory, the S-matrix approach of perturbation theory

was suggested by Heisenberg [50]2, this approach is based on the idea that the S-matrix

elements should be calculated directly without using the field quantities. This requires

that the S-matrix should satisfy the following important properties: a) the superposition

principle of quantum mechanics b) requirements of special relativity c) conservation of prob-

ability d) the short- range character of the force e) causality and existence of macroscopic

time.[48, 49].

In this chapter, we study the main feature of perturbation theory. In the first section, we

give a general presentation of the S-matrix theory; its definition, its properties, its analytic-

ity and its relation to Feynman diagrams. In the second section, we discuss the analyticity

of the scattering amplitude by giving the necessary and sufficient condition for the occur-

rence of singularities of individual one-loop Feynman graphs (Landau conditions) [52], and

we give general criteria to determine the soft and collinear divergences of these diagrams.

In the third section we present some consequences of the unitarity and the causality on

the scattering amplitude computation (dispersion relation) and we conclude by giving the

Cutkosky cutting rules [53].

3.1 S-matrix theory

3.1.1 Definition of the S-matrix

In scattering experiments, it is assumed that the force of the interaction between the parti-

cles is sufficiently weak at large distances, i.e. the incoming particles (observed long before)

and the outgoing particles (observed long after) behave as free particles during the observa-

tion. Thus, in the extreme past (t → −∞) the particles can be described by state vectors

denoted by |in >, and in the infinite future ( t → +∞,) the particles can be described by

state vectors denoted by |out >. These vector states satisfy the following properties:

.

-a) The superposition principle: if |ψ, • > and |Φ, • > are two physically existing states,

λ |ψ, • > +µ |Φ, • >, (3.1.1)

is also a physical state, for all complex numbers λ and µ

-b) Orthonormality conditions: a set of physical states is normalized, then it satisfies:

< m, •|n, • > = δmn, (3.1.2)

-c) Completeness relation: a set of physical states is complete, then it satisfies:

∑

m

|m, • >< m, •| = 1, (3.1.3)

where n and m describe particular configurations of free particles. These last three proper-

ties are satisfied by both, incoming and outgoing states, where the "•" stands for the labels

2The S-matrix approach was introduced for the first time by John Archibald Wheeler in [51].
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"in" or "out".

Let us define an operator, namely S [48], by

S =
∑

m

|m, in >< m, out| (3.1.4)

S† =
∑

m

|m, out >< m, in| (3.1.5)

using the orthonormality and completeness conditions on states |m, in > and |m, out >, one

can prove that the matrix elements of the operator S satisfy

< Φ, in|S|Ψ, in > = < Φ, out|Ψ, in > = < Φ, out|S†|Ψ, out > (3.1.6)

Ψ and Φ refers for any physical states. In addition, the orthonormality and the completeness

conditions, imply that the operator S is unitary. This operator is called the S-matrix, it

plays a crucial rule in developing perturbative field theories. In the following paragraph, we

will give some of its properties and some of its consequences on the perturbative calculation.

3.1.2 S-matrix properties

3.1.2.1 Unitarity

From the superposition principle, the final state can be written as S |n > (we omit the

labels "in" and "out"). In quantum mechanics, the probability that a measurement on the

final state gives a result corresponding to the a given state |m > is obtained from squaring

the modulus of the matrix element

< m|S|n > (3.1.7)

any state can be expressed by a superposition of the states |n > which form a basis of

a vectorial space (n, m stands for the quantum numbers specifying the state, with: <

m|n >= δnm and
∑

m |m >< m| = 1). If |φ > is a normalized initial state in a colliding

experiment, the total probability of the system must be unity. We write

|Φ > =
∑

n

an |n > (3.1.8)

an are some complex coefficients which are characterized by

∑

n

|an|2 = 1 (3.1.9)

this implies

1 =
∑

m

| < m|S|Φ > |2 =
∑

m

< Φ|S†|m >< m|S|Φ >

= < Φ|S† S|Φ > =
∑

n,n′

a†n′ an < n′|S† S|n > (3.1.10)
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the necessary condition for Eq. (3.1.10) to hold is

< n′|S† S|n > = δn′n. (3.1.11)

which implies

S† S = 1

(3.1.12)

In the same way, we can prove

S S† = 1 (3.1.13)

So, the condition that total probability is conserved (by unity) implies that the S-matrix

must be unitary.

3.1.2.2 Relativistic invariance

If L is any Lorentz transformation and if

L |m > = |m′ >, (3.1.14)

The observable quantities must be independent of Lorentz frame, this requires that

| < m′|S|n′ > |2 = | < m|S|n > |2. (3.1.15)

Since the definition of the S-matrix given above does not specify the phase uniquely, this

allows us to replace Eq.(3.1.15) by the stronger condition [48]:

< m′|S|n′ > =< m|S|n > (3.1.16)

The last equation has an important consequence, the matrix elements for spineless

particles depend on the four-momenta only through their invariant scalar products. For

example, the 2 → 2 spineless particle matrix element

< p3, p4|S|p1, p2 >, (3.1.17)

after removing the δ-function specifying the energy-momentum conservation, this quantity

can be written as a function of only these three variables

s = (p1 + p2)
2, t = (p1 − p4)

2, u = (p1 − p3)
2. (3.1.18)

with

p1 + p2 = p3 + p4, s+ t+ u =

4∑

i=1

m2
i , p2

i = m2
i . (3.1.19)

As a consequence of Lorentz invariance, the matrix element for the case of elastic scat-

tering of two spineless particles is symmetric

< p3, p4|S|p1, p2 > =< p1, p2|S|p3, p4 >, (3.1.20)

this can be obtained by making a simple transformation (rotation) in the center of mass

frame (the Lorentz frame in which ~p1 + ~p2 = ~0 = ~p3 + ~p4), which interchanges p1 and p3

and interchanges p2, p4.
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3.1.3 Consequences of unitarity

It is very useful to write the S-matrix in term of the transition matrix T :

S = 1 + i T, (3.1.21)

The matrix T contains all the informations about the interaction, it is related the the

scattering amplitude F by

< p3, p4|T |p1, p2 > = (2π)4 δ(4)(p1 + p2 − p3 − p4)F, (3.1.22)

then to the experimental cross section is given by

σ =
1

(8π)2 |~q|W

∫
dΩ |F |2 |~p|

W
, (3.1.23)

where ~q and ~p are the center of mass momentum for particles in the initial and final states,

respectively; W is the center of mass energy. Ω is the solid angle in the final state (with

dΩ = sin θ dθ dφ). In the following we use the unitarity property of the S-matrix to deduce

some important properties of the scattering amplitude, hence of the physical observable.

3.1.3.1 Analyticity and unitarity

From the unitarity condition on the S-matrix, the T -matrix satisfies:

< p3, p4|T |p1, p2 > − < p1, p2|T |p3, p4 >
∗ = i < p3, p4|T † T |p1, p2 >

= i < p1, p2|T † T |p3, p4 >, (3.1.24)

"†" and "∗" stand for the transposed complex conjugate of the matrix and the complex

conjugate of the matrix elements, respectively. Using the symmetry condition on S given in

Eq. (3.1.20), we find that Eq. (3.1.24) is just twice the imaginary part of T -matrix element:

2 i Im < p3, p4|T |p1, p2 >, (3.1.25)

By using the completeness condition, the unitarity condition becomes

2 i Im < p3, p4|T |p1, p2 > =
∑

n

< p3, p4|T |n >< p1, p2|T |n >∗, (3.1.26)

where
∑

denotes the sum and integration over the n-particle real intermediate states al-

lowed by the conservation of total energy and momentum.

For sufficiently small energies of the incoming particles, no creation of new particles can

occur in a collision, so each S-matrix element corresponding to a creation process must

vanish. If the energies of the incoming particles are sufficiently large, a threshold will be

encountered above which a particle of non-zero mass may be created (and for higher energies

other particles may be created, hence other threshold may be encountered). This means that

the S-matrix elements change their analytic form when crossing these thresholds [49, 48].
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Then, for total energy below the inelastic energy-threshold and in term of the transition

amplitude F , the unitarity condition is given by

2i Im < p3, p4|F |p1, p2 > = (2π)−2

∫
d3~k1

2 k0
1

d3~k2

2 k0
2

δ(4)(p1 + p2 − k1 − k2)

× < p3p4|F |k1k2 >< p1p2|F |k1k2 >
∗

= (2π)−2

∫
d4k1 d

4k2 δ
(+)(k2

1 −m2) δ(+)(k2
2 −m2)

× δ4(p1 + p2 − k1 − k2) < p3p4|F |k1k2 >

× < p1p2|F |k1k2 >
∗, (3.1.27)

where ki = (k0
i ,
~ki) for i = 1, 2.

For total energy above the energy-threshold for inelastic scattering, a new term must be

added to the unitarity relation given by Eq. (3.1.27) to include the extra intermediate

states allowed by energy conservation, which means a change in the imaginary part of the

amplitude (the left hand side of this equation), and implies that S-matrix has a singular-

ity at the corresponding energy threshold for the creation of new allowed physical processes.

The thresholds are branch points of the amplitude F [48, 49], they will be discussed in

the next section. Let us consider the two-particle scattering amplitude F , this amplitude

is a function of two Mandelstam variables, say the invariant energy squared s and the

momentum-transfer-squared t, then

< p3p4|F |p1p2 > = F (s, t). (3.1.28)

We keep the momentum-transfer-squared t fixed, then the branch points in term of s are

s = 4m2, 9m2, 16m2, these energies are called "normal thresholds", they correspond to the

energies at which the production of new particles is possible (in the case of spineless and

equal mass particles).

3.1.3.2 Crossing properties

Crossing properties mean that the same analytic function can be used to describe different

processes. The amplitude in Eq.(3.1.28) describes the interaction of the two-two process (we

assume equals masses and the only preserved conservation law is the energy momentum),

say

A1 +A2 → A3 +A4 (3.1.29)

where A1 and A2 denote the incoming particles and A3 and A4 denote the outgoing particles.

This can happen only if the energies of each particle p0
i is real positive and their three

momenta are real ~pi. These conditions are summarized as the following

s ≥ 4m2, t ≤ 0, u ≤ 0. (3.1.30)
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This can be demonstrated by writing these variables in term of the three momentum ~q

(|~q| = |~p1| = ~p2) and the scattering angle θ in the center of masse frame. We get




s = 4 (m2 + |~q|2),
t = −2 |~q|2 (1 − cos θ),

u = −2 |~q|2 (1 + cos θ).

(3.1.31)

These conditions define the physical region of the s-channel (see Fig.(3.1)), where the energy

in the center of mass frame is
√
s. The function F is also analytic for the the following two

conditions

u ≥ 4m2, s ≤ 0, t ≤ 0, (3.1.32)

t ≥ 4m2, u ≤ 0, s ≤ 0. (3.1.33)

These conditions (they are obtained from the first one by exchanging the external momenta)

define the physical region of the u-channel and t-channel (see Fig.(3.1)), respectively. They

correspond to the following two processes

A1 + Ā3 → Ā2 +A4 (3.1.34)

A1 + Ā4 → Ā2 +A3 (3.1.35)

where the energies in the center of mass frame are
√
t and

√
u, respectively. Āi denotes the

anti-particle of Ai.

These important properties are called "crossing properties": the same analytical function

can be used to describe different physical processes for a given choice of the Mandelstam

variables s, t and u [48].

3.1.4 Feynman diagrams and the S-matrix

3.1.4.1 Perturbative expansion

The equation of motion of a coupled interacting system is

i
∂|Φ(t) >

∂t
= HI(i) |Φ(t) > (3.1.36)

where |Φ(t) > describes the state of the system at time t and HI is the interaction hamil-

tonian part.

Long before the interaction occurs, we assume that all the particles are far away (considered

as free particles). Let us call the initial state of the system |Φi >= |Φ(−∞) >. Eq. (3.1.36)

tells us about the evolution of the state vector |Φi > in time. Hence, one can predict the

final state of the system at t = +∞ from its initial state and this evolution equation. In

the other side, the S-matrix transforms |Φ(−∞) > into |Φ(+∞) >, i.e

|Φ(+∞) >= S |Φ(−∞) > (3.1.37)

So that defining this operator is equivalent to solve the differential equation of motion [54].

In addition, the integral representation of Eq. (3.1.36) is

|Φ(t) > = |Φ(−∞) > +(−i)
∫ t

−∞
dt1HI(t1) |Φ(t1) > (3.1.38)
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Figure 3.1: Physical region of the s, t and u channels for equal mass particles

this equation can be solved by iteration as the following

|Φ(t) > =
∞∑

n=0

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tn−1

−∞
dtn [HI(t1) · · ·HI(tn)] |Φ(−∞) > (3.1.39)

then

|Φ(+∞) > =

∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dtn T {HI(t1) · · ·HI(tn)} |Φ(−∞) >

= S Φ(−∞) (3.1.40)

Hence the operator S is given by

S =
∞∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dtn T {HI(t1) · · ·HI(tn)} (3.1.41)

T denotes the Dyson time-ordered product, it is defined by

T {Φ(x1) Φ(x2)} =

{
Φ(x1) Φ(x2) x1 > x2

Φ(x2) Φ(x1) x2 > x1

(3.1.42)

Finally, in term of the interaction hamiltonian density HI , the operator S is given by

S =
∞∑

n=0

(−i)n
n!

∫
· · ·
∫

d4x1 · · · d4xn T {HI(x1) · · ·HI(xn)} (3.1.43)

where the integration is over all the space-time (d4x = d3x dt)
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3.1.4.2 Feynman diagrams

Let us consider two examples of interactions, the quantum electromagnetic and the pseudo

scalar meson theory (ps), where the two interaction are expressed in term of the normal

product N respectively by

HQED
I = i eN{ψ̄(x) 6A(x)ψ(x)}, (3.1.44)

Hps
I = i g N{ψ̄(x) γ5 φ(x)ψ(x)} (3.1.45)

The constants e and g denote the coupling, the fields in these equations are given in the

interaction representation, so they satisfy the free field commutation relations. The T -

matrix elements can be evaluated by rearranging the field operators in Eq. (3.1.43) in term

of the normal product where the T -product is related to the N -product by

T{A(x1)B(x2)} = N{A(x1)B(x2)}+ < 0|T{A(x1)B(x2)}|0 > (3.1.46)

A and B stand for any field operator and |0 > denotes the vacuum state. The vacuum

expectation value in right hand side of this equation is called the contraction of A(x1) and

B(x2), it does not vanish only if one of the operators A and B creates particles which the

other absorbs. The non-vanishing contraction for QED and ps theories are

< 0|T{Aν(x2)Aµ(x1)}|0 > = DF (x2 − x1) =
−i gνµ
(2π)4

∫
d4q e−i q x

q2 + i λ
, (3.1.47)

< 0|T{ψ̄β(x2)ψα(x1)}|0 > = SFβα(x2 − x1) =
i

(2π)4

∫
d4p e−i p x

6 p− imψ + i λ
, (3.1.48)

< 0|T{Φ(x2) Φ(x1)}|0 > = ∆Fβα(x2 − x1) =
i

(2π)4

∫
d4k e−i k x

k2 −m2
Φ + i λ

. (3.1.49)

where Df , Sf and ∆F are called the Feynman propagators for the photon, the electron and

the meson fields, respectively.

These relations enable us to select terms in Eq.(3.1.43) which their creation and destruc-

tion operators related to particles that we want to consider. Thus, the S-matrix can be

expressed as a combination of terms involving Feynman propagators, γ-matrix ... etc. The

final result will be a sum of a set of integrals over four-momentum which we call Feynman

integrals. Each of these integrals can be graphically presented by a diagram called Feynman

diagram, which can be converted to mathematical formula by using the Feynman rules. For

example, the graph in Fig(3.2) represents a one-loop Feynman diagram, it gives a contribu-

tion to the first order of the perturbative expansion of the S-matrix. This contraction can

be calculated by the following Feynman rules (we limit ourselves to QED):

- a) each fermionic internal line with momenta p and mass m is given by i
6p−m+i λ

- b) each photonic internal line with momenta q is given by gµν

q2+i λ

- c) each vertex is given by −i e γµ
- d) each fermion or anti-fermion incoming (outgoing) external line with momenta p and

helicity l are given by the spinors ul(p) and v̄l(q) ( ūl(p) and vl(q)), respectively.
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✁p1

p3p2 k

p3 − k

p4k − p1 − p2

k − p2

Figure 3.2: An example of one-loop Feynman diagram for QED, the straight lines denote

the fermions (electron or positron) and the wavy lines denote the photon.

Then, the Feynman diagram in the Fig. (3.2) leads to the integral

e4
∫

d4k

(2π)4
[v̄(p2) γ

µ ((6k− 6 p2) +me) γ
ρ u(p1) ū(p3) γµ ((6 p3)− 6 k +mµ) γρ v(p4)]

1

(k2 + i λ)((k − p2)2 −m2
e + i λ)((k − p1 − p2)2 + i λ)((p3 − k)2 −m2

µ + i λ)

(3.1.50)

So, the scattering amplitude for a given process can be calculated by adding all con-

tributing Feynman diagrams. In the next section, we study the analytic properties of such

graphs.

3.2 Singularities of one-loop scattering amplitude

In the previous section, we showed how one can derive some analyticity properties of the

scattering amplitude from the principle of unitarity, where we have shown that the inelastic

two-body scattering amplitude F (s, t) is analytic in Mandelstam variables under some suit-

able conditions on the value of the masses of the external particles (in the case of spineless

equal mass particles).

In this section we investigate the analyticity properties of a general Feynman integral. We

present a necessary and sufficient criterium to determine the singularities of a general Feyn-

man integral on the physical sheet. We apply these equations to some Feynman graphs,

and we show that one can recover the normal thresholds that we have mentioned above. On

top of that, we show how we can calculate the soft and the collinear divergent contributions

for an arbitrary Feynman diagram from these conditions [52, 56, 38, 57, 48, 64].

3.2.1 Singularities of an integral

A singularity of a function f is a point where f is not analytical, i.e. it is not differentiable

at this point3. Consider the analytical function of two complex variables g(z, w). For some

3At a singular point, either the function or its derivative or its higher derivatives become discontinued.

In complex analysis, we distinguish between many type of singularities, a) the isolated singularities which

come as, (i) Removal singularities: if the singular function f equals to an holomorphic function g (for
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••
BA

C

×
w3(z)

×
w4(z)

×
w5(z)

×
w1(z)

× w2(z)

Figure 3.3: All possible singularities of the integrand g(z, w): The end point of the contour
of integration C are A and B, the singularities (denoted by "×") are called wi(z). w1 and w2

are end point singularities, w3 and w4 are pinch singularities. No deformation of the contour C can

avoid these singularities.

finite contour C of integration, we define a function f as follows

f(z) =

∫

C
g(z, w) dw (3.2.51)

the singularities of the integrand in the w-complex plane are

w = wr(z), r = 1, 2, · · · (3.2.52)

f(z) is analytic as long as the integrand is analytic, i.e as long as no singularity wr(z)

meets the contour of integration or this contour can be deformed in such way that these

singularities are avoided. This deformation cannot avoid such singularities only in the three

following cases:

• End point singularities: if one of the singularities wr meets one of the end points of

C (A or B, see Fig.(3.3)), thus the function f(z) may be singular at the corresponding

point z1.

• Pinch singularities: if the contour is trapped between two (or more) singularities,

i.e. these singularities approach the contour from the opposite side and coincide (w3(z)

and w4(z)). In this case, no deformation of the contour can avoid them.

• Infinite deformation: if the singularity wr(z) moves off to infinity dragging the

contour when it is being deformed. Hence, f is singular at the corresponding point.

This case, can be reduced to a special case of pinch singularities by making a simple

change of variables, see [48].

In loop calculation, we face integrals of several variables and certainly the study of

the singularities are much more complicated than in the case of integrals involving only

one variable. Hence, it would be useful to generalize the previous discussion to multiple

example f(z)= sin(z)
z

, z = 0 is removal since f(0) = 1). (ii) Pole: the singular point z0 is a pole if the

singular function f equals to g(z)/(z − z0)
n, where g is holomorphic and nonzero and n is a given natural

number. (iii) essential singularities: if the Laurent series has infinitely many negative powers (for example

f(z) = e1/z). And b) the branch points which are the result of multi-valued functions as
√

z and ln(z).



44 Chapter 3. Perturbation Theory: Analytic Properties

integrals. Let us consider the following function where the integrand is a function of several

variables,

f(z) =

∫

H
Πn
i=1 dwi g(z, wi), (3.2.53)

In this case, the contour of integration becomes a hypercontour (denoted by H) in wi-space.

The singularities of the integrand g(z, wi) are defined by several equations

Sr(z, wi) = 0, r = 1, 2, · · · (3.2.54)

For any value of z, Sr represent 2n − 2-dimensional space in the 2n-dimensional complex

wi-space. For example, in the case of one integration variable, the pinch singularities are

given by w1(z2) = w2(z2) which can be written as S1 = w1(z2) − w2(z2) = 0. Hence, the

conditions of pinch singularities can be expressed in term of the analytic manifolds in Eq.

(3.2.54).

The boundary of the hypercontour H can be described by the following analytic equa-

tions,

S̃r(z, wi) = 0, r = 1, 2, · · · (3.2.55)

For example, in the case of one integration variable, the end point singularity is given by

wr(z1) = A which can be written as S̃1 = wr(z1) − A = 0 (A is one of the borders of

the countour of integration). Hence, the conditions of the end point singularities can be

expressed in term of the analytic manifolds in Eq. (3.2.55).

Singularities occur if a surface of singularities intersect with the boundary of the hyper-

surface of integration (end point singularities), or if the hypercontour H is trapped by

two or more surfaces Sr, i.e. these surfaces approach H from the opposite side and the

direction of their normal coincide. Hence, no deformation of H can avoid these surfaces.

All possibilities that a singularity may happen are summarized by the following equations:

for some complex parameters αi and α̃r not all equal to zero, we have

αi Si = 0, for each i, hence αi = 0 or Si = 0 (3.2.56)

α̃r S̃r = 0, for each r, hence α̃r = 0 or S̃r = 0 (3.2.57)

and for each integration variable wj , we have

∂

∂wj

[∑

i

αi Si +
∑

r

α̃r S̃r

]
= 0 (3.2.58)

Eq. (3.2.58) means that the direction of the normals of the surfaces Sr and S̃r coincide, i.e.

the hyper-surfaces are tangent at the pinching point. These equations are only necessary

conditions and not sufficient to such singularity to occur (Sufficient conditions will be given

in the next paragraph).
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I mention that a demonstration of these equations is not evident and needs the use of

topology [48]. In the following, I will give only some arguments for Eqs.(3.2.56, 3.2.57,

3.2.58) in the case of one and two surfaces of singularities.

.

a) If two surfaces of singularities S1 and S2 approach the hypercontour H from opposite

sides, and the direction of their normal coincide. Then, H may be trapped between these

surfaces if: {
S1 = S2 = 0,

α1
∂S1
∂wi

+ α2
∂S2
∂wi

= 0, i = 1, · · · , n
(3.2.59)

for some non vanishing α1, α2.

.

b) Two different parts of the same singularity surface, say S1 may trap H. For example, if

S1 is locally cone-like and H trapped at the vertex of the cone. The conditions for this to

happen are {
S1 = 0,

α1
∂S1
∂wi

= 0, i = 1, · · · , n
(3.2.60)

for some α1.

In the following, we will apply the general results Eqs.(3.2.56, 3.2.57, 3.2.58) to derive

the necessary and sufficient singularity conditions for the general scalar N point one-loop

Feynman integral.

3.2.2 Landau equations for one-loop integrals

The general N -point one-loop scalar Feynman integral in n-dimension is given by

InN (S) =

∫
dnk

i πn/2
1

ΠN
i=1 (q2i −m2

i + i λ)
(3.2.61)

.

where S is a set containing the labels of the propagators (Fig. (3.4)), we put S =

{1, · · · , N}, the momenta through the propagators are

qi = k + ri, with ri − ri−1 = pi (3.2.62)

pi (with i ∈ S) are the momenta of the external legs, they are chosen ingoing for simplicity.

Let us introduce the Feynman parameters zi, with

∑

i

zi = 1, and 0 ≤ zi ≤ 1. (3.2.63)

Eq. (3.2.61) becomes

InN (S) = Γ(N)

∫
dnk

(2π)n/2

∫ 1

0
ΠN
i=1 zi

δ(1 −∑N
i=1 zi)

[
∑N

i=1 zi (q
2
i −m2

i ) + i λ]N
, (3.2.64)
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Figure 3.4: General N -point one-loop scalar integral

To perform the integration over k, we make the shift

l = k +

N∑

i=1

zi ri, (3.2.65)

Hence, the denominator becomes

N∑

i=1

zi (q
2
i −m2

i ) = l2 −R2, (3.2.66)

with

R2 = −1

2

N∑

i,j=1

zi zj Sij + i λ, and Sij = (qi − qj)
2 −m2

i −m2
j , (3.2.67)

After having performed the integration over l, InN can be written

InN (S) = (−1)N Γ(N − n

2
)

∫
ΠN
i=1 dzi

δ(1 −∑N
i=1 zi)

[−1
2

∑N
i,j=1 zi zi Sij + i λ]N−n

2

, (3.2.68)

Eqs.(3.2.61, 3.2.64, 3.2.68) provide three representations of the same scalar integral, the

first representation is in the momentum space, the second one is a mixed representation (in

Feynman parameters and momentum space), the third one is in the Fyenman parameter

space. In the following, we will apply the necessary conditions for the occurrence of singu-

larities in the physical region presented in the end of the previous paragraph, to determine
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the Landau equations corresponding to each representation of InN (S).

.

a) In momentum space:

The formula of the one-loop scalar integral with N external legs in n-dimension is given

in Eq.(3.2.61). Since the loop momentum integration k is infinite, then the hypercontour of

integration (denoted by H in the previous section) has no boundaries, i.e. H =]−∞,+∞[N

(no boundary equations S̃i has to be considered). Each singularity surface is given by

Si = q2i −m2
i = 0 (3.2.69)

we introduce the parameters αi corresponding to each surface Si and, apply Eqs.(3.2.56,

3.2.57, 3.2.58). Hence, the necessary conditions that a singularity occurs in the physical

region in the representation Eq.(3.2.61) are given by

{
either q2i = m2

i , or αi = 0 ∀ i = 1, · · · , N
and

∑N
i=1 αi qi = 0 ∀ i = 1, · · · , N

(3.2.70)

The integral in Eq.(3.2.61) may have a singularity if for some non-vanishing αi these equa-

tions have solution in the physical region. These equations are the Landau conditions

corresponding to the one-loop scalar integral in the momentum space representation. The

interpretation of these conditions is that, singularities may occur only when, for any internal

propagator: either the four-momentum is on its mass shell or the corresponding parameter

αi vanishes.

.

b) Mixed representation:

The scalar integral after introducing Feynman parameters is given in Eq. (3.2.64). In

this representation, the only surface of singularity of the integrand is

S =
N∑

i=1

zi (q
2
i −m2

i ) = 0 (3.2.71)

However, the hypercontour in the complex space (k, zi) has several boundary equations

S̃i = zi = 0 (3.2.72)

It seems that zi = 1 also form boundaries of the hypercontour, but it is not the case

because of the delta function in the numerator. For example in the case of three Feynman

parameters, the projection of the hypercontour (before the deformation) to the real (z1, z2)

space (see Fig.(3.5)) has the boundaries z1 = 0, z2 = 0 and z1 + z2 = 1; but the last one is

just z3 = 0, by means of the δ-function. Then the boundaries in zi-space are zi = 0 (and

not zi = 0).
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Figure 3.5: The non deformed hypercontour in z1 and z2 space

From Eq.(3.2.56) and Eq.(3.2.71), we get

{
either α = 0,

or S = 0,
(3.2.73)

(α stands for a parameter αi introduced above), and from Eq.(3.2.57) and Eq.(3.2.72), we

get

for each i

{
either α̃i = 0,

or zi = 0,
(3.2.74)

and from Eq.(3.2.58) and Eqs.(3.2.71, 3.2.72), we get

{
∂[α S +

∑
i α̃i zi]/∂k = 0

⇐⇒ α∂ S/∂k = 0
and for each l

{
∂[α S +

∑
i α̃i zi]/∂zl = 0

⇐⇒ α∂ S/∂zl + α̃l = 0
(3.2.75)

Then, the Landau equations for this representation are given by




S = 0,

∂S/∂k = 0,

either zl = 0, or ∂S/∂zl = 0, for each l

(3.2.76)

these conditions are completely equivalent to those corresponding to the momentum space

representation.

.

c) In Feynman parameters space:

In this representation, the formula of the scalar integral is given in Eq.(3.2.68). The

only surface of singularity is

S =

N∑

i,j=1

zi zj Sij = 0 (3.2.77)
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and the boundary equations of the hypercontour of integration are

S̃i = zi = 0 (3.2.78)

Hence, the Landau equations of this representation are given by

for each i





S = 0,

and

either zi = 0, or ∂S/∂zi = 0.

(3.2.79)

3.2.3 Necessary and sufficient conditions

If the loop momentum k runs over the real values, the Feynman parameters zi are real

positive and all the masses of the internal lines have a negative imaginary part. Then, the

integral InN evidently defines an analytical function. This is due to the fact that none of the

internal propagators vanishes by means of the negative imaginary part of the masses (−i λ).

If this imaginary part vanishes, and the Landau conditions presented above are satisfied,

then the integrand may be singular in some points of the phase space. The necessary and

sufficient conditions that a singularity of the integral InN occurs in the physical region are[55]





∀ i zi (q2i −m2
i ) = 0,

∑N
i=1 zi qi = 0,{
zi ≥ 0,

k = k∗,

det(S) = 0.

(3.2.80)

The two conditions in the first two lines of Eq.(3.2.80) are the necessary and not sufficient

Landau conditions presented above; the two conditions in the third and the fourth line of

the same equation define the physical region which is [−∞,+∞]N for k and [0,+∞]N for

zi (the hyper-space [0, 1]N can be extended to [0,+∞]N without changing the structure of

singularities since zi = 1 is not a boundary of the hypercontour as shown above); and the

last condition (det(S) = 0) defines the so called "the singular Landau curve" which together

with the other conditions form the necessary and sufficient conditions for a singularity to

occur in the physical region.

Proof:

We focus on the case of non vanishing zi [55, 63], i.e all the internal lines are on the mass

shell (leading singularities, see below). In the Feynman representation, the denominator is

given by

R2 = −1

2
z† S z + i λ (3.2.81)
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we call the eigenvalues of the matrix S, σ1 · · ·σN (where |σN | ≪ |σi| for i = 1, · · · , N − 1)

and the normalized eigenvector corresponding to σN is z̄:

S z̄ = σN z̄ (3.2.82)

with (3.2.83)

z̄ = (z̄1 · · · z̄N ) and
N∑

i=1

z̄i = 1 (3.2.84)

let us make the following transformation

η = z − z̄ (3.2.85)

then the denominator becomes

R2 = −1

2
η† S η − 1

2
σN |z̄|2 − σN η

† z̄ − i λ (3.2.86)

Since S is real and symmetric matrix, it can be diagonalized by a real orthogonal transfor-

mation such that

ηi =
N∑

j=1

Aij η̄j (3.2.87)

where the matrix A satisfies 



A orthogonal,
∑N

j=1 Aij = 1/|z̄|,
det(A) = 1.

(3.2.88)

we notice that the normalized eigenvectors of S are the columns of A.

We suppose that |σN ≪ 1| and σi 6= 0, and we neglect terms that give contribution of order

O(σ2
N ) to the final result. Hence, the denominator becomes

R2 = −1

2

N∑

i=1

σi η̄
2
i −

1

2
σN |z̄|2 − i λ, (3.2.89)

we perform the integration over η̄N which is evident by means of the δ-function in the

numerator, we get

InN ∝
∫ +∞

−∞
dη̄1 · · · dη̄N−1

1

[−1
2

∑N−1
i=1 σi η̄2

i − 1
2 σN |z̄|2 + i λ]N−n

2

, (3.2.90)

where the singular contribution is not changed if the integration countour is extend to

infinity provided that N − n/2 is sufficiently large, see [48].

If σN → 0 (which means that det(S) = σ1 · · ·σN → 0) and λ → 0, the zeros of the

denominator of this equation correspond to η̄±i = f(η̄1, ..., η̄i−1, η̄i+1, ..., η̄N−1)± i λ for each

i = 1, · · · , N − 1 since σi 6= 0. This means that that η̄+
i approaches η̄−i from the opposite

sides of the contour (due to ±i λ), then the contour must be pinched between at least two

singularity surfaces. Hence, the conditions given above are necessary and sufficient for the

occurrence of singularities in the physical sheet. I notice that if Sij has more than one zero

eigenvalue, the demonstration becomes more complicated than this one, and the integral

may have two Landau singularities one finite and the other one leads to IR divergent as in

the case of double parton scattering singularity [55].
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3.2.4 Nature of singularities

We call leading singularities of a Feynman graph, singularities which do not correspond to

zi = 0 while singularities corresponding to zi = 0 are called sub-leading singularities. The

later singularities are shared by the contracted graphs (For the triangle graphs obtained

from the box by pinching one propagator, see Fig. (B.1)).

3.2.4.1 Leading Landau singularities

After performing all the N − 1 integration over η̄, in the approximation |σN | << 1, of the

integral in Eq. (3.2.90), one can prove that (see [63])

InN (S) ∝ 1√
(−1)N−K−1 ΠN−1

i=1 σi

Γ((N − n+ 1)/2)

[σN
−|z̄|2

2 − i ε](N−n+1)/2
, (3.2.91)

with the assumption {
σi > 0, i = 1, · · · , k,
σi < 0, i = k + 1, · · · , N − 1,

(3.2.92)

this result is valid only for σi 6= 0 and N −n+1 > 0 (If N −n+1 ≤ 0, one can just expand

this formula around ε = 0 where n = 4 − 2ε).

Let us apply this formula to some of the Golem95 basic integrals that we will study in

the next Chapters. The table (3.1) summarizes all the leading singularities that one of this

integrals might have at σN → 0, and the possibility if they lead to IR divergences.

N n Nature of singularity IR divergences

4 4 − 2 ε σ
−1/2
4 divergent

4 6 − 2 ε σ
1/2
4 none

4 8 − 2 ε σ
3/2
4 none

4 10 − 2 ε σ
5/2
4 none

4 12 − 2 ε σ
7/2
4 none

3 4 − 2 ε ln(σ3) divergent

3 6 − 2 ε σ3 none

2 4 − 2 ε σ
1/2
2 none

1 4 − 2 ε σ1 none

Table 3.1: Landau singularities of Golem95 scalar basic integrals: IR divergences correspond

to non integrable Landau singularities, this is the case for I4
3 and I4

4 . The other function

have Landau singularities, since if we derive enough number times in σN , the obtained

derivatives will be singular if σN → 0; but they do not lead to infinite results.
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3.2.4.2 Sub-Leading Landau singularities

Consider the singularities corresponding to ν contraction, where ν stands for the number

of propagators corresponding to zi = 0, with 0 ≤ ν < N − 1. The Landau conditions for

such singularities occur are given by





D = R2 = 0,

zi = 0, i = 1, · · · , ν
∂D
∂zi

= 0, i = ν + 1, ν + 2, · · · , N
(3.2.93)

We perform the trivial integration over zN (by means of the δ-function), the denominator

becomes

D(z1, · · · , zN−1, 1 −
N−1∑

i=1

zi) = D′(z1, · · · , zN−1)

=
1

2

N−1∑

i,j 6=N
zi zj G

(N)
ij −

N−1∑

i6=N
zi V

(N)
i − 1

2
SNN − i λ, (3.2.94)

G
(N)
ij = −(Sij − SNj − SiN + SNN ) = 2 ri · rj , (3.2.95)

V
(N)
i = SNi − SNN . (3.2.96)

Hence, the Landau conditions become





D′ = 0,

zi = 0, i = 1, · · · , ν
∂D′

∂zi
= 0, i = ν + 1, µ+ 2, · · · , N − 1

(3.2.97)

for invertible Gram matrix Gij , the solution of the last two equation is given by

z̄ = (0, · · · , 0, z̄ν+1, · · · , z̄N−1),

with

z̄i =
1

det(G)

N−1∑

j=ν+1

V
(N)
j Ĝij , (3.2.98)

det(G) and Ĝij are the determinant and the element ij of the co-matrix of the Gram matrix,

respectively. Inserting this result in the first Landau equations, we find

D′(z̄i) =
1

2
SNN − 1

2

N−1∑

i=ν+1

z̄i V
(a)
i

=
1

2

det(S)

det(G)

= 0 (3.2.99)
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where we have used

det(S) = (−1)N−1[SNN det(G(N)) + (V (N))T · Ĝ(N) · V (N)] (3.2.100)

Again, this proves that det(S) = 0 with the other conditions form the necessary and suffi-

cient condition for a singularity of InN to occur.

To find the nature of the singularity, we expand, in the neighborhood of z̄, the D′ using

Taylor expansion, then the denominator becomes

D′(zi) = D′(z̄i) +

ν∑

i=1

(zi − z̄i)
∂D′

∂zi

∣∣∣∣
zi=z̄i

+
1

2

N−1∑

j,k=ν+1

(zj − z̄j) (zk − z̄k)
∂2D′

∂zj ∂zk

∣∣∣∣
z=z̄

,

(3.2.101)

Since we are only concerned with some finite segments of the hypercontour near z̄ = z, the

integration over zi can be extended from −∞ to +∞ without changing the singular part,

provided N −n/2 is sufficiently large. Then, one can prove that an explicit integration over

the N − 1 variables leads to [64]

InN (S) ∼ D′(z̄)−γ , (3.2.102)

this result holds provided

γ =
1

2
(N − ν − n+ 1) > 0, (3.2.103)

For negative γ, one can replace Eq. (3.2.102) by

InN (S) ∼ D′(z̄)|γ| ln(D′(z̄)) (3.2.104)

Then, the nature of singularity is of square root or logarithmic, this depends on the number

of internal lines N − ν of the contracted graph. If ν = 0, we see that we recover again the

nature of the leading singularity discussed above in term of the eigenvalues of the matrix

S. For example:

- for N=3, ν = 0 and n = 4 we find that I4
3 ∼ ln(1

2
det(S)
det(G)) which leads to IR divergences.

- for N=4, ν = 0 and n = 4 we find that I4
4 ∼ (1

2
det(S)
det(G))

−1/2 which leads to IR divergences.

3.3 Examples

3.3.1 Triangle graph

Lets consider the vertex diagram with only one off-shell external momenta and in 4-

dimension [56],

I4
3 (S) =

∫
d4k

i π2

1

(q21 −m2
1) (q22 −m2

2) (q23 −m2
3)

(3.3.105)
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with

q1 = k − p2, q2 = k + p1, q3 = k, (3.3.106)

For the leading singularity, the Landau equations consist of

for each i = 1, 2, 3

{
q2i = m2

i ,∑3
i=1 zi qi = 0,

(3.3.107)

by multiplying the last line of Eq. (3.3.107) by qj , we get the system of three simultaneous

equations

3∑

i=1

zi qi · qj = 0, j = 1, 2, 3. (3.3.108)

which has a solution only if det(qi · qj) = 0, this can be written as

det(qi · qj)
mimj

=

∣∣∣∣∣∣

1 y12 y13

y12 1 y23

y13 y23 1

∣∣∣∣∣∣
= 0 (3.3.109)

with

yij = yji = −1

2

(qi − qj)
2 −m2

i −m2
j

mimj

= −1

2

Sij
mimj

(3.3.110)

Eq. (3.3.109) defines the surface on which we can find the leading Landau singularities.

In a similar way, we may find the surface corresponding to the sub-leading singularities

occurring at zi = 0 (z3 = 0 for example), the surface given by

∣∣∣∣
1 y12

y12 1

∣∣∣∣ = 0 (3.3.111)

which leads to

p2
3 = (m2

1 ±m2
2) (3.3.112)

Then we recover the normal threshold at s = (m1 + m2)
2 (for the case of equal masses,

s = 4m2 which we deduced by unitarity in the first part of this Chapter); therefore the

singularity at s = (m1 −m3)
2 does not appear in the physical sheet. Similar singularities

exist in the p2
1 and p2

2 channels.

3.3.2 Study of the case: det(S) = 0 and det(G) = 0 simultaneously

The Gram matrix elements G
(N)
ij in terms of the external momenta are defined by

G
(N)
ij = 2 (ri · rj) = 2

i<N∑

k=1

j<N∑

l=1

(pk · pl) (3.3.113)
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the determinant of this matrix equals to the determinant of

Γ
(N)
ij = 2 (pi · pj), for i, j = 1, · · ·N − 1. (3.3.114)

det(G(N)) = det(Γ(N)) (3.3.115)

where G and Γ(N) are (N − 1) × (N − 1) matrices.

det(G) vanishes means that at least one eigenvalue of the matrix G(N) (and Γ(N))

vanishes. In general, to a vanishing eigenvalue of Γ(N) corresponds a family of scalars

{x(1)
j }j=1,··· ,N−1 not all vanishing which satisfy

N−1∑

j=1

Γ
(N)
ij x

(1)
j = 0, i = 1, · · · , N − 1 (3.3.116)

This shows that the vector

λ(1) =

N−1∑

j=1

x
(1)
j pj (3.3.117)

is orthogonal to each of the pi , hence it has vanishing squared pseudonorm:

(pi · λ(1)) = 0, (λ(1))2 = 0 (3.3.118)

which means that λ(1) is either zero i.e. {pi}i=1,··· ,N−1 are linearly dependent or a non-

zero light-like vector orthogonal to each of the 4-momentum pi ’s. Similarly, if Γ(N) has two

vanishing eigenvalues, i.e. it is of rank N−3. There exist (at least) two linearly independent

families of scalars, {x(1)
j }j=1,··· ,N−1 not all vanishing, and {x(2)

j }j=1,··· ,N−1 not all vanishing

either.

One can prove that, if det(S) = 0 and det(G) = 0 simultaneously, we have

N∑

i=1

xi ≤ 0 (3.3.119)

which cannot be satisfied in the physical region, the proof is given in Appendix A.5 in ref.

[81]. Due this important result: for configurations with vanishing Gram determinants, no

Landau singularity can occur in the physical region.

3.4 Infrared and collinear divergences

3.4.1 Soft divergences

Soft divergences appear if the four momentum of a massless propagator in the loop vanishes,

hence Landau equations corresponding to a such situation are




q21 = m2
1 → 0

z1 = O(1),

z2, zN = O(δ),

z3, · · · , zN−1 = O(δ2)

q2i 6= m2
i

(3.4.120)
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with δ << 1, it is a parameter which characterizes the values of Feynman parameters.

Lets assume that all the internal and external lines are massless, then

R2 = −1

2

N∑

i,j=1

zi zj Sij = −
N∑

i≤j
zi zj Sij

∼
N−1∑

i=3

z1 zi S1j + z2 zN S2N + O(δ2) (3.4.121)

By inserting Eq.(3.4.121) in I4−2 ε
N and performing the integration over Feynman parameters,

we prove that the soft divergent contribution of I4−2 ε
N corresponding to the approximation

given in Eq. (3.4.120) is given by

I4−2 ε
N div(S) =

i

(4π)2−ε
(−1)N−1 Γ(1 + ε)

ε2
(−S2N )−ε

(−S2N ) ΠN−1
i=3 (−S1i)

. (3.4.122)

For arbitrary dimension of space-time, i.e. n = m + 4 − ε, with m = 2, 4, · · · , the

approximated Im+4−2 ε
3 and Im+4−2 ε

4 are given by

Im+4−2 ε
3 ∼ −4 Γ(1 − m

2 + ε)

(−2 ε+m)2

∫ 1

0
dz2

(−S23 z2)
m/2−ε

S23
. (3.4.123)

Im+4−2 ε
4 ∼ − 4 Γ(2 − m

2 + ε)

(2 ε−m) (2 + 2 ε−m)

∫ 1

0

dz2
z2

(−S13)
−ε(−S24 z2)

−ε(−S13 − S24 z2)
−ε

S13 S24

×
{

(−S13)
m/2 (−S24 z2)ε(−S13 − S24 z2)

ε + (−S13)
ε(−S24 z2)

m/2 (−S13 − S24 z2)
ε

− (−S13)
ε (−S24 z2)

ε (−S13 − S24 z2)
m/2

}
. (3.4.124)

After integrating over z2 (which can be done very easily), one can prove that Eq. (3.4.123,

3.4.124) are free of soft divergences. Then, the only soft divergent 3-point and 4-point

integrals are I4
3 and I4

4 where the divergent parts are given by Eq. (3.4.122).

3.4.2 Collinear divergences

Collinear divergences appear when the 4-momentum of two massless propagators adjacent

to an external leg becomes proportional to its 4-momentum, hence Landau equations cor-

responding to a such situation are




z1, zN = O(1),

z2, · · · , zN−1 = O(δ),

q21 = m2
1 → 0,

q2N = m2
N → 0,

z1 q1 + zN qN = 0.

(3.4.125)

let us call the momuntum of the external particle linked to the propagators number 1 and

N , p1, then

p1 = q1 − qN , (3.4.126)
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multiplying the last equation in Eq.(3.4.125) by q1 or qN , we get

z1m
2
1 + z2 q1 · qN = 0, (3.4.127)

z1 q1 · qN + z2m
2
N = 0, (3.4.128)

Since the masses m1 and mN equals to zero, then

p1 · q1 = p1 · qN = q1 · qN = 0, (3.4.129)

hence q1 ‖ qN ‖ p1.

Now, let us derive a general formula of the collinear divergent contribution to I4−2 ε
N in the

case of massless external and internal lines. In this approximation, the denominator can be

written as

R2 =

N−2∑

i=3

zj [z1 (−S1j) + zN (−SjN )] + z2 zN (−S2N ) + z1 zN−1 (−S1N−1) + O(δ)

(3.4.130)

After integrating over all Feynman parameters, we get

I4−2 ε
N C ∼ Γ(1 + ε)

ε2

{
(−S2N )−ε

(−S2N ) ΠN−1
i=3 (−S1i)

+
(−S1N−1)

−ε

(−S1N−1) ΠN−2
i=2 (−SiN )

−
N−2∑

j=3

(−Sij + SjN )N−4

(
(−S1j)

ε − (−SjN )ε
)

(−S2N ) (−S1N−1) (−S1j) (−SjN )ΠN−2
i6=j=3 ((−S1j) (−SiN ) − (−SjN ) (−S1i))

}

(3.4.131)

By following the same reasoning as in the case of the soft approximation, we can prove that

scalar integrals Im+4−2 ε
N are free of collinear divergences.

The total IR contribution to a given Feynman graph is given by

I4−2 ε
N,div =

∑

i

I4−2 ε
N C −

∑

j

I4−2 ε
N S (3.4.132)

where i and j run over all the possible collinear and soft sectors, respectively. Each sector is

defined by a given Landau equations (each of Eq. (3.4.120) and Eq. (3.4.125) defines a soft

and a collinear sector, respectively). For physical observable (cross section, decay rate, ...),

these divergences should cancel out by means of Lee-Kinoshita-Nauenberg theorem which

states that [58, 59, 61]:

In theories involving non-massive fields, the cross section is free of soft and collinear singu-

larities by summing over all the degenerate initial and final states.

3.5 Dispersion relation

The principles of causality and the local structure of field theories equations impose certain

constraints on the behavior of the scattering amplitudes. The scattering amplitude is a

function of the energy and momentum transfer, if these variables are analytically continued
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from the physical region to the non-physical one, many appropriate relations for computing

the amplitude or expressing it in term of some measurable quantities can be derived.

In this section, we discuss one of these useful relations, the "dispersion relation and it

applications in quantum field theories" [38, 56, 48].

3.5.1 Causality and Kramers-Kronig Relation

The amplitude of the forward scattered monochromatic light plan wave along the x axis is

linearly related to the incident wave by

ascatt(ω) = f(ω) ainc(ω) (3.5.133)

ω is the frequency of the incident wave and f is an analytic function on ω.

At infinite x, it becomes

ascatt(x, t)|x→∞ −→ ascatt(ω)
e−i ω (t−x)

x
(3.5.134)

Hence, the packets formed by superposing the incident and the scattered waves are given

by

Ainc(x, t) =

∫ +∞

−∞
dω′ ainc(ω

′) e−i ω
′ (t−x)

Ascatt(x, t)

∣∣∣∣
x→∞

=
1

x

∫ +∞

−∞
dω′ f(ω′) ainc(ω

′) e−i ω
′ (t−x) (3.5.135)

The causality condition imposes that the incident packet vanishes for x > t (no signal

propagates faster than light), which implies that the Fourier transform of the amplitude is

ainc(ω) =
1

2π

∫ 0

−∞
dxAinc(x, 0) e−i ω x (3.5.136)

where the physical requirement of causality is

Ainc(x, t) = 0, for x > t (3.5.137)

The amplitude in Eq. (3.5.136) can be analytically continued into the upper half of the

complex ω-plan, this can be seen by replacing ω by ω+i |γ| (γ is an arbitrary real parameter)

in this equation, which leads to a convergent integral in this plane. Thus, the amplitude of

the scattered wave f(ω) ainc(ω) may be also analytically continued into the upper ω complex

plan; which means that the function f(ω) is also analytically continued into this complex

plan.

Since f is analytically continued in the upper half of the complex ω-plane, we can apply

the Cauchy’s formula to this function:

f(z) =
1

2π i

∫

C

dω′ f(ω′)
ω′ − z

(3.5.138)

for every z inside the closed C.

for any z = ω + i |γ| in the upper half plan f(ω) is given by
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Re(ω′)

Im(ω′)

× z

Figure 3.6: Contour in the upper half ω′ plane for the equation (3.5.138)

f(ω) = lim
ε→0+

f(ω + i ε)

=
1

2π i
P

∫ +∞

−∞

dω′ f(ω′)
ω′ − ω

+
1

2
f(ω) +

1

2
C∞ (3.5.139)

C∞ stand for the circle in Fig.(3.6) (with infinite radius). The first term is the contribution

of the principal value (P ) of the integral across the real axis where

P (f(ω)) = limε→0+

{∫ −ε

−∞
f(ω) dω +

∫ +∞

+ε
f(ω) dω

}
(3.5.140)

the second term is the contribution from the half circuit around the ω′ → ω and the last

term is the contribution of the infinite semicircle, with C∞ = CRe
∞ + i CIm

∞ (CRe
∞ and CIm

∞
are real and the imaginary parts of C∞, respectively). Hence,

Re f(ω) =
1

π
P

∫ +∞

−∞

dω′ Im f(ω′)
ω′ − ω

+ C(Re)
∞ (3.5.141)

Im f(ω) = − 1

π
P

∫ +∞

−∞

dω′ Im f(ω′)
ω′ − ω

+ C(Im)
∞ (3.5.142)

Eqs. (3.5.141) is called the dispersion relation, it gives the real part of the following equation

f(ω) = lim
ε→0+

f(ω + i ε) = lim
ε→0+

1

π

∫ +∞

−∞

dω′ Im f(ω′)
ω′ − ω − i ε

+ C∞ (3.5.143)

If f(ω) does not vanish when ω → ∞, the contribution C∞ 6→0 does not vanish too, then

we can re-derive Eq. (3.5.141) for the function f(ω)/ω which has an extra pole at ω = 0

and a better behavior at ω → ∞. Thus, the real part is given by

Re f(ω)

ω
=

Re f(0)

ω
+

1

π
P

∫ +∞

−∞

dω′ Im f(ω′)
ω′ (ω′ − ω)

(3.5.144)

which is called dispersion relation with one subtraction.

So, the dispersion relation allows us to compute the full scattering amplitude from the

knowledge of its imaginary part and its value at ω = 0 if the subtraction is needed.
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•t0 •s0×4m
2 ×

4m2

×9m2

×9m2 Re(s)

Im(s)

(C)

Figure 3.7: The Cauchy contour C for the amplitude F in the s-plane

3.5.2 Mandelstam dispersion relation

We consider the scattering amplitude F for equal mass spinless particles. Suppose that F

has two poles at s = s0 and at t = t0, the variable u is fixed to the non-pole value u0, with

s+ t+ u0 = 4m2 (3.5.145)

The normal thresholds in the s-channel and t-channel are s = 4m2 and t = 4m2. Then,

the amplitude F has a branch cut for

s ≥ 4m2, t ≥ 4m2. (3.5.146)

.

From Cauchy theorem, we write

F (s, u0) =
1

2π i

∫

C

ds′ F (s′, u0)

s′ − s
(3.5.147)

we assume that F (s′, u0) vanishes if s′ → ∞, i.e. the contribution along the curved part of

the countour C in Fig.(3.7) vanishes by letting its radius goes to infinity. This implies

F (s, u0) = Ps0 + Pt0 +
1

2π i

∫ −∞

−u0

ds′ Ft(s′, u0)

s′ − s
+

1

2π i

∫ +∞

4m2

ds′ Fs(s′, u0)

s′ − s
(3.5.148)
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Ps0 and Pt0 are the contributions from the two poles at s0 = m2 and at s0 = 3m2 − u0,

respectively. Fs and Ft are the discontinuities of F across the two branch cuts [4m2,+∞]

and [4m2,−∞], respectively. Eq. (3.5.148) can be written in more convenient form as

F (s, t, u) = Ps0 + Pt0 +
1

2π i

∫ ∞

4m2

ds′ Fs(s′, t′, u)
s′ − s

+
1

2π i

∫ ∞

4m2

dt′ Ft(s′, t′, u)
t′ − t

(3.5.149)

with s′ + t′ + u = 4m2. Eq. (3.5.149) is the dispersion relation of the amplitude F with

fixed u. Similar dispersion relations can be driven for fixed t and s, in these last two cases

the discontinuity of the amplitude at the u-channel Fu will be involved. We have seen above

that the discontinuity equals to twice of the imaginary part of the amplitude, .i.e

Fs = discF = 2 i ImF (3.5.150)

On top of that, the discontinuity Fs for elastic scattering with

4m2 ≤ s < 9m2, t ≤ 0, u ≤ 0. (3.5.151)

is given by (see Eq.(3.1.27))

Fs(s, t) =
i

(2π)2

√
s− 4m2

8
√
s

∫
dΩF (s, t′)F ∗(s, t′′), (3.5.152)

Similar relation can be derived for the discontinuity in the t-channel (Ft) and u-channel

(Fu), respectively. t′ and t′′ are related the square of the momentum transfer in the first

and the second factor in Eq. (3.1.27).

The discontinuity relations (unitarity) in Eq. (3.5.150) (and similar equations for Ft and

Fu) combined with the dispersion relations in Eq. (3.5.149) (and similar relations for the

t-channel and the s- channel) are called the dynamical equations, since they impose many

restrictions to the amplitude form [48].

To conclude this paragraph, we give the Mandelstam dispersion relation which involves

double dispersion relation [65]:

F (s, t, u) = P +
1

π2

∫ ∫
Fst(s

′, t′)
(s′ − s) (t′ − t)

ds′ dt′ +
1

π2

∫ ∫
Ftu(t

′, u′)
(t′ − t) (u′ − u)

dt′ du′

+
1

π2

∫ ∫
Fus(s

′, u′)
(u′ − u) (s′ − s)

du′ ds′ (3.5.153)

P stands for the poles contribution, Fsisj represent the double discontinuity across cuts in

si- and sj-channels simultaneously (where s1 = s, s2 = t and s3 = u). This relation is valid

for scattering amplitudes of spineless particles in an equal mass theory, where the amplitude

F vanishes as the variables tend to infinity in any direction in the complex plan.

3.5.3 Cutkosky rules

Cutkosky rules provide an elegant expression of the discontinuity across a branch cut starting

from a singularity in the physical region defined by the Landau equations [53, 56]. Let us

consider the scalar Feynamn integral InN in its momentum space representation (it is defined
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above), and let m be the number of internal on-shell momenta and N −m is the number

of the off-shell internal momenta; then the Landau conditions are given by





qi = m2
i for i = 1, · · · ,m

αi = 0 for i = m+ 1, · · · , N
∑N

i=1 αi qi = 0 for i = 1, · · · , N
(3.5.154)

where αi are some complex parameters.

The discontinuity in a given channel across the branch cut is given by

discInN (S) = (2π)m
∫

dnk

(2π)n
Πm
i=1 θ(q

0
i ) δ(qi −m2

i )

ΠN
i=m+1 (q2i −m2

i i λ)
(3.5.155)

the role of the δ function is to put the particles corresponding to the intermediate state on

their mass shell. In general, the propagator is given by the principle value P

1

q2i −m2
i + i λ

= P
1

q2i −m2
i

∓ i π θ(q0i ) δ(q
2
i −m2

i ) (3.5.156)

Then, the cut propagator is obtained by removing its principal value, and replacing it by a

δ function [53, 56]:

1

q2i −m2
i − i λ

→ +i θ(q0i ) δ(q
2
i −m2

i ) (3.5.157)

θ(q0i ) is introduced just to guarantee that the energy component of the momentum qi along

a given propagating direction is positive.

Eq. (3.5.155) is a direct consequence of the unitarity condition satisfied by the individual

Feynman diagrams. It plays a crucial role in the development of powerful techniques to cal-

culate one-loop and beyond scattering amplitudes in field theories, such as the Generalized

unitarity decomposition methods that we will discuss in the next chapter.
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In perturbation gauge theories, one-loop scattering amplitude are calculated by consid-

ering all contributing Feynman diagrams up to one loop order. The number of contributing

Feynman diagrams grows dramatically with the number of the produced particles in the

final state, and the structure of the one-loop integrals becomes much more complicated. To

deal with these difficulties, many techniques of one-loop calculation are developed during

the last few decades. It appears that any one-loop integral can be reduced to a combination

of scalar one-loop integrals with up to four propagators weighted by some coefficients plus a

rational term [67], which means that the full amplitude can be reduced to such decomposi-

tion too[27, 22]. The former approach is called the Feynman diagrammatic approach, where

the reduction is done to each individual one-loop Feynman graphs, and the later approach

is called the unitarity inspired approach, where the full amplitude is reduced at once. The

later approach seems to be more powerful then the former one, since we can take advantage

from the properties of the full amplitudes as the gauge invariance and unitarity (dispersion

relations) 1.

In this chapter, we present two reduction methods based on the Feynman diagrammatic

approach: the Passarino-Veltman reduction and the Golem reduction [67, 69], [19]; and two

reduction methods based on the inspired unitarity approaches: Ossola-Pittau-Papadopoulos

1The full amplitude is a gauge invariant quantity, and it can be deduced from its absorptive by means

of dispersion relations and unitarity. Nevertheless, individual Feynman diagrams are not gauge invariant

quantities, and one has to calculate even the graphs linked to non-physical particles like the ghost for

example. Then the later approach (unitarity inspired) it seems to be much more convenient than the former

one.
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(OPP) and the generalized unitarity cuts [27, 28], [22, 24, 25, 26]. We close this chapter by

presenting an approach uses the tensorial reconstruction at the integrand level (which is a

unitarity inspired approach) and the Golem reduction (which is a Feynman diagrammatic

approach) to improve the unitarity approach for vanishing Gram determinants.

4.1 Feynman diagrammatic approache

Any one loop Feynman integral can be written as a linear combination of scalar one-loop

integral with up to four external legs in n-dimensions (n = 4 − 2ε), and a remnant of the

dimensional regularization called the rational part R. Schematically, we write

InN = c4;j I
n
4;j + c3;j I

n
3;j + c2;j I

n
2;j + c1;j I

n
1;j +R+ O(ε) (4.1.1)

the coefficients ci;j are evaluated in 4-dimensions, Ini;j stands for the i-point master integrals

with i = 1, · · · , 4 and j specifies the combinations of the external momenta building up the

momenta of the master integrals propagators.

The existence of such a reduction is one of the most crucial results of loop calculation

in gauge theories. The origin of this decomposition is related to the Lorentz invariance,

which allows to express tensor integrals in term of invariant form factors and to the nature

of space-time, which allows to reduce a scalar integral of higher number of external legs to

scalar integrals with up to four point at one loop order.

In the next two paragraphs, we present two type of reduction methods based on the

Feynman diagrammatic approach. In the first paragraph, we present the Passarino-Veltman

reduction (PV), which historically is one of the first invented reduction method of one-

loop integrals. In the second paragraph, we present the Golem reduction method which is

designed to avoid the problems induced by Gram determinant spurious singularities.

4.1.1 Passarino-Veltman reduction

The significance of Eq.(4.1.1) is that, any one-loop integral scalar or tensorial can be evalu-

ated once the scalar integrals I4
i;j , the coefficients ci;j in front of them and the rational part

are computed. In PV framework, the basic integrals are given by

In1 (S) =
µ4−n

i π
n
2 rΓ

∫
dnk

D1
, In2 (S) =

µ4−n

i π
n
2 rΓ

∫
dnk

D1D2
,

In3 (S) =
µ4−n

i π
n
2 rΓ

∫
dnk

D1D2D3
, In4 (S) =

µ4−n

i π
n
2 rΓ

∫
dnk

D1D2D3D4
. (4.1.2)

where Di = q2i −m2
i + i λ, qi is defined in Eq.(3.2.62), rΓ = Γ2(1−ε) Γ(1+ε)/Γ(1−2 ε) and

µ is some kinematic invariant introduced to regulate potential divergences at small values

of k.

The integrals In1 , In2 , In3 and In4 traditionally refer to the tadpole, bubble, triangle and

box topologies in n-dimension, respectively. They form a basis in the mathematical sense,

i.e. any one-loop integral can be expressed only in term of these integrals, they are called
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master integrals. For real and complex internal masses, an analytical formula for each

of these integrals is given in refs [66], [67], [68]. To calculate the full N -point integral, it

remains to calculate the coefficients ci,j , which is the main purpose of PV reduction method.

The calculation of individual Feynman diagrams gives rise to tensor integrals with nu-

merators containing powers of the loop momenta. In renormalizable gauge theories, the

rank of these tensors is limited by the number of the external legs. The direct computation

of these tensors is not complicated but it is a bit exhausting. Passarino and Veltman in-

troduced a new way to compute tensorial integrals in [67]. This approach allows to express

any tensor integral in term of scalar integrals up to "4" external legs (master integrals).

The studied tensorial integrals in the paper by Passarino and Veltman are:

A0 =
1

i π
n
2

∫
dn k

1

D1
,

B0;B
µ;Bµν =

1

i π
n
2

∫
dn k

1; kµ; kµ kν

D1D2
,

C0;C
µ;Cµν ;Cµνα =

1

i π
n
2

∫
dn k

1; kµ; kµ kν ; kµ kν kα

D1D2D3
,

D0;D
µ;Dµν ;Dµνα;Dµναβ =

1

i π
n
2

∫
dn k

1; kµ; kµ kν ; kµ kν kα; kµ kν kα kβ

D1D2D3D4
.(4.1.3)

A0, B0, C0 and D0 stand for the scalar integrals with up to four external legs in n-

dimensions, respectively; B{•}, C{•} and D{•} stand for all possible tensorial 2-, 3- and

4-point integrals in n-dimensions, respectively.

In this section, we give just two simple examples of computing one-loop tensor integrals

a la Passarino-Veltman: the tensorial triangles of rank "1" and "2", respectively. These two

examples will be sufficient to give a full illustration of the method and show all possible

problems that we can encounter. For complete description of the method, see [67, 69].

Let us consider the integrals Cµ and Cµν . As a consequence of Lorenz invariance this

two quantities can be written as

Cµ = pµ1 C1 + pµ2 C2, (4.1.4)

Cµν = gµν C00 +

2∑

i,j=1

pµi p
ν
j Cij with C21 = C12, (4.1.5)

where p1 and p2 are two linearly independent momenta, Ci, C00 and Cij with i, j = 1, 2 are

Lorentz invariant quantities, they are called the form factors associated to rank one and

two 3-point functions, respectively. Contracting both sides of Eq.(4.1.4) by p1 and p2 and

using the fact that

k · p1 =
1

2
(f1 +D2 −D1), f1 = m2

2 −m2
1 − p2

1 (4.1.6)

k · p2 =
1

2
(f2 +D3 −D2), f2 = m2

3 −m2
2 − p2

2 − 2p1.p2 (4.1.7)

Then, we obtain the following system of equations in C1 and C2

G{3}
(
C1

C2

)
=

(
R1

R2

)
(4.1.8)
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G{3} is the Gram 2 × 2 matrix defined by

G{3} =

(
p2
1 p1.p2

p1.p2 p2
2

)
(4.1.9)

and the Ri are given by

Ri =

∫
dnk

i πn/2
k · pi

D1D2D3
(4.1.10)

Inserting Eqs. (4.1.6, 4.1.7) in Eq. (4.1.10), the Ri can be written as

R1 =
1

2
(f1C0(1, 2, 3) +B0(1, 3) −B0(2, 3)) (4.1.11)

R2 =
1

2
(f2C0(1, 2, 3) +B0(1, 2) −B0(1, 3)) (4.1.12)

B0 and C0 are the scalar 1- and 2- point function, the numbers "1, 2, 3" between brackets

stand for the labels of the propagators involved in these scalar functions. For example,

B(2, 3) is defined as the integral

B0(2, 3) =

∫
dnk

i πn/2
1

D2D3
(4.1.13)

Solving this system of equations for invertible Gram matrix, we find

(
C1

C2

)
= (G{3})−1

(
R1

R2

)
(4.1.14)

where the inverse of Gram matrix is given by

(G{3})−1 =

(
p2
2 −p1.p2

−p1.p2 p2
1

)

∆2(p1, p2)
, ∆2(p1, p2) = p2

1 p
2
2 − (p1 · p2)

2 (4.1.15)

∆2(p1, p2) is the Gram determinant.

In a similar way, by contracting Eq. (4.1.5) by p1 and independently by p2, and using

Eqs.(4.1.6, 4.1.7). We obtain the following two systems of equations

G{3}
(
C11

C12

)
=

(
R

(c1)
1

R
(c1)
2

)
, G{3}

(
C12

C22

)
=

(
R

(c2)
1

R
(c2)
2

)
. (4.1.16)

with

R
(c1)
1 = (f1C1(1, 2, 3) +B1(1, 3) +B0(2, 3) − 2C00(1, 2, 3))/2 (4.1.17)

R
(c1)
2 = (f2C1(1, 2, 3) +B1(1, 2) −B1(1, 3))/2 (4.1.18)

R
(c2)
1 = (f1C2(1, 2, 3) +B1(1, 3) −B1(2, 3))/2 (4.1.19)

R
(c2)
2 = (f2C2(1, 2, 3) −B1(1, 3) − 2C00(1, 2, 3))/2 (4.1.20)
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B1 is a rank-1 two point function form factor, where Bµ = pµ1 B1. The term C00 can be

expressed in term of Ci, C0 and B0, this can be proved by contracting Cµν in Eq.(4.1.5) by

the metric tensor. We find

C00(1, 2, 3) =
1

2 (n− 2)
(2m2

1C0(1, 2, 3) − f2C2(1, 2, 3) − f1C1(1, 2, 3) +B0(2, 3))

(4.1.21)

At this stage, we showed that the rank r triangle form factors can be expressed in term of

rank r − 1 form factors and sums of rank r − 1 or less bubble form factors. In general, the

Passarino-Veltman procedure reduce the rank r form factors of Feynman integrals with N

external legs to a Feynman integrals form factor of rank r − 1 with N and N − 1 external

legs. By repeating this procedure enough number of times, the original tensor integral will

be expressed only in term of scalar integrals up to 4-point. For integrals with higher num-

ber of external legs (six and higher), this procedure can be used but it requires additional

information since the external momenta are not linearly independent2.

In conclusion, this procedure is the traditional formalism introduced to decompose tensor

integrals in term of scalar integral. However, it is not the most sufficient one since it suffers

from many problems: i) the dramatic growing number of Feynman diagrams with the

number of external legs, ii) the fast growing number of terms in the expression of the

individual integrals with the number of external legs and the rank of the integral. On top

of that, iii) it leads to numerical instabilities due to the vanishing of the spurious Gram

determinant shown above. In the next paragraph, we present another reduction method

which is designed to deal with such spurious singularities and, in principle, it leads to less

complicated expressions.

4.1.2 Golem algebraic reduction method

In this section, we give a short overview of the Golem reduction method, which is one of the

pillars of the automatic one-loop multi-leg amplitudes calculation programs: Golem (and

GoSam) [19, 71, 72, 73] (and [33]).

4.1.2.1 Overview of the method

This method is based on the Feynman diagrammatic approach, i.e. it calculates the full

amplitude from calculating all contributing Feynman graphs. Of course, this increases

the amount of work compared to the unitarity-inspired reduction methods (they will be

shown in the next paragraph), but it enables us to avoid the problem of the spurious

Gram determinants singularity in a mathematical way3. This is done by choosing a specific

set of basic integrals and evaluate each of them numerically from their one-dimensional

2For example, the Gram determinant associated to these integrals vanishes in 4-dimension for N ≥ 6,

see Golem reduction in the next paragraph.
3Actually there are many alternatives to deal with the problems of numerical instabilities induced by the

vanishing of Gram determinants, each of these approaches has its own advantages and inconveniences. i)

Interpolation: apply some kinematic cuts to avoid unsafe regions and extrapolate the result to the problem-

atic regions, this method can give good results in the neighborhood of det(G) = 0 but not for det(G) = 0.

ii) Taylor expansion: expand the reduction coefficients (ci;j) around det(G) = 0. In this alternative, the full
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integral representation in the problematic regions, i.e. regions where the Gram determinants

becomes arbitrary small.

The Golem reduction library can be used as a rescue system by some automatic pro-

grams. In GoSam for example [33], the use of Golem library is limited only to problematic

regions. This is done somehow by reconstructing the numerator of the full amplitude (or

sub-amplitude) by making use of the tensorial reconstruction at the integrand level, and

evaluating the reconstructed amplitude by means of Golem95 library, see the last section of

the current chapter.

The main feature of Golem reduction method is to reduce the scalar or tensorial integrals

by adding and subtracting some terms in such way that the original integral is decomposed

to a finite integral with the same number of propagators, and an infrared divergent integral

with one propagator less (by pinching one propagator). This procedure is repeated several

times until we end up with the wanted end-points of the reduction or what we call the

Golem basic integrals, which does not form a basis in the mathematical sense but they are

redundant integrals. In the Golem framework, we choose the following set:

{
I1(0), I2(0; z), In3 (0; z1, z2, z3), I

n+2
3 (0; z), In+2

4 (0; z1, z2, z3), I
n+4
4 (0; z)

}
(4.1.22)

Where zi stands for Feynman parameters. This basis contains: the 4-point functions in

n+ 2, which are IR and UV finite, the 4-point functions in n+ 4 dimensions which are UV

divergent, the 3-point functions in n + 2 dimensions, the 3-point functions in n dimension

where all possible IR divergences are isolated, and various two and one point functions

for massless configuration the one-point functions are absent). This set provides a very

advantageous way to separate between IR divergent and finite contributions, since all the

IR poles are contained in I4
3 (zi).

The Golem reduction formalism [19, 71, 72, 73] is designed to express any one-loop N-

point Feynman diagram, with up to six external legs, as a linear combination in term of the

set of the redundant basic integrals (4.1.22), and extract the reduction coefficients without

facing any inverse of Gram determinant.

4.1.2.2 Form factors

Let us consider a general N-point tensor integral of rank r in n-dimensions (n = 4 − 2 ε):

In;µ1,...,µr

N (a1, ..., ar;S) =

∫
dnk

i πn/2
qµ1
a1 · · · qµr

ar

ΠN
i∈S (q2i −m2

i + i λ)
(4.1.23)

where qi = k + ri, k is the loop momentum, ri is a combination of external momenta (see

Eq.(3.2.62)) and mi is the mass of the internal line "i", S is an ordered set containing the

labels of the propagators. The tensor integral presented above can be expressed as a linear

calculation is done analytically (of the full amplitude or the individual Feynman diagrams) but the errors

estimation is very complicated. iii) Increasing the machine precision: the use of high multiple-precision is

not convenient in term of CPU time. iv) Golem method: we choose new basis of integrals other than the

master integrals (which is not a basis in the mathematical sense), and we provide a stable one-dimensional

integral representation for each redundant integrals.
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combination of such Lorentz tensors and scalar quantities "AN,r, BN,r, CN,r" called form

factors, i.e. it can be written in the following form

In;µ1,...,µr

N (a1, ..., ar;S) =
∑

j1···jr∈S
[∆•

j1•
· · ·∆•

jr•
]
{µ1···µr}
{a1··· ,ar}A

N,r
j1···jr(S)

+
∑

j1···jr−2∈S
[g•• ∆j•1• · · ·∆

•
jr−2•

]
{µ1···µr}
{a1··· ,ar}B

N,r
j1···jr−2

(S)

+
∑

j1···jr−4∈S
[g•• g•• ∆•

j1•
· · ·∆•

jr−4•
]
{µ1···µr}
{a1···ar} C

N,r
j1··· ,jr−4

(S) (4.1.24)

The shift invariant vector ∆µ
ij is defined as difference of the two propagator momenta qi

and qj (∆µ
ij = rµi − r

µ
j = qµi − q

µ
j ). AN,r is the coefficient of the Lorentz structure containing

only these vectors. BN,r and CN,r are the coefficients of the Lorentz tensors containing one

and two metric tensor, respectively. The square brackets [· · · ]{µ1···µr}
{a1··· ,ar} are interpreted as the

distribution of the r Lorentz indices µi, and the momentum labels ai in all distinguishable

ways to the vectors ∆µi
jai

and the metric tensors. As an example, the scalar, the tensor of

rank one and the tensorial of rank two N-point integrals can be written, respectively, in the

following forms

InN (S) = AN,0(S), (4.1.25)

In,µ1

N (a1;S) =
∑

l∈S
∆µ1

l a1
AN,1l (S), (4.1.26)

In,µ1 µ2

N (a1, a2;S) =
∑

l1,l2∈S
∆µ1

l1 a1
∆µ2

l2 a2
AN,2l1l2

(S) + gµ1 µ2 BN,2(S), (4.1.27)

We notice that, the form factors are independent of the vector ∆, i.e. they are shift

invariant. Actually these form factors are the building blocks of the library Golem95. This

library consist the main subject of these thesis, a detailed study will be given in the next

chapters. In the following, we show how one can express these basic ingredients in terms of

the Golem basic integrals presented above.

Before to close this paragraph, one has to notice that the momentum integrals, the

Feynman parameters and the form factors are related by

In,µ1···µr

N (a1, · · · , ar;S) = (−1)r
[r/2]∑

m=0

(
−1

2

)m N∑

j1···jr−2 m=1

[(g···)
N

m∆•
j1• · · ·∆•

jr•]
{µ1···µr}
{a1···ar}

× In+2m
N (j2 · · · jr−2m;S) (4.1.28)

4.1.2.3 Reduction by subtraction

The tensorial/scalar reduction by subtraction or the so called Golem reduction is an alge-

braic reduction to the form factors introduced above. It is valid for massless as well as

massive (complex masses are supported) amplitudes regularized by any scheme of dimen-

sional regularization, provided that the external legs are living in four-dimensions (as for

t’Hooft-Veltman and dimensional reduction schemes). This reduction is done by adding and
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subtracting some specific terms to be fixed in such way that the original one-loop integral

is separated into two integrals, a finite one with the same number of propagators and the

same rank in space-time with dimensions higher by two than the original one(n+ 2). And

a divergent one in the same dimensions of the original space-time but with one propagator

less and lesser rank. This procedure is repeated several times until when we end up by

expressing all form factors in term of the Golem set of basic integrals. These method was

introduced for the first time in [20], for more detail see [19].

The advantage of this reduction method is that: it leads to a very clean separation

between IR divergent and finite contributions, and allows us to reduce any one loop Feyn-

man graph or amplitude without producing any spurious Gram determinant singularity in

the coefficients, and it generates less terms compared to PV reduction (introduced in the

previous section). In the following, we will show how this reduction works for scalar and

tensorial integrals.

4.1.2.4 Scalar reduction by subtraction

The N -point scalar one-loop integral is given by

InN (S) =

∫
dnk

i πn/2
1

Πj∈S (q2j −m2
j + i λ)

(4.1.29)

this integral can be split into IR and finite parts by making the ansatz

InN (S) =
∑

i∈S
bi(S)

∫
dnk

i πn/2
(q2i −m2

i )

Πj∈S (q2j −m2
j + i λ)

+

∫
dnk

i πn/2
1 −∑i∈S bi(S)(q2i −m2

i )

Πj∈S (q2j −m2
j + i λ)

(4.1.30)

= Idiv(S) + Ifin(S) (4.1.31)

the bi are fixed in such way that this integral is reduced to an IR divergent integral in n-

dimension with one less propagator Idiv ∝
∑

i I
n
N−1, and a finite integral in n+2-dimension

with the same number of propagators Ifin ∝ In+2
N . Then, the first term is a sum of all

reduced integral by pinching all possible propagator "i", this term contains all possible

infrared divergent terms of the original integral, since it is evaluated in n-dimensions. It

can be written as

Idiv =
∑

i∈S
bi(S) InN−1(S \ {i}) (4.1.32)

where InN−1(S \ {i}) stands for a scalar N − 1-point integral in n-dimensions obtained by

pinching the propagator number "i" from the original scalar integral.

After introducing Feynman parameters and making the shift k = l −∑i∈S zi ri, the

numerator of the second term in the right hand side of Eq.(4.1.30) becomes

1 −
∑

i∈S
bi(S)(q2i −m2

i ) = −(l2 +R2)
∑

i∈S
bi(S) +

∑

j∈S
zj [1 −

∑

i∈S
bi(S) {Sij + 2 l · ∆ij}]

(4.1.33)
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by imposing the condition

∑

i∈S
bi(S)Sij = 1, for each j = 1, · · · , N (4.1.34)

the term in the square brackets in Eq. (4.1.33) gives no contribution to the final result since

its remaining part (after imposing the condition (4.1.34)) is linear in l, so it vanishes due

the symmetric integration. Then, the integral Ifin becomes

Ifin(S) = −B(S) Γ(N)

∫ 1

0
Πi∈S dzi δ(1 −

∑

l∈S
zl)

∫
dnl

i πn/2
l2 +R2

(l2 −R2)N

= −B(S) (N − n− 1) In+2
N (S), (4.1.35)

B(S) =
∑

i∈S
bi(S). (4.1.36)

which is proportional to the scalar integral in n+ 2-dimensions, then it is free of IR diver-

gences. For N ≤ 6, the matrix S is invertible, then the bi are given by

bi =
∑

i∈S/{j}
S−1
ki (4.1.37)

we notice that

∑

i∈S
bi(S) = (−1)N+1 det(G)/det(S) (4.1.38)

Important Remarks

-i) For N ≥ 6, B = 0 for external legs in 4-dimension which means that Ifin vanishes. This

implies that, the integrals InN≥6 are reduced to integrals with up to five propagators.

-ii) For N = 5, the finite part is Ifin(S) = −2 εB(S) In+2
5 (S) ∝ O(ε) at one-loop order.

So this contribution can be dropped at one loop order, which means that In5 is reduced to

integrals with up to four propagators, the same thing can said for integrals with N > 5.

-iii) If the matrix S is not invertible, one has to express this matrix in term of the Gram

matrix G and the vectors V
(a)
i introduced in Eq.(3.2.96),

Sij = −G(a)
ij + V

(a)
i + V

(a)
j (4.1.39)

and define the generalized inverse of G by means of the Moore-Penrose generalized inverse

to solve the Eq. (4.1.34) [74]. The results is given in Eqs. (43, 44) in the paper [19].

From the first two remarks, we conclude that by repeating this procedure sufficiently, we

conclude that any N -point one-loop scalar integral can be reduced, ultimately, to integrals

with up to four propagators at O(ε) order.
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4.1.2.5 Tensor reduction by subtraction

The N point rank r tensor integral can be split as

In,µ1···µr

N (a1, · · · , ar;S) =

∫
dnk

i πn/2

[qµ1
a1 +

∑
j∈S C

µ1
j a1

(q2j −m2
i )] q

µ2
a2 · · · qµr

ar

Πi∈S (q2i −m2
i + i λ)

−
∑

j∈S
Cµ1
j a1

∫
dnk

i πn/2

(q2j −m2
j ) q

µ1
a2 · · · qµr

ar

Πi∈S (q2i −m2
i + i λ)

(4.1.40)

the last term is a N − 1 tensor integral of rank r− 1 containing all possible IR divergences

since it is in n = 4 − 2 ε dimensions. The remaining integrals consist the finite part of this

integral (it might be UV divergent), it can be written as

Ifin =

∫
dnk

i πn/2
Aµ1
a1 q

µ2
a2 · · · qµr

ar

Πi∈S (q2i −m2
i + i λ)

, Aµ1
a1

= qµ1
a1

+
∑

j∈S
Cµ1
j a1

(q2j −m2
i ) (4.1.41)

Aµ1
a1 is fixed in such way that this integral is infrared safe, i.e we have to write it in n + 2

dimensions. By introducing the Feynman parameters (zi) and making the shift k → k −∑
i∈S zi ri, we can prove that this integral is IR safe only if this condition is satisfied

∑

j∈
Skj Cµjb = ∆µ

kb (4.1.42)

For invertible S, the solution of this equation is

Cµjb =
∑

j∈
S−1
kj ∆µ

kb (4.1.43)

For not invertible case, this can happen for some exceptional kinematic or for N ≥ 7, the

solution of this equation is not unique. However, an explicit solution can be found using a

similar technique pointed out in remark iii, see ref. [19] for more details.

4.1.2.6 Golem Form factors

In Golem95, one has to implement all form factors present in the reduction of 2-, 3-, 4-, 5- and

6-point integrals. These form factors are expressible in term of Golem set of basic integrals

introduced above. In this description, no inverse of Gram determinant (or the inverse of

its powers) are encountered, which provides a nice starting point for numerical evaluation.

Such determinant appears, once the basic integrals are evaluated analytically or reduced

to the set of master integrals, see below. In problematic regions, these representations

give numerically unstable results. This problem is avoided by providing a one-dimensional

integral representation for each redundant basic integral. In this paragraph, we give some

of the needed form factors to compute one-loop integrals up-to six external legs, for more

details see [19].
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4.1.2.7 Form factors for 3-point integrals

The form factors for the 3-point integrals are

A3,0(S) = In3 (S), (4.1.44)

A3,1
l (S) = −In3 (l;S), (4.1.45)

B3,2(S) = −1

2
In+2
3 (S) (4.1.46)

A3,2
l1 l2

(S) = In3 (l1, l2;S), (4.1.47)

B3,3
l (S) =

1

2
In+2
3 (l;S), (4.1.48)

A3,3
l1 l2 l3

(S) = −In3 (l1, l2, l3;S) (4.1.49)

In term of the master integrals (scalar integral in n-dimensions), these form factors can

expressed as

In3 (l1;S) =
bl1
B

[In3 (S) −
∑

j∈S
bj I

n
2 (S \ {j})] +

∑

j∈S
S−1
l1j
In2 (S \ {j}) (4.1.50)

In3 (l1, l2;S) = −S−1
l1l2
In+2
3 (S) + bl1 (n− 1) In+2

3 (l2;S) +
∑

j∈S
S−1
l1j
In2 (l2;S \ {j}) (4.1.51)

In3 (l1, l2, l3;S) = −S−1
l1l2

In+2
3 (l3;S) − S−1

l1l3
In+2
3 (l2;S) + n bl1 I

n+2
3 (l2, l3;S)

+
∑

j∈S
S−1
l1j
In2 (l2, l3;S \ {j}) (4.1.52)

In+2
3 (S) =

1

B

1

n− 2
[In3 (S) −

∑

l∈S
bl I

n
2 (S \ {j})] (4.1.53)

In+2
3 (l1;S) =

1

B
[bl1 I

n+2
3 (S) +

1

n− 1

∑

j∈S
S−1
jl1
In2 (S \ {j})

− 1

n− 1

∑

j∈S
bj I

n
2 (l1;S \ {j})] (4.1.54)

In+2
3 (l1, l2;S) =

1

nB
[bl1 I

n+2
3 (l2;S) + bl2 I

n+2
3 (l1;S) + In3 (l1, l2;S)

−
∑

j∈S
bj I

n
2 (l1, l2;S \ {j})] (4.1.55)

where li stand for the labels of Feynman parameters, and B = det(G)/det(S) (S and G

are the kinematic and the Gram matrices associated to the 3-point functions).

By iteration, one can express these formulas in term of scalar integrals with trivial nu-

merators (which is completely equivalent to the analytical evaluation). As a consequence of
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this reduction, inverse of Gram determinants up to the third power appear in the expression

of the these form factors4. These determinants (depend only on the external momenta) may

be arbitrary small in some phase space regions, which can hamper the numerical stability.

In next chapter, we will show how we can deal with this problem.

4.1.2.8 Form factors for 4-point integrals

The 4-point form factors are expressed in term the boxes (in n + 2 and n + 4 dimensions)

and the triangles (in n and n+ 2 dimensions), with up to three Feynman parameters,

A4,0(S) = B In+2
4 (S) +

∑

j∈S
bj I

n
3 (S \ {j}) (4.1.56)

A4,1
l (S) = −bl In+2

4 (S) −
∑

j∈S
S−1
jl I

n
3 (S \ {j}) (4.1.57)

B4,2(S) = −1

2
In+2
4 (S) (4.1.58)

A4,2
l1l2

(S) = bl1 I
n+2
4 (l2;S) + bl2 I

n+2
4 (l1;S) − S−1

l1l2
In+2
4 (S)

+
1

2

∑

j∈S
[S−1
jl2
In3 (l1;S \ {j}) + S−1

jl1
In3 (l2;S \ {j})] (4.1.59)

B4,3
l =

1

2
In+2
4 (l;S) (4.1.60)

A4,3
l1l2l3

(S) =
2

3
[S−1
l2l3

In+2
4 (l1;S) + S−1

l1l3
In+2
4 (l2;S) + S−1

l1l2
In+2
4 (l3;S)]

− [bl1 I
n+2
4 (l2, l3;S) + bl2 I

n+2
4 (l1, l3;S) + bl3 I

n+2
4 (l1, l2;S)]

− 1

3

∑

j∈S
[S−1
jl1
In3 (l2, l3;S \ {j}) + S−1

jl2
In3 (l1, l3;S \ {j})

+ S−1
jl3
In3 (l1, l2;S \ {j})] (4.1.61)

C4,4(S) =
1

4
In+4
4 (S) (4.1.62)

B4,4
l1,l2

(S) = −1

2
In+2
4 (l1, l2;S) (4.1.63)

A4,4
l1l2l3l4

(S) = f4,4(l1, l2; l3, l4) + f4,4(l1, l3; l2, l4) + f4,4(l1, l4; l3, l2)

+ f4,4(l2, l3; l1, l4) + f4,4(l2, l4; l3, l1) + f4,4(l3, l4; l1, l2)

+ g4,4(l1; l2, l3, l4) + g4,4(l2; l1, l3, l4)

+ g4,4(l3; l2, l1, l4) + g4,4(l4; l2, l3, l1) (4.1.64)

4 The Golem 3-point basic integrals are proportional det(G{3}) (G{3} is 3-point Gram matrix) as the fol-

lowing: In
3 (l) ∝ 1/ det(G{3}), In

3 (l1, l2) ∝ 1/ det(G{3})2, In
3 (l1, l2, l3) ∝ 1/ det(G{3})3, In+2

3 ∝ 1/ det(G{3}),

In+2
3 (l) ∝ 1/ det(G{3})2, In+2

3 (l1, l2) ∝ 1/ det(G{3})3.
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f4,4(l1, l2; l3, l4) = −1

2
S−1
l1l2

In+2
4 (l3, l4;S) (4.1.65)

g4,4(l1; l2, l3, l4) = bl1 I
n+2
4 (l2, l3, l4;S) +

1

4

∑

j∈S
S−1
jl1
In3 (l2, l3, l4;S \ {j}) (4.1.66)

These form factors are expressed in term of the basic integrals: the 3-point integral in n

dimensions with up the three Feynman parameters in the numerator, the 3-point integral in

n+ 2 dimensions with only one Feynman parameter in the numerator, the 4-point function

in n + 2 dimensions with up three Feynman parameter in the numerator, the 4-point in

n + 4 dimension with only one Feynman parameter in the numerator. As we mentioned

above, these integrals with various 2- and 1-point integrals form the Golem basic integrals,

i.e the endpoints of the reduction. For form factors with N > 4, no additional integrals

are needed, see [19]. Any form factor expressed in term of this basic integrals is free of any

inverse of Gram determinant. However, further reduction of these basic integrals to master

integrals lead to expressions containing negative powers of the Gram determinants (up to

the power 3 for Gram determinants associated to the 3-point functions, and up to the power

4 for the Gram determinant associated to the 4-point functions ).

The 4-point basic integrals can be reduced to the master integrals as the following:

In+2
4 (l;S) =

1

B

{
bl I

n+2
4 (S) +

1

2

∑

j∈S
S−1
jl I

n
3 (S \ {j}) − 1

2

∑

j∈S
bj I

n
3 (l;S \ {j})

}
(4.1.67)

In+2
4 (l1, l2;S) =

2

3B

{
bl1 I

n+2
4 (l2;S) + bl2 I

n+2
4 (l1;S)

− 1

2
S−1
l1l2

In+2
4 (S) +

1

4

∑

j∈S
S−1
jl2
In3 (l1;S \ {j})

+
1

4

∑

j∈S
S−1
jl1
In3 (l2;S \ {j}) − 1

2

∑

j∈S
bj I

n
3 (l1, l2;S \ {j})

}
(4.1.68)

In+2
4 (l1, l2, l3;S) =

1

2B

{
bl3 I

n+2
4 (l1, l2;S) + bl2 I

n+2
4 (l1, l3;S) + bl1 I

n+2
4 (l2, l3;S)

− 1

3

(
S−1
l1l2

In+2
4 (l3;S) + S−1

l1l3
In+2
4 (l2;S) + S−1

l2l3
In+2
4 (l1;S)

)

+
1

6

(∑

i∈S
S−1
il3
In3 (l1, l2;S \ {i}) +

∑

i∈S
S−1
il2
In3 (l1, l3;S \ {i})

+
∑

i∈S
S−1
il1
In3 (l2, l3;S \ {i})

)
− 1

2

∑

i∈S
bi I

n
3 (l1, l2, l3;S \ {i})

}
(4.1.69)

In+4
4 (S) =

1

(n− 1)B
{In+2

4 (S) −
∑

j∈S
bj I

n+2
3 (S \ {j})} (4.1.70)
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In+4
4 (l;S) =

1

nB
{bl In+4

4 (S) + In+2
4 (l;S) −

∑

j∈S
bj I

n+2
3 (l;S \ {j})} (4.1.71)

expressing these integrals in term of only scalar integral lead to expressions containing

inverse of B up to the power 4 (B = −det(G)/det(S), S and G are the kinematical and

Gram matrices associated to the 4-point integrals) 5.

4.1.2.9 Golem basic integrals

It turns out that, the set of basic integrals that allows us to express any one-loop ampli-

tude up to 6-external legs without producing any spurious Gram determinant singularities

consists of the following redundant scalar and tensorial integrals:

{I1(S),

In2 (S), In2 (z1;S), In2 (z1, z2;S),

In3 (S), In3 (z1;S), In3 (z1, z2;S), In+2
3 (S),

In+2
4 (S), In+2

4 (z1;S), In+2
4 (z1, z2;S), In+2

4 (z1, z2, z3;S), In+4
4 (S), In+4

4 (z1;S)}. (4.1.72)

Tensorial integral stands for integrals with Feynman parameters zi in the numerator. This

set of basic integral does not form a basis in the mathematical sense, but it is a chosen

end point of the algebraic reduction. It is fixed that way to avoid the inverse of Gram

determinant from the form factors. We mention that all of these integrals can be expressed

in term of a complete basis called "basis of master integrals", which contain only scalar

integrals in n-dimensions, and fulfills the conditions of a basis in the mathematical sense.

This basis contains

{In1 (S), In2 (S), In3 (S), In4 (S)} (4.1.73)

Expressing the form factors in term of this set of basic master integrals is equivalent to

evaluate them analytically, since this procedure introduces inverse of Gram determinants in

the coefficients in front of these scalar integrals, which may leads to numerical instability

in problematic regions, where the associated Gram determinants become arbitrary small.

However, this basis provides a fast and stable numerical evaluation in large region of phase

space (non problematic region). In this configuration, these integrals are calculated ana-

lytically as we will show in the next chapter. Otherwise, when the Gram determinant is

arbitrary small, one has to express the form factor in term of the basic integrals in Eq.

(4.1.72) and evaluate them numerically from their one-integral representation, since their

analytical formulas lead to the same problems.

Before closing this section, we mention that the tensorial 4-point integrals in Eq. (4.1.72)

can be expressed in term of the scalar integrals

{In+2
4 (S), In+4

4 (S), In+6
4 (S), In+8

4 (S)} (4.1.74)

5The 4-point Golem basic integrals are proportional to as the following: In+2
4 ∝ 1/ det(G{4}), In+2

4 (l) ∝
1/ det(G{4})2, In+2

4 (l1, l2) ∝ 1/ det(G{4})3, In+2
4 (l1, l2, l3) ∝ 1/ det(G{4})4, In+4

4 ∝ 1/ det(G{4})2, In+4
4 (l) ∝

1/ det(G{4})3 .
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So, instead of evaluating all the possible tensorial 4-point basic integrals directly, one has

to calculate only this four scalar integrals and deduce the tensorial ones from the following

relations

In+2
4 (l1, l2, l3;S) = (n+ 1) (n+ 2) (n+ 3) bl1 bl2 bl3 I

n+8
4 (S)

− (n+ 1)

(
S−1
l1 l2

bl3 + S−1
l1 l3

bl2 + S−1
l2 l3

bl1

)
In+6
4 (S)

+
(n+ 1) (n+ 2)

3

∑

j∈S

(
S−1
j l1

bl2 bl3 + S−1
j l2

bl1 bl3 + S−1
j l3

bl1 bl2

)
In+6
4 (S \ {j})

− 2

3

∑

j∈S

(
S−1
l1l2

S−1
jl3

+ S−1
l1l3

S−1
jl2

+ S−1
l2l3

S−1
jl1

)
In+4
3 (S \ {j})

+
n+ 1

6

∑

j∈S

[
(S−1

jl2
bl3 + S−1

jl3
bl2) I

n+4
3 (l1; \{j})

+ (S−1
jl1
bl3 + S−1

jl3
bl1) I

n+4
3 (l2; \{j})

+ (S−1
jl1
bl2 + S−1

jl2
bl1) I

n+4
3 (l3; \{j})

]

1

3

∑

j∈S

(
S−1
jl1
In+2
3 (l2, l3;S \ {j})

+ S−1
jl2
In+2
3 (l1, l3;S \ {j}) + S−1

jl3
In+2
3 (l1, l2;S \ {j})

)
(4.1.75)

In+2
4 (l;S) = (n− 1) bl I

n+4
4 (S) +

∑

j∈S
S−1
jl I

n+2
3 (S \ {j}) (4.1.76)

In+4
4 (l;S) = (n+ 1) bl I

n+6
4 (S) +

∑

j∈S
S−1
jl I

n+4
3 (S \ {j}) (4.1.77)

In+2
4 (l1, l2;S) = −S−1

l1 l2
In+4
4 (S) + n (n+ 1) bl1 bl2 I

n+6
4 (S)

+
n

2

∑

j∈S

(
bl1 S−1

j l2
+ bl2 S−1

j l1

)
In+4
3 (S \ {j}

+
1

2

∑

j∈S

(
S−1
j l1

In+2
3 (l2;S \ {j}) + S−1

j l2
In+2
3 (l1;S \ {j}

)
(4.1.78)

4.2 Unitarity inspired approach

From Feynman diagrammatic approach presented in the previous sections, we have shown

that any one-loop Feynman diagram can be reduced to a combination of boxes, triangles,

bubbles, tadpoles and a rational terms. As a consequence, a full one-loop scattering ampli-

tude in n dimension An
N (a sum of Feynman diagrams up to N point) can be also reduced

to the same set of basis integrals,

An
N (k̄) = c̃4;j I

n
4;j + c̃3;j I

n
3;j + c̃2;j I

n
2;j + c̃1;j I

n
1;j + R̃+ O(ε) (4.2.79)
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where Ini;j are the same basis integrals introduced in Eq.(4.1.1), c̃j;j and R̃ are the coefficients

and the rational term corresponding the full amplitude An
N (k̄).

In this section, we give a brief presentation of two types of unitarity based reduction

method: the OPP and the Generalized unitarity cuts.

4.2.1 OPP method

The OPP (Ossola-Papadopoulos-Pittau) reduction method is a method designed to reduce

any one-loop amplitude for arbitrary scattering process at the integrand level. It requires a

minimum information about the form of the one-loop amplitude and enables us to extract

the coefficients of the 1-, 2-, 3- and 4-point basis integrals numerically in a very efficient

way with the possibility to fully construct the rational term [27, 28, 29].

4.2.1.1 Numerator parameterization

The integrand of an arbitrary N -point one-loop amplitude or a one-loop (sub) amplitude

in n dimensions can be written as

A(k̄) =
N (k)

D̄0 D̄1 ...D̄N−1
with D̄i = (k̄ + ri)

2 −m2
i and r0 6= 0 (4.2.80)

with k̄ = k + k̃, where the objects k̄, k and k̃ are living in n, 4 and −2 ε dimension.

Using the fact that the full amplitude can be written as a combination of at most 4-point

scalar integrals implies that the numerator schematically can be expressed in the following

form

N (k) =

N−1∑

i0<i1<i2<i3

[d(i0 i1 i2 i3) + d̃(k; i0 i1 i2 i3)] Π
N−1
i6=i0,i1,i2,i3 D̄i

+
N−1∑

i0<i1<i2

[c(i0 i1 i2) + c̃(k; i0 i1 i2)] Π
N−1
i6=i0,i1,i2 D̄i

+
N−1∑

i0<i1

[b(i0 i1) + b̃(k; i0 i1)] Π
N−1
i6=i0,i1 D̄i

+

N−1∑

i0

[a(i0) + ã(k; i0)] Π
N−1
i6=i0 D̄i

+ P̃ (k) ΠN−1
i D̄i (4.2.81)

where i0, i1, · · · , iN stands for the labels of the propagators.

The quantities d(i0 i1 i2 i3), c(i0 i1 i2), b(i0 i1) and a(i0) are the coefficients of all possible

scalar 4-point, 3-point, 2-point and 1-point integrals, respectively. The k-dependent terms

d̃, c̃, b̃ and ã are the so called spurious coefficients, they are defined in such way that

they vanish during integration [27]. In Eq. (4.2.81), the k’s momentum are living in 4-

dimension, this allows to compute the 4-dimensional quantities which constitute the most

difficult part. The remaining quantities living in −2 ε-dimension are quite straightforward
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to calculate, they will be given in the end of this paragraph. As the 4-, 3-, 2- and 1-point

scalar functions are known, it remains to calculate their associated coefficients. This is done

by computing the numerator several times for a well chosen set of k values and reverse the

obtained system to extract these coefficients. Two problems appear during the calculation,

first the explicit formula of the spurious terms is required, secondly the growing size of the

system which should be feasible. For example, for one-loop integral with 6 propagators, a

system of 56×56 matrix has to be inverted due to the existence of 56 independent one-loop

scalar integrals. To solve this problem, one has to choose a special values for k in such way

that the propagators associated to the coefficients d, c, b or a in the numerator presented

above vanish, which leads to triangular system of equation as we will see later on.

4.2.1.2 Constructing of the spurious terms

To be able to construct the coefficients d, c, b and a, we should know the general explicit

k-dependence of the spurious terms. To do so, we express any k in N (k) in term of a

convenient basis of massless vectors lµi

kµ = −rµ0 +
4∑

i=1

xi l
µ
i l2i = 0 (4.2.82)

where the 4-vectors l1 and l2 satisfy the relations

k1 = l1 + α1 l2, k2 = l2 + α2 l1 with ki = ri − r0. (4.2.83)

and in term of the spinorial notation, the 4-vectors l3 and l4 are given by

lµ3 =< l1|γµ|l2], lµ4 =< l2|γµ|l1], with (l3 · l4) = −4 (l1 · l2). (4.2.84)

where xi, αi are some complex parameters.

By inserting the decomposition of the 4-dimensional vector k (Eq. (4.2.82)) in the Eq.

(4.2.81), the coefficients xi will reconstruct denominators, which give rise to coefficients d,

c, b and a or they will give rise to the spurious terms d̃, c̃, b̃ and ã, which will vanish upon

integration.

For example, we insert Eq. (4.2.82) in the quantity N (3)(k), which is the numerator of the

term containing the denominators Di0Di1Di2Di3 (this numerator is at most a tensor of rank

4 in renormalizable gauge theories). Ultimately, this quantity can be expressed as

N (3)(k) = d(i0, i1, i2, i3) + d̃(k; i0, i1, i2, i3) +

i3∑

i=i0

O(D̄i) + O(k̃2)

= d(i0, i1, i2, i3) + d̃(i0, i1, i2, i3) T(k) +

i3∑

i=i0

O(D̄i) + O(k̃2) (4.2.85)

Then, the explicit k-dependance of the scalar box spurious coefficients d̃(k; i0, i1, i2, i3) is

d̃(i0, i1, i2, i3) Tr[(6 k+ 6 r0) 6 l1 6 l2 6 k3γ5] (4.2.86)
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d̃ is a k-independent quantity, this vanishes upon integration since

∫
dnq

Tr[(6 k+ 6 r0) 6 l1 6 l2 6 k3γ5]

Di0Di1Di2Di3

= 0 (4.2.87)

This term is the only vanishing quantity upon integration and the only k-dependent quan-

tity associated to the box, see the demonstration in "theorem 1" page 7 in ref. [27].

Following the same reasoning as in the case of 4-point functions, one can prove that

the spurious terms corresponding to the 3-point, 2-point and 1-point functions contain six,

eight and four terms, respectively. For more details, see ref. [27].

At this stage, the extraction of the coefficients of the scalar integrals can be done alge-

braically by evaluating the full amplitude numerator N (q) for a well chosen set of values of

the integration momentum k. This particular choice of k value, requires the vanishing of 4,

3, 2, 1 denominators to reduce the problem to the solution of a triangular system.

4.2.1.3 Extraction the coefficients

To extract the the coefficients of the scalar functions, we can work in 4-dimensions. So,

we set everywhere k̃ = 0 and D̄i → Di = (k + ri)
2 − m2

i . The errors generated by this

approximation, is put at the rational contribution to the amplitude. This contribution will

be calculated in the next paragraph.

To extract the coefficient of the 4-point function, one can select k such that (from now

on we replace the labels ij → j)

D0 = D1 = D2 = D3 = 0 (4.2.88)

this choice kills all the terms containing the coefficients "c + c̃", "b + b̃", "a + ã" and

"P̃" and keep only the term containing d + d̃ in the numerator Eq. (4.2.81). We put

kµ = −rµ0 +
∑4

i=1 xi l
µ
i , we obtain this system of equation in xi

0 = γ (x1 x2 − 4x3 x4) − d0, γ = (k1 · k2) ±
√

∆,

0 = d0 − d1 + γ (x1 α1 + x2), ∆ = (k1 · k2)
2 − k2

1 k
2
2,

0 = d0 − d2 + γ (x2 α2 + x1), αi = k2
i /γ,

0 = d0 − d3 + 2 [x1 (k3 · l1) + x2 (k3 · l2) + x3 (k3 · l3) + x4 (k3 · l4)], di = m2
i − k2

i ,

(4.2.89)

Two possible solutions on k are found

(k±0 )µ = −rµ0 + x0
1 l
µ
1 + x0

2 l
µ
2 + x±3 l

µ
3 + x±4 l

µ
4 (4.2.90)
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with

x0
1 =

β

γ
[d2 − α2 d1 − d0 (1 − α2)], β = 1/(1 − α1 α2),

x0
2 =

β

γ
[d1 − α1 d2 − d0 (1 − α1)], A = −k3 · l3/k3 · l4,

0 = Ax±2
1 +B x±3 − C, B = (d3 − d0 − 2x0

1 (k3 · l1) − 2x0
2 (k3 · l2))/(2 k3 · l4),

x±4 = C/x±3 , C = (x0
1 x

0
2 − d0/γ)/4, (4.2.91)

To determine d and d̃, the two solutions k±0 are needed, we write

N (k±0 ) = [d(i0i1i2i3) + d̃(i0i1i2i3) Tr(k±0 )] Πi6=0,1,2,3Di(k
±
0 ) (4.2.92)

we have two equations with two unknowns, the solution is simply given by

d(i0i1i2i3) =
1

2
[R(k+

0 ) +R(k−0 )], (4.2.93)

d̃(i0i1i2i3) =
1

2

R(k+
0 ) −R(q−0 )

T (k+
0 )

, with R(k±) =
N(k±0 )

Πi6=0,1,2,3Di(k
±
0 )

(4.2.94)

The same strategy is adopted to extract the coefficients of the 3-, 2- and 1-point functions

where k is fixed in such way that D0 = D1 = D2 = 0, D0 = D1 = 0 and D0 = 0 to

determine "c, c̃", "b, b̃", and "a, ã", respectively. We mention that, to extract c-coefficients,

d-coefficients are needed and to extract b-coefficients the d- and c-coefficients are needed

and so on [27].

4.2.1.4 Rational terms

In the previous calculation, we have assumed that k̃2 = 0, which is sufficient to determine

the 1-, 2-, 3- and 4-point coefficient but the rational part is missing. The rational part are

computed by reintroduced k̃2 in the scalar integral coefficients by making the mass shift

m2
i −→ m2

i − k̃2 (4.2.95)

In renormalizable gauge theories, the only possible non vanishing contribution coming from

the extra integrals are
∫
dnk̃

k̃4

D̄i D̄j D̄k D̄l
= − i π

6
+ O(ε) (4.2.96)

∫
dnk̃

k̃2

D̄i D̄j D̄k
= − i π

2

2
+ O(ε) (4.2.97)

∫
dnk̃

k̃2

D̄i D̄j
= − i π

2

2

[
m2
i +m2

j −
(pi − pj)

2

3

]
+ O(ε). (4.2.98)

From this shift, the coefficients of the master integrals get the k̃ dependence as

d(k̃2; ijkl) = d(ijkl) + k̃2 d(2)(ijkl) + k̃4 d(4)(ijkl) (4.2.99)

c(k̃2; ijkl) = c(ijkl) + k̃2 c(2)(ijkl) (4.2.100)

b(k̃2; ijkl) = b(ijkl) + k̃2 b(2)(ijkl) (4.2.101)
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Then, d(4)(ijkl), c(2)(ijkl) and b(2)(ijkl) are the coefficients of the extra-integrals in Eqs.

(4.2.99, 4.2.100, 4.2.101). These can be calculated either numerically

d(4)(ijkl) = lim
k̃2→∞

d(k̃2; ijkl)

k̃4
, (4.2.102)

c(2)(ijk) = lim
k̃2→∞

c(k̃2; ijk)

k̃2
, (4.2.103)

b(2)(ij) = lim
k̃2→∞

b(k̃2; ij)

k̃2
. (4.2.104)

or solving numerically the systems obtained by Eqs.(4.2.99, 4.2.100, 4.2.101) for different

values of the k̃2, where the result is

d(4)(ijkl) =
d(1; ijkl) + d(−1; ijkl) − 2 d(ijkl)

2
, (4.2.105)

c(2)(ijk) = c(1; ijk) − c(ijk), (4.2.106)

b(2)(ij) = b(1; ij) − b(ij). (4.2.107)

where the term containing d(2) vanishes upon integration, so no need to calculate them.

Hence, the rational terms are calculated.

This method is implemented in several reduction libraries as SAMURAI and CutTools[70, 75]

4.2.2 On-shell reduction method

To deduce some properties of the amplitude, we will use two great principles of quantum

physics: the unitarity and the causality. The unitarity is a consequence of the probability

conservation, it is translated by this equation

S S+ = S+ S = 1 (4.2.108)

The unitary operator S, or the diffusion matrix S, is one of the fundamental pillar of the

perturbative quantum field theory. It describes the transition from an initial state |i > to

a final state |f >, where the initial and the final states are taken at time t → −∞ and

time t → +∞, respectively. The probability to get the system in the state |f >, when

the system was in the state |i > is given by | < i|S|f > |2, so, the unitarity nature of S

is a consequence of the probability conservation, which is a constitutional demand of any

consistent quantum field theory.

It is very useful to write this operator in term of the transition matrix T ,

Sfi = δfi + i Tfi

= δfi + i (2π)4 δ4(pf − pi)Afi with Tfi = (2π)4 δ4(pf − pi)Afi

(4.2.109)

Afi is the transition amplitude from state |i > to state |f >. Using the fact that S is

unitary, one can write

− i (A−A+) = AA+ (4.2.110)
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which leads to this very important relation

2 Im(Afi) =
∑

j

Ajf A+
fi (2π)4 δ(pi − pj) δ(pj − pf ) (4.2.111)

Eq. (4.2.111) called the optical theorem. It allows us to write the imaginary part of the

transition amplitude as an explicit sum of the amplitude over all intermediate physical

states |j > defined by A+ and A. This sum is translated by a phase space integral over the

intermediate momentum and a desecrate sum over allowed particles.

The left hand side of Eq. (4.2.111) gives the absorptive part of the amplitude which corre-

sponds to discontinuity in the amplitude. The right hand side, can be obtained from cutting

the one loop amplitude. So, this leads to the amazing results: The imaginary part of the

one-loop amplitude can be calculated by cutting two propagators of the loop

4.2.2.1 Generalized unitarity

Let’s consider, for instance, an amplitude depends only on the invariant "s = (p1 + p2)
2".

The adjacent propagators of s channel are denoted by q1 and q2, see Fig.(4.1). s0 is the

energy threshold which correspond to a branch cut of the amplitude on s. In another way,

it defines when the process

p1 + p2 → q1 + q2 (4.2.112)

can happen. If s < s0, no physical processes can occur since the propagators are off the

Figure 4.1: Optical theorem

mass-shell. Hence, the amplitude is analytical along the real axis. Otherwise, if s > s0, the

propagator can be in the mass-shell and the amplitude is not any more analytical along the

real axis. The discontinuity along the real axis is (see previous chapter)6

DiscsA = lim
λ→0+

i [ImA(s+ i λ) − ImA(s− i λ)]

= 2 i ImA(s) (4.2.113)

6In general, we have more than one invariant. Then, the imaginary part of the amplitude is given by:
Pm

i=1 Discsi
A(s1, ..., sm) = 2 i ImA(s1, ..., sm), where s1, · · · , sm are all the invariants of the diagram, see

[80].
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By applying the cutkosky rules (chapter 3), the discontinuity of the amplitude along the s

channel is reduced to the calculation of two tree level amplitudes as the following.

Discs = (2π)2
∫

dnk

(2π)n
i

D2
1

Aq1+q2→p3+...+pn

i

D2
2

Ap1+p2→q1+q2

∣∣∣∣
s

(4.2.114)

= (2π)2
∫

dnQ

(2π)n
δ+(D2

1)Aq1+q2→p3+...+pn δ
+(D2

2)Ap1+p2→q1+q2 (4.2.115)

where Aq1+q2→p3+...+pn and Ap1+p2→q1+q2 are the tree level diagrams given by the corners

of the diagram (or the amplitude) in Fig.(4.1), D1 and D2 are the cut propagators, they are

defined as: Di = q2i −m2
qi for i = 1, 2 (mqi is the mass of the particle carrying the momenta

qi).

From the optical theorem, this discontinuity give the absorptive part of the amplitude.

The dispersive part of the amplitude can be calculated from this part (absorptive) by

means of the dispersion relation. This result is one of the crucial results of loop calculation

in quantum field theory.

We have seen in the beginning of this chapter that any one loop amplitude can be

expressed as a combination of scalar integrals weighted by the same coefficients. Then the

discontinuity of the amplitude can be expressed as combination of the discontinuity of the

scalar basic integrals weighted by some coefficients, i.e.

Discsi An
N (k̄) = c̃4;j Discsi I

n
4;j + c̃3;j Discsi I

n
3;j + c̃2;j Discsi I

n
2;j + c̃1;j Discsi I

n
1;j (4.2.116)

In the following, we apply this results to calculate the coefficients of the scalar integrals.

4.2.2.2 One loop integral coefficients

In practice, one can compute the imaginary part of the one-loop amplitude (the absorptive

part of the amplitude) directly by means of the Cutkosky rules presented in the previous

chapter. The real part of the amplitude (or the dispersive part) is then reconstructed from

the absorptive one by means the desperation relation, thanks to unitarity and causality.

In this paragraph, we show how one can calculate the coefficients of the 4-, 3-, 2- and

1-point scalar basic integrals and the rational term of the amplitude decomposition given in

Eq.(4.2.79); from the discontinuity of the amplitude in the framework of Cutkosky cutting

rules in 4-dimensions, and the rational term from the on-shell recursion relations[22, 24, 25,

26]. To the decomposition coefficients, we follow the ref. [22].

- a) Quadruple cuts

To determine the coefficient of the box, one has to make quadruple cut as shown in Fig.(4.2).

We mean by "Cutting a propagator": removing its principles value and replace it by a delta

function δ(+)(P 2), where in Minkowski space the propagator is given by

1

(D2
i + i ε)

= 1/D2
i + δ(+)(D2

i ) (4.2.117)

In this case, all the internal propagators are crossed by cuts, i.e. all the internal particles

are on the mass shell Fig.(4.2). Hence, each cut propagator is replaced by delta function as
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Figure 4.2: A quadruple cut

the following

i

q2i −m2
i

→ (2π) δ(q2i −m2
i ) (4.2.118)

The cut conditions of each internal leg implies,

k2 −m2
1 = 0, (k + p1)

2 −m2
2 = 0,

(k + p1 + p2)
2 −m2

3 = 0, (k − p4)
2 −m2

4 = 0. (4.2.119)

In four dimensions, the constraints in Eq.(4.2.119) determine completely the momentum

circulating in the loop (k) which, in general, has two complex conjugate solutions k±. The

coefficient c̃4;j associated to the box is obtained by pasting together the tree level diagrams

obtained by cutting this box in four parts, see Fig.(4.2).
∫

d4 k

(2π)4
δ(k2 −m2

1)A
(j)
1 δ((k + p1)

2 −m2
2)A

(k)
2 δ((k + p1 + p2)

2 −m2
3)

A
(j)
3 δ((k − p4)

2 −m2
4)A

(j)
4

= c̃4;j Dicsi I
4
4

= c̃4;j

∫
d4 k

(2π)4
δ(k2 −m2

1) δ((k − p1)
2 −m2

2) δ((k + p1 + p2)
2 −m2

3)

δ((k − p4)
2 −m2

4) (4.2.120)

Hence, the coefficient of box equals to the average of the product of the tree level amplitudes

evaluated at k±, we write [22],

c̃4;j =
i

2

∑

±
A

(j)
1 (k±)A

(j)
2 (k±)A

(j)
3 (k±)A

(j)
4 (k±) (4.2.121)

where A
(k)
n , i = 1, · · · , 4 are the tree level amplitudes at the corner of the box in Fig.(4.2)

with the total momentum Ki. We notice that the system of equations in Eq. (4.2.119) is

solve by parametrizing the cut loop momentum as the following ([22]): we introduce two

massless momenta Kb
1 and Kb

2 in such way that the two adjacent external momenta p1 and

p2 are given by

p1 = Kb
1 +

S1

γ12
Kb

2, p2 = pb2 +
S2

γ12
Kb

1 (4.2.122)
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where

S1 = p1 · p1, S2 = p2 · p2, (4.2.123)

γ12 = 2Kb
1 ·Kb

2 = p1 · p2 ±
√

∆(p1, p2), (4.2.124)

∆(p1, p2) = (p1 · p2)
2 − S1 S2. (4.2.125)

For non vanishing ∆(p1, p2), one can introduce the massless vectors

aµ1 = Kb µ
1 , aµ2 = Kb µ

2 , (4.2.126)

aµ3 =< Kb−
1 |γµ|Kb−

2 >, aµ4 =< Kb−
2 |γµ|Kb−

1 > . (4.2.127)

and express the loop momenta as

kµ = α1 a
µ
1 + α2 a

µ
2 + α3 a

µ
3 + α4 a

µ
4 (4.2.128)

one can prove that k has two solution k± where

α1 =
S2 (γ12 − S1) + (γ12 − S2)m

2
1 − γ12m

2
3 + S2m

2
2

γ2
12 − S1 S2

, (4.2.129)

α2 =
S2 (γ12 − S2) + (γ12 − S1)m

2
1 − γ12m

2
2 + S1m

2
3

γ2
12 − S1 S2

, (4.2.130)

α3 = −
β3 ±

√
β3 − 2β4 Tr(6 Kb

1 6 p4 6 Kb
2 6 p4)

2 < Kb−
1 | 6 p4|Kb−

2 >
, (4.2.131)

α4 =
β4

4α3
. (4.2.132)

with

β3 = 2 (α1 − 1)Kb
1 · p4 + 2 (α2 −

S1

γ12
)Kb

2 · p4 − S4 +m2
4 −m2

2, (4.2.133)

β4 = α1 α2 −
m2

1

γ12
. (4.2.134)

It seems that k has four solutions but one can prove that

kµ(γ+
12, α

+
3 ) = kµ(γ−12, α

−
3 ), kµ(γ+

12, α
−
3 ) = kµ(γ−12, α

+
3 ). (4.2.135)

then there are only two solutions for k.

- b) Triple cuts

To extract the scalar triangle coefficients, one has to use triple cuts to the one loop am-

plitude. In this case, we gets contributions from the triangle topologies and from the box

topologies, since this later one can have three cuts. The contribution from the box is the

main source of complication in extracting the triangle coefficients. So, one has to subtract

this non needed contributions and impose the following three cut conditions (see [23])

k2 −m2
1 = 0, (k − p1)

2 −m2
3 = 0, (4.2.136)

(k + p2)
2 −m2

2 = 0, (4.2.137)
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Figure 4.3: A Triple cut

these condition are not sufficient to fix the loop momentum k which must have an uncon-

strained degrees of freedom. k can be parametrized as

kµ = α1 a
µ
1 + α2 a

µ
2 +

t

2
aµ3 +

α4

2 t
aµ4 (4.2.138)

with

α1 =
S2 (γ12 − S1) + (γ12 − S2)m

2
1 − γ12m

2
3 + S2m

2
2

γ2
12 − S1 S2

, (4.2.139)

α2 =
S2 (γ12 − S2) + (γ12 − S1)m

2
1 − γ12m

2
2 + S1m

2
3

γ2
12 − S1 S2

, (4.2.140)

α4 = α1 α2 −
m2

1

γ12
. (4.2.141)

The cut triangle in Fig.(4.3) is given by

c̃3;j I3;j = i

∫
d4k

(2π)4
A

(j)
1 (p1; k)A

(j)
2 (p2; k)A

(j)
3 (p3; k)

(k2 −m2
1) ((k − p1)2 −m2

2) ((k + p2)2 −m2
3)

→ i (−2π i)3
∫

d4k

(2π)4
A

(j)
1 (K1; k)A

(j)
2 (K2; k)A

(j)
3 (K3; k)

× δ(k2 −m2
0) δ((k −K − 1)2 −m2

1) δ((k +K2)
2 −m2

2)

= i (−2π i)3
∫

dt

(2π)4
JtA

(j)
1 (t)A

(j)
2 (t)A

(j)
3 (t), (4.2.142)

where Jt is the Jacobian of the transformation from the momenta k (constrained by the δ

functions) to the remaining free parameter t.

In the and of the day, one can prove

c̃3;j = i (−2π)3
∫

dt

(2π)4
Jt

([
InftA

(j)
1 A

(j)
2 A

(j)
3

]
(t) +

∑

{k}

[
Rest=tk A

(j)
1 A

(j)
2 Aj3

t− tk

])

(4.2.143)
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with

limt→∞([InftA1A2A3](t) −A1(t)A2(t)A3(t)) = 0. (4.2.144)

see section V. in ref. [22].

- c) Double cuts

The cuts defining the bubble topologies are

k2 −m2
1 = 0, (k + p1)

2 −m2
2 = 0, (4.2.145)

These cuts are satisfied by the bubbles, triangles and boxes. The last two contribution are

Figure 4.4: A double cut

defined above, so one can isolate them and extract the contribution from the pure bubble.

The parameterization of the loop momentum is given by equations (51) and (52) in [22].

The cut babble in Fig.(4.4) is given by the integral

c̃2;j I2;j = i

∫
d4k

(2π)4
A

(j)
1 (p1; k)A

(j)
2 (p2; k)

(k2 −m2
1) ((k − p1)2 −m2

2)

→ i (−2π i)2
∫

d4k

(2π)4
A

(j)
1 (p1; k)A

(j)
2 (p2; k)

× δ(k2 −m2
1) δ((k − p1)

2 −m2
2)

= i (−2π i)2
∫

dt dy

(2π)4
Jt,y A

(j)
1 (t, y)A

(j)
2 (t, y), (4.2.146)

where Jt,y is the Jacobian of the transformation from the momenta k (constrained by the δ

functions in Eq.(4.2.145)) to the two remaining free parameter t and y.

In the and of the day, one can prove

c̃2;j = i (−2π)2
∫

dt dy

(2π)4
Jt,y A

(j)
1 (t, y)A

(j)
2 (t, y)

→ i (−2π)2
∫

dt dy

(2π)4
Jt,y

([
Infy [Inft A

(j)
1 A

(j)
2 ]

]
(t, y) +

[
Infy

∑

{k}

[
Rest=tk A

(j)
1 A

(j)
2

t− tk

]]
(y)

+
∑

{j}

[
Resy=yj [InftA

(i)A
(i)
2

1 ](t)

y − yj

]
+
∑

{j}

[
Resy=yj

∑
{k}

[Rest=tk
A

(i)
1 A

(i)
2 ]

t−tk
y − yj

]
(4.2.147)
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Figure 4.5: A Single cut

- c) Single cut

In this case, the only constraint on the loop momenta is

k2 −m2 = 0. (4.2.148)

In a similar way, one finds that

c̃1;j = i

∫
d4k

(2π)4
A(j)(k)

k2 −m2

→ (−2π i)

∫
d4k

(2π)4
A(j)(k) δ(k2 −m2)

= (−2π i)

∫
dt dy dw

(2π)4
Jt,y,w A

(j)(t, y, w) (4.2.149)

where Jt,y,w is the Jacobian of the transformation from the momenta k (constrained by the

δ functions in Eq.(4.2.148)) to the three remaining unconstrained parameter t, y and w.

The explicit formula of c̃1;j is given in [22].

4.3 Improving the unitarity method with respect to det(G)

problems

In the previous sections, we showed several reduction methods of one loop amplitudes, all of

them are based on the Feynman diagrammatic approach or the unitarity inspired methods.

Each of these methods has its own advantages and disadvantages. For example, the weak-

ness of Golem reduction, which is based on the Feynman diagrammatic approach, is the

increasing number of one-loop Feynman diagrams with the number of produced particles in

the final state (to calculate the amplitude of the process g g → t t̄ b b̄ at NLO order for exam-

ple, one has to calculate more than 1000 one-loop diagram); but it provides numerical stable

results in problematic regions (where the Gram determinant becomes arbitrary small) in a

very efficient way. On the contrary, OPP method, which is a unitarity inspired approach,

decreases the amount of work since it does not require the calculation of all contributing

Feynman diagrams, but it needs a very high multi-precision to avoid the numerical insta-

bility problems induced by the Gram determinants [70], which needs a longer CPU time.

In this paragraph, we present another approach of one-loop amplitude reduction obtained

by reconstructing the tensorial expressing of the amplitude at the integrand level, and re-

ducing such tensorial integrals by means of Golem reduction to avoid the problem of the

spurious Gram singularities.
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4.3.1 Tensor reconstruction at the integrand level

A general N -point one-loop amplitude in n-dimensions is given by

An
N =

∫
dnk̄

N(k̄, ε)

D̄0 D̄1 ...D̄N−1
, D̄i = (k + pi)

2 −m2
i − µ2

6 k̄ =6k+ 6µ (4.3.150)

The bar stands for objects living in n = 4 − 2ε dimensions. The main idea of this method

is to re-write the denominator N(k̄) as a linear combination of tensors of ranks with up to

the maximum power of the integration momenta k. Hence, the full amplitude is reduced

to as sum of tensorial integrals weighted by some coefficients. Once the tensor coefficients

are defined, one can express each of these tensor integrals in term of Golem set of basic

integrals. In the following, we show how to build numerically the tensorial representation

from the numerator of the original amplitude [32].

In 4-dimensions, the numerator can be written

N(k) =
R∑

r=0

Cµ1···µr kµ1 · · · kµr (4.3.151)

where R is the highest power of the loop momentum in the numerator, and it stands also to

the highest rank of the tensors (in renormalizable gauge theories). For each r, the coefficient

Cµ1···µr forms a contra-variant tensor. Each term of this equation can be written as

Cµ1···µr kµ1 · · · kµr =
∑

(i1,i2,i3,i4)⊢r
Ĉ

(r)
i1,i2,i3,i4

· (k1)
i1 (k2)

i2 (k3)
i3 (k4)

i4 . (4.3.152)

where ki are the components of k (k4 denotes the energy component), the notation (i1, i2, i3,

i4)⊢ r means that the indices ij form an integer partition of r, and each component of C

contributes to one component Ĉ
(r)
i1,...,i4

, where the total number of independent component

(in 4-dimensions) is given by

nr =

(
4 + r − 1

r

)
=

(r + 3)!

3! r!
(4.3.153)

The components of the coefficients Cµ1···µ3 are calculated numerically by evaluated the nu-

merator for an arbitrary real set of the integration momentum k. One can put k = (x, y, z, w)

and evaluate N(k) = N(x, y, z, w) at different values of (x, y, z, w).

4.3.1.1 The coefficient calculation

The algorithm of coefficient calculation contains four levels:

• At level-0, we put k = (0, 0, 0, 0), this trivially allow us to calculate the constant

term C0 where C0 = N(0, 0, 0, 0).
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• At level-1, we evaluate N (1)(k) = N(k)−N (0) for k with only one non vanishing com-

ponent (k = (x, 0, 0, 0) , k = (0, y, 0, 0), k = (0, 0, z, 0) and k = (0, 0, 0, w)). This gen-

erate a system of 4R equations and 4R unknown tensor components Ci1 , · · · , Ci1 · · · iR
which can be solved numerically.

• At level-2, first we have to subtract from the numerator all terms containing the

calculated 4R+1 coefficients from level 1 and 2. Let’s call the new numerator N (2)(k).

One has to fixe k with two non vanishing components, this lead to six possible choices

of the momentum. Each choice of k leads to a system of R (R − 1)/2 equation with

the same number of unknown coefficients. Hence, all the 3R (R − 1) are completely

defined by solving the six systems of equations.

• At level-3, we call the new numerator constructed after subtracted all the known

coefficients, N (3). The momenta k is fixed with three non vanishing components.

These are four possible choices of k, each one form a system with R (R− 1) (R− 2)/6

equation and the same number of unknowns. Hence, all the 2R (R− 1) (R− 2)/3 are

completely defined by solving the four systems of equations.

• At level-4, k is fixed without any vanishing component. This form a system of

R (R− 1) (R− 2) (R− 3)/24 equations and unknowns.

At this stage, all the (R+3)!
3!R! component of the Cµ1···µr are numerically computed, hence the

numerator is fully reconstructed in 4-dimension without introducing any spurious source of

instabilities.

For example, let’s consider a numerator with two powers of k at most. Then,

N(k) = C0 + Cµ kµ + Cµ ν kµ kν (4.3.154)

The number of the independent components of the coefficients C that has to be defined is:

2∑

r=0

(3 + r)!

3! r!
= 1 + 4 + 10 (4.3.155)

= 15 (4.3.156)

• Level-0: Trivially, the constant term is defined

N (0)(0, 0, 0, 0) = C0 (4.3.157)

• Level-1 we subtract the constant term from N(k), i.e. N (1)(k) = N(k) − N (0), we

get

N (1)(x, 0, 0, 0) = xC1 + x2C11 (4.3.158)

N (1)(0, y, 0, 0) = y C2 + y2C22 (4.3.159)

N (1)(0, 0, z, 0) = z C3 + z2C33 (4.3.160)

N (1)(0, 0, 0, w) = wC4 + w2C44 (4.3.161)
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this system defines the 8 unknown coefficients Ci and Cij . It can be solved by evalu-

ating each polynomial at two different values of k, which determine completely the 8

component Ci and Cii for i = 1, 2, 3, 4 .

• Level-2: we define N (2) such that N (2)(k) = N (1)(k) −∑4
j=1 Cj kj −

∑4
j=1 Cjj k

2
j ,

at the six choices of k, we get

N (2)(x, y, 0, 0) = x y C12 (4.3.162)

N (2)(x, 0, z, 0) = x z C13 (4.3.163)

N (2)(x, 0, 0, w) = xwC14 (4.3.164)

N (2)(0, y, z, 0) = y z C23 (4.3.165)

N (2)(0, y, 0, w) = y wC24 (4.3.166)

N (2)(0, 0, z, w) = z wC34 (4.3.167)

which is quite straightforward to solve, then the 6 component Cij for i, j = 1, 2, 3, 4

and i 6= j are completely defined.

Hence, we have found all the numerical values of the 15 component of the tensor

coefficients. And the numerator in Eq. (4.3.154) is fully reconstructed. From now

on, we denote by < N(q) > the reconstructed numerator in 4-dimensions. It remains

to determine the contribution of µ2-dependance, which is the subject of the next

paragraph.

4.3.1.2 Reconstruction the µ2-dependance

It remains to reconstruct the µ2-dependance, which leads to rational part R (or the contri-

bution to the amplitude calculated in "−2 ε" dimensions). In n dimensions, the numerator

is expanded in term of µ as

N(k̄) = < N(k) > +G(1) µ2 +G(2) µ4 +G(3)
α kα µ2 +G

(4)
αβ k

α kβ µ2 (4.3.168)

where < N(k) > stands for the numerator evaluated in 4-dimensions, the other numerators

are the only terms leading to UV divergences in renormalizable gauge theories.

This decomposition is provided from the fact that, the rational terms are given from the

combination of the n − 4 dimensional terms with UV divergent integrals. We notice that

some term of this decomposition give no contribution to the final result (for example, the

term with G(2) µ2 is excluded by power counting from bubble and triangle diagrams) . But

they may be needed to calculated other non-vanishing contribution since we are working at

the integrand level (for example G(1)µ2
in the box diagram), see [32]. Consequently, for N

denominators with N = 2, 3, 4, the associated numerator NN (k̄) are

N2(k̄) = < N(k) > +G(1) µ2, (4.3.169)

N3(k̄) = < N(k) > +G(1) µ2 +G(3)
α kα µ2, (4.3.170)

N4(k̄) = < N(k) > +G(1) µ2 +G(2) µ4 +G(3)
α kα µ2 +G(4)

αα k
α kα µ2, (4.3.171)
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The necessary integrals to evaluate the rational parts are (see [76, 77, 78, 79])

∫
dnk̄

µ4

D̄i D̄j D̄k D̄l
= − i π

2

6
+ O(ε), (4.3.172)

∫
dnk̄

µ2

D̄i D̄j D̄k
= − i π

2

2
+ O(ε), (4.3.173)

∫
dnk̄

µ2

D̄i D̄j
= − i π

2

2

[
m2
i +m2

j −
(pi − pj)

2

3

]
+ O(ε), (4.3.174)

∫
dnk̄

µ2 kµ kν

D̄i D̄j D̄k D̄l
= − i π

2

12
gµν + O(ε) (4.3.175)

∫
dnk̄

µ2 kµ

D̄i D̄j D̄k
=

i π2

6
(pi + pj + pk) + O(ε). (4.3.176)

(4.3.177)

4.3.2 Projection to Golem95 basic integrals

We have shown that the amplitude numerator can be expressed as a combination of tensors

build up by products of loop momenta k weighted by tensorial coefficients Cµ1···µr , where

these coefficients are kinematic dependent. Then, the procedure of tensorial reconstruction

at the integrand level allows us to write the full scattering amplitude as a sum of one-loop

tensorial integrals of rank with up to the highest power of the loop momenta in the numer-

ator, without introducing any spurious Gram determinant singularities. These generated

tensors are of the same type of the tensors encountered in the calculation of the individual

Feynman diagrams. So, one can express them in term of the Golem form factors (which

are a combination of the Golem basic integrals) by means of Golem reduction procedure

introduced in section 4.1.2, again, this will not introduce any spurious singularities for the

same reasons explained above. At this point, this procedure is a successful way to merge the

reduction based on the unitarity-inspired approach and the reduction based on the Feynman

diagrammatic approach (Golem reduction). This algorithm is implanted in GoSam package

program, and it is used as a rescue system in the problematic regions where the SaMurai

program becomes not efficient, see [33].
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The Golem project [19] initially aimed at automatically computing one loop corrections

to QCD processes using Feynman diagrams techniques whereby 1) each diagram was written

as form factors times Lorentz structures 2) each form factor was decomposed on a particular

redundant set of basic integrals. Indeed when the form factors are reduced down to a basis

of scalar integrals only, negative powers of Gram determinants, generically noted det(G)

below, show up in separate coefficients of the decomposition. These det(G), albeit spurious,

are sources of troublesome numerical instabilities whenever they become small. The set of

basic integrals used in the Golem approach is such that all coefficients of the decomposition

of any form factor on this set are free of negative powers of det(G). Let aside trivial one-

and two-point functions, the Golem library of basic functions is instead made of a redundant

set involving the functions In3 (j1, · · · , j3), In+2
3 (j1), I

n+2
4 (j1, · · · , j3) and In+4

4 (j1). Here the

lower indices indicate the number of external legs, the upper indices stand for the dimension

of space-time, and the arguments j1, · · · , ji labels i Feynman parameters in the numerator

of the corresponding integrand. The strategy is the following. In the phase space regions

where det(G) are not troublesome, the extra elements of the Golem set are decomposed

on a scalar basis and computed analytically in terms of logarithms and di-logarithms. In

the phase space region where det(G) becomes very small, these extra Golem elements are

instead used as irreducible building blocks explicitly free of Gram determinant and provided

as one-dimensional integral representations computed numerically, see section 4.1.2 in the

previous chapter and Fig. (6.2) in chapter 6.

Much faster and more efficient methods than those relying on Feynman diagrams tech-

niques have been developed, e.g. based on unitarity cuts of transition amplitudes and not

individual Feynman diagrams, and/or processing the decompositions at the level of the in-

tegrands, see previous chapter. Yet these methods still amount to a decomposition onto
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a set of basic integrals. In this respect the stand-alone relevance of the Golem library of

basic functions, initially developed as a part of the Golem approach, remains. Furthermore

the decompositions obtained by these new methods project onto a basis of scalar integrals

and thus are still submitted to numerical instabilities caused by det(G). The issue of nu-

merical instability is then addressed in various ways ranging from smoothening numerical

interpolations over the regions of instabilities to more involved rescue solutions. In [33]

the solution adopted is to provide a rescue alternative relying on the Golem decomposition

to compute the amplitude in the troublesome kinematic configurations, see section 4.3 in

the previous chapter. The Golem library, initially designed for QCD, did not include ba-

sic functions with internal masses yet provided a convenient way of handling infrared and

collinear singularities inherent in the massless case. Its completion with the cases involving

internal masses, possibly complex, extends its range of use. This completion shall supply

the functions In3 (j1, · · · , j3), In+2
3 (j1), I

n+2
4 (j1, · · · , j3) and In+4

4 (j1) in the massive cases in

a numerically stable with respect to det(G) issues.

To handle det(G) issues, we advocate the use of one-dimensional integral representa-

tions rather than relying on Taylor expansions in powers of det(G). The latter may be

thought a priori better both in terms of CPU time and accuracy, however the order up to

which the expansion shall be pushed may happen to be rather large, and its determination

requires a quantitative estimate of the remainder of the truncation as a function of the

order, and, as in the Taylor-Laplace expansion, the latter requires the computation of a one

dimensional integral anyway. Originally, Golem95 used the opposite option of two- or three-

dimensional representations of respectively three- and four point functions [19], which were

hyper-contour deformations of the definitions of these basic integrals. Yet the computation

of these multiple integrals was both slow and not very precise. It is far more efficient both

in terms of CPU time and accuracy to evaluate a one-dimensional integral representation,

insofar as one is able to find such a representation. In the case without internal masses,

we indeed found such a representation. The issue which we address in this thesis is the

extension of this approach of one-dimensional integral representations for Golem95 set of

basic integrals in the most general case, i.e. with internal complex masses.

In this chapter, we will derive stable one dimensional integrals representation for each

Golem95 basic integral, where will focus on the three and four point functions in the general

massive case.

5.1 Scalar three-point integrals

A generic three point function can be represented by the the diagram in Fig. (5.1). Each

internal line with momentum qi stands for the propagator of a particle of mass mi. Then,

the one-loop scalar three-point function in n + l dimension associated to this triangle is

defined by

In+l
3 (S) =

∫
dn+lk

i πn/2
1

Π3
i=1 [q2i −m2

i + i λ]
, (5.1.1)
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✁
p2

p3

p1

q1

q2

q3

Figure 5.1: 3-point function

where n = 4 − 2 ε and l = 0, 2, 4 1. S is an ordered set containing the propagators labels,

for the triangle in Fig.(5.1), S = {1, 2, 3}. The propagator are labeled by qi = k+ ri, where

k is the momentum circulating in the loop, the ri are defined by pi = ri− ri−1 for i = 1, 2, 3

(we specify r1 = 0), and pi are defined as incoming momenta. The momentum conservation

implies

3∑

i=1

pi = 0 (5.1.2)

The functions with l = 2, 4 are free of any infrared divergences since they are defined in

a space-time with more then 4 dimension, see Table. (3.1) 2. But they can have some

ultra-violet divergences which appear as a simple MS pole ε 3. However, the function with

l = 0 might be infrared divergent.

1In this section, we limit ourself to the three scalar three point functions with l = 0, 2, 4. From these

functions, any 3-point tensorial basic integral can be constructed.
2We have shown in Table. (3.1) that the power of λ3 (λ3 is the only vanishing eigenvalue of the matrix

S) for the scalar triangle in n + l dimensions is positive for l = 2, 4 and negative for l = 0, this means that

the corresponding singularity is integrable for l = 2, 4, then it doesn’t lead to IR divergences. However,

for l = 0 infrared divergences may occur. This was confirmed in section (1.3) of chapter 3 Eqs. (3.4.122,

3.4.131) which are obtained by the soft and collinear approximation. We have proved that the triangle with

l = 2, 3 are free of soft and collinear divergences in the case where all the internal propagators are massless.

A generalization to triangle with some massive propagator is quite straightforward!
3 The UV divergences of these triangle are fake, since they are forced to appear by the Golem algebraic

reduction. Once, these basic integral are gathered to build the form factors, these divergences will disappear.
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5.1.1 Outline of the triangle calculation

Using Feynman parameterization and performing the momentum integration, I4+l−2 ε
3 (S)

may be re-written in this form

I4+l−2 ε
3 (S) = −Γ

(
2 − l

2
+ ε

) ∫ 1

0

3∏

i=1

dzi δ(1 −
3∑

i=1

zi)

(
−1

2
~z t S ~z − i λ

) l−2
2

−ε
, (5.1.3)

where zi are the Feynman parameters, iλ is the Feynman contour prescription in the prop-

agators (it is denoted λ in order to avoid any confusion with the parameter ε = (4 − n)/2

involved in the dimensional regularization.). We define the kinematic matrix S, which

carries all the information on the kinematics associated to this diagram, by:

Si j = (qi − qj)
2 −m2

i −m2
j (5.1.4)

The square of the difference of two internal momenta can be written in term of the internal

masses mi and the external squared momenta si = p2
i . Doing that, we get for S:

S =




−2m2
1 s2 −m2

1 −m2
2 s1 −m2

1 −m2
3

s2 −m2
1 −m2

2 −2m2
2 s3 −m2

2 −m2
3

s1 −m2
1 −m2

3 s3 −m2
2 −m2

3 −2m2
3


 (5.1.5)

We may single out any index a in S = {1, 2, 3} and write

za = 1 −
∑

i6=a
zi (5.1.6)

The quantity ~z t S ~z becomes:

~z T S ~z =
∑

i,j 6=a
zi zj (Si j − Sa j − Si a + Sa a) + 2

∑

j 6=a
zj (Sa j − Sa a) + Sa a

= −
∑

i,j 6=a
zi zj G

(a)
i j + 2

∑

j 6=a
zj V

(a)
j + Saa (5.1.7)

with

G
(a)
i j = −(Si j − Sa j − Si a + Sa a), i, j 6= a (5.1.8)

V
(a)
j = Sa j − Sa a, j 6= a (5.1.9)

It is clear from its definition (5.1.8) that G
(a)
a j = G

(a)
i a = 0, thus the matrix G(a) is of

rank two. This matrix is the Gram matrix built with the 4-vectors ∆i a = qi − qa where

G
(a)
ij = 2 (∆ia · ∆ja). Its determinant does not depend on the choice of a, and it is also

the determinant of the similar Gram matrix built with any subset of two external momenta

(see section A.1). We note it simply det(G) without referring to a and unambiguously call

it the Gram determinant associated with the kinematic matrix S. Specifying for example

a = 3, I4
3 reads:
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I4+l−2ε
3 = −Γ

(
2 − l

2
+ ε

)∫ 1

0
dz1

∫ 1−z1

0
dz2


1

2

2∑

i,j=1

zi zj G
(3)
ij −

2∑

j=1

zj V
(3)
j − 1

2
S33 − i λ




l−2
2

−ε

(5.1.10)

With this choice, the Gram matrix G(3)4 and the vector V (3) are given by:

G(3) =

(
2 s1 s3 − s2 + s1

s3 − s2 + s1 2 s3

)
(5.1.11)

V (3) =

(
s1 −m2

1 +m2
3

s3 −m2
3 +m2

3

)
(5.1.12)

Then we make the following change of variables:

z1 = 1 − x

z2 = y

we get now:

I4+l−2ε
3 = −Γ

(
2 − l

2
+ ε

)∫ 1

0
dx

∫ x

0
dy
[
a x2 + b y2 + c x y + d x+ e y + f − i λ

] l−2
2

−ε

(5.1.13)

with:
a = s1
b = s3
c = −s3 + s2 − s1
d = m2

3 −m2
1 − s1

e = s1 − s2 +m2
2 −m2

3

f = m2
1 − iλ

(5.1.14)

Eq. (5.1.13) is the starting point of the computation of the triangle in the 4-dimensions

(for l = 0) in ref. [66] (c.f. their Eq (5.2)). We will keep the same notation for the different

quantities.

First we introduce a parameter α and shift the integration variable y (y = y′ + αx),

I4+l−2ε
3 = −Γ

(
2 − l

2
+ ε

)∫ 1

0
dx

∫ (1−α)x

−αx
dy′

[
x2 (a+ b α2 + c α) + b y′ 2 + x y′ (2 b α+ c)

+ (d+ e α)x+ e y′) + f − i λ
] l−2

2
−ε

(5.1.15)

The parameter α is chosen such that

α2 b+ α c+ a = 0 (5.1.16)

4We drop the line and the column of G(3) which are filled by zero.
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in order that the quadratic form of x in the integrands of Eqs. (5.1.15) becomes linear in x.

Note that the discriminant ∆α of Eq. (5.1.16) is minus the Gram determinant detG. For

all kinematical configurations p1, p2, p3 = −p1 − p2 involved in one-loop calculations of

elementary processes of interest for collider physics, detG is non-positive5

∆α = s21 + s22 + s23 − 2s1s2 − 2s1s3 − 2s2s3

= 4 (p1 · p2) − 4 p2
1 p

2
2. (5.1.17)

The roots α± of the polynomial (5.1.16) are thus real in all relevant cases. So, for

l = 0, 2, 3 Eq. (5.1.15) becomes:

I4−2ε
3 (S) = −rΓ

∫ 1

0
dx

∫ (1−α)x

−αx
dy′

[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]−1 + O(ε)

= I4
3 (S) + O(ε),

(5.1.18)

I6−2ε
3 (S) = rΓ

∫ 1

0
dx

∫ (1−α)x

−αx
dy′
{
−1

ε

+ ln[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]

}
+ O(ε)

= I6,div
3 (S) + I6

3 (S) + O(ε),

(5.1.19)

I8−2ε
3 (S) = rΓ

∫ 1

0
dx

∫ (1−α)x

−αx
dy′
{(

1

ε
+ 1

)

× [{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f ]+

− [{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f ]

× ln[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]

}
+ O(ε)

= I8,div
3 (S) + I8

3 (S) + O(ε). (5.1.20)

where

rΓ = Γ(1 − ε)2Γ(1 + ε)/Γ(1 − 2ε)

= 1 − γr ε+ O(ε2) (5.1.21)

5The only configurations leading to a positive Gram determinant would require that all three external

four-momenta p1, p2, p3 = −p1 − p2 of the three point function be space-like. At the one-loop order which

is our present concern, each of the three points, through which p1, p2 and p3 respectively flow, shall be

connected to an independent tree. In order for p1, p2 and p3 to be all space-like, each of these trees should

involve one leg in the initial state: this would correspond neither to a decay nor to a collision of two incoming

bodies.
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and γr is the Euler-Mascheroni Constant, it is defined by

γr = lim
n→∞

( n∑

k=1

1

k
− ln(n)

)

= 0.57721566490153 · · · (5.1.22)

5.1.2 The triangle in 4-dimensions

Let us consider I4
3 (S),

I4
3 (S) = −

∫ 1

0
dx

∫ (1−α)x

−αx
dy′

[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]−1 (5.1.23)

We split the integral on y′, there is no problem if α is real,

∫ 1

0
dx

∫ (1−α)x

−αx
dy′ =

∫ 1

0
dx

∫ (1−α)x

0
dy′ −

∫ 1

0
dx

∫ −αx

0
dy′ (5.1.24)

and reverse the order of integrations:

∫ 1

0
dx

∫ (1−α)x

−αx
dy′ =

∫ 1−α

0
dy′

∫ 1

y′/(1−α)
dx−

∫ −α

0
dy′

∫ 1

y′/(−α)
dx (5.1.25)

so that I4
3 is written as (we change y′ = y):

I4
3 (S) = −

∫ 1−α

0
dy

∫ 1

y/(1−α)
dx
[
{(2 b α+ c) y + (d+ e α) }x+ b y2 + e y + f − i λ

]−1

+

∫ −α

0
dy

∫ 1

y/(−α)
dx
[
{(2 b α+ c) y + (d+ e α) }x+ b y2 + e y+f − i λ

]−1

The term in the square bracket is linear in x: the integral over this variable is easily

performed and we find:

I4
3 (S) = −

∫ 1−α

0
dy

1

(2α b+ c) y + d+ e α

× ln

(
b y2 + (2α b+ c+ e) y + d+ e α+ f

(y2 (2α b+ c+ b (1 − α)) + y (d+ e α+ e (1 − α)) + f (1 − α))/(1 − α)

)

+

∫ −α

0
dy

1

(2α b+ c) y + d+ e α

× ln

(
b y2 + (2α b+ c+ e) y + d+ e α+ f

(y2 (2α b+ c− b α) + y (d+ e α− e α) − f α)/(−α)

)
(5.1.26)

The logarithms in Eq. (5.1.26) can be split into two parts without introducing η function,

since the sign of their imaginary parts are not changed (they are always negatives)6, where

6The imaginary part of the quadratic form on x and y in Eq. (5.1.13) is provided by: (1 − x)Im(m2
1) +

Im(m2
2)y + (x − y)Im(m2

3) − λ which is negative since, Im(m2
i ) < 0 and x ≥ y ≥ 0.
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the function η is defined by

{
ln(a b) = ln a+ ln b+ η(a, b),

η(a, b) = 2π i {θ(−Ima) θ(−Imb) θ(Ima b) − θ(Ima) θ(Imb) θ(−Ima b)}
(5.1.27)

We split these logarithms and combine the terms coming from the upper limit in x (x = 1).

Eq. (5.1.26) now becomes:

I4
3 (S) = −

∫ 1−α

−α

dy

N
ln
(
b y2 + e y + f +N

)

+

∫ 1−α

0

dy

N
ln
(
b y2 + e y + f +N y/(1 − α)

)

−
∫ −α

0

dy

N
ln
(
b y2 + e y + f −N y/α

)
, (5.1.28)

N = (2α b+ c) y + d+ e α. (5.1.29)

One can subtract the residue for the pole y = y0 (N = 0) with y0 = −(d+ e α)/(c+ 2α b)

which is the same for the three integrals. Since α is real, the subtracted quantity will give

no contribution to the final result:

I4
3 (S) = −

∫ 1−α

−α

dy

N

[
ln
(
b y2 + e y + f +N

)
− ln

(
b y2

0 + e y0 + f
)]

+

∫ 1−α

0

dy

N

[
ln
(
b y2 + e y + f +N y/(1 − α)

)
− ln

(
b y2

0 + e y0 + f
)]

−
∫ −α

0

dy

N

[
ln
(
b y2 + e y + f −N y/α

)
− ln

(
b y2

0 + e y0 + f
)]

(5.1.30)

We make the following change of variables : y = z−α in the first integral of Eq. (5.1.30),

y = (1 − α) z in the second and y = −α z in the third. So we get for I4
3 :

I4
3 (S) = −

∫ 1

0
dz

{
1

(2α b+ c) z + (e+ c)α+ d+ 2 a

[
ln
(
b z2 + (c+ e) z + a+ d+ f

)

− ln
(
b y2

0 + e y0 + f
)]

+
−α

−α (2α b+ c) z + d+ e α

[
ln
(
a z2 + d z + f

)

− ln
(
b y2

0 + e y0 + f
)]

− (1 − α)

(1 − α) (2α b+ c) z + d+ e α

[
ln
(
(a+ b+ c) z2 + (d+ e) z + f

)

− ln
(
b y2

0 + e y0 + f
)]}

(5.1.31)

Note that the subtraction terms (proportional to ln
(
b y2

0 + e y0 + f
)
) have been added

in order that the residue of each poles is zero, they sum up to zero. In term of s2i and m2
i



5.1. Scalar three-point integrals 103

and for i = 1, 2, 3, I4
3 can be written

I4
3 (S) =

−1

εα
√

−det(G)

∫ 1

0
dz

{

+
1

z − z
(1)
0

(ln(s3z
2 + (m2

2 −m2
3 − s3)z +m2

3 − iλ) − ln(B − iλ))

+
1

z − z
(2)
0

(ln(s1z
2 + (m2

3 −m2
1 − s1)z +m2

1 − iλ) − ln(B − iλ))

− 1

z − z
(3)
0

(ln(s2z
2 + (m2

2 −m2
1 − s2)z +m2

1 − iλ) − ln(B − iλ))

}
(5.1.32)

with

B = −1

2

det(S)

det(G)
(5.1.33)

z
(1)
0 = −(m2

2 −m2
3 − s3)α+m2

3 −m2
1 + s1

εα
√

det(G)
(5.1.34)

z
(2)
0 = −(m2

2 −m2
3 + s1 − s2)α+m2

3 −m2
1 − s1

−α εα
√

det(G)
(5.1.35)

z
(3)
0 = −(m2

2 −m2
3 + s1 − s2)α+m2

3 −m2
1 − s1

(1 − α) εα
√

det(G)
(5.1.36)

α =
s1 + s3 − s2 + εα

√
−det(G)

2s3
(5.1.37)

and det(G) and det(S) are defined bellow (see Eqs. (5.1.62, 5.1.63)).

To perform the last integration analytically, one can use the formula Eq. (A.2.11) in

section A.2.

If det(G) → 0, the analytical formula lead to numerically unstable results (since it is

proportional to inverse of
√

|det(G)|). Then, we have to switch to the numerical mode

which will be the subject of the next section.

5.1.2.1 One-dimensional integral representation: det(G) → 0

To discuss the behavior of Eq. (5.1.31) when det(G) → 0, it is more enlightening to

symmetrize over α. We note first that the dependence on α comes only from the coefficients

of the logaritms in Eq. (5.1.31) , and not from the argument of the logarithms. Indeed, the

argument of the subtracted logarithms are

b y2
0 + e y0 + f − iλ = −1

2

det(S)

det(G)
− iλ. (5.1.38)

where b is real and e and f may be complex, and the sign of the imaginary part of the

arguments of the quadratic logarithm must be the same for z ∈ [0, 1]7. So we have three

7The imaginary part of the argument of each quadratic logarithm is given respectively by: Im(m2
2)z +

Im(m2
3)(1− z)− λ < 0, Im(m2

2)z + Im(m2
1)(1− z)− λ < 0, Im(m2

3)z + Im(m2
1)(1− z)− λ < 0. They are all

negative ∀ z ∈ [0, 1] since Im(m2
i ) ≤ 0 for i = 1, 2, 3.
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integrals of the type:

Ii =

∫ 1

0
dy

Ki(α)

αAi +Bi
Li, for i = 1, 2, 3. (5.1.39)

Since we can choose any of the two roots of equation (5.1.16) α+ and α−, we can symmetrize

over them and write:

Ii =
1

2

∫ 1

0
dy

[
K(α+)

α+Ai +Bi
+

Ki(α−)

α−Ai +Bi

]
Li

=
1

2

∫ 1

0
dy

[
(Ki(α+)α− +Ki(α−)α+)Ai + (Ki(α+) +Ki(α−))Bi

α+ α−A2
i +AiBi (α− + α+) +B2

i

]
Li (5.1.40)

We introduce the following quantities:

Qi = α+ α−A
2
i +AiBi (α− + α+) +B2

i

=
1

b
(aA2

i − cAiBi + bB2
i )

Ni = (Ki(α+)α− +Ki(α−)α+)Ai + (Ki(α+) +Ki(α−))Bi

We now compute Qi and Ni for the different integrals of Eq. (5.1.31).

For the first integral in Eq. (5.1.31), K1(α) = 1, A1 = 2 b z+e+c and B1 = c z+d+2 a,

so we get :

Q1 =
1

b

[
−∆α b z

2 − ∆α (c+ e) z + a e2 − c e d+ b d2 − ∆α (d+ a)
]

=
1

b

[
−∆α

(
b z2 + (c+ e) z + a+ d+ f

)
+ det(S)/2

]
(5.1.41)

N1 =
1

b
[2 b d− c e− ∆α]

=
1

b
b1 det(S) (5.1.42)

For the second integral in Eq. (5.1.31), K2(α) = −α, A2 = c z + e and B2 = 2 a z + d,

so we get :

Q2 =
1

b

[
−∆α a z

2 − ∆α d z + a e2 − c e d+ b d2
]

=
1

b

[
−∆α

(
a z2 + d z + f

)
+ det(S)/2

]
(5.1.43)

N2 = −1

b
[2 a e− c d]

= +
1

b
b2 det(S) (5.1.44)

For the third in Eq. (5.1.31) integral, K3(α) = −(1 − α), A3 = (2 b + c) z + e and

B3 = (c+ 2 a) z + d, so we get :

Q3 =
1

b

[
−∆α (a+ b+ c) z2 − ∆α (e+ d) z + a e2 − c e d+ b d2

]

=
1

b

[
−∆α

(
(a+ b+ c) z2 + (e+ d) z + f

)
+ det(S)/2

]
(5.1.45)

N3 = −1

b
[2 b d+ c d− 2 a e− c e]

= +
1

b
b3 det(S) (5.1.46)
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So we can write Eq. (5.1.31) as :

I4
3 (S) = −

[
b1

∫ 1

0
dz

ln (g1(z)) − ln (B − iλ)

2B g1(z) + 1

+ b2

∫ 1

0
dz

ln (g2(z)) − ln (B − iλ)

2B g2(z) + 1

+ b3

∫ 1

0
dz

ln (g3(z)) − ln (B − iλ)

2B g3(z) + 1

]
(5.1.47)

with

bi =

4∑

j=1

S−1
i j (5.1.48)

B =
4∑

j=1

bj (5.1.49)

= det(G)/det(S) (5.1.50)

and

g1(z) = b z2 + (c+ e) z + a+ d+ f (5.1.51)

g2(z) = a z2 + d z + f (5.1.52)

g3(z) = (a+ b+ c) z2 + (d+ e) z + f (5.1.53)

The polynomials gj(z) are namely those appearing in the integral representations of the

two-point functions corresponding to the three possible pinchings of a given propagator in

the triangle diagram in Fig. (5.1). We parametrize the gj(z) generically as

gj(z) = γ
(2)
j z2 + γ

(1)
j z + γ

(0)
j (5.1.54)

in order to formally handle them all at once when concerned with the zeroes of denominators

of Eq. (5.1.47) gj(z) + 1/(2B). Let us note that the discriminant ∆J of the second degree

polynomial gj(z), defined by

∆j ≡ γ
(2)2

j − 4 γ
(1)
j γ

(0)
j (5.1.55)

turns out to be equal to minus the determinant of the reduced kinematic matrix S{j}. This

reduced kinematic matrix corresponds to the pinching of the propagator j of the triangle

in Fig. (5.1), and is obtained from the matrix S by suppressing line and column j. Cor-

relatively γ
(2)
j is one half of the reduced Gram determinant associated with the reduced

kinematic matrix S{j} (we denote it by det(G{j}), see section A.1).

Equation (5.1.47) are appealing candidates for the integral representations which we seek.

Let us examine them more closely when det(G) → 0. We shall distinguish two cases: the

generic case when det(G) → 0 whereas det(S) remains non vanishing, and the specific case

det(G) → 0 and det(S) → 0 simultaneously which deserves a dedicated treatment. Let us

subsequently examine these two cases.
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5.1.2.2 det(G) → 0 whereas det(S) non vanishing

Let us first consider the polynomials gj(z) + 1/(2B) appearing in the denominators of the

integrals I4
3 in Eq. (5.1.47). It is insightful to write the corresponding reduced discriminant

of gj(z) + 1/(2B) as

∆̃
′

j = −
b̄2j

det(G)
(5.1.56)

defining the rescaled coefficients

b̄j ≡ bj det(S), j = 1, 2, 3 (5.1.57)

and using the identity

b̄2i = 2 γ
(2)
i det(S) − ∆i det(G) (5.1.58)

where ∆i has been defined in Eq. (5.1.55) and see ref. [81] for the proof of Eq. (5.1.58).

The zeroes z±j or gj(z) + 1/(2B) are given by

z±j = −
γ

(1)
j

2 γ
(2)
j

∓ b̄j

2 γ
(2)
j

√
−det(G)

(5.1.59)

Let us remind that det(G) ≤ 0 as commented earlier. When det(G) → 0, both zeroes z±j
of 2Bgj(z) + 1 are dragged away from [0, 1] towards +∞ and −∞ respectively, and each

of the integrals

Jj =

∫ 1

0

dz

2Bgj(z) + 1

is analytically well defined and numerically safe, and furthermore the following identity

holds:
3∑

j=1

bjJj = 0 (5.1.60)

so that the contributions ∝ ln(B − iλ) sum up to zero in I4
3 . In this respect, let us stress

that the contributions ∝ ln(B − iλ) are fictituous from the start. They were introduced

through Eq. (5.1.30) to construct a formula with zero residues at the poles within the

integration domain namely when either of z±j is inside [0, 1]. When z±j are both outside

[0, 1] the introduction of the ln(B−iλ) terms is irrelevant and indeed identity (5.1.60) allows

to drop them explicitly from Eq. (5.1.47). Then, I4
3

I4
3 = −

3∑

j=1

bj

∫ 1

0
dz

ln (gj(z))

2B gj(z) + 1
(5.1.61)

thus provide suitable integral representations in the case at hand. From a numerical point

of view the explicit suppression of the ln(B− iλ) terms from integrals (5.1.61), is preferable

since ln(B − iλ) → ∞ when det(G) → 0 thus implementing a numerical cancellation of the

sum
∑3

j=1 bjJj ln(−1/(2B) − iλ) after each term would have been separately calculated,

may lead to numerical instabilities. Besides, if some gj(z) vanishes at some ẑoj inside [0, 1],
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a possible numerical improvement of the integral representation consists in deforming the

integration contour in the complex z plane, to skirt the vicinity of the integrable singularity

at ẑoj , so as to prevent the integrand from becoming large and avoid cancelation of large

contributions, according to a one-dimensional version8 of the multidimensional deformation

described in section 7 of ref. [19]. This will be discussed in detail in the case of four-point

function in the second part of this chapter.

5.1.2.3 det(G) = 0 and det(S) = 0 simultaneously

This case is more tricky and deserves further discussion. Indeed, when detS = 0 and

det(G) = 0, Eq. (5.1.48) defining the parameters bj as
∑3

k=1 S−1
jk is no longer valid as S−1

is not defined, and the parameter B = detS/det(G) is an indeterminate quantity of the

type 0/0, likewise the z±j are indeterminate quantities not manifestly driven away from the

interval [0, 1].

Let us have a look to the specific kinematics which leads to such case. First, we give an

expression for these two determinants in a form which is invariant under cyclic permutation

of the external legs:

det(G) = −{s21 + s22 + s23 − 2s1s2 − 2s1s3 − 2s2s3} = −λ(s1, s2, s3) (5.1.62)

det(S) = 2

[
s1 s2 s3 + s21m

2
2 + s22m

2
3 + s23m

2
1

− s1 s2 (m2
2 +m2

3) − s1 s3 (m2
1 +m2

2) − s2 s3 (m2
1 +m2

3)

+ s1 (m2
1 −m2

2) (m2
3 −m2

2) + s2 (m2
2 −m2

3) (m2
1 −m2

3)

+ s3 (m2
3 −m2

1) (m2
2 −m2

1)

]
(5.1.63)

with λ(x, y, z) = x2 + y2 + z2 − 2x y − 2x z − 2 y z.

Now, it is easy to realize that the condition under which det(G) = 0 (apart the trivial

condition where all the si = 0) is that one si = 0 and the other two are equal. To fix the

idea, let us choose s2 = 0 and s1 = s3. If we put this condition in Eq. (5.1.63), we find

det(S) = 2s3 (m2
1 −m2

2)
2. So in order that the two determinants vanish at the same phase

space point, we must have m1 = m2, so it is a necessary condition. In other words, in

a triangle where all the internal masses are different, there is no phase space point where

det(G) and det(S) vanish. To fix the idea, we will study the behavior of I4
3 around the

phase space point where :

m2
1 = m2

2 (5.1.64)

s2 = 0 (5.1.65)

s1 = s3 (5.1.66)

8In broad outline, the contour deformation is contained inside the band 0 ≤ Re(z) ≤ 1. It departs from

the real axis at 0 with an acute angle and likewise ends at 1 in such a way that Im(gj(z)) is kept negative

along the deformed contour so that the latter does not cross any cut of ln gj(z). In the case at hand this

type of contour never embraces any of z±
j as soon as the latter are outside [0, 1], thus no subtraction of

illegitimate pole residue contribution at z±
j has to be cared about.
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Let’s us set

s− = (s1 − s3)/2 (5.1.67)

s+ = (s1 + s3)/2 (5.1.68)

m2
1 = m2

2 = m2 (5.1.69)

We get:

det(G) = 4

(
s+ s2 − s2− − 1

4
s22

)
(5.1.70)

det (S) = 2
(
λ̃ s2 + 4m2 s2− + m2

3 s
2
2 − s2 s

2
−
)

(5.1.71)

λ̃ = λ(s2+, (m
2)2, (m2

3)
2) (5.1.72)

and

b̄1 = m2
3(s2 − 2s−) −m2(s2 − 2s−) − (s2 + 2s−)(s− − s+) (5.1.73)

b̄2 = m2
3(s2 + 2s−) −m2(s2 + 2s−) + (s2 − 2s−)(s− + s+) (5.1.74)

b̄3 = −s2(2m2
3 − 2m2 + s2 − 2s+) (5.1.75)

Let’s define the parameter c = s2/s
2
− which is of order one (O(1)) at the limit det(G) and

det(S) vanish simultaneously. Then,

det(G) = 4 (s+ − 1/c) s2 + · · · (5.1.76)

det(S) = 2 (λ̃+ 4m2/c) s2 + · · · (5.1.77)

b̄1 = ∓(m2
3 −m2 − s+)

√
s2/c+ (m2

3 −m2 + s+ − 2/c) s2 + · · · (5.1.78)

b̄2 = ±(m2
3 −m2 − s+)

√
s2/c+ (m2

3 −m2 + s+ − 2/c) s2 + · · · (5.1.79)

b̄3 = 2 (s+ +m2 −m2
3) s2 + · · · (5.1.80)

Now, let us re-write I4
3 as :

I4
3 (S) = −

[
b3 J

4
3 +

1

2
(b1 + b2)

(
J4

1 + J4
2

)
+

1

2
(b1 − b2)

(
J4

1 − J4
2

) ]
(5.1.81)

where :

J4
i =

∫ 1

0
dz

ln(gi(z)) − ln(B − iλ)

2B gi(z) + 1

=

∫ 1

0
dz

ln(gi(1 − z)) − ln(B − iλ)

2B gi(1 − z) + 1
(5.1.82)

Now, let us study the behavior of b3, b1 + b2, b1 − b2 and B when s2 → 0 and s− → 0,

b1 + b2 =
b̄1 + b̄2
det(S)

∣∣∣∣
s2,s−→0

=
c (m2

3 −m2 − s+) − 2

4m2 + c λ̃
+ · · · → finite, (5.1.83)

b1 − b2 =
b̄1 − b̄2
det(S)

∣∣∣∣
s2,s−→0

= ∓2 (m2
3 −m2 − s+)

4m2 + c λ̃

√
c

s2
+ · · · → 1√

0
→ divergent, (5.1.84)

b3 =
b̄3

det(S)

∣∣∣∣
s2,s−→0

= −c (m2
3 −m2 − s+)

4m2 + c λ̃
+ · · · → finite (5.1.85)

B =
det(G)

det(S)

∣∣∣∣
s2,s−→0

= −2 (1 − s+ c)

4m2 + c λ̃
+ · · · → finite (5.1.86)
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So, the only divergent coefficient is b1 − b2. But, in the limit s− → 0, we have g1(z) →
g2(1− z), so the bad behavior of b1 − b2 is compensated by J4

1 − J4
2 . To see that explicitly,

we can write :

J4
1 − J4

2 =

∫ 1

0
dz

(
ln(g1(z)) − ln(B − iλ)

2B g1(z) + 1
− ln(g2(1 − z)) − ln(B − iλ)

2B g2(1 − z) + 1

)

=
1

2

∫ 1

0
dz

[
ln

(
g1(z)

g2(1 − z)

)(
1

2B g1(z) + 1
+

1

2B g2(1 − z) + 1

)

− 2B

(
ln(g1(z)) + ln(g2(1 − z)) − 2 ln(B − iλ)

)
g1(z) − g2(1 − z)

(2B g1(z) + 1) (2B g2(1 − z) + 1)

]

(5.1.87)

using

g1(z) = g(z) + s− z (1 − z) (5.1.88)

g2(z) = g(1 − z) − s− z (1 − z) (5.1.89)

with

g(z) = − s+ z (1 − z) +m2 z +m2
3 (1 − z) (5.1.90)

we prove that

J4
1 − J4

2 = s−

∫ 1

0
dz

[
ln(g1(z)/g2(1 − z))

s−

(
1

2B g1(z) + 1
+

1

2B g2(1 − z) + 1

)

− 2B

(
ln(g1(z)) + ln(g2(1 − z)) − 2 ln(B − iλ)

)
z (1 − z)

(2B g1(z) + 1) (2B g2(1 − z) + 1)

]

(5.1.91)

we explicitly factorize out a factor s− which compensate the behavior of b1 − b2. The

I4
3 can be computed by evaluating numerically the following integral :

I4
3 (S) = −

[
b3

∫ 1

0
dz

ln(g3(z)) − ln B̃
2B g3(z) + 1

+
1

2

b̄1 + b̄2
det(S)

∫ 1

0
dz

(
ln(g1(z)) − ln B̃
2B g1(z) + 1

+
ln(g2(1 − z)) − ln B̃
2B g2(1 − z) + 1

)

+
1

4

b̄1 − b̄2
det(S)

s−

∫ 1

0
dz

{
−2B (ln(g1(z)) + ln(g2(1 − z)) − 2 ln B̃)

× 2 z (1 − z)

(2B g1(z) + 1) (2B g2(1 − z) + 1)

+
ln(g1(z)/g2(1 − z))

s−

(
1

2B g1(z) + 1
+

1

2B g2(1 − z) + 1

)}]
(5.1.92)

where B̃ = B − i λ.

Before to close this section, let us notice that we are taking a double limit. Properly speaking,

the limits of each of these three terms in Eq. (5.1.81) which are separately well-defined are

directional limits s− → 0, s2 → 0 in the {s2−, s2} plane keeping the ratio c = s2/s
2
− fixed,
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i.e. these directional limits as functions of c. However, the limit of the sum of these three

terms in Eq.. (5.1.81) is indeed independent of c. This can be easily checked numerically,

this can also be proven analytically although this is somewhat cumbersome; a proof is

presented in section A.3. The ground reason why this property holds is further understood

as follows. If the limit of the sum were a directional one, it would imply that the three point

function would be a singular i.e. non analytical function of the kinematical invariants at

such configurations. However the kinematic singularities are characterized by the so-called

Landau conditions9 [52], see chapter 3. For one loop diagrams, these conditions require

not only that det (S) = 0, but also that the eigenvectors associated with the vanishing

eigenvalue of S shall have only non negative components and that their sum be strictly

positive. The vanishing det(S) in the present case is therefore not related to a kinematic

singularity (see chapter 3 and ref. [81]): the three-point function is regular in the limit

considered, in particular this limit shall be uniform i.e. not directional.

5.1.3 The triangle in 6-dimensions

Let’s consider only the finite part of I6−2ε
3 ,

I6
3 (S) =

∫ 1

0
dx

∫ (1−α)x

−αx
dy′

ln[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]

(5.1.93)

By following the same steps as in the case of I3
4 , we find

I6
3 (S) = −1

2
+

∫ 1

0
dz

{

1

(2α b+ c) z + (e+ c)α+ d+ 2 a
[g1(z) ln(g1(z)) − B ln(B − iλ)]

+
−α

(2α b+ c) (−α) z + d+ e α
[g2(z) ln(g2(z)) − B ln(B − iλ)]

− 1 − α

(2α b+ c) (1 − α) z + d+ e α
[g3(z) ln(g3(z)) − B ln(B − iλ)]

}
(5.1.94)

where the functions gi and B are defined above.

If det(G) → 0 (and not det(S) → 0), the substracted term B ln(B − iλ) becomes infinite.

But the poles z0
i are infinite since their denominators are proportional to

√
−det(G). Then,

the subtracted terms can be dropped (since no pole can be inside [0, 1]) and this formula

works. However, denominators of this formula may vanish, which correspond to z0
i = 0/0.

To avoid this discussion, we will peruse the symmetrization on α+ and α− as above (as in

the case of I4
3 ). The integrand of I6

3 has the same generic form Ii defined in Eq. (5.1.39).

9In general the Landau conditions provide necessary conditions to face singularities, either of pinched or

end-point type, in a function provided by a parametric integral. However Coleman and Norton [55] proved

these conditions to be also sufficient in the case of Feynman integrals.
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Then, by following the very same steps to get Eq. (5.1.47), we find

I6
3 (S) = −1

2
+

3∑

i=1

bi

∫ z

0

gi(z) ln(gi(z))

2B gi(z) + 1
(5.1.95)

which is very safe if det(G) → 0.

If det(G) → 0 and det(S) → 0 simultaneously, the substracted terms should not be

dropped since the zeros of the denominators may be inside [0, 1] as shown above. For that

reason, we follow the same strategy introduced for I4
3 . Let’s write I6

4 as follows:

I6
3 = b3 J

6
3 +

1

2
(b1 + b2) (J6

1 + J6
2 ) +

1

2
(b1 − b2) (J6

1 − J6
2 ) − 1

2
(5.1.96)

with

J6
i =

∫ 1

0
dz

gi(z) ln(gi(z)) − B ln(B − iλ)

2B gi(z) + 1

=

∫ 1

0
dz

gi(1 − z) ln(gi(1 − z)) − B ln(B − iλ)

2B gi(1 − z) + 1
(5.1.97)

Again, b3, b1 + b2 and B are finite and the divergence of b1 − b2 is compensated by J6
1 − J6

2

since J6
1 → J6

2 in this region. Then, after some manipulation I6
4 takes the convenient form

I6
3 (S) = b3

∫ 1

0
dz

g3(z) ln(g3(z)) − B ln B̃
2B g3(z) + 1

+
1

2

b̄1 + b̄2
det(S)

∫ 1

0
dz

(
g1(z) ln(g1(z)) − B ln B̃

2B g1(z) + 1

+
g2(1 − z) ln(g2(1 − z)) − B ln B̃

2B g2(1 − z) + 1

)

+
1

4

b̄1 − b̄2
det(S)

s−

∫ 1

0
dz

{
ln(g1(z)/g2(1 − z))

s−

(
g1(z)

2B g1(z) + 1
+

g2(1 − z)

2B g2(1 − z) + 1

)

+ (ln(g1(z)) + ln(g2(1 − z)) − 2 ln B̃)
2 z (1 − z)

(2B g1(z) + 1) (2B g2(1 − z) + 1)

}
− 1

2

(5.1.98)

Numerical test

See Figs. (5.2, 5.3)

5.1.4 The triangle in 8-dimensions

Let’s consider the finite part of I8−2ε
3

I8
3 (S) =

∫ 1

0
dx

∫ (1−α)x

−αx
dy′[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f ]

× ln[{(2 b α+ c) y′ + (d+ e α) }x+ b y′ 2 + e y′ + f − i λ]

(5.1.99)
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Figure 5.2: Comparison between the analytical and the numerical modes: (a) and (b) show,

respectively, the real and the imaginary parts of the form factor B3,2, where B3,3 = I6
3/2.

The analytical mod in the region where det(G) → 0 is not stable (blue line). However the

numerical mode gives stable results (black line).
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Figure 5.3: Comparison between the analytical and the numerical modes for kinematical

configuration with det(G) → 0 and det(S) → 0 simultaneously: the blue line stands for the

analytical results (not stable) and the black line stands for the numerical results (stable).
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Again we follow the same steps as above, we split the integral on y′, we reverse the order

of integration and introduce the parameter α. Ultimately, we find

I8
3 (S) = − 1

48
(6a+ 2b+ 3c+ 8d+ 4e+ 12f) +

1

2

∫ 1

0
dz

{

1

(2α b+ c) z + (e+ c)α+ d+ 2 a

[
g2
1(z) ln(g1(z)) − B2 ln(B − iλ)

]

+
−α

(2α b+ c) (−α) z + d+ e α

[
g2
2(z) ln(g2(z)) − B2 ln(B − iλ)

]

− 1 − α

(2α b+ c) (1 − α) z + d+ e α

[
g2
3(z) ln(g3(z)) − B2 ln(B − iλ)

]}
(5.1.100)

i) For det(G) → 0 det(G) 6→0, one can use the following formula,

I8
3 (S) = − 1

48
(6a+ 2b+ 3c+ 8d+ 4e+ 12f) +

1

2

3∑

i=1

bi

∫ z

0

g2
i (z) ln(gi(z))

2B gi(z) + 1
(5.1.101)

this formula is obtained after symmetrization over α+ and α− as above.

i) For the case where det(G) → 0 and det(S) → 0 simultaneously, we write

I8
3 (S) =

1

2
[b3 J

8
3 +

1

2
(b1 + b2) (J8

1 + J8
2 ) +

1

2
(b1 − b2) (J8

1 − J8
2 )]

− 1

48
(6a+ 2b+ 3c+ 8d+ 4e+ 12f) (5.1.102)

with

J8
i =

∫ 1

0
dz

g2
i (z) ln(gi(z)) − B2 ln(B − iλ)

2B gi(z) + 1

Again, b3, b1 + b2 and B are finite but b1 − b2 is divergent, its divergence is compensated

by J8
1 − J8

2 since g1(z) → g2(1 − z) in this region. Then, after some manipulation I8
3 takes

the convenient form

I8
3 (S) =

1

2

∫ 1

0
dz

{
b3
g2
3(z) ln(g3(z)) − B2 ln B̃

2B g3(z) + 1
+

1

2

b̄1 + b̄2
det(S)

[

g2
1(z) ln(g1(z)) − B2 ln B̃

2B g1(z) + 1
+
g2
2(1 − z) ln(g2(1 − z)) − B2 ln B̃

2B g2(1 − z) + 1

]

+
1

4

b̄1 − b̄2
det(S)

s−

[(
g2(1 − z) ln(g1(z)) + g1(z) ln(g2(1 − z)) − 2B ln B̃

)

× 2z (1 − z)

(2B g1(z) + 1) (2B g2(1 − z) + 1)

+ 2z(1 − z)

(
g1(z) ln(g1(z))

2B g1(z) + 1
+
g2(1 − z) ln(g2(1 − z))

2B g2(1 − z) + 1

)

+
ln(g1(z)/g2(1 − z))

s−

(
g2
1(z)

2B g1(z) + 1
+

g2
2(1 − z)

2B g2(1 − z) + 1

)]}

− 1

48
(6a+ 2b+ 3c+ 8d+ 4e+ 12f) (5.1.103)
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5.2 Scalar four-point functions

In this section, we calculate the general scalar 4-point functions in n+l dimensions "In+l
4 (S)"

for l = 2, 4 (the scalar boxes for l = 6, 8 are given in Appendix C.). The knowledge of these

scalar functions allows us to calculate all the tensorial four-point basic integrals mentioned

in section 4.1.2 in the previous Chapter, i.e. the integrals In+2
4 (j1, ..., j3) and In+4

4 (j1) which

have the general form (after Feynman parameterization)

In+2
4 (j1, · · · , jr) = Γ(3 − n

2
)

∫ 1

0
Π4
i=1dzi δ(1 −

4∑

l=1

zl)
z1 · · · zr

(−1
2 z

† · S · z − i λ)3−n/2
(5.2.104)

In+4
4 (j1) = Γ(2 − n

2
)

∫ 1

0
Π4
i=1dzi δ(1 −

4∑

l=1

zl)
z1 · · · zr

(−1
2 z

† · S · z − i λ)2−n/2
(5.2.105)

For each of these integrals, we give a one-dimentional integral representation which provides

numerically stable results in phase space regions where the Gram determinant becomes ar-

bitrary small, and it is valid for arbitrary internal masses (internal complex masses are

supported). In addition, analytical formulas for the integral In+2
4 will be derived from the

direct calculation. .

We should notice that in this calculation, we limit ourself only to processes relevant for

collider experiments (e.g. production of n particles in the collision of two particles: 2 → n)

or for particle decay processes (1 → n) at NLO order. The encountered one-loop Feyn-

man diagrams in the calculation of amplitudes of such processes cannot have more than

two space-like external legs, which implies that the Gram determinants associated to the

triangles (obtained from pinching a given propagator of the box) are all negatives (see the

proof in section B.2 in Appendix B). For more general kinematics, i.e. for kinematics with

strictly positive (one or more) 3-point Gram determinants10 (which are not interesting at

NLO order! for physical processes), the validity of our formulas is not checked yet for all

possible cases11.

5.2.1 Outline of the box calculation

The one-loop four-point function in n+ l dimension is defined by

In+l
4 (S) =

∫
dn+lk

i πn/2
1

Π4
i=1 [q2i −m2

i + i λ]
, (5.2.106)

where n = 4 − 2 ε and l = 2, 4, 6, 8. S is an ordered set containing the propagators labels,

for the box in Fig.(5.4), S = {1, 2, 3, 4}. The propagator are labeled by qi = k+ ri, where k

is the momenta circulating in the loop, the ri are defined by pi = ri−ri−1 for i = 1, · · · 4 (we

10For example, boxes encountered in two or more loop diagrams, where the nature of the external legs is

unknown.
11It works for large phase space region especially if contour deformations are not needed (e.g. if all the

internal lines have different complex masses). If the contour deformations are needed, it may not work only

if some parameters, say β (they will be defined later on), receive a soft imaginary part from the square root

of "-" of the 3-point Gram determinants, but such configurations are not relevant for collider experiments.



5.2. Scalar four-point functions 115
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Figure 5.4: The box picturing the four-point functions

specify r1 = 0), and the pi are defined as incoming momenta. The momentum conservation

implies

4∑

i=1

pi = 0 (5.2.107)

These functions are free of any infrared divergences since they are defined in space-time

with more than 4 dimensions, see Table.(3.1) 12. But they can have some ultra-violet

divergences which appear as simple poles in ε which are easy to handle13. Using Feynman

parameterization and performing the momentum integration, I4+l−2 ε
4 (S) may be re-written

in the following form

I4+l−2 ε
4 (S) = Γ

(
4 − l

2
+ ε

) ∫ 1

0

4∏

i=1

dzi δ(1 −
4∑

i=1

zi)

(
−1

2
~z t S ~z − i λ

) l−4
2

−ε
, (5.2.108)

where zi are the Feynman parameters, the box kinematical matrix S (the general form of

this matrix is given in Eq, (5.1.4)) is given by

S =




−2m2
1 s2 −m2

1 −m2
2 t−m2

1 −m2
3 s1 −m2

1 −m2
4

s2 −m2
1 −m2

2 −2m2
2 s3 −m2

2 −m2
3 s−m2

2 −m2
4

t−m2
1 −m2

3 s3 −m2
2 −m2

3 −2m2
3 s4 −m2

3 −m2
4

s1 −m2
1 −m2

4 s−m2
2 −m2

4 s4 −m2
3 −m2

4 −2m2
4


(5.2.109)

with

si = p2
i , s = (p1 + p2)

2, t = (p2 + p3)
2. (5.2.110)

12We have shown in Table.(3.1) that the powers of λ4 (λ4 is the only vanishing eigenvalue of the matrix

S) for the scalar boxes in n + l dimensions are positive, this means that the corresponding singularities are

integrable, then it doesn’t lead to IR divergences. This was confirmed in section 3.2 (Chapter 3), where

we have proven that the boxes are free of soft and collinear divergences in the case where all the internal

propagators are massless (which is the most dangerous case!). A generalization to boxes with some massive

propagator is quite straightforward!
13The UV divergences of these boxes are fake, since they are forced to appear by the Golem algebraic

reduction. Once, these basic integral are gathered to build the form factors, these divergences will disappear.
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By re-writing the integrand of Eq. (5.2.108) in term of the Gram matrix associated to the

4-point function (G(a)) and the vectors V
(a)
i (see Eqs.(5.1.8, 5.1.9)), we find

I4+l−2 ε
4 (S) = Γ

(
4 − l

2
+ ε

) ∫ 1

0
dz1

∫ 1−z1

0
dz2

∫ 1−z1−z2

0
dz3

(
1

2

4∑

i,j=1

i,j 6=a

zi zj G
(a)
ij −

4∑

j=1

j 6=a

zj V
(a)
i − 1

2
Saa − i λ

) l−4
2

−ε
(5.2.111)

For simplicity, we relabel the zk by an appropriate permutation by fixing a = 4, so i, j =

1, 2, 3 in Eq. (5.2.111). With this choice we get

G(4) =




2 s1 s1 − s2 + s s1 + s4 − t

s1 − s2 + s 2 s s4 − s3 + s

s1 + s4 − t s4 − s3 + s 2 s4


 , V (4) =



s1 −m2

1 +m2
4

s−m2
2 +m2

4

s4 −m2
3 +m2

4


 . (5.2.112)

Since the determinant of G(a) (for a = 1, 2, 3, 4) does not depend on the choice of a (see

section B.1.1), from now on we will denote it by det(G)

det(G) ≡ det(G(1)) = det(G(2)) = det(G(3)) = det(G(4)). (5.2.113)

By making the following change of variables:





z1 = 1 − x

z2 = x− y

z3 = z

(5.2.114)

we get

I4+l−2 ε
4 (S) = Γ

(
4 − l

2
+ ε

) ∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz (a x2 + b y2 + g z2 + c x y + hx z

+ j y z + d x+ e y + k z + f − i λ)
l−4
2

−ε, (5.2.115)

with

a = s1, f = m2
1,

b = s4, g = s3,

c = t− s1 − s4, h = s2 + s4 − s− t,

d = m2
4 −m2

1 − s1, j = s− s3 − s4,

e = m2
3 −m2

4 + s− t, k = m2
2 −m2

3 − s2 + t. (5.2.116)

First, we rescale the variables y and z: y = x y′ and z = x z′ respectively. Then,

I4+l−2 ε
4 (S) =

∫ 1

0
dx

∫ 1

0
dy′

∫ y′

0
dz′ x2 (x2 (b y′ 2 + g z′ 2 + j y′ z′)

+ (e+ c x)x y′ + (k + hx)x z′ + a x2 + d x+ f − i λ)
l−4
2

−ε (5.2.117)
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Let us now introduce a parameter α and shift z′ (z′ = z′′ + α y′):

I4+l−2 ε
4 = Γ

(
4 − l

2
+ ε

) ∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

(
x2 (g α2 + j α+ b) y′2 + C1(x, z

′′) y′ + C0(x, z
′′)

) l−4
2

−ε
, (5.2.118)

C1(x, z
′′) = ((2α g + j) z′′ + c+ αh)x2 + (e+ αk)x, (5.2.119)

C0(x, z
′′) = (a+ h z′′ + g z′′2)x2 + (d+ k z′′)x+ f − i λ. (5.2.120)

To linearize the integrand in Eq. (5.2.118) on y′, the parameter α is chosen such that

α2 g + α j + b = 0, then

α =
−j + εα

√
∆(1)

2 g
, εα = ±1. (5.2.121)

with

∆(1) = j2 − 4b g

= s2 + s23 + s24 − 2s s3 − 2s s4 − 2s3 s4

= −λ(s, s3, s4)

= −det(G{1}). (5.2.122)

The discriminant equals to "-" the Gram determinant associated to the triangle obtained

by pinching the propagator number "1" of the box (see subsection B.1.2). In the physical

region, i.e. for processes relevant at collider experiment or particles decays. The parameter

α is real, since the discriminant ∆(1) is positive.

Eq. (5.2.118) is the starting point of the box calculation in any dimension of space

time. In our case, we will calculate the four scalar boxes corresponding to l = 2, 4, 6 and 8,

respectively. Each of them is given by

I6
4 (S) = rΓ

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

(
C1(x, z

′′) y′ + C0(x, z
′′)

)−1

(5.2.123)

I8−2 ε
4 (S) = rΓ

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

{
1

ε
− ln

(
C1(x, z

′′) y′ + C0(x, z
′′)

)}
(5.2.124)

I10−2 ε
4 (S) = rΓ

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

(
C1(x, z

′′) y′ + C0(x, z
′′)

)

{
−1

ε
− 1 + ln

(
C1(x, z

′′) y′ + C0(x, z
′′)

)}
(5.2.125)
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I12−2 ε
4 (S) = rΓ

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

1

2

(
C1(x, z

′′) y′ + C0(x, z
′′)

)2

{
1

ε
+

3

2
− ln

(
C1(x, z

′′) y′ + C0(x, z
′′)

)}
(5.2.126)

where rΓ = Γ(1− ε)2Γ(1+ ε)/Γ(1− 2ε) = 1− γrε+O(ε2) and γr is defined in Eq. (5.1.22),

this coefficient will be omitted in the following calculation.

From Eqs. (5.2.123), the box I6
4 (S) is the only integral free of UV divergences, hence, it

can be calculated in 4-dimensions (we can set n = 4). But, the remaining integrals are UV

divergent, so one has to calculate them in 4 + l − 2 ε dimensions, the UV divergent parts

are quite straightforward to calculate as we will show in the next paragraphs.

In the following, we will show, in detail, how to derive the analytical formula of the

scalar integral I6
4 , and the stable one-dimensional integral representation of this integral

and of the scalar integral I8
4

14, where we will focus more in the problematic region of the

phase space (the region where the Gram determinants vanish), which is the main subject

of this thesis.

5.2.2 The box in 6-dimensions

We will give a detailed calculation for both the analytical and the one-dimensional repre-

sentation of I6
4 . Due to the fact that α is real (see section B.2), one can inverse the order

of integration in Eq. (5.2.123) as the following

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′ =

∫ 1−α

0
dz′′

∫ 1

z′′/(1−α)
dy′ −

∫ −α

0
dz′′

∫ 1

z′′/(−α)
dy′ (5.2.127)

so that I6
4 is schematically written as:

I6
4 =

∫ 1

0
dxx2

{∫ 1−α

0
dz′′

∫ 1

z′′/(1−α)
dy′ −

∫ −α

0
dz′′

∫ 1

z′′/(−α)
dy′
}

[· · · ]−1

We perform the integration over y′ and rescale the variable z′′ = (1−α)z′′ and z′′ = (−α)z′′

for the first and the second term, respectively. We get

I6
4 (S) =

∫ 1

0
dxx

{
(1 − α)

∫ 1

0
dz′′

1

A1 − i λ
ln

(
A1 x+B1 − i λ

A1 z′′ x+B1 − i λ

)

+ α

∫ 1

0
dz′′

1

A2 − i λ
ln

(
A2 x+B2 − i λ

A2 z′′ x+B2 − i λ

)}

(5.2.128)

A1 = (1 − α) z′′ x (2 g α+ j) + e+ c x+ α (k + hx)

B1 = x2 (1 − α)2 z′′ 2 g + (1 − α)x (k + hx) z′′ + a x2 + d x+ f

A2 = −α z′′ x (2 g α+ j) + e+ c x+ α (k + hx)

B2 = x2 α2 z′′ 2 g − αx (k + hx) z′′ + a x2 + d x+ f

14The one-dimensional integral representations of I10
4 and I12

4 will be presented in the Appendix C.
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where the prescription −i λ in the denominators is fixed that way for some reasons that we

will explain later on. However the prescription −i λ in the logarithm arguments comes from

the internal masses.

For instance, we consider only real internal masses, a generalization to complex internal

masses will be done in the end of this section by an analytical continuation. In this pre-

scription, the imaginary parts of the logarithms arguments in Eq. (5.2.128) is given by

"−λ" (since α and the variables of integration are real). Hence, we can split them into two

parts without introducing any η functions defined in (Eq. (5.1.27)). Thus

I6
4 (S) =

∫ 1

0
dxx

{∫ 1

0
dz′′

(
(1 − α)

ln(A1 x+B1 − i λ)

A1 − i λ
+ α

ln(A2 x+B2 − i λ)

A2 − i λ

)

−
∫ 1

0
dz′′ (1 − α)

ln(A1 z
′′ x+B1 − i λ)

A1 − i λ

−
∫ 1

0
dz′′ α

ln(A2 z
′′ x+B2 − i λ)

A2 − i λ

}
(5.2.129)

We make the change of variables z̃ = z′′ x (1− α) in the first and the third integral and

z̃ = −α z′′ x in the second and the fourth integrals. We thus get:

I6
4 (S) =

∫ 1

0
dx

{∫ (1−α)x

−αx
dz̃

ln(N + xM − i λ)

M − i λ
−
∫ (1−α)x

0
dz̃

ln(N + z̃/(1 − α)M − i λ)

M − i λ

+

∫ −αx

0
dz̃

ln(N − z̃/αM − i λ)

M − i λ

}
(5.2.130)

with

N = z̃2 g + z̃ (k + hx) + a x2 + d x+ f (5.2.131)

M = z̃ (2 g α+ j) + x (c+ αh) + e+ αk (5.2.132)

.

The −i λ prescription:
.

In Eq. (5.2.128), the poles at A1 = 0 and at A2 = 0 are manifestly fake, thus the −iλ
prescription in there is irrelevant: any contour prescription, even no prescription at all

yields the same result, since the residue at each pole of these terms is zero. However, if we

split each of them into two parts as in (5.2.129), then one has to specify some prescription.

Any prescription actually used is irrelevant but the same one has to be specified in each

of the two terms resulting from the splitting. Furthermore, we combined one of the inte-

grals of each splitting into a single integral (Eq. (5.2.130)), thus the prescription has to be

the same for all four integrals; otherwise the cancellation might not be occurred. Here we

fixe the prescription in such that: −i λ, which is the most convenient as we will show further.

Then we make the change of variables15. z̃ = z−αx (resp. z̃ = (1−α) z and z̃ = −α z)

in the first (resp. the second and the third) integral. The three integrals take the same

15The notation z is used again to avoid another heavy notation.
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generic form:

∫ 1

0
dx

∫ x

0
dz

Ki

Gi x+Hi z + Ji
ln
(
Ai x

2 +Bi z
2 + Ci x z +Di x+ Ei z + Fi − i λ

)

Let us define as "sector I", "sector II", and "sector III" respectively these three integrals

with the corresponding following sets of coefficients:

Sector I: Sector II: Sector III:

AI = a+ b+ c AII = a AIII = a

BI = g BII = g + j + b BIII = b

CI = h+ j CII = c+ h CIII = c

DI = d+ e DII = d DIII = d

EI = k EII = e+ k EIII = e

FI = f FII = f FIII = f

GI = c+ 2 b+ hα+ j α GII = c+ hα GIII = c+ hα

HI = 2 g α+ j HII = (1 − α) (2 g α+ j) HIII = −α (2 g α+ j)

JI = e+ αk JII = e+ αk JIII = e+ αk

KI = 1 KII = −(1 − α) KIII = −α

(5.2.133)

Omitting the "sector" index i = I, II, III from now on, I6
4 becomes

I6
4 (S) =

III∑

i=1

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J − i λ
ln(Ax2 +B z2 +C xz +Dx+E z + F − i λ)

(5.2.134)

In the following, we will adopt a strategy close to that one introduced by ’tHooft and

Veltman in [66] for calculating the box in four-dimensions. First of all, let’s shift z = z̄+γ x

such that H γ +G = 0. The result is

I6
4 (S) =

III∑

i=I

∫ 1

0
d x

∫ (1−γ)x

−γ x

d z̄

H z̄ + J
ln(W2 x

2 +W1 x+W0 − i λ) (5.2.135)

W2 = B γ2 + C γ +A W1 = (C + 2B γ) z̄ + E γ +D

W0 = B z̄2 + E z̄ + F (5.2.136)

the parameter γ is always real even if complex internal masses are involved since G and

H are independent of these masses. So, the order of integration can be reversed and Eq.

(5.2.135) becomes

I6
4 (S) =

III∑

i=I

K

(∫ 1−γ

0
d z̄

∫ 1

z̄/(1−γ)
dx −

∫ −γ

0
d z̄

∫ 1

z̄/(−γ)
dx

)
F 6

0 (x, z̄) (5.2.137)

where F 6
0 is given by:

F 6
0 (x, z̄) =

1

H z̄ + J
ln(W2 x

2 +W1 x+W0 − i λ) (5.2.138)
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we integrate F 6
0 over x, we get

∫
dxF 6

0 (x, z) =
1

H z + J

{
x ln(W2 x

2 +W1 x+W0 − i λ)

−
∫
dx

x (2W2 x+W1)

W2 x2 +W1 x+W0 − i λ

}
. (5.2.139)

Let’s call the contribution coming from the integrated part, in Eq. (5.2.139), I6
4,1(S) and

from the non-integrated one I6
4,2(S). Then I6

4 becomes

I6
4 (S) = I6

4,1(S) − I6
4,2(S) (5.2.140)

By combining the terms coming from the upper limit x = 1 and making the change of

variables z̄ = t− γ, z̄ = (1 − γ) t and z̄ = −γ t, respectively in the terms with
∫ 1−γ
−γ ,

∫ 1−γ
0

and
∫ −γ
0 for each sector, we prove that I6

4,1 can be written in the following form

I6
4,1(S) =

III∑

i=I

∫ 1

0
dtK(N6

4,1(1, t− γ) − (1 − γ)N6
4,1(t, (1 − γ) t) + (−γ)N6

4,1(t,−γ t))

(5.2.141)

N6
4,1(x, z) = x ln(W2 x

2 +W1 x+W0)/(H z + J)

(5.2.142)

I6
4,1(S) is a one-dimensional integral, after some manipulation it can be written as

I6
4,1(S) =

III∑

i=I

K

H

∫ 1

0
dt

{

1

t+ G+J
H

ln(B t2 + (E + C) t+A+D + F − i λ)

− 1

t+ J
G+H

ln((A+B + C) t2 + (E +D) t+ F − i λ)

+
1

t+ J
G

ln(A t2 +D t+ F − i λ)

}
(5.2.143)

By summing over all the sectors, we find that the contribution from the last two terms of

this equation vanishes, this can be seen by expressing the capital letters in term of the small

ones or in term of the entries of the matrix S, see section (B.3) (the first, the second and

the third quadratic form in Eq. (5.2.125) are denoted in subsection (B.3.1) by Q1(t), Q2(t)

and Q3(t), respectively). Then,

I6
4,1(S) =

III∑

i=I

K

H

∫ 1

0
dt

1

t+ G+J
H

{

ln(B t2 + (E + C) t+A+D + F − i λ) − ln

(
−1

2

det(S{1})

det(G{1})
− i λ

)}
(5.2.144)
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where for each sector, the value of the logarithm argument taken at the pole value is given

by

B t20 + (E + C) t0 +A+D + F − i λ|t0=−G+J
H

= −1

2

det(S{1})

det(G{1})
− i λ (5.2.145)

The constant logarithm (−1
2

det(S{1}
)

det(G{1})
) is subtracted just to build a formula with zero residue

at the poles. It is the same for each sector and it gives no contribution to the final result, see

demonstration bellow. S{1} is a 3 × 3 matrix obtained from the matrix S by omitting the

first line and the first column, det(G{1}) is the determinant of its associated Gram matrix,

see section B.2.

Thus Eq. (5.2.144) can be written as

I6
4,1 =

1

εα
√

∆α

∫ 1

0
dt

{

× 1

t− t
(1)
0

[ln(s3 y
2 + (m2

2 −m2
3 − s3) y +m2

3 − iλ) − ln(B{1} − iλ)]

+
1

t− t
(2)
0

[ln(s4 y
2 + (m2

3 −m2
4 − s4) y +m2

4 − iλ) − ln(B{1} − iλ)]

− 1

t− t
(3)
0

[ln(s y2 + (m2
2 −m2

4 − s) y +m2
4 − iλ) − ln(B{1} − iλ)]

}

= −I4
3 (S \ {1}) (5.2.146)

where the poles t
(i)
0 are given in subsection (B.3.1), and

B{i} = −1

2

det(S{i})

det(G{i})
. (5.2.147)

Eq. (5.2.146) represents a one-dimensional representation of minus the scalar 3-point func-

tion in 4-dimension obtained from the box in Fig. (5.4) by pinching the propagator number

"1", see diagram (a) in Fig. (B.1) (Appendix B). One can obtain this result from Eq.

(5.1.32)) by making the replacement:

s1 −→ s4, m2
1 −→ m2

4

s2 −→ s, m2
2 −→ m2

2

s3 −→ s3, m2
3 −→ m2

3 (5.2.148)

The last integration can be performed analytically by using Eq.(A.2.11) in Appendix A. We

notice that det(G{1}) can be interchanged to det(G{i}) for i = 2, 3, 4 by rotating the box,

.i.e. by interchanging pi → pi+1 and mi → mi+1 for i = 1, 2, 3, 4. So if det(G{1}) vanishes,

one has just to make this procedure to interchange it to a non vanishing reduced Gram de-

terminant (this is completely possible since the four det(G{i}) can’t vanish simultaneously).

Then, the analytical formula of I6
4,1 is stable.
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The second term in the right hand side of Eq. (5.2.140) is

I6
4,2(S) =

(∫ 1−γ

0
dz̄

∫ 1

z̄/(1−γ)
dx−

∫ −γ

0
dz̄

∫ 1

z̄/(−γ)
dx

)

× K

H z̄ + J

x (2W2 x+W1)

W2 x2 +W1 x+W0 − i λ
(5.2.149)

Since γ is real, we can reverse the order of integration again and combine the two integrals

in Eq. (5.2.149), and make the change of variable z̄ = z − γ x, we get

I6
4,2(S) = K

∫ 1

0
dx

∫ x

0
dz

1

Gx+H z + J

Q(6)(x, z)

Ax2 +B z2 + C x z +Dx+ E z + F − i λ

(5.2.150)

The integral I6
4,2(S) is of the same type of I4

4 in ref. [66], the only difference is the function

Q(6)(x, z) = x ((2AH−C G)x+(C H−2BG) z+DH−EG)/H in the numerator, which

does not change the nature of the logarithms and the poles from I4
4 obtained in [66] (it has

the same analytical structure of I4
4 !), but it changes only the coefficients in front off those

logarithms in ref. [66]. From now on, we perform the same change of variables done by

’tHooft and Veltman. Thus we shift z = z̄ + β x16, where β is defined as the solution of

B β2 + C β +A = 0, i.e.

β =
−C + εβ

√
∆

2B
, εβ = ±1. (5.2.151)

Then, I6
4,2 becomes

I6
4,2(S) =

III∑

i=I

∫ 1

0
dx

∫ (1−β)x

−β x
dz̄

K

S x+ T

x (C1 x+ C0)

U x+ V
(5.2.152)

with

S =G+H β T =H z̄ + J − i λ

U =(C + 2B β) z̄ +D + β E V =B z̄2 + E z̄ + F − i λ

C1 = − S (C + 2B β)/H = SC̃1 C0 =((C H − 2BG) z̄ +DH − EG)/H (5.2.153)

we put the prescription "−i λ" in T (At this point, the sign of λ is of no consequence if α is

taken to be real). The parameter β can be real or complex, this depends on the sign of the

discriminant of the quadratic form determining β, i.e on the sign of det(G(i)) (the Gram

determinant associated to the 3-point function obtained by pinching a given propagator of

the box, see section B.2). In the following, we will do the calculation for real β, a general-

ization to complex β will be presented in the end of this section.

Since β is real, we can exchange the order of integration

I6
4,2(S) = K

∫ 1−β

0
d z̄

∫ 1

z̄/(1−β)
dxF 6

1 (x, z̄) −
∫ −β

0
d z̄

∫ 1

z̄/(−β)
dxF 6

1 (x, z̄)

(5.2.154)

16we introduce z again for simplicity
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F 6
1 is the integrand of Eq.(5.2.152), its primitive with respect to x is

N6
4,2(x, z) =

∫
dx

x (C1 x+ C0)

S V − T U

[
S

S x+ T
− U

U x+ V

]

=

{
x C̃1

U
+
T

S

(C̃1 T − C0) ln(S x+ T )

S V − T U

− V

U2

(C̃1 S V − C0 U) ln(U x+ V )

S V − T U

}
(5.2.155)

Since β is real, the sign of the imaginary parts of the logarithmic arguments is not changed

during the integration over the remaining variable. Hence, there is never any problem with

the logarithms. Otherwise, J may change the imaginary part of the logarithm arguments, if

complex masses are required. In this case, the sign of the imaginary part of the logarithmic

argument could be changed if and only if the imaginary part of J becomes positive. If this

kinematics is encountered, one has to multiply Eq. (5.2.150) by a global (−1) and change

G, H and J to −G, −H and -J in the same equation, which guarantees that the branch

cut of each logarithm is not crossed during the integration.

To be able to integrate this primitive analytically over the remaining integration variable,

we can make a partial decomposition of the denominators S V − T U and U (S V − T U).

Then, N6
4,2 becomes

N6
4,2(x, z) =

x C̃1

U
+

2

S
ln(S x+ T )

+
1

H

{
1

2T1

∑

η=±

H T4 + η T2

√
T4√

T4

η

z − zη
ln
S x+ T

U x+ V

− HM0 − (C + 2B β)T2

2T1

1

U
ln(U x+ V )

−
(

B

(C + 2B β)
− M1

(C + 2B β)

1

U2

)
ln(U x+ V )

}
(5.2.156)

with

T1 = AH2 − C GH +BG2 = −K2 det(G)/2 (5.2.157)

T2 = −EGH +DH2 + 2BGJ − C H J (5.2.158)

M0 = C2 J − 4AB J − C EG+ 2BDG− C DH + 2AEH = K det(S) bi (5.2.159)

M1 = BD2 − C DE +AE2 − 4AB F + C2 F = det(S{i})/2 (5.2.160)

where bi are defined in Chapter 4,
√
T4 and zη=± are the discriminant and the roots of the

quadratic form S V − T U , respectively. We have

zη =
−α2 + η

√
T4

2α1

=
−2α3

α2 + η
√
T4
, (5.2.161)
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T4 = α2
2 − 4α1 α3 α1 = BG−BH β − C H,

= K2 det(S), α2 = EG−DH − 2B J β − C J,

S V − T U = α1 z
2 + α2 z + α3 α3 = F G−DJ + β (F H − E J),

= α1 (z − z+) (z − z−), (5.2.162)

from now on we call α1, "S̄", where

α1 = S̄ = B (G+ β̄ H), β̄ = −C + εβ
√

∆

2B
, (5.2.163)

For more details about these definitions, see section B.3.2 in Appendox B.

At this stage, we can see the interest of choosing the prescription −i λ (with λ > 0). The

reason is that, the logarithms ln(S x+ T ) and ln(U x+ V ) can be combined into ln S x+T
U x+V ,

as in Eq. (5.2.156), without introducing any η function, since their arguments have always

negative imaginary parts for arbitrary internal masses. This will help us to construct a

formula with zero-residue at the pole as we will see later on.

Inserting Eq.(5.2.156) in Eq. (5.2.154) and recombining terms coming from the upper

limit x = 1, we get

I6
4,2(S) =

III∑

i=1

∑

η=±

K

H

1

2T1

H T4 + η T2

√
T4√

T4

{∫ 1−β

−β
dz

η

z − zη
ln
S + T

U + V

−
∫ 1−β

0
dz

η

z − zη
ln
S z/(1 − β) + T

U z/(1 − β) + V
+

∫ −β

0
dz

η

z − zη
ln
S z/(−β) + T

U z/(−β) + V

}

−
III∑

i=1

K

H

HM0 − (C + 2B β)T2

2T1

{∫ 1−β

−β

1

U
ln(U + V )

−
∫ 1−β

0

1

U
ln(U z/(1 − β) + V ) +

∫ −β

0

1

U
ln(U z/(−β) + V )

}
(5.2.164)

We notice that the first, the second and the last two terms in Eq. (5.2.156) give zero-

contribution to Eq. (5.2.164), this will be proved in section B.4, Appendix(B).

The Eq. (5.2.164) is proportional to inverse of T1, i.e. to the inverse of det(G) (det(G) is

Gram matrix associated to S matrix). If det(G) becomes arbitrary small in some phase

space regions, then this equation will lead to numerical unstable results. On the other side,

the primitive in Eq. (5.2.155) is not proportional explicitly to inverse of det(G) (or T1), but

it has just one term proportional to inverse of S, where

T1 = S S̄ ∝ det(G) (5.2.165)

S and S̄ are defined in Eqs. (5.2.153, 5.2.163), respectively. So, it will be better to use the

primitive Eq. (5.2.155) rather than the primitive Eq. (5.2.156) (the later one leads to Eq.

(5.2.164)) to derive the one-dimensional integral representation which will be used in the in

the problematic region, as we will see that in detail in section 5.2.2.2. In the following, we

will use Eq. (5.2.164) to derive the analytical formula.
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The poles of Eq. (5.2.164) correspond to SV − TU = 0 (z = zη) and U = 0. In the

former case, the concerning terms have the general form

ln
Sx+ T

Ux+ V
= ln

(
V

U

x+ T/S

x+ V/U

)
= ln

V

U

∣∣∣∣
SV−TU=0

(5.2.166)

So, at the pole value, i.e. SV − TU = 0 (or T/S = V/U), one can just subtract ln V
U from

each of these logarithms to make the residue vanish. For real β the subtracted term give no

contribution to the final result (it is true for complex β) as we will prove bellow. Similarly,

we can subtract ln(V )|U=0 from ln(Ux+ V ) to make the residue at U = 0 vanish.

By making the following change of variables: z1 : z = t − β, z2 : z = (1 − β) t and

z3 : z = −β t in the integrals
∫ 1−β
−β ,

∫ 1−β
0 and

∫ −β
0 , respectively. We get

I6
4,2(S) =

III∑

i=I

∑

η=±

∫ 1

0
dt
K

H

1

2T1

H T4 + η T2

√
T4√

T4

[

η

t− β − zη

{
ln

H t+G+ J − i λ

B t2 + (E + C) z +A+D + F − i λ
− ln(”t = β + zη”)

}

− η

t− zη/(1 − β)

{
ln

(H +G) t+ J − i λ

(A+B + C) t2 + (E +D) z + F − i λ
− ln(”t =

zη

1 − β
”)

}

+
η

t− zη

−β

{
ln

Gt+ J − i λ

A t2 +D z + F − i λ
− ln(”t = zη/(−β)”)

}]

−
III∑

i=I

K

H

HM0 − (C + 2B β)T2

2T1

1

C + 2B β

∫ 1

0
dt

[

1

t− β +R

{
ln(B t2 + (E + C) z +A+D + F − i λ) − ln B̃{i}

}

− 1

t+R/(1 − β)

{
ln((A+B + C) t2 + (E +D) z + F − i λ) − ln B̃{i}

}

+
1

t+R/(−β)

{
ln(A t2 +D z + F − i λ) − ln B̃{i}

}]
(5.2.167)

with

B̃{i}
= B{i} − i λ (5.2.168)

Combining this equation with I6
4,1 and using

J =

III∑

i=I

K

H

{
I4,rest
4 (S) + (C + 2Bβ)I4

3 (S \ {i})
}
− I4

3 (S \ {1})

= 0 (5.2.169)

see subsection B.4.3 in Appendix B for the proof of this formual.
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We prove that the final formula of I6
4 is

I6
4 (S) = −

III∑

i=I

∑

η=±

K

2T1

∫ 1

0
dt

(
η
√
T4 +

2T1 + T2

H

)[

1

t− β − zη

{
ln

H t+G+ J − i λ

B t2 + (E + C) z +A+D + F − i λ
− ln(”t = β + zη”)

}

− 1

t− zη/(1 − β)

{
ln

(H +G) t+ J − i λ

(A+B + C) t2 + (E +D) z + F − i λ
− ln(”t =

zη

1 − β
”)

}

+
1

t− zη/(−β)

{
ln

Gt+ J − i λ

A t2 +D z + F − i λ
− ln(”t = zη/(−β)”)

}]

+
III∑

i=I

K

H

HM0 − (C + 2B β) (2T1 + T2)

2T1

1

C + 2B β

∫ 1

0
dt

[

1

t− β +R

{
ln(B t2 + (E + C) z +A+D + F − i λ) − ln B̃{i}

}

− 1

t+R/(1 − β)

{
ln((A+B + C) t2 + (E +D) z + F − i λ) − ln B̃{i}

}

+
1

t+R/(−β)

{
ln(A t2 +D z + F − i λ) − ln B̃{i}

}]
(5.2.170)

where

R = (D + E β)/(C + 2β B) (5.2.171)

V |t0i = −1

2

det(S{i})

det(G{i})
− i λ =

1

2
B{i} − i λ = B̃{i}

(5.2.172)

ln(”t = tη0i”) = ln

(
V

U
|t=tη0i

)
= ln(V |t=tη0i

) − ln(U |t=tη0i
) + η(V |t=tη0i

, 1/U |t=tη0i
) (5.2.173)

and

t01 = β −R t02 = −R/(1 − β) t03 = −R/(−β) (5.2.174)

tη01 = β + zη tη02 = zη/(1 − β) tη03 = zη/(−β) (5.2.175)

The subtraction logarithms gives no contribution to the final result (see next section), they

are introduced to make the residues at each pole equal to zero as explained above. This

formula is equivalent to the well known formula of I6
4 (S) obtained from the Golem reduction,

I6
4 (S) =

det(S)

det(G)

[
I4
4 (S) −

4∑

i=1

bi I
4
3 (S/{i})

]
(5.2.176)

see the proof in subsection B.4.4 in the Appendix(B). The last integration in these two

equations can be performed analytically using Eq.(A.2.11) in Appendix A.

We mention that Eq. (5.2.170) has less di-logarithmic functions compared to Eq.

(5.2.176), since I4
3 (S/{1}) is omitted from the further formula by means of Eq.(5.2.169),
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then it is more advantageous than the later formula.

If det(G) vanishes or becomes arbitrary small17, these formulas (analytical mode) are not

any more valid because of the problems of the numerical instability, hence we have to switch

to the numerical mode by means of the one-dimensional integral representation, which will

be derived in section 5.2.2.2.

5.2.2.1 Extension to complex β and/or complex internal masses

The formula of the box in 6-dimension given by Eq. (5.2.170) (or Eq. (5.2.176)) was derived

for real β (the solution of B β2 + C β + A = 0) and real internal masses. Actually, it is

valid for any kinematical configuration in the physical region for arbitrary internal masses

(complex masses are supported), and it is valid even for complex β, i.e. for configurations

with at least three space-like momenta 18..

Proof:

If β is complex 19, the problems of analyticity comes from the subtraction logarithms if their

branch cuts are crossed, i.e. if their arguments become purely negatives, and in the same

time, the associated poles are within the triangle [0,−β, 1 − β] in the z-complex plan (Eq.

(5.2.164)). Otherwise, no problem of analyticity can occur since the other logarithms are

independent of β and the imaginary part of their arguments are always negative as shown

in section B.1.1 in Appendix(B).

Let us study the branch cuts of the subtracted logarithms and the position of the

corresponding poles in Eq. (5.2.164):

• if the cut of the logarithm is not crossed and the pole is outside the triangle [0,−β, 1−
β]: this case is safe.

• if the cut of the logarithm is crossed and the pole is outside the triangle [0,−β, 1−β]:

also this case is safe, since the jumps across the cut are compensated in the three

integrals
∫ 1−β
−β ,

∫ 1−β
0 and

∫ −β
0 in Eq.(5.2.164), i.e. For arg0 < 0 (arg0 refers to the

arguments of the subtracted logarithms), ln(arg0) = ln |arg0| ± iπ, then

∫ 1−β

−β
dz

±iπ
z − z0

−
∫ 1−β

0
dz

±iπ
z − z0

+

∫ −β

0
dz

±iπ
z − z0

= 0 (5.2.177)

where z0 stands for the poles.

• if the cut of the logarithm is not crossed and the pole is inside the triangle [0,−β, 1−β]:

no problem occurs, since the residue at the pole is zero by construction.

17We notice that T1 may vanish for the sector II and the sector III not only for det(G) = 0 but for α = 1

or α = 0 respectively since T1 ∝ K2 det(G). In this case, the analytical formula of I6
4 still valid since the

K2 coming from T1 is compensated by the numerator.
18Such configuration can not be encountered at NLO order, see section B.3.1 in the Appendix B
19 i) βI associated to the sector I becomes complex if s2 < 0, s3 < 0 and t < 0, ii) βII associated to

the sector II becomes complex if s1 < 0, s2 < 0 and s < 0, iii) βIII associated to the sector III becomes

complex if s1 < 0, s4 < 0 and t < 0, see subsection B.3.2.
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• if the cut of the logarithm is crossed and the pole is inside the triangle [0,−β, 1− β]:

problems may be produced in this region, so we have to check if this situation is en-

countered in our calculation or not.

Our formula have three type of poles: two simple poles corresponding to the denominator

S V −T U = 0 and a simple pole corresponding to U = 0 (see the primitive in Eq.(5.2.156)).

Let us calculate the argument of the subtracted logarithm associated to the pole at U = 0

(we call the pole z0)

z0 = − D + E β

C + 2β B

= −D + E (β1 + β2)

i εβ
√
|∆|

= −D + Eβ1

i εβ
√
|∆|

− E

2B
(5.2.178)

with

β = β1 + β2, β1 = − C

2B
, β2 =

i εβ
√

|∆|
2B

(5.2.179)

is given by

V |z→z0 = B z2
0 + E z0 + F − i λ

= B

(
D + E β1

i εβ
√
|∆|

)2

− E2

4B
+ F − i λ

=
det(S{i})

2 |∆| − i λ (5.2.180)

If the complex masses are not involved, the imaginary part of the subtraction term in

Eq.(5.2.180) is given by −iλ (it never changes the sign). Then it never crosses the negative

real axis. Moreover, β complex means that the three external momenta of the correspond-

ing triangle are space-like (otherwise the Gram determinant associated to this triangle is

negative and β can not be complex, see section B.2); B is negative in the three different

sectors since it is equal to p2
3, (p1 +p2)

2 and p2
4, respectively (which are all space-like). This

implies that the real part of the subtraction term is always positive in this configuration.

If the complex masses are involved and β is complex, we may encounter a problem if the

pole z0 is inside the triangle [0,−β, 1 − β] and the branch cut of the subtracted logarithm

is crossed. Since in this case, Eq. (5.2.180) receives imaginary parts from D, E and F , and

by reason of the internal complex masses have positive real part, then the real part of the

argument of the subtracted logarithm is still positive. Hence, it never cross it negative real

axis.

Regarding the logarithms associated to the poles S V −T U = 0 (ln((S x+T )/(U x+V ))),

we have to prove that if the poles zη are within the triangle [0,−β, 1 − β], the branch cut
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of these logarithms is not crossed. Let us define the zη to be inside the triangle, then

zη = λ (µ− β), with 0 ≤ λ, µ ≤ 1. (5.2.181)

Inserting zη in the arguments of these logarithms, we find

T + λS = H λµ+ λG+ J − i λ (5.2.182)

V + λU = B λ2 µ2 +Aλ2 + C λ2 µ+ E λµ+Dλ+ F − i λ (5.2.183)

Eqs.(5.2.182, 5.2.183) are independent of the nature of β. If the internal masses are real,

the imaginary parts of the arguments of these logarithms are given by −λ. Hence, they

never cross their negative real axis. If the complex masses are involved, the imaginary part

of T + λS is provided by J , so we can keep it negative by the procedure shown above.

Regarding V + λU , for each sector it is given by:

I : V + λU = −λµ (1 − λ) p2
2 − λ (1 − λ) t+ λµ (1 − λ) t

− λ2 µ (1 − µ) p2
3 + (1 − λ)m2

1 + λµm2
2 + λ (1 − µ)m2

3 − i λ (5.2.184)

II : V + λU = λµ (1 − λ) p2
3 + λ (1 − λ) p2

1 − λµ (1 − µ) s

− µ (1 − λ) p2
2 + (1 − λ)m2

1 + λµm2
2 + λ (1 − µ)m2

4 − i λ (5.2.185)

III : V + λU = λµ (1 − µ) p2
1 − λ (1 − λ) p2

1 − λµ (1 − µ) p2
4

− µ (1 − λ) t+ (1 − λ)m2
1 + λµm2

3 + λ (1 − µ)m2
4 − i λ (5.2.186)

where s and t are the Mandelstam variables.

From Eqs.(5.2.184, 5.2.185, 5.2.186), the imaginary parts of the logarithms argument are

negatives for each sector, since they are provided by imaginary parts of the internal masses

(which are negative) and −λ. Then

ln
T + λS − i λ

V + λU − i λ
= ln(T + λS − i λ) − ln(V + λU − i λ) (5.2.187)

Hence, if the poles zη are inside the triangle [0,−β, 1− β], the branch cuts of logarithms in

Eq.(5.2.187) are never crossed.

In conclusion, Eq.(5.2.170) is valid for any configuration of the external momenta (space-

like or time-like) and for arbitrary internal masses, where the complex masses are supported.

5.2.2.2 Numerical mode

In this paragraph, we show how one can avoid the inverse of the Gram determinant appear-

ing in Eq.(5.2.170, 5.2.176) presented in the previous section. We have mentioned in the

introduction that avoiding the inverse of Gram determinant (or the inverse of its powers),

from the analytical formula, is possible from the mathematical point of view, since the

singularity at det(G)=0 is spurious (see Chapter 3). However, from the technical point of

view!, as far as I know, it is not possible. But, at the level of the one-dimensional integral

representation obtained from the primitive in Eq.(5.2.155), it is less complicated because of

two raisons: a) det(G) doesn’t appear explicitly in this formula but the inverse of S which

appears, where det(G) = S S̄. b) we can always modify the primitive Eq. (5.2.155), which
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provides a one-dimensional integral representation of I6
4,2, by adding some terms without

changing the final results (basically these terms are x-independent quantities and they van-

ish upon integration).

From the previous calculation, we have found

I6
4 (S) = I6

4,1(S) − I6
4,2(S),

I6
4,1(S) =

III∑

i=I

∫ 1

0
dtK[N6

4,1(1, t− γ) − (1 − γ)N6
4,1(t, (1 − γ) t) + (−γ)N6

4,1(t,−γ t)],

I6
4,2(S) =

III∑

i=I

∫ 1

0
dtK[N6

4,2(1, t− β) − (1 − β)N6
4,2(t, (1 − β) t) + (−β)N6

4,2(t,−β t)],

(5.2.188)

N6
4,1 and N6

4,2 are given in Eq.(5.2.142) and Eq.(5.2.155), respectively. The later one can be

written as

N6
4,2(x, z) =

C̃1

U2

{
U x− V ln(U x+ V )

}
+
T

S

C̃1 T − C0

S V − T U
ln(S x+ T )

−V
U

C̃1 T − C0

S V − T U
ln(U x+ V ). (5.2.189)

Eqs. (5.2.188) provide a one-dimensional integral representation of I6
4 (S), we have to modify

N6
4,2 in Eq. (5.2.189) to get the new representation of I6

4 (S) which provides numerical stable

results. From the primitive N6
4,2, I

6
4,2 is not proportional to inverse of det(G) explicitly but

it is proportional to inverse of S (the second term). So, the only remaining problem occurs

when S becomes arbitrary small. S = 0 (⇒ det(G) = 0), is not a real singularity because

the Landau conditions require det(S) = 0 which can not be satisfied simultaneously with

det(G) = 0 in the physical region, see Chapter 3. So it is completely possible to re-write

N6
4,2 in such way that the inverse of S is avoided. To do so, we pursue the following strategy,

which will be adopted for the other scalar boxes (I8
4 , I10

4 and I12
4 ): from the term containing

ln(S x+ T ) in N6
4,2, we subtract ln(T ) which give no contribution to the final result as we

will show later on (the proof starts from Eq. (5.2.202)). Then

T

S

C̃1 T − C0

S V − T U

(
ln(S x+ T ) − ln(T )

)
=
T

S

C̃1 T − C0

S V − T U
ln
S x+ T

T

= −x (C̃1 T − C0)

S V − T U

ln(1 −X)

X
(5.2.190)

where X = −S x/T , we mention that we don’t need to introduce an η function to combine

the two logarithms in the left hand side of Eq.(5.2.190), since the signs of the imaginary

parts of their arguments are both negative. For small X, this contribution can be written

as

− x (C̃1 T − C0)

S V − T U

ln(1 −X)

X
=
x (C̃1 T − C0)

S V − T U

∞∑

n=0

Xn

n+ 1
(5.2.191)
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let’s introduce the function

q1(X) =

{
1
X ln(1 −X) if X 6→0

−∑∞
n=0

Xn

n+1 if X → 0
(5.2.192)

here "X → 0" means X equals to zero or becomes arbitrary small!

Each term of the expansion of q1 around X → 0 (q1 = −1 − 1
2 X − 1

3 X
2 − · · · ) is free

of any inverse of X (or S), which means that this expansion is finite for S → 0, then for

det(G) → 0. In top of that, each coefficient of the expansion is known at any order of

the expansion (at the order n, the coefficient is −1/(n + 1))20. So, this function is very

convenient for the numerical implementation.

Then, N6
4,2 becomes

N6
4,2(x, z) =

C̃1

U2

{
Ux− V ln(Ux+ V )

}
− x

C̃1T − C0

SV − TU
q1(X) − V

U

C̃1T − C0

SV − TU
ln(Ux+ V )

(5.2.193)

This new primitive (we keep the same name of the old one) is free of any inverse of S and

it leads, in principe!, to stable results in the problematic regions. As a matter of fact, this

"preliminary primitive" works very well for configurations where no pole approaches the

segment [0, 1] (the domain of integration). For example, if the four internal masses of the

box have different non negligible imaginary parts, this implies that all the poles of N6
4,2 are

far away from the integration segment by means of the imaginary parts that they receive

from the complex internal masses; hence, no problem of numerical instability may occur

during the numerical integration.

In general, the poles of N6
4,1 and N6

4,2 may approach the segment [0, 1] 21 (if they have

sufficiently small imaginary parts) which can hamper the numerical stability. To avoid this

problem, we have to perform a contour deformation to avoid the encountered poles.

5.2.2.3 Contour deformation:

We need to make a contour deformation, if one or some of the poles become very close to

the segment [0, 1], i.e if they have a sufficiently small imaginary part which can embarrass

the numerical stability. The new contours of integration should avoid these dangerous re-

gions by avoiding the poles, and they should not cross the branch cuts of the associated

logarithms, i.e. they must keep the imaginary parts of their arguments negative during the

integration.

20The order of the expansion is fixed by comparing two result for different order of the expansion, say

n = n1 and n = n2 (n1 < n2), with the precision of the machine. If the difference between the two results

is smaller than the precision of the machine, we stop the expansion at n = n1. Otherwise, we continue the

expansion until when the previous condition is fulfilled.
21We can treat the contribution of N6

4,1 independently as in Section 5.1, since it leads to 3-point function.

Or even we can use the analytical mode, since the associated Gram determinant det(G(1)) can always chosen

to be non-zero by rotating the box.
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For terms containing quadratic logarithms, say ” ln(a z2 + b z+ c− i λ)”, we choose this

contour

C1 : z −→ z − i z (1 − z) [2 a z + ℜ(b)] ε1 (5.2.194)

For terms containing linear logarithms, say ” ln(e z + f − i λ)”, we choose this contour

C2 : z −→ z − i z (1 − z) sign(e) ε2 (5.2.195)

and for terms without logarithms, we simply choose

C3 : z −→ z − i z (1 − z) ε3 (5.2.196)

ε1 and ε2 have to be positive and their absolute values are chosen in such way that the

integration contours become far enough from the dangerous region, and the sign of ε3 is

completely arbitrary!. All the possible contours and poles are given in the Fig. (5.5).

Using Cauchy’s integral theorem. Schematically, I6
4 can be written as

3∑

i=1

∫

Ci

I6
4 Ci

(z) dz = 2π i
∑

i,j

ICi,j Res

(
I6

4 Ci
(z)

)

z=z0Ci,j

(5.2.197)

I6
4 Ci

denotes a part of the integrand of the one-dimensional integral representation, where

the contour of integration is deformed to Ci, z0
Ci,j

stands for the poles of I6
4 Ci

where the sum

runs over all the possible poles j inside the closed contour in the complex plan, ICi,j = ±1, 0

stands for winding number of the contour Ci about the pole z0
Ci,j

, it is positive if Ci moves in

a counter clockwise manner around the pole, negative if it moves in the opposite side and

0 if it doesn’t move around the pole at all.

At this stage, it remains to calculate the residues of the integrand at each pole which

will be the subject of the next paragraph.

5.2.2.4 Residues calculation

The residue of a holomorphic function f(z) at its pole z0 is defined by:

a−1 =
1

(m− 1)!

dm−1

d zm−1

[
(z − z0)

m f(z)

]

z=z0

(5.2.198)

where m is the order of the pole z0.

Residues of N6
4,1:

The contribution of N6
4,1 equals to −I4

3 (S \ {1}) as shown in Eq. (5.2.146). Since it is

free of det(G), one can use either the analytical or the numerical mode (the reduced Gram

determinant det(G{1}) can be chosen to be different from zero).
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Figure 5.5: All possible contours and poles positions: (a) stands for the contour C1 with

a > 0 and −b
2a ∈ [0, 1], (b) stands for the contour C1 with a < 0 and −b

2a ∈ [0, 1], (c) stands

for the contour C1 with a > 0 and −b
2a 6∈ [0, 1] or C2 with e > 0 or C3 with ε3 > 0, (d) stands

for the contour C1 with a < 0 and −b
2a 6∈ [0, 1] or C2 with e < 0 or C3 with ε3 < 0; the possible

poles which can hamper the numerical stability are denotes by × or • (the contours (a) and

(b) are not pinched between × and • !).

Residues of N6
4,2:

If we calculate the residues directly from the primitive Eq. (5.2.189), we will find expressions

proportional to inverse of S which might embarrass the numerical stability for small S. To

avoid this trouble, one can modify the primitive Eq. (5.2.189), by adding and subtracting
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some terms (x-independent terms) which give zero-contribution to the final result. The

primitive becomes

N6
4,2(x, z) =

C̃1

U2

{
U x+ V − V0 − V

(
ln(U x+ V ) − ln(V0)

)}

−x C̃1 T − C0

S V − T U
q1(X)

−V
U

C̃1 T − C0

S V − T U

(
ln(U x+ V ) − ln(V0)

)
(5.2.199)

with

V0 = V |U=0 = −1

2

det(S{i})

det(G{i})
− i λ = B{i} − i λ, (5.2.200)

The difference between this primitive and the primitive given in Eq. (5.2.193) is that: from

the first line in the right hand side, we subtracted the term "C̃1 (V0 − V + V ln(V0))/U
2"

which makes the residue of this part at the double pole U2 = 0 equals to zero; and from

the last line, we subtracted ”(...) ln(V0)” where "(...)" stands for the coefficient of the

ln(Ux + V ), this term makes the residue at the simple pole U = 0 equals to zero. We

notice that the subtracted terms give no contribution to the final result since they are x-

independent quantities.

Proof: In general we subtract terms as

f(z)

z − z0
(5.2.201)

f(z) is an analytical function of z (f(z) is arbitrary, it can be constant as the subtraction

logarithms in Eq. (5.2.170), or logarithmic as lnT in Eq. (5.2.190), or polynomials as the

"V "in Eq. (5.2.199)...etc). The contribution of Eq. (5.2.202) to the final result is

∫ 1

0
dt

f(t− β)

t− β − z0
− (1 − β)

∫ 1

0
dt

f((1 − β) t)

(1 − β) t− z0
+ (−β)

∫ 1

0
dt

f((−β) t)

(−β) t− z0
(5.2.202)

We make the change of variables zi for i = 1, 2, 3 (see above) in these three integrals,

respectively. Eq. (5.2.202) becomes

∫ 1−β

−β
dz

f(z)

z − z0
−
∫ 1−β

0
dz

f(z)

z − z0
+

∫ −β

0
dz

f(z)

z − z0
(5.2.203)

We see that for each integral we have the same integrand (and the same pole). For arbitrary

β, one can combine the last two integrals at the lower limit (at z = 0). Then

∫ 1−β

−β
dz

f(z)

z − z0
−
∫ 1−β

−β
dz

f(z)

z − z0
(5.2.204)

Eq. (5.2.204) vanishes if β is real or β is complex and the pole z0 is outside the triangle

[0, β, 1 − β]. However, if β is complex and the pole z0 is inside the triangle [0,−β, 1 − β],
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the contribution is not any more zero but, it equals to the residue of the integrand at this

pole. Generally, we write

Eq.(5.2.204) =

{
0, if β ∈ R or β ∈ C and z0 /∈ [0,−β, 1 − β]

2π i f(z0), if β ∈ C and z0 ∈ [0,−β, 1 − β]

If the studied kinematical configuration corresponds to only S → 0 or S̄ → 0, then β must

be real. Otherwise, the two vanish simultaneously and β may be complex, because:

let us suppose that β is complex, i.e. the discriminant ∆ is negative, this implies that S and

S̄ are complex and S̄ is proportional to the conjugate of S (for B 6=0). On the other hand

the configuration S → 0 and S̄ → 0 simultaneously implies that the real and the imaginary

parts of S and S̄ must → 0, since each one is proportional to the complex conjugate of

the other. Hence, they may become sufficiently small and have a small imaginary part, i.e

|S| = |S̄| → 0 (in the same time). Otherwise, if one of them vanishes alone, the other one

must be purely real.

From this discussion, we have to be careful in the case where |S| = |S̄| → 0, because

if they become slightly complex and the pole is inside the triangle [0,−β, 1 − β], our new

primitive may not be valid, we will discuss that later on22.

.

Important Remarks:
.

-a) If the subtraction function f(z) contains logarithms (for example ln(T )), one has to

check if the contour of integration doesn’t change the sign of their argument imaginary

parts, otherwise, another trouble may be generated by crossing the branch cuts of these

logarithms.

.

-b) For example, to construct the function q1 we have to subtracted the logarithm ln(T )

from the second term of the primitive in Eq. (5.2.190); the chosen contour to integrate this

part is C2 (defined above), this last one is chosen to keep the imaginary part of "S x + T"

negative ("S x + T" is a linear polynomial of t, where t is introduced after making the

change of variables from z to t (the change of variables zi). In addition, C2 depends only

on the signs of the coefficients of t in the argument, i.e the signs of H, G + H and G for

each ln(S x+T ) in the three integrals, receptively. Thankfully, this contour keeps, also, the

imaginary part of each T negative near and for S = 0, since the coefficients of t in T are

H, G+H − S and G− S in the three integrals, respectively, which are approximately the

same as those corresponding to ln(S x+ T ) in this region. Hence, the branch cuts of ln(T )

are not crossed by C2 for S → 0.

.

-c) In the case where S̄ → 0 (and not S), the branch cuts of ln(T ) may be crossed by

C2. Fortunately, in this case we don’t need to construct q1 since S 6= 0, hence no need to

subtract ln(T ) at all from the old primitive Eq. (5.2.189).

22In NLO calculation for processes of interest at collider experiment, such situations are not encountered,

since this occurs if the box have at lest three space-like external momenta, see section B.2.
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Seeing that det(G) ∝ S S̄, we will calculate the residues for three different cases: I)

only S → 0, II) only S̄ → 0 and III) S and S̄ → 0 simultaneously, the last case implies

that ∆ → 0, i.e a reduced Gram determinant vanishes. We notice that the primitive in Eq.

(5.2.199) will be slightly changed for the two later cases.

I) The residues in the Case S → 0 (⇒ β → −G/H)

I-A) Residues at U = 0

Let’s focus on the kinematical configuration where "S → 0". The primitive in Eq. (5.2.199)

has at U = 0 a double pole, no pole and a simple pole in the first, second and the third

terms, respectively. For each change of variables zi, these poles are

t01 = β −R t02 = −R/(1 − β) t03 = −R/(−β) (5.2.205)

By direct application to the residue formula given in Eq. (5.2.198), one can prove that the

residue of each part of N6
4,2 is zero, thanks to the subtraction terms

Res

(
N6

4,2{t}
)

t=t0i

= 0 (5.2.206)

where N6
4,2{t} stand for the primitive N6

4,2 corresponding to each change of variable zi.

To prove this result, let us call the first, the second and the third parts of the primitive

in Eq. (5.2.199) N
6,(1)
4,2 , N

6,(2)
4,2 and N

6,(3)
4,2 , respectively. Then

N
6,(1)
4,2 (x, z) =

C̃1

U2

{
U x+ V − V0 − V

(
ln(U x+ V ) − ln(V0)

)}
(5.2.207)

N
6,(2)
4,2 (x, z) = − x

H

2α1 z + α2

α1 (z − z+) (z − z−)
q1(X) (5.2.208)

N
6,(3)
4,2 (x, z) = − 1

H

V

U

2α1 z + α2

α1 (z − z+) (z − z−)

(
ln(U x+ V ) − ln(V0)

)
(5.2.209)

where

C̃1 T − C0 =
2α1 z + α2

H
(5.2.210)

S V − T U = α1 (z − z+) (z − z−) (5.2.211)

* The residue of N
6,(1)
4,2 (xi, zi) at t0i is

Res

(
N

6,(1)
4,2 (xi, zi)

)

t=t0i

∝
[
(U x+ V )′ − V ′ (ln(U x+ V ) − ln(V0)) − V

(U x+ V )′

U x+ V

]

t=t0i

= (U x+ V )′|t=t0i − V ′|t=t0i (ln(V0) − ln(V0)) −
V0

V0
(U x+ V )′|t=t0i

= 0 (5.2.212)

(...)′ stands for the derivative over t, where xi = 1, t, t and zi = t− β, (1 − β)t,−βt.
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* The residue of N
6,(2)
4,2 (xi, zi) at t0i is

Res

(
N

6,(1)
4,2 (xi, zi)

)

t=t0i

∝ bi det(S)

S

(
ln(U x+ V ) − ln(V0)

)

t=t0i

=
bi det(S)

S

(
ln(V0) − ln(V0)

)

t=t0i

= 0 (5.2.213)

* The term N
6,(2)
4,2 (xi, zi) has no pole at t0i, hence the result in Eq. (5.2.206).

I-B) Residues at S V − T U = 0

In this case, the poles (corresponding to the change of variables zi are

tη01 = β + zη tη02 = zη/(1 − β) tη03 = zη/(−β) (5.2.214)

We notice that for S → 0, SV − TU → −TU . One of the poles tη approaches the root of

U = 0, i.e Uη → 0, and the other one approaches the root of T = 0, i.e T η → 0, where

Uη = U |t→tη0i
and T η = T |t→tη0i

. If the SV − TU = 0 has a double root, i.e t+0i → t−0i,

the quantities Uη and T η vanish simultaneously which implies: T4 = K2 det(S) → 0, then

det(S) and det(G) vanish simultaneously. From this remark, one has to distinguish between

three cases: i) Uη → 0 and T η 6→0, ii) Uη 6→0 and T η → 0 and iii) Uη 6→ 0 and T η → 0

simultaneously.

* The residues of N
6,(2)
4,2 (xi, zi) at the two simple poles tη0i are:

-i) If Uη → 0 and T η 6→0,

Res

(
N

6,(2)
4,2 (xi, zi)

)

t=tη0i

= − 1

H

xηi
K̃i

q1(X
η
i ) (5.2.215)

Xη
i = −S xηi /T η (5.2.216)

K̃1 = 1 K̃2 = 1 − β K̃3 = −β (5.2.217)

x1 = 1, x2 = t, x3 = t (5.2.218)

xη1 = 1, xη2 =
−2α3/(1 − β)

α2 + η
√
T4

xη3 =
−2α3/(−β)

α2 + η
√
T4

(5.2.219)

z1 = t− β, z2 = (1 − β)t, z3 = −βt (5.2.220)

Eq. (5.2.215) is valid for S → 0, where the function q1 must be expressed as a series

expansion around Xη
i = 0.
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-ii) If Uη 6→0 and T η → 0,

In this case Xη
i is not any more small, which means the series expansion of q1 around Xη

i = 0

is not allowed. So, we have to re-write Eq. (5.2.215) as the following:

Res

(
N

6,(2)
4,2 (xi, zi)

)

t=tη0i

=
1

HK̃i

V η

Uη
(ln(Uη xηi + V η) − ln(V η)) (5.2.221)

-iii) If Uη → 0 and T η → 0 simultaneously, we use

Res

(
N

6,(2)
4,2 (xi, zi)

)

t=tη0i

=
1

HK̃i

T η

S
ln(S/T η xηi + 1) (5.2.222)

where T η/S is finite (T η/S ∼ O(1)) (Eq. (5.2.222) is valid for the case -ii) also).

* The residues of N
6,(3)
4,2 (xi, zi) at the two simple poles tη0i are:

-i) If Uη 6→0 and T η → 0,

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

= − 1

HK̃i

V η

Uη

(
ln(Uη xηi + V η) − ln(V0)

)
(5.2.223)

Since S → 0, one of these poles, say t±0i, should approach a given pole t0i; then U± → 0

which can hamper the numerical stability, i.e. this formula is not valid at this pole. How-

ever, it is valid for the other pole, say t∓0i, since the corresponding U∓ 6→0.

-ii) If Uη → 0 and T η 6→0,

This problem can be solved by introducing the function q1 again. We notice that, if tη0i → t0i,

we have: V η −→ V0 and Uη −→ U0, and since SV − TU = 0, we can write

V η

Uη
=
T η

S
(5.2.224)

So, one has to express Uη in term of S, V η and T η in Eq. (5.2.223), we write

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

= − 1

HK̃i

T η

S

{

ln

(
1 +

S xη

T η

)
+ η

(
V η, 1 +

S xη

T η

)
+ ln(V η) − ln(V0)

}

= − 1

HK̃i

{
−xη q1(Xη) + η(V η, 1 −Xη)

+
T η

S

(
ln

(
1 − V0 − V η

V 0

)
− η(V η, 1/V0)

)}

(5.2.225)

we have

Y η =
V0 − V η

V0
= −2S (B (z0 + zη) + E) (C + 2B β)

M0 − η (C + 2B β)
√
T4

,

= S Ỹ η.

Ỹ η = −2(B (z0 + zη) + E) (C + 2B β)

M0 − η (C + 2B β)
√
T4

. (5.2.226)
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then,

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

=
1

HK̃i

{
xη q1(X

η) − T η Ỹ η q1(Y
η) − η(V η, 1 −Xη) + η(V η, V0)

}

(5.2.227)

The function η(1/V η, V0) vanishes since the imaginary parts of its arguments have the

opposite sign (we have V η → V0 in this configuration). In the case of real internal masses

for example (which is the case where the contour deformation is strongly needed), the

imaginary parts of V η and V0 equals to −λ since: β is real and det(S) is positive (det(S) =

T 2
2 /(K

2H2)), then the poles must be slightly complex for S = 0. Regarding the function

η(V η, 1 − Xη), the first argument and the product of the two arguments are given by V η

and Uη xη+V η, respectively. They have the same imaginary parts for Uη → 0 (for arbitrary

internal masses), then this function vanishes too. Thus

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

=
1

HK̃i

{
xηi q1(X

η) − T η Ỹ η q1(Y
η)

}
(5.2.228)

-iii) If Uη → 0 and T η → 0 simultaneously,

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

= − 1

HK̃i

{
T η

S
ln(S/T η xηi + 1) − T η Ỹ η q1(Y

η)

}
(5.2.229)

Remark: xηi for i = 2, 3 are finite since their denominators can’t vanish in this region

(they are proportional to inverse of
√
−det(Gi) for i = 1, · · · , 4). They can be indeterminate

(i.e. 0/0) iff α2 and α3 vanish simultaneously, but this case is numerically safe.

II) The residues in the Case S̄ → 0(⇒ β → G/H − C/B)

In this case we cannot keep the second part of the primitive, given in Eq. (5.2.208), since the

contour C2 may cross the branch cut of ln(T ), as discussed above (in "Important remarks").

Fortunately, in the current case S 6→0, thus we don’t need to subtract ln(T ). Then N
6,(2)
4,2

in Eq. (5.2.208) must be replaced by

N
6,(2)
4,2 (x, z) =

1

H

T

S

2α1 z + α2

α1 (z − z+) (z − z−)
ln(Sx+ T ) (5.2.230)

II-A) Residues at U = 0

The residue of each term of N6
4,2 at U = 0 vanish as in the previous case.

II-B) Residues at S V − T U = 0

The two simple poles in this case are arbitrary, they may be finite as well as infinite, this

depends on the parameters α2 and α3 (SV − TU → α2z + α3): So, we have to distinguish

between four cases:

-i) If α2 6→0 and α3 6→0:

In this case, one of the simple poles tη0i is finite which corresponds to α2 + η
√
T4 6→0, and
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the other one is infinite which corresponds to α2 + η
√
T4 → 0. The later one can not be

inside the closed contour of integration in the complex plan. So, one has to calculate only

the residues at the finite poles which are given by

Res

(
N

6,(2)
4,2 (xi, zi)

)

t=tη0i

=
1

HK̃i

T η

S
ln(S xη + T η) (5.2.231)

Res

(
N

6,(3)
4,2 (xi, zi)

)

t=tη0i

= − 1

HK̃i

V η

Uη

(
ln(Uη xη + V η) − ln(V0)

)

= − 1

HK̃i

V η

Uη

(
ln(Uη/V η xη + 1) + ln(V η/V0)

)
(5.2.232)

If Uη and V η vanish simultaneously, the residue of N
6,(3)
4,2 is given in the second line in the

right hand side of Eq. (5.2.232)23.

-ii) If α2 → 0 and α3 6→0:

In this case, the two simple poles are dragged to infinity. So, no residue has to be added.

-iii) If α2 6→0 and α3 → 0:

In this case, the only pole which may be inside the closed contour is associated to a zη of

order zero (zη ∼ −α3/α2 ∼ O(0)) and the residue formulas in Eqs. (5.2.231, 5.2.232) are

still valid.

-iv) If α2 → 0 and α3 → 0:

In this case, the two simple poles tη0i are finite. So, they might be inside the closed contour

of integration, thus the residues are given by Eqs. (5.2.231, 5.2.232).

III) The residues in the Case S , S̄ → 0 simultaneously

This configuration implies the vanishing of the following two quantities simultaneously

C + 2B β → 0 (5.2.233)

C H − 2BG→ 0 (5.2.234)

i.e. the reduced Gram determinants det(G{i}) associated to the given sector vanishes (or

becomes arbitrary small)24. This means that the primitives in Eq. (5.2.199) can lead to

non-stable results if the zero of U (z0) becomes infinite (since V0 ∼ det(S{i}
)

det(G{i})
→ ∞ for

det(S{i}) 6= 0). Let us re-write z0 in term of det(S{i}) and det(G{i}),

z0 = − b̄
{i}
1 + det(G{i}) + εβE

√
−det(G{i})

2B εβ
√
−det(G{i})

(5.2.235)

23In this case, the denominator of N
6,(3)
4,2 at the pole value is SV η − T ηUη = α2z

η + α3 = 0. If zη → z0,

this implies that Uη and V η vanish simultaneously (since S 6= 0). If zη equal to the root of T , the V η and

T η vanish simultaneously and the residue of N
6,(3)
4,2 is given by the first line in the right hand side of Eq.

(5.2.232). If V η, Uη and T η vanish simultaneously, this formula should works.
24For example, Eqs. (5.2.233, 5.2.234) for the sector I are satisfied in the configuration: s2 = 0, s3 = t and

s1 = s. If m2
1 = m2

2, these conditions will imply the vanishing of det(S{4}) simultaneously with det(G{4}),

det(G) and det(S) (and det(G{3})).
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where b̄
{i}
1 are defined in subsection B.3.2. From Eq. (5.1.58), b̄

{i}
1 can be written as

b̄
{j}
i = ±

√
det(G{i,j}) det(S{i}) + det(S{i,j}) det(G{i}) (5.2.236)

where S{i,j} is the matrix obtained by omitting the lines and the columns i and j, det(G{i,j})

is the Gram determinant associated this matrix. From Eq. (5.2.236), b̄
{i}
1 → 0 if det(S{i}) →

0, which means that z0 is finite (since det(S{i}) → 0 and det(G{i}) → 0 vanish simulta-

neously) and the poles t0i may be inside the integration contour. Otherwise, det(S{i}) 6→0

which means that z0 becomes infinite (z0 ∼ b̄
{i}
1 /0) and the poles t0i are dragged to infinity.

In the following, we calculate the residues for these two cases:

-a) det(G{i}) → 0 and det(S{i}) 6→ 0:

As we have mentioned above, the primitives in Eq. (5.2.199) should not be used since it

leads to infinite results, it has to be replaced by,

N6
4,2(x, z) =

C̃1

U2

{
U x− V ln(U x+ V )

}
− x

C̃1 T − C0

S V − T U
q1(X)

−V
U

C̃1 T − C0

S V − T U
ln(U x+ V ) (5.2.237)

we call N
6,(1)
4,2 , N

6,(2)
4,2 and N

6,(3)
4,2 the first, the second and the third parts of Eq. (5.2.237)

(we keep the same notation as above).

The poles t0i (U = 0) are infinite (they are outside the closed contour), then no residue

has to be added at this poles.

The poles tη0i (S V −T U = 0) are arbitrary (they may be finite or infinite that depends

on the values of α2 and α3):

-i) α2 6→ 0 and α3 6→ 0:

In this case, there is only one pole which can be inside the integration contour. This last

one corresponds to α2 + η
√
T4 6→0, i.e. zη ∼ −J/H (T η → 0 and Uη 6→ 0)25. The residue

at this pole are given by,

Res

(
N

6,(2)
4,2 (zi)

)

t=tη0i

=
1

HK̃

T η

S
ln(S/T η xηi + 1) (5.2.238)

=
1

HK̃

V η

Uη
(ln(Uη xηi + V η) − ln(V η)) (5.2.239)

where Eqs. (5.2.238, 5.2.239) are completely equivalent.

Res

(
N

6,(3)
4,2 (zi)

)

t=tη0i

= − 1

HK̃

V η

Uη
ln(Uη xηi + V η) (5.2.240)

These equations lead to stable results. If ∆(1) vanishes, i.e H = 0, one has to rotate

the box by interchanging the labels of the adjacent propagators (pi → pi+1 and mi → mi+1

25The other pole is infinite, it corresponds to α2 +η
√

T4 → 0, i.e. zη ∼ ∞, so no residue has to be added.



5.2. Scalar four-point functions 143

several times!), in such way that this quantity is transformed to a non vanishing ∆(i). Then,

zη still finite and by consequence xηi are finite.

-ii) α2 → 0 and α3 6→ 0:

In this case, the two poles are infinite. Then, no residues are needed.

-iii) α2 6→ 0 and α3 → 0:

There is only one pole which may by inside the contour of integration, it corresponds to

zη ∼ O(0). The residues in this case are given by Eqs. (5.2.238, 5.2.239, 5.2.240).

-iv) α2 → 0 and α3 → 0:

In this case, the two simple poles tη0i are finite. So, they might be inside the closed contour

of integration, thus the residues are given by Eqs. (5.2.238, 5.2.239, 5.2.240).

* I notice that the β may be complex (if more than two external legs are space-like),

then one has to check if the subtracted logarithm ln(T ) gives no contribution to the final

result since the residues are not zero by construction, otherwise our primitive given above

is not valid: this can happen if zη → − J
H is inside the triangle [0, 1 − β,−β]. To correct

this results, one has to subtract the contribution of the residue at this pole. Anyway, this

configuration can not be encountered in the physical region.

-b) det(G(i)) → 0 and det(S(i)) → 0 :

In this case, the poles t0i are finite which implies that V0 is finite. Then, we have to use

the primitive Eq. (5.2.199) to avoid the calculation of residues at the poles t0i (the residues

at these poles are zero by construction). The residues at tη0i are treated similarly as in

paragraph I-B).

Remarks:

One can construct others primitives with zero residues at all poles but we have found that

they less convenient than the adopted one. These possibilities are:

1- For the first possibility, we can subtract some terms, which give no contribution, to

construct a primitive with zero residue at S V − T U = 0 and U = 0. In this case, one has

to use the same contour of integrations without any problem but the complication comes

from introducing many new q1 functions in the primitive.

2- The other possibly is to combine N
6,(2)
4,2 and N

6,(3)
4,2 without subtracting any term but we

have to find a contour of integration which keep the imaginary part of the quadratic and

the linear logarithm arguments negatives in the same time, which is not easy to find.

In conclusion, we have provided a stable one-dimensional integral representation for I6
4 ,

which is valid for all possible configurations in the physical region. This representation is

given in Eq. (5.2.188), and the residues are provided in section 5.2.2.4. We notice that we

have distinguished between three cases S → 0, S̄ → 0 and S → 0, S̄ → 0 simultaneously.

For each of these cases, the integrand thence the residues are slightly modefied.

5.2.2.5 Numerical Test

Figs.(5.6, 5.8, 5.8). show the behavior of I6
4 in the neighborhood of three numerical points

by using the numerical and the analytical modes. These examples cover most possible cases
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of the vanishing of Gram determinant, in term of S and S̄. These points are:

Point I:

p2
1 = −0.06636113657195236 det(S) = 0.416 + i 0.260

p2
2 = 0.2510540788267644 det(G) = 5.551 10−17

p2
3 = 0.4792850595783684 det(G{1}) = −0.423

p2
4 = −0.20329972502291477 det(G{2}) = −0.669 10−5

s = 0.45857011915673696 det(G{3}) = −0.142

t = −0.5021081576535289 det(G{4}) = −1.038

m2
1 = 0.022823098075160402 − i 0.0500900358892

m2
2 = 0.045646196150320804 − i 0.516469006659

m2
3 = 0.0684692942254812 − i 0.700302469311

m2
4 = −1/2 − i 0.476166102103889

(5.2.241)

Point II:

p2
1 = 1.3757150015862212 det(S) = 0.237 − i 0.116

p2
2 = 1.1248280616367492 det(G) = 3.796 10−14

p2
3 = 0.38591856085041676 det(G{1}) = −1.071

p2
4 = 0.23611461561031238 det(G{2}) = −0.719

s = −0.5761976737947683 det(G{3}) = −3.277

t = 0.19100810103734925 det(G{4}) = −0.005

m2
1 = 0.39977675350726477 − i 0.007144284265522

m2
2 = 0.3218142823922797 − i 0.07366338099780

m2
3 = 0.37158645281693164 − i 0.0998833365514

m2
4 = 0.09191508922087456 − i 0.0679150240290

(5.2.242)

Point III:

p2
1 = 1.3757150015862212 det(S) = 0.0220 + i 0.031

p2
2 = 0.03392179464215907 det(G) = 1.679 10−16

p2
3 = 0.38591856085041676 det(G{1}) = −1.454

p2
4 = 0.23611461561031238 det(G{2}) = −0.719

s = −0.5761976737947683 det(G{3}) = −0.128

t = 0.19100810103734925 det(G{4}) = 5.551 10−17

m2
1 = 0.39977675350726477 − i 0.0071442842655

m2
2 = 0.3218142823922797 − i 0.073663380997809

m2
3 = 0.37158645281693164 − i 0.09988333655149

m2
4 = 0.09191508922087456 − i 0.067915024029018

(5.2.243)
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Figure 5.6: Comparison between the analytical and the numerical modes for a numerical

point where all the internal masses are complex: (a) and (b) show respectively the real and

the imaginary parts of I6
4 (S) evaluated analytically in the region where det(G) → 0, which

are not stable. However the numerical mode gives stable results, which is shown in the plots

(c), (d), (e) and (f) (for the plots (c) and (d) S → 0 (for all sectors), and for the plots (e)

and (f) S̄ → 0 (for all sectors), which corresponds respectively to εβ = +1 and εβ = −1).
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Figure 5.7: Comparison between the analytical and the numerical modes for a numerical

point where all the internal masses are complex: (a) and (b) show respectively the real and

the imaginary parts of I6
4 (S) evaluated analytically in the region where det(G) → 0, which

are not stable. However the numerical mode gives stable results, which is shown in the plots

(c), (d), (e) and (f) (for the plots (c) and (d) S → 0 (for sector I), and for the plots (e)

and (f) S̄ → 0 (for sector II and III), which corresponds respectively to εβ = +1 and

εβ = −1).
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Figure 5.8: Comparison between the analytical and the numerical modes for a numerical

point where all the internal masses are complex: (a) and (b) show respectively the real and

the imaginary part of I6
4 (S) evaluated analytically in the region where det(G) → 0, which

are not stable. However the numerical mode gives stable results, which are shown in the

plots (c), (d), (e) and (f): for the plots (c) and (d), S → 0 and S̄ → 0 for all sectors with

εβ = +1), and for the plots (e) and (f), S → 0 and S̄ → 0 (for all sectors with εβ = −1).
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5.2.3 The box in 8-dimensions

The ultraviolet divergent and the finite contributions of the scalar box in "8−2 ε", presented

in Eq. (5.2.124), are given by

I8, div
4 (S) =

1

6

1

ε
(5.2.244)

I8, fin
4 (S) = −

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′ ln(C1(x, z

′′) y′ + C0(x, z
′′)) (5.2.245)

where the functions C1 and C0 are defined in the previous section. The logarithm’s argument

in Eq. (5.2.245) is a linear function on y′. Since the parameter α is real, the logarithm

never crosses its branch cut by varying y′. So, we can reverse the order of integration on y′

and z′′, and integrate I8
4 over y′. The primitive of this function on respect to y′ is

−y′ + (C1(x, z
′′) y′ + C0(x, z

′′)) ln(C1(x, z
′′) y′ + C0(x, z

′′))
C1(x, z′′)

(5.2.246)

We make the same changes of variables performed to calculate I6
4 (S) (see section 5.2.2), we

get

I8,f in
4 (S) = I8

4 − I8
4 (5.2.247)

(5.2.248)

with

I8
4 =

1

6
(5.2.249)

I8
4 =

III∑

i=1

∫ 1

0
dx

∫ x

0
dz

K (Ax2 +B z2 + C x z +Dx+ E z + F )

Gx+H z + J − i λ

× ln
(
Ax2 +B z2 + C x z +Dx+ E z + F − i λ

)
(5.2.250)

The contribution "I8
4" is obtained by a direct integration of "y′" in the left hand side of

Eq.(5.2.246) over the two remaining variables of integration. The term I8
4 is of type I6

4 , the

only difference is the quadratic function in front of the logarithm, which does not change

the analyticity of I8
4 compared to I6

4 , since they have the same type of poles and logarithms.

Hence, we can introduce safely the same parameters γ and β as before. Let us make the

shift z = z + γ x and chose γ in such way that H γ +G = 0 to eliminate the x-dependance

in the denominator, the result is

I8
4 =

III∑

i=1

∫ 1

0
dx

∫ (1−γ)x

−γ x
dz

K (W2 x
2 +W1 x+W0)

H z + J − i λ
ln
(
W2 x

2 +W1 x+W0 − i λ
)

(5.2.251)
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by inverting the order of integration as in Eq. (5.2.137) and integrating by part over x, one

can write the primitive of this integral on respect to x in the following form
∫

dxF 8
0 (x, z) =

K

H z + J

{

(
W2

x3

3
+W1

x2

2
+W0 x

)
ln

(
W2 x

2 +W1 x+W0

)

− 2

3
W2 x

3 − 1

2
W1 x

2

+

∫
dx

(
2

3
W2 x

3 +
1

2
W1 x

2

)
2W2 x+W1

W2 x2 +W1 x+W0

}
(5.2.252)

where F 8
0 is the integrand of Eq. (5.2.251).

Inserting Eq. (5.2.252) in Eq. (5.2.251), we write

I8
4 = I8

4,1 + I8
4,2 (5.2.253)

where I8
4,1 comes from the integrated quantity on x in Eq.(5.2.252) and I8

4,2 from the non

integrated one.

After making the three change of variables: "z = t− γ", "(1− γ) t" and "−γ t" respec-

tively, I8
4,1 can be writen

I8
4,1 =

III∑

i=I

∫ 1

0
dt[N8

4,1(1, t− γ) − (1 − γ)N8
4,1(t, (1 − γ) t) + (−γ)N8

4,1(t,−γ t)]

(5.2.254)

N8
4,1(x, z) =

K

H z + J

{(
W2

x3

3
+W1

x2

2
+W0 x

)
ln

(
W2 x

2 +W1 x+W0

)

− 2

3
W2 x

3 − 1

2
W1x

2

}
(5.2.255)

I8
4,2 is a two-dimensional integral representation, its integrand is given by the last line in the

right hand side of Eq. (5.2.252). By re-introducing the x-dependance in its denominator

(by making the shift z = z + γ x), we get

I8
4,2 =

III∑

i=I

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J

Q(x, z)

Ax2 +B z2 + C x z +Dx+ E z + F − i λ

(5.2.256)

The function Q(x, z) is a polynomial of degrees 4 in x and 2 in z. By making the shift

z = z + β x, I8
4,2 becomes

I8
4,2 =

III∑

i=I

K

∫ 1

0
dx

∫ (1−β)x

−β x
dz̄

1

S x+ T

Q(x, z + β x)

U x+ V
(5.2.257)

Q(x, z + β x) = x2 [C2 x
2 + C1 x+ C0]

= x2 [Ca x
2 + (Cc z + Cd)x+ Cb z

2 + Ce z + Cf ] (5.2.258)
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Ca = S2 (2BC G− 8ABH + C2H + β(4B2G− 2BC H))/(6H3)

Cb = (C H − 2BG)2/(2H2)

Cc = S (2BG− C H) (BG+ 5B βH + 2C H)/(3H3)

Cd = S (BG+ 5B βH + 2C H)(EG−DH)/(3H3)

Ce = (C H − 2BG) (DH − EG)/H2

Cf = (EG−DH)2/(2H2) (5.2.259)

the S, V , T and U are given in the previous section.

We reverse the order of integration in the integral Eq.(5.2.257) on respect to x and z (as in

Eq. (5.2.154)), and we integrate over x. The primitive is

N8
4,2(x, z) =

∫
dx

Q(x, z + β x)

S V − T U

(
S

S x+ T
− U

U x+ V

)

=
C̃2 S

U

(
1

3
x3 − 1

2

V x2

U
+
V 2 x

U2
− V 3

U3
ln(U x+ V )

)

− C̃2 T − C̃1

U

(
1

2
x2 − V x

U
+
V 2

U2
ln(U x+ V )

)

+
(C0 − C̃1 T + C̃2 T

2)V

U (S V − T U)

(
x− V

U
ln(U x+ V )

)

+
T 2

S2

(C0 − C̃1 T + C̃2 T
2)

S V − T U

(
ln(S x+ T ) − S x

T

)
(5.2.260)

with C2 = S2 C̃2 and C1 = S C̃1.

In Eq. (5.2.260), only the last two terms (in the last line) in the right hand side, which

are proportional to inverse of S2 and S, respectively. The remaining terms are free of inverse

of any S. In addition, this primitive is completely free of inverse of S̄ (where det(G) ∝ S S̄).

At this stage, we have a one-dimentional integral representation of I8
4,2 which has a problem

when S becomes arbitrary small. This difficulty can be simply avoided by adding some

non-contributing! terms to this primitive as we will show later on. But before to show that,

we want to point out how the inverse of Gram determinant, technically!, appears during

the calculation. To be able to integrate analytically Eq. (5.2.260), one has to arrange the

formula by reducing all the complicated denominators of this function to simple elements.

One gets

N8
4,2(x, z) =

θ3
U3

+
θ2
U2

+
θ1
U

+ (γ2 z
2 + γ1 z + γ0) ln(S x+ T )

−
(
ω4

U4
+
ω3

U3
+
ω2

U2
+
ω1

U
+ ζ2 z

2 + ζ1 z + ζ0

)
ln(U x+ V )

+
1

12

1

T 2
1

∑

η=±

η√
T4

T 2
4 − η T2 (6T1 T3 − T 2

2 )
√
T4/H

3

z − zη
(5.2.261)

The coefficients θ1, γ1, γ0, ω1 and ω0 are proportional to inverse of S 26. On top of that, the

26We did not give the explicit form of the primitive Eq. (5.2.261) since we will not use it to derive the

one-dimensional integral representation.
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last term in Eq.(5.2.261) is proportional to det(G)2 (T1 ∝ det(G)). These spurious singu-

larities are very difficult to handle if we keep this primitive, which makes it not convenient

candidate to derive a stable one-dimensional integral representation of I8
4,2. So, we keep the

primitive Eq. (5.2.260).

To avoid the inverse of S in the last two terms of this primitive (Eq.(5.2.260)), we re-write

it as the following: from the term containing ln(S x+ T ), we subtract ln(T ) which give no

contribution to the final result as explained above (see section 5.2.2.2). Then, the dangerous

term of this primitive can be written as

T 2

S2

(C0 − C̃1 T + C̃2 T
2)

S V − T U

(
ln(S x+ T ) − ln(T ) − S x

T

)
=
x2 (C0 − C̃1 T + C̃2 T

2)

S V − T U
q2(X)

(5.2.262)

q2(X) =

{
1
X2 (ln(1 −X) +X) if X 6→0

−∑∞
n=0

Xn

n+2 if X → 0
(5.2.263)

where X = −Sx/T . This implies that the new primitive leads, in principle, to finite results

when det(G) becomes arbitrary small, since the expansion of the dangerous term around

X → 0 is free of inverse of S.

I8
4,2 =

III∑

i=I

K

∫ 1

0
dt[N8

4,2(1, t− β) − (1 − β)N8
4,2(t, (1 − β) t) − β N8

4,2(t,−β t)] (5.2.264)

and

I8
4 =

1

6
−

III∑

i=I

∫ 1

0
dt

{

N8
4,1(1, t− γ) − (1 − γ)N8

4,1(t, (1 − γ) t) − γ N8
4,1(t,−γ t)

+N8
4,2(1, t− β) − (1 − β)N8

4,2(t, (1 − β) t) − β N8
4,2(t,−β t)

}
(5.2.265)

In principe, Eq.(5.2.265) provides a stable one-dimensional integral representation of the

function I8
4 , since the Gram determinant spurious singularities are avoided at the integrand

level. However, if a pole (or more) of the integrand approaches the segment [0, 1], this

representation may not be any more numerically stable. Then, we have to perform a contour

deformation and calculate all the needed residues as in the previous section.

5.2.3.1 Residue calculation

The possible poles of I8
4 correspond to: i) a simple pole at T = 0 in the primitive N8

4,1, ii)

two simple poles at S V − T U = 0 in the primitive N8
4,2, iii) and a multiple pole at U = 0

(of order 1, 2, 3 and 4) in the primitive N8
4,2.

Depending on the nature of the internal masses and the kinematical configurations, these

poles can have very small imaginary parts, which might hamper the numerical stability if

they approach the segment [0, 1]. To avoid this problem, we perform a contour deformation

(we use the same contours introduced in section 5.2.2). Then, the analytical formulas of the
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residues at each of these poles are strongly needed, which is the purpose of this paragraph.

To simplify the residue calculation of N8
4,2 and to guaranty that the residues are not pro-

portional to inverse of S, one can add or subtract some x-independent quantities from N8
4,2,

which give no conurbation to the final result as shown above 27. Then, from some terms of

N8
4,2, we subtract terms as (...)

∑m
n=1(−1)m−n V n−m

n (Un xn + V n − V n
0 ) (m is and integer

which equals to the order of the multiple pole corresponding to U = 0 mines 1, and (...)

stands for some coefficients) and from each ln(U x+V ) we subtract ln(V0). Hence, the new

primitive takes this very convenient form

N8
4,2 =

C̃2S

U4

{ 3∑

n=1

(−1)1+nV 3−nU
nxn + (−1)1+n(V − V0)

n

n
− V 3(ln(Ux+ V ) − lnV0)

}
+

C̃2T − C̃1

U3

{ 2∑

n=1

(−1)1+nV 2−nU
nxn + (−1)1+n(V − V0)

n

n
− V 2(ln(Ux+ V ) − lnV0)

}

+
(C0 − C̃1T + C̃2T

2)V

U2(SV − TU)

{
Ux+ V − V0 − V (ln(Ux+ V ) − lnV0)

}

+
x2 (C0 − C̃1 T + C̃2 T

2)

S V − T U
q2(X) (5.2.266)

This new primitive has three principle advantages:

i) it provides a stable one-dimensional integral representation of I8
4,2 if S → 0 (then

det(G) → 0), by means of the q2
ii) the residues at the poles corresponding to U = 0 are equal to zero by construction. This

can proved by a direct application of residue formula Eq.(5.2.198)) to

f(z)

Um+1(S V − T U)l=0,1

×
( m∑

n=1

(−1)1+nV m−nU
nxn + (−1)1+n(V − V0)

n

n
− V m(ln(Ux+ V ) − lnV0)

)
(5.2.267)

where f(z) is a polynomial in z.

iii) the residues at the poles corresponding to S V − T U are finite when S → 0, as we will

see later on (if we keep the old primitive, the residues will be proportional to inverse of S).

Let us call the first, the second, the third and the fourth parts of this primitive N
8,(i)
4,2 with

27This can be seen before making the shifts t − β, (1 − β) t and −β t. At this level, the added (or

subtracted) quantity form the same integrand of each integral of the three terms and because β is real (or

have a light imaginary part), we can combine the three integrals into a one and prove that the integrand

vanishes . This trick helps us to construct some part of the primitive with zero residue at the pole or with

residues free of inverse of S.
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i = 1, · · · , 4, respectively. Then,

N
8,(1)
4,2 =

C̃2S

U4

{ 3∑

n=1

(−1)1+nV 3−nU
nxn + (−1)1+n(V − V0)

n

n
− V 3(ln(Ux+ V ) − lnV0)

}

N
8,(2)
4,2 =

C̃2T − C̃1

U3

{

2∑

n=1

(−1)1+nV 2−nU
nxn + (−1)1+n(V − V0)

n

n
− V 2(ln(Ux+ V ) − lnV0)

}

N
8,(3)
4,2 =

(C0 − C̃1T + C̃2T
2)V

U2(SV − TU)

{
Ux+ V − V0 − V (ln(Ux+ V ) − lnV0)

}

N
8,(4)
4,2 =

x2 (C0 − C̃1 T + C̃2 T
2)

SV − TU
q2(X) (5.2.268)

As we mentioned above, the residues at t0i are equal to zero. So, it remains to calculate

only the residues at tη0i for the cases where S → 0, S̄ → 0 and the two in the same time.

I) The residues in the case S → 0:

* The residue of N
8,(3)
4,2 at tη0i is given by:

-i) If Uη 6→0 and T η → 0,

Res

(
N

8,(3)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1T
η + C̃2T

η2
)V η

Uη2 η
√
T4

{
Uηxη + V η − V0

− V η(ln(Uηxη + V η) − lnV0)

}
(5.2.269)

-ii) If Uη → 0 and T η 6→0,

Res

(
N

8,(3)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

{
−xη2 q2(Xη) + T η2 Z̃η2 q2(Z

η)

}

(5.2.270)

where the quantities Cη0 and C̃η1 correspond, respectively, to C0 and C̃1 taken at the pole

value, q2 is defined above and

Zη =
V η − V0

V η

= S Z̃η with Z̃η = − V0

V η
Ỹ η (5.2.271)

where Ỹ η is defined in Eq. (5.2.226).

-iii) If Uη → 0 and T η → 0,
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Res

(
N

8,(3)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

{
−T

η2

S2
(ln(S/T ηxη + 1) − S/T ηxη)

+ T η2 Z̃η2 q2(Z
η)

}
(5.2.272)

In this case, T4 → 0 (see section 5.2.2.4). Since Cη0 for S → 0 is proportional to
√
T4,

then the
√
T4 in the denominator of 5.2.272 is compensated by Cη0 and Eq. (5.2.272) is

numerically stable.

* The residue of N 8,(4)
4,2 at the pole tη0i is given by:

-i) If Uη → 0 and T η 6→0,

Res

(
N

8,(4)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)xη

2

η
√
T4

q2(X
η
i ) (5.2.273)

This formula provides stables results for S → 0. If S → 0 and T η → 0, then Xη
i 6→0 so q2

has to be expressed in its logarithmic form, which correspond to the second case.

-ii) If Uη 6→0 and T η → 0,

Res

(
N

8,(4)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

V η

Uη

(
V η

Uη
(ln(Uη/V ηxη + 1) − xη

)

(5.2.274)

iii) If Uη → 0 and T η → 0 simultaneously

Res

(
N

8,(4)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

T η

S

(
T η

S
(ln(S/T ηxη + 1) − xη

)
(5.2.275)

Again,
√
T4 in the denominator is compensated by Cη0 in the numerator, where Cη0 ∝ √

T4

for S → 0.

II) The residues in the case S̄ → 0:

In this case, we don’t need to subtract ln(T ) for two reasons from ln(Sx+ T ): a) we don’t

need to construct the function q2 in the primitive, since S 6→ 0. b) if we keep this term, the

contour of integration C2 might cross the branch cut of ln(T ). Then, we write

N
8,(4)
4,2 =

T 2(C0 − C̃1 T + C̃2 T
2)

S2(SV − TU)

(
ln(Sx+ T ) − Sx

T

)
(5.2.276)
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and we keep the other terms (N
8,(i)
4,2 for i = 1, 2, 3) as in Eq. (5.2.268).

As in the case of I6
4 , we distinguish between four cases (see above):

-i) If α2 6→0 and α3 6→0:

In this case, one of the simple poles tη0i is finite which corresponds to α2 + η
√
T4 6→0, and

the other one is infinite which corresponds to α2 + η
√
T4 → 0. The later one can not be

inside the closed contour of integration. So, one has to calculate only the residues at the

finite poles which are given by

Res

(
N

8,(3)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1T
η + C̃2T

η2
)V η

Uη2 η
√
T4

{
Uηxη + V η − V0

− V η(ln(Uηxη + V η) − lnV0)

}
(5.2.277)

Res

(
N

8,(4)
4,2 (xi, zi)

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

T η

S

(
T η

S
(ln(Sxη + T η) − xη

)

(5.2.278)

-ii) If α2 → 0 and α3 6→0:

In this case, the two simple poles are dragged to infinity. So, no residue has to be added.

-iii) If α2 6→0 and α3 → 0:

In this case, the only pole which may be inside the closed contour is associated to a zη of

order zero (zη ∼ −α3/α2 ∼ O(0)) and the residue formulas in Eqs. (5.2.277, 5.2.278) are

still valid.

-iv) If α2 → 0 and α3 → 0:

In this case, the two simple poles tη0i are finite. So, they might be inside the closed contour

of integration, thus the residues are given by Eqs. (5.2.277, 5.2.278).

III) The residues in the Case S , S̄ → 0 simultaneously

This configuration implies the vanishing of these two quantities simultaneously: C+2B β →
0 and C H − 2BG → 0, i.e. the reduced Gram determinants det(G{i}) → 0. This means

that the primitives in Eq. (5.2.266) leads to non-stable results if the zero of U becomes

infinite (since V0 ∼ det(S{i}
)

det(G{i})
→ ∞ for det(S{i}) 6= 0). We distinguish between two cases as

in the case of I6
4 .

-a) det(G{i}) → 0 and det(S{i}) 6→ 0:

In this case, the pole at U = 0 and V0 are infinite. So the subtraction terms in Eq. (5.2.266),
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which are not finites, are not needed. Thus the terms N
6,(i)
4,2 for i = 1, 2, 3, 4 becomes

N
8,(1)
4,2 =

C̃2S

U4

{ 3∑

n=1

(−1)1+nV 3−nU
nxn

n
− V 3 ln(Ux+ V )

}

N
8,(2)
4,2 =

C̃2T − C̃1

U3

{ 2∑

n=1

(−1)1+nV 2−nU
nxn

n
− V 2 ln(Ux+ V )

}

N
8,(3)
4,2 =

(C0 − C̃1T + C̃2T
2)V

U2(SV − TU)

{
Ux− V ln(Ux+ V )

}

N
8,(4)
4,2 =

x2 (C0 − C̃1 T + C̃2 T
2)

SV − TU
q2(X) (5.2.279)

The poles t0i (U = 0) are infinite (they are outside the closed contour), then no residue

has to be added at this poles.

The poles tη0i (S V −T U = 0) are arbitrary (they may be finite or infinite that depends

on the values of α2 and α3):

-i) α2 6→ 0 and α3 6→ 0:

In this case, there is only one pole which can be inside the integration contour. This last

one corresponds to α2 + η
√
T4 6→0, i.e. zη ∼ −J/H (T η → 0 and Uη 6→ 0)28. The residues

at this pole are given by,

Res

(
N

8,(3)
4,2

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1T
η + C̃2T

η2
)V η

Uη2 η
√
T4

{
Uηxη − V η ln(Uηxη + V η)

}
(5.2.280)

Res

(
N

8,(4)
4,2 (zi)

)

t=tη0i

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

T η

S

(
T η

S
(ln(S/T ηxη + 1) − xη

)

(5.2.281)

=
1

K̃

(Cη0 − C̃η1 T
η + C̃2 T

η2
)

η
√
T4

V η

Uη

(
V η

Uη
(ln(Uη/V ηxη + 1) − xη

)

(5.2.282)

where Eqs. (5.2.281, 5.2.282) are completely equivalent. -ii) α2 → 0 and α3 6→ 0:

In this case, the two poles are infinite. Then, no residues are needed.

-iii) α2 6→ 0 and α3 → 0:

There is only one pole which may by inside the contour of integration, it corresponds to

zη ∼ O(0). The residues in this case are given by Eqs. (5.2.280, 5.2.281, 5.2.282).

-iv) α2 → 0 and α3 → 0:

In this case, the two simple poles tη0i are finite. So, they might be inside the closed contour

of integration, thus the residues are given by Eqs. (5.2.280, 5.2.281, 5.2.282).

-b) det(G(i)) → 0 and det(S(i)) → 0 :

In this case, the poles t0i are finite which implies that V0 is finite. Then, we have to use

28The other pole is infinite, it corresponds to α2 +η
√

T4 → 0, i.e. zη ∼ ∞, so no residue has to be added.
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the primitive Eq. (5.2.266) to avoid the calculation of residues at the poles t0i (the residues

at these poles are zero by construction). The residues at tη0i are treated similarly as in

paragraph I).
If β is complex (which can not be encountered one-loop calculation for collider processes)

and the pole at −J/H is inside the triangle, the one has just to subtract the extra terms

as we explained above.

5.2.3.2 Numerical tests

The results are given in Figs. (5.9, 5.10, 5.11) for the same numerical points: I, II and III

given in subsection 5.2.2.5.
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Figure 5.9: Comparison between analytical and numerical modes where all the internal

masses are complex : (a) and (b) show respectively the real and the imaginary part of I8
4 (S)

evaluated analytically in the region where det(G) → 0, which are not stable. However the

numerical mode gives stable results, which are show in the plots in (c), (d), (e) and (f) (for

the plots (c) and (d) S → 0 (for all sectors), and for the plots (e) and (f) S̄ → 0 (for all

sectors), which corresponds respectively to εβ = +1 and εβ = −1 for this numerical point).
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Figure 5.10: Comparison between analytical and numerical modes for numerical point where

all the internal masses are complex: (a) and (b) show respectively the real and the imaginary

part of I8
4 (S) evaluated analytically in the region where det(G) → 0, which are not stable.

However the numerical mode gives stable results, which are shown the plots in (c), (d), (e)

and (f) (for the plots (c) and (d) S → 0 (for sector I), and for the plots (e) and (f) S̄ → 0

(for sectors I and II), which corresponds respectively to εβ = +1 and εβ = −1 for this

numerical point).
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Figure 5.11: Comparison between analytical and numerical modes for numerical point where

all the internal masses are complex: (a) and (b) show respectively the real and the imaginary

part of I8
4 (S) evaluated analytically in the region where det(G) → 0, which are not stable.

However the numerical mode gives stable results, which show the plots in (c), (d), (e) and

(f) (for the plots (c) and (d) S → 0 and S̄ → 0 (for all sectors with εβ = +1), and for the

plots (e) and (f) S → 0 and S̄ → 0 (for all sectors with εβ = −1).
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In the last few years, an important progress in the automation of multi-leg one-loop

scattering amplitude calculations has been made. Various programs and libraries have been

developed for this task, many of them are publicly available. For example, the libraries:

"Golem95 [21], LoopTools [30], OneLoop [82], ... etc, and the package programs SAMURAI

[75], Golem [21], GoSam [83], BlackHat [84]" ... etc. This thesis is focused on one of these

tools, that is the Golem library or Golem95. It is a program written in FORTRAN 95,

it contains all the building blocks for one-loop calculation. This library is designed for

the numerical evaluation of forms factors involved in the calculation of one-loop scattering

amplitudes with up to six external legs for any gauge theory. It is based on the Golem

reduction method presented in the Chapter 4; this reduction formalism enables us to avoid

the spurious singularities generated by the Gram determinants encountered during the ten-

sorial reduction which can disturb the numerical stability, the calculation of the stable

one-dimensional integral representation was presented in the previous chapter. Golem95 is

valid for the evaluation of amplitudes with massless as well as massive internal particles in

a fast and a very efficient numerical way (complex masses are supported). This library can

be used to calculate not only the form factors of the tensor reduction, but it can be used to

calculate also the master basic integrals needed by some tools, hence Golem95 is a library

of master integrals. In addition, this library can be used to evaluate amplitudes in the

framework of the unitarity inspired reconstruction at the integrand level. Consequently, it

can be interfaced with other automatic program based on this approach. So far, Golem95 is

used by GoSam, which is based one the OPP reduction, as a rescue system in the problematic

regions.

I notice that the basic integrals presented in the previous chapter are not all implemented

in Golem95, the only implemented integrals for the case det(G) → 0 are the 3-point func-

tions (all), and for the case det(G) → 0 and det(S) simultaneously I4
3 and I6

3 are the only

implemented. So, in this chapter we give a brief overview of the library, and we show some

examples involving the implemented ingredients.
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6.1 Dealing with the Spurious singularities

A further reduction of the tensorial elements of the Golem redundant basic integrals to

scalar integrals leads to expressions containing inverses of B (see section 4.1.2), where

B = (−1)N+1 det(G)/det(S) (6.1.1)

Hence, these expressions will lead to numerical unstable results in the regions where the

Gram determinant becomes arbitrary small. The philosophy of Golem95 to avoid such spu-

rious singularities is the following:

We provide for each basic integral, an analytical formula and a stable one-dimensional

integral representation. The former representation is obtained by performing all the in-

tegrations analytically; and the later one is obtained by performing the first integrations

analytically and keeping the last one, which will be performed numerically after modifying

the integrand such that the inverse of Gram determinants are avoided, see the previous

Chapter. Then,

- i) if B̂ > B̂cut, the basic integrals are evaluated analytically, which provide fast and effi-

cient numerical evaluation in large phase space region.

- ii) if B̂ < B̂cut, we switch to the numerical mode by integrating the one-dimensional rep-

resentation of each basic integral numerically.

with

B̂ = B × max(Sij) (6.1.2)

where B̂cut is certain cut, it is fixed to 0.005 by default.

Schematically the philosophy of the Golem method to avoid the Gram determinant spurious

singularities is presented in Fig. (6.1).

We notice that Golem95 can be used as a library of massless as well as massive master

integrals (complex masses are supported). These master integrals are the scalar integral

that constitute the end point of Passarino-Veltman, OPP and Generalized unitarity cuts

reductions presented in chapter 4. This basis contains all scalar boxes, triangles, babuls and

tadpoles in n-dimension. The general scalar box in n-dimension is calculated by calling the

appropriate 4-point form factor A4,0. The scalar triangle in n-dimension can be calculated

by calling the appropriate 3-point form factor A3,0 and finally the scalar bubbles is calculated

by calling the 2-point form factor. Depending on the kinematical configuration, Golem95

will call the appropriate form factor corresponding to the desired master integral.

6.2 Description of the Golem95 software

Golem95 contains the following four main directories:

...

- 1) src: is the source files of the program.

- 2) demos: contains some programs for demonstration.

- 3) doc: contains some documentations.

- 4) test: contains some tests.
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Golem95 strategy

In1 (0), In2 (0; j),In3 (0; j; j1, j2; j1, j2, j3), I
n+2
3 (0; j), In+2

4 (0; j; j1, j2; j1, j2, j3), I
n+4
4 (0; j)

B{3,4} < Bcut B{3,4} > Bcut

Numerical mode Analytical mode

1-dim integ rep
for the redundant
integrals

Reduction to the
master integs: In4 ,
In3 , In2 , In1

Numerical value
B{3} ∝ det(G{3})

det(S{3})
, B{4} ∝ det(G{4})

det(S{4})

Figure 6.1: The Golem strategy to avoid the spurious singularities induced by Gram determi-

nant. The stable one-dimensional integral representations for each of the Golem redundant

basic integral are presented in the previous chapter.
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Figure 6.2: Comparison between the numerical and the analytical modes for the evalua-

tion of the form factor A3,3
l1l2l3

: The two plots represent the real part of A3,3
l1l2l3

evaluated

analytically (red) and numerically (black) versus the absolute value of det(G). The former

one shows fluctuations of this function in the region det(G) → 0, which means that the

result is not any more stable. However, the later one shows a smooth function near and for

det(G) = 0, i.e. it is numerically stable.
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The src directory:

src contains the following sub-directories

...

- a) form_factor: all form factors from 1-point to 6-point functions are implemented in the

following five modules: form_factor_1p.f90, form_factor_2p.f90, form_factor_3p.f90,

form_factor_4p.f90, form_factor_5p.f90 and form_factor_6p.f90, respectively.

...

- b) integrals: this sub-directory contains

• four_point: Computes the four point functions for all possible types of external mo-

menta (on the mass shell or off the mass shell). The calculation, from one external off-

shell with up to four, is organized in the five following modules: function_4p1m.f90,

function_4p2m_opp.f90, function_4p2m_adj.f90, function_4p3m.f90, function_

4p4m.f90, respectively. The generic_function_4p.f90 contains the generic routines

to compute the four point functions in n+2 and n+4 dimensions. It can compute

the zero mass, one mass, two mass adjacent, two mass opposite, three mass. The

function_4p_qln.f90 for n = 6, · · · 16 computes the n-dimensional four point func-

tion corresponding to QCDLoop box number n.

• three_point: Computes the three point functions with 3-, 2-, 1- or 0-external off-

shell legs with 2-, 1- or 0-internal mass. The calculation is organized in the modules:

function_3p0m_1mi.f90, function_3p1m.f90, function_3p2m.f90, function_3p3

-m.f90, function_3p1m_1mi.f90, function_3p1m_2mi.f90, function_3p2m_1mi.f9

0. The generic_function_3p.f90 contains the generic routines to compute the three

point functions in n and n+ 2 dimensions, ...

• two_point: Contains the modules: function_2p0m_1mi.f90 (computes the two-

point function with zero momentum and two equal masses In2 (0,m2,m2)), function

_2p_m1m2.f90 (computes In2 (s,m2
1,m

2
2) with/without Feynman parameters), generic

_function_2p.f90 (contains the generic routines to compute the two point functions

in n and n+ 2 dimensions).

• one_point: Contains the module generic_function_1p.f90 to compute one point

functions in n dimensions.

...

- c) kinematic: Contains the modules matrice_s.f90, inverse_matrice.f90 to compute

the matrix S, its inverse and the reduction coefficients bi in the following two modules.

...

- d) module: this sub-directory contains the following functions and subroutines:

• parameter.f90: The parameters B̂ is fixed in this file to switch from the analytical

mode to the numerical mode, the default value of it is 0.005. Also the parameters

concerning the rational part ( to be included or not) should be fixed in this file.

• Special functions: the di-logarithmic functions and other special functions are defined

in the following files: z_log.f90, zdilog.f90, kronecker.f90 and constante.f90.
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• spinor.f90: computes the scalar products, spinorial products and the antisymmetric

tensor.

• precision_golem.f90: This module defines the parameter ki which gives the repre-

sentation of the real and complex numbers in Golem95.

• cache.f90: This module is used to reserve some memory to store already computed

four/three point functions.

• Other modules: tri.f90, translate.f90, sortie_erreur.f90, array.f90, equal

.f90, form_factor_type.f90.

...

- e) numerical: Contains the following two modules: mod_adapt_gauss.f90 and mod_

numeric.f90. These two modules are designed for the one-dimensional numerical integra-

tion. This numerical integration is based on Gauss-K adaptive integration discussed before.

They allow the user to try many modes of numerical integration.

- f) interface: Contains the modules which allow us to re-construct the amplitude at the in-

tegrand level by means of thetensorial reconstruction at the integrand level, and to interface

it with Golem95 or LoopTools.

• tens_rec.f90: This module offers the possibility of reconstructing the tensor coeffi-

cients that have to be contracted with tensor integrals in order to reproduce a diagram,

which has been specified by a set of denominators and a numerator N(k, µ2). This

module is typically used in connection with the module tens_comb.

• tens_comb.f90: This module contains the routines necessary for the contraction of

the tensor coefficients as reconstructed by the module tens_rec with the according

tensor integrals.

• tensor_integrals.f90: This module provides an interface which allows to compute

tensor integrals rather than form factors.

• tool_lt_to_golem.f90: This module contains one function to build the interface

between LoopTools and Golem95.

• Modules containing LoopTools functions: gb0.f90, gc0.f90, gd0.f90, ge0.f90 and

gf0.f90 contain B0i, C0i, D0i, E0i and F0i, respectively.

6.3 Examples

Example1: rank 5 5-point form factor (version golem95-1.2.1)

In this example, we calculate only the form factor: A5,5
j1,j2,j3,j4,j5

, with ji = 1, 2, 3, 4. The S

matrix defining the numerical point that we want to calculate is

S =




0 p2
2 s23 s51 p2

1

p2
2 0 p2

3 s34 s12
s23 p2

3 0 p2
4 s45

s51 s34 p2
4 0 p2

5

p2
1 s12 s45 p2

5 0




=




0 0 −3 −4 0

0 0 0 6 15

−3 0 0 0 2

−4 6 0 0 0

0 15 2 0 0




(6.3.3)
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• In the directory demos, type ’make’ if you want to compile all demos or add the

name of the demo file if you want to run only one demo file, e.g. make demo_5point

(for our example).

• By running ./demo_5point, we produce the following output on the shell:

Choose what the program should compute:

0) form factor for five-point function, rank 0

1) form factor for five-point function, rank 3 (z1*z2*z4)

2) form factor for five-point function, rank 5 (z1*z2*z3*z4*z5)

3) form factor for diagram with propagator 3 pinched, rank 0

4) form factor for diagram with propagators 1 and 4 pinched, rank 0

• By choosing option "2", it will produce:

calculating form factor A_12345 for 5-point function rank 5

The result has been written to the file test5point.txt

• The file test5point.txt contains:

The kinematics is:

p1+p2+p3+p4+p5 = 0

...

S(1,3)= (p2 + p3)2= (-3.,0.)

S(2,4) = (p3 + p4)2= (6.,0.)

S(2,5) = (p1 + p2)2= (15.,0.)

S(3,5) = (p4 + p5)2= (2.,0.)

S(1,4) = (p1 + p5)2= (-4.,0.)

S(1,2) = p22= (0.,0.)

S(2,3) = p32= (0.,0.)

S(3,4) = p42= (0.,0.)

S(4,5) = p52= (0.,0.)

S(1,5) = p12= (0.,0.)

(µ)2 = 1.0

normalization:

defining InN = µ(4−n)
∫
dnk/(i ∗ π(n/2)) func(k, pi)

= rΓ (P2/ε2+P1/ε+P0),

n = 4-2ε,

rΓ = Γ(1 + ε)Γ(1 − ε)2/Γ(1 − 2ε)

the program gives numbers for P2,P1,P0

1/ε2 (0.0000000000E+00 + i 0.0000000000E+00)

+ 1/ε (0.0000000000E+00 + i 0.0000000000E+00)

+ 1 (-.8615520644E-04 + i 0.1230709464E-03)

CPU time= 0.003999
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Example2: form factor for rank 2 6-point functions (version golem95-1.2.1)

In the last example, all the input (the numerical point and the numerator) are fixed by

default in the directory demos. If the user want to chose the input, the files param.input

and momunta.dat in the directory test should be modified. The later one contains the

programs mask_3point, mask_4point, mask_5point and mask_6point to calculates the 3-,

4-, 5- and 6-point Feynman integrals, respectively. To calculate the form factor of the rank

2 six-point functions for any possible numerator zj = 1, ...6 and for a given numerical point,

in the directory test, we follow the following steps:

-1) Fixe the six four-vectors in the file momuea.dat, each vector should be defined in the

same line. Let’s choose the following kinematical configuration1:

.

p1 = (0.500, 0.000, 0.000, 0.500)

p2 = (−0.500, 0.000, 0.000, 0.500)

p3 = (0.045,−0.043, 0.011,−0.186) with pi(xi, yi, zi, Ei)

p4 = (−0.085,−0.091, 0.245,−0.326)

p5 = (−0.117, 0.192,−0.065,−0.233)

p6 = (0.158,−0.057,−0.191,−0.254)

- 2) Edit the file param.input and choose:

• Number of legs: only 3,4,5,6 are possible: choose 6

• Rank: the rank is always ≤ number of legs (renormalizable gauge theories): choose 2

• Type of form factor: A, B or C (note: type B exists only for rank ≥ 2, type C for

rank ≥ 4): choose A

• Labels of Feynman parameters in the numerators: "0" for scalar, "all" for all possible

numerators, or for specific choices example: put 2,2,3 for a rank 3 integral with z22z3

in the numerator : choose all

• Specify the name of the file containing momenta: : type momenta.dat

• Choose the label to distinguish between different numerical points: choose 1

- 3) type the command perl maktest.pl to run the example.

- 4) the generated files are called N[number of legs][rank][pt].out, pt stand for the order of

the chosen numerical point: In this case, the result will be written in N6rank1zi-pt1.out for

i = 1, .., 6, N6rank1zizj-pt1.out for i, j = 1, ..., 6 and files called N6rank1-pt1.numbers.out,

N6ran2-pt1.numbers.

Example 3: General massive case in the problematic region (version not
public yet)

In this paragraph, the form factors of the 3-point functions are calculated for two problem-

atic numerical points, one correspond to the vanishing of the Gram determinant alone and

1We notice that random momenta can be generated using mom-rambo.f
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the other one corresponds to the vanishing of the Gram determinant and the determinant

of the kinematical matrix simultaneously. We notice that the implementation of the 4-point

functions are not completed yet.

I) det(G) → 0 and not det(S):

Let us choose this numerical point:

m2
1 = 0.022823098075160402

m2
2 = 7.6751408576965332 − i 0.14250832796096802

m2
3 = 0.0684692942254812

s1 = s3 = 4.3248424530029297

s2 = 0.0

where

det(G) = 0.0

det(S) = 505.5241686796991 − i 18.86529162284873

In the directory demos type:

- cmake . (to generate the Makefile )

- make (to generate the binary files demo_Npoint for N = 3, 4, 5, 6)

- ./ demo_3point (to run the 3-point functions) - Choose the option 9, which corresponds

to our numerical point

- The program will ask:

Choose what the program should compute:

0) scalar three-point function in n dimensions

1) three-point function in n dimensions with one Feynman parameter

2) three-point function in n dimensions with two Feynman parameters

3) three-point function in n dimensions with three Feynman parameters

4) scalar three-point function in n+2 dimensions

5) three-point function in n+2 dimensions with one Feynman parameter

6) test of the mu independence

- The results for each choice are given in the following table:

Choice Form Factors 1/ε2 1/ε Finite

0 A3,0(µ2 = 1.0) 0.0 0.0 -0.1759780388 - i 0.4017808420

1 −A3,1
l (µ2 = 1.0) 0.0 0.0 -0.07731895433 - i 0.03763325320

2 A3,2
l1l2

(µ2 = 1.0) 0.0 0.0 -0.02255678625 -i 0.01469989033

3 −A3,3
l1l2l3

(µ2 = 1.0) 0.0 0.0 -0.01338493750 -i 0.7647310145×10−3

4 −2B3,2(µ2 = 1.0) 0.0 0.0 0.06763621562 -i 0-.2885457940

5 2B3,3
l (µ2 = 1.0) 0.0 0.0 0.1480748335 -i 0.01913342362

6 A3,0 (µ2 = 34.0) 0.0 0.0 -0.1759780388 i 0-.40178084200
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II) det(G) → 0 and det(S) → 0 simultaneously:

Let us choose this numerical point:

m2
1 = m2

2 = 7.6751408576965332 − i 0.14250832796096802

m2
3 = 0.0684692942254812

s1 = s3 = 4.3248424530029297

s2 = 0.0

where

det(G) = 0.0

det(S) = 0.0

we get

Choice Form Factors 1/ε2 1/ε Finite

0 A3,0(µ2 = 1.0) 0.0 0.0 -0.1772018325 -i 0.004642477410

1 −A3,1
l (µ2 = 1.0) – – not yet implemented

2 A3,2
l1l2

(µ2 = 1.0) – – not yet implemented

3 −A3,3
l1l2l3

(µ2 = 1.0) – – not yet implemented

4 −2B3,2(µ2 = 1.0) 0.0 0.0 0.6646684749 -i 0.01158277702

5 2B3,3
l (µ2 = 1.0) – – not yet implemented

6 A3,0 (µ2 = 34.0) 0.0 0.0 -0.1772018325 -i 0.004642477410

For this problematic region, the implementation of the tensorial 3-point functions is in

progress.
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Conclusion

This thesis is focused on developing and generalizing the Golem library (Golem95) to be

used in all possible kinematical configurations, which might be encountered in the calcula-

tion of amplitudes at NLO order for process of interest at collider experiments or particle

decay, and including radiative corrections of any perturbative gauge theory (QCD, SM and

BSM).

Golem95 is based on the Golem reduction method, presented in chapter 4, which reduces

the form factors of a given Feynman integral into a combination of a certain set of redun-

dant basic integrals with up to four-external legs, called Golem basic integrals, weighted by

some coefficients. This reduction formalism is able to hide the negative powers of the Gram

determinants from the expansion coefficients and avoid the problems of the numerical in-

stability induced by spurious singularities due to the vanishing of these Gram determinants,

thanks to the choice of the redundant basic integrals.

In renormalizable gauge theories and for one-loop Feynman integrals with up to six

external legs, the needed basic integrals in this formalism are: In3 (j1, · · · , j3), In+2
3 (j1),

In+2
4 (j1, · · · , j3) and In+4

4 (j1) and various two- and one-point functions. Where, these func-

tions may be scalars, i.e. without Feynman parameters in the numerators or tensorials,

i.e. with Feynman parameter in the numerator (ji stands for the labels of the Feynman

parameters).

Nevertheless, new negative powers of the Gram determinant appear if these basic inte-

grals are evaluated analytically, .i.e all the integrations over the Feynman parameters are

performed analytically for each basic integral; or reduced to the set of the master integrals,

i.e. to only scalar integrals in n-dimensions with up to four-external legs. These tow ap-

proaches are completely equivalent, so in the safe region it is recommended to use the later

approach since the analytical formulas of the master integrals are well-known.

To avoid the problems induced by det(G) → 0, a stable one-dimensional integral repre-

sentations for each redundant integral is provided, where the inverse of Gram determinants

are hidden at the integrand level of each representation, i.e. no further reduction of the

redundant basic integrals is performed. The last integration is performed numerically and

leads to numerical stable results in the problematic region (where the Gram determinant

becomes arbitrary small).

Instead to derive directly a one-dimensonal integral representation for each tensorial
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redundant basic integrals, we have provided, in Chapter 5, stable one-dimensional integral

representation for each scalar three-point integral up to eight dimensions (n = 4, 6, 8) and

for each scalar four-point integral up to twelve dimensions (n = 6, 8, 10, 12) in the general

massive case, where the complex internal masses are supported. These seven scalar inte-

grals (I4+l
3 for l = 0, 2, 4 and I4+l

4 for l = 2, 4, 6, 8) allow us to reconstruct any tensorial

basic integrals presented earlier, without introducing any new negative power of the Gram

determinants (so instead to calculate ten integrals, we have calculated only seven!).

To summarize, the Golem strategy to avoid the Gram determinant problems is based on

the choice of the set of the redundant basic integrals and the implementation of the stable

one-dimensional integral representation for each element of this set. In practice, it works

as the following:

• If the Gram determinant is large enough (safe region), Golem95 uses the analytical

mode, i.e. it calls the analytical formula of each basic integral.

• If the Gram determinant is arbitrary small (problematic region), Golem95 switches to

the numerical mode, i.e. the stable one-dimensional integral reperesentation of each

integral are integrated numerically.

Golem95 can be used as a library of master integrals as the scalar integrals are related

directly to the form factors: the scalar four-point functions in n-dimensions is given by the

form factor A4,0, the scalar three-point functions in n-dimensions is given by the form factor

A3,0 and so on.

One of the powerful feature of Golem95 is that it can be used to improve inspired-

unitarity reduction methods in the problematic region. This is done by reconstructing the

numerator of the full amplitude using the tensorial reconstruction at the integrand level and

projecting the new amplitude decomposition to Golem95 basic integrals without introducing

any new inverse powers of the Gram determinants. Then, it can be used as a rescue system

for automatic programs using reduction methods based on unitarity approaches (GoSam for

example, uses Golem95 as rescue system in the problematic region).

Conclusion (Français)

Cette thèse se concentre sur le développement et la généralisation de la bibliothèque Golem

(Golem95) pour qu’elle soit utilisée dans toutes les configurations cinématique possibles, qui

peuvent être rencontrées dans le calcul des amplitudes à l’ordre NLO pour des processus

d’intérêt dans les collisionneurs ou dans les désintégrations de particules, et y compris les

corrections radiatives de toutes les théories de jauge perturbatives (QCD, SM et BSM).

Golem95 est basée sur la réduction à la Golem, présentée dans le chapitre 4, ce qui réduit

les facteurs de forme d’une intégrale de Feynman à une boucle à une combinaison d’un cer-

tain ensemble d’intégrales de base redondantes avec jusqu’à quatre pattes externes, appelée

intégrales de base de Golem, pondérées par des coefficients. Ce formalisme de réduction,
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grâce au choix d’intégrales de base redondantes, est en mesure de cacher les puissances néga-

tives du déterminant de Gram dans ces coefficients, et d’éviter les problèmes d’instabilité

numérique induite par les singularités factices dues à l’annulation de ces déterminants de

Gram.

Dans les théories de jauge renormalisables et pour une intégrale de Feynman à une

boucle avec jusqu’à six pattes externes, les intégrales de base nécessaires à ce formalisme

sont: In3 (j1, · · · , j3), In+2
3 (j1), I

n+2
4 (j1, · · · , j3) et In+4

4 (j1) et plusieurs fonctions à deux et

à un point. Ces fonctions peuvent être des scalaires, c.-à-d. sans paramètres Feynman dans

le numérateur ou tensorielles, c.-à-d. avec des paramètres de Feynman dans le numérateur,

(ji représente les labels des paramètres de Feynman).

Néanmoins, de nouvelles puissances négatives du déterminant Gram apparaissent si ces

intégrales de base sont calculées analytiquement, c.-à-d. si toutes les intégrations sur les

paramètres de Feynman sont effectuées analytiquement; ou si elles sont réduites à l’ensemble

des master intégrales, c.-à-d. si elles ne sont exprimées qu’en fonction des intégrales scalaires

à n-dimensions avec jusqu’à quatre pattes externes. Ces deux approches sont parfaitement

équivalentes.

Pour éviter les problèmes induits par l’annihilation de det(G), une représentation inté-

grale unidimensionnelles pour chaque intégrale de base redondante est fournie, où l’inverse

des déterminants de Gram sont cachés au niveau de l’intégrant dans chaque représenta-

tion, c.-à-d. aucune réduction supplémentaire des intégrales de base redondante est effec-

tuée. La dernière intégration est effectuée numériquement et conduit à des résultats stables

numériquement dans la région problématique de l’espace de phase (où le déterminant de

Gram devient arbitrairement petit).

Grâce au choix d’intégrales de base, le formalisme de réduction à la Golem permet

d’éviter les problèmes induits par des singularités factices engendrées par des puissances

négatives du déterminant de Gram dans les coefficients de l’expansion. Au lieu de dériver

directement une représentation intégrale unidimensionnelle pour chaque intégrale de base

redondantes, on a fourni dans le chapitre 5 (et l’appendice C.), une représentation intégrale

unidimensionnelle stable pour chaque intégrale scalaire à trois points avec jusqu’à huit di-

mensions (n = 4, 6, 8) et pour chaque intégrale scalaire à quatre points avec jusqu’à douze

dimensions (n = 6, 8, 10, 12) dans le cas massif le plus général (y compris les masses com-

plexe). Ces sept intégrales scalaires (I4+l
3 pour l = 0, 2, 4 et I4+l

4 pour l = 2, 4, 6, 8) perme-

ttent de reconstruire les intégrales de base tensorielles présentées ci-dessus, sans introduire

de nouvelles puissances négatives du déterminant de Gram (Ainsi, au lieu de calculer dix

intégrales, on a calculé que sept!).

Pour résumer, la stratégie de Golem pour éviter les problèmes dus à l’annihilation du

déterminant de Gram est basée sur le choix de l’ensemble des intégrales de base redondantes

et la mise en oeuvre de la représentation intégrale unidimensionnelles de chaque élément de

cet ensemble. Dans la pratique, cela fonctionne comme suit:
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• Si le déterminant de Gram est assez grand, Golem95 utilise le mode analytique, c.-à-d.

on appelle la formule analytique de chaque intégrale de base.

• Si le déterminant de Gram est arbitrairement petit, Golem95 passe au mode numérique,

en intégrant numériquement la représentation intégrale unidimensionnelle de chaque

intégrale de base redondante.

Golem95 peut être utilisé comme une bibliothèque de master intégrales, car ces intégrales

sont liés directement aux facteurs de forme (les facteurs de forme sont les building-blocks de

Golem95): la fonction scalaire à quatre points en n-dimensions est donnée par le facteur de

forme A4,0, la fonction scalaire à trois points en n-dimensions est donnée par le facteur de

forme A3,0 et ainsi de suite.

Une des caractéristiques les plus importantes de Golem95 est qu’elle peut être utilisée

pour améliorer les méthodes de réduction inspiré de l’unitarité dans la région problématique

de l’espace de phase. Cela se fait en reconstruisant le numérateur de l’amplitude complète

en utilisant la reconstruction tensorielle au niveau de l’intégrant et en projetant la nouvelle

décomposition dans la base de Golem95 sans introduire de nouveaux inverses du déterminant

de Gram. Ainsi, cette bibliothèque peut être utilisée comme un système de sauvetage pour

des programmes automatiques basés sur les méthodes de réduction inspirées de l’unitarité

(GoSam par exemple, utilise Golem95 comme un système de secours dans le région problé-

matique).



Appendix A

Three-point functions

A.1 Matrices and determinants involved in section 5.1

G(a=1,2,3) associated to S in Eq.(5.1.5) :





G(1) =

(
2s2 s1 + s2 − s3

s1 + s2 − s3 2s1

)

G(2) =

(
2s2 −s1 + s2 + s3

−s1 + s2 + s3 2s3

)

G(3) =

(
2s1 s1 − s2 + s3

s1 − s2 + s3 2s3

)

(A.1.1)

The matrices G(1), G(2) and G(3) have the same determinant

det(G) = det(G(3)) = det(G(3)) = det(G(3))

= −s21 + 2s1s2 − s22 + 2s1s3 + 2s2s3 − s23

= −λ(s1, s2, s3) (A.1.2)

which we called in section 5. 1, the Gram determinant associated with the kinematical

matrix S, where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The parameters γ
(2)
i , γ

(1)
i and γ

(0)
i and the discriminant ∆i (Eq. (5.1.55)) for i = 1, 2, 3:

(i=1) (i=2) (i=3)

γ
(2)
1 = s3 γ

(2)
2 = s1 γ

(2)
3 = s2

γ
(1)
1 = m2

2 −m2
3 − s3 γ

(1)
2 = m2

3 −m2
1 − s1 γ

(1)
3 = m2

2 −m2
1 − s2

γ
(0)
1 = m2

3 − iλ γ
(0)
2 = m2

1 − iλ γ
(0)
3 = m2

1 − iλ

(A.1.3)

∆1 = m4
2 − 2m2

2m
2
3 +m4

3 − 2m2
2s3 − 2m2

3s3 + s23 (A.1.4)

∆2 = m4
1 − 2m2

1m
2
3 +m4

3 − 2m2
1s1 − 2m2

3s1 + s21 (A.1.5)

∆3 = m4
1 − 2m2

1m
2
2 +m4

2 − 2m2
1s2 − 2m2

2s2 + s22 (A.1.6)

The reduced matrices of S (obtained by omitting the line and the column i) are:

S{1} =

( −2m2
2 −m2

2 −m2
3 + s3

−m2
2 −m2

3 + s3 −2m2
3

)
⇒ det(S{1}) = −∆1 (A.1.7)

S{2} =

( −2m2
1 −m2

1 −m2
3 + s1

−m2
1 −m2

3 + s1 −2m2
3

)
⇒ det(S{2}) = −∆2 (A.1.8)

S{3} =

( −2m12 −m2
1 −m2

2 + s2
−m2

1 −m2
2 + s2 −2m2

2

)
⇒ det(S{3}) = −∆3 (A.1.9)
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The Gram determinant associated to each of these matrices (which is the Gram matrix

itself, since it is given by a single element) are:

det(G{1}) = 2s3 = 2γ
(2)
1 , det(G{1}) = 2s1 = 2γ

(2)
2 , det(G{1}) = 2s2 = 2γ

(2)
3 . (A.1.10)

A.2 The analytical integration

The proof of the following formula is given in ref. [66]

IQ =

∫ 1

0
dy

1

y − y0
{ln(a y2 + b y + c) − ln(a y2

0 + b y0 + c)}

=

[
η(−y1,−y2) − η(y0 − y1, y0 − y2) − η

(
a− i ε

a

a− i δ

)]
ln
y0 − 1

y0

+ Li2

(
y0

y0 − y1

)
− Li2

(
y0 − 1

y0 − y1

)
+ η

(
−y1,

1

y0 − y1

)
ln

y0

y0 − y1

− η

(
1 − y1,

1

y0 − y1

)
ln

y0 − 1

y0 − y1

+ Li2

(
y0

y0 − y2

)
− Li2

(
y0 − 1

y0 − y2

)
+ η

(
−y2,

1

y0 − y2

)
ln

y0

y0 − y2

− η

(
1 − y2,

1

y0 − y2

)
ln

y0 − 1

y0 − y2

(A.2.11)

where ε and δ are two infinitesimal quantities having the opposite sign of the imaginary

parts of the logarithms arguments in the first line in the right hand side of this equation,

y1 and y2 are the roots of a y2 + b y + c = 0 a must be real but b and c are arbitrary (may

be complex).

A.3 The c-independence of I4+l
3

This appendix presents an analytical proof that, whereas each of the three terms involved

in Eq. (5.1.81) are separately functions of c in the directional limit s− → 0, s2 → 0 with

c = s2/s
2
− (fixed), the limit of their sum is actually independent of c. For this purpose we

compute the c-derivative of this sum in this limit and prove it to vanish identically in t. We

provide an explicit proof for I4
3 ; the I6

3 and I8
3 cases, albeit more difficult, can be handled in
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a completely similar way. In the limit s− → 0, s2 → 0, c is fixed, then Eq. (5.1.81) becomes

I4
3 (S) = −

[
c (s+ + (m2 −m2

3))

(c λ̃+ 4m2)

∫ 1

0
dz

ln(m2) − ln(B − iλ)

2Bm2 + 1

+
c (s+ + (m2

3 −m2)) − 2

(c λ̃+ 4m2)

∫ 1

0
dz

ln(g(z)) − ln(B − iλ)

2B g(z) + 1

+
−s+ + (m2

3 −m2)

(c λ̃+ 4m2)

∫ 1

0
dz

{
4B z (z − 1)

ln(g(z)) − ln(B − iλ)

(2B g(z) + 1)2

− z (1 − z)

g(z)

2

2B g(z) + 1

}]
(A.3.12)

where

B = −2(1 − 2 t s+)

(c λ̃+ 4m2)
, B = − 1

2B
(A.3.13)

g(z) = s+ z
2 +

(
−s+ +m2 −m2

3

)
z +m2

3 (A.3.14)

λ̃ =
(
s+ − (m2 +m2

3)
)2 − 4m2m2

3 (A.3.15)

To have more compact notation, let us introduce the following quantities : ∆m =

m2
3 − m2, D(z, c) = −4(1 − 2 c s+) g(z) + c λ̃ + 4m2, H(z, c) = ln(g(z)) − ln(B − iλ),

T1 = 1 − c s+, T2 = ∆m − s+ and T3 = ∆m + s+. Differentiating I4
3 with respect to c. A

long but straightforward computation leads to the following result:

d

dc
I4
3 (S) = P1 + P2 + P3 + P4 + P5 (A.3.16)

with

P1 =
1

4

T2

T 2
1 B

P2 = (1 + T1 − c∆m)

∫ 1

0
dz

(g′(z))2H(z, c)

D(z, c)2

P3 =
1

4B T 2
1

∫ 1

0
dz

T 2
2 (1 + T1 − c∆m) + 4H(z, c)T3B T 2

1

D(z, c)

P4 =
2T2

T1 B

∫ 1

0
dz

z (1 − z) (g(z)T 2
2 + 4 s+ B T1H(z, c) + (g′(z))2 BT1)

g(z)D(z, c)2

P5 = 16T1 T2

∫ 1

0
dz

z (1 − z) (g′(z))2H(z, c)

D(z, c)3

where g′(z) = dg(z)/dz. To derive these equations, we have used

∂D(z, c)

∂c
= (g′(z))2 (A.3.17)

Instead of computing the integrals over z, we will perform integration by part to reduce the

terms having the highest power at the denominator. Indeed, we can note that the derivative

with respect to z of D(z, c) is proportional to g′(z) :

∂D(z, c)

∂z
= −4T1 g

′(z) (A.3.18)
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Let us start by the last term of eq. (A.3.16) P5. Using integration by part, and noticing

that surface term vanish due to the z (z − 1) factor, we get :

P5 = 2T2

∫ 1

0
dz
{
H(z, c) g′(z) (2 z − 1) − 2z (1 − z) s+H(z, c)

− z (1 − z) (g′(z))2

g(z)

} 1

D(z, c)2
(A.3.19)

Let us collect all the terms with D(z, c)2

P2 + P4 + P5 =

∫ 1

0
dz

2z (1 − z)T 3
2 − B T1 T3D(z, c)H(z, c)

T1 BD(z, c)2
(A.3.20)

By comparing eq. (A.3.20) and the equation which gives P3, we can see that the part

proportional to H(z, c) drops out. So the sum of the Pi (i = 2..5) is equal to:

5∑

i=2

Pi =
T 2

2

4B T 2
1

∫ 1

0
dz

8T1 T2 z (1 − z) +D(z, c) (1 + T1 − c∆m)

D(z, c)2
(A.3.21)

Wee can notice that :

z (1 − z) = − 1

4s2+ T2

(
T3 s+D(z, c) + (2 ∆m − ∆m c s+ − c s2+) (g′(z))2

+ 2∆m T2 g
′(z)
)

(A.3.22)

Inserting eq. (A.3.22) in eq. (A.3.21), we get:

5∑

i=2

Pi = Q1 +Q2 +Q3 (A.3.23)

with

Q1 =
T 2

2 (s2+ c+ ∆m c s+ − 2 ∆m)

2T1 B s2+

∫ 1

0
dz

(g′(z))2

D(z, c)2

Q2 = − T 3
2 ∆m

T1 B s2+

∫ 1

0
dz

g′(z)
D(z, c)2

Q3 = − T 2
2

4T 2
1 B s+

∫ 1

0
dz

2T1 T3 − s+ (1 − T1 − ∆m c)

D(z, c)

Again, an integration by part for Q1 and Q2, using eq. (A.3.18), gives :

Q1 =
T 2

2 (s2+ c+ ∆m c s+ − 2 ∆m)

8T 2
1 B s2+

( g′(1)

D(1, c)
− g′(0)

D(0, c)
−
∫ 1

0
dz

2s+
D(z, c)

)

Q2 = − T 3
2 ∆m

4T 2
1B s2+

( 1

D(1, c)
− 1

D(0, c)

)
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It is easy to see then that the terms proportional to 1/D(z, t) in Q1 and Q3 cancel out.

The definition of D(z, t) and g′(z) leads to

g′(1) = −T2 (A.3.24)

g′(0) = −T3 (A.3.25)

D(1, c) = c T 2
2 (A.3.26)

D(0, c) = c T 2
3 − 4 ∆m (A.3.27)

Using those results, we find that:

5∑

i=2

Pi = − T2

4T 2
1 B = −P1 (A.3.28)

Hence
d

dc
I4
3 (S) = 0 (A.3.29)

q.e.d

In similar way we can prove that

d

dc
I4+l
3 (S) = 0, for l = 2, 4. (A.3.30)
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Four-point functions

B.1 Matrices and determinants involved in section 5.2

B.1.1 The different Gram matrices associated with S

The different Gram matrices G(a) (for a = 1, 2, 3, 4) associated to S in Eq. (5.2.109)

G(1) =

0

@

2s2 s2 − s3 + t −s + s1 + s2

s2 − s3 + t 2t s1 − s4 + t

−s + s1 + s2 s1 − s4 + t 2s1

1

A G(2) =

0

@

2s2 s2 + s3 − t s − s1 + s2

s2 + s3 − t 2s3 s + s3 − s4

s − s1 + s2 s + s3 − s4 2s

1

A

G(3) =

0

@

2t −s2 + s3 + t −s1 + s4 + t

−s2 + s3 + t 2s3 −s + s3 + s4

−s1 + s4 + t −s + s3 + s4 2s4

1

A G(4) =

0

@

2s1 s + s1 − s2 s1 + s4 − t

s + s1 − s2 2s s − s3 + s4

s1 + s4 − t s − s3 + s4 2s4

1

A

(B.1.1)

and

det(G) = det(G(1)) = det(G(2)) = det(G(3)) = det(G(4)) =

−2ss1s2 + 2ss1s3 − 2s21s3 + 2s1s2s3 − 2s1s
2
3 + 2ss2s4 + 2s1s2s4 − 2s22s4 − 2ss3s4 + 2s1s3s4 +

2s2s3s4−2s2s
2
4−2s2t+2ss1t+2ss2t+2ss3t+2s1s3t−2s2s3t+2ss4t−2s1s4t+2s2s4t−2st2

B.1.2 The reduced Gram determinant of the box

(a) (b) (c) (d)

Figure B.1: The triangles in subfigure (a), (b), (c) and (d) are obtained from the box in

Fig. (5.4) by pinching the propagator number 1, 2, 3 and 4, respectively.
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Pinching the propagator number "1":

S{1} =

0

@

−2m2
2 −m2

2 − m2
3 + s3 −m2

2 − m2
4 + s

−m2
2 − m2

3 + s3 −2m2
3 −m2

3 − m2
4 + s4

−m2
2 − m2

4 + s −m2
3 − m2

4 + s4 −2m42

1

A (B.1.2)

det(S{1}) = 2(−m2
2m

2
3s + m4

3s + m2
2m

2
4s − m2

3m
2
4s + m2

3s
2 + m2

2m
2
3s3 − m2

2m
2
4s3 − m2

3m
2
4s3 + m4

4s3 − m2
3ss3

− m2
4ss3 + m2

4s
2
3 + m4

2s4 − m2
2m

2
3s4 − m2

2m
2
4s4 + m2

3m
2
4s4 − m2

2ss4 − m2
3ss4 − m2

2s3s4 − m2
4s3s4

+ ss3s4 + m2
2s

2
4) (B.1.3)

det(G{1}) = −s2 + 2ss3 − s2
3 + 2ss4 + 2s3s4 − s2

4 (B.1.4)

Pinching the propagator number "2":

S{2} =

0

@

−2m2
1 −m2

1 − m2
3 + t −m2

1 − m2
4 + s1

−m2
1 − m2

3 + t −2m2
3 −m2

3 − m2
4 + s4

−m2
1 − m2

4 + s1 −m2
3 − m2

4 + s4 −2m2
4

1

A (B.1.5)

det(S{2}) = 2(−m2
1m

2
3s1 + m4

3s1 + m2
1m

2
4s1 − m2

3m
2
4s1 + m2

3s
2
1 + m4

1s4 − m2
1m

2
3s4 − m2

1m
2
4s4 + m2

3m
2
4s4

− m2
1s1s4 − m2

3s1s4 + m2
1s

2
4 + m2

1m
2
3t − m2

1m
2
4t − m2

3m
2
4t + m4

4t − m2
3s1t − m2

4s1t − m2
1s4t

− m2
4s4t + s1s4t + m2

4t
2) (B.1.6)

det(G{2}) = −s2
1 + 2s1s4 − s2

4 + 2s1t + 2s4t − t2 (B.1.7)

Pinching the propagator number "3":

S{3} =

0

@

−2m2
1 −m2

1 − m2
2 + s2 −m2

1 − m2
4 + s1

−m2
1 − m2

2 + s2 −2m2
2 −m2

2 − m2
4 + s

−m2
1 − m2

4 + s1 −m2
2 − m2

4 + s −2m2
4

1

A (B.1.8)

det(S{3}) = 2(m4
1s − m2

1m
2
2s − m2

1m
2
4s + m2

2m
2
4s + m2

1s
2 − m2

1m
2
2s1 + m4

2s1 + m2
1m

2
4s1 − m2

2m
2
4s1 − m2

1ss1

− m2
2ss1 + m2

2s
2
1 + m2

1m
2
2s2 − m2

1m
2
4s2 − m2

2m
2
4s2 + m4

4s2 − m2
1ss2 − m2

4ss2 − m2
2s1s2 − m2

4s1s2

+ ss1s2 + m2
4s

2
2) (B.1.9)

det(G{3}) = −s2 + 2ss1 − s2
1 + 2ss2 + 2s1s2 − s2

2 (B.1.10)

Pinching the propagator number "4":

S{4} =

0

@

−2m2
1 −m2

1 − m2
2 + s2 −m2

1 − m2
3 + t

−m2
1 − m2

2 + s2 −2m2
2 −m2

2 − m2
3 + s3

−m2
1 − m2

3 + t −m2
2 − m2

3 + s3 −2m2
3

1

A (B.1.11)

det(S{4}) = 2(m2
1m

2
2s2 − m2

1m
2
3s2 − m2

2m
2
3s2 + m4

3s2 + m2
3s

2
2 + m4

1s3 − m2
1m

2
2s3 − m2

1m
2
3s3 + m2

2m
2
3s3

− m2
1s2s3 − m2

3s2s3 + m2
1s

2
3 − m2

1m
2
2t + m4

2t + m2
1m

2
3t − m2

2m
2
3t − m2

2s2t − m2
3s2t − m2

1s3t

− m2
2s3t + s2s3t + m2

2t
2) (B.1.12)

det(G{4}) = −s2
2 + 2s2s3 − s2

3 + 2s2t + 2s3t − t2 (B.1.13)

B.2 Characterization of the studied kinematics

In this section, we want to show the physical configurations that one can encounter in the

calculation of amplitudes at NLO order. It concerns the 4-point functions as well as the

3-point functions.
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The encountered Feynman diagrams at next-to-leading order calculation of scattering

amplitudes for processes of interest in the collision of two particles, say 2 −→ n, or in

particle decay, say 1 −→ n (where n is the number of particles in the final state) can not

have more than two space-like external legs; since, in such process, a space-like momenta

can be obtained only from the combination of incoming momenta (1 or 2 legs at most)

with outgoing momenta. All possible 4-point functions and 3-point functions which may be

encountered in one-loop calculation are shown in Fig. (B.2),

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure B.2: These diagrams are obtained by contracting one or more (or non) propagators. Since,

the one-loop Feynman diagrams involved in the amplitude calculation of the process 1 → n and

2 → n have at most two incoming external legs, then the momenta of the corners of each of these

graphs is a combination of: a) only incoming momentum which implies that the resulting momenta

is time-like, b) only outgoing momentum which implies that the resulting momenta is time-like,

c) one incoming and one or more outgoing momentum which implies that the resulting momenta

may be space-like, d) two incoming and one or more outgoing momentum which implies that the

resulting momenta may be space-like.

For these configurations, the 3-point function Gram determinants are negative as we will

prove in the next paragraph (the 3-point function Gram determinants stand for det(G)

defined in Eq. (5.1.62) or for the box reduced Gram determinants det(G{i}) for i = 1, 2, 3, 4

defined in the previous section).

We notice that for Feynman diagrams with more than one-loop (encountered in next-to-

next-to leading calculation for example), this argumentation may not be correct since the

external legs can depend on the integration momenta of other loops, which means that the

nature of this momenta is unknown. For example, the box in Fig.(B.3) has four external

legs of unknown nature, since they depend on the momenta circulating in the two triangles.

Then, the contacted boxes may have some negative 3-point Gram determinant as we show

later on.
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✁
Figure B.3: Example of a box with unknown nature of external momenta

The sign of the reduced Gram determinants:

The reduced Gram determinants det(G{i}) (where i = 1, · · · , 4, which stands for the label of

the pinched propagator of the box in Fig. (5.4) to obtain the 3-point functions In+l
3 (S\{i}),

S \ {i} is 3× 3 matrix obtained by omitting the line and the column i, it is denoted S{i} in

subsection B.1.2) is given by

det(G{i}) = 4p2
a p

2
b − 4 (pa · pb)2 (B.2.14)

= −λ(p2
a, p

2
b , p

2
c), (B.2.15)

where pa, pb and pc are the momenta of the external legs of the contracted box, .i.e. the

triangles in Fig. (B.1), with p2
c = (pa + pb)

2. Let us define the quantities

∆(1) = −λ(s3, s4, s) = −det(G{1})

∆(2) = −λ(s1, s4, t) = −det(G{2})

∆(3) = −λ(s1, s2, s) = −det(G{3})

∆(4) = −λ(s2, s3, t) = −det(G{4}) (B.2.16)

∆(1) is the discriminant of the equation defining α Eq. (5.2.121), and ∆(i) (with i = 2, 3, 4)

stand for the discriminants ∆ of the equation defining β Eq. (5.2.151) for each sector, where

∆I = ∆(4), ∆II = ∆(3), ∆III = ∆(2). (B.2.17)

As we mentioned above, the contracted box (triangle) can have two time-like, one time-like

and non time-like momenta. In the following, we will study the signs of det(G(i)) in these

possible configurations. Let us assume that the momentum of the triangle are all incoming,

then

pa + pb + pc = 0 (B.2.18)

.

i) p2
a > 0 and p2

b , p
2
c are arbitrary: in the center of mass frame of pa (p0

a,~0) (since p2
a ≥ 0

(time-like), we can find such Lorentz transformation), the scalar product of pa and pb is

given by

pa · pb = p0
a p

0
b (B.2.19)

where pb = (p0
b , ~pb). Then,

det(G(i)) ∝ p2
a p

2
b − (pa.pb)

2

= (p0
a)

2 ((p0
b)

2 − |~pb|2) − (p0
a)

2 (p0
b)

2

= −(p0
a)

2 |~pb|2 ≤ 0. (B.2.20)
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it vanishes if ~pb = ~0 which means that ~pa and ~pb are collinear.

.

ii) if p2
a = 0 and p2

b , p
2
c are arbitrary:

det(G(i)) ∝ −(pa.pb)
2 ≤ 0 (B.2.21)

It vanishes if:

a) pb light-like and proportional to pa
b) pb is space-like and orthogonal to pa
.

iii) p2
a < 0 and p2

b < 0 and p2
c < 0: det(G(i)) can be positive. Fortunately, we can not

encounter one-loop Feynman diagrams (or pinched Feynman diagrams ) with more than

two external legs in configurations of a decay (1 → n) or collision (2 → n).

Then, the Gram determinants associated to the 3-point functions (contracted 4-point func-

tion) can not be positives for physical configurations at NLO order. So, the parameters α

and β are real.

B.3 More in I4+l
4

B.3.1 The logarithms arguments of I4+l
4

sector I

Q1(y)+iλ a + b + c + d + e + f + (h + j + k)y + gy2 m2
3 + (m2

2 − m2
3 − s3)y + s3y

2

Q2(y)+iλ f + (d + e + k)y + (a + b + c + g + h + j)y2 m2
1 + (−m2

1 + m2
2 − s2)y + s2y

2

Q3(y)+iλ f + (d + e)y + (a + b + c)y2 m2
1 + (−m2

1 + m2
3 − t)y + ty2

L1(y) +iλ 2b + c + e + α(h + j + k) + (2αg + j)y m2
3 − m2

4 + α(m2
2 − m2

3 − s3)

+s4 + (s − s3 + 2αs3 − s4)y

L2(y) +iλ e + αk + (2b + c + j + α(2g + h + j))y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + s12 + t − s3 + α(s2 − t + s3))y

L3(y)+iλ e + αk + (2b + c + α(h + j))y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + t + α(s2 − t − s3) + s4)y

sector II

Q1(y) +iλ a + d + f + (c + e + h + k)y + (b + g + j)y2 m2
4 + (m2

2 − m2
4 − s)y + sy2

Q2(y)+iλ f + (d + e + k)y + (a + b + c + g + h + j)y2 m2
1 + (−m2

1 + m2
2 − s2)y + s2y

2

Q3(y)+iλ f + dy + ay2 m2
1 + (−m2

1 + m2
4 − s1)y + s1y

2

L1(y)+iλ c + e + α(h + k) + (2b + j + α(2g + j))y m2
3 − m2

4 − s4 + α(m2
2 − m2

3 − s12 + s4)

+(s12 − s3 + α(s12 + s3 − s4) + s4)y

L2(y)+iλ e + αk + (2b + c + j + α(2g + h + j))y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + s12 + t − s3 + α(s2 − t + s3))y

L3(y)+iλ e + αk + (c + αh)y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + t − s4 + α(−s12 + s2 − t + s4))y

sector III

Q1(y)+iλ a + d + f + (c + e)y + by2 m2
4 + (m2

3 − m2
4 − s4)y + s4y

2

Q2(y)+iλ f + (d + e)y + (a + b + c)y2 m2
1 + (−m2

1 + m2
3 − t)y + ty2

Q3(y)+iλ f + dy + ay2 m2
1 + (−m2

1 + m2
4 − s1)y + s1y

2

L1(y)+iλ c + e + α(h + k) + (2b + αj)y m2
3 − m2

4 − s4 + α(m2
2 − m2

3 − s12 + s4)

+(α(s12 − s3 − s4) + 2s4)y

L2(y)+iλ e + αk + (2b + c + α(h + j))y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + t + α(s2 − t − s3) + s4)y

L3(y)+iλ e + αk + (c + αh)y m2
3 − m2

4 + s1 − t + α(m2
2 − m2

3 − s2 + t)

+(−s1 + t − s4 + α(−s12 + s2 − t + s4))y
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Where

Q1(y) = By2 + (E + C)y +A+D + F − iλ (B.3.22)

Q2(y) = (A+B + C)y2 + (E +D)y + F − iλ (B.3.23)

Q3(y) = Ay2 +Dy + F − iλ (B.3.24)

and

L1(y) = Hy +G+ J − iλ (B.3.25)

L2(y) = (G+H)y + J − iλ (B.3.26)

L3(y) = Gy + J − iλ (B.3.27)

are the quadratic (Qi) and the linear (Li) logarithm arguments involved in I4+l
4 (l =

2, 4, 6, 8), receptively. The imaginary parts of Qi are always negative even complex masses

are involved. For example, the imaginary part of Q1 for the sector I is

Im(Q1) = Im(m2
3)(1 − y) + Im(m2

2)y − λ < 0, since Im(m2
i ) ≤ 0 (B.3.28)

The imaginary parts of Li can, always, chosen to be negative as explained in chapter 5.

* The parameter α in term of the entries of S is given by:

α =
−(s− s3 − s4) + εα

√
s2 + s23 + s24 − 2ss3 − 2ss4 − 2s3s4

2s3
, εα = ± (B.3.29)

=
−√

∆α + 4 s3s4 + εα
√

∆α

2s3
(B.3.30)

∆α = s2 + s23 + s24 − 2ss3 − 2ss4 − 2s3s4 (B.3.31)

From Eq. (B.3.30) the parameter α vanishes (i.e. K = 0 for the sector III), if:

- εα = +1 and s4 = 0

- εα = ± and s4 = 0 and s = s3 6= 0 (implies that ∆α = 0)

and it equals to 1 (i.e. K = 0 for the sector II), if:

- εα = +1 and s3 = s = 0 and s4 < 0

- εα = −1 and s4 = s = 0 and s3 < 0

- εα = ± and s = 0 and s3 = s4 < 0 (implies that ∆α = 0).

* The poles of I6
4,1 in Eq. (5.2.146) are:

t
(1)
0 = −(m2

2 −m2
3 − s3)α+m2

3 −m2
4 + s4

εα
√

det(G{1})
(B.3.32)

t
(2)
0 = −(m2

2 −m2
3 + s4 − s)α+m2

3 −m2
4 − s4

−α εα
√

det(G{1}
(B.3.33)

t
(3)
0 = −(m2

2 −m2
3 + s4 − s)α+m2

3 −m2
4 − s4

(1 − α) εα
√

det(G{1}
(B.3.34)

Here α is not the same α of the tree point function given in Eq. (5.1.37), one can obtain

the former one from the later one by making the replacement Eq. (5.2.148).
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B.3.2 In term of the Golem reduction notation!

M I
0 = det(S) b4 = b̄4 (B.3.35)

M II
0 = −(1 − α) det(S) b3 = −(1 − α)b̄3 (B.3.36)

M III
0 = −α det(S) b2 = −αb̄2 (B.3.37)

M I
1 = det(S{4})/2 (B.3.38)

M II
1 = det(S{3})/2 (B.3.39)

M III
1 = det(S{2})/2 (B.3.40)

det(S) =

m4
2s

2
1 − 2m2

2m
2
3s

2
1 + m4

3s
2
1 − 2m2

1m
2
2s1s + 2m2

1m
2
3s1s + 2m2

2m
2
3s1s − 2m4

3s1s + m4
1s

2 − 2m2
1m

2
3s

2 + m4
3s

2 +

2m2
2m

2
3s1s2 − 2m4

3s1s2 − 2m2
2m

2
4s1s2 + 2m2

3m
2
4s1s2 + 2m2

1m
2
3ss2 − 2m4

3ss2 − 2m2
1m

2
4ss2 + 2m2

3m
2
4ss2 −

4m2
3s1ss2 + m4

3s
2
2 − 2m2

3m
2
4s

2
2 + m4

4s
2
2 − 2m4

2s1t + 2m2
2m

2
3s1t + 2m2

2m
2
4s1t − 2m2

3m
2
4s1t + 2m2

1m
2
2st −

4m2
1m

2
3st + 2m2

2m
2
3st + 2m2

1m
2
4st − 4m2

2m
2
4st + 2m2

3m
2
4st + 2m2

2s1st + 2m2
3s1st − 2m2

1s
2t − 2m2

3s
2t −

2m2
2m

2
3s2t + 2m2

2m
2
4s2t + 2m2

3m
2
4s2t − 2m4

4s2t + 2m2
3ss2t + 2m2

4ss2t + m4
2t

2 − 2m2
2m

2
4t

2 + m4
4t

2 − 2m2
2st

2 −
2m2

4st
2 + s2t2 + 2m2

1m
2
2s1s3 + 2m2

1m
2
3s1s3 − 4m2

2m
2
3s1s3 − 4m2

1m
2
4s1s3 + 2m2

2m
2
4s1s3 + 2m2

3m
2
4s1s3 −

2m2
2s

2
1s3 − 2m2

3s
2
1s3 − 2m4

1ss3 + 2m2
1m

2
3ss3 + 2m2

1m
2
4ss3 − 2m2

3m
2
4ss3 + 2m2

1s1ss3 + 2m2
3s1ss3 −

2m2
1m

2
3s2s3 + 2m2

1m
2
4s2s3 + 2m2

3m
2
4s2s3 − 2m4

4s2s3 + 2m2
3s1s2s3 + 2m2

4s1s2s3 − 2m2
1m

2
2ts3 + 2m2

1m
2
4ts3 +

2m2
2m

2
4ts3 − 2m4

4ts3 + 2m2
2s1ts3 + 2m2

4s1ts3 + 2m2
1sts3 + 2m2

4sts3 − 2s1sts3 − 4m2
4s2ts3 + m4

1s
2
3 −

2m2
1m

2
4s

2
3 + m4

4s
2
3 − 2m2

1s1s
2
3 − 2m2

4s1s
2
3 + s2

1s
2
3 + 2m2

1m
2
2s1s4 − 2m4

2s1s4 − 2m2
1m

2
3s1s4 + 2m2

2m
2
3s1s4 −

2m4
1ss4 + 2m2

1m
2
2ss4 + 2m2

1m
2
3ss4 − 2m2

2m
2
3ss4 − 4m2

1m
2
2s2s4 + 2m2

1m
2
3s2s4 + 2m2

2m
2
3s2s4 + 2m2

1m
2
4s2s4 +

2m2
2m

2
4s2s4 − 4m2

3m
2
4s2s4 + 2m2

2s1s2s4 + 2m2
3s1s2s4 + 2m2

1ss2s4 + 2m2
3ss2s4 − 2m2

3s
2
2s4 − 2m2

4s
2
2s4 +

2m2
1m

2
2ts4 − 2m4

2ts4 − 2m2
1m

2
4ts4 + 2m2

2m
2
4ts4 − 4m2

2s1ts4 + 2m2
1sts4 + 2m2

2sts4 + 2m2
2s2ts4 + 2m2

4s2ts4 −
2ss2ts4 − 2m4

1s3s4 + 2m2
1m

2
2s3s4 + 2m2

1m
2
4s3s4 − 2m2

2m
2
4s3s4 + 2m2

1s1s3s4 + 2m2
2s1s3s4 − 4m2

1ss3s4 +

2m2
1s2s3s4 + 2m2

4s2s3s4 − 2s1s2s3s4 + m4
1s

2
4 − 2m2

1m
2
2s

2
4 + m4

2s
2
4 − 2m2

1s2s
2
4 − 2m2

2s2s
2
4 + s2

2s
2
4

det(G) =

−2(s1ss2 − s1st + s2t − ss2t + st2 + s2
1s3 − s1ss3 − s1s2s3 − s1ts3 − sts3 + s2ts3 + s1s

2
3 − s1s2s4 − ss2s4 +

s2
2s4 + s1ts4 − sts4 − s2ts4 − s1s3s4 + ss3s4 − s2s3s4 + s2s

2
4)

b̄1 =

m2
2s1s − m2

3s1s − m2
1s

2 + m2
3s

2 − m2
3ss2 + m2

4ss2 − m2
2st + 2m2

3st − m2
4st + s2t − m2

2s1s3 − m2
3s1s3 +

2m2
4s1s3 + 2m2

1ss3 − m2
3ss3 − m2

4ss3 − s1ss3 + m2
3s2s3 − m2

4s2s3 + m2
2ts3 − m2

4ts3 − sts3 − m2
1s

2
3 + m2

4s
2
3 +

s1s
2
3 − m2

2s1s4 + m2
3s1s4 + 2m2

1ss4 − m2
2ss4 − m2

3ss4 + 2m2
2s2s4 − m2

3s2s4 − m2
4s2s4 − ss2s4 − m2

2ts4 +

m2
4ts4 − sts4 + 2m2

1s3s4 − m2
2s3s4 − m2

4s3s4 − s1s3s4 + 2ss3s4 − s2s3s4 − m2
1s

2
4 + m2

2s
2
4 + s2s

2
4

b̄2 =

−(m2
2s

2
1) + m2

3s
2
1 + m2

1s1s − m2
3s1s − m2

3s1s2 + m2
4s1s2 + 2m2

2s1t − m2
3s1t − m2

4s1t − m2
1st − m2

3st +

2m2
4st − s1st + m2

3s2t − m2
4s2t − m2

2t
2 + m2

4t
2 + st2 − m2

1s1s3 + 2m2
3s1s3 − m2

4s1s3 + s2
1s3 + m2

1ts3 −
m2

4ts3 − s1ts3 − m2
1s1s4 + 2m2

2s1s4 − m2
3s1s4 − m2

1ss4 + m2
3ss4 + 2m2

1s2s4 − m2
3s2s4 − m2

4s2s4 − s1s2s4 −
m2

1ts4 + 2m2
2ts4 − m2

4ts4 + 2s1ts4 − sts4 − s2ts4 − m2
1s3s4 + m2

4s3s4 − s1s3s4 + m2
1s

2
4 − m2

2s
2
4 + s2s

2
4

b̄3 =

m2
2s

2
1 − m2

3s
2
1 − m2

1s1s − m2
2s1s + 2m2

3s1s + m2
1s

2 − m2
3s

2 − m2
2s1s2 + 2m2

3s1s2 − m2
4s1s2 − m2

1ss2 +

2m2
3ss2 − m2

4ss2 + 2s1ss2 − m2
3s

2
2 + m2

4s
2
2 − m2

2s1t + m2
4s1t + 2m2

1st − m2
2st − m2

4st − s1st + s2t + m2
2s2t −

m2
4s2t− ss2t−m2

1s1s3 + 2m2
2s1s3 −m2

4s1s3 + s2
1s3 −m2

1ss3 + m2
4ss3 − s1ss3 + m2

1s2s3 −m2
4s2s3 − s1s2s3 +

m2
1s1s4 − m2

2s1s4 − m2
1ss4 + m2

2ss4 − m2
1s2s4 − m2

2s2s4 + 2m2
4s2s4 − s1s2s4 − ss2s4 + s2

2s4

b̄4 =

m2
2s1s2 − m2

3s1s2 + m2
1ss2 − m2

3ss2 + m2
3s

2
2 − m2

4s
2
2 − m2

2s1t + m2
3s1t − m2

1st + 2m2
2st − m2

3st − m2
2s2t −

m2
3s2t + 2m2

4s2t − ss2t + m2
2t

2 − m2
4t

2 + st2 + 2m2
1s1s3 − m2

2s1s3 − m2
3s1s3 − m2

1ss3 + m2
3ss3 − m2

1s2s3 −
m2

3s2s3 + 2m2
4s2s3 − s1s2s3 − m2

1ts3 − m2
2ts3 + 2m2

4ts3 − s1ts3 − sts3 + 2s2ts3 + m2
1s

2
3 − m2

4s
2
3 + s1s

2
3 −

m2
1s2s4 − m2

2s2s4 + 2m2
3s2s4 + s2

2s4 + m2
1ts4 − m2

2ts4 − s2ts4 − m2
1s3s4 + m2

2s3s4 − s2s3s4
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βI =
−s2 + s3 + t+ εβ

√
−det(G{4})

2s3
(B.3.41)

βII =
s+ s1 − s2 + εβ

√
−det(G{3})

2s
(B.3.42)

βIII =
s1 + s4 − t+ εβ

√
−det(G{2})

2s4
(B.3.43)

* The b
{j}
i associated to the three point functions I4

3 (S \ {j}):

Sector b̄
{1}
j (2B(G + J) − (C + E)H)/K

I b̄
{1}
1 −m2

2s + m2
3s + m2

2s3 + m2
3s3 − 2m2

4s3 + ss3 − s2
3 + m2

2s4 − m2
3s4 + s3s4

II b̄
{1}
2 m2

2s − 2m2
3s + m2

4s − s2 − m2
2s3 + m2

4s3 + ss3 + m2
2s4 − m2

4s4 + ss4

III b̄
{1}
3 m2

3s − m2
4s − m2

3s3 + m2
4s3 − 2m2

2s4 + m2
3s4 + m2

4s4 + ss4 + s3s4 − s2
4

Sector b̄
{i}
1 −C2 + 4BA + 2BD − EC

I b̄
{4}
1 −m2

2s2 + m2
3s2 − 2m2

1s3 + m2
2s3 + m2

3s3 + s2s3 − s2
3 + m2

2t − m2
3t + s3t

II b̄
{3}
1 −2m2

1s + m2
2s + m2

4s − s2 + m2
2s1 − m2

4s1 + ss1 − m2
2s2 + m2

4s2 + ss2

III b̄
{2}
1 m2

3s1 − m2
4s1 − 2m2

1s4 + m2
3s4 + m2

4s4 + s1s4 − s2
4 − m2

3t + m2
4t + s4t

Sector b̄
{i}
2 CD − 2AE

I b̄
{4}
2 −m2

1s2 + m2
3s2 + m2

1s3 − m2
3s3 + m2

1t − 2m2
2t + m2

3t + s2t + s3t − t2

II b̄
{3}
2 m2

1s − m2
4s + m2

1s1 − 2m2
2s1 + m2

4s1 + ss1 − s2
1 − m2

1s2 + m2
4s2 + s1s2

III b̄
{2}
2 m2

1s1 − 2m2
3s1 + m2

4s1 − s2
1 + m2

1s4 − m2
4s4 + s1s4 − m2

1t + m2
4t + s1t

Sector b̄
{i}
3 −2BD + 2AE + C(E − D)

I b̄
{4}
3 m2

1s2 + m2
2s2 − 2m2

3s2 − s2
2 + m2

1s3 − m2
2s3 + s2s3 − m2

1t + m2
2t + s2t

II b̄
{3}
3 m2

1s − m2
2s − m2

1s1 + m2
2s1 + m2

1s2 + m2
2s2 − 2m2

4s2 + ss2 + s1s2 − s2
2

III b̄
{2}
3 −m2

1s1 + m2
3s1 + m2

1s4 − m2
3s4 + m2

1t + m2
3t − 2m2

4t + s1t + s4t − t2

where b
{j}
i stands for the Golem reduction coefficients bi (see chapter 4) associated to the

3-point functions I4
3 (S \ {j}), they are defined by:

3∑

j=1

b
{j}
i (S{j}

ki )−1 = 1,
3∑

i=1

b̄
{j}
i = det(G{j}), b̄

{j}
i = det(S{j}) b{j}i . (B.3.44)

B.4 The vanishing contributions in section 5.2.2

B.4.1 Vanishing terms of Eq. (5.2.156): i) K ln(Sx + T )/S

Let’s call the contribution of K
S ln(Sx+ T ) to I6

4 , J1. Then,

J1 =
III∑

i=I

{∫ 1−β

0
dz

K

S
ln(Sx+ T )

∣∣∣∣
1

z/(1−β)

−
∫ −β

0
dz

K

S
ln(Sx+ T )

∣∣∣∣
1

z/(−β)

}

=
III∑

i=I

∫ 1

0
dx

∫ (1−β)x

−βx
dz

K

Sx+ T
(B.4.45)
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By making the shift z → z − β, J1 become

J1 =

III∑

i=I

∫ 1

0
dx

∫ x

0
dz

K

Gx+Hz + J − iλ
(B.4.46)

Moreover, we make the shift z → t− γ (with γ = −G/H), then J1 becomes

J1 =
III∑

i=I

∫ 1

0
dx

∫ (1−γ)x

−γx
dt

K

Ht+ J − iλ
(B.4.47)

We split the integral on t, the we exchange the oder of integration and finally integrate over

x, we find

J1 =
III∑

i=I

K

∫ 1

0
dt

{
1

Ht+G+ Jiλ
− t

(G+H)t+ Jiλ
+

t

Gt+ J − iλ

}
(B.4.48)

By expressing the denominators in term of the small letters (see table above) and summing

over the three sectors, we find that the second term and the third term of the integrand of

this equation sum up to zero. After integrating the remaining term on t, we find

J1 =

III∑

i=I

K

H
ln

(
G+H + J − iλ

G+ J − iλ

)
(B.4.49)

which sum up to zero over the three sectors. Then,

J1 = 0 (B.4.50)

B.4.2 Vanishing terms of Eq. (5.2.156) ii): sum of the first and the last
two terms

Let’s call the contribution of the of and the last two terms in Eq. (5.2.156) to I6
4 , J2. Then,

J2 = −
III∑

i=I

K

H

{∫ 1−β

0
dz

[
x(C + 2Bβ)

U
+

(
B

C + 2Bβ
− M1

C + 2Bβ

1

U2

)
ln(Ux+ V )

]∣∣∣∣
1

z/(1−β)

−
∫ −β

0
dz

[
x(C + 2Bβ)

U
+

(
B

C + 2Bβ
− M1

C + 2Bβ

1

U2

)
ln(Ux+ V )

]∣∣∣∣
1

z/(−β)

}
(B.4.51)

We combine the terms coming from the upper limit on x (x = 1) and make the shifts:

z = t−β, z = (1−β)t and z = −βz in the parts with
∫
−β 1 − β,

∫ 1−β
0 and

∫ −β
0 , respectively.

We find,

J2 = −
III∑

i=I

K

H

∫ 1

0
dt

{

C + 2Bβ

t− t01
+

(
B

C + 2Bβ
− M1

(C + 2Bβ)3
1

(t− t01)2

)
ln(Q1(t))

− (C + 2Bβ)t

t− t02
−
(
B(1 − β)

C + 2Bβ
− M1/(1 − β)

(C + 2Bβ)3
1

(t− t02)2

)
ln(Q2(t))

+
(C + 2Bβ)t

t− t03
+

(
B(−β)

C + 2Bβ
− M1/(−β)

(C + 2Bβ)3
1

(t− t03)2

)
ln(Q3(t))

}
(B.4.52)
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where t0i and R are defined in chapter. 5. To simplify this formula, we integrate by part

the denominators (t− t0i)
2. We have,

J =

∫ 1

0
dt

ln(a2t
2 + a1t+ a0)

b1t+ b0

=
1

ω

{
b1a0 ln(a0)

b0
− b1(a2 + a1 + a0) ln(a2 + a1 + a0)

b1 + b0
+ 2a2 + (a1b1 − 2a2b0)

∫ 1

0

dt

b1t+ b0

+ a2

∫ 1

0
dt ln(a2t

2 + a1t+ a0)

}
(B.4.53)

with

ω = b21a0 + b20a2 − b1b0a1 (B.4.54)

Applying this result to each term, we find

∫ 1

0
dt

ln(Q1(t))

(t− t01)2
=

∆

M1

{
2B +

(C + 2Bβ)(A+D + F ) ln(A+D + F − iλ)

−β(C + 2Bβ) +D + Eβ

− (C + 2Bβ)(A+B + C +D + E + F ) ln(A+B + C +D + E + F − iλ)

(1 − β)(C + 2Bβ) +D + Eβ

− 4AB − C2 + 2BD − CE

C + 2Bβ

∫ 1

0
dt

1

t− t01
+B

∫ 1

0
dt ln(Q1(t))

}
(B.4.55)

∫ 1

0
dt

ln(Q2(t))

(t− t02)2
=

∆

M1

{
2(A+B + C) +

(1 − β)(C + 2Bβ)F ln(F − iλ)

D + Eβ

− (1 − β)(C + 2Bβ)(A+B + C +D + E + F ) ln(A+B + C +D + E + F − iλ)

(1 − β)(C + 2Bβ) +D + Eβ

− 2BD + CD − 2AE − CE

C + 2Bβ

∫ 1

0
dt

1

t− t02
+ (A+B + C)

∫ 1

0
dt ln(Q2(t))

}
(B.4.56)

∫ 1

0
dt

ln(Q3(t))

(t− t03)2
=

∆

M1

{
2A+

−β(C + 2Bβ)F ln(F − iλ)

D + Eβ

− −β(C + 2Bβ)(A+D + F ) ln(A+D + F − iλ)

−β(C + 2Bβ) +D + Eβ

− CD − 2AE

C + 2Bβ

∫ 1

0
dt

1

t− t03
+A

∫ 1

0
dt ln(Q3(t))

}
(B.4.57)

To prove that J2 vanishes, we insert Eqs. (B.4.55, B.4.56, B.4.57) in Eq. (B.4.52). The

new formula of J2 is long, so we will not express it here but we show the main contributions

that cancel together. Let’s call each of these contributions J (i) for i = 1, · · · !. Then,

J2 =

III∑

i=I

...∑

j=1

J (j). (B.4.58)
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So,

J (1) =
2B

C + 2Bβ
− 2(A+B + C)

(1 − β)(C + 2Bβ)
+

2A

(−β)(C + 2Bβ)

=
Bβ2 + Cβ +A

−β(1 − β)H(C + 2Bβ)

= 0 (B.4.59)

J (2) = −K
H

∫ 1

0
dt

{
1

t− t01
+

t

t− t02
+

t

t− t03
+

4AB − C2 + 2BD − CE

(C + 2Bβ)2
1

t− t01

− 2BD + CD − 2AE − CE

(1 − β)(C + 2Bβ)2
1

t− t02
+

CD − 2AE

−β(C + 2Bβ)2
1

t− t03

}

=
k

H

2BD − CE

(C + 2Bβ)2

{
1

t− t01
+

t

t− t02
+

t

t− t03

}

=
k

H

2BD − CE

(C + 2Bβ)2

{
ln

(
1 − β +R

−β +R

)
− ln

(
1 − β +R

R

)
+ ln

(−β +R

R

)}
(B.4.60)

To prove that J (2) equals to zero, we split the logarithms. In the case of real β, which is the

case relevant for physical configurations at NLO order as explained above, no η functions

has to be introduced since the imaginary part of the split logarithms arguments are provided

by the imaginary part of R. This later one receives its imaginary part from the complex

masses. In the case of real internal masses this imaginary part is provided by −iλ, the R

can be written as

R =
D + Eβ + iλ

C + 2Bβ
(B.4.61)

where iλ in R is of no consequence, it chosen to +iλ (and not −iλ) since the denominator

U in the primitive Eq. (5.2.156) comes from integrating ∝ 1
Ux+V over x. The denominator

of this expression has −iλ as imaginary part (in the case of real internal masses) and x vary

between zero and one, see chapter 5. Then, it can be written as (U + iλ)x+V − iλ. Hence,

Eq, (B.4.60) vanishes. The generalization to the case with complex β is straightforward.

J (3) =
K

H

∫ 1

0
dt

{
B

C + 2Bβ

[
ln(Q1(t)) − (1 − β) ln(Q2(t)) + (−β) ln(Q3(t))

]

− B

C + 2Bβ
ln(Q1(t)) +

A+B + C

(1 − β)(C + 2Bβ) ln(Q2(t))
− A

−β(C + 2Bβ)
ln(Q3(t))

}

(B.4.62)

we combine this logarithms, one gets

J (3) = −K
H

∫ 1

0
dt

{
ln(Q2(t)) − ln(Q3(t))

}
(B.4.63)

We sum over all the sector (by expressing Q2 and Q3 in term of the entries of S, see table

above), we prove that

J (3) = 0 (B.4.64)
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B.4.3 Vanishing terms of Eq. (5.2.170): "J "

Let’s prove that

J =

III∑

i=I

K

H

{
I4,rest
4 (S) + (C + 2Bβ)I4

3 (S \ {i})
}
− I4

3 (S \ {1})

= 0 (B.4.65)

with

I4,rest
4 =

∫ 1

0
dt
∑

η=±

{

1

t− β − zη

(
ln

H t+G+ J − i λ

B t2 + (E + C) z +A+D + F − i λ
− ln(”t = β + zη”)

)

− 1

t− zη

1−β

(
ln

(H +G) t+ J − i λ

(A+B + C) t2 + (E +D) z + F − i λ
− ln(”t = zη/(1 − β)”)

)

+
1

t+ zη

β

(
ln

Gt+ J − i λ

A t2 +D z + F − i λ
− ln(”t = zη/(−β)”)

)}
(B.4.66)

I4
3 (S \ {i}) =

1

C + 2Bβ

∫ 1

0
dt

{

1

t− β +R

(
ln(B t2 + (E + C) z +A+D + F − i λ) − ln B̃(i)

)

− 1

t+ R
1−β

(
ln((A+B + C) t2 + (E +D) z + F − i λ) − ln B̃(i)

)

+
1

t+ R
−β

(
ln(A t2 +D z + F − i λ) − ln B̃(i)

)}
(B.4.67)

I4
3 (S \ {1}) = −

III∑

i=I

∫ 1

0
dt

K

Ht+G+ J

(
ln(B t2 + (E + C) z +A+D + F − i λ) − ln B̃(1)

)

(B.4.68)

We will show that the sum of the first two parts J equals to I4
3 (S \ {1}). Let’s make

the following change of variable to each term of these parts respectively

z = t− β, z = (1 − β)t, z = −βt. (B.4.69)

we get

I4,rest
4 (S) =

∑

η=±

{∫ 1−β

0

dz

z − zη

[
ln

(
T + S

V + U

)
− ln

(
T + Sz/(1 − β)

V + Uz/(1 − β)

)]

−
∫ −β

0

dz

z − zη

[
ln

(
T + S

V + U

)
− ln

(
T − Sz/βi
V − Uz/βi

)]}
(B.4.70)
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Now, we go one step backward by introducing again the variable x. I4,rest
4 becomes

I4,rest
4 (S) =

∑

η=±

∫ 1

0
dx

∫ (1−β)x

−β x

dz

z − zη

[
S

S x+ T
− U

U x+ V

]

=
∑

η=±

∫ 1

0
dx

∫ (1−β)x

−β x
dz

2α1z + α2

(Sx+ T )(Ux+ V )
(B.4.71)

Then, we shift the variable z (z → z − βx)

I4,rest
4 (S) =

∑

η=±

∫ 1

0
dx

∫ x

0
dz

1

Gx+Hz + J

2α1z − 2α1βx+ α2

Ax2 +Bz2 + Cxz +Dx+ Ez + F − iλ

(B.4.72)

In a similar way, we can prove that

I4
3 (S \ {i}) =

∫ 1

0
dx

∫ x

0
dz

1

Ux+ V
(B.4.73)

Now, let’s insert I4,rest
4 and I4

3 (S \ {i}) in the two first parts of J . After reducing to the

same denominator, we find

K

H
(I4,rest

4 + (C + 2Bβ)I4
3 (S \ {i})) =

K

H

∫ 1

0
dx

∫ x

0
dz

1

Gx+Hz + J

× (2BG− CH) z + (C G− 2AH)x+ EG−DH

Ax2 +B z2 + C x z +Dx+ E z + F − i λ
(B.4.74)

=
K

H

∫ 1

0
dx

∫ (1−γ)x

−γx
dz

−H
Hz + J

2W2x+W1

W2x2 +W1x+W0

(B.4.75)

Eq. (B.4.75) is obtained from Eq. (B.4.74) by making the shift z → z+γ (with γ = −G/H).

It can be integrated over x by exchanging the order of integration between x and z. Then,

the primitive on x is

− K

Hz + J
ln(W2x

2 +W1x+W0) = −N6
4,1(x, z) (B.4.76)

which equals to − the primitive of I6
4,1 which gives −I4

3 (S \ {1}), see Eq. (5.2.142). Hence

J = I4
3 (S \ {1}) − I4

3 (S \ {1})
= 0 (B.4.77)



194 Appendix B. Four-point functions

B.4.4 Prof of I6
4 Golem formula Eq. (5.2.176)

Eq. (5.2.170) can be organized as the following

I6
4 (S) = −

3∑

i=1

∑

η=±

T4

2T1

K√
T4

∫ 1

0
dt

[

η

t− β − zη

{
ln

H t+G+ J − i λ

B t2 + (E + C) z +A+D + F − i λ
− ln(”t = β + zη”)

}

− η

t− zη/(1 − β)

{
ln

(H +G) t+ J − i λ

(A+B + C) t2 + (E +D) z + F − i λ
− ln(”t = zη/(1 − β)”)

}

+
η

t− zη/(−β)

{
ln

Gt+ J − i λ

A t2 +D z + F − i λ
− ln(”t = zη/(−β)”)

}]

−
III∑

i=I

K

H

[
2T1 + T2

2T1
(I4,rest

4 + (C + 2B β)I4
3 (S \ {i})) − HM0

2T1
I4
3 (S \ {i})

]
(B.4.78)

we have

T4

2T1
= −det(S)

det(G)
(B.4.79)

So, the first term between square brackets is just

det(S)

det(G)
I4
4 (S) (B.4.80)

where

I4
4 (S) = −

3∑

i=1

∑

η=±

K√
T4

∫ 1

0
dt

[

η

t− β − zη

{
ln

H t+G+ J − i λ

B t2 + (E + C) z +A+D + F − i λ
− ln(”t = β + zη”)

}

− η

t− zη/(1 − β)

{
ln

(H +G) t+ J − i λ

(A+B + C) t2 + (E +D) z + F − i λ
− ln(”t = zη/(1 − β)”)

}

+
η

t− zη/(−β)

{
ln

Gt+ J − i λ

A t2 +D z + F − i λ
− ln(”t = zη/(−β)”)

}]
(B.4.81)

see Eq. (6.26) of ref. [66]1 .

We have

2T1 + T2

2T1
= −det(S)

det(G)
b1 (B.4.82)

then the first term in the last line of Eq. (5.2.170) becomes

−det(S)

det(G)
b1I

4
3 (S \ {1}) (B.4.83)

1we notice that K in this formula equals to −K in Eq. (6.26) of ref. [66]
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where we used Eq. (B.4.65)

In addition, we have

KM0

2T1
= −det(S)

det(G)
bi, i = 2, 3, 4 (B.4.84)

then the last term in the last line of Eq. (B.4.78) becomes

−det(S)

det(G)
biI

4
3 (S \ {i}) (B.4.85)

From these equations, I6
4 can be written as

I6
4 (S) =

det(S)

det(G)
{I4

4 (S) −
4∑

i=1

biI
4
3 (S \ {i})} (B.4.86)

which is exactly the formula obtained by Golem reduction[19].

q.e.d.





Appendix C

The four-point functions: I10
4

and I12
4

C.1 The scalar box in 10-dimensions

The UV divergent and the finite contributions of the box in 10− 2 ε dimensions, presented

in Eq. (5.2.125) are

I10, div
4 (S) = −rΓI(10)

4 /ε (C.1.1)

I10,fin
4 (S) = rΓ(I10,a

4 (S) + I10,b
4 (S)) (C.1.2)

...

with

I10,a
4 (S) = −I(10)

4

I10,b
4 (S) =

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

(
C1(x, z

′′) y′ + C0(x, z
′′)

)

× ln

(
C1(x, z

′′) y′ + C0(x, z
′′)

)

= I10
4 (S)

...

and

I(10)
4 =

12 a+ 6 b+ 8 c+ 15 d+ 10 e+ 20 f + 2 g + 4h+ 3 j + 5 k

120
(C.1.3)

As we mentioned before, since α is real, we can easily revert the order of integration as in

Eq. (5.2.127) and integrate I10
4 over y′. The primitive is

J 10
4 (S) = J 10

4,1(S) + J 10
4,2(S) (C.1.4)

with

J 10
4,1(S) = −x

2

4

(
C1(x, z) y

′ + 2C0(x, z)

)
y′ (C.1.5)

J 10
4,2(S) =

x2

2

(C1(x, z) y
′ + C0(x, z))

2 ln(C1(x, z) y
′ + C0(x, z))

C1(x, z)
(C.1.6)

So, I10
4 can be written

I10
4 (S) = J10

4,1(S) + J10
4,2(S) (C.1.7)

where J10
4,1 and J10

4,2 are two-dimensional integral representations corresponding to the prim-

itives J 10
4,1 and J 10

4,2, receptively. The first one (without logarithm) can be easily integrated
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4

over the remaining variables of integration, it gives

J10
4,1(S) = −I(10)

4 /2 (C.1.8)

The second integral is of the same nature as I8
4 (Eq. (5.2.250) chapter 5), the only difference

is the power 2 of the quadratic function in front of the logarithm. By following the same

procedure, we get

J10
4,2(S) =

1

2

III∑

i=1

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J − i λ
(Ax2 +B z2 + C x z +Dx+ E z + F )2

× ln
(
Ax2 +B z2 + C x z +Dx+ E z + F − i λ

)

(C.1.9)

The quantities A, B, ... are defined in Eq.(5.2.133). We can proceed to the same strategy

adopted to calculate the other scalar box functions since J10
4,2 has the same logarithms and

the same poles as Eq. (5.2.250), hence the same analyticity. We make the shift z = z + γ x

in such way that H γ +G = 0, the result is

J10
4,2(S) =

1

2

III∑

i=1

∫ 1

0
dx

∫ (1−γ)x

−γ x
dz

K

H z + J − i λ
(W2 x

2 +W1 x+W0)
2

× ln
(
W2 x

2 +W1 x+W0 − i λ
)

(C.1.10)

Inverting the order of integration and integrating over x, the primitive is

∫
dxF 10

4,2 =

1

H z + J

{
x (W 2

0 +W0W1 x+ (W 2
1 + 2W0W2)x

2/3 +W1W2 x
3/2 +W 2

2 x
4/5)

ln

(
W2 x

2 +W1 x+W0

)

−
∫

dxx (W 2
0 +W0W1 x+ (W 2

1 + 2W0W2)x
2/3 +W1W2 x

3/2 +W 2
2 x

4/5)

2W2 x+W1

W2 x2 +W1 x+W0

}
(C.1.11)

where F 10
4,2 is double of the integrand of Eq. (C.1.10). So, J10

4,2 can be written as

J10
4,2(S) =

1

2

III∑

i=I

[I10
4,1(S) − I10

4,2(S)] (C.1.12)
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I10
4,1(S) comes from the integrated quantity in Eq. (C.1.11). After some manipulation (see

chapter 5), it can be written as

I10
4,1(S) =

III∑

i=I

K

∫ 1

0
dt(N10

4,1(1, t− γ) − (1 − γ)N10
4,1(t, (1 − γ) t) − γ N10

4,1(t,−γ t))

N10
4,1(x, z) =

1

H z + J
x (W 2

0 +W0W1 x+ (W 2
1 + 2W0W2)x

2/3 +W1W2 x
3/2 +W 2

2 x
4/5)

ln

(
W2 x

2 +W1 x+W0

)

(C.1.13)

Eq.(C.1.13) provides a numerical stable one-dimensional integral representation, since it is

free of any inverse of Gram determinant.

I10
4,2(S) comes from the remaining part of Eq. (C.1.11), it can be written

I10
4,2(S) =

III∑

i=I

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J

Q10(x, z)

Ax2 +B z2 + C x z +Dx+ E z + F − i λ

=

III∑

i=I

K

∫ 1

0
dx

∫ (1−β)x

−β x
dz̄

1

S x+ T

Q10(x, z + β x)

U x+ V
(C.1.14)

where Q10 is a polynomial of degrees 6 in x and 5 in z. After making the shift z = z + β x,

it can be written as

Q(x, z + β x) = x

(
C

(10)
5 x5 + C

(10)
4 x4 + C

(10)
3 x3 + C

(10)
2 x2 + C

(10)
1 x+ C

(10)
0

)
(C.1.15)

with

C
(10)
5 = S3C

(10,0)
5 (C.1.16)

C
(10)
4 = S2 (C

(10,1)
4 z + C

(10,0)
4 ) (C.1.17)

C
(10)
3 = S (C

(10,2)
3 z2 + C

(10,1)
3 z + C

(10,0)
3 ) (C.1.18)

C
(10)
2 = C

(10,3)
2 z3 + C

(10,2)
2 z2 + C

(10,1)
2 z + C

(10,0)
2 z (C.1.19)

C
(10)
1 = C

(10,4)
1 z4 + C

(10,3)
1 z3 + C

(10,2)
1 z2 + C

(10,1)
1 z + C

(10,0)
1 (C.1.20)

C
(10)
0 = C

(10,5)
0 z5 + C

(10,4)
0 z4 + C

(10,3)
0 z3 + C

(10,2)
0 z2 + C

(10,1)
0 z + C

(10,0)
0 (C.1.21)

C
(10)
5 = S3 C̃5 C

(10)
4 = S2 C̃4 C

(10)
3 = S C̃3 (C.1.22)

We notice that the C
(10,n)
i (for i, n = 1, · · · 5) are free of inverse of det(G) or S.
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4

We revert the order of integration on x and z in Eq. (C.1.14), we write

I10
4,2(S) =

III∑

i=I

K

[∫ 1−β

0
d z

∫ 1

z/(1−β)
dxF 10

4,2(x, z) −
∫ −β

0
d z̄

∫ 1

z/(−β)
dxF 10

4,2(x, z)

]

(C.1.23)

where F 10
4,2 is the integrand of Eq. (C.1.14).

N10
4,2(x, z) =

∫
dx

Q(10)(x, z + β x)

S V − T U

(
S

S x+ T
− U

U x+ V

)

=
1

SV − TU

{

− 1

3
T (C̃3 − C̃4T + C̃5T

2)x3 +
1

4
ST (C̃5T − C̃4)x

4 − 1

5
C̃5 S

2T x5

+
C̃5 V S

3

U

(
x5

5
− V x4

4U
+
V 2 x3

3U2
− V 3 x2

2U3
+
V 4 x

U4
− V 5

U5
ln(U x+ V )

)

+
C̃4 V S

2

U

(
x4

4
− V x3

3U
+
V 2 x2

2U2
− V 3 x

U3
+
V 4

U4
ln(U x+ V )

)

+
C̃3 V S

U

(
x3

3
− V x2

2U
+
V 2 x

U2
− V 3

U3
ln(U x+ V )

)

+
C2 V

U

(
x2

2
− V x

U
+
V 2

U2
ln(U x+ V )

)
+
C1 V

U

(
x− V

U
ln(U x+ V )

)

+
C0 V

U
ln(U x+ V ) − T C0

S
ln(S x+ T ) +

T C1

S

(
T

S
ln(S x+ T ) − x

)

− T (C2 − C̃3 T + C̃4 T
2 − C̃5 T

3)

S

(
T 2

S2
ln(S x+ T ) − T x

S
+
x2

2

)}
(C.1.24)

In Eq.(C.1.24), only the last contributions which are proportional to inverse of S with up

to the power 3 (the last three terms). The remaining terms are free of any inverse of S or S̄

(with det(G) ∝ S S̄), the last one (S̄) appears if we reduce the denominators (S V −T U)Un

(with n = 0, · · · ) to simple elements as we explained in the case of I8
4 . Because of that,

we keep this primitive which provides a stable one-dimensional integral representation after

modifying it as the following: From each term containing ln(S x + T ), we subtract ln(T )

(which give no contribution to the final result as we explained above), and re-write them in

term the functions q3, q2 and q1. We have

T

S

(
T 2

S2
(ln(S x+ T ) − ln(T )) − T x

S
+
x3

2

)
= − x3

X3
(ln(1 −X) +X +X2/2)

= −x3 q3(X) (C.1.25)

T

S

(
T

S
(ln(S x+ T ) − ln(T )) − x

)
=

x2

X2
(ln(1 −X) +X)

= x2 q2(X) (C.1.26)

T

S
(ln(S x+ T ) − ln(T )) = − x

X
ln(1 −X)

= −x q1(X) (C.1.27)
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where q1 and q2 are defined above and q3 is given by

q3(X) =

{
1
X3 (ln(1 −X) +X +X2/2) if X 6→0

−∑∞
n=0

Xn

n+3 if X → 0
(C.1.28)

Contour deformation

As in the previous cases, we have to perform a contour deformation to avoid the poles when

they become close to the segment [0, 1], such contours are presented in paragraph 5.2.2.3.

It will be very gainful if we can find a new primitive (which give the same result as the

previous one) with zero residue at the poles corresponding to U = 0, since these poles appear

as multi-poles up to 6th order, which make the work extremely complicated. Such primitive

can be constructed by adding to each Unxn in the numerator the term (−1)1+n(V − V0)
n,

and from ln(Ux+ V ) we subtract the ln(V0)
1. The new primitive is given by

N10
4,2 =

1

SV − TU

{

− 1

3
T (C̃3 − C̃4T + C̃5T

2)x3 +
1

4
ST (C̃5T − C̃4)x

4 − 1

5
C̃5 S

2T x5

+
C̃5S

3

U6

[ 5∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 6−n

n
− V 6(ln(Ux+ V ) − ln(V0))

]

− C̃4 S
2

U5

[ 4∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 5−n

n
− V 5(ln(Ux+ V ) − ln(V0))

]

+
C̃3S

U4

[ 3∑

n=1

(−1)1+n(Unxn + (−1)1+n(V − V0)
n)V 4−n

n
− V 4(ln(Ux+ V ) − ln(V0))

]

−C2

U3

[ 2∑

n=1

(−1)1+n(Unxn + (−1)1+n(V − V0)
n)V (3−n)

n
− V 3(ln(Ux+ V ) − ln(V0))

]

+
C1V

U2

[
Ux+ V − V0 − V (ln(U x+ V ) − ln(V0))

]
+
C0V

U
(ln(U x+ V ) − ln(V0))

+ x q1(X) + x2C1 q2(X) + x3 (C2 − C̃3 T + C̃4 T
2 − C̃5T

3) q3(X)

}
(C.1.29)

This new primitive has three advantages, i) it provides a stable one-dimensional integral

representation for I10
4,2 when S → 0 (then det(G) → 0), ii) the residues at the poles t0i (or

U = 0) vanish (one can prove this by direct application to residue formula Eq. (5.2.198)),

iii) the residues at the poles tη0i (or S V − T U = 0) are finite when S → 0. The calculation

of these residues, albeit more difficult than in the case of I6
4 and I8

4 , can be handled in

completely similar way. In this case the function q3(X
η) and q3(Z

η) are used, where Xη

and Zη are defined in chapter 5.

1Regarding the poles SV − TU = 0, we can construct a primitive with zero residues at these poles but

we found that the contours may cross branch cuts of the subtracted terms (they are logarithmic). So, we

decide to don’t use this primitive and simply calculate the residues at each of these poles.
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4

Then, I10
4 (S) is given by

I10
4 (S) = −3

2
I10

4 +
1

2

III∑

i=I

∫ 1

0
Kdt

{

+ N10
4,1(1, t− γ) − (1 − γ)N10

4,1(t, (1 − γ) t) − γ N10
4,1(t,−γ t)

− [N10
4,2(1, t− β) − (1 − β)N10

4,2(t, (1 − β) t) − β N10
4,2(t,−β t)]

}

+ residues (C.1.30)

which provides a numerical stable results for all the configuration discussed in paragraph

above.

C.2 The scalar box in 12-dimensions

The UV divergent and the finite contributions of the box in 12 − 2 ε dimensions, defines in

Eq. (5.2.126) are

I12, div
4 (S) =

I(12)
4

2ε
(C.2.31)

I12,fin
4 (S) = I12,a

4 (S) + I12,b
4 (S) (C.2.32)

...

with

I12,a
4 (S) =

3

4
I(12)

4

I12,b
4 (S) = −1

2

∫ 1

0
dxx2

∫ 1

0
dy′

∫ (1−α) y′

−αy′
dz′′

(
C1(x, z

′′) y′ + C0(x, z
′′)

)2

× ln

(
C1(x, z

′′) y′ + C0(x, z
′′)

)

= I12
4 (S) (C.2.33)

...

and

I(12)
4 =

a2

14
+

b2

42
+

c2

28
+

d2

10
+

e2

20
+

f2

6
+

g2

210
+

h2

84
+

j2

126
+

k2

60
+

j k

45

+ h

(
2 j

105
+

k

36

)
+ b

(
2 c

35
+

d

12
+

e

15
+

f

10
+

g

63
+

h

35
+

j

42
+

k

30

)

+ c

(
d

9
+

e

12
+

2 f

15
+

2 g

105
+

h

28
+

j

35
+

k

24

)
+ e

(
f

6
+

g

45
+

h

24
+

j

30
+

k

20

)

+ a

(
b

14
+

2 c

21
+

d

6
+

e

9
+

f

5
+

g

42
+

h

21
+

j

28
+

k

18

)
+ g

(
h

70
+

j

84
+

k

60

)

+ d

(
2 e

15
+

f

4
+

g

36
+

h

18
+

j

24
+

k

15

)
+ f

(
g

30
+

h

15
+

j

20
+

k

12

)
(C.2.34)
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We revert the order of integration and integrate the finite part over y′. The primitive of

the integrand in Eq. (C.2.33) is

J 12
4 (S) = J 12

4,1(S) + J 12
4,2(S) (C.2.35)

(C.2.36)

with

J 12
4,1(S) = −x

2

9

(
C1(x, z) y + C0(x, z)

)3

(C.2.37)

J 12
4,2(S) =

x2

3

(C1(x, z) y + C0(x, z))
3 ln(C1(x, z) y + C0(x, z))

C0(x, z)
(C.2.38)

then

I12
4 (S) = −1

2
(J12

4,1(S) + J12
4,2(S)) (C.2.39)

where J12
4,1 and J12

4,2 are two-dimensional integral representations associated to the primitives

J 12
4,1 and J 12

4,2, receptively. The first one (without logarithm) can be easy integrated over

the remaining variables of integration, we get

J12
4,1(S) = −1

3
I(12)

4 (C.2.40)

The second integral is of the same type as J10
4,2, the only difference is the power 3 of the

quadratic function in front of the logarithm. By following the same procedure, it can be

written as

J12
4,2(S) =

1

3

III∑

i=1

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J − i λ
(Ax2 +B z2 + C x z +Dx+ E z + F )3

ln
(
Ax2 +B z2 + C x z +Dx+ E z + F − i λ

)

(C.2.41)

One more time, we proceed to the same strategy adopted to calculate the other scalar box

functions (chapter 5). We make the shift z = z + γ x in such way that H γ + G = 0, the

result is

J12
4,2(S) =

1

3

III∑

i=1

∫ 1

0
dx

∫ (1−γ)x

−γ x
dz

K

H z + J − i λ
(W2 x

2 +W1 x+W0)
3

ln
(
W2 x

2 +W1 x+W0 − i λ
)

(C.2.42)
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Inverting the order of integration and integrating over x, the primitive is

∫
dxF 12

4 =
K

H z + J

{
x (W 3

0 + 3/2W 2
0 W1 x+W0 (W 2

1 +W0W2)x
2

+ 1/4W1 (W 2
1 + 6W0W2)x

3 + 3/5W2 (W 2
1 +W0W2)x

4 + 1/2W1W
2
2 x

5

+W 3
2 x

6/7) ln

(
W2 x

2 +W1 x+W0

)

−
∫

dxx (W 3
0 + 3/2W 2

0 W1 x+W0 (W 2
1 +W0W2)x

2

+ 1/4W1 (W 2
1 + 6W0W2)x

3 + 3/5W2 (W 2
1 +W0W2)x

4 + 1/2W1W
2
2 x

5

+W 3
2 x

6/7)
2W2 x+W1

W2 x2 +W1 x+W0

}
(C.2.43)

F 12
4 is the integrand of Eq. (C.2.42) (without dividing by 3!). So, J12

4,2 can be written as

J12
4,2(S) =

1

3

III∑

i=I

[I12
4,1(S) − I12

4,2(S)] (C.2.44)

I12
4,1(S) comes from the integrated quantity (first part of in Eq. (C.2.43)). After some

manipulation, its final one-dimensional integral representation is given by

I12
4,1(S) =

III∑

i=I

∫ 1

0
dtK[N12

4,1(1, t− γ) − (1 − γ)N12
4,1(t, (1 − γ) t) − γ N12

4,1(t,−γ t)]

(C.2.45)

N12
4,1(x, z) =

1

H z + J
x (W 3

0 + 3/2W 2
0 W1 x+W0 (W 2

1 +W0W2)x
2

+ 1/4W1 (W 2
1 + 6W0W2)x

3 + 3/5W2 (W 2
1 +W0W2)x

4 + 1/2W1W
2
2 x

5

+ W 3
2 x

6/7) ln

(
W2 x

2 +W1 x+W0

)
(C.2.46)

I12
4,2(S) comes from the remaining part in Eq. (C.2.43), it can be written as

I12
4,2(S) =

III∑

i=I

∫ 1

0
dx

∫ x

0
dz

K

Gx+H z + J

Q12(x, z)

Ax2 +B z2 + C x z +Dx+ E z + F − i λ

=
III∑

i=I

K

∫ 1

0
dx

∫ (1−β)x

−β x
dz̄

1

S x+ T

Q12(x, z + β x)

U x+ V
(C.2.47)

Q12 is a polynomial of degrees 8 in x and 7 in z. After making the shift z = z + β x, it can

be written as

Q(x, z + β x) = x

(
C7 x

7 + C6 x
6 + C5 x

5 + C4 x
4 + C3 x

3 + C2 x
2 + C1 x+ C0

)
(C.2.48)
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the coefficients Ci are defined below.

We revert the order of integration in x, we write

I12
4,2(S) =

III∑

i=I

[
K

∫ 1−β

0
d z̄

∫ 1

z/(1−β)
dxF 12

4,2(x, z) −K

∫ −β

0
d z

∫ 1

z/(−β)
dxF 12

4,2(x, z)

]

(C.2.49)

where F 12
4,2 is the integrand of Eq. (C.2.47).

This primitive of F 12
4,2 on x can be written as

N12
4,2(x, z) =

1

SV − TU

{

−1

7
C̃7S

3Tx7 − 1

6
S2T (C̃6 − C̃7T )x6 − 1

5
ST (C̃5 − C̃6T + C̃7T

2)x5

+
1

4
T (−C̃4 + C̃5T − C̃6T

2 + C̃7T
3)x4

C̃7S
4

U8

[ 7∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 8−n

n
− V 8(ln(Ux+ V ) − lnV0)

]

− C̃6S
3

U7

[ 6∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 7−n

n
− V 7(ln(Ux+ V ) − lnV0)

]

+
C̃5S

2

U6

[ 5∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 6−n

n
− V 6(ln(Ux+ V ) − lnV0)

]

− C̃4S

U5

[ 4∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 5−n

n
− V 5(ln(Ux+ V ) − lnV0)

]

+
C3

U4

[ 3∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 4−n

n
− V 4(ln(Ux+ V ) − lnV0)

]

−C2

U3

[ 2∑

n=1

(−1)1+n (Unxn + (−1)1+n (V − V0)
n)V 3−n

n
− V 3(ln(Ux+ V ) − lnV0)

]

+
C1

U2

[
(Ux+ V − V0)V − V 2(ln(Ux+ V ) − lnV0)

]
+
C0V

U

[
ln(Ux+ V ) − lnV0

]

+ C0 x q1(X) + C1 x
2 q2(X) + C2 x

3 q3(X)

+ (C3 − C̃4T + C̃5TT
2 − C̃5T

3 + C̃7TT
4)x4 q4(X)

}
(C.2.50)

In this primitive, the singular parts on S are expressed in term of the functions q1, q2, q3
and q4, where

q4(X) =

{
1
X4 (ln(1 −X) +X +X2/2 +X3/3) if X 6→0

−∑∞
n=0

Xn

n+4 if X → 0
(C.2.51)

and residues at U = 0 of each term of equals to zero, by construction (we added to each

Unxn the term (V − V0)
n and subtracted lnV0 from ln(Ux+ V ) to make these residues at

t0i vanish).
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The residues of N12
4,2(x, z) at the poles tη0i, albeit more cumbersome, they can be treated

similarly as in the case of I6
4 and I8

4 . In this case the function q4(X
η) and q4(Z

η) are used,

where Xη and Zη are defined in chapter 5.

I12
4,2(S) =

III∑

i=I

∫ 1

0
dtK[N12

4,2(1, t− β) − (1 − β)N12
4,2(t, (1 − β) t) − β N12

4,2(t,−β t)]

(C.2.52)

and

I12,fin
4 (S) = I12,a

4 +
1

6
[I12

4 (S) − (I12
4,1(S) − I12

4,2(S))] + residues (C.2.53)

where I12,a
4 , I12

4 and I12
4,1 are defined above.

with

C7 = S4C
(0)
7 (C.2.54)

C6 = S3 (C
(1)
6 z + C

(0)
6 ) (C.2.55)

C5 = S2 (C
(2)
5 z2 + C

(1)
5 z + C

(0)
5 ) (C.2.56)

C4 = S C
(3)
4 z3 + C

(2)
4 z2 + C

(1)
4 z + C

(0)
4 (C.2.57)

C3 = C
(4)
3 z4 + C

(3)
3 z3 + C

(2)
3 z2 + C

(1)
3 z + C

(0)
3 (C.2.58)

C2 = C
(5)
2 z5 + C

(4)
2 z4 + C

(3)
2 z3 + C

(2)
2 z2 + C

(1)
2 z + C

(0)
2 (C.2.59)

C1 = C
(6)
1 z6 + C

(5)
1 z5 + C

(4)
1 z4 + C

(3)
1 z3 + C

(2)
1 z2 + C

(1)
1 z + C

(0)
1 (C.2.60)

C0 = C
(7)
0 z7 + C

(6)
0 z6 + C

(5)
0 z5 + C

(4)
0 z4 + C

(3)
0 z3 + C

(2)
0 z2 + C

(1)
0 z + C

(0)
0 (C.2.61)

C7 = S4C̃7, C6 = S3C̃6, C5 = S2C̃5, C4 = SC̃4 (C.2.62)

We notice that the C
(j)
i for i, j = 0, · · · , 7 are free of inverse of det(G) and inverse of S.
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Abstract: Higher order corrections in gauge theories play a crucial role in studying

physics within the standard model and beyond at TeV colliders, like LHC, TeVatron and

ILC. Therefore, it is of extreme importance to provide tools for next-to-leading order am-

plitude computation which are fast, stable, efficient and highly automatized. This thesis

aims at developing the library of integrals Golem95. This library is a program written in

Fortran95, it contains all the necessary ingredients to calculate any one-loop scalar or ten-

sorial integral with up to six external legs. Golem95 uses the traditional reduction method

(Golem reduction) to reduce the form factors into redundant basic integrals, which can

be scalar (without Feynman parameters in the numerator) or tensorial (with Feynman pa-

rameter in the numerator); this formalism allows us to avoid the problems of numerical

instabilities generated by the spurious singularities induced by the vanishing of the Gram

determinants. In addition, this library can be interfaced with automatic programs of NLO

calculation based on the unitarity inspired reduction methods as GoSam for example. Earlier

versions of Golem95 were designed for the calculation of amplitudes without internal masses.

The purpose of this thesis is to extend this library for more general configurations (complex

masses are supported); and to provide numerically stable calculation in the problematic re-

gions (det(G) → 0), by providing a stable one-dimensional integral representation for each

Golem95 basic integral.

Key words: Golem95, NLO computations, One-loop Feynman integrals, Complex masses,

Gram determinant, Gauge theories.

Résumé: Les calculs de précision dans les théories de jauge jouent un rôle très impor-

tant pour l’étude de la physique du Modèle Standard et au-delà dans les super-collisionneurs

de particules comme le LHC, TeVatron et ILC. Par conséquent, il est extrêmement impor-

tant de fournir des outils du calcul d’amplitudes à une boucle stables, rapides, efficaces et

hautement automatisés. Cette thèse a pour but de développer la bibliothèque d’intégrales

Golem95. Cette bibliothèque est un programme écrit en Fortran95, qui contient tous les

ingrédients nécessaires pour calculer une intégrale scalaire ou tensorielle à une boucle avec

jusqu’à six pattes externes. Golem95 utilise une méthode traditionnelle de réduction (réduc-

tion à la Golem) qui réduit les facteurs de forme en des intégrales de base redondantes qui

peuvent être scalaires (sans paramètres de Feynman au numérateur) ou tensorielles (avec

des paramètres de Feynman au numérateur); ce formalisme permet d’éviter les problèmes de

l’instabilité numérique engendrés par des singularités factices dues à l’annulation des déter-

minants de Gram. En plus, cette bibliothèque peut être interfacée avec des programmes

du calcul automatique basés sur les méthodes d’unitarité comme GoSam par exemple. Les

versions antérieures de Golem95 ont été conçues pour le calcul des amplitudes sans masses

internes. Le but de ce travail de thèse est de généraliser cette bibliothèque pour les con-

figurations les plus générales (les masses complexes sont incluses), et de fournir un calcul

numériquement stable dans les régions problématique en donnant une représentation inté-

grale unidimensionnelle stable pour chaque intégrale de base de Golem95.

Mots clé: Golem95, Calcul NLO, Intégrales de Feynman à une boucle, Masses complexes,

Déterminant de Gram, Théories de jauge.
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